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Materials Jetting for Advanced Interconnect 

Abstract 

This report covers the work carried out on Teaching Company Scheme No. 2275 

"Materials Jetting for Advanced Interconnect" between February I 998 and February 

2000. The project was conducted at the Harlow laboratories of Nortel Networks with 

the support of the Department of Manufacturing Engineering of Loughborough 

University. Technical direction and supervision has been provided by Mr Paul 

Conway, Reader, at Loughborough University, Professor Ken Snowdon and Mr Chris 

Tanner of Nortel Networks. 

The aim of the project was to produce and deposit minute and precise volumes of a 

range of materials, such as metallic alloys, glasses and polymers, onto a variety of 

substrates commonly used in the electronics and optoelectronics fields. The 

technology, which is analogous to ink-jet printing, firstly had to be refined to 

accommodate higher processing temperatures of up to 350°C. The ultimate project 

deliverable was to produce a specification for jetting equipment suited towards 

volume manufacturing. 

The project was based around the technique of Continuous Mode Jetting licensed 

from the Massachusetts Institute of Technology (MIT). The equipment was 

transferred to Harlow and was subsequently re-designed, upgraded and refined to 

produce a series of lead-free solder spheres from 100 to 1000 microns in diameter. 

Lead-free interconnect is likely to be necessary to meet draft environmental 

legislation being prepared in Europe and possibly Japan. 

Experience of jetting technology also enabled a second mode of application, the drop

on-demand variant to be investigated via collaboration with the US company 

Microfab. This enabled both a world first in the deposition of a lead-free tin-copper 

solder pre-form and the investigation of the potential for optoelectronic applications 

of polymeric lenses on fibres and adhesives dispensing. Volumes as small as 50 

picolitres can be dispensed rapidly and repeatably using this equipment. This work 
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has lead to the ordering of a drop-on-demand machine for further exploitation in 

optoelectronic automation within Nortel Networks. 

The performance of lead-free solder and adhesives deposition illustrate the potential 

for drop on demand printing to be included in the production environment in the near 

future. Further testing of real applications and problems in manufacturing will aJIow 

for specific devices and solutions to be identified and novel ones being developed to 

enable this disruptive technology solution. 
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Introduction 

1 Introduction 

Nortel Networks is a global, multi-national supplier of telecommunications equipment 

with a turnover of $23 billion, employing approximately 80,000 people worldwide of 

which over 7,000 are actively working in the UK. The Harlow laboratories are the 

home ofNSPAN (Nortel Sub-systems and Performance Networks), an integrated 

division of Carrier Packet Networks, which carries out research and development for 

the next generation telecommunications products. Key to the successful production of 

new equipment is the deployment of advanced materials and processes capable of 

mass production, highly accurate placements and novel physical properties. Materials 

jetting was identified in 1996-7 by the staff of Materials Design and Technology 

(MDT) as one of the potential key enabling technologies for future products. 

This report covers the work carried out on Teaching Company Scheme (TCS) No. 

2275 "Materials Jetting for Advanced Interconnect", between February 1998 and 

February 2000. The project was undertaken at the Nortel Networks laboratories in 

Harlow, Essex. Technical direction and supervision has been provided by Mr Paul 

Conway, Reader at Loughborough University and Professor Ken Snowdon and Mr 

Chris Tanner ofNortel Networks. 

1.1 Background and Technology 

Analogous to ink jet printing, the Materials Jetting Technology (MJT) can be used to 

accurately produce and deposit repeatable quantities of molten material. Some of the 

following areas were identified as technologies, which could benefit from this work -

solder deposition for advanced interconnection and packaging; solder ball production 

for ball grid array (BOA) and chip scale package (CSP) products; Optical polymer 

deposition for optical interconnect and micro-lens arrays and UV curing adhesive 

deposition for optical component fixing. 
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The basic concept of high temperature materials jetting has been expanded from the 

work on ink-jet printers in the late 1980's [I, 2]. The major challenge in modifying the 

equipment for materials that are not liquid at room temperature is accommodating the 

increased processing temperatures and controlling the material properties during flight 

to the deposition site. The initial work was predominately laboratory demonstrators 

dealing with low melting temperature indium based solder alloys, which focused on 

the separation of the material into a uniform droplet stream [3,4]. More recently, 

efforts have concentrated on the behaviour of the stream [5], modelling of droplet 

solidification [6] and controlling precise material deposition [7]. 

The technique for producing minute quantities of molten material can be separated 

into two distinct technologies; continuous-mode materials jetting (CMMJ); and drop

on-demand mode materials jetting (DODJ). 

1.2 Continuous-mode materials jetting 

This technology, figure I, utilises the natural break up of a stream forced through an 

orifice as described mathematically by Lord Rayleigh in 1878 [8]. The stream break

up is made uniform by mechanically inducing a vibration in the material reservoir 

(near the natural drop forming frequency of the jet), causing pressure oscillations to 

propagate through the fluid [9]. The mechanical vibrations are produced using 

piezoelectric crystals, producing a continuous stream of droplets at rates of between 

5,000 and 20,000 Hz, demonstrated by Chun at the Massachusetts Institute of 

Technology (MIT). Rick Godin, of the Speedline MPM Corporation, has quoted that 

continuous mode droplet formation can occur at rates of up to 44,000 Hz, also using a 

piezoelectric transducer to excite the liquid [10]. CMMJ nominally produces ball sizes 

that are approximately twice the orifice diameter, which can be altered slightly with 

driving pressure and vibration frequency. A closed loop feedback system has been set 

up at MIT, utilising this property, and is aimed at controlling sphere size for BGA 

components. Tolerances within +/- 3% of a target droplet diameter (for 850).lm 

tin/lead spheres) have been demonstrated by varying the driving frequency [11]. 
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Charging plates surround the region where the stream breaks up, to induce a charge on 

the surface of each droplet. The main reason for charging the droplets is to prevent the 

stream from merging, however it has also been found that a constant spatial distance 

is upheld during flight. 

Without intervention, all the droplets would impinge on the target. In most 

applications, the amount of droplets required to reach the desired location is quite low. 

Therefore, most of the stream must be prevented from reaching the target. This can be 

achieved by charging individual droplets and either: 

• Removing them from the stream using a catching device; or 

• Deflecting towards a substrate, using an electrostatic deflection field, and 

collecting the remaining droplets. 

The incorporation of charging and deflection in continuous mode systems means that 

the distance needed for the material to reach its desired characteristics can be tens of 

centimetres, which provides a challenge in controlling the droplets during their flight. 

Figure I illustrates the principle of droplet deposition behind the continuous mode 

system adopted by the MPM Corporation [12]. MPM combined electrostatic droplet 

deflection in the Y-axis and substrate motion in the X-axis to deposit patterns of 

solder. A number of these jetting platforms were sold and distributed through 

Speedline Technologies worldwide, but in 1999 MPM stopped funding the materials 

jetting programme and ceased production of the jetting machines. 

1.3 Drop-on-demand mode materials jetting 

Drop-on-demand mode materials jetting, as the name suggests, produces individual 

droplets of material on demand, as presented in figure 2. Each droplet is produced by 

the displacement of a transducer coupled to the crucible, inducing a volumetric 

change in the liquid. The volumetric change causes pressure/velocity transients to 

occur in the fluid, causing a droplet to be issued from the crucible orifice [13]. Hansell 

first noted this technique for generating droplets in 1950 [46]. The energy required to 

4 
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individually dispense particles on demand is larger than is required to break up a 

continuous stream, because the entire fluid column is disturbed. 

The drop on demand jetting (DO DJ) technology can produce ball diameters from 

125!lm down to 25!lm [3]. This is due to the fact that this configuration produces 

material where the orifice diameter is roughly equal to the diameter ofthe ejected 

material. The rate at which balls are produced tends to be lower than CMMJ, however 

rates of up to 9,000 drops per second have been demonstrated [14]. 

In contrast to continuous mode technology the flight path of the droplet, using DODJ, 

from orifice to substrate, is to the order of millimetres. Although this allows for 

smaller dimensions in the overall system design, it inhibits the use of feedback control 

- once a pulse is sent to the droplet generator there is no way of validating the amount 

of material expelled from the orifice making its way towards the substrate. In very 

high precision applications, such as producing optical components and wafer 

bumping, controlling the amount of material deposited can become critical. 

1.4 Technological issues 

Materials Jetting is still very much a maturing technology and as such several issues 

must be addressed before it is widely accepted in the industry. 

Both variations on the technique require the presence of a controlled atmosphere 

surrounding the jet orifice. In the case of solder alloys, too much oxygen will prevent 

droplets from forming, as the surface tension forces are increased by the oxide growth 

and inhibit the vibrations breaking the jet. 

There are also limits with the piezoelectric materials used to create the mechanical 

vibrations. Priest [4] noted that at temperatures above 200°C, the common material, 

lead zirconium titanate (PZT), undergoes a phase change and loses its piezoelectricity. 

This is known as the Curie temperature of a piezoelectric material. The DODJ 

technology is particularly susceptible to high temperatures, because the PZT 

transducers are located near to the heating elements. The continuous mode technology 

5 
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is less affected, because the piezoelectric crystals are mounted remotely from the 

molten materials, with a metal rod used to transfer the vibrations to the crucible [9]. 

Priest [4] also demonstrated that a non-oxidising environment is essential for droplet 

formation. This was illustrated with molten tin, which only formed droplets in 

nitrogen. Along with the oxidation of the metal surface, Priest also described how 

contamination in molten metals could lead to inconsistencies in the jet. Particulate 

matter (such as oxides or inter-metallic phases resulting from interactions with the 

crucible material) can sometimes be large enough to block the orifice and can cause 

variations in the stream direction and quality. 

The 'Droplet Dynamics and Manufacturing Laboratory' at the University of California, 

Irvine, have concentrated on flight characteristics, droplet deflection and freeform 

fabrication. The research was aimed at depositing minute droplets (about 200llm in 

diameter) layer upon layer to fabricate a 3D component, as a novel method of rapid 

prototyping [7]. The initial research studied the solder ball shape when impacting a 

copper substrate at varying temperatures. Figure 3 shows a series of photographs 

where tinllead spheres were deposited onto substrates at different temperatures. It can 

be seen that higher substrate temperatures increase the area of contact of the solder 

ball when solidifying. 

The CMMJ technology allows individual spheres to be deposited at precise locations 

at high speed, but no specific information is available discussing the re-use and 

recycling of any waste material. In order to utilise the potential rates of deposition, a 

suitable recycling method must be devised. 

1.5 Applications in electronics manufacturing 

The majority of solder jetting work which has been published, has been directly 

involved with applying low melting point solder bumps to metallised wafers [13,15], 

figure 4, using drop on demand mode jetting. This process has now been established 

7 
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Figure 3 - Photographs illustrating effect that substrate temperature has on tinlIead solder 

droplets during impact, 95°C (top left) to 126°C (bottom right) (after MPM] 

Figure 4 - Eutectic tinlIead solder bumps deposited onto metallised silicon (after MPM] 
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utilising the continuous mode technology by the MPM Corporation (now discontinued 

but a similar machine is available through Microfab), who have developed 

manufacturing workstations to directly bump silicon wafers using tin/lead solder. 

Since the system is non-contact it is capable of a large number of deposition patterns, 

via computer aided design (CAD) information, without altering equipment/tooling set

up. 

Various solder ball diameters have been produced, ranging from 251lm [13] with 

DODJ to almost 800J.lm [16] using CMMJ. Although, to date, the smallest dimensions 

are created using the DOD] technique, droplets approaching 40J.lm diameters can be 

produced by the continuous method. There is no limitation on larger sizes, however 

the technology is aimed at miniaturisation and Nortel has found that low viscosity 

materials (like solders) suffer from the molten material leaking out, at orifice sizes 

above 440llm, inhibiting consistent jetting. 

Also, when reducing material volume there is an increased need for more precise 

placement, which increases the cost of the positioning equipment portion of the 

hardware. 

The continuous mode MPM workstation is capable of producing 50llm to 300J.lm 

diameter droplets, at rates of 44,000 (for 100um diameter) droplets each second and 

MPM claim that the 'time to jet a 5 part array of 68 ball BGA with 20 mil spheres is 

10.6 seconds' [12]. Although this statement is vague, it could be assumed that they are 

jetting 10x 50llm balls onto each pad (to achieve the 20 mil (500J.lm) dimension), in 

other words 680 balls in 10.6 seconds. If this is true, at a rate of 44,000 balls each 

second, then it also implies that they are utilising 680 out of a possible 466,400 balls -

equivalent to a yield ofless that 0.2%. Although this calculation is only approximate, 

it does highlight the need for recycling unused material. 

An investigation into the adhesion and solderability of eutectic tin/lead solder jetted 

onto metallised silicon has been conducted by Hayes [13]. The process parameters 

investigated included: substrate temperature; droplet size; droplet velocity; droplet 

temperature; number of drops per site; surface treatment to enhance solder-ability; 

environmental conditions; and distance to the substrate. 
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The results that showed acceptable adhesion to the metal layers, known as Under 

Bump Metallisation (UBM), are summarised in table I. In each case an aluminium 

layer was bonded directly onto the silicon oxide and an adhesion layer, of unspecified 

material, was used to promote bonding to the following layer. This work has 

successfully demonstrated jetting solder balls directly onto metal surfaces. Figure 5 

shows an array of droplets using the metal system number 2, where 60J.UI1 diameter 

tin/lead balls were successfully deposited onto IOO/lffi gold flash pads. 

,Metal system . 

I AI-Adh.-Cu-Ni-Au 

2 AI-Adh.-Cu-Au 

3 AI-Adh.-Cu-Pd 

4 AI-Adh.-Ni-Au 

5 AI-Adh.-Cu-Ag 

Table I - Tin/Iead solder adhered to these metal systems ('Adh' - Adhesion layer) 

Successful trials utilising charging and deflection of individual spheres led to the 

reality of 3D component fabrication. Figure 6 is a photograph of a number of solder 

balls deflected out of stream. Orme et al have also done simulations and modelling of 

the formation of 3D patterns using charged particles. Rapid solidification reduces the 

grain size and leads to a good structural component. It is also important that 

subsequent droplets arrive before the initial one has solidified, so that a satisfactory 

bond is formed. 

There are many aspects of the electronics manufacturing industry, which could benefit 

from the flexibility ofthe solder jetting technology, these include: 

• Uniformly sized ball production and solder sphere placement for Ball Grid 

Array (BGA) assemblies - a type of electronic package where a matrix of 

conducting spheres are used to attach it to a circuit board; 
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50011111 

Figure 5 - 60l1m diameter bumps of tin lIe ad solder deposited onto 100J1m diameter pads, metal 

system number 2 

• • • • • • • • • 
1---1 

150 LLm 

Figure 6 - Photograph showing deflection of a continuous stream of balls (7) 

11 



Introduction 

• Via filling for conducting between multiple layers in printed circuit boards; 

• Pre-form replacement - enabling solder to be deposited directly into a package 

from the bulk material without the need for costly pre-processing; 

• Adhesive/epoxy/silicon gel dispensing; 

• Metal cladding/rapid prototyping; and 

• Precision metal interconnects (such as fine tracks or 3D substrate 

connections). 

All these applications use technologies that are now several years old. For example, 

screen-printing is a proven method of depositing metal, in the form of a solder paste, 

onto a substrate material. Then a component (e.g. capacitor) is added in position on 

the paste and re-flowing to create a solder joint. The main disadvantages are: 

• New screens are required for each new design and, 

• Repeatability can become a major issue at finer pitches (at below 300J.U11 using 

the latest printing equipment), due to the apertures clogging. 

Solder jetting removes these concerns, offers the possibility of stepping pad heights 

and depositing onto 3D substrates and also eliminates the need for solder fluxes. 

However, it is its increased precision over methods such as screen-printing and 

dispensing that will enable the drive to smaller components, figure 7. 

1.6 Optoelectronic applications 

Over the last decade, communications suppliers have experienced an exponential 

demand for data transmission bandwidth triggered by increased usage of all kinds. 

While the phenomenal growth of the Internet has been a major contributor to today's 

traffic levels, demand has been steadily increasing for many other services as well 

such as local area network (LAN) bridging, video transport, and even voice. The last 

of these is the result of more access lines, more cell phones, increases in 'working 
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from home' and various other factors leading to increased usage. Thus, what seemed 

like a nearly inexhaustible 2.5 Gb/s per optical fibre capacity a few years ago might 

now appear to be more like a bottleneck and electrically based time division 

multiplexing (TDM) systems are being eclipsed. 

As service providers plan and implement solutions to rapidly expand network 

capacity, the cost containment and network flexibility of optical dense wave division 

multiplexing (DWDM) systems are critically important issues, given today's very 

competitive telecommunications arena. Maximum value must be obtained from 

currently installed fibre infrastructure to avoid or defer the large capital outlays and 

long lead times associated with new fibre deployment. 

Optoelectronic production is still a very specialised process with high added value 

because of the amount of human labour involved. For example, coupling lenses are 

produced separately and manually placed in line with the semiconductors, however 

with materials jetting it could become possible to automate this process into one step. 

Lenses could be jetted directly on the semiconductor or fibre. The time and labour to 

place separate lenses within the package will not be necessary and manufacturing 

costs can be reduced enabling enhanced competitiveness in the market. 

PIano-convex micro-lens and hemi-cylindrical waveguides have been deposited on 

glass, silicon and fibre ends by the jetting of optical polymeric and adhesive materials 

[17]. This technology, primarily carried out by researchers at Microfab Technologies 

and the University of Texas, has found the technique applicable in precisely placed 

refractive lenslet arrays, multi-mode waveguides and micro-lenses for optical fibres, 

figures 8A-C. 
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Figure SA - 300llm core diameter optical fibres 

with microjet printed lenslets (after Cox et al.) 

[171 
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Figure SB- Array of 100J.tm diameter 

hemispherical plano-convex microlenses (after 

Cox et al.) [171 

Fig SC- 25mm long (1-16) branch waveguide, made with 1161lM x 351lM hemi-cylindrical ridge 

waveguides (after Cox et al.) [171 
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High (nr= 1.704) and Low (nr=1.53) refractive index (nr) materials, such as index tuned 

thermoplastics, hydrocarbon resins (melt temp iOO-200°C) and UV curing optical 

adhesives can be jetted to form these components with less than 2% standard 

deviation from their nominal dimensions. So far, these optical components have only 

been deposited using DODJ. CMMJ, by its nature, would be well suited to the 

deposition of wave guides, due to its ability to produce fine lines [10]. 

By combining a number of droplets within close proximity (centre to centre spacing 

of 30-75/l1ll) hemi-ellipticallenses, with separate focal lenses along their major and 

minor axis, can be fabricated on substrates, figure 9A. Similarly, by increasing the 

number of droplets along the major axis and therefore, increasing the radius of 

curvature (~oo), a hemi-cylindricallens is formed which can be used for the 

collimation of edge-emitting diode lasers. For more advanced applications, like CCD 

pixel sensitivity enhancement, it is also possible to create square, gold bar-like, lenses 

[18], figure 9B. These lenses have exhibited 'speeds' (ratio of focal length 1 numerical 

aperture) of up to f/0.76. 

Cox et al have also deposited almost spherical lenses with contact angles greater than 

90°, figure 10, which is difficult using conventional lithographic processes. This can 

be achieved by altering the jetted materials ability to wet to the substrate, either by 

modifying the surface properties with chemical coatings or by varying the substrate 

temperature. Spherical lenses, such as these, can be used for beam collimation out of 

optical fibres or waveguides. 

In addition to the technique being used to accurately deposit actual optical materials 

and components, jetting can be used to precisely control the amount of solder, or 

adhesive, applied to join and fix fibres into, for example, 'V-grooves' on silicon 

substrates. Currently, an amount ofUV curing resin is placed on a glass slide, in the 

open, for the duration of a shift. Materials jetting would allow for the tiny quantities to 

be dispensed on demand and removing the handling of the resin by the operators. The 

procedure for fibre aligrunent in optoelectronic packages is still very much a hand 

crafted skill, due to the fact that the required precise automation is not available in the 

16 



Figure 9A - 4 hemi-eUiptical microlenses-

28411m x 14611ffi x 20l1m (after Cox et al) (18( 

(A) T-Sub = 31 deg-C 

Physics and Hardware 

Figure 9B - Array of 300l1ffi square, SOI1ffi 

high printed microlenses (after Cox et al) (18( 

(B) T-Sub = 50 deg-C 

Figure 1 0- Variation of surface contact angle with substrate temperature with the deposition of 

7SI1m diameter droplet of optical thermo-plastic (after Cox et al.) (18( 
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volumes and growth rates needed. Materials jetting could provide automation in one, 

or several, stages of production. 

In a similar vein, modem polymeric materials could be used to couple fibres and 

lasers together by introducing an intermediate fixing, wave guiding and/or modulating 

stage. Several non-linear and liquid crystal materials have been printed showing 

potential in this area. 

Recently, Nippon Telegraph and Telephone (NIT) Corporation has reported a 

technology with which micro lenses having a diameter of I mm or less are 

manufactured using ink-jet technology wherein the ink that is employed by the printer 

is made into a mist and sprayed onto paper. Under the NIT approach, a liquid resin is 

formed into a mist and sprayed onto a plate producing small lenses that are hardened 

one by one using ultra-violet (UV) light. It is possible to produce 10,000 lenses every 

second with a high degree of accuracy. It will become possible to be able to spray the 

resin and install lenses directly on such things as semiconductors, thus producing 

high-speed optoelectronic communications devices at low cost. Since the resin is 

hardened in the hemispherical form that it has assumed on the substrate, it possesses a 

light gathering ability and it can be employed as a lens. Other work in this area 

includes the deposition of light emitting polymers for flat panel displays using the ink

jet technology, by Seiko Epson. 

Lenses having a diameter of from around 20 microns to over I mm can be produced 

with a diameter error rate that is within I %. Varying the amount or viscosity of the 

sprayed resin may change the size and shape of the lenses. 

The f-number, which indicates the performance of a lens, is from about 1.8 to 15 

depending on the size of the lens and attests to the fact that the performance is at the 

same level as that of high-grade lenses. In addition, it is forecast that it will become 

possible in the future to produce lenses that are I micron or less. It is not clear from 

this report what the yield ofthis technique is and whether single lenses can be 

produced at specific sites. 

To date most ofthe work in this area has been concerned with muItimode optical 

components having less demand on the optical performance that is satisfactory for 
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short haul office-to-office communications and back-plane interconnect. For the 

technique to be applicable to long-range communications devices higher quality 

lenses, which are capable of single mode performance, must be produced. 
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2 Physics and Hardware 

2.1 Droplet Formation 

The phenomenon of drop formation from a stream of liquid issuing from an orifice 

was noted as early as 1833 by Savart [19] and described mathematically by John 

William Strut! (Lord Rayleigh) [8] during 1878-1892. Rayleigh first reported a 

detailed analysis of the dynamics involved in an infinitely long column of fluid, and 

showed that the free surface of a column of fluid will undergo periodic oscillations, as 

a result of hydrodynamic instability. As the column propagates through space, surface 

tension then acts to minimise the surface area of the column. These oscillations cause 

necking along the column, which lead to break-up and droplet formation. However, 

for metallic elements and alloys, oxide formation on the surface of the molten material 

is shown [20] to have a drastic effect on the droplet formation process. The 

characteristic time r gives an approximate time for necking to occur, and is related to 

the orifice size and the fluid properties by the equation 

(2.1) 

where p is the fluid density, 00 is the orifice diameter, and (J is the surface tension 

[21]. Since this time is governed, in general terms, by the internal mechanisms of 

fluids the droplets formed are of inconsistent size. To form a stream of uniform 

droplets an external oscillating source must be applied to the liquid. 

If a perturbation is created on a liquid cylinder. or jet. with a 

wavelength greater than the circumference of that cylinder. the stream 

rapidly decomposes into a sequence of droplets whose diameters are 
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determined by the wavelength of the disturbance. This phenomenon 

can, therefore, be used to create a stream of uniform sized droplets, 

which are uniformly spaced relatively to one another. [22] 

The amplitude of the instability, ai, is given by the relation and shown graphically in 

figure 11 

- 2nz 
I ( ) a, = a.eT cos T (2.2) 

where ao is the initial disturbance in the radius of the column, "is the characteristic 

time, z is the propagation distance before necking occurs and Il is the wavelength of 

the disturbance [21]. The applied mechanical vibration initiates a surface tension 

driven instability on the surface of the capillary stream as it propagates through the 

orifice. This disturbance a 'necking' effect when ai reaches a maximum value found 

using the material values in equation 2.1 and inserting this characteristic time into 

equation 2.2, forming droplets with an average separation of Il, figure 11. Using this 

theory it is possible to control the size of the droplets by altering the wavelength of the 

applied vibration where the droplet volume is given by the area underneath the graph 

between z = 0 and z = 'necking' point. 

Equation 2.2 places limits on the sizes of droplets achievable from a given stream. 

The lower bound being set by wavelengths shorter than the jet/orifice diameter and 

conversely, at wavelengths longer than twice the orifice diameter, harmonics of the 

driving frequency will make the break-up unstable. Therefore, it is not possible to 

make droplets arbitrarily small by making the wavelength smaller and smaller. It is 

found [21] that if the fundamental drive frequency is too low, several different droplet 

sizes can be produced simultaneously from one capillary - each droplet attributed to a 

different harmonic of the drive frequency. Therefore the droplet size should only be 

varied between the empirical limits 7ao<Il<14ao [20]. 
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2.1.1 Droplet size 

To achieve uniform droplet generation from capillary stream break-up, molten fluid is 

issued through an orifice of known diameter 0 0 by a pressure, L1p, with a controlled 

disturbance of frequency,f, applied to the material flow, figure 11. 
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Figure 11 - Mathematical approximation of uniform droplet generation from capillary instability 
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Droplet size is calculated by considering the volume of the jet at the point at which it 

breaks into individual droplets. Considering an incompressible liquid, of density p, 

being forced through the orifice into a vacuum by a pressure, L1fJ, the velocity, V;. of 

the resultant jet is given by: 

v =C ~211P 
j "''' P 

(2.3) 

where, CnDZ is the 'discharge coefficient', which is an empirically determined value 

relating to frictional effects between the materials viscosity and surface tension 

properties [23]. 

By applying a sinusoidal perturbation to the jet, it is broken every l/f seconds. The 

stream is broken into cylinders of length, A= V;/f. of diameter equivalent to the orifice 

diameter 0 0 • Therefore, the volume of each cylinder would become: 

110 2,1 
VOlCYlinder = : Cnoz (2.4) 

As the cylinders fall they form spheres, due to surface tension, with a droplet diameter 

0 D and volume: 

(2.5) 

Since (2.4) must equal (2.5), then: 

(2.6) 
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Once the droplet diameter has been measured, it is necessary to relate the size of the 

liquid droplet to the size of the solidified droplet. This can be done using either a 

volume change on freezing value for the alloy, which, for example, in eutectic tin/lead 

solder is 2.4% [24], or by perfonning a conservation of mass calculation between the 

droplet and the ball. Alvarez derived an equation to approximately calculate the effect 

of solidification [11], relating the density of the liquid state to the density of the solid 

state, given by: 

" _{fl u so!-3 -
p, 

(2.7) 

Taking into account the solidification factor in (2.7), the volume of a droplet required 

to produce a specific volume of solidified material is better represented by: 

(2.8) 

2.1.2 Charging and deflection 

Since the droplet generation has been demonstrated at speeds of up to 44,000 drops 

per second [14] it is likely that not every droplet produced will be utilised ifthey are 

being used in the deposition of the material at discrete locations. The limitations being 

set by the volumes required at each deposition site, speed of substrate movement and 

validation of the stream. Therefore, it is necessary to affect some droplets in flight to 

remove the excess. Considering the material in the jet to be conducting it is possible to 

induce an electrical charge on the material at the necking, or severing, point, figure 

11. This enables the stream to be directed towards a site on the substrate, by means of 

'deflection plates' in conjunction with substrate movement. 

The charging effect is highly dependant on the position of the droplet stream with 

respect to the charging plates [25]. Small changes in horizontal position produce a 

large variation in droplet charge. Due to electrostatic repulsion between bodies with 
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like charges, the droplets are also kept from merging with one another in flight but 

this also causes the stream to 'cone', meaning that the droplets scatter as they travel 

toward the target. This scattering reduces the directional accuracy ofthe stream, 

important in applications where the droplets need to land at specific sites on a 

substrate. The level of spreading is proportional to the amount of charge placed on the 

droplet but then this also limits the amount of deflection that can take place. 

Following from the defmition of electric field intensity, a particle of charge, Qd, 

travelling through a uniform electric field, E, experiences a force: 

(2.9) 

From Newton's second law (F = ma), the particle acquires an acceleration, a = 

QdE1m, where m is the mass ofthe particle. So, after a time t the displacement, 8, of 

the particle in the direction of the field, where x (= vt) is the distance travelled at a 

velocity, v, perpendicular to the field, is given by: 

(2.10) 

Considering a liquid being forced through a nozzle, with a sinusoidal perturbation, a 

stream of uniformly sized droplets are formed with a separation (A,) 

(2.11) 

Now considering the resultant droplets travelling towards a substrate with velocity, Fj, 

through a circular charging and parallel deflecting mechanism as shown in figure 12. 

As the droplets pass through the circular electrode, of diameter dc, voltage Vch, they 

acquire a charge [25], of: 
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(2.12) 

Where eo = permittivity of free space (F m'I). 

Note that the electric field strength that is created by the deflection plates, acting on 

the droplet stream over length, Id on figure 11, is E=Vid. Where Vd is the potential 

difference across the deflection plates, and d is the separation distance of the 

deflection plates. 

By substituting the value of A from (2.11) into (2.12), then substituting this new 

equation for Qd into (2.10), and including the electric field strength created by the 

deflection plates E, the horizontal displacement of a droplet is given by 0, which 

simplifies to: 

21rEOAV'h 

In(~:) 
E }' 4 2mV/ d =6 (2.13) 

'0' 3 1 (de ~ m~ 0 enoz n 0
0 
J 

The mass of each droplet, of density, p, is given by: 

pJr0 3 
m= 0 

6 
(2.14) 

If the effects of the charge from adjacent droplets, gravity and air resistance are 

assumed to be negligible, then the horizontal displacement, 0, affected on one droplet 

travelling through plates of length, Id, is given by: 
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Figure 12 - Charging and deflecting of droplets 

29 



Physics and Hardware 

This is the amount of deflection for one isolated droplet without the effects of air 

turbulence, electrostatic repulsion from other droplets and gravity. These effects are 

simulated [16] using 4th Order Runge-Kutta numerical integration and yield the 

maximum horizontal distance between any two droplets at a given flight distance. 

Although this does not show the actual variation of each ball in conjunction with 

deflection the distribution can be used to work out the potential directional error in 

droplet flight path. 

2.2 On demand droplet formation 

So far this report has concentrated on the physics of droplet formation in continuous 

mode materials jetting. However, as previously stated, materials jetting is split into 

two distinct areas. 'Drop On Demand' mode releases a droplet with every pulse of the 

transducer attached to the molten material crucible, figure 13. Negating the need for 

charging and deflection, it is more suited to the deposition of dielectric materials and 

incorporation in optoelectronic device production but the processing temperatures are 

lower. Operations with higher temperatures, over 300°C, are presently being 

investigated [26]. 

The production of droplets by inducing a pressure pulse within the liquid was 

observed by Hansell [46] in the 1950's. A molten material is held in a glass capillary 

surrounded by a piezoelectric actuator, an electrical pulse causes the transducer to 

contract, inducing a pressure wave in both the glass and therefore the molten material. 

The change in volume creates pressure transients, in turn forcing a drop out of an 

orifice at the end of the capillary. 

Alternatively techniques use acoustic waves or a thin film resistive element wrapped 

around the capillary. When a high current is passed through it the molten material in 

contact with the walls vaporises and forms a bubble within the liquid, which in turn, 

forces out a droplet [27]. This report shall concentrate on the piezoelectric method. 
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2.2.1 Drive waveform 

Considering the positive part of the wavefonn illustrated in figure 14 the transducer is 

driven so that an expansion is initially created in the material forcing it out of the 

capillary. The width of the pulse defines the amount of material, which is released 

before the piezoelectric material forces the fluid back into the glass capillary, breaking 

off a droplet. 

There is a fmite amount of material that can be ejected with each pulse because all 

devices have a fluid acoustic resonance which means there is an optimum pulse width, 

which is defined as the highest drop velocity for a given pulse amplitude [28, 29]. The 

second part of the wavefonn can be used to cancel some of the residual acoustic 

oscillations that remain in the device after drop ejection. For the case when the 

piezoelectric transducer is coaxial with the acoustic cavity, the optimum bipolar 

wavefonn has equal positive and negative amplitudes with the second delay time 

twice that of the initial one [26]. 

2.2.2 Fluid properties 

The generally accepted material property requirements for a Newtonian fluid to be 

used in demand-mode inkjet devices are a viscosity of 0.5-40 cps and a surface 

tension value of 0.20-0.70 N/m [26]. These properties are nominal and fluids outside 

these ranges can be jetted albeit with increased difficulty. Instabilities in the droplet 

fonnation are seen as satellite droplets that fonn at the same time, as the main part of 

the material is released from the orifice. Higher viscosities act to dampen the acoustic 

waves that create the drop and the satellites, but require a higher drive voltage. 
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Fluids that are particulate based can also be jetted so long as the particles are :55% of 

the orifice diameter since anything larger will lead to instabilities in the droplet 

generation [26]. 

2.3 Modelling 

Theoretical simulation of the process will reduce the time needed for material 

recycling, optimisation and set-up of the production and deposition of droplets. The 

physics behind solder jet break-up has been studied by Essien [5] and confirms the 

theories of Rayleigh and Weber in conjunction with results gained with an 

experimental droplet generator. They also note the drastic effect of oxygen on jet 

break up. If oxygen is not removed from the atmosphere then no break-up can occur. 

Using the demand mode system titled 'magneto dynamic solder pump (MDSP)" 

developed by Smith at mM in 1995 [27] Essien identified the optimum time needed 

for volume displacement, in relation to orifice size, to take place for a well formed 

droplet to be created. For example, when the volume needed to force a droplet from a 

200llm orifice is disturbed in a time greater than O.3ms then there is a possibility that 

no clean break-off of the droplet will occur and satellites may form. Essien also notes 

that the size of the droplet formed varies linearly with applied pulse amplitude. 

The next step to be modelled in the deposition process is the actual flight path from 

the orifice to the substrate. A typical simulation for the flight path of droplets, studied 

in length at MIT, will have several parameter inputs, such as initial droplet velocity, 

diameter, charge and thermal state [25]. Acting on these values using a fourth order 

Runge-Kutta integration enables several profiles to be produced, such as: 

• Velocity v. flight distance: 

• Spread width (of the droplet path) v. flight distance; 

• Thermal state v. flight distance; 
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• Mass flux distribution; 

To deposit the droplets by the continuous jetting method, the stream must be deflected 

away from and towards the chosen deposition sites on the substrate. These results 

enable the optimised control of the droplets. 

The droplet flight path simulation code developed by MIT, originally in Matlab, has 

been adapted in to an easily configurable version, written for a Windows based 

computer in Visual Basic. A full graphical user interface allows the user to adjust the 

parameters for the run so that the simulation can be aligned with the current 

equipment set-up, figure IS. The algorithms developed at MIT [25] are used as the 

basis for the software and the additional code built around this engine presents on 

screen a set of variables, such as the orifice diameter and ambient gas, which are 

changed depending on the initial conditions of jetting. The materials and the gas 

properties used in the simulation are now linked to a database, which is easily 

maintained and added to, containing values such as the melt density, specific heat and 

temperatures. 

The current program allows eutectic binary alloys to be simulated, figure 16. All 

material combinations are valid as long as they have a defined eutectic point on their 

phase diagram. If more complicated phases and ternary alloys are to be simulated the 

database must contain detailed information from their phase diagram. The 

development time needed for this is beyond the scope of this hardware research 

programme. 

On running the simulation, the required information is displayed in graphical form 

indicating how the liquid fraction, or temperature, of the material changes with time 

and/or distance, figure 17. This is particularly important for deposition, where these 

properties are critical to the final microstructure of the material. 
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Figure 15 - Simulation Control Variables Setup 

Figure 16 - Simulation Material Variables Setup 
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0.11 0.22 0.32 0.43 0.54 0.65 0.76 0.86 0.97 1.08 

Flight Time (seconds) 

0.09 1.19 1.78 2.38 2.97 3.56 4.16 4.75 5.34 5.94 

Flight Distance (metres) 

Figure 17 - Simulation Output: Indication of point of solidification 
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Since the aim of this work is to enable the process to impinge on a component to fix 

it, both mechanically and electrically with a required amount of material, it is 

important to consider the behaviour of molten droplets as they solidify on a solid 

surface. As a molten droplet hits the target it is known to spread, bounce and splash. 

Understanding the bouncing phenomenon is especially important in electronic 

packaging where the shape of an individual solder droplet is critical for the quality of 

connection. 

To obtain the desired deposition and get a nicely shaped droplet with a high degree of 

spreading but a low degree of splashing, oscillation and bouncing, it is necessary to 

keep the ratio of oscillation time to solidification time low with respect to contact 

angle. This is achieved, in real terms, by ensuring the wetting potential of the droplet 

to the surface is maximised and the flight distance and impact speed are optimised 

[30]. 

Theoretical, and experimental, investigations into the fundamental heat transfer, fluid 

dynamics, and solidification phenomena occurring during deposition of picolitre sized 

molten solder droplets have been performed [6, 31]. Aimed at drop-on-demand 

jetting, the flight path of the modelled droplet is to the order of about I mm, which 

impinge on a substrate at Ims· l
. Substrate temperature, recoil (due to surface tension) 

and viscous effects of eutectic tin-lead are taken into account as the spherical droplet 

impacting on a multi layer substrate is modelled, solidifying to its final shape. Adding 

to previous work on transport phenomena in non-traditional manufacturing Waldvogel 

[6] investigates 

• Deposition of picolitre size liquid-metal droplets one on another (pile-up) 

• Three-dimensional heat, fluid flow and solidification phenomena; and 

• Effect of substrate composition on final shape. 
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Several simplifying assumptions have been made in the above model, figure 18. 

Values such as the wetting characteristics of the substrate, surface oxidation, 

liquid/solid interfaces within the droplet and the heat transfers from the free surfaces 

of the deposited droplet are all approximated. The quantitative comparison of the 

experimental and theoretical data reveals only a small difference between both sets of 

results due to un-simulated phenomena showing the potential of mathematically 

optimisation of the process before experimental trials. The investigations so far have 

only illustrated the importance of an understanding of the droplet solidification 

process. The effect of an increase in substrate temperature was shown to delay the on

set of freezing with respect to the droplet oscillations, which leads to an increase in 

the qualitative predictability only. 

2.4 Case studies 

2.4.1 MIT Droplet-based Manufacturing 

Group 

The droplet based manufacturing (OBM) group, part of the Laboratory for 

Manufacturing and Productivity, Oept. of Mechanical Engineering, Massachusetts 

Institute of Technology, was established in 1992 to exploit the Uniform Droplet 

Spray' (UOS) process. Patented and developed at the OBM group at MIT, UDS 

exploits the capillary instability phenomenon of liquid jets for producing uniform 

liquid metal droplets, which allows for a greater control of the thermal state and mass 

flux of the droplets. 

Many possible applications of the UOS process exist, in particular rapid prototyping, 

spray forming, spray coating, and the production of uniform metal powder production 

as well as the droplet generation head for continuous mode materials jetting. A 

licence, and initial equipment, for UOS was purchased as the basis for the project at 

Nortel Networks. Using a combination of uniform droplet production, charging and 
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deflection and data driven substrate movement, as outlined in figure 19, the aim is to 

be able to deposit droplets as small as 40llm on a substrate or package. 
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The fluid contained in a crucible is forced through an orifice, with dimensions 

approximately half that of the required droplet diameter, whilst a constant 

electromechanical vibration is applied. As the liquid issues from the orifice, the 

pressure oscillations, created in the liquid by an electromechanical device, force the 

stream to break-up at regular intervals, figure 20. This creates a jet of uniformly sized 

droplets whose size can be varied by increasing or decreasing the driving frequency 

applied to the transducer. As the basis of the equipment for this project, a uniform 

droplet generation head was purchased from the Massachusetts Institute of 

Technology (MIT). The equipment invented by Prof Jung-Hoon Chun and Christian H 

Passow is 

'~ methodfor producing charged uniformly sized metal droplets 

in which a quantity of metal is placed in a container and 

liquefied, the container having a plurality of orifices to permit 

passage of the liquefied metal there-through. The liquefied 

metal is vibrated in the container. The vibrating liquefied metal 

is forced through the orifices, the vibration causing the liquefied 

metal to form uniformly sized metal droplets. A charge is placed 

on the liquefied metal either when it is in the container or after 

the liquefied metal exits the container, the charging thereof 

causing the droplets to maintain their uniform size. The 

uniformly sized droplets can be used to coat a substrate with the 

liquefied metal. " [9] 

MIT have 3 sets of apparatii, which are all used for jetting solder alloys. The majority 

of the work has been conducted with pure tin and eutectic tin/Iead alloys, and solder 

powders ranging from 50-800J.l1ll diameters have been accurately produced. MIT are 

aware that polymers and glasses are potential materials for the UDS process but they 

have not carried out any practical work in these areas, as yet. Recently they have 

reported using a plasma to charge the droplet stream. Since 1998, the research group 

at MIT, consisting of7 members, has concentrated on several key areas of the 

technique including; 
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Feedback of droplet size - this has successfully been demonstrated is 

capable of controlling volumetric dimensions to within ±3%. This work 

is being targeted towards the production of larger spheres for Ball Grid 

Array (BGA) applications. This research is of particular interest to 

optoelectronic manufacture where the volumes deposited into the 

electronics package are critical. Chapter 4 details the refining of the 

hardware, vision systems and algorithms used to achieve closed loop 

feedbackfor smaller ball sizes (down to 50J.1m). 

High melting temperature alloys and metals - MIT have successfully 

created powders, with droplet diameters ",,250pm, of pure Aluminium 

(melt temperature 660°C) and pure Copper (1200°C). This process is 

still very much in development and cannot yet be achieved on demand, 

showing how difficult it is to achieve. 

Droplet deflection and spreading on impact - Predictive and 

experimental trials are used to study the deflection and deposition of 

solders. Being able to predict these two values will improve the 

deposition of materials into a package or onto a substrate. 

2.4.2 Experimental procedure 

As outlined in figure 21 the head is enclosed in an inert (N2) atmosphere and the 

liquefied metal is also forced through the orifice using nitrogen. Prior to production of 

the droplets the chamber is evacuated and flushed with N2, before being filled with N2 

to a positive pressure of about 10 p.s.i. The pressure difference, between the driving 

pressure (in the crucible) and chamber pressure, needed for stable break-up through an 

orifice of, say, IOOllm is approximately 15 p.s.i., i.e. the crucible needs to be 

pressurised to 30 p.s.i. 
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Figure 21 - Droplet Formation Apparatus (After Chun) [91 
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2.4.3 Microfab Technologies Inc 

Microfab Technologies Inc. are the leading commercial exponents of this technology 

and have over fourteen years experience in developing ink-jet/micro jet printing 

processes to reduce costs and increase flexibility in a variety of manufacturing 

applications. They have micro jet printed a wide range of materials, including liquid 

metal solders, fluxes, adhesives, epoxies, thermoplastics and UV -curing materials. 

Their technology has demonstrated the ability to place 25-1251lm diameter solder 

bumps onto metallized wafers [30]. It has also been used to create vertical inter

connect, apply adhesives for component bonding, form micro-optical components and 

deposit polymers doped with fluorescing materials [17]. More suited to the deposition 

of dielectric materials, demand mode printing is a versatile and more mature 

technology than continuous mode droplet generation; it lends itself well to adoption in 

hybrid packaging technologies, where many materials are used in the same product, 

especially those required by optoelectronic devices. 

Fluid viscosities in the range 0.2-40 cps and surface tensions of 0.2-0.7 N/m can be 

handled and drop volumes as low as 20 pI and as high as 1 nl can be dispensed. The 

maximum diameter of a droplet that can be issued from an orifice of a certain 

diameter is three times that of said orifice [26]. Experimentally, operations with 

higher viscosities and at over 300°C are being developed. 

The Microfab equipment is capable of producing and depositing droplets with an 

accuracy approaching several microns. The print platform is equipped with a 

downward looking vision system, allowing for fiducial location and inspection of the 

jetted materials. The accuracy is limited when new materials are tested since the 

droplet spreading characteristics at the point of impact with the substrate are not 

known quantitatively. Optional coatings to influence the wetting behavior can be 

applied and software utilizing XY -stage linearity and temperature correction 

algorithms are incorporated into the hardware control to improve placement accuracy. 

The high-temperature solder jet drop-on-demand print head and device are suited for 

dispensing droplets of polymers and liquid metals (e.g., solders). The print head 
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includes ductwork to provide an inert atmosphere at the device tip, e.g., dry nitrogen 

for jetting solder. The glass tube is fitted with a piezoelectric actuator and mounted 

into a metal housing with integrated flush surface fitting that provides mechanical 

protection and support. The print device housing is insulated by an air gap from the 

piezo element and is attached to the print head, figure 22. The basic internal 

construction, figure 23, of the print head is a glass tube of 0.7 mm inner diameter with 

the tip drawn to an orifice of 30-60 J.lm in diameter. 

In high temperature drop-on-demand printing the most important variable is the 

driving waveform applied to the piezoelectric actuator, the profile of which is outlined 

in figure 24. This controls the ejection of each droplet due to the glass capillary being 

affected by each cycle of the waveform. A simple "On-Off' pulse that moves the 

piezoelectric transducer and then returns it to the rest state can drive a piezoelectric 

demand mode ink-jet device, i.e. the positive part of the drive waveform only, but the 

optimum pulse width is more distinct if the piezoelectric transducer is driven so that a 

negative pressure is created in the fluid initially, and the return to rest state creates a 

pressure rise. 

In their current set up, the controlling computer allows for 3 modes of operation -

single shot trigger, continuous mode and burst mode, where a set number of drops are 

ejected per the equipment being triggered. The typical cycle time for each waveform 

is about 2ms, with rise and final rise times of about 51ls and dwell times of 60lls. Fall 

time is set to as small as possible a value, i.e. Os, where the limitations of the 

waveform driver govern the actual time. The +VE Voltage and Echo Voltage are 

chosen to be plus and minus 58V. Figure 24 shows how the droplet is formed, and 

ejected, during one cycle of the waveform. 
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Figure 23 - Microfab Micro Optic Jetting Device 
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As the cycle starts the positive voltage expands the glass capillary retracting the liquid 

back up into the device. This is then ejected as the voltage decreases, forcing the 

liquid out, past the equilibrium position, producing a droplet. The DC Level is 

adjusted in conjunction with the gas backpressure to achieve the best equilibrium 

position of the liquid. In principle, a contraction of the piezoelectric actuator 

introduces several pressure waves in both directions that reach the orifice as a 

superposition of vibrations with several modes of system frequencies [26]. These 

harmonics lead to the formation of satellites in addition to the droplet formed by 

fundamental waveform. Optimising the echo voltage and dwell time serves to dampen 

these effects. 

2.4.4 Gas Subsystem 

In addition to the electrical drive of the system, the backpressure applied to the device 

also governs the quality and repeatahiJity of the jet. For the MRX-I JO Polymer the 

MKS Type 250 vacuum controller holds the back pressure (negative - vacuum) at 15 

Torr to within ±O.02 Torr. The small vacuum is needed to hold the polymer material 

within the jetting device - the size of back vacuum/pressure depends on the viscosity 

of the material - solder jetting requires a small positive pressure. 

To dampen any pressure variations, and stop particles backing up to the vacuum, the 

114 inch supply pipe leading to the device is fitted with a fine in-line filter. 

When using this system the station is 'exercised' for up to 3/4 hour before deposition 

is attempted to ensure clean ejection of material. This is achieved by continually 

ejecting droplets at a rate of approximately 2 per second, whilst the equipment is 

warming up. For JOO!J1l1 diameter droplets, only 3 micro-litres of material would be 

ejected over this time. 

2.4.5 Motion System 

Outlined in figure 25 is the 'Optics Jet' system, which allows for the deposition of 

polymers for micro-optic components. The current set-up allows for two heads side by 
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side enabling the concurrent deposition of different materials, for example - polymers 

with differing refractive indices. The deposition system is semi-automated. It uses a 

computer-based interface giving the operator control over the waveform driving the 

jetting device, the number of droplets, deposited array size and separation and 

movement speed. 

The downward looking camera monitors the movement of the substrate whilst looking 

for the deposition site. The positioning system then moves in the x direction a set 

amount so that the position of the device head replaces the camera. Therefore, during 

the actual deposition, the substrate is not monitored and is reliant on the accuracy and 

repeatabiIity of the positioning system. 
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3 Process Development 1 - Software 

The research carried out on the continuous mode equipment at Nortel Networks has 

been concerned with several hardware and software aspects, these development stages 

have been split into the following areas: 

• Droplet detection, measurement and control 

• Orifice redesign 

• Stream control 

This chapter will outline the software methods developed at MIT and Nortel Networks 

for controlling the droplet size and a potential hardware solution that increases the 

resolution and speed of measurement, essential for electronic and optoelectronic 

device production. It will also address the hardware repeatability issues of the orifice 

and stream control, essential ifthe process is going to become a reliable, high 

precision manufacturing tool. 

The previous developments ofthe CMMJ equipment are summarised, and the 

modifications made to the process hardware are presented introducing two new 

approaches to improve on the previous methods to control the droplet diameters and 

stream direction repeatability. 

3.1 MIT Software 

As previously discussed in Section 2.4.1. (page 38), Alvarez (ofMIT) has 

implemented a method of closed loop feedback for continuous mode machines [11]. 

An image of the droplet stream, frozen by stroboscopic illumination, is acquired using 

a charge coupled device (CCD) camera. The image is transferred to a computer via a 

'frame grabber' add-on card, which captures a video image of the stream, which is 
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used to analyse the separation between the ejected droplets. Measurement is achieved 

using edge detection techniques, which identify abrupt changes in the grey scale! 

values of this image. The software scans the current image looking for dark regions 

representing droplets. If the cross-sectional area of one of these regions satisfies that 

of an estimated size, as determined by the operator, then a droplet is 'found'. Direct 

measurement of the diameters are not feasible with droplets above 500J.lm, because 

droplet shape oscillations will not have stabilised until the droplets have passed 

outside the field of the camera. To account for the shape variations, the centre points, 

measured in pixels for each droplet, are determined from the maximum and minimum, 

horizontal and vertical edge values, figure 26. 

This is valid because the droplet's shape oscillations are axis-symmetric, so the centre 

points would still be in the same place. The algorithm then continues to look for two 

further droplets. The average spacing, or wavelength, between each droplet, A., is 

calculated and the droplet diameter is found from 

(3.1) 

Cnoz is an experimentally determined [16] coefficient relating to the frictional, 

viscosity and surface tension effects of the material being deposited. Dcamera; converts 

the number of screen pixels to a distance in metres. 

The difference between this measured ball diameter and the desired size is then 

compared. Altering the frequency of the applied electro-mechanical vibration will 

slightly change the induced break-up length, thereby increasing or decreasing the 

droplet size by computer control. 

! Relating to the relative intensities of pixels within an image. 
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MIT have successfully demonstrated this feedback method for producing solder balls 

for BOA packages for large size droplets of around 650 microns, to within ±3% of the 

nominal diameter. Smaller droplet sizes could also be measured if more powerful 

camera optics are implemented. One limitation of this approach is that once the 

-,-

21 

_10.. 

Figure 26 - MIT droplet detection nses blob analysis to find the centre to centre spacing of the 

droplets 
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camera calibration factor has been established, it is not possible to adjust the camera 

optics without re-calibrating the pixel size factor. Care must be taken not to affect the 

camera once it is set. As smaller droplet sizes are measured, there comes a risk that 

slight variations in the stream direction would cause the droplets to become 'out of 

focus', adjusting the camera optics to compensate would then alter the conversion 

factor. Also, since a CCD camera captures images at a rate of 25-30Hz and the 

smallest of droplets can be produced at much greater rates (i.e. > 20KHz) the resulting 

image is the superposition of many minutely differing views of the 'frozen' stream 

(up to a -1000 depending on the speed of the strobe illumination). 

The development of a new algorithm is presented in this chapter, which improves the 

robustness of the measurement method and aligns the technique so that it is fully 

scalable down to the smallest producible ball size (-40/lm). This algorithm is 

incorporated into control software, which will be able to control all aspects of the 

continuous mode jetting technique, from the ball production, through charging and 

deflection, to substrate movement. 

In addition, a potential hardware solution is presented which could further improve 

the resolution, accuracy and speed of droplet size analysis. 

3.2 Software development 

The software, written in Visual c++ 5.0, has the capability to control the separate 

constituent parts of the continuous mode materials jetting hardware as part of an 

automated system. Considering the process control diagram, figure 27, the software is 

split into two distinct threads. The ball size control algorithm, thread one, is 

synchronised with the secondary thread, which controls the deflection and substrate 

movement. Using a multitasking operating system, such as Windows NT, the 

application programming interface (API) allows for programs to be built which are 

able to run and synchronise the number ofthreads as outlined in figure 27. 

Communication between the threads is critical, and as such the process is set up so 

that deposition will not take place until the droplet volume is validated. 
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3.3 Histogram Method of Droplet Size 

Measurement 

A continuous mode droplet generation process for smaller dimensions will inevitably 

require a closed loop feedback system to work for droplet diameters approaching 

40llm (i.e. 34 pI). Detecting the droplets by the edge detection techniques for smaller 

droplet sizes, as described in the previous section, will result in reduced accuracy due 

to the resolution of the optical system. 

Expensive optical components are not needed if the relative intensities within the 

image are analysed, instead of attempting to detect each droplet. Using the same 

optical set-up as described in chapter 2 (figure 21), an image is captured, but this time 

is reduced in size by the operator to only include the droplet stream. The selected 

window is referred to as the region of interest (RO!), figure 28, and is a useful method 

of eliminating any unnecessary processing. The ROI is then scanned, row-by-row, 

building a histogram representation ofthe grey scale values within the image. Since 

the droplets are illuminated from behind, it is necessary to invert the values for the 

histogram. 

The computer stores the image as a 2D array of grey-scale values, figure 29, this 

allows for mathematical, or more specifically 'image processing', algorithms to 

interpret the image data and produce a meaningful numerical analysis. In this case it is 

necessary to find the distance between the droplet centres so that a value can be fed 

into equation 2.6 to yield the droplet diameter. Previous methods [11] use gradient 

operators, which locate the leading and trailing edges of a droplet to determine its 

position. This approach works well for large changes in grey-scale and well-defined 

ball shapes. As the droplet size decreases the edges and ball shape become less 

distinguishable so a more robust method of finding the centre-to-centre spacing is 

presented. 
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Figure 28 - Image of droplet stream 

Figure 29 - (inverse) 3D representation of the relative greyscale ofthe droplets 
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Considering the grey-scale map as aID histogram, a F ourier transform is performed 

on the data, which gives the fundamental frequency of the data, or the number of 

peaks. If the number of scan-lines is then divided by this number, the peak-to-peak 

distance in pixels is found. 

There are two ways to build the histogram. If a threshold operator is passed over the 

ROI, a binary image of the droplets is created. Then, as the image is scanned, the 

number of 'on' pixels is summed, figure 30. The advantage of this method is that the 

position of the droplets is well defined. However, one problem is that the intensity of 

background iIIumination,or noise, over the image may vary, which frequently occurs 

when using stroboscopic devices. 

This problem has been overcome by incorporating an adaptive form of histogram. By 

sununing the total intensity in each row (or scan-line) in the region of interest, the 

droplets are super-positioned upon the varying illumination intensity, figure 31. 

Pronounced peaks are observed, which relate to the positions of the droplets within 

the image. To obtain a value for the stream wavelength, and hence the droplet 

diameter (equation 3.1), the peak-to-peak values must be filtered out ofthe histogram. 

The actual positions of each peak are of little relevance, and the average distance 

between the peaks only needs to be established. The frequency of the fundamental 

pseudo-waveform illustrated in figure 31 can be found by performing a discrete 

Fourier transform (DFT) on the data series. The discrete Fourier transform maps a 

function from a finite number, N, of sampled points to N complex numbers. 

In this application, computational speed is a critical factor. To achieve the most 

efficient processing time, a specific case ofDFT known as the Fast Fourier Transform 

(FFT) can be utilised, which reduces the number of operations from N2 to N /Og2N. 

The clearest derivation for this algorithm is given by Danielson and Lanczos [32], 

who show that a DFT oflength N can be written as the sum of two discrete Fourier 

transforms, each oflength N/2. 
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Figure 30 - Histogram representation of the number of 'on' pixels due to presence of a droplet in 

an image after thresholding 
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Figure 31 - Histogram representation of ROI relative gray-scale intensities 
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The maximum value in the resultant data series indicates the fundamental frequency 

ofthe sampled data. Dividing the total number of scan-lines by this value gives the 

corresponding wavelength. This is then used in equation 3.1 to yield the droplet 

diameter, affecting the hardware based on the difference between measured and target 

droplet size. 

Previously reported techniques [11] incorporate a proportional control algorithm, 

which affects the frequency proportional to the magnitude of the control error. The 

processing time using the new algorithm is greatly reduced, and each individual cycle 

takes 150ms compared to a previously reported value of 700ms. One possible 

advantage of this method is that the measurement accuracy increases as the droplet 

sizes decrease. This is due to the fact that as the droplet diameters are reduced, more 

are present in a set distance and therefore examined by the algorithm, as opposed to 

fixing the number of balls to be assessed to make the measurement. Unfortunately the 

process is still limited by the response time of the CCD camera and the need to 

perform any size-pixel calibrations. 

The value in pixels is converted into a real value by including a conversion factor, 

ocamera, which can be calibrated by setting the camera at the desired focus and 

magnification and then measuring a known value. This is achieved, using the MIT 

equipment, by placing a calibration slide, with 3 fixed droplets a known distance 

apart, in place of the droplet stream before the run. A calibration program is then run 

which measures the distance between the droplets and because A, is known in this 

instance, the conversion factor can be calculated. 

In an attempt to simplify this process an alternative method has been developed. As 

outlined in figure 32, the charging plates can be imaged and, because they will be in 

the same focal plane as the droplet stream, so the conversion factor will be valid as 

long as the camera is not adjusted. This removes the need to position an additional 

piece of equipment, the glass slide, and can be performed at anytime during the run. 

The measurement lines are moved by the user to coincide with the known distance 

(i.e. their height). Entering this actual distance in millimetres gives the required real to 

pixels conversion factor, given by 
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o = mm 
camera • l 

plXeS 
(4.2) 

Depending on the quality and power of the camera and its lens and the resolution of 

the computer screen this value has the potential to add large errors into the ball 

measurement algorithm. It is also very sensitive to changes in the magnification of the 

camera meaning that it is still not possible to adjust the camera in-situ once this value 

has been set. 

3.3.1 Droplet-to-space ratio measurement 

method 

Using the above DFT method some resolution is lost as the droplet diameter increases 

due to the discrete nature of the algorithm. In addition, the variation in perturbation 

amplitude, due to resonance and harmonic effects in the transducer, figure 33, leads to 

variations in the stability of the break-up as the frequency changes. 

An alternative method has been derived, which also removes the need for any optical 

calibration, therefore eliminating a value for oeamera. The feedback control variable can 

be determined from the linear relationship between the droplet volume and jet 

velocity. The jet velocity can be altered, by adjusting the pressure inside the crucible, 

which can be used to control the droplet size. 

The effect of altering pressure is illustrated in figure 34, as the crucible pressure is 

increased, the droplet volume also increases. 
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Figure 33 - Variation of disturbance amplitude with frequency 
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Figure 34 - Effect of altering pressure on water droplets issued through a 400lll" orifice, using a 

constant perturbation frequency of 1500Hz; a) at low pressure(-5psi); b) at high pressure (-15psi) 
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3.3.2 Droplet volume control thread 

Using an image ofthe droplet stream, captured using stroboscopic illumination 

(Chadwick-Helmuth model 1 09) and a CCIR camera linked to a muTech M-Vision 

1000 Video Digitiser PCI board, the video digitiser board enables images to be 

'grabbed' from the camera to the computers memory. The image is then segmented in 

order to highlight the area of the image that contains the droplet stream. The 

segmentation also serves to reduce the processing time needed to analyse the stream 

as the image processing operators do not need to iterate over the whole image. Using a 

graphical user interface (GUI) it is possible for the image to be segmented manually 

by the operator. The live video of the stream is displayed on the screen with a 

rectangle highlighting the region of interest superimposed on top, figure 35. 

Using the ball space method as the fundamental control variable means that the need 

for camera calibration is eliminated since this ratio will remain constant no matter 

what magnification is chosen. This has the consequence that the user can alter the 

camera focus mid run without the fear of losing calibration. Using a modified version 

of equation 2.6 the software simply requires the user to enter the current orifice 

diameter and required ball size, figure 36. Once the program is set to feedback mode it 

constantly tries to alter the hardware in an attempt to align the measured ratio with the 

target. Using an average of the previous 30 readings the pressure is adjusted 

proportionally to the amount of error between the measured ratio and the target. The 

software code for this is outlined in Appendix I, Listing A, Lines 110-128. Using the 

simple form of the incremental proportional control algorithm; 

C=ke p 
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Ball Space Ratio is calculated from the 
number of scan-lines containing a leading 
edge (green) AND a trailing edge (blue) 
within the region of interest. 

By selecting a "region of 
interest" within the 
captured frame 
unnecessary processing 
can be eliminated. The 
user can alter this area at 
any time correcting for any 
errors in camera or stream 
alignment. By selecting a 
region close to the stream 
will reduce the potential of 
noise affecting the 
calculated ratio. 

Edge detection 
operators can be 
optimised by the user. 
By altering the 
sensitivity of the sobel 
operators the 
detected edges give 
the position of each 
material sphere. 

Figure 35 - Digitised Image of the Stream showing software location of stream 
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where the control action, C, is the change in the amount of voltage applied to the 

valve due to the error, e, in the ball space ratio. The constant of proportionality, kp, is a 

user defined variable which relates to the change in valve position per control action. 

Software Code - Listing A, Lines 130-156. These values are controlled from the main 

program dialog window (see later, figure 40), which allows full control of the 

proportional control to the valve. The text box labelled Voltage Change (m V) is used 

to alter the constant of proportionality - if this is set to zero no action occurs. The • Set 

Point (V)' relates to the nominal position of the valve at the start of a production run. 

Manual control of the valve is also possible using the Increase / Decrease buttons. 

Since the action of measuring the ball space error (Cycle Time), figure 37, takes less 

than 200ms it is necessary to inhibit a race condition occurring with the valve. A Time 

Delay is added where no control action is sent to the valve to allow for actuator 

movement. 

In order to utilize the jet velocity as a feedback variable, a suitable set of algorithms 

must be established to monitor the droplet dimensions. Now consider two cylinders of 

material travelling at the same velocity. One being broken into discrete droplets at 

some frequency,/, By definition, over a distance they must contain the same volume 

of material. As the broken stream forms into droplets they separate by a uniform 

'space', figure 38. 

If all the droplets formed per unit time were placed side-by-side, and the length along 

the central axis, i.e. the sum of their diameters, was divided by the total space 

remaining, then in order to equal the length of the unbroken stream, it can then be 

written that the ratio 

LDroplet. values 
Rds = .=;:.-------

L Space. values 
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Preferences: 13 

Figure 36 - Setting the target ball space ratio 
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Figure 37 - Image Analysis Metrics Display 

70 



Process Development I - Software 

Fignre 38 - Illustration of the droplet diameter length and space values in a uniform stream 
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If the stream is travelling at a velocity, Tj, Rds is given by; 

(4.5) 

The total volume of material ejected from the orifice over a unit time 

v=vn(00
)' t J 2 (4.6) 

Combining (4.5) and (4.6) 

(4.7) 

The total volume of ejected material forming! number of balls if found from 

(4.8) 

Since (4.6) must equal (4.7) 

0'=300 '(_'_+1) 
D 2 R 

ds 

(4.9) 

The required diameter of material, 0 D, including a solidification factor to take 

account of shrinkage during cooling or curing, is used to calculate an initial value for 

the target droplet / space ratio, Rds. This is then used as a reference value for the 

feedback loop, and is found from 
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R =(2S0/ 1)-1 
<b 30 2 

o 
(4.10) 

where o D = droplet diameter 

0 0 = orifice diameter 

S = Shrinkage Factor (%) 

The droplet to space ratio has been plotted against the droplet volume for a target 

diameter of 375jlm, to demonstrate how slight adjustments to the ratio can influence 

the droplet volume, figure 39. 

In this example, a droplet to space ratio of approximately 1.065 would be targeted to 

achieve a droplet diameter of 375jlm. If the droplet to space ratio was controlled to 

within ±5%, the diameter range would vary between 370-380Ilm, which equates to a 

diameter size control of 375!lffi ±l %. This highlights how using the droplet to space 

ratio as a feedback parameter, offers the potential for very precise ball size control 

The value for Rds is stored, along with the orifice diameter, for use in the feedback 

algorithm. When the feedback system is initiated, the current value for Rds is 

calculated by measuring the amount of dark pixels, representing the droplets, along 

the stream's central axis. This value is then compared with the target value affecting 

the pressure controller leading to the crucible. 

The ratio value is of particular interest because it will function regardless of droplet 

size, wavelength or velocity; and only requires the orifice diameter to calculate the 

discrete volumes. 
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3.3.3 Gas flow sensitivity 

As previously highlighted, it is considered that using pressure, as opposed to the 

transducer vibration frequency, will reduce resonance in the system. It was thought 

that because the control parameter is the separation between the droplets it would not 

be necessary to include feedback from the chamber regarding the actual pressure since 

the droplet space is inextricably linked to this value. 

U sing the pressure I flow control software based system outlined in figures 40 and 41, 

it is found that the cumulative effect of the unknown flow rates and response time of 

the control valve, the speed of control is too low to be effective. The control action 

from the computer opens and closes the valve on the exhaust flow. This is shown to 

change the droplet spacing non-linearly - since the opening and closing of the control 

valve does not directly relate to flow. This is highlighted in figure 42. The bright 

purple line represents a reference voltage from the valve indicating its open/closed 

position and the dark purple line indicates the action sent to the valve (control action 

is directly proportional to the error in ball space ratio). The graph of control action 

over time is indicative of proportional control over time but as can be seen the valve 

has a severe time lag. Since it has not been possible, to date, to quantify this instability 

with the current set-up, this is a topic for further investigation, using feed-forward 

control with the proposed gas control system shown in figure 43. 

Satellite droplets can be observed when large changes in pressure occur during droplet 

creation. This is in accordance with equation 2.2 since the propagation distance of the 

stream before it is broken is being altered. To overcome this it is now necessary to 

alter the disturbance frequency to fix the amplitude of instability within the limits to 

create a stable stream. 
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W IoIJT Control - Using (01 Camera 13 
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Fignre 40 - Main Control Dialog 
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3.4 Substrate motion control 

The ultimate aim ofthe technique is to deposit the jetted material upon a substrate. To 

do this, the ball production portion of the hardware control must be synchronised with 

the deflection ofthe stream and the movement of the substrate. Using a computer 

aided design (CAD) package, such as AutoCAD'" LT, deposition paths are mapped 

out and, in conjunction with an additional software package, figure 44, can then be 

converted to a series of commands, which are downloaded to the XY table controller 

(parker Hannifin Compumotor 6200 2 Axis Indexer). 

The software supplied by Parker-Hannifin Corporation, entitled CompuCAM, which 

allows a drawing exchange format (DXF) image created in a CAD package to be 

converted to a text file containing a series of motion control instructions. This ASCII 

script file can be edited to include extra commands, which the motion controller 

hardware can use to synchronise with the jetting control software. Specifically, 

instructions need to be added to the script, which inhibit the substrate movement until 

the deposition thread indicates that the droplet size falls between the correct limits. 

Using a technique known as 'handshaking', an 8-bit digital signal is sent between the 

motion control hardware and the jetting control software via a data acquisition board 

(Data Translation DT302) installed in the computer. 

Iflines are added to the script file, to signify critical points in the path data, the 

motion controller will send a digital signal to the computer telling it to validate the 

droplet size. If the droplet size falls between acceptable limits then the computer will 

send a signal back to the XY table indicating that it is okay to continue tracing out the 

path, else the droplet control software will halt the XY table until the size 

measurement is satisfied. Once the script file has been created by CompuCAM and 

edited to include the extra commands it can then be imported to the droplet control 

software by selecting the option '->Deposition->Send Motion PRG ... ' from the 

command menu, figure 45. 
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IiCDmpuCAM - Unlilled I!~ Ei 

Figure 44 - Conversion from DXF CAD fIle to 6200 path data 
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The user selects the desired path data that, in-turn opens a simple tenninal emulator 

(enabling the CPU to communicate with external devices via the COM port), which 

downloads the data to the motion control hardware. 

Built into the droplet size control algorithm is a command, which periodically checks 

the digital input from the data acquisition board, relating to the handshaking. Once the 

path data is resident in the XY table hardware memory it waits until a signal is sent 

from the size control thread indicating it is ready to start tracing the path and 

depositing material. If the total path is split into discrete sections, by handshaking 

commands inserted into the script file, it is possible to continually validate the droplet 

production throughout the run. This handshaking also enables deposition to be 

'switched off (i.e. the stream deflected) if the substrate needs to move to the 

beginning of a new section. 

3.4.1 Manual Control 

In some instances the apparatus may not be used for patterned deposition, e.g. for 

BOA sphere production. Therefore the user would need a more ad-hoc approach to the 

automation of the droplet production. By incorporating a manual control dialog, figure 

46, the user can move each axis of the XY table separately and deflect the stream by a 

chosen amount. For example, the user can monitor the droplet production metrics 

displays whilst using the' Deflection & Collection Control' dialog to move the 

collecting or waste vessels in and out of the stream. 

3.5 Description of Ancillary Controllers 

The control software is implemented under Windows NT Workstation 4.0 on a Digital 

Equipment Corporation (DEC) Pentiurn 11 400MHz, fitted with the following Industry 

Standard Architecture (ISA) and Peripheral Component Interface (PCI) plug-in-cards 

to drive the piezoelectric stack, stepper motor controllers and capture images: 
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Figure 46 - Manual XY table control dialog 
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• f-ITech MVIOOO image grabber (PCI) 

• ETe M321 frequency generator (ISA) 

• Data Translation DT-302 Input-Output (I/O) (PCI) 

A Hitachi VKM98-E CCD camera fitted with a RS Telescopic lens is used in 

conjunction with a Chadwick-Helmuth Slip-Sync-Strobex Model 109 stroboscope to 

freeze and capture images of the stream break-up. 

ETC M321 frequency generator ISA card produces a sine wave between 0-40KHz, 

which is sent to the piezoelectric crystals and synchronises the pulse generator, to 

ensure that the images captured are synchronised to the droplet stream. The signal sent 

to the piezoelectric crystals is monitored on a Techtronix 7613 oscilloscope and is 

then passed through two-stages of amplification. The first stage is an InterM Personal 

Address Amplifier PA-IOOOB complete with a 333 ohm 100V speaker output, then 

the signal is amplified through a standard 160VA Toroidal transformer to produce an 

output (ac) signal of up to 300V. 

3.6 Alternate droplet detection and 

measurement 

An alternative method is proposed to measure the droplet to space ratio, which 

eliminates the need for image capture and software algorithms, enabling faster 

feedback that analyses every droplet as opposed to an extended sample. By 

positioning a laser-diode and photo-receiver at the centre of a focus sed stream, the 

ratio of droplet to space can be monitored very accurately. One approach would be to 

use a series of optics to focus a collimated laser beam onto the centre of the droplet 

stream, then refocus the beam onto the photo-receiver to get the maximum amount of 

light onto the target, see Figure 47. 
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The output signal from the photo-receiver would be a real-time representation of 

droplet presence. Using appropriate signal conditioning (e.g. optical isolator and/or 

Schmitt trigger) the output signal of the photo-receiver could be made compatible 

with standard digital Transistor-Transistor Logic (TTL) circuits. An overview of the 

proposed measurement process is represented in figure 48. By generating a square 

wave using a stand-alone frequency generator, and splitting it into two paths, one half 

could be sent directly to a counter/timer and the other sent to an AND gate. The AND 

gate would also need to be connected to the output signal from the photo-diode. 

Counter I represents the number of pulses received from the frequency generator 

when no droplets are present between the laser and receiver (Le. a number of counts 

representing the total space measurement). Counter 2 represents the total number of 

pulses produced by the frequency generator during the time period. By subtracting the 

value of Counter 1 from Counter 2, it is then possible to obtain the value for the 

droplet presence (i.e. the number of counts for the droplet presence measurement). 

This concept was tested using an integrated diode and photo-receiver detecting the 

movement ofa needle (-5Hz) with a Data Translation DT-302 data acquisition 

input/output (110) board and a personal computer (PC), but a full demonstration 

model using a laser-source and the necessary optics still needs to be conducted. The 

potential advantages of this set-up over the conventional image capture and software 

analysis are: 

• Response time could be reduced from 150ms to <100/-ls. 

• Resolution of the measurement would increase. 

• Every droplet would be evaluated during the sample period. 
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4 Process Development 2 - Hardware 

Development and Test 

To use the continuous mode jetting (CMMJ) technology for material production and 

deposition, the orifice is the most critical element to achieve the necessary uniform 

material break-up. The high speeds at which the material exits the orifice inhibit 

acti ve correction of the stream. No suitable detection method could be implemented in 

this system, without it becoming the main source of cost, to redirect bad material from 

the deposition site. Therefore, a repeatable and robust design ofthe exit orifice is 

necessary to guarantee the quality and direction of the stream to ensure no damage is 

caused to the substrate. 

Any detritus or irregularities on the walls of the orifice will cause the stream to be 

deflected and, similarly, if wetting of the molten material happens inside the exit hole 

of the orifice, the jet consistency and direction will be affected. 

The original orifice mounting method designed at MlT, was to cement a tiny sapphire 

gem, figure 49, to a counter sunk hole in the centre ofthe crucible flange using a high 

performance ceramic material, Autostic™. The gems, supplied by Bird Precision 

Orifices Ltd, are made with high-grade material and machined with precision holes, 

guaranteeing a circular aperture throughout the depth of the crystal, ensuring good 

stream break-up and minimised wetting. However, mounting the gems to the base 

plate of the crucible in this manner leads to the following difficulties: 

It is impossible to predict the direction of the jet stream until the equipment is 

running, because it was difficult to guarantee the small crystals' co-planarity with the 

bottom of the crucible. The directional error in the stream was randomly inconsistent 

with each run being up to 5° off the perpendicular. 
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Only a limited number of experimental trials could be perfonned on the equipment 

each day, because of the lengthy drying time that was needed to fix new gems in 

place. 

The orifices need to be replaced after each trial because the adhesive cement 

suffered from fatigue stress, cracks would appear eventually resulting in the crucible 

leaking. Figure 50 shows cracks in the cement allowing solder to seep through and 

figure 51 shows one example where the orifice was completely blown out due to the 

cement failing. Both instances allowing large drops of solder to leak onto the 

substrate, one being much more destructive than the other but both equally 

unacceptable. 

Also, the additional gasket material needed to secure the crucible flange (not 

shown) to the crucible, also leaked on occasion, causing catastrophic failure, 

preventing the equipment from being used until dismantled and cleaned. 

4.1 Orifice redesign 

All of the above points indicate a non-repeatable process that could not be transferred 

to high reliability device manufacture. In an attempt to resolve these problems, two 

alternative methods for orifice mountings and design have been investigated, figure 

52. Both methods remove the need for cement, and help to reduce the variation in the 

stream direction. 
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Figure 49 - Illustration of the MIT mounting method using Bird Precision sapphire orifice 
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Figure 51 - Result of catastrophic failure of the cement holding the sapphire orifice 

Figure 52 - Alternate methods for orifice mounting 
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4.1.1 Orifice pre-mounted in a component 

The solution shown in figure 52A uses a pre-machined orifice gem with the same 

design and quality to that used by MIT. However, in this configuration, instead of 

having to fix the gem to the crucible using cement, it is supplied pre-mounted in a 

simple hex head brass bolt of specifiable dimensions. The parts, supplied by Cooper

Walker Microelectronics, based in Edinburgh, are fitted with an orifice having an 

aspect ratio of approximately 5:1 (wall length to aperture diameter) and are 

interference fitted inside the bolts. The bolt is screwed directly into the crucible, with 

a high temperature gasket material, offering the following advantages: 

• The time taken to change an orifice was significantly reduced; 

• Each orifice could now be used more than once; and 

• The jet direction variation was reduced. 

After experimental trials, the orifices, still had inconsistencies due to the following 

observed issues: 

• Solder was capable ofwicking down the thread of the bolt and leaking out of 

the crucible. 

• Variation in the jet-stream direction was still observed in some samples, but 

was now limited to 2° off the perpendicular. 

Brass had been chosen specifically to prevent the solder wicking down the thread, 

because it has a higher coefficient of thermal expansion than the stainless/steel 

crucible. It was anticipated that this would seal the gap in the threads when jetting 

materials above room temperature. To overcome this wicking problem, a washer and 

gasket material (K1ingersil1M C4400) were introduced to prevent any leakage 

occurring. Figure 53 is a photograph of this set-up, showing the hexagonal-headed 

bolt fitted to the bottom of the crucible. 

During the testing of the components, occasional random movement of the stream was 

observed. Although this movement did not occur very often, and the stream variation 
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was far less than 4° offthe perpendicular, there was considerable potential for the 

material to coat the charging and deflection plates during trials. MIT have also 

reported this stream variation using the original orifice cementing method. Shin [33] 

references this phenomenon in a feasibility study of the droplet generation equipment 

and has theoretically calculated what is referred to as 'jumpiness', averaging 0.005° 

over 10 runs. The jumpiness is thought to be a result of the orifice vibrating within its 

mounting, and is most pronounced using higher material through-put rates. 

One potential concern with mounting the gem using an interference fitting is the 

possibility of blowing the orifice out of the component. This has occurred once at 

350°C with a crucible gauge pressure of25 p.s.i. and is most likely to occur as the 

crucible temperatures and pressures are increased. 

4.1.2 Laser-machined holes 

An alternative to mounting single crystal materials with pre-machined holes is to 

create a precision hole directly in the jetting crucible (using suitable materials). In 

practice, it is not feasible to create a number of different crucibles to accommodate 

different orifice diameters for the experimental laboratory equipment, so a variation 

using a larger orifice plate and metal flange was designed to fit different orifices to the 

same crucible, figure 52B. 

Figure 54 shows in detail how the present crucible design can be adapted to 

accommodate a 25mm square metal plate with laser-drilled orifice. A recess slightly 

wider than the aperture leading to the orifice is created to house a high temperature 

gasket material. The plate is held firm against this using a recessed flange, secured 

using bolts, with a drilled material flow aperture and additional gasket material. This 

flange has two secondary functions - it acts as a housing for the charging plates and 

because of the larger footprint of the plate it can be used to adjust the angle ofthe 

orifice, hence stream direction, by differentially tightening the securing bolts. 

Potentially this action could be automated using closed loop feedback control of the 

material flow and powered threads for the bolts. 
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Figure 53 - Orifice pre-mounted in bolt screwed into crucible 

Figure 54 - Metal orifice plate - mounting concept 
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Laser drilling of the orifice means that the thickness of the material, used for the plate, 

limits the choice of orifice diameter and taper. Because of the focussing of the laser 

beam angled walls are formed on holes with a large aspect ratio. For this application 

straight walled holes are required, to ensure that the stream does not atomise, so a 

minimal taper is required, as outlined in table 2. 

I" Material thickness; Orifice diameter . , .• Taper ; 

1000 J1m 40-1000 J1m 5-100 J1m 

500 J1m 30-1000 J1m 5-50 I'm 

200 J1m 5-1000 I'm 10-30 I'm 

Table 2 - Information on material thickness, orifice diameter 

A fine grain metal is preferable to a single crystal or ceramic material, because higher 

machining precision (>5~m diameter holes) can be achieved using a (copper-vapour) 

laser. Tungsten plates of dimensions 25mm by 25mm, and 1000 !lm thickness were 

chosen. These were then spark eroded in the centres to reduce the wall thickness to 

approximately 200 !lm, figure 55, so that the taper is minimised. 

Tungsten was selected as a suitable orifice material because it does not alloy with the 

standard materials used in electronics soldering, it has the highest tensile strength of 

any metal above 1600°C [34]. Tungsten is therefore a suitable material for the levels 

of pressure «IOOp.s.i.) required to jet material through orifices below 50~ diameter. 

Pure tungsten is also available in a very fine grain structure, therefore allowing for 

precision machining using lasers. 

AEA Technology [35] and Exitech [36] are specialists in laser micro machining 

producing holes in metals for fuel injection systems and ink-jet nozzle plates. These 

examples, figure 56, were produced by AEA Technology, Abingdon, using a copper 

vapour laser but similar results can be achieved using excimer illumination (Exitech). 
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Figure 55 - Tungsteu plate with spark eroded recess for laser drilling of orifice 

Figure 56 • Laser drilled holes in Tungsten plate 
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Trials were conducted to confirm that uniform break-up could be achieved and to 

establish the repeatability of the laser drilling process. The results were promising, 

showing that uniform droplet break-up was possible and that two adjacent holes 

machined independently would produce two parallel jets. 

Further discussions with AEA Technology regarding the possibility of taking a hex

head bolt and profiling a similar orifice was also believed to be achievable at a cost of 

about £150 per sample. Although this has not been tested yet, it is thought to be an 

ideal method of manufacturing orifices that can be quickly attached to the equipment. 

The previous trials using the Cooper-Walker mountings had successfully proven the 

method of rapidly changing different orifice sizes. If the orifices were manufactured 

in this manner in the future, then much higher temperature materials (above 1000°C) 

could also be jetted using a graphite crucible, without any risk of the gems being 

blown out. It is also thought that the stream variation would be minimised. 

The Cooper-Walker orifices were most suitable for the laboratory equipment because 

they only cost £3 and can be delivered within a two-week timeframe. This allows for a 

wide range of orifices diameters to be tested on the equipment at a low cost. 

A more in depth costing and performance study needs to be conducted to analyse the 

most cost effective method of orifice production since neither method is 100% 

reliable. Both mounting methods still have the potential to leak and produce stream 

variation, figures 57 and 58. 
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Figure 57 - New laser drilled orifice with temporary charging plate design after stream 

directional variation causes build up of solder on the charging plates 

Figure 58 - Build up of solder at various points at the gasket I plate interface 
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4.2 Lead Free Solder Sphere Production 

In January 2004, all companies will be forced to reduce the content of lead in 

electronics and optoelectronic products to less than 0.1 % in order to comply with the 

Waste Electrical and Electronic Equipment (WEEE) draft directive, being prepared by 

the Environmental Division of the European Union (EU). The majority of solder 

spheres used in electronics packaging at the present time contain enough lead to 

become affected by the WEEE directive, so lead-free alternatives need to be 

identified. Using the Cooper Walker orifice designs, several diameters of balls for 

BGA applications have been created using an array of novel and lead free solder 

types, table 3 [37]. 

Lead-free Alloy .. Composition..; 

Tin/Copper Sn99.3 CuO.7 

Tin/Silver Sn96.5 Ag3.5 

Tin/Copper/Silver Sn95.8 CuO.7 Ag3.5 

Tin/Antimony/Copper A Sn97.5 SbO.5 Cu2 

Tin/Antimony/Copper B Sn91 Sb6 Cu3 

Table 3 - Lead·free aUoys identified for potential use in electronic products 

Ideally the jetted spheres would be allowed to cool completely in an N2 atmosphere 

but this means that larger ball sizes would need a flight distance of over 3 metres. In 

order to overcome this space issue a cylindrical vessel filled with ethylene glycol 

based oils is used to coIlect the spheres. The oil is differentially heated so that the 

droplets are slowed gradually on entering from the gas atmosphere reducing the 

deforming effects of the liquid. Figures 59 and 60 show an example of spheres jetted 

by this method using the Nortellaboratory set-up. In this case the alloy SnSb6Cu3. 

Three phases appear to be present in the microstructure; the primary phase (white 

needles on the photographs) is thought to be a tin/copper inter-metallic compound 

(SIl(;Cus); the secondary phase is a pseudo-binary eutectic (grey petal shaped areas 

surrounding white needles) of possibly tin/antimony; and the third phase is the ternary 

tin/copper/antimony eutectic (darkest areas). 
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Figure 59 - SnSb6CuJ solder balls (x40 mag.) 

Figure 60 - Cross Section of SnSb6Cu3 solder ball- note the petal-like material structnre. 
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4.2.1 Other Orifice Samples 

The Mechanical Engineering department at Loughborough University produced some 

samples to test the micro-machining capabilities of the tungsten plates using CO2 

lasers, figure 61. These samples allowed the investigation of the importance of jetting 

through a circular hole. 

It was concluded that it was not possible to create uniform droplets using non-circular 

orifices. Perfectly circular orifices produce very stable jet streams because any liquid 

stream will naturally form a shape with the lowest surface energy, or area, creating a 

cylinder. A non-circular orifice initially creates a non-cylindrical shape forcing the 

stream to adjust itself, until it becomes stable. This additional fluctuation in the stream 

is predominant over the pressure variations created by the vibrating rod, and the 

driving frequencies are lost in the noise. 

4.3 Stream control 

As previously outlined, the success of continuous mode materials jetting is highly 

dependent on the orifice. The main problem when using a pre-mounted orifice is the 

inability to predict the stream direction, and this has resulted in the jetting material 

coating the deflection and focussing plates. To date there are no reports of a highly 

predicable stream generator. Consequently, it has been necessary to develop a method 

of altering the direction of the stream and position of the deflection and focussing 

plates during trials. 

The University of California Irving (UCI) has developed a system, figure 62, that has 

the most impressive control over the continuous mode technique and shown some 

novel droplet manipulation techniques to overcome the variability in the jet. 
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Figure 61 - Excimer ablated hole and non uniform break-up of stream 

Figure 62 - VCI adjustable head design 
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The VCI set-up is similar to the MIT equipment in concept but the main distinction is 

that the droplet control systems implemented by VCI are far more advanced and 

succinct, enabling automated deflection of the stream. This stream direction is 

corrected by mounting the jetting head on a tripod-like arrangement and adjusting its 

position using a computer controlled closed loop feedback system. Stepper motors are 

used to affect the alignment ofthe crucible, and therefore orifice, back to a pre 

determined angle. The charging plates are still attached to the crucible but the 

adjustable screws allow for any errors in the stream to be corrected and the stream to 

be aimed through the deflection plates. The stream is constantly monitored during 

each run to allow for correction of drift in the direction, which could occur due to 

dross build up or wetting of the orifice. The VCI system uses a 'print-on-the-fly' 

technique that means that patterns are created by substrate movement in one direction 

and electostatic deflection in the other. This greatly improves the pace at which 

droplets can be deposited. It is previously reported that printing on the fly is 

susceptible to variations in ball size, and therefore a tight dimensional tolerance is 

required during the droplet generation. VCI claim that without incorporating closed

loop feedback they can produce droplets using a IOOllm orifice to within 10J.lffi 

variation. Modelling ofthis has been validated with experiments. 

This section describes the improvements that were made to the Nortel jetting rig in 

attempt to accommodate the inconsistencies in the jet direction. The aim is to 

introducing an adjustable crucible arrangement that allows for stream direction to be 

adjusted from the outside of the chamber. Also, to incorporate two rotating branches 

into the equipment, one for each side of the stream, which will allow for the addition 

of focusing and deflection elements. 

The method involves separating the jetting flange into two parts, a main flange for the 

gas and electrical connections, and another to control the stream direction. 

Figure 63 illustrates how the arrangement allows for the attachment of various beam 

deflection elements into the droplet stream. In this configuration only deflection plates 

have been added for simplicity but the branches give provision for future 

developments in stream focussing and catching to be added. The charging ring is 

suspended from the larger flange and is static. The adjustable branches are constructed 
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out of W' copper pipe to provide structural stability and also to prevent static build up. 

The deflection and focusing plates are constructed using stainless steel and insulated 

usingPTFE. 

The voltage applied to each pair of plates will determine whether the stream will be 

deflected or focused. Since the droplets are negatively charged, negative charges must 

also be applied to parallel plates to focus the stream. If there is a potential difference 

across the plates then the stream will be deflected towards the anode, as discussed in 

chapter 2 under "Charging and Deflection". 

The rotating branches allow the deflection and focusing plates to be situated very 

close to the stream, although problems could still occur if the stream direction 

becomes greater than 5° off centre. Although this is not relevant to the Cooper-Walker 

orifices, as the internal dimensions of the hex head component limit the stream 

direction to a maximum variation of 2°, an additional method of straightening the 

stream has been implemented to accommodate different orifice mounting methods 

that may be investigated in the future. 

Figure 64 illustrates how three screws aligned in a triangular formation, can be 

adjusted to control the direction of the jetting crucible flange, by compressing a l2mm 

diameter rubber O-ring. Adjustments are made to the stream direction by tightening or 

slacking the relevant screw. Measurements reveal a variation of±7° off the 

perpendicular is achievable with the current laboratory set-up, figures 65 and 66. 

106 



Charging Plate 

Process Development 2 - Hardware 

Main flange mounted on gas 

Material crucible and 

heating sleeves 

Deflection Plates 

Figure 63 - Branch adjustment of focusing and deflection plates 

Fignre 64 - Adjustable mounting of jetting head 
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Figure 65 _ Current Nortel equipment with adjustable head and rotating 'branches' 
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Figure 66 - Nortellaboratory set-up 
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5 Optoelectronic Demonstrators 

"Such is the fashion for data transmission that the world just cannot get enough and 

the industry is straining to meet demand" [38]. Data and telecommunications are now 

heavily reliant on optical fibres to carry signals, especially over long distances, and as 

such optical based products are currently one of the biggest growth business areas. As 

service providers plan and implement solutions to rapidly expand network capacity, 

cost containment and network flexibility are critically important issues given today's 

very competitive telecommunications arena. Maximum value must be obtained from 

currently installed fibre infrastructure to avoid or defer the large capital outlays and 

long lead times associated with new fibre deployment. 

Manufacturing of these products face many similar challenges analogous to those 

faced in the more established electronics-manufacturing environment such as the drive 

towards increasing volumes of smaller and faster components but with the new 

challenges of decreased dimensions and the need for optical alignment. Components 

such as laser diodes and modulators, designed for high-performance applications, are 

single-mode devices; they must be connected using optical fibres or other types of 

waveguides with sub-micron alignment accuracies because the mode size ofthe beam 

from a single mode fibre can be as small as 9~ in diameter. Currently, 

optoelectronic (OE) packaging is performed by highly skilled technicians looking 

through microscopes and manually adjusting and fixing the components in place. The 

labour costs are by far the highest fraction of the total cost of an assembled OE 

package. The consequences of this low-volume, labour-intensive process of packaging 

OE devices are readily apparent. 

Currently the rapidly rising demand far outstrips the capacity for manufacture, which 

results in more and more people being employed in a similar manner. At the current 

rate of growth, with some products experiencing 400% increases in throughput per 

year, it is not feasible to keep adding more and more people in parallel production 

lines. Sites already face the simple problem that there are not enough suitable people 
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to populate the production lines. The existing method will keep the costs too high to 

allow the advantages of fibre optics to penetrate such markets as on-chip 

interconnects, inter-board connections in computers, local area networks, or most 

importantly fibre to the home. The manual processes must be automated in order for 

this business to keep fulfilling its potential. Therefore, it is a priority to find fast, 

repeatable, automated and robust methods of device production. 

5.1 What Materials Jetting has to offer 

In the following example, figure 67, aligning the fibre with the graded index (GRIN) 

lens in a generic transmitting package requires an operator to move the fibre in two 

axes, with micron accuracy, until the optimum coupling is achieved. Although this 

human intervention allows for high quality and high value added devices it is also 

open to human error, yield and speed issues. Conversely, the above package can also 

be considered as a receiver, collecting the light from the fibre. 

In considering the above generic optoelectronic package, materials jetting has the 

potential to address three key areas in its manufacture. 

I) (Lead-free) Solder Pre-Form Replacement. Tin/gold solder is used to 

mechanically fix items such as the laser module to the optical bench and the 

bench to the package. Solder pre-forms are costly and require precision human 

placement - materials jetting is accurate enough to automatically place the 

correct volume of solder in the package straight from bulk material, taking 

away the pre-form processing stage. 

2) Adhesive Dispensing. Individual components such as lenses need to be placed 

with accuracy approaching ± 1 /lm, this requires the amount of dispensed 

adhesive to be accurate within the order of pi co litres. Materials jetting has the 

ability to dispense UV curing adhesive in volume multiples of, as little as, 

~100 pI. 
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3) Passive Optical Components. Current methods of production require the 

fibre to be aligned in-situ and held in place whilst it is adhered to the lens. If a 

lens could be fixed directly to the fibre end it would remove the need for in

situ alignment of the fibre and accelerate the overall assembly process. As 

discussed in chapter 2 polymeric materials have been used to form novel 

stand-alone components that could be used for low-cost alternatives to the 

present items. 

Microfab Technologies has over fourteen years experience in developing ink-jet / 

micro-jet printing processes to reduce costs and increase flexibility in a variety of 

manufacturing applications. They have micro-jet printed a wide range of materials, 

including liquid metal solders, fluxes, adhesives, epoxies, thermoplastics and UV

curing materials. Of inunediate relevance to this area is the ongoing R&D work in 

developing a new technology for micro-jet printing of liquid solders [3, 39] and 

micro-optical interconnects [40]. In conjunction with Microfab Technologies Inc, the 

3 key areas outlined above have been studied. During a visit to their site in PIano, 

Texas, 4 key demonstrators have been fabricated, showing their potential for use in 

automated production. 

1) Printing various adhesives for bonding optical elements inside package 

2) Printing SnlCu lead-free solder to form a 5mm x 10mrn x 100 /llIllayer onto 

Nortel substrate (for 980 pump package pre-form); 

3) Printing MRX-IIO polymer (a proprietary compound developed by Microfab) 

lenslets onto fibres for collimation; 

4) Printing MRX-IIO polymer lenslet arrays on glass for an 8-channel array 

switch. 
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5.2 Adhesives 

The aim of this investigation was to ascertain whether any ofthe current optical 

adhesives, used in optoelectronic production, could be jetted in precise amounts at 

specific locations. Especially important in optical path component adhesion, the 

amount of dispensed material must be consistent for each deposition. 

The adhesives used in production have the problem of changes in viscosity over time 

therefore altering the amount dispensed. To address this problem, several optical 

adhesives have been tested for their suitability in jetting. The specific adhesives tested 

were two-component thermally curing Epotek 375, Epotek 353 and DV curing 

Norland 81. 

It was found that the Epotek materials quickly set inside the device, because of their 

low cure temperatures, and hence were unable to be jetted. In order for a material to 

be jetted its viscosity must be reduced to below 40 cps, since the acoustic waves used 

to form the drop are severely dampened above this value, although modified devices 

have operated with materials with a viscosity of nearly 100 cps [28]. 

For the Epotek materials the reduction of viscosity to below 40 cps occurs only at 

temperatures above 90°C, which is above the minimum cure temperature, therefore 

inducing their curing schedule within the jetting device reservoir. Conversely the DV 

curing Norland 81 adhesive was successfully jetted with little or no issues at a droplet 

size of 60).lm. 

An array of single droplets with a spacing of 200).lm has been demonstrated, using 

MRX-IlO 'yellow', which has similar properties to that of the Norland adhesive, 

figure 68. 
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Further to this work, Mike Grove (polymer and adhesives specialist at Microfab) has 

indicated that several alternatives to the two-component thennally cured adhesives 

exist. Research regarding jet-able adhesives with the same or improved properties 

over the Epotek materials will indicate their potential use. 

X-ray curing has been perfonned with the same materials that are jetted to fonn 

micro-lenses and glue items together. This would be ideal for components that are 

highly absorptive in the ultra-violet range of the spectrum, but further research needs 

to be carried out as to whether the high energy of x-rays would damage materials such 

as III-V semiconductors. The reaction is relatively fast at room temperature and would 

negate the need for two component mixing, oven curing, etc. In addition, these 

adhesives, being polyethers (since the linkages that fonn, during polymerisation, 

between the monomeric and oligomeric carbon atoms of the compound are ether 

(oxygen) links) rather than the alternative polyacrylates, will have better 

environmental resistance (water vapour) than the alternate ionising radiation curing 

materials. 

5.3 Pre-form replacement 

Previous work [3] perfonned by Microfab had concentrated on tinllead solders. Here 

the first reported work on the deposition oflead-free solders is presented, in particular 

eutectic tin/copper supplied by Multicore Solders, targeted at replacing pre-fonns in 

optoelectronic packaging. 

Before inserting it into the device reservoir, the extruded solder, supplied in pellet 

fonn, is first filtered, figure 69, using a 2-micron gauze under a vacuum of 10"; Torr. 

The primary reason for this is to remove any foreign materials that may be present, 

such as oxides or unwanted inter-metallics, which could have fonned during 

processing and handling. The solder is filtered well above its melting temperature to 

ensure that the alloy flows freely. 

It was found that the lead-free solder jetted with very good droplet characteristics after 

a few adjustments made to the solder jet station in order to deposit the material. Since 
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it had not previously been tested, initial problems were encountered, such as the build 

up of impurities, which inhibited stable break-up and deposition after about 5 days 

held in the reservoir. This problem was overcome by re-filtering the solder under 

vacuum. 

To demonstrate the control and droplet size consistency of the technique a single layer 

(Le. one drop per site) 39x39 array oflead free solder was deposited on a silicon silver 

substrate, figures 70, 71 and 72. 

A direct application to Nortel Networks devices was demonstrated. Lead-free solder 

was printed on to a 980nm laser pump package, figure 73, used in production. The 

pre-form presently used, indicated by the blue/grey square, measures 7.5mm x 5.5mm 

x O.lmm and is placed in the lowest recess within the package. A heat sink for the 

optical bench is then placed on this solder and the package is re-flowed to form the 

joint. This equates to a volume of 4, 125 nJ. Using a device which droplets with a 

volume of 1 i3 pi (60!lJ11) are jetted onto the gold substrates. To achieve the necessary 

volume of solder 36,000 droplets are needed, and with a generation frequency of 

600Hz, it would take 60 seconds (with 3 passes) to cover the required area. 

The reported droplet generation rate may not be high enough for the amount of 

material required in this application but optimising the droplet size will decrease the 

time needed by a power of3. Droplet diameters of 120l!m should be achievable using 

the current head design albeit with slight imperfections in drop size. Because the 

shape of each deposition is not critical in this case, the need for perfect droplets is 

negated. This would reduce the time needed for deposition to 7 seconds. It may be the 

case that the advantages of drop on demand jetting could negate its own time 

limitations since pre-forms are costly and the time needed to place the solder is not a 

bottleneck. A total deposition time of, say, 20 seconds is not unreasonable. 
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Figure 69 - Filtration method in preparing solders for jetting 

Figure 70 - Array of Multicore lead-free (SnCu) solder on metallised Si wafer. 
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Figure 71 - Detail of MuIticore lead-free solder on metalIised Si wafer 

Figure 72 - Detail of MuIticore lead-free solder on metalli,ed Si wafer 
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Figure 73 - Nortel Networks 980nm laser pump module case. Position of solder pre-form 

placement indicated by grey region in the lower recess 
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Jetting is not limited to flat foil-like pre-fonn structures, additional solder could be 

placed in one or more areas of the recess fonning shaped joints with a 3 dimensional 

topography. This may be used in locating and centring components in the recess 

before reflow. Ideally continuous mode materials jetting should be used for this 

application but the equipment is much more expensive and less mature. Jetting is also 

a much more accurate method of solder placement which can be done autonomously. 

A more detailed costing and feasibility audit therefore needs to be conducted but it is 

thought that jetting could reduce the cost of solder in each package from $0.4 to 

$0.15. 

It is clear that cleaning of the substrate is a necessity, as the droplets do not stick very 

well to areas of the substrate that are discoloured or contaminated. Droplets do not 

wet very well until the substrate temperature is raised to about 150°C. One other issue 

that is raised by this task is the inability of the current head to deposit at distances 

greater than about 2mm. This is due to the localised nitrogen shroud at the orifice. At 

distances greater than 2mm, turbulence and oxidation are factors limiting the 

directional accuracy and wetting characteristics of the droplets. This limits the process 

application in areas where it is necessary to place solder into a well, such as the laser 

package or recess, although it is thought that extending the nitrogen shroud could 

overcome this problem, but would require a slight redesign of the head. Alternatively, 

the solder could be jetted onto the piece, which is to be placed in the package. 

Due to the tiny dimensions involved it has not been possible to perfonn a full 

structural analysis on the solder deposits, figure 74. Initial shear tests using a scalpel 

blade to break the deposited droplets from the substrate, indicating the inter-metallic 

bond strength, saw the deposits defonning before becoming detached from the 

substrate, confinning that at least some wetting had occurred prior to solidification. 
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5.4 Passive optical components 

5.4.1 Design issues 

To understand the limitations and issues raised by passive component production the 

design factors built into fibre communications are outlined. Because of the minute 

dimensions of long haul optical fibre core (4-6Ilm) it is necessary for the light to be 

expanded and collimated so that it is of a useable geometry. As the guided light 

emanates from the end of a fibre the circular wave front can be considered to be 

analogous to Gaussian-spherical beam propagation [41], highlighted by the red line, 

figure 75. 

The development of a Gaussian-sphericaI beam as it propagates can be followed using 

the equation 

(6.1) 

where, as shown in figure 75, Q) is the beam radius at a distance, z, from the beam 

waist, or fibre end. For large z, compared to ~, the beam expands at a constant angle, 

()=)J,,~. 

Considering the beam from a single mode step index fibre with numerical aperture 

(NA) ~O.13. For use in free space optical applications the beam needs to be expanded 

to a useable dimension in the order of 200-250llm. Current art requires the collimating 

lens to be created away from the fibre and then actively aligned, using 3-axis micro-
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positioning stages, whilst passing light through the fibre [42], or etching and laser 

processing the end of the fibre fonning a curved surface. 
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Etching is a multiple-step process involving masking the end of the optical fibre with 

a substance that is non-soluble in the reagent. The portion of the coating at the very 

end ofthe fibre is then removed and the fibre end immersed. The etching reagent 

serves to dissolve the uncoated portion of the fibre. By controlling the amount of time 

that the fibre end is in the reagent, different lens shapes may be formed [43,44]. In a 

second embodiment, the fibre end is dipped into a liquid epoxy compound whereby a 

portion of the epoxy is deposited onto the fibre end. The surface tension of the portion 

deposited thereon draws the liquid epoxy into the desired lens shape. The epoxy is 

then hardened by UV, or heat, curing to form a permanent lens structure on the fibre 

end. Neither of these methods allows for accurate placement and geometry of the lens, 

being highly dependant on macroscopic fluid dynamics, and imposes repeatability 

problems. In addition, they do not allow for necessary expansion of the beam to a 

usable diameter. 

With micro-jet printing the flow of deposited material stops at the edges of the fibre 

cladding and surface tension will force lenslet shape symmetry, therefore creating a 

self-centring geometry and, by use of spacing arrangements, the correct geometries 

can be formed. 

Previous work had only been concerned with muItimode fibres. Outlined below is a 

summary of the questions and issues raised by the optical design group in Nortel 

Networks optoelectronic manufacturing plant in Paignton. These serve to highlight the 

issues and design criteria that single mode gaussian beam optics raises with respect to 

multimode systems. Conventional lens fabrication methods use cutting, grinding and 

polishing etc to finish specific dimensions and contours on glass materials. Optical 

material micro-jet printing methods introduce a different set a controllable fabrication 

factors, which include device orifice, printing temperature, substrate temperature, 

droplet speed, orifice-substrate distance, number of droplets per lenslet etc. These new 

factors raise issues that change how systems are designed and as such the method 

must offer many advantages in order for it to be adopted. Also outlined are some of 

the burgeoning technologies that Microfab are investigating that could have 

application in next generation devices such as optical lambda and spatial switches and 

modulators. 
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1) When creating a lens it is not desirable for the shape to be governed solely by 

surface tension as this will lead to aberrations and wave-front inconsistencies, 

especially when the lens formed is hemispherical. A certain amount of design 

freedom must be available to allow for the required geometry to be created. 

There are several modes of design freedom for printed microlenses: 

a) To vary aspect ratio [height(sag)/diameterJ at a fIXed diameter it is 

possible to alter the viscosity of the deposited material, and/or the free 

energy of the substrate suiface, in order to control material jlow prior to 

solidification. In this case the lenslet curvature remains spherical. 

b) Aspherical performance is obtainable in a printed micro-lens with 

spherical suiface projlle by printing it with two materials having different 

indexes of refraction, in such a way as to produce an axial gradient index 

of refraction (AGRIN) in the lenslet. Modelling indicates that a 50-fold 

reduction in focused spot size is achievable in a micro-lens with 50Jim sag 

(height) using miscible formulations differing in refractive index by only 

0.05, compared to an identically sized micro-lens printed with one 

material. An R&D Optics-Jet Station is in development at Microfab, which 

can accommodate two print heads, multiplexed to the drive electronics, in 

order to investigate A GRIN micro-lens printing. 

c) The curvature of a printed micro-lens may be altered to achieve a more 

hyperbolic shape in two ways: by in-situ spot curing between subsequent 

depositions of droplets to arrest jlow during printing of a lenslet; or by 

isotropic reactive ion etching (RIE) after printing and curing. The RIE 

process etches the edges of the lenslets at a slightly faster rate than the top 

of the lens, since ions striking the edges are at slightly higher velocity 

(accelerating longer prior to impact) than those striking the top of the 

lenslet. RIE is a macro-machining process, which may be used to reduce 

spherical aberrations in large numbers of micro-lenses simultaneously by 

altering their curvatures away from spherical. 
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d) To achieve a non-spherical curvature matching a design equation would 

require micro-machining of individual lens lets after printing and curing, a 

comparatively expensive process. 

2) For the light emergent from a fibre it must be collimated to be of use for 

signal processing. Divergence is limited by forming a collimated beam of the 

maximum useable diameter. 

For afibre with an NA of 0.3, an optical printing material of index 1.55, and a 

microlens of same diameter as the fibre it is expected to be able to obtain a 

collimated beam width of70 pm. By extending the diameter of the printed 

lenslet well beyond that of the fibre to the limit of mechanical stability, it can 

achieve collimated beam widths of at least 140 pm. In all cases the micro

lenses would be printed onto a previously printed pedestal of the same 

material to obtain the appropriate offset of the lensletfrom the fibre tip. 

3) For use in communication devices the beam direction error from the lens is 

required to be <1/20° off the z-axis of the fibre I optical train. 

Beam direction error is determined primarily by the axial alignment error of 

the printed microlens relative to the fiber axis. The flow of deposited material 

stops at the edges ofthefiber cladding and swface tension willforce lenslet 

shape symmetry. 

4) How mechanically unstable, if possible to manufacture, is a lens that is 

created bigger than the 12511ID fibre diameter? Can these lenses still 

accurately collimate the beam to width of, say, 200llm? 

The most mechanically stable and accurately aligned microlenses that can be 

printed are ones which extend to the edge of a fibre cladding. In these cases 

flow of deposited material stops at the fibre edge and surface tension allows 

the building up of a nearly sphericallenslet, as shown in figure 76, indicating 

how lenslets of differing radii of curvature may be printed onto the tip of 140 

pm diameter fibres. 
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5) Optical flatness requires the surface of a component to be smooth to a 

precision of O.lllm. 

Surface smoothness of much better than 0.1 f,lm is readily achievable, as 

evidenced by Zygo interferometric lenslet profile data and work performed in 

replicating printed microlenses into silicon wafers. For spherical microlenses 

the reproducibility of radius of curvature, which is governed by the volumetric 

precision of droplet formation (typically better than 2%) and by substrate 

surface uniformity and cleanliness, varies in absolute value with lenslet size 

and is typically better than 1%, e.g .. 2 pmfor a lenslet with 200 pm curvature 

radius. 

6) Along with values for spherical aberration, astigmatism and coma etc, what 

are the achievable values for wave-front planarity? 

The only data available to address this question are point spread power 

distribution curves and modulation transfer functions measured for printed 

micro-lenses of varying diameters, which show aberrations increasing with 

lenslet diameter, with near-diffraction-limited performance for 100 f,lm 

diameter lenslets. These values have been obtained by modelling. 

7) How much variation on the mechanical properties and refractive index do the 

effects of temperature have on the polymers they nse for these lenses? 

The changes in focal length measured for printed & cured micro-lenses after 

baking for several hours at 200°C have been less than 1%, which is at or 

below Microfabs current measurement resolution. Currently these temperature 

ageing experiments are being extended to longer bake times and are putting 

together a set up which will enabling measurement of focal length at 

temperatures up to 150°C. 
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8) How possible is it to deposit optically flat thin films of, for example, liquid 

crystals? 

Liquid crystal fonnulations have been printed. Achieving an optically flat 

surface (thickness variation less than JV4 - JV2) over an area of interest with 

printed droplets should be possible by diluting the formulation with solvent 

and by pre-treating the substrate surface with a high-wetting agent. (surface 

free-energy of agent matched to that of the liquid crystal). Printing into 

appropriately treated wells. or onto locally defined areas which are 

surrounded by a less wettable surface, would control the flow of deposited 

materials and promote fonnation of a very flat meniscus. 

9) What is the potential of the technique to jet a passive structure such as 

prism? Is it possible to jet into a mould or to post process the polymer? 

For a 90° turning prism printing into a release-coated slab of material with 

micro-machined V-grooves would seem to be the most straightforward 

approach. This approach has been used in printing multimode waveguides for 

a customer. Titanium-oxide coated grooves in a silicon wafer have been used 

to provide a mould for the jetted polymer. After UV-curing from above, the 

polymer waveguides were lifted out of the grooves and used successfully in a 

demonstration interconnect system. Here dilute HF, which does not attack the 

optical epoxy, was used to achieve release of the polymer waveguides from the 

Ti02. Issues to be addressed here include release and physical removal of the 

cured optical element from the mould and achieving flat and optically smooth 

surfaces, especially on the deposition side of the prism. 

10) Does the technique, either with or without post processing, have the potential 

to create single mode fibres? 

Single mode fibres/waveguides could be created by the ink-jet printing 

method, but only with pre- and/or post- processing, as the minimum printable 

feature size on a flat surface is on the order of 25 /1m. Approaches might 
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include: (a) printing of droplets into excimer-laser micro-machined grooves in 

a sheet of lower index material. then removing any over flow prior to curing; 

(b) printing 50-80/lm wide lines of an optical material which is formulated to 

solidifY by driving out a solvent or heating and then selectively polymerised by 

a narrowly focussed beam of UV-illumination. 

5.4.2 Lens on single-mode fibre for beam 

collimation 

The challenge from Nortel Networks point of view is to produce a highly collimated 

beam from a l25).lm diameter single mode communications grade fibre. A lens cannot 

be deposited directly on the end of the fibre, since the optical geometry is too small 

and the refractive index of the polymer is too low to allow for the collimation of the 

divergent light into a beam of necessary dimensions. In order to achieve collimation 

of the beam, the lenses must be placed at some distance away from the tip ofthe fibre. 

Two ways are currently being investigated to achieve the necessary physical 

dimensions. If a lens is first deposited on to the fibre tip a section of the fibre can then 

be removed using in-situ post processing. 

For these trials MRX-ll 0 polymer, developed by Microfab, was used to form these 

lenses. This family of pre-polymers was originally selected for its high temperature 

durability (200 deg. C.) for military applications. It is thought that some 

improvements and alterations need to be made to better meet the needs of data 

communications. 

For jetting, approximately 30-40ml of the material is held in the reservoir of the 

device under a back vacuum of approximately 15 torr. The heating of the device, for 

MRXllO, holds the reservoir at 156°C, whilst the actual print head is held at 133°C. 

Lenses are printed with varying aspect ratios directly onto the end of the fibre to 

ascertain the achievable lens sizes, quality and centring with respect to the central 

fibre axis. This will serve to identify the geometric limits for post processing in order 

to achieve a collimated beam. Jetting MRX -110 polymer on to each fibre of a stripped 
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and cleaved end of a single-mode ribbon showed how the process inherently creates a 

self-centring lens. Figures 77 and 78 show a 1251lm fibre ribbon with hemi-spherical 

polymer lenses printed with a target height / diameter aspect ratio of I :2. If the fibre 

end is clean and free from defects, when the droplet impinges on the end of the fibre 

the spreading and wetting of the material extends equally in all directions reaching the 

edge of the cleaved end. 

Lenses with a discrete number (n) of polymer droplets up to n=7, have previously 

been reported on 140Jlm diameter multimode fibres. The conditions during these trials 

limited the maximum number of depositions to n=4, as shown by the right-most lens 

in figure 77. The left-most lens was deposited by subsequently printing (n=3) 50llm 

droplets at rate of I Hz. The SEM picture of the lens, figure 78, from the top shows 

how a smaller number of droplets potentially do not produce a smooth conformal 

finish. The reduced n in these trials was due to the smaller dimensions of the fibres 

along with a non-optimised process. The fibres towards the middle of the bundle show 

the result of the polymer sliding down the edge of the fibre due to condensation or 

out-gassing effects from the print head, which is held 1-2mm away from the 

deposition site. These effects decrease the surface tension of the material allowing it 

to flow more freely on the substrate. As subsequent droplets are deposited they again, 

are controlled by the edge and consequent surface tension effects, until a critical mass 

is reached where the weight of the material exceeds the surface tension forces. This 

can be overcome by care being taken during the printing and allowing the fibre to cool 

slightly. 

5.4.3 Lens on collar 

As previously stated, to provide the beam geometry, allowing for necessary 

divergence, the lens must be positioned a distance away from the fibre end. A second 

approach is to micro machine a glass pellet to form a collar, which is slid onto the 

fibre end and fixed with optical polymer at the correct distance allowing for the light 

to be collimated by the deposited lens, figure 79. The feasibility of the approach has 

been demonstrated by creating a lens with the correct radius of curvature as calculated 

using the ZEMAX Optical CAD (O-CAD) package. 
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Figure 77 - MRX-110 Polymer lenses printed on 8-strand Nortel Networks single mode (l2511J11 

diameter) fibre ribbon 

Figure 78 - End view of single mode fibre having printed lens with 3 droplets 
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The optical system is modelled to yield the required lens height/diameter aspect ratio 

and fibre position in the collar. Now consider the bound variables to be the collar 

diameter and the numerical aperture of the fibre (object plane). The variables used to 

optimise the system are the lens height and fibre position. Using the O-CAD package 

automatic optimisation is performed on the system until the best value for the image 

plane NA, at infinity, is obtained. For a collar of diameter 900llm it is found that the 

fibre position needs to be 10901lffi from the top end of the collar for a lens with a 

radius of curvature of 4881lm, of height of 300llm. 

The relationship between the number of droplets, n, needed to form a lens with radius 

of curvature, R, and diameter, d, is given by [45] 

nV =-lCR -- 2R +- R--2 3 lC( 2 d2~d2 
d 3 3 4 4 

(6.2) 

where Vd = volume of each droplet, R and d the radius of curvature and diameter of 

the lens respectively. Once the well is filled to the top of the collar, a lens with a 

diameter of 900llm and radius of curvature 4881lffi requires 2:900 60llm diameter 

droplets; figure 80 shows the relationship in graphical form for a lens diameter of 900 

flm. To form this lens using the jetting technique the deposition is monitored using a 

CCD camera. In practice lenses are formed with respect to the required height 

Idiameter aspect ratio, in this case 1:3. The polymer is jetted in bursts of a number of 

discrete droplets, which can be altered when more precision is required or depending 

on the total amount needed. 
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Figure 79 - Modelled optical system for deposition into glass collar I fibre arrangement 
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Figure 80 - Relationship between amount of deposited droplets and lens radius of curvature 
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5.4.4 Collar evolution 

The collars were initially machined with a single l25J.lm diameter central hole the 

whole length of the collar, figure 8la. The polymer used to form the lens was jetted 

into the well created by the fibre and collar arrangement. This configuration causes a 

problem in two respects. Firstly, the deposition of droplets into the well is 

approaching the positional accuracy limits of the system. As they enter the well some 

deposits may wet to the walls before they reach the lowest point. This build-up then 

results in the trapping of air, figure 82a, fonning a second material interface and 

additional refraction ofthe beam. Secondly, and most limiting, the modelling of the 

optical system revealed that the divergence of the beam would cause it to hit the walls 

of the well, creating reflection and possible waveguide effects. In an attempt to solve 

these problems the glass collar was further recessed, figure 81 b and 82b. This 

arrangement allows for the expansion of the beam but in practice it was found that the 

jetting of polymer into the lower cavity of the well was inhibited even after one 

droplet deposition, again caused by the droplet size being of the order well entrance, 

because even if one droplet is not jetted all the way to the bottom of the well and wets 

to the side walls the subsequent droplets cannot make it past producing an air pocket. 

There is no optical nor mechanical reason why the wider well cannot be extended to 

the fibre position. Hence the micro machining in the latest configuration, figure 81 c, 

extends the well down to the position of the fibre. Indicated by the dashed white line, 

figure 82b. This allows for the successful deposition of polymer and divergence of the 

light, figures 83 and 84. Further trials may reveal this design allows for the fibre to be 

adjusted so that the beam can be made even bigger, potentially allowing for the 

required lens power to be reduced. 
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Figure 82 - a) Initial trials using a coUar on the fibre led to air being trapped between the fibre 

and the polymer. b) A recessed coUar (unfilled) to allow for divergence ofthe beam. 
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Figure 83 - Optimum design of glass collar, for ease of machining, beam divergence and droplet 

deposition 
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Figure 84 -1:3 aspect ratio lens, MRX110 polymer deposited on glass coUar 
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5.4.5 Lens on glass slide 

In line with current development of optical routing devices based on Micro Electro 

Mechanical Systems (MEMS), figure85, a 10 array of micro-lenses was printed on a 

2mm thick borosilicate optical flat from UQG Optics, Cambridge, figure 86. The 

array is designed to accept, and collimate, the beam from 8 input fibres. The 

dimensions ofthe proposed switch will demand a beam width of approximately 

400llm in order for the necessary processing to be performed without losing the 

required energy density of the beam before it is inserted into the exit channels. 

Currently expensive GRIN lenses are used in the proposed assembly, mounted 

individually, requiring difficult alignment. Using jetting it is possible to first butt the 

fibres to the glass slide with a centre-centre spacing of 800llm and, then, target the 

lenses at the fibre centres. 

If a glass slide, of 2mm thickness, is used to house the lenses, the required aspect ratio 

(height/diameter) is again modelled with ZEMAX and is calculated to be I :8.2 for a 

lens diameter of 700llm. Micro-lenses with this diameter and aspect ratio had not 

previously been reported so several new process parameters had to be considered. 

This application calls for the use of a polymer formulation to encourage the reduced 

wetting necessary to produce lenses with smaller f-numbers. Using a wetting agent on 

the glass, to control of the spread of the polymer as it impacts, governs the aspect ratio 

of the lens. A series of pre-deposition baking steps were used to degrade the low-wet 

coating of each slide. The back focal lengths of the lens were measured at 100x 

adjusting the baking steps accordingly, from slide to slide, to get them within 50llm of 

the backsides of the slides. 

This film is not monomolecular and is attached to the glass by absorption forces. 

Because the mass ofthe drop is much more than the thin wetting layer it is thought 

that a small fraction may partition into the interface, since it is reactive with the 

printed polymer, although the process is not completely understood. This non-ionic 

layer should not cause a reliability issue over say, 20 years, should the normal 

protection for telecom equipment from the environment be employed. 
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Figure 86 - 3 (of8) 1:8 aspect ratio lens printed on boron silicate optical nat 
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Coatings applied to glass or silica (or silicon) surfaces are in the nature ofa 

conversion coating rather than a true (thick film) coating. There are three types, which 

are used in these applications: 

I) A thin film coating that is a low-solids lacquer is fixed in place by solvent 

evaporation. The solids are usually acrylic polymers or copolymers. For low 

suiface energy of the final coating, which will be much less than a micron, the 

acrylic polymer is usually fluorinated. 

2) Organosilane coatings. This is the largest class of glass suiface modifiers. 

Several dozen of these compounds are in regular commercial production, and 

there are literally hundreds of them available. Monomolecular layers can be 

made with proper treatment. The compounds basically have two natures, the 

inorganic part attaches to the glass and the organic part forms the suiface to 

the external environment. Depending on the nature of the organic part, a 

variety of suifaces can be made available for micro-lens depositions with 

varying suiface energies. 

3) Self-assembled layers. This usually starts out with an organosilane being 

attached to a glass or silica suiface as a monolayer. The organo portion of the 

compound is going to react with a functional group on the next compound to 

be applied so that an ordered set of layers is created. The external suiface will 

have the desired suiface energy properties. #3 is more complicated than #2, 

and Microfab are just starting to examine its utility. 

During these trials several variations of the organosilane coatings were tried. These 

gave a large variation in results where the aspect ratio could be 'tuned' from 1:5 to 

1:14. This is promising as the required aspect ratio, 1:8.2, sits in the middle of these 

limits. More work needs to carried out to optimise the process to make it repeatable. 

During these trials several issues where highlighted 
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1) Jet inconsistency. Thefirst droplet oJ each batch is prone to variation, this is 

not a problem Jor lenses with high n, but Jor small arrays the first deposited 

lens can be offset slightly 

2) Wettability becomes an issue as the droplet n increases - suiface tension 

effects are over taken by impurities on the surface oJ the glass 

3) Condensation and/or out gassing? During several deposition runs aJogging 

oJ the glass is observed, this is accompanied by increased difficulty in creating 

uniform lenses. Initially this was thought to be condensation caused by the 

proximity oJ the heated jetting device. Considering the dew point oJ the 

surroundings it is also thought that the polymer surrounding the orifice could 

be out-gassing, evaporating onto the substrate. 

Again, the key to successful deposition is care. The process is very capable of 

depositing lenses with the correct dimensions but particular attention must be paid to 

the deposition atmosphere, head out-gassing effects and slide contamination. Several 

8x I lens arrays have successfully been deposited by this method showing physical 

values close to those modelled. 

5.4.6 Lens array characterisation 

Lens diameter, roundness and centre-to-centre spacing are found using an optical 

system with automated edge detection. In this method, deviation from perfect lenslet 

circularity contributes significantly to the location of its centre, and hence the centre

to-centre distance. Taking the results from one example slide (NS) it shows the 

obtained geometries were approaching those targeted by the modelling, table 4. These 

results, as a first attempt, show how promising the technique is and its potential to 

yield lenses with dimensions close to the modelled values with further development 

time. The measurements for all the size lens arrays are given in Appendix S. 
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,", Mean Std. Dev. Std. Error Minimum- ,Maximum Rauge 

Distance 0.7994 0.0193 0.0073 0.7730 0.8279 0.549 

Diameter 0.7134 0.0071 0.0025 0.6991 O.72IS 0.0224 

Roundness 0.0024 0.0007 0.0003 0.0017 0.0040 0.0023 

Table 4 - Measurement of centre-centre distance, diameter and roundness of lenses printed on 

glass slide 

5.4.7 Microscope measurements of focal 

length 

The centre for Basic, Thennal and Length Metrology at the National Physical 

Laboratory (UK) has established measurement facilities dedicated to micro-optical 

components [NPL]. A selection ofthe printed lenses were characterised using their 

specialist equipment. 

A test chart was used as an object and placed 80mm from the lens array with the 

convex lens surfaces facing the object. Images were fonned close to the rear surface 

of the substrate and viewed with a microscope. The microscope was equipped with a 

split field focusing attachment that enabled the test surface / focal point to be precisely 

located. By focusing on the substrate and measuring the displacement, necessary to 

focus on the image of the test chart, the position of each image with respect to the 

substrate was deduced, table 5. 

Sample NS lens number Distance (in air above surface) "m 

I 109 

2 10S 

3 108 

4 89 

5 82 

6 64 

7 62 

8 32 

Table S - Focal length error, in microns above rear surface of optical flat, for 8xllens array 
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The lenses are referred to as 1 to 8, where no. 8 was the first lens to have been printed. 

As can be seen from the above table, the error in focal length increases with each 

subsequent deposition. The error in focal length is defined as the difference between 

the target focal length (nominally the depth of the glass slide) for each lens and the 

interferometrically measured focal length. This could be due to the substrate being 

heated up and / or contaminated with the out gassing effects from the print head. 

Note: White light illumination was used and because of the physical limitations of the 

apparatus the object was not truly at infinity. A very small correction should be 

applied. The focal length may well be different when using wavelengths (A) in the 

infrared region of980, 1300 and 1550 nm of the spectrum that is of most interest for 

optical communications. 

5.4.8 Interferometry measurements of 

curvature 

If the lens surfaces are close to spherical the measurement of radius of curvature can 

be carried out on a Zygo interferometer of the Fizeau type. A reference wave-front is 

created from a lmm sapphire sphere, figure 87. 

An image of the graticule can be seen when focussed on the lens surface and when 

positioned at the centre of curvature of the surface, that is, at the confocal position. 

Measuring the radius of curvature by this method is similar for that of the 

measurement ofthe focal length except that, rather than move the lens back so that the 

focussed spot coincides with the focal point, it is moved forwards until it coincides 

with the centre of curvature. Under this condition all light is normal to the surface and 

is retro reflected into the interferometer to give a fringe field. The difference in the 

number of fringes through the lens compared with the reference wave gives the value 

of the radius of curvature, table 6. The convergence of the lines in the interference 

pattern show a difference in the radius of curvature in the x and y direction. Any 

imperfections in the smoothness of the lens surface are highlighted as inconsistencies 

across the fringe pattern. The interferometric images for sample N5 are shown in 

Appendix 6. 
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I> Sample N5 lens nnmber Ridins of Cn~ature (I'm):!;' 

I 475 

2 475 

3 478 

4 463 

5 462 

6 457 

7 453 

8 439 

Table 6 .. Radius of curvature measurements for each lens in array 

5.5 Further Drop on Demand Work 

The perfonnance oflead-free solder and adhesives deposition illustrate the potential 

for drop on demand printing to be included in the production environment in the near 

future. It has also been demonstrated that the technique will be incorporated into 

optoelectronic production. Further testing of the real applications and problems in 

manufacturing will allow for specific devices and solutions to be provided. It is also 

desirable to follow up the x-ray curing materials, which may enable this disruptive 

technology solution to pre-detennine the materials used instead of providing a 

solution to an old problem. 

The initial trials and deposition of micro-lens arrays and collimating lens for single

mode fibres, shows promise for incorporation into the production environment. This 

work demonstrates a major step forward in the control of fibre lens geometries. The 

experimental results have, so far, yielded values for lens curvature and focal length, 

which are very close to those highlighted by the modelling. A Mach-Zender 

interferometer was used to examine the wave fronts transmitted by the lenses. The test 

lens was mounted with the unexpanded beam from a helium-neon laser (A,=632.8nm) 

incident on the convex lens surface forming a focused spot near to the rear surface of 

the slide. The beam was then re-collimated by a high quality microscope objective. 
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An image of the transmitted wave front from a source placed at the backside of the 

slide was taken at several distances moving away from lens surface, figure 88. 

Transmission oflight through the lens gave rise to multimode patterns using the white 

light source. It was found that the transmitted wave front was only collimated over a 

small aperture of the light due to the aberration from the lens being too severe. Since 

the application of these lenses would require only the central part of the lens to be 

used further study needs to be made with a reduced aperture and light of the required 

wavelength. 

Further work will investigate the etching ofthe slide, before deposition, to inhibit the 

flow of the polymer over the surface, fixing the diameter of the lens. This method, 

which has analogies with the collar deposition, would improve the lens radius of 

curvature variation in the x and y direction. Work is currently underway to optimise 

the coatings and process conditions to produce lenses with the required performance. 

A second attempt at micro-lens printing will incorporate recent improvements, such as 

software that utilizes XY -stage linearity and temperature corrections for improved 

placement accuracy. The mechanical stability of the material over extended times at 

high power densities and their optical performance at wavelengths of 1300nm, 

1550nm and 980nm need evaluation. 
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Figure 87 - Sapphire sphere reference wave 

Figure 88 - Transmitted wave fronts using white light illumination across entire aperture of the 

lens 
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6 Discussion and Specifications 

Materials Jetting is still very much a maturing technology and, as such, several issues 

must be addressed before it is widely accepted in the industry. 

The MIT system does highlight the current issues that surround the acceptance of 

materials jetting in commercial production. The issue with most concern is the orifice 

and stream instability. Experiments at Nortel Networks have highlighted and tried to 

improve upon the cemented orifice gem volatility and although two promising 

techniques have been identified a more involved study and development program 

needs to be conducted. 

The system used at the University of California does show impressive control of 

solders with individual spheres being deposited at precise locations at high speed. 

However, since all continuous mode systems create a lot of waste material a 

satisfactory method of recycling either in-line or separate must be devised before it 

can be considered economically sound for manufacture. 

The limits of the current piezoelectric materials used in the drop on demand system to 

create the mechanical vibrations inhibit certain desirable materials such as low 

softening point glasses to be deposited. Although continuous mode goes some way in 

solving the problem by distancing the piezo-electric material from the highest 

temperature in the systems, it is limited by the in-consistencies in the stream control 

after production and the inability to control dielectric materials. Therefore the most 

commercially acceptable technology is drop on demand, due to its wider ranging 

material possibilities and it looks as if the temperature barrier will be broken before 

the recycling and consistency issues of continuous mode. 

Aside from the limitations of the separate technologies, materials jetting shows 

promise as a new technology that may be able to address the desires of optoelectronic 

production such as the precise and controllable deposition of discrete volumes of 

material down to a volume of a few picolitres. It has been shown that the technique is 
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capable of depositing adhesives in a very controllable fashion that is essential for 

fixing components that lie in the optical path. This is a problem that was not an issue 

in electronics manufacture and is one that device reliability depends upon. Since most 

of the products used in long haul communications have to have a lifetime of up to 25 

years any quasi-static creep in the post cure regime of the adhesives is almost un

acceptable. However it is impossible to completely eliminate this settling so making 

sure that exactly the right amount of material is placed down in the initial construction 

of the device. 

Both variations on the technology have the capability to produce discrete volumes of 

lead free solder. It is noted that the drop on demand technique has produced a world 

first in the deposition of tin/copper solder into an optoe1ectronic package. This is a 

small but important step in the process of eliminating lead from electronic and 

optoelectronic devices by 2004, which will be necessary by legislation. It not only 

shows compatibility with legislation but the deposition of solders directly into the 

package from the bulk material removes the need for pre-form production, a costly 

step in the manufacturing process. 

Due to the currently unprecedented rise in demand for optical communications 

equipment, the capacity of manufacturing sites cannot cope with demand. One 

solution to this would be the automation of the device manufacture, but this, as 

outlined previously, is limited by the need for sub micron precision in the alignment 

of the optical components in single mode long haul devices and the handling of the 

'fibre-tail' (the short length of optical fibre that is used to incorporate the device into a 

system). It is thought that the demonstrators outlined in this report show promise for 

adding low cost to device manufacture. Presently the polymeric lens examples 

produced are not refined enough to be considered for single mode components but 

may provide a route to be implemented primarily in the lower power multimode 

devices. Since polymers are not considered a suitable material for single mode high

added-value optical components, it may be that as the technology matures, along with 

the development oflow softening point glasses, an avenue may open up where 

materials jetting can compliment the current technologies, reducing processing steps 

and cost. 
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The costs for purchase of the hardware for the differing technologies differs by a 

factor of 3 in favour ofthe continuous mode system (based on a license from MIT) 

but again it is essential to consider the maturity of the techniques and therefore it is 

not possible to perform a direct cost comparison. The drop on demand mode system 

comes all but complete for $200k and will allow for development of applications 

against the development of the continuous mode technique. 

It is believed that the technique of materials jetting is potentially a cost effective 

stepping stone in the development of automated manufacture of optoelectronic 

devices, albeit with several questions to be resolved before it can be considered for a 

specific application. 
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Video and Image Metrics Display Thread 

Visual C++ Listing - Part of the Display Video Class, which is used to display and 

analyse the image of the droplet stream. 

( 
int CDisplayVideo:: Run () 

ASSERT(m-pOwner != NULL) ; 
if (m-pOWner == NULL) 

return -1; 

I/Metrics Value 
int arraycount; 

f/if thread does not return a valid owner exit 

DWORD timestart=NULL, timeend=NULL, cyclestart=NULL, cyc!eend=NULLi 
double m CurrentBSRatio, elapsedtime=NULLi 
double m-AverageBSRatio[AVERAGING MAXl I rationew[AVERAGING MAXJ, ratiototal; 
double terma, termb, currentsize,-changeFactor, changevoltage; 
char* charbuf; 
CString infostr = tI,,; 

//Open Data File and write Headings 
CStdioFile datafile; 
if( !datafile.Open( m-pOwner->m_LogFileName, CFile::modeCreate 

I CFile::modeWrite I CFi!e: :typeText ) ) 

#ifdef _DEBUG 
AfxMessageBox("Cannot Create "+ m...,.pOwner->m_LogFileName); 

#endif 
30 exit ( 1 ); 

} 
if (m-pOwner->m_bSaveLogFile) 
( 

SYSTEMTIME ctime; 
GetLocalTime(&ctime); 
char* datestr ~ new char [20]; 
char* timestr ; new char [20]; 
sprintf (datestr, "%02d/%02d/!i>02d", (int) ctime. wDay, (int) ctime. wMonth, 

(int)ctime.wYear) ; 
40 sprintf (timestr, "%02d: %02d", (int) ctime. wHour, (int) ctime. wMinute) ; 

infostr - "File" + m'-powner->m_LogFileName + "\nCreated on " + datestr 

50 

+ " at " + timestr + "\n"; 
delete [] timestr; 
delete [] datestr; 
datafile.WriteString( infostr ); 
infostr = "Target Ratio: It; 

charbuf = new char[lO]; 
sprintf (charbuf, It%. 21f", (float) m...,.p0wner->m_TargetBSRatio) ; 
infostr += charbuf; 
infostr += "\n"; 
infostr += "Material , 11 ; 

infostr += "\n"; 
infostr += "Initial Pressure :"; 
infostr += "\n"; 
infostr += "Initial Frequency :"i 
infostr += "\n"; 
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infostr += "Voltage Set Point: 11; 
ffi-pOwner->GetDlgltemText(IDC_FLOWVOLTAGE, charbuf. 10 ); 
infostr += charbuf; 
infostr +:: 11 \n" i 
datafile.WriteString( infostr ); 
infostr = "BS\tR\tCF\tAV\tET\tCT\tVO\n"; 
datafile.writeString( infostr ); 

for (arraycount=Oiarraycount<AVERAGING_MAX;arraycount++) 
( 

rationew[arraycount] :: m_AverageBSRatio[arraycount] 0.0; 

CSingleLock sLock(&(m-pOwner->ffi_mutex»: 
cyclestart :: GetTickCount() i 

//00 the camera stuff 

CPen aPen; 

//syncornise the thread with the owner 

aPen.CreatePen(PS_DOT, 2. RGB(O, 0, 0»; 
CCamera* m-pCamera = &rn-pOWner->rn_Camera; 
m-pCamera->ifexist = 0; I/Need to do soft reset frame and grab window 
MVIGrabWindow GrabAreaCtl; 
CBitmap* pNewBitmap = new CBitmap; 
CClientDC* pDC = (CClientDC*)m-pOwner->rn_CameraView.GetDC(); 
CDC* pMemDC = new CDC; 
pMemDC->CreateCornpatibleDC(pDC)i 
pNewBitmap->CreateBitmap(rn-pCamera->dx, m-pCamera->dy, 1, 8, NULL); 
pMemDC->SelectObject(pNewBitmap) ; 
if (m-pCamera->ifexist == 0) 

90 II Set grabbing window 

100 

MV1SetGrabWindow(OL, 0, 0, m-pCamera->dx, m-pCamera->dy, &GrabAreaCtl) i 
II Create frame structure using the same size of the grab window 
MV1CreateFrame(&(m-pCamera->frarne), 0, 0, (long)m-pCamera->dx, (long)m-pCamera-

>dy, &GrabAreaCtl) i 

m-pCamera->ifexist = 1; 

11 Start grabbing live video 

if (MV1StartGrab(MV1_Cont_Grab, MV1_Grab Even) 1= MV1 OK) 
AfxMessageBox(TlHaving trouble starting the grabbing! ") i 

MV1WaitFrameEnd() i 
IIArray of bits for the 8bit image 
byte* buffer = new byte[(long)m-pCamera->dx * (long)m-pCamera->dy]; 

IIGet cycle start time in milliseconds 
timestart = GetTickCount(); 

110 infostr = TIll; 

II read a frame to the buffer 
MVIFrameRead (& (m-pCamera->frame) I 0, 0, (long)m-pCamera->dx, (long)m-pCamera

>dy I buffer) i 

IIBall Space Ratio Rout.ine 
IIAverage over the last AVERAGING_MAX entries 
Ilpop the last value from the array (must be a better way to do this) 
for (arraycount=Oiarraycount<AVERAGING MAX-1iarraycount++) 

rationew[arraycount+1] : m AverageBSRatio[arraycount] i 
120 Ilget current ratio and push it onto the array 

130 

rationew[O] = ::GetBalISpaceRatio(buffer, m-pOwner-
>m_CameraView.m_FeedbackRect, m-pOwner->m_ThresholdLevel * 2, m-pCamera->dx) i 

ratiototal = 0.0; 
for (arraycount=Oiarraycount<AVERAGING MAX;arraycount++) 
{ -

} 

m_AverageBSRatio(arraycount] = rationew[arraycount] i 

ratiototal += m_AverageBSRatio[arraycount]; 

m CurrentBSRatio = ratiototal I AVERAGING MAXi 
Ilworkout current size from m CurrentBSRatio -
terma = (3.0/2.0) * (float)po;(m-pOwner->m_orificeSize,2)i 

160 



termb = (1.0 / m_CUrrentBSRatio) + 1; 
current size = (float)sqrt( terma * termb ); 

If Control the Output to the Variable Valve 
if ( (m_CurrentBSRatio > m-pOwner->m_TargetBSRatio * 1.02) 

Appendix I - Listing A 

I I (m_CurrentBSRatio < ffi-pOwner->m_TargetBSRatio * 0.98) ) 
{ 
Change Factor (m_CUrrentBSRatio - ffi-powner->m_TargetBSRatio ) / 

140 m-pOwner->m_TargetBSRatio; 
) 
else 
{ 
ChangeFactor = 0.0; 
) 

/* Affect valve if Feedback if selected *1 
cycleend = GetTickCount(): 
if ( m_bPeedback 

&& (cycleend > (cyclestart + m-pOWner-
ISO >GetDlgltemlnt(IDC VALVETIMEDELAY, NULL, FALSE»» 

160 

- { 
Changevoltage = m-pOwner-

>GetDlgltemlnt(IDC_FLOWVOLTAGECHNG, NULL, FALSE); 

>m_FlowVoltage 9.500; 

>m_Flowvoltage 8.500; 

>m_FlowVoltage) ; 

ChangeVoltage = (ChangeVoltage / 1000) * ChangeFactori 
m-pOwner->m_FlowVoltage += ChangeVoltage; 
if (m-pOwner->m_FlowVoltage > 9.500) m-pOwner-

if (m-pOwner->m_FlowVoltage < 8.500) m-pOwner-

m-pOwner->m_DIO.PutAnalogValue{O, 1.0, m-pOwner-

cyclestart = GetTickCount{); 
) 

1* Display Values in Metrics Window *1 
if (m-pOwner != NULL) 
{ 
charhuf = new char (10] ; 

sprintf {charhuf, 11%.21£11, (f1oat)m AverageBSRatio (0]) ; 
170 m-powner->m_ImageMetrics.SetDlgltemText(IDC_LASTVALUE, charbuf); 

sprint£{charbuf, "%.21£11, (float) current size) ; 
m-pOwner->m_ImageMetrics.SetDlgltemText(IDC_DIAMETER, charhuf); 
infostr+=charbuf; 
in£ostr+="\t 1t ; 

sprintf(charbuf, "%.21f", (float) (m CurrentBSRatio»; 
m-pOWner->m_ImageMetrics.setDlgltemText(IDC_BSRATIO, charhuf); 
infostr+=charbuf; 
infostr+:"\t" ; 
sprint£(charbuf, "%.21£", (float) (ChangeFactor»; 

180 m-pOwner->m_ImageMetrics.SetDlgltemText(IDC_CHANGEFACTOR, charbuf); 
infostr+=charbuf; 

190 

infostr+="\tll; 
m-pOwner->GetDlgltemText(IDC_FLOWVOLTAGEACT, charbuf, 10); 
infostr+=charbuf; 
infostr+="\t"; 
sprintf (charbuf, "t. 21f", (float) m-pOwner->m_TargetBSRatio) i 

m-pOwner->m_ImageMetrics.SetDlgItemText(IDC_TARGETRATIO, charbuf); 
delete [] charbuf; 

1/ transfer data from buffer to bitmap and display 
pNewBitmap->SetBitmapBits «long) m-pCamera->dx * (long) myCamera->dy, (LPSTR) 

buffer) ; 
/1 display grab rectangle 

pMemDC->SelectObject(&aPen) i 

pMemDC->SetROP2(R2 NOTXORPEN) i 

pMemDC->SelectStockObject(NULL_BRUSH) ; 
pMemDC->Rectangle( myOwner->m_CameraView.m_Firstpoint.x, 
m-pOwner->m_CameraView.m_FirstPoint.y, 

200 m-pOWner->m_CameraView.m_SecondPoint.x, 
m-pOwner->m_CameraView.m_SecondPoint.y) ; 
pDC=(CClientDC*)myOwner->m_CameraView.GetDC() ; 
pDC->BitBlt( 0, 0, (WORD)m-pCamera->dx, (WORD)myCamera->dy, pMemDC, 0, 0, 

SRCCOPY) ; 
I/Display Time Taken to Analyse and Display Image 
timeend '" GetTickCount(); 
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elapsedtime += «float)timeend-(float)timestart)/(float)lOOO.Oi 
charbuf = new char [10] ; 
sprintf(charbuf, 11%.21£", (float)elapsedtime); 
in£ostr+=charbuf; 
if (m-pOwner != NULL) 

m-pOwner->m_ImageMetrics.SetDlgltemText(IDC_CYCLETIME, charbuf); 
in£ostr+="\t" ; 
sprintf (charbuf, "%d", (int) (timeend - times tart» i 

infostr+=charbuf; 
delete [] charbuf; 
in£ostr+;"\n" ; 

//Output Data to File 
I/May need to be entered into an array if disk access isn't fast enough 

220 if (m-pOwner->m_bSaveLogFile) 

230 

datafile.WriteString( infostr ); 
/jPick up any waiting messages 

Sleep(l) i 
} 
If Clean Up 

datafile.Close() ; 

charhuf = NULL; 
MV1StopGrab () ; 
delete [] buffer; 
delete pNewBitmap; 
delete pMemDC; 

return 0; 
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Image Processing Algorithms 

float WINAPI GetBallSpaceRatio( 
camwidth) 

byte data [ ], eRect grabrect, int mag, int 

( 

int Bal!Total '" 0; 
int xpos, ypas, MagthisPos; 
BOOL *p_bTemp ; NULL; 
BOOL LeadingEdgeFound. TrailingEdgeFound '" FALSE; 
800L *p_hRowHasBall = new BOOL[grabrect.Height()]; 
p_bTemp = p_bRowHasBall; 
// Deflate roiRect As we are passing 3*3 Matrix over the area 
If therefroe starting one pixel up and one pixel back 
grabrect.DeflateRect(l,l) ; 
If Move the data pointer to the beginning of the roi 
data += grabrect.TopLeft().y * camwidth; 
data += grabrect.TopLeft() .x; 
ypos '" 1; 
//Iterator over the roi looking for maximum and minimum edges in the same row 
while (ypes < grabrect.Height(» 
{ 

xpos = 1; 
LeadingEdgeFound = TrailingEdgeFound 
while (xpos < grabrect.width(» 

FALSE: 

( 

ypos++; 

MagthisPos = Sobel(data, S_VERTICAL, camwidth); 
if ( abs ( Magthispos ) > mag) 
{ 

data++; 
xpos++; 

if (Magthispos < 0) 
{ 

else 
{ 

LeadingEdgeFound = TRUE: 
* (data - (2*camwidthl) '" 250; 

TrailingEdgeFound = TRUE: 
*(data - (2*camwidth» = 252: 

if (Leading Edge Found && TrailingEdgeFound) 
{ 

*p_bRowHasBall++ = TRUE: 

BallTotal++: 

else 
{ 

*p_bRowHasBall++ FALSE: 

data ++: 
data += (camwidth - grabrect.Width(»: 

p_bRowHasBall = p_bTemp: 
delete [) p_hRowHasBall: 
return ( (float)BallTotal / (float) (grabrect.Height() - BallTotal) ) i 
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void WINAPI fourl(float data [ ], unsigned long nn, int i8i9n) 
I/prom "Numerical Recipes in C Second Edition 

Appendix 2 - Listing B 

fiReplaces data [l .. 2*nn) by its discrete Fourier tans form, if isi9n is input as 1; or 
70 fIreplaces data (1 .. 2*nn} by nn times its inverse discrete Fourier transform, if isi9n 

//is input as -1. data is a complex array of length nn or, equivalently, a real array 
//0£ length 2*nn. nn MUST be an integer power of 2 (this is not checked for!). Set up 
Ilfor arrays with zeroth order value at 1 need "data-I" for use with arrays in C 

80 

90 

100 

{ 
unsigned long n, mmax,m,j,istep,i; 
double wtemp, wr, wpr, wi, wpi, theta; 

trigonometric recurrences. 
//Double precision for 

float tempr, tempi; 
n=(nn«l)i 

j=l; 

for (i=1;i<n;i+=2) 
if (j>i) { 

} 

I/This is the bit reversal section of the routine 
SWAP (data[jJ,data[iJ); 
SWAP (data[j+l] ,data[i+l]); 

} 
//Exchange the two complex numbers 
m::(n»l); 
while (m>=2 && j>m) 

j -= rn; 
(m »: 1); 

} 
j += rn; 

I/Here begins the Danielson-Lanczos section of the routine 
mmax=2; 
while (n>mmax) { 

flOuter loop executed log2nn times 
istep"" (mmax«l) i 

II 

theta=isign*(6.28318S30717959/mmax); //Initialise the 
trigonometric recurrence 

wtemp=sin(O.S*theta) ; 
wpr '" -2.0*wtemp*wtempi 
wpi::sin (theta) ; 
wr=1.0; 
wi:O.O; 
for (m=liffi<mmaxirn+=2) 

110 / /The two nested inner loops 

120 

for (i=m;i<=n;i+=istep) 
j::i+mmax; 

I/This is the Danielson-Lanczos formula; 
tempr=(float)wr*data[j]-(float)wi*data[j+l] ; 
tempi=(float)wr*data[j+l]+ (float)wi*data[j] ; 
data[j)=data[i]-tempr; 
data[j+l]=data[i+l1-tempi; 
data[i]+=tempr; 
data[i+l]+=tempi; 

} 
wr=(wtemp=wr)*wpr-wi*wpi+wr; 

//Trigonometric recurrence ' 
wi=wi*wpr+wtemp*wpi+wi; 

} 
mmax::istep; 

int WINAPI FindNOP(float data [ ], unsigned long nn, int isign) 
130 { 

unsigned int count = 0, maxpos :: 0; 
float maxvalue = 0; 
fourl(data-l, nn, isign}; 
float* pdata :: &data[2] i 

count = 2; 
while (count«nn/4» 
{ 

if (fabs(*pdata»maxvalue) 
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140 maxpos = count; 
maxvalue = *pdata; 

pdata+=2; 
count+=2; 
} 

return (maxpos); 
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int Sobel(byte* pData, int direction. const int& CamWidth) 
150 ( 

160 

170 

180 

190 

200 

int p[9]; 
int hmag, vmag :::: 0; 
switch (direction) 
( 
case S HORIZONTAL: 

- ( 

} 

ptO) 
p[l) 
p[l) 
p [2) 
p [6) 
p [7) 
p[7) 
p[S) 
hmag 

= *(pData 
= *(pData 
*= 2; 

'" (pData 
= * (pData + 
= '" (pData + 
*= 2i 

(CamWidth + 1»; 
CamWidth) ; 

(Camwidth - 1»; 
(CamWidth -1»; 

CamWidth) ; 

*(pData + (CamWidth + 1»; 

vmag 
break; 

(p [0) +p (1) +p (2)1- (p (6) +p [7) +p [B)I ; 

0; 

case S VERTICAL: 
- ( 

} 
case S_BOTH: 
default: 

( 

ptO) 
p[2) 
p[3) 
p [3) 

'" (pData 
* (pData 
* (pData 

*= 2; 

(CamWidth + 
(CamWidth 
1) ; 

111 ; 
111 ; 

p [5) = * (pData + 1); 
p [5) 
p [6) 

*= 2; 
'" (pData + 
'" (pData + 

(CamWidth -1»; 
(CamWidth + 1»; p [B) 

hmag 
vmag 
break; 

0; 
(p[2)+p[S)+p[8)1-(p[O)+p[3)+p[6)1; 

p [0) = 1< (pData (CamWidth + 111 ; 
p[l) = '" (pData CamWidth) ; 
p [1) *= 2: 
p(2) = * (pData (Camwidth 111 ; 
p(3) = *(pData 11 ; 
p[3) *= 2; 
p[S) "" * (pData + 1) ; 
p[S) *= 2; 
p (6) = * (pData + (CamWidth -111 ; 
P [7) = * (pData + Camwidth) ; 
p [7) *= 2; 
p [B) * (pData + (Cam~'lidth + 1)) i 
hmag abs( (p[O)+p[l)+p[2)1-(p[6)+p[7)+p[B)1 

vmag abs( (p (2) +p [SJ +p [B)I- (p [DJ +p [3) +p (6)1 
break; 

return (hrnag+vmag); 
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11 Appendix 3 - Lenslet arrays data 

Data for 6 each Slides with 8 each lenslets per slide shipped to Nortel (Units - mm) 

Part: N5.N6.N7.N8.N9 and N12 

D.scrlptlve Statistics 

Mean Std. Dev. 

N5 Dist. .7994 .0193 

NS Cia. .7134 .0071 

N5 Roundness .0024 ,0007 

N6 Dis!. .7989 .0086 

NS Ola. .7165 .0161 

N6 Roundness .0037 .0012 

N7 Dist. .7991 .0079 

N7 Dia. .7002 .0044 

N7 Roundness .0030 .0020 

NB Disl. .8014 .0073 

N8 Dia. .6845 .0042 

NB Roundness .0034 .0021 

N9 Dist. .8007 .0090 

N9 Cia. .7252 .0040 

N9 Roundness .0041 .0017 

N12 Disl. .7987 .0217 

N12 Dia. .7060 .0092 

N12 Roundness .0044 .0014 

"Dist." = center-to-center distance between lenslets 
"Dia.1I = diameter of a lenslet 

Std. Error Minimum Maximum 

.0073 .7730 .8279 

.0025 .6991 .7215 

.0003 .0017 .0040 

.0033 .7885 .8098 

.0057 .6985 .7509 

.0004 .0020 .0058 

.0030 .7865 .8079 

.0016 .6948 .7065 

.0007 .0010 .0071 

.0028 .7902 .8113 

.0015 .6782 .6925 

.0007 .0014 .0079 

.0034 .7928 .8169 

.0014 .7171 .7291 

.0006 .0019 .0066 

.0082 .7755 .8322 

.0033 .6952 .7221 

.0005 .0022 .0064 

"Roundness" = degree of out-of-roundness = (max diameter) - (min diameter) of a lenslet 

166 

Range 

.0549 

.0224 

,0023 

,0213 

,0524 

.0038 

.0215 

,0117 

,0061 

.0211 

.0143 

.0065 

.0241 

.0120 

.0047 

.0567 

.0269 

.0042 



Appendix 4 - Interferometer Images 

12Appendix 4 -Interferometer Images 

Lens Array N5 - Interferometer Measurements 

1 - Radius of Curvature (ROC) = 0.475 
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Appendix 4 - Interferometer Images 

2 - ROe = 0.475 

Appendix 4 - Interferometer Images 

Lens Array N 5 - Interferometer Measurements 

3 - ROe = 0.478 
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Appendix 4 - Interferometer Images 

4 - Roe = 0.463 
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Appendix 4 - Interferometer Images 

Appendix 4 - Interferometer Images 

Lens Array N5 - Interferometer Measurements 

5 - ROe = 0.462 

6 - ROe = 0.457 
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Appendix 4 - Interferometer Images 

Appendix 4 - Interferometer Images 

Lens Array N5 - Interferometer Measurements 

7 - ROe = 0.453 

8 - Roe = 0.439 
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