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Abstract. We extend the notion of lattice polarization for K3 surfaces to
families over a (not necessarily simply connected) base, in a way that gives
control over the action of monodromy on the algebraic cycles, and discuss
the uses of this new theory in the study of families of K3 surfaces admitting
fibrewise symplectic automorphisms. We then give an application of these ideas
to the study of Calabi-Yau threefolds admitting fibrations by lattice polarized
K3 surfaces.

Contents

1. Introduction 2
1.1. Acknowledgements 5
2. Families of K3 surfaces 5
2.1. Families of lattice polarized K3 surfaces 5
2.2. Monodromy of algebraic cycles on K3 surfaces 6
2.3. Monodromy and symplectic automorphisms 7
2.4. A non-polarized example 9
2.5. Moduli spaces and period maps 10
3. Symplectic automorphisms in families 12
3.1. Symplectic automorphisms and Nikulin involutions 12
3.2. Symplectic quotients and Hodge bundles 14
3.3. Nikulin involutions in families 15
4. Undoing the Kummer construction. 16
4.1. The general case. 16
4.2. M -polarized K3 surfaces. 17
4.3. Undoing the Kummer construction for M -polarized families 18
4.4. The generically M -polarized case. 22
5. Threefolds fibred by Mn-polarized K3 surfaces. 23
5.1. The groups G. 23
5.2. Some special families 25

Date: February 25, 2015.
2010 Mathematics Subject Classification. 14J28 (primary), 14D05, 14J32 (secondary).
C. F. Doran and A. Y. Novoseltsev were supported by the Natural Sciences and Engineering

Resource Council of Canada (NSERC), the Pacific Institute for the Mathematical Sciences, and
the McCalla Professorship at the University of Alberta.

A. Harder was supported by an NSERC PGS D scholarship and a University of Alberta Doc-
toral Recruitment Scholarship.

A. Thompson was supported in part by NSERC and in part by a Fields-Ontario-PIMS Post-
doctoral Fellowship with funding provided by NSERC, the Ontario Ministry of Training, Colleges
and Universities, and an Alberta Advanced Education and Technology Grant.

1



2 C. F. DORAN, A. HARDER, A.Y. NOVOSELTSEV, AND A. THOMPSON

5.3. Covers for small n 28
5.4. Application to the 14 cases. 29
5.5. The case n = 1 35
6. Application to the arithmetic/thin dichotomy 39
References 40

1. Introduction

The concept of lattice polarization for K3 surfaces was first introduced by Nikulin
[Nik80a] and further developed by Dolgachev [Dol96]. Our aim is to extend this
theory to families of K3 surfaces over a (not necessarily simply connected) base, in
a way that allows control over the action of monodromy on algebraic cycles.

Our interest in this problem arises from the study of Calabi-Yau threefolds with
small Hodge numbers. In their paper [DM06], Doran and Morgan explicitly classify
the possible integral variations of Hodge structure that can underlie a family of
Calabi-Yau threefolds over the thrice-punctured sphere P1−{0, 1,∞} with h2,1 = 1.
Explicit examples, coming from toric geometry, of families realizing all but one of
these variations of Hodge structure were known at the time of publication of [DM06],
and a family realizing the fourteenth and final case was recently constructed in
[CDL+13].

One of the main tools used to study the Calabi-Yau threefolds constructed in
[CDL+13] was the existence of a torically induced fibration (i.e. a fibration of the
threefold induced by a fibration of the toric ambient space by toric subvarieties) of
these threefolds by K3 surfaces polarized by the rank 18 lattice

M := H ⊕ E8 ⊕ E8.

K3 surfaces polarized by this lattice have been studied by Clingher, Doran, Lewis
and Whitcher [CD07][CDLW09] and have a rich geometric structure. In particular,
the canonical embedding of the lattice E8⊕E8 intoM defines a natural Shioda-Inose
structure on them, which in turn defines a canonical Nikulin involution [Mor84].
The resolved quotient by this involution is a new K3 surface, which may be seen to
be a Kummer surface associated to a product of two elliptic curves; its geometry is
closely related to that of the original K3 surface.

In [CDL+13], toric geometry was used to show that this Nikulin involution is
induced on the M -polarized K3 fibres by a global involution of the Calabi-Yau
threefold. The resolved quotient by this involution is another Calabi-Yau threefold,
which is fibred by Kummer surfaces and has geometric properties closely related
to the first. Examination of this second Calabi-Yau threefold was instrumental
in proving that the construction in [CDL+13] realized the “missing” fourteenth
variation of Hodge structure from the Doran-Morgan list.

Motivated by the discovery of this K3 fibration and the rich geometry that
could be derived from it, we decided to search for similar K3 fibrations on the
other threefolds from the Doran-Morgan classification. In a large number of cases
(summarized by Theorem 5.10), we found fibrations by K3 surfaces polarized by
the rank 19 lattices

Mn := H ⊕ E8 ⊕ E8 ⊕ 〈−2n〉,
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which contain the lattice M as a sublattice. Many, but not all, of these fibrations
are torically induced.

This raises two natural questions: Do the canonical Nikulin involutions on the
fibres of these K3 fibrations extend to global symplectic involutions on the Calabi-
Yau threefolds? And if they do, what can be said about the geometry of the new
Calabi-Yau threefolds obtained as resolved quotients by these involutions?

Both of these questions may be addressed by studying the behaviour of the
Néron-Severi lattice of a K3 surface as it varies within a family. Furthermore, in
order for this theory to be useful in the study of K3 fibred Calabi-Yau threefolds
it should be able to cope with the possibility of monodromy around singular fibres,
meaning that we must allow for the case where the base of the family is not simply
connected.

To initiate this study, we introduce a new definition of lattice polarization for
families of K3 surfaces and develop the basic theory surrounding it. We note that
a related notion of lattice polarizability for families of K3 surfaces was introduced
by Hosono, Lian, Oguiso and Yau [HLOY04], who also proved statements about
period maps and moduli for such families. However, our definition is more subtle
than theirs, given that our goal is to derive precise data about the monodromy of
algebraic cycles. The relationship between the definitions is discussed in greater
detail in Remark 2.6.

The structure of this paper is as follows. In Section 2 we begin with the central
definitions of N -polarized (Definition 2.1) and (N,G)-polarized (Definition 2.4)
families of K3 surfaces, where N is a lattice and G is a finite group. The first is
a direct extension of the definition of N -polarization for K3 surfaces to families
and does not allow for any action of monodromy on the lattice N . The second is
more subtle: it allows for a nontrivial action of monodromy, but this monodromy
is controlled by the group G.

The remainder of Section 2 proves some basic results about N - and (N,G)-
polarized families of K3 surfaces and their moduli. Of particular importance are
Proposition 2.11 and Corollary 2.12, which use this theory to give conditions under
which symplectic automorphisms can be extended from individual K3 fibres to
entire families of K3 surfaces.

Section 3 expands upon these results, focussing mainly on the case where the
symplectic automorphism is a Nikulin involution. The main result of this section
is Theorem 3.3, which shows that the resolved quotient of an N -polarized family
of K3 surfaces, where N is the Néron-Severi lattice of a general fibre, by a Nikulin
involution is an (N ′, G)-polarized family of K3 surfaces, where N ′ is the Néron-
Severi lattice of a general fibre of the resolved quotient family and G is a finite
group.

In Section 4 we specialize all of these results to families of M -polarized K3
surfaces with their canonical Nikulin involution, which extends globally over the
family by Corollary 2.12. The resolved quotient family is an (N ′, G)-polarized
family of K3 surfaces whose general fibre is a Kummer surface. The first major
result of this section, Proposition 4.2, places bounds on the size of the group G.

To improve upon this result, in Section 4.3 we show that, after proceeding to
a finite cover of the base, we may realize these families of Kummer surfaces by
applying the Kummer construction fibrewise to a family of Abelian surfaces, a
process which we call undoing the Kummer construction. As a result of this process
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we obtain Theorem 4.11 and Corollary 4.13, which enable explicit calculation of the
group G.

In Section 5 we further specialize this analysis to families of Mn-polarized K3
surfaces, then apply the resulting theory to the study of the Calabi-Yau threefolds
from the Doran-Morgan list. The main results here are Theorems 5.10 and 5.20,
which show that twelve of the fourteen cases from that list admit fibrations by Mn-
polarized K3 surfaces. In fact, we prove an even stronger result: for n ≥ 2 these
fibrations are in fact pull-backs of specialMn-polarized families on the moduli space
of Mn-polarized K3 surfaces, under the generalized functional invariant map1, and
for n = 1 they are pull-backs of a special 2-parameter M1-polarized family by a
closely related map.

We compute the generalized functional invariant maps for all of these fibrations
in Sections 5.4 and 5.5. We find that they all have a standard form, defining
multiple covers of the moduli spaces of Mn-polarized K3 surfaces with ramification
behaviour determined by a pair of integers (i, j).

Finally, in Section 6 we use these results to make an interesting observation
concerning an open problem related to the Doran-Morgan classification. Recall
that each of the threefolds from this classification moves in a one parameter family
over the thrice-punctured sphere. Recently there has been a great deal of interest
in studying the action of monodromy around the punctures on the third integral
cohomology group of the threefolds. This monodromy action defines a Zariski
dense subgroup of Sp(4,R), which may be either arithmetic or non-arithmetic (more
commonly called thin). Singh and Venkataramana [SV14][Sin13] have proved that
the monodromy is arithmetic in seven of the fourteen cases from the Doran-Morgan
list, and Brav and Thomas [BT14] have proved that it is thin in the remaining seven.
It is an open problem to find geometric criteria that distinguish between these two
cases.

In Theorem 6.1 we provide a potential solution to this problem: the cases may be
distinguished by the values of the pair of integers (i, j) arising from the generalized
functional invariants of torically induced K3 fibrations on them. Specifically, we
find that a case has thin monodromy if and only if neither i nor j is equal to two.
This suggests that it may be possible to express the integral monodromy matrices
for the families of Calabi-Yau threefolds from the Doran-Morgan list in terms of
the families of transcendental cycles for their internal K3-fibrations, and that doing
so explicitly may be a good route towards an understanding of the geometric origin
of the arithmetic/thin dichotomy.

A different criterion to distinguish the arithmetic and thin cases was recently
given by Hofmann and van Straten [HvS13, Section 6], using an observation about
the integers m and a from [DM06, Table 1] (which are called d and k in [HvS13]).
Furthermore, the discovery of a yet another criterion has been announced in lectures
by M. Kontsevich, using a technique involving Lyapunov exponents. Whilst our
result does not appear to bear any immediate relation to either of these other
results, it is our intention to investigate the links between them in future work.

1The generalized functional invariant, introduced in [Dor00], may be thought of as an analogue
for K3-fibred threefolds of the classical functional invariant of an elliptic surface. Under this
analogy, the study of the action of monodromy on algebraic cycles that is the focus of this paper
may be thought of as corresponding to the homological invariant of an elliptic surface. As in
the elliptic surface case, we expect these two invariants to control much of the geometry of the
K3-fibred threefold.
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2. Families of K3 surfaces

Begin by assuming that X is a projective K3 surface. The Néron-Severi group
of divisors modulo homological equivalence on X forms a non-degenerate lattice
inside of H2(X,Z), denoted NS(X), which is even with signature (1, ρ − 1). The
lattice of cycles orthogonal to NS(X) is called the lattice of transcendental cycles
on X and is denoted T(X).

The aim of this section is to develop theoretical tools that will enable us to
embark upon a study of the action of monodromy on the Néron-Severi group of a
fibre in a family of K3 surfaces.

2.1. Families of lattice polarized K3 surfaces. We begin with some generalities
on families of K3 surfaces. A family of K3 surfaces will be a variety X and a flat
surjective morphism π : X → U onto some smooth, irreducible, quasiprojective
variety U such that for each p ∈ U the fibre Xp above p is a smooth projective
K3 surface. For simplicity the reader may assume that U has dimension 1 but our
results are valid in arbitrary dimension. We further assume that there is a line
bundle L whose restriction Lp to Xp is ample and primitive in Pic(Xp) for each
p ∈ U .

In the analytic topology, there is an integral local system on U given by R2π∗Z
whose fibre above u is isomorphic toH2(Xp,Z). The Gauss-Manin connection∇GM

is a flat connection on R2π∗Z⊗OU .
The cup-product pairing on H2(Xp,Z) extends to a bilinear pairing of sheaves

(2.1) 〈·, ·〉X = R2π∗Z×R2π∗Z −→ R4π∗Z ∼= ZU

where ZU is the constant sheaf on U with Z coefficients. This form extends naturally
to arbitrary sub-rings of C.

There is a Hodge filtration on R2π∗Z ⊗ OU giving rise to a variation of Hodge
structure, which we call HX . In particular, there is a rank one holomorphic sub-
bundle H2,0

X := F 2(R2π∗Z ⊗ OU ). Let T (X ) be the integral sub-local system of
R2π∗Z underlying the smallest integral sub-variation of Hodge structure of HX
containing H2,0

X . The local system T (X ) supports a polarized variation of Hodge
structure with polarization induced by the pairing 〈·, ·〉X . This variation of Hodge
structure is the “essential part” of HX , as defined by Saito and Zucker in [SZ91,
Section 4].

Let NS(X ) be the integral orthogonal complement of T (X ) in R2π∗Z. We have
an orthogonal direct sum decomposition over Q

R2π∗Q = (T (X )⊕NS(X ))⊗ZU
QU .

According to [SZ91, Proposition 4.14], the fibre T (X )p of T (X ) at any point p ∈ U
contains the transcendental lattice of Xp, and equality holds if p is generic. Thus
the fibre NS(X )p of NS(X ) over a generic point p ∈ U is equal to the Néron-Severi
lattice of Xp.
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Our aim is to use this to study the action of monodromy on the Néron-Severi
lattice of a general fibre of X . In order to gain control of this monodromy, we begin
by extending the definition of lattice polarization for K3 surfaces to families.

To do this, let N be a local subsystem of NS(X ) such that for any p ∈ U , the
restriction of 〈·, ·〉X to the fibre Np over p exhibits Np as a non-degenerate integral
lattice of signature (1, n− 1), which is (non-canonically) isomorphic to a lattice N
and embedded into H2(Xp,Z) as a primitive sublattice containing the Chern class
of the ample line bundle Lp. This allows us to define a naïve extension of lattice
polarization to families.

Definition 2.1. The family X is N -polarized if the local system N is a trivial local
system.

Note that any family of K3 surfaces is polarized by the rank one lattice generated
by the Chern class of the line bundle L restricted to each fibre.

Unfortunately, this definition is too rigid for our needs: it is easy to see that
for an N -polarized family of K3 surfaces, a choice of isomorphism N ∼= Np for
any point p determines uniquely an isomorphism N ∼= Nq for any other point q by
parallel transport, so this definition does not allow for any action of monodromy
on Nq. We will improve upon this definition in Section 2.3, but in order to do so
we first need to develop some general theory.

2.2. Monodromy of algebraic cycles on K3 surfaces. In this section we will
begin discusing the action of monodromy on the Néron-Severi group of a general
fibre of X . Let p be a point in U such that the fibre above p has NS(Xp) ∼= NS(X )p.
Parallel transport along paths in U starting at the base point p gives a monodromy
representation of π1(U, p)

ρX : π1(U, p) −→ O(H2(Xp,Z))

since we have the pairing in Equation (2.1). Furthermore, ρX restricts to mon-
odromy representations of both NS(X ) and T (X ), written as

ρNS : π1(U, p) −→ O(NS(Xp))

and
ρT : π1(U, p) −→ O(T(Xp)).

Similarly for any local subsystem N of R2π∗Z, we will denote the associated mon-
odromy representation by ρN . Note here that if X is N -polarized, then the image
of ρN is the trivial subgroup Id.

Now we prove an elementary but useful result concerning the image of ρNS .
Here we let X be a projective K3 surface. Recall that the lattice NS(X) is an even
lattice of signature (1, rank NS(X)− 1). For such a lattice NS(X), there is a set of
roots

∆X = {w ∈ NS(X) : 〈w,w〉 = −2}.
The Weyl group WX is the group generated by Picard-Lefschetz reflections across
roots in ∆X . It admits an embedding into the orthogonal group O(NS(X)). Denote
the set of roots in ∆X which are dual to the fundamental classes of rational curves
by ∆+

X . Then a fundamental domain for the action of WX on NS(X) is given by
the closure of the connected polyhedral cone

Amp(X) = {w ∈ NS(X)⊗ R : 〈w,w〉 > 0, 〈w, δ〉 > 0 for all δ ∈ ∆+
X}.
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Amp(X) is the ample cone of X.
If we let O+(NS(X)) be the subgroup of O(NS(X)) which fixes the positive cone

in NS(X) and let DX be the subgroup of O+(NS(X)) which maps Amp(X) to itself,
then we obtain a semidirect product decomposition

O+(NS(X)) = DX nWX .

Now let L be an ample line bundle on X. Then the Chern class of L is contained
in Amp(X). Define DL

X to be the stabilizer of this Chern class in DX .

Proposition 2.2. Let X be a family of K3 surfaces and let Xp be a generic fibre
of X . Let Lp be the restriction of the bundle L on X to Xp. Then the group DLp

Xp

is finite and contains the image of ρNS .

Proof. First we show that DLp

Xp
is a finite group. Let γ be in D

Lp

Xp
. Then γ fixes

Lp by definition. Therefore γ acts naturally on [Lp]⊥ and fixes [Lp]⊥ if and only
if it fixes all of NS(Xp). Since Lp is ample, the orthogonal complement of [Lp] in
NS(Xp) is negative definite by the Hodge index theorem.

We then recall the fact that O(N) is finite for any definite lattice N , so DLp

Xp
is

contained in a finite group and thus is itself finite.
To see that ρNS has image contained in D

Lp

Xp
, we recall that ρNS fixes Lp ∈

Amp(Xp) and hence, since the closure of Amp(Xp) is a fundamental domain for
WXp

and the action of WXp
is continuous, ρNS must have image in DLp

Xp
. �

2.3. Monodromy and symplectic automorphisms. We are now almost ready
to make a central definition which extends Definition 2.1 to cope with the possible
action of monodromy on N .

Denote by N∗ the dual lattice of N . We may embed N∗ ⊆ N ⊗Z Q as the
sublattice of elements u of N ⊗Z Q such that 〈u, v〉 ∈ Z for all v ∈ N .

Definition 2.3. The discriminant lattice of N , which we call AN , is the finite
group N∗/N equipped with the bilinear form

bN : AN ×AN −→ Q mod Z.
induced by the bilinear form on N ⊗Z Q.

For each lattice N we may define a map αN : O(N)→ Aut(AN ) where Aut(AN )
is the group of automorphisms of the finite abelian group AN which preserve the
bilinear form bN . Denote the kernel of αN by O(N)∗. Then we make the central
definition:

Definition 2.4. Fix an even lattice N with signature (1, n− 1) and a subgroup G
of Aut(AN ). Let X be a family of K3 surfaces and let Xp be a generic fibre of X .
Assume that there is local sub-system N ⊆ NS(X ) which has fibres Np that are
isometric to N and are embedded intoH2(Xp,Z) as primitive sublattices containing
the Chern class of the ample line bundle Lp. Then X is called an (N,G)-polarized
family of K3 surfaces if the restriction of the map αN to the image of ρN is injective
and has image inside of G.

One sees that if Id is the trivial subgroup of Aut(AN ), then the definition of
an N -polarized family of K3 surfaces is identical to the definition of a family of
(N, Id)-polarized K3 surfaces. We also note that, if G ⊂ G′, then any (N,G)-
polarized family of K3 surfaces will also be (N,G′)-polarized. With this in mind,
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we identify a special class of (N,G)-polarized families where the group G is as small
as possible.

Definition 2.5. An (N,G)-polarized family of K3 surfaces X is called minimally
(N,G)-polarized if the composition αN ◦ ρN is surjective onto G.

Remark 2.6. We note that in [HLOY04], the authors introduce a similar notion
of N -polarizability for a family of K3 surfaces. A K3 surface X is N -polarizable in
the sense of [HLOY04] if there is a sublattice inside of NS(X) isomorphic to N , but
the primitive embedding of N into NS(X) is only fixed up to automorphism of the
K3 lattice ΛK3. A family of K3 surfaces is then called N -polarizable if each fibre
is N -polarizable. There is a well-defined period space of N polarizable K3 surfaces
M◦N , so that to any family of N -polarizable K3 surfaces there is a well-defined
period map.

Our definition is more subtle than this, since our goal is to derive precise data
about the monodromy of algebraic cycles. Any (N,G)-polarized family of K3 sur-
faces is N -polarizable, but the converse does not hold. In fact, both of the families
constructed in Section 2.4 are families of N -polarizable K3 surfaces, but only one
of them is (N,G)-polarized.

There is a close relationship between (N,G)-polarizations and symplectic auto-
morphisms. Recall the following definition:

Definition 2.7. Let X be a smooth K3 surface and let τ : X → X be an automor-
phism of X. The automorphism τ is called a symplectic automorphism if for some
(hence any) non-vanishing holomorphic 2-form ω on X, we have τ∗ω = ω. If τ has
order 2, it is called a symplectic involution of X or a Nikulin involution.

Symplectic automorphisms of finite order on K3 surfaces exhibit behaviour simi-
lar to translation by a torsion section on an elliptic curve. The quotient of an elliptic
curve by some subgroup of Pic(E)tors is an isogenous elliptic curve, i.e. an elliptic
curve E′ such that there is a Hodge isometry H1(E,Q) ∼= H1(E′,Q). Analogously
there is a sense in which the resolved quotient of a K3 surface X by a finite group of
symplectic automorphisms is isogenous to X: there is a real quadratic extension of
Q under which the Hodge structures on their transcendental lattices are isometric.
This will be explained in detail by Proposition 3.1.

The following is a consequence of the famous Global Torelli Theorem for K3
surfaces [PŠŠ71][Nik80a]. More precisely, it may be seen as a corollary of [Dol83,
Theorem 4.2.3].

Theorem 2.8. The kernel of the restricted map αNS(Xp) : D
Lp

Xp
→ Aut(ANS(Xp)) is

isomorphic to the finite group of symplectic automorphisms of Xp which fix [Lp].

From this, using Proposition 2.2, we obtain:

Corollary 2.9. Let X be a family of K3 surfaces with generic Néron-Severi lattice
N . The family X is (N,G)-polarized for some G in Aut(AN ) if and only if there
is no γ ∈ π1(U, p) such that ρNS(γ) = σ|NS(Xp) for some symplectic automorphism
σ of Xp.

Therefore, a measure of how far a family of K3 surfaces with generic Néron-Severi
lattice N can be from being (N,G)-polarized is given by the size of the group of
symplectic automorphisms of a generic N -polarized K3 surface. The number of
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possible finite groups of symplectic automorphisms of a K3 surface is relatively
small. Mukai [Muk88, Theorem 0.3] has shown that such groups are all contained
as special subgroups of the Mathieu group M23, and in particular Nikulin [Nik80a,
Proposition 7.1] has shown that an algebraic K3 surface with symplectic automor-
phism must have Néron-Severi rank at least 9. This gives:

Corollary 2.10. Any family of K3 surfaces with generic Néron-Severi group N
having rank(N) < 9 is (N,G)-polarized for some G ⊂ Aut(AN ).

We end this subsection with a proposition which determines when a symplectic
automorphism on a single K3 surface extends to an automorphism on an entire
family of K3 surfaces. This will be useful in Section 3, when we will further discuss
symplectic automorphisms in families.

Proposition 2.11. Let Xp be a fibre in X which satisfies NS(X )p ∼= NS(Xp), and
let τ be a symplectic automorphism of Xp. Then τ extends to an automorphism of
X if and only if its action on NS(Xp) commutes with the image of ρX .

Proof. Since X is a proper family of smooth manifolds, Ehresmann’s theorem (see,
for example, [Voi07, Section 9.1.1]) implies that there is a local analytic open subset,
called U0, about p ∈ U , so that there is a marking on the family of K3 surfaces XU0

on U0. Therefore [Nik80a, Lemma 4.2] and the Global Torelli Theorem [Nik80a,
Theorem 2.7’] shows that τ extends uniquely to an automorphism on XU0

.
Let γ ∈ π1(U, p), let γ∗τ be the analytic continuation of τ along γ, and let

w ∈ H2(X0,Z). Then it is easy to see that

γ∗τ(w) = ρX (γ) ◦ τ ◦ (ρX (γ))−1(w).

Therefore, the action of τ on NS(Xp) commutes with the image of ρX if and only
if the action of γ∗τ on NS(Xp) agrees with the action of τ . By the Global Torelli
Theorem, this happens if and only if the automorphisms τ and γ∗τ are the same. �

Corollary 2.12. Let X → U be an N -polarized family of K3 surfaces and suppose
N ∼= NS(Xp) for some fibre Xp. If Xp admits a symplectic automorphism τ , then
τ extends to an automorphism of X .

2.4. A non-polarized example. As we have seen, algebraic monodromy of fam-
ilies of K3 surfaces is intimately related to the existence of symplectic automor-
phisms. In this section, we will give a simple example which will show how the
existence of symplectic automorphisms produces non-polarized families of K3 sur-
faces.

Let us take the pencil of K3 surfaces mirror (in the sense of [Dol96]) to the
Fermat pencil of quartics in P3. We may write these surfaces as a family X of ADE
singular hypersurfaces in P3:

(x+ y + z + w)4 + t2xyzw = 0.

As a non-compact threefold, we may express these as a singular subvariety of

[x : y : z : w]× t ∈ P3 × C×.
This is an (H ⊕ E8 ⊕ E8 ⊕ 〈−4〉, Id)-polarized family of K3 surfaces. Each fibre
admits A4 as a group of symplectic automorphisms acting via even permutations
on the coordinates x, y, z, w. In particular we have a symplectic involution on each
fibre induced by

σ : [x : y : z : w] 7−→ [y : x : w : z],
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which extends to X by Corollary 2.12. We also have an involution on the base,
acting via

η : t 7−→ −t.

Therefore, the fibrewise resolutions of the quotient families Y1 = ˜X/(Id×η) and
Y2 = ˜X/(σ × η) are fibrewise biregular, but are not biregular as total spaces. More
importantly both families have the same holomorphic periods, but the monodromy
of NS(Y1) is trivial and the monodromy of NS(Y2) is non-trivial around 0.

Thus we see that the family Y1 is N -polarized. However, by Corollary 2.9, the
family Y2 is not (N,G)-polarized for any G since, by construction, monodromy
around 0 acts as a Nikulin involution on NS(Y2).

Remark 2.13. Of course this examples and examples like it reflect directly the
general principle that there does not exist a fine moduli scheme of objects which
admit automorphisms, and in particular this example itself proves that the period
space of K3 surfaces is not a fine moduli space. If one considers instead the moduli
stack of polarized K3 surfaces (see [Riz06]), then such families are distinguished.

2.5. Moduli spaces and period maps. In the last subsection of this section, we
will study the moduli of (N,G)-polarized families. We begin by establishing some
definitions regarding the period spaces of K3 surfaces; much of this material may
be found in greater detail in [Dol96].

Define the K3 lattice to be the lattice ΛK3 = H⊕3 ⊕E⊕2
8 . The space of marked

pseudo-ample K3 surfaces is the type IV symmetric domain

PK3 = {z ∈ P(ΛK3 ⊗ C) : 〈z, z〉 = 0, 〈z, z〉 > 0}.

There is a natural action on PK3 by the group O(ΛK3). Using terminology of
[Dol96], the orbifold quotient

MK3 := O(ΛK3) \ PK3

is called the period space of Kähler K3 surfaces.
For any even latticeN of rank n and signature (1, n−1) equipped with a primitive

embedding N ↪→ ΛK3, one may construct a period space of pseudo-ample marked
K3 surfaces with N -polarization. Let

PN = {z ∈ P(N⊥ ⊗ C) : 〈z, z〉 = 0, 〈z, z〉 > 0}.

There is a natural embedding

ϕN : PN ↪→ PK3

where we suppress the dependence upon choice of embedding of N into ΛK3. Let

O(N⊥) = {γ|N⊥ : γ ∈ O(ΛK3), γ(N) ⊆ N}.

The map ϕN descends to an embedding

ϕN : O(N⊥) \ PN ↪→ O(ΛK3) \ PK3.

For each group GN⊥ in Aut(AN⊥), we may construct a finite index subgroup of
O(N⊥),

O(N⊥, GN⊥) = {γ|N⊥ ∈ O(N⊥) : αN⊥(γ|N⊥) ∈ GN⊥}.
This subgroup is related to (N,GN )-polarized K3 surfaces in the following way.
Recall first the following standard lattice theoretic fact from [Nik80b].
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Proposition 2.14. [Nik80b, Proposition 1.6.1] Let N be a primitive sublattice of
an even unimodular lattice Λ, and let N⊥ be the orthogonal complement of N in Λ.
Then

(1 ) There is a canonical isomorphism φN between the underlying groups AN and
AN⊥ which satisfies

bN (a, b) = −bN⊥(φN (a), φN (b)).

(2 ) If g is an automorphism of N and g′ is an automorphism of N⊥, then g ⊕ g′
is an automorphism of N ⊕N⊥ which extends to an automorphism of Λ if and
only if the induced actions of g on AN and of g′ on AN⊥ are the same under
the identification φN .

Therefore, if a family of K3 surfaces X is (N,GN )-polarized, then Proposition
2.14 shows that the transcendental monodromy of X is in O(N⊥, GN⊥) where GN⊥
is the subgroup of AN⊥ identified with GN by φN .

As a particular example, if the family X is (N, Id)-polarized, where Id is the
trivial subgroup of Aut(AN ), then X is N -polarized and the group O(N⊥, Id) cor-
responds to the group O(N⊥)∗. By [Dol96, Proposition 3.3], we have

O(N⊥, Id) = O(N⊥)∗ ∼= {γ|N⊥ : γ ∈ O(ΛK3), γ(w) = w for all w ∈ N}.

In the case where our family is N -polarized we will use the notation and language
of [Dol96], but adopt the notation introduced above when the group GN becomes
relevant.

In [Dol96], the space

MN = O(N⊥)∗ \ PN
is called the period space of pseudo-ample N -polarized K3 surfaces. Dolgachev
[Dol96, Remark 3.4] shows that for any N -polarized family of K3 surfaces π : X →
U , there is a period morphism

ΦX : U −→MN .

In light of this, define

M(N,GN ) := O(N⊥, GN⊥) \ PN .

Note that for GN ⊆ G′N , there is a natural inclusion O(N⊥, GN⊥) ⊆ O(N⊥, G′N⊥)
and therefore there are natural surjective morphisms

M(N,GN ) −→M(N,G′N )

of degree [GN : G′N ].
We now take some time to prove the existence of period morphisms associated

to the spacesM(N,GN ).

Theorem 2.15. Let X → U be a family of K3 surfaces. If there is some local
subsystem N ⊆ NS(X ), where N is fibrewise isomorphic to a lattice N of signature
(1, n − 1) and αN ◦ ρNS is contained inside of a subgroup GN of Aut(AN ), then
there a period morphism

Φ(N,GN ) : U −→M(N,GN ).



12 C. F. DORAN, A. HARDER, A.Y. NOVOSELTSEV, AND A. THOMPSON

Proof. Let Ũ be the simply connected universal covering space of U and g : Ũ → U
be the canonically associated covering map. Then, since g∗X is marked, pseudo-
ample and N -polarized, we have the following diagram

Ũ //

g

��

PN

U

Now we apply Proposition 2.14. Since the image of αN ◦ ρN is in GN , the image
of αN⊥ ◦ ρN⊥ is contained in GN⊥ under the identification induced by φN . Thus
ρN⊥ is contained in O(N⊥, GN⊥).

This allows us to canonically complete the diagram above to a commutative
square

Ũ //

g

��

PN

��

U
Φ(N,GN )

//M(N,GN )

as required. �

We note that the assumptions in this proposition are weaker than the assumption
that X → U is (N,GN )-polarized, as we do not assume here that the map αN is
injective on the image of ρNS . What distinguishes (N,GN )-polarized families of
K3 surfaces from the rest is the following observation.

Remark 2.16. Let X → D∗ be an (N,GN )-polarized family of K3 surfaces over
the punctured disc D∗ and let γ be a generator of π1(D∗, p). Let u ∈ N ⊆ NS(Xp)
and let u be its image in AN . Then under the identification φN defined in the proof
of Theorem 2.15,

(αN⊥ ◦ ρN⊥(γ))(φN (u)) = φN ((αN ◦ ρN (γ))(u)).

Since αN is an injection and φN is an isomorphism, we see that, for an (N,GN )-
polarized family, all data about algebraic monodromy of N is captured by the
monodromy of N⊥.

This remark will be essential for the calculations that we will do in Section 4.

3. Symplectic automorphisms in families

In this section, we expand upon Proposition 2.11 in the case where τ is a Nikulin
involution. The main result is Theorem 3.3, which will be used in Section 4 to
study lattice polarized families of K3 surfaces with Shioda-Inose structure, in an
attempt to understand the relationship between such families and their associated
families of abelian surfaces.

3.1. Symplectic automorphisms and Nikulin involutions. We begin with
some background on symplectic automorphisms of K3 surfaces. Let X be a pro-
jective K3 surface and let ω be a non-vanishing holomorphic 2-form on X. For
any group Σ of symplectic automorphisms of X, there are two lattices in H2(X,Z)
which may be canonically associated to Σ. The first is the fixed lattice H2(X,Z)Σ.
To derive the second, note that, by assumption, Σ fixes ω and hence, since Σ acts
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as Hodge isometries on H2(X,Z), we see that Σ must preserve the transcendental
Hodge structure on X. This implies that T(X) ⊆ H2(X,Z)Σ. So we may define a
second lattice

SΣ,X := (H2(X,Z)Σ)⊥.

When the K3 surface X is understood, we will abbreviate this notation to simply
SΣ. This is appropriate because Nikulin [Nik80a, Theorem 4.7] proves that, as an
abstract lattice, SΣ depends only upon Σ. It follows from the fact that T(X) is
fixed by Σ that SΣ is contained in NS(X). In [Nik80a, Lemma 4.2] it is also shown
that SΣ is a negative definite lattice and contains no elements of square (−2).

In [Nik80a, Proposition 7.1], Nikulin determines the lattice SΣ for any abelian
group of symplectic automorphisms Σ. Therefore, since any group contains at least
one abelian subgroup, if X admits any nontrivial group Σ of symplectic automor-
phisms, then SΣ contains one of the lattices in [Nik80a, Proposition 7.1]. The
smallest lattice listed therein is SZ/2Z, which has rank 8.

In general, symplectic automorphisms have fixed point sets of dimension 0. The
local behaviour of Σ about the fixed points determines a quotient singularity in
X/Σ. It is easy to see from the classification of minimal surfaces that the minimal
resolution Y := X̃/Σ ofX/Σ is again a K3 surface: σ∗ω = ω implies that ω descends
to a non-vanishing holomorphic 2-form on the quotient surface and the resulting
quotient singularities are crepant.

There is a diagram of surfaces

X̃

c

}}

q

!!

X

!!

Y

}}

X/Σ

where X̃ is the minimal blow up of X on which Σ acts equivariantly with the map
c and whose quotient X̃/Σ is Y .

In NS(Y ) there is a lattice K spanned by exceptional classes. The minimal
primitive sublattice of NS(Y ) containing K will be called K0. Nikulin [Nik80a,
Propositions 7.1 and 10.1] shows that K0 and SΣ have the same rank but are, of
course, not isomorphic. The map

θ := q∗c∗ : K⊥0 −→ H2(X,Z)Σ

is an isomorphism over Q and satisfies

〈θ(u), θ(v)〉 = |Σ|〈u, v〉

for any u, v ∈ K⊥0 . Therefore there is a linear transformation g over Q(
√
|Σ|)

which relates the lattices H2(X,Z)Σ and K⊥0 ; a more precise description of this
relationship is given in [Whi11, Theorem 2.1].

Since the group Σ acts symplectically, for a class ω spanning H2,0(Y ) we have
that θ(ω) is in H2,0(X), so we see that 〈θ(u), θ(ω)〉 = 0 if and only if 〈u, ω〉 = 0.
Thus θ(NS(Y ) ∩K⊥0 ) = NS(X) ∩H2(X,Z)Σ. In other words, θ(T(Y )) = T(X).
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3.2. Symplectic quotients and Hodge bundles. If X is a family of K3 surfaces
for which a group of symplectic automorphisms on the fibres extends to a group
of automorphisms on the total space, then base-change allows us to relativize the
constructions in Section 3.1.

We obtain sheaves of local systems (R2π∗Z)Σ and SΣ which agree fibrewise with
H2(Xp,Z)Σ, and SΣ,Xp

. The Hodge filtration on R2π∗Z ⊗ OU restricted to these
sub-sheaves produces integral weight 2 variations of Hodge structure on U .

We wish to compare the variation of Hodge structure on (R2πX∗ Z)Σ and the
variation of Hodge structure on the subsystem of R2πY∗ Z orthogonal to the lattice
spanned by exceptional curves in each fibre. Since we deal only with smooth fibra-
tions, the following statements are equivalent to their counterparts for individual
K3 surfaces.

Proposition 3.1. Let X → U be a family of K3 surfaces on which a group Σ of
symplectic automorphisms acts fibrewise and extends to automorphisms of πX : X →
U . Let πY : Y → U be the resolved quotient threefold. Then
(1 ) The Hodge bundles F 2(R2πX∗ Z ⊗ OU ) and F 2(R2πY∗ Z ⊗ OU ) are isomorphic

as complex line bundles on U .
(2 ) If we extend scalars to Q(

√
|Σ|), the induced VHS on (R2πX∗ Z)Σ is isomorphic

to a sub-VHS of R2πY∗ Z.
(3 ) The transcendental integral variations of Hodge structure T (X ) and T (Y) are

isomorphic over Q(
√
|Σ|).

Proof. These are relative versions of the discussion in Section 3.1. We use the fact
that statements about the local systems R2πX∗ Z and R2πY∗ Z reduce to statements
on each fibre. The same is true for statements about the Hodge filtrations on
R2πX∗ Z⊗OU and R2πY∗ Z⊗OU . Therefore Proposition 3.1 reduces to the statements
in Section 3.1. �

In particular, we can recover from Proposition 3.1 a result of Smith [Smi06,
Theorem 2.12], that the holomorphic Picard-Fuchs equation of X agrees with the
Picard-Fuchs equation of Y, since Picard-Fuchs equations depend only upon the
underlying complex VHS.

A corollary to this is that the transcendental monodromy of Y can be calculated
quite easily from the transcendental monodromy of X . If we let g be the Q(

√
|Σ|)-

linear map relating the lattices H2(Xp,Z)Σ and K⊥0
g : H2(Xp,Z)Σ −→ K⊥0

for a given fibre Xp, then for any γ ∈ π1(U, p) and w ∈ H2(Xp,Z)Σ we have

(3.1) (ρH2(Xp,Z)Σ(γ))(w) = g−1 ◦ ρK⊥0 (γ) ◦ g(w).

In particular, we find:

Corollary 3.2. Let X be an N -polarized family of K3 surfaces and suppose N ∼=
NS(Xp) for some fibre Xp. Assume that X admits a group of fibrewise symplectic
automorphisms Σ and let Y be the fibrewise resolution of the quotient X/Σ. If K⊥0
is the sublattice generated by classes orthogonal to exceptional curves on Yp, then
the monodromy representation fixes K⊥0 ∩NS(Yp).

Proof. By construction, we have that NS(Xp)
Σ is fixed under monodromy. There-

fore, the relation in Equation (3.1) implies that its image in K⊥0 under the Q(
√
|Σ|)
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isometry g is also fixed. Since g sends the transcendental lattice of Xp to the
transcendental lattice Yp, the image of NS(Xp)

Σ under g is K⊥0 ∩ NS(Yp). Thus
K⊥0 ∩NS(Yp) is fixed by monodromy of the family Y. �

3.3. Nikulin involutions in families. We will now tie our results together. We
begin with a family X of K3 surfaces which admits a fibrewise Nikulin involution
and is lattice polarized by a lattice N which is isomorphic to the generic Néron-
Severi lattice of the fibres of X . Our goal is to understand how lattice polarization
behaves under Nikulin involutions in families. We begin with some generalities on
Nikulin involutions.

A Nikulin involution fixes precisely 8 points on a K3 surface X. The resulting
quotient X/β has 8 ordinary double points which are then resolved by blowing up
to give a new K3 surface Y . We can also resolve these singularities indirectly by
blowing up X at the 8 fixed points of β, calling the resulting exceptional divisors
{Ei}8i=1. We see that the blown up K3 surface X̃ also admits an involution β̃ whose
fixed locus is the exceptional divisor

D =

8∑
i=1

Ei.

Let Fi = q∗Ei, where q : X̃ → X̃/β̃ ∼= Y is the quotient map. The branch divisor
in Y is then the sum f∗D =

∑8
i=1 Fi. Since there is a double cover ramified over

f∗D, there must be some divisor

B =
1

2
f∗D.

We call the lattice generated by B and {Fi}8i=1 the Nikulin lattice, which we denote
KNik.

According to [Nik80a, Section 6], KNik is a primitive sublattice of NS(X̃/β̃) and,
in the case where Σ is a group of order 2, the lattice K0 discussed in Section 3.1 is
equal to KNik. The following theorem is a technical tool, useful for calculations in
Section 4.

Theorem 3.3. Let X → U be an N -polarized family of K3 surfaces and suppose
N ∼= NS(Xp) for some fibre Xp. Suppose further that Xp admits a Nikulin involu-
tion β; by Corollary 2.12 this extends to an involution on X . Let Y → U be the
resolved quotient family of K3 surfaces and let N ′ be the Néron-Severi lattice of
a generic fibre of Y. Then there is a subgroup G of Aut(AN ′) for which Y is an
(N ′, G)-polarized family of K3 surfaces.

Proof. To see that the resulting family Y is (N ′, G)-polarized for some G, it is
enough to see that monodromy of Y cannot act trivially on Aut(AN ′).

First we note that monodromy of Y must fix K⊥Nik ∩ NS(Yp) by Corollary 3.2,
where KNik denotes the Nikulin lattice. Thus the only non-trivial action of mon-
odromy can be upon KNik.

Suppose for a contradiction that the image of ρNS(Y) contains a non-identity
element g that lies in the kernel of αN ′ . Recall from Theorem 2.8 that such a g
must act on NS(Yp) in the same way as a non-trivial symplectic automorphism
τ . Thus the orthogonal complement of the fixed lattice NS(Yp)

g must have rank
at least 8. Since KNik has rank 8 and K⊥Nik ∩ NS(Yp) is fixed under monodromy,
the orthogonal complement of NS(Yp)

g must be contained in KNik. For reasons of
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rank this containment cannot be strict, so we must have equality. However, KNik

is generated by elements of square (−2), thus, by [Nik80a, Lemma 4.2], it cannot
be the lattice Sτ of any automorphism τ of X. This is a contradiction. �

Note that the proof given above does not extend to quotients by arbitrary sym-
plectic automorphisms.

As a result of this theorem, Remark 2.16 and Equation (3.1) we may calculate
the group G.

Corollary 3.4. If g is the linear transformation which relates T(Xp) to T(Yp) for
some p ∈ U and ΓX (resp. ΓY) is the image of the monodromy group of T (X ) in
O(T(Xp)) (resp. T (Y) in O(T(Yp))), then ΓY = g−1ΓX g and the image αT(Y)(ΓY)
is the group G such that Y is minimally (N ′, G)-polarized.

This allows us to control the algebraic monodromy of the family Y of K3 surfaces.
In the following section, we concern ourselves with a geometric situation where it
will be important to know exactly what our algebraic monodromy looks like.

4. Undoing the Kummer construction.

One of the major motivations for this work is the idea of undoing the Kummer
construction globally in families. As we shall see, this has applications to the study
of Calabi-Yau threefolds.

4.1. The general case. Begin by assuming that X is a family of K3 surfaces
which admit Shioda-Inose structure. Concretely, a Shioda-Inose structure on a
K3 surface X is an embedding of the lattice E8 ⊕ E8 into NS(X). By [Mor84,
Section 6], a Shioda-Inose structure defines a canonical Nikulin involution β and
the minimal resolution of the quotient X/β is a Kummer surface. Furthermore,
if X has transcendental lattice T(X), then the resolved quotient Y = X̃/β has
transcendental lattice T(Y ) ∼= T(X)(2).

Assume that X is a lattice polarized family of Shioda-Inose K3 surfaces. Then
by Corollary 2.12, the Nikulin involution extends to the entire family of K3 surfaces
to produce a resolved quotient family Y of Kummer surfaces.

We would like to find conditions under which one may undo the Kummer con-
struction in families starting from the polarized family X of K3 surfaces with
Shioda-Inose structure. In other words, we would like to find conditions under
which a family of abelian surfaces A exists, such that application of the Kummer
construction fibrewise to A yields the family Y of Kummer surfaces associated to
X .

The following proposition provides an easy sufficient condition for undoing the
Kummer construction on a family of Kummer surfaces.

Proposition 4.1. Beginning with a family of lattice polarized Shioda-Inose K3 sur-
faces X over U , the Kummer construction can be undone on the family of resolved
quotient K3 surfaces Y, if Y itself is lattice polarized.

In general, however, the family Y will not be lattice polarized; instead, by
Theorem 3.3, it will be (N ′, G)-polarized, for some lattice N ′ and subgroup G
of Aut(AN ′). To rectify this, we will have to proceed to a cover f : U ′ → U to
remove the action of the group G, so that the Kummer construction can be undone
on the pulled-back family f∗Y.
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We begin by finding such a group G. We note, however, that in general Y will
not be minimally (N ′, G)-polarized for this choice of G.

Proposition 4.2. Let X → U be a family of N -polarized K3 surfaces with Shioda-
Inose structure, where N is isometric to the Néron-Severi lattice of a generic K3
fibre Xp. Then the associated family of Kummer surfaces Y is an (N ′, G)-polarized
family of K3 surfaces, where N ′ is the generic Néron-Severi lattice of fibres of Y
and G is the group

O(N⊥)∗/O(N⊥(2))∗.

Furthermore, if X has transcendental monodromy group ΓX = O(N⊥)∗, then Y is
minimally (N ′, G)-polarized.

Proof. By the results of Section 3.2 there is a map

g : ρT (X ) −→ ρT (Y).

Let Xp be a general fibre of X and let Yp be the associated fibre of Y. As Xp has
Shioda-Inose structure and Yp is the associated Kummer surface, the transformation
g induces the identity map on the level of orthogonal groups,

Id : O(T(Xp)) −→ O(T(Yp))

since the lattice T(Yp) is just T(Xp) scaled by 2.
Let ΓX (resp. ΓY) denote the transcendental monodromy group of X (resp. Y).

Then, by Corollary 3.4, ΓY = g−1ΓX g ∼= ΓX and Y is minimally (N ′, αT(Y)(ΓY))-
polarized. But ΓX ⊂ O(T(Xp))

∗ ∼= O(N⊥)∗ (by [Dol96, Proposition 3.3]) and
αT(Y) has kernel O(T(Xp)(2))∗ ∼= O(N⊥(2))∗, so αT(Y)(ΓY) ⊂ G, where G is as in
the statement of the proposition, with equality if ΓX = O(N⊥)∗. �

The group G from this proposition will prove to be very useful in later sections.

4.2. M-polarized K3 surfaces. We will be particularly interested in the case in
which our family X is M -polarized, where M denotes the lattice

M := H ⊕ E8 ⊕ E8.

Such families admit canonically defined Shioda-Inose structures, so the discussion
from Section 4.1 holds.

Our interest in such familes stems from the paper [DM06], in which Doran and
Morgan explicitly classify the possible integral variations of Hodge structure that
can underlie a family of Calabi-Yau threefolds over P1 − {0, 1,∞} with h2,1 = 1.
Their classification is given in [DM06, Table 1], which divides the possibilities into
fourteen cases. Explicit examples, arising from toric geometry, of families of Calabi-
Yau threefolds realizing thirteen of these cases were known at the time of publication
of [DM06] and are given in the rightmost column of [DM06, Table 1]. A family of
Calabi-Yau threefolds that realized the missing case (hereafter known as the 14th
case) was constructed in [CDL+13].

It turns out that many of these threefolds admit fibrations by M -polarized K3
surfaces. The ability to undo the Kummer construction globally on such threefolds
therefore provides a new perspective on the geometry of the families in [DM06,
Table 1], which will be explored further in the remainder of this paper.

We begin this discussion with a brief digression into the geometry ofM -polarized
K3 surfaces, that we will need in the subsequent sections. In this section we will
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denote an M -polarized K3 surface by (X, i), where X is a K3 surface and i is an
embedding i : M ↪→ NS(X).

Clingher, Doran, Lewis and Whitcher [CDLW09] have shown that M -polarized
K3 surfaces have a coarse moduli space given by the locus d 6= 0 in the weighted
projective space WP(2, 3, 6) with weighted coordinates (a, b, d). Thus, by normal-
izing d = 1, we may associate a pair of complex numbers (a, b) to an M -polarized
K3 surface (X, i).

Let β denote the Nikulin involution defined by the canonical Shioda-Inose struc-
ture on (X, i). Then Clingher and Doran [CD07, Theorem 3.13] have shown that
the resolved quotient Y = X̃/β is isomorphic to the Kummer surface Kum(A),
where A ∼= E1×E2 is an Abelian surface that splits as a product of elliptic curves.
By [CD07, Corollary 4.2] the j-invariants of these elliptic curves are given by the
roots of the equation

j2 − σj + π = 0,

where σ and π are given in terms of the (a, b) values associated to (X, i) by σ =
a3 − b2 + 1 and π = a3.

There is one final piece of structure on (X, i) that we will need in our discussion.
By [CD07, Proposition 3.10], the K3 surface X admits two uniquely defined elliptic
fibrations Θ1,2 : X → P1, the standard and alternate fibrations. We will be mainly
concerned with the alternate fibration Θ2. This fibration has two sections, one
singular fibre of type I∗12 and, if a3 6= (b± 1)2, six singular fibres of type I1 [CD07,
Proposition 4.6]. Moreover, Θ2 is preserved by the Nikulin involution β, so induces
a fibration Ψ: Y → P1 on Y . The two sections of Θ2 are identified to give a section
of Ψ, and Ψ has one singular fibre of type I∗6 and, if a3 6= (b± 1)2, six I2’s [CD07,
Proposition 4.7].

4.3. Undoing the Kummer construction for M-polarized families. We will
use this background to outline a method by which we can undo the Kummer con-
struction for a family obtained as a resolved quotient of an M -polarized family
of K3 surfaces. An illustration of the use of this method to undo the Kummer
construction in an explicit example may be found in [CDL+13, Section 7.1].

Let N be a lattice that contains a sublattice isomorphic to M . Assume that X
is an N -polarized family of K3 surfaces over U with generic Néron-Severi lattice
N ∼= NS(Xp), where Xp is the fibre over a general point p ∈ U . Choose an
embedding M ↪→ NS(Xp); this extends uniquely to all other fibres of X by parallel
transport and thus exhibits X as an M -polarized family of K3 surfaces.

This M -polarization induces a Shioda-Inose structure on the fibres of X , which
defines a canonical Nikulin involution on these fibres that extends globally by Corol-
lary 2.12. Define Y to be the variety obtained from X by quotienting by this
fibrewise Nikulin involution and resolving the resulting singularities. Then Y is
fibred over U by Kummer surfaces associated to products of elliptic curves. Let
Yp ∼= Kum(E1 × E2) denote the fibre of Y over the point p ∈ U , where E1 and E2

are elliptic curves.
The aim of this section is to find a cover Y ′ of Y upon which we can undo

the Kummer construction. The results of Section 4.1 give a way to do this. Let
N ′ ∼= NS(Yp) denote the generic Néron-Severi lattice of Y. Then Theorem 3.3
shows that there is a subgroup G of Aut(AN ′) for which Y is an (N ′, G)-polarized
family of K3 surfaces. We will find a way to compute the action of monodromy
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around loops in U on N ′, which will allow us to find the group G such that Y is
a minimally (N ′, G)-polarized family, along with a cover Y ′ of Y that is an N ′-
polarized family of K3 surfaces. Then Proposition 4.1 shows that we can undo the
Kummer construction on Y ′.

To simplify this problem we note that, by Corollary 3.2, the only non-trivial
action of monodromy on N ′ can be on the Nikulin lattice KNik contained within
it. This lattice is generated by the eight exceptional curves Fi obtained by blowing
up the fixed points of the Nikulin involution. Moreover, as β extends to a global
involution on X , the set {F1, . . . , F8} is preserved under monodromy (although
the curves themselves may be permuted). Thus, we can compute the action of
monodromy on N ′ by studying its action on the curves Fi.

To find these curves, we begin by studying the configuration of divisors on a
general fibre Yp. Recall that Yp is isomorphic to Kum(E1 ×E2), where E1 and E2

are elliptic curves. There is a special configuration of twenty-four (−2)-curves on
Kum(E1 × E2) arising from the Kummer construction, that we shall now describe
(here we note that we use the same notation as [CD07, Definition 3.18], but with
the roles of Gi and Hj reversed).

Let {x0, x1, x2, x3} and {y0, y1, y2, y3} denote the two sets of points of order two
on E1 and E2 respectively. Denote by Gi and Hj (0 ≤ i, j ≤ 3) the (−2)-curves
on Kum(E1 × E2) obtained as the proper transforms of E1 × {yi} and {xj} × E2

respectively. Let Eij be the exceptional (−2)-curve on Kum(E1 × E2) associated
to the point (xj , yi) of E1 × E2. This gives 24 curves, which have the following
intersection numbers:

Gi.Hj = 0,

Gk.Eij = δik,

Hk.Eij = δjk.

Definition 4.3. The configuration of twenty-four (−2)-curves

{Gi, Hj , Eij : 0 ≤ i, j ≤ 3}

is called a double Kummer pencil on Kum(E1 × E2).

Remark 4.4. Note that there may be many distinct double Kummer pencils on
Kum(E1 ×E2). However, if E1 and E2 are non-isogenous, Oguiso [Ogu89, Lemma
1] shows that any two double Kummer pencils are related by a symplectic auto-
morphism on Kum(E1 × E2).

Clingher and Doran [CD07, Section 3.4] identify such a pencil on the resolved
quotient of an M -polarised K3 surface. We will study this pencil on a fibre of Y
and, by studying the action of monodromy on it, derive the action of monodromy
on the curves Fi.

By the discussion in Section 4.2, the M -polarization structure on Xp defines
an elliptic fibration Θ2 on it, which is compatible with the Nikulin involution.
Furthermore, as X is an M -polarized family, this elliptic fibration extends to all
fibres of X and is compatible with the fibrewise Nikulin involution. Therefore Θ2

induces an elliptic fibration Ψ on Yp which extends uniquely to all fibres of Y, so
Ψ must be preserved under the action of monodromy around loops in U .
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Using the same notation as in [CD07, Diagram (26)], we may label some of the
(−2)-curves in the fibration Ψ as follows:

R1•
R2•

F1•

R3•
R5•

R6•
R7•

R8•
R9•

S̃1•

R4•
F2•

Here R1 is the section of Ψ given uniquely as the image of the two sections of
Θ2 and the remaining curves form the I∗6 fibre. Note that the Ri and S̃1 are
uniquely determined by the structure of Ψ, so must be invariant under the action
of monodromy around loops in U . By the discussion in [CD07, Section 3.5] the
curves F1 and F2 are two of the eight exceptional curves that we seek, but are
determined only up to permutation.

By the discussion in [CD07, Section 4.6], we may identify these curves with
(−2)-curves in a double Kummer pencil as follows: R1 = G2, R2 = E20, R3 = H0,
R4 = E30, R5 = E10, R6 = G1, R7 = E11, R8 = H1, R9 = E01, S̃1 = G0, F1 = E02

and F2 = E03. This gives:

Lemma 4.5. In the double Kummer pencil on Yp defined above, the action of
monodromy around loops in U must fix the 10 curves G0, G1, G2, H0, H1, E01,
E10, E11, E20, E30.

We can improve on this result, but in order to do so we will need to make an
assumption:

Assumption 4.6. The fibration Ψ on Yp has six singular fibres of type I2.

Remark 4.7. Recall from the discussion in Section 4.2 that this assumption is
equivalent to the assumption that the (a, b)-parameters of the M -polarized fibre
Xp satisfy a3 6= (b± 1)2.

Using this, we may now identify all eight of the curves Fi. From the discussion
above, we already know F1 = E02 and F2 = E03. [CD07, Section 3.5] shows that,
under Assumption 4.6, the remaining six Fi are the components of the six I2 fibres
in Ψ that are disjoint from the section R1 = G2.

Kuwata and Shioda [KS08, Section 5.2] explicitly identify these six I2 fibres in
the double Kummer pencil on Yp. We see that:

• the section G3 of Ψ is the unique section that intersects all six of F3, . . . , F8,
• the section H2 of Ψ intersects F1 and precisely three of F3, . . . , F8 (say F3,
F4, F5), and
• the section H3 of Ψ intersects F2 and the other three F3, . . . , F8 (say F6,
F7, F8).

Combining this with Lemma 4.5 and the fact that the structure of Ψ is preserved
under monodromy, we obtain

Proposition 4.8. In addition to fixing the ten curves from Lemma 4.5, the action
of monodromy around a loop in U must also fix G3 and either
(1 ) fix both F1 = E02 and F2 = E03, in which case H2 and H3 are also fixed and

the sets {F3, F4, F5} and {F6, F7, F8} are both preserved, or
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(2 ) interchange F1 = E02 and F2 = E03, in which case H2 and H3 are also swapped
and the sets {F3, F4, F5} and {F6, F7, F8} are interchanged.

Whether the action of monodromy around a given loop fixes or exchanges F1 =
E02 and F2 = E03 may be calculated explicitly. Recall that the curves {F3, . . . , F8}
appear as components of the I2 fibres in the fibration Ψ on Yp. Let x be an affine
parameter on the base P1

x of the fibration Ψ on Yp, chosen so that the I∗6 -fibre
occurs at x =∞. Then the locations of the I2 fibres are given explicitly by [CD07,
Proposition 4.7]: they lie at the roots of the polynomials (P (x)± 1), where

P (x) := 4x3 − 3ax− b,
for a and b the (a, b)-parameters associated to the M -polarized K3 surface Xp.

Without loss of generality, we may say that {F3, F4, F5} appear in the I2 fibres
occurring at roots of (P (x)− 1) and {F6, F7, F8} appear in the I2 fibres occurring
at roots of (P (x) + 1). We thus have:

Corollary 4.9. Case (1 ) (resp. (2 )) of Proposition 4.8 holds for monodromy
around a given loop if and only if that monodromy preserves the set of roots of
(P (x) + 1) (resp. switches the sets of roots of the polynomials (P (x) + 1) and
(P (x)− 1)).

If case (2) of Proposition 4.8 holds for some loop in U , we note that the Nikulin
lattice is not fixed under monodromy around that loop. This presents an obstruc-
tion to Y admitting an N ′-polarization. To resolve this we may pull-back Y to a
double cover of U , after which case (1) of the lemma will hold around all loops and
the curves F1 = E02, F2 = E03, H2 and H3 will all be fixed under monodromy.

Given this, we may safely assume that case (1) holds around all loops in U , so F1

and F2 are fixed under monodromy and the sets {F3, F4, F5} and {F6, F7, F8} are
both preserved. All that remains is to find whether monodromy acts to permute
F3, . . . , F8 within these sets.

Proposition 4.10. Assume that the action of monodromy around all loops in U
fixes both F1 and F2 (i.e. case (1 ) of Proposition 4.8 holds around all loops in U).
Then the action of monodromy around a loop in U permutes {F3, F4, F5} (resp.
{F6, F7, F8}) if and only if it permutes the roots of (P (x)− 1) (resp. (P (x) + 1)).

Proof. As {F3, F4, F5} appear in the I2 fibres occurring at roots of (P (x) − 1)
and {F6, F7, F8} appear in the I2 fibres occurring at roots of (P (x) + 1), they are
permuted if and only if the corresponding roots of (P (x) − 1) and (P (x) + 1) are
permuted. �

Monodromy around a loop thus acts on {F3, F4, F5} and {F6, F7, F8} as a permu-
tation in S3 × S3. Taken together, the permutations corresponding to monodromy
around all loops generate a subgroup H of S3 × S3.

Therefore, in order to obtain a N ′-polarization on Y, we need to pull everything
back to a |H|-fold cover f : V → U . This cover is constructed as follows: the |H|
preimages of the point p ∈ U are labelled by permutations in H and, if γ is a
loop in U , monodromy around f−1(γ) acts on these labels as composition with the
corresponding permutation. This action extends to an action of H on the whole of
V . In fact, we have:

Theorem 4.11. Let f : V → U be the cover constructed above and let Y ′ → V
denote the pull-back of Y → U . Then Y ′ is a N ′-polarized family, where N ′ is the
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generic Néron-Severi lattice of Y, so we can undo the Kummer construction on Y ′.
Furthermore, the deck transformation group of f is a subgroup G of S6 given by:

• If case (1 ) of Proposition 4.8 holds around all loops in U , then G = H.
• If case (2 ) of Proposition 4.8 holds around some loop in U , then there is
an exact sequence 1 → H → G → C2 → 1, where C2 denotes the cyclic
group of order 2

Remark 4.12. We note that in the second case there does not seem to be any
reason to believe that G ∼= H o C2 in general. Whilst we do not know of any
explicit examples where this fails, it does not seem to be inconsistent with the
theory as presented.

Proof. Let Y ′p denote one of the preimages of Yp under the pull-back. Then the
argument above shows that each of the eight curves Fi extends uniquely to all
smooth fibres of Y ′. Thus the Nikulin lattice KNik is preserved under monodromy
and so, by Corollary 3.2, N ′ is also. Therefore Y ′ is a N ′-polarized family and, by
Proposition 4.1, we may undo the Kummer construction on Y ′.

It just remains to verify the statements about the group G. Note that G can be
seen as a subgroup of S6, given by permutations of the divisors {F3, . . . , F8}, and
that H is the subgroup of G given by those permutations that preserve the sets
{F3, F4, F5} and {F6, F7, F8}. If case (1) of Proposition 4.8 holds around all loops
in U , then all permutations in G preserve the sets {F3, F4, F5} and {F6, F7, F8}, so
G = H. If case (2) of Proposition 4.8 holds around some loop in U then H has
index 2 in G, so it must be a normal subgroup with quotient G/H ∼= C2. �

Corollary 4.13. Y is a minimally (N ′, G)-polarized family of K3 surfaces, where
G is the group from Theorem 4.11.

Proof. We just need to show that G is minimal. Note that G was constructed
explicitly as the permutation group of the divisors {F1, . . . , F8} under monodromy.
Furthermore, it is clear from the construction that any permutation in G is induced
by monodromy around some loop in U . So αN ′ is surjective and G is minimal. �

Remark 4.14. As the group G from Theorem 4.11 is minimal, it will be a subgroup
of the group O(N⊥)∗/O(N⊥(2))∗ from Proposition 4.2.

4.4. The generically M-polarized case. Suppose now that we are in the case
where a general fibre Xp of X has NS(Xp) ∼= M . In this case we have the following
version of Proposition 4.2.

Proposition 4.15. Suppose that X is an M -polarized family of K3 surfaces with
general fibre Xp satisfying NS(Xp) ∼= M . Then the resolved quotient Y ∼= X̃/β
of X by the fibrewise Nikulin involution is a (not necessarily minimally) (N ′, G)-
polarized family of K3 surfaces, where G ∼= (S3 × S3) o C2.

Proof. Recall that M⊥ is isomorphic to H⊕2. The proposition will follow from
Proposition 4.2 if we can show that

O(H⊕2)∗/O(H⊕2(2))∗ ∼= (S3 × S3) o C2.

This quotient is just Aut(AH⊕2(2)). To see this, note that O(H⊕2)∗ is isomor-
phic to O(H⊕2), since AH⊕2 is the trivial group, and O(H⊕2) is isomorphic to
O(H⊕2(2)), hence

O(H⊕2(2))/O(H⊕2(2))∗ ∼= O(H⊕2)∗/O(H⊕2(2))∗.
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By a standard lattice theoretic fact (see, for example, [Nik80b, Theorem 3.6.3]),
O(H⊕2(2)) maps surjectively onto Aut(AH⊕2(2)). The group O(H⊕2)∗/O(H2(2))∗

is thus isomorphic to Aut(AH⊕2(2)). According to [KK01, Lemma 3.5] this group
is isomorphic to (S3 × S3) o C2. �

Remark 4.16. The results of Section 4.3 give an immediate interpretation for
this group: the two S3 factors correspond to permutations of the two sets of divi-
sors {F3, F4, F5} and {F6, F7, F8}, whilst the C2 corresponds to the action which
interchanges these two sets (and also swaps F1 and F2).

Example 4.17. In [CDL+13], the family of threefolds Y1 that realize the 14th case
variation of Hodge structure admit torically induced fibrations by M -polarized K3
surfaces with general fibre Xp satisfying NS(Xp) ∼= M . In [CDL+13, Section 7.1]
we apply the results of the previous section to undo the Kummer construction for
the resolved quotient W ∼= Ỹ1/β of Y1 by the fibrewise Nikulin involution. It is an
easy consequence of those calculations that W is minimally (N ′, G)-polarized, for
G ∼= (S3 × S3) o C2.

It turns out, however, that the 14th case is the only case from [DM06, Table 1]
that admits a torically induced M -polarized fibration with general fibre Xp satisfy-
ing NS(Xp) ∼= M . In most other cases (see Theorem 5.10) the Néron-Severi lattice
of the general fibre is a lattice enhancement of M to a lattice

Mn := M ⊕ 〈−2n〉,

with 1 ≤ n ≤ 4. In particular, note that Mn-polarized K3 surfaces are also M -
polarized, so the analysis of this section still holds. We will examine this case in
the next section.

5. Threefolds fibred by Mn-polarized K3 surfaces.

In this section we will specialize the analysis of Section 4 to the case where we
have a family X of Mn-polarized K3 surfaces. We will then apply this theory to
study Mn-polarized families of K3 surfaces arising from threefolds in the Doran-
Morgan classification [DM06, Table 1].

5.1. The groups G. We begin with the analogue of Proposition 4.2 in the Mn-
polarized case.

Proposition 5.1. Suppose that X is an Mn-polarized family of K3 surfaces with
general fibre Xp satisfying NS(Xp) ∼= Mn. Then the resolved quotient Y ∼= X̃/β
of X by the fibrewise Nikulin involution is a (not necessarily minimal) (N ′, G)-
polarized family of K3 surfaces, where N ′ is the generic Néron-Severi lattice of Y
and

• if n = 1 then G = S3 × C2,
• if n = 2 then G = D8, the dihedral group of order 8,
• if n = 3 then G = D12, and
• if n = 4 then G = D8.

Proof. This will follow from Proposition 4.2 if we can show that

O(M⊥n )∗/O(M⊥n (2))∗ ∼= G,
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where G is as in each of the four cases in the statement of the proposition. We
proceed by obtaining generators for O(M⊥n )∗ ∼= O(H⊕〈2n〉)∗ and then determining
their actions on AH(2)⊕〈4n〉 to compute the group G.

In the case n = 1, the generators of O(H ⊕ 〈2〉)∗ are

g1 =

 0 −1 0
−1 0 0

0 0 1

 , g2 =

 1 0 0
1 1 2
1 0 1

 , g3 =

 −1 0 0
0 −1 0
0 0 −1


whose induced actions on AH(2)⊕〈4〉 have orders 2, 3 and 2 respectively. One may
check that g1g2g1 = g2

2 , and hence g1 and g2 generate a copy of S3. It is clear that
g3 commutes with g1 and g2, so the subgroup of Aut(AH(2)⊕〈4〉) generated by g1, g2

and g3 is isomorphic to S3 × C2.
In the case n = 2, the group O(H ⊕ 〈4〉)∗ has a non-minimal set of generators

g1 =

 1 0 0
2 1 4
1 0 1

 , g2 =

 1 2 4
2 1 4
−1 −1 −3

 , g3 =

 0 1 0
1 0 0
0 0 1

 .

Let the automorphism induced on AH(2)⊕〈8〉 by gi be denoted hi. Then h2
1 = h2

2 =

h2
3 = Id. We check h1h3 has order 4 and it is easy to see that

h1(h1h3)h1 = h3h1 = (h1h3)−1.

Therefore, h1 and h1h3 generate a copy of D8. Finally, one checks that (h1h3)h1 =
h2, so the group of automorphisms 〈h1, h2, h3〉 is isomorphic to D8.

In the case when n = 3, we may calculate generators of O(H ⊕ 〈6〉)∗ to find

g1 =

 1 0 0
3 1 6
1 0 1

 , g2 =

 1 3 6
3 4 12
−1 −2 −5

 , g3 =

 0 1 0
1 0 0
0 0 1

 .

As before, let the corresponding automorphisms of H(2)⊕〈12〉 be called h1, h2 and
h3. We calculate that

h2
1 = h3

2 = h2
3 = (h1h3)6 = Id .

Furthermore, (h1h3)2 = h2 and

h1(h1h3)h1 = h3h1 = (h1h3)−1.

Therefore, the group 〈h1, h2, h3〉 is isomorphic to D12.
In the case when n = 4, we may calculate generators of O(H ⊕ 〈8〉)∗ to obtain

g1 =

 1 0 0
4 1 8
1 0 1

 , g2 =

 9 4 24
4 1 8
−3 −1 −7

 , g3 =

 0 1 0
1 0 0
0 0 1

 .

Once again, let the corresponding automorphisms of H(2) ⊕ 〈16〉 be called h1, h2

and h3. We calculate that
h2

1 = h2
2 = h2

3 = Id

We check that h1h2 = h2h1 and h3h2 = h2h3. Once again, we also have (h1h3)2 =
h2 and

h1(h1h3)h1 = h3h1 = (h1h3)−1.

Therefore the group 〈h1, h2, h3〉 is isomorphic to D8. �
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5.2. Some special families. There are some special families of Mn-polarized K3
surfaces that we can use to vastly reduce the amount of work that we have to do to
undo the Kummer construction for the Mn-polarized cases from [DM06, Table 1].

We begin by noting that the moduli space MMn
of Mn-polarized K3 surfaces

is a 1-dimensional modular curve [Dol96, Theorem 7.1]. Denote by UMn
the open

subset ofMMn
obtained by removing the orbifold points.

Definition 5.2. Xn → UMn
will denote anMn-polarized family of K3 surfaces over

UMn
, with period map UMn

→ MMn
given by the inclusion and transcendental

monodromy group ΓXn = O(M⊥n )∗.

Remark 5.3. Examples of such families for any n are given by the restriction of
the special M -polarized family from [CDLW09, Theorem 3.1] to the Mn-polarized
loci calculated in [CDLW09, Section 3.2]. For n ≤ 4, we will explicitly construct
examples of such families in Sections 5.4 and 5.5.

Let Yn → UMn be the family of Kummer surfaces associated to Xn → UMn

and let Kn be the Néron-Severi lattice of the Kummer surface associated to a K3
surface with Shioda-Inose structure and Néron-Severi lattice Mn.

Suppose now that we can undo the Kummer construction for Yn, by pulling
back to a cover CMn

→ MMn
. Then if we know that an Mn-polarised family

of K3 surfaces X → U is the pull-back of a family Xn → UMn by the period
map U → MMn (which, in the Mn-polarized case, is more commonly known as
the generalized functional invariant, see [Dor00]), then we can undo the Kummer
construction for the associated family of Kummer surfaces Y → U by pulling back
to the fibre product U ×MMn

CMn
.

Thus the aim of this section is to find covers CMn
→MMn

such that the pull-
backs of Yn to CMn are Kn-polarized (and so, by Proposition 4.1, the Kummer
construction can be undone on these pull-backs).

Lemma 5.4. The families Yn are minimally (Kn, G)-polarized, where G is the
group G = O(M⊥n )∗/O(M⊥n (2))∗

Proof. This follows from Proposition 4.2 and the assumption that the families Xn
have transcendental monodromy groups O(M⊥n )∗. �

As MMn
= O(M⊥n )∗ \ PMn

, this lemma suggests that, in order to undo the
action of G, we should define CMn

to be the curve CMn
:= O(M⊥n (2))∗ \PMn

. This
curve may be constructed as a modular curve in the following way.

Recall that

Γ0(n) :=

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
mod n

}
and

Γ(n) :=

{
γ ∈ SL2(Z) : γ ≡

(
1 0
0 1

)
mod n

}
.

By convention, Γ0(1) and Γ(1) are just the full modular group Γ = SL2(Z). We
also have

Γ0(n)+ := Γ0(n) ∪ τnΓ0(n) ⊆ SL2(R)

where

τn =

(
0 −1/

√
n√

n 0

)
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is the Fricke involution. With this notation, we have MMn
∼= Γ0(n)+ \ H [Dol96,

Theorem 7.1].
For any lattice N , let PO(N) be defined as the cokernel of the obvious injection

± Id ↪→ O(N). Then we have the exact sequence

1 −→ {± Id} −→ O(N) −→ PO(N) −→ 1.

If N is a lattice of signature (1, n − 1) with a fixed primitive embedding into ΛK3
and Γ and Γ′ are two subgroups of O(N⊥), the quotients Γ \ PN and Γ′ \ PN are
the same if and only if Γ and Γ′ have the same images in PO(N⊥), in which case Γ
and Γ′ are said to be projectively equivalent.

By [Dol96, Theorem 7.1], there is a map Rn, defined in the following proposi-
tion, under which Γ0(n)+ is mapped to a subgroup of SO(M⊥n ) that is projectively
equivalent to O(M⊥n )∗.

Lemma 5.5. The group O(M⊥n (2))∗ is projectively equivalent to the image of Γ(2)∩
Γ0(2n) under the map

Rn : SL2(R) −→ SOR(2, 1)

which is defined as (
a b
cn d

)
7−→

 a2 c2n 2acn
b2n d2 2bdn
ab cd bcn+ ad


(see the related map in [HLOY04, Equation 5.6]).

Proof. We know that the pre-image of O(M⊥n )∗ under Rn is the subgroup Γ0(n)+

and that O(M⊥n (2))∗ ⊆ O(M⊥n )∗ is the subgroup which fixes the group AM⊥n (2).
Since Rn maps the Fricke involution to the automorphism0 1 0

1 0 0
0 0 −1

 ,

which is never trivial or − Id on AM⊥n (2), we may automatically restrict to the image
of Γ0(n). Automorphisms which fix AM⊥n (2) are matrices of the forma11 a12 a13

a21 a22 a23

a31 a32 a33


with a12, a21, a31, a32 ≡ 0 mod 2, a13, a23,≡ 0 mod 2n, a11, a22 ≡ 1 mod 2 and
a33 ≡ 1 mod 2n. Thus a2 ≡ d2 ≡ 1 mod 2 and hence a, d ≡ 1 mod 2. Using
this and the fact that ab ≡ cd ≡ 0 mod 2, we find that b ≡ c ≡ 0 mod 2. Therefore
the matrices which map to O(M⊥n (2))∗ are precisely those which satisfy(

a b
cn d

)
≡
(
∗ ∗
0 ∗

)
mod 2n

and (
a b
cn d

)
≡
(

1 0
0 1

)
mod 2.

In other words elements of the group Γ0(2n) ∩ Γ(2). �
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We therefore have
CMn

∼= (Γ0(2n) ∩ Γ(2)) \H.
Let f : CMn

→MMn
be the natural map coming from the modular description of

each curve.

Proposition 5.6. If n 6= 1, the pullback f∗Yn of Yn to CMn
is Kn-polarized.

Proof. The transcendental monodromy of the pullback f∗Xn is a group Γ contained
in O(M⊥n )∗ with quotient space Γ \PMn

∼= (Γ0(2n)∩Γ(2)) \H. By Lemma 5.5, the
group O((M⊥n )(2))∗ has this property.

Suppose that there is another subgroup Γ′ of O(M⊥n )∗ with this property. Let
γ ∈ Γ be any element and let g ∈ PO(M⊥n ) be its image. Since Γ and Γ′ are
projectively equivalent, there is some γ′ ∈ Γ′ which maps to g.

If Γ and Γ′ are not the same group, we can find some g ∈ PO(M⊥n ) such that
there are γ ∈ Γ and γ′ ∈ Γ which map to g yet have γ 6= γ′. Thus γ−1γ′ 6= Id but
γ−1γ′ maps to the identity in PO(M⊥n ). However, for n 6= 1, [HLOY04, Lemma
1.15] shows that the kernel of O(M⊥n )∗ → PO(Mn) is trivial. This is a contradiction,
hence Γ = Γ′.

Therefore, the monodromy group of the family f∗Xn is O(M⊥n (2))∗ ⊆ O(M⊥n )∗.
By Corollary 3.4, the associated family of Kummer surfaces then has transcendental
monodromy O(M⊥n (2))∗ as well. Since this group is contained in the kernel of
αT(Yn), we conclude that Yn is Kn-polarized. �

Remark 5.7. This discussion may be rephrased in the following way. The quotient-
resolution procedure taking Xn to Yn defines an isomorphismMMn

∼−→M(Kn,G),
where G is the group from Lemma 5.4. The cover CMn

→MMn
is then precisely

the coverMKn →M(Kn,G).

In the case where n = 1 this proof fails, as the kernel of the map O(M⊥n )∗ →
PO(Mn) is nontrivial. It will therefore be necessary for us to do a little more work
in order to find a cover ofMM1 on which the pullback of Y1 is lattice polarized.

The family X1 is a family of smooth K3 surfaces over P1 \ {0, 1,∞}. Let g1 and
g2 in O(H ⊕ 〈2〉)∗ be as in the n = 1 case of the proof of Proposition 5.1: then
g1 describes monodromy around 1 and g2 describes monodromy around ∞, and
monodromy around 0 is, as usual, given by g1g

−1
2 . Around the point 1, the order of

monodromy is 2, around 0, the order of monodromy is 6, and around ∞, the order
of monodromy is infinite.

The group Γ0(2) ∩ Γ(2) is just Γ(2), since Γ(2) ⊆ Γ0(2), and the map from
CM1

= Γ(2) \ H to MM1
= Γ0(1)+ \ H ∼= Γ0(1) \ H is just the j-function of the

Legendre family of elliptic curves. This map may be written as a rational function,

j(t) =
(t2 − t+ 1)3

27t2(t− 1)2
.

The function j(t) has three ramification points of order 2 over 1, three ramifica-
tion points of order 2 over ∞ and two ramification points points of order 3 over 0.
Looking back at the proof of Proposition 5.1, we see that the monodromy around
the preimages of 1 and∞ must act as h2

1 = Id and h2
2 = Id on AH(2)⊕〈4〉. However,

monodromy around the preimages of 0 acts on AH(2)⊕〈4〉 as (h1h2)2 = − Id. There-
fore, in order for monodromy to act trivially on AH(2)⊕〈4〉, we must take a further
double cover of CM1

= Γ(2) \H = P1
t ramified along the roots of t2− t+ 1 = 0. We

thus have:
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Proposition 5.8. If n = 1, there is a double cover C ′M1
of CM1

on which the
pull-back of the family Yn is K1-polarized.

The maps f : CMn
→MMn

will be calculated in the next section.

5.3. Covers for small n. In this section, we will explicitly compute the maps
f : CMn

→ MMn
for n ≤ 4. To do this, we decompose the map f = f1 ◦ f2 ◦ f3,

where

f1 : Γ0(n) \H −→ Γ0(n)+ \H,
f2 : Γ0(2n) \H −→ Γ0(n) \H,
f3 : CMn

∼= (Γ0(2n) ∩ Γ(2)) \H −→ Γ0(2n) \H.

5.3.1. The case n = 1. The rational modular curves Γ0(1)+ \H and Γ0(1) \H are
isomorphic and have two elliptic points of orders 2 and 3 along with a single cusp.
The map f2 is a triple cover ramified with index 3 over the elliptic point of order
3 and indices (2, 1) over the elliptic point of order 2 and the cusp. Γ0(2) \ H is a
rational modular curve with an elliptic point of order 2 and two cusps. Finally, f3 is
a double cover ramified over the elliptic point and the cusp that is not a ramification
point of f2 and CM1 is a rational modular curve with three cusps.

We thus see that f : CM1 → Γ0(1)+ \H is a 6-fold cover ramified with indices 2
and 3 at all points over the elliptic points of order 2 and 3 respectively and index
2 at all points over the cusp. It is easy to see that the deck transformation group
of f is S3.

However, from Proposition 5.8, we need to take a further double cover of CM1

before we can undo the Kummer construction. This double cover is ramified over
the two preimages under f of the elliptic point of order 3. The composition C ′M1

→
Γ0(1)+ \ H is a 12-fold cover ramified with indices 2 and 6 at all points over the
elliptic points of order 2 and 3 respectively and index 2 at all points over the cusp.
It is easy to see that the deck transformation group of this composition is S3 ×C2,
as expected from Proposition 5.1.

5.3.2. The case n = 2. The rational modular curve Γ0(2)+ \ H has two elliptic
points of orders 2 and 4 and a single cusp. The map f1 is a double cover ramified
over the two elliptic points and Γ0(2) \H is a rational modular curve with a single
elliptic point of order 2 and two cusps. The map f2 is then a double cover ramified
over the elliptic point and one of the cusps, and Γ0(4) \ H is a rational modular
curve with three cusps. Finally, f3 is a double cover ramified over the two cusps
that are not ramification points of f2 and CM2

is a rational modular curve with
four cusps.

We thus see that f : CM2 → Γ0(2)+ \H is an 8-fold cover ramified with indices 2
and 4 at all points over the elliptic points of order 2 and 4 respectively and index
2 at all points over the cusp. It is easy to see that the deck transformation group
of f is D8, as expected from Proposition 5.1.

5.3.3. The case n = 3. The rational modular curve Γ0(3)+ \ H has two elliptic
points of orders 2 and 6 and a single cusp. The map f1 is a double cover ramified
over the two elliptic points and Γ0(3) \ H is a rational modular curve with one
elliptic point of order 3 and two cusps. The map f2 is then a triple cover ramified
with index 3 over the elliptic point and indices (2, 1) over each of the cusps, and
Γ0(6) \H is a rational modular curve with four cusps. Finally, f3 is a double cover
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ramified over the two cusps that are not ramification points of f2 and CM3
is a

rational modular curve with six cusps.
We thus see that the map f : CM3 → Γ0(3)+ \ H is an 12-fold cover ramified

with indices 2 and 6 at all points lying over the elliptic points of orders 2 and 6
respectively and index 2 at all points over the cusp. It is easy to see that the deck
transformation group of f is D12, as expected from Proposition 5.1.

5.3.4. The case n = 4. The rational modular curve Γ0(4)+ \H has an elliptic point
of order 2 and two cusps. The two cusps are distinguished by their widths, which
are 1 and 2. The map f1 is a double cover ramified over the elliptic point and the
cusp of width 2. The rational modular curve Γ0(4) \ H has three cusps of widths
(4, 1, 1). The map f2 is then a double cover ramified with index 2 over the cusp
of width 4 and one of the cusps of width 1. The rational modular curve Γ0(8) \H
has four cusps of widths (8, 2, 1, 1). Finally, f3 is a double cover ramified over the
two cusps of width 1. The curve CM4

is a rational modular curve with six cusps of
widths (8, 8, 2, 2, 2, 2).

We thus see that f : CM4 → Γ0(4)+ \H is an 8-fold cover ramified with index 2
at all points lying over the elliptic point and indices 2 and 4 at all points over the
cusps of widths 1 and 2 respectively. It is easy to see that the deck transformation
group of f is D8, as expected from Proposition 5.1.

Remark 5.9. Note that if n 6= 1 we may also find a cover of Yn → UMn
that is

Kn-polarized using the method of Section 4.3 (if n = 1 then this method cannot be
used, as Assumption 4.6 fails; see Section 5.5). In the three cases with n ≥ 2 above
it may be seen that this cover agrees with CMn

.

5.4. Application to the 14 cases. We now apply this theory to undo the Kum-
mer construction for families of Kummer surfaces arising from M -polarized fibra-
tions on the fourteen cases in [DM06, Table 1].

Examining these cases, we find Mn-polarized K3 fibrations with 2 ≤ n ≤ 4 on
nine of them, listed in the appropriate sections of Table 5.1. In this table, the
first column gives the polarization lattice M or Mn, the second gives the mirrors
of the threefolds that have M - or Mn-polarized K3 fibrations, and the third states
whether or not these fibrations are torically induced (the meanings of the fourth
and fifth columns will be discussed later). More precisely, we have:

Theorem 5.10. There exist K3 fibrations with Mn-polarized generic fibre, for 2 ≤
n ≤ 4, on nine of the threefolds in [DM06, Table 1], given by the mirrors of those
listed in the appropriate sections of Table 5.1. Furthermore, if X → P1 denotes
one of these fibrations and U ⊂ P1 is the open set over which the fibres of X are
nonsingular, then the restriction X|U → U agrees with the pull-back of a family Xn
(see Definition 5.2) by the generalized functional invariant map U → MMn . The
family X|U → U is thus an Mn-polarized family of K3 surfaces.

Remark 5.11. The M1-polarized cases in the first section of Table 5.1 will re-
quire some extra work, so they will be discussed separately in Section 5.5. The
14th case of [CDL+13] has already been discussed in Example 4.17, where we re-
called that the family of threefolds Y1 realizing the 14th case variation of Hodge
structure admit torically induced M -polarized K3 fibrations. By [CDL+13, Sec-
tion 8.2], these threefolds Y1 can be thought of as mirror to complete intersections
WP(1, 1, 1, 1, 4, 6)[2, 12]. This case is included in the final row of Table 5.1.
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Lattice Mirror threefold Toric? (i, j) Arithmetic/thin
WP(1, 1, 1, 1, 2)[6] Yes (1, 2) Arithmetic
WP(1, 1, 1, 1, 4)[8] Yes (1, 3) Thin

M1 WP(1, 1, 1, 2, 5)[10] Yes (2, 3) Arithmetic
WP(1, 1, 1, 1, 1, 3)[2, 6]∗ Yes (1, 1) Thin
WP(1, 1, 1, 2, 2, 3)[4, 6]∗ Yes (2, 2) Arithmetic

P4[5] Yes (1, 4) Thin
WP(1, 1, 1, 1, 2)[6] Yes (2, 4) Arithmetic

M2 WP(1, 1, 1, 1, 4)[8] Yes (4, 4) Thin
P5[2, 4] Yes (1, 1) Thin

WP(1, 1, 1, 1, 2, 2)[4, 4] Yes (2, 2) Arithmetic
P4[5] No (2, 3) Thin
P5[2, 4] No (1, 3) Thin

M3 P5[3, 3] Yes (1, 2) Arithmetic
WP(1, 1, 1, 1, 1, 2)[3, 4]∗ Yes (2, 2) Arithmetic

P6[2, 2, 3] Yes (1, 1) Thin
P5[2, 4] No (2, 2) Thin

M4 P6[2, 2, 3] No (1, 2) Thin
P7[2, 2, 2, 2] Yes (1, 1) Thin

M WP(1, 1, 1, 1, 4, 6)[2, 12] Yes (1, 1) Thin
Table 5.1. Lattice polarized K3 fibrations on the threefolds from
[DM06, Table 1].

Remark 5.12. To check which of the fibrations listed in Table 5.1 are torically
induced, one may use the computer software Sage to find all fibrations of the
toric ambient spaces by toric subvarieties that induce fibrations of the Calabi-Yau
threefold by M -polarized K3 surfaces. The resulting list may be compared to the
list of fibrations in Table 5.1, giving the third column of this table. This also proves
that Table 5.1 contains all torically induced fibrations of the Calabi-Yau threefolds
from [DM06, Table 1] by M -polarized K3 surfaces.

We will prove Theorem 5.10 by explicit calculation: we find families Xn satisfying
Definition 5.2 and show that they pull back to give the families X|U under the
generalized functional invariant maps.

In each case, we will see that the generalized functional invariant map is com-
pletely determined by the pair of integers (i, j) from the fourth column of Table 5.1.
In fact, we find that it is an (i+ j)-fold cover ofMMn

∼= Γ0(n)+ \H having exactly
four ramification points: one of order (i+ j) over the cusp (or, in the M4-polarized
case, the cusp of width 1), two of orders i and j over the elliptic point of order 6= 2
(or, in the M4-polarized case, the cusp of width 2), and one of order 2 which varies
with the value of the Calabi-Yau deformation parameter.

We thus have everything we need to undo the Kummer construction in the
families arising as the resolved quotients of the families X|U from Theorem 5.10.
By the discussion in Section 5.2, in order to undo the Kummer construction we
just need to pull back to the cover CMn ×MMn

U , where the map CMn →MMn is
as calculated in Section 5.3 and U →MMn

is the generalized functional invariant
map, described above.
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5.4.1. M2-polarized families. We begin the proof of Theorem 5.10 with theM2 case.
Note first that an M2-polarized K3 surface is mirror (in the sense of [Dol96]) to a
〈4〉-polarized K3 surface, which is generically a hypersurface of degree 4 in P3.

By the Batyrev-Borisov mirror construction [BB96], the mirror of a degree 4
hypersurface in P3 is a hypersurface in the toric variety polar dual to P3. The
intersection of this hypersurface with the maximal torus is isomorphic to the locus
in (C×)3 defined by the rational polynomial

(5.1) x1 + x2 + x3 +
λ

x1x2x3
= 1,

where λ ∈ C is a constant. This is easily compactified to a singular hypersurface of
degree 4 in P3, given by the equation

λw4 + xyz(x+ y + z − w) = 0,

where (w, x, y, z) are coordinates on P3.
Consider the family of surfaces over C obtained by varying λ. By resolving the

singularities of the generic fibre and removing any singular fibres that remain, we
obtain a family of K3 surfaces X2 → U2 ⊂ C. Dolgachev [Dol96, Example (8.2)]
exhibited elliptic fibrations on the K3 fibres of X2 and used them to give a set of
divisors generating the latticeM2. It can be seen from the structure of these elliptic
fibrations that these divisors are invariant under monodromy, so there can be no
action of monodromy on M2. We thus see that X2 is an M2-polarized family of K3
surfaces.

The action of transcendental monodromy on X2 was calculated by Narumiya and
Shiga [NS01] (note that our parameter λ is different from theirs: our λ is equal to
µ4 or u

256 from their paper). In [NS01, Section 4] they find that the fibre Xλ of X2

is smooth away from λ ∈ {0, 1
256} and the monodromy action has order 2 around

λ = 1
256 , order 4 around λ = ∞, and infinite order around λ = 0. Furthermore,

they show [NS01, Remark 6.1] that the monodromy of X2 generates the (2, 4,∞)
triangle group (which is isomorphic to Γ0(2)+ ∼= O(M⊥2 )∗), so the period map of
X2 → U2 must be injective. Thus the family X2 → U2 satisfies Definition 5.2.

We can use the local form (5.1) of the family X2 to find M2-polarized families of
K3 surfaces on the threefolds from [DM06, Table 1]. For example:

Example 5.13. The first M2-polarized case from Table 5.1 is the mirror to the
quintic threefold. By the Batyrev-Borisov construction, on the maximal torus we
may write this mirror as the locus in (C×)4 defined by the rational polynomial

x1 + x2 + x3 + x4 +
A

x1x2x3x4
= 1,

where A ∈ C is the Calabi-Yau deformation parameter. Consider the fibration
induced by projection onto the x4 coordinate; for clarity, we make the substitution
x4 = t. If we further substitute xi 7→ xi(1 − t) for 1 ≤ i ≤ 3 and rearrange, we
obtain

x1 + x2 + x3 +
A

x1x2x3t(1− t)4
= 1.

But, from the local form (5.1), it is clear that this describes anM2-polarized family
of K3 surfaces with

λ =
A

t(1− t)4
.
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This is the generalized functional invariant map of the fibration. Note that it is
ramified to orders 1 and 4 over the order 4 elliptic point λ = ∞, order 5 over the
cusp λ = 0, and order 2 over the variable point λ = 55A

28 , giving (i, j) = (1, 4).

Similar calculations may be performed in the other M2-polarized cases from
Table 5.1. We find that the generalized functional invariants are given by

λ =
Aui+j

ti(u− t)j
,

where (t, u) are homogeneous coordinates on the base U ⊂ P1 of the K3 fibration,
(i, j) are as in Table 5.1, and A is the Calabi-Yau deformation parameter.

5.4.2. M3-polarized families. Here we follow a similar method to the M2-polarized
case. An M3-polarized K3 surface is mirror to a 〈6〉-polarized K3 surface, which
may be realized as a complete intersection of type (2, 3) in P4.

By the Batyrev-Borisov construction, on the maximal torus we may express the
mirror of a (2, 3) complete intersection in P4 as the locus in (C×)3 defined by the
rational polynomial

(5.2) x1 +
λ

x1x2x3(1− x2 − x3)
= 1,

where λ ∈ C is a constant. This is easily compactified to a singular hypersurface of
bidegree (2, 3) in P1 × P2, given by the equation

λs2z3 + r(r − s)xy(z − x− y) = 0,

where (r, s) are coordinates on P1 and (x, y, z) are coordinates on P2.
Consider the family of surfaces over C obtained by varying λ. By resolving

the singularities of the generic fibre and removing any singular fibres that remain,
we obtain a family of K3 surfaces X3 → U3 ⊂ C. We now show that X3 is an
M3-polarized family that satisfies Definition 5.2.

There is a natural elliptic fibration on the fibres of X3, obtained by projecting
onto the P1 factor. This elliptic fibration has two singular fibers of Kodaira type
IV ∗ at r = 0 and r = s, a fibre of type I6 at s = 0, two fibres of type I1 and a
section. In fact, one sees easily that the hypersurface obtained by intersecting with
z = 0 splits into three lines, which project with degree 1 onto P1 and hence are
all sections. If we choose one of these sections as a zero section, the other two are
3-torsion sections and generate a subgroup of the Mordell-Weil group of order 3.

One can check that the lattice spanned by components of reducible fibers and
these torsion sections is a copy of the latticeM3 inside of NS(Xλ), for each fiber Xλ

of X3 → U3. Since the 3-torsion sections are individually fixed under monodromy,
there can be no monodromy action on this copy of M3 in NS(Xλ). We thus see
that X3 is an M3-polarized family of K3 surfaces.

Next we calculate the transcendental monodromy of this family to show that it
satisfies Definition 5.2.

Lemma 5.14. U3 is the open subset given by removing the points λ ∈ {0, 1
108} from

C. Transcendental monodromy of the family X3 → U3 has order 2 around λ = 1
108 ,

order dividing 6 around λ =∞ and infinite order around λ = 0.

Proof. The discriminant of the elliptic fibration on a fibre Xλ of X3 vanishes for
λ ∈ {0, 1

108 ,∞}, giving the locations of the singular K3 surfaces that are removed
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from the family X3. At λ = 1
108 the two singular fibres of type I1 collide so that

the K3 surface Xλ= 1
108

has a single node. Thus there is a vanishing class of square
(−2) associated to the fibre Xλ= 1

108
and monodromy around this fibre is a reflection

across this class. Therefore monodromy around λ = 1
108 has order 2.

We will use this to indirectly calculate the monodromies around other points.
After base change λ = µ3 and a change in variables, one finds that the λ =∞ fiber
can be replaced with an elliptically fibered K3 surface with three singular fibers of
type IV ∗. Since a generic member of the family X3 has Néron-Severi rank 19, this
fiber can only have a single node, so again the monodromy transformation around
it must be of order at most 2. Hence monodromy around λ =∞ has order dividing
6.

To determine monodromy around the final point, it is enough to note that the
moduli space ofMn-polarized K3 surfaces has a cusp, and the preimage of this cusp
under the period map must also have monodromy of infinite order. Since the points
λ ∈ { 1

108 ,∞} are of finite order and every other fiber is smooth, λ = 0 must map
to the cusp under the period map and therefore has infinite order monodromy. �

As a result we find:

Proposition 5.15. The period map of X3 → U3 is injective and the subgroup of
O(M⊥3 )∗ generated by monodromy transformations is O(M⊥3 )∗ itself. The family
X3 thus satisfies Definition 5.2.

Proof. Notice first that, by Lemma 5.14, the monodromy group of X3 is isomorphic
to a triangle group of type (2, d,∞) for d = 2, 3 or 6 and contained in O(M⊥3 )∗.
It is well known that O(M⊥3 )∗ ∼= Γ0(3)+ is a (2, 6,∞) triangle group, and since
the period map is of finite degree, the monodromy group of X3 is of finite index in
Γ0(3)+. Thus we need to show that the only finite index embedding of a (2, d,∞)
triangle group into the (2, 6,∞) triangle group is the identity map from the (2, 6,∞)
triangle group to itself. But this is calculated in [Tak77]. �

As before, we can use the local form (5.2) of the family X3 to find M3-polarized
families of K3 surfaces on the threefolds from [DM06, Table 1]. We find that the
generalized functional invariants are given by

λ =
Aui+j

ti(u− t)j
,

where (t, u) are homogeneous coordinates on the base U ⊂ P1 of the K3 fibration,
(i, j) are as in Table 5.1, and A is the Calabi-Yau deformation parameter.

5.4.3. M4-polarized families. We conclude the proof of Theorem 5.10 with the M4-
polarized case. AnM4-polarized K3 surface is mirror to an 〈8〉-polarized K3 surface,
given generically as a complete intersection of type (2, 2, 2) in P5.

By the Batyrev-Borisov construction, on the maximal torus we may express the
mirror of a complete intersection of type (2, 2, 2) in P5 as the locus in (C×)3 defined
by the rational polynomial

(5.3) x1 +
λ

x2(1− x2)x3(1− x3)x1
= 1.
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This may be easily compactified to a singular hypersurface of multidegree (2, 2, 2)
in (P1)3 given by

λs2
1s

2
2s

2
3 − r1(s1 − r1)r2(s2 − r2)r3(s3 − r3) = 0,

where (ri, si) are coordinates on the ith copy of P1.
As above, we consider the family of surfaces over C obtained by varying λ. By

resolving the singularities of the generic fibre and removing any singular fibres that
remain, we obtain a family of K3 surfaces X4 → U4 ⊂ C. We now show that X4 is
an M4-polarized family that satisfies Definition 5.2.

Begin by noting that there is an S3 symmetry on X4 obtained by permuting
copies of P1. Furthermore, projection of (P1)3 onto any one of the three copies of
P1 produces an elliptic fibration on the K3 hypersurfaces. This elliptic fibration
has a description very similar to that of the elliptic fibration on X3. Generically it
has two fibres of type I∗1 at ri = 0 and ri = si, a fibre of type I8 at si = 0, and two
fibres of type I1.

This elliptic fibration has a 4-torsion section. Using standard facts relating the
Néron-Severi group of an elliptic fibration to its singular fiber types and Mordell-
Weil group (see [Mir89, Lecture VII]), we see that each fiber of X4 is polarized by
a rank 19 lattice with discriminant 8. A little lattice theory shows that this must
be the lattice M4. The embedding of M4 into the Néron-Severi group must be
primitive, otherwise we would find full 2-torsion structure, which is not the case.
As in the case of X3, this embedding of M4 is monodromy invariant, so X4 is an
M4-polarized family of K3 surfaces.

Proposition 5.16. U4 is the open subset given by removing the points λ = {0, 1
64}

from C. Transcendental monodromy of the family X4 → U4 has order 2 around
λ = 1

64 and infinite order around λ ∈ {0,∞}.
Furthermore, the period map of X4 → U4 is injective and the subgroup of O(M⊥4 )∗

generated by monodromy transformations is O(M⊥4 )∗ itself. The family X4 thus
satisfies Definition 5.2.

Proof. As in the proof of Lemma 5.14, to see that fibers of X4 degenerate only
when λ ∈ {0, 1

64 ,∞}, it is enough to do a simple discriminant computation. The
elliptic fibration described above is well-defined away from λ ∈ {0,∞} and the two
I1 singular fibers collide when λ = 1

64 . As before, this shows that monodromy has
order 2 around λ = 1

64 .
To see that monodromies around λ ∈ {0,∞} have infinite order, we argue as

follows. We have a period map from P1
λ toMM4

, the Baily-Borel compactification
of the period space ofM4-polarized K3 surfaces. The monodromy of X4 is a (2, k, l)
triangle group for some choice of k, l, and lies inside of O(M⊥4 )∗ ∼= Γ0(4)+ (which
is a (2,∞,∞) triangle group) as a finite index subgroup, since the period map is
dominant. However, by [Tak77], the only (2, k, l) triangle group of finite index inside
of the (2,∞,∞) triangle group is the (2,∞,∞) triangle group itself (equipped with
the identity embedding). Therefore the period map is the identity and monodromy
around λ ∈ {0,∞} is of infinite order. �

As in the previous cases, we can use the local form (5.3) of the family X4 to find
M4-polarized families of K3 surfaces on the threefolds from [DM06, Table 1]. We
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find that the generalized functional invariants are given by

λ =
Aui+j

ti(u− t)j
,

where (t, u) are homogeneous coordinates on the base U ⊂ P1 of the K3 fibration,
(i, j) are as in Table 5.1, and A is the Calabi-Yau deformation parameter. This
completes the proof of Theorem 5.10.

5.5. The case n = 1. It remains to address the case of threefolds from [DM06,
Table 1] that are fibred by M1-polarized K3 surfaces. Unfortunately many of the
results that we have proved so far do not apply in this case: Assumption 4.6 does
not hold (this follows easily from Remark 4.7 and the expressions for the (a, b, d)-
parameters of M1-polarized K3 surfaces, below), so the methods of Section 4.3 do
not apply, and the torically induced fibrations of these threefolds by M1-polarized
K3 surfaces (computed with Sage) cannot all be seen as pull-backs of special M1-
polarized families X1 from the moduli space MM1 , so we cannot directly use the
results of Section 5.2 either.

Instead, we will construct a special 2-parameter M1-polarized family of K3 sur-
faces X 2

1 → U2
1 , which is very closely related to a family X1 satisfying Definition

5.2 (this relationship will be made precise in Proposition 5.18 and Remark 5.19),
and show that the M1-polarized fibrations X → U on our threefolds are pull-backs
of this family by maps U → U2

1 .
Now let Y2

1 → U2
1 denote the family of Kummer surfaces associated to X 2

1 → U2
1

and suppose that we can construct a cover V → U2
1 that undoes the Kummer

construction for Y2
1 . Then, as before, we may undo the Kummer construction for

the family of Kummer surfaces associated to X → U by pulling back to the fibre
product U ×U2

1
V .

To construct the 2-parameter family X 2
1 → U2

1 , we begin by noting that an M1-
polarized K3 surface is mirror to a 〈2〉-polarized K3 surface, which can generically
be expressed as a hypersurface of degree 6 in WP(1, 1, 1, 3). By the Batyrev-Borisov
construction, an M1-polarized K3 surface can be realized torically as an anticanon-
ical hypersurface in the polar dual of WP(1, 1, 1, 3). The defining polynomial of a
generic such anticanonical hypersurface is

(5.4) a0x
6
0 + a1x

6
1 + a2x

6
2 + a3x

2
3 + a4x0x1x2x3 + a5x

2
0x

2
1x

2
2,

where x0, x1, x2 are variables of weight 1 and x3 is a variable of weight 3.
On the maximal torus, the family defined by this equation is isomorphic to the

vanishing locus in (C×)3 of the rational polynomial

(5.5) y + z +
α

x3yz
+ x+ 1 +

β

x
= 0,

where α =
a0a1a2a

3
3

a6
4

and β = a3a5

a2
4
. Consider the family of K3 surfaces over C2

obtained by varying α and β. By resolving the singularities of the generic fibre and
removing any singular fibres that remain, we obtain the 2-parameter family of K3
surfaces X 2

1 → U2
1 ⊂ C2.

We can compute the (a, b, d)-parameters (see Section 4.2) of a fibre of X 2
1 in

terms of α and β. To do this, we use the fact that the standard and alternate
fibrations on the K3 fibres are torically induced, so their g2 and g3 invariants may
be computed (in terms of α and β) using the toric geometry functionality of the
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computer software Sage. These expressions can then be compared to the corre-
sponding expressions computed for anM -polarized K3 surface in normal form (see,
for instance, [CDLW09, Theorem 3.1]). We thus obtain

a = 1, b =
2633α

(4β − 1)3
+ 1, d =

(
2633α

(4β − 1)3

)2

.

Introducing a new parameter

γ :=
2633α

(4β − 1)3
,

we see from the expressions for (a, b, d) above that γ parametrizes the moduli space
MM1 , so the generalized functional invariant of the family X 2

1 is given by γ. Then
we find:

Lemma 5.17. U2
1 is the open set U2

1 := {(α, β) ∈ C2 : γ /∈ {0,−1,∞}}. Further-
more, X 2

1 → U2
1 is an M1-polarized family of K3 surfaces.

Proof. Using the computer software Sage, it is possible to explicitly compute a
toric resolution of a generic K3 surface defined in the polar dual of WP(1, 1, 1, 3)
by Equation (5.4). From this, we find that the singular fibres of this family occur
precisely over γ ∈ {0,−1,∞}.

To see that X 2
1 → U2

1 is an M1-polarized family, we note that X 2
1 is a family

of hypersurfaces in the polar dual to WP(1, 1, 1, 3). By [Roh04], there is a toric
resolution Y of the ambient space such that the fibres X of X 2

1 become smooth K3
surfaces in Y and the restriction map

res : NS(Y ) −→ NS(X)

is surjective. Furthermore the image of res is the lattice M1. This defines a lattice
polarization on each fiber and, since this polarization is induced from the ambient
threefold, it is unaffected by monodromy. Thus X 2

1 is a family of M1-polarized K3
surfaces. �

Changing variables in (5.5) and completing the square in x, the family X 2
1 may

be written on (C×)3 as the vanishing locus of

x2

4β − 1
+ y + z +

γ

yz
+ 1 = 0.

Furthermore, we note that points (α, β) ∈ U2
1 correspond bijectively with points

(β, γ) in {(β, γ) ∈ C2 : β 6= 1
4 , γ /∈ {0,−1}}. Using this we can reparametrize U2

1

by β and γ, and thus think of X 2
1 → U2

1 as the 2-parameter family parametrized
by β and γ given on the maximal torus by the expression above.

After performing this reparametrization, the generalized functional invariant
map of the family X 2

1 is given simply by projection onto γ. The fibres of this
map are 1-parameter families of K3 surfaces with the same period, parametrized
by β ∈ C− { 1

4}, which are therefore isotrivial. It is tempting to expect that these
isotrivial families are in fact trivial, but this is not the case. Instead, we find:

Proposition 5.18. Monodromy around the line β = 1
4 fixes the Néron-Severi lattice

of a generic fibre of X 2
1 and acts on the transcendental lattice as multiplication by

−Id.
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Furthermore, the family X̂ 2
1 obtained by pulling back X 2

1 to the double cover of
U2

1 ramified over the line β = 1
4 is isomorphic to a direct product X1 × C×, where

X1 is an M1-polarized family of K3 surfaces satisfying Definition 5.2.

Proof. The double cover of U2
1 ramified over the line β = 1

4 is given by the map
C× × (C − {0,−1}) → U2

1 taking (µ, γ) → (β, γ) = (µ2 + 1
4 , γ). After a change of

variables x 7→ xµ, the family X̂ 2
1 may be written on the maximal torus (C×)3 as

the vanishing locus of the rational polynomial

(5.6) x2 + y + z +
γ

33yz
+ 1 = 0.

This family does not depend upon µ, so X̂ 2
1 is isomorphic to a direct product

X1×C×, for some family X1 → (C−{0,−1}) parametrized by γ, and its monodromy
around µ = 0 is trivial. Furthermore, for two K3 surfaces X1 and X2 in X̂ 2

1 lying
above a fiber X in X 2

1 there are natural isomorphisms

φ1 : X1 −→ X, φ2 : X2 −→ X.

The automorphism φ−1
1 · φ2 is the non-symplectic involution given on the maximal

torus by (x, y, z) 7→ (−x, y, z), which fixes the lattice M1 = NS(X).
Therefore monodromy around β = 1/4 has order 2 and acts on TX in the same

way as a non-symplectic involution ι with fixed lattice M1 = NS(X). Thus, TX =
(NS(X)ι)⊥ and so ι acts irreducibly on TX with order 2. It must therefore act as
− Id.

It remains to prove that the 1-parameter family X1 → (C−{0,−1}) given on the
maximal torus by varying γ in (5.6) satisfies Definition 5.2. We have already noted
that the generalized functional invariant map (C− {0,−1}) →MM1

defined by γ
is injective. Furthermore, using the expressions for a, b and d calculated earlier we
see that γ = −1 at the elliptic point of order 2, γ =∞ at the elliptic point of order
3, and γ = 0 at the cusp. All that remains is to check that the monodromy of the
family X1 → (C−{0,−1}) has the appropriate orders around each of these points.

This family X1 has been studied by Smith [Smi06, Example 2.15], where it
appears as family D in Table 2.2 (and we note that Smith’s parameter µ is equal
to − 1

γ in our notation). Its monodromy around the points γ ∈ {0,−1,∞} is given
by the symmetric squares of the matrices calculated in [Smi06, Example 3.9]; in
particular we find that this monodromy has the required orders. �

Remark 5.19. We note that the complicating factor in the M1-polarized case
is the fact that a generic M1-polarized K3 surface X admits a non-symplectic
involution which fixes M1 ⊆ NS(X). It is this which prevents some of the torically
induced fibrations of the threefolds in [DM06, Table 1] byM1-polarized K3 surfaces
from being expressible as pull-backs of an M1-polarized family X1 from the moduli
space MM1 . However, from Proposition 5.18, we find that we can express these
fibrations as pull-backs of X1 if we proceed to a double cover of the base which kills
this involution.

Given this result, it is easy to undo the Kummer construction for the family
Y2

1 → U2
1 of Kummer surfaces associated to the family X 2

1 . First, pull back Y2
1

to the double cover (C − {0,−1}) × C× ∼= UM1
× C× of U2

1 ramified over the
line β = 1

4 (where UM1
is defined as in Section 5.2). The result is the family of

Kummer surfaces associated to the family X̂ 2
1
∼= X1×C×. This is exactly the family
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Mirror Threefold α β γ

WP(1, 1, 1, 1, 2)[6]
A(t+ u)3

tu2
0 −2633A(t+ u)3

tu2

WP(1, 1, 1, 1, 4)[8]
Au

t

t

u

2633Au4

t(4t− u)3

WP(1, 1, 1, 2, 5)[10]
Au2

t2
t

u

2633Au5

t2(4t− u)3

WP(1, 1, 1, 1, 1, 3)[2, 6]∗ − Au2

t(t+ u)
k − 2633Au2

(4k − 1)3t(t+ u)

WP(1, 1, 1, 2, 2, 3)[4, 6]∗
Au4

t2(t+ u)2
k

2633Au4

(4k − 1)3t2(t+ u)2

Table 5.2. Values of α and β for threefolds admitting M1-
polarized fibrations.

Y1×C×, where Y1 → UM1
is the family of Kummer surfaces associated to X1. The

Kummer construction can then be undone for this family by pulling back to the
cover V = CM1

× C× of UM1
× C×, where the cover CM1

→ UM1
is as calculated

in Section 5.3.
Thus, given a family X → U of M1-polarized K3 surfaces that can be expressed

as the pull-back of the family X 2
1 by a map U → U2

1 , we may undo the Kummer
construction for the associated family of Kummer surfaces Y → U by pulling back
to the cover V ×U2

1
U .

We conclude by applying this to the cases from [DM06, Table 1]. We find:

Theorem 5.20. There exist K3 fibrations with M1-polarized generic fibre on five
of the threefolds in [DM06, Table 1], given by the mirrors of those listed in Table
5.2.

Furthermore, if X → P1
t,u denotes one of these fibrations and U ⊂ P1

t,u is the
open set over which the fibres of X are nonsingular, then the restriction X|U → U
agrees with the pull-back of the family X 2

1 by the map U → U2
1 defined by α and β in

Table 5.2 (in this table (t, u) are coordinates on the base U ⊂ P1
t,u of the fibration,

A is the Calabi-Yau deformation parameter and k ∈ C−{0, 1
4} is a constant). The

family X|U → U is thus an M1-polarized family of K3 surfaces.

Proof. This is proved in the same way as Theorem 5.10, by comparing the forms
of the maximal tori in the threefolds from [DM06, Table 1] to the local form of the
family X 2

1 given by Equation (5.5). �

Finally, we note that the generalized functional invariants in these cases are given
by γ in Table 5.2. We see that, as in Section 5.4, they are all (i+ j)-fold covers of
MM1

∼= Γ0(1)\H (where (i, j) are as in Table 5.1) having exactly four ramification
points: one of order (i + j) over the cusp, two of orders i and j over the elliptic
point of order 3, and one of order 2 which varies with the value of the Calabi-Yau
deformation parameter A.

Remark 5.21. There is precisely one case from [DM06, Table 1] that has not been
discussed: the mirror of the complete intersection WP(1, 1, 2, 2, 3, 3)[6, 6]. However,
it can be seen that this threefold does not admit any torically induced M -polarized
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K3 fibrations, and our methods have not yielded any that are not torically induced
either.

6. Application to the arithmetic/thin dichotomy

Recall that each of the threefolds X from [DM06, Table 1] moves in a one pa-
rameter family over the thrice-punctured sphere P1−{0, 1,∞}. Recently there has
been a great deal of interest in studying the action of monodromy around the punc-
tures on the third cohomology H3(X,Z). This monodromy action defines a Zariski
dense subgroup of Sp(4,R), which may be either arithmetic or non-arithmetic (more
commonly called thin). Singh and Venkataramana [SV14][Sin13] have proved that
the monodromy is arithmetic in seven of the fourteen cases from [DM06, Table 1],
and Brav and Thomas [BT14] have proved that it is thin in the remaining seven.
The arithmetic/thin status of each of the threefolds from Theorems 5.10 and 5.20
is given in the fifth column of Table 5.1.

It is an open problem to explain this behaviour geometrically. To this end, we are
able to make an interesting observation concerning the arithmetic/thin dichotomy
for theMn-polarized families with Theorems 5.10 and 5.20. Specifically, from Table
5.1 we observe that a threefold admitting a torically induced fibration by Mn-
polarized K3 surfaces has thin monodromy if and only if neither of the values (i, j)
associated to this fibration are equal to 2.

This observation may also be extended to the 14th case [CDL+13]. In this case,
recall that the threefold Y1, which moves in a one-parameter family realizing the
14th case variation of Hodge structure, admits a torically induced fibration by M -
polarized K3’s rather than Mn-polarized K3’s. Thus the generalized functional
invariant map from Y1 has image in the 2-dimensional moduli space ofM -polarized
K3 surfaces, rather than one of the modular curvesMMn

. However, from [CDL+13,
Section 5.1 and Equation (4.5)], we see that the image of the generalized functional
invariant map from Y1 is contained in the special curve in the M -polarized moduli
space defined by the equation σ = 1 (where σ and π are the rational functions from
Section 4.2).

By the results of [CDLW09, Section 3.1], the moduli space of M -polarized K3
surfaces may be identified with the Hilbert modular surface

(PSL(2,Z)× PSL(2,Z)) o Z/2Z \ H×H,

with natural coordinates given by σ and π. The σ = 1 locus is thus parametrized
by π and has an orbifold structure induced from the Hilbert modular surface. This
orbifold structure has an elliptic point of order six at π = 0, an elliptic point of
order two at π = 1

4 , and a cusp at π =∞.
The generalized functional invariant map for the K3 fibration on Y1 is given by

the rational function π, which is calculated explicitly in [CDL+13, Equation (4.4)].
It is a double cover of the σ = 1 locus ramified over the cusp and a second point
that varies with the value of the Calabi-Yau deformation parameter. This agrees
perfectly with the description of the generalized functional invariants for the Mn-
polarized cases from Section 5.4, with (i, j) = (1, 1), thereby giving the final row of
Table 5.1. From this table, we observe:

Theorem 6.1. Suppose that X is a family of Calabi-Yau threefolds from [DM06,
Table 1] that admit a torically induced fibration by Mn-polarized K3 surfaces (resp.
M -polarized K3 surfaces with σ = 1). By our previous discussion, the generalized
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functional invariant of this fibration is a (i + j)-fold cover of the modular curve
MMn

∼= Γ0(n)+ \H (resp. the orbifold curve given by the σ = 1 locus in the moduli
space of M -polarized K3 surfaces), where i and j are given by Table 5.1, which is
totally ramified over the cusp and ramified to orders i and j over the remaining
orbifold point of order 6= 2. Then X has thin monodromy if and only if neither i
nor j is equal to 2.
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