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CHAPTER 1 

I NTRODUCTl ON 
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1.1 PARTIAL DIFFERENTIAL EQUATIONS 

The majority of the problems of physics and engineering fall into one 

of three physical categories: equilibrium problems, eigenvalue problems and 

propagation problems. 

The eigenvalue problems may be thought of as extensions of equilibrium 

problems where critical values of certain parameters are to be determined in 

addition to the corresponding steady-state configuration. Thus the previous 

physical classification may be reduced to the two major classes of equilibrium 

and propagation problems. 

These problems are usually rel?resented mathematically by a partial 

differential equation (or a set of such equations). Such an equation is the 

linear second-order partial differential 
2 2 

A~+ 2B~+ 
ax2 axay 

ca2u 
+ ~ Eau + FU G ay2 ax + ay =, ( 1.1) 

where A,B,C,D,E,F and G are given functions which are continuous in some 

region in the (x,y) plane. 

A characteristic problem is the following: given a region R, finite 

or infinite, with a boundary aR, to find a function U(x,y) which is twice 

differentiable and satisfies (1.1) in R, which is continuous in R+aR and 

satisfies prescribed conditions on aR. For example, we might require that 

U(x,y) = g(x,y) 

on aR, or alternatively, the normal derivative ~~ or a linear 

combination of U and ;~ be specified on aR. Equations of the form (1.1) 

may be classified as elliptic, hyperbolic, or parabolic depending upon 

(1. 2) 

the behaviour of the coefficients A,B and C. Thus equation (1.1) is said 

to be 

a) elliptic if B2_AC<O in R, 

b) hyperbolic if B2_AC>O in R, 

and c) parabolic if B2_AC=O in R. 

2 If the quantity B -AC changes sign in R, then the equation is said to be 
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of mixed type. For instance, the differential equation 

a2u a2u x--+--=O 
ax

2 
a/ 

is elliptic for x>O, hyperbolic for x<O and parabolic for x=O. Equilibrium 

or steady state problems are associated with the elliptic equations whereas 

the governing eq~ations for propagation problems are parabolic or hyperbolic. 

Representative examples of such equations are: 

(i) Poisson's equation 

a2u a2u --+--= 
ax

2 
a/ 

G(x,y) (elliptic) . (1. 3) 

If G(x,y)=O, then (1.3) reduces to Laplace's equation 

a2u a2u O. (1.4) ;7 + -- = 
ay2 

(H) The vibrating string equation 

a2u a2u (hyperbo li c) . (1.5) ---=0 
ax

2 
a/ 

(iii) The diffusion equation 

a
2
u au 0 (parabolic) . (1.6) ax2 - ay = 

A problem in mathematical physics is called "well posed" if its 

solution exists, is unique and varies continuously with the boundary data. 

Let us consider the generalised Dirichlet problem involving a bounded 

connected region R and a continuous function g(x,y) prescribed on aR. The 

function U(x,y) is required to be continuous in R+aR, to satisfy (1.1) in 

R and to satisfy the condition (1.2) on the boundary aR. Moreover, if 

(1.1) is an elliptic equation and if F~O in R, then the generalised 

Dirichlet problem has a unique solution under fairly general conditions 

(e.g. see Courant and Hilbert [1962)). A special case of the generalised 

Dirichlet problem is that which involves Laplace's equation and is a very 

classical problem in applied mathematics. This problem can be solved 

analytically in certain special cases. Analytic solutions can be given for 
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the circle. rectangle and for the half plane (or for certain other regions 

which can be transformed conveniently by conformal mapping into the 

previously mentioned regions). However. it is not usually possible that an 

analytic solution of a problem involving (1.1) can be found under arbitrarily 

shaped regions and for general boundary conditions. Even if there was no 

differential equation to be satisfied at all. it would not be easy to find a 

function defined and continuous in R+aR which satisfies (1.2). Thus. one is 

usually forced to use numerical methods. 

Two standard general methods for the numerical solution of elliptic 

partial differential equations are.the method of finite differences (e.g. 

see Varga [1962]. Porsythe and Wasow [1960]. Wachspress [Hi66]. Young and 

Gregory [1973]) and the finite element method (e.g. see Zienkiewicz [1971]. 

George [1971]. Strang [1972]. Zlamal [1968]). 

Recently. the latter method has become a popular and effective procedure 

(see Kim [1973]). The finite element method is essentially a technique to 

construct a set of coordinate functions for the Ritz or the Galerkin method 

(Collatz [1960]). In the finite element method the region R is partitioned 

into a union of "finite elements". of which commonly used elements are 

triangles and rectangles. Next. a trial function is constructed with the 

property that it is a polynomial (not greater degree than three) on each 

finite element. 

Alternatively., in the application of finite difference methods one 

replaces the region R by a finite set of points Rh where Rh~ and also 

replaces the boundary aR by a set of points aRh • which mayor may not belong 

to R+aR. Por each point P of Rh we develop a linear relation involving the 

value of U(x.y) at P and the values of U(x.y) at certain neighbouring points 

of Rh and at certain points of aRh. If there are N points of ~. one obtains 

in this way a system of N linear algebraic equations with N unknowns. If 

the system of linear equations can be solved uniquely. as is frequently the 
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case, then the values of U(x,y) at points of ~ are accepted as approximate 

values of the true solution. Some useful methods for deriving finite 

difference approximations are based on Taylor's series, integration and the 

variational technique. 
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1.2 DISCRETISATION OF THE GENERALISED DIRICHLET PROBLEM 

We now describe the procedure for discretising elliptic partial 

differential equations and show how their solution by finite difference 

methods often leads to linear systems whose matrices have some properties 

of fundamental importance. 

Let us consider the generalised Dirichlet problem as defined in the 

previous section and assume that the coefficient B(x,y) in (1.1) of the 

mixed derivative vanishes identically in R+aR (one can make a change of 

independent variables so that the coefficient of the mixed derivative 

vanishes). Thus, we have that U(x;y) satisfies the linear second-order 

partial differential equation 

"au Eau FU G "aX + ay + = 

in R where A,C,D,E,F and G are analytic functions of the independent 

variables x and y in R and satisfy the conditions A>O, C>O and F~O. 

However, if we have 

aA = D 
ax and ~= E ay , 

then instead of (2.1) we consider the self-adjoint differential equation 

Even if (2.1) is not self-adjoint, it may be possible to obtain a 

self-adjoint equation by multiplying both sides of (2.1) by an 

"integrating factor" ll(x,y) so that we have 

The function ll(x,y) exists if and only if 

2..rD-~~) = lrE-~~). 
ay t A ax t C 

We will be concerned with the differential equation (2.3) instead of 

(2.1). If the condition (2.5) is satisfied, then the equation (2.1) 

is called essentially self-adjoint. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 



In order to apply the method of finite differences, we superimpose a 

mesh consisting of a network of horizontal and vertical lines over the 

region R with a uniform spacing (although this is not necessary) of size 

h>O. 

For a given point (xo'YO) we consider the set n
h 

which contains all 

points of the form (xO+ih, YO+jh) for i,j=O,±I,±2,... Two points (x,y) 

and (x' ,y') of n
h 

are adjacent if (x_x,)2+(y_y,)2=h2, whereas they are 

properly adjacent if they are adjacent, both are in R+aR and the open 

segment joining them, not necessarily including the end points, is in R. 

7 

Moreover, we define Rh=Rn"h and aRh=nhnaR. A point P of Rh is regular if 

the four adjacent mesh points in nh ~ie in R+aR and are properly adjacent 

to P. In the sequel, we will assume that Rand nh are such that all points 

of Rh are regular points. 

Let us now consider the construction of a discrete representation of 

the differential equation (2.3). For a point (x,y) of Rh the self-adjoint 

equation given by (2.3) is replaced by the symmetric difference equation 

h-2{A(x+!h,y) [u(x+h,y)-u(x,y)]-A(x-!h,y) [u(x,y)-u(x-h, y)] 

+C(x,y+!h) [u(x,y+h)-u(x,y)]-C(x,y-!h) [u(x,y)-u(x,y-h)] } 

+F(x,y)u(x,y) = G(x,y). (2.6) 

Thus we have transformed the continuous problem to a discrete generalised 

Dirichlet problem. That is, we now seek to determine a function u(x,y)t 

defined on ~a~ such that (2.6) is satisfied on Rh and u(x,y)=g(x,y) on aRh . 

2 Multiplying (2.6) by -h we obtain the difference equation 

where 

u(x,y) = SI (x,y)u(x+h,Y)+S2(x,y)u(x,y+h)+S3(x,y)u(x-h,y) 

+S4(x,y)u(x,y-h)+T(x,y) (2.7) 

t The unknown function u(x,yJ denotes the finite difference approximation to 

the exact solution U(x,yJ. 
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III (x,y) = A(x+!h,l:) 112 (x,y) = C(x,l:+!h) 
S(x,y) , S(x,y) , 

1l3(x,y) = A(x-!h,l:) 1l4 (X,y) = C(x,l:-!h) (2.8) 
S(x,y) , 

S(x,y) , 

T(X,y) 2 
= -h G(x,y)jS(x,y) 

and 2 S(x,y) = A(x+!h,y)+A(x-!h,y)+C(x,y+!h)+C(x,y-!h)-h F(x,y). (2.9) 

Therefore the problem of solving the discrete generalised Dirichlet 

problem reduces to the solution of a system of linear algebraic equations 

of the form 

Au=b 

where there is one equation and one unknown for each of the N points of 

Rh' The row of the matrix corresponding to the point (x,y) has unity as 

the diagonal element and Il.(x,y), i=1,2,3,4 in the column corresponding 
l. 

to a point of Rh properly adjacent to (x,y). Terms of (2.7) which do 

not involve values of u(x,y) on a~ are brought to the left-hand side of 

the equation for the point (x,y), while the rest of the terms form the 

(2.10) 

elements of the right hand side vector b in (2.10). Evidently, the order 

of the matrix A is N, the number of the mesh points in Rh' The matrix A 

in (2.10) is real and symmetric. Furthermore, it can be shown to be 

positive definite t and to have"l'roperty A". In addition to these properties, 

it can be verified that A is an L-matrix, is irreducible and has weak 

diagonal dominance. 

If h is very small (as this is the case we will primarily be concerned 

with), the problem of actually solving (2.10) may present serious practical 

difficulties even though a unique solution is known to exist. In this case 

the order of A is about 103 to 106 and on the other hand as we have seen A 

is "sparse" i. e., has only a few non-zero elements as compared to the total 

number of elements of A. These properties lead naturally (but not exclusively) 

tPor definitions whiah are not given, see Chapter 2. 



to use iterative techniques for solving such systems of equations since 

they do not introduce new non-zero elements during the computation and 

therefore the sparseness of A is preserved. As a result of this, the 

problem of the accumulation of rounding errors is less serious than for 

those methods, such as most direct methods, where the matrix A is 

changed during the computation process. 

9 
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CHAPTER 2 

MATRIX PRELIMINARIES 
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In this chapter we will present various definitions and theorems, 

often without proof, from matrix theory which will be useful for reference 

purposes for our study of iterative methods. We have presupposed a basic 

knowledge of the general theory of matrices as presented, for instance, in 

Faddeev and Faddeeva [1963], Bellman [1960], Householder [1964] and 

Birkhoff and Maclane [1953]. 

2.1 BACKGROUND OF MATRIX THEORY 

Defini tion 1.1 

.. . T )T Given any two vectors v=(vl ,v2, ••. ,vN) and w=(wl ,w2, ••• ,w
N 

we define 

the inner product of v and w by 

H 
(v, w) = v w = 

Theorem 1.1 

The linear system 

Au = b 

N 
L v~w .• 

i=l ~ ~ 

has a unique solution if and only if A is non-singular. 

If A is singular, then (1.2) either has no solution or else it has 

an infinite number of solutions. 

Theorem 1.2 

If A is a square matrix of order N with eigenvalues Al ,A2, ••. ,AN, 

then 

det(A) 

Defini tion 1. 2 

N 
= TT A. , 

i=l ~ 

N 
trace(A) = LA .• 

i=l ~ 

If A is an NxN matrix, then the spectral radius of A is 

SeA) = max IAI 
AES

A 

where SA is the set of all eigenvalues of A. 

We will use the following two theorems from the Perron-Frobenious 

theory of non-negative matrices. 

(1.1) 

(1. 2) 

(1.3) 

(1.4) 
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Theorem 1.3 

If A~IBI, then S(A)~S(B). 

Theorem 1.4 

If A~a, then SeA) is an eigenva1ue of A and there exists a non-negative 

eigenvector of A associated with SeA). 

Next, we give a useful theorem for determining bounds on the eigenvalues 

of any Hermitian matrix. 

Theorem 1.5 

If A is an Hermitian matrix and. if Al and AN are the largest and the 

smallest eigenva1ues of A, respectively, then 

= max 
vI-a 

= min 
vI-a 

where v(l) and v(N) are 

respectively. 

(v,Av) 
(v,v) = 

(v,Av) 
(v,v) = 

Cv (1) ,Av (1)) 
((1) (1)) 

, 
v ,v 

(v (N) ,Av (N)) 
(1.5) 

((N) eN) ) v ,v 

of A corresponding to Al and AN' 
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2.2 POSITIVE DEFINITE MATRICES 

The property of a matrix being positive definite is essential in our 

study, so from the many definitions we will use the following. 

Definition 2.1 

A matrix A is positive definite if A is Hermitian and 

(v,Av»O (2.1) 

for all vlO. If (v,Av)>.O for all v, then A is non-negative definite. 

Evidently, one can give similar definitions for negative definite 

and non-positive definite matrices. 

Further, we state a theorem which is sometimes used as a definition 

of positive (non-negative) definiteness. 

Theorem 2.1 

A matrix A is positive definite (non-negative definite) if and only 

if it is Hermitian and all of its eigenvalues are positive (non-negative). 

A method for constructing a positive definite matrix is given by the 

following theorem. 

Theorem 2.2 

For any matrix A the matrix AAH is Hermitian and non-negative 

definite. If A is non-singular, then AAH is positive definite. 

Furthermore, the existence of the positive definite "square root" 

of a positive definite matrix A is guaranteed from the following theorem. 

Theorem 2.3 

If A is a positive definite (non-negative definite) matrix, then 

there exists a unique positive definite (non-negative definite) matrix 

B (denoted by Ai) such that 

(2.2) 



14 

Definition 2.2 

If there exists a non-singular matrix S such that 

H S AS = B, (2.3) 

we say that B is Hermitian congruent to A and that B is obtained from 

A by a Hermitian-congruence transformation. 

It is important to note that the property of a matrix being positive 

definite is not affected by a congruence transformation. 

Theorem 2.4 

If A is a positive definite matrix and B is obtained from A by a 

congruence transformation, then B is also positive definite. Similarly 

for non-negative, negative and non-positive definite matrices. 

Proof 

From Definition 2.2 we have 

B = SHAS, 

also by Theorem 2.3 we can let Ai be the positive definite matrix whose 

square is A. Thus, B=(SHAi) (SHA1)H and since A1S is non-singular, then 

from Theorem 2.2 it follows that B is positive definite. 

Theorem 2.4 can also be proved if we consider the quadratic form 

of B i.e., 

H (x,Bx) =(x,S ASx) = (Sx,ASx»O 

if xtO. 
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2.3 VECTOR AND MATRIX NORMS 

Definition 3.1 

A vector norm n.D is a non-negative function on the space cN, the set 
Cl 

of all the vectors, with the following properties: 

a) 

b) 

IIxll >0, if x#O 
Cl 

U xII =0, if x=o 
Cl 

c) 

d) 

n cxll = I c 1.11 xII for any complex number c 
Cl Cl 

nx+Yn ~lIxll +lIylI for all vectors x,yECN (triangle inequality). a Cl a 

There is an infinite number of vector norms and to illustrate this fact 

we consider the ip-norms (Holder norms). 

11 xII p = 
~I Ix·I P 

i=l 1 

max Ix. I 
i 1 

p=l ,2,3, •.• 

Among these norms the il-norm, i 2-norm and i~-norm are the most familiar 

and widely used 

Defini tion 3.2 

N 
= I Ix. I 

i=l 1 

~ 
nxll 2 =1.Uxil~ i=l 1 

Uxll 
~ 

= maxlx·l· 
i 1 

The matrix norm II,U
e 

is a non-negative function on the space CNN , 

the set of all the (NxN) matrices, with the following properties: 

a) UAUe>O, if A#O 

b) 11 All e=O, if A=O 

c) UCAlla=lcl.IIAII for any complex number c 

d) IIA+BUa~IIAUa+IIBlla' 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 



It can be shown that the quantities 
N 

and 

IIAlloo = max L la. ·1, 
i j=l 1,J 

N 
L la. ·1, 

i=l 1,J 
max 

j 

IIAII2 = [S(AHA)]! 

IIAIIM = N maxla. ·1, 1,J 

are all matrix norms. 

Defini don 3.3 

i=l,2, .•• ,N 

j=l,2, ••. ,N 

i,j=l,2, ••• ,N 

Given a vector norm 11.11 , we define the induced matrix norm 
Cl 

11 Av 11 
Cl 

It is interesting to note that (3.7),(3.8) and (3.9) can be proved to be 

induced matrix norms corresponding to the vector norms 11.11
00

, 11.11
1 

and 

11.11 2, respectively. The main advantage in choosing the induced matrix 

norm is that the inequality 

11 Av 11 dAllallvll 
Cl " Cl 

is satisfied. 

Definition 3.4 

If the inequality (3.12) holds, then the vector norm 11.11 and 
Cl 

the matrix norm 11.11(3 are called consistent or compatible. Evidently, 

any vector norm and the induced matrix norm are consistent. 

If the matrix norm II.II
S 

and the vector norm are consistent and if 

for some vECN and VfO we have 

then the matrix norm is subordinate to the vector norm. It is obvious 

now that the induced matrix norm corresponding to a vector norm is 

subordinate to that vector norm. Throughout our study, we will 
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(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 



frequently use the vector norm 11.11 2 and the corresponding induced matrix 

norm given by (3.9). Also, when no confusion will arise we will omit 

the norm suffices. 

The fOllowing theorem provides a method for determining a good 

bound on the spectral radius of a matrix. 

Theorem 3.1 

For any matrix norm 11.11 a we have 

S(A)~IIAlla· 

Proof 

Suppose that A is an eigenvalue of A and v is an associated eigen-

vector, then AV=AV and from Definition 3.2 we have 

IIAvll =IIAvn ~IIAIIQnvll • 
a a " a 

Hence, by (3.lc) we obtain 

Since this inequality holds for every eigenvalue, the spectral radius 

of A is bounded by every norm of A. 

Defini tion 3.5 

Given a matrix norm ".lI
a 

and any non-singular matrix S, then the 

"a,S-norm" of a matrix A is given by 

I -1 
IAlla,s = USAS Oil· 

Similarly, we define the "a,S-norm" of a vector v by 

IIvU S = 11 Svll • a, a 

17 

(3.14) 

(3.15) 

(3.16) 



2.4 CONVERGENCE OF SEQUENCES OF MATRICES 

Definition 4.1 

A sequence of matrices A(l)=(a~l~), A(2)=(a~2~), •.. converges to a 
1.,J 1.,J 

matrix A= (a. .) if 
1.,J 

Theorem 4.1 

a. .; 
1. ,J 

i,j=1,2, ..• ,N. 

(1) (2) 
The sequence A ,A , ... converges to a limit A if and only if 

for every matrix norm 11.11 a' we have 

lim IIA(n)-All a = O. 
n-

An important condition for the conve~gence of the sequence of powers of 

a matrix is given by the following theorem. 

Theorem 4.2 

Given a matrix A, then lim An=O if and only if 
n-

S (A)<1. 

Theorem 4.3 

2 The matrix I-A is non-singular and the series I+A+A + ..• converges 

if and only if S(A)<l. Moreover if S(A)<l, then 

-1 2 (I-A) = I+A+A + ... = 

18 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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2.5 IRREDUCIBILITY AND WEAK DIAGONAL DOMINANCE 

As we will see in the next chapter, the matrices which are obtained 

from the discretisation of certain partial differential equations (see 

Chapter 1) belong to two important classes of matrices which are considered 

in this section. 

Definition 5.1 

A matrix A=(a .. ) of order N is irreducible if N=l or if N>l and given 
1,J 

any two non-empty disjoint subsets Sand T of W, the set of the first N 

positive integers, such that S+T=W, there exist iEs and JET such that a. .FO. 
1,J 

Another theorem which may well be used as a definition of irreducibility 

is the following. 

Theorem 5.1 

The matrix A=(a .. ) is irreducible if and only if there does not exist 
1,J 

a permutation matrix P such that P-lAP has the form 

= 

where F and H are square matrices and where 0 is the null matrix. 

The concept of irreducibility is quite important, for by Theorem 

5.1 we cannot reduce the matrix system (1.2) to the solution of two 

lower-order systems which preserve the correspondence between the 

equations and the unknowns, and which can be solved independently of 

the original system. 

A useful method for verifying irreducibility in practice is given 

by the following theorem. 

Theorem 5.2 

A matrix of order N is irreducible if and only if N=l or, given 

any two distinct integers i and j with l~i~N, l~j~N, then a . . FO or 
1,J 

there exists i l ,i2, •.• ,ir such that 

(5.1) 



aR, .1'0. 
r ,J 

Next, we illustrate the use of the geometrical interpretation of 

the concept of irreducibility by means of graphs. For a given matrix A 
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(5.2) 

of order N we consider the distinct points Pl,P2, ••• ,PN and we construct 

the directed graph of A by drawing an arrow from P. to P. for each a .. ~O. 
1 J 1, J 

1) ?j.rr- 0 we draw a small loop containing the point Pi. The matrix is 

irreducible if N=l or else there exists a path of arrows from P. to PR, , 
1 1 

PR,' to PR,' ••. ,P t to P. (connected graph). As an example, let us consider 
1 2 r J 

the directed graph of a tri-diagonal matrix of order N 

all a12 
a21 a22 a23 , 0 , , , , 

A = , , (5.3) 
, , 

o , 
a ' a' a 
N-l,N-2 N-l,N-l N-l,N 

aN,N_l aN,N 

The directed graph is given in Figure 5.1 where we can readily see that 

the graph is connected, thus the tri-diagonal matrices are irreducible . 

. . . 

FIGURE 5.1 

The other important class of matrices which also appears in the 

numerical solution of certain partial differential equations are those 

matrices which have diagonal dominance. 
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Definition 5.2 

A matrix A=(a .. ) of order N has weak diagonal dominance if 
1,) N 

la. ·1 a I la .. I, i=1,2, ••• ,N 
1,1 j=l 1,) 

(5.4) 

j~i 

and for at least one i 

N 
la. ·1>Ila. ·1· 

1,1 j=l 1,) 
(5.5) 

j~i 

From Theorem 1.1 we see that when we consider the system (1.2), 

it is vital to establish whether the matrix A is non-singular. Since in 

our study it will be, in certain cases, quite difficult to use the 

criterion of the determinant, we state an alternative criterion given by 

the following fundamental theorem. 

Theorem 5.3 

If A is an irreducible matrix with weak diagonal dominance, then 

det A~O and none of the diagonal elements of A vanish. 

Definition 5.3 

If the inequality (5.5) holds for every i, then the matrix A has 

strong diagonal dominance. 

Corollary 5.4 

If the matrix A has strong diagonal dominance, then det A~O. 

Next, we give a sufficient condition for an Hermitian matrix to be 

positive definite using the properties of irreducibility and weak diagonal 

dominance. 

Theorem 5.5 

If A is an Hermitian matrix with non-negative diagonal elements and 

has weak diagonal dominance, then A is non-negative definite. If A is 

also irreducible or non-singular, then A is positive definite. 
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Proof 

It is known that all the eigenvalues of an Hermitian matrix A are real. 

Let us consider an eigenvalue A of A, then 

det(A-AI) = O. 

If we now assume that A<O, then the matrix A-AI has strong diagonal 

dominance, hence by Corollary 5.4, det(A-AI)#O which contradicts (5.6). 

Thus, all the eigenvalues of A are non-negative and by Theorem 2.1, A is 

non-negative definite. If A is irreducible, then from Theorem 5.3 it 

(5.6) 

does not possess the eigenvalue A=O. Therefore, if we impose the condition 

of irreducibility on A, then all its eigenvalues are positive, hence by 

Theorem 2.2, A is positive definite. 



2.6 ORDERING VECTORS AND CONSISTENTLY ORDERED MATRICES 

Definition 6.1 

Given a matrix A=(a .. ) the integers i and j are associated with 
1,) 

respect to A if a .. #0 or a .. #0. 
1,) ) ,1 

Definition 6.2 

T 
The vector Y=(Yl ,Y2, ••• ,YN) , where Yl 'Y2' ••• 'YN are integers, is an 

ordering vector for the matrix A of order N if for any pair of associated 

integers i and j with i#j we have !Yi-Yj!=l. 

Defini tion 6.3 

T An ordering vector Y=(Y l ,Y2, •.• NN) , for the matrix A of order N, is 

a compatible ordering vector for A if 

a) y.-y.=l if i and j are associated and i>j 
1 ) 

b) y.-y.=-l if i and j are associated and i<j. 
1 ) 

In the above definitions, we have established the concept of the ordering 
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vector and the compatible ordering vector for a given matrix A. Alternatively, 

we will show that the existence of a compatible ordering or an ordering 

vector characterises the class of matrices called "consistently ordered" 

or the wider class, those having "Property A", respectively. 

Defini tion 6.4 

The matrix A of order N is.consistently ordered if for some t there 
t 

exist disjoint subsets Sl,S2, ••• ,St of W={1,2, ••• ,N} such that L Sk=W and 
k=l 

such that if i and j are associated, then jEsk+l if j>i and jESk_l if j<i, 

where Sk is the subset containing i. 

We now consider a matrix where the conditions of the above definition 

are satisfied. Let the matrix A have the form 

~
ll 

A = 0 

o 

. ; . 

(6.1) 



I1 

if Sl={l}, S2={2}, S3={3}, S4={O}, then we see that A is a consistently 

ordered matrix by Definition 6.4. 

The matrix (6.1) belongs to a more general class of matrices which 

have the block tri-diagonal form 

Dl Fl 

El O2 F2 
0 , , 

, , , , , , , , , , , , , , , , , , , 
, , , 

0 
, , , , , , 

E D ' F 
m-2 m-I m-I 

E m-I D m 

where O. are square diagonal matrices. We will refer to such matrix 
1 

as aT-matrix. 

A useful result concerning the T-matrices is given by the following 

theorem. 

Theorem 6.1 

If A is a T-matrix, then A is consistently ordered. 

If a matrix is not a T-matrix, then we use the concept of the 
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(6.2) 

compatible vector in order to verify whether it is a consistently ordered 

matrix. 

Theorem 6.2 

A matrix of order N is consistently ordered if and only if there 

exists a compatible ordering vector. 

If the matrix is consistently ordered, we can construct a compatible 

ordering vector by letting yi=k if iESk for i=1,2, ••• ,N. Furthermore, if 

a compatible vector exists, we can construct t disjoint subsets Sl,S2"",St 

as follows. First we find a=min{Yl'Y2""'YN}, ll=max{yl ,y2, ... ,yN} and we 

determine t=ll-a+l. Further, we let Sk be the set of all i such that 

y. =a+k-l. 
1 



As an application of this case we can verify the correspondence 

between the sets Sl={l}, S2={2}, S3={3} and the compatible ordering 

vector y=(1,2,3)T for the matrix A given by (6.1). 
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2.7 PROPERTY A 

It is clear from Chapter 1 that we will consider matrices whose non-

zero elements form a certain pattern. In this section we will continue 

to look at such matrices and we will define a wider class of matrices, 

those having "Property A". 

Definition 7.1 

A matrix A=(a .. ) of order N has Property A if there exist two 
1,) 

disjoint subsets SI and S2 of IV and such that if i~j and if either a .. ~O 
1,) 

or aj,i~O, then iESl and jES2 or else iES2 and jESl • 

In Section 2.6, we have seen the necessity for the existence of a 

compatible ordering vector for the matrix A to be consistently ordered. 

Next, we state a theorem which provides a similar criterion for a matrix 

to have Property A. 

Theorem 7.1 

There exists an ordering vector for a matrix A if and only if A 

has Property A. Moreover, if A is consistently ordere~en A has 

Property A. 

The next theorem can be regarded as an alternative definition of 

Property A. 

Theorem 7.2 

A matrix A has Property A if and only if A is a diagonal matrix or 

else there exists a permutation matrix P such that P-lAP has the form 

26 

(7.1) 

where Dl and D2 are square diagonal matrices. 

The following theorem presents a method for the construction of a 

consistently ordered matrix which has Property A. 
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Theorem 7.3 

Let A be a matrix with Property A and let y be any ordering vector 

for A. There exists a permutation matrix P such that A'=P-lAP is 

consistently ordered and such that y'=(y -1 ) is a compatible ordering 
a (i) 

vector for A', where a is the permutation corresponding to P. 

y 

(3,3) 

5 (3) 4 5) 
(4,2) 

1 (1) 2 2) 3 (4 ) 

(0,0) (4,0) x 

FIGURE 7.1 

In order to illustrate the applicability of the above Theorem 7.3 

we consider the five point discrete analogue of the Dirichlet problem 

for the region shown in Figure 7.1 with mesh size h=l. The corresponding 

matrix A can be readily seen to be the following 

4 -1 0 0 -1 
-1 4 -1 -1 0 

A = 0 -1 4 0 0 (7.2) 
0 -1 0 4 -1 

-1 0 0 -1 4 

One can verify that y=(1,2,3,3,2) T is an ordering vector for A and 

there does not exist a compatible vector for A. Furthermore, we have a=l, 

S=3 and t=3. It is easy now to construct Sk to be the set containing all 

the i for which Yi=k, k=l,2,3. Thus we have Sl={l}, S2={2,S}, S3={3,4} 

and the permutation is 0(1)=1, 0(2)=2, 0(5)=3, 0(3)=4, 0(4)=5. 

The corresponding permutation matrix is 

1 0 0 0 0 
0 1 0 0 0 

P = 0 0 0 1 0 (7.3) 
0 0 0 0 1 
0 0 1 0 0 
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and finally we find 

4 -1 -1 0 0 

-1 4 0 -1 -1 

-1 0 4 0 -1 (7.4) 
0 -1 0 4 0 

0 -1 -1 0 4 

which is a consistently ordered matrix by Theorem 6.1. 

Finally, the compatible ordering vector is given by Y'=(1,2,2,3,3)T. 

It is evident now that we have to relabel the mesh points of our grid 

along the diagonals. This has been indicated by relabelling the points 

in parentheses in Figure 7.1. 

A thorough discussion of irreducibility, diagonal dominance, 

consistently ordered matrices, Property A and their generalisations can 

be found in Young [1971] and Varga [1962]. 

Finally, we give some additional definitions which will be used in 

subsequent chapters and characterise other classes of matrices. 

Definition 7.2 

A real matrix A of order N is an L-matrix if 

and 

Defini tion 7.3 

a .. >0, 
1,1 

a . . ~O, 
1,) 

i=1,2, ..• ,N 

Vj, i,j=1,2, •.• ,N. 

A real matrix A is a Stieltjes matrix if A is positive definite 

and if (7.6) holds. 

Definition 7.4 

A real matrix A is an M-matrix if (7.6) holds, if A is non-singular 

-1 and if A >,0. 

(7.5) 

(7.6) 



CHAPTER 3 

LINEAR STATIONARY AND NON-STATIONARY 

ITERATIVE METHODS 

29 
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3.1 INTRODUCTION 

We have seen (Chapter 1) that the use of finite difference methods for 

solving the generalised Dirichlet problem may lead to a linear system of 

the form 

Au = b (1.1) 

where A is a given NXN matrix and b is a given vector. The order of the 

matrix equals the number of interior mesh points and may be so large that 

it may be impractical to store the matrix even in a large computer or to 

solve the system by direct methods. On the other hand, since the matrix 

is sparse it is usually possible to store all of the non-zero elements 

and apply various iterative methods~ 

Defini tion 1.1 

(0) (0) (1) The sequence of functions qO(A,b), ql (u ;A,b), q2(u ,u ;A,b), ••• , 

(0) (1) (k-l) qk(u ,u , •.• ,u ;A,b), where 

u(O) = qO(A,b), 

(n+l) (0) (1) (n) 
u = qn+l(u ,u , ••• ,u ;A,b), (1.2) 

is said to be an iterative method. 

We call the iterative method stationary if q is independent of n 
n 

for all n>m, where n,m are positive integers, otherwise it is non-

stationary. If u(n+l)=q(u(n-l) ,u(n-2) , ••• ,u(n-m);A,b), then the degree 

of the method is m. Finally, if qn is a linear function of u(O) ,u(l), 

u(2) , ••. ,u(n-l), then the method is called linear, otherwise it is non-

linear. The form of a linear stationary iterative method of first 

degree is 

Furthermore, it is desirable for any iterative method to satisfy 

the following requirements: 

a) If at any stage we obtain a solution of (1.1), then the 

subsequent iterants remain unchanged (consistency). 

b) If the sequence of vectors defined by (1.3) converges, then 

it converges to a solution of (1.1) (reciprocally consistent). 

(1.3) 
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The conditions under which the above restrictions hold, are given by the 

following theorems. 

Theorem 1.1 

If A is non-singular, then the iterative process (1.3) is consistent 

with (1.1) if and only if 

-1 k = (I-G)A b. (1.4) 

Theorem 1.2 

If I-G is non-singular, then the method is reciprocally consistent 

if and only if 

-1 
b = A(I-G) k. (1.5) 

If both our requirements are valid then the iterative method is completely 

consistent with the system (1.1) in the sense that the only solution of the 

related linear system 

u = Gu + k (1.6) 

is the solution u of (1.1). 

Theorem 1.3 

If A is non-singular, then the iterative method (1.3) is completely 

consistent with (1.1) if and only if it is consistent and I-G is non-

singular. If I-G is non-singular, then complete consistency holds if 

and only if the method (1.3) is reciprocally consistent and A is non-

singular. 

Finally, a more general case is covered by the following theorem. 

Theorem 1.4 

The method (1.3) is completely consistent with (1.1) if and only if 

a non-singular matrix Q exists such that 

G = I-QA, k=Qb. (1. 7) 
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3.2 LINEAR STATIONARY ITERATIVE METHODS 

In this section we will consider known linear stationary methods which 

will be used later for comparison purposes. Let us seek the solution of 

the linear system (1.1) where it is assumed that the diagonal elements of 

A are non-zero. The matrix A can be expressed as the matrix sum 

A = D - CL - Cu 
where D=diag A and CL,Cu are respectively strictly lower and upper tri­

angular NxN matrices, whose entries are the negatives of the entries of 

A below and above its main diagonal of A, respectively. We can rewrite 

(1.1) by substituting A from (2.1) as follows . . 

-1 
Since the diagonal elements of A do not vanish, then D exists, thus we 

can replace the system (2.2) by the equivalent system 

u = Bu + C 

where L + U, 

and -1 
L = D CL' U 

with D = diag A, 

The Jacobi method (J method) can now be defined by commencing with 

an arbitrary vector u(O) and then computing a sequence of vectors 

(1) (2) u ,u , ..• from the relationship 

u (n+ 1) = Bu (n) + c. 

An examination of this iterative method indicates the requirement 

(n). . (n+l) to save the vector u wh11e comput1ng u . The J method is 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

consistent with (1.1) since by Theorem 1.1 and the relationships (2.4),(2.5), 

(2.7) we have 

I-B = I_D-IC = D-l(D_C) = D-IA 

thus -1 -1 (I-B)A b = D b = c. 

If I-B is a non-singular matrix, then from Theorem 1.2 the J method 

(2.9) 

(2.10) 
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is completely consistent. Hence by (2.9) we require A to be a non-singular 

matrix. The assumption of the existence of a unique solution and therefore, 

by Theorem 2-1.1, the requirement of A being non-singular, is intuitively 

connected with the concept of complete consistency. We will therefore 

assume in the remainder of this thesis that A is non-singular (although we 

may often recall this assumption for emphasis). A modified version of the 

J method is the simultaneous overrelaxation method (JOR method) which is 

defined with the introduction of a real parameter w by 

u(n+l) = w(Bu(n)+C) + (l_w)U(n) 

or, equivalently 

A more compact form is given by 

where 

u(n+l) = B u(n) + wc 
w 

B = wB + (l-w)I. 
w 

Evidently, I - B 
w 

-1 = wO A 

hence 1-B is non-singular, if WfO. 
w 

Furthermore, by (2.14) we have 

(I-B )A-lb 
w 

= wc 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

thus by Theorem 1.1 the JOR method is completely consistent with (1.1) for WfO. 

If w=l, we see that the JOR method coincides with the J method. From 

(2.12) we note that the JOR method can be regarded as a form of extrapolation 

of the J method, at least when w>l. The role of the parameter w will be 

considered later in Section 3.6. Both the J and the JOR methods are 

clearly independent of the order in which the mesh points are scanned, 

since the arithmetic is not affected by the different orderings. 

It would seem to be more attractive to use the latest estimates of 

(n+l) (n) the components of u as soon as they are available instead of u 

in (2.8). This results in the following iterative scheme 

u(n+l) = Lu(n+l) + Uu(n) + c. (2.17) 



-1 By definition we have det(I-L)=l, therefore (I-L) exists and we 

1 (2 17) f (n+l) b .. can so ve. or u 0 talnlng 

where 

and 

u(n+l)= Lu(n) + 1 

L = (I_L)-lU 

1 = (I_L)-lc. 

The above iterative procedure is known as the Gauss-Seidel method 

(GS method). If we now apply the same technique to extrapolate the GS 

method as we did with the J method, then we can produce the following 

iterative scheme which is known as the successive overrelaxation method 

(SOR method) 

where w is a real parameter known as the relaxation factor. The matrix 

-1 I-wL is non-singular, hence (I-wL) exists and (2.21) can be rewritten 

to yield 

where 

and 

Evidently, 

u(n+l) = L u(n) + 1 
w w 

L = (I-wL)-l(wU+(l-w)I) = I-w(I-wL)-lD-lA 
w 

1 = w(I-wL)-lc. 
w 

I-L 
w 

-1 -1 
= w(I-wL) D A 

hence I-L is non-singular if w;lO. From (2.25) we have w 
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(2.18) 

(2.19) 

(2.20) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(I-L )A-lb = 1 (2.26) 
w w 

which by Theorem 1.1, indicates that the SOR method is completely consistent 

wi th (1.1) for w;iO. If w=l, then we see that the SOR method reduces 

exactly to the GS method. Finally, we note that unlike the J and JOR 

methods, the GS and SOR methods depend upon the order in which the points 

are scanned in the mesh (Young [1954]). 

Another iterative scheme which involves the residual vector 

(2.27) 

is the Generalised Simultaneous Displacement method (GSO method) defined 

by (n+l) _ (n) R'(b A (n)) u -u + -u (2.28) 



where R is any non-singular diagonal matrix. 

The GSD method can be written in a more compact form to yield 

U(n+l) = D .. (n) 
'l'Ll + Rb, 

where S = I-RA. 

By Theorem 1.4 and the relationships (2.29) and (2.30) we can easily 
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(2.29) 

(2.30) 

verify that the GSD method is completely consistent. A useful observation 

is that if R=D- l , then the GSD method reduces exactly to the J method. 

Further, if we let R=&I, then we obtain the Simultaneous Displacement 

method (SD method) (Forsythe and Wasow [1960]) 

u(n+l) = u(n) + &(b_AU(n)) 

or U(n+l) ="D ou(n) Ab 
.Q: .. +0, 

Cl 

where 

By Theorem 1.4 we have that the SD method is completely consistent 

with (1.1) if a~O. This method was first considered by Richardson [1960] 

but a was varied in each iteration a=& 
n 

. . h B 1 . R 0- 1 . 1terat1ve sc erne. y ett1ng =w 1t 

resulting in a non-stationary 

follows that the GSD method 

degenerates to the JOR method. It has therefore been verified that the 

GSO method is a generalisation of the J, SO and JOR methods for various 

forms of the matrix R. 

Next, we consider a modification of the SOR method which results 

in the symmetric SOR method (SSOR method). Each iteration of the SSOR 

method consists of two half-iterations. The first half is just the 

ordinary SOR iteration while the second is an SOR iteration which scans 

the mesh in reverse order. Consequently, the SS OR iterative scheme is 

defined by 

u(n+l!2)= u(n) + w(LU(n+!)+uu(n)+c_u(n)) 

and u(n+l) = u(n+!) + w(Lu(n+!)+uu(n+l)+c_u(n+!)) 

(n+l) . where again w is a real parameter and U 1S an intermediate 

approximation to the solution. 

(2.31) 

(2.32) 

(2.33) 

(2.34) 
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Evidently, (2.33) and (2.34) can be written alternatively to yield 

u(n+j) = L urn) + w(I-wL)-lc (2.35) 
w 

and u(n+l) = u u(n+j) + W(I_WU)-lc, (2.36) 
w 

where L is given by (2.23) and 
w 

Finally, the SSOR method can be written in a more compact form by 

eliminating u(n+!) from (2.35) and (2.36) to yield 

where 

and 

u(n+l) = & urn) + k 
w w 

&w = U L =(I-wU)-l(wL+(l-w)I) (I-wL)-l(wU+(l-w)I) 
w w 

. -1 -1 -1 = I-w(2-w) (I-wU) (I-wL) 0 A 

-1 -1 k = w(2-w) (I-wU) (I-wL) c 
w 

It can be easily verified that the above method is completely 

consistent with (1.1) if WFO,2 and A is non-singular. Since one SSOR 

iteration combines two SOR iterations we note that the SSOR process is 

dependent upon the order in which the points are scanned in the mesh. 

Further, we see from (2.33) and (2.34) that the SSOR method requires 

twice as much work as the SOR method. Ilowever, it can be shown 

(Niethammer [1964], Conrad and Wallach [1977]) that the work can be 

reduced to become identical with the SOR method. The SSOR method was 

first considered by Sheldon [1955] and it is a generalisation of the 

Aitken method (Aitken [1950]). 

(2.37) 

(2.38) 

(2.39) 

(2.40) 



3.3 CONVERGENCE OF ITERATIVE METIlODS 

In this section we will consider under which conditions the sequence 

(0) (1) of vectors u ,u, ... produced by the iterative process (1.3) converges 

for any arbitrary starting vector u(O). 

Defini tion 3.1 

The iterative method (1.3) is 

converges to a limit u for all the 

Theorem 3.1 

convergent if the sequence 

starting vectors u(O). 

The iterative method (1.3) converges if and only if 

(0) (1) 
u , u , •.. 
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S(G) < 1. (3.1) 

Proof 

Let us assume that the sequence u(O) ,u(l) , .•. produced by the 

iterative method (1.3) converges to the solution vector U, then from (1.3) 

and (1.6) we have 
,(n+l) = G,(n) 

where (n) (n) -
£ :; u - u. 

Evidently, from (3.2) wc have the relationship 

,(n) = G n (0) 
£ • 

Moreover, lim ,en) exists if and only if lim u(n) exists and 
n­

lim u(n)=u if and only if Urn E(n)=O. 
n-

Thus, by Theorem 2-4.2, we have 
n-+oo n--too 
that lim E(n)=O if and only if the inequality (3.1) is satisfied. Let 

n--
us now assume that (3.1) holds, then I-G is a non-singular matrix, hence 

(3.2) 

(3.3) 

(3.4) 

the iterative method (1.3) is consistent and by Theorem 2-4.2 we have that 

1im E(n)=O, hence the proof of the theorem is complete. 
n--

In order to prove that an iterative method is convergent, it is 

preferable to consider other conditions besides (3.1) since it is sometimes 

laborious to evaluate the spectral radius of a matrix. An alternative 

condition for convergence is given by the following theorem, where A is a 

positive definite matrix. 



Theorem 3.2 

If A is a positive definite matrix and if the iterative method (1.3) 

is completely consistent with (1.1), then the method is convergent if R 

is a non-singular matrix and 

T M=R+R -A 

is positive definite, where R satisfies the relationship 

-1 G = I - R A. 

Moreover, we have 
IIGII ! < 1. 

A 

Conversley, if (3.7) holds, then M is a positive definite matrix. 

38 

(3.5) 

(3.6) 

(3.7) 
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3.4 RATE OF CONVERGENCE 

In order to evaluate the effectiveness of an iterative method we have 

to consider both the work required per iteration and the rate for the 

sequence of vectors to converge to the required solution. 

In practice a "measure" for the latter is defined by requiring the 

norm of ern) to be reduced to a fraction p of the norm of the original 

vector e(O). From (3.4), using matrix norms, we have the inequality 

lie (n)1I ~ IIGnll lIe(O)II. 

Then if u(O)tu we have 

lIe(n)II/lIe(O)1I ~·IIGnll. 

Since it is assumed that the method .(1.3) is convergent, we require 

and we select n such that the following inequality is satisfied 

In order for (4.4) to hold for all n sufficiently large such that 

n IIG 11<1, it follows that (4.4) is equivalent to 

I n 
n >- -logp/(-- 10gllG 11). n 

From the inequality (4.5) we obtain a lower bound on the number of 

iterations for the iterative method (1.3). Furthermore, from (4.5) we 

conclude that the number of iterations n depends inversely on the 

expression llogllGnll and therefore this quantity serves as a basis of 
n 

comparison for the different iterative schemes. 

For any convergent iterative method of the form (1.3) the quantity 

R (G) = _l 10gllGnll 
n n 

is the average rate of convergence. 

It can be shown (Varga [1962), Young [1971)) that 

S(G) = Urn (IIGnll)l/n, 
n­

hence we have the following definition. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 



40 

Definition 4.2 

For any converg~nt iterative method of the form (1.3) the quantity 

R(G) = ~!: Rn(G) = -logS(G) (4.8) 

is the asymptotic average rate of convergence or simply the rate of 

convergence. Finally, we define the quantity 

RR(G) = l/R(G) (4.9) 

as the reciprocal rate of convergence of the method (1.3). From (4.5) the 

number of iterations required for convergence is approximately proportional 

to the reciprocal rate of convergence. 
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3.5 SOME TJlEOREMS ON THE CONVERGENCE 

In this section we will state some known theorems, often without proof, 

which provide certain conditions for the convergence of the iterative 

schemes developed in Section 3.2. First ,we impose the restriction on 

the matrix A of the system (1.1) that all its diagonal elements are different 

from zero, i.e. diagA is non-singular. Then we can determine the range of 

w for the JOR method to converge from the following theorem. 

Theorem 5.1 

If the J method converges, then the JOR method converges for O<w~l. 

Another theorem which concerns the SOR method and has been proven 

by Kahan [1958), is the following. 

Theorem 5.2 

If L is defined by (2.23), then, 
w 

S(L ) ~ IW-ll (5.1) 
w 

for all real w, with equality only if all the eigenvalues of L are of 
W 

modulus Iw-ll. Moreover, if the SOR method converges, then 

o < w < 2. (5.2) 

If we require the matrix A to be non-singular, then from Theorem 2-5.3 

the sufficient condition for this restriction is to assume that the 

matrix A is irreducible and has weak diagonal dominance. Under these 

properties, Geiringer [1949) has proved the following theorem. 

Theorem 5.3 

If A is an irreducible matrix and has weak diagonal dominance,then 

(i) the J method converges and the JOR method converges for O<w~l; 

(ii) the GS method converges and the SOR method converges for O<w~l. 

Let us proceed in our study of the conditions under which certain 

iterative methods converge and suppose that A is a positive definite matrix. 



In particular, let us consider the application of Theorem 3.2 to the 

iterative methods considered in Section 3.2, then the following theorem 

can be verified (Young [1971]). 

Theorem 5.4 

If A is a positive definite matrix and D=diagA, then 

(a) IIBllil if 2D-A is positive definite; 

(b) liB,) o<l if ~-A is positive definite or, 
A! 00 

equivalently, if 

0<oo<2/(1-m(B))~2 

where m(B)~O is the smallest eigenvalue of B; 

(c) ilL 11 !<l; 
A 

(d) ilL 11 !<l if 
00 A 

0<00<2; 

(e) U~II !<l if 2R- I _A is positive definite; 
A 

(f) U~,II ! <1 if 0<a<2/M(A)~2 
Cl A 

where M(A) is the largest eigenvalue of A. 

Stein and Rosenberg [1948] have developed an analysis on the 

convergence of the J,JOR,GS and SOR methods when the matrix A is an 

L~matrix. Their analysis is summarised in the following theorem. 

Theorem 5.5 

If A is an L-matrix and if O<oo~l, then 

(a) S(B)<l if and only if SCL )<1. 00 

(b) S(B)<l (and S(L )<1) if and only if A is an M-matrix; 
00 

if S(B)<l, then 

(c) if S (Bhl 

S(L )~l-oo+ooS(B) 00 

and S(L )>,1, then 
<- 00 

S (L )31-oo+ooS (B)>,1. 00 

42 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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On the other hand, the conditions under which the SSOR method converges 

have been summarised in the following theorem. 

Theorem 5.6 

Let A be a symmetric matrix with positive diagonal elements, then the 

eigenvalues of & are real and non-negative for any real w. Moreover, if 
w 

A is positive definite and 0<w<2, then 

11 & 11 1 = S c& ) = 
w A2 W 

ilL 1121 <1. 
W A2 

Conversely, if S(& )<1, then 0<w<2 and A is positive definite. 
w 

Proof 

The matrix & is similar to w 

& = (I-wU)& '(I_wU)-l 
w w 

and from (2.39) &w is equivalent to 

-1 -1 
~w = (wL+(l-w)I)(I-wL) (wU+(l-w)I) (I-wU) 

-1 -1 T = [(I-wL) (wL+(l-w)I)] [(I-wL) (wL+(l-w)I] 

which by Theorem 2-2.2 implies that &w is a non-negative definite matrix. 

Thus, all the eigenvalues of & are real and non-negative for any real w. 
w 

(5.7) 

(5.8) 

(5.9) 

Moreover, if we make the assumption that A is positive definite and O<w<2, 

then by Theorem 2-2.3 there exists A!, the unique positive definite matrix 

such that (A1)2=A. From (2.39),(2.6) we can also have 

-1 -1 -1 &w = I-w(2-w)(I-wU) (I-wL) 0 A 

= I _ 2-w(.!n_C )-lO(.!n_C )-lA 
w w U w L (5.10) 

and 
&' = A!& A-! = I_ 2-w([A!(!o_C )-101] [A! (.!n-c )-lo!]T}. (5.11) 
w w w wU wU 

Since O<w<2 and A!C~-CU)-lO! is a non-singular matrix, then by Theorem 

2-2.2 the second term in the right hand side of (5.11) is a positive 

definite matrix. Hence, from (5.11) all the eigenvalues of &' and 
w 

therefore of &w are less than 

L' = AIL A-! 
w w 

unity. Moreover, if 

and U' = A1U A-! 
w w ' 

then by (2.23) and (2.37) we can easily verify that 

(5.12) 



(L,)T=U'. 
w w 

Therefore, from the above analysis and (2.39) we have 

= S(U'L') = S(&') = w w w II&~II = 11& 11 ,<I 
w A2 

and the first part of the theorem has been proved. 

Let us now make the assumption that S(&w)<l. If A. i=l,2, ••• ,N 
1 

are the eigenvalues of lw' then by Theorem 2-1.2 we have the following 

result 

N 
ITA. = 
i=l 1 

deteR ) = det((I-wU)-l(wL+(l-w) I) (I-WL)-l(wU+(l-w)I)) 
w 

= (l_w)2N. 

Thus, we finally obtain 

Il""'12N 
= 

N N 
I TTA·I "IT 11,·1 " 
i=l 1 i=l 1 

or 

Evidently, for (5.7) to hold it follows from (5.16) that we must 

have Il-wl<l or 0<w<2 since w is real. Furthermore, we seek to prove 

that A is positive definite. By (5.8) and (5.10) we have 

~ j -1 -1 j 
&w = I-w(2-w)D (D-wCL) A(D-wCU) D 

= I-w(2-w)A*, 

where A* = DI(D-wCL)-lA(D-wCu)-lD!. 
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(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

If vi are the eigenvalues of A*, then by (5.17) we have the following 

eigenvalue relationship 

Since now 

\ = l-w(2-w)v i • 

0::1,.<1, 
1 

then from (5.19),(5.20) we obtain 

(5.19) 

(5.20) 

v. > 0 (5.21) 
1 

which by Theorem 2-2.1 implies that A* is positiVe definite. Moreover, 

from Theorem 2-2.1 there exists v~O such that 



where 

(v,A*v) = (w,Aw) > 0, 

-1 ! w = (D-wCU) D v. 

Evidently, from (5.22) it follows that the matrix A is positive 

definite, (see Definition 2-2.1) hence the proof of the theorem is 

complete. 

Corollary 5.7 

Under the hypotheses of Theorem 5.6 we have that 

seLl :i IILII ! < 1-
A 

45 

(5.22) 

(5.23) 
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3.6 COMPARISON OF RECIPROCAL RATES OF CONVERGENCE 

In this section, we will be concerned with the task of reducing the 

reciprocal rate of convergence of the iterative schemes considered so far 

assuming that A is symmetric and positive definite. It can be seen (from 

(4.5) and (4.9)) that the number of iterations required to achieve a certain 

level of convergence is proportional to the reciprocal rate of convergence. 

This will be the basis for our comparison apart from the work involved in 

each iteration. First it can be noted that the matrix B defined by (2.4) 

is similar to the matrix 

Consequently, the eigenvalues of B and hence those of B are real 

and less than unity since D-!AD-! i~ a symmetric and positive definite 

matrix. By the definition of the matrix B we have that its eigenvalues 

Pi satisfy the relationship 

N 

and therefore 

L P. = trace(B) = 0 
i=l 1-

m(B) ~ 0 ~ M(B), 

where m(B) and M(B) are the smallest and largest eigenvalues of B, 

respectively. From (6.3) we conclude that 

m(B) :> P :> M(B) 

where P is an eigenvalue of B. 

Let us consider the JOR method and detetmine the role of the real 

parameter w so as to minimise the spectral radius of S(B). From (2.14) 
w 

we have that S(B ) is given by the expressioil w 

S(B ) 
w = max Iwp+l-wl. 

m(B) :ip~M(B) 

Evidently, for all p the function S(B ) attains its maximum at the end 
w 

points of the range (6.4). Thus (6.5) yields the expression 

S(B) = max(lwm(B)+l-wl ,lwM(B)+l-wl). w 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

Finally, from the above analysis we can readily. verify the following theorem. 



Theorem 6.1 

If 
W = "'-""'7,,,,2,.....,,,,,,,," 2-m(B) -M(B) , 

then S(B~ 
w 

and if W!W, then 

If we let 

= M(B)-m(B) < 1 
2-M(B) -m(B) 

then by (6.1) we have the eigenvalue relationships 

m(B) = l-M(A) 

and M(B) = I-m (A). 

By substituting these values of m(Bl and M(B) into (6.7) and (6.8) we 

obtain 

W = 2 · . M(A)+m(A) 

and • • P(A)-l S(B_) = 
M(A) -meA) 

= · • . 
W M(A)+m(A) P(A)+l 

where • 
peA) = M(~) 

meA) 

is the P-condition number t of the matrix A. 
The relationship (6.12j is an alternative expression of the S(B-1 

W 

in terms of peA). From Definition 4.2 the rate of convergence for the 

JOR method is given by 

R(B~ 
W 

P(A)-l 2 
= -logS (B ~ = -log -'-".~~ - --

W P (A) + 1 P (A) 

. 
for P(A»>l. Evidently, the reciprocal rate of convergence is given by 

the expression 

47 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

1 peA) 
RR(B;;;) = R(B-) - -2- (6.15) 

w. 
From (6.15) we see that peA) is proportional to the reciprocal rate 

tIn generaZ one can define the spectraZ condition number of a non-singuZar 

matrix A by k(A)=IIAII.II[lll. However, if A is positive definite, then k(A) 

becomes the P-condition number denoted by P(A) and is given by the 

expression P(A)=M (A)/m(A). 
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of convergence which in turn is proportional to the number of iterations 

required for the JOR method to converge. This observation shows the 

dependence of the effectiveness of the JOR method upon the condition of the 

matrix A. 

As intimated earlier, the rate of convergence of the SOR, GS and SS OR 

method depends upon the order in which the points are scanned in the mesh. 

However, if the matrix A resulting from a certain ordering is consistently 

ordered, then as we will see from the following theorems,the spectral radii 

of the GS and SOR methods remain constant. 

Theorem 6.2 

If A is a T-matrix with non-vanishing diagonal elements and B the matrix 

as defined in (2.4), then 

(a) If ~ is any eigenvalue of B of multiplicity p, then -~ is also 

an eigenvalue of B of multiplicity p. 

(b) A satisfies 

for some eigenvalue ~ of B if and only if A satisfies 

A+w-l = W~A! 

for some eigenvalue ~ of B. 

(c) If A satisfies either, and hence both of the relations (6.16) 

(d) 

and (6.17), then A is an eigenvalue of L . 
w 

If A is an eigenvalue of L , then there exists an eigenvalue 
w 

~ of B such that (6.16) and (6.17) hold. 

Corollary 6.3 

(6.16) 

(6.17) 

Under the same hypotheses of Theorem 6.2, the set of eigenvalues of L 
2 2 2 

includes the number zero together with the numbers ~1'~2""'~q' where 

±~1'±~2""'±~q are the non-zero eigenvalues of B. 

As a result of Theorem 2-6.1 and Theorem 6,2 we have the following 

generalisation. 
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Theorem 6.4 

If the matrix A is a consistently ordered matrix, with non-vanishing 

diagonal elements, then the conclusion of Theorems 6.2 and Corollary 6.3 are 

valid. 

Furthermore, from the above theorems we have the extended conclusion. 

Theorem 6.5 

If the matrix A is a symmetric consistently ordered matrix with positive 

diagonal elements, then U=S(B)<l if and only if A is positive definite. 

The above theorem is valid, since by Corollary 5.7 the GS method 

converges when A is symmetric and has positive diagonal elements if and only 

if A is positive definite. But by Theorem 6.3 the GS method converges if 

and only if U<l. 

From the above analysis of the SOR method and Section 2-2.6 we see the 

requirement of having a certain technique to scan the mesh in such a way 

so that the resulting matrix has a compatible ordering vector. From Theorem 

2-7.1 we have that if (xO+Pih, YO+qih), i=1,2, ••• ,N is a given set of mesh· 

points, then the resulting matrix A has Property A if and only if there 

exist at least one ordering vector. Two ordering vectors y(O) and yell are 

the following: 

(0) 

{: 
if p.+q. is even 

1 1 
Y = 

if Pi+qi is odd 

yell = Pi+qi' 

The following methods of relabelling the mesh points guarantee that 

the resulting matrices have y(O) or yell as a compatible ordering vector 

and hence they all lead to consistently ordered matrices. 

1. A point (xO+ph, YO+qh) occurs before (xO+p'h, YO+q'h) if q<q' or 

if q=q' and p<p'. This ordering is known as the 02 or the natural 

ordering since the mesh is scanned from left to right and from 

bottom to top. 

(6.18) 

(6.19) 
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2. All points (xO+ph, YO+qh) with p+q even (or red) occur before those with 

p+q odd (or black). This ordering is called the red-black, or 01' 

or checker-board ordering. In this ordering all red points are 

scanned before the black points are updated, or vice versa. 

3. A point (xO+ph, YO+qh) occurs before (xO+p'h, YO+q'h) if p+q<p'+q'. 

This ordering is known as "ordering by diagonals" since we scan the 

mesh along the diagonals. 

We now give some theorems which form the basis of the theory of the 

SOR method when A belongs to the class of consistently ordered matrices 

and B has real eigenvalues. 

Theorem 6.6 

If A is a consistently ordered matrix with non-vanishing diagonal 

elements such that -1 B=I-(diag A) A has real eigenvalues, then 

S (L ) = S(L ) t < 1 
W W 

if and only if 
o < W < 2 

and 
S(B) < 1. 

For the determination of the optimum value w in the SOR method we 

have the following theorem (Young [1954,1971]). 

Theorem 6.7 

If A is a consistently ordered matrix with non-vanishing diagonal 

elements such that B=I-(diag A)-lA has real eigenvalues and such that 

il=S(B)<l and if wb is defined by 

Lkr 2 1 + w = = b 
1+h-ii

2 

(6.20) 

(6.21) 

(6.22) 

tS(L ) denotes the virtuaZ speatraZ radius of L (see Young [1971] p.170). 
w w 



then 
S (L ) = w. -1 

wb 0 

and if Wfwb, then 

S(L) = S(L ) > S(L ). 
W W wb 

Moreover, for any W in the range 0<w<2, we have 

lwiT+ (w2jI2 -4 (w-l)) h 2 . f 0 
l- 2 -:J ,1 ~w~~ 

S(L ) = S(L ) = 
W w 

w-l 

From the above theorem we can show that if the eigenvalues of B 
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(6.23) 

(6.24 ) 

(6.25) 

are real, then the rate of convergence of the SOR method using the optimum 

relaxation factor wb is greater by an order of magnitude than the rate 

of convergence of the JOR method. 

Theorem 6.8 

Under the hypotheses of Theorem 6.7 and for ~,w given by (6.22) 

and (6.7) respectively, then 

Proof 

RR(L ) 
wb 

lim-;;::;::;:;:::~ 
~+l (RR(B_) 

W 

By Theorem 6.4 we have that 

1 
= 

212 

S(B) = M(B) = -m(B) < 1. 

whereas by (6.7) and (6.27) it follows that 

W=1. 

(6.26) 

(6.27) 

(6.28) 

Consequently, under the hypotheses of the theorem,the JOR method coincides 

with the J method i.e., 

B- = B. w 

By (6.23) the rate of convergence for the SOR method is given by 

R(L ) = -210g ( ~ 1 
Wb 1+A_ii2. J 

whereas by (6.29) the rate of convergence for the JOR method is 

R(B) = -logii. 

(6.29) 

(6.30) 

(6.31) 



By applying L'Hospital's rule we successively obtain the result 

R(L ) A[R(L )] 
212( -2logii)~ = lim 

wb 
= lim 

dii wb 
lim 212. = 

ii .... r IR(B_) ii .... r :ii [R(BW-)] ii .... r 1 _2 
W 

-)J 

Hence, by the definition of the reciprocal rate of convergence the proof 

of the theorem is complete. 

From (6.32) we see that there is an order of magnitude improvement 

of the SOR method over the JOR method. This improvement also remains 

over the GS method, as it can be seen from Corollary 6.3. On the other 

hand, it is known (Young [1971], Chapter 7) that the Jordan canonical 

form of L is not diagonal and hence the gain in convergence rate is 
wb 

somewhat less than expected. 

Furthermore, we can express the spectral radius of the SOR method 

in terms of the P-condition number of A. By (6.13) and (6.22Ywe have 

w = 1 JirW-lJ 
b lip(A)+U' 

hence (6.23) yields the following expression 

= r fr(A) _11 2 

[jP(A)+J 

Finally from (6.34) we obtain successively 

~!Prf(A) _l~ 4 = -logS(L ) = -2log ..-
wb /P(A)+l Ip(A) 

A 

for P(A)>>l, 

Consequently, (Evans [1973]) we have shown the fOllowing. 

Corollary 6.9 

Under the hypotheses of Theorem 6.7 and ~ satisfying (6.22), 

RR(L )- fp(I) . 
wb 4 

then 

The same result could have been obtained more simply by using (6.26) and 

t From (6.1) and (6.13) we note that P(A)=(l+S(B))/(l-S(B)). 
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(6.32) 

(6.33) 

(6.34) 

(6.35 ) 

(6.36) 
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(6.l~l). Finally, from (6.35) we can state our main conclusion, that the 

number of iterations -for the SOR method is proportional to the square root 
. 

of the P-condition number of the original matrix A. 

As we have seen so far, if A is a positive definite consistently 

ordered matrix, then a substantial improvement can be achieved using the 

SOR iterative scheme. with an appropriate relaxation factor as compared 

with the J, GS, JOR and GSPmethods. It is interesting to note that we 

can actually relax the conditions on the matrix A. It is known (Kahan [1958], 

Varga [1959]) that the theory of the SOR method holds with approximately the 

same results if the matrix A is a Stieltjes matrix. For such matrices we 

have again that S(B)<l, thus one can compute wb by (6.22). 

Theorem 6.10 

If A is a Stieltjes matrix and if wb is given by (6.22), then the 

following inequalities hold 

S(L ) ~ (Wb-l)!. 
wb 

A comparison of the SOR method with the JOR method can be carried 

out, in the case where A is a Stieltjes matrix. From (6.3) we have that 

m(B) ~ M(B) = iT. 

It is evident that (6.8) is minimised if m(B)=O, hence 

M(B) 
S (Boo) >. 2-M(B) 

From (6.39) we can work analogously towards the proof of Theorem 

6.8 and derive the fOllowing: 

Lemma 6.11 

If A is a Stieltjes matrix, then we have 
R(B-) 

!im
l
_ R(B) = 2. 

)I .... 

On the other hand, from (6.37), (6.23) and (6.39) we easily prove; 

(6.37) 

(6.38) 

(6.39) 

(6.40) 



Corollary 6.12 

Under the hypotheses of Theorem 6.10 we have 

RR(L ) ~ IRR(B_). 
wb ~ w 

By comparing the relationships (6.26) and (6.41) we conclude that 

even though the reciprocal rate of convergence for the SOR method, 

when A is a Stieltjes matrix, may be greater than in the consistently 

ordered case, we still have an order of magnitude improvement over the 

JOR method. 

As we have seen the SOR method is not affected by the different 

consistent orderings mentioned earlier. This is not the case with the 

SSOR method where these consistent orderings yield a convergence rate 

which differs by an order of magnitude even though more work is required 

per iteration. Indeed, with aI-ordering the SSOR method is no better 

than the GS method which converges with an order of magnitude slower 

than the SOR method (D'Sylva and Miles [1963]). This is shown in the 

following theorem (Wachspress [1966], Young [1971]). 

Theorem 6. 13 

Let A be a positive definite matrix of the form (2-7.1), then 

1 2 2 - 2 
S(&w) = S(Lw(2_w)) ~ 1 - 2"' (2-w) (l-Il) 

and unless w=l, we have 
_2 = 1-1 • 
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(6.41) 

(6.42) 

(6.43) 

From the above theorem we conclude that there is no justification 

whatever for using aI-ordering with SSOR. We will therefore consider 

the case where the natural ordering is used i.e.,the matrix A is not of 

the form (2-7.1). 

The analysis for the determination of a "good" value for w in the 

SSOR method can be summarised in the following .theorem (Young [1974]). 



Theorem 6.14 

Let S, M and m be numbers such that 

S (LU) ~ i3 

and 
-2~m~m(B)~0~M(B)~M~min(1,21S), 

then a-good bound on S(& ) is given by 
w 

1- w(2-w) (I-M) - 1 - 1 , if a~ or if a<4 and w~w* 

S(& ) 
w 

2 
l-wM+w 1i 

Here, 

1- w(2-w) (I-m) 
2 -

1-wm+w "S" 

"f Q 1 d * ,1 ~<4 an w>w. 

-1 
for a<4 we define w* by 

w* = 
2 

1+1I-4ii 

Moreover, the above bound is minimised when 

2 = w.. if M~4ii 
1+/1-2M+4a M 

_-;::2=== = w* , if M>,4S. 
1+/1-4li 

The corresponding value of-Sea ) w
1 

is then given by 

1 - I-M 

/1-2M+4i3 , if M~4B I-M 1 + S(& ) ~ 1I-2M+41l w1 

1-h-4i3 -
::-:-=-~ = w*-l, if M>-4a. 
1+/1-4ii 

The above bounds can be modified to yield the expressions 

1-1f.:M I" f - M , a~4 
l+/l-M 

S (& ) 
l-/-,t " M-I 

w1 
~ 

IJ1-M 
' If ~a~4 

2 

H 1-'1' -2- " - 1 

:N-
' If a>-4 

1+)' -2-
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(6.44) 

(6.45) 

(6.46) 

(6.47) 

(6.48) 

(6.49) 

(6.50) 



where 

( 

2(ii_;}))-1/4 
y = 1+ I-M 

1 We note that for the case S(LU)~4' the results of Theorem 6.14 

and the formulae (6.48),(6.49) were obtained independently by 

Axelsson [1972]. This problem had also been considered earlier by 

Habelter and Wachspress [1961] using variational techniques. They 

developed an implicit equation for determining w, (it involves the eigen-

vector of S(& ), where Wo is the optimum value of w). This equation was 
Wo 

used by Evans and Forrington [1963] to develop an iterative scheme for 

determining the optimum W of the SSOR method for the model problem. 

A comparison between the asymptotic bounds on RR(& ) and RR(B_), wl W 

using the relationships (6.39),(6.29) 'and (6.50), is given by the 

following table. 

Asymptotic Bounds on RR(& )!lRR(B_) 
Range of ii 

,w
l 

w 

General Case Property A 

-M 1 1 
1l~4 

.fi '2 

M - 1 1 1 
~1l~4 , 12 

- 1 -1 _l_y -1 
Il>- y 4 rz 

TABLE 6.1 

Finally, from (5.7) and Theorem 2-3.1 we have the result 

which gives 

RR(L ) ~ 2RR(& ). 
w

l 
wl 

From (6.53) it follows that we can obtain bounds on RR(L ) in wl 
terms of RR (B_) for the various cases (Table 6.1.). However, it is 

W 

expected that in general these bounds will not be as good as the ones 
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(6.51 ) 

(6.52) 

(6.53) 



given by (6.26) and (6.41). On the other hand, for the case of a 

consistently ordered matrix the bound (6.26) for RR(L ) is smaller than 
"'b 

the best possible bound on RR(& ), namely ~RR(B_). This observation 
"'1 '" 

suggests that even if we employ Niethammer's scheme (Niethammer [1964]) 

to reduce the work per iteration of the SSOR method to that of the SOR 

method there is little to be gained by using the former method. However, 

the eigenvalues of the SSOR iteration matrix & are real and non-negative 

'" 
(see Theorem 5.6) and under these conditions, it is possible to accelerate 

the SSOR method by an order of magnitude by means of semi-iteration 

(Varga [1957], Golub and Varga [1961]). This approach is precluded for 

SSOR with optimum "'="'b since the eigenvalues of L are complex. 
"'b 
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3.7 SEMI-ITERATIVE METHODS 

Let us again consider the completely consistent linear stationary 

iterative method defined by 

u(n+l) = Gu(n) + k 

-1 where I-G is non-singular and k=(I-G)A b. From the theory of 

summability of sequences we can often develop another sequence of 

(0) (1) vectors v .v •.•• such that either the new sequence converges when 

the old one does not or else the new sequence converges faster than the 

old one. The new sequence can be considered as a linear combination of 

the old one i.e. 
n. (k) 

= LCt (n)u 
k=()< , 

Our object here is to determine the constants Ctk(n) such that the 

rate of convergence of the new iterative procedure is greater than the 

one given by (7.1). It can be stated that in general (7.2) is a non-

stationary method associated with a linear stationary iterative method 

of first degree. 

The new process defined by (7.2) is known as the semi-iterative 

method (Varga [1957]) with respect to the linear stationary method of 

(7.1). A natural restriction on the coefficients Ctk(n) is 

n=O,l ,2, ...• 

If we let 
~(n) (n)-
E = V -u 

where u is the true solution of (7.1). then from (7.2) and (3.3) we have 

hence by (3.4) 

~(n) 
E = . £ Ct (nJE (k) 

k=O k 

n 
.(n) (r ()Gk) (0) 
E = l. Ctk n E 

k=O 

Furthermore. by defining the polynomial Pn(x) 

n k 
= L Ctk (n)x .' 

k=O 
P n (x) 

to be 
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(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 



we can write (7.6) in the form 

g(n) = P (G) E (0) = P (G) E(O) 
n n· 

In addition, we assume that for some real numbers a and a with 

a~a<l the eigenvalues ~ of G are real and lie in the interval 

a :; Jl :; a < 1. 

Then from (7.8) it follows that 

Thus we are naturally led to the minimisation of 

where P (1)=1. 
n 

In order for the above problem ,to be reduced to a standard one we 

map the interval a:;jl:;a onto the interval -l:;y:;l by the transformation 

and 

If we now let 

_ 2~-(a+a) 
y - a-a 

1 
~.= I[(a-a)y+(a+a)]. 

1 
Qn(Y) = Pn(I[(a-a)y+(a+a)]), 

the problem is reduced to finding the polynomial ~(y) of degree n or 

less such that ~(z)=l, where 

z = y(l) = ~2-,.,(",a+--,a~) 
a-a 

and max I~(Y)I 
-l:;y:;l 

is minimised. The solution of this problem is known (Markoff [1892], 

Flanders and Shortley [1950]) and is given by 

Tn(Y) 
~(y) = T (z) 

n 

Moreover, from the relationships 

we have 

P (jl) 
n 

= liT (2-(a+a)) 
n a-a ' 
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(7.8) 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14 ) 

(7.15) 

(7.16) 

(7.17) 

(7.18) 

(7.19) 



Finally, by (7.8) and using the three term recurrence relation of 

the Chebyshev polynomials we obtain 

e(n+l) = 2 [2G-(S+a)I] 
S-a 

Tn (z) ~(n)T _cn.:...--=..l7""(Z""') ~(n-l) 
;;;T~-;(~) e: - l' 1 (z) ~ 
n+l Z n+ 

which by (7.4) can be written in terms of the new vectors v(n) as 

where 

with 

v(n+l) = P [p(Gu(n)+k)+(l_p)u(n)]+(l_p )u(n-l) 
n+l n+l 

2 
p = ."--;"-..,,.,... 2- (a+S) 

PI = 1 

( a

2r P2 = 1- T ' 

Pn+l = (1- ~2 pnr

1 

i n=2,3, •.• 

a = S-a 
2- (S+a) 

We notice that (7.21) is obtained as a combination of a two stage 

acceleration of (7.1). Firstly, we could consider the JOR version 

applied to (7.1), which is defined by 

u(n+l) = p(Gu(n)+k)+(l_p)u(n) 

and then for further acceleration we could consider the Chebyshev semi-

iterative method with respect to (7.25), as defined in Golub and 

Varga [1961], in order to obtain (7.21). From (7.9) we note that we 

do not always require the basic iterative scheme (7.1) to be convergent. 

Also, the recursive relation (7.21) shows that it is unnecessary to 

form the auxilary vector iterates u(n) in order to determine the vectors 

v(n). Finally, (7.21) requires an additional vector of storage over 

(7.1), which can be of considerable weight in practice, if computer 

storage is limited. However, as we will see the application of the 

semi-iterative process (7.21) can often give a convergence rate 

accelerated by an order of magnitude. 
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(7.20) 

(7.21) 

(7.22) 

(7.23) 

(7.24) 

(7.25) 



We can rewrite (7.21) in the form 

u(n) = P (G)u(O) + k , 
n n 

where P (G) is a certain polynomial in G and k is a suitable vector. 
n n 

The virtual spectral radius can be obtained by (7.16), (7.18) and is 

given by 
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(7.26) 

S(P (G)) = max Jp (11) J = liT (z). (7.27) n n n 
a~lJ~B 

By the definition of Chebyshev polynomial it can be shown (Young [1971] 

that 
S(P (G)) = 

n 

where 

and 1 a = 2 
a = 

1+h_a2 

On the other hand, the average 'rate of convergence 

Rn(Pn(G)) = - ~ lOgS(Pn(G)) 

approaches the asymptotic average rate of convergence, or simply the 

rate of convergence 

R (P (G)) 
"" n 

1 
= -2 logr 

An analogous result to (6.26) can be obtained, if one follows the 

proof of Theorem 6.8. Indeed, for n sufficientlY large we have 

where 

and 

lim 
a ... r 

R",,(Pn(G)) 

IRl (P 1 (G)) 
= 12, 

r! 
Rl(Pl(G)) = R(~) = -log l+r = 

G- = 15G+ (1-15) I. 
p 

-loga 

From (7.33) and (7.34) one can verify that for n=l the semi-

iterative process degenerates to (7.25). The relationship (7.32) 

establishes the fact that by using optimum sew-iterative techniques 

based on a given method, the reciprocal asymptotic average rate of 

convergence of the SI method is improved by an order of magnitude (,'H I 

than the optimum extrapolated one. 

(7.28) 

(7.29) 

(7.30) 

(7.31) 

(7.32) 

(7.33) 

(7.34 ) 
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3.8 VARIABLE EXTRAPOLATION METHODS 

In the previous section it was shown how we are able to construct an 

effective iterative process using the concept of semi-iterative technqiues. 

It was also mentioned that in the new procedure each vector v(n+l) requires 

the computation of two previous vectors v(n) and v(n-l). If computer 

storage is limited, then we can consider another form of accelerating the 

basic iterative process (7.1). This can be achieved by allowing the 

parameter P in (7.25) to vary in each iteration, hence we have 

u(n+l) = e (Gu(n)+k) + (1-8 )u(n) 
n+l n+l' 

where 81,8 2, •.. are iteration parameters. 

This idea was presented by Richardson [1910] and applied to a 

certain method of the form (7.1). The iteration parameters e are 
n 

selected in the cyclic order 8l,82, ..• ,8m,8l,e2' ... where m is an 

integer. From (8.1) we have that given 8l ,e2, .•• ,8m, then 

for a suitable vector k and P (G) is the polynomial m m 
m 

P (G) = TT (8kG+(1-ek)I). 
m k=l 

If one now follows the analysis of the previous section, then it 

can be easily concluded that the minimised polynomial Pm(~) is given by 

T (2~- (6+a )) 
m 6-a p (~) = 

m T (2- (Il+a) J 
m 6-a 

The iteration parameters 8k can be determined by equating the roots 

of (8.3) and (8.4). Thus we obtain values for the parameters ek of the 

form 

= 
2 , k=1,2, ..• ,m. 

2 (a) (2k-l)1r 
- ~-a cos 2m - (tl+a) 

The virtual spectral radius of (8.1) can be verified by (8.4) 

to be 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 
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where i is an integer determining the number of cycles. It can be seen 

from (8.6) and (7.28) that as m increases, then the rapidity of convergence 

tends to the one given by the semi-iterative method. 

However, numerical experiments (Young [1954a,1956], Young and Warlick 

[1953]) show that for large m numerical instability may occur. Also, it 

is undesriable to select m very large because convergence is expected 

after im iterations. 
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3.9 SECOND-DEGREE METHODS 

An accelerated scheme similar to (7.21) can be produced by considering 

constant iteration parameters throughout the process. By rewriting (7.21) 

in the form 

(9.1) 

we can obtain the linear second-degree method 

u Cn+l ) = uCn)+~(uCn)_uCn-l))+ n(GuCn)+k_u(n)) (9.2) 

where we replaced Pn+l-l by ~ 
2Pn+ l 

and 2-(a+S) by n. 

The form of (9.2) is a special case of the linear stationary 

iterative method of second-degree given by 

(n+l) _ G (n) H (n-l) k 
u - lU + lU + 1· (9.3) 

We can see (Golub and Varga [1961]) that (9.3) can be written as 

["'0' [:1 
I (n-l) 

[:1 
u 

= + 
u(n-l) Gl 

(n) u 

(9.4) 

The iterative process (9.4) is convergent if and only if 

S(M) < 1 (9.5) . 

where 

M = (9.6) 

Thus, if ~ is an eigenvalue of M, then the roots of 

2 det(A I-AGl-H l ) = 0 (9.7) 

must be less than unity in modulus for (9.5) to hold. In the case of 

(9.2), it is easily seen that (9.7) becomes 

2 
det(A I-A(nG+(l-n+~)I)+~I) = 0, 

hence if ~ is an eigenvalue of G, then the following relationship holds 

A2-~(n~+1-n+~)+~ = O. 

For fixed ~ the root radius i.e., rnaxlAl ~s minimised when 
2 ~ 

(n~+l-n+~) = 4~ 

(9.8) 

(9.9) 

(9.10) 



thus ~ee (7.9)) we have the relationships, 

n(a-l)+l+~ = 2~! 

and n(a-l)+l+~ = _2~i. 

Consequently, by adding (9.11) and (9.12) we can determine n 

from the relationship 

6S 

(9.11) 

(9.12) 

_ 2(1+~) 
n - 2-(a+a) (9.13) 

Moreover, from (9.13) and either of (9.11), (9.12) the best choice 

of ~ is given by 

where 
2 

1+h_a2 

and a is defined in (7.24). 

Finally, from (9.14) and (9.13) we obtain the best value of n 

by the expression 

From (9.14),(9.15) ,(9.9) and (7.29) the spectral radius of M is 

given by 
S (M) 

thus the rate of convergence 

R(M) 
1 

= -2 logr 

is comparable with the one obtained by semi-iterative techniques. Also, 

by (9.17) and (7.31) we conclude that the rate of convergence of 

semi-iterative and second degree methods depends on the same quantity r. 

On the other hand, it can be proved (Young and Kincaid [1969]) that the 

semi-iterative method yields greater acceleration than the second-degree 

methods as expected, since in the latter the coefficients are constants 

(9.14) 

(9.15) 

(9.16 ) 

(9.17) 

(9.18) 

whereas in the former they are variables. However, as with semi-iterative 

methods, we need to store two vector iterants for each iteration and this 

storage requirement can be severe for large syst~ms of equations, or 

computers with limited storage capacity. 
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3.10 THE CONJUGATE GRADIENT METHOD 

In this section we will briefly consider the conjugate gradient 

method (CG method) introduced firstly by Hestenes and Stiefel [1952], 

Stiefel [1952] as an iterative method for solution of large sparse systems 

(Reid [1971]). 

As a matter of fact we will consider the CG·method as an acceleration 

procedure analogous to the SI method with respect to the iterative method 

(1. 3) • 

Let us again consider the linear system 

Au = b (10.1) 

where A is an NXN symmetric and positive definite matrix. The quadratic 

functional related to the system (10.1) is given by 

1 Q(u) = I(u,Au)-(u,b) = const. 

This functional defines a family of similar ellipsoids in the Euclidean 

-1 N-dimensional space, whose common centre is A b, the point at which 

Q(u) takes its minimum value. For any arbitrary vector u(n), the 

residue r(n) is given by 

r(n) = b_Au(n) = -[Grad Q(u)]tu(n) 

(10.2) 

(10.3) 

and it is always normal to the surface of the ellipsoids defined by (10.2). 

-1 Thus, we attempt to proceed to the solution A b, the centre point of 

the ellipsoids, by a sequence of vector displacements of the form 

u(n+l) = urn) + ~ pen) 
n 

where pen) is an arbitrary direction and ~ is an arbitrary constant. 
n 

The problem now is to determine ~ such that the quadratic function 
n 

Q(u(n+1)) will be minimum for a given direction pen) . 

From (10.2) and (10.4) we have that Q(u(n+l)) is given by the 

(10.4) 

expression ( +1) 1 () ( ) ( ) ( ) ( ) ( ) 
Q(u n ) = I((u n +€nP n ),A(u n +€nP n ))-((u n +€nP n ),b) (10.5) 

t (n) where [Grad Q(u)]u represents a veator with aomponents 
aQ(u(n)) 

a " i=1"2" ... .,,n. u
i 



hence 

The optimum value of E is obtained by setting the expression (10.6) 
n 

equal to zero, which immediately gives 

E = n 
( 

(n) (n) ) p ,r 
(p (n) ,Ap (n)) 

Also, by using the definition of u(n+l) from (10.4) and the value 

we have just obtained for E , we have 
n 
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(10.6) 

(10.7) 

(10.8) 

which implies that the direction pen) and the residual r(n+l) are orthogonal. 

The choice of the direction vector pen) differentiates many methods 

which are all convergent for any given p(n). If we wish to choose 

pen) to lie along the line of steepest descent, we simply take 

p(n)=r(n) and by (10.4) and (10.7) we immediately determine the known 

Steepest Descent method which results in a very slow convergence in many 

cases. 

A better strategy for choosing the direction pen) is based on the 

knowledge that the centre of the ellipsoid lies in the plane conjugate to 

a given chord. . (0) (1) N-l Thus, lf we choose the vectors p ,p , ••• ,p to be 

pairwise conjugate in the sense that 

(p(i) ,AP(j)) = 0 

for i#j, then by determining p(n+l) by 

(n) (n) (n-l) 
p = r +CI lP n-

we can combine (10.9) and (10.10) to obtain 

( (n) A (n-l)) = ( (n) A (n-l)) ( (n-l) A (n-l)) p ,p . r ,p + Cl IP , P n-

and finally 

Cl = 
(r(n) ,Ap (n-l)) 

n-l (p (n-l) ,AP (n-l)) 

= 0 

(10.9) 

(10.10) 

(10.11) 

(10.12) 



This choice of pen) results in the Conjugate Gradient iterative 

scheme which is defined as follows 

(n) 
p 

a n·l 

= U(n)+E pen) 
n ' 

n=0,1,2, ••. ,m-l 

= b_Au(n) n=O,1,2, ... ,m 

= {Den) p(n-l) 
r +a 1 ' n-

n=-l 

n=0,1,2, .•. ,m-l 

" 1- n=1,2, •.• ,m-l 

° 
(r(n) ,AP(n-l)) 

(p(n-l) ,AP(n-l))' 

n=O 

where m is the smallest integer such that 

rem) = 0. 

We summarise below some basic properties of the CG method (see 

Beckmann [1960]) 

and 

(r(i) ,r(j)) = ° 
(p (i) ,Ap (j)) = ° 

P (i) #0 

m Ii N 

(r (n) ,r (n)) 

( (n-l) (n-l)) r ,r 
a = n-l 

i,j=O,l, ••. ,m-l 

i,j=O,l, ••• ,m-l 

i=O,l, ..• ,m-l 

n=1,2, ... ,m-l. 

From (10.17) we easily conclude that the CG iterative scheme 

converges in at most N iterations,where N is the order of the matrix A. 

Although the CG, method theoretically gives an exact answer in N-steps, 

this is not what actually happens in practice, where the round-off 

errors may strongly affect the orthogonality of the residuals. 

In the past few years a number of modifications and improvements 

have been made to the CG method (see Rutishauer [1959], Daniel [1967], 

Reid [1971], Axelsson [1974] and Evans [1973a]). One important 

modification has been the formulation of the method as a second degree 

method i.e. the determination of u(n+l) in terms of u(n) and u(n-l) . 
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(10.13) 

(10.14) 

(10.15) 

(10.16) 

(10.17) 

(10.18) 

(10.19) 

(10.20) 

(10.21) 

(10.22) 



By replacing n by n-l in (10.13) we have 

(n) (n-l) (n-l) 
u = u +8 IP n-

or a a 
n-l (n) n-l (n-l) (n-l) 
-- 8 U = --£ U +8 a IP 
8 1 n 8 1 n n n-n- n-

which by eliminating p(n-l) using (10.15) becomes 

a n-l (n) ---e: u = 
8 1 n n-

a 
n-l (n-I) (p (n) (n)) --e: U +8 -r 

E 1 n n n-

and finally eliminating pen) by (10.13) we obtain 

(n+l) 
u = 

E 
(1+ _n_ a )u(n) 

E n-l n-l 

which can be written in the more compact form 

where 

and 

E 
=l+_n_a 

E 1 n-l n-
8 
n 

Yn+l = P 
n+l 

We now proceed to simplify the expressions of Pn+l and Yn+l by 

expressing them in terms of certain inner products. 

We express (10.27) in terms of residuals by using (10.14) hence 

it follows that 

(n+l) 
r 

If we now take the inner product of both sides of (10.30) with 
(n) 

r , 

then by (10.18) we get 

and since 

o = Pn+l ((r(n) ,r(n))-Y
n

+
l 

(r(n) ,Ar(n))) 

p lto we obtain n+ 

( 
(n) (n)) 

Yn+l = r ,r 
(r (n) ,Ar (n) ) 

On the other hand, if we take the inner product of both sides of 

(10.30) with r(n-l) yields 

(n-l) (n) (n-l) (n-l) 0= P (-Y (r Ar ))+(l-p)(r r ) n+l n+l' n+l ' 

or 
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(10.23) 

(10.24) 

(10.25) 

(10.26) 

(10.27) 

(10.28) 

(10.29) 

(10.30) 

(10.31) 

(10.32) 

(10.33) 
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_ 1+ r , r ~ ( (n-l) A (n)) J- l 

- . (r(n-l) ,r(n-l)) Yn+l 00.34) 

Furthermore, by replacing n by n-l in (10.30) we have 

r(n) = p (r(n-l) _Y Ar(n-l)) + (l-p )r(n-2) 
n n n (10.35) 

and if we take the inner product of both sides with r(n) yields 

( 1) () ( (n) (n)) 
(r n- ,Ar n )= _ r ,r 

YnPn 

thus (10.34) takes the form 

(10.36) 
( (n-l) (n-l)) r ,r 

Summarising our results the CG·method can also be defined as 

u(n+l) = p (u(n)+y r(n))+(l_p )u(n-l) 
n+l n+l n+l (10.37) 

where 

=E-
Yn+l ((n) (n)) rl r ,r . ~ ,n=1,2, ... (10.38) Pn+l Yn ((n-l) en-I)) Pn r ,r 

and = (r(n) ,r(n)) 
(10.39) Yn+l (r (n) ,Ar (n)) 

From (10.37) we note that the CG method is of the same form as the 

SI method (and the second degree method) the only difference being that 

here the parameters are variables (whereas in SI method we have y l =y2= ... =p) 

chosen to minimise the quadratic function Q(u). 

As a matter of fact, we expect the CG method to produce a better 

rate of convergence than with the application of SI techniques since in 

the former we have one additional parameter Y 1 which is variable instead n+ 

of being constant (SI method). In comparing the CG method with the SI 

method we note that the former requires more computations per iteration 

but, on the other hand, it does not require the estimation of the largest 

and smallest eigenvalues of the matrix A. Moreover, it can be proved 

(Young [1975)) that for all n we have 

ii lIu (n) -ull ! 
A 

(10.40) 



where u is the exact solution of (10.1), lien) is the approximate solution 

obtained by the CG method and u(n) is the approximate solution obtained by 

the SI method with respect to the basic iterative scheme (10.1). 

The relationship (10.40) indicates an essential advantage of the 

CG method over the SI method because with the latter only the upper and 
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lower bounds for the eigenvalues of the coefficient matrix are used whereas 

the former takes advantage of the distribution of the eigenvalues of G. 

Finally, we note that the relationship given by (10.40) shows that the 

CG·method is better, in the sense of minimising the A!-norm of the error 

vector than any linear non-stationary second degree method. Since we can . . 

obtain estimates for the convergence rate of the SI methods we thus obtain 

a lower bound on the rapidity of convergence of the CG method. Consequently, 

from (10.40) and from the fact that in the SI method we have 

lIu (n) -illl ! 
A 

2rn/ 2 
~ =--=-­n l+r 

we immediately obtain 

llli(n)-iill ! ~ 
A 

2rn/ 2 

n l+r 

lIu (0) -illl ! 
A 

lIu(O) -illl ! 
A 

by assuming u(O)=u(O) , where r is given by (7.29). 

(10.41) 

(10.42) 
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CHAPTER 4 

AN INTRODUCTION TO PRECONDITIONING TECHNIQUES 
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4.1 INTRODUCTION 

As it was shown in the previous chapter, the rate of convergence R(G) 

of all the iterative schemes considered so far depends inversely upon the 

P-condition number of the scaled coefficient matrix 

(1.1) 

Therefore any attempt to improve these iterative methods has clearly to 

apply some form of "preconditioning" to the original system of equations 

in order to minimise the P-condition number of the coefficient matrix and 

hence increase the rate of convergence of the considered iterative procedure. 

This idea was first introduced by Evans [1968) t, where it was applied to 

the solution of large linear systems such as those described in section 1.2. 

The earlier work on the Extrapolated Modified Aitken method (EMA method) 

defined by 
(n+l) 2 (n) (I-wL) (I-wU)u = [(l-w)I+w LU)u +wc 

(Evans [1963,1964)) and the effectiveness of the SSOR method created the 

strong feeling of "striving to obtain left hand sides such as in (1.2)" 

(Evans (1973)). Thus the preconditioning theory was affected by this 

previous suggestion and was developed by Evans [1968) as follows. 

Let us assume, without loss of generality, that the non-singular 

coefficient matrix A has the splitting 

A = I-L-U 

where I is the identity matrix and the matrices L,U are defined as in 

(3-2.6). Further, let us also assume that A is a symmetric and positive 

definite matrix. Next, we let v be an intermediate transformation vector 

given by 

v = (I-wU)u 

where w is a real parameter to be defined later. 

original system (3-1.1) by the non-singular matrix 

tSee also Evans [1973.1974). 

If we pre-multiply the 

-1 (I-wL) ,then the 

(1.2) 

(1.3) 

(1.4) 



transformed system is equivalent to 

which can be written in the more compact form as 

-or B v = d w w 
~ 

GTAG B = where w w w 

d -1 = (l -wL) b w 

G -1 = (I-wU) • w and 

Consequently, the original system (3-l.l) has been transformed into 

the preconditioned system (1. 7), where the matrix B is symmetric 
w 

congruent to A {see Definition 2-2.2}. Since A is positive definite, 

then by Theorem 2-2.4 it follows that B is also a positive definite w 

matrix. By inspection, we see that for w=O the new system (1.7) reverts 
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(1.5) 

(1.6) 

(1.7) 

(1. 8) 

(1. 9) 

back to its original form (3-l.l). Thus, by introducing the transformation 

above, we allow w to play the role of a preconditioning parameter such that 

as w varies, we hope we can obtain a value of P{S) which is less than peA). 
w 

After a tedious analysis Evans [1968] showed that there is a value of w 

-in the range 1<w<2 for which P{B ) achieves its minimum value. (An 
w 

alternative proof is given in Hatzopoulos [1974]). Ilowever, the value of 

the optimum preconditioning parameter "b was given only for the model 

problem by an implicit expression involving the eigenvectors associated 

with the maximum and minimum eigenvalues 
~ 

of B . Once system (3-l.l) was 
Wo 

preconditioned and brought into the form (1.6), Evans was able to introduce 

new iterative schemes analogous to the already known ones i. e. , 

(n+l) = v{n)+{d -8 v{n)) (l.l0) v w w 
(n+l) = v en) + ~(d -3 v (n)) (1.11) v w w 

and their accelerated versions of Richardson's, second order Richardson 

and Chebyshev semi-iterative methods. Finally, it was shown (Evans [1973]) 

that for the model problem the P-condition number of the matrixB was 
Wo 
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~ 

approximately equal to the square root of P(Bw=O) which established an order 

of magnitude improvement on the convergence rate of (1.11) over the basic 

iterative method i.e., when w=O. This was also verified by a number of 

numerical examples for the Laplace, General Diffusion (_V2~+A~=S) and 

Biharmonic equations. 

The establishment of the advantages of the preconditioning techniques 

was also confirmed by their use in the direct methods of solution for 

ill-conditioned systems of linear equations (lIatzopoulos [1974]). 

In the remainder of this chapter we will consider the idea of pre-

conditioning in a more general concept which will allow us to associate the 

most effective iterative schemes, si~ilar to the already known ones, with 

respect to any splitting of the coefficient matrix A. As a result of this, 

it will help us to examine the known iterative methods as special cases and 

their mathematical formulation from a different viewpoint. Also, we would 

be able to extract some conclusions about the effectiveness of the type 

of "preconditioning" being used which will provide a guide for future 

development in the area of the iterative procedures. 
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4.2 THE PRECONDITIONING TECHNIQUE FOR THE CONSTRUCTION OF ITERATIVE METHODS 

-1 We note that if we premultiply system (3-1.1) by A , then we are able 

to obtain immediately its solution u=A-lb. On the other hand, we have seen 

-1 (see section 1-1.2) that there are certain difficulties for computing A , 

so instead we consider the case where system (3-1.1) is premultiplied by a 

. . -1 -1 . non-s1ngular matr1x R , where R 1S an approximate inverse of A, thus 

transforming the original system into the following preconditioned form 

-1 -1 R Au = R b. 

The matrix R will be referred to as the conditioning matrix and according 

to our previous observation we first require that this matrix should 

approach A. Of course, it would be desirable to select R in such a form 

so that the property of positive definteness is also retained for the pre­

-1 conditioned matrix R A, although this is not a necessity. The second 

requirement on R is to possess such a form so that it is possible to 

compute its inverse relatively easily. Summarising, we require R to 

satisfy the following properties: 

(a) The spectral condition number -1 of the matrix R A to become 

smaller than the spectral condition number of the original 

matrix A. 

(b) For any vectors sand t it is "convenient" to solve the 

system Rs=t for s. 

After we form system (2.1), then we can define a version of the GSD 

method (see (3-228)) with respect to the preconditioned system (2.1) as 

follows 

where the role of the real parameter T is similar to the one of a in the 

SD method (see (3-2.31)) and it will be considered later. 

From Theorem 3-1.4 we can verify that the constructed iterative 

(2.1) 

(2.2) 



77 

scheme (2.2) is completely consistent with (2.1) if and only if R is a non-

singular matrix and TiO. 

Let us now consider the possible forms which the matrix R can possess 

within the contents of the above restrictions (a) and (b). 

The form of R will be closely associated with the splitting of the 

matrix A. Thus let us define 

A = D+P+Q 

to be a splitting of A where in general D is a block diagonal matrix 

and P,Q are also block matrices. If the matrices D+P and D+Q are 

computationally easily invertible, then the conditioning matrix R could 

have the form 

where Pl,Ql may be functions of P,Q respectively. 

On the other hand, R could in general take the form 

where f(D,Pl,Ql) is any function of the matrices D,Pl'~ approaching A. 

The form (2.4) of the matrix R gives by (2.2) the following iterative 

scheme 
u(n+l) = u(n)+T(D+Ql)-lD(D+Pl)-l(b-AU(n)) 

or u(n+l) = u(n)+T(I+D-IQ1)-1(I+D-IP1)-lD-1(b_AU(n)). 

From the form of the iterative scheme (2.6) we see that we have 

to use the following two-level fractional step method (Marchuk [1971]) 

where we work with vector corrections ~(n) 

(D+P )~(n+!) = b_Au(n) 
1 

(D+Q )~(n+l) = D~Cn+!) 
1 

uCn+l) = u(n)+ ~(n+l). 

If the matrix A is split up into more than three matrices, we can 

follow the same idea and end up with a multi-level fractional step method 

similar to (2.8). By restricting ourselves to the form (2.4) of R we 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

observe that we can commence to develop various iterative schemes which are 
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associated with the splitting (2.3) of A depending upon the different forms 

of Pl,Ql' In particular, by selecting PI and Ql to have simple forms such 

as 

where wl ,w2 are real "preconditioning" parameters, then it follows that 

all the known linear first degree iterative schemes have the form (2.2) 

or (2.7),(2.8), for specific values of the involved parameters "wl ,w2 

and certain forms of the matrices D,P,Q. Therefore if we assume that A 

has the form 
A = D - CL - Cu 

where D, CL and Cu are defined as in, (3-2.6) and (3-2.7), then we can 

easily verify from (2.2),(2.3),(2.4) and (2.6), Table 2.1. 

Preconditioning Acceleration Conditioning 
Parameters Parameter Matrix 

Iterative Method 
wl w

2 
, R 

0 0 1 D J 

0 0 '0 D JOR 

0 0 '0 
tl SD 

1 0 1 D (I -L) GS 

w 0 w D(I-wL) SOR 

w w w(2-w) D (I -wL) (I -wU) SSOR 

w w w D(I-wL) (l-wU) EMA 

TABLE 2.1 

The optimum value of the acceleration parameter, is given by 

2 --
'O=~ where a and b are the minimum and maximum eigenvalues of the pre-

a+b -1 
conditioned matrix R A, respectively i.e., 

- -1 -a ~ A(R A) ~ b. 

From the previous considerations we conclude that the iterative 

t The form of R is as in (2'.4) but D=I. 

(2.9) 

(2.10) 

(2.11) 
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schemes in Table 2.1 have been based on the idea of improving the "condition" 

of the original system by using different types of conditioning matrices. 

Also, if we observe carefully the J and the JOR schemes, then we can 

immediately predict that although both methods have identical conditioning 

matrices, the optimum value TO for the parameter T assures an improvement in 

the rate of convergence of the JOR over the J method. 

From the previous observation, it follows that given the conditioning 

matrix R, the most effective iterative scheme is obtained if T takes its 

optimum value TO. However, this does not seem to be the case (at least at 

this primary stage) for the GS,SOR,SSOR and EMA iterative methods (see 

Table 2.1). 

We can therefore clearly realise the strong need for a reconstruction 

of the iterative schemes illustrated in Table 2.1. 
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4.3 ON THE PRECONDITIONED ITERATIVE METIIODS 

In this section we consider the splitting (2.10) of A and the form of 

R given by (2.4). For R=D the produced iterative scheme from (2.2) has been 

studied (see Chapter 3), hence we will concentrate on the following cases 

which are not covered in Table 2.1. 

CASE w1 w2 T 

I 1 0 TO 
II w 0 1 TABLE 3.1 
III w 0 TO 

Since we intend to make a thorough analysis when A is not consistently 

ordered in the general case Ill, we'wi11 assume in cases I and 11 that A 

is a consistently ordered matrix with. non-vanishing diagonal elements. 

Case I 

or 

In this case we have from (2.2) the iterative scheme 

u(n+1) = u(n) + T(I_L)-lD-1(b_Au(n)) 

u(n+1) = Lu(n+~(l_T)(I_L)u(n)+TUu(n)+Tc 

which can be written in the more compact form 

where 

(n+1) 
u 

L T,l 

(n) -1 
= L u +T(I-L) c T,l 

-1 -1 = I-T(1-L) 0 A. 

This scheme" is an extrapolated version of the GS method since for 

T=l the two methods coincide. Thus, we will refer to (3.3) as the 

Extrapolated GS method (EGS method). 

An obvious restriction is TfO for the EGS method to be completely 

consistent. Next, we prove the following theorem concerned with the 

convergence of the EGS method. 

Theorem 3.1 

If A is a consistently ordered matrix with non-vanishing diagonal 

-1 -elements such that B=1-D A has real eigenva1ues, then S(L l)=S(L 1)<1 
T, T, 

if and only if 

(3.1) 

(3.2) 

(3.3) 

(3.4) 



o < , < 2 

and ii= S(B) < 1. 

Proof 
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(3.5) 

(3.6) 

The preconditioned matrix of the EGS method is given by the expression 

If ~,A are the eigenvalues of B and AI' respectively, then by working in 

a similar way towards the proof of Theorem 3-6.2 (see Young [1971],p.l43) 

we obtain the following eigenvalue relationship 

2 
A = l-~ 

In order to determine the range.of the parameter, so that the EGS 

method is convergent we have to determine the maximum and minimum eigen-

value of Al' But we have that 

hence from (3.8) we obtain 

max {A} = A = 
2 -2 

O~ll ~)l 

1 and min {A} 
2 -2 

O~I-I ~ll 

-2 
= 1. = l-~ 

Since ~>O, then the EGS method converges if and only if 

and 

2,. > 0 

o < T < 2/T. 

Evidently, from (3.10), (3.11) and (3.12) it follows that (3.5), 

(3.6) hold and therefore the proof of the theorem is complete. 

The determination of the optimum value of , is given by the following 

theorem. 

Theorem 3.2 

Let A be a consistently ordered matrix with non-vanishing diagonal 

elements such that the matrix B has real eiger.values with 

~ = S (B) < 1 • 

If we let 
,= '0 = 2/C2-ih 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 



then S(L 1) is minimised and its corresponding value is given by the 
T, 

expression 

S(L 1) 
T, 

Proof 

The optimum value of T is given by the formula 

TO = 2/(A+~) 

which yields (3.14) by substituting A and ~ from (3.10). 

Further, peAl) is evaluated by the expression 

- 2 
peAl) = A/l = l/(l-li ) 

and if we calculate S(L 1) from the formula 
T, 

P(A
l
)-l 

S(LT ,l) = P(A
1

)+1 

we obtain (3.15) and the proof of the theorem is complete. 

Theorem 3.3 

Under the hypotheses of Theorem 3.2 and if TO is defined by (3.14), 

then 
R(L 1) 

TO' = 2 

where L1 l=L (see (3-2.19)). , 
Proof 

Similar to the one followed in Theorem 3-6.8. 

Case II 

or 

In this case from (2.2) we have the following iterative scheme 

u(n+l) = u(n) +(I_wL)-lO-l(b_Au(n)) 

u(n+l) = wLu(n+l)+(l_w)LU(n)+Uu(n)+c 

which can be written in the more compact form 

(n+l) (n) -1 u = L u + (I-wL) c l,w 

As can be seen, (3.19) is a different form of extrapolating the 

GS method, which is considered if w=l. Note that in this case, there is 
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(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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only one parameter wand its optimum value will be determined in a similar 

way to '0' If we follow the proof of Theorem 3-6.6 (see Young [197l]p.172), 

then we have the following theorem concerned with the convergence of (3.21). 

Theorem 3.4 

If A is a consistently ordered matrix with non-vanishing diagonal 

elements such that B has real eigenvalues, then 

SeLl ) = seLl ) < 1 ,w ,w 
(3.22) 

if and only if 1 _2 1 _2 
w* = -]J < w < 

+]J w* (3.23) 1 - 2iI2 --:::z = 2 ]J 

]J = S(B) < 1. (3.24) and 

Proof 

Since the matrices A,B fulfill the requirements of Theorem 3-6.2, 

then we can find the eigenvalue relationship 

]J(Aw+l-w)! = A (3.25) 

where ]J,A are eigenvalues of Band Ll ,respectively. The relationship ,w 

(3.25) can be written as a quadratic in A to yield the equation 

2 2 2 A -]J WA+]J (w-l) = 0. (3.26) 

A sufficient and necessary condition for the convergence of (3.21) 

is the roots of (3.26) to be less than one in modulus, or equivalently 

(see Young [1971]p.17l) 

1]J2(w-l)I < 1 and 2 2 
I]J wl < 1+]J (w-l). (3.27) 

After some algebraic manipulation the relationships (3.27) can be 

shown to be equivalent to the inequalities (3.23) and (3.24) hence the 

proof of the theorem is complete. 

Finally, we note that as ~+l-, then (3.23) yields the range wE(0,2). 

In order to complete the analysis on the iterative scheme (3.21) we 

prove the following theorem (analogous to Theorem 3-6.7) concerning the 

determination of the optimum value of the parameter w. 



Theorem 3.5 

Let A be a consistently orde~matrix with non-vanishing diagonal 

elements such that the matrix B has real eigenvalues and such that 

U=S (B) <1. 

If wb is defined by (3-6.22), then 

S (L l W ) = 
, b 

S (L
l 

) ,w
b 

and if w#wb' then 

S (L 1 ) = S (L 1 ) > S (L 1 ) . ,w ,w ,w
b 

Moreover, for any W in the range (3.23) we have 

l'
Wii2 + [P.2 (w2ji2 -4 (W-l))]!1 

2 ' if wi<w~wb 
S (Ll,w) = SeLl,) = ! 

jj (w-l) . , if wb"w<wi. 

where wi and wi are defined by (3.23). 

Finally, if wi<w<wb , then S(Ll,w) is a strictly decreasing function 

of w. 

Proof 

From equation (3.26) we have that the maximum of the moduli of the 

values A is given by the expression 

r(w,~) =lw~2+/~2[W~~2_4{W_l)]1 

Evidently, we can easily apply the analysis of the SOR theory to (3.31) 

(see proof of Theorem 6-2.3 and Lemma 6-2.4, Young [1971]) and obtain 

the relationships (3.28),(3.29) and (3.30), thus completing the proof 

of the theorem. 

From (3.28) and (3-6.23) it follows that we have the following 

relationship of spectral radii 

S (L
l 

) ,wb 
or in terms of rates of convergence 

1 R(Ll ) = R(B) + ;.R2 (L ) . ,wb wb,wb 

Therefore, we see that as Jj=S (B)·>-r, then the rate of convergence of the 

optimum iterative scheme (3.21) is approximately half of the SOR. 
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(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 



Further, we note that the optimum value of the parameter w is 

identical for the SOR and the iterative scheme (3.21). 

Case III 

In this case we have the iterative scheme 

(n+l) (n) -1 -1 (n) u = u +T(I-wL) D (b-Au ) 

or equivalently 

(n+ 1) (n+ 1) (n) 
u = wLu +[(l-T)I+(T-w)L+TU]u +TC 

which can be written in the compact form 

u (n+l) = L u (n) +R, 
T ,W T ,W 

where 
L 

T ,w 

-1 . 
= (I-wL) [(l-T)I+(T-w)LHU] 

and 
~ 

T,W 
= T(I-wL) -lc. 

It can be noted that for certain values of the parameters T and w 

we obtain the previous considered iterative schemes. Also, the above 

introduced iterative scheme (3.36) is likely to produce a more improved 

rate of convergence, than any other iterative scheme which possesses the 

same conditioning matrix. Therefore, it is expected that in general 

(3.36) will be faster than the SOR method. The iterative method (3.36) 

will be referred to as the Extrapolated Successive Overrelaxation method 

(ESOR method). In the remainder of this section we will attempt to find 

under certain assumptions on the matrix A, what restrictions are imposed 

on the parameters T and w so that the ESOR method converges. We will 
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(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

also determine the optimum values of the·se parameters so that ESOR attains 

its maximum rate of convergence. 

4.3.1 Irreducible matrices with weak diagonal dominance 

We have already seen (Theorem 2-5.3) that irreducible matrices 

with weak diagonal dominance are non-singUlar. If A has these properties, 

then the following theorem can be proved. 



Theorem 3.1.1 

Let A be an irreducible matrix with weak diagonal dominance. Then, 

(a) The GS method converges and the EGS method converges for O<T~l. 

(b) The iterative scheme (3.21) converges for O~w~l and the ESOR method 

converges for O<T~l and O~w~l. 

Proof 

We assume that O<T~l, O~w~l and that S(L )>-1. Then for some T,W 

eigenvalue A of L we have IAI>-l. T,W 

Furthermore, we have 

det(L -AI) = det Q = 0 T,W 

where 

Q = 1- (T-W+WA) L _ ( T ) 
A+T-l A+T-l U. 

-1 i6 We let A =qe where q and 6 are real and O<q~l, hence we have 

I T-W+WA I = 
A+T-l 

(T-W) q +2Wq(T-W)cos6+w < 
Q 

22 2
j

! 
22-

1-2q(1-T)cos6+q (l-T) 

since q~l, O<T~l and O~w~l. But 

and hence 

1 _ W+q(T-W) = 
l-q(l-T) 

(l-q) (l-w) >- 0 
l-q (l-T) 

W+q(T-W) 
l-q(l-T) 

-1 Since A is irreducible and has weak diagonal dominance, D A=I-L-U 

possesses also the same properties. From (3.1.2) and (3.1.5) it follows 

that Q has weak diagonal diminance. However, Q is also irreducible and 

by Theorem 2-5.3 it follows that detQFO which contradicts (3.1.1) and 

therefore S(L ~l. This completes the proof of the theorem. T,W 

4.3.2 Positive definite matrices 

If we now apply Theorem 3-3.2, then we prove: 
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(3.1.1) 

(3.1.2) 

(3.1.3) 

(3.1.4) 

(3.1.5) 
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Theorem 3.2.1 

Let A be a positive definite matrix and let D=diagA. Then 

if the matrix is positive definite or, equivalently, 

if 
O<Tl';w<2c 

where ~max~O is the largest eigenva1ue of B.' 

Proof 

By Theorem 3-3.2 we need only to show that the matrix 

1 
M = T[2D-w(CL+CU)] - A 

is positive definite. 

It can be easily shown that the above matrix is equivalent to 

If now M is positive definite, then it has positive diagonal 

elements, hence from (3.2.3), since D is positive definite, we have 

that 
o < T < 2. 

On the other hand, if ~i are the eigenva1ues of B, then from (3.2.3) 

we obtain 

for all eigenva1ues ~i of B. 

If we now assume 

W < T, 

then since 

we obtain from (3.2.5) that 

or by (3.2.4) 

(2-T) + (T-W)U. > 0 m1n 

(2-whmin > 0 

which contradicts (3.2.6), hence 

T ~ w. 

By (3.2.9) and (3.2.5) we have 

(3.2.1) 

(3.2.2) 

(3.2.3) 

(3.2.4) 

(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.2.8) 

(3.2.9) 



thus 

(2-T) + (T-W)\l > 0 max 

if \l ~l, then O<w<2. max 

From (3.2.4), (3.2.9) and (3.2.11) it follows that (3.2.1) 

holds and the proof of the theorem is complete. 

4.3.3 L-matrices and related matrices 

We now prove an analogous theorem to Theorem 3-5.5 concerning the 

ESOR method. 

Theorem 3.3.1 

(a) 

(b) 

If A is an L-matrix of order N and if O~w~T~l (T10) then 

S (B) < 1 

S(B) <1 

if and only if S(L )<1. T,W 

(and S(L )<1) if and only if A is an M-matrix; T,W 

if S(B)<l, then 

S(L ) ~ 1-T+TS(B). T,W 

Proof 

Evidently, if S(L )<1, then ~=S(B)<l. Since now L is a strictly T,W 

lower triangluar matrix, then LN=O and because of our assumptions we can 

easily verify that 

-1 2 2 N-1 N-1 (I-wL) = I+wL+w L + ... +w L >- 0 

and also that 

(l-T)I+(T-w)L+TU >- O. 

Thus, from (3.3.1) and (3.3.2) it follows that 

L = (I-wL)-l((l-T)I+(T-w)L+TU) >- O. T,W 

SinceL is a non-negative matrix, by Theorem 2-1.4 we have that T,W 

~=S (L ) is an eigenvalue of L and that there exist an eigenvector 
't,W T,W 

v>O such that 

L v = AV T,W 
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(3.2.W 

(3.2.11: 

(3.3.1) 

(3.3.2) 

(3.3.3) 

(3.3.4) 



or A-l+T 
T 

v 

which implies that A-l+T is an eigenvalue of the matrix T+w(A-l)L+U. 
T T 

Therefore the following inequality holds 

X-l+T 
T 

If we now assume A~l, then by Theorem 2-1.3 we have 

S(T+w(~-l)L+U) ~ S(L+U) = S(B) = u 
T 

and by (3.3.6) we obtain 

On the other hand, if A~l, then 

X-1+T 
T 

~ S(T+w(A-l)L+U). ~ S(T+w(A-l)L+ T+w(A-l)U) 
T T T 

= T+w(X-l) u 
T 

thus we finally have 

A-In 
lJ ~ T+wO,-l) 

= 1 + (l-w)(X-l) 1 
T+w(A-l) ~ . 

If we summarise our results from the above analysis, then we have 

shown: 

(i) if A~l, then i~T~+l-T 

(ii) if A~l, then ~~l 

which imply 

(iii) if ~<l, then A<l and we have proved (a). Furthermore, by (i) 

and Theorem 2-7.2 of Young [1971] we have (b) and the 

proof of Theorem 3-3.1 is complete. 

Theorem 3.3.2 

If A is an M-matrix and if 

1~ T ~ W < l+S~B) , 

then S (L ) <1. 
T ,w . 

Proof 
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(3.3.5) 

(3.3.6) 

(3.3.7) 

(3.3.8) 

(3.3.9) 

(3.3.10) 

(3.3.11) 



If we now have l~T~w, then the matrix 

T 
T ,W 

-1 = (I-wL) [(T-l) I+ (W-T) L+TU] 

is non-negative and we also have 

IL 1:<; T • 
1',00 T,oo 

If we let y=S(T ), then since T ~O, by Theorem 2-1.4 there exists 
T,ro T,oo 

VfO such that T v=yv which implies that T,W 

(TU+(W-T+yw)L)v = (Y+l-T)v. 

W-T+YW If y~l, then ~and from Theorem 2-1.3 we obtain 
T 

y+l-T :<; (W-T+YW)~ 

or W ~ CY+l.J/([l+y.jj) ~ l:U 

Therefore, if (3.3.11) holds, then we must have ),<1. By Theorem 2-1.3 and 

(3.3.13), it follows that S(L ):<;y<l and the proof of Theorem 3.3.2 is T,W 

complete. 

4.3.4 Consistently ordered matrices 

In this section we assume that A is a consistently ordered matrix. 

By working in an analogous way towards the proof of Theorem 3-6.2 the 

following can be shown. 

Theorem 3.4.1 

Let A be a consistently ordered matrix with non-vanishing diagonal 

-1 elements and let B=I-(diagA) A. If ~ is an eigenvalue of Band 

satisfies the relationship 

(1_X)2 = ~2(1_Xw), 

then X is an eigenvalue of the matrix 

and vice versa. 

A = (I_wL)-ln-lA 
W 

For the convergence of the ESOR method I<e prove: 

Theorem 3.4.2 

If A is a consistently ordered matrix with non-vanishing diagonal 
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(3.3.12: 

(3.3.13: 

(3.3.14; 

(3.3.15) 

(3.3.16) 

(3.4.1) 

(3.4.2) 
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elements and if the matrix B has real eigenvalues, then the ESOR method 

converges if and only if 

-
u = S(B)<l (3.4.3) 

and the parameters 1 and W lie in either of the following ranges: 

for W~O, 0<1<1 and O~w<l 

} or (3.4.4a) 
1::;1<2 and 1::;w,.2 

while for w::;O, the ranges of 1 remain the same but the corresponding 

ranges of ware the following: 

-l~w~O, 

-2~w~-1. 
(3.4.4b) 

Proof 

Since the matrix A satisfies the requirements of Theorem 3.4.1 

it follows that (3.4.1) holds. But (3.4.1) can be written alternatively 

to yield the quadratic 

2 2 2 
A -(2-u w)A+(l-u ) = O. 

On the other hand, from Theorem 3-3.1 it follows that the ESOR 

method converges if and only if 

S (L ) < 1. 
1,W 

By assuming a+ib to be an eigenvalue of A , then I-T(a+ib) is an 
w 

eigenvalue of L with modulus T,W 

thus (3.4.6) becomes 

2 2 2 ! [(I-Ta) +T b ] 

2 2 2 
T (a +b )<2Ta. 

From this inequality we see that we always have 

Ta > 0 

which indicates that we have to distinguish the following cases. 

(3.4.5) 

(3.4.6) 

(3.4.7) 

(3.4.8) 

Case I: a>O and Case 11: a<O, that is, the real parts of the eigenvalues 

of A to be either positive or negative. 
W 



Case I 

that 

In this case we have a>O and T>O, thus from (3.4.7) it follows 

T < 
2a 
2 2· 

a +b 

But from Theorem 3.4.1 we have that the eigenvalues of A are the roots w 

of (3.4.5) so the eigenvalue with the maximum real part is given by 

hence the range of T for the ESOR method to converge is the following 

° < T < 
2 2/ max r(w,~). 

2 -2 
O~l1 ~ll"' 

Our problem therefore is to find the quantity ma~ r(w,~2). 
2_2 ~ 2 2 

We first assume that w ~ -4(w-l)<0, then w>l and w ~ -4(w-l)<0 

f 
2 2 _2 

or all ~ such that O~~ ~~ In addition, we have that the modulus 

of the eigenvalues of A is given by the 
w 

expression 

2 12 
/r(w,~ )/ = ,tl-~-

which implies that 2 
l-~ > ° 

and therefore (3.4.3) holds. In this case a>O, which implies that 

2 
2-~ w > ° 

hence the parameter w lies in the following range 

1 <w,"2<2/i:i2. 

thus 

On the other hand, from (3.4.10) it follows that 

2 
r(w,~ ) = 

2 
2-w~ 

2 

2 max r(w,~) = r(w,O) = 1. 
2 _2 

O~l1 ~ll 

Let us now consider the case where w2~2_4(w_l»0, then we define 

if w~l 

if w<1. 
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(3.4.10) 

(3.4.11) 

(3.4.12) 

(3.4.13) 

(3.4.14) 

(3.4.15) 

(3.4.16) 

(3.4.17) 

(3.4.18) 
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· 22 22 2 Next, 1f ~ ~~O' then w ~ -4(w-l)~0 and ma~ r(w,~ )=1. Moreover, 

for O~~d>J the function r(w,~2) is given by the~expression (see (3.4.10)) 

2 _ 2_w~2+~2[w2~2_4(w_l)] 
r (w, ~) - 2 (3.4.19) 

2 It can be easily verified that r(w,~ ) is an increasing function of 

2 
~ , thus 

2 max r(w,~) 
2 -2 

O~l.I ~ll 

and also 
_2 

r(w,~ ) < r(w,l) = 2-w. 

Summarising our results we have that 

2 {r(w,~2)<2_W 
max r(w,~ ) = 
2 _2 

O~~ ~~ 1 , if 1~w~2. 

r(w,rh 

By combining (3.4.22) and (3.4.11) we readily see that the 

relationships (3.4.4a) hold. 

Case II 

(3.4.20) 

(3.4.21) 

(3.4.22) 

In this case we have that a<O and T<O, thus from (3.4.7) it follows 

that 2a 
2 b2 a + 

< T. 

By fOllowing a similar analysis as in Case I we can show that (3.4.3) 

holds. In addition, since in this case 

2 
2-w~ < 0 

we conclude that the range for the preconditioning parameter w is 

2 
2/~ <W<"'. 

IWIfl'{2/fL J < w <." 
o~ fA$ fa 

th.,t uJ -u(). "0..., l.h e 0 theY' h 4 YId.., we ~ v ve 

r(w,p)= Ref (wl- '1 tl/[(ll-4(cv-1)] ) /2 J 

tHe~e "e assume w~o. W d' "t th <0 .- w ~ e ~scuss va er e case w, • 

(3.4.23) 

(3.4.24) 

(3.4.25) 

(3.4.2(;) 

(3.4.27, 



i~ flY! 

if w .;..J. co , 

meth od 

iI'Jcre4sing function of W, This im/lies 
theY! "C-"O-, TherefoY'e, if? this c4se the 
does not coY/verte, 

Further, if we assume that w~O, then we let 
. 
w = -00 

and define the ESOR method as 

(n+l) (n) 1\ -1 -1 (n) 
u = u +T(I-wL) D (b-Au ) 

where we see that we can apply the same theory as for the case w~O. 

Therefore, from (3.4.4a) and (3.4.4b) we obtain that 
. 

0<,<1 and O::w<l 
or 

and 

where if we use (3.4.28), then we obtain (3.4.4b) and the proof of the 

theorem is complete. 

We now seek to determine the optimum values of T and w such that 

S(L ) is minimised. This is achieved when , ,w 

= I (l-Ta)+i,bl - -
with 

where a and a are either positive or negative values. From (3.4.31) 

we see that if 
])=l2.=0 

and 
2 , =-o - , 

a+a 
, = 

then S(L ) attains its minimum value which is given by the expression ,w 
k(A )-1 

w 
S(L,O'w) = k(Aw)+l 

where the quantity k(A ) is defined as 
w 

a k(A ) =-
w ~ 
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(3.4.28) 

(3.4.29) 

(3.4.30) 

(3.4.31) 

(3.4.32) 

(3.4.33) 

(3.4.34 ) 

(3.4.35) 

and will be referred to as the virtual condition number of the matrix A • 
w 

Evidently, the optimum value of w will be determined such that (3.4.32) 

to hold and such that k(A ) attains its minimum value, 
w 



Theorem 3.4.4 

Let A be a consistently ordered matrix with non-vanishing diagonal 

elements such that the matrix B has real eigenvalues with ~=S(B)<l. 

(i) for any W in the range 0~w~2 the virtual condition number of A 
w 

is given by 

k(A ) 
w 

= 

where 

-2 fu2 2_2 
2-wu + u [w u -4(w-l)] • if O::w<l 

_2 k2[ 2_2 ( )] 2-wu - u w u -4 w-l 

2 
------~============-, if l::w::wb 

_2 /2 [2_2 ( ] 2-wu -~ w u -4 w-l) 

w' = 
b 

2 

2 
-2 2-wu 

G l+/l-ij" 

J if tub~w~2 

and k (A ) is a strictly decreasing function of w for O<w<w
b
'. Moreover, w . 

k(A ) is minimised if we let 
w 

w = w' 
b 

and its corresponding value is given by 

k(A ,) = 1/(1_ii
2

) 1. 
wb 

On the other hand, if we also let 

then the spectral radius S(L ) attains its 
T,W 

given by the expression 

S(; w,) = S(Lw' w,) = I-h-ii2 
= 

0' b b' b G 1+ l-u 

minimum value which is 

w'-l b . 
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Proof 

-1 -1 The eigenvalues of A = (I-wL) 0 A are the roots of (3.4.5) 
w 

and are given by the expression 

( 
2) _ 2_w~2±~2[w2~2_4(w_l)J 

r w,~ - 2 

hence in the case where A has complex eigenvalues we have 
w 

2 
a = 2-~~ and b = 1G2[w2~2_4(w_1)J/2. 

From (3.4.45) it follows that 

and 

b = min b = 0 
2 -2 

O~l1 ~ll 

which imply that for (3.4.32) to be satisfied we must have 

or the preconditioning parameter w to take either the value 

W = 00' 
b 

or W = 00'1 
b 

where it can be readily verified that 
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Next, we seek to determine k{A ) for O~w~2 and for 2<w<oo. 
w 
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If O~w~2, then we recall from (3.4.22) that the eigenvalue of A with 
w 

the maximum real part is given by 

2_w~2+~'"2~[w~2~~~2~_-4-{W-_-I--)1 

2 
• if O~w<l 

2 max r(w,u) = 
2 _2 

O~l1 ~ll I ,if 1~w~2. 

In order to determine the eigenvalue with the minimum real part, 

we define the function 

( 2) = Re {12_wu21_42[W2U2_4{W_I)1} y W,]J 2 

thus in this case we have 

2 {2-W]J2_~.2[W22]J2_4{W-I)1} Y (w,]J ) = Re -

Moreover, we prove: 

Lemma 3.4.5 

Under the hypotheses of Theorem 3.4.4 we have 

min y{w,i) 
2 _2 

_2 

2_w~2_/~2[w2~2_4{w_I)1 
2 ' if O~w~wb 

= y (w,]J ) = 
O~ll ~}.l 

Proof 

2 
_2 

-WU 
2 

, if wb~w<2 

If w2~2_4{w_I)<O, then w>l and w2u2_4{w_I)<O for all ]J2 such that 

2 -2 ) 
O~u ~U , hence from (3.4.54 we have that 

Next, if 

by (3.4.56). 

-2 . 2 _2 2-wu 
m1n y{w,u) = y{w,u ) = ---2---

2 -2 
O~ll ~l-I 
2 2 2 2 2 

u ~uO' then w u -4{w-I)~O and m~n y{w,]J ) is again given 
. 2 2 _2 u 

Alternatively, 1f O~]JO~u ~]J , then 

( 
2) _ 2_wu2_~2[w2u2_4{w_I)1 

Y W,]J - 2 

which is a decreasing function of ]J2 since 

sign[ ay{;~{)) = -

and we have that 

(3.4.52) 

(3.4.53) 

(3.4.54) 

(3.4.55) 

(3.4.56) 

(3.4.57) 

(3.4.58) 



98 

(3.4.59) 

2 2 ..2 
consequently, for all ~ such that O~~ ~~ we prove that 

min yew, ~2) = yew, ii2). (3.4.60) 
i 

Since the function 4(w-I)/w2 is an increasing function of w in the range 

0<w<2 and from (3.4.48) we have 4(wb-I)/(wb)2=~, it follows that if 

O<w~wb' then ii2>,4(w_I)/w
2 

and m~n y(w,/) is given by (3.4.59) whereas 

if wb~w<2, then ~2~4(w_I)/w2 an~ min y(w,~2) is given by (3.4.56), hence 
~2 

(3.4.55) holds and the proof of Lemma 3.4.5 is complete. 

From (3.4.52) and (3.4.55) we. readily see that k(A ) is given by (~~.36) 
w 

(~.4J7) I (3.4. 3!?) . 
• I , 

From .th' Sit follows that k (A ) >k (A I) 
. w wb 

if wb <w<2. 

Next, we seek to show that if O<w<wb, then k(A
w

) is a decreasing 

function of w. But for O~w~l we find 

(3.4. 61) 
and for l:ow<wb 

where 
2-4 -2 = w ~ -4w~ +4 

and 

hence 
(3.4. '2.) 

Consequently, if w=wb' then k(Aw) is minimised and its corresponding 

value is given by (3.4.41). For this value of W we have from (3.4.55) that 

(3.4.63.) 

hence the optimum value of T is determined by (3.4.33),(3.4.52), (3.4.61) 

and is given by (3.4.42). Finally, from (3.4.34) and (3.4.38) we easily 

prove the validity of (3.4.~3). 



From the above analysis we see that if w~O, then by using (3.4.28) 

we can develop the same theory as for w~O and obtain the same results 

wi th some evident modifications (wb =-wbl. 

A corollary from Theorem 3.4.4 is that although the ESOR scheme 

is different from SOR (when TFW), the two methods have the same rate of 

convergence at the optimum stage. However, as it will be seen from the 

following analysis, this does not happen in the more general case where 

the matrix A is consistently ordered and the Jacobi iteration matrix B 

has real eigenvalues ~. such that ~=m~nl~.I#O. On the contrary it is 
1 - 1 1 

expected to obtain a greater rate of convergence for ESOR than the SOR 

method since we let T take its optimum value, whereas this is precluded 

in the latter iterative scheme. 
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Theorem 3.4.6 

If A is a consistently ordered matrix with non-vanishing diagonal 

elements such that the matrix B=I-D-lA has real eigenvalues ~., i=1,2, ••. ,N 
1 

with 

~ = minl~· I ! 0 
- . 1 

1 

and il = maxl~·1 
. 1 
1 

then the ESOR method converges if and only if 

and either (I) 

where if 

then 

2 
max r(w,~ ) = 

2 2-2 
l! :S 11 :S11 

with 

otherwise 

2 max r(w,~ ) = 
2 2_2 

I!. ~l-1 :S11 

where 

or (II) 

2 max r(w,~ ) = 2 2_2 
1! ~Jl ~Jl 

otheT'W js e 

jj = S (B) < 1 

2 0<T<2/max r(w,Jl ) 
2 

~ 

h_ii2 < 1-l!.2, 

-2 /,.-2 2-2 2-wJl + ~ [w Jl -4(w-l)] 
2 

2 
2-wl!. 

2 

2 
w = --2 

2-1: 

wt,(ii) = 2 , 
J.:2 Q) l+il-ji-

r(w,r <1:"(0 where 
_2 

WJl -2 

2 

-2 L2 [ 2-2 1 w~ -2+/~w Jl -4(w-l) 

w"(ii) = 
b 

2 

2 

, if O:Sw:S~ 

w ~:'Q +/iil[tl'~~4(w-l)] 
2. 

(3.4.64) 

(3.4.65) 

(3.4.66) 

(3.4.67) 

(3.4.68) 

(3.4.69) 

(3.4.70) 

(3.4.71) 

(3.4.72) 

(3.4.73) 

(3.4.73~) 



Proof 

Let us first assume that the real parts of the eigenvalues of A 
w 

are positive, then we recall from (3.4.14) that 

2 
w < 2/~ 

and that the eigenvalue of A with the maximum real part is given by 
w 

the expression 

2 
r{w,11 ) = 

Thus, the range of T for the ESOR method to converge is the following 

(see (3.4.9)) 

101 

(3.4.74) 

(3.4.75) 

. . 2 
0<T<2/max r{w,11 ). (3.4.76) 

2 
11 

Since in this case we have that the eigenvalue relationship (3.4.1) is 

satisfied, we obtain again (3.4.12) and therefore (3.4.65) holds. 

From (3.4.64) we see that 

2 2_2 
l:. ~lJ ~lJ (3.4.77) 

2 which implies that in order to examine the position of 110 (see (3.4.18)) 

with respect to 

(') 0 2 _2 2 
~ <1!,::11 <11 0 , 

2 _2 
11 and 11 we have to distinguish the following cases: 

(") 0 2 2 -2 d (000) 0 2 2_2 
~. <~ ~lJO~lJ an 111 ~~o<~ ~lJ • 

( 0) 0 2 _2 2 Case 1 : <1!,::11 <110 

In this case we have that w2~2_4(w_l)<0 hence w>l and w211 2_4{w_l)<0 

for all 112 satisfying (3.4.77). In addition, we have from (3.4.75) that 

thus 

2 
r{w,11 ) 

2 
= 2-wl1 

2 

2 max r{w,11 ) = 
2 2-w).l 

-2-· 
2 2-2 

!:! ~}l ~lJ 

where the range for the parameter w is 

(3.4.78) 

= A (3.4.79) 

(3.4.80) 

In order to examine this case we distinguish two subcases according 



2< 2 2 2 to which (a) ~O-~ and (b) ~ :"Ib' 

2 2 
Subcase (a): ~O:"~ 

2 2 For this subcase we have w ~ -4(w-I)>.O thus (3.4.75) yields 

2 r(w,jl ) 

which is an increasing function of ~2 since 

= 

Consequently, 

max r(w,~2) = r(w,~2) 
2 2 _2· 

~ ~).1 ~ll 

where we easily verify that 

2 _2 ~2 [ 2_2 ( )] _. -w~ +~w ~ -4 w-l 
2 

r(w,~2) < r(w,l) = 2-w = B 

2 2 
Sub case (b): jl:ilb 

Evidently, for this case we have w2~2_4(w_l):::O which has already 

been examined in Case (i). 

222 For this case we immediately find that w Jl -4(w-l)>.O for all Jl 
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(3.4.81) 

(3.4.82) 

(3.4.83) 

(3.4.84 ) 

which satisfy (3.4.77) and therefore we obtain the results of subcase (a). 

On the other hand, we let 

2 2 
[wi,(!!)]l! -4(wi,(!!)-I) = 0 

since it is easily verified that 

_'2 lIe J 
1<wi,(!!,)<2<'2./tl < Wo ~ . 

where 2 
wi,(~) = 

1+k!!,2 
and 

w"(Jl) 2 = b -
l_k!!.2 

(3.4.85) 

(3.4.86) 

(3.4.87) 

(3.4.88) 



Similarly, we let 

since 

where 

and 

Wb (ii) = _...;;2;........_ 
~ l+/l-ji-

2 
wb (in = --=---r::z 

l-/l-ji~ 

By combining (3.4.86) and (3.4.90) we find 

, ,_ 2 "( _) 'I ( ) 
1 <wb Cl!.) :owl, (ji) <2<11 fA ' fAll> i< f .fllp ~ 

From Case (i) we find that if wb(~)~w, then 2 max r(w,~ ) is given 
~2 

by (3.4.79), whereas from Case (iii) if w~wb(~' then 

obtained by (3.4.83). Since for w in the range wb(\!.)~w~wb(ii) we have 

that max r(w,~2) is either expressed by (3.4.79) or (3.4.83) we have 
2 

~ 

to examine the sign of the quantity A-B (see (3.4.79) and (3.4.84)). 

It can be easily seen that 

sign(B-A) = sign(~-w) 

where w is given by (3.4.69). 

Thus, for w in the range 

we have 

2 { AB maX rcw,~ ) = 
~2 

, if w<w 

, if w>w. 
On the other hand, we have that 
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(3.4.89) 

(3.4.90) 

(3.4.91) 

(3.4.92) 

(3.4.93) 

(3.4.94) 

(3.4.95) 

(3.4.96) 

~~wb(U) (3.4.97) 

if the relationship (3.4.67) is satisfied. This implies that if (3.4.67) 

holds, then max r(w,~2) is given by (3.4.68), otherwise it is given by 
i 

(3.4.70). 

2 Let us consider the case where 2<2/~ <w<oo. By following a similar 
~ 
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analysis as previously and noting that ~<2, the validity of _ (rI) 

easily verified and the proof of the theorem is now complete. 

can be 

Lemma 3.4.7 

Under the hypothesis of Theorem 3.4.6 and if iT=S(B)<l, then for o!w~2 

min y(w,~2) = y(w,~2) (3.4.98) 
2 2-2 

!! ~ll ~Jl 
where 

Moreover, for any w in the range 0~w~2, we have 

'2 
whereas for any w in the range '1./f- < t.<J< 00 

2 
w\!, -2 

2 

where wb(~) and wb(~ are given by (3.4.71) and (3.4.88), respectively. 

Proof 

Similar to the one followed in Lemma 3.4.5. 

Theorem 3.4.8 

(3.4.99) 

(3.4.100) 

(3.4.101) 

Let A be a consistently ordered matrix with nonvanishing diagonal 

-1 elements such that the matrix B=I-D A has real eigenvalues ~i' i=1,2, ... ,N 

with 
(3.4.102) 

and such that ~=S(B)<l. 

(i) For any w in the range 0~w~2, we have that: 

if r-::z 2 
v'l-jj-<l-l!. ' (3.4.103) 

then 



2_w~2+~2[w2~2_4{W_l)] 
, if O~w~~ 

_2 /,-2 [ 2-2 ] 
2-w~ - ~ w ~ -4(w-l) 

k(A) = 
w 

2-wJ!. 
2 

, if w:::w:::wi, (~) 
2_W~2_;&2[w2~2_4(W_l)] 

2-wJ;. 
2 

, if wi, (jl) :::w1:2 -2 
2-w~ 

otherwise 
_2 /,-2 r 2_2 ( ) ] 2-w~ + ~ .w ~ -4 w-l 

2_WU2_;&2[w2~_4(W_l)] , if Ol:Wl:wi, (il) 

k(A) = 
w 2 

2-w:
2 ' if wi,(il)l:w::;2 

2-wlJ 

where wand wi,(jl) are defined by (3.4.69) and (3.4.71), respectively. 

Moreover, k(A ) is a strictly decreasing function of w for 
w 

O<w<wi,(~) and if we let 

w = wi,CiiJ = wi" 

then k(A ) is minimised and its corresponding value is given by 
w 

On the other hand, if we also let 

T = T = o 
4w' 

b 
2 2 

4-~ [w'] 
- b 

then S(L ) attains its minimum value which is given by the expression T,W 

S(L ,) = 1+TO-2TO/wb" TO,wb 

(ii) For any w in the range ':J./l<W<'riJ, i~ 'llh~w:(fiL theY) 
_2 

w~ -2 
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(3.4.104) 

(3.4.105) 

(3.4.106) 

(3.4.107) 

(3.4.108) 

(3.4.109) 

(3.4.110) 
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(:H.1J.l) 

(3.4./13) . 
Proof 

From Theorem 3.4.6 and Lemma 3.4.7 we can easily verify (3.4.104), 

(3.4.105) and (3.4.110). Evidently, k(A »kCA I ( )) if wb' (ii)<w<2. 
W wb 11 

Next, we seek to show that if O<W<Wb(P), then k(Aw) is a decreasing 

function of w. 

Since 

sign = sign(ii-l) 

and 

sign 
[

d I 2-wl 1) 
dW [ 2 :..z 2 2 J 2-w~ -~ [w ~ -4(w-l)] 

. [ 2(2 _2 U[ 2_2 4C 1)]) _2(2 2)/l[w2iI2_4(W_1)]+cw~2_2)] = sIgn -~ -W~ -{~ W ~ - w- +~ -W~ 
- - 1..2 2-2 

{iJ [w ~ -4(w-1)] 

where 

it follows from (3.4.104) and (3.4.105) that for O<W<WbCU), k(Aw) is a 

decreasing function of wand is minimised when w takes the value given 

by (3.4.106). From either (3.4.104) or (3.4.105) we see that for this 

value of w, k(A ) is given by 
w 



k(f. I) = 
wb 

2 
2-]J w' - b 

2
_2 1 

-]J w 
b 

which by (3.4.91) yields (3.4.107). Evidently, for w=wt,CU') either 

(3.4.68) or (3.4.70) yields 

max f(wt,,(h 
2 2_2 

11 ~11 ~ll 

= 

= 

2_W']J 
2 

b-
2 

2 _2 
-W')..I 

b 
2 

by (3.4.108). Finally, by combining (3.4.34) and (3.4.107) we obtain 

(3.4.109) which is the minimum value of S(L ). 
T,w 

Similarly, we can prove the second part (ii) of the theorem, thus 

completing its proof. 

From the above theorem we have the following corollary (see 

Hadjidimos [1978]). 

Corollary 3.4.9 

Under the hypotheses of Theorem 3.4.8 and if 

O<]J = i:i = ]J<l - , 
then 

where 
w' = 

b 
2 and 1 

T = -=--
o h-i 

Also we see that for ~=O we obtain Theorem 3.4.4 as a special case of 

Theorem 3.4.8. 

From Corollary 3.4.9 we have that under the special condition 

(3.4.117) one can obtain an exceptionally fast rate of convergence by 
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(3.4.114) 

(3.4.115) 

(3.4.117) 

(3.4.118) 

(3.4.119) 

applying the ESOR method. However, it can be easily verified that under 

the same condition, one can obtain an analogous relationship to (3.4.118) 

for the EGS method (i.e. when w=l). 
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On the other hand, Corollary 3.4.9 shows how in the ESOR method one can 

exploit the spectrum of the eigenvalues of the matrix B to achieve the best 

possible results, whereas such a possibility is precluded in the SOR. We note 

that the superiority of the.ESOR method depends strongly upon IJ. This can 

be easily seen since if we assume IJ+O, then from (3.4.108) and (3.4.109) we 

have that R(L ,)+R(L, ,), whereas if ~+~, then from Corollary 3.4.9 we 
TO,wb wb,wb 

see that S ( L ,)+0. Finally, a comparison of the ESOR method and the SOR 
TO,wb 

showing the dependence on ~, is given by the following theorem. 

Theorem 3.4.10 

Under the hypotheses of Theorem 3.4.8 and for fixed ~ we have 

Proof 

1 
--2 
l-l!. 

Since in this case k(A ,»>1 for fixed IJ, then we have 
wb -

and therefore from (3.4.107) we obtain 

_....:1'---. 1 
IJr- = --2 
_ l-!!. 

1+kjl2 

As it was seen earlier, the advantages of the ESOR iterative 

(3.4.120) 

(3.4.121) 

procedure depends upon the value of l!.. The determination of g is the 

added work in the ESOR method as compared with SOR and it may incur some 

extra computational effort. The need for knowing!!. is very strong 

especially in the more general cases where the matrix A is not consistently 

ordered and the ESOR theory is expected to hold approximately. Apart 

from the iterative procedures which can be considered in a similar way as 

for the determination of~, (see Young [1954], Young and Shaw [1955], 

Hageman and Kellogg [1968]) another approach is to use the a priori 

exact and approximate methods. 
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4.4 THE PRECONDITIONED JACOBI METHOD (PJ METHOD) 

In Section 4.Z it was noted that GS,SOR,SSOR and EMA iterative 

procedures are not the appropriate methods which can produce the maximum 

rate of convergence using the corresponding conditioning matrix R. A 

result of this observation was to develop the new iterative schemes (3.1) 

and (3.34) which were proved (under certain conditions) to be superior over 

their corresponding "counterparts" (i.e., GS and SOR respectively). 

In this section we will attempt to tollow a similar approach as in 

Section 4.3 in order to construct and study iterative schemes which use the 

more general form of conditioning matrix given by (Z.4),(Z.9) with wl=w, 

wZ=w and employing the same splitting of A as given by (Z.lO). We therefore 

consider the iterative schemes associated with conditioning matrix 

-1 
R = (D-wCL)D (D-wCU). (4.1) 

(SSOR and EMA are iterative methods which possess the above conditioning 

matrix). 

Before we start defining any iterative process using the particular 

form of R given above, we can obtain a crude idea as to how effective this 

conditioning matrix is going to be, by comparing it with the conditioning 

matrix 
RI = D(I-wL). 

An alternative form of R, given by (4.1), is the following 

R = D[I-w(L+U)+wZLU) 

where we see that its effectiveness depends strongly upon the product LU 

since the remaining part of the right hand side in (4.3) is a good 

approximation to the matrix 

A = D[I-(L+U)). 

(4.2) 

(4.3) 

(4.4) 

Consequently, by comparing the conditioning matrices RI and R we conjecture 

that if any norm of LU (e.g. IlLUII ) is sufficiently small, then the 
00 

conditioning matrix R may produce slightly better improvement on the 

"condition" of the preconditioned system than Rl . In other words, we 



expect that under certain conditions, the iterative method which is 

associated with the conditioning matrix R, to possess slightly better 

rate of convergence than the SOR method. 

The associated iterative scheme with R is of the form (2.7) and is 

given by 
(n+l) (n) -1 -1 -1 (n) u = u +T (I -wU) (I -wL) D (b-Au ) 

where W,T are real parameters and their role will be considered later. 

We will commence our study of the above scheme by considering first 

the case where T=l. Thus, we will concentrate our attention on the 

iterative process defined by 

which is the Jacobi version of (4.1) and will be referred to as the 

Preconditioned Jacobi method (PJ method). If we consider vector 

corrections (see (2.8)), then the PJ method can be written as a two-

level fractional method given by 

and 

where 

where 

and 

~(n+~) = L (n+D (n) 
w ~ +r 

~(n+l) U (n+l) (n+!) 
= w ~ +~ 

(n+ 1) (n) (n+ 1) 
u = u +~ 

Finally, a more compact form can be obtained from (4.6) to yield 

u(n+l) = JC u(n)+ n 
w w 

JC = I_(I_WU)-l(I_wL)-lD-IA 
w 

-1 -1 
nw = (I-wU) (I-wL) c. 

From (4.10) and (3-2.39) we see that the PJ method and SSOR have similar 

forms and therefore it is expected that the amount of work involved is 

approximately the same (see Appendix A). It should be noted however 

that the PJ method defined by (4.7) is a modified version of (1.10), 

where in the former it is not required to use (1.4) after the criterion 

llO 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

of convergence is satisfied, thus reducing the involved computational work. 
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4.5 CONVERGENCE OF THE PJ METHOO 

From (4.6) we see that the preconditioned matrix of the PJ method is 

(5.1) 

If we assume that A is a real symmetric and positive definite matrix, then 

B is similar to the matrix 
W 

BW = O-!(O-WCU)Bw(O-WCU)-IO! 

= O!(O-wCL)-IA(O-WCU)-IO! 

= [O! (D-wCL)-I)A[O! (O-wCL)-I)T. (5.2) 

The last expression of B implies that B is obtained from A by a 
W W 

congruence transformation since the·matrix O!(O-WCL)-l is non-singular. 

Furthermore, by Theorem 2-2.4 we have that B is a positive definite 
w 

matrix which implies that B is similar to a positive definite matrix. 
w 

From this observation we have that if y. and A. are the eigenvalues of 
1 1 

JCwand Bw respectively, then they are real and are related through the 

relationship 

where 

y = I-A. i 1 

A. > O. 
1 

Consequently, by Theorem 3-3.1 and (5.3) the PJ method converges if 

and only if 

Theorem 5.1 

0<1..<2. 
1 

Let A by a symmetric matrix with positive diagonal elements, then 

if and only if A is positive definite and 

wCl<W<wf 

where w - 1-12/2 Cl and wf = 1+12/2. 

Proof 

From (5.1) and (3-2.39) it follows that 

& = I-w(2-w)B 
. W w 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
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and therefore we have the eigenvalue relationship 

W(2-W)A = I-v (5.9) 

where A,V are the eigenvalues of Band & , respectively. 
W W 

If we now assume that A is a positive definite matrix and (5.7) holds, 

then from Theorem 3-5.6 we have that VE[O,l) which by (5.9) implies that 

1 AE(O, 1 w(2-w) • 

Moreover, from (5.7) we have 

1 
w(2-w) < 2, 

hence (5.5) holds and the PJ method converges. 

Suppose now that ScJS) <1, then we have that (5.5) holds. 

If A>O, then by (5.2) we have that A is positive definite matrix. 

1 But by Theorem 3-5.6 O~v<l if 0<w<2, hence by (5.9) AE(O, 1 If w(2-w) • 

now A<2 which implies (5.11), we have that (5.7) is satisfied and the 

proof of the theorem is complete. 

(5.10) 

(5.11) 
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4.6 DETERMINATION OF GOOD BOUNDS ON A(B ) AND A(B ) 
w w 

From the previous section, it is clear that in order to study the PJ 

method and to determine a good estimate of w near the optimum we need to 

determine S(Jr)and then study its behaviour with respect to the preconditioning w 

parameter w. From (5.3) it follows that S(Jr) is given by 

S(JC·)= maxfll-A(B ) I, II-A(B )I} w w w 

where A(B ) and A(B ) are the minimum and maximum eigenvalues of B., w w w 

(6.1) 

respectively. The determination of A(B ) and A(B ) is therefore essential w w 

for our analysis. By following a similar analysis of lIabetler and 

Wachspress [1961], we will attempt to find the eigenvalues of B in terms 
w 

of certain inner products. 

Let us assume that A is an eigenvalue of B and v an associated 
w 

eigenvector, then it follows that 

B v = AV w 

which on substitution of B from (5.1) becomes w 

(I_wU)-I(I_wL)-ID-IAV = AV 

or Av = AD(I-wL) (I-wU)v. 

Furthermore, by taking inner products of both sides with respect 

to v, (6.4) yields 

(v,Av) = A(v,D(I-wL) (I-wU)v) 

which can be solved for A to give the expression 

= (v,Av) 
(v,D(I-wL) (I-wU)v) 

We can now expand the numerator and denominator in (6.6) to obtain 

A _ (v,Dv)-(v,DBv) 
- 2 

(v,Dv)-w(v,DBv)+w (v,DLUv) 

and if we divide both parts of the ratio by (v,Dv)#O, then we have the 

final representation of A which is given by the expression 

I-a (v) A = --=--"-'-..:..<..,~-• 2· 
I-wa(v)+w acv) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 



I,here 
aCv) = CV,DBv) 

CV,Dv) 

, CV,DLUv) a Cv) = Cv,Dv) and 

From the above expression of A we see that it would be possible to 
, 

determine the largest and the smallest eigenvalues of B if we happened w 

to know their associated eigenvectors, respectively. We therefore have 

to rely on bounds for aCv),SCv) to yield reasonable bounds for ACB ) and 
w 

ACB). Since B is similar to a symmetric matrix, by Theorem 2-1.5, we w w 

find that for any VfO we have 

, 

A CB ) li 
w 

l-aCv) 
li ACB ). w , 2' 

l-waCv)+w acv) 

Lemma 6.1 

If the eigenvalues ~ of B lie in the range 

mCB) = m li ~ li M = MCB), 

then the quantities aCv) and aCv) are bounded as follows. 

m = mCB) li aCv) li MCB) = M 

and o ~ aCv) li SCLU). 

Proof 

If we first 

a(v) 

consider 

= (v,DBv) 
(v,Dv) 

where w=Dlv and B=D!BD-!. 

, 
aCv), then from C6.9) we have 

CDlv,CD1BD~D!v) (w,Bw) 
= (Div,Div) = Cw,w) 

Thus, a(v) is a Rayleigh quotient with respect to B which is 

similar to B and by applying Theorem 2-1.5 the first part of (6.12) 

follows. Similarly, from (6.9) we have 

, 
a (v) = (v,DLUv) 

(v,Dv) 
(D!v,(DiLUD-i)D!V) = 

= (DIv, Div) 
(w, LUw) 

CW,w) 

where again w=Dlv and L=ijT=D1LD-i . Hence a(v) is a Rayleigh quotient 

with respect to the symmetric and positive definite matrix LV and the 

proof of the lemma is complete. 
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C6.9) 

C6.l0) 

C6.11) 

C6.l2) 

(6.13) 

(6.14) 



Since we assume A to be a positive definite matrix, B is simila'r to 

B=O!BO-!=I-O-!AO-! hence 

M(B) = M(B) = M < 1 

and from (3-6.3) we finally have 

m:;O:;M<l. 

Next, we note that B=L+U is symmetric and similar to B, hence 

= 

where 

= 211LII = 2/S(Li'h = 21S(LU) :; 21S 

S (LU) :; a. 
Moreover, from (6.16) it follows 

which implies that if the bounds -m and M exceed 21S we replace M by 

24 or m by -21S. Finally, from the above analysis it is readily seen 

that the following inequalities hold 

-21S~m::O::~l::'min(1, u'h 
We are now in a position to determine upper and lower bounds for 

A(B) and A(B). Although a crude upper bound for A(B ) was found in 
w w w 

Section 4.5 based on the properties of the matrix & , nevertheless we 
w 

present an independent approach to the same problem. 

Theorem 6.2 

If A is a positive definite matrix, then 

1 
A(B ):; (2 ) 

Cl) Cl)-oo 

where O<w<2. 

Proof 

It can be easily verified that 

O(I-wL) (I-wU) = w(2-w)A + O[(l-w)I+wL) [(l-w)I+wU) 

which when substituted in (6.6) yields 
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(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 
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(v,Av) 
A = (v,w(2-w)Av)+(v,D[(1-w)I+wL][(1-w)I+wUJV) (6.22) 

However, from Theorem 2-2.2 we have 

(V,D[(l-w)I+wL][(l-w)I+wU]v) = (D!v,D![(l-w)I+wL][(l-w)I+wU]D-!D!V)~O 

(6.23) 

and therefore (6.22) yields 

A < (v,Av) ( 
, (v,w(2-w)AV) 6.24) 

which is valid for all the eigenvalues of B. On the other hand, it is 
w 

known that B is a positive definite matrix and therefore by (6.24) we 
w 

obtain (6.20) provided 0<w<2, hence the proof of the theorem is complete. 

The following theorem gives a lower bound for A(B ) obtained by 
w 

studying the behaviour of the expression (6.8) with respect to a(v) and 

a (v) • 

Theorem 6.3 

and 

Let a,m and M be numbers such that 

-21tl~m~m(B) , 

M(B)~~min(1,21S) 

S(LU)di. 

Then, a lower bound on A (B ) is 
w 

given by 

I-M - 1 . - 1 
-::""':':"""'2-- = $1 (w),if 1l~4 or 1f 1l~4 and ~w* 
l-wM+w II 

A (B ) ~ 
w I-m - 1 

-----;.;2-- = $2 (w), if 1l<4 and w>w*. 
l-wm+w II 

- 1 where for 1l<4 we define w* by 

Proof 

2 w* = ---;::= 
1+/1-4S 

Let us consider the eigenvalue A of B given by (6.8) as a function 
w 

of the variables w,a,a, then we will attempt to find a lower bound of 

(6.25) 

(6.26) 

(6.27) 

this expression by studying its behaviour with respect to a,ll, hence we have 



the following problem to solve 

. . 
A (B ) >-

w 
min A(w,a,S) = 
a,a lJ.li12 

a,S 
{ I-a } 

• 2· 
l-wa+w S 

It can be easily verified, for fixed wand a, that 

( a •• ) sign ~ A(w,a,S) < 0 
. as . 

since w>O and a<l. 
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(6.28) 

(6.29) 

Thus A(w,a,S) is a decreasing function of a and from (6.25),(6.28) and (6.12) it 

follows that our problem reduces to the following 

Further, in 

hence we can 

this 

A(Bw) >- m!n A(w,a,S). 
a 

case for fixed w, we have 

[ a • - ) sign -- A(w,a,S) = 2-sign(-w S+w-l) 
aa . 

easily construct Table 6.1 which verifies (6.26) • 

proof of the theorem is now complete. 

S-Domain w-Domain 2- A (B ) Bound w S-w-1 w 

- 1 
S~4 0<w<2 :::0 1>1 (w)=A(w,M,S) 

O<w<w* >0 1>1 (w)=A(w,M,ii) 

- 1 
0::S<4 

w=w* =0 1>1 (w)=A(w,a,ii) 

w*<w<2 <0 1>2(W)=A(w,m,ii) 

TABLE 6.1 

BEHAVIOUR OF A(w,a,ii) AS A FUNCTION OF a 

(6.30) 

(6.31) 

Thus the 



4.7 DETERMINATION OF S (J( ) and wI w
I 

From the analysis of the previous section and (6.1) we see that 

S (J( ) = max{ \! r:I(), I\!. r:I(')l} w max '-"''to ID1n ........ '00 

where \! (J( ), \! . CJ(w) are the maximum and minimum eigenvalues of Jf , max w m1n 'UJ 

respectively. It is evident that 

\! Q(J = I-A cP. ) max ~ '{j 

and I" min (:vI = w (;-w) - 1. 

Let us first examine the behaviour of 

,,(w,a,a) = I-A(w,a,S) 

with respect to w in the range (0,2). 

Using the notation of the previous section, we have 

sign[;w "(W,a,a)) = sign(2wS-a), 

which simply means that we have to examine the behaviour of the function 

y(w,a,S)=2wS-a. This is summarised in the following table. 

w-Domain 

a 
w>-=-

2B 

2B 

a 
w<---=-

2B 

y(w,a,a) ,,(w,a,S) 

>0 Increasing 

=0 Stationary 

<0 Decreasing 

TABLE 7.1 

BEHAVIOUR OF ,,(w,a,S) AS A FUNCTION OF w 

Using Table 7.1 we can determine the behaviour of the functions 

8
1 

(w) = ,,(w,M,a) , 

and 8
2

(w) = ,,(w,m,S) 

with respect to w. Hence we have that 
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(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

M w =- (7.6) 
M 2ii 

is the critical point of 8
1

(w). Since now y(w,m,B»O for any non-negative 
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value of w, 6
2

(w) is an increasing function in the interval (0,2). Finally, 

from the previolls analysis Table 7.2 and Fjgure 7.1 can be established. 

w-[)omain 

O<w<w
M 

w:w
M 

wM<w 

o 

m 

-1 

y(w,M,a) 6
1 

(w) Graph 

\(w1 

<0 Decreasing 

-"-"--- - 1 __________________ 

M 
:0 Stationary 

-----
>0 

Increasing 

0 

TABLE 7.2 

BEIIAVIOUlt OF 6
1 

(w) AS A FlJNCT ION 01' w 

-------------- "I 
I 
I 
I 

A 

W 1 

-----------

Fllaml' 7.1 

I 
I 
I 

21 
1 

1 

I 
I 
I 

__ .1 

IlLIIIWItIlII( UI' U,lw) AS A FlJNC"fJON 01: w 
--.-- ... _._._-"----"--. -----'-------

61 

T 
I 
1 

"'M 

w 

w 
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We can easily verify that 82(w)=0 or g(w)=w2S-wm+m=0 when 
, r 48 <0 m ' 

W= w=2/(1-fl--), also since sign(g(O)g(l)) and ::<0, we have O<w<l. 
m 8 

From the previous analysis, we can summarise our results by considering 

the following cases, 

Case I ii>! '4 0<w<2,81(w)~82(w) 

Case Il - 1 
0:::8<4' 0<w~w·,81(w)~82(w) (7.7) 

and Case III - 1 
0~1l<4' 0<w·~w,el(w):::82(w) 

Moreover the relation between 81(w) and 82(w) can be easily seen ,from Table 7.3 

S-Domain w-Domain vmax (Jew) Graph 
Bound 

1 ____________ -, 

M, ~ 1 ,,-
, I 

a>!. 
' 'I 
III : I 

'4 0<w<2 81 . -~ 1 w 12 w 
M~4S 

8 ~t I 
2 I 

I 

III , 

-I f-----------..J 

IF---------, 
M 81 ---i 

- 1 i' 0::: Il <4 /i 1 1 
O<w~w* 81 

, 
1 w 1 , 

• . I 

M~4il 7, I w· '1.t :2 w 
I 
1 

III I 

-1 
I 

;----------~ 

1 --- -- ------, 
~1 , /it - 1 1 

0~1l<4 ~ 1 '-r 
W~W<IJ. 82 

A I 1 
10) i I : .. 

M~.4 ii A 1 w· i2 w
M I 

1 
1 

III 1 
-1 

__________ -1 

TABLE 7.3 

RELATION BETWEEN 81(w) AND S2(w) 
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Up to now we have studied the behaviour of v (JC), but in order to max w 

determine S(J(;) we have to find the relation of v (Jr) and Iv . (Jnl. max 'W' mln 'W' 

This is shown in Figure 7.2. 

S (JC ) 
w 

1 

M A 
---l 

C 

III 
I 
I 

I 
I 

oL-------l-------------~~~~--------~--L-~----~--~ 
w 

" 

FIGURE 7.2 (Ca~e r) 

BEHAVIOUR OF S (JQ AS A FlJNCT ION OF w 

2 

If we consider Case I, then from Table 7.3 it is clear that 6
1 

(w) 

dominates over 62 (w) for all the values of wE(O, 2). In this case we can 

determine a good value of w which minimises the bound on S(J( ) from the 
w 

equation 

This equation by using 

1 

or equivalently 

(7.2) and (7.5) can be written to yield 

1-M ---,-l=--,",," 
2- = w(2-w) - 1 

l-wM+w S 

w 

(7.8) 

(7.9) 

(7.10) 
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, 
By Descartes rule we can find that equation (7.10) has either i) no 

positive roots or ii) at least two positive roots. Since now it can be 

easily verified that sign(p(O)p(l)<O and sign(p(1)p(2))<0 we conclude that 

equation (7.10) has two positive roots wl ,w2 such that O<wl<l and 1<w2<2. 

Clearly, from the above analysis we have justified Figure 7.2, also we 

have shown the existence of a unique value of the preconditioning parameter 

W=W2 which minimises S(~w)and lies in the interval (1,2). This value can be 

determined by using known methods (i.e. Newton Raphson, Bairstow) to solve 

numerically (7.10) and consequently to obtain the corresponding bound on 

S(~Jfrom 
1 

S (JCw ) = (2 ) - l. 2 w2 -w2 

In the remainder of the cases, we have to distinguish whether i) w2<w* 

or ii) w*<w2• Since this cannot be done unless we solve (7.l0),we impose 

the restriction that if 

or from (6.27) if 
wf-l 

a >. -2- = 0.2426, 
wf 

then w2 is a good choice of w. 

Summarising our results we have that 

w = lW2 if a~0.2426 or 

1 w* if w*~w2 

whereas the corresponding bound on S(JCw) is given by 

S (Jc;. ) :f 
1 w*-l 

--;;;;;- if S<0.2426 and if w*:fw2. 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

Bya simple comparison of S(& ) (see (3-6.49)) and S(JC ) we observe that w
l 

w
l 

under certain conditions the PJ method may attain slightly better rate 

of convergence than the SSOR method. However, this is a Hmi ted case and 
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it is expected to happen for large values of the mesh size h (small values 

of N). Finally. Figure 7.3 illustrates the behaviour of S (:ICJ when the 

restrictions of the second part of (7.15) hold. 

S (JC ) w 
I 

I~ r----4--__ S (Jf ) 
w 

--1 
1 

1 

I 
I 

I 
I 
1 

I 
1 
I 

O~--~L-------~~~~~--~---Lj-L---~·,=?-----------w~·~ 
wa W'k ''2 "'r-l'''f 1-

m 

-I 

I 
1 
1 

I 
I 
I 
1 
I 
I 

------------------~ 

FIGURE 7.3 

BEHAVIOUR OF S(JC.)AS A FUNCTION 01' W WHEN a<0.2426, AND w*<w 
2 
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4.8 COMPUTATIONAL RESULTS 

First, it was observed that the estimated upper bound on A(B ) which 
w 

is given by (6.20) is a very good approximation for 1~w<2. This can be 

easily seen if one carries out a comparison of this bound and A(B ) 
w 

determined by the power method for the above range of w. However, this 

does not seem to be the case, especially when w is very close to zero. As 

a result of this we have Table 8.1 which shows the behaviour of S(JCJ for 

wE(O,2] in the Laplace problem. From this table we observe that S(J~) 

is less than unity for w=O.O, 0.1, 0.2 which is not expected because of 

Theorem 5.1. On the other hand, S(X) is approximated satisfactorily by 
. ·w 

v rJ{') given by (7.2) for 0~w~w1 which is consistent with the observation max w 

that for w=O the PJ method coincides with the J . method. Consequently the 

interval of the preconditioning parameter w such as the PJ method to be 

convergent is the following 

rz O:;w<l+T • (8.1) 

Moreover, this justifies the way we indicated the behaviour of S(~) 

in Figures 7.2 and 7.3 

~ 10 20 40 

0.0 0.9510 0.9876 0.9965 
0.1 0.9460 0.9863 0.9962 
0.2 0.9402 0.9848 0.9959 
0.3 0.9335 0.9830 0.9955 
0.4 0.9255 0.9808 0.9949 
0.5 0.9161 0.9783 0.9943 
0.6 0.9048 0.9751 0.9935 
0.7 0.8912 0.9713 0.9926 
0.8 0.8745 0.9665 0.9913 
0.9 0.8539 0.9604 0.9898 
1.0 0.8282 0.9524 0.9877 
1.1 0.7955 0.9419 0.9849 
1.2 0.7537 0.9275 0.9810 
1.3 0.6998 0.9273 0.9753 
1.4 0.6307 0.8778 0.9667 
1.5 0.5452 0.8327 0.9528 
1.6 (-)0.5621 0.7610 0.9281 
1.7 (-)0.9518 (-)0.9601 (-)0.9606 
1.8 (-) 1. 6638 (-)1.7758 (-)1.7769 
1.9 (-)3.0395 (-)4.0581 (-)4.2586 
2.0 (-)5.8515 (-)13. 9677 (-):n 9734 

TABLE 8.1 

BEHAVIOUR OF S (XJ FOR THE LAP LACE EQUATION 
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As can be seen from Table 8.1, as h+0 the value w
l 

tends to w
f

' whereas 

the minus signs in parentheses indicate that S (J{ ) is represented by 
W 

I v . (JC j. Al so we note that for large 
mIn W h (i.e. h- l =lO), S(JC lis insensitive 

W 

for wElO,l] and then as w increases from 1 to 2, S(~)decreases slightly 

more rapidly until w gets close to w t=1.5 the optimum value at which point op 

the decrease is very rapid. As w increases further, S(JC)increases faster 
w 

to a value of unity when w=wf and then as w approaches 2, sQCw)takes values 

greater than unity which can become very large indeed. In the case where h+O 

-1 (i.e. h =40) we observe that S(JCJis very insensitive for wE[O,wf ] and then 

as w+2, increases very rapidly. Of course, this behaviour was expected, 

since as h+O then ~~l- and from our theoretical analysis we can observe 

(see Figure 7.2) that the part AB moves upwards and the point C moves to 

the right. Hence, in general we expect the PJ method to have a very slow 

rate of convergence. 

In order to test the theoretical results obtained above a number of 

numerical experiments were carried out involving the generalised Dirichlet 

problem on the unit square with the differential equation 

(8.2) 

Various choices of the coefficients A(x,y) and C(x,y) were used, 

as indicated in Table 8.2. The optimum preconditioning parameters Wo and 

S~C~ were determined as follows. The spectral radius S(JCw)was calculated 

by using the power method which is given by 
w(n+l) = JC wen) 

w } ((n) (n+l)) 
v (n) = w ,w , n~O 

( (n) (n)) w ,w 

(8.3) 

for w(O)~O. It is known that wen) is an approximation to the normalised 

eigenvector associated with S(JCJand that v(n) converges to S(J{w)as n tends 

to infinity (see e.g. Gourlay and Watson [1973]). 

Furthermore, we assume that w(O) has a non-.ero component in the 

direction of the dominant eigenvector. Then we can apply the Fibonacci 



search technique (e.g. see Zahradnik [1971]) to obtain Wo and 5(3£6)' The 

PJ iterative scheme was then applied with boundary values taken to be zero 

on all sides of the square. As starting vector u(O) was used the vector 

with all its components equal to unity in each case and the procedure was 

terminated when the inequality lIu (n) 11 ",<10-6 was satisfied. The number of 

iterations of the numerical experiments together with the optimum values 

Wo and 5 (Jt, ) are presented in Table 8.2. 
o 

Problem Coefficients h- l 

20 
1 A=C=l 40 

60 

A=C=e 10 (x+y) 
20 

2 40 
60 

2 2-1 A=(1+2x +y ) 20 
3 2 2-1 40 

C=(l+x +2y ) 60 

r+x, O~X~~ 20 
4 A=C= 40 1 

2-x. z<x::l 60 

A=1+4Ix-~12 20 

5 1 40 r' O::x<I 
C= 1 60 9, ¥x~l 

A=l+sin" (x+y) 20 
6 2 40 

C=e 1O (x+y) 60 

TABLE 8.2 

Wo 
1.6456 
1. 6859 
1. 6967 

1. 5370 
1.6439 
1.6555 

1.6471 
1.6865 
1.6970 

1.6453 
1. 6858 
1. 6967 

1. 6483 

1. 6857 

1.6964 

1. 5499 
1.6466 
1.6722 

OPTIMUM PARAMETERS Wo AND 5(~0) 

5 (;le ) 
Wo npJ 

0.7147 43 
0.8883 121 
0.9435 247 

0.4511 20 
0.7082 49 
0.8496 105 

0.7204 44 
0.8913 124 
0.9453 254 

0.7134 43 
0.8878 120 
0.9433 245 

0.7252 44 

0.8876 119 

0.9420 239 

0.4703 21 
0.7187 48 
0.8397 90 

126 
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4.9 THE PRECONDITIONED SIMULTANEOUS DISPLACEMENT METHOD (PSD METHOD) 

As was seen in the previous sections, the PJ method has a less 

favourable rate of convergence although it requires approximately twice as 

much work as the SOR. Again as it will be shown later this is due to the 

fact that we did not let the parameter T in (4.5) take its optimum value. 

Let us therefore consider the iterative scheme 

as defined by (4.5) where T,W are real parameters. 

The iterative process (9.1) is the Simultaneous Displacement version 

of (4.6) and it will be referred to as the Preconditioned Simultaneous 

Displacement method (PSD method). At this point we are able to state 

that if we let T and W take their optimum values TO and wO' respectively 

then the PSD method will be superior to any other iterative scheme which 

uses the same conditioning matrix R given by (4.1). We therefore expect 

that the PSD method will produce in general a better rate of convergence 

than the PJ and SSOR methods. Further, we also expect the iterative 

process (9.1) to meet our expectations as regards our earlier conjecture, 

(see Section 4.4) to produce a rate of convergence which in some cases 

might be better than SOR. Evidently, (9.1) can be written in a more 

"computable" form similar to (4.7) as 

where 

where 

and 

~(n+!) = wL~(n+!) + r(n) 

~(n+l) = wu,(n+l) + ~(n+!) 

(n+l) (n) (n+l) 
u = u +'f~ 

r(n) = D-l(b_AU(n». 

From (9.1) we also have 

u (n+ 1) = D u (n) + 6 
T,W 

-1 -1 -1 
D = I -T (I-wU) (I -wL) D A T,W 

-1 -1 
6 = T (I-wU) (I-wL) c. 

Moreover, I-D is non-singular if T,W 

and if A is non-singular. 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 
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4.10 CONVERGENCE OF THE PSO METHOO 

Theorem 10.1 

Let A be a symmetric matrix with positive diagonal elements. For any 

real wand T the eigenvalues of D are real. Moreover, T,W 

SeD )<1 (10.1) 
T ,W 

if and only if 
0<w<2, 

0<T<2w(2-w) 

and A is positive definite. 

Proof 

From (9.5) and since D! exists we have that D is similar to the .w 
matrix 

DT,W = O-!(O-WCu)D,p}O-WCU)-lOl 

! -1 -1 ! = I-TO (O-wCL) A(D-wCU) 0 

= I-T[ol(O-WCL)-ljA[ol(O-WCL)-ljT 

If A is a symmetric matrix, then the second matrix of the right 

hand side of (10.4) is symmetric as well. In addition, if A is positive 

definite, then by (5.2) we have 

D = I-TB 
T ,W W 

where B is positive definite and similar to B As was proved in 
W W 

(10.2) 

(10.3) 

(10.4) 

(10.5) 

Section 4.5, B is positive definite if and only if A is positive definite. 
W 

Furthermore, if d and A are the eigenvalues of D and B ,respectively, 
T ,W W 

then from (9.5) we have the following eigenvalue relationship 

d = I-TA 

where A>O. 

Evidently, SeD )<1 if and only if T,W 

-l<l-TA<l 

which by Theorem 6.2 gives (10.2) and (10.3) thus completing the proof 

of the theorem. 

(10.6) 

(10.7) 



4.11 CHOICE OF T AND w FOR TIlE PSD METHOD 

We now study the problem of determining good estimates for T, the 

preconditioning parameter wand the spectral radius ofD Our primary 
T,W 

concern is the case where A does not possess the form (2-7.1). 

Theorem 11.1 

and 

Let e,m and M be numbers such that 

- 2/i3"lIllim (B) 

M(B)"M"min(1,2;G) 

S(LU)::1i. 

Then, a lower bound on the P-condition number of B , P(B ) is given w w 

by 2-! ,-...". , 4>1 (w) , 
- 1 

w(2-w) (I-M) = if e>-" or 
P(B ) :: 2-w - 1 l-wm+w e = 4>2(w) , if e<" and w(2-w) (I-m) 

- 1 where for e<" we define w* by 

2 w* = ---;== 
1+/1-4S 

Moreover, the bound (11.2) is minimised if we let 

2 

1+1I-4S 

2 = w* ,if M>.4i3 

and the corresponding value of P(B ) is given by 
w 

Proof 

1 11-2M+4i3) 
2(1+ I-M 

1 [2-W~ ) 
= 2" (l-M)wM 

1+/1-4B 1 -':::":'-=="- = 2-w* , if M>.4S. 
2/1-4i3 

- 1 
if S<" and w~w* 

00>00* 

The validity of (11.2) can be easily seen by Theorems 6.2 and 6.3. 

Thus, we will be concerned with the behaviour of the bound (11.2) as a 

function of w. 
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(11.1) 

(11.2) 

(11. 3) 

(11.4) 

(11. 5) 



By letting 

. . 
p(w,a,a) = 1 

W(2-W)A(W,~,S) 

then from (6.28) we have 

p(w,~J) = 
• 2· l-wa+w a 

w(2-w) (l-~) 

hence 
p(w,M,S) = <1>1 (w) and p(w,m,a) = <P2 (w) 

From (11.7) it follows that 

Sign[~(w,~,S)J = sign(w
2

(2S-a)+2w-2) 

and therefore the critical points of <1>1 (w) and <l>2(w) in the interval 

(0,2) are 

and 

respectively. 

w = 
M 

w = m 

2 

We can therefore establish Tables 11.1 and 11.2. 

Domain p(w,M,a) <1>1 (w) 

O<w<~ >0 Decreasing 

w=w M =0 Stationary 

wM<w<2 <0 Increasing 

TABLE 11.1 

BEHAVIOUR OF <l>l=P(w,M,S) AS A FUNCTION OF w 

Domain p(w,m,S) <I> 2 (w) 

O<w<w >0 Decreasing m 

w=w =0 Stationary m 

w <w<2 <0 Increasing m 

TABLE 11. 2 

BEHAVIOUR OF </>2(w)=p(w,m,s) AS A FUNCTION OF w 
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(11 .6) 

(11.7) 

(1l.8) 

(11.9) 

(11.10) 

(11.11) 



It can be easily seen that 

since m<M. Moreover, if w*~l and from (11.11) we see that 

wm~l. Thus, we obtain 

Furthermore, we have 

W <w* m • 

Sign(aa~ p(w,;,j3) J = sign(w
2

il-w+l) 

and therefore we construct Table 11.3. 

2-w B-w+l Relation Bound on P (B ) w 

~O ~l (w)~~2(w) ~l (w) 

=0 ~ 1 (w) =~ 2 (w) ~1 (w) or ~2(w) 

~O 4> 1 (w) ~~ 2 (w) 4> 2 (w) 

TABLE 11.3 

RELATION BETWEEN 4>l(w) and 4>2(w) 

Evidently, a similar table to Table 6.1 holds for p(w,a,a) as well, 

hence by combining also the properties of Table 11.3 we clearly see 

- 1 
that for B~::I' then 4>1 (w)~4>2(w) for all w, hence from Table 11.1, wl="'r,r 

- 1 If B~4' then we consider two cases: 

Case I: wm~w*~~ and Case 11: wm~wM~w* (see Figure 11.1). Clearly 

- 1 
If now B~4 and in Case I w =w* while w =w in Case 11. 

1 1 M 
M<l, then these 

conditions imply M~4B. 
- 1 Also, in Case 11 we have B<4 and ~~w* which 

imply ~4il as well. 
- 1 Finally, in Case I, B<4 and ~:::w* thus M ~ 4a. 
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(11.12) 

(11.13) 

(11.14) 

Thus a "good" estimation of w namely w1 is given by (11.4) whereas the 

corresponding bounds on P(B ) are found by direct substitution in (11.2), 
w1 

hence the proof of the theorem is complete. 



• 

o 

o 

w 

w 
m 

m 
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4>1(w) 

1 w* 2 w 

2 w 

FIGURE 11.1 



It should be noted that the approach for determining the estimated 

values wl and P(B ) is similar to the one followed by Young [1974] and w
l 

Axelsson [1974] for obtaining good bounds on S(& ). 
w 

Moreover, from Theorem 3-6.14 we conclude that the two estimates 
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SSOR d PSD w1 an wl are identical (see (3-6.48) and (11.4)). This was expected 

since SSOR and PSD can be easily seen that they both possess identical P-

condition numbers, thus 

(11.15) 

where A(& ) and A(& ) are the minimum and maximum eigenvalues of & . w w w 

But A(& ) is approximated by zero under the restriction that A is positive . w 

definite, hence from (11.15) it follows 

1 
P(Bw) ~ l-S(& ) 

w 
. PSD SSOR 

which implies that the optImum values Wo ,wO of P(Bw) and S(&w)' 

. PSD SSOR respectively are very close, whereas the estImated wl and w
l 

are 

identical. 

where 

From (11.5) we can modify the bound on P(B ) to yield wl 

-(1+ --) , 

r 
1 1 

2 h-M 

1 !I:, 
2(1+ Il-M) , 

1 -1 fr.. 
2(1+y Il-M) , 

y = [ 2(ii-i))-~ 
1 + I-M 

The first two parts of (11.17) can be easily verified from (11.5) 

if we recall that p(w,a,S) is an increasing function of a, whereas the 

last part is obtained if we rewrite the first part of (11.5) to yield 

successively 

.:...1i::..,1-,.::2,",M +_4c::,S = 
I-M 

l-2M+4S 

(I-M) 2 

= l-2M+4i3 II. 
2 (I-M) I I-M 

= y-l) 2_ 
I-M 

(11.16) 

(11.17) 

(11.18) 



where 

-1 
Y = -2M+4S 

/ ~2~( lo-_7.M",") = 
1+2(S-1/4) 

I-M 

Furthermore the determination of the value T=Tl can be achieved by 

using the relationships (6.20) and (11.5) thus we can easily verify that 

2"'1(2-"'1) 
Tl = l+l!P(B ) 

"'I 

Finally, from (11.17) we can derive the spectral radius of D 

since it can be expressed in terms of P(B ). 
"'I 

T 1 ''''I 

From (11.19) we note that for.P(B »>1, Tl tends to become equal 
"'I 

to 2"'1 (2-"'1) which according to our previous analysis, implies that the 

PSD method is expected to produce better rate of convergence than SSOR 

since in the latter we always have Tl ="'1(2-"'1)' 
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(11.19) 



4.12 COMPARISON OF RECIPROCAL RATES OF CONVERGENCE 

Let us now compare our bounds on RR(D ) with RR(B_l. By using 
T 1 ,wl W 

the relationship 

RR(D 1 ~ ~(B 1 
Tl,wl wl 

we can easily obtain bounds on RR(D ) from (11.17) for the different 
T 1 ,wl 

cases. Also, by considering (3-6.39) we can obtain bounds on RR(B_) for 
W 

the general case (when A is a Stieltjes matrix). Consequently, we are 

now able to construct Table 12.1. 

Asymptotic Bounds on RR(D )/IRR(B_) 

Range of ~ 
Tl,w l W 

General Case Property A 

i3<~ 1 1 
'4 212 4" 

&ii<-!. 1 1 
4' '4 2 212 

~>.!. 1 -1 1 -1 
2Y --"( 4 212 

TABLE 12.1 

By a simple comparison of Tables 3-6.1 and 12.1 we see that we obtain our 

main result between the asymptotic bounds on RR(D ) 
Tl,wl RR(& ) w

l 
2 

and RR(& ) wl 

Evidently, from (12.2) it follows that the number of iterations 

of the PSD method is asymptotically half the number of iterations of 

the SSOR for both methods to achieve the same level of accuracy. (For 

a comparison of the work involved see Appendix A). This result clearly 

justifies our earlier conjectures concerned with the superiority of the 

PSD method over SSOR (see Section 4.9). 

Another observation is that the improvement by an order of magnitude 

of the rate of convergence of PSD over the JOR is retained in the general 
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(12.1) 

(12.2 ) 

case as well. Furthermore, by comparing the best possible bound on RR(£ ) 
wb 



with RR(D ) in the case where the matrix A is consistently ordered we 
T l,wl 

obtain Table 12.2 (see (3-6.26)) 

Range of il Asymptotic Bounds on RR(D )/RR(L) 
Tl,wl wb 

- M 1 
~~4 

12 

M-I 
~~"4 1 

ii>.!. -1 
4 Y 

TABLE 12.2 

PROPERTY A 

From Table 12.2 if we compare the PSD with the SOR (without taking 

into account the computational work involved) then for ii,,~ we have an 

improvement of approximately 12 of the rate of convergence of the former 
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over the latter method, whereas M 1 for ~~~4 we expect to obtain asymptotically 

identical results. However for 1 -1 S>4 the results depend strongly upon y 

and are useful if this quantity is not very large (see Section 5.5). Clearly 

Table 12.2 justifies our early comparison on the effectiveness of the 

conditioning matrices R,Rl (see Section 4.4) establishing therefore the 

credibility of the used criteria. In addition, the construction of the PSD 

method by using the preconditioning techniques, its superiority over SSOR 

and in certain cases over SOR, confirm further the idea of how one should 

use these techniques in order to associate the most effective iterative 

scheme with a given conditioning matrix and on the other hand, the strong 

need to study the effectiveness of the different forms of conditioning 

matrices associated with the various splittings of the coefficient matrix A. 
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4.13 COMPUTATIONAL RESULTS 

Before we verify our theoretical analysis by presenting various 

numerical experiments we consider the application of the above results to 

the fOllowing model problem. Given a continuous function g(x,y) defined on 

the boundary S of the unit square R:O~x~l, O~y~l find a function U(x,y) 

continuous in the closed square and satisfying in the interior R the Laplace 

equation 

On the boundary, we require that 

U (x,y) = g{ic,y). 

By considering the five-point discrete analogue with the natural ordering 

it is easy to show (see Young [1971], Chapter 4) that 

S(B) = cos!rh 

where h is the mesh size. 

Moreover, the matrix A can be shown to possess Property A and to be 

consistently ordered (see Chapters 1 and 2). It is easy to show also 

(see, for instance, Ehrlich [1963], Appendix B) that 

1 2 !rh 
S (LU) = "4 cos ""27( li-_-;-h"<""") 

From (13.4) we can let a be given by 

1 2 !rh 
1i = "4 cos T 

Evidently, by (13.4) and (13.5) we have 

S(LU)dL 

We now determine a good value of w using (11.4) with M=cos!rh and 

with i3 given by (13.5). We note that 

~ !rh - 2 !rh 
2.S = cosT~4S = cos T~cos!rh = M 

and hence we can apply Theorem 11.1 to obtain 

2 
= 

1+l3sin!r2h 

and 

(13.1) 

(13.2) 

(13.3) 

(13.4 ) 

(13.5) 

(13.6) 

(13.7) 



( 
13 . 1Th 

1 Sln T 
- 1 + -,-,...,.,,7-+ 2 l-cos1Th 

131 
• ~ t 

Sln 2 

Therefore, for sufficientlY small h we have 
P(B ) 

RR(D ) ~ 2 wl ~ i(l+ if h- l ). 
'l,wl 

Similarly, by using (3-6.49) we can find 

2 . 1Th 1- - Sln-

S (& ) :: 
13 2 

~l 
21Th 

1 2 . 1Th wl + - Sln- If 13 2 
therefore for small h we have 

RR(& ) ~ 13 h- l • 
wl 21T 

By comparing the PSD with SSOR we obtain the following result 

RR(D ) 
'l,wl 1 h """7';;"'......,...-"- ~ - (1 + _1T ). 

RR(&w
1

) 2 13 

The values of this ratio for h=1/20, 1/40, 1/60 and 1/80 are illustrated 

in the following tabulation 

1/20 0.545 
1/40 0.523 
1/60 0.515 
1/80 0.511 

Consequently, for the above model problem and as the mesh size h tends to 

zero the number of iterations of PSD tends to become half the number of 

iterations of SSOR. 

For the SOR method, since A is consistently ordered, it follows 

from (3-6.22) that the optimum value of W is given by 

2 
Wb = l+sin1Th 

whereas by (3-6.23) we obtain 

= l-s~n1Th ~ l-2rrh 
l+slnrrh 

138 

(13.8) 

(13.9) 

(13.10) 

(13.11) 

(13.12) 

(13.13) 

(13.14) 
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for small h. Finally, from (13.l4) it follows that 

L 1-1 RR{ W ) ~ 211 h • (13.15) 
b 

By comparing now the PSD with the SOR we obtain 

thus as h7Q the limiting value of the ratio in (13.l6) is 

RR(D ) 
Tl,wl 13 

,,",,"7r"::"--"-- ~ - = RR{Lw ) 2 
b 

0.866. 

(13.l6) 

(13.l7) 

which implies that for the model problem the rate of convergence of the PSD 

method is even better than SOR. On the other hand, if one also compares 

the two methods in terms of required computational work (see Appendix A), 

then it seems interesting to investigate further the possibility of using 

the PSD method with Niethammer's scheme. 

In order to test our theoretical results obtained so far, the same 

numerical experiments, as described in Section 4.8, were carried out. For 

purposes of comparison, we considered the application of SOR, SSOR and PSD 

methods with optimum and estimated parameters to the derived systems of 

equations corresponding to the problems presented in Table 8.2. 

The quantities A(B ) and S{& ) presented in Table 13.1, were computed 
Wo Wo 

by using the power method combined with the Fibonacci search technique (e.g., 

see Gottfried and Weisman [1973] and Zahradnik [1971]), whereas A{B ) was 
Wo 

computed by (6.20). The value of wb based on the true value of S{B), as 

determined by the power method, was used. Also, in Table 13.1 we present 

the number of iterations required to satisfy the convergence criterion 

lIu{n)II",::1O-6 for SOR, SSOR and PSD methods with optimum parameters. 

Furthermore, in Table 13.2 we present the estimated parameters Tl,wl and 

P{B ) computed by (11.4),{11.19) and (11.5), respectively, where a is 
wl 

given by (B.6) (see Appendix B) and M is given in Young [197la] {see also 

(5-5.27)). In Table 13.2 we also give the number of iterations for the SSOR 



Problem h- l 
Wo SC& ) ACE ) ACE ) 

Wo Wo Wo 
20 1.7641 0.8099 0.4568 2.4030 

1 40 1. 8750 0.9008 0.4233 4.2667 
60 1. 9157 0.9343 0.4068 6.1922 

20 1. 5888 0.5876 0.6313 1.5307 
2 40 1.7668 0.7663 0.5672 2.4271 

60 1. 8386 0.8386 0.5439 3.3698 

20 1.7652 0.8140 0.4488 2.4127 
3 40 1.8756 0.9031 0.4153 4.2859 

60 1. 9163 0.9343 0.4096 6.2346 

20 1.7624 0.8088 0.4566 2.3881 
4 40 1.8748 0.9002 0.4252 4.2603 

60 1. 9143 0.9324 0.4121 6.0955 

20 1. 7479 0.8281 0.3901 2.2694 
5 40 1.8665 0.9105 0.3592 4.0132 

60 1. 9093 0.9395 0.3494 5.7746 

20 1.6097 0.6035 0.6311 1. 5917 
6 40 1. 7820 0.7855 0.5779 2.5742 

60 1. 8490 0.8438 0.5593 3.5817 

OPTIMUM 
PCE ) TO SSOR PSD 

Wo 
5.2604 0.6993 66 37 

10.0806 0.4264 134 71 
15.2207 0.3031 201 107 

2.4248 0.9251 24 17 
4.2790 0.6679 48 30 
6.1958 0.5110 71 44 

5.3763 0.6989 68 38 
10.3200 0.4254 137 72 
15.2207 0.3010 205 107 

5.2301 0.7031 66 37 
10.0200 0.4268 133 70 
14.7929 0.3073 200 104 

5.8173 0.7520 74 41 
11.1732 0.4574 149 79 
16.5289 0.3266 224 117 

2.5221 0.8998 28 17 
4.4543 0.6345 57 32 
6.4020 0.4829 85 47 

TABLE 13.1 

h -1 
wb 

20 1.7295 
40 1. 8547 
80 1. 9237 

20 1. 5527 
40 1. 7460 
80 1.8902 

20 1. 7326 
40 1.8564 
80 1. 9247 

20 1.7385 
40 1.8599 
80 1.9260 

20 1.7233 
40 1. 8515 
80 1. 9191 

20 1.5528 
40 1. 7448 
80 1.8907 

SOR 

61 
121 
253 

50 
99 

217 

60 
121 
252 

59 
119 
225 

60 
118 
274 

41 
81 

176 

.... .... 
o 



* Problem h-1 a 2/il M w1 T1 P (B ) 
ESTIMATED 

1 

2 

3 

4 

5 

6 

* 

w1 SSOR PSD 
20 0.2500 1.0000 0.9877 1.7287 0.8188 6.8727 68 48 
40 0.2500 1.0000 0.9969 1.8544 0.5021 13.2357 138 93 
60 0.2500 1.0000 0.9986 1.9005 0.3598 19.6008 207 137 

20 0.2350 0.9695 1.0000 1.6065 0.9073 2.5415 28 18 
40 0.2461 0.9922 1.0000 1. 7788 0.6444 4.5208 45 33 
60 0.2483 0.9965 1.0000 1.8465 0.4914 6.5139 67 47 

20 0.2505 1.0009 0.9969 1.8355 0.5661 14.9905 73 101 
40 0.2501 1.0002 0.9992 1.9142 0.3177 29.5540 145 195 
60 0.2501 1.0001 0.9997 1.9420 0.2203 44.1015 218 -
20 0.2500 1.0001 0.9918 1. 7717 0.7223 8 •. 3322 66 59 
40 0.2500 1.0000 0.9979 1.8790 0.4282 . 16.1660 133 114 
60 0.2500 1.0000 0.9991 1. 9176 0.3034 23.9999 200 168 

20 0.2500 0.9999 0.9978 1. 8756 0.4379 15.2395 97 65 
40 0.2500 1.0000 0.9994 1.9359 0.2402 30.0138 193 100 
60 0.2500 1.0000 0.9998 1.9568 0.1654 44.7804 288 144 

20 0.2416 0.9831 1.0000 1.6903 0.7994 3.2293 36 23 
40 0.2483 0.9966 1.0000 1. 8475 0.4889 6.5567 82 47 
60 0.2493 0.9986 1.0000 1.8997 0.3463 9.9697 129 71 

TABLE 13.2 

In ProbZems 2 and 6 in the determination of w1 and P(B J. the vaZue 2~ 
w1 

was used instead of M. 
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and PSD method using the estimated parameters. 

To determine the rate of convergence which has been attained by applying 

the SSOR, SOR and PSD methods with optimum and estimated parameters, we plot 

the logarithm of the number of iterations versus logh- l for problems 1,2 and 

6 in Figures 13.1 and 13.2. 

From Table 13.1 we see that our theoretical expectations are verified 

since in all cases we have a substantial reduction in the number of iterations 

of the PSD method as compared with SSOR and SOR. It is readily verified that 

in all the considered problems we have i) a reduction of at least 39% (except 

in problem 2 where the reduction is at least 29%) of the number of iterations 

of the PSD over SSOR and ii) a reduction of at least 32% of the number of 

iterations of the PSD over SOR. On the other hand if we consider the SSOR 

and the PSD methods with estimated parameters, then from Table 13.2 we 

observe that for problems 1,2,5 and 6 we have a reduction of at least 27% 

in the number of iterations, whereas for problem 4 this percentage is 

somewhat less. For problem 3, where S>1/4, (see Table 12.1) the convergence 

of the PSD method is erratic. It is conjectured that this is due to the 

crude bounds used for the quantities S(B) and S(LU) since such a phenomenon 

does not exist in the case where optimum parameters are used. Furthermore, 

for all problems (again problem 3 is an exception) we have a reduction of at 

least 25% for h=1/60, using PSD with estimated parameters as compared to SOR. 

Finally, from Figures 13.1 and 13.2 we confirm our theoretical results 

by noting that the rate of convergence is approximately O(h). 
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4.14 THE UNSYMMETRIC PJ METHOD 

In this section we consider the conditioning matrix R to have the 

general form 

(14.1) 

which is obtained from (Z.4) and (Z.9) by assuming that A has the splitting 

(14.Z) 

As can be seen the preconditioned matrix is given by 

(14.3) 

which is not a symmetric matrix. 

By using the above defined conditioning matrix P(B ) we form 
wl,wZ 

first the following iterative scheme (see (Z.7) for T=l) 

(n+l) (n) -1 -1 -1 (n) 
u = u + (I-wZU) (I-wlL) D (b-Au ) (14.4) 

which defines the unsymmetric PJ method (UPJ method). The UPJ method can 

also be written as 

where 

and 

(n+l) 
u = Q u (n) + q 

wl,wZ wl ,wz 

-1 -1 -1 = I-(I-wZU) (I-wlL) D A 

q = (I-wzU)1I-W1L)-lc. 
wl,wZ 

We will only concentrate on the case when A is of order N and has 

the form 

A = I-B = [ 11 
-L* 

where U* is an mxr submatrix, L* is an rxm submatrix, Il,I Z are mxm 

and rxr identity submatrices, respectively and m+r=N. 

Theroem 14.1 

If A is a real symmetric matrix of the form (14.8), then 

(14.5) 

(14.6) 

(14.7) 

(14.8) 

(14.9) 



if and only if 
_2 

1-1l • 
- -- <w 

2ji2 

and ji < 1 

where ii=5(8) and 

Proof 

It can be easily verified that if A has the form (14.8), then 

Q has the form w
1

,w
2 

= 
(1-w2)U* I 

(~ +w -w w )L*U* 
l' 2 1 2 
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(14.10) 

(14.11) 

(14.12) 

If A is an eigenva1ue of Q w
1

,w
2 

and y=(~) is the corresponding eigenvector, 

the partitions of y corresponding to the partitions of A in (14.8), then 

we have 

or from (14.12) 

[:1 -, [:1 
which simplifies to the following system of equations 

Ad. 

Eliminating b from (14.15) we have 

2 
[(1-wi(1-w2)+A(w1+w2-w1w2)]L*U*d = A d. 

It is easily shown that the non-zero eigenva1ues of 8 occur in 

pairs ±Il i (i=1,2, .•• ,M), where M is less than or equal to the number 

of rows in L* or U*. Furthermore, the eigenva1ues of L*U* are 

O~J.I~~iI2 = 5(8)2 
1 

hence by (14.16) we have the following eigenva1ue relationship 

(14.13) 

(14.14) 

(14.15) 

(14.16) 

(14.17) 
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(14.18) 

which can be written as 

(14.19) 
. 

where W is given by (14.11). 

Consequently, the theorem is a result of Theorem 3.4, since (14.19) is 

similar to (3.Z6). 

Moreover, as a result of Theorem 3.5 we have 

Theorem l4.Z 

If A is a real symmetric matrix of the form (14.8) and P=S(B)<l, 

then 
S(QW ,,) 

l'wZ 

. 
where W = wl +WZ -wlwZ = wb 

and 
Z 

W = b 

Thus, since twice as much work is required per iteration using the 

UPJ method as with the SOR method and since the rate of convergence is 

no better (see (3.33)), the UPJ method is of academic interest, at least 

when A has the form (14.8). In addition, we note that when wl=wZ=w, 

then we have the PJ method and 

w = w(Z-w) ti 1 

with equality holding at w=w=l which is the best value of W since wb~l 

(see Theorem l4.Z). For w=l, equation (14.19) reduces to 

A = )1Z 

(14.Z0) 

(14.Zl) 

(14.ZZ) 

(14.Z3) 

and the eigenvalues of the optimised PJ are identical with the eigenvalues 

of the GS method. Consequently, the rate of convergence of the PJ method 

is affected by different consistent orderings. We also note that under 

the same conditions, the eigenvalues of SSOR are given by (14.Z3) (see 

D'Sylva and Miles [1963]), thus PJ and SSOR are identical at the optimum 

stage when A has the form (14.8). 



4.15 TIlE UNSYMMETRIC PSD METHOD (UPSD METHOD) 

Evidently the unsymmetric PSD method (UPSD method) is defined by 

(n+l) (n) -1 -1 -1 (n) u = u + T(I-w2U) (I-wlL) D (b-Au ) 

or u(n+l) = G u(n)+g 
wl ,w

2 
wl ,w

2 

where -1 -1 -1 = I-T(I-w2U) (I-wlL) D A 

and -1 -1 = T(I-w2U) (I-wlL) c. 

If A is an eigenvalue of P(B ) given by (14.3) and ~ is an wl ,w2 
eigenvalue of B, then working similarly as in the previous section we 

have the following eigenvalue relationship when A has the form (14.8) 

2 • 2 2 
A -A(2-w~ )+l-~ = 0 

. 
where w is given by (14.11). 

Therefore, from the analysis of the subsection 4.3.4 we have as a 

result the following theorems. 

Theorem 15.1 

If A is a real symmetric matrix of the form (14.8), then 

if and only if 

ii = S (B) < 1 

and the parameters T and w lie in either of the following ranges: 

for w>,O 
. 

O:;:w<l O<T<l and 

or 1:;:T<2 and 

for w:;:O, the ranges of T remain the same but the corresponding 

ranges of ware the following: 

-l<w:;:O 

-2~w~-1 
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(15.1) 

(15.2) 

(15.3) 

(15.4) 

(15.5) 

(15.6) 

(15.7) 

(15.8) 

(15.9) 



Theorem 15.2 

If A is a real symmetric matrix of the form (14.8) and U=S(B)<l, 

then 
, 

'" = Cl) + Cl) 
1 2 - "'1"'2 = "'b = TO· 

and S(G ) S(G ) '" - 1 = = 
"'1 ''''2 "'1 ''''2 b 

where "'b is given by (14.22). 

Thus, since twice as much work is required per iteration using the 

UPSD method as with SOR, the UPSD method would appear to be mainly of 

academic interest, at least when A has the form (14.8). If we now let 

"'1=W 2="" then we have the PSD method and 

c:; = w(2-w),~ 1 

with equality holding at "'=w=l which is the best value of", since "'b~l. 

For ",=1 equation (15.5) reduces to 

2 2 2 A -A(2-~ ) + 1-~ = O. 

Thus we have 

A = 1 max 

and A. = 1_jj2 
ml.n 

which implies that for convergence the parameter T must lie in the range 

Finally, 

0<T<2. 

1 
= 1 _2 

-~ 

and the optimum value for T is given by the formula 

2 
TO = 2 _2 

-~ 
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(15.10) 

(15.11) 

(15.12) 

(15.13) 

(15.14) 

(15.15) 

(15.16) 

(15.17) 

Therefore, the spectral radius of the PSD method is given by the expression 
_2 

S(GOl=l) = ~_2 • 
2-~ 

(15.18) 

Since it is known (D'Sy1va and Miles [1963]) that under the same conditions 

the eigenva1ues of SSOR are identical with those of the GS method, then 

from Theorem 3.3 it follows that: 
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Theorem 15.3 

Under the hypotheses of Theorem 15.2 we have 

(15.19) 

Thus the asymptotic improvement of the PSD method by a factor of 2 over 

SSOR is still retained and in the case where A has the form (14.8). 
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SECTION A 

BLOCK PRECONDITIONED ITERATIVE METHODS 

5.1 INTRODUCTION 

In the previous chapter we considered various iterative schemes where we 

determined each component of u(n) explicitly. i.e .• by using already computed 

approximate values of the other unknowns. As is known these schemes are 

called point methods in order to be distinguished from the group iterative 

methods. In the latest methods. we first assign the equation to groups and 

then we solve the group of equations for the corresponding unknowns up 

treating the other values of u. as known (implicit methods). 
J 

A special case of a grouping is a partitioning where for some integers 

nl .n2 ••.•• nq such that 1~nl<n2< •.. <nq=N the equations for i=1.2 •.•.• n l 

belong to the first group. those for i=nl +l.n1+2 •••.• n2 belong to the second 

group. etc. The methods which are based on partitionings are known as block 

methods. The theory of block methods is well known (Southwel1 [1946]. 

Geiringer [1949]). 

Arms. Gates and Zondek [1956] first generalised SOR to block method 

and Friedman [1957] analysed its convergence rate. In addition. Varga [1960] 

showed that the rate of convergence of the two-line SOR method with optimum 

w is approximately twice that of point SOR. whereas Parter [1961] showed that 

the k-line SOR method with optimum w converges approximately (2k)! as fast as 

point SOR. Finally. Ehrlich [1963.1964] considered the line SSOR for the 

five-point discrete Dirich1et problem and was able to show that the 

convergence is faster than the point SSOR method. 

In the first part of this chapter we will extend the preconditioning 

techniques so that to show. in an analogous way to Chapter 4. how we can 

construct and develop the corresponding group methods of the previously 

considered iterative procedures. We therefore commence our consideration 

by presenting a brief review of some basic concepts concerned with the 



definition and convergence of the group methods. 

Defini tion 1.1 

An ordered grouping 1T of W={1,2, •.• ,N} is a subdivision of W into 

disjoint subsets RI ,R2, ••• ,R
q 

such that R
I

+R2+ ••• +R
q

=W. 

We let 1T denote the ordered grouping defined by Rk={k}, k=I,2, ••• ,N. 

Given a matrix A and an ordered grouping 1T we define the submatrices 
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A for r,s=I,2, .•• ,q by deleting from A all rows except those corresponding r,s 

to Rr and all columns except those corresponding to Rs' We can now generalise 

the concepts of Property A and consistently ordered matrices (see Chapter 2). 

Gi ven a matrix A and an order·ed grouping 1T, with q groups, we define 

the qxq matrix Z=(z ) by r ,s 

z = {O, 
r,s 1, 

Definition 1.2 

if A =0 r,s 

if A .,0. r,s 

The matrix A has Property A(1I) if Z has Property A. 

Definition 1.3 

The matrix A is a 1I-consistently ordered matrix (1T-CO-matrix) if Z 

is consistently ordered. 

Definition 1.4 

(1.1) 

A matrix A is a generalised 1T-consistently ordered matrix (1I-GCO-matrix) 

where 

is independent of a for all a.,O and for all k. 

Here D(1T) is the matrix formed from A by replacing with zeros all 

a. . unless i and j belong to the same group, whereas c
L
(1T) and C

U
(1T) are 

l.,J 

(1. 2) 

formed from A by replacing all elements of A by zero except those a. . such 
l.,J 

twe wiZl use the notation B(1I) to denote the group form of the matrix B. 



that i and j belong to different groups and such that the group containing 

i comes after and before. respectively the group containing j. 

Theorem 1.1 (Arms. Gates and Zondek [1956)) 

If A is a ~-GCO-matrix such that D(~) is non-singular. then the 

conclusions of Theorem 3-6.4 are valid if we replace. B by B(~) and Lw 

by L(~). 
w 
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From the above analysis we note that the definition of the group methods 

is based on the splitting (1.2). Thus following the analysis of the pre-

conditioning techniques we can regard (1.2) as another splitting of A and 

in an analogous way we can develop the group versions of the preconditioned 

methods defined in Chapter 4. 

If we let the conditioning matrix have the form 

R = D(~) 

for any ordered grouping ~. then we define the group SD method (using 

(4-2.2) and (1.3)) by 

(1.3) 

u(n+l) = u(n) + T(D(~))-l(b_AU(n)) (1.4) 

where TrO is a real parameter and D(n) is a non-singular matrix. We 

therefore see that the rate of convergence of the group SD method depends 

upon the grouping ~. since if D(n)=A. then we solve our system immediately. 

On the other hand. the invertion of D(~) by using direct methods (Cuthill 

and Varga [1959)) is a limit to the above observation. 

Further. by letting the conditioning matrix have the form 

R = D(~)(I_L(n)) 

we define the group EGS method by 

u(n+l) = u(n)+T(I_L(~))-l(D(~))-l(b_Au(n)) 

where 
and 

Finally. we can also define the group ESOR method. by letting the 

conditioning matrix have the form 

(1.5) 

(1.6) 

(1.7) 



hence 

where T,W are real parameters and their role is familiar to us from the 

previous chapter. A more compact form of the group ESOR method is given 

by 

where 

For actual computation with the group ESOR method we solve the system 

f 
(n+l) or u . 

If the system Au=b is written in the form 

where the matrices A have been defined earlier and if we define U r,5 S 

and B similarly, then (1.12) is equivalent to solving 
r 

r-l r-l 
A u(n+l)_w I A U(n+l)_(l_T)A u(n)+(W_T) I A U(n)_ 
r,r r s=1 r,s s r,r r 5=1 r,s 5 

q 
-T I A urn) = TBr' r=1,2, ..• ,q 

s=r+l r,s s 

U(n+l) u(n+2) U(n+l) 
successively for 1 '2 , ... , q . 

The conditions under which the previous schemes converge are 

similar to their point versions which have been thoroughly considered 

(see Chapters 3 and 4). However, the derivation of a relation between 

the eigenvalues of the preconditioned matrix (I_wL(TI))-l(o(TI))-lA and 

B(TI)=C(TI)+c(TI) similar to that obtained in C.hapter 4 for (I_wL)-lO-lA 
L U 

and B, is possible for TI-GCO matrices. 

We can therefore generalise in an anlogous way the results 

obtained in Theorem 4-3.4.8. 
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(1.8) 

(1. 9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 



Theorem 1.2 

Let A be a n-GCO matrix such that D(n) is non-singular. If B(n) has 

real eigenvalues )J~n) li=l(l)N with )J(n)=minl)J~n)1 and jJ(n)=maxl)J~n) I, such 
l. - l. l. 

that jJ(n)=S(B(n))<l and if 

where 
_ S(L(n) ) _ 1 (n) 2 (n)/ (n) 
- en) (n) - -TO - TO Wb 

'6 ~wb 

then we have the well known results of the 

group SOR method. 
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(1.15) 

(1.16) 

(1.17) 



5 • 2 GROUP PSD I.ffiTHODS 

For any ordered grouping n, we let the conditioning matrix have the 

form 

therefore .. we define the group PSD method by 

where T,W are some real parameters. 

By using (4-2.8) we write the iterative scheme (2.1) in a computable 

form (another form can be produced by considering (A.lO), see Appendix A) 

where 

For the analysis of the method, it is convenient to write (2.3) in 

the following form 

u (n+l) = D(n)u(n) + 6(n) 
T,W 

where D(n) = I_T(I_wU(n))-l(I_wL(n))-l(D(n))-lA 
T,W 

and 
6 (n) T(I_wU(n))-l(I_wL(n))-lb. = 

Evidently, by (2.6),(2.7) we see that the group PSD method is completely 

consistent if D(n) is non-singular and TIO. Most of the analysis in 

Sections 4.10,4.11 can be applied to group PSD methods. Before we 

proceed in a more detailed analysis of the behaviour of 

we determine the spectral radius of the PSD method applied to a smaller 

system derived from Au=b. 

Theorem 2.1 

If A is a symmetric and positive definite matrix and if A* is 

obtained from A by deleting certain rows and the corresponding columns 

of A, then 

P(B* ) :> P(B ) w w 
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(2.1) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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where 
(2.9) 

Proof 

Let A(B. ) and A(B. ) denote the smallest and largest eigenvalue of w w , 

-1 -1 -1 B.w = (I.-wU.) (I-wL.) 0. A.. (2.10) 

From (4-5.2) we have that B. is similar to the symmetric matrix w 

where 

(w. ,A.w.) 

(v.,v.) 

(2.11) 

(2.12) 

(2.13) 

or ! O.v. = (O.-wCU )w.. (2.14) 
. . 

Next, we augment w. with zero components (at the positions which 

were deleted from A to form A.) to form wand define v such that 

Evidently, from the definition of w and v we have 

since 

A(B. ) = w 

(w.,A.w.) 

(v.,v*) 
(w,Aw) 

>- (v,v) 

and the influence of the added rows and columns in A is annihilated 

by the zero components of w. Further, by the definition of w, the 

right hand side of (2.15) has identical components as the right hand 

side of (2.14) plus additional ones. Since O! is diagonal, the 

components ofv are identical as the components of v. plus additional 

ones. If A(B ) denotes the smallest eigenvalue of B , then we have 
w w 

(see Theorem 2-1.5) 

A (B ) :: 
w 

(v, B v) 
w -,re v-,"::v'..-)- = 

Similarly, we can prove 

(w,Aw) 
( Ii v,v) 

(2.15) 

(2.16) 

(2.17) 
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A (B * ) ~ A (B ) 
W W 

(2.18) 

where A(B* ) and A(B ) denote the largest eigenvalues of B* and B , 
w w W to 

respectively. 

Hence, if A is positive definite, then (2.8) follows from (2.17) 

and (2.18) and the proof of the theorem is complete. 

A similar result for the SSOR method has been proved by Ehrlich [1963]. 

Although Theorem 2.1 applies only for the point PSD method, the numerical 

results (see Table 4.1) indicate that the theorem is probably true for at 

least certain other partitions ~. 

The analysis for the determination of good estimates for T, the 

preconditioning parameter wand the.spectral radius of D(~) is similar 
T,W 

to the one developed for the point PSD method (see Section 4.11-4.12). 

ConsequentlY we can easily derive the conclusion that the group PSD 

method produces a gain of approximately a factor of 2 in the rate of 

convergence as compared with the group SSOR method. 
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5.3 COMPARISON OF LINE PSD AND POINT PSD METHODS 

As an example of a block method we will choose the partitioning by 

lines of mesh points (x,y) with y constant, where the ordering is with 

increasing y. In this case the system is partitioned such that all the 

equations with y constant are grouped together and solved simultaneously. 

In the 1i terature, this partition is frequently referred to as "line" 

iteration (see e.g. Varga [1962]). Subsequently, this partition will be 

denoted by nl whereas nO will be used to denote the point form of the method. 

By using the difference equation (1-2.7) we can exhibit the line PSD 

method (LPSD method) as follows (see (2.3)) 

- (n+!) _ (n+!) -(n+!) 
aOu .. -alu. 1 .-a3u. 1 . 1,J 1+ ,J 1- ,J 

- (n+ !) (n) (n) (n) 
= wa4u .. l+alu. 1 .+a2u .. 1+a3u. 1 .+ . 1,J- 1+,] 1,J+ 1- ,] 

- (n) (n) 
a4u. . l-aOu. . 1,J- 1,J 

_(n+l) -(n+l) _(n+l) _ -(n+l) _(n+!) -(n+!) _(n+!) 
aOu. . -alu. 1 .-a3u. 1 . - wa2u .. l+aOu. . -alu. 1 .-a3u. 1 . 1,] 1+ ,J 1- ,J 1,J+ 1,J 1+ ,J 1- ,J 

u~n:l) = u~n~+Tu~n:l). (3.1) 
1,] 1,J 1,] 

Further by (2.5) the LPSD method can be written in the matrix 

form (n+l) 
u = (3.2) 

(n
l

) 
6 are given by (2.6),(2.7), respectively with n 

replaced by nl . For the estimation of the rate of convergence we 

consider the application of Theorem 4-11.1. Young [1971] has shown that 

(n l ) (111) 1 
S(L U ):i 4" (3.3) 

which implies that from Theorem 4-11.1 we obtain 

= 

where 

2 

/ (If) 
l+ll-M 1 

,if 
(n) (nl) 

B 1 ~:.:.M 74-

2 --;::.=::=:::, 
/ (n) 

l+h(l-M 1) 

is gi1ren by 

(3.4) 
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(3.5) 

In particular, if we consider these results to be applied directly 

to systems of linear equations arising from the five-point difference 

equations considered in Section 1-2.1 in the unit square, we have (see 

Varga [1962]) 
(111) (11 ) 

=' . cos1lh 2 2 M = S(B 1) 
2-cos1lh ~ 1-11 h (3.6) 

as compared with (11
0

) (11 ) 
1I2h2 

M = S(B 0) = cos1lh ~ 1- -2- (3.7) 

for sufficiently small h. 

From (3.3) and (3.5) we note that generally in this case the spectral 

radius 
(11 1) 

of D ,(111) w(1II ) 
1 '1 

which by (3.6) yields 

is given by 

(3.8) 

(11
1
) 

SeD (11) (11)) ~ l-21211h. 
'1 1 • ~ 1 

(3.9) 

Therefore the rate of convergence of the LPSD method for h sufficiently 

small, is approximately the same with the line SOR method (LSOR). But 

(11) (111) 
if we have the additional restriction a 1 ~M 4 we note that, as in 

the point version, LPSD has an improved rate of convergence over LSOR. 

However, the additional work involved in the LPSD method even if the 

reduction scheme (A.II) (see Appendix A) is applied, probably do not 

justify the gain in the convergence thus making the method less 

attractive than LSOR. 



Since it is known that (see Section 4.13) 

(rr ) 
SeD 0 ) _ l-2rrh 

Tl'Wl 

we have a similar result to the SOR method that 

for sufficiently small h. 

In other words, for small h, the line preconditioned simultaneous 

displacement iterative method in the unit square, or a subset thereof 

yields an increase of approximately ·40% in the rate of convergence over 
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(3.10) 

(3.11) 

the point preconditioned simultaneous displacement method. Also, another 

conclusion we have reached here is that the improvement (3.11) in the 

ratios of rates of convergence is a fixed factor, independent of the mesh 

h, in contrast to the alternating direction methods of Chapter 7. 



5.4 C014PUTATIONAL RESULTS 

In order to test our theoretical results, the Laplace equation was 

solved in three different regions as shown in Figure 4.1. In each case, 

the unique solution was the vector u with all its components equal to zero 

while the initial guess was the vector u(O) with all its components equal 

to unity in the interior of the regions, with zero boundary values. The 

cri terion used for convergence was again lIu (n) 11",,:::10 -6. 

165 

Although the problems considered here (and perhaps in other experiments 

in this thesis) were trivial only because of boundary conditions, the 

general behaviour of the iterative procedures could be expected to be 

typical of more complicated problem~. The only change needed would be 

non-trivial boundary conditions. 

The ordering considered in our experiments was the natural one as 

described in Section 3.6 for both the line and point PSD methods. 

Region I: Unit square 

Region 11: Unit square with 
1 1 
~2 square removed 

from one corner 

Region Ill: Unit square with 
4 4 
10"10 square removed 
from center 

FIGURE 4.1 

D 



Region h -1 
(1T1) (1T1) (1T1) (1T1) (1T1) (1T1) 

LPSD LSSOR LPSD-SIt Wo A(E (1T )) A(E (1T )) P(E (1T )) TO S(& (1T )) 
Wo 1 Wo 1 Wo 1 Wo 1 

20 1. 7235 0.5667 2 .0984 3.7026 0.7504 0.7299 26 45 14 
I 40 1.8487 0.5221 3.5752 6.8474 0.4881 0.8540 48 89 20 

60 1.8945 0.5006 5.0033 9.9941 0.3634 0.8999 71 134 25 

20 1.5537 0.4699 1.4421 3.0693 1.0460 0.6742 22 36 12 
II 40 1. 7496 0.4007 2.2826 5.6967 0.7454 0.8245 41 73 17 

60 1. 7599 0.2638 2.3666 8.9720 0.7604 0.8885 65 121 23 

20 1.3449 0.5172 1.1350 2.1945 1.2105 .0 .5443 15 21 9 
III 40 1.6267 0.3908 1.6468 4.2138 0.9816 0.7627 30 43 15 

60 1. 7184 0.3569 2.0665 5.7907 0.8253 0.8273 41 64 17 

TABLE 4.1 

COMPARISON OF LPSD AND LSSOR Du (n) 11 0<10-6 
00' 

t For comparison reasons we aZso present the number of iterations using the semi-iterative Zine PSD method 
(SI-LPSD) (see (5.14)) 
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Table 4.1 contains the optimum values of the preconditioning parameter 
(111) (11 1) (111) 

Wo ,the acceleration parameter TO ,the maximum A(B (11 )), the minimum 
Wo 1 

(11 1) . 
A(B (11 )) eigenvalues and the P-condition number of the preconditioned 

Wo 1 
(11 1) 

matrix B (11 )' as well as the spectral radius of 
Wo 1 

Also it contains 

the number of iterations of LPSD and LSSOR which were applied under the same 

conditions to solve the previously described problems for different values 

of the mesh size. 

A study of Table 4.1 seems to imply that a monotonicity theorem for 

"1 may be valid (and probably for any partition 11). However, this remains 

to be proved. Also, one may notice immediately the confirmation of the 

fact that the LPSD method is asymptotically 2 times as effective as the 

LSSOR method in all the cases examined. Furthermore, although we predicted 

theoretically an improvement of about 40% in the rate of convergence of the 

LPSD over the point PSD (see (3.11)), the numerical results show (see Tables 

4.1 and 4-13.1) that this gain is slightly greater for problem 1 in the unit 

square. In order to achieve this improvement in terms of overall 

computational effort one should carry out the method using a normalised 

block iteration scheme as described in Cuthill and Varga [1964]. 

From (3.9) we have that for line PSD and for any region we can find 
(11 1) 

an 001 such that the rate of convergence is O(h), hence one expects that 

the graph plot of log(N) versus (logh- l ), where N is the number of iterations, 

to be a straight line with slope approximately unity. As previously, the 
ex 

slope ex indicates O(h ) convergence rate. From Figure 4.2 we see that for 

all regions the rate of convergence is approximately O(h). 



REGION I 

Legend: 0 LSSOR 
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FIGURE 4.2 

DETERMINATION OF RATE OF CONVERGENCE ATTAINED FOR REGIONS I, II 

AND HI USING LPSD AND LSSOR IHTII OPTIMUM PARAMETERS 
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REGION 2 REGION 3 
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FIGURE 4.2 (CONTINUED) 
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SECTION B 

ACCELERATED TECHNIQUES 

5.5 PRECONDITIONED JACOBI-SEMI ITERATIVE HETIIOD (PJ -SI HETHOD) 

In Section 3.7 we showed how one can find a semi-iterative method 

(SI method) with respect to the linear stationary iterative process defined 

by 

where the eigenvalues of G are real and lie in a certain interval. In 

the same section, we also considered the SI method as a two level 

acceleration procedure of (5.1). 

(5.1) 

The construction of the PJ method and its analysis in Sections 4.4 

and 4.5 can be regarded as the first step of studying the behaviour and 

properties of a basic method of the form (5.1). On the other hand, the 

formulation and analysis of the PSD method is the second step which 

constitutes the first type of acceleration procedure similar to (3-7.25). 

Next, we attempt to further accelerate the convergence of the PSD 

method by constructing the PJ-SI method. 

As we have shown in Chapter 4, assuming the natural ordering of 

points and for a certain "good" choice of w which depends on upper 

bounds of S(B) and S(LU), the rate of convergence of the PSD method is 

approximately O(h). This rate of convergence is the same order of 

magnitude attained by the SOR method with optimum w. Since a PSD 

iteration requires approximately twice the work involved in an SOR 

iteration, only with the Niethammer's scheme~.l~we can consider PSD 

as being competitive with SOR in certain cases (see Section 4.12). The 

employment of this work-saving technique necessitates a more complicated 

program with greater storage requirements. On the other hand, the 

application of the PSD method with red-black orQering yields a convergence 

rate which differs by an order of magnitUde from the natural ordering 



(see Section 4.15). 

Consequently, in order to establish the superiority over the SOR we 

need to consider the possibility of increasing the rate of convergence of 

the PSO method by an order of magnitude by means of semi-iteration (Varga 

[1957], Golub and Varga [1961]). This approach can be pursued for the PSO 

method since the eigenvalues of the iteration matrix D are real, while 
T ,W 

this is precluded for SOR with optimum w=wb since the eigenvalues of L 
~ 

are complex, although some progress has been made in accelerating SOR by 

semi-iteration for w<wb (Kincaid [1974]). 

For the PJ method we recall that the iteration matrix is given by 
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JC = I-El 
W w- (5.2) 

where (5.3) 

If A is positive definite, then as we have shown,all the eigenvalues 

of B are positive and there exist positive numbers A(B ) and A(B ) such 
W W W 

that all eigenvalues A of B lie in the range 
W 

O<A(B )lSAlSA(B ). 
W W 

Therefore, all the eigenvalues v of JC are real and lie in the range 
. W 

a = l-A(B )~v:sl-A(B ) = S<l 
W W 

hence from (3-7.15) we have 

Z = 
P (B )+1 

W 

P (B )-1 
W 

(5.4) 

(5.5) 

(5.6) 

By (3-7.21) and (4-4.6) the formula for the optimum semi-iterative method 

based on PJ denoted by PJ-SI, is given by 

or equivalently, 

(n+l) _ (n-l) ((n) (n-l)) -(I U)-l(I L)-lO-l(b A (n)) u - u +p u -u +p p -w -w - u n+l n+l . (5.8) 

where _ 2 
P = ACB )+A(B ) 

_ W W 

(5.9) 
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which by (4-1119) becomes 

p = 2w(2-w) (5.10) 1+1/P(B ) , 
w 

and 

PI = 1 , 

P2 = (1 
0
2
)-1 (5.11) 2 , 

2 

Pn+1 = [1 - °4
Pn
fl , n=2,3, ... 

where 

o = 
P(B )-1 w (5.12) P(B )+1 

w 

From (5.8) we note that the PJ-SI method can also be written as 

(n+l) (n-l) (n) -1 -1 -1 (n) u = (l-p )u +P [u +p(I-wU) (I-wL) D (b-Au )] (5.13) 
~l ~l . 

But the expression in the brackets is the PSD method since P=TO' thus a 

more compact form of the PJ-SI method is given by the following scheme 

(n+l) 
u = (l-p )u(n-l)+p (D u(n)+6). 

n+l n+l T ,w (5.14 ) 

From this observation we immediately conclude that (5.14) represents also 

the PSD-SI method. This can be more explicitly seen if we consider the 

range of the eigenvalues ~ of D which is 
T ,w 

a = I-TA(B )~~~l-TA(B ) = S<l w w 
(5.15 ) 

if T>O and 

a = I-TA(B )~~~l-TA(B ) = S>l w w 
(5 .16) 

if T<O. In either case, the SI method of Section 3.7 is applicable 

(see Young [1971]). It is easily verified that the formula for the 

PSD-SI method is independent of T and it is identical to the one given 

by (5.14). 

As can be seen from (5.14) the PJ-SI method is a linear non-

stationary method of second degree. The improvement in convergence 

comes at the expense of requiring storage for one additional vector. 



In order to determine the convergence of the PJ-SI method we have 

from (3-7.19) and (5.5) that 

[
A(B )+>'(B )-2B ) }iA(B )t>'(B )] -T w W W T W W 

- n A (B ) ->. (B ) A (B ) ->. (B ) w w w w 

Thus the virtual spectral radius (see (3-7.27) and (3-7.28)) 

2rn/2 
n l+r 

= 

l-l//P (B ) 
W 

= --===-
l+l//P(B ) 

W 

is given by 

Therefore, by (3-7.30) the average rate of convergence is defined by 

1 - 1 2rn 
R (P (X)) = - -n log S (P (3(')) = - - log 2 nnw nw n l-n +r 

while as n~ we have by (3-7.31) that the rate of convergence for the 

PJ-SI method is given by 

If now 

hence 

1 R (P (X)) = - -2 log r = - log r. 
'" n w 

P(B )>>1, then from (5.19) we have 
w 

r = [1_1/~]2;... 1 _ --::::4= 
l+l//P(B ) /P(B ) w w 

_ ~ log r~ 2 ~ 12r1i(D ). 
/p (B ) T ,w 

w 

R (P (X)) = 
'" n w 
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(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

The above result could also have been obtained immediately from (3-7.32). 

If we express (5.23) in terms of reciprocal rates of convergence, 

then we obtain the following result 

RR (P (X)) ~ ...L IRR(D ). 
'" n w 12 T ,w 

(5.24) 

By combining (5.24) and the results summarised in Table 4-12.1 we have 

the following comparisons between the PJ-SI and the JOR methods. 



Asymptotic Bounds on 

Range of 8 RR (P (JC ))/(RR(B_)) 
00 n wl W 

General Case Property A 

- M 1 1 
a~4 -p4 212 

M - 1 1 1 
~a~4 '2 25/ 4 

S>.!. 1 1 
4 2Iy 257i1.;y 

TABLE 5.1 

By (5.23) we see that the application of the semi-iterative techniques 

to the PJ method improves the rate of convergence by an order of magnitude 

over the PSD method. This is a substantial improvement and compares 

favourably with the frequently used SOR method as it (see Section 4.12) 

has approximately the same rate of convergence with the PSD method. A 

simple comparison between the asymptotic bounds on RR (P (X )) and the 
00 n w

l 
best possible bound on RR(L ) which is given by (3-6.26), when the matrix 

wb 
A is consistently ordered results in the construction of Table 5.2. 

of a Asymptotic Bounds on 
Range 

RR (P (X ))/IRR(L ) 
00 n wl wb 

- M 1 
a~4 

23/ 4 

M - 1 1 
~a~4 -

12 

S>.!. 1 
4 Er 

TABLE 5.2 

PROPERTY OF PJ -SI WITH SOR WHEN A HAS PROPERTY A 
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- 1 From Tables 5.2 and 5.1 we clearly see that for 0~B~4 we have 

substantial improvements of the rate of convergence for the PJ-SI method 

over SOR, while for the case where S>~ the gain on the convergence depends 

strongly upon the quantity y which is given by the expression (see (4-11.18)) 

y = (5.25) 

Young [1974] proved that 

S(LU)::~ + 0(h
2

) (5.26) 

for the discrete generalised Dirichlet problem assuming the mesh size 

h to be small and that the coefficients A(x,y) and C(x,y) in (1-2.3) belong 

to class C(2) in RUaR~ This result is significant because it establishes 

an order of magnitUde improvement of the PJ-SI method over the SOR and PSD 

methods. 

Young [l97l,197la] has also shown for the generalised Dirichlet 

problem that 

S (B) :; (5.27) 

where the region R is included in an IhxJh rectangle for some positive 

integers I and J and where 

~~A(x,y):;A, C:;C(x,yh,C, H:):;-F(x,y) 

in RUaR. 

We note that (5.27) implies that 

S(B)::M = 1..ch2+O(h 4) (5.28) 

for some constant c>O. By (5.26) and letting S=1/4+0(h2), it follows that 

and 

a-l/4 0(h2) 
!:..,-=f,.'- = (5 • 2 9 ) 

I-M ch 2+0 (h 4) 

1· S-1/4 0 
1m I-M = ;0> 

h->O 

* 1 We note that Ehrtiah [1963,1964] showed that S(LU)~4 for the modet probtem 

whereas Phien [1972] showed that this aondition hotds for the equation 
-1 -1 

(y Ux)x+(y Uy)y=O as wett. 



hence 

where 
f; = (1+ 2f; ) -! 

1 0 

Therefore, the quantity y-l, where y is given by (5.25) is bounded away 

from zero as h+O. - 1 On the other hand, for 8>4 we recall from (4-11.17) 

that 
1 -1 ff 

P(B
wl

) ~ Z(l+y 1r:M) 

and using (5.28) we obtain 

where 

f;2 = y{2/c . 

Evidently, from (5.33) it follows that 

and finally by (5.25) we obtain the expected result 

Consequently, for the PJ-SI method to yield an order-of-magnitude 

improvement on the convergence rate over PSD and SOR it is sufficient 

that a-l/4 be of the same order-of-magnitude as I-M. This condition 

has been shown to hold for the generalised Dirichlet problem under the 

condition that A(x,y) and C(x,y) are in the class C(2) in the region of 

consideration. However, of we consider the self-adjoint equation 
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(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34 ) 

(5.35) 

.l...(Aau) + .l..(C au) = G (5.36) oX ax ay ay 

where IAxl and ICyl are bounded in the domain of consideration, then the 

application of the PJ-SI method to the corresponding difference equation 

yields a rate of convergence of O(h l ). This is proved if we determine 

S(LU) as follows. We note that 

S(LU)~nLUII",~IILII",IIUII", (5.37) 

which implies that we have to estimate 11 ull ",' But the sum of the elements 



of the matrix U in the row corresponding to the point (x,y), by (1-2.7) 

and (1-2.8) is 

( 1· 2) [A(X+~,Y)+C(x,y+~)J 
A(x,y)+C(x,y)+O(h ) 

_.!. !!. (Ax+ Cy 1 
- 2 + 4 A+C J 

thus for h sufficiently small we have 

11UII00:O} + I;h 

and by (5.37) we obtain 

S(LU):o}>I;'h 

for some constants I; and 1;'. 

In this case, by (4-11.17) we have 

P(B
wl

) :0 } (1+1Ii:=~+4a)~}(l+I;"h-3/2) 

and therefore by applying the PSD method we have 

R(D ) ~ 2/P(B ) ~ 0(h3/ 2). 
'l,wl wl 

Finally, by using semi-iteration we obtain by (5.35) the following 

result 
R (P (J{' )) ~ O(h!) 00 n wl 
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(5.38) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

which indicates again an order of magnitude improvement in the convergence 

rate. 
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5.6 PRECONDITIONED JACOBI-VARIABLE EXTRAPOLATION METHOD (PJ-VE METHOD) 

We recall from Section 4.9 that the PSD method is defined by the 

iterative scheme 

(6.1) 

By comparing (6.1) and 0-7.25) we see that if we allow T to vary in each 

iteration we immediately have the variable extrapolation (see Section 3.8) 

version of the PJ method which is 

u(n+l) = 6 (Xu(n)+y)+(1-6 )u(n) 
n+l w w n+l (6.2) 

The iterative procedure (6.2) defines the PJ-varaible extrapolation 

method (PJ-VE method). We note that the first expression in brackets 

of the right hand side in (6.2) is the PJ method thus by using (4-4.6), 

the expression in (6.2) becomes 

u(n+l) = 6 [u(n)+(I_wU)-1(I_wL)-lD- l (b_Au(n»]+(1_6 )u(n) (6.3) 
n+l n+l 

which can be simplified to yield the iterative process 

The iteration parameters 6 1 can be determined by using (3-8.5) and n+ 

(5.5). Consequently, the parameters Sk for the variable extrapolation 

as applied to the PJ method are given by 

2 ,k=1,2, ... ,rn 
(A(B )_A(BJ):os(2~-lhr + (A(B )+A(B » 

w m w w 

or by 

w (2-w) 
-----ii2~( 2;i:k"'""1 );-::---.'-'-"2--;O( 2i'-k:-_"1 )\:1T- , k = 1 , 2, ..• ,m. 
l/P (Bw) cos 4~ 1T + S1n 4m 

Using the optimum 6k as given by (6.6) we can see by (3-8.6) that the 

virtual spectral radius of the PJ-VE method depends upon the P-condition 

number of B , whereas we do not expect the virtual rate of convergence 
w 

to be as effective as the PJ-SI method since care must be taken with the 

values of m (see Young [1954a]. 

(6.4) 

(6.5) 

(6.6) 



5.7 SECOND DEGREE-PRECONDITIONED JACOBI METHOD (SD-PJ METHOD) 

Instead of using the non-stationary methods as described in the 

previous section one can obtain almost as rapid convergence using the 

stationary second degree version of the PJ method (see Section 3.9). The 

second degree PJ method can be easily obtained. if we let Pl=l as for the 

SI-PJ method. but for n~2 we let pn=wo where Wo is given by (3-9.15). 

-Evidently. Wo is the limit of the sequence Pl .P 2 ••.. as defined in the 

SI-PJ method. 

If now A is positive definite and if G~w' corresponding to the PJ 

method. then from (5.5) we have 

P (B )-1 
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w 
(J = ""';;.:::,,-:-;'" P(B )+1 

w 
(7.1) 

Therefore 

= 1 + [vP(BJ-l)2 
/i>(B)+1 

w 

and by (3-9.17) we have the result 

If P(B ) is very large. as is frequently the case. then the second 
w 

(7.2) 

(7.3) 

degree PJ method converges much faster than the SOR method. After the 

determination of ~O we can easily find ~O and nO by (3-9.J4) and (3-9.16). 

respectively. hence the SD-PJ method with A positive definite is defined 

by (see (3-9.2)) 

u(n+l) = u(n)+(~ -1) (u(n)_u(n-l))+T ;;, (JC u(n)+y _u(n)) 
o 00 w w 

where Wo is given by (7.2) and 
2w (2-w) 

hI/PCS ) • 
w 

We simplify (7.4) to obtain successively 

(7.4) 

(7.5) 



or 

which can be written in the more compact form 

(n+l) , (n) '(n-l) u = w (D u +0) + (l-w )u o TO'W 0 

where the expression in the first brackets in the right hand side can be 

easily recognised to be the PSD method. 

For a direct comparison with the PJ-SI method, we specify the 

iterant u(l) to be given by a PSD iteration, thus we finally define the 

SD-PJ method by (7.7), where 

1 , if n=O 

or more analytically 

u (1) = 

(n+l) , (n) ,(n-l) 
u = w (D u +0) + (l-wO)u . o TO'W 

In this case we are able to determine the virtual spectral radius of 

the SD·PJ method and it can be proved (see Young [1971] p.490-491) that 

2rn/2 n-l ' 
-'--:-,- [1+(2) (I-r)] 
l+r 

where 
r = ':'0-1 

and the polynomials ~ (D ) satisfy the recurrence relation 
TO'W 

~l(D )=':'OD ~(D )+(l-wO)~l(D ). 
+ TO'W TO'W TO'W - TO'W 

By recalling (5.19), the virtual spectral radius for the PJ-SI method 

is given by 

S(P (X)) = 
n w 

'n/2 2r 
'n l+r 
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(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

(7.12) 

(7.13) 
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thus by the theory of Chebyshev polynomials we have that 

(7.14) 

which implies that the PJ-SI method converges faster than the SD-PJ 

method. 
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5.8 GENERALISED CONJUGATE GRADIENT METHOD 

In Section 3.10 we showed how the CG method can be regarded as an 

acceleration procedure analogous to the SI method. In this section we will 

consider the above idea in more detail with particular reference to the 

basic iterative method (5.1) of a certain form. This will help us to apply 

the CG method to the PJ method in order to produce a powerful iterative 

scheme (see Section 5.9). 

Let us consider the basic iterative method of the form 

where 

u(n+l) = Gu(n)+k 

k = (I_G)A-lb. 

Further, we make the assumption tha~ the iteration matrix G has the form 

-1 G = I-R A 

where the conditioning matrix R is the product of a matrix times its 

transpose i. e. , 

(8.1) 

(8.2) 

(8.3) 

R = QQT (8.4) 

and Q is a non-singular matrix. Evidently, the matrix G has real eigen-

values since it is similar to the symmetric matrix 

G = QTG(QT)-l = I_Q-lA(QT)-l. 

Next, we will develop a version of the conjugate gradient procedure with 

respect to the basic method (8.1) in a way similar to the one followed 

for the SI method. 

Let us consider the original form of the preconditioned system 

~s was first introduced by Evans [1968]), 

[Q-lA(QT)-l](QTu) = Q-lb. 

System (8.6) can be written in the following compact form 

Au = 6 
. 

Q-lA(QT)-l, where A = 

u = QTu 

and 
• -1 
b = Q b. 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

(8.10) 



It can be readily seen that A is symmetric and 

A = QT(I_G) (Q-l)T. 

We now consider the application of the CG method to the preconditioned 

system (8.7). If we use the non-stationary second degree version as 

developed in Section 3.10, then by (3-10.37) we have the iterative 

scheme 

where 

and 

r(n) = b_Au(n) = Q-lr(n) 

r (n) = b-Au (n) • 

Using the relationships (8.9) and (8.13) we rewrite (8.12) to yield 

which by noting that 

can be written in the following compact form 
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(8.11) 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

(8.16) 

u(n+l) = P [y (Gu(n)+k)+(l_Y )u(n)]+(l_p )u(n-l). (8.17) 
n+l n+l n+l n+l 

By turning our attention to the expressions for the parameters Pn+l and 

Yn+l we have from (3-10.39) that 

_ (r (n) ,r (n)) 

Yn+l - 'en) "(n) 
(r ,Ar ) 

= ( ' (n) ,(n)) r ,r 

( ' (n) '(n)) r ,r 
(; (n) ,A; en)) 

where 
'en) _ (Q-l)T'(n) _ (Q-l)TQ-l (n) _ G (n) k (n) s - r - r - u + -u . 

Finally, from (3-10.38) we have the following expression for Pn+l 

[ 
Yn+l (r(n) ,r(n)) lj-l 

Pn+l = l--y- ('Cn- l ) '(n-l)) p n=l,2, .•. 
n r ,r n 

Evidently, the relationships (8.17), (8.18) and (8.20) define the CG 

method with respect to the iterative scheme (8.1). 

(8.18) 

(8.19) 

(8.20) 
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5.9 PRECONDITIONED JACOBI-CONJUGATE GRADIENT METHOD (PJ-CG METHOD) 

In this section, we present an alternative acceleration procedure of 

the PJ method which results in a more effective iterative scheme (as far as 

the rate of convergence is concerned) than the PJ-SI method developed in 

Section 5.5. 

The combination of the PJ method with the application of CG method has 

also been considered by Evans [1973a] whereas similar accelerated schemes 

have been developed by Axelsson [1974] and Young [1975] for the SSOR method. 

Let us assume, without loss of generality (see Young [1971] p.II2), 

that the matrix A has the splitting 

where 

A = I-L-U 

L = UT 

and L,U are strictly lower triangular and strictly upper triangular 

matrices, respectively. 

We note that if we let Q be the matrix 

Q = I-wL , 

the PJ method can take the form (8.1) where the matrix R is given by 

(8.4). 

From (9.3) and (8.13) we immediately have 

r(n) = Q-lr(n) = (I_wL)-lr(n) 

whereas from (8.19) we obtain the following expression for ;(n) 

We recall from Chapter 4 that the PJ method is given by the iterative 

process 
(n+I) _ (n) (I U) -1 (I L) -1 (n) u - u + -w -w r 

and has the form (8.1). If we substitute (9.6) in (8.17) we obtain 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

u(n+l) = p I[Y l(u(n)+(I_wU)-I(I_wL)-Ir(n))+(l_y I)u(n)] 
n+ n+ n+ 

or 

Cn-I) 
+ (I-p )u n+l (9.7) 

(n) -1 -1 (n) (n-l) 
= p (u +y (I-wU) (I-wL) r )+(1-p )u 

n+I n+I n+l (9.8) 



which defines the PJ-CG method. 

The parameters Pn+l and Yn+l are determined by using (8.18) and 

(8.20), hence we have 

Yn+l = 

185 

= (9.9) 

where 
(9.10) 

and in a similar way we find 

( (n) (n)) r ,r (9.11) 
( en-I) en-I)) r ,r 

Summarising our results we have that the PJ-CG method is defined 

by 
u(n+l) = 

where Pl=~ and Pn+l is given by (9.11) whereas Yn+l can be obtained from 

(9.9) . 

In order to examine the average rate of convergence of the PJ-CG 

method we recall from (3-10.40) and (3-10.42) that the average rate of 

convergence is expected to be better than the PJ-SI method in the sense 

of minimising the A!-norm of the error vector. Consequently, we expect 

that the number of iterations will behave like O(h-!) in the PJ-CG method 

as well. 



S.lO COMPARISONS AND COMPUTATIONAL RESULTS 

In the previous sections we have developed various accelerated 

procedures based on the PJ method which resulted in an order of magnitude 

improvement of the rate of convergence as compared with the SOR method 

(and the PSD method). These comparisons were based on the fact that the 

preconditioning parameter w takes its optimum value wO' However, in 

practice we use a value of w which is near its optimum wO' This value is 

given by (4-11.4) and it requires the determination of the quantities a 
and M. 

Since for a given linear system we may have some difficulties to 

estimate the quantity a, we consider the effectiveness of the PJ-SI method 

with w=l. 

Next, we prove a lemma which establishes the effectiveness of the 

PJ-SI method even with w=l. 

Lemma 10.1 

If A is a positive definite L-matrix then 
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(10.1) 

Proof 

If A is a positive definite L-matrix, then it follows (see (3- 6.38)) 

that M(B)~-m(B). Furthermore, from (4-11.2) we have the following 

expression for P(Bl ) 

l-S(B)+S(LU) 
fi l-S (B) 

Since now 
2 2 2 2 B = (L+U) = LU+UL+L +U 

we have LU = B2_UL_L2_U2fiB2 

and from Theorem 2-1.3 it follows that 

SeW) ~ S(B)2. 

If we combine (10.2) and (lO.S) we have the alternative bound 

l-S (B)+S (B)2 
P(Bl ) fi l-S(B) 

(10.2) 

(10.3) 

(10.4) 

(lO.S) 

(10.6) 



On the other hand, we have 

1-S(B)+S(B)2 = l-S(B)(l-S(B))~l 

hence (10.6) yields 

1 
:i l-S (B) ~ P (A) 

and the proof of the lemma is complete. 

From the above lemma and from the fact that the effectiveness of 

the SI method (see 3-7.32) depends upon the P-condition number of the 

preconditioned matrix, we conclude that if A is a positive definite L-

matrix, then the PJ-SI method with w=l is at least as effective as the 

Jacobi-SI method. 

If we further assume that the matrix A has Property A, then the 

rate of convergence for the PSD method with w=l is given by 

R(D 1) ~ 2/P(B
l

) 
TO' 

which using (10.7) and (3-2.14) yields 

R(D 1) ~ 2(1-S(B)) ~ 2(-10gS(B)) 
TO' 

= 2(-10gS(B-)) = 2R(B_). w w 

Consequently, from (5.24) the rate of convergence for the PJ-SI method 

with w=l is 

R (P (JS.)}v v'2/R(D 1) ~ 2/R(L). 
00 n TO' W 

On the other hand, the rate of convergence for the J-SI method is 

hence 
R (P (Xl)) ~ v'2 R (P (B)) 

00 noon 

for sufficiently small h. 

Further, if A is consistently ordered, then it is known (see 

(3-6.32)) that 

R(L ) ~ 212/R(B_) 
wb w 

hence by combining (10.13) and (10.10) we find 

v'2 
T 
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(10.7) 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

(10.12) 

(10.13) 

(10.14) 



which implies that if A is consistently ordered, then the PJ-SI method 

with W=l is asymptotically 1:2/2 times as effective as the SOR method. 

From the above analysis, we conclude that if A is a positive define L-

matrix, then it would seem appropriate, to use the PJ-SI method as opposed 

to the J-SI method, whereas if A is consistently ordered, as opposed to 

the SOR method. Thus, even with w=l and even taking into account the 

extra work per iteration, the PJ-SI method is nearly as effective as the 

other methods. 

Let us now return to the case where the preconditioning parameter 

takes the value given by (4-11.4) and consider the application of the 

previous results to the model problem as described in Section 4.13. 

Specifically we will consider the application of the SI techniques to 

the J and GS methods and compare their rates of convergence with PJ-SI, 

SOR and other iterative procedures as well. 

We recall from (4-13.9) that for the model problem we have 
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R(D ) ~ 4/ (l+~ -1) ~ 41T h 
'l,wl 1T 13 

(10.15) 

for sufficiently small h. 

Thus from (5.24) we have that the reciprocal rate of convergence 

for the PJ-SI method is 

RR (P (JC ))~L h-! 
'" n wl 212rr 

(10.16) 

which is better than the value of RR(L. ) by an order-of-magnitude. 
~ 

In fact, from (4-13.15) we have 

RR(L. ) 
p = ~ -v / 2 h-! - 0 606h-! (10.17) 

RR", (P n (Jew )) ,13; -. • 
1 

If we now compute the values of p for h=1/20, 1/40, 1/60, 1/80, then 

we have the corresponding values of the ratio of the asymptotic bounds 

on the reciprocal rates of convergence of the SOR method over the PJ-SI 

method presented in Table 10.1. From this table, we observe that the 

PJ-SI represents a substantial saving over the SOR method even if one 
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counts each PJ-SI iteration as two full SOR iterations. We also note 

that the factor of saving increases as the mesh size h decreases so we 

expect further increases as h~. 

h- l p p/2 

20 2.71 1.36 

40 3.83 1.92 

60 4.69 2.35 

80 5.42 2.71 

TABLE 10.1 

We recall again from (4-13.3). that for the JOR method we have 

RR (B_) = 1 ~ .3.... h-2 
W -log costrh tr2 

(10.18) 

for sufficiently small h. Thus by (3-7.32) the reciprocal asymptotic 

rate of convergence of the J-SI method is 

1 , 1 -1 RR (P (B)) "-' -YRR(B_) ~ - h • 
., n rz w tr (10.19) 

On the other hand, it is known (see Young [1971], Golub and Varga [1961]) 

that the Cyclic Chebyshev Semi-Iterative method (CCSI method) has twice 

as fast the rate of convergence of the J-SI and therefore from (10.19) 

we obtain 
RR (CCSI) ~ ~2l -1 ., tr 

which is the same as the value of RR(L ) (see (4-13.15)). 
wb 

Moreover, for the GS method, since A is consistently ordered, 

we have (see Chapter 4) that 

S(L) = S(B)2 = 
2 cos trh 

thus we obtain 
RR(L)'" ~h-2. 

tr 
Finally for the GS-SI method we have the following result 

RR (P (L))'" _l_IRR(B_) ~ 1- h- l 
., n 212 w 2tr 

(10.20) 

(10.21) 

(10.22) 

(10.23) 

which implies that the convergence rate of the GS-SI method is approximately 

twice as fast as the J-SI method. However, for stability reasons (see Young 
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[1971]), before using the GS-SI method, one should first permute the 

rows and corresponding columns of A so as to obtain the form (2-7.1). 

Evidently, for the model problem this corresponds to the relabelling of 

the interior mesh points to correspond to the "red.black" ordering (see 

Chapter 2). 

Let us now consider the effectiveness of the SSOR-SI method (see 

Habelter and Wachspress [1961], Sheldon [1955], Young [1974, 1971]). 

From the simple observation that the rates of convergence of the accelerated 

iterative schemes considered so far, depend also upon the P-condition 

number of the (preconditioned) coefficient matrix, we expect the SSOR-SI 

method to possess approximately the same rate of convergence as the PJ-SI 

method. This observation is concluded from the fact that the two methods 

have conditioning matrix which differ only by a scalar factor. This can 

be more explicitly seen if we consider the first step of acceleration 

(see (3-7.25)) applied to the SSOR method, hence we have 

or 

where 
T = ~w(2-w). 

Evidently, in order for the rate of convergence of (10.25) to be 

maximised T will take that optimum value so that the optimum value TO 

of T to become identical with TO' In other words, at the optimum stage 

the iterative scheme (10.25) is identical with the PSD method, which if 

accelerated using the semi-iterative techniques becomes identical with 

the PJ-SI method. Consequently the optimum SI method based on SSOR is 

(10.24) 

(10.25) 

(10.26) 

identical to the optimum SI method based on the PJ method. This conclusion 

can also be extended to include all the previously considered accelerated 

techniques based on the PJ method. 

Finally, we consider the application of the-SI method based on the 

LPSD. From (5.24) we have that the rate of convergence for the LPSD-SI 
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method is given by (see (3.11)) 

('Ill) / ('Ill) ! 
R",(P (D ( ) ( ))) ~l2h(D ( ) ( )) ~ 2 I2h(D ) 

n 'Ill 'Ill T 'Ill "' 'Ill Tl'"'l 
T 1 '"'1 1 '1 

(10.27) 

hence 

(10.28) 

for sufficiently small h. This result implies that for the unit square, 

or a subset thereof, there is a gain of approximately a factor of 1.2 in 

using the LPSD method with semi-iteration as compared with point PSD with 

semi-iteration. However, in order to achieve this relatively small 

improvement for the former scheme in terms of overall computational effort 

one should carry out the method using a normalised block iteration scheme 

(see Cuthill and Varga [1962]). 

Summarising our results, we have the following asymptotic expressions 

for the reciprocal convergence rates of the various methods considered for 

the model problem 

Method 

J-SI 

CCSI 

GS-SI 

SOR 

SSOR 

PSD 

LSSOR 

LPSD 

SSOR-SI 

PJ-SI 

LPSD-SI 

FIGURE 10 .1 



From the above figure we notice that for the PJ-SI (or SSOR-SI) and 

LPSD-SI methods the number of iterations varies like O(h-!). From our 

previous analysis we expect that this would also happen for the SD-PJ, 

PJ-VE and PJ-CG methods. 

In order to obtain some information about the above methods in 

practice, we considered again the six problems as described in Section 4.8 

under the same boundary conditions, starting vector and convergence 

criterion. 

Next, the PJ method was accelerated both by variable extrapolation 
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(PJ-VE) and by semi-iteration (PJ-SI). In each case, the optimum parameters 

were used whereas for the PJ-VE method the value of m was determined as 

the smallest integer such that 

[ 
1 2rm/2~-1 

- - log 
m l+rm 

::; 1.25 1 (10.29) 
1 (-2" log r) 

This guarantees that the reciprocal rate of convergence does not exceed 

125% of the reciprocal rate of convergence of the corresponding semi-

iterative method. 

In Table 10.2 we present the number of iterations of the two 

aforementioned iterative schemes. From this table we note that the 

number of iterations required for convergence using the PJ-SI and PJ-VE 

methods behaves approximately as h-!, even though the coefficients A(x,y) 

and C(x,y) are not necessarily in class C(2) (see problem 5). However, 

it should be noted here that for a higher degree of discontinuity the 
3 -. behaviour is expected to be h , as was shown in Section 5.5, under 

the assumption that IAxl and ICyl are bounded in the region under 

consideration. This is somewhat better than O(h) convergence of SOR. 

As is shown (see Appendix A), the number of operations required per 

iteration using the PJ-SI method is approximately twice that required 

using the SOR method. This should be considered in comparing the PJ-SI 

with the SOR method. However, if we use the PJ-VE method, then we can 



Problem h- 1 
Wo ACB ) ACB ) TO PJ-SI PJ-VE mO Wo Wo 

20 1.7641 0.4568 2.4030 0.6993 17 20 4 
1 40 1.8750 0.4233 4.2667 0.4264 24 30 6 

60 1. 9157 0.4068 6.1922 0.3031 30 35 7 

20 1. 5888 0.6313 1.5307 0.9251 12 12 3 
2 40 1.7668 0.5672 2.4271 0.6679 17 19 4 

60 1. 8386 0.5439 3.3698 0.5110 21 25 5 
20 1. 7652 0.4488 2.4127 0.6989 17 20 4 

3 40 1.8756 0.4153 4.2859 0.4254 24 30 6 
60 1.9163 0.4096 6.2346 0.3010 29 35 7 

20 1.7624 0.4566 2.3881 0.7031 17 20 4 
4 40 1.8748 0.4252 4.2603 0.4268 24 , 30 6 

60 1. 9143 0.4121 6.0955 0.3073 29 . 35 7 

20 1. 7479 0.3901 2.2694 0.7520 18 20 4 
5 40 1.8665 0.3592 4.0132 0.4574 25 30 6 

60 1. 9093 0.3494 5.7746 0.3266 31 35 7 

20 1.6097 0.6311 1.5917 0.8998 11 12 3 
6 40 1.7820 0.5779 2.5742 0.6343 17 20 4 

60 1.8490 0.5595 3.5817 0.4829 19 25 5 

TABLE 10.2 

A COMPARISON OF PJ-SI AND PJ-VE METHODS WITH OPTIMUM PARAMETERS 



h-1 PJ-SI PJ-CG LPSD-SI PJ-VE m SOR PSD SSOR 

20 17 14 14 20 4 61 37 66 

40 24 20 20 30 6 121 71 134 

60 30 25 25 35 7 253 107 201 

TABLE 10.3 

NUMBER OF ITERATIONS FOR THE MODEL PROBLEM 



reduce the work involved to be approximately equal (see(A.ll)) to the 

work in SOR, thus making this iterative procedure more attractive than 

the former accelerated versions of the PJ method. 

Finally, in Table 10.3 we present the number of iterations of the 

various procedures considered so far for solving the model problem using 

the same starting vector and convergence criterion. 
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CHAPTER 6 

THE ADAPTIVE ALGORITHM 



6.1 INTRODUCTION 

In the last two chapters we were concerned with the construction of 

various iterative schemes and their comparison with respect to rates of 

convergence and related computational work. A lot of emphasis was also 

dedicated to the theoretical determination of the involved parameters to 

attain optimal rates of convergence. Finally, the formulation of the 

accelerated versions of the PJ method and especially the PJ-SI, PJ-VE, 

SD-PJ and PJ-CG procedures were also considered and it was shown that they 

form a variety of different algorithms with rapid rates of convergence. 
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These latest schemes together with·PSD, SOR and ADI-methods (see Chapter 7) 

can give an answer to the question as to which method should be used to 

solve systems of the form (3-1.1). However, the problem as to how the 

iteration parameters should be chosen so that the anticipated rapid rate of 

convergence will be attained, still remains since the number of iterations 

required to obtain the optimum parameters may exceed the number of iterations 

necessary to solve (3-1.1) itself. This is also very closely related to 

the problem of how one should decide when the iteration process should be 

terminated. A step towards the solution of the above problem was the work 

by Diamond [1971] and later on by I!ageman [1972], Young [1974a] and 

Benokraitis [1974] who have considered a number of techniques for 

accelerating various iterative methods by Chebyshev acceleration whereas 

Ikebe et al [1973] considered an adaptive scheme which does not depend 

upon estimating the spectral radius of the iteration matrix. These methods 

adaptively update the required acceleration parameters and improve the 

approximate solution at the same time. The goal of the adaptive schemes is 

to attain convergence in only a few more iterations than would be required 

if the best possible values of the iteration parameters were used from the. 

outset. 

In this chapter we will develop an adaptive algorithm to accelerate 
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the PJ method which does not require any knowledge of the eigenvalues of B . w 

In particular, we will consider the PJ-SI method with the parameters being 

improved during the course of the iterations and we will show that this 

algorithm under certain conditions performs better than the PJ-SI method 

with estimated parameters. 
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6.2 SOME CONSIDERATIONS FOR CHOOSING THE OPTIMUM PARAMETERS 

As we have seen in the previous chapter, in order to apply any 

accelerated version of the PJ method we need to have the optimum parameters 

Wo and P(B ) or SeD ) (although in the PJ-CG method we do not require 
Wo TO'WO 

P(B ) in the actual iteration, its computation is essential for the 
Wo 

determination of wO). A simple technique for determining these quantities 

is the selection of various values of T and wand the computation of the 

corresponding SeD ) using the power method (see e.g. Gourlay and Watson T,W 

[1973]). Thus, the triple (wO,TO,S(D )) which produces the smallest 
TO'WO 

spectral radius SeD ) can be chosen as the optimum parameter set. The 
T,W .. 

most sophisticated scheme for this approach is to use an optimization method 

(e.g. Fibonacci search technique or golden section) for the appropriate 

selection of T and w. In Table 2.1 we present the optimum parameters wO"O 

and SeD ) obtained by the power method for the problems considered in 
'o,wo 

Section 4.8 (see Table 4-8.2). 

Problem h-1 
Wo '0 SeD ) P(B ) 

'O'wo Wo 

20 1.7641 0.6993 0.6805 5.2604 
1 40 1.8750 0.4264 0.8195 10.0806 

60 1. 9157 0.3031 0.8767 15.2207 

20 1. 5888 0.9251 0.4160 2.4248 
2 40 1. 7668 0.6659 0.6211 4.2790 . 60 1.8386 0.5110 0.7221 6.1958 

20 1.7652 0.6989 0.6863 5.3763 
3 40 1.8756 0.4254 0.8233 10 .3200 

60 1.9163 0.3010 0.8767 15.2207 

20 1.7624 0.7031 0.6790 5.2301 
4 40 1. 8748 0.4268 0.8185 10.0200 

60 1. 9143 0.3073 0.8734 14.7929 

20 1. 7479 0.7520 0.7066 5.8173 
5 40 1. 8665 0.4574 0.8357 11.1732 

60 1.9093 0.3266 0.8859 16.5289 

20 1.6097 0.8998 0.4322 2.5221 
6 40 1.7820 0.6343 0.6333 4.4543 

60 1.8490 0.4829 0.7298 6.4020 

TABLE 2.1 

OPTIMUM PARAMETERS wO' '0 AND S (D ) OBTAINED BY POWER METHOD 
'O'wo 
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Evidently, the aforementioned technique of obtaining the optimum 

parameters is impractical,we are therefore bound to consider other approaches. 

The same problem was also encountered for the determination of Wo in the SSOR 

method and the first step towards its solution was the work by Habelter and 

Wachspress [1961] who determined an implicit formula for the optimum parameters 

Wo and S(& ). Later, Evans and Forrington [1963] modified the determination 
Wo 

of the optimum parameters by devising an iterative scheme which although 

successful for the model problem does not guarantee to produce the optimum 

parameters for a wider class of problems. 

Here, we present an algorithm. for the determination of WO,TO and 

SeD ) which is based on the analysis presented in Chapter 4 and is 
TO'WO 

similar to an algorithm for the determination of ~ and S(& ) (Benokraitis 
Wo 

[1974]). 

Algorithm 6.1 

1. 

2. 

3. 

4. 

Choose convergence tolerances El ,E 2 and initial values of W,T and vlO. 

Iterate with the power method to obtain SeD ) and a vector v such that 
T,W 

D v = SeD )v 
T,W T,W (2.1) 

(v,Dv) = 1. 

Compute 
a = (v,DBv) (2.2) 

and a = (v ,DLUv) • 

Compute 

2 , if a:s4a 
1+/1-2a+4a (2.3) w' = 2 

= w* , if a>4a, 
1+/1-4a 

1(1 + ,t1-2a+4a) 
2 I-a , if a,,4a 

P' = (2.4) 
1-,t1-4a 1 , if a>4a, =--
2h-4a 

2-w* 

T' 
2w'(2-w') and S' P' -1 (2.5) = l+l/P' = P'+l 



5. Terminate the process if 

and choose 

w = w' o ' 

I w-w' I < El 

Ip(B)-p'l < E2 

P(B )=P'. 
Wo 

Otherwise set w=w', T=T' and go to step 2. 

However, we note that the deficiency of the power method approach 

is still retained since the number' of iterations required to obtain the 

optimum parameters by applying Algorithm 6.1 can be of the same order as 
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(2.6) 

(2.7) 

the number of iterations required to find the approximate solution of (3-1.1). 

We are therefore motivated to consider a comparison of the PJ-SI procedure 

using estimated and optimum parameters since the former are obtained 

relatively easily. 
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6.3 STOPPING PROCEDURES 

In this section we consider various criteria which will be used for 

terminating the procedures for the adaptive determination of the parameters 

wand P(B). The analysis of the stopping procedures is similar to the one 
w 

developed by Young [1974a],Benokraitis [1974] and Cullen [1974] modified 

slightly to suit our purposes. 

Let U;(I_G)-lk be the exact solution of (3-1.3) and hence of (3-1.1). 

We recall from (3-3.3) that the error vector at the nth stage of the PJ-SI 

iteration is defined by 

(n) -
; u -u. (3.1) 

(n) Here we will accept u as an adequate approximation to the exact solution 

u provided the following inequality is satisfied by the relative error 

(3.2) 

where we assume that u(O);O and ~ is some small tolerance (e.g. ~;10-6). 

It can be observed that we cannot use the convergence criterion (3.2) 

directly, for u is not available at the outset. Thus, we have to consider 

various upper bounds on the relative error defined in (3.2) in order to 

avoid this difficulty. 

In particular, for the PJ-SI we have from (5-5.14),(5-5.17) that 

u(n) ; P (If)U(O) + k 
n VU> n 

and by consistency, we obtain the following 

u ; P (If)u + k • n V'W n 

From (3.3) and (3.4) we have 

hence (3.2) can be modified to yield 

/lu(n)-uU UP (Xl/l /lu(O)"U 
AI n W' AI 

---~-~ 

/lu /I I 
A 

lIu 11 I 
A 

/I ! 
A ; 11 P CJc,J/I I 

n A 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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We therefore define by (3.2) and (3.6) stopping "Procedure I" for 

PJ-SI as 

(3.7) 

since 

liP (JC)II 1 = IIA!P (JC )A-!II = 
n w A2 n w 

= S(Aip (JC )A-!) = 
n w (3.8) 

where r is given by (5-5.19). This procedure is an a priori criterion 

since we can determine in advance how many iterations are required such 

that (3.2) is satisfied. 

Next, we consider an alternative stopping procedure which may, in 

favourable cases, lead us to terminate the iteration process sooner than 

Procedure I (and in some cases later). 

The pseudo-residual vector (or incremental vector see Diamond [1971]) 

is defined by (see Young [1974a]) the expression 

Since u=GU+k, we have 

o(n) = Gu(n)+(u_Gu)_u(n) = (G_I)(u(n)_u) 

and by (3.1) we obtain 

o (n) = (G-I)E (n) 

which indicates that the error vector E(n) can be expressed in terms of 

the pseudo-residual vector o(n). By combining (3.2) and (3.11) we find 

the result 

niiU i 
A 

ntin i 
A 

:: c; • 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Depending on how we approximate DuO I' we obtain various stopping criteria. 
A 

Here, we first define "Procedure 11" if we substitute ntill 1 from the 
A 

expression 
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(3.13) 

Thus (3.12) holds, if the following inequality is satisfied 

IICG_I)-ll/ ! I/G-II/ ! 
A A 

(3.14) 

which can also be written as 

Kn = k(G-I) (3.15) 

where k(G-I) denotes the spectral condition number of (G-I). 

by l/u(n)U in (3.13), then we can approximate 
A! 

= S(G-I)<l, hence (3.15) becomes 

KIll = k(G-I) 

which defines "Procedure Ill". 

1/ <5 (n) 1/ 

A! 
lIu(n) 11 

A! 

l~e note that in order to apply the tests (3.15) and (3.16) we 

need a bound on the spectral condition number of G-I. However, the 

effect of inaccuracies on these bounds as far as the convergence 

testing is concerned is much less than the effect on the rapidity of 

convergence. Therefore, we can often use any crude bound which may 

(3.16) 

be available without a substantial alteration on the number of iterations. 
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6.4 COMPUTATIONAL PROCEDURES AND NIJI.IERICAL RESULTS 

In this section, we compare the effectiveness of the estimated 

parameters with the optimum ones by applying the PJ-SI and PJ-VE methods 

(for solving the self-adjoint equation (5-5.36) for the different expressions 

of the coefficients A(x,y) and C(x,y) (see Table 4-8.2). Furthermore, we 

use the stopping procedures introduced in the previous section for terminating 

the iterations. Before we present any numerical results we summarise the 

procedures for applying the PJ-SI and PJ-VE methods with estimated parameters 

for solving the linear system corresponding to (1-2.6). 

Algorithm 6.2 (PJ-SI method) 

1. As a starting vector we choose u(O) such that 

lIu(O)_UII !~ 
A 

The choice u(O)=O will suffice. 

2. Compute M=-m by (5-5.27). 

lIull !. 
A 

This involves the determination of an IhxJh rectangle containing 

R+3R. 

3. Compute a using the expression (see Appendix B) 

(4.1) 

S = max {63 (X,y) [61(x-h,y)+62(x-h,y)]+64 (X,y) [61(x,y-h)+62(x,y -h)]} 
(x,y)ERh 

4. Adjust M if necessary. 

If M>2/tf, replace M by 2/tf. 

5. Compute wl and P(B ) by (4-11.4),(4-11.5), respectively. wl 
6. Iterate using the PJ-SI method 

(4.2) 

(n+l) 
u = (n-l) (n) -1 -1 -1 (n) (l-p l)u +p 1 [u +p(I-wU) (I-wL) D (b-Au )] n+ n+ 

The values of P,Pl,P2"" are given by the following expressions 

2wl (2-wl ) 
p = l+l/P(B ) , 

wl 

(4.3) 

(4.4) 



where 

PI = 1 , 

P2 = ( 02fl 1 -""2 

( 0
2 rl 

Pn+l = 1 - ..-il 4 n 

o = 
P (B )-1 

w
l 

J n=2,3, ... 

7. Terminate the process after n iterations where n satisfies the 

inequality 
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(4.5) 

(4.6) 

(4.7) 

The alternative procedure of accelerating the PJ method is the PJ-VE 

and is represented by the same steps as in Algorithm 6.2 but instead of 

step 6 and 7 we have (Algorithm 6.3): 

as the smallest integer such that 

[
_ .!. log 2rmJ!~-1 S 1.25(--21 log r)-l. 

ml ml l+r 

6. Choose ml 

(4.8) 

7. Iterate using the PJ-VE method defined by 

(4.9) 

where 

l/P(B )cos 2 (2k-l)~ . 2 
+ S1n 

(2k-lh ' 
4ml 

k=1,2, ••. ,ml 
wl 4ml 

(4.10) 

8. Terminate the process after tml iterations where 

(4.11) 

In order to test the efficiency of the Algorithms 6.2 and 6.3 we 

considered their application to the six problems (see Section 4.8) and 

compared their results with the PJ-SI and PJ-VE with optimum parameters. 



Here the boundary values were taken to be zero on all sides of the unit 

square except for the side y=O, where they were taken to be unity. The 

natural ordering was used and u(O)=O was taken as a starting vector, 

whereas we let ~=10-6. 

In Table 4.1 we present the number of iterations of PJ-SI and PJ-VE 

with optimum and estimated parameters, required to satisfy stopping 

Procedure I. On the other hand, under the column headings 1,11,111 in 

W7 

Tables 4.2 and 4.3 we present the number of iterations required to satisfy 

stopping procedures I,ll and III using the PJ-SI method with optimum and 

estimated parameters, respectivel~. For the PJ-VE method, the number of 

iterations Was tmo (or tmV' where mO (or ml) is determined by (4.8) and is 

given by the relationship 

[2rm~/2It~ ~. 
l+r 0 

From Table 4.1 we verify again that for the problems considered 

the number of iterations required to satisfy stopping Procedure I using 

the PJ-SI and PJ-VE method varies approximately as h-! even though the 

coefficients A(x,y) and C(x,y) are not necessarily in the class C(2) • 

A comparison of the results obtained in Table 5-10.2 with the ones 

(4.12) 

obtained in Table 4.1 shows that although ideal conditions were used (see 

Section 5.10) the behaviour of the number of iterations is typical for 

other boundary conditions as well. 

Also, from Table 4.1 we note that the results using the estimated 

parameters were reasonably good in comparison with the results based on 

the optimum parameters for both the PJ-SI and PJ-VE methods. Only in 

the third and fifth cases were there substantial differences which 

indicates that in such cases it would appear worthwhile to attempt to 

improve the parameters wand P(B ) adaptively. The same situation is w 

true when we use Procedures 11 and III as stopping criteria. These also 

provide a suitable indication when (3.2) is satisfied for PJ-SI (see Tables 



h-1 21[ Problem a M w
1 Wo P(B ) 

w1 

20 0.2500 1.0000 0.9877 1.7287 1.7641 6.8727 
1 40 0.2500 1.0000 0.9969 1.8544 1. 8750 13.2357 

60 0.2500 1.0000 0.9986 1.9005 1.9157 19.6008 

20 0.2350 0.9695 1.0000 1.6065 1.5888 2.5415 
2 40 0.2461 0.9922 1.0000 1. 7788 1. 7668 4.5208 

60 0.2483 0.9965 1.0000 1.8465 1.8386 6.5139 

20 0.2505 1.0009 0.9969 1.8355 1. 7652 14.9905 
3 40 0.2501 1.0002 0.9992 1.9142 1.8756 29.5540 

60 0.2501 1.0001 0.9997 1.9420 1.9163 44.1015 

20 0.2500 1.0001 0.9918 1. 7717 1.7624 8.3322 
4 40 0.2500 1.0000 0.9979 1.8790 1.8748 16.1660 

60 0.2500 1.0000 0.9991 1.9176 1.9143 23.9999 

20 0.2500 0.9999 0.9978 1.8756 1. 7479 15.2395 
5 40 0.2500 1.0000 0.9994 1.9359 1.8665 30.0138 

60 0.2500 1.0000 0.9998 1.9568 1.9093 44.7804 

20 0.2416 0.9831 1.0000 1.6903 1.6097 3.2293 
6 40 0.2483 0.9966 1.0000 1.8475 1.7820 6.5567 

60 0.2493 0.9986 1.0000 1. 8997 1. 8490 9.9697 

TABLE 4.1 

PJ-SI 
P(B ) 

Wo nopt n est 

5.2604 16 19 
10.0806 23 26 
15.2207 28 32 

2.4248 10 10 
4.2790 14 15 
6.1958 18 18 

5.3763 16 29 
10.3200 23 39 
15.2207 28 48 

5.2301 16 21 
10.0200 23 29 
14.7929 28 36 

5.8173 17 28 
11.1732 24 40 
16.5289 29 49 

2.5221 10 12 
4.4543 15 18 
6.4020 18 23 

PJ-VE 

n opt ~ n 

20 4 
30 6 
35 7 

12 3 
16 4 
20 5 

20 4 
30 6 
35 7 

20 4 
30 6 
35 7 

20 4 
30 6 
35 7 

12 3 
20 4 
25 5 

est 

25 
35 
40 

12 
20 
25 

35 
50 
66 

25 
35 
45 

35 
50 
66 

15 
25 
30 

m1 

5 
7 
8 

3 
4 
5 

7 
10 
11 

5 
7 
9 

7 
10 
11 

3 
5 
6 

N o 
00 



h -1 
Optimum Parameter PJ-SI 

Problem P(B ) I II III Wo Wo 
20 1.7641 5.2604 16 17 18 

1 40 1.8750 10.0806 23 26 28 
60 1.9157 15.2207 28 32 36 

20 1.5888 2.4248 10 12 11 
2 40 1. 7668 4.2790 14 16 17 

60 1.8386 6.1958 18 20 22 

20 1. 7652 5.3763 16 17 18 
3 40 1.8756 10.3200 23 26 28 

60 1. 9163 15.2207 28 32 35 

20 1.7624 5.2301 16 17 18 
4 40 1.8748 10.0200 23 26 28 

60 1.9143 14.7929 28 32 35 

20 1. 7479 5.8173 17 18 19 
5 40 1.8665 11.1732 24 27 29 

60 1.9093 16~5289 29 35 38 

20 1.6097 2.5221 10 11 11 
6 40 1. 7820 4.'4543 15 16 17 

60 1.8490 6.4020 18 20 22 

TABLE 4.2 

NUMBER OF ITERATIONS REQUIRED TO SATISFY STOPPING CRITERIA I, 11 AND 

III USING PJ-SI WITH OPTIMUM PARAMETERS FOR THE SIX PROBLEMS 

h-1 Estimated Parameters PJ-SI 
Problem w

1 P(B ) I II IH w1 
20 1. 7287 6.8727 19 21 21 

1 40 1.8544 13.2357 26 30 32 
60 1.9005 19.6008 32 37 41 

20 1.6065 2.5415 10 12 12 
2 40 1. 7788 4.5208 15 17 18 

60 1.8465 6.5139 18 21 23 

20 1.8355 14.9905 28 32 33 
3 40 1.9142 29.5540 39 47 51 

60 1.9420 44.1015 48 59 66 

20 1. 7717 8.3322 21 23 24 
4 40 1.8790 16.1660 29 34 37 

60 1.9176 23.9999 36 43 47 

20 1.8756 15.2395 28 33 34 
5 40 1. 9359 30.0138 40 49 54 

60 1.9568 44.7804 49 63 69 

20 1.6903 3.2293 12 12 13 
6 40 1. 8475 6.5567 18 17 18 

60 1.8997 9.9697 26 21 28 

TABLE 4.3 

NUMBER OF ITERATIONS REQUIRED TO SATISFY STOPPING CRITERIA I, 11 AND 

III USING PJ-SI WITH ESTIMATED PARAMETERS FOR THE SIX PROBLEMS 
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4.2 and 4.3). The above stopping procedures will be proved to be suitable 

for the adaptive acceleration of the PJ method. Finally, if we also consider 

the amount of work involved to determine the optimum parameters (see 

Algorithm 6.1) we are motivated by these observations to seek adaptive or 

dynamic procedures which approximate the parameters Wo and P(E ) and at 
Wo 

the same time, obtain the solution of Au=b. Here, it should be mentioned 

that Benokraitis [1974] considered similar procedures for the SSOR-SI 

method involving the simultaneous determination of both wand S(&w). 
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6.5 THE THEORETICAL BASIS FOR THE ADAPTIVE DETERMINATION OF PARAMETERS 

Our aim in the remainder of this chapter will be to develop an efficient 

procedure which will use the PJ-SI method for solving elliptic difference 

equations of the form (1-2.6). 

From Section 4.9 we recall that the preconditioning parameter is 

optimum for that value of W for which the P-condition number of B is 
W 

minimised. We also have seen that for the largest and smallest eigenvalue 

of B w we can let, respectively 

where 

and 

A(B ) 
1 = w(2-w) 

, w 

2 
A(B ) l-wa+w a = <jJ(w,v) = W I-a 

a = (v;DBv) , 
(v,Dv) 

a = (v,DLUv) 
(v,Dv) 

B v = A (B )v. 
W w 

Therefore, the P-condition number of B is given by the expression 
w 

(5.1) 

(5.2) 

(5.3) 

(5.4 ) 

(5.5) 

2 
P(B ) - l-wa+w a (5 6) 

w - w(2-w) (I-a) • 

where a and a are given by (5.3),(5.4), respectively. From (5.6) and 

(5.2) we see that finding the optimum parameters wO' P(B ) depends upon 
Wo 

the availability of an eigenvector corresponding to the smallest eigen-

value of B. Evidently, if we happened to know this eigenvector, then 
w 

we would be able to determine A(B ) from the formula 
w 

(v,B v) 
A(B ) - w 

w - (v,v) 

and then compute P(B ) from the expression 
w 

-1 P(B) = [w(2-w)A(B)] • 
w w 

It is therefore clear that the determination of v such that (5.5) 

is satisfied, is essential for obtaining the optimum parameters. Thus 

we are motivated by this observation to seek for a vector which is 

(5.7) 



212 

automatically calculated in the practical implementation of the PJ-SI method 

and can be made to approach an eigenvector of B corresponding to A(B ). 
w w 

As a result our task will be to compute an approximation to the quantities 

a and ~ defined by (5.3) and (5.4), respectively thus. computing by (5.6) 

approximations (using the analysis of Section 4-4.9) to the optimum parameters 

Wo and P(B ). 
Wo 

We commence our analysis by proving the following theorem 

Theorem 5.1 

Let A be a positive definite matrix, then for any vector vlO the 

representation Hw,v) given by (5;2) is a Rayleigh quotient with respect 

to the vector w=OI(I-wU)V and the positive definite matrix 

that is 

Furthermore, 

Proof 

(w,8 w) 
w <Pew, v) = ~--C;;.,­(w,w) 

A(B ) = A(B ) ~ ~(w,v) . w w 

We first show that B is positive definite. 11e recall from (4-5.1) 
w 

that 

hence 

where 

B = DI(I-WU)B (I_wU)-lO-1 
w w 

= D!(I_wL)-lD-IA(I_wU)-lO-1 

= (I_wL)-lO~AO-I(I_wa)-l 

= [(I_WL)-lO-I]A[(I_wL)-lO-I]T 

L = o!Lo-1 and U = oluo- l 

(5.8) 

(5.9) 

(5.10) 

(5.11 ) 

(5.12) 

(5.13) 

. vT- -Slnce L =U. From (5.12) and Theorem 2-2.4 it follows that B is positive 
w 

definite. 

From (5.11) we also have 

-1 -1 -1 (I-wU) (I-wL) D A = B 
w 
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or 

thus 
A = D(I-wL)D-~B D~(I-WU) 

w 

= D~(I-WL)B (I-wU)D!. 
.w 

(5.14 ) 

If we take inner products of both sides of the last equation with respect 

to VfO we have 

where 

(v.Av) = (v .D~ (I-wL)B (I-WU)D~) 
w 

= ((I-WU)D!v.B (I-WU)D!V) 
W 

= (w.B w) 
W 

w = (I-wU)D!V. 

Dividing by (w.w) both sides of (5.15) we obtain 

(v.Av) _ 
(w.w) -

(w.B w) 
W 

(w.w) 

Expanding the inner product (w.w) we have successively 

(w.w) = ((I-wU)D!V.(I-wU)D!V) 

= (v .D! (I-wL) (I-wU)D!V) 

= (v.D(I-wL)(I-wU)v) 
2 = (v. (D-wDB+w DLU)v) 

2 = (v.Dv)-w(v.DBv)+w (v.DLUv). 

Since we also have that 

(v.Av) = (v.(D-DB)v) = (v.Dv)-(v.DBv) 

then by using (5.17). the left hand side of (5.16) yields 

(v.Av) 
(w.w) = 

= 

thus (5.16) becomes 

(v .Dv) - (v.DBv) 
2 (v.Dv)-w(v.DBv)+w (v.DLUv) 

I-a 
-----:c..::..-,;2- = H w • v) 
1-wa+w e 

(w.B w) 

Hw. v) = --;:(w.,-• ..:.::")-

Finally. since B is similar to B • then by Theorem 2-1.5 we have 
w w 

(5.10) and.the proof of the theorem is complete. 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 



Corollary 5.2 

Under the hypotheses of Theorem 5.1 any eigenvalue of Bw can be 

represented by (5.2). 
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From the above analysis we see that the inequality (5.10) is satisfied 

for any non-zero vector v. On the other hand, we observe from (5.10) that 

the closer we approach an eigenvector corresponding to the smallest eigen-

value of B , the better we will be able to determine A(B ) from $(w,v). w w 
It is evident now there is a strong need for finding this eigenvector. 

However, we have to devise another approach other than using the power 

method since as we have seen the power iterations require extensive 

computational effort and do not contribute directly to the solution of the 

system (3-1.1). The answer to this problem was given by Diamond [1971] for 

the general case. Here we have modified this approach to suit our purposes. 

Next, we will first show that the pseudo-residual vector, as defined 

in (3.9), satisfies the relationship 0 (n) =P PC) 0 (0) and secondly that 0 (n) 
n w 

approaches the vector v which satisfies (5.5). 

Theorem 5.3 

The pseudo-residual vector 

o (n) = X u (n) + k _ u (n) 
w 

where u(n) is the latest PJ-SI iterate, satisfies the relationship 

o(n) = P (X) 0(0) . 
n w 

Proof 

We recall from (3.10) that for the PJ-SI method we have 

o(n) = (X -I) (u(n)_ti) 
w 

where u(n) is the latest PJ-SI iterate. Alternatively, we can write 

the PJ-SI method in the form 

where 

(n+l) 
u = P (X)u(O) + k 

n w n 

(5.21) 

(5.22) 

(5.23) 

(5.24 ) 
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P (X) 
n w (5.25) 

u = P (X)u + k • n w n (5.26 ) 

Subtracting (5.26) from (5.24) yields the result 

(5.27) 

Further, by co~bining (5.23) and (5.27) we obtain the following expression 

for 6 (n) 

6 (n) = (JC -IlP (JC) (u(O) -il). 
w n w (5.28) 

Letting n=O in (5.23) we obtain 

(5.29) 

which on substitution in (5.28) yields (5.22) and the proof of the theorem 

is complete. 

The next theorem will establish the fact that 6(n) does converge to 

a multiple of the eigenvector corresponding to the smallest eigenvalue of 

B. 
Ul 

Theorem 5.4 

The pseudo-residual vector 6(n) given by (5.21) approaches a multiple 

of the eigenvector associated with A(B ) as ~. 
w 

Proof 

Let vk' k=1,2, ••• ,N, form a complete set of eigenvectors of ZL 

corresponding to the positive eigenvalues 

A(B) = 

Next, we express 6(0) as a linear combination of vk ' thus 

(5.30) 

(5.31) 



and let 
AE (B w) > AN 

where AE(Bw) is an estimate of A (Bw) . 

From Theorem 5.3 we have that the pseudo-residual vector defined 

by (5.21) satisfies the relationship 

which by using (5.31) and (5.25) yields successively 

N N 
= P (;If) I cl vk = I dkP (Ak)vk n w k=l-k k=l n 

Applying Theorem Cl (see Appendix C) to the terms of the first sum 

we see that as n increases these terms are decreasing at an optimal 

rate. Let us know concentrate on the terms of the second sum where 
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(5.32) 

(5.33) 

(5.34) 

(5.35) 



AE(Bw) > Ak > AN • 

We note that by letting 

and using (5.36) we can easily find the following relationship between 

x and y 

y>x>l. 

Furthermore, from (5.38) we have 

-1 rr·· ~ 1 cosh y = log(y+ly~-l»log(x+/x~-l) = cosh- x 

or -1 1 cosh x cosh- y < O. 

On the other hand, from (C4) (see Appendix C) we use the following 

expression for T (x) since x>l 
n 

Tn (x) = ~[(x+,,~? _l)n + (x+1x2 -1) -nJ 

which by (5.39) can be written alternatively as 

T (x) 
n 

r -1 
= ~Lencosh x + 

-q e -ncosh x
J 

Finally, by using (5.40) we obtain 
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(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

ncosh -Ix -ncosh -Ix -1-1 
lim _e __ --.,--+_e ___ --,-- = lim en(cosh x-cosh y) = 0 

-1 -1 
n~ ncosh y -ncosh· y n~ e +e 

which indicates that the terms of the second sum in (5.35) vanish also as 

n~ and therefore the proof of the theorem is complete. 

The above theorem establishes the theoretical basis for the use of 

the PJ-SI method to solve Au=b and simultaneously compute an approximate 

eigenvector associated with A(B). This can be more explicitly seen if we 
w 

consider again the pseudo-residual vector 

(n) 
- u • 

Then by (4-4.6) we have that 

(5.41) 



where urn) is the latest PJ-SI iteration. But, the next PJ-SI iteration 

u(n+1) is given by (see (5-5.14)) 
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(5.42) 

which shows that the pseudo-residual vector is essentially obtained as a 

by-product of the application of the PJ-SI method. This last observation 

is the main advantage of determining the parameters wand P(B ) adaptive1y 
w 

since we obtain the fundamental eigenvector v by exploiting the iteration 

used to improve the accuracy of the approximate solution of AU=b. 

Furthermore, it remains to be shown that any approximation to an 

eigenvector of B yields a corresponding eigenvalue approximation. This w 

is derived from a theorem in Wachspress [1966] (see also Diamond [1971]) 

and is presented here without proof. 

Theorem 5.5 

If A and B are positive definite matrices, then the eigenvectors 

xk and the corresponding eigenvalues Ak of the generalised eigenvalue 

problem 
AXk = \Bxk 

satisfy the following properties: 

(5.43) 

a) The eigenvalues Ak are all posi ti ve, i. e. , Ak>O for k=1,2, ••• ,N. 

b) The eigenvectors -1 
~ of B A are orthogonal with respect to B, 

i.e. , (xk,BXj)=O for j#k. 

2 We note that if we apply the above theorem to A and B=D(I-w(L+U)+w LU), 

then we have that the eigenvectors vk of Bw are orthogona1 with respect to 

2 D(I-w(L+U)+w LU). 

Finally, the next lemma defines the approximate eigenva1ue ACB ). 
w 

Lemma 5.6 

Let Ak k=1,2, ..• ,N, be the eigenva1ues of Bw and vk the corresponding 



eigenvectors. If t 

where y is approximately equal to v
N 

with errors 

vk and EN»Ek,k#N, then ~~AN with error of order 

Ek in the direction 

[:~r 
Proof 

From the hypotheses of the lemma we have that 

also we have seen that" 

where O. k is the Kronecker delta. 
J , 

Next, we express y in terms of vk ' hence 

N 
Y = I Ek Vk k=l 

and if we substitute y in (5.44) it follows that 

[I EkVk , A .r E.V.) 
k=l J=l J J 

~ = -:-;:;--~=------=--=------.;----

[ 
N -1 -1 ~ ) I Ekvk,(I-wU) (I-wL) L E.V. 

k=l j=l J J 

Combining now (5.45), (5.46) and (5.47) we obtain the result 

= 

which completes the proof of the lemma. 

tHere it is assumed that A=I-L-U. 
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(5.44) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 
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As a result of Theorem 5.4 and Lemma 5.6 we have that an approximation 

to A(E) can be calculated by the expression 
w 

(n) 
II (5.49) 
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6.6 THE ADAPTIVE ALGORITHM 

In this section a precise definition of the algorithm which uses the 

PJ-SI and simultaneously improves the parameters wand P(B ) is given. 
w 

From Theorem 5.1 which gives an upper bound ~(w,v) for the smallest 

eigenvalue A(B ) we conclude that we can determine a lower bound for the 
w 

P-condition number P(B ) from the relationship w 

p(w,v) ~ P(B ) w 

where 1 
p(w,v) = w(2-w)~(w,v) 

The lower bound p(w,v) of P(B ) as defined in (6.2) indicates that it w 

should be possible to approximate P{B ) by using the PJ-SI method. In 
w 

(6.1) 

(6.2) 

order to obtain more information about the role of a and a given by (5.3) 

and (5.4), respectively, we examine the behaviour of ~(w,v) with respect 

to these guantities. 

We recall from (5.2) that 

~(w,v) = 
2 l-wa+w a 

I-a 

2 l-w+w S 
= w + 1 -a 

and by a similar approach used to construct Table 4-11.3 we have 

Table 6.1, 

where 

a-Domain w-Domain 2 w S-w+l 

O~w~w* ::;0 

a~1/4 w=w* =0 

O~w*~w ~O 

S>1/4 0~w<2 >0 

TABLE 6.1 

2 BEHAVIOUR OF w a-w+l AS A FUNCTION OF w 

00* = 
2 

1+11-4a 

(6.3) 

(6.4) 



From (6.2),(6.3) and a cursory examination of Table 6.1 reveals that for 

a~1/4 we have i) if w~w*, then p(w,v) is maximised when a is maximised, 

ii) if w=w*, then p(w,v) = -----21 * and iii) if w>,w*, then p(w,v) is maximised -w 

when a is minimised. Finally, if a>1/4, then p(w,v) is maximised when a is 

maximised for O~w<2. Furthermore, if we maximise $(w,v) then we have an 

approximation to P(B ) which can be minimised with respect to w. 
w 

Next, we consider some practical aspects of the application of the 

adaptive algorithm. From the above analysis we see that the quantity a is 

either maximised or minimised depending upon the range in which the pre-

conditioning parameter w lies. Since now a depends upon the vector v, then 

it is clear that we have to find two alternative forms of v such that the 

quantity a always maximises p(w,v) independently of the position of w with 

respect to w*. Let us therefore assume that we have an approximation or 

an initial guess v=v(l)iO to the eigenvector of A(B). If A is an L-matrix 
w 

the quantity a is maximised for v>.O (i.e., all the components of v are non-

negative). Thus, for a~1/4 and w~w* or a>1/4, where p(w,v) is maximised 

if a is maximised,we may always let v have the form 

(1) (1) (1) (1) (1) T v = (VI ,v2 ,v3 , ... ,vN ) 

(1) where v. ~O. This choice of v gives 
1 
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(6.5) 

if A is an L-matrix. 

On the other hand, it is required that the quantity a be minimised 

(if w*~w and a~1/4) which can be achieved if one chooses v to have the 

alternative form 
(2) (2) (2) (2) (2) T v = (VI ,v2 ,v3 , ... ,vN ) 

where 

l
v~l) , on even points 

(l) -vk ,on odd points. 

The above choice of v gives 
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= :i 0 (6.6) 

which tends to maximise p(w,v) if w*:iw and a:il/4. 

Finally, we see that if A is an L-matrix with Property A, then 

= (6.7) 

Consequently, a lower bound on P(B ) is given by the following expression 
w 

P(B ) 
w 

where 

M = 

m = 

and a = 

I-M 
2 l-wM+w a 

I-m 
2 l-wm+w a 

al ::: 0 

a2 :; 0 

al = a2 

, if w~w* 

, if w~w* 

IVe continue to adhere to the analysis of Section 4.11 concerned with 

(6.8) 

(6.9) 

the estimation of good parameters wand P(B). Thus, from Theorem 4-11.1 
w 

we have that a good choice of the preconditi'oning parameter w in the sense 

of minimising the bound (6.8) is given by (see (4-11.4)) the formula 

= 
2 ---'='--- = w* 

1+h-4a 
, if M:::4a, 

whereas the corresponding value of P(B ) is given by (see (4-11.5)) 
w 

l( 1 v'1-2M+4a = 1 (2-M"'I.I_1 
21. + l-~I 21. (I-M)"'!.!! 

, if M:;41l 

l+~ 
2h-4a = 2-w* 

1 
, if M~4a. 

(6.10) 

(6.11) 

Another approach which does not require the analysis of Section 4.11 

for finding a good estimate to the preconditioning parameter is the use 

of a direct search technique, such as the Fibonacci method. 



Following this approach we can determine an approximation to the optimum 

parameter W by minimising 

PI (w) = max{Pl ,P2} = max {p(w,v(i))} 
i 

= 
max l-wai +w Si 

{ 2} i w(2-w) (l-ail 
, i=1,2. 

As soon as we determine a good estimate w=w
l 

we can immediately obtain 

our first estimate of P(B ) by evaluating 
w 

PE(B
Wl

) = PI (w l ) 

and then we can apply the PJ-SI method using Wl and PE(Bw )' As we 
(3) 1 

have seen, at the same time we can determine v to be another estimate 

for the eigenvector v and we proceed by forming 

where 

(4) (4) (4) (4) T 
v = (VI ,v2 , ... ,v

N 
) 

V (4) = 
k l

v~3), on 

(3) 
-vk ,on 

even points 

odd points. 

At this stage we determine a good estimate w=w
2 

by minimising 

= max {p.} , i=l,2,3,4 
• 1. 
1. 

and computing the corresponding estimate of P(B ) by w2 

It becomes clear after this analysis that if there are r available 

(1) (2) estimates of the eigenvector v, then we have 2r vectors v ,v, ... 

v(2r), where for i odd, veil is an eigenvector approximation whereas for 

i even, veil is given by 

(i) (i) (i) (i) T v = (VI ,v2 , ... ,vN ) 

where 
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(6.12) 

(6.13) 

(6.14 ) 



(i) v
k 

The th estimate r 

1 
(i-I) , on even points vk 

= 
(i-I) -vk ' on odd points. 

is determined by minimising the W r 

Pr(W) = max {p.} , i=1,2, .•. ,2r 
i l. 

and the corresponding estimate P(B ) is given by 
wr 

PE(BW ) = Pr(wr )· 
r 

In addition, we note that since we have 

p(W,v) ~ P(B } 
W 

it follows that the inequalities 

PE(B ) ~ P(B ) ~ P(B ) 
wr wr Wo 

quantity 

are valid where Wo is the optimum preconditioning parameter. 

We will now present an adaptive algorithm which uses the PJ-SI 

method to solve the system Au=b and automatically improve the parameters 

(w,P(B )). The algorithm will use the PJ-SI iterative scheme and a 
W 
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(6.15) 

(6.16) 

(6.17) 

sequence of parameters (w.,P(B )) which converge to the optimum parameter 
l. wi 

set (wO,P(B )). 
Wo 

The theoretical basis of the algorithm has been 

developed in Theorems 5.3, 5.4 and Lemma 5.6. 

Algorithm 6.4 

1. Choose an initial approximation u (0) such that 11 e (0) U !~UfiU ! 
A A 

and choose a convergence tolerance ~. 

Also, let 

and 

where 

= { Vk v
k -vk ' on odd points. 

, on even points 

Set i=l. 
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2. For the latest two vectors v,v compute 

a. = (v,DBv) 
ai +l = (v,DBv) , 

1 (v,Dv) (v,DV) 
(6.18) 

ei = (v,DLUv) ei +l = 
(v,DLUv) 

(v,Dv) , (v,Dv) 

if they have not been previously computed. 

3. Use a Fibonacci search technique to determine w by minimising the 

function 

pew) { 2} l-wa. +w e. 
_ max 1 1 
- i w(2-w) (l-ai ) 

t 

(6.19) 

for all available pairs (a. ,e.)'. Moreover, compute the corresponding 
1 1 

value PE(Bw) from the expressio~ 

4. Choose n to be the least integer n which satisfies the inequality 
q 

5. 

1 rn 
-- log ....;r:"""';2-:- >- -0.9 log r n - n l+r 

where (see (5-5.19)) 

r = 
IPE(BW)-l 

/PE(Bw)+l 

Iterate nq times with the PJ-SI method using the latest parameters 

wand PE(Bw)' After each iteration, check for convergence by 

computing the pseudo-residual vector 

n~n q 

and testing by stopping Procedure III whether or not 

P (B ) 11 0 (n) 11 

E w A! 

lIu (n) 11 
A! 

If (6.24) is satisfied terminate the algorithm, otherwise continue 

to the next step. 

tFor the unimodaZity of the funation pew) see Appendix D. 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 



6. In this step we test whether we should update the parameters w,PE(Bw) 

or not. From the previous step we have obtained the pseudo-residual 
(n ) 

vector 0 q, thus we now compute 

(n ) (n ) 
(0 q ,DBo q) 

(n) (n) 
(0 q,DO q) 

a = 
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(n ) (n ) (6.25) 

S = 

and 

p = 

(0 q ,DLUo q) 
(n) (n) 

(0 q ,Do q) 

2 l-wa+w a 
w(2-w) (I-a) 

If the following inequality is satisfied 

p :; PE(Bw) , 

then go to step 5 and note that the next PJ-SI iteration can be 

computed from (see (5.42)) 

where o(n) has already been computed in step 5. Otherwise, continue 

to the next step before altering the parameters. 

7. In order not to waste the computational work for the determination 
(n ) 

of 0 q in (6.23), apply a PJ-SI iteration using (6.28) with the 

old parameters wand PE(Bw). 

(n ) 
v = 0 q = 

and 

where 

Furthermore, let 

( 
(n) (n) (n )}T 

0
1 

q ,0
2 

q , ... ,0N q 

(n ) o q on even points 
k 

(n ) 
- 8

k 
q , on odd points. 

(6.26) 

(6.27) 

(6.28) 

Then, set i=i+2 and go to step 2 to compute new quantities for a and S 

in order to update wand PE(Bw). Evidently, in step 2,ai and Si have 

already been computed by (6.25) in step 6. 



Next we proceed to make various comments and justify some points in 

the above algorithm. First, we note that if the matrix A is an L-matrix 

with Property A, then 

ai +l = -a. and Si+l = S.· . 
1 1 

which implies that in step 2 we only need to compute ai and Si' The use 

of the Fibonacci search technique for the minimisation of pew) does not 

require the knowledge of the analysis of P(B ) (see Section 4.11) and it 
w 

could be regarded as a hint for the use of such techniques for more 

general and complex problems where the mathematical analysis may be 

laborious. 
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(6.29) 

In step 4 we have chosen nq SUch that the average rate of convergence 

after n iterations is 90% of the asymptotic average rate of convergence. 
q 

Furthermore, in order to justify step 6 and in particular the 

criterion (6.27) as to whether or not we should modify the parameters, 

we reason as follows. 

We have seen that 

given by 

where 

P (A) 
n = 

(

A(B)+A(B
W
)-2 ) 

Tn A(B )->-(B ) w w 

procedure is 

Let us assume that R is an estimate of A(B ) and define 
w 

Tn (A~~~:;~~2A] 
Pn(A,]!) = Tn C~~~:;~~2 ) 

then by the minimax theorem of Chebyshev polynomials (see Appendix C) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 
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we have 

max I P (I.) k max I P (A ,R) I . 
A(B )~A~A(B) n R~A~A(B) n w tu - W 

(6.34) 

In addition, if ~(w,v)~AE(B )~A(B ) or in other words if w w 

then we also have 

max Ip (A)I:: max Ip (A,g)l:: max Ip (A,p)l. 
A(B )~A~A(B) n A(B )~A~A(B) n A(B )~A~A(B) n 

tu tu w tu w tu 

Consequently, if P~PE(Bw)' the parameters wand PE(Bw) are not changed 

since the rate of convergence is not likely to be improved. However, 

we cannot be certain that a change of parameters in this case would not 

improve the rate of convergence. 

(6.35) 



6.7 NUMERICAL RESULTS 

In order to examine the performance of the Algorithm 6.4 as compared 

with the Algorithms 6.1 and 6.2 we solved the six problems considered in 

Section 4.8 by applying the PJ-SI iterative procedure which determines 

adaptively the parameters wand P(B ) (Algorithm 6.4). As a starting w 

vector we used the one which has all its components equal to zero, whereas 

the convergence tolerance was taken ~=10-6. In all cases the natural 

ordering was used. In Table 7.1 we present the number of iterations 

required to satisfy stopping Procedure III for the PJ-SI method with 

optimum, estimated and adaptive p~rameters. The subscripts on the number 

of iterations given for the adaptive algorithm refer to the number of 

parameter changes which were necessary to attain convergence. Under the 

headings nA/nO and nE/nO we give the ratio of the number of iterations, 

n(adaptive)/~optimum) and n(estimate~/~optimum), respectively where 

n(adaptive)is the effective number of iterations taking into account the 
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additional work required for updating the parameters. This is done if we 

convert the additional operations that are performed each time the parameters 

are changed into the corresponding number of iterations. It can be seen 

that four parameter changes are approximately equivalent to three PJ-SI 

iterations of work performed. Consequently, from this information we can 

work out nA for each particular case, e.g. if three parameter changes are 

required, then the number of iterations for the adaptive procedure should 

effectively be increased by approximately 2+1/4 iterations. Since for the 

determination of the optimum and estimated parameters a considerable 

preprocessing is required, their number of iterations should also be 

increased. However, even if we do not take into account this additional 

work we can safely state that the adaptive algorithm performs better than 

the estimated one in half of the problems considered (see Table 7.1). 

Furthermore, from Table 7.1 we see that in general the adaptive 

algorithm requires effectively about 25% more iterations than the PJ-SI 



h=1/20 h=1/40 h=1/60 
Problem 

nA/nO nO nA nE nE/nO nO nA n/nO nE nE/nO nO nA nA/nO nE nE/nO 

1 18 193 1.18 21 1.17 28 294 1.14 32 1.14 36 393 1.16 41 1.14 

2 11 122 1.23 12 1.09 17 183 1.19 18 1.06 22 244 1.23 23 1.05 

3 18 193 1.18 33 1.83 28 313 1.19 51 1.82 35 403 1.21 66 1.89 

4 18 193 1.18 24 1.33 28 294 1.14 37 1.32 35 395 1.18 47 1.34 

5 19 21 3 1.22 34 1.79 29 314 1.17 54 1.86 38 414 1.16 69 1.81 

6 11 121 1.16 13 1.18 17 182 1.15 18 1.06 22 262 1.25 28 1.27 

TABLE 7.1 

RESULTS OF APPLYING ALGORITHM 6.4 TO PROBLEMS 1-6 USING PROCEDURE III 



with optimum parameter iterative scheme. Another observation is that for 

problems 2 and 6 the PJ-SI method with estimated parameters gives 

approximately the same results for the different mesh sizes as the PJ-SI 

method with optimum parameters. This happens because we have replaced M 

by 21S in determining the estimated parameters. 

In Table 7.2 we can see a more detailed presentation as to how 

Algorithm 6.4 performs by including intermediate results of the various 

stages. Thus we can observe how the parameters are updated and how close 

agreement can be obtained with the optimum wand P(E). The number of 
w 

cycles show how many times the ~ -,iterations are repeated without changing 

the parameters. For comparison reasons we have also included the optimum 

parameters in parentheses. 

From Table 7.2 we see that the maximum of four parameter changes are 

needed for each problem to be solved. In particular, for problem 6 a 

maximum of two changes were required for all the different mesh sizes. 

Furthermore, we observe that the parameters wand P(E ) obtained adaptively 
w 

were quite satisfactory approximations to the optimum parameters, 

especially for small mesh sizes in all the cases considered. 

In Figure 7.1 we plot the logarithm of the number of iterations versus 

-1 logh for all the problems. This was carried out for the PJ-SI method 

using optimum, estimated and adaptive parameters. From this figure we see 

that the rate of convergence (of the three different approaches) is 

approximately O(h!) convergence even when A(x,y) and C(x,y) do not belong 

to the class C(2). 

From the above analysis of the obtained results we see that for 

problems 1,2 and 6 using PJ-SI with estimated parameters (determined by 

bounds on S(B) and S(LU) (see (4_ 11 .4) and (4-11.5)) required fewer iterations 

than the adaptive scheme (see Table 7.1). We also observe that in these 

cases the coefficients A(x,y) and C(x,y) both belong to the class C(2) and 
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PROBLEM 1 

h- 1 
20 40 60 

n
1 

5 6 7 

cycles 1 1 1 

w
1 

1. 6228 1.7224 1. 7688 

PE(B ) w
1 

2.7079 3.6425 
. 

4.3568 

n2 
8 10 11 

cycles 1 1 1 

w2 1.7794 1.8753 1.9041 

PE (Bw ) 4.9675 8.1766 10.6848 ' 
2 

n3 8 11 14 
cycles 1 1 2 

w3 1. 7428(1. 7641) . ·1.8733 1.9178(1.9157) 

PE(B ) 
w3 

5.1949 (5.2604) 10.1336 14.9163 (15.2207) 

n
4 11 

cycles 1 

w
4 1.8749(1.8750) 

PE(B ) w4 . 10.1464(10.0806) 

PROBLEM 2 

n l 4 6 7 

cycles 2 1 1 
w

1 1.5050 1.6653 1.7337 

PE(B ) w
1 

2.0203 2.9881 3.7546 

n2 S 6 8 

cycles 1 1 1 

w2 1. 5570 (1. 5888) 1. 7162 1. 7930 

PE(B ) w2 
2.2575 (2.4248) 3.5242 4.8307 

n3 7 8 

cycles 1 1 

w3 1. 7454 (1. 7668) 1.8198 

PE(B ) 
w3 

3.9271 (4.2790) 5.5484 

n
4 8 

cycles 1 

w4 1. 8278 (1. 8386) 

PE(B ) w
4 

5.8083 (6 .1958) 

TABLE 7.2 

SUCCESSIVE PARAMETERS OBTAINED BY ALGORITHM 6.4 

AND STOPPING PROCEDURE III 
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PROBLEM 3 

h -1 20 40 60 

n1 5 6 7 

cycles 1 1 1 
w1 1.6237 1.7228 1.7690 

PE(Bw ) 2.7268 3.6563 4.3683 
1 

n 2 8 10 12 
cycles 1 1 1 

w2 1. 7845 1. 8791 1.9068 

PE (Bw ) 5.1868 8.5747 11.1830 
2 

n3 8 11 14 
cycles 1 - 2 2 

w3 1. 7403(1. 7652) 1.8732(1.8756) 1.9190(1.9163) 

PE(Bw ) 5.2454(5.3763) 10.'3795 (10. 3200) 15.3582(15.2207) 
3 

PROBLEM 4 

n1 5 6 7 
cycles 1 1 1 

w
1 1.6231 1. 7225 1. 7688 

PE(B ) w1 
2.7062 3.6410 4.3556 

n2 8 10 11 

cycles 1 1 1 
w2 1. 7784 1.8748 1.9039 

PE(Bw ) 4.9342 8.1558 10.6306 
2 

n3 8 11 14 
cycles 1 1 2 

w3 1.7426 (1. 7624) 1.8728 1.9173(1.9143) 

PE(B ) 
w3 

5.1690(5.2301) 10.0737 14.8158(14.7929) 

n4 11 
cycles 1 

w4 1. 8749 (1. 8748) 

PE(B ) w4 
10.1030(10.0200) 

TABLE 7.2 (CONTINUED) 
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PROBLEM 5 

h- l 20 40 60 

n l 6 7 7 

cycles 1 1 1 

wl 1.5642 1.6766 1.7294 

PE(B ) 2.9198 
wl 

3.9643 4.7608 

n2 
8 11 12 

cycles 1 1 1 

w
l 

1. 7669 1.8692 1.8871 

PE(B ) 5.6765 9.8403 11.4930 
w2 

n3 8 12 14 

cycles 1 1 1 

w3 1.7593(1. 7479) 1.8699 1.9157 

PE(B ) 
w3 

5.7465(5.8173) 11.1733 16.3066 

n
4 12 14 

cycles 1 1 

w
4 

1.8738(1.8665) 1. 9142 (1. 9093) 

PE(B ) w4 
11.1942(11.1732) 16.6335(16.5289) 

PROBLEM 6 

n l 5 7 8 

cycles 3 2 2 

wl 1.6065 (1.6097) 1.6817 1. 7178 

PE (B ) 2.5415(2.5221) 4.1905 5.3461 
wl 

n 2 7 9 

cycles 1 2 

w2 1.7700(1.7820) 1. 8438(1. 8490) 

PE (B ) w2 
4.3481(4.4543) 6.4037(6.4020) 

TABLE 7.2 (CONTINUED) 
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that the bound e of S(LU) is less than or equal to 1/4 (see Table 4.1). 

On the other hand, for problems 3,4 and 5 the adaptive algorithm performed 

better than the estimated-parameter PJ-SI method. It is characteristic 

that in each of the problems 3-5 we either have a~1/4 or the coefficients A 

or C do not belong to class C(2). 

Finally, we note that stopping Procedure III used in the adaptive 

algorithm was derived in Section 4.3 assuming that w is fixed, hence we 

rely on the fact that P(B ) is a continuous function of w for Algorithm 6.4 w 

to yield acceptable results. 



CHAPTER 7 

ALTERNATING DIRECTION PRECONDITIONING TECHNIQUES 

FOR THE NUMERICAL SOLUTION OF THE ELLIPTIC SELF-ADJOINT 

SECOND ORDER AND BIHARMONIC EQUATIONS 
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7.1 INTRODUCTION 

In Section 4.2 we exhibited a general idea of how one should proceed 

using the preconditioning technqiues in order to construct various iterative 

schemes for the solution of Au=b associated with the splitting of the 

coefficient matrix A. A result of this (when the matrix A had the splitting 

I-L-U)was to see the strong need for reconsidering the known iterative schemes 

such as to be consistent with the preconditioning approach. We therefore 

were able to produce new iterative methods (EGS, ESOR and PSD) which proved 

to be more effective than their known unextrapolated counterparts (GS, SOR 

and SSOR). 

In this chapter we will attempt to follow a similar strategy (as the 

one in Chapter 4) by assuming a different well known splitting of A, the one 

on which the Alternating Direction Implicit (ADI) methods have been based 

(see Peaceman and Rachford [1955], Douglas [1955], Douglas and Rachford [1956]). 

The ADI methods are somewhat similar to single line iterative methods 

with alternating directions. In order to see the ADI schemes as preconditioned 

methods we define the splitting of A by considering the discrete analogue of 

the self-adjoint partial differential equation 

aax(A(X,y) ;~) + aay(C(X,y) ;~) + F(x,y)U = G 

where A,C,F and G are such that A>O, C>O and F~O for all (x,y)ER and R 

is the region under consideration. The five point finite difference 

analogue of (1.1) using a uniform mesh size h is given by 

2 
HO[U] (x,y)+VO[u] (X,y)+EO[U] (x,y) = -h G 

where 
HO[U](X'y) = [A(x+!h,y)+A(x-!h,y)]u(x,y) 

-A(x+!h,y)u(x+h,y)-A(x-!h,y)u(x-h,y) 

VO[u](x,y) = [C(x,y+!h)+C(x,y-!h)]u(x,y) 

-C(x,y+!h)u(x,y+h)-C(x,y-!h)u(x,y-h) 

2 EO[u](x,y) = -h F(x,y)u(x,y) 

From equation (1.1) we see that HO[u] (x,y) and VO[u] (x,y) correspond 

(1.1) 

(1. 2) 

(1.3) 

(1.4) 

(1.5) 
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2 a au 2 a au 
to the discrete analogues of the terms -h ax(A(x,y)ax) and -h a/C(x'Y)ay), 

respectively. Evidently, the difference equation (1.2) can be written in 

the matrix form 

Au = (HO+VO+EO)u = b 

where the matrices HO'Vo and EO correspond to the operators HO[uj,VO[uj 

and EO[uj, respectively. Moreover, by ordering the mesh points by rows, 

HO is tri-diagonal and Vo can be made so by permution of its rows and 

columns whereas E is a non-negative diagonal matrix. If we let 
o 

(1.6) 

Au = (H+V)u = b (1.7) 

where 
and (1.8) 

then it can be easily seen that (e.g. see Varga [1962j) H and V are real, 

symmetric, diagonally dominant matrices with positive diagonal entries and 

non-positive off-diagonal entries (see (1.3) and (1.4)). 

Once we have defined the splitting of A (see (1.7) and (1.8)) we 

let R, the conditioning matrix, have the following general form (which is 

similar to (4-2.4) when A had the form (4-2.10)) 

R = (I+rH)(I+r'V) (1.9) 

where r,r' are real preconditioning parameters. The iterative scheme 

associated with the conditioning matrix defined by (1.9) is given by 

(n+l) (n) -1 -1 (n) u = U + T (I+r'V) (I+rH) (b-Au ) (1.10) 

and will be referred to as the Modified Alternating Direction Preconditioning 

method (MADP method). We note that for the different values of the involved 

parameters in (1.10) we obtain the known ADI schemes presented in Table 1.1, 

where a and b are the minimum and maximum eigenvalues of the preconditioned 

-1 matrix R A, respectively, i.e., 
_ -1 -
a:>A(R A):;:b. 

From Table 1.1 we see that the ADI schemes can be regarded as "preconditioned 

methods" and as such the effectiveness of the conditioning matrix is not 

exploited in the DR-ADI and PR-AD I iterative methods since T does not take 
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its optimum value (see Section 4.2), whereas in the EADI scheme we have 

Tb=roptTO which indicates that the presence of r opt does not produce any 

effect on the rate of convergence and therefore can be omitted. Thus we can 

immediately state that the EADI method degenerates into the ADP method at the 

optimum stage. 

Preconditioning 
T 

Conditioning Iterative Method 
Parameters Matrix 

r r' 1 (I+rH) (I+r'V) Douglas-Rachford ADI(DR-ADI) 

r r' r+r' " Peaceman-Rachford ADI(PR-ADI) 

Extrapolated Alternating 

2r/(a+b) 
. Direction Implicit method 

r (I +rH) (I +rV) r (EADI method) (see Hadj idimos 
[1975]) 

Alternating Direction Pre-
r r 2/(a+b) " conditioning method (see Gane 

and Evans (1974)) (ADP method) 

TABLE 1.1 

Another question which emerges (see Section 4.3) is the study of the 

iterative scheme which is produced if we let r'=O in (1.10) i.e., the 

iterative scheme 
(n+1) (n) -1 (n) u = u + T (I+rH) (b-Au ). 

However, before we proceed any further, we impose some additional 

conditions on the matrices HO'VO which characterise the "commutative case" 

(see Birkhoff et al (1962)). In the remainder of this chapter we will 

assume that the matrices HO'VO and EO of (1.6) satisfy the conditions 

HOVO = VOHO 

EO = Cl I, where Cl is a nbn-negati ve constant 

HO and Vo are similar to non-negative diagonal 

matrices. 

(1.11) 

(1.12) 

If these conditions are satisfied, then 

HV = VH 1 [L"J 

and H and V are similar to non-negative diagonal matrices. 



Moreover, I+rH and I+rV are non-singular for any r>O whereas as 

observed by Birkhoff et al [1962], one can obtain matrices HO' Vo 

and EO satisfying (1.12) from partial differential equations of the form 

in the rectangle R:O~x~L J O~y~L J x Y 
where the functions El (x),E 2(x),Fl (y),F2(y) are assumed to be continuous 

and positive in R, and k~O. Evidently, (1.14) is a special case of (1.1) 

247 

(1.14) 

(1.15) 
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7.2 SOME CONSIDERATIONSON THE ITERATIVE SCHEME (1.11) 

Let us consider the solution of the partial differential equation (1.14) 

defined in the rectangular region R given by (1.15) and the boundary condition 

U(x,y) = g(x,y) , (x,y)EaR (2.1) 

where g(x,y) is a prescribed function on the boundary aR of R. A difference 

equation leading to matrices HO'VO and EO satisfying the properties given 

by (1.12) is obtained as follows: First, we impose a uniform grid of mesh 

size hand h in the x- and y-directions, respectively, such that x y 

La 
Na = ha a=x,y 

where N is an integer. Next, we use the difference equation 
a 

where 

and E6[u](x,y) = hXhyku(x,y). 

By using the natural ordering, the difference equation (2.2) can be 

written in the matrix form (1. 6) where HO' V 0 and EO correspond now to the 

operators HO[U]'Vo[u] and E6[u], respectively. 

As it was indicated earlier, we will continue our study on these 

preconditioned iterative schemes which are constructed by using the 

splitting (1.7) of A. As a first step in this section we will consider 

the iterative scheme (1.11) which from now on will be referred to as 

scheme (I). The motivation for the examination of scheme (I) can be 

justified by noting its similarity with the line ESOR method (see 

Chapter 5). Moreover, it would be desirable to obtain some information 

(2.2) 

(2.3) 

(2.4) 

(2,5) 
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about the effectiveness of the conditioning matrix 

R = l+rH 

as compared with the conditioning matrix given by (1.9) since the work 

involved in scheme (1) is considerably less than in the ADP method. 

An alternative form of scheme (r) is given by 

where 

and 

u(n+1) = Q u(n) + q 
T,r 

QT,r = I-T(I+rH)-lA 

-1 
q = T(l+rH) b. 

By Theorem 3-1.4 we note that scheme (1) is completely consistent if TfO. 

Moreover, we obtain a more computable form if we write (2.7) as 

(n+l) , (n) 
(l+rll)u = [1+(r-T)H-TV]u +Tb 

where we now have to solve a tri-diagonal system which can be easily 

solved (see Cuthill and Varga [1959]) since the right hand side vectors 

are all known. Evidently, the preconditioned matrix of the iterative 

scheme (I) is given by 

Br = (l+rH)-lA 

where it can be seen that the matrix Br is positive definite for all r~O. 

For convergence, we prove the following theorem. 

Theorem 2.1 

If the matrices H,V defined by (2.3),(2.4) and (1.8) satisfy the 

conditions (1.13) and if their eigenvalues ~,v respectively lie in the 

range 

then for rE[O,~) the iterative scheme (1) converges if and only if the 

parameters rand T take values from the intervals r and I , respectively 
r T 

defined as follOWS 

or 

1 _ [O,l/b] 
r 

and 

and 

I _ (O,r+l/b) 
T 

I _ (O,2(1+ra)/(a+b)). 
T 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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Proof 

From the hypotheses we have that H and V satisfy the conditions (1.13), 

hence there exist a set of linear independent vectors which are eigenvectors 

both of Hand V. 

Let v be any such vector and let 

Hv = \lv, Vv = vv , 

then the eigenva1ues of B will be given by the expression 
r 

)l+V 
A()l,v,r) = l+r)l • 

From (2.16) we see that if r~O, then 1.>0 and B is positive definite. 
r 

A sufficient and necessary condition for the iterative scheme (1) 

to converge is that the parameter T to lie in the range 

0<T<2/max{A()l,v,r)}. 
\l,V 

From the above inequalities we see that we have to determine the largest 

eigenvalue of Br with respect to )l,V and for r~O. We therefore study 

the behaviour of A()l,v,r) as a function of )l,v. 

Taking partial derivatives of A(\l,v,r) with respect to )l and v we 

obtain the following expressions 

. (al.) s1gn 3j; = sign(l-vr) 

and . (al.) s1gn av = +1. 

From (2.19) and for fixed r~O the continuous function A()l,v,r) is 

an increasing function of v. We therefore conclude that if v satisfies 

the inequalities (2.12), then 

max{A()l,v,r)}~ max{A()l,b,r)} 
)l 

and from (2.18) we easily obtain the following expression for the largest 

eigenvalue of B , 
r 

{

A(b,b,r). 
max{A(\l,v,r)} = 

A(a,b,r) , 

if O~r~l/b 

By combining now (2.17),(2.16) and (2.21) we can easily see that the 

proof of the theorem is complete. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 



For the determination of , and r such as the iterative scheme (1) 

attains its maximum rate of convergence we have first to select r to 

minimise the function p(a,b,r) where 

AM 
P(Br) = r- = p(a,b,r) 

m 

AM = max{A(~,v,r)}, Am = min{A(~,v,r)} 
~,v ~,v 

and secondly to calculate , from the expression 

Theorem 2.2 

2 
'0 = I"+A"" 

M_m 

Let H,V be the matrices defined by (2.3) ,(2.4) and (1.8) with 

eigenvalues ~,v, respectively such that 

O<a~ll,v~b. 

Then for any rE[O,~) the P-condition number of B is given by 
r 

P(B ) = 
r 

b(l+ra) , if O~r~l/b 
a(l+rb) 

a+b 
za 

l+rb 
l+ra 

, if l/b~r~l/a 

, if l/a~r<oo . 

Moreover, P(Br) is minimised if we let r take values from the interval lr 

where 

lr = [l/b,l/a] 

and its minimum value is given by 

Finally, if we let 

P (B ) = a+b 
r 2a 

, =, = 2(1+ra) 
o b+3a 

then the spectral radius of Q - attains its minimum value which is given 
T ,r 

by the expression 

) b-a 
S(Q, r = b+3a 

0' 
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(2.22) 

(2.23) 

(2.24 ) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 



Proof 

From the relationships (2.18) and (2.19) we also find that 

{

A(a,a,r), if O~r~l/a 
min{A(Il,v,r)}= 
Il,V A(b,a,r), if l/a~r<"'. 

By using (2.22),(2.23),(2.21) and (2.31) we determine the bound 

(2.26) for P(Br ). In order to find the value of r such that P(B ) 
r 

attains its minimum value we have to study the behaviour of the bound 

(2.26) as a function of r. From (2.26) and (2.22) by taking partial 

derivatives with respect to r we find that 

sign(a-b), if O~r~l/b 

o if l/b~r~ 1/ a 

which shows that the minimum value of P(B ) is given by (2.28) for all 
r 

rElr where Ir is defined by (2.27). Moreover, we have from (2.24) that 

for the value of T given by (2.29) the spectral radius of Q (see (2.8)) T,r 

is given by (2.30) since 

and the proof of the theorem is complete. 

A comparison of the effectiveness with respect to rates of 

convergence of the iterative scheme (I) when the involved parameters 

take the values which minimise S(Q ) is provided by the following T,r 

corollary. 

Corollary 2.3 
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(2.31) 

(2.32) 

Under the hypotheses of Theorem 2.2 the iterative scheme (I) has 

asymptotically the same rate of convergence with the SO method (see (3-2.31)). 

Proof 

From (2.30) we have 

S(Q ) 
TOr 

--,P ("",A)<---;;.l 
:;; ne P(A)+3 

(2.33) 
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where 
b 

peA) = -a (2.34) 

is the P-condition number of A. Evidently, by comparing R(Q )=-logS(Q ) 
TO,r TO,r 

and R(J?,.) 
Cl 

_ P(A)-l 
- P(A)+l (see (3-2.32)) when P(A»>1 we can clearly verify the 

validity of the corollary. 

From Corollary 2.3 we conclude that the conditioning matrix given by 

(2.6) does not improve the P-condition number of the original system hence 

the iterative scheme (1) is only of academic interest. Another observation 

is that the conditioning matrix R=l+rH is no better approximation to A than 
(1f

I
) 

the conditioning matrix R'=D (see Chapter 5). This can be regarded as 

an additional condition for the selection of the conditioning matrix (see 

Section 4.2). 

From the above analysis we can conjecture that if two conditioning 

matrices are different but possess the same structure (e.g. they are tri-

diagonal), then the associated iterative schemes which are produced using 

the preconditioning approach, will produce approximately the same rate of 

convergence for h+O. 
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7.3 THE MODIFIED ALTERNATING DIRECTION PRECONDITIONING METHOD (MADP METHOD) 

Next, we continue our study of the same problem, as defined in the 

previous section, by considering the MADP iterative scheme (see (1.10)). 

That is, for the solution of our problem we consider the conditioning matrix 

to possess the form 

(3.1) 

where r l ,r2 are real preconditioning parameters. 

Then, the MADP method is given by 

(n+l) (n) -1 -1 (n) u = u + T(I+r2V) (I+rlH) (b-Au ) (3.2) 

where again the matrices H and V satisfy the condition (1.13). From (3.1) 

we have that 

(3.3) 

which indicates that the effectiveness of R depends on the quantity r l r 2HV. 

If we now assume that r l =r2, then we can immediately verify that the 

conditioning matrix R'=I-w(L+U)+w2LU is a better approximate to the matrix 

A than the conditioning matrix R=I+r(H+V)+r2HV (an easy way of verifying 

this is if we consider the molecules of R',R and compare which one is a 

better approximate to the molecule of the matrix A). We can therefore 

predict that the PSD method will have a slightly better rate of convergence 

than the ADP method. This result has been confirmed numerically (see 

Gane [1974]p.209) for the Laplace equation in the unit square. 

Next, we see that the iterative scheme given by (3.2) is similar to 

the PSD method so we can either work with vector corrections and obtain a 

"computable" form similar to (4-9.2) or alternatively use a form similar 

to (A.IO) (see Appendix A) which will allow us to save some computational 

effort. Following the latter suggestion we can write (3.2) in the form 

and 
(3.4) 

where we observe that it is not necessary to recompute vu(n) in the second 



half iteration and therefore we can apply a scheme similar to (A.ll) (see 

Appendix A) to considerably reduce the computational work. 

An alternative form of the MADP method is given by 

+ t 

where 
-1 -1 

T = I-T(I+rZV) (I+rlll) A T,rl ,r2 

and -1 -1 
t = T(I+r2V) (I+rlH) b. 

Moreover, we note that the MADP method is completely consistent 

(see Theorem 3-1.4) if TiD and I+r
2
V, I+rlll are non-singular matrices. 

Evidently, the preconditioned matr~x of the MADP scheme is given by the 

expression -1 -1 
B = (I+r2V) (I+rlll) A r

l
,r

2 

and is positive definite for all rl,rZE(D,OO). 

Since now the matrices H and V satisfy the conditions (1.13) there 

exists a common basis of vectors for both matrices. From this observation 
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(3.5) 

(3.6) 

(3.7) 

(3.8) 

and (3.8) we can easily find that the P-condition number of B is given 
rl,rZ 

by the expression 

where 
A = M 

A = m 

A -

max 
JJ,V 

min 
JJ,v 

AM 
= X-­

m 

{A(IJ,v,rl ,r2)}, 

{A (IJ , v ,r 1 ,r Z) } , 

A(IJ,v,rl,rZ) = IJ+v 
(l+rlJl) (l+rZv) 

(3.9) 

(3.10) 

(3.11) 

and Jl,V are the eigenvalues of H,V, respectively which lie in the following 

ranges 
(3.12) 

In order now to maximise the rate of convergence of the MADP method we 

will seek to select r 1 and r Z to minimise P(B ) given by (3.9) and r
l
,r

2 
on the other hand, to determine the optimum value for T by the expression 

(3.13) 
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Finally, the MADP method converges for all rl,r2E(0,~) and ~(0,2/AM). 

We distinguish two cases in our analysis i) the eigenvalue ranges of 

H and V are the same and ii) the eigenvalue ranges of H and V are different. 

7.3.1 The case where the eigenvalue ranges of H and V are the same 

In this case we prove the following theorem; 

Theorem 3.1.1 

Let H,V be the matrices as defined in Section 7.2 with real eigenvalues 

Il,V, respectively such that 

O<a~ll,v~b. (3.1.1) 

Then, the P-condition number of B is given in Tables 3.1.1 and 3.1.3 r
l
,r

2 
for the different ranges of the preconditioning parameters rl,r2E(0,~). 

Moreover, P(B ) is minimised if we let r
l
,r

2 
(3.1.2) 

and its corresponding value is given by the expression 

P(Br , r') = (a+b)r'/2. , (3.1.3) 

On the other hand, of we also let 

• = '0 = 2r' (3.1.4) 

then, the spectral radius SeT ) attains its minimum value which is .,rl ,r2 
given by the expression 

S(T'o,r' ,r') = [:!:::r (3.1.5) 

Proof 

As it can be seen from (3.10) we have to examine the behaviour of A 

given by (3.11) as a function of Il,V. Therefore by taking partial 

derivatives of the continuous function A with respect to 11 and v we can 

easily obtain the following results 

. [aA) S1gn a)jJ = 

. [aA) 
sIgn avJ = 

(3.1.6) 



From (3.1.6) we see that for fixed r l ,r2>O neither of the expressions 

aA aA 
a~' av changes sign as ~ and v vary in the interval (3.1.1). We therefore 

conclude that the possible extreme values of A will occur at the points 
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(a,a), (a,b), (b,a), and (b,b) (see Guittet [1967] Lemma 1). On the other 

hand, the values of the function A at these points are the following 

A = A(a,a,r l ,r2), 

o = A(b,a,r l ,r2), 

B = A(a,b,rl,r Z) 

C = A(b,b,rl,rZ)' 

Evidently, from (3.1.7) and for fixed r l ,r2 we have that 

Am = min{A,B,C,O} and AM = max{A,B,C,O} 

which indicates that we have to examine the relations of the quantities 

given by (3.1.7). 

But we can easily obtain the following results 

sign(A-B) = sign(rZ-l/a) 

sign(B-C) = sign(rl-l/b) 

sign (A-O) = sign(rl-l/a) 

and sign(O-C) = sign(rZ-l/b). 

The above results suggest that for finding the order of the quantities 

A,B,C and 0 which will allow us to determine Am and AM from (3.1.8), we 

have to examine the relative positions of r l and r 2 with respect to the 

1 1 values a and b' We therefore have to distinguish nine cases which are 

presented in Table 3.1.1 together with the values of Am,AM and P(B ) 
rl,rZ 

for each case. 

From Table 3.1.1 we see that we have determined P(B ) thus we 
rl,rZ 

can now study its behaviour as a function of r l and r Z' By assuming that 

(3.1.7) 

(3.1.8) 

(3.1.9) 

r
l 

is kept fixed, then we obtain the results summarised in Table 3.l.Z for 

i=l, whereas if r Z is fixed, we have the same results where now i=Z. 



rI-Domain r 2-Domain A M Am 

O<r2::I/b C A 

O<rl::l/b l/bH2::I/a D A 

l/a::r 2 <"" D B 

O<r2::I/b B A 

l/b::rl~l/a l/b::r2::I/a max{B,D} min{A,C} 

1/a:>r I <00 

l/a~r2<"" D C 

O<r2::I/b B D 

l/b::r2:$I/a B C 
. 

1/a::r 2<oo . A C 

TABLE 3.1.1 

THE P-CONDITION NUMBER OF B r
l
,r

2 

P(B ) r l ,r2 

CIA 

D/A 

D/B 

B/A 

max{B,DVmin{A,C} 

D/C 

B/D 

B/C 

A/C 

r. -Domaint D . tt sign (ap (B ) /ar.) P(B ) r.- omaln 
1 J r l ,r2 1 r 1,r2 

O<r.:fI/b 
1 

l/b~r.::I/a 
1 

I/a::r. <00 
1 

t i =I,2 

tt j =U,2}_{i} 

O<r.:$I/b 
J 

sign(a-b) Decreasing 

l/b~r.~I/a 0 Stationary 
J 

I/a~r.<oo 
J 

sign (b-a) Increasing 

O<r.::I/b 
J 

sign(a-b) Decreasing 

l/b::r.::I/a - -
J 

I/a::r. <00 
J 

sign(b-a) Increasing 

O<r.::I/b 
J 

sign(a-b) Decreasing 

I/b"r .~l/a 0 Stationary 
J 

I/a"r.<oo 
J 

sign(b-a) Increasing 

TABLE 3.1. 2 
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From Table 3.1.2 we conclude that P(B ) attains its minimum value r
l
,r

2 
when r l and r 2 lie in the following range 

1/b::rl ,r2::l/a. 

But for this range of the preconditioning parameters, P(B ) is given r l ,r2 
by the expression (see Table 3.1.1) 

max{B,D} 
min{A,C} • 

(3.1.10) 

(3.1.11) 

The order of B,D and A,C when r 1,r2 lie in the range (3.1.10) is determined 

from the relationships 

and 

sign(B-D) = sign(rl -r2) 

sign(A-C) = sigh(rl r 2ab-1). 

Consequently, we have the following .expressions for AM and Am 

and 

Evidently, 

1 1 
r 1E [i)'ill • 

and 

\= r-B, 

r A = m 

C, 

the quantity ~ belongs 
rla 

Moreover, we note that 

1 1 1 -<--,:r <­b .. r ab" l"a J 

1 

if r 1::r2 

if r
1

>,r2 
. f 1 < 1 
1 i)::r2'r1

ab 

. f 1 < 1 
1 --b,r2:s-. r 1a a 

1 1 
to the interval [i)'ill for all 

From the inequalities (3.1.16) it follows that we have to consider 

six cases which emerge for the different values of r 2
E [1/b,1/al (see 

Table 3.1.3) by keeping r 1 fixed. The results which are obtained after 

the examination of these cases are summarised in Table 3.1.3. 

(3.1.12) 

(3.1.13) 

(3.1.14) 

(3.1.15) 

(3.1.16) 
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rI-Domain r 2-Domain "M " P (B ) sign (ap (B ) I ar 2) m r 1 ,r 2 r
1
,r2 

1/b~r2~r1 B A B/A sign(a-b) 

l/b~r 1~1/ (ab)! r1:::r2lO1/(r1ab) D A D/A 0 

1/(r1ab)~r2~1/a D C D/C sign(b-a) 

1/b~r2~l/(r1ab) B A B/A sign(a-b) 

1/(abAr1~1/a 1/(r1ab)"r2"r1 B C B/C 0 

r 1lOr 2,,1/a D C D/C sign(b-a) 

TABLE 3.1.3 

BEHAVIOUR OF P(B ) AS A FUNCTION OF r 2 r l ,r 2 . 

In Table 3.1.3 we present the expressions by which P(B ) is r
l
,r

2 
represented for the different values of r 1,rl[l/b,1/a] as well as the 

behaviour of P (B ) as a function of r 2' Our main conclusion from r 1,r
2 

Table 3.1.3 is that for fixed rl,P(B ) attains its minimum value for r 2 r 1 ,r2 
such that 

1 
max (r1 '--b) ] • r

1
a 

sign(b-a) 

which indicate that P(B ) is minimised when the preconditioning r
1
,r2 

parameter r 1 becomes equal to the quantity 

r = r' 
1 

1 =-
fah 

hence by (3.1.17) we have 

r 2 = r 1 

and from (3.1.18),(3.1.19) we see that (3.1.2) holds. 

(3.1.17) 

(3.1.18) 

(3.1.19) 
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In addition, from (3.1.14),(3.1.15),(3.1.7) and (3.11) we obtain the 

following expressions for the smallest and largest eigenva1ue of B, , r ,r 

AM = B = D = (a+b) lab 
(1ii+1b) 2 

and (3.1.20) 
A A = C 

2ab = = m (1ii+,Ij)) 2 

By combining (3.9) and (3.1. 20) we easily obtain the minimised value of 

the P-condition number of B, ,which is given by (3.1.3). Finally, from r ,r 

(3.13) and (3.1.20) we obtain the optimum value of T (see (3.1.4)). But 

for this optimum value TO of T the spectral radius of the iteration matrix 

is given by the formula 

P(B, ,)-1 
SeT ) - r ,r (3 1 21) 

b r' r' - P (B )+1 •• , , r',r' 

which if combined with (3.1.3) and (3.1.2) gives (3.1.5) and the proof of 

the theorem is complete. 

7.3.2 The case where the eigenva1ue ranges of H and V may be different 

In this case we prove the following theorem: 

Theorem 3.2.1 

Let H,V be the matrices as defined in Section 7.2 with eigenvalues 

U,V, respectively such that 

O<a~l-l~b and O<a~v~t3. 

Then, the P-condition number of B is minimised when the parameters r 1,r2 
r 1,r2 take the values 

where 

r * = =.1...:-l:::.:S:.:c=-!, 
1 -t+EqC!' 

r * = .=.1 +.:..:l::..:s:.:c:.,.!_ 
2 t+l:qc!' 

c = 

8 = 

1 

1+8+[8(2+8)]1 

2 (S-a) (b-a) 
(a+a) (b+S) 

(3.2.1) 

(3.2.2) 

(3.2.3) 

(3.2.4) 



Es = (8-a)-(b-a) 
(b+8)-(a+a)c 

Eq = (b+8)+(b-8)Es 
2 

t = (b-B)+(b+8)Es 
2 

and its corresponding value is given by 

P(Br * r*) = (c!+ C-!)/2. 
l' 2 

On the other hand, if we also let 

then the spectral radius of T attains its minimum value which is T,r1,r2 
given by the expression 

Proof 

Under the hypotheses of the theorem we have that u,v lie in the 

different ranges given by (3.2.1). Since we have solved the problem for 

the case where u,v lie in the same range (see Section 7.3.1), we attempt 

to find a technique of transforming our present problem so that we return 
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(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.2.8) 

(3.2.9) 

(3.2.10) 

to the previous case of the "single range". This will prevent us repeating 

the laborious procedure (see proof of Theorem 3.1.1) of the more complex 

problem in the present case. The technique for achieving this is quite 

well known and is due to Wachspress and Jordan (see Wachspress [1966], 

Young [1971]). 

We commence our analysis by noting that the function A defined by 

(3.11) can be written alternatively as 

where 

1 
and !Il2 = r 2 

(3.2.11) 

(3.2.12) 
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We see that by expressing A in the above form our interest is focused on 

the second term in the brackets. By adhering to the analysis of Wachspress 

and Jordan we seek to introduce new variables ~ and 0 such that 

, , 
p = t+qP 

l+s~ 
v = t'+q'v 

l+s'v 
(3.2.13) 

so that for some wl and ~2 we have 

(::::) [~:::) = (' , ) [' , ) p-W v-w 

~+w: 0+w: 
(3.2.14) 

and where p and v vary over the ranges 

(3.2.15) 

It can be shown that (for details see Young [1971] pp.511) by using 

certain conditions such that for (3.2.14) to hold, the relationships 

given by (3.2.13) become 
, , 

p = t+qp 
l+s~ 

v = -t+qv 
1-s0 

(3.2.16) 

In order to determine t,q,s,o and E we require that p=a corresponds to 

~=o, p=b corresponds to ~=E, v=~ corresponds to v=o and that ~=a corresponds 

to ~=E, hence we have 

a = t+qo b _ t+qE 
l+so ' - l+sE ' 

~ = -t+qo 
a = 

-t+qE 
I-so , I-sE . 

After some algebraic manipulation we obtain the relationship 

c+l/c = 2(1+6) 

where c = o/E 

(3.2.17) 

(3.2.18) 

(3.2.19) 

and 6 is given by (3.2.4). The quantities Es,Eq and t are also determined 

and are given by (3.2.5), (3.2.6) and (3.2.7), respectively. Therefore, 

we rewrite (3.2.16) to yield 

• 
p = 

t+ (Eq) (p/E) 

l+(Es) (~/E) 
and v = -t+(Eq)(v/E) 

1- (ES) (v/E) 

whereas by combining (3.2.13) and (3.2.14) we find 

(3.2.20) 



-t+ (Eq) (ol /E) 

1- (Es) (.7./E) 
and 

t+ (Eq) (w/E) 

1+ (Es) (~/E) 

At this stage we note that we have transformed our problem to be 

identical with the one discussed in the previous section, where now 

instead of ~,v we have the transformed variables ~,v, respectively 

possessing the same range given by (3.2.15). Evidently, from Theorem 

3.1.1 and the relationships (3.2.12), (3.2.15) we see that the optimum 

parameters wl and w2 for the transformed problem are 

.7.1 = w2 = (OE)!. 

Thus from (3.2.21),(3.2.22) and (3:2.19) we find that the optimum 

parameters for the given problem are- given by the following expressions 

! ,_.* _ -t+Eqc ,_.* = 
w - !' w 2 1 l-Esc 

Finally, from (3.2.12) and (3.2.23) we 

t+EqC! 

l+EsC! 

see that the optimum values 
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(3.2.21) 

(3.2.22) 

(3.2.23) 

for the preconditioning parameters are given by the expressions (3.2.2). 

It is a trivial matter now from the above analysis and using the 

relationships (3.1.3),(3.1.4),(3.1.5) to show the validity of (3.2.8), 

(3.2.9) and (3.2.10), respectively. Thus, the proof of the theorem is 

complete. 

Evidently, we can choose any positive value for R, e.g. R=l. 

As we have shown (see Theorems 3.1.1 and 3.2.1) in the case where 

A is given by 

A = H+V (3.2.24) 

then at the optimum stages the MADP method coincides with the Peaceman-

Rachford ADI method (see Birkhoff et a1 [1962], Young [1971], Wachspress 

[1963]) when all the iteration parameters are kept fixed during the 

iterations. However, the advantage of the MADP method over the PR-ADI 

comes when more accurate finite difference equations are used (e.g. the 

nine-point difference formula). 

It should be mentioned that similar results to Section 7.3.1 for the 



265 

case r 1=r2 and for the EADI method have been obtained by Guittet [1967] 

whereas for the same case but with the eigenva1ues of H and V lying in 

different ranges the optimum parameters have been found by Hadjidimos and 

Iordanidis [1974]. Moreover, for the ADP method (i.e. when r
1
=r2) Gane [1974] 

(see also Gane and Evans [1974]) found similar results to the ones given in 

Section 7.3.1. However, for the case where the eigenvalue ranges of the 

basic matrices involved are different, the optimum parameters were found 

(see Gane and Evans [1974]) under the assumption that O<a'~~,v~a', where 

a'=min(a,a), and a'=max(b,S). 



7.4 APPLICATION OF THE ACCELERATED PROCEDURES TO THE MADP METHOD 

In this section, we will briefly consider the application of the 

accelerated procedures developed in Chapter 3 to the Modified Alternating 

Direction method. In general, we will assume that rl~r2 and that the 

matrix A has the form (3.2.24) with H and V defined as in Section 7.2. 

The properties of the basic matrices H,V guarantee the effectiveness of 
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the acceleration techniques for the improvement (by an order of magnitude) 

in the rate of convergence of the MADP method since its iteration matrix 

(see (3.6)), will always have real eigenvalues. Furthermore, because of 

the similarity of the MADP and PSO. iterative schemes we will follow closeiy 

the formulation of the corresponding accelerated iterative schemes as 

developed in Sections 5.5, 5.6, 5.7 and 5.8. Thus, we define the semi-

iterative method based on MADP (denoted 

u(n+l) = (l-p )u(n+l) 
n+1 

by MADP-SI) by (see (5-5.15)) 

+ p leT u(n)+t)t 
n+ T,r1,r2 

where the second term in the brackets is the MADP method (see (3.5),(3.6) 

and (3.7)). The sequence of parameters is given by 

PI = 1 • 
2 -1 

P2 = [1- a2 ) , 

2 

Pn+1 = (l-
a 4Pn r1 n=2,3, ... 

where P (B )-1 r 1,r2 
a = S(TT,r ,r ) = ptB )+1 

12 r l ,r2 

By expanding (4.1) we obtain a more explicit form which is given by 

(4.1) 

(4.2) 

(4.3) 

(n+l) (n-l) (n) -1 -1 (n) u = (1-Pn+1)u +pn+1[u +T(I+r2V) (I+rlH) (b-Au )].(4.4) 

The virtual spectral radius of the iterative scheme (4.4) is given by (see 

(see 5-5.19) 

tIt is assumed that the parameters T.r1.r2 take their optimum vaZues. 



where 

= 

2rn/ 2 

n l+r 

Therefore. the rate of convergence is (see (5-5.24)) 

In a similar manner we define the MADP-Variable Extrapolation method 

(MADP-VE method) by (see (5-6.4)) 

(n+l) (n) 
u = u + 

where the iteration parameters Sn can be determined by the expression 

(see (5-6.5)) 

TO 
Sk = • k=1.2 ••..• m 

I _acos(2~~1)1T 

and a given by (4.3). 

An alternative form of the MADP-VE method is given by the following 

two level iterative scheme (see (3.4)) 

(I+r H)U(n+!) 
1 

= [I+(r -S )H)u(n)+s (b_Vu(n)) 
1 n+l n+l 

and (n+l) = u(n+!)+r
2
vu(n) • (I+r V)u 2 

The main advantage of the above scheme is that it is possible to 

apply the reduction scheme (A.ll) thus saving some computational effort. 

The second degree version of the ADP method has been introduced by 

Gane and Evans [1974). Here. we define in an analogous manner the MADP-

second degree method to be given by (see (5-7.6)) 

where 

'0 -1 
1 • if n=O 

2 • if n~l 
1+A._a2 

and a is given by (4.3). 
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(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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As we have seen (see Chapter 5) the MADP-VE and the MADP-second 

degree methods are strong alternatives to the MADP-SI since their rate 

of convergence tends to be approximately the same as the latter method. 

Finally, we can also define the Conjugate Gradient method with 

respect to the MADP scheme by (see (5-9.8)) 

(4.13) 

where 
( (n) _en)) 

Yn+1 = 
r ,s 

CS en) ,AS(n)) 
, 

~(n) s = (I+r
2
V)-1(I+r

1
H)-lr(n) 

[1 _ Y~+l ((n) (n)) l...r1 (4.14) 
Pn+1 = 

r ,r 
Yn (en-I) en-I)) Pn r ,r 

and (n) b_Au(n) . r = 



7.5 THE MODEL PROBLEM - COMPARISON OF RATES OF CONVERGENCE 

Let us now consider the generalised Dirichlet problem involving the 

Laplace's equation (see Section 4.13) and try to compare the effectiveness 

of the methods considered in this chapter with already known ones. 

Evidently, we have EO=O in (1.6), hence 

A = HO+VO = H+V , 

H = I e U and V = U e J 

where I is the unit matrix of order N-l and U is of the same order and 

given by 

2 -1 

-1 2 -1 

" " , , , 
" , " , 

"- " " " 
, 

U = , , " , 
" , , , , , , , " -1 2 -1 

-1 2 

The symbol a denotes the tensor product (see Halmos [1958]) and has 

already been used in connection with ADI methods (see Keast and Mitchell 
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(5.1) 

(5.2) 

(5.3) 

[1967]). In the above we have assumed a uniform mesh size h=l/N. For this 

problem we see that the conditions of the "commutative case" hold. 

Furthermore, if ~,v are the eigenvalues of B,V, respectively, then 

4 . 2 (irr) d 
~i = S1n 2N an v j - 4 . 2(12!:) ., - S1n 2N' 1~1,J~N-l. 

Hence, if a~~i~b and a~v.~S with l~i,j~N-l, then 
J 

2 7Th 
b = S = 4cos (:2). 

From (5.5) and Theorem 3.1.1 we have that for our problem the value 

of r' is given by 

r' = (ab) -1 = 1 

whereas the corresponding value of Br' r' becomes , 

P(B, ,) r ,r 
1 

= 2 r ' = ~=--""'"' sin (7Th) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 
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On the other hand, by letting '0=2r' we find that the spectral radius 

of T is given by the expression 
"rl ,r2 

= l-sin(rrh) 
l+sin(rrh) (5.8) 

which is identical with the spectral radius of the SOR method (see (4-13.14)). 

Since for this case we also have that the PR method is identical with the 

ADP (see discussion after the proof of Theorem 3.2.1) we obtain the 

following result 

S (T ,,) = S (L ). 
'O,r ,r "'b 

Consequently, for the model pr?blem and when H,V are defined asin 

Section 7.2 PR-ADI, SOR and MADP have identical rates of convergence 

at the optimum stage. It should be noted here that the above result has 

also been obtained by Gane [1974] for the ADP method. In addition, let 

us also examine the case where more accurate finite difference analogues 

(5.9) 

are used to approximate the Laplace's equation. In particular, we consieer 

the nine point difference formula, then the totality of the difference 

equations produced yields the following splitting of the coefficient matrix 

A = H+V-kHV (5.10) 

where k=1!6 and again H,V are the same matrices as defined in Section 7.2. 

By assuming the same conditioning matrix, we have that 

AM 
=~ (5.11) 

m 

where AM,Am are the maximum and minimum bounds of 

A = 
Il+v-kllv (5.12) 

respectively. Since now the inequalities 

(b-Il)v + (b-v)1l >- 0 

(Il-a)v + (v-a)1l ~ 0 

always hold, we can easily obtain the following result 

(5.13) 



By combining (5.13) and (5.12) we can bound A as follows 

(1-kb/2)~~A~(1-ka/2)~ 

where 

~ = jJ+V 

From (5.14) and (5.15) we see that the P-condition number of B r
l
,r2 

is minimised for these values of r
l
,r2 for which the ratio ~M/~m is 

minimised, where $M and $m are the largest and smallest bound of $, 

respectively. But this problem is identical with the one studied in 

Section 7.3. Thus using the results of Theorem 3.1.1 and (5.14) we have 

that if we let 
I 

lab 
then P (B ) is minimised and its corresponding value is given by k r l ,r2 

where 

Pk(B, ,) = k'P(B, ,) r ,r r ,r 

l-ka/2 
k' = l-kb/2 . 

Moreover, for 

2 (l+r'a) 
TO = a(1-kb/2) (l+k'P(B , )) r ,r 

the spectral radius is also minimised and given by the expression 

k'P(B )-1 r' rt 
Sk(TT r' r') = k'P(B ' )+1 

0' J r',r' 

Finally, the rate of convergence is given by 

2 
Rk(TT r' r') ~ k'P(B ) 

0' , r',r' 

where we can clearly see the effect of k. 

As can be seen in this case TOF2r' which means that the MADP method 

does not coincide with the PR-AD! process. On the other hand, since for 
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(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

the PR-ADI the parameter T does not take its optimum value (which is given 

by (5.19)) it follows that in this case MADP will have a slightly faster 

rate of convergence than the former method. 
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Let us now consider the application of the MADP-SI method for the 

solution of the present problem, then the rate of convergence is given by 

Rk (P (T • ,) - 2/Ik,p(B, .) 
,co n TO,r ,r r ,r 

thus for k=O we obtain 

R (P (T • .)) - 2/sin(1Th) - 21iih 
00 n TO,r ,r (5.22) 

for sufficiently small h. The above expression for the rate of convergence 

serves also as an approximate bound for the rate of convergence of the 

other accelerated techniques applied to the MADP method (MADP-SD, MADP-VE 

and MADP-CG). 
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7.6 NUMERICAL RESULTS 

For comparison reasons we consider again the Laplace equation 

a2u a2u -+-=0 (6.1) 
ax2 a/ 

in the unit square with zero boundary values. The starting vector u(O) 

with all its components equal to unity is used, whereas the convergence 

criterion is lIu(n) 11",~1O-6. For the solution of the above problem we 

approximated (6.1) by using the five and the nine point difference 

analogues (k=O and k=1/6). The so produced system was solved by applying 

the MADP method and also its accelerated versions MADP-VE, MADP-SI and 

MADP-CG as they have been developed previously. For the case k=O, the 

optimum value of r' was computed frQm (5.6) and '0=2r' whereas for k=1/6 

'0 was determined by (5.19). In Tables 6.1 and 6.2 we present the number 

of iterations required to solve the present problem with the iterative 

procedures mentioned above for the different mesh sizes h- l =20,30,40,60,80. 

Under the column headings nE we give the estimated number of iterations 

whereas under nO we have the observed number of iterations. The quantities 

P (B, ,),S(T ,,)'Pk(B,,) and Sk(T ,,) were computed from (5.7), r ,r to,r ,r r ,r LO,r r 

(5.8),(5.17) and (5.20), respectively whereas P(Br=o)=P(A)=b/a and 

Pk(Br=O)=k'p(A) where k' is given by (5.18). The selection of m in the 

MADP-VE method is similar to the one developed in Section 5.10 (see (10.29)). 

In this example we cannot see the advantage of using more accurate 

difference approximations because the theoretical solution of Au=O with A 

given by (5.10) is the zero solution for both k=O and k=1/6 which is the 

same with the theoretical solution of (6.1). 

Figure 6.1 shows graphs with logarithmic scales, of the observed 

-1 number of iterations versus h for the MADP, MADP-SI and for the MADP-CG 

methods for k=O and k=1/6. 

From Tables 6.1 and 6.2 we see that the number of iterations nE for 

the considered methods agree closely with the observed values nO' As a 



h-1 r' TO PCBr=O) P CB, ,) SCTT ' ,) 
MADP MADP-VE MADP-SI MADP-CG 

r ,r O,r ,r 
nE nO nE nO m nE nO nO 

20 3.1962 6.3925 81. 2238 6.3925 0.7295 44 46 20 24 5 18 19 15 
30 4.7834 9.5668 182.5449 9.5668 0.8107 66 69 30 29 6 22 23 19 
40 6.3727 12.7455 324.3945 12.7455 0.8545 88 91 35 34 7 26 27 22 
60 9.5537 19.1073 729.6792 19.1073 0.9005 132 137 40 40 8 32 34 26 
80 12.7357 25.4713 1297.0779 25.4713 0.9244 176 183 45 45 9 37 39 31 

TABLE 6.1 

NUMERICAL RESULTS FOR THE MADP METHOD WHEN k=O 

h-1 r' PkCBr=O) PlfB, ,) \CTT r' r') 
MADP MADP-VE MADP -SI MADP-CG 

TO r ,r 0' , nE nO nE nO m nE nO nO 

20 3.1962 6.7048 121.2127 9.5396 0.8102 66 50 30 29 6 22 23 17 
30 4.7834 9.8859 273.1932 14.3174 0.8694 99 75 35 34 7 27 28 21 
40 6.3727 13.0681 485.9673 19.0937 0.9005 132 100 40 40 8 32 32 24 
60 9.5537 19.4335 1093.8941 28.6446 0.9325 198 150 50 50 10 39 40 30 
80 12.7357 25.7993 1944.9919 38.1947 0.9490 264 200 55 55 11 45 46 34 

TABLE 6.2 

NUMERICAL RESULTS FOR THE MADP METHOD WHEN k=1/6 
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consequence of the agreement between the number of iterations predicted 

by the theory and the actual number, it follows that the MADP method is 

extremely effective. Furthermore, from Figure 6.1 we observe that the 

number of iterations of the MADP method varies approximately like O(h- l ), 

whereas for the other accelerated procedures like O(h-!). This also 

confirms the theory developed in the previous sections. Finally, by 

comparing the PSD and the MADP methods (see Tables 6.1 and 4-13.1) for 

the model problem with optimum parameters we verify our earlier conjecture 

that the former scheme should produce slightly better rates of convergence 

than the latter. On the other hand! by comparing the accelerated versions 

of the above basic methods we see that they have approximately the same 
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rates of convergence (see Table 6.1 and Table 5-10.3). It should be pointed 

out that the actual application of one complete iteration of the MADP 

iterative method requires more arithmetic work (even if the reduction 

scheme is applied) than the PSD and the SOR iterative methods which makes 

the former method less atrractive than the two latter methods. However, 

this should not obscure our final evaluation of the MADP methods since 

their real power is expected to be brought forth (as this is the case for 

the ADI methods) when a sequence of parameters {r.} is used instead of 
1 

the fixed preconditioning parameters r l and r 2• On the other hand, the 

commutative property HV=VH which is the basic condition to the theoretical 

development of the MADP method will restrict their application to partial 

differential equations of the form (1.14) where the region under consideration 

is rectangular. 



7.7 THE BIHARMONIC EQUATION 

In this section we will consider the application of the MADP method 

for the numerical solution of the biharmonic equation 

for (x,y)ER, where R is the rectangular region defined by (1.15). If 

f(x,y)=O the biharmonic equation (7.1) together with appropriate boundary 

condi tions governs the slow flow of a viscous fluid or the transverse 

displacement of the middle surface of a uniform elastic plate, where 

f(x,y) is the transverse loading on the plate. 

In particular, we consider the following boundary conditions in 

connection with the solution of (7.1) 

2U(X,y) = e(x,y) ) 

a U(x,y) = g(x,y) 

where e(x,y) and 
an 2 

g(x,y) are prescribed functions on the boundary aR of 

Rand :n is the normal derivative'to aR. By imposing a uniform grid of 

mesh sizes hx and hy in the x- and y-directions, respectively such that 

N a 
= La 

ha 
a=x,y 

where Na is an integer, then the application of the thirteen point 

finite difference analogue approximating (7.1) yields the difference 

equation 

where 

and 

A A A 2 2 
HO[u] (x,y)+VO[u] (x,y)+EO[u] (x,y) = hxhyf(x,y) 

= (~r [u(x+2hx,y)-4u(x+hx,y)+6u(x,y) 

-4u(x-h ,y)+u(x-2h ,y)], x x 

= [:x) 
2 

[u(x,y+2h )-4u(x,y+h )+6u(x,y) 
y y y 

-4u(x,y-h) +u (x,y-2\)] 
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(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 



. 
EO[u](x,y) = 2{u(x-h ,y-h )+u(x+h ,y-h )+u(x-h ,y+h ) 

x Y x Y x Y 

+u(x+hx,y+hy)~~(x-hx,y)+u(x+hx,y)+u(x,y+hy) 

+u(x,y-h )]+4u(x,y)}. 
y 

On the other hand, if we approximate the second normal derivatives 

such that (7.4) incorporates the boundary conditions, then by using the 

natural ordering of the grid points we arrive at a system of equations 

of the form 

.' . 
where the matrices HO'VO and EO correspond to the operators HO[U]'Vo[u] 

. 
and EO [uJ, respectively. More pre'cisely, using tensor products we have 

that the coefficient matrix has the·form 

A = (H+V)2 

where 

and 
2 -1 

-1 2 -1 , " , , , , 
, " " 
" " , , , , , ' , , , , 

'-1 '2 '-1 

-1 2 

v = U 8 I 
Y Y 

with a=x,y, bE{x,y}-{a} and la is the unit matrix of order Nb-I. It 

can be easily verified now that the matrices H,V are symmetric and 

commute, thus we can apply the MADP iterative method for the numerical 

solution of the matrix equation (7.8). 
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(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 
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7.8 THE MADP METIIOD FOR THE NUMERICAL SOLUTION OF THE BIHARMONIC EQUATION 

From (7.9) we have that the form of A can be given more explicitly 

as 
2 2 

A = H +Y +2HY 

which indicates that if we consider the conditioning matrix to have the 

form 

then by ·comparing (8.1) and (8.2) we see that R approximates the matrix 

·A reasonably well. Consequently, if we use the matrix R given by (8.2) 

as the conditioning matrix, then the MADP method is defined by 

u(n+l) = u(n) + T(I+r
2
y2)-1(I+r

l
H2)-1(b_AU(n)) 

where again we have that r l ,r2 and T are real parameters to be defined 

later. In order to compute the iterative scheme (8.3) we can either 

work with vector corrections or we can employ the following two-level 

form (similar to (3.4)) 

and 

where we see that it is not necessary to recompute y2u(n) in the second 

half iteration, hence we can apply a reduction scheme similar to (A.ll). 

Since now the matrix y2 is quindiagonal this technique results in the 

saving of a considerable amount of computational effort. 

From (8.3) we have that the iteration matrix is given by 

T T,rl ,r2 
whereas the preconditioned matrix 

2 -1 2 -1 
B = (I+r2Y) (I+rlH) A 
r 1 ,r 2 

is positive definite for all r l ,r2E(O,oo). 

Since Hand Y are pairwise commutative, we can easily find again 

that the eigenvalues of B are given by the expression r l ,r2 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 



where u,v denote the eigenvalues of H and V, respectively. 

Furthermore, it is known that the eigenvalues u and v are 

given by 

u = (h~hx)4Sin2(in/2Nx) for i=1,2, ... ,Nx-l 

v = (h /h )4sin
2

(jn/2N ) , for j=I,2, •.. ,N -1 x y y y 

and therefore they are bounded as follows 

O<a = (h /h )4sin2(~/2N )~u~(h /h )4cos 2(n/2N ) = b yX,.x yx x 

O<a = (h /h )4sin2(~/2N )~v~(h /h )4sin2(n/2N ) = S x y .y x y y 

The determination of the involved parameters r
l
,r2 such that the 

rate of convergence of the iterative scheme (8.4) is maximised are 

obtained for those values of r l and r 2 for which the P-condition number 

of B which is given by the expression r
l
,r2 

where 
AM = max A and 

u,v 
A = min A m 

is minimised, whereas the optimum value of T is again 

Next, we can proceed to develop a similar analysis for the 

determination of the above parameters as in Sections 7.3.1 and 7.3.2. 

7.8.1 The case where the eigenvalue ranges of H and V are the same 

In this case we prove the following theorem: 

Theorem 8.1.1 
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(8.7) 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

Let H,V be the matrices defined by (7.10) and (7.11) with eigenvalues 

u,v respectively such that 



Then P(B ) is given in Tables B.l.4 and 8.1.5 for the different r l ,r2 
ranges of the preconditioning parameters rl,r2E(0,~). 

Moreover, P(B ) is minimised if we let r l ,r2 

r l = r Z = r' = l/(ab) 

and its corresponding value is given by the expression 

P(~, ,) = (a+b)Zr'/4. r ,r 

On the other hand, if we also let 
. 

T = TO = Zr'/{l+l/P(B, ,)), r ,r 

then the spectral radius attains its minimum value which 

is given by the expression 

S(T~ r' r') = 
~O J J 

Proof 

Z (b-a) 
2 (a+b) +4ab 

We notice that (B.7) can be rewritten as 

where 2 Z 
g g(]J,y,rl,rZ) = ]J +Y 

-
(l+rl]Jz) (1+r2YZ) 

and h h(]J,y,rl,rZ) = Z]JY 
- Z Z 

(l+rl]J ) (1+r2Y ) 

Evidently, g,h>O for all rl,rzE(O,~) and ]J,Y lying in the range given 

by (8.1.1). 

From (8.1.6) we have that 

and similarly 

AM = max{g+h}::;max{g} +max{h} 
u,v u,v u,v 

A = min{g+h}>.min{g} +min{h}. 
m ]J,Y ]J,Y ]J,Y 

281 

(B.1.l) 

(B.1.2) 

(B.1.3) 

(B.1.4) 

(B.1.5) 

(B.1.6) 

(8.~.7) 

(8.1.8) 

(8.1.9) 

(8.1.10) 

The reason we expressed AM,Am by (8.1.9) and (8.1.10) is that in 

this way we have to study the behaviour of the functions g,h instead of 



the behaviour of A. But from (B.l.7) and (3.11) it fOllows that the 

behaviour of g can be summarised in Table B.l.l (which is similar to 

Table 3.1.1) 

rI-Domain rZ-Domain max{g} min{g} 

o<r2~1/bZ C' A' 

o<rl~l/b 
2 2 2 

lib :::rZO/a D' A' 

Z 
l/a :::rZ<oo D' B' 

O<r2:::l/b 2 B' A' 

2 2 
lib "rl:::l/a 

2 2 
lib :::rZ"l/a max{B' ,D'} min{A' ,C'} 

2 -.. 
l/a "r2<oo D' C' 

2 O<r2:::l/b - B' D' 

2 
l/a :::rl<oo 

Z Z 
lib :::r2:::l/a B' C' 

2 
l/a :::rZ<oo A' C' 

TABLE B .1.1 

where 
A' = g(a,a,rl ,r2) , B' = g(a,b,r

l
,r2) , 

C' = g(b,b,r
l
,r2) , D' = g(b,a,r l ,r2)· 

We therefore have to study only the behaviour of the simpler function 

h instead of A • 

By taking partial derivatives of h with respect to ~ and v we 

obtain the following results 

sign [~~) = 

and Sign[;~) = 

sign(1/~2 -r
l
) 

sign(1/v2-r2)· 

From the above relationships we see that for fixed r
l
,r2>O 

. h f h . ah ah h . d . h ne1t er 0 t e express10ns 3;' av c anges s1gn as ~ an v vary 1n t e 

interval (B.l.l). Consequently, the possible extreme values of h will 

occur at the points (a,a), (a,b), (b,a) and (b,b). On the other hand, 

ZBZ 

(B.1.11) 

(B.1.lZ) 
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if we let 

A = h(a,a,r l ,r2), B = h(a,b,rl ,r2), 

D = h(b,a,r
l
,r2), 

(8.1.13) 
G = h(b,b,rl ,r2) and 

then the order of the quantities A,B,G and D is determined by the 

following relationships 

and 

sign (A-B) = sign(D-C). = sign (r 2-1/ (ab)) 

sign(A-D) = sign(B-C) = sign(rl-l/(ab)). 

In view of (8.1.14) we construct Table 8.1.2 which presents the 

maximum and minimum values of h with respect to ~,v for the different 

values of r l and r 2 in the interval (o,~). 

rI-Domain r 2-Domain max{h} min{h} 

0<r2~1/(ab) C A 

O<rl::'l/(ab) 

1/(ab)::,r2<~ D B 

0<r2~1/(ab) B D 

l/(ab):;rl<~ 

1/(ab)::,r2<~ A G 

TABLE 8.1.2 

In order to form the function A (using the relationships (8.1.9) 

and (8.1.10)) we note from Table 8.1.2 that we have to examine further 

the relative positions of r l and r 2 with respect to the value l/(ab) 

(8.1.14) 

in the study of the function g(~,v,rl,r2)' As a first step towards this 

direction we extend the case where 1/b2srl~1/a2 in Table 8.1.1 by 

constructing (in a similar manner to Table 3.1.3) Table 8.1.3 which can 

be properly modified to yield Table 8.1.4. Further, by taking also into 

consideration the position of r 2 with respect to the point l/(ab) in the 

remaining cases in Table 8.1.1, we form Table 8.1.5. 
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rI-Domain max{g} min{g} 

B' A' 

0 ' A' 

0 ' C' 

B' A' 

B' C' 

0 ' C' 

TABLE 8.1.3 

, 
rI-Domain r

2
-Domain max{g} max{h} min{g} min{h} P (B ) 

r I ,r 2 

I 
B' C A' A (B I +C) I (A I +A) ~r2~rI 

b 

I 
rI~r2~ab 0 ' C A' A (0 I +C) I (A I +A) 

-LI 
2,rI~ab I I 0 ' 0 A' B (D'+D)/(A'+B) b ab.sr2~ 2 

r I (ab) 

1 I 0 ' 0 C' B (0 I +0) I (C I +B) 2"r2~2 
r

I 
(ab) a 

I I 
B' B A' 0 (B'+B)/(A'+D) :-¥r2~ 2 

b r
I 

(ab) 

I 1 
B' C' 0 (B'+B)/(C'+D) --rr2~ab B 

-.!....: « I r I (ab) 
ab,rI '2 

a I 
ab~r2~rI B' A C' C (B'+A)/(C'+C) 

I 
rI~r2~2 

a 
0 ' A C' C (D'+A)/(C'+C) 

TABLE 8.1.4 
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. 
rI-Domain r 2-Domain max{g} max{h} min{g} min{h} P(B ) r l ,r2 

1 C' C A' A (C'+C)/(A'+A) 0<r 21>-Z 
b 

1 1 D' C A' A (D'+C)/(A'+A) -,¥r2~ab 
1 b 

O<rl~-Z 
1 1 b D' D A' B (D'+D)/(A'+B) ab",r2~-Z 

a 

12<,r 2 <'" D' D B' B (D'+D)/(B'+B) 
a 

1 B' B D' D (B'+B)/(D'+D) 0<r2~-Z 
b 

1 1 B' B C' D (B'+B)/(C'+D) ~r2:::ab 
b 

1 1 1 --¥rl <'" 
b"r 2:s-Z B' A C' C (B'+A)/(C'+C) 

a a a 

1 
2~r2<oo A' A C' C (A' +A) / (C' +C) 
a 

TABLE 8.1.5 

In Tables 8.1.4 and 8.1.5 we present the expressions of P(B ) for r
l
,r2 

the interval (0,"'). the different values of r l and r 2 in 

If one studies the behaviour of 
apes ) 

r l ,r2 (assuming r
l 

is kept fixed) 
ar

2 

for all the cases in the latter two tables, then it can be easily verified 
. 

that the minimum value of P(B ) is attained if r l ,r2 

1 
r =-2 ab (8.1.15) 

Because of the symmetry of the problem we can work similarly for 

determining the optimum value of r l which obviously is identical with 

the value of r
2 

given by (8.1.15), hence (8.1.2) follows. From Table 

8.1.5 we have the following values for the smallest and largest eigenvalue 

of S, , r ,r 
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AM = D'+C = D'+D = B'+B = B'+A = ab 

and 4 (ab)2 
(8.1.16) 

A = A'+A = A'+B = C'+D = C'+C = m 2 
(a+b) 

. 
Thus from (8.1.16) and (8.10) we see that P(B, ,) is given by (8.1.3) r ,r 

while from (B.12) the optimum value for T is given by (8.1.4). But for 

this optimum value TO of T the spectral radius of the iteration matrix 

is given by the formula 
. 

• 
S(TT r' r') = 

0" P(S, ,)+1 r ,r 

P(B, ,)-1 r ,r 
(B.1.17) 

which by (8.1.3) gives (8.1.5) and' the proof of the theorem is complete. 

7.B.2 The case where the eigenvalue ranges of H and V may be different 

In this case we prove the following theorem: 

Theorem B.2.1 

Let H and V be the matrices defined by (7.10) and (7.11) with 

eigenvalues P,V, respectively such that 

and O<a:::v:::S (8.2.1) 
. 

Then the P-condition number of B is minimised if we let 
rl,r 2 

(B.2.2) 

where 

c = 1 (8.2.3) 
1+8+[8(2+8)]! 

2 2 2 2 
8 = 2(1l -a )(b -a ) (8.2.4) 

(a2+a2) (b2+S2) 
, 

Z 2 2 2 2 
Es = (a -ex )-(b -a ) (B.2.5) 2 2 2 2 

, 
(b +S )-(a +ex )c 

,. (b2+S2)+(b2_S2));,"s· 
Eq = 2 (8.2.6) 

t = 
(b2_S2)+(b2+S2)E~ 

2 
, 

(B.2.7) 



and its corresponding value is given by 
I 
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= (1+c 2 )2 

4cl 
(8.2.8) 

On the other hand, if we also let 

T = TO* = (r*1+r*2)/(1+1/P(B * *)), r l ,r2 

then the spectral 
.. 

radius SCT .,.* r*) 
''-1' 2 

attains its minimum value which is 

given by the expression 

Proof 

S(T~'* r* r*) = 
0' I' 2 

From the previous section is can be noticed that the value of 

the optimum parameters which minimise the P-condition number of the 

matrix B is identical with the one which minimises the ratio r l ,r2 
G = max{g} 

min{g} 

Indeed, we observe that the function g(u,v,r l ,r2) is obtained from the 

2 2 function ).(u,v,rl'r2) given by (3.11) with UN being replaced by U ,v , 

respectively. Consequently, from Theorem 3.1.1 we have that G is 

minimised if we let r l ,r2 take the values given by (8.1.2) since 

2 2 2 2 O<a ~U ,v ~b. On the other hand, the behaviour of P(B ) is not r
l
,r

2 
affected by the bilinear transformation (3.2.13), in the sense that 

it is the same between the original and the corresponding transformed 

(8.2.9) 

(8.2.10) 

(8.2.11) 

intervals. Thus, if we transform our problem (using a similar analysis 

to Section 7.3.2) so that we return to the previous case of the "single 

range", then the optimum values of the corresponding transformed parameters 

r l and r 2 will still remain the same as the ones which minimise the 

transformed ratio G. In order words our problem is identical with the 

one tackled in Section 7.3.2, the only difference being that instead of 

having u,v in (3.2.11) here we have u2,v2 . Thus, by adhering again to 

the analysis of Wachspress and Jordan we seek to introduce new variables 
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-2 -2 
11 ,11 such that 

2 t'+q,;;2 
11 = -2 (8.2.12) 

so that for some wl and w2 we have 

= 

where ~2 and v2 vary over the ranges 

2.2 2 
a ~lJ ~E , 

l+sll 

2·2 2 
a ~v ~E . 

By following the same analysis as i~ Section 7.3.2 we can show the 

validity of Theorem 8.2.1. 

By Theorem 8.1.1 we see that as the P-condition number of the 

preconditioned matrix B increases, then the optimum value of T r' ,r' 

tends to be equal to 2r'. In other words, for sufficiently small mesh 

size the Peaceman-Rachford ADI scheme for the numerical solution of 

(8.2.13) 

(8.2.14) 

the biharmonic equation (i.e. u(n+l)=u(n)+2r'(I+r,y2)-l(I+r'H2)-l(b_Au(n))) 

tends to attain the same rate of convergence as the MADP method. However, 

this will not be the case if more accurate difference analogues are used 

(e .• g. 25-point difference formula). 

It should be mentioned that similar results to Section 7.8.1 for 

the case where the eigenvalue ranges of I! and Y are the same, have been 

obtained by Gane (1974) whereas another approach for the same problem 

using the EADI method has been developed by ~radjidimos (1975). However, 

for the case where the eigenvalue ranges of the basic matrices involved 

are different, the optimum parameters were found (see Gane and Evans (1974)) 

under the assumption that O<a'~Il,v~S', where a'=min(a,a) and S'=max(b,S). 

In an analogous way to Section 7.4 we can easily define the accelerated 

procedures based on the iterative scheme (8.3) and obtain an order of 

magnitude improvement on the convergence rate. 



7.9 RATES OF CONVERGENCE ON THE UNIT SQUARE 

If we consider the solution of the biharmonic equation in the unit 

square with h =h =h, then by (B.9) we have x y 

b = a 

hence from Theorem B.l.l we obtain successively 

r' = 
1 

2 ' 4sin (lTh) 

. 
P (B, ,) r ,r 

and 1 

2 ITh 
= 4cos (T) 

TO = 2 2 
2sin (lTh) [l+sin (lTh)] 

Finally, the spectral radius is given by the expression 

l_sin2(lTh) 

1+sin2(lTh) 

thus the rate of convergence of the iterative scheme (8.3) is 

for sufficiently small h. 

If on the other hand, we use the 2S-point difference analogue to 

approximate the biharmonic equation, then the matrix A has the following 

splitting 

A = (H+V-kHV)2 

where k=1/6. Evidently, for k=O the iterative scheme (B.3) is fourth 

order correct in h, while for k=1/6 it is eighth order correct in h. 

By following a similar approach as in Section 7.5 we can find that the 

eigenvalues of B are given by the expression r l ,r2 

A = 

and can be bound as follows 

2 (jl+v-kjlv) 

2B9 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

(9.9) 



where 

q, = 

From the above we find again that if we let 

then P (B ) is minimised and its corresponding value is given by k r l ,r2 

where 

• A 

Pk(B, ,) = k"P(B, ,) r ,r r ,r 

k" = [
1-ka/212 
l-kb/2J • 

Moreover, from (8.1.16) and (9.9) we find that if we let 

TO = 2 2 ' 
2 (1-kb/2) [l+(k") P(S, ,)l r ,r 

the spectral radius is also minimised and given by the expression 

• k"P(S, ,)-1 
S (T ) = r ,r 

k TO,r' ,r' k"P(B )+1 
r' ,r' 

, 

therefore the rate of convergence is 

2 

k"P(B ) 
r' Jr' 

Finally, if we consider the application of the MADP-SI method for 

the solution of the present problem, then the rate of convergence is 

Rk (P (T ,,)) ~ 2/vk"p(s, ,) 
,co n TO,r,r r ,r 

which for k=O, (9.3),(9.12) and (9.13) give the result 
A 
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(9.10) 

(9.11) 

(9.12) 

(9.13) 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

R",cPn(TT r' r')) - 21Th (9.18) 
0' , 

for sufficiently small h. 
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7.10 NUMERICAL RESULTS 

In order to verify our theoretical results of the previous section we 

solved the biharmonic equation 

(x.y)ER. 

where the region R was the unit square. The boundary conditions were as 

given in Figure 10.1. By applying the l3"point difference analogue we 

approximated 10.1 and the produced system was solved with the MADP method 

as defined by (8.4) and the MADP-SI method defined by 

where 

and 

(n+l) 
u = 

y 

(0.1) 

U(x.y)=O 

(0.0) 

o = 

(1- )u (n+l) 
Pn+ l " 

+ P (T u (n) +t) 
n+l T r' r' O· • 

• 
P(B, ,)-1 r .r . 
P(B, ,)+1 r .r 

, n=2,3, ... 

U(x.y)=sin(1Tx) 

a2u(x ) 2. .::....:::.>.:'-!.;.Ly.L.,= 1T s 1 n ( 1T X ) 

ay2 

U(x.y)=sin(rrx)!err 

2 
a U(x.y) 1T2sin(1Tx)!err 

a/ 
FIGURE 10.1 

(1,1) 

U(x.y)=O 

x 
(1,0) 

(10.1) 

(10.2) 

(10.3) 
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As starting vector u(O) we used the vector with all its components 

equal to unity while for convergence the following criterion was required 

to be satisfied 

In Table 10.1 we present the number of iterations required to solve 

the present problem with the iterative procedures mentioned above for the 

different mesh sizes shown. Furthermore, Figure 10.2 shows graphs with 

logarithmic scales of the observed number of iterations versus h- l for the 

MADP and MADP-SI methods. 

. . 
h-l 

r' TO P(Br' r') S(TT r' r') MADP MADP-SI . , 0' , 

15 5.7834 11.0875 23.1335 0.9171 144 36 
20 10.2159 19.9437 40.8635 0.9522 256 50 
30 22.8808 45.2670 91.5231 0.9784 570 76 
40 40.6119 80.7269 162.4476 0.9878 1012 103 
50 63.4091 126.3202 253.6366 0.9921 - 129 

TABLE 10.1 

NUMERICAL RESULTS FOR THE BIHARMONIC EQUATION 

From Table 10.1 we see that for the different mesh sizes shown the 

optimum value of TO is close to 2r' which indicates that the rate of 

convergence of the MADP and the Peaceman-Rachford ADI method is approximately. 

the same for the biharmonic equation. This observation could have been made 

earlier, when we found the expression for the optimum value of TO (see (8.1.4)). 

On the other hand, Figure 10.2 verifies our expectations (see (9.6) and (9.18)) 

by showing that the number of iterations of the MADP method for the biharmonic 

equation (7.1) varies approximately like 0(h- 2), 'whereas for the MADP-SI 

method like O(h- l ). Finally, a further improvement (perhaps by an order of 

magnitude) on the rate of convergence can be achieved by considering a 

sequence of parameters {ri } (see Conte and Dames [1958] and Hadjidimos [1969]). 



Legend: 
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o ADP-SI 
o 

200 

OIl 
<= 
0 ..... 
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(1j 

I-< 
Cl) ... ..... 

.... 
0 

I-< 
Cl) 

11 g 
:z: 

20 

-1 h ,h mesh size 

FIGURE 10.2 

DETERMINATION OF RATE OF CONVERGENCE ATTAINED FOR THE BIliARMONIC 

EQUATION USING ADP AND ADP-SI METIIODS 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 
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Preconditioning techniques have been considered in the form of the 

"Preconditioned Simultaneous Displacement" (see Evans [1968]) and the 

"Alternating Direction Preconditioning" (see Gane and Evans [1974]) since 

their introduction. In this investigation we have shown that the pre­

conditioning techniques can be generalised in such a way so that all known 

iterative schemes are special cases of a wider class of iterative methods. 

On the other hand, it is hoped that they will also provide a practical test 

and a guide line for the formulation of perhaps more efficient iterative 

procedures in the future. In fact, this is achieved from the experience 

which one obtains by attempting to explain under the "preconditioning" 

approach their origins and to establish a priori criteria as far as the 

efficiency of the basic iterative processes is concerned. 

In this context we commenced our study by introducing in Chapter 4 new 

iterative schemes (the extrapolated versions of the GS and SOR) and also the 

related theory as well. For example, we have shown that the technique of 

extrapolating the GS method in order to obtain the SOR method can be 

regarded as a special case of a more general approach which yields an 

iterative scheme (ESOR method) with faster rate of convergence than the SOR. 

However, the rapidity on the rate of convergence of ESOR depends strongly 

upon the quantity ~ and therefore further research is needed in order to 

establish in what degree the required extra computational work affects the 

efficiency of the method as compared with SOR. 

In the remainder of Chapter 4 we considered the two classical methods 

of the "Preconditioning theory", namely the Preconditioned Jacobi and the 

Preconditioned Simultaneous Displacement in a different form which does 

not necessitate any transformation, thus resulting in a reduction of the 

involved computational work as compared with the form they were first 

introduced. 

The two aforementioned methods were studied in detail and their 

properties were clarified through the development of the theory concerning 
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their convergence and the choice of "good" values for the involved parameters. 

As a result of this investigation, we were able to determine a substantial 

improvement on the rate of convergence of the PSD method over SSOR which 

was .also confirmed by our numerical results. Furthermore, the alternative 

fork of the PSD method, presented in Appendix A, in combination with 
i 

Ni~thammerls scheme may be regarded as an alternative procedure to SOR (see 
I 
I 

Tables 4-13.1 and 4-13.2) for problems with a~1/4. It is conjectured that 

a~1/4 may also be a necessary condition for other problems where the 

coefficients do not belong in class C (2). However, further research is 

clearly needed towards this direction before any firm conclusions are drawn. 

In the last two sections of the same chapter we considered a more general 

form of the PSD method, namely the unsymmetric PSD method in combination 

with the red-black ordering. As a conclusion from this study we have that 

although the aforementioned method has an identical spectral radius with 

SOR at the optimum stage (with red-black ordering) it requires twice the 

computational work. Although the UPSD method was not proved to be an 

efficient method with red-black ordering it will be interesting to investigate 

the possibility of using it with the natural ordering. A final result of 

Chapter 4 was that the application of the PSD method with red-black ordering 

yielded a rate of convergence which differed by an order of magnitude from 

that using the natural ordering. We therefore conclude that the PSD method 

should always be used in connection with the natural ordering. 

In the first part of Chapter 5 we defined the line ESOR and the line 

PSD methods. Further, by adhering to the analysis of the point PSD method 

we were able to determine good estimates for the involved parameters in the 

LPSD in the sense that, at least for the model problem, the rate of 

convergence was approximately O(h). Also it was found that LPSD was 1:2 

times faster than the point PSD. This result characterises the SOR method 

as well. Further study showed that, as in the point methods, the LPSD 

method is approximately 2 times faster than the line SSOR method. These 



findings were also confirmed by our results obtained from numerical 

experiments. These results indicate that (see Table 5-4.1) although we 

do not have a monotonicity theorem for ~l' the LPSD method attains a 

convergence of about O(h) for subregions of the square. From the analysis 

and results of the LPSD method we conclude that this method possesses all 
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the features which characterise the line methods and therefore it should be 

preferred over LSSOR since it also requires approximately the same storage 

and computational work. 

In our attempt to further increase the rate of convergence of the PSD 

method, in the second part of Chapter 5 we consider various accelerating 

techniques which essentially prove !hat there exists a possibility of 

improving the rate of convergence of the PSD method by an order of magnitude. 

A principal result of this analysis is that if the coefficients A(x,y) and 

C(x,y) are in the.class C(2) in R+3R. then for h small we have 

S(LU) ~ 1/4 + O(h 2) 

which implies that the constant y-l appearing in (4-11.18) is bounded away 

from zero as h~. The above condition guarantees that one indeed obtains 

an order of magnitude improvement in the rate of convergence of the PJ-SI 

method as compared with the J-SI,PSD and the SOR methods. Applying semi-

iterative. techniques to the PSD method, when A is a positive definite L-

matrix, we proved that the PJ-SI method is asymptotically at least as good 

as the J-SI method. IIowever, this comparison was based on the number of 

iterations and did not take into account the fact that each PJ-SI iteration 

requires about twice as much work as each Jacobi iteration. From the analysis 

and results presented in Chapter 5 one concludes that the accelerated 

versions of the PSD method offer a substantial saving as compared with the 

SOR method for many problems. From these procedures, the PJ-SI and the 

PJ-VE are very promising for the following reasons. The former method 

achieves a fast rate of convergence but requires approximately twice as much 

work as the SOR whereas the latter yields approximately the same rate of 
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convergence but the amount of computational work is substantially reduced 

(approximately the same as SOR) with the application of Niethammer's scheme 

(see (A.17)). However, in order to avoid the instability which may occur 

by using the PJ-VE method one should follow the suggestions of Lebedev and 

Finogenov [1971] for the choice of the iteration parameters. 

In Chapter 6 we essentially considered the adaptive algorithms in order 

to further accelerate the PSD method. In conclusion we found that the PJ-SI 

method with either estimated or adaptively determined parameters yields 

faster rates of convergence· than the SOR method (although in terms of the 

work required, SOR may still be pr~ferable in certain cases). The analysis 

for the development of the adaptive algorithm based on the PJ-SI procedure 

can also be applied in conjunction with the PJ-VE method. Since for the 

latter method, there is a possibility of reducing the work involved, it 

would be interesting to develop an algorithm based on the PJ-VE method with 

Niethammer's scheme, which adaptively determines the involved parameters. 

Finally in Chapter 7, following the suggestions which emerge from the 

preconditioning techniques, we considered another known splitting of the 

matrix A, as used in the Alternating Direction Implicit methods and 

determined the Modified Alternating Direction Preconditioning method. As 

a first step, we assumed that all the involved parameters were fixed and 

we developed the analysis for determining their optimum values in the 

general case where the matrices H and V had different eigenvalue ranges. 

For the numerical solution of the partial differential equation of the form 

(7-1.14) we conclude that in the case of using the five point difference 

analogue, the MADP method becomes identical with the Peaceman-Rachford ADI 

method at the optimum stage. However, if more accurate difference formulae 

are employed, then the former method is different from the latter and is 

expected to yield a better rate of convergence. It is hoped that this will 

become apparent when one considers the application of a sequence of 

parameters {r.}. Finally, the MADP method for the biharmonic equation is 
1 
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different from the one presented by Conte and Dames [1958] and it is 

reasonable to assume that if we follow their analysis of determining a 

sequence of parameters {ri }, the MADP method will probably yield a slightly 

faster rate of convergence as well. 
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In this appendix, we compare the number of arithmetic operations 

required for various methods to solve the problem 

(A. 1) 

Since there is not a great difference between the time required to perform 

product and summation operations on present-day computers, we will consider 

product (multiplication and division) as well as summation (addition and 

subtraction) processes equally. 

We recall from (1-2.7) that the discretised form of (A.l) is 

u(x ,y) = SI (x ,y)u(x+h ,y) +S2 (x,y)u (x,y+h)+S3 (x,y)u(x-h ,y)+S4 (x,y)u(x,y-h) 

(A.2) 

where h h 

Sl(x,y) 
A(x+Z'Y) 

S2(x,y) 
cex,y+Z) 

= 
S(x,y) = S(x,y) 

h h (A.3) 

S3(x,y) 
A(X-Z'y) 

S4(x,y) 
c (x,y-2) 

= S(x,y) = S(x,y) 

and 

h h h h 
S(x,y) = A(x+Z,y)+A(x-z'Y)+C(x,y+Z)+C(x,y-Z) (A.4) 

We assume that the coefficients A and C for each mesh point are 

in storage and need only be computed once. As a first step we proceed 

to determine the number of operations necessary to compute one SOR 

iteration. For a particular point (x,y) we have the following SOR 

computation 

(n+ 1) ( ) u x,y 
(n+l) (n+l) = w[S3(x,y)u (x-h,y)+S4(x,y)u (x,y-h) 

+Sl(X,y)u(n) (x+h,Y)+S2(x,y)u(n) (x,y+h)]+(l-w)U(n) (x,y) • 

(A.5) 

In order to compute the S.'s in (A.5) we have that 
1 

4 divisions 
and 

3 additions 

are required as can be seen from (A.3) and (A.4). 



3lS 

Next, for a single point by applying SOR we have from (A.S) that 

6 multiplications 
and 

4 additions 

are required not counting the subtraction to form (l-w), since (l-w) can be 

computed once and stored rather than recomputed for each point. If now 

h=l/J, then one full SOR iteration traverses (J-l)x(J_l)NJ2 points and 

therefore requires l7J2 operations. 

Similarly working we will attempt to determine the number of operations 

needed to complete one PSD iteration. We recall from (4-9.2) that one full 

PSD iteration for a particular point (x,y) can be computed as 

and 

~(n+!)(x,y) = b/S(x,y)_u(n) (x,y)+Sl (x,y)u(n) (X+h,Y)+S2(X,y)u(n) (x,y+h) 

+S3(X,y)u(n) (x-h,y)+S4 (x,y)u(n) (x,y-h)+w[S3(x-h,y) ~(n+D (x-h,y) 

(A.6) 

~(n+l)(x,y) = ~(n+!)(X,y) +w[Sl(x,y)~(n+l)(X+h,Y)+S2(x,y)~(n+l)(x,y+h)1 
CA.7) 

(n+l) (n) (n+l) u (x,y) = u (x,y) +T~ (x,y) . (A.8) 

In order to compute ~(n+l)(x,y) for a single point we have from 

(A.6) that 

1 subtraction 

6 additions 

and 1 division 

7 multiplications 

are required. To compute S(x,y) and the S. '5 it is required 
1 

4 divisions 
and 

3 additions. 

Moreover, to compute (n+l) 
~ (x,y) we have from (A.7) that 

2 additions 
and 

3 multiplications 

are required, whereas for the computation of SI and S2 
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3 additions 
and 

2 divisions 

are needed. Finally, to compute u(n+1) we have from (A.B) that 

1 addition 
and 

1 multiplication 

is required. Thus one full PSD iteration of the form (A.6-A.B) requires 

(15+7+5+5+2)J2=34J2 operations which is exactly twice the number of operations 

of one SOR iteration and equal to the number of operations of one SSOR 

iteration. Referring to (5-5.14) after the PSD iteration has been completed 

~d 
1 addition 

2 multiplications 

are still required to obtain a PJ-SI iteration. Thus (34+3)J2=37J2 operations 

are needed to complete one PJ-SI iteration. 

Even though one PSD iteration requires twice the number of operations 

of ~ SQR iteration there is a way to reduce the computational work by 

providing storage space for an extra N-vector. This can be accomplished 

by following a technique which is due to Niethammer [1964]. 

First, let us consider the PSD method defined by 

Up to now we have seen a computable form of PSD in terms of vector 

corrections (see (4-9.2)). Next, we will present another form of PSD 

in terms of intermediate vector approximations similar to (3-2.33), 

(3-2.34) of SSOR. Let us consider the iterative process 

and 

u(n+!) = (l_T)u(n)+wLu(n+!)+(T_w)Lu(n)+T(Uu(n)+c) 

u(n+l) = u(n+!)+wUu(n+l)_wUu(n) , 
then we c~ readily see that it is ~ alternative form of the PSD method 

since by eliminating u(n+!) in (A. IQ) we obtain (A.9). 

Consequently, (A. IQ) is another form of PSD which does not use 

vector corrections as in (4-9.2) and is more familiar to us as this form 

(A.9) 

~.W) 

is similar to the other point methods. By expressing the PSD method using 
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(A. IQ) we exploit the fact that it is not necessary to recompute Uu(n) in 

the second half iteration and therefore this vector can be saved at each 

half iteration. 

From this observation we see that we can apply Niethammer's process in 

order to reduce the amount of work for each PSD iteration. This can be 

seen by explicitly exhibiting two full PSD iterations given by (A. IQ) as 

follows 

u(n+!) = (l_T)u(n)+wLu(n+!)+(T_w)Lu(n)+T(Uu(n)+c) 

save Uu(n) 

u(n+l) = u(n+!)+wuu(n+l)_wuu(n) 

(n+l) save Uu 

(n+3/2) (n+l) (n+3/2) (n+l) (n+l) u = (l-T)u +wLu + (T-w)Lu +T (Uu +c) 

u (n+2) (n+3/2) U (n+2) U (n+l) = u +w U -tu U 

(n+2) save Uu 

If we now consider one full PSD iteration without using the above 

reduction scheme, then from (A. IQ) we have 

and 

(A.U) 

(A.12) 

(n+l) (n+!) (n+l) (n+l) u (x,y) = u (x,y)+w[Sl(x,y)u (x+h,y)+SZ(x,y)u (x,y+h)] 

(n) (n) 
-w[Sl(x,y)u (x+h,y)+SZ(x,y)u (x,y+h)]. (A.13) 



Thus for a single point, from (A.12) we have 

10 multiplications 
and 

6 additions 

not counting the operations involved to form (l-T) and (T-W) since they 

can be computed once and stored. 

In addition, for the computation of (A.13) it is required 

and 

6 multiplications 

3 additions 

1 subtraction. 

Thus we immediately determine that one full PSD iteration of the 
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form (A.lO) requires (16+7)+ (1O+5)"J2=38J2 operations. Finally (38+3)J2=4lJ2 

operations are needed to complete one PJ-SI iteration. 

As we have seen using Niethammer's scheme with PSD it is not necessary 

to recompute Uu(n) in the second half iteration. It can be easily seen 

that this is a saving of 8 operations. Thus, for one PSD iteration and 

applying Niethammer's process it is required (38_8)J2=3OJ2 operations 

2 compared to l7J operations for SOR. Admittedly, this is but a modest 

saving. However the advantage comes when more iterations are computed with 

Niethammer's approach. Let us consider the PSD iteration given by (A. 10) 

then (see (A.ll)) 

Computing u(n+!) requires 2332 operations; by storing Uu(n) we 

save 8 operations in the next half-iteration. 

Computing u(n+l) requires (15_8)J2=7J2 operation~; by storing 

Uu(n+l) we save 8 operations in the next half-iteration. 

Computing u(n+3/2) requires (23_8)J 2=15J2 operations. 

C . (n+2) . 7J2 . b . U (n+2) omputlng u requlres operatlons; y storlng u 

we save 8 operations in the next half-iteration. 

Therefore we see that each PSD iteration past the first requires just 
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(IS+7)J2=22J2 operations, which is 2 SJ more than necessary for an SOR 

iteration. However, the first PSD iteration always requires (23+7)J2=30J2 

operations. 

In Table A.I we summarise the results obtained so far for h=l/J, where 

under the column headings A.6-A.8 we include the number of operations 

required for the computation of the PSD method given by (A.6), (A.7) and 

(A. 8) • 

Method 

SOR 

PSD 

SSORt 

PJ-SI 

SSOR-SI 

Number of Operations for n Iterations 

With Niethammer's Without Niethammer's 
Scheme Scheme 

- l7nJ 2 

(22 (n-l)+30)J 2 38nJ2 

(18(n-l)+26)J 2 34nJ2 

- 4lnJ 2 

- 39ni 

TABLE A.l 

OPERATION COUNT FOR SOR, PSD, SSOR, SSOR-SI 

AND PJ~SI WITH h=l/J 

A.6-A.8 

-
34nJ2 

-

37nJ2 

-

From Table A.I we observe that by expressing PSD in the form (A.lO) 

the amount of operations is increased (without Niethammer's scheme) as 

.compared with the number of operations required by the form (A.6)-(A.8). 

However, this form of PSD method enables us to apply Niethammer's approach 

and reduce the computational effort such as to be competitive with the work 

involved in SOR. Unfortunately, this is not the case for the PJ-SI method. 

This can be seen if we attempt to write (5-5.8) in a similar form to (A.lO). 

Indeed, if we write (5-5.8) in a two-level iterative form involving 

intermediate vector approximations, we may end up with the following iterative 

tSee Benokraitis [1974]. 
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scheme 

and (A. 14) 

where 
urn) = u(n-l)+p (u(n)_u(n-l)) 

n+l . (A. IS) 

If we eliminate u(n+!) in (A.14), we can readily see that (5-5.8) 

is obtained. On the other hand, the amount of computational work has now 

been increased considerably and even though we can apply Niethammer's scheme 

2 the number of operations for n iterations is greater than 41nJ. Thus it is 

preferable to use (5-5.14) combined with (4-9.2) and (4-9.3) for the 

computation of the PJ-SI method rather than using (A.14)-(A.15). This 

difficulty is expected to be present for the SD-PJ and PJ-CG iterative 

procedures since they possess similar form with the PJ-SI method. However, 

the advantage of the Neithammer's scheme can be exploited in the PJ-VE method 

since its form is similar to the PSD method (see (5-6.4)). We recall from 

Section 5.6 that the PJ-VE has been defined by 

which can be written alternatively as 

and 

(n+D 
u 

u(n+l) = u(n+!)+wUu(n+l)_wuu(n). 

(A. 16) 

(A.17) 

Consequently, it can be easily verified that if we apply Niethammer's 

scheme to (A.17), then the number of operations of the PJ-VE procedure is 

identical with the number of operations in the PSD method (see Table A.l). 
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In this appendix we show how one can determine the bound Son S(LU). 

By Theorem 2-3.1 we have that 

S (LU) :; IILUII "" (B .1) 

so we seek to determine the quantity lILulI • 
"" 

We note that equation (A.2) corresponds to the following computational 

stencil given in Figure B.l 
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The part of the stencil enclosed by dotted lines corresponds to the 

operators L and U. In order to see how LU operates on the function u(x,y) 

we consider two stages 

v(x,y) = Uu(x,y) 

and w(x,y) = Lv(x,y) = LUu(x,y). 

From (B.2) and Figure B.l we have 

v(x,y) = Il l (x,y)u(x+h,y)+1l2(x,y)u(x,y+h). 

(B.2) 

(B.3) 

(B.4) 
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But from (B.3) and (B.4) we obtain successively the result 

w(x,y) = a3(x,y)v(x-h,y)+a4(x,y)v(x,y-h) 

= a3(x,y) [SI(x-h,y)u(x,y)+S2(x-h,y)u(x-h,y+h)] 

+ a4 (x,y) [SI(x,y-h)u(x+h,y-h)+a2(x,y-h)u(x,y)] 

+ [a3(x,y)a2(x-h,y)]u(x-h,y+h)+[a4(x,y)a l (x,y-h)]u(x+h,y-h) 

Therefore, the operational st.encil for LU can be represented by 

Figure B.2 illustrating that LU operates only on values of u(x,y) at the 

diagonal points (x,y), (x-h,y+h) and (x+h,y-h). 
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Finally by (B.l),(B.5) and (2-3.7) we obtain the required bound a as 

follows 

S (LU) " 11 LUll = 
00 

= 
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In this appendix we present an important theorem which concerns the 

Chebyshev polynomials. 

Theorem C.l (Markhoff [1916], Flanders and Shortley [1950]) 

Let P (G) be a real polynomial of degree n in the matrix G such that the 
n 

set of all eigenvalues A of G satisfy the inequality 

a<A<b<1. 

Moreover, for each n~O, let Sn be the set of all real polynomials Qn(A) 

of degree n such that Qn(l)=l. 

minimises the quantity 

Then the polynomials P (A)ES which 
n n 

max Ip (A)I 
n 

a~A~b 

is unique and is given in terms of Chebyshev polynomials by 

= 

T (2A- (b+a)) 
n b-a 

T [b+a) 
n b-aJ 

where T (x) is the Chebyshev polynomial of degree n given by 
n 

T (x) = 
n 

-1 cos (ncos x) 

-1 cosh (ncosh x) 

1 r:;:- n /2-n 
Z[(x+/x--l) +(x+/x -1) ], n~O. 

(C .1) 

(C.2) 

(C .3) 

(C.4) 
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Definition 0.1 

A function f(x) is said to be unimodal on [a,b] if it decreases 

monotonically to its minimum, after which it increases monotonically 

(Zahradnik [1971]). 

Let us now consider the function 

{ 2 l-wa.+w S. 
pew) = m~ W(2-~)(1-~i)} = max{p(w,v(i))} 

i 
where 

(v (i) ,DBv (i)) 
a. = 

l. (vU) ,D}i)) 

Si = 
(v(i) ,DLUv(i)) 

(v (i) ,D}i)) 

for the given vector veil and the pair (ai,Si)' 

We seek to show that pew) is unimodal, that is, according to 

Definition 0.1, pew) decreases monotonically to its minimum P(wo) , after 

which it increases monotonically. 

From (D .1) we have that 

sign [fwp(W,V (i1) = sign(w2(2S.-a.)-2(1-w)) 
l. l. 

where a.<l. If we let w. denote the value of wE(O,2) such that 
l. l. 

w~(2Si-ai)-2(1-wi) = 0, 
(i) then we see that as w varies from 0 to w.,p(w,v ) decreases until 

l. 

w=w. and then increases as w varies from w. to 2. Thus each p(w,v(i)) 
l. l. 
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(0.1) 

(0.2) 

(0.3) 

(0.4) 

is unimodal for wE(O,2). It remains to show that P(w), defined by (D.l), 

first decreases when w<wO and then increases when w>wO' 

Let P(wo) be a relative minimum of P(w), where wO
E(O,2), then at 

least one curve p(w,v(i)) which passes through the point (wo,P(wo)) must 

not decrease for w>wo' otherwise P(wo) is not a relative minimum. The 

curve p(w,v(i)) increases as w varies from Wo to 2. If p(w.v(i)) is 

maximum in the interval [wO,2). then pew) increases for w>wO' If p(w,v(i)) 

is not maximum in the internal [wO,2), then there are other functions 
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p(w,v(i)) which pass through (wo,P(wo)) and are increasing in [~O,2). In 

any case, pew) is increasing for w>~o' 

Similarly, there exists at least one function p(w,v(k)) which passes 

through (~O,P(~o)) and is decreasing in (O,wO]' The curve p(w,v(k)) 

decreases as w varies from 0 until w=wo' If p(w,v(k)) is maximum in the 

interval (O,woJ, then pew) decreases in (O'~oJ. If p(w,v(k)) is not 

maximum in (O'~oJ, then there are other functions p(w.v(t)) which pass 

through (wo,P(wo)) and are decreasing in (O'~oJ. Thus pew) is decreasing 

in the interval (O,woJ and the relative minimum P(wO)=P(wO) is an absolute 

minimum. We therefore conclude that pew) is unimodal. 






