LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LiBRARY
AUTHOR
MissiRurs N
COPY NO. \so Yo LJ‘,/m
..................................................... 3 /
vOL NO. CLASS MARK
ARLCHIVES
COPY

FOR REFERENCE ONLY







PRECONDITIONED ITERATIVE METHODS FOR SOLVING

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

by

NIKOLAOS M. MISSIRLIS, B.Sc.

Submitted in partial fulfilment of the requirements
for the award of Doctor of Philosophy
of the Loughborough University of Technology

December, 1978

Supervisor: PROFESSOR D.J. EVANS, Ph.D.,D.Sc.

Department of Computer Studies

© by Nikolaos M. Missirlis.



Loughlsaroun’: Siniversity

of Telqu - ihrary

Date Ma.s_jq_ i

Class

A= IS0 ¥ by




DECLARATION

I declare that the following thesis is a record of
research work carried out by me, and that the thesis is
of my own composition. I also certify that neither this
thesis nor the original work contained therein has been

submitted to this or any other institution for a degree.

N.M. MISSIRLIS



. DEDICATED TO
My parents

MICHAEL and LEMONIA



ACKNOWLEDGEMENTS

I wish to express my deep gratitude and appreciation to my
supervisor, Professor D.J. Evans, Head of Department of Computer Studies,
for introducing me to this area of study as well as for his continuous
advice, keen interest and encouragement at every stage of my research

work.

I would also like to acknowledge the interest and the useful
suggestions of Professor A, Hadjidimos at University of Ioannina,

Greece, on various aspects of this thesis.

Furthermore, I wish to acknowledge the encouragement and the

useful scientific dialogues of my friend, Dr. C. Spyropoulos.

For access to the CDC 7600 computer and its facilities, I thank

the staff of the Computer Centre at Loughborough University.

My sincere thanks are extended to Miss Judith Briers for all her

help towards the completion of this thesis.

I would also like to express my thanks to Miss Mary Katsiyiamni

for her interest, help and continuous encouragement during these years.

Finally, I take this opportunity to express my grateful
acknowledgements and my deep appreciation to my parents, Michael and
Lemonia Missirlis for their unlimited interest, encouragement and help

throughout all the years of my studies.



TABLE OF CONTENTS

PAGE

CHAPTER 1: INTRODUCTION 1
1.1 Partial Differential Equations .. .. .. ¢e «2o o« .. 1

1.2 Discretisation of the Generalised Dirichlet

Problem.. .. .. 4i co 4h es 4t vt e 4e se e 4. B
CHAPTER 2: MATRIX PRELIMINARIES 10
2.1 Background of Matrix Theory .. .. .. «. .o 2o oo .. 11
2.2 Positive Definite Matrices .. .. .. .1 vv e oo .. 13
2,3 Vector and Matrix Norms .. .. .. .. .. oo o0 o4 .. 15
2.4 Convergence of Sequences of Matrices .. .. .. .. .. 18
2,5 Irreducibility and Weak Diagonal Dominance .. .. .. 19
2.6 Ordering Vectors and Consistently Ordered

MatriCeS vv vt 44 w4 4u 44 o 24 6e se sv we «a 23

2.7 PYOPeTty Ace vi vh sh de s ue ws s se ws oas oas w26

CHAPTER 3: STATIONARY AND NON-STATIONARY ITERATIVE METHODS 29
3.1 Introduction .. .. .. «. v vy ot s vr 4w ee el .. 30
3.2 Linear Stationary Iterative Methods .. .. .. .. .. 32
3.3 Convergence of Iterative Methods .. .. .. .. .. .. 37
3.4 Rate of Convergence P
3.5 Some Theorems on the Convergence .. .. .. «. «. .. 41
3.6 Comparison of Reciprocal Rates of Convergence .. .. 46
3.7 Semi-Iterative Methods.. .. .. «¢ v 4o oo o4 o0 .. 58
3.8 Variable Extrapolation Methods .. .. .. .o .0 o2 .. 62
3.9 Second Degree Methods .. .. .. .o v 40 o4 ve o .. 64
3.10 The Conjugate Gardient Method .. .. u. .. .o .. .. 66

CHAPTER 4: AN INTRODUCTION TO PRECONDITIONING TECHNIQUES : 72
4,1 Introduction .. .. i se ts tu en er oe we ws ae 2. 73

4.2 The.Preconditioning Technique for the Construction
of Iterative Methods .. .. .. .. .. v 4 o4 .. 76

4.3 On the Preconditioned Iterative Methods .. .. .. .. 80

4.3.1 Irreducible Matrices with Weak
Diagonal Dominance.. .. .. s +¢ ¢ +. 85



CHAPTER 5:

4.4
4.5
4.6
4.7

4.8
4,9

4.10
4,11
4.12
4.13
4.14
4,15

3.2 Positive Definite Matrices .. .. .. .. ..

4,
4.3.3 L-Matrices and Related Matrices
4.3.4 Consistently Ordered Matrices .. ..

The Preconditioned Jacobi Method (PJ Method) ..
Convergence of the PJ Method.,. .. .. .. .. .. ..
Determination of Good Bounds on A(Bw) and A(Bw)

Determination of S(ﬂ% ) and Wy e oe we o
1

Computational Results .. .. .. «v v oo o0 as os

The Preconditioned Simultaneous Displacement
Method (PSD Method).. .. .. «. +. ..

Convergence of the PSD Methed .. .. .. ..
Choice of T and for the PSD Method .. .. ..
Comparison of Reciprocal Rates of Convergence ..
Computational Results .. .. .. .. v0 o0 ov 4v o
The Unsymmetric PJ Method (UPJ Method) .. .. ..
The Unsymmetric PSD Method (UPSD Method)}.. .. ..

BLOCK PRECONDITIONED ITERATIVE METHODS ~ ACCELERATED

TECHNIQUES . _
Section A: BLOCK PRECONDITIONED ITERATIVE METHODS
5.1 Introduction .. .. .v cv tu 4t av o0 4o se e s
5.2 Group PSD Methods .. .. .. .. «v o0 o0 oo .
5.3 Comparison of Line and Point PSD Metheds.. .. ..
5.4 Computational Results .. .. .. et o0 oo v s
Section B: ACCELERATED TECHNIQUES
5.5 Preconditioned Jacobi-Semi Iterative Method
(PJ-SI Method) .. +4 0 40 +0 wa 4o os
5.6 Preconditioned Jacobi-Variable Extrapolation
Method (PJ-VE Method) .. .. .. .. «¢ .. ..
5.7 Second Degree-Preconditioned Jacobi Method
(SD-PJ Method) .. +v vv v v4 ar s o0 s
5.8 Generalised Conjugate Gradient Method..
5.9 Preconditioned Jacobi-Conjugate Gradient Method
(PJ-CG Method) .. «v w4 cv ve on 0s o0 ss
5.10 Comparisons and Computational Results.. ..

PAGE

86
88
90

. 109

111
113

. 118

. 124

. 127
. 128
. 129
. 135

137
147
150

153
154

. 154
. 159
. 162

165
170

170

. 178

179

. 182

. 184
. 186



PAGE

CHAPTER 6: THE ADAPTIVE ALGORITHM 196
6.1 IntI‘OdUCtiOIﬂ e e 8 s e Be s e sa s 4 e 2w A& &4 2w ww 197

6.2 Some Considerations for Choosing the Optimum
Parameters.. .. .¢ «v vu vv vr te ee s ee we w0 199

6.3 Stopping Procedures.. .. .. v o¢ vs ss oo os o .. 202
6.4 Computational Procedures and Numerical Results.. .. 205

6.5 The Theoretical Basis for the Adaptive
Determination of Parameters .. .. .. .. .. .. .. 211

6.6 The Adaptive Algorithm.. .. .. .. .. .. «. oo .. .. 221
6.7 Numerical Results .. 4. vv vi ov oe ve oo oo o0 s 230

CHAPTER 7: ALTERNATING DIRECTION PRECONDITIONING TECHNIQUES FOR THE
NUMERICAL SOLUTION OF THE ELLIPTIC SELF-ADJOINT SECOND
ORDER AND BIHARMONIC EQUATIONS 243

7.1 Introduction suv vv vv ve 2s s s es 1s e es sa oo 243

7.2 Some Considerations on the Iterative Scheme
(1-11) LN ] - " * & . ® a & A L ] - & LN . e LN ] - & - " - * 248

7.3 The Modified Alternating Direction Preconditioning
Method (MADP Method) .. .. vv v4v v4 o4 o0 oo .. 254

7.3.1 The Case Where the Eigenvalues of H
and V are the Same.., .. .. .. ..

7.3.2 The Case Where the Eigenvalue Ranges
of H and V May Be Different.. .. .. .. 261

7.4 Application of the Accelerated Procedures to the
MADP Method .. .v +v tv vy vu an 0s or 20 oa .. 266

7.5 The Model Problem - Comparison of Rates of
CONVEeTgence .. +vv ou w4 ae 25 o3 o0 20 20 ae o0 269

ve .. 256

7.6 Numerical Results .. .. v. c4 oo o4 as o0 20 20 o» 273
7.7 The Biharmonic Equation .. .. .. +v ¢4 44 oo o0 oo 277

7.8 Thé MADP Method for the Numerical Solution of
the Biharmonic Equation .. .. .. .. «. o v .. 279

7.8.1 The Case Where the Eigenvalue Ranges

of Hand V are the Same .. .. .+ .« .. 280
7.8.2 The Case Where the Eigenvalue Ranges

~of H and V May Be Different.. .. .. .. 286

7.9 Rates of Convergence on the Unit Square .. .. .. .. 287

7.10 Numerical ReSulEs .. «v oo oo oo o0 oo oo sa os o9 291

CHAPTER 8: SUMMARY AND CONCLUSIONS 294



PAGE

REFERENCES 300
APPENDIX A: ARITHMETIC OPERATION COUNT 313
APPENDIX B: DETERMINATION OF A BOUND ON S(LU) 321
APPENDIX C: CHEBYSHEV MINIMAX THEOREM 325

APPENDIX D: UNIMODULITY OF THE FUNCTION P (w) 327



CHAPTER 1

INTRODUCTION




1.1 PARTIAL DIFFERENTIAL EQUATIONS

The majority of the problems of physics and engineering fall into one
of three physical categories: equilibrium problems, eigenvalue problems and
propagation problems,

The eigenvalue problems may be thought of as extensions of equilibrium
problems where critical values of certain parameters are to be determined in
addition to the corresponding steady-state configuration. Thus the previous
physical classification may be reduced to the two major classes of equilibrium
and propagation problems.

These problems are usually regresented mathematically by a partial
differential equation (or a set of such equations), Such an equation is the

linear second-order partial differential

2 2 2
3°U . .0 2°U . U . _3U ~
Aaxz + 2B cay2 + D3z * Bgy + FU =G, (1.1)

where A,B,C,D,E,F and G are given functions which are continuous in some
region in the (x,y) plane.

A characteristic problem is the following: given a region R, finite
or infinite, with a boundary 3R, to find a fgnction U(x,y) which is twice
differentiable and satisfies (1.1) in R, which is continuous in R+3R and
satisfies prescribed conditions on 3R, For example, we might require that

U(x,y) = g(x,y) (1.2)

on 3R, or alternatively, the normal derivative %%-or a linear
combination of U and %gvbe specified on 5R. Equations of the form (1.1)
may be classified as elliptic, hyperbolic, or parabolic depending upon
the behaviour of the coefficients A,B and C. Thus equation (1.1) is said
to be

a) elliptic if B2-AC<O in R,

b) hyperbolic if B2-AC>0 in R,

and ¢} parabolic if BZ-AC=0 in R.

If the quantity BZ-AC changes sign in R, then the equation is said to be



of mixed type. For instance, the differential equation

is elliptic for x>0, hyperbolic for x<0 and parabolic for x=0. Equilibrium
or steady state problems are associated with the elliptic equations whereas
the governing equations for propagation problems are parabolic or hyperbolic,
Representative examples of such equations are:

(i) Poisson's equation

30,30 | gix,y) (elliptic). (1.3)

2 2
3 U )
. 9X ay
{(ii) The vibrating string equation
2 2
2—% - E—%—: 0 (hyperbolic). (1.5)
ax ay
iii) The diffusion equation
( q
2
3U A _y, (parabolic). (1.6)
ax2 3y

A problem in mathematical physics is called "well posed' if its
solution exists, is unique and varies continuously with the boundary data.
Let us consider the generalised Dirichlet problem involving a bounded
connected region R and a continuous function g(x,y) prescribed on 3R. The
function U(x,y) is required to be continuous in R+3R, to satisfy (1.1) in
R and to satisfy the condition (1.2) on the boundary 3R. Moreover, if
{1.1) is an elliptic equation and if F<0 in R, then the generalised
Dirichlet problem has a unique solution under fairly general conditions
(e.g. see Courant and Hilbert [1962]). A special case of the generalised
Dirichlet problem is that which involves Laplace's equation and is a very
classical problem in applied mathematics. This problem can be solved

analytically in certain special cases. Analytic solutions can be given for



the circle, rectangle and for the half plane {or for certain other regions
which can be transformed conveniently by conformal mapping into the
previously mentioned regions). However, it is not usually possible that an
analytic solution of a problem involving (1.1) can be found under arbitrarily
shaped regions and for general boundary conditions. Even if there was no
differential equation to be satisfied at all, it would not be easy to find a
function defined and continuous in R+3R which satisfies (1.2). Thus, one is
usually forced to use numerical methods.

Two standard general methods for the numerical solution of elliptic
partial differential equations are.the method of finite differences (e.g.
see Varga [1962], Forsythe and Wasow [1960], Wachspress [1966], Young and
Gregory [1973]) and the finite element method (e.g. see Zienkiewicz [1971],
George [1971], Strang [1972], Zlamal {[1968]).

Recently, the latter method has become a popular and effective procedure
(see Kim [1973]). The finite element method is essentially a technique to
construct a set of coordinate functions for the Ritz or the Galerkin method
(Collatz [1960]). In the finite element method the region R is partitioned
into a union of '"finite elements", of which commonly used elements are
triangles and rectangles. Next, a trial function is constructed with the
property that it is a polynomial (not greater degree than three) on each
finite element.

Alternatively, in the application of finite difference methods one
replaces the region R by a finite set of points Rh where RHER and also
replaces thelboundary dR by a set of points BRh, which may or may not belong

to R+3R. For each point P of R, we develop a linear relation involving the

h
value of U(x,y) at P and the values of U(x,y) at certain neighbouring points

of R, and at certain points of 3R If there are N points of R, one obtains

h h'

in this way a system of N linear algebraic equations with N unknowns, If

the system of linear equations can be solved uniquely, as is frequently the



case, then the values of U(x,y) at points of Rh are accepted as approximate
values of the true solution. Some useful methods for deriving finite
difference approximations are based on Taylor's series, integration and the

variational technique.



1.2 DISCRETISATION OF THE GENERALISED DIRICHLET PROBLEM

We now describe the procedure for discretising elliptic partial
differential equations and show how their solution by finite difference
methods often leads to linear systems whose matrices have some properties
of fundamental importance.

Let us consider the generalised Dirichlet problem as defined in the
previous section and assume that the coefficient B(x,y) in (1.1) of the
mixed derivative vanishes identically in R+3R (one can make a change of
independent variables so that the coefficient of the mixed derivative
vanishes). Thus, we have that U(x;yj satisfies the linear second-order

partial differential equation

2 2
AE_Q.+ cd U, pdl , g3 | FU = G 2.1
2 z* Vax T Eay
3x 9y

in R where A,C,D,E,F and G are analytic functions of the independent
variables x and y in R and satisfy the conditions A>0, C>0 and Fg0.
However, if we have

3A _
ax

€
ay
then instead of (2.1) we consider the self-adjoint differential equation

D and E, (2.2)

3 . 0U 9 U _
K(Aﬁ'} + 5;(05}“) + FU = G. (2.3)

Even if (2.1) is not self-adjoint, it may be possible to obtain a
self-adjoint equation by multiplying both sides of (2.1) by an

"integrating factor" u(x,y) so that we have

-.;;(uA) = uD, %(u‘('l) = uE. (2.4)

The function u(x,y) exists if and only if

A c
S| exr 3| 8y (2.5)
vy L A ax{C S :
We will be concerned with the differential equation (2.3} instead of

(2.1). If the condition (2.5) is satisfied, then the equation (2.1)

is called essentially self-adjoint,



In order to apply the method of finite differences, we superimpose a
mesh consisting of a network of horizontal and vertical linés over the
region R with a uniform spacing (although this is not necessary) of si:ze
h>0.

) we consider thé set . which contains all

0*Yo’. h
peints of the form (x0+ih, yo+jh) for i,j=0,%1,%¥2,... . Two points (x,y)

For a given point (x

and (x',y') of @ are adjacent if (x-x')2+(y-y')2=h2, whereas they are

h
properly adjacent if they are adjacent, both are in R+3R and the open

segment joining them, not necessarily including the end points, is in R.
Moreover, we define Rh=er% and BRH=QHWBR. A point P of Rh

the four adjacent mesh points in 2 lie in R+3R and are properly adjacent

is regular if

to P. In the sequel, we will assume that R and Qh are such that all points
of Rh are regular points.
Let us now consider the construction of a discrete representation of

the differential equation (2.3)}. For a point (x,y) of R, the self-adjoint

h
equation given by (2.3) is replaced by the symmetric difference equation
h 2 {A(x+4h,y) [u(x+h,y) -u(x,y) 1-A(x-4h,y) [u(x, ¥} -u(x-h,y)]
+C(x,y+4h) [u(x,y+h) -u(x,y) ]-C(x,y-4h} {u(x,y) -u(x,y-h) ]}

+F(x,y)u(x,y) = G(x,y). (2.6)

Thus we have transformed the continuous problem to a discrete generalised
Dirichlet problem. That is, we now seek to determine a function u(x,y)*

defined on RHWaRh such that (2.6} is satisfied on R_ and u(x,y)=g(x,¥y) on 3R

h h’

Multiplying (2.6) by —h2 we obtain the difference equation
u(x,y) = 8, (x,y)u(x+h,y)+8, (x,y)u(x,y+h}+8 ;(x,y)u{x-h,y)
+B4(X,Y)U(X,Y-h)+T(X,}’) (2-7)

where

TThe wunknoun function ulx,y) denotes the finite difference approximation to

the exact solution Ulx,y).



-

. A(x+ih,y) _ C(x,y+ih)
BI(X,Y) = ——§T§T;¥—, BZ(X,Y) = __§T¥:§T_’

_ A(x-th,y) - _ C(x,y-3h) (2.8)
Bs(X,Y) = —“§f§j;§“’ 84(X,Y) = __gfﬁj;j_’
T(x,y) = -th(x,y)jS(x,y) j

and

S(x,y) A(x+%h,y)+A(X-£h,y)+C(x,y+£hJ+C(x,y-ih)-h2F(x,y)- (2.9)

Therefore the problem of solving the discrete generalised Dirichlet
problem reduces to the solution of a system of linear algebraic equations

of the form
Au=b (2.10)

where there is one equation and one unknown for each of the N points of

R The row of the matrix corresponding to the point (x,y) has unity as

b
the diagonal element and Bi(x,y), i=1,2,3,4 in the column corresponding
to a point of Rh properly adjacent to (x,y). Terms of (2,7} which do

not involve values of u(x,y) on aRh are brought to the left-hand side of
the equation for the point (x,y), while the rest of the terms form the
elements of the right hand side vector b in (2,10). Evidently, the order

of the matrix A is N, the number of the mesh points in R The matrix A

.
in {2.10) is real and symmetric. 'Furthermore, it can be shown to be
positive definite+ and to have"Prqperty A", In addition to these properties,
it can be verified that A is an L-matrix, is irreducible and has weak
diagonal dominance.

If h is very small (as this is the case we will primarily be concerned
with), the problem of actually solving (2.10) may present serious practical
difficulties even though a unique solution is known to exist. In this case
the order of A is about 103 to 106 and on the other hand as we have seen A

is "sparse" i.e., has only a few non-zero elements as compared to the total

number of elements of A. These properties lead naturally (but not exclusively)

*Fbr definitions which are not given, see Chapter 2,



to use iterative techniques for solving such systems of equations since
they do not introduce new non-zero elements during the computation and
therefore the sparseness of A is preserved, As a result of this, the
problem of the accumulation of rounding errors is less serious than for
those methods, such as most direct methods, where the matrix A is

changed during the computation process,



CHAPTER 2

MATRIX PRELIMINARIES

10
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In this chapter we will present various definitions and theorems,
often without proof, from matrix theory which will be useful for reference
purposes for our study of iterative methods. We have presupposed a basic
knowledge of the general theory of matrices as presented, for instance, in
Faddeev and Faddeeva [1963], Bellman [1960], Householder [1964] and

Birkhoff and Maclane [1953].

2.1 BACKGROUND OF MATRIX THEORY

Definition 1.1

Given any two vectors v=(v1,vé;...,v T and w=(w1,w2,...,wN)T we define

N)

the inner product of v and w by

N
(v,w) = va = z vy, , (1.1)

Theorem 1.1
The linear system
Au=b (1.2)
has a unique solution if and only if A is non-singular.
If A is singular, then (1.2) either has no solution or else it has

an infinite number of solutions.

Theorem 1,2

If A is a square matrix of order N with eigenvalues Al,lz,...,lN,

then

Ai. (1.3)

Il 12

N
det(A) = 11_Ai, trace(A) =
i=1

i=1

Definition 1.2

If A is an NxN matrix, then the spectral radius of A is

S(A) = max [A| (1.4)
€S,

where SA is the set of all eigenvalues of A.
We will use the following two theorems from the Perron-Frobenious

theory of non-negative matrices.
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Theorem 1,3

If Ax|B|, then S(A)=S(B).

Theorem 1.4

If A0, then S(A)} is an eigenvalue of A and there exists a non-negative
eigenvéctor of A associated with S(A).

Next, we give a useful theorem for determining bounds on the eigenvalues

of any Hermitian matrix,

Theorem 1.5

If A is an Hermitian matrix and if A, and A, are the largest and the

1
smallest eigenvalues of A, respectively, then
] A ) arh
1 S e M 6§ M 6§
V#O ? (V sV )
(1.5)
R Y ) N (AN Al
8 T S 2 B () B ()
V#O g (V Vv )
where v(l) and v(N) are eigenvalues of A corresponding to ll and AN’
respectively.

i

/ ﬂ??fivti
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2.2 POSITIVE DEFINITE MATRICES

The property of a matrix being positive definite is essential in our

study, so from the many definitions we will use the following.

Definition 2.1

A matrix A is positive definite if A is Hermitian and
(v,Av)>0 (2.1)
for all v#0. If (v,Av)z0 for all v, then A is non-negative definite.
Evidently, one can give similar definitions for negative definite
and non-positive definite matrices.
Further, we state a theorem which is sometimes used as a definition

of positive (non-negative) definiteness,.

Theorem 2.1

A matrix A is positive definite (non-negative definite) if and only
if it is Hermitian and all of its eigenvalues are positive (non-negative).
A method for constructing a positive definite matrix is given by the

following theorem,

Theorem 2,2
For any matrix A the matrix AAH is Hermitian and non-negative
definite. If A is non-singular, then AAH is positive definite.
Furthermore, the existence of the positive definite 'square root"

of a positive definite matrix A is guaranteed from the following theorem,

Theorem 2.3
If A is a positive definite (non-negative definite)} matrix, then
there exists a unique positive definite (non-negative definite) matrix

}

B (denoted by A®) such that

B = A. (2.2)



L4

Definition 2.2

If there exists a non-singular matrix S such that
SHAS = B, (2.3)
we say that B is Hermitian congruent to A and that B is obtained from
A by a Hermitian-congruence transformation,
It is important to note that the property of a matrix being positive

definite is not affected by a congruence transformation.

Theorem 2.4

If A is a positive definite matrix and B is obtained from A by a
congruence transformation, then B is.also positive definite. Similarly
for non-negative, negative and non-positive definite matrices.
Proof

From Definition 2.2 we have

B = S'AS,

}

also by Theorem 2.3 we can let A® be the positife definite matrix whose
square is A, Thus, B=(SHAi)(SHAi)H and since AiS is non-singular, then
from Theorem 2.2 it follows that B is positive definite.

Theorem 2.4 can also be proved if we consider the quadratic form
of Bi.e.,

(x,Bx) =(x,5TASx) = (SX,ASX)>0

if x#0,
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2.3 VECTOR AND MATRIX NORMS

bDefinition 3.1

A vector norm ﬂ.na is a non-negative function on the space CN, the set
of all the vectors, with the following properties:
a) Hxﬂa>0, if x#£0

b) Uxll =0, if x=0

(3.1)
c) ﬂcx"a= |c|.ﬂxﬂa for any complex number ¢
d) Tx+yh stxl +Iyl, for all vectors x,yGCN (triangle inequality).
There is an infinite number of vector norms and to illustrate this fact
we consider the 2p-norms (H81der norms).
/N
v Z |xilp p=1,2,3,...
Ixp, =4 =1 (3.2)
P max |x; | p=>,
. i
i
Among these norms the £1~norm, Ez—norm and £ _-norm are the most familiar
and widely used
N
Ixll, = X |x. | (3.3}
1 jop &
/1 1%,
Ixl, = X. (3.4)
2 Vs b
Ixi, = max|x]. (3.5)
i

ﬁefinition 3.2

The matrix norm “'"B is a non-negative function on the space CNN,
the set of all the (NxN) matrices, with the following properties:
a) HAHB>O, if A#0
b Al =0, if A=0
) "B (3.6)

c) HCAHB=,CLHAH for any complex number c¢

d) HA+BHBSHAHB+HBHB.
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It can be shown that the quantities

N
Al = max } |ai i i=1,2,...,N (3.7)
ioj=1 *J
N
IAf, = max 'Z Iai,jl’ j=1,2,...,N (3.8)
j i=l :
1AL, = [s(a"n))? (3.9)
and 1Al = N maxlai,jl, i,j=1,2,...,N (3.10)

are all matrix norms.

Definition 3.3

Given a vector norm "'“a’ we define the induced matrix norm

Ilg, by
Bl) 1AVl

1Al = max .
SRR

(3.11)
It is interesting to note that (3.7),(3.8) and (3.9) can be proved to be
induced matrix norms corresponding to the vector norms §.I_, I.1, and

"'"2’ respectively. The main advantage in choosing the induced matrix

norm is that the inequality

1AVE_SIAR VI, (3.12)

is satisfied.

Definition 3.4

If the inequality (3.12) holds, then the vector norm "'“a and
the matrix norm "'"B are called consistent or compatible., Evidently,
any vector norm and the induced matrix norm are consistent.

If the matrix norm "'"B and the vector norm are consistent and if
for some veCN and v#£0 we have

lavl, = HAHBHVHa s (3.13)

then the matrix norm is subordinate to the vector norm. It is obvious
now that the induced matrix norm corresponding to a vector norm is

subordinate to that vector norm. Throughout ocur study, we will
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frequently use the vector norm "'"2 and the corresponding induced matrix
nerm given by (3.9). Also, when no confusion will arise we will omit
the norm suffices.

The following theorem provides a method for determining a good

bound on the spectral radius of a matrix.

Theorem 3.1
For any matrix norm "'“B we have
S(A)SHAHB. (3.14)
Proof
Suppose that A is an eigenvalﬁe of A and v is an associated eigen-
vector, then Av=Av and from Definition 3.2 we have
vl =HAvl <HAl vl .
o o B" a
Hence, by (3.1c} we obtain
AglAl .
Al <tal,
Since this inequality holds for every eigenvalue, the spectral radius

of A is bounded by every norm of A,

Definition 3.5

Given a matrix norm H.HB and any non-singular matrix S, then the
"g8,S-norm" of a matrix A is given by

AL, o = HSAS-IHB. (3.15)

Similarly, we define the "a,S-norm' of a vector v by

Hv"a = HSvﬂa. (3.16)

S
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2.4 (CONVERGENCE OF SEQUENCES OF MATRICES

Definition 4.1

M., (

A sequence of matrices A =(aing, A(2)=(a§2%),... converges to a
» »

matrix A=(ai j) if

. (n) .
1 S L) =a, .} i,i=1,2,...,N. 4,1
Lin (a7) = 3, 55 .3=1,2, (4.1)
Theorem 4.1
The sequence A(l),A(Z),... converges to a limit A if and only if

for every matrix norm "'"8’ we have

lim HA(n)-AHB =0. (4.2)

N

An important condition for the convergence of the sequence of powers of

a matrix is given by the following theorem.

Theorem 4.2

Given a matrix A, then 1lim A"=0 if and only if
N

S(A)<1. (4.3)

Theorem 4.3
The matrix I-A is non-singular and the series I+A+A2+... converges
if and only if S{A)<l. Moreover if S(A)<l, then

(-1 = Teara®e. .. = T At (4.4)
i=0
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2.5 IRREDUCIBILITY AND WEAX DIAGONAL DOMINANCE

As we will see in the next chapter, the matrices which are obtained
from the discretisation of certain partial differential equations (see
Chapter 1) belong to two important classes of matrices which are considered

in this section,

Definition 5.1

A matrix A=(ai j) of order N is irreducible if N=1 or if N>1 and given
?
any two non-empty disjoint subsets S and T of W, the set of the first N
positive integers, such that S+T=W, there exist i€S and j€T such that a; j#O.
3

Another theorem which may well be used as a definition of irreducibility

is the following.

Theorem 5.1
The matrix A=(ai j) is irreducible if and only if there does not exist
’
a permutation matrix P such that P lAP has the form
-1 F 0

PTIAP = . (5.1)
G H

where F and H are square matrices and where O is the null matrix,

The concept of irreducibility is quite important, for by Theorem
5.1 we cannot reduce the matrix system (1.2) to the solution of two
lower-order systems which preserve the correspondence between the
equations and the unknowns, and which can be solved independently of
the original system.

A useful method for verifying irreducibility in practice is given

by the following theorem.

Theorem 5,2
A matrix of order N is irreducible if and only if N=1 or, given

any two distinct integers i and j with 1gigN, 1gjsN, then a; j#O or

there exists 21,22,...,£r such that
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a, a ves @ £ 0. (5.2)
1,21 21,22 Er,J

Next, we illustrate the use of the geometrical interpretation of
" the concept of irreducibility by means of graphs. For a given matrix A
of order N we consider the distinct points PI’PZ""’PN and we construct

the directed graph of A by drawing an arrow from Pi to P, for each a; j#O,

H

Ts ?;i‘i:,‘:ﬂwe draw a small loop containing the point P,. The matrix is

irreducible if N=1 or else there exists a path of arrows from Pi to P2 R
1
. 22,...,P£ to Pj (connected graph). As an example, let us consider
T

the directed graph of a tri-diagonal matrix of order N

PE to P

21 % E ]
a1 %22 %23, 0
A= ‘\\ \\“ “\‘ (5.3)
0 a . ;‘" \\a
N-1,N-2 #N-1,N-1 ®N-1,N
| aN,N-1 *NLN

The directed graph is given in Figure 5.1 where we can readily see that

the graph is connected, thus the tri-diagonal matrices are irreducible.

P : ) : Pg ‘ PN-2 : PN-1 : PN

FIGURE 5.1

The other important class of matrices which also appears in the
numerical solution of certain partial differential equations are those

matrices which have diagonal dominance.
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Definition 5.2

A matrix A=(a. .) of order N has weak diagonal dominance if
1.|J N ’
la, 0 2T Hay ol i=1,2,...8 (5.4)

. (5.5)
j#i
From Thecrem 1.1 we see that when we consider the system (1.2),
it is vital to establish whether the matrix A is non-singular. Since in
our study it will be, in certain cases, quite difficult to use the
criterion of the determinant, we state an alternative criterion given by

the following fundamental theorem.

Theorem 5.3
If A is an irreducible matrix with weak diagonal dominance, then

det A#0 and none of the diagonal elements of A vanish.

Definition 5.3

If the inequality (5.5) holds for every i, then the matrix A has

strong diagonal dominance.

Corolliary 5.4

If the matrix A has strong diagonal dominance, then det A#0.

Next, we give a sufficient condition foran Hermitian matrix to be
positive definite using the properties of irreducibility and weak diagonal

dominance.

Theorem 5,5
If A is an Hermitian matrix with non-negative diagonal elements and
has weak diagonal dominance, then A is non-negative definite. If A is

also irreducible or non-singular, then A is positive definite,
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Proof

It is known that all the eigenvalues of an Hermitian matrix A are real.
Let us consider an eigenvalue A of A, then

det(A-AI) = O, (5.6)

If we now assume that X<0, then the matrix A-AI has strong diagonal
dominance, hence by Corollary 5.4, det(A-AI)#0 which contradicts (5.6).
Thus, all the eigenvalues of A are non-negative and by Theorem 2.1, A is
non-negative definite, If A is irreducible, then from Theorem 5.3 it
does not possess the eigenvalue A=0. Therefore, if we impose the condition
of irreducibility on A, then all it;-eigenvalueé are positive, hence by

Theorem 2.2, A is positive definite,
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2.6 ORDERING VECTORS AND CONSISTENTLY ORDERED MATRICES

Definition 6.1

Given a matrix A=(ai j) the integers i and j are associated with

L]

respect to A if ai,j#o or aj i#O.

]

Definition 6,2

T . .
The vector 7=(Yl,72,...,yN) , where YI’YZ""’YN are integers, is an
ordering vector for the matrix A of order N if for any pair of associated

integers i and j with i#j we have |yi—Yj|=1.

Definition 6.3

An ordering vector Y=(Y1’Y2""”N)T’ for the matrix A of order N, is
a compatible ordering vector for A if
a) Yi-yj=1 if i and j are associated and i>j

b) yi-yj=-1 if i and j are associated and i<j.

In the above definitions, we have established the concept of the ordering
vector and the compatible ordering vector for a given matrix A. Alternatively,
we will show that the existence of a compatible ordering or an ordering

vector characterises the class of matrices called 'consistently ordered"

or the wider class, those having "Property A'", respectively.

Definition 6.4

The matrix A of order N is consistently ordered if for some t there

‘ : t
exist disjoint subsets S,,5,,...,5  of W={1,2,...,N} such that ) 5,=W and
k=1

such that if i and j are associated, then j€S if j>i and jESk_1 if j<i,

k+1
where Sk is the subset containing i.
We now consider a matrix where the conditions of the above definition

are satisfied., Let the matrix A have the form

8y 3, O
A={0 a, O 6.1)
0 a a s

23 733
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if Sl={1}, SZ={2}’ 53={3},ZS4={0},-then we see that A is a consistently

ordered matrix by Definition 6.4.

The matrix (6.1) belongs to a more general class of matrices which

have the block tri-diagonal form

where Di are square diagonal matrices,

as a T-matrix.

F1

D% FZ\
\\‘

0 ~

Ene2 Dz Ty

Ffm'-l Dm -

(6.2)

We will refer to such matrix

A useful result concerning the T-matrices is given by the following

theorem.

Theorem 6.1

If A is a T-matrix, then A is consistently ordered.

If a matrix is not a T-matrix, then we use the concept of the

compatible vector in order to verify whether it is a consistently ordered

matrix.

Theorem 6.2

A matrix of order N is consistently cordered if and only if there

exists a compatible ordering vector.

If the matrix is consistently ordered, we can construct a compatible

ordering vector by letting Yi=k if iESk for i=1,2,...,N.

a compatible vector exists, we can construct t disjoint subsets SI’S

as follows. First
determine t=g-o+l,

Yi=a+k-1.

Furthermore, if

..,8

2 t

we find a=minh1,yz,...,YN}, B=maxf&,yz,...,YN} and we

Further,

we let S, be the set of all i such that

k



As an application of this case we can verify the correspondence
between the sets Sl={1}, 5,=12}, SS={3} and the compatible ordering

vector Y=(1,2,3)T for the matrix A given by (6.1).

25
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2.7 PROPERTY A

It is clear from Chapter 1 that we will consider matrices whose non-
zero elements form a certain pattern. In this section we will continue
to look at such matrices and we will define a wider class of matrices,

those having "Property A".

Definition 7.1

A matrix A=(ai j) of order N has Property A if there exist two
E]

disjoint subsets S1 and 82 of W and such that if i#j and if either a; j#O

= HE =
or aj’i#O, then i S1 and j S2 or el;e i 82

In Section 2.6, we have seen the necessity for the existence of a

and jESI.

compatible ordering vector for the matrix A to be consistently ordered.
Next, we state a theorem which provides a similar criterion for a matrix

to have Property A.

Theorem 7.1

There exists an ordering vector for a matrix A if and only if A
has Property A, Moreovef, if A is consistently ordered, then A has
Property A.

The next theorem can be regarded as an alternative definition of

Property A.

Theorem 7.2
A matrix A has Property A if and only if A is a diagonal matrix or
else there exists a permutation matrix P such that P AP has the form
) H

ap = |1 (7.1)

K D2

Av = p1

where Dy and D, are square diagonal matrices.

2

The following theorem presents a method for the construction of a

consistently ordered matrix which has Property A.
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Theorem 7.3

Let A be a matrix with Property A and let y be any ordering vector

1

for A. There exists a permutation matrix P such that A'=P AP is

consistently ordered and such that y'=(y ] } is a compatible ordering
o (1)

vector for A', where o is the permutation corresponding to P.

4

(3,3}

5((3) 4{5)

(4,2)

1) 2(2) 34

(0,0) (4,0) X
FIGURE 7.1

In order to illustrate the applicability of the above Theorem 7.3
we consider the five point discrete analogue of the Dirichlet problem
for the region shown in Figure 7.1 with mesh size h=1. The corresponding

matrix A can be readily seen to be the following

4 -1 0 0 -1
-1 4 -1 -1 0
A=|0 -1 4 O 0 (7.2)
o -1 0 4 -1
-1 0 0 -1 4

One can verify that y=(1,2,3,3,2)T is an ordering vector for A and
there does not exist a compatible vector for A. Furthermore, we have o=1,
=3 and t=3. It is easy now to construct Sk to be the set containing all
the i for which Yi=k, k=1,2,3. Thus we have Sl={1}, 82={2,5}, 83={3,4}
and the permutation is o(1)=1, o(2)=2, o(5}=3, o(3)=4, o(4)=5.

The corresponding permutation matrix is

(7.3)

o)

i
COQO+
OO0 ~=O
- 0000
COROQ
O, OO0
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and finally we find

[ 4 -1 .1 0 0)
-1 4 0 - -1
A' = pTAP = |1 0 -1 (7.4)
0 -1 0 4 0
| 0 -1 -1 0 4)

which is a consistently ordered matrix by Theorem 6.1.

Finally, the compatible ordering vector is given by Y'=(1,2,2,3,3)T.
It is evident now that we have to relabel the mesh points of our grid
along the diagonals., This has beeq indicated by relabelling the points
in parentheses in Figure 7.1,

A thorough discussion of irreduéibility, diagonal dominance,
consistently ordered matrices, Property A and their generalisations can
be found in Young [1971] and Varga {1962].

Finally, we give some additional definitions which will be used in

subsequent chapters and characterise other classes of matrices.

Definition 7.2

A real matrix A of order N is an L-matrix if
a, .>0, i=1,2,...,N (7.5)

and a. .50, igj, 1i,i=1,2,...,N. (7.6)

Definition 7.3

A real matrix A is a Stieltjes matrix if A is positive definite

and if (7.6) holds.

Definition 7.4

A real matrix A is an M-matrix if (7.6) holds, if A is non-singular

and if A_lao.
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LINEAR STATIONARY AND NON-STATIONARY

ITERATIVE METHODS

29



3.1 INTRODUCTION
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We have seen (Chapter 1} that the use of finite difference methods for

solving the generalised Dirichlet problem may lead to a linear system of

the form
Au=b

where A is a given NXN matrix and b is a given vector. The order of the
matrix equals the number of interior mesh points and may be so large that
it may be impractical to store the matrix even in a large computer or to

solve the system by direct methods. On the other hand, since the matrix

is sparse it is usually possible to store all of the non-zero elements

and apply various iterative methods.

Definition 1.1

The sequence of functions qO(A,b), ql(u(o);A,b), qz(u
qk(uco),u(l),...,u(kﬁl);A,b), where

W@ =g ),

u(n+l) = qn+1(u(0),u(1),...,u(n);A,b),

is said to be an iterative method.
We call the iterative method stationary if q 1is independent of n
n

for all n>m, where n,m are positive integers, otherwise it is non-

I u(n+1)=q(u(n-1)’u(n-Z),...’u(n-m);A’b), then the degree

© (D

of the method is m. Finally, if a, is a linear function of u‘ “, ,
NN

P

stationary.

, then the method is called linear, otherwise it is non-
linear. The form of a linear stationary iterative method of first

degree is
u(n+1) = Gu(n)+k.

Furthermore, it is desirable for any iterative method to satisfy
the following requirements:
a) If at any stage we obtain a solution of {1.1), then the
subsequent iterants remain unchanged (consistency).
b} If the sequence of vectors defined by (1.3) converges, then

it converges to a solution of (1.1) (reciprocally consistent}.

(1.1)

(0):u(1);A)b)s""

(1.2)

(1.3)
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The conditions under which the above restrictions hold, are given by the

following theorems.

Theorem 1,1
If A is non~singular, then the iterative process (1.3) is consistent
with (1.1) if and only if

k = (I-6)A lb. (1.4)

Theorem 1.2
If I-G is non-singular, then the method is reciprocally consistent

if and only if

b = ACI-G) k. (1.5)
I1f both our requirements are valid fhen the iterative method is completely
consistent with the system (1.1) in the sense that the only solution of the
related linear system | |

u=0u+k {(1.6)

is the solution u of (1.1).

Theorem 1.3

If A is non-singular, then the iterative method (1.3) is completely
consistent with (1.1) if and only if it is consistent and I-G is non-
singular, If I-G is non-singular, then complete consistency holds if
and only if the method (1.3) is reciprocally consistent and A is non-
singular,

Finally, a more general case is covered by the following theorem.

Theorem 1.4
The method (1.3) is completely consistent with {1.1) if and only if
a non-singular matrix Q exists such that

G = I-QA, k=Qb. (1.7)
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3.2 LINEAR STATIONARY ITERATIVE METHODS

In this section we will consider known linear stationary methods which
will be used later for comparison purposes. Let us seek the solution of
the linear system (1.1) where it is assumed that the diagonal elements of
A are non-zero. The matrix A can be expressed as the matrix sum
A=D- CL - CU {(2.1)

where D=diag A and C are respectively strictly lower and upper tri-

1%y
angular NxN matrices, whose entries are the negatives of the entries of

A below and above its main diagonal of A, respectively. We can rewrite

(1.1) by substituting A from (2.1) as follows

Du = (CL+CU)u‘+ b. (2.2)

Since the diagonal elements of A do not vanish, then D_1 exists, thus we

can replace the system (2.2) by the equivalent system

u=RBu+¢ (2.3)

where B=plc=1+ U, (2.4)

c=ply (2.5)

and L=pY ,u=bl (2.6)
L’ U .

with D =diag A, C =D - A, (2.7}

The Jacobi method (J method) can now be defined by commencing with

0)

an arbitrary vector u
W@ @

and then computing a sequence of vectors

,+.. from the relationship
u(n+1) = Bu(n) + C. (2.8)

An examination of this iterative method indicates the requirement

(n) (n+1)

to save the vector u while computing u The J method is

consistent with {1.1) since by Theorem 1.1 and the relationships (2.4),(2.5),

(2.7) we have

I-B = 1-pI¢ = D'l(D-C) = pla (2.9)

thus (1-B)a™ 1 = b = c. (2.10)

If I-B is a non-singular matrix, then from Theorem 1,2 the J method
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is completely consistent. Hence by (2.9) we require A to be a non-singular
matrix. The assumption of the existence of a unique solution and therefore,
by Theorem 2-1.1, the requirement of A being non-singular, is intuitively
connected with the concept of complete consistency. We will therefore
assume in the remainder of this thesis that A is non-singular (although we
may often recall this assumption for emphasis). A modified version of the
J method is the simultaneous overrelaxation method (JOR method) which is
defined with the introduction of a real parameter w by

u(n+1) = m(Bu(n)+c) + (l-w)u(n) (2.11)

r, uivalentl
or, equivalently u(n+1) - u(n) + w(Bu(n)+c—u(n)). (2.12)

A more compact form is given by

L) )

. + we (2.13)
where Bw = QB + (1-w)I. (2.14)
Evidently, I-3B, = T (2.15)
hence I-Bm is non-singular, if w#0.
Furthermore, by (2.14) we have
(I—Bw)A-lb = wc (2.16)

thus by Theorem 1.1 the JOR method is completely consistent with (1.1) for w#0.
If w=1, we see that the JOR method coincides with the J method. From
(2.12) we note that the JOR method can be regarded as a form of extrapolation
of the J method, at least when w>1., The role of the parameter w will be
considefed later in Section 3.6. Both the J and the JOR methods are
clearly independent of the order in which the mesh points are scanned,
since the arithmetic is not affected by the different orderings.

It would seem to be more attractive to use the latest estimates of

(n+1) (n)

the components of u as soon as they are available instead of u
in (2.8). This results in the following iterative scheme

u(n+1) = Lu(n+1) + Uu(n) + C. (2.17)
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By definition we have det(I-L)=1, therefore (I--L)_1 exists and we

can solve (2.17) for u(n+1) obtaining

O )y, (2.18)
where L= (1-1) 'y | (2.19)
and g = (1-1) " Le, (2.20)

The above iterative procedure is known as the Gauss-Seidel method
(GS method). If we now apply the same technique to extrapolate the GS
method as we did with the J method, then we can produce the following
iterative scheme which is known as the successive overrelaxation method
(SOR method) _

N e TTLLAR ST LD P L ) (2.21)

where w is a real parameter known as the relaxation factor. The matrix
I-wl, is non-singular, hence (I-mL)-l exists and {(2.21) can be rewritten

to yield

O L ) (2.22)
w (]
where L = (T-ol) LU+ (1-0) 1) = T-w(l-wl) 'p~tA (2.23)
and 0, = w(l-ul) e, (2.24)
Evidently, -1.-1
I-L, = w(l-uL) 7D A (2.25)

hence I'Lw is non-singular if w#0. TFrom (2.25) we have

(I-Lw)A‘lb =2 (2.26)
which by Theorem 1.1, indicates that the SOR method is completely consistent
with (1.1} for w#0. If w=1, then we see that the SOR method reduces
exactly to the GS method. Finally, we note that unlike the J and JOR
methods, the GS and SOR methods depend upon the order in which the points
are scanned in the mesh (Young [1954]).

Another iterative scheme which invelves the residual vector
P LA™ (2.27)

is the Generalised Simultaneous Displacement method (GSD method) defined

by M N Y W T (2.28)
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where R is any non-singular diagonal matrix.

The GSD method can be written in a more compact form to yield

w1 L g™y gy, (2.29)

where K= I—RA. (2.30)

By Theorem 1.4 and the relationships (2.29) and (2.30) we can easily
verify that the GSD method is completely consistent. A useful observation
is that if R=D"1, then the GSD method reduces exactly to the J method.
Further, if we let R=&I, then we obtain the Simultaneous Displacement

method (SD method) (Forsythe and Wasow [1960])

w2 ) G a (2.3
or L+ =B¢&u(“) + &b, (2.32)
where R = I-cA.

o
By Theorem 1,4 we have that the SD method is completely consistent

with (1.1) if a#0. This method was first considered by Richardson [1960]
but a was varied in each iteration &=&n resulting in a non-stationary
iterative scheme. By letting R=mD-l it follows that the GSD method
degenerates to the JOR method. It has therefore been verified that the
GSD method is a generalisation of the J, SD and JOR methods for various
forms of the matrix R.

Next, we consider a medification of the SOR method which results
in the symmetric SOR method (SSOR method). Each iteration of the SSOR
method consists of two half-iterations. The first half is just the
ordinary SOR iteration while the second is an SOR iteration which scans

the mesh in reverse order. Consequently, the SSOR iterative scheme is

~ defined by
u(n+hﬂﬂ= u(n) + w(Lu(n+%)+Uu(n)+c—u(n)J (2.33)
and ﬁ(n+1) = u(n+£) + m(Lu(n+%)+Uu(n+1)+c—u(n+%)) (2.34)
(n+£)

where again w i1s a real parameter and u is an intermediate

approximation to the solution.



Evidently, (2.33) and (2.34) can be written alternatively to yield
u(n+£) = qu(n) + w(I-wL)'lc
and u(n+1) = U@u(n+i) + w(I—wU)-lc,
where Lw is given by (2.23) and
U =(1-u0) "l (1-0) 1) = T-w(2-00) 'D71A.

Finally, the SSOR method can be written in a more compact form by

¢liminating u(n+%) from (2.35) and (2.36) to yield
u(n+1) = § u(n) + k

W w
where 1 -1
&w = Ume =(I-wl) " (wL+(1-w}I)(I-wL) ~(wU+(1-w)I)
= Tew(2-w) (T-al) "L (1-w1) 107 1A
and k, = 0(2-0) (T-w) "L (1-0L) "o

It can be easily verified that the above method is completely
consistent with (1.1) if w#0,2 and A is non-singular. Since one SSOR
iteration combines two SOR iterations we note that the SSOR process is
dependent upon the order in which the points are scanned in the mesh,
Further, we see from (2.33) and (2.34) that the SSOR method requires
twice as much work as the SOR method. However, it can be shown
(Niethammer [1964], Conrad and Wallach [1977]) that the work can be
reduced to become identical with the SOR method., The SSOR method was
first considered by Sheldon [1955] and it is a generalisation of the

Aitken method (Aitken [1950]).

(2.

(2.

(2

(2.

.
2.
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3.3 CONVERGENCE OF ITERATIVE METHODS

In this section we will consider under which conditions the sequence

(0)’u(ﬁ3._

of vectors u . produced by the iterative process (1.3) converges

(©)

for any arbitrary starting vector u

Definition 3,1

0) (1}

The iterative method (1.3) is convergent if the sequence u“ - ,u*"",...

©)

converges to a limit u for all the starting vectors u

Theorem 3.1
The iterative method (1.3) converges if and only if
S(G) < 1. | (3.1)
Proof
Let us assume that the sequence u(o),u(l),... produced by the

iterative method (1.3) converges to the solution vector u, then from (1.3)

and {1.6) we have
M) ge(n) (3.2)

e(n) = u(n) -u (3.3)

where u.

Evidently, from (3.2) we have the relationship

M) _gn (0} (3.4)
Moreover, lim e(n) exists if and only if lim u(n) exists and
. (n) — . e . . (n) e
lim u¥ “=u if and only if 1lim e“-=0, Thus, by Theorem 2-4.,2, we have
T+ N
that lim E(n)=0 if and only if the inequality (3.1) is satisfied. Let
n-roe

us now assume that (3.1) holds, then I-G is a non-singular matrix, hence

the iterative method (1.3) is consistent and by Theorem 2-4.2 we have that

(n)

lim e
N

=0, hence the procf of the theorem is complete,

In order to prove that an iterative method is convergent, it is
preferable to consider other conditions besides (3.1} since it is sometimes
laborious to evaluate the spectral radius of a matrix. An alternative
condition for convergence is given by the following theorem, where A is a

positive definite matrix.
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" Theorem 3.2

If A is a positive definite matrix and if the iterative method (1.3)
is completely consistent with (1.1}, then the method is convergent if R

is a non-singular matrix and

M=R=+ RT - A (3.5)

is positive definite, where R satisfies the relationship

G=1-R1A, (3.6)

Moreover, we have
el | < 1. (3.7)

R

Conversley, if (3.7) holds, then M is a positive definite matrix.
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3.4 RATE OF CONVERGENCE

In order to evaluate the effectiveness of an iterative method we have
to consider both the work required per iteration and the rate for the
sequence of vectors to converge to the required solution.

In practice a '"measure" for the latter is defined by requiring the

norm of E(n)

0

to be reduced to a fraction p of the norm of the original
vector ¢ From (3.4), using matrix norms, we have the inequality

ne ™ < ue™ 1@, (4.1)
Then if u(o)#ﬁ'we have
1e™i/1e @y ¢ 6™, (4.2)

Since it is assumed that the method (1.3) is convergent, we require

le™) < o1 @y (4.3)

and we select n such that the following inequality is satisfied

16" < o. | (4.4)
In order for (4.4) to hold for all n sufficiently large such that
HGnH<1, it follows that (4.4} is equivalent to
‘n 3 -logo/ (-5 logG™N). (4.5)
From the inequality (4.5) we obtain a lower bound on the number of
iterations for the iterative method (1.3). Furthermore, from (4.5} we
conclude that the number of iterations n depends inversely on the
expression %logHGnH and therefore this quantity serves as a basis of

comparison for the different iterative schemes.

Definition 4.1

For any convergent iterative method of the form (1.3) the quantity
1 n
Rn(G) = - logllG (4.6)
is the average rate of convergence.

It can be shown (Varga [1962], Young [1971]) that
s(6) = 1im (16"NHY",
n-+ee
hence we have the following definition.

(4.7)



40

Definition 4.2

For any convergent iterative method of the form (1.3) the quantity
R{(G) = lim Rn(G) = -1ogS(G) (4.8)
n-><o
is the asymptotic average rate of convergence or simply the rate of
convergence, Finally,'we define the quantity
RR(G) = 1/R(G) (4.9)
as the reciprocal rate of convergence of the methed (1.3). From (4.5) the

number of iterations required for convergence is approximately proporticnal

to the reciprocal rate of convergence.
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3.5 SOME THEOREMS ON THE CONVERGENCE

In this section we will state some known theorems, often without proof,
which provide certain conditions for the convergence of the iterative
schemes developed in Section 3.2, First , we impose the restriction on
the matrix A of the system (1.1) that all its diagonal elements are different
from zero, i.e. diagA is non-singular, Then we can determine the range of

w for the JOR method to converge from the following theorem,

Theorem 5,1

If the J method converges, then the JOR method converges for O<wsgl.

Another theorem which concerns the SOR method and has been proven

by Kahan [1958], is the following.

Theorem 5.2
If Lw is defined by (2.23), then,
S(Z) % Ju-1] (5.1)
for all real w, with equality only if all the eigenvalues of Lw are of
modulus |w-1]|. Moreover, if the SOR method converges, then
0<w< 2, (5.2)
If we require the matrix A to be non-singular, then from Theorem 2-5.3
the sufficient condition for this restriction is to assume that the
matrix A is irreducible and has weak diagonal dominance. Under these

properties, Geiringer [1949] has proved the following theorem,

Theorem 5.3
If A is an irreducible matrix and has weak diagonal dominance, then
(i) the J method converges and tﬁe JOR method converges for O<uwgl;

(ii) the GS method converges and the SOR method converges for O<wgl.

Let us proceed in our study of the conditions under which certain

iterative methods converge and suppose that A is a positive definite matrix,
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In particular, let us consider the application of Theorem 3.2 to the
iterative methods considered in Section 3.2, then the following theorem

can be verified (Young [1971]).

Theorem 5.4
If A is a positive definite matrix and D=diagA, then

{a) sl fl if 2D-A is positive definite;
A

(b) Bl 51 if gD-A is positive definite or,
A W
equivalently, if
0<w<2/ (1-m(B))2 (5.3)

where m(B)<0 is the smallest eigenvalue of B;

{c) Ll 5<1;
A .
(d) L I y<l if O<w<Z;
w
A
(e) IB{ j<1 if R1-A is positive definite;
A

(£} HREH y<1 if O<a<2/M(A) <2 (5.4)
A
where M(A) is the largest eigenvalue of A.

Stein and Rosenberg [1948] have developed an analysis on the
convergence of the J,JOR,GS and SOR methods when the matrix A is an

L-matrix. Their analysis is summarised in the following theorem.

Theorem 5.5
If A is an L-matrix and if O<wgl, then
(a) S(B)«1 if and only if Salw)<1.
{(b) S(B)<1 (and S(Lm)<1) if and only if A is an M-matrix;

if S{B)<1, then
S(Lg)sl-w+mS(B) (5.5)

(¢) if S(B)z1 and %(Lw)al, then
S(E ) z1-wt+wS (B)31. (5.6)



On the other hand, the conditions under which the SSOR method converges

have been summarised in the following theorem.

Theorem 5.6
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Let A be a symmetric matrix with positive diagonal elements, then the

eigenvalues of &w are real and non-negative for any real w. Moreover, if

A is positive definite and O<w<2, then

_ _ 2
H&mn =S8() = HLwH A <1.

Ai A

Conversely, if S(&m)<1, then O<w<2 and A is positive definite.

Proof
The matrix &m is similar to
" . -1
&m = (I-wU)&w(I-wU)
and from (2.39) Em is equivalent to

g

N (L (1) T) (T-wL) ™ (wUs (1-0) T) (T-wU) "L

[(T-0L) Y (bt (1-0) ) ] [ (T-wl) "L (Lt (1-0) 1] T

which by Theorem 2-2.,2 implies that Em is a non-negative definite matrix.

Thus, all the eigenvalues of Gm are real and non-negative for any real w.

(5.7}

(5.8)

(5.9)

Moreover, if we make the assumption that A is positive definite and O<w<2,

then by Theorem 2-2,3 there exists Ai, the unique positive definite matrix

such that (Ai)2=A. From (2.39),(2.6) we can also have

& I-w(z-w)(I-mU)'l(I-mL)'ID"IA

W

2-w,1 -1_.1 -1
I - = GP-Cy) DED-C) A

and

Y DRV S SO 5 | “1 4. 0401 -1 4.T
&) = A*§ A = I-=——{[A"(D-C;) "D*][A*(ZD-C;) "D*] L.

} -1.4

Since O<wp<2 and A

2~2.2 the second term in the right hand side of (5.11) is a positive

definite matrix, Hence, from (5.11) all the eigenvalues of & and

therefore of &w are less than unity. Moreover, if
ir o= Alp a7t and pr = abp At ,
w w W [i}]

then by (2.23) and (2.37) we can easily verify that

(1D-C } "D is a non-singular matrix, then by Theorem
w U

(5.10)

(5.11}

(5.12)
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&z = U.

Therefore, from the above analysis and (2.39) we have
2—!2_ !T_n
"Lw"Ai = ILi" = S(&! (L)) = S(LU)

= S(ULLé) = 5(§}) = ﬂ&éﬂ = Hawn i<1

A
and the first part of the theorem has been proved.
Let us now make the assumption that S(Gw)<1. If li i=1,2,...,N

are the eigenvalues of &m, then by Theorem 2-1.2 we have the following

result
N

A det(&m) = det((I-mU)'l(mL+(1-w)1)(I-mL)'l(wU+(1-w)I))
i=1 i ‘

(-,
Thus, we finally obtain
' N N
ZN N
|1l = [ TTa) < TT 12, ] < 88
i=1 i=1
or
S(§&) 3 |1-w[2
w -
Evidently, for {5.7) to hold it follows from (5.16) that we must
have ,1-w|<1 or 0<w<2 since w is real. Furthermore, we seek to prove

that A is positive definite. By (5.8) and (5.10) we have

Ew = I-m(z-w)95(D-wcL)“lA(n-mcU)'105
= I-w(2-w)A*x,
where A* = Di(D-wCL)-lA(D-wCU)_lDi.
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(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

If v, are the eigenvalues of A*, then by (5.17) we have the following

eigenvalue relationship
)\' = lhm(z‘vaic

Since now

which by Theorem 2-2.1 implies that A* is positive definite. Moreover,

from Theorem 2-2,1 there exists v#0 such that

(5.19)

(5.20)

(5.21)
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(v,A*v) = (w,Aw) > Q, (5.22)
where w = (D-mCU)-lDiv.
Evidently, from (5.22) it follows that the matrix A is positive
definite, (see Definition 2-2,1) hence the proof of the theorem is

completeQ

Corollary 5.7

Under the hypotheses of Theorem 5.6 we have that

S(L) ¢ 1L y < 1. (5.23)
A
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3.6 COMPARISON OF RECIPROCAL RATES OF CONVERGENCE

In this section, we will be concerned with the task of reducing the
reciprocal rate of convergence of the iterative schemes considered so far
assuming that A is symmetric and positive definite. It can be seen (from
(4.5) and (4.9)) that the number of iterations required to achieve a certain
level of convergence is proportional to the reciprocal rate of convergence.
This will be the basis for our comparison apart from the work involved in
each iteration. First. it can be noted that the matrix B defined by (2.4)
is similar to the matrix

% - pipp? ;,I-D'%\D'i. (6.1)

Consequently, the eigenvalues of B and hence those of B are real

-4

and less than unity since D-iAD is a symmetric and positive definite
matrix, By the definition of the matrix B we have that its eigenvalues

Wy satisfy the relationship

N
_Zlui.= trace(B) = 0 (6.2)
1=

and therefore
m(B) £ 0 5 M(B), (6.3)

where m(B) and M(B) are the smallest and largest eigenvalues of B,
respectively, From (6.3) we conclude that
m(B) $ u § M(B) ‘ (6.4)
where p is an eigenvalue of B.
Let us consider the JOR method and determine the role of the real
parameter w S0 as to minimise the spectral radius of S(Bw)' From (2.14)
we have that S(Bw) is given by the expressioﬁ

S(B) = max |wu+l-m|. (6.5)
" m(B)susM(B)

Evidently, for all u the function S(Bm) attains its maximum at the end
points of the range (6.4}). Thus (6.5) yields the expression
S(B) = max ( [wm(B)+1-w|, |aM(B)+1-w]). (6.6)

Finally, from the above analysis we can readily-.verify the following theorem.
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Theorem 6.1

If

- 2
" TRE) ) (.7
. _M(B)-m(B) .
then S(BE) = 3CM(B)-m(B) 1 (6.8)
and if @#®W, then
S(B, ~ S(Ba)'
If we let . 4
A=D AD °, (6.9)
then by (6.1) we have the eigenvalue relationships
m(B) = 1-M(A)
n (6.10)
and M(B) = 1-m(A).
By substituting these values of m(B) and M(B) inte (6.7) and (6.8) we
cbtain
b= —2 (6.11)
M(A)+m(A)
and A A ~
s(p_) = M@AI-m{A) _ P@A)-1 (6.12)
0 M{A)+m(A) P(A)+1
where ~
p(hy = MA) (6.13)
m(A)
is the P-condition number+ of the matrix R.
The relationship (6.12) is an alternative expression of the S(B_)
[A]
in terms of P(A). From Definition 4.2 the rate of convergence for the
JOR method is given by
R(B) = -1ogS(B ) = -log DAk . 2 (6.14)
w @ P(A)+1  P(A)
for P(R)>>1. Evidently, the reciprocal rate of convergence is given by
the expression
__1 P
RR(BE) = R(Ba) > (6.15)

From (6.15) we see that P(R) is proportional to the reciprocal rate

TIn general one can define the spectral condition number of a non-singular
matriz A by k(A)=HAH.HA-1H. However, ©f A ig positive definite, then k(A)
becomes the P-condition number denoted by P(A) and i3 given by the
expression P(4)=M{A)/m(4).
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of convergence which in turn is proportional to the number of iterations
required for the JOR method to converge. This observation shows the
dependence of the effectiveness of the JOR method upon the condition of the
matrix A,

As intimated earlier, the rate of convergence of the SOR, GS and SSOR
method depends upon the order in which the points are scanned in the mesh.
Howevér, if the matrix A resulting from a certain ordering is consistently
ordered, then as we will see from the following theorems,the spectral radii

of the GS and SOR methods remain constant.

Theorem 6,2
If A is a T-matrix with non-vanishing diagonal elements and B the matrix
as defined in (2.4), then
(a) 1If v is any eigenvalue of B of multiplicity p, then -u is also
an eigenvalue of B of multiplicity p.

(b) X satisfies

(o-1)% = wiula (6.16)

for some eigenvalue yu of B if and only if X satisfies
Atw-1 = muAi (6.17)
for some eigenvalue u of B,
(¢) If X satisfies either, and hence both of the relations (6.16)
and (6.17), then X is an eigenvalue of Lm.
(d) If A is an eigenvalue of Lw, then there exists an eigenvalue

p of B such that (6.16) and (6.17) hold.

Corollary 6.3

Under the same hypotheses of Theorem 6.2, the set of eigenvalues of [
. 2 2
includes the number zero together with the numbers ul,ug,...,uq, where
iul,iuz,...,iuq are the non-zero eigenvalues of B.

As a result of Theorem 2-6.1 and Theorem 6.2 we have the following

generalisation.
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Theorem 6.4

If the matrix A is a consistently ordered matrix, with non-vanishing
diagonal elements, then the conclusion of Theorems 6.2 and Corollary 6.3 are
valid.

' Furthermore, from the above theorems we have the extended conclusion.
Theorem 6.5
If the matrix A is a symmetric consistently ordered matrix with positive

diagonal elements, then u=S(B}<1 if and only if A is positive definite.

The above theorem is valid, since by Corollary 5.7 the GS method
converges when A is symmetric and has positive diagonal elements if and only
if A is positive definite, But by Theorem 6.3 the GS method converges if

and only if u<l.

From the above analysis of the SOR method and Section 2-2,6 we see the
requirement of having a certain technique to scan the mesh in such a way
so that the resulting matrix has a compatible ordering vector., From Theorem
2-7.1 we have that if (x0+pih, y0+qih), i=1,2,...,N is a given set of mesh’

points, then the resulting matrix A has Property A if and only if there

exist at least one ordering vector. Two ordering vectors Y(O) and Y(l) are
the following:
1 if p.+q, 1is even
(0) _ 171 (6.18)
2 if p;tq; is odd
(1) _
Y = Pitay- (6.19)
The following methods of relabelling the mesh points guarantee that
the resulting matrices have Y(O) or y(l) as a compatible ordering vector

and hence they all lead to consistently ordered matrices.

1. A point (x0+ph, y0+qh) occurs before (x0+p'h, y0+q'h) if q<q' or
if q=q' and p<p'. This ordering is known as the ¢, or the natural
ordering since the mesh is scanned from left to right and from

bottom to top.
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2. All points (x0+ph, y0+qh) with p+q eﬁen {or red) occur before those with
p+q odd (or black). This ordering is called the red-black, or Iy
or checker-board ordering. In this ordering all red points are
écanned before the black points are updated, or vice versa,

3. A point (x0+ph, y0+qh) occurs before (x0+p'h, y0+q'h) if p+q<p'+q’.

This ordering is known as '"ordering by diagonals' since we scan the

mesh along the diagonals.

We now give some theorems, which form the basis of the theory of the
SOR method when A belongs to the class of consistently ordered matrices

and B has real eigenvalues.

Theorem 6.6
If A is a consistently ordered matrix with non-vanishing diagonal
elements such that B=I-(diag A)-IA has real eigenvalues, then
= +
S(Lw) = S(Lm) <1

if and only if
0<w<2 (6.20)

and
S(B) < 1. (6.21)

For the determination of the optimum value w in the SOR method we

have the following theorem (Young [1954,1971]).

Theorem 6.7
If A is a consistently ordered matrix with non-vanishing diagonal
elements such that B=I-(diag A)-IA has real eigenvalues and such that

u=S(B)<1 and if w, is defined by

b 2

= —--—-—---2 =1 + -——--—————u I . (6-22)

w
b
1+\/1-ﬁ2 1+/1-ﬁ2

Tg(Lm) denotes the virtual spectral radius of L; (see Young [1971] p.170).
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then _ 1- l-ﬁz
S(L ) =S(L )= wb-l = — (6.23)
“b “b )
1+v1-1
and if wfw,, then
S(Lw) = S(Lm) > S(wa). (6.24)
Moreover, for any w in the range O<w<2, we have
— , 2.2 2
Em'«(m 7 54(w~1))£;l , 1f Ogusa,
S(Z) =Ss(Z) = ' (6.25)

w-1 , 1f w, gw<2.

From the above theorem we can show that if the eigenvalues of B
are real, then the rate of convergence of the SOR method using the optimum
relaxation factor 0, is greater by an order of magnitude than the rate

of convergence of the JOR method,

Theorem 6.8
Under the hypotheses of Thecrem 6.7 and for W, D given by (6.22)
and (6.7) respectively, then

RR(Lw )

lim b . 1 (6.26)

1 /RR'('B_E) V7

Proof
By Theorem 6.4 we have that
S(B) = M(B) = -m(B) < 1. (6.27)
whereas by (6.7) and (6.27) it follows that
w=1, (6.28)
Consequently, under the hypotheses of the theorem,the JOR method coincides
with the J method i.e.,

B- = B. (6.29)

By (6.23)} the rate of convergence for the SOR method is given by

R(Lw ) = —210g{—~j£———J , (6.30)

b 1+ I—HZ-J

whereas by (6.29) the rate of convergence for the JOR method is
R(B) = -logh. (6.31)
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By applying L'Hospital's rule we successively obtain the result

d
R(IZ ) —{R(L, )]
W - w - .4
lim b_ . lim TF_ﬂ___E__.= lim Eﬁil:%l%gﬂl = 2/2. (6.32)
u+1" ¥R (Bﬁ) 1" E—:[R (B-w-) ] u-+1" 1-u
H

Hence, by the definition of the reciprocal rate of convergence the proof
of the theorem is complete.

From (6.32) we see that there is an order of magnitude improvement
of the SOR method over the JOR method. This improvement also remains
over the GS method, as it can be seen from Corollary 6.3, On the other
hand, it is known (Young [1971], Chapter 7) that the Jordan canonical
form of wa is not diagonal and heﬁée the gain in convergence rate is
somewhat less than expected.

Furthermore, we can express the spectral radius of the SOR method

in terms of the P-condition number of ﬁ. By (6.13) and (6.22f-we have

YP(A)-1 2
w, =1 R (6.33)
b I:VP( A)+1

hence (6. 23) yields the following express1on

SGZ ) = @)1l (6.34)
“b /P (A)+1 .

Finally from'(6.34) we obtain successively

fil.

R(Z ) = -logS(L ) = -2log (6.35)
) “b /P (A)+1 _| ./p(A
for P(A)>>1.
Consequently, (Evans [1973]) we have shown the following.
Corollary 6.9
Under the hypotheses of Theorem 6.7 and hy satisfying (6.22),
then =
RR(L )~ YRLA) (6.36)
R 4

The same result could have been obtained more simply by using (6.26) and

Yrpom (6.1) and (6.13) we note that P(A)=(1+S(B))/(1-S(B)).



53

(6.1&). Finally, from (6.35) we can state our main conclusion, that the
number of iterations for the SOR method is proportional to the square root
of the P-condition number of the original matrix A.

As we have seen so far, if A is a positive definite consistently
ordered matrix, then a substantial improvement can be achieved using the
SOR iterative scheme. with an appropriate relaxation factor as compared
with the J, GS, JOR and G3I' methods. It is interesting to note that we
can actually relax the conditions on the matrix A, It is known (Kahan [1958],
Varga [1959]) that the theory of the SOR method holds with approximately the
same results if the matrix A is a Stieltjes matrix. For such matrices we

have again that S(B)<1, thus one can compute w_ by (6.22).

b

Theorem 6,10

If A is a Stieltjes matrix and if Wy is given by (6.22), then the
following inequalities hold

w1 8 S(wa) 5 (wbul)i. | (6.37)

A comparison of the SOR method with the JOR method can be carried
out, in the case where A is a Stieltjes matrix. From (6.3) we have that
m(B) § M(B) = ¥, (6.38)

It is evident that (6.8) is minimised if m(B)=0, hence

M(B)
> —a)
S(BGJ 2 ZIM(B) (6.39)

From (6.39) we can work analogously towards the proof of Theorem
6.8 and derive the following:
Lemma 6.11

If A is a Stieltjes matrix, then we have

. R
11m_ 'EE—B)—- = 2, (6.40)

il
On the other hand, from (6.37), (6.23) and (6.39) we easily prove:
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Corollary 6.12

Under the hypotheses of Theorem 6.10 we have

RR(Lmb) § RR(B.). (6.41)

By comparing the relationships (6.26) and (6.41) we conclude that
even though the reciprocal rate of convergence for the SOR method,
when A is a Stieltjes matrix, may be greater than in the consistently
ordered case, we still have an order of magnitude improvement over the
JOR method.

As we have seen the SOR method is not affected by the different
consistent orderings mentioned earlier. This is not the case with the
SSOR method where these consistent orderings yield a convergence rate
which differs by an order of magnitﬁde even though more work is required
per iteration. Indeed, with cl—ordering the SSOR method is no better
than the GS method which converges with an order of magnitude slower
than the SOR method (D'Sylva and Miles [1963]). This is shown in the

following theorem (Wachspress [1966], Young [1971]).

Theorem 6.13

Let A be a positive definite matrix of the form (2-7.1), then

_ 12 2, =2
S(8,) = ST, ) § 1 - 20" 2-0)°(1-D) (6.42)
and unless w=1, we have .
5(6,) > 8(8)) = 5@ = . . (6.43)
From the above theorem " we conclude that there is no justification

whatever for using o,-ordering with SSOR. We will therefore consider

1
the case where the natural ordering is used i.e.,the matrix A is not of
the form (2-7.1).

The analysis for the determination of a 'good" value for w in the

SSOR method can be summarised in the following theorem (Young {1974]).
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Theorem 6.14

Let B, M and m be numbers such that
S(LUY g B (6.44)

and
-2v/B<mgm (B) <OsM(B) sMsmin(1,2V8) , (6.45)

then a-good bound on S(&m) is given by

1- w(2-w) (1-M)
S(& ) < 1-utra’p | (6.46)
w 1. @(2-w) (1-m)

l-wm+tw™ §

, if Ea%-or if EQ% and wgw*

, if E<% and w>w*.

Here, for Ek%-we define w* by

Wt o= 2, (6.47)

1+/1-48

Moreover, the above bound is minimised when

=y, if Mg4R

2
w. = 1+v1-2M+48 (6.48)
2 . =
—_— = ¥, if M34R.
1+/1-48
The corresponding value of-S(&w ) is then given by
‘ 1

r

1-M

Y1-2M+48

1+ 1-M

(&, ) 5 Y1-2M+48 '
. 1 _ {6.49)
| L1-v1-48 | ey, if M34E.

1+v/1-48

The above bounds can be modified to yield the expressions

( 1-YI-M
1+/1-M 4

, if Mg4B

-M

1-/2=2

2 e M=1
S(&,) = { » if GxBsy (6.50)

4.-
-M
e |
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where Z(E_%J -1/4

R | Ep (6.51)

We note that for the case S(LU)s%u the results of Theorem 6,14
and the formulae (6.48),(6.49) were obtained independently by
Axelsson [1972]. This problem had also been considered earlier by
Habelter and Wachspress [1961] using variational techniques. They
developed an implicit equation for determining w, (it involves the eigen-
vector of S(&wo), where mo is the optimum value of w). This equation was
used by Evans and Forrington [1963] to develop an iterative scheme for
determining the optimum w of the SSOR method for the model problem,

A comparison between the asymb;otic bounds on RR(&ml) and RR(Bm),
using the relationships (6.39),(6.29) and (6.50), is given by the

following table.

_ ‘Asymptotic Bounds on RR(&w J/VYRR(B_)
Range of B 1 @
General Case Property A
_S%/]- i_._ %-
V2
M-1 1
v : 3
- - -1
B>%' Y L ~1——Y
V2
TABLE 6.1

Finally, from (5.7) and Theorem 2-3.1 we have the result

S(L Ys Iz I | = /S(§ ) (6.52)
ml ll.)l Al UJl
which gives
RR(L ) € 2RR(§ ). (6.53)
w w
1 1
From (6.53) it follows that we can obtain bounds on RR(Lw ) in
1

terms of RR(BE) for the various cases (Table 6.1). However, it is

expected that in general these bounds will not be as good as the ones
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given by (6.265 and (6.41). O©On the other hana, for the case of a
consistently ordered matrix the bound (6.26) for RR(LmB) is smaller than
the best possible bound on RR(Gml), namely %Jﬁﬁfﬁgﬁ. This observation
suggests that even if we employ Niethammer's scheme (Niethammer [1964])
to reduce the work per iteration of the SSOR method to that of the SOR
method there is little to be gained by using the former method. However,
the eigenvalues of the SSOR iteration matrix &w are real and non-negative
(see Theorem 5.6} and under these conditions, it is possible to accelerate
the SSOR method by an order of magnitude by means of semi-iteration

(Varga [1957], Golub and Varga [1961]]. This approach is precluded for

SSOR with optimum w=w, since the eigenvalues of Lm are complex.
. b
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3.7 SEMI-ITERATIVE METHQDS

Let us again consider the completely consistent linear stationary
iterative method defined by
SLC S R (7.1)
where I-G is non-singular and k=(I—G)A_1b. From the theory of
summability of sequences we can often develop another sequence of
vectors V(O),v(l),... such that either the new sequence converges when
the old one does not or else the new sequence converges faster than the
old one. The new sequence can be considered as a linear combination of
the old one 1i.e. B
v(n) = ig (n)u(k). (7.2)
K=K .
Our object here is to determine the constants ak(n) such that the
rate of convergence of the new iterative procedure is greater than the
one given by (7.1). It can be stated that in general (7.2) is a non-
stationary method associated with a linear stationary iterative method
of first degree,
The new process defined by (7.2) is known as the semi-iterative

method (Varga [1957]) with respect to the linear stationary method of

(7.1). A natural restriction on the coefficients ak(n) is

n
) o (n) =1, n=0,1,2,... . (7.3)
k=0

If we let
(™ -, 5 (7.4)

where U is the true solution of (7.1), then from (7.2) and (3.3) we have

~(n)

n
Loy @e, (7.5)

hence by (3.4)
' E(n)

n
k
(] a6, O 7.6)
k=0
Furthermore, by defining the polynomial Pn(x) to be

P (x) = (n)x~, . (7.7)
n 1<=0mk :



we can write (7.6) in the form

In addition, we assume that for some real numbers o and B with

agBf<1 the eigenvalues u of G are real and lie in the interval

csusB<l,
Then from (7.8) it follows that
0
1™y < e @ 1.
Thus we are naturally led to the minimisation of

maxB [Pn(u)]

where Pn(1)=1.

In order for the above problem to be reduced to a standard one we

map the interval agugB onto the interval -1gyg<l by the transformation

= 2u-(Bto)
Y= "B

L (8-a)y+ (B+a)].

and u.

If we now let

Q,(v) = P_GI(8-a)y+(B+a)]),

the problem is reduced to finding the polynomial Qn(Y) of degree n or

less such that Qn(z)=1, where

= y(1) = Zle)
and max |Q_ (y)]
-lgysl "

is minimised. The solution of this problem is known (Markoff [1892],

Flanders and Shortley [1950]) and is given by
T_(y)

Qn(v) =

Moreover, from the relationships

max ]any)] 1/T (z) = l/T (2 (B+a))’

~1gygl

we have

2u- (B+a) 2u (B+ ) 2-(B+a)
P = Q () = T( 2/ ( ).

A B-a
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(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)



Finally, by (7.8) and using the three term recurrence relation of

the Chebyshev polynomials we obtain

d(]) |, 2E=(Bra)L, Tp(2) ) _ Tn-1 (%) +(n-1)
B-at Tn+1(z) Tn+1(zi
which by (7.4) can be written in terms of the new vectors v(n) as
(n+l) _ o 00, (1) ~.. {(n) (n-1)
v = Py PG4+ (1-p)u™ " ]+ (1-p Ju
where
-2
P = 2 (arpy °
p, =1 )
1
02 _1
pz = [1- 3 > . g
0’2 -1
oy = (1o o] sz
with
B-o
° 2-(Bra)

We notice that (7.21) is obtained as a combination of a two stage
acceleration of (7.1). Firstly, we could consider the JOR version
applied to (7.1), which is defined by

u(n+1) = B(Gu(n)+k)+(1-6)u(")
and then for further acceleration we could consider the Chebyshev semi-
iterative method with respect to (7.25), as defined in Gelub and
Varga [1961], in order to obtain (7.21). From (7.9) we note that we
do not always require the basic iterative scheme (7.1) to be convergent,
Also, the recursive relation (7.21) shows that it is unnecessary to

(n)

form the auxilary vector iterates u in order to determine the vectors

v(n). Finally, (7.21) requires an additional vector of storage over
{7.1), which can be of considerable weight in practice, if computer
storage is limited. However, as we will see the application of the

semi-iterative process (7.21) can often give a convergence rate

accelerated by an order of magnitude.
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(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)



We can rewrite (7.21) in the form

o™ - Pn(G)u('O) . k

n

where Pn(G) is a certain polynomial in G and kn is a suitable vector,
The virtual spectral radius can be obtained by (7.16), (7.18) and is
given by

S(P_(G)) = max |P_(uw)] = 1/T_(z).
n asugB n
By the definition of Chebyshev polynomial it can be shown (Young [1971]
that n/2
= 2
S (6) = =/,
I+r

where

Ao g o-l.

1+/l-02
On the other hand, the average rate of convergence
= _ 14,08
R (P (G)) = - — 10gS(P (G))
approaches the asymptotic average rate of convergence, or simply the

rate of convergence
1
Rm(Pn(G)) = -5 logr

as n+o,
An analogous result to (6.26) can be obtained, if one follows the

proof of Theorem 6.8. Indeed, for n sufficiently large we have

R, (P_{G))
lim @ ——t— = Y7,

o1 VRl(PI(G))

4
where _ = r . .
Rl(pl(G)) = R£Gﬁ) = ~log e loga
and Gﬁ = pG+(1-p)1I1.

From (7.33) and (7.34) one can verify that for n=1 the semi-
iterative process degenerates to (7.25). The relationship (7.32)
establishes the fact that by using optimum semi-iterative techniques
based on a given method, the reciprocal asymptotic average rate of
convergence of the SI method is improved by an order of magnitude (w0

than the optimum extrapolated one,
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(7.

(7.

(7

(7.

(7

(7

(7.

(7.
(7.

26)

27)

.28)

29)

.30)

.31)

32)

33)

34)
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3.8 VARIABLE EXTRAPOLATION METHODS

In the previous section it was shown how we are able to construct an

effective iterative process using the concept of semi-iterative techngiues.

(n+l1)

It was also mentioned that in the new procedure each vector v

(n) (n-l)_

requires

the computation of two previous vectors v and v If computer
storage is limited, then we can consider another form of accelerating the
basic iterative process (7.1). This can be achieved by allowing the

parameter ¢ in (7.25) to vary in each iteration, hence we have

(n+1) _ (n) (n)
u = en+1(Gu +k) + (1-6n+1)u s (8.1)
where 61,62,... are iteration parameters.
This idea was presented by Richardson [1910] and applied to a
certain method of the form (7.1). The iteration parameters en are

selected in the cyclic order 61,62,...,9 where m is an

m,el,ez,...

integer. From (8.1) we have that given 61,62,...,6m, then

(m) _ (0)
u = Pm(G]u +km, (8.2)
for a suitable vector km and Pm(G) is the polynomial
m
P (G) = ;[E(ekc+(1-ek)1). (8.3)

If one now follows the analysis of the previous section, then it

can be easily concluded that the minimised polynomial Pm(u) is given by

Tm[2u—(B+a)]

_ B-a
Py () = - 2_(Bm)] (8.4)
m[ B-a
The iteration parameters 6, can be determined by equating the roots
of (8.3) and (8.4). Thus we obtain values for the parameters Bk of the
form
2
8, = , k=1,2,...,m. (8.5)
K 2-(pra)eosZEIT L (gea)
m
The virtual spectral radius of (8.1) can be verified by (8.4)
to be _ 2rm/2 L
S(P,,(6)) = - (8.6)
I+r
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where £ is an integer determining the number of cycles. It can be seen
from (8.6) and (7.28) that as m increases, then the rapidity of convergence
tends to the one given by the semi-iterative method,

However, numerical experiments (Young [1954a,1956], Young and Warlick
[1953]) show that for large m numerical instability may occur, Also, it
is undesriable to select m very large because convergence is expected

after &m iterations.
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3.9 SECOND-DEGREE METHODS

An accelerated scheme similar to (7.21) can be produced by considering
constant iteration parameters throughout the process. By rewriting (7.21)

in the form

2p
L) u(")+(pn+1-1)(u(")-u(n'l))+ ET%E%ET(G“(H)+k‘“(n)) (9.1)
we can obtain the linear second-degree method
L) u(n)“,;.(l_l(n)_u(n-l))+ n(Gu(n)+k—u(n)) (9.2)
20n+l

where we replaced pn+1-l by £ and PRET) by n.
The form of (9.2) is a specialicase of the linear stationary

iterative method of second-degree given by

u(M1) Glu(n)+H1u(n'1)+k1. (9.3)

We can see (Golub and Varga [1961]} that (9.3) can be written as

u(™ o 1) fut®D )
= + (9.4)
w1 H G u ™ k,
The iterative process (9.4) is convergent if and only if
SM) <1 (9.5)
where 0 I
M= (9.6)
B G
Thus, if A is an eigenvalue of M, then the roots of
det (\*1-2G -H,) = 0 (9.7)
must be less than unity in modulus for (9.5) to hold, In the case of
(9.2), it is easily seen that (9.7) becomes
det (A2I-A (nG+ (1-n+E)I)+EI) = O, (9.8)
hence if y is an eigenvalue of G, then the following relationship holds
A2 A(mutl-nrE)+E = 0. 9.9)

For fixed £ the root radius i.e., max|A| is minimised when

(nu+l-n+g)}" = 4g (9.10)
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thus ee (7.9)) we have the relationships,
26t (9.11)

-255.

n(B-1)+1+£§

and n{o~1)+1+¢& (9.12)
Consequently, by adding (9.11) and (9.12) we can determine n

from the relationship

o 2(1+8)
= Ty (9.13)
Moreover, from (9.13) and either of (9.11),(9.12) the best choice
of £ is given by
& = &0-1 (9.14)
where L 2 :
g = ——— (9.15)
1+|/1-cr2
and o is defined in (7.24).
Finally, from (9.14) and (9.13) we obtain the best value of n
by the expression R
2w0
Ny = ETTEEET' . (9.16)
o
From (9.14),(9.15),(9.9) and (7.29) the spectral radius of M is , ‘\3
pu
given by . } }
SM) = (wo-l) =r°, (9.17)
thus the rate of convergence |
RM) = -% logr (9.18)

is comparable with the one obtained by semi-iterative techniques. Also,
by (9.17) and (7.31) we conclude that the rate of convergence of
semi-iterative and second degree methods depends on the same quantity r.
On the other hand, it can be proved (Young and Kincaid [1969]) that the
semi-iterative method yields greater acceleration than the second-degree
methods as expected, since in the latter the coefficients are constants
whereas in the former they are variables. However, as with semi-iterative
methods, we need to store two vector iterants for each iteration and this
storage requirement can be severe for large systems of equations, or

computers with limited storage capacity.
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3.10 THE CONJUGATE GRADIENT METHOD

In this section we will briefly consider the conjugate gradient
method (CG method) introduced firstly by Hestenes and Stiefel [1952],

Stiefel [1952] as an iterative method for solution of large sparse systems
(Reid [19717).

As a matter of fact we will consider the CG method as an écceleration
procedure analogous to the SI method with respect to the iterative method
(1.3).

Let us again consider the linear system

Au=5>» B (10.1)
where A 1s an NxN symmetric and positive definite matrix. The quadratic
functional related to the system'(ld.l) is given by

Qu) = %{U,Au)-(u,b) - const. (10.2)
This functional defines a fdmily of similar ellipsoids in the Euclidean

N-dimensional space, whose common centre is Amlb, the point at which

Q(u) takes its minimum value. For any arbitrary vector u(n), the
residue r(n) is given by
£ - b o [Grad 1T (10.3)

and it is always normal to the surface of the ellipsoids defined by (10.2).
Thus, we attempt to proceed to the solution A—lb, the centre point of

the ellipsoids, by a sequence of vector displacements of the form

) _ @ snp(n) (10.4)

(n)

where p is an arbitrary direction and €, is an arbitrary constant.

The problem now is to determine e, such that the quadratic function
Q(u(n+1)) will be minimum for a given direction p(n).
From (10.2) and (10.4) we have that Qu ™)) is given by the

expression
Q™) = 2(™re p™y,aMre p™))-(™se p™),p) (10.5)

Tohere {Grad Q(u)]u(n)'represents a vector with components
(n)
anﬁ_ L oi=1,8,...,n.

z
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hence
2 (u ™ 1),

o€
n

- 6™ ae™ie My M by

I

_(p(n) ,r(n)J+(snP[n) ,Ap(n))- (10.6)

The optimum value of €, is obtained by setting the expression (10.6)

equal to zero, which immediately gives
n n
™,

n (p(n),Ap(n))

(10.7)

Also, by using the definition of u(n+1) from (10.4) and the value

we have just cbtained for En’ we have

™, 2@y = ™ an ™)) 2 ™, ™ 4™y 20 0.8)
(n) (n+1)

which implies that the direction p and the residual r are orthogonal.

The choice of the direction vector p(n) differentiates many methods

(n)

which are all convergent for any given p* ’., If we wish to choose

p(n) to lie along the line of steepest descent, we simply take

()_.(m)

p and by (10.4) and (10.7) we immediately determine the known

Steepest Descent method which results in a very slow convergence in many

cases.

(n)

A better strategy for choosing the direction p is based on the

knowledge that the centre of the ellipsoid lies in the plane conjugate to

(0),p(12. N-1 ¢o be

a given chord. Thus; if we choose the vectors p eesP

pairwise conjugate in the sense that

(P(i),Ap(j)) =0 (10.9)
for i#j, then by determining p(n+1) by
p(™ - r(n}+an_1p(n_1) (10.10)

we can combine (10.9) and (10.10) to obtain

@™, - (r(n),Ap(n-l])+(“n_1p(“'l).Ap(n'l)) =0 (10.11)

and finally
o (I‘(n) ,Ap(n-l))

= : (10.12)
n-1 (p(n-lj’Ap(n-l))




(n) '

This choice of p results in the Conjugate Gradient iterative

scheme which is defined as follows

+enp(n}, n=0,1,2,...,m-1

) I ¢ )

LD @

T ., n=0,1,2,.,.,m

) {0 , n=-1

p =
r(n)+a P(n-l) , n=0,1,2,...,m-1
n-1
0 , n=0
G =) @@ ape-1)y

- , n=1,2,...,m-1
@@ ap (-1,

where m is the smallest integer such that
r(mJ = 0.

We summarise below some basic properties of the CG method (see

Beckmann [1960])

(r(i),r(j)) = 0 ifj , 1,j=0,1,...,m-1
e, =0 45, 4,j=0,1,...,m-1
p(i) #0 , i=0,1,...,m-1
m<£N
and i} (r(n)’r(n))

o , n=1,2,...,m-1,

n-1 (r(n—l)’r(n-l))

From (10.17) we easily conclude that the CG iterative scheme
converges in at most N iterations,where N is the order of the matrix A.
Although the CG method theoretically gives an exact answer in N-steps,
this is not what actually happens in practice, where the round-off
errors may strongly affect the orthogonality of the residuals.

In the past few years a number of modifications and improvements
have been made to the CG method (see Rutishauer [1959], Daniel [1967],
Reid [1971], Axelsson [1974] and Evans [1973a]). One important
modification has been the formulation of the method as a second degree

(n+1) (n) (n-l)-

method, i.e. the determination of u in terms of u and u

68

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)
(10.19)
(10.20)

(10.21)

(10.22)
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By replacing n by n-1 in (10.13) we have
@ | @D, (D) (10

u = n-1 .23)
or
*a-1 () _ %n-1_  (n-1) (n-1)
S e = —=€,u ve o P (10.24)
n-1 n-1
which by eliminating p(n-l) using (10.15) becomes
-1 () _ %*n-1_  (n-1) m) _(n)
—€_u = —=g u +e (P S | (10.25)
€ n £ n n
n-1 n-1
and finally eliminating p(n) by (10.13} we obtain
€ €
u(n+1) = (1+ LIS )u(nJ g LSS u(n—1)+e r(n) (10.26)
e n-1 € n-1 n
n-1 ‘ n-1
which can be written in the more compact form
(n+1) _ (m), - () (n-1)
u = pn+1(u YT )+(1—pn+1)u (10.27)
where 0 =1 + “n N (10.28)
n+l £ n-1 '
n-1
and T = “n . (10.29)
n Dn+1
We now proceed to simplify the expressions of Prs] and Yo+l by
expressing them in terms of certain inner products.
We express (10.27) in terms of residuals by using (10.14) hence
it follows that
(n+1) (n) _ (n} (n-1)
T = pn+1(r yn+1Ar )+(1-pn+1)r . : (10.30)
If we now take the inner product of both sides of (10.30) with r(n),
then by (10,18) we get
- (n) _(m) (n) ,.(m)
0=p (7, )-y @ Ar)) (10.31)
and since pn+1#0 we obtain
v, = @0 (10.32)
MONMON
On the other hand, if we take the inner product of both sides of
(10.30) with *(™ 1) yie1ds
- (n-1) , (n) (n-1) _(n-1)
G=0p 07, AT )+ (L-p L) (2 ,T ) (10.33)

or
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— (n-1) (n) -1
=1+ AT )

Furthermore, by replacing n by n-1 in (10.30) we have

r® oo @Dy (D) 32 (02) (10.35)
n n n
and if we take the inner product of both sides with r(") yields
- (n) _(n)
@) pp My Tx )
nPn

thus (10.34} takes the form

Y (n) _(n) -1
={1-.n+¥l (r ,T ) 1
Prel [vn PRES IR "r;l ’ (10.36)

Summarising our results the CG.method can also be defined as

u(n"'].) = pn+l(u(n)+Yn+1r-(n))+(l-pn+1)u(n-l) (10-37)
where
pl = 1,
= Yn+1 (r(n),r(n)) 1 -1 _
Pn+l [ Yo @0 Gy pn] » 0=l,2, . (10.38)
and _ (r(n) ,r(n))

Y (10.39)

n+l - (r ™ ap (),

From (10.37} we note that the CG method is of the same form as the
SI method (and the second degree method) the only difference being that
here the parameters are variables (whereas in SI method we have Yl=72=...=5)
chosen to minimise fhe quadratic function Q(u).

As a matter of fact, we expect the CG method to produce a better
rate of convergence than with the application of SI techniques since in
the former we have one additional parameter Ynel which is variable instead
of being constant (SI method}. In comparing the CG method with the SI
method we note that the former requires more computations per iteration
but, on the other hand, it does not require the estimation of the largest
and smallest eigenvalues of the matrix A, Moreover, it can be proved
(Young [1975]) that for all n we have

1™ gl | § 1 (™ 51 i : (10. 40)
A A
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(n)

where u is the exact solution of (10.1), U

{n)

is the approximate solution
obtained by the CG method and u is the approximate solution obtained by
the SI method with respect to the basic iterative scheme (10.1).

The relationship (10.40) indicates an essential advantage of the
CG method over the SI method because with the latter only the upper and
lower bounds for the eigenvalues of the coefficient matrix are used whereas
the former takes advantage of the distribution of the eigenvalues of G.
Finally, we note that the relationship given by (10.40) shows that the
CG method is better, in the sense of minimising the A%-norm of the error
vector/than any linear non-statioqary second degree method. Since we can
obtain estimates for the convergence rate of the SI methods we thus obtain

a lower bound on the rapidity of convergence of the CG method. Consequently,

from (10.40) and from the fact that in the SI method we have

n/2
™ gl | € 1@ ; (10.41)
A l+r A
we immediately obtain )
n/2
™M, E @ (10.42)
A 1+r A
(0)_ (0)

by assuming U ’=u‘’, where r is given by (7.29).



CHAPTER 4

AN INTRODUCTION TO PRECONDITIONING TECHNIQUES
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4.1 INTRODUCTION

As it was shown in the previous chapter, the rate of convergence R(G)
of all the iterative schemes considered so far depends inversely upon the
P-condition number of the scaled coefficient matrix
A=phot - (1.1)
Therefore any attempt to improve these iterative methods has clearly to
apply some form of "preconditioning' to the original system of equations
in order to minimise the P-ccndition number of the coefficient matrix and
hence increase the rate of convergence of the considered iterative procedure.
This idea was first introduced by Evans [1968]+, where it was applied to
the solution of large linear systems such as those described in section 1.2.
The earlier work on the Extrapoiated Modified Aitken method (EMA method)
defined by
(I-ub) (T-00)u ™D o [(1-0) 140 10]u™ vuc (1.2)
(Evans [1963,1964]) and the effectiveness of the SSOR method created the
strong feeling of "striving to obtain left hand sides such as in (1.2)"
(Evans [1973]}). Thus the preconditioning theory was affected by this
previous suggestion and was developed by Evans [1968] as follows.
Let us assume, without loss of generality, that the non-singular
coefficient matrix A has the splitting
A = I-L-U (1.3)
where I is the identity matrix and the matrices L,U are defined as in
(3-2.6). Further, let us also assume that A is a symmetric and positive
definite matrix. Next, we let v be an intermediate transformation vector
given by
v = (I-wl)u (1.4)
where w is a real parameter to be defined later. If ﬁe pre-multiply the‘

original system (3-1.1) by the non-singular matrix (I-wL)-l, then the

Tsee also Evans [1973,1974].
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transformed system is equivalent to

(I-oL) " PA(T-00) L[ (I-0t)u] = (I-01) b (1.5)

which can be written in the more compact form as

GlAG v = d (1.6)
(1] V] w
or Bwv = dm (1.7)
where 5 =6'aG (1.8)
[i}) ()] i}
d = (I-wL)’lb
and 6, = (T-at)t. ' o (1.9)

Consequently, the original system (3-1.1) has been transformed into
the preconditioned system (1.7), where the matrix ﬁ; is symmetric
congruent to A (see Definition 2-2,2)}. Since A is positive definite,
then by Theorem 2-2.4 it follows that 5; is also a positive definite
matrix. By inspection, we see that for w=0 the new system (1.7) reverts
back to its original form (3-1.,1). Thus, by introducing the transformation
above, we allow w to play the role of a preconditioning parameter such that
as w varies, we hope we can obtain a value of P(§;) which is less than P(A).

After a tedious analysis Evans {[1968] showed that there is a value of w
in the range l<w<2 for which P(ﬁ;) achieves its minimum value. (An
alternative proof is given in Hatzopoulos [1974]). However, the value of
the optimum preconditioning parameter Yy Was given only for the model
problem by an implicit expression involving the eigenvectors associated
with the maximum and minimum eigenvalues of ﬁ;o. Once system (3-1.1) was
preconditioned and brought into the form (1.6), Evans was able to introduce
new iterative schemes analogous to the already known ones i.e.,

v(n+1) = v(n)+(dw-§;v(n)) (1.10)
vy MG F vy (1.11)

. W w :
and their accelerated versions of Richardson's, second order Richardson
and CheBysheV semi-iterative methods. _Finally, it was shown (Evans [1973])

that for the model problem the P-condition number of the matrix}}zj was
0
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approximately equal to the square root of P(Em=o) which established an order
of magnitude improvement on the convergence rate of (1.11) over the basic
iterative method i.e., when w=0, This was also verified by a number of
numerical examples for the Laplace, General Diffusion (-V2¢+A¢=S)_and
Biharmonic equations.

-The establishment of the advantages of the preconditioning techniques
was also confirmed by their use in the direct methods of solution for
ill-conditioned systems of linear equations (Hatzopoulos [1974]).

In the remainder of this chapter we will consider the idea of pre-
conditioning in a more general concept which will allow us to associate the
most effective iterative schemes, similar to the already known ones, with
respect to any splitting of the coefficient matrix A, As a result of this,
it will help us to examine the known iterative methodsas special cases and
their mathematical formulation from a different viewpoint. Alsc, we would
be able to extract some conclusions about the effectiveness of the type
of "preconditioning' being used which will provide a guide for future

development in the area of the iterative procedures.
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4,2 THE PRECONDITIONING TECHNIQUE FOR THE CONSTRUCTION OF ITERATIVE METHODS

We note that if we premultiply system (3-1.1) by A—l, then we are able
to obtain immediately its solution ﬁéA-lb. On the other hand, we have seen
(see section 1~1.2) that there are certain difficulties for computing Aﬁl,
so instead we consider the case where system (3-1.1) is premultiplied by a
non-singular matrix qu, where R"1 is an approximate inverse of A, thus
transforming the original system into the following preconditioned form

R 1au = R71b. (2.1)
The matrix R will be referred to as the conditioning matrix and according
to our previous observation we first. require that this matrix should
approach A. Of course, it would be desirable to select R in such a form
so that the property of positive definteness is also retained for the pre-
conditioned matrix R-IA, although this is not a necessity, The second
requirement on R is to possess such a form so that it is possible to
compute its inverse relatively easily. Summarising, we require R to
satisfy the following properties:
(a) The spectral condition number of the matrix R_lA to become
smaller than the spectral condition number of the original
matrix A,
(b) For any vectors s and t it is "convenient' to solve the

system Rs=t for s.

After we form system (2.1), then we can define a version of the GSD
method (see (3-248)) with respect to the preconditioned system (2.1) as

follows
u(n+1) = u(n) + TR-I(b—Au(n)) (2.2)

where the role of the real parameter t is similar to the one of & in the
SD method (see (3-2.31))} and it will be considered later.

From Theorem 3-1.4 we can verify that the constructed iterative
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scheme (2.2} is completely consistent with (2.1) if and only if R is a non-
singular matrix and t#0.

Let us now consider the possible forms which the matrix R can possess
within the contents of the above restrictions (a) and (h).

The form of R will be closely associated with the splitting of the
matrix A. Thus let us define

A = D+P+Q (2.3)

to be a splitting of A where in general D is a block diagonal matrix
and P,Q are also block matrices. If the matrices D+P and D+Q are
computationally easily invertible, then the conditioning matrix R could

have the form 1
R = (D+Pi)D (D+Q1) (2.9)

where PI,Q1 may be functions of P,Q respectively.
On the other hand, R could in general take the form
R = f(D,pl’Ql) (2.5)
where f(D,Pl,Ql) is any function of the matrices D,P,Qlapproaching A.
The form (2.4) of the matrix R gives by (2.2) the following iterative

scheme
™ -y peq)) T ) o-au ™) (2.6)

or e u(“)+T(I+D'IQ1)'1(1+D'1P1)'ID'1(b-Au(n)). (2.7)
From the form of the iterative scheme (2.6) we see that we have

to use the following two-level fractional step method (Marchuk [1971])

where we work with vector corrections ;(n)
(D+p1);(“+*) = b-au™
(D+Q1)c(n+1) - pg () (2.8)

u(n+1) - u(n)+ g(n+1).

If the matrix A is split up into more than three matrices, we can
follow the same idea and end up with a multi-level fractional step method
similar to (2.8). By restricting ourselves to the form (2.4} of R we

observe that we can commence to develop various iterative schemes which are
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associated with the splitting (2.3) of A depending upon the different forms

of pl’Ql' In particular, by selecting P1 and Ql to have simple forms such

as
P1 = mlp, Q1 = w2Q (2.9)

where w w, are real '"preconditioning' parameters, then it follows that

1’
all the known linear first degree iterative schemes have the form (2.2)

or (2.7),(2.8), for specific values of the involved parameters T,y 50,

and certain forms of the matrices D,P,Q. Therefore if we assume that A

has the form
A =D - CL - CU (2.10)

where D, CL and CU are defined as in (3-2.6) and (3-2.7), then we can

easily verify from (2.2),(2.3),(2.4) and (2.6), Table 2.1.

Preconditioning Acceleration | Conditioning
Parameters Parameter Matrix
Iterative Method
g w, T R
0 0 1 J
0 0 T D JOR
0 +
4] 0 L I SD
1 0 1 D(I-L) GS
W 0 W D{I-wL) SOR
w w w(2-w) D(I-wL) (I-wl) SSOR
w W w D(I-wL) (I-wl) EMA
TABLE 2.1

The optimum value of the acceleration parameter T is given by
2 - - s s . .
1.=—— where a and b are the minimum and maximum eigenvalues of the pre-
a+b -1
conditioned matrix R "A, respectively i.e.,

3¢ ARA) ¢ b, 2.11)

From the previous considerations we conclude that the iterative

Y The form of R is as in (2.4) but D=I.
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schemes in Table 2.1 have been based on the idea of improving the "condition"
of the original system by using different types of conditioning matrices.
Also, if we observe carefully the J and the JOR schemes, then we can
immediately predict that although both methods have identical conditioning

matrices, the optimum value t, for the parameter 7T assures an improvement in

0
the rate of convergence of the JOR over the J method.

From the previous observation, it follows that given the conditioning
matrix R, the most effective iterative scheme is obtained if T takes its

optimum value T However, this does not seem to be the case (at least at

0"
this primary stage) for the GS,S50R,SSOR and EMA iterative methods (see
Table 2.1).

We can therefore clearly realise the strong need for a reconstruction

of the iterative schemes illustrated in Table 2.1.
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4.3 ON THE PRECONDITIONED ITERATIVE METHQDS

In this section we consider the splitting (2.10) of A and the form of
R given by (2.4). For R=D the produced iterative scheme from (2.2) has been
.studied (see Chapter 3), hence we will concentrate on the following cases

which are not covered in Table 2.1,

CASE wy W, T
I 1 0 s
II w 0 1 TABLE 3.1
ITI W 0] L

Since we intend to make a thorough analysis when A is not consistently
ordered in the general case III, we will assume in cases I and II that A

is a consistently ordered matrix with non-vanishing diagonal elements.

In this case we have from (2.2) the iterative scheme
W™ Ly b-au ™) (3.1)
or u(n+1) = Lu(n+g(1-r)(I-L)u(n)+TUu(n)+Tc ' (3.2)
which can be written in the more compact form
T L T (3.3)

1,1

I~r(I-L)'ln"1A. (3.4)

[}

where L
T,1
This scheme is an extrapolated version of the GS method since for
t=1 the two methods coincide. Thus, we will refer to (3.3) as the
Extrapolated GS method (EGS method).
An obvious restriction is 1#0 for the EGS method to be completely

consistent. Next, we prove the following theorem concerned with the

convergence of the EGS method.

Theorem 3,1
If A is a consistently ordered matrix with non-vanishing diagonal

elements such that B=I-D-1A has real eigenvalues, then S[Lr 1)=§(Lr )<l

1

if and only if
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0<T<?2 (3.5
and 7 =8(B) <1. (3.6)
Proof
The preconditioned matrix of the EGS method is given by the expression
Ay = (1-1) *p~1a. (3.7
If u,\ are the eigenvalues of B and Al, respectively, then by working in
a similar way towards the proof of Theorem 3-6.2 (see Young [1971],p.143)
we obtain the following eigenvalue relationship
A= l-u. (3.8)
In order to determine the range.of the parameter 1T so that the EGS
method is convergent we have to determine the maximum and minimum eigen-
value of Al. But we have that
0ocwi s W (3.9)

hence from (3.8) we obtain

max {A} =2 =1and min {A} = A = l-ﬁz. (3.10)
2 =2 2.2
0su su Ogu”su
Since A>0, then the EGS method converges if and only if
A>0 (3.11)
and 0<t<2/x. (3.12)

Evidently, from (3.10), (3.11) and (3.12) it follows that (3.5),
{3.6) hold and therefore the proof of the thecrem is complete.
The determination of the optimum value of t is given by the following

theorem,

Theorem 3,2
Let A be a consistently ordered matrix with non-vanishing diagonal

elements such that the matrix B has real eigenvalues with

S(B) < 1. (3.13)

il

u
If we let

]
n

Ty = 2/(250), (3.14)



then S(Lr 1) is minimised and its corresponding value is given by the
H
expression

- =2
ST, 1) =SE&, ) = /2.

>

Proof
The optimum value of T is given by the formula
Ty = 2/(A+2)
which yields (3.14) by substituting A and A from (3.10).

Further, P(Al) is evaluated by the expression
T -2
P(Alj = A/A = 1[1-1%)

and if we calculate S(Z_,) from the formula
P(A;)-1
S ) = =
v,1° T P(A,)+1

we obtain (3.15) and the proof of the theorem is complete,

Theorem 3.3

Under the hypotheses of Theorem 3.2 and if T is defined by (3.14),

then
. R(LTO’I)
pr G

where L1,1=L (see (3-2.19)).
Proof

Similar to the one followed in Theorem 3-6.8.
Case II

In this case from (2.2) we have the following iterative scheme

w™D oy ) peau ™)

or u(n+1) = wLu(n+1)+(l—w)Lu(n)+Uu(n)+c

which can be written in the more compact form

u(n+1) = Ll,mu(n)+(I-wL)"1c

As can be seen, {3.19) is a different form of extrapolating the

GS method, which is considered if w=1. Note that in this case, there is

82

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)



83

only one parameter w and its optimum value will be determined in a similar

way to T If we follow the proof of Theorem 3-6.6 (see Young [1971]p.172),

o0
then we have the following theorem concerned with the convergence of (3.21).
Theorem 3.4

If A is a consistently ordered matrix with non-vanishing diagonal

elements such that B has real eigenvalues, then

S(Ll,m) = S(Ll,w) <1 (3.22)
if and only if 2 2
1-u 1+1° _
Wl =Ty e =g (3.23)
21 u
and ﬁ = S(B) < 1. (3.24)
Proof

Since the matrices A,B fulfill the requirements of Theorem 3-6.2,
then we can find the eigenvalue relationship
u(?uu+1-—m)i = A (3.25)
where u,) are eigenvalues of B and L1 W’ respectively. The relationship

]

(3.25) can be written as a quadratic in A to yield the equation

A2’ (w-1) = 0. . (3.26)
A sufficient and necessary condition for the convergence of (3.21)
is the roots of (3.26) to be less than one in modulus, or equivalently
(see Young [1971]p.171)
hWi-13] <1 and %] < 14u2(e-1). (3.27)
After some algebraic manipulation the relationships (3.27) can be
shown to be equivalent to the inequalities (3.23) and (3.24) hence the
proof of the theorem is complete.
Finally, we note that as =17, then (3.23) yields the range wS(0,2).
In order to complete the analysis on the iterative scheme (3.21) we
prove the following theorem (analogous to Theorem 3-6.7) concerning the

determination of the optimum value of the parameter w.
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Theorem 3.5
Let A be a consistently orderelmatrix with non-vanishing diagonal

elements such that the matrix B has real eigenvalues and such that

u=s(B)<1.
If 0y is defined by (3-6.22), then
E(Ll,wb) = S(Ll,wb) = ﬁ(mb-1)5 (3.28)
and if w#wb, then
§cLl’w) = soal,m) > sczl,w }. (3.29)

b
Moreover, for any  in the range (3.23) we have

_2 2. 2.2 !
|wit +[H (w ; -4 (w-1))] , if wi<w5w

5 - =41 b
S s ST (3.30)
u(w-1)° . , if w Sw<wy.
where mi and wy are defined by (3.23).
Finally, if wi<m<wb, then S(L1 m) is a strictly decreasing function
of w.
Proof

From equation (3.26) we have that the maximum of the moduli of the

values A is given by the expression

woue A [wiu?-4(0-1) ]
2

r(w,u) = (3.31)
Evidently, we can easily apply the analysis of the SOR theory to (3.31)
(see proof of Theorem 6-2.3 and Lemma 6-2.4, Young [1971]) and obtain
the relationships (3.28),(3.29) and (3.30), thus completing the proof
of the theorem.
From (3.28) and (3-6.23) it follows that we have the following

relationship of spectral radii

S(Z, ) = S(B)S(L )i (3.32)

l,mb mb,mb
or in terms of rates of convergence
1
R(Ll,wb) = R(B) + §R(wa‘wb). (3.33)

Therefore, we see that as u=S8(B)»1, then the rate of convergence of the

optimum iterative scheme (3.21) is approximately half of the SOR,



Further, we note that the optimum value of the parameter v is

identical for the SOR and the iterative scheme (3.21).

Case III

In this case we have the iterative scheme
u(n+1)

or equivalently
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u™ i (1-61) "7 (b-au ™) (3.34)

u(n+1) = mLu(n+lJ+[(1-1)I+(T-w)L+TU]u(n)+rc . (3.35)

which can be written in the compact form

LD

T,mu +£T,m (3.36)

where 1
LT 6 - (I-wL) “[(1-t)I+(T-w)L+1U] (3.37)

and _ -1
RT,w = t{I-wl) “c. (3.38)

It can be noted that for certain values of the parameters T and o
we obtain the previous considered iterative schemes. Also, the above
introduced iterative scheme (3.36) is likely to produce a more improved
rate of convergence, than any other iterative scheme which possesses the
same conditioning matrix. Therefore, it is expected that in general
(3.36) will be faster than the SOR method. The iterative method (3.36)
will be referred to as the Extrapolated Successive Overrelaxation method
(ESOR method). In the remainder of this section we will attempt to find
under certain assumptions on the matrix A, what restrictions are imposed

on the parameters Tt and w so that the ESOR method converges., We will

also determine the optimum values of these parameters so that ESOR attains

its maximum rate of convergence.

4.3.1 Irreducible matrices with weak diagonal dominance

We have already seen (Theorem 2-5.3) that irreducible matrices
with weak diagonal dominance are non-singular. If A has these properties,

then the following theorem can be proved.



Theorem 3.1.1

Let A be an irreducible matrix with weak diagonal dominance. Then,
(a) The GS method converges and the EGS method converges for 0<t£l.
(b) The iterative scheme (3.21) converges for Ogwsl and the ESOR method

converges for O<tgl and Ogwsgl,

Proof

We assume that O<tg¢l, Ogwgl and that S(LT w)al. Then for some

]

eigenvalue X of L we have [x]=1.
3
Furthermore, we have

det(L, -M) = de\t Q=0

’

where

T =W+ ( T

Q=I-GF) b - G U

We let A-1=qe16 where q and 6 are real and 0<qgl, hence we have

T-w+wi
A+T-1

- (T'N)2q2+2wq('r-w)cose+m:i|i< m+q(1_m)
1—2q(1-r)cose+q2(1_f)2 1-q(1-1)

since qg<l, O<tgl and Ogwgl. But

wrq(t-w) _ (1-q) (1-w)
1- icq(l-7) = 1-q1-t) > 0

and hence
T l T+w(A-1)
A+T-1] % | AsT-1

Since A is irreducible and has weak diagonal dominance, D-1A=I-L-U

g 1.

possesses also the same properties. From (3.1.2) and (3.1.5) it follows
that Q@ has weak diagonal diminance. However, Q is also irreducible and
by Theorem 2-5.3 it follows that detQ#0 which contradicts (3.1.1) and

therefore S(LT le' This completes the proof of the theorem.

4.3.2 Positive definite matrices

If we now apply Theorem 3-3.2, then we prove:
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(3.1.1)

(3.1.2)

' (3.1.3)

(3.1.4)

(3.1.5)



Theorem 3.2.1

Let A be a positive definite matrix and let D=diagA. Then

"LT,N"Ai <1
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if the matrix T_l[(z-T)D+(T-m)(CL+CU)] is positive definite or, equivalently,

if
O<tTgw< 2.

where umaxao is the largest eigenvalue of B,
Proof
By Theorem 3-3.2 we need only to show that the matrix
1
M= ¥{ZD'N(CL+CU)] f.A
is positive definite,

It can be easily shown that the above matrix is equivalent to

1
M = ?{(Z'T)D+(T'NJ(CL+CU)]'
If now M is positive definite, then it has positive diagonal
elements, hence from (3.2.3), since D is positive definite, we have

that
0< 1< 2,

On the other hand, if My are the eigenvalues of B, then from (3.2.3)

we obtain 1
@D+ (e-0)y] > 0

for all eigenvalues Wy of B.

If we now assume

w < T,
then since
. <0 ¢
um1n - - “max

we obtain from (3.2.5) that
(2-1) + (r-0ug,, >0
or by (3.2.4)
| (z-w)umin >0
which contradicts (3.2.6), hence
T £ W,

By (3.2.9) and (3.2.5) we have

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)



(2-1) + ('r-w)umax >0
thus

if n gl, then O<w<2,
max

From (3.2.4), (3.2.9) o and (3.2.1%1) it follows that (3.2.1)

holds and the proof of the theorem is complete.

4.3.3 L-matrices and related matrices

We now prove an analogous theorem to Theorem 3-5.5 concerning the

ESOR method.

Theorem 3,3.1

If A is an L-matrix of order N and if Oswgtgl (T1#0) then
(a) S(B)<1 if and only if S(LT w)<1'

(b} S(B)<1 (and S(LT m)<1) if and only if A is an M-matrix;

if S(B)<1, then

S(LT w) £ 1-1+15(B).

Proof

Evidently, if S(Lr,m)<1’ then u=S(B)<1., Since now L is a strictly
lower triangluar matrix, then LN=0 and because of our assumptions we can
easily verify that

(I-wL)-l = I+mL+w2L2+...+wN"1LN'1 2

0
and also that
(1-T)I+(r-w)Ll+<tU = Q.
Thus, from (3.3.1} and (3.3.2) it follows that
L = (I-wL)} " ((1-T) I+ (r-w)L+1U) 3 O.

T,W

Since.LT wis a non-negative matrix, by Theorem 2-1.4 we have that

>

-X=S(LT w) is an eigenvalue ofl}T_mand that there exist an eigenvector
3

>

v>0 such that

38

(3.2.10;

(3.2.11;

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)
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or - =
(Iiﬂi&:llL+U)v o Aslrt v (3.3.5)
T T
which implies that A-1+T is an eigenvalue of the matrix E:Eéi:ll{ﬁu.
Therefore the following inequality holds
l-i+t < S(T+m(k 1)'+U) (3.3.6)
If we now assume igl, then by Theorem 2-1.3 we have
sl ) < sy = s(B) = T (3.3.7)
and by (3.3.6) we obtain
ASTR+1-T (3.3.8)
On the other hand, if 321; then
A= i+r S(T+m!l ~-1) L+U). S(T+w(k 1) T+m£k—1)U)
- Iiﬂi%:ll i (3.3.9)
thus we finally have
— _ A-l4T (1-w) (A- 19N
W wegeny Tt eon . 2 b (3.3.10)

If we summarise our results from the above analysis, then we have
shown:

(i) if Agl, then Xgth+l-t

(ii) if Az1, then uzl
which imply

(iii) if u<l, then x<1 and we have proved (a). Furthermore, by (i)
and Theorem 2-7.2 of Young [1971] we have (b) and the
proof of Theorem 3-3.1 is complete.

Theorem 3,3.2

If A is an M-matrix and if

2
Is T2 w< 135(8) (3.3.11)

then S(L_ )<l.

»

Proof



If we now have lgtgw, then the matrix

TT o = (I—ML)-1[(T~1)I+(m-T)L+TU]

3

is non-negative and we also have

If we let "\7=S(T,r m), then since TT maO, by Theorem 2-1.4 there exists

]

v#0 such that TT 4§=?v which implies that

) ]

(tU+ (w-1+Fw)L)v = (¥+l-T)V.

If Y21, then Elzixwaland from Theorem 2-1.3 we obtain
F+l1-T £ (w-T+Jw)T
. _— 2
or w2 (LAY D Ton

Therefore, if (3.3.11) holds, then we must have y<l. By Theorem 2-1.3 and
(3.3.13), it follows that S(LT w)s?<l and the proof of Theorem 3.3.2 is
3

complete.

4.3.4 Consistently ordered matrices

In this section we assume that A is a consistently ordered matrix.
By working in an analogous way towards the proof of Theorem 3-6.2 the

following can be shown.

Theorem 3.4.1

Let A be a consistently ordered matrix with non-vanishing diagonal
elements and let B=Ia(diagA)—1A. If uwis an eigenvalue of B and
satisfies the relationship

2 2
(1-2} = wn (1-2w),
then A is an eigenvalue of the matrix
A = (I-wL)'ID'lA
w
and vice versa.

For the convergence of the ESOR method we prove:

Theorem 3.4.2

If A is a consistently ordered matrix with non-vanishing diagonal
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(3.3.12]

(3.3.13

(3.3.14

(3.3.15)

(3.3.16)

(3.4.1)

(3.4.2)
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elements and if the matrix B has real eigenvalues, then the ESOR method
converges if and only if

u = S(B)<1 (3.4.3)
and the parameters t and w lie in either of the following ranges:

for w30, 0<t<l and Ogw<l

or (3.4.4a)
127<2 and 1gwg?2

while for wg0, the ranges of 1 remain the same but the corresponding
ranges of w are the following:

-1<wgO0,

2gug-1, (3.4.4b)
Since the matrix A satisfies the requirements of Theorem 3.4.1
it follows that (3.4.1) holds. But (3.4.1) can be written alternatively
to yield the quadratic
A% 2-nZans (1-u?) = o, (3.4.5)
On the other hand, from Theorem 3-3.1 it follows that the ESOR
method converges if and only if
S(Lt,w) <1. (3.4.6)
By assuming a+ib to be an eigenvalue of Aw, then 1-t(a+ib) 1s an
eigenvalue of Lt,m with modulus
[(1-ra) 2 ?p?)
thus (3.4.6) becomes
12(a2+b2)<21a. (3.4.7)
From this inequality we see that we always have
Ta > 0 (3.4.8)
which indicates that we have to distinguish the following cases.

Case I: a>0 and Case II: a<0, that is, the real parts of the eigenvalues

of Aw to be either positive £ negative,



Case 1

In this case we have a>0 and 1>0, thus from (3.4.7) it follows

that 2a

T <
a2+b2

But from Theorem 3.4.1 we have that the eigenvalues of Am are the roots

of (3.4.5) so the eigenvalue with the maximum real part is given by

the expression

F(W,Uz) = Re{lz'w“2|+/ﬁ2£22u2-4(w-1)]}

hence the range of 1 for the ESOR method to converge is the following

0 < T < 2/ max P(w,uz).
OSuzsﬁz'

Our problem therefore is to find the quantity ma§ P(m,uz).
2_ M2

We first assume that w u2-4(w-1)<0, then w>1 and

for all u2 such that Osuzsﬂz. In addition, we have that the modulus

of the eigenvalues of Am is given by the expression
2 [ 2
[T(w,u)] = V1-u

which implies that 2
l-4 >0

and therefore (3.4.3) holds. In this case a>0, which implies that

2-u2w > 0
hence the parameter w lies in the following range
1<m52<2/ﬁ2.

On the other hand, from (3.4,10) it follows that

2
F(w,uz) = z-gu
thus max T(w,1%) = T(w,0) = 1.
Osuzsﬁz

Let us now consider the case where m2u2—4(m-1)>0, then we define

2
Hy bY

g, 4(w-1)/m2 if w3l
NO =

0 if w<l,

2_4(0-1)<0
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(3.4.9)

(3.4,

(3.4.

(3.4.

(3.4.

(3.4.

(3.4,

(3.4.

(3.4,

(3.4,

10)

11)

12)

13)

14)

15)

16)

17)

18)
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Next, if “25“3’

i
é§§ the function P(w,pz) is given by the expression (see (3.4.10))

then m2u2-4(w—1)50 and ma§ F[w,u2)=1. Moreover,

for Ogu

r (w,n?)

2ol AP [P we1) ] (3.4.19)
2 ) o

It can be easily verified that F(w,uz) is an increasing function of

uz, thus J/
-2 42 2.2
max P(m,uz) = 2oWH VU gw uo-4(w-1)] | F(w,iz) (3.4.20)
2 -2
Osy gy
and also
(w,i%) < T(w,1) = 2-w. (3.4.21)
Summarising our results we have that
r,i%)<2-0 , if' Ogw<l
max T(w,u ) = o (3.4.22)
OSuzsﬁz

1 ., 1f 1swg2.
By combining (3.4.22) and (3.4.11) we readily see that the

relationships (3.4.4a) hold.

Case II
In this case we have that a<0 and 7<0, thus from (3.4.7) it follows
that 2a

a2+b

5 < T (3.4.23)

By following a similar analysis as in Case I we can show that (3.4.3)
holds. In addition, since in this case
2-wu2 <0 (3.4.24)

we conclude that the range for the preconditioning parameter w is

2/ cuce, (3.4.25)
or o , - S ,
| _ mex{ﬂlﬂ} Cwqe | (3.4.26)
ospsﬁ‘ )

implying thet w-:ép.vh the other hand, we have

L TH{wR)- Rei(wp“'_ﬁﬂ/;f[w"}xa-a‘(w-i)] )/2} (3.4.27

THere we assume wx0., We discuss later the case wsgO.
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which 15 an increesing {&ncifon of w, This implies
that if w=w, then z—0" Therefore, in this cgse the
ESOR wmethod does woi converpe. -

Further, if we assume that wg0, then we let
@ = -w (3.4.28)
and define the ESOR method as

L) u(“)n(I-SL)‘lD"l(b-Auf“)) (3.4.29)

where we see that we can apply the same theory as for the case w=0.
Therefore, from {3.4.4a) and (3.4.4b) we obtain that

0<1<1 and = Osgw<l
or n
1gt<2 and - lswg2, ' (3.4.30)

where if we use (3.4.28), then we obtain (3.4.4b) and the proof of the
theorem is complete.
We now seek to determine the optimum values of t and w such that

S(Lr w] is minimised. This is achieved when
H

| (1-12)+ith| = |(1-Ta)+itb] (3.4.31)

with agagid, bgbshb

where a and 2 are either positive or negative values. From (3.4.31)
we see that if B
b=b=20 (3.4.32)
and T= Ty = :3_ , (3.4.33)
at+a

then S{L:m) attains its minimum value which is given by the expression

k(Am)-l
S(L%O,w) = ETK;T:T (3.4.34)
where the quantity k(hw) is defined as
-2
k(Aw) = 2 (3.4,35)

and will be referred to as the virtual condition number of the matrix Am.
Evidently, the optimum value of w will be determined such that (3.4.32)

to hold and such that k(Am) attains its minimum value,
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Theorem 3.4.4

Let A be a consistently ordered matrix with non-vanishing diagonal

elements such that the matrix B has real eigenvalues with u=S(B)<l.

(i) for any w in the range 05wg2 the virtual condition number of Am

is given by

2_mﬁ2+/‘2[w2a2-4(w-1)] if Oswel (3.4.36)
2-wii —/IZ[m2 T -4{w-1)]

2

k(Am) = { /L , if lswsmé (3.4.37)
2-wl” - [w 4(m—1)]
2, RTINS (3.4.38)
. 2-wy
where 2
f = =
w) /f—_é (3.4.39)
1+/1-1
and k(Am) is a strictly decreasing function of w for 0<m<wé. Moreover,
k(hw) is minimised if we let
w = o (3.4.40)
b
and its corresponding value is given by
_2
k() = 1705 L (3.4.41)
b
On the other hand, if we also let
= = t d
T | Ty = @) o (3.4.42)
then the spectral radius S(LT m) attains its minimum value which is
given by the expression
' 2
171w .o, (3.4.48)

S(%OM) =S(z,, o=

The "fr;of of this theorem follows an the next
fdge. .
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Proof
The eigenvalues of A = (I-wL)'lD‘lA are the roots of (3.4.5)

and are given by the expression

2, /2,22 4)
2, _ 2-wp‘s -4 (- (3.4.4
o - 2ty
hence in the case where Aw has complex eigenvalues we have
2
- 20 and b= APAtage-1)]/2, (3.4.45)

From (3.4.45) it follows that

b = min b =0 (3.4.46)
= 2 -2
Ogu su
and
b= max b =APeila(0-1)]/2 (3.4.47)
OSMZSHZ

which imply that for (3.4.32) to be satisfied we must have

wii%-4(u-1) = O (3.4.48)

or the preconditioning parameter w to take either the value

o = (3.4.49)

b
or w = wg (3.4.50)
where it can be readily verified that

lswf<2<ul! (3.4.51)
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Next, we seek to determine k(Aw) for Ozwg2 and for 2<w<e,
If Ogws2, then we recall from (3.4.22) that the eigenvalue of Aw with

the maximum real part is given by

yif Ogwxl

max P(m,uz) = (3.4.52)

Osuzsﬁz 1 yi1f I1gwg2,

2o [0l -4 (w-1) ]
2

In order to determine the eigenvalue with the minimum real part,

we define the function

{l2-mu2|—¢£2[w2u2-4(w-1)]}

Y(m,uz) = Re 5 {3.4.,53)
thus in this case we have .
2 J2.22
Y(m,uz) = Re {2—mu -/ﬂ'{g B _4(w-1)]} (3.4.54)
Moreover, we prove:
Lemma 3.4.5
Under the hypotheses of Theorem 3.4.4 we have
=2 L2, 2_2
2-wjl —Jﬁ [w™H -4(w-1)], if Oswsu)
2 b -
. 2 =2
min y(w,u’) = y(w,n) = 2-uii E ot encd (3.4.55)
Sw<
Osuzsﬁz 2 » 1L wpsw
Proof
2.2 2 2 2
If w0 -4{w-1)<0, then w>1 and w w -4 (w-1)<0 for all u~ such that
05u2552, hence from (3.4.54) we have that
-2
, 2 -2 2~
min _y(w,u%) = y(u,i7) = =5 . (3.4.56)
Osn“gH
. 2 2 22 . 2. . . .
Next, if TP then w u -4 (w~1)<0 and m%n Y(w,u") is again given
u
by (3.4.56). Alternatively, if OSuSSuzsﬁz, then
| 2 [2772
2 2- - - -1
y(o,p?y = Zzou —vk lwy -4(u-l)] (3.4.57)

. . . . 2 .
which is a decreasing function of p~ since

2
sign{al&gi%m21 = - sign] (Mot et w-1)+0m) ) (3.4.58)

du
and we have that
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z_maz-/z[mz 2_4(u-1)]

. 2 -2
min y(w,u ) = y(w,u”) =

(5.4.59)
Osuzsﬁz
2 2 2
Consequently, for all yu~ such that Ogp i~ we prove that
. 2 22
mén y(w,u™) = y(w, 7). (3.4.60)

H
, . 2, . . . .
Since the function 4(w-1)/w” is an increasing function of w in the range

0<w<z and from (3.4.48) we have 4(u-1)/(w!) =", it follows that if
0<w$mg, then ﬁ234(w-1)/w2 and mgn y(m,uz) is given by (3.4.59 whereas
if wcw<2, then 224 (0-1)/0® and min y(w,u%) is given by (3.4.56), hence
(3 4,55) holds and the proof of Leﬁma 3.4.5 is complete.
From (3.4.52) and (3.4.55) we. readily see that k(A ) is given by (3//55)
(3,4,37)1 (3.4.38). From ‘thl‘S. it follows _that k(Am) >k(A“’t'>) if wt')<w<2.
Next, we seek to show that if O<m<wg, then k(Am) is a decreasing

function of w. But for Ogwgl we find

sign [%k(nw)) = sign(p -1) = -1 (3.4. 61)
and for lsw<mﬁ
sign [%R(Aw)] = -sign(2-wi®- i [62io-4(0-1)])

where

(2-0i?) % = wiit-duitea
and

P relitae-nD? = o¥it-aun?ean?
hence

(3.4.62)

Consequently, if m=mﬁ, then k(Aw) is minimised and its corresponding

. d .
sign [Sak(ﬂw)] = -1,

value is given by (3.4.41). For this value of w we have from (3.4.55) that

Tk (3.4.63)

Y(,0%) = (-
hence the optimum value of t is determined by (3.4.33),(3.4.52), (3.4.63)
and is given by (3.4.42). Finally, from (3.4.34) and (3.4.38) we easily

prove the validity of (3.4.43).




From the above analysis we see that if wg0O, then by using (3.4.28)
we can develop the same theory as for w30 and obtain the same results
with some evident modifications (&5=-mél

A corollary from Theorem 3.4.4 is that although the ESOR scheme
is different from SOR (when T#w}, the two methods have the same rate of
convergence at the optimum stage. However, as it will be seen from the
following analysis, this does not happen in the more general case where
the matrix A is consistently ordered and the Jacobi iteration matrix B
has real eigenvalues p, such that Eém}n]ui]#o. On the contrary it is
expected to obtain a greater rate of convergence for ESOR than the SOR
method since we let T take its optimum value, whereas this is precluded

in the latter iterative scheme.
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Theorem 3.4.6

If A is a consistently ordered matrix with non-vanishing diagonal

elements such that the matrix B=I-D-1A has real eigenvalues ui, i=1,2,,.
with
w= minlu| #0 and T = maxfu| ,
i i

then the ESOR method converges if and only if

u=8(B) <1

and either[I) 2
0<t<2/max T(w,p”)
2

where if H
'/1 < 1- U ’
then
~2 f2, 22
2-wu +/1-l [;J -4 (w-1)] , if OSUJSL
max F(m,uz) = 2-wu2
2l = » if ogwgl
with &= _2
2—32
otherwise
-2 2. 2
2-wil +/ﬁ [; sud (o2 3 ) PP ostMB(ﬁ)
max P(m,uz) = z'wuz
H . .
uzspzsﬁz 5 s if mb(u)smsz
Where wl')(ﬁ) = —-—-2——-—- 3
I'(w}d) g ’
r(II) ,mﬁ)( ) <32<o where {f 1-u &
wy -2 b
— ,ifa&gmgmg(ﬁ)
2
X I(w,u’) =
, max I (w, =2 )
LEES TR w2 %giu -4(w-1)] | i¢ wy (i) sw<e,
7(_ '.-':"':v‘: 2
T with = —i—
1- -ﬁz
otherwise

Pot) - 9B B 4(0-1)]

prs ytfc 2
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.-,N

(3.4.64)

(3.4.65)

(3.4.66)

(3.4.67)

(3.4.68)

(3.4.69)

(3.4.70)

(3.4.71)

72 then

(3.4.72)

(3.4.73)

(3.4,73)
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Proof

Let us first assume that the real parts of the eigenvalues of Am

are positive, then we recall from (3.4.14) that

w<2/ul (3.4.74)
and that the eigenvalue of AuJ with the maximum real part is given by

the expression

Plu,u) = Re {2'““2“'/“2[“;_’2“2‘4(‘“‘1)]} (3.4.75)
Thus, the range of t for the ESOR method to converge is the following
(see (3.4.9))
0<r<2/max T(w,u’). (3.4.76)
l-l2 . ' :
Since in this case we have that the eigenvalue relationship (3.4.1) is
satisfied, we obtain again (3.4.12) and therefore (3.4.65) holds.
From (3.4.64) we see that
wen’en’ (3.4.77)

which implies that in order to examine the position of ug {see (3.4.18))
with respect to EZ and ﬁz we have to distinguish the following cases:
(1) ocp’ei’<nl, (i1) O<u’sulen” and (iii) osuj<u’si’.
Case (i): O< 2<"2<u2

(1): O<psh<ug

In this case we have that wzﬁz—4(m—1)<0 hence w>1 and m2u2-4(m-1)<0

for all \f satisfying (3.4.77). In addition, we have from (3.4.75) that

2
P(m,uz) = 2—;u (3.4.78)
thus
2, 2mn
max T'(w,u”) = 5 = A (3.4.79)
2. 2.2
LSS
where the range for the parameter o is
=2
l<wg2<2/U". - (3.4.80)

Case (ii): 0<525u55i2

In order to examine this case we distinguish two subcases according



to which (a) ué.{uz and (b) uz.ﬂg

Subcase [(a): ugsuz

For this subcase we have w2u2-4(m—1)30 thus (3.4.75) yields

2—wu2+/uz [m2u2—4 (w-1)]
2

r(w,u’) = (3

. . . . . 2
which is an increasing function of pu~ since

2
sign [ﬁzﬁ@ik—lJ = sign[(#m2u2—4(w-1) -mu)z]. (3

2
au
Consequently,
‘L2 L2 2.2
max I'(u_;,pz) = r(m,ﬁz) -~ 2-wy +/u gw u —4(m—1)_l (3
2.2 4
JERESTRIT!
where we easily verify that
F(w,ﬁz) <T'(w,1) = 2-w =B (3

Subcase (b): uzﬂg
Evidently, for this case we have m2u2;4(w-1)50 which has already

been examined in Case (i).

Case (iii): 05u§<g?$ﬁ2

For this case we immediately find that w2u2-4(w-1)20 for alllf

102

.4.81)

.4.82)

.4.83)

.4.84)

which satisfy (3.4.77) and therefore we obtain the results of subcase (a).

On the other hand, we let

22
[w) ()] 1" -4 (w) (W)-1) = 0 (3
since it is easily verified that
2 7
1<wt')(y_)<2<.?./{.i < wb(&J. (3
where 2
wp(p) = ——— (3
b
- L2
and L+vl-w _
w () = —2 (3

.4,85)

.4.86)

.4.87)

.4.88)
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Similarly, we let

[ ()1 %524 (u} (M -1) = 0 (3.4.89)
since 2 4w
L<wy (1) <2< 2/ L < &, (f) (3.4.90)
where 2
of (1) = —E— (3.4.91)
=2
and 1+V1-u
- 2
W (§) = —=— (3.4.92)
1-/1-i%

By combining (3.4.86) and (3.4.90) we find

-2 Hya v
L) () o) () <2<2/fi € W (F) € 03, (1) (5.4.93)

From Case (i) we find that if mé(ﬁ)SN, then m%x P(m,uz) is given
u
by (3.4.79), whereas from Case (iii) if NSNB(E)' then m%x P(m,uz) is

U
obtained by (3.4.83). Since for w in the range wé(u)swswé(ﬁj we have

that m%x P(w,uz) is either expressed by (3.4.79) or (3.4.83) we have
u
to examine the sign of the quantity A-B (see (3.4.79) and (3.4.84)).

It can be easily seen that
sign(B-A) = sign(w-w) - (3.4.94)
where @ is given by (3.4.69).
Thus, for w in the range
wé(HJSwsmg(ﬁ) (3.4.95)

we have

2 B y 1f w<w
max T (w,u) = ) (3.4.96)
2 A , if wi.

On the other hand, we have that
&agwg (N (3.4.97)
if the relationship (3.4.67) is satisfied. This implies that if (3.4.67)
holds, then m%x F(m,uz) is given by (3.4,68), otherwise it is given by
(3.4.70).

Let us consider the case where 2<2/&2<m<w. By following a similar
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analysis as previously and noting that $<2, the validity of CIID. can be

easily verified and the proof of the theorem is now complete.

Lemma 3.4.7

Under the hypothesis of Theorem 3.4.6 and if {i=S(B)<l, then for 05w¢Q

) 2 2
min y(w,u )} = y(w,u") (3.4.98)
wlen?ei
where ‘
2 2 2
2 - - -
¥(w,u°) =Reg|2 wu”| 2"“‘ Nl Co ”]} (3.4.99)

Moreover, for any w in the range Ogwg2, we have

,if Ostwg(ﬁ)

1]

2-wﬁ2-/62[w2ﬂ2;4(m-1)]
2
v (w,77) {

9o (3.4.100)
LaC J1f w) (i) sus2,

whereas for any w in the range Q/;f< W< 00

92“;3 ,if%@:wsmg(g)

Y(m,ﬁz) = - (3.4.101)

Wit -2 Vfé[w B -4 (w-1)]

2 1F w) (W su<e

where mé(ﬁ) and mg(g) are given by (3.4.71) and {3.4.88), respectively.

Proof

Similar to the one followed in Lemma 3.4.5,

Theorem 3.4.8

Let A be a consistently ordered matrix with nonvanishing diagonal
elements such that the matrix B=I-D-1A has real eigenvalues My i=1,2,...,N

with —
1 = min [ui| #0, u= max luil (3.4.102)
L i : 7

and such that u=S(B)<l,

(i) For any w in the range OswgZ, we have that:

if - |
A-i?<1-p? (3.4.103)

then
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f
=2 L2 2.2
2-wi +/ﬁ [w™ 1™ -4 (w-1)] L if Ogwso
2-wﬁ2—V62[w2ﬁ2-4(w-1)]
2 2 a
k(A) = 1 ~Wh , 1f Ggwse! (D) (3.4.104)
2 L2 2.2
-0 -0 [w i -4 (w-1)]
2~wu2 p
- » 1f w! (1) sws2
( 2-wﬁ2 b
otherwise
[ 2-wﬁ2+/62[w2ﬁ2-4(m-1)]
» if Oswso! ()
Z—wﬁz-/éz[w2ﬁ2-4(w—1)] b
k(A ) = A 2 (3.4.105)
w 2= -
—— » if w) (i) sws2
L 2~-wi
where & and wé(ﬁ) are defined by (3.4.69) and (3.4.71), respectively
Moreover, k(Am) is a strictly decreasing function of w for
0<m<w6(ﬁ) and if we let
= 1Y = 1
W wb(u) Wy s {3.4.106)

then k(Aw) is minimised and its corresponding value is given by

1 u? vy, “2“’6 |
k(A,,) = 1 - —= = 1 - '2 (3.4.107)
!
b A 14/1-7° 2-a,
On the other hand, if we also let

4wg
T =T, & ——m————, (3.4.108)
2 2
4-u {mé]

then S(LT m) attains its minimum value which is given by the expressiocn
»

S(Lfo’mé) = 1+T0-2T0/mé. (3.4.109)
: . . 2 M=
(ii) For any w in the range 2/}42<w_<00, if QU_M%(F), then
y 1wzl (1
wu2~2 r b
L(A' ) ) ;L (3.4.110)
2 2 2.2
= -2+ -4 {w-1 . ¥
“ = uwgf_u,l -B) ¢ ot () suses; (1)
-2 [ 2, 1.2 g
wi-geyfi'foh-4@-1)] .f w] (k) we< eo

Wk FF 24 -1
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othevwise

w2t Vi [wp 4(- 1)? o afcws ey ()
L[Al}z J Wit - (34.111)
" I' w'ﬁ-ﬂﬂm"‘-‘i(ﬂ'ﬁ} Cif w,(Bewcoo
wp-a-\!a"[‘tpwi(w 1)1
e A0 definat by (34.38) Horeser, k) it minimised if e &2
= “’b(f‘) wb

awza( ,Zg carrespanafmg v«fae (S (g:(;&'ﬂ Ay ﬂe CX)DYES.S“/oly.

) ( vi-2) | [w wyufa-1) 1.
Furf}]eﬂ’ :f Wwe ZUF =~ (, wha\f‘e
/ i [ (wh ) [5'.1/._/(2)
e s‘(l f‘o,wfg) =7, (i-f?/Wf ) -1, (3.4.13.

From Theorem 3.4.6 and Lemma 3.4.7 we can easily verify (3.4.104),
- - ' -
(3.4.105) and (3.4.110). Evidently, k(Aw)>k(AwB(ﬂ)) if mb(ﬁ)<m<2.
Next, we seek to show that if 0<m<w6(ﬁ), then k(AwJ is a decreasing
function of w,
Since

sign (—?— E'“’ﬁz‘“/' 2[‘*’2‘32-4(“’-1)1J] = sign(fi-1)
Jw
2-wﬁ2-/L [w u2-4(m 1))

and

sign {% [ - :H

202V (0254 (w-1) ]

2. 2_2 -2
= Sig“["Ez(z'wﬁz-ﬁﬁz[m252—4(w 1)])+u (2-wy ) o T -4(w-1) )+ (wi -2)

/l[w i -4(w-1)]

where 2 Wi TVl 24 (0-1)

it follows from (3.4.104) and (3.4.105) that for O<m<mg(ﬁ), k(Aw) is a
decreasing function of w and is minimised when w takes the value given
by (3.4.106). From either (3.4.104) or (3.4.105) we see that for this

value of w, k(AwJ is given by




2—_2wg
k(Aw') = -2
b 2-1 wé

=

which by (3.4.91) yields (3.4.107). Evidently, for m=mg(ﬁ) either

(3.4.68) or (3.4.70) yields

2—w'u2
max T (w! 2) = b=
bt =3
2 -
B SUZSUZ
whereas by (3.4.100) we have 2
A
min vy (wl,u") = —
2. 2.-2
U SuSH

thus by (3.4.33) the optimum value of t is easily verified to be given

by (3.4.108). Finally, by combining (3.4.34) and (3.4.107) we obtain

(3.4.109) which is the minimum value of S(LT, ).

Similarly, we can prove the secﬁnd part (ii) of the theorem, thus
completing its proof.

From the above theorem we have the following corollary (see

Hadjidimos [1978]).

Corollary 3.4.9

Under the hypotheses of Theorem 3.4.8 and if

0<1__[_ = E = u(l’
then S(L.. J=20
To Y,
where
wé = 2 and T, = 1

0 s
1+;/1-u2 1-u2

Also we see that for p=0 we obtain Theorem 3.4.4 as a special case of
Theorem 3.4.8.

From Corollary 3.4.9 we have that under the special condition
(3.4.117) one can obtain an exceptionally fast rate of convergence by

applying the ESOR method.
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(3.4.114)

(3.4.115)

(3.4.116)

(3.4.117)

(3.4.118)

(3.4.119)

However, it can bé easily verified that under

the same condition, one can obtain an analogcus relationship to (3.4.118)

for the EGS method (i.e. when w=1).
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On the other hand, Corollary 3.4.9 shows how in the ESOR method one can
' exploit the spectrum of the eigenvalues of the matrix B to achieve the best
possible results, whereassuch a possibility is precluded in the SOR. We note
that the superiority of the ESOR method depends strongly upon u. This can
be easily seen since if we assume p>0, then from (3.4.108) and (3.4.109) we

have that R(LT m,)+RGLw, w,), whereas if p»i, then from Corollary 3.4.9 we

0*'b b’ b
see that S(LT m,)—>0. Finally, a comparison of the ESOR method and the SOR
0’"b

showing the dependence on u, is given by the following theorem.

Theorem 3,4.10

Under the hypotheses of Theorem 3.4.8 and for fixed p we have

R(LT w!?
. 0°"b 1
lin o 5= — - (3.4.120)
~ L -
w1 mb,wb 1-y
Proof
Since in this case k(A ,)>>1 for fixed u, then we have R(L_ ,)~vre—
w = T ” k(A )
b 0’"b wy
and therefore from (3.4.107) we obtain
R(LTO’“’E) 1 1
lim ﬁ—i————)-= lim i = 7 (3.4.121)
1 wé,mg e 1- I -y

1+¢1-'1I2

As it was seen earlier, the advantages of the ESOR iterative
procedure depends upon the value of p, The determination of y is the
added work in the ESOR method as compared with SOR and it may incur some
extra éomputational effort. The need for knowing u is very strong
especially in the more general cases where the matrix A is not consistently
ordered and the ESOR theory is expected to hold approximately, Apart
from the iterative procedures which can be considered in a similar way as
for the determination of u, (see Young [1954], Young and Shaw [1955],
Hageman and Kellogg [1968]) another approach is to use the a priori

exact and approximate methods.
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4.4 THE PRECONDITIQONED JACOBI METHOD (PJ METHOD)

In Section 4.2 it was noted that GS,SO0R,SSOR and EMA iterative
procedures are not the appropriate methods which can produce the maximum
rate of convergence using the corresponding conditioning matrix R. A
result of this observation was to develop the new iterative schemes (3.1)
and (3.34) which were proved (under certain conditions) to be superior over
their corresponding '"counterparts" (i.e., GS and SOR respectively).

In this section we will attempt to ftollow a similar approach as in
Section 4.3 in order to construct and study iterative schemes which use the
more general form of conditioning‘matrix given by (2.4),(2.9) with w, =,
Wy=w and employing the same splitting of A as given by (2.10). We therefore
consider the iterative schemes assoéiated with conditioning matrix

R = (D-wcL)D'l(n-ch). (4.1)
(SSOR and EMA are iterative methods which possess the above conditioning
matrix).

Before we start defining any itgrative process using the particular
form of R given above, we can obtain a crude idea as to how effective this
conditioning matrix is going to be, by comparing it with the conditioning

matrix
R1 = D(I-wl). (4.2)

An alternative form of R, given by (4.1), is the following

R = D[I~m(L+U)+w2LU] (4.3)
where we see that its effectiveness depends strongly upon the product Lu
since the remaining part of the right hand side in (4.3) is a good
approximation to the matrix

A = D[I-(L+U)]. (4.4)
Consequently, by comparing the conditioning matrices R1 and R we conjecture
that if any norm of LU (e.g. ILUl ) is sufficiently small, then the
conditioning matrix R may produce slightly bettgr improvement on the

"condition" of the preconditioned system than R In other words, we

1
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expect that under certain conditions, the iterative method which is
associated with the conditioning matrix R, to possess slightly better
rate of convergence than the SOR method.

The associated iterative scheme with R is of the form (2.7) and is

given by
u(n+1) = u(n) +T(I—wU)_l(I-wL)_lD-l(b-Au(n)) (4.5)

where w,T are real parameters and their role will be considered later,
We will commence our study of the above scheme by considering first
the case where t=1. Thus, we will concentrate our attention on the

iterative process defined by

I B R N e e I A B M LN (4.6)
which is the Jacobi version of (4.1) and will be referred to as the
Preconditioned Jacobi method {PJ method). If we consider vector
corrections (see (2.8)), then the PJ method can be written as a two-

level fractional method given by

L) (), ()

z:(n’rl) - mUC(n+l)+C(n+i) (4.7)
and u(n+1) = u(n]+;(n+1)
where

r@® - plpean™y, (4.8)

Finally, a more compact form can be obtained from (4.6) to yield
(n+1) _ (n)

u = m;u N, (4.9)
where K = 1-(1-00) " (1-01) "I71a (4.10)
and n, = (T-at) "t (1-o1) e, (4.11)

From (4.10) and (3-2,39) we see that the PJ method and SSOR have similar
forms and therefore it is expected that the amount of work involved is
approximately the same (see Appendix A). It should be noted however
that the PJ method defined by (4.7) is a modified version of (1.10),
where in the former it is not required to use (1.4) after the criterion

of convergence is satisfied, thus reducing the involved computational work.



4.5 CONVERGENCE OF THE PJ METHOD

From (4.6) we see that the preconditioned matrix of the PJ method is

B = (I-mU)'l(I-wL)“ln‘lA.

i1

(5.

If we assume that A is a real symmetric and positive definite matrix, then

Bw is similar to the matrix

B
w

D'i(n-mcU)Bw(n-mcU)'ID*

D*(D-wCL)'lA(D-mcU)"ID%
}

[Di(D—mCL)nl]A[D (D—mCL)-l]T.

The last expression offi)implies that E; is obtained from A by a

}

congruence transformation since the;matrix D (D-wCL)-1 is non-singular,
Furthermore, by Theorem 2-2.4 we have that E; is a positive definite

matrix which implies that Bw is similar to a positive definite matrix,
From this observation we have that if Y4 and ki are the eigenvalues of

Jﬁuand Bw respectively, then they are real and are related through the

relationship

where A, > 0.
Consequently, by Theorem 3-3.1 and (5.3) the PJ method converges if

and only if
O<hx.<2.
i

Theorem 5.1
Let A by a symmetric matrix with positive diagonal elements, then
s(#,)<1
if and only if A is positive definite and
0 <w<we

where w = 1-v2/2 and we = 1+/2/2.

Proof
From {5.1) and (3-2.39) it follows that

-aw = I-m(Z-w)Bm

(5.

(5.

(5.

(5.

(5.

(5.

(5.

1)

2)
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and therefore we have the eigenvalue relationship
w(2-w}x = l-v (5
where A,v are the eigenvalues of Bm and &m’ respectively.
If we now assume that A is a positive definite matrix and (5.7) holds,

then from Theorem 3-5.6 we have that v&€[0,1} which by (5.9) implies that

A€(0, ETE%ET]' (5

Moreover, from (5.7) we have

1

m< 2, (5.

hence (5.5) holds and the PJ method converges.
Suppose now that Sﬁﬁp-<l,then we have that (5.5) holds.
If »>0, then by (5.2) we have that A is positive definite matrix.

But by Theorem 3-5.6 Ogv<l if O<w<2, hence by (5.9) A&(0, If

1
w{2-w)" "
now A<2 which implies (5.11), we have that (5.7) is satisfied and the

proof of the theorem is complete.

.9)

.10)

11)
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4.6 DETERMINATION OF GOOD BOUNDS ON A(B) AND A(B )

From the previous section, it is clear that in order to study the PJ
method and to determine a good estimate of w near the optimum we need to
determine S(Jggand then study its behaviour with respect to the preconditioning
parameter w. From (5.3} it follows that Sﬁﬁ} is given by

S = max{[1-2(B) |, Il-A(Bwﬂ} (6.1)
where A(Bw) and A(Bm) are the minimum and maximum eigenvalues offhf
respectively. The determination of A(Bw) and A(Bw) is therefore essential
for our analysis. By following a similar analysis of Habetler and
Wachspress [1961], we will attempt to find the eigenvalues of Bw in terms
of certain inner products.

Let us assume that A is an eigénvalue of Bw and v an associated

eigenvector, then it follows that

Bwv = Av _ (6.2)

which on substitution of Bw from (5.1) becomes
(-0t "  1-u1) AV = av (6.3)
or Av = AD(I-wl) (T-wl)v. {6.4)

Furthermore, by taking inner products of both sides with respect
to v, (6.4) yields
(v,Av) = A(v,D(I-wL) (I-wU)v) (6.5)

which can be solved for X to give the expression

= (v,Av)

A = D (-el) (T-al) V) (6.6)
We can now expand the numerator and denominator in (6.6) to obtain

3 = (v,Dv)-(v,DBv)2 6.7)

(v,Dv) -w(v,DBv)+w" (v,DLUV)

and if we divide both parts of the ratio by (v,Dv)#0, then we have the
final representation of ) which is given by the expression

A 1-a(v) (6.8)

i 1-ma(v)+w2§(v)
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where a(v) _ (z;?gzi
(6.9)
and é(v) = £%$%%%§l .
From the above expression of A we see that it would be possible to
determine the largestland the smallest eigenvalues of Bw if we happened
to know their associated eigeﬁvectors, respectively. We therefore have
to rely on bounds for a(v),é(v) to yield reasonable bounds for A(Bw) and
A(Bw). Since Bm is similar to a symmetric matrix, by Theorem 2-1.,5, we
find that for any v#0 we have
A(B ) s 120 o). (6.10)
v 1-wA (V) +0 B (V) @
Lemma 6.1
If the eigenvalues p of B lie in the range
m(B) =m s usM=M(B), (6.11)
then the quantities ﬁ(v) and éfv) are bounded as follows.
n=m(B) g a(ﬁ) < M(B) = M
and - 05 B(v) £ S(LU). (6.12)
If we first consider ;(V), then from (6.9) we have
. S } %
o + G- LS 403
where w=D£v and §=D5BD”5.
Thus, a(v) is a Rayleigh quotient with respect to B which is
similar to B and by applying Theorem 2-1.5 the first part of (6.12)
follows. Similarly, from (6.9) we have
vy = (LDLUV) v, o)ty _ (w,LUw) (6.14)

v,v) by ohv) (e, W)

where again w=Dy and E=ﬁT=D£LD_5. Hence B(v) is a Rayleigh quotient
with respect to the symmetric and positive definite matrix LU and the

proof of the lemma is complete.



Since we assume A to be a positive definite matrix, B is similar

don-4 -4

B=D?BD” =I—D-%AD hence
M(B) = M(B) =M < 1
and from (3-6.3) we finally have
mg0OgM<l1.,

Next, we note that B=L+{ is symmetric and similar to B, hence

S(B) = S(B) = S(isD) = IT+Uh<ITh+nTl = WTB+IT 1=
= 2IT1 = 2/S(LU) = 2/5(i0) < 2/
where S(LU) < E.

Moreover, from (6.16) it follows

which implies that if the bounds -m and M exceed 2/§.we replace M by
2¢§ror m by -2/@: Finally, from the above analysis it is readily seen
that the following inequalities hold
-2/BsmgOsMemin (1 ,2/8).
We are now in a position to determine upper and lower bounds for
A(Bm) and A(Bw)' Although a crude upper bound for A(Bm) was found in
Section 4.5 based on the properties of the matrix &m, nevertheless we

present an independent approach to the same problem.

Theorem 6.2

If A is a positive definite matrix, then

1

A(Bw) $ tw(2-u)

where Q<w<2.

Proof
It can be easily verified that
D(I-wL) (I-0U) = w(2-w)A + D[(1-w)I+wl]) [(1-w)I+ul]

which when substituted in (6.6) yields

to
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(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)
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N (v,AV)
" 0 (Z-0) AN+ (v, 5[ (T-0) Rl T [(1-w) T+l )

(6.22)

However, from Theorem 2-2.2 we have

v ,D[ (1-w) T+wL] [ (1-w) I+uU]v) = (D% v,D* [(1-6) T+wL] [ (1-w) I+wU]D_£D£ V)30

(6.23)
and therefore (6.22) yields
(v,AV)
g (v,w{2-w)AV) (6.24)
which is valid for all the eigenvalues of Bw' On the other hand, it is
known that Bw is a positive definite matrix and therefore by (6.24) we
obtain (6.20) provided O<w<2, hence the proof of the theorem is complete.
The following theorem gives a lower bound for A(Bw) obtained by
~studying the behaviour of the expression (6.8) with respect to a(v) and
é(v).
Theorem 6.3
Let g,m and M be numbers such that
-2/§$m$m(33,
M(B) xMgmin (1, 2V8) (6.25)
and S(LU) <.
Then, a lower bound on A(Bw) is given by
__};M_Er = ¢1(w),if Ea%-or if Es%-and wSw*
1-wM+w B :
A(B ) = (6.26)
w 1-m =1
——5 = ¢2(m),if B<Z-and wrw*,
1-wm+w B
where for 54% we define w* by
Wt = —2 (6.27)

1+V1-4§ .

Proof
Let us consider the eigenvalue X of Bw given by (6.8) as a function
of the variables w,a,ﬁ, then we will attempt to find a lower bound of

this expression by studying its behaviour with respect to a,B, hence we have
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the following problem to solve

A(B ) > minMw,a,8) = min {—3{3—7} . (6.28)
W A A ~ -~
a,p a,B “l-wa+w B
It can be easily verified, for fixed w and 5, that
sign{i} A(m,a,g)] <0 (6.29)
of

since w>0 and a<l.

Thus X (w,a,8) is a decreasing function of 8 and from (6.25),(6.28) and (6.12) it
follows that our problem reduces to the following

A(B,) % min A(w,3,B). (6.30)
a

Further, in this case for fixed w, we have

sign[il-k(w,a,ﬁ)] = sign(—m2§+w-1) (6.31)
84 :

hence we can easily construct Table 6.1 which verifies (6.26). Thus the

proof of the theorem is now complete.

§-Domain w-Domain wzé-w-l A(B,) Bound
Bar O<w<2 50 6 @)=\ (w,M,B)
0<wsw* >0 45 (@) =X (w,M,B)
Os§<%- R
w=u* =0 t; (@)=1(w,3,8)
¥ << 2 <0 ¢2(w)=A(w,m,§)
TABLE 6.1

BEHAVIOUR OF A(w,3,B) AS A FUNCTION OF a




4.7 DETERMINATION OF S(ﬁ% } and Wy
1

From the analysis of the previous section and (6.1) we see that

5 (ch) = max{\’ma:;c %): | Ymin %)l }

v dC Jav . are the maximum and minimu i
where max( m)’ mlnGH@) h and minimum eigenvalues of ﬂ;:

respectively. It is evident that
Vo )= 1-A(B)
_ 1
and lvminGKJI T w(2-w) 1.
Let us first examine the behaviour of
V(w:a»é) = l‘h(w,a:é]

with respect to w in the range (0,2).

Using the notation of the previous section, we have

sign[gﬁ-v(w,a,é)] = sign(2uwB-3),

which simply means that we have to examine the behaviour of the function

v(w,3,B)=2wk-a, This is summarised in the following table.

w-Domain Y(w’aaé) v(w,a,ﬁ)

a :

w> —— >0 Increasing
28

ws 2 =0 Stationary
2B

m<-2; <0 Decreasing
28

TABLE 7.1

BEHAVIOUR OF v(w,a,B) AS A FUNCTION OF

Using Table 7.1 we can determine the behaviour of the functions

8 (w) = v(w,M,B),
and 6,(w) = v(w,m,B8)
with respect to w. Hence we have that

by =
M ZE

118

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

is the critical point of el(w). Since now y(m,m,§)>0 for any non-negative



value of w, Bz(m) is an increasing function in the interval (0,2).
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Finally,

from the previous analysis Table 7.2 and Iigure 7.1 can be established.

w-Domain | ¥(w,M,B) 6, (w) Graph
Bl(w)4
0<w<wM <0 Decreasing
1 e L
M 8
W=y, =0 Stationary 1
B 1
ujM<uJ >0 Increasing E
i
0 Wy 'B
TABLLE 7.2
BEHAVIOUR OF Gl(m) AS A FUNCTION OF w
8, (w)
1 e e e e - —— o — — —— -
M |
I
I
5 () l
|
’ L,
0 w 1 2| w
m |
A e e — |
FIGURE 7.1

BLOAVIOUR OF 6 (w) AS A FUNCTION OF w

A
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We can easily verify that 82(w)=0 or g(w)=m2§-wm+m=0 when
~ /f 4B . . {0 -
w= w=2/(1- 1-753, also since sign(g(0)g(1)) and §<0, we have O<w<l,

From the previous analysis, we can summarise our results by considering

the following cases,

Case 1 : Ba%- , O<w<2,8 (w)aez(w)
Case II : osé%, O<usw*, 8, ()20, (w) (7.7)
and Case III : Oséc%, 0<w*sw,61(w)se (w)

Moreover the relation between el(w) and Bz(m) can be easily seen from Table 7.3

f-pomain | w-Domain vmax(JQJ
Bound
-1
B21 O<w<2 0,
Msg4B
05§<%
O<wgw* 61
MR
-1
T wgwc | e,
M¥48

TABLE 7.3

RELATION BETWEEN el(m) AND Gz(w)
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Up to now we have studied the behaviour of vmax(J&)’bUt in order to

determine S5(j() we have to find the relation of vmax(;ﬁ@ and Ivmin(‘.}ﬁi)l .

This is shown in Figure 7,2,

5@ ) ?
w
ler — i o b - ———- — —— e —— —— —
M A |
!
I
I
I
|
I
I
I
0 - . »>
1 i w 2 W
o 2 £ M
FIGURE 7.2 (case I)
BEHAVIOUR OF S(@() AS A FUNCTION OF w
If we consider Case I, then from Table 7.3 it is clear that Bl(m)
dominates over ez(m) for all the values of w&(0,2). In this case we can
determine a good value of w which minimises the bound on S(Jﬁ») from the
equation
Viax 9C) =|vmin(agy. (7.8)
This equation by using (7.2) and (7.5) can be written to yield
1-M 1
1 - = - 1 (7.9)
1-mM+m2§ w(2-w)

or equivalently

pw) = 2But-2(M2B) w0 e (L45MaB) w2 (3M+2) e = O, (7.10)
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By Déscartes rule we can find that equation (7.10) has either i} no
positive roots or ii) at least two positive roots. Since now it can be
easily verified that sign(p(0)p(1)<0 and sign(p(1)p(2))<0 we conclude that
such that 0<w,<1 and l<w,<2.

2 1 2

Clearly, from the above analysis we have justified Figure 7.2, also we

equation (7.10) has two positive roots Wy W

have shown the existence of a unique value of the preconditioning parameter

w=w., which minimises SGHb)and lies in the interval (1,2). This value can be

2

determined by using known methods (i.e. Newton Raphson, Bairstow} to solve
numerically (7.10) and consequently to obtain the corresponding bound on

S (¥ ) from
1

BSTE:G;T - 1. (7.11)

SG%ZJ=

In the remainder of the cases, we have to distinguish whether i) m2<m*
or ii) w*<w2. Since this cannot be done unless we solve (7.10),we impose
the restriction that if

*
0 £50 (7.12)

or from (6.27) if
_ wf-l '
B 3 —5- = 0.2426, (7.13)
“g

then Wo is a good choice of w.
Summarising our results we have that

w, if 830.2426 or if wy<w*

w, = (7.14)
w* if w*smz

whereas the corresponding bound on S$(J() is given by

1

-1, if B i *
W 1, if B20.2426 or if u.\2<w
SAG) 5 ey _ (7.15)
1 = , 1f B<0.2426 and if w*swz.

By a simple comparison of S(&m ) (see (3-6.49)) and S(J% } we observe that
1 1
under certain conditions the PJ method may attain slightly better rate

of convergence than the SSOR method. llowever, this is a limited case and
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it is expected to happen for large values of the mesh size h (smull values
of N). Finally, Figure 7.3 illustrates the behaviour of S(m;)when the

restrictions of the second part of (7.15) hold.

Slﬂ%) "

1 — — e _—
| 1
T |
! o

| .
i }
| o
| | |
| ' |

i I
J {
| ! |

0 mu i w* mzmMmf jAIZ m’

|
I
I
I
!
|
!
" |
S ]

BEIAVIOUR OF S(J()AS A FUNCTION OF w WHEN B<0.2426. AND w*<u,
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4.8 COMPUTATIONAL RESULTS

First, it was observed that the estimated upper bound on A(Bw) which
is given by (6.20) is a very good approximation for lsw<2, This can be
easily seen if one carries out a comparison of this bound and A(Bw)
determined by the power method for the above range of w. However, this
does not seem to be the case, especially when w is very close to zero. As
a result of this we have Table 8.1 which shows the behaviour of S(JQ} for

w=[0,2] in the Laplace problem. PFrom this table we observe that S{FC,)

is less than unity for w=0.0, 0.1, 0.2 which is not expected because of
Theorem 5.1. On the other hand, S(ﬁh) is approximated satisfactorily by
vmaxGHL) given by (7.2) for Oswsw1 which is consistent with the observation
that for w=0 the PJ method coincideg with the J . method. Consequently the

interval of the preconditioning parameter w such as the PJ method to be

convergent is the following

Osw<1+%? . (8.1)
Moreover, this justifies the way we indicated the behaviour of S(i(,)

in Figures 7.2 and 7.3

o % 10 20 40
0.0 0.9510 0.9876 0.9965
0.1 0. 9460 0.9863 0.9962
0.2 0.9402 0.9848 0.9959
0.3 0.9335 0.9830 0. 9955
0.4 0.9255 0.9808 0.9949
0.5 0.9161 0.9783 0.9943
0.6 0.9048 0.9751 0.9935
0.7 0.8912 0.9713 0.9926
0.8 0.8745 0.9665 0.9913
0.9 0.8539 0.9604 0.9898
1.0 0.8282 0.9524 0.9877
1.1 0.7955 0.9419 0.9849
1.2 0.7537 0.9275 0.9810
1.3 0.6998 0.9273 0.9753
1.4 0.6307 0.8778 0.9667
1.5 0.5452 0.8327 0.9528
1.6 | (-)0.5621 0.7610 0.9281
1.7 | (-)0.9518 | (-)0.9601 | (-)0.9606
1.8 | (-)1.6638 | (~)1.7758 | (-)1.7769
1.9 | (-)3.0395 | (-)4.0581 | (-)4.2586
2.0 | (-)5.8515 | (-)0139677 | (-)309734

TABLE 8.1

BEHAVIQUR OF S(%QQFOR THE: LAPLACE EQUATION
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As can be seen from Table 8.1, as hs0 the value wl tends to wf’ wvhereas

the minus signs in parentheses indicate that Sﬁﬂﬁ)is represented by

Ivmin

UQJ. Also we note that for large h (i.e. h-1=10), SGH;)is insensitive
for w§0,1] and then as w increases from 1 to 2, Sﬁﬁu)decreases slightly
more rapidly until « gets close to mopt=1.5 the optimum value at which point
the decrease is very rapid. As w increases further, S(M;)increases faster
to a value of unity when w=w. and then as w approaches 2, S(M%)takes values
greater than unity which can become very iarge indeed. In the case where h>0
(i.e. h—1=40) we observe that S(m%?is very insensitive for wG[O,mf] and then
as w2, increases very rapidly. Of.course, this behaviour was expected,
since as h+0 then M+1” and from our pheoretical analysis we can observe
(see Figure 7,2) that the part AB moves upwards and the point C moves to
the right. Hence, in general we expect the PJ method to have a very slow
rate of convergence.

In order to test the theoretical results obtained above a number of
numerical experiments were carried out involving the generalised Dirichlet
problem on the unit square with the differential equation

3 ,,du

3 ..ou
e *

E(Ca—y-) = 0. (8.2)

Various choices of the coefficients A(Xx,y} and C(x,y) were used,

as indicated in Table 8.2. The optimum preconditioning parameters wg and

sgwﬁg were determined as follows. The spectral radius SCHLPwas calculated

by using the power method which is given by
w(n+1) = HLW{H)

(8.3)

m) _ ™ D,

(w(n) ’w(n))

v , nz0

for w(o)#o. It is known that w(n) is an approximation to the normalised

(n)

eigenvector associated with S(ﬂh}and that v converges to SGR&)as n tends
to infinity (see e.g. Gourlay and Watson [1973]).
Furthermore, we assume that w(o) has a non-gzero component in the

direction of the dominant eigenvector. Then we can apply the Fibonacci
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search technique (e.g. see Zahradnik [1971]) to obtain ¥y and S(Jﬁg). The
PJ iterative scheme was then applied with boundary values taken to be zero

(0)

on all sides of the square. As starting vector u was used the vector
with all its components equal to unity in each case and the procedure was
terminated when the inequality |Iu(n)[|m,<10_6 was satisfied. The number of

iterations of the numerical experiments together with the optimum values

w

and Scmj)are presented in Table 8.2,
0

OPTIMUM PARAMETERS w

0

AND sugo)

0
Problem Coefficients n! “o SGR;O) Ny
20 | 1.6456 0.7147 43
1 A=C=1 40 | 1.6859 0.8883 121
60 | 1.6967 0.9435 247
10(x+y) 20 |1.5370 0.4511 20
2 A=C=e y 40 | 1.6439 0.7082 49
60 | 1.6555 0.8496 105
2 2.1
A=(1+2x°+y) 20 |1.6471 0.7204 44
3 s 5.1 | 40 |1.6865 0.8913 124
C=(1+x“+2y°) 60 | 1.6970 0.9453 254
1+x, Osxs% 20 | 1.6453 0.7134 43
4 A=C= 1 40 | 1.6858 0.8878 120
2-x, 3<xgl | 60 | 1.6967 0.9433 245
A=1+4|x-%12 20 | 1.6483 0.7252 44
5 1, Osx<y 20 | 1.6857 | 0.8876 119
C‘{g, %5x51 60 | 1.6964 0.9420 239
A-l+sin££§in 20 | 1.5499 0.4703 21
6 10(x+y) 40 | 1.6466 0.7187 48
Cze = XY 60 | 1.6722 0.8397 90
TABLE 8.2




4.9 THE PRECONDITIONED SIMULTANEQUS DISPLACEMENT METHOD (PSD METHOD)

As was seen in the previous sections, the PJ method has a less
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favourable rate of convergence although it requires approximately twice as

much work as the SOR. Again as it will be shown later this is due to the
fact that we did not let the parameter T in (4.5) take its optimum value.
Let us therefore consider the iterative scheme

2D L ™ eeuy T ) T boan ™)
as defined by (4.5) where 1,0 are real parameters.

The iterative process (9.1) is the Simultaneous Displacement version
of {4.6) and it will be referred to as the Preconditioned Simultaneous
Displacement method (PSD method). At this point we are able to state
that if we let T and w take their opfimum values t, and w

0 0’
then the PSD method will be superior to any other iterative scheme which

respectively

uses the same conditioning matrix R given by (4.1). We therefore expect
that the PSD method will produce in general a better rate of convergence
than the PJ and SSOR methods. Further, we also expect the iterative
process (9.1) to meet our expectations as regards our earlier conjecture,
(see Section 4.4) to produce a rate of convergence which in some cases
might be better than SOR. Evidently, (9.1) can be written in a more

"computable" form similar to (4.7) as

L) ) ()

L) | (e D) (D)

L@ | @), el

where r(n) = D-l(b-Au(n)).
From (9.1) we also have
u(n+1) =D u(n) + 6
T,w
-1 -1 -1

where DT 0 - I-t(I-wJ) "(I-wL) "D "A
and § = T(I-mU)-I(I—wL)_lc.
Moreover, I-DT o is non-singular if

2
T#0
and if A is non-singular.

(9.1)

(9.2)

(9.3)

(9.4)
(9.5)

(9.6)

(9.7)
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4,10 CONVERGENCE OF THE PSD METHQOD

Theorem 10.1

Let A be a symmetric matrix with positive diagonal elements, For any

real w and T the eigenvalues of DT , 3%e real, Moreover,
3>

S(Dr,w)<1 . (10.1)
if and only if

O<w<2, (10.2)

0<t<2w(2-w) (10.3)

and A is positive definite.

From (9.5) and since D£ exists we have that D;wis similar to the
matrix
5;,w = D'i(D-mcU)qJJD-ch)'lni
= I-TD%(D~mCL)_1A(D—wCU)‘1D£
= I-T[Di(D-wcL)'l]A[Di(D—mcL)'l]T (10.4)

If A is a symmetric matrix, then the second matrix of the right
E?nd side of (10.4) is symmetric as well. 1In addition, if A is positive
definite, then by (5.2) we have
5},m = 1-15; (10.5)
where E@ is positive definite and similar to Bw' As was proved in
Section 4.5, Bw is positive definite if and only if A is positive definite.
Furthermore, if d and A are the eigenvalues of DT, and Bm , respectively,
then from (9.5) we have the following eigenvalue relationship
d = 1-1) (10.6)
where A>0.
Evidently, S(Dr,m)<1 if and onlf if
-1<1-Tx<l (10.7)
which by Theorem 6.2 gives (10.2) and (10.3) thus completing the proof

of the theorem,
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4.11 CHOICE OF T AND w FOR THE PSD METHOD

We now study the problem of determining good estimates for T, the
preconditioning parameter w and the spectral radius ofl% T Our primary
3

concern is the case where A does not possess the form (2-7.1).

Theorem 11.1

Let B,m and M be numbers such that

-2/§_smsm(B)
M(B)sMsmin(l,Zv/E:—) (11.1)
and © S(LU)<B.

Then, a lower bound on the P-condition number of Bm, P(Bw) is given

o %8 | 1 1
1-wuM+w™ B _ seo= 1 se gl %
520 (I~ ¢1(w), if 824 or if B<4 and wgw
P(Bm) ¢ 1 wm+w25 =1 (11.2)
e = i = *
ICEDYCED) ¢2(w), if B<4 and w>w
where for E<%—we define w* by
e (11.3)
1+v1-48
Moreover, the bound (11.2) is minimised if we let
e =, L Mg4B
14+v1-2M+48
w, = (11.4)
1 2 _
—_—— = w* | if M348
1+v1-48
and the corresponding value of P(Bb )} is given by
1o, eawasy 19 )
2 1-M 2 (l—M)wM ? ¥
P(B ) & (11.5)
» =
1 1+v1-48 1 if M34B.

= , 1
2V1-48 2-w*

Proof
The validity of (11.2) can be easily seen by Theorems 6.2 and 6.3.
Thus, we will be concerned with the behaviour of the bound (11.2) as a

function of w.



By letting

1
w(2-w) A (w,a,B)

P(w,;sé) =

then from (6.28) we have

1-wA+w?d
w(Z-w}(l-a)

P(W,a;é) =

hence _ _
p(w,M,B) = ¢1(w) and p(w,m,B) = 9, (w)

From (11.7) it follows that

Sign[ggp(m,a,ay] = sign(v’ (28-3)+20-2)

and therefore the critical points of ¢1(m) and ¢2(w) in the interval

(0,2) are
[Ny =3 —-....2.._—.-._.-
M 1+V/1-2M+4§
and
i) = —-—_.E—-—_.__-
m 1+v¥1-2m+48
respectively.

We can therefore establish Tables 11.1 and 11.2.

Domain p(w,M,B) % (0)

0<w<wM >0 Decreasing

W=ty =0 Stationary

wM<w<2 <0 Increasing
TABLE 11.1

BEHAVIOUR OF ¢,=p(w,M,B) AS A FUNCTION OF

Domain p(w,m,B) ¢, (w)

0<w<wm >0 Decreasing

W= =0 Stationary

wm<m<2 <0 Increasing
TABLE 11,2

BEHAVIOUR OF ¢,{(w)=p(w,m,B) AS A FUNCTION OF w
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(11.6)

(11.7)

(11.8)

(11.9)

(11.10)

(11.11)
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It can be easily seen that

mmSwM (11.12)
since m<M. Moreover, if Es%-then w*2l and from (11.11) we see that
mmsl. Thus, we obtain
wm<mﬁ ‘ (11.13)
Furthermore, we have
sign{j;-p(w,a,ﬁ)} = sign(m2§Zm+1) (11.14)

3a
and therefore we construct Table 11.3.

w2§-w+1 Relation Bound on P(Bm)
z0 ¢1(w)2¢2(w) ¢1(w)
=0 ¢, (w)=¢, (w) ¢, (w) or %, (w)
TABLE 11.3

RELATION BETWEEN ¢, (u) and ¢, (w)

Evidently, a similar table to Table 6.1 holds for p(w,3,B) as well,
hence by combining also the properties of Table 11.3 we clearly see
=1
that for Baz, then ¢1(w)2¢2(m) for all w, hence from Table 11,1, W) U

If Es%, then we consider two cases:
. * .
Case I: w SOFEW and Case II: mmsmM

in Case I m1=w* while W) =ty in Case II. If now E;%—and M<l, then these
1

conditions imply Mg4B. Also, in Case II we have E<4 and u,gw* which

<w* (see Figure 11.1}. Clearly

imply Ms4§ as well. Finally, in Case I, é<%—and wMzm* thus M3 48.
Thus a '"good' estimation of w namely Wy is given by (11.4)} whereas the
corresponding bounds on P(Bw } are found by direct substitution in (11.2),

1
hence the proof of the theorem is complete.
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w sw*g

Case I:

LW

M

meUJ

Case I1I:

FIGURE 11.1



It should be noted that the approach for determining the estimated

values w, and P(B ) is similar to the one followed by Young [1974] and

1
1
Axelsson [1974] for obtaining good bounds on S(&w).

Moreover, from Theorem 3-6.14 we conclude that the two estimates
SSOR PSD
W
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and are identical (see (3-6.48) and (11.4)). This was expected

1 1

since SSOR and PSD can be easily seen that they both possess identical P-

condition numbers, thus

1-A(§,)

T T TR,y

where l(&w) and A(&w) are the minimum and maximum eigenvalues of Gw.

(11.15)

But A(&m) is approximated by zero under the restriction that A is positive

definite, hence from (11.15) it follows

1
PO ~ T
which implies that the optimum values mgSD,wgsOR of P(Bm) and S{Gw),
respectively are very close, whereas the estimated miSD and w?SOR are

identical.

From (11.5) we can modify the bound on P(Bw ) to yield

1
( §{1+

where

The first two parts of (11.17) can be easily verified from (11.5)
if we Tecall that p(m,ﬁ,@) is an increasing function of B, whereas the

last part is obtained if we rewrite the first part of (11.5) to yield
successively

/1 2M+4 //& 2M+4E M+4B//r
(112 a-m /1

(11.16)

(11.17)

(11.18)



134

where
-1 A-2M+458 _ 2(B-1/4)
o= SEaay T /M

Furthermore the determination of the value T=T, ¢an be achieved by

using the relationships (6.20) and (11.5) thus we can easily verify that

2w, (2-w,)
t,o= b 1 (11.19)
1" 1+17P(Bm ) )
1
Finally, from (11.17) we can derive the spectral radius of DT "
' 1’71
since it can be expressed in terms of,P(Bw ).
1
From (11.19} we note that for“P(Bm )>>1, T tends to become equal

1
to 2m1(2-w1) which according to our previous analysis, implies that the

PSD method is expected to produce better rate of convergence than SSOR

since in the latter we always have 11=w1(2-w1).
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4,12 COMPARISON OF RECIPROCAL RATES OF CONVERGENCE

Let us now compare our bounds on RR(DT o ) with RR(BGJ. By using
1’71
the relationship

RR(D. ) ~ (B ) (12.1)

T15%; 2 w)
we can easily obtain bounds on RR(DT " ) from (11.17) for the different
1’71
cases. Also, by considering (3-6.39) we can obtain bounds on RR(Bm) for
the general case (when A is a Stieltjes matrix). Consequently, we are

now able to construct Table 12.1,.

Asymptotic Bounds on RR(DT w )/VRR(BE)
Range of B - 1’1
General Case Property A
=3 = %
2/2
M1 1 1
=<Bsy 5 —_
474 2 W2
.1 1 -1 1l -1
B>7 Y —
4 2 /3
TABLE 12.1

By a simple comparison of Tables 3-6.1 and 12.1 we see that we obtain our

main result between the asymptotic bounds on RR(DT " ) and RR(&m )

RR(GN )1 1 1
1

RR(DT } ~ ——— . (12.2)

1°%1

Evidently, from (12.2) it follows that the number of iterations
of the PSD method is asymptotically half the number of iterations of
the SSOR for both methods to achieve the same level of accuracy. (For
a comparison of the work involved see Appendix A). This result clearly
justifies our earlier conjectures concerned with the superiority of tﬂe
PSD method over SSOR (see Section 4.9).

Another observation is that the improvement by an order of magnitude
of the rate of convergence of PSD over the JOR is retained in the general

case as well. Furthermore, by comparing the best possible bound on RR(Lw )
b
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with RR(DT " ) in the case where the matrix A is consistently ordered we
1’71
obtain Table 12.2 (see (3-6.26))

Range of R Asymptotic Bounds on RR(D Y/RR(L )
T, W w
1’71 b
—S%' 1
V2
M1
3Bg !
-1 -1
B>j4"' s
TABLE 12.2
PROPERTY A

From Table 12.2 if we compare the PSD with the SOR (without taking
into account the computaticnal work involved) then for Es% we have an
improvement of approximately v2 of the rate of convergence of the former
over the latter method, whereas for %565%-we expect to obtain asymptotically
identical results, However for §>% the results depend strongly upon y-l
and are useful if this quantity is not very large (seé Section 5.5). Clearly
Table 12.2 justifies our early comparison on the effectiveness of the
conditioning matrices R,R1 (see Section 4.4) establishing therefore the
credibility of the used criteria. In addition, the construction of the PSD
method by using the preconditioning techniques, its superiority over SSOR
and in certain cases over SOR, confirm further the idea of how one should
use these techniques in order to associate the most effective iterative
scheme with a giveﬁ conditioning matrix and on the other hand, the strong

need to study the effectiveness of the different forms of conditioning

matrices associated with the various splittings of the coefficient matrix A.
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4,13 COMPUTATIONAL RESULTS

Before we verify our theoretical analysis by presenting various
numerical experiments we consider the application of the above results to
the following model problem. Given a continuous function g(x,y) defined on
the boundary S of the unit square R:0<xg1, 0gy<l find a function U(x,y)

continuous in the closed square and satisfying in the interior R the Laplace

equation
2y, 28 . 5.1
X Iy

On the boundary, we require that
Ulx,y)} = glx,y). (13.2)

By considering the five-point discrete analogue with the natural ordering
it is easy to show (see Young [1971], Chapter 4) that

S(B) = cosnh (13.3)
where h is the mesh size,

Moreover, the matrix A can be shown to possess Property A and to be
consistently ordered (see Chapters 1 and 2). It is easy to show also

(see, for instance, Ehrlich [1963], Appendix B} that

S(L) = § cos” ST - (13.4)
From (13.4) we can let B be given by
B = % cos2 %? . (13.5)
Evidently, by (13.4) and (13.5) we have
S(LU)<B
We now determine a good value of « using (11.4) with M=coswh and
witﬁ 8 given by (13.5). We note that
2/ﬁ cos——a4B = c052 T;ZCOSﬂh M (13.6)
and hence we can apply Theorem 11.1 to obtain
w, = 2 S S (13.7)
: 1+/1 2cos1rh+c052%h- }+/§sin%}l

and
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¥3 sin h
1. 2 1 /3
P(B, Vs 3 [“ Teosh ) ~ 2\ 5w (13.8)
1 2 sin

Therefore, for sufficiently small h we have
P(Bm )
1

3

RR(D. ) ~ ~a%{1+ 7% nly, (13.9)

Tl,wl

Similarly, by using (3-6.49) we can find

2

1- £ sin It

2
S(&w ) £ /3 ~1 - 2mh s (13.10)

1 1+-—2—sin-"%’- /3
V3

therefore for small h we have

LZ -1
RR(&ml) Ll | (13.11)

By comparing the PSD with SSQOR we obtain the following result

RR(DTl o) 1 h
1 7
ﬁﬁfE;IT“"' 5 (1+ 75), (13.12)

The values of this ratio for h=1/20, 1/40, 1/60 and 1/80 are illustrated

in the following tabulation

h RR(D J/RR(& )
Tl’wl wl
1/20 0.545
1/40 0.523
1/60 0.515
1/80 0.511

Consequently, for the above model problem and as the mesh size h tends to
zero the number of iterations of PSD tends to become half the number of
iterations of SSOR.

For the SOR method, since A is consistently ordered, it follows
from (3-6.22) that the optimum value of w is given by

2

“p = Trsinmh (13.13)
whereas by (3-6.23) we obtain
_ l-sinth .
S(L, ) = Tosinwn ~ 1-2mh (13.14)

b
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for small h. Finally, from {13.14) it follows that

RR(wa) ~'§%-h-1. (13.15)

By comparing now the PSD with the SOR we obtain

RO ) 2
1°1 73 . ™y (13.16)
RR(zwb) 2 /3

thus as h*0 the limiting value of the ratio in (13.16) is

)
W~T= 0.866. (13-17)
b

which implies that for the model problem the rate of convergence of the PSD
method is even better than SOR. On the other hand, if one also compares
the two methods in terms of required computational work (see Appendix A},
then it seems interesting to investigate further the possibility of using
the PSD method with Niethammer's scheme.

In order to test our theoretical results obtained so far, the same
numerical experiments, as described in Section 4.8, were carried out. For
purposes of comparison, we considered the application of SOR, SSOR and PSD
methods with optimum and estimated parameters to the derived systems of
equations corresponding to the problems presented in Table 8.2.

The quantities A(Bwo) and S(&woj presented in Table 13.1, were computed
by using the power method combined with the Fibonacci search technique (e.g.,
see Gottfried and Weisman [1973] and Zahradnik [1971])}, whereas A(Bm ) was

0

computed by (6.20). The value of oy based on the true value of S(B), as

determined by the power method, was used. Also, in Table 13.1 we present

the number of iterations required to satisfy the convergence criterion

6

Hu(n)ﬂmslo- for SOR, SSOR and PSD methods with optimum parameters.

Furthermore, in Table 13.2 we present the estimated parameters T 20 and
P(B, ) computed by (11.4),(11.19) and (11.5), respectively, where B is

1
given by (B.6) (see Appendix B) and M is given in Young [1971a] (see also

(5-5.27)). In Table 13.2 we also give the number of iterations for the SSOR



1 OPTIMUM 1
Problem | h Wy S(Gw ) A(Bw ) A(Bm ) P(Bw ) 5 SSOR PSD th Wy SOR
0 0 0 0
20 1.7641 { 0.8099 | 0.4568 | 2,4030 | 5.2604 | 0.6993 66 37 | 20 1.7295 61
1 40 1.8750 | 0.9008 | 0.4233 | 4.2667 | 10.0806 | 0.4264 134 71 {40 1,8547 121
60 1.9157 | 0.9343 | 0.4068 | 6.1922 {15.2207 | 0.3031 201 107 | 80 1.9237 253
20 1.5888 | 0.5876 | 0.6313 | 1.5307 | 2.4248 | 0.9251 24 17 | 20 1,5527 50
2 40 1.7668 | 0.7663 | 0.5672 | 2,4271 | 4.2790 | 0.6679 48 30 | 40 1.7460 99
60 1.8386 | 0.8386 | 0.5439 | 3.3698 | 6.1958 | 0.5110 71 44 | 80 1.8902 217
20 1.7652 | 0.8140 | 0.4488 | 2.4127 | 5.3763 | 0.6989 68 38 | 20 1.7326 60
3 40 1.8756 | 0.9031 | 0.4153 | 4.2859 |10.3200 | 0.4254 137 72 | 40 1.8564 121
60 1.9163 | 0.9343 | 0,4096 | 6.2346 |15.2207 | 0.3010 205 107 | 80 1.9247 252
20 | 1.7624 | 0.8088 | 0.4566 | 2,3881 | 5.2301 | 0.7031 66 37 |20 1.7385 59
4 40 1.8748 | 0.9002 | 0.4252 | 4.2603 |10.0200 | 0.4268 133 |- 70 |40 1,8599 119
60 1.9143 | 0.9324 | 0.4121 | 6.0955 |14.7929 | 0.3073 200 104 | 80 1.9260 225
20 1.7479 | 0.8281 | 0.3901 | 2.2694 | 5.8173 | 0.7520 74 41 20 1.7233 60
5 40 1.8665 | 0.9105 | 0.3592 | 4.0132 |11.1732 | 0.4574 149 79 | 40 1.8515 118
60 1.9093 | 0.9395 | 0.3494 | 5.7746 |16.5289 | 0.3266 224 117 | 80 1.9191 274
20 1.6097 | 0.6035 | 0.6311 | 1.5917 | 2,5221 | 0.8998 28 17 120 1.5528 41
"6 40 1.7820 | 0.7855 | 0.5779 | 2.5742 | 4.4543 | 0.6345 57 32 40 1,7448 81
60 | 1.8490 | 0.8438 | 0.5593 | 3.5817 | 6.4020 | 0.4829 85 47 | 80 1.8907 176
TABLE 13.1

orl
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problem | h'!| 3 2/E M 0, o | re) ESTIMATED
1 SSOR | PSD

20 |0.2500 | 1.0000 | 0.9877 | 1.7287] 0.8188 | 6.8727 68 | 48
1 40 |0.2500 | 1.0000 | 0.9969 | 1.8544| 0.5021 |13.2357 | 138 | 93
60 |0.2500 | 1.0000 | 0.9986 | 1.9005| 0.3598 |19.6008 | 207 | 137

20 | 0.2350 | 0.9695 | 1.0000 | 1.6065] 0.9073 | 2.5415 28 | 18
2 40 10.2461 | 0.9922 | 1.0000 | 1.7788| 0.6444 | 4.5208 45 | 33
60 | 0.2483 | 0.9965 | 1.0000 | 1.8465| 0.4914 | 6.5139 67 | a7

20 | 0.2505 | 1.0000 | 0.9969 | 1.8355| 0.5661 |14.9905 73 | 101
3 40 |0.2501 | 1.0002 | 0.9992 | 1.9142| 0.3177 |29.5540 | 145 | 195

60 |0.2501 | 1.0001 | 0.9997 | 1.9420! 0.2203 |44.1015 | 218 | -
20 | 0.2500 | 1.0001 | 0.9918 | 1.7717 | 0.7223 | 8.3322 66 | 59

4 40 | 0.2500 | 1.0000 | 0.9979 | 1.8790 | 0.4282 . |16.1660 | 133 | 114
60 | 0.2500 | 1.0000 | 0.9991 | 1.9176 | 0.3034 |23.9999 | 200 | 168
30 | 0.2500 | 0.9999 | 0.9978 | 1.8756 | 0.4379 |15.2395 97 | 65
5 40 |0.2500 | 1.0000 | 0.9994 | 1.9359 | 0.2402 (30.0138 | 193 | 100
60 |0.2500 | 1.0000 | 0.9998 | 1.9568 | 0.1654 |44.7804 | 288 | 144
20 | 0.2416 | 0.9831 | 1.0000 | 1.6903 | 0.7994 | 3.2293 36 | 23

6 40 | 0.2483 | 0.9966 | 1.0000 | 1.8475 | 0.4889 | 6.5567 82 | 47
60 | 0.2493 | 0.9986 | 1.0000 | 1.8997 | 0.3463 | 9.9697 | 120 | 71

TABLE 13.2

*
In Problems 2 and 6 in the determination of w, and P(Bm ), the value 2B

was used instead of M.

1

i
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and PSD method using the estimated parameters.

To determine the rate of convergence which has been attained by applying
the SSOR, SOR and PSD methods with optimum and estimated parameters, we plot
the logarithm of the number of iterations versus logh_1 for problems 1,2 and
6 in Figures 13.1 and 13.2.

From Table 13.1 we see that our theoretical expectations are ferified
since in all cases we have a substantial reduction in the number of iterations
of the PSD method as compared with SSOR and SOR. It is readily verified that
in all the considered problems we have i) a reduction of at least 39% (except
in problem 2 where the reduction is at least 29%) of the number of iterations
of the PSD over SSOR and ii) a redugtion of at least 32% of the number of
iterations of the PSD over SOR. On the other hand if we consider the SSOR
and the PSD methods with estimated parameters, then from Table 13.2 we
observe that for problems 1,2,5 and 6 we have a reduction of at least 27%
in the number of iterations, whereas for problem 4 this percentage is
somewhat less. For problem 3, where B>1/4, (see Table 12.1) the convergence
of the PSD method is erratic. It is conjectured that this is due to the
crude bounds used for the quantities S(B) and S(LU) since such a phenomenon
does not exist in the case where optimum parameters are used. Furthermore,
for all problems (again problem 3 is an exception) we have a reduction of at
least 25% for h=1/60, using PSD with estimated parameters as compared to SOR.

Finally, from Figures 13.1 and.13.2 we confirm our theoretical results

by noting that the rate of convergence is approximately O(h).
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4,14 THE UNSYMMETRIC PJ METHOD

In this section we consider the conditioning matrix R to have the
general form

R = (D-wch)D'l(D-wch) (14.1)

which is obtained from (2.4) and (2.9) by assuming that A has the splitting

A= D—CL—CU. (14.2)
As can be seen the preconditioned matrix is given by
-1 -1 -1
P(B ) = (I-w,U) " (I-w,L) "D "A (14.3)
W, 2 1
1’72
which is not a symmetric matrix.
By using the above defined conditioning matrix P(Bw w ) we form
. 1772
first the following iterative scheme (see (2.7) for t=1)
LS DR L (I-w2U)'1(1-wlL)'ln‘1(b-Au(")) (14.4)

which defines the unsymmetric PJ method (UPJ method)}. The UPJ method can

also be written as

u(n+1) =q, u(n) +q, (14.5)
1°%2 1°Y92
where = I-(I-w U)'l(I-m L)‘ID'IA (14.6)
Wy, W, 2 1 *
and = (I-w,UiXI-w.L) "L (14.7)
Wy, 2 1 * :

We will only concentrate on the case when A is of order N and has
the form
I1 ~U*
A=1I-B= : (14.8)
-L* I,

where U* is an mxr submatrix, L* is an rxm submatrix, I,,I. are mxm

1’72

and rxr identity submatrices, respectively and m+r=N,

Theroem 14,1

If A is a real symmetric matrix of the form (14.8), then

S(le,w2)<1 ‘ (14.9)
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if and only if

1 ﬁz - 1+ﬁ2
-2 e < (14.10)
=2 2
2u U
and u<l

where {i=5(B) and

W= Wty -t W, (14.11)
Proof
It can be easily verified that if A has the form (14.8), then
Qm © has the form
1°72
0 . (l-mZ)U*
0w (14.12)
’ . * - *[[*
172 (1 ml)L (wlfmz wlwz)L U

If » is an eigenvalue of Qw " and y=[g] is the corresponding eigenvector,
1’72
the partitions of y corresponding to the partitions of A in (14.8), then

we have
y = Ay (14.13)
©12%2
or from (14.12)
0 (l-mz)U* b b
= A (14.14)
(1-w1)L* (w1+m2~m1m2)L*U* d d

which simplifies to the following system of equations

(1-u,)U*d = b

(14.15)
(l-wl)L*b + (w1+w2-wlw2]L*U*d = ad.
Eliminating b from (14.15) we have
[(1-wﬂ(1-w2)+k(m1+m2-w1w2)]L*U*d = Azd. (14.16)
It is easily shown that the non-zero eigenvalues of B occur in
pairs Uy (i=1,2,...,M), where M is less than or equal to the number
of rows in L* or U*., Furthermore, the eigenvalues of L*U* are
Ogulen’ = S(B)° | | (14.17)

hence by (14.16) we have the following eigenvalue relationship



[(l-ml)(1-w2)+A(w1+m2-w1w2)]u2 =2

which can be written as
A aduZenl(6-1) = 0

where @ is given by (14.11).
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(14.18)

(14.19)

Consequently, the theorem is a result of Theorem 3.4, since (14.19) is

similar to (3.26).

Moreover, as a result of Theorem 3.5 we have

Theorem 14.2

If A is a real symmetric matrix of the form {14.8) and T=S(B)<1,

then _ o i
5(Q ) = 8(Q ) = u(w _-1)
wl,wz \ wl,mz b
where w = ml o, -mlwz = ER
and
2

Wy —_—,
1+V1-ﬁ2

Thus, since twice as much work is required per iteration using the
UPJ method as with the SOR method and since the rate of convergence is
no better (see (3.33)), the UPJ method is of academic interest, at least

when A has the form (14.8). In addition, we note that when w =w,

17%2
then we have the PJ method and

® = w(2-w) g1

with equality holding at w=wi=1 which is the best value of w since mbal
(see Theorem 14.2). For w=1, equation (14.19) reduces to

;\=u2

(14.20)

(14.21)

(14.22)

(14.23)

and the eigenvalues of the optimised PJ are identical with the eigenvalues

- of the GS method. Consequently, the rate of convergence of the PJ method
is affected by different consistent orderings. We also note that under
the same conditions, the eigenvalues of SSOR are given by (14.23) (see
D'Sylva and Miles [1963]), thus PJ and SSOR are identical at the optimunm

stage when A has the form (14.8).

-
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4,15 THE UNSYMMETRIC PSD METHOD (UPSD METHOD)

Evidently the unsymmetric PSD method (UPSD method) is defined by

LD, T(I-NZU)-I(I-NIL)—lD-l(b-Au(n)) (15.1)
or L) 6, ”(n)*gm . (15.2)
1°72 1’72
where - -1 -1,-1
, Gwl,w2 = T-t(T-w,0) " (I-w,1) 7D A (15.3)
and g = r@-w0) e . (15.4)
W) 50, 2 1

If » is an eigenvalue of P(Bb w ) given by (14.3) and p is an
: 2

1’
eigenvalue of B, then working similarly as in the previous section we

have the following eigenvalue relationship when A has the form (14.8}
ZZaaz-mHs1? = 0 | (15.5)
where ® is given by (14.11),

Therefore, from the analysis of the subsection 4.3.4 we have as a

result the following theorems.

Theorem 15.1

If A is a real symmetric matrix of the form (14.8), then
S(G ) <1 (15.6)
if and only if
i=8(B) <1 (15.7)

and the parameters 1 and ® lie in either of the following ranges:

for w30 0<t<1 and 0gb<1

or ls1<2 and 15052 (15.8)

for ®g0, the ranges of T remain the same but the corresponding
ranges of @ are the following:
-1<as50

-2g0s-1 (15.9)



Theorem 15.2

If A is a real symmetric matrix of the form (14.8)

then
el B Tialihes Tod Sl MY
and
(G ) = 8(G ) sw -1
ml,mz wl,w2 b
where w, is given by (14.22),

b
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and T=S(B)<1,

(15.10)

(15.11)

Thus, since twice as much work is required per iteration using the

UPSD method as with SOR, the UPSD method would appear to be mainly of

academic interest, at least when A has the form (14.8).

=W

W, =0, =, then we have the PSD method and

w =

w(2-w) <1

If we now let

(15.12)

with equality holding at w=b=1 which is the best value of w since mbal.

For w=1 equation (15.5) reduces to

A2er(2-p2) + 1-4% = 0.

Thus we have

A =1
max

and Amin = l-p

(15.13)

(15.14)

which implies that for convergence the parameter T must lie in the range

(15.15)

(15.16)

(15.17)

(15.18)

O<1<2.
Finally, 1
P(Ba) = 7
and the optimum value for 1 is given by the formula
o ° 'JLE
2-i1
Therefore, the spectral radius of the PSD method is given by the expression
_2
$(64.)) = 57 -
2-q

Since it is known (D'Sylva and Miles [1963]) that under the same conditions

the eigenvalues of SSOR are identical with those of the GS method, then

from Theorem 3.3 it follows that;
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Theorem 15.3

Under the hypotheses of Theorem 15.2 we have

R(G.))
_l.im_ ﬁ_(—t—’;»\——)- = 2. (15.19)
1 w=1

Thus the asymptotic improvement of the PSD method by a factor of 2 over

SSOR is still retained and in the case where A has the form (14.8).
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CHAPTER 5

BLOCK PRECONDITIONED ITERATIVE METHODS -
ACCELERATED TECHNIQUES
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SECTION A

BLOCK PRECONDITIONED ITERATIVE METHODS

5.1 INTRODUCTION

In the previous chapter we considered various iterative schemes where we

(n)

determined each component of u explicitly, i.e., by using already computed
approximate values of the other unknowns. As is known these schemes are
called point methods in order to be distinguished from the group iterative
‘methods. In the latest methods, we first assign the equation to groups and
then we solve the group of equation; for the corresponding unknowns u.,
treating the other values of uj as“known (implicit methods).

A special case of a grouping is a partitioning where for some integers

nl,nz,...,nq such that 1lgn,<n <...<nq=N the equations for i=1,2,...,n

12 1
belong tc the first group, those for i=n1+1,n1+2,...,n2 belong to the second
group, etc, The methods which are based on partitionings are known as block
methods. The theory of block methods is well known (Southwell [1946],
Geiringer [1949]).

Arms, Gates and Zondek [1956] first generalised SOR to block method
and Friedman [1957] analysed its convergence rate. In addition, Varga [1960]
showed that the rate of convergence of the two-line SOR method with optimum
w is approximately twice that of point SOR, whereas Parter [1961] showed that

}

the k-line SOR method with optimum w converges approximately (2k)® as fast as
point SOR. Finally, Ehrlich [1963,1964] considered the line SSOR for the
five-point discrete Dirichlet problem and was able to show that the
convergence is faster than the point SSOR method.

In the first part of this chapter we will extend the preconditioning
techniques so that to show, in an analogous way to Chapter 4, how we can
construct and develop the corresponding group methods of the previously

considered iterative procedures. We therefore commence our consideration

by presenting a brief review of some basic concepts concerned with the
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definition and convergence of the group methods.

Definition 1,1

An ordered grouping m of W={1,2,...,N} is a subdivision of W into

disjoint subsets Rl’RZ""’Rq such that R.+R +...+Rq=W.

172
We let m denote the ordered grouping defined by Rk={k}, k=1,2,...,N.
Given a matrix A and an ordered grouping T we define the submatrices
A s for r,s=1,2,...,q by deieting from A all rows except those corresponding
to Rr and all columns except those corresponding to Rs' We can now generalise

the concepts of Property A and consistently ordered matrices (see Chapter 2).

Given a matrix A and an ordered grouping 7w, with q groups, we define

the qxq matrix Z=(zr s) by

3

. i {o, if Ar,s=0
r,s .
1, if A, 7O,

»

(1.1)

Definition 1.2

(m)

The matrix A has Property A if Z has Property A.

Definition 1.3

The matrix A is a n-consistently ordered matrix (w-CO-matrix) if 2

is consistently ordered.

Definition 1.4

A matrix A is a generalised m-consistently ordered matrix (n-GCO-matrix)
if
A

I

det(ac£"3+a'1c£"3-kn(“3)
where A= D(“)-cﬁ”)-cé“) , (1.2)

is independent of « for all o0 and for all k.
()

Here D is the matrix formed from A by replacing with zeros all

a; i unless i and j belong to the same group, whereas CE“) and Cﬁ") are

formed from A by replacing all elements of A by zero except those a; ; such

2

t {n)

We wtll use the notation B to denote the group form of the matriz B.
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that 1 and j belong to different groups and such that the group containing

i comes after and before, respectively the group containing j.

Theorem 1.1 (Arms, Gates and Zondek [1956])

If A is a w-GCO-matrix such that D(ﬂ)

is non-singular, then the
conclusions of Theorem 3-6.4 are valid if we replace . B by B(") and L

(m)
by Lw .

From the above analysis we note that the definition of the group methods
is based on the splitting (1.2). Thus following the analysis of the pre-
conditioning techniques we can regg;d (1.2) as another splitting of A and
in an analogous way we can develop the group versions of the preconditioned
methods defined in Chapter 4. \

If we let the conditioning matrix have the form

R = p(™ (1.3)
for any ordered grouping 7, then we define the group SD method (using
(4-2.2) and (1.3)} by

B i B eI (1.4)
(n)

where T#0 is a real parameter and D is a non-singular matrix. We

therefore see that the rate of convergence of the group SD method depends

(m)

upon the grouping n, since if D" "=A, then we solve our system immediately.
On the other hand, the invertion of D(") by using direct methods (Cuthill
and Varga [1959]) is a limit to the above observation.
Further, by letting the conditioning matrix have the form
R = 0™ (-1 M) (1.5)
we define the group EGS method by .

w1 u(n)+r(IuL(ﬂJ)—I(D(“))-l(b‘Au(n)) (1.6)

where
L™ = )™ gy - )1, (1.7)

Finally, we can also define the group ESOR method, by letting the

conditioning matrix have the form



R = 0™ (1-01.¢™)

hence
2@ Ly el ™y 1My g B

where T,w are real parameters and their role is familiar to us from the

previous chapter. ‘A more compact form of the group ESOR method is given

by
T A SRR Te SALLD ey S ™
where
Lf"i = T-r(I-oL (M) 1My,

(Tr))ql[(I-T)I'P[T-UJ)LCW)"‘TU(‘T)] .

(I-wL

For actual computation with the group ESOR method we solve the system

(D(ﬂ)_mCI(‘"))u(n"'l) _ [(lfT)D(ﬂ)+(T—N)CéW)‘*TCL(ITT)]u(n) = tb

for u(n+1).

If the system Au=b is written in the form

q

!

=B , r=1,2,...,q9
52 T

A U
] TsSS

where the matrices Ar s have been defined earlier and if we define US

and Br similarly, then (1.12) is equivalent to solving

r-1 r-1
Al u®™U A @D giga u®™y ey Tal v
r,r 2y I'y8 S Ir,r r - r,5 S
s=1 so1
q
- (n) _ _
TS:E-&IAI"SUS =B, r=1,2,...,q
successively for U§n+1)’U§n+2)’.._’U£n+l).

The conditions under which the previous schemes converge are

similar to their point versions which have been thoroughly considered

{see Chapters 3 and 4). However, the derivation of a relation between

the eigenvalues of the preconditioned matrix (I-mL(“))_l(D(“))_lA and

similar to that obtained in Chapter 4 for (I—wL)-lD-lA

(r)_n(m), ()
B -CL +CU
and B, is possible for w-GCO matrices.

We can therefore generalise in an anlogous way the results

obtained in Theorem 4-3.4.8.

157
(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)
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Theorem 1.2

Let A be a 7-GCO matrix such that D(“) is non-singular, If B(W) has
real eigenvalues u(ﬂ)|i=1(1)N with g( )—mlnlu( )Iand alm )—maxlu( )I, such
that u( )—S(B( ))<1 and if
(m)
o2 CM dap” , (1.15)
b 1+ ﬁ_(ﬁiﬂ))2 0 4-(w (w)) (u (w))2 _
then for T#T( ™ and w#w( )
g7 (™) (Tf) ()
S(Lt’m) S ) > S(L(“) (“)) (1.16)
where (
3 ) () (“) (W) ('")
S(L," ) = S ) = Ju . (1.17)
(w) (%) () (TT)
b % p
()

Evidently, if p‘ “=0, then we have the well known results of the

group SOR method.
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5.2 GROUP PSD METHODS

For any ordered grouping v, we let the conditioning matrix have the

form
R = 0™ (1o ™y (1-a0(™) (2.1)

therefore. we define the group PSD method by

D 0 My My L (M -1 gy 4y (0 2.2)
where t,w are some real parameters.
By using (4-2.8) we write the iterative scheme (2.1) in a computable
form (another form can be produced by considering (A.10)}, see Appendix A)

p(M (n+d) _ mcﬁv)c(n+i) + (M

D[“)c(n‘!-l) = wclg")c(n".l) + D(H)C(n".i) (2.3)
G ), ()
where M A, (2.4)
For the analysis of the method, it is convenient to write (2.3) in

the following form

w1 Dfﬂiu(n) + s(M (2.5)
where p™M o et ™y oo My 1p(My-1, (2.6)
and

s o @™y roen My -1y, 2.7)

Evidently, by (2.6),(2.7) we see that the group PSD method is completely
()

consistent if D is non-singular and T1#0. Most of the analysis in

Sections 4.10,4.11 can be applied to group PSD methods. Before we

proceed in a more detailed analysis of the behaviour of S(Df“i),
2

we determine the spectral radius of the PSD method applied to a smaller

system derived from Au=b,

Theorem 2,1
If A is a symmetric and positive definite matrix and if A, is
obtained from A by deleting certain rows and the corresponding columns

of A, then .
P(3,) s P(B) (2.8)



where
B = (I-mU)'l(I-mL)"ln"lA.

Proof
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(2.9)

Let A(B*w) and A(B, )} denote the smallest and largest eigenvalue of

B, = (L-u0,)" (1-wr,) M0} 1A, .

From (4-5.2) we have that B*w is similar to the symmetric matrix
- -1 - -1
By, = Di(n*-wcL*) A*(D*-wCU*) Di.

If now v, is an eigenvector associated with A(8, ), then
(V* ’B*mv*) (w* ,A*w*)
(VysVi) . - (VyesVy)

-Inév* #0

A(B, ) =
w

where W, = (D*-wCU )
: *

or Div* = (D*-mCU dw,.
. *
Next, we augment w, with zero components (at the positions which

were deleted from A to form A,) to form w and define v such that

Div = (D-wCU)w.

Evidently, from the definition of w and v we have

(W, ,AW,)
- *ITH {w,Aw)
e % M (e
since
(w,,Aw,) = (W,Aw)

and the influence of the added rows and columns in A is annihilated
by the zero components of w, Further, by the definition of w, the
right hand side of (2.15) has identical components as the right hand

4

side of (2.14) plus additional ones. Since D® is diagonal, the
components of v are identical as the components of v, plus additional
ones., If A(Bw) denotes the smallest eigenvalue of Bw, then we have

{see Theorem 2-1.5)

VEVY oy (MesAW)
A(Bm) s v,v) = (v,v) $ (Vas Vi) = A(B*m)'

Similarly, we can prove

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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AB, ) £ AB)) (2.18)
where A(B*w) and A(Bw) denote the largest eigenvalues of B*m and Bw’
respectively.

Hence, if A is positive definite, then (2.8} follows from (2.17)
and (2.18) and the proof of the theorem is complete.

A similar result for the SSOR method has been proved by Ehrlich [1963],
Although Theorem 2.1 applies only fbr the point PSD method, the numerical
results (see Table 4.1) indicate that the theorem is probably true for at
least certain other partitions w.

The analysis for the determinaﬁion of good estimates for 1, the
preconditioning parameter w and the spectral radius of DET& is similar
to the one developed for the point PSD method (see Section 4.11-4.12).
Consequently we can easily derive the conclusion that the group PSD
method produces a gain of approximately a factor of 2 in the rate of

convergence as compared with the group SSOR method.
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5.3 COMPARISON OF LINE PSD AND POINT PSD METHODS

As an example of a block method we will choose the partitioning by
lines of mesh points (x,y) with y constant, where the ordering is with
increasing y. In this case the system is partitioned such that all the
equations with y constant are grouped together and solved simultaneously.
In the literature, this partition is frequently referred to as "line"
iteration (see e.g. Varga [1962])). Subsequently, this partition will be
denoted by T whereas L will be used to denote the point form of‘the method.

By using the difference equation (1-2.7) we can exhibit the line PSD

method (LPSD method) as follows (see (2.3))

D) ged) o)) | S d) () (n) e
agly 57 magly Ly 3maglyy = WAl I tagUL) stagUy S tagly )
S )
244 ij-1 o i,]
agmr)_ gel) o o) | o o(nel) o o(ned) | pned) | o(ned)

071,j 1 1+1,J 37i-1,j 24 i,j+l oY i,j i 1+1,J 3 i-1,j

wD =y Mg (M), (3.1)
i,j 1:J i,}
Further by (2.5) the LPSD method can be written in the matrix
form (vy) (my)
w1 o p 1) 4 (3.2)
(r)) (7)) Tl

where DT 1 and § are given by (2.6),(2.7), respectively with w

» W

replaced by LI For the estimation of the rate of convergence we

consider the application of Theorem 4-11.1. Young [1971] has shown that
() ()

s Yu Yy ¢ ;11- (3.3)
which implies that from Theorem 4-11.1 we obtain
( 2 () ("
(n)) /1Mt ()
wy = 3 2 M“l (m) (3.4)
» if —7—<8 §7
/)
L 1+V2(1-M )

where the corresponding value of P(B( )) is given by

4!
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(m)
r 4 Y (1’[ ) 1
L Epp— ,if s Ul
(ry) o
P@ ) s {4 J (n,) (3.5)
(™) 1 2} Mo 10 (M)
1 =1 + , if ——<B <=
2 4 ~7
(m)
L \ 1-M J
In particular, if we consider these results to be applied directly
to systems of linear equations arising from the five-point difference
equations considered in Section 1-2.1 in the unit square, we have (see
Varga [1962])
(m) (m.) :
1 _ 17, _ - costh 2,2
M = S(B ) = m ~1-1"h (3.6)
as compared with
(") () w22
M = 5(B ) = costh ~ 1- 5 (3.7)

for sufficiently small h.

From (3.3) and (3.5) we note that generally in this case the spectral

dius of D(ﬂlj is given b
radius o is given by
Tg“ll,wgﬂl). &
()
(my) 1 - _1_:_@_2_____ (m.)
SO (4.3 S ~1-2/2/1-M 1 (3.8)
) 1 ,wf“l _ (nl)
1 +3 l.'_]\..d.___..
which by (3.6) yields
S( (my) ) ~ 1-2v2rh (3.9)
D ~ 1- mh. .
Tf“l),mfﬂl)

Therefore the rate of convergence of the LPSD method for h sufficiently
émall, is approximately the same with the line SOR method (LSOR). But

| (1) "
if we have the additional restriction B §—3

we note that, as in
the point version, LPSD has an improved rate of convergence over LSOR.
However, the additional work involved in the LPSD method even if the
reduction scheme (A.11) (see Appendix A) is applied, probably do not
justify the gain in the convergence thus making the method less

attractive than LSOR.



164

Since it is known that (see Section 4.13)
(wo)
S({D ) ~ 1-2wh (3.10)
T, ,W
1’71
we have a similar result to the SOR method that
(ﬂl)

R(D )
Tgﬂl),ujgﬂl)

~ V2 3.11
R(D
Tl ,wl
for sufficiently small h.

In other words, for small h, the line preconditioned simultaneous
displacement iterative method in the unit square, or a subset thereof
yields an increase of approximately 40% in the rate of convergence over
the point preconditioned simultaneous displacement method. Also, another
conclusion we have reached here is that the improvement (3.11) in the

ratios of rates of convergence is a fixed factor, independent of the mesh

h, in contrast to the alternating direction methods of Chapter 7.
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5.4 COMPUTATIONAL RESULTS

In order to test our theoretical results, the Laplace equation was
solved in three different regions as shown in Figure 4.1. In each case,
the unique solution was the vector U with all its components equal to zero

(0)

while the initial guess was the vector u with all its components equal

to unity in the interior of the regions, with zero boundary values. The
criterion used for convergence was again Hu(n)ﬂmslo-G.

Although the problems considered here (and perhaps in other experiments
in this thesis} were trivial only because of boundary conditions, the
general behaviour of the iterative procedures could be expected to be
typical of more complicated problems. The only change needed would be
non-trivial boundary conditions.

The ordering considered in our experiments was the natural one as

described in Section 3.6 for both the line and point PSD methods.

Region I: Unit square

Region II: Unit Square with

%«%—square removed

from one corner

Region III: Unit square with

4 4
1010
from center

square removed

FIGURE 4.1



PR EENCAR NS () () (r) | () )
Region | h w A(B } | A(B Y | P(B ) T S(& )} | LPSD | LSSOR | LPSD-SI
0 w(wl) w(ﬂl) m(ﬂl) 0 w(wl)
0 0 0 (8]
20 1.7235 0.5667 2.0984 3.7026 0.7504 0.7299 26 45 14
I 40 1.8487 0.5221 3.5752 6.8474 0.4881 0.8540 438 89 20
60 1.8945 0.5006 5.0033 9.9941 0.3634 0.8999 71 134 25
20 1.5537 0;4699 1.4421 3.0683 1.0460 0.6742 22 36 12
I1 40 1.7496 0.4007 2.2826 5.6967 0.7454 0.8245 41 73 17
60 1.7599% 0.2638 2.3666 8.9720 0.7604 0.8885 65 121 23
20 1.3449 0.5172 1.1350 2.1945 1.2105 0.5443 15 21 9
111 40 1.6267 0.3908 1.6468 4,2138 0.9816 0.7627 30 43 15
60 1.7184 0.3569 2.0665 5.7907 0.8253 0.8273 41 64 17
TABLE 4.1

+ . . s . . ,
For comparison reasons we also present the number of iterations using the semi—iterative

(SI-LPSD) (see (5.14))

COMPARISON OF LPSD AND LsSoR lu™1y_<10”

6

Line PSD method

9971
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Table 4.1 contains the optimum values of the preconditioning parameter

(m) (my) (m
Wy the acceleration parameter 5 , the maximum A(B (r )), the minimum
1
() 0
A (B (r )) eigenvalues and the P-condition number of the preconditioned
w~ 1l
0 (m,) (m))
matrix B (r.)’ as well as the spectral radius of § ()" Also it contains
¥ 1 9 1

the number of iterations of LPSD and LSSOR which were applied under the same
conditions to solve the previously described problems for different values
of the mesh size.

A study of Table 4.1 seems to imply that a monotonicity theorem for
T, may be valid (and probably for any partition 7). However, this remains
to be proved. Also, one may noticeﬁimmediately the confirmation of the
fact that the LPSD method is asymptotically 2 times as effective as the
LSSOR method in all the cases examined. Furthermore, although we predicted
theoretically an improvement of about 40% in the rate of convergence of the
LPSD over the point PSD (see (3.11)), the numerical results show (see Tables
4.1 and 4-13.1) that this gain is slightly greater for problem 1 in the unit
square. In order to achieve this improvement in terms of overall
computational effort one should carry out the method using a normalised
block iteration scheme as described in Cuthill and Varga [1964].
From (3.9) we have that for line PSD and for any region we can find
(7))
1
the graph plot of log(N)} versus (logh-lj, where N is the number of iterations,

an w such that the rate of convergence is O(h), hence one expects that

to be a straight line with slope approximately unity. As previously, the
o

slope @ indicates O(h )} convergence rate. From Figure 4.2 we see that for

all regions the rate of convergence is approximately O(h).
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REGION I
A Legénd:
o LSSOR
x LPSD
a
100 /
: o :
o 80 .
g 704 4
b 601 Slope /
Yy |
*
° 50 0.9930
i 4QT
E
=]
= 307
0.9144
1 H 1 T LI L] L4 |>
20 30 40 50 60 708090
h-l, h mesh size
FIGURE 4.2

DETERMINATION OF RATE OF CONVERGENCE ATTAINED FOR REGIQNS I, Il
AND IIT USING LPSD AND LSSOR WITH OPTIMUM PARAMETERS




N number of iterations
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REGION 2

h

-1
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N number of iterations

FIGURE 4.2 (CONTINUED)
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SECTION B

ACCELERATED TECHNIQUES

5.5 PRECONDITIONED JACOBI-SEMI ITERATIVE METHOD (PJ-SI METHOD)

In Section 3.7 we showed how one can find a semi-iterative method
(581 method) with respect to the linear stationary iterative process defined

by _
u(n+1) = Gu(n)+k (5.1)

where the eigenvalues of G are real and lie in a certain interval. In
the same section, we also considered the SI method as a two level
acceleration procedure of (5.1).
The construction of the PJ method and its analysis in Sections 4.4

and 4.5 can be regarded as the first step of studying the behaviour and
‘properties of a basic method of the form (5.1). On the other hand, the
formulation and analysis of the PSD method is the second step which
constitutes the first type of acceleration procedure similar to (3-7.25).

Next, we attempt to further accelerate the convergence of the PSD
method by constructing the PJ-SI method,

As we have shown in Chapter 4, assuming the natural ordering of
points and for a certain "good" choice of w which depends on upper
bounds of S(B) and S(LU), the rate of convergence of the PSD method is
approximately O(h). This rate of convergence is the same order of
magnitude attained by the SOR method with optimum w. Since a PSD
iteration requires approximately twice the work involved in an SOR
iteration, only with the Niethammer's scheme (A.11) we can consider PSD
as being competitive with SOR in certain cases (see Section 4.12)., The
employment of this work-saving technique necessitates a more complicated
program with greater storage requireménts. On the other hand, the

application of the PSD method with red-black ordering yields a convergence

rate which differs by an order of magnitude from the natural ordering
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(see Section 4.15).

Consequently, in order to establish the superiority over the SOR we
need to consider the possibility of increasing the rate of convergence of
the PSD method by an order of magnitude by means of semi-iteration (Varga
[1957], Golub and Varga [1961]). This approach can be pursued for the PSD
method since the eigenvalues of the iteration matrix DT » 2T€ real, while

]

this is precluded for SOR with optimum w=w, since the eigenvalues of L

b
are complex, although some progress has been made in accelerating SOR by
semi-iteration for wwy (Kincaid [1974])}.

For the PJ method we recall that the iteration matrix is given by

ﬂb = I—Bw_ (5.2)
where Bm - (I—mU)-l(I—mL)-ID-lA. (5.3)

If A is positive definite, then as we have shown,all the eigenvalues
of Bm are positive and there exist positive numbers A(Bw) and A(Bw) such
that all eigenvalues X of Bw lie in the range
O<A(Bw)sksh(Bm). ' (5.4)

Therefore, all the eigenvalues v of m% are real and lie in the range

a = l—A(Bw)svsl-A(Bw) = B<l (5.5)
hence from (3-7.15) we have

P(Bw)+l

2= g L (5.6)
P(Bm)-l

By (3-7.21) and (4-4.6) the formula for the optimum semi-iterative method
based on PJ dencoted by PJ-SI, is given by

w00 )@ M- [2(1-u0) T (1) T TD A

-(A(Bm)m(sw))I]u(“)+2(1-mu)'1(I-NL)'1o‘lb}+(1-pn+1)u(“‘1) (5.7)

or equivalently,

W) u(“'l).»pml(u(“)-u("'l))mmlﬁ(;-mu)"I(I-wL)'ln"l(b-Au(")) (5.8)
where B .2

P = TEYEGE (5.9)
N w w
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which by (4-1L19) becomes
5 = 2w(Z2-w)

= T:T7§T§;T , (5.10)
and
pl =1,
02 -1
Py = [1 - 7?} ' (5.11)
czpn -1
pn+1 = {1 - 4 ] s n 2,3, L]
where
P(Bw)~1
o} B Bw_+l . (5.12)

From (5.8) we note that the PJ-SI method can also be written as

But the expression in the brackets is the PSD method since E=TO, thus a

more compact form of the PJ-SI method is given by the following scheme

u(n+1) )u(n-l)+p

) 0. u™is, (5.14)

= (1-p n+l 't w0
From this observation we immediately conclude that (5.14)} represents also
the PSD-SI method. This can be more explicitly seen if we consider the

range of the eigenvalues u of DT " which is

»

B<1 (5.15)

o l-TA(Bw)5u51-TA(Bw)

if 1>0 and
R>1 (5.16)

o 1-TA(Bw)2ual-Tk(Bw)
if 1<0, In either case, the SI method of Section 3.7 is appiicable
(see Young [1971]). It is easily verified that the formula for the
PSD-SI method is indepeﬁdent of v and it is identical to the one given
by (5.14).

As can be seen from (5.14) the PJ-SI method is a linear non-

stationary method of second degree. The improvement in convergence

comes at the expense of requiring storage for one additional vector,
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In order to determine the convergence of the PJ-SI method we have

from (3-7.19) and (5.5) that

it
]

(2(1-B )-(2-A(B })-A(B )) 2-(2-A(B )-A(B.))
Pn(I’BmJ w w W )///}n[ w ] J

n ABX(E) KB YY)

9

’A(Bm)+x(3w)-zam]///f MBI (B)
= TnL REIAE) | T B IE| 517)

Thus the virtual spectral radius (see (3-7.27) and (3-7.28)) is given by

2 -n
- _ 1 A
S(anw)) - P(,B )+l - I - --211 (5.18)
T w 1+1 1+1"
n PiBwj-l
where by (3-7.29) and (5.12) we have
} o 1-1/¢b(Bm)
T=r1 = = . (5.19)

1+ &_02 1+1/VP(Bm)

Therefore, by (3-7.30) the average rate of convergence is defined by

=n
_ 1 3 _ 1 2r
Ry (P (6)) = - o log S, GCD = - - log Tpy (5.20)
while as n»» we have by (3-7.31) that the rate of convergence for the
PJ-SI method is given by
_. 1 . - log F
Rm(PnGH@)) 5 - E—log r=-log T. (5.21)
If now P(Bm)>>1, then from {5.19) we have
1-1/%°@ 3 ) 4
r= |—2 | ~1 - (5.22)
1+1/¢P(Bm) JP(Bm)
hence
1 2
Rm(Pn(H&)) =-3 log r~ ZVﬁ(DT’m). (5.23)

P(B)
w”
The above result could also have been obtained immediately from (3-7.32).

If we express (5.23) in terms of reciprocal rates of convergence,
then we obtain the following result
RR (P (€ ))~ - V/RR(D. ). (5.24)
@t N W /2— T,
By combining (5.24) and the results summarised in Table 4-12.1 we have

the following comparisons between the PJ-SI and the JOR methods.



Asymptotic Bounds on

Range of B | RR_(P, (1, ))/ RR(3))
General Case | Property A
= M 1 1
Bsg —
4 7 2/2
M -1 1 1
3shg 7 Ry
§>l A 1
4 2/y AT
TABLE 5.1

By (5.23) we see that the application of the semi-iterative techniques

to the PJ method improves the rate of convergence by an order of magnitude
over the PSD method. This is a substantial improvement and compares
favourably with the frequently used SOR method as it (see Section 4.12)
has approximately the same rate of convergence with the PSD method. A
simple comparison between the asymptotic bounds on RRm(PnCHbl)) and the
best possible bound on RR(Lm ) which is given by (3-6.26), when the matrix

b
A is consistently ordered results in the construction of Table 5.2.

_ Asymptotic Bounds on
Range of B
RR_(P_(3 ))/YRR(Z )
@ n W W
1 b
=M 1
Bsg 377
M-1 1
1SBsT -
45774 e
=1 1
R>= —
3
2y
TABLE 5,2

PROPERTY OF PJ-SI WITH SOR WHEN A HAS PROPERTY A
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we have

|

" From Tables 5.2 and 5.1 we clearly see that for OgBg
substantial improvements of the rate of convergence for the PJ-SI method
over SOR, while for the case where §>%-the gain on the convergence depends

strongly upon the quantity y which is given by the expression (see (4-11.18))

oo [oe 26wt .29
Young [1974] proved that
S~ + 0hH) (5.26)
for the discrete generalised Dirichlet problem assuming the mesh size
h to be small and that the coefficients A(x,y) and C(x,y) in (1-2.3) belong
to class C(z) in RUSR. This resulf.is significant because it establishes
an order of magnitude improvement of the PJ-SI method 6ver the SOR and PSD
nethods.
Young [1971,1971a] has also shown for the generalised Dirichlet

problem that

.2 7% .. 2om '
_ 2As5in” 4+ 2Csin” ==
s 200 _J, T orE g .2
2(A+C)+h (1f)l §{A+5)+§{C+g)+§{A55)cosf+§{C—_)cosj

where the region R is included in an IhXJh rectangle for some positive
integers I and J and where
AsA(x,y)sA, CgC(x,y)sC, (-F)s-F(x,y)
in RU3R.
We note that (5.27) implies that
S(B)<M = 1-chZo(hh (5.28)

for some constant ¢>0. By (5.26) and letting E=1/4+O(h2), it follows that

- 2
B-1/4 _ 0Ch”})
M - 2 3 (5.29)
ch™+0(h )
and
lim %1\/71 = £p0
h+0

*Wé note that Ehrlich [1963,1964] showed that S(LU)s%-jbr the model problem
whereas Phien [1972] showed that this condition holds for the equation
-1 -1,
O Uy Uy)y—O as well.



hence
Y>£1>0

where -}
£ = (1+255) 7",
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(5.30)

{5.31)

Therefore, the quantity 7"1, where Y is given by (5.25) is bounded away

1
7

1 -1
P(Bwl) S 5(1+Y /T:ﬁa

and using (5.28) we obtain

from zero as h+0. On the other hand, for B>

that

1 v2/¢€) _ 1 1
where )
£, = vr2/c.

Evidently, from (5.33) it follows that

R(DTl'wl) “’Z/P(Bwl) «-4/(1+(52h)“1).v 0(h)

and finally by (5.25) we obtain the expected result

Rm(Pn(Jle) ~ /E/E(Drl,wl) ~om?y.

Consequently, for the PJ-SI method to yield an order-of-magnitude

we recall from (4-11.

17)

(5.32)

(5.33)

(5.34)

(5.35)

improvement on the convergence rate over PSD and SOR it is sufficient

that B-1/4 be of the same order-of-magnitude as 1-M. This condition

has been shown to hold for the generalised Dirichlet problem under the

condition that A(x,y) and C(x,y) are in the class C(z)

consideration. However, of we consider the self-adjoint equation

3 ,0Uy . B ,3U, _
A5t ay(C5§J =G

in the region of

(5.36)

where |A [ and ICy] are bounded in the domain of consideration, then the

application of the PJ-SI method to the corresponding difference equation

vields a rate of convergence of O(hi). This is proved if we determine

S(LU) as follows. We note that

S(LUYsLUK sRLA HUL,

(5.37)

which implies that we have to estimate IUl_. But the sum of the elements



of the matrix U in the row corresponding to the point (x,y), by (1-2.7)

and (1-2.8) is

! 2] [A(x+%,y)+c(x,y+%)}
A(x,y)+C (x,y)+0(h2)

A_C
1 _ h Xty 2
=277 [A+C]+O(h)

thus for h sufficiently small we have
IUl_s3 + &h

and by (5.37) we obtain
S(LU)sp+E'h

for some constants £ and E'.

In this case, by (4-11.17) we have

1 Y1-2M+4B) 1 ~3/2
P(Bwl) g 3‘[1+——T:ﬁ**—]““§{1+5”h )

and therefore by applying the PSD method we have

o a3/2
R(D_rl,wl)-vZ/P(Bwl) o(h~>’ 4.

Finally, by using semi-iteration we obtain by (5.35) the following

result

R, (P_(% ) ~om!

1

)
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5

(5

(5.

(5.

(5.

which indicates again an order of magnitude improvement in the convergence

rate.

.38)

.39)

.40)

41)

42)

43)
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5.6 PRECONDITIONED JACOBI-VARIABLE EXTRAPOLATION METHOD (PJ-VE METHOD)

We recall from Section 4.9 that the PSD method is defined by the
iterative scheme
u(n+1) = T(wau(n)+ym)+(1-r)u(n). (6.1)
By comparing (6.1) and 3-7.25) we see that if we allow T to vary in each
iteration we immediately have the variable extrapolation (see Section 3.8)
version of the PJ method which is

u(n+1) = 6n+IGH;u(n)+Yw)+(1-en+1)u(n). (6.2)

The iterative procedure (6.2} defines the PJ-varaible extrapolation
method (PJ-VE method}. We note tHaf the first expression in brackets
of the right hand side in (6.2} is the PJ method thus by using (4-4.6),
the expression in (6.2) becomes

u(n+1) -1 -1

l[u( Ve (1-wy L (1-01) ‘(b-Au(“))]+(1-9n+1)u(n) (6.3)

which can be simplified to yield the iterative process
o@D ™ ey -ul) o o-au ™) (6.4)

The iteration parameters 6 can be determined by using (3-8.5) and

n+l
(5.5). Consequently, the parameters ak for the variable extrapolation

as applied to the PJ method are given by

2

6. = k=1,2,...,m (6.5)
k (2k 1w .
(A (B )-A(Bw))co + U\(Bm) A(Bw))
or by
6. = w(2-w) , k=1,2,...,m. (6.6)
k 1/p(Bm)cosz (zi;l)n Tz (2§m1)w

Using the optimum ek as given by (6.6) we can see by (3-8.6) that the
virtual spectral radius of the PJ-VE method depends upon the P-condition
number of Bw’ whereas we do not expect the virtual rate of convergence
to be as effective as the PJ-SI method since care must be taken with the

values of m (see Young [1954a].



5.7 SECOND DEGREE-PRECONDITIONED JACOBI METHOD (SD-PJ METHOD)

Instead of using the non-stationary methods as described in the
previous section one can obtain almost as rapid convergence using the
stationary second degree version of the PJ method (see Section 3.9). The
second degree PJ method can be easily obtained, if we let pl=1 as for the
SI-PJ method, but for n32 we let pn=&0 where &0 is given by (3-9.15).

Evidently, @, is the limit of the SEqUeNce p;,0,,... as defined in the

0
SI-PJ method.
If now A is positive definite and if G=X , corresponding to the PJ

method, then from (5.5) we have

179

P(B,)-1
g = W . (7.1)
Therefore
) , BB )-1)2
e —— Tl ——————F“’ (7.2)
1+ 1-02 (Bw)+1
and by (3-9.17)} we have the result
- (B )-1
SM) = (w-1)? = —2 | (7.3)
0 VP(Bw)+l

If P(Bw) is very large, as is frequently the case, then the second

degree PJ method converges much faster than the SOR method. After the
determination of &0 we can gasily find EO and "o by (3-9.14) and (3-9.16),
respectively, hence the SD-PJ method with A positive definite is defined

by (see (3-9.2))

(7.5}

u®D Ly MGy @™ Dy 5 g u®™ oy o) (7.4)
where &0 is given by (7.2) and
20 (2-w)
1'0= e m.

We simplify (7.4} to obtain successively

u(n+1) = u(n)+[60-1)(ucn)—u(n'l))+roﬁo(ym-Bwu(n))
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or
w23 ™ (@eo0) 7 -0 07 o-a ™) 10 -5 ™Y (706)

which can be written in the more compact form

u(n+1) = o (D mu(n)+6] + (l—ﬁo)u(n_l)

0", (7.7)

where the expression in the first brackets in the right hand side can be
easily recognised to be the PSD method.
For a direct comparison with the PJ-SI method, we specify the

(1)

iterant u to be given by a PSD iteration, thus we finally define the

SD-PJ method by (7.7), where

1 » if n=0
Wy = (7.8)
0 — e, if n21
1+v/1-0°
or more analytically
u(l) = DT wu(0)+6,
0’ (7.9)
(n+1) _ - (n) ~ y (n-1)
u = wO(DTo,mu +§) + (l-wo)u .
In this case we are able to determine the virtual spectral radius of
the SD-PJ method and it can be proved (see Young [1971] p.490-491) that
= V2 a1l s
50,00, 1) = T [1+(5 (1-D)] (7.10)
w
0’ l+x
where . .
T = mO-l (7.11)
and the polynomials Qn(D ) satisfy the recurrence relation
TgsW
QO(DTO,w) =L Ql(DTO,w] - DTO,w
. {(7.12)
Qn+1(DTO,m) = wODTO,an(DTO,m)+(l-wO)Qn-l(Dro,w)'
By recalling (5.19), the virtual spectral radius for the PJ-SI method
is given by N
Se_ge)) = Hn (7.13)
nw *n ’

l+r
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thus by the theory of Chebyshev polynomials we have that

52, 00)) = 50,@, ) (7.14)

which implies that the PJ-SI method converges faster than the SD-PJ

method.
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5.8 GENERALISED CONJUGATE GRADIENT METHOD

In Section 3.10 we showed how the CG method can.be regarded as an
acceleration procedure analogous to the SI method. In this section we will
consider the above idea in more detail with particular reference to the
basic iterative method (5.1) of a certain form. This will help us to apply
the CG method to the PJ method in order to produce a powerful iterative
scheme (see Section 5.9).

Let us consider the basic iterative method of the form

LS T EO (8.1)
where k= (I-0)A b, .- (8.2)
Further, we make the assumption that the iteration matrix G has the form

G = I-R"1A (8.3)

where the conditioning matrix R is the product of a matrix times its
transpose i.e.,

R = QQT (8.4)
and Q is a non-singular matrix. Evidently, the matrix G has real eigen-
values since it is similar to the symmetric matrix

¢ = o)™ = 1-gtadh (8.5)
Next, we will develop a version of the conjugate gradient procedure with
respect to the basic method (8.1) in a way similar to the one followed
for the SI method.

Let us consider the original form of the preconditioned system

fas was first introduced by Evans [1968]),

a1 @MW = 7M. (8.6)
System (8.6} can be written in the following compact form
Au = b (8.7
where A = Q"IA(QT)'I, (8.8)
= Qlu (8.9)
and 6 = q b, ‘ (8.10)



It can be readily seen that A is symmetric and

A=qa-eaQhr.

We now consider the application of the CG method to the preconditioned

system (8.7). If we use the non-stationary second degree version as

developed in Section 3.10, then by (3-10.37) we have the iterative

scheme " . ~ (e
u(n+1) = pn+1(u(n)+yn+1r(n)) + (1-pn+ )u(n 1

where

2 (M) _ g A ol ()

T
and r(n) = b—Au(n].
Using the relationships (8.9) and (8.13) we rewrite (8.12) to yield

ulrl) pn+1(u(")+Yn+1(QT)-1Q—1r(n)) + (l—pn+1)u(n'1)

which by noting that
Q™ = @l ™) = qu Wik @
can be written in the following compact form

L)
n+1

By turning our attention to the expressions for the parameters Phel and

The1 W have from (3-10.39) that
y _ (r (n) (1'1) ) _ (i‘. (n) i (n))
n+1 (r(n) (_—) * ~(n) Q A(Q (n))
i (;(n) » )y _ ) 2y
@hHT™a@hEWy @ A
where
g(n) (Q I)T (n) (Q ) Q“lr(n) = Gu(nJ+k-u(n).

Finally, from (3-10.38) we have the following expression for p

0 _ [l Yn+1 (i.(n) (n)) 1}‘1 n=1’2"..
n+l

Y, @D ;D) b

n+l

Evidently, the relationships (8.17), (8.18) and (8.20) define the CG

method with respect to the iterative scheme (8.1).

[y, (Gu™i)s 2y, Ju™ e e yu®D,
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(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

{8.17)

(8.18)

(8.19)

(8.20)
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5.9 PRECONDITIONED JACOBI-CONJUGATE GRADIENT METHOD (PJ-CG METHOD)

In this section, we present an alternative acceleration procedure of
the PJ method which results in a more effective iterative scheme (as far as
the rate of convergence is concerned) than the PJ-SI method developed in
Section 5.5.

The combination of the PJ method with the application of CG method has
also been considered by Evans [1973a] whereas similar accelerated schemes
have been developed by Axelsson [1974] and Young [1975] for the SSOR method.

Let us assume, without loss of generality (see Young [1971] p.112),
that the matrix A has the splitting

A

I-L-U (9.1)
where =" (9.2)
and L,U are strictly lower triangular and strictly upper triangular
matrices, respectively,
We note that if we let Q be the matrix
Q= I-uwl, 9.3)
the PJ method can take the form (8.1) where the matrix R is given by
(8.4).
From (9.3) and (8.13) we immediately have
;(n) = Q-lr(n) = (I-wL)ulr(n) (9.4)
2(n)

whereas from (8.19) we obtain the following expression for s

O I O R e AR L (9.5)
We recall from Chapter 4 that the PJ method is given by the iterative

process . - -
w1 My ey e ) (5.6)

and has the form (8.1). If we substitute (9.6) in (8.17) we obtain
1 n -1 -1 n
u®™D ooy @ - e ™y ey, pu®)

+(1-p,, Ju D 9.7)

or

W@+ D) yu(-1)

(9.8)

= pn+1 (u(n)+Yn+1(I-wU)-1 (I"wL)dlr(n))"'(l-pn-Fl



which defines the PJ-CG method.

The parameters Pos and Y41 2T€ determined by using (8.18) and

1

(8.20), hence we have

((T-or) e ™ (1ory~1e ()4

Y =
L o) T reel) e ™ A (1o L (1own) T Dy
e g,
where () -1 -1 ()
K = (I~wlU) "(I-wL) T

and in a similar way we find

- |1 Tnel (r(n),r(n)) _l__l
Pns1 V. GEDLmDy Bl

Summarising our results we have that the PJ-CG method is defined

by
D o - () -1y

n+l n+1¥n+1
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(9.9)

(9.10)

(9.11)

(E-ul) "L (1-01) ! (b-au ™)y

(9.12)

where pl=l\ and PLeq 15 given by (9.11) whereas Yo 21 be obtained from

(9.9).

In order to examine the average rate of convergence of the PJ-CG

method we recall from (3-10.40) and (3-10.42) that the average rate of

convergence is expected to be better than the PJ-SI method in the sense

}

of minimising the A

-norm of the error vector. Consequently, we expect

that the number of iterations will behave like O(h-i) in the PJ~CG method

as well,
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5.10 COMPARISONS AND COMPUTATIONAL RESULTS

In the previous sections we have developed various accelerated
procedures based on the PJ method which resulted in an order of magnitude
improvement of the rate of convergence as compared with the SOR method
(and the PSD method). These comparisons were based on the fact that the
preconditioning parameter w takes its optimum value Wy However, in

practice we use a value of w which is near its optimum w This value is

0
given by (4-11.4) and it requires the determination of the quantities §
and M.

Since for a given linear system we may have some difficulties to
estimate the quantity B, we consider the effectiveness of the PJ-SI method
with w=1, ‘

Next, we prove a lemma which establishes the effectiveness of the

PJ-SI method even with w=l.

Lemma 10,1
If A is a positive definite L-matrix then
P(Bl) < P(A). (10.1)
Proof
If A is'a positive definite L-matrix, then it follows (see (3- 6.38))
that M(B)z-m(B). Furthermore, from (4-11.2) we have the following
expression for P(Bl)

1-S5{B)+S(LU)

Since now
B2 = (L+U)2 = LU+UL+L2+U2 (10.3)
we have LU = B2-uL-L2-u¢B? (10.4)

and from Theorem 2-1.3 it follows that
S(LU) ¢ S(B)z. (10.5)
If we combine (10.2) and (10.5) we have the alternative bound

1-5(B)+5 (B)?
1-5(8) — °

P(B)) 5 (10.6)
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On the other hand, we have
1-5(B)+S(B)? = 1-S(B) (1-S(B))<l

hence (10.6) yields

P(B,) < IiE%ET'S P(A) (10.7)
and the proof of the lemma is complete.
From the above lemma and from the fact that the effectiveness of
the SI method (;ee 3-7.32) depends upon the P-condition number of the
preconditioned matrix, we conclude that if A is a positive definite L-
matrix, then the PJ-SI method with w=1 is at least as effective as the
Jacobi-SI method.
If we further assume that the matrix A has Property A, then the
rate of convergence for the PSD methﬁd with w=1 is given by
R(D, 1)~ 2/P(8,) (10.8)

0’
which using (10.7) and (3-2.14) yields

R(D ) ~ 2(1-S(B}} ~ 2(-10gS(B))
To,l
= 2(-10gS(B5)) = ZR(BG). (10.9)
Consequently, from (5.24) the rate of convergence for the PJ-SI method

with w=1 is

R, (P (3 )} /EVR(DTO’I) ﬂ'Z/R(BG). (10.10)
On the other hand, the rate of convergence for the J-SI method is

Rw(Pn(B))na/E/E(B) =/§VR(BB) (10.11)
hence .

R, (P, (#))~ V2 R (P (B)) (10.12)

for sufficiently small h.
Further, if A is consistently ordered, then it is known (see
(3-6.32)) that
R(wa)-v 2/2/R(8;) (10.13)
hence by combining (10.13) and (10.10) we find

R,(P.UG)) 5

(10.14)
R ) Z
“b
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which implies that if A is consistently ordered, then the PJ-SI method
with w=1 is asymptotically ¥2/2 times as effective as the SOR method.
From the above analysis, we conclude that if A is a positive define L-
matrix, then it would seem appropriate to use the PJ-SI method as opposed
to the J-SI method, whereas if A is cohsistently ordered, as opposed to
the SOR method. Thus, even with @=1 and even taking into account the
extra work per iteration, the PJ-SI method is nearly as effective as the
other methods,

Let us now return to the case where the preconditioning parameter
takes the value given by (4-11.4) apd consider the application of the
previous results to the model probiem as described in Section 4.13.
Specifically we will consider the épplication of the SI techniques to
the J and GS methods and compare their rates of convergence with PJ-SI,
SOR and other iterative procedures as well.

We recall from (4-13.9) that for the model problem we have

V3 ~1 4
R(D y~ 471+ 20y~ n (10.15)
T1°9 i Y3

for sufficiently small h.
Thus from (5.24) we have that the reciprocal rate of convergence
for the PJ-SI method is

h'* (10.16)

4

3

RR_(P_ (7 )~
noeT 22

which is better than the value of RR(Lmb) by an order-of-magnitude.

In fact, from (4-13.15) we have

RR(Z )

_ AT -4
p = RRm(Pn(mL13) /E} h = 0.606h *, (10.17)

If we now compute the values of p for h=1/20, 1/40, 1/60, 1/80, then

we have the corresponding values of the ratio of the asymptotic bounds
on the reciprocal rates of convergence of the SOR method over the PJ-SI
method presented in Table 10.1. From this table, we observe that the

PJ-SI represents a substantial saving over the SOR method even if one
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counts each PJ-SI iteration as two full SOR iterations. We also note
that the factor of saving increases as the mesh size h decreases so we

expect further increases as h*0.

hl p p/2

20 o 2.71 1.36
40 3.83 1.92
60 4.69 2.35
80 5.42 2.71

TABLE 10,1

We recall again from (4-13.3) that for the JOR method we have

RR(B.) = -chélEb’é?}T “’ﬂiz n~? (10.18)
for sufficiently small h. Thus by (3-7.32) the reciprocal asymptotic
rate of convergence of the J-SI method is
RR_(P_ (B)) ~ —/RR(B.) ~ L n1. (10.19)
@ 'n /3 W m

On the other hand, it is known (see Young [1971], Golub and Varga [1961])
that the Cyclic Chebyshev Semi-Iterative method (CCSI method) has twice
as fast the rate of convergence of the J-SI and therefore from (10.19)

we obtain

RR_(CCSI) ~ -h™! (10.20)

which is the same as the value of RR(Lm ) (see (4-13.15)).
b

Moreover, for the GS method, since A is consistently ordered,

we have (see Chapter 4) that

S@) = sB)? = cos’nh (10.21)
thus we obtain 1 . -2
RR(Z) ™~ = h™°, (10.22)
w

Finally for the GS-SI method we have the following result

1 o1 -1
RRm(Pn(L))NE-FZ R(B) ~ 7 h (10.23)

which implies that the convergence rate of the GS-SI method is approximately

twice as fast as the J-SI method, However, for stability reasons (see Young
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[1971]), before using the GS-SI method, one should first permute the
rows and corresponding columns of A so as to obtain the form (2-7.1).
Evidently, for the model problem this corresponds to the relabelling of
the interior mesh points to correspond to the '"red.black" ordering (see
Chapter 2).

Let us now consider the effectiveness of the SSOR-SI method (see
Habelter and Wachspress [1961], Sheldon [1955], Young [1974, 1971]).
From the simple observation that the rates of convergence of the accelerated
iterative schemes considered so far, depend also upon the P-condition
number of the (preconditioned) coefficient matrix, we expect the SSOR-SI
method to possess approximately thé same rate of convergence as the PJ-SI
method. This observation is concluded from the fact that the two methods
have conditioning matrix which differ only by a scalar factor. This can
be more explicitly seen if we consider the first step of acceleration

(see (3-7.25)) applied to the SSOR method, hence we have

ML) (1_«Em(z-m)Bw)u(")+%m(2-w) (1-ot) " r-on) e (10.24)
or (n+1) (n) -1 -1

u = (I-rBw)u +T(I-0U) “(I-wl) "¢ (10.25)
where . ‘

T = 1w(2-w). ‘ (10.26)

Evidently, in order for the rate of convergence of (10.25) to be

maximised T will take that optimum value so that the optimum value ?b

of ¥ to become identical with - In other words, at the optimum stage

the iterative scheme (10.25) is identical with the PSD method, which if
accelerated using the semi-iterative techniques becomes identical with

the PJ-SI method. Consequently the optimum SI method based on SSOR is
identical to the optimum SI method based on the PJ method. This conclusion
can also be extended to include all the previously considered accelerated
techniques based on the PJ method.

Finally, we consider the application of the SI method based on the

LPSD. From (5.24) we have that the rate of convergence for the LPSD-SI
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methed is given by (see (3.11))

(my) (r) i
R (P_(D ~yZVR(D )y~ 252D 10.27
=n rf"l),wf"l))) ( t{"), 0 {™) Crpoay? (0.2
hence

RR_(P_(D )

S Ci ! a2t (10.28)
RR_( (D(Ei) ))

R (P

S NECUNCY

for sufficiently small h, This result implies that for the unit square,
or a subset thereof, there is a gain of approximately a factor of 1.2 in
using the LPSD method with semi-iteration as compared with point PSD with
semi-iteration. However, in orde£ to achieve this relatively small
impfovement for the former scheme in terms of overall computational effort
one should carry out the method using a normalised block iteration scheme
{see Cuthill and Varga [1962]),

Summarising our results, we have the following asymptotic expressions
for the reciprocal convergence ratés of the various methods considered for

the model problem

Method Reciprocal Convergence Rate
J-SI %-h"l
CcsI %; -1
GS-SI 5%-h'1
SOR %; -1
SSOR g hol
PSD E/g h‘1

3 -1
LSSOR 577" h
2i_?n
3 -1
LPSD ———h
572"
SSOR-SI -3%2__ nd
24
PJ-SI st h'i
éﬁ?sz
3 -y
LPSD-SI h
27;2%F

FIGURE 10.1
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From the above figure we notice that for the PJ-SI (or SSOR-SI) and
LPSD-SI methods the number of iterations varies like O(h'i). From our
previous analysis we expect that this would also happen for the SD-PJ,

PJ-VE and PJ-CG methods.

In order to obtain some information about the above methods in
practice, we considered again the six problems as described in Section 4.8
under the same boundary conditions, starting vector and convergence
criterion.

Next, the PJ method was accelerated both by variable extrapolation
(PJ-VE) and by semi-iteration (PJ-SI). In each case, the optimum parameters
were used whereas for the PJ-VE method the value of m was determined as
the smallest integer such that
m/2 -1

1 2r
-EIOg

g l2s
l+4r (-i-log T)

(10.29)
This guarantees that the reciprocal rate of convergence does not exceed
125% of the reciprocal rate of convergence of the corresponding semi-
iterative method.

In Table 10.2 we present the number of iterations of the two
aforementioned iterative schemes. From this table we note that the
number of iterations required for convergence using the PJ-SI and PJ-VE
methods behaves approximately as h'%, even though the coefficients A(x,y)
and C(x,y) are not necessarily in class C(z) (see problem 5). However,
it should be noted here that for a higher degree of discontinuity the
behaviour is expected to be h'%, as was shown in Section 5.5, under
the assumption that [A,| and ICyl are bounded in the region under
consideration. This is somewhat better than O(h) convergence of SOR.

As is shown (see Appendix A), the number of operations required per
iteration using the PJ-SI method is approximately twice that required

using the SOR method. This should be considered in comparing the PJ-SI

with the SOR method. However, if we use the PJ-VE method, then we can
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Problem | h 0, AB, ) | AB) T PJ-SI | PJ-VE | m,
0 0
20 1.7641 | 0.4568 | 2.4030 | 0.6993 | 17 20 4
1 40 1.8750 | 0.4233 | 4.2667 | 0.4264 | 24 30 6
60 1.9157 | 0.4068 | 6.1922 | 0.3031 | 30 35 7
20 1.5888 | 0.6313 | 1.5307 | 0.9251 | 12 12 3
2 40 1.7668 | 0.5672 | 2.4271 | 0.6679 | 17 19 4
60 1.8386 | 0.5439 | 3.3698 | 0.5110 | 21 25 5
20 1.7652 | 0.4488 | 2.4127 | 0.6989 | 17 20 4
3 40 1.8756 | 0.4153 | 4.2859 | 0.4254 | 24 30 6
60 1.9163 | 0.4096 | 6.2346 | 0.3010 | 29 35 7
20 1.7624 | 0.4566 | 2.3881 | 0.7031 | 17 20 4
4 40 1.8748 | 0.4252 | 4.2603 | 0.4268 | 24 30 6
60 1.9143 | o0.4121 | 6.0955 | 0.3073 | 29 - 35 7
20 1.7479 | 0.3901 | 2.2694 | 0.7520 | 18 20 4
5 40 1.8665 | 0.3592 | 4.0132 | 0.4574 | 25 30 6
60 1.9093 | 0.3494 | 5.7746 | 0.3266 | 31 35 7
20 1.6097 | 0.6311 | 1.5917 | 0.8998 | 11 12 3
6 40 1.7820 | 0.5779 | 2.5742 | 0.6343 | 17 20 4
60 1.8490 | 0.5595 | 3.5817 | 0.4829 | 19 25 5
TABLE 10.2

A COMPARISON OF PJ-SI AND PJ-VE METHODS WITH OPTIMUM PARAMETERS

£61



h-l PJ-51 PJ-CG LPSD-SI PJ-VE SOR pSD SSOR

20 17 14 14 20 61 37 66

40 24 20 20 30 121 71 134

60 30 25 25 35 253 [ 107 201
TABLE 10.3

NUMBER OF ITERATIONS FOR THE MODEL PROBLEM

P61



reduce the work involved to be approximately equal (see(A.11)) to the
work in SOR, thus making this iterative procedure more attractive than
the former accelerated versions of the PJ method.

Finally, in Table 10.3 we present the number of iterations of the
various procedures considered so far for solving the model problem using

the same starting vector and convergence criterion.

195
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CHAPTER 6

THE ADAPTIVE ALGORITHM
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6.1 INTRODUCTION

Inlthe last two chapters we were concerned with the construction of
various iterative schemes and their comparison with respect to rates of
convergence and related computational work. A lot of emphasis was also
dedicated to the theoretical determination of the involved parameters to
attain optimal rates of convergence. Finally, the formulation of the
accelerated versions of the PJ method and especially the PJ-SI, PJ-VE,
SD-PJ and PJ-CG procedures were also considered and it was shown that they
form a variety of different algorithms with rapid rates of convergence.
These latest schemes together with- PSD, SOR and ADI-methods (see Chapter 7)
can give an answer to the question as to which method should be used to
solve systems of the form (3-1.1). However, the problem as to how the
iteration parameters should be chosen so that the anticipated rapid rate of
convergence will be attained, still remains since the number of iterations
required to obtain the optimum parameters may exceed the number of iterations
necessary to solve (3-1.1) itself. This is also very closely related to
the problem of how one should decide when the iteration process should be
terminated. A step towards the solution of the above problem was the work
by Diamond [1971] and later on by Hageman [1972], Young [1974a] and
Benokraitis [1974] who have considered a number of techniques for
accelerating various iterative methods by Chebyshev acceleration whereas
Ikebe et al [1973] considered an adaptive scheme which does not depend
upon estimating the spectral radius of the iteration matrix. These methods
adaptively update the required acceleration parameters and improve the
approximate solution at the same time. The goal of the adaptive schemes is
to attain convergence in only a few more iterations than would be required
if the best possible values of the iteration pafameters were used from the
outset.

In this chapter we will develop an adaptive algorithm to accelerate
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the PJ method which does not require any knowledge of the eigenvalues of Bw'
In particular, we will consider the PJ-SI method with the parameters being
improved during the course of the iterations and we will show that this
algorithm under certain conditions performs better than the PJ-SI method

with estimated parameters,
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6.2 SOME CONSIDERATIONS FOR CHOOSING THE OPTIMUM PARAMETERS

As we have seen in the previous chapter, in order to apply any
accelerated version of the PJ method we need to have the optimum parameters

0y and P(Bmo) or S(DTO’
P(Bw } in the actual iteration, its computation is essential for the

0
determination of mOJ. A simple technique for determining these quantities

" ) (although in the PJ-CG method we do not require
0

is the selection of various values of 7 and w and the computation of the
corresponding S(DT w) using the power method (see e.g. Gourlay and Watson
L
[1973]). Thus, the triple (uw,,T,,S(D }) which produces the smallest
0’0 To*%g
spectral radius S(!.J'.r w) can be chosen as the optimum parameter set. The
]

most sophisticated scheme for this approach is to use an optimization method
(e.g. Fibonacci search technique or golden section) for the appropriate

selection of T and w. In Table 2.1 we present the optimum parameters w.,T

0’0

and S(DT " ) obtained by the power method for the problems considered in
00
Section 4.8 (see Table 4-8.2).
Problem | h™1 w T S(D P(B )
0 0 To,mo wo .
20 1.7641 | 0.6993 0.6805 5.2604
1 40 1.8750 | 0.4264 0.8195 10.0806
60 1.9157 | 0.3031 0.8767 15,2207
20 1.5888 | 0.9251 0.4160 2.4248
2 40 1.7668 | 0.6659 0.6211 4.2790
* 60 1.8386 | 0.5110 0.7221 6,1958
20 1.7652 | 0.6989 0.6863 5.3763
3 40 1.8756 | 0,4254 0.8233 10,3200
60 1.9163 | 0.3010 0.8767 15,2207
20 1.7624 | 0.7031 0.6790 5.2301
4 40 1.8748 | 0.4268 0.8185 10.0200
60 1.9143 | 0.3073 0.8734 14,7929
20 1.7479 | 0,7520 0.7066 5.8173
5 40 1.8665 | 0.4574 0.8357 11.1732
60 1,9093 | 0.3266 0.8859 16.5289
20 1,6097 0.8998 0.4322 2.5221
6 40 1.7820 | 0,6343 0.6333 4,4543
60 1.8490 | 0,4829 0.7298 6.4020
TABLE 2.1
OPTIMUM PARAMETERS wO’TO AND S(DT ) OBTAINED BY PCWER METHOD

0*“o
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Evidently, the aforementioned technique of obtaining the optimum
parameters is impractical,we are therefore bound to consider other approaches.
The same problem was also encountefed for the determination of ¥y in the SSOR
method and the first step towards its solution was the work by Habelter and
Wachspress [1961] who determined an implicit formula for the optimum parameters
Wy and S(&mo). Later, Evans and Forrington {1963] modified the determination
of the optimum parameters by devising an iterative scheme which although
successful for the model problem does not guarantee to produce the optimum

parameters for a wider class of problems.

Here, we present an algorithm for the determination of w.,T, and

‘ 0
S(D_r " ) which is based on the analysis presented in Chapter 4 and is
0’70 '
similar to an algorithm for the determination ofaﬁ and S(&w )} (Benokraitis
0
[1974]).

Algorithm 6.1

1. Choose convergence tolerances el,ez and initial values of w,T and v#0.

2. Iterate with the power method to obtain S(DT w) and a vector v such that
»

= D
D v =5( . w)v

T, ’ (2.1)
(v,Dv) = 1. _
3. Compute
a = (v,DBv) (2.2)
and B = (v,DLUv).
4. Compute
(2 , if asg48
1+v1-2a+48
ml = # (2-3J
__g_.__. = w* R if a)4B, ’
L 1+/1-48
28 acs
-a
pr o= (2.4)
1-Y1.48 _ 21 _,if a»48,
\ 2/1-48 @
y o 2w0'(2-w') p'-1

= I:-W—- and S' = Piel (2.5)
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5. Terminate the process if

Iw-w'l <e

; 1 (2.6)
IP(Bw)-P'| <e,
and choose
wo=w, T.0=71!
0 0 (2.7)
- |
P(Bwo) = pt,

Otherwise set w=w', T=t' and go to step 2.

However, we note that the deficiency of the power method approach
is still retained since the number of iterations required to obtain the
optimum parameters by applying Algorithm 6.1 can be of the same order as
the number of iterations required to find the approximate solution of (3-1.1).
We are therefore motivated to consider a comparison of the PJ-SI procedure
using estimated and optimum parameters since the former are obtained

relatively easily.



202

6.3 STOPPING PROCEDURES

In this section we consider various criteria which will be used for
terminating the procedures for the adaptive determination of the parameters
w and P(Bw)' The analysis of the stopping procedures is similar to the one
developed by Young [1974a],Benokraitis [1974] and Cullen [1974] modified
slightly to suit our purposes,

Let ﬁ&(I-G)'lk be the exact solution of (3-1.3) and hence of (3-1.1).

th

We recall from (3-3.3) that the error vector at the n~ stage of the PJ-SI

iteration is defined by
E(n) = u(n)-l_l'_. (3.1)
(n)

Here we will accept u as an adequate approximation to the exact solution

U provided the following inequality is satisfied by the relative error

gem)y lu ) gl
P Tl

= < g s (3.2)
16007 I
al

)

where we assume that u* =0 and p; is some small tolerance (e.g. z=10—6).
It can be observed that we cannot use the convergence criterion (3.2)
directly, for U is not available at the outset. Thus, we have to consider
various upper bounds on the relative error defined in (3.2) in order to

avoid this difficulty.

In particular, for the PJ-SI we have from (5-5.14),(5-5.17) that

o™ Pn(Jqu)u(o) + ko (3.3)

and by consistency, we obtain the following

u = pn(gggﬁ + kn' (3.4)

From (3.3) and (3.4) we have

(n) = _ (0) —
u'’-u = Pn(JQ)(u -u) (3.5)
hence (3.2) can be modified to yield

(n) ~ 0) =
i uIIAi EPH(JC‘)HAi"u a |
< - 1P Gl (3.6)
w il I n A
Ik 3
(0)

since u =0,
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We therefore define by (3.2) and (3.6) stopping "Procedure I" for

PJ-SI as
-1
K = 2;n gt (3.7)
1+7
since
ip_acyl = 1ate gt = e ol ahy - s ateatty
n % A# nw n w n w0
= S(AiPn(m%)A-&) = S(P, (%)) (3.8)

where T is given by (5-5.19). This procedure is an a priori criterion
since we can determine in advance how many iterations are required such
that (3.2) is satisfied. |

Next, we consider an alternative stopping procedure which may, in
favourable cases, lead us to terminate the iteration process sooner than
Procedure I {and in some cases later).

The pseudo-residual vector (or incremental vector see Diamond [1971])

is defined by (see Young [1974a]) the expression

sM - qumy @, (3.9)
Since Gi=Gu+k, we have
s™ - ™ @emy-u™ = 60 ™) (3.10)
and by (3.1) we obtain
s - -1y (3.11)
which indicates that the error vector &™)

can be expressed in terms of
the pseudo-residual vector G{n). By combining (3.2) and (3.11) we find
the result

™ 5 \ Ie-1) "1 iucs(“)n &
A A A

g

(3.12)

A
Y

Il lull )
A

Depending on how we approximate lul $2 we obtain various stopping criteria.
A

Al

Heré, we first define "Procedure II" if we substitute llull &from the
A

expression
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LRI (I T I (S ). (3.13)
A{ A A A% A

Thus (3.12) holds, if the following inequality is satisfied

1s (™)
-1 A
I(G-1) “I , IG-I# £z (3.14)
al Al 150 i
A
which can also be written as
1s ™)
(e A
: A

where k(G-I) denotes the 5pectrﬁi condition number of (G-1).
If we replace lul ) by Hu(n)ﬂ | in (3.13), then we can approximate
A

A
1 ©y | By 1) , 1f 1G-T1 | = S(G-1)<1, hence (3.15) becones
A A A

1s ™y

A
K, .. = k(G-I < 3.16
111 (G-1) i:ﬁﬁfﬁr—— g ( )
R
which defines "Procedure III",

We note that in order to apply the tests (3.15) and (3.16) we
need a bound on the spectral condition number of G-i. However, the
effect of inaccuracies on these bounds as far as the convergence
testing is concerned is much less than the effect on the rapidity of
convergence. Therefore, we can often use any crude bound which may

be available without a substantial alteration on the number of iterations,



6.4 COMPUTATIONAL PROCEDURES AND NUMERICAL RESULTS

In this section, we compare the effectiveness of the estimated

parameters with the optimum ones by applying the PJ-SI and PJ-VE methods

(for solving the self-adjoint equation (5-5.36) for the different expressions

of the coefficients A(x,x) and C(x,y) (see Table 4-8.2). Furthermore, we

use the stopping procedures introduced in the previous section for terminating

the iterations. Before we present any numerical results we summarise the

procedures for applying the PJ-SI and PJ-VE methods with estimated parameters

for solving the linear system corresponding to (1-2.6).

Algorithm 6.2 (PJ-SI method)

1. As a starting vector we choose uﬁo) such that

ju(®

©

The choice u* “=0 will suffice.

2. Compute M=-m by (5-5.27).
This involves the determination of an IhxJh rectangle containing
R+3R.

3. Compute B using the expression (see Appendix B)

-ul < lal ., (4.1)
A* Ai

B = max_ {B;0x,y) [B) (x-h,y)+B, (x-h,y)1+8,(x,y) [8, (X,y-h)+8, (X,y-) ]}

(x,y)ERh

(4.2)

4., Adjust M if necessary.

If M>2/§i replace M by 2/§i
5. Compute 0y
6. Iterate using the PJ-S5I method

and P(Bm ) by (4-11.4),(4-11.5), respectively.
1

L@+ (l_pn+1)u(n-1)+pn+1[u(n)+a(1_mu)'1(I-wL)'ID'l(b-Au(n))]

(4.3)

The values of E,pl,pz,... are given by the following expressions

2w1(2-w1)

= I/PE Y
¥y

(4.4)
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oy =1, )
2y -1

Py = [1 - 25} » (4.5)
2 -1

Prrp = [1 - Tpn] ) 12,3,

vhere
P(Bml)-l
g = ﬁTE;IT:T . (4.6)

7. Terminate the process after n iterations where n satisfies the

inequality
K. s t. . 4.7)

The alternative procedure of accelerating the PJ method is the PJ-VE
and is represented by the same steps as in Algorithm 6.2 but instead of

step 6 and 7 we have (Algorithm 6.3):

6. Choose m, as the smallest integer such that

1

m/2-1
[;.l log X s 1.25(-5 log 1) 1. (4.8)
1

7. Iterate using the PJ-VE method defined by

W) u(“)+en+1(1-mU)‘1(I-NL)‘ln*l(b-Au(“)) (4.9)
where
. w1(2-m1)
kT TG yeos? (BeDT, 17 (D k=1,2,...,m
1 1 1
8. Terminate the process after tm, iterations where
m1/2 t
2r '
£z, (4.11)
™
1+r

In order to test the efficiency of the Algorithms 6.2 and 6.3 we
considered their application to the six problems (see Section 4.8) and

compared their results with the PJ-SI and PJ-VE with optimum parameters.
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Here the boundary values were taken to be zero on all sides of the unit

square except for the side y=0, where they were taken to be unity. The

(0)

natural ordering was used and u

whereas we let C=10'6.

=0 was taken as a starting vector,

In Table 4.1 we present the number of iterations of PJ-SI and PJ-VE
with optimum and estimated parameters, required to satisfy stopping
Procedure I. On the other hand, under the column headings I,II,III in
Tables 4.2 and 4.3 we present the number of iterations required to satisfy
stopping procedures I,II and III using the PJ-SI method with optimum and
estimated parameters, respectively. For the PJ-VE method, the number of
iterations was tmo (or tml), where my (or ml) is determined by (4.8) and is
given by the relationship |

t
m./2
2r 0

< z. (4.12)

From Table 4.1 we verify again that for the problems considered
the number of iterations required to satisfy stopping Procedure I using

}

the PJ-SI and PJ-VE method varies approximately as h * even though the

coefficients A(X,y)} and C(x,y) are not necessarily in the class C(z).

A comparison of the results obtained in Table 5-10.2 with the ones
obtained in Table 4.1 shows that although ideal conditions were used (see
Section 5.10) the behaviour of the number of iterations is typical for
other boundary conditions as well.

Also, from Table 4.1 we note that the results using the estimated
parameters were reasonably good in comparison with the results based on
the optimum parameters for both the PJ-SI and PJ-VE methods. dnly in
the third and fifth cases were there substantial differences which
indicates that in such cases it would appear worthwhile to attempt to
improve the parameters w and P(Bm) adaptively. The same situation is

true when we use Procedures II and III as stopping criteria. These also

provide a suitable indication when (3.2) is satisfied for PJ-SI (see Tables



-1 _ - PJ-SI1 PJ-VE
Problem | h B 2/ M 0y ™ P(E_) | PG, )

1 0 nopt nest n'opt nb nest ml

20 | 0.2500 1.0000 | 0.9877 1.7287 1.7641 6.8727 5.2604 16 19 20 4 25 5

1 40 0.2500 1.0000 | 0.9969 1.8544 1.8750 | 13.2357 | 10.0806 23 26 30 6 35 7
60 0.2500 1.0000 | 0.9986 1.9005 1,9157 | 19,6008 | 15.2207 28 32 35 7 40 8

20 0.2350 | 0.9695 1.0000 1.6065 1.5888 2.5415 2.4248 10 10 12 3 12 3

2 40 0.2461 0.9922 1.0000 1.7788 1.7668 4.5208 4.2790 14 15 16 4 20 4
60 0.2483 | 0.9965 1.0000 1.8465 1.8386 6.5139 6.1958 18 18 20 5 25 S

20 0,2505 1.0009 0.9969 1.8355 1.7652 | 14,9905 5.3763 16 29 20 4 35 7

3 40 0.2501 1.0002 0.9992 1.9142 1.8756 | 29.5540 [10.3200 23 39 30 6 50 10
60 0.2501 1.0001 0.9997 1.9420 1.9163 | 44.1015 (15,2207 28 48 35 7 66 11

20 0.2500 1.0001 0.9918 1.7717 1.7624 8.3322 5.2301 16 21 20 4 25 5

4 40 0.2500 1.0000 0.9979 1.8790 1.8748 | 16.1660 |10.0200 23 29 30 6 35 7
60 0.2500 1.0000 0.9991 1.9176 1.9143 { 23,9999 (14.7929 28 36 35 7 45 9

20 Q.2500 | 0.9999 0.9978 1.8756 1.7479 | 15,2395 5.8173 17 28 20 4 35 7

5 40 0.2500 1.0000 0.9994 1.9359 1.8665 | 30.0138 (11.1732 24 40 30 6 50 10
60 0.2500 1.0000 0.9998 1.9568 1.9093 144.7804 [16.5289 29 49 35 7 66 11

20 0.2416 | 0.9831 1.0000 1.6903 1.6097 3.2293 2.5221 10 12 12 '3 15 3

6 40 0.2483 | 0,9966 1.0000 1.8475 1.7820 6.5567 4.4543 15 18 20 4 25 5
60 0.2493 | 0,9986 1.0000 1.8997 1.8490 9.9697 6.4020 18 23 25 5 30 6

TABLE 4.1

80¢



-1 Optimum Parameter PJ-SI
Problem | h o PB ) 1 T 1 111
“o

20 1,7641 5.2604 16 17 18

1 40 1.8750 10,0806 23 26 28
60 1.9157 15,2207 28 32 36

20 1.5888 2.4248 10 12| 11

2 40 1.7668 4.2790 14 16 17
60 1.8386 6.1958 18 20 22

20 1.7652 5.3763 16 17 18

3 40 1.8756 10.3200 23 26 28
60 1.9163 15,2207 28 32 35

20 1.7624 5.2301 16 17 18

4 40 1.8748 10.0200 23 26 28
60 1.9143 14.7929 28 32 35

20 1.7479 |- 5.8173 17 18 19

5 40 1.8665 11,1732 24 27 29
60 1.9093 16,5289 29 35 38

20 1,6097 2,5221 10 11 11

6 40 1.7820 4,4543 15 16 17
60 1.8450 6.4020 18 20 | 22

TABLE 4.2

NUMBER OF ITERATIONS REQUIRED TO SATISFY STOPPING CRITERIA I, II AND
IIT USING PJ-SI WITH OPTIMUM PARAMETERS FOR THE SIX PROBLEMS

1 Estimated Parameters PJ-SI
Problem | h~
w P(B ) I II | III
1 wl
20 1.7287 6.8727 19 21 21
1 40 1,8544 13,2357 26 30 32
60 1.9005 19.6008 32 37 41
20 1.6065 2.5415 10 12 12
2 40 1.7788 4.5208 15 17 18
. 60 1.8465 6.5139 18 21 23
20 1.8355 14,9905 28 32 33
3 40 1,9142 29,5540 39 47 51
60 1.9420 44,1015 48 59 66
20 1.7717 8.3322 21 23 24
4 40 1.8790 16.1660 29 34 37
60 1.9176 23.9999 36 43 47
20 1.8756 15,2395 28 33 34
5 40 1.9359 30,0138 40 49| 54
60 1.9568 44,7804 49 63 69
20 1.6903 3.2293 12 12 13
6 40 1.8475 6.5567 18 17 18
60 1.8997 9,9697 26 21 28

NUMBER QF ITERATIONS REQUIRED TO SATISFY STOPPING CRITERIA I, IT AND

TABLE 4.3

III USING PJ-SI WITH ESTIMATED PARAMETERS FOR THE SIX PROBLEMS

209
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4.2 and 4.3). The above stopping procedures will be proved to be suitable
for the adaptive acceleration of the PJ method. Finally, if we also consider
the amount of work involved to determine the optimum parameters (see
Algorithm 6.1) we are motivated by these observations to seek adaptive or
dynamic procedures which approximate the parameters Wy and P(Bwo) and at
the same time, obtain the solution of Au=b, Here, it should be mentioned

that Benokraitis [1974] considered similar procedures for the SSOR-SI

method involving the simultaneous determination of both w and S(&w).
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6.5 THE THEORETICAL BASIS FOR THE ADAPTIVE DETERMINATION OF PARAMETERS

Our aim in the remainder of this chapter will be to develop an efficient
procedure which will use the PJ-SI method for solving elliptic difference
equations of the form (1-2.6).

From Section 4.9 we recall that the preconditioning parameter is
optimum for that value of w for which the P-condition number of Bm is
minimised. We also have seen that for the largest and smallest eigenvalue

of Bm we can let, respectively

1
A(Bw) = w(z_w) 2 (5.1)
1—wa+m28
A(Bm) alis prenandi $(w,Vv) (5.2)
where
- (v,DBv)
a CADE (5.3)
- (v,DLUvV)
B Wb (5.4)
and Bwv = A(Bw)v. (5.5)
Therefore, the P-condition number of Bw is given by the expression
PB ) = 1-wa+m28 ‘ (5.6)
w ~ w(2-w)(1-a) ’

where a and B are given by (5.3),(5.4), respectively. From (5.6) and
(5.2) we see that finding the optimum parameters Weys P(Bmo) depends upon
the availability of an eigenvector corresponding to the smallest eigen-
value of Bm. Evidently, if we happened to know this eigenvector, then

we would be able to determine A(Bw) from the formula

(5.7)
and then compute P(Bm) from the expression

_ -1
P(Bm) = [w(Z—w)A(Bw)] .
It is therefore clear that the determination of v such that (5.5)
is satisfied, is essential for obtaining the optimum parameters. Thus

we are motivated by this observation to seek for a vector which is
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automatically calculated in the practical implementation of the PJ-SI method
and can be made to approach an eigenvector of Bm corresponding to A(Bw).

As a result our task will be to compute an approximation to the quantities
a and B defined by (5.3) and (5.4), respectively thus, computing by (5.6)
approximations (using the analysis of Section 4-4.9) to the optimum parametérs
Wy and P(Bwo).

We commence our analysis by proving the following theorem
Theorem 5.1

Let A be a positive definite matrix, then for any vector v#0 the
representation ¢(w,v)} given by (5;2) is a Rayleigh quotient with respect

to the vector w=D£(I-mU)v and the positive definite matrix

E& = Di(I-wU)Bw(I—wU)_lD-i, (5.8)
that is (w ’-.émW)

¢ (w,v) = oW (5.9)
Furthermore,

A(B,) = A(B)) 5 ¢lw,v) . (5.10)
Proof

We first show that E; is positive definite. We recall from (4-5.1)

that B = (I-o0) "L (1-wr) 1" 1A (5.11)
hence E@ = Di(I-mU)Bm(I-mU)'ID'i

= o} (1-e1) "I 1A (1-wty 17

= -l Ao (1-uy

- 1a-oby o Har -y YT (5.12)
where T -otwt and ¥ = plon? (5.13)

LY}

since LT=6. From (5.12) and Theorem 2-2.4 it follows that ﬁw is positive
definite.

From (5.11) we also have

(I-mu)'l(l-mL)'ln'lA = B,
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or ,
D* (I—wL)-lD-lA(I-wU)_lD-£ = §w
thus‘
A= D(I-wL)D‘*Ea“wD* (I-wU)
= D*(I-w’i:)ﬁw(x-wﬁ)ni. ~ (5.14)

If we take inner products of both sides of the last equation with respect

to v#0 we have

(v,Av) = (v,Di(I-dI)EQ(I-wﬁ)Di)
= ((I-wﬁ)Div,Ew(I—wﬁ)Div)
= (w,§mw) (5.15)
where w = (I-mﬁ)Div.

Dividing by (w,w) both sides of (5.15) we obtain

(v,Av) _ (w, B ) (5.16)
(w,w) (w,w) ’
Expanding the inner product (w,w) we have successively
) = ((I-a0)pdy, (1-ulpiv)
= (v,p} (T-u) (T-ul)DHv)
= (v,D(I-wlL) (I-wU)v)
= (V,(D-wDB+m2DLU)V]
= (v,Dv)-u(v,DBV)+w? (v,DLUV). (5.17)
Since we also have that
(v,Av) = (v,(D-DB)v) = (v,Dv)-(v,DBv) (5.18)
then by using (5.17), the left hand side of (5.16) yields
(v,Av) _ (v,Dv)-(v,DBv)
(w,w) (v,Dv)-m(v,DBv)+m2(v,DLUv)
1-a
= 5= = ¢(w,V) (5.19)
l-pa+w B
thus (5.16) becomes
(w,B w)
¢ (w,v) = N (5.20)

Finally, since Em is similar to Bw, then by Theorem 2-1.5 we have

(5.10) and the proof of the theorem is complete:
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Corollary 5.2

Under the hypotheses of Theorem 5.1 any eigenvalue of %Jcan be
represented by (5.2).

From the above analysis we see that the inequality (5.10) is satisfied
for any non-zero vector v. On the other hand, we observe from (5.10) that
the closer we approach an eigenvector corresponding to the smallest eigen-
value of Bw’ the better we will be able to determine A(Bw) from ¢(w,v).

It is evident now there is a strong need for finding this eigenvector.
However, we have to devise another approach other than using the power
method since as we have seen the power iterations require extensive
computational effort and do not contribute directly to the solution of the
system (3-1.1). The answer to this\problem was given by Diamond [1971] for
the general case. Here we have modified this approach to suit our purposes.

Next, we will first show that the pseudo-residual vector, as defined

in (3.9), satisfies the relationship G(n)=Pn(J€Q6(O) and secondly that 6(n)
approaches the vector v which satisfies (5.5).
Theorem 5.3
The pseudo-residual vector
5™ =™ k™ (5.21)
where u(n) is the latest PJ-SI iterate, satisfies the relationship
n) _ (0)
8 = Pn(m;)a . (5.22)
Proof
We recall from (3.10) that for the PJ-SI method we have
s® =« agn ™ (5.23)
where u(n) is the latest PJ-SI iterate. Alternatively, we can write
the PJ-SI method in the form
(n+1) _ 0)
u = PnGHL)u + kn (5.24)

where
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. [A (B)+ @ J‘ZBw]
n A(Bw)-A(Bm) )

P (3C) = {(5.25)
Y% KB )+ (B) )
n [RGB JX(B) J
Moreover, since (5.24) is consistent, we have the relationship
a = Pn(J{w)ﬁ + kn . (5.26)
Subtracting (5.26) from (5.24) yields the result
uWg - _grw® ). (5.27)

Further, by combining (5.23) and (5.27) we obtain the following expression

for th)

6™ - G -np_G0) @5, (5.28)
Letting n=0 in (5.23) we obtain

O (ch-n'la(o) | (5.29)

which on substitution in (5.28) yields (5.22) and the proof of the theorem
is complete.

The next theorem will establish the fact that d(n) does converge to
a multiple of the eigenvector corresponding to the smallest eigenvalue of

B »
w

Theorem 5.4
5 (n)

The pseudo-residual vector given by (5.21) approaches a multiple

of the eigenvector associated with A(Bw) as me,

Proof
Let Vi k=1,2,...,N, form a complete set of eigenvectors of %,

corresponding to the positive eigenvalues

A(Bw) = A1>A2;...3AN_1>AN = A(Bm) > 0. (5.30)
Next, we express 6(0) as a linear combination of Vs thus
N
0
5 = kzldkvk » dy#0 (5.31)



and let :
A B > Ay

where AE(Bw) is an estimate of A(Bw).

From Theorem 5.3 we have that the pseudo-residual vector defined

by (5.21) satisfies the relationship

(n) _ (0)
8 = Pnﬁﬂ;)é
which by using (5.31) and (5.25) yields successively

(n) \
6 ¥ d, P (A )V

k=1

N
PnGHa)kzldkvk =

_,N N W e }

Pn(AN){dNVN * k i i Vk

. [A 1Re B -2 ] }
N-1 n AI-AEQ%}

=P (A ){dgv, + ) d
n-'N dN N kel k T [)\1+)\E(BA-2A N)
n

1~ ()

zuk-xE(Bw))W )
AI-AE(BM) ]
20025 (B
25 (B) J

T 1

P () {dgvyt Z dy {

T |1

\
Consequently, from (5.34) we have

’

200 g (Bw) ))
S Tn~1

Y (B )
1 "E*w” -
PO = dvy t : dy

- 2002 B 37
AERB AT 4 [ ] AE(Bw)
| 17EYw

2(A -2 (B 1)
T |1-"Yk "E*"w

n
) E L L )
VD@ AT S [ 20 e

n A,-An(B
Ak#AN L 1 E( w) J

L,

<

k .

Applying Theorem C1 (see Appendix C) to the terms of the first sum
we see that as n increases these terms are decreasing at an optimal
rate. Let us know concentrate on the terms of the second sum where

we have that AkE[AN,AE(Bw)], i.e.,

216

(5.32)

(5.33)

(5.34)

(5.35)
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AE(BN) > lk > AN . (5.36)
We note that by letting

o1 Z(Ak-lE(Bw)) 3

NGB

- (5.37)
oy PO T
4411-AE(BQ) }
and using (5.36) we can easily find the following relationship between
x and y
y >x > 1. ' (5-38)
Furthermore, from (5.38) we have
cosh™ y log(y+/ )>10g(x+¢x -1) = cosh” x (5.39)
or cosh x - cosh ly <0, (5.40)

On the other hand, from (C4) (see Appendix C) we use the following

expression for Tn(x) since x>1

T, (x) = l—(x+¢x + (x+¢x2-1)-ﬁ]

which by (5.39) can be written alternatively as

p—

1
TncX) = '2- €

Finally, by using (5.40) we obtain

ncosh™ 1x -ncosh-l%]
+ e .

-1 -1
‘ Tn(x) . ncosh x+e-ncosh X L n(cosh-lx-cosh-ly) )
lim m = lim o1 T1 = lim e = 0
e nVY7 naw Qncosh 'y -ncosh™’y  Now

which indicates that the terms of the second sum in (5.35) vanish aiso as
n+> and therefore the proof of the theorem is complete.

The above theorem establishes the theoretical basis for the use of
the PJ-SI method to solve Au=b and simultaneously compute an approximate
eigenvector associated with A(Bm). This can be more explicitly seen if we

consider again the pseudo-residual vector
(n) _ (n) (n)
8 = ﬂb u Y, mu .

Then by (4-4.6) we have that

6™ < 1oy Herown) L m-au ™y (5.41)
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where u(n) is the latest PJ-SI iteration. But, the next PJ-SI iteration
u(n+1) is given by (see (5-5.14))
n+l n-1 n} _.(n
u( ) 2 (1-pn+1)u( )+pn+1(u( )+p6( )) (5.42)

which shows that the pseudo-residual vector is essentially obtained as a
by-product of the application of the PJ-SI method., This last observation
is the main advantage of determining the parameters w and P(Bw) adaptively
since we obtain the fundamental eigenvector v by exploiting the iteration
used to improve the accuracy of the approximate solution of Au=b.
Furthermore, it remains to bg_shown that any approximation to an
eigenvector of Bm yields a corresponding eigenvalue approximation. This
is derived from a theorem in Wachspéess [1966] (see also Diamond [1971])

and is presented here without proof.

Theorem 5.5
If A and B are positive definite matrices, then the eigenvectors
Xy and the corresponding eigenvalues Ak of the generalised eigenvalue

problem
Ax, = A Bx (5.43)

k k™k

satisfy the following properties:

a) The eigenvalues lk are all positive, i.e., Ak>0 for k=1,2,...,N.

b) The eigenvectors X of B-lA are orthogonal with respect to B,

i.e., (xk,ij)=0 for j#k.

We note that if we apply the above theorem to A and BED(I-m(L+U)+m2LU],
then we have that the eigenvectors Vi of Bw are orthogonal with respect to
D (1-t (L+U) +w°LU) .

Finally, the next lemma defines the approximate eigenvalue A(B@).

Lemma 5.6

Let lk k=1,2,...,N, be the eigenvalues of Bm and vy the corresponding



219

eigenvectors. If t
w= ——LA) - (5.44)
(y, (I-0U0) "(I-wl) “y)
where y is approximately equal to VN with errors e in the direction
€,%2
v, and €,>>e, ,k#N, then p=l  with error of order -Ji.
k N 'k N ey
Proof
From the hypotheses of the lemma we have that
Bwvj = Ajvj (5.45)
also we have seen that- |
“1 - _1 _
(vk,(I-mU) (I-wL) vj) = Sj,k (5.46)
where 6j X is the Kronecker delta.
Next, we express y in terms of Vi hence
)
y = €y V.
kel k'k
and if we substitute y in (5.44) it follows that
o s For]
eV, , A E.V.
" = k=1 KK 5o T
r N _ _ N
L ey, (T-ul) T H(-ul) Tt Y ey,
k=1 j=1 )
(N N
Lkzlekvk,(I—wL)(I—wU)Bw.Elejvj
= J - . (5.47)
r % -1 -1 g
e, Vy, (I-wlU) ~(I-wl) €.V,
(k=1 ¥ K j=1 1)
Combining now (5.45), (5.46} and (5.47) we obtain the result
N N-1
2 2 2
Z Ekkk AN + ekkk/sN
_ k=1 _ k=1
n o= . = (5.48)
N N-1
2 2,2
L e 1+ ] e ley
k=1 k=1

which completes the proof of the lemma.

1‘Her'e it ©8 assumed that A=I-L-U,



220

As a result of Theorem 5.4 and Lemma 5.6 we have that an approximation

to A(Eﬁ) can be calculated by the expression

m) _ RO
6 (1ot " (1-01y L6 My

" (5.49)
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6.6 THE ADAPTIVE ALGORITHM

In this section a precise definition of the algorithm which uses the
PJ-SI and simultaneously improves the parameters w and P(Bm) is given.

From Theorem 5.1 which gives an upper bound ¢(w,v) for the smallest
eigenvalue A(Bm) we conclude that we can determine a lower bound for the
P-condition number P(Bm) from the relationship

P(u,v) € P(B,) (6.1)

where
plw,v) = . .
w(2-w)¢(w,Vv)
The lower bound p(w,v) of P(Bm) as defined in (6.2) indicates that it

(6.2)

should be possible to approximate P(Bm) by using the PJ-SI method. In
order to obtain more information about the role of a and B given by (5.3)
and (5.4), respectively, we examine the behaviour of ¢(w,v) with respect

to these quantities.
‘We recall from (5.2) that

1-wa+w28

¢(UJ,V) = I-a

2
s s zwrw’B (6.3)

l-a

and by a similar approach used to construct Table 4-11.3 we have

Table 6.1,
g-Domain w-Domain mzs-m+1
Oswsw* 20
B<l/4 w=w* =0
Ogw*sw <0
g>1/4 Oguw<?2 >0
TABLE 6.1
BEHAVIOUR OF mzs-m+1 AS A FUNCTION OF w
where

Wt o= — (6.4)
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From (6.2),(6.3) and a cursory examination of Table 6.1 reveals that for
B<1/4 we have i) if wsgw*, then p(w,v} is maximised when a is maximised,

ii) if w=w*, then p(w,v) = Ef%;- and iii) if w2w*, then p(w,v) is maximised
when a is minimised., Finally, if g>1/4, then p(w,v) is maximised when a is
maximised for Qsw<2, Furthermore, if we maximise ¢(w,v) then we have an
approximation to P(Bw) which can be minimised with respect to w.

Next, we consider some practical aspects of the application of the
adaptive algorithm, From the above analysis we see that the quantity a is
either maximised or minimised depending upon the range in which the pre-
conditioning parameter w lies. Since now a depends upon the vector v, then
it is clear that we have to find two alternative forms of v such that the
quantity a always maximises p(w,v) independently of the position of w with
respect to w*. Let us therefore assume that we have an approximation or
an initial guess v=v(1)#0 to the eigenvector of A(Bm). If A is an L-matrix
the quantity a is maximised for v20 (i.e., all the components of v are non-
negative)., Thus, for Bsl/4 and wsw* or B>1/4, where p(w,v) is maximised
if a is maximised,we may always let v have the form

(1) 1 a1y ) (1))'1‘

v = (v Vo TV e,y

(1}.o

This choice of v gives
LWy
PN ¢ R €O S

where v

(6.5)

if A is an L-matrix,
On the other hand, it is required that the quantity a be minimised
(if w*sw and Bg1/4) which can be achieved if one chooses v to have the

alternative form

VD L@@ @ @)y

2 ,n--,N
where (1)
V", on even points
L2
k (1) .
-V s on odd points.

The above cheoice of v gives
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a, = 2
2 HOENON

<0 (6.6)

which tends to maximise p(w,v) if w*sw and Bgl/4.
Finally, we see that if A is an L-matrix with Property A, then

ooy @

B, = = = B,.
(v(j),Dv(z)) 2

S €5 S ¢ DN

(6.7)

Consequently, a lower bound on P(Bm) is given by the following expression

1-M

1—wM+w26

P(B) = (6.8)
w

l-m

s 1f wgw*

, 1f wzw*
l-um+w B

where

W
o

A
o

(6.9)

and B =

|
™
—
!
w

We continue to adhere to the analysis of Section 4.11 concerned with
the estimation of good parameters w and P(Bm). Thus, from Theorem 4-11.1
we have that a good choice of the preconditioning parameter » in the sense

of minimising the bound (6.8) is given by (see (4-11.4)) the formula

2

————— =y, if Mg4g
1+¥1-2M+48
w, = (6.10)
2o u*, if M348,
1+v1-48
whereas the corresponding value of P(B ) is given by (see (4-11.5))
1, , /12048 2 My LF Medg
1-M i 1-M} ’
P(Bw ) = (6.11)
1 1+/1-48 _ 2_1m* , if M248.
2v1-48

Another approach which does not require the analysis of Section 4.11
for finding a good estimate to the preconditioning parameter is the use

of a direct search technique, such as the Fibonacci method,
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Following this approach we can determine an approximation to the optimum

parameter w by minimising

max{pl,pz} =  max {p(w,v(i))}
i

2
l-wai+m Bi
m?x m , 1=1,2, (6.12)

Pl(w)

As soon as we determine a good estimate w=w, we can immediately obtain

1

our first estimate of P(Bw) by evaluating

PE(Bwl) = Pl(gl) (6.13)

and then we can apply the PJ-SI method using 0y and PE(Bm ). As we

1
have seen, at the same time we can determine v(s) to be another estimate

for the eigenvector v and we proceed by forming

v(4) = (v£4),v§4),...,v£4))T
where
vés), on even points
O

k -vésl on odd points.

At this stage we determine a good estimate W=, by minimising

P,(w) = max{p,,p,,P3,P,}
= max {pi} , i=1,2,3.4
i

and computing the corresponding estimate of P(Bm ) by
2

PE(sz) = Pz(mz). (6.14)

It becomes clear after this analysis that if there are r available

1 @)

estimates of the eigenvector v, then we have 2r vectors v [

V(Zr)’ where for i odd, v(l) is an eigenvector approximation whereas for
i even, v(l) is given by
1) _ @) ) (1),T
v = (v1 Vo e Vy )

where



vél-l) , On even points
+3)
k .

-vél-l) , on odd points.

The rth estimate w., is determined by minimising the quantity
Pr(w) = mix {pi} , 1=1,2,...,2r

and the corresponding estimate P(Bw ) is given by
T
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Pp(B, ) = P.(u). (6.15)

r

In addition, we note that since we have

plw,v) < P(B ) (6.16)

it follows that the inequalities

Pp(8, ) < PB, ) 5 P(B, ) (6.17)

r T ]

are valid where W is the optimum preconditioning parameter.

We will now present an adaptive algorithm which uses the PJ-SI
method to solve the system Au=b and automatically improve the parameters
(m’P(Bw))' The algorithm will use the PJ-SI iterative scheme and a
sequence of parameters (mi,P(Bw.)) which converge to the optimum parameter
set (wO,P(Bw )). The theo;eticzl basis of the algorithm has been

0
developed in Theorems 5.3, 5.4 and Lemma 5.6.

Algorithm 6.4

0

1. Choose an initial approximation u such that Hs(o)u is_lliiﬂ j
A A

and choose a convergence tolerance [.

Also, let
3T T
v = (vl,vz,...,vN) = (1,1,...,1)
A-_ -~ -~ ~ T
and vV = (vl’VZf""VN)
where
. { Vi » On even points
v =

-V s Oon odd points.
Set i=1,
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For the latest two vectors v,V compute

v, ov) H1 G,
(6.18)

_ (v,DLUV) 8 . (v,DLUV)
i (v,Dv) g i+l (v,Dv)

if they have not been previously computed.

Use a Fibonacci search technique to determine w by minimising the

l-wa +w28 t
P(w) = ma i i (6.19)
T e Ty -

function

for all available pairs (ai,BiJﬁ Moreover, compute the corresponding
value PE(Bw) from the expression

pE(Bw) = P(w) . (6.20)

Choose nq to be the least integer n which satisfies the inequality

-J1
....}.. ]_og 2r

= -0.9 log T (6.21)

>
~2n -
T

where (see (5-5.19))

/P (BwJ-l

E
/PE(Bm)+1

T = (6.22)

Iterate nq times with the PJ-SI method using the latest parameters
w and PE(Bw). After each iteration, check for convergence by

computing the pseudo-residual vector
s = (1w " (1-uL) 107 (o-au ™), neng (6.23)

and testing by stopping Procedure III whether or not

(n)

™ s (629

Al
If (6.24) is satisfied terminate the algorithm, otherwise continue

to the next step.

TFO

r the unimodality of the function P(w) see Appendix D.
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In this step we test whether we should update the parameters w,PE(Bw)

or not, From the previous step we have obtained the pseudo-residual

(n)

4 , thus we now compute

(n ) (n)
¢ 9 .,oBs 9)

6.2
m) (n) (6.25)
o (& 93 ,ous 9
@} (n)
6 T,08 1)
and
_ l-wa+w B '
P= swd-a - (6.26)
If the following inequality is satisfied |
psP(B), (6.27)
then go to step 5 and note that the next PJ-SI iteration can be
computed from (see (5.42))
(n+1) (n-1) (n) -, (n)
u = (I-p ,u SCIVRLC R (6.28)

where 6(n) has already been computed in step 5. Otherwise, continue

to the next step before altering the parameters.

In order not to waste the computational work for the determination
(n )
of 8 4 in (6.23), apply a PJ-SI iteration using (6.28) with the

0ld parameters w and PE(Bw)' Furthermore, let

(n ) (n) (n) (m )W
v=6 & = E 4,5 4 ,6. 4

1 2 R
d b= (o, g7
an Vo= (VsVoseesVy
where
d(nq) , On even points
R k
T om)
-Gk 9 , on odd points.

Then, set i=i+2 and go to step 2 to compute new quantities for a and B
in order to update w and PE(Bw)' Evidently, in step 2,ai and Bi have

already been computed by (6.25) in step 6.
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Next we proceed to make various comments and justify some points in
the above algorithm. First, we note that if the matrix A is an L-matrix
with Property A, then

a, = -3, and B, = B,.. (6.29)

which implies that in step 2 we only need to compute a, and B - The use
of the Fibonacci search technique for the minimisation of P{w) does not
require the knowledge of the analysis of P(Bw) (see Section 4.11) and it
could be regarded as a hint for the use of such techniques for more
general and complex problems where the mathematical analysis may be
laborious.

In step 4 we have chosen nq such that the average rate of convergence
after nq iterations is 90% of the asymptotic average rate of convergence.
Furthermore, in order to justify step 6 and in particular the
criterion (6.27) as to whether or not we should modify the parameters,

we reason as follows,

We have seen that

. [rene-2,
n | A(B )~A(B )

P () = SIS

n %y A(Bw)+A(B;P-2
n [A(Bw)-A(Bm) ]

and that the virtual spectral radius of PJ-SI iterative procedure is

(6.30)

given by

[}

S, (1)) max Ipncx)l (6.31)

X(BN)SRSA(BNJ
where | : {A(Bm)+k(3w}-2A]
n(ABIIE) )
PA) = KB A (B -2
T [43] 1]
n( R A(B)

Let us assume that R is an estimate of A(Bm) and define
A(Bw)+g;2x

Tn AiBwi-B
LB )*R-2 g

Tn K(B)-K

then by the minimax theorem of Chebyshev polynomials (see Appendix C)

(6.32)

(6.33)

P_(\,R) =
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we have

max [P ()¢ max [P_(A,R)]. (6.34)
A(B )agh(B ) T ReAgh(B) M
W w W

In addition, if ¢(w,v)ahE(Bm)2A(BwJ or in other words if

psP(B) s PB),

then we also have

max [P (V)< max |P_(2,R)[s max an(A,p)],
ABISASAB) T ABISAsAE) T A(B)SAB,)

(6.35)
Consequently, if psPE(Bm), the parameters w and PE(Bm) are not changed

since the rate of convergence is not likely to be improved. However,
we cannot be certain that a change of parameters in this case would not

improve the rate of convergence,
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6.7 NUMERICAL RESULTS

In order to examine the performance of the Algorithm 6.4 as compared
with the Algorithms 6.1 and 6.2 we solved the six problems considered in
Section 4.8 by applying the PJ-SI iterative procedure which determines
adaptively the parameters w and P(Bw) (Algorithm 6.4). As a starting
vector we used the one which has all its components equal to zero, whereas
the convergence tolerance was taken c=10_6. In all cases the natural
ordering was used. In Table 7.1 we present the number of iterations
required to satisfy stopping.Procedure III for the PJ-SI method with
optimum, estimated and adaptive parameters. The subscripts on the number
of iterations given for the adaptive algorithm refer to the number of
parameter changes which were necess;ry to attain convergence., Under the
headings nA/n0 and nE/n0 we give the ratio of the number of iterations,
n{adaptive)/noptimum) and n{estimated)/m(optimum), respectively where
n(adaptive) is the effective number of iterations taking intc account the
additional work required for updating the parameters. This is done if we
convert the additional operations that are performed each time the parameters
are changed into the corresponding number of iterations. It can be seen
that four parameter changes are approximately equivalent to three PJ-SI
iterations of work performed. Consequently, from this information we can
work out n, for each particular case, e.g. if three parameter changes are
required, then the number of iterations for the adaptive procedure should
effectively be increased by approximately 2+1/4 iterations. Since for the
determination of the optimum and estimated parameters a considerable
preprocessing is required, their number of iterations should also be
increased. However, even if we do not take into account this additional
work we can safely state that the adaptive algorithm performs better than
the estimated one in half of the problems considered (see Table 7.1)}.

Furthermore, from Table 7.1 we see that in general the adaptive

algorithm requires effectively about 25% more iterations than the PJ-SI



h=1/20 h=1/40 h=1/60
Problem

T | ®a [T/ | P2 | %m0 | "o | Ma [P0 | e | PE™™0 | "o | ™A [P/ | e | e
1 18 | 19, | 1.18 | 21 | 1.17 | 28 | 29, | 1.14 | 32 | 1.14 | 36 | 39, | 1.16 | 41 | 1.14
2 11 |12, | 1.23 | 12 | 1.09 [ 17 | 18;| 1.19 | 18 | 1.06 | 22 | 24, | 1.23 | 23 | 1.05
3 18 '193 1.18 | 33 | 1.83 | 28 | 31| 1.19 | 51 | 1.82 | 35 | 40, | 1.21 | 66 | 1.89
4 18 | 19, | 1.18 | 24 | 1.33 | 28 | 29, | 1.14 | 37 | 1.32 | 35 | 39, | 1.18 | 47 | 1.34
5 19 |21, | 1.22 |34 | 1.79 | 29 | 31, | 1.17 | 54 | 1.86 | 38 | 41, | 1.16 | 69 | 1.81
6 11 |12, | 1.16 | 13 | 1.18 | 17 | 18, | 1.15 | 18 | 1.06 | 22 | 26, | 1.25 | 28 | 1.27

TABLE 7.1

RESULTS OF APPLYING ALGORITHM 6.4 TO PROBLEMS 1-6 USING PROCEDURE III

1£2
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with optimum parameter iterative scheme. Another observation is that for
problems 2 and 6 the PJ-SI method with estimated parameters gives
approximately the same results for the different mesh sizes as the PJ-SI
method with optimum parameters. This happens because we have replaced M
by Z/E'in determining the estimated parameters.

In Table 7.2 we can see a more detailed presentation as to how
Algorithm 6.4 performs by including intermediate results of the various
stages, Thus we can observe how the parameters are updated and how close
agreement can be obtained with the optimum w and P(Bm). The number of
;ycles show how many times the Ihfiterations are repeated without changing
the parameters. For comparison reasons we have also included the optimum
parameters in parentheses,

From Table 7.2 we see that the maximum of four parameter changes are
needed for each problem to be solved. In particular, for problem 6 a
maximum of two changes were required for all the different mesh sizes,
Furthermore, we observe that the parameters w and P(Bw) obtained adaptively
were quite satisfactory approximations to the optimum parameters,
especially for small mesh sizes in all the cases considered.

In Figure 7.1 we plot the logarithm of the number of iterations versus
logh_1 for all the problems. This was carried out for the PJ-SI method
using optimum, estimated and adaptive parameters. From this figure we see
that the rate of convergence (of the three different approaches) is

approximately O(h&
()

) convergence even when A(k,y) and C(x,y) do not belong
to the class C
From the above analysis of the obtained results we see that for
problems 1,2 and 6 using PJ-SI with estimated parameters (determined by
bounds on S(B) and S(LU) (see (4-11.4) and (4-115)) required fewer iterations
‘than the adaptive scheme (see Table 7.1). We also observe that in these

cases the coefficients A(x,y) and C(x,y) both belong to the class C(z) and



1.8749(1.8750)

PROBLEM 1
20 40 60
5 6 7
1 1 1
1.6228 1.7224 1.7688
2.7079 3.6425 4,3568
8 10 11
1 1 1
1.7794 1.8753 1.9041
4.9675 8.1766 10.6848 .
3 11 14
1 1 2
1.7428(1,7641) .-1.8733 1.9178(1.9157)
5.1949(5.2604) 10.1336 14.9163(15.2207)
11
1

PE(Bw4)‘ 10.1464(10.0806)
PROBLEM 2

4 6 7

2 1 1
1,5050 + 1,6653 1.7337
2,0203 2.9881 3.7546

5 6 8

1 1 1
1.5570(1.5888) 1.7162 1,7930
2.2575(2.4248) 3.5242 4,8307

7 8

1 1
1.7454(1.7668) 1.8198
3.9271(4.2790) 5.5484

8

1

1.8278(1.8386)
5.8083(6.1958)

TABLE 7.2

SUCCESSIVE PARAMETERS OBTAINED BY ALGORITHM 6.4

AND STOPPING PROCEDURE III

233



PROBLEM 3
-1
h 20 40 60
ny 5 6 7
cycles 1 1 1
Wy 1.8237 1.7228 1.7690
P.(B ) 2.7268 3.6563 4.3683
E wl
n, 8 10 12
cycles 1 1 1
W, 1.7845 1.879] 1.9068
P_.(B ) 5.1868 8.5747 11.1830
E W,
n, 8 11 14
cycles 1 . 2 2
wg 1.7403(1.7652) 1.8732(1.8756) 1,9190(1.9163)
PE(Bm ) 5.2454(5.3763) 10.'3795(10. 3200) 15.3582(15.2207)
3
PROBLEM 4
ny 5 6 7
cycles 1 1 1
ml 1.6231 1,7225 1.7688
P.(B ) 2.7062 3.6410 4.3556
E wy
n, 8 10 11
cycles 1 1 1
W, 1.7784 1.8748 1.9039
P_(B ) 4.9342 8.1558 10.6306
E .
n, 8 11 14
cycles 1 1 2
wg 1.7426(1.7624) 1.8728 1.9173(1.9143)
PE(Bm ) 5.1690(5.2301) 10,0737 14,8158(14.7929)
3
n, 11
cycles 1
wy 1.8749(1.8748)
P.(B ) 10.1030(10.0200)
E Wy

TABLE 7.2 (CONTINUED)
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PROBLEM 5
-1
h 20 40 60
ny 6 7 7
cycles 1 1 1
Wy 1.5642 1.6766 1.7294
P_.(B ) 2.9198 3.9643 4.7608
E Wy
n, 3 11 12
cycles 1 1 1
W, 1.7669 1.8692 1.8871
P_(B ) 5.6765 9.8403 11.4930
E Wy
ng 8 12 14
cycles 1 1 1
wg 1,7593(1.7479) 1.8699 1.9157
PE(BuJ ) 5.7465(5.8173) 11.1733 16, 3066
3
Ty 12 14
cycles 1 1
W, 1.8738(1.8665) 1.9142(1.9093)
PE(Bm ) 11.1942(11,1732) | 16.6335(16,5289)
4
PROBLEM 6
n, 5 7 8
cycles 3 2 2
wy 1.6065(1,6097) 1,6817 1.7178
PE(Bm ) 2.5415(2,5221) ! 4.1905 5.3461
1
n, 7 9
cycles 1 2
9, 1.7700(1.7820) 1.8438(1.8490)
PE(Bw ) 4,3481(4.4543) 6.4037(6.4020)
2

TABLE 7.2 (CONTINUED)
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that the bound B of S(LU) is less than or equal to 1/4 (see Table 4,1).
On the other hand, for problems 3,4 and 5 the adaptive algorithm performed
better than the estimated-parameter PJ-SI method. It is characteristic
that in each of the problems 3-5 we either have B21/4 or the coefficients A
or C do not belong to class C(ZJ. |

Finally, we note that stopping Procedure III used in the adaptive
algorithm was derived in Section 4.3 assuming that w is fixed, hence we
rely on the fact that P(BwJ is a continuous function of w for Algorithm 6.4

to yield acceptable results.



243

CHAPTER /
ALTERNATING DIRECTION PRECONDITIONING TECHNIQUES

FOR THE NUMERICAL SOLUTION OF THE ELLIPTIC SELF-ADJOINT
SECOND ORDER AND BIHARMONIC EQUATIONS
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7.1 INTRODUCTION

In Section 4.2 we exhibited a general idea of how one should proceed
using the preconditioning technqiues in order to construct various iterative
schemes for the solution of Au=b associated with the splitting of the
coefficient matrix A. A result of this (when the matrix A had the splitting
I-L-U)was to see the strong need for reconsidering the known iterative schemes
such as to be consistent with the preconditioning approach. We therefore
were able to produce new itefative methods (EGS, ESOR and PSD) which proved
to be more effective than their known unextrapolated counterparts (GS, SOR
and SSOR).

In this chapter we wili attembé to follow a similar strategy (as the
one in Chapter 4) by assuming a different well known splitting of A, the one
on which the Alternating Direction Implicit (ADI) methods have been based
(see Peaceman and Rachford [1955], Douglas [1955], Douglas and Rachford {1956]).

The ADI methods are somewhat similar to single line iterative methods
with alternating directions, In order to see the ADI schemes as preconditioned
methods we define the splitting of A by considering the discrete analogue of

the self-adjoint partial differential equation
3 U 3 3u _
FRGIEN e S?(C(X’YJa_y') + F(x,y)U = G (1.1)

where A,C,F and G are such that A>0, C>0 and Fg0 for all (x,y)&R and R
is the region under consideration. The five point finite difference

analogue of (1.1) using a uniform mesh size h is given by

Hy [u] (x,y) +V [u] (x, ) +Eq [u] (x,y) = -h%G - (1.2)
where
HO[U](X,}’) = [A(x+£h,Y)+A(X-£h,YJ]ll(x,Y)
~A(x+}h,y)u(x+h,y) -A(x-4h,y)u(x-h,y) (1.3)
Vg[ul (x,y) = [C(x,y+th)+Clx,y-4h) Ju(x,y)
-C(x,y+$h)u(x,y+h)-C(x,y-th)u(x,y-h) (1.4)
Bolul (x,) = -h’F(x,y)u(x,y) (1.5)

From equation (1.1) we see that Ho[u](x,y) and Vo[u](x,y) correspond
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to the discrete analogues of the terms -h (A( ,y)a ) and h (C( ,y) ]
respectively. Evidently, the difference equation (1.2} can be written in
the matrix form

Au = (H +VO+E Ju=b | (1.6)

where the matrices HO,V and Eo correspond to the operators Ho[u],vo[u]
and Eo[u], respectively. Moreover, by ordering the mesh points by rows,
HO is tri-diagonal and VO can be made so by permution of its rows and
columns whereas E0 is a non-negative diagonal matrix. If we let
= (H+V)u = b | (1.7)

where 1 - 1
H=H +§E and V=1V +§E

0*2% 0 (1.8)

0’
then it can be easily seen that (e.g; see Varga [1962]) H and V are real,
symmetric, diagonally dominant matrices with positive diagonal entries and
non-positive off-diagonal entries (see (1.3) and (1.4)).
Once we have defined the splitting of A (see (1.7) and (1.8)) we

let R, the conditioning matrix, have the following general form (which is
similar to (4-2.4) when A had the form (4-2.10))

= (I+rH) (T+2'V) (1.9}
where r,r' are real preconditioning parameters. The iterative scheme
associated with the conditioning matrix defined by (1.9) is given by

W™D ey T ey " o-au ™ (1.10)

and will be referred to as the Modified Alternating Direction Preconditioning
method (MADP method), We note that for the different values of the involved
parameters in (1.10) we obtain the knpwn ADI schemes presented in Table 1.1,
where 3 and b are the minimum and maximum eigenvalues of the preconditioned
matrix R-lA, respectively, i.e.,

TR 1A) b
From Table 1.1 we see that the ADI schemes can be regarded as 'preconditioned
methods' and as such the effectiveness of the conditioning matrix is not

exploited in the DR-ADI and PR-ADI iterative methods since T does not take
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its optimum value (see Section 4.2), whereas in the EADI scheme we have

‘e . e ae
™ roptTO which indicates that the presence of Tont does not produce any
effect on the rate of convergence and therefore can be omitted. Thus we can

inmediately state that the EADI method degenerates into the ADP method at the

optimum stage.

Preconditioning . : Conditi9ning Iterative Method
Parameters Matrix
r r' 1 (I+rH) (I+r'V) | Douglas-Rachford ADI{DR-ADI)
r r' r+T! " Peaceman-Rachford ADI{PR-ADI)
- Extrapolated Alternating
r r 2r/ (3+D) (T+1H) (I+2V) Direction Implicit method

(EADI method) (see Hadjidimos
[1975])

o Alternating Direction Pre-
r .| T 2/ (a+b) " conditioning method (see Gane
and Evans [1974]) (ADP method)

TABLE 1.1

Another question which emerges {see Section 4.3) is the study of the
iterative scheme which is produced if we let r'=0 in (1.10) i.e., the
iterative scheme
u(n+1) = u(n) + T(I+rH)_l(b—Au(n)l (1.11)
However, before we proceed any further, we impose some additional
conditions on the matrices HO,V0 which characterise the "commutative case"
(see Birkhoff et al [1962]). In the remainder of this chapter we will

assume that the matrices HO’VO and EO of (1.6) satisfy the conditions

.‘

HOVO = VOHO
EO = 01, where ¢ is a non-negative constant
- : (1.12)
.HO and VO are similar to non-negative diagonal
matrices., J
If these conditions are satisfied, then
Hv = VH (1.13)

and H and V are similar to non-negative diagonal matrices.
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Moreover, I+rH and I+xrV are non-singular for any r>0 whereas as

observed by Birkhoff et al [1962], one can obtain matrices Hy, V,

and E., satisfying (1.12) from partial differential equations of the form

0
1 _ 3 au. _ G(x,y}
Eztxj BX(EI {x) BX) F (y) ay(Fz( ) ) EZ(X)FI(Y) (1.14)
in the rectangle R:05stx, OsysLy, (1.15)

where the functions El(x),Ez(x),Fl(y);Fz(y) are assumed to be continuous
and positive in R, and k30, Evidently, (1.14) is a special case of (1.1)

with A(x,y)=E; (xJF  (¥),C(x,y}=E,(x)F,(y) and F(x,y}=-kE,(x)F,(y).
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7.2 SOME CONSIDERATIONSON THE ITERATIVE SCHEME (1.11)

Let us consider the solution of the partial differential equation (1.14)
defined in the rectangular region R given by (1.15) and the boundary condition
Ulx,y) = g(x,y) ,  (x,y)E8R (2.1)
where g(x,y) is a prescribed function on the boundary 3R of R. A difference
equation leading to matrices HO,VO and Eo satisfying the properties given
by (1.12) is obtained as follows: First, we impose a uniform grid of mesh

size hx and hy in the x- and y-directions, respectively, such that

L

a
Na ol a=x,y
a

where Na is an integer. Next, we use the difference equation

3 [u) Ce,y)+V [u] GBS [0l Goy) = -hoh G(,y) /(B (0F; ())  (2.2)

where
h E,(x+4h_)+E_(x-ih )
H [ul (x,y) = [HX] {[1 ;2(,5 "] u(x,y)

X
E (X+£h " E, (x- 5h )

- B ( ) (X+h Y} - —*—E“TET—U(X ~h_,y) (2.3)
h F,(y+}h )+F_ (y-ih )]

' - 2 y 2 y
vylul (x,y) = [Hi] [[ e | ulx.y)

F,(y+ih ) F,(y-h))

- Fl()’) (X,Y*'hy) - _"_F"'(_'j"_u(x,y-h ) (2'4)

and Eb[u](x,y) = hxhyku(x,y). (2;5)

By using the natural ordering, the difference equation (2.2) can be
written in the matrix form (1.6) where HO,V and EO correspond now to the
operators H'[u] V'[u] and E! [u], respectively.

As it was indicated earlier, we will continue our study on these
preconditioned iterative schemes which are constructed by using the
splitting (1.7) of A. As a first step in this section we will consider
the iterative scheme (1.11) which from now on will be referred to as
scheme (I). The motivation for the examination of scheme {I) can be
justified by noting its similarity with the line ESOR method (see

Chapter 5). Moreover, it would be desirable to obtain some information
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about the effectiveness of the conditioning matrix
R = I+rH (2.6)
as compared with the conditioning matrix given by (1.9} since the work
involved in scheme (I) is considerably less than in the ADP method.

An alternative form of scheme (I) is given by

u(n+1) = Qr,ru(n) + q . (2.7)
where -1

Q. . = I-t(I+rH) "A (2.8)
and q = T(I+rH)-1b. : (2.9)

By Theorem 3-1.4 we note that scheme (I) is completely consistent if t#0.
Moreover, we obtain a more computable form if we write (2.7) as

(I+rH)ﬁ(n+1) = [I;(r-r)H-TV]u(n)+Tb (2.10)

where we now have to solve a tri-diagonal system which can be easily
solved (see Cuthill and Varga [1959]) since the right hand side vectors
are all known. Evidently, the preconditioned matrix of the iterative
scheme (I) is given by
B, = (1+7H) 1A (2.11)
where it can be seen that the matrix Br is positive definite for all rz0.

For convergence, we prove the following theorem,

Theorem 2.1
If the matrices H,V defined by (2.3),(2.4) and (1.8) satisfy the
conditions (1.13) and if their eigenvalues u,v respectively lie in the

range :
O<agu,vgh, (2.12)

then for r€[0,«) the iterative scheme (I} converges if and only if the
parameters r and t take values from the intervals Ir and Ir’ respectively

defined as follows

-t
1]

r > [0,1/b] and Ir

L E[/b=) and I

(0,r+1/b) (2.13)

m
Hi

or I (0,2(1+ra)/(a+b)). (2.14)



250

From the hypotheses we have that H and V satisfy the conditions (1.13),

hence there exist a set of linear independent vectors which are eigenvectors
both of H and V.

Let v be any such vector and let

Hy = uv, Vv = v, {2.15)

then the eigenvalues of Br will be given by the expression

u+v

, A(u,v,r) = Tory
From (2.16) we see that if rz0, then A>0 and Br is positive definite.
A sufficient and necessary condition for the iterative scheme (I)
to converge is that the parameter T to lie in the range
O<t<2/max{A(u,v,r)}. (2.17)
u,v
From the above inequalities we see that we have to determine the largest
eigenvalue of Br with respect to u,v and for r:0. We therefore study
the behaviour of A(p,v,r) as a function of u,v.
Taking partial derivatives of A(u,v,r) with respect to py and v we
obtain the following expressions
. A .
51gn{53J = sign(l-vr) (2.18)
and
sign[g%] = +1. | (2.19)
From (2.19) and for fixed rz0 the continuous function A(u,v,r) is
an increasing function of v. We therefore conclude that if v satisfies
the inequalities (2.12), then
max{A(u,v,r)}s max{A(u,b,r}} (2.20)
u,v !
and from (2.18) we easily obtain the following expression for the largest
eigenvalue of Br’
A(b,b,r), if 0grgl/b
max{A(u,v,r)}= (2.21)

Af(a,b,r), if 1/bgr<e.
By combining now (2.17),(2.16) and (2.21) we can easily see that the

proof of the theorem is complete.

(2.16)



For the determination of t and r such as the iterative scheme (I)
attains its maximum rate of convergence we have first to select r to

minimise the function p(a,b,r) where

e

M
P(B) = 5— = p(a,b,r)
m
Ay = max{A(u,v,r)}, A, = min{i (u,v,r)}
u,v U,V

and secondly to calculate T from the expression

Theorem 2.2
Let H,V be the matrices defined by (2.3),(2.4) and (1.8) with
eigenvalues u,v, respectively such that
O<agu,vsb,

Then for any r€[0,*) the P-condition number of Br is given by

’1;—%:{%%- , if Ogrsl/b
a+b .
P(Br) = 1 Ta- N if l/b.srsl/a
ki:;: , if 1/agr<e .

Moreover, P(Br)‘is minimised if we let r take values from the interval Ir

where
Ir g [1/b,1/a]

and its minimum value is given by

_ atb
p(Br) - 2a L]
Finally, if we let
_ - 2(1+ra)
Y= 19" “be3a

then the spectral radius of Q_r i attains its minimum value which is given
»

"by the expression
)= 28
b+3a -’

251

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

{2.30)
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From the relationships (2.18) and (2.19) we also find that
| A(a,a,r), if Ogrgl/a
min{A (u,v,r)}= ‘ C(2.31)
u,v d(b,a,r), if l/agr<=.
By using (2.22),(2.23),(2.21) and (2.31) we determine the bound
(2.26) for P(Br)‘ In order to find the value of T such that P(Br)
attains its minimum value we have to study the behaviour of the bound
(2.26) as a function of r. From (2.26) and (2.22) by taking partial
derivatives with respect to r we find that
| sign(a-b), if 0<rgl/b
sign[%%} = TlO , if 1/bgrgl/a
signtb-a), if 1/agr<=
which shows that the minimum value of P(Br) is given by (2.28) for all
fEIr where Ir is defined by (2.27). Moreover, we have from (2.24) that
for the value of 1 given by (2.29) the spectral radius of QT,r(see (2.8))

is given by (2.30) since
P(B )-1
S(Q, ) =5
ToeT P(Bri+1

and the proof of the theorem is complete.

(2.32)

A comparison of the effectiveness with respect to rates of
convergence of the iterative scheme (I) when the involved parameters
take the values which minimise S(QT r) is provided by the following

»

corollary.

Corollary 2.3

Under the hypotheses of Theorem 2,2 the iterative scheme (I) has

asymptotically the same rate of convergence with the SD method (see (3-2.31)}).

Proof

From (2.30) we have

5, € paye3 | (2.33)
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where

Pl

P(A) = (2.34)

is the P-condition number of A. Evidently, by comparing R(QTo,r)=-logS(QT0’r)
and R(R&) = %%%%i% (see (3-2.32)) when P(A)>>1 we can clearly verify the
validity of the corollary.

From Corollary 2.3 we conclude that the conditioning matrix given by
(2.6) does not improve the P-condition number of the original system hence
the iterative scheme (I) is only of academic interest. Another observation
is that the conditioning matrix R=I+rH is no better approximation to A than
the conditioning matrix R'=D(ﬂl) (see Chapter 5). This can be regarded as
an additicnal condition for the seléction of the conditioning matrix (see
Section 4.2).

From the above analysis we can conjecture that if two conditioning
matrices are different but possess the same structure (e.g. they are tri-
diagonal), then the associated iterative schemes which are produced using

the preconditioning approach, will produce approximately the same rate of

convergence for h»0.
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7.3 THE MODIFIED ALTERNATING DIRECTION PRECONDITIONING METHOQD) (MADP METHOD)

Next, we continue our study of the same problem, as defined in the

previous section, by considering the MADP iterative scheme (see (1.10)).

That is, for the solution of our problem we consider the conditioning matrix

to possess the form
R = (I+r1H)(I+r2V)
where T ,r, are real preconditioning parameters.

Then, the MADP method is given by

SLLLED SN C) T(I+r2V)-1(I+r1H)'1(b-Au(n))

(3.1)

(3.2)

where again the matrices H and V satisfy the condition (1.13). From (3.1)

we have that

R = I+r H+r2V+r r HV

1 12

which indicates that the effectiveness of R depends on the quantity r

If we now assume that

1772 then we can immediately verify that the

(3.3)

rZHV.

conditioning matrix R’=I-w(L+U)+w2LU is a better approximate to the matrix

A than the conditioning matrix R=I+r(H+V)+r2HV (an easy way of verifying
this is if we consider the molecules of R',R and compare which one is a

better approximate to the molecule of the matrix A). We can therefore

predict that the PSD method will have a slightly better rate of convergence

than the ADP method. This result has been confirmed numerically (see

Gane [1974]p.209) for the Laplace equation in the unit square.

Next, we see that the iterative scheme given by (3.2) is similar to
the PSD method so we can either work with vector corrections and obtain a
"computable' form similar to (4-9.2) or alternatively use a form similar
to (A.10) (see Appendix A) which will allow us to save some computational

effort. Following the latter suggestion we can write (3.2) in the form

(I+r1H)u(n+i) [I+(rlvr)H]u(n)+r(b-Vu(n))

and

2

(I+r2V)u(n+1) = u(n+£)+r2Vu(n)
(n)

where we observe that it is not necessary to recompute Vu

(3.4)

in the second



half iteration and therefore we can apply a scheme similar to (A.11) (see
Appendix A) to considerably reduce the computational work.

An alternative form of the MADP method is given by

u(n+1) = TT N u(n) + t (3
» 1, 2
where
_ -1 -1
TT’rl’rz = I-T(I+r2V) (I+rlll) A 7 (3
and t = T(I+r2VJ-1(I+r1H)-lb. (3

Moreover, we note that the MADP method is completely consistent
(see Theorem 3-1.4) if 1#0 and I+r2V, I+r1H are non-singular matrices.
Evidently, the preconditioned matrix of the MADP scheme is given by the
expression
T10%2

and is positive definite for all r ,r2€10,W).

1

Since now the matrices H and V satisfy the conditions (1.13) there

existsa common basis of vectors for both matrices. From this observation

and (3.8) we can easily find that the P-condition number of Br is given
1’72
by the expression
AM
P(B ) = — (3.
T
where
AM = max {J\(usv)rl:rz)},
TAY (3.
A, = min {l(u,v,rl,rz)}, '
u,v

u+y
(1+r1u)(1+r2v)

)" E l(u !v’rlirz) =

and p,v are the eigenvalues of H,V, respectively which lie in the following

ranges

O<agugh, O<ogvsB, (3.

In order now to maximise the rate of convergence of the MADP method we
will seek to select r, and r, to minimise P(B ) given by (3.9) and

1 2 : rl,r2
on the other hand, to determine the optimum value for 7T by the expression

g = 2/(Am+}M) . (3.

_ -1 -1
B, , = (I+r )7 (I+r ) TA (3.

(3.
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.5)

.6)

.7)

8)

9)

lQ)

11)

12)

13)
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Finally, the MADP method converges for all rl,r2€(0,m) and ﬁE(O,Z/AM).

We distinguish two cases in our analysis i) the eigenvalue ranges of

H and V are the same and i1i) the eigenvalue ranges of H and V are different.

7.3.1 The case where the eigenvalue ranges of H and V are the same

In this case we prove the following theorem:

Theorem 3.1,1

Let H,V be the matrices as defined in Section 7.2 with real eigenvalues

u,v, respectively such that
O<agu,vgb.

Then, the P-condition number of Br ‘r is given in Tables
172

(3.1.1)

3.1.1 and 3.1.3

for the different ranges of the preconditioning parameters rl,rff(o,m).

Moreover, P(B ) is minimised if we let
T1:%2 |
= =1r! =
1 r,=r 1/ (ab)

and its corresponding value is given by the expression

r

p(Br',r') = (a+b)r'/2.

On the other hand, of we aléo let

-~ = 1
T =Ty 2r
then, the spectral radius S(TT r ) attains its minimum
2712
given by the expression
STy pr,p0) = E::Ei'z '
Tort bf+a

Proof

As it can be seen from (3.10)}) we have to examine the

given by (3.11) as a function of u,v. Therefore by taking partial

derivatives of the continuous function X with respect to y and v we can

easily obtain the follewing results

sign LLY
g Em

sign L2
g av

sign(l-vrl)

sign(l-urz).

(3.1.2)

{3.1.3)

(3.1.4)
value which is

(3,1.5)
behaviour of X

(3.1.6)
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From (3.1.6) we see that for fixed rl,r2>0 neither of the expressions

%%, %% changes sign as y and v vary in the interval (3.1.1}. We therefore
conclude that the possible extreme values of A will occur at the points
(a,a), (a,b), (b,a), and (b,b) (see Guittet [1967] Lemma 1). On the other

hand, the values of the function X at these points are the following

A= A(a,a,rl,rz), B = l(a,b,rl,rz) (5.1.7)
D= A(b,a,rl,rz), C= A(b,b,rl,rz).
Evidently, from (3.1,7) and for fixed T,T, we have that
Ay = min{A,B,C,D} and Ay = max{A,B,C,D} (3.1.8)
which indicates that we have to examine the relations of the quantities
given by (3.1.7).
But we can easily obtain the following results
sign(A-B) = sign(r,-1/a) )
sign(B-C) = sign(rl—l/b)
> (3.1.9)
sign(A-D) = sign(rlflla)
and sign(D-C) = sign(rz—l/b). )
The above results suggest that for finding the order of the quantities
A,B,C and D which will allow us to determine Am and AM from (3.1.8), we
have to examine the relative positions of T, and r, with respect to the
values i-and %3 We therefore have to distinguish nine cases which are
presented in Table 3,1.1 together with the values of Am,l and P(Brl,rz)
for each case.
From Table 3.1,1 we see that we have determined P(Brlirz] thus we
can now study its behaviour as a function of r, and T, By assuming that
T is kept fixed, then we obtain the results summarised in Table 3.1.2 for

j=1, whereas if r, is fixed, we have the same results where now i=2,

2
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rl-Domain rZ-Domain A A P(B )

M " TyeT;
0<r251/b C A C/A
0<r151/b l/bSrzsl/a D A D/A
1/agr <= D B D/B
0<r251/b B A B/A

1/b5r1$1/a l/bSrzsI/a max{B,D} | min{A,C} | max{B,D¥min{A,C}

1/a5r2<m D C D/C
0<r2$1/b B D B/D
1/a.~;r1<m 1/bsr251/a B C B/C
1/asr < - A C A/C

TABLE 3.1.1

THE P-CONDITION NUMBER OF Br

1’72
r.-Domain+ r--Domain++ sign(9P(B )/sr.) | P(B )
i J TysT, 1 r,T,
0<rjsl/b sign(a-b) Decreasing
0<risllb l/bsrjsl/a 0 Stationary
lfasrj<°° sign(b-a) Increasing
0<rj51/b sign(a-b) Decreasing
l/bsrisl/a l/bsrjsl/a - -
1/asrj<m. sign{b-a) Increasing
0<rj51/b sign(a-b) Decreasing
llasri<°° 1/bsrj51/a 0 Stationary
1/asrj<m sign(b-a) Increasing

TABLE 3.1.2

BEHAVIOUR OF P(Br

) AS A FUNCTION OF r
1 B

r
s
2Ty 1’72

ti=1,2

t=11,23-10)
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From Table 3.1.2 we conclude that P(Br . ) attains its minimum value
1’72

when r) and r, lie in the following range

1/bsr,r,5l/a. | (3.1.10)
But for this range of the preconditioning parameters, P(Br r ) is given
1’72
by the expression (see Table 3.1.1)

max{B,D}

p(Brl,rz) = m,LCT. (3.1.11)

The order of B,D and A,C when Ty lie in the range (3.1.10) is determined

from the relationships

sign(B-D) = sign(rl-rz) (3.1.12)
and sign(A-C) = sign'(rlrzab-l). (3.1.13)
Consequently, we have the following expressions for XM and lm
D, if rlsr2
AM = (3.1.14)
B, if r >r
and 11 2 1
A A 55
Mo® (3.1.15)
. 1
Cc, if r—l-ag.-srzs;.
Evidently, the quantity — belongs to the interval [%Uéi for all
1
11
e[~ L
T, [b’a]’ Moreover, we note that
ila"rls_l"b_sl ,» if rﬁ_l"‘
@ vab
and o 1 . (3.1.16)
b a1y Ty
! a LAY

From the inequalities (3.1.16) it follows that we have to consider
six cases which emerge for the different values of rgf[l/b,lla] (see

Table 3.1.3} by keeping r., fixed, The results which are obtained after

1

the examination of these cases are summarised in Table 3.1.3.
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rl-Domaln r2~Doma1n AM Am P(Br T ) sign(aP(Br T )/ arz)
172 ~1772
1/bsr 55T B A B/A sign(a-b)
l/bsrlsl/(ab)i r<r,cl/(rab) | bl oA D/A 0
1/(r1ab)5r251/a D C D/C sign(b-a)
l/bSrzsl/(rlab) B A B/A sign(a-b)
1/(ab)%rls1/a 1/(r ab)er,er, | B | C B/C 0
T8 2.~1/a D c p/C sign(b-a)
TABLE 3.1.3
BEHAVIOUR OF P(B ) AS A FUNCTION OF r
r),T, 2
In Table 3.1.3 we present the expressions by which P(B ) is

PR

represented for the different values of rl,rze[l/b,lla] as well as the

behaviour of P(Br T

1’72
Table 3.1.3 is that for fixed r.,P(B
1 rl, 2
such that
X 1
rjE[mln(rl,;;EBJ, max(r
On the other hand, by keeping r, fixed in th$ above interval we find that
(5P (B 1’r2)
i) ifr E[b, ], then sign —
b \ rl F,
(5P (B )]
1) if r.€-1Y, then sign|——r L2
1 I/5"}5’3. ? | grl )

which indicate that P(B
Tty

parameter r. becomes equal to the quantity

1

T =r|.=_.].'.__

1 Yab
hence by (3.1.17) we have

) is minimised when

1
l’r ab)]'

sign(a-b)

sign(b-a)

)} as a function of Ty Qur main conclusion from

the preconditioning

and from (3,1.18),(3.1.19) we see that (3.1.2) holds.

r ) attains its minimum value for ry:

(3.1.17)

(3.1.18)

(3.1.19)
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In addition, from (3.1.14),(3.1.15),(3.1.7) and (3.11) we obtain the

following expressions for the smallest and largest eigenvalue of Br

!’rl
Ay =B=D-= lﬂi?lfg%
(Va+vb)
and , (3.1.20)
A\ =A=Cs= 2ab .
m (‘/£+/5)2

By combining (3.9) and (3.1.20) we easily obtain the minimised value of
the P-condition number of Br',r' which is given by (3.1.3). Finally, from
(3.13) and {3.1.20) we cobtain the optimum value of t (see (3.1.4)). But

for this optimum value t, of t the spectral radius of the iteration matrix

0

is given by the formula

P(B,, 1)-1

S(T_b,rl ,I") = __—P(Br! ,r')+1

(3.1.21)

which if combined with (3.1.3) and (3.1.2) gives (3.1.5) and the proof of

the theorem is complete,

7.3,2 The case where the eigenvalue ranges of H and V may be different

In this case we prove the following theorem:

Theorem 3.2.1

Let H,V be the matrices as defined in Section 7.2 with eigenvalues

u,v, respectively such that

O<asugb  and 0<agvsh. (3.2.1)
Then, the P-condition number of Br r is minimised when the parameters
1’72
rysT, take the values
l-Esci 1+Zsci
rI = 7 T* = 71 (3.2.2)
~-t+Iqc? t+Iqc
where
c = L i N (3.2.3)
1+6+[06(2+0)]
o = 28-w)b-a) (3.2.4)

(a+a) (b+8)
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. (B-a)-(b-a)
is = (b"'B)—(a‘*C‘)C » (3.2.5)
£q = (b+B);(b-B)Zs , _ (3.2.6)
- (b-B)+(b+B)Is
t 5 s - (3.2.7)
and its corresponding value is given by
P(B_, &) = (c5+ c'i)/z. (3.2.8)
T¥,r
172
On the other hand, if we also let
= = r*
T Ta ] + ra , (3.2.9)
then the spectral radius of TT r i' attains its minimum value which is
*t12
given by the expression
1 ci 2
S(T_, ) = —-;' (3.2.10)
T0: 1073 [1+c ]

Proof

Under the hypotheses of the theorem we have that u,v lie in the
different ranges given by (3.2.1). Since we have solved the ﬁroblem for
the case where u,v lie in the same range (see Section 7.3.1), we attempt
to find a technique of transforming our present problem so that we return
to the previous case of the ''single range'. This will prevent us repeating
the laborious procedure (see proﬁf of Theorem 3.1,1) of the more complex
problem in the preseni case. The technique for achieving this is quite
well known and is due to Wachspress and Jordan (see Wachspress [1966],
Young [1971]).

We commence our analysis by noting that the function A defined by

(3.11) can be written alternatively as

wyw (n-w,) (v-0,)
A= 5_%53-[} - (u+w2)(v+m1)} (3.2.11)
172 1 2
where
-1 -1
W =7 and Wy = . . (3.2.12)

1 2
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We see that by expressing A in the above form our interest is focused on
the second term in the brackets. By adhering to the analysis of Wachspress

and Jordan we seek to introduce new variables ﬁ and v such that

3 1 lA
po= DA y=12 (3.2.13)
l+su l+s'vy

so that for some ﬁl and az we have

U-0 V-w n-a, !} {v-a
2 - |22 (3.2.14)
wroy ) Lvra, o, ) Vo,

and where u and v vary over the ranges

ogpgt’ , ogVgl. (3.2.15)
It can be shown that (for details see Young [1971] pp.511) by using
certain conditions such that for (3.2.14) to hold, the relationships

- given by (3.2.13) become

poe BAE o, L 2 (3.2.16)
l+syu 1-sv

In order to determine t,q,s,0 and I we require that pu=a corresponds to
ﬁ=a, u=b corresponds to ﬁ=£, v=a corresponds to v=c and that v=8 corresponds

~
to v=L, hence we have

- t+90 - t+gz
2= 150 b l+sy ?
-t -t+ql :
o e G217

After some algebraic manipulation we obtain the relationship

c+l/c = 2(1+6) (3.2.18)
where ¢ =g/l (3.2.19)
and 9 is given by (3.2.4). The quantities Is,Zq and t are also determined
and are given by (3.2.5), (3,2.6) and (3.2.7), respectively. Therefore,

we rewrite (3.2.16) to yield

= t"'(zg) (]:1/2) and Vv = "t*‘(EQ)EG/E) R (3'2'20)
1+(2s) (i/8) 1- (25) (3/1)

whereas by combining (3.2.13) and (3.2.14) we find
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-t+(2q) (@, /%) t+(Zq) (w,/5)
Y 1 and  w. o il (3.2.21)

1-(Zs) (w, /1) 2 1+(zs)(&2/z3

At this stage we note that we have transformed our problem to be
identical with the one discussed in the previous section, where now
instead of u,v we have the transformed variables p,v, respectively
posseséing the same range given by (3.2.15). Evidently, from Theorem
3.1.1 and the relationships (3.2.12), (3.2.15) we see that the optimum

parameters ®. and 62 for the transformed problem are

1

al = az = (oz)*. (3.2.22)

Thus from (3.2.21),(3.2.22) and (3.2.19) we find that the optimum

parameters for the given problem are given by the following expressions

} 4 |
UJ{ = -t+29c , w; - t+EgC£ . (3_2.23)
1-Isc l+Zsc

Finally, from (3.2.12) and (3.2.23) we see that the optimum values
for the preconditioning parameters are given by the expressions (3.2.2).

It is a trivial matter now from the above analysis and using the
relationships (3.1.3),(3.1.4),(3.1.5) to show the validity of (3.2.8),
(3.2.9) and (3.2.10), respectively. Thus, the proof of the theorem is
complete.

Evidently, we can choose any positive value for R, e.g. R=1.

As we have shown (see Theorems 3.1.1 and 3.2.1) in the case where

A is given by
A = H+V (3.2.24)

then at the optimum stages the MADP method coincides with the Peaceman-
Rachford ADI method (see Birkhoff et al [1962], Young [1971],—Wachspress
[1963]) when all the iteration parameters are kept fixed during the
iterations, However, the advantage of the MADP method over the PR-ADI
comes when more accurate finite difference equations are used (e.g. the
nine-point difference formula).

It should be mentioned that similar results to Section 7.3.1 for the
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case r =r and for the EADI method have been obtained by Guittet [1967]

2
whereas for the same case but with the eigenvalues of H and V lying in
different ranges the optimum parameters have been found by Hadjidimos and
Iordanidis [1974]. Moreover, for the ADP method (i.e., when r1=r2] Gane [1974]
(see also Gane and Evans [1974]) found similar results to the ones given in
Section 7,3.1. However, for the case where the eigenvalue ranges of the
basic matrices involved are different, the optimum parameters were found

(see Gane and Evans [1974]) under the assumption that O<a'gu,vgB', where

a'=min{a,a), and B'=max(b,B).
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7.4 APPLICATION OF THE ACCELERATED PROCEDURES TO THE MADP METHOD

In this section, we will briefly consider the application of the
accelerated procedures developed in Chapter 3 to the Modified Aiternating
Direction method. In general, we will assume that rl#r2 and that the
matrix A has the form (3.2.24) with H and V defined as in Section 7.2.

The properties of the basic matrices H,V guarantee the effectiveness of
the acceleration techniques for the improvement (by an order of magnitude)
in the rate of convergence of the MADP method since its iteration matrix
(see (3.6)), will always have real eigenvalues. Fﬁrthermore, because of
the similarity of the MADP and PSD iterative schemes we will follow closely
the formulation of the corresponding accelerated iterative schemes as
developed in Sections 5.5, 5.6, 5.7 and 5.8. Thus, we define the semi-
iterative method based oﬁ MADP (denoted by MADP-SI} by (see (5-5.15))
u(n+1) - (n+1) .

(T u

n+l T,ry,T, (4.1)

(1-p,, Ju p

where the second term in the brackets is the MADP method (see (3.5),(3.6)

and (3.7)). The sequence of parameters is given by

p:lb \
1 , 1
a
8
2 2 r (4.2)
czpn -1
Phel = [1— 7 ] , h=2,3,... J
where p(Brl’er_l o
g = S[TT’r - ) = PTE T (4.3)
1°72 rl,rz

By expanding (4.1) we obtain a more explicit form which is given by

L) (m-1)

= (1-p U [U(n)+T(I+r2V)_1(I+r1H)'1(b-Au(n))].(4.4)

n+l
The virtual spectral radius of the iterative scheme (4.4) is given by (see

(see 5-5,19)

1t 15 assumed that the parameters T,r,,r, take their optimum values.



where

Therefore, the rate of convergence is (see (5-5.24))

)) = -—logr"Z//ﬁ r
1’

In a similar manner we define the MADP-Variable Extrapolation method

n/2
= 2
S (T, . L)) = =
T2 1+r
i o

n

1-1//p (B )
I'l ,I‘2
Tt = =
14/1-6° 1+1/'p[Br1,r2J
R, (P (T

T,T)»T,

(MADP-VE method) by (see (5-6.4))

where the iteration parameters 5,

(see (5-6.5))

L )

en+1(

o

6 = . k=1,2,.,.,

k 1 cos(Zk 1)w
2m

and ¢ given by (4.3).

An alternative form of the MADP-VE method is given by the following

two level iterative scheme (see (3.4))

(I+r1H)u(n+£)

and

(I+r2V)u

The main advantage
apply the reduction scheme (A.11) thus saving some computational effort,
The second degree version of the ADP method has been introduced by

Gane and Evans [1974].
second degree method to be given by (see (5-7.6))

L+ 1)

where

I

(n+1) _  (n+d) (n)

+1 Vu .

1 , 1f n=0

o —2 . if sl

1+r’1-c2

(=3
]

and ¢ is given by (4.3).

II+r2V)-1(I+r1H)'I(b—Au(nJ)

can be determined by the expression

[1+(rl-en+1)H]u(“)+en+1(b-vﬁ(“))

of the above scheme is that it is possible to

Here, we define in an analogous manner the MADP-

= by L™ o(rre,0) 7 (rer 1) 7 oopu e (15 u Y
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(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)



268
As we have seen (see Chapter 5) the MADP-VE and the MADP-second
degree methods are strong alternatives to the MADP-SI since their rate
of convergence tends to be approximately the same as the latter method.
Finally, we can also define the Conjugate Gradient method with

respect to the MADP scheme by (see (5-9.8))

u(ﬂ+1)=pn+1[u(n)+Yn+l(I+r2V)—1(I+r1H)-1r(n)]+(1-D ™D 43

n+l
where
@™ 5O, \
Yl’l"’l (ns'(n) ,A"s“(n)) ?
§(n) = (I+réVj-1(I+r1H)_1r(n) .
) _ [ ) Tper @™ (M ‘}_]-1 ¢ (4.14)
n+l Yy (r(h-l)‘r(n-l)) Py
and
r(n) = b-Au(n). J
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7.5 THE MODEL PROBLEM - COMPARISON QF RATES QOF CONVERGENCE

Let us now consider the generalised Dirichlet problem involving the
Laplace's equation (see Section 4.13) and try to compare the effectiveness
of the methods considered in this chapter with already known ones.

Evidently, we have E.=0 in (1.6), hence

0
A= HO+V0 = H+V , (5.1)
H=1I8U0 andV=U8J (5.2)

where I is the unit matrix of order N-1 and U is of the same order and

given by

U = “ ~ N (5.3)

_ -1o2] .
The symbol ® denotes the tensor product (see Halmos [1958]) and has
already been used in connection with ADI methods (see Keast and Mitchell
[1967]). In the above we have assumed a uniform mesh size h=1/N., For this
problem we see that the conditions of the '"commutative casé" hold.
Furthermore, if u,v are the eigenvalues of H,V, respectively, then

Lol dm _ . 2.3, . . )
My = 4sin (ZN) and vj = 4sin (2N , lgi,jgN-1, (5.4)
Hence, if asuisb and asvst with 1gi,jgN-1, then

a=a=dsin’(QY and b =g = dcos’ (T, (5.5)

From (5.5) and Theorem 3.1.1 we have that for our problem the value

of r' is given by

-4 1
rt = (ab) * = (5.6)
4sin(%?ﬂcosf%?)
whereas the corresponding value of Bov po becomes
P(B ) = 2rt = L (5.7)
r',r! sin(vh) ° .
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On the other hand, by letting T0=2r' we find that the spectral radius

of TT’rl’rZ is given by the expression
_ 1l-sin{wh)
ST yrt,xt) = TosinGrny (5.8)

which is identical with the spectral radius of the SOR method (see (4-13.14}).
Since for this case we also have that the PR method is identical with the

ADP (see discussion after the proof of Theorem 3.2.1) we obtain the

following result

=S, ). (5.9)

Consequently, for the model prpblem and when H,V are defined as in

Section 7.2 PR-ADI, SOR and MADP have identical rates of cbnvergence

at the optimum stage. It should be‘noted here that the above result has
also been obtained by Gane [1974] for the ADP method. In addition, let

us also examine the case where more accurate finite difference analogues
are used to approximate the Laplace's equation, In particular, we consieer
the nine point difference formula, then the totality of the difference
equations produced yields the following splitting of the coefficient matrix

A = H+V-KkHV (5.10}

where k=1/6 and again H,V are the same matrices as defined in Section 7.2.
By assuming the same conditioning matrix, we have that

y )
(B ) = — (5.11)
k T),T, lm

P
where XM’Am are the maximum and minimum bounds of

u+v=kuv
(l+r1u)(1+r2v)

.l = (5.12)

respectively, Since now the inequalities
(b-u)v + (b-v)u 2 0
(v-a)v + (v-a)u 2 0

always hold, we can easily obtain the following result

a(u+v)/2guvsb(u+v) /2. . (5.13)
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By combining (5.13) and (5.12) we can bound A as follows
(1-kb/2)dsrs(1-ka/2)¢ (5.14)
where

H+V
(1+rlu)(1+r2v)

(5.15)

From (5.14) and (5.15) we see that the P-condition number of Br r
1°72

is minimised for these values of r_ ,r. for which the ratio ¢M/¢m is

1’72
minimised, where ¢M and ¢m are the largest and smallest bound of ¢,
respectively. But this problem is identical with the one studied in

Section 7.3. Thus using the results of Theorem 3.1.1 and (5.14) we have

that if we let

1
r. =17 =7T' = —— (5.16)
1 2 Jab
then Pk(Br r ) is minimised and its corresponding value is given by
1'72
= kt
PL(Boy o) = K'P(B, ) (5.17)
where 1-ka/2
f =
R Y (5.18)
Moreover, for
= (Lr'a)? 5.19)
“0 T F(I-kb/2) (1+k "B (B, ) .
the spectral radius is also minimised and given by the expression
) ktP(Br, r')-l 5.20)
S (T = 2 . .20
k( TO’r"r' k'P(Br',r'j+1
Finally, the rate of convergence is given by
2
R, (T ) ~ e (5.21)
k™ tg,r!,r! k'p(Br',r')

where we can clearly see the effect of k.

As can be seen in this case 10#2r' which means that the MADP method
does not coincide with the PR-ADI process. On the other hand, since for
the PR-ADI the parameter T does not take its optimum value (which is given
by (5.19)) it follows that in this case MADP will have a slightly faster

rate of convergence than the former method.
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Let us now consider the application of the MADP-SI method for the
solution of the present problem, then the rate of convergence is given by
—~ '/ i; r
Rk,m(Pn(Tto,r',r') 2/ P(Br',r')

thus for k=0 we obtain

Rw(Pn(TTO’r,’r,)) ~ 2V/sin(rh) ~ 2/ah (5.22)

for sufficiently small h. The above expression for the rate of convergence
serves also as an approximate bound for the rate of convergence of the
other accelerated techniques applied to the MADP method (MADP-SD, MADP-VE

and MADP-CG).
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7.6 NUMERICAL RESULTS

For comparison reasons we consider again the Laplace equation

2 2
—t—— = () (6-1)

(0)

in the unit square with zero boundary values. The starting vector u
with all its components equal to unity is used, whereas the convergence
criterion is Hu(n)ﬂmslo_ﬁ. For the solution of the above problem we
approximated (6.1) by using the five and the nine point difference
analogues (k=0 and k=1/6). The so produced system was solved by applying
the MADP method and also its accelerated versions MADP-VE, MADP-SI and
MADP-CG as they have been developed previous1y. For the case k=0, the
oﬁtimum value of r' was computed from (5.6) and TO=2T' whereas for k=1/6

T, was determined by (5.19). In Tables 6.1 and 6.2 we present the number

0
of iterations required to solve the present problem with the iterative
procedures mentioned above for the different mesh sizes h-1=20,30,40,60,80.

Under the column headings n_, we give the estimated number of iterations

E
whereas under n, we have the observed number of iterations. The quantities
p(Br',r')’S(Tro,r',r')’Pk(Br',r') and Sk(Tro,r'r') were computed from (5.7),

(5.8),(5.17) and (5.20), respectively whereas P(Br=0)=P(A)=b/a and
Pk(Br=0)=k'p(A) wvhere k' is given by (5.18). The selection of m in the
MADP-VE method is similar to the one developed in Section 5.10 (see(10.29)).:
In this example we cannot see the advantage of using more accurate
difference approximations because the theoretical solution of Au=0 with A
given by (5.10) is the zero solution for both k=0 and k=1/6 which is the
same with the theoretical solution of (6.1).

Figure 6.1 shows graphs with logarithmic scales, of the observed
number of iterations versus h-1 for the MADP, MADP-SI and for the MADP-CG
methods for k=0 and k=1/6.

From Tables 6.1 and 6.2 we see that the number of iterations n_ for

E

the considered methods agree closely with the observed values n,- As a



0 nE no nE nO m nE nO no
20 3.1962 | 6.3925 81,2238 6.3925 0.7295 44 46 20 24| 5 18 19 15
30 4.7834 9.5668 182.5449 9.5668 0.8107 66 | 69 30 2916 22 23 19
40 6.3727 | 12.7455 324.,3945 12.7455 0.8545 88 91 35 347 26 27 22
60 9.5537 1 19.1073 729.6792 19,1073 0.9005 - 132 {137 40 { 40| 8 32 34 26
80 12,7357 | 25.4713 | 1297.0779 25.4713 0.9244 176 183 45 45| 9 37 39 31
TABLE 6.1
NUMERICAL RESULTS FOR THE MADP METHOD WHEN k=0
h*l r T P(B ) qu ) ﬁéT ) MADP MADP-VE MADP -S1 | MADP-CG
0 kr=0 rt,r! TO’T"r n n n n.|mi|n n n
E (4] E 0] E 0 0
20 3.1962 | 6.7048 121,2127 9.5396 0.8102 66 50 20 29} 6 22 23 17
30 4.7834 9.8859 273.1932 14,3174 0.8694 99 75 35 24| 7 27 28 21
40 6.3727 | 13.0681 485.,9673 19.0937 (. 9005 1321100 | 40| 40| 8 32 32 24
60 9,5537 | 19.4335 | 1093.8941 28.6446 0.9325 198 | 150 | 50 50|10} 39 | 40 30
80 12.7357 | 25,7993 | 1944.9919 38,1947 0.9490 264 | 200 55 55(11} 45 46 34
TABLE 6.2

NUMERICAL RESULTS FOR THE MADP METHOD WHEN k=1/6

vLZ
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consequence of the agreement between the number of iterations predicted
by the theory and the actual number, it follows that the MADP method is
extremely effective. Furthermore, from Figure 6.1 we observe that the
number of iterations of the MADP method varies approximately like O(h-l),
whereas for the other accelerated procedures like O(h-i). This aiso
confirms the theory developed in the previous sections. Finally, by
comparing the PSD and the MADP methods (see Tables 6.1 and 4-13.1) for
the model problem with optimum parameters we verify our earlier conjecture
that the former scheme should produce slightly better rates of convergence
than the latter. On the other hand, by comparing the accelerated versions
of the above basic methods we see that they have approximately the same
rates of convergence (see Table 6.1 and Table 5-10.3). It should be pointed
out that the actual application of one complete iteration of the MADP
iterative method requires more arithmetic work (even if the reduction
scheme is applied) than the PSD and the SOR iterative methods which makes
the former method less atrractive than the two latter methods. However,
this should not obscure our final evaiuation of the MADP methods since
their real power is expected to be brought forth (as this is the case for
the ADI methods) when a sequence of parameters {ri} is used instead of
and r,. On the other hand, the

1 2

commutative property HV=VH which is the basic condition to the theoretical

the fixed preconditioning parameters r

development of the MADP method will restrict their application to partial
differential equations of the form (1.14) where the region under consideration

is rectangular,
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7.7 THE BIHARMONIC EQUATION

In this section we will consider the application of the MADP method

for the numerical solution of the biharmonic equation
4 4 4
L2t s £(x,Y) (7.1)
Ix X 3y oy

fof (x,Y)SR, where R is the rectangular region defined by (1.15). If
f(x,y)=0 the biharmonic equation (7.1) together with appropriate boundary
conditions governs the'slow flow of a viscous fluid or the transverse
displacement of the middle surface of a uniform elastic plate, where
f(x,y) is the transverse loading on the plate.

In particular, we consider tﬁé following boundary conditions in

connection with the solution of (7.1}

U(x,y) = e(x,y)

2 (7.2)
o U(x,
_(%L) = g(x,y)
on :
where e(x,y)} and g(x,y) are prescribed functions on the boundary 3R of
R and g%-is the normal derivative to 3R. By imposing a uniform grid of
mesh sizes hx and hy in the x- and y-directions, respectively such that
La
Na =5 a=x,y (7.3)
a _
where Na is an integer, then the application of the thirteen point
finite difference analogue approximating (7.1) vields the difference
equation
" N - 2 92
g [0 Goy) g [ul o) +Eg [u] (oy) = BUEC,Y) (7.4)
where h <2
Ay[ul (x,y) = [Z5 [u(x+2h ,y)-4u(x+h ,y)+6u(x,y)
0 ho) X X
-4u(x-h ,y)+u(x-2h_,y}], (7.5)
N hx~2
Volul(x,y) = [h_J {U(x,y+2hy)-4u(x,y+hy)+6u(x,y)
- ,y- ,y-2 7.6
4u(x,y hyJ+u(x y hy)] | (7.6)

and



Eo[u](x’Y) = z{u(x_hx,y-hy)+u(x+hx,y-hy)+u(x-hx,y+hy)
+u(X+hx.y+hy)2@(x-hx,y)+U(X+hx.y)+U(x,y+hyJ

+u(st‘hy) ]+4u(x:Y) }-

On the other hand, if we approximate the second normal derivatives
such that (7.4) incorporates the boundary conditions, then by using the
natural ordering of the grid points we arrive at a system of equations

of the form
Au

(H0+V0+Eo]u = b
where the matrices ﬁO,VO and EO correspond to the operators ﬁo[u];ﬁo[u]
and Eo[u], respectively. More prebisely, using tensor products we have

that the coefficient matrix has the - -form

A= (H+V)2
where H=1I @eU , Vv=U8TIl
X X y y
and _
2 -1 W
-1 2 -1
N \\ \\
hb NN N
U = m— \\ N N
a ha \ \\ \\
AN .
S S |

with a=x,y, b€{x,y}-{a} and I is the unit matrix of order N -1. It
can be easily verified now that the matrices H,V are symmetric and
commute, thus we can apply the MADP iterative method for the numerical

solution of the matrix equation (7.8).

278

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)
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7.8 THE MADP METHOD FOR THE NUMERICAL SOLUTION OF THE BIHARMONIC EQUATION

From (7.9) we have that the form of A can be given more explicitly

as

A = H2vZony (8.1)

which indicates that if we consider the conditioning matrix to have the
form

= (I+r1H2)(I+r2V2) I+r1H2+r V2+r r, (HV) {(8.2)

then by comparing (8.1) and (8.2) we see that R approximates the matrix
- A reasonably well. Consequently, if we use the matrix.R given by (8.2)
as the conditioning matrix, then the MADP method is defined by

O N I v?)”1(1+r 12) ™! o-au () (8.3)

where again we have that r T, and T are real parameters to be defined

l!
later. In order to compute the iterative scheme (8.3) we can either
work with vector corrections or we can employ the following two-level

form (similar to (3.4))

2 (n)

(I+r H )u(n+£) = [I+(r -T)H ]u(n) T[Vu +2HVu(n)-b]

and
(I+r A\ )u(n D u(n+i) + r2V u(n) (8.4)

2 (n)

where we see that it is not necessary to recompute V u in the second

half iteration, hence we can apply a reduction scheme similar to (A.1l1).
- - . . .

Since now the matrix V= is quindiagonal this technique results in the

saving of a considerable amount of computational effort.

From (8.3) we have that the iteration matrix is given by

- 2.-1 2.-1
: T, = I-r(I+r2V ) (I+r1H ) A (8.5)
whereas the preconditioned matrix
= (e vy Hosr n?) 1A (8.6)
rl,r2 2 1

is positive definite for all rl,réz(o,m).
Since H and V are pairwise commutative, we can easily find again

that the eigenvalues of Br p ave given by the expression
1’72
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2
A S A(u,v,rl,rz] = (U+;) > (8.7)
(1+r1u )(1+r2v )
where u,v denote the eigenvalues of H and V, respectively.
Furthermore, it is known that the eigenvalues u and v are
given by
2. .
u o= (hy/hx)451n (1n/2Nx) , for 1—1,2,...,Nx-1
h_/h )asin®(jn/2N) , for j=1,2 1 (-9
= sin“(j7 , for j=1,2,...,N -
(h,/hy (Gn/2N.) j=1,2, y
and therefore they are bounded as follows
- o 2 -
O<a = (hy/hx)451n (ﬂ(ng)sus(hy/hx)4cos (W/ZNXJ =b
n /h 2 p h 2 (8.9)
Q<o = 4sin”(n/2N ) sgvsg h )4sin™(n/2N )} =
(h,/h Y 4sin® (r/2N Jsvs (b, /h J4sin®(1/2N ) = 8
The determination of the involved parameters rl,r2 such that the
rate of convergence of the iterative scheme (8.4) is maximised are
obtained for those values of T and r, for which the P-condition number
of ﬁ which is given by the expression
T,
~ AM
P(B ) = — (8.10)
rl,r2 Am
where
AM = max A and Am = min XA (8.11)
H,v U,V
is minimised, whereas the optimum value of T is again
2
T, = . (8.12)
0 AM+lm

Next, we can proceed to develop a similar analysis for the

determination of the above parameters as in Sections 7.3.1 and 7.3.2.

7.8.1 The case where the eigenvalue ranges of H and V are the same

In this case we prove the following theorem:

Theorem 8,1.1

Let H,V be the matrices defined by (7.10) and (7.11) with eigenvalues

u v respectively such that



O<asu,vshb,
Then P(Erl,rz) is given in Tables 8.1.4 and 8.1.5 for the different
ranges of the preconditioning parameters rl,rﬁE(O,w).
Moreover, p(ﬁrl’rz) is minimised if we let
ry =T, = r' = 1/(ab)

and its corresponding value is given by the expression
P(E ) = (a+b)2r'/4
r!,r!t *

On the other hand, if we also let

T=T = 2r7(1+1/P(Br,,r,)) s
then the spectral radius S('f‘T r rH) attains its minimum value which
N R
is given by the expression
A 2
S(TT ot op) = __lP:%l___
o’ {(a+b) “+4ab

Proof
We notice that (8.7) can be rewritten as
Alpsv,ry,7,) = glu,v, Ty, 1,)+h(4,v,1,,7,)

where 5 2

= - ]J+U
g = glw,v,r ,r,) 5 3
) (1+r1u )(1+r2v )

2uv

and h

h(u,v,7),7,)

2 2
(4 ) (141,07

Evidently, g,h>0 for all r rze(o,m) and p,v lying in the range given

1’
by (8.1.1).

From (8.1.6) we have that

AM = max{g+h}smax{g} +max{h}
U,V M,V H,V
and similarly
A, = min{g+h}smin{g} +min{h}.
H,V H,V H,V .
The reason we expressed AM’Am by {8.1.9) and (8.1,10) is that in

(8.

(8

(8.

(8.

(8.

(8.

(8.

(8.

(8.

(8.

this way we have to study the behaviour of the functions g,h instead of

281

1.1)

.1.2)

1.3)

1.10)
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the behaviour of A. But from (8.1.7) and (3.11) it follows that the
behaviour of g can be summarised in Table 8.1,1 (which is similar to

Table 3.1.1)

r,-Domain r,-Domain max{g} min{g}
0<r,51/b° ct AY

0<r €1/b” 1/b%r,51/a° D! At
1/a25r2<m n Bf
0<r,51/b° BY A

l/bzsrlsl/a2 ‘ 1/b25r251/a2 max{B',D'} min{A',C'}
1/a2sr22& D’ c
0<r,51/b% B Y

1/a25r1<°° 1/b25r251/a2 B! C!
1/a25r2<°° Al ct

TABLE 8.1.1

THE FUNCTION g(u,v,T,,T,)

where
A' = g(a,a,r ,r,), B' = g(a,b,r,,r,),
1772 1°2 (8.1.11)
' = =
C g(b,b,rl,rzj s D! g(b,a,rl,rz).
We therefore have to study only the behaviour of the simpler function
h instead of X.
By taking partial derivatives of h with respect to u and v we
obtain the following results
. oh| _ . 2
51gn{5a] = sign(l/u -rl)
(8.1.12)
and . shj _ . 2
51gn[§;) = sign(l/v —r2).
From the above relationships we see that for fixed r ,r,>0

1772
neither of the expressions %E; 5% changes sign as u and v vary in the
interval (8.1.1). Consequently, the possible extreme values of h will

occur at the points (a,a), (a,b), (b,a) and (b,b). On the other hand,
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if we let
A = h{a,a,r,,r,), B = h(a,b,r,,r,),
172 1772 (8.1.13)
C = h(b,b,rl,rz) and D= h(b,a,rl,rz),
then the order of the quantities A,B,C and D is determined by the
following relationships
sign(A-B) = sign(D-C). = sign(rz—ll(ab))
(8.1.14)
and sign(A-D) = sign(B-C) = sign(rl-l/(ab)).

In view of (8.1.14) we construct Table 8.1.2 which presents the

maximum and minimum values of h with respect to u,v for the different

values of T and r, in the interval (0,«).
rl—Domain rz-Domain max{h} | min{h}
0<rzsl/(ab) C A
0<r151/(ab)
1/ (ab)sr,<e D B
0<r251/(ab) B D
1/ (ab)sr, <
1/(ab).<,r2<°° A C
TABLE 8.1.2

THE FUNCTION h(u,v,rl,rz]

In order to form the function A (using the relationships (8.1.9)
and (8.1.10)) we note from Table 8.1.2 that we have to examine further
the relative positions of r, and r, with respect to the value 1/(ab)

in the study of the function g(u,v,rl,r As a first step towards this

2)'
direction we extend the case where llbzsrl.sl/a2 in Table 8.1.1 by

constructing (in a similar manner to Table 3.1.3) Table 8.1.3 which can
be properly modified to yield Table 8.1.4. Further, by taking also into

consideration the position of r, with respect to the point 1/(ab) in the

remaining cases in Table 8.1.1, we form Table 8.1.5.
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rl-Domain r,-Domain max{g} | min{g}
1
BVARPARS] B! At
b
—1-<r <L rl“:'rZs : 2 D! Al
b2‘ 1%ab rl(ab)
_._.;1.._<r o 1 Dl Cl
28728 2
rl(ab)
STy | B Al
b rl(ab)
'—l—-n:r <L ___1-.—_<r <Tr B! Cl
ab* "1~ 2 2572571
a rl(ab)
T _£r <—1—- D' c
1572% 2
a
TABLE 8.1.3
r.-Domain r,-Domain max{g} | max{h} | min{g} | min{h} | P(B )
1 2 rl,rz
Ler B! c Al A (B'+C)/ (A'+A)
b
T ST D! C A A (D'+C}/ (A'+A)
1 1
5T, =
pe 17ab D D! D At B | (D'+D)/(A'+B)
(ab)
—-*'—-—<1'25L2 D? D c B (D'+D)/ (C*+B)
T a
1
1 1
=< > B! B Al D (B'+B)/(A'+D)
b (ab)
———l———<r2$£§ B! B c! D (B'+B)/(C'+D)
1 1 T
b 12 '
;15131' gr B! A c C (B'+A)/(C'+C)
T <r 1 D! A c C (D'+A)}/ (C'+C)
a

TABLE 8.1.4
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r_-Domain r.-Domain max{gl} | max{h} | min{g} | min{h}| P(B )
1 2 r,T,
o<r25~1—2- c c A A |(C'+C)/ (AT+A)
b
1 1
LT S D* C A A (D*+C)/ (A'+A)
b2 2~ab
O<r sl—
1°,2 1 1
EﬁerS;E D! D Al B {(D'+D)/(A'+B)
Lr <o D" D B! B |(D'+D)/(B'+B)
a
0<r2$J? B! B D! D (B'+B)/(D'+D)
b
1 1
— T, e B! B c! D (B*+B}/(C'+D)
b ~"2~ab s
_1551'1“" der L B! A cr c B! c
a ab\rzsaz ( +A)/( +C)
er <o Al A c c  {AT+A)/(CT+C)
a
TABLE 8.1.5

In Tables 8.1.4 and 8.1.5 we present the expressions of P(Br r ) for
1272
the different values of r, and r,

If one studies the behaviour of

in the interval (0,«).
BP(Br r )
1’72

Brz

for all the cases in the latter two tables, then it can be easily verified

(assuming r, is kept fixed)

1

that the minimum value of P(B ) is attained if
r;,T,
1
27 - (8.1.15)

Because of the symmetry of the problem we can work similarly for

determining the optimum value of r. which obviously is identical with

1
the value of r, given by (8.1.15), hence (8.1.2) follows. From Table

8.1.5 we have the following values for the smallest and largest eigenvalue

of ﬁr',r'
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Ay = D'+C = D'+D = B'+B = B'+A = ab
(8.1.16)
and 2
A = A'+A = A'..'.B = CI+D = C|+C = 4(ab) .
m — 2
(a+b)

Thus from (8.1.16) and (8.10) we see that P(ﬁr, r') is given by (8.1.3)
while from (8.12) the optimum value for t is given by (8.1.4). But for

this optimum value 1. of T the spectral radius of the iteration matrix

0
is given by the formula

N _ P(B,y p4)-1
p(Br',r')+1

which by (8.1.3) gives (8.1.5] and fhe proof of the theorem is complete.

(8.1.17)

7.8.2 The case where the eigenvalue ranges of H and V may be different

In this case we prove the following theorem:

Theorem 8.2.1
Let H and V be the matrices defined by (7.10) and (7.11) with

eigenvalues u,v, respectively such that

O<agusgh and O<agvgB . (8.2.1)
Then the P-condition number of ﬁr is minimised if we let
172
= l-Zzsci * = 1+Zzsci (8.2.2)
1 -t+22qc£ 2 t+22qcZ
where
c = 1 i , (8.2.3)
1+6+[6(2+0) ]

2(8%-a%) (b2-a%)

(a2+a2)(b2+32)

[=r)
It
.

(8.2.4)

(82-a®) - (b%-2%)
(b2+32)-(a2+a2)c

o’e?ys 0788k
Z -

e
-ll

(8.2.6)

b2-8%)+ (b2+8%) 22
y: ’ (8.2.7)
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and its corresponding value is given by

1
PGB, ..) = (are’)” (8.2.8)
1’72 4c¢
On the other hand, if we also let
T =g = frf*r?/“”/"(ﬁr;,r;)h (8.2.9)
then the spectral radius ﬂﬁ;xi,ré) attains its minimum value which is
given by the expression
R },2
s(T,%’ri,,rEJ = (12%2149 (8.2.10)
Proof
From the previous section is can be noticed that the value of
the optimum parameters which minimise the P-condition number of the
matrix ﬁr r is identical with the one which minimises the ratio
1’72
- %ﬁ% (8.2.11)
Indeed, we observe that the function g(u,v,rl,rz) is obtained from the

function A(u,u,rl,rz) given by (3.11) with umbeing replaced by uz,vz,

respectively, Consequently, from Theorem 3.1.1 we have that G is

minimised if we let Ty,T take the values given by (8.1.2) since

2
0<a25u2,v25b2. On the other hand, the behaviour of P(Br r ) is not
1’72
affected by the bilinear transformation (3.2.13), in the sense that

it is the same between the original and the corresponding transformed
intervals, Thus, if we transform our problem (using a similar analysis

to Section 7.3.2) sb that we return to the previous case of the "single
range", then the optimum values of the corresponding transformed parameters
r, and T, will still remain the same as the ones which minimise the
transformed ratio G. In order words our problem is identical with the

one tackled in Section 7.3.2, the.only difference being that instead of

2

having u,v in (3.2.11) here we have uz,v . Thus, by adhering again to

the analysis of Wachspress and Jordan we seek to introduce new variables
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ﬁz,Gz such that
2 t+gﬁ2 2 t'+q'\'32
] = A2 » v = ""__"‘T (8-2.12)
l+su 1+sv
so that for some 61 and ﬁz we have
uew vzw] at)) (92
— | = == (8.2.13)
H +w1 v +w2J u +w1 v,
~2 ~2
where 1~ and v~ vary over the ranges
o?sier? R 02562522. (8.2.14)

By folloﬁing the same analysis as }n Section 7.3.2 we can show the
validity of Theorem 8.2.1.

By Theorem 8.1.1 we see that ag the P-condition number of the
preconditioned matrix ér',r' increases, then the optimum value of 1t
tends to be equal to 2r'. In other words, for sufficiently small mesh
size the.Peaceman—Rachford ADI scheme for the numerical solution of
the biharmonic equation (i.e. u[n+1)=u(n)+2r'(I+r'V2)"1(I+r'H2)'1(b-Au(n)))
tends to attain the same rate of convergence as the MADP method. However,
this will not be the case if more accurate difference analogues are used
(e.g. 25-point difference formula}.

It should be mentioned that similar results to Section 7.8.1 for
the case where the eigenvalue ranges of H and V are the same, have heen
obtained by Gane [1974] whereas another approach for the same problem
using the EADI method has been developed by Hadjidimos [1975]. However,
for the case where the eigehvalue ranges of the basic matrices involved
are different, the optimum parameters were found (see Gane and Evans [1974])
under the assumption that O<a'gp,vgB', where a'=min(a,a) and B'=max(b,B).
In an analogous way to Section 7.4 we can easily define the accelerated
-procedures based on the iterative scheme (8.3) and obtain an order of

magnitude improvement on the convergence rate.



289

7.9 RATES OF CONVERGENCE ON THE UNIT SQUARE

If we consider the solution of the biharmonic equation in the unit

square with hx=hy=h, then by (8.9) we have

a=a-= 4sin2(%;) and b =8 = 4c052(%;0 (9.1)
hence from Theorem 8.1,1 we obtain successively
e e, (9.2)
4sin”(mh)
p(ﬁr' )= _-._12__._ (9.3)
' sin” (mh)
and T, = , 1 . . (9.4)
2sin” (vh) [1+sin” (wh)]
Finally, the spectral radius is given by the expression
- 1 sinz(wh)
S(T ) = (9.5)
T.,r',Tr . 2
0 l1+sin (mh)
thus the rate of convergence of the iterative scheme (8.3) is
~ 2 2 .
R(TT ,r',r') 27"h (9.6)
0
for sufficiently small h.

If on the other hand, we use the 25-point difference analogue to
approximate the biharmonic equation, then the matrix A has the following
splitting

A = (HsV-KHV) 2 9.7)
where k=1/6. Evidently, for k=0 the iterative scheme (8.3) is fourth
order correct in h, while for k=1/6 it is eighth order correct in h.
By following a similar approach as in Section 7.5 we can find that the
eigenvalues of Br p. are given by the expression
1°°2 2
A = ('p.+\)—k1.l\)) (9.8)

2 2
(1+r1u )(1+r2v )
and can be bound as follows

(1-kb/2) 2esre(1-ka/2) % (9.9)



where
2
(u+v)

¢ =
(1+r1u2)(1+r2v2)

From the above we find again that if we let

then Pk(Brl

} is minimised and its corresponding value is given by

’r2

pk(Br',r') - k"P(Br',r')

where

o [_l_k_ﬂ_]z
1-kb/2| °

Moreover, from (8.1.16) and (9.9) we find that if we let

(a+b)2r'2

2(1-kb/2)° [1+ (k") %P (B

TO ¥
sy

the spectral radius is also minimised and given by the expression

r'

k"P(ﬁr,’r,)-l

S, (T )=
KVt . >
0’ knp(Br"r')+l
therefore the rate of convergence is
- 2
R, (T ) ~
k T rl’r' , ~
0’ k'P(Br,’r,)

Finally, if we consider the application of the MADP-SI method for

the solution of the present problem, then the rate of convergence is

)~ 2/A"R(B_, )

Rie o(P (T p

n ro,r',r')
which for k=0, (9.3),(9.12) and (9.13) give the result
Rmcpn(Tro,r',r')) ~ 2rh

for sufficiently small h,
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(9.10)

(9.11)

(9.12)

(9.13)

(9.14)

(9.15)

(9.16)

(9.17)

(9.18)



7.10 NUMERICAL RESULTS

291

In order to verify our theoretical results of the previous section we

solved the biharmonic equation

4 4 4
V.2 50 oo, xye,

Bx4 X ay2 Yy

where the region R was the unit square. The boundary conditions were as
given in Figure 10.1. By applying the 13-point difference analogue we

approximated 10.1 and the produced system was solved with the MADP method

as defined by (8.4) and the MADP-SI method defined by

(n+1) _ (n+1) - (n)
“ = (eppyJur 7+ pn+1(TTO,r',r'u
where .
p =
1 21
P2 = 1'??)
[ GZp ]-1
= - n =
po1 = M- =3 , n=2,3,., |
and P, _,)-1
g = et
p(Br',r')ihl ’
U(x,y)=sin(wx)
y 2
$ 3"U(x,y) 2_.
0,1) A S sin(mx) (1.1)
) Y
U(x,y)=0 U(x,y)=0
520(x,y) 3%u(x,y)
——-—-—-—éL—:O é -0
IxX 0X
+ X
(0,0) U(x,y)=sin(rx)/e" (1,0)

2
E—QL%LX-)ﬂnzsin(nx)/e1T
3y :

FIGURE 10,1

(10.1)

(10.2)

(10.3)



292
©)

As starting vector u we used the vector with all its components
equal to unity while for convergence the following criterion was required
to be satisfied

maxlu(n+1)—u(n)l$10*6.

In Table 10.1 we present the number of iterations required to soive
the present problem with the iterative procedures mentioned above for the
different mesh sizes shown. Furthermore, Figure 10.2 shows graphs with
logarithmic scales of the observed number of iterations versus h"1 for the

MADP and MADP-SI methods.,

-1 ~ .

h r! T P(BLy 1) S(TTO’r,'r,) MADP |MADP-SI
15 | 5.7834 | 11,0875 | 23,1335 0.9171 144 36
20 (10.2159 | 19.9437 | 40.8635 0.9522 256 50
30 [22.8808 | 45.2670 | 91.5231 0.9784 570 76
40 (40.6119 | 80.7269 | 162.4476 0.9878 1012 103
50 |63.4091 | 126.3202 | 253.6366 0.9921 - 129

TABLE 10.1

NUMERICAL RESULTS FOR THE BIHARMONIC EQUATION

From Table 10.1 we see that for the different mesh sizes shown the

optimum value of 1, is close to 2r' which indicates that the rate of

0
convergence of the MADP and the Peaceman-Rachford ADI method is approximatelyi
the same for the biharmonic equation. This observation could have been made
earlier, when we found the expression for the optimum value of T (see (8.1.4)).
On the other hand, Figure 10,2 verifies our expectations (see (9.6) and (9.18))
by showing that the number of iterations of the MADP method for the biharmonic
equation (7.1) varies approximately like O(h_z),'whereas for the MADP-SI

method like O(h-l). Finally, a further improvement (perhaps by an order of

magnitude) on the rate of convergence can be achieved by considering a

sequence of parameters {ri} (see Conte and Dames [1958] and Hadjidimos [1969]).
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Legend:
o ADP
600 a ADP-SI

500+

400
300 L .

200
Slope

1,985°

1007
90} / :
801

704

6

507 Q
401 /

1.060"

N number of iterations

304

20

o 3% 48 %06 00w
h'l, h mesh size
FIGURE 10.2

DETERMINATION OF RATE OF CONVERGENCE ATTAINED FOR THE BIHARMONIC
EQUATION USING ADP AND ADP-S5I METHODS
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CHAPTER 8

SUMMARY AND CONCLUSIONS
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Preconditioning techniques have been considered in the form of the
"Preconditioned Simultaneous Displacement! (see Evans {[1968]) and the
"Alternating Direction Preconditioning'" (see Gane and Evans [1974]) since
their introduction., In this investigation we have shown that the pre-
conditioning techniques can be genéralised in such a way so that all.known
iterative schemes are special cases of a wider class of iterative methods.
On the other hand, it is hoped that they will also provide a practical test
and a guide line for the formulation of perhaps more efficient iterative
procedures in the future. In fact, this is achieved from the experience
which one cbtains by attempting to éxplain under the "preconditioning"
approach their origins and to estabiish a priori criteria as far as the
efficiency of the basic iterative processes is concerned.

In this context we commenced our study by introducing in Chapter 4 new
iterative schemes (the extrapolated versions of the GS and SOR) and also the
related theory as well. For example, we have shown that the technique of
extrapolating the GS method in order to obtain the SOR method can be
regarded as a special case of a more general approach which yields an
iterative scheme (ESOR method) with faster rate of convergence than the SOR.
However, the rapidity on the rate of convergence of ESOR depends strongly
upon the quantity W and therefore further research is neede& in order to
establish in what degree the required extra computational work affects the
efficiency of the method as cohpared with SOR.

In the remainder of Chapter 4 we considered the two classical methods
of the "Preconditioning theory", namely the Preconditioned Jacobi and the
Preconditioned Simultaneous Displacement in a different form which does
not necessitate any transformation, thus resulting in a reduction of the
involved computational work as compared with the form they were first
introduced,

The two aforementioned methods were studied in detail and their

properties were clarified through the development of the theory concerning
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their convergence and the choice of "good" falues for the involved parameters.
As a result of this investigation, we were able to determine a substantial
improvement on the rate of convergence of the PSD method over SSOR which
was;élso confirmed by our numerical results. Furthermore, the alternative
fo?ﬁ of the PSD method, presented in Appendix A, in combination with
Ni%thammer's scheme may be regarded as an alternative procedure to SOR (see
Ta%les 4-13.1 and 4-13.2) for problems with B51/4. It is conjectured that
Bg<l/4 may also be a necessary condition for other problems where the
coefficients do not belong in class C(z). However, further research is
clearly needed towards this direction Sefore any firm conclusions are drawn.
In the last two sections of the same chapter we considered a more general
form of the PSD method, namely the unsymmetric PSD method in combination
with the red-black ordering. As a conclusion from this study we have that
although the aforementioned method has an identical spectral radius with
SOR at the optimum stage (with red-black ordering) it requires twice the
computational work. Although the UPSD method was not proved to be an
efficient method with red-black ordering it will be interesting to investigate
the possibility of using it with the natural ordering. A final result of
Chapter 4 was that the application of the PSD method with red-black ordering
yielded a rate of convergencé which differed by an order of magnitude from
that using the natural ordering. We therefore conclude that the PSD method
should always be used in connection with the natural ordering,

In the first part of Chapter 5 we defined the line ESOR and the line
PSD methods. Further, by adhering to the analysis of the point PSD method
we were able to determine good estimates for the involved parameters in the
LPSD in the sense that, at least for the model problem, the rate of
convergence was approximately O(h). Also it was found that LPSD was V2
times faster than the point PSD, This result characterises the SOR method
as well. Further study showed that, as in the point methods, the LPSD

method is approximately 2 times faster than the line SSOR method. These
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findings were also confirmed by our results obtained from numerical
experiments. These results indicate that (see Table 5-4.1) although we

do not have a monotonicity theorem for 7., the LPSD method attains a

1’
convergence of about 0(h) for subregions of the square. From the analysis

and results of the LPSD method we conclude that this method possesses all

the features which characterise the line methods and therefore it should be
preferred over LSSOR since it also requires approximately the same storage

and computational work.

In our attempt to further increase the rate of convergence of the PSD
method, in the second part of Chapter 5 we consider various accelerating
techniques which essentially prove that there exists a possibility of
improving the rate of convergence of the PSD method by an order of magnitude.
A principal result of this analysis is that if the coefficients A(x,y) and
C(x,y) are in the .class C(z) in R+8R, then for h small we have

S(LU) € 1/4 + O(h?)
which implies that the constant 7_1 appearing in (4-11.15) is bounded away
from zerc as h*0. The above condition guarantees that one indeed obtains
an order of magnitude improvement in the rate of convergence of the PJ-SI
method as compared with the J-SI,PSD and the SOR methods. Applying semi-
iterative techniques to the PSD method, when A is a positive definite L-
matrix, we proved that the PJ-SI method is asymptotically at least as good
‘as the J-SI method. However, this comparison was based on the number of
iterations and did not take into account the fact that each PJ-SI iteration
requires about twice as much work as each Jacobi iteration. From the analysis
and results presented in Chapter 5 one concludes.that the accelerated
versions of the PSD method offer a substantial saving as compared with the
SOR method for many problems. From these procedures, the PJ-SI and the
PJ-VE are very promising for the following.reasons. The former method
achieves a fast rate of convergence but requires approximately twice as much

work as the SOR whereas the latter yields approximately the same rate of
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convergenbe but the amount of computational work is substantially reduced
(approximately the same as SOR) with the application of Niethammer's scheme
(see (A.17)). However, in order to avoid the instability which may occur
by using the PJ-VE method one should follow the suggestions of Lebedev and
Finogenov [1971] for the choice of the iteration parameters.

In Chapter 6 we essentially considered the adaptive algorithms in order
to further accelerate the PSD method. In conclusion we found that the PJ-SI
method with either estimated or adaptively'determined parameters yields
faster rates of convergence than the SOR method (although in terms of the
work reqﬁired,.SOR may still be preferable in certain cases). The analysis
for the development of the adaptive algorithm based on the PJ-SI procedure
can also be applied in conjunction Gith the PJ-VE method. Since for the
latter method, there is a possibility of reducing the work involved, it
would be interesting to develop an algorithm based on the PJ-VE method with
Niethammer's scheme, which adaptively determines the involved parameters.

Finally in Chapter 7, following the suggestions which emerge from the
preconditioning techniques, we considered another known splitting of the
matrix A, as used in the Alternating Direction Implicit methods and
determined the Modified Alternating Direction Preconditioning method. As
a first step, we assumed that all the involved parameters were fixed and
we developed the analysis for determining their optimum values in the
general case where the matrices H and V had different eigenvalue ranges.
For the numerical solution of the partial differential equatién of the form
(7-1.14) we conclude that in the case of using the five point difference
analogue, the MADP method becomes identical with the Peaceman-Rachford ADI
method at the optimum stage. However, if more accurate difference formulae
are employed, then the former method is different from the latter and is
expected to yield a better rate of convergence. It is hoped that this will
become apparent when one considers the appiication of a sequence of

parameters {ri}. Finally, the MADP method for the biharmonic equation is
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different from the one presented by Conte and Dames [1958] and it is
reasonable to assume that if we follow their analysis of determining a

sequence of parameters {ri}, the MADP method will probabxy yield a slightly

faster rate of convergence as well,
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In this appendix, we compare the number of arithmetic operations

required for various methods to solve the problem
3 ., oU 9 .~oU, _
E-ECAEE) + 'é-)}-(C'a-')-;) = 0, (A.1)

Since there is not a great difference between the time required to perform
product and summation operations on present-day computers, we will consider
product (multiplication and division) as well as summation (addition and
subtraction)} processes equally.

We recall from (1-2.7) that the discretised form of (A.1l) is

u(x,y) = 8, (x,yJu(xth,y)+8, (x,yJu(x,y+h)+8,(x,y)ulx-h,y)+8, (x,yJu(x,y-h)

(A.2)
where
ACc,y) Clx,y+3)
Bl(xJY) = _S—(;E"_y-j'_ » Bz(st) = ""g'(_x";}')'_ »
(A.3)
A (X-l-z’-,y) C (x,y-l—;-)
Bg(x’Y) = Sy 34(3(,)’) = EICR
and
S(x,y) = A(X*r}%,y)ﬂ(x-%,y)+C(x,y+l%)+c(x,y-}2~‘) - (A.4)

We assume that the coefficients A and C for each mesh point are
in storage and need only be computed once. As a first step we proceed
to determine the number of operations necessary to compute one SOR
iteration. For a particular point (x,y) we have the following SOR

computation

u(n+1)(x,y) _ w[ss(x,y)u(n+1)(x-h»Y)+B4(X:Y)“(n+1)(x’y'h)

+8, Ce,y)u™ Gom,y) o8, 06,y)u™ G,y e (- ™ ().
(A.5)
In order to compute the Bi's in (A.5) we have that
4 divisions
and

3 additions

are required as can be seen from (A,3) and (A.4).
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Next, for a single point by applying SOR we have from (A.S) that
6 multiplications
and
4 additions
are required not counting the subtraction to form (1-w), since (1-w) can be
computed once and stored rather than recomputed for each point. If now
h=1/J, then one full SOR iteration traverses (J-l)x(J-1)~J2 points and
therefore requires 17J2 operations.
Similarly working we will attempt to determine the number of operations

needed to complete one PSD iteration. We recall from (4-9.2) that one full

PSD iteration for a particular point (X,y) can be computed as

()

) = b/ -ul™ G,y)es ,ydu™ oh,yy e, Goydu™ x,y )

+8, Gy )™ oo,y o8, ,y)u Gey-ny e85 eh,y) e ™ (xen,y)
+8,Goy)s ™ (x,y )] (4.6)

c(n+1)(x,y) _ C(n+!)(x,y) +m[Bl(x,y)c(n+1)(X+h,y)+32(x,y);(n+1)(x’y+h)]
(A.7)

and
u(n+1)(x

@ (e yyere ™D (x,y) (A.8)

(n+i) (X

¥} = u

In order to compute % ,¥) for a single point we have from

(A.6) that
1 subtraction
6 additions
and 1 division

7 multiplications

are required. To compute S(x,y) and the Bi's it is required
4 divisions
and
3 additions.
(n+1)
Moreover, to compute I (x,y) we have from (A.7) that
2 additions
and

3 multiplications

are required, whereas for the computation of By and By
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3 additions
and
2 divisions

(n+1)

are needed. Finally, to compute u we have from (A.8) that

1 addition
and
1 multiplication
is required. Thus one full PSD iteration of the form (A.6-A.8) requires
(15+7+S+5+2)J2=34J2 operations which is exactly twice the number of operations
of one SOR iteration and equal to the numbexr of operations of one SSOR
iteration. Referring to (5-5.14) after the PSD iteration has been completed
and 1 addiyion
2 multiplications
are still required to obtain a PJ-SI iteration. Thus (34+3)J2=37J2 operations
are needed to complete one PJ-SI iteration.
Even though one PSD iteration requires twice the number of operations
of an SOR iteration there is a way to reduce the computational work by
providing storage space for an extra N-vector, This can be accomplished

by following a technique which is due to Niethammer [1964].

First, let us consider the PSD method defined by

e I Rt B A N B (LA B (A.9)
Up to now we have seen a computable form of PSD in terms of vector
corrections (see (4-9.2)). Next, we will present another form of PSD
in terms of intermediate vector approximations similar to (3-2,33),
‘(3-2.34) of SSOR. Let us consider the iterative process

u(n+£) = (l-T)u(n)+mLu(n+i)+(T—m)Lu(n)+r(Uu(n)+c)

and (A.10)

o) | (med) o (nel) L ()

+ulu R

then we can readily see that it is an alternative form of the PSD method
since by eliminating u®8) 510 (a.10) we obtain (A.9).

Consequently, (A.10)} is another form of PSD which does not use
vector corrections as in (4-9.2) and is more familiar to us as this form

is similar to the other point methods. By expressing the PSD method using
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(n)

(A.10) we exploit the fact that it is not necessary to recompute Uu in
the second half iteration and therefore this vector can be saved at each
half iteration,

From this observation we see that we can apply Niethammer's process in
crder to reduce the amount of work for each PSD iteration. This can be
seen by explicitly exhibiting two full PSD iterations given by (A.10) as
follows
( u(n+£) = (lnt)u(n)+wLu(n+s)+(T-m)Lu(n)+T(Uu(n)+c)

save Uu(n)
(m+1)_ (1)

save Uu(n+1)

@) _ u(n+£)+muu

.

r u(n+3/2) = (l-r)u(n+1)+mLu(n+3/2)+(r-m)Lu(n+1)+r(Uu(n+1)+c)

1 u(n+2) - u(n+3/2)+wUu(n+2)_mUu(n+1)

(n+2) + (A.11)

L save Uu

S

If we now consider one full PSD iteration without using the above

reduction scheme, then from (A.10) we have

WD y) = @™ oy salsg Goydn ™ con,yy s, oyou ™ y-m)
+(1-w)[63(x,y)u(n)(x-h,y)+84(x,y)u(n)(X.y-h)]+T[81(x,Y)u(n)(x+h,y)

o8, (e, y)ut™ (x,y+h) ] (A.12)

and
W ,y) 2w ) eulsy Goy)u ™ Gom,y) e, (,y)a ™ (x,yeh) ]

o8y (x,y)u™ (s, y)ee, ()™ e,y ] (A.13)
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Thus for a single point, from (A.12) we have

10 multiplications
and
6 additions

not counting the operations involved to form (1-t) and (T-w) since they
can be computed once and stored.
In addition, for the computation of (A.13) it is required

6 multiplications

3 additions
and
1 subtraction.

Thus we immediately determine that one full PSD iteration of the

form (A.10) requires (16+7)+(10+5)J°=387% operations. Finally (38+3)J%=413°

operations are needed to complete one PJ-SI iteration.

As we have seen using Niethammer's scheme with PSD it is not necessary

(n)

to recompute Uu in the second half iteration. It can be easily seen

that this is a saving of 8 operations. Thus, for one PSD iteration and
applying Niethammer's process it is required (38-8)J2=30J2 operations
compared to 17J2 operations for SOR. Admittedly, this is but a modest
saving. However the advantage comes when more iterations are computed with
Niethammer's approach. Let us consider the PSD iteration given by (A.10)

then {see (A.11))}
(n+i)

(n) we

( Computing u requires 23J2 operations; by storing Uu

save 8 operations in the next half-iteration.

1 Computing u(n+1)

Uu(n+1)

requires (15-8)J2=7J2 operationé; by storing
we save 8 operations in the next half-iteration,

(n+3/2)
{n+2)

Computing u requires (23-—8)J2=15J2 operations.
(n+2)

¢ Computing u requires 7J2 operations; by storing Uu

we save 8 operations in the next half-iteration.

.

Therefore we see that each PSD iteration past the first requires just
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(15+7)J2=22J2 operations, which is SJ2 more than necessary for an SOR
iteration, However, the first PSD iteration always requires (23+7)J2=30J2
operations.

In Table A.1 we summarise the results obtained so far for h=1/J, where
under the column headings A.6-A.8 we include the number of operations

required for the computation of the PSD method given by (A.6), (A.7) and

(A.8).
Number of Operations for n Iterations
Method With Niethammer's - Without Niethammer's A.6-A.8
Scheme ; Scheme : '
SOR - N e -
2 2 2
PSD (22(n-1)+30)J 38nJ 34nJ
ssor” (18 (n-1)+26)J° 34072 -
PJ-SI - 41032 57n3°
SSOR-S1 - 39nJ2 -
TABLE A.1

OPERATION COUNT FOR SOR, PSD, SSOR, SSCR-SI

AND PJ-8I WITH h=1/J

From Table A.l we observe that by expressing PSD in the form (A.10)
the amount of operations is increased (without Niethammer's scheme) as
compared with the number of operations required by the form (A.6)-(A.8}.
However, this form of PSD method enables us to apply Niethammer's approach
and reduce the computational effort such as to be competitive with the work
involved in SOR. Unfortunately, this is not the case for the PJ-SI method.
This can be seen if we attempt to write (5-5.8)} in a similar form to (A.10).
Indeed, if we write (5-5.8) in a two-level iterative form involving

intermediate vector approximations, we may end up with the following iterative

fSee Benokraitis [1974].
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scheme
u("+£) = wLu(n+£)+(I-wL)U(n)+Epn+l[Lu(n)+Uu(n)-u(n)+c]
and _ (A.14)
u(n+1) = u(n+i)+mUu(n+1)-mpn+1Uu(n)-w(l-pn+1)Uu(n_1)
where
AL u(“'1)+pn+1(u(“)-u(“‘1)). (A.15)

(n+})

If we eliminate u in (A.14), we can readily see that (5-5.8)

is obtained, On the other hand, the amount of computational work has now
been increased considerably and even though we can apply Niethammer's scheme
the number of operations for n iterations is greater than 41nJ2. Thus it is
preferable to use (5-5.14) combined:with {(4-9.2) and (4-9.3) for the
computation of the PJ-SI method rather than using (A.14)-(A.15). This
difficulty is expected to be present for the SD-PJ and PJ-CG iterative
procedures since they possess similar form with the PJ-SI method. However,
the advantage of the Neithammer's scheme can be exploited in the PJ-VE method

since its form is similar to the PSD method (see (5-6.4)). We recall from

Section 5.6 that the PJ-VE has been defined by

u® Ly ™ oo T (2 o7 A ™) (A.16)
which can be written alternatively as

u(n+£) = (1-6 )u(n)+wLu(n+£)+(en+l-w)Lu(n)+e (Uu(n)+c)

n+l

L) _ ()

u

n+l
and

(n) (A.17)

n
-wlu .

+mUu(n+1)
Consequently, it can be easily verified that if we apply Niethammer's
scheme to (A.17), then the number of operations of the PJ-VE procedure is

identical with the number of operations in the PSD method (see Table A.1).



321

APPENDIX B

DETERMINATION OF A BOUND ON S(LU)
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In this appendix we show how one can determine the bound B on S(LU).
By Theorem 2-3.1 we have that
S(L) s kLUl (B.1)
so we seek to determine the quantity [LUl .

We note that equation (A.2) corresponds to the following computational

stencil given in Figure B.1

FIGURE B.1
The part of the stencil enclosed by dotted lines corresponds to the

operators L and U, In order to see how LU operates on the function u(x,y)

we consider two stages

vix,y) = Uu(x,y) (B.2)

and w(x,y)

Lv(x,y) = LUu(x,y). (B.3)
From (B.2) and Figure B.1l we have

v{x,y) = Bl (x:}’)u(x"'h:}’)"'sz(X:Y)u(x:)”'h) . (B.4)



But from (B.3) and (B.4) we obtain successively the result

w(x,y)

4

L]

+

Therefore, the operational stencil for LU can be represented by
Figure B.2 illustrating that LU operates only on values of u(x,y) at the

diagonal points (x,y), (x-h,y+h) and (x+h,y-h).

BS(X,Y)V(X-h,Y)+B4(X,Y)V(X,Y‘h)

B (x,y) [B, (x-h,y)u(x,y}+8,(x-h,y)u{x-h,y+h)]

B4 (K,Y) [Bl (x :Y“h)u(x"'h:}"hJ "'62 (X ,}’-h)U(X,Y)]

[B5(x,y)8; (x-h,y)+B, (x,y) B, (x,y-h)]Julx,y)
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[B5(x,y)8,(x-h,y)Ju(x-h,y+h)+[8, (x,y) 8, (x,y-h) Ju(x+h,y-h)

You(x,y)+ylu(x-h,y+h)+yzu(x+h,y-h).

/’/\\\\
/// "1 AN
7/ {x-h,y+h)
N AN
AN AN
N AN
N\ AN
N\ N
AN
"o
(x,y)
N\ AN
N N
N AN
N N\
AN AN
N
Yo >

FIGURE B.2

(B.S)
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Finally by (B.1),(B.5) and (2-3.7) we obtain the required bound B as
follows

S(LU) ¢ LUl = max (YO+Y1+Y2)
(x,y =Ry

= max {BS(X,Y) [Bl (X—h,Y)"'Bz (x-h’Y)]
(x,yFR

+8,(%,y) [8,(x,y-h)+8, (x,y-m)1} = B. (8.6)
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APPENDIX C

CHEBYSHEV MINIMAX THEOREM




In this appendix we present an important theorem which concerns the

Chebyshev polynomials.

Theorem C.1 (Markhoff [1916], Flanders and Shortley [1950])
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Let Pn(G) be a real polynomial of degree n in the matrix G such that the

set of all eigenvalues A of G satisfy the inequality

a<i<b<il,

Moreover, for each n20, let S, be the set of all real polynomials Qn[l)

of degree n such that Qn(1)=1. Then the polynomials Pn(A)ESn which

minimises the quantity :
max |P5(A)|
agighb

is unique and is given in terms of Chebyshev polynomials by

P

Ta553)

P(A) =

where Tn(x) is the Chebyshev polynomial of degree n given by
cos(ncos-lx)

T (x) = cosh(ncosh'lx)

%{(x+ x2_1)n+(x+/§2_1)-n]’ nz0.

(C.1)

(C.2)

(C.3)

€.4)
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APPENDIX D

UNIMODALITY OF THE FUNCTION P(«)




328

Definition D.1

A function f(x) is said to be unimodal on [a,b] if it decreases
monotonically to its minimum, after which it increases monotonically

(Zahradnik [1971]).

Let us now consider the function

l-mai+wzﬁi (i)
P(w) = LS Termrser Y e m§x{p(w,v )} (0.1)
1 1 1
where . .
. = (v(l?,DBv(f))
i (v (1) ,Dv(ﬂ) ’
. . (0.2)
s, = o o)
i (v(l),Dﬁ(l))
(i)

for the given vector v and the pair (ai,Bi).
We seek to show that P(w) is unimedal, that is, according to
Definition D.1, P(w) decreases monotonically to its minimum P(mo), after

which it increases monotonically.

From (D.1) we have that
. ] (i% s 2
sign sap(w,v = sign(w (2Bi-ai)-2(1—m)) (D.3)
where ai<1. If we let ws denote the value of wS(0,2) such that

2 -
w; (28;-3,)-2(1-w,) = O, (D.4)

then we see that as w varies from 0 to wi,p(w,v(l)) decreases until

1),

w=w; and then increases as w varies from w0y to 2, Thus each p(w,v
is unimodal for w€(0,2). It remains to show that P(w), defined by (D.1),

first decreases when-w<wO and then increases when w>w0.

Let P(&O) be a relative minimum of P(w), where QOG(O,Z), then at
(i)

least one curve p(w,v " ) which passes through the point (ﬁo,P(&o)) must

not decrease for w>m0

1), . . A
curve p(w,v ") increases as w varies from w

, otherwise P(ﬁo) is not a relative minimum. The

o to 2. I£ p(u,v?)) is

maximum in the interval [ﬁ »2}, then P(w) increases for w>$o. If p(m,vcl))

is not maximum in the internal [50,2), then there are other functions
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p(w,vcl)) which pass through (GO,P(GO)) and are increasing in [GO,Z). In

any case, P(w) is increasing for m>£o.
Similarly, there exists at least one function p(w,v(k)) which passes

(k))

through (GO,P(QO)) and is decreasing in (0,60]. The curve p(w,v

decreases as w varies from 0 until w=$0. if p(w,v(k)) is maximum in the

interval (0,&0], then P(w) decreases in (0,50]. If p(m,v(k)) is not

maximum in (O,ﬁ then there are other functions p(m,v(L)) which pass

o
through (&O,P(ﬁo)) and are decreasing in (0,60]. Thus P(w) is decreasing
in the interval (0,&0] and the relative minimum P(&0)=P(m0) is an absolute

minimum, We therefore conclude that P(w) is unimodal.








