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Abstract
We propose a novel technique for analysing the long-time asymptotics 
of integrable wave equations  in the case when the underlying isospectral 
problem has a purely discrete spectrum. To this end, we introduce a natural 
coupling problem for entire functions, which serves as a replacement for 
the usual Riemann–Hilbert problem, which does not apply in these cases. 
As a prototypical example, we investigate the long-time asymptotics of the 
dispersionless Camassa–Holm equation.
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1.  Introduction

Integrable wave equations play a key role in understanding numerous phenomena in science. 
In this connection, understanding the long-time asymptotics of solutions is crucial. Roughly 
speaking, the typical behaviour is that any (sufficiently fast) decaying initial profile splits into 
a number of solitons plus a decaying dispersive part. This was first observed numerically for 
the Korteweg–de Vries equation [33]. Corresponding asymptotic formulas have been derived 
and justified with an increasing level of rigour over the last thirty years. To date, the most 
powerful method for deriving such long-time asymptotics is the nonlinear steepest descent 
method from Deift and Zhou [13], which was inspired by the earlier work of Manakov [26] 
and Its [21]. More on this method and its history can be found in the survey [14]; an expository 
introduction to this method for the Korteweg–de Vries equation can be found in [19].

Although this method has been found to be applicable to a wide range of integrable wave 
equations, there are still some exceptions. The most notable one is the Camassa–Holm equa-
tion, also known as the dispersive shallow water equation,

u u u u u uu uu x t2 2 3 , , ,t xxt x x xx x xxx R− + = − + ∈�� (1.1)

where ( )≡u u x t,  is the fluid velocity in the x direction, ⩾� 0 is a constant related to the critical 
shallow water wave speed, and the subscripts denote partial derivatives. It was first introduced 
by Camassa and Holm in [8] and Camassa et al [9] as a model for shallow water waves, but 
it actually already appeared earlier in a list by Fuchssteiner and Fokas [18]. Regarding the 
hydrodynamical relevance of this equation, let us also mention the more recent articles by 
Johnson [22], Ionescu–Kruse [20] as well as Constantin and Lannes [12].

While in the case >� 0 there is an underlying Riemann–Hilbert problem which can be ana-
lysed using the nonlinear steepest descent method [4–7] (see also [11] where a related additive 
Riemann–Hilbert problem is mentioned), this breaks down in the limiting case =� 0. In this 
case, the solitons are no longer smooth but have a single peak and hence are also known as 
peakons. Nevertheless, it was conjectured by McKean [27] (see also [28, 29]) that solutions 
split into a train of peakons, in accordance with earlier numerical observations by Camassa  
et al [9]. However, apart from the multi-peakon case [2] (and some low-regularity solutions 
[24] as well as for a simplified flow [25]), this has been an open problem, resolved only 
recently by us in [17]. The technical problem here stems from the fact that the underlying 
isospectral problem has a purely discrete spectrum and hence it is no longer possible to set up 
the usual scattering theory. Our approach in [17] circumvented this shortcoming by a thorough 
investigation of the associated isospectral problem, which then allowed us to deduce long-
time asymptotics. However, this approach still has some drawbacks. For example, it is not 
possible to obtain long-time asymptotics which hold uniformly in sectors.

The aim of the present article is to propose a novel approach to this kind of problem, which 
seems to be more natural. In some sense, it can be thought of as an adaptation of the usual 
Riemann–Hilbert problem approach. More precisely, we will replace the Riemann–Hilbert 
problem with a certain coupling problem for entire functions. Consequently, we will investi-
gate the asymptotic behaviour of solutions to this problem under the known behaviour of the 
given data.

As a prototypical example, we will apply our results to derive long-time asymptotics for 
the dispersionless Camassa–Holm equation. However, we expect that this new technique will 
also work for other equations, whose underlying isospectral problem exhibits a purely dis-
crete spectrum. For example, it can immediately be applied to derive long-time asymptotics 
for corresponding equations  in the whole Camassa–Holm hierarchy. While for the positive 
members of this hierarchy one gets qualitatively the same asymptotic picture, the situation is 
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somewhat different for the negative ones (including, for instance, the extended Dym equation). 
Although solutions of negative members of the Camassa–Holm hierarchy still split into a train 
of peakons, their speed will be proportional to the modulus of the corresponding eigenvalue. 
This causes the larger peakons to be the slower ones and the smaller peakons to be the faster 
ones, creating a qualitatively different picture.

2.  Coupling problem

The purpose of this section is to introduce the notion of a coupling problem for entire func-
tions. To this end, consider a fixed discrete set ⊆σ R such that the sum

∑ λ| |λ σ∈

1
� (2.1)

is finite. It is well known that under this condition, the infinite product

( ) ⎜ ⎟
⎛
⎝

⎞
⎠∏ λ

= − ∈
λ σ∈

CW z
z

z1 , ,� (2.2)

converges locally uniformly to an entire function of exponential type zero [3, lemma 2.10.13], 
[23, theorem 5.3]. Furthermore, we introduce the quantities { }η ∈ ∪ ∞λ R  for each λ σ∈ , 
which are referred to as the coupling constants.

Definition 2.1.  A solution of the coupling problem with data { }ηλ λ σ∈  is a pair of entire func-
tions ( )Φ Φ− +,  of exponential type zero such that the following three conditions are satisfied:

(C) Coupling condition:

, .( ) ( )λ η λ λ σΦ = Φ ∈λ+ −

(G) Growth and positivity condition:

( ) ( )
( )

⩾ ( )Φ Φ
>− +⎛

⎝
⎜

⎞
⎠
⎟z z z

W z
zIm 0, Im 0.

(N) Normalisation condition:

0 0 1.( ) ( )Φ = Φ =− +

In order to be precise, if η = ∞λ  for some λ σ∈ , then the coupling condition (C) in this 
definition has to be read as ( )λΦ =− 0. The growth and positivity condition (G) means that the 
meromorphic function

( ) ( )
( )

Φ Φ
∈− + C Rz z z

W z
z, \ ,� (2.3)

is a so-called Herglotz–Nevanlinna function, which satisfies certain growth restrictions (to be 
seen from their integral representations; [1, chapter 6], [30, chapter 5]). Moreover, let us men-
tion that since the residues of this function are known to be nonpositive, condition (G) also 
requires the necessary presumption

( )
( )

⩽λ λ
λ
η λ σ

Φ
∈λ

−

Ẇ
0, ,

2

� (2.4)
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on the sign of all coupling constants which are finite. Thus, the coupling constants corresp
onding to the smallest (in modulus) positive and negative element of σ have to be non-negative. 
The consecutive coupling constants then have to be alternating non-positive and non-negative. 
Furthermore, condition (G) also tells us that the zeros of the numerator and the denominator 
of the function in (2.3) are interlacing (after cancellation) [23, theorem 27.2.1]. In particular, 
this guarantees that the sums

∑ µ| |µ ρ∈ ±

1
� (2.5)

are finite, where ρ± denotes the sets of all (necessarily simple) zeros of the functions Φ±. As a 
consequence, these functions can be written as the canonical products

( )
⎛
⎝
⎜

⎞
⎠
⎟∏ µ

Φ = − ∈
µ ρ

±
∈ ±

Cz
z

z1 , ,� (2.6)

bearing in mind normalisation condition (N). Finally, we mention the bounds

( ) ⩽
⎛
⎝
⎜

⎞
⎠
⎟∏ λ

|Φ | +
| |
| |

∈
λ σ

±
∈

Cz
z

z1 , ,� (2.7)

upon roughly estimating (2.6) and employing the interlacing condition once more.
Obtaining existence and uniqueness results for the coupling problem is an intricate task 

which is essentially equivalent to solving the inverse problem for the isospectral problem of 
the Camassa–Holm equation. However, in the simple case when the set σ consists of only 
one point, it is indeed possible to write down the solution explicitly in terms of the one single 
coupling constant.

Proposition 2.2.  Suppose that { }σ λ= 0  for some nonzero λ ∈R0 . If the coupling constant 
{ }η ∈ ∪ ∞λ R

0
 is not negative, then the coupling problem has a unique solution given by

( )
( )⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

η

λ
Φ = −

−
∈λ

±

±

Cz z z1
1 min 1,

, .
1

0

0� (2.8)

Proof.  It is readily verified that the given polynomials are indeed a solution of the coupling 
problem. Conversely, if ( )Ψ Ψ− +,  is another solution, then

( )Ψ = − ∈± ± Cz a z z1 , ,

for some ∈± Ra  with =− +a a 0. Moreover, we infer that ⩽ ⩽λ±a0 10  in view of the Herglotz–
Nevanlinna property (more precisely, from the interlacing condition of the poles and zeros). 
Lastly, coupling condition (C) takes the form

( )λ η λ− = −λ+ −a a1 1 .0 00

Now, if ⩽ηλ 1
0

, then necessarily a−  =  0 since otherwise we get the contradiction

( )η λ= − <λ −a1 1 1.00

Consequently, we may express a+ in terms of the coupling constant using the coupling condi-
tion. In much the same manner, one may obtain the coefficients ±a  if ⩾ηλ 1

0
 and finally end 
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up with

( )η

λ
=
− λ

±

±

a
1 min 1, 1

0

0

in either case, which finishes the proof.� □

Note that there is no solution of the coupling problem in proposition 2.2 if the coupling 
constant is negative, since it would violate positivity condition (G).

3.  Asymptotic analysis

We will now derive a general result on the asymptotic behaviour of solutions to the coupling 
problem. Therefore, let ∆ be a first-countable topological space (that is, every point has a 
countable neighbourhood basis) and fix some δ ∈∆∞ . Again, we denote with ⊆σ R a discrete 
set such that the sum (2.1) is finite and define the entire function W by (2.2). Moreover, for 
every δ∈∆ we consider a set of coupling constants ( ) { }η δ ∈ ∪ ∞λ R  indexed by λ σ∈ .

Theorem 3.1.  Suppose there is a partition { }σ λ σ∪ ∪− +0  of σ such that

( ) →η δ− | | ±∞λln� (3.1)

as →δ δ∞  for each λ σ∈ ± and define the conjugated coupling constants by

ˆ ( ) ( ) ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∏ ∏η δ η δ

λ
λ

λ
λ

δ= − − ∈∆λ λ
λ σ λ σ∈ ∈

−

− +

1 1 , .0 0
1

0 0� (3.2)

If the pairs ( ( ) ( ))δ δΦ ⋅ Φ ⋅− +, , ,  are solutions of the coupling problem with data { ( )}η δλ λ σ∈  for 
every δ∈∆ , then

( ) ( )
( )

( ˆ ( ) ˆ ( )) ( )δ δ
λ

η δ η δ
Φ Φ

= +
−

+λ λ
− + −z z

W z

z

z
o

, ,
1 min , 1

0

1
0 0� (3.3)

as →δ δ∞ , locally uniformly for all σ∈Cz \ .

Proof.  First, consider a sequence δ ∈∆k , ∈Nk  with →δ δ∞k  as →∞k  such that the en-
tire functions ( )δΦ ⋅± , k  converge locally uniformly as →∞k . The respective limits are entire 
functions of exponential type zero in view of (2.7) and will be denoted by Ψ±. Due to assump-
tion (3.1) and the coupling condition, we conclude that ( )λΨ =± 0 for λ σ∈ ± (also observe that 
the quantities ( )λ δΦ± ,  are uniformly bounded in δ∈∆). As a consequence, the meromorphic 
Herglotz–Nevanlinna function

( ) ( )
( )

Ψ Ψ
∈− + C Rz z z

W z
z, \ ,� (3.4)

has only one pole and thus at most two zeros, which are necessarily simple. Consequently, we 
may write (keep in mind that these functions are of exponential-type zero and that their zeros 
have genus zero)

( ) ( ) ⎜ ⎟
⎛
⎝

⎞
⎠∏ λ

Ψ = − ∈
λ σ

± ±
∈ ±

Cz P z
z

z1 , ,
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where ±P  are polynomials such that P P− + has at most one zero, which is simple. Moreover, the 
pair ( )− +P P,  satisfies the coupling condition

( ) ( )λ η λ= λ+ ∞ −P P ,0 , 00

where the constant { }η ∈ ∪ ∞λ ∞ R,0
 is given as the limit

( ) ( )
→

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∏ ∏η

λ
λ

λ
λ

λ δ λ δ= − − Φ Φλ
λ σ λ σ

∞
∈ ∈

−

∞
+ −

−

− +

1 1 lim , , .
k

k k,
0 0

1

0 0
1

0

Hereby note that the limit is non-negative because of (2.4). In view of proposition 2.2 we may 
now write down the polynomials ±P  explicitly and conclude that

( ) ( )
( )

→ ( )δ δ
λ

η η
Φ Φ

+
− λ λ

− +
∞

−
∞

z z

W z

z

z

, ,
1 min ,k k

0
,
1

,0 0

as →∞k , locally uniformly in σ∈Cz \ . Finally, from the very definition of the constants 
ηλ ∞,0

 we may also rewrite this as

( ) ( )
( )

( ˆ ( ) ˆ ( )) ( )δ δ
λ

η δ η δ
Φ Φ

= +
−

+λ λ
− + −z z

W z

z

z
o

, ,
1 min , 1k k

k k
0

1
0 0

as →∞k , locally uniformly in σ∈Cz \ .
Finally, if the claim of the theorem was not true, then there would be a compact set 
⊆ σCK \  and a subsequence δ ∈∆k , ∈Nk  with →δ δ∞k  as →∞k  such that

( ) ( )
( )

( ˆ ( ) ˆ ( ))δ δ
λ

η δ η δ ε
Φ Φ

− −
−

>λ λ
− + −z z

W z

z

z

, ,
1 min ,k k

k k
0

1
0 0� (3.5)

for all ∈z K, ∈Nk  and some ε> 0. However, a compactness argument (recall (2.7) and 
apply Montel’s theorem) shows that there is a subsequence δkl such that ( )δΦ ⋅± , kl  converges 
locally uniformly as →∞l . In view of the first part of the proof, this gives a contradiction 
to (3.5).� □

The assumptions in theorem 3.1 allow one of the coupling constants to be arbitrary. This 
will turn out to be crucial to obtain the long-time asymptotics of the Camassa–Holm equation, 
which are valid uniformly in sectors. However, in the case when all of the coupling constants 
are supposed to converge to zero or infinity, one obtains the following result.

Corollary 3.2.  Suppose that we have ( )∥ →η δ| | ∞λln  as →δ δ∞ for every λ σ∈ . If the pairs 
( ( ) ( ))δ δΦ ⋅ Φ ⋅− +, , ,  are solutions of the coupling problem with data { ( )}η δλ λ σ∈  for every δ∈∆ , 
then

( ) ( )
( )

→δ δΦ Φ− +z z

W z

, ,
1� (3.6)

as →δ δ∞ , locally uniformly for all σ∈Cz \ .

Proof.  Similar to the first part of the proof of theorem 3.1, one infers that
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( ) ( )
( )

→δ δΦ Φ− +z z

W z

, ,
1k k

as →∞k , locally uniformly for all σ∈Cz \  as long as the functions ( )δΦ ⋅± , k  are assumed to 
converge locally uniformly. In fact, this follows since the function in (3.4) is now known to 
have no poles at all. Now the claim follows in much the same manner as in the second part of 
the proof of theorem 3.1, invoking a compactness argument.� □

4.  Applications to the Camassa–Holm equation

As anticipated in the introduction, we will now demonstrate that our results provide a power-
ful tool to derive long-time asymptotics for the dispersionless Camassa–Holm equation. To 
this end, let u be a solution of

− = − +u u uu uu u u3 2t xxt xxx x x xx� (4.1)

with decaying spatial asymptotics. To be precise, we will assume that the quantities

( ) ( ) ( )ω = − ∈Rx t u x t u x t x, , , , ,xx� (4.2)

are finite signed measure for each time ⩾t 0.
These conditions guarantee (see [17, theorem 3.1]) that for every time ⩾t 0 and ∈Cz , there 

are unique solutions ( )φ ⋅± z t, ,  of the differential equation

( ) ( ) ( ) ( ) R″φ φ ω φ− + = ∈± ± ±z x t z x t z x t z x t x, ,
1

4
, , , , , , ,� (4.3)

(the prime denotes spatial differentiation) with the spatial asymptotics

z x t z x t, , e , , ,
1

2
e ,

x x
2 2( ) ( )φ φ∼ ∼′± ± ∓
∓ ∓

� (4.4)

as →±∞x . In view of [17, theorem 4.1], it is known that these solutions are real entire and 
of exponential type zero with respect to the spectral parameter.

Now the importance of the spectral problems (4.3) lies in the well-known fact that their 
spectra are invariant under the Camassa–Holm flow, that is, they are the same for all times 
⩾t 0 (for example, we refer to [2, section 2], [8], [10, section 3], [16, theorem 5.1]). For this 

reason, we may simply denote the spectrum of (4.3) with σ, which is known to be real and 
purely discrete such that the sum

∑ λ| |λ σ∈

1
� (4.5)

is finite, in view of [17, proposition 3.3]. The Wronskian of our two solutions

( ) ( ) ( ) ( ) ( )φ φ φ φ= − ∈′ ′+ − + − CW z z x t z x t z x t z x t z, , , , , , , , , ,� (4.6)

turns out to be independent of space ∈Rx  and time ⩾t 0. Indeed, this function is the charac-
teristic function of the spectral problem (4.3), that is,

( ) ⎜ ⎟
⎛
⎝

⎞
⎠∏ λ

= − ∈
λ σ∈

CW z
z

z1 , ,� (4.7)

in view of [17, corollary 4.2].

J Eckhardt and G Teschl﻿Nonlinearity 29 (2016) 1036



1043

In order to point out the connection to the coupling problem for entire functions, one 
observes that the solutions ( )φ λ ⋅+ t, ,  and ( )φ λ ⋅− t, ,  are linearly dependent for every eigen-
value λ σ∈  and time ⩾t 0. Hence there is some nonzero real ( )∈λ Rc t  such that we may write

( ) ( ) ( )φ λ φ λ= ∈λ+ − Rx t c t x t x, , , , , .� (4.8)

The time evolution for these quantities is known to be given explicitly by

( ) ( ) ⩾  λ σ= ∈λ λ λ−c t c t0 e , 0, .
t

2� (4.9)

More precisely, this follows from the well-known time evolution of the associated norming 
constants (for example, see [2, section 2], [10, section 3], [16, theorem 5.1]) and the identity 
in [17, lemma 3.2],

( ) ( ) ( ) ( ) ⩾  ∫λ φ λ ω λ σ− = ∈λ −
R

W c t x t d x t t˙ , , , , 0, ,2� (4.10)

where the dot denotes differentiation with respect to the spectral parameter.
We have now collected all the necessary ingredients to prove the announced long-time 

asymptotics for the solution u of the Camassa–Holm equation. In fact, the proof of this result 
is almost immediate from the general results on asymptotic analysis for our coupling problem 
of entire functions derived in the previous section.

Theorem 4.1.  Let ( )⊆ × ∞RS 0,  be a closed sector which contains at most finitely many of 
the rays λr  , λ σ∈  given by λ =x t2 . Then we have

( ) ( )∑ λ
= +
λ σ

λ ξ

∈

−| − + |λu x t o,
1

2
e 1

x t
2� (4.11)

for ( )∈x t S,  as →∞t , where the phase shifts ξλ for each λ σ∈  are given by

( )
{ }
∑ξ

λ κ
λ
κ

λ σ= | | + − − ∈λ λ
κ σ λ∈

⎜ ⎟
⎛
⎝

⎞
⎠cln 0 sgn

1 1
ln 1 , .

\
� (4.12)

Proof.  For every ∈Rx  and ⩾t 0 we introduce the entire functions

( ) ( )φΦ = ∈±
±

± Cz x t z x t z, , e , , , ,
x
2

which will turn out to be a solution of a particular coupling problem. In fact, one clearly has 
coupling condition (C)

( ) ( ) ( )λ λ λ σΦ = Φ ∈λ λ+
−

−x t c x t, , e 0 , , , .
x t

2� (4.13)

Moreover, due to [15, proposition 4.4], the function

( ) ( )
( )

( )
( )

( )

( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

φ

φ

φ

φ
Φ Φ

= − ∈
′ ′

− + −

−

+

+

−

C Rz z x t z x t

W z

z x t

z z x t

z x t

z z x t
z

, , , , , ,

, ,

, ,

, ,
, \ ,

1

is a Herglotz–Nevanlinna function, ensuring the growth and positive condition (G). In fact, 
this can also be verified by a direct calculation, using the differential equation (4.3). Finally, 
normalisation condition (N) is immediate from the definition.
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We will first consider the special case when the sector S contains precisely one ray, say λr 0 
for some λ σ∈0 . Upon defining the sets ⊆σ σ±  by

,0
1 1{ }σ λ σ λ λ= ∈ | ± <±±
− −

one obtains a partition { }σ λ σ∪ ∪− +0  of σ such that

( )  ⎜ ⎟
⎛
⎝

⎞
⎠λ
ε λ σ− > ∈ ∈λ ±∓

x

t
x t S

1

2
, , , ,

for some ε >λ 0, λ σ∈ ±. Therefore, the coupling constants in (4.13) satisfy

( ) ( ) →
λ

λ σ− = − − − | | ±∞ ∈λ λ λ
−

±⎜ ⎟
⎛
⎝

⎞
⎠c

x

t
t cln e 0

1

2
ln 0 , ,

x t
2

for ( )∈x t S,  as →∞t . In view of [17, lemma 3.4] and theorem 3.1 this yields

( ) ( ) ( )
( )

( )
λ

=
∂
∂
Φ Φ

= +λ ξ− +

=

− − + λu x t
z

z x t z x t

W z
o,

1

2

, , , , 1

2
e 1

z

x t

0 0

2 0 0

for ( )∈x t S,  as →∞t . But this proves the claim in this special case, since

( )
{ }
∑ λ

=
λ σ λ

λ ξ

∈

− − + λ o
1

2
e 1

x t

\

2

0

for ( )∈x t S,  as →∞t , as Lebesgue’s dominated convergence theorem shows.
In order to finish the proof in the general case, note that under our assumptions we may 

cover the sector S with finitely many sectors of the type considered above.� □

The typical long-time behaviour of a solution u of the Camassa–Holm equation, derived in 
theorem 4.1 can be depicted as follows:

Hereby, the grey areas represent two sectors in which our long-time asymptotics hold uni-
formly. Each of the rays λr , accumulating at the t-axis, corresponds to an eigenvalue λ σ∈  of 
the underlying isospectral problem. After a long time, one can see that the solution u splits 
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into a train of single peakons, each of which travels along one of the rays, with the height and 
speed determined by the corresponding eigenvalue.

Due to the conditions on the sector in theorem 4.1, we do not obtain long-time asymptotics 
of the solutions, which hold uniformly in the sectors around the t-axis (as long as the spec-
trum is not finite, that is, in the multi-peakon case). However, we are able to derive long-time 
asymptotics which hold uniformly in strips near the t-axis, that is, as long as x stays bounded.

Corollary 4.2.  Given some R  >  0, one has

( ) ( )=u x t o, 1� (4.14)

for ⩽| |x R as →∞t .

Proof.  With the notation from the proof of theorem 4.1 we see that the coupling constants 
in (4.13) for every λ σ∈  satisfy

( ) ( ) →
λ

| | || = − + | | ∞λ λ λ
−

c x
t

cln e 0
2

ln 0
x t

2

as →∞t . Therefore, an application of corollary 3.2 shows that

( ) ( )=u x t o, 1

as →∞t , in view of [17, lemma 3.4].� □

Note that (4.14) is consistent with (4.11) since

( )∑ λ
=

λ σ

λ ξ

∈

− − + λ o
1

2
e 1

x t
2

for ⩽| |x R as →∞t  by virtue of Lebesgue’s dominated convergence theorem.
The fact that the limit of u(x, t) vanishes for every fixed ∈Rx  as →∞t  was established 

in [31, theorem 1.2], [32, theorem 3] for certain weak solutions of the Camassa–Holm equa-
tion under various additional assumptions.
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