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Abstract: Interaction problems of a finite-length crack with plane and antiplane dislocation 

dipoles in the context of couple-stress elasticity are presented in this study. The analysis is based 

on the distributed dislocation technique where infinitesimal dislocation dipoles are used as strain 

nuclei. The stress fields of these area defects are provided for the first time in the framework of 

couple-stress elasticity theory. In addition, a new rotational defect is introduced to satisfy the 

boundary conditions of the opening mode problem. This formulation leads to displacement-based 

hyper-singular integral equations that govern the crack problems, which are solved numerically. 

It is further shown that this method has several advantages over the slope formulation. Based 

on the obtained results, it is deduced that in all cases the cracked body behaves in a more rigid 

way when couple-stresses are considered. The effect of couple-stresses is highlighted in a small 

zone ahead of the crack-tip and around the dislocation dipole, where the stress level is 

significantly higher than the classical elasticity prediction. Further, the dependence of the energy 

release rate and the configurational force exerted on the defect on the characteristic material 

length and the distance between the defect and the crack-tip is discussed. In the plane problems, 

couple-stress theory predicts either strengthening or weakening effects while in the antiplane 

mode a strengthening effect is predicted.  
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1. Introduction 

The macroscopic mechanical behavior of metals is significantly affected by phenomena that occur 

in the micro-scale. For instance, it is well accepted that crack growth is followed by damage 

formation around the main crack e.g. in the forms of microcracking and dislocation emission. 

Hence, interaction problems among cracks or between cracks and crystal defects have been 

studied with a variety of analytical and experimental techniques over the past decades (see 

indicatively Rice and Thomson (1974), Thomson (1987), Kobayashi and Ohr (1980), Majumdar 

and Burns (1981)). As discussed in Huang et al. (2006), the process of dislocation emission from 

crack-tips may manifest itself in emitted discrete dislocations (monopoles) or dislocation dipoles. 

In fact, dislocation dipoles are found in much higher densities than single dislocations during 

plastic deformation (Gilman, 1964). It is reminded that while discrete dislocations are line 

defects, dislocation dipoles are area defects of the crystal lattice. 

 Following our recent work on interaction problems between cracks and dislocations in 

the framework of couple-stress elasticity (Baxevanakis et al., 2017a, b), in this study we focus 

on interactions between finite-length cracks and dipoles of dislocations. The problems are studied 

in the context of couple-stress elasticity (or constrained Cosserat theory), which is the simplest 

theory of elasticity that accounts for effects induced by the material microstructure. It is noted 

that dislocation dipoles have not been studied using this generalized continuum theory before 

and so their elastic fields are derived for the first time herein. On the other hand, a few solutions 

are reported on the interaction problems under consideration in the context of classical isotropic 

elasticity. Specifically, Ballarini and Denda (1988) employed the complex potential method to 

derive the stress intensity factors at the tips of a finite-length crack due to the interaction with 

a plane dislocation dipole of random orientation. The analogous antiplane problem was studied 

by Lin et al. (1993). In addition, Wang and Lee (1992, 1993) identified the equilibrium states of 

a dislocation dipole near a semi-infinite crack and a criterion for emission of dipoles from its 

crack-tip. 

 In our previous investigations, the distributed dislocation technique (DDT) was 

employed and proved a very efficient method for the analysis of crack problems in couple-stress 

elasticity. It is mentioned that the term ‘distributed dislocations’ does not restrict the method 
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in using solely single dislocations to formulate a crack problem. In fact, any appropriate ‘strain 

nucleus’ that would produce a traction-free crack when distributed along its faces may be used. 

Based on these considerations, in this work we generalize the DDT in couple-stress theory and 

use dislocation dipoles as strain nuclei to describe the interaction problems. In analogy to electric 

dipoles, a dislocation dipole is defined as a pair of parallel dislocations that have equal and 

opposite sign Burgers vectors and are separated by a distance. Based on the separation distance, 

dislocation dipoles can be identified as infinitesimal or finite (Kroupa, 1965), as discussed in 

detail in Section 3. In crack problems, infinitesimal dislocation dipoles are used as strain nuclei. 

 

 

Fig. 1: Modeling of a mode I crack through a continuous distribution of discrete dislocations with 
Burgers vector ydb  or through a distribution of infinitesimal dislocation dipoles of strength yyb  

[reproduced after Dai (2002)].  
 

The two approaches for the formulation of two-dimensional crack problems are 

schematically depicted in Fig. 1. As explained in Dai (2002), if the crack problem is formulated 

by a continuous distribution of discrete dislocations ( ydb ), the crack opening profile may be 

represented by a pile of narrow strips, each one corresponding to a climb dislocation. It is inferred 

that the crack opening displacement is the sum of Burgers vectors of all dislocations at any point 

along the crack faces. On the other hand, if the crack is modeled by a continuous distribution of 

infinitesimal dislocation dipoles ( yyb ), the crack opening displacement is formed by an array of 

parallel thin strips, where each strip corresponds to an infinitesimal dislocation dipole. In this 

case, the normal crack face displacement at any point is equal to the Burgers vector of each 

dislocation dipole at the same location. In either case, the distributed defects should not be 
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misinterpreted as crystallographic defects but only as a way to create a traction-free crack. From 

a mathematical perspective, in the case of discrete dislocation distribution, the crack problem is 

formulated based on the gradient of the displacement field, which is used as the density of the 

governing integral equations (slope formulation). On the contrary, if dislocation dipoles are used 

to model the crack problem, the defect density corresponds to the crack face relative 

displacement (displacement formulation). Hence, in the latter case, the governing integral 

equations are in all cases hyper-singular which in turn means that the solution procedure is 

mathematically more involved since the evaluation of several integrals in the finite-part sense is 

required. However, the displacement-based formulation is advantageous for several reasons, as 

reported in the literature. Firstly, it is more direct and less computationally expensive than the 

slope formulation since no extra integration step is required to yield the displacement profile. 

This is particularly useful in problems where partial crack closure is observed (see e.g. Bjerkén 

and Melin, 2003). Also, the displacement function  iu x , 1, 2, 3i   is continuous in the interval 

a x a    while the slope is unbounded at the crack-tips. According to Chan et al. (2001), 

this formulation offers alternative and often simpler asymptotics of the integral equations kernels. 

Korsunsky and Hills (1995) compared the two methodologies and proved that fewer terms are 

required in the displacement-based method to achieve the same accuracy. It should be also added 

that this approach can be extended to axisymmetric and three-dimensional crack problems using 

dislocation loops as strain nuclei. Besides, either approach may be used to yield solutions in 

problems with complex geometries such as branched cracks and multiple crack configurations 

(TerMaath et al., 2006; Yavuz et al., 2006). Further details can be found in the studies of 

Korsunsky and Hills (1996), Dai (2002) and the treatise by Hills et al. (1996).  

In the present work, we examine finite-length crack interactions with climb, glide, and 

screw dislocation dipoles. In all cases, the defects are placed along the crack plane so as not to 

induce crack closure effects. Furthermore, the defects are not emitted by the crack-tip. This 

configuration might be convenient for computations, but it does not fully represent the physical 

interaction problem. In Section 3, we derive the stress fields of the plane dislocation dipoles that 

need to be distributed along the crack faces in order to obtain the influence functions of the 

crack problems. Then, the three crack problems are presented in parallel in each section of the 

paper. As discussed in Baxevanakis et al. (2017a), in order to satisfy the boundary conditions of 
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the opening mode problems, both translational and rotational defects have to be distributed 

along the crack faces. Therefore, besides the distribution of infinitesimal climb dislocation dipoles 

we introduce a new rotational defect termed as infinitesimal ‘constrained’ wedge disclination 

dipole. Eventually, this problem is described by a system of coupled hyper-singular integral 

equations whereas the plane and antiplane shear problems are described by a single hyper-

singular integral equation. In all cases, the equations are solved numerically. Finally, the 

evaluation of energetic quantities (J-integral and Peach-Koehler force) reveals an interesting 

‘alternating’ behavior between strengthening and weakening effects when the material 

microstructure is considered, depending on the distance of the defect from the crack-tip and the 

ratio of the characteristic material length over the crack length. 

 

2. Basic equations of couple-stress elasticity in plane and antiplane strain 

In this section, we summarize the basic equations of the equilibrium theory of plane and antiplane 

strain within the linearized couple-stress theory of homogeneous and isotropic elastic solids. 

Couple-stress elasticity is the simplest theory of the so-called generalized continuum theories in 

which couple-stresses arise. For detailed presentations of the basic concepts of linear couple-

stress elasticity we refer to the fundamental papers of Toupin (1962), Mindlin and Tiersten 

(1962) and Koiter (1964). 

 

2.1 Plane strain 

In this paragraph, we summarize the basic equations under static loading conditions in the plane 

strain case. For a body that occupies a domain in the  ,x y -plane under plane strain conditions, 

the two-dimensional displacement field is described as  

 

( , ) ,      ( , ) ,      0x x y y zu u x y u u x y u    , (1) 

 

where the z axis is perpendicular to the  ,x y -plane. 

For the kinematical description of the elastic body, the following expressions are defined 

for the strain tensor, the rotation vector, and the curvature tensor components 
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In Eq. (3) it is noticed that the normal component of the rotation is fully described by the 

distribution of the tangential displacements over the boundary. Therefore, the rotation vector 

i  in couple-stress elasticity is not independent of the displacement vector iu . 

Further, the expressions of force and moment equilibrium in the absence of body forces 

and body couples take the form 

 

0, 0, 0yx xy yy yzxx xz
xy yx

mm

x y x y x y

  
 

    
       

     
, (5) 

 

where pq  and pqm  are the components of the stress tensor and couple-stress tensor, which are 

both asymmetric.  

Assuming a linear and isotropic material response the strain energy density takes the 

following form  

 

      2 2 2 2 2 2 22 2 2xx yy xx xy yy xz yzW                
 , (6) 

 

where  2 1 2    ,   is the shear modulus,   is the Poisson’s ratio and   is the 

characteristic length introduced in couple-stress elasticity (Mindlin, 1963). 

Then, the constitutive equations in the plane-strain case become 
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and 

   1 12 24 , 4 .xz xz yz yzm m   
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Accordingly, the non-vanishing components of the asymmetric stress tensor pq  in terms 

of the displacement components are given as  
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Combining now Eqs. (5) with (9), we obtain the following systems of coupled partial differential 

equations of the fourth order in terms of the components of the two-dimensional displacement 

field  ,x yu u  
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  (11) 

 

2.2 Antiplane strain 

Consider now a body that occupies a domain in the  ,x y -plane under antiplane strain 

conditions. In this case, the displacement field reduces to 
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0 ,      0 ,      ( , )x y zu u u w w w x y     . (12) 

 

The non-vanishing components of the strain tensor, the rotation vector, and the curvature tensor 

are defined as (Lubarda, 2003) 
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The strain energy density in the case of a linear and isotropic material response takes the 

following form 

 

      2 2 2 2 2 22 2 2 4xz yz xx yy xy yx xy yxW                      , (15) 

 

where   has the same meaning as the shear modulus in the classical theory, and  ,   are the 

couple-stress moduli with dimensions of force. The elastic moduli must satisfy the following 

inequalities so that the strain energy density is positive definite 

 

0   ,      0   ,      1 1       .  (16) 

 

Further, the stress and couple-stress components are written in terms of the displacement field 

as 
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with  1 2
   being the characteristic material length of isotropic couple-stress elasticity. 

We also cite at this point the pertinent tractions that can be prescribed on a surface 

defined by the unit normal  0, 1 n  (Mindlin and Tiersten, 1962) 
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,     n

x yxR m , (19) 

 

where yzt  denotes the total shear stress. These expressions will be useful in the formulation of 

the antiplane crack problem. 

Finally, combining Eqs. (12)-(18), a scalar equilibrium equation is obtained in terms of 

the out-of-plane displacement 

 

2 2 4 0w w     . (20) 

 

3. Dislocation dipoles in couple-stress elasticity 

In this section, the stress fields of plane dislocation dipoles in couple-stress elasticity are derived. 

As shown in Fig. 2, the three types of translational dislocations (climb, glide, and screw) may 

be combined to create pairs of equal and opposite sign dislocations, which leads to three cases 

of horizontal and three types of vertical dislocation dipoles. The product of the dislocation 

Burgers vector and the separation distance dw  of the pair is termed strength or intensity of the 

dipole. The intensity (or strength) of a dipole is usually denoted by ijb , where i denotes the 

direction of the Burgers vector of the two dislocations and j denotes the normal direction to the 
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segment dw  that separates the dislocation pair. Cases (a) and (d) correspond to opening type of 

displacement discontinuity, cases (b) and (e) to tangential displacement discontinuity, and cases 

(c) and (f) to antiplane deformation. 

  

 

Fig. 2: Horizontal and vertical dislocation dipoles. 
 

Dislocation dipoles can be distinguished to infinitesimal and finite based on the 

separation distance dw  (Kroupa, 1965). The stress field of a finite dislocation dipole is derived 

by superposing the corresponding fields of the two discrete dislocations that form the pair. For 

instance, the normal stress component  yyb
yy  of a finite climb dislocation dipole (Fig. 2a) placed 

at the origin of a Cartesian coordinate system is obtained in classical elasticity as (Hills et al., 

1996) 
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  (21) 

 

where  i
yb  are the two discrete climb dislocations that form the dipole. 

In the case of an infinitesimal dislocation dipole, it is required that 0dw   and b    while 

the quantity dw b  is finite, so that Εq. (21) is written as 
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Essentially, the stress field of an infinitesimal dislocation dipole may be derived by differentiating 

the field of the constituent discrete dislocations (in this case climb). From Eq. (22), it is obvious 

that the stress field reduces faster with respect to the distance compared to that of a discrete 

dislocation. The elastic energy of dipoles is significantly lower than that of discrete defects and 

therefore they are met in large quantities. Further details regarding the geometry and the 

nucleation method of dislocation dipoles may be found indicatively in the works of Tetelman 

(1962), Gilman (1964) and Kroupa (1966). 

Following the procedure described above, we evaluate the stress fields of infinitesimal 

dislocation dipoles which will serve as influence functions in the crack problems under 

consideration. The stress and couple-stress fields of a climb dislocation dipole are derived using 

the expressions for a discrete climb dislocation in couple stress elasticity (Baxevanakis et al., 

2017a) as 
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Employing the asymptotic relations of the modified Bessel functions (Eq. (46)), we observe that 

as 0r  , the stresses pq  exhibit a quadratic singularity that arises also in classical elasticity. 

On the other hand, both couple-stress qzm  have a Cauchy type singularity. The stress field 

reduces to the corresponding solution of classical elasticity as 0  (Weertman, 1996). 

The full-field solution for a glide dislocation dipole is obtained using the expressions for 

a discrete glide dislocation in couple stress elasticity (Baxevanakis et al., 2017b) 
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Asymptotic analysis shows that as 0r  , the stresses pq  retain the quadratic singularity 

observed in classical elasticity while the couple-stresses qzm  have a Cauchy type singularity. For 

0 , the classical elasticity solution is recovered. 

Accordingly, the stress and couple-stress expressions of a screw dislocation dipole are 

derived using the relations for a discrete screw dislocation in couple stress elasticity (Baxevanakis 

et al., 2017b) 
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Based on the asymptotic behavior of the modified Bessel functions we conclude that the 

shear stresses exhibit an 4r  singularity, whereas the couple-stresses behave as 3r  at the 

dislocation core. Also, the classical elasticity solution is obtained for 1   , i.e.    . 

 

4. Formulation of the crack problems and influence functions 

In this section we formulate the interaction problems of a finite-length crack with plane and 

antiplane defects. In all cases, we consider a straight crack of finite-length 2a  in an infinite 

elastic microstructured domain characterized by couple-stress elasticity theory. The crack 

interacts with a horizontal climb ( yyb ), glide ( xyb ), or screw ( zyb ) dislocation dipole (as defined 

in Fig. 2) lying at the crack plane ( 0y  ) at a distance d from the crack center, as shown in 

Fig. 3. Plane strain conditions prevail in the first two cases and antiplane strain in the latter 

one while there is no other loading applied in the body. The crack faces are described by the 

outward normal unit vector  0, 1 n  and are assumed to be traction-free. 
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The solution procedure consists of decomposing the main crack problem to two auxiliary 

problems and superposing their solutions. In the first auxiliary problem, an uncracked domain 

subjected to the loading of a horizontal (climb, glide, or screw) dislocation dipole that lies along 

the crack line at a distance d from the crack center is considered. In the second auxiliary problem 

(usually referred to as corrective solution), a geometrically identical body to the initial cracked 

one without the dislocation dipole is studied. In this case, the only loading is applied along the 

crack faces and consists of equal and opposite tractions to those generated in the first auxiliary 

problem. 

 

 

Fig. 3: Interaction of a finite-length plane crack with a horizontal climb, glide, or screw dipole. 
 

4.1 Interaction of a finite-length crack with a climb dislocation dipole 

The boundary conditions along the crack faces for the opening mode problem have the following 

form 

 

   , 0 0 , , 0 0 , 0yx yy yzx x m     ,      for     x a  . (40) 

 

Further, the regularity conditions at infinity are  

 

0 , 0pq qzm         as      r   , (41) 

 

where    , ,p q x y  and  1 22 2r x y   is the distance from the origin. Εq. (41) suggests 

that the only loading induced in the problem is that of the climb dislocation dipole. 
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According to Eqs. (24) and (28), a climb dislocation dipole (either infinitesimal or finite) 

in an infinite isotropic couple-stress medium induces both normal stresses    , 0yyb
yy x  and 

couple-stresses    , 0yyb
yzm x  along the slip plane ( 0y  ). On the other hand, there are no shear 

stresses produced by this defect at the slip plane, so that    , 0 0yyb
yx x  .  

Now, the boundary conditions of the corrective solution along the crack faces take the 

following form 
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b
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augmented with the regularity conditions (41). The same problem in the context of classical 

isotropic elasticity theory is described by the first two conditions of Eq. (42) only. To solve that 

problem, a distribution of infinitesimal horizontal climb dislocation dipoles would be sufficient 

(Hills et al., 1996). However, as discussed in Baxevanakis et al. (2017a), in couple-stress theory 

it is not possible to satisfy simultaneously all three boundary conditions of Eq. (42) by a 

distribution of a single nucleus of strain (either discrete dislocations or dislocation dipoles) only. 

In fact, it is necessary to distribute along the crack faces not only discontinuities in the 

displacement yu  (i.e. infinitesimal climb dislocation dipoles) but also discontinuities in the 

rotation vector. In light of the above considerations, we introduce the infinitesimal ‘constrained’ 

wedge disclination dipole ( zy ) as the necessary rotational defect that needs to be distributed 

along the crack faces so that the boundary conditions of the problem are satisfied. This defect 

consists of two opposite sign constrained wedge disclinations with the distance between them 

approaching zero (details about the derivation of its full-field solution are provided in Appendix 

A). Then, the influence functions of the crack problem are obtained from the superposition of 

the stress and couple-stress fields of the translational and rotational defects described above 

(Εqs. (A2) and (A6), Appendix A). These are expressed as 

 

                   , 0 , 0 , 0 , , 0 , 0 , 0 ,yy zy yy zyb b
yy yy yy yz yz yzx x x m x m x m x        (43) 
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where 
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and 
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  (45) 

 

where  iK x   is the i th order modified Bessel function of the second kind.  

The following points are of notice regarding the characteristics of the stress field described 

in Eqs. (43)-(45): 

 (i) As 0x  , the asymptotic relations below are derived for expressions involving the modified 

Bessel functions 
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  (46) 

 

Based on these relations, it can be deduced that as 0x  , the normal stress yy  (Eq. (43)1) 

exhibits a quadratic and a logarithmic singularity due to the climb dislocation dipole and a 

Cauchy type singularity due to the constrained wedge disclination dipole. On the contrary, the 

couple-stress yzm  (Eq. (43)2) has a quadratic and a logarithmic singularity due to the constrained 

wedge disclination dipole and a Cauchy type singularity due to the climb dislocation dipole.  

(ii) As x   , it may be shown that both 0yy   and 0yzm  . Therefore, the constrained 

wedge disclination dipole does not induce normal stresses at infinity. 

(iii) As 0 , the couple-stress yzm  vanishes. Thus, the constrained wedge disclination dipole 

induces stresses and couple-stresses only for 0 , i.e. when the material microstructure is 
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considered. On the other hand, as 0 , the normal stress yy  reduces to the expression 

    2
2 1yyb

yy y db w x     , which is the influence function for the opening mode problem in 

classical elasticity, when dislocation dipoles are used in the formulation.  

 

4.2 Interaction of a finite-length crack with a glide dislocation dipole 

The boundary conditions that describe the plane shear problem are given in Eq. (40) 

accompanied by the regularity conditions (41). According to the full field solution of a glide 

dislocation dipole (Eqs. (29)-(34)), it is observed that for 0y   this defect induces only shear 

stresses    , 0xyb
yx x  along the crack faces, so that    , 0 0xyb

yy x   and    , 0 0xyb
yzm x  . 

An analogous procedure to the one described in the previous section is followed to obtain 

a solution for this crack problem. We first consider an uncracked medium subjected to the 

loading    , 0xyb
yx x d   of a horizontal glide dislocation dipole that lies along the crack line at 

a distance d from the crack center. The solution to this problem is obtained based on Εqs. (29)-

(34) in the case of an infinitesimal defect or by following the procedure described in Εq. (21) in 

the case of a finite dislocation dipole. Accordingly, the boundary conditions of the second 

auxiliary problem read as 

 

       
 

, 0 0 , , 0 , 0 ,

, 0 0 ,        for    ,

xyb
yy yx yx

yz

x x x d

m x x a

     

 
 (47) 

 

augmented with the regularity conditions (41). The boundary conditions in Eq. (47) are satisfied 

by a distribution of infinitesimal horizontal glide dislocation dipoles along the crack faces, 

contrary to the opening mode problem discussed earlier. It is also noted that Eq. (47)1 and  

(47)3 are automatically satisfied since this strain nucleus does not generate any normal stresses 

or couple-stresses along the crack plane (see Eqs. (30) and (34)). In the context of isotropic 

classical elasticity, the same problem is governed by the first and second conditions of Eq. (47), 

which are also satisfied by a distribution of infinitesimal horizontal glide dislocation dipoles along 
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the crack faces. In that case, the interaction problem is described by a hyper-singular integral 

equation with quadratic singularity.  

 Finally, from Eqs. (30), (32), and (34), we obtain the following relations for 0y    
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 , (48) 

       , 0 0 , , 0 0 .xy xyb b
yy yzx m x    (49) 

 

Eq. (48) is the influence function for the plane shear mode problem in couple-stress elasticity in 

a displacement-based formulation context.  

 

4.3 Interaction of a finite-length crack with a screw dislocation dipole 

The interaction problem of a finite-length crack and a screw dislocation dipole zyb  in couple-

stress elasticity is studied next. Hence, the boundary conditions of this interaction problem are 

given in view of Eq. (19) as 

 

     1
, 0 , 0 , 0 0 , 0

2yz yz x yy yxt x x m x m      ,      for     x a  , (50) 

 

along with the regularity conditions at infinity  

 

0 , 0pz pqm         as      r   , (51) 

 

where    , ,p q x y  and  1 22 2r x y   is the distance from the origin. 

 The full field solution for an infinitesimal horizontal screw dislocation dipole (Eqs. (35)-

(39)) shows that for 0y   this defect generates shear stresses    , 0zyb
yz x  and couple-stresses 

   , 0zyb
yym x  along the crack plane, while it holds that    , 0 0zyb

yxm x  .  
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For the solution of the antiplane crack problem, we follow the decomposition in two 

auxiliary configurations introduced earlier in the plane crack problems: i) the uncracked 

geometrically identical to the initial body subjected to the loading    , 0zyb
yzt x d  of a horizontal 

screw dislocation dipole placed at a distance d from the crack center along the crack plane,  

ii) the corrective solution problem described as 
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2
, 0 0 ,               for ,
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b b b
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b
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t x t x d x d m x d

m x x a

        

 
 (52) 

 
supplemented by the regularity condition (51). These boundary conditions are satisfied by a 

distribution of infinitesimal horizontal screw dislocation dipoles along the crack faces. From Eq. 

(38), it is inferred that the couple stress  zyb
yxm  vanishes at 0y  , so that Eq. (52)2 is 

automatically satisfied. Accordingly, the same problem is described in classical elasticity by Eq. 

(52)1 which is satisfied by the distribution of infinitesimal horizontal screw dislocation dipoles 

along the crack faces. In that context, the interaction problem is described by a hyper-singular 

integral equation with quadratic singularity.  

 Finally, from Εqs. (36) and (37), the total shear stress for 0y   becomes 
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  (53) 

 

Eq. (53) is the influence function for the antiplane shear mode problem in couple-stress elasticity 

in a displacement-based formulation framework. The previous expression behaves as  4O x  as 

0x   while for 1    it reduces to the corresponding influence function of classical elasticity 

theory. 
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5. Integral equation approach 

5.1 Interaction of a finite-length crack with a climb dislocation dipole 

The corrective stresses (Eq. (42)) are developed by a continuous distribution of climb dislocation 

dipoles and constrained wedge disclination dipoles along the crack faces, as discussed in Section 

4.1. The elastic field generated by this distribution is derived by integrating the influence 

functions of the problem (Εqs. (43)-(45)) along the crack faces. It is reminded that the boundary 

condition described in Eq. (42)2 is automatically satisfied since none of the distributed defects 

induces shear stresses along the crack plane 0y  , as observed in Εq. (A3). On the other hand, 

the simultaneous satisfaction of the first and third conditions of Eq. (42) leads to a system of 

coupled integral equations. Using asymptotic analysis, the singular parts of the kernels are 

separated from the regular and we eventually obtain the following system of hyper-singular 

integral equations  
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  (55) 

 

where the symbol _F.P.  denotes a Hadamard finite-part integral (see e.g. Monegato (1994)). 

The densities of climb dislocation dipoles and constrained wedge disclination dipoles,  IB t  and 

 W t , are defined as 
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         . (56) 

 

In these expressions,  yu x  is the relative opening displacement and  x  the relative 

rotation between the upper and lower crack faces respectively. Hence, the climb dislocation 

dipole density corresponds to the relative displacement and the constrained wedge disclination 

dipole density is equal to the relative rotation at any point of the crack faces. Further, the 

kernels  qR x t , for 1, 2, 3q  , are defined as 
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  (57) 

 

Employing the asymptotic relations of the modified Bessel functions (Εq. (46)), it may be shown 

that the kernels in Εq. (57) are regular as x t  and 0 . 

 Next, the unknown defect densities,  IB t  and  W t , should be expressed in such a 

way to account for the asymptotic behavior of the displacement and the rotation at the crack-

tips. In the framework of couple-stress elasticity, both the displacement yu  and the rotation   

behave as 1 2
r  near the crack-tips, where r is the radial distance from the crack-tip (Huang et 

al., 1997). Therefore, the densities are expressed as the product of a regular and bounded function 

with a singular function as follows  
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             , (58) 
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where  nU t  are the Chebyshev polynomials of the second kind,  ,n nb c  are unknown 

parameters and t t a . It is noted that in the formulation of crack problems based on 

infinitesimal dislocation dipoles (displacement-based), no extra closure conditions are required 

to ensure that the normal displacement and the rotation are single-valued, which is the case in 

the formulation based on discrete dislocations (Baxevanakis et al., 2017a, b). These conditions 

ensure that     0y yu a u a      and     0a a      , i.e. that there is no 

remaining net dislocation along the crack length. In the current formulation, the two dislocations 

that form the dipole cancel each other out (self-annihilation) and therefore, closure conditions 

are redundant. Returning to the solution of the system of singular equations (54) and (55), after 

introducing the dimensionless quantities x x a , d d a  and performing an appropriate 

normalization in the interval 1, 1    , we obtain 
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where the functions    s
nQ x  are defined as 
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   , 1, 2, 3s  . (61) 

 

The integrals in Εq. (61) are regular and hence are evaluated numerically using the 

standard Gauss-Chebyshev quadrature whereas the hyper-singular, singular, and weakly singular 

(logarithmic) integrals in Eqs. (59) and (60) are calculated in closed form using Eqs. (Β2),  

(Β1), and (Β5) in Appendix B. In view of this information, the system is written in discretized 

form as 
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  (63) 

 

The system of Eqs. (62) and (63) is solved numerically by truncating the series at n N  

and using an appropriate collocation technique, where the collocation points are selected as the 

roots of the Chebyshev polynomial  1NT x  , viz.    cos 2 1 2 1kx k N       with 

0,1,...,k N . Eqs. (62) and (63) form an algebraic system of 2 2N   equations with 2 2N   

unknowns. It should be noted that the solution convergence is dependent on the ratio a . 

Finally, after calculating the constants nb  and nc   0,...,n N , the defect densities may be 

evaluated using Eq. (58). 
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5.2 Interaction of a finite-length crack with a glide dislocation dipole 

Accordingly, in order to generate the corrective stresses (Eq. (47)) for the plane shear problem, 

it is necessary to distribute infinitesimal glide dislocation dipoles along the crack faces. The 

elastic field induced by the continuous distribution of these defects is derived by integrating the 

influence function of the problem (Εq. (48)) along the crack faces. Using asymptotic analysis to 

separate the singular from the regular part of the kernel, we derive the following expression 
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  (64) 

 

where      II xy xB t db t dt u t    is the glide dislocation dipole density at a point t 

 t a  and    , 0 , 0x x xu u t u t     is the relative tangential displacement between the 

upper and lower crack faces. The regular kernel  4R x t  is given as 
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 Further, since the displacement xu  behaves as 1 2
r  near the crack-tips in the context of 

couple-stress elasticity (Huang et al., 1997), the unknown density of glide dislocation dipoles, 

 IIB t , may be written as  
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       . (66) 

 

Then, the hyper-singular and weakly singular (logarithmic) integrals in Εq. (64) are 

evaluated in closed form employing Eqs. (Β2) and (Β5) in Appendix B while the regular integral 

is calculated numerically using the standard Gauss-Chebyshev quadrature. Based on the above 
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and after appropriate normalization in the interval 1, 1    , the integral equation (64) is 

expressed in the following discretized form 
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where the function    4
nQ x  is defined as 
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Eq. (67) forms an algebraic system of 1N   equations with 1N   unknowns that is 

solved numerically using the same collocation technique as in the opening mode problem (Section 

5.1).  

 

5.3 Interaction of a finite-length crack with a screw dislocation dipole 

As in the previous crack problems, the corrective stresses (Εq. (52)) are generated by a 

continuous distribution of infinitesimal screw dislocation dipoles along the crack faces. The 

elastic field that is produced in this case is derived by integrating the influence function (Εq. 

(53)) along the crack faces. In view of the above, we obtain a hyper-singular integral equation 

with fourth order, quadratic, and logarithmic singularities that describes the crack problem. 

With the use of asymptotic analysis, we separate the singular from the regular part of the kernel 

and obtain the following governing equation of the crack problem 
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where      III zyB t db t dt w t    is the screw dislocation dipole density at a point t 

 t a  and    , 0 , 0w w t w t     is the relative out-of-plane displacement between the 

upper and lower crack faces. The constants ic , for 1, 2, 3i  , are given as 
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and the kernel  5R x t  as 
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  (71) 

 

Employing the asymptotic relations of the modified Bessel functions, it may be shown that the 

kernel  5R x t  is regular as x t  in the closed interval  ,a x t a   . Also, it is noted 

that for 1   , Εq. (69) reduces to the corresponding expression of classical elasticity. 

Next, considering that the out-of-plane displacement w behaves as 3 2
r  near the crack-

tip region (Zhang et al., 1998), where r is the radial distance from the crack-tip, the unknown 

screw dislocation dipole density  IIIB t  may be written as 
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       . (72) 

 

As in the plane problems, it is reminded that no closure condition is required to ensure uniqueness 

of the values of the antiplane displacement for a closed loop around the crack.  

After appropriate normalization over the interval 1, 1    , the integral equation (69) 

takes the following form for 1x   
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with x x a  and d d a . The function    5
nQ x  is defined as 
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The hyper-singular and weakly singular integrals in Εq. (73) are evaluated in closed form 

in Appendix B (Εq. (Β4), (Β3) and (Β6)) whereas the regular integral in Εq. (74) is calculated 

based on the standard Gauss-Chebyshev quadrature. In light of the above, the singular integral 

equation admits the following discretized form 
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Eq. (75) is then solved numerically using the same collocation method as in previous 

sections. Finally, after obtaining a solution for the parameters nb , we calculate the screw 

dislocation dipole density using Εq. (72). 

 

6. Energy release rate and Peach-Koehler force evaluation 

In this section, we derive the expressions for the energy release rate (J-integral) in both crack-

tips and the Peach-Koehler force exerted on the climb dislocation dipole and study their 

dependence on the material and geometrical parameters of the problem. Atkinson and 

Leppington (1974) were the first to derive the energy release rate in the context of couple-stress 

elasticity and prove its path independence (Atkinson and Leppington, 1977).  

 In order to evaluate the J-integral, we use a rectangular shaped integration path that 

surrounds the (left or right) crack-tip and has vanishing height along the y-direction, while 

0    (Fig. 4). The benefit of this approach is that only the asymptotic near tip stress and 

displacement fields suffice for the evaluation of the J-integral. This computationally convenient 

concept was introduced by Freund (1972) to calculate the energy flux during dynamic crack 
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propagation and has been later adopted to compute energy quantities in the vicinity of crack-

tips (see e.g. Baxevanakis et al., 2017a; Burridge, 1976; Georgiadis, 2003; Gourgiotis and 

Piccolroaz, 2014). 

 

 

Fig. 4: Rectangular shaped contour for the calculation of J-integral around the right crack-tip. 
 

6.1 Interaction of a finite-length crack with a climb dislocation dipole 

Taking into account that in the opening mode problem the shear stress yx  vanishes for 0y   

and the crack faces are defined by  0, 1 n , the J-integral admits the following form (see 

also Baxevanakis et al. (2017a)) 
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The dominant near crack-tip behavior for the normal stress yy  and the couple-stress 

yzm  is attributed to the hyper-singular integrals of quadratic singularity in Eqs. (54) and (55), 

respectively. The asymptotic behavior of these quantities near the right  x a  and left 

 x a  crack-tips is given as (see Eq. (Β8) in Appendix B) 
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Accordingly, based on the definitions of the defect densities  IB t  and  W t  (Εq. (56)), 

we derive the following relations for the gradients of the displacement and rotation 
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Based on Eqs. (77)-(80), the J-integral at the right crack-tip is written under the form 
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where  
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and 1x x  . Note that for any real number  , excluding the values 1, 2, 3, ...     , 

the distributions of the bisection type x
  and x

  in Eq. (81) are defined as (Gelʹfand and 

Shilov, 1964) 
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The integral in Εq. (81) is evaluated using Fisher’s theorem for products of distributions of the 

bisection type (Fisher, 1971). Specifically, we use the relation

       1 1
2 sinx x x

 
 

  
 

     , where 1, 2, 3, ...      and  x  is the Dirac 

delta distribution, together with the fundamental property of the Dirac delta distribution, i.e.,

  1x dx






 .  

 A similar procedure is followed to derive the J-integral value at the left crack-tip, which 

is given by the expression  
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where 
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In the framework of classical elasticity, the J-integral value may be derived in closed 

form using a similar integration path to the one employed earlier and the elastic fields of the 

problem. Based on this procedure, we derive the expressions for the J-integral at both crack-tips 

as 
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To the best of our knowledge, these expressions were not available in the literature and are 

provided herein for the first time. 

 Moreover, we evaluate the configurational Peach-Koehler force that is exerted on the 

climb dislocation dipole. To this aim, considering a contour that surrounds both the crack and 

the infinitesimal climb dislocation dipole (Fig. 5) and using the equilibrium relation between 

Peach-Koehler force and J-integral around a discrete dislocation (Eshelby, 1951), we may write 

the expression 

 

 1 2dd sd sd
x x x rF F F J J    



 ,  (87) 

 

where dd
xF  is the Peach-Koehler force exerted on the dislocation dipole along the x-direction, 

1sd
xF  and 2sd

xF  (or equivalently 1dJ  and 2dJ ) are the Peach-Koehler forces exerted on the closer 

and farther to the crack constituent dislocations of the dislocation dipole, while rJ  and J


 are 

the J-integral values at the right and left crack-tip. In Section 7.1, the Peach-Koehler force 

exerted on the dipole is calculated based on its definition and verified using Eq. (87). Finally, 

the corresponding Peach-Koehler force for this problem in classical elasticity is derived in the 

form 
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Fig. 5: Contour for the calculation of the Peach-Koehler force around the climb dislocation dipole. 
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6.2 Interaction of a finite-length crack with a glide dislocation dipole 

In the plane shear case, considering that the normal stress yy  and the couple-stress yzm  vanish 

for 0y  , the J-integral is given by the following form (see also Baxevanakis et al. (2017b)) 
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The dominant near crack-tip behavior for the shear stress yx  is attributed to the hyper-

singular integral of quadratic singularity in Εq. (64). The asymptotic behavior of this stress near 

the right  x a  and left  x a  crack-tips is given as (see Eq. (Β8) in Appendix B) 
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Accordingly, based on the definition of the glide dislocation dipole density  IIB t , the 

following asymptotic relations are obtained for the gradient of the tangential displacement 
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Using the same rectangular shaped contour as in the previous section and employing the 

asymptotic results of Eqs. (90) and (91) in conjunction with Fisher’s theorem for products of 

singular distributions, we eventually derive the following forms for the J-integral in the right 

and left crack-tips 
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where 
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Finally, the J-integral expressions in classical elasticity are analogous to Eq. (86). 

 

6.3 Interaction of a finite-length crack with a screw dislocation dipole 

In the antiplane crack problem, the couple-stress yxm  vanishes for 0y   so that the J-integral 

takes the following form 
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The dominant near crack-tip for the shear stress yzt  is attributed to the hyper-singular 

of the fourth order in Εq. (69). The asymptotic behavior of this stress component near the right 

 x a  and left  x a  crack-tips is given as follows (see Eq. (Β10) in Appendix B) 
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Further, based on the definition of the screw dislocation dipole density  IIIB t , the 

following asymptotic relations are deduced for the gradient of the antiplane displacement 
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Based on the previous results, we derive the expression for the J-integral in both crack-tips as  
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where 
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It is noted that the distributions of the bisection type 3/2x
  and 1/2x  in Eq. (97) are defined in 

Eq. (83). In addition, for the evaluation of the integral in Eq. (97), we employ Fisher’s theorem 

so that the product of distributions is computed as      3 2 1 2 12x x x
 

    . 

Finally, the J-integral value in classical elasticity may be calculated in closed form 

utilizing a similar contour as the one used earlier and the expressions of the elastic fields of the 

problem (Lin et al., 1993). Based on this procedure, we obtain the following forms for the  

J-integral at the right and left crack-tips 
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7. Results and discussion 

In this section, we present and discuss characteristic results obtained for the three interaction 

problems. It is noted that an exhaustive parametric study was not conducted in this work, 

however, comments for limit cases are provided where appropriate. The objective of this section 
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is to highlight the deviations from the classical elasticity theory when couple-stresses are 

considered. 

 

7.1 Interaction of a finite-length crack with a climb dislocation dipole 

In Fig. 6a, the effect of the ratio a   on the normal crack face displacement (Εq. (56)) is explored 

for a climb dislocation dipole lying at a distance 2.5d a   in a couple-stress material with 

Poisson’s ratio 0.3  . We observe that the displacements become smaller in magnitude as the 

characteristic length becomes comparable to the crack length, i.e. the material exhibits a stiffer 

behavior. Due to the nature of the loading, the obtained displacement profile is always 

asymmetric, which becomes more evident when the defect is placed close to the crack-tip. It is 

also noted the classical elasticity solution (dashed line) is an upper bound for couple-stress 

elasticity. 

 

    
Fig. 6: a) Normalized upper-half crack displacement and b) rotation profiles for various ratios a   due 

to the interaction with a climb dislocation dipole lying at 2.5d a   in a material with 0.3  . 

 

Accordingly, using Εq. (56), we evaluate the upper-half crack rotation for the same 

configuration. In Fig. 6b the variation of the rotation with respect to the ratio a   is presented. 

It should be emphasized that the results in couple-stress theory are bounded and tend to zero in 

both crack-tips. On the contrary, the classical elasticity solution (dashed line) exhibits a square-

a b 
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root singularity at the crack-tips. We also note that as 0 , the rotation in couple-stress 

elasticity becomes pointwise convergent to the classical elasticity unbounded solution. Both the 

displacement and the rotation of the crack faces are significantly affected by the distance of the 

dipole from the crack-tip. In general, the produced fields are smaller in magnitude compared to 

the interaction of a finite-length crack with a discrete climb dislocation (Baxevanakis et al., 

2017a). This response is expected since the stress field of a dislocation dipole diminishes more 

rapidly over the distance than that of a discrete dislocation. 

Moreover, we study the behavior of the normal stress yy  and the couple-stressς yzm  

ahead of the crack-tip. From the superposition of the two auxiliary problems, we derive the 

expressions (see Eqs. (54) and (55)) 
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For x a , the integrals in Εqs. (100) and (101) are not singular and are evaluated in closed 

form in Appendix B (Εqs. (Β8), (Β7) and (Β11)). Also, in view of Eqs. (77) and (78) it is deduced 

that both the normal stress yy  and the couple-stress yzm  exhibit a square-root singularity 

ahead of the crack-tips.  

The distribution of the normal stress yy  (Eq. (100)) due to the interaction with a climb 

dislocation dipole placed at a distance 2.5d a   is plotted in Fig 7a, in a medium with 
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10a   and Poisson’s ratio 0.3  . In the x-axis, the distance is measured from the right 

crack-tip where a new variable, x x a  , is introduced for convenience. Comparing this 

response with the classical elasticity solution, we observe that the couple-stress effects are visible 

within a zone of 10  around the defect center and 3  near the crack-tip. Outside this range, 

the stress distribution approaches the classical elasticity response. The width of these zone varies 

with the distance between the defect and the crack-tip. In general, the normal stress distribution 

depends on the ratio a   and the Poisson’s ratio (see Εq. (100)), however, the response is always 

qualitatively similar to the one reported in this plot. It is also mentioned that the square-root 

singularity induced by the dislocation dipole is retained in couple-stress theory. 

The distribution of the couple-stress yzm  is presented in Fig7b. In this example, the couple-

stress effects are evident in a zone of length 15  around the dipole center and 2  ahead of the 

crack-tip. Again, the length of these zones will extend if the dislocation dipole is placed farther 

from the crack-tip. It is also noted that for 15x   (dipole center), the couple-stress field 

exhibits a Cauchy type singularity, as described in Eqs. (44)-(46). 

 

    
Fig. 7: Variation of (a) the normal stress yy  and (b) the couple-stress yzm  ahead of the right crack-

tip due to the interaction with a climb dislocation dipole lying at 2.5d a   in a medium with 

10a   and Poisson’s ratio 0.3  . 

 

Moreover, we study the variation of the stress intensity factor (SIF) in couple-stress 

theory at both crack-tips. The SIF is defined at the right crack-tip as 

a b 
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   1 2
lim 2 , 0I yy

x a
K x a x 


    , where the asymptotic behavior of the normal stress 

 , 0yy x  is given in Εq. (77)1. The definition at the left crack-tip is similar. At this point, we 

compare the convergence of the displacement-based formulation of the opening mode crack 

problem to that of the slope formulation (Baxevanakis et al., 2017a). To achieve this, we revisit 

the interaction problem of a finite-length crack with a discrete climb dislocation and update the 

left hand side of the system of integral equations (54) and (55) to accommodate that loading 

(see Appendix A in Baxevanakis et al. (2017a)). The investigation of solution convergence with 

respect to the ratio a  based on the current approach is summarized in Table 1. Comparing 

these results to those obtained by the slope based method (Table 1 in Baxevanakis et al. 

(2017a)), we deduce that less terms are required in the current formulation for a given level of 

accuracy. Also, the relative error in the results derived by coarse grids (i.e. 10N  ) is smaller 

than in the discrete dislocation approach. 

 

Table 1: Stress intensity factors ratio in the right crack-tip .
, ,

clas
I r I rK K  due to the interaction with a 

discrete climb dislocation (Baxevanakis et al., 2017a) lying at a distance 2.0d a   in a material with 

Poisson’s ratio 0  . 

N  1.0a   0.8a   0.5a   0.2a   0.1a   0.05a   0.01a   0.005a   

10 2.61055 2.47282 2.11816 1.52565 1.35923 1.31378 1.29180 1.35035 
20 2.61055 2.47282 2.11816 1.52565 1.35930 1.31382 1.29898 1.28930 
30     1.35930 1.31382 1.29933 1.29880 
40       1.29945 1.29894 
50       1.29945 1.29924 
60        1.29924 

 

Returning to the interaction with a climb dislocation dipole, in Fig. 8 the variation of 

the ratio .clas
I IK K  in both crack-tips with respect to the ratio a  and the Poisson’s ratio ν is 

plotted, for a defect placed at a distance 2.5d a  . We notice that the response is highly 

different in the two crack-tips due to the asymmetric nature of the applied loading. In all cases, 

the stress intensity factor in couple-stress theory is significantly higher than the classical 

elasticity solution (stress aggravation effect). The right crack-tip curves (continuous lines) 

monotonically increase in the range 0 1a   and then decrease and approach asymptotically 
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the value  3 2  as a   . On the contrary, in the left crack-tip response (dashed lines) 

there is an initial decreasing branch and then a monotonically increasing behavior until the 

asymptotic value  3 2  as a   . Further, for 0a  , the SIFs ratio exhibits a finite 

jump discontinuity (i.e. . 1clas
I IK K  ), which is attributed to the boundary layer effects that 

arise in couple-stress elasticity in singular stress-concentration problems (Sternberg and Muki, 

1967). It is also noted that the general trend of the SIFs ratio response is comparable with the 

single climb dislocation interaction problem (Baxevanakis et al., 2017a). 

 

 
Fig. 8: Variation of the ratio of stress intensity factors in couple-stress theory and in classical elasticity 

with a  for a climb dislocation dipole lying at 2.5d a  . 

 

Next, we evaluate numerically the energy release rate, based on Εqs. (81) and (84). In 

Fig. 9 the dependence of the ratio .clasJ J  on the microstructural ratio a  and the Poisson’s 

ratio ν is depicted, for a climb dislocation dipole lying at a distance 2.5d a  . We note that 

as the ratio 0a  , the J-integral in couple-stress theory tends to the corresponding results 

of classical elasticity. The response shows a similar non-monotonic trend in both crack-tips: as 

a  increases, the ratio initially decreases  .clasJ J  until a minimum value is reached for 

0.1 0.15a   (this range varies depending on the Poisson’s ratio and the defect distance 

d a ) and afterwards a monotonically increasing behavior is observed  .clasJ J . Eventually, 
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the ratio .clasJ J  tends asymptotically to the value  3 2  as a   . Hence, for small 

values of a , the crack driving force is lower than the corresponding classical elasticity solution 

revealing a strengthening effect while for higher values of the microstructural ratio a  a 

weakening effect is noticed since . 1clasJ J  . A similar ‘alternating’ behavior was presented in 

the interaction with discrete plane defects (Baxevanakis et al., 2017a, b). 

 

 
Fig. 9: Variation of the ratio of J-integrals in couple-stress theory and in classical elasticity with a  

for a climb dislocation dipole lying at 2.5d a  . 

 

 

Fig. 10: Variation of the ratio , .dd dd clas
x xF F  with respect to a  for a climb dislocation dipole lying at 

2.5d a  . 
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Accordingly, considering the J-integral response, we expect the configurational force 

exerted on the climb dislocation dipole to exhibit an analogous behavior. In Fig. 10, the variation 

of the ratio , .dd dd clas
x xF F  is given with respect to the ratio a  and the Poisson’s ratio  , for a 

climb dipole at a distance 2.5d a  . In accordance to the previous results, the Peach-Kohler 

force tends to its classical elasticity value for 0a  . Then, as a  increases, the ratio 

, .dd dd clas
x xF F  decreases until a finite minimum value for 0.1a   and then increases 

monotonically. For 1a  , the ratio decreases until the asymptotic value  3 2  as  

a   . Overall, the dislocation dipole driving force is increased in couple-stress elasticity for 

a large range of values of the ratio a . 

 

7.2 Interaction of a finite-length crack with a glide dislocation dipole 

We proceed with the presentation of characteristic results for the interaction of a finite-length 

crack with a glide dislocation dipole. In Fig. 11 the dependence of the tangential crack face 

displacement on the ratio a   is displayed for a glide dislocation dipole placed at a distance 

2.5d a   in a couple-stress material with Poisson’s ratio 0.3  . In this interaction problem, 

the displacement profile for a given value of a   is reduced more with respect to its classical 

elasticity counterpart compared to interaction problems studied earlier (see Fig. 6a and 

Baxevanakis et al. (2017a, 2017b)). For instance, the maximum displacement for 20a   is 

reduced by 6% compared to the corresponding maximum in classical elasticity while for 

10a   and 5a   the maximum values are reduced by 15% and 34% respectively. In the 

interaction with a discrete glide dislocation (Baxevanakis et al., 2017b), the corresponding 

reduction percentages are 5%, 10% and 24% for the same three cases of a   considered here.  

Next, we examine the behavior of the shear stress yx  ahead of the crack-tip. 

Superposition of the two auxiliary problems (see Eq. (64)) yields the expression 
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In light of Eq. (90) it is inferred that the shear stress yx  exhibits a square-root singularity at 

both crack-tips as in the classical elasticity case. 

 

 
Fig. 11: Normalized upper-half crack tangential displacement profile for various ratios a   due to the 

interaction with a glide dislocation dipole lying at 2.5d a   in a material with 0.3  . 

 

 Further, the expression for the couple-stress xzm  is derived by integrating Εq. (33) along 

the crack faces  , 0x a y   and employing results from asymptotic analysis as 
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where the regular kernel  6R x t  is given as 
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Using asymptotic analysis as x a , it can be shown that the couple-stress xzm  is bounded 

at the crack-tip. 

 

    
Fig. 12: Variation of a) the shear stress yx  and b) the couple-stress xzm  ahead of the right crack-tip 

due to the interaction with a glide dislocation dipole lying at 2.5d a   in a medium with 10a   

and Poisson’s ratio 0.3  . 
 

In Fig. 12a we present the distribution of the shear stress yx  for a glide dislocation 

dipole lying at a distance 2.5d a   in a couple-stress material with 10a   and Poisson’s 

ratio 0.3  . In this case, it is noted that the couple-stress effects are significant within a zone 

of 12  around the defect center whereas near the crack-tip the couple-stress result practically 

coincides with the classical elasticity solution. For different positions of the dislocation dipole, a 

deviation from the classical elasticity solution near the crack-tip becomes evident. Additionally, 

as x d , the field exhibits a quadratic singularity due to the dislocation dipole, as in classical 

theory. Further, the distribution of the couple-stress xzm  is plotted in Fig 12b. The field has a 

bounded negative value ahead of the crack-tip as discussed earlier and vanishes rapidly to zero 

as x d . For certain locations of the defect, positive values of the couple-stress xzm  are 

a b 
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reported. Finally, around the dislocation dipole  x d , the field exhibits a Cauchy type 

singularity, as Eq. (33) suggests.  

 

 
Fig. 13: Variation of the ratio of stress intensity factors in couple-stress theory and in classical 

elasticity versus a  for a glide dislocation dipole lying at 2.5d a  . 

 

We now examine the deviation of the stress intensity factor in couple-stress theory from 

the classical elasticity prediction. For this crack problem, the SIF is defined at the right crack-

tip as    1 2
lim 2 , 0II yx

x a
K x a x 


    , where the shear stress  , 0yx x  is provided in Εq. 

(102). In Fig. 13, the variation of the ratio .clas
II IIK K  in both crack-tips with respect to the 

ratio a  and the Poisson’s ratio ν is shown, for a glide dislocation dipole placed at a distance 

2.5d a  . In this example, there is a range where the SIF in couple-stress theory is smaller 

than the classical theory solution. More specifically, as a  increases, all curves initially drop 

until a finite minimum value in the range 0.3 0.35a   for the right crack-tip and 

0.35 0.45a   for the left crack-tip and then monotonically increase up to the asymptotic 

value  3 2  as a   . The severe boundary layer effects of couple-stress theory are 

manifested in this graph since for 0a  , the ratio . 1clas
II IIK K  . In general, for different 

locations of the defect, it may hold that .clas
II IIK K . 
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Based on Εq. (92), we evaluate numerically the energy release rate (J-integral). In Fig. 

14, the variation of the ratio .clasJ J  in both crack-tips is given for various values of the ratio 

a  and the Poisson’s ratio  , for a glide dislocation dipole lying at a distance 2.5d a  . It is 

observed that as 0a  , the J-integral in couple-stress theory converges to the classical 

elasticity solution since the ratio .clasJ J  tends to unity. The response reported for the J-integral 

ratio resembles that of the SIFs ratio behavior. Specifically, all curves have an initial decreasing 

branch until a finite minimum value is reached, which depends on the defect distance d a  and 

the Poisson’s ratio   and is different for each crack-tip. Then, the ratio .clasJ J  shows an 

increasing behavior and reaches the asymptotic value  3 2  as a   . Overall, this result 

is quantitatively similar to the opening mode problem (Fig. 9) and to the interaction problem 

with a discrete glide dislocation (Baxevanakis et al., 2017b). 

 

 
Fig. 14: Variation of the ratio of J-integrals in couple-stress theory and in classical elasticity with 

respect to the ratio a  for a glide dislocation dipole lying at 2.5d a  . 

 

7.3 Interaction of a finite-length crack with a screw dislocation dipole 

In this paragraph, we present and discuss the results of the antiplane problem. The effect 

of the ratio a 
 on the antiplane displacement w is shown in Fig. 15, for a screw dislocation 

dipole placed at a distance 2.5d a   in a couple-stress material with 0  . Looking at the 
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magnification of the profile at the right crack-tip (see figure inset), we deduce that the crack 

faces close in a smoother way  3 2
x  than the classical elasticity prediction, as is supported by 

Eq. (96). As in the plane problems discussed earlier, we note that the material exhibits a more 

stiff behavior as the crack length becomes comparable to the characteristic length  . Indeed, 

the classical elasticity solution is still an upper bound for couple-stress elasticity. Also, the 

produced displacements are smaller compared to the interaction problem with a discrete screw 

dislocation (Baxevanakis et al., 2017b), which is expected since dislocation dipoles produce 

weaker stress fields than discrete dislocations.  

 

 
Fig. 15: Normalized upper-half crack antiplane displacement profile for various ratios a   due to the 

interaction with a screw dislocation dipole lying at 2.5d a   in a material with 0  . 

 

Next, we evaluate the total shear stress yzt  based on Eq. (69) as  
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where for x a  the integrals are now regular and are evaluated in closed form in Appendix B 

(Eqs. (Β10), (Β9), and (Β12)). Further, it is reminded that the total stress behaves as 3 2
x
  

near the crack-tips (Eq. (95)). 

In Fig. 16, the distribution of the total shear stress yzt  is given due to the interaction 

with a screw dislocation dipole lying at 2.5d a  , in a medium with 500a   and three 

values of the parameter  . The obtained behavior in couple-stress theory differs significantly 

from the classical elasticity result (dashed line). The total shear stress yzt  exhibits a cohesive-

traction character along the prospective fracture zone since it has negative values in a small 

region  0.5x    ahead of both crack-tips. Further, for 2x   , the distribution exhibits a 

bounded maximum value while for 2x    it tends to the classical elasticity solution. It is also 

worth mentioning that as 1   , the width of the cohesive-traction zone is reduced and the 

maximum value of the total shear stress increases. 

 

 
Fig. 16: Variation of the total shear stress yzt  ahead of the right crack-tip due to the interaction with a 

screw dislocation dipole lying at 2.5d a   in a medium with 500a   for different values of  . 

 

Then, we evaluate numerically the J-integral at both crack-tips according to Eq. (97). In 

Fig. 17, the variation of the ratio .clasJ J  is plotted with respect to the ratio a  and the 

parameter  , for a screw dislocation dipole lying at a distance 2.5d a  . As in the plane strain 

cases, the ratio .clasJ J  tends to unity for 0a 
, that is, the J-integral result in couple-stress 
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theory reduces to the classical elasticity solution. On the other hand, we observe that in the 

antiplane case, the ratio . 1clasJ J   as a  increases. Therefore, the energy release rate 

decreases when the material microstructure is considered (strengthening effect). This response is 

independent of the position of the defect. Also, contrary to the plane strain cases, the ratio is 

always higher at the left crack-tip. Another interesting observation is that the ratio .clasJ J  

tends to zero for 0   and 0.60a 
, which is attributed to the nature of the screw 

dislocation dipole loading. 

 

 
Fig. 17: Variation of the ratio of J-integrals in couple-stress theory and in classical elasticity with a  

for a screw dislocation dipole lying at 2.5d a  . 

 

8. Concluding remarks 

In the present study, interaction problems between finite-length cracks and dislocation dipoles 

were investigated in the context of couple-stress elasticity. The formulation of such problems 

was achieved by generalizing the distributed dislocation technique and using as nuclei of strain 

infinitesimal dislocation dipoles. The stress fields of these area defects were derived for the first 

time in the framework of couple-stress elasticity theory. The displacement-based formulation 

presented in this work proved to be computationally efficient as less terms are required for a 

given level of accuracy compared to the classical distributed dislocation technique. In addition, 

the crack displacement profiles are readily obtained since, in this approach, the distributed defect 

density coincides with the crack displacement. Using this approach, both the plane strain and 
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the antiplane crack problems were described by hyper-singular integral equations, which were 

solved numerically. It is also noted that in order to satisfy the boundary conditions in the opening 

mode problem, a new rotational defect was introduced, termed as infinitesimal ‘constrained’ 

wedge disclination dipole. 

Several interesting conclusions can be drawn from this investigation. In all problems, the 

cracked solid was found to behave in a more rigid way (i.e. the crack face displacements were 

smaller in magnitude) that the classical elasticity prediction. The generated stress and couple-

stress fields are reduced compared to the interaction problems with discrete dislocations, since 

the loading induced by dislocation dipoles vanishes more rapidly with distance. It was further 

observed that these fields are altered by couple-stress effects in a small zone ahead of the crack-

tip and around the dislocation dipole while they remain unbounded around the defect tips. In 

the plane shear problem, the stress intensity factor was smaller than its counterpart in classical 

elasticity for a range of values of the microstructural ratio a . In addition, it was shown that 

the energy release rate is significantly influenced by the defect distance and the magnitude of 

the characteristic material length with respect to the crack length. Indeed, in the plane strain 

problems, the energy release rate reveals either strengthening or weakening effects depending on 

the material parameters and the geometry whereas in the antiplane case, the energy release rate 

is always decreasing, revealing, thus, a strengthening effect when couple-stresses are considered. 

The presented crack formulation and obtained results are expected to form the basis for more 

complex interaction problems of multiple cracks and randomly oriented defects in couple-stress 

theory. 
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Appendix A 

Following the procedure described in Εqs. (21) and (22), we derive the full-field solution for the 

stresses and couple-stresses that are generated from the superposition of an infinitesimal climb 

dislocation dipole (see Eqs. (23)-(28)) and an infinitesimal constrained wedge disclination dipole 

(Baxevanakis et al., 2017a) as follows 
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where 
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For 0y  , the integrals 11I  in Eq. (A6) are evaluated analytically as 
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Therefore, the influence functions for the opening mode problem in the displacement-based 

formulation are obtained in closed form and provided in Εqs. (43)-(45). Further, it is noted that 

once the two defect densities (Eq. (56)) are evaluated, the stresses and couple-stresses at any 

point of the cracked body can be obtained using Eqs. (A1)-(A6). 

 

Appendix B 

In this Appendix, we provide the closed-form expressions for the singular and hyper-singular 

integrals involving Chebyshev polynomials that were presented in Section 5. The integrals are 

calculated in the finite-part sense for 1x   (see also Chan et al., 2003). It is mentioned that 

the integral in Eqs. (Β6) and (Β12) is derived herein for the first time. 

 

  
 

1 21 2

1

1

1n
n

U t t
dt T x

x t
 












 ,    0n  , (Β1) 

  
 

   

1 1 22

2

1

1
F.P. 1

n
n

U t t
dt n U x

x t





  









 ,    0n  , (Β2) 



54 
 

  
 

   
   

           

1 3 22

2

1

0 2

1 3

2 2

1
F.P.

3
, 0,

4
, 1,

1 2 1 3 , 2,
4

n

n n n

U t t
dt

x t

U x U x n

U x U x n

n U x n U x n U x n








 





                      







 (Β3) 

  
 

 
   
   

 
   

   
   
   
   

1 3 22

4

1

1

0 2

1 3

3 2
422

3 2
2

3 2

3 2
2

3
4

1
F.P.

, 0,

4 , 1,

3 10 , 2,

4 2 5 , 3,

6 11 6
96 1

4 18 44 30

6 18 54 42 4,

4 6 20 18

,

n

n

n

n

n

n

U t t
dt

x t

n

U x n

U x U x n

U x U x n

n n n U x
x

n n n U x

n n n U x n

n n n U x

n n U x



 
 

















    

   
     

   

    

   
  










 (Β4) 

    
 

   
1

1

1 21 22

2
1

ln 2 , 0,
4 21 ln

, 1,
2 2

n
n n

T x n
U t t x t dt T x T x

n
n n

 

 


                 





 (Β5) 

 

    

   

     

   

 

   

   

1
1

2 4

1 3 5

2 4
1 3 22

1
6

2

2 4

1 3
ln2 , 0,

4 8 2
1 1

, 1,
4 2 10

3
3

16 2 2,1 ln 1
2 ln2 ,

3
3

8 2
3,

3
,

2 4

n

n n

n n

T x T x n

T x T x T x n

T x T x
nU t t x t dt

T x

T x T x

n n
n

T x T x

n n













 

                                   

   

     






 (Β6) 

 



55 
 

where  nT t  and  nU t  are the Chebyshev polynomials of the first and second kind, 

respectively. 

For 1x  , the above integrals are no longer singular and are evaluated according to 

the following expressions 
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