
10th HSTAM International Congress on Mechanics 
Chania, Crete, Greece, 25 – 27 May, 2013  

 

INTERACTION OF CRACKS WITH DISLOCATIONS 
IN COUPLE-STRESS ELASTICITY 

Konstantinos P. Baxevanakis1, Panos A. Gourgiotis2, and Haralambos G. Georgiadis3 
1Mechanics Division  

National Technical University of Athens 
Zographou, GR-15773, Greece 

e-mail: kobaksev@mail.ntua.gr  ; web page: http://users.ntua.gr/kobaksev 
2Department of Mechanical and Structural Engineering 

University of Trento 
Trento, I-38123, Italy 

e-mail: p.gourgiotis@unitn.it  ; web page: http://users.ntua.gr/gourgiot/  
3Mechanics Division 

National Technical University of Athens 
Zographou, GR-15773, Greece 

e-mail: georgiad@mail.ntua.gr  ; web page: http://users.ntua.gr/georgiad/  
 

Keywords: Cracks, Dislocations, Microstructure, Couple-Stress Elasticity, Singular Integral Equations. 

Abstract. In the present work we study the interaction of a finite-length crack with a climb dislocation within the 
framework of the generalized continuum theory of couple-stress elasticity. Our approach is based on the 
distributed dislocation technique. Due to the nature of the boundary conditions that arise in couple-stress 
elasticity, the crack is modeled by a continuous distribution of climb dislocations and constrained wedge 
disclinations. These distributions produce both standard stresses and couple stresses in the body. The final 
results are obtained by numerically solving a system of coupled singular integral equations with both Cauchy 
and logarithmic kernels. The results for the near-tip fields differ in several respects from the predictions of the 
classical fracture mechanics. In particular, the present results indicate that a cracked solid governed by couple-
stress elasticity behaves in a more rigid way (having increased stiffness) as compared to a solid governed by 
classical elasticity. Also, the stress level at the crack tip region is appreciably higher, within a small zone 
adjacent to the tip, than the one predicted by classical elasticity while the crack-face displacements and 
rotations are significantly smaller that the respective ones in classical elasticity.   

 
 
1 INTRODUCTION 

The interaction between a crack and a dislocation is a fundamental problem of fracture mechanics, since this 
interaction determines, in many cases, the macroscopic brittle or ductile material response. Extensive work on 
this problem is reported in the literature, within the framework of classical elasticity. Rice and Thomson[1] 
proposed an energy condition for dislocation emission from a of crack tip discussing the consequent way of 
fracture, brittle or ductile. Thomson[2] and Weertman[3] introduced the idea of a dislocation shielded crack and 
the concept of the dislocation free zone. The emitted dislocation is expected to glide away from the crack tip 
until the interaction force is balanced by the lattice friction force and the dislocation comes to rest. The distance 
between the crack tip and the point that the dislocation comes to rest is the dislocation free zone. Emitted 
dislocations are known to reduce the stress field in the vicinity of the crack tip and hence the local stress 
intensity factor. Later, Zhang and Li[4] employed the complex potential method to calculate the stress intensity 
factors at the crack tips and the image forces due to the presence of the dislocation. Markenscoff[5] provided a 
solution for the stress field ahead of the crack tip using integral equations. Additionally, there are numerous 
experimental observations of these phenomena and we may refer indicatively, to Kobayashi and Ohr[6], and 
Michot and George[7]. 

In the present work, the interaction of a finite-length crack with a climb dislocation is studied using a 
generalized continuum theory to account for the material microstructure. The theory employed is a particular 
case of the general approach of Mindlin[8]. The fundamental concepts of the couple-stress theory were first 
introduced by the Cosserat brothers[9], but the subject was generalized and reached maturity only in the 1960s 
through the works of Toupin[10], Mindlin and Tiersten[11], and Koiter[12]. Applications of the couple-stress 
elasticity theory, mainly on stress-concentration problems, met with some success providing solutions more 
adequate physically than classical-elasticity solutions. Work employing couple-stress theories on elasticity and 
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plasticity problems is also continued in recent years[13-17]. 

Our approach is based on the distributed dislocation technique (DDT) to construct the integral equations that 
describe the problem. Since Bilby’s[18] pioneering work to model cracks by a distribution of dislocations, the 
DDT has been employed to analyze various crack problems in classical elasticity. The main advantage of the 
technique is that it provides detailed information about the crack problem demanding a relatively small 
computational cost compared to other analytical or numerical methods (for a detailed review we refer to Hills et 
al.[19]). Gourgiotis and Georgiadis[20,21] have recently applied the standard DDT to solve finite-length crack 
problems, under mode I, mode II and mode III conditions, within the framework of couple-stress elasticity.  

Following the latter approach, the solution to the problem is obtained by the superposition of two auxiliary 
problems, an un-cracked medium subjected to the field of a climb dislocation and a cracked body loaded along 
the crack faces by equal and opposite tractions to those generated in the first auxiliary problem. The boundary 
conditions are met by distributing not only climb dislocations but also constant discontinuities of the rotation ω  
along the crack faces, named as constrained wedge disclinations[21]. The continuous distribution of these defects 
along the crack faces results in a coupled system of singular integral equations with Cauchy and logarithmic 
kernels. 

2 BASIC EQUATIONS OF PLANE STRAIN IN COUPLE-STRESS ELASTICITY 

The general idea in the so-called generalized continuum theories (one of which is the theory of couple 
stresses) is considering a continuum with material particles (macro-volumes), behaving like deformable 
bodies[22]. This behavior can easily be realized if such a material particle is viewed as a collection of sub-
particles. It is further assumed that internal forces (called dipolar or double forces) are developed between the 
sub-particles. Although each pair of the dipolar forces has a zero resultant force, it gives generally a non-zero 
moment and therefore gives rise to stresses on a surface called couple-stresses. This means that a surface element 
may transmit, besides the usual force vector, a couple vector as well. One can interpret physically the couple-
stresses as created by frictional couples resisting the relative rotation of the grains (sub-particles).  

For a body that occupies a domain in the ( ),x y -plane under plane strain conditions, the two-dimensional 
displacement field is described as 

 ( ) ( ), 0 ,      , 0 ,      0 .x x y y zu u x y u u x y u≡ ≠ ≡ ≠ ≡   (1) 

Assuming vanishing body forces and body couples the non-vanishing components of the asymmetric force-
stress tensor and the couple-stress tensor are written as 

 ( ) ( )2  ,    2  ,xx x x y y yy y y x xu u u uσ λ µ λ σ λ µ λ= + ∂ + ∂ = + ∂ + ∂   (2) 
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  (3) 

 ( ) ( )2 2 2 22  ,     2  ,xz x y x y x yz x y y y xm u u m u uµ µ= ∂ − ∂ ∂ = ∂ ∂ − ∂    (4) 

where   is the characteristic material length accounting for couple-stress effects, expressed in dimensions of 
[length].  

The equations of equilibrium written in terms of displacements are expressed as follows (ν  is the Poisson’s 
ratio) 
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  (5) 

3 FORMULATION OF THE CRACK-DISLOCATION INTERACTION PROBLEM 

Consider a straight finite crack of length 2α  embedded in the infinite xy -plane (Fig. 1) and a discrete climb 

dislocation ( )0, ,0yb=b  lying in the crack line at a distance d  from the crack center. The crack faces are 
traction free and the body is considered to be in plane-strain conditions. The following mixed boundary 
conditions hold in the upper half-plane ( )0y ≥   

 ( ) ( ),0 0,      ,0 0yy yzx m xσ = =           for x a<  , (6) 

 ( ),0 0yx xσ =            for x−∞ < < ∞  , (7) 
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 ( ) ( ),0 0 ,      ,0 0xu x xω= =            for x a> . (8) 

The presence of a climb dislocation at a distance d  from the origin induces the conditions  

 ( ) ( ) ( ) ( ) ( ),0 ,      ,0 ,  ,0 0,      ,0 ,      ,0 0disloc disloc
yy yy yx xy yz yz yzd d d m d m m dσ σ σ σ→ → → →     for x d=  , (9) 

where disloc
yyσ  and disloc

yzm  are the stresses and couple-stresses induced by a discrete climb dislocation in couple-
stress elasticity[21]. 
The regularity conditions at infinity are given as 

 ,  ,  ,  0,      ,  m 0yy yx xy xx xz yzmσ σ σ σ∞ ∞ ∞ ∞ ∞ ∞→ →      as      ,r →∞   (10) 

where ( )1 22 2r x y≡ +  is the distance from the origin. Eq. (10) denotes that there is no additional remotely 
applied loading to the problem. 

 

 

Figure 1. Cracked body interacting with a discrete climb dislocation 

The solution to the original problem is obtained by the superposition of two auxiliary problems. Firstly, an 
un-cracked infinite medium subjected to the boundary conditions of eq. (9) is examined. It can be readily 
verified that along the line 0y =  both stresses and couple-stresses are generated. The corresponding stress field 
is obtained by application of the Fourier transform method in a half plane with the dislocation lying at its 
boundary, as it will be described in the next section.  

In the second auxiliary problem (also referred as corrective solution), the original cracked medium is 
considered without the dislocation interaction. The only loading is now applied along the crack faces consisting 
of equal and opposite tractions to those generated in the un-cracked medium of the first auxiliary problem. The 
boundary conditions along the crack faces are written as 

 ( ) ( ) ( ) ( ) ( ),0 ,0 ,      ,0 ,0 ,      ,0 0disloc disloc
yy yy yz yz yxx d x m x m d x xσ σ σ= − − = − − =            for x a<    (11) 

Our intention is to solve the second auxiliary problem described by the boundary conditions of eqs. (7), (8) and 
(11). In classical elasticity, the normal stress of eq. (11) is produced by a continuous distribution of climb 
dislocations. In couple-stress elasticity this is not sufficient since a discrete climb dislocation produces both 
normal stresses yyσ  and couple-stresses yzm  along the line 0y = . On the other hand, the work conjugates of the 
reduced force traction y yy yP nσ=  and the tangential couple traction z yz yR m n=  are the normal displacement yu  
and the rotation ω  respectively. In light of the above, we are led to the conclusion that in order to generate the 
desired stress field (11) we need to distribute both discontinuities of the displacement yu  (climb dislocations) 
and the rotationω . This was earlier pointed out by Gourgiotis and Georgiadis[21], who named the second type of 
defect constrained wedge disclinations. 

4 GREEN’S FUNCTIONS 

Our aim is to find the stress and couple-stress field, along the crack-line 0y = , induced by a discrete climb 
dislocation and a discrete constrained wedge disclination located at the origin of the ( ),x y -plane. The above 
stress fields will serve as the Green’s functions of our problem.  

We impose at the origin of the ( ),x y -plane a discrete climb dislocation with Burgers vector ( )0, ,0yb b= ≡b  

and a discrete constrained wedge disclination with Frank vector ( )0,0,= ΩΩ . Considering the upper half-plane 
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( ),  0x y−∞ < < ∞ ≥ , we write the following boundary value problems 

 ( ) ( ) ( ) ( ) ( ),0 2 ,      ,0 0,      ,0 0,y yxu x b H x x xω σ+ + += − = =   (12) 

 ( ) ( ) ( ) ( ) ( ),0 0,      ,0 2 ,      ,0 0,y yxu x x H x xω σ+ + += = Ω =   (13) 

where ( )H x  is the Heaviside step-function. It is clear by its description that the constrained wedge disclination 
departs from the concept of the classical wedge disclination since the discontinuity in the rotation does not 
induce any discontinuity in the displacement. 

Both boundary value problems are attacked with the Fourier transform method using results from the 
distribution theory in the inversion procedure. By superposition of the solutions we obtain the following 
expressions for the normal stress yyσ  and the couple-stress yzm  

 ( ) ( ) ( ) ( ) ( )
2 2

2 2 02 2

2 2 2, 0 ,
2 1yy

b bx y K x K x K x
x x x x

µ µ µΩ µΩσ
π ν π π π

+    
= = + − − − −   −    

 

     (14) 
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2,1
2 0 1,32 2

12, 0 sgn ,
1 2,1 2,02 4yz

b b xm x y K x K x x G
x

µ µ µ Ω
π π π

+   
= = − − − + ⋅    −   

 

 



  (15) 

where ( )iK x   is the thi  order modified Bessel function of the second kind and ,
, ()a b

c dG  is the MeijerG function, 
which is a tabulated function. Eqs. (14) and (15) are the Green’s functions of the problem. Concerning the nature 
of the above stress fields, we note the following: (i) Employing the asymptotic expansions of the modified 
Bessel and the MeijerG functions as 0x → , we conclude that the normal stress yyσ  exhibits a Cauchy-type 
singularity due to the climb dislocation and a logarithmic singularity due to the constrained wedge disclination. 
On the contrary, the couple stress yzm  exhibits a Cauchy-type singularity due to the wedge disclination and a 
logarithmic singularity due to the climb dislocation. (ii) As x →±∞ , it can be shown that 0yyσ →  while 

yzm µ→ Ω  , that is, the constrained wedge disclination does not induce normal stresses at infinity contrary to 
the classical wedge disclination which generates logarithmically unbounded normal stresses at infinity, both in 
classical and in couple-stress elasticity. (iii) When 0→  the couple-stress effects vanish and the expression for 
the normal stress yyσ  degenerates to the classical field for a discrete climb dislocation, 

( ) ( ), 0 2 1yy x y b xσ µ π ν+= = − . We derive that the constrained wedge disclination induces stresses and couple-
stresses only when couple-stress effects are taken into account. This is a convenient feature of the Green’s 
functions of eqs. (14) and (15), since the respective Green’s function of classical elasticity is recovered in the 
limit 0→ . 

5 REDUCTION OF THE PROBLEM TO A SYSTEM OF SINGULAR INTEGRAL EQUATIONS 

The corrective stresses of eqs. (11) are generated by a continuous distribution of climb dislocations of 
magnitude b  and constrained wedge disclinations of magnitude Ω  along the crack faces ( )x a< . The normal 
stress yyσ  and the couple-stress yzm  induced by the distribution of the two defects are derived by integrating the 

fields of eqs. (14) and (15) along the crack-faces. It is noted that the condition ( ),0 0yx xσ =  within the crack is 
automatically satisfied since no shear stress is produced by any of the defects. Satisfaction of the boundary 
conditions of eq. (11) yields the governing equations of the problem, a system of two coupled singular integral 
equations. Separating the singular and regular parts of the kernels we obtain 
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where ( )B ξ  and ( )W ξ  are, respectively, the dislocation and disclinations densities defined as 

 ( ) ( ) ( ) ( ) ( ),      ,
xy

y a

d udb
B u x B d

d d
ξξ

ξ ξ ξ
ξ ξ −

∆
= = − ∆ = −∫   (18) 
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= = ∆ = ∫   (19) 

and the kernels ( ),ik x ξ for 1,  2,  3i =  are written as 
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The left hand sides of eqs. (16) and (17) are derived from eqs. (14) and (15) for x d x= −  and 0Ω =  . In eqs. 
(18) and (19), the quantity ( )yu x∆  represents the relative opening displacement and the quantity ( )ω ξ∆  the 
relative rotation between the two crack faces. Physically, the dislocation density can be interpreted as the 
negative of the slope whereas the disclination density as the curvature at any point between the crack faces. We 
note further that both densities are dimensionless. Asymptotic analysis near a mode I crack tip[23] showed that 
both the crack-face displacement yu  and the rotation ω  behave as 1 2r  in the crack tip region. Consequently, 

both the dislocation and the disclinations densities have the same endpoint behaviors, i.e. ( ) 1 2B x x−
  and 

( ) 1 2W x x−
 . Thus, the unknown densities can be written as a product of a regular bounded function and a 

singular function characterizing the asymptotic behavior near the crack tips, under the following forms: 

 ( ) ( )( ) ( ) ( )( )1 2 1 2

0 0
1 ,      1 ,n n n n

n n
B s a T s s W s b T s s

∞ ∞
− −

= =

= − = −∑ ∑   (21) 

where ( )nT s  are the Chebyshev polynomials of the first kind.  
Further, in order to ensure uniqueness of the values of the normal displacement and the rotation for a closed 

loop around the crack, the following normalized closure conditions must be satisfied  

 ( ) ( )
1 1

1 1
0,      0.B t dt W t dt

− −
= =∫ ∫   (22) 

Substituting eq. (21) to (22), we immediately infer that 0 0 0a b= = . For the numerical solution of the system of 
singular integral equations (16) and (17), the collocation method is employed. The singular integrals in these 
equations are computed in closed form as Cauchy principal value integrals whereas the regular integrals using 
the standard Gauss-Chebyshev quadrature. After appropriate normalization over the interval [ ]1,  1− , the system 
takes the following discretized form: 
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where p a=  , t x a=  and s aξ= . The integration and collocation points are given, respectively, as 

( )cos 2 1 2is i mπ= −    for 1,...,i m=  and [ ]coskt k Nπ=  for 1,..., 1k N= − . The 2N equations are solved to 
determine the unknown coefficients and the defect densities. 

6 NUMERICAL RESULTS - DISCUSSION 

In this section we present and briefly discuss some of the numerical results we have obtained.  

     

Figure 2. (a) Normalized upper-half crack displacement profile due to the interaction with a climb dislocation 
lying at 2.5d a = . (b) Normalized upper-half crack displacement profile for various dislocation positions. The 

Poisson’s ratio is 0.3ν = . 

In Fig. 2a, the dependence of the normal crack-face displacement to the ratio a   is displayed for a dislocation 
lying in a distance 2.5d a =  in a medium with Poisson’s ratio 0.3ν = . It is observed that as the crack length 
becomes comparable to the characteristic length  , the material exhibits a more stiff behavior, i.e. the crack-face 
displacements become smaller in magnitude compared to the respective ones in classical elasticity. Further, it is 
noted that the classical elasticity solution serves as an upper bound for couple-stress elasticity. In Fig. 2b, the 
influence of the dislocation distance to the crack-face displacement is examined. The material properties are 

10a =  and 0.3ν = . The resulting displacements vary significantly both in shape and magnitude.  
 

       

Figure 3. (a) Normalized upper-half crack rotation due to the interaction with a climb dislocation lying at 
2.5d a = . (b) Normalized upper-half rotation for various dislocation positions. The Poisson’s ratio is 0.3ν = . 

The upper-half crack rotation for the same problems is depicted in Fig. 3. The produced fields are bounded 
contrary to the prediction of classical elasticity. In Fig. 3a, the variation of the crack-face rotation for several 
ratios a   is displayed. We note that as 0→ , the rotation is pointwise convergent to the respective unbounded 
rotation in classical elasticity. In. Fig. 3b, we observe that as the dislocation approaches the crack, the rotation of 
the right crack tip increases significantly.  

Next, we present the distribution of the normal stress yyσ  ahead or the right crack tip in Fig. 4a. For 

(a) (b) 

(a) (b) 
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convenience, a new variable x x a= −  is introduced measuring the distance from the right crack tip. We notice 
that the couple-stress effects are dominant within a zone of length 3  near the crack tip and 5  near the 
dislocation core, whereas outside this zone the field gradually approaches the distribution given by classical 
elasticity. At 15x = , the field becomes unbounded since this is where the climb dislocation lies. In Fig. 4b, the 
distribution of the couple-stress yzm  is depicted. 

    

Figure 4. (a) Variation of the normal stress yyσ  ahead of the crack tip. (b) Variation of the couple-stress yzm  
ahead of the crack tip. 

In Fig. 5a, the variation of the ratio .clas
I IK K  with the ratio a  for the right crack tip is presented. The 

stress intensity factor is defined as ( ) ( )1 2
lim 2 ,0I yyx a

K x a xπ σ+→
= −   . The dislocation is placed at 2.5d a =  

in all cases. We observe that the ratio of the stress intensity factors depends significantly on the Poisson’s ratio 
and that there is a general increase in the stress intensity factor when couple-stress effects are considered. It 
should be noted that when 0a = , the above ratio should evidently approach unity. Therefore, the stress-ratio 
exhibits a finite jump discontinuity at the limit 0a = . This behavior has been reported in the past by other 
authors[20,21,24] who attributed it to the severe boundary layer effects of couple-stress elasticity in singular stress-
concentration problems. It is also noted that the ratio, after an initial decrease for small values of a  , increases 
monotonically and tends to the value ( )3 2ν−  as a →∞ .  
 

     

Figure 5. (a) Variation of the ratio of stress intensity factors in couple-stress elasticity and classical elasticity 
with a . (b) Variation of the ratio of stress intensity factors in couple-stress elasticity and classical elasticity 

with d a . 

Finally, in Fig. 5b the variation of the ratio .clas
I IK K  with the ratio d a  for the right crack tip, in a medium 

with 5a = . The ratio diminishes monotonically and quickly reaches a constant value at 3d a  . Similar 
behavior is observed for the left crack tip as well.  

(a) (b) 

(a) (b) 
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7 CONCLUDING REMARKS 

In this paper, the interaction of a discrete climb dislocation with a finite-length crack in the framework 
of couple-stress elasticity is studied. The distributed dislocation technique was employed for the analysis. Due 
to the nature of the boundary conditions that arise in couple-stress elasticity, the distribution of constrained 
wedge disclinations along the crack faces was also necessary. The continuous distribution of climb 
dislocations and constrained wedge disclinations along the crack faces results in a coupled system of singular 
integral equations with both Cauchy and logarithmic kernels which was solved numerically.  

The present results indicated that the material microstructure of the couple-stress type has generally rigidity 
(smaller crack-face displacements and rotations) and aggravation (increase of stress ahead of the crack-tip) 
effects on the crack dislocation interaction problem. In particular, the crack-face displacements become 
significantly smaller than their counterparts in classical elasticity, when the length of the crack is comparable to 
the characteristic length   of the material. Finally, it was observed that the stress intensity factor IK  is higher 
than the one predicted in classical elasticity in both crack tips. 
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