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Abstract. We review recent progress on the theory of dynamics of polymer
translocation through a nanopore based on the iso-flux tension propagation
(IFTP) theory. We investigate both pore-driven translocation of flexible and
a semi-flexible polymers, and the end-pulled case of flexible chains by means
of the IFTP theory and extensive molecular dynamics (MD) simulations. The
validity of the IFTP theory can be quantified by the waiting time distributions
of the monomers which reveal the details of the dynamics of the translocation
process. The IFTP theory allows a parameter-free description of the translocation
process and can be used to derive exact analytic scaling forms in the appropriate
limits, including the influence due to the pore friction that appears as a finite-
size correction to asymptotic scaling. We show that in the case of pore-driven
semi-flexible and end-pulled polymer chains the IFTP theory must be augmented
with an explicit trans side friction term for a quantitative description of the
translocation process.
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1. Introduction

Since the seminal works by Bezrukov et al. [1] and two years later by Kasianowicz
et al. [2] in 1996, translocation of a polymer through a nanopore has become one of
the most active research areas in soft matter and biological physics [3, 4, 5]. It has
many applications in medicine, biological and soft matter physics and engineering,
such as protein transportation through membrane channels and virus injection
[6]. A setup based on the polymer translocation through a nanopore has been
suggested as an inexpensive and rapid method for DNA and other biopolymer
sequencing. Therefore, motivated by these applications many experimental and
theoretical works have been focused on the study of the dynamics of the translocation
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]

The three simplest basic translocation scenarios are the unbiased [37, 45, 61, 66],
pore-driven and end-pulled setups. While in the pore-driven case the driving force is
an electric field (arising from a voltage bias between the two sides of the membrane)
which acts on the monomer(s) inside the pore, for the end-pulled case the polymer
is pulled through a nanopore by either an atomic force microscope (AFM) [90], or a
magnetic or an optical tweezer [20, 38, 44, 70, 75, 79]. Among the above scenarios the
end-pulled case has been suggested to be a good candidate to slow down and control
the translocation process which is vital to properly identify the nucleotides in DNA
sequencing [16, 25, 39, 88, 84, 91].

Most of the theoretical research to date has focused on the pore-driven case of a
fully flexible chain with a constant radius of the nanopore and under a constant driving
force [24, 36, 46, 56, 57, 58, 64, 65, 69, 83, 84]. Nevertheless, in many interesting
practical cases the translocating chains are not fully flexible – e.g. double-stranded
DNA has a persistence length of `p ≈ 500 Å. Therefore, to unravel the influence of
stiffness of the chain on the translocation process the pore-driven case of a semi-flexible
polymer with a finite persistence length has theoretically been recently considered [83].

On the other hand, the translocation process has also been studied under a time-
dependent external driving force [15, 30, 53, 60, 63, 77]. As an example, Langevin
dynamics simulations have been employed to study polymer translocation under a
time-dependent alternating driving force which shows that at an optimal frequency
of the alternating force, resonant activation occurs if the polymer-pore interaction
is attractive [60]. For the pore driven case with an oscillating driving force there
are some biological applications such as translocation of α-helical and linear peptides
through an α-hemolysin nanopore in the presence of an AC field [53], and using an
alternating current signal to monitor the DNA escape from an α-hemolysin nanopore
[41]. Additionally, use of an alternating electric field at the nanopore has been
suggested for the DNA sequencing [30].

In addition, there are some theoretical and experimental works where the width
of the pore changes during the course of the translocation process. For instance it has
been shown that in the nucleocytoplasmic transport in eukaryotes, the nuclear pore
complex plays an important role [42]. Moreover, the twin-pore protein translocase
(TIM22 complex) in the inner membrane of the mitocondria can control the exchange
of molecules between mitochondria and the rest of cell [18]. On the numerical side,
using molecular dynamics (MD) simulations the active translocation of a polymer
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through a flickering pore has been considered and it has been shown that more efficient
translocation as compared to the static pore can be obtained when the pore has an
alternating width and sticky walls [49]. Experiments have confirmed that by applying
mechanical stress the cross section of an elastomeric nanochannel device is changed
and this can modulate the translocation of DNA through the nanochannel [26, 51, 52].
Interestingly, one can tune the width of the nanopore by covering the inside of the
nanopore with thermally driven nanoactuation of polyNIPAM brushes [40].

Over the last few years a quantitative theory for both the pore-driven and end-
pulled translocation dynamics of a polymer through a nanopore has been developed
[58, 59, 60, 65, 69, 76, 83, 84] based on the idea of tension propagation by Sakaue in
2007 [24]. The basic picture is that the translocation process constitutes two stages,
which are the tension propagation (TP) and post propagation (PP) stages. During
the TP stage a tension propagates along the backbone of the chain, and the cis side
subchain can be divided into mobile and immobile parts. In the mobile part the
monomers have already experienced the tension while the rest of the chain is immobile
which means that the average velocity of the monomers for this part is zero, i.e. that
part of the chain is in equilibrium. In the PP stage the tension has reached the chain
end and the whole cis side subchain is moving towards the nanopore. Based on the
picture above, it has been shown that the time-dependent friction due to the mobile
cis side subchain plays the key role in translocation dynamics. All these ideas have
been amalgamated into a quantitative, parameter-free Iso-Flux Tension Propagation
(IFTP) theory [69] by combining tension propagation with the iso-flux assumption [50].
The IFTP theory describes translocation dynamics solely in terms of the translocation
coordinate of the chain, friction due to the pore and the tension front on the cis side
and it allows exact analytic solutions to the scaling of the average translocation time
as a function of the chain length in some limits. Recently, the IFTP theory has been
augmented to describe the case of semi-flexible polymer chains [83]. It has been shown
that an additional time-dependent trans side friction due to stiffness of the chain plays
a role in the dynamics of the translocation process specially in the short chain limit
[83]. Moreover, the IFTP theory has been extended to describe end-pulled polymer
translocation through a nanopore [84] when the drive is very strong. An exact scaling
form for the the translocation time as a function of the chain length and the driving
force has been derived. This extended version of the IFTP theory is in excellent
agreement with the MD simulations of coarse-grained polymer chains.

In this paper we present an overview on the current status of the theory of polymer
translocation. We first review the IFTP theory in brief in Sec. 2 focusing on the limit
of strong driving where analytic results can be derived for the scaling of the average
translocation time. Then we apply the theory to the pore-driven case under a constant
driving force and through a static nanopore in Sec. 3. Next, in Sec. 4 the pore-driven
translocation of a semi-flexible chain is described. After that, the end-pulled case
for a flexible chain again under a constant force and through a static pore is studied
in Sec. 5. Finally, Sec. 6 is devoted to investigating the pore-driven case under an
alternating driving force through a flickering pore. Summary, conclusions and future
prospects are presented in Sec. 7.

2. Theory

For brevity, we use here dimensionless units denoted by tilde as Ỹ ≡ Y/Yu, with the
units of time tu ≡ ηa2/(kBT ), length su ≡ a, velocity vu ≡ a/tu = kBT/(ηa), force
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Figure 1. (a) Schematic of the translocation process during TP stage for the
pore-driven case of strong stretching (SS) regime. f̃ is the driving force and acts
only on the monomer(s) inside the pore towards the trans side. N0 and s̃ are
the contour length of the polymer and the length of the trans side subchain,
respectively. l̃ + s̃ is the number of monomers influenced by the tension force in
the cis side which is smaller than the number of total monomers in the polymer
N0 during the TP stage. The location of the tension front is determined by R̃.
(b) The translocation process during the PP stage where the tension front has
reached the end of the chain, and therefore l̃+ s̃ = N0. Panels (c) and (d) are the
same as panels (a) and (b), respectively, but for the end-pulled case of SS regime.

fu ≡ kBT/a, friction Γu ≡ η, and monomer flux φu ≡ kBT/(ηa
2), where kB is the

Boltzmann constant, T is the temperature of the system, a is the segment length, and
η is the solvent friction per monomer. All parameters without tilde are expressed in
Lennard-Jones units, which are used in the MD simulations.

The basic theoretical framework for polymer translocation dynamics is based
on a force balance equation which describes a polymer initially located on the cis
side with one end at the pore. Starting at time t = 0 the polymer is subjected to
an external force that pulls it through to the trans side during time t = τ , whose
average defines the (average) translocation time. We consider here the deterministic
limit of Brownian dynamics (BD) in the overdamped regime, following Refs. [58, 59].
This limit is relevant for the case where the driving force is strong and noise
(thermal fluctuations) can be neglected. The force-balance equation is written for
the translocation coordinate s̃ that gives the length of the chain on the trans side.
The equation reads

Γ̃(t̃)
ds̃

dt̃
= F̃ (t̃), (1)

where Γ̃(t̃) is the effective friction, F̃ (t̃) is the force which acts on the monomers either
inside the pore for pore-driven polymers (see Fig. 1(a)), or only on the head monomer
of the chain for end-pulled polymers (see Fig. 1(b)). The effective friction Γ̃(t̃) depends
on the pore friction η̃p(t̃) and the drag forces on the cis and the trans sides.

To derive the TP equations, we use arguments similar to Rowghanian et al. [50].
We assume that for both the pore-driven and end-pulled cases the flux of monomers,
φ̃ ≡ ds̃/dt̃, on the mobile domain of the chain and through the pore is constant in
space, but evolves in time (iso-flux), which imposes mass conservation [50]. Indeed,
the monomer flux is defined as σ̃0ṽ0 ≡ ds̃/dt̃, where σ̃0 and ṽ0 are the linear monomer
density and the velocity of the monomers at the entrance of the pore, respectively.
The boundary between the mobile and immobile domains, which is called the tension
front, is located at distance x̃ = −R̃(t̃) from the pore in the cis side (see Fig. 1). For
the pore-driven case of a flexible chain, inside the mobile domain the external driving
force is mediated by the chain backbone from the pore at x̃ = 0 all the way to the
last mobile monomer N located at the tension front. In contrast, for the semi-flexible
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chain the driving force is mediated by the backbone of the chain from the mobile part
of the chain in the trans side all the way to the pore at x̃ = 0, and then to the last
mobile monomer N located at the tension front. Finally for the end-pulled case, the
driving force is mediated by the chain backbone from the head monomer (head of the
polymer on which the external force acts) in the trans side all the way to the pore
at x̃ = 0 and then to the last mobile monomer N located at the tension front (see
Figs. 1(c) and 1(d)). Inside the mobile domain, the difference of the tension force
between points x̃′ and x̃′+dx̃′ is compensated by the viscous friction force experienced
by this part of the polymer due to its movement. This leads to a local force balance
relation df̃(x̃′) = −φ̃(t̃)dx̃′ for the differential element dx̃′ that is located between x̃′
and x̃′ + dx̃′. For the end-pulled case, by integrating the local force balance relation,
df̃(x̃′) = −φ̃(t̃)dx̃′, over the distance from the head monomer to the pore on the trans
side and then from the pore to x̃ on the cis side, the tension force is obtained as

f̃(x̃, t̃) = f̃0(t̃)− φ̃(t̃)x̃, (2)

where

f̃0(t̃) ≡ F̃ (t̃)− η̃p(t̃)φ̃(t̃)− η̃TS(t̃)φ̃(t̃), (3)

is the force at the pore entrance on the cis side. On the other hand, for the pore-driven
case a similar procedure is employed to find the tension force. The only difference
occurs in the so-called trans side friction η̃TS(t̃) for the flexible chain, which is absorbed
into the pore friction η̃p. Similar to the end-pulled case, for the pore-driven case of a
semi-flexible chain the explicit form of η̃TS(t̃) must also be taken into account too, as
will be explained in subsection 4.2.

Integration of the force balance equation over the mobile domain gives an
expression for the monomer flux as a function of the force and the linear size of
the mobile domain as [69]

φ̃(t̃) =
F̃ (t̃)

R̃(t̃) + η̃p(t̃) + η̃TS(t̃)
. (4)

Eq. (1), which is an equation of motion for the translocation coordinate s̃ that gives
its time evolution and the definition of the flux, φ̃ ≡ ds̃/dt̃, can be then used to find
the expression for the effective friction as

Γ̃(t̃) = R̃(t̃) + η̃p(t̃) + η̃TS(t̃), (5)

which nicely reveals the role of the different the friction terms R̃(t̃), η̃TS(t̃) and η̃p(t̃)
due to the mobile subchain on the cis and trans sides, and due to the pore, respectively.

Equations (1), (4) and (5) determine the time evolution of s̃, but the full solution
still requires the knowledge of R̃(t̃). The derivation of the equation of motion for R̃(t̃)
must be done separately for the TP and PP stages. In the TP stage, the tension has
not reached the final monomer as depicted in Fig. 1(a). Here the propagation of the
tension front into the immobile domain is determined by the geometric shape of the
immobile domain. To this end the scaling relation of the end-to-end distance of the
chain is needed in order to obtain a closure relation. For flexible self-avoiding chains
this is simply given by R̃ = AνN

ν , where ν is the Flory exponent, Aν is a constant
prefactor and N is the last monomer inside the tension front. For semi-flexible chains
the scaling form is more complicated and will be discussed in Sec. 4.1. One can then
derive an equation of motion for the tension front as

˙̃R(t̃) = XTP, (6)
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where XTP can be a function of R̃, φ̃ and other parameters of the system. In the
PP stage which is illustrated in Figs. 1(b) and (d), every monomer on the cis side is
affected by the tension force. Therefore, we have the condition N = N0. Since N
is also equal to the number of monomers already translocated, s̃, plus the number of
currently mobile monomers on the cis side, l̃, the correct closure relation for the PP
stage is l̃ + s̃ = N0. The equation of motion for the tension front is then derived as

˙̃R(t̃) = XPP, (7)

where XPP can again be function of R̃, φ̃ and other parameters of the system.
The self-consistent solution for the model in the TP stage can be obtained from

Eqs. (1), (4), (5) and (6), while for the PP stage one uses the set of Eqs. (1), (4), (5)
and (7).

3. Pore-driven flexible chain

In this section we briefly review the pore-driven translocation of a flexible chain
through a nanopore, where the constant external driving force acts solely to the
monomer(s) inside the pore. Then the force balance Eq. (1) is cast into

Γ̃(t̃)
ds̃

dt̃
= f̃ , (8)

where f̃ is the constant driving force at the pore. Here we investigate a static pore
which means the radius of the pore is constant. Therefore, in the theory the pore
friction is constant, i.e. η̃p(t̃) = η̃p. Moreover, the dynamical trans side contribution
to the friction can be absorbed into the constant pore friction η̃p, as we have shown
in Refs. [58, 59, 65]. Thus the force at the entrance of the pore in the cis side in Eq.
(3) is f̃0(t̃) ≡ f̃ − η̃pφ̃(t̃), and consequently the flux of monomers φ̃(t̃) and the effective
friction Γ̃(t̃) are

φ̃(t̃) =
f̃

R̃(t̃) + η̃p
; Γ̃(t̃) = R̃(t̃) + η̃p. (9)

As discussed briefly in Sec. 2 Eqs. (8) and (9) give the time evolution of the
translocation coordinate s̃, but to have a full solution the time evolution of the tension
front is needed both in the TP and in PP stages. To this end we only show how the
time evolution of the tension front is obtained for the strong stetching (SS) regime.
The same procedure has been applied to the trumpet (TR) and stem-flower (SF)
regimes, where the external driving force is moderate, and can be found in Refs. [69]
and [76]. Here we consider a flexible chain where the distance between the tension
front and the pore is written as R̃N = AνN

ν , and N = l̃ + s̃ < N0 for the TP stage,
and in the SS regime l̃ = R̃(t̃). After substituting R̃(t̃) + s̃ instead of N in the right
hand side of the relation above for R̃N [R̃(t̃) = R̃N ], and taking the time derivative
on both sides, the equation for the time evolution of R̃(t̃) in the TP stage is written
as

˙̃R(t̃) =
νA

1
ν
ν R̃(t̃)

ν−1
ν φ̃(t̃)

1− νA
1
ν
ν R̃(t̃)

ν−1
ν

. (10)

In the PP stage the tension has reached the chain end and the correct closure relation
is N = l̃ + s̃ = N0. For the SS regime in the PP stage l̃ = R̃(t̃). By substituting R̃(t̃)
instead of l̃, the closure relation is R̃(t̃)+ s̃ = N0. The time derivative on both sides of
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Figure 2. (a) The waiting time (WT), w(s̃), as a function of s̃, the translocation
coordinate, for the pore-driven case of a flexible chain. Here, the WT is presented
for different cases. The black curve is the WT when both the driving force and
Aν = 1.15 are deterministic (i.e. fluctuations due to temperature are not taken
into account). The yellow squares show WT when Aν = 1.15 is deterministic but
a stochastic noise term is added in the driving force in Eq. (8) (see Ref. [69] for
details). The green diamonds present the WT when the force is fluctuating and
the amplitude Aν is sampled from a distribution generated by thermal fluctuations
of the chain with the first bead attached to the entrance of the pore. Finally, the
gray circles are MD simulation data. (b) The translocation time as a function of
the polymer contour length, N0, for fixed values of the driving force f = 5 and
Aν = 1.15, for different values of the pore friction ηp = 1, 5 and 10. The effective
scaling exponent 1.52 is for N0 = 40, which is the shortest chain, and smallest
chosen pore friction ηp = 1, while its value for ηp = 10, which is the highest
pore friction, is 1.26. The effective translocation exponent for the longest chain,
N0 = 1×105, is ν+1 ≈ 1.588. (c) The effective exponent, α(N0), and the rescaled
exponent, as a function of N0 for different values of pore friction ηp = 1, 5 and
10. The rescaled exponents for different values of pore friction collapse on a single
curve, which is α†(N0) = 1 + ν. See text for details.

this new closure relation gives the time evolution of the tension front in the PP stage
and SS regime as

˙̃R(t̃) = −φ̃(t̃). (11)

Therefore, a self-consistent solution for the model in the TP stage can be obtained
from Eqs. (8), (9) and (10), while in the PP stage one uses the set of Eqs. (8), (9)
and (11).

3.1. Waiting time

To examine the dynamics of the translocation process we focus on one of the most
important quantities, the waiting time (WT) distribution, which is the time that each
segment or monomer spends at the pore during the course of the translocation process.
To this end we compare the WT from MD with the one from the IFTP theory. For each
individual monomer the WT is averaged over many different simulation trajectories.
The details of the MD simulations can be found in Refs. [58] and [83].

In Fig. 2(a) we present the WT as a function of the translocation coordinate
s̃ for a fixed chain length N0 = 128, external driving force f = 5 and pore friction
ηp = 3.5. The two stages of the translocation process are clearly revealed in the WT
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distribution. The first TP stage is where more and more mobile monomers are involved
in the friction. Consequently the dynamics of the system gets slower and therefore
the WT grows. The WT gets its maximum when the tension reaches the chain end.
In the second PP stage, the tension has already reached the chain end. Therefore,
all monomers of the remaining part of the subchain in the cis side are mobile and
contribute to the friction. When the time passes in the PP stage and the cis subchain
is sucked into the pore, the number of mobile monomers in the cis side decreases and
consequently the friction decreases, too. Thus the chain speed increases and the WT
decreases. When the whole chain traverses the nanopore the process of translocation
ends.

The IFTP theory can be used to separately examine (a) the influence of the
distribution of the initial configuration of the chain and (b) thermal fluctuations in
the noise. (a) To this end, for chain length N0 = 321 an analytical function for the
end-to-end distance distribution of the chain was fitted to MD simulation data. The
fitting function used was

P (z) = A zBexp
[
CzD], (12)

where A = 0.4252, B = 1.0310, C = −1.4417, D = 2.6203, and z is the normalized end-
to-end distance, i.e. z = R̃/〈R̃〉. It was shown that the the same function can be used
for shorter chains as well [69]. Many different initial configurations can be sampled by
using Eq. (12). The end-to-end distance R̃ is redefined as R̃ = Aν(z) Nν

0 , where z is
chosen from the probability distribution function in Eq. (12). Then, an approximate
distribution of R̃ is incorporated into the IFTP theory through Aν(z) = zAν . For the
case (b) to include thermal fluctuations of the noise in the IFTP model, a stochastic
force term is added to the right hand side of the Eq. (8). A stochastic differential
equation for the force balance is then numerically solved.

In Fig. 2(a) the WT distribution, w(s̃), is plotted as a function of s̃, the
translocation coordinate. Here, the WT is presented for different levels of stochasticity.
The black curve is the WT when both of the driving force and Aν = 1.15 are
deterministic. The yellow squares show WT when Aν = 1.15 is deterministic but the
driving force is stochastic, i.e. when the force balance equation includes the thermal
noise term. The green diamonds present the WT when both the force and Aν are
stochastic. Finally, the gray circles are MD simulation data.

As can be seen in Fig. 2(a) the transition from the TP to PP stages is smoothened
by the stochastic sampling of the initial configurations. This feature is also seen
in the MD simulations (gray circles), where we sample the initial configurations by
equilibrating the polymer before each actual translocation event. All in all, there is
a very good quantitative agreement between the result of the full stochastic IFTP
theory and the MD simulations.

3.2. Scaling of the translocation time

The average translocation time τ̃ is the most fundamental quantity related to the
translocation process. Here our aim is to present how an analytical form for the
translocation time is obtained in the SS regime. The same procedure can be applied for
the TR and SF regimes [69, 76] and the final result for the scaling of the translocation
time for all the SS, TR and SF regimes is the same.

Combining the definition of the flux φ̃ = ds̃/dt̃ and the equation for the flux
φ̃(t̃) = f̃/

[
R̃(t̃) + η̃p

]
, together with the mass conservation in the TP stage N = l̃+ s̃,
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and l̃ = R̃ for the SS regime, by integration of N from 0 to N0 the time for the TP
stage reads

τ̃TP =
1

f̃

[ ∫ N0

0

R̃NdN + η̃pN0

]
−∆τ̃SS, (13)

where ∆τ̃SS = (R̃2
N0
/2 + η̃pR̃N0)/f̃ . In the PP stage the tension has already reached

the chain end N = N0 and therefore dN/dt̃ = 0. By integrating R̃ from R̃N0
to 0, PP

time τ̃PP is obtained as
τ̃PP = ∆τ̃SS. (14)

Finally, the whole translocation time, τ̃ = τ̃TP + τ̃PP, is given by ‡

τ̃ =
1

f̃

[ ∫ N0

0

R̃NdN + η̃pN0

]
=
AνN

1+ν
0

(1 + ν)f̃
+
η̃pN0

f̃
. (15)

This analytical result for the translocation time is in excellent agreement with MD
simulations and the previous scaling analysis in Ref. [65].

According to Eq. (15) and the conventional scaling form, τ̃ ∝ Nα
0 , the effective

exponent α is a function of chain length and pore friction. In the language of critical
phenomena the second term on the r.h.s of Eq. (15) could be called a correction-to-
scaling term. To elucidate the influence of the pore friction dependent term the theory
has been solved numerically and in Fig. 2(b) the translocation time, τ(N0), has been
plotted as a function of the chain length, N0, for fixed values f = 5, kBT = 1.2, η = 0.7,
and different values of the pore friction ηp = 1, 5 and 10. Here we have solved the
model deterministically without any stochasticity and used a fixed value of Aν = 1.15.
For short chains the slope depends on the pore friction, while for the long chain limit
this dependence vanishes and the asymptotic limit is reached where the exponent is
α = 1 + ν. To present the dependence of the effective translocation exponent even
more clearly in Fig. 2(c) we have plotted a running translocation exponent, defined
as α(N0) = d ln τ/(d lnN0) [65], as a function of the chain length for various values of
the pore friction ηp = 1, 5 and 10.

The correction-to-scaling term can be actually canceled out by defining a rescaled
translocation time as

τ̃ † = τ̃ − a2η̃pN0 = a1N
1+ν
0 ∼ Nα†

0 , (16)
where α† ≡ 1 + ν is the rescaled translocation exponent which does not depend on
the chain length any more. We show the rescaled data for different values of the pore
friction in Fig. 2(c). The intercept and slope of the curve τ/N1+ν

0 as a function of
η̃pN

−ν
0 are a1 and a2, respectively, as explained in Ref. [65] the coefficients a1 and a2

come from a simple linear least squares fit.

4. Pore-driven semi-flexible chain

So far we have discussed the case where the polymer chain is fully flexible meaning
that it follows the simple Flory scaling form in equilibrium. However, the DNA is a
semi-flexible polymer and we need to reconsider the theory for such chains. To this
end, two crucial points must be investigated. The first one is the possible role of the
trans side friction while the second is the scaling of the end-to-end distance of the
semi-flexible chain, which is nontrivial and should comprise the limiting cases of a
rod, an ideal Gaussian chain, as well as an excluded volume chain [92].

‡ It should be noted that due to a technical mistake the authors in Ref. [68] concluded that there is
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Figure 3. (a) Normalized end-to-end distance of a semi-flexible chain R̃2
N/N

2ν

as a function of the chain length N for fixed kBT = 1.2 and different values of the
bending rigidity (in the MD simulations) κb = 6 (red diamonds), 30 (blue circles)
and 120 (green squares), which correspond to `p = 5 (red dashed-dotted line), 25
(blue solid line) and 100 (green dashed-dotted-dotted line), respectively, according
to `p = κb/(kBT ) in 3D. The lines come from the analytical interpolation formula
of Eq. (17). (b) Main panel is the same as (a) but only for bending rigidity 30
and `p = 25. To present the asymptotic behavior of the end-to-end distance,
R̃N/N

2ν has been plotted for an extended range of N in the inset. It shows that
eventually it crosses from a Gaussian intermediate range to a self-avoiding chain
at very large N/˜̀p.

4.1. End-to-end distance of a semi-flexible chain

The equation of motion for R̃(t̃), which is the root-mean-square of the end-to-end
distance, i.e. R̃N , can be found if an analytical form of R̃(t̃) for semi-flexible chains is
known. To this end extensive MD simulations of bead-spring models of semi-flexible
chains in 3D have been carried out [83].

Figure 3(a) shows the normalized end-to-end distance of a semi-flexible chain
R̃2
N/N

2ν as a function of the chain length N for fixed kBT = 1.2 and different values
of the bending rigidity (in the MD simulations): κb = 6 (red diamonds), 30 (blue
circles) and 120 (green squares), which correspond to persistence lengths `p = 5 (red
dashed-dotted line), 25 (blue solid line) and 100 (green dashed-dotted-dotted line),
respectively, according to `p = κb/(kBT ) in 3D. The lines come from the analytical
interpolation formula

R̃N =

{
+ R̃2

F −
R̃4

F

2a1N2

[
1− exp

(
− 2a1N

2

R̃2
F

)]

+ 2˜̀
pN−

2˜̀2
p

b1

[
1−exp

(
− b1N

˜̀
p

)]} 1
2

. (17)

Here R̃F = A˜̀νp
p Nν , with `p as the persistence length and νp = 1/(d + 2) (d = 3),

which is the scaling form of the end-to-end distance of the chain in the limit N/˜̀
p � 1

[92] that is correctly recovered by Eq. (17). In the limit of N/˜̀
p � 1, which is the

rod-like or stiff chain limit, the trivial result of R̃N = N is also recovered by Eq. (17).

term ∝ N2ν in the scaling of the translocation time.
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The values of the constant fitting parameters turn out to be A = 0.8, a1 = 0.1 and
b1 = 0.9, and ν = 0.588 is the 3D Flory exponent.

The main panel in Fig. 3(b) is the same as in (a) but only for bending rigidity
30 that corresponds to `p = 25. To present the asymptotic behavior of the end-to-
end distance for this persistence length, the normalized quantity R̃N/N2ν has been
plotted for an extended range of N in the inset. The inset presents a crossover from a
rod-like chain to a Gaussian (ideal) polymer where ν = 1/2. Moreover, it shows that
eventually it correctly crosses from a Gaussian intermediate range to a self-avoiding
chain at very large N/˜̀

p [93].

4.2. Trans side friction

For a semi-flexible chain some monomers close to the pore in the trans side contribute
to the friction due to their net motion in the direction of the external driving force.
Therefore, the trans side friction must be quantified. As the trans side friction has
complicated dependence on the physical parameters of the system we have calculated
it numerically from the MD simulations by using the normalized cosine-correlation
function [83]. In Fig. 4(a) the numerically extracted friction has been plotted as
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Figure 4. (a) The trans side friction η̃TS as a function of the translocation
coordinate s̃ for chain length N0 = 64, bending rigidity coefficient κb = 30 and
various values of the external driving force f = 5, 10 and 20. The orange squares
(f = 5), turquoise triangles (f = 10) and brown circles (f = 20) are MD data.
For f = 20, the black solid line represents the trans side friction at the beginning
of the translocation process, which is proportional to the x component of the
end-to-end distance. The horizontal black dashed line shows that the trans side
friction has a constant value of ≈ 10.63 during the first buckling stage. Finally,
the black dashed-dotted line exhibits the trans side friction after the buckling
has occurred, demonstrating an exponential decay to the asymptotic value of the
trans side friction, η̃TS (s̃ → N0). The red and blue lines represent approximate
analytical fits for the trans side friction for f = 5 and f = 10, respectively. (b)
η̃TS as a function of s̃ for chain length N0 = 64, external driving force f = 20
and various values of the bending rigidity coefficient κb = 2.4, 6, 30 and 60. The
orange squares (κb = 60), brown circles (κb = 30), green diamonds (κb = 6) and
turquoise triangles (κb = 2.4) are MD data.
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a function s̃, translocation coordinate, for fixed chain length of N0 = 64, bending
rigidity κb = 30, which corresponds to persistence length `p = 25 in 3D, and for three
different values of the external driving force f = 5, 10 and 20. Panel (b) is the same
as (a) but for a fixed value of the driving force f = 20 and different values of the
bending rigidity κb = 2.4, 6, 30 and 60. This figure reveals three distinct regimes in
η̃TS(s̃). In the regime of small s̃/N0, the friction grows proportional to R̃x which is
the amplitude of x component of the end-to-end distance. After this initial stage it
saturates to almost a constant value (for example 10.63 for f = 20), which indicates
buckling of the trans side subchain. Then the friction approximately exponentially
decays towards another constant value (≈ 5.5 for f = 20).

It should be noted that currently we do not have any analytic formula available
for η̃TS in the strong stretching regime considered here. For weaker driving forces, the
trans side friction does not exhibit the exponentially decaying term as the chain has
more time to relax during translocation and the polymer dynamics is slower. In this
case the asymptotic value of the trans side friction will be somewhat higher than for
fast translocation [94].

4.3. Time evolution of the tension front

Using the analytical form of R̃(t̃) in Eq. (17) together with the mass conservation in
the TP stage N = l̃+ s̃, where l̃ = R̃, the tension front equation of motion for the SS
regime is derived as

˙̃R(t̃)=
φ̃(t̃) (U + Y)

2R̃(t̃)− (U + Y)
, (18)

where

U = +
R̃2

F

N

[
2ν − (2− 2ν) exp

(
− 2a1N

2/R̃2
F

)]
+

(4ν − 2)R̃4
F

2a1N3

[
− 1 + exp

(
− 2a1N

2/R̃2
F

)]
,

Y = 2˜̀
p

[
1− exp

(
− b1N/˜̀

p

)]
. (19)

In the PP stage where the correct closure relation is l̃+ s̃ = N0, the equation of motion
for the tension front can be derived as

˙̃R(t̃) = −φ̃(t̃). (20)

The force balance equation for the semi-flexible chain is the same as in Eq. (8), i.e.
Γ̃(t̃)ds̃/dt̃ = f̃ , but the friction due to the trans side must be explicitly taken into
account in the effective friction. The friction coefficient and the monomer flux for the
semi-flexible polymer translocation are then

φ̃(t̃) =
f̃

R̃(t̃) + η̃p + η̃TS

; Γ̃(t̃) = R̃(t̃) + η̃p + η̃TS. (21)

To find the solution for the model, in the TP stage Eqs. (8), (18) and (21) must be
solved self-consistently while in the PP stage one must solve Eqs. (8), (20) and (21).
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4.4. Waiting time distribution

In Fig. 5 the WT has been plotted as a function of the translocation coordinate, for
fixed values of N0 = 64, `p = 25, f = 20 and ηp = 4, which are the chain length,
persistence length, the external driving force, and pore friction, respectively. The
black circles are the MD simulation data. The blue dashed line is the WT in the
absence of the trans side friction [69], while the solid red line presents the result from
the IFTP theory including η̃TS. As clearly shown in the figure, the trans side friction,
η̃TS(t), must be included in order to have a quantitative agreement between theory
and MD data.

4.5. Translocation time exponent

As discussed in subsection 3.2 the average translocation time for flexible chains
under a constant driving force scales as τ = c1N

ν+1
0 + c2η̃pN0, where c1 and c2

are constants. The asymptotic scaling, where α = ν + 1, is caused by a significant
finite-size correction due the second term, which is the pore friction contribution
[58, 59, 65, 69, 76]. It should be mentioned that for the semi-flexible chains in the limit
of large N0 when ˜̀

p/N0 � 1 the asymptotics is recovered. Moreover, in the rod-like
limit, where ˜̀

p/N0 � 1, the translocation time scales as τ ∝ N2
0 . An analytical form
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Figure 5. (a) The WT distribution w(s̃) as a function of s̃, for a semi-flexible
polymer translocation process, with fixed values of N0 = 64, `p = 25, f = 20
and ηp = 4, for the chain length, persistence length, the external driving force,
and pore friction, respectively. No noise is added to the IFTP theory here. The
black circles are the MD simulation data. While the blue dashed line is the WT
in the absence of the trans side friction [69], the solid red line presents the result
from the IFTP theory including η̃TS . (b) The translocation time exponent α as
a function of N0, for fixed values of `p = 25 and ηp = 4, and for various values
of the driving force f = 5 (violet solid line), 10 (turquoise solid line) and 20
(black circles). The rescaled translocation exponents α† and α‡ are shown by the
green diamonds and orange squares, respectively. The horizontal black solid, red
dashed and blue dashed-dotted lines present the asymptotic rod-like, Gaussian
and excluded volume chain limits, respectively.
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of τ can be derived following Ref. [69] as §

τ̃ =
1

f̃

[ ∫ N0

0

R̃NdN + η̃pN0

]
+ τ̃TS, (22)

where τ̃TS =
[ ∫ N0

0
η̃TSdN−

∫ R̃N0

0
(η̃TS,TP−η̃TS,PP)dR̃

]
/f̃ is the contribution of the trans

side to the translocation time. The second term in τ̃TS is a result of the non-monotonic
behavior of η̃TS in the TP (η̃TS,TP) as well as the PP (η̃TS,PP) stages [83].

In the rod limit a simple analytical result is obtained as

τ̃ =
1

f̃

[
η̃pN0 +N2

0

]
, (23)

which reveals the well-known asymptotic result α = 2. Therefore, the effective
exponent for semi-flexible chains will be between unity and two.

The trans side and pore friction influence the effective translocation exponent
and can be quantified by defining two rescaled translocation exponents α† and α‡ as
τ † = τ − τTS ∼ Nα†

0 and τ ‡ = τ − τTS − a2η̃pN0 ∼ Nα‡

0 , respectively. As can be
seen in Eq. (22) the contributions from both the pore and the trans side friction are
important in the short and intermediate (4 . N0/˜̀

p . 400) regime.
In Fig. 5(b) the translocation time exponent α has been plotted as a function

of N0, for fixed values of the `p = 25 and ηp = 4, and for various values of the
driving force f = 5 (violet solid line), 10 (turquoise solid line) and 20 (black circles).
The rescaled translocation exponents α† and α‡ are shown by the green diamonds
and orange squares, respectively. The horizontal black solid, red dashed and blue
dashed-dotted lines present the asymptotic rod-like, Gaussian and excluded volume
chain limits, respectively. As can be clearly seen, in an extended intermediate range
of chain lengths the translocation exponent is very close to α = 3/2 which is the
Gaussian value of the exponent. Then it slowly approaches the asymptotic value of
1 + ν = 1.588 from below. It should be mentioned that in order to see this crossover,
a full scaling form for the end-to-end distance in Eq. (17) is needed.

5. End-pulled flexible chain

This section is devoted to the dynamics of end-pulled polymer translocation through
a nanopore, where the external driving force only acts on the head monomer of the
chain on the trans side (see Figs. 1(c) and (d)). To this end we generalize the IFTP
theory to include the trans side subchain friction. Depending on the configurations of
the subchain in the cis and the trans side a complicated scenario of multiple scaling
regimes is revealed. In the high driving force limit, where the trans side subchain
is strongly stretched (the SS regime), the theory is in excellent agreement with MD
simulations. In the SS regime an exact analytical form for the translocation time can
be derived as a function of the chain length and the external force. Moreover, the
scaling exponents for τ ∼ Nα

0 f
β in the asymptotics are α = 2, and β = −1. The

correction-to-scaling terms arising due to the cis side and pore friction are revealed
by the IFTP theory. These terms lead to a very slow approach to the asymptotic
exponent α = 2 from below as a function of increasing chain length N0.

In the SS regime when the cis side subchain is also in the strong stretching regime
(SSC), the time evolution of the tension front in the TP and PP stages are given by

§ Due to a technical mistake the authors of Ref. [95] got an incorrect scaling form for the translocation
time.
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Figure 6. (a) The WT distribution w(s̃) as a function of s̃, for the end-pulled
polymer translocation process, with constant driving force f = 100, chain length
N0 = 100, and pore friction ηp = 3, for the spring constant k = 30 in the MD
simulations. The black circles present the MD simulation results while the solid
orange line is the result of the IFTP theory. Panels (b) and (c) are the same as
(a) but for different values of the spring constant k = 100 and 200, respectively.
(d) The effective translocation time exponent α as a function of N0, for different
values of the pore friction ηp = 1.5 (green squares), 10 (yellow diamonds) and
20 (orange circles). The rescaled translocation exponents α† and α‡ are shown
by the blue dashed and the horizontal black solid lines, respectively. See text for
details.

Eqs. (10) and (11), respectively [84]. The evolution of the monomer flux, and the total
effective friction, are expressed by φ̃(t̃) = f̃/[R̃(t̃)+η̃p+η̃TS], and Γ̃(t̃) = R̃(t̃)+η̃p+η̃TS,
respectively, which are similar to those in Eq. (21). However, there’s an important
difference as compared to the semi-flexible pore-driven case. The trans side friction for
the end-pulled case in the SS regime, where the trans subchain is fully straightened,
is given analytically by η̃TS = s̃ [84]. It should be noted that in the SS regime, the cis
side subchain configuration may be in either the trumpet (TRC), stem-flower (SFC) or
SSC regimes. Here we only consider the SSC regime. The form of the time evolution
of the tension front in the SFC and TRC regimes have been explained in detail in Ref.
[84]. The equations for the time evolution of the monomer flux and the total effective
friction in the SFC and TRC regimes are the same as of the SSC regime.

5.1. Waiting time distribution

To test the validity of the IFTP theory for the end-pulled case in Fig. 6(a) we present
the monomer WT distribution as a function of s̃, with constant driving force f = 100,
chain length N0 = 100, and ηp = 3 (pore friction in the theory), for the spring
constant k = 30 in the MD simulations. The black circles present the MD simulation
results while the solid orange line is the result of the IFTP theory. Panels (b) and
(c) are the same as (a) but for different values of the spring constant k = 100 and
200, respectively. The orange solid lines come from the IFTP theory when we solve
the equations of motion with a combination of all the three SSC, SFC and TRC
regimes (a full description for the SFC and TRC regimes can be found in Ref. [84]).
The equations are solved in the SSC, or SFC or TRC regime if f̃0 & N0 − s̃, or
1 . f̃0 < N0 − s̃ or f̃0 . 1, respectively. f̃0 has been introduced in Eq. (3), which for
the end-pulled case under a constant driving force is f̃0 ≡ f̃ − η̃pφ̃(t̃) − η̃TSφ̃(t̃). As
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can be seen in Figs. 6(a)-(c) the IFTP theory result underestimates the WT for small
values of s̃. This happens due to the stretching of the bonds and also because of the
beginning of the mobile part reorientation on the cis side. This discrepancy occurs
only for small values of s̃, and as the larger values of s̃ (over the whole PP stage and
almost at the end of the TP stage) mainly contribute to the WT and consequently to
the translocation time, the overall behavior of the translocation process is faithfully
predicted by the IFTP theory.

5.2. Scaling exponents for translocation

Similar to the previous sections and following Refs. [69] and [83] an exact analytic
expression for τ̃ can be derived as

τ̃ =
1

f̃

[ ∫ N0

0

R̃NdN + η̃pN0

]
+ τ̃TS, (24)

where

τ̃TS =
N2

0

2f̃
, (25)

is the trans side friction contribution to the translocation time, due to the fully
straightened trans side mobile subchain (see Figs. 1(c) and (d)). Therefore,

τ̃ =
1

f̃

[
Aν
ν + 1

Nν+1
0 + η̃pN0 +

1

2
N2

0

]
, (26)

where the force exponent is thus β = −1. It should be mentioned that in the right hand
side of Eq. (26), the first two terms are identical to the pore-driven flexible chain case
[69], and the new third term, which is proportional to N2

0 , is due to the explicit form
of the trans side friction, η̃TS = s̃ for the end-pulled case when the trans side is fully
straightened. As is clear in Eq. (26) the asymptotic translocation exponent is α = 2,
and there are two correction-to-asymptotic-scaling terms which lead to pronounced
crossover behavior due to the contributions of the cis side and pore friction to the
total effective friction. In Fig. 6(d), the translocation exponents α, α†, and α‡ are
plotted as a function of the chain length N0 for different values of the pore friction,
ηp = 1.5, 10 and 20, where the last two rescaled exponents are defined as

τ̃ † = τ̃ − η̃pN0/f̃ ∼ Nα†

0 ,

τ̃ ‡ = τ̃ − 1

f̃

[ ∫ N0

0

R̃NdN + η̃pN0

]
∼ Nα‡

0 . (27)

As Fig. 6(d) clearly shows for typical parameters used here and in most computer
simulations, the asymptotic scaling is recovered for very long chains only.

6. Pore-driven flexible chain with a flickering pore and an oscillating force

In this section we consider pore-driven polymer translocation under an alternating
driving force through a flickering pore. Here the alternating driving force is assumed
to be periodic, and it can be directly incorporated into the IFTP theory. Therefore, the
form of the force balance equation Eq. (1) remains the same, and Γ̃(t̃)(ds̃/dt̃) = F̃ (t̃).
The flickering pore is modeled by assuming that the pore friction has a time dependent
form η̃p(t̃) and again we assume for simplicity that flickering is periodic. Following
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Figure 7. (a) The waiting time w(s̃) as a function of the translocation coordinate
s̃ for pore driven translocation of a flexible chain through a flickering pore and
under a periodically oscillating driving force, with fixed values of the initial phases
of the force ψf = π/2 and of the pore 3π/2, for the static pore and also for various
values of the force and pore frequencies ωf = ωp = 0, ωstat/2, 2ωstat, 8ωstat

and 512ωstat, where we have defined ωstat = 2π/τstat through the average
translocation time τstat for a static pore under a constant driving force. Here, the
flickering pore friction is given by η̃p(t̃) = η̃p+ãp sin(ω̃p t̃+ψp), where ηp = 3.5 and
ap = 1.275, the oscillating external driving force is F̃ (t̃) = f̃ + ãf sin(ω̃f t̃+ ψf ),
where f = 5 and af = 0.5. Panels (b), (c) and (d) are the same as panel (a) but
for different values of the initial force and pore phases ψf = 3π/2 and ψp = π/2,
ψf = π/2 and ψp = π, and ψf = π and ψp = π/2, respectively.

Sec. 3 for a fully flexible self-avoiding polymer the dynamical contribution of the
trans side friction is insignificant [58, 59, 65, 68] and can be absorbed into the pore
friction [69, 76]. Therefore, the total effective friction Γ̃(t̃) has both the cis side
contribution η̃cis(t̃) = R̃(t̃) and the time dependent pore friction, and can be written
as Γ̃(t̃) = R̃(t̃) + η̃p(t̃). Following derivations in the previous sections the flux of
monomers φ̃(t̃) and the effective friction Γ̃(t̃) are then obtained as

φ̃(t̃) =
f̃(t̃)

R̃(t̃) + η̃p(t̃)
; Γ̃(t̃) = R̃(t̃) + η̃p(t̃). (28)

For the SS regime one can show again that the time evolution of the tension front
in the TP and PP stages remains the same as in Eqs. (10) and (11), respectively.
Therefore, the self-consistent solution for the IFTP theory in the TP stage is obtained
from Eqs. (1), (10) and (28), and in the PP stage the set of Eqs. (1), (11) and (28)
must be solved.
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6.1. Waiting time

To proceed further we choose the driving force as a combination of a constant force
component f̃ and an oscillatory term Ãf (t̃) as

F̃ (t̃) = f̃ + Ãf (t̃), (29)

where Ãf (t̃) = ãf sin(ω̃f t̃ + ψf ), and ãf , ψf and ω̃f are the amplitude, initial phase
and frequency of the force, respectively. Similarly, we use a simple periodic function
for the pore friction coefficient to model the flickering pore as

η̃p(t̃) = η̃p + Ãp(t̃), (30)

where Ãp(t̃) = ãp sin(ω̃pt̃ + ψp) and ãp, ψp and ω̃p are the amplitude, initial phase
and frequency of the pore friction, respectively.

As the WT accurately reveals the dynamics of the translocation process, in Fig.
7(a) we plot the WT as a function of the translocation coordinate s̃ with fixed
values of the initial phases of the force ψf = π/2, and of the pore ψp = 3π/2.
The data are for the static pore as well as for various values of the force and pore
frequencies ωf = ωp = 0, ωstat/2, 2ωstat, 8ωstat and 512ωstat, where ωstat = 2π/τstat
and the subscript stat stands for static pore under a constant driving force which
was explained in detail in Section 3. Here, the flickering pore friction is given by
η̃p(t̃) = η̃p + ãp sin(ω̃pt̃ + ψp), where ηp = 3.5 and ap = 1.275, while the alternating
external driving force is F̃ (t̃) = f̃ + ãf sin(ω̃f t̃ + ψf ), where f = 5 and af = 0.5.
Panels (b), (c) and (d) are the same as panel (a) but for different values of the initial
force and pore phases ψf = 3π/2 and ψp = π/2, ψf = π/2 and ψp = π, and ψf = π
and ψp = π/2, respectively. The number of oscillations in the WT curves is almost
given by ωf/ωstat or by ωp/ωstat. It is clear that as the force and pore frequencies
ωf = ωp = 512ωstat are in the high frequency limit, the WT curves for the static case
(black solid line) and for the high frequencies (pink circles) collapse. This happens
because the dynamics of the driving force and also the flickering pore is so fast that
when the monomers of the polymer pass the pore, they only experience the average
value of the fluctuating driving force as well as the average value of the pore friction.

6.2. Translocation time and scaling of the translocation time

To see how sensitive the average translocation time is to the initial value of the force
and the pore friction (as determined by the corresponding phase factors at t = 0),
in Fig. 8(a) we plot the normalized translocation time τ/τstat as a function of either
the normalized pore or force frequencies, i.e. ωf/ωstat = ωp/ωstat, for various values
of the mixed initial phases ψf = π/2 and ψp = 3π/2 (red solid line), ψf = 3π/2 and
ψp = π/2 (green dashed line), ψf = π/2 and ψp = π (turquoise dashed-dotted line),
and ψf = π and ψp = π/2 (blue dashed-dotted-dotted line). The force and the pore
friction are given by Eqs. (29) and (30), respectively, with the same parameters as in
Fig. 7.

To explain the influence of the oscillating quantities to translocation dynamics
we should consider the different limits of the problem. In the limit of low frequencies,
the process of translocation occurs during the first half of the oscillating force and/or
oscillating pore friction period. For ψf = π/2 and ψp = 3π/2 (red solid line) during
this first half of the cycle, the value of the force decreases from its maximum value to
its minimum, while the value of the pore friction increases from its minimum to its
maximum. Therefore, the translocation time gradually increases for small frequencies
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and shows a maximum at ω̃f/ω̃stat = 0.5. For frequencies higher than ω̃f/ω̃stat = 0.5,
the polymer chain starts feeling the second half of the cycle where the value of the force
is increasing from its minimum value, while the pore friction is decreasing from its
maximum value, and this leads to a first minimum at ω̃f/ω̃stat = 1.0. For higher forces
or pore friction frequencies, i.e., ω̃f/ω̃stat > 1, the polymer chain again experiences
the next half of the cycle, i.e., T̃f < t̃ < 3T̃f/2, where T̃f = 2π/ω̃f . Here again
the value of the force is smaller than its maximum value, while the value of the pore
friction is greater than its minimum and thus the translocation time increases. As
the frequency increases further the translocation time oscillates between minima and
maxima with a decreasing amplitude upon approaching the limit of the high frequency,
where the average of the rapidly oscillating force component sums to zero within the
translocation time.

Figure 8(b) corresponds to panel (a) but for different values of the mixed initial
phases ψf = ψp = 0 (red solid line), ψf = ψp = π/2 (green dashed line), ψf = ψp = π
(turquoise dashed-dotted line), and ψf = ψp = 3π/2 (blue dashed-dotted-dotted line).
Figure 8(a) clearly shows that for small values of the frequencies, i.e. ωf , ωp < ωstat,
the translocation time is very sensitive to the selection of the initial phases. In contrast,
in panel (b) the translocation time is insensitive to the initial phases for all range of
the frequencies. This happens because for all the curves in panel (b) the two effects
of the driving force and pore friction now work against each other, and an almost
complete cancellation occurs in the low and high frequency limits.
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Figure 8. (a) The normalized translocation time, τ̃/τ̃stat, as a function of either
normalized force or pore frequency, ωp/ωstat = ωp/ωstat, for various values of the
mixed initial phases ψf = π/2 and ψp = 3π/2 (red solid line), ψf = 3π/2 and
ψp = π/2 (green dashed line), ψf = π/2 and ψp = π (turquoise dashed-dotted
line), and ψf = π and ψp = π/2 (blue dashed-dotted-dotted line). Here, both
the force and the pore oscillate periodically. Panel (b) is the same as panel (a)
but for different values of the mixed initial phases ψf = ψp = 0 (red solid line),
ψf = ψp = π/2 (green dashed line), ψf = ψp = π (turquoise dashed-dotted line),
and ψf = ψp = 3π/2 (blue dashed-dotted-dotted line).
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Following subsection 3.2 the scaling form of the translocation time is written as

τ̃ = τ̃stat−
1

f̃

∫ τ̃

0

Ãf (t̃)dt̃+
1

f̃

∫ N0

0

Ãp(t̃)dN. (31)

One can show that in the high pore friction frequency limit ω̃p � 1/τ̃ , for very long
chains, and in the low pore friction frequency limit ω̃p � 1/τ̃ , the total translocation
time is given by

τ̃= τ̃stat−


∫ τ̃
0
Ãf (t̃)dt̃/f̃ , ω̃p � 1/τ̃ ;

[
∫ τ̃
0
Ãf (t̃)dt̃−ãp sin(ψp)N0]/f̃, ω̃p�1/τ̃ .

(32)

As can be seen in Eq. (32), at the low frequency limit the behavior of the pore is
similar to a static pore with pore friction of η̃p + ãp sin(ψp). More details for the other
limits of the scaling form of the translocation time and the translocation exponent can
be found in Ref. [76].

7. Summary and Conclusions

In this paper we have presented a brief review on recent theoretical progress on the
dynamics of driven translocation of polymers thorough a nanopore. In the past, there
have been many attempts to explain the driven translocation process by simple scaling
arguments or linear response theories such as the Fokker-Planck equation. However, at
least for moderate and high driving the correct theory of driven translocation processes
is based on the combination of non-equilibrium tension propagation on the cis side
of the translocating chain and an iso-flux assumption of the monomer density at the
pore. These ideas can be combined into an analytic IFTP theory, which is based on
the dynamics of the translocation coordinate of the chain and the time-dependent
friction due to tension propagation.

In this review we have shown how the IFTP theory can be applied to a variety
of driven translocation problems, including the pore-driven and end-pulled cases. It
yields exact analytic scaling forms in the appropriate limits, and reveals the role of
the various frictional terms in translocation dynamics in terms of correction terms to
asymptotic scaling. Such correction terms that are significant for typical parameters
used in most computer simulations to date explain why many different values for the
scaling exponents have been reported in the literature. For the pore-driven case the
correct asymptotic exponent is α = 1 + ν, while for the end-pulled case is becomes
α = 2. Further, we have demonstrated that in cases where the time dependence
of the trans side friction cannot be neglected, the IFTP theory can still be retained
by augmenting the total friction with the trans side contribution. Unfortunately, for
pore-driven case of a semi-flexible chain there is no analytic description available to
date for such terms.

The main ingredient missing in the current version of the IFTP theory is the
influence of hydrodynamic interactions. Preliminary work has shown, however, this
may only affect effective scaling exponents while the asymptotic scaling forms should
still be valid [65]. However, it would be interesting to study this issue more thoroughly.
It is also of interest to consider additional translocation scenarios where the IFTP
theory could be applied, such as the combination of pore driving and end-pulling [39],
double-sided pulling [91], translocation of hairpin loops, just to mention a few. We
plan to work on these problems in the future.
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