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INTRODUCTION 

Spinning cup atomizers are used industrially to produce an 

airborne spray. Often the size distribution of the spray is important. 

The size distribution of the spray depends on the physical dimensions of 

the cup, the operating-conditions and the physical properties of the 

fluid to be atomized. 

A spinning cup atomizer can be considered in the following way. 

The liquid to be atomized is fed centrally on to the surface of the cup 

where it begins to thin into a liquid film under the centrifugal action 

of the rotating cup. As the liquid flows film-wise to the lip of the 

cup, where atomization occurs, it obtains energy from the cup. 

Obviously, efficient atomization will occur if the liquid reaches the 

lip of the cup after it has picked up sufficient energy and if it was 

evenly distributed on the cup initially. 

Chapter One attempts some of the more pertinent problems that 

were considered tO,be of interest, for instance the effect maldistribution 

of the liquid feed on the surface of the cup, has on the resultant drop 

size distribution. Likewise the experimental difficulties of accurately 

monitoring the film thickness variations and the drop size are discussed. 

The recognition that the film flow ultimately influences the 

atomisation prompted an interest, both theoretically and experimentally, 

into the film flow on the cup. Chapter two is concerned with the early 

experimental work in determining the liquid film thickness as a function 

of the physical properties of the -test liquid and the operating conditions 

as well as the distribution of the liquid on the surface of the cup. 

Photographic drop sizing was also tested as a viable drop sizing technique 



during this initial experimental period. 

The literature has been surveyed in Chapter Tree. Because of the 

importance of the film flow of the liquid on the cup prior to atomization 

the film flow literature has been examined in some detail. Initially 

the film flow of a liquid down an inclined plane was studied before 

. reviewing-the film flow of a liquid ina centrifugal field. As there 

are similarities between the two cases and as the inclined plane 

application has received a lot of attention it was thought that the 

techniques used in the inclined plane work might be transferable to the 

centrifugal case. Apart from a relatively short section on liquid 

distribution on to rotating discs the remaining part of this chapter is 

devoted to the atomization of the liquid and the sizing of the droplets 

so produced. 

The design and operation of the experimental equipment and the 

calibration that was needed is discussed in Chapter Four. Here the 

optical technique, that of light extinction, which was finally used as 

the method of determining the liquid film thickness for both the average 

and continuous film thickness results is discussed. The drop sizing 

technique is also described in this chapter. The drop sizer used was 

in fact a charged wire drop sizer. This sizer is capable of handling 

a large number of droplets in a short time period. Also it can be used 

at the same time as the optical system described above, an added 

advantage if both the film thickness and drop size distribution are 

required concurrently. 

The theoretical chapter, Chapter Five, considers the fluid mechanics 

of the liquid film flow on a spinning cup. Various models are discussed: 

the Nusselt and Nikolaev models which contain some of the inertial terms 

in the Navier Stokes equation; the creeping flow solution which ignores 



the inertial terms and are essentially the three dimensional solution 

of the Navier Stokes equation. 

The last chapter contains the discussions and conclusions of the 

film thickness and drop size distribution results. As this thesis is 

concerned with the liquid film flow on a rotating cup atomizer the discussio 

are directed towards the differences between the ideal smooth flow and 

the wavy flow encountered in practice on the cup. The transition from 

the bimodal to continuous drop size distribution is noted and the effect 

of volumetric flowrate on this transition is quantified, but only at one 

set of operating conditions. 
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THE STATEMENT OF THE PROBLEM 

Experimental and theoretical work that has been carried 

out by researchers has indicated that it is possible to separate 
,,-

the film flow regime of a liquid On a spinning cup from the 

atomization at the lip by carefully choosing the geometry of the 

cup: This would appear to be. the case so long as the liquid is 

initially evenly distributed on the cup and the waves that may be 

produced have insufficient inertia to influence the eventual 

atorn,ization. 

Qualitatively it is relatively easy to observe the effect 

maldistribution. of the liquid feed and waVe formations have on the 

atomization O>hotograph 5). Inevitably the question arises, what 

is the quantitative effect of maldistribution and wave formations? 

With this question in mind the research described in this thesis 

was carried out. If the industrial usage of rotating disc 

atomizers was limited to small throughputs the question asked 

above would become redundant. However, industrially these 

" atomizers are more often used in the sheet regime, that is at 

high liquid throughputs where the problems of mardistribution 

and wave formations becomes of interest, especially for low 

viscosity liquids. 

To assess the effect the film thickness distribution has 

on the drop size distribution it is obviously necessary for these 

distributions to be determined. In the case of the film thickness 

distributions continuous monitoring of the film thickness is 

required if the instantaneous values are to be obtained. As the 

speed of rotation can be relatively fast the probe used to measure 
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the film thickness has to have a response time several orders of 

magnitude faster than the fluctuation or disturbances which occur 

on the disc. Although the probe may be capable of detecting 

these high frequency fluctuations the recording of the signal is 

a problem which has to be faced. Once again fast response times 

will be necessary if the signal from the probe is not to be 

distorted. 

To quantify the effect that the· wave distribution has 

on the drop size distribution,it is necessary to determine the 

drop size distribution as the drops are produced, that is 

adjacent to where the drops are formed. If this was not 

observed mass transfer, co~lescence and.drop rupture might affect 

the distribution obtained. This however imposes a severe 

practical restriction on the sampling as the drop flux is at 

its greatest in the region close to the cup. The sampling 

method must therefore be able to handle a very large numb~r of 

drops as the frequency of drops passing through a specified area 

decreases with increase in distance from the lip of the. cup. 

, 
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3. 

INTRODUCTION 

The experimental techniques described in 

Chapter Four grew out of the experience gained during the 

initial experimentation period. Observations from the 

literature were often tested to ensure the techniques adopted 

gave the degree of accuracy required in the easiest possible 

manner. Some of the methods tried were abandoned after a 

. short while, when such methods indicated difficulties or 

inaccuracies that could not easily be overcome. 

In order to assess a spinning cup atomizer in any 

one of the three atomization '" (1) . t . regimes 1 1S necessary 

to know how much rotational energy has been transferred to the 

liquid prior to atomization as azimuthal surface film 
(2) 

velocities of up to 50% lag have been observed .• If lags 

of this order still exist when the film approaches the lip of 

the cup the resultant atomization will inevitably be adversely 

affected. 

The film flow of. an incompress~ble liquid on the 

inside surface of a rotating cup can be fully described by the 

Navier-Stokes equations. Exact solutions of these equations 

are normally extremely difficult, therefore .approximate 

solutions are generally found. Classically the experimental 

investigations into the validity of these solutions have been 

concerned with the measurement of either the local film thick-

ness, the components of the film surface velocity or both of 

these. 
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2.1 Film Thickness Measurement 

Devices which measure liquid film thickness can 

be divided into several groups. These have been summarised 

in Chapter Three. Suffice it to say the method of finding 

the film thickness is important as it will dictate which value 

of tbe film thickness is found. Therefore serious thought is 

necessary before adopting any particular technique. 

2.1.1 Stationary Probe 

The cup used during the early investigations (see 

Figure 2.1) was made of brass and was therefore thought to be 

ideally suited to the capacitance probe technique of 

measuring the liquid film thickness. A brass probe of 

2 . approximately 8 cm in area was accurately machined to fit the 

inside surface of the brass cup. The probe was initially 

fitted flush to the surface of the cup before being displaced 

slightly from it so that a uniform gap was left between the 

probe and the cup. The capacitance between the isolated probe 

and the cup was measured so the air gap could be determined. 

The liquid used during this period was mains water 

and so it was possible to assume that the capacitance measured 

was a direct function of the air gap (as the dielectric constant 

of water is nearly two orders of magnitude greater than that 

of air). The liquid film thickness was therefore found,as the 

di~ference between the air gap readings in the no-liquid flow and the 

,liquid flow conditions respectively. Measurements of the capacitance 

were taken directly on an oscilloscope that incorporated a 

capacitance bridge network. By careful adjustment of the 

trigger level on the oscilloscope it was possible to record 
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the capacitance for consecutive revolutions on the storage 

facility of the oscilloscope. It was, necessary to match the 

values of the capacitance in the flow and no-flow conditions 

at different positions on the cup due to a slight amount of 

eccentricity which was detected by the probe. 

The air gap between the probe and the cup was 

deliberately kept small so that the capacitance change, when 

liquid was present on the cup, was readily detectable. 

Unfortunately when the air gap was small two unwanted effects 

were observed. 
J 

The first of these occurred when the liquid, 

usually in the form of a wave crest, bridged the gap between 

the capaci tance probe and the cup caus il)g the probe to short 

circuit. Although the short circuiting was possibly transient 

in effect, small globules of the liquid had 'a tendency to sit 

on the face of the probe even when that face had previously 

been coated with an anti-wetting agent such as P.T.F.E. 

Wetting of the capacitance probe was most pronounced during 

start-up, probably because of the wave front that precedes 

the formation of a totally wetted surface. The second of 

these effects concerned the positioning of the probQ. A 

stationary probe affects the air flow which is a feature of 

all types of rotary atomizers. The change in air flow near 

the surface of the liquid film might in some extreme cases 

cause disturbances that result in wave formations. Of these 

two effects mentioned the first is thought to be the most 

important as it limits the degree of accuracy obtainable by 

this method. 
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Problems were experienced because of the geometry of 

the cup. For instance, the probe could only be used at one 

particular band of radii. If the film thickness at any other 

radius was required it would have necessitated a probe that had 

been machined to the dimensions of the cup at that radius. 

Although this particular problem is by no means insurmountable 

it was felt that it severely limited the degree of flexibility 

of this technique. Another of the problems encountered 

concerned the positioning of the probe at start up. The 

theoretical equation, used to determine the initial air gap, is 

only applicable for a parallel plate capacitor. If. the probe 

was not set up exactly 'parallel' to the cup the capacitance· 

recorded would not be the same as the capacitance that would be 

recorded if the probe was 'parallel'. This can be more clearly 

seen when expressed mathematically. 

The capacitance of a parallel plate capacitor· in air 

is given by:-

C 
8.85 x 10-12 x a 

farads (2.1.1) = t 

where C is the capacitance in farads 

a is the area of the capacitor <m2) 

t is the distance between the plates (m) 

From equation ,2.1.1. it can be readily seen that the greatest change 

in capacitance with change, in air gap will occur when the distance 

between the plates (.t) is small. The following simple model 
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demonstrates how the capacitance is affected when the plates 

are not quite parallel. 

xl I 

t x. , 

t lttx.) tt-x.) , 
! 

Any capacitor· can be expressed as an infinite number of 

capacitors in parallel, 

+----+ C 
n 

We could therefore consider the non-parallel capacitor to be 

equivalent to, say, two parallel plate capacitors in parallel. 

It is readily shown that the resultant capacitance is given byl-

(2.1.3) 

Hence the effective distance between the plates is seen to be less 

than the average distance between the plates. The presence of a 

uniform layer of water on the cup would modify the equation 

slightly. 

C (I. a x <t-y) 

<t_y)2_~ 

Obviously the errors involved depend upon the relative values of 



the average air gap at no flow, (t), and the displacement, (1(.). 

However.it is generally true that if the plates are not 

precisely parallel the liquid film thickness predicted will be 

greater than that actually on the cup. 

In practice there are two more factors which 

complicate the interpretation of the results.' For true uniform 

flow the film thickness decreases with increase in the radius 

of the cup. Therefore, even if the probe was initially set up 

'parallel' to the face of the cup, the liquid would form a 

wedge-shaped layer due to the thinning of the liquid with increase 

in radius. This would affect the results as described above. 

Secondly, if waves were present in the liquid layer the recorded 

capacitance would once more be affected. When there are waves 

present on the cup the air gap would no longer be c?nstant and 

so the situation again becomes analogous with the preceding 

treatment. 

The results obtained using the capacitance probe method 

can be seen in FigUre 2.2. There they are compared with the 

(3-6) 
results obtained by other authors for both centrifugal and' 

gravitational force fields. 

2.1.2 Rotating Probe 

A stationary probe only gives information at a static 

frame of reference, that is, it scans a particular radius as the 

cup rotates ,past it. Any possible periodicity in the wave 

motion that is present on the cup may be lost or distorted 
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; 

unless the flow at that given point on the cup is continuously 

monitored. An attempt was made to construct a rotating 

capacitance probe that could be fixed at any given point 

adjacent to the cup. No experimental results were forthcoming 

due ~o a number of problems, including-noise at the rotary 

contacts and wetting of the capacitance probe with small 

globules of water. 

Two designs of rotary contacts were tried. The first, 

and the simplest, consisted of two carbon brushes touching the 

previously cleaned surface of a circular, insulated, brass 

contact that had been mounted above the liquid distributor. 

This system proved inadequate due to a high level of nOise, which 

was attributed to the carbon brushes. A second design was tried 

comprising of a perspex disc that was mounted, as before, above 

the liquid distributor. A circular reservoir was cut into the 

disc so that when it was filled with mercury, none was lost when 

the system rotated. A clean platinum wire was dipped carefully 

into the mercury well thus completing the rotary contact. Once 

\ again noise was recorded at an unacceptable level. Although the 

noise could possibly have been reduced it was decided to curtail 

this line of investigation. Apart from the noise problem two 

other problems not elsewhere mentioned were encountered. The 

first was due to the ironwork in the apparatus, there being an 

oscillating force field which was detected as the probe rotated. 

The second problem concerned the size of the capacitance probe. 

Due to its area the probe was monitoring an average film thickness 

and not an instantaneous film thickness at a point. Therefore the 
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probe was unable to detect the wave motion precisely, whereas 

information about the wave motion was regarded as important. 

A mechanical design fault was also encountered. As 

the thr.ee-phase motor that drove the spinning cup was turned on 

the value of the capacitance changed due to flexing of the T bar 

that formed the carrier for the probe. Unfortunately it was not 
> 

possible to tell whether the arrangement acquired a steady state 

deflection as the noise level previously mentioned did not allOw 

precise measurements to be taken. 

2.2 Surface Velocity Measurements 

When a liquid film is accelerated on the inside 

surface of a spinning cup the unbounded surface, the air/liquid. 

surface, will attain a velocity which is a function of the 

physical properties of the liquid and the position of the liquid 

on the cup. Consequently any theory regarding the liquid film 

flow could be tested using surface velocity measurements. For an 

orthogonal curvilinear coordinates system the overall velocity 

can be represented by its component velocities, namely the 

meridional and azimuthal velocities. In practice it is difficult 

to measure the components of the surface film velocity at a 

precise designated point. This being so, the surface. velocities 

were found at a number of random positions on the cup and from 

this information the surface velocities, at the required position, 

were interpolated. 

The technique used to measure the surface velocities 

during this investigation was streak photography. Small paper· 

discs, from a punch paper tape machine. were floated on the 

surface of the liquid as it left the distributor weir lip. Due 
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to the low mass of these markers it was assumed they quickly 

reached the same velocity as the liquid surface as it accelerated 

across the surface of the cup. Continuous lighting was used so 

that when the camera shutter opened exposure of the film 

comm~nced. The shutter time was selected so that the paper discs 

would travel one or two centimetres during the time the shutter 

was open. Because of the movement of the discs relative to the 

camera streak images of the discs were formed on the negative. 

from which an estimate of the velocity of the paper disc's was made. 

The position of .the discs On the cup when the shutter opened was 

naturally uncontrollable and so sufficient information had to be 

amassed so that a graph of surface velocity against radius could 

be drawn from which the surface velocity at any point was 

available. 

The extreme ends of the streak images were often 

difficult to assess. This was because the effective exposure 

time of the extreme ends of the streak was not the same as the 

main body of the streak, due to the fact that the marker had a 

finite diameter. This can be seen more clearly with the aid of 

the following diagram. 

t=o t=te G, .... " ------,""('.) 
ABC 

L J 
effective length of streak 
as seen on the negative 

where te = exposure time 

A,B and C are three points on the negative when the shutter 

opens, point A will be exposed instantaneously whereas point B will 
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be exposured for the time it takes the disc to travel from A to B. 

Likewise point C will be exposed for the time it takes the disc 

to travel from A to C; this will be the maximum exposure time, 

assuming the velocity of the marker remains constant. From C to 

D tne exposure at any point will be constant and so the ,contrast 

in this band will be greater than the areas at the ends. 

The camera used, an Exakta, had a focal plane shutter 

and so it was necessary to compensate for the focal planing 

effect Le. the elongation of the image due to the shutter 

acting as a slit which traverses the negative whilst the image 

, is movlng. As the elongation of the image due to focal planing 

is a direct function of the speed at which the image moves, it 

is possible to find an effective exposure at any position on the 

cup by measuring the length of streak when the bowl rotates at a 

known speed. A calibration of the effect that focal planing has 

on the length of streak was obtained by measuring the streaks 

produced by markers that had been stuck to the inside surface of 

a dry cup. 

The surface velocity results obtained, an example of 

which can be seen in Figure 2.3, contain an appreciable amount 

of scatter. This may be interpreted as the product of two effects, 

firstly, the surface velocity is a function of the waves that are 

often present when a liquid flows film-wise On a rotating cup 

and secondly, because of the geometry of the cup, errors could 

have occurred when the data was extracted from the negatives. 
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2.3 Photographic Drop Sizing 

A series of photographs were taken of the spray in the 

region close to the lip of the rotating cup. The slides that 

were made were projected on to a screen from which the droplet 

diameters were measured using a pair of calipers. These calipers 

were directly connected to a potentiometer which could easily be 

adjusted to give a read-out that was directly proportional to the 

drop size diameter. The readings obtained were stored on punch 

paper tape via a data logging unit. Only small displacements of 

the calipers were permitted as the voltage from the potentiometer 

was proportional to the arc that the calipers described and not 

the chord which represented the drop diameter. However, by 

calibrating the output voltage in terms oof a chordo (Le. a drop 

diameter) the resultantoerrors., with small caliper displacements, 

are negligible. 

In order to obtain a drop size distribution, a large 

number of drops must be analysed. This meant that numerous 

photographs were necessary as the number of clearly defined 

droplets visible on each negative was relatively small. Collection 

of the drop size data by this method was therefore tedious and 

lengthy. As the photographs had to be processed before the 

quality and quantity of the data was known, the precise number of 

photographs required to give a sufficiently accurate drop size 

distribution was not predictable. This inability to qualitatively 

decide whether a drop size distribution appeared satisfactory at 

the time of the experiment meant that wastage of photographic 

film and time was inevitable. 
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If droplets are photographed whilst they are in flight 

the number in each size range that will be in view will be a 

function of the velocity, corresponding to that drop size range, 

assuming that each size range has a unique, distinct, velocity. 

It is only when all droplets have the same velocity that no 

correction factor is needed to compensate for the spe.tial 

distribution of the droplets. 

When a photographic technique is used to measure the 

drop size distribution of a spray it is therefore necessary to 

determine the velocity distribution as mentioned above. The 

velocity distribution is highly dependent on the speed at which 

the disc rotates and so it would have to be determined at each 

of the operatirg conditions used. It can be seen that although 

at first sight the photographic technique of drop sizing appears 

simple the method is in fact quite lengthy and open to 

experimental error. 

2.4 Distributor Designs 

The distributor used during this early work was rather 

crude (see Figure 2.4.A). It consisted of a piece of copper tube 

that had been fashioned into a circular manifold. Numerous holes 

had been drilled into the manifold thus allowing the feed to be 

spread equally around the centre of the spinning cup. The feed 

issued, as a fine jet from these holes, onto the surface of the 

cup caus:ing the production of a series of helical waves. The 

main value of this distributor was its compactness as it did not 

obscure the field of view when the surface velOCity photographs 

were taken. None the less it was decided to redesign the 

distributor system. 
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The second design, see Figure 2.4.8, was constructed 

mainly of wood so that it would float on the surface of the feed 

to'be distributed thus allowing a constantly variable clearance of 

precisely the right value. 'In this way it was hoped that the 

distributor would adjust itself to the flow conditions and as a 

consequence produce disturbance-free liquid distribution. This 

distributor was allowed to rotate freely for it was not clamped in 

any way. Unfortunately it had a tendency of producing secondary 

disturbances,as droplets which originated on the outside edge of 

the distributor, impacted on the inside surface of the cup. This 

distributor also tended to pitch slightly causing uneven liquid 

distribution. 

The third type of distributor tested, see Figure 2.4.C, 

was constructed entirely in perspex. This distributor was designed 

to force the liquid feed into a small trough or reservoir from 

which the liquid would spill out onto the surface of the cup. The 

distributor rotated at the same speed as the cup thus minimising 

the viscous shearing of the liquid as it passed between the base 

of the cup and the distributor lip. During the testing of this 

distributor small air bubbles were Observed emerging from the 

reservoir. These air bubbles were probably formed inside the 

distributor when the incoming feed was rotated by the four webs 

that positioned the distributor On to the central shaft. For this 

distributor to work efficiently (i.e. no air bubble formation) the 

distributor had to be flooded which meant that its effective 

working range was limited. 

; 
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INTRODUCTION 

In the chemical industry film flow plays an important 

part in many of the unit operations. There are several evaporators 

which use the principle of a thin film for enhanced mass transfer. 

These include falling film evaporators, climbing film evaporators, 

wiped film evaporators and boilers of the Hickman-Badger type. 

Consequently much interest has been shown in the film flow of a 

liquid down vertical pipes and inclined planes. Most of the 

experimental techniques used for measuring the film thickness On 

rotating surfaces were developed originally for inclined plane 

work. And so it is instructive to briefly follow the developments 

of film flow on an inclined plane before studying the specialised 

case of rotating surfaces. 

Once film flow is established on a rotating cup the 

liquid will discharge itself at the periphery in one of three ways 

depending on the operating conditions I as discrete droplets 

(direct drop r~gime); as ligaments (ligament re'gime); and as a 

continuous sheet (sheet r{gime). The atomization which occurs is 

complex and although it does not always behave exactly as Rayleigh's 

theory predicts, it is advantageous to study capillary jet 

instability in order to obtain a grounding in the theory under-

lying atomization. 

3.1 Film Flow Review 

3.1.1 Laminar flow 

The incompressible flow of a Newtonian fluid can be 

fully described by the equation of motion and the continuity 

equation. In general orthogonal curvilinear coordinates these can 
(7) 

be written as follows; using .the Gibbs notation: 
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~ - 1 +: lJ'V 
2 

3.1.1 + ::!. V ::! = Vp ::! 
c)t e 

V·v = 0 3.1.2 

The body forces have been ignored and so they have been omitted 

from Equation 3.1.1. 

3.1.2 Smooth two dimensional film flow under gravity 

In rectangular curvilinear orthogonal coordinates the 

equation of motion can be reduced to the following equations i~ 

the flow is steady and if the non 'linear inertial terms are 

ignored. 

.!!: sin 9 = 0 
+ ~ 

3.1.3 

Here, the viscous forces have been balanced with the body forces • 

.2.C:= 
dy 

~= 
, db 

~ g cos 9 

o 

3.1.4 

3.1.5 

F11m' flow only occurs in the :x direction and the film 'thickness-

is measured in the y direction. 9 is the angle the horizontal 

plane subtends with the inclined plane; These equations are 

attributed to Hopf (8) and Nusselt (6) • 

The boundary conditions needed to solve the above 

equations are : 

1, no slip at the, liquid solid interface ie u=O at y=O 

2, no interfacial drag at the liquid air interface 

ie au = 0 at y = omax 
oy 
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On integrating, Equation 3.1.3 becomes: 

u = & sin 9 (By -:b 
2 

3.1.6 

This gives a semi-parabolic velocity profile with a surface 

velo.city equal to 

Us = ~ sin 9 
2V 

and a mean velocity of 

u = ~ sin 9 
m 

from which it is possible to obtain the film'thickness. 

_ (3 })'2 2\ 
- \..4g sin 9.) 

3.1.7 

3.1.9 

where (based on the hydraulic diameter) 3.1.10 

and Q is the volumetric flowrate. 

Wave Formation under two dimensional smooth flow conditions 

Numerous experimenters have observed interfacial 
; 

disturbances in the laminar region when studying film flow down 

vertical surfaces. ,The same disturbances have been noted for 

liquids on inclined planes. Howeve~ as the inclined plane approaches 

the horizontal position the onset of wavy disturbances is 

progressively suppressed until eventually onset does not occur 

until the flow is turbulent. 

(5,9,~0 ) 
Most theoretical treatments on the inception 

of wavy flow are Similar, namely the addition of a small 

perturbation into the Navier-Btokes equations. This yields 
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equations of the Orr-Somerfield type whose solutions are 

approximations and usually very complicated. Different 

treatments give different Reyno~d9t numbers at which wave 

inception should occur, but usually the value of NRE for onset 

varies from 0 to 12 • 

. For wavy laminar film flow LeviCh~l) has shown 

the Navier-Stokes equation may be written in the form 

(lu uou v(lu 
at + 0.1C. + ay 

assuming gravitational flow only the body force term 

being equivalent to the component of the gravitational 

3.1.11 

force constant g. By USing the normal boundary conditions and 

assuming that the velocity profiles are.semi-parabolic, namely 

u = 30 (y - .l.>. 
20 T 

the following equation was developed 

clJ! 9 
bt + 10 

the continuity equation being 

Q..§. = ~~(no) 
at ~".. 

By assuming 

0 = 5 (l+/d) 

+ g sin Q 

where ~ is the free surface deformation function. 

Equatio~ 3.1.15 becomes 

3.1.12 

3.1.13 

3.1.14 

3.1.15 

3.1.16 
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The first approximation to this when ~ = c = 0 is 

ii = '" 2 (0) g sin Q 3.1.17 
3V' 

This shows that the mean velocity is not affected by the wave 

formlitions. 

More recently the film flow of a liquid down an inclined 

. (12-16) 
plane has been studied by a number of workers • 

(16) 
Experimentally, one of these has determined the increase in 

surface area as well as the variation in film thickness over a 

larger area of the plane. 

3.2 Film Flow in Centrifugal Fields 

In comparison with the amount of work that has been 

published on the inclined plane type of application very little 

has been published on the film flow of a liquid on a rotating cup 

or disc. So far most of these treatments have considered the 

smooth two dimensional laminar flow case only. 

One popular method of describing the film flow in a 

centrifugal field has been to modify the Nusselt equation by 

. substituting the composite acceleration in place of the acceleration 

due to gravity. This method was chosen by ESPig(17). Espig and 

( 3) . (18) 
~oyle and by Beardall • The resulting modified equation 

can be written as follows :-

~l/ 
cos~) .3 

~v 
= (~ NRE) 3 

3.2.1 

where the Reynolds number (NRE) is defined as in section 3.1.1 as 

NRE 
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(1 ) 
Theoretical treatments by Hinze and Milborn on a 

(19) 
horizontally mounted rotating cup, and Emslie et al on a 

flat disc, when rearranged and modified,to take the differences 

in geqmetry into account, produce solutions which are identical 

to the modified Nusselt equation. 

A more recent solution of the Navier-Stokes equation for 

the film flow of an incompressible Newtonian liquid on a rotating 

(20) 
conical ~isc was presented by Nikolaev et al • Using an 

orthogonal set of conical coordinates, see Figure 3.1, they produced 

the following series of dimensionless equations: 

fl :>'C
L 

Cosh j3.cosj3 + C
2 

Cosh j3.sinj3 + C
3 

Sinh j3.cosj3 + C
4 

Sinh !3.sin.j3 

fJi1= S.Sinh j3.sirij3 - C2 Sinh j3.cosj3 + C3 Cosh j3.sinJ3-

C
4 

Cosh j3.cosj3 -~ j3 + C5 
2R 

3.2.3 

where fl and f~ are the dimensionless velocities in the meridional 

and azimuthal directions respectively; Cll C
2

, C
3

, C
4 

and C
5 

are 

functions of L the dimensionless length in the '1' direction. 

Equations 3.2.3. and 3.2.4. were found from the solution 

of two linearised partial differential equations, these being; 

04rl 4 fl = 0 

.rrr + 
3.2.4 

~3f 

'tff" + 20ft 
i> j3 + ~a. = 'R 

0 3.2.5. 
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In Nikolaev's notation the dimensionless variables are defined 

asl 

1]. ~.R f~ 
\/t> . 

.R 
Vii: 

= = - to = .R 

~ li!a fiE 
sin'" sina. sine 

f3 -L L -L R r - = = -
!wS)i~ 0. Js1~ 0. -*0. 

3.2.6 

The conical coordinate system used can be seen in Figure 3.1 • 

. (21) 
Bruln , followed the work of Nikolaev et al but used 

a spherical coordinate system and reduced the Navier-Stokes 

equations to their linear form. With the use of simplifying 

assumptions and dimensionless groups Bruin developed four 

manageable equations. He employed what he called his J\. cri terion, 

in the further simplication of these equations. The ~criterion 

is essentially a ratio of the tangential velocity to the average 

radial velocity and as such is an indication of the type of flow 

on a cup. When JL, is so large that its square is much greater 

than itself (ie ~,2»..A.) the equations when solved give a 

solution of the Hinze and Milborn type. In Bruin's notation this 

is given as :-

+ where () 

= 
+ 1/3 

3 Qo ) 
- cot 0. 

Q + = o 

Fr 

Qo I/. , 
2"11 s in2a.r2 (W,V:> 2 

3.2.7 

Fr = "f/2r sina. 
g 

3.2.(8,9,10) 
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r is measured from the apex of the cone and 4 is the half cone 

angle. 

3.2.11 

v = L 1/ = (3. sina. - 2. cFosr~ (1. 5+&,2 
("'11') 2 :; \2 

3.2.12 

3.2.13 

p= =(cota.+1:..) (5" -5'») 
r sin' a. \ Fr 

3.2.14 

Bruin then considered the case Where·~>l. Once again 

the linear case was chosen which resulted in the following two 

simultaneous equations; 

-L + 2W =: -.£.2l13 + U66 
Fr 

-2V = W66 

3.2.15 

3.2.16 

These we·re solved using the complex function 'I = U - iW, 

the solution being; 

'f = - 1/2, i F(z)[tanh(5+ 1(21) ) sinh (cS v«1) ) + L-cosh (6/(20) 

, where F(z) = 1. -~ 
Fr 

3.2.17 

3.2.18 

Taking the real and imaginary parts, the final solutions for U 

and W were: 

U = _11'2 F(z) [- sinhO sin 0 + Et) 3.2.19 

W =1;/2 F(z) [L + Et .;. cosh <5 cos .5 J 3.2.20 
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where I 

E' = sin 2/)+ sinhO cos 0 + sinh 26+ coshO sinS 3.2.21 r 
cosh 26+ + cos 2/)+ 

Ei = sinh 2/)+ sinh (; coso- sin 2/)+' cosh El sinS 3.2.22 
cosh 2/)+ + cos 2/)+ 

One interesting variation of the solution for the film flow 
, (22) 

on a rotating disc is attributable to Hege • He developed a 

relationship which enabled him to predict the operating conditions 

'necessary for what he called the optimum atomization in the 

ligament r~gime (see section 3.6). This relationship provided an 

identity between the volumetric,flowrate and the speed of rotation 

and so permitted him to substitute the operating conditions in 

place of the volumetric flowrate. This resulted in the following 

equation: 

/)r' 
( 3 .)113 ( ;r~1{2 = 

r , Re.W 
3.2.23 

where 2 
Re = r w 3.2.24 
~ 

We = r3 yt2(!; 
CS' 

3.2.25 

Fr 2 
= r w 3.2.26 

g 

It follows from the initial assumptions that equation 

3.2.23 will only predict t~e film thickness, at radius r, for the 

case when the flowrate is at the optimum atomization value. 

An experimental investigation was carried out by Voinov 

(23) 
and Khapilova on the film flow of a fluid On the inside surface 

of a rotating cone. The film thicknesses they measured were in the 



, 
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range of 0.491 mm to 1.B5 mm which are in fact quite substantial 

when it is realised that the cones they used Were relatively 

large (111220 mm diameter). Their results tended to be greater 

than the,r theoretical prediction at the inlet and 'at the lip 

their results were less than their predicted values. 

(19) 
The work of Emslie et al previously mentioned was 

mainly concerned with the possibility of using a centrifugal spin 

off technique so as to coat colour television ,screens with a 

uniform thickness of phosphor particles. As such they were 

interested in the rate of change in film thickness with respect 

to time. By assuming a series of initial contours they were able 

to predict the level of uniformity of the final liquid from the 

characteristic curves they constructed. Howeve~ as they were not 

interested in the steady flOW of a liquid on a disc or cup their 

work shall not be discussed further. 

3.3 Experimental Techniques Used to Measure Liquid Film Thicknesses 

The experimental techniques used to measure liquid film 

thicknesses have, hi the main, been developed for the inclined plane 

type of application. Consequently some of the techniques are 

hardly suitable for a rapidly rotating system where the film 

thicknesses are generally very thin. However, it is interesting to 

trace the development of film thickness measurement as it indicates 

the level ,:' which the theoretical analysis has reached. These 

(lB) 
techniques have been quite adequately reviewed by Beardall ; 

however, as they are of considerable interest a short account of the 

various methods will be given. 
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3.3.1 Probe and dial gaUge 

The use of a probe and dial gauge to measure film 

( 8 24-30) 
thicknesses has proved very popular' .• Initially 

this technique consisted of lowering a probe until it 

just" touched the surface of the film. By knowing the dial gauge 

value of the inclined plane an assessment of the maximum film 

thickness which would correspond to the maximum wave crest 

height was made. Direct observation of the film was needed to 

judge when the probe touched the film. 

A slight modification of this technique was introduced 
( 

to overcome the difficulties in deciding when the probe touched 

the liquid film. This modification was .essentially an electrical 

circuit incorporating a: light bulb so that an optical 

indication of when the probe was touching the film was given. 

This technique was first adopted for spinning discs by 

(17) (3 ) 
Espig and later by Espig and Hoyle and then by Voinov 

. (23) 
and Khap1lova • The first two of these used the modified 

method in an attempt to correlate film thickness results using a 

modified form of Nusselts Theory. 

3.3.2 Photographic methods 

Previously this method has only been used on the inclined 

plane type of application,where generally the liquid profile has 

been photographed. Two main criticisms have been levelled at this 

technique; firstly, due to orthogonality, the wave crests tend to 

obscure the troughs in the three-dimensional wave region, and 

secondly surface tension effects at the sides of the inclined plane 

influence the r.ecorded film thicknesses. 
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It is possible that this technique could be used for the 

case where the film flow is on the outside surface of a rotating 

"male" cone. Once again the results obtained would be biased due 

to the wave crests obscuring the troughs as in the above case. 

(l~ 
Recently a photographic technique has been developed 

to measure the interfacial area of a liquid film in a three 

dimensional wavy flow. 
(l6) 

The experimental work, due to Clegg , 

was based essentially on a light extinction technique where the 

intensity of light passing through the film was dependent on the 

dye concentration and the film thickness and hence followed 

(31) 
Beer's Law • In this technique the photograph was used as an 

instantaneous record of the surface features of the falling film 

OVer a large area. 

This technique could be adopted for the film flow on a 

rotating disc when orthogonality problems are not important 

<cf. cups and other geometries). This would enable a substantial 

section of a disc to be analysed and hence from relatively few 

plates large amounts of experimental data could be gathered 

quickly and accurately. 

3.3.3 Electrical capacitance methods 

The electrical capacitance method is capable of high 

accuracy and has been used successfully by a number of 

experimenters(32-34) for the inclined plane type of application. 

Essentially the air gap between the accurately machined capacitance 

probe and the liquid surface is continually monitored by means of 

a capacitance bridge arrangement. If the dimensions of the probe 

are correctly designed it is possible to use this type of probe 

to measure wave profiles. However the probe must be smaller than 
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the wavelengths under investigation, and must only be used in the 

.-periodic flow regime if instantaneous results are required. 

In the case of a rotating disc the film thickness 

monitored by this method would not normally be the instantaneous 

film'thickness as the wave profiles are not generally two 

dimensional nor are the wavelengths large •. Difficulties would 

occur if the instantaneous film thickness was required using 

this technique as the probe would have to be very small. 

Consequently to get measurable capacitance values the air gap 

would have to be extremely small, in which case wetting of the 

probe and cup eccentricities would become significant. 

3.3.4 Electrical resistance 

The electrical resistance technique measures the film 

thickness indirectly by continuously monitoring the resistance between 

two probes set in the walls of an inclined plane. High 

accuracy may be obtained using this method when the film thickness 

is required in the two dimensional wavy region. However, anomolous 

results are obtained when this technique is used in the random or 

three dimensional wave region. This technique is unsuitable for 

measuring the film thicknesses On rotating cups and bowls and it 

is also doubtful whether it is sui table for vaned discs due in 

part to the associated problem of electrical 'noise' at the 

rotary contacts which would be rieeded. 

3.3.5 Light Extinction 

(16) 
The light extinction method has been used by Clegg 

(see 3.3.2) to measure the local film thickness and the interfacial 

surface area for the flow of liquids down an ,inclined plane. The 

principle of light extinction can be expressed mathematically by 
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means of the Lambert-Beer Law (31~ This states that the intensity 

of light passing through a liquid is a'function of: the incident 

angle; the dye concentration; the film thickness and fi~ally 

the incident light intensity. 

Experimentally a light beam is passed through the liquid 

film and the exeunt intensity is monitored continuously using an 

optical light cell. Often it is necessary to add a dye to the 

liquid under test, this can affect the physical properties 

(e.g. surface tension) and so this technique may only be used 

when the change in properties is unimportant. 

Reflection and refraction are two optical properties 

which must be considered where there are interfaces present in an 

optics experiment. These have been considered in an investigation 

(35) 
by Hewitt and Lovegrove • The nature of the interface is also 

of importance as the exeunt light intensity is sensitive to the 

interface e.g. solid/air or liquid/air interfaces. 

By using a narrow beam and a large detector (so as to 

'catch' any refracted light due to wave fronts) this technique is 

ideally suited to the continuous monitoring of the instantaneous 

fi lm thickness. 

3.3.6 Radio-active tracer 

Rapid and accurate average film thickness results can 

be achieved using the radio-active tracer method. 
(36) 

Jackson 

used this method in an inclined plane type of application using 

Yttrium 90 as the radio-active source. 

Although in essence this method is extremely reliable 

care must 'of course be exercised, as is the case with all radio-

active materials. 
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3.3.7 B-backscatter device 

(18) 
This technique, used by Beardall in determining 

averaged liquid film thicknesses on the outside surface of a 

rotating 'male' cone, can be considered to be a more soph\sticated 

application of the radio-active technique. The device consists of 

a central radio-active source which is surrounded by a protected 

detector. Emitted radiation is partially absorbed by the film and 

so the detected backscattered radiation can be directly calibrated 

in terms of film thicknesses. 

This device has been used extensively in the paint 

industry where it is used to measure the paint film thickness. 

Experience has shown that this technique is capable of a high degree 

of accuracy. 

3.3.8 The correlation of film thickness results 

. The most generally accepted method of expressing film 

thickness results, whether it be for inclined planes, vertical tubes 

or rotating discs, seems to be by utilising what is known as·the 

Nusselt film thickness parameter. 

The modification of the Nusselt parameter which is 

attributable to Espig and Hoyle ( 3) replaced the gravitational 

2 component, g cos 9, by the centrifugal component, W r sin a.. 

More generally the modified Nusselt equation, for a rotating cup, 

should be : 

= 3.2.1 

* where NT is known as the modified Nusselt film thickness parameter. 

(20) 
More recently the theories of Nikolaev et al and 

Bruin(2l) provided another method of correlating smooth, laminar 

two dimensional film flow data. In both cases they developed 
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the following relationship : 

(using Bruin's notation) + sinh 26+ - sin 26+ 
10 (0 ) = ='7--s'-,.....:'--"-!.!!...~. cosh 20+ + cos 20+ 3.3.1 

+ where 10 (0 ) can be found experimentally from the equation: 

3.3.2 

+ where Qo is defined by equation 3.2.9 and F(z) by equation 3.2.18. 

. Nikolaev produced a relationship between an 

experimentally determinable group and the hyperbolic/trigonometric 

group in equation 3.3.1 by solving the differential equation which 

contained the pressure differential term. The solution, in its 

simplified form, was expressed as follows: 

Sinh 2130-sin 2130 - =VI= cosh 2130+coS 2130 
L - g sina. 

r/w3 '\i' 'Rtan a. 

cos a. 
R 3.3.3 

Thus the left hand side of the above equation can be 

found for any value of 130 and the theory tested by plotting the 

right hand side and comparing the results obtained. 

Bruin's equivalent to equation 3.3.3 does not contain 

two of the terms. The first is -cos aIR which is generally 

small compared with the volumetric flowrate. The second term 

which is absent in Bruin's equivalent is the surface tension term 

Whicq forms part of the denominator in equation 3.3.3. When a 

liquid with a large surface tension is used (e.g. water), the value 

of this term can become significant if the radius is reasonably 
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small. It is this term which can affect the value of Yl such 

that it can become significantly different from 10(//), Bruin's 

equivalent. 

Nikolaev illustrated the preceding relationship by 

plotting 130 against Yl' (See Figure 3.2). Their experimental data 

when plotted fitted their relationship closely, however in the 

range they choose the difference between a Nusselt type plot and 

their theory is negligible. Some other experimental evidence 

was used ( Z. ) but only a couple of points extended into the 

region where the two theories differ. 

In the development of equations 3.3.3 several terms were 

omitted by Nikolaev. Of these only onepecomes important and then 

+ only when 130 (or 5 ) is less than or equal to 0.3. The full term 

is: 

~ ( 2 Ch 130 cos 13:\ 
R Sh2j3o-sin 2130:; 

C When ~o is small the hyperbolic, trigonometric function becomes 

significant, 

i.e. 130 Ch@!2 cos @!2 
Sh2 o-sin 2130 

.1 400 

.2 47.2 

.3 13.9 

For a low viscosity liquid such as water, cosa/R is usually high 

e.g. cos<I/R> 500 (say), thus for ~o > .3 this terms becomes 

insignificant. 

3.4 The Distribution of a Liquid on to a Spinning Disc 

It is clearly obvious that the researchers investigating 

inclined plane work were conscious of the need for good initial 

liquid distribution. Carefully levelled weirs were used to prevent 
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initial disturbances propagating from the weir. Unfortunately the 

same precautions have not always been taken with spinning cups and 

bowls. Hinze and Milborn ( 1) show schematically that in their 

experiments the feed was discharged straight from the delivery 

tube to· the side wall. They quote that to aChieve a uniform film 

thickness it is necessary that: 

1. the centrifugal acceleration must be very great with respect 

2 to the gravitational acceleration (w r > 109), 

2. the rotation completely free from vibrations, 

3. a uniform supply of liquid, 

4. the liquid to be supplied to the cup wall where. the wall 

is only slightly conical, preferably cylindrical, 

5. the wall surface must be perfectly smooth. 

Fraser et al(37) emphasised that prior to 1963 most workers 

considered that slight disturbances caused by the initial distribution 

of the liquid would smooth themselves out under the centrifugal 

acceleration. This, they point ou~ is only true if the liquid can 

be spread out on an infinite cup at low flowrates (i.e. thin films) 

without breaking down into rivulets. A series of different 

distributors were designed and tested for 2-inch diameter cups. 

These cups were 5 inches long with a 50 taper ending in a 30
0 

taper 

at the lip (see Figure 3.3). 

The liquids they employed to test the various distributors 

varied in viscosity from 5 to 165 cS whilst the surface tension 

variations (29-35 dynes/cm) and the density variations (0.81-0.83gm!cm) 

were relatively small. The authors found that all the distributors 

were capable of producing a uniform sheet from the cup's lip but 

• the various operating limits were different. Generally, rotating 
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distributors were found to be more successful than the stationary 

ones and 'those incorporating an internal reservoir were the most 

successful of all. 

For cups employing an internal reservoir and weir the 

depth of the reservoir becomes of interest. 
, (3S) 

Phil1ps has shown 

that an annular mass of liquid when rotating in a horizontal 

cylinder inhibits wave formations as long as the Reynolds number 

is kept small. As this work was done under zero axial flow 

conditions, in order to approximate to Philipsl conditions, a 

compromise on the depth is necessary. It must be small enough for 

( b
2W) the Reynolds number V to be low yet deep enough so as not 

to seriously violate the zero axial velocity condition. 

Espig and Hoyle ( 3) used a rotating distributor that fed 

the liquid on to a flat rotating disc. The distributor was mounted 

directly above the disc on to the central drive shaft and was 

capable of ,vertical movement such that the gap between the 

distributor and the disc could be varied. The authors observed 

the occurrence of helical 'waves at their highest flowrates. These 

waves were presumably generated from the distributor and were 

capable of being suppressed by the addition of a detergent. 

In an article which is mainly concerned with aspects of 

atomization Hege(22) shows a sketch of the three different types 

of spinning,discs that he inVestigated. It is interesting to note 

that the flat disc used has a central well or reservoir, however 

from the sketch there must be some doubt as to how effective his 

reservoir would actually be. 
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Beardall(18) was interested in the coarse classification 

of slurries from the inclined external'surface of male discs. He 

centre fed his slurries into a rotating distributor in much the 

same way as Espig and Hoyle. Wave formations were often observed 

and'photographic evidence was supplied. Unfortunately the type 

of distributor used by Beardall seems to be sensitive to the 

volumetric flowrate and the rate of rotation. The peripheral gap 

through which the liquid flows is fairly critical as air can be 

entrained causing buboles to appear on the film surface. Secondly, 

at even moderate rates of rotation water has a tendency to 'climb' 

the outside edge of the distributor and discharge itself as discrete 

droplets. These droplets on impaction with the liquid film 

produce secondary disturbances'. 

. . . (2~ . An investigation was carr1ed out by V01nov and Khap1lova 

into the flow of a thin fluid layer on the surface of a rotating 

cone. They distributed their fluid axisymmetrically by using a 

deflector plate that had been shaped to follow the contours of their 

rotating cone near its apex. The deflector plate was bolted onto 

the cone and so rotated with it, thus helping to accelerate the 

fluid up to the angular velocity of the cone. During their 

investigation the flowrates used were high (35Occs/sec and 500ccs/sec) 

whilst the speed of rotation was relatively modest (600 rpm and 

900 rpm). Presumably these operating conditions would suit this 

type of distributor although from the experimental evidence presented 

disturbances were possibly present in the fluid on the inside surface 

on the cone. 
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BOShOff(39) was interested in the possibility of 

increasing the throughput of a spinning disc atomizer by 

increasing the disc ',s diameter without sacrif;i.cing the near 

'monosized' characteristics of the direct-drop regime of 

atomization. He: used a flat disc of 141/4 inches diameter 

which had a 900 edge. No mention of the liquid feed arrangement 

was made other than the liquid was discharged on to the centre 

of the disc although in his conclusions he states "it is essential 

to feed the liquid accurately to the centre of the disc". It 

is not easy to tell whether the mode of liquid distribution on 

to his discs affected his results. Certainly his correlation 

coefficient was not very constant, nor was it in agreement with 

the result of Walton and Prewett(40). However in the communications 

that followed the presentation of his paper, Dr Muraszew observed 

that Boshoff's sampling technique was probably the cause of the 

erroneous results obtained. 

3.5 The Operating Equations for Liquid Atomization 

Before any equation can be used it is necessary to 

determine the limits of its usefulness. In this particular case 

the type of atomizer initially used must be determined as well as 

the mode of droplet formation employed. A short characterisation 

of the different types of atomizers is therefore useful •. This can 

be seen most clearly by referring to Figure 3.4. 
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Although these four designs do not cover all the discs 

used in practice they are representative of the most commonly 

used rotating atomizers. 

Atomization from the peripheral lip of a rotating disc 

. . (40-44) has'only been a subject of interest to exper1menters 

over the last 50 years. 
n (42) 

One of the earliest workers was Bar 

who studied the atomization from two designs of rotating disc 

(Types A and B). When surface forces predominated and there was 

individual droplet formation at the low feed rates employed, B~r 

found the following equation held: 

d = max 
0.525 ((IV )0.5 

nO'[" 
3.5.1 

For the case of friction and impact controlling atomization the 

operating equation was found to be: 

d = 
mBX 

3.5.2 

(40) 
Walton and Prewett developed an equation for the 

atomization of a liquid on a flat rotating disc (Type A). They 

found that at relatively low flowrates a uniform main drop size 

could be achieved but they also observed the occurrence of satellite 

drops of considerably smaller diameter. They postulated that: 

d 
max = 0.428 

n 

0.5 

(r~) 3.5.3 

However,at high speeds of rotation the constant has been ~ound to be 

0.495 (i.e. in the aerosol range) and at lower rates of rotation 

where the droplets are larger ('" Imm) the constant is. approximately 

0.36. 
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For large discs at small flowrates or high viscosities 

to eliminate slippage - the following equation held: 

( )
0 04l( ,-0.522 

d = 6.855 D ~L • w2 D~J 
~ 6'-D T 

3.5.4 

(43) 
Maraszew presented the same formula as Walton and 

Prewett for small discs at high speeds but this was not 

substantiated with data. At more ordinary operating conditions, 

lower speeds and greater flowrates, Maraszew suggested a 

(45) 
modification to Triebnigg's formula. 

d = max v = air resistance coeff. 

V = velocity ft/min 
3.5.5. 

If V = 2 ~~nr then the above equation is comparable 

with B~r's second equation. 

(46) 
Two operating equations were developed by Ryley 

for flat rotating discs (Type A) of 2, 3 and 5cms. diameter. 

The rotational speeds varied from 19,000-70,000 revs/min and the 

flowrates from 0.121 to 0.771 gm/sec. From Figure 3.5 

it can be seen that this work was mainly carried out in the 

" ligament regime. The general correlation of droplet sizes was 

quoted using the Sauter mean diameter criteria. 

dsv = - . 
r 

Whilst the maximum droplet size equation was given as : 

~ = 
r 

7.41 x 10-5 (T)1.48( T \1.41 (m\1.35 
~ \eonr2) T2 J 

3.5.6. 

3.5.7. 

where T is the m~ flowrate at the lip of the disc gm/(cm-sec), 

and L is the wetted periphery. 
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In order to express quantitatively the extent of the 

dispersion in the spray Ryley used the Rosin'-Rammler (47) 

equation i.e. 

3.5.8 

The distribution constant q denotes the uniformity of the spray, 

thus if q is maximised the size distribution will be at its most 

peaky. For each test conducted a value of q was obtained from 

a Rosin-Rammler plot. These were then correlated giving the 

following expression. 
; 

q 3.5.9 

Ryley points out that this correlation is somewhat tenuous as the 

experimental data, from which it is derived, contains considerable 

scatter. Howeve~ this empirical equation is useful as it enables 

an operator to choose a spinning disc so that the desired degree 

of uniformity in the spray may be achieved. 

Using vaned discs (Type D), Friedman et al (48) developed 

the following equations by means of dimensional analysis. 

d sv = 0.4 G-L) 0.6( ~ 1'2 (~rl 3.5.10 
r enr2 T T2 

and dmax= 1.2 G-T_) 0.6( ~ ).2 (e~L)O.l 3.5.11 
r enr2 T T2 

.In their judgement these equations are quoted to ~ 30% or better. 

It is interesting to note, as Ryley did, that the ratio dmax/dsv 

for Friedman's work is 3 whilst for Ryley's work the value is 2. 

Both Friedman et al and Ryley used coated slides (magnesium oxide 

coatings) during their investigations. Ryley however corrected his 

results in accordance with the work of May(49). May showed that for 

dropletsOler 200 IJm the crater produced on impact with the magnesium 
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oxide coating was larger than that expected. It was reasoned that 

droplets over 200 ~m are structurally weaker and hence deform on 

impaction. 

Baryshev et al (50) investigated the atomization of 

liquids from rotating discs with a co·.;current gas stream interaction. 

Experimentally they covered a range from 500-3000 rpm on discs from 

5-20 cms diameter. The liquid flowrates varied from 2.5 - 90 ccs/sec 

whilst the gas velocity varied from 0.5 - 14.5 m/sec. Their results 

were correlated into a dimensionless equation of the forml 

3.5.12 

the indices were found to be a = 0.10; b = -0.10; c = -0.35; d = 0.05 

and the constant, K = 1.10 where d is the arithmetic mean drop size. 

The experimental results obtained by Bary~hev have been 

plotted on a log/log graph and found to give a reasonably linear 

plot. Drop sizing was achieved by using the familiar oil bath 

technique arid the usual corrections for the change in shape of the 

drops in the bath due to surface tension and gravity forces were 

made. No indication was made of the droplet size uniformity, 

i.e. the size distribution, and as only 200 to 300 droplets were 

sized it is doubtful if an accurate size distribution could be 

found with this amount of data. < 51 ) Dunsky et al were interested 

in the relative quantities and sizes of satellite drops formed 

from a spinning disc. Their work was conducted in the direct drop 

regime (flowrates from 0.03 to 1.7 cm3/sec; angular veloctty from 

31.4 to 660 rads/sec; radius from 1 to 11 cms; density from 0.89 to 

3 2 1 gm/cm and surface tension from 29 to 73 gros/sec). They concluded 

that the percentage relative weight of satellite droplets (E) could 
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be expressed mathematically as E:o E(w,ll' ,R,Q,Cl",e) from which they 

developed the following relationship; 

E = 86 wO•48 j 0.12 (~Q) 0.62 

RO. 30 
3.5.13 

An equation was also developed giving the size of 

satellite droplet on the mass median basisl 

3.5.14 

The experimental data given in support of equation 3.5.13 shows 

considerable scatter; howeve~ this equation does show the trends 

most clearly. 

The factors ~ffecting the drop size distribution of a 

. (52) 
spray from a spinning disc were 1nvestigated by Reusova and Lykov • 

Several experimental graphs were presented showing the dependence 

of Sauter diameter, and the two Rosin-Rammler coefficients with 

change in viscosity, surface tension and rate of disc rotation. 

These were analysed to give a series of operating equations which 

can be used to predict the homogeneity of a given product. 

(53)· " Straus· investigated the direct drop regime and 

observed that the mode of atomization was similar to the formation 

of a droplet from a capillary tip except that there is satellite 

drop formation on a spinning disc. He conducted numerous qualitative 

experiments and found that in fact the atomization more closely 

resembled the capillary tip than the Rayleigh instability mechanism. 

Straus also concluded that the lip geometry had a significant effect 

(40) 
on the drop size whereas Walton and Prewett had.earlier 

concluded the lip geometry did not influence the atomization. 
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The "capillary tip" theory of Straus was quantitatively 

supported by Dunskii and Nikitin(54). They found the equation 

governing the capillary tip mechanism can be written asl 

rd (2g~/()") :: const :: 2.0 3.5.15 

where rd is the droplet radius (the constant, for Rayleigh 

instability, would be 2.3~55». Dunskii and Nikitin found that the 

range of the constant varied from 1.87 to 2.14 with an arithmetic 

mean of 2.0 thus substantiating the earlier work of Walton and 

Prewett and of Straus. 

3.6 The Mode of Atomization from a Rotating Cup Atomizer 

Once the liquid film reaches the periphery of the cup the 

liquid must discharge, assuming that the operation is at steady-state. 

The manner in which the liquid discharges has been summarised by 

, (1) 
Hinze and Milborn • 

to State Ill, namely the 

sheet rtgime. Fraser et 

They also studied the transition from State II 

transition from the ligament rtgtme to the 

<56 ) 
al substantiated the work of Hinze and 

t i t ' . Milborn when they investiga ed the transit on from he sheet reg1me 

to the ligament rtgime. 

" According to Hinze and Milborn the three regimes of liquid 

discharge may be defined as followsl 

State I "At a very small supply rate a liquid torus is formed 

around the edge. The diameter of this torus is determined mainly 

by equilbrium conditions between centrifugal and surface-tension 

forces. Because of disturbances the torus will be varicosely 

deformed. Incidentally, drops will be formed singly at one or more 

bulges of the torus by the action of centrifugal forces; these drops 

are ,flung off from the edge •••• " This they describe as "disintegration 

by direct drop formation". 
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State II "At an increased rate of supply, the state of formation 

of drops singly at the bulges of the torus may transit into the 

formation of complete thin jets or ligaments. The number of these 

ligaments increases with increasing rate of supply up to a maximum 

vallle, after which the number remains constant, irrespective of the 

rate of supply. Apparently, in this state the ligaments grow in 

thickness with increasing rate of supply. The ligaments themselves 

are unstable for disturbances and break up into drops at some 

distance from the edge of the cup." This they called "disintegration 
• 

by ligament formation" • 

. State III "Still further increasing the rate of supply, a condition 

is reached where the number of ligaments can increase no more, nor 

can they grow in thickness. The ligaments are unable to consume 

all the liquid supplied to the cup. The result is that, roughly 

speaking, the torus will be flung off the edge and a film will be 

formed extending to a certain distance from the edge where it breaks 

up in an irregular way into ligaments and clots of liquid ••• " This 

they called "disintegration by film formation". 

Hinze and Milborn developed the following equation to 

express the number of ligaments on a rotating disc as a function 

of the operating variables. 
5,/12 1/6 

g = O.215~W;o3) (~) 
./ 

They assumed that transition from the ligament to the sheet regime 

would occur if, 
Q > 2 

constant x g /) Hmax)Ul 
3.6.2 

i.e; transition would occur when the ligaments were unable to 

discharge all of the inflowing liquid. They· found that the 
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following operating equation fitted their experimental evidence 

quite closely: 

3.6.3 

This they plotted on log/log graph paper (see Figure 3.5). The 

experimental agreement seems to be very good even though the 

authors accept some scatter in these results. 

Fraser et 

A more thorough mathematical treatment was made by 

(56) 
al when they considered the transition from 

, , 
the sheet regime to the ligament regime. Firstly they assumed the 

liquid was inviscid and so they were able to write down the 

following balance: , 

where Vc is the contraction velocity and 'a' is the sheet extent. 

Viscous forces Were then allowed for by using a simple function of 

the Reynolds number. 

Thus 

3.6.5 

For transition to occur the authors argue that the contraction 

velocity Vc must exceed the radial Velocity component and in such 

cases the sheet extent, "a", tends to zero. After various 

substitutions they arrived at their operating equation -

(~ 
With the Use of the experimental data of Hinze and Milborn, Fraser 

found the final form of their equation to be: 
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0.19 

(~) > 0.363 3.6.7 

This the authors point out agrees quite closely with the semi-

empirical equation that Hinze and Milborn developed. 

A series of photographs showing the effect of increasing 

volumetric flowrate on atomization were presented by Hege (22) • 

These photographs illustrated how the ligament r~gime is sensitive 

to volumetric flowrate, indeed Hege proposed that tnere is an 

optimum volumetric flowrate at set operating conditions, at which 

the atomization is in its most uniform state. A chart was 

constructed, see Figure 3.6, which indicated' the optimum conditions 

necessary to achieve the stablest atomization in the ligament 

... regime. This chart is a plot of two dimensionless groups on 

log/log paper, the dimensionless groups being I 

Fr 
2 = r w 3.6.8 

g 

.! = r w X 
a {v+)eg 

3.6.9 

+ where ~ = volumetric flowrate for the optimum atomizatiop 

, conditions. 

These two groups do not contain any viscous force terms 

and therefore it is not possible to compare this chart with the 

Hinze and Milborn chart. 

Hinze and Milborn considered the spacing between ligaments 

on a rotating cup. A disturbance of the form 

3.6.10 

was chosen. The pressure balance at the outermost part of the torus 

was then Bet up,' assuming equilbrium. 
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·.·IMPACT 

PRESSURE 

+ a: ,,, 
dX~<l= 0 

3.6.11 

EXCESS PRESSURE DUE TO 
SURFACE TENSION 

(, 2 2 2) \: - S - k ~t = 0 3.6.12 

From the form of the disturbance it can be seen that the disturbance 

can only grow out into a ligament if the exponential indice J3 is 

positive. 
(57) 

Eisenklam considered the same problem but approached 

it from a slightly different angle. Using the instability theory 

of G I Taylor(58) he concluded that the growth rate, ~2, could 

be equated in the following way: 

~' = [ ~::~:::::~ tanh kh 3.6.13 

At equilibrium the inwards 2 acceleration is given by W 0/2. 

Thus the neutral waVe number would bel 

[ W:D 
11/ 

k = • f1~ 3.6.14 
c 

By maximising the growth rate the wave number of the most unstable 

disturbance is found. Eisenklam used as an example the 

case where h ~ 2/k and h $ O.4/k 

when h ~ 2/k km ::~ i e ;lm = 2i~ 3.6.15 

fi w D 

and h~ O.4/k km = ~ ?m = at~ 3.6.16 
fi w 0 



J:'IG. 3.6· .. I-\EGE'5 C~AI21 . 
; 

• 

loa 
9 / a 
7 S"EET / 
6 ~012MA.T'07· 

, 
/ Fr ~ .. .. / srA~1.I:Si 

. ATOUllATIOU OF1H1' 

/ 
1.IGAUE't-li R.EGILI"'; ... , 

" 

I 
Z 



47. 

From the single piece of photographic evidence presented the 

agreement between the predicted and measured spacing of the 

ligaments appears excellent, when the spacing is predicted assuming 

h) 2/1<. 

, 3.7.1 The Mechanisms of Atomization 

The break up of a capillary jet has been characteri'sed 

(59) (60) 
by Ohnesorge • Using the experimental data of Haelein , he 

constructed what is now known as the'Ohnesorge chart. This chart, 

Figure 3.~ is a log/log plot of g number against jet Reynolds 

number. the g number in this case is a ratio of the Weber number 

and the Reynolds number. '" Four different regimes were classified; 

,these were: 

1. Slow dripping from an orifice, no jet formation 

2. The Rayleigh mechanism of capillary instability 

3. The break down of a liquid sheet due to sinuous disturbances. 

4. Complete atomization of a jet. 

Zones I, 11 and III on the Ohnesorge chart correspond 

to the 2,3 and 4 re-gimes indicated above. 

(61) , 
Marshall , proposed that the three regimes of 

atomization observed by Hinze and Milborn could be considered 

equivalent to the first three re-gimes attributable to Ohnesorge. 

That is. the direct drop re"gime is equivalent to section one, the 

ligament r~gime is equivalent to section two and finally the sheet 

'" r,egime is equivalent to the third section. 
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3.7.2 The Break-up of Capillary Jets 

The 

jets was made 

early classical study of the instability of capillary 

(62) 
by Rayleigh • This work assumed that jet break- up 

would occur when the amplitude of a disturbance grew to ~ value of 
• 

one half of the undisturbed jet diameter. Rayleigh produced a 

linear theory, which assumed irrotational flow but did not take 

into account viscous forces. 

The amplitude of the disturbance, at any time t, was 

defined by the following equation; 

E: = € e qt 
o 

where € is the ampli tude 

'q is the growth rate 3.7.1 

From Rayleigh.'s analysis q, the growth rate, was found to be: 

q 

where 10 I, are Bessel 
functions of -'zero and 
1st order. 

From this the maximum growth rate was found to correspond to a 

wave number of k' = 0.697 (k = 21'1' Ro/?). 

(63) 
The instability of a capillary jet was shown by Plateau 

to be dependent On the surface tension, an infinite cylinder of 

liquid being unstable because of the surface tension forces. From 

his work he showed that if a surface was deformed slightly then the 

deformati~n would be unstable if the product, kR, was less than 

unity and stable if it was greater than unity. This work led 

Plateau to conclude that a cylindrical jet would break up into 

pieces of length 2~R. Later Rayleigh proved that the jet would 

not in fact break.up into lengths of 2~. 
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Capillary instability of a jet where the viscous forces 

( 64) 
are not controlling the break up is governed by the equation: 

~ 0 + O(l' = T(1. +1.) 3.7.3 

RI R2 

where 1 +1. I . ~2 2) i(klHml'l l 
'" R +€e!_(kZ + iJ +9 k +m 

RI R2 
mp . R2 e 

3.7.4 

Where viscous forces are controlling the equation is modified 

slightly, 

i e ~ + 01" - 211e ~ ) R 
w 

3.7.5 

Which results in the final form of the equation: 

222 2x(x+y) 

here 

" 
f. 

I (x) 

Io(X) 

J= TR 
eP 

More recently the instability of 

(64) (65) 
by Chandrasekhar ,Yuen ,Goedde and 

J xl, (x) <I_x2 ) 
10 (x) 

3.7.6 

3.7.7 

jets has been studied 

(66) 
Yuen ,Donnelly and 

(67) . . (6S) 
Glaberson and by Rutland and Jameson • Yuen calculated 

the higher order terms of the surface deformation and found that 

non-sinusoidal surface deformation was a non-linear effect. 

Donnelly and Glaberson had earlier concluded that Rayleigh's 

assumptions that the break up was not affected and the non-sinusoidal 

surface deformations were due to higher harmonics. Rutland and 

Jameson based their study on the work of .Yuen and observed the 

presence of secondary waves, which Yuen's theory predicted, but 

Yuen discounted, as he regarded this prediction to be caused by 

a breakdown in his theory. 
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Rutland and Jameson(68,69) corrected two of Yuen's 

coefficients (b
22 

and C22) whilst Yuen showed there was a further 

unpublished error in coefficient d
31

• 
. (70) 

It appears 11kely that 

there is an error in coefficient C
33

;however the effect of this 

coefficient is thought to be relatively unimportant in predicting 

the wave profiles. 

3.8 Sizing of Droplets 

The method of drop size analysis used in an investigation 

affects the results that are obtained. For instance, if a spray 

was photographed and an analysis was made of the negatives, the 

resultant drop size distribution would probably be quite different 

from the analysis of droplets captured in, say, an oil bath 

sampling device. Because of this it is important to decide at 

what stage the analysis must be performed, e.g. immediately after 

atomization has occurred, that is in the atomizing region, or 

after the spray has travelled a fixed distance. For liquids which 

are 

has 

appreciably volatile, the problem of sizing 'becomes acute. It 

(71) 
been reported that a l~ drop of water at room temperature 

and 90% relative humidity when issued from an atomizer, will have 

reduced, by evaporation, to 9~ after 1 ft and will have disappeared 

altogether after 63/4 ft. This highlights some potential hazards 

in drop sizing but it does not deal with all the problems. 

(72) 
Fraser and Eisenklam state "The method of sampling 

must also be considered since the drop size on a particular surface 

will be quite different from that of the drops in flight". For 

that reason alone the location of the sampling device must be 

recorded as sampling can often be a function of the location, as in 

the case of fan nozzles where droplets produced at the extremes of 
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the 'fan' are often coarser than those from the middle. 

There are a number of commonly used sampling devices. 

These can be categorised into two main groups, thOse that retain 

an image of the spray and those that do not. In the first group 

" ( 39,46,48,-49) One 'Can list the s11de coat1ng techniques and the 

oil bath method < 50,72-75 ),. Also to be included in this group 

are the techniques of photographing the spray in flight<76-7~ 
< 79-82) 

and that of sizing the solidified droplets of waxes 

metals< 83-85) or final product from a spray drying tower( 86) 
, 

The sizing techniques most commonly used for SOlidified products 

are sieving and microscope counting. All of these techniques have 

practical drawbacks ,e.g. the coating techniques. provide a soft 

layer of either magnesium oxide or soot into which the droplets 

impact and cre~te craters. The diameters of these craters are 

not always the same'as the drops which ,produce them(8~, especially 

(49) 
for larger droplets. Indeed May showed that for drops over 

200 ~m the crater produced in a magnesium oxide coating was larger 

than that expected. In these cases correction factors have to 

be applied to get the true size distribution. The oil bath 

technique has associated problems. Firstly the sample often has 

to be photographed within minutes of it being collected otherwise 

significant changes in size might be observed. Secondly the 

droplets deform in the oil due to surface tension effects. This 

relationship is well known(72) so correction is relatively 

straightforward. Photographs give rapid accurate information of 

the frequency of droplets in the field of view, however double 

flash photographs, or cine film, would be necessary to assess the 

velocity profile of the various drop sizes as their spatial 

, (78) 
distribution is a function of droplet velocity • Another 



52. 

(88,89) 
technique that has been used records an image of a stain 

produced when a droplet which contains a dye is absorbed on 

chromatographic paper. This technique is especially suitable to 

larger droplets, (>100 ~m). Calibration is quick and relatively 

easy when a microburette is employed. Like the coated slide and 

oil bath methods this technique is sensitive to spray 

concentrations, the right exposure time having to be found by 

trial and error. The disadvantage of using the solidified product 

is that it is only applicable to waxes, metals and similar feeds. 

The solidified product also contract on cooling and so the actual 

drop size would have to be calculated from thermal expansion data. 

However, even this is not the precise picture as solid droplets 

have been observed to rupture due to the o~ter surface forming a 

crust whilst the centre is still molten. 

The second group of sampling devices consists of: a 

(90) 
gravimetric technique .. l a light extinction technique and a 

electrically charged wire device. The gravimetric technique as 

used in a commercial unit relies on the spray sedimenting on to a 

sensitive balance~ As droplets impinge on the balance the mass 

is continuously monitored, thus· the weight fraction is found. This 

method must be suspect as it assumes that the spray does not 

preferentially impact on the wall of the sedimentation column and 

that it is not originally spatially distributed into the column. 

(44) 
Fraser et al used the photometric technique of 

(91) 
Sauter which allows a rapid drop size to be recorded but 

unfortunately does not give the drop size distribution. 
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The method employs a ~ectangular beam of light which 

is shone through the spray cloud (Figure 3.8). The light 

absorbed by N droplets of mean drop size ds is given by: 

3.8.1 

where b c is the area of the rectangular beam. These droplets 

will occupy a given volume e, 

where e = N It di 
6 

3.8.2 

3.8.3 

where QL is the volumetric flowrate thrQugh plane c and Vdg is 

the velocity of the mean drop size. 

Bauter reasoned that as the concentration of droplets 

increased the probability of an eclipse also increased. From a 

statistical analysis he showed the actual light (A) that should 

be absorbed by N droplets is related to the measured value (A') by; 

A In (1 - A'/lOO) 3.8.4 

Combining these equations, 3.8.1, 3.8.3 and 3.8.~ gives: 

ds = 1.5 3.8.5 
VdS In (l-A'/loo) 

. This procedure was modified by Fraser et al (44) by' 

altering the value of QL for their geometry, as Bauter's work 

investigated a confined spray from a twin fluid, venturi type 

atomizer. They quote that the light absorption as measured on a 

galvanometer via two photo-multipliers (one acting as a control) 

was accurate to within ± 1/2 per cent. 
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( 92) 
The charged wire device provides a rapid method 

of analysis for droplets, especially applicable to aqueous sprays 

due to the short rise-times in charging the droplets. 

When a droplet impinges on to a charged wire it acquires 

partr of that charge. However. the charge acquired is not constant 

over all the surface of the drop. Indeed at the point of 

contact the charge density can be shown to be zero. The size 

of the drop will determine the height and duration of a pulse. 

Hence by recording the pulses over a sufficiently long period the" 

distribution can be found. 
; 

A series of corx:'ection factors are required. This is 

so, as the size of drop that touches th~ wire influences the 

effective catchment area. (See diagram below.) 
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The equipment has first to be calibrated in the 

environment in which it is to be used. This is to ensure that 

no environmental electrostatics bias the results obtained. 

. (92) 
Gard~ner suggests two methods for calibration: for droplets 

up to 300 ~m a vibrating pin was suggested and for droplets 

(93) 
over 300 ~m a vibrating hypodermic needle • 

, . (94) , 
Steen and ChatterJee used the charged wire 

technique to size droplets in the size range 1500 ~m to 5000 ~m. 

They used liquids of varying electrical conductivity and expressed 

their results in the form of a log/log plot of pulse height 

(Channel Number) against drop diameter. Although there appears 

to be some scatter in their experimental results the trends are 
• 

most:clear.~y evident. They discuss the relationship between the 

size of the pulse height and drop producing it. Theoretically 

it appears that the' pulse height will be proportional to the 

drop size when the drop size is small compared with the charged 

wire, and is proportional to the square of the drop diameter when 

the drop is large compared with the wire. This was worked out on 

the basis that in the first case the system was equivalent to a 

sphere obtaining charge from a point source and in the second case 

it was equivalent to the two flat plate capacitor system. One 

interesting conclusion they draw is the effective catchment area 

. may in fact be larger than that predicted by the collision theory, 

especially when the charge density is large. Howeve~ due to the 

complexity of assessing this factor only mention 'was made of this 

probabili ty • 
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4.1 Introduction 

It was clear, from a review of the literature, that there 

are a number of design points that must be observed if a liquid is 

to be atomized efficiently by a spinning cup. The literature cites 

the case for vibrationless rotation, for even liquid distribution 

and ~ steady feed supply. The initial experimental work confirmed 

the need for the correct liquid distributor design in order to 

minimize the propagation of spurious disturbances, as these could 

otherwise affect the film flow of the liquid and its eventual 

atomization at the periphery of the cup. 

To give ease of access to the spinning cup, the equipment 

was designed in such a way that each section could be removed 

leaving the rotary system on its own. Such tasks as cleaning the 

cup in use and adjusting the front silvered mirror which formed 

part of the optical system were consequently made easier. 

The equipment can be seen in Photographs 1 and 2. 

4.2 The Rotary System 

The rotary system employed was essentially the same as 

(IS) that used by Beardall .• This consisted of a three phase, 0.5 HP 

electric motor which provided the drive, via a vee belt, to the 

central spindle assembly on to which the cups were secured. The 

spindle assembly had preloaded bearings to help overcome the 

possibility ·of any lateral displacements which could result in 

oscillations being transferred to the liquid. The whole assembly 

was bolted very securely on to a cement and brick plinth, which 

was built on a vibrationless concrete pad mounted in the floor. 
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The perspex cups used throughout the investigation were 

designed to incorporate an internal reservoir and weir. These 

cups were fully interchangeable and so only one integral base and 

distributor was needed. A photograph of the three cups, the 

integral base and distributor can be seen in Photograph 2. 

The liquid under test was fed vertically from above 

into the feed tube of the integral base and distributor where it 

was found that the liquid formed a dynamically stable head. Some 

rotational energy was transferred to the liquid (whilst it was in 

this section) by means of viscous drag on the tube wall and the 

nut and spindle arrangement. Liquid passed from the feed tube 

into the internal reservoir through sma~l radial holes that had 

been drilled into the feed tube assembly. By virtue of the 

distributor rotating at a constant angular Velocity, the liquid, 

a~ it passed through the drilled holes, reached the same speed 

of rotation as the cup. As this liquid was dischar.ged under the 

surface of the liquid in the reservoir, entrance disturbances due 

to impaction were minimised. 

A uniform supply of liquid into the reservoir is essential 

if the discharge at the weir on to the conical surface of the cup 

is to be steady. This uniform supply was achieved as the 

dynamically stable head previously mentioned acted not unlike a 

capacitor in that it smoothed out minor fluctuations in the feed 

supply. No indications of disturbances which propagated inside 

the reservoir were Observed. Indeed under the conditions where 

these would be most manifest the discharge at the weir was at its 

smoothest. Because of the low speeds of rotation used during this 
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experimental work aerodynamic forces inside the reservoir section 
• 

were not regarded as important, especially as there was only a 

relatively small air gap between the liquid in the reservoir and 

the central feed tube. 

4.3 The Liquid Supply 

In order to maintain a uniform supply of liquid, of 

constant optical density, a closed circuit liquid supply system 

was adopted (Figure·4.l). This consisted of the following 

arrangement. A header tank delivered water via a rotameter bank 

to the feed tube of the spinning cup. After atomization the 

liquid drained into the bottom reservoir tank from the spray 

collector. From there it was pumped back into the header tank 

after being filtered through a glass sinter filter. Excess liquid 

drained directly back into the bottom reservoir from the header tank. 

The header tank produced a pressure head of about 10 ft 

of water to the rotameter bank. The tank was made of stainless 

steel so there were no corrosion problems. This was important as 

suspended matter would certainly have interfered with the optical 

techniques used to measure the film thickness of the liquid on 

the conical cup surface. 

Flowrates were measured during the initial experimentation 

'period with the aid of the rotameter bank. Unfortunately these 

could not be used once a light extinction technique was chosen to 

measure liquid film thicknesses as it was impossible to see the 

rotameter floats through the dye solution at all but the ~mallest 

flowrates. Because of this, flowrates were measured by collecting 

the liquid over a known time period, after which it was weighed 

directly. 
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Once atomization had occurred at the periphery of the 

cup the resultant spray had to be collected so that the dye 

solution could be returned to the bottom reservoir. To minimise 

mist formation, due to the impaction of high velocity droplets, 

the ~roplets were made to impinge obliquely upon the surfaces 

of the spray collector. Because of the small volume inside the 

spray collector it was hoped that the relative humidity would be 

very high and hence evaporation from the droplets would be 

minimised, once steady state was achieved. 

4.4 The Optical System used for Film Thickness Measurements 

A diagram of the optical system used to obtain the time 

averaged film thickness results can be seen on (Figure 4.2). A 

24 volt, 24 watt light bulb, connected to a Farnell 1308 stabilised 

power supply, was used as a light source. This power supply was 

guaranteed not to change the output by more than 0.02% so long 

as the ,mains supply did not change by more than 10%. Some 10 min 

were 'necessary before the light supplied to the photo-voltaic 

cell became steady, this was due to the inevitable heating of the 

bulb and its surroundings, and thus was the time taken fo~ the 

system to reach thermal equilibrium. 

Light from the filament passed through a convex lens 

before it was deflected by a front silvered mirror that was mounted 

under the perspex spray collector. The, front silvered mirror was 

fully adjustable and so the angle through which the beam was 

deflected and hence the radius at which the beam passed through 

the conical surface of the perspex cup was controllable. Monitoring 

the intensity of the heam as it left the surface 'of the cup was 
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achieved using a Ferranti ~hoto-voltaic solar cell. The response 

of this cell was made linear by short circuiting it with a 2k~ 

resistance. 

When light passes through a substance, the angle a~ 

whiCh it will leave that substance is a function of the incident 

angle and the refractive index, ie Snell's Law must be obeyed. 

When a light extinction technique is used to measure film 

thicknesses on spinning discs, the light beam will only pass 

straight through (ie at a normal to the. surface of the disc) if 

the flow is completely steady. Once irregularities occur on the 

liquid s4rface, the exeunt light beam will be refracted, and so 

the area over which the beam can be detected must be large in 

order that all the light is continuously monitored. It was 

specifically for this reason that the Ferranti light cell was 

chosen. 'Furthermore the response of this cell is known to be 

independent of the position at which the beam strikes the surface 

of the cell. 

Calibration of the optical system proved difficult. In 

some initial experiments a laser with a known peak wavelength was 

used. Consequently it was relatively easy to match this wavelength 

on a spectrophotometer and calibrate, using the null point technique, 

with a sample taken from the bottom reservoir. (A Lambert-Beer Law 

relationship had previously been confirmed during an accurate 

calibration test.) Without any liquid on the cup the laser's light 

output was observed to be cyclic in nature. In fact it was later 

found that the ambient light was causing this cyclic effect. 

However .. at the time it was decided to abandon the laser as a light 

source and adopt the light bulb and lens system described above. 



, 
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Once the 24 watt light bulb had been adopted the 

spectrophotometer could no longer be used as the calibrating 

instrument because the bulb emitted "white light", that is, it 

emitted a continuous spectrum over the visible range. Thus no 

distinct wavelength could be matched on the grid of the 

spectrophotometer. To overcome this problem, calibration was 

carried out on the inclined faces of the cups using a 1 mm 

spectrophotometric cell. 

A sample of the liquid was taken from the bottom 

reservoir after the pump which transferred liquid from the bottom 

reservoir to the header tank had been operating for some time. 

This precaution was taken to eliminate the possibility of taking 

a sample that was not representative of the bulk of the liquid. 

Accurately weighed amounts of this sample were then taken and 

diluted with known amounts of water. These diluted samples were 

thoroughly shaken to ensure complete mixing. 

A clean 1 mm spectrophotometric cell was filled with 

clear water by means of a Pasteur pipette. In this way no water 

managed to contaminate the outside surface of the cell. Care was 

taken throughout not to touch the outer surfaces of the cell as 

this would have affected the calibration. The cell was then 

placed on the previously cleaned inclined conical surface of the 

spinning cup in use so that the light beam shone through it on to 

the centre of the rectangular face of the silicon solar cell. 

Because of the intensity of the ambient light the surroundings 

had to be blacked out. This was achieved by placing a matt black 

wooden cover on top of the spray collector, see Photograph 1. 
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A reading, in millivolts, was taken from the digital 

'volt meter which formed part of the data logging unit used during 

the experimental runs. This voltage was directly proportional to 

the 1000/. transmission light intensity and as such it was used to 

represent lom. light transmission. The diluted samples were each, 

in turn, transferred to the cup in the spectrophotometric cell 

and tested. The digital volt meter reading was taken for each 

sample and transformed into a transmission reading. The usual 

plot of logarithmic transmission against concentration yielded a 

straight line which passed through the origin. As the absolute 

concentration was not known the dilution of the original sample 

was used in place of the concentration •• The accuracy in calibrating 

using this technique was understandably less satisfactory than that 

usually achieved by a spectrophotometer, however with care sufficient 

accuracy was obtained to assume the Lambert-Beer Law held under the 

operating conditions. 

The amount of light that passes through an interface is 

governed by the nature of the interface. During the calibration 

the surface of the cup was kept perfectly dry and so the interface 

was perspex/air. Obviously with the spectrophotometric cell 

present there were additonal interfaces, air/glass, glass/water, 

water/glass and finally glass/air. Each of these interfaces permits 

a certain fraction of the light through and therefore the 100% 

transmission voltage recorded during the calibration was a function 

of these interfaces. The inference of this is important, namely 

that the voltages recorded, for the case where there is no' liquid 

on the cup and where there is an infinitely thin layer of liquid" 

will not be the same' as the interface in these two case~ is 
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different. This technique was chosen to measure the local film 

thickness and so the important voltage reading was the one where 

there was an infinitely thin layer of liquid left on the cup. 

EXperimentally this was found by recording the voltage continuously 

and cutting the liquid supply off. The liquid film thinned until 

surface tension forces broke the film up into a series of rivulets. 

Correspondingly the voltage increased until rivulet formation 

occurred after which the voltage decreased. Hence the maximum 

voltage represented most nearly, the condition of an infinitely 

thin liquid layer present on the cup. 

The ratio of the voltage when there was a liquid film and 

when there was an infinitely thin film present was taken as the 

transmission under the operating conditions. Hence the film 

thickness was calculated with the aid of the calibration graph. 

A ,similar approach was adopted in the calibration for 

the continuous film thickness experimental runs. A sample was 

taken from the bottom reservoir and samples of this were diluted 

accurately as previously stated. These diluted samples were 

transferred to the spectrophotometric cell, as before, and the 

readings were taken as traces on a mtra-Violet Oscillograph. The 

signal fram the silicon light cell was amplified with an integrated 

circuit amplifier '(741) so that a specific galvanometer could be 

used. This galvanometer was chosen as it was sufficiently damped 

and therefore would not have the characteristics of a ballistic 

galvanometer. Hence the trace would more accurately represent the 

profile of the liquid on the cup. 
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Two major related problems were encountered during this 

part of the experimental work. The width of the chart was not 

wide enough for the complete Q-lcx:n, transmission to be recorded. 

This meant that the calibration could not be checked as the lcx:n, 

tra~smission value was not known. Likewise the 1000/0 transmission 

reading was not known for the case, where the cell was absent and 

an infinitely thin liquid layer present. However this was 

overcome by taking digital volt meter readings and extrapolating 

these on to the chart scale~ 

The light bulb and lens system proved inadequate as the 

filament's image monitored by the silicon light cell was too large. 

A laser was tried and found to be perfectly acceptable. Because 

of the characteristics of a continuous laser beam it was not 

necessary to focus the beam with the aid of a lens system.· 

By using a Vanguard X-Y reader the experimental data 

was extracted from the UV charts. The instrument was zeroed and 

the scale adjusted sO that convenient readings were obtainable. 

As the Vanguard has a step length control, this feature was used 

so that film thicknesses recorded would not be biased due to the 

operator. The instantaneous voltage corresponding to an 

instantaneous film thickneSSiJaS therefore taken every 2 .. 5 mm. 

This reading was stored by a teletype. 

4.5 The Charged Wire Drop Sizer 

The charged wire drop sizer used during the experimental 

. (92) 
investigation was essentially the same as that used by Gard1ner • 

The high voltage, c. 1000volts,was achieved by placing ten 90 volt 

dry cell batteries in series. As the current demand was so slight 
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this system was considered to be satisfactory, and so more 

sophisticated power supplies were not needed. 

The wire used was a length of single core copper' 

coaxial wire of 0.813 mm diameter. The sheathing was removed 

from the last I!" of the wire thus exposing this .section. This 

length was deliberately kept short for two reasons. Firstly 

only a short sampling length was required as the spray produced 

from the spinning disc was almost perfectly horizontal in the 

sampling zone close to the disc. Secondly an unprotected length 

of wire acts as an aerial and so picks up spurious 'noise' 

which would show up as a pulse and thus could be co~ted as a 

drop striking the charged wire. 

The signal was amplified a nominal ten times using an 

epsilon amplifier before being fed into a Laben 100 channel pulse 

height analyser. Because of the presence of unwanted 'noise' -

probably due to thrystor control circuits - an anticoincidence 

device was constructed. This device sensed the pulses which were 

on the mains and produced a standard voltage of known pulse 

shape. These pulses, when fed into the anticoincidence input on 

the pulse height analyser, produced a 'dead time' so that no 

signal during that time would be counted and analysed, hence 

minimising the error due to noise. ; 

Calibration of the ch~rge wire drop sizer was 

accomplished in two ways. For the top end of the scale N2500 

to 3~m a hypodermic needle was filled with a sample of the 

liquid from the bottom reservoir. By keeping the level of the 

sample in the hypodermic constant it was possible to produce a 

• stream of mono-sized free-falling droplets. The charged wire was 
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angled such that this stream of droplets struck the wire. Thus 

it was relatively easy to collect a known number of droplets and 

to weigh them, thereby finding their diameter, and observ~ng 

which channel number these droplets were placed in. Bychanging 

the'initial height of the liquid in the hypodermic syringe it was 

possible to change the diameter of the droplets slightly so a 

number of calibration points could be found. However this was 

not found to be necessary experimentally as the change in diameter 

per unit change in channel number is small at this end of the scale. 

Advantage was taken of the ability of a spinning disc 

to produce a clearly defined narrow distribution of droplets in 

(1) , . ' the so-called Direct-Drop Reglme. Tbis regime has been 

(40) 
documented by Walton and Prewett and an operating equation 

has been ~xperimentally verified. This equation was used to 

predict the diameter of the main droplets produced under the 

operating condition, whilst the channel number corresponding to 

the main drop was observed experimentally from the pulse height 

analyser; By altering the rate of rotation a number of main peaks 

were identified and the resulting straight line through these 

points passed through the point found by experiment in the top end 

of the size range. It was therefore concluded that this was 

evidence enough to accept these calibration charts as accurate. 

Care was taken throughout the calibration and ensuing 

experimentation not to alter the electrostatic environment. 

Indeed it was found necessary to earth the liquid inside the 

hypodermic syringe so as to obtain a narrow size distribution. 

As a consequence of this the liquid discharged into the rotating 
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distributor was also earthed even though it was probably 

adequately earthed via the bearings of the shaft on which the 

cup rotated. 

The pulse height analyser was set up in the following 

way:- rise time of lQ.L secs; voltage of 1 volt for the 

100 channels. The analyser was set on automatic cycle. for a 

measured sampling time of 300 secs and a dead time of 90 secs. 

The amount of noise was always measured before the run so as to 

check that the results obtained were not significantly affected 

by the general noise level. 

4.6 The Ancillary Equipment 

. Density Determination 

The density of the dye solution was found using a 

specific gravity bottle. The results obtained were found to be 

consistent and within the range of accuracy required for the 

investigation. 

Surface Tension Determination 

The surface tension of the liquid was found using a 

Du NoUy Tensiometer. Before the instrument was used it was 

calibrated as recommended in the manufacturer's handbook. 

Experimental results were obtained using the ring method, 

the accuracy of this method has been quoted to within 0.1 dyne/cm. 

However the method is slightly operator-sensitive and a correction 

( 95) 
. factor should be introduced to allow for the meniscus that 

forms around the ring. 
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5.1 Introduction 

The film flow of a liquid on a rotating conical surface 

can be fully described by the equation of motion and the 

continuity equation. Due to the complexity of these equations 

some simplifying assumptions' must be made before any worthwhile 

analytical solution can be found. 

The assumptions made throughout this work are: the 

liquid flowrate is steady; the liquid is incompressible and 

Newtonian; the whole operation is carried out isothermally and 

isobarically, hence the viscosity and density are constant, finally 

the flow is smooth, that is there are no waves present. 

At very low Reynolds numbers (i.e Re < 1.) the film 

flow on the disc would correspond to creeping flow. Under such 

( 17) conditions the film flow has been found ,as expected, to 

obey the modified Nusselt theory. Once the Reynolds number becomes 

significant (i.e. Re ~ 1) the inertial terms in the equation of 

motion begin to take effect and so deviation from the creeping 

flow equation might be expected. 

Due to the apparent symmetry that exists in the film 

flow on a conical disc it would appear that the flow is axisymmetrical. 

However even in the creeping flow case the flow cannot be considered 

to be axisymmetrical with respect to the rotating disc as the 

conditions which are necessary for axisymmetrical flow( 7 ) are: 

= o 5.1.1 

and 
.!il.v=o 5.1.2. 

That is, the velocity vector is independent of the azimuthal angle 

and that the azimuthal velocity component is everywhere ZGro. 

(see Appendix 5.1) 
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The flow, with respect to the disc, may be considered 

to act in two directions, that is in the meridional, direction 

and across the thickness of the film. In this case the flow in 

the meridional direction will be by far the mos't significant. 

Due to the magnitude of the meridional velocity it is possible to 

consider this case as a unidirectional flow problem. Alternatively 

this case may be solved with the aid of the stream function 

technique; 

Once slippage occurs in the azimuthal direction, that 

is once there is an azimuthal velocity gradient, the flow on the 

disc becomes more complicated. Under this condition the flow is 

three dimensional with the azimuthal and meridional velocities 

being predominant, as such, the flow could be considered to be 

essentially two dimensional. Superficially it would seem that 

this prOblem could be solved using a stream function type of 

solution. However, solving this two dimensional case is not 

possible by the stream function technique as the flow has a degree 

of symmetry about the axis of rotation which prohibits the meridional 

velocity being represented by the first derivative of the stream 

function with respect to the azimuthal angle. This may be shown 

mathematically as follows :-

= i1 h h Q.I 
- 2 3 do 

q3 

5.1.3 

where equation 5.1.3 satisfies the continuity equation. 

It can readily be seen that the meridional component will 

be zero because of the symmetry in the azimuthal direction (-in the 

above notation this will correspond to the ~1 component). The 
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second component of velocity (the ~ component) is zero as we are 

taking the two dimensional case (i e the velocity across the 

thickness of the film is negligible). 

5.2 The Equations of Motion 

The film flow of a liquid on a rotating conical disc can 

be fully described by the equation of motion and the continuity 

equation. Using Gibbs notation for an incompressible, Newtonian 

,liquid these have been summarised as follows :-

2 
- !l V V 3.1.1 

v .y = 0 3.1.2 

It should be noted that in equation 3.1..1 the body force terms have 

been omitted. 
( 7 ) 

Using the following vector identities ' 

equation 3.1.1 can be modified; 

y. y y = 1/2 V V2 - V x (ll x Y ) 

,i V =V.<V. y)- V x Ox y) 

The result, after taking the .curl of the modified form of 

equation 3.1,1 will be : 

_~ <vx y) -vxyx (VX y) + 'lfvxvxVx Y = 0 
Ft 

5.2.1 

5.2.2 

5.2.3 

If the flow was axisymmetrical equation 5.2.3 could be expressed 

in terms of a stream function as follows :-

5.2.4 

When the inertial terms are omitted and the flow is steady we 

obtain the well known equation : 

5.2.5 
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2 where the operator E is represented byl 

5.2.6 

Here the solution of equation 5.2.5 will represent 

creeping flow under axisymmetrical flow conditions. 

As there is a high degree of axial symmetry, that is, the 

scalar velocity in the azimuthal direction is a constant at 

constant radius and position in the fluid, then a similar type 

of approach as used above can be adopted to represent the three 

dimensional case. At steady state conditions, equation 5.2,.3 can 

be considered to comprise of two parts, namely the viscous and 

inertial terms. Because of the above mentioned symmetry the 

volumetric flowrate can be assumed to act principally in the 

meridional direction and across the thickness of the film. This 

enables a stream function to be used (Appendix 5-2) even though 

the flow is not axisymmetrical. The viscous term in equation 5.2.3 

can then be written 'as follows 1-

5.2.7 
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Once again, the creeping flow solution will be exactly 

as before, that is the solution of equation 5.2.5 However once 

the inertial terms are taken into account the equations to be 

solved are non-linear and therefore difficult. 

5.3 The Nusselt Model 

This model was originally formulated for the film flow 

of a liquid down an inclined plane. It is essentially a simple 

. model in that only pure creeping flow is considered, that is the 

non-linear inertial terms were neglected. 

If we assume that the plane down which the liquid is 

flowing is infinitely wide, so that wall effects can be neglected, 

and the plane is vertical, then the system is more easily 

represented using a rectangular coordinate system. By assuming 

steady viscous flow, i.e. nO waves present, and that the pressure 

gradient across the film is negligible, then the equation of 

motion including the body forces can be represented as follows I 

rl''I X<;Jx Y = 'I ~ = ~ 5.3.1 

Here the gravity vector ~ has been represented by the divergence 

of the scalar, 111( 96}. In the g direction (the vertical direction) 

we will have; 

= -~ 5.3 .• 2 

hence 
Ug = ~G~ax-: f2) 5.3.3 

. Equation 5.3.3 predicts a semi-parabolic velocity profile where 

velocity is zero at the surface of the plane (at y = 0) and is a 

maximulII at the liquid/air interface (at y = 6max). 
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It follows that the volumetric flowrate is given by: 

o 
Q - r maxU dy -i g 

Hence the Nusselt relationship 

5.3.5 

where once again the Heynolds· number is based upon the hydraulic 

radius. 

For the case where a liquid is flowing film-wise on a 

rotating disc a Nusselt type solution can be found. For a flat 

? disc .cylind·rical coordinate:_ar_':. most convenient. Here the g 

direction is along the axis of revolution. 

From the modified form of equation 3.l.lwe have 

-vVxVx y + l~ V <Y'Y>. -VxVxV = 0 

where the body forces have once again been omitted. 

The a component gives us I 

from which we get 

s2ur = 
g2 

2 
-w r 

If 

5.3.6 

5.3.7 

5.3.S 

For the case where the film flow is on a rotating conical surface a 

similar solution is obtained, namely I 
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where the constants a and b and the variable t are defined in 

Appendix '5-3, in which a full derivation is also given. For this 

solution a spherical coordinate system was chosen. It should be 

noted that this solution is the general solution for the case where 

o 9 is greater than zero and less than lan. Equation 5.3.8 is 

therefore a limited solution, of equation 5.3.9 as indicated in 

Appendix 5-3. 

5.4 The Nikolaev Model 

Nikolaev and his co-workers attempted to solve the equation 

of motion for an incompressible viscous fluid by linearizing these 

equations using the familiar dimensionless analysis techniques. 

The orthogonal curvilinear coordinate system they used was the 

conical one. This system can prove to be awkward as it becomes 

difficult to separate the variables. Nikolaev decided to overcome 

this problem by ignoring a term which he considered insignificant. 

However there must be some doubt as to the validity of this 

assumption as the terms which remain when this term is included 

are not always insignificant. 
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In conical coordinates the metrical coefficients are 

found to be (with reference to Figure 3.1) 

h· = 1. 
t 

, 

1. ; h.0' = _~l ... , _.,,-__ 
1 s ina.-ocosa. 

The assumption that Nikolaev made was ,the 0 cosa. part could be 

ignored as it was much smaller than 1 sina. Although this is true, 

metrical coefficients are differentiated and so according to 

. Nikolaev 0;: would not exist whereas it is in fact : 

- cos a. 2 
(1 sina.-Ocosa.) 

Each time that h.0' is differentiated with respect to 0 the film 

thickness, another term would be lost irrespective of the 

importance of that term. 

The effect of ignoring the 0 cos a. part of the metrical, 

coefficient in the azimuthal direction is apparent when tve full 

equation is compared with equation 3.2.4. Whereas equation 3.2.4 

contains the fourth derivative only, the full equation contains all 

the lower derivatives as well as a term in fl ,the dimensionless 

velocity. Without detailed information about the mode of flow 

it is impossible to decide which derivative is the controlling 

term, if indeed anyone in particular is controlling. For that 

reason the solution found by Nikolaev must be regarded with 

suspicion. 

5.5 Solution of the Creeping Flow Equation 

At low Reynolds numbers the inertial effects, which make 

the equation of motion non-linear, are insignificant. The solution 

of the equation of motion under this condition will therefore be 

the solution of the creeping flow equation. 
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i.e. 5.2.5 

The symmetry in the azimuthal direction indicates that the stream 

function (Y) is not a function of the azimuthal angle. 

stream function may be defined as :-

y ::: H(r).f(9) 

This of course assumes that the variables are separable. 

Hence the 

5.5.1 

If an infinite cone is considered, rotating at constant 

angular velocity w, with a constant volumetric flowrate Q, then 

as the radius becomes very large the film thickness would become 

very small, hence the meridional velocity component would tend 

towards zero. This suggests that the stream function is inversely 

proportional to some power of the radius. Let us therefore assume 

that the stream function may be defined as follows 1-

5.5.2 

where n is a positive constant. 

For a spherical coordinate system we have: 

E2 (If) ::: r -(n+2>[ n(n+l) + cot 9h +~] 5.5.3 
d9 

::: r-(n+2)F 

where F ::: [ n(n+l) + cot 9 ~ + ~J . 5.5.4 

thus it follows that : 

(n+2)(n+3) + cot 9 + i!:. ] 092 
5.5.5 

the solution for f(9) being 1 

f(9)::: D + E (t + l~ t 3 + 16 t 5 + 14 t 7 .+ •••••• ) 5.5.6 
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where D, E and t are functions of 9 

t = cos 9 5.5.7 

D = [ n(n+l) - a ] [~2 + 14 :'". t
6 

+ 1
8
+ ... ] 

12 30 56 

+ b [ ~3 + ~ t 5 + II t 7 
+,1!t

9
+ .... ] 

]5 315 945 

+ (n+2)(n+3) [14 + ~ t 6 
+..2.... t 8+ ... ] + d 

8 72 160 

5.5.8 

·E a t - [ 3 5 7 9 ... ] = (n+2).(n+3) 1 + 1 + 1 + 1 + 
6 20 42 72 

[ 2 4 6 • 8 .. ... ] b1+1+1+ 1+ 
2 12 30 56 

- n(n+l)t - e 

where a, b, d, e and n are constants that depend On the assigned 

boundary conditions. 

The boundary conditions used in the solution of • 

equations 5.3.2, 5.3.7 and 5.3.9 can be used here, for both the 

rand 9 directions. That is : 

gU: = 0 at 0 = 0 ,the film thickness 
max 

and = Ug = 0 at 0 = 0, the solid liquid interface. 

The last condition needed to solve for these constants can be 

expressed in terms of the volumetric flowrate I 

Q = 21'1'(T{o - Yo) 5.5.10 

where Yo and Vo are the values of the stream function at the air/ 

liquid and liquid/solid interfaces respectively. 
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If the curl operator acts On equation 5.2.7 the 

following equation is true in the creeping flow case: 

A similar reasoning as used in the case of the E operator 

acting on the stream function may be used here. As the film 

decreases in thickness with increase in radius we would suspect 

,the amount of tangential slippage to decrease. Also as the 

radius r approaches infinity the azimuthal velocity would approach 

infinity as well. Hence we would expect the function (U~/h3) to 

be proportional to some function of the radius. 

e.g. ~ = sin29 R(r) 

h 3 .. 

If a solution of this form is suggested it is found that : 

u~ = W r sin 9 ; 

This is the condition of no slip in the azimuthal direction. 

5.6 Potential Flow 

The potential flow equation in its invariant form can 

be expressed as : 

• 5.6.1 

In terms of the metrical coefficients this becomes : 

5.6.2 

Thus the potential flow equation can be seen to represent the 

continuity equation where the velocity vector V has been replaced 

by the gradient of a scalar, grad ~. 
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This equation is the same as Laplace's equation, 

solutions 
, (97) 

of Wh1Ch are well known • In spherical coordinates 

the general solution of Laplace's equation is : 

(cos g) (sin mV' 
cos !J 

5.6.3 

m where the function Pn (cos g) is described by a modification to 

Rodrigue's formula, namely.:-

I dm+n (u2_I)n 
dl-lm+n 

5.6.4 

In the particular problem at hand the velocities in the 

rand 9 directions, that is the meridional direction and across 

the thickness of the film, are invariant with change in azimuthal 

angle. For these conditions to be satisfied the constant m must 

be zero, leaving a general solution of the form: 

~ _ern ) 
- r-n- l 

r ~ (cos g) 5.6.5 

The solution of this equation excludes a solution for the azimuthal 

velocity compo\l!"nt. 

As in the case of the solution of the creeping flow 

equation, equation 5,2.5, the meridional velocity is expected to 

decrease with tncreasing radius. To satisfy this condition the 

solution will be of the form: 

01 -n-l 
p = r 

where I-l - cos 9 

I 
2nnl 

5.6.6 

5.6',7 
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the components of velocity in the rand Q directions, see 

Figure 5.1, being 

= 5.6.8 

= 5.6.9 

As the constant n is a positive integer ~.t is immediately 

evident that n must be an even number when Q is in the range 

o < Q < 7(/2. Such conditions make the value of Ur always positive 

and U
Q 

always positive which is exactly what is expected. 

To find the particular solutions to equations 5.6.8 and 

5.6.9 the prescribed boundary conditions· have to be met. These 

equations cannot be solved using the boundary conditions used to 

solve the creeping flow equations. One common meth~ by which 

these equations are solved is to equate the velocities to either 

their respective maximum or average velocity at a known finite 

point and then to assume a velocity at infinity. However in this 
, 

case this technique is not fruitful as neither the average velocity 

nor the surface velocity can be defined accurately. If this 

solution is solved in conjunction with the creeping flow equation, 

that is by adjusting the conditions until there is continuity across 

the boundary (the imaginary boundary between creeping flow and 

potential flow) the general solution so formed should be capable 

of being extended to higher Reyno1ds numbers. This type of solution 

would seem to be more easily soluble using the facilities Df a 

computer as not only have the velocities to match at the boundary 

but also the gradients have to match as well. 
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5.7 Numerical Methods 

The three dimensional solution of the Navier-Stokes equations 

(98) (99) 
has been solved by von Karman and later by Cochran for the 

case where liquid is entrained by a rotating disc, the axis of which 

is perpendicular to the disc's surface. The solution depends on the 

fluid being of "infinite" thickness above the disc and as such this 

solution does not fully correspond to a thin film of liquid being 

spun off a rotating disc. However this is only a boundary condition 

problem, thus the general form of the equations must be true no matter 

what the film thickness is in practice. For the steady flow of an 
; 

incompressible fluid the equations of motion and continuity may be 

(11) 
written as : 

F2 - G2 + FfH = F' , 5.7.1 

2FG + G'H' = G' ~ 5.7.2 

H H' = pt + H" 5.7.3 

2F + H' = 0 5.7.4 

where the cylindrical form of these equations has been used and 

Vr = wr F(I) 

I =qpLl2 0 

v = IIiTW H (I) 
y 

and the boundary conditions were defined as, 

F = 0 G = 1 H = 0 at I = 0 

F -> 0 G -> 0 H ->-0, (a constant) as I -.;> 00 

5.7.5 

5.7.6 

5.7.7 

Using these boundary conditions two sets of infinite series 

were found for F, G and H. At large values of 1 the first set was: 

-0,1 

F = Aa 
-20,1 -30,1 

A2+B2.e + A(A2+B2 )'e 
2 0,2 4 0,4 

+ •••• 



cf= B e -a1 _ B(A2+B2). e 

12 a4 

H=-a.+~ 
a 

-a.1 e 

-3a1 
+ ••••• 

At very small values of I the second set was found to be 

F = a1 - 12 - I b 13 
+ ..... 

2 3 

G = 1 + b I + !. a 1 3 
+ ..... 

3 

H= -a 12 + !. 1
3 

+ ..... 
3 

The constants A, B, a, b, and Cl. were chosen such that both 

the values of F, G and H and their deriv~tives (F', G' and H') remained 

continuous when these two series were matched. When these results U1~~. 

integrated numerically the constants were found to be : 

a = 0.51023 b = -0.616 a = 0.88447 

A = 0.934 B = 1.208 

Before adopting this approach to the solution of the thin film case the 

question must be asked, are these assumptions applicable to this case? 

Of these assumptions the most dubious is the one where the axial velocity 

component is regarded as independent of radial position (equation 5.7.5). 

This most clearly is not true when the radial distances are small, 

however, at moderate values of radial distance this assumption should 

not invalidate this approach. 

At the surface of a flat disc the boundary condition is the 

same as the one described by VOn Karmqn. That is : 

F = 0 G = 1 H = 0 at I = 0 5.7.6. 
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At the liquid/air interface the boundary conditions will be : 

F' = 0 G' = 0 H = -~ at I = I max 5.7.8 

The solution for F, G and H near the surface of the disc is therefore 

as ~efore. Their solutions at the liquid/air will come from the 

solution at the interface. 

At the interface F" "X- F2 _ G2 

and G"?:S 2FG 

If we introduce a complex function y these equations may be solved. 

y = F + iG 

therefore 1f" ~ f 
the solution of this being : 

[ 

4 7 
I Z C.t V -..Jt;:,. +..JL. -

24D 168D2 
+ ••• ] 

This solution is in a highly undesirable form, that is a series in If 

rather than I. Due to this the numerical method becomes involved. 

However One route that might be used to obtain,' a series solution in 

terms of I is to assume a power series of the form : 

1f = + c+2 IC+3. + + a2 I + a
3 

, •••.• 

Using regression techniques it should be possible to curve fit the above 

series to the previous series. Unfortunately only a small range of I 

values may be used as the first series is only the solution at the liquid/ 

air interface. This may not in fact be a serious drawhack as the 1aminar 

boundary layer should extend over a significant proportion of the film 

thickness, thus the proportion affected by the solution at the liquid/air 



As the boundary layer can exist over a substantial proportion of the 
film the method adopted by Oyama and Endou (106) can be used. 

If a modified form of Taylors (107) argument is applied, the Navier 
Stokes equation in spherical co-ordinates may be written as follows: 

0'1. "v 5'1 ..; v 52. v 
"r 0 r B r vr __ + ___ -_a_~ 579 

or 00 2 "'02 •• r r r u-

v 5 v0 " 'la 5v 0 VZ "17r v 52VRJ 
r - + -- + - - z-Z 5.7.10 

5r r 5 err 50 

whilst the continuity equation in the approximate form is: 

5Vr 2Vr 1 5V __ +_+_2.!ll - 0 5.7.11 
0;: r r 50 

by defining V a r sin a £(0) r 
V0 a sinag(0) 5.7.12 

V" - r sin ah(0) 

the above equations become: 

f " • .Y.' - sin agf' 
r 

5.7.13 

2r sina fh + sin agh' a v.h" - 5.7.14 r 

3 sin a f + sin a , 
r g a 0 5.7.15 

By changing the co-ordinate system we can define the angular cO-ordinate 
• 0 in terms of the dimensionless film thickness. (I). 

Hence if: 

(0 - a) 

where a is the half cup angle; and if 

f 

g = 

wF(I) 

(vw) IG(I) 

h - wH(I) 

then the equations become: 

sin a (F2 _H2) = F" - sin a GF' 

2 sin a FH + sin a GIl' - H"" 

3F + G' - 0 

where F, G and H are functions of I. 

5.7.16 

5.7.17 

5.7.18 

5.7.19 

5.7.20 
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For thin film flow it is assumed the film is completely within the 
boundary layer. Hence the boundary layer equation must define the 
flow within the film. The boundary-layer momentum integrals are: 

sin a {1F 2 dI - /H2 dI} + sin a IGF' dI 

2 sin a/FH dI + sin a/GH' dI 5.7.22 

Now /GF' dI .. [GFJ~max - /G'F dI 5.7.23 

from cont~nuity: .. [GFJ!max + 31F2 dI 5.7.24 

similarly IGH' dI .. [GHJ!max + 3/FH dI 5.7.25 

These identities may be simplified knowing the boundary conditions, 

at I .. 0 F .. 0 G • 0 H" 1. 

I - I max F .. FI G 'I. 0 max H .. HI max 

F' - 0 G' .. k H' - 0 

Hence the boundary layer momentum integrals become: 

sin a {41F 2 dI - /H2 dI} .. 
sin a 5/FH dI 

If it is assumed that the function F 

F a aI + bI2 

H .. 1,+ AI + B12 

fr'] 1mAx 
o 

[H'] lmax 
o 

and H have the form: 

5.7.26 

5.7.27 

5.7.28 

5.7.29 

then it is possible to solve for a, b, A and B using the boundary 
conditions and the boundary-layer momentum integral equations. These 
values have been found to be: 

a .. -2bImax 
A· - -2B1max 

2 
B - 10 sin a I max b 

3(~ sin a I 4
max b-2) 

whilst b is found from the equation: 

Hence when I «1. max 

b - -isin a 



and therefore: 

b6. 

2 
w r . 

III - S1n a 
v 

where 6 is the film thickness for small angles 

6 ~ r(0 - a) :a:: rd0 

i.e. I DO(.:!)! 
v 

The form of this equation is similar to the Nusselt model. 

Deviations from the Nusselt model will therefore occur once Imax , the 
dimensionless film thickness, can no longer be considered to be very 
small. 

Now the volumetric flowrate is given by:-

Q 21tr sin 01. 

rearranging, this becomes: 

3 
4 

max r 

b 

5.7.30 

N* where the Reynolds number (N
RE

) and the modified Nusselt parameter ( T) 

are similar to those used previously except that the body force term 

is not included in Nf this time (see,eqns. 3.1.1. and 3.2.1.). 

As the coefficient 'b' in eqn. 5.7:30 is a function of I only, 
max· , 

the dimensionless film thickness and modified Nusselt parameter may be 

considered independant of I ,hence a Nusselt type relationship will max 

hold if I and thus b remain constant. This will result in a family of curves max 

of NRE against N; 
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APPENDIX 5-1 

The first condition that has to be met for axisymmetrical 

flow is defined by equation 5.1.1. 

i.e. = 0 
; 

where 

Thus equation 5.1.1 may be written as 

= 0 

In spherical coordinates the metrical coefficients are: 

h = 1. r h = .!,. 
9 r 

h,0 = -:;:.1:,... _ 
r sin 9 

The differentials of the unit vectors are as follows : 

d i 1.= ii. h ~ 1. • 

~ ~ h2 -A- C!) 1. • = 
0.0 Oql. h3 oq2 

a is= - i1 li ..£L (~)- i h ~G) 1 
oq ""'2 2 

di 1 

Hence the products that arise from equation 5.1.1 will be: 

(~) 

In terms 'of the spherical coordinate system this will be: 

V,0 sin G) + !.z(~Va - V~ cos ,+ ~~v: + Vr sin9 + 
Ue cos ~ 



; 
~. 

By considering the symmetry of the flow and assuming 

that we are observing the flow with respect to the cup then the 

coefficients of the unit vectors i l andiz will be zero. Xhe 

coefficient of the unit vector~ cannot be zero except in the 

unreal case when there is no flow of liquid. 
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APPENDIX 5-2 

For the case of a liquid flowing film-wise on a 

rotating conical disc we can consider the stream function to be 

a function of the velocities in the rand e directions 

i.e. (r, e) 

This means that the velocity in the azimuthal direction does not 

directly influence the stream function. Thus we can say : 

= -i h h ~ 1jf + i h h <l.!L + i .0 
-1236'9 -2 l3 crr ~ 

Hence if we are to define the velocity vector in terms of the 

stream function we must include a term to take account of the 

azimuthal velocity. 

v = i V 
-1 r + i Ve -z + ~ V,0 

= i h h ~ + . h h g; + i V9} . """1. 2 3 e .!z 1 3 ~ 

= h3 !3 x ,,'/ + i V,0 ""3 

If this is to prove satisfactory it must satisfy: .the continuity 

equation 

ie V.y 

Hance it can be seen that continuity is observed. 
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APPENDIX 5-3 

Derivation of equation 5.3.9 

YvV - JJV2V :: 1:. - - -
~ V y2 - yxvxY + )]vxvxy :: E. 

_w2r sin2
9 -1 .a.. {gin 9 8V;\:: -g cos 9 

r 2sin 9 69 " 9:-) 

sin 9 . A ~in 9 % ~):: g. cos 9 sin
2

9 _w
2

r sin 49 

let t :: cos 9 

010 :: -sin 9 
ere 
• b (sin

2
9 ~) gt 

2 2· -w r<I-t ) + :: • • Ot o t 

i e 2 2 -w r(l-t ) 

. Solution of the complementary function 

Assume solution of the form 

'{. :: t c (ao + a1 t + a2t2 + a3t3 + •••• + an t n ) 

O.L:. :: aoctc- l + al (c+l)tc . + a2(c+2)t·C+l + ••••• + an(c+n)tc +n- l 

ot 

When these are substituted back into the complementary f~ction we 

will have an equation of the form : 

To solve, the coefficients (A's) are equated to .7.ero 

(c-2) coaff • 

(c-l) coaff 

a c(c-l) :: 0 
o 

a
1 

(c+1) c :: 0 

• • • 

• 
• • 

C :: 0 or 1 

a=O 
1 
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c cooff a2 = c a 
("C+2) 0 

a =a =a = 0 etc 5 3 1 i e odd coeffs = 0 

(0+2) coeff a
4 = c a 

(~ 0 

More generally a = c a when n is even. 
n (-;;:;;:) 0 

Solution of indicial equation is: 

v = a (l+t+l t 3 
r 0 -

3 
•••• •• +) 

Full solution: 

LetH (gt 2 (l_t2» 2 = - w r r 
1Y 

Let V = A + B (t + .!. t
3 

+ .!. t
5 7 

) + ! t + •••••• r 
3 5 7 

where A and B are functions of t. 

if %~ = B 

then A' + B' (t + .!. t 3 + .!. t 5 + .!. t 7+ .... ) = 0 
3 5 7 

gVr = BI(1+t
2
+t

4
+t

6
+ •• ) + B (2t+4t3+6t5+8t7+ •••• >. 

(-~ 
Su stituting back into original equation gives us 

hence'-- -" 
B = 
B' = R 



Now A = JAI dt 

-J R (t + 1, t
3 

+ 1, t
5 7 .... ) dt = + 1, t + 

3 5 7 

2 [ 3 5 7 9 .... ] = -EL.!. +1,t +1,t +1,t+ 
1..1 3 15 35 63 

2 3 [t2 
4 6 t 8 _ t lO_ + w r -It_It - I L 

IT 2" - - 140 6 45 315 

Hence full solution in the range -1 < t < 1 where 

V' = a r 
2 3 

- 'J!.J' 
lr 

2 
- EE

V 

- b 

[ ~2 

[ *3 

4 6 8 10 ] +!. +1. +!,...+.,L+ •••• 
6 9 12 15 

579 
+t+t+t+ 

10 14 18 

[ t + f + t 5 

5 

.: ....... ] 
..... -] 

.... ] ; 
t = cos 9 

The values of a and b, the two constants of integration, may be found 

once the boundary conditions are determined. 

Boundary conditions (see Figure 5.1) 

when 9 = a. t = cos a. =T· (say) 

then Vr = 0 

When 9 = 9min t 

then.~v~= 0 

. hence b 

= cos 9 i· = P (say) m n 
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Hence a = b [ T + T3 ·l + T7 ·+-t[t 5 79] + + ~ + ~ + ~ + ••• 
3 5 7 10 14 18 

+ 
2 3 [;,. 14 T6 + T8 + TlO + . ... ] ~ + 
V 6 9 12 15 

This solution can be tested by taking the case where a = 900 

i e the flat disc case. 

for this case 

for thin films 

Hence 

a = 0 as 

2 3 
b ..... -w r P 

V· 
r 

- lJ' 

2 3 = W r 
Jf 

T o = cos 90 

as terms p2 and greater ---:> 0 

This is of an identical form to equation 5.3.8. 



CHAPI'ER SIX 

DISCUSSIONS AND CONCLUSIONS OF THE EXPERIMENTAL WORK 

6.1. The Averaged Film Thickness Results 

6.2. The Continuous Film Thickness Results 

6.3. The Drop Size Distribution Results 

6.4. Suggestions for Further Work 

; 



6.1. The Averaged Film Thickness Results 

Before an attempt was made to record the instantaneous film 

thickness results it was felt that the light extinction technique should 

be thoroughly tested by obtaining the time and position averaged film 

thicknesses and comparing these with the results of other authors. To 

obtain these results the signal from the silicon light cell was fed 

into a data logging unit. This unit accepted the signal and integrated 

1/ 
it over 50th sec. Thus the value recorded by the digital voltmeter, 

which formed part of the data logger, represented the average value over 

1/50th se~. during which time the disc travelled a finite distance. The 

system was slightly more complex as the liquid waS also moving in two 

orthogonal directions with respect to the cup. A distribution of 

averaged film thickness results was obtained as the film thicknesses 

recorded were found to be a function of the orientation and position 

of the waves as the disc traversed the probe area. Time averaging of 

an individual reading was inevitable, however, due to the relatively short 

period over which the signal was integrated the time averaging effect 

was not found to be predominant. 

These results, Tables 1-8 inclusive, have been plotted in 

the way described by Espig and Hoyle(3), that is the Modified Nusselt 
; 

Parameter against Reynolds number, see Graph 1. This plot compares 

(18) 
favourably with the graphs obtained by Beardall for film flow of 

liquids down the external surface of a rotating "male" cone. Throughout 

the whole of this work th.e liquid under test was mains water which 

contained a nigrosine dye; no other liquids were used as it was felt 

that this liquid exhibited the desired properties for the continuous 
• 

film thickness experiments. 



These same results have been plotted in accordance with 

Bruints Theory, see Graph 2, Tables 1-8. In contrast with the work of 

Nikolaev where the presented experimental work followed the theoretically 

predicted curve closely, this work contains considerable scatter. It 

might be concluded that this work suffers from large experimental errors, 

however it is equally possible that the obtained results cannot be 

compared 4irectly as they do not represent the same physical phenomeno~ 

The difference being that Nikolaevts data supposedly represents smooth 

film flow on an infinite cone with no wave formations present whereas 

the data presented in this investigation would certainly represent the 

wavy film flow conditions on a finite cup. 

The results obtained using the optical technique were biased in 

several ways. When waves were present on the cup the signal recorded by 

the data logging unit was the average value corresponding to the area 

under the signal/time curve. This average was taken as the linear average 

of the signal whereas the average corresponding to the logarithm of the 

signal should have been taken due to the exponential relationship 

defined by the Lambert-Beer Law. At least fifty of these so-called 

average signal values were taken from the data logging unit. The 

arithmetic average of these readinga was then found and transformed 

into a film thickness. As in the case of the integrated signal recorded 

by the data logging unit a more precise average film thickness value 

would have been obtained if each of the fifty or so readings Was 

transformed into a film thickness before the mean was found. However, 

errors involved in averaging the signals from the data logger before 

finding the film thicknesses have been found to be insignificant, 

that is they are leas than 1%. 
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When helical waves were present on the cup, see Photograph 5, 

the volumetric flowrate through these waves became important. With 

reference to the photographs it can be seen that the large ligament has 

been formed as a direct result of the helical wave on the cup. On 

either side of this wave there appear to be regions of relatively smooth 

film flow. Without detailed information regarding the volumetric 

flowrate !hrough such waves their effect on the relatively smooth flow 

regions cannot be predicted. If, however, these waves are regarded as 

a~eas operating at some known step change in volumetric flowrate and herice 

thickness, their effect can be easily quantified. A simple calculation 

shows that this error is relatively small. 

The amount of scatter in the experimental results shown in 

Graph I and consequently Graph 2 is of interest. It is possible that 

these average film thickness results contain a high degree of 

inaccuracy inherent in the method used for their determination. This 

should not be the case as this technique is capable of high accuracy 

although the light extinction technique is normally used in precision 

instruments such as spectrophotometers. Furthermore the control test, 

that of base-line stability proved excellent, the base-line drift was 

in the order of 1% or less. This indicates that the recorded scatter 

was not solely a function of experimental error. 

A number of explanations can be put forward to account for 

this scatter. The first and most obvious of these is the modified 

Nusselt theory is only applicable for smooth unidirectional flow on 

an infinite conical cup. Wave distributions would violate the initial 

assumptions on which this theory is based. I~ however, the standard 
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deviations of these distributions were found to be relatively small 

there remains the possibility that the presence of these waves would 

not violate the theoretical assumptions to such an extent that the 

general theory should be discarded. The second point that needs to be 

emphasised is the modified Nusselt theory is only applicable to an 

infinite system, one in which the liquid continues to tthint with 

increasin~ radius. No account is made in this theory of the liquid 

"capacitance" at the torus. Intuitively one may argue that for 

modest volumetric flowrates per unit length of periphery the effect 

of the torus will be to retard the incoming liquid. The overall effect 

being a thickening of the film in the vicinity of the torus. Whether 

this thickening could be traced back from the periphery of the cup to 

the weir that distributes the liquid onto the cup is highly debatable. 

Certainly it is a possibility. Some justification for this proposed 

thickening exists. If Fig 2.3 is examined it can be seen that for small 

distances from the lip of the cup the magnitude of the surface meridional 

velocity component is extremely small. Indeed if these values are 

extrapolated to the lip itself the estimated surface meridional velocity 

would be zero. Obviously this is unlikely as the system was operated 

at constant volumetric flowrate. The most plausible explanation of this 

result is the method of estimating the surface velocity was not sufficiently 

accurate to detect these low velocities. None the less in the vicinity of 

the lip the surface meridional velocity has been found to be much lower 

than the theoretical value at the ~revailing operating conditions. 

These experiments were conducted in the transient direct-drop/ligament 

, . , 
regime, for the sheet regime the same conditions of hold-up would not 

apply presumably. 
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Considering the environment in which the film thicknesses were 

measured, that is one containing a large number of airborne droplets, 

there must have been a real risk of droplets of the dyed liquid 

impinging on the light cell and artificially affecting the results 

obtained. Little could be done about this possibility as by necessity 

the air gap between the moving film and the light cell had to be 

maintained so as not to affect the film flow itself. Observation of 

the light cell showed ~ittle if any contamination. As a result it was 

concluded that this risk of droplet impaction on to the light cell 

surface although real, could be eliminated by careful inspection of the 

probe surface after each experimental run. 

6.2. The Continuous Film Thickness Results 

After being satisfied that the optical technique accurately 

recorded the time and position averaged film thicknesses it was then 

necessary to determine whether the same apparatus could be used to 

monitor continuous film thicknesses. It soon became evident that 

the 24 watt light bulb was inadequate as an image of the filament 

was produced. This image was approximately 4 mm long and 1 mm wide 

and so it was relatively large compared with the waves which it was 

supposed to scan. A laser was chosen as the replacement light source, 

see Photograph 2, this laser produced a parallel light beam of 

approximately 1 mm diameter. Under the no liquid flow condition the 

output of the light cell, using the laser as the light source, was 

found to be extremely stable. 



99. 

An option was available on how to record the signal from the 

light cell. It was decided to store this signal using the facilities of 

an ultra-violet oscillograph as this enabled a rapid qualitative 

assessment of the results to be made. To test the accuracy of the output 

as stored on the U.V. recorder some idea of the attenuation of the 

galvanometers Was necessary. To this end a small strip of black adhesive 

tape was stuck on the underside of the conical section of one of the 

perspex discs such thst it interrupted the'light beam as it passed by 

• each revolution. The output on the U.V. recorder waS then compared 

with the width of the signal expected from a knowledge of the relative 

sizes of the strip and the effective diameter of the cup. It was 

found that the attenuation Was insignificant, however, it was noted that 

the strip of adhesive tape gave an excellent indication of the speed of 

rotation of the disc and,so it was retained for this purpose. Some 

preliminary work using the U.V. recorder indicated the presence of small 

. waves immediately preceding the main waves. These waves had previously 

been noted when a photographic study of the wave formations had been 

undertaken. The detection of these waves was therefore considered to 

be further qualitative proof that attenuation was not a serious problem. 

\ 
The continuous film thickness results have been plotted and 

found to fit the log-normal probability distribution law(lOO). These 

results can be seen in Graphs 3-7 whilst the data is shown in Table 9. 

As the instantaneous film thickness results closely fit the log-normal 

probability distribution law it follows that there must be negligible 

periodicity in the region where these results were obtained. This is 

(101) (102) 
compatible with the results of Telles and Dukler , and Hewitt et al • 

Telles and Dukler found that for all but the smallest Reynolds numbers 
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the film is random in nature whilst the photographs of Hewitt et al 

showed that no two waves are alike in the region furthest from the 

entrance of an inclined plane. Although these authors conducted 

their experiments on inclined planes their results would appear to be 

applicable to the spinning cup case. Indeed at the distributor of the 

spinning cup periodic waves were observed under stroboscopic lighting at 

small flowrates thus providing additional confirmation that there is a 

similarity between a spinning disc and an inclined plane. A further test 

was made to ensure that there was nO periodic wave motion over a large 

proportion of the disc. The signal from the silicon light cell waS fed 

after amplification into a F.M. tape recorder. Sufficient data waS collected 

in order that· a Fourier analysis could be made. This was done automatically 

using aHewlettPackard Fourier Analyser. As there were no dominant peaks 

it waS concluded that the waves were in fact randomly distributed. 

From Graphs 3-7 it is possible to determine the arithmetic mean 

and standard deviations·. of these continuous film thickness distributions. 

The mean values can be used to determine the modified Nusselt parameter, 

the result of which can be seen in Graph 8. The results shown in this 

graph are consistent with those obtained using the 24 watt light bulb, 

that is the time and position averaged film thickness results. 

Consequently, it was felt that these continuous film thickness results 

were accurate, within the limits of experimental error. 

The second parameter which together with the mean value completely 

characterises the distribution is the standard deviation. The standard 

deviation for a log normal probability distribution is expressed as the. 
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logarithm of the ratio of the film thicknesses at either the 50% and 16% 

or the 84% and 50% probabilities respectively. When this ratio is plotted 

against the modified film thickness parameter 

. the resulting plot yields 

a straight line relationship, see Graph 9. Qualitatively it can be seen 

from this graph that for a given speed of rotation the ratio defined above 

decreases ~ith increasing liquid throughput. Thus the film becomes more 

smooth as this group increases. As only one liquid was used during this 

investigation the effect of viscosity was not established. Intuitively 

one would imagine that an increase in viscosity would decrease the 

amount of waviness on the cup. However this effect needs to be 

investigated more fully. 

6.3. The Drop Size Distribution Results 

The drop size distribution results which were measured using 

the charged wire drop sizer can be seen in Graphs 11-25, Tables 11-25. 

These results fit the log-normal probability distribution law quite closely, 

except at the extreme ends of the distributions. Possibly there is a case 

. (103) for using the Upper Lim1t Distribution so that the coarse end of the 

distribution could be defined more closely. However for most purposes the 

log-normal probability distribution law adequately defines the ~pray using 

two values only, the arithmetIc mean and the standard deviation. If the 

Upper Limit distribution law was used three values would have to be 

defined to completely characterise the spray. In addition, to the arith-

metic mean and the standard deviation, the maximum drop size would also 

be required. 
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At low flowrates or high speeds of rotation the spray 

distribution becomes bimodal (c.f. the Direct Drop R{gime). In fact 

the transition from direct drop to ligament formation as predicted by 

Figure 3.5 is not clearly defined, rather this·transition seems to be 

diffuse. All the distributions presented in this work should correspond 

·to the ligament r~gime of atomization, however photographic evidence 

indicates Jhat direct-drop formation occurs concurrently with ligament 

formation - Photograph 4. 

The transition from a bimodal distribution to a continuous 

distribution has been plotted in Graph 26. All the values in this 

graph were obtained using the 14.8 cm cup at 9.6 r.p.s. It can be 

seen that the ratio of the means (that is the satellite to main drops) 

increases with.increasing volumetric flowrate until the distribution 

becomes continuous. At no time does the arithmetic mean of the main 

drops approach a constant value. This raises an interesting point. 

The operating equations 3.5-1-4 predict the drop size at low volumetric 

flowrates when the mode of atomization is supposedly in the Direct Drop 

r~gime. No mention of the volumetric flowrate is given. This unwittingly 

implies that so long as the flowrates are small its effect on the 

atomization is also small. However, most clearly this is not always 

the case .(see Graph 27). Indeed this graph indicates the arithmetic 

mean drop size decreases with increasing volumetric flowrate. This 

observation qualitatively SUbstantiates the theoretical work outlined in 

Appendix 6-1. Of course, for a spinning cup atomizer operating in the 

I Dire.ct Drop regime the number of atomization sites on the torus is not 

constant, nor is the single droplet formation a steady-state process. 
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This being so the volumetric flowrate into the stem of the embroyonic 

droplets becomes indeterminant analytically. If this equation could be 

applied to ligament formation the volumetric flowrate term could then be 

equated to the overall volumetric flowrate and the spacing between the 

ligaments. Unfortunately this equation is only applicable to single 

drop formation, see Figure 6.1. 

The charged wire drop sizer was calibrated using one of these 

four operating equations. Obviously as the volumetric flowrate has been 

shown to affect the arithmetic mean drop size at otherwise constant 

operating conditions then the credibility of using the cup in the Direct 

Drop regime for primary calibration must be questioned. Quantitative 

measurements taken from a high speed cine film (of which Photograph 3 is 

an example) indicate that the operating equation Was accurate within ~ 10%. 

This however may have been entirely fortuitous. None the less the results 

describe the transitions adequately even if there is some doubt as to the 

precise numerical value of these measurements. 

6.4. Conclusions 

Neither the modified Nusselt theory nor the Nikolaev!Bruin theories 

totally describe the smooth film flow of a liquid on a rotating cup except 

when the dimensionless film thickness parameter (I max 
or 

is extremely small. This infers that deviations from the Nusselt, and 

similar models, occur when the dimensionless thickness parameter can no 

longer be considered small. This has been verified experimentally using 

the model described in Section 5.7, namely the three dimensional soluticn 

of a modified form of the Navier Stokes equation. It can be seen that the 

experimental data presented in Graph 1 lies between the operating band 

used during these investigations.· This indicates that the three dimensional 

solution more nearly represents the fluid motion on a spinning cup, even 

) 
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though in practice the results were obtained when wavy flow was present. 

The continuous film thickness distributions were found to fit the log 

normal probability law quite closely. This, coupled with the fact that 

no dominant peaks were found when a Fourier analysis was made of the 

film thickness distribution leads to the conclusion that there is no 

periodic tendency when the film thickness is investigated at some 

distance from the liquid distributor. 

The standard deviations of the continuous film thickness distribution 

decrease with increase in modified Nusselt film thickness parameter. The 

conclusion reached from this evidence is that as this thickness parameter 

increases the film will become smoother until eventually the standard 

deviation approaches zero. This appears to occur in the regime where 

there is transition from ligament to sheet fo:rmation. 

The drop size distribution results were also found to fit the log 

normal probability law when the distribution was continuous. Bimodal 

distributions were also found and it would seem from the scant evidence 

available that the continuous distribution was only obtained once the mode 

of atomisation was entirely that of ligament formation. 

The standard deviations obtained from the drop size distribution data 

indicate that as the volumetric flowrate of the liquid to be atomized 

increases under otherwise constant conditions, the standard deviation of 

the size distribution also increases even though the d
50 

drop size rema;ns 

essentially constant. Consequently as the standard deviation of the drop 

size distribution increases whilst the standard deviation of the film 

thickness distribution decreases it must be concluded that there is no 

direct correlation between the impaction of the waves into the liquid 

torus and the spread in the drop size distribution. 
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6.5 Suggestions for Further Work 

1. The influence of viscosity on the amount of waviness on the liquid 

film surface should be investigated. 

2. The apparent periodicity of the surface waves, observed visually 

using stroboscopic lighting, in the region of the weir distributor 

should be examined to see if indeed these waves are periodic. 

3. An attempt should be made to find the steady state solution of the 

equations of motion. The most promising approaches would seem to 

be that of solving the equations as outlined in Chapter 5 (Sections 

5, 6, 7). Hopefully small perturbat10ns might then be introduced 

into these solutions in order that a periodic solution might be 

found. 

4. Using correlation techniques the waviness in the vicinity of the 

lip of the cup should be 'monitored along with the signal from the 

pulse height 'analyser, that,is the signal due to the spray, thereby 

determining whether there is any direct correlation between these 

two events. 

5. The approach, as outlined in Appendix 6-1, should be considered 

more deeply as this might well explain what is happening in the 

direct drop regime. 

6. The transition from the bimodal to the continuous distribution 

should be quantified by observing this occurence at other speeds 

of rotation and also by using different discs. 
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Appendix 6-1 

For single droplet formation, that is where there is no jet 

formation, the mechanism of drop formation may be considered using the 

following simple model. Consider the forces acting on the liquid torus. 

These may be listed as follows: 

1. force.due to the addition of mass into the droplet 

2. force due to the excess pressure 

3. force due to surface tension 

4. centrifugal force due to the cup's rotation. 

Applying Newton's second law of motion (see Fig 6-1) the rate 

of change of momentum maybe equated as follows: 

d(m'V') 
, dt 

'If'dm mdU" ::: cs-+ -_ 
dt dt 

2 
or.!!l 

4 

(104 105) 
It has been shown' that: 

d(m'll') _ 'lr6'~ _ 
dt dt -

and 

Hence the diameter of the resultant droplet may be found from 

; ) 



where q = volumetric f10wrate into each undetached droplet 

d1= diameter of the droplet 

d2= diameter of the stem 

\r = 
0 

velocity of the incoming mass into the undetached droplet 

Pi= internal pressure of droplet 

p = external pressure of continuous phase. 

For the case where the volumetric f10wrate term is extremely 

small and the ¥/d
1 

term is large compared with ¥, then the operating 

equation proves to be similar to equations 3.5 1-4 namely: 
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NOMENCLATURE 

Symbol 

a area of capacitor 

a extent of liquid from the lip of the cup 

a a constant 

a ,a constant 

A a constant 

b the reservoir depth 

b a constant 

b a constant 

. ,B a constant 

c a constant 

C the capacitance of a parallel plate 

capacitor 

C constant (subscript 1,2,3,4,5) 

d a constant 

d droplet diameter 

D the spinning disc diameter 

D \. the hydraulic diameter 

f the dimensionless velocity 

(subscript t, 0, 0) 

f(a) a function of a 

F a function of f(a) 

F' a ftmction of a 

Units 

2 m 

cm 

farads 

cm. 

cm. 

cm. 

, 
• 

Eqn. 

2.l.l. 

3.6.4. 

3.5.12. 

5.3.9. 

5.7.7. 

3.5.12. 

5.3.9. 

5.7.7 • 

3.5.12. 

2.1.1. 

3.2.2-3 

3.5.12. 

3.5.1. 

3.1.1. 

3.1.10. 

3.2.2-3-6 

5.5.1. 

5.5.3. 

S. 7.1. 



Symbol 

g 

G 

gravitational force constant 

a function of e 

h metrical coefficient (subscripts 1,2,3 

and r, e, ~) 

H a function of e 

i unit vector (subscripts 1,2,3 and r,e,~) 

I Bessel Function (subscripts 1 and 0) 

I the dimensionless film thickness 

k wave number 

K a constant 

1 the length from the apex of the cone to any 

point on the cone 

L the dimensionless length from the apex of the 

cone to any point on the cone 

m the mass of a droplet 

n the rotational speed 

>10 
NT the modified Nusselt film thickness 

parameter 

Units 

-2 
cm. sec 

; 

-1 
sec 

Eqn. 

5.7.1. 

5.1. 3. 

5.7.1. 

5.1.2. 

5.7.5. 

3.6.13. 

3.5.12. 

3.2.6. 

3.2.6. 

Appendix 
6-1 

3.5.1. 



Symbol Units Eqn. 

p pressure dyr;)es/ 
cm2 3.1.1. 

p dimension less pressure 3.2.14. 

q the Rosin Rammler distribution constant 3.5.8. 

q growth rate 3.7.1. 

q invariant co-ordinate (subscript 1,2,3) 5.2.6. 

Q volumetric flowrate cc/sec. 3.1.10. 

r radial co-ordinate 5.2.8. 

r the radius from the centre line of the cone 

to any point normal to that centreline 3.2.6. 

r the radius of a droplet (subscript d) 3.5.15 

R the radius of a spinning disc cm. 3.5.13. 

R the dimension less radius 3.2.3. 

R the Rosin Rammler distribution variable 3.5.8. 

t the distance between the plates of a parallel 

plate capacitor m 2.1.1. 

t time sec. 3.1.1. 

t a variable equivalent to cos. e ·5.3.9. 

T the mass flowrate per wit length of gm/ 

periphery 
(cm-sec) 3.5.6. 

T surface tension dynes/ 
c~ 3.7.3. 

u· velocity cm/sec 3.1.3. 

U dimensionless velocity 3.2.11. 



Symbol Units Eqn. 

v velocity cm/sec 3.1.1. 

v dimensionless velocity 3.2.12 

w angular velocity radians/ 3.2.6. 
sec 

W _dimensionless velocity 3.2.13. 

W angular velocity radians/ 3.2.1. 
sec. 

X the displacement due to the inclination 

of a parallel plate capacitor m 2.1. 3 

y the thickness of a water layer between the 

plates of a capacitor m 2.1.4. 

y rectangular co-ordinate 3.1.3. 

rectangular co~ordinate 3.1.3. 

a . the number of ligaments from a spinning 

disc. 3.6.1. 

\ 



Symbol 

a the half cup angle 

a a constant 

the dimensionless film thickness 

y - surface tension 

the film thickness 

e: amplitude of a disturbance 

the disturbance function at the free 

surface of the liquid torus 

angle that inclined plane subtends with 

e the horizontal 

e spherical co-ordinate 

wavelength, Rayleigh instability theory' 

\l viscosity 

\I kinematic viscosity 

e density, 

a surface ,tension 

surface deformation function 

azimuthal co-ordinate 

the scalar in the potential flow equation 

stream function' 

o gravitational force scalar, 

Units Eqn. 

radians 3.2.3. 

dynes/ 
cm2 

cm 

5.7.7. 

3.2.2. 

3.6.4. 

3.1.6. 

3.7.1. 

3.6.10. 

radians 3.1.3. 

2 cm /sec 

gm/cc 

dynes/ 
cm2 

; 

3.7.1. 

3.1.1. 

3.1.1. 

3.3.3. 

3.1.15. 

5.6.1. 

5.2.4. 
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TABLE 1 

D = 11.9 cm. a = 1.073 rads v = 1.04 cP e a 1.0 gm/cc 

REYNOLD'S SPEED OF FILM MODIFIED BRUIN'S BRUIN'S 
NUMBER ROTATION THICKNESS NUSSELT THICKNESS INTEGRAL 

R.P.S. CM • PARAMETER PARAMETER PARAMETER 
. 

155 . 6.9 .0107 4.74 .704 .322 

8.1 .0098 4.83 .70 .3 

8.9 .0092 4.84 .675 .276 

9.9 .0082 4.66 .645 .267 

11.0 .0078 4.77 .645 .248 

12.1 .0072 4.67 .629 .237 

212 6.9 .0149 6.60 .98 .44 

8.1 .0129 6.40 .92 .41 
., . 

8.9 .0120 6.35 .91 .38 

9.9 .0111 6.32 .88 .37 

11.0 .0104 6.35 .86 .34 

12.1 .0095 6.20 .83 .32 

397 6.9 .0167 7.40 1.1 
; 

.825 

8.1 .0144 7.15 1.03 .77 

8.9 .0131 6.94 .99 .71 

9.9 .0123 7.00 .97 .68 , 

11.0 .0113 6.90 .94 .64 

12.1 .0105 6.85 .91 .61 



; 

TABLE 2 

D ~ 11.0 cm. a a 1.1 rads v = 1.01 cP e a 1.0 gm/cc 

REYNOLD'S SPEED OF 
1 

FILM MODIFIED BRUIN'S 'BRUIN'S 
NUMBER ROTATION THICKNESS NUSSELT THICKNESS INTEGRAL 

R.P.S. CM. PARAMETER PARAMETER PARAMETER -
268 6.9 .0134 5.92 .878 1.17 

.. 8.1 .• 0119· 5.87 .845 1.07 

8.9 .0111 5.82 .822 1.01 

9.9 .0099 5.59 .774 .95 

11.0 .0090 5.45 .741 .90 

12.1 .0086 5.59 .746 .86 

312 6.9 .0154 6.79 1.01 1. 36 . 
8.1 .0136 6.70 .97 1.24 

8.9 .0127 6.70 .95 1.18 

9.9 .0117 6.63 .92 1.11 

11.0 .0108 6.55 .89 LOS 

12.1 .0100 6.50 .87 1.00 

325 6.9 .0154 6.80 1.01 1.41 

8.1 .0139 6.83 .98 1.3 

8.9 .0131 6.90 .95 1.22 

9.9 .0115 6.51 .90 1.15 

11.0 .0108 6.55 .89 1.09 

12.1 .0100 6.45 .86 1.04 



TABLE 3 

D = 11.0 cm. a a 1.1 rads v = 1.01 cP e a 1.0 gm/cc 

REYNOLD'S SPEED OF FILM MODIFIED BRUIN'S BRUIN'S 
NUMBER ROTATION THICKNESS NUSSELT THICKNESS INTEGRAL 

R.P.S. CM. PARAMETER PARAMETER PARAMETER 
, 

363 6.9 .0173 7.65 1.13 1.57 

8.1 .0152 7.50 1.08 1.44 

8.9 .0141 7.41 1.05 1.37 

9.9 .0128 7.21 1.00 1.29 

11.0 .0117 7.12 .97 1.22 

12.1 .0108 7.01 .94 1.16 

439 6.9 .0183 8.10 1.20 1.9l 

8.1 .0166 8.17 1.18 1. 74 

8.9 .0151 7.96 1.12 1.66 

9.9 .0141 7.98 1.11 1.34 

11.0 .0128 7.76 1.06 1.28 

12.1 .0119 , 7,69 1.03 1.40 
" 

, , 



TABLE 4 

D = 10.0 cm. a = 1.1 rads " = 1.01 cP e '= 1.0 gm/cc 

REYNOLD'S SPEED OF FILM MODIFIED BRUIN'S BRUIN'S 
NUMBER ROTATION THICKNESS NUSSELT THICKNESS INTEGRAL 

R.P.S. CM. PARAMETER PARAMETER PARAMETER 

325 6.9 .0174 7.4 1.14 1.01 

8.1 .0155 7.36 1.10 0.92 

8.9 .0143 7.25 1.06 0.87 

9.9 .0129 7.04 1.01 0.82 

11.0 .0121 7.09 1.00 0.78 

12.1 .0112 7.00 0.97 0.74 

388 6.9 .0192 8.15 1.26 1.25 

8.~ .0174 8.26 1.23 1.14 

8.9 .0163 8.25 1.21 1.08 

9.9 .0152 8.29 1.19 1.02 

11.0 .0139 8.15 1.15 0.96 

12.1 .0130 8.13 1.13 0.91 

514 6.9 .0220 9.35 1.44 1.66 

8.1 .0200 9.5 1.42 1.51 

8.9 .0190 9.61 1.41 1.43 

9.9 .0177 9.65 1.39 1.34 

11.0 .0167 9.78 1.38 1.27 , 
12.1 .0157 9.8 1.37 1.21 

, . 



TABLE 5 

D = 10.0 cm a = 1.1 rads " = 1.04 cP e = 1.0 gm/cc 

REYNOLD'S SPEED OF FILM MODIFIED BRUIN'S BRUIN'S 
NUMBER ROTATION THICKNESS NUSSELT THICKNESS INTEGRAL 

R.P. S •. CM. PARAMETER PARAMETER PARAMETER 

-
143 7.8 .0113 5.22 0.73 0.47 

8.6 .0103 5.09 0.72 0.42 

9.6 .0096 5.12 0.70 0.40 

10.5 .0090 5.09 0.69 0.38 

. 11.4 .0085 5.10 0.69 0.36 

12.1 .0079 5.18 0.68 0.34 . 

184 7.8 .0115 5.31 0.74 0.60 

8.6 .0102 5.03 0.71 0.55 

9.6 .0095 5.08 0.70 0.52 

10.5 . .0090 5.09 0.70 0.49 

11.4 .0084 5.03 0.69 0.46 

12.1 .0078 5.09 0.67 0.44 

285 7.8 .0126 5.85. 0.81 0.94 

8.6 .0114 5.63 0.80 0.85 

9.6 .0108 5.76 0.79 0.80 

10.5 .0098 5.54 0.76 0.76 

11.4 .0092 5.52 0.75 0.72 

12.1 .0086 5.61 0.74 0.68 



TABLE 6 

D .. 10.0 cm a - 1.1 rads " = 1.03 cP e ~ 1.0 gm/cc 

REYNOLD'S SPEED OF FILM MODIFIED BRUIN'S BRUIN'S 
NUMBER ROTATION THICKNESS NUSSELT THICKNESS INTEGRAL 

R.P.S. CM. PARAMETER PARAMETER PARAMETER 

138 7.8 .0100 4.21 .69 • .42 

8.6 .0092 4.32 .67 .39 

9.6 .0087 4.37 .66 .37 

10.5 .0080 4.32 .64 .35 

11.4 .0075 4.35 .62 .34 
. 

12.1 .0069 4.28 .61 .32 

227 7.8 .0124 5.21 .86 .69 

8.6 .0114 5.36 .83 .65 

9.6 .0105 5.28 .80 .61 

10.5 .0098 5.29 .78 .58 

11.4 .0092 5.34 .77 .55 

12.1 .0085 5.27 .75 .52 

288 7.8 .0137 5.75 .95 .87 

8.6 .0125 5.88 .91 .82 

9;6 .0115 5.78 .88 .77 

10.5 .0105 5.68 .84 .74 

11.4 .0099 5.75 .83 .71 

12.1 .0091 5.64 .81 .66 

308 7.8 .0139 5.85 .96 .93 

8.6 .0127 5.96 .92 .88 

9.6 .0123 6.19 .94 .83 

10.5 .0112 6.05 .90 .79 

11.4 .0104 6.04 .87 .76 

12.1 .0099 6.14 .87 .71 



TABLE 7. 

D = 14.0 cm. a = 1.1 rads \I = 1.05 cP e = 1.0 gm/cc 

REYNOLD'S SPEED OF FILM MODIFIED BRUIN'S BRUIN'S 
NUMBER ROTATION THICKNESS NUSSELT THICKNESS INTEGRAL 

R.P.S. CM. PARAMETER PARAMETER PARAMETER 

-
65 7.8 .0079 4~02 .54 .14 

8.6 .0076 4.10 .54 .13 

9.6 .0073 4.28 .55 .13 

10.5 .0070 4.23 .55 .12 

11.4 .0068 4.44 .56 .12 

12.1 .0063 4.38 .55 .11 

77 7.8 .0077 3.92 , .53 .17 

8.6 .0073 3.97 .52 .16 

9.6 .0073 4.28 .55 .15 

10.5 .0066 4.00 .52 .14 

11.4 .0062 4.09 .51 .14 

12.1 .0061 4.24· .54 .13 

103 7.8 .0091 4.63 .62 .22 

8.6 .0081 4.40 .58 .21 

9.6 .0077 4.51 .58 .20 

10.5 .0071 4.30 .56 .19 

11.4 .0066 4.35 .55 .18 

12.1 .0062 4.27 .54 .17 

159 7.8 .0100 5.09 .68 .34 

8.6 .0091 4.95 .65 .33 

9.6 .0085 4.93 .67 .31 

10.5 .0079 4.78 .63 .29 

11.4 .0074 4.87 .63 .28 

12.1 .0071 4.93 .62 .26 



TABLE 8 

D . a 14.0 cm. Cl = 1.1 rads " = 1.05 cP e = 1.0 gm/cc 

REYNOLD'S SPEED OF FILM MODIFIED BRUIN'S BRUIN'S 
NUMBER ROTATION THICKNESS NUSSELT THICKNESS INTEGRAL 

R.P.S. CM. PARAMETER PARAMETER PARAMETER 

-
173 7.8 .0103 5.21 .70 .37 

8.6 .0096 5.22 .69 .36 

9.6 .0088 5.16 .66 .34 

10.5 .0083 5.03 .66 .32 

11.4 .0076 5.01 .63 .31 

12.1 .0073 5.07 .64 .29 

256 7.8 .0128 6.52 .88 .55 

8.6 .0120 6.53 .86 .53 

9.6 .0113 
. 

6.61 .86 .49 

10.5 .0105 6.35 
; 

.83 .47 

11.4 .0098 6.46 .81 .45 

12.1 .0093 6.45 .82 .42 

292 7.8 .0133 6.75 .91 .61 

8.6 .0123 6.70 .88 .58 

9.6 .0114 6.68 .87 .54 

10.5 .0106 6.41 .84 .52 
• 

\ 11.4 .0097 6.39 • 80 .50 

12.1 .0089 6.18 .78 .47 



TABLE 9 

D - 8.2 cm. a = 1.1 rads " = 0.996 cP e = 1.0 gm/cc 

7.8 R.P.S. 9.1 R.P.S. 12.4 R.P.S. 7.8 R.P.S. 11.5 R.P.S. 

FILM CUMULATIVE FILM CUMULATIVE FILM CUMULATIVE FILM CUMULATIVE FILM CUMULATIVE 
THICKNESS % THICKNESS % THICKNESS % THICKNESS % THICKNESS % 

.0272 1.57 .0280 .327 .0166 6.6 .0166 5.45 .0109 9.5 

.0266 2.74 .0276 .65 .0162 14.8 .0161 8.05 .0104 14.2 

.0258 5.3 .0271 1.96 .0157 28.4 .0155 14.6 .0098 21.0 

.0252 12.4 .0261 3.59 .0149 48.8 .0149 25.7 .0093 31.6 

.0241 21.4 .0253 9.8 .0140 66.2 .0144 37.9 .0087 46.7 

.0238 34.1 .0244 16.7 .0134 84.4 .0137 50.4 .0082 61.0 

.0234 55.1 .0234 28.1 .0125 94.2 .0133 61.6 .0076 76.5 

.0222 72.3 .0225 44.7 .0128 71. 7 

.0220 83.7 .0217 65.4 .0123 . 79.5 

.0212 93.8 .0209 80.0 .0118 85.7 

.0207 99.1 .0200 90.8 

.0200 99.5 .0192 94.1 

REYNOLD'S 899 898 890 375 200 NUMBER· 



TABLE 10 

D - 8.2 cm. a:= 1.1 rads v = 0.996 cP e = 1.0 gm/cc. 

.. ' ., 

ARITHMETIC MEAN STARDARD MODIFIED NUSSELT REYNOLD'S 
FILM THICKNESS DEVIATION PARAMETER NUMBER 

.0086 0.0736 5.1 200 

.0136 0.0531 5.91 375 

.0148 0.0414 8.9 890 

.0222 0.0374 10.75 898 

.0240 0.0253 10.42 899 
. 

. , .. . . 

.. 



TABLE 11 (Graph 11) 

FLOWRATE • 1010 gm/min. 

SPEED OF ROTATION = 8.6 R.P.S. 

DISC DIAMETER 

SURFACE TENSION 

DROP SIZE 
!llIl 

640 
740 
840 
920 
990 

1040 
1110 
1150 
1205 
1240 
1300 
1340 
1380 
1420 
1450 

. 

= ·5.82 inch dia. 

= 67.4 dynes/cm. 

CUMULATIVE FRACTION 
BY NUMBER 

.0027 

.1044 

.3036 

.4528 

.5613 

.6498 

.7246 

.7912 

.8456. 

.8844 

.9099 

.9299 

.9449 

.9574 

.9669 

Mean Drop Diameter = 950 ~m 

d50 
d16 

(main) = 1.25 

TABLE 12 (Graph 12) 

FLOWRATE = 1140 gm/min. 

SPEED OF ROTATION • 9.6 R.P.S. 

DISC DIAMETER 

SURFACE TENSION 

DROP SIZE 
J,l1II 

640 
740 
840 
920 
990 

1040 
1110 
1150 
1205 
1240 
1300 
1340 
1380 
1420 
1450 

= 5.82 inch dia. 

= 67.4 dynes/cm. 

CUMULATIVE FRACTION 
BY NUMBER 

.0062 

.1498 

.3604 

.5147 

.6337 

.7288 

.7991 

.8491 

.8832 

.9079 

.9254 

.9408 

.9529 
.9628 
.9715 

Mean Drop Diameter = 920 ~m 

d50 
d16 

(main) = 1.27 



. 

TABLE 13 (Graph 13) 

FLOWRATE a 1190 gm/min. 

SPEED OF ROTATION = 10.5 R.P.S. 

DISC DIAMETER 

SURFACE TENSION 

DROP SIZE 
pm 

640 
740 
840 
920 
990 

1040 
1110 
1150 
1205 
1240 
1300 
1340 
1380 
1420 
1450 

= 5.82 inch dia. 

= 67.4 dynes/cm. 

CUMULATIVE FRACTION 
BY NUMBER 

.0112 

.1777 

.4070 

.5709 

.6910 

.7710 

.8260 

.8661 

.895 

.917 

.934 

.9486 

.9590 

.9677 

.9747 

Mean Drop Diameter = 880 pm 

d50 
d16 

(main) = 1. 31 

.. 

TABLE 14 (Graph 14) 

FLOWRATE = 440 gm/min 

SPEED OF ROTATION = 7.8 R.P.S. 

DISC DIAMETER 

SURFACE TENSION 

= 5.8Unch dia. 

= 63.7 dynes/cm. 

DROP SIZE CUMULATIVE FRACTION 
pm BY NUMBER 

635 .052 
740 .218 
840 .325 
910 .382 
990 .418 

1040 .445 
1100 .483 
1140 .550 
1200 .651 
1240 .763 
1300 .864 
1320 .928 

Mean Drop Diameter = 1180 \lm 

d50 (main) = 1.09 d16 

Satellite Drop Diameter = 800 pm 

d50 (satellite) 
= .68 d50 (main) 



TABLE 15 (Graph 15) 

FLOW RATE = 513 gm/min. 

. SPEED OF ROTATION = 7.8 R.P.S. 

DISC DIAMETER = 5.81inch dia. 

SURFACE TENSION = 63.7 dynes/cm • 

. 

DROP SIZE CUMULATIVE FRACTION 
\lm BY NUMBER 

740 .043 
840 .194 
910 .318 
990 .407 

1040 .474 
l100 .525 
l140 .572 
1200 .620 
1240 .674 
1300 .730 
1320 .795 
1380 .849 
1430 .887 

Mean Drop Diameter = 1190 \lm 

d50 
d16 

(main) = 1.18 

Satellite Drop Diameter = 

d50 (satellite) 

d50 (main) = 

940 \lm 

.79 

TABLE 16 . (Graph 16) 

FLOW RATE • 390 gm/min. 

, SPEED OF ROTATION = 9.6 R.P.S • 

DISC DIAMETER = 5.81inch dia. 

SURFACE TENSION = 63.7 dynes/cm. 

DROP SIZE CUMULATIVE FRACTION 
\lm BY NUMBER 

635 .0005 
740 .066 
840 .238 
910 .337 
990 .405 

1040 .512 
l100 .686 
1140 .845 
1200 .932 

Mean Drop Diameter = 1040 \lm 

d50 
d16 

(main) = 1.1 

Satellite Drop Diameter = 840 \lm 

(satellite) 

(main) 
= 0.81 



TABLE 17 (Graph 17) TABLE 18 (Graph 18) 

FLOW RATE ~ 520 gm/min. FLOWRATE a 640 gm/min. 

SPEED OF ROTATION = 9.6 R.P.S. SPEED OF ROTATION = 9.6 R.P.S. 

DISC DIAMETER = 5.8Unch dia. DISC DIAMETER " 5.8Unch dia. 

SURFACE TENSION = 63.7 dynes/cm. SURFACE TENSION = 63.7 dynes/ cm. 

DROP SIZE CUMULATIVE FRACTION DROP SIZE CUMULATIVE FRACTION 
J.IIII BY NUMBER pm BY NUMBER 

. 

i 635 .012 635 .001 
740 .134 740 .052 
840 .310 840 .252 
910 .435 910 .409 

. 990 .542 990 .S21 
1040 .651 1040 .641 
1100 .755 1100 .765 
1140 .833 1140 .861 
1200 .880 1200 .922 

Mean Drop Diameter = 1010 pm Mean Drop Diameter = 1000 pm 

d50 (main) = 1. IS 
dSO (main) 1.12 d16 

. d
16 

= 

Satellite Drop Diameter = 840 pm Satellite Drop Diameter = 860 pm 

d50 (sate1li te) 
= 0.83 dSO (satellite) 

= 0.86 
d50 (main) dSO (main) 



,. 

TABLE 19 (Graph 19) TABLE 20 (Graph 20) 

FLOWRATE - 890 gm/min. FLOWRATE - 1240 gm/min. 

SPEED OF ROTATION = 9.6 R.P.S. SPEED OF ROTATION = 9.6 R.P.S. 

DISC DI~TER = 5. 8Unch dia. DISC DIAMETER ~ 5.8tinch dia. 

SURFACE TENSION = 63.7 dynes/cm. SURFACE TENSION = 63.7 dynes/cm. 

DROP SIZE CUMULATIVE FRACTION DROP SIZE CUMULATIVE FRACTION 
\lm BY NUMBER \lm BY NUMBER 

740 .070 740 .089 
840 .278 840 .298 
910 .439 910 .462 
990 .556 990 .582 

1040 .662 1040 .676 
1100 .753 1100 .751 
1140 .833 1140 .810 
1200 .888 1200 .852 
1240 .921 1240 .883 

Mean Drop Diameter' = 980 \lm' Mean Drop Diameter = 950 jJm 

d50 (main) 1.18 d16 
= (main) = 1. 2 3 

Satellite Drop Diameter = 910 jJm 

.' d50 (sate11i te) 0.93 = 
d50 (main) 



TABLE 21 (Graph 21) TABLE 22 (Graph 22) 

FLOWRATE - 1350 gm/min. FLOWRATE = 630 gm/min. 

SPEED OF ROTATION = 9.6 R.P.S. SPEED OF ROTATION = 11.4 R.P.S. 

DISC DI4METER = 5.8Hnch dia. DISC DIAMETER ,l, 5.8l inch dia. 

SURFACE TENSION = 63.7 dynes/cm. SURFACE TENSION = 63.7 dynes/cm. 

DROP SIZE CUMULATIVE FRACTION DROP SIZE CUMULATIVE FRACTION 
; \lm BY NUMBER \lm BY NUMBER 

740 .098 740 .10 
840 .310 840 .348 
910 .470 910 .553 
990 .584 990 .755 

1040 .674 1040 .882 
1100 .743 
1140 .800 
1200 .843 
1240 .874 Mean Drop Diameter = 900 \lm 

. 

Mean Drop Diameter = 950 \lm· (main) = 1. 17 

(main) = 1. 26 

.. 



TABLE 23 (Graph 23) 

FLOWRATE = 740 gm/min. 

SPEED OF ROTATION = 11.4 R.P.S. 

DISC DIAMETER = 5.8tinch dia. 

SURFACE·TENSION = 63.7 dynes/cm. 

DROP SIZE CUMULATIVE FRACTION 
IIm BY NUMBER 

740 .103 
840 .358 
910 .578 
990 .769 

1040 .883 
1100 .936 

, Mean Drop Diameter = 895· IIm 

(main) = 1.16 

TABLE 24 (Graph 24) 

FLOWRATE = 1500 gm/min 

SPEED OF ROTATION = 11.4 R.P.S. 
, 

DISC DIAMETER 5.8linch dia. 

SURFACE TENSION = 63.7 dynes/cm. 

DROP SIZE CUMULATIVE FRACTION 
IIm BY NUMBER 

740 .182 
840 .395 
910 .545 
990 .651 

1040 .725 
1100 .781 
1140 .823 

Mean Drop Diameter = ·900 IIm 

(main) = 1. 28 



TABLE 25 

FLOWRATE 

SPEED OF ROTATION 

DISC DIAMETER 

SURFACE TENSION 

DROP SIZE 
\lm 

740 
840 
910 
990 

1040 
1100 
1140 

Mean Drop Diameter 

(Graph 25) 

- 1800 gm/min. 

= 11.4 R.P.S. 

= 5. B2 inch dia. 

= 63.7 dynes/cm. 

CUMULATIVE FRACTION 
BY NUMBER 

.168 

.366 

.512 

.619 

.694 

.750 

.794 

= 910 \lm 

(main) = 1. 26 
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Page 18 

'Page 31 

Page 38 

Page 41 , 

Page 49· 

Page 54 

Page 51 

'Page 62 

Page 64 

Page 95 

ADllliNDUM 

Paragraph 3, add "(see sections 3.1 and 3.2)" at the 

end of this paragraph. 

Eqn. 3.1.10. (i.e. based on the hydraulic diameter). 

Delete the word "experimentally" from the statement 

before eqn. 3.3.2. 

Eqn. 3.5.6. add "where the Sauter mean diameter 

dsv .. t nd3/ Lni" • 
• 

3. " ••••• down of a liquid j et due to " ..... 
Last paragraph, first sentence, delEte "Chandrasekhar (64 )" 

Paragraph 2; add sentence at end of paragraph "As this 

technique is sensitive to the eleotrostatic environment, 

it is.necessary to calibrate this drop sizer where it is 

to be used". 

Paragraph 3. delete "catchment area" insert "collision 

diameter". 

Paragraph 1, first sentence, add" see Fig. 4.3" at the 

end of this sentence. 

Paragraph 1, add "The accuracy should be within!: 5%" at 

end of paragraph. 

Last paragraph, second sentence, " ••••• by placing ten 

nominal 90 vol t dry cell ••••• " 

Paragraph 1, first sentence, add asterisk (Table 1-8*) 

then add footnote "*Where D in these tables refers to the 

diameter at which these resul ts were obtained". 



Page 95 

Page 96 

• 
Page 105 

\' 

Paragraph 2, first sentence, delete "biased in 

several ways" insert "potentially inaccurat.<3 in 

two ways". 

Parar,raph 2, third sentence, delete "although" 

insert "as" • 

Appendix 6-1, delete "and mdv -
dt 

"furthermore mdv - ••••• " 
(it 

" . , ... insert 

Nomenclatur,e T (units dynes/cm); 6 (units dynes/cm) 

and ~ (units dynes/cm). 

Table '1 add "5.82 inch cup" 

Tabl es 2-8 add "6. 2 inch cup". '. 
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