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Abstract 

The effect on the stability of the superconducting phase due the addition of an electron­

phonon interaction to a repulsive Hubbard model is studied. Our Hubbard-Frohlich 

Hamiltonian includes electron hoping, the on-site Coulomb repulsion, vibrating ions 

(phonons) and the electron-phonon interaction. A Lang-Firsov transformation is used 

to integrate out the phonon degrees of freedom; The transformation reduces the model 

to simple a Hubbard Hamiltonian with an additional long range electron-electron at­

traction. A variational Monte Carlo technique, with a projected BCS trial function, 

is used to investigate the ground state energies of our transformed Hubbard-Frohlich 

Hamiltonian. 

For various electron densities, with a cl-wave superconducting order parameter, it is 

found that the inclusion of the electron-phonon interaction significantly enhances the 

condensation energy (the energy required to break paired electrons). We show that 

increasing the strength of the electron-phonon interaction increases the condensation 

energy. It is also found that even with an infinite on-site repulsion, where the resonating 

valence bond state cannot exist, the EPI does still lead to a cl-wave superconducting 

state. 

In addition we examine, analytically, the coexistence of ferromagnetism and super­

conductivity. Allowing different masses for spin-up and spin-down electrons in a BCS 

type Hamiltonian two new branches in the energy spectrum are found. Including a 

spatially varying order parameter a new expression for the pairing amplitude of finite 

momentum pairs is derived. 
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Chapter 1 

Introduction 

In 1911 Heike Kamerlingh Onnes made the remarkable discovery, using liquid helium 

to cool the sample, that below 4.15K mercury has no electrical resistance. The first 

superconductor had been found. What follows is a brief historical overview mapping 

the development of electrical conduction theories with the ultimate aim of explaining 

superconductivity. 

1.1 History of solid state physics 

One of the most fundamental developments in physics was the discovery of the elec­

tron by J. J. Thomson in 1897. Since then there have been many theories to explain 

electronic conduction, however there are still many unsolved problems. 

1.1.1 Free electrons 

The first of the theories, by Drude, used kinetic theory and assumed the electrons 

to be a non-interacting gas colliding with stationary ions. He made the following 
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1.1. History of solid state physics 

assumptions: (a) that there was no electron-electron interaction (known as the inde­

pendent electron approximation), (b) that the collisions were only between the ions and 

electrons, abruptly altering the electron velocity and (c) that collisions occur with an 

average probability per unit time 1 / T, where T is the relaxation time. The electron gas 

attains thermal equilibrium through collisions with the ions. However, since the Pauli 

principle had been ignored, this model did not predict many measurable quantities, 

such as the specific heat, of metallic conductors accurately. 

The next step towards a robust theory of electrical conduction came with the advent of 

quantum mechanics. Sommerfeld devised a model in which the electrons are confined to 

a cube as an approximation to the bulk limit. Applying the Schriidinger equation to this 

system the free electron energy spectrum and wave functions are obtained. The ground 

state is then created by filling the lowest energy single electron states, in a manner that 

obeys the Pauli exclusion principle. By using the Fermi-Dirac distribution, instead of 

the Maxwell-Boltzmann distribution, Sommerfeld was able to more accurately predict 

the specific heat [3]. 

However, the free electron model has a number of failures. The most striking of these 

is its inability to distinguish between metals and insulators. It also does not, in most 

cases, produce a correct value for the Hall coefficient and, for certain metals, even 

predicts the wrong sign. Furthermore there is no explanation for magneto-resistance. 

Resistivity is temperature dependent but this is only achieved within the free elec­

tron model by making the relaxation time a function of temperature with no physical 

foundation. Importantly within the free electron model there is no explanation for 

superconductivity. 

1.1.2 Bloch's theorem 

To progress further and make more accurate predictions, the assumption that the elec­

trons are moving in a vacuum needs to be abandoned. Therefore the periodic potential 
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1.1. History of solid state physics 

created by the crystalline ions needs to be included in the Schriidinger equation. To 

cater for the periodic potential Bloch's theorem, which states that the solutions can 

be written in the form of plane waves multiplied by a function that has the same peri­

odicity as the ion lattice, must be applied. Doing so leads to the formation of energy 

bands of allowed energies and corresponding wave vectors in the first Brillouin zone. 

Depending on the filling of these bands a distinction between metals, band insulators 

and intrinsic semiconductors can be made. 

1.1.3 Correlated Electrons 

While Bloch's theorem solved a lot of the shortcomings of the free electron approxima­

tion there are still some phenomena, such as superconductivity and Mott insulators, 

that are left unexplained. To go beyond the Bloch theorem the independent electron 

approximation needs to be rejected. When the inter-electron interactions are included 

in the model it is considered a correlated electron system. Here the Coulomb repulsion 

is so strong that the motion of one electron depends on the position of all the other 

electrons [4]. Studying correlated electrons is a problem of huge complexity and to find 

any solutions again some simplifications must be made. For example, the calculation 

of the complete wave function, from the full Schriidinger equation, of a single iron atom 

with 26 electrons would require the storage of at least 1078 numbers [4]. 

The Hubbard model 

One of the most basic models able to tackle electron interactions and the one studied 

predominantly in this thesis is the Hub bard Hamiltonian. This was first introduced by 

M. Gutzwiller [5], J. Hubbard [6] and J. Kanamori [7] in three separate papers while 

trying to explain the correlated cl-electrons in the transition metals. The Hamiltonian 

is made up of two competing terms, the hopping term, t, which describes the move-
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1.1. History of solid state physics 

ment of the electron between neighbouring ions and an on-site term, U, to approximate 

the electronic interaction. The idea behind the Hubbard model is that the Coulomb 

interaction between two electrons a distance r apart is inversely proportional to r, so 

the largest term is when the two electrons are both on the same site and negligible 

otherwise. When U is positive the electron interaction is repulsive due to the Coulomb 

force. A negative U represents an attractive interaction due to some other overriding 

force. With the on-site term set to zero the electron correlation disappears and the in­

dependent electron picture is recovered. If the hopping term is set to zero the electrons 

become localised to each site. 

One example where the effect of electronic correlation can be observed is the Mott 

insulator. For some materials, such as nickel oxide, conventional band theory predicts 

metallic behaviour: however these solids are in fact insulators, known as Mott insula­

tors. To describe this phenomenon Mott used a thought experiment with a lattice of 

hydrogen like atoms and a variable lattice constant a [8]. As the lattice constant is 

increased the overlap between the atomic wave functions decreases, thereby reducing 

the likelihood of an electron hopping to another site and a metal-insulator transition 

occurs. This phenomenon can be described with the Hubbard model, by increasing the 

electron hopping integral, t, to decrease the lattice spacing. When there is exactly one 

electron per site, which is known as half filling, such a transition can be found when 

the on-site term in the Hubbard Hamiltonian is large enough relative to the hopping 

term. 

In some cases long range ordering of the correlated electrons can lead to a lower en­

ergy, as is the case in the anti-ferromagnetic state. This occurs again at half filling 

for intermediate and large values of U. The Pauli exclusion prohibits hopping when 

an electron is surrounded by electrons of the same spin. If, however, an electron is 

surrounded by electrons of opposite spin then hopping is permitted. This gives a stag­

gered configuration of up and down electrons, as shown in Fig(l.l), that increases the 

magnitude of the kinetic energy, though, obviously, there is still the cost of the onsite 
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1.1. History of solid state physics 

(b) $ 

Figure 1.1: The ferromagnetic arrangement in (a) prevents hopping while the anti­

ferromagnetic arrangement in (b) allows hopping 

Hubbard U to be considered. 

BCS Superconductivity 

Another area in which electron correlations need to be considered is superconductivity. 

While attempting to understand the superconducting state it is important to realise 

that it is not simply a perfect conductor. One such feature that distinguishes the 

superconducting state from a zero resistance state is the Meissner effect, where perfect 

diamagnetism is displayed. Another defining feature is the isotope effect where the 

transition temperature depends on the isotopes of the elements in the compound. Any 

theory of superconductivity must explain these phenomena. 

Various attempts were made at producing a theory of superconductivity, notably by 

London, Ginzburg and Landau; however, these were only phenomenological theories. 

A microscopic theory was not found until 1957, nearly half a century after the original 

discovery of the effect, by Bardeen, Cooper and Schrieffer [9]. 

A clue to the origins of the superconducting state comes from the superfiuid state 

in 4 He, which displays similar properties. However electrons are fermions, obeying 

the Pauli exclusion principle, unlike the bosons in 4He which can all be in the same 

state. Pairs of electrons on the other hand have spin zero or spin one and are therefore 

have similar properties to bosons able to form a condensate. Electrons are negatively 

charged particles and therefore repel each other so that a paired state does not seem 
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1.1. History of solid state physics 

immediately achievable. 

Further indication to the cause of the pairing mechanism lies with the fact that none 

of the good conductors are superconductors, hinting that the source of resistance, 

at low enough temperatures, also causes superconductivity. One of the mechanisms 

for resistivity comes from the reduction in the electron mean free path by scattering 

from vibrating lattice ions (phonons). Another clue that phonons cause conventional 

superconductivity is in the isotope effect; the transition temperature is (approximately) 

inversely proportional to the square root of the ion mass. It was also known that the 

presence of an electron in an ionic lattice can cause a distortion where the ions are 

pulled towards the electron. Due to the large mass of the ions, making the nuclei 

slow to return to their original positions, the distortion can persist after the electron 

has been removed. The persisting distortion leaves a favourable position for another 

electron and can lead to a retarded attraction between electrons. This led Cooper 

to conclude the attractive force pairing electrons is driven by a weak electron-phonon 

interaction. Paired electrons, known as Cooper pairs, are formed in momentum space 

via their weak interaction with the phonons. In real space the pairs are formed over 

large distances so that the intermediate electrons screen the Coulomb repulsion of the 

paired electrons. 

Using Coopers' result, Bardeen, Cooper and Schrieffer formed a full theory of super­

conductivity now known as the BCS theory of superconductivity. Unfortunately it 

was generally perceived, based on work by P. W. Anderson and M. Cohen [10], that 

using BCS theory there was a maximum superconducting transition temperature of 

about 30K and therefore hope of finding a superconductor with a practical transi­

tion temperature was dwindling. Such low temperatures require liquid Helium and 

are therefore costly to achieve making conventional superconductivity impractical for 

many applications. 
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1.2. High temperature Superconductivity 

1.2 High temperature Superconductivity 

In 1986 Bednorz and Miiller exceeded all the predictions of the time finding a super­

conducting transition temperature of 35K [11] in the doped Ba-La-Cu-0 compounds. 

Since then there have been many more high temperature superconductors with the 

current record, at ambient pressure, 138K with a Hg-Tl-Ba-Ca-Cu-0 compound [12]. 

This means that it is now possible to produce a superconducting state with liquid 

nitrogen, a much more cost effective and commercially viable method. However de­

spite intensive effort there is still no widely accepted theory for the high temperature 

superconductors. 

1.2.1 General Properties of the high temperature supercon­

ductors 

While trying to determine the mechanism driving the superconductivity in the cuprates 

it is an advantage to understand as many of their other properties as possible. Since the 

discovery of the cuprate superconductors a large amount of experimental data has been 

produced, here we give a brief overview of the experimental facts and the conclusions 

drawn. 

In general the high Tc superconductors are not isotropic systems; the superconduc­

tivity occurs mainly in planes and the resistivity across the planes is high. They all 

consist of copper-oxygen planes inter spaced with charge donor planes see Fig(1.2). It 

is widely accepted that it is the copper-oxygen planes which are responsible for the 

superconductivity and a 2D model will be sufficient to describe the state. With the 

copper ions in a d9 configuration there is one hole in the d shell per unit cell so a 

half filled effective single-band model [13], such as the Hubbard model, describes the 

situation of the parent compounds. 
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LaO t 0 Cu 

0 0 

() ) 

LaO 

Figure 1.2: Schematic structure of LaCuO [1], layers on the left and cuprate plane on 

the right. 

Another feature is the antiferromagnetic order, with a Nee! temperature of about 

TN ~ 300K, present when the materials are undoped, see Fig(l.3). Such a state is ade­

quately modelled by the Hubbard Hamiltonian so the presence of anti-ferromagnetism 

in the parent compounds is one of the justifications for using the Hubbard model to 

explain superconductivity. The anti-ferromagnetism disappears when doped with ei­

ther holes or electrons, allowing the formation of the superconducting state [14]. In 

this thesis we focus on the hole doped case, the right hand side of the phase dia­

gram Fig(1.3), where the superconductivity persists over a large range of doping, from 

around 5% to 25% with the maximum transition temperature found at about 16% [1] 

forming the famous superconducting dome. The maximum transition temperature oc­

curs at optimal-doping, doping levels below this are referred to as under-doped and 

concentrations over this as over-doped. 

Like the BCS superconductors the high temperature superconductors have charge 2e 

carriers and exhibit the Meissner effect. The coherence length of the pairs, however, 

differs substantially: BCS superconductors have a coherence length of the order of 

103 A, where as the cuprates have a coherence length of the order of lOA [15]. Both 

types of superconductor exhibit an energy gap at the Fermi surface: though unlike the 

BCS superconductors that have an order parameter with s-wave symmetry the high­

temperature superconductors have an order parameter that exhibits d-wave symmetry 
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'Normal' Metal 'Normal' Metal 

AF AF 

se 

0.3 0.2 0.1 0.0 0.1 0.2 0.3 

Dopant Concentration x 

Figure 1.3: Schematic phase diagram of the high temperature superconductors, the 

right side shows hole doping with electron doping on the left [2] 

with a sign change present in the gap function [16]. The cuprates also differ from the 

BCS superconductors with the presence of the pseudogap region on the phase diagram, 

Fig(1.3). In this region there is evidence for the existence of pairs at temperatures 

greater than the transition temperature [17] with a gap in the excitation spectrum. 

The absence of phase coherence between these pairs means that they do not result in a 

superconducting state. Another difference is that cuprates do not exhibit a significant 

conventional isotope effect on the transition temperature at optimum doping, which 

has led many to believe that phonons are not relevant [18]. 
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1.2. High temperature Superconductivity 

1.2.2 Theories for the high temperature superconductors 

While there is no accepted theory to explain the high Tc there are many that attempt 

to explain the phenomenon. One theory is based on polarons (an electron dressed 

by a phonon) and bipolarons as an extension of the BCS theory. The precise na­

ture of the attractive force in BCS theory is not critical and need not be an electron 

phonon interaction. Various theories to explain the high Tc superconductors with a 

modification to the pairing mechanism of the BCS model have been proposed. Other 

theories ignore the electron-phonon interaction and the BCS theory completely relying 

on other mechanisms for pairing the electrons. One such theory is the Resonating 

Valence Bond (RVB) proposed by P. W. Anderson [19] in which the electrons are 

anti-ferromagnetically paired within the Hubbard model. In this thesis only the RVB 

state and electron phonon interactions are discussed. 

Resonating Valence Bond theory of superconductivity 

There is an ongoing debate over whether or not the Hubbard model has the essential 

physics required for a mechanism to provide high Tc superconductivity. The resonating 

valence bond theory is derived from an antiferromagnetic pairing mechanism within 

the strongly correlated electron regime so that the Hubbard model is an adequate base 

for investigating this state. 

In the Hubbard model at half filling with U » t the Matt insulating state, described 

earlier, exists because the onsite repulsion prevents the electrons hopping. These are 

virtual hopping processes, in which an electron hops to a neighbouring site, occupied 

by an electron of opposite spin, creating a virtual doubly occupied site. One of the 

two electrons on the doubly occupied site then hops back to the empty site. This 

virtual hopping lowers the energy by an amount J = 4t2 /U called the antiferromagnetic 

exchange energy. This exchange energy can lead to singlet pairs: The RVB state is a 
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sum of all the possible singlet pairs. If holes are injected into this state then the pairs 

become mobile and could lead to superconductivity [19]. 

Results by Paramekanti et al [20] and Yamaji et a! [21] using a variational Monte 

Carlo (VMC) method found a RVB d-wave superconducting state in the Hubbard 

model. These results are not unique and other work has led to the same conclusion. 

A d-wave superconducting state was also found in the t - t' J model, a derivative of 

the Hubbard model, by Sorella et a! [22] using the Green function MC method. The 

Dynamical Cluster approximation combined with a quantum MC technique employed 

by T. Maier et al has been used to show that the 20 Hubbard model displays a 'finite 

temperature instability to d-wave superconductivity' [23]. Later we repeat some of 

these VMC results as a validation of our own code. 

Polaron and bipolaron theory of superconductivity 

Contrary to the previously mentioned references, recent results, employing a Gaus­

sian Basis MC algorithm, by Imada et al [24] indicate that the Hubbard model along 

with the RVB state do not contain the essential physics required for high temperature 

superconductivity. Earlier studies using the auxiliary field quantum MC method, by 

Furukawa [25] and Imada [26], find similar results. Further work using the constrained 

path MC technique by Zhang et al [27] and Guerrero et al [28] again find no evidence 

for high temperature superconductivity in the 20 Hubbard model. These results in­

dicate that the Hubbard model may not be a likely candidate for high temperature 

superconductivity and we conclude that other factors may be important and should be 

considered. 

There a number of experiments, that are often overlooked, which show the cuprates 

do exhibit an isotope effect, indicating phonons do contribute to the unconventional 

superconducting state. An oxygen isotope effect (OIE) on the effective carrier mass 

and a small transition temperature OIE were found in a YBa2Cu306.94 sample by Zhao 
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and Morris [29]. Zhao et al [30] found an OIE on the penetration depth in LaSrCuO 

compounds. Again an OIE on the effective carrier mass was found by Khasanov et 

al [31] in the YBaCuO superconductors. 

Further evidence for the electron-phonon interaction in the unconventional supercon­

ductors has also been found with photoemission experiments. Angle resolved photoe­

mission spectroscopies (ARPES) by Lanzara et al [32] show that the electron dynamics 

are strongly influenced by the presence of phonons. Another ARPES study by Gweon et 

al [33] find further evidence of the OIE. Other studies by Zhou et al [34] and Meevasana 

et al [35] provide additional ARPES results backing this up. 

Further support for the EPI is provided by Mihailovic et al [36] who find that the charge 

carriers in the high temperature superconducting state of Tl-Ba-Ca-Cu-0, Y-Ba-Cu-

0, and La-Sr-Cu-0 parent compounds are polarons, electrons dressed with a phonon 

cloud. Direct evidence for the existence of polarons in the NdCuO material was found 

by Calvani et al [37]. Using Raman scattering evidence for a strong electron phonon 

coupling was found by Zamboni et al [38] in the YBaCuO superconductor. Results by 

Reznik et al [39] suggest that the EPI plays an important role in the high-temperature 

superconductors. 

The theory for high-temperature superconductivity driven by an EPI was originally 

proposed by Alexandrov and Mott [40] as an extension of the BCS model to the 

strong coupling limit. In this theory bound pairs of polarons, known as bipolarons, 

are created. Bose-Einstein condensation of the bipolarons allows the formation of a 

superconducting state. 

Based on the above arguments, we conclude that the electron phonon interaction as 

well as the usual electron hopping and on-site Hubbard repulsion should be considered 

for a theory of unconventional superconductivity. Therefore in this thesis, we examine 

the Hubbard-Friihlich model that includes in addition to the normal terms a phonon 

mediated effective electron-electron attraction. 
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1.2.3 Ferromagnetism and Superconductivity 

Previously we have discussed superconductivity in an anti-ferromagnetic parent com­

pound but it is also possible to obtain a superconducting state in a ferromagnetic sys­

tem. There have been some recent results where this phenomenon has been observed in 

the ferromagnetic compounds UGe2 [41], ZrZn2 [42], URhGe [43] and RuSr2RECu20 8 [44]. 

The theory for this state was first proposed by Fulde and Ferrell [45] and Larkin and 

Ovchinnikov [46] in separate papers and leads to the formation of electron pairs with 

a non-zero total momentum. 

1.3 Outline of Thesis 

The rest of this thesis is set out as follows: 

In chapter 2 we describe and derive the various physical models, mathematics and ap­

proximations used in our results. We start off with a description of correlated electrons 

within the Hubbard model. Then we introduce lattice vibrations (phonons) and their 

interaction with electrons which leads into the BCS theory. Finally we introduce the 

Hub bard-Frohlich model taking into account both the correlated electrons and electron 

phonon interaction (EPI). 

Chapter 3 introduces the Monte Carlo (MC) method and its application to fermionic 

systems which has been used in the calculation of our numerical results. We start from 

statistical physics discussing the probabilities of transitions from one state to another. 

The MC technique and the method for calculating the relative probabilities of two 

states are then introduced. We then describe the application of the MC algorithm to 

the quantum variational principle and fermions. Various results for the Hub bard model 

are then examined to validate our own Variational MC method (VMC). 

Novel results for the Hubbard-Frohlich model are presented in chapter 4. A discussion 

Chapter 1. Introduction 13 



1.3. Outline of Thesis 

of the transformation used to average out the phononic degrees of freedom from the 

Hubbard-Frohlich model is given. We then use the VMC method and the Hubbard­

Frohlich model to investigate the effects of combining strongly correlated electrons with 

an electron-phonon interaction. Our results, which focus on the optimally doped case, 

are presented. In addition some other doping levels are considered and the results are 

also included. 

Finally in chapter 5 we diverge slightly and study analytically the coexistence of ferro­

magnetism and superconductivity. Here Green Functions are used to examine both zero 

and finite momentum paired electrons within a ferromagnetic BCS type Hamiltonian. 
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Chapter 2 

Models 

The strongly correlated electron many-body problem is one of huge complexity and very 

difficult to solve; even a relatively simple iron atom already has too many interactions 

to find the full wave functions and energies without some simplification. This chapter 

introduces the models and approximations upon which our results are based. The 

chapter concludes with a derivation of an extended Hub bard model from the Hubbard­

Frohlich model. 

2.1 Electron Correlations 

While the Bloch band theory produces some very useful results it fails to explain the 

exciting aspects caused by the electron correlations. Ignoring electron correlations, the 

many body Hamiltonian is a summation of the individual single particle Hamiltoni­

ans containing the kinetic and single particle potential energy, and is easily solved. 

Including the electron-electron interaction introduces a third term to the Hamiltonian: 

fle-e=- L [p} + U(r;)] + ~ L V(r;- rj) 
i ij 

(2.1) 
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2.2. Hartree-Fock Theory 

Figure 2.1: Scattering of particle from states i and I to j and m respectively. 

where pis the momentum operator, U(ri) is the periodic potential due to the lattice 

and V(ri- rj) is the Coulomb potential between two electrons. Here we use atomic 

units so the electronic charge, e, the electron mass, m, Planck's constant, fi, and the 

term 47rEo are all one. For the purpose of this thesis second quantisation is preferred 

so the interacting Hamiltonian is: 

He-e = L)ijch + ~ L c}c~clci Vijlm 

ij ijlm 

(2.2) 

where et and c are the usual electron creation and annihilation operators, tij and V;jlm 

are the overlap integrals defined by: 

(2.3) 

The last term in the Hamiltonian describes a two electron scattering process. An 

electron is destroyed from state i and another created in state j representing an electron 

being scattered from state i to j. A similar process causes a scattering event from state 

I to m, as shown in Fig(2.1). 

2.2 Hartree-Fock Theory 

In the development of models to explain correlated electrons, the Hartree-Fock (HF) 

approximation is frequently used. This is built on the presumption that the single 
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particle problem can be used to represent the interacting problem. Each single particle 

is considered to be moving in the mean-field potential approximating the combined 

effect of the other particles and any external field present [ 4 7]. 

A starting point for the HF approximation is the Hartree theory which replaces the 

full electron-electron interaction with an interaction of a single electron with the mean 

electric field generated by the electron charge density: 

~ ""' 1 --> ""'j d3r' n( r') 
2~lr·-r·l ~ lr·-r'l i::j:.j 'l. J i 'l. 

(2.4) 

where n( r') is the density of all electrons. With this mean potential the Schrodinger 

equation is written as: 

(2.5) 

Solving the Schrodinger equation gives the single particle wave-functions. The ground 

state is found by filling these states, starting with the lowest energy and observing the 

Pauli exclusion principle. From Eq(2.5) the electron density is determined: 

N 

n(r) = L l4>;(rW (2.6) 

which can then be inserted back into the Schrodinger equation; this is then a self­

consistent problem that needs to be solved iteratively from an initial guess at the 

charge density. However, the Hartree theory is a poor approximation as it includes 

an unphysical electron interaction with itself. To improve on this a simple many-body 

wave-function is used: <l?(r~, ... TN) = ,P(r1)4>(r2) ... ,P(rN ). The energy of the state is 

then obtained using the variational method: 

(2.7) 

This is then minimized using the constraint that the single particle wave-functions are 

orthonormal resulting in the Euler Lagrange equation: 

(2.8) 
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From this the single particle Schrodinger equation, Eq(2.4), is written as: 

(2.9) 

This leads to the following ground state energy: 

N 
1 

N N N 

EHF = :L::)I[T + Vo]li) + 2 L(ijl[%) = L Ei + ~ L(ijiUiij) (2.10) 
i i,j i i,j 

where the Coulomb term is defined by: 

(2.11) 

This approximation still ignores the Pauli exclusion principle; to ensure two fermions 

cannot occupy the same state the Hartree-Fock approximation is needed. The HF 

approximation uses an antisymmetric wave-function, which can be written as a Slater 

determinant, so that the Pauli principle is accounted for. With the anti-symmetrised 

wave function the Euler-Lagrange equation becomes: 

[- ~
2 

+vo(r)+ Jd3r~~~~~n~i(r)+ jd3r2:if!~):,t')~i(r')=Ei~i(r). 

From which the ground state energy is determined: 

N 

'"""' 1 '"""' - -EHF = ~ Ei + 2 ~[(ijiUiij)- (ijiUiji)] 
'·1 

where the exchange term is given by: 

(. 'IU-1") = jd3 jd3 ,~'[(r)~j(r')~i(r')~k) 
ZJ JZ r r I 'I . r-r 

2.3 The Hubbard Model 

(2.12) 

(2.13) 

(2.14) 

The simplest model available for studying electron correlations is given by the Hub bard 

Hamiltonian. This model was first introduced by Gutzwiller [5], Hubbard [6] and 
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Kanamori [7], though it is generally attributed to J. Hub bard, to provide a theory of 

the correlated cl-electrons in the transition metals where the free electron gas model 

had unsurprisingly failed. 

The cl-electrons are tightly bound to specific ions so it is feasible to think of an electron 

as sitting on a site. Experimentally it is found that these electrons demonstrate both 

band and atomic model properties. For simplicity in deriving this model Hubbard con­

sidered s-band electrons as an appropriate approximation for narrow energy bands. It 

is assumed that the wave functions and energies, Ek, of the s-band have been calculated 

using a HF potential. He then used the following Hamiltonian to describe the s-band 

electrons: 

(2.15) 

- LL[2(kk'l~lkk')- (kk'i~ik'k)]vkct,_ck" 
kk' u 

where: 

(2.16) 

is the overlap integral between Bloch states and vk are the occupation numbers of 

the states in the band. The first two terms describe the electron motion in the HF 

mean potential and the electron-electron interaction, as per Eq(2.2). The last term of 

the Hamiltonian is to ensure the interactions of the band aren't counted twice. The 

Hamiltonian can be written using Wannier functions, which are defined as: 

(2.17) 

So that the wave functions become: 

(2.18) 
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summing over all sites in the lattice. The Fourier transform of the creation and anni­

hilation operators are: 

- _1_ '""" ik.R; 
Cku - rr;r ~ e Cicr• 

vN i 

(2.19) 

Substitution of these equations into the Hamiltonian yields: 

(2.20) 
ij 

+~ L L (ijl~lkl)c!,, c},,c1, 2 ck,1 

ijkl O"l£T2 

- L[2(ijl~lkl)- (ijl~lkl)]vjl(c!1 ck1 + c!1ck1) 
ijkl r r 

where 

(2.21) 

(2.22) 

and 

Vjt = 2_ L vkeik.(R;-R;) (2.23) 
N k 

For the bandwidth to be small the interatomic spacing must be large relative to the 

size of the atomic orbitals.. So all terms other than (iil1/rlii), which is defined as 

the on-site Hubbard repulsion U, are relatively small and the Hamiltonian can be 

approximated to: 

fiHM =- L t;j(c!1cj1 + c!61) + U L ni1n;1 - J.1 L(nil + n;1) 
ij 

(2.24) 

This is known as the Hubbard Hamiltonian, fiHM· The simplest solution to this is 

found by setting U to zero. The chemical potential term, J.t, is constant when the 

number of particles is fixed and can be ignored. Then only the kinetic term of the 

Hamiltonian remains. This can be referred to as the tight binding model: 

(2.25) 
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In real space this is not diagonal. To diagonalise the Hamiltonian a transformation 

to momentum space needs to be performed. Writing the creation and annihilation 

operators in terms of momentum space operators: 

(2.26) 

Substituting these equations into the Hamiltonian: 

(2.27) 

If only nearest neighbour hops are allowed then Ri = R; + T where T are the primitive 

lattice vectors 

(2.28) 

TO'k 

When creating a many-body wave-function the states are filled in momentum space 

lowest energy first. It is for this reason the energy spectrum needs to be known. For a 

simple cubic lattice the following energy spectrum is found, Fig(2.2): 

Ek = -2t[cos(kxa) + cos(kya) + cos(kza)]. (2.29) 

2.3.1 The Gutzwiller projection operator 

Using the Hubbard Hamiltonian, Gutzwiller [5] proposed a solution that didn't ignore 

the potential energy term. As it is only the on-site Coulomb repulsion that contributes 

to the potential energy in the Hamiltonian he suggested a wave-function in which the 

doubly occupied sites are eliminated or suppressed. Reducing the number of doubly 

occupied sites reduces the energy cost associated with the on-site Coulomb repulsion 
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g 0 
UJ 

-Jt 0 

Figure 2.2: lD tight binding energy spectrum E as a function of k. 

at the expense of the hopping term. The basic wave-function is an anti-symmetrised 

product of Bloch functions of the occupied states written in second quantized form as: 

l'ljl) =IT clAliO) (2.30) 
k 

where the product is over the lowest momentum states in the first Brillouin zone. The 

optimized wave-function is then found by applying Gutzwiller's projection operator to 

the base wave-function: 

(2.31) 

where 0 ::; g ::; 1. This is a Jastrow type variational wave function [48] in which only the 

onsite correlation is considered. When g = 1 the original tight binding wave-function 

is recovered and corresponds to the U = 0 case. For infinite U, g = 0 so that there are 

no doubly occupied sites. For intermediate values of U /t there is a trade off between 

the suppression of the potential energy and reduction in kinetic energy. 

2.3.2 Anti-Ferromagnetism 

As stated earlier, in the case of a half filled lattice, one electron per site, the ground 

state, under certain circumstances, is the Nee! state. Away from half filling the anti 
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ferromagnetism can persist in the form of a spin density wave, which destroys the spin 

and translational symmetry of the original lattice. A new lattice is formed with a 

unit cell twice the size of the previous lattice, therefore halving the Brillouin zone and 

forming two energy bands. A gap between the upper and lower bands allows a lowering 

of the energy. 

To describe the SDW state the Hubbard Hamiltonian is split into two terms, the first, 

a self consistent field (SCF) or Hartree-Fock and the second a residual term that can 

be neglected, see for example P. Fulde's book [49]: 

ii = HscF + HnEs (2.32) 

by introducing: 

(2.33) 

The two terms of the Hamiltonian are then: 

(2.34) 
<ij>a iu 

and 

(2.35) 

where: 

(2.36) 

The SDW state leads to the formation of a bipartite lattice built with two sub-lattices 

A and 8 each with a net magnetisation Fig(2.3). 

(2.37) 

where Q = (7r, 7[, 7[) in 3D, Q = (7T, 7[) in 2D and Q = 7T in ID is the antiferromagnetic 

reciprocal lattice vector and er = ±1 depending on the spin. The overall magnetisation 

of the lattice remains zero, however the sub lattices have a magnetisation m 0 given by: 

mos =(niB!- nis;) (2.38) 
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.·~·. 

~···········~ 

Figure 2.3: The anti-ferromagnetic lattice has a unit cell that is twice as big as the 

paramagnetic lattice. In the 2D example here, the new lattice constant is defined by 

a'= V2a. 

Substitution of these equations into the SCF Hamiltonian yields: 

(2.39) 

Writing the real space creation and annihilation operators in terms of their momentum 

space counterparts the following form of the Hamiltonian is obtained. 

(2.40) 

This Hamiltonian is diagonalised using the Bogoliubov transformation [50]. This in­

volves writing new quasiparticle operators in terms of the electron operators, neglecting 

the spin subscript for convenience: 

O:k = UkCk + O"VkCk+Q 

f3k = UkCk+Q - O"Vkkck 

a~ = uk4 + uvkc~+Q 

f3k = Ukcl+Q - O"VkC~ 

(2.41) 

Like the electrons they replace, these new quasi particles are also fermions and therefore 
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must obey the anti-commutation rules: 

1 = {o:t o:k} = (ukck + uvkck+Q)(ukc~ + uvkcl+Q) + 

(ukcl + O'VkC~+Q)(UkCk + O'VkCk+Q) 

1 = u~ +v~ 

(2.42) 

giving a useful identity for determining the values of Uk and vk that diagonalise the 

Hamiltonian. The other fermion anti-commutation relations follow by definition: 

(2.43) 

The electron creation and annihilation operators are written in terms of the quasi­

particles. Then on substitution, in terms of the new quasiparticles the Hamiltonian 

is: 

A '""' [( ( u) ( 2 t t 2 t t ) HscF = ~ E k) + 2 uko:ko:k- uukvko:kf]k + vkf]kf]k- uukvkf]ko:k + 

u 
+(E(k + Q) + 2 )(u~f3kf3k + O'UkVkfJlo:k + V~O:~O: + O'UkVkO:~f]k) + 

~ umo[u~o:~f]k + uukvka~o:k- uukvkf3lf3k - v~f3lal]k + 

+u~f3ko:k- aukvkf3lf3k + O'UkVko:~o:k- v~a~f]k]] +Eo 

For a SDW state with E(k) = -2t[cos(kxa) + cos(kya) + cos(k.a)], E(k + Q) = -E(k). 

Summations are now over the reduced Brillouin zone defined by the new lattice vectors. 

Still the Hamiltonian is not diagonal; to diagonalise it the off diagonal terms must equal 

zero: 

2E(k)ukvk + ~ umo(u~- v~) = 0 

Solving this equation it is found that: 

(2.44) 

(2.45) 

where !::. = ~m0 • Using Ek = J E(k )2 + !::.2 and UkVk = t::.j2E to simplify the equa­

tions. The diagonal form of the Hamiltonian is then: 

(2.46) 
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-:Jt,-Jt Jt,-:rt 

Figure 2.4: AFM Brillouin zone (Solid) and Paramagnetic Brillouin zone (Dashed) 

The ground state of the SDW for the half filled band Hamiltonian is: 

liPAF) =IT a!,.IO) (2.47) 
kO' 

where the product is over all the momentum points in the reduced zone. Again to 

ensure the filling of the momentum states is done in the correct order the energy 

E = (7foiHI7fo) (where H = -t ~ri c)ci+r) is needed: 

(7foiHI7fo) = - ~ 2)uke-ikr, + avke-i(k+~)r•][ukeik(r,+r) + avkei(k+~)(r;+r)]. (2.48) 
TTi 

In 1 D this leads to the following energy spectrum: 

(2.49) 

Examining these two energy bands reveals the expected gap to lower the energy 

Fig(2.5). 

2.4 Electron Phonon Interactions 

Up until this point, because the mass of the ion is much greater than that of the 

electrons the motion of the ions has been neglected. If this condition is relaxed and 
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21 
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Figure 2.5: Anti-ferromagnetic energy spectrum. 

the ionic motion is examined it is possible to explain the fascinating phenomenon of 

superconductivity. 

In fact the ions in general do not deviate far from their equilibrium positions given by 

the Bravais lattice. The ions oscillate around their equilibrium positions in quantized 

units known as phonons according to the Hamiltonian for the harmonic oscillator which 

can be written as: 

(2.50) 

where w = ..;'k{fii. Solving this gives the well known result E = w(n + 1/2). A more 

elegant solution to this problem is found by introducing two new operators known as 

lowering and raising operators: 

~(' ifi) a=y2 x+mw 
j _ F/-W(, ip) a- - x--

2 mw 
(2.51) 

These operators are Hermitian conjugates of each other. With these operators the 

harmonic oscillator Hamiltonian is written in second quantisation as: 

(2.52) 

where at and ak are the creation and annihilation operators for phonons and obey the 

bosonic commutation relations. These phonons distort the lattice breaking its perfect 

periodicity which in turn affects the electron motion. 
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To describe this situation when phonons are accounted for, a new Hamiltonian that 

includes the electron phonon interaction is required. Such a Hamiltonian was developed 

by Frohich in the 1950s, see for example [51], and consists of three terms: 

(2.53) 

where Hph is the phonon Hamiltonian from Eq(2.52), fle-e is the interacting electron 

Hamiltonian discussed above and He-ph is the Hamiltonian describing the electron 

phonon interaction. Here we describe briefly the derivation of the Hamiltonian, the 

details are discussed in Mahan [52] and Gross [47]. The electron-phonon potential takes 

the form: 

where the potential is the sum of the interaction from every site in the lattice: 

V(r;) = L Ve-ph(r;- Rj)· 
j 

(2.54) 

(2.55) 

The ion position Ri can be written in terms of the lattice vectors Rjo and a small 

displacement Qi so that Rj = Rjo + Qj. A Taylor expansion in powers of Qj of the 

electron-phonon interaction gives: 

If the displacement is small, as it must be in solids, then terms 0( Q]) and higher can 

be neglected. The zero-order term is the periodic potential mentioned earlier that gave 

rise to the Bloch states and energy bands and is not considered as part of the electron 

phonon Hamiltonian. This means the Hamiltonian is of the form He-ph = Ho + V 

where V is a perturbation to the periodic potential. The Fourier transform of the 

interaction is: 

Ve-ph(r) = ~ L Ve-ph(q)eiq.r (2.57) 
q 

and the Fourier transform of the derivative is: 

Y'Ve-ph(r) = ~ L qVe-ph(q)eiq.r (2.58) 
q 
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The interaction then takes the form: 

V(r) = i ~ L eiq.rif._ph(q)q. L Qje-iq.R;o 
q j 

(2.59) 

Rewriting the deviation, Qj, using the form of the lowering and raising operators 

defined in Eq(2.51) ignoring constants: 

(2.60) 
j q'j 

where ~q is the polarization direction of the phonon. So the interaction is written now 

as: 

V(r) = Leir.qV(q)q.~q(aq+a~q) (2.61) 
q 

The term q.~ = 0 for transverse phonons so the interaction disappears. The interaction 

is then written using second quantisation forms of the electron and phonon operators: 

(2.62) 

This Hamiltonian describes the absorption or emission of a phonon with momentum q 

by an electron in state k causing it to scatter to a new state k + q. 

2.4.1 Attractive Electron-Electron Interactions 

Arguably the most fascinating result of the electron-phonon interaction is supercon­

ductivity. The BCS theory of Superconductivity is based on work by Friihlich in 1950 

[53] that showed that the electron-phonon interaction can lead to an attractive force 

between the electrons and therefore be the cause of superconductivity. Cooper [54] 

then demonstrated that the normal state in a metal was unstable in the presence of an 

attractive interaction, no matter how small. 

Cooper then considered two electrons, with opposite spin and the centre of mass at 

rest. Here the role of the electron Fermi gas is only to prohibit further occupation of 
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the states inside the Fermi sphere. The orbital part of the wave-function of the pair is 

written as an expansion of plane waves [55]: 

1/;(r- r') = Lg(k)eik(r-r') 
k 

(2.63) 

where g(k) is the probability amplitude of finding one electron in state k and the other 

in-k. The filled Fermi sea ensures g(k) = 0 for states k < kF. For these two electrons 

the Schriidinger equation is written: 

-~(V'r + V'D'I/J(r- r') + V(r- r')'if;(r -r') = [E+ k~]'I/J(r- r') (2.64) 

E is the energy of the electron with respect to the Fermi energy. Substituting the plane 

wave form of the wave-function into the Schriidinger equation: 

k 2g(k) + Lg(k')Vkk' = (E + 2EF)g(k) (2.65) 
k' 

where: 

Vw = ;3 I V(r)e-i(k-k').rdr (2.66) 

is the matrix element for the interaction of the electrons in states k and k'. If there is 

an attractive interaction then the approximation: 

V 
vkk' = -­£3 if (2.67) 

and Vkk' = 0 otherwise is used. The attraction is assumed constant and attractive 

within the the Debye energy of the Fermi energy. Using this the Schriidinger equation 

can be simplified to 

(- k 2 +E+2EF )g(k) =-~ Lg(k') 
k' 

(2.68) 

which must be a constant C. From this we can define g(k) = C/( -k2 + E + 2EF), 

which then leads to the self consistent equation: 

V"' 1 1 
= L3 "2, -E + k'2

- 2EF 
(2.69) 

Chapter 2. Models 30 



2.4. Electron Phonon Interactions 

using the substitution: 

(2. 70) 

and the density of states 

( ') 1 ,2dk' 
N ~ = (27r)347rk d~' (2.71) 

the sum can can be written as an integral: 

(2. 72) 

From this it can be seen that there is a bound state for any attraction given by: 

(2.73) 

So far, in this section, the cause of the attraction has not been examined. As stated 

earlier the electron attraction is attributed by Frohlich to the exchange of phonons 

between electrons. However there are two competing interactions, a Coulomb repulsion 

and a phonon induced attraction. For the net interaction to be attractive the phonon 

term must dominate. The matrix element of the Coulomb repulsion between the initial 

state a and final state b is written [55]: 

(2.74) 

The phonon term is described by the process where one electron emits a phonon with 

momentum -q scattering to the state k+q and the phonon is then absorbed by another 

electron scattering to the state k' - q. The matrix element between the initial and 

final states governed by the indirect phonon scattering from the intermediate states i 

is: 

(aiHindlb) = IWql
2 

( 1 
-

1 
) 

li w- wq w +wq 

From this the net matrix element between states a and b is: 

( IHib) = u 21Wql2 Wq 
a q+ li 2 2 w -wq 

This produces a negative interaction when w < wq and Uq is small. 
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2.5 BCS Theory of Superconductivity 

Using the Cooper pairs Bardeen, Cooper and Schreiffer constructed a Hamiltonian to 

describe superconductivity [9]: 

il = - 2:: ~k[ctrckj + c~k! c_k1J + 2:: vkk'ctrc~k' 1 c_k,! ckj (2.78) 
k kk' 

Here BCS used the approximation Vkk' = -2Ep, where Ep is a positive quantity 

depending on the strength of the electron-phonon interaction, when l~k - ~k' I < wv. 

It is useful to quantify the strength of the attraction by multiplying the approximate 

attractive potential by the density of electron states: 

(2.79) 

BCS theory is applicable to the case when the electrons are weakly coupled to the 

phonons so that .\ « 1 Following the method described by e.g. Alexandrov [15] the 

BCS Hamiltonian can then be written as: 

where: 

k' 

The diagonalization of this Hamiltonian uses a Bogoliubov transformation: 

ak = UkCkj - VkC~k! 

{Jk = UkC-k! + Vkctj 

at = ukctr - vkc-k! 

fJk = UkC~k! + VkCkj 

(2.80) 

(2.81) 

(2.82) 

The new particles, a and {3, are fermions and must obey the anti-commutation rules 

given by Eq(2.42). This again produces the identity 1 = u~ + v~. In terms of the 

quasiparticles the electron operators are given by: 

Chapter 2. Models 

cki = ukak + vkf3k 

c-k! = uk{Jk - vkat 

ctr = ukat + vk{Jk 

c~k! = ukf3k - vkak 

(2.83) 
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Substitution of these operators in to the Hamiltonian leads to the following non­

diagonal form: 

- 2 2 t Hk = -[~k(uk- vk)- b.kukvk- lli.ukvk]a a+ (2.84) 

[~k(u%- v%)- b.kukvk- ll/;ukvk],61,6 + 

+[2~kUkVk + LlkU~- Ll/:,v%Jaj,6j + [2~kUkVk + LlkU~- Lli.v%J,6a + 
lll2

1 21: 2 A A* 

2E + ~kVk + UkVkLJ.k + UkVkLJ.k 
p 

where the k index has been dropped and ii = Lk Hk has been used for simplicity. Set­

ting off diagonal terms, at ,131 and a,6 to zero will produce a diagonalised Hamiltonian. 

So solving: 

(2.85) 

leads to the following solutions for u and v: 

(2.86) 

Using these results the diagonal form of the Hamiltonian in terms of the quasiparticles 

is: 

(2.87) 

where: 
lll2

1 
Eo= -E + 2[~kVk + ukvkb.k] (2.88) 

2 p 

The BCS ground state contains no quasi particles so is obtained by removing them from 

the vacuum state: 

(2.89) 

Normalization requires that: 

1 = A2 (0I IT i3LaLak,6kiO) (2.90) 
k 
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2.5. BCS Theory of Superconductivity 

writing the quasi particles in terms of electron operators and expanding it is seen that: 

A2 IJ(uM+v~) = 1 (2.91) 
k 

so the ground state wave function is: 

(2.92) 
k 

I<Po) = IJ[uk -vkc~kArliO) 
k 

Substitution of the quasiparticle operators into the order parameter Eq(2.81) and ex­

panding gives: 

f:>k = -2Ev 2::::((u~,j]k,ak' + uk'vk',Bk',Bk,- uk'vk'at,ak'- v~~at,j]L,)) (2.93) 
k' 

The off diagonal terms are zero and ,Bk,j]k, = 1 - ,Bk,,Bk' so that: 

f:>k = -2Ev 2::::: uk'vk' (1 - ( (,Bk,,Bk' + at,ak'))) (2.94) 
k' 

where ( (alak)) and ( (,Bk,Bk)) are the average number of a and ,8 particles given by the 

Fermi-Dirac distribution fk 

(2.95) 

where Ek = V~k + f:>~ and fk = (e't + 1)-1 is the Fermi-Dirac distribution. Using the 

identity 1 - 2fk = tanh #; the equation for [:,. can be written as: 

t:,. = Ev V f dk' f:> tanh *' 
(21r) 3 }k' Ek' 

(2.96) 

where the relation l:kF((k) = V/(27r)3 J F((k)dk = 47r J k2dk has been used. Using 

A = 2EpNE and the fact that the DOS is approximately constant around the Fermi 

surface gives the 

l wv tanh !1s.. 
{:,. = .\{:,. dE 2T 

0 Ek 
(2.97) 
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b. = 0 is the trivial solution, representing the normal state. The non-trivial solution, 

b. # 0, at zero temperature, for the superconducting state, is found as follows. In the 

ground state, T = OK, there are no excitations so b. is given by: 

(2.98) 

Integration gives, in the weak coupling limit b. « wD: 

1 A= ln2wD -lnb. (2.99) 

b.= 2wDe(-,') 

2.6 The Resonating Valence Bond State 

While there are many competing theories trying to explain the High Tc superconduc­

tors, it is the Resonating Valence Bond (RVB) state that is to be used for the majority 

of this thesis. The idea of a RVB state was first proposed by Pauling [56] then by 

Anderson [57] as a 'A New Kind of Insulator'. After the discovery of the High Tc 

superconductors Anderson then proposed that RVB state was the underlying cause 

[19]. 

The RVB state is made up with pairs of mobile anti-ferromagnetically coupled electron 

pairs. A single electron pair, on a N site lattice, is described by the wave-function: 

btiO) = ;., :Lc;;c;+T!IO) = ;., Leik.7'ct;c~k!IO) 
vN i vN k 

(2.100) 

where T is a lattice vector. The full wave-function needs to include nearest neighbours 

so the pair creation operator is defined as: 

bt = L eik.T 4rc~k!IO) (2.101) 
kT 

From this an N electron wave-function from N /2 pairs is constructed. 

(2.102) 
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Anderson then constructed the RVB wave-function by projecting out all the doubly 

occupied sites using the Gutzwiller projection operator from Eq(2.31) with g = 0. This 

can be shown to be the same as a BCS wave-function when projected onto a state with 

a fixed number of elctrons. 

2. 7 The Hubbard-Frohlich Model 

Variational Monte Carlo results have demonstrated the existence of a d-wave super­

conducting state within the Hubbard [21] and the t-j models [20], though it may not be 

the ground state. However, there is evidence of an isotope effect on the charge carrier 

mass within the high Tc superconductors, see for example Ref [29] suggesting phonons 

play an important role. For this reason it was decided to include an electron-phonon 

interaction into the model which we refer to as the Hubbard-Frohlich model (HFM): 

ii "'t (-t- -t- ) u"'. A "' [ ?;,. (;nMw2] "'f ( )-t - c 
CFM = ~ ij ci;Cj;+ciJ c31 + ~ n;;n;J + ~ 2M + 2 - ~ ,.,. n c""c""~"' 

ij i m m..nq 

(2.103) 

Here~= is the ion displacement M is the ion mass P,.,. is the ion momentum operator 

and J,.,.(n) is the screened Frohlich force function. The force function is used to describe 

the interaction of an ion on site m and electron on site n and given by: 

K, _!m-n! 

J,.,.(n) = [(m- n)2 + 1j3/2e n,c (2.104) 

A Lang-Firsov transformation is used to integrate out the phonon terms reducing the 

Hamiltonian the following form: 

n#n',u n n#n',uu' 

Details of this procedure are given in section 4.2. Our variational Monte Carlo al­

gorithm along with the new Hamiltonian EqHFH is used to investigate the effects of 

varying the EPI strength at various electron densities. 
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Chapter 3 

Introduction to Variational Monte 

Carlo 

This chapter introduces the Variational Monte Carlo (VMC) simulation used to es­

timate the ground state energy of the various wave-functions and models examined 

in this thesis. The VMC method combines the quantum variational theory with the 

widely used Monte Carlo (MC) algorithm. 

We then describe preliminary results collected during the development of the VMC 

code. To ensure the code was working properly we have checked our results against 

other published results and limiting cases, where the exact energies are known. We 

have re-examined three different phases of the Hubbard model; paramagnetic, anti­

ferromagnetic and superconducting. 
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3.1. Statistical Physics 

3.1 Statistical Physics 

This section gives a brief overview of statistical physics upon which the MC algorithm is 

based. For any given physical system there is some, exact or approximate, Hamiltonian 

describing the states within it [58]. Each state then has an associated energy defined 

by the Hamiltonian. 

At any time the system will be in one of these states Jl.· At a time dt later there 

is some finite probability R(Jl. _, v)dt of being in a new state v where R(J.!. _, v) is 

the transition rate going from J1. to v. For convenience it is usually assumed that the 

transition rate is time independent. At some time, t, there is a probability or weight 

wl'(t) of being in the state Jl.. If the transition rate is known a master equation can be 

written describing the time evolution of the weight: 

(3.1) 

i.e the sum of all transitions into the state J1. minus the sum of all the transitions out 

of J.l.. It is clear at time t the system will be in a state so I:l' wl'(t) = 1. 

With the knowledge of these weights, found by solving the master equation, the ex­

pectation value of a quantity Q at time t is calculated as: 

(3.2) 

When a configuration is reached in which the two terms, [wv(t)R(v _, Jl.) and w,..(t)R(Jl. _, 

v), in the master equation cancel, the rate of change of the weight with respect to time 

is zero. This means that the weights are fixed and an equilibrium state has been 

achieved. At this point the weight gives the equilibrium probability of a certain state 

being occupied; 

(3.3) 

In general, for an equilibrium system, these probabilities are given by the Boltzmann 
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distribution; 

(3.4) 

where the sum in the denominator is the partition function Z = Lv e-f3Ev and (3 = 

1/kT. It is the main aim of a MC simulation to estimate expectation values by mim­

icking the 'random' behaviour of the real system. 

3.2 Basic Principles of Monte Carlo Simulation 

A MC simulation aims to recreate the random nature of a system, making random 

transitions from one state to another according to the probabilities of the two states. 

In doing this it is sufficient to find the relative weights of the various states and from this 

get an estimation of an expectation value: Using the Boltzmann distribution Eq(3.4) 

to define the weights it can be seen that the expectation value of Q is: 

"' Q -{3E" ( Q) = L.p. p.e 
Lp. e f3E" 

(3.5) 

In practice this sum is only feasible for very small systems. As an illustration of the 

size of the problem, even for a simple !sing model on a 10x10 lattice there are 2100 

or over 1030 possible states. There is very little hope of being able to sample every 

state in such system. With a MC simulation the idea is not to sample all the states 

but a representative sample of the most likely states with some probability Pw So 

the MC estimate of the expectation value (Q)Mc over a sub set of the possible states 

{Ill> Jlz .. JLM }: 

(Q) 
- L:t!l Pp.,Qp.cf3E"' 

MC- M -{3E 
Lj=I PP.; e "; 

(3.6) 

As the number of samples increases so does the accuracy of the estimate. 

The states need to be chosen according to their relative probabilities, a method called 

importance sampling. In the majority of MC algorithms the states are selected with 

a frequency based on their Boltzmann probabilities. Replacing the probabilities with 
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their Boltzmann representation Eq(3.4) the estimation simplifies to: 

(3.7) 

So that the probability disappears from the average. The probabilities of the states 

enter via the frequency with which they are chosen during the simulation. Over a 

long enough simulation the number of times a state is chosen, nJJ., divided by the total 

number of samples, N, approaches the equilibrium probability. 

(3.8) 

3.2.1 Markov Chains 

The majority of MC simulations use a series of Markov processes to generate a chain of 

random states. A Markov process creates a random new state v from the state Jt with a 

transition probability P(tt--> v). These transition probabilities should be independent 

of time and depend only on the states tt and v. The sum of the transition probabilities 

must be one, i.e it must result in a state: 

'L.P(tt--> v) = 1 (3.9) 
V 

It is allowable to generate the same state, so P(tt --> J.L) is not necessarily zero. On the 

other hand, generation of the same state must not occur with probability P(tt --> tt) = 

1, the system would be permanently stuck in the one state. 

To ensure the correct probabilities are created, Markov chains are subject to two further 

conditions; The first is known as ergodicity. This condition states that starting from 

any one state it must be possible to access all other states (assuming that the chain is 

long enough). While it is allowed to have some transition probabilities set to zero there 

must be a 'random walk' through sample space from any one state to all others within 

the system. In relation to the Hub bard model a half filled lattice with infinite U, where 
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only single electron hops are allowed, breaks this condition. Once in a configuration 

where all double occupancy has been removed then no hopping is allowed and the 

system becomes frozen in this state, unable to access any other. 

The other condition to be satisfied is detailed balance. This is used to guarantee 

that the states are weighted with the desired probabilities. Reusing the fact that at 

equilibrium the probability of a transition into a state equals the probability out: 

(3.10) 
V V 

This will always be satisfied if the following condition is obeyed: 

(3.11) 

It is this equation that the condition of detailed balance refers to. Rearranging this 

equation the condition of detailed balance is defined by the ratios: 

P(v--> J.t) p"' 
P(J.t--> v) Pv 

(3.12) 

When the probabilities of the two states are given by the Boltzmann probabilities the 

ratio is [58]: 

pi' = e-f3(E"-Ev) 

Pv 

3.2.2 Statistical Errors in MC Calculations 

(3.13) 

As with all numerical techniques the Monte Carlo method is not exact and the results 

have some error associated with them. In fact with the randomness inherent in the 

method some statistical error in the result is inevitable. It is common to refer to a 

MC simulation as a 'computer experiment' [58] and errors can be treated in the same 

manner as with an experimental data set. 

For a set of independent measurements a good estimate of the error is given by the 

standard error [59]: 

0' = V (m2) - (m)2 
n-l 
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3.3. The Metropolis Algorithm 

where (m2
) is the average of the measurement squared, (m)2 is the square of average and 

n is the number of samples. For this to be an accurate estimation the measurements 

should be independent. With a MC simulation this is often not the case with two 

successive measurements often being highly correlated. 

To reduce the effect of the correlation between measurements there are a number of 

methods. The methods that we use is the blocking method. For this the n measure­

ments are split into n8 blocks. The deviation of the average measurement over the 

blocks is then used to calculate the standard deviation; 

!I= 
(m~)- (ms) 2 

ns -1 
(3.15) 

This method is unfortunately sensitive to the block size n, but provided the block size 

is correct this produces a good error estimation. For a good error estimation the block 

size should be greater than the correlation time. 

3.3 The Metropolis Algorithm 

To generate Markov chains with the desired properties, one of the most common Monte 

Carlo methods is the Metropolis algorithm. This algorithm Fig(3.1) was first intro­

duced by N. Metropolis et al in 1953 [60] for the calculation of macroscopic properties 

of substances consisting of interacting molecules. 

To decrease the size of the problem the particles are placed in a random configuration 

within a reduced system, maintaining the same particle density; This introduces a finite 

size error. Randomly selecting one particle, R,., it is then moved in a random fashion 

according to: 

(3.16) 

where a is the maximum allowed moving distance, 6 and 6 are random numbers 

numbers in the range -1 :::; ~i :::; 1. If this move takes the system into a lower energy 
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(Setup an initial Configuration 

' ( Propose a trial move 
1 

-::: 

' Calculate probability ratio 

between the new and old states 

' Accept or reject trial move 

' Update the configuration if 

trial move is accepeted 

' Take a measurement of the 

local energy. 

' (Average local measurements ) 

Figure 3.1: Flow chart for the Monte Carlo method. 

state the move is automatically accepted. If the change in energy D.E is negative, the 

move is to a configuration with a higher energy, then the move is accepted based on 

the probability e-flE/3. A new random number between 0 and 1 is generated: if this 

is less than e-flE/3 then the move is accepted. Then regardless of whether or not the 

move has been accepted a measurement of the desired quantities for the system in that 

state are made. The expectation value of the quantity is then given by Eq(3.6). 

If for some reason the acceptance ratio is very low then the statistical correlation 

between successive measurements is high. In this case a measurement can be made 

every n'h step so that the statistical correlation between measurements is reduced. This 
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does not affect the expectation value as it reduces the weight of every state equally. 

3.4 The Variational Monte Carlo Method 

The application of the Monte Carlo technique to a quantum system was first intro­

duced by Macmillan [61] in 1965. A Monte Carlo method was used to evaluate the 

configuration space integral of a bosonic variational wave function in the calculation of 

ground state properties of He4 according to the variational principle. 

3.4.1 The Variational Principle 

The variational principle is used to calculate an upper bound for the ground state 

energy of a Hamiltonian fl. The energy of a trial wave function l'llr) , that need not 

necessarily be normalised, is then given by [62]: 

(3.17) 

with the denominator required if the trial wave function has not been normalised. Using 

completeness the trial wave function can be expressed as a linear superposition of the 

true wave functions W as Wr = l:n Cn Wn. Substituting into the numerator yields: 

(3.18) 
n 

The lowest of the energies En is the ground state. If the trial wave function equals 

the exact ground state wave function then the coefficients Cn are all zero except eo and 

E = Eo. If the trial wave function is different to the true wave function then E > Eo 

so the variational energy provides an upper bound to the ground state energy. 
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3.4.2 Monte Carlo Integration 

McMillan then applied the MC technique to determine the variational energy. As 

before the expectation value of the operator for the quantity Q is calculated as: 

(3.19) 

In this case, as the system is based on N Bosonic particles at positions r 1 ... rN, the 

weights of the configurationPN(r1 ... rN) are given by the square of the wave function 

1Ji N(r1 ... rN ). When the configurations are chosen according to their probability distri­

bution PN(Ri) = 1Ji2(Ri), Ri = r 1 ... rN then Eq(3.6) can be used to approximate the 

expectation value . 

The Metropolis algorithm is used to generate a sequence on configurations where each 

configuration is chosen with a frequency that, when run for long enough, approaches 

its probability. The only difference here is that rather than choosing the states based 

on their Boltzmann weights they are chosen according to their quantum probabilities 

which are given by the square of the wave function 

3.4.3 VMC Applied to Fermions 

For a system of fermions the VMC procedure is almost identical. The difficulty arises 

because of the anti-symmetric nature of the wave function. Once this has been dealt 

with the square of the wave function defines the probability of a certain configuration, as 

is the case for bosons. An effective method for the calculation of the relative probability 

of two fermionic configurations was first introduced by Ceperley et a! [63] in 1977 while 

examining the ground state properties of He3 • 

As before, the aim of this procedure is to minimise the energy of a trial wave function, 

according to the variational principle, to find an upper bound to the ground state 

energy. Once the values of the variational parameters that give the minimum energy 
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have been found then other properties can also be calculated. 

As before, to start with the fermions are placed in a random configuration Rw A 

random move of any one of the fermions is proposed to take the system from the 

configuration R;~ to Rv. The relative probabilities q2 of the two states are calculated: 

2 llll(RvW 
q = lw(R;~)I2 (3.20) 

The move is then accepted automatically if it is a more probable state q2 :;:: 1. If q2 < 1 

then the move is accepted if a random number ~ between 0 and 1 is less than q2
• 

For fermions the wave function must be anti-symmetric so that on exchange of two 

particles a minus sign is introduced. To construct a properly anti-symmetrised wave 

function it is usual to use a Slater determinant. 

(3.21) 

so that the wave function is written explicitly with the desired symmetry; 

(3.22) 

Unfortunately the calculation of a determinant with a computer scales with the number 

of particles as N3• To get round this Ceperley [63] introduced a trick for calculating 

the ratio of determinants between two states that scales as N 2 • 

The trick uses the fact that the inverse of the transpose of a matrix [A] is equal to the 

matrix of cofactors divided by its determinant IAI (see [64] and [65]): 

[AT]-1 = [CA] 
IAI' (3.23) 

The definition of the cofactor element C;i means that it is independent of the ith row 

and jth column. From this it can be seen that ratio of determinants q of two matrices 

that differ only on row i is given by [64]; 

N 
Det(Anew) _ _""A . A . 
D t(A ) - q - ~ •,J,old •.J,new 

e old j=l 

(3.24) 
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where Ai,J is the element in the ith row and jth column of the inverse of the transpose 

of matrix [A], [A] = [ATJ-1. For the case of the Slater Determinant used here, when 

moving particle i, the ratio of determinants, q is found using: 
N 

q = L Dj,i,oldil>j(r;) (3.25) 
j=l 

where il>i(r;) is the wave function of an electron on site r; in momentum state j. 

This allows a relatively quick way of determining the probability ratio between two 

configurations. While the calculation of the inverse of a matrix is computationally 

very expensive it is only a one-off event and insignificant when the number of samples 

is large. If the trial move is accepted then the inverse of the transpose of the new 

matrix can be calculated using; 

D - q 
- { &, if k = i 

jk,new- Djk- !!;;- [ I;i:,
1 

Dtkil>t(rj)]if k # i 
(3.26) 

3.5 VMC for the Hubbard Model 

Now that the general VMC technique has been introduced, the application to the Hub­

bard model can be discussed. The first such application was performed by Yokoyama 

and Shiba [66] in 1986, with further studies in Ref [67]. 

3.5.1 Trial Wave Functions 

The first step is the construction of a suitable trial wave function. The simplest example 

is the projected paramagnetic wave function, JwPara), [66]: 

JwPara) = IT[1- (1- g)nnnnJiil>Para) 
j 

(3.27) 

with 0 :::; g :::; 1 and Jil>Para) is the product of the slater determinants of the up and 

down electrons; 

(3.28) 
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and the elements of the matrices for the paramagnetic case are given by the free electron 

wave functions; 

(3.29) 

where k; are the allowed m omenta and r ju is the position of the /h electron with spin 

a. 

For the antiferromagnetic wave function, lW" AFM), [68]; 

IW"AFM) = IT[1- (1- g)nirnitli<I>AFM) 
j 

(3.30) 

where again I.PAFM) = IMriiMtl· To get a real space representation of the trial wave­

function al,u = ukal,u + avkal+Q,u , for use in the simulation, the standard result, 

(rlk) = eikr is used: 

(3.31) 

Which can be used to define the matrix elements: 

(3.32) 

where the symbols are as derived in section(2.3.2): 

(3.33) 

To ensure the quasiparticle number operator can be implemented into the VMC code, 

when acting on the vacuum state it must produce zero: 

(3.34) 

So the number operator needs no modification for the VMC. The antiferromagnetic 

wave function introduces a second variational parameter f::J.. This increases the size 

of the parameter space, making the task of finding the minimum energy much more 

computationally intensive. 

The superconducting wave function is slightly more complicated. The standard form of 

the BCS wave function, in which the particle number varies, is not suitable for VMC. 
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As before the number operator acting on the ground state must produce zero. The 

number operator a{ak acting on vacuum gives the following surprising result: 

(OinkiO) 

(Oinkl 0) V
2 

- k 

Demonstrating that this is not a vacuum with respect to the quasiparticles, and that 

this form is not suitable for our VMC simulation. 

One method by Yokoyama et a! [69] involves the transformation to new set of creation 

and annihilation operators. A new vacuum with respect to these particles is then 

formed. Another way to write the BCS wave function in an appropriate form is to 

project it onto a fixed particle number state [70]. The starting point is a projected 

BCS wave function [71 J; 

I\[! Sup) = PN Pc IT [ uk + vkcl1 c~kl] IO) 
k 

(3.36) 

where PN projects onto a fixed particle number sate and Pc is the Gutzwiller projection 

operator. Ignoring the normalisation of the wave function it can be rewritten as: 

lW sup)= PNPc IT [ 1 + akct1 c~kl] IO) 
k 

(3.37) 

by defining ak = uk/vk. Application of the particle number projection operator leads 

to 

[
""' j j ]N/2 lw sup) = Pc L.. akck1c_kl IO) (3.38) 

k 

So that the required real space representation of the trial function is: 

(3.39) 

where we have defined: 

a(j, l) = ~ L Vk eik.(r,-r;) (3.40) 
N. k Uk 

and N 8 is the number of lattice sites. Using the results from Eq(2.86) we define vk/uk = 

!J.j(~k + y'~2 + 1::;.2). At /::;. = 0, ak is also zero, therefore the trial function is zero and 

undefined so the simulation will not run. 
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3.5.2 Details of the VMC Simulations 

Now the details of the VMC method for the Hubbard model are discussed. To start 

with the electrons are placed in a random configuration RI', with no two electrons of 

the same spin on the same site. A new configuration Rv is then generated by picking 

an electron at random and moving it to one of its nearest neighbours, a trial move. If 

the move takes the electron off the lattice then it re-enters on the site on the opposite 

side enforcing the periodic boundary conditions. 

To determine whether or not the trial move is accepted the probability ratio between 

the two states is required. As before this is given by the ratio of the squared wave 

functions: 
P(Rv) I>IT(RvJI2 

-
P(RI') I>IT(RI')I2 

(3.41) 

Our trial wave functions described above are written as a Gutzwiller projection of a 

Slater determinant; 

I>ITr) = ITl1- (1- g)nilniJJI<I>r) 
j 

(3.42) 

For a specific configuration {L, expansion of the product, in which a factor of g is picked 

up for every doubly occupied site, yields 

(3.43) 

where N D is the number of doubly occupied sites. Thus the probability ratio is: 

(3.44) 

where 8d is the change in double occupancy. The ratio of determinants q between the 

old and new states is calculated using Ceperley's method. As only one electron is ever 

moved one of these determinant ratios is always one. The trial move is then accepted 

if a random number 0 :":: ~ :":: 1 satisfies ~ < P(Rv)/ P(RI'). If the move is accepted 

then the electron position, inverse matrix, double occupancy and long range attraction 

are updated. 
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3.5. VMC for the Hubbard Model 

After this, assuming sufficient moves have been made to allow the system to reach 

equilibrium, the local energy is measured. The basic Hubbard model is written as: 

fi = -t 2::: c!cJ + U 2::: n;;nil (3.45) 
<ij> 

The local energy, of the state J-! is then given by; 

(3.46) 

Applying the Hamiltonian to the wave function results in two terms. The first (the 

kinetic energy) includes the trial move and the second is simply the number of doubly 

occupied sites. Unfortunately the kinetic energy of the local configuration must include 

all allowed hops of every electron and is not readily calculated. However the energy of 

one specific hop, i.e. the trial move, is known. The Monte Carlo simulation is then used 

to sample the possible hops within each configuration and average the local hopping 

energy. So the local energy is written as: 

(3.47) 

where Nd is the number of doubly occupied sites and <I>( i-j) is the interaction between 

electrons on sites i and j. The calculation of the determinant ratio has already been 

performed. To measure the double occupancy we calculate the doubly occupancy of 

the initial configuration and update this when necessary as the electrons move. 

For the HFM we have an extra term given by: 

.AW L <I>(n- n')nn'a'nna· (3.48) 
n#n',aa' 

This means we need to make the additional measurement: 

.AwL <I>(i- i) (3.49) 
i,j 

for the local configuration energy. Again we make an initial measurement of the long 

range electron interaction and update as the electrons move. A look-up table, to store 
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all the possible interactions, is used so that the interaction is not calculated every time 

an electron moves. 

To ensure there are no problems with degeneracy it is important to choose the bound­

ary conditions of the system carefully. So that trial wave function has the correct 

symmetries it is necessary to completely fill degenerate momentum states [63]. To lift 

or reduce the degeneracy it is possible to add a small momentum 5k to the states. 

However this introduces a phase factor exp[-i21fllk] to the kinetic energy when an 

electron crosses a boundary. This phase factor needs to be removed by multiplying 

the local kinetic energy by exp[i21fllk] when the electron crosses the lattice boundary 

if there is a momentum offset in that direction. 

In the case of the superconducting state a combination of periodic and anti-periodic 

boundary conditions are used, giving §k = 0.5ky. Here the form of the wave function 

means that the order parameter .6. can not equal zero. With the d-wave state this 

means that kx fo ky, which is avoided by choosing such boundary conditions. The 

phase factor exp[-i1r] is then -1 whenever an electron moves across the anti-periodic 

boundary. 

3.6 Paramagnetic Results 

Here we present results for the paramagnetic wave function Eq(3.27) and describe the 

evaluation of the results. 

The results are calculated as follows. The raw data is created by scanning from g = 1 

to g = 0 in steps of 5g = 0.01 and measuring the kinetic energy, given by -t(c!cj), and 

double occupancy, defined by (n;rn;1), at every point, producing data like that shown 

in fig(3.2). This graph clearly demonstrates the effect of the competition between the 

electron hopping and onsite repulsion and the role of the Gutzwiller projection operator 

in controlling their contributions. As g -> 0, minimising the on site potential energy, 

Chapter 3. Introduction to Variational Monte Carlo 52 



3.6. Paramagnetic Results 

0.4 

0.2 

0 
P.E. 

-0.2 

-0.4 

E: -0.6 
w -0.8 

-1 
-1.2 

-1.4 K.E. 
-1.6 

-1.8 
0 0.2 0.4 0.6 0.8 1 

9 

Figure 3.2: Competition between kinetic and potential energy per electron on a half­

filled 14x14 2D square lattice with U = 1, which is equivalent to the average double 

occupancy, the error bars are smaller than the point size. 

U(n;;ni1), the kinetic energy tends to zero, so that the elimination of double occupancy 

prevents the motion of the electrons. The on site potential energy favours localised 

electrons, with one electron per site, while kinetic energy favours mobile electrons. 

For verification the results are examined in two limiting cases where exact results are 

known. For a half filled lattice with g = 0, which corresponds to U = oo, both 

the kinetic energy and double occupancy should tend to zero, this is found to be the 

case Fig(3.2). In the other limit, g = 1, i.e when there is no suppression of double 

occupancy, the double occupancy per electron should be 0.25, which can, again, be 

seen in the results. In the same limit, which corresponds to U = 0, there is no electron 

correlation so the tight binding kinetic energy should be recovered. In this case the 

total, non-interacting, energy Er = l:k ~k is the sum of the energy of all occupied 

momentum points. The energy per electron E is calculated for an infinite lattice by 

integrating up to the Fermi surface: 

(3.50) 
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Figure 3.3: Finite size scaling effect for the kinetic energy for a 2D square lattice. 

Thus for 1D, 2D and 3D respectively we get: 

4 
E= --t 

7r 
(3.51) 

There is some small discrepancy between the g = 1 VMC results ([-1.606 ± 0.002]t 

for a 14x14 lattice) and the theoretical kinetic energy in the continuum limit. This is 

a finite size error that reduces as the lattice size is increased, see Fig(3.3). The finite 

lattice non-interacting energy is calculated at the start of the simulations and used to 

check the value of the VMC kinetic energy at g = 1. 

As a further verification of the code, simulations were performed at low electron den­

sities where the kinetic energy should tend to -2dt when there is just one spin-up 

and one spin-down electron on an infinite lattice, where d is the dimensionality of the 

system. In this limit the potential energy will tend to 0. Our result approach these 

limits in both cases Fig(3.4). 

From the raw data the total energy E(g) = Eke(g) + Nd0 (g)U as a function of g can 

be constructed for any value of U desired from the kinetic energy, Eke(g), and double 

occupancy, Nd0 (g), data. Once the energy as a function of g, for a specific U, has been 

found the minimum energy is easily located. Examples of the variation of energy with 
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Figure 3.4: The kinetic energy (KE) and number of doubly occupied sites (nDO), per 

electron, in the dilute limit for 10x10, 20x20 30x30 and 40x40 2D lattices tending to 

-4 and 0 respectively, the error bars are smaller than the point size 

g are shown in Fig(3.5). For U = 0 the minimum energy is found at g = 1, decreasing 

g inhibits the electron hopping increasing the energy. As U is increased the minimum 

shifts to smaller values of g. For values of g smaller than the minimum, the reduction 

in potential energy is counteracted by the rise of the kinetic energy, larger values lower 

the kinetic energy at the expense of the on site potential. 

We then plot the minimum total energy, at values of U = 0, 1, 2, 3, 4, 6, 8, 10, 12, for 

the 30 site 1D system, Fig(3.6), 14x14 site 2D system, Fig(3.7) and the 6x6x6 site 

3D system, Fig(3.8). These graphs show that the effect of increasing U is to raise the 

energy of the system. This is due to the competition between the two terms; the kinetic 

energy favours mobile electrons while the on site repulsion favours localised electrons 

Our results are compared with those by Yokoyama et a! [66] and no disagreement is 

found. In these results the error bars are smaller than the point size. 

In the 1D system our energies are higher than the exact solution by Lieb [72] see [66], 

shown in table (3.1), based on the Bethe ansatz [73]. In the weak correlation regime 
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Figure 3.5: Total energy as a function of g, E(g), for U = 0, 4, 8, 12, with the respective 

minima at g = 1, 0.58, 0.24, 0.07, on a half-filled 14x14 2D square lattice, again, the 

error bars are smaller than the point size 
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Figure 3.6: E(U) for the half filled, 30 site, ID system with a paramagnetic wave­

function, for the values of onsite repulsion U = 0, 1, 2, 3, 4, 6, 8, 10, 12 with minimum 

values at g = 1, 0.86, 0.66, 0.56, 0.45, 0.29, 0.18, 0.14, 0.08 respectively, note the errors 

are smaller than the points. 
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Figure 3.7: E(U) for the half filled, 14x14 site. 2D system with a paramagnetic wave­

function, for the values of onsite repulsion U = 0, 1, 2, 3, 4, 6, 8, 10, 12 with minimum 

values at g = 1, 0.85, 0.71, 0.65, 0.57, 0.41, 0.27, 0.15, 0.07 respectively, here the points 

are larger than the errors. 

our results are close to the exact solution. However in the strong correlation regime 

there is a significant difference and an anti-ferromagnetic wave function [74] is likely 

to be closer to the exact result. 

3. 7 Antiferromagnetic Results 

The next step in the development of the VMC code was to implement the anti­

ferromagnetic trial function discussed earlier Eq(3.30). Our AFM results are detailed 

in this section. 

The paramagnetic and anti-ferromagnetic energies E(U) are compared for the 30 site 

lD, Fig(3.9), 14x14 site 2D, Fig(3.10) and 6x6x6 site 3D, Fig(3.11) systems. In these 

graphs the data points are larger than the error bars. For all three systems an electron 

density p = 1 was used . In all cases for moderate and large values of U jt there is 
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Figure 3.8: E(U) for the half filled, 6x6x6, site 3D system with a paramagnetic wave­

function, for the values of onsite repulsion U = 0, 1, 2, 3, 4, 6, 8, 10, 12 with minimum 

values at g = 1, 0.91, 0.78, 0.69, 0.58, 0.47, 0.38, 0.24, 0.15 respectively, again error bars 

are within the points. 

a lowering of energy due to the long range anti-ferromagnetic ordering. We present 

the variational parameters that minimise the energies for the various values of U jt in 

tables, (3.1), (3.2) and (3.3) for the 1, 2 and 3D systems respectively. Examining the 

variational parameters we see that as U increases so does the antiferromagnetic order 

~ leading to a lowering of the kinetic and total energy. 

Again our results agree with those of Yokoyama et a! [68] and tend to the limiting 

case at g = 1. For the 1D state the VMC energies are higher than the exact energies 

by Leib [72], see Table(3.1), indicating that in the 1D system the AFM state is not the 

ground state. 
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Figure 3.9: E(U) for the 30 site ID system with the paramagnetic and anti-

ferromagnetic wave-functions. 

Table 3.I: Variational and exact results for the half filled ID 30 site antiferromagnetic 

system. 

Ujt 0 2 4 6 8 10 I2 

g 1.00 0.70 0.50 0.40 0.35 0.30 0.20 

6. 0 O.I5 0.3 0.55 0.75 0.9 1.15 

Ejt (VMC) -1.274 -0.837 -0.546 -0.383 -0.287 -0.229 -O.I88 

± O.OOI . O.OOI O.OOI 0.003 0.003 0.002 0.002 

E/t (Exact) -1.274 -0.847 -0.58I -0.423 -0.339 -0.266 -0.242 

Table 3 2· Results for the half filled 2D I4xi4 site antiferromagnetic system .. 
U/t 0 2 3 4 6 8 IO I2 

g 1.00 0.75 0.70 0.65 0.55 0.50 0.45 0.40 

6. 0 0.10 0.35 0.45 0.90 1.30 1.50 1.60 

Ejt (VMC) -1.618 -1.170 -0.992 -0.842 -0.632 -0.493 -0.400 -0.335 

± 0.001 O.OOI O.OOI 0.003 0.003 0.002 0.002 0.002 
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Figure 3.10: E(U) for the 14xl4 site 2D system with the paramagnetic and anti­

ferromagnetic wave-functions. 
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Figure 3.11: E(U) for the 6x6x6 site 3D system with the paramagnetic and anti-

ferromagnetic wave-functions. 
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Table 3 3· Results for the half filled 3D 6x6x6 site antiferromagnetic system . . . 
Ujt 0 2 4 6 8 10 12 

g 1.00 0.80 0.65 0.60 0.60 0.535 0.525 

.0. 0 0.15 0.35 0.80 1.50 1.80 2.40 

Eft (VMC) -1.998 -1.545 -1.160 -0.886 -0.708 -0.588 -0.495 

± 0.002 0.002 0.005 0.005 0.003 0.004 0.005 

3.8 Superconducting Results 

Here we present our results using a superconducting wave function with s, .0-k = .0., 

extended s, .0-k = .0-(coskx + cosky), and d, .0-k = .0-(coskx- cosky), wave order 

parameters, in an effort to determine the ground state of the Hub bard model. We use 

a 10x10 2D square lattice with 84 electrons, 42 spin-up and 42 spin-down and a value 

of U jt = 8. We then minimise the energy varying g and J1. for a given value of .0.. 

Improvements to the efficiency of the code were made, the complexity of the trial wave 

function and corresponding increase in the parameter space, that needs to be searched 

to minimise the energy, means that the larger lattices used previously are no longer 

feasible. 

Our results are presented in Fig(3.12). We repeat the findings of Yamaji et al: There is 

no superconducting state for the sand extended s wave order parameters and a mini­

mum energy of ( -0. 7375±0.0003)t per site at .0. = 0.08 with ad-wave order-parameter. 

From this and the previous two paramagnetic and anti-ferromagnetic comparisons we 

conclude that our VMC method has been implemented correctly. 

This leads to a condensation energy, E(O)- E(b.), of (0.0017 ± 0.0006)t per electron. 

The wave function cannot handle .0. = 0, it would always be zero, so here E(O) refers 

to the energy at .0. = 0.01. However as we know from Imada et al's results [24] because 

of finite size errors this condensation energy is overestimated. In fact the actual con­

densation energy may be much smaller and insufficient to explain the superconducting 
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Figure 3.12: E(!::.) for the 10x10 site 2D system and 84 electrons with the supercon-

ducting wave-function. The minimum energy, E = ( -0.7375 ± 0.0003) is found at 

!::. = 0.08 with g = 0.31 and J1 = -0.44 for a d-wave order parameter. 

state [24]. This implies that any theory for the high temperature superconductors must 

go beyond the Hubbard model. 
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Chapter 4 

Superconductivity in the 

Hubbard-Frohlich Model 

In this chapter we present our results for the Hubbard-Friihlich model. We use the VMC 

technique, discussed in chapter(3), to minimise the energy of the Hubbard-Friihlich 

Hamiltonian, derived in section 4.2. Our main focus is on the optimally hole doped 

( o P:J 16%) system where, experimentally, the highest transition temperatures have 

been recorded. In addition we present some results for other doping levels. The vari­

ational energies are also compared with those of static configurations to ensure the 

superconducting state is stable against the formation of immobile clusters. 

Our results, for optimal doping, are presented in Ref [75] where we find that relatively 

small values of the EPI lead to sizeable increases in the condensation energy for a 

d-wave order parameter. By setting U = oo, so the exchange term ( J = -4t2 /U = 0) 

disappears, we find that the EPI alone is enough to induce a d-wave superconducting 

state. These results provide evidence that it is possible to account for high temperature 

superconductivity by combining strongly correlated electrons with an electron-phonon 

interaction. 
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4.1. Introduction 

4.1 Introduction 

It is now over 20 years since the discovery of the first high temperature superconductor 

[11] and yet, despite intensive effort, the origin of the superconductivity remains fun­

damentally unknown, with no widely accepted theory. The lack of agreement on the 

relevant physics for the superconducting state in the cuprates and the recent discovery 

of a new class of superconducting materials with high transition temperatures, based 

on iron alloys [76], has re-emphasised the need to understand the superconducting 

mechanism in quasi-two-dimensional solids. 

Using the local density approximation (LDA), it is frequently predicted that the EPI 

is negligible and too weak to account for the kink in the quasiparticle energy spectrum 

found with ARPES [77]. Because of this, many in the condensed matter community be­

lieve that, unlike in conventional superconductors, the EPI is unimportant for high tem­

perature superconductors, see for example Ref [78]. Coupled with the Mott-Hubbard 

physics displayed by the undoped parent compounds, this has led a large number of 

researchers to hold the view that the simple repulsive Hubbard model would have the 

essential physics to account for the superconducting and non-Fermi-liquid normal states 

of cuprates. The idea behind this, originally proposed by Anderson [19], is that mobile 

hole pairs are created via a strong on-site repulsion, U. Results by Paramekanti et al. 

[20] and Yamaji et al. [21], using a variational Monte Carlo (VMC) simulation with a 

(projected) BCS-type trial wave function, appear to back this up. Also, using the VMC 

method, with a trial function that promotes virtual hopping processes, Yokoyama et al 

[79] found that superconductivity was present in a wide range of U. In addition work 

by Sorella et al using a Green Function MC technique for the t - t' - J model [22] 

and earlier work using a combination of the VMC and Lanczos method [80] are also 

in agreement with these findings. Further support for superconductivity within the 

Hubbard model was provided by DMFT and DCA results; for a review see Ref. [81]. 

However recent studies by Aimi and Imada [24], using a Gaussian-Basis Monte Carlo 
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(GBMC) algorithm [82] indicate that the Hubbard model does not account for high­

temperature superconductivity. These results state that errors, due to the small clus­

ters causing finite-size effects, in the numerical studies mentioned in the previous para­

graph lead to an overestimation of the condensation energies. Imada's remarkable 

result is not unique and previous numerical studies using the auxiliary-field quantum 

Monte Carlo [26] and constrained-path Monte-Carlo [27, 28] methods, all find no evi­

dence for high temperature superconductivity in the Hub bard model. Furthermore, the 

validity of the Lanczos extrapolation used by Sorella et al [80] was questioned by Lee 

et al [83] who suggest that the robustness of the superconductivity was overestimated. 

While there is still an on going debate about the presence of high temperature super­

conductivity in the Hubbard model, there is compelling evidence, from a number of 

experiments, for a significant EPI. The experimental evidence, described in more detail 

in section(l.2.2), includes; isotope effects [29, 30, 31], various high resolution ARPES 

studies [32, 33, 34, 35] and results finding polaronic charge carriers [36, 37, 38, 39]. 

Earlier numerical studies have shown that d-wave order can exist in EPI models [84] 

and other work has demonstrated that mobile bipolarons can exist [85, 86]. In this 

chapter we demonstrate that even a relatively weak long-range Frohlich EPI [87] when 

combined with a strong Hubbard U leads to a substantial increase of the condensa­

tion energy in doped Mott-Hubbard insulators and/or strongly-correlated metals. In 

addition we find that the superconductivity persists even with an infinite Hubbard 

repulsion. 

4.2 The Hubbard-Frohlich model 

The form of the electron-phonon Hamiltonian, discussed previously in section 2.4, is 

not suitable for our VMC algorithm in which only electrons are modelled. To perform 

the VMC simulation it is best to reduce the electron-phonon interaction to an effective 
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electron-electron interaction. Following Ref [88], the Lang-Firsov transformation is 

made to reduce a Coulomb-Friihlich (CFM) model to an extended Hubbard model. 

4. 2.1 The canonical transformation 

Canonical transformations can be used to transform from one set of eigenstates of 

a Hamiltonian to another set of eigenstates of a new Hamiltonian. Here we give a 

brief discussion of the canonical transformation for furtther details see Ref [15]. For a 

multi-particle set of eigenstates In) the time independent Schriidinger equation is: 

Hln) = Enln). (4.1) 

Applying a unitary transformation to the eigenstates leads to a new set of eigenstates 

In) = Uln) leaving the eigenvalues unchanged. The new Hamiltonian is defined by 

if = ut HU so that: 

(4.2) 

For the new set of eigenstates to be orthonormal, (nln') = (iiiUtUiii') = 8n,n' it is 

required that ut = u-1. Here we use the Lang-Firsov transformation [89] in which the 

unitary transform is given by: 

(4.3) 

where 

s = 2:: n;[V;*(q)a~- H.c.J (4.4) 
q)i 

The transforms for the electron and phonon operators required in this particular prob­

lem are: 

(4.5) 

By scaling all the matrix elements, V;* ( q), by the same amount S --> 7]8 and differenti­

ating the transformed operators with respect to 7J the new operators can be simplified. 
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Differentiation of the operators results in the following equations: 

(4.6) 
q,v 

By making use of the commutation relations [it;, c;] = -c;, [a~, aq] = -1 and [it;, S] = 0 

the differentials become: 

- -c; L[V;*(q)a~- V;(q)aq] (4.7) 
q 

8aq -"it;V;*(q) 
8ry L.. 

Applying the boundary conditions i'iq = aq and c; = c; when "' = 0 the solutions to the 

differentials are: 

(4.8) 

4.2.2 Applicability of the canonical transformation 

The EPI radius determines both the size of the charge carrier mass renormalization 

and the range in which the weak and strong-coupling expansions are valid. Using the 

Holstein model a very large effective charge carrier mass is predicted which leads to 

immobile pairs. However the carrier mass calculated with a continuous-time QMC [90] 

algorithm for a Frohlich EPI in the relevant region of !'iJJJ jt ratio was found to be 

several orders of magnitude smaller. The Lang-Firsov transformation is exact but the 

subsequent averaging over the phonons is approximate; It is found that the carrier mass 

determined by experiment is well characterised by an exponential term very similar to 

the exponent from the Lang-Firsov transformation for any value of the EPI, so its 

application here is valid. 
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4.2.3 Application of the canonical transformation 

For the purposes of this thesis the full Coulomb interaction is not required so the CFM 

is simplified slightly to the Hubbard-Friihlich model (HFM). Our HFM contains the 

usual nearest-neighbour electron hopping, tij, and electron-electron on-site repulsive 

correlations, U, from the Hubbard model. We then add two terms to the standard 

Hubbard model; a term to describe lattice ions with mass, M, vibrating with frequency, 

w, and a term to describe the long-range effect of the lattice vibrations on the electrons. 

The HFM then takes the form of; 

(4.9) 

Here cl" and Cnuare the usual electron creation and annihilation operators, Pm = 

-ili8/8~m is the quantum momentum operator for an ion at site m with a displacement 

~m and fm(n) is a force function to describe the long-range Friihlich type interaction. 

The force function is used to describe the interaction of an ion on site m and electron 

on site n and given by: 

"' _lm.-n! 
fm(n) = [(m- n)2 + lj3/2e R,o 

( 4.10) 

where Rsc is the screening length. In the results presented here we use Rsc = oo so the 

exponential term can be removed. 

Using optical data for cuprate superconductors it is estimated that the Friihlich EPI, 

Eq.(4.10), is of the order of le V [87] and therefore of a comparable size to the hopping 

integral. Despite such a substantial EPI it is still ignored in the Hubbard U and 

t-J, RVB models of high temperature superconductors [78]. As with the coulomb 

interaction the EPI in-plane is highly screened by the mobile electrons. Thus, here, 

the force function describes the interaction between electrons and phonons polarised 

in the c-axis where screening is much smaller due to the high out-of-plane resistivity. 

From the discussion on electron-phonon interactions in section 2.4 it is known that the 
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atomic part of the Hamiltonian in real space is of the following form: 

( 4.11) 

For simplicity the force function has been replaced with a dimensionless interaction 

proportional to the force 

(4.12) 

The Lang-Firsov transformation makes the following new operators, Eq(4.8) with 'f/ = 

1: 

cl= cl exp [L9ij(aj- a3)] 
j 

c; = c; exp [- L9ij(aj- a3)]. 
j 

(4.13) 

Since the exponential terms from the electron operators cancel, applying the transfor­

mation to the Hamiltonian leads to: 

He-ph= -w L 9ijclc;(a3+aj+ L 2g;'jni' )+w L [(aj+ L9ijn;)(aj+ L9i'jni' )+~] 
ij i' j i i' 

(4.14) 

It is easy to see the terms with both electron and phonon operators cancel and the 

Hamiltonian reduces to: 

He-ph= -w L n;n;' L9ii9i'j + w L(aja3 + ~). 
ii' j j 

( 4.15) 

Substitution of the Lang-Firsov operators into the electronic part of the Hamiltonian 

gives: 

H,b- Ltii'exp[L9ij(a1-a3)-g;'j(aj-a3)]ch ( 4.16) 
ii1 j 

L tii' exp [- L(9ij- 9i'j)aj + L(9;j- 9i'j)aj] eh 
ii' j j 

where we have made the of the identity, eAeB e-[A,B]/2 = eA+B, to combine the exponen­

tials. To simplify this expression further further we make use of the identity again. Let 

Chapter 4. Superconductivity in the Hubbard-Jilrohlich Model 69 



4.2. The Hubbard-Frohlich model 

A= - "L.;(g;;- g;';)a; and B = "L.;(g;;- g;';)a}, remembering the commutation rela­

tion for Bosons a! ai - aial = oii so that the commutator is [A, B] = - "L.i (g;; - g;'; )2
• 

Expanding the commutator [A, B] =- "L.i gt;+g~,;-2g;;gi'j· Introducing the function: 

<l?(n - n') = L fi,mh,m, (4.17) 
m 

that defines the interaction between two electrons i and j, allows the renormalized 

hopping integral to be defined as: 

t;;' = tii' exp [- A: ( 1- :(~: ~))] exp [ L(g;;- g;';)a}] exp [- ~(g;;- g;';)a;] 
3 3 

(4.18) 

where we have defined A = <l?0,0 /2Mw2 . The last two exponential terms are 1, when 

they are averaged over phonons at T=O, so that for our purposes the hopping integral 

becomes: 

- [ AW( <l?(i,i))] 
tw = tii'exp ----;;;- 1- <l?(O,O) . (4.19) 

The exponential terms from the transformation for the Hub bard repulsion cancel as the 

electrons are on the same site but it is renormalized due to the polaron energy shift, 

[; = U- 2Ep where Ep = 1/2Mw2 "L.; fJi = <l?(O, 0)/2Mw2 • Combining the above 

terms the Hubbard-Friihlich Hamiltonian is obtained: 

n#n',u n n#n',uu1 

Here the renormalized hopping integral is given by i = t exp[-g2 (n)], with g2 (n) = 

[Ep- AW<l?(n)]/llw, <l?(n) = "-2 "L.mfm(O)fm(n), U = U- 2Ep, W = zi(a) is the 

renormalized half-bandwidth, z is the co-ordination number and A = " 2 /2M w2W is 

proportional to the conventional BCS electron-phonon coupling constant. Because it 

is proportional to the single-particle density of states (DOS), which is effected by the 

presence of a van-Hove singularity and the increase of the carrier mass due to electron 

correlations, our A may be larger than that of the BCS theory. The polaronic shift, 

Ep = ("2 /2Mw2)<l?(O), of atomic levels is included in the chemical potential. In the 

following only nearest-neighbour hops are allowed. The results by Bonca and Trugman 
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Figure 4.1: The interaction between two electrons as a function of relative lattice 

position 

[86] state that 94% of the EPI energy in Eq.( 4.10) comes from the first two sites, so that 

taking Rsc = oo in our simulations, to eliminate the dependence of the force function 

on the exponent, has little effect. In fig( 4.1) we plot, schematically, the effective inter­

electron interaction against the electron separation; when the electrons are on the same 

site this is a repulsive interaction due to the Hubbard U, the EPI causes an attraction, 

that diminishes rapidly, between electrons on different sites. Note that the EPI also 

causes an attraction between electrons on the same site but the Hub bard U dominates. 
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4.2.4 Studying the Hubbard-Frohlich model 

For a strong EPI, .\ » 1, the perturbation theory can be used, expanding in terms 

of 1/ >., to reduce the many polaron problem to a charged Bose-gas of small mobile 

bipolarons [87]. In the intermediate and weak coupling regime, A ;S 1 with large U, as 

in the current context, the variational method can be applied. Here we use a standard 

VMC method as for example in Ref. [20] to minimise the energy (IJIIHIIV)/(Illllll) of the 

HFM. The differnece is that our Hubbard-Friihlich Hamiltonian requires we make an 

additional measurement of the long-range attraction in the extended Hub bard Hamil­

tonian, Eq.(4.20). 

The superconducting trial function 

A BCS type trial wave-function, as discussed in detail in section 3.5.1 is used, which 

has the form: 

llllr) = PNPc IT (uk + vkct1 c~k!)IO), 
k 

(4.21) 

where PN = Sr:,,r.,,N projects onto a fixed particle number state and Pc = fln[1- (1-

g)nnTiln!], 0 :::; g :::; 1, suppresses double occupancy [21]. Our variational parameters 

are g and the chemical potential, fl, that enters through the kinetic energy, .;k -

t(cos kx +cos ky)- fl, via u~ = (1 + .;k/ J.;~ + Ll~)/2 and v~ = (1- .;k/ J.;~ + LlD/2. 

4.3 Results 

We now present our results for the HFM. Due to the quasi-2D nature of the supercon­

ductivity in the cuprates we restrict our results to a 2D lattice, although the method 

is applicable to 1D and 3D lattices as well. We obtain our results by varying the pa­

rameters to minimise the total energy, of the H ubbard Friihlich Hamiltonian for values 

of the electron density p, [J, superconducting order parameter Llk and A keeping l = 1 
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and a = 1. For a certain electron density and order parameter tJ. the minimum energy 

is then found by running simulations within the 2d parameter space that consists of 

the variational parameters g and Jl.· Once the minimum energies for each tJ. have been 

found then the corresponding condensation energies can be computed. 

4.3.1 Optimal Doping 

Here we refer to optimal doping as the level of doping found experimentally to produce 

the highest transition temperature, it does not indicate optimal doping in our results. 

We place 42 spin-up and 42 spin-down electrons on a 10x 10 2D square lattice, keeping 

the electron density fixed at p = 0.84 in this section, to simulate optimal doping and 

allow direct comparison with Yamaji's results [21]. Two cases are investigated: a) an 

on-site repulsion f) = 8 , and b) an infinite f) is used to see if the attraction induced by 

EPI, alone, is enough for high temperature superconductivity. The results for U = 8 

and A = 0 are used for comparison with the results of Ref. [21]. It should be noted 

that here the condensation energy of electron pairs is computed which is not a direct 

indication of the transition temperature. 

We examine the d-wave tl.k = tl.(coskx- cosky), extended s-wave tl.k = tl.(coskx + 
cos ky) and s-wave tl.k = tl. order parameters. For reasons detailed in chapter 3, 

periodic boundary conditions in one direction and anti-periodic boundary conditions 

in the other are used. The value of A is varied to study the effect of increasing EPI 

and we find the value of tJ. at which the minimum energy occurs. We also measure 

the energy of clustered states to ensure our results are stable against the formation of 

immobile clusters. In our results all energies quoted are per electron; note that Yamaji 

et al. [21] use energy per site. In the following results, all energies are quoted in units 

of t, the renormalized hopping integral. 
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Figure 4.2: Condensation energy per electron (in units of t) versus the amplitude of 

the superconducting s-wave order-parameter (top) for [; = oo and [; = 8, showing no 

s-wave ground state for >. up to 0.075. 

S-wave order parameter 

Here we present our results for the HFM using an s-wave order parameter. After 

determining the minimum energies E(D.) we plot these energies relative to the the 

normal state energy E(O). Firstly we examine the [; = 8 and find no s-wave state for 

values up to >. = 0.075, fig(4.2). When the exchange term is zero with [; = oo again 

nos-wave state is found, fig(4.2). In both cases a graph of energy against D. produces 

a curve with a positive gradient. We conclude that the addition of the EPI does not 

lead to a superconducting state so that neither the HFM or HM, see fig(3.12), have 

s-wave superconductivity. 
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Figure 4.3: The condensation energy versus the amplitude of the extended s-wave 

order-parameter (bottom) for (J = oo and U = 8, showing no extended s-wave ground 

state. 

Extended s-wave order parameter 

We now examine the same systems for the extended s-wave order parameter. For the 

U = 8 case again no superconducting state is found up to A = 0.075, fig( 4.3). With 

U = oo we do not find an extended s-wave superconductor, fig( 4.3). Again we conclude, 

from the positive gradients, that the addition of the EPI to the Hubbard model does 

not induce an extended s-wave, superconducting, ground state. 

D-wave order parameter 

This section details the results for the d-wave order parameter on the HFM with 

optimal filling. We find that increasing A leads to an increase in the condensation 

energy E(O)- E(~) for both (J = 8 and U = oo. 

For the A = 0 and U = 8 case shown in Fig.4.4, we recover Yamaji's result [21] with 
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Figure 4.4: The energy, E(D.), per electron relative to the normal state energy (in units 

oft) versus the amplitude of the superconducting d-wave order-parameter for [J = 8, 

with different EPI coupling, A. 
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Figure 4.5: Condensation energy, E(O)- E(D.), against A with [J = 8 with a line of 

best fit. 
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Figure 4.6: The value of the order parameter, ll., at which the minimum energy occurs 

against A with U = 8 

a minimum at ll. ~ 0.08 and energy per electron of ( -0.8780 ± 0.0004), the normal 

state energy is ( -0.8763 ± 0.0004). It can clearly be seen that the effect of increasing 

the EPI is to increase the depth of the minimum and therefore the stability of the 

superconducting state. Our minimum energy per electron is ( -4.4012 ±0.0004) at ll. = 

0.16 and A= 0.075 and our normal state energy, with A= 0.075, is ( -4.3963±0.0004). 

The maximum condensation energy gain, E(O)- E(ll.), with A = 0 is (0.0017 ±0.0006) 

and (0.0049 ± 0.0006) per electron with A = 0.075. 

To clarify the influence of the EPI we also plot the condensation energy, E(O)- E(ll.) 

fig( 4.5) against A. The effect of increasing the strength of the EPI is to increase the 

condensation energy, the energy required to break paired electrons, thus increasing 

the stability of the d-wave superconductivity. A straight line fit, with a gradient of 

0.043 ± 0.006 and intercept at 0.0014 ± 0.0003 has also been included in fig( 4.5) that 

indicates a possible linear dependance of the condensation energy on A. For a more 

definite relationship between the condensation energy and EPI more data is required 
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Figure 4.7: The energy, E(f!..), per electron relative to the normal state energy (in units 

oft) versus the amplitude of the superconducting d-wave order-parameter for (J = oo, 

with different EPI coupling, A. 

over a wider range of EPI strengths. In addition we plot the minimised order parameter 

t:. against A. We find that the order parameter also increases with the EPI. A smoother 

curve of L::. against A could be achieved by sampling with a smaller L::. step size; as it is 

there is not enough data to determine a relationship. 

Next we examine the Hubbard-Frohlich with U = oo and find an unexpected result. 

With no EPI this is equivalent to a t-J model with no anti-ferromagnetic exchange, 

IJI = 4t2 jU = 0, to drive a superconducting state. In this case the trial function used 

in Ref [79]. which promotes virtual hoping processes, will have no effect and will not 

qualitatively change our result. Fig.4. 7 shows an increasing condensation energy gain 

with A for (J = oo: the condensation energy gain is (0.00014 ± 0.00004) per electron 

at t:. = 0.04 for A = 0.075. While this energy gain is not large enough to guarantee 

stability against other trial wave functions and finite size effects, it does suggest a 

d-wave superconducting state exists for U = oo with a large enough A. This implies 
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Figure 4.8: The energy, E(!:,), per electron relative to the normal state energy (in units 

oft) versus the amplitude of the superconducting d-wave order-parameter for U = 8, 

with different EPI coupling, A. 

a d-wave superconducting state can be formed without spin fluctuations. In order to 

achieve more significant condensation energies stronger EPI have been studied. 

In fig( 4.8) we plot the condensation energy against the amplitude of the order parameter 

for stronger EPI. With A= 0.15 the minimum energy is found to be -7.5517±0.00003 

at /:, = 0.16. From this we calculate a maximum condensation energy of 0.00056 ± 

0.00004. From this data we can conclude that the inclusion of the EPI allows the 

formation of a d-wave superconducting state without the need for spin fluctuation. 

Fig( 4.8) also includes curves of the form ax2 + bx4 to parameterise the data. The co­

efficients a and b have been used to analytically determine the minimum energies. As 

expected, the A = 0 curve shows no superconducting order. The analytic results are 

used to examine the dependence of the condensation energy, fig(4.9), and/:,, fig(4.10) 

on the strength of the EPI. With the inclusion of stronger electron-phonon interactions, 

up to A = 0.015, it is clear that the condensation energy increases with a non-linear 
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Figure 4.9: Condensation energy, E(O)- E(fl.), against.>.. with U = oo. 
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Figure 4.10: The value of the order parameter, fl., at which the minimum energy occurs 

against .>.. with U = oo 
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Figure 4.11: The energy, E(tl.), per electron relative to the normal state energy (in 

units of i) versus the amplitude of the superconducting d-wave order-parameter for 

[; = 8 and hole density x = 0.1, with different EPI coupling, A. 

dependence on A. Fitting a quadratic or higher order polynomial with so few data 

points was considered inappropriate. From fig(4.10) it is seen that in this range the 

effect of increasing A is to increase the amplitude of the superconducting order param­

eter; this is further evidence supporting our conclusion that including an EPI stabilises 

the superconducting state. A straight line with gradient 1.08 ± 0.03 and intercept 

-0.001 ± 0.003 has been included in fig(4.10). 

4.3.2 The under doped regime 

We now examine the under doped regime where less holes are injected so the electron 

density is higher. The simulations were performed with[; = 8, A = 0.0, 0.025, 0.05, 0.075 

with 90 electrons on a 10x10 lattice to model a hole density of 10%. For this doping 

level only the d-wave order parameter is examined. 
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Figure 4.12: The condensation energy, E(O) - E(6i), against A for the under-doped 

lattice. 

From fig( 4.11) it can be seen that the EPI increases the condensation energy. With 

no EPI there is a condensation energy of 0.0028 ± 0.0007. When the EPI is included 

our lowest energy was -4.4553 ± 0.0006 for A = 0.075 at 6i = 0.2 and results in a 

condensation energy of -0.0062 ± 0.0008. Here the error bars are large and further 

data gathering is recommended for future work. 

The effects of increasing A on the condensation energy and order parameter are exam­

ined in figures 4.12 and 4.13. Plotting the maximum condensation energies against A, 

fig(4.12), shows that the condensation energy increases with the the strength of the 

EPI. In fig(4.13) it can be seen that increasing the strength of the EPI increases the 

size of the order parameter 6i. 
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Figure 4.13: ~ against A for the under-doped lattice. 

4.3.3 The over-doped regime 

In this section results for the over doped regime are presented i.e a lower electron den­

sity. We repeat our simulations using the same values, [J = 8 and A = 0.0, 0.025, 0.05, 0.075 

but adjust the number of electrons to 78 so the hole density is 22%. As with the under­

doped lattice only the d-wave order-parameter results are presented. 

For this hole density again it is found that the EPI enhances the condensation energy, 

see fig(4.14). With no EPI the condensation energy is 0.0006±0.0007 indicating longer 

simulations are required to reduce errors and enable clear conclusions to be drawn. 

With A = 0.075 the condensation energy is much larger, 0.0030 ± 0.0007, so that the 

error bars are not significant and it is clear that the EPI enhances the condensation 

energy. The condensation energies here are smaller than those found for optimal doping 

indicating a lower transition temperature which is consistent with the schematic phase 

diagram fig(1.3). 

Examining theses results further by plotting the condensation energy against A in 
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Figure 4.14: The energy, E(6.), per electron relative to the normal state energy (in 

units of i) versus the amplitude of the superconducting d-wave order-parameter for 

U = 8, with different EPI coupling, >.. 

fig( 4.15) it is found that the enhancement of the condensation induced by the EPI 

is again present for this doping level. The plot of 6. against >., fig( 4.16) indicates 

that increasing the EPI strength increases the amplitude of the superconducting order 

parameter though the error bars are large and more results for other values 6. are 

required. 
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Figure 4.15: The condensation energy, E(O) - E(!:;), against A for the over-doped 

lattice. 
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Figure 4.16: /:, against A for the over-doped lattice. 
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4.3.4 Phase diagram 

Here we plot the maximum condensation energies and amplitude of the superconducting 

order parameter, for values of ,\ up to 0.075, against the doping level, see fig( 4.17) and 

fig(4.18) respectively. We use the definition x = 1- p, where p = ne/n8 i.e the number 

of electrons divided by the number of sites. With the data available we are unable 

to reproduce the superconducting dome. On the over-doped side we find a reduction 

in both the condensation energy and order parameter which may indicate a reduction 

in the transition temperature as is expected, see fig(1.2). The accuracy of the data is 

insufficient to predict a value at which the superconductivity would disappear. 

When under-doped we find larger condensation energies and order parameters which 

appears to disagree with the experimental phase diagrams. However the relationship 

between the condensation energy and transition temperature is not well understood 

and the larger condensation energies found do not necessarily indicate larger transition 

temperatures. In fact this may be accounted for by heavy pre-formed immobile pairs 

with a large binding energy and therefore could be an explanation of the pseudogap 

and therefore consistent with the phase diagram [15]. 

4.3.5 Static configurations 

In this section we examine the energies of various static configurations. If a static 

energy has a lower energy than the energy calculated with the VMC simulation, then 

the static configuration would be the ground state. We placed 84 electrons on a 10x10 

square lattice in various configurations, with no double occupancy setting U = oo. In 

this case only the last term of the HFM contributes, we calculate: 

Estatic = -W L <I>(n- n')nn'u'nn<T ( 4.22) 
n#n1 ,uu1 
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Figure 4.17: The condensation energy as a function of the doping level x. 
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Figure 4.18: The amplitude of the d-wave superconducting order parameter as a func­

tion of the doping level x. 
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Figure 4.19: Energy of the static configurations as a function of SE(>.) and a straight 

line fit of the variational energy V E(>.) for ii = oo. 

so that the static energy as a function of>. can be found fig(4.19). The lowest static 

energy for >. = 0.075 is -3.6824 per electron, with the electrons in a circular configu­

ration, so that the U = 8 system is stable against the formation of immobile clusters. 

With >. = 0.15 the static energy is -7.3648 so that our U = oo superconducting state 

is also stable against cluster formation. It is found that the straight line fit of E(>.), 

for U = oo ,intersects the line for the static configurations at >. = 0.246 ± 0.001 where 

the formation of clusters would occur. For smaller values of the Hub bard repulsion the 

formation of clusters would occur at larger values of >.. 

The static energy was also examined with a hole density of 10% were clusters are more 

readily formed. In this regime the lowest static energy was found to be -3.9631 for 

>. = 0.075 our system is stable against cluster formation. The difference between the 

VMC and static energies is smaller than in the optimally doped lattice and cluster 

will form at a weaker EPI. In the over-doped case clusters are less likely and will form 

at larger values of >. so again, for the EPI strengths studied here, clusters will not be 
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formed. 

4.4 Conclusions 

There is substantial evidence [24, 26, 27, 28] indicating that the Hubbard U and t-J 

models do not lead to high enough transition temperatures to be considered valid mod­

els of the cuprate superconductors. Some studies using the LDA method indicate that 

phonons are also unable to explain the high transition temperatures [77]. However it is 

clear these calculations are flawed, wrongly resulting in a metallic rather than insulat­

ing state for the undoped compounds, as they underestimate the electron correlations 

and should not be relied upon. The metallic nature of these states, predicted with the 

LD approximation, will cause an overestimation of the screening effects and therefore 

underestimate the long range EPI. With the addition of the on-site repulsion, in the 

LDA+U approach, the system becomes a Mott insulator reducing the screening in the 

c-axis, as predicted by Alexandrov [87], Mott [40] and Bauer [91]), and strengthening 

the EPI. 

Our theoretical results, along with various experiments, see for example [29, 32, 36, 

37, 44, 92, 39], indicate the need to include the Frohlich EPI as well as strongly cor­

related electrons for a theory of the high superconductors as was initially proposed 

by Alexandrov and Mott [40]. In the Holstein model even a moderate EPI can cause 

charge carriers to be self-trapped and an insulating state[93]. When the Frohlich EPI 

is considered this is not the case; a strong EPI has been shown small, light and mobile 

bipolarons can exist[87, 94, 85]. 

Here we have shown, using the VMC method, that even a relatively weak Frohlich EPI 

is sufficient to induce a d-wave superconducting state with substantial condensation 

energy in a doped Mott-Hubbard insulator and/or strongly-correlated metals. While 

the exact energy gain may be overestimated, due to finite size scaling errors, our results 
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clearly demonstrate that increasing the EPI strength increases the condensation energy. 

The superconducting energies are lower than the static energies in a wide region of .X so 

that our superconducting state is stable against the formation of clusters. In addition 

the increase in condensation energy is large so that our superconducting state is likely 

to be robust against other choices of trial function. As a result we conclude that a 

combination of strong electron-electron correlations with long range electron-phonon 

interactions is a mechanism for high temperature superconductivity in the cuprates. 
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Chapter 5 

Ferromagnetism and 

Superconductivity 

In this chapter we examine the coexistence of ferromagnetism and superconductivity. 

These are two competing states with ferromagnetism favouring aligned spins and su­

perconductivity favouring paired electrons with opposite spins. Therefore a perfect 

ferromagnet, in which all spins are aligned, cannot be a singlet superconductor. 

Departing from the previous chapters based on numerical solutions here we use an 

analytical method. More precisely we use Greens Functions (GFs) to examine the 

Fulde-Ferrell-Larkin-Ovchinnikov state. We find some extra branches in the energy 

spectrum and a new expression for the finite momentum pairing amplitude. 
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5.1. Coexistence of ferromagnetism and superconductivity with zero momentum pairs 

5.1 Coexistence of ferromagnetism and supercon­

ductivity with zero momentum pairs 

In the normal superconducting state electron pairs are created near the Fermi surface 

with equal but opposite momentum; these pairs therefore have a net zero momentum. 

Examining Fig(5.1) it can be seen that at the Fermi surface electron pairs with equal 

and opposite momentum do not exist in the ferromagnetic system. Thus it is generally 

thought that singlet superconductivity is inhibited by the presence of ferromagnetism 

though experimentally this is not necessarily the case [95]. 

Intuitively, it is predicted that increasing the ferromagnetic exchange energy should, 

at some value, cause the Cooper pairs, along with the superconductivity, to be de­

stroyed [95]. This is not the case and it is has been found that it is possible for the 

ferromagnetic and superconducting states to coexist with an inhomogeneous order pa­

rameter. The idea of coexisting ferromagnetic and superconducting states with, finite 

momentum electron pairs and an oscillating order parameter, was originally proposed 

independently by Fulde and Ferrell [45] and Larkin and Ovchinnikov [46]. Such a 

state is often referred to as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. Re­

cently there has been revived interest in the area with the discovery of superconduc­

tivity in ferromagnetic metallic compounds UGe2 [41], ZrZn2 [42], URhGe [43] and 

RuSr2RECu20s [44]. 

5.1.1 Analysis of the coexistence of ferromagnetism and su­

perconductivity with zero momentum pairs 

Theoretical work looking at the interplay of the two states, assuming that the electron 

pairs have zero-momentum, has been carried out by Cuoco et al [96, 97]. To do so 

a BCS type Hamiltonian (for detail see section 2.5), with a spin dependent electron 
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E 

Figure 5.1: Energy spectrum for the ferromagnetic superconducting state. 

mass [96], is written: 

H = L~k[2wrclrckT + 2w!c~k!c-k1 ] + b.kclrc~k! + b.~c-k!ckT- JL L.:c!ucku (5.1) 
k ~ 

where w" determines the mass re-normalisation of the spin a electrons. The difference 

between the spin-up and spin-down electron mass leads to different numbers of up and 

down electrons and hence ferromagnetism, see Fig(5.1). In other theoretical work, see 

for example Ref [95], a Hub bard Hamiltonian has been used as the basis for the analysis 

of the coexisting ferromagnetic and superconducting states. 

The ferromagnetic BCS Hamiltonian can be solved, like the standard BCS Hamiltonian, 

using a Bogoliubov transformation of the form: 

ak = ukckT - vkc~k! 

{3k = UkC-k! + VkCkT 

a! = UkCkT - VkC-k! 

f3t = UkC~k! + VkCkT 

(5.2) 

Applying the transformation reduces the Hamiltonian to the following diagonal form, 

the details of the derivation are shown in appendix A.1: 

H = L(E~atak + Eef3tf3k) +I.: l-Ee+ (2w1Ek- JL)] + b-
2 

(5.3) 
k k g 

where the quasi-particle energies, according to Ref [96], are given by: 

(5.4) 
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with the definitions: b = w1 + w! and a= w1 - w!. 

Cuoco et al [96] then derived the following equation for the pairing amplitude, t. = 

g Lk(ckck), is derived: 

(5.5) 

where and n~·11 are the occupation numbers of the new quasi-particles. 

5.1.2 Energy spectrum 

Examining the mathematics in appendix A.l carefully it can be seen that the quasi­

particle energies given in ref [96] contain an error; the negative part of the square root 

has been omitted. So, in fact, the quasi-particle energies are given by: 

(5.6) 

If these excitation energies are to be physically significant they must be positive. By 

examining all four branches of the energy spectrum, varying a, b, J1 and t., it can 

be seen in some cases the negative root can lead to positive energies; one such case 

is shown in Fig(5.2). In Fig(5.2) it can be seen that, for values of k around zero, a 

positive value for Eii can be found and without the negative root the energy dispersion 

would be incomplete. This means that there is an omission in the energy spectrum 

given in Ref [96]. For this reason it was decided that the Hamiltonian needs to be 

re-evaluated using another method. Here we study the coexistence of ferromagnetism 

and superconductivity using Green functions. 
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w 
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k [a"1) 

Figure 5.2: Sample energy spectrum of the a and f3 excitations, including all four 

branches, demonstrating that, under certain conditions, the negative root can lead to 

positive energies 

5.2 Introduction to Green Functions 

Green functions offer a more elegant approach to solving many body problems and are 

applied here. The idea behind the approach is that often it is not necessary to know 

all the eigenstates and eigenfunctions of a Hamiltonian but rather how it responds to 

perturbations [98]. The zero temperature Green function for an electron is defined 

as [52]: 

G(.\, t- t') = -i(ITC,_(t)Cl(t')l} (5.7) 

where the Heisenberg representation is used to write the time dependent creation and 

annihilation operators as: 

(5.8) 

and the time ordering operator, for fermions, has been introduced as: 

TtA(t)b(t') = B(t- t')A(t)B(t'}- B(t'- t)B(t'}A(t). (5.9) 
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Here the step function is defined as (l(x) 

(l(x) = 1/2 for x = 0. 

1 for x > 0, (l(x) = 0 for x < 0 and 

5.2.1 BCS theory with Green Functions at finite temperature 

As an introduction to the finite temperature Greens function [98] techniques, used later 

to study the competing ferromagnetic and superconducting states, here we re-derive the 

BCS equations using finite temperature Green functions (GF). To begin with the BCS 

Hamiltonian is rewritten in terms of field operators [9], 'lt,(r) = I:k Cksexp[ik.r] [52] 

as: 

ii = j dr[2:= w-!cr )h.(r)w-.er)+ ~(r)wicr )w! er) + ~ ·cr)w-k)wr(r )J (5.10) 
s 

where h(r) =-[V'+ ieA(r}P/2m + U(r)- J1 and ~(r) = -2Ep(('lt!(r)'lt;(r))) 

Following the derivation described in reference [15], the Greens function at finite tem­

perature is then defined with the same form as the zero temperature GF by: 

(5.11) 

where 'thermodynamic time' 7 = it has been used in the Heisenberg operators to form 

Matsubara operators [99]: 

(5.12) 

Note that these operators are no longer hermitian conjugates [100]. The Gor'kov finite 

temperature GF is then: 

(5.13) 

The thermodynamic times are real and defined in the interval 0 < 71> 7 2 < 1/T. In 

fact the GFs only depend on the difference 7 = 7 1 - 7 2• Replacing 7 by a negative f, 

7 = f + ~ the result that r9'(r, r',T + ~) = -r9'(r, r', f) is found (for details see [15]). 
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The next stage is to take Fourier transforms of the GFs. A function, F(r), can be 

transformed using the Fourier expansion: 

00 

F(r) = T L fne-i"nTr (5.14) 
n=-oo 

with the Fourier coefficients, fn, defined by 

11,j. . T fn=- drF(r)e"'n r. 
2 1 -'i' 

(5.15) 

Noting that F(r) = -F(r +~),the Fourier coefficients are written: 

(5.16) 

So expanding the GFs with the Fourier transforms the equations below are found: 

~(r,r',r) _ TL~(k,wn)eik.(r-r')-iwnr (5.17) 
Wn 

Wn 

Differentiating the Mastubara operators Eq(5.12) the following equations of motion are 

found: 

For the BCS Hamiltonian, the equations of motion are given by: 

8'l!r(r,r) j "' t ' t t ar = dr[L..,. w.(r)h(r)w.(r) + b.(r)'llr(r)'llk) + b.*(r)'ll!(r)'llr(r)Jwr(r,r) 
s 

-w1(r,r) j dr[L:w!(r)h(r)w.(r) + b.(r)'ll~(r)wi(r) + b.*(r)'llk)'l11(r)] 
s 

Applying the anti-commutation relations the equations of motion are reduced to: 

81/;1(r, r) 
ar 

a~r(r, r) 
ar 

- h(r)1/!1(r,r) + b.(r)~ 1 (r,r) 

- h*(r)~ 1 (r,r)- b.*(r)1/!1(r,r) 
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Then taking the derivative of the GFs, assuming T > 0, it is found that: 

W(r, r 1
, r) - olo ( I )81/!.(r, TJ) olo ( I )aif;.(r, 72) 

OT - 'l's r ,T2 OT + 'l's r ,TJ OT . (5.20) 

Subsequent substitution of the equations of motion and application of the anti-commutation 

relations yields: 

iJC§(r, r 1
, r) 

OT 
a§+(r, r 1

, r) 
OT 

- o(r)o(r- r 1
) + h(r)~(r, r 1

, r) + ll(r)ff+(r, r 1
, r) (5.21) 

h*(r)ff+(r, r 1
, r) -ll*(r)~(r, r 1

, r) 

Taking the Fourier transform of the differentiated GFs we get: 

-iwff(k,w) 

to which the solutions are: 

iwn +~k 
w2 + E2 n 

ll* 
w2 + E2 n 

(5.22) 

(5.23) 

where we have defined E
2 =a+ ll2 as usual. The order parameter is then given by: 

Using the definition of the Matsubara frequencies Wn = wT(2n + 1) and the identity: 

tanhx ~ 1 
x = ~ x2 [w(n+l)]2 

n=-oo 2 

(5.25) 

the usual BCS result Eq(2.97) is recovered: 

(5.26) 
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momentum pairs 

5.3 Analysis of the coexistence of ferromagnetism 

and superconductivity with finite momentum 

• pmrs 

We now apply the GF method to the ferromagnetic superconducting system with an 

inhomogeneous pairing amplitude. In terms of Heisenberg operators the Ferromagnetic 

BCS Hamiltonian Eq(5.1) is: 

iiF = j dr['l>'f(r)hr(r)Wr(r)+wl (r)h1(r)w1 (r)+~(r)wf(r)w! (r)+~*(r)lllk)lll;(r)] 
(5.27) 

with ~ = ~0eiqr allowing oscillations of the order parameter. With the ferromagnetic 

Hamiltonian the equations of motion now take the following form: 

awr(r,r) 
ar 

awl (r, r) 
at 

- -hr(r)lllr(r,r)- ~(r)w!(r,r) 

hj(r, r)w! (r, r)- ~*(r)lllr(r, r) 

So that the differentials of the GFs are now given by: 

80'r(r, r', r) 
ar 

CY9't(r, r', r) 
ar 

and the differentials of the Gor'kov GFs now: 

8ffjj(r, r', r) 
ar 

affij(r, r', r) 
ar 

As before the Fourier transforms of the GFs are now given by; 

\1(r, r', r) T L: \1(k, k',wn)ei(k.r+k'r')-iwnT 
kk'wn 

ff+(r, r', r) _ T L: JW+(k, k', Wn)ei(k.r+k'r')-iwnT. 
kk'wn 

Chapter 5. Ferromagnetism and Superconductivity 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

99 



5.3. Analysis of the coexistence of ferromagnetism and superconductivity with flnite 
momentum pairs 

Taking the Fourier transformations of the G Fs, then multiplying through by the factor, 

e-i(p.r+p'r')+iw~7 , and integrating over I dr I dr' I dr, leads to the following set of 

equations (see A.2 for details): 

-iwn("#r(k, k', Wn) - -Okk'- ~T(#r(k, k', Wn)- b.off11(k- q, k', Wn) (5.32) 

-iwn("#l (k, k', Wn) -Okk' - ~l("#l (k, k', Wn) - b.offr1(k- q, k', Wn) 

-iwnff11(k, k', r) ~(k)lff11(k, k', r)- b.o("#r(k + q, k', r) 

-iwnffr1(k, k', r) - ~(k)rfff!(k, k', r)- b.o("#l(k + q, k', r). 

The solutions to the set of equations (5.32) are therefore given by (for details see 

appendix): 

(5.33) 

These two solutions can be written in a more compact form using the following defini­

tions for the quasi-particle energies: 

1 
Ea = 2(~(k + q)r - ~(k)l) + E (5.34) 

1 
E~ = -2(~(k + q)r- ~(k)l) + E 

1 
E = v E 2 + b.2 E = 2 (~(k + q)r + ~(k)l), 

so that the GF and the Gorkov GF can now be written as (details are included in the 

appendix): 

(5.35) 

As before, with the zero-momentum pairs, the definition for the pairing amplitude is: 

b.(q) = gTLff11(k,wn) (5.36) 
kwn 
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Substitution of the Gorkov GF Eq(5.35) into Eq(5.36) and making use of the identity 

Eq(5.25), leads to: 

(5.37) 

It is known that 1 - nx = tanh( <x/2T) so the final form of the gap equation is: 

(5.38) 

With q = 0 this equation reduces to the gap equation, Eq(5.5), found by Cuoco et 

a! [96]. 

5.4 Conclusions 

A complete energy spectrum for a ferromagnetic BCS type Hamiltonian has been de­

rived. We have derived a novel expression for the pairing amplitude of finite momentum 

electron pairs. To progress further this expression needs to be evaluated in the contin­

uum limit. This has proved a difficult problem, beyond the scope of this thesis, and 

suggested as further work. As expected setting q = 0 in Eq(5.38), for electron pairs 

with zero total momentum, the result by Cuoco et a! [96] is recovered. We conclude 

that, despite an omission in the energy spectrum, the final result [96] is robust. 
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Chapter 6 

Conclusions and Recommendations 

for Further Work 

6.1 Conclusions 

A VMC algorithm has been developed and tested against previous results that exam­

ined ground state energies the Hubbard model. Using the VMC method it is pos­

sible to examine various trial wave functions; Here we have used the free electron, 

anti-ferromagnetic and superconducting trial functions and accurately reproduced the 

results of various earlier studies. 

An electron-phonon interaction has been added to the Hubbard model to form the 

Hubbard-Hrohlich model. The Lang-Firsiv transformation has then been applied to 

the HFM remove the phonon terms. Along with modifications to the VMC method, to 

measure the long range electron-electron attraction, this has allowed us to investigate 

the effects including an electron-phonon interaction in a strongly correlated electron 

system. 

We have then used this VMC algorithm to demonstrate that the inclusion of the EPI 
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to the Hubbard model produces a substantial increase in the condensation energy. 

The condensation energy represents the energy required to break paired electrons so 

the larger condensation energies found here indicate an increase in the stability of the 

superconducting state. 

The majority of our results are for an optimally doped, or close to optimally doped, 

system and detailed earlier in this thesis and in Ref [75]. In summary we find nos-wave 

or extended s-wave superconducting state in the HFM with either [; = 8 or [; = oo. 

With ad-wave order parameter it is found that the EPI enhances the condensation 

energy considerably when [; = 8; over the range 0 ~ A ~ 0.075 it was shown that the 

relationship between the condensation energy and the EPI can be approximated by a 

straight line with a positive gradient. For infinite on site repulsion we find that the 

condensation energy with ad-wave order parameter is again enhanced by the presence 

of an EPI; In this region the effect is smaller and larger values of A must be used to 

produce a significant lowering of the energy. 

In both the under and over-doped lattices it was found that the inclusion of the EPI 

enhances the condensation energy. With an under-doped lattice we found larger con­

densation energies, than those found in the optimally doped lattice, possibly due to 

the presence pre-formed pairs as seen in the phase diagram. When over doped we 

see smaller condensation energies suggesting lower transitions temperatures which is 

consistent with the phase diagram. 

The coexistence of ferromagnetism and superconductivity was also examined. We re­

derived the results by Cuoco et al [96] finding 2 new branches in the energy spectrum 

yet we find the same result for the expression for the pairing amplitude. In addition 

we allow pairs with finite momentum and derive the pairing amplitude for these states. 
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6.2 Further work 

Further work on the coexistence of ferromagnetism and superconductivity with finite 

momentum pairs is suggested. Our work is incomplete and the expression for the 

pairing amplitude needs to be integrated. This is a difficult task: the expression has 

both angular and radial dependance. We have not been able to find a method to solve 

this numerically. 

Using the current VMC algorithm and trial function it is possible to study the HFM 

further. A more comprehensive phase diagram can be produced. To do this the presence 

of s and extended s wave superconducting states at other doping levels should be 

investigated. Additional simulations, with the d-wave order parameter, at doping levels 

other than those presented here need to be carried out to produce more data points for 

the phase diagram. Larger EPI strengths can be investigated to better determine the 

relationship between the condensation energy and .\. To gain further understanding of 

the situation additional values of the Hub bard repulsion should also be investigated. 

Our results give a clear qualitative picture of the effect the EPI though finite size errors 

may have led to an overestimation of the condensation energy. To gain a better quan­

titative insight the HFM could also be examined with other algorithms. In particular 

it would be useful to use the Gaussian basis MC method [82] to produce more accurate 

condensation energies. With the advance of computer technology it will be possible to 

study larger lattices to reduce any finite size errors. The VMC method could also be 

employed to examine the HFM with other trial functions, in particular a trial func­

tion that is defined for the normal state (fl. = 0) would improve the reliability of the 

results. It should be pointed out that no qualitative change to the main result, that 

the inclusion of the EPI in the Hub bard model stabilises the superconducting state is 

expected. 
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Appendix A 

Appendix 

A.l Derivation of the Zero Momentum pairing Ferro­

magnetic Superconducting state 

Diagonalisation of the ferromagnetic BCS Hamiltonian proceeds as follows: 

H = L~k[2wtct1 ck1 + 2w!c~k!c-k!] + llkct1 c~k! + llkc-k!ckt- J.L L:ctucku (A.l) 
k ~ 

The Bogoliubov particles are defined as: 

ak = uckt - vc~k! 

(3k = uc_k! + vc!1 

at = uct1 - vc_k! 

f3! = uc~k! + vckt 

As a and (3 are fermions and must obey the same anticommutation rules. 
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A.l. Derivation of the Zero Momentum pairing Ferromagnetic Superconducting state 

{a!, ak} = (uckT- vc~k1 )(ucl1 - vc_k1) + (ucl1 - vc_k1)(uck1 - vc~kl) = 1 

2(1 t ) 2 t 2 t 2(1 t t ) 1 u - cklckT + v c_kl c-kl + u ck1ck1 + v - c-kl c-kl -

u2 +v2 
- 1 

The electron creation and annihilation operators are written as: 

ckl = ukak + vkf3k 

c_kl = uk(3k - vkal 

cl1 = ukal + vk(3k 

c~kl = ukf3k - vkak 

(A.3) 

Dropping the summation for simplicity and writing the Hamiltonian in terms of Bo­

goliubov operators: 

Hk - !:k[2w1(uat + v(3)(ua + v(31) + 2w1(u(3t- va)(u(3- val)] + (A.4) 

+b.(uat + v(3)(u(3t- va) + b.*(uf3- val)(ua + v(31)-

-J.L[(uat + vf3)(ua + v(31) + (u(3t- va)(uf3- vat)] 

Expanding and gathering like terms together: 

Hk - a1a[,;2w1u
2

- (2w1v
2

- 2b.uv- J.L(u2
- v2

)] 

+f31(3[(2w1u2
- (2w1v

2
- 2b.uv- J.L(u2

- v2
)] 

+a1(31[(2w1uv + (2w1uv + b.(u2
- v2

)- J.L2uv] 

+f3a[(2w1uv + (2w1uv + b.(u2
- v2

)- J.L2uv] + 

+(2w1v
2 + (2w 1 v

2 + b.2uv - J.L2v2 
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A.2. Fourier 'lransformation of the Finite Momentum GFs 

This is then diagonal if: 

(A.6} 

is satisfied. Solving this equation with the condition u2 + v2 = 1 it is found that: 

So that the quasi-particle energies are: 

1 
uv = -v'1- x2 

2 
(A.7) 

(A.8} 

A.2 Fourier Transformation of the Finite Momen-

turn GFs 

Here we show the details of the Fourier transform for the finite momentum pairing 

state. Taking the Fourier tranform of the left side of Eq(5.29}: 

then the right side: 
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-iwnT L f§';(k, k', Wn}ei[k.r+k'.r'-wnT] 

kk'wn 
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A.3. Rewritting the Gor'Kov GF 

-o(r- r')- ~;T L ~;(k, k',wn)ei[k.r+k'r'-wnT[ 

kk'wn 

-D. T "'"""" g-+(k k' W )ei[(k+q.)r+k'r'-wnT[ 
0 ~ H ' ' n · 

kk1Wn 

(A.lO) 

We then multiply through by the factor, e-i(p.r+v'r')+iw~T, and integrate, J dr J dr' J dT 

for the left side: 

-iwnT L ~;(k,k',wn)ei[(k-p).r+(k'-p').r'-(wn-w~)T] j dr j dr' j dT 

kk'wn 

(A.ll) 

and for the right side: 

-o(r- r')e-i[p.r+v'r'+w~T[ j dr j dr' j dT (A.l2) 

-~;T L ~r(k, k',wn)ei[(k-p).r+(k'-p).r'-(wn-w~)T] J dr J dr' J dT 

kk'wn 

-D.oT L ff!1(k, k',wn)ei[(k+q-p).r+(k'-p')r')-wnT] j dr j dr' j dT. 

kk'wn 

Using the definition of the delta function J exp[i(m- m')b]dx = Om,m' this reduces to: 

(A.l3) 

The same procedure is applied to the other GFs. 

A.3 Rewritting the Gor'Kov GF 

Expanding the denominator of the Gor'kov GF: 
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A.4. Finite Momentum Pairing Amplitude 

Using the quasi-particle energies Eq(5.34): 

(A.14) 

- -w~- iwn[(~(k + q)r- (~(k)J)]- EcxE/3 

1 1 
EcxEiJ - [2 (~(k + q)r- (~(k) 1 ) + Ej[- 2 (~(k + q)T- ~(k) 1 ) + Ej (A.15) 

- -~(~(k + q)r- ~(k)J)2 + E2 

- -~(~(k + q)r- ~(k)J)2 + ~(~(k + q)r + ~(k)J)2 + !:!.2 

- ~(k + q)r~(k) 1 + /:;.2 

So that the denominator is: 

(iwn- ~(k + q)r )(iwn + ~(k)J)- /:;.~ = (iwn- Ecx)(iwn + Ef3)· (A.16) 

A.4 Finite Momentum Pairing Amplitude 

We rewrite the pairing amplitude as follows: 

(A.17) 

Using our previous definitions Eqs(5.34) the fraction is split: 
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A.4. Finite Momentum Pairing Amplitude 

1 1( 1 1 ) 
(iw- Ea)(iw + Ep) = 2E (iw- Ea) - (iw + Ef3) 

(A.18) 

Now examining the first fraction: 

"' 1 "' -Ea 
~ (iw - E ) - ~ w2 + E2 

n na nna: 

(A.19) 

The Matsubara frequencies are defined as Wn = 11'T(2n + 1), n = 0 ± 1 ± 2 ± 3 ... so 

2:n Wn/(w~ +a)= 0. Using the identity Eq(5.25) 

(A.20) 

So the pairing amplitude is now: 

(A.21) 

Chapter A. Appendix 110 



Bibliography 

[1] M. R. Norman and C. Pepin. The electronic nature of high temperature cuprate 

superconductors. Rep. Prog. Phys., 66:1547, 2003. 

[2] A. Damascelli, Z. Hussin, and Z. X. Shen. Angle-resolved photoemission studies 

of the cuprate superconductors. Rev. Mod. Phys., 75:473, 2003. 

[3] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Halt Saunnders, Philadel­

phia, 1976. 

[4] S Blugel, G Gompper, E Koch, H Muller-Krumbhaar, R Spatscheck, and R Win­

kler. Computational Condensed Matter Physics. Forschungszntrum Julich GmbH, 

Julich, 2006. 

[5] M. C. Gutzwiller. Effect of correlation on the ferromagnetism of transition metals. 

Phys. Rev. Lett., 10(5):159, 1963. 

[6] J Hubbard. Electron correlations in narrow energy bands. Proc. Ray. Soc. A, 

276:238, 1963. 

[7] J. Kanamori. Electron correlations and ferromagnetism of transition metals. 

Prog. Theor. Phys., 30:275, 1963. 

[8] N. F. Mott. Metal-Insulator Transitions. Taylor & Francis, London, 1990. 

[9] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. 

Phys. Rev., 108(5):15, 1957. 

111 



BIBLIOGRAPHY 

[10] M. Cohen and P. W. Anderson. Comments on the maximum superconducting 

transition temperature. In D. H. Douglas, editor, Superconductivity in d- and 

f-band Metals. American Inst. of Physics, 1972. 

[11] J. G. Bednorz and K. A. Miiler. Possible high Tc superconductivity in the Ba­

La-Cu-0 system. Z. Phys. B, 64:189, 1986. 

[12] P. Dai, B. C. Chakoumakos, G. F. Sun, K. W. Wong, Y. Xin, and D. F. 

Lu. Synthesis and neutron powder diffraction study of the superconductor 

HgBa2Ca2Cu308 by Tl substitution. Physica C, 243:201, 1995. 

[13] F.C. Zhang and T.M. Rice. Effective hamiltonian for the superconducting Cu 

oxides. Phys. Rev. B, 37:3759, 1988. 

[14] E. Dagotto. Correlated electrons in high-temperature superconductors. Rev. 

Mod. Phys., 66(3):763, 1994. 

[15] A. S. Alexandrov. Theory of Superconductivity Prom Weak to Strong Coupling. 

lOP Publishing, Bristol, 2003. 

[16] J. F. Annett, N. Goldenfeld, and A. J. Leggett. Experimental constraints on the 

pairing state of the cuprate superconductors: An emerging consensus. J. Low 

Temp. Phys., 105:473, 1996. 

[17] H. Ding, T. Tokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Nor­

man, T. Mochiku, K. Kandowaki, and J. Giapintzakis. Spectoscopic evidence for 

a pseudogap in the normal state of underdoped high-Tc superconductors. Nature, 

382:51, 1996. 

[18] G. M. Zhao. Experimental constraints on the physics of cuprates. Phios. Mag. 

B, 81:1335, 2001. 

[19] P. W. Anderson. The resonating valence bond state in La2Cu04 . Sci., 235:1196, 

1987. 

BIBLIOGRAPHY 112 



BIBLIOGRAPHY 

[20] A. Paramekanti, M. Randeria, and N. Trivedi. High-Tc superconductors: A 

variational theory of the superconducting state. Phys. Rev. B, 70:21, 2004. 

[21] K. Yamaji, T. Yanagisawa, T. Nakanishi, and S. Koike. Variational Monte Carlo 

study on the superconductivity in the two-dimensional Hubbard model. Physica 

c, 304:225, 1998. 

[22] L. Spanu, M Lugas, F Becca, and S. Sorella. Magnetism and superconductivity 

in the t-t'-J model. Phys. Rev. B, 77:24510, 2008. 

[23] T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and J. B. White. 

Systematic study of d-wave superconductivity in the 2d repulsive Hub bard model. 

Phys. Rev. Lett., 95:237001, 2005. 

[24] M. Imada and T. Aimi. Does simple 2d Hubbard model account for high Tc 

superconductivity in copper oxides? J. Phys. Soc. Jpn., 76:113708, 2007. 

[25] N. Furukawa and M. Imada. Two-dimensional Hubbard model- metal insulator 

transition studied by Monte Carlo calculation. J. Phys. Soc. Jpn., 61:3331, 1992. 

[26] M. Imada. Superconducting correlation of two-dimensional Hub bard model near 

half-filling. J. Phys. Soc. Jpn .. Low Temp. Phys., 60:2740, 1991. 

[27] S. Zhang, J. Carlson, and J. E. Gubernatis. Pairing correlations in the two­

dimensional Hubbard model. Phys. Rev. Lett., 78:4486, 1997. 

[28] M. Guerrero, G. Ortiz, and J. E. Gubernatis. Correlated wave functions and the 

absence of long-range order in numerical studies of the Hubbard model. Phys. 

Rev. B, 59:1706, 1999. 

[29] G. Zhao and D. E. Morris. Observation of a possible oxygen isotope effect on the 

effective mass of carriers in YBaCuO. Phys. Rev. B, 51:16487, 1995. 

BIBLIOGRAPHY 113 



BIBLIOGRAPHY 

[30] G. M. Zhao, M. B. Hunt, H. Keller, and K. A. Miiller. Evidence for polaronic 

supercarriers in the copper oxide superconductors LaSrCuO. Nature, 385:236, 

1997. 

[31] R. Khasanov, D.G. Eshchenko, H. Luetkens, E. Morenzoni, T. Prokscha, 

A. Suter, N. Garifianov, M. Mali, J. Roos, K. Conder, and H. Keller. Direct 

observation of the oxygen isotope effect on the in-plane magnetic field penetra­

tion depth in optimally doped YBaCuO. Phys. Rev. B, 92:57602, 2004. 

[32] A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. 

Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J. I. Shimoyama, T. Noda, 

S. Uchida, Z. Hussain, and Z. X. Shen. Evidence for ubiquitous strong electron­

phonon coupling in high-temperature superconductor. Nature, 412:510, 2001. 

[33] G. H. Gweon, T. Sasagawa, S. Y. Zhou, J. Graf, H. Takagi, D. H. Lee, and A. Lan­

zara. An unusual isotope effect in a high-transition-temperature superconductor. 

Nature, 430:187, 2004. 

[34] X. J. Zhou, J. Shi, T. Yoshida, T. Cuk, W. L. Yang, V. Brouet, J. Nakamura, 

N. Mannella, S. Komiya, and Y. Ando et al. Multiple bosonic mode coupling in 

the electron self-energy of LaSrCuO. Phys. Rev. Lett., 95:117001, 2005. 

[35] W. Meevasana, N. J. C. Ingle, D.H. Lu, J.R. Shi, F. Baumberger, K. M. Shen, 

W. S. Lee, T. Cuk, H. Eisaki, and T. P. Devereaux et al. Doping dependence of 

the coupling of electrons to bosonic modes in the single-layer high-temperature 

Bi2Sr2Cu06 superconductor. Phys. Rev. Lett., 96:157003, 2006. 

[36] D. Mihailovic, C.M. Foster, K. Voss, and A.J. Heeger. Application of the polaron­

transport theory to cr(w) in TIBaCaGdCuO, YBaCuO, and LaSrCuO. Phys. Rev. 

B, 42:7989, 1990. 

BIBLIOGRAPHY 114 



BIBLIOGRAPHY 

[37] P. Calvani, M. Capizzi, S. Lupi, P. Maselli, A. Paolone, P. Roy, S.W. Cheong, 

W. Sadowski, and E. Walker. Polaron imprints in the infrared spectra of NdCuO. 

Solid St. Commun., 91:113, 1994. 

[38] R. Zamboni, G. Ruani, A. J. Pal, and C. Taliani. Evidence of strong electron­

phonon coupling from infrared excited raman scattering in the YBaCuO super­

conducting system. Solid St. Commun., 70:813, 1989. 

[39] D. Reznik, L. Pintschovius, M. Ito, S. likubo, M. Sato, H. Goka, M. Fujita, 

K. Yamada, G. D. Gu, and J. M. Tranquada. Electron-phonon coupling re­

flecting dynamic charge inhomogeneity in copper oxide superconductors. Nature, 

440:1170, 2006. 

[40] A. S. Alexandrov and N. F. Mott. Lattice and spin bipolarons in metal oxides 

and doped fullerenes. Journal of Superconductivity, 7:599, 1994. 

[41] S. Saxena. Superconductivity on the border of itinerant-electron ferromagnetism 

in UGe2. Nature, 406:587, 2000. 

[42] C. Pfeiderer. Coexistence of superconductivity and ferromagnetism in the d-band 

metal ZrZn2 . Nature, 412:58, 2001. 

[43] D. Aoki. Coexistence of superconductivity and ferromagnetism in URhGe. Na­

ture, 413:613, 2001. 

[44] J. Talion. Coexisting ferromagnetism and superconductivity in hybrid rutheno­

cuprate superconductors. IEEE Tr-ans. Appl. Supercond., 9:1696, 1999. 

[45] P. Fulde and R.A. Ferrell. Superconductivity in a strong spin-exchange field. 

Phys. Rev., 135:A550, 1964. 

[46] A.I. Larkin and Y. N. Ovchinnikov. · Inhomogeneous state of superconductors. 

Sov. Phys. JETP, 20:762, 1965. 

[47] E. K. Gross. Many-Particle Theory. lOP Publishing, Bristol, 1991. 

BIBLIOGRAPHY 115 



BIBLIOGRAPHY 

[48] R. Jastrow. Many-body problem with strong forces. Phys. Rev., 98:1479, 1955. 

[49] P. Fulde. Electron Correlations in Molecules and Solids. Springer, Berlin, 1995. 

[50] N. N. Bogoljubov, V. V. Tolmachov, and D. V. irkov. A new method in the 

theory of superconductivity. Forlschritte der Physik, 6:605, 1958. 

[51] H. Friihlich. Electrons in lattice fields. Phios. Mag. Supp., 3:325, 1954. 

[52] G. D. Mahan. Many-Particle Physics. Plenum Press, New York, 1981. 

[53] H. Friihlich. Theory of the superconducting state: The ground state at the 

absolute zero of temperature. Phys. Rev. Lett., 79:845, 1950. 

[54] L. N. Cooper. Bound electron pairs in a degenerate fermi gas. Phys. Rev., 

104:1189, 1956. 

[55] P. G. de Gennes. Superconductivity of Metals and Aloys. Addison-Wesley, New 

York, 1966. 

[56] L. Pauling. Nature of the chemical bond. Proc. N.A.S, 39:551, 1953. 

[57] P. W. Anderson. Resonating valence bond. Mat. Res. Bull., 8:153, 1973. 

[58] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical 

Physics. Oxford University Press, Oxford, 1999. 

[59] J. R. Taylor. Introduction to Error Analysis. University Science Books, Mill 

Valley, 1982. 

[60] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller. Equation 

of state calculation by fast computing machines. J. Chem Phys., 21:1087, 1953. 

[61] W. L. McMillan. Ground state of liquid He. Phys. Rev., 138:A 442, 1965. 

[62] A. I. M. Rae. Quantum Mechanics. lOP Publishing, Bristol, 2002. 

BIBLIOGRAPHY 116 



BIBLIOGRAPHY 

[63] D. Ceperley, G. V. Chester, and M. H. Kalos. Monte Carlo simulation of a 

many-fermion system. Phys. Rev. B, 16(7):3081, 1977. 

[64] S.Fahy, X. W. Wang, and S. G. Louie. Variational quantum Monte Carlo non­

local psuedpotential approach to solids: Formlation and application to diamond, 

graphite and silicon. Phys. Rev. B, 42:3503, 1990. 

[65] H. Anton and Chris Rorres. Elementry Linear Algebra. John Wiey & Sons, New 

York, 1994. 

[66] H. Yokoyama and H. Shiba. Variational Monte-Carlo studies of Hubbard model. 

I. J. Phys. Soc. Jpn., 56:1490, 1986. 

[67] R. B. Jones and W. Yeung. Variational studies of the 2d Hubbard model: less 

than half filled. J. Phys. Cond. Matt., 2:2975, 1989. 

[68] H. Yokoyama and H. Shiba. Variational Monte-Carlo studies of Hub bard model. 

11. J. Phys. Soc. Jpn., 55:3582, 1987. 

[69] H. Yokoyama and H. Shiba. Variational Monte-Carlo studies of superconductivity 

in strongly correlated electron systems. J. Phys. Soc. Jpn., 57:2482, 1988. 

[70] Claudius Gros. Superconductivity in correlated wave funtions. Phys. Rev. B, 

38:931, 1988. 

[71] J. R. Schrieffer. Theory of Superconductivity. W. A. Benjamin, New York, 1964. 

[72] E. H. Leib and F.Y. Wu. Absence of Mott transition in an exact solution of the 

short-range one-band model in one dimension. Phys. Rev. Lett., 20:1445, 1968. 

[73] M. Karbach and G. Mi.iller. Introduction to the Bethe ansatz 1. arXiv cond. 

mat.9809162, 1998. 

[74] J. Florencio and K. A. Chao. Antiferromagnetic ground state in the s-band 

Hubbard model. Phys. Rev. Lett., 35:741, 1975. 

BIBLIOGRAPHY 117 



BIBLIOGRAPHY 

[75] T. M. Hardy, J. P. Hague, J. H. Samson, and A. S. Alexandrov. Superconductivity 

in a Hubbard-Friihlich model and in cuprates. arXiv cond. mat.0806.2810, 2008. 

[76] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono. Iron-based layered 

superconductor LaOFeAs with Tc = 26K. J. Am. Chem. Soc., 130:3296, 2008. 

[77] R. Heid, K.-P. Bohnen, R. Zeyher, and D. Manske. Momentum dependence of the 

electron-phonon coupling and self-energy effects in superconducting YBa2Cu30 7 

within the local density approximation. Phys. Rev. Lett., 100:137001, 2008. 

[78] P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. 

Zhang. The physics behind high-temperature superconducting cuprates: the 

'plain vanilla' version of RVB. J. Phys.: Condens. Matter, 16:R755, 2004. 

[79] H. Yokoyama, Y. Tanaka, M. Ogata, and H. Tsuchiura. Crossover of supercon­

ducting properties and kinetic-energy gain in two-dimensional Hubbard model. 

J. Phys. Soc. Jpn., 73:1119, 2004. 

[80] S. Sorella, G. B. Martins, F. Becca, C. Gazza, L. Capriotti, A. Parola, and 

E. Dagotto. Superconductivity in the two-dimensional t-J model. Phys. Rev. 

Lett., 88:117002, 2002. 

[81] T.A. Maier, M.S. Jarrell, and D.J. Scalapino. Understanding high-temperature 

superconductors with quantum cluster theories. Physica C, 460:13, 2007. 

[82] J. F. Corney and P. D.Drummond. Gaussian phase-space representations for 

fermions. Phys. Rev. B, 73:125112, 2006. 

[83] T.K. Lee, C.T. Shih, Y.C. Chen, and H.Q. Lin. Comment. Phys. Rev. Lett., 

89:279702, 2002. 

[84] J. P. Hague. d-wave superconductivity from electron-phonon interactions. Phys. 

Rev. B, 73:060503(R), 2006. 

BIBLIOGRAPHY 118 



BIBLIOGRAPHY 

[85] J. P. Hague, P. E. Kornilovitch, J. H. Samson, and A. S. Alexandrov. Superlight 

small bipolarons in the presence of a strong coulomb repulsion. Phys. Rev. Lett., 

98:037002, 2007. 

[86] J. Bonca and S. A. Trugman. Bipolarons in the extended Holstein Hubbard 

model. Phys. Rev. B, 64:094507, 2001. 

[87] A. S. Alexandrov. Bipolaron anisotropic fiat bands, hall mobility edge, and metal­

semiconductor duality of overdoped high-Tc oxides. Phys. Rev. B, 53:2863, 1996. 

[88] J. P. Hague, P. E. Kornilovitch, J. H Samson, and A. S. Alexandrov. Superlight 

small bipolarons. J. Phys. Cond. Matt., 19:255214, 2007. 

[89] I. G. Lang and Yu. A. Firsov. Kinetic theory of semiconductors with low mobility. 

Sov. Phys. JETP, 16:1301, 1963. 

[90] A. S. Alexandrov and P. E. Kornilovitch. Mobile small polaron. Phys. Rev. Lett., 

82:807, 1999. 

[91] T. Bauer and C. Falter. The impact of dynamical screening on the phonon 

dynamics of lacuo. arXiv cond. mat.0808.2765, 2008. 

[92] T. R. Sendyka, W. Dmowski, T. Egami, N. Seiji, H. Yamauchi, and S. Tanaka. 

Temperature dependance of the local structure of YBaCuO. Phys. Rev. B, 

51:6747, 1995. 

[93] A. S. Alexandrov. Polarons in Advanced Materials, volume 103 of Springer Series 

in Material Sciences. Springer, New York, 2007. 

[94] A. S. Alexandrov and P. E. Kornilovitch. The Friihlich-coulomb model of high­

temperature superconductivity and charge segregation in the cuprates. J. Phys.: 

Condens. Matter, 14:5337, 2002. 

[95] M. Krawiec, B.L. Gyiirffy, and J.F. Annett. Andreev bound states in ferromagnet­

superconductor nanostructures. Physica C, 387:7, 2003. 

BIBLIOGRAPHY 119 



BIBLIOGRAPHY 

[96] M. Cuoco. Coexistance of ferromagnetism and singlet syuperconductivity via 

kinetic exchange. Phys. Rev. Lett., 91:197003, 2003. 

[97] M. Cuoco, P. Gentie, and C. Noce. General conditions for coexistance intinerant 

ferromagnetism and singet superconductvity. J. Phys. Chem. Solids, 67:157, 

2006. 

[98] R. D. Parks. Seperconductivity. Marcel Dekker, New York, 1969. 

[99] T. Matsubara. A new approach to quantum-statistical mechanics. Prog. Theor. 

Phys., 14:351, 1955. 

[100] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski. Methods of Quantum 

Field Theory in Statistical Physics. Prentice-Hall, New Jersey, 1963. 

BIBLIOGRAPHY 120 








