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PART I 

PREFACE, THEORY AND APPLICATIONS 



PREFACE 

How does one foretell the future? Since earliest times the 

existence of astrologers, fortune tellers and the like has borne witness 

to mankind's quest for information about the future. Their methods and 

the global nature of their predictions are, of course, open to question. 

But at a more mundane (though none the less important) level, the advent 

of fast, low-cost, high-capacity digital computers coupled with develop

ments in the art of modelling has meant that computer-based mathematical 

models of relatively complex systems can be used to provide tentative 

predictions about the future. Weather forecasting is a case in point. 
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It will be shown subsequently that Man is fundamentally a predictive, 

anticipatory creature and that provision of accurate information about the 

future is necessary for him to cope effectively with his environment. In 

the field of Engineering, there has been much evidence - admittedly 

largely from simulation studies of military and vehicular systems - that 

provision of predictive information in the form of a so-called 'predictive 

display' facilitates control. 

However, in spite of the overwhelmingly favourable evidence, there 

have been few real-world applications, few studies to recommend particular 

designs of predictive display in specific settings, and few attempts to 

unify the experimental findings within a common theoretical framework. 

It is to this gap in our knowledge that the present series of experiments 

is addressed. The nature of the project has meant that the examples 

chosen have been restricted to the area of industrial process control. 

This is not in itself a bad thing: Bainbridge (1972) for example, 

recommends this field as a fruitful area of psychological study, having 

problems representative of many other real-world situations. Specifically, 
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this thesis sets out to answer questions such as: 'How do predictive 

displays based on continuous information differ from those using discrete, 

non-continuous information?' 'How does varying the parameters of the 

predictive model affect performance?' 

studies borne out in the real world?' 

'Are the results of laboratory 

'Are predictive displays cost-

effective?' 'How do operators make use of the displays?' 'What are 

the implications for the ways in which human beings themselves structure 

information and anticipate consequences?' 

The plan of the thesis is as follows: The introductory chapters 

review the literature pertaining to human prediction and predictive 

control models (Chapter 1), and to engineering aspects of predictive 

displays (Chapter 2). Chapter 3 describes a fundamental study of pred-

ictive display parameters in a laboratory scheduling task, Chapter 4 

attempts to verify these findings using test data from an actual job shop 

scheduling problem. Chapter 5 branches into the area of continuous 

control with a pilot study.of predictive displays in a laboratory 

simulated continuous stirred-tank chemical reactor. Chapter 6 uses the 

experience gained in the pilot study as the basis for a coruprehensive study 

of predictive display parameters in a further laboratory study of a 

simplified dual-meter monitoring and control task, and Chapter 7 attempts 

to test the optimal design in a part-simulated semi-batch chemical reactor 

using real plant and experienced operators in an industrial setting. The 

results of the experimental programme are summa,ised for convenience in 

Chapter 8. Chapter 9 draws together the threads from the various experi

ments and discusses the findings in terms of a general hierarchical model 

of an operator's control and monitoring behaviour. Finally, Chapter 10 

presents conclusions and recommendations from the programme of research, 

together with suggestions for further work. 
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CHAPTER 1 

BACKGROUND TO PREDICTIVE DISPLAY RESEARCH 



1. INTRODUCTION 

To introduce the thesis, this Chapter outlines the theoretical 

background necessary for research into the area of computer-

based aids for industrial process control. The chapter is 

divided into four sections. The first section describes the nature 

of process control tasks and process operator skills. The second_ 
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section describes the role of prediction, both human and mathematical, 

The next section discusses some methodological issues. 

The final section in this chapter reviews some theoretical approaches 

to modelling the control and decision-making behaviour of the human 

operator. 

2. INDUSTRIAL PROCESS CONTROL 

2.1 Background 

Process industries such as electricity, gas, steel, and petro

chemicals represent a high degree of task development and skill 

sophistication for the_human in the system, as their operators do not 

manipulate the materials directly but rather exert control over the 

process machines to convert input materials to the desired finished 

product. During the last 20 years there has been a growing awareness 

of the changing role of the human operator in process control systems, 

culminating in the industrial survey by Edwards and Lees (1973). The 

principal cause behind the change in man's role has been the advent 

and subsequent rapid growth of first analogue and later digital 

computer technology. In the last few years, this trend has manifested 

itself with the introduction of dedicated minicomputers for process 

control, linked to low-cost visual display units through which 

information may be quickly and effectively communicated to the operator. 
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It now seems that the growth in microprocessor technology will further 

increase the scope for process automation. 

Before the 1950's the process control industry was largely 

dependent on the skill and experience of its operators. As automatic 

control systems increased in scope whilst at the same time decreasing 

in price, the process operator found himself progressively relegated 

to a monitor or supervisor of the process he once controlled manually. 

Labour reductions also meant that instead of manually controlling a few 

control loops, he was now in supervisory control of many such loops. 

Traditional control skills have given way to a new requirement of 

cognitive skills. 

The era of 'unmanned plant' is still some way off however (de Jong 

and Koster, 1971); a point is reached beyond which automation is no 

longer cost-effective, or even possible. Process engineers have in 

the past tended to automate as far down the system as possible, leaving 

man to perform those decision and other functions which they found were 

impossible to quantify. Although the human is capable of performing 

some of the remaining functions, albeit with questionable fidelity, 

this can be seen to be an unsatisfactory approach, originating from 

Birmingham and Taylor' s (1954) philosophy to the effect that man "is 

best when doing least". Much has been learnt from attempts to 

'automate' or 'computerise' control and decision functions. In many 

cases severe problems have arisen and it has proved necessary to"bring 

the man back into the system (Lees, 1974). Control systems engineers 

are at last beginning to realise that they must accept .the challenge 

of engineering both computer-compatible and operator-acceptable man

computer interfaces, if the timely and successful implementation of a 

process computer system is to be realised (Dupuis, 1975). 
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On practical grounds there are several good reasons for retaining 

an operator within the control system and not resorting to complete 

automation: 

1) Cost - man is cheap to install and his overhead costs are 

relatively low, whereas a complex control system represents a 

substantial investment in capital resources and support staff. 

2) Flexibility - man comes as a ready-packaged, general purpose 

controller and problem solver. To program a machine to cope with 

every plant eventuality would be prohibitively time-consuming and 

expensive. 

3) Safety- man is subject to a 'graceful' breakdown in performance, 

whereas a machine will just stop functioning. Man can also make 

use of indirect, hard-to-quantify plant cues, e.g. noises, smells, 

the 'feel' of the plant. 

4) Practice - in a supervisory control system, if there is even the 

remotest possibility that man may be required in a back-up capacity, 

his control skills.must be retained at a meaningful level through 

adequate practice if they are not to be lost through neglect. This 

implies that he must actively interact with the process for part 

of its operating time. 

For these reasons, the trend in recent years has been towards 

integrated man-computer control systems which aim to make full use of 

man's superior judgemental and pattern recognition abilities, coupled 

' to the computer's facility for fast, accurate numerical computat~on and 

routine decisions. Given current technology, the most effective system 

in many applications is an operator-controlled, computer-supported 

system rather than a totally computerised one (Lees, 1974). Licklider's 

(1960) notion of 1 man-computer symbiosis 1 and Jordan 1 s (1963) belief 



that man and computer were complementary sowed the seeds of this 

movement, and it now seems likely that future systems will be judged 

by the degree to which a balance exists between man and machine. 
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The predictive display concept, which forms the subject matter of 

this thesis, is seen as an extension of this philosophy and an example 

of optimising the interface between the process controller and his 

instrumentation. In either manual or supervisory control applications, 

the concept can be used to compensate for the operator's relative 

inability to predict complex responses, whilst still leaving him with a 

meaningful role to perform in the system by providing him with accurate 

and pertinent information. 

2.2 Discrete and continuous tasks 

At first sight a distinction may conveniently be drawn between 

discrete and continuous processes. In the former, distinct items 

and stages are evident and some scheduling of resources is entailed, 

whereas the latter are characterised by material flows which are unbroken 

In the context of industrial process control, examples of discrete 

systems might be production scheduling through a machine shop or the 

control of ingots through a steel plant soaking pit complex. Examples 

of continuous systems might include chemical plant and some of the newer 

steel production techniques. The discrete-continuous dichotomy is a 

natural division to make, particularly as the theoretical backgrounds 

associated with each type of process have in the past tended to be 

separate (see section 5, this chapter). Decision theory has developed 

independently of manual control theory. 



However, most process control applications include discrete and 

continuous components, the proportion depending on the nature of the 
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process. For example, the operator's job in the steel or electricity 

industries often has a much higher discrete (scheduling) content than 

in the heavy chemical industries (Edwards and Lees, 1973). The same 

authors (Edwards and Lees, op. cit., Chapter 5) describe the broad 

range of process operator tasks. The experimental literature of 

recent years has also begun to reflect the combination of scheduling 

and control skills which occurs in practice. The maximum power demand 

task of Bainbridge et al. (1968), analysed in Bainbridge (1972, 1974), 

is a case in point. The controller's task was to allocate power between 

five separate steel-making furnaces, each of which went th~ough a 

sequence of continuous manufacturing stages with a total cycle time of 

5 hours. Other examples of discrete-continuous systems have been 

cited by Pew et al. (1966), Thomas (1973), Cohen andFerrell (1969). 

Furthermore, a new theoretical framework, that of the 'internal 

model' (Kelley, 1968; Bainbridge, 1975a), equally applicable to discrete 

·and continuous processes has recently found favour. It has long been 

established that the human operator functions as an intermittent 

correction servo (Craik, 1947, 1948). As Gregory (1970) has pointed 

out, from the human's viewpoint it is largely irrelevant whether the 

controlled process be discrete or continuous, since in either case he 

gathers information by sampling. Hence the operator's internal 

representation of the controlled process must be based on discontinuous 

data. So the distinction between discrete and continuous processes, 

which at first appeared so important, can now be seen to be less to. 

In subsequent chapters, an attempt will be made to investigate decision 
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factors common to both areas and to develop a general 'internal model' 

theory of human decision-making and control behaviour. 

2.3 Process operator skills 

It is of interest to consider some of the recent'studies of human 

operator skills in process control. As this area has been extensively 

reviewed by Edwards and Lees (1973), Bainbridge (1975a) and limbers (1976) 

only the main findings will be summarised here. Many of the classic 

studies are reprinted collectively in Edwards and Lees (1974). 

2.3.1 Role of the process controller 

The process operator has a vital role to play in process control, 

since it is he who is responsible for achieving good control performance 

and meeting production targets. Bainbridge (1975a) has commented that 

the skills possessed by the experienced process operator are complex, 

encompassing a general knowledge of process behaviour and permitted 

control actions together with a structured overview of the current 

state and future behaviour of the process. Skill must be adaptable 

to different contexts. In a process control task, the operator has 

not only to identify the present state of the process, judge whether 

it is acceptable and if necessary adjust the control settings 

(perceptual and control skills); he also has to decide between 

different ways of scheduling resources and how to allocate his time 

(planning skills) •. The proportion of control to planning skills 

required will vary depending on, and during, the particular task: In 

many tasks dynamic control, whilst essential, is only a minor part of 

the operator's mental activity compared to the planning component 

(Beishon, 1969). Lees (1974) lists the functions an operator may be 
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required to perform as goal formation, measurement, data processing 

and handling, monitoring, single variable control, sequential control, 

and other control, optimisation, communication, scheduling and manual 

operations, depending on the particular task. Basic cognitive 

operations can be summarised as perceptual judgements and dynamic 

control, plus the information processing and decision-making 

operations of calculation, judgement and prediction. These will be 

considered further. 

2.3.2 Dynamic manual control 

In dynamic manual control, perceptual skills are used to 

discriminate which aspects of the process output require attention, 

either directly from the plant using any one or a combination of the 

senses, or indirectly through remotely displayed information. Chart 

recorders, together with process meters, are currently the most common 

form of remotely displaying information, and seem useful ·for detecting 

plant malfunctions as well as for trend analysis (Anyakora and Lees, 

1972; Attwood, 1970). It is known that process operators measure the 

process variables not in absolute but rather in relative terms (Crossman 

and Cooke, 1962), such as overlapping discrete categories with labels 

that include implications for action, e.g. 'on target', 'going outside 

limits', 'well above specification' etc,, (Bainbridge, 1971). Control 

skills have traditionally been studied through activity analysis - this 

method is however inadequate to reveal the mechanisms which determine 

the size and timing of control actions (this question is explored 

further in section 4.2). Laboratory studies of simple processes have 

in general shown that a naive operator's response to a step input can 

be divided into three phases; initial ballistic response, 'hunting' 

around the target value and maintenance on target. The second 



'hunting' phase disappears with practice, indicating that the 

experienced controller does not control by simple feedback alone. 
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For example, Crossman and Cooke (1962) found that ·an experienced 

controller in their water bath task could make accurate control adjust

ments in the absence of visual feedback. 

The experienced operator knows the gains, lags and interactions 

of his process and so can make smooth changes in the process state, can 

maintain control in unusual conditions, or can diagnose and correct 

plant faults (Bainbridge, 1975a). The operator's so-called 'mental 

model' of his plant is built up over time through interacting with and 

controlling the process (Kelley, 1968). The more complex the plant 

characteristics, the longer it will take him to construct a represent-

ative mental model. Control skill can thus be seen to be related to 

the development of the mental model. An experienced operator can 

make use of his internai model to predict process behaviour, evaluate 

alternatives and take anticipatory action. The significance of 

controlling by this means rather than by direct feedback is that his 

uncertainty of the process state is reduced, he can sample less often, 

resulting in a lower workload and an increase in his available processing 

capacity. Crossman et al. (1964) showed that controllers sample less 

frequently with experience, they also sample less frequently when the 

process output is within its specified limits. 

Umbers (1976) has commented that individual differences in" 

control strategy are also present, even amongst experienced operators, 

and the effect of such differences is important in control. He 

attributes these to differences-in personality, cognitive development 

and general level of skill between operators. 



2.3.3 Planning and Scheduling 

Considering the planning and organisation of control behaviour, 

Kelley (1968) has suggested a general framework of goal conception 

(prediction), goal selection (planning), sequence programming, and 

execution. The available evidence suggests that behaviour is 

organised at several levels of complexity, in some form of goal 

hierarchy. As goals can be achieved by several means, and any one 
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routine can be adapted to serve in different contexts, it is unlikely 

to be a true hierarchy, in the 'tree structure' sense of the word, but 

rather a loosely structured, flexible organisation (Bainbridge, 1974). 

This notion will be considered in more detail in a later section. 

For the moment, the evidence from protocol studies suggests that the 

basic cognitive operations mentioned earlier are organised by the 

operator into pre-programmed routines within his mental model of the 

plant, which must also include an 'executive' routine to plan which 

routine is used in which context to form the 'overall' sequence 

(Beishon, 1969; Bainbridge, 1975a; Smith and Crabtree, 1975). 

A problem exists in that the executive routine must usually be 

inferred, since operators seem unaware of or unable to verbalise their 

reasons for choosing a particular strategy. 

In a multivariable process the operator cannot check'or control 

all the variables at once; instead it is necessary for· him to divide 

his attention. From experience he knows the optimum timing not only 

for his control actions but also for checking the effects of such actions 

The consensus of opinion is that the experienced operator maintains a 

mental picture in his working memory of variables which are of interest 

to his control, storing ready-processed assessments of plant states 
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rather than raw process data, and sampling to keep the picture up-to

date. Experimental data on short-term storage indicates that working 

capacity is limited to around 7 static items (Miller, 1956) or 2-3 

running items (Yntema and Meuser, 1960; Olshavsky, 1971). Hence the 

advantage of a structured working memory is that more items can be 

remembered, and novel situations can be generalised within the existing 

classification. 

2. 3.4 Supervisory control of automatic processes 

A high degree of skill, process knowledge and flexibility is 

also required by the supervisory controller who may be expected to 

adjust set points on an automatic controller, monitor its performance, 

and take over on the rare occasions when it develops a fault. The 

importance of this type of monitoring behaviour or supervisory control 

was recognised by a recent NATO Symposium on the subject (Sheridan and 

Johannsen, 1976). Many automated plants are in fact monitored by 

operators who once controlled the process manually, but who now act as 

machine minders and rarely interact with the plant except under 

emergency conditions, with a concomitant deterioration in their skill 

level. One of the operator's main monitoring functions on a plant is 

to prevent the development of situations which may become serious 

incidents, e.g. breakdowns or accidents. 'Incident avoidance' by the 

operator is considerably more effective than automatic protection 

systems whose main action is to shut down the plant when danger 

threatens and thereby incur expensive down time. 

The task of the monitor or supervisory controller in responding 

to process faults can further be broken down into three functions, 

fault administration comprising failure detection, failure 



identification and corrective action (Curry and Gai, 1976). It is 

ironic that in most jobs the supervisory controller has greatly 

reduced opportunities to develop and maintain his control skills and 

his mental model, even though the crucial nature of his task demands 

greater proficiency in these very areas. Operators cannot retain 
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control skill by watching an automatic controller at work (Brigham and 

Laios, 1975), so it seems that if the human is to play a meaningful 

supervisory role he should have the opportunity to control the process 

manually or should at least have access to a simulation of the process 

on which to practice. Kelley and Prosin (1972) have suggested that 

predictive displays may assist in the detection and correction of faults. 

2. 4 Sunimary 

In summary, "the main feature of human behaviour in a control 

task is open loop control" (Umbers, 1976) for which prediction by the 

operator is a vital component. Kelley (1968) has commented that 

predictive information i~ so important to the operator that he uses 

every conceivable means for obtaining it. However, as Flowers (1978) 

points out, engineering models of human performance frequentlY overlook 

the importance of prediction. The ability to predict or anticipate 

plant response is an important skill distinguishing experienced from 

trainee operators. As van Heusden (1977) states, a control room 

operator usually practices 'management by expectations'. He does not 

change anything in the process control system unless one or more of the 

controlled variables are moving away from their target values. A 

skilled operator tries to avoid situations in which process variables 

become off-normal: he tries to predict the new situation in the case 

of no further actions, and reacts to diminish any undesirable deviation 

in process output. Bainbridge (1975a) has commented, however, that we 
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know very little about eontrollers' predietive abilities: she 

suggests specialist tests involving eovering the displays yet asking 

the controller to continue control or to assess the process state 

over time. In fact, a body of evidence does exist concerning 

prediction in applications other than process control, and this will 

be reviewed in the following section. 

3. PREDICTION 

3.1 Human prediction 

It is now widely recognised that knowledge of future events and 

demands is a vital component of a wide range of human control and 

decision-making skills: driving a car, piloting an aircraft, catching 

a ball or crossing the road all depend to a greater or lesser extent on 

prediction. Visual events are seldom seen continuously - consider the 

scene from a moving car where extrapolation from one such event to 

another is a common task. And when supervising the operation of 

automated processes, such as those commonly found in the chemical 

industry, it is important to anticipate unsatisfactory conditions before 

they occur. The fact that the observer is frequently unaware of such 

processes implies that their locus is subconscious. There is even 

some conjecture that predictor circuits may exist at the physiological 

level (Milner, 1971). Only through anticipation of future consequences 

can naive, closed-loop 'feedback' control, where the human acts as an 

. error detector to reduce differences between input and output in a 

" servomechanism analogy, be transferred into skilled, open-loop 'feed-

forward' control. As mentioned in the previous section, several 

workers (Crossman and Cooke, 1962; Cooke, 1965; Beishon, 1969; 

Kragt and Landeweerd, 1974; Brigham and Laios, 1975; Bainbridge, 

1975a; Umbers, 1976) have eommented on the substitution of open-loop 

for closed-loop control as skill develops. It is thought that this 
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phenomenon corresponds to the learning of 'action sequences' which can 

be run directly from long-term memory, without the need for continual 

checking of both the process output and the operator's own behaviour 

(Bainbridge, 1978). 

3.1.1 Experimental Studies 

It is of interest to review some of the experimental work concerned 

with human prediction. One of the earliest recorded studies is thought 

to be that of Wundt (1874), who investigated how accurately a pendulum's 

future position could be judged. Human prediction was studied 

extensively during the 1950's and early 60's, mainly due to the research 

efforts of Gottsdanker (1952, 1955, 1956) and Poulton (1952, 1957, 1964). 

Poulton (1974) provides a general review of the early tracking literature 

pointing to the need for advance information or 'preview'. Poulton (1957) 

has also drawn attention to the difference between 'receptor anticipation' 

and 'perceptual anticipation'. In the first, input information is 

received in advance of the operator's motor response, as in tracking 

with direct preview where the subject is able to look ahead along the 

course. In perceptual anticipation however, direct preview is not 

possible, but the operator can use his knowledge of the course 

characteristics to predict future demands. An internal, cognitive 

model is therein implied. Perceptual anticipation can be in the 

short-term, involving the extrapolation of on-going events a short 

time ahead (speed anticipation); or in the longer-term, such as the 

anticipation of track reversals (course anticipation). Perceptu~l 

anticipation is particularly important in the control of systems with 

lags and complex dynamics, such as vehicles and process plant. 

Because the results of operator actions may only become evident over a 
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period of time, there can be no direct preview. However, the 

complexities of the systems and the interaction with his own control 

actions frequently make the act of mental prediction very difficult. 

Poulton (1964) in a study of simple or complex sine wave tracking 

found that post-view (historical) information helped only when tracking 

the more complex input without any form of preview, whereas preview 

(future) information reduced tracking error in all conditions but 

especially where the amount of track ahead visible was sufficient for 

the subject to see up to the next track reversal. Similar effects 

of advanced and delayed information were reported by Gifford and Lyman 

(196 7). Gottsdanker, Frick and Lockard (1961) further note that 

operators have difficulty in detecting gradual changes of velocity. 

They suggest that accelerated motion is perceived by comparing early 

and late velocities rather than by direct sensing, which would account 

for man's inability to judge motion near to its time of onset. 

Davis and Behan (1960) in a study of visual prediction of a radar 

blip position, and Foot (1969) in a task requiring subjects to predict 

the point of coincidence of two pointers moving at different rates, 

both found estimation error to increase over the dead-reckoning period, 

whereas viewing period had only a slight effect. The latter finding 

was confirmed by Wiener (1962). An analogy can be drawn with throwing 

a ball at a target. As the time during which the ball is in the air 

increases, the likelihood of missing the target also goes up. A common . 
strategy is therefore to throw the ball hard at the target so reducing 

the required prediction period. It seems that accuracy of prediction 

is likely to be highly task dependent. Compare, for example, throwing 

a ball with predicting the effect today's technology will have in the 

next century. 



When the target is obscured as part of a tracking task, the 

subject's response deteriorates during the obscured interval but 
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rapidly recovers on reappearance of the target (Hammerton and Tickner, 

1970). McLeod (1972) notes that during the obscured period subjects 

continue to pursue the target at its mean velocity when visible, a 

strategy obtained by sampling from previous behaviour and again implying 

some form of internal representation of the track characteristics. 

Flowers (1978), however, found that subjective response during the 

obscured period was more varied and depended on individual subjects, 

the point on the track at which vision was lost, as well as the 

characteristics of the track itself. The path predicted by subjects 

was often incorrect. When sight of the target is lost momentarily, as 

during blinking, no deterioration in performance takes place if blinking 

is unintentional unless the tracked signal is very complicated. This 

is probably because a person blinks mostly when he does not need to 

look. However, if the man is forced to blink at a set rate then 

performance does deteriorate, as instructed blinking is not only an 

additional task to perform but the man may also be obliged to blink at 

a critical point in the track (Poulton and Gregory, 1952). 

Kahneman and Tversky (1973) present one of the purer studies on 

the psychology of category prediction and numerical extrapolation. 

They conclude that people ignore all statistical considerations when 

predicting the outcome of a particular situation, and instead choose 

the outcomes which to them appear most representative of the evidence, 

Hence in contrast to what one might be led to believe from statistical 

decision theory, intuitive predictions are insensitive both .to the 

reliability of evidence and to the prior probability of the outcome. 

People will wrongly predict rare events or biassed, extreme values if 



these seem to be representative of the situation, and furthermore 

will have an unjustifiably high level of confidence in their 

judgements. The implications for process control.are far-reaching. 

Spencer (1961) points out that in order to build up a mental picture 

of the current plant state, a process operator must estimate average 

values from the continuously varying plant readings. Spencer found 

large individual differences between operators when a 'rogue' value 
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was introduced, though usually the rogue was underweighted. Although 

operators were on the whole quite good at estimating average values, 

errors of judgement increased with the amount of materialr on which the 

estimate was based and with its scatter. 

3.1.2 Comparison of human and mathematical prediction 

Several workers have followed Sheridan's (1966) philosophy of 

comparing operator performance to that of a reference mathematical 

model. (See also section 5.1, this chapter.) Rouse (1973 a,b) 

devised a serial cogniti~e prediction task which required subjects to 

estimate the relative position of the next point in a discrete time 

series. Supervisors of computerised control systems are likely to be 

concerned with such sampled data. The task was slow enough to 

eliminate the effects of reaction time and neuromuscular lags, so 

that any suboptimality was due solely to cognitive limitations. Human 

performance on the task in terms of prediction error was approximated 

by a linear regression model with limited memory (which effectiveiy 

'forgot' old data) and observation noise (equivalent to an operator's 

short-term memory limitations and his inability to perfectly estimate 

the magnitude of a stimulus). Models using linear or quadratic extra~ 

polation from past data points yielded far higher prediction errors, 



whereas models with perfect memory or learning both did much better 

,than the subjects. From this evidence, human prediction strategies 

are based on more than just simple extrapolation, yet are still 

suboptimal compared to the best mathematical model. Sheridan and 

Rouse (1971) had found prediction error to increase progressively if 

more than one stage ahead was estimated, as the human has difficulty 
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in determining the amount of signal history due to noise level. It 

seems that physiological factors are the main constraints on a human's 

ability to predict for short prediction times (in the order of seconds) 

whereas cognitive factors predominate for long prediction times (in the 

order of minutes and above). Van Heusden (1977) repeated Rouse's 

experimental task for simpler mathematical models and confirmed that 

human prediction of a sampled first-order system, disturbed by pseudo-

predictable random noise, is suboptimal. A 'black box' auto-regressive 

model was found to give a significantly better fit to the experimental 

data than a limited memory model, although the fidelity of the latter 

increased monotonically as memory length increased. Toutenhoofd (1974) 

found that high order 'black box' models gave no better results than 

lower order models. Tainsh (1977) also compared subjects' predictions 

of the standard deviations of current and future process parameters 

with estimates obtained from a mathematical model, this time a Kalman 

filter. No correlation was found, though a relationship did exist 

between subjective estimates and the standard deviations calculated by 

linear regression. Tainsh concludes that the estimates of inexperienced 

operators are more likely to be related to the spread of the displayed 

points rather than to statistical considerations, a view tending to 

support that of Kahneman and Tversky discussed earlier. It is 



interesting to note that the noise level inherent in the track had 

little effect on subjects' judgements. 

3.1.3 Summary 
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In summary it would appear that although unconscious anticipation 

through some form of internal model is an important feature of control 

and decision-making behaviour which humans are quite able to manage in 

their everyday life, human predictive abilities are not all they might 

be when using abstract displays. Operators have difficulty in 

predicting the response of systems involving complex dynamics and time 

lags, and they cannot accurately perceive first or higher order 

derivative information or detect gradual changes in velocity. In the 

absence of updated information the accuracy of prediction gets worse 

over time. _People ignore statistical considerations in their estimates, 

with the result that their predictions are suboptimal. 

3.2 Mathematical prediction 

The problem of predicting the mathematical response of time

dependent systems has received considerable attention in statistical 

theory, control engineering and economic forecasting. Comprehensive 

reviews of forecasting techniques are given in Gilchrist (1976), or 

Montgomery and Johnson (1976). Basically, a number of approaches to 

forecasting can be distinguished: intuitive, causal and extrapolation 

techniques. Intuitive methods are the classical methods of forecasting, 

and are based essentially on an individual's feeling for the situation. 

Causal methods try to forecast effects on the basis of knowledge of 

their causes: since many causes are economic in nature, causal methods 

find wide applications in economic theory. Extrapolative methods are 

based on the extrapolation into the future of features shown by 

relevant data in the past, usually through the construction of a 



mathematical or statistical model of the data, smoothed if necessary 

to eliminate the effect of purely random variations. Thus the 

components of forecasting by extrapolative techniques are always data 

collection, data reduction, model identification and parameter 

estimation, leading to the extrapolation of future values. 

3.2.1 Linear prediction theory 

The classic early work in this area was carried out by Norbert 

Wiener (1949) in his 'Extrapolation, Interpolation and Smoothing of 

Stationary Time Series'. Wiener was motivated by the anti-aircraft 
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gunnery fire control problem which became apparent during World War II, 

and when his aircraft predictor was incorporated into radar trackers 

the number of hits per thousand shells went up considerably. Wiener's 

basic premise was to assume that the statistical properties of the 

plane's time history would remain stationary over a limited period of 

time, and could thus be used as a basis for extrapolation. Wiener's 

tome became known as the 'yellow peril' due to the formidable mathematics 

which it entailed, and it was left to Bode and Shannon (1950) to provide 

a translation of Wiener's linear, least-squares predictor into terms that 

engineers and laymen could more readily interpret. A further refinement 

to linear smoothing and prediction theory was developed by Kalman (1960) 

for use in control tasks where the basic information is uncertain. In 

Kalman filtering a number of measures from the process to be estimated 

are input to the filter and combined with a statistical estimator (the 

covariance matrix) calculated on the basis of prior information. The 

combination of new state information plus old covariance information 

leads to better estimates of future process variable means and standard 

deviations. The precision of the estimates increases as further 

information is input to the model, though there is the disadvantage 

that initial values are required by the filter before it can begin its 
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iterative procedure, so thare are necessarily considerable fluctuations 

in the initial stages of the filter output. 

3.2.2 'Fast-time' approach 

Ziebolz and Paynter (1954) first conceived the method of running 

a simulation model of the controlled process repetitively in 'fast 

time' to provide phase advance information within the control system. 

Computers are particularly suited to the execution of such techniques 

due to their capacity for rapid, accurate computation and logical 

sequencing. Discrepancies between predicted and desired pre-computed 

future status could be repetitively computed and fed to an automatic 

controller which acted to eliminate the discrepancies. Chestnut, 

Sollecito and Troutman (1961) discuss applications of predictive 

control systems actuated by estimates of future error signals, in the 

areas of space navigation/rendezvous missions, chemical process control, 

and the landing of aircraft along prescribed paths. The authors note 

that it is not always necessary to construct an exact, fast-time model 

of the system to be controlled for the purpose of extrapolation, and 

that a simpler second- or third-order model using equivalent time 

constants can be used with considerable success. 

The ability of predictive control systems to operate with 

inexact models is particularly important for their use in dynamic 

chemical control processes whose characteristic changes cannot always 

be easily measured. Further applications of predictive control 

systems to chemical process control have been cited by Adams and 

Schooley (1968), Burghart and Lefkowitz (1969), and Klubnikin (1966). 

Predictive techniques have now become an accepted part of modern 

control theory and practice, though it should be noted that in general 
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the industrial application of advanced control methods is much less 

than the importance accorded to them in the literature would suggest 

(Edwards and Lees, 1973). 

3.2.3 Choice of predictive control model 

The choice of an appropriate predictive control model is largely 

an engineering problem, and in practice depends on the computational 

facilities available as well as the requirements of the system. Of 

course no model can hope to predict catastrophic system failures, 

though some indication that all is not well might be revealed in the 

lead-up stages. At one extreme of sophistication a simple least-

squares model may be used to obtain a 'best fit' line through a s~t 

of recent data points. The Taylor series extrapolation technique is 

an extension of this model, comprising a polynomial whose number of 

derivative terms may be varied to give a response which varies from 

a simple straight line to an n-th order curve. At the opposite 

extreme of complexity some extremely sophisticated prediction models 

are available, including multivariate and adaptive techniques. In 

the latter, statistical parameters of the smoothing model are. updated 

over time, as in Trigg and Leach's (1967) 'adaptive tracking filter'. 

The design of adaptive servosystems is discussed by Tornizuka (1975); 

however a detailed review of such techniques is beyond the scope of 

this thesis. 

3.2.4 Why include the man? 

It must be stressed that in all applications so far discussed 

mathematical prediction has been incorporated as an integral part of 

the control system itself. If-such techniques are feasible, one may 

reasonably ask, why then include the human operator in the control 

system at all? The answer, that of a human's lower capital outlay, 
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coupled with his flexibility and safety, was mentioned in an 

earlier section. But in addition many of the mathematical optimisation 

techniques are too unwieldy and exacting for real~world applications, 

since they assume at the very least a problem environment which can be 

defined in some way. Most real-world problems are, however, 

extremely ill-defined. The utility of predictive control is therefore 

limited to those processes in which trajectories can be computed for 

all possible contingencies. Where it may be imperative to deviate 

from the prescribed program some form of manual over-ride is necessary. 

Recent excursions by control engineers into the area of 'fuzzy' control, 

automating the type of conditional logic verbalised by process operators, 

suggest that existing fully automated control techniques still leave 

much to be desired (King and Mamdani, 1975; Gaines, 1976; Tong, 1977). 

A compromise solution might be to retain the operator in the control 

loop but display to him directly the prediction model's forecast of 

future system behaviour, so compensating for human weaknesses in 

predictive ability but .~etaining his many advantages. This was the 

approach adopted by Kelley (1958) in his development. of the 'predictive 

display' concept, and forms the underlying concept for the approach 

adopted in subsequent chapters. 
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4. !1ETHODOLOGY 

This section considers two issues of concern when researching 

into aids for the control of industrial processes: the problem of 

laboratory versus real-world studies, and the methods used to 

collect performance data. 

4.1 Laboratory, simulation and real-world studies 

The question of whether or not to simulate is an old and vexed 

issue. (For a cross-section of the many different viewpoints the 

term 'simulation' evokes, see the review of a recent symposium .on the 

subject by Whitfield and Goill~u, 1978.) Certainly the process control 

literature seems quite sharply divided between rigorous laboratory 

experiments and cruder, real-world 'case studies' (Drury and Baum, 1976). 

4.1.1 Advantages and Disadvantages 

At a theoretical level, laboratory studies have the distinct 

advantage that the experimenter may isolate the variables he is 

interested in and determine their precise effects and interactions, 

having first excluded by careful design those factors which do not 

interest him. At a practical level, laboratory studies are 

considerably simpler and cheaper to carry out than their real-world 

counterparts. Simulation as a technique can be more realistic than 

other types of laboratory study but does not involve the difficulties 

of experimenting on an operational process. Bainbridge (1975a) has 

commented that all the systematic studies of process control skifl 

have been performed in the laboratory. 



There are dangers, however, in the ivory tower approach. 

Chapanis (1967) has heavily criticised the bulk of laboratory 

techniques for their lack of relevance to the real world. By their 

very nature laboratory experiments are at best only rough and 

approximate models of any real-life situation. Bainbridge (1975a) 

again notes that laboratory processes are usually much simpler and 
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easier to control than in a real context. An experimenter exercises 

bias both in the independent variables he selects to test, and in the 

dependent variables he chooses to measure with. As a result, hidden 

or unsuspected interactions in real-life can easily nullify, or even 

reverse, conclusions arrived at in the laboratory. In addition, 

variables often change when brought into the laboratory. The effect 

of controlling extraneous or irrelevant variables is to increase the 

precision of an experiment, but at the risk of discovering effects so 

small that they are of no practical importance. Coupled with the 

unrealistic methods of presenting variables in many laboratory 

simulations, Chapanis feels that one should only generalise with extreme 

caution from the results of laboratory research to the solution of 

practical problems, Poulton (1972) echoes Chapanis' disquiet, adding 

that it is never possible to simulate the general activity, stresses 

and bustle of the shop floor in the laboratory- McEwing's (1977) 

'organisational' as opposed to 'technical' realism, 

4.1.2 The need for field validation 

For the results of ergonomic research to be of value they must 

clearly be validated through field experiments (Hartnett and Murrell, 

1973). Hm<ever, field research is not without its problems, 

necessitating somewhat different techniques, procedures and research 

strategies (Johnson and Baker, 1974). Few would deny that carrying 

out field studies is considerably more difficult than laboratory 
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experimentation. Given that most ergonomic field research involves 

an industrial setting, one must contend with (a) management who may 

agree to provide research facilities so long as their production 

schedules are not disrupted, (b) a workforce who may co-operate 

providing their earnings or job status are not adversely affected, and 

(c) numerous quirks, such as outmoded industrial practices and shift 

systems, which are part-and-parcel of the factory environment. 

An ideal situation would perhaps include the best of both worlds: 

a representative laboratory simulation study to iron out potential 

faults in the main system and to optimise the operator-instrument 

interface, followed by field validation trials. Given that the latter 

is not always feasible, an iterative approach between field and 

laboratory may be called for, with an initial task analysis determining 

which factors should be included in the laboratory simulation. At the 

very least, representative test data from an operational environment 

should be used in any laboratory simulation. 

4.1.3 'Part-simulation' 

An interesting 'part-simulation' technique has recently been 

developed at Warren Spring Laboratory, whose facilities were employed 

for the experiment described in Chapter 7. Safety and economic 

considerations precluded the testing of novel operator aids on a 

conventional chemical plant. A computer was therefore used to model 

the equations of the chemical reaction, to accumulate readings from and 

transmit data to the plant instrumentation, and to log the state of the 

system (King and Ray, 1972; Cininas, 197~•; King, 1975). The computer 

was, however, interfaced to actual operating plant and instrumentation, 
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and process operatives were trained to control the process from its 

commissioning. This is of particular importance, as the skills of 

controlling complex plant may only develop over many years. Whilst 

aware that a computer was part of the process, a reasonable assumption 

in view of the acknowledged trend towards computer control systems, 

the operators treated the plant as though it were a conventional, 

fully productive process. By this deception, valid data on process 

operator's behaviour could be obtained without the risk factor and high 

cost associated with conventional plant. 

A principal disadvantage' of the 'part-simulation' technique is 

the high cost in time and money of setting up and conducting authentic 

simulation trials, though this may be justified if the confidence one 

may place in any conclusions reached is enhanced. 

4.2 Objective and subjective performance measures 

A second thorny problem concerns the choice of objective or 

subjective measures of performance. Techniques available to the 

experimenter include individual or system performance scores on the 

one hand, and questionnaire or subjective report (verbal protocol) 

analyses on the other. 

more closely. 

4.2.1 Objective measures 

Their respective merits will be considered 

Objective performance measures have in the past been the 

conventional, even automatic, choice. This may be traced back to the 

early tracking literature (Poulton, 1974), where single or multiple 

axis amplitude error scores, frequency counts of control effort, 

special-purpose engineering measurements or more recently adaptive 
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measurement techniques have been commonly employed (Kelley, 1969). 

In addition, the option of individual-centred measures (error scores, 

control effort) or more global system-centred measures (amount 

produced, profit) must be specified. Whilst objective performance 

measures are convenient to implement and give a good general picture 

of the phenomena under study, they are open to bias (Poulton, 1969, 

1973) and often fail to give much indication of an operator's underlying 

strategies or thought processes. Observing an operator's control 

room behaviour and carrying out an activity analysis to some degree 

overcomes this limitation, but by no means gives a complete picture. 

Measuring eye movements does not reveal whether an operator perceives 

what is in his gaze, and blanking off instruments cannot let us know 

which items of information have been lost. The latter approach also 

assumes that an operator responds to a single instrument reading, 

rather than to the pattern produced by a block of instruments 

(Shepherd, 1977). 

4.2.2 Subjective measures 

Questionnaire and subjective report (verbal protocol) techniques 

have found favour in recent years, as psychological fashion has again 

made introspective methods acceptable. Questionnaire design for 

attitude measurement surveys is an established field (Oppenheim, 1966), 

and there is at least one example in the process control sector of the 

use of questionnaires to determine an operator's manual control 

strategy (King and Cininas, 1976). These workers found that off-the-

job questionnaires yielded considerable general information about 

control strategy, though more detailed questions on aspects of 

control skill gave inconsistent-information. It should be 



remembered that questionnaire methods also suffer from inherent 

limitations: the operator may be unable to describe co-ordinated, 

sequential control actions or automatic, unconscious skills when 

answering questions, his answers may not reflect changes in strategy 

when under pressure, and he may tend to describe the official rather 

than the actual procedure for control. In short, the framework of 

the questionnaire imposes restrictions on subjects' responses. 
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The remaining method of inferring operators'- cognitive processes 

is from their subjective reports, the so-called 'verbal protocol' 

technique, stemming from the classic work of Newell and Simon (1972) 

in the area of human problem solving. Subjects are requested to 

think aloud whilst performing the task as they would do normally. 

This approach has been successfully employed by Rasmussen and Jensen 

(1974), Bainbridge (1968, 1972, 1974) and Umbers (1976). Less 

successful applications include those of Crossman and Cooke (1962) 

who found little conscious decision-making associated with control 

changes in their water bath task, and Brigham and Laios (1975) who 

found that their subjects were unable to give detailed descriptions 

of how they used information. The last two studies highlight some 

of the problems inherent in the protocol approach. A one-to-one 

mapping must first be assumed between subjects' verbal reports and 

their internal thought processes. This may not be the· case, or the 

relationship may change with time. Bainbridge (1972) found a close 

agreement between a subject's protocol data and the corresponding 

computer log of his actions. Cininas (1976), however, found that an 

operator's reported chart recorder observations did not match the 

computer log (obtained by fitting flaps over the front of the recorders) 



in the initial stages of controlling the reaction, when the operator 

was overloaded and could not report all his actions. Further 

problems are that the act of verbalising itself tends to interfere 

with thought processes and depress cognitive performance (Henderson, 

1975). It also constrains the subject to reporting his behaviour 

serially, so that parallel processing can only be inferred. Often 
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in skilled behaviour several things are done together in a co-ordinated 

way which cannot be represented adequately by a serial description. 

Operators are unable to report decisions which they perform or things 

that they notice automatically at an unconscious level. They may only 

report easier tasks or give the official version of their operating 

procedure. A common finding is that subjects make little direct 

comment about their strategy, rather they simply report actions. 

Indirect methods must therefore be used to find what determines the 

sequence of activity. 

4.2.3 A compromise solution 

From the above it is clear that protocol techniques are still 

at the experimental stage of development, and much work still needs to 

be done before they can be regarded as a standard technique. Given 

that both objective and subjective methods have their relative 

advantages, it would seem sensible in practice to employ a combination 

of protocol and questionnaire information to supplement more 

conventional performance measures and activity analyses. Since its 

aims are somewhat different, the protocol analyses need not be as 

extensive as those of workers who have used protocols as their only 

source of data. In this way, a complete picture of the operator's 

control actions and strategy may be constructed. 



5. APPROACHES TO MODELLING THE HUMAN OPERATOR 

There have been three broad approaches to modelling the human 

operator's behaviour; two essentially mathematical approaches namely 

linear control theory and statistical decision theory which both aim 

to model and so predict an operator's control and decision-making 

behaviour, and the 'internal model' concept. The first two will be 

considered briefly and the latter in more detail. 

5.1 Mathematical approaches 

5.1.1 Linear control theory 

With the development of a mathematical theory of linear servo

mechanisms (see for example Atkinson, 1968) came an interest in 
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modelling the human controller. Early attempts by engineers to model 

an operator's control processes visualised him as an element in the 

control loop whose sole function was to close the loop as best he 

could. The servo-mechanism analogy was supported by studies of 

psychomotor skills and the subsequent discovery of a 'psychological 

refractory period' (Telford, 1931), suggesting that the human operator 

behaved broadly as a ballistic, intermittent correction servo (Craik, 

1947). It was also paralleled by the development of Cybernetics

the science of control and communication in the animal and the machine 

(Wiener, 1948). 

During the 1960's and early 70's much effort was spent on 

attempts to model the human operator. Many of the findings were 

published in the American journal IEEE Transactions on Human Factors 

in Electronics (later Man-Machine Systems), and in the Annual NASA 

University Conferences on Manual Control. The work of this era has 
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been summarised by McRuer and Jex (1967), Kelley (1968), Gaines (1969), 

Frost (1972), Sheridan_and Ferrell (1974), and Stassen (1975), and 

there is currently a renewed interest in the application of ~ontrol 

theory to human factors problems (Rouse, 1977, Human Factors Special 

Issue). Some of the more important models will be covered briefly. 

Based on linear systems theory came the transfer or describing 

function model, e.g. McRuer's 'crossover' model (McRuer and Jex, 

1967), in which the output of the human operator could be divided into 

a linear system equivalent response (the describing function) and a 

remnant equal to the difference between the actual system output and 

the linear system equivalent response. This model is based on closed-

loop stability considerations and though it has been applied to 

describe the human operator's behaviour when controlling fast response 

systems it is not really applicable to systems having a slow respons~. 

Also from linear systems theory came the optimal ·control model 

(Kleinman, Baron and Levison, 1971; Phatak, 1976). This model 

stated that the operator behaved optirnally within his inherent 

limitations, and could for modelling purposes be represented by a 

Kalman filter, a predictor to compensate for the human data processing 

and response lags, an optimal controller, and model terms representing 

observation and motor noise. The optimal control model has been used 

to describe human control of fast response systems, and again has not 

been applied to slow response systems. 



Besides these two important models, many non-linear models 

have been developed, being for the most part extensions of linear 

transfer function models with non-linear elements chosen intuitively 

to meet the non-linear outputs of specific experimental situations. 

Their applicability is therefore limited. Several workers (Elkind 

and Miller, 1967; Young, 1969) have proposed adaptive models to 

describe operator behaviour in systems with changing dynamics •. 

The human behaves as an adaptive controller, modifying his transfer 

function parameters in order to achieve a stable and well-damped 

closed-loop performance. After the adaptation phase, his behaviour 

can often be approximated by a describing function model. A final 

approach, that of the finite-state machine (FSM) model has been 

suggested by Angel and Bekey (1968). In this model a response is 

obtained not by plugging a value into an equation but by entering at 

the appropriate point in a matrix or look-up table. Cooke (1965) 

and Beishon-(1966) have suggested this approach for control of slow 

response systems, but call it 'system state/action state' control. 

It can be seen that with fresh developments in modern controt 

theory, engineering models of the human controller have become 

increasingly sophisticated and capable of describing human behaviour 
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in a variety of tasks. This trend is likely to continue in the 

foreseeable future. However, Kelley (1968) has pointed out a 

fundamental objection. It is inappropriate to describe human operators 

in the general terms of control theory because there are fundamental 

differences in principle between the way human and automatic control 



systems operate. The differences originate in human consciousness, 

in the deliberate choice of methods (i.e. planning) to achieve goals 

which cannot be represented by transfer function models alone. Not 

only does the transfer function approach fail to take any account of 

individual differences and inconsistencies, to represent the 

operator's data reduction processes, or to incorporate any explicit 

representation of the task in question; most importantly it implies 

that an operator's response is a direct function of his immediate 

input - human memory, planning and prediction processes are ignored. 

Beishon (1966) has also criticised control theory 'black box' 

approaches, since they pay little attention to the processes inside 

the box. We have already seen that human control is essentially 
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organised towards the future. Sheridan et al. (1964) and Sheridan 

(1966) have also commented on the inadequacy of quasi-linear describing 

function models to represent tasks where the operator can look ahead. 

Although preview models of the human operator have been developed 

(Sheridan, op cit; Rouse, 1973 a,b) the remaining fundamental 

objections to engineering models still apply. 

not function in this way. 

5.1.2 Statistical decision theory 

In short, people do 

An alternative approach to modelling the human operator has 

come from the area of statistical decision theory. A general intro

duction to decision theory and human behaviour can be found in Lee 

(1971), or Kaplan and Schwartz (1975). The literature in this area 

tends to be both vast and loosely structured - useful overviews have 

been published periodically in the Annual Review of Psychology series 

(Slovic et al., 1977; Rapoport·and Wallsten, 1972; Becker and 



McClintock, 1967; and Edwards, 1961). Most studies of human 

decision-making have been carried out in specific settings, so it 

is difficult to make generalisations. 

will be outlined briefly. 

However, the main approaches 
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The early distinction made between normative (the choices that a 

rational man should make according to prob'ability theory) and 

descriptive or intuitive (the choices real people actually make) 

decision theories has now been largely abandoned, since in practice 

the distinction often became blurred. Laios (1975) notes that the 

advocates of decision theory now distinguish between static and dynamic 

decision theory. Static decision-making (Luce and Suppes, 1965) is 

concerned with a fixed problem environment or set of environmental 

states, a fixed set of alternative possible decisions, and a pre

determined payoff matrix. Once a choice has been made, that is the 

end of the decision-making. Static models have found favour because 

they and their associated methodology are simpler than dynamic decision

making models, which represent the characteristic fluid aspects of real 

world decisions. Dynamic models (Lee, 1971) involve a series of 

individual decisions which may be independent or dependent on each 

other. Sequential and multistage decision tasks can be further 

distinguished, the difference being that in the latter early decisions 

affect later ones, whereas in the former they do not. Real~life 

decision-making typically involves a series of inter-related decisions, 

each dependent on previous decisions. Often the consequences of an 

early decision reach far into the future. Much effort has been spent 

to investigate multistage decision-making problems within an operational 

research framework, e.g. dynamic programming (Bellman, 1957), but little 

effort has been spent by behavioural scientists due to mathematical and 
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experimental difficulties of the approach. Laios (1975) has 

presented an extensive review of the whole area, and concludes that 

problems of human multistage decision-making in the real world stem 

from an incomplete knowledge of the objectives, multiple criteria, 

environmental states, consequences of decisions etc., together with 

problems inherent in the human decision-maker's inability to perceive 

and process the relevant information. 

Two schools of thought have developed to predict a decision 

maker's policy: linear (regression) models and Bayesian models. 

Linear models have been used by a large number of workers to represent 

human decision processes, and can be formulated for static or dynamic 

decision-making tasks . Basically, the model assumes that a decision 
• 

can be adequately predicted by a linear combination of weighted 

information inputs, plus a random error term and a scaling factor 

(Anderson, 1974). In fact, the evidence (Goldberg, 1968; Slovic and 

Lichtenstein, 1971) suggests that the linear model has a remarkably 

good predictive ability. However, it must be stressed that although 

linear models can accurately describe the outcome from a practical 

situation, they do not necessarily explain the human's decision 

processes. Many decision makers maintain that their decision-making 

activity is non-linear, and it may well be that linearity is imputed by 

an insensitivity of the analysis employed to non-linear effects 

(Green, 1968). Yntema and Torgenson (1961) suggest that the empirical 

processes used by decision makers in real life may be surprisingly 

simple, but that man's decision-making flexibility lies in his ability 

to simplify complex problems in ways that enable him to cope. According 

to Vaughan and Mavor (1972) this leads to good solutions, but not 

optimal ones. 



Bayesian models have been applied largely in the context of 

dynamic decision-making, along with information purchase (also termed 

optional stopping) and operational research, dyna~ic programming 

models (Edwards, 1972). Bayesian information processing, derived 
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from the work of the Rev. Thomas Bayes during the 18th Century, 

provides a mathematically amenable way of combining prior probabilities 

with the probability of an event occurring after a set number of 

observations, to yield posterior probabilities. The Bayesian approach 

is particularly useful for judgements made under uncertainty (Beach, 

1975). Bayesian modelling is often identified with diagnostic tasks, 

though again the evidence suggests that the human decision maker may not 

behave in this way (Green, 1968). Most of the psychological experiments 

on optional stopping have been developed within the Bayesian framework, 

and the models have not been adequate to explain the observed results 

(Rapoport and Wallsten, 1972). 

In summary, even .though the weight of opinion is that the best 

descriptive model of .the human decision process is a linear combination 

of the elements which influence. the decision maker, this does not mean 

that the human functions as a linear decision system. He may use non-

linear relations or look-up tables to reduce the complexity of the task 

to manageable proportions. As with linear control models, the evidence 

(e.g. Kahneman and Tversky, 1973) is that people just do not behave as 

statistical decision makers. In uncertain environments humans are 

basically conservative, that is they do not revise their opinions 

sufficiently in the light of fresh information. · Edwards (1968) lists 

the main reasons for conservatism as misperception, misaggregation, and 
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artefacts. Humans also do not extract all the information available 

in samples of data, and tend to place too much weight on early 

information (Dale, 1968). Peterson and Beach (1967) confirm that 

discrepancies exist between human inferences and those of an ideal 

'statistical man'. A final criticism of the majority of decision 

theory literature is that it is far too abstract and theoretical to be 

of much practical use. Notable exceptions include the PIP 

(Probabilistic Information Processing) system of Edwards et al. (1968) 

and Laios' (1975) Predictive Computer Display (PCD), both explicit 

attempts at decision aiding. 

5.2 Internal model concept 

All the models discussed previously share one common aspect: 

they all assume that in order to control or decide effectively the 

human operator needs some knowledge of the system to be controlled 

and the properties of the system inputs, including knowledge of possible 

system disturbances and their consequences, together with an idea of 

the task objectives to be achieved. In other words, he needs an 

internal model of the process. Veldhuyzen and Stassen (1977) note 

that the existence of an internal model is implicitly true for quasi

linear transfer function models- for instance, McRuer's crossover 

model indicates to what extent the operator is able to adapt his 

control strategy to the dynamics of the controlled element. The 

optimal control model also shows very clearly the use of the internal 

model concept - the construction of the Kalman filter, predictor, and 

optimal controller require that the system dynamics should be known, 

as should the statistical properties of the disturbances; In addition, 

the various non-linear and decision theory models often imply that the 

human possesses a knowledge of the process he interacts with. The 



concept of an operator's 'mental model' or 'internal model' has 

been a recurring theme. in previous sections of this chapter. It 

would now seem to be a fundamental tenet of control and decision-

making behaviour. The development of the internal model concept 

will be considered further. 

5.2.1 Early considerations 
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Craik (1943) was amongst the first to propose that mental 

processes represent within the brain the nature of the outside world. 

The brain, in other words, acts as a model in which neural processes 

symbolise the workings of the external world and thus allow us to 

predict the outcome of events and forecast the consequences of our own 

actions (Oatley, 1972). When one says: "I must leave now if I am to 

catch the train", the form of words presupposes mental structures 

(with neural processes underlying them) which represent time, the speed 

at which one can travel towards the station, its direction, distance 

and so forth. These mental structures mirror, in a symbolic form, 

objects and their inter-relationships. If mental processes did not 

accurately represent important features of the real world, the 

commuter would never catch his train; nor indeed would trains ever 

have been built. Only occasionally would random behaviour ever bring 

about a favourable outcome through pure chance. Since the brain model 

represents tha kind of events that can occur in the outside world, 

"What would happen if?" questions can be tried out without the usually 

useless and occasionally dire consequences of actually doing it. 

Oatley (op. cit.) poses the rhetorical question "Why is all this talk 

of representation necessary? Is there not a perfectly good external 

world already there towards which we can direct our behaviour, without 

making models of it?" The answer is that without a means for 
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creating a model world with similar properties to those of the real 

one, but nevertheless independent of it, such human attributes as 

thought, language, perception and purposive action would be impossible. 

The latter is particularly important for present considerations; without 

an internal model we could only react to stimuli in the immediate range 

of our senses, never predict the outcome of any action, never behave 

purposefully since that implies working towards a state of the world 

that does not yet exist. 

Tolman (1948) indirectly reiterated Craik's view in his 'field' 

theory. Rat~ (and people) were held to construct a broad, cognitive 

map of the outside world, which they could then use to negotiate their 

way through their environment. The mental processes involved in 

constructing such a map were presumed to be much more sophisticated 

than any simple stimulus-response relationship. These intermediate 

processes between sensory input and behaviour have been variously 

referred to as 'thought' (Craik, 1943; Hebb, 1949), 'schema' 

(Bartlett, 1932), 'hypothesis' (Gregory, 1970), 'readiness' (Bruner, 

1957) and 'internal model' (Kelley, 1968). 

Sheridan (1966) and Smallwood (1967) have presented control 

models which include, in equation form, a model of the controlled 

element which can be used in fast time to make predictions of future 

behaviour on which control can be based. Prior to Smallwood's 

application, the internal model notion had also been implied by 

studies of the human operator's monitoring behaviour, especially. in 

the control of slow response systems (Senders, 1964; Cooke, 1965). 
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In such systems the quantities to be monitored change so slowly that 

continuous viewing is neither desirable nor practicable - an internal 

model of process behaviour is thus necessary to determine an efficient 

sampling policy. Fogel et al. (1966) have discussed finite-state 

machine controllers which include internal models of the external 

environment. And Bainbridge's (1967) predicting controller model 

contained templates for system behaviour which were used for prediction.: 

5.2.2 Kelley's Model 

Perhaps the most consistent and influential proponent of the 

internal model hypothesis has been Kelley (1968). He sees an operator.' s 

internal model as a fundamental component of goal conception and 

selection (the first two stages in Kelley's general schema of control 

activity, described in an earlier section), and notes that the process 

by which man conceives of and selects amongst possible future states 

(or goals) is the most important yet least understood part of the 

control process. The following quote is from Kelley (op cit): "Man 

receives information through his senses and applies information stored 

in memory to create internally, from the little understood materials of 

consciousness, a dynamic model of the world about him. This model not 

only represents the spatial structure of the environment, but also 

incorporates its rules of operation, e.g. temporal order, cause and 

effect relations. The model represents the individual's perception 

and understanding of his environment. The nature of the modelling 

process is such that it is not limited to past and present but can be 

used to create representations of possible (and impossible) future 

states as well". 
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Kelley believes that the mental modelling process operates on a 

fast-time rather than a real-time basis, in that events may be thought 

about much faster than they can occur. Human consciousness 

schematises and compresses events, with significant points and end 

results included, but much of the remainder omitted. For this reason, 

the human operator in a control system may consider several possible 

courses of action in less time than it takes to carry out one of them. 

Kelley further distinguishes between a full internal model incorporating 

all aspects of a situation, and simpler derivative models. The latter 

are built around the display itself, permitting a rate or acceleration 

to be perceived and represented conceptually as a position, so 

effectively reducing the control order by a factor of one or two. 

This distinction seems to match the difference between 'course' and 

'speed' anticipation mentioned earlier. Since many physical laws of 

movement can be expressed in the form of differential equations, the 

derivative model may behave in a way that is simpler and easier to 

understand than the process itself. As the model usuall~ bears a 

clear and straightforward relationship to the controlled variable, it 

can be employed directly for control. Such derivative models are 

particularly appropriate for vehicle and other high-order manual 

control . systems. 

A man operating a control system for the first time has some 

understanding of the system, and some expectation (however crude or 

misplaced) of how it will behave in response to his control actions. 

In Kelley's terms, he starts out with some kind of internal model of 

the system. His initial predictions are often in error and force him 
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to change his model, so control based entirely on his internal model 

would be unwise at this early stage. Hence the naive operator usually 

behaves as a feedback controller. As experience is gained, however, 

the operator's internal model is adjusted repeatedly to further reduce 

errors between predicted and actual output values. A point is reached 

when the operator's performance no longer improves with practice, 

errors in prediction have levelled out at an acceptably low level, and 

his internal model has stabilised. The process of building up an 

accurate internal model is the primary ingredient in training for 

skilled performance. An accurate model leads to accurate predictions, 

which in turn are the basis for skilled control. The same process 

by means of which the model is developed and refined is employed by 

the operator to make adaptive changes. The operator's model is changed 

so that predictions based on the model and control activities based on 

the prediction reflect the adaptive changes. 

Gregory (1970, 1973) endorses Kelley's point of view when he 

states that perception is a process of selecting 'internal models' in 

terms of which incoming data are used to shape behaviour. Only through 

an internal model based on previous experience can so little stimulus 

information control so much behaviour. Control is rarely direct, 

except in the special case of reflexes, but is via internal neural 

models of reality. Gregory cites the occurrence of perceptual 

illusions as a case where an inappropriate internal model has been 

chosen to explain the input data. 
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5.2.3 Verbal protocol approaches 

Though the internal model concept has been widely quoted, its 

nature remains somewhat elusive. 
/y 

Strizenec (1976) has noted that 

until recently no precise definition has been forthcoming concerning 

problems of inner, mental models. Verbal protocol techniques have 

made some headway in their study, however. Cooke (1965) in his water 

bath task, and Beishon (1969) in his study of cake ovenmen's behaviour, 

both rejected traditional control and decision theory models and 

adopted information processing models which incorporated an internal 

model to explain subjects' behaviour. Both authors based their models 

largely on protocol data. Protocols from Cooke's water bath task 

provided several instances of prediction of temperature or control 

changes and their effects, which could only be satisfactorily explained 

by postulating the existence of an internal model. Beishon's protocols 

suggested that his ovenmen had internalised look-up tables, e.g. of 

baking times and oven temperatures for different types of cake. In 

addition, Beishon proposed an 'advanced planning' or executive routine 

which functioned to organise lower routines, handle interruptions, 

anticipate future events and activities, and maintain a current list 

of what was to be done next. An executive routine to organise the 

overall sequence of activity is a common element of program models 

which aim to produce the same sequence of complex cognitive activities 

as revealed by human protocols (Reitman, 1965; Baker, 1967). 

5.2.4 Bainbridge's Model 

The protocol/mental model approach has been exemplified by the 

work of Bainbridge et al. (1968), Bainbridge (1972, 1974, 1975a). She 

investigated subjects' behaviour in a simulated power demand task, 

again using verbal protocols as her main source of data in an attempt 

to shed some light on subjects' underlying decision processes. An 
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action/information tree model was first tried, the protocol analysis 

showing that subjects did not follow a continuous path down the tree 

structure. A program model approach was then attempted. However, 

in accordance with other workers it was found that an executive 

routine was required to select specific routines. Bainbridge (1975b) 

found that the inherent flexibility of her protocol data could be 

successfully modelled by making explicit the working storage implied 

in the routines. In her so-called 'head box' approach, the data item 

required by the operator is represented by the item's name, its 

present value location (or 'box'), and an address of the routine or 

routines for obtaining that value. The philosophy of this approach 
I 

will be familiar to computer engineers. 

Bainbridge stresses that by separating routine from purpose, a 

routine can be accessed from different head boxes, so that any given 

routine may be used for several different purposes. In addition there 

might be several different ways of obtaining a data value, e.g. by 

judgement or calculation, the latter by mental arithmetic or slide rule, 

etc. Two" types of working storage were specified: temporary storage 

for values generated within a routine, and longer-term storage for more· 

general information. Bainbridge then makes use of standard flow 

diagram methodology, with conditional statements allowing jumps to 

different. routines in different circumstances, to explain the sequencing 

of routines for situations where the control error is acceptable, 

unacceptable, and so on. Her sequencing diagrams are similar to 

Beishon's (op. cit.) advanced planning or executive routine. Bainbridge 

notes, however, that mechanisms for deal~ng with external interruptions, 
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together with a means for deciding between alternative routines 

accessible from within a single 'head box', must be considered in 

addition to the flow diagram sequencing mechanism. The latter is 

especially difficult to account for, since as was noted earlier 

controllers rarely give the reason for their choice of action. 

Controllers' behaviour suggests that the routine used at a particular 

time is chosen according to the time and working storage available, 

the diffic'ulty of the operations involved, and the accuracy required • 

. The sum total of the flow diagrams (describing what to do when), 

plus knowledge of static (long-term) and dynamic (temporary) process 

characteristics, were held to constitute the operator's 'internal 

model'. of his process. Bainbridge distinguishes between an operator's 

1mental model' of the process arid his 'mental picture', the latter being 

the contents of his working memory comprising the actual data values 

stored at a particular time. These values provide the context in 

·which decisions are made. They determine the sequence of behaviour, 

and are themselves the items found by the main routines. 

5.2.5 Rasmussen's Model 

-Remaining in the area of industrial process control, Rasmussen 

(1974, 1976) and Paternotte (1976) have both shmm an interest in 

process operator's mental models. Rasmussen in particular has used 

protocols to develop the idea of a hybrid hie.rarchical model of an 

operator's monitoring and control behaviour, having conscious and 
. 

subconscious components. The notion of hierarchical control is of course 

not riew, having been previously _taken up by Miller, Galanter and 

Pribram (1960) in their 'Plans and the Structure of Behaviour', and also 
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by Kelley (1968). Broadbent (1977) reviews the question of control 

hierarchies in detail •. Rasmussen notes that the process operator's 

data processes must be controlled by a representation of some kind of 

the functional properties of the plant. This representation obviously 

can be derived from different sources, for example, from previous 

experience on the plant; from knowledge of its internal construction 

and functioning; or from prescribed rules and instructions. He 

distinguishes between different mechanisms for data processing: the 

operator may respond 'automatically' to a situation, or he may identify 

a problem and 'think' out its solution. These mechanisms correspond 

broadly to subconscious and conscious model components respectively. 

Only the latter component is accessible by means of protocol analysis. 

During a long period of interaction with a system a trained operator 

will develop a large repertoire of complex and partly subconscious 

routines, which are controlled by a conscious (and hence verbalisable) 

sequence at a high level of abstraction. 

According to Rasmussen, the subconscious component of the model 

comprises a high-capacity, parallel processing system serving _functions 

related to perception, sensory motor responses, etc. It resembles in 

its operation.a goal-oriented, self-organising, associative network 

operating by dynamic matching of input information patterns to stored 

patterns. A dynamic model of the external environment is included, 

constituting the operator's 'process feel'. The internal model also 

directs and controls attention, and accounts for prediction so that 

efficient feed-forward control is possible in sequences too rapid to 
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allow for sensory feedback. If a mismatch occurs between the 

behaviour of the real world and the predictions of the internal model, 

or if an appropriate model is not available, this is detected and the 

conscious processor usually alerted. Failing this, an error of 

judgement or perceptual illusion may result. 

The conscious component of the model, however, is an extremely 

versatile sequential processor, but of limited speed and capacity. 

It acts as a high-level co-ordinator of the subconscious processes, 

and functions in unfamiliar situations which demand that unique responses 

be thought out. The conscious processor can function at various levels 

of abstraction; it can call up information from the lower perceptual 

system, and can calculate the consequences of possible actions via 

different types of" representations (mental models) of the physical 

system considered, e.g. causal models for rational deductions, 

representation of typical system behaviour as in 'visual thinking', or 

prescribed algorithms for control rather than a structured model. The 

model chosen would depend on the task in question. Edwards and Lees 

(1973) note .that the model may be in the form of an equation, a graph, 

a table, a linguistic expression, and so on. 

Perhaps most importantly, the two processing mechanisms co-operate 1 

the aubconscious processor by virtue of its large repertoire of automated 

subroutines relieving the limited capacity of the conscious processor. 

The latter controls a sequence of such subroutines via an executive or 

sequencing programme, in which the level of abstraction rises as 

training increases the efficiency and complexity of the subroutines. 

Conscious control is, however, significantly influenced by the sub

conscious processes directing attention, supplying intuitive hypotheses, 
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and so forth. The foregoing is a summary of Rasmussen's hybrid 

model. The systems engineering implications of the suggested model 

and its psychological references are discussed in detail elsewhere 

(Rasmussen, 1974). 

Rasmussen's views are somewhat close to those of Bainbridge 

(op cit). Routines are again selected as a function of their output 

rather than what they do. Behaviour is organised at several levels 

of complexity, due to the hierarchical nature of the process operator's 

total task. However, the organisation is not in the form of a 

straightforward hierarchy commo9ly found in problem solving experiments. 

Rather the efficiency of skilled performance is due to the ability to 

compose the behaviour needed for a specific task as a flexibly-linked 

sequence of standard subroutines which are useful in different contexts. 

Rasmussen likens the data processing steps making up a sequence to a 

'ladder of abstraction', with one leg upwards for analysis of a situation, 

another downwards for planning of the proper action. The number of 

steps actually taken, however, depends on the skill of the operator. 

Habits and rules-of-thumb act as short cuts to connect the two legs 

of the ladder for experienced operators; only a novice would follow 

the full sequence as set out in the ladder. Actual skilled 

performance is described in terms of 'shunting leaps' within the basic 

sequence. The 'short-cuts are equivalent to a shunting-out of 

activities, from the higher levels of abstraction which call for 

complex conscious reasoning, to automatic lower levels, and a 

considerable increase in data handling capacity results. Rasmussen 

also notes that the skilled operator need not enter the sequence at 

its entry point- he can use his· 'process feel' to start at a later 



stage in the sequence. His internal model may even enable him to 

perceive directly in terms of system state rather than observing 

separate items of information. 

5.2.6 Advantages and disadvantages of internal model approach 
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To recap, the advantage of control and decision-making through 

an internal model can be expressed as follows (Gregory, 1970): 

1) it makes use of the redundancy of the real world by extracting 

key features, thus reducing input requirements and relieving higher 

cognitive activities; 

2) it confers predictability, so circumventing the effect of human 

response lags; in addition the consequences of alternative courses 

of action can be calculated; 

3) it gives continuity in the absence of a continuous input; 

4) it allows generalisations to be made to similar but novel situations, 

or to aspects of the same situation not previously considered. 

Weighed against these, two potential disadvantages of the internal 

model concept must be considered. 

1) The operator can be systematically misled by an inappropriate 

internal model, as in the case of illusions. (Since it would 

not be possible to store an internal model for every eventuality, 

flexible models must be assumed which can be 'scaled' to fit reality. 

In the absence of reliable scaling information, the 'average' past 

value is often assumed leading to perceptual distortions). 

2) Models are essentially conservative, reflecting as they do the 

past rather than the present. In other words they are resistant 

to change. 
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"'' Strizenec (1976), and Baum and Drury (1976) have both reviewed 

the status of process operator mental models. Baum and Drury comment 

that the available industrial and laboratory evidence tends to support 

a loose, hierarchical goal-directed model as proposed by Bainbridge 

(1974) and others. "' Strizenec concurs, believing that a combination 

of cybernetic and internal model view points may yield the best 

solution. 

Having reviewed the literature, it seems clear to the present 

author that in considering process operator models it is not a question 

of whether the operator has an internal or mental model of his process, 

but rather what form this model takes and how it is affected by 

perturbations in the environment. Further work is needed in this area. 

Given that man does form an internal representation of the outside 

world, it seems that the value of predictive displays may well be in 

helping him to develop and maintain an accurate internal model by · 

providing him with imme_diate feedback of the results of his decisions 

and control actions, either on-line or in a trial-and-error test 

facility mode. 
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1. INTRODUCTION 

The previous chapter has reviewed process operator skills, 

models of the human operator, and the role played by prediction. 

It has become clear that the ability to anticipate future events is 

a main feature of skilled control, but that this ability in humans 

can be far from perfect, particularly with high-order, lagged systems. 

Engineers and psychologists have thus been encouraged to develop aids 

for control and decision-making, and the predictive display concept 

has been to date one of the most promising ventures in this area. The 

next section will outline the historical development of predictive 

displays and describe briefly how they work, the second section will 

review the more notable applications, and the third section will present 

the experimental evidence on factors affecting predictive display 

performance. The final section gives an overview of the introductory 

chapters. 

1.1 Background and early attempts to assist the operator 

The predictive display concept was invented by Kelley (1958) in a 

logical yet innovative development from Ziebolz and Paynter's (1954) 

theory of two-time scale computing. The latter was an entirely 

automated theory which did not permit intelligent overriding of the 

control system by the human operator, whereas the predictive display 

concept recognises that the man has a valuable role to play in the 

control loop. In a classic example of 'designing the machine to fit 
. 

the man', the predictor instrument compensates for man's inherent 

response lags and lack of predictive capacity by displaying future 

as well as present system status information to him, whilst at the 

same time making full use of his outstanding perceptual and intellec.tual 

abilities and his flexibility. Thus the predictive display concept 
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uses a form of 'fast-time' model as suggested by Ziebolz and 

Paynter, but replaces their automatic controller by a human operator. 

Kelley (1968) presents the authoritative history of predictive 

display development. It must be stressed at the outset that the 

predictive display is quite distinct from other forms of control 

assistance which became popular at about the same time, namely 'aiding' 

and 'quickening' (Birmingham and Taylor, 1954). Aiding is a method 

of compensating for the operator's relative inability to obtain 

derivative (rate of change) or integral (summation over time) 

information from a display, by moving any derivative, integral or 

algebraic summation functions to within the controlled mechanism 

itself (Murrell, 1976), The operator thus acts as a simple amplifier 

through the control stick, a single adjustment of which effects a 

change in the position and rate of movement of the controlled element. 

The practical utility of aiding is generally limited to pursuit 

tracking applications, .e .• g. gunnery, and those systems having negligible 

inertial lags. 

Quickening is a second method of compensating for the operator's 

inability to extract derivative information. It differs from aiding 

in that it does not act directly on the controlled system, but rather 

functions indirectly to provide a simplified display to the operator 

who then responds through a conventional controller. Hence this . 
general class of assistance is sometimes termed 'display augmentation'. 

Feedforward loops compute information on output position, rate, 

acceleration etc. which is then subtracted from the desired input value 

to form an error signal which the operator must minimise. Quickened 
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displays can be used in the control of high order systems and those 

which include response lags. Control performance is found to be 

substantially improved and learning times reduced in such applications 

as helicopter hovering and chemical process control, both of which 

typically involve high-order dynamics and response lags. Quickening 

can never be achieved with perfect success, however, since it would be 

self-defeating: in theory there would be no need to retain the 

operator in the system at all if his role could really be reduced to 

that of a simple amplifier. Further disadvantages of quickened 

displays are that they are of no help when·dealing with procedures 

which cannot be pre-programmed into the quickening circuits, and there 

is a real danger that the operator will mistake quickened output for 

status information. Since it is not usually possible to pre-program 

every contingency, the application of quickened displays is quite limited. 

Many observers comment on the apparent similarity between 

quickened displays and predictor displays, particularly those based on 

simple prediction models. Both calculate derivative terms in order 

to display immediate knowledge of results to the operator. Both (it 

will subsequently be shown) result in considerable improvements in 

performance and reductions in learning time. Neither have been 

exploited commercially. A fundamental difference, however, is that 

whereas quickened or 'command' displays tell the operator what to do 

through minimising an error signal, the true predictor display tells 

him what is happening. Command displays do not usually incorporate 

system status information (or do so clumsily with a separate display), 

and without such information the operator is entirely dependent on 

an error signal. In addition he cannot 'see' the trajectory or 
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associated characteristics of the controlled system with a command 

display. It is now clear from a fair body of research that as a 

general principle the more closely the information given to the operator 

relates to that which he actually needs in order to control effectively, 

the quicker will be the learning process and the lower will be the 

likelihood of control errors {Murrell, 1976). It transpires that what 

the operator actually needs, besides a general knowledge of his 

objectives,· is information on the current state of the system and its 

future behaviour (Singleton, 1972). As Bainbridge (1975a) has pointed 

out, the ease with which process behaviour can be learnt is 

affected by the way process information is displayed. The 

particularly 

progressiv~ 
: ' 

inability of humans to control systems having an increasing number of 

integrations in the forward path is not a response time limitation, but 

is a conceptual difficulty arising because the required manual control 

action must be quite unlike the immediate observed response of the 

system (Fargel and Ulbrich, 1963). If the operator is to learn the 

effect of an action or input on the process output then he needs clear 

information about these effects, and so it would be a mistake to display 

an error signal alone without the underlying output and target value. 

This matches Poulton's (1974) recommendation that pursuit displays 

are in general preferred to compensatory displays. 

In fact, experimental comparisons of conventional, quickened 

and true predictor displays have shown the latter to be reliably 

superior (Kelley, Mitchell and Strudwick, 1964; McLane and Wolf; 1966), 

though a predictor display has yet to be compared with a rudimentary 

velocity vector display (Poulton, 1974). In addition, predictive 

displays are more flexible than separate quickened and status displays, 
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as all the information the operator requires can be integrated on a 

single display. However, motion predictors have not been widely 

applied for two reasons (Smith and Kennedy, 1975). · The first is 

that, like most sound but untried ideas, they are still regarded as a 

kind of sophisticated toy. A second, more fundamental, reason is that 

their use assumes that the operator has a meaningful role to play in 

the control system, and as such directly contradicts Birmingham and 

Taylor's (1954) design philosophy, a philosophy which has for too long 

dominated human factors thinking. 

1.2 Predictive display operation 

In essence, predictive displays make use of a mathematical model 

of the controlled system which can be run repetitively ahead in 'fast

time 1 to predict the future response of the system to changes in the 

controls, the resulting excursion being displayed to the operator. 

Its ability to indicate what the operator must do to achieve a desired 

future state is the predictor instrument's main attribute. The 

mathematical model on which prediction is based need not necessarily 

be sophisticated: a previous section (Chapter 1, section 3.2) has 

already outlined the wide range of mathematical prediction techniques 

available to the engineer. Simple prediction models were found to 

suffice for some forms of fully automatic control. 

Bernotat and Widlok (1966) have produced a useful classification 

of predictive display types, based on the fidelity of the prediction 

model employed. The experimental findings relating to each class will 

be reviewed in a later section. Basically, Class I is the simplest 

form of prediction model and employs a power series (typically the Taylor 
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series) to extrapolate future values from past data points. The 

purely mathematical nature of the extrapolation does not account for 

the unique response characteristics of the controiled system, so 

predicted values become progressively less accurate as the time over 

which prediction is required increases. Bernotat (1972) and his West 

German eo-workers have made extensive use of this technique for short

term aircraft stabilisation and guidance problems, often using a single 

predicted endpoint rather than a two-dimensional curve. Class II 

prediction extends the simple model of Class I to include the individual 

controlled system's response characteristics. Kelley's work (1968) 

has been largely concerned with Class II predictive displays, in 

applications requiring a more accurate, medium-term prediction, e.g. 

submarine guidance. The final type of model described by Bernotat and 

Widlok, Class III prediction, again extends the fidelity of the 

prediction model by including the effects of such external influences 

on the environment as can be pre-programmed. Class Ill predictive 

displays can therefore be used for those applications requiring a 

highly accurate, long-term, navigational feature, e.g. spaceship 

trajectory prediction. For most practical situations Ciass II 

prediction will suffice, since· rapid updating of the model will minimise 

the deleterious effects of external disturbances. 

It is of interest to consider Kelley's (1968) original 

description of his Class II device, shown in Figure la. Kelley writes: 

"The heart of the predictor instrument is the fast-time model of"the 

controlled element. This model can be mechanical, electromechanical, 

or electric, using either analog, digital or hybrid simulation methods. 

Frequently the fast-time model is a simulation by means of a repetitive 

electronic analog computer. Sensing instruments in the real system 
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provide signals which are transduced into DC voltages and scaled to 

equal the voltages representing corresponding quantities in the analog 

model. In this way, the sensing instruments provide initial 

conditions for the analog system, conditions that begin each cycle of 

its operation. If the cyclic resetting device resets 50 times/ 

second with a 1 ms reset time, and the analog operates on a time scale 

500 times that of real time, the analog system will represent the 

period from present time to 9.5 seconds into the future. The predictor 

instrument is completed by using the predictive signal from the output 

of the analog system and a sweep or other timing signal to generate and 

display the future state of the controlled element, future path, or 

other form of predictive information. The display symbol may correspond 

to all or part of the prediction period". 

Kelley goes on to discuss the various control actions which the 

operator must be assumed to make during the prediction period. Typical 

assumptions might be that the operator returns his control to a null 

position after an appropriate lag, or he might move his control between 

either extreme. The simplest assumption and the one made in the 

predictive display systems of the present thesis, is that the programmer 

of Figure la feeds the output from the operator's control device 

directly to the fast-time system model. 

By way of illustration, Figure lb gives a simple example of what 

a predictor display used for guiding a piloted aircraft onto a runway 

glidepath might look like. In the example shown, the predicted trace 

indicates that the aircraft will undershoot the runway if the pilot 

makes no further control adjustments. He will therefore insert one or 

more control inputs until his aircraft rises onto the glidepath and the 



Input 
(desired output) 

l 

-"·§ Display Human Control 
(e.g., Operator (stick, wheel, 

oscilloscope) knob, lever etc. 

I 

Control 
signal 

Display Prediction Fast-Time Model of Initial conditions 

Generator 

tu re Fu 
time 

(timef 
s·1gnal ~ 
rom reset) 

signal 

Cyclic 
Reset 
Device 

Controlled Element for model 

l Reset 
Control 

signal s1enal for 
prediction 

Programmer 
Reset (generates assumed !.----
signal control action 

during prediction} 

63 

Controlled Output 
Element 

i Input 

I 
Sensing 

Instruments 

Control 
signal 

Figure 1 (a) Block diagram of a manual control system employing a 
standard predictor instrument (from Kelley, 1968, page 140). 
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Figure l(b) Example of a simple two-dimensional predictor display, 
showing an aircraft approaching the target glidepath 
to a runway (from Smith and Kennedy, 1975). 



predicted trace is linear and superimposed on the glidepath. 

This form of display is similar to that employed in Chapters 5, 6 

and 7 of·this thesis. 
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There is, of course, no reason why the predicted trace should be 

continuous. Several workers have successfully displayed only the 

endpoint of or selected points along, the predicted trace (e.g. Bernotat 

and Widlok, 1966; Wierwille, 1964). With discrete systems such as 

occur in scheduling applications, the prediction model will still 

incorporate the characteristics of the controlled process, but a more 

appropriate display format would show the predicted states of the system 

at set times into the future, on the basis of actual or hypothetical 

system inputs. This form of predictive scheduling aid has been used 

in Chapters 3 and 4 of this thesis. Various examples of predictive 

display applications in discrete and continuous systems are reviewed 

in the next section. 

A fairly recent development in predictive display technology will 

not be considered in detail in this thesis, but is mentioned here for 

the sake of completeness. These are the adaptive techniques ('adaptive 

displays') devised by Kelley and his associates (Kelley and Prosin, 1972; 

Prosin and Kelley, 1973). In these applications, previous predictions 

from the system model are compared with current performance. If a 

discrepancy appears, this indicates that the real-time system is no 

longer following the same laws as expressed in the model and so adaptation 

by the operator is necessary. Simulation exercises (Kelley and Prosin, 

op cit) have shown that the technique helps the operator to update and 

maintain his internal model of the system in the case of significant 

system changes. The extent of such changes could be diagnosed more 
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accurately and more quickly, with the adaptive display. There have, 

however, been no practical applications of the technique to date, and 

it is not considered further. 

2. APPLICATIONS OF PREDICTIVE DISPLAYS 

Computer aiding for the human operator usually falls into one 

of four areas (Whitfield, 1977): perceptual aids to assist with 

pattern recognition, alarm analysis, and the detection of signals 

from noise; decision-making and control aids for problem diagnosis 

and action selection; memory aids to provide information storage and 

retrieval facilities appropriate to human search; and output aids to 

extend man's capability for action in examples such as teleoperators. 

Predictive displays come under the second heading, since they are 

concerned with employing a computer-based predictive model to help 

with the choice of an appropriate decision or control action. 

Reference may be made to Whitfield (1975) for a broader 

coverage of man-computer symbiosis issues. 

In the first chapter, the distinction was made between discrete 

and continuous processes, though at the time it was noted that the 

human's processing of any information is via a discrete mechanism, 

so the discrete-continuous dichotomy may not be that important in 

human terms. As with processes themselves, a distinction may 

conveniently be drawn between scheduling aids for discrete systems, 

and tracking aids for continuous control applications (Bird and 

Whitfield, 1975). The distinction is upheld because practical 

considerations usually mean that discrete aids are incompatible with 

continuous applications, and vice versa. As an example, the prediction 



66 

span* of scheduling aids is often quite long (hours); whereas the 

corresponding span of tracking aids is typically fairly limited (in 

the order of seconds). In subsequent sections, the evidence relating 

to predictive aids for discrete and continuous applications will be 

considered separately. 

2.1 Discrete applications 

Discrete decision aids have been devised for a wide variety of 

scheduling situations, where a number of items or events must be 

arranged to match limited resources by forming an array which satisfies 

a number of performance criteria. Applications can be grouped under 

the headings of static decision aids (stateboards), production or job-

shop scheduling, air-traffic control, and the scheduling of steel plant 

soaking pits. The following subsections present a brief review of 

these areas. 

2.1.1 Stateboards 

The stateboard can be a simple and inexpensive aid to manual 

scheduling. It gives immediate information regarding the current 

status of the process, and can also be used for advanced planning. 

Shackel and Klein (1976) report an early application of the principle 

from 1968 in scheduling the refuelling operations of aircraft at the 

Esso London Airport Refuelling Centre. Prior to the introduction of 

the magnetic stateboard the operators found the task of allocating 

the available manpower and equipment whilst satisfying the conflfcting 

objectives somewhat difficult. The stateboard served a dual role as 
-

a memory and a planning aid, and proved effective in helping the 

scheduler to make best use of his limited resources. Brigham (1974) 

* defined as the time period over which predicted plant response is 

displayed. 
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and Sarkar (1972) cite further applications of the technique in a. 

container terminal and x-ray department respectively. The 'Planalog' 

of O'Brien (1969) is an extension of the concept to production 

scheduling. Oliverson (1971) has noted that no scheduling board, 

whatever its cost, can be successful unless the input data are 

accurate and are kept current. 

More recently, Gibson and Laios (1978) have developed a 

'scheduler's abacus' on which to evaluate three different graphic 

methods of presenting scheduling information from a job-shop scheduling 

environment. The abacus (based on a Gantt chart representation) forms 

the basis of Chapter 4 in the present thesis, and a full description 

can be found there. Gibson and Laios report that each of three 

graphic methods proved more effective in helping subjects to produce 

efficient schedules than a conventional, card-based numerical 

presentation. In particular one method which used a machines-by-

time organisation and identified machines by colour code proved 

superior to the others tested, as it facilitated solution of the 

scheduling problem by perceptual rather than computational means. 

A follow-up to this study is now in progress at Loughborough (Gibson, 

1978) aiming to test an interactive computer-based version of the 

schedulers' abacus in an operational job-shop. 

It would seem that the stateboard concept is only really suitable 

for relatively simple systems where a limited number of alternative 

courses of action need to be compared. In those scheduling situations 

where the number of alternative courses of action is excessively large, 

the combinatorial explosion dictates that a computer-based.aid is to be 
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preferred. It is widely accepted that fully computerised scheduling 

cannot provide the degree of flexibility needed to cope with the 

unexpected, and consequently the use of man-computer interactive 

scheduling systems has been favoured. 

2.1.2 Production scheduling 

Ferguson and Jones (1969) give the earliest account of a 

scheduling aid in a computer simulation of a job-shop scheduling 

system. A 'simulation subsystem' (i.e. fast-time predictive mode) 

was included, enabling the user to ask "What if?" questions and 

thereby evaluate the use of various combinations of rules. The 

predictive facility was found to be useful during informal trials by 

managers and academics, especially in helping the sched~!~~ ~~ ~bLuin 

the best compromise between short- and long-term decision criteria. 

Participants were universally impressed by the flexibility of the 

system. It is interesting to note that .given the task of devising a 

manual schedule, most subjects first laid out some feasible schedule in 

a Gantt chart representation and then pushed, pulled, squeezed and 

otherwise manipulated their schedule. Those few subjects able to 

devise a manual schedule to equal their computer-aided equivalent 

could nevertheless perform the task much faster with the computer aid. 

Operators appreciated that with the computer aid they could generate 

alternative schedules instead of feeling constrained by time to continue 

working on their first schedule. This study demonstrated the advantages 

of interactive planning by a well-integrated combination of man and 

computer aid. 
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A further study by Jones et al. (1970) replaced the typewriter 

terminal used previously with a display terminal, which was found to 

facilitate communication between scheduler and computer. A shift in 

problem-solving technique also occurred: schedulers using the display 

tried out alternatives to find the best combination of rules, whereas 

those using the typewriter saw the computer as a means of evaluating 

rules and attempted to reason out the logical value of each 

combination. Tobey (cited by Hall, 1970) conducted a project at about 

the same time in which techniques of man-computer communication 

applicable to job-shop scheduling in a sizeable factory were explored. 

An on-line system was developed in whic~ the scheduler selected one of 

a number of options available at any branch point in an extensive 

'tree' of alternative displays and computer routines. Results 

stimulated local factory management to continue development of the 

system for their own computers. 

Practical examples of computer-aided scheduling have included 

studies by Rice (1969), Godin and Jones (1969), Bollenbacher (1970), 

and Haider et al. (1977). Rice found man plus computer to be the 

best solution in scheduling the output from a corrugator - a machine 

which fabricates corrugated cardboard. The computer was used to 

research and review all possible combinations of orders, allowing the 

scheduler to choose between those combinations providing the most 

efficient corrugator runs. This approach proved to be superior on 
> 

all counts to other fully computerised methods where selection amongst 

alternatives was performed by the computer. Rice's finding was later 

echoed by Haider and his colleagues in a study of a simulated job-shop 

scheduling problem. In Godin and Jones' study, up to 1062 possible 
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permutations of operators, machines and coils had to be considered in 

the scheduling of a coil lvinding shop. Left to his own devices the 

scheduler could consider only a few alternatives, but with the aid of 

an interactive computer system having a simulation facility he could 

test alternative assignments and anticipate future problem areas. 

Bollenbacher also found that a computer scheduling system could ease 

small parts scheduling in a manufacturing company. The number of 

different parts and machines in use was so great that the human 

scheduler was incapable of analysing the situation over sufficiently 

long periods of time, resulting in poor schedules and excessively high 

levels of safety stocks. By using the computer not to replace the 

human scheduler, but merely to relieve him of the tedious calculations 

he had previously been obliged to perform, smoother schedules were 

produced. Forward production planning was also possible - different 

levels of production needs could be input to the program to find when 

operators, machines and shift numbers would change. 

There have been a number of other applications of the man-computer 

interactive approach in recent years (for example Mason, 1976; Petit 

and Favrel, 1976). Brewer (1971) has described the NASA computer-aided 

system for world-wide resource allocation and scheduling. When the user 

had specified his desired schedules, computer algorithms searched for 

and reported any 'schedule conflicts' and the user could modify his 

input accordingly. Wilkinson (1972) has presented a theoretical 

discussion of three iterative man-computer dynamic scheduling systems. 

A set of computer algorithms again calculated a set of optimal 

alternative routes for the human scheduler to decide between. 



More recently, Smith and Crabtree (1975) used a scaled down 

version of a job-shop scheduling problem modelled on the computer. 

Subjects acted as supervisors of the job-shop and their objective 
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was to manufacture a number of items specified in a hypothetical order 

book by set target times, using information on machine states and 

material distributions displayed by the computer. A predictive 

facility was again provided, enabling the scheduler to ask "What if?" 

questions by running the simulation forwards or backwards through time 

thus rapidly evaluating the consequences of his decision strategies. 

Results showed that extensive use was made of the predictive mode when 

getting the feel of the system, for investigating different control 

strategies and lastly as a short-term 'error-correction' or steering 

procedure. Schedulers with the predictive aid performed only 

marginally better than those without (not statistically significant, 

perhaps due to the small number of subjects used). Furthermore 

the search strategies of both groups were similar. Smith and Crabtree 

suggest that the high task complexity and system tags together with 

short-term memory limitations prevented the deep level of search 

necessary, and may account for the small performance difference 

between groups. 

Smith (1976) has also looked at how solution search is affected 

by different representations of a problem environment, One group of 

subjects undertook a resource allocation problem using a PERT-type 

network graph, another group were given a mathematically identic~l 

problem formulated as a warehouse packing task using a pattern 

representation. Both groups had access to a simulation facility 

which enabled them to investigate various alternative actions in their 

search for an optimal solution. The pattern group performed better 
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than the network group, largely as a result of concentrating their 

efforts on those areas.likely to yield the most profitable outcome. 

The difference was essentially one of a 'wide' versus a 'deep' search 

strategy, 

2.1.3 Air Traffic Control 

Rouse (1970) in the second of a series of experiments devised 

an application of predictive scheduling in a simulated ATC task. 

Subjects were required to marshall and guide three aircraft through a 

runway 'gate' by specifying correct headings and speed commands. A 

computer generated predictor display showed calculated aircraft paths 

20 seconds into the future, and this was compared with a no predictor 

condition. Though the predictor display had yielded better performance 

in a prior experiment involving guidance of a single.aircraft, no 

significant differences were observed when the task consisted of the 

more complex simultaneous guidance of three aircraft. What performance 

differences there were ~etween aided and unaided conditions narrowed 

with practice. Eventually subjects used the predictor only as a 

checking device and ignored it completely when overloaded. It should 

be noted that Rouse's study was unique in that it involved a double-

interaction situation. While interacting directly with the computer; 

subjects did not interact with or control the aircraft directly but 

gave verbal commands to a 'pilot' (i.e. experimenter) who operated 

the controls. This additional 'link' could well have contributed to 

the negative findings of the complex task. 



Rouse's findings were echoed by Kreifeldt and Wempe (1974). 

Short-term tactical path predictors were evaluated as part of a 

complex study of distributed versus centralised ATC procedures. The 

pilots clearly preferred a display that included a flight path 
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predictor for their own aircraft, but this did not significantly improve 

their performance. A more advanced Interactive Conflict Resolution 

(ICR) system has since been developed by Ball et al. (1975) working at 

the Royal Radar Establishment, Malvern, and makes use of a fast-time 

computer model of aircraft trajectories to predict airspace 

infringements (conflicts) between aircraft in an airways sector. 

The RRE method calculates a long-term prediction (up to 20 minutes 

ahead) of aircraft trajectories based on a probabilistic method, so 

that confidence limits can be placed on the predictions. The air 

traffic controller therefore has ample opportunity to evaluate alter

native strategies by 'game playing' with the computer before 

implementing one of them. Ord and Whitfield (1977) report that 

results from a small-scale simulation experiment to evaluate the 

system from both objective and subjective viewpoints have been 

encouraging. 

2.1.4 Soaking pit scheduling 

Inefficient scheduling of the soaking pit complex accounts for 

perhaps as much as 10% of the total running cost of a steel plant, so· 

any improvements are likely to be of significant cost-benefit. One 

would perhaps expect predictive techni~ues to make a valuable 

contribution in this area. Ketteringham and O'Brien (1970, 1974) at 

BISRA undertook a simulation study of computer-aided soaking pit 

scheduling in an attempt to evaluate an integrated manual and automatic 
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scheduling system under comparatively realistic conditions. The 

main objective of the soaking pit controllers in their task was to 

keep a sufficient flow of correctly heated steel ingots to a costly 

rolling mill. So that no delays in the mill operation were caused, 

decisions were concerned with allocating a complete cast or part of such 

a cast to one ·of a number of soaking pits between the melting shop 

and en route to the rolling mill. Each pit had different character

istics and each ingot a different duration of soaking so there were 

problems in predicting the long-term effects of a decision. Under 

the old system the schedulers used their experience and a few crude 

rules-of-thumb to satisfy short-term, cost-based objectives, but were 

incapable of calculating the longer term effects of their decisions. 

They tended to adopt 'safe' (conservative) strategies which failed 

to maximise throughput, but by us1ng a computer-based system model it 

was possible to investig'ate the outcome of different decisions and 

thus satisfy long- as well as short-term criteria by 'game playing' 

with the system and planning pit changes to match rolling mill 

requirements. Information on pit states was displayed to the scheduler 

on a c.r.t. screen. He could communicate with the computer using a 

touch-wire display. 

Results of limited simulation trials showed a substantial 

increase (10.5%) in the average number of finished ingots rolled per 

shift due to a significant reduction in mill delays and pit over•soaks, 

indicating the potential of the system over existing scheduling methods. 

Operator's comments also indicated that the system relieved the tedium 

of previous pencil and paper approaches, and left them free to 

concentrate on the scheduling. The findings from field validation 

trials, however, were more equivocal (Bibby, 1974). Although the 
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technical performance of the system was satisfactory (the scheduler's 

display being particularly successful) only a very marginal increase 

in steel throughput was achieved during the trial 'period. In general, 

the level of improvement that the simulation trials had led management 

' . to expect was not ach~eved. McEwing (1977) notes that the major cause 

lay in the scheduier's inability to make full use of the system's 

planning facility. Schedules developed using the predictive facility 

frequently had to be abandoned because the expected patterns of soaking 

pit availability and steel arrival at the pits were not achieved. This 

was due not only to unpredictable plant breakdowns (representative 

patterns of which had been simulated), but to organisational problems 

such as poor co-ordination between adjacent areas, slow communication 

of decisions (there was no direct link between the rollerman and the 

soaking pit controller) and poor working relationships between key job 

holders. The simulation had not encompassed organisational as opposed 

to technical realism - the role of operators in adjacent areas had 

been played by members of the experimental team. Had a full task 

analysis been carried out initially before the simulation study, and 

the scheduling aid modified (e.g. by using probabilistic arrivals 

information) to take into account this additional uncertainty, then 

results from the field trials may have been less disappointing. Bibby 

comments that a computer system with information displays linking 

more parts of the system, plus a more efficient communications network

with up-to-date data entry, could help realise the potential of the 

scheduling system, as well as improving the working climate in the 

plant. A major warning from this series of studies is· the way in 

which the ill-defined, uncertain nature of real-world processes can 

negate findings from well-defined simulation studies. If at all 

possible, steps should be taken to incorporate the possible effects 

of such factors at the simulation stage. 
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Following on from the above studies, Laios (1975)* developed 

a laboratory scheduling task similar to Ketteringham et al's and used 

it as a basis for his 'Predictive Computer Display' (P.C.o.y. This 

combined a dynamic version of Shackel's (1976) stateboard concept with 

various ways of conveying information on the probability distribution 

of ingot arrivals (see Herman et al. 1964). As in Ketteringham's 

task, the scheduler endeavoured to maintain a constant time interval, 

this time of 5 time units, between departures from the soaking pit 

complex. This he did by judicious allocation of ingots to. soaking 

pits. Judgements were made on the basis of displayed estimates of 

ingot arrival times, updated regularly. At the same time system 

constraints had to be satisfied, such as allocating ingots to pits as 

soon as possible after their arrival, and leaving a gap of 3 time 

units after a pit emptied before it could be reloaded. 

Laios' early work looked at the effect of uncertainty associated 

with ingot arrival time estimates on unaided decision performance, using 

an arrivals display (F3) and a pit state display (F2) only. A pilot 

study with 6 subjects showed that unaided scheduling performance was 

degraded by the int-roduction of a moderate level of uncertainty. Use 

of the basic displays provided was higher with uncertainty present. 

These preliminary findings were confirmed in his first main experiment 

using 12 subjects (see Laios, 1976). The effect of 0 bits 

(i.e. absolutely certain), 3.4 bits and 4.4 bits of uncertainty measured

with respect to a common reference point was examined, again using F3 

and F2 displays only. A significant decrement was found in the 

performance index (relative number of scheduling errors) upon 

*since summarised in Laios (1978). 



introduction of a moderate level of uncertainty. However, no 

further decrement was observed when uncertainty was increased still 

further - in fact a slight, though non-significant, improvement 

occurred. A similar significant increase in on-line activity was 

observed with the introduction of uncertainty, but on-line activity 

was not affected by changes in the amount of uncertainty. The type 
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of strategy adopted by the operators was held to account for the lack 

of effect when uncertainty was varied. 

In a second experiment a predictive facility (PCD 1) was 

introduced with which the operator could plan in conjunction with the 

F3 display allocations and utilizations up to 35 time units ahead of 

current time. The effectiveness of the predictive display and an 

optional heuristics display were tested under deterministic conditions 

(i.e. no uncertainty present) using 8 subjects • The predictive facility 

. resulted in a significant improvement in the performance index and a 

concomitant increase in on-line activity. Subjects 'decision 

horizons' (how far ahead they were planning) showed them to be looking 

well ahead and attempting to satisfy long-term as well as short-term 

criteria. The optional heuristics display had no apparent effect. 

The latter study was repeated under a moderate level of uncertainty 

in Laios' third experiment. Though no statistically significant 

improvement due to the predictive display was observed, a marked bias in 

the averaged performance scores was evident in favour of the predictive 

condition. Laios attributes this to the high variability of individual 

scores. A statistically significant increase in on-line activity was, 

however, observed with the predictive facility. The heuristic display 



again had no apparent effect. Laios concludes that deterministic 

decision aids, i.e. those designed for certain environments, may be 

of little use in uncertain real-world conditions. 

Consequently, in his final experiment Laios set about examining 

different ways of presenting information on the uncertainty character-

istics associated with ingot arrivals. Two new displays were 

developed. The first combined numerical estimates of ingot arrival 

times (F3) with the previous predictive display (PCD 1) to form a new 

combined display (PCD 2). The second display went one stage further 

by displaying the actual interval within which an ingot would arrive, 
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as opposed to a numerical estimate (PCD 3). In both displays, the need 

to s~itch to a separate display to infer ingot arrival times was 

eliminated. The experiment was again conducted under a moderate 

level of uncertainty using 8 subjects in a repeated measures design. 

Results indicated that the introduction of arrival intervals showing 

the extent of the uncertainty present gave a significant improvement 

in performance. However, reducing the width of the intervals by 

approximately 20% using Bayesian mathematics made no statistical 

difference - in fact performance became slightly worse. This result 

casts doubt on the validity of the Bayesian approach in these 

situations. Laios attributes the improved performance scores directly 

to the provision of interval information about uncertainty character

istics, coupled with the subject's increased ability under these 

conditions to delay ingots and so achieve a smooth output flow. 

It is interesting to note that on-line activity was not affected by 

the different information presentations. 
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Laios' study represents the first systematic investigation of 

factors affecting scheduling performance. His results indicate that 

not only can uncertainty detract from the effectiveness of deterministic 

decision aids, but that the display of information in a suitable form 

about that uncertainty might be a useful approach in real-life scheduling 

applications where uncertainty is an inherent system component. Laios' 

work has been quoted in detail as it is of direct relevance to the 

experimental material of Chapter 3, and in addition was the original 

stimulus which led to the questions posed in this thesis. · Laios' 

work does not, however, present a complete picture. As Whitfield (1975) 

has commented: "Further research is obviously necessary to investigate 

the effects of variations in the environment and within the predictive 

model, in aided scheduling tasks". 

Section 3 of this chapter. 

This point will be taken up in 

2.1.5 Summary 

Discrete decision aids have been shown to assist scheduling 

performance in a wide variety of industrial and non-industrial situations. 

Two basic approaches may be delineated. In the first, the human 

operator is free to select from a computer-derived set of optimal 

schedules, calculated according to criteria expressed as a formal 

algorithm. Examples include the studies by Rice and Bollenbacher 

(op. cit.). The second approach allows the scheduler to 'game play' 

with the computer and explore the consequences of individual decisions. 

This approach has been favoured by behavioural scientists, and e;amples 

include the studies by Smith and Crabtree, Ketteringham and O'Brien 

(op. cit.). A common finding in this area of research is the large 

variation between individual subject's strategies. Further research 



80 

is necessary to examine the behavioural effects of variations both 

within and outside the.predictive model on aided scheduling 

performance. The present author has attempted such ·an investigation, 

described in detail in Chapter 3 of the present ·thesis. 

2.2 Continuous control applications 

Since its arrival in 1958, the predict~r instrument has been 

proposed for use in a wide variety of continuous control systems. 

Kelley (1968), Warner (1969), Smith and Kennedy (1975), and Bird and 

Whitfield (1975) have reviewed the available literature. It appears 

that most of the experimental work has concentrated on simulation studies 

of military and vehicular systems, to the apparent exclusion of any 

operational applications (though several have now been planned). 

This is not to say that the value of predictors is unproven. The 

literature abounds with simulation studies demonstrating the efficacy of 

the predictor technique.in situations as far removed as piloted aircraft 

landing, submarine depth control, lunar rovers, spacecraft guidance, 

docking ocean-going vessels, VTOL and helicopter hovering, and remote 

control systems: in short, any situation where system dynamics and a 

man's inherent limitations combine to render unaided control difficult 

or impossible. And yet in spite of. the overwhelming evidence in their 

favour "no operational applications have yet been made, or no 

documentation of such applications exists" (Smith and Kennedy, 1975).* 

* Unconfirmed reports (Pitrella, 1978) indicate that a form of predictor 
display has been included as part of the standard instrumentation in the 
Douglas DC-10 aircraft to assist pilots to· monitor the automatic landing 
system. Other operational applications may well exist in the military, 
but for security reasons are not documented. 
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The following subsections present a brief review of some of the 

principal application areas which have been envisaged. Though the 

applications are numerous and cover a wide range, 'it should be noted 

that many of the proces~es studied have similar transfer functions 

and are thus equivalent in control engineering terms. 

2.2.1 Piloted aircraft 

Judgement of the point on the runway at which it is safe for a 

jet aircraft to take-off is by no means a simple matter for the pilot, 

being dependent upon several parameters. Hainsworth and Olinger (1958; 

cited by Warner, 1969) were amongst the first to envisage the use of 

predictive information in their proposed Safe Take-off Predictor (STOP), 

which would provide a pilot with current aircraft position, a predicted 

take-off point and a last safe stop point, all on a single scale. 

Price, Honsberger and Ereneta (1966a,b) also foresaw the need for 

predictive information in the various flight management and control 

functions associated with aircraft flying at supersonic speeds. 

In a study by Sweeney, Todd and Heaton (1965) a predictor display 

was found to yield superior results over conventional displays for 

altitude control of high performance aircraft. The authors also found 

an improvement in a simulation of a low-level terrain following task,· 

provided the dynamics of the automatic flight control system were 

included in the predictor model. A synthetic predictor display showing 

the aircraft velocity vector was eventually proposed, owing to the high 

computational requirements needed to generate the predicted path. 

Williams (1969) also found improvements in low-altitude, high-speed 

flight using a predicted pitch display. 
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Vertical take-off an~ landing (VTOL) aircraft are characterised 

by some very difficult control problems, notably in the transition 

phase from horizontal to vertical flight. In a VTOL simulation study, 

Kemp (1969) found that test engineers were unable to control a hovering 

aircraft without an altitude prediction display. This problem has 

also been extensively investigated by Bernotat, Dey and their West 

German eo-workers, using Taylor series prediction models. Collectively 

they found that even naive subjects could stabilise pitch/roll axes 

using a predictor display, but were unable to do so properly without it. 

Dey and Johannsen (1969) report an 80 per cent reduction in training 

time using the predictor. A consistent enhancement of control 

performance is also found. Dey (1971) for example obtained a reduction 

from 7.92 to 2.48 in the mean square deviation of a simulated VTOL from 

a desired 'course' using a Taylor series extrapolation model. 

Gallaher et al. (1976) also report favourably on the use of a Bernotat

type regression approach on each axis of a 6 d.f. simulator to generate 

a composite display of future aircraft position • 

Landing on the undulating deck of an aircraft carrier poses 

another complex control problem for the pilot. Wulfeck, Prosin and 

Burger (1973) used a sophisticated 6 degree of freedom F.4 carrier 

landing simulation to represent night landing on a carrier at sea. 

Pilot approach and landing performance on the simulator using existing 

operational landing aids was compared~with performance using a predictor 

display. Though differences in mean altitude and lateral errors were 

negligible between the displays, the predictor display reliably produced 

subst.antially smaller altitude and lateral error variances than the 

conventional display. The experienced Naval pilots used as subjects 

could land their aircraft much more accurately using the predictor 

display. In addition the finding that variability amongst the 
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predictor pilots was considerably smaller suggests that in its real 

world application use of the predictor instrument would lead to fewer 

accidents and abortive landing attempts. The somewhat simpler task 

of landing on a conventional runway was also found to be facilitated 

' with a predictor display (Smith et al., 1974; cited in Smith and 

Kennedy, 1975). -It is interesting to note that learning from the 

predictor display transferred to a conventional non-predictive display, 

so that those subjects trained with the predictor performed better 

subsequently than those subjects trained on the conventional display. 

Kennedy et al. (1975) in a carrier landing simulation study found that 

a predictor display also facilitated landing performance by pilots both 

experienced and inexperienced on F.4 carrier night landings. Although 

the experienced pilots had achieved better performance than the 

inexperienced pilots in a control condition, performance levels with 

predictive aiding were equivalent for the two groups, again demonstrating 

the potential of the predictive display as a training device. 

Kreifeldt and Wempe (1973) found that professional pilots could 

more accurately perform a standard instrument procedure turn on a 

simulated plan view display of the ground beneath using a predicted 

ground path trace than without such a predictor. Wempe (1974) further 

notes that using such a 'Horizontal Situation Display' (HSD) together 

with a flight path predictor which calculated the effect of airspeed, 

bank angle and wind, not only was the lateral error when turning in the 

presence of wind gusts reduced by one-half, but that individual 

differences amongst pilots also decreased. Pilot acceptance of the 

flight path predictor was good. The map usually depicted on an HSD 

can have several orientations: north uppermost, fixed map with moving-
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aircraft symbol or translating map with fixed aircraft symbol. Baty 

(1976) found that a flight path predictor helped improve the performance 

equally well in either a 1 north-up 1 or a 'heading-up' map orientation. 

Rouse (1970) in a further study of map-based predictors asked 

subjects to guide· a simulated piloted aircraft through a runway approach 

'gate' with correct speed and heading for the aircraft runway. The 

predictor yielded better performance than conventional display and 

faster learning of the task, but the differences between performance 

with and without predictive aiding narrowed as learning proceeded. It 

should be noted that Rouse's experimental set-up was a-typical in that 

a double interaction situation was present - whilst interacting directly 

with the computer subjects did not control the aircraft directly but 

gave verbal speed and heading commands to a 'pilot' (i.e. experimenter) 

who 'flew' the plane. 

Warner (1969) simulated a minimum-time terminal control task for 

a pure inertia system and reports that an off-line exploratory predictor 

gave slightly better results than its on-line equivalent (though not 

statistically different), assuming that sufficient time was available 

to use it. Performance without any form of predictor was more variable, 

and in general, worse. 

2.2.2 Spacecraft 

Guidance during various stages of a spacecraft mission pres·ents 

a unique series of control problems, many of which the predictive 

display concept is particularly well-suited to deal with. In a study 

of predictive aiding during the launch phase, Gilchrist and Soland (1967) 

used a technique called a Predictive Model Guidance Scheme employing a 

fast-time model to generate a predicted trajectory in an altitude vs •. 
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velocity display. The pilot's role was one of indirect participation 

through adjustment of the initial conditions of an optimal steering 

program. The authors felt that the predictive display helped the 

pilot to 'shape' the vehicle's trajectory. The use of a predictive 

display system by a range safety officer in observing the flight of a 

missile has also been proposed (Fogarty; cited in Warner, 1969). 

Rendezvous between the orbiting spacecraft is a critical phase of 

many space missions, as the manoeuvre must be completed in a given time 

and with minimum fuel expenditure. Though actual docking can be 

accomplished using visual and radar-supplied cues, the approach to dockin! 

is more complex and requires special aids. McCoy and Frost (1965) in a 

series of experiments have shown that use of a predictor display 

facilitates performance in such a coplanar rendezvous situation. A 

first experiment compared display of current position only with a time

history display, and demonstrated that whilst rendezvous could be 

achieved in either case, performance was better with time history 

included. A second experiment compared a predictor display with a 

display of current position only. Again rendezvous was always possible, 

but with the predicted flight path fuel consumption was significantly 

reduced and smoother rendezvous trajectories were flown. Similar 

results were obtained by Mano and Ulbrich (1965), fuel savings being 

achieved with an exploratory predictor display. In addition these 

workers suggested that predictive techniques would be useful as a 

training device. Later work by McCoy and Frost (1966) compared on-line 

with off-line (exploratory) prediction. Off-line was found to yield 

better performance than on-line. The authors also reported that naive 

subjects were able to perform the rendezvous with essentially no training 

whatsoever, using the predictor display. 

confirms this finding. 

A study by Shannon (1976) 
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With the advent of manned lunar landings, manual control of the 

lunar module's descent phase is necessitated by the need for flexibility 

in the selection of a suitable landing site. Conservation of fuel is 

again a primary consideration. Fargel and Ulbrich (1963) simulated a 

lunar landing task and found that tracking accuracy and fuel economy 

were both enhanced using a predictor display in a height vs. rate-of

change-of-height configuration compared with a display of current 

values alone. Results were similar for both one dimension (altitude) 

and two-dimensional (altitude and translation) tasks, the latter proving 

harder to interpret as the two axes were presented orthogonally. 

Training times were such that a stenographer (typist) assisted by the 

predictor display was able to do better than unaided test pilots and 

astronauts after a few tries. Besco (1964) simulated a 3-axis 

spacecraft attitude control task and investigated control manoeuvres 

such as attitude hold, stabilisation and attitude change. Lower fuel 

consumption and r.m.s. errors were obtained with a predictor display 

incorporating pitch, roll and yaw information at 0, 10 and 20 seconds 

into the future than were achieved using more conventional displays. 

In addition the experienced pilots used as subjects preferred the 

predictor display. 

The final re-entry phase of a space mission again comprises a 

complex series of decisions requiring the flexibility of human control. 

Several authors have investigated predictive displays ·for re-entry 

employing a Ground Area Attainable or 'footprint' display indicating 

the area on the earth's surface that can be reached by the vehicle, 

with the target destination marked (Wingrove and Coate, 1961; Austin 

and Ryken, 1963). Warner (1969) cites a study at Lear Siegler Inc., 
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Grand Rapids, Michigan, which showed that a digital display of such 

predictive information allowed more precise control when the pilot had 

several tasks to perform concurrently. 

2.2.3 Remote control systems 

The transmission delays encountered, for example, when controlling 

a lunar rover from earth are in the order of seconds. Such pure time 

delays effectively reduce conventional displays to those presenting 

historical rather than current information. Cohen (1962) and Kelley 

(1963) were amongst the first to envisage the application of predictor 

displays in this context. Arnold and Braisted (1963) in fact 

demonstrated that predictive information could be used to compensate 

for these delays. A simulated lunar rover transmitted a delayed 

picture of the terrain ahead to a remote operator. A predictor 

display was available to the operator, the prediction span being set 

to equal the transmission delay. Performance using the predictor was 

approximately equivalent to direct, no-delay control with the result 

that higher lunar vehicle speeds than were previously possible could be 

attained. 

Smith and Kennedy (1975) comment that earthbound remote piloted 

vehicles are receiving increased attention for military reconaissance 

and weapons system use. The authors report that in their work (Smith 

and Queen, 1975) a predictor display was demonstrated to assist flight 

profile control in a simulated approach-to-landing task. 
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2.2.4 Ocean going vessels 

Many of today's ocean going vessels are similar to the aerospace 

applications previously discussed in that their response characteristics 

are complex and frequently involve large time lags. The supertankers 

of the seventies are a prime example. Kelley (1960b; cited in Kelley, 

1968) carried out the first laboratory test of the_predictor technique 

1n an application to submarine control. Using a simulated high-speed 

submarine he found that levelling out after a depth change was a simple 

matter using the predictor, but was virtually impossible without it. 

Reductions in training time due to the predictor were also found. One 

display format presented the effect on predicted depth error of full 

rise, full dive and centering the controls. 

are discussed by Berbert and Kelley (1962). 

Alternative configurations 

McLane and Wolf (1967) evaluated a symbolic predictor display 

compared with a symbolic quickened display and two forms of contact

analog display in a simulated submarine guidance and homing torpedo 

avoidance task. They .found no statistically significant difference 

between the displays in terms of tracking error, but the predictor 

display was significantly superior to the others in the torpedo 

avoidance subtask as it resulted in fewer collisions. 

Brigham (1972) has put forward two applications of predictive 

techniques in ship control. Collision avoidance involves extensive 

decision making and considerable skill in the interpretation of the 

ship's radar information. Several new radar systems offer automatic 

facilities to aid in collision avoidance. As well as displaying the 

present position of all targets, the Marconi 'Predictor' radar can show 

the target positions two, four and six minutes previously. In the 
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'predicted relative tracks' mode a proposed course and speed change 

can be entered. The tracks of all the targets then move accordingly 

so enabling the effectiveness of a proposed manoeuvre to be evaluated. 

A similar system, the AEI 'Compact' radar, projects a vector from each 

selected target to indicate course and speed. A collision warning 

alarm is given if any of the predicted tracks will come within the 

home ship's 'closest point of ap,roach' circle during the next 30 

minutes. A 'trial track' facility also enables course and speed 

·changes to be evaluated with respect to ships and other possible hazards. 

Brigham noted that these radars are expensive and had not been 

extensively tested in sea trials at the time of writing. 

' 
In berthing a supertanker and during manoeuvres in restricted 

waters the pilot and master have to judge distances, velocities, 

accelerations and rates of swing with an accuracy below the minimum 

psychophysical threshold which can be perceived directly. Their 

judgements are therefore of necessity based on a shortage of information. 

Brigham (op. cit.) propose the use of a predictor display as an aid 

to berthing. Such a display would show current positions of jetty 

and ship with predicted ship's positions at chosen time intervals ahead. 

Corrective action could then be taken in advance of the ship's impending 

collision with the jetty. However, Brigham felt that the use of such a 

display was not feasible at that ·time due to problems in engineering a 

prediction model of sufficient complexity to incorporate all the possible 

system inputs (ship's position, equations of motion, effects of engines, 

helm, tugs, wind, tide and undercurrents) many of which cannot be 

precisely determined. 

here. 

A simple extrapolation model may be applicable 



2.2.5 Process control applications 

Control of many continuous industrial processes, notably 

chemical process control, is typically associated ·with long time 

delays and high order plant dynamics which place severe limitations 

on the predictive abilities of the human controller. There would 
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appear to be considerable scope for predictive displays here. It is 

interesting to note that Ziebolz's original work was iri the area of 

process control, though most subsequent envisaged applications were in 

the field of aerospace. The situation has now come full circle and 

Crawley (1968) forecasts that predictive techniques will have an 

important part to play in future integrated man-computer systems for 

the steel-making industry. As yet, however, application of such 

techniques (other than as parameter estimation within a totally 

automated control program - see Chapter 1, section 3.2) has been 

limited. 

Blake (1968) in a discussion of display techniques for batch, 

continuous, semi-continuous and start-up processes has stated that for 

him "predictive displays are a most important part of any start-up 

system". Predicted values could be displayed on numeric readouts or 

on a line-drawing c.r.t. Typical messages that a predictive display 

could produce might be the speed a turbine would reach after a given 

time, or the fact that the safe operating temperature of a boiler would 

be exceeded if firing continued at the same level. Rasmussen (1968) 

has also suggested the introduction of a trend display or predictive 

facility into a c.r.t. display for power plant controllers. A visit 

late in 1975 to the British Gas grid control centre at Hinckley, 

responsible for monitoring and controlling the country's gas supply, 

revealed that a sophisticated, off-line 'Control Advisory Program' 
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(C.A.P.) was at the development stage. When operational the CAP 

would analyse and forecast the state of the grid system 24 hours 

ahead, and could also display the results of simulatio.n runs. It was 

estimated then that the complete system would take 5 years to implement 

and debug. 

McEwing (1977) reports that British Steel are currently developing 

"displays of continuous estimates of process states derived from a 

computer-based parameter estimation procedure and dynamic process 

model" for control of basic oxygen steelrnaking. And Verhagen (1976) 

at a recent NATO Advanced Study Institute on Man-Computer Interaction 

reported a predictive control system for. a simulated distillation column: 

at a later stage it was planned to display computer predictions direct 

to the operator. 

Ratcliffe (1977) has also reported that an off-line conversational 

predictive model is under development for stock control of a complex 

continuous ammonia soda plant at ICI Mond Division. Lags made the 

process difficult to control, and limited stocking capacity resulted in 

stock control problems. When operational as part of a suite of 

supervisory programs, the predictive facility would enable the 

operator to investigate the effect of changes in plant throughput, on 

the stock levels in 5 storage tanks up to 12 hours hence. The program 

could be used to estimate stock levels if present conditions were 

maintained, or to establish the best way of shutting down the plant 

without emptying or overfilling the stock tanks, or to build up levels 

prior to a maintenance shutdown. The predictive program could be 

accessed from a VDU terminal, changes in throughput entered numerically, 



and the predicted alterations in stock levels displayed graphically 

or in tabular form. Ratcliffe sets out a set of guidelines for 

implementing such a system, and it will be interesting to see what 

operational benefits result. 

2.2.6 Summary 
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Surveying the reported literature on predictive display research, 

some common findings emerge. First and foremost, human operator 

effectiveness is improved through the use of predictive displays in a 

variety of control tasks, such as controlling non-linear systems or 

linear systems with pure time delays. Learning times are reduced, 

often to the point where novice_ operators are able to control relatively 

complex systems with essentially no training whatsoever. Several 

workers (Rouse, 1970; Bernotat·, 1972) have commented that the eventual 

stabilised performance levels of aided and unaided groups are similar. 

The aided group, however, achieves this performance level long before 

the unaided group. Predictor-aided control can approach optimal control 

with respect to a particular performance criterion as the operator is able 

to plan the best courses of action. Lastly, the information processing 

requirements on the human operator can be reduced, notably in multi

dimensional control tasks. 

It must be stressed that the experiments reviewed have beenlargely 

restricted to specific military or vehicle simulations. No general, 

cross-system studies appear to have been conducted. From the literature, 

it seems that those applications most likely to benefit from predictor 

displays include at least one of the following characteristics (Warner, 

1969): 



1) the dynamics of the system to be controlled are both complex and 

slowly responding; 

2) the number of separate tasks to be performed is·relatively large; 

3) the nature of the task requires considerable anticipation by the 

operator; 

4) the task is system-paced, i.e. time constrained; 

5) flexibility of control actions is required. 
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Several potential applications having one or more of these 

characteristics can be envisaged in addition to those already discussed. 

Control of automobiles might be facilitated with a predictive display, 

especially for learner drivers, In railway sidings, a predictor 

display could assist smooth and precise shunting of wagons so preventing 

damage to rolling stock and contents caused by the intermittent 

application and release of brakes. 

It is evident from section 2.2.5 that predictive displays are a 

major growth area for the control of chemical plant. At the time of 

writing, however, the present author has carried out what is believed 

to be the only known comprehensive experimental study and field 

validat~on of the predictive display in this area, This work is 

described fully in Chapters 5, 6 and 7 of the present thesis, 
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3. FACTORS AFFECTING PREDICTIVE DISPLAY PERFORMANCE 

Whatever the application, there are certain parameters internal 

and external to the predictive display system which will affect the 

operation of the entire control or decision-making process. 

parameters can be defined as follows: 

These 

1) Input uncertainty - a measure of the accuracy of the updating 

information fed to the prediction model. This ih turn is dependent 

on the degree of signal contamination due to noise in continuous 

systems, the unreliability of input information in scheduling 

applications, or simply the normal variability inherent in the 

system operation being controlled • 

. 2) Prediction span (extrapolation interval) - the real time period 

over which predicted plant response is displayed. This is often 

the same as the prediction time - the real time interval over which 

predicted plant response is computed by the prediction model -

particularly where a single predicted end-point is displayed. 

3) Prediction model fidelity - the accuracy with which the prediction 

model represents the controlled system's behaviour. Usually 

expressed in terms of Bernotat and Widlok's (1966) three stage 

classification. Prediction model fidelity can be thought of as 

internal inaccuracies within the predictive display. 

4) Process dynamics/response characteristics - for continuous systems, 

this is usually expressed in terms of the plant gain (K) and ·the 

control order or effective number of integrations in the control 

system. In scheduling applications, response characteristics are 

a function of the complexity and speed of the process. 
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5) Repetition (refresh) rate - the number of successive predictions 

displayed to the operator per unit of time. It is often the 

frequency at which the prediction model is updated with the present 

state of the plant. 

6) Mode of control - refers to whether the predictive display is 

arranged in on-line or off-line configuration. 

The above characteristics also apply in principle to fully automate 

predictive control systems, where man is replaced by a logic decision 

element, as well as to manual control systems where the predictive 

display is employed to extend man's capabilities. Factors peculiar 

to manual systems not listed above mainly involve display format issues, 

and the question of which system variables need to be displayed to the 

operator. The answers to the purely 'knobs and dials' ergonomic 

questions can frequently be gleaned from the body of existing knowledge 

available in such human factors tex~as van Cott and Kinkade (1972) or 

McCormick (1976). Otherwise a system specific experimental study may 

be necessary. It is also important to determine which system variables 

need to be displayed to the operator, as displaying data which has only 

potential relevance is not only ineffective but can actually degrade 

performance (Baker and Goldstein, 1966). 

Warner (1969) and Smith and Kennedy (1975) have pointed out that 

no general quantitative studies of predictor characteristics have been 

conducted. The need for such studies was noted by Sheridan as long ago 

as 1962: however, with the exception of a few 'mini studies' little 

seems to have been done to meet.this need. As the following 

discussion of predictive display characteristics implies, there is 

clearly much to be learned in this area. 



3.1 Input uncertainty 

This refers to the accuracy of the information fed to the 

prediction model, and is not the same as prediction model fidelity 

(discussed under 3. 3). Inp.ut uncertainty is caused by normal 

variability in system operation or by external disturbances to the 

controlled system (e.g. cross winds affecting aircraft flight, 

transmission noise on signal lines, unreliable information fed to a 
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production scheduler). The net effect of these variations is, however, 

similar to prediction model inaccuracies in that they both serve to 

reduce the credibility of the predicted information displayed to the 

operator. If the uncertainty cannot be incorporated into the predictive 

trace, for example because its form is entirely unknown or because of 

limitations within the prediction model, then there will be a discrepancy 

between actual and predicted paths which can only serve to mislead the 

operator. In this case the useful prediction span may have to be 

reduced. If however the nature of the uncertainty can be forecast 

and incorporated into the predicted trace then the display has the 

addition of a diagnostic feature. ·One suggested approach is to 

display multiple predicted paths corresponding to the mean predicted 

path with extreme ranges to either side. There has been little 

quantitative research in this area (see Tainsh, 1977). Another 

approach, adopted by Herman et al. (1964) and Laios (1975), has been 

to display .. probabilistic information showing the range of values within 

which the actual input may lie. 

It is well known that in non-predictive control systems the main 

effect of uncertainty is to degrade performance. Howell and Briggs. 

(1959) for example looked at the effect of visual uncertainty in the form 

of perturbations on the display signals in a pursuit tracking task where 

input, response, and input and response together could be perturbed, · 
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and in a compensatory tracking task where the error signal was 

perturbed. In general, tracking performance became worse as the 

level of uncertainty increased. It is interesting to note, however, 

that tracking performance was not noticeably affected when noise was 

present on the response display only: apparently reliable visually 

coded feedback information is less critical to the operator than is 

accurate input information. 

At a psychological level, Garner (1962) has proposed the existence 

of uncertainty as a fundamental psychological concept. Kahneman and 

Tversky (1973) note that in making predictions and judgements under 

uncertainty, people do not appear to follow the calculus of chance or 

the statistical theory of prediction. Instead they rely on a limited 

number of heuristics which sometimes yield reasonable judgements, but 

which sometimes lead to severe and systematic errors. 

In a study of unaided dynamic decision-making, Rapoport (1966) 

found that the introduction of a stochastic (uncertainty) element into 

his version of the Reader's Control Problem resulted in a SO% 

deterioration in performance. Ebert (1972) however failed to replicate 

this finding in a complex production scheduling problem, possibly 

because his subjects had detailed information about the stochastic 

element throughout the task, or because the task itself was of greater 

complexity. Levine and Samet (1973) and Laios (1976) however both 

found that the introduction of uncertainty brought about a worsening 

of decision performance. Laios also found that increasing the level 

of uncertainty beyond a certain point resulted in a slight improvement 

in performance. 



Given that uncertainty degrades unaided control and decision 

performance, one would perhaps expect it to have a similar effect on 

performance when predictive displays are employed. Laios (1975) 
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has presented one of the few experimental studies on the effect of 

uncertainty in a predictive display system, and because of their 

importance to this thesis his experiments were reviewed in detail under 

section 2.1.4 of the present Chapter. Bernotat and Widlok (1966) also 

describe a noise-contaminated continuous predictor, but do not report 

empirical findings. In fact, Laios found that the level of his 

subjects' performance with uncertainty was considerably worse compared 

with performance under deterministic conditions. Bibby (1974) reports 

a similar finding when a predictive scheduling aid designed and tested 

under near-deterministic laboratory conditions was implemented in the 

uncertain real-world environment of a steelworks soaking-pit scheduling 

complex. However, it should be noted that Laios evaluated directly 

only a single value of uncertainty, and there is clearly a need to 

establish the effect on predictive display usage of a wide range of 

uncertainty values. It would also be highly interesting to investigate 

the interaction of uncertainty with such predictive display parameters 

as prediction span and prediction model fidelity. 

3.2 Prediction Span 

The evidence relating to how far ahead prediction should extend 

is conflicting. One would expect the length of useful prediction span 

to be affected by other system characteristics. Kelley (1960a) in an 

early predictive display study found that whilst approximate prediction 

models could be of some assistance, useful prediction spans decr~ased 

with decreasing model fidelity and learning times for effective control 

were increased. Bernotat and Widlok (1966) however report the opposite. 



As the order of their extrapolation model was reduced, useful 

prediction times increased by a few seconds. 

Subjects in a submarine control task (Kelley, 1960b) when 

permitted to adjust prediction span elected to reduce it as vehicle 

speed was increased. Kelley (1962) thus reco!Il!!1ends that slow,. 
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sluggish systems such as submarines are best served by a long prediction 

span (25 to 30 seconds), whereas quick-changing, high-frequency systems 

such as helicopters require a shorter span (5 seconds). Dey and 

Johannsen (1969) on the other hand suggest that the faster the control 

task, the longer the prediction time span should be. Dey (19 71) also 

found optimum prediction time to increase as the controlled process 

increased from a second to a third order system. The latter authors 

were concerned with extrapolative predictive displays for VTOL aircraft 

hovering. 

In the limiting case, extremely short spans provide insufficient 

information and control instability ensues. An unnecessarily long span 

is, by definition, unnecessary and may even act as system noise. Whether 

such noise distracts the operator and degrades his performance or merely 

acts as superfluous information is unknown, the research findings being 

inconclusive. Rouse (1970) for example found that a 40 second span 

yielded worse overall performance than a 20 second span in an aircraft 

guidance task, as subjects wasted time correcting distant errors ·that 

would never arrive. This illustrates the concept of an 'optimum 

prediction span'. Rouse's results may be a-typical, however, in that 

his task was a 'double-interaction' situation: subjects acting as air 

traffic controllers gave heading and speed instructions to a 'pilot' 
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flying an aircraft. Williams (1969) using an aircraft predicted 

pitch display reported that performance remained the same with spans 

of 3.5 to 6.75 seconds, but deteriorated for spans of less than 3.5 

seconds. 

Besco (1964) in a simulated spacecraft attitude control task 

tried prediction spans from 10 to 30 seconds but found no significant 

difference on performance, perhaps due to inaccuracies in the prediction 

model used. McLane and Wolf (1967) investigating predictor displays 

for submarine course and depth control also reported no significant 

difference between prediction spans of 20, 30 and 40 seconds, though 

the 40 second span did result in larger overshoots. There was also 

some evidence that had a more stringent tip-of-predicted-path-in-circle 

tracking task been employed, r.m.s. error would have risen with 

lengthening prediction spans. 

In a study of a simulated jet aircraft landing.by Kennedy et al. 

(1975) control performance not only increased sharply as .spans increased 

from 5 to 20 seconds but there was an indication that much higher 

performance would occur with even longer spans. Yet in a follow-up 

study using 1 experienced 1 subjects from the first .experiment, the 

authors found no difference between spans of 10, 20 and 30 seconds 

(Smith and Kennedy, 1975). Perhaps a wide range of spans may be 

equally effective for experienced operators. Smith and Kennedy ·note 

that their experience in the Dun lap Labs, where Kelley also carri·ed out· 

much of his work, indicates that operators make use of the first or 

central segment of a predictor trace rather than its end-point. This 
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procedure effectively minimises the time to reach the desired 

trajectory. In cases where time is not critical, however, there is 

probably no advantage in using any particular segment of the trace, 

again suggesting that a broad range of prediction spans may be equally 

facilitating. 

Notwithstanding the above, practical considerations usually require 

the selection of one (or several alternative) prediction spans, unless 

the operator is given the freedom to adjust the prediction span for 

himself. Different systems will undoubtedly need different prediction 

spans, probably related to the 'responsiveness' of the system and to the 

magnitude and frequency of unpredictable disturbances. Bernotat (1972) 

in this context comments that the proper choice of prediction time can 

improve performance by as much ·as 70%. Kelley (1960b) has noted that 

for some tasks span should be in terms of distance rather than time. 

Though Rouse (1970), Dey (1971) and Bernotat (1972) have all found 

optimum prediction spans/times in laboratory simulation studies, 

currently there is no research which points to optimum spans for any 

operational system. 

3.3 Prediction Model Fidelity 

A 'perfect' predictor instrument is one which predicts the future 

state of a controlled process, by displaying to the operator one or more 

future states in addition to the present system state. As was previously 

noted, three classes of prediction fidelity have been put forward by 

Bernotat and Widlok (1966); 

CLASS I PREDICTION uses a mathematical power series to extrapolate 

repetitively from the current value of the controlled system and its 
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derivatives. System time-history is ignored in favour of present 

movement. As the prediction process is independent of system 

characteristics, Class I prediction cannot be used to predict accurately 

far into the future. Its necessarily short prediction spans are 

applicable to stabilisation and guidance problems, the absolute value 

of the prediction span being dependent on the dynamics of the system 

and its external disturbances. This technique has been widely used by 

the West German school (Bernotat, 1972; Dey, 1972). Bernotat and 

Widlok (1966) note that although the extrapolations are not as accurate 

as (for example) Class II prediction, because man extrapolates very 

coarsely the method is more accurate than anything the human can manage 

and in roost cases will suffice.to provide some lightening of the load. 

Some degree of model inaccuracy can also be tolerated due to the human 

operator's adaptability. 

Extrapolation according to this method is a problem of approximatior 

the function being approximated by a power series. 

expansion is typically used, of the general form: 

y(t + ~ ) 

N 

=~~n 
LUI 

n=O· • 

A Taylor series 

where N is the number of derivative terms in the extrapolation. Dey 

(1972) notes that the order of· extrapolation should be one less than 

the order of the controlled system. For example, a controlled process 

having three integrations in the forward path would require a second 

order extrapolation. It is a property of the Taylor series expansion 

that deviations from the true path will increase with increasing 

prediction time. Accuracy on the other hand depends on how many terms 

of the series are used, and this is limited by the technical possibilities 
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It is also influenced by the level of noise contamination, which will 

be amplified as N, the_number of derivative terms, is increased. 

CLASS II PREDICTION differs in that it assumes the controlled system's 

transfer function or response characteristics are known and can be 

included in the prediction model. Usually an analog model of the 

process (though there is no reason why this should not be accomplished 

digitally) is run in 'fast-time' alongside the real-time system to be 

controlled. The fast-time model is fed with exactly the same control 

inputs as the real-time process, and so extrapolates the predicted path 

of the system from its present state. Because of its greater accuracy 

Class II predictive displays permit prediction further into the future 

than Class I. However, the two-time scale modelling technique does 

not achieve perfect extrapolation since it does not include factors 

external to the system; hence unlimited length prediction spans are 

not possible. Its applications include longer term stabilisation and 

guidance problems, and _this approach has been developed and widely used 

by the American school, notably Kelley (1958, 1960a,b, 1962, 1968, 

1972) and his colleagues. Kelley's original design of predictor 

instrument has been fully discussed in section 1.2, and will not be 

repeated here. Most of the applications cited in section 3.2 centre 

around Class II instruments. It is worth pointing out that the Class 

II approach can be thought of as providing the best estimate of all the 

terms in a Class I Taylor series expansion. 

CLASS Ill PREDICTION approaches the hypothetical perfect predictor in 

that important external disturbances which are to some degree 

predictable are included in the ·fast-time model. Obviously the 

incorporation of all possible system disturbances (in a space mission 

for inst~nce) tends to stretch computing facilities to their limit, and 
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therein lies the principal drawback of this method. Class III 

predictive displays can, however, be used to extrapolate far into the 

future, and their long and accurate prediction spans provide a useful 

navigational feature. 

In practical terms, Class II prediction will usually suffice for 

most operational accuracy requirements since rapid updating of 

predictions will tend to offset external disturbances. However, if 

Class I can be successfully used a substantial saving in computational 

power will result. There has apparently been little empirical research 

on what level of prediction model fidelity is required in relation to 

other system characteristics. 

3.4 Process dynamics/response characteristics 

The human operator demonstrates considerable talent in predicting 

the response of quite complex systems - but only when he has had a good 

deal of training. As the complexity of the plant increases, however, 

it is not always possible for the operator to form an accurate mental 

model of the system and his predictive abilities are impaired. It is 

at this level that some form of control or display aid, such as a 

predictive display, is necessary. But how is performance with such an 

external aid affected by changes in system gain and control order? One 

would perhaps expect performance to be adversely affected for very fast 

or very slow systems, as fast systems are uncontrollable and slow systems 

move too slowly for changes to be noticed. 
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Several workers have addressed experimentally the question of 

plant gain and control order. Warner (1969) reports that in his 

terminal control task operator performance was independent of system 

parameters over the ranges investigated, i.e. from high gain (short 

response times) to low gain (long response times). However, the more 

important system orientated performance measures did show a dependence 

upon system parameters. It appears that the sensitivity of the 

performance measure(s) to control action timing is an important issue, 

and that performance evaluation is more representative if based on 

overall system measures rather than just the operator's behaviour. 

Bernotat and Widlok (1966) found that although their extrapolative 

predictor display improved the quality of control over a no predictor 

condition for all values of plant gain investigated, the improvement 

was most perceptible in the area of high gain. In absolute terms, 

error scores using the predictor reached a minimum level for medium 

gain values and rose at· low and high gains. 

As far as control orders are concerned, Bernotat and Widlok (1966) 

report that in their stabilisation problem the greater the number of 

process integrations, the larger was the benefit obtained from the 

predictor. Bernotat (1972) notes that, as control order increased 

from two to three integrations, errors rose considerably as did the 

amount of control effort required of the operator to achieve that level 

of performance. Bernotat comments that depending on the task ari error/ 

control effort trade-off may be expected. In some tasks, minimum error 

scores must be achieved whatever the cost, whereas in others a higher 

degree of error can be tolerated but operator effort (which is usually 

synonymous with fuel consumption) must be kept to a minimum. 



106 

Rouse (1970) summarises the situation when he suggests that 

predictive aids may be beneficial only in tasks of medium difficulty: 

they are strictly unnecessary for easy tasks, and 'in very difficult 

tasks the operator is so overloaded ~hat he has to ignore the 

information. Rouse's experimental evidence tended to support this 

suggestion. It is evident from the foregoing that the effectiveness 

of the predictive display concept is a function of plant controllability. 

It remains to be established whether the relationships between other 

predictive display parameters hold for different values of plant gain. 

3.5 Repetition Rate and Frequency of Updating 

Repetition (refresh) rate of the display is the number of 

successive predictions displayed to the operator per unit of time. 

In theory for fast-time models it is determined by the prediction model 

time scale, the prediction span, and a negligible amount of time spent 

in updating or resetting the model. In practice the maximum repetition 

rate is determined by the limits of the computer one is using, and may be 

quite low, in the order of seconds. With low repetition rates the 

information conveyed by the predictor trace becomes more out of date as 

the cycle proceeds, and the predictive display itself acts as a sampled 

data system. Low repetition rates may also cause display flicker and 

visual fatigue problems for the operator as well as control difficulties. 

In genera~ the required repetition rate increases as system response 

becomes more rapid. 

The frequency at which the predictor model is updated with fresh 

information is often identical to the repetition rate (being faster would 

be useless), in which case its effects are synonymous. When updating 
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frequency is lower than the repetition rate the first prediction 

after updating will be the most accurate and each successive prediction 

will decrease in accuracy until the model is again updated. One 

solution to this dilemma is to update the predictor model artificially 

by extrapolating past sampled outputs of the plant over the updating 

period; another would be to let the predictor sample its o'Yn 

predictions and so update itself. For most applications repetition 

rate and frequency of updating are the same and, as they are predetermine< 

by the computer system, are of rather academic interest. In any case 

their effect is likely to be slight. McCoy and Frost (1966) report that 

reducing the updating frequency of their predictor from continuous 

updating down to once every 50 _seconds apparently made no difference to 

performance. The only practical significance is that prediction model 

inaccuracies can sometimes. be offset by a high frequency of updating. 

3.6 Modes of Control 

Two principal modes of control may be distinguished, depending on 

the philosophy behind the predictive display in use and the application 

for which it has been designed. These are on-line control and off-line 

control, of which category exploratory control and supervisory control 

(monitoring) are special cases. 

differences. 

Figure 2 illustrates the main 

In on-line control the input to the prediction model is identical 

to the control input to the plant itself, so the operator sees a 

predicted path based on the assumption that he does not alter his 

control input. Any control change is immediately reflected on the 

predictive display. This mode of control is particularly suited to 

situations where an 'ideal' path or trajectory can be formulated, 
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Figure 2: Possible modes of predictive control (after Warner, 1969). 
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e.g. aircraft landing. The pilot, via a continuous series of 

trial-and-error control actions in fast-time with real-time effects, 

is able to reduce the difference between actual and desired trajectories 

until his plane is on the r~nway glidepath. 

In off-line control a hypothetical input is fed to the prediction 

model based on the assumption that the operator's control action will 

change during the predicted interval. The hypothetical input may take 

the form of sampled present control inputs or a complex pre-programmed 

sequence of control actions yielding a display of several different 

responses, the so-called 'multiple path prediction'. Exploratory 

control is a special case of off-line control. It differs from on-line 

control in that the operator's control actions are not input to the plant 

until he decides that the results of his choice of action, as reflected 

on the predictor display, constitute the optimum solution. In effect 

his control is directly· coupled to the predictor display but only 

indirectly coupled to the plant, via an appropriate switch or sample 

and hold circuit. The selected control action may be the operator's 

most recent manipulation, or one that has previously been placed in 

'storage' (Kelley, 1968). A variation of this technique is the case 

where the operator adjusts a hypothetical control program, building 

up a sequence of control actions, and only then does he command the 

actual controller to assume the form (in real-time, naturally) of the 

hypothetical program. Kelley, Beggs and Prosin (1973) have termed this 

flexible approach 'automanual control' • 
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It is evidene that all forms of off-line control presuppose the 

luxury of sufficient time to explore the potential effects of alter-

native control actions. If appreciable searching is required before 

the best performance is reached, on-line control may be inadvisable 

as it will lead to substantially higher fuel consumption (McCoy and Frost 

1966). Warner (1969) has shown that exploratory control is marginally 

better than on-line control (though not statistically different), so 

long as the required decision times are not short. Where control 

decisions are required immediately, however, on-line control is 

generally to be preferred. The additional control errors and use of 

fuel and resources attributable to an on-line mode of control are 

usually negligible when compared to the consequences of a long decision 

time. 

The fourth mode of control, supervisory control, can be thought of 

as a further special case of off-line control and refers to those 

situations where the primary mode of control is automatic. The human 

functions in a system monitor capacity and may override the automatic 

system in cases of emergency, system failure, or for maintenance. 

Technically speaking, the entire control system is on-line, while the 

automatic and manual components are on-line and off-line respectively. 

The prediction model in this case also contains a fast-time model of the· 

automatic controller. Two variations of supervisory control are 

possible, differing in the degree of 'pureness' of the off-line component 

In cases where the automatic control system is malfunctioning and manual 

back-up is essential, the operator may have little or not time to explore 

the utility of various control inputs. In this extreme he will be 

functioning in an on-line mode. In cases where automatic control mal-

function occur but time is non-critical, or where the automatic system 



is functioning correctly but unanticipated events demand manual 

override, then the operator may be functioning predominantly in an 

off-line mode. 
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In the experimental Chapters of the present thesis, two control 

modes have been adopted corresponding to the distinction between discrete 

and continuous systems. Chapter 3, using Laios' (1975) Predictive 

Computer Display, is an example of exploratory prediction. The operator 

can try out various schedules off-line until he is required to implement 

one of them. In Chapters 5, 6 and 7 on-line prediction is employed to 

assist in the control of continuous chemical process plants. The time 

scale of the processes described in these later chapters is much shorter 

than for the scheduling applications of Chapters 3 and 4, so precluding 

the testing of alternative control strategies off-line. It should be 

noted, however, that the experimental tasks reported in this thesis 

have a substantial monitoring component. 

4. REVIEW 

Surveying the introductory Chapters, the following points have 

become apparent. In industrial process control, as with other control 

and decision-making applications, the human operator's ability to 

predict the consequences of his actions and to anticipate events is the 

underlying basis of skilled, 'open-loop' control. However, human 

predictive abilities are far from perfect, and whilst they may be adequate 

for the majority of everyday tasks, they cannot cope with abstract 

displays of complex processes without a lengthy training period or some 

form of artificial assistance. Predictive display systems are one of 

the most promising ventures into control and decision aiding, since they 

are directly geared to make up for what the human lacks. 



·Experimental evidence, largely from simulation studies of 

military and vehicular systems, suggests that substantial reductions 
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in training times and a significant improvement in control and decision

making performance can be expected when predictive displays are 

employed. However, in spite of the dramatic improvements to be had, 

the natural conservatism of display designers has led to few 

real-world applications. In addition, the small amount of research 

that has been carried out into the design of predictive displays has 

been inadequate and the findings conflicting. There exists a pressing 

need to carry out an inter-related series of experiments with the object 

of evaluating the predictive display concept across a wide range of 

discrete and continuous systems, and to establish design guidelines for 

predictive display parameters in specific settings. 

It is likely that knowledge of how people make use of predictive 

displays will shed some·light on'the way in which humans themselves 

structure information and anticipate consequences. A need exists 

from the theoretical point of view to unify the experimental findings 

from predictive display research within a common theoretical framework. 

Rejecting traditional control theory and decision theory models of the 

human operator as inadequate, the internal model approach seems to be 

the most widely applicable and promising modelling technique. 

This thesis represents an initial attempt to fill some of the 

above gaps in our knowledge of predictive display systems. 
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EXPERIMENTAL PROGRAMME 
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INTRODUCTION TO EXPERIMENTAL PROGRAMME 

1. AIMS 

A review of the literature pertaining to predictive displays has 

shown that despite its potential, and despite the fact that the 

predictor instrument has been around since 1958: 

1) there has been to date no comprehensive series of inter-related, 

multivariable experiments to determine the factors affecting 

predictive display performance, with the object of deriving optimum 

display configurations for specific situations. 

2) not nearly enough studies have been conducted to evaluate the 

predictor technique across a variety of discrete and continuous tasks. 

In addition, .it has become evident that few operational 

applications of the predictor technique have been documented. The 

present thesis thus set out as an attempt to remedy these points, in 

the specific context of industrial process control, and in two 

parallel areas of application: scheduling tasks and continuous control 

tasks. The above broad aims were narrowed down to the following 

specific questions: 

1) In a discrete laboratory scheduling task, how do variations in 

prediction span and the level of input uncertainty affect 

performance using a predictive computer display? 

2) Are these results borne out using test data from an actual jo~-shop 

scheduling environment? (The author was not able to gain access to 

the job-shop itself.) 
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3) What are the potential benefits of introducing predictive displays 

in the control of a laboratory simulated continuous chemical plant? 

How sophisticated need the prediction model be? Do any benefits 

of training with a predictive display transfer to subsequent unaided 

control? 

4) If the predictive approach should prove viable, how do variations 

in the display parameters and task characteristics affect performance? 

Specifically, using a laboratory dual-meter monitoring and control 

task what are the effects of adjustments in prediction span, 

variations in the level of input uncertainty, system gain, and the 

fidelity of the prediction model? 

5) Are the potential benefits of the predictive approach borne out in an 

operational setting, namely in the control of a part-simulated, semi

batch chemical reactor with real plant and experienced operators, 

using a multipen predictive recorder? 

6) What are the implications of the experimental studies for the design 

of predictive displays in discrete and continuous tasks, and for the 

ways in which process operators themselves control such tasks and 

structure information? 

2. DESIGN AND ANALYSIS 

The designs used in this experimental part have, with the 

exception of Chapter 4, been variations on the theme of multi-factor 

designs having repeated measures on one or more of the factors (Winer, 

1971; Chapter 7). Kirk (1968) refers to this class of design as 

'split-plot factorials'. These designs have the advantages of giving 

a tighter degree of experimental control than is possible with 

factorial designs (due to each subject acting as his own control), whilst 

at the same time allowing a realistic economy in the use of subjects. 

Potential disadvantages are that the confounding of the subjects factor 
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with one or more of the experimental variables makes for a more complex 

analysis. Care is also needed to ensure that within-subjects 

phenomena such as sequence, practice and fatigue effects are minimised 

by counter-balancing;frandomising the presentation order, thorough 

training, adequate rest periods, and in general by ensuring that the 

prerequisites of good experimental practice are met. Poulton (1974) 

has criticised all repeated measures designs for their proneness to 

asymmetrical transfer and range effects. However, it is not always 

possible to carry out independent group designs as Poulton advocates. 

The split-plot factorial is seen as a compromise solution. Given that 

its application can be justified and its limitations realised, this 

class of design has much to recommend it . 

It should be noted that the many assumptions underlying the 

analysis of variance (ANOVA) approach were not tested; indeed the small 

sample sizes used in the present experiments precluded any such meaningful 

testing. (For a discussion of the principal assumptions underlying the 

ANOVA technique, reference may be made to Kirk, 1968, page 60.) For 

I '1-e 
this reason the results of~statistical analyses should be regarded as 

indicative rather than conclusive. There is 0 however, much evidence 

that the F-distribution is quite robust with regard to minor violations 

of its assumptions (Cochran, 1947). As an additional safeguard, 

negatively biased or 'conservative' F ratios were used where possible. 

This approach adjusts the degrees of freedom in the F-ratio to present 

a test biassed against acceptance of the null hypothesis. The procedure 

(after Greenhouse and Geisser, 1959) is detailed in Winer (1971). 



117 

With the exception of the results from Chapter 4, the 

experimental data were analysed using the Biomedical Computer Programs 

package (Dixon, 1971). The variance analysis program BMD NOBV was 

employed specifying the nesting relationship for the design in question. 

All experimental effects were assumed to be fixed, whilst the subject 

factor was assumed to be random. 



CHAPTER 3 

AN EXPERIMENT TO EVALUATE THE EFFECT OF 

VARYING TASK CHARACTERISTICS AND PREDICTIVE 

DISPLAY P~ffiTERS IN A SIMULATED SCHEDULING 

TASK. 
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1. OBJECT OF THE EXPERIMENT 

This chapter continues the work of Laios (1975) by investigating 

the introduction of a wide range of input uncertainty and prediction span 

values, and their interaction, on a predictive scheduling aid designed 

specifically to cope with uncertain environments. 

Several interesting questions follow on from Laios' work: 

1) How are decision aids which have been designed specifically for 

uncertain environments affected by wide variations in the level of 

input uncertainty? 

2) Since an adequate decision horizon appears to be vital for good 

performance, what effect does manipulating the prediction span (also 

termed the 'extrapolation interval' by some workers - the maximum 

distance to which planning may occur) have on performance? 

Is there, as some workers have found, an optimum distance for planning 

ahead in a given system? 

3) How do non-specialist, non-mathematical users cope with predictive 

decision aids? (Laios used exclusively male post-graduate science 

and engineering students in his experiments). 

4) Can performance studies with a predictive aid shed some light on an 

operator's strategies when carrying out a scheduling task? 

2. METHOD 

The laboratory simulated scheduling task used in this experiment 

was essentially that of Laios (1975), which in turn had been developed 

as a scaled-down version of Ketteringham and O'Brien's (1974) soaking 

pit scheduling problem. Complexity and learning times were set at a 

level that could be managed by naive student subjects. Certain 

important changes, notably display improvements, special purpose 

ergonomically designed keyboard and modified software, were made to 
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Laios' original simulation for the purposes of the present study. 

In all the task was considered to be a suitable vehicle on which to 

investigate the effect of internal and external parameter changes on 

discrete decision aids. 

The following sections describe the problem environment, the 

simulation, experimental design, procedure and mode of data collection 

used in this study. 

2.1 Description of Steel Manufacturing Process 

Ketteringham et al.'s (1970) description of a typical steel plant 

producing 1.2 million tons of steel per year will be used to illustrate 

the main features of steel manufacture before and after the soaking pit 

area: 

"Steel is made to a particular quantity in cast sizes of around 

140 tons. The hot metal is then poured into moulds to make ingots of 

about 5 tons each. The steel is then allowed to cool, the length of 

the cooling time required before stripping being dependent on the steel 

quality. When the ingots have cooled sufficiently, they are stripped 

from the moulds and sent to the soaking pits for reheating. (This is 

the part of the process simulated.) The 20 pits vary in size and other 

characteristics but their common purpose is to heat the ingots to a 

temperature suitable for rolling. The length of time the ingots take 

to reach rolling termperature is dependent on a number of parameters, 

the most important of which is the length of time the ingot took to 

cool down. Other factors involved are the size and efficiency of the 
-

pit and the quality and amount of heating gas available. Clearly it 

is desirable that the ingots should spend the minimum amount of time 
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in the pit provided that they are at the required rolling temperature 

when they are drawn out. 

The scheduler's main criterion is to maintain a constant flow of 

hot ingots to the rolling mill, the operation of which is very expensive, 

around £600 per hour. The decisions taken by the scheduler are mainly 

concerned with the allocation of a cast or part of a cast to a soaking 

pit. Each pit has a different performance and each cast requires a 

different duration of soaking. Therefore with the time lags involved 

the scheduler is faced with the difficulty of predicting the long-term 

effects of his decisions. In the present situation he uses his 

experience and a few crude rules to satisfy short-term, cost-based 

objectives. He is incapable of calculating the long-term effects of 

his decisions which could adversely affect future mill operations". 

2.2 Scheduling Problem 

The experimental subjects' task was to schedule the utilisation 

of soaking pits simulated by computer. There were four soaking pits -

denoted A, B, C and D - two with soaking times of 10 minutes (simulated 

time), and two with soaking times of 15 and 20 minutes respectively. 

The unloading of an ingot from each of these pits took a further three 

minutes before the pit could be used again. The simulation was 

comparable to 'real-life' in that pits would vary in their efficiency 

and hence in their soaking times, which would depend amongst other 

factors on the time since maintenance. Similarly, time would have to 

be allowed for ingots to be unloaded by crane before the next ingot 

could be loaded. However, in an actual scheduling task the operator 

would be required to control th~ output of 2D-30 pits as opposed to the 

four pits of the simulated problem. Furthermore, the actual controller 

would have alternatives to loading the ingots into pits, for example, he 

could send ingots to a cold store. 
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As the controller of the soaking pits, the subjects' task was 

to assign ingots to pits so that a constant interval of five minutes, 

plus or minus one minute, was achieved between the times when ingots 

were ready for rolling (Figure 3). A variation of plus or minus one 

minute was considered reasonable. At the same time system constraints 

had to be satisfied by allocating ingots to pits as soon as possible, 

and by allowing three minutes after an ingot was ready before reloading 

that pit. 

In principle the simulation was comparable with an actual process 

control task. However, it must be realised that in practice such a 

task would only constitute a part of the whole process control job. 

For example, an actual process controller might be required to carry 

out several other activities as part of his job, including communication 

with colleagues concerning aspects of the process, chart readings, 

report writing and so on. Long-term experience is known to be related 

to the social part of the job, as well as to the definition of the 

problem in unfamiliar situations. 

2.3 The Display 

The task was represented graphically on a PDP-12A computer screen 

(Figure 4). The left hand side of the display showed the four pits A, 

B, C and D. The simulation runs started at time 0, and as the simulation 

proceeded the time scale and pit contents moved to the. left one minute 

at a time. Current time was represented by the left-most point on the 

time scale. For clarity, current time was also presented numerically 

at the bottom right of the screen. 
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Figure 3: Summary of the Scheduling Task Problem 
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Figure 4: The Predictive Computer Display with full screen visible (35 minutes prediction span) 

The display is shown· at time 18 part-way through a trial. The four soaking pits A,B,C,D are denoted 
to the left of the display, with the time scale extending ahead to the right. The pit currently 
selected for test load purposes is indicated by a letter in the bottom left of the screen. Ingot 
arrivals are depicted by ro~s of crosses beneath the t~me seal~. Single !ines on the display 

·represent test loads, of wh1ch there may be up to two 1n any p1t (as 1~ p;t A). Dou~le bars :epresen~ 
system loads, as in pits B and C. The squares at the end of each bar 1nd1cate the t1me at wh1ch the 1ngot 
0 • • • - -
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The time interval during which an ingot was due to arrive was 

shown directly beneath_the lower time scale by a row of crosses. As 

in real-life, the exact arrival time of an ingot was indeterminate 

since it depended on a number of factors (delays, breakdowns etc.). 

In the experiment the uncertainty associated with ingot arrival times 

was represented by the width of the line of crosses along the time axis. 

An ingot would arrive at a time corresponding to one of the crosses in a 

given row, and although there was a greater tendency for the ingot to 

arrive at.the centre of a given interval, it could arrive at any point. 

The time at which the ingot arrived during the displayed interval was 

determined by drawing randomly from a rectangular distribution, having 

location parameters equal to the actual ingot arrival times and scale 

parameters linearly decreasing as the actual arrival time approached 

(Laios, 1975). Subjects were therefore required to estimate on which 

cross an ingot would arrive, and base their schedules accordingly. 

As the displayed .~rrival times (the rows of crosses beneath the 

bottom time scale) passed through current time and became historical 

information, they remained on the screen but to the left of the time 

scale until the entire set of arrivals information was updated. 

Updating occurred at times 10, 20, 30 and 40. At these times all 

historical arrivals information was deleted from the screen, those 

arrival intervals already advancing along the time scale became 

narrower, i.e. more accurate, and fresh arrival intervals were introduced 

at the extreme right of the time scale. Using the advance arrivals 

information subjects were able to 'game play' with the computer model 

and through the test· load facility to plan their schedule of soaking 

pit utilisation ahead of current time. 

detail in the next section. 

This process is described in 
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2.4 The Controls 

Interactive communication with the display was achieved by 

depressing push-buttons on a special purpose keyboard (Figure 5). 

Auditory and visual feedback to the subjects was provided through 

"click" push-buttons, which also illuminated when depressed. The 

keyboard comprise-d four 'TEST LOAD' buttons, corresponding to each of 

the fo.ur pits; ten 'AT TIME' buttons numbered 0 to 9; and four 'LOAD' 

buttons, again corresponding to each of the four pits. The 'TEST LOAD' 

and 'LOAD' buttons were colour coded or?nge and red respectively, and 

were also distinguishable by their positions. In addition there were 

four green coloured buttons marked 'ENTER', 'CLEAR', 'CANCEL' and 

'CLEAR ALL'. The functional purpose of these buttons is best explained 

by means of examples. 

1) If the subject anticipated an ingot arrival at time 20, he could 

test load (say) pit A at time 20 by pressing: 

TEST LOAD AT TIME ••• 

As the subject keyed in his choice, the program echoed his input 

in the extreme bottom left of the display. On pressing 'ENTER' a 

single bar appeared on the screen in pit A, starting at time 20 and 

extending 10 minutes ahead. This can be seen to correspond with 

the time that pit would require to heat an ingot. The simulation 

contained a heating model of the pits, so that if pit B had instead 

been test loaded the bar would also have extended 10 minutes ahead, 

but for pits C and D it would have extended by 15 and 20 minutes 



TEST LOAD AT TIME ... LOAD 

[A] 
[I]IIJ@] 

I ENTER I [A] 

[SJ [1][]]~ I CLEAR I [BJ 

[CJ [?][]]@] I CANCELI [CJ 

[DJ @] ~ L [DJ 

Figure 5: Special Purpose Keyboard 

TEST LOAD keys are grouped together on the left of the keyboard. Used in conjunction with the 
.I).T TIME' •• and ENTER keys, they permit test loading of any pit at a chosen time. Used in 
conjunction wfth the CLEAR key, they permit clearing of the test loads in specified pits. The 
CANCEL key allows a mis-keyed AT TIME •• number to be deleted. System LOAD keys are gvouped 
on the right of the keyboard. 
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respectively. A square at the end of each bar indicated when 

the pit would be ready to empty, though the three minute unloading 

period was not included. 

Constraints to the test load facility were that no more than two 

test loads could be entered into a given pit (Figure 4 shows a 

situation where the maximum of two test loads has been entered into 

pit A ~t times 20 and 25). Beyond this number the computer displayed 

an error message. In addition, test loads could not be made at times 

less than the current time, beyond 35 minutes ahead of current time, 

or into a pit for times when the pit was already occupied with a syste: 

load. In each case the computer displayed an appropriate error 

message, and the subject was required to depress any 'TEST LOAD' butto1 

to return to the scheduling display. 

2) To clear pit A of test loads (single bars), the subject pressed: 

TEST LOAD 

He was then free to try out new entries in pit A. 

3) To cancel a wrongly keyed number, the subject pressed: 

I CANCEL I 
then continued keying in the correct number. For clarity the 'AT 

TIME' keys were grouped together and linked by lines to the 'CANCEL' 

button (Figure 5). 



4) To clear all test loads from the screen, the subject pressed: 

- actual system loads, of course, remained on the screen. 

5) When an ingot actually arrived, a bell rang and the .message 'CAST 

ARRIVED' flashed on the display. At this point the operator was 

required to load the ingot into a free pit at current time, and 

depending on his calculated strategy could press: 

LOAD 
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A double bar then appeared on the screen commencing at current time 

to indicate that the chosen pit had been loaded. The internal 

heating model again ensured that the length of the double bar 

corresponded to the soaking ~ime for that particular pit. The 

decision actually to load a pit was irrevocable, as such system 

loads could not then be deleted. Should the controller have attemptec 

to load a pit which was either loaded or in the process of unloading, 

he would have been given an appropriate error message by the computer. 

If his chosen pit was already loaded, the controller was obliged to 

select an alternative pit. If it was in the process of unloading, he 

could either violate the three minute rule by depressing the 'LOAD' 

button a second time to load that pit, or he could select another pit. 
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2.5 Predictive and System Modes of Operation 

It will be evident from the foregoing description that two 

distinct modes of operation were present: a predictive ('TEST LOAD') 

mode where the controller could try out various allocation schedules 
. 

by 'game playing' with the computer model ahead of current time; and 

a system ('LOAD') mode to implement his final choice of schedule. 

By relating the squares at the end of each.bar to the time scale, the 

controller could judge whether the main performance objective of a 

steady output flow of heated casts to the rolling mills was likely to 

be achieved with his present schedule. 

2.6 Experimental Design 

The two independent variables considered in this study were: 

1) the level of uncertainty associated with ingot arrivals, manipulated 

by varying the width of the displayed arrival intervals; 

2) the prediction span, manipulated by restricting the amount of 

display on the screen visible to the subject with a piece of 

cardboard. 

In addition, subjects' academic background was considered as a 

subsidiary factor. A within-subjects design for uncertainty and a 

between-subjects design for prediction span was employed, as this 

arrangement permitted direct comparison with Laios' findings. Three 

levels of uncertainty corresponding to 1, 3 and 5 bits of uncertainty 

at an arbitrary time 25 minutes ahead were chosen. Three values of 

prediction span: full screen = 35 time units ahead visible, half 

screen = 20 units ahead, and quarter screen = 10 units ahead, were also 

considered. Six subjects were initially used for each of the three 

prediction span conditions. It was found however that individual 

variations in performance tended to obscure any experimental effects. 
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In order to obtain representative results an additional six subjects 

were run in each prediction span condition, making a total of thirty-

six subjects in all. The design may be represented as follows: 

UNCERTAINTY 

.. LOW MEDIUM HIGH 

FULL SCREEN Gl Gl Gl 

HALF SCREEN G2 G2 G2 

QUARTER SCREEN G3 G3 G3 

where Gl, G2 and G3 represent independent groups of 12 subjects who 

underwent all three levels of uncertainty in a balanced order. 

A wide range of science- and arts-based subjects were recruited 

so that the general applicability of the predictive aid could be tested. 

Subjects were trained under a level of uncert.ainty between the Low and 

Medium uncertainty conditions. It had been found that those subjects 

able to master the task at all reached satisfactory standard after three 

training trials. 

display visible. 

In addition, all subjects were trained with the full 

The advantage of using a common training regime for 

all three prediction span groups was that a separate test of 

location (Kruskal Wallis one way ANOVA by ranks) could be performed 

between the group training scores, a non-significant result indicating 

that subjects in the different groups were of comparable ability; 

This in fact was found to be the case. A second, more practical, 

reason was that an independent study on the validity of selection tests 

for process controllers was to be incorporated with the training 

programme (see Bur ton, 1976). A possible disadvantage of using a 

common training regime is that the Medium uncertainty/Full screen 

training combination may have resulted in a bias during the experimental 
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trials. This was to some extent allowed for by using different 

representative ingot arrival patterns for the training trials, and 

for the Low uncertainty, Medium uncertainty and High uncertainty tasks. 

A successful training strategy could not therefore be transferred 

directly across to the experimental trials. This point will be 

discussed later, but at this stage it is sufficient to report that 

no consistent bias could be found. 

2.7 Procedure 

The experiment was conducted on a PDP-12 computer with associated 

VDU screen, teletype and magnetic tape units for program storage and 

data collection. On arrival, subjects were shown to the computer room 

and the nature of the task demonstrated. A detailed instructions sheet 

(see Appendix 3.1) was given to each subject and the contents repeated 

verbally to ensure their comprehension. Subjects were informed that 

8 ingots would arrive in each training trial, 9 ingots in each 

experimental trial, and that the arrivals patterns in the experimental 

trials would be different. The broad heuristic that loading ·the pits 

with longer soaking times first frequently resulted in a more flexible 

schedule was also alluded to. No detailed feedback was given to the 

subjects at the end of each trial, though most subjects had a good idea 

of their performance level. 

The three training trials were first run, followed by a 15 ·minute 

break for coffee and then the three experimental trials. Subjects 

comments were noted throughout and they were given ample opportunity 

to ask questions. An informal de-briefing session was held at the end 

of the experimental trials, at which subjects' general impressions were 

noted. 



2.8 Subjects 

Thirty-six male and female sc1ence-based and arts-based 

students were randomly selected from the student population by 

advertising and personal contact. Their specialities ranged from 

engineering and ergonomics at the one extreme, to librarianship and 

social psychology at the other. Subjects were randomly assigned 

between the experimental conditions, subject only to the need to 

distribute maths and non-maths backgrounds as evenly as possible. 

Subjects were paid £1 per hour for taking part. 

2.9 Data Collection 
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An automatic data capture program logged every system input made 

by the subject onto magnetic tape. A Fortran analysis nrogram was 

later run off-line and various performance measures calculated. These 

could then be correlated with subjects' opinions and subjective comments 

from the task. A typical result printout is given in Figure 6. 

Three performance measures were computed for each trial. 

1) Scheduling Errors - a relative measure of the average of the absolute 

differences between the actual ingot output intervals and the ideal 

target interval of 5 minutes, corrected by the total of the ideal 

differences from that target interval. This measure is taken from 

Laios (1975). 

Scheduling Errors (SE) = f~ I h+l - ti) - si } - I 

(n - 1) 
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Scheduling Errors (SE) is a relative measure of the deviation from the target 
output interval of 5 minutes. Predictive Activity (PA) is the total number of 
test loads averaged over the four soaking pits. Decision Horizon (DH) is a 
mea~ure of the number of test loads on the screen during each minute, obtained 
by calculating the mean value per minute during the time periods 1-10, 11-20, 
21-30, 31-40 and then taking the average value. 
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where ti is the unloading time of the ith ingot. 5 is the ideal 

target output interval, I is the sum of the ideal absolute differences 

from that interval, and n is the number of ingots per trial. Dividin 

by (n-1) gives a standardised relative measure of the number of 

scheduling errors. If the subject failed to allocate an ingot, n 

decreased accordingly. 

2) Predictive Activity - a measure of the average use of the test load 

facility per pit. 

Predictive Activity (PA) = TLA + TLB + TLC + TLD 

4 

where TLA is the total number of test loads made in pit A, TLB in 

pit B, etc., and the division by 4 gives an average measure of 

predictive activity per pit. 

3) Decision Horizon - a measure of the number of test loads present on 

the screen at any one time. 

10 20 

Decision Horizon (DH) =~ 10 t=l 
+L 

t=ll 

TLt 
--+ 
10 

4 

30 TL 2:-t 
t=21 10 

40 Tl 

+L-
t=31 l( 

where TLt is the number of test loads on the screen at the same time 

during the t th minute. Since each pit will only accept a maximum 

of 2 test loads at one time, TLt has a maximum value of 8 and a minimur 

value of 0. The four terms.of the numerator represent average values 

of TL during the first ten minute period, second ten minute period 

and so forth. Dividing by 4 gives an average measure of the decision 

horizon per minute over the trial. At first sight one might expect 
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a correlation to exist between predictive activity and decision 

horizon, since both are functions of the number of test loads, and 

since when PA = 0, DH must also = 0. However, consider the 

hypothetical situation where a subject makes a test load once every 

minute during the first 40 minutes of a trial, clearing his previous 

test load before making a new one. In this case, according to the 

formulae PA = 40 = 10, but DH = 1 + 1 + 1 + 1 = 1. 
4 

In other words, 
4 

although a substantial number of test loads has been made, the subject 

is effectively planning only one stage ahead throughout. It can 

therefore be seen that whereas predictive activity is a measure of 

the effort put into a search, decision horizon is a measure of how far 

ahead the subject is planning. Though the scheduling errors score 

was used as the main performance measure, an interesting indication 

of the 'search pattern' could be inferred from a plot of predictive 

activity vs. decision horizon. These are discussed separately under 

4.4. 

3. RESULTS AND STATISTICS 

Graphs of scheduling errors, predictive activity and decision 

horizon averaged over each group of twelve subjects for the various 

levels of uncertainty and prediction span are given in Figures 7, 8 and 

9. Raw performance scores can be found in Appendix 3.4-3.6. 

The expected large variations between individuals scores, 

particularly in the case of the scheduling error data, has doubtless 

tended to obscure any differences due to experimental conditions. In 

spite of this the graphs show a clear effect of both uncertainty and 

prediction span on the performance measures. To test whether these 

differences were statistically significant, separate ANOVA's were 

performed on the scheduling errors, predictive activity and decision 
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horizon data. The ANOVA model chosen was appropriate to the split

plot factorial design employed. As has previously been mentioned, 

tests on the group training scores had shown the three prediction span 

groups to be of comparable ability, and so the confounding of subjects 

with prediction span was in this case justified. Each ANOVA was 

followed by a Newman-Keuls multiple comparison test to determine which 

particular conditions had most contributed to any overall significant 

difference. Summary ANOVA tables are given in Tables 1, 2 and 3. 

A separate analysis (not shown) had demonstrated presentation 

order effects to be statistically insignificant. As a check against 

range effects due to the within subjects component of the design, a 

separate analysis of the scores from the first experimental trials 

run by each subject was also performed. Mean performance scores were 

found to conform to the broad patterns shown in Figures 7, 8 and 9. 
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TABLE 1: Summary ANOVA for. Scheduling Error Scores 

Sum of 
Source Squares 

Between Subjects 

Prediction Span .75 

Subjects within groups 15.42 

Within Subjects 

Uncertainty 5.27 

Uncertainty x Prediction 
Span .65 

Uncertainty x Subjects 
within groups 30.53 

Newman-Keuls Multiple Comparison Test 

a)' Uncertainty 

Low 

High 

Medium 

Low 

df 

2 

33 

2 

4 

66 

High 

Variance 
Estimate 

• 38 

.47 

2.63 

.16 

.46 

Medium 

1% 

1% 
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Significance 
'F' Level 

.81 - (df 2,33) 

5.69 5Z (df 1, 33) 

.35 - (df 2,33) 

Conservative Test 
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TABLE 2: Summary ANOVA for Predictive Activity Data 

Sum of Variance Significance 
Source Squares df Estimate 'F' level 

Between Subjects 

Prediction Span 967.77 2 483.88 20.77 0.1% (df 2, 33) 

Subjects within groups 768.8 33 23.3 

Within Subjects 

Uncertainty 174.45 2 87.23 20.96 0.1% (df 1,33) 

Uncertainty x Prediction 
Span 89.84 4 22.46 5.4 1% (df 2, 33) 

Uncertainty x Subjects 
1~i thin groups 274.63 66 4.16 

Conservative Test 

Newman-Keuls Multiple Comparison· Test 

High Low Medium 

a) Uncertainty High 1% 

' Low 1% 

Medium 

Quarter Half Full screen 

b) Prediction Span Quarter 1% 1% 

Half 

Full 
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Figure 9: Decision Horizon Results 
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TABLE 3: Summary ANOVA for Decision Horizon Data 

Sum of 
Source Squares 

Between Subjects 

Prediction Span 56.18 

Subjects within groups 88.9 

Within Subjects 

Uncertainty 20.02 

Uncertainty x Prediction 
Span 1. 42. 

Uncertainty x Subjects 
within groups 56.81 

Newman-Keuls Multiple Comparison Test 

a) Uncertainty 
• 

b) Prediction 
Span 

High 

Medium 

Low 

Quarter 

Half 

Full 

High 

Quarter 

df 

2 

33 

2 

4 

66 

Medium 

1% 

Half 

1% 

Variance · Significance 
estimate 'F~ level 

28.09 10.43 0.1% (df 2,33) 

2.69 

10.01 11.63 1% (df ·1, 33) 

• 36 .41 (df 2,33) 

.86 

Conservative Test 

Low 

1% 

Full screen 

1% 



4. DISCUSSION 

4.1 Scheduling Errors 

Figure 7 indicates that decision performance was affected by 

uncertainty, and the ANOVA shows this effect to be significant at 
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beyond the 5% level (Table 1). Closer inspection of the data reveals 

this result to be. mainly due to the difference between uncertainties in 

the full screen condition. Following on from the ANOVA, the Newman

Keuls multiple comparison test (Table la) shows that the performance 

deterioration from Low to Medium uncertainty, and the subsequent 

improvement from Medium to High uncertainty, were both statisticallY 

significant at beyond the 1% level. However, no difference was found 

between the Low and High uncertainty conditions. It would be possible 

to invoke a Poulton (1974) -type range effect to explain the performance 

under Medium uncertainty - subjects could be transferring a successful 

(though subsequently inappropriate) schedule from the training trials 

to the experimental trial most resembling them. Subjects were, however, 

informed that the different trials contained different arrivals patterns, 

so this explanation se~ms implausible. Analysis of the first experi

mental trial scores also indicated a worsened performance under Medium 

uncertainty. 

The scheduling error pattern of the subjects when using the 

predictive aid was adversely affected by uncertainty in much the same 

way as when no such predictive information is available. Laios . (1976) 

found that unaided scheduling performance deteriorated when unce~tainty 

in the form of inaccurate arrival estimates was first introduced, but 

reported a small improvement in performance at high uncertainty levels. 

Laios (1975) obtained similar results when a predictive facility was 

present. It seems that imprecise information degrades decision 

performance, but if such information is so inaccurate as to render it 



virtually useless, people resort to internal control models which 

entirely ignore the imprecise information. Under certain 

circumstances, e.g. when tasks are not exceedingly demanding or 

when an aid is available which facilitates the use of such models, 
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performance may actually improve. 

to affirm this view. 

The results from this study seem 

Close examination of peoples' activity patterns in this·task has 

indicated that good performance was achieved by four subjects (S's 30, 

32, 33 and 36) who hardly used the predictive display in its intended 

.form except perhaps as a stateboard or memory aid. Rather, these 

subjects devised conditional rules and made their schedules accordingly, 

e.g. "if an ingot arrives soon, I could load it into C, but if it doesn't 

arrive for 5 minutes it would fit more neatly into B". In fact the 

task was of sufficient simplicity for adequate performance to be achieved 

by planning 2-3 stages ahead, and these few subjects could apparently 

manage the procedure in their heads. It would be highly interesting 

to speculate how the same subjects would have coped had the number of 

pits been greater (e.g. eight or ten) - in other words when the 

information needs to satisfy long term objectives exceeded subjects' 

short term memory limitations. Even taking aside the above four 

subjects, the performance of the remaining subjects under High uncertainty 

remains considerably better than their performance under Medium uncertaint 

It seems that it still was possible to use the same kind of conditional 

rules together with high utilisation of the predictive facility. 

Returning to Table 1, the ·ANOVA further shows, somewhat 

unexpectedly, that the amount of screen visible to the subjects did 

not have a statistically significant effect on scheduling errors. 

Closer inspection of the data reveals that the only statistically 
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significant effect (at beyond the 5% level) occurred in the Low 

uncertainty condition. Here, it seems that the further ahead subjects 

were able to plan, the lower their scheduling error score. Under such 

deterministic (certain) conditions the experimental controllers 

frequently scheduled all the visible ingot arrivals using the full 

extent of the dis-play visible to them, while 'the corresponding 

decision horizon scores indicated them to be extrapolating in some cases 

beyond the visible screen. 

Under Medium and High uncertainty conditions, however, the lowest 

mean scheduling error scores were achieved when only half the display 

was visible. This finding is in accordance with other investigators 

(Rouse, 1970; Bernotat, 1972) who have put forward the concept of an 

'optimum prediction span' • It has already been noted that adequate 

performance was possible through planning 2-3 stages ahead, and this 

amount of planning was dictated approximately by the half screen (20 

minutes) prediction span. It is tempting to suggest that a 

deterioration in performance may result equally from an inadequate or 

an excessive prediction span under uncertainty. This was reflected 

in the averaged values, though not statistically in the ANOVA- perhaps 

due to the high level of subject variability. 

4.2 Predictive Activity 

Figure 8 indicates that the amount of predictive activity is 

affected by uncertainty, and the ANOVA (Table 2) shows this effect to 

be highly significant at beyond the 0.1% level. The Newman-Keuls 

multiple comparison test (Table 2a) further shows that the increase 
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in the use made of the test load facility from Low to Medium uncertainty, 

and the corresponding decrease from Medium to High uncertainty, were both 

statistically significant at beyond the 1% level. No significant 

difference was found between the Low and High conditions. It is 

interesting to note from Table 2 that an Uncertainty x Prediction Span 

interaction term is also present. Closer inspection of the data suggests 

that uncertainty exerted its largest effect on predictive activity in 

the Full screen condition, and that its effect diminished through the 

Half and Quarter screen conditions. 

The following explanation of the effect uncertainty had on 

predictive activity is offered •. When the information on which decisions 

are made is virtually certain, a schedule once made is unlikely to require 

updating. With the introduction of a Medium level of uncertainty, 

however, the allocation of ingots to pits is likely to require changing 

as updated information arrives - hence the increase in the use made of 

the test load facility. And when uncertainty is increased to such a 

level that rational choices cannot be made on the basis of the displayed 

information, a different policy is adopted requiring less search. In 

the latter condition, the display is being used more as a memory aid or 

stateboard rather than a planning aid. Laios (1976) reported a 

significant increase in the amount of on-line activity with the introducti< 

of uncertainty in unaided scheduling, but on-line activity was not 

affected by a further increase in uncertainty level. On the other hand, 

when Laios (1975) introduced a predictive facility to the proceedings, 

he found that uncertainty had no apparent effect on on-line activity. 

It is interesting to note that no monotonic function was found in the 

present study as uncertainty was increased, rather a general increase 
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from Low to Medium uncertainty, followed by a subsequent decrease as 

High uncertainty was introduced. It is possible that a range effect 

(Poulton, 1974) could again be the cuprit here, subjects being lured 

into making more test loads by the recognition of a familiar number of 

crosses. The present author believes this explanation to be unlikely, 

however, as analysis of the first experimental trials revealed a 

similar relationship to that shown in Figure 8. The discrepancy with 

some of Laios' results may be partly explained in the measures used, 

since Laios' definition of on-line activity was not specifically related 

to the use made of the predictive facility but included the calling of 

other displays. It is interesting to note that the average effect of 

uncertainty on predictive activity would appear to be the mirror image 

of its effect on scheduling errors - a high usage of the test load 

facility under Medium uncertainty actually being accompanied by an 

increase in scheduling errors. This could well be an artefact of the 

averages, however, as Figure 11 makes clear. 

Turning to the effect of manipulating the amount of display 

visible on predictive activity, the ANOVA (Table 2) shows this effect 

to be highly significant at beyond the 0.1% level. The Newman-Keuls 

test (Table 2b) further indicates a fall-off in the use made of the test 

load facility between the Half screen and Quarter screen conditions, 

statistically significant at beyond the 1% level, though no significant 

fall-off occurred between the Full and Half screen conditions. 

Apparently reducing the amount of display visible by one half has little 

effect on overt prediction activity, but beyond this point halving 

screen size yet again does produce a deleterious effect. There may 

be a critical point for such a reduction, between 20 and 10 minutes 

prediction span. 
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4.3 Decision Horizons 

It is clear from Figure 9 that the decision horizon is adversely 

affected by uncertainty, and the ANOVA (Table 3) shows this effect to be 

significant at beyond the 1% level. It is evident that under High 

uncertainty the mean decision horizons are considerably shorter than the 

decision horizons under Low or Medium uncertainty, and the Newman-Keuls 

test (Table 3a) confirms that the fall-off is statistically significant 

at beyond the 1% level. It seems that in highly uncertain environments, 

people become more conservative in their willingness or ability to plan 

far ahead. Laios (1975) also found a consistent reduction in subjects' 

decision horizons under uncertainty. 

As would perhaps be expected, prediction span has an effect on 

subjects' decision horizons. The ANOVA (Table 3) shows this effect to 

be statistically significant at beyond the Q.l% level. The multiple 

comparison test (Table 3b) gives a statistical difference significant 

at beyond the 1% level between the Quarter and Half screen conditions, 

but no difference between the Full and Half screen conditions. The 

critical point for reduction of decision horizons would appear to be 

between 20 and 10 minutes prediction span, a similar pattern to the 

predictive activity scores. In the Quarter screen condition, both 

predictive activity and decision horizon are significantly reduced. 

An analogy may be-drawn with motorway driving- when visibility is 

reduced due to fog on the carriageways, planning ahead is restricted 

and speed is reduced. 

4.4 Search Patterns 

The combined effect of the experimental variables on predictive 

activity and decision horizon (the 1 search pattern 'l is shown in Figure 

10 overleaf. A characteristic pattern can be seen to emerge. As 



Decision 
Horizon 

5-

4-

1 

150 

LOW Uncertainty 

o~~T-~--~--.---T--T--·~---T---r--T-~---r---

2 4 6 ' 8 10 12 14 16 18 20 22 24 

Decision 
Horizon 

Decision 
Horizon 

5 

4-

3 

2 

1 MEDIUM Uncertainty 

0~~--~~~--~-r~~,--.--.-.--.---

5 

4-

3 

2 

1 

2 4 

2 4 

6 12 14 16 18 20 22 24 

HIGH Uncertainty 

6 s 10 12 14 16 18 20 22 2J. 
Predictive Activity 

Search pattern for 10 minutes prediction span 
Search pattern for 20 minutes prediction span 
Search pattern for 35 minutes prediction span 

()-----() .. .. 
~E )\. 
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as a function of Uncertainty level and Prediction span. 
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uncertainty is initially increased from Low to Medium levels the 

search pattern broadens. In particular there is a notable increase 

in the amount of predictive activity for roughly th.e same decision 

horizon. With the introduction of a High level of uncertainty the 

search pattern can be seen to narrow, in terms of both the number of 

stages ahead which. were explored and the amount of test loads used in 

exploring them. As far as prediction span is concerned, there appears 

to be little change in the search pattern as the span is reduced from 

Full to Half screen (except under Medium uncertainty where a slight 

reduction in predictive activity occurs). As prediction span is further 

reduced to Quarter screen size, however, a dramatic narrowing of the 

search pattern takes place. At an extreme of this trend several subjects 

ceased to use the predictive facility altogether. The combined effect 

on predictive activity and decision horizon thus revealed should help 

in clarifying the previous discussion.· 

4.5 Relationship between scheduling performance and predictive activity, 
schedul1ng performance and decis1on horizon 

Unfortunately, the results of the present investigation were not 

sufficient to examine the relationship between scheduling errors and 

predictive activity or decision horizon. As Figures 11 and 12 reveal, 

any relations are hidden because of the large individual differences 

between subjects and the different strategies used. There is 1i ttle 

indication from Figure 11 that subjects necessarily performed bett.er 

by making more use of the test load facility. Indeed according to the 

average scores an inverse relationship holds. 
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As far as decision horizons are concerned, it seems that the average 

decision horizon in all except one case exceeded 2 stages. (fu ilie 

Quarter screen condition of Figure 9 the true decision horizon is actually 

understated since zero decision horizon was recorded for the four subjects 

who did not use the predictive facility and this has decreased the 

average.) With a-decision horizon of more than 2 stages, an appreciable 

reduction in the number of scheduling errors should have been possible. 

However, no such reduction is evident from Figure 12. The failure to 

find any relationship may have been a by-product of the present 

experimental set-up. In retrospect, it might have been better to control 

directly the stages ahead the subjects could plan rather than indirectly 

by the amount of display visible. 

4.6 Specialist vs. Non-specialist Users 

A Mann-Whitney test was conducted between the scheduling error 

scores summed over the Low + Medium + High uncertainty conditions for 

specialist, science/maths-based subjects (n~24) vs. non-specialist, 

arts-based subjects (n~l2). No significant difference was found. 

It would seem that the organisational ability necessary for 

reasonable decision performance on this task is not a function of 

academic discipline, but of higher cognitive factors. Some people are 

inherently good schedulers, and some are not. It is worth noting that 

of the four subjects recruited but subsequently excluded from the 

analysis as not having mastered the task within the training time " 

allowed, all were arts-oriented students. Similarly, an interest in 

games such as chess, which requires a considerable degree of forward 

planning, was expressed by several subjects achieving consistently low 

scheduling error scores. As learning proceeded there was also some 
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evidence of the more able subjects violating secondary objectives 

(by delaying ingots before loading) in order to obtain smoother 

output flows. Laios (1975) first noticed this trading of objectives 

effect. 

4.7 Subjective Comments 

Comments elicited from students during and after the experiment 

show that there were really as many ways of tackling the problem as 

there were individuals. 

are worth noting here. 

Some common threads did emerge, however, and 

Very few subjects noticed that the three training trials were 

identical - a different starting combination gave a fresh problem from 

the subjects' point of view. In the experimental trials subjects often 

reported that as the level of uncertainty increased, their amount of 

planning activity went down. Or as one subject put it: "In the Low 

uncertainty condition I could work out the intervals, with Medium 

uncertainty I could juggle the times but under High uncertainty I just 

had to wait and see". 

Reported decision horizons were also longest in the Low uncertainty 

condition and fell-off with increasing uncertainty. In view of this it 

is hardly surprising that most students rated the Low uncertainty 

condition.the easiest and High uncertainty the most difficult. A 

minority found the Medium condition the easiest, lending support to 

Poulton's middle-of-the-range phenomenon, with the Low condition boring 

and the High condition challenging. Yet another sub-group said they 

did best with a little (Low uncertainty) or a lot (High uncertainty) of 
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displayed arrivals information, and found the Medium condition 

peculiarly confusing! This may have been due to the retention of an 

inappropriate scheduling acquired during the training trials. 

On restricting the prediction span to Half screen size subjects 

reported using all the screen up to the card, and many extrapolated 

mentally a bit beyond. When only a quarter of the screen was visible, 

the card was generally held to be frustrating as "you had to do the 

sums in your head". Indeed, some subjects could see no point in using 

the display by this stage and did all calculations mentally, based on 

visible arrivals information and which pits were free. The latter 

subjects had presumably formed some internal model of the pit soaking 

times from experience and were able to use this in conjunction with 

pit status and arrivals information derived from the display. 

As far as strategies were concerned, some students had a marked 

preference for one pit or.another, others aimed to keep certain pits 

free, some claimed to have found a general purpose "right answer" 

(although none existed), others had no particular plan in mind but 

worked on the situation prevailing at the time. A few subjects even 

tried the heuristic rules hinted at in the instructions. 

A surprising number found the scheduling problem enjoyable, if 

somewhat taxing. Many requested a pencil and paper as a memory aid. 

General complaints related to screen flicker which often resulted in eye 

strain, and the confusing effect produced when the ingot arrival times 

were updated at times 10, 20, 30 and 40. It is interesting to note 

that subjects varied widely in their ability to verbalise what their 

strategies had been in carrying out the problem. Some students were 



naturally reticent , others had to verbalise what they were doing 

"to help ine think straight". 
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On the basis of this limited protocol evidence, subjects appeared 

to be setting up sub-goals (particular ingot arrivals, or groups of 

these) within the inain task objectives of achieving a constant output 

flow, loading as soon as possible after an ingot arrival, and maintaining 

a three minute gap for pit emptyings. Much time was spent considering 

the effect of minor schedule adjustments on performance. The evidence 

here tends to support Bainbridge's (1974) loose, hierarchical, goal-

directed model in decision-making tasks. (This question will be 

discussed further in Chapter 9.) 

In summary, subjects' comments when coupled with the search 

patterns derived from the schedules gave a valuable insight into their 

thought processes during the scheduling task. 

5 • CONCLUSIONS 

The main finding from this 'study is that decision aids which have 

been designed specifically to cope with uncertain environments are still 

adversely affected by the introduction of uncertainty. Scheduling 

performance was observed to breakdown as information uncertainty was 

initially introduced but subsequently to improve as the level of 

uncertainty was further increased. The first statement is self-

explanatory. The second finding can be explained by the types of" 

strategy adopted by the schedulers. There was frequently less overt 

search, the display being used as a memory rather than a planning aid. 

The use made of the predictive test load facility similarly rose and then 

fell away as uncertainty was initially introduced and then increased. 

A consistent reduction in the scheduler's decision horizon was also 



demonstrated when information uncertainty was increased beyond a 

critical point. 
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Prediction span was found to have an effect on scheduling 

performance only in deterministic conditions, where longer spans led 

to lower scheduling errors. This highlights the importance of advanced 

planning in scheduling. There was some suggestion of an optimum 

prediction span under uncertainty, but this was not supported by the 

statistical analysis. Reducing the prediction span beyond a critical 

point did, however, lead to a reduction in both decision horizons and the 

amount of predictive activity. 

As far as academic background is concerned, non-specialist, 

non-mathematical users appeared to be as capable of using the predictive 

aid as specialist. users with a mathematical background, having first 

got over the initial hurdle of understanding what the task entailed. 

On the basis of subjective comments and search patterns produced 

from the schedules, some insight has been gained into operator strategies 

during scheduling tasks. In common with most .other work in this area, 

a high level of individual variability was found, and this has made it 

difficult to draw many general conclusions. Plotting of individual 

search patterns revealed an interesting relationship between predictive 

activity and decision horizon. Limited verbal protocol evidence lends 

support to Bainbridge's concept of a loose, hierarchical goal-directed 

model in decision-making tasks. 



CHAPTER 4 

' AN EXPERIMENT TO VALIDATE THE EFFECT OF 

VARYING PREDICTION SPAN IN A SCHEDULING 

TASK USING TEST DATA FROM AN OPERATIONAL 

JOB-SHOP, 
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1. OBJECT OF THE EXPERIMENT 

The previous chapter has demonstrated the effect of uncertainty 

and prediction span on perfornance using a predictive scheduling aid 

designed for operation in certain environments. It remains to be seen 

how these important factors are dealt with in the real-world, or at 

least using test data from an actual industrial scheduling system. 

As the effect of inaccurate input information has to some extent already 

been explored in a real-life situation (Bibby, 1974; McEwing, 1977) it 

was decided to restrict the present experiment to the effect of 

variations in prediction span. 

This chapter therefore employs the 'scheduler's abacus' coloured 

wooden-block scheduling system designed by Laios and Gibson (1976), 

with test data obtained from an· operational job-shop, in an attempt to 

verify the effect of prediction span on scheduling performance under 

deterministic conditions. The author was, unfortunately, not able to 

gain research access to the job-shop itself. In the absence of direct 

access to an operational job-shop, the use of the 'scheduler's abacus' 

in conjunction with test data obtained from an operational job-shop was 

held to be an acceptable compromise for the purposes of the present study. 

2. METHOD 

The simulated representation of a job-shop scheduling environment 

used in this experiment was essentially the 'scheduler's abacus' improved 

machines-by-time configuration, described in detail elsewhere (Gibson 

and Laios, 1978). The problem was such that it could be managed by 

student subjects after a reasonable training period, since the abacus 

facilitated the perceptual representation and solution of an otherwise 

complex numerical task. Although the abacus is a manual system its 

results are relevant to both manual and man-computer systems. 
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The following sections describe the problem environment, the 

simulation, experimental design, procedure and mode of data collection 

used in this study. 

2.1 Description of the Problem Environment 

• 

The task presented to the controller of a job-shop in an 

engineering works may be stated as follows. A large number of jobs, 

each requiring a given sequence of operations, compete for time on 

common machine facilities. Typical machine operations would be milling, 

boring, drilling, turning, etc. Each operation occupies a given machine 

for a specific time, since a machine can only process one job at a time. 

The controller's problem is to schedule the passage of the jobs through 

his machine shop, so that the jobs are finished in priority order by 

the required due dates, whilst ·at the same. time minimising inefficient 

use of his workforce and. machines. The latter objectives are 

frequently conflicting, so that without some form of control aid the 

controller has difficulty in working out the schedule best satisfying 

the numerous performance criteria. In addition, the combinatorial 

nature of the problem means that with J jobs and M machines there will 

be (J!)M possible schedules to consider. This means that computers 

alone also cannot handle problems of such magnitude. Interactive job-

shop scheduling systems therefore take advantage of man's flexibility 

and pattern recognition abilities allied to the computer's capacity for 

rapid calculations and its built-in consistency. 

The job-shop scheduling problem accounts for considerable wastage 

of re'sources and productive capacity, but is often unrealised as 

management attempts to bury the problem by providing excessive shop 

capacity, safety stocks or working on low profit margins. Pounds (1963) 

summarises industry's attitude: "There is no scheduling problem for 
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them (factory schedulers) because the organisation which surrounds 

the schedulers reacts to protect them from strongly interdependent 

sequencing problems". Clearly any aid which enables the job-shop 

cont>·oller rapidly to interpret the current state of his machines and 

to test alternative schedules is likely _to help improve productivity 

through a more even and efficient work flow. 

2.2 The Simulation 

The scheduler's abacus apparatus used for this experiment is 

illustrated in Figure 13 (top). The design of the abacus is documented 

fully elsewhere (Gibson and Laios, 1978) so a brief description will 

suffice here. Basically the scheduler's abacus comprised thirteen 

horizontal slotted channels mounted on a wooden board. Each channel 

represented a particular machine, with different types of machine being 

represented by different colour codes. ' Two yellow and two blue channels 

were available, in addition to one each of red, purple, mauve, plain, 

• 
light blue, green, light green, black and lastly turquoise. Fifty-

five representative jobs were available to be scheduled on the ~chines. 

Each job consisted of between one and four machine operations, 

represented by coloured wooden blocks of different lengths. The length 

of a block was proportional. to the time it would require on the machine. 

The different coloured blocks of different lengths representing one job 

through different machine operations all had the same job number written 

on their top right-hand corner. The component parts of a given job 

had to be processed in a specified order, e.g. a job might have to be 

formed before trimming off the rough edges; this sequence was shown by 

serial numbers 1, 2, 3 etc., on the top left-hand corner of the coloured 

blocks. A listing of the fifty-five jobs is given in Appendix 4.5. 



Figur e 13 : The schedu1er ' s abac us (above) a t the s t art 
of a t r i a l s howing the jobs in progres s, 
and (below) s howing a comple t ed sched ule . 
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2.3 The Task 

The subject's task was to schedule as many of the jobs as he 
' 

could, making the fullest use of the machines, in as short a time as 

possible. This he did by selecting a number of jobs and fitting them 

onto the appropriate coloured channels on the board, arranging the job 

so there were no conflicts, e.g. a job could not be on two machines at 

the same time, and then adding, removing, replacing and rearranging 

jobs to get the best schedule. A completed schedule is shown in 

Figure 13 (bottom). 

2.4 Experimental Design 

A between subjects, independent groups design was used with 5 

subjects randomly assigned per condition. The only experimental 

variable considered was prediction span, or the time interval through 

which the subject could plan his schedule. The latter was manipulated 

using a large piece of white card to restrict the abacus surface 

• visible to the subject. Three levels of prediction span were considered: 

Full board (40 hours scheduled at a time), Half board (20 hours 

scheduled at a time) and Quarter board (10 hours scheduled at a time). 

The first group of five subjects were asked to make their schedule 

using the full board. Five subjects were asked to schedule up to the 

first 20 hours, then the remainder of the board. Another five subjects 

scheduled the board 10 hours at a time. In the latter two conditions, 

when the subjects were satisfied with their part-schedule, their efforts 

were covered over with a sheet of transparent perspex, as a safeguard 

against later alteration, and the next section of the board was made 

available for scheduling. 
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2.5 Procedure 

On arrival in the experimental room, subjects were presented 

with a standard set of instructions (see Appendix 4.1) describing the 

abacus and the scheduling problem. The instructions were repeated 

verbally to ensure comprehension. Subjects were then asked to make a 

practice schedule using jobs 1, 5, 10, 15, 20, 26 and 30 only, to check 

whether the instructions had been understood. The trial jobs were 

then replaced and each subject requested to make a full schedule from a 

selection of the 55 waiting jobs. Subjects were asked to continue 

scheduling until they were satisfied that their schedule was the best 

compromise between the performance criteria. Subjects were free 

throughout to ask questions or.make comments. Subjects' opinions were 

noted, as was the time they took to complete their schedules. 

If constraint violations were discovered in a subject's final 

schedule it was altered to show the actual pattern of work that would 

have resulted from the schedule, before performance measures were 

computed. 

2.6 Subjects 

All subjects were undergraduate students with some mathematical 

background. They were paid £1 for taking part. 

2.7 Data Collection 

In addition to the scheduling time in minutes, percentage machine 

utilisation and percentage of jobs unfinished scores were computed from 

the finished schedules. The following formulae were used: 
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Percentage machine utilisation (MU) =(494 - Machine idle time)x lOO 
494 

where 494 represented the total machine capacity in hours. (It was 

not possible to achieve lOO% machine utilisation. Given the jobs 

available, the maximum possible machine ·utilisation was around 80%.) 

Percentage of jobs unfinished (JU) = Jobs not completed x 100%, 
55 

where 'jobs not completed' includes those jobs not attempted, or only 

part completed, at the end of the two day (40 hour) scheduling period. 

3. RESULTS AND STATISTICS 

The performance measures ·used in the evaluation of the completed 

schedules are shown in Figure 14 averaged for the three experimental 

conditions • The detailed scores for machine utilisation, jobs unfinishe< 

• and scheduling times can be found in Appendix 4.4. 

Separate single factor ANOVA's appropriate to the simple randomised 

design employed were performed on the percentage machine utilisation score 

percentage jobs unfinished data, and scheduling times in minutes. Summary 

ANOVA tables are given in Table 4. If statistically significant the 

ANOVA was followed by the appropriate Newman-Keuls multiple comparison 

test. 
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Figure 14: Machine utilisation, jobs unfinished and scheduling 
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TABLE 4: Summary ANOVA tables for Machine Utilisation, Jobs Unfinished 
and Scheduling times 

a) Machine Utilisation (MU) 

Variance 
Source ss df Estimate 'F I 

MU (Between S's) 58.905 2 29.453 11.083 

Error (Within S's) 31.888 12 2.657 

Newman-Keuls Multiple Comparison Test 

-----'Q'--u'-a-"r-"t""-e"-r--'H"""a""l=.:f:..__.--..:cF-"u;::l;::l __ board 
Quarter 

Half 

Full 

.b) Jobs Unfinished (JU) 

• Source 

JU (Betw·een S's) 

Error (Within S1 s) 

c) Scheduling times (ST) 

Source 

ST (Between S1 s) 

Error. (Within S1 s) 

ss 

26.689 

582.388 

ss 

260.8 

1500.8 

1% 

5% 

Variance 
df Estimate 'F' 

2 13.345 0.275 

12 48.532 

Variance 
df Estimate IF I 

2 130.4 1.043 

12 125.067 

Significance 
level 

1% (df 2,12) 

Significance 
level 

- (df 2,12) 

Significance 
level 

- (df 2' 12) 
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4. DISCUSSION 

4.1 Performance Measures 

• 

The mean data scores plotted in Figure 14 indicate that prediction 

span has an effect on the performance measures, and the ANOVA (Table 4a) 

shows that in the case of the machine utilisation scores its effect 

was statistically significant at beyond the 17. level. This would 

appear to confirm the findings of the previous chapter regarding 

scheduling performance under deterministic (certain) conditions -

scheduling performance deteriorates as prediction span is reduced. 

The Newman-Keuls multiple comparison test (Table 4a) further indicates 

that there is a critical point for such a reduction. Full board 

machine utilisation scores were found to b~ reliably different from 

the Half board (57. significance) and Quarter board (17. significance) 

conditions, though no difference could be detected between the Quarter 

and Half board conditions. Adequate machine utilisation in this study 

could thus be achieved planning at least 20 hours ahead. Though the 

improvement in machine utilisation is only in the order of a few 

percentage points, such an improvement can result in considerable cost 

savings when compounded over an entire factory. 

The ANOVA (Table 4 b,c) further indicates that no significant 

effect of prediction span on jobs unfinished or scheduling times could 

be found. Figure 14 suggests that the lowest jobs unfinished scores 

were achieved in the Half board condition, where scheduling times were 

also longest, but it is likely that individual strategies have served 

to mask this effect. Achieving maximum machine utilisation together 

with ·minimum jobs unfinished were to some extent conflicting criteria, 

and this is reflected in closer inspection of the performance measures 

(Appendix 4.4) by some evidence of a trade-off between them, notably in 

the Full board condition (Figure 15). 
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4.2 Subjective Comments 

Remarks made by subjects during and at the end of the experimental 

trials served to reinforce the impressions gained from the objective 

performance measures. Subjects having the Full board available to them 

seemed able to maintain adequate decision horizons, and their high 

degree of forward planning led to superior machine utilisation scores. 

Those subjects restricted to scheduling half the board at a time commente< 

on the desirability of being able to plan further ahead, or at least 

being able to alter one's past schedule to alleviate subsequent 

allocation problems, Only one subject judged the Half board condition 

to be useful in that "it got me into a mood of compactness right from 

the beginning". 

Subjects restricted to scheduling the board 10 hours at a time 

tended to use up the shorter jobs first and leave the longer jobs 

unscheduled. In fact some particularly long jobs (Job 54 in Appendix 

A4.5 for example) appeared to be critical to good performance, but with 

only the Quarter board available considerable foresight or expe~ience 

would have been needed to fit these in initially in preference to the 

shorter jobs. Subjects in the Quarter conditions universally commented 

on the need to be able to plan further ahead. 

As in the previous chapter, some subjects found it helpful to 

verbalise their thought processes as they went along. On the basis of 

such limited protocol evidence, subjects appeared to be setting up sub

goals (particular jobs, ot groups of jobs) within the main objective of 

maximising machine utilisation and minimising jobs unfinished. Much 
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time was spent checking for conflicts between consecutive operations 

as well as in testing the consequences of slight adjustments within a 

main schedule. The evidence again tends to lend support to Bainbridge's 

(1974) concept of a loose, hierarchical goal-directed model in 

decision-making tasks. 

Chapter 9.) 

4.3 Uncertain Environments 

(This point will be discussed further in 

It would be interesting to see whether the notion of an optimum 

prediction span in uncertain conditions, as suggested in the last chapter 

and by other workers in this field, is borne out using the scheduler's 

abacus sys tern. However, it is not a simple matter to incorporate 

uncertainty into a wooden block system, and the testing will come with 

its computer-based implementation. Field trials of such a system are 

currently in progress as part of a related study at Loughborough 

(Gibson, 1978). It has already been shown in another context (McEwing, 

1977) that in real-life situations the uncertainty associated with 

information on which schedules are based results in a performan9e 

considerably worse than in a near-deterministic laboratory simulation. 

On the basis of previous work one might perhaps expect to find an 

optimum prediction span when the scheduler's abacus is taken into the 

field, as the real-world uncertainty associated with the information on 

which decisions are based makes it impossible to plan so far ahead. 



173 

S. CONCLUSION 

• 

The main conclusion from this chapter has been to confirm, using 

test data from an operational job-shop, the finding of the previous 

chapter concerning prediction spans. Under deterministic conditions, 

longer predicti~n spans lead to improved scheduling performance. A 

critical value of prediction span was found below which machine 

utilisation performance deteriorated, stressing the importance of 

adequate look-ahead or 'predictive' information in deterministic 

manual scheduling tasks. 

No attempt was made to verify the effect of prediction span on 

scheduling performance under uncertainty. However, an experiment is 

currently in progress as part of a related project at Loughborough to 

implement a computer-based version of the scheduler's abacus and to 

test it in an operational setting • 

In common with the previous chapter, limited protocol evidence 

from the present study seemed to favour a loose, goal-directed 

hierarchical model of decision-making skills. 



CHAPTER 5 

A PRELIMINARY INVESTIGATION OF PREDICTIVE 

TECHNIQUES IN CONTINUOUS CHEMICAL PROCESS CONTROL 
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1. OBJECT OF THE EXPERIMENT 

The previous two chapters have been concerned with parameter 

variations in discrete aids for scheduling problems. The predictor 

display concept was, of course, originally developed for continuous 

control applications, though its application in continuous industrial 

environments has so far been limited. 

This chapter describes a preliminary experiment to investigate the 

possible uses of predictive displays in the area of continuous chemical 

process control, and especially their effect on process operator training. 

2. METHOD 

A simulated task was sought which would he within the capabilities 

of student subjects, and yet which would be representative of the type of 

process found in a chemical plant. The simulated continuous stirred 

tank reactor (CSTR) was judged to meet both these requirements. 

' 

Subsequent sections describe the simulation, subject's ta~k, 

experimental design, procedure and mode of data collection used in this 

study. 

2.1 The Simulation 

A hypothetical chemical industry control task, that of a simplified 

continuous stirred tank reactor (CSTR), was used in this study. The 

simulation was adapted from Luyben (1973). The process is shown 

diagramatically in Figure 16. Basically 'Keq:le' , as the simulated 
' 

process has come to be known, comprised a lagged tank with input and 

output flows of liquid, and an independent heating/cooling flow through 

'the lagging jacket. Following a chemical reaction in the tank, the 
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· output flow contained a certain concentration of finished product. 

The reaction curves were arranged such that maximum production and 

concentration were achieved when the tank was full without overflowing, 

0 and the temperature steady at 50 • Production tailed off as the tank 

volume decreased, or as the temperature of the mixture fell away either 

side of 50°. Production ceased when the temperature fell below 25° or 

rose above 75°. It can be seen that with tank volume held constant, 

production figures were thus dependent on temperature. 

characteristics can be expressed as follows: 

Temperature = Total Heat 
Total Volume 

The reaction 

where Total Heat was a function of the Flow In temperature, existing 

heat inside the vessel, and rate of reaction. 

Volume =~(Flow In- Flow Out). dt 

where Flow In ceased automatically if the vessel overflowed, by means 

of an overflow valve. 

Strength = (lOO - Volume of Reactant) 
Total Volume 

and Product= Flow Out.(Strength- 50) 

where production started only when Strength had risen above 50, since 

saleable product was assumed to require a minimum strength of SO%. 
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2.2 The Task 

The experimental subjects' task was to maximise the amount and 

concentration of product contained in the output of the CSTR. This 

primary objective was in turn achieved by fulfilling the two secondary 

objectives of maintaining the tank full without over-flowing and at the 

same time keeping the temperature as near as possible to the 50° mark. 

The time taken initially to fill the vessel and start the reaction was 

also an important factor in determining the final amount of product made. 

In order to enhance subjects' interest in this otherwise, perhaps, 

unappealing problem, they were informed that the process they were to 

control formed part of a new design of distillery manufacturing a certain 

alcoholic product. 

The display presented to the subjects is shown in Figure 17. The 

display comprised four vertical meters indicating temperature inside the 

vessel (with an alarm indication if the temperature rose above 90°), 

' kettle volume (with overflow warning), amount of product manufactured 

and its strength. All meters were calibrated from 0 to 100 with a 

pointer moving up and down at the right of each scale. For the 

temperature meter an option was provided of a computer prediction of 

how the temperature would vary during the next minute. It has already 

been noted that with volume held constant, production figures were 

dependent on temperature. Two bases for the prediction were 

available: an approximate, unsmoothed Taylor series extrapolation (Tay) 

which effectively fitted a curve through the last three temperature 

values, or a 'Perfect Predictor' model (PPM) which was in fact the 

simulation itself run in fast-time. 

model took the form: 

The Taylor series extrapolation 
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where y (t + ctl ) is the predicted value of y at~ seconds ahead of 

current time t, and y(t), y(t), 'y'(t) are respectively first, second 

and third order derivative terms. In addition to this information a 

180 

seconds counter was provided in the top right of the display showing 

elapsed time since the start of the trial, and a total product counter 

in the top left giving an approximate indication of integrated product 

over time. The special purpose control unit is illustrated in Figure 

18. Subjects could control the flow into and the flow out of the tank, 

and the heating/cooling supply through the jacket, by means of slider 

potentiome ters. 

Initial conditions for the simulation were keyed in from a 

teletype by the experimenter at the start of each trial. System 

variables included the option of a predictor trace, whether prediction 

was based on a Taylor series (Tay) or Perfect Predictor model (PPM), 

and whether input uncertainty was present. In the 'with uncertainty' 

condition a random walk within the limits + 10° was superimposed onto 

the input flow temperature, corresponding to the noise frequent~y 

associated with measurements from actual plant. At the end of each 

trial the total amount of product manufactured was printed on the 

teletype as feedback to the subject. 

2.3 Experimental Design 

Factors tested in this study were whether or not training had 

been carried out with a predictor trace, whether or not uncertainty 

was present and which type of predictor (No Predictor, Taylor series 

extrapolation, or Perfect Predictor model) had been used in the 

experimental trials. A between subjects design was used for the 

training and uncertainty factors, coupled to a within subjects design 

for the type of predictor (if any) available. 



Figure 18: Special purpose control unit 
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Separate groups of eight randomly assigned subjects were 

trained with or without a predictor trace respectively, and within 

these main groups two sub-groups each of four subjects undertook all 

their trials with or without uncertainty present. Each subject was 

tested under all three predictor conditions in a part-balanced order -

half the subjects encountered the No Predictor condition first, and 

half encountered the Perfect Predictor condition first. The design may 

be represented as follows: 

NP Tay PPM 

Trained with Uncertainty Gl Gl Gl 
Predictor No 11 G2 G2 G2 

Trained without Uncertainty G3 G3 G3 
Predictor No 11 G4 G4 G4 

where Gl, G2, G3, G4 represent independent groups of four subjects who 

underwent all NP, Tay and PPM conditions in a part-balanced order • 

• 

2.4 Procedure 

The experiments were carried out on the Departmental PDP-12 

computer. On arrival, subjects were given a written set of 

instructions to read (Appendix 5.1- 5.2) and the nature of the task 

was demonstrated. The contents of the instructions sheet were repeated 

verbally to ensure subjects understood them. Six training trials were 

carried out to ensure familiarity with the problem. Half the subjects 

were trained with a predictor trace and half were trained without. 

The experimental trials then followed. Each trial lasted for 5 minutes 

with a brief interval between trials. During this time the subjects' 

comments were elicited on the trial they had just run. After all the 

trials had been run, the subjects' overall impressions were noted. 
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2.5 Subjects 

The subjects used in this study were students or research workers 

at Loughborough. All had some mathematical background. They were 

paid £1 per hour for taking part. 

2.6 Data Collection 

Total product manufactured scores were obtained by integrating 

the actual product meter readings over the 5 minute period of each 

trial, and were used as the main performance measure. 

3. RESULTS AND STATISTICS 

Group averages of the total amount of product manufactured in the 

different experimental conditions are plotted in Figure 19. Original 

data scores can be found in Appendix 5.3. 

To test for statistical significance, a multi-factor ANOVA was 

carried out on the total product manufactured scores, the model chosen 

being appropriate to designs of this type having some repeated measures. 

A summary ANOVA table is given in Table 5. This was followed by a 

Newman-Keuls multiple comparison test where statistical significance 

of the main effect had been found. 

4. DISCUSSION 

4.1 Total Product Manufactured 

It can be seen from Figure 19 that a clear effect due to the type 

of predictor model was present, and this was confirmed by the ANOVA as 

statistically significant at beyond the 1% level (Table 5). Foll01{ing 

on from the ANOVA, the Newman-Keuls multiple comparison test (Table Sa) 

failed to detect any significant difference between the No Predictor 

and Perfect Predictor conditions, whereas the Taylor series model was 
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TABLE 5: Summary ANOVA table for total amount of product 
manufactured data 

Source Sum of Squares 

Between Subjects 

Training 38,278.76 

Uncertainty 12,208.13 

Training x Uncertainty 10,755.05 

Subjects within Groups 138,990.9 

Within Subjects 

Model (NP /Tay /PPM) 58,246.64 

Training x Model 8,896.39 

Uncertainty x Model 8,547.51 

Training x Uncertainty 
x Model 1, 791.59 

Model x Subjects within 
Groups 53,218.37 

' 

Newman-Keuls multiple comparison test 

a) Prediction model 

Tay 

PPM 

NP 

Tay PPM NP 

1% 1% 

Variance 
df Estimate 

1 38,278.76 

1 12,208.13 

1 10,755.05 

12 11,582.58 

2 29 '123. 32 

2 4,448.19 

2 4,273.76 

2 895.8 

24 2,217.43 

185 

Significance 
'F I Level 

3.31 - (df 1, 12) 

1.05 - (df 1,12) 

0.93 - (df 1, 12) 

13.13 1% (df 1' 12) 

2.01 (df 1, 12) 

1.93 - (df 1, 12) 

0.404 

Conservative Test 
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found to be significantly worse than either of these (significant at 

beyond the 1% level). Figure 19, however, suggests that this effect 

was dependent on uncertainty. According to Figure 19, the Perfect 

Predictor model gave superior scores when uncertainty was present, but 

in the absence of uncertainty the No Predictor condition was to be 

preferred. In all cases the Taylor series model apparently gave the 

lowest production figures. One would perhaps expect any practice 

or order effect to have accrued in favour of the Taylor series predictor 

since this condition was always encountered as the second or third 

experimental task. Even with this possible bias, however, the Taylor 

series predictor was consistently worse than the other predictor 

conditions. In addition, as might be expected, those subjects trained 

with the.predictor trace attained higher production scores in all the 

experimental trials than did those trained without. The value of 

predictive displays may thus be in helping subjects to learn - or form 

an accurate internal model of - the plant dynamics during the training 

period. Unfortunately, however, this effect just misses statistical 

significance in the ANOVA (Table 5). 

Some words of explanation are necessary to interpret the Taylor 

series results and the differential effect of the Perfect Predictor 

with uncertainty. Problems were encountered with the Taylor series 

extrapolation model due to inadequate smoothing. The Taylor series 

trace was a basic, unsmoothed predictor and as such proved to be overly 

susceptible to minor fluctuations in past values of temperature, causing 

the trace to oscillate about its mean predicted path and so reducing its 

credibility to the subjects. Any future testing of the Taylor series 

extrapolation technique on noisy data would have to incorporate some 

form of exponential or moving average smoothing of the raw scores if the 

approach is to be given a fair trial. 
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Concerning the differential effect of uncertainty on predictor 

effectiveness, the benefits from using the Perfect Predictor were most 

marked when uncertainty was present, and particularly where subjects 

had specifically been trained using the predictor. Its effectiveness 

diminished when subjects were not so trained. It may well have been 

that the nature of the task without uncertainty - the temperature tended 

to drop gradually towards the 50 mark of its own accord once the reactior 

had started - was such that the system was not of sufficient complexity 

to warrant any form of predictive assistance. Several subjects 

commented to this effect. Rouse (1970) has also suggested that 

predictor displays are of little benefit in simple tasks. Once random 

disturbances in the form of uncertainty on the input temperature had 

been introduced, however, the task became sufficiently challenging to · 

warrant a predictive aid. A further complicating effect of introducing 

.uncertainty was that the random disturbances tended to 'throw' the 

temperature upwards at the start of a trial, causing the reaction to 

start more quickly and resulting in a higher overall product score. 

This accounts for the slightly higher production figures in both 'with 

uncertainty' conditions, though the effect is not statistically 

significant. 

In general it would seem that the problems encountered were 

largely a by-product of attempting to devise a simplified laboratory 

analogue of an actual chemical industry task. No laboratory simulation 

can reproduce in full the complexity and the stresses of the real-world. 

Two alternative courses are open for future work in this area: either 

to dispense with the trappings of an actual task and to devise a simple, 

uncomplicated laboratory problem on which to carry out an in-depth 

investigation of predictor characteristics; or to take the predictor 

concept into the field and test it in an actual industrial setting. An 

ideal solution would perhaps be to adopt both alternatives. 
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4.2 Subjective Comments 

' 

It is clear from the subjects' comments that the task could be 

divided into two distinct phases: filling the kettle as quickly as 

possible without allowing the vessel to overheat; and secondly 

conducting the reaction itself. Some subjects found the predictor 
I 

trace very useful in the 1initial phase as it resulted in fewer "overheat" 

errors. Others found the predictive aid useful during the secondary 

phase of bringing 

Subjects' ratings 

' 
I 

the temperature down to 
i 

of their preference for 
I 

50 and controlling the reaction. 

the No Predictor, Taylor series 

and Perfect Predictor models reflected the condition under which they had 

been trained, and tended to confirm the impressions gained from the scores 

·of total product manufactured. 

' 
I 

I 

The Taylor series extrapolation was universally disliked as it 

"swung about erratically :and served only to confuse". One subject 

reported he was able to overcome this problem by mentally fitting a 

trend line between the extremes of oscillation. It is to be expected 

that with adequate smoothing of the data points used as the bas'is for 

prediction this problem would be overcome. Overall, eleven subjects 

(including all subjects trained in this condition) rated the Perfect 

Predictor model as the easiest to control with, leaving five subjects 

who preferred the No Predictor condition. The latter tended to anticipat 

the plant response internally. Of those subjects who preferred the 

predictor, one failed to detect any difference between the two 

prediction models. Several subjects noticed and made use of a side-

effect of the Perfect Predictor trace. The simulation was such that 

the trace became slightly uneven just before the kettle overflowed, a 

consequence of reciprocation in the input flow valve. Thus overflow and 

temperature information could be obtained from the same trace. 
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It is interesting to note that two subjects requested a predictor 

trace be available to show rate of product manufacture, i.e. changes 

in the main performance criterion. (Unfortunately the design of the 

system would not permit this.) Their complaint with the temperature 

predictor was that it did not directly relate to the overall objective 

of the task: to manufacture as much product as possible in the time 

given. In the absence of a rate-of-manufacture predictor these 

subjects experimented with different settings of temperature and volume 

in an attempt to find a trade-off between the two secondary criteria 

which would result in the maximum rate of climb of the product counter, 

From this anecdotal evidence it seems that predictor displays are 

potentially of most benefit if they relate directly to the overall 

performance criterion. 

5. CONCLUSIONS 

This study should be regarded as a preliminary investigation into 

the use of the predictive display concept in continuous chemical process 

control. It has shown that given the right conditions, i.e. a~equate 

training, a credible predictor and a sufficiently demanding problem, 

the application of predictive displays can lead to an improved 

performance. Problems were encountered through trying to simulate a 

representative chemical industry task with naive student subjects in the 

laboratory. It is recommended that future work in this area should 

first involve a much-simplified laboratory problem on which an in-depth 

study of predictive display characteristics could be conducted. 

A second phase would comprise a full-scale field study.to test the best 

overall design in an actual industrial setting. This approach is 

follow~d in Chapters 6 and 7. 
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CHAPTER 6 

AN EXPERIMENT TO EVALUATE THE EFFECT OF VARYING TASK 

CHARACTERISTICS AND PREDICTIVE DISPLAY PARAMETERS IN 

A SIMULATED CONTINUOUS DUAL-METER MONITORING AND 

CONTROL TASK 

190 
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1. OBJECT OF THE EXPERIMENT 

The previous chapter has shown that given the right conditions, 

a predictor display can help in the control of a laboratory simulated, 

continuous chemical process. Before testing the concept in the field, 

however, it is necessary to determine how varying the parameters of 

such a display affects operator performance, with the object of arriving 

at recommended display configurations for particular situations. 

The present chapter explores in more detail the characteristics 

which a predictor display for continuous process control tasks should 

possess, with particular regard to such factors as the effect of input 

uncertainty, prediction span, plant gain (K), and fidelity of the 

prediction model employed. 

2. METHOD 

A laboratory task was sought which could be generalised to a 

variety of monitoring and control situations, which would facilitate the 

detailed investigation of a number of predictor display design .features, 

and yet at a level of complexity which could be mastered by naive 

subjects without the need for extensive training. The simulated dual-

meter monitoring and control task used in this experiment was derived 

from experience gained in the CSTR simulation of the previous chapter. 

The latter simulation had suffered from two principal drawbacks: 

1) It was a simplified version of a hypothetical chemical industry 

task (Luyben, 1973). 

2) The temperature predictor tested, whilst of indirect benefit, was 

not directly related to the main system objective of profit 

maximisation. 
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These factors combined to render the predictor not as 

operationally significant as it might otherwise have been. Therefore 

in the present study any similarity with a specific chemical process 

was removed, and the task became one of monitoring the state of two 

process meters and keeping the movement of their pointers simultaneously 

within prescribed limits. Such a procedure is at the heart of many 

process, and other, control problems. 

Subsequent sections describe the simulation, subject's task, 

experimental design, procedure and mode of data collection used in this 

study, 

2.1 The Simulation 

The simulation consisted of two independent unstable channels 

having identical third-order dynamics (Figure 20). Each channel 

comprised three integrations in series with a digital potentiometer, 

and was driven by an error signal (~) derived from the subject's 

control input (Vin) minus a disturbance level (d), The disturbance 

level varied randomly in its magnitude, duration and direction, but on 

average changed once every 10 seconds or so, The output (Vout) from 

each channel controlled the position of a pointer set against the 

calibrated scale of a vertical process-type meter. 

2.2 The Task 

The experimental subject's task was to anticipate the path of 

two pointers moving against vertical scales calibrated 0-100 and by 

his control actions to compensate for their movement away from the 50 

mark, keeping both pointers simultaneously between 4S and SS on the 

scales. The display arrangement is shown in Figure 21, and the 
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Figure 20: Identical dynamics of the two simulated channels 
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continue downwards. Note that only one of the pointers can be viewed 
at a given instance.)· 
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control unit in Figure 22. A seconds counter was provided on the 

display, together with an indication of how many seconds the pointers 

had been simultaneously within limits. 

The pointers could not be viewed simultaneously but were instead 

selected by pressing a button above the appropriate slider on the 

control unit. To assist control, the option of a predictor trace was 

provided extending to the right of both pointers. Prediction was based 

either on an approximately accurate Taylor series extrapolation model 

(Tay) using the three most recent data points, or on a 'Perfect predictor' 

model (PPM) based on the simulation itself run in fast-time. The Taylor 

series extrapolation model took.the form: 

. 2/ 
y(t +~) = y(t) + Y<t).~ + y(t).~ 2! 

where (t +'t>) is the predicted value of y at <e seconds ahead of 

current time t. y(t), y(t), ·y·(t) are respectively first, second and 

third order derivative terms. 

The determination of an appropriate predictor model is largely 

an engineering problem, and the two models used here were chosen as 

being representative of different extremes of computational power 

requirements. Smoothing problems encountered in the previous chapter 

with the Taylor series approach were overcome by generating derivative 

terms directly from the simulation, rather than from successive values 

of the output. In a practical application where one would be forced to 

use successive values of the output as the basis for calculating 

derivative terms, output smoothing could be achieved by established 

techniques (moving averages, digital filters etc.). 
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Initial conditions for the simulation were keyed in by the 

experimenter from a teletype at the beginning of each trial. Adjustable 

variables were pointer limits, plant gain (effectively system speed of 

response, achieved by adjusting the potentiometer value), level and 

timing of the random disturbances, type of prediction model used, 

prediction span (length of predictor trace from 0 up to 30 seconds), and 

trial length in seconds. At the end of each trial the total time 

within limits score was output on the display as feedback to the subjects, 

2.3 Experimental Design 

Factors examined in this study were the level of plant gain, the 

level of random disturbances (uncertainty), the prediction model used 

(Tay or PPM) and the prediction span. A between-subjects design was 

employed for plant gain, coupled to a within-subjects design for the 

remaining factors. Three separate groups each of 5 subjects were 

randomly assigned to one of three gain conditions (low, medium, high 

gain- corresponding to slow, moderate and fast system responsiveness). 

Each subject underwent three levels of uncertainty (disturbanc~ levels 

~0°, ~10° and ~20°), four levels of prediction span (0, 5, 15 and 30 

seconds) and both types of prediction model (Taylor series and Perfect 

Predictor). The presentation order of the 21 trials was randomised 

to overcome sequence effects, whilst a thorough training schedule 

ensured that practice effects were minimal compared to the magnitude 

of the experimental effects. 

The design may be represented as follows: 



0 

Low Uncertainty Gl 
LOW Medium Uncertainty Gl 
GAIN 

High Uncertainty Gl 

Low Uncertainty G2 
MEDIUM Medium Uncertainty G2 GAIN 

High Uncertainty G2 

Low Uncertainty G3 
HIGH Medium Uncertainty G3 GAIN 

High Uncertainty G3 

PREDICTION MODEL/ 
PREDICTION SPAN (seconds) 

Tay PPM Tay PPM Tay PPM 

.5 5 15 15 30 30 

Gl Gl Gl Gl Gl Gl 

Gl Gl Gl Gl Gl Gl 

Gl Gl Gl Gl Gl Gl 

G2 G2 G2 G2 G2 G2 

G2 G2 G2 G2 G2 G2 

G2 G2 G2 G2 G2 G2 

G3 G3 G3 G3 G3 G3 

G3 G3 G3 G3 G3 G3 

G3 G3 G3 G3 G3 G3 

where Gl, G2, G3 represent independent groups of five subjects who 

underwent all Uncertainty, Prediction model, and Prediction span 

conditions in a randomised order. 

2. 4 Procedure 

The experiments were carried out on the Departmental PDP-12 

computer. On arrival, subjects were given a written set of 

instructions to read (Appendix 6.1) and the nature of the task was 
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demonstrated. The contents of the instructions sheet were repeated 

verbally to ensure comprehension. Six training trials were then 

carried out under a medium level of uncertainty (~10° disturbance 

level). A standard training order was used: No Predictor (NP), 

Perfect Predictor Model (PPM), Taylor series extrapolation model (Tay) 

PPM, Tay, NP. An abbreviated results printout was obtained for each 

training trial. 

The experimental trials then followed, their order being randomised. 

Each trial lasted for 5 minutes with a break of 4 minutes between trials. 

During this time subjects filled in a short questionnaire giving their 
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subjective impressions of their last trial. A sample questionnaire 

is shown in Appendix 6.4. An extended coffee break was given midway 

through the experiment. After all the trials had been run, subjects' 

overall impressions were noted. 

2.5 Subjects 

The subjects used in this study were undergraduate students at 

Loughborough. All had some mathematical background and were paid £1 

per hour for taking part. 

2.6 Data Collection 

• 

An automatic data capture.program logged every system input made 

by the subject, together with system states such as pointer positions, 

into store at 1 second intervals. At the end of each trial an 

abbreviated results printout could be obtained showing time within 

limits for each pointer and both pointers simultaneously, time spent 

looking at each pointer, integrated error scores for each channel plus 

histograms of control actions and pointer positions. In addition the 

option of a fuller printout giving control and pointer positions at 1 

second intervals, disturbance levels and last predicted value displayed 

at 10 second intervals, and a breakdown of channel switchings could be 

selected. A comprehensive analysis of each trial was thus possible, 

which could then be matched to subjects' comments and results from the 

questionnaire analysis. 
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3. RESULTS AND STATISTICS 

Time in seconds during which one or both pointers had been 

outside the prescribed limits was used as the main performance measure. 

(In practice, integrated absolute error scores - the total pointer 

deviations from the 50 scale marker- were found to give similar results, 

and so are not reported here.) 

Group averages of the performance measure in the different 

experimental conditions have been plotted in Figures 23-26. Figure 

23 shows the grand averages of the Taylor series extrapolation model 

and Perfect predictor model for the four prediction span conditions (each 

point on the graph is the average of three gains, three levels of 

uncertainty and five subjects). Figures 24-26 expand the basic 

information of Figure 23 to include the effects of different levels of 

uncertainty and plant gain, separate graphs being drawn for Low, Medium 

and High gain. Data scores for individual subjects can be found in 

Appendices 6.2-6.3. Huch could also be learnt about individual subjects' 

control strategies from scrutiny of the control histograms for .each 

trial, from subjective comments and from the completed questionnaires. 

These will be discussed in section 4. 

Inspection of the time outside limits data showed it to be 

severely positively skewed. As is appropriate with severely skewed 

time data of this kind, the within-cell variances were first stabilised 

before ANOVA analysis by performing a logarithmic transform on the raw 

error scores, of the form: 

X' ijk = (X. 'k + 1) LJ 

The addition of 1 to each X .. k term served to prevent the occurrence 
LJ 
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The transformed data were analysed in several different ways. 

A preliminary analysis (Table 6) was used to test for broad differences 

between the No Predictor, Taylor series extrapolation model (30 seconds 

prediction span) and Perfect Predictor model (also 30 seconds prediction 

span) conditions. More detailed analyses were also performed on the 

full set of Taylor series data (Table 7) and on the complete set of 

Perfect Predictor data (Table 8). The ANOVA model used was appropriate 

to multi-factor designs of this type containing some repeated measures, 

and was followed by tests of simple effects where a significant 

interaction term had been obtained • 

• 



30 

Time outside limits 
(seconds) 

100 

0--L---

• 

No Predictor 

5 seconds 

15 seconds Prediction Span 

30seconds 

.. 

Taylor series 

. . . 

. . 
.. 
. . . 

Perfect predictor 

Figure 23: Grand averages of time outside limits scores 
"' 0 

"' 



203 

-TABLE 6: Summary ANOVA for log transformed NP vs Tay (30 second) 
vs PPM (30 second) scores (time outside limits data) 

Sum of Variance Significance 
Source Squares df Estimate 'F' level 

Between Subjects 

Gain 59.274 2 29.637 100.24 0.1% (df 2,12) 
Subjects within groups 3.548 12 0.296 

Within Subjects 

Uncertainty 4. 757 2 2. 379 25.82 0.1% (df 1,12) 
Gain x Uncertainty 3.871 4 0.968 10.51 1% (df 2,12) 
Uncertainty x S.w.g. 2.211 24 0.092 

Model (NP /Tay /PPM) 32.522 2 16.261 34.47 0.1% (df 1,12) 
Gain x Model 9.657 4 2.414 5.12 5% (df 2,12) 
Model x S.w.g. 11.321 24 0.472 

Uncertainty x Model 6.781 4 1.695 22.39 0.1% (df 1,12) 
Gain x Uncertainty x Model 4.86 8 0.608 8.03 1% (df 2,12) 
Uncertainty x Model x S.w.g. 3.633 48 0.0757 

Conservative Test 
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TABLE 7: Summary ANOVA for log transformed Taylor series scores 
(time outside limits data) 

Sum of Variance Significance 
Source Squares df Estimate IF' level 

Between Subjects 

Gain 82.827 2 41.413 32.98 0.1% (df 2,12) 
Subjects within groups 15.07 12 1.256 

Within Subjects 

Uncertainty 0.0475 2 0.0238 0.16 - (df 1,12) 
Gain x Uncertainty 0.7887 4 0.1972 1.29 - (df 2,12) 
Uncertainty X S.w.g. 3.665 24 0.1527 
Prediction Span 13.66 3 4.553 13.05 1% (df 1,12) 
Gain x Prediction Span 9.988 6 1.665 4.77 5% (df 2,12) 
Prediction Span x s .w. g. 12.557 36 0.349 

Uncertainty x Prediction Span 0.455 6 0.0758 0.59 - (df 1,12) 
Gain x Uncertainty x 

Prediction Span 2;065 12 0.1721 1.35 - (df 2,12) 
Uncertainty x Prediction 

Span x S.w.g. 9.193 72 0.1277 

Conservative Test 

' 
a) Tests on Simple Effects (Gain x Prediction Span Interaction) 

Source Significance 

Between Gains at 0 seconds Prediction Span 5% 
Between Gains at 5 seconds Prediction Span 0.1% 
Between Gains at 15 seconds Prediction Span 0.1% 
Cletween Gains at 30 seconds Prediction Span 0.1% 

Between Prediction Spans at Low Gain 0.1% 
Between Prediction Spans at Medium Gain 5% 
Between Prediction Spans at High Gain 



TABLE 8: Summary ANOVA for log transformed Perfect Predictor 
model scores (time outside limits data) 

Sum of Variance Significance 
Source Squares df Estimate 'F' level 

Between Subjects 
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Gain 48.448 2 24.224 45.76 0.1% (df 2,12) 
Subjects within groups 6.353 12 0.529 

Within Subjects 

Uncertainty 7.866 2 3.933 u. ss· 1% (df 1,12) 
Gain x Vncertainty 1~:~M 2~ ~:H~ 9.73 1% (df 2, 12) 
Uncerta1nty X s.w.g. 
Prediction Span 49.706 3 16.569 37.92 0.1% (df 1,12) 
Gain x Prediction Span 4.695 6 0.783 1. 79 (df 2,12) 
Prediction Span x S.w.g. 15.73 36 0.437 

Uncertainty x Prediction 
Span 9.197 6 1.533 5.86 5% (df 1, 12) 

Gain x Uncertainty x 
Prediction Span 8. 923. 12 0. 744 2.84 (df 2, 12) 

Uncertainty x Prediction 
Span x S.w.g. 18.845 72 0.262 

Conservative Test 
a) Tests on Simple Effects (Gain x Uncertainty Interaction) 

Source Significance 

Between Gains at Low Uncertainty 
Between Gains at Medium Uncertainty 0.1% 
Between Gains at High Uncertainty 0.1% 

Between Uncertainty at Low Gain 
Between Uncertainty at Medium Gain 1% 
Between Uncertainty at High Gain 0.1% 

b) Tests on Simple Effects (Uncertainty x Prediction Span Interaction) 

Source Significance 

Between Uncertainty at 0 seconds Prediction Span 
Between Uncertainty at 5 seconds Prediction Span 
Between Uncertainty at 15 seconds Prediction Span 0.1% 
Between Uncertainty at 30 seconds Prediction Span 0.1% 

Between .Prediction Spans at Low Uncertainty 0.1% 
Between Prediction Spans at Medium Uncertainty 0.1% 
Between Prediction Spans at High Uncertainty 0.1% (just) 
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4. DISCUSSION 

4.1 Time outside limits data 

Considering first the preliminary ANOVA (Table 6) which excluded 

prediction span by comparing scores from the No Predictor condition 

with scores from the Taylor series· and Perfect predictor models using 

the full 30 seconds prediction span, it can be seen that all the main 

effects (gain, uncertainty, prediction model) were highly statistically 

significant, with the complication of considerable interactions. 

In general, time outside limits scores were found to increase with 

faster plant response and with increasing levels of uncertainty. The 

significant interaction term (gain x uncertainty) suggests that 

uncertainty had a differential effect depending on the system 

responsiveness. The third main effect - that of NP vs Taylor series 

vs Perfect Predictor models - was highly significant, coupled to a 

strong interaction with uncertainty (the Taylor series model was 

peculiarly immune to variations in uncertainty), and a lesser interaction 

with plant gain. 

A major finding is that there was virtually no difference between 

the two prediction model scores in the Low plant gain condition (Figure 

24). Inspection of the original data (Appendix 6.2-6.3) shows that 

near perfect within-limits performance was achieved using the Taylor 

series extrapolation model as well as with the Perfect predictor trace. 

This seems to reinforce Kelley's (1960a) and Bernotat's (1972) earlier 

findings of the effectiveness of simple prediction models. Figure 23 

demonstrates that in broad terms, however, the Perfect Predictor was 

clearly superior to the Taylor series model, especially with longer 

prediction spans, though either prediction model was preferable to No 
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Predictor at all. It is also evident from Figure 23 that minimum 

error scores were achieved with the full 30 second prediction span for 

the Taylor series model, but with a prediction span of only 15 seconds 

for the Perfect Predictor trace. 

In order to study the interactions with prediction span in more 

detail, two separate analyses were performed on the complete data - one 

analysis of the Taylor series scores and a separate analysis of the 

Perfect predictor model scores. 

4.2 Interpretation of Taylor series data 

The analysis of Table 7 indicates that for the Taylor series 

prediction model a strong effect due to plant gain (0.1% significance) 

was found, and a somewhat lesse·r effect (1% significance) due to 

prediction span. A slight interaction between these two variables 

was also present. No effect was discovered due to uncertainty, and 

it would seem to be one of the important features of using a Taylor 

series prediction model that no significant worsening in performance can 

be expected as the level of input disturbance rises. (The slow 

response time of such a model may well have served to act as a filter 

to the input noise.) 

Because the gain x prediction span interaction was significant, 

tests on simple main effects were called for rather than further direct 

testing of the main effects. Results of such tests are given in 

Table 7a. Examining the interaction effect in more detail suggests 

that 'plant gain had an increasingly significant effect when any form of 

Taylor series predictor trace, however short, was introduced. Conversely, 

the effect of different prediction spans was most marked for slow plant 
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response, longer spans resulting in lower error scores, but its effect 

lessened as plant gain was increased. No significant difference between 

different spans was found in the High gain condition. 

Clearly the choice of prediction span using this type of extra

polation model will depend on the gain of the system concerned. For 

systems with slow or moderate response times the maxim "the longer the 

better" appears to be valid. For systems with very fast response times 

a slight reduction in prediction span may be advisable on practical ground' 

4.3 Interpretation of Perfect predictor data 

The analysis shown in Table 8 demonstrates that all the main 

effects (gain, uncertainty, prediction span) achieved a high degree of 

statistical significance, in addition to a strong gain x uncertainty 

interaction term (significant 1%), and a lesser uncertainty x prediction 

span term (significant 5%). It is evident that the Perfect predictor 

model reacted somewhat differently to changes in the experimental 

conditions than did its Taylor series counterpart. In both cases 

performance deteriorated as speed of plant response increased, (Figures 

24-26) but in contrast to the Taylor series dat'a the Perfect predictor 

was also adversely affected by increasing the level of uncertainty. 

This effect was somewhat dependent on the prediction span in use, a more 

marked deterioration in performance occurring for longer prediction 

spans. This point will be further discussed below. 

Because the two interaction terms achieved significance, tests on 

simple main effects were again call'ed for rather than further direct 

testing of the main effects. Findings from the analyses are summarised 

in Table 8 a,b. Considering first the gain x uncertainty interaction, 

this point is perhaps of rather academic interest as the analysis is in 
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terms of means obtained by averaging over scores from the four 

prediction span conditions. The analysis reveals that no significant 

differencewas present between the different plant gains at Low uncertainty 

levels, but that a considerable difference existed under Medium and High 

uncertainty. Inspection of Figures 24-26 makes it evident that while 

this may have been so for the group means, the choice of prediction 

span to be used was a major complicating factor - indeed an uncertainty 

x prediction span interaction term was also found (see below). 

Similarly the analysis for averaged prediction spans indicated that 

there was no effect due to uncertainty for.Low plant gains (Figure 24), 

but an increasingly significant effect as response speed increased 

through Medium (significant 1% ~ Figure 25) to High gains (significant 

0.1%- Figure 26). Again it must be stressed that the nature of this 

part of the analysis excluded vital information associated with the 

different prediction spans. 

Considering the uncertainty x prediction span interaction, tests 

for simple main effects showed no difference due to uncertainty for short 

prediction spans (O and 5 seconds), but a highly significant effect 

(significant 0.1%) for prediction spans of 15 and 30 seconds. Figures 

24-26 represent this interaction pictorially. In terms of prediction 

spans, though the effect due to different spans was highly significant 

for all levels of uncertainty, it was most pronounced at lower 

uncertainty levels. Inspection of Figures 24-26 suggests that an 

optimumprediction span existed for the Perfect predictor at higher 

levels of uncertainty. This point has not been revealed by the analysis 

so far, and so it was decided to carry out trend tests on each gain x 

uncertainty combination to explore the issue further. The test thought 
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to be most appropriate was Page's L non-parametric test on trends, as 

this test is more powerful than the omnibus F-test or the equivalent 

Friedman test, and makes no assumptions about underlying distributions 

(Boersma et al., 1964). The predicted order amongst prediction spans 

tested was in accord with the cell averages for the Perfect predictor 

data shown in Figures 24-26 and the significance levels obtained are 

given -

LOW GAIN 
(slow response) 

MEDIUM GAIN 
(moderate 

response) 

HIGH GAIN 
(fast response) 

below: 

LOW 
UNCERTAINTY 

0 5 15 30 

predicted trend 
Sig. 1% -

0 5 15 30 --Sig. 0.1% 

0 5 15 30 

= Si g. 0.1% 

MEDIUM 
UNCERTAINTY 

0 5 15 30 
= ' 

Si g. 5% 

0 5 15 30 -Si g. 5% 

0 5 15 30 -Sig. 0.1% 

HIGH 
UNCERTAINTY 

0 5 15 30 
= 

Si g. 1% 

0 5 15 30 
'~ 

Si g. 1% 

0 5 15 30 

-= Si g. 0.1% 

Test for trends amongst prediction spans for 
Perfect predictor model data 

It can be seen that the 'best' prediction span, i.e. that giving 

the lowest error scores, decreased as uncertainty increased. This 

effect was most noticeable for the High gain (fast response) condition 

(Figure 26) when the optimum span decreased from approximately 23 

seconds, to 15 seconds, then to approximately 10 seconds as the level 

of input disturbance rose. It would seem that operators cannot make 

use of as much of the Perfect predictor trace due to the long-distance 

predictive information being rendered inaccurate by input uncertainty. 



Given these interactions, it is clear to see why previous 

workers, as reviewed in Chapter 2, have come up with conflicting 

findings concerning optimum prediction spans. Contrasting the 

214 

Perfect predictor scores with the Taylor series extrapolation model; 

only in the High gain condition was there any indication that a 

reduction in usable span to approximately 15 seconds occurred, but as 

Figure 26 suggests this effect was nowhere near as significant (Page's 

L significant at 5%) as for the corresponding Perfect predictor condition 

(Page's L significant at 0.1%). 

4.4 Control Histograms 

Inspection of the control.histograms (Figure 27 gives examples) 

for each trial suggests that distinct patterns of control were present 

for the two prediction models, though of course variations did occur 

across subjects. Typically, control without any form of predictor 

was characterised by use of the extreme limits of control in 'bang-bang' 

fashion. With the introduction of a 5 second Taylor series trace 

control was still characterised by long periods spent at the extremes, 

but there was an additional distribution at the centre of the range 

corresponding to finer control adjustments. This central distribution 

typically spread out towards the extremes as prediction span was 

extended to 30 seconds. 

In the case of the Perfect predictor model, control was 

characterised by a much smoother gaussian-type distribution. Though 

for short prediction spans some time was spent at the extreme limits 

of the controls, this component disappeared as prediction span was 

increased beyond 5 seconds, and control then consisted of very fine 

adjustments around the centre of the range. In other words, the faster 

response of the Perfect predictor model made immediately obvious the 
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effect of a control action and resulted in a smoother pattern of 

control, whereas the Taylor series rate-of-change predictor required 

time for a control change to affect it and so control, even if smooth 

at the start of a trial, frequently ended up at the extremes as the 

system became progressively unstable. 

The control histograms provided a useful extra indication of 

performance. In the Low gain condition, for example, although error 

scores were much the same for the two prediction models, scrutiny of the 

histograms suggests that with the Taylor series model this was achieved 

by considerably greater control effort. The Perfect predictor gave 

much smoother control than did the Taylor series equivalent, though it 

must be stressed that ei_ther predictor was preferable to none at all. 

The effect of introducing input disturbances to the system was to 

spread the distribution of control actions towards the extremes, and a 

similar effect was found when increasing plant gain. 

4.5 Display switching 

Analysis of the display switching data also revealed some 

interesting variations in strategy. Display switching appeared to be 

most regular when the pointers were within the prescribed limits and 

under control, and appeared to increase as control of the pointer(s) was 

progressively lost: this was most likely to occur for short prediction 

spans and high gains. In addition, the bias in the time spent looking 

at the left- or right-hand meter shifted during the course of a trial, 

more ·time being spent attending _to the pointer most out of control. In 

the stable equilibrium state, a switching rate of once every few seconds 

was not atypical. Unfortunately, however, switching rates faster than 

once a second were not capable of being recorded by the system, and this 

has precluded a more detailed analysis. 
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4.6 Subjective comments and questionnaire analysis 

• 

In general, analysis of subjective comments on the task tended 

to confirm the impressions gained from the objective analyses. Subjects 

all stated that they preferred using a predictor trace to control 

without a predictor, and this was reflected as the 'with predictor' trial! 

being rated as easier to control. Opinions were divided for preference 

between the Taylor series model and the Perfect predictor model. Seven 

out of the fifteen subjects preferred the Perfect predictor trace in that 

it was a lot more accurate and gave immediate feedback as to the 

consequences of control changes. Five subjects preferred the Taylor 

series trace because its slow, rate-of-change response was easier to 

follow and gave more time for them to respond. Three subjects failed 

to detect any difference between the two prediction models. In all, 

the Perfect predictor model was rated as being more useful than its 

Taylor series counterpart for a given prediction span. Subjects also 

rated their control actions as being considerably smoother using the 

Perfect predictor trace, particularly with longer prediction spans. 

On the question of prediction spans, subjects were equally divided 

in their preference for the longest possible prediction span (30 seconds) 

or a shorter span (e.g. 15 seconds). The 5 second span was universally 

disliked, but thought just possible to control with. On their ratings 

as to the usefulness of the predictors, subjects rated the 30 second span 

as being most useful in the Low gain condition but the 15 second span 

as being most useful in the faster responding Medium and High gain 

conditions. Most subjects failed to detect any variations in the level 

of input uncertainty, though several commented that the pointer appeared 

to disobey the controls or to move about of its own accord in some of the 

trials. It was thought more difficult to control these trials (High 
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uncertainty), particularly in the High gain condition using long 

prediction spans based on the Perfect predictor model, as the variations 

due to uncertainty in the middle-to-end part of the trace were found 

misleading. It is interesting to note that with only one exception 

all subjects reported using the end segment of the trace for control -

this finding is clearly at odds with reports from the Dun lap labs. 

mentioned earlier in Chapter 2. Smith and Kennedy (1975) had noted 

that their subjects used the first or central segment of a trace in 

order to effectively minimise the time to reach their desired trajectory. 

Clearly subjects make full use of the trace they are given. 

It is apparent from analysis of the strategies reported by the 

subjects that anticipation of the pointers' movement played a vital part 

in control, especially for the No Predictor condition and to a lesser 

degree in the Taylor series condition. Use of a perfectly accurate 

prediction model effectively eliminated the need to anticipate the 

·pointers' trajectory. In the No Predictor conditions, subjects 

followed the strategy of moving the controls to their extreme to 

compensate as soon as any perceived movement· of the pointer was 

detected. With experience some subjects tried to anticipate the 

pointers' point of turn and to gradually reduce their control input 

beforehand. Again, with experience of the system dynamics (probably 

gained from the 'with predictor' conditions) some subjects restricted 

their range of control actions so as not to use the extreme positions, 

and made their actions consciously smoother. 
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As found in previous chapters, subjects varied widely in their 

ability to verbalise their control processes. One subject (a 

physicist) reported controlling on the theory that the system dynamics 

were analogous to simple harmonic motion, another evolved a yo-yo model 

of the process, yet another claimed the dynamics were equivalent to an 

inverted pendulum. It is clear from this admittedly anecdotal evidence 

that subjects' anticipations were based on some crude form of internal 

model of the process, through which predictions could be made in the 

absence of a computer-provided prediction. Using the Taylor series 

model predictor subjects frequently used the slope of the trace as the 

main criterion for the amount of compensation which they applied. Some 

anticipation was still required. however, and the problem became one of 

keeping the predictor trace horizontal within the prescribed limits and 

with the pointer stationary. In the Perfect predictor model conditions, 

the problem was further simplified and became one of watching the end of 

the trace and compensating to keep it within limits and as near to the 

50 mark as possible. A slightly different policy was adopted if a 

pointer drifted outside the limits - the object then became to get that 

pointer back within limits as quickly as possible, if possible keeping 

the end point of the trace between the limits as the pointer approached 

them. Protocol evidence from this study will be discussed further in 

Chapter 9. 

5. CONCLUSIONS 

A comprehensive design study has been carried out to investigate 

how variations in predictive display parameters and task characteristics 

affect operator performance in a generalised dual-meter monitoring and 

control task. Predictive displays were found to bring about an 

improvement in average time outside limits scores in all the experimental 



220 

conditions. For systems with a slow speed of response, there was 

little to choose between a highly accurate and a relatively unsophisticate 

pred{ction model, given that adequate performance with the latter was 

achieved at the expense of greater control effort. For systems having 

moderate to fast response times, the more sophisticated prediction model 

was justified. 

Recommendations can be made regarding the choice of an appropriate 

prediction span for simple and sophisticated prediction models under 

various levels of plant responsiveness and·input uncertainty. With 

simple prediction models, which seemed relatively immune to uncertainty, 

prediction span was affected by.plant gain. For systems with low to 

medium gains, the maxim "the longer the better" was appropriate, with 

perhaps a slight reduction in usable prediction span for high gain systems 

With a hypothetical Perfect prediction model, the optimum prediction span 

was reduced with the combined effect of increasing uncertainty level and 

increasing plant gain. Conflicting results of previous workers are 

explained in terms of the differing gains, levels of uncertainty and 

prediction models of the systems investigated. 

Reported strategies from subjects in the present study suggest 

that the formation of a crude form of internal predictive model is an 

important part of unaided control. Subjects used the full extent of 

the predictor trace presented to them. 



CHAPTER 7 

AN EXPERIMENT TO VALIDATE THE USE OF PREDICTIVE 

TECHNIQUES IN THE CONTROL OF A PART-SII!ULATED, 

SEI!I-BATCH CHEMIC~ REACTOR IN AN INDUSTRIAL SETTING. 
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1. OBJECT OF THE EXPERIMENT 

Previous chapters have shown the potential benefits to be gained 

from the introduction of predictive techniques in the control of 

laboratory simulated continuous chemical processes. Chapter 6 in 

particular has investigated the characteristics that such displays 

should possess, and has shown that even a relatively unsophisticated 

prediction model can assist in the control of a process having a 

moderately slow speed of response. 

The present experiment aims to validate the use of a simple 

prediction model, formulated· as a multi-pen predictive recorder, in the 

control of a part-simulated, semi-batch chemical reactor employing 

real plant and experienced operators. The study set out with the 

object of testing the effect of the predictive display on temperature 

control, but the original brief was later widened to include pH prediction 

at the operators' request. 

2. METHOD 

A suitable plant was sought on which to test the feasibility of 

predictor displays in a field setting. The Control Division at Warren 

Spring Laboratory had developed a part-simulated, semi-batch chemical 

reactor (the 'batch kettle') initially to provide data for process 

operation research, and kindly agreed to provide collaborative facilities. 

Since the batch kettle not only comprised real plant, but was manned by 

experienced process operators, it was felt to provide a good opportunity 

to test the suitability of predictive aids in a realistic industrial 

setting. 



2.1 The 'batch kettle' plant 

The operation of the kettle is documented elsewhere (Cininas, 

1975a; King, 1975; King and Cininas, 1978) so only a brief 

description is given here. Illustrations of the batch kettle plant 

and its control room can be found in Appendices 7.1-7.2. The 

simulated process (Figure 28) produced an acid product following an 

exothermic chemical reaction. To achieve this the 90 gallon kettle 
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was first charged with 'feed', 'reactant' was added, and then the chemical 

reaction began. In order to avoid the cost of purchasing and disposing 

of chemicals and yet retain the semblance of a real plant, the process 

was partially simulated - water was used to represent the three 

chemical reagents and the reaction itself was computer modelled. The 

operators, however, treated the kettle as though it were a real process. 

An Argus 500 computer measured the quantities of reagents added 

and calculated the amount of product formed and the heat of reaction, 

which in turn determined the control setting of a second 'reaction steam 

heating' coil, resulting in an increase in the kettle temperature. In 

addition the Argus calculated a pH change which had to be continuously 

neutralised by the manually controlled addition of 'caustic', again 

using a simulated relationship. The pH value was displayed in the 

control room depicted in Figure 29, together with indications of 

temperature, reagent and cooling flows and a schematic mimic diagram 

(Figure 30). 
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Figure 30: Mimic diagram of batch reactor process displayed in 
the control room (Photograph by courtesy of Warren 
Spring Laboratory). 



The process was operated as follows:-

1) An initial charge of 'feed' was run into the reactor and 

0 the contents heated to 55 C. 

2) 'Reactant' was then added to the vessel under the process 

operator's control, causing temperature and pH to vary. The 

recirculation and cooling controls were used to maintain the 

temperature at 60°C + 5°C. 'Caustic' flow was used to 

neutralise the acid formed so that the pH remained in the 

range 7 ~ 1 unit. The reactant flow could also be used to. 

control. pH. 
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3) When the reaction was complete the vessel was heated to 75°C 

for a finishing period of 5 minutes. The contents of the 

reactor were then cooled to 50°C and the vessel was emptied. 

All process measurements and the plant operator's control actions 

were logged by the computer at 10 second intervals for subsequent 

analysis. 

2.2 Process operator research at Warren Spring 

A considerable body of knowledge had already been accumulated 

concerning the operation of the kettle, in terms of such standard 

measures as percentage conversion of reagents to finished product and 

the more sensitive measure of profit per batch (Cininas, 1975b), manual 

control strategies (King and Cininas, 1976) and verbal protocol evidence 

(Cininas, 1976). It had become clear that the batch kettle was of 

sufficient complexity to be representative of the problems encountered 

in chemical process control. Cininas (1975b) for example found that 
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whereas most operators could achieve good percentage conversion figures, 

there was a large variability between operators in their profit scores, 

although he did not attempt any detailed statistical analysis. The 

operators aimed only to optimise percentage conversion and profit 

figures. Whilst a good percentage conversion implied good temperature 

and pH control, several interacting factors contributed 'to profit 

(e.g. cost of feed, length of run, amount of product produced). It was 

thus difficult for an operator to understand what contributed to profit 

and therefore how to control it. Warren Spring had already been 

experimenting with a rudimentary form of decision aid, in the form of 

a computer-driven volume display ('Active feed meter') to replace the 

original tank level indicator. The latter was unreliable due to 

agitation of the kettle contents by the stirrer. A computer-driven 

volume display not only provided a reliable level indication, but also 

gave an indication of when the reaction phase was over, and according 

to Cininas (op.cit.) led to higher profit figures. 

King and Cininas (1976) further report that although manual control 

policy was vitally important during the reaction phase, there was little 

evidence amongst the batch kettle operators of 'feed-forward' (predictive) 

control, due to the difficulties they experienced in understanding the 

interaction effects of the process. The operators thus worked on non-

optimal rules-of-thumb for their control. This suggested to the present 

author that the provision of a simple predictive facility might improve 

operator control policy and thus lead to higher production figures. 

Cininas (1976) also comments on the need for some external aid, 

particularly for pH control, based on verbal protocol evidence. 
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2.3 Multipen Predictive Recorder (m.p.r.) 

An existing pen recorder (Watanabe type MC611-S4H) with provision 

for multiple pens was modified to serve as the m.p.r. by fitting 

extension arms to the existing pens (Shackel, Goillau and Laios, 1976). 

The final arrangement is detailed in Figure 31. The lowest pen 

provided·a standard current time trace, and the upper 3 pens gave 

indications of computer predicted values at 10, 20 and 30 seconds 

respectively into the future. This arrangement gave discontinuous 

predicted paths in essence similar to those on the CRT based displays of 

Chapters 5 and 6, but displayed in a cheaper way and in accordance with 

current practice in process control using pen recorders. 

The predicted values were derived from a Taylor series subroutine 

running within the suite of control programs on the Argus 500. The 

subroutine stored past values of smoothed temperature or pH and 

calculated derivatives, smoothing being achieved using the moving 

average technique. A listing of the Taylor series predictive subroutine 

is given in Appendix 7.3. Though the subroutine was capable of 

extrapolating on the basis of any number of derivative terms, due to 

the problems encountered with noise amplification a single term 

(i.e. straight line predictor) was used in practice. Predicted values 

were updated every 10 seconds and integrated over 1 second intervals 

to give a smoother response. In its operational form, the m.p.r. was 

trolley mounted directly below the temperature or pH panel recorder which 

it replaced (see Figure 29). 
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Figure 31: The multipen predictive recorder (m.p.r.) 

In the example shown, the predictive pens show a trend away 
from the steady state towards an extreme of, say, temperature. 
This trend is not shown by the conventional historical trace, 
but as amplified by the predictive pens the operator can quickly 
decide whether the excursion is outside his prescribed limits 
of control and take the necessary corrective action. A steady 
state on this recorder is reached when the pens are vertically 
in line one above the other. 
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2.4 Experimental Design 

Owing to the limited number of operators available and the need 

to use their time optimally, a balanced repeated measures design was 
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employed. A preliminary analysis had already shown temperature and pH 

to be the critical variables in the control of the reactor, and these 

factors were treated separately. Four operators were assigned to 

control the reactor with prediction on temperature, and four with 

prediction on pH. The latter condition was included at the operators' 

suggestion. For both studies (temperature and pH), two subjects 

encountered the 'with predictor' condition first and two the 'without 

predictor' condition first. 

for both temperature and pH: 

no predictor first 

m. p. r. first 

The design may be represented as follows 

no predictor m. p. r. 

Gl Gl 

G2 G2 

where Gl and G2 are independent groups of 2 operators, differing only 

in whether they received the m.p.r. condition as the first or second 

block of experimental trials. 

2.5 Procedure 

An initial period was necessary to 'bed in' the recorder and 

Taylor series subroutine. Experimental trials with the ne" recorder 

were slotted into the casual shift operator system employed at WSL for 

control of the kettle and in connection with other projects. 
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For each new operator, the nature of the m.p.r. and the purpose 

of the predictive pens was explained verbally. The experimental trials 

were then run. Operator comments were gleaned informally at the end of 

the experimental trials. The length of each run was such that a maximum 

of four runs could usually be obtained on a given day, two runs in the 

morning and two in the afternoon. It was customary for operators to 

take a break between runs. 

' It had been hoped that each operator would yield results from 

approximately five with- and five without- predictor runs, but with 

equipment problems and constraints of the shift system this proved to 

be impractical. However, in all cases averages over two to six valid 

runs were obtained. 

2.6 Subjects 

The batch reactor plant was operated by WSL personnel on a shift 

basis. All operators had had considerable experience in the control of 

the kettle, some since its commissioning in June 1974. 

2.7 Data Collection 

The Argus 500 computer maintained a process log of all variables 

and process states at 10 second intervals. A computer printout 

summarising the operator's performance was generated from each run. 

Figure 32 shows a typical example. An abbreviated version of this 

printout was output on a teletype in the operator's control room as 

feedback to him, and a keen sense of competition resulted amongst the 

operators. In addition a fuller breakdown of each trial by 10 second 

intervals was available on paper tape. 
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3. RESULTS AND STATISTICS 

From the available performance measures listed in the printout of 

Figure 32, three representative indices were chosen on the advice of 

Warren Spring personnel. 

in respect of: 

Mean performance scores were thus obtained 

a) Percentage conversion of reagents to product. 

b) Standard deviation about the predicted variable (temperature or pH). 

c) Calculated profit in £. 

These measures are plotted in Figure 33 (percentage conversion), 

Figure 34 (Standard deviation),··and Figure 35 (Calculated profit) for 

both temperature and pH prediction. An average over the four operators 

is also given. Original data scores can be found in Appendices 1.4-7.5. 

By taking averages to equalise the sample sizes, it was possible 

to perform a statistical analysis of the data. Summary ANOVA tables 

are given in Tables 9, 10 and 11, showing the effects of the m.p.r. and 

presentation order. 
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Figure 33: Effect of m.p.r. on percentage conversion of reagents to 
product: a) prediction on temperature (top) 

b) prediction on pH (bottom) 



236 

TABLE 9: Summary ANOVA for percentage conversion scores 

a) Prediction on temperature 

Sum of Variance Significance 
Source Sq:'ares df estimate 'F' level 

Between Subjects 

Order 2.030 1 2.030 30.136 5% (df 1,2) 

Subjects within groups 0.135 2 0.067 

Within Subjects 

Prediction (m.p.r.) 6.534 1 6.534 29.652 5% (df 1' 2) 

Prediction x Order 0.865 1 0.865 3.924 (df 1,2): 

Prediction x S.w.g. 0.441 2 0.220 

b) Prediction on pH 

Sum of Variance Significance 
Source Squares df estimate 'F' level 

Between Subjects 

Order 0.505 1 0.505 .056 - (df 1,2) 

Subjects within groups 17.993 2 8.997 

Within Subjects 

Prediction (m.p.r.) 0.865 1 0.865 12.855 - (df 1' 2) 

Prediction x Order 0.056 1 0.056 0.834 - (df 1,2) 

Prediction X S.w.g. 0.135 2 0.067 
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Figure 34: Effect of m.p.r. on standard deviation around predicted 
variable: a) prediction on temperature (top) 

b) prediction on pH (bottom) 
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TABLE 10: Summary ANOVA for standard deviation around the predicted variable 

a) Prediction on temperature 

Sum of Variance Significance 
Source Squares df estimate IF' level 

Between Subjects 

Order 14.751 1 14.751 7.162 - (df 1,2) 

Subjects within groups 4.119 2 2.059 

Within subjects 

Prediction (m.p.r.) 0.514 1 0.514 15.168 - (df 1,2) 

Prediction x Order 0.069 1 0.069 2.06 - (df 1,2) 

Prediction x S.w.g. 0.068 2 0.034 

b) Prediction on pH 

Sum of Variance Significance 
Source Squares df estimate 'F' level 

Between Subjects 

Order 0.0183 1 0.0183 0.45 - (df 1,2) 

Subjects within groups 0.0816 2 0.0408 

Within Subjects 

Prediction (m. p. r.) 0.0083 1 0.0083 1.923 - (df 1,2) 

Prediction x Order 0.0273 1 0.0273 6. 35 - (df 1, 2) 

Prediction X S.w.g. 0.0086 2 0.0043 
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TABLE 11: Summary ANOVA for calculated profit in [ 

a) Prediction on temperature 

Sum of Variance Significance 
Source Squares df estimate 'F' level 

Between Subjects 

Order 2,067.25 l 2,067.25 5.17 (df 1,2) 

Subjects within groups 799.21 2 399.61 

Within Subjects 

Prediction (m.p.r.) 6,809.45 l 6,809.45 3,902.26 0.1% (df 1,2) 

Prediction x Order 51.01 l 51.01 29.23 5% (df 1,2) 

Prediction x s.w.g. 3.49 2 l. 745 

b) Prediction on pH 

Sum of Variance Significance 
Source Squares df estimate 'F' level 

Between Subjects 

Order 568.688 l 568.688 .095 - (df 1,2) 

Subjects within groups 11,989.845 2 5,994.9225 

Within Subjects 

Prediction (m.p.r.) 137.365 l 137.365 2.894 - (df l '2) 
Prediction x Order 173.446 l 173.446 3.654 - (df l' 2) 
Prediction x S.w.g. 94.946 2 47.473 



4. DISCUSSION 

4.1 Percentage Conversion 

Figure 33 (a,b) shows that in both temperature and pH cases 

control of the kettle using the predictive pens gave an average 

increase in percentage conversion. The improvement, though small, is 

consistent with what one would expect from operators with considerable 

experience of controlling the process and already achieving good 

percentage conversion figures. 
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The difference was apparently more marked in the case of temperature 

prediction, and this was borne out by the ANOVA (Table 9a). Here the 

effect of temperature prediction was just significant at the 5% level, 

though coupled with a similarly significant effect due to the order of 

testing (the improvement due to the predictive facility being greater 

when this condition was encountered first). In contrast, for pH 

prediction the ANOVA indicated that none of the experimental effects 

were statistically significant {Table 9b), 

4.2 Standard deviation around the predicted variable 

Figure 34a shows a consistently smaller standard deviation around 

the temperature mean with the m.p.r. set to predict on temperature. 

However, the effect of temperature prediction just missed statistical 

significance in the ANOVA (Table lOa), again probably due to the low 

numerator and denominator of the F ratio resulting from the small sample 

size. 

· ·Figure 34b, however, is more equivocal. In only two cases 

(Operators A and B) was the standard deviation around the mean pH 

\ smaller using the predictive pens, and in both these cases the predictive 

facility was encountered second. Perhaps not too much should be read 



into this finding as the standard deviation around pH mean was 

already quite small when compared with the temperature equivalent. 

As might be expected, no statistically significant difference was 

indicated by the ANOVA (Table lOb). 

4.3 Caiculated Profit 
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Profit is perhaps the most critical index, being a system measure 

and the criterion which any aid must demonstrably satisfy if it is to be 

adopted by a sometimes sceptical management. 

Figure 35a indicates a large and consistent improvement in profit 

figures using the predictive facility for temperature prediction. The 

average profit per batch increased from £80 to £138 using the m.p.r., and 

by this reckoning the aid would pay for itself within months. The 

ANOVA (Table lla) further showed the effect of temperature prediction 

on profit figures to be significant at beyond the 0.1% level, though 

coupled with a slight interaction term due to presentation order. 

Prediction on pH (Figure 35b) showed a less consistent improvement, 

though the average profit per batch increased from £70 to £78 with pH 

prediction. However, this effect did not achieve statistical 

significance, again perhaps due to the small sample size. 

In all it would seem that using the m.p.r.'s predictive facility 

was indeed beneficial to control, particularly in the case of temperature 

prediction. An explanation of the discrepancy between the temperature 

and pH cases is that the temperature response over time tended to be 

inherently smoother, and so the relatively crude Taylor series 

predictor model could cope better with temperature compared to the faster 

moving pH (the latter may have warranted a more sophisticated, e.g. 

stochastic, predictor). 
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It is interesting to note that ~Or pH prediction, operators 

C and D obtained higher percentage conversion scores but higher 

standard deviation and lower profit figures when using the m.p.r. 

This highlights. the fact that the profit figure was a function of 

several interacting factors, and depended not only on percentage 

conversion but on costs for process time, reagents used, steam and 

water consumption, and a value of product which depended on the quantity 

produced and its saleable value. (Details of how the profit figure 

was arrived at are given in Appendix 7.6.) This example emphasises 

the importance of using realistic criteria in system evaluation. 

4.4 Operator Comments 

The operators' opinions of the m.p.r. were elicited at the end of 

the trials. One operator mentioned that the new-style recorder was 

an improvement on the previous panel recorder, though he felt that 

the scale was really too large to be meaningful. It is convenient to 

consider operator comments separately for the cases of temperature and 

pH prediction. 

In the former case, a consensus of opinion existed amongst the 

operators that, although it was "nice" to see how the pens altered with 

changes in the controls, the predictive facility was not of much practical 

use as temperature did not vary sufficiently to warrant a computer 

prediction. One is now left with trying to reconcile performance data 

which indicate a consistent improvement, with subjective reports of 

operators not consciously finding the predictive facility useful. It is 

evident from the trial logs and from operator comments that the 

predictive pens may have been used at least part of the time for control. 

If one discounts a Rosenthal (1966) 'trying to please the experimenter' 

effect as being incapable of explaining such a remarkably consistent 
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improvement in performance, one is left with the possibility that the 

predictive information, when it was used, was taken in subconsciously. 

This hypothesis needs further testing, though it does fit with the 

notion of conscious and subconscious components to a process 

controller's hierarchical predictive 'internal model' of his plant, 

as recently suggested by Rasmussen (1974, 1976) and others. 

Information may be used routinely by an operator without his being aware 

of its input and hence being able to verbalise it. 

Moving now to pH prediction, it is interesting to record that 

several operators actually requested a predictive facility be available 

on pH, and the plan of the original experiment was enlarged to 

accommodate this request. Unfortunately, as it has already been noted, 

a relatively unsophisticated predictor model is less well able to cope 

with fast-moving variables such as pH. One operator who reported 

using the pH predictor as a control aid became disillusioned with pen 

drift on the 30 second pen, and eventually gave up. In all, when 

predicting on pH the m.p.r. was judged to be more desirable, but less 

accurate, than on temperature. 

5. CONCLUSIONS 

The main conclusion from this chapter has been to confirm, in a 

realistic field setting, the findings of the previous chapter regarding 

the use of simple prediction models for slow response systems. The 

performance data indicate that the introduction of predictive 

information, in this case in the form of a multipen predictive 

recorder (m.p.r.) using a relatively unsophisticated smoothed Taylor 

series prediction model, can improve the control of a complex part-

simulated semi-batch chemical reactor. The improvement was more marked 



when future values of slow-moving temperature were predicted than 

when predicting faster-moving pH. 
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A conflict between the objective performance measures and 

operators' subjective comments suggests that the predictive information 

may have been taken in at a. subconscious level. 
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RESULTS SUMMARY, DISCUSSION AND CONCLUSIONS 



CHAPTER 8 

SUMMARY OF CONCLUSIONS FROM 

EXPERIMENTAL PROGRAMME 
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This chapter will, for convenience, present a brief summary 

of the major conclusions to date from the experimental programme. 

1. EXPERIMENT 1 (Chapter 3) 

1.1 Process 

Discrete, soaking pit scheduling problem. 

1. 2 Situation 

Laboratory simulation study. 

1. 3 Subjects 

Students, varied academic.backgrounds. 

1.4 Factors Investigated 

Input uncertainty (3 levels), prediction span (3 levels), 

academic background of subjects (maths/non-maths). 

1.5 Performance measures 

Scheduling errors, predictive activity, decision h.orizon. 

1.6 Major conclusions 
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Decision aids designed to cope with uncertain environments are 

still adversely affected by the introduction of uncertainty. Scheduling 

performance deteriorated as information uncertainty was initially 

introduced, though performance actually improved when the level of 

uncertainty was further increased, as subjects gave up using the aid in 

the manner intended. A similar pattern to scheduling error variations 

with uncertainty was observed for the predictive activity data. A 

consistent reduction in the scheduler's decision horizon was also found 

when uncertainty was increased beyond a critical point. 



249 

Prediction span had a statistically reliable effect on scheduling 

performance only in deterministic (certain) conditions, where longer 

spans led to lower scheduling error scores. An optimum prediction 

span emerged in the average scores under uncertainty, but this.was not 

confirmed by the statistical analysis. Reducing prediction span beyond 

a critical point did, however, lead to a reduction in both decision 

horizons and the amount of predictive activity. 

Non-specialist, non-mathematical users achieved scheduling error 

scores which were not statistically different from their counterparts 

with a mathematical background. 

2. EXPERIMENT 2 (Chapter 4) 

2.1 Process 

Discrete, job-shop scheduling problem. 

2:2 Situation 

Laboratory simulation study, test data from an operational 

job-shop. 

2.3 Subjects 

Students, mathematical background. 

2.4 Factors investigated 

Prediction span (3 levels). 
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2.5 Performance measures 

Percentage machine utilisation, percentage of jobs unfinished, 

scheduling time. 

2.6 Major conclusions 

Under deterministic conditions, longer prediction· spans lead to 

improved scheduling performance - a confirmation of the result from 

Experiment 1 (Chapter 3) under deterministic conditions. A critical 

value of prediction span was found below which machine utilisation 

performance deteriorated. 

3. EXPERIMENT 3 (Chapter 5) 

3.1 Process 

Continuous, chemical process control, continuous stirred-tank 

reactor (CSTR). 

3:2 Situation 

Laboratory simulation study, hypothetical chemical industry task. 

3.3 Subjects 

Students/research workers, mathematical background. 

3.4 Factors investigated 

Train with/without predictor trace (2 levels), experimental trials 
' 

with/without uncertainty (2 levels), presence and type of predictor 

model (3 levels). 

3.5 Performance measures 

Total product manufactured. 
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3.6 Major conclusions 

• 

This investigation should be regarded as an initial pilot study 

of the predictive display concept in continuous chemical process control. 

Due to inadequate smoothing, a simple Taylor series prediction model 

yielded reliably lower total product manufactured scores than did both a 

Perfect predictor and a No predictor condition. When uncertainty was 

present, the Perfect predictor trace gave the highest average figures. 

This was particularly noticeable for those subjects trained with the 

predictor. In the absence of uncertainty, the No predictor condition 

was to be preferred. It is suggested that predictive assistance may 

only be of benefit ·where the task is sufficiently demanding to warrant 

such assistance, as when uncertainty is introduced. 

Predictive displays seem to facilitate training, in that those 

subjects trained with a predictor trace achieved higher average 

production scores than did those trained without. It may well be that 

the value of predictive displays lies in helping controllers to form an 

accurate internal model of the process during training. 

Various problems are encountered in this pilot study, largely as 

a result of attempting to simulate a representative chemical industry 

task with naive student subjects in the laboratory. It was suggested 

that future work should concentrate on a much-simplified laboratory 

problem on which an in-depth study of predictive display characteristics 

could be conducted (Chapter 6). A second phase would comprise a full

scale field study to test the best overall design in a realistic 

indus·trial setting (Chapter 7). 



4. EXPERIMENT 4 (Chapter 6) 

4.1 Process 

Continuous dual-meter monitoring and control task. 

4.2 Situation 

Laboratory simulation study. 

4.3 Subjects 

Students, mathematical background. 

4.4 Factors investigated 
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Uncertainty (3 levels), prediction span (4 levels), prediction 

model fidelity (2 levels), plant gain (3 levels). 

4.5 Performance measures 

Time outside limits scores, control histograms, display 

switching. 

4.6 Major conclusions 

The introduction of a predictive display was found to lead to a 

consistent improvement in control performance. In general, time outside 

limits error scores were found to increase with faster plant response and 

increasing level of uncertainty. However, a complex interaction between 

plant gain, uncertainty, prediction span and prediction model fidelity 

emerged. 

For systems with a slow speed of response, there was little to 

choose between a highly accurate (Perfect predictor) and a relatively 

unsophisticated (Taylor series) prediction model, given that adequate 

performance with the latter was achieved at the expense of greater 
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control effort. For systems having moderate to fast response times, 

the more sophisticated prediction model was justified. 

Recommendations can be made regarding the choice of an appropriate 

prediction span for simple and sophisticated prediction models under 

various levels of plant responsiveness and input uncertainty. The 

simple prediction model seemed relatively immune to uncertainty 

variations, but was affected by the plant gain. When applied to systems 

with low to medium gains, longer prediction spans led to lower error 

scores. A slight reduction in usable prediction span might be 

advisable with high gain systems. Using the hypothetical Perfect 

predictor model, the optimum prediction span was progressively reduced 

with the combined effect of increasing uncertainty level and 

increasing plant gain. The conflicting findings of previous workers 

can be explained in terms of the differing gains, levels of uncertainty, 

and prediction models of the systems with which they were concerned. 

5. EXPERIMENT 5 (Chapter 7) 

5.1 Process 

Continuous, semi-batch chemical reactor. 

5.2 Situation 

Field study with real plant and instrumentation, reaction 

itself computer-modelled. 

5.3 Subjects 

· Experienced process operators. 
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5.4 Factors investigated 

With/without multipen predictive recorder (2 levels), 

temperature/pH prediction (2 levels). 

5.5 Performance measures 

Percentage conversion, standard deviation about predicted 

variable, calculated batch profit. 

5.6 Major conclusions 

The recommendations of Chapter 6 regarding the ·adequacy of simple 

prediction models for slow-response systems have been confirmed in a 

realistic industrial setting. Performance data indicated that the 

introduction of a relatively crude predictive facility in the form of 

a multipen predictive recorder brought about an improvement in the 

control of the complex semi-batch chemical process studied. 

Mean percentage conversion of reagents to finished product and 

mean batch profit figures were both enhanced. The improvement was 

most marked when future values of slow-moving temperature were predicted 

than when predicting the faster-moving pH. 
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1. OVERVIEW 

It may be helpful at this stage to recap how the philosophy under-

lying the experimental work has developed. The introductory chapters 

established the need for a programme of research to demonstrate the 

usefulness of predictive displays across a variety of discrete and 

continuous tasks, and to examine how variations in parameters both 

internal and external to the predictive display affect operator 

performance. The factors most critical to predictive display operation 

were established as input uncertainty, prediction span, and complexity 

of the prediction model. 

Following directly from Laios' (1975) work on Predictive Computer 

Displays, a first experiment (Cbapter 3) examined the effects of a wide 

range of uncertainty and prediction span values on operator performance in 

a simulated steelworks soaking pit scheduling task. In the absence of a 

real-world scheduling environment in which to verify the findings of 

Chapter 3, it was deemed methodologically appropriate to employ a further 

laboratory simulation of another discrete scheduling environment, this 

time a manual job-shop scheduling problem, but using test data "from an 

operational job-shop (Chapter 4). Only the effect of prediction span was 

tested, since the result of uncertainty in a real-world scheduling 

environment had been demonstrated elsewhere (Bibby, 1974). This concluded 

the experimental work carried out on aids for discrete systems. 

Chapter 5 branched into continuous process control applications with 

a pilot study to investigate the potential benefits of predictive displays 

therein. It became clear that trying to simulate a representative 

chemical process in the laboratory was not feasible in the time scale 

available, A two pronged approach was therefore adopted. A 

simplified laboratory simulation of a predictor-assisted dual

meter monitoring and control task with student subjects (Chapter 6) 
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was employed to examine such parameters as input uncertainty, 

prediction span, prediction model fidelity and system gain. Chapter 7 

took the predictive display concept, formulated as a multipen 

predictive recorder (m.p.r.), into an industrial field situation (or 

as near to one as any systems engineer testing a prototype device is 

likely to get). Real plant and experienced operators were used to 

evaluate the m.p.r. in the control of slo~-moving temperature and 

faster-moving pH. 

The experiments have relied for the most part on objective 

performance measures, largely because these give a good impression of 

predictive display effectiveness, and because they were readily 

available from the computer-based systems emloyed. Where appropriate, 

however, objective measures were supplemented by formal or informal 

questionnaires and the collection of limited verbal protocols (Chapters 

3, 4 and 6). 

In the introduction to the experimental programme, six aims were 

outlined broadly relating to:-

1) What are the effects on performance of variations internal and 

external to the predictive display in discrete and continuous tasks? 

2) Are the results of laboratory studies borne out in the real-world? and 

3) What are the implications of predictive display research for the 

modelling of human control and decision-making behaviour? 

Having reviewed the philosophy behind the experimental programme, 

the following sections will attempt to answer these questions and to 

discuss, expand and inter-relate the experimental findings within the 

existing body of predictive display knowledge. 



2. BENEFITS OF PREDICTIVE DISPLAYS 

2.1 Objective Performance Measures 
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It is encouraging to note that, in common 11ith the previous 

predictive display studies reviewed in Chapter 2, the experiments 

uncovered distinct improvements in performance through the use of 

predictive displays to assist in the control of industrial processes. 

In the later experimental chapters (Chapters 5, 6 and 7) this was 

reflected as a straightforward improvement in the 'with predictor' 

conditions compared to the 'no predictor' conditions. In the earlier 

experimental chapters (Chapters 3 and 4) the benefits of predictive 

displays over conventional equipment was not tested directly, but 

rather were reflected indirectly through a gradual reduction in 

prediction span, i.e. by cutting down in stages the amount of predictive 

information displayed to the operator. 

It can be stated with confidence that for the direct comparisons 

of operator performance with and without prediction, the predictive 

display is to be preferred on all counts to traditional non-predictive 

alternatives. In the dual-meter monitoring and control task of 

Chapter 6, for example, an improvement in the average time outside limits 

scores of up to 40% using the Taylor series extrapolation model and up 

to 70% using the hypothetical Perfect predictor resulted (Figure 23), 

coupled with a smoother pattern of control (Figure 27). Using the 

multipen predictive recorder (m.p.r.) of Chapter 7, the average batch 

profit increased from £80 to £138 (73%) whenpredictingfuture values of 

temperature, and from £70 to £78 (12%) when predicting the faster-moving 

pH variable. In addition, fluctuations around the temperature and pH 

target values of 65° and 7 respectively were reduced. This study has 

particular significance since it was conducted in a pseudo real-world 

environment with actual plant and experienced operators. 
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The pilot study of Chapter 5 must be considered as an exception 

to the general rule, since as was noted in that Chapter, the unsmoothed 

Taylor series prediction model and the simulated task itself were open 

to criticism. However, even in this task a small improvement of up to 

4.5% in the total amount of product manufactured was observed where 

student subjects had been specifically trained to use the predictor, 

and where the task was sufficiently demanding. It should be noted that 

even a marginal improvement in amount produced or similar scores (witness 

the seemingly negligible 1.8% increase in percentage conversion from 

Chapter 7) can mean a substantial financial gain, depending on the 

pricing structure. The general findings from the pilot study seem to 

fit in with Rouse's (1970) observation that predictive displays may only 

be useful in tasks of medium difficulty - in very simple tasks they are 

not strictly necessary and may only serve to distract. Similarly, in 

highly complex tasks the operator may be overloaded and ignores the aid, 

instead responding at an intuitive level. The pilot study was also 

worthwhile in that it tended to confirm Smith and Kennedy's (1975) 

suggestion that the true value of predictive displays may be in.the 

training environment. In Kelley's (1968) language, predictive displays 

assist the operator to build up an accurate internal model of the 

process. In the pilot study, subjects trained with the predictor 

subsequently performed better in all conditions (though not reliably 

different in statistical terms) than their co~leagues who had been 

trained conventionally. 

The alternative method of testing predictive display effectiveness 

was indirectly via a gradual reduction in the prediction span. In the 

first of the experimental chapters (Chapter 3) to adopt this indirect 

approach, conflicting results were obtained depending on whether or not 
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uncertainty was present. Under deterministic conditions (i.e. no 

uncertainty element) the mean number of scheduling errors rose by 40% 

as prediction span was reduced from full to quarter screen. It is fair 

to assume that the quarter screen condition was close to a 'no predictor' 

condition since insufficient predictive information was in fact visible 

to the operator for him to make effective use of it. The reduction 

confirms the work of Laios (1975) who obtained a reduction of 75% in 

scheduling errors with the introduction of a predictive facility. (The 

percentage difference between the two studies is probably due to 

variability in the subject pools, as well as the slightly different 

nature of the comparisons). Under input uncertainty, however, the 

reduction in prediction span had a somewhat different effect, with the 

emergence (though not statistically significant) of an optimum prediction 

span in the average scores (Figure 7). This point is of particular 

interest and will be elaborated in section 3. 

Also under deterministic conditions, the results of Chapter 4 

using test data from an operational job shop confirm that the facility 

to predict ahead with an analogue representation of the problem 

environment can be beneficial, even if the 'test loads' are done manually 

using wooden blocks rather than electronically on a c.r.t. display. 

Scheduling performance as reflected by the machine utilisation scores 

was observed to fall off by 6% as prediction span was reduced. The 

previously made point about marginal performance improvements and eventual 

financial benefits is again relevant here. Gibson and Laios (1978) had 

already shown the superiority of the scheduler's abacus arrangement over 

a non-predictive but otherwise equivalent, numerical representation. 
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2.2 User Acceptance 

Subjective acceptance of the predictive display devices was on the 

whole also favourable. The only exceptions were when predictor 

credibility had been reduced by inadequate smoothing (as with the 

unsmoothed Taylor series of Chapter 5), or by the choice of an 

inappropriate prediction model (as when the m.p.r. of Chapter 7 was set 

to predict on pH); or when high levels of uncertainty or a very short 

prediction span reduced the effectiveness of the display (Chapters 3 

and 6). 

In the scheduling studies of Chapters 3 and 4, subjects made 

extensive use of the planning facility and commented to this effect. 

When part of the planning facility was blocked off, subjects complained 

of the increased task difficulty and several reported continuing the 

'test load' procedure mentally. The predictive facility was flexible 

enough to cope with individual subjects' differing search patterns, 

i.e. depth of search, degree of organisation when testing alternatives, 

etc. Non-mathematical users appeared to be as capable of using the 

predictive aid as were users with a mathematical background. 

In the pilot study of Chapter 5 the Perfect predictor model was 

reported to be useful in initially filling the kettle without incurring 

overheat errors, and also in the later phase of controlling the reaction. 

It is particularly interesting to record that without being told of this 

peculiar program idiosyncrasy, several subjects made use of the predicted 

temperature trace's irregularity pending kettle overflow to prevent the 

latter occurring. This evidently agrees with the common observation 

that operators can detect and employ informal communication channels 

(display quirks, noises, smells, etc.) to assist with their control. 
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Indeed, Agnew and Pyke (1969) have commented that left to his own 

devices the human will use anything that pre-packages information for 

him. 

Subjects also stated their preference for the predictive display 

option in the dual-meter mo~itoring and control task of Chapter 6, though 

opinions were divided for preference between the accurate and the crude 

prediction models. The experienced operators of Chapter 7, however, 

commented that, whilst the predictive pens of the m.p.r. were "nice" 

to look at, the temperature.control problem was not sufficiently complex 

to warrant predictive assistance. Performance was improved, however, 

and as noted in that chapter it.may well have been that the predictive 

information was taken in subconsciously. In addition, the operators 

had been used as guinea-pigs to test various control aids prior to the 

present study, and had developed a somewhat jaundiced attitude towards 

any form of assistance. This coulJ well explain the apparent 

discrepancy between the opinions of the naive student subjects and the 

experienced Warren Spring operators. The latter's comments may not 

therefore be representative of the display's reception in practice. 

3. FACTORS AFFECTING PREDICTIVE DISPLAY PERFORHANCE 

3.1 Input Uncertainty 

The general impression from the programme of experimental studies 

is that input uncertainty, whether in the form of unreliable arrivals 

information or the contamination of signals by noise, degrades predictive 

display effectiveness. This finding is in accordance with the limited 

previous work in this area reviewed in section 3.1 of Chapter 2 

(e.g. Bibby, 1974; Laios, 1975). The reasons for the degradation in 

performance are not difficult to comprehend. In discrete cases 

(e.g. Chapter 3) schedules made under uncertainty will be based on 
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unreliable information and once planned may require frequent updating 

as arrivals do not occur at the expected times. If insufficient time 

is available to revise the schedule an off-the-cuff choice must be 

made, and with successive choices there is an increasing likelihood 

that one of these will be in error. Once an inappropriate choice has 

been made, it is a characteristic of multistage decision-making tasks 

that performance is usually affected for the whole task. In continuous 

applications (e.g. Chapter 6) with noise contamination present, the 

predicted path displayed to the operator will be in error by an amount 

proportional to the magnitude of the input .disturbance. As in the 

discrete case, the operator will receive an erroneous impression of how 

the plant is or will be behaving, and his control actions will be 

inappropriate. 

It should be noted that performance still deteriorates if 

information about the uncertainty is displayed to the operator, either 

by showing the likely interval within which the arrivals will occur 

(as in Chapter 3), or by incorporating diagnostic information about the 

uncertainty as part of the predicted trace (as in Chapter 6, Perfect 

predictor model). A true 'adaptive display' (Kelley and Prosin, 1972) 

would doubtless be necessary if it were desired to make an effective 

diagnosis about the uncertainty element. In fact, unacceptably high 

levels of uncertainty can occur in real life when an operator takes 

over from an automatic controller, either in an emergency or as part of 

routine maintenance procedures. It will take a certain amount of time 

for the operator to build up an accurate mental picture of the current 

process state. 
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Several qualifying remarks must, however, be made to the earlier 

statement that uncertainty degrades performance. Firstly, the level 

of uncertainty is important. Chapter 3 showed that although 

performance deteriorated at moderate levels of uncertainty, if the 

uncertainty level increases to such a degree that rational choices 

cannot be made on the basis of the displayed information, then operators 

may give up using the aid as intended and may revert to their previous 

unaided method of dealing with the task, perhaps using an internal model 

of the problem environment formed with the assistance of the predictive 

display. Rouse (1970) has also commented .to this effect. In this case 

then, depending on the operator and the task, performance may deteriorate 

or may even improve. 

Secondly, the effect of uncertainty is confounded by interactions 

with parameters of the predictive display and with characteristics of 

the task itself. This will be discussed further under subsequent 

headings. In Chapters 3 and 6 for example, with a perfectly accurate 

prediction model, one of the main effects of uncertainty was to reduce 

the usable prediction span (in Chapter 3 this was evident in the averages 

of Figure 7, though not statistically significant). Crude system models 

on the other hand seem relatively immune to uncertainty, as witnessed by 

the Taylor series expansion of Chapter 6. There is thus an apparent 

dichotomy between Class I and Class II predictive displays regarding 

their susceptibility to input uncertainty. 



The effect of uncertainty on predictive display effectiveness 

is also dependent to some degree on the difficulty of the original 
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task. In the pilot study of Chapter 5, the task without uncertainty 

was sufficiently easy for the operator to manage quite well without 

the predictive display on temperature, predictive information serving 

only to distract. When uncertainty was introduced however, the task 

became sufficiently demanding to warrant an accurate predictor and so 

performance improved. As noted earlier in Chapter 5, the introduction 

of uncertainty also served to start the reaction phase slightly earlier, 

which may go part-way to explaining the improved production figures 

under uncertainty in this task. In the dual-meter task of Chapter 6 

however, the basic problem was in itself sufficiently taxing for the 

additional load caused by the introduction of uncertainty to result in 

a worsened performance. 

3.2 Prediction Span 

A main finding from the experimental programme is that the choice 

of prediction span is a function of other predictive display parameters 

and task characteristics. Such an interaction was hinted at, though 

not proven, by some previous workers, e.g. Kelley (1960a), Bernotat (1972), 

who commented that different systems would undoubtedly need different 

prediction spans, probably related to the 'responsiveness' of the system 

(plant gain and control order) and to the magnitude and frequency of . 

unpredictable disturbances (input uncertainty). To this list must be 

added the fidelity of the prediction model. Considering that a four-way 

interaction is effectively present between these parameters, the present 

author believes that it is hardly surprising that in the past different 

authors have come up with conflicting findings regarding choice of 

prediction span. 



266 

Firstly, with a sufficiently demanding task and an entirely 

accurate prediction model (as in Chapters 3 and 6), uncertainty reduces 

the useful range of prediction spans. As prediction extends further 

into the future it becomes progressively more inaccurate and likely to 

mislead the operator. As Rouse (1970), Dey (1971) and Bernotat (1972) 

also found, an optimum prediction span thus emerges with spans either 

side leading to reduced performance (see Figures 7, 25 and 26). Under 

deterministic conditions (Chapters 3, 4 and 6) however, or when the plant 

is sufficiently slow moving (Chapter 6, low gain- Figure 24), there is 

little restriction on the length of prediction span. The 'optimum span' 

phenomenon thus seems to be most obvious in complex systems. 

Secondly, with crude prediction models, the effective range of 

usable prediction spans is enhanced. This seems to confirm Bernotat 

and Widlok's (1966) finding that a first-order, extrapolative predictor 

was useful over a wide range of prediction spans, though as the order 

of the prediction model was increased, i.e. as it became more accurate 

and nearer to a hypothetical 'perfect predictor', the useful range of 

prediction spans was reduced. The findings of Chapter 6 suggest that 

crude prediction models of the type used by Bernotat and his colleagues 

are relatively immune to uncertainty, so that no shortening in prediction 

time was necessary even with quite high noise levels. This may well be 

because the slow response rate of such a model acts as a partial filter 

to the input noise. 

Lastly, prediction span is related to the dynamics/response 

characteristics of the process. Chapter 6 demonstrated that, with a 

completely accurate prediction model, the effect that uncertainty had 

of reducing the usable prediction span was most marked for the higher 



gain conditions (Figures 25 and 26). In the low gain condition 

(Figure 24) it had far less effect. With the Taylor series 

prediction model, on the other hand, the effect of different 

prediction spans was most marked in the low gain condition, and its 

effect lessened as plant gain increased until in the high gain 

condition no significant difference could be detected between 

different spans. 
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In a sense, high uncertainty levels and fast plant dynamics can 

be thought of as having the same effect on accurate prediction models, 

since both effectively increase task difficulty. It may be that there 

is an optimum distance for looking ahead in all control and decision

making applications, related to the task complexity and any lags present. 

Tomizuka and Whitney (1975) have suggested that an optimum preview 

distance exists for automatic control systems, and have developed a rule 

of thumb relating practical preview distances to controlled plant 

eigenvalues. A similar concept may well apply to operator-inclusive 

predictive display systems. Performance will attain its maximum 

potential when the prediction span is equal to the required decision 

horizon for the task. For example, in the scheduling task of Chapter 3, 

it was calculated that adequate performance could be achieved by 

planning 2-3 stages ahead, and in continuous control applications by 

extrapolating up to the next required control reversal or 'turning point' 

of the track. In fact an optimum prediction span of 20 minutes (or 

roughly 1-2 stages ahead) did occur under uncertainty for the average 

scheduling error scores of Chapter 3, lending support to this hypothesis. 

The situation for continuous control tasks is more complex. 



Hollister (1967) has reworked much of Bernotat and Widlok's 

(1966) early experimental data in an attempt to explain and 

mathematically model their results. (It has already been noted in 

section 5.1 of Chapter 1 that such control theoretic models may 
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adequately describe a human operator's output, but do not necessarily 

represent his internal processes.) Hollister's estimates of optimum 

prediction times agreed to within 8% of Bernotat's experimental results. 

Hollister considers a third order controlled process similar to that 

studied in Chapter 6 as part of his analysis, and deduces the optimum 

prediction time to be inversely proportional to the plant gain, as well 

as inversely proportional to the difficulty the operator experiences in 

controlling the process. The results from Chapter 6 seem to bear out 

this relationship, particularly with the hypothetical perfect predictor 

model. Optimum prediction spans were reduced as plant gain increased 

and, if one considers the introduction of uncertainty as an increase in 

task difficulty, then also as task difficulty rose. With the Taylor 

series extrapolation model however (the same model used by Bernotat), 

system gain had a far lesser effect on optimum prediction times, and 

task difficulty as reflected by increased uncertainty apparently had 

no effect at all. 

In practical terms, Bernotat (1972) appears to recommend that the 

choice of prediction time for minimum control error should be of the same 

order of magnitude as the response lag of the controlled process - as an 

example he suggests a prediction time of 0.7 seconds for a third order 

system where the lag is equal to 0.4 seconds. This seems a useful 

rule-of-thumb to follow, and is supported by analysis of Chapters 6 and 

7: in Chapter 6 the measured response lag to a control change varied 



from approximately 15 seconds (low gain) to only a few seconds (high 

gain), The batch kettle process of Chapter 7 had a lag of between 

40 seconds and 1 minute (King, 1975). 
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In general it would seem that the choice of prediction span should 

be roughly proportional to the response time of the system, where response 

time is a function of plant dynamics and the control task. In tasks of 

variable difficulty, an operator-adjustable prediction span as suggested 

by Kelley (1960b) may be the best solution. 

3.3 Prediction Model Fidelity 

This factor was examined directly in Chapters 5 and 6. A main 

finding of Chapter 6 was that for slow response systems there is little 

to choose between a completely accurate prediction model of the process 

and a far less sophistic~ted alternative, given that adequate performance 

with the latter is achieved at the expense of greater control effort. 

Even a crude mathematical prediction will often produce far better 

extrapolations than the human operator can manage, Smoothing of the 

data on which predictions are based is a vital factor, however. As 

Chapter 5 showed, inadequate smoothing can seriously reduce the 

credibility of a crude prediction model, giving worse performance 

with the predictive display than with no prediction at all. 

In practical terms, the over-riding advantage of a crude 

prediction model such as the Taylor series expansion is that the 

computational requirements are greatly reduced. It would be technically 

feasible to implement such an extrapolative device on a micro-processor 

chip, the resulting predictions being displayed on a c.r.t. display (in 
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line with current trends in process control) or on a modified pen 

recorder (in line with current practice). The latter approach was 

adopted in the pseudo-field test of Chapter 7. With the m.p.r.'s 

predictive pens set to predict on temperature, the practical usefulness 

of a predictive display based on a crude extrapolation model was 

confirmed. However, prediction of the faster-moving pH variable was 

not so successful, and only a small increase in average batch profit 

scores was obtained. This result was in a sense pre-empted by the 

findings of Chapter 6 : with faster-moving systems, a more sophisticated 

prediction model with an appropriately chosen prediction span is to be 

preferred (see Figures 25 and 26). (A practical drawback to using an 

accurate fast-time model is, of course, that it is considerably more 

difficult to implement.) Hence it is not surprising that when set to 

predict on the faster-moving pH variable, the crude Taylor series 

expansion was inadequate. 

As previously noted, the choice of an appropriate prediction 

model is inter-related with other predictive display and task 

parameters. The design engineer has a wide range of models to choose 

from, ranging from the relatively unsophisticated Taylor series 

expansion, through Kalman filters and statistical predictors, to fully 

fledged dynamic system models. In practical terms, the choice of an 

appropriate prediction model must depend on the particular task. 

Reports from the subjects of Chapter 6 suggest that operators 

did not form precise internal models of plant dynamics but rather 

used some form of crude process representation, e.g; a yo-yo, simple 

harmonic motion, inverted pendulum etc., on which to base their 

predictions. Process operators are also known to form and make use of 

crude rules-of-thumb (Ketteringham et al., 1970), category 
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control models which ignore process interaction effects (King and 

Cininas, 1976). It is interesting to note that the crude internal 
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models which experienced operators are known to adopt have been shown, 

in the context of automated predictive displays and when adequately 

smoothed, to be almost'immune to uncertainty and perhaps also to other 

variations in the environment. The implications of this statement for 

a process operator's choice amongst his assumed repertoire of possible 

internal models will be discussed at length in a later section. Umbers 

(1976) has also shown that grid controllers in uncertain environments 

either made rough estimates or did not bother at all when they realised 

that their predictions did not lead to accurate results. 

3. 4 Process dynamics /response char·acteristics 

Chapter 6 was the only chapter specifically to investigate 

process dynamics, in the form of plant gain, on predictive display 

effectiveness. In absolute terms, performance fell off with increasing 

plant gain, though in relative terms the improvement with predictive 

assistance over the no prediction condition was greatest for the higher 

plant gains (Figure 25 and 26). !his agrees with Bernotat and Widlok's 

(1966) findings. These authors had shown that, in a pilot study varying 

the gain of a third order system over the full range of possible values, 

the relative improvement due to the predictor was also greatest for high 

gain values. In absolute terms, performance similarly fell off at high 

gain values, and interestingly at very low values as well - in Chapter 6, 

there was some evidence that performance also deteriorated at very low 

gains, since the pointers moved so slowly that changes in pointer 

position were virtually impossible to detect. Warner's (1969) finding 

that exploratory prediction was independent of system gain over the 

ranges investigated is probably a reflection on the performance measures 

he used. 
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It must be stressed that the effect of gain went hand-in-hand 

with the various predictive display parameters mentioned earlier. 

At low gains, performance was virtually identical using sophisticated 

or crude prediction models, though the latter was at the expense of 

greater control effort. Although performance deteriorated for both 

prediction models as gain increased, a gain x p'rediction span inter

action was present with the crude prediction model. This meant that 

for the Taylor series extrapolation model the effect of different 

prediction spans lessened as plant gain increased. The reverse effect 

was found for the perfect predictor, both prediction span and plant gain 

interacting with the level of uncertainty. 

Though the gain; or process 'speed' factor, was not investigated 

specifically in the scheduling application of Chapter 3, there is no 

reason to suppose that a faster process would not have reduced 

predictive display effectiveness, since less time would have been 

available to try out alternative schedules. Indeed, when designing 

the simulation a simulated process speed of twice real time was chosen, 

since a faster process was difficult to control and running in real 

time induced problems of fatigue and boredom. 

3.5 Repetition rate/frequency of updating 

These parameters were not investigated experimentally, being 

largely pre-determined by the computer systems on which the simulations 

were run. Updating of the prediction model occurred every second for 

the PDP-12 laboratory simulations, and once every 10 seconds on the 

Argus 500 computer at Warren Spring. The impression gained was that 

the inaccuracies of a crude prediction model could to some extent be 

tolerated if the interval between successive displayed predictions 

were sufficiently small. 
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3.6 Mode of control 

It is difficult to talk about modes of control without again 

raising the distinction between discrete and continuous predictive 

display applications. As was mentioned earlier, the predictive 

display concept was found to benefit both discrete scheduling and 

-continuous control applications. The main differences between the 

two areas seems to be in the appropriate choice of useful prediction 

spans, and in the mode of predictive display operation. In discrete 

applications, the effective time scale seems to be longer, so prediction 

spans in the order of minutes or hours are appropriate. Since time is 

available to test alternative options, exploratory prediction is the 

best choice - indeed, this mode of control was adopted in Chapters 3 and 

4. For continuous applications, little time is available to test 

alternative actions, and therefore on-line prediction is most 

appropriate. This form was used in Chapters 5, 6 and 7. Here 

prediction spans were in the order of seconds. 

However, it should be stressed that in either case the use of the 

predictive display is the same - to provide future-oriented information 

about the state of the system. In exploratory prediction, the 

operator must search out the prediction for himself, whereas in on-line 

prediction the consequences of his actions are provided automatically 

' 
£or each control change that he makes. This lends further support to 

the hypothesis that a single model may be appropriate to explain human 

operator behaviour in both continuous control and decision-making 

tasks. As was noted in the introductory chapter, Gregory (1970) 

has pointed out that, whether the process be discrete or continuous, 

the human operator samples information and so his processing of it must 

be through a discrete mechanism. Subsequent sections will attempt to 

construct a model of the human operator combining the best features of 

existing models in accordance with the present experimental evidence. 
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4. ROLE OF PREDICTION IN HUMAN CONTROL AND DECISION-MAKING 

It would seem, from the improvement in performance when 

predictive assistance was introduced, and from subjects' reported mental 

procedures when the predictive displays were removed (or became unusable 

due to high uncertainty levels or short prediction spans), that 

prediction is an important part of human control and decision-making 

skills. This conclusion is in accord with the existing body of 

research reviewed in Chapter 1. In addition, anecdotal evidence 

suggests that operators build up over time an internal or mental model 

of the process, and that the predictive display is of considerable 

benefit in helping them to do this. As noted in Chapter 5, subjects 

trained with the predictive display achieved higher production scores 

in all subsequent trials. Hence it may well be that the practical 

significance of predictive displays is in the training environment, as 

suggested by Smith and Kennedy (1975). 

A separate study on the Batch Kettle plant at Warren Spring 

had also shown that experienced operators did not employ open-loop, 

'feedforward' control based on prediction since they experienced 

difficulty in understanding process interactions (King and Cininas, 

1976). Instead they reduced their control model to single loops 

wherever possible, and treated interaction effects as disturbances. 

This 'rule of thumb' approach was sub-optimal. Hence it is not 

surprising that providing a job aid to assist the operators in making 

feedforward control actions (the m.p.r.) brought about an improvement 

in performance. 
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Since prediction is such an important component of human control 

and decision-making skills, it is evident that any model of the human 

operator in the experimental tasks of this thesis must centre around 

an internal predictive model of the process. The performance measures 

discussed so far have been mainly objective, coupled with subjective 

comments, and whilst useful in determining the effectiveness of the 

various predictive displays they have been inadequate for modelling 

purposes. To gain a better understanding of human thought processes 

in industrial tasks, the verbal protocol approach was used and is 

discussed in section 5. 

5. VERBAL PROTOCOLS 

It was mentioned earlier that in addition to the limited 

subjective reports whilst performing the various experimental tasks, 

detailed verbal protocols were collected for the experiments of 

Chapters 3, 4 and 6. As has become the tradition in protocol studies, 

one subject was used as the source of the protocol data. The subject 

in question was experienced in all the experimental tasks and had 

achieved consistently good performance scores. He was chosen not 

only for his ability, but for his willingness to verbalise his 

thought processes. 

A separate study of operator strategy using verbal protocols 

had also been carried out on the Warren Spring Batch Kettle plant 

(Cininas, 1976) before the introduction of the m.p.r., and reference 

will be made to the findings of this study for comparison purposes. 

The pilot study of Chapter 5 was not considered a suitable task for 

protocol analysis in view of the problems encountered with the smoothing 

of the prediction model and with the task itself. 
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Analysis of the protocol data followed the now standard format 

of: 

1) Transcription of protocols. 

2) Classification of phrases into an exclusive set of activities. 

3) Grouping of activities to form recognisable and recurrent patterns. 

4) Development of a flow-diagram representation of the behaviour. 

A detailed description of the technique is given in Bainbridge 

(1972) or Umbers (1976). The next sections present the flow diagrams 

developed for the experimental tasks of Chapters 3, 4, 6 and 7. 

Although they are based on the thoughts of only one subject, the basic 

protocol material was supplemented by discussing the controller's 

strategy with him after each protocol had been recorded. The flow 

diagrams should therefore be treated as a general description of how 

a typically competent operator might set about controlling the various 

processes. This approach is deemed sufficient to permit comparisons 

of control and decision-making behaviours between the tasks. 

5.1 Discrete tasks 

The routines used in the scheduling applications of Chapters 3 

and 4 are described respectively in Figures 36-38, and in Figure 39. 

It can be seen that distinct similarities are present between the two 

cases. In both, much time was spent in trying out the effect of 

schedule·.adjustments in relation to the target objectives, by 

evaluating the consequence of a particular allocation of ingot to pit, 

or of job to machine. Evidence from the two tasks tends to lend 

support to Bainbridge's (1974) concept of a loose, hierarchical goal-

directed model in decision-making tasks. As has been previously noted, 
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subjects appeared to be setting up goals and sub-goals within the 

main task objectives of achieving a constant output flow from the 

soaking pit complex, or maximising machine utilisation whilst 

minimising jobs unfinished in the production scheduling problem. 

The sub-goals related to the allocation of particular ingot arrivals 

(or groups of these), and particular jobs .<or groups of jobs), which· 

the subject scheduled to his satisfaction before moving on. The 

sequence of operations did not appear to be particularly rigid. For 

example, when re-scheduling in the soaking pit problem the subject 

might clear the entire screen of all test loads, clear only the pits 

he was interested in, or superimpose a new value onto an old test load. 

This suggests a flexibility of ·approach, confirmed in the job shop 

scheduling problem. 

Figure 36 shows that a central feature of the soaking pit 

scheduling problem with virtually no predictive assistance was an 

internal model of the pit soaking times, with which schedule clashes 

could be predicted before making a test load. Ingots were scheduled 

as they became visible from beneath the card, and the main use of the 

PCD was to determine pit status before test loading. The effect of 

the predictive aid was that the consequences of a decision could be 

worked through on an external representation of the problem environment, 

whereas in the unaided task this had to be done mentally. The PCD 

also gave an explicit representation of how the schedule 'pattern', 

or distribution of test loads, was developing. Though the job shop 

scheduling problem. was considerably more complex, the planning 

facility was similarly employed not only to check for schedule conflicts 

but as an aid to the detection of spaces and odd gaps where a job or 

part-job might fit. In both the soaking pit and job shop scheduling 

problems, the subject seemed capable of talking through the consequences 
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Note that separate 'panic' subroutines were present in the 

soaking pit scheduling task when the ingot arrivals information was 

updated, and when an ingot actually arrived (Figure 38). In the 

latter case the standard Select, Test, Evaluate procedure became 

temporarily abandoned whilst the operator judged the best pit into 

which the ingot could be loaded, either from the options on the display 

or from a previously remembered allocation·. In some cases the operator 

was caught unawares, and with no schedule planned on the display had to 

make an off-the- cuff choice. 

5.2 Continuous Tasks 

Flow diagrams for the continuous control applications of Chapters 

6 and 7 are given in Figures 40-42 and Figures 43-44 respectively. 

(Figures 43 and 44 are modified from Cininas, 1976, who recorded 

protocols from an experienced operator on the Batch Kettle.) ·Again 

there is a distinct similarity between the protocols for the two tasks. 

In both cases the subjects follow_ a standard pattern of Examine value, 

Judge whether acceptable, Control action if necessary, Switch displays. 

Separate subroutines (Figure 44) were delineated from the Batch Kettle 

control task to account for control patterns under temperature and pH 

alarm conditions, whereas in Figures 40-42 these were incorporated into 

the main diagrams. 
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Perhaps the most interesting feature of Figure 40 is that when 

controlling without the predictor the subject made control adjustments 

not only when the pointer was moving or had changed direction, but 

when it was perceived as slowing. In other words, control actions 

were being made based on the pointer's predicted point of turn. This 

suggests that some form of internal model was being used to extrapolate 

the pointer's path into the future. However, since the subject did 

not make any verbal reference to the pointer's future position but 

merely commented whether it was slowing or not, this implies a 

subconscious extrapolation process. 

When the Perfect predictor trace (Figure 42) was introduced, 

the prediction mechanism was externalised and so the extrapolative 

judgement "Is the pointer slowing?" could be replaced by the direct 

perceptual judgements of "Pointer and tip of predictor trace within 

limits?" and the finer question "Predictor trace horizontal?" This 

statement was verbalised, implying that its locus of processing was 

conscious. When the Taylor series prediction model (Figure 41) was 

introduced, the resultant flow diagram was a compromise between the 

unaided and Perfect predictor situations. The question "Pointer 

moving?" coupled with "Changed direction?"was still a predominant part 

of the behaviour, but rather than judging whether the pointer was 

slowing, a direct perceptual judgement "Predictor trace level?" could 

again be made. This statement was also verbalised, again implying 

that its locus of processing was conscious. 
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Some mention will be made of the findings from the Batch Kettle 

protocol study {Cininas, 1976). Protocol evidence from this study 

suggested that the operator, even though experienced, had considerable 

difficulty in controlling pH during the first 800 seconds of the 

reaction since he was overloaded and the pH changed very quickly during 

this period. This phase is indicated by the dashed line in Figure 43. 

pH alarms were also a problem throughout the reaction. As noted 

previously (King and Cininas, 1976), the batch kettle operators did 

not practice feedforward control since they could not comprehend the 

process interaction effects. Coupled with the difficulty in controlling 

pH, this suggested the need for some form of semi-automated external aid, 

such as the m.p.r. It is therefore surprising that the kettle operators 

did not report making conscious use of the m.p.r. - there is an obvious 

discrepancy with the naive subject's protocols from Chapter 6. However, 

it should be remembered that the Warren Spring operators were highly 

experienced in controlling the Kettle. It may well have been that 

since they were already very familiar with the task, then the 

predictive facility was employed in a subconscious 'checking mode, 

which was nonetheless still of sufficient benefit to bring about an 

improvement in performance. Smith and Crabtree (1975) also noted 

that their operators with experience used their predictive facility 

as an error-checking device only. 

6. DEVELOPMENT OF A HIERARCHICAL, PREDICTIVE MODEL OF THE HUMAN OPERATOR 

6.1 Relation between internal and external predictive models 

In order to link the findings of parameter changes in external 

predictive models to human internal predictive models, it is necessary 

to assume that the human's internal model is of the same form as an 

external model which can successfully replace it. Considered without 
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qualification, the implications of such an assumption seem plausible. 

However, it is a tenuous link, and the evidence for such an assumption 

must be considered carefully. 

When the information on which human judgements are made becomes 

uncertain, predictions cannot be made with such a degree of confidence 

and performance deteriorates, as it is not possible to plan so far 

ahead. This was confirmed by Laios (1975) in his work on unaided 

decision-making. Similarly, performance would deteriorate if the 

prediction span of a human internal model were reduced beyond a 

critical point. For human internal predictive models, prediction 

span becomes equivalent to decision horizon. In fact, Kelley (1968) 

has proposed a model in which the operator may adjust his own 

prediction span. If accurate. internal models were adversely affected 

by uncertainty, one might expect the human operator to adopt a simpler 

internal model less sensitive to such uncertainty. In fact, this 

seems to be the case. As was previously noted, operators are known 

to adopt crude decision heuristics or 'rules of thumb', category 

classifications of process output, and simplistic control models 

(Ketteringham et al., 1970; Bainbridge, 1975; King and Cininas, 1976), 

thus saving on valuable processing capacity. Simpler rules can be 

delegated to lower cognitive levels. Protocol evidence from the 

present studies suggests the adoption of a crude internal model both in 

unaided scheduling tasks (e. g. "if an ingot arrives now, it would fit 

into pit A; but if it doesn't arrive for 5 minutes it would fit more 

easily into C") and in unaided continuous tasks (e.g. yo-yo model, 

inverted pendulum, etc.). 
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6.2 Necessary components of a human operator model 

From previous attempts to model the human operator, and evidence 

from the present experimental programme, it seems that any adequate 

representation of the human operator must have the following features: 

1) It must be an internal model representation, as in the work of 

Kelley (1968). Control and decision theory models have already 

been shown as inadequate to represent the workings of the human 

mind, though capable of successfully mimicking its output, whereas 

the internal model has been shown to be a central feature of unaided 

control and decision-making. 

2) There must be a repertoire .of internal models for the operator to 

choose from, depending on the requirements of the situation. 

Kelley (1968, page 212) has also proposed that the operator should 

be able to adjust adaptively the parameters.of his internal model, 

e.g. prediction span, to match particular situational requirements 

and so adapt his behaviour to suit. 

3) It must be a hierarchical representation, as suggested by Miller, 

Galanter and Pribram (1960), Bainbridge (1975a), and Broadbent (1977). 

Behaviour is known to be organised as a series of global objectives, 

with goals, sub-goals and routines linked in a flexible and loosely

structured way for achieving these objectives. 

4) It must have conscious and sub-conscious components, as suggested 

by Rasmussen (1974); the higher, conscious processes delegating 

responsibilities wherever possible to lower level, subconscious 

processes. The conscious-subconscious distinction was evident in 

the protocols from the experimental programme. 
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Taking all these factors together, the model of Figure 45 is 

proposed. Like so much in psychology, it is not completely original 

but is rather a composite of previous models by Kelley (1968), Laios 

(1975), and Rasmussen (1974). In this hybrid model, monitoring is 

defined as a largely sub-conscious process, involving a crude internal 

model used to extrapolate future behaviour in the short-term, from 

sampled values of the process output state(s). The model is accessed 

from a central store or repertoire of, such models. Only when the 

process is judged to be going outside specification are conscious 

processes called down to reason out which action to implement in order 

to rectify the situation. The action is selected from a set or 

repertoire of potential actions. The internal model is again 

involved, but this time working to a longer time scale and concerned 

with the consequences of actions. The choice of internal model is 

flexible to meet the particular situation, as is the choice of 

prediction span and other model parameters. When an appropriate 

control action or decision has been found it is implemented, so closing 

the loop between man and process. 

It is important to stress that this monitor/control loop 

represents only one level (level ' . ' 
1 ' 

say) in a hierarchy of cognitive 

activities, ranging from writing poetry at one end of the scale, to 

reflex arcs at the other (Figure 46). Whenever one level finds itself 

unable to cope with the processing adequately, it can call on the 

resources of a higher processing centre: that is, the operator is 

obliged to 'think' rather more about the situation. However, through 

the use of standard internal models or 'templates' many of the simpler 

tasks, such as extrapolation of future values, can be delegated to lower 
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subconscious levels, leaving the higher centres to be concerned 

with more intellectually worthwhile pursuits. At the same time the 

higher levels have access to the information from lower cognitive 

levels on which to base their decisions. Control thus passes down 

the hierarchy with experience as the appropriate responses become 

over-learned, but can revert to higher levels if dictated by the 
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situation. It is also important to stress that in the model there is 

no rigid conscious/subconscious boundary, but a rather more blurred 

threshold which can shift depending on the operator's processing load. 

6.3 Implications of the proposed model 

It is acknowledged that the preceding model can be criticised 

on the grounds that it is perhaps too simplistic and flexible even to 

merit the title of a 'model'. Taken no further, the present author 

believes that it would still be useful in itself as a working hypothesis, 

as a framework from which to develop future theoretic models. However, 

if one does accept the foregoing model, what then are its attendant 

implications for human control and decision-making behaviour? 

are best considered taking each feature of the model in turn. 

These 

The central feature of the model, its repertoire of internal 

models, is necessary in order to cope with different situations, or the 

same situation in different contexts. (Compare approaching an 

examination from the viewpoint of a student on the one hand, and an 

examiner on the other. Although the situation is the same, the contexts 

and therefore the models are different.) Considering the vast number 

of possible situations in which a person may find himself, it would be 

impossible to have a specific model or 'template' for each occasion. 

A single general model may thus have to be adapted to fit different 
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specific situations. Kelley (1968) for example distinguishes between 

a full internal model incorporating all aspects of a situation, and a 

simpler derivative model. A danger exists in that the wrong model 

may be chosen for a particular situation, or at a lesser extreme the 

inappropriate trimmings may be specified for the correct general model. 

In this instance a perceptual illusion may occur (Gregory, 1970) with 

the person's perception of his environment failing to match reality. 

Witness the commonest indictment of human error: "I thought that xyz 

was the case ... ". The consequences for practical situations such as 

driving a car or controlling a chemical process could be disastrous, 

and there seems to be considerable scope for future work in the area 

of implanting inaccurate models by instruction - how inaccurate a model 

can the operator tolerate, before his behaviour becomes overtly in-

appropriate, or before he notices the model mismatch? Clearly, if 

predictive display research is any indication, there is considerable 

tolerance of model inaccuracies. 

A second feature of the hybrid model as presented is that the 

store of internal models can be accessed from many different levels. 

A particular model can be used to extrapolate future process states 

in the short term, or to evaluate the outcomes of decisions in the 

longer term. This raises the question of whether several levels can 

have access to the model store simultaneously (as in the analogy of 

lines into a telephone switchboard) or whether they must queue for 

access to a single model (as in the case of two subscribers using a 

party line). There is, of course, a time-worn and unresolved argument 

in psychology as to whether mental processing is conducted in parallel 

or serial mode. If one accepts the logic of the single 'limited channel 
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school, one would expect that a given internal model could only be 

accessed by one processing level at a time. It is known as a by-product 

of verbal protocol research that the act of verbalising depresses task 

performance (Henderson, 1975). A problem exists with task interference 

experiments, however, in that interference could occur equally well at 

the processing stage through competition for a central store of internal 

models or at the sensory stage. A pilot study by the present author 

suggested that subjects were unable to perform an extrapolative tracking 

task (short-term use of the internal model store) at the same time as 

an evaluation-of-outcomes decision-task (long-term use of the store) 

without mutual interference. This may well be a fruitful area for 

future research, and could shed·some light on the die-hard serial vs. 

parallel processing argument. 

A third feature of the model, its flexible, hierarchical nature, 

is necessary in that responsibility can be delegated with experience to 

lower levels wherever possible in order to relieve the processing load 

at higher levels. This has the potential disadvantage that low~r levels 

are less aware of (and so able to cope with) potential danger signs in 

the process output, and as such corresponds to the well-known vigilance 

decrement. If the operator has delegated plant failure recognition to 

lower levels on the grounds that it never happens, he will be unprepared 

for it when it does. 

Lastly, where do predictive displays fit into this model? 

Evidently they provide an external model of the problem environment 

through which future values can·be predicted and the consequences of 

actions evaluated. It is always assumed that predictive displays 

provide some lightening of the operator's processing load. However, 

protocol evidence from the experimental programme suggested that the 



operator's monitoring and (subconscious) extrapolation process was 

replaced by a (conscious) perceptual judgement relating to the 
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predicted trace when predictive assistance was introduced. According 

to the model, this implies a higher cognitive level and therefore an 

increase in processing load. In this sense predictive displays 

actually increase processing load rather than decrease it. This 

statement squares with the fact that there is more for the operator 

to look at, since the task has been brought 'into the open'. It also 

explains why in particularly complex tasks where the operator is 

overloaded, the predictive information is often totally ignored. 

The increased perceptual load imparted by predictive displays is 

evidently worthwhile in terms of the improved performance scores 

obtained; and with practice the operator becomes completely familiar witl 

the predictor and the task, so that its use can once more be delegated to 

lower, subconscious levels. 

Warren Spring operators. 

This appeared to be the case with the 

In summary, the flexibility of the proposed model is both its 

strength and its weakness. Human behaviour is flexible in order to 

cope with a changing world, and any model must itself incorporate this 

flexibility. At the same time, experimental testing of such a model 

does become difficult. 



CHAPTER 10 

CONCLUSIONS 
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The conclusions from the present programme of research can best 

be presented as a set of recommendations, together with some suggested 

areas for future work. 

1. REC0Mi1ENDATIONS 

Taking the quantitative and qualitative findings of the 

experimental programme together with previous research, the following 

recommendations can be made: 

* Predictive display systems should be used in preference to conventional 

alternatives in those control and decision-making applications where 

process complexity prevents adequate anticipation of events and 

prediction of consequences by the human operator, and where full 

automation is not technically feasible or would be undesirable for 

a variety of reasons. 

* Typical applicatio~s include aircraft, spacecraft, ship and 

industrial process control. 

* Likely benefits are improved task performance, reductions in 

training time, and a high degree of user acceptance. 

* Prediction should, if at all possible, be directly related to system 

objectives. 

* The distinction between discrete and continuous predictive aids is 

mainly one of time scales. 



* Performance improvements will depend on predictive display 

parameters and task characteristics. 

follows: 

These are detailed as 

* Uncertainty in the form of unreliable input information or signal 

contamination by noise will generally reduce predictive display 

effectiveness, even where uncertainty has been designed into the 

display. 

* The choice of prediction span is influenced by the prediction model 

fidelity, the process complexity (gain) and the level of input 

uncertainty. Interactions are present between these parameters. 

* In general, a crude prediction model has longer useful prediction 

spans than an accurate model, though for high gain systems an upper 

limit to the prediction span is recommended on practical grounds. 

* A complex prediction model will have its useful range of prediction 

spans reduced by input uncertainty, particularly with high gain 

systems, as operators make full use of the display they are given. 

The reduction should in practice be proportional to the level of 

uncertainty and the responsiveness of the system. 
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* The prediction model should be chosen to match the process concerned. 

Even a crude prediction model may be superior to an operator's own 

forecasts. 
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* For slow response (low gain) systems, there is little to choose 

between a complex and a crude process model. The latter is simple 

to implement in practice, and has been shown to be cost-effective 

in bringing about financially worthwhile improvements in a pseudo 

real-world operational process. 

* Further development work is now needed to exploit the predictive 

display conceptin practical situations. 

2. SUGGESTED AREAS OF FUTURE WORK 

Two basic areas of future work are seen as necessary. Firstly, 

there is now a need to develop and commercially exploit the predictive 

display concept in a wide range of applications and operational settings. 

The pseudo-industrial study at Warren Spring has given some idea of the 

potential benefits, but there is a long way to go before predictor 

displays make an impact on systems design. In particular the 

widespread use of microprocessors seems an ideal basis for compact 

prediction models, perhaps using Kalman filters or similar techniques 

(Page, 1978- in forthcoming IERE Conference proceedings). It is to be 

hoped that some enterprising manufacturer will take up the idea and 

market it as part of future generations of information display systems. 

Secondly, a tentative theoretical hybrid model has been proposed 

of the human operator's control and-decision-making behaviour, but 

this obviously needs further refinement and testing. It will be of 

no mean satisfaction to the author if the present thesis can be used 

as a working hypothesis to stimulate future work in this area. In 



particular, the question of how inaccurate an operator's internal 

process model can be before control and decision-making errors become 

evident seems especially worth investigating. 

3. EPILOGUE 

It has been demonstrated that predictor displays have much to 

recommend them in the instrumentation of industrial process plant. 

Their application is well suited to any area where process 

characteristics combine with man's inherent limitations to render 

unaided control difficult. A classic man-computer symbiosis thus 

emerges, with computer extrapolation compensating for man's weakness 

in predicting complex responses. Although predictor displays have 

been around for 20 years they have not been applied for two reasons. 

Firstly, like so many sound but unproven ideas, they have come to be 
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regarded as a kind of sophisticated toy. This tag is surely undeserved. 

Secondly, they have not been implemented because their use contradicts 

Birmingham and Taylor's (1954) design philosophy, a philosophy which 

has for too long dominated human factors thinking. As Poulton (1974) 

has noted: "The fashions of design engineers are perhaps not very 

different from the fashions of designers in other fields. However, 

they may cost lives when they lead to the wrong design decisions". 

It is to be hoped that today's designers will seriously consider the 

adoption of predictive techniques in the design of future operator

instrument interfaces. 
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Glossary of predictive display terminology 

Continuous process - a system where the material flows are unbroken 

(e.g. continuous chemical plant, vehicle control, some steel 

production techniques). 

Discrete process - a system where distinct items or stages are evident 

(e.g. production scheduling, soaking pit scheduling, air-traffic 

control). 

Input uncertainty - a measure of the accuracy of the updating information 

fed to the prediction model; Determined by the degree of signal 

contamination due to noise, the unreliability of input information, 

or simply the normal variability inherent in system operation. 

Internal model (mental model) - a process operator's internal 

representation of the system he is controlling, built up over 

time from experience. An operator's internal model may be 

supplemented, or even replaced, by an external predictive aid. 

Mode of control - refers to whether the predictive display operates in 

an on-line or off-line configuration, exploratory control and 

supervisory control being special cases of the latter category. 

Moving average - a mathematical technique for smoothing noisy data. 

Works by generating an average value over the past, say, ten 

data points as a basis for prediction of future values. 



Perfect predictor model (PPM) - a hypothetical prediction model which 

matches the behaviour of the controlled system under all 

eventualities. Cannot be achieved with preaent technology, 

but is approached by Class 2 and 3 fast-time models. 

Prediction model - a mathematical representation of the system to be 

controlled and through which future values of system output(s) 

are calculated. May be implemented by digital or analog. 

means. 
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Prediction model fidelity - the accuracy with which the prediction 

model represents the system.under control. Usually expressed 

in terms of Bernotat and Widlok's (1966) 3 stage classification. 

Prediction span (extrapolation interval) - the real-time period over 

which the predicted plant response is displayed. 

Prediction time - the real-time interval over which the predicted plant 

response is computed. Where a single predicted end-point is 

displayed, prediction span and prediction time are equivalent. 

Predictive (predictor) display - a control or decision aid based on an 

external predictive model of the system under control, and displaying 

the consequences on system output(s) of an operator's control 

actions or decisions. 



Process dynamics/response characteristics - for continuous systems, 

this is usually expressed in terms of the plant gain (K) and 

the order of the controlled process. In discrete applications, 

response characteristics are a function of the complexity and 

speed of the process. 
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Repetition (refresh) rate - the number of successive predictions displayed 

to the operator per unit of time. 

Smoothing - the reduction of noise contamination of a signal, usually 

applied to plant variables before prediction can take place. 

Taylor series extrapolator model (Tay) - a relatively simple mathematical 

extrapolation technique based on the Taylor series expansion. 

Depending on the number of derivative terms employed, can project 

a straight line or curve from a number of past data points. 

Often used to generate a single predicted end-point. 

Updating frequency - the frequency at which the prediction model is 

updated with the current state of the plant. 
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Instructions to Subjects 

Thank you for agreeing to be a subject in this experiment. I am interested 

in the usefulness of computer aids for human decision-making in discrete 

scheduling tasks such as occur in the steel industry. In this experiment 

your job will be to make a series of decisions to schedule the output from a 

simulated steel plant which has been represented on the computer. 

I'll begin by explaining the simulated system (Figure 3 ). Imagine that a 

series of steel ingots (or 'casts') arrive randomly at a set of four soaking 

pits, where they are heated to the required teroperature before passing onto 

the next stage of the process. Unfortunately the four soaking pits vary in 

efficiency, so that whereas the first two pits (we~ll call them A and B) can 

each raise an ingot to the required temperature in 10 minutes (simulated 

time), the next pit (pit C) takes.l5 minutes and the final pit (pit D) takes 

20 minutes to do the same work. After an ingot has reached the required 

temperature it takes a further 3 minutes to unload it from the soaking pit, 

and you should allow for this by not reloading that pit during this emptying 

period. 

As the controller of the soaking pits your job is to try and assign ingots 

to the soaking pits so that a regular output of heated casts is achieved -

a rate of about one cast every 5 minutes should be your target, though .one 

minute either side would still be reasonable. What you must try to avoid 

is the situation where two pits are ready to be emptied at the same time. I 

is also important, though less so, to load an ingot as soon as possible afte 

its arrival. Is there anything you would like to ask about the process at 

this stage? 

Next I shall describe how the task is represented graphically on the coropute 

screen. The computer display (Figure 4) is organised as follows: on the 

left hand side of the screen you can see the four pits (A, B, C and D), and 

time scale extending to the right as you look further into the future. The 

simulation starts at time 0 and the time scale moves along to the left one 

minute at a time as the simulation proceeds. Current time is shown in the 

bottom right of the screen. The display allows you to 'game play' with the 

computer and so work out different allocation strategies of ingots to soakin: 

pits up to 35 minutes ahead of current time. By examining the computer 

predictions of when the soaking pits will empty you can see at a glance 
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whether your target of one heated cast leaving every 5 minutes is likely 

to be reached. 

Underneath the bottom time scale you will probably notice .some rows of 

crosses. Each row of crosses represents the arrival of one ingot within 

the interval marked by the crosses against the time scale. As in real life 

it is often the case that the exact arrival time is not known, since it depends 

on a number of factors outside your control. The time interval within which 

an ingot will definitely arrive can be forecast, however, and it is this 

interval which is represented on the screen by a row of crosses. So an ingot 

will arrive at a time corresponding to one of the crosses in each row, and though 

there is a tendency for it to arrive towards the middle of an interval, it could 

equally well arrive at either end. Your job is to guess when an ingot will 

arrive and schedule it into one of the four soaking pits. The rows of crosses 

move to the left with the time scale, but at times 10, 20, 30 and 40 the 

intervals are updated and become more accurate i.e. narrower. 

The soaking pits can be loaded by pressing the appropriate push-buttons on 

the 'black box' in front of you. There are two ways of loading a soaking··pit: 

a 'test load' when you are trying out different combinations of pits ahead of 

current time and 'system loads' when an ingot has arrived at current time and 

requires to be loaded. Test loads can be cleared and a different combination 

of soaking pits tried, whereas system loads cannot be cleared. 

When you have guessed on which of the crosses in a row an ingot will arrive, 

you can test load it into pit A, B, C or D at the corresponding arrival time 

by pressing one of the orange buttons. For example: 

Test load 0 at time El 
The number 20 appears in the bottom left of the screen as you type it. When 

the 'ENTER' button is pressed a single bar appears on the display in pit A, 

starting at time 20 and extending 10 minutes ahead. The square shape at the 

end of the bar (at time 30) tells you when soaking pit A will be ready for 

emptying. The length of the bar corresponds to the time each soaking pit 

needs to heat an ingot. If pit B had been chosen, for example, the bar 

would also have extended 10 minutes ahead, but in pit C it would have extended 

15 minutes and in pit D 20 minutes. You should also remember to allow a 

further 3 minutes for a soaking pit to empty before attempting to reload it. 

If you attempt to test load more than two ingots into any pit, the computer 
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will tell you "no space in pit". 

Besides the 'ENTER' button, there are three other push buttons colour coded 

green. To clear all the test loads from any soaking pit, just press the 

test load button for that pit followed by the green 'CLEAR'. button. If you 

want to clear all the test loads on the screen, press 'CLEAR ALL' • And if 

you make a mistake typing in an arrival time press 'CANCEL' and then key in 

the correct time. If at any time you lose the display, e.g. if the computer 

displays an error message, pressing any of the test load buttons will return 

the display to you. 

When an ingot has actually arrived, corresponding to one of the crosses at 

current time, a bell will ring and the message 'CAST ARRIVED' is flashed onto 

the screen. You should then press one of the red buttons, e.g. load~ 
depending on where you had planned to load this particular ingot. A double 

bar appears on the screen to indicate that pit has been loaded. You.are not. 

obliged to load the same pit you had test loaded. The computer will tell 

you if the pit you have tried to load is already occupied, or is in the 3 

minute unloading period. In the latter case pressing the appropriate load 

button a second time will over-ride the 3 minute rule and will load the ingot 

into that pit. 

Finally, some practical points: 

There is often a time gap between the arrival of consecutive ingots. You 

would be wise to use this time profitably to try out various schedules until 

you find one which satisfies the target of one heated cast leaving every 5 

minutes or so. (It can be done!) 

As a starting point you may find that it helps to begin with the soaking pits 

with ~he longer soaking times, so that the pits with shorter times may be 

I nested 1· Within them. 

There will be three practice runs to let you get the feel of the system, followed 

by three experimental trials. There will be eight ingot arrivals for each 

practice run and nine during each experimental trial. 

Please do not be afraid to ask if there is anything you do not ·understand. 

l 
r 
' 



Scheduling Error Scores (relative units) 

Sl 
S2 
S3 
S4 
ss 

FULL SCREEN S6 
(Prediction Span = S7 
35 minutes) SS 

S9 
S10 
Sll 
S12 

S13 
S14 
S15 

HALF SCREEN S16 
(Prediction Span = S17 
20 minutes) S 18 

519 
520 
S21 
S22 
S23 
S24 

S25 
S26 
S27 
S28 

QUARTER SCREEN S29 
(Prediction span = S30 
10 minutes) S31 

S32 
S33 
S34 
S35 
S36 

LOW 

0.25 
0.12 
0.25 
0.87 
0.25 
0.25 
o. 75 
0.0 
1. 75 
0.75 
0.12 
o. 75 

0.87 
0.75 
0.75 
o. 71 
0.12 
0.0 
0.5 
0.75 
o. 75 
0.5 
0.12 
1.25 

1.25 
0.25 
0.75 
0.75 
2.62 
o. 75 
0.25 
0.87 
o. 86 
0.87 
0.62 
0.12 

UNCERTAINTY 

MEDIUM 

2.25 
1.25 
0.37 
1.25 
o. 37 
0.37 
2. 37 
0.5 
2.0 
2.25 
0.5 
0.62 

2.75 
1. 75 
0.0 
0.14 
0.25 
0.62 
o. 5 
0.37 
0.5 
o.o 
2.37 
2.0 

1. 37 
1.12 
0.37 
2.0 
0.87 
2.0 
o. 75 
1. 75 
1.0 
1. 75 
0.0 
2.25 
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HIGH 

0.25 
1. 25 
1·75 
0.37 
0.37 
1.12 
0.12 
0.5 
1.62 
0.25 
0.12 
0.87 

1.5 
0.12 
0.12 
1.14 
1.5 
0.57 
0.62 
0.12 
0.12 
1.62 
0.12 
0.12 

1.62 
0.5 
0.37 
1. 75 
0.12 
0.25 
0.12 
0.12 
o.o 
0.25 
1.5 
1.5 



Predictive Activity Data (test 

FULL SCREEN 
(Prediction span = 
35 minutes) 

HALF SCREEN 
(Prediction span = 
20 minutes) 

QUARTER SCREEN 

(Prediction span = 
10 minutes) 

Sl 
S2 
S3 
S4 
ss 
S6 
S7 
ss 
S9 
SlO 
Sll 
S12 

S13 
S14 
S15 
S16 
S17 
S18 
S19 
S20 
S21 
S22 
S23 
S24 

S25 
S26 
S27 
S28 
S29 
S30 
S31 
S32 
S33 
S34 
S35 
S36 

LOW 

8.25 
10.75 
16.0 

3.5 
8.25 
6.0 
9.5 
6.25 
6.75 
2.75 
8.25 
9.75 

8.0 
7.75 
5. 25 
4.0 
6.0 
5.25 
6.75 
s.o 

14.75 
7 .o 
5.25 

11.25 

4.0 
4.25 
2.5 
2.5 
4.25 
0.0 
3.75 

. 0.0 
0.25 
0.75 
5.5 
0.0 
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loads) 

UNCERTAINTY 
MEDIUM HIGH 

10.25 2;25 
18.75 6.75 
23.5 9.75 
10.25 6.75 
23.75 13.25 
9.5 7.5 

16.25 7.5 
7.75 7.5 
9.0 9.25 
8.0 4.5 
9.75 7.75 

11.5 9.0 

... u. 75 7.5 
- 9.75 6.0 

5.5 4.5 
4.5 4.5 
5.25 5. 75 
7.0 6.25 

10.5 7.0 
6.5 3.25 

'13.5 7.5 
9.75 10.5 
7.25 6.75 

14.0 11.75 

7.75 4.0 
3.0 o.o 
2.25 3.25 
3.0 3.75 
7.0 5.0 
0.0 o.o 
2.0 1.5 
2.75 o.o 
o.o o.o 
2.75 1.5 
6.5 5.0 
0.0 1.0 



Decision Horizon Results (number of ingots scheduled ahead) 

Sl 
S2 
S3 
S4 
ss 

FULL SCREEN S6 
(Prediction span = S7 
35 minutes S8 

HALF SCREEN 
(Prediction span 
20 minutes) 

S9 
SlO 
Sll 
S12 

S13 
S14 
S15 
S16 
S17 

= S18 
S19 
S20 
S21 
S22 
S23 
S24 

S25 
S26 
S27 
S28 
S29 

QUARTER SCREEN S30 
(Prediction span = S31 
10 minutes) S32 

833 
834 
S35 
S36 

UNCERTAINTY 
LOW MEDIUM HIGH 

3.55 3.42 1. 65 
3. 72 2.8 1.45 
2.95 2.5 0.8 
4.87 3.52 . 4. 35 
4.27 2.82 2.12 
3.37 5.4 4.75 
3.82 2.47 4.25 
5.45 4.05 1.67 
2.62 4.8 2.9 
3.87 2.9 2.0 
4.62 4.62 3.6 
4.85 3.97 3.45 

3.75 2.32 1.85 
3.72 2.42 2.57 
3.55 5. 77 3.7 
3.65 3.07 3.25 
3.72 4.87 2.57 
2.7 1.97 1.67 
3.75 3.57 2.25 
2.85 4.4 2.3 
4.62 3.47 3.12 
4.87 5.6 2.6 
3.42 3.52 3.3 
2. 35 1.8 1.77 

2.02 2.22 0.7 
4.6 4.2 0.0 
3.42 3.6 3.07 
3. 72 3.4 2.67 
3.87 3.32 3.0 
0.0 0.0 0.0 
2.9 2.17 1.62 
0.0 3.27 0.0 
o.o 0.0 0.0 
0.27 1.45 1. 62 
3.25 1.62 1. 35 
0.0 o.o 2.43 . 
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Instructions to Subjects 

MACHINE SHOP SCHEDULING 

You are the production scheduler for a small machine shop. There 

are 13 machines in the shop and they are used to work on many different 

kinds of job. When a job arrives at your shop it comes' with a 

specification of the machines needed to work on it, the time it will 

take on each machine and the order in which the machine operations 

must be done. For example, job number two might require 2 hours on 

machine 1, then 3 hours on machine 4, then 1 hour on machine 7, then 

1 hour on machine 10, and finally, 3 hours on machine 9. 

There are many jobs waiting to be processed, not all as 

complicated as this one. The problem is that several jobs must go 

through the same machine and machines can only process one job at a 

time. Your task is to decide which jobs are going to be on which 

machines at a particular time. This plan or 'schedule' must take 

into account the following rules: 
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(a) There are some jobs already on some of the machines and these 

must be finished before any of the new jobs can be put on, 

(b) If an operation of a job is started on a particular machine 

it cannot be taken off until the operation is finished. 

(c) A job can't be on two machines at once. 

(d) A job must go through the machines in the specified order and 

each operation of the job must be finished before the next 

can begin. 

(e) A machine can process only one job at a time, 

COLOUR CODE 

To help you produce your schedule and try out various 

arrangements we have represented the jobs to be processed with 

coloured blocks, There is one block for each operation in the job. 

The length of the block is the time required to carry out the 

operation. The colour of the block represents the machine the 

operation must be done on, The numb er on the right hand corner 

of the block is the job number.· The number in the left hand 

corner shows the order of the operations - 1, 2, 3 etc. When no 

number is given in the left hand corner there is only the one 

operation in that job, 

1 10 

The jobs available for processing are laid out on the table. 

There are 55 of them. The blocks will fit into the channels on the 

scheduling board, 

The black vertical lines divide the board into time units, 
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You make your schedule by: 

(1) Selecting a number of jobs and fitting them onto the board, 

(2) Arranging the jobs on the board so that there are no conflicts -

two jobs cannot be on the same machine at the same time. 

(3) Adding, replacing, removing and rearranging jobs to get the 

best schedule, 

Remember that you are aiming to: 

* Process as many jobs as possible within the time period shown 

by the board. (You may not be able to do them all,) 

* Keep all machines as fully occupied as possible, 
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Machine utilisation, jobs unfinished and scheduling time scores 

Sl 

FULL BOARD S2 
(Prediction Span = S3 40 hours) 

S4 

ss 

S6 
HALF BOARD S7 (Prediction Span = 

20 hours) ss 
S9 

SlO 

Sll 

Sl2 
QUARTER BOARD 813 (Prediction Span = 

10 hours) Sl4 

SlS 

Machine 
Utilisation 

79.6% 

78.5 

77.9 

77.7 

77.1 

72.1 

74.9 

76.1 

77.7 

76. 3 

73.9 

73.1 

74.5 

70.6 

74.5 

Jobs 
Unfinished 

30.9% 

34.5 

34.5 

38.2 

41.8 

25.5 

34.5 

32.7 

34.5 

36.4 

25.5 

32.7 

30.9 

30.9 

52.7 

Scheduling 
Time 

50 mins. 

30 

30 

25 

20 

59 

31 

25 

47 

43 

35 

45 

25 

43 

41 

A4. 



A4.5 

List of jobs available to be scheduled 

Job First Second Third Fourth 
Number Operation Operation Operation Operation 

1 No Colour 4 Red 6 

2 Turquoise 19 No Colour 3 Red 5 Violet 3 

3 Yellow 21 Light Blue 7 

4 Blue 8 No Colour 1 

5 No Colour 2 Turquoise 5 No Colour 1 Red 2 

6 Blue 5 No Colour 1 

7 No Colour 1 Violet 6 No Colour 1 Red 1 

8 Yellow 2 Violet 2 

9 Yellow 5 

10 Yellow 5 

11 Purple 3 

12 No Colour 3 Blue 6 Red 5 

13 Yellow 4 

14 No Colour 1 Red 2 

15. Turquoise 3 Blue ll Black 2 

16 Black 4 Green 5 Red 4 

17 Blue 9 No Colour 2 Red 3 

18 Red 2 

19 Blue 10 

20 Green 7 

21 Blue 7 

22 Purple 5 

23 Violet 4 

24 No Colour l Red 2 

26 Red 3 

27 Purple 2 

28 Red 3 

29 Light Blue 3 

30 Green 5 Black 4 No Colour 1 

31 No Colour 6 Red 11 

32 Green 4 

33 Red 1 

34 Blue 22 No Colour 1 Red 2 

35 No Colour 3 Turquoise 8 No Colour 2 Red 3 

36 Light Blue 8 

37 Green 2 

38 Light Green 2 
39 Light Green 4 
/,(\ 'P11,...nlt:ll ' 



Job 
Number 

41 

42 

43 

44 

45 

46 

47 

48 

50 

51 

52 

53 

*54 

55 

57 

58 

Notes 

First 
Operation 

No Colour 

Light Blue 

Blue 

Light Blue 

No Colour 

Green 

Yellow 

Light Blue 

Green 

No Colour 

Yellow 

Blue 

Light Blue 

Light Blue 

Blue 

Blue 

2 

15 

16 

3 

2 

3 

2 

4 

2 

2 

2 

2 

22 

9 

34 

27 

Second 
Operation 

Purple 

Red 

No Colour 

Red 

No Colour 

Yellow 

Red 

No Colour 

Yellow 

3 

4 

1 

5 

2 

9 

4 

1 

17 

Third 
Operation 

No Colour 

Red 

Red 

Each colour represents a different machine operation. 

2 

1 

1 

Fourth 
Operation 

The number after each colour is the processing time in hours. 

There were 55 jobs in all which were available to be scheduled 

(there were no jobs 25, 49 or 56). 

* Indicates a job critical to good scheduling performance. 
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Instructions to Subjects 

Thank you for agreeing to take part in this experiment. We are 

interested in the effectiveness of different types of display for 

a new distillery manufacturing a certain alcoholic product. 

The distillery looks like this (Figure 16). 

You can control INPUT FLOW of liquid into the kettle, OUTPUT FLOW 

of liquid from the kettle, and HEATING/COOLING of the kettle by 

means of slider controls on the Kettle Control Unit. 

Temperature, volume, amount of product distilled and its strength 

are shown by meters on the computer screen (Figure 17). 

To the right of the temperature meter you will notice a space. 

In certain conditions, a dotted line will appear in this space 

extending from the temperature pointer to its right. This is a 

computer prediction of how the temperature will vary during the 

next minute - we are interested in whether such 'predictive displays' 

are of any use, or not, in the control of this process. 

Is there anything you would like to ask? 

AS.l 

Detailed instructions are given on a separate sheet. Before starting 

the experiment we will have some practice runs so you can 'get the feel' 

of the system. Please do not be afraid to ask if there is anything 

you do not understand. 



Detailed Instructions 

The kettle starts off empty, with all controls set to zero. 

1. Fill the kettle as quickly as possible, using the INPUT FLOW 

control. 

2. 

3. 

Heat is generated by this process, so you should also take care 

to keep the temperature reading just below 90°, or an alarm 

will sound. 

When the kettle is full, stabilize the kettle volume at 

below 100. Set the OUTPUT FLOW contrQl to maximum and 

the INPUT FLOW slider to obtain this. 

just 

adjust 

The reaction will now start. Product will register on the 

product meter when strength has risen above SO% proof. 
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4. Now try and get the temperature reading to 50° - use the INPUT 

FLOW control to make large adjustments in temperature, the 

HEATING/COOLING control for fine adjustments. Maximum production 

is achieved when the temperature is reading 50° and the kettle is 

full without overflowing. 

5. You have a total of 5 minutes to distil as much product as you can. 

An indication of total product is shown in the top left of the 

screen, time in seconds in the top right. 
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Total amount of product manufactured in the various experimental conditio 

TRAIN IITTH 

PREDICTOR 

TRAIN 
WITHOUT 
PREDICTOR 

NP Tay PPM 

Sl 1321.5 1065 1346 

Uncertainty S2 1088 ll05 1135 

S3 1046 1011.5 ll63 

S4 1067 1010 1079.5 

ss 1141 995 1043 

No S6 1028.5 935 1033.5 

Uncertainty S7 1066.5 .1019 1146.5 

ss 1179.5 1032 1076 

S9 1087 947 1050 

Uncertainty SlO 945.5 921.5 993.5 

S11 1130.5 1062 1136 

Sl2 1056.5 1017.5 1053.5 

S13 1020 928.5 992 

No Sl4 1074 999 1012.5 
Uncertainty Sl5 1127 1079.5 1072 

816 994 1054.5 1024 

Key: NP No Predictor 
Tay Taylor series extrapolation model 
PPM Perfect predictor model 
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Instructions to Subjects 

Thank you for agreeing to be a subject in this experiment, 

I'm interested in. how well people can monitor and control a simple system 

under varying degrees of disturbance and computer-aiding.· 

On the computer screen you will see two pointers moving against vertical 

scales. You can view the left-hand pointer by pressing the left-hand 

button on the control panel, and the right-hand pointer by pressing the 

right-hand button. 

All you have to do is to keep both pointers as near to the 50 mark, on the 

scale, as you can, and within the limits shown by the dotted lines either 

side of the 50 mark. You can do this by moving the two slider controls on 

the control unit, the left-hand slider to control the left-hand pointer and 

the right-hand slider to control the right-hand pointer. If the pointer 

moves up, for example, moving the control down will compensate for this •. 

To assist you, in some of the conditions there will be a dotted line extendi• 

to the right of both pointers - this is a computer prediction of how the 

pointers will move over the next 5, 15 or 30 seconds (depending on the 

condition) • 

Is the task clear to you? 

There will be six trials to enable you to become familiar with the system, 

and twenty-one experimental trials. Each trial lasts 5 minutes, and for tl 

experimental trials there will be a break of approximately 5 minutes betweet 

trials for you to recover, during which time I'd like you to fill in a 

questionnaire on your last trial. 

Note: Please return the controls to zero before starting a run. 
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Taylor series data (time outside limits scores) for different plant 
gains, levels of uncertainty and prediction spans 

PREDICTION SPAN 

NO PREDICTOR 5 SECS. 

L 22 1 
Sl M 167 1 

H 41 1 
L 142 22 

S2 M 133 155 
H 72 134 

LOW GAIN 
L 18 1 

S3 M 1 1 
H 1 30 
L 155 163 

S4 M 103 .80 
H 142 1 
L 72 1 

ss M 17 1 
H 92 43 

L 148 95 
S6 M 140 50 

H 107 102 
L 215 94 

S7 M 238 49 
H 247 85 

MEDIUM GAIN L 186 195 
S8 M 267 252 

H 254 231 

' L 170 71 
S9 M 226 31 

H 159 25 
L 80 204 

SlO M 141 155 
H 187 176 

L 253 199 
Sll M 257 225 

H 283 235 
L 244 231 

Sl2 M 282 235 
H 266 266 

HIGH GAIN L 84 101 
Sl3 M 205 214 

H 200 227 
L 263 184 

814 M 273 211 
H 288 . 204 
L 26? 250 

Sl5 M 279 277 
H 256 287 

Key: L = Low Uncertainty (Input disturbance) 
M = Medium Uncertainty 
H = High Uncertainty 

15 SECS. 

1 
1 
1 

35 
1 
1 

10 
1 
1 

64 
31 

8 
1 
1 
1 

7 
81 

146 
36 

144 
27 

187 
73 

187 
1 

33 
1 

182 
156 
200 

188 
223 
200 
222 
235 
262 
144 
155 
246 
214 
153 
196 
175 
248 
274 

30 SECS. 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 

21 
20 

106 
90 

214 
129 

77 
55 

112 
1 

17 
19 

168 
138 
160 

173 
205 
235 
239 
202 
244 
157 
171 
195 
235 
168 
232 
237 
263 
290 



PPM data (time outside limits scores) for different plant gains, 
levels of uncertainty and prediction spans 

PREDICTION SPAN 

A6.3 

NO PREDICTOR 5 SECS. 15 SECS. 30 SECS. 

L 22 14 
Sl M 167 1 

H 41 39 
L 142 1 

S2 M 133 30 
H 72 84 
L 18 1 

LOW GAIN S3 M 1 1 
H 1 45 
L 155 107 

Sli M 103 1 
H 142 .31 
L 72 98 

S5 M 17 122 
H 92 1 

L 148 96 
S6 M 140 11 

H 107 167 
L 215 24 

S7 M 238 1 
H 247 269 
L 186 226 

ss M 267 240 
MEDIUM GAIN H 254 262 

L 170 42 
S9 M 226 12 

H 159 1 
L 80 71 

SlO M 141 184 
H 187 230 

L 253 108 
Sll M 257 244 

H 283 204 
L 244 186 

S12 M 282 253 
H 266 110 
L 84 122 

HIGH GAIN S13 M 205 184 
H 200 188 
L 263 200 

S14 M 273 169 
H 288 171 
L 267 234 

Sl5 M 279 269 
H 256 251 

~: L = Low Uncertainty (Input disturbance) 
M = Medium Uncertainty 
H = High Uncertainty 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

39 1 
1 1 
1 1 

73 1 
1 1 
1 1 
1 1 
1 1 
1 1 

1 36 
69 123 
21 229 
1 1 

15 4 
28 40 

1 1 
23 1 
9 40 
1 1 
1 75 
1 22 
1 1 
1 1 

43 50 

1 1 
167 144 
179 266 

1 22 
163 258 
256 277 

1 1 
191 198 
145 250 

1 1 
64 150 

122 222 
171 1 
248 237 
274 281 
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guestionnaire presented after each trial 

Initials Trial Number --
These questions relate to the trial you have just run. 

How easy/difficult did you find the last trial to control? 

EASY l1 j zl 314151 61 71 DIFFICULT (Please tick one box) 

How smooth/uneven were your control actions? 

If you found the task difficult to control 

Did the left or right-hand pointer present the most difficulties? left 

Was the main problem: Speed of response? 

Was a predictor trace 

Disturbances? 
Switching.between displays? 
Pointer drift? 
Other? (specify) 

... ···· 
( <l..... ) provided? 

If yes, how useful did you find it? 

VERY 
USEFUL I 1 I 2 I 3 I 4 I 5 I 6 I 7 I NOT AT ALL. 

USEFUL 

r;ight 

Did you find the time covered by the predictor trace long enough? ~ ~ 

Did you use any particular section of the trace? 

First segment? § 
Middle segment? 
End segment? 

What strategy did you use to control? 

Did you anticipate the pointer's future movements? ~ ~ 

If yes, how far ahead were you anticipating? seconds 

Any other comments you feel may be relevant? 
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The Warren Spring Batch Kettle Plant (photograph by courtesy 
of Warren Spring Laboratory). 
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The Batch Kettle Control Panel (photograph by courtesy of Warren Spring Laboratory). 



Listing of Taylor series subroutine implemented on Argus 500 computer 

CALL PRED (ITEMP,IFUT) 

Machine code instructions follow to transfer predicted values 

to chart recorder 

SUBROUTINE PRED (IX,JJ) 

DIMENSION JJ (3), FUTURE (3) 

COMMON/DATA/AX (192), AY (44), DNEW (10), DOLO (10) 

NP = 3 

ND = 2 

DNEW (1) = FLOAT (IX) 

DO 10 I = 2, ND 

10 DNEW (I) = DNEW (I-1) - DOLO (I-1) 

0020 I = l,ND 

20 DOLO (I) = DNEW (I) 

0030 J = l,NP . 
COEFF = 1.0 

FUTURE (J) = DNEW (1) 

0030 I = 2,ND 

COEFF = COEFF * FLOAT (J)/FLOAT (I-1) 

30 FUTURE (J) = FUTURE (J) + DNE\V (I) * COEFF 

0031 I = l,NP 

31 JJ (I) = FUTURE (I) 

RETURN 

END 

Comments 

PRED (IX,JJ) forms a subroutine within the control program HFPSM2. IX 

inputs the data value, JJ returns the predicted values. 

NP is the number of pens. 

ND is the number of derivative terms. 

DNEW (I) and DOLD (I) are used to calculate derivative terms. 

COEFF is the coefficients of the Taylor series expansion. 

A7 .3 

FUTURE (1,2,3) are the predicted values at times 10, 20, and 30 secs. ahead. 



Operator performance scores with prediction on temperature 

- - --·-

NO PREDICTOR M.P.R. 

Subject (a) (b) (c) (a) (b) 

OPERATOR 1 97.4% 2.744 £ 84.0 99.2% 2. 502 

96.6 3. 792 75.5 99.3 2.626 

97.7 2.483 81.9 98.5 1.443 

-:X. 9 7. 2 3.006 80.5 99.0 2.19 

OPERATOR 2 97.7 1.884 136.8 98.7 0.61 

98.7 1.051 149.4 97.1 2.182 

97.8 1.414 148.8 99.4 0. 808 

97.9 2.875 - 8.2 98.8 l. 339 

-'X. 98.0 1.806 106.7 98.5 1.235 

OPERATOR 3 95.7 8.518 48.6 97.8 4.187 

t 95.7 3.298 81.0 98.6 5.177 

98.6 6. 705 

-- 95.7 5.91 64.8 98.3 5. 36 X. 

OPERATOR 4 98.8 5.572 92.5 9 7. 8 3.051 

t 9 7.1 2.885 95.9 99.2 4.688 

92.6 3.439 16.2 

::X: 96.17 3. 96 68.2 98.5 3.87 

GRAND 96.8% 3.67 £ 80.1 98.6% 3.16 AVERAGE 

Key: 

(a) Percentage conversion of reagents to product 

(b) Standard deviation around the predicted variable 

(c) Calculated profit in £ 

:t indicates prediction trials were undertaken first 

A7 .4 

... _ 

(c) 

£167.8 

141.2 

117.3 

142.1 

160.5 

133.3 

209.2 

184.6 

171.9 

98.7 

122.7 

131.5 

117.6 

106.2 

137.8 

122.0 

£138.4 



Operator performance scores with prediction on pH 

NO PREDICTOR M.P.R. 

Subject I (a) (b) (c) (a) (b) 

OPERATOR A 96.0% 0. 745 £ 91.4 99.2% 0.362 

9 7.1 0.6~7 134.8 98.2 0.442 

96.9 o. 653 99.7 98.4 0.421 

96.8 o. 793 138.5 97.5 0.442 

97.7 0.6 155.5 94.9 0.679 

97.5 0. 32 

97.2 0.233 

- 96.9 0. 686 124.0 97.56 0.414 'X. 

OPERATOR B 96.9 0.67 77.5 93.1 0.975 

90.8 o. 649 - 2.6 92.2 0.643 

92.1 1.152 9.3 94.6 o. 755 

91.5 0.97 13.8 92.7 o. 691 

-"" 92.83 0. 86 24.5 93.15 o. 77 

OPERATOR C 92.3 0.95 7.5 97.7 0.593 

t 98.3 0.42 116.9 96.2 0.555 

94.2 1.017 

96.5 0.748 

94.2 0.878 

::c. 95.3 0.69 62.2 95.8 o. 76 

OPERATOR D 93.7 0.921 46.8 94.8 0.956 
t 96.5 o. 706 95.6 97.5 . 0. 739 

-:>C 95.1 0.814 71.2 96.25 0.849 

GRAND 
95.0% 0.76 £ 70.5 95.7% o. 70 AVERAGE 

Key: 

(a) Percentage conversion of rea:gents to product 

(b) Standard deviation around the predicted variable 

(c) Calculated profit in £ 

t indicates prediction trials were undertaken first 

A7.5 

(c) 

£204.4 

168.1 

177.9 

146.0 

69.3 

150.4 

143.0 

151.3 

32.7 

27.7 

54.6 

14.6 

32.4 

122.1 

76. 7 

27.9 

65.1 

18.9 

62.1 

47.6 

90.9 

69.25 

£ 78.8 



Details of profit figure calculation 

Item 

Process time 

Caustic 

Reactant 

Feed 

Steam 

Cooling water 

Product value 

Cost 

HO/hour 

£ 2/gallon 

£ 1/gallon 

£ 1/gallon 

f: {valve position.dt 
60 

f: {valve pas i tion .d t 
240 

(1) If conversion> 90% then 

A7.6 

product value = £ (30 + (%Conversion- 90) 2 x 0.3)/gall. 

(2) If 70%~ conversion < 90% then product has to be reprocessed 

product value = f: (Original %conversion x 37.5)/gall 
100 

reprocessing cost = !:50 

(3) If conversion<. 70% 

product value = £0. 




