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ABSTRACT

The investigation is concerned with signal design and
detection processes suitable for use in a synchronous serial baseband
data-transmission system where the signals are transmitted in
orthogonal groups over a channel which is time invariant and known.

A number of different detection processes have been proposed
and analysed.theoretically for the case where no signal procéssing
is carried out at the transmitter. Adjacent groupé of transmitted
signﬁl-elgments are here separated by gaps of n6 signal, whose
duration is such that the corresponding received groups of signal-
elements do not overlap in time, The detection of a group of signals,
in the proposed arrangements, is carried out ite;atively by a
sequence of similar operations which can be performed successively
by a simple piece of equipment. The optimua datection process is of
limited practical value because of the very large number of sequential
operations required, when there are more than a few signal-elements in
a group. The more effective of the suboptimum deteaction processes
achieve a tolerance to additive white Gaussian noise approaching
that of the optimum detectér,but require far fewer sequential
operations and can be implemented quite simply. The tolerance to
noise of the various detection processes has been assessed by computer
simulation for different numbers of signal-elements in a group and wié
. both binary and multi-level signals.

It has been shown that when a linear transformation is applied
to the signal at the transmitter, such that there is no intersymbol
interference between the individual received signal-elements in the

sampled signal at the detector input, the best arrangement uses an

ii

h
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uninterrupted tmnsmitted éignal, with no gaps between adjacent groups
of signal-elements, and the detector uses only the central group of
sample values of each received group of elements for t?e
corresponding detection process. An alternative to this arrangement
uses gaps between adjacent transmitted groups of elements, and the linear
processing of signals at the transmitter is such that the received
signals in a group areorthogonal but usually with considerable
intersymbol interference. Each received group of elements is now
detected by a set of matched detectors. The tolerance to additive
white Gaﬁssian noise of each of these systems is similar to that of.
the process of optimum linear equalization at the receiver.

Different arrangements of sharing the linear -equalization between
the transmitter and receiver have been studied. ' An advantage of up
to 3 dB in tolerance to additive white Gaussian noise is gained by
the best of these arrangements, over the process of optimum linear
equalization at the receiver.

In all the arrangements tested it has been found that a near
optimum detection process at the receiver, with no signal processing
at the tranmsmitter, always achieves a. tolerance to additive white
Gaussian noise at least as good as cr better than that where the same
detection process is used at the receiver but with some linear
signal processing at the transmitter.

A study of some techniques using non-linear procéssing of siénals
at the transmitter has shown at besﬁ only a small improvement in

~t§1erﬁnce to additive white Gaussian noise over the arrangement of linear

equalization at the receiver.



y(t)

GLOSSARY OF SYMBOLS AND TERMS

number of signal-elements in a group..

maximum number of successive sample values of the
sampled impulse response of the channel, the first
and last of which are non-zero.

number of sample values corresponding to a group o
received signal-elements.

m-éomponent row vector whose components carry the

element values of the signal-elements of a group.

f

iv

x~-component row vector whose components are the sample

values of a received group of signal-elements, x is
defined in the text.
impulse response of the channel.
m x n matrix of rank m whose ith row Yi is given by
i-1 g +1 m- i
Yi = B . e 6 ‘yo Yy« - - y; ‘o . . .d

where Yo ¥y ¢ v o yg are the sample values of the
sampled impulse response of the channel.

magnitude (absolute value) of x, if x is a scalar.
length (Eﬁclidean norm) of X, if X is a vector.
the components of X, if X is a vector.

the rows or columns of X, if X is a matrix.

. . .th .t
the component of matrix A located in i row and j

column.

transpose of matrix A .
determinant of matrix A.
inverse of matrix A

Fourier transform of the time function 4(t).



D(z) z-transform of a set of sample values given by the
components of the vector D.

o2 two-sided power spectral density of zero mean additive
white Gaussién noise at the input to receiver filter.

W Xx—component row vector whose components are sample
values of a Gaussian random variéble with zero mean

and variance ¢%2. x is defined in the text,

A signal-élement is a unit component of a digitally-coded signal,
Two groups of m signal-elements are said to be orthogonal when fhey
are disjoint in time.

Vectors ére-preatedas matrices having one row or column.

A sqﬁare matrix A is symmetric if A = AF

A square matrix A is positive definite if all the eigen-values of A

are non-zero and positive.

A unit or identity matrix A, is a square matrix where

a.. = 1.0
- 11 -
and 3y = 0 for i # j.

A set o vectors X, having n com 8 X..y Xrsy sanease X. ., 18
fp 1 £ ponent Xt Xoos e

said to be linearly independent provided that no set of constants

qQys Ags eeenes qp exists (at least one q; must be non-zero) such that

x + X + oieea F X = 0'

The rank of a matrix A is the largest square array in A with a non~-

vanishing determinant.



1.0 INTRODUCTION

1.1 Background
- In the study of detection processes for distorted digital
signals, techniques of both linear and non-linear equalization of the

channel have been widely studied.lm23 The. non-linear equalization

14-21,23

¢of the channel usually gives a better tolerance to additive

white Gaussian noise than linear equalization, 1-13,22

normally
requiring a lower average signal to noise power ratio for a given error
rate. An even better tolerxance to noise can be achieved through the use

-31 which do not equalize

of more sophisticated detection processes,24
the channel. Many of these processes, however, involve consideraﬁle
equipment complexity.

An interesting technigue has recently been proposed which for
certain applications can achieve a similar standard of perfdrmance as
the more sophisticated procesées just mentiorned, but with relatively
simple ec_:_uipment.32-35 Therarfangement is a synchronous serial data-.
transmission system in which the transmifted signal —elements are
linearly independent and spaced in orthogonal grbups.32-35 A sufficient
time interval separates adjacent transmitted groups to eliminate
intersymbol interference betﬁeen the received groups at the detector
"input. The data-transmission system is shown in Fig. 1.1-1.

Four different arrangements of the data-transmission system
haﬁe been studied.33 In the first three of these a process of exact
linear equalization is applied to the received sampled signal, and
the individual signal-elements are then detected from the signs of -the
corresponding sample values in the equalized signal.r The equalization
process may be achieved by a linear network or preferably by an

iterative technique which performs the same linear transformation on

the received sampled signal as does the linear network. The iterative
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Block diagram of the synchronous serial data-
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technique involves a sequence of identical or similar operations which
are performed successively by a simple piece of eéuipment. The
fourth arrangement employs the optimum detection process which minimizes
the probability of error in the simultaneous detection of the signal-
elemeﬁts in a group.

The results of the investigation33 show; that the fourth arrange-
.ment sometimes achieves a considerable advantage in tolerance to
additive white Causéian noise over the other three systems, particularly
with more severe signal distortions., However, with m binary signal-
elements in a group, the first three systems can be implemented quite
simply for values of m up to 20 or even 30, whereas the optimum detection
process involves 2m sequential operations. The latter is not a practical
arrangement when m > 10 and the transmission raté approaches 10,000 bité
‘per second. If 4-or 8-level signal—élements are used the optimum detection
process requiras 5" and 8m séquential operations,respectively. The
~ corresponding increase in the number of sequential operations in the -
other three systems is relatively insignificant, so that the optimum
detection process is now by far the least attractive.

2n alternative technique for the transmission of orthogonal
groups of signal-elements is to use code-division multiplexing (CDM)
in blace of the time division multiplex;ng (TDM) of the transmitted
signals assumed in the systems just described. In a CDM system the
waveform éf two transmitted signal-elements of a group, having the same
element values are not simple time shifts of each other as in a TDM
system., A CDM system isrthus a parallel system whereas a TDM system is
a serial system. Various parallel systems using CDM have been studied
but it was found that these are much more complex than the serial
system just outlined,and do not in fact achieve any useful advantage

45,55

in tolerance to additive white Gaussian noise. The results of this



work sgggest that serial Syétems_are iikely to be more cost-
effective than parallel systems.

In all the work just mentioned it is assumed that the channel
characteristics may vary slowly wifh time. The techniques investigated
have therefore been strongly influenced by the need to estimate the
channel response at the receiver, from the received data signal.
Furthermore, since the channel response is estimated at the receiver,
any attempt at the total or partial egualization of the channel gt the
transmitter, requires the transmission of the necessary information from
the receiver to the transmitter, thus immediatelf increasing the
equipment complexity.. For this reason, in all the systems studied so
far, the signal processing involved in the equalization of the
channel or the correction of the effects of signal distortion, are
concentrated at the receiver, where the channel response is known.

In an application where the channel respense is fixed and
known, it may be advantageous to perform at least some of the signal -
processing involved with the correction of signal distortion, at the
transmitter. It is, for instance, well known that when the signal
processing is achieved by a single transversal eéualizer, an advantage can

often be gained in tolerance t6 additive Gaussian noise by suitably

" sharing the linear equalization between the transmitter and receiver. '’

1.2 Outline of Investigation

The investigation is concerned with the basic principles and
methods of operation of the various systems studied. The primary aim
has been to obtain a.betfer understanding of these systems and hence
to develop the most cost-effective arrangement for the particular
application consi&ered here. Since the various systems studied are all

arrangements for processing sets of numerical values, these are computer-—



like systems which are best simulated on a computer rather than tested
on a practical model. Thé latter would simply be a special purpose
digital computer with the appropriate analogue/digital interfaces, and
would be most costly and time consuming -to build and test in the
- laboratory. The research methods have therefore involved a combination
of theoretical analysis and computer simulation. The investigation is
not concerned with the detgiled practical implementation of the
systems studied. It has been assumed throughout the discussion that
the impulse response of the baseband channel is known at the receiver
and does not vary'with time. The transmission rate is assumed to‘be
less than about 10,000 bauds, and the signal-elements may be 2, 4 or
8-level.

In the majority of the cases studied, groups of signal-eleﬁents‘
are made orthogonal or disjoint in time by providing a sufficient
time gap between adjacent groﬁps so that there may be considerable
intersymbol interference between the elements of a received group but
no interference bhetween the elements of different groups. In the
remaining cases the orthogﬁnality of the different groups of signal-
elements is achieved by leaving no gaps between adjacent groups of
transmitted signal-elementsland using time guard bands between the
detection processes for adjacent groups, so that each group of signal-
elements is detected from only the central sample values of that group.

lThe mathematical model of the data-transmission system is -
discussed in Section 2 which also considers two impeortant transversal

21,23

equalizers for the equalization of base~band channels. The

former of the two, is the optimum linear equalizer which minimizes

e o2 .
the mean square distortion in the equalized signal, and the latter is
a non-linear equalizer which maximizes the ratioc of the output signal

1,23

. . . 2 . .
to additive white Gaussian noise. In both these equalization



arrangements, no gaps are inserted between adjacent groups of signal-
elements ét the transmitter and the transmiséion is:a continuous
{(uninterrupted) serial stream of signals.

In section 3 two important detection processes are analysed. It
is assumed for both of.these that the appropriate time gap is
inserted between adjaéent groups of signal-elements at the transmitter.
The first-of the two detection processes is the "optimum process of
linear equalizatien for a received group of signal-elements, which is,
of coursé, not the same as the linear equalization of the channei
although it approaches the latter as the group size increases. This
arrangement makes the most inefficient use of the available prior
knowledge of the received signal, of the various systems studied in
Sections4 and 5, and therefore achieves the lowest tolerance to
additive white Gaussian noise. The second of the two detection
processes studied in Section 3,'is the optimum detection process which
at high signal/noise ratios achieves the best tolerance to additive -
Gaussian noise, AIt selects the, set of element values having the
maximum posterior probability of being c;rrect. These two detection
processes are of fundamental importance because £hey set the lower and
upper bounds for the tolerances to additive white Gaussian noisé
achieved by the various arrangements studied in Sections 4 and 5.
Section 3 ends with a simple example of groups of two_ binary signal-
elements, to bring out the fundamental principles involved in the two
detection processes just mentioned, and the advantages gained by
transmitting signals in separate groups rather than in an uninterrupted
serial stream.

Section 4 describes the various detection processes which have
been developed from the two basic processes described in Section 37

The linear equalization process for a received group of signal-elements



is implemented in an iterative process using the Gauss-Seidel method.32

The other detection processes studied in Section 4 make use of

suitable modificatiéns of the Gauss-Seidel method, and in every case

the deteétion of the signal-elements of a group is carried out in a
sequence of identical operations which can be performed by a simple
piece of equipment. The rate at which signals can be transmitted is,
therefore, limited by the time required for the sequenfial cperations in
the detection of a group of signal-elements. An interesting

technique for detecting multi-level signals ig presented in which an
initial search is carried out to select from the total number of
possible values of each signal-element, thé two or three element

values which are mosp likely to be correct. The detection of a group
of signal-elements is then completed by an itera£ive process which operates
only on the selected element values, so that it treat§ the received
signal-elements as though these were the corresponding 2 or 3-level
elements.

Section 5 presents the rgsults of computer simulation tests
which have been used to compare the tolerancesto additive white
Gaussian necise of the different detecticn processes described in
Sections3 and 4. The results of the tests are used to elucidate the
relationships that exist betweenlfhe different detection processes.
Section 5 ends with an attempt to compare the tolerances to
additive white Gaussian noise of the various detection processes using
orthogonal groups of signal , studied in Sections 3 and 4, with those
described in Section 2 where the signals arertransmitted in a
continuous (uninterrupted) serieal stream , the information rate being
the same in the two cases,

Section 6 describes the class of systems in which some linear

processing, that is a linear transformation, is applied to the



transmifted siénals. Where £he linear processing at the transmitter
achieves exact equalization of a received group of signal-elements,
adjacent groups of transmitted signal-elements are not separated by
time gaps and the values of the individual signal-elements of a

group are detected directly from the corresponding sample values of
the received signal, by comparing these with. the appropriate
thresholds. Where the linear processing at the transmitte:r oniy

~ partially equalizes a received group of elements; separation of
adjacent groups f transmitted signal-elements depends upon the linear
transformation used at the transmitter. In cases where time éaps'are
inserted between adjacent groups; a received group of signal-elements
at the receiver may here by detected by any of the detection processes
described in Sections 3 and 4,

Section 7 presents the results of computer simulation tests
which have been used to compare the tolerances to additive white
Gaussian noise of the different arrangements described in Section 6.
The results of the tésts are uged to clarify the relationships that
exist between the different systems, |

In Section 8, Systems employing non-linear processing of si§n31
at the transmitter are described; The non-linear processing here is
such that adjacent groups of transmitted signal-elements are

separated by time gaps., The tolerance to additive white Gaussian noise

of these systems is studied by computer simulation. .



2.0 LINEAR AND NON-LINEAR EQUALIZATION OF A BASEBAND CHANNEL

2.1 Model of the Data-Transmission System

The data-transmission system consideréd here is shown in
Fig. 1.1-1, It is a synchronous serial basebaAd system, where the
input signal to the transmitter filter is a stream of regularly
- spaced impulses, the value or area of each of which carries the value
of the corresponding signal-element. Each impulse siﬁ(t - 1T} at the
input to the transmitter filter is therefore the corresponding input
signal~element and it may be either binary or multi—level:

The transmission path itself could be either a low pass channel
with an upper frequency limit no greater than about 10 KHz, or else
a typical voice frequency channel with a frequency band no wider than
3000 to 3400 Hz, such as could be obtained over £he telephone
network. In the latter case the transmission path in Fig. 1;1—1 is
assumed to include a linear modulator {(at the transmitter) and a
linear demodulator(at the receiver) the whole forming a linear base-_
band channel; An example of such a system is an arrangemént using
vésfigial sideband suppressed carrier amplitude modulation (with a
reinserted pilot carrier]) at the transmitter ,and coherent demodulation
of the received signal, the reference carrier being held correctly
synchronized (phase locked) to the received signal, with the aid of the

received pilot carrier_44r46:50,54

It may be shown that, with the
elimination of the effects of the pilot carrier at the output of the
demodulator in the arfangement just described, the modulator and
demodulator together with the band-pass channel are eguivalent to a
sing;e baseband channe1.33'34'46'50'54
Over practical band-pass channels the characteristics are-either

not known prior to a transmission, such as over the switched telephone

network, or else they may vary considerablé (but usually slowly)
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with time, such as over point-to-point HF radio links. 1In either
case, thé'impulse response of the channel must be estimated at the
receiver from the received signal. Where the cﬁannel characteristics

do not vary significantly with time, this may be carried out at the

starf of a ;ransmission,32_34 and where the channel characteristics

vary with time, thislmust be carried out continuously using the

received data signal ﬁ,ﬁ, 32,34 In the latter case a reasonably

good estimate of the channel response can be obtained so long as

the impplse response of the channel does nét vary significantly

guring the reception of about 100 successive signal-elements. The .
zero-level elements present during the gaps are not here considered

as signal-elements and it is assumed that there are about 16 signal-

elements in each group, so that about 6 groups of elements are received
before there is a noticeéble change in the channel impulse response.

At an actual element rate oanbout 1000 bauds, this implies that there

is no significant change in the channel characteristics over a period

of 0.1 seconds. This is normally the case over HF radio links where

the typical fading fates are 4 to 15 fades per minute.32'34'47'53'55

Where there is a negligible change in the channel impulse response over

a received group of signal-elements and where the receiver has a

good estimate of the impulse resp0nse: it is immateriai to the detection
process whether or not the channelhcharacteristiés are varving with_

time. It is clear therefore that the systems studied here may be used
either over a time invariant channel or else over a channel whose
characteristics may slowly vary with time., In the latter case, the

impulse response of the channel may be estimated in any one of several
different ways and these are described in tﬂe published 1iterature.4_11'32'34

This investigation is not concerned with the methods of estimating the

channel and it is therefore assumed throughout that the impulse response
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of the channel is known and furthermore, is time invariant.

The.transmitter filter limits the spectrum of the transmitfed
signal approximately to the avallable bandwidth of the transmission
path. Where the transmission -path itself is a band-pass channel,
the transmitter filter is assumed to include the low-pass filter
equivélent to all filters involved in the linear modulator.

The receiver filter removes the noise compoﬁents outside a
frequency band approximately corresponding to the bandwidth of the
received signal, and where the transmission path is a band-pass
‘channel, the receiver filter includes the low-pass filter equivalent
to all filters involved in the linear demodulation of the received
modulated carrier signal. |

The transﬁission path together with the transmitter and receiﬁer
filters, form a linear baseband channelu whose impulse response is
taken to be y(t]l Thus in the absence of noise; the signal at the
output of the feceiver filter is

’ai siy{t - iT) ' (2.1-1)

Over some practical channels such as voice frequency channels using
HF radio links, the most important type of noise introduced by the
channel is additive noise which can for practical purposes,be taken

to be additive white Gaussian noise.46'47'53

The difference
between the two is sufficiently small not to introduce any serious
discrepancies in the results, when the noise actually present is
taken to be white Gaussian noise. The latter is of course not
physically realizable, having infinite bandwidth and therefore
infinite power level, for a non-zero power spectral density.

Over telephone circuits, however; the most important éource of

additive noise is impulsive noise which sometimes resembles short

bursts of Gaussian noise. It has been shown that, if one data -
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transmission system has a better tolerance than another,to additive
white Gaussian noise, it will also in general have a better tolerance
to the additive noise,over telephone circuits.44 It follows
therefore, that the relative tolerance of two systems to additive
white Gaussian noise is a good measure of their relative tolerance

to the additive noise over telephone circuits.44 Furthexmore, the
effects of additive white Gaussian noise on a digital data-
transmission system may readily be analyzed theoretically and studied
by computer simulétion. For the above reasons, in the model of the
data-transmission gsystem, it is assumed that additive white

Gaussian noise is introduced at the output of the transmission path.
The noise has zero mean and a two sided power spectral density of

02,_giving the zero mean Gaussian waveform w{t) at the cutput of the
receiver filter. Thus the resultant signal at the output of the

receiver filter is

r(t} = I sj y(t - iT) + w(t) (2.1-2) -
i .
The impulse response h{t) of the transmitter and receiver

filters in cascade is assumed to be such that h(0) = 1 and h{iT} = 0
for all non-zero integer values of i. This impulse response is
achieved by using the same transfer function B(f} = Hi(f] for the
transmitter and receiver filters, where
1 1
71 + cos wfT) for - FE<T (2.1-3)
H{f} =
0 elsewhere

The use of the same transfer function for the transmitter and receiver

6,33,34

filters is conventicnal and enables an easy comparison to be

made with other systems. Alternative transfer functions for the
filters are, of course, available and some of these make more

efficient use of bandwidth.33



If C{f) is the transfer function of the transmission path,

then the channel transfer function expressed in terms of the

transfer functions of the transmission path and filters, is

Y {(£)

H(E) c(f),

(2.1-4)

and the impulse response of the channel y(t) is given by the

inverse Fourier transform of ¥(f), that is,

y(f)

When no signal distortion is intrecduced by the transmission path,

that is, “c(f) = 1,
y(t) =

From Eqn. (2.1-3)
y(t) =

Frl{y(£)} =

-

_ﬁ H(f) ej21Tf

—

. T
§TII (1 + c

T .
I

Fee ne e
¢ ar

os #f7) e:]21Tft

jomft

af

af (2.1-%)

(2.1-6) -

T : L
47 .I (1 + jadTET,  TET) J2rEE,

-

ej'n'f(2t+T}

N -[.;j&;é'z'e

jm2t *

FT(2t+T)

T + 4

+ 4

+ Fn(2£-=T)

T . ' ) ] o
i IJ‘ .{ejﬂf2t+ ie:;xf(Z‘t:+T)_|_ iejﬂf(zt T)}df

e]TIf(2t—T) T
l
T

. 2t .2t
JTEEY Y -HE 4D

257 (Z?t + 1)

AT G m M T G Y

+ 4

. 2t
23w (T - 1)
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The shape of y(t) is shown in Fig. 2.1-1., The delay introduced by the
filters has for convenience been neglected here. Clearly, when C(f) =1,

1, y(ig) = } . (2.1-8)

]

v {o)

and y(+} im Ofori#Oor+1l - (2.1-9)
The received signal r(t) at the output of the receiver filter

is sampled at time instantst = iT, for all intggers i, This assumes
that the receiver has the prior knowledge of the time of arrival of -
each signal—element, that is, the receiver-is in element synchronism
with the-received signal. Techniques for achieving correct element
synchronism have been widely studied and can be designed to hold a
receiver in correct synchronism even in the presence of quite severe

44
signal distortion. r34

The study of these techniques is beyond the
scope of this investigation and the problem of maintaining element

synchronization will not be considered further.

. th X . ' . , , .
The i received signal-element is sampled at time t = iT :to give

. the sample value r(iT) = siy(o) + w{iT) (2.1-10)
or r, = s, +w, {2.31-11)
i i i
where r, = r{iT) and W, = w(iT), and it is assumed that C(f} = 1.

Thus, when C(f) = 1 and in the absence of noise, the; sample value of
. th N . . . cm s
the i~ received element, obtained at time instant t = iT,is Sy*

. th . . .
The enerqgy of the i transmitted signal-element is
-]

2, 2
sosg || af.

folB@ |2 ae = g |ue | at
1
T
= I J’ {1 + cos wfT) df, from Eqgn, (2.1-3),

L _

S

. T

sin wfT
. 1
T

= 1 {2.1-12)
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y(f)

=27 _-:5/2T -7 -1/2T 0 1/2T T 3/27T 2T

Fiqure 2.1-1

Impulse response y(t) of the baseband channel when no

signal distortion is introduced by the transmission path,
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Hence the energy of a singlé transmitted element is siz.

Wiﬁh additive white Gaussian noise having a two sided power
spectral density of 62 at the input to the receiver filter, the
noise power spectral density at the output of the receiver filter is

o |B(D ]2 = o2H($) (2.1-13)
so that the mean noise power is

o o lu(ey| ag = g2 (2.1-14)
from equation (2.1-12),

Thus wi in Eqn. (2.1-11) is a sample value of a Gaussian
random variable with zero mean and variance o2.

. 2 . 21 . \
From the Wiener-Kinchine Theorem, the autocorrelation function

of the noise signal w{t) at the output of the recelver filter is

a() = fo2 ne 2T gf
sinm %%— siny 2T 1} sinm (%g- - 1)
= 0% [ 4+ + )
2T 2T 2T
T ‘IT(? + 1) T (-*"i"- -1)

~ from Eqn. (2.1-6). Clearly
a(o) = . 02
~and a(iT) = 0
for any non zero integer i. Since the mean value of w(iT) is zero;
it follows that the noise component w{iT) is uncorrelated with the noise
component w(hT), where thé integer h # i; so that the-{wi} are sample
Yalues of statistically independent Gaussian random variableswith
zero mean and variance 02:
Suppose now that C(f) # 1 and signal distortion is introduced
in thg transmission path. This results in intersymbol interference
between the different received signal-elements at the sampling instants
t = iT. It will be assumed throughout the following discussion that

C(f} is such that a received gignal-element may introduce intersymbol

interference in the sample values ¢f some or all of the gi



17

immediately preceding elements and in some or all of the g, immediately
following elements. Most forms of signal distortion normally

33,34,44,47

experienced are of this general type. Let

g = 49 t+ 9g2.
.th \ , , .
If only the i element is received, in the absence of noise, then

for any integer h,

r{(hT) siy{hT - iT) {2.1.15)
or TR S SiVh - i) . (2.1-16)
Where rp = r(hT).and ¥h - i) = y(hT - iT)-
%h _ri)is non-zero for some or all values of h in the range 1—91
to i + g5 , and is zero for all other values of h. The sample
values corresponding to the ith transmitted signal-element are
| s5(0 . . . 0 Yog, + + + Yo + o« Yoo o ... 0},
Thus, the sampled impulse reéponse of the baseband channel (i.e.

the transmitted filter, transmission wpath and the receiver

filter in cascade) is | ) .

.92

I v &§(t - hT 2.1-17
beol, ¥ O ) (2.1-17)

To make this physically realizable, let the first non-zero
sample value occur at t = 0, so that the sampled impulse response

of the baseband channel becomes

9
hEO yhé(t - hT) (2.1-18)
and yp, = y(hT) is now non-zero for some or all values of the

integer h in the range 0 to g and is zero for all other values of
h. Thus the sampled impulse response of the baseband channel may

be simply written as the (g + 1l}-component row-vector

Yo Y ¥y e e e Yy (2.1-19)

- . th . .
The sample values of the i~ received signal-element now bscome
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Si(o. . .Oyoyl F -YgO-- .0)
When a continuous stream of signal—elements is received in the

presence of noise, the sample vale of the received signal at time

t = hT is
h.
r(hI) = % s; y(hT - iT) + w(hT) (2.1.20)
' i=h-g
~h | ' o
or rh = iEh-g 5i Yi_; * ¥, | (2:1-21)

It is evident that if ry is used for the detection of any one sj,
there may well be so much inter-symbol interference from the other
received elements, that the correct detection of s; from 1 is not

possible, even in the absence of noise.

2,2 Basic Assumptions -

In the data-transmission system of Section 2.1 the sampled
impulse response of the baseband channel is given by Equation

-.(2.1-18) and its Fouriler transform is

g s
e j2wfhT (2.2-1)

where j = V-1, The z-transform of the sampled impulse respnnse
of the baseband channel is

F(z) 2 ™ (2.2-2)

" wip Th
vhere z = ejzwa. The coefficients of z D in Eqn. (2.2-2) are

of course the sample values of the sampled impiulse response of the
baseband éhannel:h Eqn. (2.1-19). The valueéisi} of the signal-
elements at the input to the transmitter filter are assumed to be
either binary or multi-level and furthermore they are statis;ically
independent and equally likely to have any of the possible values,
(Table 5.2-2), |

With the transmission of a continuous {uninterrupted) stream of

signal-elements, the'ith sample value of the received signal is,



.9 _
rji = I ¥jSj.j twi (2.2-3)
j=0

where w.

i is sample value of a Gaussian random variable with zero

mean and variance ¢2.

The condition for no distortion and delay in transmission is

that

F(z) = 1 (2.2-4)
in Egn. (2.2-2); and this occurs when y, = 1 and Yj = 0 for all
j, 3 # 0. Thus, in the presenée of distortion and delay in
transmission, if Sy is detected from r;, there is, in addition to
the noise component w;, an intersfmbol interference component

g

jil Yjsi—j (2.2-5)
added to the wanted signal y, sj.

In the detection of s; from rj at high signal/noise ratios, the
best toleran;e to additive white Gaussian ncise is achieved thrpugh
the effective elimination.of all intersymbol interference, that is,
through the accurate equalization of the baseband channel. 6,21,23
The data-transmission system of Fig. 1.1-1 must now include an
equalizgr,'at the receiver, which equalizes the baseband channel as
~shown in Fig. 2.2-1. It is agsumed throughout the discussions in
Sections 2.3, 2.4 and 2.5 that the equalirzer iﬁ Fig. 2.2-1 is fed
with the sample values of the received signal and that it operates
entirely on these sample wvalues.

A number of different linear and non-linear equaligers for
equalizing the baseband channel are described in the published

literature. 1-23 A linear equalizer is usually a feedforward

4-13, 21,22

transversal filter, whereas a non-linear equalizer is

usually a combination of a linear feedforward and a non-linear feedback

19
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transversal filter. 15-19,21,23

A description of all the techniques
of channel equalization using transversal equalizers is not central

to the present investigations._ Instead, two important equalizers have
been considered. The former of the two, described in Section 2.3, is
the bptimum linear equalizer which minimizes the mean square
distortion in the egqualized signa121, and the latter, described in
Section 2.4, is the cptimum non-linear equalizer which maximizes

the output signal/noise rat1021'23.

2.3 Linear Equalizer

Assume that the equalizer in Fig. 2.2-1 is the linear feed
forward transversal filter with p taps as shown in Fig. 2.3-1.
Let the ith tap of the filter have a gain di—l; so that the tap
gains of the filter may be represented by the p components of the
row-vector. .
D = dsd) . o . dp (2.3—1) -
The z-transform of the sampled impulse response of the filter is
D(z) = d,+dy z !+ .. .+ dp_lz'p+1 (2.3-2)
The z-transform of the sampled impulse_response of the channel
and linear equalizer is now

E{z) D(z)F(=z)

= -1 -p~g+l _
= ey + elz’ + . . . # €ptg-12 (2.3 3)

Thus the sampled impulse response of the equalized channel is
given by the (p+g)-component row-vector

E = ege; .« .. (2.3-4)

“prg-1
Let B be the p x (p+g) matrix whose it row is

i-1 g+l p-i

r 1

Biji1 = 0...0 vy, Y1e.:¥g 0...0 (2.3-5)
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"Figure 2.3-1

Linear transversal equalizer for baseband channel.



where, it can be shown, that the p rows of the matrix B are linearly
. 21
independent. From Egns. (2.3-3), (2.3-4) and (2.3-5)

P-1

E = I d;B; = DB : (2.3-86)

i=0 '

If the channel is exactly equalized, then
. _h .

E(2) = D(z) Fl{z) = =z (2.3-7)

where h is a positive integer in the range 0 to p+g-l1. The z-transform

. th . . . ' : . .
of the i = received signal-element in the absence of noise, is

s; z F(z)D(z) = siz "+ (2.3-8)

For a finite number of filter tap gains the channel is not exactly
equalized, and therefore Eqn.. (2.3-8) is only approximately

‘ . e 22 ' .

satisfied. ' Let Up be the ({p+g)-component row-vector

h ptg-h-1
v, =0...010...0 ° (2.3-9)

U, in Egn.(2.3-9) is the ideal value of the sampled impulse
'response of the equalized channel for a total transmission delay
of hT seconds, whereas E in Egqn. (2.3-4) is the actuval value. Thus

the mean square error in the sampled impulse response of the

equalized channel is 21
ptg-1 5 T
{(l-ep)” + I e; = (g - E)(Uh - E) (2.3-10)
i=0
i#h
= |(Uh - E)|2 . {2.3-11)

where [(Uh - E)I is the length of vector (U, - E).’
Consider now the linear transversal filter which minimizes
the mean square erxror in Eqgn.(2,3-11). It is required to find the

values of the p tap gains of the linear transversal filter in

23



Fig. 2.3-1, such that ](Uh‘- E)I2 and hence IUh ~ E} is minimized,
the latter béing the length of the (p + g)-component row~vector

{(Uh, - E). The vector may of course be represented as a.point in a
{p + g)-dimensional Euclidean vector space, and the length of the
vector is the distance of this point from the origin. It has been
shown in reference {21], that the p row-vectors {Bj} in Eqn.(2.3-5)
are linearly independent, so that the p x (p+g) matrix B has rank p.
This means that the vector E = DB is a point in the p-dimensionél
subspace, of the (p+g)-dimensional véctor space, spanned by the
p{Bj}. since |u, - E| is the distance between the tﬁo (p+g) -
component veﬁtors Uy and E, in the (p+g)-dimensional Euclidean
vector space containing these vectors, it follows that |Uh - E] is
minimum when E is the point in the p—diﬁensional subspace at the
minimum distance from Up. By the Projection Theorem?l, E is the
orthégonal pfojection of U, on the p-dimensicnal subspace. The
(ptg)-dimensional Euclidean vector space is shown in Fig. 2.3-2.
Thus the p row-vectors given by the rows of B, are orthogonal to

the wvector (Uh - E), and

T

(G, - E) B' = 0 (2.3-12)
or (U - DB)BT =0 (2.3-13)
or " BB = B  (2.3-1a)
or D = usTee) T (2.3-15)

The components of the p-component row-vector D in Egn. (2.3-15),
give the values of the p tap gains of the linear transversal

filter which minimizes the mean square error for a given h. The

24
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Figure 2.3-2

(p+tg)-dimensional Euclidean vector

v, p-Dimensional Subspace
Spanned by the {8}

space.



26

vector D must therefore be determined for each value of ﬁ in the
range 0 to ptg-l, and the vector D for the iequired equalizer is that
which gives the minimum value of Y, - E[.

From Egn. (2.3-3} and for sufficiently smali value - of |G, ~ E

the z-transform of the equalized channel becomes

E(z) = z 0 (2.3-16)
. X : . . . . 6,21
The mean square distortion in the equalized signal is given by
pg-l 2
I = : (2.3-17)
i=0 h
i#h

It has been shown in reference [21] that if the linear
trénsversal equalizer is designed to minimize the mean séuare erroxr
in the equalized channel subject to the constraint that in Egn. {(2.3-4)

ep = 1 (2.3-18)
then the filter not only minimizes the mean square error subject to -
the above constraint, but also minimizes the mean sguare distortion,
and is an optimum linear transversal equalizer in the sense that it
achieves the most effective equalization for a given number of tap
gains. Furthermore, the samﬁled impulse response of this optimum

" linear equalizer is given by the components of the p-component vector
G = —D ' : {2.3-19)

where D is given by Egn. (2.3-15).‘ Again G must be determiﬁed for
each -value of h in the range 0 to p+g-l, and the ve;tor G for the
réquired equalizer is that which minimizes [Up - E|, where e, is

now constrained by Eqn. (2.3-18). Thus in the presence of noise and
when |[Up = El is very small,the output of the optimum linear

equalizer at’time instant (i+h)T is



Rith ©= s'j_ + Vi+h ‘ {2.3-20)
The noise component vi4h is the weighted sum of the corresponding
input noise components'{wi} and is given by

. - p-l

Vit+h = JEO wi-@—h-j 93 (2.3-21)
Since the p{wj} in Eqgn. (2.3-21) are sample values f statistically
iﬁdependent Gaussian random variable with zero mean and variance
02, it follows that vii, is a sampie value of a Gaussian random
variable of zero mean and variance

. =P"l
n 3

1 .
£, g% =066 (2.3-22)

and s; is detected by comparing x;,; with the appropriate

thresholds.21

It is well known6'21'22 that if one or more roots of the =z~
transform of the sampled impuise response of the channel have values
on the unit circle in the z-plane, a linear transversal feed-forward-
filter cannot equalize the channel with finite number of tap gains.
Thus the optimum linear equalizer having tap géins given by the
components of vector G in Egn. (2.3-19), cannot be used for

equalization purposes in cases where the roots of F(z} lie on the

unit circle in the z-plane.

2.4 Non-linear Egqualizer

Consider now the non-linear equalizer shown in Fig. 2.4-1,
which maximizes the output siénal/noise r;tio. It consists of a
linear feedfprward transversal filter followed by a non-linear feed-
back transversal filter. The linear filter performs- a proéQSS-of
Jpartial equalization of the baseband channel, the.équalization being
completed by the non;linear filter which uses decision directed

cancellation of intersymbol interference].'6'17'21'23

27
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The non-linear equalizer in Fig. 2.4-1 perfo:ms séparate
processes of linear and non-linear equalizaticon, and the problem
here is to determine the particular combination of the linear and
non-linear filters that maximizes the signal/noise ratio in the
detgcfion of a signal-element, subject to the essentially accurate
equalization of the channel.23
It was mentioned in Section 2.3 that where the z-transform of
* the sampled impulse response of the channel has one or more
roots on the unit circle.in the z-plane, the channel cannot be
equalized by a linear equalizer having a finite number of tap gains.
Suppose now that

F(z) = F;(2) Fy(z) (2.4-1)
whexre no roots of Fj(z} and all roots of Fy(z) satisfy ]zl#l.
Clearly Fy(z) has no zeros froots) on the unit circle in

the z-plane, whereas all the roots of F,(z) are on the unit

circle. Both F;(z} and Fp(z) are assumed to be known at the receiver:

et Fy (z) = fo + flz"l + e e +'f£z-£ (2.4-2)
where £ is a +ve integer. There is no z-transform G, (z) with only
-h

limited number of terms which is such that F,(2)Gy(z) = z = for
some integer h, Thus P, (z) cannot be equalized by a linear equalizer.
‘However, Fj(z) can be equalized by a linear transversal feedforward
filter using the method described in Section 2.3; Let the z-
transform of this filter be

Gy{z) = c, + clz‘1+ . . . F cp_lé-P+l(2.4-3)
where the transversal filter has p taps. Clearly

2 D (2.4-4)

-h
2 FZ(Z) (2.4-5)

[H

Fy(z) G;(z)

R’

and F(z) Gij{=z)

where h is a positive integer.

29
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The linear transversal filter which precedes the non-linear
filter in Fig. 2.4-1,is designed to have a z-transform

Blz) G(z) = D(z) = & +djz !+ ..+d__ 2 T H2.4-6)

g-1
so that the linear filter has g taps, the ith of which has a gain
dj-1 and

B(z) -3

b, + b1z 1+ . . . + byz (2.4-7)

]

where ' q p+ J. {2.4-8)

p is the number of taps required by a linéar transversal filter
with a z-transform Gj(z) for the satisfactory equalization of Fi(z),
and g is the maximum number of taps acceptable for ﬁhe linear
transversal filter which precedes the non-linear filter in Fig. 2:4-1.
For reasons whichwill become clear latter, bo is constrained to
satisfy
bof0 = 71 (2.4-9)
The remaining coefficients'{bi] in Eqn. (2.4-7) may be selected
to have any real values. It is now required to find the value of )
B(z), within the limits of the constraints imposzed by Egns.(2.4-8)
and (2.4-—9).23 |
The z-transform of the chgnnelland linear filter is

F(z) B(z) 6, (z) = 2 B (2) Fy(2) © T (2.4-10)

lwhere h is a positive integer.

; th
The z-transform of the i received signal-element at the

output of the linear filter is

siz'ipcz)a(z)cl(z) = siz-i—hB(z)Fz(z) (2.4-11)

Thus the linear filter may be considered to perform a process of

partial linear equalization,
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The sample value xjih of the signal at the output of the non-
linear filter at time t = (i + h)T, contains the first non-zero
component of the ith received signal-element, and from Eqn. (2.4-11),

has the wvalue

Xjsh = Sjbofo * Vith
or Xi+h = Si + Vi (2.4-12)

from Eqn. (2.4-9) and assuming the correct cancellation of the

preceding (j+2) signal-elements in the non-linear filter. Egn.{2.4-9)
) t .

normalizes the level of the componentcf the i h signal-element in

xi+h. Since
_ q-1 .
Vi = jio wi+h—jdj (2,4~13)

where the é{wi} are sample values of statistically independent

2

Gaussian random variable with zero mean and variance ¢4, it follows

that v,

h is a sample value of a Gaussian random variable with zero

mean and variance

2 o= 1 422 = o pDY (2.4-14)

where D is a g-component row-vector whose components are

do d ... 4 (2.4~15)

q-1°

. th ,
and di—l is the coefficient of i term in D(z) (Eqn. (2.4-86)).
The detector now detects the wvalue of the ith signal-element sy by

com in .
paring xl+

p¢ in Ban. (2.4-12), with the appropridte thresholds,

and the non-linear filter then cancels (removes by subtraction} the
components of the ith signal-element from the following sample values,
thus eliminating the intersymbel interference of the ;ignaldelement

in the following elements. The process of detection and signal
cancellation isthen repeated for the neﬁt received signal-edement, and
so on. The combination of the linear and non-linear filters, therefore,
eliminates all intgr-symbol interference, so long as the signal -

elements are correctly detected and cancelled.
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In a practiéal applicatién of the non-linear equalizer, a known
sequence of more than (j+%) element values is first transmitted
and during this sequence, the detector uses its prior knowledge of
any particular mceived sequence of (j+2) of these elements, to
achieve correct cancellation of these elements without having tg
detect their actual values. The following received signals can now be
&etected-without intersymbol interference, as previously described, so

. . . .21
that the process of detection and signal cancellation can begin.

To maximize the signal/noise ratio & the input to the detector,
nzin Eqn. (2.4<14) must be minimized. Thus the g tap gains {di}
of the linear transversal filter, in Fig. 2.4~1, must be adjusted,
within the constraint imposed by Eqms. (2.4—6) and (2.4—9),‘td
minimize DDT. Let B be the (j+l)-component vector whose components
are |
b b, ... 5. | (2.4-16)

and let C be the (j+1) x q matrix whose ith row is

i-1 p j-i+1
= Y ' lrﬁu . » Ol 2- - ’
C; 4 0. . .0cec ... ¢ sl (2.4-17)
b, is of course the coefficient of it term in B(z) and ¢, , of
the ith term in Gl(z). Since C is a convolutional matrix,from
Eqns. (2.4-6), (2.4-7) and (2.4-9)21» 23
D = BC = be -IM = L¢ -1IM (2.4-18)
7 0o fo o
where, L = - (b;,bz, « .. ,b.) ' (2.4-19)

J
and M is the j x q matrix whose ith row is Ci' M is completely

determined by CO for the given values of j and q. From Eqns.
(2.4-14) and (2.4-18)

2 - 201 - 1 - 1Y
A g (fo c LM)(fo c - LM)

= 2|1 - 1|2 . .
o?|g ¢, - 1y (2.4-20)

o
where I%- c, - LM| is the length of the vector %— jCo - 1M,
. o o

32
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The noise variance n? is minimum when Co- LMI is minimum.

I+

f
)

For -given. values of F(z), Gl(z) and q, the values of fo, CO and M

are fixed, leaving L as the only variable in |% C0 ~ IM|. Thus L
o ,
must be chosen to minimize this quantity,

1

'f“ Co and LM are gq-component vectors and so can be represented
o
as points in a gq-dimensional Euclidean vector space. Furthermore,
3
LM = ‘Z - bici (2.4-21)
i=1

and, it can be shown that the j{Ci} are linearly independent23; Thus
IM is a2 point in the j-dimensional subspace, of the g-dimensional
vector épace, spanned by the j{Ci}, and |-]f:-Co b-LMj is the distance
from %— C, to LM, It follows that I%-Co —OLM| is minimum when LM

o

is the point in the j-dimensional subspace at the minimum distance

from %- Co' By the Projection Theorgm,zl’ 23 IM is the orthogonal
o -
projection of %—Co,ontg the j-dimensional subspace. Thus each
0

vector Ci’ for i =1, 2, ..., f, is orthogonal to the vector

1 .
Cfgco 1M), so that .

-1 T
(?o C - LM =0
or ' = -11?- c M (2.4-22)
R
or L o= 3 o oa) (2.4-23)
0 i
From Eqns. (2.4-18) and (2.4-23)
1 1 T, T.~1
D = § C -F CMQM) M i
0 0
= -fl- C;){I-—MT(}MT)“IM} (2.4-24)
o

vhere I is a q x q identity matrix, and the required ¢ tap-gains
of the linear transversal filter in Fig, 2.4-1 are.given by the
components of the row-vector D in Eqn. (2.4-24).

When an element is incorrectly detected and therefore incorrectly

cancelld the probability of error in the detection of the following



elements is greatly increased, so that errors tend to occur in

bursts.21’23’31

However, at high signal/noise ratios (Appendix A2)
the average error probability in the presence of these error
extension effects is typically only two or three times the value
with correct cancellation, and this correspondsto a reduction of

; . . . . . ., 2
a fraction of 1 dB in tolerance to additive white Gaussian noise

2.5 Assessment of the Techniques of Channel Equalization

When one or more roots of ;he z-transform of the sampled
impulse response of the channel lie on the unit circle in
the z-plane, a iinear transversal equalizer with finite number of
tap-gains cannot equalize the channél correctly, however, with the
non-linear equalizer exact equalization is achieved in every case.
In many practical applications the channel can be equalized (at
leastlapproximately) by a linear transversal filter of limited

length, Under these conditions, from Equation (2.4-1)

F(z)
and F,z) = 1 | (2.5-2)

Fy (2) | (2.5-1)

Thus G1(z)lin Eqn. (2.4-3) becomes the z-transform for the linear
transversal equalizer for the channel. The p tap—gains of this
equalizer are given by the first p components of C0 in Eqn. (2.4-17).
Also

b = fo =1 _ (2.5-3)
in Eqn. (2.4-9)}. The applicatién.of Eqns. {2.5-1) - (2.5-3) to the
analysis of previous section leads to the design and performance
of the optimum combination of linear and non-linear equalization,

in the case where the channel can be correctly equalized by a Inear

transversal equalizer.
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If such a channel is now equalized by a linear transversal
filter with z-transform Gy (z), the z-transform of the 1™ received

signal-element at the output of the linear equalizer is

siz_lF(z) Gyp(z) = siz-'l-'h (2.5-4)

from Egns. (2.4-4) and (2.5-1), so that the iFh signal-element is

detected from the sample value x, at the output of the linear

i+h
.equalizer at time t = (i+h)T, by applying the appropriate thresholds.

Now

X = 5 + Vith (2.5-5)

where A is a sample value of a Gaussian random variable with

+h

zero mean and variance

p-1
N 32 = I ci2 o2
i=0
_ - o2cc ¥ (2.5-6)
- (o B o]

from Egn. (2.4-3).
Thus the advantage in tolerance to additive Gaussian noise of

the optimum combination of linear and non-linear equalization over

the linear equalizer is approximately

g2 CoCo T
10 1849y9 nZ = 10 logjyg '—Q—%— (2.5-7)

DD
expressed in 4B, from Egns. (2.5-6) and (2.4-14). Error extension
effects are neglected here.

Where the channel can be equalized linearly, the non-linear
equalizer usually gains an advantage in tolerance to additive
Gaussian noise over the corresponding linear equalizer. This is so
because the non-linear equalizer makes more effective use of the

available pricor knowledge of the received signal.



Although any channel with a finite impulse response can be
equalized by the appropriate equalizer, for certain values of the
channel sampled impulse-response, particular seguences 6f the
trapsmitted element values result in no signal at the output of the
receiver filter. No amount of linear or non-linear equalization
can give correct operation for the prolonged transmission of such
sequences. Consider, for example, the channel impulse response
‘having the z-transform |

| 142" (2.5-8)
If the sequence of. the element values is such that

i - T8 for all i .(2.5-9)
then the sample values {ri} of the received signal at the output
of the receivervfilter will be zero, except farthe first and the
last sample values. The uniqﬁe detection of such a signal cannot
normally be achieved in practice.

An important feature of non-linear equalization by signal
cancellation is that only a portion of a received signal-element is
uséd in the detection of that element, the remaining part of the
element being removed by subtraction. Clearly, if the wheole of
the element could be used effectively in its detection, an even
" better tolerance to additive white Gaussian noise should be obtained.
Thus the tolerance to additive Gaussian ncise of the non-linear
equalizer is often well below the maximum obtainable, 21734733

All the disadvantages of linear and non-linear equalization,

mentioned above, can be overcome through the transmission of

orthogonal groups of signal-elements.

36
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3.0 THE TWO BASIGC DETECTION PROCESSES FOR ORTHOGONAL GROUPS OF
SIGNAL-ELEMENTS

3.1 Basic Assumptions

Two groups of signal-elementg can be considered éo be orthogonal
when eachof them gives no response in an optimum detection process on
the other, that is when they are disjoint in time. The data-
transmission system discussed in Section 2.1 is now modified as
follows. Following a.group of 'm' impulses, at the input to the
transmitter filter, the next 'g' impulses ére set to zero, so that
adjacent groups of m.transmitted signal-elements are separated by g
zero-level elements. The zero-level elements form. gaps (timg
guard bands) between adjacent groups of transmitted signal-elements
and so prevent intersymbol interference between the correspon&ing
groups of elemgpts at the receiver input. Let -

n = ﬁ + g,
gince there is no intersymbol intérference between different groups
of elements at the detector input, for each received group of m
elements there are n sample values which are dependent only on the
ﬁ elements and independent of all other elements. The detector
uses these n values in the detection of the m elements.

The detector, of course, requires to know which are the first,
second, third, etc. samples in each of the consecutive groups of
n samples, and this knowledge must be derived from a suitable training
signal sent at the start of each transmission. This is exactly the
same requirement as that where the data is sent in chéracters or
words, as for instance in the transmission of alpha—numeric data in
binary codgd fetm;dr else t¢ the transmission of digital"déta which

is coded in anlerror detectiﬁg block code.32’34’54’55

Oncé "the
correct word or block synchronization has been achieved at the start

of transmission, it will normally be maintained even in the
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34,54

presence of considerable noise. If a slip in synchronization

should occur, techniques are available for detecting and corrécting it.s4
Techniques for maintaining the correct word synchronization are
beyond the scope of this investigation and will not be considered
further here. |

While one store holds the n sample values for a detection

process, another store is receiving the next n sample values, so

that nT seconds are available for a detection process. In the detection

process, the m elements of a group are detected simultaneously by -

operating on the corresponding n sample values, Each group of m k-level

signal"eléments is, in effect, treated as - a single element having K
possible values, that is, as a k"-level element.

If only the ith signal-element in a group is transmitted, in
the absence of noise and with s; set to unity, the corresponding
received n sample values used for the detection of m elements are

given by the n-component row.vector ‘
i-1 g+l n—i

¥ 1 1 1 i

Yi = 0., ., .0 Yo ¥y ¢ ¢ v yé. 0...0 3.1-1)

where ¥y, must be non—zero for at least oﬁe h in the range 0 to g,
but it need not of course be non-zero for all h in this range. ihe
row-vector (yo, Yy =+ s yg) is the sampled impulse response Qf
the baéeband channel. If there is tq be no intersymbol interfergncg
between adjacent groups of signal-elements, the ngn-égrQ cgmpdnents
of the sampled impulse response of the channel mustAnoy be spread
over more than g+l consecutive components.

The ith received signal-element is clearly SiYif If all the non-
zero components of Yi are shifted (i-1) placeg to the lgft, th
vector Y1 is obtained, so that‘ea-ch‘Yi is obtained from every othgr

by a simple time shift of the non—zero components.
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The sum of the m received signal-elements in a group, in the

absence of noise,is
m
I s,Y. = &Y, (3.1-2)

. .th :
where S is an m-component row-vector whose i component is S, and

Y is an m X n matrix whose ith row is Yi‘given by Equation (3.1-1}.

Thus
I 0 0 o |
yo Y]_ YZ- . 2 Yg P
0 yo Y1 » yg-l yg 0O.. .0
Y = . - . - . . . . . - (3.1"3)
0 c . . 0 Y, VAR yg_lyg_

It can be seen that if y, is the first non-zero component of Y.,

the m x m matrix, formed by the appropriate m adjacent columns of

Y such that all thecmnponehts along its main diagonal are equal to

Yh' is always an upper triangular matrix with non-zero diagonal
components, and, therefore, has a non-vanishing determinant of order m.
Thus the matrix ¥ has rank m which means that the row.vectors Yi' for i=1,
« » « 5 mgiven by Egn. (3.1-1); are linearly independent.

Assume for convenience £hat a received group of m signal-elements
is sampled at the time instants T, 2T, ..., nT, so that the sample
value of the received signal, at time t = iT, is x.. Iet R be the
n-component row-vector whose ith component is Xoe and let W be the
n-component row-vector whose ith c0mponent.is LA Then from Eqn.f3.l—2)

R = SY+W ' (3.1-4)
The vectors R, SY and W may be represented as points in an n-
dimensicnal Euclidean vector space (signal‘space), Since the'{wi},
the components of W, are samp}e values of statistically independent

2

Gaussian random variable with zeromean and variance ¢4, it is shown



in Appendix Al, that the Qalue of the orthogonal projection of W onto
any given difection in the vector space is a sample value of a
Gaussian random variable with zero mean and variance 02; It follows
that W is equally likely to have any direction in the vector space.
Thus for a given vector S, the received vector R in Egn. (3.1-4),
can lie anywhere in the n-dimensional vector space. It is furthermore
shown in Appendix Al that the probability density of the noise vector
"W is a function only of the length of W and always decreases with
the increase in the length of W.. Thus the probability of an error
in the.detection of § from R is minimized by selecting the vector s
that minimizes the distance betweeﬁ R and SY. This is illustrated
in Fig. 3.1-1 where it is assumed that the detector has the prior
knowledge that S = 8; or S,. Since R = SY + W, the noise vectors
corresponding to S; and Sé are Wy and W,, respectively. Since
W; is much shorter than W,, it is clear that S “,Sl is more likely
to be correct than S = S5.

When the detecter knows the matrix Y but in the initial stage
of the detection process has no prior knowledge of S ¢r S;, it
knows that SY must lie in the 2~-dimensional subspace spanned by ¥)
and Y5, but it cannét say, before the detection process, that any
one vector SY (for any real value of S) is more likely to be correct
than any other. The best it can now do is to accept as the initial
detected vector S, the vector

X = X1 ¥

whiéh is selected from the infinite set of all real 2-component
row-vectors, such that XY is at the minimum distance from R. 'This
again corresponds to the smallest length of the noise vector W

consistent with the available prior knowledge of SY.

40



Fiqure 3.1-1

n-dimensional Euclidean vector space containing the

vectors R1,R2,w1,w2,S1Y and SZY.-
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In the final stage of-the detéction process for 8, the detector
determines S from X. - In order to do this the detector must of course
have some prior knowledge of the possible values-of the.vector 8. It
will be assumed that the detector has exact prior knowledge of the
possible values of S in this part of the detection process.

In all- detection processes studied here, the detector
operates on the received vector R to obtain the detected value; of 8.
- In every case it has an exact prior knowledge of the sempled impulse

response of the channel in Egn. (2.1-19).

3.2 The Process of Linear Equalization

This is the optimum linear estimaticn process for the m{sj}, for
the case where the detector has prior knowledge of the m{Yi} but has
no prior knowledge of the m{si} or the noise variance.

Consider the n-dimensional Euclidean vector space containing
the received vector R. Since the detector knows the m{Yi} it knows
the m-dimensional subspace spanned by the m{Y;} and this is of
course the m-dimensional subspace containing the vector sY. Since
the receiver has no prior knowledge of the'{Si}, it must assume that
any value. of S islas likely- to be correct as any other. Let the
- m-component vector

Z = z] 2 ... 2 | (3.2;ll
be the linear estimate of the vector S. Before the estimation process
the detector has no prior knowledge of Z and therefore as far as the
detector is concerned ZY is equally likely to lie at any point in the
m-dimensional subspace spanned by'{Yi}. Therproblem is to determine
the best estimate which the receiver can méke of 8, given the received
vector R and using its prior knowledge of Y. This estimate 'should
be such as to maximize P(2/R), the posterior probability density of Z

given R. By Bayes Theorem50'56
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P(Z)

F(R) P(R/Z) (3.2-2)

P(Z/R) =

where P(R/Z) is the conditional probability density of R given 2, and
P(Z)and P(R} are, respectively} the probability densities of Z and R,
Let |
Z¥ = H = h; hy . . . h (3.2-3)
Since R is-given and, as far as the receiver is concerned, P(Z) is
constant for all real values of Z, these being equally likely, the
‘receiver must choose Z to maximize P(R/Z). From Egqns. (3.1-4) and
(3.2-3) "
| R = H+W o (3.2-4)
so that ‘
r;y = hj +w; ' - (3.2-5)
for i =1, 2, ..., n, where ri, hi and wi are the ith components of
R, H and W, respectively.

Since {wj} are sample values of statistically independent Gaussian
random variables with zero mean and variance o2, it follows that r; in
Egqn. (3.2~5) is a sample value of a Gaussian random variable with

mean value hi and variance 02, and furthermore the {ri} are

statistically independent. Hence from Egqn. (3.2-3)

]

P(R/Z} P(R/H)

P(r]_, Yo, seey rn/h]_, h2, aee hn)

P(ri/hy).P(xra/hy) ... P(rh/hn)

2
n ____1 {r; - hj)
=1

14" 1
() ew - |22 In- 2] (3.2-6)
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where_lR - H| is the length of the vector (R - H}, and so is the
distance bétweén the vectors R and H. Thus in order to maximize P (R/Z)}
and hence P(2Z/R), the receiver must choose 7 to minimizé IR - HI.
In other words, the receiver must choose Z to minimize the distance
between R and ZY, where 2 may have any real value.

Let XY be the orthogonal projectioﬁ of R on to the m-dimensional
subspace sbanned by the'{Yi}. Referring to Fig. 3.2-1, the square
"of the distance between R and ZY is

(R - 2Y) (R - 2¥) ©

(R - XY + XY - ZY) (R-XY+XY-—-ZY)T

I

(R - XY)(R - XV)T + (XY - 2¥) (XY - 2¥) T (3 .2-7)

since fR - XY) is orthogonal to (XY - ZY).

Now (R - XY¥) (R - XY)T is nd:dependent on Z and (XY - ZY) (XY - ZY)T
is non-negative being the square of the distance between XY and 2Y, so
that (R - 2¥) (R- ZY)T ig minimum when 2¥ = XY or 2 = X.

- Thus the point in the m-dimensional subspace, spanned by the
{Yi}, at the minimum‘distance from R, is the orthogonal projection of
R onto this subspace. It follows now that P(R/Z) and therefore
. P(Z/R)‘is maximum when Z = X.

If the received signal vector R lies in the m—dimensional
subspace, then, clearly the most likely value of Z¥ is R. In general,
because of the noise, R will not lie in this subspace, and in this case
the best estimate the detector can make of Z is the m-component
ro&—vector X, wlhiose components may have any reai values and are such

that XY is the orthogonal projection of R onto the m-dimensional

subspace spanned by.{Yi}.
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m-Dimensional Subspace

Spanned by the {Yiﬁ

Figure 3,2-=1

Orthogonal projection of R onto the m-dimensional subspace

containing ZY,
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The smallest subspace of the n-dimensional signal space which

contains SY for all values of S is the m-dimensional subspace

It

spanned by the {Yi}. Since R = SY + W, if R is projectéd onto a
subspace which is érthogonal to any of the'{Yi}, then certain sets of

the poésible vectors S will give a zero signal ﬁompohent in the
projection of R onto this subspace. Such a projection of R, therefore,
cannot be used to estimate SY and hence S. It follows that R cannot

be projected ontc a subspace of dimensionality less than m. Thus the
estimate of S that has the greatest a posteriori probability of

being correct is obtained by projecting R onto the m-dimensional subspace
spanned by the'{Yi}.

Since R -~ XY is orthogonal to each of the'{Yi}

(R - x)Y" = 0
or xvy® = Ry | (3.2-8)
or x = ret(y¥H™? | (3.2-9)

It follows that_if the received vector R is fed to the input
términals of the linear network 'represented by the n x m matrix
!{T(!nf"[‘)-l in Egn. (3.2—5), then the signals at the m output terminals
are the components'{xi} of the vector X, where X is the best linear
estimate the detector can make of S, ﬁnder the assumed conditions.

From Eqns. (3.1-4) and (3.2-9)

x = rYOTYD Y = sy + myT Dt
= syheyh . WYT(YYT). -1
or X = 8+ U ‘ (3.2-10)
where U = tr\i'YT(YYT)-_1 (3.2-11)
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The m-component row-vector U is the noise vector at the output
' T T -1 . -
of the network Y (YY) ~. The matrix YT(YYT) X is of course an nxm
matrix of rank m. Each component u, of the noise-vector U is a sample
value of a Gaussian random variable with zero mean and a variance which
is not normally equal to 02 and which may differ from one component to
another,

Having'obtained X, each transmitted element value s; can now be

detected by comparing the corresponding X, with the appropriate
57 . . . .
threshold levels. Since the transmitted signal-elements in a group
are statistically independent and equally likely to have any of the
possible values, the threshold levels used in the detection of s from
xi lie half-way between the adijacent possible values of si.s7 Each
S, is detected as its possible transmitted value between the same
threshold levels as the corresponding X, . It may readily be shown that
these threshold levels minimize the error probability in the detection
of each s..57
i
T,..,T,. -1, .

The n ¥ m network ¥ (YY) performs a process of exact linear
equalization on the received vector R to eliminate all inter-symbol
interferznce between the m signals at its m outputs, that is each
signal %, is given by

X, = 8§, + u, ‘ (3.2-12)
i i i
and therefore depends only on the corresponding S, togetherrwith the
noise component ui,being independent of the remaining element values.
T -1 . :
The n ¥ m network Y%YY ) could be implemented by the n 1 m
T . T -1 . s
network ¥~ feeding the m x m network (YY") as shown in Fig. 3.2-2.
' . . ., 32 :
Although more costly to implement in practice™ , this arrangement
demonstrates more clearly the nature of the linear transformation
T, oo Ty ~1 T, _
performed on R by ¥ (YY } 7. Now, RY is an m-component vector whose

.th . T
1 component is RYi . Let
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| _— X = RYT(YYT)"1
——3] Y : > (vyy') >

Figqure 3,22

Expanded form of the linear network YT(YYT)_1.
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Y. = y-l yiz - & . y. . (3.2"13)

then RY, =

I o S

r. ¥.. {(3.2-14)

RYiT is the inner product of the n-component vectors R and Yi.
‘Furthermore, RYiT is the output signal obtained when R is fed to a
correlaticn detector matched to Yi,.since this correlation detector
performs the operation described by Egn. (3.2-14). Evidently the
linear network YT is a set of m correlation detectors matched to the
m vectors‘{Yi}. Each of these.performs a process of matched filter
detection on the corresponding received signal-element siYi.

The network YT is matched to the signal $Y and performs a
prcéess of matched filter detection on the received vector R.~ The
output signal vectorIiYT from the network YT unigquely determines the
vector XY which, if fed to the input of YT, would'give this output signal.
Thus

xYxT = Y : (3.2-15)

Since XY lies in the m-dimensional subspace spanned by the'{Yi} and -
since (3.2-15) is the same as (3.2-8), iﬁ follows that XY in (3.2-15)
is the orthogonal projection of R onto this subspace.

. N 1
The network (YYT) transforms the vector RYT to the vector

-1 -1
RYT(YYT) = XYYT(YYT) = X {3.2-16)
so that (YYT)_l is clearly an inverse network, which reverses the
. ' . T
transformation by means of which X has been converted to XYY .
T . . . T -1
Clearly, Y  is equivalent to a matched filter and (YY) to an
inverse filter.
. . T ..th
The wanted compcnent in the output signal RYi from the i

correlation detector, in the expanded form of the linear network

YT(YYT)-I, is siYiYiT. The correlation detector maximizes the ratio
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of the energy level ofthi?signal to the average.energy level of the
noise'componént WYiT in RYiT. However, the latter signal also contaips
m-1 components'{sijYiT} due to the other components {sﬁ} 3 #1i, of

_the m~component row-vector S. The inverse network (YYT)hl processes the
‘IRXiT} to eliminate all intersymbol interference, and suitably adjusts

the levels of the resultant signals to give the {xi} at its output terminals,

3.3 The Optimum Detection Process

Consider now the optimum detection process for the case where the
detector has prior knowledge both of the'{Yi} and of the {|si1}. The
detector here knows the k' different possible values of SY, where k is
the number of possible levels of the transmitted signal-elements.

It has been shown that where the transmitted signal-elements are
statistically independent and equally likely to have any of the
possikle values, the detector which minimizes the probability of error
(that is the probability oftnﬁeor more element errors)Y in the detection
of m elements of a group, is the detector that determines which of the
km vectors {SY¥} is at the minimum distance from the received vector R,
in the n-dimension Euclidean vector-space containing R.34'45'52'57
The detector knows now the exact position of each SY in the véctor space.
At high signal to noise ratios, this detection process also minimizes
the probability of error in the detection of any one of the m elements
in a group.

The detection process cannct be implemented by a linear network
followed hy the appropriate decision thresholds, but is best
performed by an iterative process. The receiver generates in turn the
vectors {SY} corresponding to the differen£ combinations of the k-level
signal-elements in a grouﬁ. Bach vector SY is subtracted from the

received vector R. The components of R are stored throughout the
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detection process for a group of m signal-elements. The compoﬁents of
the differeﬁte vector are gquared and added, to give the square of the
distance between the vector R and the generated vector SY. In the first
subtraction process, the distaﬁce measure together with the associated
vectof S are stored. 1In subsequent subtraction processes no action is
taken, unless the disténce measure is smaller than that stored. When
this occurs, the new distance measure together with the associated
vector § replace those stored. Thus & the end of the detection
process, the receiver has the vector S which minimizes the distance
from SY to R and takes this vector S to give the detected values of the
m signal-elements in the received group. Since the separate cperations
in the detection processlare carried out sequentially, these can be
performed by a simple piece of equipment.

For any set of signal-elements in a group at high signal to noise
ratios (Appendix A2), this detection process achieves a tolerance to
additive white Gaussian noise as good as or better than either linear-
or non-linear equalization, since of course it is the oﬁtimum
detection process under the assumed conditions. In the particular case
where the sighal distortion is pure phase distortion it is well known
tﬁat a linear equalizer achieves the optimum detection of the received

'signals since it is now also a matched detector, that is, it not oniy
eliminates intersymbol interfereﬁce but it is also matched to the

21,22,23 Under these conditions the optimum detector

received signal.
achieves no advéntage over a simple linear egualizer. However,pure
phase distortion is rarely encountered in practice and most pr-actical
: . . . 44,45
channels introduce both phase and attenuation distortions. For
such channels the optimum detector always achieves an advantage in

tolerance to additive white Gaussian noise over the corresponding
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1,34 : . . .
' The latter is either a simple transversal

linear equalizer.2
filter of a more complex linear network as described in Sections 2.3
and 3.2, respectively. The reason why the optimum detection process
achieves an advantage over the linear equalizer, in tolerance to
additive white Gaussian noise, is that it uses more of the available
prier knowledge of the received signal. Clearly to achieve the optimum

tolerance to additive white Gaussian noise, the detection process must

make full use of the available priox knowledge of the received signal.

3.4 Decision Boundaries in Signal Spacé

For m k~level signal-elements in a group the vector'SY has k"
possible values and lies in the subspace spanned by the m{Yi}.
The linear equalization process can be considered to divide the m-
dimensional subspace into km decision regions, each corresponding to
a different one of the km possible values of 8Y, and the process then
determines which of these regions contains the vector X¥. The value of
8 corresponding to this region isrthe detected value of S.

For the sake of convenience and clarity it will be assumed initially
“in the following discussion that the transmitted signal-elements are
binary antipodal having the possible values + 1.

The decision regions in the m-dimensional subspace are defined by
m decision boundaries, The ith bbundary is the locus of all points
traced out by

m

T wv.,Y, {3.4-1)
=1

J
where the'{vj} are réal scalar quantities such that vi = 0 and the
' {vj}, for j # i, may vary independently over all real values. The

ith decision boundary is therefore traced out by VBi for all real values

of the (m - 1) - component row-vector

U-,"=\.l' ses V.,

v, cre V
1 it iet " T
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where Bi is the (m - 1) x n matrix obtained by deleting the ith row
from Y. The boondary is clearly the (m-1)-dimensional subspace spanned
by the {m-1) vectors {Yj} for which j # 1 . It divides the m-dimensional
subspace spanned by all {Yj} into two regions. If the vector XY lies
in one of these, xi is positive, and if XY lies in the other, xi is
negative. The former will give a detected value of + 1 for s, and the_.
latter a detected value of -1,

It is difficult to visualize decision boundaries for m greater
than two. PFig. 3.4-1(a) shows the decision boundaries and decision
regions for a 2-dimensiona1 subspace containing the two binary
antipodal signal-elements each having the possible values + 1. The
lines traced out by v1¥; and vpYy for all real values of vy and vs,

intersect at the origin where vy = vy = 0. It can be seen that if the

I

projection of R onto this space is XY = x;Y; + x,¥Y» and if this lies on
the line traced out by lel, then x| = v; and %y = 0. For all

{X¥} to the right of this line, x, > 0, and for all {XY} to the left, -

Xp < 0. Thus, v)Y¥jis the decision boundary which separates the decision
regions corresponding to the two possible'values of s5. Similarly,

voYs is the decision boundary which separates the decision regions
corresponding to the two values of s;.

If now the twosignabelement§ have say 4 levels instead of 2, such
that s; and s, are each eqﬁallyAlikely to have one of the four possible.
values -3, ~1, 1 and 3, and are of course statistically independent,
then the decision boundaries become as shown in Fig. 3.4-1(b). fThere
are now six decision boundaries, three separating the four possible
values of s3; and three separating the four possible values of sjp.

A decision boundary separating fwo adjacent values of sy is the locus of

all points traced out by vy¥; + 2Y3, where vy may have any real value
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Decision regions and decision boundaries for the optimum process

of linear equaliiation. (a) Groups of two binary elements.,

(b) Groups of two 4-level elements.
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and £ = -2,0,2 depending upon whether the decision boundary separates
the valueg‘of sy which are -3 and ~1, -1 and 1 or 1 and 3, respectively.
Similarly a decision boundary separating the two adjaéent values of s,
is the locus of all points traced out by v3Y; + 2Y; where vy may have
any réal value and & = -2,0,2 depending upon whether the decision
boundary separates the-values of s, which are -3 and -1, -1 and 1 or
1l and 3, respéctively. For £ = 0 the two decision béundaries v1¥; and
v2Yy intersect at the origin where vy = vy = 0. It can be seen from
Fig. 3.4-1(b) that the 6 decision goundaries divide the 2-dimensional
subspace spanned by Y3 and ¥, in 16(Q?) different decision regions
each correéponding to a different one of the 16 possible values of S.
If the orthogonal projection of R on to the 2-dimensional subspace is
XY = x)Y¥) + xpYp, then the detected value of the transmitted vector S
is that corresponding to the decision region in which the vector XY lies.,
Consider now the more general case where there are m k-level
signal-elements in a group and they are statistically independent and.
equally likely to have any of the k possible valuves which are

kir kp oo k There are now (k - 1) decision boundaries separating

X
the k possible values of sy, {k - 1) decision boundaries separating the
k possible values of 57, and so on up té S Thus, in all, there are
m(k - 1) degision boundaries and these divide the m~dimensional subspace
spanned by the ﬁ{Yi} into X" decision regiéns each corresponding to a
different one of the k " possible values of S, Following the
explanation above, for the binary and 4-level signal-elements, the
decision boundary separating any two adjacent of the possible values

of sy, is the locus of the points traced out by

Va¥p 4 V3V b o L L AV Y4 ﬂ.lY'l

= VB) +1Y) {3.4-2)
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where

R (3.4-3)

B; is an (m - 1) x n matrix of rank (m - 1), obtained by deleting
the first row ¥y from ¥, and V is an (m - 1)-component row-vector
whose components {vi} may have any real values.
For the optimum detection process the decision boundaries are
hyperpl;nes which perpendicularxly bisect the lines joining the
different vectors'{SY} in the ﬁ—dimensional vector space containing
the received vector R. The distance of any vector to a decisiﬁn
boundary is half the distance between the two vectors separated by this
decision boundary. It can be seen that the vector H = SY which is
ﬂearest to-R is also the vector H nearest to XY (the orthogonal projection

of R énto the 2-dimensional subspéce).34’35

Clearly the decision
boundaries, for the optimum detection process, in the 2-dimensional
subspace spanned by ¥ andIYz and for possible signal-element wvalues
of +1, are the (n - l)-dimensional hyperplanes which perpendicularly
bisect the lines jeining the different pa;rs of the four vectors Hi = SiY,
where Si are the four possible values of the corresponding vectors at
the transmitter. These decision boundaries are shown by the solid
~lines in Fig. 3;4~2(a). 8Y and hence S, is detected as the Hi (the value
of H) which lies inthe same decision region,

If now the two signal-elements have say 4 levels instead of 2,
such that s; and s, are each equally likely to have any of the four values
-3, -1, 1 énd 3, and are of course statistically independent, then
the decision boundaries become as shown in Fig., 3.4;2(b). There are
now 16(42) different vectors H =.SY, each cofresponding to a
different one of the 16 possible values of the transmitted vector S.

The different vectors H are shown in Fig.'3;4—2(b). The decision

boundaries are, as before,the (n-l)-dimensional hyperplanes that
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perpendicﬁlarly bisect the iines joining the different pairs of the
16 possible wvectors H. SY is detected as the value of_H which lies in
the same decision region as the received wector R.

In the general case where there are m k-level signal-elements in
a group, the decision boundary separating any two of the possible
vectors {S¥Y}, is now the (n - l)-dimensional subspace which
perpendicularly bisects the line joining the two vectors in the n-
dimensional vector space containing the recéived vecﬁor R.34'35
Consider, for exampie, two possible vectors Hb = st and Hc = SCY.
The decision boundary.which separates these two vectors bisects perp-
endicularly the line (Hb ; HC) joining the two vectors. The per—

pendicuiar‘distance of either vectors H, or Hc to the decision

b

boundary is

1 T i
Uy - 1) (8 - H) 1}

s

'{i(sb - sc)YYT(sb - SC)TQ}% (3.4-4)

where } (sb - Sc) is an m-component row-vector whose components may
have any of the {2k - 1) different values corresponding to the possible

values of 5, - 5,.
1 ]

3.5 Probability of Error in a Detection Process

Consider first the process of linear equalization in which the
signal-elements are binary coded such that for each i s, = + 1. Let
the orthogonal projection of SY onto the ith decision boundarv be the
vector CBi' where C is an (m -.l)—éompoﬁent row-vector and Bi is the
{m -~ 1) x n matrix obtained from ¥ by deleting the ith row Yi. Since
the vector (SY - CBi) is orthogonal to the (m - l)-dimensional subspace
comprising the ith decision boundary, it is alsc orthogonal to any

Yj where j # i. Thus,
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| .
(SY -~ ¢B)B,~ = 0 (3.5-1)
or cB,B,T = syB, T : (3.5-2)
1 1 1 *
-1
or . c = sYB, T(B.B.) (3.5-3)
1l 1l 1

Let di be the distance from SY to CBi' Then

2 T
a,“ = (syY - -
{ (s CBi) (sY CBi)
= (8Y - CB.)YTST - {SY - CB.)B.TCT
1 . 1 1
' T.T .
= (SY - CBj)Y 8", from Eqn. (3.5-1)},
= (sY - svB, T (B:B. ") YB.)v'sT,
1 Ll 1 1
from Egn. {3.5-3),
- 2 T o (3.5-4)
or 4, = SY(I - B, Ty-1 T T
i | i (BB TBIY's

where I is an n x n identity matrix.
Let cH be the(m - 1)-component row-vector obtained by

t
deleting the i h component s; from 8. Then

2 : T T, -1 T
. = LY. .B,){I-B, B, Y(s.¥.+S.B,
d1 (lel ¥ SlBl){I B, (BlBl } Bl}(lel SlBl)
: T T -1 ' T T T
= Y. (I - B, .B. )+S.B, - 8.B. .’s. + B.'s.
{Slyl(I Bl (Bl i ) Bl) SLBl slBl}(Yl sl i s:|. )
T T -1 T
= s5,Y (I - B, (B,B,”) B,)Y., s,
l x 1 i1 1 1 1
T T, -1 T T
+s5.Y,(I ~n, (B,B.") B,)B, 8.
1l 1 1 1 1 1 1 1
7. - T
= s.Y.(I - B.1(8,B.0) 1BJY.Ts. +s,¥.(B.78.F - B, 8.7
1l 1 1 11 1" 31 1 i1 1 1 1 1
i T, -1
= .Y (I -B. (B.B,) "B.)Y. s. (3.5-5)
1 1 1 ll’ll.l

Since s, = i_l,.from Eqn. (3.5-5)
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_ _ . T T, -1 T, 4
di = {Yi(I Bi (BiBi) Bi)Yi} (3.5-6)

Clearly d, is independent of S and is therefore not a function of
the element binary wvalues. It is, however, normallyla function of i.

An error occurs in the detection of the ith element when XY and
SY lie on opposite sides of the ith decision boundary. Thus the
probability of an error in the detecticn of the ith element is the
probability that the orthogonal projection of noise-vector W onto the
perpendicular from SY onto the ith decision boundaxy, is in the direction
of the boundary and exceeds the perpendicular distance from SY"
to the boundary. Since the orthogonal projection of W onto any
direction in the m~dimensional subspace spanned by the {Yi}, is a

2

Gaussian random vairable with zero mean and variance o6<, and since

di is the perpendicular distance from SY to the ith decisioﬂ Eoundary,

the probability of error in the‘detection of ith binary element 1534'56
N _ W ..
Py = J VEoT el ge7) A
i ‘
o 1 w2 : . .
d{/c Tou exp (- ??-) dw (3.5-7)
. d.
= 2 .5~
So that Pj o 5 } (3.5-8)
© 2
- - X -
where glu) = i Jan €xp ( 5 } ax {(3.5-9)

In the general case where di is a function of i, different
signal-elements in a group of m have different error probabilities.
A simple upper.bound to the average element error probability is

given by the value of P, for the smallest di' Let the minimum value
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of d; be d and the corresponding value of P, be p. Then the averagé
element erfor probability is less than or equal to
P = 9(8/0) o (3.5-10)
Consider now the more general case of multi-level signal -
elements where the elements of a group are statistically independent and
equally likely to have any of the k different values. In the presence
of additive white Gaussian noise it is clear that practicaliy all
errors in the detection of the {Si} will involve a transmitted
element value being detected as an adjacent value, so that the noise
vector W carries R onto the other side of a decision boundary adjacent
to the vgctor sSY, Qheré the components af the vector S are the
transmitted element values. Suppose that the two adjacent values of s;
are a and a + 2b. s, is now detected as a when the corresponding
xi < a + b and S is detected as a + 2b when X, > a+ b,
aSSUming that e 7 a - b and xix< a + 3b. Clearly the decision
boundary in tﬁe m-dimensional subspace used for the decision as to
whether xi = a or a + 2b, is, from Egn. (3.4-2}), the locus of all
points traced out by
VBi + {(a + b)Yi | (3.5-11)
where V is an {m - l)-component row-vector whose components may have
any real values. The distance from SY to the decision boundary traced
ocut by Eqn;.(3.5-ll) is clearly the same és the distance of
sY - (a + b)Yi to the hyperplane ((n - l)—dimensiona} subspace) VBi'

Let this distance be e. It can be seen from Egn. (3.5-4) that,

-1

(1}
§

i {8y - (a + b)Yi}{I - B, (B;B.") C

X
Bi}

{sY - (a + b)Yi}T
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Again, let Si be the vector obtained from S by deleting its ith

component Si' then

2
e,
i

Since tlhe

and

n

' T S N
{siYi + 5B, - (a + b)Yi}{I - B, .(B;B;") Bi}
: T
{s,¥. +5,B, - (a + b)Y.}
1l 1 1l 1 LN
by

T -1
{(si a- Dby, + SiBi}{I - Bi_(BiBi ) Bi]

. ’ T
{(si -a - b)Yi + SiBi]

: - T T -1 T
{(si - a - b)Yi}{I - By (BiBi ) Bi}{(si-a - b)Yi + SiBi}

- T T -1 T
{(si—a - b)Yi}{I - B (BiBi ) Bi}{si—a - b)Yi}

. i ,
\+ {(si—a - b)Yi}{I - B, (BiBi ) Bi}{SiBi}

: T T, -1_ T
{si-a - b)Yi}{I - B, (B;B;) Bi}{si—a - b)Yi}

13

. T T T T
+ {(si a b)Yi}{Bi S, - By 8 }

: : T T -1 T
{(si—a - b)Yi]{I - B, (BiBi ) Bi}{Yi (si’ a - b)} (3.5-12)

two values of si are assumed to be a and a + 2b,

|

1}

T

2 T -1 T
b {Yi(I - Bi (BiBi ) Bi)Yi } (3.5-13)

T

- _a T -1 T4 _
b{y. (1 - B, " (B;B,") "B;)Y,"} 7 (3.5-14)

In the particular case where b = 1,Egn. (3.5-14} reduces to

Egqn. (3.5-6). Again, so long as the possible wvalues of each S5

are regularly spaced to give a fixed value of b in Egn. (3.5-14),

as would normally be the case, the distance to the decision



63

boundary is not a function of S. It is, however, normally a
function of i.
The probability that the noise vector W carries R into

the opposite side of the decision boundary just considered,is

o 2
. W
By = Jame? exR (7))
°i
= o =) (3.5-15)

When si has its most positive or most negative value, there ié
only one decision boundary at the minimum distance ei and the
error probability here is Q(ei/c). When si has any of its other
possible values there are always two decision boundaries at the
minimum diance e;r SO that the error probability is now 2Q(ei/0).
At high signal/noise ratios the doubling of the error probability
corresponds to only a small change in signal/noise ratio
(Appendixrhz), so that for practical purposes the error probability
can be taken as p; in Bgn. (3.5~15) whatever thé value of s,
Since ei in general is a function of i, different signal-
elements in a group of m-have different error probabilities.
A simple upper bound to the average element error probability
is given by the value of p; in Egn. (3.5-15) for the smallest e, .
Let the minimum value of e, be e and the corresponding value of pi
be p. Then the average element error probability is less than or

equal to

p = Q(-;i) (3.5-16)
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In the case of the optimum detection process the distance
to the decision boundarj between any two of thelg? possible vectors
o= SbY and H, = SCY is from Eqn. (3.4-4)

d = (s, - s)vrT(s - s )Ty (3.5-17)
be b e b [

where i(Sb - Sc) is an m-component row-vector whose components
may have any of the (2k - 1) different values corresponding to the
possible values of s, = sj.i(Sb - Sc) ﬁas @k - n™” -1 possible
values one or more of which will give the minimum distance d to the
decision boundaries for all‘fSY}. In the presence of any significant
signal distortion only some of the signal vectors {SY} have decision
boundaries at or near the minimum distance d, but some of these vectors
may have two or more such decision boundaries. At high
signal to noise ratios the reduction in error probability due to the
former effecf should be approximately offset by theincrease due to
the latter. .

It must be noted that at high signal to noise ratis with additive
white Gaussian noise, even a very small increase in the distance to
a decision boundary produces a considerable reduction in the
corresponding error probability.34 Thus the error probahlity is
effectively determined by the nearest decision boundary, the remaining
boundaries having in comparison a very small effect on the error
pfobability. Furthermore, if only every second or third possible
vectors SY has a decision boundary at a distance equal to the ninimum
between any value of SY and its associated decision boundaries; or
alternatively, if some of the possible vectors SY have two or three
decision boundaries at this minimum distance, then in either case
the error probability changes by no ﬁore than 2 or 3 times, which at

high signal to noise ratios represents a change of only a fraction of

one dB in the tolerance to the white Gaussian noise, and this can
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normally be neglected. The distance to the nearest decision
boundary for all vectors {SY¥} is thus a reasonably reliable
measure of the tolerance to additive Gaussian noise, so iong as the

. . . . . 34
signal to noise ratio remains high.

3.6 A simple Example

A useful comparison between the process of linear egqualization
and the optimum detection process can be made from a study of a simple
case where there are two binary signal-elements in a group.

Suppose that the sampled impulse response of the channel is

Yyiy, 0...0 . (3.6-1)
and assume that m = 2 and n = 3. Also, s; = + 1 and 55 = + 1, and
these being sfatistically independent and equally likely to have
eitﬁer binary value.

Now .
SY = s)Yy + s5Y, (3.6-2)

8o that SY is a point in the 2-dimensional subspace spannéd.by b4
and YZ' The subspace is shown in Figq. 3.6-1. U;. and U; are the two
possible positions of s1Y¥); V) and ¥V, are the two possible positions
of s9¥5. Uy and Vi correspohd to the positive values of 37 and sjp,
" respectively. Hj, Hz, Hz and Hy are the four possible positions of SY.
The received vector R will not in general lie in the 2-dimensional
subspace, but its orthogonal projection onto the subspace is the vector
P = xY = SIYI + %X,Yo (3.6-3)

The linear equalization process detects s; and s, from the signé
of x1 and X3,

It can be seen that if P lies any where in the area bounded by

AOB in Fig. 3.6-1, x) >0 and x» > 0, so that s and s; are both

detected as 1 and SY is detected as Hy. Similarly, if P lies in the
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area bounded by BOC, COD or DOA, SY is detected as Hp, H3 or Hy,

respectively.

The optimum degection process deteects SY as the point Hi at
the mihimum distanée from R and theréfore at the minimum distance
from P. Thus if P lies in the area bounded by<EMF, FMNG, GNH, or
HNME, SY is detected as Hj, Hp, H3 or Hy,respectively. The lines
EM, FM, GN, and HN are the perpendicular bisectors of HyHj, ﬁle,

HpH3 and HjHy,respectively.

The vector P is the sum of the received signal-vector H, = 5Y
and the orthogonal projection of the nqise vector W onto the 2~
dimensional subspace spanned by Y; and Y,. An error results in the
detection of a received signal-element when the projected noise-vector
carries P onto the other side of the decision boundary with respect
to the received vector Hi. The projected noise vector is equally
likely to lie along any direction in the subspace. Furthermore,
the probability of its magnitude exceeding a given value depends only
on this value and the signal to no;se ratio, and aecreases rapidly
as the value increases. It can be seen in Fig. 3.6-1 that along any
direction, from any one of the four {Hi}, the distance to the nearest
decision boundary is in general greater (aqd never smaller) for the
optimum detection process than it is for the process of linear
equalization, Thus, for a given signal to noise ratio, the former
process has a smaller probability of error than the latter.

When the angle © in Fig. 3.6-1 is equal to 90°, that is, when
Y; and Y, are orthogonal, it can be seen that the decision boundaries

for the two detection processes are the same, and, therefore, in this

case the two processes have the same tolerance to additive Gaussian noise.
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3.7 Some Important Conclusions

The p?ior knowledge of the sampled impulse response of the
channel can be represented as a prior knowledge that the received
signa} vector SY (that is the signal without noise) is confined to
the m—dimenéional subspace spanned by the m vectors {Yi} in the
n-dimensional vector space. The received vector is the n-component
vector

R = SY+ W : (3.7-1)

Thé m X n matrix ¥ is known at the receiver and defines the m-
dimensioﬁal subspace'£o which 8Y is confined. 1In the presence of
noise the best linear estimate of S from'the received veétor R,is
obtained by projecting R onto the m~dimensional subspace, followed
by a process of matrix inversion. The whale process is achieved by
feeding R through the linear network YT(YYT)-I Qhose m output terminals
hold £he vector X which is the g;st linear estimate that can be
made of S, under the assumed conditions.

" The brocess of linear equaiization discussed in Section 3.2 is
equivalent to (but not the same) as the arrangement used with
uninterrupted signals. There are however, two advantages here., Firstly,
exact equalization is obtained with the n x m network YT(YYT)—l,
provided that the different received groups of signal-elements are
disjoint in time. Since with most practical transmission paths, the
impulse response of the channel decays fairly rapidly on each side of
the central peak, a good approkimation to truly orfhogonal groups of
elements can be ohtained by providing a sufficiently large gap between
adjacent groupsof transmitted signal-elements, Seéondly, for any non-
zerco sampled impulse response of the channel, SY must be non-zero

for all possible values of S. Thus, where there are difficulties in
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obtaining accurate equalization of the continuous signal or where
certain seéuen¢es of element values result in excessive
attenuation of the received signal, a useful advantage éhould be
gained with the arrangement of orthogonal groups.

fhe real importance of the arrangement of orthogonal groups,
however, is that where the receiver has prior knowledge of the.km
possible values of SY, aconsidérableadvéntage in tolerance to
additive noise can be obtained by the use of the optimum detection '
process. Unfortunately, the optimum detection process cannot
itself be-implemented in practice except when both m.and k are small,
because of the time required to perform the X" sequential
0perations‘involved in thé process. Sub-optimum detection processes

must therefore be investigated in the search for a near optimum

. , m . .
process, which require far fewer than k sequential operations.

Cu
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4.0 DEVELOPMENT OF THE TWO BASIC DETECTION PROCESSES

4.1 Systems 1 and 2

Consider the process of linear equalization discussed in
Section_3.2. The best linear estimate X, of the vector S containing
the transmittéd signal-element values, 1is

X = rYF@hHL
This estimate can be obtained by feeding the received vector R to a set of
m correlation detectors tuned to the m{Yi} » Which in turn feed the
inverse network (YYT)“1 as shown in figure 4.1-1, Although, the linear
n x m netwérk YT(YYT)—l can be implemented as such, much less complex
equipment is involved when the transformation YT(YYT)‘“l is carried out by
N

an iterative process.32 In such a process the vector X is obtained as a
result of a sequence of separate steps, giving successively closer approxi-
mation to the requifed solution.

A large number of differenf‘iterative processes are described in
the published literature, but the majority of these require considerable
equipment complexity and are therefore not suitable for use here?1’32’34’38’52
There is however one iterative process which is ideally suited to the

32,38,52

present 2pplication - the point Gauss—-Seidel process. The method

of operation of this process will now be described with reference to
Figo [4-1_20

Let D = RY' C(4.1-1)

and A = (YD) (4.1-2)

where D is an m—coﬁponent row-vector whose components are the m outputs
from the correlation detectors {Yﬂ» in Fig. 4.1-1, and A is an m x m real
symmetric positive definite matrix,J2s52

At the start of the detection process, the vector X in Fig. 4.1-2

is set to zero and the received vector R is fed t¢ the input, so

that
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X = 0 (4-1"3)

and E = D ' (4 01_4)
where E = {ei} is the output signal vector from the m correlation

T
detectors {Yi } during a detection process as shown in Fig. 4.1-2.

% is then adjusted so that the output signal e, from the first

1
correlation detec;or is reduced to zero. This in general changes all
m oufput signals {ei} from the correlation detectors. X, is now
changed so that the output signai from the second correlation detector
is reduced to zero, and so on sequentially to X s which completes the
first cycle of the iterative process. The procedure is then repeated
for the second cycle, the {xi} being changéd sequentially and in the

same order as before, and so on until no further changes in the {xi}

are required.

When ki is adjusted to reduce to zero the output signal from the

ith correlation detector, the change in x; is

- A -

vhere e; is the output signal from the ith correlation detector

immediately preceding the change and

v = Y.Y,) = a, for alli (4.1-6)
i'i ii
th clement on the main diagonal of matrix A.

where a,. is the 1
ii
Thus, at the end of the process, when all the m {xi} have been

adjusted such that

E = 0O (46.1-7)
X satisfies the relation |
R - XY = 0

or X = RY'(yyh) ! (41-8)

which is the same as that for the process of linear equalization

(Eqn. (3.2-9) ).
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1

The above iterative process can be modified so that the

change in X given by equation (4.1-5), now becomes

. .e.
S -
Ax, 4 (4.1-9)
where q is a constant and
0 <« q ¢ 2 (4.1-10)

The constant q is called the relaxation constant, 38 and Equation
(4.1-5) is a special case of (4.1-9).

The above detection process will converge to the required
solution vector X, so long as the matrix A is real, symmetric

and positive definite and 0 € ¢q < 2, that is so long as the m {Yi}

32,38,52

are linearly independent and 0 < q < 2, To obtain the

niaximum rate of convergence of the iterative process, ¢ should normally

52

have a value equal to or a little greater than 1. A simple

- implementation of the iterative process is described in reference [32].

Clearly the circuits associated with the correlation detectors

in Fig. 4.1-2, perform the same function as the network (YYT)--1 in
Fig. 4.1-1, so that the tolerance of the iterative process to the

additive Gaussian noise and signal distortion in the channel,should

‘be the same as that of the linear equalization discussed in Section 3.2.

The iterative proceés described above will be referred to as System 1.
The optimum detection process, described in Section 3.3, generates
in turn each of the different possible vectors {SY} and measures its
distance |R-SY| from the received vector R. The detected value of S is
that corresponding to the minimum distance. The detection process
minimizes the probability of error in the detection of the m elements

33, 52

of a group. It will be referred to as System 2.
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4.2 System 3

System 3 is a modification of System 1. The tolerance to

additive Gaussian noise of System 1 can be improved by apélying the
following constraint to the vector X. The values of the {xi} are
constrained tﬁroughout the iterative detection process so that their
values satisfy

'xil £ ¢ for each i (4.2-1)
where ¢ is the most positive of the possible values of si., In the
iterative pfocess the constraint overrides and so, .if necessary,
truncates the change in X given by Eqn. (4.1-9),

Consider the example of Section 3.6 and let the vector XY at the

end of the iterative process of System 3 be

Q = XX = x¥) +xY, (4.2-2)

Referring to Fig. 3.6-1, P is the orthogonal projection of the
received vector R onto the 2-dimensional subspace. When P lies

inside the quadrilateral H1H2H3H4, P and Q coincide, whereas when P

lies outside H1H2H3H4 then, because of the constraint on the {xi} » Q 1s

the point on the quadrilateral at the minimum distance from P, so that

Q is the orthogonal projection of P onto the nearest side of H1H2H3H4.52

X, and X, mow satisfj (4.2-2)., 1f Hl’ H2’ H3 or H, is the nearest

point on the quadrilateral to P, then this is taken to be the orthogonal

projection of P onto the quadrilateral.

If, in Fig. 3.6-1, P lies above EU,0V,F, to the right of FV,0U

below GU20V2H or to the left of HVZOU E, SY is detected as Hl’ HZ’ H3

or H4, respectively. The decision boundaries in this case are a compromise

28>

between ‘those for System 1, and those for System 2, so that the tolerance
to noise of System 3 should clearly lie somewhere between that of System 1

and that of System 2.
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1

Clark52 has studied the performance of Systems 1 and 3 in soﬁe
detail for a mﬁre general class of transmitted signals than that
assumed here. His computer simulation results suggest that for the
type of signals studied, System 3 gains an advantage typically 1
or 2 dB in toierance to Gaussian noise over that of System 1.
Furthermore, the constraint on the {xi}, given by Eqn. (4.2-1),
not only maintains the convergence of the iterative process but often
greatly increases the rate of convergence. The rate of convergence is
.32,52

maximum when q in Equation (4.1-9) is such that 1.25 £ q <€ 1.5

“~

4.3 System 4

In this detection process the detector first generates km
vectors {Q = XY}; each of which is at the minimum distance from R
subject to a different set of constraints on X. k is the number of
possible element valuas, For each set of constraints, one of the
mﬁxﬁ is constrained to have one of the k possible values of s; (with a
different choice of the km possible‘combiﬁations of the possible values of
s; and i ), and the remaining {xﬂ _are estimated using System 3. If P is
the orthogonal projection of R onto tha m—dimensional space spanned by
the{Yi} then the vector Q corresponding to any one set of constraints is
the orthogonal projection of P onto the bounded hyperplane specified by
these constraints. For each of the vectors {X} corresponding to the
different vectors {Q}, the detector determines the vector § at the
ninimum distance from this vector X, and generates the corresponding
vector SY. The detector then determines which of these vectors {SY}
is at the minimum distance from R, and takes the detected value of 8
as that giving the minimum distanée. The vectors {SY} selected in
the km iterative processes, are not necessarily all different, since

not only can two different vectors {Q} give the same selected vector



SY but also the km vectors {Q} themselves are not necessarily.all
different. |

In the practical implémentation of System 4 a suitably modified
arrangement of System 3 selects the vecters {SY} in km successive
iterative processes, and an arrangement of System 2 then determines
the detected vector S from.these {SY}. Consider, for example, the
case where the transmitted signal-elements are binary coded, such that
s, = + 1. The detector uses System 3 to obtain the estimate X éf

the transmitted signal vector 8, with x. set at +1. The detected

1
values of the {si} are then obtained by comparing the{x{} with a
" threshold level of zero. The detector then generates the vectof 8Y
using this detected value of § and subtracts it from the received

vector R. The comﬁonents of the difference vector are squared and

added to give the square of the distance between the vector R and the
generated vector SY. This distance together with the associated vector
S are storéd. The whole procedure is then repeated with x, set at -1 .
and again for X, set at +1 and then -1 and so on up to X In each
iterative process corresponding to a fixed value of one of the {xi},
the remaining {xi} are permitted to vary subject to the constraint
given by Eqn. (4.2-1). At the end of each iterative process the
detector compares the distance just measured with that already stored,
and no action is taken unless the former is smaller than the latter.
When this occurs, the new distance together with the associated vector S
replace those stored. The detector takes the detected value of § és
that which remains in the store at the end of the detection process,
when all the km iterative processes have been completed.

The method of operation of System 4 can be further clarified

by considering the example of Section 3.6, Referring to Fig. 3.6-1,
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the vectors {Q} are here the orthogonal projections of P onto the
%four lines H4H1, H1H2, H2H3 and H3H4, the orthogonal projections onto
H2H3 and H3H4 being H2 and HA’ respectively., The corresponding vectors
-{SY} are the points {Hi? in the same decision regions as the vectors
{Q}, where the decision boundaries are thoseof System 1. Clearly the

selected vectors {SY} are H,, H, and H,. The detected vector H is that

17 72 4
nember of the selected {Hi}, which is at the minimum distance from P,
and it is therefore Hl.

It can be seen that for the whole detection process of System &

the decision boundaries in Fig. 3.6-1 are the same as those for

System 2, so that for groups of two binary signal—elements, System 4

achieves the same tolerance to additive Gaussian noise as does System 2.

Although System 4 is basically more complex than System 2 and in this
particular example it fequires more sequential operations, the number
of sequential operations in System 4 increases very much more slowly
with m and k than in System 2, and for larger values of m and k becomes
much smaller than in System 2.35
The first part of the detection process of System 4 selects from
the k" possible vectors {SY} a,éet of ro more than km vectors. The
"second part of the detection process selects from this set the vector

SY at the minimum distance from R, On the other hand, System 2 selects

the detected vector SY directly from the whole set of K {SY} .

4.4 Systems 5 and 6

In System 5; the detection process of System 1 is applied to the
m received signal-elements of a group, but only the detected value of
the first element is accepted. With correct detecfion, the components
(sample values) of the first element slél are known. These are then

cancelled (eliminated by subtraction)'from the received vector R. The
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modified vector R now contains sample values due to the remaining
(m-1) signal—elements. The detection process of System 1 is now

applied to these (m~1) elements to give the detected value of 52Y2
which is then cancelled, and so on. In this way each of the m signal-
elements of a received group is detected as the first element in its
respective group, and, witﬁ the correct cancellation of the preceding
elements, the error probability in the detection of any element does
not drop below the error probability in the deteétion ;f the first -
element SlYl'

The technique applied here is one of non*lineér equalization by

decision—directed cancellation of intersymbol interference.ls_ls’20’21’

23,31,34 The incorrect detection of a received signal-element leads of

course to the inco;rect cancellation of that element. This correspondingly
increases its intersymbol interference in the following elements and
greatly increases the error probability in their detection. Errors
therefore tend to ocecur in bursts. It must however be borne in mind

that since the signal-elements are transmitted in separate groups, a
wrong detection and cancellation in any one group of signal-elements

does not affect the detectioﬁ of elements in the following groups.

Thus the error bursts 21,31

are contained within the m elements of a group.
System 6 is a modification of System 5, in which System 3 is uséd
in place of System 1 for the detection of each signal-element..
Systems 5 and 6 are applications of a technique studied for a
continuous (uninterrupted) stream of signal-elements, where each detected
signal~element is cancelled and therefore removed from the received

sample values.21’23’31’34

An important feature of the arrangement of
signal detection and cancellation in the case of continuous
(uninterrupted) signal is that corresponding to n transmitted signal-

elements there are just n sample values of the receilved signal.
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Theoretical analysis has shown that the detection of n elements from

the corresponding n sample values reduces the tolerance of the

21,34

arrangement to additive white Gaussian noise. In Systems 5 and 6,
since there are n sample values of the received signal corresponding to
m elements of a group, where n»>m, it follows that the tolerance to

additive white Gaussian noise of Systems 5 and 6 is better than that of

the corresponding arrangement with continuous (uninterrupted) signal.

4.5 Detection of Multi-Level Signal-Elements

The detection processes described in the previous sections_are of
interest mainly for the detection of binary signal-elements. They may
be applied to multi-level elements but, for useful values of m, they
either give an inferior tolerance to noise or else they require an
excessive number of sequential operations.

The const;aint on the {x;} iﬂ-System 3 given by Eqn. (4.2-1)
becomes less effective with the increase in the number of signal-element
levels. This is because, with multi~level signals only a few of the
{xi} which correspond to the largest of the possible values of s,,are
affected by this constraint, for the rest of the {x.} the constraint‘
is virtually non-existant. In the limit, therefore, when the number
of signaléelement levels is very large, the tolerance to Gaussian noise
of System 3 will approach that of System 1. Also, for the same reason the
tolerance of System 6 to additive Gaussian noise will approach that of
System 5 as the number of signal-element levels increases. Again the
number of sequential operations required in both Systems 2 and 4
increases rapidly with the number of signal-element levels, and for
large values of m, makes them unsuitable for use with multi-level

signal-elements.
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A promising technique for the detection of multi-level elements
is to carry out an initial detection process which selects from the
total number of possible values of each signal-element, fhe two or
three element values which are most likely to be correct. The
detection éf.the m signal-elements is then completed by an iterative
process which operates only on the selected element values, so that
it treats the received signal-elements as though these were the
corresponding 2-or 3-level elements. This arrangement often enables
a good tolerance to noise to be acﬁieved, without an excessive number
of sequential operations. The following detection processes are all

based on this technique.

4.6 Systems 7/2, 7/4 and 7/6

In System~ 7/2 the detection process of System 3 is first appiied
to give the vector X, as in Eqn.'14:2"2). The value of each 3 is used
to determiﬁe the nearest two possible values of S:s to give a set of 2"
likely values of S. The detection process of System 2 is now applied,
using only these values of S. In Systems 7/4 and 7/6, the detection
process of Systems 4 and 6, respectively, are used for the final detection

of S in place of System 2.

4.7 Systems 8/2, 8/4 and 8/6

In System 8/2 the detection process of System 3 is first applied to the .

received vector R to give an.initial (temporary) detected value of the
vector S. With each component S; of S are now associated

(. where available ) the two immediately adjacent of the

possible values of s; This gives a maximum number-of

30

. likely vectors S. The detection process of System 2 is now
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applied, using only these values of S, to give the final detected value
of 8. In Systems 8/4 and 8/6, the detection processes of Systems 4 and
6, respectively, are used for the final detection of S, in place of
System 2. |

The operation of these systems can be explained more simply by
considering ;he example of Section 3.6. The {si} are now assumed to be
4-level signal-elements instead of binary, with + 1 aud + 3 as the
possible fogr values of 8y The 2-dimensional subspace spanned by Y1
and Y2 is shown in Fig. 4.7-1. Also shown are the decision boundaries
and decision regions of Systems 1 and 2, for the 4-level signal-elements
considered here. Clearly Fig. 4.7-1 is derived from Figs. 3.4-1(b) and

3.4-2(b). The vecﬁors {}H} where each Hi is one of the 16 possible

vectors SY, are shown as points in the 2-dimensional subspace. The values

.

2

the orthogonal projection of R onto the 2-dimensional subspace and is

of 81 and s, associated with each Hi are also given. P in Fig. 4.7-1,is

given by

171
‘Referring to Fig. 4.7-1 it can be seen that System 1 detects SY as

PeXY s x ¥, o+ XY, 4. 7-1)

Hl’ and hence s1 = 1 and §, = 1, if P lies anywhere'within‘the area

0a,a,2,0, while System 2 which is the optimum system, detects SY as Hl

if P lies within the area b1b2b3b4b5b6b1. If P lies in the shaded portions

of the area oa,a,a,o, System 1 will still detect SY as H

12223 but System 2

1’
will now detect SY as either H2, H3, HS or Hg, depending upon the location

of P within the shaded areas., Thus if System 1 detects 8, = 1 and s, = 1
the possible values of {si} which can be detected by System 2, are s = -1,
1l or 3 and s, = -1, 1 or 3, and these values include the two immediately

adjacent to those detected by System 1. In general, considering all the



2-Dimensional
Subspace Spanned
by Y1 % Y2

Figure 4.7 -1

Decision boundaries of Systems 1 and 2 in 2-dimensional

subspace spanned by Y1 & Y2. Groups of two 4-level elements,
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Vectors SY in the 2~dimensional subspace of Fig. 4.7-1, it can be seen
that the values of {si} which can-be detected by System 2, given the
values detected by System 1, are these values and (where available) the
two pairs of values immediately adjacent to those detected by System 1.
1f now System 2 or 4 is used for the final detection of S, using only the
péssible values of S selected by using Sysfem 1, then, clearly the
tolerance to additive Gaussian noise of Systems 8/2 and 8/4 for groups of
two 4-level signal-elements, will be similar to that of System 2 and 4,
respectively. Evidently this is true also for larger numbers of signal-
element levels. Although Systems 8/2, 8/4 and 8/6 use System 3, for the
initial detection of {si} instead of System 1 which has been considered
in this example, this does not make much difference because with multi-level
signal-elements, the tolerance of System 3 to additive white Gaussian noise
is more like that of System 1 as has been mentioned in Section 4.5.

It must be pointed out that ?efore applying System 4 or 6 to the
received vector R, for the final detection of S, thg constraint on the
{xi} given by Eqn. (4.2-1) is modified. 1If s, is the initial detected
value of the ith element then, the value of the corresponding Xs s during
the final detection process of System 4 or 6, is constrained such that

si' < x, <5.;" for each i {4.7-2)

where s.' and s."
i i

are the two values immediately adjacent to s4 (where
available), and si' is the smaller of the two. Clearly the éonstraint on
the {xi} in Eqn. (4.7-2) is more effective than that given by Egn. (4.2-1),
and therefore System 8/6 should gain some advantage in tole;ance to additive
Gaussian noise over System 6.

Although Systems 8/2, 8/4 and 8/6 look complicated in theory, their

practical implementations are similar to those of Systems2, 4 and 6,
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respectively. For each group of received signal-elements, System 3
" is first used to detecﬁ the initial value of 5. With each éomponent Sy
are then associated (where available) the two immediately adjacent of
the possible values of s,. The components {éi} of 5 are now treated as
2~ or_3-1eve} signal-elements and the receiver knows these values for
each S; - The vector S is finally detected by using the detection processes
of Systems 2, 4 or 6 exactly as described in Sections 4.1, 4.3 and 4.4;
. respectively. With Systems 4 and 6, however, the constraint given by
Eqn. (4.7-2) is now used instead of that given by Eqn. (4.2-1),

Clearly Systems 8/2, 8/4 and 8/6 are modifications of Systems 7/2,
7/4 and 7/6, respé;tively, which are described in the previous section.
It can be seen from Fig. 4.7-1 that at high signal to noise ratios,
the two most likely values of s. in a set of the three possible values,
selected after an initial detection of S, are the two values nearest to
the corresponding X where the {xi} are of course the components of the
vector X in Eqn. (4.7-1). Thus at high signal to noise ratios the
performance of Systems 7/2, 7/4 and 7/6 for groups of two multi-level
signal-elements, can be expected to be similar to that of Systems 8/2,
8/4 and 8/6, respectively.

The implementations of Systems 7/2, 7/4 and 7/6 are similaf to those
of Systems 8/2, 8/4 and 8/6, respectively. The selected possible values
of each s; are now two, instead of two or three, and are the ones nearest

to the corresponding x;o s;' and Si“

in Eqn. (4.7-2)‘are now the two
possible values of 5, During the initial detection process in any of the
systemé 7/2, 7/4 and 7/6, |xi| will never exceed the value max. (Si)’
because of the comnstraint of Eqn. (4.2-1). When X has one of the two
extreme values of S5 the two possible values of s; are taken to be this

value and that immediately adjacent to it.



5,0 ASSESSMENT QF THE DETECTION PROCESSES

5.1 Computer Simulation Tests

The relative performances, in the presence of additive white
Gaussian noise, of the various detection processes just described
have been compared by considering a 2-dimensional subspace. Such an
analysis becomes difficult and almost impossible for the higher
dimensional subspaces obtained when the number of elements in a
group is large. Since, in a practical application,.the number of
signal-elements.in a group is likely to exceed 10 or even 20 with
binary or multi-level elements, computer simulation has been used to
study the performances of the detection proéesses in the presence
of additive white Gaussian néise.

The tolerances to additive white Gaussian noise of the varioqs
" detection processes have been compared for the data-transmission
_ sys£em discussed in Section 3.1 The comparison has been made for
different values of the sampled impulse response of the baseband
channel, for different numbers of elements in a group, and for
different numbers of signal-element levels. Aall the computer
simulation programs: have been written in FORTRAN IV and run on the
ICL 1904 A computer at Ioughborough University of Techﬁology.

In every case the energy of an individual transmitted signal-
element has been set to unity and the two sided power spectral
density 0?2 of the additive white Gaussian noise at the input to the
receiver filter is adjusted to obtain a given average element error

2

rate. The value of o then gives a measure of the tolerance of a

system to additive white Gaussian noise. Different error rates have
been used for different numbers of signal-element levels in order

to allow for the fact that the probability of error in the detection

2(k-1)

== which, although

of a k-level signal-element is a function of
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significant at the error rates tested, is not important at the
lower error rates usually found in practice. The probability of
error in the detection of a multi-level element is considered in more
detail in Appendix A8. Thus the results give a better estimate
of the relative tolerances to additive white Gaussian noise, at high
signal to noise ratios where the error probabilities are no more

.+ 5
than 1 in 107,

The computer simulation programs are considered in more detail

in Appendices A3, A4, A5 and A6.

5.2 Choice of Channel Impulse Response and Transmitted Signals

The sampled impulse response of the baseband channel‘is
specified by a five component.row vector L, assuming that an
.individual signal-element does not cause intersymbol interference in
more than four of the neighbourihg elements so that g = 4. The
different vectors tested are shown in Table 5.2-1, each vector is
normalized to have unit length. ' With the exception of the first
vector, these are grouped in pairs, each member of a pair in every
case causing the same reduction in tolerance to noise as the other.
The different values of I have been selected tc give a wide range
of different signal distortions which include'varioﬁs combinations
of amplitude and phase distortions, >!32/33

Simulation tests have been performed with 2, 4 and 8-level
signal-elements and for both m = 4 and m = 8, In every case the
average transmitted energy per bit is equal to unity. The péssible
values of signal-elements s; are shown in Table 5.2-2? The transmitted
signél-elements are statistically independent and equally likely to

have any of the possible values of S;- In each simulation test, with
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TABLE 5.2-1

Values of the sampled impulsé response of the chaunel

Channel 1,
A (1,0,0,0,0)
B 274(1,1,0,0,0,)
241,-1,0,0,0)
C %(1 0,1,0 0)
i(l 0, 1 (0] 0)
D .574(0.5,1,0.5,0,0)
1.574(=0.5,1,-0.5,0,0)
B 540.5,1,-0.5,0,0)
i( ~-0. 5 1 0. 5 0 0)
F 1.574(1,0.5,0.5,0,0)
1.5 i(1 ~0. 5 0.5,0 0)
G 1.5741,0.5,-0.5,0,0)
1.5 i(1 -0.5,-0.5,0 0)
" 1.5 4(1,0.667,0.235,0,0).
1.5 % (1,-0.667,0.235,0,0
1 1574 (1,0.667,-0.235,0,0)
1.5 (1,-0.667,-0.235,0,0)
I 5(0 235,0.667,1,0.667,0.235)
274(0.235,-0.667,1,-0.667,0. 235)
X g 274 (-0.235,0.667,1,0.667,-0.235)

2 2(-0. 235,-0.667,1,-0,667,-0.235)




" TABLE 5.2-2

‘Possible Values of sy

No. of Element Levels

Values of si
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groups of four and eight binary and groups of four 4-level signal—'

elements,’é total of 4096 signal-elements were transmitted over any

given baseband channel. The number of signal-elements transmitted

with groups of eight 4-level and groups of four 8-level signal-

elémeﬁt was 4000. In cases where the number of signal-elements

transmitted was 4096,‘all possible combinations of the elementl

values in & group were used. However, due to thé limitations on the

computer time arailable, it was not possible to do the same with

groups of eight 4-level and four 8-level signal-elements, and in these

cases the possible values of the signél—elements of a group (Table 5.2-2)

were selected such that the elements in a group were statisfically

independent and equally likely to have any of the possible values.
Systems requiring an unduly large amount of computer time

have been tested only with channels A, B, D and J, these channelé

being the most interesting of those tested. Where a system has been

tested over any one of the channels B to K, a computer simulation

test has been carried out for each of the two corresponding values

of L in Table 5.2-1. BAgain, because of the limited computer time

available, binary and 4-level elements were tested in groups of both

four and eight elements, whereas 8-level elements were tested

" only in groups of four.

5.3 Error Probabilities and Confidence Limits

- In the simulation tests, different error probabilities have
been used for different numbers of signal-element levels, so that
the simulation results give a better estimate of the relative tolerances
to additive white Gaussian noise, at high signal»tq noise ratios, for

different numbers of signal-element levels. The values of error



probability actually used were 4, 6 and 7 in 103 for 2, 4 and 8-le§el
signal-eleménts,respectively. It has not been possible to test the
systems at higher signal to noise ratios (lower error prébabilities)
because, for a reasonable estimate.of the tolerance of a system to
noise éome 20 or 30 errors must be obtained in a computer simulation
test. This implies a very large number of trials when the element
error rate is less than 1 in 103. The choice of error probabilities
and the total number of signal-elements transmitted in each test, is
a compromise between the accuracy of the results and the available
computer ﬁime.

In the case of channel A, the standard deviation ¢ of the white
Gaussian noise at the input of the receiver filter (Fig. 1.1-1),
corresponding to a given average element error probability, can of
&ourse be derived theoretiéally. For any baseband channel, the
noise variance at the input to the dgtector is equal to the two sigded
noise power spectral density 02 at the input to the receiver filter.
For channel A, when there is no signal distortion, the received signal-
elements are orthogonal at the receiver. Furthermore, with binary
coded signals, the ith signal-element in a group has only one non-zero
component which has the value + 1. An error océurs in the detection
of this element when the corresponding noise componént has a magnitude
greater than 1 and the opposite sign to that of the component of the
binary element. Hence the probability of error in the dgtection of

t . . 3
the 1 h element is Q(1/¢). For an error probability of 4 in 10,

0(1/c) = 4 x 107° (5.3-1)

so that ¢ =:0.376, and this is the required value of the standard

deviation of the white Gaussian noise at the input to the receiver
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filter, corresponding to an error probability of 4 in 103 over
channel A.. In the case of 4-~level elements transmitted over channel A
with an error probability ¢f 6 in 103, the standard deviation ¢ of

the noise must satisfy

2(k-1) A _ -
“”1;“”‘Q (Uz = 6 x 10

as can be seen from Appendix A8,where k is the number of element
levels, so that kX = 4, and 4 is the distance to the nearest decision

boundary, so that d = j;éﬁf, from Table 5.2-2, Thus

4 x 1073

i

a
Q(30

and : g 0.238
In the case of 8-level elements transmitted over channel A with an

error prohability of 7 in 103, o must satisfy

315351-9 (ga = 7x10°
where now k % g and 4 = 1//7. Thus,
oy = 4% 1073
0.142

and

- Q
I

In each case just considered the transmitted energy per bit is set to
unity. It can be seen that the values of o for 2, 4 and 8-level
elements transmitted over channel A are compared for the same value of

Q(g ), so that the comparison holds at high signal to noise ratios where a
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change in error PrObabilify by a factor of two corresponds to a
negligible'Change iﬁ signal to noise ratio. Evidently under the
above conditions, a change from binary to 4-level signals results in
a reduction in tolerance to noise of nearly 4 dB, whereas a change
from Binary to 8-level signals results in a reduction of nearly 8.5 dB.
The value of the standard deviation ¢ of white Gaussian noise
ohtained theoreticaliy for channel A has been checked against that
obtained by computer simulation, and for every system tested, the two
values were found to be in close agreement.
For a given value of the average element error probability p, the

number of errors t obtained in a simulation test, is given by

t = 2p ' (5.3-2)

where £ is the total number of signal-elements transmitted in a test.
In all the systems tested, the é;tual value of ¢ for groups of four
and eight binary elements and groups of four 4-level elements was
4096, while for groups of eight‘4—1eve1 and four 8-level signal-
elements 2 was equal to 4000.

It has been shown that if the errors are statistically
. independent, t > 30, p << 1 and if an‘accurécy of no better than
20% is required for the confidence limits, then it can be assumed
that t has a Gaussian probability density with a mean ﬂ = t and a

standard deviation n = Yt. For a given value of p > 0, the 95%

- . 52
confidence limits for the value of p are now approximately

2n

2p
4 — = + 5' -

where the limits are expressed as deviation from the given value of p.
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In any test with orthoéonal groups of signals there may be a
high degree of depeﬁdence between the individual.element errors of a
group in a detection process. The result of this dependence is to
reduce the effective number of independent errors obtained in a test
and so to widen the confidence limits. Thus t in Egn. (5.3-2) does
not represent the effective number of independent errors and, therefore,
cannot be used to estimate the confidence limits. However, since the
signal-elements are transmitted in groups, ﬁhe element errors in a group
being completely inéependent from those of the other groups, it is
reasonable to assume that the effective number of independent errors
in a test is equal to or greater than the number of groups of signal-
elements in error, and this §alue provided that it is greater than 30,
can be used in Egn. (5.3-3) to estimate the confidence limits for a
given value of p.

From the computer simulation results it was found thatithe number
of groups of signal-elements in errcr, for any of the detection
processes described in Section 4, remained/fairly constant for a
gi§en element error probability p, a given number of elementslin a
group m, and a given number of signal-element levels k. The average
value of.the number of groups in error was, therefore, used to estimaée the
 confidence limits for given values of p, m and k. The 95% confidence
limits for different values of m and k are given in Table 5.3-1, and for
the given values of m and k these limits are for practical purposes, the
same for any of the systems tested. Where the effective number of
independent errors j is less than 30 the 95% confidence limits are
~estimated from the results of reference [49). For each of the
different values of p,m and k, Table 5.3-1 also shows the corresponding
195% confidence limits of ¢ the standard devation of the white Gaussian
noise, and are expressed, in 4B, as deviati;ns from the value of ¢

corresponding to the given value of p.
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TABLE 5.3-1
-Approximate 957 confidencde limits for different values of m and k .

Number Number of| Average Total Average | 95% 957

of possible| element Number of |number of tonfidence |confidence
signal- signal- error errors in algroups of | limits limits of o
elements element |probability |simulation [signals in| expressed {expressed in
in a group| wvalues’ test error |as devia- {dB, as

tion from |deviation
the given |from the gven
value Pivalue of g4

m k p t h]
4 2 |4 x1073 16 14 +.0029 +0.63
‘ -.0022 0. 76
8 2 4x 103 16 12 +.00335 +0.72
-.00235 =-0.90
4 4 |6 x 1073 24 16 +.0039 +0.71
o ~.0030 ~0.90
8 4 6 x 102 24 13 +.0046 40,78
~.0033 -0.94
“o 8 |7x107 28 18 [ +.0040 +0.77

-,0033 -0,92
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5.4 Results of Compuﬁer Simulation Tests

The results of computer simulation tests are shown in Tables
S.4=1 to 5.4-3. The noise power spectral density at the input teo
the receiver filter, required for a given average element error
probability in Tables 5.4-1 to 5.4-3 is quoted in decibels relative to
its value when a binary signal is transmitted over channel A with an
average element error probability of 4 in 103, the noise level here being
the same in all cases. As has been said before, the results quoted
for channel A have been calcﬁlated theoretically and checked by
computer simulation.

Tables 5.4-1 to 5.4;3 also show the tolerance to additive white -
Gaussian noise, for each of thé different channels when the optimum
linear equalizer, described in Section 2.3, is used at the réceiver.
These results have been evaluated theoretically, the peak value of the
resultant intersymbol interference in the equalized signal, being less
than 17 in each case studied. The number of taps used by the linear
equalizer for each of the different channels is given in Table 5.4-4,
Where * is shown in the tables, the channel cannot be equalized by a
linear transversal filter. The reduction in tolerance to.noise,
caused by-any channel, is here unaffected by the values of g and m, and
applies also to a continuous (uninterrupted) signal with the same
element rate, where each gap is considered to contain g zero-level
elements. The tolerance to noise is furthermore not affected by the
number of signal-element levels.

The tolerances to noise of System 1 given in Tables 5.4-1 to
5.4-3,have been obtained by two different methods. In the first
method the iterative process described in Section 4.1, is used, while
in the second method the network Yr'["(‘fﬁffr)"h1 in'Eqn. (3.2-9) is used.

It was found that the two methods give the’ same results. Furthermore,



the tolerances'to noise of‘System 1, for groups of eight binary
signal-elements and for each of the different channels, given in
Table 5.4-1, agree wifh those given in reference (55].

Table 5.4-5 gives the theoretical results corresponding to
those obtained for System 1 in Tables 5.4~1 to 5.4-3. The results
of Table 5.4-5 are obtained by calculating the minimum distances

to the decsion boundary, according to Egns. (3.5-€) and (3.5-14).
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TABLE 5.4-1

Noise level for an average element error probabllity of 4 in 103, expressed in dB relative to its level
with no distortien.

Groups of four or eight binary signal-elements
{Results obtained by computer simulation)

System
Channel = 74 1‘m=8 ——f =8 = =8 | mad : P B T = B éqii??in
A 0.6 | 0.0 | 0,0 | 0.0 { 0.0 {0.0 [ 0.0 {0.0 |0.0 {0.0 |o0.0 | 0.0 0.0
B -3.3| -6.0| ~1.0| -1.2| -1.5| -1.6 | -1.0 | -1.1 | -1.5 | -1.8 | -1.1 | -1.3 *
c -1.1| -3.2| 0.0 | -0.4{ -0.9| -1.6 | ~0.1 | ~0.4 | -0.8 | -1.5 | 0.4 | -0.6 *
D <6.6 [-13.7 | -1.8| -2.4{ -3.9 | -7.3 } -2.1 | -2.6 } -3.5 | -4.9 | -2.5 | -2.8 *
E 0.0 | -0.3| 0.0 | 0.0 { 0.0 { 0.0 | 0.0 [0.0 | ~0.2 0.0 |-0.4] 0.0 ~0.3
F -1.8{ -3.3} 0.0 | -0.5} -1.2} -1.3} 0.3 | 0.9 | -1.1 | -1.3 | -0.6 | -1.0 -3.5
G -0.6] -2.9] 0.0 | 0.0 | -0.3| -0.9{ 0.0 | -0:4 | -0.2 | -0.8 | -0.1 | -0.4 *
H -3.0{ -3.2} -0.6{ -0.7| -1.7 | -1.6 { -0.6 | -0.9 | -1.6 | -1.6 | -1.0 | -1.3 -3.5
I -0,9| -3.7] 0.0 { 0.0 | -0.9| -1.6 | 0.0 | -0.4 | -0.6 | -1.1 | 0.0 | -0.6 -8.2
3 -14.3 | -17.6 | -3.8 | -4.4| -9.9 |-13.4 | -4.1 | -4.9 | -8.1 |-10.0 | -5.8 | -7.4 -20.6
X -3.3] -4.9! -0.7} -1.2 | -1.6| -2.5 | -0.9 | -1.1 | ~1.6 | -2.4 | -1.1 | -1.6 =
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TABLE 5.4-2

Noise level for an average element grror probability of 6 in 103, expressed in dB relative to its level
for an error probability of 4 in 10" with binary signal-elements and no distortion.

: eight 4-level elements.
(Results obtained by computer simulation)

Groups of four or

Syétem
Channel 3 /2 74

0= =8 | m=4 | =8 =4 =8 | m=4 | m=8 | m=4 =8 =4 =8 =4 | m=8
A -4.0| ~4.0 | 4,0 | -4.0| -4.0 | -4.0 | -4.0 | -4:0 | -4.0 | -4.0| -4.0 | -4.0 ] -4.0] -4.0
B -7.4(-10.6 5.3 - | -6.5{ -8.9 | -5.3 | =5.6 [ =5.8 [ =7.5 | =5.0 | =5.7 | -5.0{ -5.7
c -5.5| =7.5 | -4.3 - | -5.5) - | -a5] w | -4.6 - | -a.2 - 4.2 -
D ~12.4]-17.6 | -6.8 - |-10.3|-14.5 | -6.8 | -7.7 | ~9.2 |-12.5 | -6.9 | -7.8 | -6.8]| -7.7
E -4.8] -4.6 | -4.5 - | -a.7 - | -2.6 - | -4.6 - | -4.3 - | -4.5| -
F -6.4| ~7.1 | -4.9 - | -6.1 - | -5.0 - | -5.8 - | -4.7 - 4.7 -
G -5.3] =6.3 | ~4,2 - | -4.5 - | -4.3 - | -4.6 - | -4.4 - -4.5¢( -
H -7.4| -7.5 | -5.2 - | -6.7 - | -5.1 - | -6.4 - | -5.3 - -5.5 -
I -5.8{ 7.8 | -4.6 - | -5.1 - | -4.7 - | -4.9 - | -a2 ] .- -4.2| -
I ~19.8|-21.9 {-11.2 |-11.9 | -16.9 [-18.5 [~11.1 {-12.0 {-14.6 |-16.7 |-11.5 {-12.2 | -11.7|-12.4
K -7.6{-10.2 | -5.0 - -6.4 - | «5.0 - -6.8 - -5.5 - -5.4 -

Cont'ds eeee

66



TABLE 5.4-2(Cont'qd)

System
Channel 7/6 8/2 8/4 8/6

: Linear
=4 =8 - m=4 m= m=8 m=4 m=8 Egqualizer

A -4.0| -4.0| -4.0| -4.0 | -4.0| -4.0 | -4.0 -4.0

B -6.9| -6.4| =-5.1] -5.1.| -5.7| =-5.8 | -6.5 *

o -4.7 - -4.5 | -4.4 - -4.6 - *

D -8.,0| -9.1{ -6.8| -6.8 | -=7.8] ~7.9 | -9.3 *
E -4.6 - -4.4 | -4.5 - -4.7 - -4.2
F -5.1 - -4.7| -4.8 - ~5.4 - -7.5

G -4.6 - -4.4 | -4.2 - -4.5 - *
H -6.2 - -5.2 | =5.2 - -5.8 - -7.5
I -4.4 1 = | -4.6| -4,5 - | 49| - -12.1
J -12.9 [-15.5| -11.3 {-11.1 |-12.1{ ~-12.8 |{=15.9 ~24:6

K -6.2 - -5.5 | =5.0 - -5.9 - *

aot



Noise level for an average eaement error probability of 7 in 103
erroxr probability of 4 in 10" with binary signal-elements and no distortion.

TABLE 5.4-3

expressed in @B relative to its level for an

(Results obtained by Computer Simulation)

Groups of four 8-level elements.

'Systém
Channel | 1 3 4 6 7/2 7/4 7/6 8/2 8/4 8/6 Linear
Equalizer
A ~8.5 -8.5 -8.5 -8.5 -8.5 -§.5 -8.5 ~8.5 -8.5 -8.5 -8.5
B -11.8 | -11.3 -9.5 | -11.2 -9.4 -9.3 | -10.8 -9.5 -9.4 | -10.9 *
D ~16.9 -15.8 ~12.1 =13.3 ~12.,0 -11.9 =-13.1 -12.0 “12;2 =13.0 *
T -23.8 -22.4 —17.5 =19.7 -17.6 -17.4 =12.0 -17.5 -17.6 ~-19.2 -29.1

Lol



humber of taps required for the linear transversal equalizer

TABLE 5,4-4

for different channels.

- No. of taps required for -
Channel, the linear equalizer

A 1

B *

C *

D *

E 30

P 30

G *

H 30

I 65

J 46

X *
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TARLE 5.4-5

163

Noise levels in System 1 expressed in dB relative to the noise
level for an error probability of 4 in 10~ with binary signal-

elements and no distortion.

{(Results obtained theoretically)

binary signals 4-level signals 8~level signals
chamnel p=4x10° p=6x 103 p=7x10>
m=4 m=8 =4 m=8 =4
A 0.0 0.0 -3.98 -3.98 -8.45
B -3.é -6.48 -7.78 ~10.46 -12.25
C -1.25 ~3.80 -5.23 -7.78 - 9.7
D -8.14 |[-14.9 ~12,12 -18.88 -16.59
E -0.12 -0.25 -4.1 -4.23 -8.57
F -2.25 | -3.26 -6.23 -7.24 -10.70
G -1.127 | ~3.07 -5.11 -7.05 -9,58
H -3,35 ~3.49 -7.32 -7.47 ~11.80
I -2.02 -4.10 -6.00 -8.08 -10.47 ‘
J ~14.78 |-18.35 ~18.78 -22.33 -23.25
X -3.77 | -5.17 -7.75 “9.15 -12.22
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5.5 Comparison of Detection Processes

- Thé performances of various deﬁection processes described in
Section 4, in the presence of additive white Gaussian noise, were
compared by means of a simple model assuming only two elements in a
group. Computer simulation results of Tables5.4-1 to 5.4-3 suggest
that the theory developed for the simple case can be extended, much as
would be'expected, to the higher values of m. The detection processes
‘of Systems 1 to 6 for both binary and multi-level signal-elements,
listed in the order of their tolerance to additive Gaussian noise and
starting with the best, are 2,4,6,5,3 and 1. The transversal linear
equalizer achieves the lowest tolerance to noise. Where there is severe
attenuation distortion, System 2 achieves a considerable advantage in
tolerance to noise over both System 1 and the linear equalizer. The
advantage gained by System 2 over System 1 increases with the vaiue of
m and in the case of channel Jbis as much as 13 dB for eight binary
signal—-elements in a group. For pure phase distortion, all systems

tested achieve the same tolerance to noise as that for no distortion
(channel A). The performance‘of System 4 is very close to that of
System 2, and System 6 has a tolerance to noisé typically within
about 3 dB of that of System 2,

For groups of eight binary signal-elements, transmitted over
channel D or J, System 6 gains an appreciable advantage over
System 3 in tolerance to noise, but this advantage tends to be somewhat
smaller for smaller group sizes or for a greater number of signal
levels. System 3 gains an appreciable advantage over System 1, when
binary signal-elements are transmitted over channel B, D or J, but the
advantage is steadily reduced as the number of signal levels increases

as has been explained in Section 4.5. System 6 gains a somewhat

smaller advantage over System 5, with binary signal-elements, than does
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System 3 over System 1. Sjstem 5 has not been tested with multi-
level elements, its performance now becoming quite close to that of
System 6. The two systems, of course, resemble each other more
closely as the number of signal levels increases. System 1 sometimes
achieves an advantage of more than 6 dB over the linear equalizer, even
though both are processes of linear equalization. The reason for this
is that System 1 makes use of the prior knowledge of the g zero-level
signal-elements between adjacent groups of m elements, whereas the
linear equalizer uses no priér knowledge of the signal-element values.
When m >> g, the operation effectively performed on the
received signal by System 1 becomes much.the same as that of the linear
equalizer for the same signal. Furthermore, the tolerance to noise of
a linear transversal equalizer, when correctly designed for'the received
signal, is not now much affected by whether the signal-elements are
transmitted in orthogonal groups or in an uninterrupted stream, so
that System 1 has approximately the same tolerance to noise as the
linear equalizer for thé corresponding uninterrupted seriél signal.
Within the limits of the accuracy of computer simulation
results (Table 5.3-1), the tolerance to noise of System 1, obtained
theoretically, in Table 5.4-5, is in every case, either less than or
equal to that given in Tables 5.4-1 to 5.4-3. This is so because
the theoretical results are obtained by calculating the minimum
distances to the decision boundary (Section 3.5) and therfore provide
- the lower bounds to the toleraﬁce of System 1 to additive white
Gaussian noise, for a given average element error probability.
Correct operation, at the signal—element rate assumed here,
cannot be obtained over channels B,C,D,G and K with a simple linear
transversal equalizer, whereas correct operation is, in every case,

achieved by System 1. This demonstrates the one important advantage
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of System 1 over a simple linear equalizer, which is that-System 1
will operate correctly over any time~invariant or slowly-time-varying
linear baseband chanﬁel whose impulse response has for practical
purposes a finite duration.32’35

Table 5.5~1 shows the approximate number of sequential
operations required for each of the different detection processes,
vhen orthogonal groups of eight 4-level signal-elements are trans-—
mitted over channel J. Apart from System 2, the number of sequential
operations in Table 5.5-1 fof various detection processes,is
arrived at by considering one sequential operation to be equivalent
to the estimation or change in e&imation of one of the m{xi} in
System 1, This operation is of similar complexity and duration to
the mensurement of |R - §Y| for a particular § in System 2. With
the exception of System 2, cach detection process requires more
sequential operations'with channel J than with any of the other
channels tested. )

The detection processes of Systems 1 to 6, in order bf the number
of sequential operations normally required and starting with the smallest
number, are 3,1,6,5,4 and 2. It is assumed here that m > 12 for
binary signal-elements, and m > 8 for 4 or 8-level eleﬁents. The
detection processes ipoI?esimilar degrees of complexity, Systems 1
and 3 being the least complex and System 4 the most complex.

It was pointed out in Section 4.5 that the detection processes
of Systems 1 ~ 6 are not suitahie for use with multi-level signal-
‘elements, since they either give. a poor tolerance to noise or else
require larger numbers of sequential operations. The fesﬁlts of
computer simulation tests, given in Tables 5.4-1 to 5.4-3 confirm this, at
least for those cases which have been tested. The tolerance of

System 3 to additive Gaussian noise decredses steadily as the number



Approximate number of sequential operations required for the

detection of a group of eight 4~level elements transmitted over

TABLE 5.5-1

Channel J

System Number of Operations
1l 1,600
2 66,000
3 1,200
4 4,900
5. 2,400
6 1,800
772 7,800
7/4 3,200
7/6 3,200
8/2 1,500
8/4 2,400
B/6 2,000
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of signal-element levels is increased from 2 to 8, and this was expected

to happen since the‘constraint of Egn. (4.2-1) becomess less and less
effective with the increase in the number of possible element values.

Also, because of the poorer performance of System 3 with multi-level signals,
the tolerance of System 6 to additive white Gaussian noise decreases

with the number of levels as can he seen from Tables 5.4-1 to 5.4-3,

The tolerance to noise of System 4, on the other hand, remains close

to that of System 2. The number of sequential operaticns required for
System 4 are now very much larger than those required for either

System 3 or System 6.

The technique for the detection of multi-level signal-elements
involving an initial search for the two or three most likely wvalues of an
elemeﬁt, described in Section 4.5, seem to work well for higher
values of m. As expected, Systems 7/2, 7/4, 8/2 and 8/4 achieve a tolerance
to noise similar to that of System 2. Systems 7/6 and 8/6 have a slightly
inferior performance, typically within about 3 dB of that of Systems 7/2
and 7/4. There does not appear to be any significant difference between
the performance of any one of the Systems 8/2, 8/4 and 8/6 and the
corresponding System 7/2, 7/4 or 7/6, although the latter system is, in
.each case, slightly less comélex than the former, and Systems 7/2 and
- 7/4 require fewer sequential operations in a detection process than do
Systems 8/2 and 8/4,;respectively. Again, for larger values of m,

Systems 8/2 and 8/4 require far fewer sequential operations than
Systems é and 4, respectively.

Although System 6 does not achiewve quite as good a performance as
does System 4, either when used on its own for binary signals or else
when used as System 7/6 or 8/6 for multi-level signals, it is a simpler
system and usually requires fewer segquential operations in a detection
process., It appears therefore that of the various systems tested the most

cost-effective for binary and multi-level signals are Systems 6 and 7/6,
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respectively. Where the best available performance is required,
without an excessive number of sequential operations in a detection
process, the preferred systems for binary and multi-level signals are

Systems 4 and 7/4,respectively.

5.6 Comparison of Signals arranged in Separate Groups with the

Corresponding Uninterrupted Signals

In Section 5.4, the performance of the iinear transversal
equalizer in the preéence of additive white Gaussian noise, is
measured for transmitted signal-elements arranged in separate groups.
Since the linear equalizer does not make use of the prior knowledge of
the zero-level elements separating édjacent groups of signal-elements,
its performance in noise is considerably reduced as compared with that
of System 1, particularly for éevere signal distortions.

Consider now the case of the synchronous serial base-band data-
transmission system of Section 2.1 where the signal-elements are -
transmitted in a continuous (uninterrupted) serial streaﬁ, and let the
baée-band channel be equalized by a linear transversal equalizer. If
now System 1 is to replace the linear egualizer in the arrangement
just considered, then the continuous transmission of signal-elements mﬁst
be modified by inserting the required number of g zero-level elements
at the appropriate intervals to give the separate groups of m transmitted
elements. If the signal-element rate remains unchanged, the information
rate is n6W'm/m+g times that of the original system, which means that
more time is needed to transmit a given message. Alternatively, if
System 1 is replaced by an arrangement where the signal-elements are
transmitted in a continuous (uninterrupted) stream, and where the
channel is equalized by a linear equalizer, without now changing the
information rate, then clearly the signal-elément rate of the latter

system is m/m+g times that of System 1, This must normally result in
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less intersymbol interferénce in the sample valuesof the received
signal. It follows thét for a given channel and information rate, the
performance of the linear transversal equalizer in the-presence of
additive white Gaussian noise, will, in general, be better than that
given in Tables 5.4-1 to 5.4-3., Thus, the comparison of the
performance of the linear equalizer with that of System 1, carried
out in Section 5.4, is not a true comparisom. Instead, the tolerance
to noise of the linear equalizer should be determined by assuming
a continuous stream of transmitted signal—eiements with the same
information rate as that in the corresponding arrangement of System 1.
In this section an attempt is ﬁade to compare the performances
of Systems using orthogonal groups of signal-elements {Section 4.0)
with those of linear and non-linear egualizers (Section 2.0) where
the signal-elements are transmitted in a continuous (uninterrupted)
serial stream, the information rate in the two cases being the same.
The comparison is here made for binary signal-elements having
possible values +1 and -1. ¥For systems using orthogonal groups, it
is assumed that there are eight signal-elements in a group, and that
every two adjacent transmitted groups are separated by four signal-
elements get to zero. This ﬁeans_that m/m+g = 2/3 which represents
an efficiency of 662 ) for the systems.
Theltransmitter andlreceiver filters are assumed to have the
resultant transfer function H(f) given by Egn. (2.1-3)
and the resultant impulse response h(t) given by Egn. (2.1-7) and
shown in Fig. 2.1-1, fThe different channels studied are those with
the values of the sampled impulse response given in Table 5.2~1.
It is furthermore assumed that thé transmission path itself can be

represented by the model shown in Fig., 5.6-1., This assumes simple
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multipath transmission where all delays are integer multiples of T
seconds. Since the sampled impulse response of the transmitter and

receiver filters in cascade, in System 1, is simply
1 0 ... 0O {5.6-1)

it can be seen that the sampled impuise response of the baseband

channel in Fig. 1l.1-1 is now given by

5.6-2
YU Y1 Y2 Y3 Y4 ( )

where v , v , v . ¥ and y are the tap gains in Figqg. 5.6—1;

0 1 2 3 4 ‘
Although, the model of the transmission path is quite arbitrary,
it should enable an interesting comparison to be made between the
two systems, on a rather more realistic basis than that used in Section
5.4,

Consider uow the data-transmission system of Fig. 1.1-1,

described in Sections 2.1 and 3.1. Since adjacent groups of m signal-
elements, at the transmitter, are separated by g zero-level elements
which carry no information, (mfg)T seconds are required to transmit the
information carried by the m signal-elements of a grcup, where 1/T
is the element transmission rate. If orthogonal groups of signal-
elements are replaced by a continuous stream of elements, then, for the
same information rate, m signal-elements must now be transmitted, with
no gaps, over (mtg)lT seconds. This means that the element
transmission rate in the eéuiQﬁlént continuous transmission, is reduced

from 1/T to 1/T" where
7t = (Zdyq, {5.6-3)

Thus the signal-elements in the arrangement using continucus

transmission, are now transmitted regularly (with no gaps) at intervals
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of T' seconds and the received signal, at the output of the receiver
filter, is.sampled at the time instants t = iT', for all integers i.
The teansmitter an@ receiver filters assumed for System‘l have an
unneﬁessarily wide bandwidth at the new sampling rate of 1/T' and
introduce some intersymbol interference, Assume therefore that the-

transmitter and receiver filters in cascade have the impulse response

2
o sinm E%- 1 gin w (%% + 1) 1 sin m (%% - 1)
h'(t}y = + = + - " (5.6-4)
2 2
2t 2t 2t
T O TT(——T. + 1) . . “(-'i‘_'. - 1}

This is shown in Fig. 5.6-2, and is clearly the equivalent of h(t) at the
new sampling rate.

It is important to note that in comﬁaring System 1 with the other
system, the same transmission path, as shown in Fig. 5.6~1, is
.assumed for the two systems. Thus, since the sampling rates are different
in the two systems and since each system uses the transmitter and
receiver filters appropriate to its sampling ra?e, the sampled impulse
response of the baseband channel correspondiﬁg té‘;ny giveﬁ transmission
path, is different for the two systems. 1In the case of the “orthogonal"
system, using separate groups of signal-elements, the sampled impulse
response of the baseband channel is thé same as the sampled impulse
' response of the transmission path. Since the sampled impulse response
of the baseband channel has here, in every case, been normalized to give
a channel vector of unit length, it follows that the samplea impulse
response and therefore also the impulse response, assumed for each of
the different transmission paths, has also been normalized. In the
case of the continuous system, using an‘uninterrupted stream of
transmitted signal-elements at an element rate of 1/T' bauds, the sampled

impulse response of the baseband channel does not in general give a

channel vector of unit length. Furthermore, since the transmission
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~2T° —3/2T T’ -3T ‘D i’ T’

Figure 5.6-2

Impulse response H(t) of the transmitter and receiver

filters in cascade.

21’
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path has the impulse response yg + y16(t-T) + y»8(L-2T) + y38(t—3T)
+ yqﬁ(t-4T), it is of no value, and indeed incorrect, to consider
its sampled impuise response at a sampling rate of 1/T'.

In crder to compare the "orthogonal" system, using separate
grouﬁs of transmitted signal-elements, with the 'continucus' system,
using an uninterruptea stream of transmitted signal-elements, not
~only is the same transmission path used in each comparisoh but this
has an impulse response which is the same as the sampled impulge
response of the corresponding baseband channel for the orthogonal
system (Table 5.6-1). The impulse response y'(t) of the corresponding
baseband channel for the continuous system 15 determined by convolving
the impulse response h'(t)} of the transmitter and receiver filters,
as shdwn in Fig. 5.6-2, with the impulse response of the transmission
path which is yp8(t) + y38(£=T) + y,8{£=2T) + y36(£-31) + yy& (£-47T).
The sampled impulse response o *this baseband channel is obtained by
sampling y'(t) at intervals of T' seconds, the sampling instants
being phased so that one of these coincides with the positive peak of
y'(t). The results of some unpublished work on.equalizers, carried out
at Loughborough University of Technology, suggest that the phase
selected here for the sampling instants is the one most likely to
maximize the tolerance to additive white Gaussian noise. The
continuous system is therefore tested under the conditions most
favourable to this system. Table 5.6-2 shows the sampled impulse responses
of the different baseband channels, in the case oflthe continous
system, .In order to simplify the computations of the sampled impulse
responses, it has been assumed that the h'{t) is not in fact as shown
in Fig. 5.6-2 but is instead the corresponding raised cosine as shown
in Fig. 5.6-3., This approximates quite clogely to h'(t) over the timé
interval -~ T' to T' but is zero outside this time interval. The

approximation does not introduce any significant errors.



Sampled impulse responses of different baseband channels in the

TABLE 5.6-1

orthogenal system

Trans- Sampled impulse response of baseband -

mission ' channel :

Path
A (1.0 0 0 0 0 )
B) 2.0% (1.0 1.0 0 0 .0 )
B, 2.0"5_ ( 1.0 -1.0 0 0 0 )
q 2.0t (1.0 0.0 1.0 0 0 )
Cy 2.0t (1.0 0.0 -1.0 0 ‘0 )
Dy 150 (o5 1.0 0.5 0 0 )
D, 1.57F (w05 1.0 -0.5 0 0 )
By 1.5 (o.s 1.0 -0.5 0 0 )
E, 1.5 (-o.s 1.0 0.5 0 0 )
Fy 1578 (1.0 0.5 0.5 0 0 )
Fy 1.5t (1o -0.5 0.5 0 0 )
Gy 1.5 (1.0 0.5 -0.5 0 0 )
G, 1.5 (1.0 0.5 0.5 0 0 )
H; 5t (1.0 0.667  0.235 0 0 )
Hy 1.5 (1.0 -0.667  0.235 O 0 )
I, st (1.0 0.667 -0.235 0 0 )
1, .5 (1.0 -0.667 -0.235 O 0 )
J; 2.00  (o0.235 0.667 1.0 0.667  0.235. )
Jo 2.0 ¢ © (0.235 =-0.667 1.0 -0.667  0.235) )
xp | 2.0} (-0.235  0.667 1.0 0.667 -0.235 )
K, 2.0 % (-0,235 -0.667 1.0 -0.667 -0.235 )

The Transmission path ¥ has a sampled impulse response, at a
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sampling rate of 1/T given by the baseband channel X in Table 5.2~1.



Sampled impulse responses of different baseband channels in the

TABLE 5.6-2

continuous system

Trans- Sampled impulse response of baseband
mission channel
Path
A 1.0 0 0 0 0
b: 3 0.142 1.075 0.142 0 0
Bo- 0.562 -0.562 0 6 0
¢ 0.706 0.538  0.188 0 0
Co 0.706 -0.538 -0.184 0 0
D 0.302 1.03 0.302 0 0
ﬁz ~0.302 0.62 ~-0.302 0 0
Ey 0.147 g.22 - ~0.269° 0 0
o -0.269 0.92 0.i47 o 0
Fq 0.09 0.94 0.553 0.033 0
Fy 0.73 ~0.049 0.130 0 0
G 0.09 0.94 -0.212 0.033 0
Gy 0.73 -0.55 ~-0.130 0 0
Hj 0.135 1.03 0.375 0 0
Hy 0.71 -0.325 0.09 0 0
I, 0.135 1.03 0.033 0 0
I, 0.71 -0.545 0.082 0 0
J] 0.043 0.48 0.97 0.48 0.043
Js 0.043 ~0.205 0.45 -0.205 0.043
K; -0.043 0.234 0.97 0.234 -0.043
):0) ~-0.043 -0.45 0.45 -0.45 ~0.043

The transmission path X has a sampled impulse respohse, at a
gampling rate of 1/T given by the baseband channel X in Table 5.2-1.
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Figure 5.6-3

Approximate impulse response of the transmitter and

receiver filters in cascade.
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For the transmission paths Dy, Dy, J; and Jy, Figs. 5.6-4 to 5.6-7
show the values of the impulse response of the baseband channel in the
case of the continuous system.

Table 5.6-3 shows the noise levels of the additive white Gaussian
noise.required for an average element error probability of 4 x 10-3, in
the case of the continﬁous system where the baseband channel is equalized by
the appropriate linear or non-linear equalizer. The noise level is here
quofed in dB relative to ité value when binary signal-elements are
transmitted over channel A with an error probability of 4 x 10-3. The
number of taps required in each of the egualizers is also given in the
table. In the case of the non-tinear equalizer, the number of faps
refers to the linear filter oniy. Where * is marked in the table,
the channel cannot be equalized by the linear transversal equalizer.

-The results in Table 6.6-3 are obtained thecoretically from Sections

2.3 and 2.4. Table 5.6-4 shows the noise level in the case of Systems
l, 2 and 6 (Section 5.4) for groups of eight binary signal-elements, and
© an er¥or probabilify of 4 x 10-?, and is expressed in dB relative to %ts
corresponding value for the linear and the non-linear equalizers.

Table 5.6-3 shows that the performance‘of the non-linear equalizer
ig, in every case, better than that of the 1inear egqualizer. Fdr
 severe signal distortions, the non-linear equalizer gain§ a considerable
advantage in tolerance to noise, over the linear equalizer; The
reason fof this is that the non-linear equalizer makes use of the
prior knowledge of the signal-element values in cancelling the intersymbol
interference of a detected signal-élement, from the sample values of the
received signal as mentioned in Section 2.5. The baseband‘channels
corresponding to the transmission paths By, Cp and K; cannot be

equalized by the linear transversal equalizer since the z-transforms of

the corresponding sampled impulse responses, have zeros on the unit circle.
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The impulse response of the baseband channel in the case of the
continuous system, where the transmission path has an impulse

response
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Figure 5.6=5

The impulse response of the baseband channel in the case of the
continuous system, where the transmission path has an impulse

response

1.5‘%"{-0. S&(L)+8(t-T)-0.58(t~2T) }
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The impﬁlsa response of the baseband channel in the case of the continuous system,
where the transmission path has an impulse response
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The impulse response of the baseband channel in the case of the continuous system,

where the transmission path has an impulse response
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TABLE 5,.6-3
Noise level for an error probability of 4 x 10_3, expressed in 4B
relative to its value when a binary signal is transmitted over
channel A with the same error probability.

TFans— . Linear Equalizer Non-linear Equalizer

mission

path Number of Noise Level Number of Noise Level

Tap Gains . Tap Gains

A 1 0.0 1 0.0
By 9 +0.21 7 +0.45
By * L 1 -4.96
Q 16 -5.3 3 ~3.0
C, * * 2 ~3.0
D | 17 . =2.47 13 -0.6
Dy 56 l-23.54 60 -8,36"
Ey 13 ~0.4 9 -6.34
Ep 13 -0.4 10 . ~0.34
2] 22 -3.5 8 -1.06
Fo 12 -2.9 - 19 -2.71
G 10 -0.43 8 034
Go 65 -10.76 62 - =2.75
Hp 16 -1.44 .11 -0.18
Hp 1o -3.84 2 -2,96
I ' 7 +0.1 8 +0.21
I, ' 19 -5.82 2 -2.96
Ji . 30 -11.76” 21 -3.63
Jo 21 ~13.04 17 -9.14
K :- 21 =-2.45 17 -0.9
103 * * 10 -6.05




TABLE 5.6-4

Noise level in the case of Systems 1, 2 and 6 with groups of

eight binary signal-elements and an error probability of

4 x 10

the correspondlng binary continuous system with an equalize
at the receiver and an element error probability of 4 x 10

 expressed in dB relative to its value in the case of

3
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Trans- Noise level relative to . Noise level relative to
mission that of the linear equalizer that of the non-linear
path equalizer
System Syétem System . System System Sysfem
1 2 6 i 2 (53
A 0.0 0.0 0.0 0.0 0.0 0.0
By -6.21 ~-1.41 -1.51 ~6.45 -1.65 -1.75
By * * * -1.04 +3.76 +3.66
63 +2.1 +4.9 +4.7 -0.2 +2.6 +2.4
C& * * * -0.2 +2.6 +2.4
Dy -11.23 +0,07 -0.33 -13.1 -1.8 -2.2
Ié +9.84 +21.14 +20.74 ~5.34 +5.96 +5.56
E; +0.1 +0.4 +0.4 4+0.04 +0.34 +0.34
Ep +0.1 +0.4 +0.4 +0.04 +0.34 +0.34
M +0.2 +3.0 +2.5 -2.24 +0.56 +0.06
| Fo 4 -0.4 +2.4 +1.9 -0.59 +2.21 +1.71
G] -2.,47 +0.43 +0.03 -2.56 +0.34 ~0.06
G +7.86 +10.7§ +10.36 -0.15 +2.75 +2.35
H -1.76 +0.§4 +0.l§ -3.02 -0.52 ~1.12
H, +0.64 +3.14 +2.54 ~0.24 +2.26, | +1.66
I -3.8 ~0.1 -0.7 -3.91 -0.21 -0.81
Iop +2.12 +5.82 +5.22 ~-0.74 +2.96 +2.36
Jy ~-5.84 +7.36 +4.36 -13.97 -0.77 -3.77
Jp -4.56 +8.64 +5.64 ~8.46 +4.74 +1.74
) -2.45 +1.25 | +0.85 | -4.0 -0.3 0.7
Xy * * * ;1.15 +4.85 +4,45
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Table 5.6-5 shows the transmission paths for which the
performanéé of System 1 is either better thaﬁ, worse than or
approximately the'same as that of the linear equalizer. The
performances of two systems are here considered to be approximately
the séme if they do not differ from each other by more than one dB.
It can be seen from Téble 5.6~5 that in the majority of the
transmission paths tested, the performance of the linear equalizer
is either better than or approximately the same as that of System 1.
This shows that for a given information rate, the continuous system
with a linear equalizer at the receiver gives, in general, a better
tolerance to additive white Gaussian noise than does System 1 qf the -
corresponding arrangement with signals transmitted in separate
groups. This is so because the sampled impulse response of the
baseband channel in the case of the continuous system generally exhibits
a lower level of intersymbol interference than that in the case of the

interrupted system, essentially because of the lower element rate

over the given transmission path. Except in the case of the transmission
-path By where the linear equalizef gains an advantaqehof 1.41 dB and 1.51 4B
in tolerance to noise over Systems 2 and 6, respectively, the performance
of Systems 2 and 6 in every case, is either better than or approximately
" equal to that of the linear equalizer,

Table 5.6-6 shows the transmission paths for which the
performance of System 2 is eifher better than, worse than or
approximately the same as that of the non-linear equalizer. The
performéncesof two systems are here considered to be the same if
they do not differ from each other by more than one.dB. For all the
transmission paths tested except in the case of the.transmission paths
B; and Dj, the performance of System 2 is either better than or
approximately equal to that of the non-linear equalizer. For the

transmission paths B; and D; the non-linear equalizer gains an



Table showing the transmission paths for which the performance of
System 1 is either better than, worse than or approximately the

TABLE 5.6-5

same as that of the linear egualizer

K1

Better Worse Approximately the same

cl‘ B E;
Dy Dy E2
GZ‘ G Fi
Is H) Fa
- I Ho
- Jq -

- Jy -
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TABRLE 5.6-6

v Table showing the transmission paths for which the

performance of System 2 is either better than, worse than
or approximately the same as that of the non-linear equalizer

Better Worse Approximatel?-thé saﬁé
By By Ey
Cy |35 E2
Cz - F1
Do - G
Fa - H)
Gz - I
Hy - J1
Is - . Ky
Js - -
Ko - -

128



129

advantage of 1.65 dB and 1.8 dB, respetively, in tolerance to noise
over Systeﬁ 2. It may be pointed out that the tolerance to noise
of the non-linear equalizer is here calculated neglecting the error
extension effects (Section 2.4), and its actual value is slightly
less (a fraction of one dB) than that given in Table 5.6-3. It can
be seen from Tables 5.6-6, 5.6-4 and 5.6-~1 that in the cases where
System 2 gains an advantage in tolerance to noise oﬁer the non-
linear equalizer, one or more of the following conditions are
fulfilled -
1. The sampled impulse response of the baseband channel
in the case of the continuous system, is such that
it cannot be equalized by a linear transversal
equalizer (channels corresponding to the transmission
paths B, C; and Kjp).
2. System 1 has a better tolerance to noise than the
linear transversal equalizer {(channels corresponding -
to the transmission paths C;, Dy, Gy and I,).

3. The sampled impulse response of the transmission path
is such that if Ys is the sample value having the
maximum amplitude then one or both of the sample
wvalues Yi1 and yi+l have signs opposite to that of
Yi(transmission.paths Bz; Dy, Fo, Go, Io, Jp, and Kp).

In the cases where the distortion introduced by the transmission
path is nearly pure phase distortion (transmission paths E; and Ej),
the performances of System 2 and the non-linear equalizer are approx-
imately the same.

Since g/m is probably somewhat larger here than would be used
in a practical system, the results of the comparisen carried out in

this section, investirate that, in practice, a useful advantage in



130

tolerance to noise should be obtained@ by System 2 over both linear and
non-linear equalizers, where the latter are used with uninterrupted
signal but the same information rate.

The comparison of the tolerancesto additive white Gaussian
noise of systems using orthogonai groups with those using the
uninterrupted transmission, carried out in this section, is somewhat
arbitrary. Thig is so because the comparisop has been made for one
particular transfer function of the transmitfer and receiver filters.
The results do not épply for filter pairs having transfer functions
other than that assumed here. Also, the choice of the phase of the
sampling instants to obtain the sampled impulse response of the base-
band channel for the case of continuous transmission, is’arbitrary and
is such that, in general, it helps to improve the performance of the
1iﬁear and non-linear equalize&s. If the samppling instants are
difféerent than what have been assumed here, then the performance of
the two equalizers will, most probably, be lower than that given in -

Table 5.6-3.
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"6.0. LINEAR PROCESSING OF THE SIGNAL AT THE TRANSMITTER

6.1 Process of Linear Equalization at the Transmitter

In the arrangement studied in this section, the groups of m
transmitted signal-elements are processed at the transmitter so that
no signal processing is required at the receiver, other than the
comparissn of the sampled values of the received group of m signal-
.elements, with the appropriate thresholds. The processing of a group
of m signal-elements is here achieved by placing an m x n linear network
F at the transmitter of the serial synchronous baseband data-transmission
system discussed in Sections 2.1 and 3.1, which is now modified to the
arrangement of Fig. 6.1-1. The m element values {si} of a group of
signal-elements are fed to the m input terminals of the network F, which
trénsforms these values into the corresponding n values given by the
components of the n—component row-vector SF, where F is an mxn matrix of
rank m defining the linear network. The n output values from the network
are sampled in sequence at regular intervals of T seconds, to give the
corresponding sequence of n impulses which are fed to the baseband channel.
Immediately following the transmission of a group of n impulses, the next
set of m elements values are fed to the input of the network F; to give the
corresponding set of n output values, which are again sampled in sequence.
The process continues in this way and is such that a continuous sequence
of regularly spaced impulses is fed to the baseband channgl. As before,
n=m+g.

Let

B = SF (6.1-1)

be the n-component row-vector whose components {bi} are the n values at
the n outputs of the m x n network F, when the m values {Si} given by the

components of S are fed to the m inputs of F. The n values {bi} at the
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* -outputs of the linear network F are fed, at intervals of T seconds in

the form of the corresponding impulses, to the baseband channel which
includes the transmitter filfer, transmission path and the receiver filter.
At the input to the receiver filter, white Gaussian noise with zero mean
andla two sided power spectral density of 02,’is added to the received
signal. At the oﬁtput of the receiver filter, the received signal is
sampled at the time instants t = iT.

It is assumed thaﬁ the g'+1 sample values of the sampled impulse
response of the‘channel,

Yo Ty Yy e Yg (6.1-2)
are known at the transmitter and the m signal-elements of a group are
statistically independent and egually likely to have any of the possible
element values. For the sake of convenience, the delay in transmission
other than that involved in the time dispersion of the transmitted signal,
is ignored.

Consider just a single group of m signal-elements whose values are
given by the m components of the row-vector S, at the input to the linear
network F in Fig. 6.1-1. The m element values are fed simultaneously to
the linear network F over a period of nT seconds, so that over this period
the n output terminals of the network F hold the n components of the vector
B = 8F. The output signals from the terminals of F are sampled in order, at

n
regular intervals of T seconds, to give a sequence of impulses Z:biS'(t - iT)

i=1
fed to the transmitter filter. It is for convenience assumed here that the
first of the n impulses is transmitted at time t = T,
The sample values of the received signal, corresponding to a single
group of m signal-elements, will normally be a sequence of (n+g) non—zero

sample values preceded and followed by zero sample values. The sequence of

these (n+g) sample values in the absence of noise is
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n : '

v, = ‘Z: bj yi-j s 1=1,2,..., ntg (6.1-3)

1=1 ]
vhere y;= o for i<o and i> g. Let C be the n x (n+g) matrix whose ith
row is .
i-1 g+l n-i
| 3 f 1 ] . -
Ci IR yg O ««x O (6.1-4)

From Eqn. (6.1-3)
V = BC ' : (6.1-5)

where V = Vi Vo ees v is the (n+g)- component row-vector whose components

n+g
{vi} are the sample values of the received signal corresponding to a group
of m signal-elements,in the absence of noise (Eqn. (6.1-3)), and B is the

n-component row—-vector in Eqn. (6.1-1). The central m components of the

vector . V,

vg+l vg+2 e vg+m
are given by BDT where D is the m x n matrix of rank m, whose ith row is

i-1 g+l m-i
- r Y T I | 1 -

Di O +es O yg Yg—l"' ¥, 0 v O ‘6.1 6) ]
Thus,

BDT = v v . v (6.1-7)

gtl Vege2 vt Veum . y

Assume now that successive groups of signal-elements are transmitted
in the arrangement of Fig. 6.1-1, and suppose that one of these groups is
that just considered, where the first transmitted impulse of the group
occurs at time T seconds. The corresponding n+g received samples which are
the n+g components of V and are dependent on the m t:ansmitted elements of
the group, are shown in Fig. 6.1-2. Each sample value is here, for
simplicity, shown as a positive impulse. It can be seen that the first g
components of V are dependent in part on the precéding received group of m
signal-elements, and the last g components of V are dependent in part on
the following received group of m elements. Thus there is intersymbol
interference from adjacent received groups of elements in both the first and
last g components of V. However, the central m components of V, which are

f
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cavy V » depend only on the corresponding transmitted

- vg+1’ vg+2 : g+m

group of m elements, and can therefore be used for the detecticn of these
elements with no intersymbol interference from adjacent groups. The first
of the central m components of V is Vg+1

received signal at time (g+l) T. The last of the central m components of V

and is the sample value of the

18 vg+m and is the sample value of the received signal at time (g+m)T. From

Eqn. (6.1-7), the m sample values of the received signal which depend only
on the corresponding m signal - elements of a group, are, in the absence
of noise, the components of the ﬁ—component row-vector |

BD® o | | (6.1-8)
where B = SF is an n-cdmponent row—vector and the.m {si} are the values of
the m signal—elements.of the group at the input to the network F, and are
of course the components of the vector S,

Suppose now that the linear network F at the transmitter in Fig.
6.1-1, is such that, corresponding to a group of m signal*elements at the
transmitter, the m sample values of the received signal in Eqn. (6.1-8),
in the absence of additive noise,are

B! = s (6.1-9)
When noise is present, the m sample values are the m components of the
vector

R = BDT + W (6.1-10)
where W 18 an m—component row-vector whose components are sample values of
statistically independent Gaussian random variables with zero mean and
variance 02. Thus the detector in Fig. 6.1~1, can now de£ect the element
values {éi} of the signal-elements by comparing the corresponding{fi} with
the appropriate thresholds. Each received group of m signal-elements is

detected from the corresponding m sample values, the remaining g sample

values being ignored at the detector, and, under these conditions, the
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. received groups of m signal—elements are orthogonal at the detector input.

‘To maximize the tolerance to noise at the detector input, the n {bi}
should be selected such tﬁat the total transmitted energy of the n {bi} is
minimized. In other words

T

Bs. = |B|?

(6.1-11)
nust be minimized.for the given vector §. Thus the problem is to find
an m x n linear network T in Fig. 6.1-1, which minimizes the transmitted
element energy énd at the same time satisfies the constraint in Eqn. (6.1-9).
From Eqn. (6.1-9)

BDE =8, for i =1,2, ..., m. : {6.1-12)
Suppose that

[D;/=d for i =1,2, ..., m (6.1-13)
where IDiI is the length of the vector D, (i.e. the distance of the point
Di from the origin in an n-~dimensional vector space). It can be seen frpm

T is the inner product of

Eqn. (6.1-6) that lDil is independent of i. EDi
the vectors B and Di’ éo that from Eqn. (6.1-13) it is d times the value of
the orthogonal projection of B onto the vecto; Di' Thus from Eqn. (6.1—12),
B lies on the hyperplane ((n - 1)-dimensional subspace) which contains the
pqint (Si/d)Di and which is orthogonal to the vector given by this point,

so that the hyperplane is orthogonal to the line joining the origin to
(Si/d)Di° The vectors B and Di are shown in Fig. 6.1-3, for the case vhere
d>1 and s; = 1. The vector B must, therefore, lfe on each of the m
hyperplanes given by Eqn. (6.1-8) and as illustrated in Fig. 6.1-3. Thus,
the required vector B is the point on these m hyperplanesat the minimum

21,52 B is the

distance from the origin. By the Projection Theorem
orthogonal projection of the origin onto the (n-m)-dimensional subspace
formed by the intersection of the m hyperplanes. Thus B is the inter—section

of the m~dimensional subspace spanned by the m {Di} (each of which is
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n-dimensional
vector space

S

Figure 6,1-3

The vectors B and Di for d»! and s; = 1.
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orthogonal to the corresponding hyperplane), with the (n-m)-dimensional
subspace formed by the intersection of the m hyperplanes. Clearly B

can be represented as a linear combination of the m {D;}, so that

B = iz"fl e, D, = ED o (6.1-14)
where E = @18y ¢ 4 .oe . (6.1-15)
From Eqn. (611-9), |
S = BD' = EDDT | (6.1-16)
Thus E = s@op) b (6.1-17)
and ' B = s p (6.1-18)

37580 1. can be seen that if the

(DDT)—ID is an m x n matrix of rank m.
impulses given by the components of the vector B are transmitted over

the given channel, then the corresponding m sample values at the detector
iﬁput, in the absence of noise, are given by the m components of the row-

s

vector

g’ = s(opl)l

T = 8 (6.1~19)
which agrees with Eqn. (6.1-9).

From Eqn. (6.1-1) and (6.1-18), the matrix F representing the
linear network at the transmitter in Fig. 6.1-1, is an m x n matrix of
rank m, given by |

F = (") 1p | (6.1-20)

Thus, under the assumed c¢onditions, the linear network F in
Fig. 6.1-1 and given by Egn. (6.1-20), is such that it maximizes the
tolerance to additive white Gaussian noise in the detection of the m
signal-elements of a received group from the corresponding m sample
values at the input to the detector. The system whiéh employs the optimum

linear processing of groups of m-signal elements at the transmitter, just

described, 1s considered in Section 6.2.
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6.2 System 1L

In System 1L, the linear processing of groups of m signal-

elements, as described in Section 6.1, is used at the transmitter.

The ope:ation of the system éan be explained with the help of

Fig. 6.2-1. Over the appropriate period of nT seconds the values

of the m signal-elements of a group, given by the components of

the vector S; are fed to the m input terminals of the m x n linear
network (DDT)_1D, to give the n values {bi} at the n cutput terminals
of the network. The n {bﬁ- are then sampled in order, at regular
intervals 6f T seconds, and the corresponding impulses are fed to the
input of the baseband channel. The signal-elements of a group, at

the transmitter, are assumed to be k-ievel, and they are statistically
independent and equally likely to have any of the k possible values.
Tﬁe value of each s, at the trénémitter in Fig. 6.2-1, is divided by a
positive scalar quantity £ before“}eeding it to the linear network
oo%) b,

The received signal at the output of the baseband channel is
sampled at regular intervals of T seconds, and the (g+l)th to the (g+m)th
of the (n+g) sample values, dependent on the group of m elements are
stored. Thus the detector ignores the first gT seconds of the received
ﬁaveform correspbnding to each grgup of m elements, and detects the
m {sﬁ- from the m stored sample values by comparing these with the
appropriate thresholds,

Assume that the transmitted signal—elements are either 2-, 4— or
8- level, and that the'possible values of s; are in each case equally
likely and as given in Table 5.2-2, so that the mean square value of S5
is equal to the number of bits per element. Suppose that the m vectors
{Di}, which are the rows of the matrix D, each have unit length, and let
the value of £ in Fig. 6.2-1 be such that the average transmitted energy

per bit is unity. Since there are m k-level signal-elements in a group,
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where k may have the value é, 4 or 8, the vector S has k" possible
values each cofresponding to a different combination of the m k-level
signal-elements., It follows, therfore,that the vector S(DDT)ﬁlD
whose components are the values of the corre5pondiné impulses fed to
the baseband channel, has k" different possible values. If e is the
total energy of the components of all the K" possible values of the
vector S(DDT)—ID, then clearly
L= (e /mi™? | (6.2-1)
The m sample values of the received signal from which the

corresponding m {si} are detected, are the components of the vector

R' = % BDL + W (6.2~2)

where B = S(DDT)FID, and W is an m—component row-vector whose
components are sample values of statistically independent Gaussian
random variables with zero mean and variance 62. In order to make the
values of the signal-elements at the detector inmput, equal to the{si}
at the transmitter, the m sample values which are the components of
the vector R', must first be multiplied by 7 as shown in Fig. 6.2-1.

From Eqn. (6.2-2)

R =?R' BDT+ 2y

“s@ph) lop” + gw

H

= S+ U {(6.2-3)

where U is an m-component row—vector whose components are sample
values of statistically independent Gaussian random variables with
zero mean and variance

2 = g2 | (6.2-4)
Thus, the tolerance to noise of System 1L is‘determined by the value .
of'l]2 given in Eqn. (6.2-4). When there is no signal distortion, that
is, when Yo = 1 and y; = O for all i, i # 0, (DDT)_1 is an identity

matrix. Under these conditions, £ has the value unity, so that
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n? - g? (6.2-5)
Whereas, in System 1L, the m'{si} are fed to the m x n network

(DDT)-lD at the transmitter to give the n‘{bi}, in System 1, the

n {ri} are fed to the n x m network YT(YYT)'-1 at the receiver to give

the m {xi} « Furthermore, both D and Y are m x'n matrices and the ith

row of D is obtained from the i'® row of Y simply by reversing the order

of the non-zero cbmponents Yor Yy tees yg. It is clear therefore that,

just as the Gauss—Siedel process can be used to implement the transfor-—

mation YT(YYT)_I, s0, with the appropriate modifications, it can also be
used for the transformation (DD'I.')_ID.52

Referring to Fig. 6.2-1, the m x n linear network (DDT)_1D
converts the m element values {sij such that, under the assumed
conditions, the corresponding m sample values at the recgiver, have the
minimuﬁ mean square error due to the presence of additive white Gaussian
noise. In this sense they are the best linear estimates of the{si}.
Similarly, when the linear network YT(YYT)_; is used at the receiver,
with_no signal processing at the transmitter, as in System 1, the m
sample values at the output of tHis network have the minimum mean square
error due to the presenbe of additive white Gaussian noise. In this
sense they too are the best linear estimates of the {si}; Clearly,
éystems 1L and 1 are duals of each other in the sense that each provides
the best linear estimate of a received group of m-signal-elements, and
in System 1 all the signal processing is carried out at the receiver

while in System 1L all the signal processing is achieved at the trans-—

mitter.

6.3 ILinear Equalization Process Shared Between the
Transmitter and Receilver

In theﬂarrangement of Fig. 6.3-1, let Fl be an m X m network at

the transmitter of the synchronous serial baseband data-transmission
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system discussed in Sectioné 2.1 and 3.1. The m element values
. {si} of them éignal-elements of a group are fed to the ﬁ input
terminals of the linear network F1 which transforms these values into
the m values given by the m components of the row-vector
SF1 = B (6.3-1)
where F1 is an m x m non-singular matrix defining  the linear network. .
The signals at the ocutput of the network F1 are sampled in order and
at regular intervals of T seconds to give a sequence of m impulses.
which are fed to the input of the baseband channel. The values (areas)
{bi} of the m impulses, just mentioned, correspond to the m components
.of SFl' Adjacent groups of m impulses at tﬁe input to thé baseband
channel, corresponding to adjacent groups of m signal—elements, are
separated by g zero-level iﬁpulses. The m signal-elements of a group
are assumed to be k-level, where k = 2, 4 or 8 and the possible values
of each s; are as givcn‘in Table 5.2-2., The {siy are statistically
independent and equally likely to have any of the k possible values.
The §a1ue of each s, is divided by the positive scalar quantity £ before
feeding it to the network F1 (Fig.6.3-1).

At the input to the recgiver filter, white Gaussian noise with
zZero mean énd a two sided power spectral density Uz is added to the
received signal. At the output of the receiver filter, the received
lsignal is sampled at regular intervals of T seconds. Since adjacent
groups of m impulses at the input to the baseband channel are separated
by g zero—level impulses and since n = m + g, it is clear that the n
sample values of a received group of m signal-elements will depend only
on the corresponding m element values {si} and not on any other trans-—
mitted element. Thus the received groups of‘signal-elements are
orthogonal at the receiver. The receiver stores the n sample values
corresponding to a group of m received signal—-elements and uses these

- sample values in the detection of the m elements.



It is assumed here that the (g + 1) sample values of the

sampled impulsé response of the channel,

Vo Yy e ¥ (6.3-2)

4
are known both at the transmitter and at the receiver. For the sake
of convenience, the delay in transmission other than that involved
in the time dispersion of the transmitted signals is ignored here.
. The value of £ in Fig. 6.3-1 is such that thg average transmitted
energy per bit is unity. Following the explanation of Section 6.2,
-if e 1s the total energy of the components of all the K" possible
" values of the vector SFl, then
0= (e/m K} (6.3-3)
The n sample values corresponding to a received group of

m signal-elements are, from Section 3.2, the components of the
n—-component row-vector .

1

R' = F BY + W (6-3"'4)

where B = SF1 and Y is the m x n matrix of rank m, whose ith row is

i-1 g+l m-i
=0, . .0 'yo Yy oo o .y 0. . .0 (6.3-5)

Y
4

i
The n components of the row—vector W are sample values of statistically
independent Gaussian random variables with zero mean and variance 62.
As before, assume that ,Yi, = 1.

In order to correct for the divisidn of the {si} by {1 at the
transmitter, the n sample values of a received group of m elements,
which are the components of the row-vector R', must now be‘mﬁltiplied by
{ to give |

R = LR' = BY +IW = SFY + LW (6.3-6)
where /W is an n-component row-vector whose components are sample
values of statistically independent Gaussian random variables with zero

mean and variance

2% (6.3-7)
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Let F2 in Fig. 6.3-1, be an n xm linear network such that,
when the n sémple values of the m received signal-elements of a group
are fed to its n input terminals, the m outputs, in the absence of
noise, are the m element values {Si} of the received group. Clearly,
from Eqn. (6.3-6), in the absence of noise,

RF2 = SFlY 5 = S (6.3-8)
since it is assumed that the two networks F1 and FZ together equalize
the channel, Thus

FlYF2 = I (6.3-9)

vhere T is an m x m identity matrix. In the presence of noise, the

m outputs from the linear network F2, are the m components of the row-

vector
X = RF2 =. SFlYF2 +,EWF2 (6.3-10)
= §+ U (6.3-11)
. where
U = ‘EWFZ ' {6.3-12)

The m—component vector U is the noise-vector at the output of the
network FZ' The ith component u; of the noise vector U, is a sample

value of a Gaussian random variable with zero mean and variance

b1
122 (s f2.i2)
j=1

2 .

>
1

= '£262(F' T)

2iF2i (6.3-13)

from Eqn. (6.3-12), since the n components of W are sample values of
statistically independent Gaussian random variables. fZii is the

component in the jth row and ith column of the matrix F,, and F is an

21

n-component vector given by the ith column of the matrix F2. Each s:

can now be detected by comparing the corresponding Xy with the appropriate

thresholds., 1In generalni2 is a function of i, however, at high signal/
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noise ratios the tolerance of the arrangement of Fig. 6.3~1, described
above, to ad&itive white Gaussian noise is approximately.determined by
the probébility of error in the detection of the S5 for which‘“ni has the
greatest value (Appendix A2).

It is now required to find the n x m linear network F2 which
ﬁrovides the best linear estimate of the m signal-elements of a received
group, given‘the network F, at the transmitter and the received signal-
vector R. Let Y' be the m x n matrix given by‘

Y' = FiY | (6.3-14)
Since Fl ig an m x m non-singular matrix and Y has rank m, the m x n -
matrix Y' is of rank m, and, therefore, the m rows {Yi;} of the matrix
Y' are linearly independent. From Equns. (6.3-6) and (6.3-14)
| R = SFY +fW (6.3-15)
or R = SY' +/W (6.3-16)

It can be seen that the pr;Llem of finding the optimum linear
retvork F, is here similar to that in Section 3.2 where the correspondiﬁg
n sample values of a received group of m signal~elements are the

components of the vector (SY + W). Thus, following the procedure of

Section 3.2, it is clear that the required network F, is given by

r, = vyl (6.3-17)
T, T, -1

= (FOFY FN}

R Ty Ty-1

= TR {(F, (WY)E, )

o yTn Ton Tyl o To=1. -1

= YF C@F) COY) CF

- YT(YYT)wlFl-l ' (6.3-18)

Now
- T ool =1, =1 _ -

F,YF, = FYY (1Y) °F) I (6.3-19)
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which agrees with Eqn. (6.3-9). It can be seen from Eqns. (6.3-16)
and (6.3-17), that the n x m network F2 gives at its m output terminals
m linear estimates of the corresponding m {si}, in which the mean square

error due to the noise is minimized, given the network F. at the transmitter

1
and subject to the other assumed conditions. This follows because the

-1

network Y'T(Y'Y'T) in Fig.6.3-1 is the exact parallel of the network

YT(YYT)-l in System 1.

If the m x m matrix F1 is an identity matrix, that is, if there 1is

no signal processing at the transmitter, then the equalizer network F2

at the receiver is given by

F

, vTvyTy~1g

n

YT(YYT)--]. {6.3-20)

Clearly, under these conditioﬁs, the arrangement of Fig. 6.3-1 reduces
to that of System 1, and hence System 1 is a special case of the more
general class of systems studied here,

Data-tranémission systems with different arrangements of the
networks F; and F, in Fig. 6.3-1+will now be described. Since the
systems, which are to be described are ;pecial cases of the arrangement
of Fig. 6.3-1, their basic method of operation and implementation is

similar to the arrangement studied in this section.

6.4  Systems 2L, 3L, 4L and 5L

In Systems 2L, 3L, 4L and 5L the arrangement of Fig. 6.3-1,

" described in Section 6.3, is used. In each system the linear network
Fl’ at the transmitter, is an m X m network ?epresented by the m x m
non-singular matrix Fl, and the nlx m linear network at the receiver is
represented by the n x m matrix F2 of rank m. 1In each case the n sample
values corresponding to a group of m received signal-elements are fed to

the n input terminals of the network Fz and the m signal-elements are
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detected by comparing the m outputs, from the network FZ’ with the
appropriate thresholds,
In each system

Fy

il

(ryTy @ (6.4-1)

and F yT(yyTy~1*d (6.4-2)

2
The signal-vector at the output of the network F1 is %S(YYT)_q, and

in the absence of noise, the signal vector at the input to the network

F2 is S(YYT)—qY, so that the signal vector at the output of F2 is

sy Ty T Ty - g (6.4-3)
since YYT is non—-singular, real and symmetric. Exact equalization of
the channel is, therefore, achieved for any real value of g in the range
0 to l; Since YYT is a'real, symmetric and positive definite matrix, so

that (YYT)--q and (YYT)_1+q

are both real, symmetric and positive definite
matrices.37

The following arrangements of Fig. 6.4-1 have been studied

System Value of q
2L 1 ]
3L 3/4
4L 1/2
sL 1/4

In the Systems 2L to 5L, each of the networks F1 and F2 would

in practice be implemented by the appropriate Gauss-Siedel iterative

process,

6.5 Systems 6L, 7L, 8L and 9L

In Systems 6L to 9L, the arrangement of Fig. 6.3-1 described in
Section 6.3, 1s modified to that shown in Fig. 6.5-1. In each System
the linear network at the transmitter is an m.x n network represented by

an m X n matrix of rank m, given by
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1

. . .th .
where D is an m ¥ n matrix of rank m, whose 1 TOW 18

e, = () 9 (6.5-1)

i-1 g+l m-1i

Di = 0 ....0"ygyg_l ...yo"O NG (6.5-2)

The linear network at the receiver is an m x m network represented by

an m X m non-singular matrix

G, = (") "9 | (6.5-3)

AThe arrangement at the transmitter in Fig. 6.5-1, is similar to that

of Fig. 6.1-1, described in Section 6.1. There are now n values aﬁ the
output of the network G1 and these are sampled in order at regular
intervals of T seconds to give the corresponding impulses which are fed
to the baseband channel. The values of these impulses are the components
of the n—component row-vector SGl' Adjacent groups of n impulses at the
input to the channel, corresponding to adjacent groups of m signal-
elements, follow each other with no break in the regular sequence of
impulses., It can be seen from Section 6.1, that the (g+l)th to (g+m)th
samples of the received signal, eorresponding to a received group of m
signal-elements, depend only on the corresponding m element values {si}
and are the m components of the row-vector

R" = 1SG.D +W (6.5~4)

1
£
As before, £ is a positive scalar quantity such that when each s; at the
input to G1 is divided by £ , the average transmitted energy per bit is
unity. As in Section 6.3, if e is the total energy of the components of

all the k™ possible values of the vector SGl’ then

Lo (efuk™? (6.5-5)
The coﬁponents of the m-component row-vector W in Eqn. (6.5-4), are

sample values of statistically independent Gaussian random variables with



zero mean and variance 02. The sample values of the received_signal
are first multiplied by £ in order to compensate for the division of
the{si}by £ at the transmitter. Thus the m sample valuesrof the

received signal which are fed to the m inputs of the m x m network G2

are the components of the m—component row-vector

R = ZR' = S%pT+fW

. = smpY) YppT + 2w (6.5-6)
from Eqn. (6.5-1). In the absence of noise, therefore, the signal

is s@pY) 1*9ppt, so that the

vector at the input to the network G,

signal vector at the output of G2 is

spt) 1 ppTpT) ™ < 5 (6.5-7)
since DD is non-singular, real and symmetric. Exact equalization of
the channel is, therefore, achieved for any real value of q in the
range O to 1. Since (DD'_r)_1 is real, symmetric and positive definite,
(DDT)-1+q

The following arrangements of Fig. 6.5-1 have been studied

System Value of ‘g
6L 1
7L 3/4
8L 1/2
9L - 1/4

From Eqns. (6.5-3) and (6.5-6), the signals at the m outputs of
the network G2, in any of the Systems 6L to 9L, are the components of

the row~vector

>
[0}

5
1l

s@p®) " 9pT (ppTy e + zw(ppT) 9

= S + U (6.5-8)

and (DDT)_cI are both real, symmetric and positive definite.37
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where
U = .QW(DDT)ﬁq (6.5-9)
and q has the appropriate value. .
The m—component vector U is the noise~vector at the output of
the network G2' The 1B component u, of tﬁe noise vector U, is a sample

value of a Gaussian random variable with zero mean and variance

2

2 2 T
Ny~ = £707(6y;6,;7)

(6.5-10)

whére G2i is an m-component vector given by the ith column of the matrix
G2 = (DDT)_q. Each §; can now be detected by comparing the corresponding
Xy with the appropriate thresholds. 1In general,]qi? is a function of i,
however, at high signal to noise ratios the tolerance of any of the
Systems 6L to 9L, to additive white Gaussian noise is approximately
determined by the probability of error in the detection of the s, for
which ﬂi has the greatest value;

If q in Eqn. (6.5-3), is zero, that is, when all the signal
prodgssing is carried out at the trancmitter, the linear network at the
transmitter, from Eqn. (6.5-1),1i% the m x n network (DDT)-ID. Under
these conditions, therefore, the arrangement of Fig. 6.5~1 reduces to that
of System 1L described in Section 6.2, It follows that System 1L is a
épecial case of the more general class of systems studied here.

It is shown in Appendix A7 that for any given channel

! = ! | (6.5 -11)
so that

¢, = (¥ (6.5 ~12)

A comparison of Eqns. (6.5 -12) and (6.4 -1) shows that the m xm
network Fl at the transmitter of any of the Systems 2L to 5L, is the same
as the m x m network G2 at the receiver of the corresponding System 6L to

91,. Furthermore, the channel is exactly equalized in each case. This
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suggests that Systems 2L, 3L, 4L and 5L are, respectively, duals
of Systems 6L, 7L, 8L and 9L, and vice versa.
In the Systems 6L to 9L, each of the networks G, and G,

would in practice be implemented by the appropriate Gauss-Siedel

iterative process.

6.6 Orthogonalization of the Sampled Impulse
Response of the Baseband Channel

Consider the arrangement of Fig. 6.3-1 described in

Section 6.3. It was shown that, given the m x m network F. at the

1
transmitter, the linear estimates of the element values {si}of a group
of m signal-elements, are obtained at the receiver, at the m outputs

of the n x m network

F, = Yo(ryl) g, 7l (6.6 -1)
2 1
so that
FYF, = I | (6.6.-2)
where I is an m x m identity matrix.
Suppose now that .
Y' = FlY (6.6-3)

vhere Y' is an m x n matrix of rank m and has the property that
yrant =1 (6.6 -4)
and I is an m x m identity matrix. This means that the m rows of Y'

have unit length and are orthogonal to each other. Thus the m x m

1

the set of m vectoxs {Yi} to a set of m orthonormal vectors {Yi'} .

in Fig. 6.3-1, transforms
40

matrix Fis representing the linear network F

From Eqns. (6.6 -3) and (6.6 —-4)

FlY(FlY)T = FYF T = 1 (6.6 -5)

or YY = F (F1 )
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or YYT

3 T -1
= FFD
1
From Eqns. (6.6 ~1) and (6.6 -6), the n x m linear network at the

receiver, in the arrangement of Fig. 6.3-1 is, now

v Tp g}

Fy 1 i

n

T, T
YR,

A
(F,Y)

T 6.6 ~7)

From Eqn. (6.3~6), the n sample values of a received group of m signal-
elements at the input to the network F2 are the components of the n-
component row-.vector

R = SF ¥ +fW = SY' +4W (6.6-8)
Since the m rows of Y' are orthonormal, the received signal-elements of
a group are orthogonal at the receiver. Under these conditions the
optimum detection process for a group of received signal-elements is
matched-filter detection. Each ;ignal—element can be thought to be
transmitted over a different channel, and the sampled impulse responses
of the different channels are, respectively, the m rows of the matrix Y'.
Thus, at the receiver all that is required to maximise the signal to
noise ratio, in the detection of the m signal-elements, is a set of m
correlation detectors or matched filters, matched to the m rows of Y'.
The n x m network F, in Eqn. (6.6-7),1is nothing but a set of m correlation
detectorg matched to the m rows of Y'. Thus, in the arrangement of
Fig. 6.3-1,if F1 is such that Eqns. (6.6-3) and (6.6-4) are satisfied, then
the resulting system is optimum in the sense that no other linear or non-

linear detection process, at the receiver, will improve the tolerance of

the system to additive white Gaussian noise.



Since the length of'éach column vector of F2 is unity,
F2iF2iT in Eqﬁ; (6.3-13) is unity for each i. It follows from Eqn.
(6.3-13), that the noise variance at the input to ;he &etector, in
the arrangement of Fig. 6.3-1, just considered, is given by

n = ﬂzoz : (6.6-9)

where 2 is given by Eqn. {(6.3-3).

A particular form of the m x m matrix F, in Eqn. (6.6%6) is

1
an m X ®m upper—triangular matrix P such that36
ayDH7t o= pTp ' (6.6-10)
Thus Y' = PY (6.6-11)

is an m x n orthonormal matrix, and from Eqn. (6.6-7)

T

1]
F, = (1)
= yipf (6.6-12)

Systems employing the transformation P in Eqn. (6.6—11) are described

in Section 6.7.

6.7 Systems 10L and 11L

In System 10L the m x m linear network F,, at the transmitter

1
in the arrangement of Fig. 6.3-1, is a network represented by the
upper triangular matrix P in Eqn. (6.5-11), and the n x m linear

network at the receiver, from Eqn. (6.6~12), is

F, = yTpT (6.7-1)

The block diagram of System 10L is shown in Fig. 6.7-1. Thus in
System 10L, since PY is an m x n orthonormal matrix

FYF, = pyy'eT = (6.7-2)

which satisfies the condition imposed by Eqn. (6.3-9). The upper
triangular matrix P can be evaluated from Eqn. (6.6-10) by the so
called "Square Root Method."36 The practical implementation of the

linear transformation P at the transmitter and YTPT at the receiver

158
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would normally require the prior knowledge of both P and Y and the
components oflP and YTPT would simply be stored at the transmitter and
receiver, respectively, and used to achieve the appropriate matrix
multiplications. P can of course be derived from Y, but a more complex
iterative process would now be required than the simple Gauss-Siedel process
previously assumed,52 and this is unlikély fo be of any practical value.

A description_of this process is beyond the scope of the present work and
will not be considered here.

It is interesting to note that in System 4L, since (YYT)—% is a

symmetric matrix, F1 = (YYT)_i and F2 = YT(YYT)_i, so that
s yip I -
F, = Y'F, (6.7 3'f)
and FYVF. L = T (6.7-4)
_ 1 1
A comparison of Eqns. (6.7-2) and (6.7-4) shows that the m rows of the

m X n matrix (YYT)-QYare orthonormal. This svggests that Systems 4L and

10L belong to the same class of Systems where the elements of a received

group are orthogonal at the receiver. - .

In System 11L, the arrangement of Fig. 6.5-1 described in Section
[}

6.5 is used. The m x m linear network at the receiver, represented by

the m x m non-singular matrix.Gz, is such that

©, 0, ;" = 1 (6.7-5)
where I is an m x m identity matrix, and D is an m X n matrix of rank m,

.th .
whose 1 TOW 18
i-1 g+l m-i

= T ] 1 1 1 1 -
Di 0 ....0 ygyg-l A 0 ....0 (6.7-6)

Clearly the m x n matrix GZTD has rank m and is such that its m rows are
orthogohal to each other. The m x n linear network at the transmitter
of System 11L, which is represented by the m x n matrix G1 of rank m, is
assumed to be such that

_Gl = G2 D (6.7-7)
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From Fig. 6.5-1, the n-component output vector from the linear
. 1 . .
network G1 1s ,ESGI’ and in the absence of noise, the m-component

vector at the input to the network 62 is SGlDT, so that the m

component output vector from G,is

2
T. T.. T
5G,D°G, = G, D.DG,
_ ap-Ton T T
5¢; D(G, D)
S (6.7-8)

from Eqn. (6.7-5). Exact equalization of the channel is therefore

achieved in System 11L, so long as the network G, is such that Egn.

2
(6.7-5) is satisfied.
From Eqn. (6.7-5)
T, T,
G2 bD G2 = 1
T _ T.-1. -1

or DD™ = (G2 ) G2

_ T,-1

= (GZGZ ) .
or 5= 6T (6.7-9)

Since for a given sampled impulse response of the channel DDT = YYT

(Appendix A7), it follows that

@H = @HT = o] (6.7-10)
Comparing Eqns. (6.6~10) and (6.7—1b),clear1y
G, = pr (6.7-11)

2
Thus the m x m linear network at the receiver of System 11L is repre-
sented by an m x m lower triangular matrix PT, where PT is such that
T

PP = (YYf)—l. The m X n matrix, representing the m x n linear

network at the transmitter, is, from Eqn. (6.7-7)

©

%o
= PD (6.7“12)

The block diagram of System 11L is shown in Fig. 6.7-2. As in the case
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of System 10L, the éractical implementation of the linear transformation
PD at the traﬂsmitter and PT at the receiver, would normally require the
prior knowledge of both PD and PT, and the components of PD and PT would
-simply be stored at the transmitter and receiver, respectively, and used
to achieve the appropriate matrix multiplications.

For a given sampled impulse response ¢f the channel, the m x m
linear network at the_transmitter of System 10L is the transpose of the
linéar network at the receiver of System 11L. Furthermore, in both the
Systems 10L.and 11L the channel is exactly equalized. Systems 10L and-

111, are therefore duals of each other.

6.8 Linear Signal Processing at the Transmitter
with Non—linear Detection at the Receiver

In Section 6.4, the m x m matrix Fls representing the linear
network at the transmitter of Systems 2L to 5L, is always symmetric and
positive definite.  The corresbonding n x m matrix, representing the -
linear network at the receiver is given by

R SR, JOS W
F, = Y'(X¥) F

It follows, therefore, that the m x m matrix (YYT)—IF

(6.8-1)

-1
1

symmetric and positive definite,37 as 1is (YYT)_I. It is thus, possible

is also

fo replace the n x m 1ineaf network F2 at the receivér of Systems 2L to
5L, by the non-linear detection processes of Systems 3, 5 and 6, in order
to achieve a better tolerance to noise. Systems employing non-linear
detection process at the receiver with linear signal processing at the

transmitter, are described in Section 6.9.

6.9 Systems 3LN, 4LN and SLN

Systems 3LN, 4LN and 5LN are modifications of Systems 3L, 4L and
5L, respectively. In System 3LN, the detection process of System 6 is

used at the receiver of System 3L, to detect the m signal-elements of a
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‘recelved group, instead of the linear network F,. = YT(YYT)_*.
Similarly, in Systems 4LN and S5LN, the detection process of System 6
is used at the receiver of Systems 4L and 5L, respectively, to detect

the m signal-elements of a received group, instead of the respective

linear networks.
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7.0 ASSESSMENT OF SYSTEMS WITH LINEAR SIGNAL PROCESSING AT THE

TRANSMITTER

7.1  Computer Simulation Tests

The tolerances to additive white Gaussian noise of the
different systems, employing linear éignal processing at the
transmitter, have been compared by computer simulation, for
different values of the sampled impulse response of the channel.
The method of computer simulation is similar to that
described in Section 5.1.

In e§ery test, binary signal-elements are assumed such that 5;
is equally likely to have the value 1 or -1, the element values in
a group being statistically independent. The average transmitted
energy per bit is equal té unity, the five component row vector L
representing the channel in Table 5.2-1 has unit length, and the
two sided power spectral density 62 of the additive white Gaussian )
noise at the input to the receiver filter, is adjusted for an
average element error rate of 4 in 103. The value of 02 then gives

a measure of the tolerance of a system to additive white Gaussian
noise. ‘

In each computer simulation test, a'total of 4096 elements were
transmitted over a baseband channel with a fixed value of L. Through-
out the test m = 8 and n = m+4. Where a system has been tested over
any of the channels B to K, a computer simulation test has been
carried out for each of the corresponding values of L in Table 5.2-1.
Tests have not been performed with multi-level signals, since

exact equalization is, in every case, applied to each group of m

signal-elements, and under these conditions a fairly accurate idea of their
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performances with mﬁlti-levél signals can be obtained from the results
for binary signals. |

The tolerances of Systems 1L to 11L to additive white Gaussian
noise have also been calculated theoretically using the results
derived in Sections 6.2, 6.3 and 6.5 and bearing in mind that for
binary signal-elements such that s; = + 1, the average probability
of error in the detection of si from xi, where xi is the corresponding
output signal from the 1iﬁear network at the receiver, is
approximately Q(%ﬂ,.where n is the largest value of the standard
deviation of noiselcompbnents'{ui} at the output of the linear network,
These results are given along with those obtained by computer

simulation, in Section 7.3

7.2 Error Probabilities and Confidence Limits

In Systems 1I, to 111, for binary coded signals such that

s; = + ; or -1, the error probability in the detection of the ith
signal-element of a group is |
.
p, = @(i/n) _ (7.2-1)

where niz is the corresponding noise variance. at the detector input

{Section 5.3).

In the case where..there is no signal distortion(Channel A)

2 in any of the systems 1L to 111, is the same for

the value of ni
each 1 and:isequalto#gthepower spectral density of the additive white
‘Gaussian ncise at the input to the receiver filter. Thus, the element

error probability, in any of the Systems 1L to 1lL with binary

signals and no distortion in transmission, is given by

p = 0 (1/0) (7.2-2)
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Since the value of p is assumed to be 4 x 10—3

o{l/0) = 4 x 1073 ' (7.2-3)

The vaiue of ¢, corresponding to. the value of p = 4 x 10_3, is
0.376 which is the value of the standard deviation of white Gaussian
noise to be added at the input to the receiver filter to obtain an
element error probability of 4 x 10—3. It can be seen that the value
of ¢ obtained here for channel A and binary sigqal—elements,
agrees with the corresponding value of ¢ obtained in Section 5.3.

From the computer simulation results, it is found that the number
of groups of signal-elements in error, in any of the systems tested,
is approximately the same as that Dr System 1, with binary signal-
élements (section 5.3). It follows that the number of independent
errors is, in each case, approximately the same as for System 1 with
binary signal-elements, so that the 95% confidence limits, for any of
the systems tested here, are as given in Table 5.3-1 for m = 8 and k = 2,

7.3 Results of Computer Simulation Tests

-

The results of the computer simulation tests are shown in Table 7.3-1.
The noise power spectral density at the input to the receiver filter,
required for an average element error probability of 4 x 10h3, is quoted
in decibels relative to its value when a binary signal is trénsmitted
over channel A with the same error probability, the noise level here
Being the same in all cases. |

Table 7.3-2 éives the theoretical valges corresponding to those
obtained by computer simulation 'in Table 7;3-1.

- Fig. 7.3-1 shows the variation in the ncise level, in the

arrangement for Systems 2L - 5L (Fig. 6.3-1) with ch;nnel J, as g in
Egqns. (6.4-1) and (6.4-2) is varied from 0 to 1. The results have

been obtained theoretically. e



TABLE 7.3-1

Neoise level, for an average element error probability of 4 x 10"3, expressed in dB relative to its value when
a binary signal is transmitted with the same error probability over channel A. Groups of 8 signal-elements.

(Results obtained by Computer Simulation)

System

Channel 1L 2L 3L 4L 5L 6L 7L 8L 9L 1oL 1o 3LN . | 4LN 5LN

0.0 o0,0| ©0.0] 0.0} o0.0f 00| 0.0| 0.0 | 0.0| 0,0 0.0 | 0.0 | 0.0 | 0.0
~5.2 [ -15.0 | -10.0 | -5.0 | -3.5 f-16.2 |-12.1 | -5.7 | -3.8 | -5.2 | -5.4 | -9.5 | -5.0 |-3.1
=3.0| -8.6| -5.3| ~3.0 | -2.4 | 9.8 | ~6.0 | -3.2 | -2.3 | =3.0 | -3.2 | -5.1 | -3.1 |-2.2

-12.8 | =32,1 | -22.0 { =13.0 |-10.0 [-23.4 [-23.0 [~13.4 | -9.8 |-13.0 |-13.6 [-20.8 |-13.0 |-9.1

0.0 ~0.5| =0.5{ o0.0| 0.0 -0.6]-0.5] 0.0 0.0 0.0 | 0.0 |=-0.3 | 0.0 | 0.0
~2.6{ =7.5 | ~4.4 | -2.8 | -2.1 | -8.0 | -5.3 | -3.0 | =2.2 | -2, | ~3.0 | -4.1 | -2.7 | -2,2
~2.4] =7.9| -4,5| -2.2 | -1.7 | -8.8 | -5.2 | -2.6 | -2.0 | ~2.2 | -2.8 | -3.8 | -2.2 |-1.7
-3.0| -8.2| =5.0| -3.0} -2.6 | =8.7 | -5.5 | -3.2 | 2.4 | 2.9 | -3.2 | -5.,0 | -2.9 |-2.5
-3.2| -10.0| -6.4| =-3.1] -1.9 |[-11.1 | =7.4 | -3.3 | -2,1 | =3.0 | -3.4 | -5.9 | -3.0 | -1.6

~16.8] =38.0 | =26.4 | -17.0 | ~14.0 [-39.2 |-27.2 |-17.5 |-14.3 |-17.0 '=17.6 |-26.0 |-17.2 [-13.2
-4.3] 12,1 | -7.4| -4,5| -3,2 |~13,0 | -8.4 | -4.7 | -3.5 | -4.5 | ~4.6 | -8.0 | -4.5 [ ~3.0

WG H I MM By aw B

89t



Noise level, for an average element error probability of 4 x 10-3, expressed in dB relative to its value when

a binary signal

TABLE 7. 3«2

(Results obtained theoretically)

‘is transmitted with the same error probability, over Channel A. Groups of 8 signal-elements.

System
Channel

1L 2L 3L 4L, 5L 6L 7L 8L oL 10L 11lL

A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
B -5.24 | -15.75 | -9.95| -5.24| -3.9 | -17.84}-11.55| -6.45| -3.9 | -5.24| -6.45
c -3.0 | =8.8 | -5.5 | -3.0 | -2:44| -10.16| -6.46| -3.8 | -2.44| -3.0 | -3.8
D -12.6 | -32.5 | -21.9 |-12.6 | '-9.82] -35.4 | -24.3 | -14.9 | -9.82}-12.6 | -14.9
E -0.2 | -0.56| -0.4 | -0.2 0.0 { -~0.71| -0.52| -0.26] 0.0 | -0.2 | -0.26
P -2.68| -7.2 | -4.55| -2.68| -2.3 ] -8.4 | -s5.56| -3.25| -2.3 | -2.68| -3.25
G -2.32| -8.06| -4.62| -2.32| -1.76| -9.65| -5.88| -3.04| -1.76| -2.32| -3.04
H -3.06| -8.26| -5.8 | -3.06| -2.46{ -9.08| -5.79| -3.5 | -2.46| -3.06| -3.5
1 -3.15| -10.6 | =6.4 | -3.15} -2.3 | -12.4 | ~7.72| -4.06| -2.3 { =-3.15| =4.06
a -16.6 | -38.4 | -26.94 | -16.6 | -14.5 | -40.41 | -28.1 | -18.5 | -14.5 | -16.6 | -18.5
X -4.42| -12.32| -7.85| -4.42| -3.44| -13.75| -s.s8| -5.16| -3.44| -4.42] -5.16

691l
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figure 7.3-1

Variation in noise level for channel J and an error probability
of 4 x 10-3 as q varies from 0 - 1,expressed in dB relative
to the noise level of System 1 with binary signals,no distortion

and for an error ptobabiliﬁy of 4 x 10—3.
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7.4 Comparison of Systems

From the computer simulation results of Table 7.3-1, the
best tolerance to additive white Gaussian noise, of the systems
studied in Section 6.0, is achieved by Systéms 5L, 9L and 5LN, while
Systems 2L and 6L give the worst pérformance. For severe signal
distortions Systems 5L and 9L gain an advantage of about 3 dB in
tolerance to noise, over System 1lL. Within the limits of the
accuracy of the computer simulation results (Table 5.3-1) the
tolerances of Systems 1L to 11L, to additive white Gaussian noise obtained
theoretically in Table 7.3-2, are either less than or equal to their
corresponding values obtained by computer simulation. This is so
because fhe theoretical results are obtained by using the maximum
value of the noise variance, at the input to the detector, in the
detection of the m signal-elements of a group, and therefore, the
theoretical results provide the lower bounds to the tolerance of a
system to additive white Gaussian noise. -

Table 7.4-1 shows the systems studied in Section 6.0, which have
approximately the same performances. The performances of two systems
are here considered to be the same, approximately, if tﬁeir respective
noise levels do not differ Sy more than about 1.5 dB. It can be seen
from Table 7.4-]1 that any of the two systems which have approximately
the same tolerance to noise, are also duals of each other, that is,
the m x m linear network at the txansmittef of one system is the
transpose of the m x m network at the receiver of its dual system and
in each case the channel is exactly equalized. For example, Systems
5L and 9L are duals of each other, since they both equalize the channel
exactly, and the m x m network at the transmitter of System 5L is the
transpose of the m x m network at the receiver of 9L. This suggests
that Systems which are duals of each other, . .have approximately the
same tolerance to add;tive white CGaussian noise, at least in the cases

studied here.
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TABLE 7.4-1

Systems having approximately the same performance, which are also duals
‘ of each other

" Dual system which has approximately
System the same performance in the presence
of additive white Gaussian noise

1 | 1L
2L - 6L
3L | 7L
4L 8L
5L 9L

10L A 11L
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The performances of SjstemséL and 10L are very close to that
of System 1L, and can be taken to be the same for practical purposes.
There seems to be no significant difference between the performances
of Systems4L and 4LN, even though in the latter case the detection
process of System 6 is used at the receiver of System 4L instead of
the corresponding linear network. This was expected since in the
case of System 4L, the received signal-elementsof a group are
orthogonal at the receiver,'and thé optimum detectdon process is a set
of correlation detectors. - ‘Therefore no other linear or non-
linear technique at the receiver of System 4L can improve its
tolerance to additive white Gaussian noise.

Fig. 7.3-1 shows that of the various combinations of the linear
networks Fl and F2 in the arrangement of Fig. 6.3-1 and for severe
signal distortions, the best tolerance to additive white Gaussian
noise is achieved by System 5L. This suggests that System 5L is the
optimum combination of the linear networks F1 and F2 or 1s at 1east_
close to the optimum combination. -

| Table 7.4-2 shows the approximate number of sequential operations
required in the detection of‘a group of eight binary signal-elements,
when transﬁitted over channel J, at the receiver of Syétems 1L to 9L' and
also System 1. Apart from System 1L which does not require any
processing at the receiver, the-pumber of sequential operations required
increases with the decrease in the valuecf q in Eqn. (6.4-1) and with
the increase in the value of q in Eqn. (6.5-3), which is to be
expected, since under these condtions more and more of the chamnel
equalization is performed at the receiver. Table 7.4-2 also shows the

approximate number of sequential operations required in the linear

transformation of a group of eight binary signal-elements,.in the case



TABLE 7.4-2

Approximate number of sequential operations required for the
detection of a group of eight binary signal—-elements, transmitted

over charnel J,

174

Number of sequential Number of sequential

System operation§ at the operati?ns at the
transmitter recelver
1L 600 0
2% 500 o
3L 300 80
4L 100 160
5L 50 600
6L 0 700
7L 50 600
8L 100 150
9L 300 100
1 0 850
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of éhannel J, at the transmitter of Systems 1L to 9L and System 1.
Apart from System 1 which does not require any processing at the
transmitter, the numbgr of sequential operations required increases

as the value of g in Egn. (6.4-1) increases and the value of g in

Eqn. (6.5-3) decreases which, again, is to be expected, since under
these conditions more and more of the channel equalization is performed
at the trémsmitter. None of the Systems in Table 7.4-2 other than
System 1, is suitable for use over time varying channels since in all
systems applying a linear transformation +to the transmitted signal,

a knowledge of the sampled impulse response of the channel is regquired
at the transmitter, which means that this informaticn must be fed from
the receiver to the transmitter.

There does not seem to be any useful advantage in tolefance to

‘additive white Gaussian noise gained by Sgstems 3LN and 5LN over
Systems 3L and 5L, respectivelyf even though in Systems 3LN and S5LN, the
non-linear detection process of System 6 replaces the liﬁear network Fs.
A partial explanation for this is that after some linear processing of
the signal at the transmitter,, the individual received signal-elements
of a group are no longer simple time shifts of each other (when.

their elemént values are the same) but instead each received signal-
element will now in general occupy all the arailable samples of the
received group. Under these conditions it may well be that the first
{or last) received signal-element of a group no longer has-a better
tolerance to noise than the signal-elements in the centre of the group.
One would however still expecf the non-linear censtraint used in

System 6 to give scme advaptage in tolerance to noise, although not

as much as when all the signal processing is carried out at the receiver.
The fact that System 6 gains a considerable advantage in tolerance to

additive white GAussian noise,over Systems 1 and 1L,suggests that to gain
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the maximum advantage of the detection process of System 6, no
1ine§r processing of the signal should be carried out at the
transmitter.

The study of systems with linear signal processing at the
transmitter, suggests that only a limited advantage in tolerance to
additive white Gaussian noise can be gained by the appropriate
.linear transformations of the signal at the transmitter. Even the
best of the systems studied has a tolerance to additive white Gaussian
noise Qell below that of Systeﬁ 2. However, since none of the systems
studied so fér uses non—iinear'processing of the signal at the-
transnitter, it still remains to investigate the tolerance to

additive white Gaussian noise likely to be achieved by such systems,
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8.0 NONLINEAR PROCESSING OF SIGNAL AT THE TRANSMITTER

8.1 Basic Principles

The synchronous serial baseband data-transmission systém,
shown in Fig. 1l.1-1 and discussed in Section 3.1, is now modified
to include nonlinear processing of groups of m signal-elements at
the transmitter. The modified arrangement is shown in Fig. 8.1-1.
The m signal—eleﬁents at the transmitter, who;e element values {si}
are the components of the m—~component row-vector S, are transformed,
non-linearly, into a corresponding set of values given by the
components {bi} of the vecto¥ B. The {Si} are assumed to be
statistically independent and equally likely to have any of the
possible values. The m {bi} are sampled in sequence at regular
intervals of T seconds to give the corresponding set of impulses
with areas given by the {b;} and these are fed to the baseband channel.
Adjacent groups of m{bé are separated by g zero—level impulses. The
baéeband channel includes a transmitter filter, transmission path and a-
receiver filter. At the input to the receiver filter, white Gaussian
noise with zero mean and a two sided power épectral density}of 62 is
added to the received signal. At the output of the receiver filter,
the received signal is sampled at regular intervals of T seconds.
Since adjacent groups of m {bi} are separated by gl seconds, it is
clear that the n sample values of a received group of m-{bié depend
only on the corresponding m signal-elements of a group. The detector,
therefore, uses these n sample values in the detection of a received
group of m signal-elements.

It is assumed here that the (g + 1) sample values of the sampled

impulse response of the baseband channel,

yoyl T Yg . {8.1-1)
are known at the transmitter and receiver. For the sake of convenience,

the delay in transmission, other than that involved in the time

dispersion of the transmitted signal, is ignored.



BASEBAND CHANNEL

— — ——— — —— Dt S voevmam gy Semma)

Transmissiod

Path

White Gaussian

{53}

Filter

{3-} Nonlinear '{bﬂ Transmitter
o ?l Processing ‘é‘ﬁ—‘—‘i% Filter
of {si} ot |
I
| Noise
|
|
- {ri} I Receiver
Detectgg_e_ Detector "*?—:\4‘ <

Figqure B8.1-1

——— E——— —— AL p—— b

Non-linear signal processing at the transmitter.

178



The n sample values of a received group of m signal-elements
are, from Section 3.1, the components of the n-component row-vector
R = BY + W : (8.1-2)

. . .th .
where Y 1is the m x n matrix, of rank m, whose 1t row 18
i-1 g+l m=1i

Yi_ = 0 ---0 yo -ln-yg 0 oo-O (801_3)

and W is an,n-component row-vector whose components are sample
values of statistically independent Gaussian random variables with
zero mean and variance o>, Let the m rows {Yi} of the matrix Y be
normalized to have ﬁnit length, that is,

YiYiT = 1.0 for i = 1,2 ..., m. (8.1-4)

Let A = {a..} be an m % m matrix, such that
1)

A = Y& (8.1-5)

The matrix A is non-singular, symmetric and positive definite.32’52

Also from Eqns. (8.1-4) and (8.1-35),
a;. = 1.0 for i = 1,2, ...,m (8.1-6)

The detector, in Fig. 8.1-1, has a set of m correlation

detectors matched to the m rows of the matrix Y. With the arrangement

just described, the m {b,} corresponding to a group of m signal-
J i S

elements are obtained as follows
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1. Set b_ so that
m
.allbm = Sn
2. Set bmrl so that
L R
3. Set b so that .
m-2
.':111bm_2 + aj.b , +aab 8- and so on, until finally
allbl + a12b2 + oiee + almbm = 5

If now the m{bi} obtained in the above manner are fed to the

baseband channel in the form of the corresponding impulses, theun the

output signal from the first correlation detector, from Egns.

(8.1-2), (8.1~4) and (8.1~5), is
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_ T
_ T T
= BYY1 + WYI
= BA1 + vy '
where Al is the first columm of the matrix A, and v = WYIT is the

value of the orthogonal projection of W onto Y s is now detected

1"
by comparing X with the appropriate thresholds. Assuming now that

b1 is known at the receiver, blY1 is cancelled (eliminated by subtrac-—

tion) from the received signal to form

Rl = R =~ blYl (8.1-8)
The output signal from the second correlation detector when R1 is fed
at its input, is
_ T
X, = RlY2
= BA, -boa +W°'
2 1712 2
= 8, * v, (8.1-9)
Since A is symmetric, and -
s, = a;;b, + a12b3 + aat al(m—l)bm | {8.1~-10)

A2 is the second column of the matrix A, and v, = WYzTis the value of

the orthegonal projection of W onto Y2. S, is then detected by

comparing X, with the appropriate thresholds, Assuming that b2 is

known at the receiver, b2Y2 is cancelled (eliminated by subtraction)

from R, to form

1
R2 = R1 - b2Y2 {8.1-11)
The output signal from the third correlation detector is now
e T
X3 = Ry¥y
= 85+ v, (8.1-12)

leading to the detection of $4, and so on until finally Sm is detected

from X s where

X R Y T
i1} m—1"m



181

= s *v ) o (8.1-13)
v being the value of the orthogonal projection of W onto Ym.
It is clear that in order to detect Sqs the detector must first

cancel bl from the received signal. To cancel b,, it is of course

1°
necessary to know its value,but this cannot be determined without first
kgowing all the{sﬁ; Thus to detect the received signal-elements of a
group, using the arrangement just desaribed; the detector must have .
pricr knowledge of thg m-{bﬂ-. ‘Since this is tantamount to a prior
-knowledge of the ul{si}, this is clearly not a practical system.
Nevertheless it is interestiﬁg to study the performance of this
hypothetical system since it clearly provides an upper bound to the
performances likely to be obtained from the detection of transmitted

signals considered here. Systems based on the scheme just mentioned,

are described in Section 8.2.

8.2. Systems 1N, 2N, 3N and 4N

In systems 1IN, 2N, 3N and 4N, the m impulses {b% corresponding
to a group of m signal-elements,’ are obtained at the transmitter in a
manner described in Section 8.1. The detection process at the receiver
in each of the above systems, is,however, different. The detection process
at the receiver of System lﬁ is similar to that described in Section 8.1.
This means that the receiver in System 1N has the prior knowledge of the
values of the m {bi} corresponding to a received group of m signal~
elements,

In System 2N the receiver has no prior knowledge of the values of the
m {bi} corresponding to a received group of m signal—-elements, and these
values are estimated, ét the receiver, from the corresponding n sample
values of the received signal. The operationlof the detection process at
the receiver of System 2N is as follows. From Equn. (8.1-7), the output

signal from the first correlation detector, matched to Y,, when R is fed

1
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at its input,is

T .
RY, s, *uy
T

where vy = WYl + 5y a8 before, is detected by comparing RYlT with

the appropriate thresholds. Following the detection of Sys Uy and

hence ulYl is known. uiis the value of the orthogonal projection of W on

(8.2-1)

the vector Yl' ulYl is subtracted from R to give the n-component

vector (R - ulYl). The linear estimate of the vector B is now obtained
by feeding (R - ulYl) to the linear network ‘JKT(YYT)_1 (Section 3.2).

Thus

B, = - uy)y ) (8.2-2)

where E1 is an m-component row-vector which is an estimate of B. Let
€1 be the first component of El' ellYl is now cancelled (eliminated

by subtraction) from (R - ulYl) to give the n—-component vector

R1 = R~ ulY1 - enY1 = R - (u1 + ell)Y1

(8.2 -3)
Thus R1 is obtained from R by cancelling some of the noise and the

estimate e11 of bl.

The output from the 2nd correlation detector when R1 is fed to
its input is
R.Y T - s, + u, - ) T (8.2-4)
172 2 2
where u, is the estimate of the projection onto Y2, of the noise vector

in Rl' Sy is detected by comparing RIYZT with the appropriate thresholds.

The estimate of the noise component u is now known and is removed

272

from R1 to give the vector (Rl - quz). The new estimate E2 of the

vector B is now obtained,and is given by

- (8.2-5)
E, = (R

Hence the 2nd component €59 of the m—component row-vector E

T T.-1
u2¥2)Y (XY™)
2 is the

estimate of bz. This is taken t& be correct and b'2Y2 is cancelled from

(Rl - u2Y2) to give the n-component vector

R, = R, —uY -e,Y, =R - (u2 + e22)Y2

2 1 272 2272 1 (8.2-6)
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This leads to the detection of S3 from RZYST' The above procedure is

repeated for the detection of the following signal-elements of a group,
so that S is detected by comparing Rm_lYmT with the appropriate
thresholds, where

Enrl = Rm-z - (um-l f e(m—l)@mﬂmerl (8.2-7)
where Wil is the estimate of the projection onto Ym—l’ of the noise

Thus at the

vector in R s and © (m-1) (m-1) is the estimate of LI
end of the detection process |
Rm = R -~ (ql + é.ll)Y1 - (u2 + e22)Y2
~ iees = (um + emm)Ym . (8.2-8)
= R~ UY - EY o (8.2-9)

where us and ey for i = 1,2, ...,m in Eqn. (8.2-8) are, respectively,
the components of the m-component row-vectors U and E in Eqn. (8.2-9).
The detection process-at the receiver of System 3N is an iterative
process. Each cycle of the iterative process is identical to the -
&étection process of System 2N described above. At the beginning of the
first cycle of the detection process, in System 3N, the n components of
the vector R, in Eqn. (8.2~1), are the n sample values corresponding to a
received group of m signal-eléments as in System 2N. In the second and
subsequent cycles the vector R, at the beginning of the cycle, is taken

as

R - UY, (8.2-10)
where, the m-component row vectar U (Equation (8.2-9)) was obtained at
the end of the previous cycle. -The iterative procedure, in the detection
process of System 3N, 1s carried on until there is no further reduction
in the number of errors obtained at the end of each iterative cycle.
The detection process at the receiver of System 4N is a
-modification of the detection process of System 2N. As before, the

n-component row-vector R whose components are the sample values of the



received signal corresponding to a group of m signal-elements, is fed

to the input of the first correlation detector, so that at its output

T _ -
RYl = 5, tu (8.2-11)
where u, = WYlT. $; is now detected by comparing RYlT with the
appropriate thresholds. Again as in System 2N
Ry = R= (uy +e Y, (8.2-12)

Rl is now fed to the input of the second correlation detector so that

T
RlY2 =5, + u {(8.2-13)

2 2

from Eqn. (8.2~4). s, is detected by comparing R1Y§

thresholds. Again, as in System 2N the new estimate cf the vector B is

the m-component row—vectotr

| T, T =1
E, = (R - u,¥,)¥ (¥¢) (8.2-14)

If e in Egn. (8.2-12), is equal to b1 the first component of
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with the appropriate

the vector B, then clearly the desired cancellation of b1Y1 is achieved,

and under these conditions the first component e,

Eqn. (8.2-14) is zero. Howaver,-sinée %

in general,not equal to bl' It,follows, therefore, that u, is partly

T T s .
4 ulYl)YZ and partly AellYle s Where Aell is the error in

estimating b1 from e Furthermore, the first component e 1 cf the

2

vector E2 is not, 1n general, equal to zero. e21Y1 29Y5

removed from (R1 - u2Y2) to give the n-component row-vector

1]

R R, - u.¥Y, —e,.¥Y, - e,,Y

2 1 272 2171 2272

R

i

1 T €Yy 7 (uy *oegn)Y, (8.2-15)

where, of course, e, and ey, are respectively, the first and second

components of the vector E R2 is now fed to the input of the third

2l
correlation detector, so that

RY. T = s. +4u

973 3 (8.2-16)

3

1 of the vector E2 in -

and e.. Y. are now

is the estimate of bl’ it is,
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and Sq is detected by comparing R2Y3T with the proper thresholds.

R3 is now obtained as

R = ER. - e31Y1 - 632Y2 - (u3 + 833)Y3 (8.2-17)

where €312 39 and ey, are, respectively, the first, second and third

components of the m—component row-vector

_ _ T, ol -1 -
Ey = (R, = u,¥,)Y (X)) (8.2-18)
S, is now detected by comparing RBYaTwith the appropriats threshoiﬁs.
The above procedure is carried on until finally, Sy is detected by

comparing R.m__1 Ym? with the appropriate thresholds, where

Rmfl = RmPZ B e(m-l)lYl - "'—e(m—l)(er)Y(m—Z)

= @ * ey 1) Yt (8.2-19)

and, e(m—l)i fori=1, 2 .., (m1), are, respectively, the first
(m-1) components of the m—component row-vector

Bl = [Ram2 1Y -1 v¥ ryTy (8.2-20)

It may be pointed out that in férming R, (Eqn. (8.2-15)) it is not
possible to cancel e23Y3, EZAYA’ cessy eszm, since this will spoil the

relationship

T

Ri¥ien

= 5, + u

i+]1 i+l ,

and this is true in forming of any of the following Ri.

8.3 Results of Computer Simulation Tests

The tolerances of systems just described, to additive white
Gaussian noise have been coméared by combuter simulation for group of
eight binary signal-elements. The possible values ofthe elements are 1, and
they are statistically independent and equally likely to have any of

the possible values. The computer simulation tests have been carried
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out for the different ﬁalues of the sampled impulse response of the
baseband channel. , as givén in Table 5.6~1, and for groups of eight
éignal*elements. The method of these tests is similar to that
described in Section 5.1,

In every test, the average transmitted element energy per bit
is unity. The five component row-vector L representing the‘sampled
impulse response'of the channel in Table 5.6-1 has unit length and
the two sided power spe:tral densitycr2 of the additive white Gaussian
noise at the input to the receiver filter is adjusted for an average
element error probability of.A in 10°. The value of o gives the
measure of the tolerance of a system to additive white Gaussian noise.

In each computer simulation test, a total of 4096 elements were
transmitted over a baseband chgnnel with fixed value of L,

The results of the computer simulation tests are shown in Table
8.3-1. The noise power spectral density at the input to the receiver
filfer, required for a given average element error probability of

3 ‘

4 x 10 °, in Table 8.3-1,1is quoted in decibels relative to its value

vhen a binary signal is transmifted over channel A with an average
element error probability of 4 x 10"3. Table 8.3-1 also gives the
results for Systems 1 and 2 obtained in Section 5.4.

The results of the computer simulation of System 3N show that,
the number of errors detected after the first iterative cycle,is the
same as that in System 2N. However, the number of errors at the end of
the second and the subsequent iterative cycles, does not converge to a
fixed value but varies in a random fashion, and is always greater than
its value obtained at the end of the first iterative cycle.

From the compuger simulation results, it is found that the number
of groups of signals in error, in Systems 1N, 2N and 4N, is approximately

the same as that obtained with System 1 and binary signal-elements

(Section 5.3). It follows that the number of independent errors is, in
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each case, approximately the same as for System 1, so that the 95%

confidence limits for any of the Systems 1IN, 2N and 4N, are as

given in Table 5.3~1 form = 8, k = 2 and p = 4 x 10_3.



Noise level, for an average element error probability of 4 x 10~

TABLE 8,3-1

3

r

expresggd in dB relative to its level for an error probability of

4 x 10

with binary signal-elements and no distortion.
eight binary elements-

Groups of

Channel System

N 2N 4N 1 2
A 0,0 0.0 0.0 0.0 0.0
31 - -1.9 =3.4 -3.5 -6,0 -1.2
B, -2.8 -4,3 ~4,6 -6,0 -1.2
C1 ~1.,6 -2,0 -2.4 -3,2 -0,4
32 ~2.0 -2.,2 -2,2 -3,2 -0.4
01 -2.4 -9.2 -2,2 -13,7 -2.4
02 -4,0 -10.0 -0.8 —-13.7 =2.4
51 0.0 0.0 0,0 -0,3 0.0
E2 0,0 0.0 0.0 -0.3 .0
F1 ~1,6 -2.4 -2.6 ~-3.3 -0,5
F2 -1,8 ~2:4 -2,4 ~3.,3 -0.5
51 -0.4 =1.6 ~1.6 -2,9 U.U_
52 -1,2 -2,1 -2,3 -2.9 8.0
H1 -1.6 -2.6 ~2.2 -3.2 0.7
H2 -1,2 =2.4 ~2.3 -3.2 -0.7
11 -1.2 -1.9 -1.9 -3.7 0,0
I2 =-1.5 -2.0 ~1.9 =3.7 0.0
31 =3.5 -14,3 -14,0 -17.6 -4.,4
32 -4,1 | -14,6 ~14,.8 -17.6 -4,.4
K1 -1.6 -3.9 -4,0 -4.,9 -1.2
K2 -2,0 -4,1 -4,1 -4.,9 -1.2
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8.4 Assessment of Systems

From tﬂe results of Table 8.3-1, the tolerance to additive
white Gaussian noise of System LN, in every case, is better than
that of either System 2N or 4N. For severe sigﬁal distortions,
System 1IN gains an appreciable advantage in tolerance to noise,
over Systems 2N and 4N. The advantage in tolerance to noise
gained by System 1N is due to the fact that in System 1N, the
values of the nl{bi} to be cancelled from the received signal,
are assumed to be known at the receiver. Hence correct cancellation
is achieved in every case and. is independent of the detection of
the corresponding values {si} of a received group of signal-elements.
The prior knowledge of the m {bi} ét the receiver of System 1IN, of
course, means the prior knowledge of the corresponding values of the
signal-elements of a group. Clearly such a situation never arises in
actual préctﬁce and System lN.is;ltherefore, a hypothetical system.
However, System 1N gives the upper bounds to the tolerances to additive
white Gaussian noise which could be achieved by any scheme for
detecting the recéived signal-elements of a group, described in Section
8.1. From Table 8.3-1 which alsc shows the tolerances to additive white
Gaussian noise of Systems 1 and 2, it can be seen that System 1N has
épproximately, the same tolerance'to noise as System 2,

The tolerance to noise of System 2N is very much below that of
System 1N, particularly for severe signal distortions. This is
because of the fact that, in System 2N, the values of the m {bi}
which are to be cancelled, are not assumed to be knowﬁ at the
receiver, and are estimated from the received signal itself. The
estimate is obtained linearly, so that the exact cancellation of the
{bi} is not achieved here. Thus, as mentioned in Section 8.2, each
time the cancellation is performed, an error is introduced in the

detection process., The introduction of the errors, at each stage of
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cancellation in the defectian process, therefore, reduces the
tolerance of System 2N to additive white Gaussian noise. Clearly
to achieve a better performance, the accuracy in the estimates of
the m {bi} must be improved;

There does not appear to be any significant differenge between
the performances of Systems 2N and 4N, and for practical purposes,
their tolerances to additive white Gaussian noise are the same. TFrom
the results of Table 8.3-1, for severe signai distortions both Systems
2N and 4N gain an advantage of about 3 dB in tolerance to noise over
System 1.

In System 3N, the detection process does not converge to a steady
value, that is, the number of errors at the end of the second and the
subsequent iterative cycles varies randomly and is always greater than
‘that obtained at the end of thé first cycle. This happens becapse the
errors introduced during the first iterative cycle, due to the approx-—
imate cancellation of the {bi} mentioned above, become significant in
the second and the subsequentliterative cycles. The fact that the
numﬁer of errors at the end of the first cycle, in System 3N, is the
same as that obtained in System 2N is obvious, since the first iterative
cycle in the detection process of System 3N, is identical to the
detection piocesé of System 2N.

Although, for severe signal distortions, Systems 2N and 4N gain an
advantage of about 3 dB in tolerance to noise, over System 1, fhe fact
that the sampled impulse response of the channel is required toc be known
at the transmitter, makes Systems 2N and 4N less attractive in
comparison with Systems 4 and 6 (Section 4) where no such knowledge is
required at the transmitter and whose performances are better than those

of Systems 2N and 4N.



9.0 CORMENTS ON THE RESEARCE PROJECT

9.1 Originality

To the best of the Author's knowledge, the following are the
more important of the contributions which are believed to be original.
The use of the mon-linear technique of detection and cancellation of
signals in Systems 5 and 6 (Sections 4.4) and Systems 7/6 and 8/6 for
the detection of multi-level signals (Sections 4.6 and 4.7). The
thepry and development of Systems 2L to 9L (Sections 6.3, 6.4 and'6.5)
where the process of linear equalization is shared between the
transmitter.and the receiver., The signal processing scheme of Section
6.6, in which groups of signal-elements at the transmitter are so
arranged that they are orthogonal at the receiver. Systems 3LN, 4LN
and 5LN. Systems 2N, 3N and 4N which employ non-linear processing of
signal at the transmitter. All computer simulaticn tests and all

computer programs.

9.2 Suggestions for Further Investigations

The main aim of the studies carried out in this project was to

develop detection processes for orthogonal groups of s{gnal-elements
for use in a synchronous serial baseband data-transmission system,
achieving a tolerance to additive white Gaussian noise similar to that
of System 2 but not reﬁuiring the very large number of sequential
operations needed by System 2 when there are many signal-elements in a
group. These studies have been carried out from a pﬁrely theoretical
point of view, and little or no reference is made to the implementation
of the detection processes in actual practice. Since many if not most
transmission paths are béndpass channels, the work must clearly be
developed to include the study of linear modulators and demodulators

and in the particular case where two modulated carrier signals are
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transmitted with the same carrier frequency but in phase quadrature.

Although the detection processes described in Section 4.0, require
far fewer sequéntial operations than those required in the optimum
detection process (System 2), the number of such sequential operations
can be further reduced by speeding up the convergence rate of the
Gauss—Siedel iterative process. This requires the development of more
sophisticated non-linear operations on the components of the Qector X
in Eqn. (4.1-8), during the Gauss=~Siedel iterative process.

The detection pfocesses which have been desecribed in this report
are developed assuming that the channel is time invariant. It would
now be interesting and highly desirable to study their performances
with time varying channels.

In Section 5.6, the comparison of orthogonal groups of signals
with the equivalent continuous‘(uninte;rupted) transmission, 1is
carried out for arbitrary channels and for a single transfer functiom
of the transmitter and receiver filters._ It would be interesting to
carry out such a comparison for several different transfer functions of

the.equipment filters and for mpre realistic channels.
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10.0 CONCLUSIONS

When there is no signal processing at the transmitter of the
data-transmission system, adjacent groups of signal-eiements at the
input to the transmitter filter, are separated by zero-level elements
so that there is no intersymbol interference between the elements of
different groups, in the received signal. At the receiver thg
detection of the received signal-elements of a group, is achieved
iteratively by é sequence of similar operations. In practical
applications, the number of signal—eléments in a group is likely to
exceed 10 or even 20 with 4= or 8~level elements. Uﬁder these:
conditions System 2 which is the optimum system, requires a very
large number of sequential operations and is not a practical arrangement.
For binary signals, S&stem 4 achieves a tolerance to noise approaching
fhat of System 2 but requires far fewer sequential operations, and
System 6 has a tclerance to noisg'typically within about 3 dB of that-
of System 2 épd requires even fewer sequential operations than does
System 4, For multi-level signals, the tolerances to noise of Systems
8/2 and 8/4 are very close to that of System 2 while the tolerance to
noise of System 8/6 iIs typically within about 3 dB of that of System 2.
Systems 8/2, 8/4 and 8/6 require fewer sequential operations than does
'System 2. The tolerances to noise of Systems 7/2, 7/4 and 7/6 are
similar to those of Systems 8/2, 8/4 and 8/6, respectively, but Systems
7/4 and 7/6 require far fewer sequential operations than do Systems
8/4 and 8/6, respectively. The results of computer simulation tests
suggest that the preferred sjstems for groups of 4 and 8§ signal-
elements are also the preferred systems for the larger group sizes
that would normally be used in practice. | )
In System 1 the process of linear equalization is carried out

at the receiver while in System 1L all the linear equalization is
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achieved at the transmitter. The transmitted signal in System 1L is
continuous,-with no éaps between adjacent groups of elements, and the
signal-elements of a group are detected from the central group of the
sample values corresponding to the received group of elements. No
signal processing is required at the receiver of System 1L and the
system is best suited for situations where a single transmitter feeds
many receivers. Both the Systems 1 and 1L have the same tolerance to
additive white Gaussian noise,

Of the Systems 2L to 11L, where the process of linear equalization
is shared between the transmitter and the receiver, éystems 5L and 9L
gain an advantage of abbut 3 dB in tolerance to noise, over System 1,
under conditions of severe signal distortion. This advantage is,
however, much smallef than that gained by Systems 4 and 6 over System 1.

Systems 4L and 10L have abproximately the same tolerance to
noise as System 1. In both the é}stems 4L and 10L, the linear
processing of signal at the transmitter is such that adjacent groups
of transmitted signal-elements are separated by gaps containing zero—level
elements and the received signal-elements of a group are orthogonal but
with considerable intersymbol interference. The optimuwa detector in
both these systems is a set of correlation detectors.

The performance of System 6 in the presence of additive white
Caussian noise, is better than the performance of any of the Systems 3LN
and SLN. Although in the latter systems'the &etection process of System
6 is used.at the receiver. This suggests that in order to gain the
maximum advantage of the detection process of System: 6, all the signal
processing should be carried out at the receiver.

In both the Systéms 2N and'4ﬁ, groups of signal-elements are
processed non-linearly and adjacent groups of transmitted signal-elements

are secparated by gaps containing zero-level elements. For severe signal



185

distortions, Systems 2N and 4N gain an advantage of about 3 dB in
tolerance to noise over System 1, which is a much smaller advantage
than that gained by Systems 4 and 6 over System 1.

The arrangement of orthogonal.groups of signals studied here has
some useful advantages over a synchronous serial system with continuous
(uninterrupted) transmission. Firstly, exact equalization of the channel

is, in every case, achieved. Secondly, a complete loss of signal cannot

result from an unfortunate combinatjon of signal-element values and
channel impulse response. Thirdly, there are no error extension effécts
from one group of elements to the next, regardless of the detection
process used. Finally, detection processes achieving a near optimum
tolerance to additive noise can be implemented quite simply. The
Fisadvantage of orthogonal groups of signal-elements is that for a
given information rate, the bandwidth required is wider than that
required for a continuous (uninterrupted) signal. This reduces the
tolerance to noise of the arrangement of orthogonal groups and partly
_offsets the basic advantages gained by the arrangement. However, when
the number of signal-elements in a group is relatively large compared
with the number of elements set to zevo between adjacent groups, a useful
advantage in tolerance to noise should be gained by the better detection
processes over a linear or non-linear transversal equalizer, where the
latter is used with a continuous (uninterrupted) signal having the same
information rate.

From a study of the various systems tested, it appearg that the
most cost effective systems for binary and multi~level signals are
Systems 6 and 7/6, respectively. Where the best available performance
is required, without an excessive number oflsequential operations in a
detection ﬁrocess, the preferred systems for binary and multi-level

signals are Systems 4 and 7/4, respectively. '
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APPENDIX Al

VARIANCE OF THE SAMPLE VALUES OF A GAUSSIAN
RANDOM VARIABLE IN AN n-DIMENSIONAL EUCLIDEAN VECTOR SPACE

Consider a unit vector U which may have any direction in the
n~dimensional Euclidéan vector space containing U. Since U is a
unit vector

T
uu = 1 {Al-1)
Let W be the n-component row-vector, in the vector space, whose
components {wi} are sample values of statistically independent Gaussian
random variable with zero mean and variance o2..

The value of the projection_of the noise-védnr W onto U is the

inner product of the vectors W and U, given by

w' o= (a1-2)
This is a sample value of a Gaussian random yariable with zero mean
and variance given by the expected value of the sguare of the inner

product of W and U. Now

E{(UW)2} = E{UW WUT}

= o2uqu’ (A1-3)
where E{ - } represents the -expected value, and
o2 = E{'W . (Al-4)

is the covariance matrix of the n noise sample values {wi} which

are the components of W. From Eqn. (Al-4), the component in the ith
row and jth column of the n x n covariance matrix d?Q is

2 = ‘ -
CACH E{wi wj} (A1-5)
th

[ P

. .th .
where W, and wj are the i~ and ) components respectively of the
noise vector W.

Since the different noise samples are statistically independent

and therefore uncorrelated, and since they have zero mean,

E{Wi wj } = 0 fori # j (Al-6)



and since the noise samples have a variance ¢2

= 21 o 42 -
E{wi Wi} E{wi } ¢ (A1-7)
Thus
02Q = g21
or Q = I (A1-8)

where I is an n x n identity matrix.

From Eqns. (Al-3) and (Al-8) the value of the projection of W
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onto U and therefore the value of the noise component in the direction

of U, is asample value of a Gaussian random variable with zero mean

and wrilance
T

02UQUT o2UTU
= g2UU
= o2 (A1-9)
from (Al-1).
It follows that so long as the n components of W are sample
values of statistically indepéndent Gaussian random variable, the
value of the orthogonal projection of W onto any given direction,
in the n-dimensional Euclidean vector space, is a sample value of a

[}
Gaussian random variable with zero mean and variance ¢2.

The probability density function of the noise vector W is

fl

P (W) P(Wi, Wos o o« o 4 W)

n

= P(Wl) P(Wz) « s s P(Wn)

n
= ] -—I-[lP (Wi)
. n . , 2
= I[ —x exp ( - ‘-ii- )
2702 202 7

i=1
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n
1, - 1 2
= GwoZE" xR | 582‘121 vy )
1 1 ,
= | - 2 -
T e (- gk ol o

. Thus P(w) depends only on ]WI and increases steadily as ]Wl decreases.
If the m—-component vector S is detected from the received n-component
vector

R = 8Y + W
where the m x n matrix Y is given by Egn. {3.1-3), the conditional

probability density function of R, given SY, is

P(R/SY) r{W/sY)

= Plwy, wa, « o ., W /SY)

= P(w1/SY) P(wp/SY) . . . P(w /SY)

= ‘n exp { - 1 |ﬁ|2)
(2702)2 P 1T 22

from Egn. (Al-10), where W is nowlthe noise vector corresponding to the
assumed values of R and 8Y,

Cleérly P{R/SY) is maximum when lWl i; minimum. But it is well
known that when the different possible vectors'{SY} are equally likely,
the detection process that minimizes the probability of error is that
which selects the vector $Y corresponding to the maximum value of

p(r/SY) . 32037

Thus the detection process, that minimizes the error
probability, selects the vector SY corresponding to the minimum value of
[w] = [r - sy

so that it selects the vector SY nearest to R.
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APPENDIX A2
ERROR PROBABILITY AND SIGNAL/NOISE RATIO

When the signal-elements in a group are statistically independent
and are equally likely to have the two possible values + 1, the
probability of error in the detection of the ith signal-element of a

group, from Section 3.5, is

p; = Q(SL) @
where u-zi’.‘s the power spectral'densgty of the additive white Gaussian noise
éttheinput‘to the receiver filter and & isthedigtancgtoi@e siqg;e
decision boundary in the detection of the ith elemen£ of the group of m.
Let pi’be equal to p and di be equal to d so that
p = o (/o) | (A2-2)
The variation of the element error probability p with d/o" is obtained
from probability distribution tables and is shown in Fig. A2-1.
At high signal/noise ratios, that is, when p has a value around

1 x 1070

s» i1t can be seen from Fig. A2-1 that for a given change in the ~
error probability the corresponding change in the signal/ratio is
relatively small., For, let p hgve the value 3 x 10-7, so that the
corresponding value of d/o, from Fig. A2-1, is 5. If now the error
probability is doubled, that is, if p now has the value 6 x 10-7, the
corresponding change in tolerance to noise is only 0.26 dB. This shows
that at high signal/noise ratios even the doubling of tﬁe error
probability produces a negligible change in signal/noise ratio. On the
other hand a small change in signal/noise ratio produces a relatively
large change in the element error probability.

Consider that there are two binary signal-elements in a group,

having possible values + 1. From Eqn. (A2-1)

p, = Q(%) and p, = Q(i%__)

Assume now that, the signal/noise ratio is high and furthermore
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Error
probability
p

1.0 2.0 3.0 4,0 5.0 6.0 )
d/o '
Figure A2-1 : i .

Variation of the element error probability p with d/z. o
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d1/0‘= 4.Q (say) and d2/05=.5.5 (say). From Fig. A2-1, P, corresponding
to dl/d = 4.0, 1s 3 x 10—5, and P, corresponding to d2/c‘= 5.5, is

1.7 x 10_8. It can be seen that P1>> Py It, therefore, follows

that the average glement error probability in the detection of the

two signal-elements of the group is effectively given by Py which
corresponds to the smaller of the two distances d1 and d2 provided,

of course, that the signal/moise ratio is high. Again if there are

m signal—elements in a group, the average elément error probability,

at high signal to noise ratios, is approximately givep by the Py in

Eqn. (A2-1), which corresponds to the smallest of the di'
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© APPENDIX A3

COMPUTER SIMULATION PROGRAM FOR SYSTEM 2
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APPENDIX A4

COMPUTER SIMULATION PROGRAM FOR SYSTEM 3

RAM TA STHULATE SYSTEM 3 FNOR THE DETECTION

GROUPS OF BINARY SIGNAL-ELFEMENTS,

STGNAL=ELEMENTS N A GROUP

CSAMPLE VALUES OF & RECEIVED GROUR OF

HUMBER OF SAMPLE VALUES OF THE SAMPLED

O CONSTANT o - ) B
_.NC = dHnRFe OF ITERATIVE CYELES L .

LAY = TATa _NWMRER OF FLEMENTS TRANMITYED .
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 FORICTME BATRIX ASYRY(TRANSPOSE)

ST TLIvial CoNDITIONS Yo 28RO 0
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DO 200 ) Lsd e

80 As 1=1,m
20y e7 (13420

AL L L
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APPENDIX A5

COMPUTER SIMULATION PROGRAM FOR SYSTEM 6

MASTER FATZA

CONpUTER pROGRAY TO STUULATE SYSTEM 6 FOR
THE DETEQTION OF ORTHOGUNAL GROUPS OF plNARY
SIGHAL-ELREMENTS,

H

n

HUMRE: OF SIGHAL-ELEMEHTS IH A GROUP,

i

N NUMRER uF SAMPLE VALUES oF A RECEIVED GROUP GF

SIGHAL=-ELEMENTS,

NY = Ay MU NUHBER 0f SAMPLE yALUES OF THE SAMPLFD
ITMpHILSE RESPONSE OF THE CHANNEL,

RC = RELAXATION CONSTANT.

HC = MUtnER OF ITERATIVE CYCLES REQUIRED IN THE )
DETECTION PROCESS,

NBT = TaTal MUHGER 0F ELEMENTS TRANSMITTED,

4]

Maedwewi{wti
ARF = sTD, DEVIATION oF ADDITIVE WHITE GAUSSIAN NOIGE..
THE fFuterIod uTp1¢1,1,X1y), UHERE K1 18 INTTIALLY SET

TO P2FRD, GEHERATES RANDUM NUMDERS HAVING GAUSSTAN
DISTRIBUTION WITH ZEmO MEAN AND UNITY VARTANCE,

CDIMENSTON Y(A5e15) b AC100103,%¢109Y,2¢10),21¢10),R¢15)
LRI CISYLERCAMY s TIP I+ XACTO) P D CT1D)

CWRITEC(2,1)

FORMAT(///19X, " ROMPUTER SIMULATION OF SYSTEM &',

AP OUITH ATHARY SIGNAL ELEMENTS')

READ(Y . 231,41, NH NC
FORMAT(ATIL)Y
NmMa Ny -

HE=y1+1

RC=1,25

Mii=Pwet
NBTaMEDwew! et

Ki=9
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REAN CHAHNEL THPULSE RESPONSF

READ(1'3)(V(1fI)II=1|N1>
FORMAT(R(FN,Q))

HRITEL(2,4)

FORNAT(//"' CUANHEL IMPULSE RESPONSE')
WRITEC?,S5Y(Y(1,1)1m1,H1)
FORMAT(/5%,5(F12,4))

DO & I=2,H

Y(1QI)=3.0

NORMALI2E CHANNEL IMPULSE RESPONSE

SUN=0,0
DU 7 I=4,11

CSSUM ey (1,1 4Y (T, 1Y

BF=SQRT (&)

DO 8 I=1,1
YU, D) =v(1, 1) /B¢

CFORN THE Hwil BATRIX Y

b} 10 Im2 .1

Li=led

DO 0 K=1IL
YOI, 80=a.0
DO 106 K=L1.i)
JEKe 11
Y(I,K)=v(t.,. )

FORM THe DATRIX A = Y:Y(TRAHSPOSE)

D¢ 11 Iz1.,H

DO 99 J=4 .M

ACI,1)=0.06

D} 11 K=1,M

ACT, ) =Acl,d)+Y (1, X)ay(d,X)
READ(1,12)YARF

FORHAT(RD.NDY

SEY g#nne CoUNTERS Tn 2ER0O

DO 13 1513”
FR{1)=0 ¢
TE=0,0

b0 LG phK=1,HH
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15
16
17

20

oq

22
23

100

GEHERAYE THE YECTOR 7

O 14 J=1,N1
2¢iym .9 .

DO 400 LJE=1 .1

DO 16 T=1,41
ZCEy=2()+2.0
TFCZC) =1, 017,917,115
Z{1Ye=1 0

CONTIIHUF

COMYTIHUE

CFURI THE RECETVED VECTOR REZeYeu

DO 46 Tz1,H

R(IY=0.0

DO 18 Jm=q. N
RCIy=sR()+2C+*YLI )
RCIVER(II+(HTRYI (1,1, K1) *ARF)

FORI THE VECTNR D=R+«Y(TRANSPOSE)

Do 20 11,1

DCIYatl,

DEIdYeOlrY+R(IY oY (T, 0

START T4E PRNCESS OF DETECTINN AND CANCELLATION

DO 300 1L=1,M

SET INITUAL COHDITIONS To 2CPO

DG 29 Talt M
X(1H)=0.9
XAl{1y=0_0n

DETECT 2 USING SYSTEM 3

DO 100 JK=1,NC

DO 100 t=LL .M

X¥=X(1) .
XCUI=u )+ pC1Y=XA{1))Y*Rp
TFCADS(X¢1)Y~1,002%,23,22
) =STant¢q.0.X(1))
D=L (T )M

Do 100 a=r1 .M

XA XA ¢dY+Du*AL(] 1)
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25
26

27

28
00
e

30

400

33
3L

35

34

CWRITE(2,35) (ERPCI), 1=4,M)

212

DETECT 2¢1) AND STORE

Z1(LL)=et O
60 TQ 24
ZA(LLY=1.0
CUNTINLUE

CANCEL THE DETECTED S1GHAL AND FORM MEW R & D

LLY={L+1

TFCLL, B _HYnad T 29

DU 27 I=mtbL1,H

RCIY RO =24 CLLY*YOLL,Y)
DO 28 T=LL1.M

DCTY=0,0

NO 28 Jdalbll1,H
DCIY=RCIY«REJI*Y (T, d)
CONTIHYE

CONTINUR

COUHT THE NINRER OF FRRORS

DO 400G 1=4,4

CTF(ZCI)w21(19)30430,400

ERC(IY=En(1)a+1.,9
TE=YE+1_.0
CONTINUE

PRINTY THE RESDLTS
URITE(?,31)4

FORPBAT (/¢ NYUNPRER OF ELEVENTS IN A GROUP = 1,13)
HRITE(?,32)RT

FURHNAT(/' TOTAL HUMBER OF ELEMENTS YRANSMITTED = ',16)

WRITF(2,33)ARF

FORMAT (/v STD, DEVIAYION OF NOJSE = 1,F10.3)

URITE(?.34)

FORMAT (/Y ToTAL NUMBFR OF ERRORS IN THE INDIVIDUAL',
19X, Y ELEHENTS UF THE GRIUPSHY -
FORMAT(/RX.3(F3_1))

WRITE(2,36)TE . -
FORHATC(/! ToTAalL NUMBER UF ERRORS = ',Fé.1)

STOP
END
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APPENDIX A6

COMPUTER SIMULATION PROGRAM FOR SYSTEM 8/4
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APPENDIX A7

L)

THE AUTOCORRELATION MATRICES YYT AND DDT

let
yo yl yZ L yg (A7o—1)
be the g+l sample values of the sampled impulse response of the

baseband channel. Let Y and D be the two mxn ° matrices of rank

.th . '
m, whose 1i rows are, respectively, Y.1 and Di’ where n = m + g and

i-1 g+l ' m-i
Yi =. o .. .0 Yo ¥y v o+ - yg 0. ..0 (A7.2)
o i-1 g+l m-i
and Di = 0 , . .0 yg yg—l S N 0. .0 (A7.3)

Since the components of the matrices YYT and DDT are, respectively,
the autocorrelation coefficients of the sequences 0 ..00 Y, ¥y
« ..y, 00..0ada 0. .00

Yg Yg yg-l
matrices YY? and DDT are real, symmetric and positive definite.

lqoy000000,the
32,35,52
Furthermore,if a;, i=0,1, . ., ml are the coefficients of the
autocorrelation function of the sampled impulse response of the

channel in Eqn. (A7-1), then the mutrix YYT has the form

ao al 3.2 . L] L] “« = am_l
al ao al « @ * « * am_z (A7-4)
am—-]_ am-z * e s . . * s = ao

L i

. T ) ,
The matrix DD has also the same form as the matrix YYT. Thus

YYT and DDT are completely determined by the components of their

first rows., It follows that in order to show that the two matrices

are equal for a given sampled impulse response of the channel, it is



219

only necessary to show that the components of the first rows of

. : T T
the rmatrices DD and YY are equal.

From Egn. (A 7-2), the m components of the first row of the

. T
matrix YY¥ are

T -
YlYi forit=1,2, ..., m

Y, + ...+ VY

= + +
Yio1 Yo T ¥y Y1 MYy g g-i+l

i i+l “2

i=1, 2, ... m (pn7-5)
Also from Eqn. (A7-3), the m components of the first row of
. T '
matrix DD are
T .
D.D, for i=1,2, ..., m

1li

= N PR .+ )
= Y ¥ gt ¥gi¥gos V¥t Yo¥s g

1t

tY.,Y

Yic1 Yo T ¥y Yy F oo Vg Yooi Y Yy Ygoin

1

i= l, 2; [ 1) (A7—6)

From Egns. {(A7-5) and (A7-6)

nlniT - YlYiT i=1,2, oo, m (A7.7)

which shows that for a given sampled impulse response of the

. T
channel, the m x m metrices YY and DDT are equal.
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PROBABILITY OF ERROR IN THE DETECTION OF MULTI-LEVEL SIGNAL-ELEMENTS

Consider the detection of s from x, where s = a + 2id, for

i=0,1, ..., k-1, a and 4 being real scalarquantities, and
| X = s+ u. (a8-1)

u is a sample value of a Gaussian random variable with zero mean
and variance a2,

It is well known that if s is equally likely to have any of its
X possiblervalues, the detection process tha£ minimizes the probaﬁility
of error in the detection of s from x, accepts'thé possible value of

s at the minimum distance from x.45'§6'57

This is equivélenttq
comparing x with k-1 thresholds whose values are a + {(2i - 1)4, for
i1 =1, 2, ..., k-1, and accepting the possible value éf s

- between the same‘thresholds as %. Assume now that this arrangement
is used, as shown in Fig. A8-1. Clearly 4 is the distance from
each value of s to the nearest decision boundaries.

If s in Egn. {(A8-1) has one of its two extreme values, that

is, a or a+ 2(k-1)d, then the probability of error in the detection

of s from x is
J ,/—z'—“l'" exp (- >— > ) au
a 270 20

? 1
= I = exp ( - lu?) au
o V2w

0 ( g-l ' (A8-2)

If s has one of the remaining k-2 wvalues, that is a + 2id,
for i =1,2, ..., k-é, then the probability of error in the detection

of s from x is



| d‘[
a+2(k-1)d-d K

a+{k-2)d-d

a+3d

a+d e e
dI

Figure A8«1

Decision boundaries used in the detection of s from x.

[ ]

Y

Possible values of s.

Decision boundaries.

a+2{k-1)d

a+2(k=-2)d

a+2{k-3)d

atdd

a+2d

i}
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o
1 ' u?
2 I SmoZ ©XP ( - 552') du
d
g .
= 20 (=) (a8-3)

Since s is equally likely to have any of its k possible values,

the average probability of error in the detection of s from x is

R RPN | - 4,

P = I {29(0) + (k-2) 29(0)}
2{k-1) 4 : _
= T Q (0) (AB-4)

It can be seen that when s has two possible values
d
P = Q(CF_) '
when s has four possible values -
s
p = 1.5¢0( 59

and when 2 has eight possible values

It

d
p 1.75 9 ().



REFERENCES

- TUFTS D.W.,

"A. Linear and Non-linear Equalization of Channel

"Nyquist's problem - the joint optimization of

transmitter and receiver in pulse amplitude

" modulation", Proc. IEEE, vol. 53, pp.248-259,

SMITH J.W.

March 1965.

"The joint optimization of transmitter and
receiver fiiters for data transmissign systems",
Bell Syst. Tech. J., Vol. 44, pp.2363-2392,

December 1965,

ARON M.R. AND TUFTS D.W., "Intersymbol interference and error

probability", IEEE Trans, Information Theory,

Vol. IT-12,. pp.26-34, January 1966.

LUCKY R.W., "Techniques for adaptive equalization of digital

communication systems', Bell Syst. Tech. J.,

vol. 45, pp.255-286, February 1966.

LUCKY R.W. AND RUDIN H.R., "An automatic equalizer for general

purpose communication channels", Bell Sys%.Tech. J.,

vol. 46, pp.2179-2208, November 1967.

LUCKY R.W., SALZ J. AND WZILDON E.J., "Principles of Data

DiTORC M.J.

. GERSHO A.,

PROAKIS J.G.

Communication”, pp.6-165, New York:McGraw-Hill,
1968.

"Communication in time~frequency spread media

using adaptive equalization", Proc. IEEE

vol. 56, pp.1653-1679, October 1968,

"Adaptive equalization of highly dispersive channels
for data transmission”, Bell Syst. Tech. J.,

vol. 48, pp.55-7Q January 1969.

AND MILLER J.H., "An adaptive receiver for digital

signalling through channels with intersymbol

interference", IEEE Trans. Information Theory

223



. 10'

11,

12.

13.

‘14-

15.

16.

17'

vol. IT-15,pp. 484497, July 1969.

HIRSH D. AND WOLF W.J., "A simple adaptive equalizer for
efficient data transmission', IEEE Trans.
Communication Technology, vol. COM-18, pp.5-12,-
February 1970.

NIESSEN C.W. AND WILLIS D.K., “Adaptive equalizer for pylge~
fransmission", IEEE Trans. Communication Technqlogy,
vol.COM-18, pp.377-395, August 1970.

LENDER A., "Decision—directéd digital adaptive equalization
technique for high—-speed data transmission",
1EEE Trans. Communication Technology, vol.

COM—-18, pp.625-632, October 1970.

NEWHALL E.E., QURESHI S.U.H. AND SIMONE C.F., "A technique
for finding approximate inverse systems and its
application to equalization", IEEE Trans.
Communication Technology, Vol. COM-19, pp.1116-1127,
December 1971.

LAWRENCE R.E. AND KAUFMAN H. "The Kalman filter for the
equalization of a digital communications channel,

IEEE Trans.‘Communication Technology, vol. COM-19,
pp. 1137-1141, December 1971.
GORCG E., "A new approach to time-domain egualization",
IBM J. Res. Develop., vol. 9, pp. 228-232,
July 1965.

MONSEN P., "Feedback equalization for fading dispersive
channels", IEEE Trans. Information Theory, vol.
IT-17, pp.56-64, January 1971,

TAYLOR D.P. Nonlinear feedback equalizer employing é soft
limiter", Electronics Letters, vol. 7, pp.265-267,

May 1971.

224



18.

19.

20.

21,

22.

23.

225

GEORGE D.A,, BOWEN R.R., AND STOREY J.R., "An adaptive
decision feedback equalizer', IEEE Trans.
Communication Technology, vol. COM-19, pp.281-293,
June 1971,

UNGERBOECK G., "Nonlinear equalization of binary sigﬁals in
Gaussian noise", IEEE Trans. Communication
Technology, vol. COM-19, pp.1128-1137, December 1971.

BERSHAD N.J. AND VENA P.A., "Eliminating intersymbol
intefference ~ a shté-space approach', IEEE
Trans. Information Theory, vol. IT-18, pp.

. 275-281, March 1972,

CLARK A.P., "Detection processes for distorted digital
signals "Part 1, Lecture Ndes, Department of
Electronic and Electrical Engineering, Loughborough
University of Technology, 1972.

ACKROYD M.H. AND GHANI F., "Optimum mismatched filters for
sidelobe suppression", IEEE Trans. Aerospace and
Electronic Systems, Vol. AES5-9, No. 2, March 1973.

CLARK A.P., "Design technique for non-linear equalizers",

Proc. IEE, Vol. 120, No. 3, pp.329-333, March 1973.

B. Optimum and Sub-optimum systems

24,

25,

CHANG R.W. AND HANCOCK J.C., "On receiver structures for
channels having memory", IEEE Trans. Information
 Theory, vol. IT-12, pp.463-468, October 1966.
CONSALVOS R.A., "Maximum~likelihood receiver for digital data
transmissionf. TEEE Trans. Communication

Technology, vol. COM-16, pp.392-398, June 1968.



226

26. ABEND K., HARLEY T.J., FRITCHMAN B.D. AND GUMACOS C.

"On optimum receivers for channels having memory",
IEEE Trans. Information Theory {Correspondence),
vol. IT-14, pp.819-820, Novembex 1968.

27. BOWEK R.R., "Bayesian decision procedure for interfering
digital signals'", IEEE Trans. Information Theory
(Correspondence), vol. IT-15, pp.506-507, July 1969,

'28. ABEND K., AND FRITCHMAN B.D., "Statistical detection for
communication channels with intersymbol interferencce",
Proc. IEEE, vol. 58, pp.779-785, May 1970.

29, KOBAYASHI H., "Correlative level coding and maximum~likelihood
decoding", IEFE Trans. Information Theory, vol.
IT-17, pp.586-594, September 1971.

30. FORNEY G.D., "Maximum likelihood sequence estimation of
digital sequences in the presence of intersymboi
interference", IEEE Trans. Information Theory,
vol. IT;18, pp.363-378, May 1972.

31, CLARK A.P.,"Adaptive deéection with intersymbol interference

| cancellation for distorted digital éignals",
IEEE Trans. Communications, vol. COM-20, pp.

350-361, June 1972.

C. Detection Processes for Orthogonal Groups of Signals

32, CLARK A.P. "Adaptivé detection of distorted digital signals",
Radio and Electronic Engineer, Vol. 40, pp. 107-119,
September 1970.

33. CLARK A.P.,"A synéhronous serial data-transmission system
using orthogonal groups of Binary signal-elements"
IEEE Trans., Communication Technology, vol. COM-19,

pp.1101-1110, December 1971.



34.

35.

227

CLARK A.P.,"Detection Processes for distorted digital sitnals”,
Part II, Lecture Notes, Department of Electronic
and Electrical Engineering, Loughborough University
of Technology, 1972.

CLARK A.P. AND GHANI F., '"Detection processes for orthogonal
groups of signals", IEEE Trans. Communications,

vel. COM-21, pp.907-915, August 1973.

D. Matrix Algebra

36'

37'

38.

39.

40.

41.

FADEEVA V.N., "Computational Methods of Linear Algebra",
pp.81-85, Dover Publications, New York, 1956.

BELLMAN R,, "Introduction to Matrix Analysis", pp.89-94,
McGraw Hill Book Co., Inc., New York, 1960,

VARGA R.S.,"Matrix Ierative Analysis", Englewood Cliffs,
N.J.: Prentiqg Hall, 1962,

FRAME J.S, "Matrix functions and applications®, Part IV,
IEEE Spectrum, Vol. 1, June 1964.

DERUSSO P.M., ROY R.J. AﬁD CLOSE C.M., "State Variables
for Engineers", John Wiley and Sons, New York, 1965.

ROSENBROCK H.H., "Sensitivity of an eigen-value to changes

in the matrix", Elect. Lett. Vol. 2, June 1966.

E. General topics in Communication Systems

1t

42, SCHWARTZ M.,"Information Transmission, Modulation and Noise,

43.

44,

McGraw-Hill Book Co., Inc., New York, 1959. _
LEE Y.W., "Statistical Theory of Communication", John Wiley

and Sons, Inc., New York 1960.
CLARK A.P.,"Consideration in the choice of the optimun data-
transmission systems for use over telephone circuits”,

J. Brit. L.R.E., vol. 23, No.5,pp.331-355 May 1962,



45.

46,

47.

48.

49,

50.

51,

S2,

53.

54.

WOZENCRAFT J.W, AND JACOBS I.M., "Principles of Communication
Engineering", John Wiley and Sons, New York, 1965.

PANTER P.F., "Modulation, Noise and Spectral Analysis",
McGraw-Hill Book Co., Inc., New York, 1965.

BELLOW, f.A., "Some techniques for‘the instantaneous real
time measurement of multipath and doppler spread",
IEEE Trans., Communication Technology, vol. Com-13,
Pp.285-292, September 1965.

KRETZMER E.R., "Generalization of a technique for binary data
communication', 1EEE Trans. Coﬁmunication
Technology, vol. Com—-14, pp.126-130, April ;966.

PORTNY S.E., '"Large sample confidence limits for binary error
probabilities", Proc. IEEE, vol. 54, No. 12,
p.1993, December 1966.

CARLSON A.B., "Communication Systems: An introduction to

signals and noise in communication systems", pp.ll4-

376, McGraw-Hill Book Co., Inc., New York, 1968.
VANTREES H.L., "Detection, Estimation and Modulation Theory'y
Part 1, pp.19-165, John Wiley and Sons, Inc.,
New York, 1968.
CLARK A.P. "The transmission of digitally coded signals by
means of random access discrete address systgma",

Ph.D.thesis, London Univ. London, England, 1969.

228

BELLOW P.A., "Measurement of random time-variant linear channels",

IEEE trans. Information Theofy, yvol. II-15,
pp.469-475, July 1969.
STIFFLER J.J.,"Theory of Synchronous Communications",

Prentice Hall, Englewood Cliffs, New Jersey, 1971.



55. CLARK A;P. AND MUKHEﬁJEE A XK., "Parallel data-traﬂsmission
systems using code~division multiplexing and
adaptive detection", Proc. Joint Conference on
Digital Processing of Signals in Communications,
pp.391-408, Held at Loughborough University,
11-13th April, 1972,

56. CLARK A.P., "Detection and Estimation Theory", Lecture Notes,
Department of Electronic and Electrical Engingering,

Loughborough University of Technology, 1973.

57. CLARK A.P., "Elementary Detection Theory", Lecture Notes,
Department of Electronic and Electrical Engineering,

Loughborough University of Technology, 1973.

229 -






