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ABSTRACT 

The investigation is concerned with signal design and 

detection processes suitable for use in a synchronous serial baseband 

data-transmission system where the signals are transmitted in 

orthogonal groups over a channel which is time invariant and known. 

A number of different detection processes have been proposed 

and analysed theoretically for· the case where no signal processing 

is carried out at the transmitter. Adjacent groups of transmitted 

signal-elements are here separated by gaps of no signal, whose 

duration is such that the corresponding received groups of signal

elements do not overlap in time. The detection of a group of signals, 

in the proposed arrangements, is carried out iteratively by a 

sequence of similar operations which can be performed successively 

ii 

by a simple piece of equipment. The optimuill d~tection process is of 

limited practical value because of the very large number of sequential 

operations required, when there are more than a few signal-elements in 

a group. The more effective of the suboptimum detection processes 

achieve a tolerance to additive wbit<' Gaussian noise approaching 

that of the optimum detector,but require far fewer sequential 

operations and can be implemented quite simply. The tolerance to 

noise of the various detection processes has been assessed by computer 

simulation for different numbers of signal-elements in a group and with 

both binary and multi-level signals. 

It has been shown that when a linear transformation is applied 

to the signal at the transmitter, such that there is no intersymbol 

interference between the individual received signal-elements in the 

sampled signal at the detector input, the best arrangement uses an 



uninterrupted nansmitted signal, with no gaps between adjacent groups 

of signal-elements, and the detector uses only the central group of 

sample valueB of each received _group of elements for the 

corresponding detection process. An alternative to this arrangement 

iii 

uses gaps between adjacent transmitted groups of elements, and the linear 

processing of signals at the transmitter is such that the received 

signals in a group are o_rthogonal but usually with considerable 

intersymbol interference. Each received group of elements is now 

detected by a set of matched detectors. The tolerance to additive 

white Gaussian noise of each of these systems is similar to that of 

the process of optimum linear equalization at the receiver. 

Different arrangements of sharing the linear -~qualization-between 

the transmitter and receiver have been studied. · An advantage of up 

to 3 dB in tolerance to additive white Gaussian noise is gained by 

the best of these arrangements, over the process of optimum linear 

equalization at the receiver. 

In all the arrangements tested it has been found that a near 

optimum detection process at the receiver, with no signal processing 

at the transmitter, always achieves a. tolerance to additive white 

Gaussian noise at least as .good as er better than that where the same 

detection process is used at the receiver but with some linear 

signal processing at the transmitter. 

A study of some techniques using non-linear processing of signals 

at the transmitter has shown at best only a small improvement in 

tolerance to additive white Gaussian noise over the arrangement of linear 

eq~alization at the receiver. 
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GLOSSARY OF SYHBOLS AND TERHS 

number of signal-elements in a group •. 

maximum number of successive sample values of the 

sampled impulse •espouse of the channel, the first 

and last of which are non-zero. 

number of sample values corresponding to a group of 

received signal-elements. 

m-component row vector whose components carry the 

element values of the signal-eiements of a group. 

x-component row vector whose components are the sample 

values of a received group of signal-elements. x is 

defined in the text. 

impulse response of the channel. 

m x n matrix of rank m whose ith row Yi is given by 

i - 1 g + 1 m - i 

= 0 0 . . . 
yg are the sample values of 

sampled impulse response of the channel. 

magnitude (absolute value) of x, if X is a scalar. 

length (Euclide.an norm) of X, if X is a vector. 

the components of X, if X is a vector. 

the rows or columns of X, if X is a matrix. 

the component of matrix A located in ith row and jth 

column. 

transpose of matrix A • 

determinant of matrix A. 

inverse ·of rna trlx A: 

Fourier transform of the time function d{t). 

--, 
.o 
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D(z) z-transform of a set of sample values given by the 

_components of the vector D. 

two-sided power spectral density of zero mean additive 

white Gaussian noise at the input to receiver filter. 

w x-component row vector whose components are sample 

values of a Gaussian random variable with zero mean 

and variance cr2. x is defined in the text. 

A signal-element is a unit component of a digitally-coded signal. 

Two groups of m signal-elements are said to be orthogonal when they 

are disjoint in time. 

Vectors are ·treatedas matrices having one row or column. 

A square matrix A is symmetric if A = AT 

A square matrix A is positive definite if all the eigen-values of A 

are non-zero and positive. 

A unit or identity matrix A, is a square matrix where 

and 

a.. -= 1.0 
11. 

a .• = 0 for i f j. 
LJ 

A set of p vectors X. having n components x .• , x-2i' •.••• x .• , is 
1. 11. n1. 

said to be linearly independent provided that no set of constants 

..... , q exists (at least one q. must be non-zero} such that 
p L 

qlXl + q2X2 + •••• + qPXP = 0. 

The rank of a matrix A is the largest square array in A with a non-

vanishing determinant. 



1.0 INTRODUCTION 

1.1 Background 

In the study of detection processes for distorted ·digital 

signals, techniques of both linear and non-linear equalization of the 

channel have been widely studied. 1- 23 The non-linear equalization 

14-21 23 of the channel ' usually gives a better tolerance to additive 

white Gaussian noise than linear equalization, l-13 •22 normally 

requiring a lower average signal to noise power ratio for a given error 

1 

rate. An even better tolerance to noise can be achieved through the use 

24-31 of more sophisticated detection processes, which do not equalize 

the channel. Many of these processes, however, involve considerable 

equipment complexity. 

An interesting technique has recently been proposed which for 

certain applications can achieve a similar standard of performance as 

the more sophisticated processes just mentior,ed, but with relatively 

. 32-35 simple equ1pment. The arrangement is a synchronous serial data-. 

transmission system in which the transmitted signal-elements are 

1 . 1 . d d d d . th 1 . 32-35 1near y 1n epen ent an space 1n or ogona groups. A sufficient 

time interval separates adjacent tran3mitted groups to eliminate 

intersymbol interference between the received groups at the detector 

input. The data-transmission system is shown in Fig. 1.1-1. 

Four different arrangements of the data-transmission system 

have been studied.
33 

In the first three of these a process of exact 

linear equalization is applied to the received sampled signal, and 

the individual signal-elements are then detected from the signs of the 

corresponding sample values in the equalized signal. The equalization 

process may be achieved by a linear network or preferably by an 

iterative technique which performs the same linear transformation on 

the received sampled signal as does the linear network. The iterative 
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Block diagram of the synchronous serial data-

transmission system. 
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technique involves a sequence of identical or similar operations which 

are performed successively by a simple piece of equipment. The 

fourth arrangement employs the optimum detection proces·s which minimizes 

the probability of error in the simultaneous detection of the signal-

elements in a group. 

The results of the investigation
33 

show:, that the fourth arrange-

ment sometimes achieves a considerable advantage in tolerance to 

additive white Gaussian noise over the other three systems, particularly 

with more severe signal distortions. However, with m binary signal-

elements in a group, the first three systems can be implemented quite 

simply for values of m up to 20 or even 30, whereas the optimum detection 

process involves 2m sequential operations. The latter is not a practical 

arrangement when m > 10 and the transmission rate approaches 10,000 bits 

per second. If 4-or 8-level signal-elements are used the optimum detection 

process requir•s 4m and am sequential operations,respectively. The 

corresponding increase in the number of sequential operations in the . 

other three systems is relatively insignificant, so that the optimum 

detection process is now by far the least attractive. 

Jl.n alternative technique for the transmission of orthogonal 

groups of signal-elements is to use code-division multiplexing (CDM) 

in place of the time division multiplexing (TDM) of the transmitted 

signals assumed in the systems just described. In a CDM system the 

waveform of two transmitted signal-elements of a group, having the same 

element values are not simple time shifts of each other as in a TDM 

system. A CDM system is thus a parallel system whereas a TDM system is 

a serial system. Various parallel systems using CDM have been studied 

but it was found that these are much more complex than the serial 

system just outlined,and do not in fact achieve any useful advantage 

. d' . h' . . 45 • 55 h lt f th' 1n tolerance to ad 1t1ve w ~te Gauss1an no1se. T e resu s o 1s 
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work suggest that serial systems are likely to be more cost-

effective than parallel systems. 

In all the work just mentioned it is assumed that. the channel 

characteristics may vary slowly with time. The techniques investigated 

have therefore been strongly influenced by the need to estimate the 

channel response at the receiver, from the received data signal. 

Furthermore, since the channel response is estimated at the receiver, 

any attempt at the total or partial equalization of thE\ channel at the 

transmitter, requires the transmission of the necessary information from 

the receiver to the transmitter, thus immediately increasing the 

equipment complexity. For this reason, in all the systems studied so 

far, the signal processing involved in the equalization of the 

channel or the correction of the effects of signal distortion, are 

concentrated at the receiver, where the channel response is known. 

In an application where the channel re.spcnse is fixed and 

known, it may be advantageous to perform at least some of the signal 

processing involved with the correction of signal distortion, at the 

transmitter. It is, for instance, well known that when the signal 

processing is achieved by a single t~ansversal equalizer, an advantage can 

often be gained in tolerance to additive Gaussian noise by suitably 

. . 1' . b h . d . 1,2 shar~ng the l~near equa ~zat~on etween t e transm~tter an rece~ver. 

1.2 Outline of Investigation 

The investigation is concerned with the basic principles and 

methods of operation of the various systems studied. The primary aim 

has been to obtain a better understanding of these systems and hence 

to develop the most cost-effective arrangement for the particular 

application considered here. Since the various systems studied are all 

arrangements for processing sets of numerical values, these are computer-
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like systems which are best simulated on a computer rather than tested 

on a practical model. The latter would simply be a special purpose 

digital computer with the appropriate analogue/digital interfaces, and 

would be most costly and time consuming ·to build and test in the 

laboratory. The research methods have therefore involved a combination 

of theoretical analysis and computer simulation. The investigation is 

not concerned with the detailed practical implementation of the 

systems studied: It has been assumed throughout the do.scussion that 

the impulse response of the baseband ci,annel is known at the receiver 

and does not vary' with time. The transmission rate is assumed to be 

less than about 10,000 bq:uds, and the signal-elements may be 2, 4 or 

8-level. 

In the majority of the cases studied, groups of signal-elements 

are made orthogonal or disjoint in time by providing a sufficient 

time gap between adjacent groups so that th<,re .nay be considerable 

intersyrnbol interference between the elements of a received group but. 

no interference between the elements of different groups. In the 

remaining cases the orthogonality of the different groups of signal-

elements is achieved by leaving no gaps between adjacent groups of 

transmitted signal-elements and using time guard bands between the 

detection processes for adjacent groups, so that each group of signal-

elements is detected from only the ·central sample values of that group. 

The mathematical model of the data-transmission system is 

discussed in Section 2 which also considers two important transversal 

equalizers for the equalization of base-band channels.
21

•23 The 

former of the two, is the optimum linear equalizer which minimizes 

the mean square distortion in the equalized signa1, 21 and the latter is 

a non-linear equalizer which maximizes the ratio of the output signal 

to additive white Gaussian noise.
21

•23 In both these equalization 



arrangements, no gaps are inserted between adjacent groups of signal

elements at the transmitter and the transmission is a continuous 

(uninterrupted) serial stream of signals. 

6 

In section 3 two important detection processes are analysed. It 

is assumed for both of these that the appropriate time gap is 

inserted beb1een adjacent groups of signal-elements at the transmitter. 

The first·of the two detection processes is the ·nptimum process of 

linear equalization for a received group of signal-elements, which is, 

o~ course, not the same as the linear equalization of the channel 

although it approaches the latter as the group size increases. This 

arrangement makes the most inefficient use of the available prior 

knowledge of the received signal, of the various systems studied in 

Sections4 and 5, and therefore achieves the lowest tolerance to 

additive white Gaussian noise. The second of the two detection 

processes studied in Section 3, ·is the optimum detection process which 

at high signal/noise ratios achieves the best tolerance to additive 

Gaussian noise. It selects the.set of element values having the 

maximum posterior probability of being correct. These two detection 

processes are of fundamental importance because they set the lower and 

upper bounds for the tolerances to additive white Gaussian noise 

achieved by the various arrangements studied in Sections 4 and 5. 

Section 3 ends with a simple example of groups of two_ binary signal

elements, to bring out the fundamental principles involved in the two 

detection processes just mentioned, and the advantages gained by 

transmitting signals in separate groups rather than in an uninterrupted 

serial stream. 

Section 4 des'cribes the various detection processes which have 

been developed from the two basic processes described in Section 3. 

The linear equalization process for a received group of signal-elements 
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is implemented in an iterative process using the Gauss-Seidel method. 32 

The other detection processes studied in Section 4 make use of 

suitable modifications of the Gauss-Seidel method, and in every case 

the detection of the signal-elements of a group is carried out in a 

sequence of identical operations which can be performed by a simple 

piece of equipment. The rate at which signals can be transmitted is, 

therefor~, limited by the time required for the sequential operations in 

the detection of a group of signal-elements. An interesting 

technique for detecting multi-level signals is presented in which an 

initial search is carried out to select from tl1e total number of 

possible values of each signal-element, the two or three element 

values which are most likely to be correct. The detection of a group 

of signal-elements is then completed by an iterative process which operates 

only on the selected element values, so that it treats the received 

signal-elements eS though these were the corresponding 2 or 3-level 

elements. 

Section 5 presents the r7sults of computer simulation tests 

which have been used to compare the tolerancesto additive white 

Gaussian noise of tlle different detection processes Qescribed in 

Sections3 and 4. The results of the tests are used to elucidate the 

relationships tllat exist between tlle different detection processes. 

Section 5 ends with an attempt to compare the tolerances to 

additive white Gaussian noise of the various detection processes using 

o.i:thogonal groups of signal , studied in Sections 3 and 4, with tllose 

described in Section 2 where tlle signals are transmitted in a 

continuous (uninterrupted) serieal stream , the i>1formation rate being 

the same in tlle two cases. 

Section 6 describes tlle class of systems in which some linear 

processing, that is a linear transformation, is applied to the 



transmitted signals. Where the linear processing at the transmitter 

achieves exact equalization of a received group of signal-elements, 

adjacent groups of transmitted signal-elements are not separated by 

time gaps and the values of the individual signal-elements of a 

8 

group are detected directly from the corresponding sample values of 

the received signal, by comparing these with:. the appropriate 

threshold~. ~fuere the linear processing at the transmitte~ only 

partially equalizes a received group of elements, separation of 

adjacent groupscr transmitted signal-elements depends upon the linear 

transformation used at the transmitter. In cases where time gaps are 

inserted between adjacent groups, a received group of signal-elements 

at the receiver may here by detected by any of the detection processes 

described in Sections 3 and 4, 

Section 7 presents the results of computer simulation tests 

which have bee~ u~ed to compar~ the tolerances to additive white 

Gaussian noise of the different arrangements described in Section 6. 

The results of the tests are used to clarify the relationships that 

exist between the different systems, 

In Section 8, Systems employing non-linear processing of signal 

at the transmitter are described. The non-linear processing here is 

such that adjacent groups of transmitted signal-elements are 

separated by time gaps. The tolerance to additive white Gaussian noise 

of these systems is studied by computer simulation, 
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2. 0 LINEAR AND NON-LINEAR EQUALIZATION OF A BASEBAND CHANNEL 

2.1 Model of the ·Data-Transmission System 

The data-transmission system considered here is shown in 

Fig. 1.1-1. It is a synchronous serial baseband system, where the 

input signal to the transmitter filter is a stream of regularly 

spaced impulses, the value or area of each of which carries the value 

of the corresponding signal-element, Each impulse sio(t- iT) at the 

input to the transmitter filter is therefore the corresponding input 

signal-element and· it may be either binary or multi-level, 

The transmission path itself could be either a low pass channel 

with an upper frequency limit no greater than about 10 KHz, or else 

a typical voice frequency channel with a frequency band no wider ~~an 

3000 to 3400 Hz, such as could be obtained over the telephone 

network •. In the latter case ·the transmission path in Fig. 1.1-1 is 

assumed to include a linear modulator (at the transmitter) and a 

linear demodulator(at the receiver! the whole forming a linear base-

band channel. An example of such a system is an arrangement using 

vestigial sideband suppressed carrier amplitude modulation (with a 

reinserted pilot carrie.r) at the transmitter; ,and coherent demodulation 

of the received signal, the reference carrier being held correctly 

synchronized (phase locked) to the received signal, with the aid of the 

. . . 44,46,50,54 
rece~ved p~lot carr~er. It may be shown that, with the 

elimination of the effects of the pilot carrier at the output of the 

demodulator in the arrangement just described, the modulator and 

demodulator together with the band-pass channel are equivalent to a 

. 33 34 46 50 54 
s~ngle baseband channel. ' ' ' ' 

Over practical band-pass channels the characteristics are either 

not known prior to.a transmission, such as over the switched telephone 

network, or else they may vary considerably (but usually slowly) 
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with time, such as over point-to-point HF radio links. In either 

case, the ·impulse response of the channel must be estimated at the 

receiver from the received signal. Where the channel characteristics 

do not vary significantly with time, this may be carried out at the 

f . . 32-34 h 1 h . . start o a transm1ss1on, and w ere the channe c aracter1st1cs 

vary with time, this must be carried out continuously using the 

received data signal .~' 5• 
32

' 
34 

In the latter case a reasonably 

good estimate of the channel response can be obtained so long as 

the impulse response of the channel does not vary significantly 

during the reception of about 100 successive signal-elements. The 

zero-lever-elements present during the gaps are not here considered 

as signal-elements and it is assumed that there are about 16 signal-

elements in each group, so that about 6 groups of elements are received 

before there is a noticeable change in the channel impulse response. 

At an actual elem8nt rate of about 1000 b2U,ds, this implies that there 

is no significant change in the channel characteristics over a period 

of 0.1 seconds. This is normally the case over HF radio links where 

. 4 . t 32,34,47,53,55 the typ1cal fading rates are to 15 fades per m1nu e. 

Where there is a negligible change in the channel impulse response over 

a received group of signal-elements and where the receiver has a 

good estimate of the impulse response, it is immaterial to the detection 

process whether or not the channel characteristics are varying with 

time. It is clear therefore that the systems studied here may be used 

either over a time invariant channel or else over a channel whose 

characteristics may slowly vary with time. In the latter case, the 

impulse response of the channel may be estimated in any one of several 

. 4-11 32 34 
different ways and these are described in the published l1terature. ' ' 

This investigation is not concerned with the methods of estimating the 

channel and it is therefore assumed throughout that the impulse response 



of the channel is known and furthermore, is time invaria.nt. 

The transmitter filter limits the spectrum of the transmitted 

signal approximately to the available bandwidth of the'transmission 

path. Where the transmission -path itself is a band-pass channel, 

the transmitter filter is assumed to include the low-pass filter 

equivalent to all filters involved in the linear modulator. 

The receiver filter removes the noise components outside a 

frequency band approximately corresponding to the bandwidth of the 

received signal, and where the transmission path is a band-pass 

channel, the receiver filter includes the low-pass filter equivalent 

to all filters involved in the linear demodulation of the received 

modulated carrier signal. 

The transmission path together with the transmitter and receiver 

filters, form a linear baseband channel whose impulse response is 

taken to be y(t). Thus in the absence. of noise, the signal at the 

output of the receiver filter is 

(2.1-1) 

Over some practical channels such as voice frequency channels using 

HF racio links, the most important type of noise introduced by the 

channel is, additive noise which can for practical purposes,be taken 

to be additive white Gaussian noise. 46 •47 • 53 The difference 

between the two is sufficiently small not to introduce any serious 

discrepancies in the results, when the noise actually present is 

taken to be white Gaussian noise. The latter is of course not 

physically realizable, having infinite bandwidth and therefore 

infinite power level, for a non-zero power spectral density. 

Over telephone circuits, however, the most important source of 

additive noise is impulsive noise which sometimes resembles short 

bursts of Gaussian noise. It has been shown that, if one data-

11 
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transmission system has a better tolerance than another,to additive 

white Gaussian noise, it will also in general have a better tolerance 

to the additive noise,over telephone circuits.
44 

It follows 

therefore, that the relative tolerance of two systems to additive 

white Gaussian noise is a good measure of their relative tolerance 

to the additive noise over telephone circuits. 44 Furthermore,the 

effects of additive white Gaussian noise on a digital data-

transmission system may readily be analyzed theoretically and studied 

by computer simulation. For the above reasons, in the model of the 

data-transmission system, it is assumed that additive white 

Gaussian noise is introduced at the output of the transmission path: 

The noise has zero mean and a two sided power spectral density of 

a2 , giving the zero mean Gaussian waveform w(t} at the output of the 

receiver filter. ·Thus the resultant signal at the output of the 

receiver filter i? 

r(t} ~ 1: Si y(t - iT) + w(t} (2,1-21 
i 

The impulse response h(tl of the transmitter and receiver 

filters in cascade is assumed to be such that h(O} ~ 1 and h(iTl ~ 0 

for all non-zero integer values of i. This impulse response is 

achieved by using the same transfer function B(fl ~ H!(fl for the 

transmitter and receiver filters, where 

H(f} 
{ 

1 1 
~ ! T (1 + cos 11fT} for - T < f < T 

0 elsew~ere 

(2.1-31 

The use of the same transfer function for the transmitter and receiver 

. . 6,33,34 bl . t b filters LS conventLcnal and ena es an easy comparLson. o e 

made with other systems. Alternative transfer functions for the 

filters are, of course, available and some of these make more 

efficient use of bandwidth. 33 



If C(f) is the transfer function of the transmission path, 

then the channel transfer function expressed in terms of the 

transfer functions of the transmission path and filters, is 

Y(f) = H(f) C(f), (2.1-4) 

and the impulse response of the channel y(t) is given by the 

inverse Fourier transform of Y(f), that is, 

y (t) = p-l{y (f)} = 

When no signal distortion is introduced by the transmission path, 

that is,:•'c(f) = 1, 

y(t) = 

From Eqn. (2.1-3) 

y(t) = 

= 

= 

= 

= 

= 

(2 .1-6) -

!. 

! ~.!.r (1 

. ft 
+ cos lifT) eJ21f df 

T 
I. 

!T JT (1 + jej1ffT+ je-jrfT)ej21fftdf 

-'f 
I 

!T J'f{ej1ff2t + ! ej~£(2t+T) + ! ej1rf (2t-T) }df 

-r 

[ 

~jirf2t 
. + 
J1f2t 

. 2t 
2J1f

T 

sin. 1f 
2t --· T 

2t 
1f --

T 

+ ! 

. jirf (2t+Tl 
! e -.,..j 1f-(;-::2c-ct-+"'Tl;-

1 
~j:.rl'(:2t:..:Tl lf 

+ ! j1T (2t-T) L~ 
T 

. (2t ' )11-.,. 
+ ! e T · 

1) -jn(2t + 1) 
-e '!' 

. (2t 1) 2J1f "'T + 

)ii (2t - 1) -j1f 
2t- .. 
(--

!e 
T. -e T 

+ 

2j1f (~- ll 
T 

. c2t sin 'IT (2t -1) s1.n1r T + 1) 

! T 
+ 

1f (2t -+ 
T 

1) 1f (2t -
T 

1) 

13 

ll 

(2.1-7) 
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The shape of y(t) is shown in Fig. 2.1-1. The delay introduced by the 

filters has for convenience been neglected here. Clearly, when C(f) = 1, 

Y (o) 1, T ! (2 .1-8) = y(.:_ 2 ) = 

and y <.:.! iT) = 0 for i t 0 or .:!:. 1 (2.1-9) 

The received signal r(t) at the output of the receiver filter 

is sampled at time instantst = iT, for all integers i. This assumes 

that the receiver has the prior knowledge of the time of arrival of 

each signal-element, that is,. the receiver is in element synchronism 

with the received signal. Techniques for achieving correct element 
' 

synchronism have been widely studied and can be designed to hold a 

receiver in correct synchronism even in the presence of quite severe 

signal distortion.
44

•
54 The study of these techniques is beyond the 

scope of this investigation and the problem of maintaining element 

synchronization will not be considered further. 

The i th received signal-element is sampled at time t = iT :to give 

the sample value r (iT) 

or 

= 

= 

s.y(O) + w(iT) 
l. 

(2.1-10) 

(2.1-11) 

where ri = r(iT) and wi = w(iT), and it is assumed that C(f) = 1. 

Thus, when C(f) = 1 and in the absence of noise, the, sample value of 

the ith received element, obtained at time instant t = iT,is si. 

The energy of the i th transmitted signal-element is 
"' 2 . 2 

I s. IB(fll df. 
l. _., 

"' "' 
I Is (fl 12 d(fl 

- 00 

= £., IH(f) I df 

1 
T 

s (1 +cos 11fT) df, from Eqn.(2.1-3), 

1 
T 

= 
·sin·1TfT 

!T (f + 1TT ] 

= 1 

1 
T 

·1 
T 

(2.1-12) 
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Figure 2.1-1 

. y( t) 

1. 0 

0 1/2T T 3/2T 

Impulse response y(t) of the baseband channel when no 

signal distortion is introduced by the transmission path, 
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Hence the energy of a single transmitted element is si2 • 

With addimre white Gaussian noise having a two sided power 

spectral density of cr 2 at the input to the receiver filter, the 

noise power spectral density at the output of the receiver filter is 

(2 .1-13) 

so that the mean noise power is 

= (2 .1-14) 

from equation (2.1-12). 

Thus wi in Eqn. (2.1-11) is a sample value of a Gaussian 

random variable with zero mean and variance cr2. 

F th ' K' h' Th 21 1 ' f ' rem e ~11ener- '1nc 1ne eorem, the autocorre at1on unct1on 

of the noise signal w(t) at the output of the receiver filter is 

f-rom Eqn. 

a(T) 

sinTI 
2T 

02 T 
= + 2T 

1T-T 

(2 .1-6). Clearly 

a(o) 

= r cr 2 H (f) ej 21TfT df 
-"' 

sin1T ~T -+ 
! (2T 1T- + T 

= 02 

1) 
+ 

1) 

sin11 (2T - 1) 
!--::-~T:....__ ] 

1T (~ -1) 
T 

and a(iTJ = 0 

for any non zero integer i. Since the mean value of w(iTJ is zero, 

16 

it follows that the noise component w(iTJ is uncorrelated with the noise 

component w(hT), where the integer h ;l i, so that the. {w) are sample 

values of statistically independent Gaussian random variables with 

zero mean and variance cr2 • 

Suppose now that C(f) ;l 1 and signal distortion is introduced 

in the transmission path. This results in intersymbol interference 

between the different received signal-elements at the sampling instants 

t = iT. It will be assumed throughout the following discussion that 

C(fl is such that a received signal-element may introduce intersymbol 

interference in the sample values cf some or all of the gi 
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immediately preceding elements and in some or all of the g2 immediately 

follo>~ing elements. Most forms of signal distortion normally 

. d f thJ.'s l t 33,34,44,47 exper1ence are o genera ype. Let 

g = 

If only the ith element is received, in the absence of noise, then 

for any integer h, 

r(hT) = SiY (hT - iT) (2.1-15) 

or = (2 .1-16) 

Where rh = r(hT) and ih - iJ = y(hT - iT)· 

ih ' . ) is - ]. 
non-zero for some or all values of h in the range i-g, 

to f+ g2 ' 
and is zero for all other values of h. The sample 

values corresponding to the .th transmitted signal-element are ]. 

y 0 • • 0 y g>. 0 .. • 0) • 

Thus, the sampled impulse response of the baseband channel (i.e. 

the transmitted filter, transmission path and the receiver 

filter in cascade} is 

g2 
l: ¥' 6 (t - hT) 

h=-g1 . h 
(2.1-17) 

To make this physically realizable, let the first non-zero 

sample value occur at t = o, so that the sampled impulse response 

of the baseband channel becomes 
g 

h~O yh6 (t - hT) (2 .l-18) 

and Yh = y(hT) is now non-zero for some or all values of the 

integer h in the range 0 to g and is zero for all other valu~s of 

h. Thus the sampled impulse response of the baseband channel may 

be simply written as the (g + 1)-component row-vector 

~O Y1 Yb_ • • • Yg· (2.1-19) 

h l 1 f h ,th 0 d 0 1 l T e samp e va ues o t e 1 rece1ve s1gna -e ement now become 



si(O • , • 0 Yo Yl , ·, . Yg 0 •• ,0) 

lllien a continuous stream of signal-elements is received in the 

presence of noise, the sample vale of the received signal at time 

t ;.. hT is 

b 
r(hT) = i: s. y(hT- iT) + w(hT) 1 (2.1.20) 

i=h-g 

-h 
or rt, = l: s· Yj, . + w 

i=h-g 1 -1 h 
(2~ 1-21) 

It is evident !hat if rh is used for the detection of any one si, 

there may well be so much inter-symbol interference from the other 

received elements, that the correct detection of si fr9~ rh is not 

possible, even in the absence of noise. 

2,2 Basic Assumptions 

In the data-transmission system of Section 2.1 the sampled 

impulse response of the baseband channel is given by Equation 

·(2.1-18) and its Fourier transform is 

-j211fhT e (2.2-1) 

where j = l-1. The z~transform of the sampled impulse respnnse 

of the baseband channel is 

g -h 
F(z} = ~fp yh z (2.2-2) 

where z = 
j21!fT 

e • The .coefficients of z-h in Eqn. (2.2-2) are 

of course the sample values of the sampled impuse response of the 

baseband channel m Eqn. (2.1-19). The values{si} of tre signal-

elementsat the input to the transmitter filter are assumed to be 

either binary or multi-level and furthermore they are statistically 

independent and equally likely to have any of the possible values, 

(Table 5.2-2). 

~lith the transmi13sion of a continuous (uninterrupted) stream of 

. th 
signal-elements, the i sample value of the received signal is, 

18 

• 



= 
g 

E YjSi-j + Wi 
j=O 

(2.2-3) 

where wi is sample value of a Gaussian random variable with zero 

mean and variance o2. 

The condition for no distortion and delay in transmission is 

that 

F (z) = 1 (2.2-4) 

in Eqn. (2.2-2), and this occurs when y0 = 1 and yj = 0 for all 

j, j 'I 0. Thus, in .the presence of distortion and delay in 

transmission, if si is detected from ri, there is, in addition to 

the noise component wi, an intersymbol interference component 

g 
E 

j=l 

added to the wanted signal Yo si. 

(2 .2-5) 

In the detection of si from ri at high signal/noise ratios, the 

best tolerance to additive white Gaussian noise is achieved through 

the effective elimination of all intersymbol interference, that is, 

th h th 1 . t' f the baseband channel. 6 ' 21
'
23 

roug e accurate equa 1za 1on o 

The data-transmission system of Fig. 1.1-1 must now include an 

equalizer, at the receiver, which equalizes the baseband channel as 

shown in Fig. 2.2-1. It is assumed throughout the discussions in 

Sections 2.3, 2.4 and 2.5 that the equalizer in Fig. 2.2-1 is fed 

with the sample values of the received signal and that it operates 

entirely on these sample values. 

A number of different linear and non-linear equalizers for 

equalizing the baseba~d channel are described in the published 

1-23 literature. A linear equalizer is usually a feedforward 

. 4-13, 21,22 h 1' . . transversal f1lter, w ereas a non- 1near equal1zer 1s 

usually a combination of a linear feedforward and a non-linear feedback 

19 
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transversal filter. 15-19,21,23 
A description of all the techniques 

of channel equalization using transversal equalizers is not central 

to the present investigations. Instead, two important equalizers have 

been considered. The former of the two, described in Section 2.3, is 

the optimum linear equalizer which minimizes the mean square 

distortion in the equalized signal
21

, and the latter, described in 

Section 2.4, is the optimum non-linear equalizer which maximizes 

the output signal/noise ratio21 •23 • 

2.3 Linear Equalizer 

Assume that the equalizer in Fig. 2.2-1 is the linear feed 

forward transversal filter with p taps as shown in Fig. 2.3-1. 

Let the i th tap of the filter have a gain di-l, so that the tap 

gains of the filter may be represented by the p compouents of the 

row-vector. 

(2.3-1) 

The z-transforrn of the sampled impulse response of the filter is 

D(z) = 
-I -p+l 

d0 + d1 z + ••• + ~-lz (2. 3-2) 

The z-transforrn of the sampled impulse response of the channel 

and linear equalizer is now 

E(z) = D(z)F(z) 

= (2.3-3) 

Thus the sampled impulse response of the equalized channel is 

given by the (p+g)-component row-vector 

E = eo el . . . e 
p+g-1 

(2.3-4) 

Let B be thep (p+g) matrix whose .th 
is X ~- row 

i-1 g+l p-i 

Bi-1 = 0 . 0 Yo Y!· ·•Yg 0 0 (2.3-5) 

21 
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Figure 2.3-1 

Linear transversal equalizer for baseband channel. 



where, it can be shown, that the p rows of the matrix B are linearly 

. d d 21 ~n epen ent. From Eqns. (2.3-3), (2.3-4) and (2.3-5) 

p-1 
E = l: diBi = DB (2.3-6) 

i=O 

If the channel is exactly equalized, then 

-h 
= z E (z) = D(z) F(z) (2.3-7) 

where h is a positive integer in the range 0 to p+g-1. The z-transform 

Of the 'th rece'ved · 1 1 t · th b f · · • • s1g~a -e ernen 1n e a sence o no1se, 1s 

-i 
si z F(z)D(z) = 

-h-i 
SiZ (2. 3-8) 

For a finite number of filter tap gains the channel is not exactly 

equalized, and therefore Eqn •. (2. 3-8) is only approximately 

. f' d 21 b th ( ) . sat~s ~e • · Let Uh e e p+g -component row-vector 

h 
= 0 . 

p+g-h-1 
.o 1 o •.. o (2. 3-9) 

Uh in Eqn. (2.3-9) is the ideal value of the sampled impulse 

response of the equalized channel for a total transmission delay 

of hT seconds, whereas E in Eqn. (2.3-4) is the actual value. Thus 

the mean square error in the sampled impulse response of the 

21 
equalized channel is 

2 p+g-1 
(1-eh) + l: 

i=O 
i;lh 

= I (Uh - E) 12 

= (lJr, - E) (l1t - E) T 

where I (Uh - E) I is the length of vector (l1t - E) • · 

(2.3-10) 

(2. 3-11) 

Consider now the linear transversal filter which minimizes 

the mean square error in Eqn. (2.3-11). It is required to find the 

values of the p tap gains of the linear tran·sversal filter in 

23 



Fig. 2.3-1, such that I (Uh - E) 12 and hence luh - El is minimized, 

the latter being the length of the (p + g)-component row-vector 

(Uh- E). The vector may of course be represented as a point in a 

(p + g)-dimensional Euclidean vector space, and the length of the 

vector is the distance of this point from the origin. It has been 

shown in reference. (21), that the p row-vectors {Bi} in Eqn. (2. 3-5) 

are linearly independent, so that the p x (p+g) matrix B has rank p. 

This means that the vector E = DB is a point in the p-dimensional. 

subspace, of the (p+g)-dimensional vector space, spanned by the 

p{Bi}. Since luh ~ El is the distance between the two (p+g)-

component vectors Uh and E, in the (p+g)-dimensional Euclidean 

vector space containing these vectors, it follows that luh - El is 

minimum when E is the point in the p-di~ensional subspace at the 

· · a· f th · · h 21 · th ro1n1mum 1stance rom ~· By e ProJeCtlon T eorem , E 1s e 

orthogonal projection of Uh on the p-dimensional subspace. The 

(p+g)-dimensional Euclidean vector space is shown in Fig. 2.3-2. 

Thus the p row-vectors given by the rows of B, are orthogonal to 

the vector (Uh - E) , and 

(uh· - E) BT = 0 (2. 3-12) 

or (Uh - DB)BT = 0 (2.3-13) 

or DBBT = U BT 
h (2. 3-14) 

or D = UhBT(BBT)-1 (2.3-15) 

The components of the p-component row-vector Din Eqn. (2.3-15), 

give the values of the p tap gains of the linear transversal 

filter which minimizes the mean square error for a given h. The 

24 
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vector D must therefore be determined for each value of h in the 

range 0 to p+g-1, and the vector D for the required equalizer is that 

which gives the minimum value of luh- El. 

From Eqn. (2.3-3) and for sufficiently small value. of luh -El 

the z-transform of the equalized channel becomes 

E (z) 
-h 

z (2.3-16) 

26 

h d . . . th . . . . by6,21 T e mean square J.stortl.on 1n e equal1zed s1gnal 1s g1ven 

p+g-1 
I: 

i=O 
iih 

(2.3-17) 

It has been shown in reference [21] that if the linear 

transversal equalizer is des±gned to minimize the mean square error 

in the equalized channel subject to the constraint that in Eqn.(2.3-4) 

= 1 (2.3-18) 

then the filter not only minimizes the mean square error subject to 

the above constraint, but also minimizes the mean square distortion, 

and is an optimum linear transversal equalizer in the sense that it 

achieves the most effective equalization for a given number of tap 

gains. Furthermore, the sampled impulse response of this optimum 

linear equalizer is given by the components of the p-component vector 

G = (2.3-19) 

where D is given by Eqn. (2.3-15). Again G must be determined for 

each value of h in the range 0 to p+g-1, and the vector G for the 

required equalizer is that which minimizes I Uh El, where eh is 

now constrained by Eqn. (2. 3-18)·. Thus in the presence of noise and 

when luh- El is very small,the output of the optimum linear 

equalizer at time instant (i+h)T is 



(2.3-20) 

The noise component Vi+h is the weighted sum of the corresponding 

input noise components {wi} and is given by 

p-1 
Vi+h = jgO wi+h-j 9j (2. 3-21) 

Since the p{wi} in Eqn. (2.3-21) are sample valuescr statistically 

independent Gaussian random variable with zero mean and variance 

cr 2 , it follows that vi+h is a sample value of a Gaussian random 

variable of zero mean and variance 

· 2 p-1 2 1 '- T 
11 = igO gi er = tr GG (2. 3-22) 

and si is detected by comparing xi+h with the appropriate 

21 thresholds. 

It is well known
6

'
21

•
22 

that if one or more roots of the z-

transform of the sampled impulse response of the channel have values 

on the unit circle in the z-plane, a linear transversal feed-forward· 

filter cannot equalize the channel with finite number of tap gains. 

Thus the optimum linear equalizer having tap gains given by the 

components of vector Gin Eqn. (2.3··19), cannot be used for 

equalization purposes in cases where the roots of F(z) lie on the 

unit circle in the z-plane. 

2.4 Non-linear Equalizer 

Consider now the non-linear equalizer shown in Fig. 2.4-1, 

which maximizes the output signal/noise ratio. It consists of a 

linear feedforward transversal filter followed by a non-linear feed-

back transversal filter. The linear filter performs-a process of 

.partial equalization of the baseband channel, the equalization being 

completed by the non-linear filter which uses decision directed 

. 16 17 21 23 
cancellation of intersymbol ~nterference. ' ' ' 

27 
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Linear Nonlinear Detected s. r. Feedback X. 
l. Feedforward l. Detector 

Transversal Transversal 
l. 

Filter Filter 

. 

Figure 2,4-1 

Non-linear equalizer using the linear and non-linear 

transversal filters. 



The non-linear equalizer in Fig. 2.4-1 performs separate 

processes of linear and non-linear equalization, and the problem 

here is to determine the particular combination of the linear and 

non-linear filters that maximizes the signal/noise ratio in the 

detection of a signal-element, subject to the essentially accurate 

23 equalization of the channel. 

It was mentioned in Section 2.3 that where the z-transform of 

the sampled impulse .response of the channel has one or more 

roots on the unit circle in the z-plane, the channel cannot be 

equalized by a linear equalizer having a finite number of tap gains. 

Suppose now that 

F(z) = F1 (z) F2lzl (2. 4-1) 

where no roots of F1 (z) and all roots of F2 (z) satisfy I zl 1".1. 

Clearly F1 (z) has no zeros (roots) on the unit circle in 

the z-plane, whereas all the roots of F2 (z) are on the unit 

circle. Both F1 (z) and F2 (z) are assumed to be known at the receiver; 

Let F2 (z) - _, 
• + f

1
z (2.4-2) 

where 1 is a +ve integer. There is no z-transform G2 (z) with only 

-h limited number of terms which is such that Fz(z)G2 (z) ~ z for 

some integer h. Thus F2 (z) cannot be equalized by a linear equalizer. 

·However, F1(z) can be equalized by a linear transversal feedforward 

filter using the method described in Section 2.3. Let the z-

transform of this filter be 

-
where the transversal filter hasp taps. Clearly 

F1 (z) G1 (z) -h 
(2 .4-4) " z 

F (z) G1 ( z) -h 
(2. 4-5) and " z F 

2 
(z) 

where h is a positive integer. 

29 
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The linear transversal filter which precedes the non-linear 

filter in Fig. 2·4-l,is designed to have a z-transform 

B(z) G1 (z) = D(z) = d + d1z-1 + ••• +d 
1
z-q+l(2.4-6) 

0 q-

so that the linear filter has q taps, the ith of which has a gain 

di-1. and 

(2.4-7) 

where q = p + j. (2.4-8) 

p is the number of taps required by a linear transversal filter 

with a z-transform G1(z) for the satisfactory equalization of F1(z), 

and q is the maximum number of taps acceptable for the linear 

transversal filter which precedes the non-linear filter in Fig. 2•4-1. 

For reasons which will become clear latter, b is constrained to 
0 

satisfy 

b f = 1 
0 0 

(2. 4-9) 

The remaining co~fficients {bi} in Eqn. (2.4-7) may be selected 

to have any real values. It is now required to find the value of 

B(z), within the limits of the c'onstraints imposed by Eqn£. (2.4-8) 

23 
and (2.4-9). 

Tha z-transform of the channel and linear filter is 

F(z) B(z) G1 (z) 
-h z B(z) F 2 (z) - (2.4-10) 

where h is a positive integer. 

The z-transform of the ith received signal-element at the 

output of the linear filter is 

-i -i-h 
SiZ F(z)B(z)Gl(z) ~ SiZ B(z)Fz(Z) (2 .4-11) 

Thus the linear filter may be considered to perform a process of 

partial linear equalization. 



The sample value Xi+h of the signal at the output of the non-

linear filter at time t = (i + h)T, contains the first non-zero 

component of the ith received signal-element, and from Eqn. (2.4-11), 

has the value 

o.r Xi+h (2 .4-12) 

from Eqn. (2.4-9) and assuming the correct cancellation of the 

preceding (j+~) signal-elements in the non-linear filter. Eqn.(2.4-9) 

1 . th . . normalizes the evel of the component<£ the ~ s~gnal-element ~n 

Since 
q-1 

= l: 
j=O 

w.+h .d. 
~ -J J 

(2 .4-13) 

where the q{wi} are sample values of statistically independent 

Gaussian random variable with zeJ;o mean and variance cr 2 , it follows 

thatvi+h is a sample value of a Gaussian random variable with zero 

mean and variance 

= 
q-1 

l: d. 2cr 2 
~ 

i=O 
= 

where D is a q-component row-vector whose components are 

d 1' q-

(2.4-14) 

(2.4-15) 

and d. 
1 

is the coefficient of 
~-

i th term in D(z) (Eqn. (2.4-6)). 

The detector now detects the value of the ith signal-element si by 

comparing x. h' in Eqn. (2.4-12), with the appropriate thresholds, 
~+ 

and the non-linear filter then cancels (removes by subtraction) the 

components of the ith signal-element from the following sample values, 

thus eliminating the intersymbol interference of the signal~element 

in the following elements. The process of detection and signal 

cancellation isthen repeated for the next received signal-eJement, and 

31 

so on. The combination of the linear and non-linear filters, therefore, 

eliminates all inter-symbol interference, so long as the signal-.. 
23 

elements are correctly detected and cancel1ed. 



In a practical application of the non-linear equalizer, a known 

sequence of more than (j+"JI.) element values is first transmitted 

and during this sequence, the detector uses its prior knowledge of 

any particular received sequence of (j+JI.) of these elements, to 

achieve correct cancellation of these elements without having to 

detect their actual values. The following received signals can no1~ be 

detected·w~thout intersymbol interference, as previously described, so 

. b . 21 that the process of detection and signal cancellat1on can eg1n. 

To maximize the signal/noise ratiooc the input lo the detector, 

n2 in Eqn. (2,4~14) must be minimized, Thus the q tap gains {d.} 
1 

of the linear transversal filter, in Fig. 2.4-1, must be adjusted, 

within the constraint imposed by Eqi:J.s. (2.4-6) and (2.4-9), ·to 

minimize DDT. Let B be the (j +1)-component vector 1~hose components 

are 

b bl • • • • b. 
0 • J 

and let C be the (j+l) x q matrix whose ith row is 

b. 
1 

is 
1-

i-1 p j-i+l 
Ci-l = 0 •.. 0 o

0
c1 • • cp::l 0 0 

of course the coefficient of ith term in B(z) and 

(2.4-:16) 

(2. 4-17) 

c. 
1 

of 
:L.-

the ith term in G1 (z)~ Since C is a convolutional mat~ix,from 

Eqns. (2.4-6), (2.4-7) and (2.4-9) 21 • 23 

D BC b c -LM 1 -LM (2. 4-18) = = = I eo 0 0 
0 

where, L = - (bl' bz., . . . ' b j) (2.4-19) 

and M is the j q matrix whose . th row is c .. M is completely X 1 
1 

determined by C for the given values of j and q. From Eqns. 
0 

(2. 4-14) and (2. 4-18) 

where 

1)2 = a2(~ C 
f 0 

0 

- LM) (~ 
f 

0 

= a2 [} C
0

- LMI 2 

0 

C - LMI is the length of 
0 

C - LM)T 
0 

the vector 1 
f 

0 

(2.4-20) 
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The noise variance n2 is minimum when 

For:given.values of F(z), G1 (z) and q, the 

ll C - LMI is minimum. 
fo 0 

values of t , C and M 
0 0 

are fixed, leaving L as the only variable in Thus L 

must be chosen to minimize this quantity. 

· }· C
0 

and Ll1 are q-component vectors and so can be represented 
0 

as points in a q-dimensional Euclidean vector space. Furthermore, 
j 

= L - b. C. 
1 1 

LM (2. 4-2 ~) 
i=l 

. h h ·. { } . 1 . d d 23 
and, 1t can be shown t at t e J C. are l1near y 1r. epen ent • Thus 

1 

Ll1 is a point in the j-dimensional subspace, of the q-dimensional 

vector space, spanned by the j{ Ci}, and I! C 
0 

;,- · L!1J is the distance 

1 
from I C

0 
0 

1 0 
to Ll1. It follows that II C

0 
- LMI is minimum when Ll1 

0 

is the point in the j-dimensional subspace at the minimum distance 
1 . 

from I c
0

• 

0 

projection 

By the Projection Theorem, 21
• 23 

Ll1 is the orthogonal 

off C
0

.ontp the j-dimensional subspace. Thus each 
0 

vector C., 
1 

fori= 1, 2, •.• , j, is orthogonal to the vector 

cl c Ll1) ' so that 
f 0 

0 . 1 c - LM)MT (I 0 
= ·o 

0 
LMMT 1 C MT = I or 

or 

From Eqns. (2 .4-18) and 

0 

1 
L = I 

0 

(2. 4-23) 

0 

D = 
1 
I CO 

0 

1 
c -

f 
0 

1 --
f 

0 

(2.4-221 

(2.4-23} 

(2.4-24} 

l;here I is a q x q identity matrix, and the :r:equired q tap-gains 

of the linear transversal filter in Fig. 2.4-1 are given by the 

components of the row-vector D in Eqn. (2.4-24). 

When an element is incorrectly detected and therefore incorrectly 

cancellrl the probability of error in the detection of the following 
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elements is greatly increased, so that errors tend to occur in 

b t 21,23,31 urs s. However, at high signal/noise ratios (Appendix A2) 

the average error probability in the presence of these error 

extension effects is typically only two or three times the value 

with correct cancellation, and this corresp.onds to a reduction of 

a fraction of 1 dB in tolerance to additive white Gaussian noise21 • 

2.5 Assessment of the Techniques of Channel Equalization 

When one or more roots of the z-transform of the sampled 

impulse response of the channel lie on the unit circle in 

the z-plane, a linear transversal equalizer with finite number of 

tap-gains cannot equalize the channel correctly, however, with the 

non-linear equalizer exact equalization is achieved in every case. 

In many practical applications the channel can be equalized (at 

least approxi~atcly) by a linP.ar transversal filter of limited 

length. Under these conditions, from Equation (2.4-1) 

F(z) = F1 (z) (2. 5-l) 

and F
2

(z) = 1 (2.5-2} 

Thus G
1 

(z) in Eqn. (2. 4-3) becomes the z-transform for the linear 

transversal equalizer for the channel. The p tap-gains of this 

equalizer are given by the first p components of C in Eqn. (2.4-17}. 
0 

Also 

b = f = 1 
0 0 

(2.5-3) 

in Eqn. (2.4-9). The application. of Eqns. (2.5-1) - (2.5-3). to the 

analysis of previous section leads to the design and performance 

of the optimum combination of linear and non-linear equalization, 

in the case where the channel can be correctly equalized by a linear 

transversal equalizer. 
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If such a• channel is now equalized by a linear transversal 

filter with z-transform G1(z), the z-transform of the ith received 

signal-element at the output of the linear equalizer is 

-i 
s.z F(z) G1 (z) 
~ 

(2.5-4) 

from Eqns. (2..4-4) and (2. 5-1) , so that the i th signal-element is 

detected from the sample value x. h at the output of the linear 
~+ 

equalizer at time t ~ (i+h)T, by applying the appropriate thresholds. 

Now 

~ S, +V. h 
~ ~+ 

(2.5-5) 

where v. h is a sample value of a Gaussian random variable with 
~+ 

zero mean and variance 

e:2 

from Eqn. (2 .4-3). 

p-1 
~ l: 

i~o 

~ o2 C C T· 
0 0 

(2.5-6) 

Thus the advantage in tolerance to additive Gaussian noise of 

the optimum combination of linear and non-linear equalization over 

the linear equalizer is approximately 

10 ldg10 ~ 10 log10 (2.5-7) 

expressed in dB, from Eqns. (2.5-6) and (2.4-14). Error extension 

effects are neglected here. 

Where the channel can be equalized linearly, the non-linear 

equalizer usually gains an advantage in tolerance to additive 

Gaussian noise over the corresponding linear equalizer. This is so 

because the non-linear equalizer makes more effective use of the 

available prior knowledge of the received signal. 
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Although any channel with a finite impulse response can be 

equalized by the appropriate equalizer, for certain values of the 

channel sampled impulse-response, particular sequences of the 

transmitted element values result in no signal at the output of the 

receiver filter. No amount of linear or non~linear equalization 

can give correct operation for the prolonged transmission of such 

sequences. Consider, for example, the channel impulse response 

having the z-transform 

1 + z-l 

If the sequence of. the element values is such that 

= - s. for all i 
]. 

(2.5-8} 

. (2. 5-9} 

then the sample values {ri} of the received signal at the output 

of the receiver filter will be zero, except f~the first and the 

last sample values. The unique detection of such a signal cannot 

normally be achieved in practice. 

An important feature of non-linear equalization by signal 

cancellation is that only a portion of a received signal-element is 

used in the detection of that element, the remaining part of the 

element being removed by subtraction. Clearly, if the whole of 

the element could be used effectively in its detection, an even 

better· tolerance to addi t.ive white Gaussian noise should be obtained. 

Thus the tolerance to additive Gaussian noise of the non-linear 

. . 21,34,35 
equalizer is often well below the maxJ.mum obtaJ.nable. 

All the disadvantages of linear and non-linear equalization, 

mentioned above, can be overcome through the transmission of 

orthogonal groups of signal-elements. 
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3.0 THE TWO BASIC DETECTION PROCESSES FOR ORTHOGONAL GROUPS OF 
SIGNAL-ELEHENTS 

3.1 Basic Assumptions 

Two groups of signal-elements can be considered to be orthogonal 

when eachtt them gives no response in an optimum detection process on 

the other, that is when they are disjoint in time. The data-

transmission system discussed in Section 2.1 is now modified as 

follows. Following a group of 'm' impulses, at the input to the 

transmitter filter, t"h.e next 'g' impulses are set to zero, so that 

adjacent groups of m transmitted signal-elements are separated by g 

zero-level elements. The zero-level elements form, gaps (time 

guard bands) between adjacent groups of transmitted signal-elements 

and so prevent intersymbol interference between the corresponding 

groups cf. elements at the receiver input. Let 

n = m + g. 

since there is no intersymbol interference between different groups 

of elements at the detector input, for each received group of m 

elements there are n sample values which are dependent only on the 

m elements and independent of all other elements. The detector 

uses these n values in the detection of the m elements. 

The detector 1 of course, requires to know which are the first, 

second, third, etc. samples in each of the consecutive groups of 

37 

n s~~ples, and this knowledge must be derived from a suitable training 

signal sent at the start of each transmission. This is exactly the 

same requirement as that where the data is sent in characters or 

words, as for instance in the transmission of alpha-numeric data in 

binary coded form .cir else i.n the transmission of digital--data which 

,. 32 34 54 55 
is coded in an error detect~ng block code. ' ' ' Once "the 

correct word· or block synchronization has been achieved at the start 

of transmission, it will normally be maintained even in the 
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f . d bl . 34,54 presence o consL era e noLse. If a slip in synchronization 

should occur, techniques are available for detecting and correcting it. 54 

Techniques for maintaining the correct word synchronization are 

beyond the scope of this investigation and will not be considered 

further here. 

While one store holds the n sample values for a detection 

process, another store is receiving the next n sample values, so 

that nT seconds are available for a detection process. In the detecrion 

process,the m elements of a group are detected simultaneously by 

operating on the corresponding n sample values. Each group of m k-level 

signal-elements is, in effect, treated as a single element having km 

m 
possible values, that is, as a k -level element. 

f 1 h . th . . . . d . I on y t e L SLgnal-element Ln a group LS transmLtte , Ln 

the absence of noise and with s. set to unity, the corresponding 
l. 

received n· sample values used for the detection of m· elements are 

given by the n-component row-vector 
i-1 g+l m-i 

Y. = 0 . . . 0 yo yl . . y- 0 L g 
0 (3.1-1) 

where yh must be non-zero for at least one h in the range 0 to g, 

but it need not of course be non-zero for all h in this range. The 

row-vector 0[
0

, y1 , • . , ¥ } is the sampled impulse response o~ 
g ' . 

the baseband channel. If there is to be no inters~hol inter~erence 

between adjacent groups of signal-elements, the non-zer~ com~onents 

of the sampled impulse response of the channel must not be spread 

over more than g+l consecutive components. 

zero 

Th .th • d • 1 1 • 1 1 V e L receLve s1.gna -e ement LS c ear y s .•.• 
l. 1· 

components of Y. are shifted (i-1} places to the 
1 

If all the non-

left, the 

vector Y is obtained, so that each Yi is obtained from everr other 
l. 

by a simple time shift of the non-zero components. 



The sum of the m received signal-elements in a group, in the 

absence of nOise,is 

where S is an 

y is an m x n 

Thus 

Yo 

0 

y = .. 

0 

m 
1: s.Y. = SY, 

. i=l l. l. 

m-component h ,th row-vector w ose ~ 

matrix whose ith row is Y, given 
l. 

Yl Y2 • yg 0 0 

yo Yl· yg-1 yg 0 

0 0 

(3.1-2) 

component is and s. 
l. 

by Equation (3.1-1). 

0 

0 

(3 .1-3) 

It can be seen that if yh is the first ·non-zero component of Yi' 

the m x m matrix, formed by the appropriate m adjacent columns of 

Y such that all the components along its main diagonal are equal to 

Yh' is always an upper triangular matrix with non-zero diagonal 

components, and, therefore, has a non-vanishing determinant of order m. 
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Thus the matrix Y has rank m which means that the row-vectors Yi' for i=l, 

• , m given b;• Eqn. (3.1-l),are linearly independent. 

Assume for convenience that a received group of m signal-elements 

is sampled at the time instants T, 2T, ••• , nT, so that the sample 

value of the received signal, at timet= iT, is ri. Let R be the 

n-component row-vector whose 
,th 

component is and let W be the l. ri, 

n-component ro\'1-vector whose 
,th 

component is Then from Eqn. (3.1-2) l. w .• 
l. 

R = SY + w (3.1-4) 

The vectors R, SY and W may be represented as points in an n-

dimensional Euclidean vector space (signal space). Since the {wi}' 

the components of W, are sample values of statistically independent 

Gaussian random variable with zero mean and variance a2 , it is shown 



in Appendix Al, that the value of the orthogonal projection of W onto 

any given direction in the vector space is a sample value of a 

Gaussian random variable with zero mean and variance o2. It follows 

that W is equally likely to have any direction in the vector space. 

Thus for a given vectors, the received vector R in Eqn. {3.1-4), 

can lie anywhere in the n-dimensional vector space. It is furthermore 

shown in Appendix Al that the probability density of the noise vector 

· W is a function only of the length of w and always decreases with 

the increase in the length of W. Thus the probability of an error 

in the detection of S from R is minimized by selecting the vector s 

that minimizes the distance between Rand SY. This is illustrated 

in Fig. 3.1-1 where it is assumed that the detector has the prior 

knowledge that S = S1 or s 2 • Since R = SY + W, the noise vectors 

corresponding to s 1 and s 2 are w1 and w2 , respectively. Since 

w1 is much shorter Lhan w2 , it is clear that s ~.s 1 is more likely 

to be correct than S = Sz. 

When the detector knows the matrix Y but in the initial stage 

of the detection process has no prior knowledge of S1 or s2 , it 

knows that SY must lie in the 2-dimensional subspace spanned by Y1 

and Y2 , but it cannot say, before the detection process, that any 

one vector SY {for any real value of S) is more likely to be correct 

than any other. The best it can now do is to accept as the initial 

detected vector s, the vector 

X = x1 xz 

which is selected from the infinite set of all real 2-component 

row-vectors, such that XY is at the minimum distance from R. This 

again corresponds to the smallest length of the noise vector W 

consistent with the available prior knowledge of SY. 
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Figure 3.1-1 

n-dimensional Euclidean vector space containing the 

vectors R
1

,R
2

,w1 ,w
2
,s1v and s

2
v. 
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In the final stage of· the detection process for s, the detector 

determines s· from X. In order to do this the detector must of course 

have ~prior knowledge of the possible values of the vectors. It 

will be assumed that the detector has exact prior knowledge of the 

possible values of S in this part of the detection process. 

In all detection processes studied here, the detector 

operates on the received vector R to obtain the detected value. of s. 

In every case it has an exact prior knowledge of the scmpled imp~lse 

response of the channel in Eqn. (2.1-19). 

3.2 The Process of Linear Equalization 

This is the optimum linear estimation process for the m{si), for 

the case where the detector has prior knowledge of the m{Yi) but has 

no prior knowledge of the m{si} or the noise variance. 

Consider the n-dimensional Euclidean vector space containing 

the received vector. R. Since the detector knows the m{Yi} it knows 

the m-dimensional subspace spanned by the m{Yi} and this is of 

course the m-dimensional subspace containing the vector SY. Since 

the receiver has no prior knowledge of the {si}, it must assume that 

any value. of s is as likely to be correct as any other. Let the 

m-component vector 
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z = (3.2-1) 

be the linear estimate of the vector s. Before the estimation process 

the detector has no prior knowledge of Z and therefore as far as the 

detector is concerned ZY is equally likely to lie at any point in the 

m-dimensional subspace spanned by. {Yi). The problem is to determine 

the best estimate which the receiver can make of s, given the received 

vector Rand using its prior knowledge of Y. This estimate 'should 

be such as to maximize P(Z/R), the posterior probability density of z 

50,56 given R. By Bayes Theorem 



P(Z/R) = 
p (Z) 
p (R) 

p (R/Z) (3.2-2) 

where P(R/Z) is the conditional probability density of R given Z, and 

P(Z)and P(R) are, respectively, the probability densities of Z and R. 

Let 

zy = H = • • h 
n 

(3 .2-3) 

Since R is given and, as far as the receiver is concerned, P(Z) is 

constant for all real values of z, these being equally likely, the 

receiver must choose Z to maximize P(R/Z). From Eqn5. (3.1-4) and 

(3.2-3) 

R = H + W (3.2-4) 

so that 

= (3.2-5) 

for i = 1, 2, •• ~. , n, where r i, hi and w i are the i th components of 

R, H and W, respectively. 
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Since {wi} are sample values of statistically independent Gaussian 

random variables with zero mean and variance cr 2 , it follows that r. in 
l. 

Eqn. (3.2-5) is a sample value of a Gaussian random variable with 

mean value h. and variance cr2 , and furthermore the {r.} are 
1 1 

statistically independent. Hence from Eqn. (3.2-3) 

P(R/Z) = P(R/H) 

= P(r1 , r 2 , ... , r /h 1 , h2 , ... h) 
n n 

= P(r1/h1).P(rz/hzl 

n :!.____ 

= Il' I 2 n a2 

i=l 

1\ 

= l~=zc1exp-2ncr 

exp 

[ 

1 n 
:;::;z- l: 
2cr i=l 

P(r /h ) 
n n 

2 
[ (rl - h;) J 

2cr2 

(3.2-6) 



where IR- Hj is the length of the vector (R-H), and so is the 

distance between the vectors Rand H. Thus in order to maximize P(R/Z) 

and hence P(Z/R), the receiver must choose z to minimize jR- Hj. 

In other words, the receiver must choose Z to minimize the distance 

between R and ZY, where Z may have any real value. 

Let XY be the orthogonal projection of R on to the m-dimensional 

subspace spanned by the {Yi}. Referring to Fig. 3.2-1, the square 

of the distance between R and ZY is 

(R - ZY) (R - ZY) T 

= (R- XY + XY- ZY) (R- XY + XY- ZY)T 

= (R- XY) (R- XY)T + (XY- ZY) (XY- ZY)T (3 .2-7) 

since (R - XY) is orthogonal to (XY - ZY) ' 
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Now (R - XY) (R - XY) T is nc:J;: dependent on Z and (XY - ZY) (XY - ZY) T 

is non-negative being the square of the distance between XY and ZY, so 

that (R- ZY) (R- ZY)T is minimum when ZY = XY or Z =X. 

Thus the point in the m-dimensional subspace, spanned by the 

{Y.}, at the minimum distance from R, is the orthogonal projection of 
J. . 

R onto this subspace. It follows now that P(R/Z) and therefore 

P(Z/R) is maximum when Z = X. 

If the received signal vector R lies in the m-dimensional 

subspace, then, clearly the most likely value of Z¥ is R. In general, 

because of the noise, R will not lie in this subspace, and in this case 

the best estimate the detector can make of z is the m-component 

row-vector X, wljose components may have any real values and are such 

that XY is the orthogonal projection of R onto the m-dimensional 

subspace spanned by {Y.}. 
J. 



m-Dimensional Subspace 

Spanned by the ~YiJ 

Figure 3,2-1 

R 

z y .1--,------.U 

Drthogonal projection of R onto the m-dimensional subspace 

containing ZY. 
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The smallest subspace of the n-dimensional signal space which 

contains SY for all values of S is the m-dimensional subspace 

spanned by the {Y.}, Since R = SY + I~, if R is projected onto a 
]_ 

.subspace which is orthogonal to any of the {Y.}, then certain sets of 
]_ 

the possible vectors S will give a zero signal :component in the 

projection of R onto this subspace. Such a projection of R, therefore, 

cannot be used to estimate SY and hence S. It follows that R cannot 

be projected onto a subspace of dimensionality less than m. Thus the 

estimate of S that has the greatest a posteriori probability of 
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being correct is obtained by projecting R onto the m-dimensional subspace 

spanned by the {Y.}. 
l. 

Since R- XY is orthogonal to each of the. {Y.} 
]_ 

(R - XY)YT = 0 

or XYYT = RYT 

or X = RY'T(YYT)-1 

( 3. 2-8) 

(3.2-9) 

It follows that if the received vector R is fed to the input 

terminals of the linear network 'represented by the n x m matrix 

YT(YYT)-l in Eqn. (3.2-9), then the signals at the m output terminals 

are the components {xi} of the vector X, where X is tho best linear 

estimate the detector can make of S, under the assumed conditions. 

From Eqns. (3.1-4) and (3.2-9) 

X = RYT (YYT) -l = 

= 

or X = S + U ( 3. 2-10) 

where (3.2-11) 



The m-component row-vector U is the noise vector at the output 

of the network YT(YYT)-1 • The matrix YT(YYT)-l is of course an nxm 

matrix of rank m. Each component u. of the noise-vector U is a sample 
J_ 

value of a Gaussian random variable with zero mean and a variance which 

is not normally equal to cr 2 and which may differ from one component to 

another. 

Having obtained X, each transmitted element value s. can now be 
J_ 

detected by comparing the corresponding x. with the appropriate 
J_ 

57 
threshold levels. Since the transmitted signal-elements in a group 

are statistically independent and equally likely to have any of the 

possible values, the threshold levels used in the detection of s. from 
J_ 

57 
xi lie half-way between the adjacent possible values of si. Each 

s. is detected as its possible transmitted value between the same 
J_ 

threshold levels as the corresponding x.. It may readily be shown that 
J_ 

these threshold levels minimize the error probability in the detection 

57 
of each s .• 

J_ 

T T -1 
The n x m network Y (YY ) "performs a process of exact linear 

equalization on the received vector R to eliminate all inter-symbol 

interfer~nce between the m signals at its m outputs, that is each 

signal xi is given by 

= (3.2-12) 

and therefore depends only on the corresponding s., together with the 
J_ 

noise component 

The n x rn 

u.,being independent of the remaining 
J_ 

'J:.. T -1 
network Y (YY l could be implemented 

element values. 

by the n x m 

T T-1 network Y feeding the m x m network (YY ) as shown in Fig. 3.2-2. 

Although more costly to implement in practice
32

, this ,arrangement 

demonstrates more clearly the nature of the linear transformation 

performed on R by YT(YYT)-1 • 

ith component is RY.T Let 
J_ 

T Now, RY is an m-component vector whose 

47 



48 

R 

Figure 3.2-2 

Expanded form of the linear network YT(YYT)-1• 
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Y. = Yn yi2 . . . yin l. 
(3.2-13) 

T n 
then RY. = E r. yij l. 

j=l J 
(3.2-14) 

T 
RYi is the inner product of then-component vectors Rand Yi. 

. T 
Furthermore, RY. is the output signal obtained when R is fed to a 

l. 

correlation detector matched tc Y., since this correlation detector 
l. 

performs the operation described by Eqn. (3.2-14). Evidently the 

linear network YT is a set of m correlation detectors matched to the 

m vectors {Y.}. Each of these performs a process of matched filter 
l. 

detection on the corresponding received signal-element s.Y .• 
l. l. 

The network YT is matched to the signal SY and performs a 

process of matched filter detection on the received vector R. The 

output signal vector R YT from the network YT uniquely determines the 

vector XYwhich, if fed tc the input of YT, would give this output signal. 

Thus 

= (3.2-15) 

Since XY lies in the m-dimensional subspace spanned by the. {Y.} and 
l. 

since (3.2-15) is the same as (3.2-8), it follows that XY in (3.2-15) 

is the orthogonal projection of R onto this subspace. 

T -1 T The network (YY ) transforms the vector RY to the vector 

= = X (3. 2-16) 

T -1 so that (YY ) is clearly an inverse network, which reverses the 

T 
transformation by means of which X has been converted to XYY • 

T T -1 
Clearly, Y is equivalent to a matched filter and (YY ) to an 

inverse filter. 

The wanted component in the output signal RY.T from the:ith 
l. 

correlation detector, in the expanded form of the linear network 

YT(YYT)-l, is s.Y.Y.T 
l. l. l. 

The cor~elation detector maximizes the ratio 
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of the energy level of this·signal to the average energy level of the 

noise component WY.T in RY.T. However, the latteragnal also contains 
~ ~ 

T . 
m-1 components {s.Y.Y. } due to the other components {sJ·} j f i, of 

J J ~ 

.the m-component row-vectors. 
T -1 

The inverse network (YY ) processes the 

{RY.T} to eliminate all intersyrnbol interference, and suitably adjusts 
~ . 

the levels of the resultant signals to give the {xi} at its output terminals. 

3 •. 3 The Optimum Detection Process 

Consider now the optimum detection process for the case where the 

detector has prior knowledge both of the. {yi} and of the {I si]}. The 

detector here knows the km different possible values of ·sy, where k is 

the number of possible levels of the transmitted signal-~lements. 

It has been shown that where the transmitted signal-elements are 

statistically independent and equally likely to have any of the 

possible values, the detector which minimize~ the probability of error 

(that is the probability of one or more element errorsY in the detection 

of m elements of a group, is the detector that determines which of the 

km vectors {SY} is at the minimum distance from the received vector R, 

in then-dimension Euclidean vector-space containing R. 34 •45 •52 •57 

The detector knows now the exact position of each SY in the vector space. 

At high signal to noise ratios, this detection process also minimizes 

the probability of error in the detection of any one of the m elements. 

in a group. 

The detection process cannot be implemented by a linear network 

followed by the appropriate decision thresholds, but is best 

performed by an iterative process. The receiver generates in turn the 

vectors. {SY} corresponding to the different combinations of the k-level 

signal-elements in a group. Each vector SY is subtracted from the 

received vector R. The components of Rare· stored throughout the 
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detection process for a group of m· signal-elements. The components of 

the difference vector are squared and added, to give the square of the 

distance between the vector Rand the generated vector SY. In the first 

subtraction process, the distance measure together with the associated 

vector S are stored. In subsequent subtraction processes no action is 

taken, unless the distance measure is smaller than that stored. When 

this occurs, the new distance measure together with the associated 

vector S replace those stored. Thus~ the end of the detection 

process, the receiver has the vector s which minimizes the distance 

from SY to R and takes this vector s to give the detected values of the 

m signal-elements in the received group. Since the separate operations 

in the detection process are carried out sequentially, these can be 

performed by a simple piece of equipment. 

For any set of signal-elements in a group at high signal to noise 

ratios (Appendix A2), this detection process achieves a tolerance to 

additive white Gaussian noise as good as or better than either linear·· 

or non-linear equalization, since of course it is the optimum 

detection process under the assumed conditions. In the particular case 

where the signal distortion is pure phase distortion it is well known 

that a linear equalizer achieves the optimum detection of the received 

signals since it is now also a matched detector, that is, it not only 

eliminates intersymbol interference but it is also matched to the 

. . 1 21,22,23 recel.ved sJ.gna • Under these conditions the optimum detector 

achieves no advan1lage over a simple linear equalizer. However,pure 

phase distortion is rarely encountered in practice and most pr-actical 

channels introduce both phase and attenuation distortions~4 • 45 For 

such channels the optimum detector always achieves an advantage in 

tolerance to additive white Gaussian noise over the corresponding 



1 0 0 21,34 
~near equal~zer. The latter is either a simple transversal 

filter or a more complex linear network as described in Sections 2.3 

and 3.2, respectively. The reason why the optimum detection process 

achieves an advantage over the linear equalizer, in tolerance to 

additive white Gaussian noise, is that it uses more of the available 

prior knowledge of the received signal. Clearly to achieve the optimum 

tolerance to additive white Gaussian noise, the detection process must 

make full use of the available.prior knowledge of the received signal. 

3.4 Decision Boundaries in Signal Space 

For m k-level signal-elements in a' group the vector SY has km 

possible values and lies in the subspace spanned by the ro{Y.}. 
~ 

The linear equalization process can be considered to divide the m

dimensional subspace into km decision regions, each corresponding to 

a different one of the km possible values of SY, and the process then 

detemines which of these regions contains the vector XY. The value of 

S corresponding to this region is the detected value of s. 
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For the sake of convenience and clarity it will be assumed initially 

·in the following discuss;_on that the transmitted signal-elements are 

binary antipodal having the possible values + 1. 

The decision regions in the m-dimensional subspace are defined by 

m decision boundaries. The ith boundary is the locus of all points 

traced out by 

ro 
l: 

j=l 
(3.4-1) 

where the {v,} are real scalar quantities such that v. = 0 and the 
J ~ 

{v.}, for j ~ i, may vary independently over all real values. The 
J 

ith decision boundary is therefore traced out by VB. for all real values 
~ 

of the (m - 1) - component row-vector 

••• v. 
1
v. 

1 ~- ~+ 
• • • V t m 



where B. is the (m- 1) x n matrix obtained by deleting the ith row 
~ 
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from Y. The· boundary is clearly the (m-I)-dimensional subspace spanned 

by the (m-1) vectors {Y.} for which j ~ i. It divides the m-dimensional 
J 

subspace spanned by all {Y,} into two regions. If the vector XY lies 
J 

in one of these, xi is positive, and if XY lies in the other, xi is 

negative. The former will give a detected value of + 1 for si and the 

latter a detected value of -1. 

It is difficult to visualize decision boundaries for m greater 

than two. Fig. 3.4-l(a) shows the decision boundaries and decision 

regions for a 2-dimensional subspace containing the two binary 

antipodal signal-elements each having the possible values ~ 1; The 

lines traced out by v1Y1 and v2Yz for all real values of v1 and v2 , 

intersect at the origin where v1 = v2 = 0. It can be seen that if the 

projection of R onto this space is XY = x1Y1 + x2Y2 and if this lies on 

the line traced out by v1Y1, then x1 = v1 and x2 = 0. For all 

{XY} to the right of this line, x2 > 0, and for all {XY} to the left, 

xz < 0. Thus, v1Y1is the decision boundary which separates the decision 

regions corresponding to the two possible values of s 2 • Similarly, 

vzYz is the decision boundary which separates the decision regions 

corresponding to the two values of s1. 

If now the twosigna~elements have say 4 levels instead of 2, such 

that s1 and sz are each equally.likely to have one of the four possible. 

values -3, -1, 1 and 3, and are of course statistically independent, 

then the decision boundaries become as shown in Fig. 3.4-l(b). There 

are now six decision boundaries, three separating the four possible 

values of s1 and three separating the four possible values of sz. 

A decision boundary separating two adjacent values of s1 is the locus of 

all points traced out by vzYz + tY1, where vz may have any real value 
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and i = -2,0,2 depending upon whether the decision boundary separates 

the values of s 1 which are -3 and -1, -1 and 1 or 1 and 3, respectively. 

Similarly a decision boundary separating the two adjacent values of s 2 

is the locus of all points traced out by v1Y1 + iY2 where v1 may have 

any real value and i = -2,0,2 depending upon whether the decision 

boundary separates the values of s 2 which are -3 and -1, -1 and 1 or 

1 and 3, respectively. For i = 0 the two decision boundaries v1Y1 and 

vzY2 intersect at the origin where VJ = v2 = 0. It can be seen from 

Fig. 3.4-l(b) that the 6 decision boundaries divide the 2-dimensional 

subspace spanned by Y1 and Y2, in 16(4
2

) different decision regions 

each correspcnding to a different one of the 16 possible values of s. 

If the orthogonal projection of R on to the 2-dimensional subspace is 

XY = XJYJ + xzY2, then the detected value of the transmitted vector S 

is that corresponding to the decision region in which the vector XY lies. 

Consider now the more general case where there are m k-level 

signal-elements in a group and they are statistically independent and 

equally likely to have any of the k possible values which are 

k1, k2 ••• kk. There are now (k- 1) decision boundaries separating 

the k possible values of s1, (k- 1) decision boundaries separating the 

k possible values of s2, and so on up to s • Thus, in all, there are 
m 

m(k - 1) decision boundaries and these divide the m-dimensional subspace 

spanned by the m{Y.} into km deci~ion regions each corresponding to a 
l. 

different one of the k m possible values of s. Following the 

explanation above, for the binary and 4-level signal-elements, the 

decision boundary separating any two adjacent of the possible values 

of s 1 , is the locus of the points traced out by 

v2Y2 + V3Y3 + ••. + V Y + l Y mm 1.1. 

(3.4-2) 
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where 

::: (3.4-3) 

B1 is an (m - 1) x n matrix of rank (m - 1) , obtained by deleting 

the first row Y1 from Y, and V is an (m- !)-component row-vector 

whose components {v.} may have any real values. 
J_ 

For the optimum detection process the decision boundaries are 

hyperplanes which perpendicularly bisect the lines joining the 

different vectors {SY} in the n-dimensional vector space containing 

the received vector R. The distance of any vector to a decision 

boundary is half the distance between the two vectors separated by this 

decision boundary. It can be seen that the vector H = SY which is 

nearest to R is also the vector H nearest to XY (the orthogonal projection 

34 35 of R onto the 2-dimensional subspace). ' Clearly the decision 

boundaries, for the optimum detection process, in the 2-dimensional 

subspace spanned by Y1 and Y2 and for possible signal-element values 

of.:!:. 1, are the (n - !)-dimensional hyperplanes which perpendicularly 

bisect the lines joining the different pairs of the four vectors Hi= SiY' 

where S. are the four possible values of the corresponding vectors at 
J_ 

the transmitter. These decision boundaries are shown by the solid 

lines in Fig. 3.4-2(a). SY and hence s,is detected as the H. (the value 
J_ 

of H) which lies intne same decision region. 

If now the two signal-elements have say 4 levels instead of 2, 

such that s 1 and s 2 are each equally likely to have any of the four values 

-3, -1, 1 and 3, and are of course statistically independent, then 

the decision boundaries become as shown in Fig. 3.4-2(b). There are 

now 16(42) different vectors H = SY, each corresponding to a 

different one of the 16 possible values of the transmitted vector S. 

The different vectors H are shown in Fig. 3.-4-2(b). The decision 

boundaries are, as before,the (n-1)-dimensional hyperplanes that 
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perpendicularly bisect the lines joining the different pairs of the 

16 possible vectors H. SY is detected as the value of H which lies in 

the same decision region as the received .vector R. 

In the general case where there are m k-level signal-elements in 

a group, the decision boundary separating any two of the possible 

vectors {SY}, is now the (n- 1)-dimensional subspace which 

perpendicularly"bisects the line joining the two vectors in then-

34 35 dimensional vector spar.e containing the received vector R. ' 

Consider, for example, two possible vectors Hb = SbY and He= ScY. 

The decision boundary which separates these two vectors bisects perp-

endicularly the line (Hb - He) joining the two vectors. The per

pendicular distance of either vectors Hb or He to the decision 

boundary is 

~c = 

(3.4-4) 

where ! (Sb s ) is an m-component row-vector whose components may 
c 

have any of the (2k - 1) different values corresponding to the possible 

values of si - s '. J 

3.5 Probability of Error in a Detection Process 

Consider first the process of linear equalization in which the 

signal-elements are binary coded such that for each i s, = + 1. Let 
1 -

. . f h ,thd .. b d b th the orthogonal proJeCt1on o SY onto t e 1 ec1s1on oun ary e e 

vector CB., where C is an (m- 1)-component row-vector and B. is the 
1 1 

. . . h ,th (m- 1) x n matr1x obta1ned from Y by delet1ng t e 1 row Yi. Since 

the vector (SY -CB.) is orthogonal to the (m- 1)-dimensional subspace 
1 

comprising the ith decision boundary, it is also orthogonal to any 

Y. where j t i. Thus, 
J 
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(SY - CB.)B. 
l. l. 

T. 
= 0 

T T 
or CB.B. = SYB, 

l. l. l. 

c T T -1 
or = SYB. (B.B. ) 

l. l. l. 

Let di be the distance from SY to CBi. Then 

d 2 = 
i 

= 

= 

(SY- CB.) (SY- CB.)T 
l. l. 

TT TT 
(SY - CB.)Y S -: (SY- CB.)B. C 

l. l. l. 

TT 
(SY - CBi) Y S 1 froin Eqn. (3. 5-1) 1 

T T -1 TT 
(SY - SYB. (B·cB. ) B.) Y S 1 

1 1 1 1 

(3.5-1) 

(3.5-2) 

(3.5-3) 

from Eqn. (3.5-3), 

or = SY(I- BT. T -1 TT 
i (B. E. ) B.) Y S 

l. l. l. 

where I is an n x n identity matrix. 

Lets. be the(m- 1)-component row-vector obtained by 
l. 

d 1 · the l..th t f S Th e etl.ng componen si rem • en 

(3.5-4) 

• 

59 

d. 2 { T T -1 } T = (s.Y. + S.B.) I-B. (B.B. ) B. (s.Y.+S.B.) 
1 1 1 1 1 1 1 1 1 1 1 1 1 

{s.Y. (I 
T T -1 T + B.TS.T) = -B. (B.B. ) B.)+S.B. - S. B.} (Y. s. 

l. l. 1 1 1 1 1 1 l. l. l. l. l. l. 

siYi (I 
T T -1 T 

= - B. (B . B. ) B. ) Y. s . 
l. l. l. l. l. l. 

s .Y. (I 
T T -1 T T 

+ - Bi (BiBi ) Bi)Bi Si l. l. 

T T -1 T T T T T 
= s. Y. (I - B. (B . B. ) B· )Y . s . + s. Y. (B. S. - B. S. ) 

l. l. l. l.l. ll. l. l. l. l. l. l. l. 

= (3.5-5) 

Since si = + 1 1 from Eqn. (3. 5-5) 



d, = 
l. 

T T -1 T ! 
{Y. (I- B. (B.B, ) B.)Y. } 

1 1 1 1 1 1 
(3.5-6) 

Clearly d. is independent of S and is therefore not a function of l. 

the element binary values. It is, however, normally a function of i. 

. h d . f h . th 1 h d An error occurs l.n t e etectl.on o t e l. e ement w en XY an 

SY lie on opposite sides of the ith decision boundary. Thus the 

probability of an error in the detection of the ith element is the 
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probability that the orthogonal projection of noise-vector W onto the 

perpendicular from SY onto the i th decision boundary, is. in the direction 

of the boundary and exceeds the perpendicular distance from SY,. 

to the boundary. Since the orthogonal projection of W onto any 

direction in the m-dimensional subspace spanned by the {Y.}, is a l. 

Gaussian random vairable with zero mean and variance o2 , and since 

d. is the perpendicular distance from SY to the i th decisio,; ·~undary, 
l. 

th . 1 . f . th d . f . th . 1 . 34 '56 e probabl. J.ty o error l.n e etectl.on o l. bJ.nary e ement l.S 

= {2!-az exp( 

., 2 
! 

1 (- ~) dw = fiir exp 
cl. if a 2 

so that Pi = Q( ~) 

where 

a 
., 2 

Q(u) ! 
1 

(- ~) dx = I21T exp 
2 u 

In the general case where d. is a function of i, different 
l. 

(3. 5-7) 

(3. 5-8) 

(3.5-9) 

signal-elements in a group of m have different error probabilities. 

A simple upper.bound to the average element error probability is 

given by the value of pi for the smallest di. Let the minimum value 



of di_be d and the corresponding value of p, be p. Then the average 
l. 

element error probability is less than or equal to 
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p = Q(d/o) (3.5-10) 

Consider now the more general case of multi-level signal-

elemen.ts where the elements of a group are statistically independent and 

equally likely to have any of the k different values. In the presence 

of additive white Gaussian noise it is clear that practically all 

errors in the detection of the {s.} will involve a transmitted 
l. 

element value being detected as an adjacent value, so that the noise 

vector W carries R onto the other side of a decision boundary adjacent 

to the vector SY, where the components of the vectorS are the 

transmitted element values. Suppose that the two adjacent values of s 
i 

are a and a + 2b. s. is now detected as a when the corresponding 
l. 

xi < a + b and si is detected as a + 2b when xi > a + b, 

assuming that 'L > a - b and x .. < a + 3b • .• l. l. Clearly the decision 

boundary in the m-dimensional subspace used for the decision as to 

whether x. =a or a+ 2b, is, from Eqn. (3.4-2), the locus of all 
l. 

points traced out by 

VBi + (a+ b)Y. 
l. 

(3.5-11) 

where V is an (m- 1)-component row-vector whose components may have 

any real values. The distance from SY to the decision boundary traced 

out by Eqn. (3.5-11) is clearly the same as the distance of 

SY - (a+ b)Yi to the hyperplane ((n - 1)-dimensional subspace) VBi. 

Let this distance be e. It can be seen from Eqn. (3.5-4) that, 

= T .. T -1 
{SY- (a+ b)Y,}{I- B. (B.B. ) B.} X 

l. l. l. l. l. --

. {SY - (a + b) Y.} T 
l. 



.lt.h Again, let s. be the vector obtained from s by deleting its ~· · 
. ~ 

component si' then 

T T -1 
= {s.Y. + S.B. - (a+ b)Y,}{I- B. (B.B. ) B.} 

1 1 1 1 1 1 . 1 1 1 

. {s.Y. + S,B, - (a+ b)Y.}T 
1 1 1 1 1 

= 
T T -1 

{ (s, - a - b)Yl.. + S.B. }{I - B. (B.B. ) B.} • l. l. l. l. l. l. 

= 
· T T -1 T 

{(s. -a- b)Y.}{I- B. (B.B. ) B.}{(s.-a- b)Y. + S,B,} 
1 1 1 1 1 1 1 1 ~ • 

. {( }{ T T-1 }{ b)Y.}T = s. -a - b) Y. I - B. (B. B. ) B. s. -a 
1 1 1 1 1 1 1 1 

+ 

= 

+ 
· T T T T 
{(s.- a- b)Y.}{B. S. - B, s, } 

1 1 1 1 ~ • 

= 

Since e1e two values of si are assumed to be a and a + 2b, 
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2 
b

2
{Yi(I 

T T -1 T 
ei = - Bi (BiBi ) Bi)Yi } (3.5-13) 

and 

e. = b{Y. (I 
~ ~ 

- B.T(B.B.T)-lB.)Y.~}! 
l. l. l. l. l. 

(3.5-14) 

In the particular case where b = l,Eqn. (3.5-14) reduces to 

Eqn. (3.5-6). Again, so long as the possible values of each si 

are regularly spaced to give a fixed value of b in Eqn. (3.5-14), 

as would normally be the case, the distance to the decision 



boundary is not a function of s. It is, however, normally a 

function of i. 

The probability that the noise vector W carries R into 

the opposite side of the decision boundary just considered,is 

l?i = f 
_1_ 
r.::---'r exp Y21Tcr-

2 w 
(- 2(1"T ) dw 
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= Q( ei 
()" 

(3.5-15) 

When s. has its most positive or most negative value, there is 
l. 

only one decision boundary at the minimum distance e. and the 
l. 

error probability here is Q(e./cr). When s. has any of its other 
l. l. 

possible values there are always two decision boundaries at the 

minimum ditance e., so that the error probability is now 2Q(e./cr). 
l. l. 

At high signal/noise ratios the doubling of the error probability 

corresponds to only a small change in signal/noise ratio 

(Appendix A2), so that for practical purposes the error probability 

can be taken as p. in Egn. 
l. 

(3.5-15) whatever the value of s .• 
l. 

Since e. in general is a function of i, different signal
l. 

elements in a group of m have different error probabilities. 

A simple upper bound to the average element error probability 

is given by the value of pi in Egn. (3.5-15) for the smallest ei. 

Let the minimum value of ei bee and the corresponding value of pi 

be p. Then the average element error probability is less than or 

equal to 

p = Q( ~) 
()" 

(3.5-16) 



In the case of the optimum detection process the distance 

to the decision boundary between any two of the k:r' possible vectors 

= 

= 

= S Y is from Eqn. (3.4-4) 
c 

1 {(S - S )YYT(S - S )T}j 2 b c b c 
(3.5-17) 

where j(Sb- Se) is an m-component row-vector whose components 

may have any of the (2k._ - 1) different values corresponding to the 

possible values of s - s •• ! (Sb - S ) has (2k.- l)m -1 possible 
i J c 

values one or more of which will give the minimum distance d to the 

decision boundaries for all {SY}. In the presence of any significant 

signal distortion only some of the signal vectors {SY} have decision 
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boundaries at or near the minimum distance d, but some of these vectors 

may have two or more such decision boundaries. At high 

signal to noise ratios the reduction in error probability due to the 

former effect should be apprQximately offset by theincrease due to 

the latter. 

It must be noted that at high signal to noise ratis with additive 

white Gaussian noise, even a very small increase in the distance to 

a decision boundary produces a considerable reduction in the 

d . b b'l' 34 correspon 1ng error pr0 a 1 1ty. Thus the error probabUity is 

effectively determined by the nearest decision boundary, the remaining 

boundaries having in comparison a very small effect on the error 

probability. Furthermore, if only every second or third possible 

vectors SY has a decision boundary at a distance equal to the minimum 

between any value of SY and its associated decision boundaries, or 

alternatively, if some of the possible vectors SY have two or three 

decision boundaries at this minimum distance, then in either case 

the error probability changes by no more than 2 or 3 times, which at 

high signal to noise ratios represents a change of only a fraction of 

one dB in the tolerance to the white Gaussian noise, and this. can 



normally be neglected. The distance to the nearest decision 

boundary for all vectors {SY} is. thus a reasonably reliable 

measure of the tolerance to additive Gaussian noise, so long as the 

. 1 . . . h' 34 s~gna to no~se rat~o rema~ns ~gh. 

3.6 A simple Example 

A useful comparison between the process of linear equalization 

and the optimum detection process can be made from a study of a simple 

case where there are two binary signal-elements in a group. 

Suppose that the sampled impulse response of the channel is 

Yl Y2 0 • • • 0 (3.6-1) 

and assume that m= 2 and n = 3. Also, s1 = ~ 1 and sz = ~ 1, and 

these being statistically independent and equally likely to have 

either binary value. 

Now 
(3.6-2) 

So that SY is a point in the 2-dimensional subspace spanned by Y1 

and Y
2

• The subspace is shown in Fig. 3.6-1. U1 and Uz are the two 

possible positions of s1Y1; V1 and Vz are the two possible positions 

of szYz. U1 and V1 correspond to the positive values of s1 and sz, 

respectively. H1, Hz, H3 and H4 are the four possinle positions of SY. 

The received vector R will not in general lie in the 2-dimensional 

subspace, but its orthogonal projection onto the subspace is the vector 

p (3.6-3) 

The linear equalization process detects s1 and s2 from the signs 

of xy and xz. 

It can be seen that if P lies any where in the area bounded by 

AOB in Fig. 3.6-1, x1 > 0 and xz > 0, so that s1 and sz are both 

detected as 1 and SY is detected as H1. Similarly, if P lies in the 
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area bounded by BOC, COD or DOA, SY is detected as H2, H3 or H4, 

respectively. 

The optimum detection process detects SY as the point H. at 
~ 

the minimum distance from R and therefore at the minimum distance · 

from P. Thus if P lies in the area bounded by EMF, FMNG, GNH, or 

HNME, SY is detected as H1, H2, H3 or H4,respectively. The lines 

EH, FM, GN, and HN are the perpendicular bisectors of H4H1, H1H2, 

The vector P is the sum of the received signal-vector H. = SY 
. ~ 

and the orthogonal projection of the noise vector 1-1 onto the 2-

dimensional subspace spanned by Y1 and Y2, An error results in the 
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detection of a received signal-element when the projected noise-vector 

carries P onto the other side of the decision boundary with respect 

to the received vector H • The projected noise vector is equally 
i 

likely to lie along any direction in the subspace. Furthermore, 

the probability of its magnitude exceeding a given value depends only 

on this value and the signal to noise ratio, and decreases rapidly 

as the value increases. It can be seen in Fig.· 3. 6-1 that along any 

direction, from any one of the four {H.}, the distance to the nearest 
. ~ 

decision boundary is in general greater (and never smaller} for the 

optimum detection process than it is for the process of linear 

equalization. Thus, for a given signal to noise ratio, the former 

process has a smaller probability of error than the latter. 

When the angle 9 in Fig. 3.6-1 is equal to 90°, that is, when 

Y1 and Y2 are orthogonal, it can be seen that the decision boundaries 

for the two detection processes are the same, and, therefore, in this 

case the two processes have the same tolerance to additive Gaussian noise. 
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3.7 Some Important Conclusions 

The prior knowledge of the sampled impulse response of the 

channel can be represented as a prior knowledge that the received 

signal vector SY (that is the signal without noise) is confined to 

the m-dimensional subsp~ce spanned by the m vectors {Y,} in the 
l. 

n-dimensional vector space. The received vector is the n-component 

vector 

R = SY + W (3. 7-1) 

The m x n matrix Y is known at the receiver and defines the m-

dimensional subspace to which SY is confined. In the presence of 

noise the best linear estimate of S from the received vector R,is 

obtained by projecting R onto the m-dimensional subspacc, followed 

by a process of matrix inversion. The whQle process is achieved by 

feeding R through the linear network YT(YYT)-l whose m output terminals 

hold the vector X which is the best linear estimate that can be 

made of s, under the assumed conditions. 

The process of linear equaiization discussed in Section 3.2 is 

equivalent to (but not the same) as the arrangement used with 

Uninterrupted signals. There are however, two advantages here. Firstly, 

T T -1 
exact equalization is obtained with the n x m network Y (YY ) , 

provided that the different received groups of signal-elements are 

disjoint in time. Since with most practical transmission paths, the 

impulse response of the channel decays fairly rapidly on each side of 

the central peak, a good approximation to truly orthogonal groups of 

elements can be obtained by providing a sufficiently large gap between 

adjacent groups of transrni tted signal-elements. Secondly, for any non-

zero sampled impulse response of the channel, SY must be non-zero 

for all possible values of s. Thus, where there are difficulties in 



obtaining accurate equalization of the continuous signal or where 

certain sequences of element values result in excessive 

attenuation of the received signal, a useful advantage should be 

gained with the arrangement of orthogonal groups. 

The real importance of the arrangement of orthogonal groups, 

however, is that where the receiver has prior knowledge of the km 

possible values of SY, a considerable advantage in tolerance to 

additive noise can be obtained by the use of the optimum detection 

process. Unfortunately, the optimum detection process cannot 

itself be implemented in practice except when both m and k are small, 

because of the time required to perform the km sequential 

operations involved in the process. Sub-optimum detection processes 

must therefore be investigated in the search for a near optimum 

process, which require far fewer than km sequential operations. 

69 



. -

70 

4.0 DEVELOPMENT OF THE TWO BASIC DETECTION PROCESSES 

4.1 Systems 1 and 2 

Consider the process of linear equalization discussed in 

Section 3.2. The best linear estimate X, of the vector S containing 

the transmitted signal-element values, is 

This estimate can be obtained by feeding the received vector R to a set of 

m correlation detectors tuned to the m{Yi} , which in turn feed the 

T -1 inverse network (YY ) as shown in figure 4.1-1. Although, the linear 

T T -1 n x m network Y (YY ) can be implemented as such, much less complex 

equipment is involved when the transformation YT(YYT)-1 is carried out by 
' 32 an iterative process. In such a process the vector X is obtained as a 

result of a sequence of separate steps, giving successively closer approxi-

mation to the required solution. 

A large number of different' iterative processes are described in 

the published literature, but the majority of these require considerable 

equipment complexity and are therefore not suitable for use here~ 1 • 32 • 34 • 38 • 52 

There is however one iterative process which is ideally suited to the 

present epplication- the point Gauss-Seidel process. 32 •38 •52 The method 

of operation of this process will now be described with reference to 

Fig. 4.1-2. 

and 

Let (4.1-1) 

(4.1-2) 

where D is an m-component row-vector whose components are the m outputs 

from the correlation detectors tY~ in Fig. 4.1-1, and A is an m x m real 

symmetric positive definite matrix.32 o52 

At the start of the detection process, the vector X in Fig. 4.1-2 

is set to zero and the received vector R is fed t<D the input, so 

that 
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Linear equalization as an iterative process 



X = 0 (4.1-3) 

and E = D (4.1-4) 

where E = { ei} is the output signal vector from the m correlation 

detectors { Y. T} d . 
L ur1ng a detection process as shown in Fig. 4.1-2. 

x1 is then adjusted so that the output signal e
1 

from the first 

correlation detector is reduced to zero. This in general changes all 

m output signals {eJ from the correlation detectors. x2 is now 

changed so that the output signal from the second correlation detector 

is reduced to zero, and so on sequentially to x , which completes the 
m 

first cycle of the iterative process. The procedure is then repeated 

for the second cycle, the {xi} being changed sequentially and in the 

same order as before, and so on until no further changes in the {xi} 

are required. 

When x. is adjusted to reduce to zero the output signal from the 1 
.th 

correlation detector, the change in is 1 x. 
l. 

e . 
b.x. 

. ]. 
(4 .1-5) = 1 V 

where e. is the output signal from the ith correlation detector 
1 

immediately preceding the change and 

T v = Y.Y. = a .. for all i 
1. 1 1.1 

(4.1-6) 

where a .. is the ith element on the main diagonal of matrix A. 
11. 

Thus, at the end of the process, when all the m {xi} have been 

adjusted such that 

E ~ 0 (4.1-7) 

X satisfies the relation 

= 0 

or X = (4.1-8)' 

which is the same as that for the process of linear equalization 

(Eqn. (3. 2-9) ) • 
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The above iterative process can be modified so that the 

change in xi' given by equation (4.1-5)., now becomes 

.. e. 
"x. 

1 = q-
1 V 

(4.1-9) 

where q is a constant and 

0 -< q ,(_ 2 (4.1-10) 

38 The constant q is called the relaxation constant, and Equation 

(4.1-5) is a special case of (4.1-9). 

The above detection process will converge to the required 

solution vector X, so long as the matrix A is real, symmetric 

and positive definite and 0 < q < 2, that is so long as the m {Yi} 

are linearly independent and 0 < q < 2. 3Z,38,52 To obtain the 

maximum rate of convergence of the iterative process, q should normally 

52 have a value equal to or a little greater than 1. A simple 

implementation of the iterative process is described in reference [32]. 

Clearly the circuits associated with the correlation detectors 

T -1 in Fig. 4.1-2, perform the same function as the network (YY ) in 

Fig •. 4.1-1, so that the tolerance of the iterative process to the 

additive Gaussian noise and signal distortion in the channel,should 

'be the same as that of the linear equalization discussed in Section 3.2. 

The iterative process described aoove will be referred to as System 1. 

The optimum detection process, described in Section 3.3, generates 

in turn each of the different possible vectors {SY} and measures its 

distance JR-SYJ from the received vector R• The detected value of S is 

that corresponding to the minimum distance. The detection process 

minimizes the probability of error in the detection of the m elements 

33 52 of a group. ' It will be referred to as System 2. 
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4.2 System 3 

System 3 is a modification of System 1. The tolerance to 

additive Gaussian noise of System 1 can be improved by applying the 

following constraint to the vector X. The values of the {xi} are 

constrained throughout the iterative detection process so that their 

values satisfy 

where c is the most positive of the possible values of s .• 
]. 

(4.2-1) 

In the 

iterative process the constraint overrides and so, .if necessary, 

truncates the change in x. given by Eqn, (4,1-9), 
1 

Consider the example of Section 3.6 and let the vector XY at the 

end of the iterative process of System 3 be 

(4. 2-2) 

Referring to Fig. 3.6-1, P is the orthogonal projection of the 

received vector R onto the 2-dimensional subspace. When P lies 

inside the quadrilateral H1H2n3u4, P and Q coincide, whereas when P 

ties outside H1H2n3u4 then, because of the constraint on the {xi} , Q is 

the point on the quadrilateral at the minimum distance from P, so that 

Q is the orthogonal projection 

x1 and x2 now satisfy (4.2-2). 

of P onto the nearest side of u
1
u

2
u

3
u

4
•52 

If H1 , H2, H3 or n4 is the nearest 

point on the quadrilateral to P, then this is taken to be the orthogonal 

projection of P onto the quadrilateral. 

If, in Fig. 3.6-1, P lies above EU
1
ov

1
F, to the right of FV1ou2G, 

below cu
2
ov 

2
u or to the left of HV 2ou1 E, SY is detected as u

1
, u2, n

3 
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or u
4

, respectively. The decision boundaries in this case are a compromise 

between those for System 1, and those for System 2, so that the tolerance 

to noise of System 3 should clearly lie somewhere between that of System 1 

and that of System 2. 



Clark52 has studied the performance of Systems 1 and 3 in some 

· detail for a more general class of transmitted signals than that 

assumed here. His computer simulation results suggest that for the 

type of signals studied, System 3 gains Bn advantage typically 1 

or 2 dB in tolerance to Gaussian noise over that of System 1. 

Furthermore, the constraint on the {.xi}, given by Eqn. (4,2-1), 

not only maintains the convergence of the iterative process but often 

greatly increases the rate of convergence. The rate of convergence is 

maximum when q in Equation (4.1-9) is such that 1.25 ~ q ~ 1.5. 32 •52 

4.3 System 4 

In this detection process the detector first generates km 

vectors {Q = XY}, each of which is at the minimum distance from R 

subject to a different set of constraints on X. k is the number of 

possible element valuP.s, For each set of constraints, one of the 

m(K.} is constrained to have one of the k possible values of s. (with a 
l:· l: 
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different choice of the km possible combinations of the possible values of 

si and i ) , and the remaining {xi} are estimated us.ing System 3. If P is 

the orthogonal projection of R onto th~ m-dimensional space spanned by 

the{Y.} then the vector Q corresponding to any one set of constraints is 
. l: 

the orthogonal projection of P onto the bounded hyperplane specified by 

these constraints. For each of the vectors {x} corresponding to the 

different vectors {Q}, the detector determines the vector S at the 

minimum distance from this vector X, and generates the corresponding 

vector SY. The detector then determines which of those vectors 'SY} ~ \ -
is at the minimum distance from R, and takes the detected value of S 

as that giving the minimum distance. The vectors {SY} selected in 

the km iterative processes, are not necessarily all different, since 

not only can two different vectors {Q} give the same selected vector 



SY but also the km vectors {Q} themselves are not necessarily all 

different. 

In the practical implementation of System L, a suitably modified 

arrangement of System 3 selects the vectors {sY} in km successive 

iterative processes, and an arrangement of System 2 then determines 

the detected vector S from these {SY}. Consider, for example, the 

case where the transmitted signal-elements are binary coded, such that 

s. = :!: l. 
l. 

The detector uses System 3 to obtain the estimate X of 

the transmitted signal vector S, with x1 set at +l.· The detected 

values of the {sJ are then obtained by comparing the{xi} with a 

·threshold level of zero. The detector then generates the vector SY 

using this detected value of S and subtracts it from the received 

vector R. The components of the difference vector are squared and 

added to give the square of the distance between the vector R and the 

generated vector SY. This distance together with the associated vector 

S are stored. The whole procedure is then repeated with x
1 

set at -1 

and again for x2 set at +l and then -1 and so on up to xm. In each 

iterative process corresponding to a fixed value of one of the {xi} , 

the remaining {xi} are permitted to vary subject to the constraint 

given by Eqn. (4.2-l). At the end of each iterative process the 

detector compares the distance just measured with that already stored, 

and no action is taken unless the former is smaller than the latter. 

When this occurs, the new distance together with the associated vector S 

replace those stored. The detector takes the detected value of S as 

that which remains in the store at the end of the detection process, 

when all the km iterative processes have been completed. 

The method of operation of System 4 can be further clarified 

by considering the example of Section 3.6. Referring to Fig. 3.6-l, 
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the vectors {Q} are here the orthogonal projections of P onto the 

four lines H4H1, H1H2, H2H
3 

and H
3
H

4
, the orthogonal projections onto 

H2H3 and H3H4 being H2 and H
4

, respectively. The corresponding vectors 

·{SY} are the points {Hi} in the same decision regions as the vectors 

{Q}, where the decision boundaries are thoseof System 1. Clearly the 

selected vectors {SY} are H
1

, H
2 

and H
4

• The detected vector His that 

member of the selected {Hi} , which is at the minimum distance from P, 

and it is therefore H • 
l. 

It can be seen that for the whole detection process of System 4 

the decision boundaries in Fig. 3.6-1 are the same as those for 

System 2, so that for groups of two binary signal-elements, System 4 

achieves the same tolerance to additive Gaussian noise as does System 2. 

Although System 4 is basically more complex than System 2 and in this 

particular example it requires more sequential operations, the number 

of sequential operations in System 4 increases very much more slowly 

with m and k than in System 2, and for larger values of m and k becomes 

much smaller than in System 2. 35 

The first part of the detection process of System 4 selects from 

the km possible vectors {SY} a. set of 1'0 more than km vectors. The 

· second part of the detection process selects from this set the vector 

SY at the minimum distance from R. On the other hand, System 2 selects 

the detected vector SY directly from the whole set of km ,{sY.} 

4.4 Systems 5 and 6 

In System 5, the detection process of System 1 is applied to the 

m received signal-elements of a group, but only the detected value of 

the first element is accepted. With correct detection, the components 

(sample values) of the first element s
1
Y1 are known. These are then 

cancelled (eliminated by subtraction) from the received vector R. The 
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modified vector R now contains sample values due to the remaining 

(m-1) signal-elements. The detection process of System 1 is now 

applied to these (m-1) elements to give the detected value of s
2
Y

2 

which is then cancelled, and so on. In this way each of the m signal-

elements of a received group is detected as the first element in its 

respective group, and, with the correct cancellation of the preceding 

elements, the error probability in the detection of any element does 

not drop below the error probability in the detection of the first · 

element 

The technique applied here is one of non-linear equalization by 

. . 15-18 20 21 decision-directed cancellation of 1ntersymbol 1nterference. ' ' ' 

23,31,34 Th . d . f . d . 1 1 1 d f e 1ncorrect etect1on o a rece1ve s1gna -e ement ea s o 
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course to the incorrect cancellation of that element. This correspondingly 

increases its intersymbol interference in the following elements and 

greatly increases the error probability in their detection. Errors 

therefore tend to occur in bursts. It must however be borne in mind 

that since the signal-elements are transmitted in separate groups, a 

wrong detection and cancellation in any one group of signal-elements 

does not affect the detection pf eleme11ts in the following groups. 

21 31 . Thus the error bursts ' are conta1ned within the m elements of a group. 

System 6 is a modification of System 5, in which System 3 is used 

in place of System 1 for the detection of each signal-element. 

Systems 5 and 6 are applications of a technique studied for a 

continuous (uninterrupted) stream of signal-elements, where each detected 

signal-element is cancelled and therefore removed from the received 

1 1 21,23,31,34 samp e va ues. An important feature of the arrangement of 

signal detection and cancellation in the case of continuous 

(uninterrupte'<)) signal is that corresponding to n transmitted signal-

elements there are just n sample values of the received signal. 



Theoretical_analysis has shown that the detection of n elements from 

the corresponding n sample values reduces the tolerance of the 

arrangement to additive white Gaussian noise. 21 •34 In Systems 5 and 6, 

since there are n sample values of the received signal corresponding to 

m elements of a group, where n>m, it follows that the tolerance to 

additive white Gaussian noise of Systems 5 and 6 is better than that of 

the correspo~ding arrangement with continuous (uninterrupted) signal. 

4.5 Detection of Multi-Level Signal-Elements 

The detection processes described in the previous sections are of 

interest mainly for the detection of binary signal-elements. They may 

be applied to multi-level elements but, for useful values of m, they 

either give an inferior tolerance to noise or else they require an 

excessive number of sequential operations. 

The constraint on the {X·} in System 3 given by Eqn. (4.2-1) 
. 1 

becomes less effective with the increase in the number of signal-element 

levels. This is because, with mu1ti-level signals only a few of the 

{x.} which correspond to the largest of the possible values of s ., are 
. 1 1 

affected by this constraint, for the rest of the {x.} the constraint 
1 

is virtually non-existant. In the limit, therefore, when the number 

of signal-element levels is very large, the tolerance to Gaussian noise 
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of System 3 will approach that of System 1. Also, for the same reason the 

tolerance of System 6 to additive Gaussian noise will approach that of 

System 5 as the number of signal-element levels increases. Again the 

number of sequential operations required in both Systems 2 and 4 

increases rapidly with the number of signal-element levels, and for 

large values of m, makes them unsuitable for use with multi-level 

signal-elements. 



A promising technique for. the detection of multi-level elements 

is to carry out an initial detection process which selects from the 

total number of possible values of each signal-element, the two or 

three element values which are most likely to be correct. The 

detection of the m signal-elements is then completed by an iterative 

process which operates only on the selected element values, so that 

it treats the received signal-elements as though these were the 

corresponding 2-or 3-level elements. This arrangement often enables 

a good tolerance to noise to be achieved, without an excessive number 

of sequential operations. The following detection processes are all 

based on this technique. 

4.6 Systems 7/2, 7/4 and 7/6 

In System: 7/2 the detection process of System 3 is first applied 

to give the vect0r X, as in Eqn. '(4.-2-2). The value of each x. is used 
1 

m to determine the nearest two possible values of s., to give a set of 2 
1 

likely values of S. The detection process of System 2 is now applied, 

using only these values of S. In Systems 7/4 and 7/6, the detection 
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process of Systems·4 and 6, respectively, are used for the final detection 

of S in place of System 2. 

4.7 Systems 8/2, 8/4 and 8/6 

In System 8/2 the detection process of System 3 is first applied to the 

recP.ived vector R to give an initial (temporary) detected value of the 

vector S. With each component s. of S are now associated 
1 

(.where available) the two immediately adjacent of the 

possible values of s .• This gives a maximum number of 
]. 

3~ lik-ely vectors S, The detection process of Sysfem 2 is now 



applied, using only these values of S, to give the final detected value 

of S. In Systems 8/4 and 8/6, the detection processes of Systems 4 and 

6, respectively, are used for the final detection of S, in place of 

System 2. 

The operation of these systems can be explained more simply by 

considering the example of Section 3.6. The {si} are now assumed to be 

4-level signal-elements instead of binary, with :!: 1 and + 3 as the 

possible four values of s .• 
1 

The 2-dimensional subspace spanned by Y1 

and Y
2 

is shown in Fig. 4.7-1. Also shown are the decision boundaries 

and decision regions of Systems 1 and 2, for the 4-level signal-elements 

considered here. Clearly Fig. 4.7-1 is derived from Figs. 3.4-l(b) and 

3.4-2(b). The vectors {H.} where each H. is one of the 16 possible 
~ 1 
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vectors SY, are shown as points in the 2-dimensional subspace. The values 

of s1 and s2 associated with each Hi are also given. Pin Fig. 4.7-l,is 

the orthogonal projection of R onto the 2-dimensional subspace and is 

given by 

+ (4. 7-1) 

Referring to Fig. 4.7-1 it can be seen that System 1 detects SY as 

H
1

, and hence s
1 

= = 1, if P lies anywhere within the area 

oa
1
a

2
a

3
o, while System 2 which is the optimum system, detects SY as H

1 

if Plies within the area b
1

b
2
b

3
b

4
b

5
b

6
b

1
• If Plies in the shaded portions 

of the area oa1a2a
3
o, System.l will still detect SY as H1 , but System 2 

will now detect SY as either H
2

, H
3

, H5 or H9 , depending upon the location 

of P within the shaded areas. Thus if System 1 detects s
1 = = 1 

the possible values of {si} which can be detected by System 2, are s1 = -1, 

1 or 3 and s
2 

= -1, 1 or 3, and these values include the two immediately 

adjacent to those detected by System 1. In general, considering all the 
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Figure 4.7 -1 

Decision boundaries of Systems 1 and 2 in 2-dimensional 

subspace spanned by v1 & Y2• Groups of two 4-level elements, 
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vectors SY in the 2-dimensional subspace of Fig. 4.7-1, it can be seen 

that the values of {s.} which can be detected by System 2, given the 
1 . 

values detected by System 1, are these values and (where available) the 

two pairs of values immediately adjacent to those detected by System 1. 

If now Syste~ 2 or 4 is used for the final detection of S, using only the 

possible values of S selected by using System 1, then, clearly the 

tolerance to additive Gaussian noise of Systems 8/2 and 8/4 for groups of 

two 4-level signal-elements, will be similar to that of System 2 and 4, 

respectively. Evidently this is true also for larger numbers of signal-

element levels. Although Systems 8/2·, 8/4 and 8/6 use System 3, for the 

initial detection of {si} instead of System 1 which has been considered 

in this example, this does not make much difference because with multi-level 

signal-elements, the tolerance of J:ystem 3 to additive white Gaussian noise 

is more like that ~f System 1 as has been mentioned in Section 4.5. 

It must be pointed out that before applying System 4 or 6 to the 

received vector R, for the final detection of S, the constraint on the 

{xi} given by Eqn. (4.2-1) is modified. If s. is the initial detected 
1 

value of the ith element then, the value of the corresponding x.' 
1 

during 

the final detection process of System 4 or 6, is constrained such that 

(4.7-2) 

where s. 1 and s." are the two values immediately adjacent to s. (where 
1 1 1 . 

available), and s. 1 is the smaller of the two. Clearly the constraint on 
1 

the {xi} in Eqn. (4.7-2) is more effective than that given by Eqn. (4.2-1), 

and therefore System 8/6 should gain some advantage in tolerance to additive 

Gaussian noise over System 6. 

Although Systems 8/2, 8/4 and 8/6 look complicated in theory, their 

practical implementations are similar to those of Systems2, 4 and 6, 



respectively. For each group of received signal-elements, System 3 

is first used to detect the initial value of S. With each components. 
~ 

are the.n associated (where available) the two immediately adjacent of 

the possible values of s.. The components {~ .} of S are now treated as 
~ 1 

2- or 3-level signal-elements and the receiver knows. these values for 
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each s .• The vectorS is finally detected by using the detection processes 
~ 

of Systems 2, 4 or·6 exactly as described in Sections 4.1, 4.3 and 4.4, 

respectively. With Systems 4 and 6, however, the constraint given by 

Eqn. (4.7-2) is now used instead of th~t given by Eqn. (4.2-1). 

Clearly Systems 8/2, 8/4 and 8/6 are modifications of Systems 7/2, 

7/4 and 7/6, respectively, which are described in the previous section. 

It can be seen from Fig. 4.7-1 that at high signal to noise ratios, 

the two most likely values of si ip a set of the three possible values, 

selected after an initial detection of S, are the two values nearest to 

th.e corresponding x. where the {x.} are of course the components of the 
~ ~ 

vector X in Eqn. (4.7-1). Thus at high signal to noise ratios the 

performance of Systems 7/2, 7/4 and 7/6 for groups of tt-ro multi-level 

signal-elements, can be expected to be similar to that of Systems 8/2, 

8/4 and 8/6, respectively. 

The implementations of Systems 7/2, 7/4 and 7/6 are similar to those 

of Systems 8/2, 8/4 and 8/6, respectively. The selected possible values 

of each s. are now two, instead of two or three, and are the ones nearest 
~ 

to the corresponding x.. s.' and s." in Eqn. (4.7-2) are now the two 
~ ~ ~ 

possible values of s .• During the initial detection process in any of the 
~ 

systems 7/2, 7/4 and 7/6, I xi! will never exceed the value max. (si)' 

because of the constraint of Eqn. (4.2-1). When x. has one of the two 
~ 

extreme values of s., the two possible values of s. are taken to be this 
~ ~ 

value and that immediately adjacent to it. 
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5, 0 ASSESS!-!ENT OF THE DETECTION PROCESSES 

5.1 Computer Simulation Tests 

The relative performances, in the presence of additive white 

Gaussian noise, of the various detection processes just described 

have been compared by considering a 2-dimensional subspace. Such an 

analysis becomes difficult and almost impossible for the higher 

dimensional subspaces obtained when the number of elements in a 

group is large. Since, in a practical application, the number of 

signal-elements in a group is likely to exceed 10 or even 20 with 

binary or multi-level elements, computer simulation has been used to 

study the performances of the detection processes in the presence 

of additive white Gaussian noise. 

The tolerances to additive white Gaussian noise of the various 

detection processes have been compared for the data-transmission 

system discussGd in Section 3.1, The comparison has been made for 

different values of the sampled impulse response of the baseband 

channel, for different numbers .of elements in a group, and for 

different numbers of signal-element levels. All the computer 

simulation programs, have been written in FORTRAN IV and run on the 

ICL 1904 A computer at Loughborough University of Technology. 

In every case the energy of an individual transmitted signal-

element has been set to unity and the two sided power spectral 

density cr2 of the additive white Gaussian noise at the input to the 

receiver filter is adjusted to obtain a given average element error 

rate. The value of cr 2 then gives a measure of the tolerance of a 

system to additive white Gaussian noise. Different error rates have 

been used for different numbers of signal-element levels in order 

to allow for the fact that the probability of error in the detection 

1 1 . 1 1 . f . f 2 (k-l) of a k- eve s1gna -e ement 1s a unct1on o k which, although 



significant at the error rates tested, is not important at the 

lower error rates usually found in practice. The probability of 

error in the detection of a multi-level element is considered in more 

detail in Appendix AB. Thus the results give a better estimate 

of the relative tolerances to additive white Gaussian noise, at high 

signal to noise ratios where the error probabilities are no more 

. 5 
than 1 in 10 • 

The computer simulation programs are considered in more detail 

in Appendices A3, A4, AS and A6. 

5.2 Choice of Channel Impulse Response and Transmitted Signals 

The sampled impulse response of the baseband channel is 

specified by a five component row vector L, assuming that an 

individual signal-element does not cause intersymbol interference in 

more than four of the neighbouring elements so that g = 4. The 

different vectors tested are shown in Table 5.2-1, each vector is 

normalized to have unit length.· With the exception of the first 

vector, these are grouped in pairs, each member of a pair in every 

case causing the same reduction in tolerance to noise as the o"ther. 

The different values of L have been selected to give a wide range 

of different signal distortions which include various combinations 

of amplitude and phase distortions. 33 • 35 • 55 

Simulation tests have been performed with 2, 4 and 8-level 

signal-elements and for both m= 4 and m = 8. In every case the 

average transmitted energy per bit is equal to unity. The possible 
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values of signal-elements si are shown in Table 5.2-2. The transmitted 

signal-elements are statistically independent and equally likely to 

have any of the possible values of s .• In each simulation test, with 
~ 
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TABLE 5.2-1 

Values of the sampled impulse response of the channel 

Channel L 

A (l,O,O,O,O) 

B I 
-! 2 (l,l,o,o,o,) 

-! 2 (1 '-1 ,o ,0 ,0) 

c I 
-! 2 (1,0,1,0,0) 

-! 2 (l,0,-1,0,0) 

I 
-1 

D 1.5 2 (0.5,1,0.5,0,0} 

1. 5-! (-o. 5,1, -o. 5 ,o,o) 
-

.. . 

~ 
-! E 1.5 (0.5,1,-0.5,0,0) 

.. :-! 1.5 . (-0.5,1,0.5,0,0) 

. 
F l -! 1.5 (1,0.5,0.5,0,0) .. 

-! 1.5 (1,-0.5,0.5,0,0) 

G I 
-! 1.5 (1,0.5,-0.5,0,0) 

-! 1.5 (l,-0.5,-o.5,o,o) 

H l 
-! 1.5 (1,0.667,0.235,0,0). 

-! 1.5 (1,-0.667,0.235,0,0} 

I i 
-! 1.5. (1,0.667,-0.235,0,0) 

-! . 1.5 (l,-0.667,-D.235,0,0) 

J I 
-! 2 (0.235,0.667,1,0.667,0.235) 

-! 2 (0.235,-o.667,1,-0.667,0.235) 

K I 2-!(-0.235,0.667,1,0.667,-0.235) 

2-!(-0.235,-0.667,1,-0.667,-0.235) 



No. of Element Levels 

2 

4 

8 

TABLE 5.2-2 

'Possible Values of s .. 
1 

Values of 

+ 1 -

s. 
1 

1 3 
.!. 72:5 and .!. 72:5 

1 + 3 5 7 
.!.77• -77· .!. T7 and .!. 7'i 
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groups of four and eight binary and groups of four 4-level signal

elements, a total of 4096 signal-elements were transmitted over any 

given baseband channel. The number of signal-elements transmitted 

with groups of eight 4-level and groups of four 8-level signal

element was 4000. In cases where the number of signal-elements 

transmitted was 4096, all possible combinations of the element 

values in a group were used. However, due to the limitations on the 

computer time arailable,' it was not possible to do the same with 
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groups of eight 4-level and four 8-level signal-elements, and in these 

cases the possible val:.ues of the signal-elements of a group (Table 5.2-2) 

were selected such that the elements in a group were statistically 

independent and equally likely to have any of the possible values. 

Systems requiring an unduly large amount of computer time 

have been tested only with channels A, B, D and J, these channels 

being the most interesting of those tested. Where a system has been 

tested over any one of the channels B to K, a computer simulation 

test has been carried out for each of the two corresponding values 

of L in Table 5.2-1. Again, because of the limited computer time 

available, binary and 4-level elements were tested in groups of both 

four and eight elements, whereas 8-level elements were tested 

only in groups of four. 

5.3 Error Probabilities and Confidence Limits 

In the simulation tests, different error probabilities have 

been used for different numbers of signal-element ~evels, so that 

the simulation results give a better estimate of the relative tolerances 

to additive white Gaussian noise, at high signal·t~ noise ratios, for 

different numbers of signal-element levels~ The values of error 



3 probability actually used were 4, 6 and 7 in 10 for 2, 4 and 8-level 

signal-elements,respectively. It has not been possible to test the 

systems at higher signal to noise ratios (lower error probabilities) 

because, for a reasonable estimate of the tolerance of a system to 

noise some 20 or 30 errors must be obtained in a computer simulation 

test. This implies a very large number of trials when the element 

error rate 'is less than 1 in 103• The choice of error probabilities 

and the total number of signal-elements transmitted in each test, is 

a compromise between the accuracy of the results and the available 

computer time. 

In the case of channel A, the standard deviation cr·of the white 

Gaussian noise at the input of the receiver filter (Fig. 1.1-1), 

corresponding to a given average element error probability, can of 

course be derived theoretically. For any baseband channel, the 

noise variance at the input to the detector is equal to the two sided 

noise power spectral density cr2 at the input to the receiver filter. 

For channel A, when there is no signal distortion, the received signal-

elements are orthogonal at the receiver. Furthermore, with binary 

coded s:Cgnals, the i th signal-element in a group has ouly one non-zero 

component which has the value ~ 1. An error occurs in the detection 

of this element when the corresponding noise component has a magnitude 

greater than 1 and the opposite sign to that of the component of the 

binary element. Hence the probability of error in the detection of 

the ith element is Q(l/cr). 
3 

For an error probability of 4 in 10 , 

Q(1/cr) = (5.3-1) 

so that a = 0.376, and this is the required value of the standard 

deviation of the white Gaussian noise at the input to the receiver 
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filter, corresponding to an error probability of 4 in 103 over 

channel A. In the case of 4-level elements transmitted over channel A 

with an error probability of 6 in 103 , the standard deviation cr of 

the noise must satisfy 

2(k-l) Q (~) = 6 X 10-3 
k cr. 

as can be seen from Appendix A8,where k is the number of element 

levels, so that k = 4, and d is the distance to the nearest decision 

- _]__ boundary, so that d - 12:5 , from Table 5. 2-2. Thus 

and 

d QH cr 
= 

cr = 0.238 

In ~he case of 8-level elements transmitted over channel A with an 

error probability of 7 in 10
3

, cr must satisfy 

2(k-l) Q (~) 
k cr 

= 

where now k = 8 and d = l/17. Thus, 

= 

and cr = 0.142 

In each case just considered the transmitted-energy per bit is set to 

unity. It can be seen that the values of cr for 2, 4 and 8-level 

elements transmitted over channel A are compared for th& same value of 
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d Q(a ) , so that the comparison holds at high signal to noise ratios where a 



change in error probability by a factor of two corresponds to a 

negligible change in signal to noise ratio. Evidently under the 

above conditions, a change from binary to 4-level signals results in 

a reduction in tolerance to noise of nearly 4 dB, whereas a change 

from binary to 8-level signals results in a reduction of nearly 8.5 dB. 

The value of the standard deviation cr of white Gaussian noise 

obtained theoretically for channel A has been checked against that 

obtained by computer simulation, and for every system tested, the two 

values were found to be in close agreement. 

For a given value of the average element error probability p, the 

number of errors t obtained in a simulation test, is given by 

t = R,p (5.3-2) 

where R, is the total number of signal-elements transmitted in a test. 

In all the systems tested, the actual value of R, for groups of four 

and eight binary elements and groups of four 4-level elements was 

4096, while for groups of eight 4-level and four 8-level signal-

elements R, was equal to 4000. 

It has been shown that if the errors are statistically 

independent, t > 30, p << 1 and if an accuracy of no better than 

20% is required for the confidence limits, then it can be assumed 

that t has a Gaussian probability density with a mean ~ = t and a 

standard deviation n = lt. For a given value of p > 0, the 95% 

confidence limits for the value of p are now approximately52 

2n +-p - ~ 
= 

2p 
.:!:.Tt (5.3-3) 

where the limits are expressed as deviation from the given value of p. 
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In any test with orthogonal groups of signals there may be a 

high degree of dependence between the individual element errors of a 

group in a detection process. The result of this dependence is to 

reduce the effective number of independent errors obtained in a test 

and so to widen the confidence limits. Thus t in Eqn. (5.3-2) does 
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not represent the effective number of independent errors and, therefore, 

cannot be used to estimate the confidence limits. However, since the 

signal-elements are tr~nsmi tte.d in groups, the element errors in a group 

being completely independent from those of the other groups, it is 

reasonable to assume that the effective number of independent errors 

in a test is equal to or greater than the number of groups of signal

elements in error, and this value provided that it is greater than 30, 

can be used in Eqn. (5.3~3) to estimate the confidence limits for a 

given value of p. 

From the computer simulation results it was found that.·the number 

of groups of signal-elements in error, for any of the detection 

processes described in Section 4, remained fairly constant for a 

given element error probability p, a given number of elements in a 

group m, and a given number of signal-element levels k. The averac;e 

value of the number of groups in error was, therefore, used to estimate the 

confidence limits for given values of p, m and k. The 95% confidence 

limits for different values of m and k are given in Table 5.3-1, and for 

the given values of m and k these limits are for practical purposes, the 

same for any of the systems tested. ~fuere the effective numb~r of 

independent errors j is less than 30 the 95% confidence limits are 

estimated from the results of reference [49). For each of the 

different values of p,m and k, Table 5.3-1 also shows the corresponding 

:95% confidence limits of a the standard devation of the white Gaussian 

noise, and are expressed, in dB, as deviations from the value of a 

correspondin<j to the given value of p. 
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TABLE 5.3-1 

'Approximate 95% confidence limits for different ,values of m and k 

Number Number of Average Total Average 95% 
I 

95% 
of possible element Number of number of onfidence confidence 

signal- signal- error errors in a groups of limits limits of a 
elements element probability simulation signals in expressed expressed in 
in a group values' test error as devia- dB, as 

tion from deviation 
the given from the fiyen 

value P value of a 
m k p t j 

4 2 4 X lo-3 16 14 +.0029 +0.63 
-.0022 -0.76 

8 2 4 X 10-3 
16 12 +.00335 +0. 72 

-.00235 -0.90 

4 4 6 X 10-3 
24 16 +.0039 +0.71 

-.0030 :-O. 90 

8 4 6 X 10-3 
24 13 +.0046 +0.78 

-.0033 -0.94 

4 8 7 X 10-3 28 18 +.0040 +0. 77 
-.0033 -0.92 



96 

5.4 Results of Computer Simulation Tests 

The results of computer simulation tests are shown in Tables 

5.4-1 to 5.4-3. The noise power spectral density at the input to 

the receiver filter, required for a given average element error 

probability in Tables 5.4-1 to 5.4-3 is quoted in decibels relative to 

its value when a binary signal is transmitted over channel A with an 

average element error probability of 4 in 103 , the noise level here being 

the same in all cases. As has been said before, the results quoted 

for channel A have been calculated theoretically and checked by 

computer simulation. 

Tables 5.4-1 to 5.4-3 also shot< the tolerance to additive white· 

Gaussian noise, for each of the different channels when the optimum 

linear equalizer, described in Section 2.3, is used at the receiver. 

These results have been evaluated theoretically, the peak value of the 

resultant intersymbol interference in the equalized signal, being less 

than 1% in each case studied. The number of taps used by the linear_ 

equalizer for each of the different channels is given in Table 5.4-4. 

Where * is shown in the tables, the channel cannot be equalized by a 

linear transversal filter. The reduction in tolerance to noise, 

caused by any channel, is here unaffected by the values of g and m, and 

applies also to a continuous (uninterrupted) signal with the same 

element rate, where each gap is considered to contain g zero-level 

elements. The tolerance to noise is furthermore not affected by the 

number of signal-element levels. 

The tolerances to noise of System 1 given in Tables 5.4-1 to 

5.4-3,have been obtained by two different methods. In the first 

method the iterative process described in Section 4.1, is used, while 

in the second method the network YT(YYT)-l in Eqn. (3.2-9) is used. 

It was found that the two methods give the· same results. Furthermore, 



the tolerances to noise of System 1, for groups of eight binary 

signal-elements and for each of the different channels, given in 

Table 5.4-1, agree with those given in reference [55]. 

Table 5.4-5 gives the theoretical results corresponding to 

those obtained for System 1 in Tables 5.4-1 to 5.4-3. The results 

of Table 5.4-5 are obtained by calculating the minimum distances 

to the dedBion boundary, acc0rding to·Eqns. (3.5-6) and (3.5-14). 
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TABLE 5.4-1 

Noise level for an average element error probability of 4 in 103 , expressed in dB relative to its level 
with no distortion. Groups of four or eight binary signal-elements 

(Results obtained by computer simulation) 

System 

Channel 
____ 1. 2 +- 3 4 5 - 6 ' Linear 

m=4 m=8 m=4 m=8 m 4 m 8 m.L4 m 8 m=4 m 8 m•4 m•tl Equalizer 

A o.o o.o o.o 0.0 0.0 0.0 o.o o.o o.o o.o o.o o.o o.o 

B -3.3 -6.0 ;.l.o -1.2 -1.5 -1.6 -1.0 -1.1 -1.5 -1.8 -1.1 -1.3 * 
c -1.1 -3.2 0.0 -0.4 -0.9 -1.6 -0.1 -0.4 -0.8 -1.5 -o. 4. -0.6 * 
D -6.6 -13.7 -1.8 -2.4 -3.9 -7.3 -2.1 -2.6 -3.5 -4.9 -2.5 -2.8 * 
E o.o -0.3 0.0 o.o 0.0 o.o 0.0 0.0 -0.2 o.o -0.4 o.o -0.3 

F -1.8 -3.3 0.0 -0.5 -1.2 -1.3 -0.3 -0.9 -1.1 -1.3 -0.6 -1.0 -3.5 

G -0.6 -2.9 o.o o.o -0.3 -0.9 0.0 -o.-4 -0.2 -0.8 -0.1 -0.4 * 
H -3.0 -3.2 -0.6 -0.7 -1.7 -1.6 -0.6 -0.9 -1.6 -1.6 -1.0 -1.3 -3.5 

I -0.9 -3.7 0.0 0.0 -0.9 -1.6 0.0 -0.4 -0.6 -1.1 o.o -0.6 -8.2 

J -14.3 -17.6 -3.8 -4 .• 4 -9.9 -13.4 -4.1 -4.9 -8.1 -10.0 -5.8 -7.4 -20.6 

K -3.3 -4.9 -0.7 -1.2 -1.6 -2.5 -0.9 -1.1 -1.6 -2.4 -1.1 -1.6 * 

\0 
CD 
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TABLE 5.4-2 

Noise level for an average element 3rror probability of 6 in 103 , expressed in dB relative to its level 
for an error probability of 4 in 10 with binary signal-elements and no distortion. Groups of four or 

eight 4-level elements. 
(Results obtained by computer simulation) 

System 

Channel 1 2 3 4 6 7./12 7/4 

m=4 m=B m=4 rn=B m=4 m=B m=4 m=B m=4 m=B m=4 m=8 m=4 rn=8 

A -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4;0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 

B -7.4 -10.6 -5.3 - -6.5 -8.9 -5.3 -5.6 -5.8 -7.5 -5.0 -5.7 -5.0 -5.7 

c -5.5 -7.5 -4.3 - -5.5 - -4.5 ,_ -4.6 - -4.2 - -4.2 -
D -12.4 -17.6 -6.8 - -10.3 -14.5 -6.8 -7.7 -9.2 -12.5 -6.9 -7.8 -6.8 -7.7 

E -4.8 -4.6 -4.5 - -4.7 - -4.6 - -4.6 - -4.3 - -4.5 -
F -6.4 -7.1 -4.9 - -6.1 - -5.0 - -5.8 - -4.7 - -4.7 -
G -5.3 -6.3 -4 ... 2 - -4.5 - -4.3 - -4.6 - -4.4 - -4.5 -
H -7.4 -7.5 -5.2 - -6.7 - -5.1 - -6.4 - -5 . .3 - -5.5 -
I -5.8 -7.8 -4.6 - -5.1 - -4.7 - -4.9 - -4.2 - -4.2 -
J -19.8 -21.9 -11.2 -lla·9 -16.9 -19.5 -11.1 -12.0 -14.6 -16.7 -11.5 -12.2 -H.7 -12.4 

K -7.6 -10.2 -5.0 - -6.4 - -5.o -. -6.8 - -5.5 - -5.4 -
. 

Cont'd • • ~ •• 



TABLE 5.4-2(Cont'd) 

System 

Channel 7/6 8/2 8/4 8/6 
Linear 

m=4 m=8 - m=4 m=4 m=8 m=4 m=8 Equalizer 

A -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 

B -5.9 -6.4 -5.1 -S.L -5.7 -5.8 -6.5 * 
c -4.7 - -4.5 -4.4 - -4.6 - * 
D -8.0 -9.1 -6.8 -6.8 -7.8 -7.9 -9.3 * 
E -4.6 - -4.4 -4.5 - -4.7 - -4.2 

F -5.1 - -4.7 -4.8 - -5.4 - -7.5 

G -4.6 - -4.4 -4.2 - -4.5 - * 
. 

H -6.2 - -5,2 -5.2 - -5.8 - -7.5 

I -4.4 - -4.6 -4.5 - -4.9 - -12.1 

J -12.9 -15.5 -11.3 -11.1 -12.1 .-12. 8 -15.9 -24:6 

K -6.2 - -5.5 -5.o - -5.9 - * 



TABLE 5.4-3 

Noise level for an average e~ement error probability of 7 in 10
3 

expressed in dB relative ~o its level for an 
error probability of 4 in 10 with binary signal-elements and no distortion. Groups of four 8-level elements. 

(Results obtained by Computer Simulation) 

System 

Channel 1 3 4 6 7/2 7/4 7/6 8/2 8/4 8/6 Linear 
Equalizer 

A -8.5 -8.5 -8.5 -8.5 -8.5 -~.5 -8.5 -8.5 -8.5 -8.5 -8.5 

B -11.8 -11.3 -9.5 -11.2 -9.4 -9.3 -10.8 -9.5 -9.4 -10.9 * 

D -16.9 -15.8 -12.1 -13.3 -12.0 -11.9 -13.1 -12.0 -12.2 -13.o * 

J -23 .• 8 -22.4 -17.5 -19.7 -17.6 -17.4 -19 •. 0 -17.5 -17.6 -19.2 ->29 .1 
. ' 



TABLE 5.4-4 

.Number of taps required for the linear transversal equalizer 
for different channels. 

.No. of taps r·equired for . 
Channel. the linear equalizer 

A 1 

B * 

c * 

D * 

E 30 

F 30 

G * 
H 30 

I 65 

J 46 

K * 
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TABLE 5.4-5 

Noise levels in System 1 expressed in dB 3elative to the noise 
level for an error probability of 4 in 10 with binary··s·ignal
elements and no distortion. (Results obtained theoretically) 

.---

103 

binary signals 4-level signals 8-level signals 
. -3 

Channel 
p = 4 X 10-3 p = 6 X 10- 3 p = 7 X 10 

m=4 m=8 m=4 m=8 m=4 

A o.o 0.0 -3.98 -3.98 -8.45 

B -3.8 -6.48 -7.78 -10.46 -12.25 

c -1.25 -3.80 -5.23 -7.78 - -9.7 

D -8.14 -14.9 -12.12 -18.88 -16.59 

E -0.12 -0.25 -4.1 -4.23 -8.57 

F -2.25 -3.26 -6.23 -7.24 -10.70 

G -1.127 -3.07 -5.11 -7.05 -9.58 

ll -3.35 -3.49 -7.32 -7.47 -11.80 
-

I -2.02 -4.10 -6.00 -8.08 -10.47 

J -14.78 -18.35 -18.78 -22.33 -23.25 

K -3.77 -5.17 -7.75 -9.15 -12.22 



5.5 Comparison of Detection Processes 

The performances ofvarious detection processes described in 

Section 4, in the presence of additive white Gaussian noise, were 

compared by means of a simple model assuming only two elements in a 

group. Computer simulation results of Tables5.4-l to 5.4-3 suggest 
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that the theory developed for the simple case can be extended, much as 

would be expected, to the higher values of m. The detection processes 

·of Systems 1 to 6 for both binary and multi-level signal-elements, 

listed in the order of their tolerance to additive Gaussian noise and 

starting with the best, are 2,4,6,5,3 and 1. The transversal linear 

equalizer achieves the lowest tolerance to noise. Where there is severe 

attenuation distortion, System 2 achieves a considerable advantage in 

tolerance to noise over both System 1 and the linear equalizer. The 

advantage gained by System 2 over System 1 increases with the value of 

m and in the case of channel J is as much as 13 dB for eight binary 

signal-elements in a group. For pure phase dStortion, all systems 

tested achieve the same tolerance to noise as that for no distortion 

(channel A). The performance of System 4 is very close to that of 

System 2, and System 6 has a tolerance to noise typically within 

about 3 dB of that of System 2. 

For groups of eight binary signal-elements, transmitted over 

channel D or J, System 6 gains an appreciable advantage over 

System 3 in tolerance to noise, but this advantage tends to be somewhat 

smaller for smaller group sizes or for a greater number of signal 

levels. System 3 gains an appreciable advantage over System 1, when 

binary signal-elements are transmitted over channel B, D or J, but the 

advantage is steadily reduced as the number of signal levels increases 

as has been explained in Section 4.5. System 6 gains a somewhat 

smaller advantage over System 5, with binary signal-elements, than does 



System 3 over System 1. System 5 has not been tested with multi-

level elements, its performance now becoming quite close to that of 

System 6. The two systems, of course, resemble each other more 
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closely as the number of signal levels increases. System 1 sometimes 

achieves an advantage of more than 6 dB over the linear equalizer, even 

though both are processes of linear equalization. The reason for this 

is that System 1 makes use of the prior knowledge of the g zero-level 

signal-elements between adjacent groups of m elements, whereas the 

linear equalizer uses no prior knowledge of the signal-element values. 

When m >> g, the operation effectively performed on the 

received signal by Syr,tem 1 becomes much the same as that of the linear 

equalizer for the same signal. Furthermore, the tolerance to noise of 

a linear transversal equalizer, when correctly designed for the received 

signal, is not now much affected by whether the signal-elements are 

transmitted in orthogonal groups or in an uninterrupted stream, so 

that System 1 has approximately the" same tolerance to noise as the 

linear equalizer for the corresponding uninterrupted serial signal. 

Within the limits of the accuracy of computer simulation 

results (Table 5.3-1), the tolerance to noise of System 1, obtained 

theoretically, in Table 5.4-5, is in every case, either less than or 

equal to that given in Tables 5.4-1 to 5.4-3. This is so because 

the theoretical results are obtained by calculating the minimum 

distances to the decision boundary (Section 3.5) and therefore provide 

the lower bounds to the tolerance of System 1 to additive white 

Gaussian noise, for a given average element error probability. 

Correct operation, at the signal-element rate assumed here, 

cannot be obtained over channels B,C,D,G and K with a simple linear 

transversal equalizer, whereas correct operation is, in every case, 

achieved by System 1. This demonstrates the one important advantage 
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of System 1 over a simple linear equalizer, which is that·System 1 

will operate correctly over any time-invariant or slowly-time-varying 

linear baseband channel whose impulse response has for practical 

f . . d . 32,35 purposes a 1n1te urat1on. 

Table 5.5-1 shows the approximate number of sequential 

operations required for each of the different detection processes, 

when orthogonal groups of eight 4-level signal-elements are trans-

mitted over channel J, Apart from System 2, the number of sequential 

operations in Table 5.5-1 for various detection processes,is 

arrived at by considering one sequential operation to be equivalent 

to the estimation or change in e~imation of one of the m{x.} in 
1 

System 1. This operation is of similar complexity and duration to 

the mensurement of IR- SYI for a particular S in System 2. With 

the exception of System 2, each detection process requires more 

sequential operations with channel J than with any of the other 

channels tested. 

The detection processes of Systems 1 to 6, in order of the number 

of sequential operations normally required and starting with the smallest 

number, are 3,1,6,5,4 and 2. It is assumed here that m~ 12 for 

binary signal-elements, and m~ 8 for 4 or 8-level elements. The 

detection processes involvesimilar degrees of complexity, Systems 1 

and 3 being the least complex and System 4 the most complex. 

It was pointed out in Section 4.5 that the detection processes 

of Systems 1 - 6 are not suitable for use with multi-level signal-

elements, since they either give. a poor tolerance to noise or else 

require larger numbers of sequential operations. The results of 

computer simulation tests, given in Tables 5.4-1 to 5.4-3 confirm this, at 

least for those cases which have been tested. The tolerance of 

System 3 to additive Gaussian noise decreases steadily as the number 



TABLE 5.5-1 

Approximate number of sequential operations required for the 

detection of a group of eight 4-level elements transmitted over 

Channel J 

System Number of Operations 

1 1,600 

2 66,000 

3 1,200 

4 4,900 

5 2,400 

6 1,800 

7/2 7,800 

7/4 3,200 

7/6 3,200 

8/2 1,500 

8/4 2,400 

8/6 2,000 
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of signal-element levels is increased from 2 to 8, and this was expected 

to happen since the constraint of Eqn. (4.2-1) becomess less and less 

effective with the increase in the number of possible element values. 

Also, because of the poorer performance of System 3 with multi-level signals, 

the tolerance of System 6 to additive white Gaussian noise decreases 

with the number of levels as can be seen from Tables 5.4-1 to 5.4-3. 

The tolerance to noise of System 4. on the other hand, remains close 

to that of System 2. The number of sequential operaticns required for 

System 4 are now very much large~ than those required for either 

Syste~ 3 or System 6. 

The technique for the detection of multi-level signal-elements 

involving an initial search for the two or three most likely values of an 

element, described in Section 4.5, seem to work well for higher 

values of m. As expected, Systems 7/2, 7/4, 8/2 and 8/4 achieve a tolerance 

to noise similar to that of System 2. Systems 7/6 and 8/6 have a slightly 

inferior performance, typically within about 3 dB of that of Systems 7/2 

and 7/4. There does not appear to be any significant difference between 

the performance of any one of the Systems 8/2, 8/4 and 8/6 and the 

corresponding System 7/2, 7/4 or 7/6, although the latter system is, in 

each case, slightly less complex than the former, and Systems 7/2 and 

7/4 require fewer sequential operations in a detection process than do 

Systems 8/2 and 8/4,.,respectively. Again, for larger values of m, 

Systems 8/2 and 8/4 require far fewer sequential operations than 

Systems 2 and 4, respectively. 

Although System 6 does not achieve quite as good a performance as 

does System 4, either when used on its own for binary signals or else 

when used as System 7/6 or 8/6 for multi-level signals, it is a simpler 

system and usually requires fewer sequential operations in a detection 

process. It appears therefore that of the various systems tested the most 

cost-effective for binary and multi-level signals are Systems 6 and 7/6; 



respectively. Where the best available performance is required, 

without ~ excessive number of sequential operations in a detection 

process, the preferred systems for binary and multi-level signals are 

Systems 4 and 7/4,respectively. 

5.6 Comparison of Signals arranged in Separate Groups with the 

Corresponding Uninterrupted Signals 

In Section 5.4, the performance of the linear transversal 

equalizer in the presence of additive white Gaussian noise, is 

measured for transmitted signal-elements arranged in separate groups. 

Since the linear equalizer does not make use of the prior knowledge of 

the zero-level elements separating adjacent groups of signal-elements, 

its performance in noise is considerably reduced as compared with that 

of System 1, particularly for severe signal distortions. 

Consider now the case of the synchronous serial base-band data

transmission system of Section 2.1 where the signal-elements are 

transmitted in a continuous (uninterrupted) serial stream, and let the 

base-band channel be equalized by a linear transversal equalizer. If 

now System 1 is to replace the linear equalizer in the arrangement 
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just considered, then the continuous transmission of signal-elements must 

be modified by inserting the required number of g zero-level element-.s 

at the appropriate intervals to give the separate groups of m transmitted 

elements. If the signal-element rate remains unchanged, the information 

rate is now m/m+g times that of the original system, which means that 

more time is needed to transmit a given message. Alternatively, if 

System 1 is replac~d by an arrangement where the signal-elements are 

transmitted in a continuous (uninterrupted) stream, and where the 

channel is equalized by a linear equalizer, without now changing the 

information rate, then clearly the signal-element rate of the latter 

system is m/m+g times that of System 1. This must normally result in 



less intersymbol interference in the sample valuesof the received 

signal. It ·follows that for a given channel and information rate, the 

performance of the linear transversal equalizer in the presence of 

additive white Gaussian noise, will, in general, be better than that 

given in Tables 5.4-1 to 5.4-3. Thus, the comparison of the 

performance of the linear equalizer with that of System 1, carried 

out in Section 5.4, is not a true compariso~. Instead, the tolerance 

to noise of the linear equalizer should be determined by assuming 

a continuous stream of transmitted signal-elements with the same 

information rate as that in the corresponding arrangement of System 1. 

In this section an attempt is made to compare the performances 

of Systems using orthogonal groups of signal-elements (Section 4.0) 

with those of linear and non-linear equalizers (Section 2.0) where 

the signal-elements are transmitted in a continuous (uninterrupted) 

serial stream, the information rate in the two cases being the same. 

The comparison is here made for binary signal-elements having 

possible values +1 and -1. For systems using orthogonal groups, it 

is assumed that there are eight signal-elements in a group, and that 

every two adjacent transmitted groups are separated by four signal-

elements set to zero. This mean~ that m/m+g = 2/3 which represents 

an efficiency of 66 i /. for the systems. 

The transmitter and receiver filters are assumed to have the 

resultant transfer function H(f) given by Eqn. (2.1-3) 

and the resultant impulse response h(t) given by Eqn. (2.1-7) and 

shown in Fig. 2.1-1. The different channels studied are those with 

the values of the sampled impulse response given in Table 5.2-1. 

It is furthermore assumed that the transmission path itself can be 

represented by the model shown in Fig. 5.6-1. This assumes simple 
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Figure 5.6-1 

Model of transmission path. 



multipath transmission where all delays are integer multiples of T 

seconds. Since the sampled impulse response of the transmitter and 

receiver filters in cascade, in System 1, is simply 

1 0 0 (5.6-1) 

it can be seen that the sampled impulse response· of the baseband 

channel in Fig. 1.1-1 is nm< given by 

(5.6-2) 

where y
0

, y
1

, y
2

, y
3 

and y
4 

are the tap gains in Fig. 5.6-1. 

Although, the model of the transmission path is quite arbitrary, 

it should enable an interesting comparison to be made between the 
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two systems, on a rather more realistic basis than that used in Section 

5.4. 

Consider :,ow the data-transmission system of Fig. 1.1-1, 

described in Sections 2.1 and 3.1. Since adjacent groups of m signal-

elements, at the transmitter, Gre separated by g zero-level elements 

which carry no information, (m+g)T seconds are required to transmit the 

information carried by the m signal-elements of a grcup, where 1/T 

is the element transmission rate. If orthogonal groups of signal-

elements are replaced by a continuous stream of elements, then, for the 

same information rate, m signal-elements must now be transmitted, with 

no gaps, over (m+g~T seconds. This means that the element 

transmission rate in the equivalent continuous transmission, is reduced 

from 1/T to 1/T' where 

(5.6-3) 

Thus the signal-elements in the arrangement using continuous 

transmission, are now transmitted regularly (with no gaps) at intervals 
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of T' seconds and the received signal, at the output of the receiver 

filter, is sampled at the time instants t = iT', for all integers i. 

The t~ansmitter and receiver filters assumed for System 1 have an 

unnecessarily wide bandwidth at the new sampling rate of 1/T' and 

introduce some intersyrnbol interference. Assume therefore that the 

transmitter and receiver filters in cascade have the impulse response 

sin 'IT 
2t 

sin (2t + 1) sin (2t - 1) T' 1 1T 1 1T 

h' (t) T' T' (5.6-4) = + + 
2t 2 2t 2 2t 1T- 1!(- + 1) 1T (-o, - 1) T' T' T 

This is shown in Fig. 5.6-2, and is clearly the equivalent of h(t) at the 

new sampling rate. 

It is important to note that in comparing System 1 with the other 

system, the same transmission path, as shown in Fig. 5.6-1, is 

assumed for the two systems. Thus, since the sampling rates are different 

in the two systems and since each system uses the transmitter and 

receiver filters appropriate to its sampling rate, the sampled impulse 

response of the baseband channel corresponding to any given transmission 

path, is different for the two systems. In the case of the "orthogonal" 

system, using separate groups of signal-elements, the sampled impulse 

response of the baseband channel is the same as the sampled impulse 

response of the transmission path. Since the sampled impulse response 

of the baseband channel has here, in every case, been normalized to give 

a channel vector of unit length, it follows that the sampled impulse 

response and therefore also the impulse response, assumed for each of 

the different transmission paths, has also been normalized. In the 

case of the continuous system, using an uninterrupted stream of 

transmitted signal-elements at an element rate of 1/T' bauds, the sampled 

impulse response of the baseband channel does not in general give a 

channel vector of unit length. Furthermore, since the transmission 
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h(t) 

0.5 

0 -t 
-3/2T' -T 

I -lr' . 0 tr' T' 3/2T' 2T 

Figure 5.6-2 

Impulse response h(t) of the transmitter and receiver 

·filters in cascade. 



path has the impulse response Yo + YlS(t-T) + Y2o(t-2T) + Y35(t-3T) 

+ y4o(t-4T), it is of no value, and indeed incorrect, to consider 

its sampled impulse response at a sampling rate of 1/T'. 

In order to compare the "orthogonal" system, using separate 

groups of transmitted signal-elements, with the 'continuous' system, 

using an uninterrupted stream of transmitted signal-elements, not 

115 

only is the same transmission path used in each comparison but this 

has an impulse response which is the same as the sampled impulse 

response of the corresponding baseband channel for the orthogonal 

system (Table 5.6-1). The impulse response y' (t) of the corresponding 

baseband channel for the continuous system is determined by convolving 

the impulse response h' (t) of the transmitter and receiver filters, 

as shown in Fig. 5.6-2, with. the impulse response of the transmission 

path which is Yoo(t) + Y>d(t-T) + y2o(t-2T) + Y3o(t-3T) + y4o(t-4T). 

The sampled impulse response c£ ··this baseband channel is obtained by 

sampling y'(t) at intervals ofT' seconds, the sampling instants 

being phased so that one of these coincides with the positive peak of 

y'(t). The results of some unpublished work on equalizers, carried out 

at Loughborough University of Technology, suggest that the phase 

selected here for the sampling instants is the one most likely to 

maximize the tolerance to additive white Gaussian noise. The 

continuous system is therefore tested under the conditions most 

favourable to this system. Table 5.6-2 shows the sampled impulse responses 

of the different baseband channels, in the case of the continous 

system. In order to simplify the computations of the sampled impulse 

responses, it has been assumed that the h'(t) is not in fact as shown 

in Fig. 5.6-2 but is instead the corresponding raised cosine as shown 

in Fig. 5.6-3. This approximates quite closely to h' (t) over the time 

interval - T' to T' but is zero outside this time interval. The 

approximation does not introduce any significant errors. 
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TABLE 5.6-1 

Sampled i~pulse responses of different baseband channels in the 
orthogonal system 

Trans- Sampled impulse response of baseband 
mission channel 
Path 

A ( 1.0 0 0 0 0 

Bl 2.0-! ( 1.0 1.0 0 ,0 .. 0 

2.0-! 
.. 

B2 ( 1.0 -1.0 0 0 0 

cl 2.0-! ( 1.0 o.o 1.0 0 0 

c2 2.0-! ( 1.0 0.0 -1.0 0 '0 

Dl! 1. 5-! ( 0.5 1.0 0.5 0 0 

Dz 1.5-! (-0. 5 1.0 -0.5 0 0 

El 1.5-! ( 0. 5 1.0 -o.5 0 0 

Ez 1.5-! (-0.5 1.0 0.5 0 0 

Fl 1. 5 -! . ( 1.0 0.5 0.5 0 0 

Fz · 1. 5-! (' 1. 0 -0.!\ 0.5 0 0 

Gl 1.5-! ( 1.0 0.5 -0.5 0 0 

Gz 1.5-! ( 1.0 -0.5 -o.5 0 0 

Ill 1.5-! ( 1.0 0.667 0.235 0 0 

llz 1.5-! ( 1.0 -0.667 0.235 0 0 

Il 1.5-! ( 1.0 0.667 -0.235 0 0 

Iz 1.5-! ( 1.0 -0.667 -0.235 0 0 

Jl 2.0-! ( 0.235 0.667 1.0 0.667 0.235. 

. Jz 2 .o-! ( 0.235 -0.667 1.0 -0.667 0.235) 

Kl 2.0-! (-0.235 0.667 1.0 0.667 -0.235 

Kz .. 2 .o-! (-0.235 -0.667 1.0 -0.667 -0.235 
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The Transmission path X has a sampled impulse response, at a 
sampling rate of 1/T given by the baseband channel X in Table 5.2-1. 



TABLE 5.6-2 

Sampled impulse responses of different baseband channels in the 
continuous system 

Trans- Sampled impulse response of baseband 
mission channel 
Path 

A 1.0 () 0 0 0 

Bj o;142 1.075 0.142 0 0 

B2 0.562 -0.562 0 0 0 

Cl 0.706 0.538 0.184 0 0 

c2 0.706 -0.538 -0.184 0 0 

Dl 0.302 1.03 0.302 0 0 

02 -0.302 0.62 -0.302 0 0 

El 0.147 0.92 -0.269 0 0 
" E2 -0.269 0.92 0.147 0 0 

F1 0.09 0.94 0.553 0.033 0 

F2 0.73 -0.049 0.130 0 0 

Gj 0.09 0.94 -0.212 0.033 0 

G2 0.73 -0.55 -0.130 0 ' 0 

fll 0.135 1.03 0. 375 0 0 

H2 0. 71 -0. 325 0.09 0 0 

Il 0.135 1.03 0.033 0 0 

I2 0. 71 -0.545 0.082 0 0 

Jj 0.043 0.48 0.97 0.48 0.043 

J2 0.043 -0.205 0.45 -0.205 0.043 

K1 -0.043 0.234 0.97 0.234 -0.043 

K2 -0.043 -0.45 0.45 -0.45 -0.043 

The transmission path X has a sampled impulse response, at a 
sampling rate of 1/T given by the baseband channel X in Table 5.2-1. 
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h(t) 

1. 0 -

o.s 

0 

t 
-T _tT' -2 0 tr' 

Figure 5.6-3 

Approximate impulse response of the transmitter and 

receiver filters in cascade. 
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For the transmission paths D1, D2 , J1 and J2, Figs. 5.6-4 to 5.6-7 

show the values of the impulse response of the baseband channel in the 

case of the continuous system. 

Table 5.6-3 shows the noise levels of the additive white Gaussian 

-3 noise required for an average element error probability of 4 x 10 , in 

the case of the continuous system where the baseband channel is equalized by 

the appropriate linear or non-linear equalizer. The noise level is here 

quoted in dB relative to its value when binary signal-elements are 

-3 transmitted over channel A with an error probability of 4 x 10 . The 

number of taps required in each of the equalizers is also given in the 

table. In the case of the·non-linear equalizer, the nu~ber of taps 

refers to the linear filter only. l'lhere * is marked in the table, 

the channel cannot be equalized by the linear transversal equalizer. 

The results in Table 5.6-3 are obtained theoretically from Sections 

2.3 and 2.4. Table 5.6-4 shows the noise level in the case of Systems 

1, 2 and 6 (Section 5.4) for groups of eight binary signal-elements, and 

an error probability of 4 x 10-~, and is expressed in dB relative to its 

corresponding value for the linear and the non-linear equalizers. 

Table 5.6-3 shows that the performance of the non-linear equalizer 

is, in every case, better than that of the linear equalizer. For 

severe signal distortions, the non-linear equalizer gains a considerable 

advantage in tolerance to noise, over the linear equalizer. The 

reason for this is that the non-linear equalizer makes use of the 

prior knowledge of the signal-element values in cancelling the intersymbcl 

interference of a detected signal-element, from the sample values of the 

received signal as mentioned in Section 2.5. The baseband channels 

corresponding to the transmission paths B2, C2 and K2 cannot be 

equalized by the linear transversal equalizer since the z-transforms of 

the corresponding sampled impulse responses, have ~eros on the unit circle. 
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figure 5,6-4 

The impulse response of the baseband channel in the case of the 

continuous system, where the transmission path has an impulse 

response 
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Figure 5.6-5 

The impulse response of the baseband channel in the case of the 

continuous system, where the transmission path has an impulse 

response 

1.5-t{-o.s&(t)+S(t-T)-0.5S(t-2T)} 
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The impulse response of the baseband channel in the case of the continuous system, 

where the transmission path ho& an impulse response 
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The impulse response of the baseband channel in the case of the continuous system, 

where the transmission path has an impulse response 
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TABLE 5.6-3 

Noise level for an error probability of 4 x 10-3 , expressed in dB 
relative to its value when a binary signal is transmitted over 

channel A with the same error probability. 

Trans- Linear Equalizer Non-linear Equalizer 
mission 
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path Number of Noise Level Number of Noise Level 
Tap Gains Tap Gains 

A l 0.0 1 0.0 

Bl 9 +0.21 7 +0.45 

B2 * * 1 -4.96 

Cl 16 -5.3 3 -3.0 

~ * * 2 ..;·3.0 

D! 17 -2.47 13 -0.6 

D2 56 -23.54 60 -B. 36. 

Ej 13 -0.4 ~ -0.34 

E2 13 -0.4 10 -0.34 

Fl 22 -3.5 8 -1.06 

F2 12 -2.9 19 -2.71 

Gj 10 -0.43 8 -o. 34 

~ 65 -10.76 62 -2.75 

Hl 16 -1.44 11 -0.18 

H2 10 -3.84 2 -2.96 

Il 7 +0.1 8 +0.21 

12 19 -5.82 2 -2.96 

Jj 30 -11.76 21 -3.63 

J2 21 -13.04 17 -9.14 

Kj 21 -2.45 17 -0.9 

K2 * * 10 -6.05 



TABLE 5.6-4 

Noise level in the case of Systems 1, 2 and 6 with groups of 
eight ~~nary signal-elements and an error probability of 
4 x 10 , expressed in dB relative to its value in the case of 
the corresponding binary continuous system with an equaliz~3 
at the receiver and an element error probability of 4 x 10 • 

Trans- Noise level relative to Noise level relative to 
mission that of the linear equalizer that of the non-linear 
path equalizer 

System System System System System Systel)l 
1 2 6 ;t. 2 6 

A· o.o 0.0 0.0 o.o 0.0 o.o 

BJ -6.21 -1.41 -1.51 -6.45 -1.65 -1.75 

~ * * * -1.04 +3. 76 +3.66 

CJ +2.1 +4.9 +4. 7 -0.2 +2.6 +2.4 

Cz * * * -0.2 +2.6 +2.4 

DJ -11.23 +0.07 -0.33 -13.1 -1.8 -2.2 

~ +9.84 +21.14 +20. 74 -5.34 +5.96 +5.56 

EJ +0.1 +0.4 +0.4 +0.04 +0. 34 +0. 34 

Ez +0.1 +0.4 +0.4 +0.04 +0. 34 +0.34 

FJ +0.2 +3.0 +2.5 -2.24 +0.56 +0.06 

Fz -0.4 +2.4· +1.9 -0.59 +2.21 +1. 71 

GJ -2.47 +0.43 +0.03 -2.56 +0. 34 -0.06 

~ +7.86 +10. 76 +10.36 -0.15 +2. 75 +2. 35 

HJ -1.76 +0. 74 +0.14 -3.02 -0.52 -1.12 

Hz +0.64 +3.14 +2.54 -0.2 4 +2.26; +1.66 

IJ -3.8 -0.1 -0.7 -3.91 -0.21 -0.81 

Iz +2.12 +5.82 +5.22 -o. 74 +2.96 +2. 36 
-
Jl -5.84 +7 .36 +4.36 -13.97 -0.77 -3.77 

Jz -4.56 +8.64 +5.64 -8.46 +4. 7.4 +1. 74 

~1 -2.45 +1.25 +0.85 -4.0 -0.3 -0.7 

Kz * * * +1.15 +4. 85 +4.45 
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Table 5.6-5 shows the transmission paths for which the 

performance of system 1 is either better than, worse than or 

approximately the' same as that of the linear equalizer. The 

performances of two systems are here considered to be approximately 

the same if they do not differ from each other by more than one dB. 

It can be seen from Table 5.6-5 that in the majority of the 

transmission paths tested, the performance of the linear equalizer 

is either better than or approximately the same as that of System 1. 

This shows that for a given information rate, the continuous system 

with a linear equalizer at the receiver gives, in general, a better 

tolerance to additive white Gaussian noise than does System 1 of the 

corresponding arrangement with signals transmitted in separate 

groups. This is so because the sampled impulse response of the 
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baseband channel in the case of the continuous system generally exhibits 

a lower level of intersymbol interference than that in the case of the 

interrupted system, essentially because of the lower element rate 

over the given transmission path. Except in the case of the transmission 

path B1 >~here the linear equalizer gains an advantage of 1.41 dB and l. 51 

in tolerance to noise over Systems 2 and 6, respectively, the performance 

of Systems 2 and 6 in every case, is either better than or approximately 

equal to that of the linear equalizer. 

Table 5.6-6 shows the transmission paths for which the 

performance of System 2 is either better than, worse than or 

approximately the same as that of the non-linear equalizer. The 

performancesof two systems are here considered to be the same if 

they do not differ from each other by more than one dB. for all the 

transmission paths tested except in the case of the. transmission paths 

B1 and o1 ,the performance of System 2 is either better than or 

approximately equal to that of the non-linear equalizer. For the 

transmission paths B1 and o 1 the non-linear equalizer gains an 

dB 



TABLE 5.6-5 

Table showing the transmission paths for which the performance of 
System 1 is either better than, worse than or approximately the 

same as that of the linear equalizer 

Better Worse Approximately the same 
. 

cl Bl El 

D2 D1 E2 

G2 G1 Fl 

12 H1 F2 

- Il H2 

- Jl -

- J2 -
- Kl -
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TABLE 5.6-6 

• Table showing the transmission paths for which the 
performance of System 2 is either better than, worse than 
or approximately the same as that of the non-linear equalizer 

. 

Better Worse Approximately the same 

B2 Bl E1 

cl Dl E2 

c2 -·· Fl 

D2 - Gl 

F2 - H1 

G2 - Il 

H2 - Jl 

!2 - Kl ., 

J2 - -
K2 - -
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advantage of 1.65 dB and 1.8 dB, respetively, in tolerance to noise 

over System 2. It may be pointed out that the tolerance to noise 

of the non-linear equalizer is here calculated neglecting the error 

extension effects (Section 2.4), and its actual value is slightly 

less (a fraction of one dB) than that given in Table 5.6-3. It can 

be seen from Tables 5.6-6, 5.6-4 and 5.6-1 that in the cases where 

System 2 gains an advantage in tolerance to noise over the non-

linear equalizer, one or more of the following conditions are 

fulfilled -

1. The sampled impulse response of the baseband channel 

in the case of the continuous system, is such that 

it cannot be equalized by a linear transversal 

equalizer (channels corresponding to the transmission 

paths B2 , c2 and K2). 

2. System 1 has a better' tolerance to noise than the 

linear transversal equalizer (channels corresponding 

to the transmission paths C1, 02, G2 and I2l. 

3. The sampled impulse response of the transmission path 

is such that if y. is the sample value having the 
J. 

maximum amplitude then one or both of the sample 

.values yi-l and Yi+l have signs opposite to that of 

Y.(transmission paths B2, 02, F2, G2 , I2, J2, and K2l· 
J. . 

In the cases where the distortion introduced by the transmission 

path is nearly pure phase distortion (transmission paths E1 and E2l, 

the performances of System 2 and the non-linear equalizer are approx-

imately the same. 

Since g/m is probably some\~hat larger here than would be used 

in a practical system, the results of the comparison carried out in 

this section, investirate that, in practice, a useful advantage in 
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tolerance to noise should be obtained by System 2 over both linear and 

non-linear equalizers, where the latter are used with uninterrupted 

signal but the same information rate. 

The comparison of the tolerancesto additive white Gaussian 

noise of systems using orthogonal groups with those using the 

uninterrupted transmission, carried out in this section, is somewhat 

arbitrary. This is so because the comparison has been made for one 

particular transfer function of the transmitter and receiver filters. 

The results do not apply for filter pairs having transfer functions 

other than that assumed here. Also, the choice of the phase of the 

sampling instants to obtain the sampled impulse response of the base

band channel for the case of continuous transmission, is arbitrary and 

is such tha~ in general, it helps to improve the performance of the 

linear and non-linear equalizers. If the sa~pling instants are 

different than what have been assumed here, then the performance of 

the two equalizers will, most probably, be lower than that given in 

Table 5.6-3. 
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:6.0. LINEAR PROCESSING OF THE SIGNAL AT THE TRANSMITTER 

6.1 Process of Linear Equalization at the Transmitter 

In the arrangement studied in this section, the groups of m 

transmitted signal-elements are processed at the transmitter so that 

no signal processing is required at the receiver, other than the 

comparison of the sampled values of the received group of m signal-

· elements, with the appropriate thresholds. The processing of a group 
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of m signal-elements is here achieved by placing an m x n linear network 

F at the transmitter of the serial synchronous baseband data-transmission 

system discussed in Sections 2.1 and 3.1, which is now modified to the. 

arrangement of Fig. 6.1-1. The m element values {si} of a group of 

signal-elements are fed to the m input terminals of the network F, which 

transforms these values into the corresponding n values given by the 

components of the n-component row-vector SF, where F is an mxn matrix of 

rank m defining the linear network. The n output values from the network 

are sampled in sequence at regular intervals of T seconds, to give the 

corresponding sequence of n impulses which are fed to the baseband channel. 

Immediately following the transmission of a group of n impulses, the next 

set of m elements values are fed to the input of the network F, to give the 

corresponding set of n output values, which are again sampled in sequence. 

The process continues in this way and is such that a continuous sequence 

of regularly spaced impulses is fed to the baseband channel. As before, 

n = m + g. 

Let 

B = SF (6.1-1) 

be then-component row-vector whose components {bi} are then values at 

then outputs of the m x n network F, when the m values {Si} given by the 

components of S are fed to the m inputs of F. Then values {hi} at the 
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-outputs of the linear network F are fed, at intervals of T seconds in 

the form of the corresponding impulses, to the baseband channel which 

includes the transmitter filter, transmission path and the receiver filter. 

At the input to the receiver filter, white Gaussian noise with zero mean 

and a two sided power spectral density of ~2 , is added to the received 

signal. At the output of the receiver filter, the received signal is 

sampled at the time instants t =·iT. 

It is assumed that the g··+ 1 sample values of the sampled impulse 

response of the channel, 

Yo yl y2 "" Yg (6.1-2) 

ere known at the transmitter and the m signal-elements of a group are 

statistically independent and equally likely to have any of the possible 

element values. For the sake of convenience, the delay in transmission 

other than that involved in the time dispersion of the transmitted signal, 

is ignored, 

.Consider just a single group of m signal-elements whose values are 

given by the m components of the row-vector S, at the input to the linear 

network F in Fig. 6.1-1. The m element values are fed simultaneously to 

the linear network F over a period of nT seconds, so that over this period 

the n output terminals of the network F hold the n components of the vector 

B = SF. The output signals from the terminals of F are sampled in order, at 
n 

regular intervals of T seconds, to give a sequence of impulses Z b. f;; (t 
. i=l 1 

iT) 

fed to the transmitter filter. It is for convenience assumed here that the 

first of the n impulses is transmitted at time t = T. 

The sample values of the received signal, corresponding to a single 

group of m signal-elements, will normally be a sequence of (n+g) non-zero 

sample values preceded and followed by zero sample values. The sequence of 

these (n+g) sample values in the absence of noise is 



n 
v. = ~ b. yi-J' , i = 1,2, ••• , n+g 
~ j=l J 

(6.1-3) 

where y. = o for i < o and i > g. Let C be the n x (n+g) matrix whose i th 
~ 

row is 

c. = 0 
~ 

i-1 
0 

From Eqn. (6.1-3) 

V = BC 

g+l n-i 
0 (6.1-4) 

(6.1-5) 
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where V= v
1 

v
2 

,,, v is the (n+g)- component row-vector whose components n+g 

{vi} are the sample valuP.s of the received signal corresponding to a group 

of m signal-elements,in the absence of noise (Eqn. (6.1-3)), and B is the 

n-component row-vector in Eqn. (6.1-1). The central m components of the 

vector V, 

are given 

Thus, 

D. = 
~ 

where D is the 
i-1 

1o ... o' 

v· 
g+m 

. f k h .th . m x n matr1x o ran m, w ose 1 row 1s 
g+l m-i 

I 0 • • • 0 I (6.1-6) 

T 
BD = vg+l vg+Z ••• vg+m (6.1-7) 

Assume now that successive groups of signal-elements are transmitted 

in the arrangement of Fig. 6.1-1, and suppose that one of these groups is 

that just considered, where the first transmitted impulse of the group 

occurs at time T seconds. The corresponding n+g received samples which are 

the n+g components of V and are dependent on the m transmitted elements of 

the group, are shown in Fig. 6.1-2. Each sample value is here, for 

simplicity, shown as a positive impulse. It can be seen that the first g 

components of V are dependent in part on the preceding received group of m 

signal-elements, and the last g components of V are dependent in part on 

the following received group of m elements. Thus there is intersymbol 

interference from adjacent received groups of elements in both the first and 

last g components of V. However, the central m components of V, which are 
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v v , ••• , v + , depend only on the corresponding transmitted g+l' g+2 gm 

group of m elements, and can therefore be used for the detection of these 

elements with no intersymbol interference from adjacent groups. The first 

of the central m coMponents of V is v 
1 

and is the sample value of the g+ 

received signal at time (g+l) T. The last of the central m components of V 

is vg+m and is the sample value of the received signal at time (g+m)T. From 

Eqn. (6.1-7), the m sample values of the received signal which depend only 

on the corresponding m signal - elements of a group, are, in the absence 

of noise, the components of the m-component row-vector 

(6.1-8) 

where B = SF is an n-component row-vector and the m {si} are the values of 

the m signal-elements of the group at the input to the network F, and are 

of course the components of the vector S. 

Suppose now that the linear network F at the transmitter 1n Fig. 

6.1-1, is such that, corresponding to a group of m signal-elements at the 

transmitter, the m sample values of the received signal in Eqn. (6.1-8), 

in the absence of additive noise,are 

(6.1-9) 

When noise is present, the m sample values are the m components of the 

vector 

. R = BDT + W (6.1-10) 

where W is an m-component row-vector whose components are sample values of 

statistically independent Gaussian random variables with zero mean and 

variance ~2 • Thus the detector in Fig. 6.1-1, can now detect the element 

values {si} of the signal-elements by comparing the corresponding {ri} with 

the appropriate thresholds. Each received group of m signal-elements is 

detected from the corresponding m sample value·s, the remaining g sample 

values being ignored at the detector, and, under these conditions, the 
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.received groups of m signal-elements are orthogonal at the detector input. 

To maximize the tolerance to noise at the detector input, then {bi) 

should be selected such that the total transmitted energy of the n {b.} is 
1 

minimized, In other words 

must be minimized for the given vector S. Thus the problem is to find 

an m x n linear network F in Fig. 6.1-1, which minimizes the transmitted 

element energy and at the same time satisfies the constraint in Eqn. (6.1-9), 

From Eqn. (6.1-9) 

Suppose that 

BD~=s. fori=l,2, ... ,m. 
1 1 

jD.I = d fori- 1,2, ,,,,m 
' 1 

(6.1-12) 

(6.1-13) 

where jDij is the length of the vector Di (i.e. the distance of the point 

D. from the origin in ann-dimensional vector space), It can be seen from 
1 

Eqn, (6.1-6) that IDil is independent of i. BD. T is the· inner product of 
. 1 

the vectors Band D., so that from Eqn. (6.1-13) it is d times the value of 
1 

the orthogonal projection of B onto the vector D .• Thus from Eqn. (6.1-12), 
1 

B lies on the hyperplane ((n 1) -dimensional sub space) which contain.s the 

point (s./d)D. and which is orthor,onal to the vector given by this point, 
1 1 

so that the hyperplane is orthogonal to the line joining the origin· to 

(s./d)D .• The vectors Band D. are shown in Fig, 6.1-3, for the case where 1 1 1 

d > 1 and s. = 1. The vector B must, therefore, lie on each of the m 
1 

hyperplanes given by Eqn. (6.1-8) and as illustrated in Fig. 6.1-3. Thus, 

the required vector B is the point on these m hyperplanesat the minimum 

distance from the origin. 21 52 0 By the Projection Theorem ' B 1s the 

orthogonal projection of the origin onto the (n-m)-dimensional subspace 

formed by the intersection of the m hyperplanes, Thus B is the inter-section 

of the m-dimensional subspace spanned by the m {D.} (each of which is 
1 
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orthogonal to the corresponding hyperplane), with the (n-m)-dimensional 

subspace formed by the intersection of the m hyperplanes. Clearly B 

can be represented as a linear combination of the m {Di}, so that 

m 

where 

From Eqn. (6·.1-9), 

Thus 

and 

B = L e. D. = ED 
i=l 1 1 

E = 

s = = 

E = S(DDT)-l 

B = S(DDT)-lD 

e . 
m 

(DDT)-lD is an m x n matrix of rank m. 37 •40 

(6.1-14) 

(6.1-15) 

(6.1-16) 

(6.1-17) 

(6.1-18) 

It can be seen that if the 

impulses given by the components of the vector B are transmitted over 
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the given channel, then the corresponding m sample values at the detector 

input, in the absence of noise, are given by the m components of the row-

vector 

= = s (6.1-19) 

which agrees with Eqn. (6.1-9). 

From Eqn. (6.1-1) and (6.1-18), the matrix F representing the 

linear network at the transmitter in Fig. 6.1-1, is an m x n matrix of 

rank m, given by 

(6.1-20) 

Thus, under the assumed conditions, the linear network F in 

Fig. 6.1-1 and given by Eqn. (6.1-20), is such that it maximizes the 

tolerance to additive white Gaussian noise in the detection of the m 

signal-elements of a received group from the corresponding m sample 

values at the input to the detector. The system which employs the optimum 

linear processing of groups of m-signal elements at the transmitter, just 

described, is considered in Section 6.2. 



6.2 System 11 

In System 11, the linear processing of groups of m signal-

elements, as described in Section 6.1, is used at the transmitter. 

The operation of the system can be explained with the help of 

Fig. 6.2-1. Over the appropriate period of nT seconds the values 

of the m signal-elements of a group, given by the components of 

the vector S, are fed to the m input terminals of the m x n linear 

network (DDT) -lD, to give the n values {b) at the n output terminals 

of the network. The n {bJ are then sampled in order, at regular 

intervals of T seconds, and the corresponding impulses are fed to the 

input of the baseband channel. The signal-elements of a group, at 

the transmitter, are assumed to be k-level, and they are statistically 

independent and equally likely to have any of the k possible values. 

The value of each s. at the transmitter in Fig. 6.2-1, is divided by a 
1 

positive scalar quantityi before feeding it to the linear network 

{DDT) -lD. 

The received signal at the output of the baseband channel is 
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sampled at regular intervals ofT seconds, and the (g+l)th to the (g+m)th 

of the (n+g) sample values, dependent on the group of m elements are 

stored. Thus the detector ignores the first gT seconds of the received 

waveform corresponding to each group of m elements, and detects the 

m {sJ from the m stored sample values by comparing these with the 

appropriate thresholds, 

Assume that the transmitted signal-elements are either 2-, 4- or 

8- level, and that the possible values of s. are in each case equally 
1 

likely and as given in Table 5.2-2, so that the mean square value of s. 
1 

is equal to the number of bits per element. Suppose that the m vectors 

{D.}, which are the rows of the matrix D, each have unit length, and let 
1 

the value of £ in Fig. 6.2-1 be such that the average transmitted energy 

per bit is unity. Since there are m k-level signal-elements in a group, 
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where k may have the value 2, 4 or 8, the vector S has km possible 

values each corresponding to a different combination of the m k-level 

signal-elements. T -1 It follm•s, therfore,that the vector S(DD ) · D 

whose components are the values of the corresponding impulses fed to 

the baseband channel, has km different possible values. If e is the 

total energy of the components of all the km possible values of the 

T -1 vector S(DD ) D, then clearly 

Q = (e / m km)! (6. 2-1) 

The m sample values of the received signal from which the 

corresponding m {si} are detected, arc the components of the vector 

R' = ~ BDT + W (6. 2-2) 

h B S(DDT)-1D, and W ~s an h w ere = ~ m-component row-vector w ose 

components are sample values of statistically independent Gaussian 

random variables with zero mean and variance~?.. In order to make the 

values of the signal-elements at the detector input, equal to the{si} 

at the transmitter, the m sample values which are the components of 

the vector R', must first be multiplied by 2 as shown in Fig. 6.2-1. 

From Eqn. (6.2-2) 

R = i R' = 

= 

= s + u (6.2-3) 

where U is an m-component row-vector whose components are sample 

values of statistically independent Gaussian random variables with 

zero mean and variance 

(6.2-4) 

Thus, the tolerance to noise of System lL is determined by the value 

of 11 2 given in Eqn. (6.2-4), When there is no signal distortion, that 

is, when = 1 and y. = 0 for all i, i f 0, (DDT)-l is an identity Yo ~ 

matrix. Under these conditions, f has the value unity, so that 
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(6.2-5) 

Whereas, in System 11, the m {si) are fed to the m x n network 

(DDT)-lD at the transmitter to give then .{hi)• in System 1, the 

n { rd are fed to the n x m net\>'ork YT (YYT) -l at the receiver to give 

the m {x) Furthermore, both DandY are m x n matrices and the ith 

row of D is obtained from the ith row of Y simply by reversing the order 
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of the non-zero components y
0

, y
1

, ••. , Yg• It is clear therefore that, 

just as the Gauss-Siedel process· can be used to implement the transfer-

mation YT(YYT)-1 , so, with the appropriate modifications, it can also be 

. T -1 52 used for the transformat1on (DD) D. 

Referring to Fig. 6.2-1, the m x n linear network (DDT)-1D 

converts the m element values {si} such that, under the assumed 

conditions, the corresponding m sample values at the receiver, have the 

minimum mean square error due to the presence of additive white Gaussian 

noise. In this sense they are the best linear estimates of the·{s .} • 
• 1. 

Similarly, when the linear network YT(YYT)-l is used at the receiver, 

with no signal processing at the transmitter, as in System 1, the m 

sample values at the output of tfiis network have the minimum mean square 

error due to the presence of additive white Gaussian noise. In this 

sense they too are the best linear estimates of the {si}• Clearly, 

Systems 11 and 1 are duals of each other in the sense that each provides 

the best linear estimate of a received group of m signal-elements, and 

in System 1 all the signal processing is carried out at the receiver 

while in System lL all the signal processing is achieved at the trans-

mitter. 

6.3 Linear Equalization Process Shared Between the 
Transmitter and Receiver 

In the arrangement of Fig. 6.3-1, let F1 be an m x m network at 

the transmitter of the synchronous serial baseband data-transmission 
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system discussed in Sections 2.1 and 3.1. The m element values 

{si}· of the m signal-elements of a group are fed to the m input 

terminals of the linear network F
1 

which transforms these values into 

I 
the m values given by the m components of the row-vector 

SF1 = B (6. 3-1) 

where F1 is an m x m non-singular matrix defining the linear network. 

The signals at the output of the network F1 are sampled in order and 

at regular intervals of T seconds to give a sequence of rr. impulses. 

which are fed to the input of the baseband channel.. The values (areas) 

{bi} of the m impulses, just mentioned, correspond to the m components 

of SF1 • Adjacent groups of m impulses at the input to the baseband 

channel, corresponding to adjacent groups of m signal-elements, are 

separated by g zero-level impulses. The m signal-elements of a group 

are assumed to be k-level, where k = 2, 4 or 8 and the possible values 

of each s. are as given in Table 5.2-2. The { s.} are statistically 
1 . 1 

independent and equally likely to have any of the k possible values. 
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The value of each s. is divided by the positive scalar quantity £before 
1 

feeding it to the network F1 (Fig.6.3-l). 

At the input to the receiver filter, white Gaussian noise with 

zero mean and a two sided· power spectral density u 2 is added to the 

received signal. At the output of the receiver filter, the received 

signal is sampled at regular intervals of T seconds. Since adjacent 

groups of m impulses at the input to the baseband channel are separated 

by g zero-level impulses and sine~ n = m + g, it is clear that the n 

sample values of a received group of m signal-elements will depend only 

on the corresponding m element values {si} and not on any other trans

mitted element. Thus the received groups of signal-elements are 

orthogonal at the receiver. The receiver stores the n sample values 

corresponding to a group of m received signal~elements and uses these 

sample values in the detection of the m elements. 



It is assumed here that the (g + 1) sample values of the 

sampled impulse response of the channel, 

Y0 Y1 •••• Yg (6.3-2) 

are known both at the transmitter and at the receiver. For the sake 

of convenience, the delay in transmission other than that involved 

in the time dispersion of the transmitted signals is ignored here. 

The value of f. in Fig. 6. 3-1 is such that the average transmitted 

energy per bit is unity. Following the explanation of Section 6.2, 

if e is the total energy of the components of all the km possible 

values of the vector SF1 , then 

£ = (e/m km)! (6. 3-3) 

The n sample values corresponding to a received group of 

m signal-elements are, from Section 3.2, the components of the 

n-component row-vector 

R' = t BY + W (6. 3-4) 

where B = SF1 and Y is the n matrix of rank m, whose .th row is m X 1 

i-1 g+l m-i 
Y. = 0 . . .0 yo Yl . . . Yg 0 0 (6. 3-S) 1 • 

The n components of the row-vector W are sample values of statistically 

• d . d . bl . h d . 2 
~ndepen ent Gauss1an ran om var1a es w1t zero mean an var1ance J • 

As before, assume that IYil = 1. 

In order to correct for the division of the {si} by [ at the 

transmitter, the n sample values of a received group of m elements, 

which are the components of the row-vector R~ must now be multiplied by 

R to give 

R = £R' = BY +2W = SF
1
Y +iW (6.3-6) 

where Rw is an n-component row-vector whose components are sample 

values of statistically independent Gaussian random variables with zero 

mean and variance 

(6.3-7) 
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Let F2 in Fig. 6.3-1, be an, n x m linear network such that, 

when the n sample values of the m received signal-elements of a group 

are fed to its n input terminals, the m outputs, in the absence of 

noise, are the m element values {si} of the received group. Clearly, 

from Eqn. (6.3-6), in the absence of noise, 

(6.3-8) 

since it is assumed that the two networks F1 and F2 together equalize 

the channel. Thus 

I (6.3-9) 

where I is an m x m identity matrix. In the presence of noise, the 

m outputs from the linear network F2 , are the m components of the row-

vector 

X = RF2 = SF
1

YF2 + £WF2 (6.3-10) 

= s + u (6. 3-11) 
., 

where 

u = fWF 
2 (6.3-12) 

The m-component vector U is the noise-vector at the output of the 

network F 2 • The ith component u.' of the noise vector U, is a sample 
1 

value of a Gaussian random variable with zero mean and variance 

''1 • 2 = 
1 

2 2 n 2 
i. (I o:: f2 •. ) 

. 1 J 1 J= 

(6 .3-13) 

from Eqn. (6.3-12), since then components of Ware sample values of 

statistically independent Gaussian random variables. f 2 •. is the 
J1 

component in the jth r~ and ith column of the matrix F
2

, and F
2

i is an 

n-component vector given by the ith column of the matrix F2 • Each s. 
1 
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can now be detected by comparing the corresponding x. with the appropriate 
1 

thresholds. 
2 In generalt) i is a function of i, however, at high signal/ 



noise ratios the tolerance of the arrangement of Fig. 6.3-1, described 

above, to additive white Gaussian noise is approximately determined by 

the probability of error in the detection of the s. for which~. has the 
1 1 

greatest value (Appendix A2). 

It is now required to find then x m linear network F2 which 

provides the best linear estimate of the m signal-elements of a received 

group, given the network F1 at the transmitter and the received signal-

vector R. Let Y' be the m x n matrix given by 

Y' = (6.3-14) 

Since F1 is an m x m non-singular matrix and Y has rank. m, the m x n 

matrix Y' is of rank m, and, therefore, the m rows {Y. '} of the matrix 
1 

Y' are linearly independent. From Eqns. (6.3-6) and (6.3-14) 

or 

R = SF 
1
Y + Q W 

R = SY' + .l! W 

(6.3-15) 

(6.3-16) 

It can be seen that the problem of finding the optimum linear 
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network F2 is here similar to that in Section 3.2 where the corresponding 

n sample values of a received group of m signal-elements are the 

components of the vector (SY + ~I). Thus, following the procedure of 

Section 3.2, it is clear that the required network F2 is given by 

F2 = Y'T(Y'Y'T)-1 (6. 3-·17) 

T (FlY)Trl = (F
1

Y) {F1Y 

= YTF T {(F (YYT)F Tfl 
1 1 1 

= YTF T(F T)-l(YYT)-lF -1 
1 1 1 

= YT(YYT)-1F -1 
1 

(6. 3-18) 

Now 

= (6.3-19) 
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which agrees with Eqn. (6.3-9). It can be seen from Eqns. (6.3-16) 

and (6.3-17), that then x m network F2 gives at its m output terminals 

m linear estimates of the corresponding m {Si}• in which the mean square 

error due to the noise is minimized, given the network F
1 

at the transmitter 

and subject to the other assumed conditions. This follows because the 

network Y'T(Y'Y'T)-l in Fig.6.3-l is the exact parallel of the network 

YT(YYT)-l in System 1. 

If the m x m matrix F
1 

is an identity matrix, that is, if there is 

no signal processing at the transmitter, then the equalizer network F2 

at the receiver is given by 

= 

(6.3-20) 

Clearly, under these conditions, the arrangement of Fig. 6.3-1 reduces 

to that of System 1, and hence System 1 is a special case of the more 

general class of systems studied here. 

Data-transmission systems with different arrangements of the 

networks F1 and F2 in Fig. 6.3-l•will now be described. Since the 

systems, which are to be described are special cases of the arrangement 

of Fig. 6.3-1, their basic method of operation and implementation is 

similar to the arrangement studied in this section. 

6.4 Systems 21, 31, 41 and SL 

In Systems 21, 31, 41 and 51 the arrangement of Fig. 6.3-1, 

described in Section 6.3, is used. In each system the linear network 

F1, at the transmitter, is an m x m network represented by the m x m 

non-singular matrix F1 , and then x m linear network at the receiver is 

represented by then x m matrix F2 of rank m. In each case then sample 

values corresponding to a group of m received ·signal-elements are fed to 

then input terminals of the network F2 and the m signal-elements are 
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detected by comparing the m outputs, from the network F2 , with the 

appropriate thresholds, 

In each system 

and 

The signal-vector at the 

in the absence of noise, 

F2 is S(YYT)-qY, so that 

= 

= 

(YYT) -q 

YT(YYT)-l+q 

output of the net1~ork 

the signal vector at 

the signal vector at 

Fl 

the 

the 

= s 

is 

(6. 4-1) 

(6 .4-2) 

ES(YYT)-q, and 

input to the network 

output of F2 is 

(6.4-3) 

since YYT is non-singular, real and symmetric. Exact equali~ation of 
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the channel is, therefore, achieved for any real value of q in the range 

0 to 1. Since yyT is a .real, symmetric and positive definite matrix, so 

that (YYT)-q and (YYT)-l+q are both real, symmetric and positive definite 

. 37 
matr~ces. 

The following arrangements of Fig. 6.4-1 have been studied 

System 

2L 

3L 

4L 

5L 

Value of q 

1 

3/4 

1/2 

1/4 

In the Systems 2L to 5L, each of the networks F
1 

and F
2 

would 

in practice be implemented by the appropriate Gauss-Siedel iterative 

52 process, 

6.5 Systems 6L, 7L, 81 and 9L 

In Systems 6L to 9L, the arrangement of Fig. 6.3-1 described in 

Section 6.3, is modified to that shown in Fig. 6.5-1. In each System 

the linear network at the transmitter is an m.x n network represented by 

an m x n matrix of rank m, given by 
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= 

h D . . f k h . th . w ere 1s an m x n matr1x o ran m, w ose 1 row 1s 

D. 
l. 

i-1 
= 

1
0 .... o' 

m-i 
••• Y ol c o .... o• 

(6. 5-l) 

(6.5-2) 

The linear network at the receiver is an m x m network represented by 

an m x m non-singular matrix 

= (6.5-3) 

The arrangement at the transmitter in Fig. 6.5-1, is similar to that 

of Fig. 6.1-1, described in Section 6.1. There are now n values at the 

output of the network G1 and these are sampled in order at regular 

intervals of T seconds to give the corresponding impulses which are fed 
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to the baseband channel. The values of these impulses are the components 

of then-component row-vector SG1 • Adjacent groups of n impulses at the 

input to the channel, corresponding to adjacent groups of m signal-

elements, follow each other with no break in the regular sequence of 

impulses. It can be seen from Section 6.1, that the (g+l)th to (g+m)th 

samples of the received signal, eorresponding to a received group of m 

signal-elements, depend only on the corresponding m element values {·'i} 

and are the m components of the row-vector 

(6. 5-4) 

As before, 2 is a positive scalar quantity such that when each si at the 

input to G
1 

is divided by 2 , the average transmitted energy per bit is 

unity. As in Section 6.3, if e is the total energy of the components of 

all the km possible values of the vector SG
1

, then 

(6.5-5) 

The components of the m-component row-vector Win Eqn. (6.5-4), are 

sample values of statistically independent Gaussian random variables with 



d 
0 2 zero mean an var1ance a . The sample values of the received signal 

are first multiplied by Q in order to compensate for the division of 

the{si} by R. at the transmitter. Thus the m sample values of the 

received signal which are fed to the m inputs of the m x m network G2 

are the components of the m-component row-vector 

= (6.5-6) 

from Eqn. (6.5-1). In the absence of noise, therefore, the signal 

vector at the input to the network G
2 

is S(DDT)-l+qDDT, so that the 

signal vector at the output of G
2 

is 

(6.5-7) 

since DDT is non-singular, real and symmetric. Exact equalization of 

the channel is, therefore, achieved for any real value of q in the 

0 1 S. (ODT)-1 . 1 0 d 0 0 d f 0 • range to • ~nee . ~s rea , symmetr~c an pos1t1ve e 1n1te, 

(DDT)-l+q and (DDT)-q are both real, symmetric and positive definite. 37 

The following arrangements of Fig. 6.5-1 have been studied 

System 

6L 

7L 

BL 

9L 

Value of'q 

1 

3/4 

1/2 

1/4 

From Eqns. (6.5-3) and (6.5-6), the signals at the m outputs of 

the network G
2

, in any of the Systems 6L to 9L, are the components of 

the row-vector 

X = = 

= s + u (6.5-8) 
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where 

(6.5-9) 

and q has the appropriate value, 

The m-component vector U is the noise-vector at the output of 

the network G2• h . th f h . . T ~ 1 component u. o t e no1se vector U, 1s a sample 
1 

value of a Gaussian random variable with zero mean and variance 

n i2 = n 2 2 (G G T) 
'I X (J 2i 2i (6.5-10) 
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where G2i is an m-component vector given by the ith column of the matrix 

G2 = (DDT)-q. Each si can now be detected by comparing the corresponding 

x. with the appropriate thresholds. In general, ~. 2 is a function of i, 
1 1. 

however, at high signal to noise ratios the tolerance of any of the 

Systems 6L to 9L, to additive white Gaussian noise is approximately 

determined by the probability of error in the detection of the s. for 
1 

which ~· has the greatest value. 
1 

If q in Eqn. (6.5-3), is zero, that is, when all the signal 

processing is carried out at the tranernitter, the linear network at the 

transmitter, from Eqn. (6.5-l),is the m x n network (DDT)-1D. Under 

these conditions, therefore, the arrangement of Fig. 6.5-1 reduces t~ that 

of System lL described in Section 6.2. It follows that System lL is a 

special case of the more general class of systems studied here. 

It is shown in Appendix A7 that for any given channel 

= (6.5 -11) 

so that 

= (6.5 -12) 

A comparison of Eqns •. (6.5 -12) and (6.4 -1) shows that the m x m 

network F1 at the transmitter of any of the Systems 2L to 5L, is the same 

as the m x m network G2 at the receiver of the corresponding System 6L to 

9L. Furthermore, the channel is exactly equalized in each case. This 



suggests that Systems 21, 31, 41 and 51 are, respectively, duals 

of Systems 61, 71, 81 and 91, and vice versa. 

In the Systems 61 to 91, each of the networks G1 and G
2 

would in practice be implemented by the appropriate Gauss-Siedel 

iterative process. 

6.6 Orthogonalization of the Sampled Impulse 
Response of the Baseband Channel 

Consider the arrangement of Fig. 6.3-1 described in 

Section 6.3. It was shmvn that, given the m x m network F
1 

at the 

transmitter, the linear estimates of the element values {si}of a group 

of m signal-elements, are obtained at the receiver, at the m outputs 

of the n x m network 

= (6.6 -1) 

so that 

= I (6.6.-2) 

where I is an m x m identity matrix. 

Suppose now that 

Y' = (6.6-3) 

where Y' is an m x n matrix of rank m and has the property that 

Y' (Y' ) T = I ( 6 • 6 -4) 

and I is an m x m identity matrix. This means that the m rows of Y' 

have unit length and are orthogonal fo each other. Thus the m x m 

matrix F
1

, representing the linear network F1 in Fig. 6.3-1, transforms 

40 
the set of m vectors {Yi} to a set of m orthonormal vectors {Yi'} • 

From Eqns. (6.6 -3) and (6.6 -4) 

I (6.6 -5) 

or = 
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or 

or 

= (F TF ) -1 
1 1 

FiTFl =, (YYT)-1 (6.6 -6) 

From Eqns. (6.6 -1) and(6.6 -6), then x m linear network at the 

receiver, in the arrangement of Fig. 6.3-1 is, now 

= 

= YTF T 
' 1 

= (F 1 Y) T 

= (Y') T (6.6 -7) 

From Eqn. (6.3-6), then sample values of a received group of m signal-

elements at the input to the network F2 are the components of the n-

component row-vector 

R = = SY' + P. W (6.6-8) 

Since the m rows of Y' are orthonormal, the received signal-elements of 

a group are orthogonal at the receiver. Under these conditions the 

optimum detection process for a group of received signal-elements is 

matched-filter detection. Each signal-element can be thought to be 

transmitted over a different channel, and the sampled impulse responses 
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of the different channels are, re.spectively, the m rows of the matrix Y'. 

Thus, at the receiver all that is required to maximise the signal to 

noise ratio, in the detection of the m signal-elements, is a set of m 

correlation detectors or matched filters, matched to the m rows of Y'. 

Then x m network F2 in Eqn. (6.6-7),is nothing but a set of m correlation 

detectors matched to the m rows of Y'. Thus, in the arrangement of 

Fig. 6.3-l,if F
1 

is such that Eqns. (6.6-3) and (6.6-4) are satisfied, then 

the resulting system is optimum in the sense that no other linear or non-

linear detection process, at the receiver, will improve the.tolerance of 

the system to additive white Gaussian noise. 



Since the length of each column vector of F2 is unity, 

T • . 
F2iF2i 1n Eqn. (6.3-13) is unity for each i. It follows from Eqn. 

(6.3-13), that the noise variance at the input to the detector, in 

the arrangement of Fig. 6.3-1, just considered, is given by 

(6.6-9) 

where .e is given by Eqn. (6.3-3). 

A particular form of the m x m matrix F1 in Eqn. (6.676) is 

an m x m upper-triangular matrix P such that 36 

= 

Thus Y' = py 

is an m x n orthonormal matrix, and from Eqn. (6.6-7) 

= 

= 

(6.6-10) 

(6 .6-11) 

(6. 6-12) 

Systems employing the transformation P in Eqn. (6.6-11) are described 

in Section 6.7. 

6.7 Systems 101 and llL 

In System 101 the m x m linear network F1 , at the transmitter 

in the arrangement of Fig. 6.3-1, is a network represented by the 

upper triangular matrix Pin Eqn. (6.5-11), and then x m linear 

network at the receiver, from Eqn. (6.6-12), is 

= (6. 7-1) 

The block diagram of System 101 is shown in Fig. 6. 7-1. Thus in 

System 101, since PY is an m x n orthonormal matriA 

(6. 7-2) 

which satisfies the condition imposed by Eqn. (6.3-9). The upper 

triangular matrix P can be evaluated from Eqn. (6.6-10) by the so 

called "Square Root Method." 36 The practical implementation of the 

linear transformation P at the transmitter and YTPT at the receiver 
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would normally require the prior knowledge of both P and Y and the 

components of P and YTPT would simply be stored at the transmitter and 

receiver, respectively, and used to achieve the appropriate matrix 

multiplications. P can of course be derived from Y, but a more complex 
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iterative process would now be required than the simple Gauss-Siedel process 

52 
previously assumed, and this is unlikely to be of any practical value. 

A description of this process is beyond the scope of the present work and 

will not be considered here. 

It is interesting to note that in 

symmetric matrix, F
1 

and 

(YYT) -j and F 
2 

YTF T 
1 

= 

System 4L, since (YYT)-! 

= yT (YYT) -j, so that 

(6. 7-3) 
•, 

(6.7-4) 

is a 

A comparison of Eqns. (6.7-2) and (6.7-4) shows that the m rows of the 

m x n matrix (YYT)-!Yare orthonormal. This s~ggests that Systems 4L and 

lOL belong to the same class of Systems where the elements of a received 

group are orthogonal at the receiver. 

In System IlL, the arrangement of Fig. 6.5-1 described in Section 

6.5 is used. The m x m linear network at the receiver, represented by 

the m x m non-singular matrix G,, is such that 
. : L. 

= I (6. 7-5) 

where I is an m x m identity matrix, and D is an m x n matrix of rank m, 

whose ith row is 

i-1 
n. = 'o .... o' 

1 

m-i 
'o .... o' (6. 7-6) 

Clearly the m x n matrix c
2

TD has rank m and is such that its m rows are 

orthogonal to each other. The m x n linear network at the transmitter 

of System IlL, which is represented by the m x n matrix G
1 

of rank m, is 

assumed to be such that 

= (6. 7-7) 



From. Fig. 6.5-1, the n-component output vector from the linear 

network G1 is jsG1, and in the absence of noise, the m-component 

T vector at the input to the network G
2 

is SG
1
D , so that the m 

component output vector from G2is 

= 

= 

= s (6. 7-8) 

from Eqn. (6.7-5). Exact equalization of the channel is therefore 

achieved in System llL, so long as the network G
2 

is such that Eqn. 

(6.7-5) is satisfied. 

From Eqn. (6. 7-5) 

G TDDTG = I 2 2 

or DDT ·= (G T)-lG -1 
2 2 

= (G G T)-1 
2 2 

or (6. 7-9) (DDT)-1' = G2G2T 

response of the channel DDT = YYT Since for a given sampled impul&e 

(Appendix A7), it follows that 

= = (6.7-10) 

Comparing Eqns. (6.6-10) and (6.7-lO),clearly 

= (6. 7-11) 

Thus the m x m linear network at the receiver of System llL is repre

sented by an m x m lower triangular matrix PT, where PT is such that 

PTP = (YYT)-1• The m x n matrix, representing the m x n linear 

network at the transmitter, is, from Eqn. (6.7-7) 

= 

= PD (6. 7-12) 

The block diagram of System llL is shown in Fig. 6.7-2. As in the case 
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of System lOL, the practical implementation of the linear transformation 

P h 
. . d T . 

D at t e transml.tter an P at the rece1.ver, would normally require the 

prior knowledge of both PD and PT, and the components of PD and PT would 

simply be stored at the transmitter and receiver, respectively, and used 

to achieve the appropriate matrix multiplications. 

For a given sampled impulse response of the channel, the m x m 

linear network at the transmitter of System lOL is the transpose of the 

linear network at the receiver of System llL. Furthermore, in both the 

Systems lOL and llL the channel is exactly equalized. Systems lOL and 

llL are therefore duals of each other. 

6.8 Linear Signal Processing at the Transmitter 
with Non-linear Detection at the Receiver 

In Section 6.4, the m x m matrix F
1

, representing the linear 

network at the transmitter of Systems 2L to SL, is always symmetric and 

positive definite. The corresponding n x m matrix, representing the 

linear network at the receiver is given by 

= (6.8-1) 

It follows, therefore, that the m x m matrix (YYT)-lF -l is also 
1 

• d . . d f. . 37 • (YYT)-1 symmetr1.c an pos1.t1.ve e 1.n1.te, as 1.s • It is thus, possible 

to replace the n x m linear network F2 at the receiver of Systems 2L to 

SL, by the non-linear detection processes of Systems 3, 5 and 6, in order-

to achieve a better tolerance to noise. Systems employing non-linear 

detection process at the receiver with linear signal processing at the 

transmitter, are described in Section 6.9. 

6.9 Systems 3LN, -~LN and SLN 

Systems 3LN, 4LN and SLN are modifications of Systems 3L, 4L and 

SL, respectively. In System 3LN, the detectio-n process of System 6 is 

used at the receiver of System 3L, to detect the m signal-elements of a 



received group, instead of the linear network F2 . = YT(YYT)-!, 

Similarly, in Systems 4LN and 5LN, the detection process of System 6 

is used at the receiver of Systems 41 and 51, respectively, to detect 

the m signal-elements of a received group, instead of the respective 

linear networks. 
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7. 0 ASSESS!1ENT OF SYSTEMS WITH LINEAR SIGNAL PROCESS IN(; AT THE 

TRANSl1ITTER 

7.1 Computer Simulation Tests 

The tolerances to additive white Gaussian noise of the 

different systems, employing linear .~ignal processing at the 

transmitter, have been compared by computer simulation, for 

different values of the sampled impulse response of the channel. 

The method of computer simulation is similar to that 

described in Section 5.1. 

In every test, binary signal-elements are assumed such that s. 
1 

is equally likely to have the value 1 or -1, the element values in 

a group being statistically independent. The average transmitted 

energy per bit is equal to unity, the five component row vector L 

representing the channel in Table 5.2-1 has unit length, and the 

two sided power spectral density o2 of the additive white Gaussian 

noise at the input to the receiver filter, is adjusted for an 

average element error rate of 4 in 103• The value of o
2 

then gives 

a measure or the tolerance of a system to additive white Gaussian 

noise. 

In each computer simulation test, a total of 4096 elements were 
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transmitted over a baseband channel with a fixed value of L. Through-

out the test m = 8 and n = m+4. Where a system has been tested over 

any of the channels B to K, a computer simulation test has been 

carried out for each of the corresponding values of L in Table 5.2-1. 

Tests have not been performed with multi-level signals, since 

exact equalization is, in every case, applied to each group of m 

signal-elements, and under these conditions a fairly accurate idea of their 



performances with multi-level signals can be obtained from the results 

for binary signals. 

The tolerances of Systems lL to llL to additive white Gaussian 

noise have also been calculated theoretically using the results 

derived in Sections 6.2, 6.3 and 6.5 and bearing in mind that for 

binary signal-elements such that s. = + 1, the average probability 
l. -

of error in the'detection of s. from x., where x. is the corresponding 
~ ~ 1 . 

output signal from the linear network at the receiver, is 

approximately Q(!), .where n is the largest value of the standard 
n 
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deviation of noise components {ui} at the output of the linear network. 

These results are given along with those obtained by computer 

simulation, in Section 7.3 

7.2 Error Probabilities and Confidence Limits 

In Systems lL to llL, for binary coded signals such that 

s. = + 1 or -1, the error probability in the detection of the ith 
l. 

signal-element of a group is 

= (7.2-1) 

wbere n. 2 is the corresponding noise variance at the detector input 
l. 

(Section 5. 3) • 

In the case where .. there is no signal distortion(Channel A) 

the value of n. 2 in any of the systems lL to llL, is the same for 
l. 

2 
each i and is equal to.- the power spectral density of the additive white 

· Gaussian noise at the input to the receiver filter. Thus, the element 

error probability, in any of the Systems lL to llL with binary 

signals and no distortion in transmission, is given by 

p = Q (1/<1) (7 .2-2) 



-3 Since the value of p is assumed to be 4 x 10 

167 

Q(l/a) = (7.2-3) 

The value of a, corresponding to· -3 the value of p = 4 x 10 , is 

0.376 which is the value of the standard deviation of white Gaussian 

noise to be added at the input to the receiver filter to obtain an 

element error probability of 4 x 10-3 It can be seen that the value 

of a obtained here for channel A and binary signal-elements, 

agrees with the corresponding value of a obtained in Section 5.3. 

From the computer simulation results, it is found that the number 

of groups of signal-elements in error, in any of the systems tested, 

is approximately the same as thatnr System 1, with binary signal-

elements (Section 5.3). It follows that the number of independent 

errors is, in each case, approximately the same as for System 1 with 

binary signal-elements, so that the 95% confidence limits, for any of 

the systems tested here, are as given in Table 5.3-1 for m= 8 and k = 2. 

7.3 Results of Computer Simul~tion Tests 

The results of the computer simulation tests are shown in Table 7.3-1. 

The noise power spectral density at the input to the receiver filter, 

-3 required for an average element error probability of 4 x 10 , is quoted 

in decibels relative to its value when a binary signal is transmitted 

over channel A with the same error probability, the noise level here 

being the same in all cases. 

Table 7.3-2 gives the theoretical values corresponding to those 

obtained by computer simulation 'in Table 7 .·3-1. 

Fig. 7.3-1 shows the variation in the noise level, in the 

arrangement for Systems 2L- 5L (Fig. 6.3-1)· >~ith channel J, as q in 

Eqns. (6.4-1) and (6.4-2) is varied €ram 0 to 1. The results have 

been obtained theoretically. 



TABLE 7.3-1 

Noise level, for an average element error probability of 4 x 10-3 , expressed in 
a binary signal is transmitted with the same error probability over channel A. 

(Results obtained by Computer Simulation) 

System 

Channel lL 2L 3L 4L 5L 6L 7L 8L 9L lOL 

A o.o o.o o.o o.o o.o o.o o.o o.o o.o o.o 

B -5.2 -15.0 -10.0 -5.o -3.5 -16.2 -11.1 -5.7 -3.8 -5.2 

c -3.0 -8.6 -5.3 -3.0 -2.4 -9.8 -6.0 -3.2 -2.3 -3.0 ' 

D -12.8 -32.1 -22.0 -13.0 -10.0 -33.4 -23.0 -13.4 -9·'8 -13.0 

E o.o -o.5 '-0.5 o.o o.o -0.6 -o.5 o.o o.o o.o 

F -2.6 -7.o -4.4: -2.8 -2.1 -8.0 -5.3 -3.0 -2.2 -2.6 

G -2.4 -7.9 -4.5 -2.2 -1.7 -8.8 -5.2 -2.6 -2.0 -2.2 

H -3.0 -8.2 .c.s;o -3.0 -2.6 -8.7 -5.5 -3.2 -2.4 -2.9 

I -3.2 -10.0 -6.4 -3.1 -1.9 -11.1 -7.4 -3.3 -2.1 -3.0 

dB relative to its value when 
Groups of 8 signal-elements. 

-

11L I 3LN 4LN 5LN 

o.o o.o o.o o.o 

-5.4 -9.5 -5.o -3.1 

-3.2 -5.1 -3.1 -2.2 

-13.6 -20.8 -13.0 -9.1 

o.o -0.3 o.o o.o 

-3.0 -4.1 -2.7 -2.2 

-2.8 -3.8 -2.2 -1.7 

-3.2 -5.o -2.9 -2.5 

-3.4 -5.9 -3.0 -1.6 

J -16.8 -38 .o -26.4 -17.0 -14.0 -39.2 -27.2 -17.5 -14.3 -17.0 ·-17.6 -26.0 -17.2 -13.2 

K -4.3 -12.1 -7.4 I -4.5 -3.2 -13.0 -8.4 -4.7 -3.5 -4.5 
I 

-4.6 -8.0 -4.5 -3.0 



TABLE 7. 3-2 

Noise level, for an 
a binary signal ·is 

-3 
average element error probability of 4 x 10 , expressed in dB relative to its value when 
transmitted with the same error probability, over Channel A. Groups of 8 signal-elements. 

(Results obtained theoretically) 

System 
Channel 

lL 2L 3L 4L SL 6L 7L 8L 9L lOL llL 

A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o.o 0.0 o.o 
B -5.24 -15.75 -9.95 -5.24 -3.9 -17.84 -11.55 -6.45 -3.9 -5.24 -6.45 

c -3.0 ~s.s -5.5 -3.0 -2~44 -10.16 -6.46 -3.8 -2.44 -3.0 -3.8 

D -12.6 -32.5 -21.9 -12.6 '-9.82 -35.4 -24.3 -14.9 -9.82 -12.6 -14.9 

E -0.2 -0.56 -0.4 -0.2 0.0 -o. 71 -0.52 -0.26 0.0 -0.2 -0.26 

F -2.68 -7.2 -4.55 -2.68 -2.3 -8.4 -5.56 -3.25 -2.3 -2.68 -3.25 

G -2.32 -8.06 -4.62 -2.32 -1.76 -9.65 -5.88 -3.04 -1.76 -2.32 -3.04 

H -3.06 -8.26 -5.8 -3.06 -2.46 -9.08 -5.79 -3.5 -2.46 -3.06 -3.5 

I -3.15 -10.6 -6.4 -3.15 -2.3 -12.4 -7.72 -4.06 -2.3 -3.15 -4.06 

;:r -16.6 -38.4 -26.94 -16.6 -14.5 -40.41 -28.1 -18.5 -14.5 -16.6 -18.5 

K -4.42 -12.32 -7.85 -4.42 -3.44 -13.75 -8.88 -5.16 -3.44 -4.42 -5.16 
-. 
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7.4 Comparison of Systems 

From the·computer simulation results of Table 7.3-l, the 

best tolerance to additive white Gaussian noise, of the systems 

studied in Section 6.0, is achieved by Systems 5L, 9L and 5LN, while 

Systems 2L and 6L give the worst performance. For severe signal 

distortions Systems 5L and 9L gain an advantage of about 3 dB in 

tolerance to noise, over System lL. Within the limits of the 

accuracy of the computer simulation results (Table 5.3··1) the 

tolerances of Systems lL to llL, to additive white Gaussian noise obtained 

theoretically in Table 7.3-2, are either less than or equal to their 

corresponding values obtained by computer simulation. This is so 

because the theoretical results are obtained by using the maximum 

value of the noise variance, at the input to the detector, in the 

detection of the m signal-elements of a group, and therefore, the 

theoretical results provide the lower bounds to the tolerance of a 

system to additive white Gaussian noise. 

Table 7.4-l shows the systems studied in Section 6.0, which have 

approximately the same performances. The performances of two systems 
• 

are here considered to be the same, approximately, if their respective 

noise levels do not differ by more than about 1.5 dB. It can be seen 

from Table 7.4-l that any of the two systems which have approximately 

the same t.olerance to noise, are also duals of each other, that is, 

the m x m linear network at the t>::ansmitter of one system is the 

transpose of the m x m network at the receiver of its dual system and 

in each case the channel is exactly equalized. For example, Systems 

5L and 9L are duals of each other, since they both equalize the channel 

exactly, and the m x m network at the transmitter of System 5L is the 

transpose of the m x m network at the receiver of 9L. This suggests 

that Systems which are duals of each other,.have approximately the 

same tolerance to additive white Gaussian noise, at least in the cases 

studied here. 
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TABLE 7.4-1 

Systems having approximately the same pPrformance, which are also duals 
of each other 

. 
·Dual system which has approximately 

System the same performance in the presence 
of additive white Gaussian noise 

1 lL 

2L 6L 

3L 7L 

4L 8L 

5L 9L 

lOL :,. llL 



The performances of Systems4L and lOL are very close to that 

of System lL, and can be taken to be the same for practical purposes. 

There seems to be no significant difference between the performances 

of System~4L and 4LN, even though in the latter case the detection 

process of System 6 is used at the receiver of System 4L instead of 

the corresponding linear network. This was expected since in the 
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case of System 4L, the received signal-elementsof a group are 

orthogonal at the receiver, 'q.nd the optimum detection process is a set 

of correlation detectors. Therefore no other linear or non-

linear technique at the receiver of System 4L can improve its 

tolerance to additive white Gaussian noise. 

Fig. 7.3-1 shows that of the various combinations of the linear 

networks F
1 

and F
2 

in the arrangement of Fig. 6.3-1 and for severe 

signal distortions, the best· tolerance to additive white Gaussian 

noise is achieved by System SL. This suggests that System SL is the 

optimum combination of the linear networks F
1 

and F
2 

o~ is at least 

close· to the optimum combination. 

Table 7.4-2 shows the approximate number of sequential operations 

required in the detection of a group of eight binary signal-elements, 

when transmitted over channel J, at the receiver of Systems lL to 9L and 

also System 1. Apart from System lL which does not require any 

processing at the receiver, the number of sequential operations required 

increases with the decrease in the value of q in Eqn. (6. 4-1) and with 

the increaG~ in the value of q in Eqn. (6.5-3), which is to be 

expected, since under these con&tions more and more of the channel 

equalization is performed at the receiver. Table 7.4-2 also shows the 

approximate number of sequential operations required in the linear 

transformation of a group of eight binary signal-elements,.in the case 



TABLE 7.4-2 

Approximate number of sequential operations required for the 
detection of a group of eight binary signal-elements, transmitted 
over chat'nel J. 

Number of sequential Number of sequential 
System operations at the operations at the 

transmitter receiver 

lL 600 0 

2L 500 0 

3L 300 80 

4L 100 160 

SL 50 600 

6L 0 700 

7L so 600 ., 

8L lOO 150 

9L 300 lOO 

1 0 850 
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of channel J, at the transmitter of Systems lL to 9L and System 1. 

Apart from System 1 which does not require any processing at the 

transmitter, the number of sequential operations required increases 

as the value of q in Eqn. (6.4-1) increases and the value of q in 
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Eqn. (6.5-3) decreases which, again, is to be expected, since under 

these conditions more and more of the. channel equalization is performed 

at the transmitter. None of the Systems in Table 7.4-2 other than 

system 1, is suitable for use over time varying channels since in all 

systems applying a linear transformation to the transmitted signal, 

a knowledge of the sampled· impulse response of the channel is required 

at the transmitter, which means that this information must be fed from 

the receiver to the transmitter. 

There does not seem to be any useful advantage in tolerance to 

additive white Gaussian noise gained by Systems 3LN and 5LN over 

Systems 3L and 5L, respectively; even though in Systems 3LN and SLN, the 

non-linear detection process of System 6 replaces the linear network F2• 

A partial explanation for this is that after some linear processing of 

the signal at the transmitter, the individual received signal-elements 

of a group are no longer simple time shifts of each oth~r (when. 

their element values are the same) but instead each received signal

element will now in general occupy all the~ailable samples of the 

received group. Under these conditions it may well be that the first 

(or last) received signal-element of a group no longer has a better 

tolerance to noise than the signal-elements in the centre of the group. 

One would however still expect the non-linear constraint used in 

System 6 to give some advantage in tolerance to noise, although not 

as much as when all the· signal processing is carried out at the receiver. 

The fact that System 6 gains a considerable advantage in tolerance to 

additive white GAussian noise,over Systems 1 and lL,suggests that to gain 



the maximum advantage of the detection process of System 6, no 

linear processing of the signal should be carried out at the 

transmitter. 

The study of systems with linear signal processing at the 

transmitter, suggests that only a limited advantage in tolerance to 

additive white Gaussian noise can be gained by the appropriate 
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linear transformations of the signal at the transmitter. Even the 

best of the systems studied has a tolerance to additive white Gaussian 

noise well below that of System 2. However, since none of the systems 

studied so far uses non-linear· processing of the signal at the

transmitter, it still remains to investigate the tolerance to 

additive white Gaussian noise likely to be achieved by such systems. 



8.0 NONLINEAR PROCESSING OF SIGNAL AT THE TRANSMITTER 

8.1 Basic Principles 

The synchronous serial baseband data-transmission system, 

shown in Fig. 1.1-1 and discussed in Section 3.1, is now modified 

to include nonlinea·r processing of groups of m signal-elements at 

the transmitter. The modified arrangement is shown in Fig. 8.1-1. 

The m signal-elements at the transmitter, whose element values {si} 

are the components of the m-component row-vector S, are transformed, 

non-linearly, into a corresponding set of values given by the 

components {b.} of the vector B. The { s .} are assumed to be 
~ 1 

statistically independent ~nd equally likely to have any of the 

possible values. The m {b.} are sampled in sequence at regular 
1 

intervals of T seconds to give the corresponding set of impulses 

with areas given by the { bi} and these are fed to the base band channel. 

Adjacent groups of m{b .} are separated by g zero-level impulses. The 
J: 

baseband channel includes a transmitter filter, transmission path and a 

receiver filter. At the input to the receiver filter, white Gaussian 

noise with zero mean and a two sided power spectral density 'of ~2 is 

added to the received signal. At the output of the receiver filter, 

the received signal is sampled at regular intervals of T seconds. 

Since adjacent groups of m {bi} are separated by gT seconds, it is 

clear that the n sample values of a received group of m { bi} depend 

only on the corresponding m signal-elements of a group. The detector, 

therefore, uses these n sample values in the detection of a received 

group of m signal-elements. 

It is assumed here that the (g + 1) sample values of the sampled 

impulse response of the baseband channel, 

(8.1-1) 
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are known at the transmitter and receiver. For the sake of convenience, 

the delay in transmission, other than that involved in the time 

dispersion of the transmitted signal, is ignored. 
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The p sample values of a received group of m signal-elements 

are, from Section 3.1, the components of the n-component row-vector 

R = BY + W 

where Y is the m x n matrix, of rank m, whose ith row is 

Y. 1. = 
i-1 

0 I I oO 
g+l m-i 

' ... . y 0 
g 

.. . o 

(8.1-2) 

(8.1-3) 

and W is an.n-component row-vector whose components are sample 

values of statistically independent Gaussian random variables with 

d 
. 2 

zero mean an var~ance ~ . Let the m rows {Y.} of the matrix Y be 
1. 

normalized to have unit length, that is, 

T Y.Y. = 1.0 fori= 1,2 ••• ,m. 1. 1. 

Let A = { aij} be an m x m matrix, such that 

A = YYT 

(8.1-4) 

(8.1-5) 

Th . A • • 1 . d . . d f. . 32,52 e matr1x 1.s non-sl.ngu ar, syunnetr1.c an pos1.t1.ve e 1.n1.te. 

Also from Eqns. (8.1-4) and (8.1-5), 

a .. = 1.0 fori= 1,2, ... ,m 
1.1. 

(8.1-6) 

The detector, in Fig. 8.1-1, has a set of m correlation 

detectors matched to the m rows pf the matrix Y. With the arrangement 

just described, the m {bi} corresponding to a group of m ?ignal

elements are obtained as follows 

1. Set b so that 
m 

= 

2. Set bm-l so that 

allbm-1 + a12bm 

3. Set b 2 so that 
m-

= s m-1 
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= a11bm-2 + al2bm-1 + a13bm 

al1bl + al2b2 + ••• + a1mbm 

sm-Z and so ·on, until finally 

= 

If now the m{bi} obtained in the above manner are fed to the 

baseband channel i·n the form of the correspondinG impulses, then the 

output signal from the first correlation detector, from Eqns. 

(8.1-2), (8.1-4) and (8.1-5), is 



xl. : RY T 
1 

= BYY T +WYT 
1 1 

= BA1 + vl 

= sl + vl (8.1-7) 

where A1 is the first column of the matrix A, and v1 = WY
1
T is the 

value of the orthogonal projection of W onto Y
1

. s 1 is now detected 

by comparing x1 with the appropriate thresholds. Assuming now that 

b1 is known at the receiver, b1Y1 is cancelled (eliminated by subtrac

tion) from the received signal to form 

= (8 .1-8) 

The output signal from the second correlation detector when R1 is fed 

at its input, is 

T 
x2 : RlY2 

BA2 - blal2 
T = + WY2 

= s2 '+ v2 (8.1-9) 

Since A is symmetric, and 

= (8.1-10) 

A2 is the second column of the ~trix A, and v2 = WY2Tis the value of 

the orthogona1 projection of W onto Y
2

• s
2 

is then detec~ed by 

comparing x
2 

with the appropriate thresholds. Assuming that b
2 

is 

known at the receiver, b2Y2 is cancelled (eliminated by subtraction) 

from R1 to form 

= (8.1-11) 

The output signal from the third correlation detector is now 
. T 

R2Y3 = 

= (8.1-12) 

leading to the detection of s 3, and so on until finally sm is detected 

from xm' where 

X = 
m 

R y T 
m-1 m 
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v being m 

It 

cancel bl 

necessary 

the value 

is clear 

from the 

= S + V m m 

of the orthogonal 

that in order to 

received signal. 

to know its value,but this 

(8.1-13) 

rrojection of W onto y . m 

detect s2, the detector must first 

To cancel bl' it is of course 

cannot be determined without first 

knowing all the{s.}. Thus to detect the received signal-elements of a 
]; 

group, using the ·arrangement just described, the detector must have 

prior knowledge of the m { bi} , ·Since this is tantamount to a prior 

knowledge of the m {si} , this is clearly not a practical system. 

Nevertheless it is interesting to study the performance of this 

hypothetical system since it clearly provides an upper bound to the 

performances likely to be obtained from the detection of transmitted 

signals considered here, Systems based on the scheme just mentioned, 

are described in Section 8.2. 

8.2. Systems lN, 2N, 3N and 4N 

In systems lN, 2N, 3N and 4N, the m impulses {b.f corresponding 
. 1' 

to a group of m signal-elements,• are obtained at the transmitter in a 

manner described in Section 8.1. The detection process at the recei•1er 
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in each of the above systems, is,however, different. The detection process 

at the receiver of System lN is similar to that described in Section 8.1. 

This means that the receiver in System lN has the prior knowledge of the 

values of the m {bi} corresponding to a received group of m signal-

elements. 

In System 2N the receiver has no prior knowledge of the values of the 

m {bi} corresponding to a received group of m signal-elements, and these 

values are estimated, at the receiver, from the corresponding n sample 

values of the received signal. The operation of the detection process at 

the receiver of System 2N is as follol•s. From Eqn. (8.1-7), the output 

signal from the first correlation detector, matched to Y1 , when R is fed 



at its input,is 

RY T 
1 

= (8.2-1) 

where u
1 

= WY
1
T. s

1
, as before, is detected by comparing RY

1
T with 

the appropriate thresholds. Following the detection of s
1

, u
1 

and 
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hence u
1
Y1 is known. u

1 
is the value of the ortbogonal projection of Won 

the vector Y
1

. u
1
Y1 is subtracted from R to give then-component 

vector (R- u1Y
1
). The linear estimate of the vector B is now obtained 

by feeding (R- u
1

Y
1

) to the linear .network YT(YYT)-l (SHction 3.2). 

Thus 

= 
(8. 2-2) 

where E1 is an m-component row-vector which is an estimate of B. Let 

ell be the first component of E
1

• e
11

Y1 is now cancelled (eliminated 

by subtraction) from (R- u1Y1) to give the n-component vector 

= (8.2 -3) 

Thus R1 is obtained from R by cancelling some of the noise and the 

estimate e
11 

of b
1

• 

The output from the 2nd correlation detector when R1 is fed to 

its input is 

. (8.2-4) 

where u
2 

is the estimate of the projection onto Y2 , of the noise vector 

in R
1

• s
2 

is detected by comparing R
1
Y

2
T with the appropriate thresholds. 

The estimate of the noise component u
2
Y

2 
is now known and is removed 

from R
1 

to give the vector (R
1

- u
2
Y

2
). The new estimate E2 of the 

vector B is now obtained,and is given by 

= (8.2-5) 

Hence the 2nd component e 22 of the m-component row-vector E2 , is the 

estimate of b
2

• This is taken to be correct and b
2

Y2 is cancelled from 

(R1 - u2Y
2

) to give the n-component vector 

= (8.2-6) 



T This leads to the detection of s 3 from R2Y3 , The above procedure is 

repeated for the detection of the following signal-elements of a group, 

so that sm is detected by comparing Rm-lymT with the appropriate 

thresholds, where 

. R 
: m-1 = (8. 2-7) 

where u 
1 

is the estimate of the projection onto Y 
1

, of the noise m- m-

vector in Rm_ 2 , and e(m-l)(m-l) is the estimate of bm-l' Thus at the 

end of the detection process 

- (u + e )Y m nun m (8.2-8) 

= R- UY - EY (8.2-9) 

where u. and e .. fori= 1,2, ,,,,m in Eqn. (8.2-8) are, respectively, 
1 l.l. 

the components of the m-component row-vectors U and E in Eqn. (8.2-9). 
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The detection process·at the receiver of System 3N is an iterative 

process. Each cycle of the iterative process is identical to the 

detection process of System 2N described above. At the beginning of the 

first cycle of the detection process, in System 3N, the n components of 
• 

the vector R, in Eqn. (8.2-1), are then sample values corresponding to a 

received group of m signal-elements as in System 2N. In the second and 

subsequent cycles the vector R, at the beginning of the cycle, is taken 

as 

R- UY, (8.2-10) 

where, the m-component row vector U (Equation (8.2-9)) was obtained at 

the end of the previous cycle. The iterative procedure, in the detection 

process of System 3N, is carried on until there is no further reduction 

in the number of errors obtained at the end of each iterative cycle. 

The detection process at the receiver of System 4N is a 

modification of the detection process of System 2N. As before, the 

n-component row-vector R whose components are the sample values of the 



received si.gnal corresponding to a group of m signal-elements, is fed 

to the input of the first correlation detector, so that at its output 

RY T 
1 

= (8. 2-11) 

where u
1 

= 1n
1
T. s1 is now detected by comparing RY

1
T with the 

appropriate thresholds. Again as in System 2N 

= (8.2-12) 

R1 is now fed to the input of the second correlation detector so that 

(8.2-13) 
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T from Eqn. (8.2-4). s2 is detected by comparing R
1
Y2 with the appropriate 

thresholds. Again, as in System 2N the new estimate cf the vector B is 

the m-component row-vector 

= (8.2-14) 

If e11 in Eqn. (8.2-12), is equal to b
1 

the first component of 

the vector B, then clearly the desired cancellation of b1Y1 is achieved, 

and under these conditions th~ first component e 21 of the vector E2 in· 

Eqn. (8.2-14) is zero. However, ·since e
11 

is the estimate of b1 , it is, 

in general,not equal to b1• It,follows, therefore, that u2 is partly 

T T (W - u
1
Y

1
)Y

2 
and partly Ae

11
Y

1
Y2 , where Ae

11 
is the error in 

estimating b
1 

from e11 • Furthermore, the first component e
21 

of the 

vector F. 2 is not, in general, equal to zero. e 21Y1 and e22Y2are now 

removed from (R
1 

- u2Y2) to give the n-component row-vector 

= 

= 
(8.2-15) 

where, of course,e21 and e22 are respectively, the first and second 

components of the vect'or E2• R2 is now fed to the input of the third 

correlation detector, so that 

= (8.2-16) 



T and s
3 

is detected by comparing R2Y
3 

with the proper thresholds. 

R
3 

is now obtained as 

(8.2-17) 

where e31 , ·e32 and e33 are, respectively, the first, second and third 

components of the m-component row-vector 

= (8.2-18) 

' d d b ' T ' h h ' h d s
4 

1s now etecte y compar1ng R
3
Y

4 
w1t t e appropr1ata t reshol s. 

The above procedure is carried on until finally, s is detected by 
m 

comparing Rm-l YmT with the appropriate thresholds, where 

R m-1 = 

- r(u ) + e ] y L m-1 (m-l)(m-1) m-1 (8.2-19) 

and, e(m-l)i fori= 1, 2 •• , (m-1), are, respectively, the first 

(m-1) components of the m-component row-vector 

E m-1 = (8.2-20) 

It may be pointed out that in forming R2 (Eqn. (8.2-15)) it is not 

possible to cancel e23Y3, e 24Y4, .•• , e2mYm, since this will spoil the 

relationship 

= + u. 1 
1+ ' 

and this is true in forming of any of the following R .• 
1 

8.3 Results of Computer Simulation Tests 

The tolerances of systems just described, to additive white 

Gaussian noise have been compared by computer simulation for group of 
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eight binary signal-elements. The possible values of the elements are ±1, and 

they are statistically independent and equally likely to have any of 

the possible values. The computer simulation tests have been carried 



out for the different values of the sampled impulse response of the 

baseband channel. , as given in Table 5.6-1, and for groups of eight 

signal-elements. The method of these tests is similar to that 

described in Section 5.1. 

In every test, the average transmitted element energy per bit 

is unity. The five component row-vector L representing the sampled 

impulse response of the channel in Table 5.6-1 has unit length and 

the two sided power spe·:tral density o-2 of the additive white Gaussian 

noise at the input to the receiver filter is adjusted for an average 

element error probability of. 4 in 103 • The value of~ gives the 

measure of the tolerance of a system to additive white Gaussian noise. 

In each computer simulation test, a total of 4096 elements were 

transmitted over a baseband channel with fixed value of L. 

The results of the computer simulation tests are shown in Table 

8.3-1. The noise power spectral density at the input to the receiver 

filter, required for a given average element error probability of 

4 x 10-3 , in Table 8.3-l,is quoted in decibels relative to its value 

when a binary signal is transmitted over channel A with an average 

element error probability of 4 x 10-3 • Table 8.3-1 also gives the 

results for Systems 1 and 2 obtained in Section 5.4. 

The results of the computer simulation of System 3N show that, 
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the number of errors detected after the first iterative cycle,is the 

same as that in System 2N. However, the number of errors at the end of 

the second and the subsequent iterative cycles, does not converge to a 

fixed value but varies in a random fashion, and is always greater than 

its value obtained at the end of the first iterative cycle. 

From the computer simulation results, it is found that the number 

of groups of signals in error, in Systems lN '· 2N and 4N, is approximately 

the same as that obtained with System 1 and binary signal-elements 

(Section 5.3). It follows that the number of independent errors is, in 



each case, approximately the same as for System 1, so that the 95% 

confidence limits for any of the Systems lN, 2N and 4N, are as 

-3 given in Table 5.3-1 for m = 8, k = 2 and p = 4 x 10 . 
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TABLE 8.3-1 

Noise level, for an average element error probability of 4 x 10-3
, 

expres~3d in dB relative to its level for an error probability of 
4 x 10 with binary signal-elements and no distortion. Groups of 

eight binary elements· 

Channel System 

lN 2N 4N 1 2 

A 0,0 o.o o.o o.o o.o 

a, -1,9 -3.4 -3,5 -6.0 -1.2 

82 -2,8 -4.3 -4.6 -6,0 -1.2 

c, -1.6 -2.0 -2.4 -3.2 -0,4 

c2 -2,0 -2.2 -2.2 -3.2 -0.4 

o, -2.4 -9.2 -9.2 -13,7 -2.4 

02 -4,0 -10,0 -9,8 -13.7 -2.4 

E1 o.o o.o o.o -0.3 o.o 

E2 o.o o.o o.o -0.3 o.o 

F1 -1,6 -2.4 -2.6 -3.3 -0,5 

F2 -1,8 -2;4 -2.4 -3,3 -0.5 

G1 -0.4 -1.6 -1.6 -2,9 o.o 

G2 -1.2 -2.1 -2.3 -2.9 o.o 

H1 -1.6 -2'. 6 -2.2 -3.2 -0.7 

H2 -1.2 -2.4 -2.3 -3.2 -0.7 
• 

r1 -1.2 -1.9 -1.9 -3.7 o.o 

12 -1,5 -2.0 -1.9 :.3.7 o.o 

J1 -3,6 -14.3 -14.0 -17.6 -4.4 

J2 -4,1 -14.6 -14.8 -17.6 -4.4 

K1 -1,6 -3.9 -4.0 -4.9 -1.2 

K2 -2.0 -4.1 -4.1 -4.9 -1.2 
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8.4 Assessment of Systems 

From the results of Table 8.3-1, the tolerance to additive 

white Gaussian noise of System lN, in every case, is better than 

that of either System 2N or 4N. For severe signal distortions, 

System lN gains an appreciable advante.ge in tolerance to noise, 

over Systems 2N and 4N. The advantage in tolerance to noise 

gained by System lN is due to the fact that in System lN, the 

values of the m { bi} to be cancelled from the received signal, 

are assumed to be known at the receiver. Hence correct cancellation 

is achieved in every case and is independent of the detection of 

the corresponding values {si} of a received group of signal-elements. 

The prior knowledge of the m {bi} at the receiver of System lN, of 

course, means the prior knowledge of the corresponding values of the 

signal-elements of a group. Clearly such a situation never arises in 

actual practice and System lN is, therefore, a hypothetical system. 
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However, System lN gives the upper bounds to the tolerances to additive 

white Gaussian noise which could 'be achieved by any scheme for 

detecting the received signal-elements of a group, described in Section 

8.1. From Table 8.3-1 which also shows the tolerances to additive white 

Gaussian noise of Systems 1 and 2, it can be seen that System lN has 

approxir.tately, the same tolerance to noise as System 2. 

The tolerance to noise of System 2N is very much belot; that of 

System lN, particularly for severe signal distortions. This is 

because of the fact that, in System 2N, the values of the m {b.} 
1 

which are to be cancelled, are not assumed to be known at the 

receiver, and are estimated from the received signal itself. The 

estimate is obtained linearly, so that the exact cancellation of the 

{bi} is not achieved here. Thus, as mentioned in Section 8.2, each 

time the cancellation is performed, an error is introduced in the 

detection process. The introduction of the errors, at each stage of 



cancellation in the detection process, therefore, reduces the 

tolerance of System 2N to additive white Gaussian noise. Clearly 

to achieve a better performance, the accuracy in the estimates of 

the m {b.} must be improved. 
1 

There does not appear to be any significant difference between 

the performances of Systems 2N and 4N, and for practical purposes, 

their tolerances' to additive white Gaussian noise are the same. From 

the results of Table 8.3-1, for severe signal distortions both Systems 

2N and 4N gain an advantage of about 3 dB in tolerance to noise over 

System 1. 

In System 3N, the detection process does not converge to a steady 

value, that is, the number of errors at the end of the second and the 

subsequent iterative cycles varies randomly and is always greater than 

that obtained at the end of the first cycle. This happens because the 

errors introduced during the first iterative cycle, due to the approx-

imate cancellation of the {bJ mentioned above, become significant in 

the second and the subsequent iterative cycles. The fact that the 

number of errors at the end of the first cycle, in System 3N, is the 
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same as that obtained in 3ystem 2N is obvious, since the first iter"tive 

cycle in the detection process of System 3N, is identical to the 

detection process of System 2N. 

Although, for severe signal distortions, Systems 2N and 4N gain an 

advantage of about 3 dB in tolerance to noise, over System 1, the fact 

that the sampled impulse response of the channel is required to be known 

at the transmitter, makes Systems 2N and 4N less attractive in 

comparison with Systems 4 and 6 (Section 4) where no such knowledge is 

required at the transmitter and whose performances are better than those 

of Systems 2N and 4N. 



9. 0 COlilMEN'rS ON THE RESEflHCH PROJECT 

9.1 Originality 

To the best of the Author's knot;ledge, the following are the 

more important of the contributions which are believed to be original. 

The use of the non-linear technique of detection and cancellation of 

signals in Systems 5 and 6 (Sections 4.4) and Systems 7/6 and 8/6 for 

the detection of multi-level signals (Sections 4.6 and 4.7). The 

thepry and development of Systems 2L to 9L (Sections 6.3, 6.4 and 6.5) 

where the process of linear equalization is shared between the 

transmitter and the receiver, The signal processing scheme of Section 

6.6, in which groups of signal-elements at the transmitter are so 

arranged that they are orthogonal at the receiver. Systems 3LN, 4LN 

and 5LN. Systems 2N, 3N and 4N which employ non-linear processing of 

signal at the transmitter. All computer simulation tests and all 

computer programs. 

9.2 Suggestions for Further Investigations 

The main aim of the studies carried out in this project was to 

develop detection processes for orthogonal groups of signal-elements 

for use in a synchronous serial baseband data-transmission system, 

achieving a tolerance to additive white Gaussian noise similar to that 

of System 2 but not requiring the very large number of sequential 

operations needed by System 2 when there are many signal-elements in a 

group. These studies have been carried out from a purely theoretical 

point of view, and little or no reference is made to the implementation 

of the detection processes in actual practice. Since many if not most 

transmission paths are bandpass channels, the work must clearly be 

developed to include the study of linear modulators and demodulators 

and in the particular case where two modulated carrier signals are 
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,transmitted with the same carrier frequency but in phase quadrature. 

Although the detection processes described in Section 4.0, require 

far fewer sequential operations than those required in the optimum 

detection process (System 2), the number of such sequential operations 

can be further reduced by speeding up the convergence rate of the 

Gauss-Siedel iterative process. This requires the development of more 

sophisticated non-linear operations on the components of the vector X 

in Eqn. (4.1-8), during the Gauss-Siedel iterative process. 

The detection processes which have been described in this report 

are developed assuming that the channel is time invariant. It would 

now be interesting and highly desirable to study their performances 

with time varying channels. 

In Section 5.6, the comparison of orthogonal groups of signals 

with the equivalent continuous (uninterrupted) transmission, is 

carried out for arbitrary channels and for a single transfer function 

of the transmitter and receiver filters. It would be interesting to 

carry out such a comparison for several different transfer functions of 

the equipment filters and for m~re realistic channels. 



10.0 CONCLUSIONS 

When there is no signal processing at the transmitter of the 

data-transmission system, adjacent groups of signal-elements at the 

input to the transmitter filter, are separated by zero-level elements 

so that there is no inters~nbol interference between the elements of 

different groups, in the received signal. At the receiver the 

detection of the received signal-elements of a group, is achieved 

iteratively by a s.equence of similar operations. In practical 

applications, the number of signal-elements in a group is likely to 

exceed 10 or even 20 with 4-· or 8-level elements. Under these 

conditions System 2 which is the optimum system, requires a very 
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large number of sequential operations and is not a practical arrangement. 

For binary signals, System 4 achieves a tolerance to noise approaching 

that of System 2 but requires far fewer sequential operations, and 

System 6 has a tolerance to noise' typically within about 3 dB of that 

of System 2 and requires even fewer sequential operations than does 

System 4. For multi-level signals, the tolerances to noise of Systems 

8/2 and 8/4 are very close to taat of System 2 while the tolerance to 

noise of System 8/6 is typically within about 3 dB of that of System 2. 

Systems 8/2, 8/4 and 8/6 require fewer sequential operations than does 

System 2. The tolerances to noise of Systems 7/2, 7/4 and 7/6 are 

similar to those of Systems 8/2, 8/4 and 8/6, respectively, but Systems 

7/4 and 7/6 require far fewer sequential operations than do Systems 

8/4 and 8/6, respectively. The results of computer simulation tests 

suggest that the preferred systems for groups of 4 and 8 signal

elements are also the preferred systems for the larger group sizes 

that would normally be used in practice. 

In System 1 the process of linear equalization is carried out 

at the receiver while in System 11 all the linear equalization is 



achieved at the transmitter. The transmitted signal in System lL is 

continuous, with no gaps between adjacent groups of elements, and the 

signal-elements of a group are detected from the central group of the 

sample values corresponding to the received group of elements. No 

signal processing is required at the receiver of System lL and the 

system is best suited for situations where a single transmitter feeds 

many receivers. Both the Systems 1 and lL have the same tolerance to 

additive white Gaussian noise. 
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Of the Systems 2L to llL, where the process of linear equalization 

is shared between the transmitter and the receiver, Systems SL and 9L 

gain an advantage of about 3 dB in tolerance to noise, over System 1, 

under conditions of severe signal distortion. This advantage is, 

however, much smaller than that gained by Systems 4 and 6 over System 1. 

Systems 4L and lOL have approximately the same tolerance to 

noise as System 1. In both the Systems 4L and lOL, the linear 

processing of signal at the transmitter is such that adjacent groups 

of transmitted signal-elements are' separated by gaps containing zero-level 

elements and the received signal-elements of a group are orthogonal but 

with considerable intersymbol interference. The optimwn detector in 

both these systems is a set of correlation detectors. 

The performance of System 6 in the presence of additive white 

Gaussian noise, is better than the performance of any of the Systems 3LN 

and SLN. Although in the.latter systems the detection process of System 

6 is used at the receiver. This suggests that in order to gain the 

maximum advantage of the detection process of System: 6, all the signal 

processing should be carried out at the receiver. 

In both the Systems 2N and 4N, groups of signal-elements are 

processed non-linearly and adjacent groups of transmitted signal-elements 

are separated by gaps containing zero-level elements. For severe signal 
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distortions, Systems 2N and 4N gain an advantage of about 3 dB in 

tolerance to noise over System 1, which is a much smaller advantage 

than that gained by Systems 4 and 6 over System 1. 

The arrangement of orthogonal groups of signals studied here has 

some useful advantages over a synchronous serial system with continuous 

(uninterrupted) transmission. Firstly, exact equalization of the channel 

is, in every case, achieved. Secondly, a complete loss of signal cannot 

result from an unfortunate combination of signal-element: values a>:>d 

channel impulse response. Thirdly, there are no error extension effects 

from one group of elements to the next, regardless of the detection 

process used. Finally, detection processes achieving a near optimum 

tolerance to additive noise can be implemented quite simply. The 

disadvantage of orthogonal groups of ·signal-elements is that for a 
' 
given information rate, the bandwidth required is wider than that 

required for a continuous (uninterrupted) signal. This reduces the 

tolerance to noise of the arraneement of orthogonal groups and partly 

offsets the basic advantages gained by the arrangement. However, when 

the number of signal-elements in a group is relatively large compared 

with the number of elements set to ze·:o between adjacent groups, a useful 

advantage in tolerance to noise should be gained by the better detection 

processes over a linear or non-linear transversal equalizer, where the 

latter is used with a continuous (uninterrupted) signal having the same 

information rate. 

From a study of the various systems tested, it appears that the 

most cost effective systems for binary and multi-level signals are 

Systems 6 and 7/6, respectively. Where the best available performance 

is required, without an excessive· number of sequential operations in a 

detection process, the preferred systems for binary and multi-level 

signals are Systems 4 and 7/4, respectively. 



APPENDIX Al 

VARIANCE OF THE SAMPLE VALUES OF A GAUSSIAN 
RANDOM VARIABLE IN AN n-DIMENSIONAL EUCLIDEAN VECTOR SPACE 

Consider a unit vector U which may have any direction in the 

n-dimensional Euclidean vector space containing U. Since U is a 

unit vector 
T 

uu c 1 (Al-l) 

Let W be the n-component row-vector, in the vector space, whose 
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components {w.} are sample values of statistically independent Gaussian 
~ 

random variable with zero mean and variance cr2 •. 

The value of the projection of the noise-vecror W onto U is the 

inner product of the vectors W and u, given 

This is a sample value of 

and variance given by the 

product of W and U. Now 

E{(UWT) 2 } 

WUT = m-l 
a Gaussian random 

expected value of 

= 

= 

by 

variable with 

the square of 

where E { · } represents the •expected value, and 

= 

is the covariance matrix of the n noise sample values {w.} 
~ 

are the components of w. From Eqn. (Al-4), the component 

and .th column of the n x n covariance matrix cr2Q is row J 

(Al-2) 

zero mean 

the inner 

(Al-3) 

(Al-4) 

which 

in the .th 
~ 

2 
0 qij = E{w. w.} (Al-5) 

~ J 

where w. and w. are the ith 
~ J 

and jth components,respectively,of the 

noise vector W. 

Since the different noise samples are statistically independent 

and therefore uncorrelated, and since they have zero mean, 

E{w. w. } = 0 for i .f j 
~ J 

(Al-6) 



and since the noise samples have a v·ariance cr2 

E{w. w.} E{w. 2} 2 = = cr· 
. 1 1 1 

(Al-7) 

Thus 

cr2Q = cr 2I 

or Q = I (Al-8) 

where I is an n x n identity matrix. 

From Eqns. (Al-3) and (Al-8) the value of the projection of W 

onto U and therefore the value of the noise componentm the direction 

of U, is affimple value of a Gaussian random variable with zero mean 

and va:iance 

= 

= 

(Al-9) 

from (Al-l). 

It follows that so long as the n components of W are sample 

values of statistically independent Gaussian random variable, the 

value of the orthogonal projection of H onto any given direction, 

in the n-dimensional Euclidean vector space, is a sample value of a 
• 

Gaussian random variable with zero mean and variance cr2. 

The probability density function of the noise vector w is 

P(W) = p (W} 1 W2 t • • • 1 W ) 
n 

= p ("'1) P(w2) P(w ) 
n 

n 
= I! P(w.) 

i=l 
1 

n 2 
= Il 1 

( ~ 
fucr2 exp - 2cr2 

i=l 
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1 , 1 
n 

2 = {211a2}z n exp { - -::;:;z- l: w. 
2cr i=1 l. 

1 I { - 1 lwl 2 } {Al-10} = {211cr2r; n exp '2(J2' 

Thus P{w} depends only on lwl and increases steadily as lwl decreases. 

If the m-component vector S is detected from the received n-component 

vector 

R = SY + W 

Where the m x n matrix Y is given by Eqn. {3.1-3}, the .conditional 

probability density function of R, given SY, is 

P{R/SY} = P{W/SY} 

= P(wl, wz, ••• , w /SY) 
n 

= P{wJ/SY} P{w2/SY} ••• P{w /SY} 
n 

= 

from Eqn. {A1-10}, where W is now the noise vector corresponding to the 

assumed values of Rand SY. 

Clearly P{R/SY} is maximum when lwl is. minimum. But it is well 

known that when the different possible vectors. {SY} are equally likely, 

the detection process that minimizes the probability of error is that 

which selects the vector SY corresponding to the maximum va1 ue of 

P{R/SY}. 45 •57 Thus the detection process, that minimizes the error 

probability, selects the vector SY corresponding to the minimum value of 

so that it selects the vector SY nearest to R. 



APPENDIX A2 

ERROR PROBABILITY AND SIGNAL/NOISE RATIO 

When the signal-elements in a group are statistically independent 

and are equally likely to have the two possible values .:!:_ 1, the 

probability of error in the detection of the ith signal-element of a 

group, from Section 3.5, is 

p, 
1 

= - ~ 

(A2-l) 
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where o-
2 is the power spectral' density of the additive white Gaussian noise 

at the input to the receiver filter and d is the distance to the single 

decision boundary in the detection of the ith element of the group of m. 

Let p.' be equal to p and d. be equal to d so that 
1 1 

p = (A2-2) 

The variation of the element error probability p with d/~is obtained 

from probability distribution tables and is shown in Fig. A2-1. 

At high signal/noise ratios,' that is, when p has a value around 

1 x 10-6 , it can be seen from Fig. A2-l that for a given change in the 

error probability the corresponding change in the signal/ratio is 

relatively small. -7 For, let p h~ve the value 3 x 10 , so that the 

corresponding value of d/rr, from Fig. A2-l, is S. If nDW the error 

probability is doubled, that is, if p now has the value 6 x 10-7, the 

corresponding change in tolerance to noise is only 0.26 dB. This shows 

that at high signal/noise ratios even the doubling of the error 

probability produces a negligible change in signal/noise ratio. On the 

other hand a small change in signal/noise ratio produces a relatively 

large change in the element error probability. 

Consider that there are two binary signal-elements in a group, 

having possible values + 1. From Eqn. (A2-l) 

= and Pz = Q (~) 
rr 

Assume now that, the signal/noise ratio is high and furthermore 
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Variation of the element error probability p with d/cf. 
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d1/CJ"= 4.0 (say) and d2/o- = 5.5 (say}. From Fig, AZ-1, p corresponding 
' 1 

. -5 
to d

1
/CJ" = 4.0, LS 3 x 10 , and Pz corresponding to d2/CJ"= 5.5, is 

-8 
1. 7 x 10 , It can be seen that Pl> > Pz, It, therefore, follo1vs 

that the average element error probability in the detection of the 

two signal-elements of the group is effectively given by p
1 

which 

corresponds to the smaller of the two distances d1 and d
2 

provided, 

of course, that the signal/noise ratio is high. Again if there are 

m signal-elements in a group, the average element error probability, 

at high signal to noise ratios, is approximately given by the p, in 
L 

Eqn. (A2-l), which corresponds to the smallest of the d .. 
L 
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APPENDIX A3 

COMPUTER SIMULATION PROGRAM FOR SYSTEM 2 
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····---- --·t-oo·-·-·cv:.p·-T ·:'-'~- ·····--·--·--

-------- ---- ~i~ (-f j:-( ~; ?,;~ )··r~--

···-··-···-·?il·-·p)o•!.\T(/I Nr•·~~fil M-~(F.r·lENTS p[R GP.OIIP-:: ',12) 
-·--------·· -----~;,;iT~--(~ ~-?,r:) ~~ 3 T 
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- ---·--- ·?q·-·--fVR;•~ T (/ 1 - TOTt L NUHfif.R <1F ELH~ENT<; TI!HiS•HTTEil. = 1 ,JS) 
- -·--·---·--·- -- -- uR I fr <),; 3·1) A R r ·-···- --

----·-···31) -i·O~"!T(i' on. r,(IJ!AT!'l:~· OF NCdSE: •;r6,4) ··-·-···-
·-------- .. ,r::po(:1,$1)'H --····- ... 

····--·-·--· \1-·-·rc~".\T(/ 1 TOTH ,.jtH1~F.R <)F !;RP('Q$·= 1 1F6,1l ··--· ---· 
·--- ----.-- ---- - •j~ J ·r·-~ -c ~-~ ~.,) 

rfJq•I~T(/ 1 T;',TAr, E~R,)RS. Hi HIE JI<DiVIDlJAf. (LFM(NTS', 
1 f C. f. -i-- t~OO!_ii) I) 

----·-··-·--- ···--.----·--·--,~~--t"-r-~ (·~ .<~1) (F.'R ( i) ;·I :1,~~)
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APPENDIX A4 

COMPUTER SIMULATION PROGRAM FOR SYSTEM 3 

. ---·----- -- - -.,. ----
~-IA~TF" FAT7. 

C COtHll'lr:P !>11'JG!I~II Tl\ SI 11ULHE SVSTF~I 3 FllR TilE flloTfCT!ON 
r. OF OPTlinGMJAI. GHOlJPS CIF 81N.~PV Slt>tJAl.RELEt'F,NTS, 

r, 11 = •··! I' rEP I> F SA 11 P lE V Al. ll ~ S 0 F ft R F C E I V E D GP 0 I! P 0 F 
G. Sif,IJ.\I~ri.~Hf;~JTS 

C IJ1 " I•~.X!nlJ!I I!IJHfir-R OF SM•PLE Vt.LIIr5 OF THE S~MPLED 
C !'I P; I l S F R F S P 0 •· S f. M T H F C ll A'' N F t 

" 

r 

r r<C ::: \III•HrQ flF llF:RATIV~ r.YC.LFS 

r, 
c 
-
r; 
c 
c 
r. 

'l•ll =.T"T~i. .. '-'1111nER OF rlfi'.E'ITS TfiAN•liTTEO 
;: tl'*""''wf-.J;,_ 

.. ---- - - -
.\ ~ F " S l I) • [l ~V I A T I CHJ 0 F T H f: A() D I T I V E G ~- 11 S S I AN I I 0 I S E 
THr f 1•1.lrf!M! IIT~1(1,1,1(1) 1 U!IEPE ~1 IS,I~1 1TiftllV 

_ TiJ 7.P'~• r.r:liE!>ATE5 RAP•IJ0t1 ~,tJ•Io.~RS HAV!'i\, !iAlJSSI4N 
DI~T'Il~'IT!n'J VIP! l(~(i 'IFANAfll) U~!!T VII~IANCE 
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-- - ---- -- - - ------ -- -
__ . Col r• p: < I ,., N V (1 ~ , 1 5 ) , ~ R I ( 1 0 f\ , i\ ) , E R (1 0 0 ) , A ( 1 0 , 1 0 ) ' R C1 5 ) , . 

... _ _ 1 l ( 1 'l) , X ( 1 0) , ~ ( 1 0) , X f. ( 1 0) 
__ .J"tTH2,1> __ _ 

1_ ___ < 'l ~"A l ( 11 n '< , I _ C 0 t1 P ll TE R S p! U L AT I 0 N 0 r . S Y S T HI 3 W I T 11 Ill N A RV S l G fJ Al. S 1 

1 ) 

~~, = r; - -----· 
".j=ll+t!1-1 
~J2:;)11.o4-1 

'!C::~tl 

___ QC"1,?5 
__ t-1'-1:;> ...... ~~ 

1\: t'l"? 
1(1:" 



•F~nn.ncv<1,1lr1=1rtt1> 
.2. f()R•I,\T(SfO.!J) . 

.. DO :~ l"'l2,hl 
~ ..... Y<1,J):oC,f1 

wqrr:<?,4> 
4_ r 0 r, 'l AT (! 1/ ' l r• PIll. S f. R r S P 0 N SE 11 F l' H F. CH MJ N t: L 1 ) 

1, 1 ;; 1 T f ( ~ , 5 ) ( V ( 1 , I ) , I = 1 , ~ 1 ) 
.5. HJQnAT</))',5(f1(.,1+)) 

$Ui.!::l:(j.(l 
(I (I (, I = 1 , II , 

s u If" ~; I r\ •· y (1 ' I ) * y (1 , I ) 
Gf::~oPT(SIJ•I) 
tH) 7 T o:: 1 , ._. 1 

-~·· -·--~· - --~ ·- ·- ... ·----- -- --·----- --- -- .. ---------------· Z Y(1,!)~v(1,!)/BF 

llO a I=:>,n 
L"l~l 

.. L1,r~1 
DO.~ '"1;1 

8 Y(r,Uc11,t\ 
--~·)" •:::t1.~! 

J"~-t•1 
<1 v<r.n=·l(1 . .r> 

~0111-t::1,ri 

~0 1\i .1::1 ·" 
A ( I , .I ) '"~ , n 

·r~r) 1n (~, .~' 

10 A(J;J):a(J, lltY(!,K)•V(J,~) 
~~~~(1 ,11 lAP.~ . 

11 F0;uAT(F0.01 

L Kc; r1 
1)0 12 b1 ,NC 
Eil(J)~t1.0 

nn12J,1,•• 
1l fRTCJrJl~~.n 

. DG ?nl·· o: .. 1, N!-1 .. 

DO 1~ J:-;1,>1 
1:1 l(t)::1,1'1 

·-.··· 

206 



1 '· 
1 ~ 
1 6 

Do ~ ll 11 . 1 1. r:_1 , rn• 

!) 0 1 S 1 " 1 , I~ 
Z(J),l(l)+:?,O 

1 r c 7 c 1 > - 1 . !\ > 1 " , 1 1\ • 1 '· 
/(1)::•1,11 

C 1 l~!Tl'"IF 
CO•nl''\1~ 

Do 1 r, ; ~ 1 , •J 

'1(1):11 ,1~ 

D 0 1 7 .J " 1 , ~~ . 
17 A(J)~~Cl)+Z(J)*Y(J,J) 

11\ Rill~'' (J)•IJTP.1 (1 ,1,K1>•·'RF 

-
C HT_I'·lTI-~1. CMID!TtOt~S .r-oR THr, f,AIJ<;S•SF.IDEl PROCESS 
c 1 • ~. . or: r v ",, 1 x A" o R P = Q * v er~ A 'J s P os n . 

~c 10 tr:1,M 
. X ( I \ e ,·,. ro ... __ ..... 

19 >:.\cn==n.o 
____ DO ?I" 1.,1,11 

0(1)=''.0 
.. r,o _;-o __ J:::1 ,N 

.·, 

• 
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~()_ _____ !)( J) IO • (!) + ~ ( J) *'f _({I ,J )_ _ __ .. ------·--·------- ___ ---- _ ----·- _____ .. _____ -----
T(" r. ~ ( 'U ) 
r; C ~ 5 1.. ,I K ~ 1 ,- ~: (: . 

- ·_ o o 1_ or t ~ 1 __ , t~ . 

XX;:'(( I) 

X ( 1 l :: ;; ( l ) + ( r> ( i ) ·X q !) l • ~ c" 

t~(!a;(X(t)\•1 ,0)?2,22121 
21. XCt): 0 1~~(1,0,XClll 
?2 . D<:'{( I )-li.X 

tl0_10•: .1=1.~1 

, I) ~ . <A ( J ) ; )I:\ Cl ) • ~ y •. H I I J ) 



(If) ';>I, J ,, , M 

!)F,;\( (!) •7C I) 
__ rrc~-Fl2'1,?~.n • 
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. LS r:>~c.IO~r.rtc.r~)+1,0 

?6 

?.7 

--· -· 'Q 
.. 30. 

~ il 1 ( ,I I' , 1 ) = F :( ! ( J K, I ) + 1 , 0 _ 
co~-~r r! 'Jc 
eo,, r 1·:ur 
IFCrPC\rl:nr:~E)LK=L(+1 
Cfh:rr•·ur 

·J~ l'T H 7., 2 q t1 

F'l R • 1 ~ T (/ I NI HH1 f P 0 F E I ~ rl ~ '! lS _PER G R Pll P " 
~J i~T~I i '* r11-1* ~-:~1 

'··' P l T ~. ( ? , (.I.) '' ll T 

-· .... ~ .. -. 
I t 12) 

F 0 ~ r• H C I 1 FH H N l! M fl E R () F E U: f1 Elil S T Ml S 111 T TE D = I , I 5 ) 
... W~JTf(~,(7)AP.r 

F o o "! r u 1 s -r o . nE v r r. r 1 o ~; oF No 1 sE = . • , r 'l • '• > 
•J ~ I T r, ( ;: ' ~ ~ ) 
f fj 1: 0' P (/ I~\( 1 (oH C Y CL r: I 3 X I 1 3 H T (lT H (HR 0 R S I I 0 i( I 3 0 ~ ( R ~ 0 PS Jlj Elf fl f N l 

... 1~ <H -~ r,f!•'IIP) 
1)0 ?.9 ! ::1, •H: . _ _ . ___ . 
w•:nrc~.3''' r~r'l<l l, (ERt et ,Ji ,J,, •"> 
f •l Q r • '· r < 1 7 v 1 ' •~ • 4 x , f 6 • 1 , 3 x , 1\ <F s • 1 ) l 
',JRJT<'(2,~1)1.K 

f 0 1?· ~ p ( / 1 __ N 11 f\ ~ER _ 0 F I I'() E P F, 'JI) E on £ R R 0 ~ S = , , l 4 l 
s l [10 
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APPENDIX AS · 

COMPUTER SIMULATION PROGRAM FOR SYSTEM 6 

C C 01\ P lJ Hr~ PR 0 G n A; 1 TO <; Jf.l U I. ATE S VS HI~ f. F 0 R 
C THE DET~CTI'P~ ilF 0RTHOG0Nf1L <iROUPS OF OlNARV 
C S!G!IAL•ELfiiiENTS. 

C N = NU· 1 ;1 E F1 \IF S M11' LE VALUES 0 F A R!; C E I V E 0 G R 0 UP 0 F 
C SIG~AL·ELEHENTS, 

C N1 "'l.ifl;(lt!t!:r NlltiAf:P OF SAI1PLE vALUES OF THE SAMPLED 
C Hlr>III.SE RESPONSE OF THE CHANNEL. 

C RC = RELAXATION CONSTANT. 

C NC : IHI'InEn OF lHP.fiT!VE CYCLES REQUIRED HI THE 
C DETECTION PROCESS, 

C NUT :o TnTfd. llrHI~ER r)F ELEIH'NTS TRANSMITTED, 
C ::; !.1*~**i1*~H1 

C ARF" STD. i>EI!lfiTlOrJ oF ADDITIVE WHITE GA!JSS!AN NOisE.-

C THE Fli!JCTIOII lJT[l1(1,1,K1), \IHE~~ K1 IS INITIALLY SET 
t T 0 HR 0 , r. ~if f ~ATE S R .HJ P 1111 NU M 0 E ~ S HA V I N G G A lJ SS l AN 
C OISTRlBiiTJIHJ '.JITft ZE~tl llf.AN AfJD LHJIT VARIANCE, 

Di'!ENSI>lil Y(15,15),A(10t10},X(1'J),Z(10),ziC10l•R(15) 
1 , R 1 ( 1 5 l , F ll ( 1 0 ) , Tl P ( 1 r,) • X A ( 1 0 l , n ( 1 0 ) 
•4RIT((2,1) 

1 F 0 R r I AT ( // /1 •l X , 1 C () tW t1 T£ R S 111 U lA T I 0 N 0 F SYSTEM 6 1 , 

1 1 WIT~ a1~~MV SIGN~L ELEMENTS') 
RE A!)( 1 • ;:>)" • :·11 • ~Jrl I tj c 

2 F0~:1ATU.!Ol 
N::t·I+N1 ~1 
"l2:; '11 + 1 
RC=1, 25 
~HI=::! • * 11 
NB r "n *?.*"'''"':m 
K1=0 



C REAn CII~NUEL IMpULSE RESpoNSF. 

I{EAD(1 ,';) (V(1, I) 1 I=1,tJ1) 
3 FORIL\T("o(Ftl,O)) 

IJI{ITI'(;>,/.) 
4 FORrtAT<I/' l;lihNfJEL U1J>IJLSE RESPONSE 1 ) 

WRJTF(?,S) (V{1, I), 1=1 ,fJ1) 
5 f!lRIIAT</5X,';(F12,4)) 

DO 6 l=•J2,1·J 
6 Y(1,!)::.1.0 

C IHlRili\Ll 7.1' C!!ArJiJEL !I!PLILSE RESPONSE 

., 
sun,o.o 
00?1:'.,111 
SU1t:::Stlit+V<1, I) *Y(1, I) 
BF=SClRT(Stltt) 

D01ll=1,t!1 
R Y(1,1l=V(1,t)/DF 

DO 10 J.,;>,tt 
L::I"1 
L1=L+1 
[)0 t) 1:::1 .I. 

'i y(J,K)::.J.f) 
DO 10 K::LL;J 
J=K"!+1 

10 Y(l,K)=V(1,J) 

C FORt! TH~ !!ATilll( A = V•V(TRANSPOSE) 

D 0 11 I :1 , '1 
0011 J::1,'t 
A(J,J)::O.O 
0 IJ 11 ~ ., 1 , IJ 

11 A(I,Jl=A(l,J)+V(l,K)•y(J,K) 
READc1 ,1;>)A01F 

12 FOP.It.\T(FO.Ol 

1\0 13 1;~1 ,11 
13 EI<Cll=IJ.O 

TE=O,O 
() 0 4 () ,; JJ K = 1 , 1!11 

210 



C G[NEPATe Tll~ VECTOR 7 

[)() 11. 1=1,1-1 
11, 7.(1)=1.•) 

()0 I,Q;J L.JI:=1,1H-1 
DO 16 !=1·'1 
Z(l)=l.<IH·?.:o 
JF<7.<I>"1.r>17,17,15 

15 7.0)="1.0 
16 COIJTiiHir 
17 COIJT Pill!' 

C FORTI THr: RFCEIIIED vr;crOR RcZ*V+l4 

DO 19 1::1,1J 
R(l)=\l.() 
DO 1/l .1::1,11 

1R R(!)::11(J)+7(J)*Y(Joll 
1Q R(l )ell(!)+ (IJTH1 (1, 1, K1) *ARF) 

C F 0 R 11 T 111: If E C T fl R 0:: R * Y (T RA ~IS P 0 SE ) 

DO 20 1.,1 ,11 
D(l)::ll.O 
no 20 J::1,N 

2 0 0 ( I ) c t> ( I ) + n (.I ) • Y ( I , J 1 

C START T :1 F. P llfl CESS 0 F r> ET E C Tl n N ~ N D CA 1J C E L L AT I MJ 

DO 300 1.1.::1,1·1 

C SET INITIAL CO~DIT!ON~ TO ZEPO 

DO 21 l:>LI.,'I 
X(!)cO,.J 

. 21 XA(I)o:O.O 

C DETECT 7. liS !IJG SYSTEP-< 3 

[l 0 1 0 iJ .I K c 1 , >J C 
DO 100 T::Ll.,l·l 
XY.=X<Il 
X ( 1 ) = :< ( l l + ( 11 ( I ) -X A ( I ) l * R C 
IF<ADS<X(!))•1,Ul2l,23,22 

2 2 X ( I ) : S l c; IJ ( 1 • 0 , X ( I ) ) 
23 OX=:<<I>-XX 

(1 I) 1 0 () .I = ll .• 1·1 
100 XA(J)=XA(J)+DX*A(I,J) 
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c 

c 

c 

c 

24 

25 
26 

21\ 
?ioo 
7.9 

30 

400 

31 

32 

~3 

34 

35 

IFCXCLLlJ24,24,25 
Z1 CLL)::"1.0 
GO TO ;?r; 
Z1CLU:::1.0 
CONT I liiiF. 

CMJCf:l. THE flETF.CTED ~JGIJAL AND FORI~ NEW R & 0 

LL1 =LL+1 
IFCLL.r:n.ll)r,O T•) ?.9 
ll 0 ? 7 I " I. L 1 , 11 
R(l)~II(Jl•Z11LL>•YILLo!l 
!Jll ;>1\ l::LL1,1\ 
0(1)=0.0 
!lO ?.8 .I:::LL1 ,f~ 
D ( I ) = I> C I ) + Q ( ,J ) * V ( I , J ) 
CO liT! NUF 
corntrwr: 

COU!IT Till' lliJIIBER OF ER~llRS 

no t,oo r=1,'1 
IFC7(1)•71(!Jl30,30,400 
Ell(!l=E!!Cil+1,0 
Tf.=TE+1 .ll 
corn t :~rrr: 

URIT£'<?.,31 )'I 
FOHPAT(f• !.J'IJ\ 0 F.R OF nEfiENTS l"< A GROUP ::: '1!3) 
IJRIT( (;> ,J;>HRT 
F ll R flAT ( I 1 T •lT A l N IJI.IIH R ll F EL E ~~ E >j T S T RAJ~ S H t TT E I) = . 1 , I 6) 
Wk IT FP ,:nl.~QF 
FoR' r A r u • s r o . r> e v L\ r I o u oF No 1 se = • 1 n o • 3 > 
URJH(?,34) 
FORnf,T(/ 1 Tnrt.L NUJ1BFQ tlF ERPORS IN TfiE IND!VtDIIAL', 

11 X I' E LF,tH'iJT~ OF THE GR•lUPS I l 
\J RITE P , 3 5 l (FP ( I ) , 1 = 1 , 11) 
FORI!ATC/5X.,HF-l,1)) 
lJI<ITE(2,36)TE 
FORMAT!/' TOT4L NUMBER llF ERRORS= 1 rF6,1) 

ST(lp 
E fl 0 
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APPENDIX A6 

COMPUTER SIMULATION PROGRAM FOR SYSTEM 8/4 

.. --- -···· ..•.. c ~t;ih:n(l'l'~·., ,;R'''-~~~,!· rn·~~S!clillqr:~ ~VST<111 '!oft. ~Oq TilE 
-~TTcr.i!·''l~ nr r.~Til'\~il'l~t r,~QIIPS~ OF 4 .. LEIJEL~ Slr,NALS: 

C -~~-~-----,,1 :: ,·r,.,,,:fl"· ~,-,,_,i.,;)r',. Oi ~SX1:iPLE'-IJ•\liJ~S llF THE S'r1PLEO 
c ··----··---- ·t•;p;Ji <;E rf.SP">~Si: <lF-r~F: Cf.lMJNrC ---~------ -~--.... ·····--·-·-·-----~-···-·-· 

c . ·,:c,;· •;ETA~ATI(i.;J. \.01J~Tti'H ~~ -------- -~----~-~--------~-------~------ --·-
-- -~------- ---···- ·-

C - ··;,C1 ~ ';llfl':·~:; i',r lT{i't.;\-TIV~ r.Y((.ES .. r.DR.TfiE-fNITfAL-- ----------
-' ... --' - ---- .. ---- . -- -··· . -. ···"···----- --. ·- ---c !l ,~ T !: t. T 1 () -'-< p pI):: ~~ !; s 

-- ---------------------

c •,(7 ~ ,;,j,,-,;f'~--·f1F 1TPAT!Vr .. CYCl-ES ·ro~ T~E- FpJAI ~--·~······"· 
------------ -- - c ;) ·r. T ;._ r- r t-(1 d · P q 1' ~ f s s --- · · -·· ·------ -- ... --- --- ------- ------ -· -·- ·--------- ----------- ------------- · 

.. -- -- .. --r,· ............... ~-,; {--~·- $ ,;, : r:i~ ;; i ~T !il,. .. <IF .. 1\oi' IT 1 il( c.i ~11<: SI A >l. P!Q 1 S ~. .... ................ .. 

.. ----- -~- ------·· --- ·-------- ·-····-•"·---------·- ·---·-- - . ----- . - - . --· - - - . - -- --- ---- --- --- - - -----. ---. ----.- -· .. -· . ---- . - ----------------- ---·:..; ------- ------···. 

-. -----·-···-···-··· ::·-···--- --- ··r·Jr-···r 'i; ~· ~~ T ~--0"· 1 ·--,-, r :f'1(f", "i" ;-~-;- )-~-- "'i.ni r··R-~: ···v1· 11 s- lri l T l A''t."tV ---s F. r·· -------------- . 
.......... .. .... .... C ............ f;: . .> ... r- ;' ;J,. r; ~: •i U; ~ H' 'P A •; 0 '! '' '< !lt•l ;, F: 'S ~~V 1 ·J G G A tJ S ~I-~ N ..... ------- -------
--------·--------·-{·---- -----f)·l~:r·~-l~-l-llf!l<J -,·q·(~t -Z~Rit -~f._:\N -A~.f'J -IJ-ItT V-4trl.\~iCE --------------

----- -·-- ------ -- --- --· -- .. -----:;.!. :: ': .,- -.. -1- ------------------ ------ ------ ---· -----------.- .. -----· .... -- - .. -·-····· 
··-·------------- ------···· ... --·-·-····- ., ···-··---··-·- __ , ____________________ ---------------------.. ------- - -------------···· 

~f.:r;;.,- ~" ---- ------· 
-·------------ .. -------------.. -~-·~ ~ =: r:; ,··, ~-T (.,. S l 

·.; !-l::: '~ + ot. '~--"' --- --- -- .. -- ·-·' ... -- ------- ------- -- --- -------- .. ------- --- --------
(1 t'"· 

·j'l::·--~ • .--,, -~~ r 
-- ----------- -- ----

·;.1\t:·'. i•/ ~~!t" 
~ ~~ ·1 ~ -::, • ~~ I ;\ ~ r_---
l _;; :-:"? - ;_, i ,_"'-. !-l , __ -

~~:·r~~ +!11 .• ~ 11 



c 

I. 

< 
' 

...... 

~-. ~~ 

,v, 

PFSpONSF 

.iF :, ,-\ c 1 , :1 ) (v ( 1 , 1) -, f,; 1, '' 1 ) -
d.1 ~: ; t. i ( •; ( > (l , (l-) ) 

I '( I ; (. ( ;? 0 /. ) 

'r. (•"< ,,, re I!~: 'r.ti,i ;ii~F i i 'lr>U L s{ ~r: ~piJr<s F. 

~,r,·r~r<?;s)c"<1;T>; j;;f,ii1) 
f u ic; • • 1 ( I S -.: , <; ( f 1 2 , 4 ) J 

"i·.~. .. - ., ')=·~?,f.; 

·v c, :, > "·' • 

:-,i r; ;: :;· ;,-l: r' ~; ( ··c if~-f/tJ"f~ ·c ·- ff! P-1.TCS -f-- R F S P ()'fi$ F .. 
.. . .. .. ---·. 

)t! !:--"1·;-· .. -:-·, 
;''<''.,~'"'+ll1 ;,;·•Y(1 ;iT 
1 f:;: ~ r:• f, j ( ) 1 !1,, ) 

··;)•.) ~. It:-~ -~-.;-1 

'i"< f: ,--,- :::.· ... < ;·~ ·r f"/"i~ ( ·----------~--

~~ v· · -1 " 

l'" I~ 1 

. -------... --

) 

L, = ~--.,-~----- ---- ·------ ---·---.-- -- ------- ----

-01i'<-i •:~,;·i-
y ( t ·:·;: ) ::"(' • !"~ -· -- _.._ ___ ----· ·····--··---- ------------ ·------ --- --------------------- ... ---

--Fo 1 ~: ~~= l1, ~~----- ~--~------------------------- --. 
j:: ';.l +1 ..... ····-···---· ------------ .. ---- ----- . - --- -. -- ···- ----
'( ( J ~ ;: ) r. . __ ; ' 1 ·;· Jf ----- -------~ 

........ ----· ..... -·- ----· ···---- ··-
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--------- --- -- - --~-)-:_1 , 1-- ··r;· ., , __ :~ ----- ------ -- -------------------- --- ----- --- ------------- ------- ----------- -------- -
·-·- ····--··· . ·--~_.! ,;-· -.,, ~~ =::, I ,,; -----·-------- ·-· ·····----··-· --- ... ···-·-··--- ····--···--· ··-----·-·------ .. ·-- -- ----------

. · -~-~~-~ ~ -~~~- _ _ ;~ < ~- ~ ·.! j·_ ;~- ~- • n · ------ -- · · -- · ~---~-= -~~ -~--= _______ ~-~=---=~::~~ ·:=~~~~:-~--==~- ~--~~--- ~~=-~~-= · 
,)I• 1 ~ ~;~~1, ;-; 
j er ;·x)" i <; .-:~,·•!< 1 ;i<r• v o ; -~ l -- ---- --- --------------- ---------
;Jt-\,,(1 ,1,-~~-.\~f-----

!0 '11~·\l ( f •): •if__ __ -

r. s f T 

-- 'pt: ~' l,;f;·~-~----~----

1;1 [h('l"'.-·.'1 'it= l :(;··.-.- ----------- ··--------------------·-----··-----~ 

·'i'J --~:--;-~: ,--~,-~.-~1-~-~-;r-1 ________ ----·----- ·------·---------· 

·' J J = 1 _f J-_1, r-:-



~-- l 

__________________________ ")!} __ 1_r .. T::'i__,_., 

c 

1 G 
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APPENDIX A7 

" 
THE AUTOCORRELATION MATRICES YYT AND DDT 

Let 

• y 
g 

(A7-l) 

be the g+l sample values of the sampled impulse response of the 

baseband channel • Let y and D be the two rnxn · matrices of rank 

m, whose 
. th 

respectively, Y. and D., where n and 1 rows are, =m+ g 
1 1 

i-1 g+l m-i 

Y. = 0 0 yo yl yg 0 . . 0 (A7.2) 1 
i-1 g+l m-i 

and D. 'o 0 I 0 .0' (A7-3~ = . yg yg-1 . yo • 1 

T T 
Since the components of the matrices YY and DD are, respectively, 

the autocorrelation coefficients of the sequences 0 .. 0 0 y
0 

y
1 

• y 0 0 • • 0 and 0 • • 0 0 y y 1 • • • y 0 0 • • 0 , the 
g g g- 0 
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• YYT d DDT 1 . d • . d f' . 32,35,52 matr1ces an are rea , symmetr1c an pos1t1ve e 1n1te. · 

Furthermore,if a., i = 0,1, •• , m-1 are the coefficients of the 
1 

autocorrelation function of thesmpled impulse response of the 

channel in Eqn. (A7-l), then the mdtrix YYT has the form 

The matrix 

YYT and DDT 

first rows. 

a 
0 

T 
DD 

are 

It 

a 
0 

has also the same form 

completely determined 

follows that in order 

am-1 

a m-2 

.a 
0 

as the 

by the 

(A7-4) 

. YT matr1x Y • Thus 

components of their 

to shot1 that the two matrices 

are equal for a given sampled impulse response of the channel, it is 



only necessary to show that the components of the first rows of 

. T T 
the matrices DD ancl YY are equal. 

From Eqn. (A 7-2) ' the m components of the first row of the 

matrix YYT are 

T for i ylyi = 1, 2, .... , m 

= 

i:=1,2, 

Also from Eqn. (A7-3), the m components of the first row of 

• T rnatr1x DD are 

= 

= 

m (A 7-5) 

i = 1, 2, ••. ,m (A7-6) 

From Eqns. (A7-5) and (A7-6) 

= i = 1,2, ... , m 

which shows that for a given sampled impulse response of the 

channel, the m x m metrices YYT and DDT are equal, 
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PROBABILITY OF ERROR IN THE DETECTION OF MULTI-LEVEL SIGNAL-ELEMENTS 

Consider the detection of s from x, where s = a + 2id, for 

i = 0, 1, ... , k-1, a and d being real scalar quanti ties, and 

X = S + u. (A8-l) 

u is a sample value of a Gaussian random variable with zero mean 

and variance a2. 

It is well known that if s is equally likely to have any of its 

k possible values, the detection process that minimizes the probability 

of error in the detection of s from x, accepts the possible value of 

s at the minimum distance fro:n x. 
45 

' 56 ' 57 This is equivalent to 

comparing x with k-1 thresholds whose values are a+ (2i- l)d, for 

i = 1, 2, ••• , k-1, and accepting the possible_value of s 

between the same thresholds as x. Assume now that this arrangement 

is used, as shown in Fig. A8-l. Clearly d is the distance from 

each value of s to the nearest decision boundaries. 

If s in Eqn. (A8-l) has one of its two extreme values, that 

is, a or a+ 2 (k-1) d, then the probability of error in the detection 

of s from x is 

J
m 1 U 2 

h1raZ exp (- 202 ) du 
d 

= 

= 

.. 
I 

d/a 

Q ( d 
a 

If s has one of the remaining k-2 values, that is a + 2id, 

(A8-2) 

fori= 1,2, ••• , k-2, thenthe probability of error in the detection 

of s from x is 
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<r • a+2(k-1)d 

a+2(k-1)d-d 

• a+2(k-2)d 

a+(k-2)d-d 

• a+2(k-3)d 

• a+4d 

a+ 3d 

• a+2d 

a+d 

di 
• a 

figure AB-1 

Decision boundaries used in the detection of s from x. 

o Possible values of s. 

Decision boundaries. 



2 

= 

., 

f 2rr~2 
d 

2Q (~ ) 
Cl 

u2 
exp ( - 2cJ2" ) du 

(AB-3) 

Since s is equally likely to have any of its k possible values, 

the average probability of error in the detection of s from x is 

p = ! {2Q(~) + (k-2) 2Q(~)} 
k Cl Cl 

2 (k-1) 
= 

k 
Q (~) 

Cl 

It can be seen that when s has two possible values 

p = 

when s has four possible values 

p = 1.5 Q ( d) 
a 

and when s has eight possible values 

p = 1. 75 Q (~) • 
a 

(AB-4) 

222 



REFERENCES 

A. Linear and Non-linear Equalization of Channel 

1. TUFTS D.W., "Nyqufst's problem- the joint optimization of 

2. SHITH J.W. 

transmitter and receiver in pulse amplitude 

modulation", Pro c. IEEE, vol. 53, pp. 248-259, 

Harch 1965. 

"The joint optimization of transmitter and 

receiver filters for data transmission S):'Stems.", 

Bell Syst. Tech. J., Vol. 44, pp.2363-~92, 

December 1965. 

3. ARON H.R. AND TUFTS D.W., "Intersymbol interference and error 

probability", IEEE 'I!rans. Information Theor):', 

Vol. IT-12,- pp.26-34, January 1966._ 

4. LUCKY R.W., "Techniques for adaptive equalization of digital 

communication systems", Bell Syst. Tech. J., 

vol. 45, pp.255-286, February 1966. 

·5. LUCKY R.W. AND RUDIN H.R., "An automatic equalizer for general 

purpose communication channels", Bell Sys':;. Tech. J., 

vol. 46, pp.2179-22Q8, November 1967. 

6. LUCKY R.W., SALZ J. AND WiLDON E.J., "Principles of Data 

Communication", pp.6-165, New York:HcGraw-Hill, 

1968. 

7. Di TORO H.J. "Communication in time-frequency spread media 

8. GERSHO A., 

using adaptive equalization", Proc. IEEJ; 

vol. 56, pp.l653-1679, October 1968. 

"Adaptive equalization of highly dispersive channels 

for data transmission", Bell Syst. Tech. J., 

vol. 48, pp.55-7Q January· 1969. 

9. PROAKIS J.G. AND HILLER J.H., "An adaptive receiver £or digital 

signalling through channels with intersymbol 

interference", IEEE Trans. Information Theory 

223 



vol. IT-15, pp. 484-497, July 1969. . 

~0. HIRSI! D. AND WOLF W.J., "A simple adaptive equalizer for 

efficient data transmission", IEEE Trans. 

Communication Technology, vol. COH-18, pp.5-12, 

February 1970. 

11. NIESSEN C.W. AND WILLIS D.K., "Adaptive equalizer for pulse·· 

tr-ansmissio:1", IEEE Trans. Communication Teclmolog¥, 

vol.COM-18, pp.377-395, August 1979· 

12. lENDER A., "Decision-directed digital adaptive equalization 

technique for high-speed data t-ransmission", 

IEEE Trans. Communication Technolog¥, vol. 

COM-18, pp.625-632, October 197Q. 

13. NEWHALL E.E., QURESHI S.U.H. AND SIMONE C. F., "A technique 

for finding approximate inverse S¥stems and its. 

application to equalization", IEEE Trans. 

Communication Technology, Vol. COM-19, pp.lll6-1127, 

December 1971. 

-14. LAWRENCE R.E. AND KAUFMAN H. "The Kalman filter for the 

equalization of a digital communications channel", 

IEEE Trans. Communication Technology, vol. COM-19, 

pp. 1137-114:, December 1971. 

15. GOROG E., "A new approach to time-domain equalization", 

IBM J. Res. Develop., vol. 9, pp. 228-232, 

July 1965. 

16. MONSEN P., "Feedback equalization for fading dispersive 

channels", IEEE Trans. Information Theory, vol. 

IT-17, pp.56-64, January 1971. 

17. TAYLOR D .P. ~'Non linear feedback equalizer employing a s.oft 

limiter", Electronics Letters, vol. 7, pP• 265-267, 

May 1971. 

224 



18. GEORGE D.A., BOWEN R.R., AND STOREY J.R., "An adaptive 

decision feedback equalizer", IEEE Trans. 

Communication Technology, vol. COM-19,pp.281-293, 

June 1971. 

19. UNGERBOECK G., "Nonlinear equalization of binary signals in 

Gaussian noise", IEEE Trans. Communication 

225 

Technology, vol. CO!I-19, pp.ll28-1137, December 1971. 

20. BERSHAD N .J. AND VENA P.A., "Eliminating intersymbol 

interference - a sat~-space approach", IEEE 

Trans. Information Theory, vol. IT-18, pp. 

275-281, March 1972. 

21. CLARK A.P., "Detection processes for distorted digital 

signals "Part 1, Lecture Ndes, Department of 

Electronic and Electrical Engineering, Loughborough 

University of Technology, 1972. 

22. ACKROYD M.H. AND GRAN! F., "Optimum mismatched filters for 

sidelobe suppression", IEEE Trans. Aerospace and 

Electronic Systems, Vol. AES-9, No. 2, March 1973. 

23. CLARK A.P., "Design technique for non-linear equalizersn, 

Proc. lEE, Vol. 120, No. 3, pp.329-333, March 1973. 

B. Optimum and Sub-optimum systems 

24. CHANG R.W. AND HANCOCK J.C.,-"On receiver structures for 

channels having memory", IEEE Trans. Information 

Theory, vol. IT-12, pp.463-468, October 1966. 

25. CONSALVOS R.A., "Maximum-likelihood receiver for digital data 

transmission". IEEE Trans. Communication 

Technology, vol. COM-16, pp. 392-398, June 1968. 



226 

26. AB END K.' HARLEY T .J., FRITCHMAN B.D. AND GUMACOS C. 

"On optimum receivers for channels having memory'', 

IEEE Trans. Information Theory (Correspondence), 

vol. IT-14, pp.819-820, November 1968. 

27. BOWEN R. R. , "Bayesian decision procedure for interfering 

digital signals", IEEE Trans. Information Theory 

(Correspondence), vol. IT-15, pp.506-507, July 1969. 

28. AB END K. ' AND FRITCHMAN B.D., "Statistical detection for 

communication channels with intersymbol interferencce", 

Proc. IEEE, vol. 58, pp.779-785, May 1970. 

29. KOBAYASHI H., "Correlative level coding and maximum-likelihood 

decoding", IEEE Trans. Information Theory, vol. 

IT-17, pp.586-594, September 1971. 

30. FORJJEY G. D., "Maximum likelihood sequence estimation of 

digital seque~ces in the presence of intersymbol 

interference", IEEE Trans. Information Theory, 

vol. IT-18, pp.363-378, May 1972. 

31. CLARK A.P. ,"Adaptive detection with intersymbol interference 

cancellation for distorted digital signals", 

IEEE Trans. Communications, vol. COM-20, pp. 

350-361, June 1972. 

C. Detection Processes for Orthogonal Groups of Signals 

32. CLARK A.P. "Adaptive detection of distorted digital signals", 

Radio and Electronic Engineer, Vol. 40, pp. 107-119, 

September 1970. 

33. CLARK A.P. ,"A synchronous serial data-transmissLon s¥stem 

using orthogonal groups of binary signal-elements" 

IEEE Trans. Communication Technology, vol. COM-19, 

pp.llOl-1110, December 1971. 



34. CLARK A.P,, "Detection. Processes for distorted· digital sitnals", 

Part II, Lecture Notes, Department of Electronic 

and Electrical Engineering, Loughborough University 

of Technology, 1972. 

35, CLARK A.P, AND GHANI F., "Detection processes for orthogonal 

groups of signals", IEEE Trans. Communications, 

vol. CQl.!-21, pp, 907-915, August 1973. 

D. Matrix Algebra 

36. FADEEVA V .N., "Computational Methods of Linear Algebra", 

pp.Sl-85, Dover Publications, Ne~< York, 1956· 

37. BELLMAN R., "Introduction to Matrix Analysis", pp.89-94, 

McGra~< Hill Book Co., Inc., Ne~< York, 1960. 

38. VARGA R.S., "!1atrix furative Analysis", Engle~<ood Cliffs, 

N.J.: Prentic7 Hall, 1962. 

39. FRAME J. S. "Matrix functions and applications", Part IV, 

IEEE Spectrum, Vol. 1, June 1964. 

40. DERUSSO P .M., ROY R.J, AND CLOSE C.M,, "State Variables 

for Engineers", John Wiley and Sons, New York,. 1965. 

41. ROSENBROCK I!. H., "Sensitivity of an eigen-value to changes 

in the matrix", Elect. Lett. Vol. 2, June 1966. 

E. General topics in Communication Systems 
ll 

42. SCH\vARTZ M. ,"Information Transmission, Modulation and Noise, 

McGra~<-Hill Book Co., Inc., New York, 1959. 

43. LEE Y .W., "Statistical Thoory of Communication", John Wiley 

and Sons, Inc., Ne~< York 1960. 

44. CLARK A.P., "Consideration in the choice of the optimU!ll data-

227 

transmission systems for use over telephone circuits", 

J. Brit. LR.E., vol. 23, No.5,pp~331-355 May 1962, 



45. WOZENCRAFT J. W. AND JACOBS I. M., "Principles of Communication 

Engineering", John Wiley and Sons, New York, 1965. 

46. PANTER P.F., "Modulation, Noise and Spectral Analysis", 

McGraw-Hill Book Co., Inc., New York, 1965. 

47. BELLOI~, P.A., "Some techniques for the instantaneous real 

time measurement of multipath and doppler spread", 

IEEE Trans., Communication Technology, vol. Com-13, 

pp.285-292, September,l965. 

48. KRETZ!1ER E .R., "Generalization of a technique for binary data 

communication", lEEE Trans. Coinmunication 

Technology, vol. Com-14, pp.l26-130, April 1966. 

49. PORTNY S .E., "Large sample confidence limits for binary error 

probabilities", Proc. IEEE, vol. 54, No. 12, 

p.l993, December 1966. 

50. CARLSON A.B., "Communication Systems: An introduction to 

signals and noise in communication systems", pp.114-

376, McGraw-Hill Book Co., Inc., New York, 1968. 

51. VANTREES H.L., "Detection, Estimation and Modulation Theor¥'; 

Part 1, pp.l9-165, John Wile¥ and Sons, Inc., 

New York, 1968. 

52. CLARK A.P. "The transmission of digitally coded signals b¥ 

means of random access di.screte address s¥stems", 

Ph.D.thesis, London Univ. London, England, 1969. 

228 

53. BELLO\~ P.A., "Measurement of random time-variant linear channels", 

IEEE trans. Information Theor¥, yol. lT-15, 

pp.469-475, July 1969. 

54. STIFFLER J .J., "Theory of Synchronous Communications", 

Prentice Hall, Englewood Cliffs, New Jerse¥, 1971. 



55. CLARK A.P. AND MUKHERJEE A.K., "Parallel data-transmission 

systems using code-division multiplexing and 

adaptive detection", Proc. Joint Conference on 

Digital Processing of Signals in Communications, 

pp.391-408, Held at Loughborough University, 

ll-13th April, 1972. 

229 ' 

56. CL.ARK A.P., "Detection and Estimation Theory", Lecture Notes, 

Department of Electronic and Electrical Engineering, 

Loughborough University of Technology, 1973. 

57. CLARK A.P., "Elementary Detection Theory", Lecture Notes, 

Department of Electronic and Electrical Engineering, 

Loughborough University of Technology, 1973. 




