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Abstract - In this work, an embroidered metamaterial monopole antenna based on a split ring 
resonator electromagnetic bandgap shielding structure has been designed, simulated and tested. 
This work investigates the impact of different types of embroidering metamaterial patterns on 
the antenna performance, shielding effect in terms of human safety through specific absorption 
rate analysis and degree of material wearability, in comparison with the standard antenna 
topologies. The proposed antenna design presents a full compact embroidered metamaterial 
device manufactured in felt textile substrate  and requires a 85 x 70 mm2 area, operating at 2.45 
GHz. On-voxel analysis reveals that specific absorption standards are satisfied for both public 
and occupational sector with a significant safety margin whereas the antenna performance in 
terms of gain and directivity are significantly optimized with regard to standard wearable 
materials. 
 
During the last two decades, research around textile electronics (e-textiles) has allowed the 

development a technology that enable humans’ garments to interact with the technological 

anthropic surroundings. Indeed, e-garments for wireless body area network (WBAN) 

applications in sports, fitness, medical/health care and fashion sectors are expected to have a 

significant market size impact over the next decade [1,2]. To optimize the wireless transceivers, 

reliable body-worn antennas and systems must be designed and integrated into the e-garments 

with good wearability and user comfort, considering the most suitable materials and fabrication 

techniques [3]. Effects such as bending to follow the body morphological curvatures [4,5] and 

the losses produced by the human tissues at radio frequency range must be taken into account 

[6]. Moreover, low-profile, lightweight and robust antenna structures must be manufactured by 

using industrial processes allowing mass production e-garments.  The embroidery process is an 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288358801?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


     

2 
 

advantageous technique because of the industrial deployment of digitized embroidered 

machines [7].  

Electromagnetic bandgaps materials (EBGs) have been introduced in many microwave 

engineering devices in order to efficiently control propagation and radiation. In particular, 

EBGs and other metamaterials have been applied to wearable antennas to enhance their 

radiation pattern and increase the isolation with regard to the human body [8-15]. However, 

those structures present some geometrical drawbacks from the manufacturing point of view: 

large footprint, protrusion from the body or extra substrate layers such as foam or even air layers, 

all of which make it difficult to produce a successful wearable garment. EBGs are, indeed, an 

excellent solution in order to minimize the specific absorption rate (SAR), an established 

mechanism for measuring the electromagnetic energy absorbed by biological tissue when 

exposed to radiated electromagnetic energy. In fact, it is required to design the body-worn 

textile antennas to minimize their impact on human tissues and comply with international SAR 

regulations.  

In this work, an embroidered metamaterial monopole antenna operating at the 2.45 GHz 

industrial scientific and medical (ISM) radio band is presented. The antenna is manufactured 

with three felt layers and metallic yarn to obtain a compact wearable implementation. The EBG 

consists of a 2x2 matrix of embroidered split ring resonators (SRR). Two different embroidery 

patterns, satin and contour, have been compared and tested to enhance the antenna performance, 

and minimize the SAR impact. The proposed antennas have been simulated by means of the 

commercial full 3D electromagnetic CST Microwave Studio software and tested including the 

human body impact and SAR using the Voxel human model [16]. The main novelty of our work 

is to present a fully embroidered structure, including the metamaterial particles themselves, 

achieving good antenna performance with a higher level of wearability. The experimental 

section describes the antenna geometry and design. Moreover, the main antenna parameters are 

evaluated and tested, including the human body impact and the material bending effects. Last, 
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but not least, the SAR on-body analysis for on-voxel model is provided, followed by the main 

conclusions obtained from this work.  

 
 
Experimental Section  

Wearable metamaterial antenna design, simulation and test: As a first step, in order to perform 

realistic simulations, the textile substrate dielectric parameters have been characterized . A split 

post dielectric resonator (SPDR) was used to determine the dielectric constant and loss tangent 

of several felt samples by means of the resonance method (Figure 1). The felt relative dielectric 

constant and loss tangent were measured to be εr=1.2 and tan δ=0.0013. The fabric structure 

corresponds to a non-woven structure with a 100% Pes composition. The textile, which is 

produced by a double-sided needle punching technique has a weight of 211 g/m2. The scanning 

electron microscope (SEM) micrograph with the appearance of the felt fabric is shown in 

Figure 2. The fabric sample used in this work has a thickness of 1 mm.   

 The unit cell topology of the EBG, consisting of a single SRR over a 1 mm felt layer and a 

metallic ground is shown in Figure 3a. It is important to highlight that an intermediate SRR 

layer is required, because, while the effect of a single ground plane can reduce the backradiaton, 

it causes significant degradation of the monopole antenna performance. The SRR dimensions 

are designed in order to achieve a reflection phase of the EBG varying from 180º to -180 in the 

vicinity of the resonance frequency of the antenna in order to behave like a perfect magnetic 

conductor (Figure 3b).  The frequency region is restricted to a 90º±45º reflection phase range 

because this corresponds to the matching frequency band of a wire antenna placed over it, 

according to the methodology described in [17]. In addition, the suspended line method has 

been used to confirm the good behaviour of the EBG to suppress surface waves, according to 

[18].  

Initially, the free space design in considered. The proposed metamaterial monopole antenna is 

shown in Figure 4. A 3-layer felt structure was considered. The first layer includes a basic 
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monopole implemented with Amberstrand Silver 66 yarn consisting of 66 silver coated polymer 

fibres. The second layer includes a 2 x 2 SRR EBG structure as well as the monopole ground 

layer, both constructed using Amberstrand. Finally, the third layer includes the EBG ground 

implemented by means of Nora Dell (0.2 mm thickness).  The total antenna dimensions are 

L=85 x W=70 x t=3.2 mm. The monopole dimensions are reduced compared to the non-loaded 

λ/4 monopole, because of the slow-wave effect produced by the EBG. Consequently, the output 

metallic part of the antenna which interacts with the environment is minimized, since the rest 

of the metallic yarn is sheltered in the intermediate textile layers. The dimensions of the 

designed antenna are: monopole width/length: mW=3 mm / mL=28 mm; monopole ground 

width/length: mGW=70 mm / mGL=15 mm; SRR width/length: SRRW=SRRL= 30mm; SRR 

metallic width/gap: SRRM=SRRG= 2mm; SRR separation to monopole ground: SRRS= 1 mm; 

EBG SRR cell separation: SRRE= 5 mm. All the involved metallic layers have been simulated 

as homogeneous lossy metals to reduce simulation complexity except for the SRR. In that case, 

since the structures are intended to be embroidered, the performance of two extreme cases have 

been compared. One is a fully embroidered (homogeneous) SRR and the other uses profile 

embroidery (minimum embroidery cost). Figure 5 depicts the two cases as well as their return 

loss simulations. Both topologies show very similar results, with values │S11│<-25 dB. The 

resonance frequency of the profile embroidery is just detuned 1% with regard to the operation 

frequency of the homogeneous case (2.45 GHz). Very similar results can be seen with respect 

of the antenna radiation pattern. Figure 6 and Figure 7 illustrate the simulated realized 

radiation pattern for the homogeneous embroidery case. The metamaterial antenna has been 

compared with the conventional monopole case. The metamaterial antenna realized gain 

corresponds to 7.81 dBi and exceeds the monopole case by 6 dB. Moreover, the back radiation 

is reduced by 10 dB compared to the monopole textile case, demonstrating the effect of the 

SRR EBG structure. Similar values are obtained for the profile embroidery case. Thus, the 
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embroidery pattern is also effective even in the worst case. All the antenna parameters for free 

space are summarized in Table 1. 

After analyzing the flat case, bending material effects must be considered since wearable 

antennas usually have to withstand bending stresses while maintaining their radiation 

performance. Therefore, it is interesting to assess the potential bending impact on the antenna 

operation frequency. Several bending radii (r) have been considered for the bending analysis 

within the range 40 mm < r < 100 mm with regard to the y-axis (along the monopole axis). 

Figure 8 shows the proposed antenna return losses under bending. A frequency shift is observed 

when the bending radius is changed. In particular, for the extreme cases resonant frequencies 

of f=2.48 GHz for r=100 mm and f=2.56 GHz for r=40 mm are obtained. Therefore, a shift in 

the order of 4.5% must be taken into account with regard to the nominal operation frequency 

for extreme bending cases. 

In order to analyse the impact of the body on the proposed antenna performance, a realistic 

heterogeneous voxel model has been used in the simulations. In particular, the Gustav male 

model (38 years old), based on 57 biological tissues (including skin, bones, blood and organs) 

was used. The metamaterial antenna was located in physical contact with the ear of the voxel 

model. Figure 9 shows the simulated directivity and realized gain for a conventional monopole 

felt antenna. It can be observed that there is a significant reduction in the gain (G=-2.44 dBi) 

and efficiency (η=13.5 %) due to the impact of the body as a lossy, high dielectric constant 

medium (εr≈40). It is observed that the gain and efficiency are improved by using the 

metamaterial felt antenna (Figure 10). Indeed, for the homogeneous embroidery pattern, the 

achieved values correspond to G=7.19 dBi and η=67.9 %. In addition, the profile pattern also 

involves a good performance: G=7.52 dBi and η=70.1 %. In fact, the SRR EBG proposed 

structure behaves like a shaped reflector and, therefore, the directivity is increased in 

comparison with the free space case. Table 1 summarizes and compares all the obtained antenna 

parameters. 
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A Brother Entrepreneur® Pro PR1000e embroidery machine was used to manufacture the 

metamaterial antennas (Figure 11a). The stitch type used corresponds to the ISO 4915:1991 

301 standard. In this case, the stitch is formed by a needle thread passing through the material 

and interlocking with a bobbin thread. Threads meet in the centre of the seam. Stitches appear 

the same on the top and bottom of the textile. Two stitch types have been implemented. On the 

one hand, a satin fill pattern (depicted in Figure11b) was used. This pattern is well-suited to 

narrow columns and shapes and it is selected because it fits the dipole geometry accurately. The 

stitch spacing corresponds to the distance between two needle penetrations on the same side of 

a column. For narrow columns, stitches are tight, thus requiring fewer stitches to cover the 

fabric. In areas with very narrow columns, less dense stitches are required because too many 

needle penetrations can damage the textile sample. The larger the spacing between stitches, the 

lower the density. On the other hand, a standard contour fill pattern has been considered (Figure 

11c). This embroidery technique consists of a curved fill stitch type following the contours of 

a shape. It creates a sense of movement in contrast to flatter fills such as satin. The standard 

contour stitch creates rows of stitches across the dipole shape. The number of stitch lines is 

constant; therefore, the stitching is denser for narrower antenna geometries. Figure.11d and 

Figure 11e illustrate the manufactured antennas. The better topology corresponds to the contour 

pattern, since the yarn distribution is parallel to the induced currents on the SRRs and monopole, 

thus reducing the overall structure losses. Figure 12 depicts the experimental return loss for the 

proposed contour embroidered SRR EBG antenna. A good agreement is obtained with regard 

to the simulations. Due to ohmic losses, there is a lower quality factor in the experimental results 

with regard to the ideal simulation case. Moreover, the embroidery is not completely 

homogeneous, as depicted in Figure 11e.  This will give rise to some of the increased ohmic 

losses as well as some very minor variations in line characteristic impedance.  It is felt that these 

variations are small and will not give major error. 
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SAR Analysis: Due to the proximity of the antennas to the human body, SAR is a key parameter 

to evaluate. There are two maximal SAR values for the general public (head and trunk) and 

averaging levels depending on the country regulation. On the one hand, the 1.6 W/kg averaged 

over 1 g tissue, is based on dosimetric considerations and it is considered in USA, Canada and 

Korea. On the other hand, the 2 W/kg, averaged over 10 g tissue, based on biophysical criteria, 

is applied in the EU, Japan and China [19].  For occupational exposure, those values are 

increased up to 8 W/kg (1 g tissue) and 10 W/kg (10 g tissue). Table 2 summarizes the 

corresponding exposure limits up to 10 GHz for general public and professional activities. 

Typically, the mass averaged SAR is computed and compared with the limits of exposure 

determined by the regulating standards in order to prevent whole body heat stress and excessive 

local tissue heating. The SAR averaging volume which contains the desired averaging mass 

tissue is usually calculated by means of the IEEE C95.3 [20] or the IEEE/IEC 62704-1 [21]. In 

this paper the latter standard has been considered by means of the CST Microwave software. It 

uses an additional criterion that limits the air volume in valid averaging cubes, improving the 

performance of the calculation in regions closed to the air. The SAR simulations have been 

performed over the same model and human head detailed previously, considering a flat antenna 

on the ear. A reference value of 50 mW (17 dBm) antenna input power has been considered 

because it takes into account the typical maximum transmitted power for wearable devices. 

Figure 13 illustrates the SAR distribution for a conventional monopole felt antenna. Maximum 

SAR values exceed the public regulation levels due to the omnidirectional radiation pattern of 

the monopole. In fact, a 53.1 W/Kg (4990% higher than the limit) for SAR 1g tissue and a 15.7 

W/Kg (685% higher than the limit) for SAR 10g tissue, are obtained. Those values can be 

dramatically decreased by means of the proposed SRR EBG structure. Figure 14 shows the 

SAR 3D distribution for the SRR metamaterial monopole felt antenna. In this case, the SAR 

regulations are met with a notable safety margin. The reported values for the homogeneous 

embroidery patterns are 0.64 W/Kg (60% lower than the limit) for SAR 1g tissue and a 0.15 
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W/Kg (92% lower than the limit) for SAR 10g tissue. Moreover, those values are improved for 

the profile embroidery patterns. In this case SAR 1g/10g values correspond to 0.48 W/Kg (70% 

lower than the limit) and 0.12 W/Kg (94% lower than the limit), respectively. Therefore, a 

significant shielding effect is achieved due to the SRR EBG since the obtained SAR values are 

significantly decreased with regard to the conventional layer topology. The maximum 

allowable input power for the metamaterial shielded antennas has been also considered. The 

power limits correspond to 21 dBm (homogeneous SRR) / 22.2dBm (profile SRR) for the SAR 

1g tissue. Table 3 reports all the SAR values and maximum allowed powers.  

In conclusion, a novel embroidered metamaterial antenna based on a SRR EBG shielding 

structure has been presented. The reported simulations and experimental results demonstrate 

the viability of the antenna in order to optimize the radiation pattern of typical monopole 

antennas by using a complete body-worn implementation with no air gaps and with a good 

degree of wearability thanks to the contour embroidery pattern. SAR investigation has been 

carried out according to the IEEE/IEC 62704-1 standard. The obtained results point out that the 

proposed material topology complies with the different international regulations applied in the 

industrialized countries.  
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Figure 1. SPDR measurement of the dielectric parameters of the felt fabric. A microwave 
frequency Q-meter (left side) corresponds to a computer controlled microwave oscillator 
system. A multipont resonance curve fitting algorithm enables the Q-factor to determine the 
complex permittivity and loss tangent of the textile sample (right side). 
 
 

 
 
Figure 2. Appearance of the felt textile fabric. SEM micrograph. The sample corresponds to a 
polyester felt substrate with PES 100% composition. 
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Figure 3. (a)  Designed SRR EBG unit cell and geometrical parameters (b) Reflection phase of 
the EBG surface. 
 
 

  
 
 
Figure 4. 3-felt layer metamaterial antenna. (a) Monopole layer. (b) EBG and monopole ground 
layer. (c) EBG ground layer. (d) Antenna cross section and geometrical parameters. 
 

SRRW 

SRRL SRRM 
SRRG 

(a)                                                                                                                 (b)     

SRRS 

SRRE 

mL 

mW 

W=mGW 

mGL 

L 

t 



     

13 
 

 
 
 
Figure 5. Metamaterial antenna return loss for homogeneous and profile embroidery pattern. 
 
 

 
 
 
Figure 6. Radiation gain pattern at resonance frequency for the SRR metamaterial monopole 
felt antenna (black) and monopole (grey). Phi=0º (H-plane) is depicted with a solid line. 
Phi=90º (E-plane) is depicted with a dashed line. 
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Figure 7. Radiation gain pattern at resonance frequency for the SRR metamaterial monopole 
felt antenna (black) and monopole (grey). Theta=0º (XY plane) is depicted with a solid line. 
Theta=90º (XY plane) is depicted with a dashed line. 
 
 

 
 
Figure 8. Metamaterial antenna return loss under bending effect. Radii units are given in mm. 
 
 
 
 



     

15 
 

  
 
Figure 9. Simulation of the 3D Radiation pattern for the conventional monopole felt antenna 
located at the ear of the Gustav Model at 2.45 GHz. (a) Directivity. (b) Realized gain.   
 
 

   
Figure 10. Simulation of the 3D Radiation pattern for the SRR metamaterial monopole felt 
antenna located at the ear of the Gustav Model at 2.41 GHz. (a) Directivity. (b) Realized gain.  
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(b)       (c) 
 

 
 
(d)   (e) 
 
 
Figure 11. (a) Embroidery metamaterial antenna manufacturing process. (b) Satin fill stitch 
pattern embroidery layout. (c) Standard contour fill stitch pattern embroidery layout. 
Embroidered antennas: (d) Monopole. (e) EBG layer in several embroidery layout patterns. 
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Figure 12. Metamaterial antenna return loss for homogeneous contour embroidery pattern. 
 
 

  
 
Figure 13. (a) SAR 1g tissue and (b) SAR 10g for the conventional monopole felt antenna 
located at the ear. 
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Figure 14. (a) SAR 1g tissue and (b) SAR 10g for the SRR metamaterial monopole felt antenna 
located at the ear. 
 
 
Table 1. Textile antenna parameter summary at resonance frequency 

Textile 
antenna 

Fcenter / S11  
[GHz / dB] 

Directivity  
[dBi] 

Gain  
[dBi] 

Efficiency 
 (%) 

Monopole 
Free space 2.45 / -14.8 1.99 1.84 96.6 

Monopole SRR 
Homogeneous 
Free space 

2.45 / -28.3 8.76 7.81 80.4 

Monopole SRR 
Profile 
Free space 

2.42 / -32.1 8.68 7.69 79.6 

Monopole 
Voxel model 2.56 / -15.0 6.27 -2.44 13.5 

Monopole SRR 
Homogeneous  
Voxel model 

2.41 / -25.0 8.87 7.19 67.9 

Monopole SRR 
Profile 
Voxel model 

2.40 / -35.2 9.06 7.52 70.1 

 
 
Table 2. Localized SAR (head and trunk) restrictions for public and occupational exposure 

 Peak SAR 1g tissue 
[W/Kg] 

Peak SAR 10g tissue 
[W/Kg] 

Public 1.6 2 

Occupational 8 10 

 
 
 
 
Table 3. SAR values for the voxel model at resonance frequency @ pin=17  dbm and maximum 
allowed power to satisfy SAR standard 

Textile 
antenna 

Peak SAR 1g tissue 
[W/Kg] 

SAR 1g Max. Pin 
[dBm] 

Peak SAR 10g tissue 
[W/Kg] 

SAR 10g Max. Pin 
[dBm] 

Monopole  
@2.56 GHz 53.07 - 15.73 - 

Monopole SRR 
Homogeneous 
@2.41 GHz 

0.64 21.0 0.148 28.3 

Monopole SRR 
Profile 
@2.40 GHz 

0.48 22.2 0.119 29.2 

 


