
pH-mediated regulation of polymer transport through SiN pores

Sahin Buyukdagli1,2∗ and T. Ala-Nissila2,3†
1Department of Physics, Bilkent University, Ankara 06800, Turkey
2Department of Applied Physics and QTF Center of Excellence,

Aalto University School of Science, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
3Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences,

Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom

We characterize the pH controlled polymer capture and transport thorough silicon nitride (SiN)
pores subject to protonation. A charge regulation model able to reproduce the experimental zeta
potential of SiN pores is coupled with electrohydrodynamic polymer transport equations. The
formalism can quantitatively explain the experimentally observed non-monotonic pH dependence of
avidin conductivity in terms of the interplay between the electroosmotic and electrophoretic drag
forces on the protein. We also scrutinize the DNA conductivity of SiN pores. We show that in the
low pH regime where the amphoteric pore is cationic, DNA-pore attraction acts as an electrostatic
trap. This provides a favorable condition for fast polymer capture and extended translocation
required for accurate polymer sequencing.
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I. INTRODUCTION

The rapid progress in biotechnological applications re-
quires an increasingly high degree of precision in bioan-
alytical approaches such as polymer translocation [1–5].
Accurate control over the mobility of confined polymers is
vital for improving the sensitivity of this biosequencing
technique [6]. Over the last two decades, this techno-
logical requirement has motivated intense research into
the characterization of entropic [7, 8] and electrohydro-
dynamic effects [9–14] on polymer translocation.

In driven polymer transport through amphoteric sili-
con nitride (SiN) pores subject to protonation, the acid-
ity of the buffer solution is a critical control factor en-
abling the radical alteration of the forces driving the
polymer mobility. More precisely, the inversion of the
pore surface charge upon pH tuning can reverse the di-
rection of the electro-osmotic (EO) flow drag [15] and
also switch the nature of polymer-membrane interactions
between repulsive and attractive [16]. The quantitatively
accurate characterization of this mechanism can thus pro-
vide an efficient control of the polymer translocation dy-
namics.

Previous charge regulation theories have ingeniously
characterized the effect of surface protonation on macro-
molecular interactions [17–20]. However, a polymer
translocation model able to account for the pH con-
trolled alteration of the pore electrohydrodynamics and
polymer-pore interactions is still missing. In this Letter,
we develop such a polymer translocation model. Within
our formalism, we first explain the experimentally mea-
sured non-monotonic pH dependence of avidin translo-
cation rates in terms of the electrohydrodynamic forces
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acting on the avidin protein of amphoteric nature [15].
Then, we investigate the dsDNA conductivity of SiN
pores and shed light on an electrostatic polymer trapping
mechanism allowing favorable conditions for fast poly-
mer capture and slow translocation required for accurate
biosequencing and related applications.

II. THEORY

A. Polymer transport model

We briefly review here the polymer translocation
model initially developed in Ref. [13] for fixed surface
charge conditions. The model is depicted in Fig. 1. The
nanopore is a cylindrical hole embedded in an SiN mem-
brane of surface charge density σm. In this work, the pore
radius and length will be fixed to the experimental values
of d = 10 nm and Lm = 30 nm of Ref. [15]. The pore is in
contact with an ion reservoir confining the KCl solution
of density ρb. The polymer translocates along the z axis
is a rigid cylinder of radius a = 1 nm, length Lp, and
surface charge density σp. The charge transport through
the pore is driven by the externally applied hydrostatic
pressure ∆P and voltage ∆V .

The coordinate of the polymer end zp is chosen as the
reaction coordinate of the translocation while lp is the
length of the polymer portion in the pore. The transloca-
tion dynamics is characterized by the diffusion equation

∂tc(zp, t) = −∂zpJ(zp, t); (1)
J(zp, t) = −D∂zpc(zp, t) + vp(zp)c(zp, t), (2)

where c(zp, t) is the density and J(zp, t) the flux of
the translocating polymer, with the diffusion coefficient
D = ln(Lp/2a)/(3πηLpβ) including the inverse thermal
energy β = 1/(kBT ) and solvent viscosity η = 8.91×10−4

Pa s [21]. In Eq. (2), the first term is Fick’s law and the
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FIG. 1: (Color online) Schematic depiction of the polyelec-
trolyte translocating along the z axis of the pore confining the
KCl solution of bulk concentration ρb. The polyelectrolyte is
a cylinder of radius a, total length Lp, and its portion located
in the pore is lp. The pore is a cylinder of radius d and length
Lm. Charge transport through the pore takes place under
the effect of the voltage ∆V = Vt − Vc resulting in the field
E = −∆V/Lmûz and pressure gradient ∆P = Pc − Pt.

second term corresponds to the convective flux compo-
nent characterized by the polymer velocity vp(zp). In
Ref. [13], from the coupled solution of the Stokes and
Poisson-Boltzmann (PB) equations, the liquid velocity
uc(r) and polymer velocity satisfying the no-slip condi-
tions uc(d) = 0 and uc(a) = vp(zp) were derived as

uc(r) = µE [φ(d)− φ(r)]− βDp(r)
∂Vp(zp)

∂zp

+
∆P

4ηLm

[
d2 − r2 − 2a2 ln

(
d

r

)]
; (3)

vp(zp) = vdr − βDp(a)
∂Vp(zp)

∂zp
. (4)

The first term of Eq. (4) corresponds to the drift velocity
induced by the the voltage and the pressure gradient,

vdr = −µ∆V
Lm

[φ(a)− φ(d)] +
γa2∆P

4ηLm
, (5)

with the electrophoretic (EP) mobility coefficient µ =
εwkBT/(eη) including the electron charge e, the geomet-
ric coefficient γ = d2/a2 − 1− 2 ln (d/a), and the electro-
static potential φ(r) induced by the polymer and mem-
brane charges. The terms on the r.h.s. of Eq. (5) origi-
nate respectively from the EP and EO drag forces on the
polymer. Then, the second term of Eq. (4) includes the
pore diffusion coefficient Dp(r) = ln(d/r)/(2πηLpβ), and
the electrostatic coupling potential between the polymer
and membrane charges βVp(zp) = ψplp(zp). This poten-
tial includes the energy density

ψp = 2πaσpφm(a), (6)

with the polymer potential induced solely by the mem-
brane charges φm(r) ≡ limσp→0 φ(r), and the position-

dependent length of the polymer portion in the pore

lp(zp) = zpθ(L− − zp) + L−θ(zp − L−)θ(L+ − zp)

+(Lp + Lm − zp)θ(zp − L+), (7)

with the auxiliary lengths L− = min(Lm, Lp) and L+ =
max(Lm, Lp). The terms on the r.h.s. of Eq. (7) cor-
respond respectively to the regimes of polymer capture,
transport at drift velocity vdr, and escape from the pore.

The polymer translocation rate follows from the
steady-state solution of Eqs. (1)–(2) characterized by a
uniform flux J(zp, t) = J0 , with the fixed density condi-
tion at the pore entrance c(zp = 0) = ccis and an absorb-
ing boundary at the pore exit c(zp = Lp +Lm) = 0. The
translocation rate defined as Rp ≡ J0/ccis reads [13]

Rp =
D´ Lm+Lp

0
dzeβUp(zp)

, (8)

with the effective polymer potential

Up(zp) =
Dp(a)

D
Vp(zp)−

vdr
βD

zp. (9)

Defining the characteristic inverse lengths embodying the
effect of the drift (5) and the barrier (6),

λd =
vdr
D

; λb = 2πaσpφm(a)
Dp(a)

D
, (10)

the effective polymer potential (9) can be expressed as

βUp(zp) = λblp(zp)− λdzp. (11)

With the piecewise linear potential (11), the transloca-
tion rate in Eq. (8) can be analytically evaluated. The
analytical expression for Rc can be found in Ref. [13].
We finally note that in the drift regime λd � λb where
polymer-pore interactions are negligible Vp(zp) � kBT ,
Eq. (8) yields the drift-driven polymer transport behav-
ior Rp ≈ vdr.

The polymer translocation time defined as the mean
first passage time between the cis and trans sides is

τp = τc + τd + τe, (12)

with the time of polymer capture τc = I(0, L−), dif-
fusion τd = I(L−, L+), and escape τe = I(L+, Lp +
Lm), where we defined the auxiliary integral I(zi, zf ) =
D−1

´ zf
zi

dz′eβUp(z
′)
´ z′

0
dz′′e−βUp(z

′′) [6, 13]. The analyt-
ical form of the translocation time can be also found in
Ref. [13]. In the drift regime λd � λb, the translocation
time reduces to its drift limit τp ≈ τdr = (Lp + Lm)/vdr.

B. Charge regulation model

Here, we derive the pH dependent surface charge den-
sity of the SiN pore. To this end, within the framework
of the chemical reaction scheme proposed in Ref. [24], we
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will extend the charge regulation model of Ref. [22] to in-
clude the positively charged amine groups. The surface
of the SiN pore is composed of amphoteric silanol (SiOH)
and primary amine (SiNH2) groups. The hydrolysis re-
actions resulting in SiN

Si3N + H2O → Si2NH + SiOH; (13)
Si2NH + H2O → SiNH2 + SiOH (14)

imply that on the pore surface, there are two silanol
groups for every primary amine group [24]. Thus, the
number of amphoteric groups Na and primary amine
sites Np are related as Na = 2Np. In the following, we
assume that the amphoteric and primary amine groups
are characterized by the same surface number density
σ0m = (Na+Np)/S = 3Np/S, with the area of the cylin-
drical pore S = 2πdLm.

The reactions for the silanol groups on the pore are

SiOH kd−⇀↽−
kr

SiO− + H+; SiOH + H+ lr−⇀↽−
ld

SiOH+
2 , (15)

with the corresponding mass action laws

Km = 10−pKm =
kd
kr

=

[
SiO−] [H+

]
[SiOH]

; (16)

Lm = 10−pLm =
ld
lr

=
[SiOH]

[
H+

][
SiOH+

2

] , (17)

where Km and Lm are the dissociation rates. Then, the
H+ binding reaction for primary amine groups is

SiNH2 + H+ tr−⇀↽−
td

SiNH+
3 , (18)

with the reaction rate Tm defining the mass action law

Tm = 10−pTm =
td
tr

=
[SiNH2]

[
H+

][
SiNH+

3

] . (19)

In Eqs. (16)–(17) and (19), the H+ density on the pore
surface is given by

[
H+

]
=

[
H+

]
b
e−φ(d) where the H+

density in the bulk reservoir is related to the acidity of
the solution as pH = − log10

{[
H+

]
b

}
.

In order to derive the pore surface charge density σm,
we express first the density of the chemical species on the
pore surface in terms of their rates α, β, and γ as[
SiO−] = Naα;

[
SiOH+

2

]
= Naβ; [SiOH] = (1−α−β)Na,

(20)
for the amphoteric surface groups and[

SiNH+
3

]
= Npγ; [SiNH2] = Np(1− γ) (21)

for the primitive amine groups. Noting that the net sur-
face charge is Qnet = Sσm = (β − α)Na + γNp, the pore
surface charge density σm = Qnet/S follows in the form
σm = σ0m [2(β − α) + γ] /3. Calculating the rates α and

β from the solution of Eqs. (16)–(17) and (20), and the
rate γ from Eqs. (19) and (21), one finally obtains

σm =

{
2
[
10pLm+pKm−2pHe−2φ(d) − 1

]
1 + 10pKm−pHe−φ(d)

[
1 + 10pLm−pHe−φ(d)

]
+

1

1 + 10pH−pTmeφ(d)

}
σ0m
3
. (22)

In order to compute the electrostatic potential, we first
note that in the acidity regime 2 ≤ pH ≤ 10 considered in
this work, H+ ion density is considerably lower than the
KCl concentration. Thus, H+ ions will be considered as
spectator ions that do not contribute to charge screening.
Within this approximation, the PB equation reads

1

r
∂r [r∂rφ(r)]− κ2b sinh [φ(r)] (23)

= −4π`B {σp [φ(a)] δ(r − a) + σm [φ(d)] δ(r − d)} ,

with the screening parameter κb =
√
8π`Bρb, and the

polymer charge density σp [φ(a)] whose potential depen-
dence will be specified below for the type of polymer un-
der consideration. The integration of Eq. (23) around the
pore and polymer surface yields the boundary conditions

φ′(a+) = −4π`Bσp; φ
′(d−) = −4π`Bσm. (24)

To our knowledge Eq. (23) cannot be solved in closed
form. Thus, we will solve this equation within an im-
proved Donnan approximation that was introduced in
Ref. [13] for fixed surface charges. At the first step, we
inject into Eq. (23) a uniform Donnan potential ansatz
φ(r) = φd. Integrating the result over the cross-section
of the pore, one obtains

sinh(φd) =
aσp [φd] + dσm [φd]

ρb(d2 − a2)
. (25)

Equation (25) quartic in the exponential of the potential
φd should be solved numerically. Next we improve the
pure Donnan approximation by taking into account the
spatial variation of the potential. To this end, we express
the potential as φ(r) = φd + δφ(r) and expand Eq. (23)
at the linear order in the potential correction δφ(r) to
get

1

r
∂r [r∂rφ(r)]− κ2d [sinh (φd) + cosh (φd) δφ(r)] = 0.

(26)
The solution of Eq. (26) reads

φ(r) = φd − tanh(φd) + c1I0(κdr) + c2K0(κdr), (27)

with the pore screening parameter κd = κb
√

cosh(φd)
and

c1 =
4π`B
κd

K1(κda)σm(φd) + K1(κdd)σp(φd)

I1(κdd)K1(κda)− I1(κda)K1(κdd)
; (28)

c2 =
4π`B
κd

I1(κda)σm(φd) + I1(κdd)σp(φd)

I1(κdd)K1(κda)− I1(κda)K1(κdd)
. (29)
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FIG. 2: (Color online) (a) pH dependence of the pore (black)
and polymer surface charge density (blue). (b) Apparent pore
zeta potential (37) versus the solution pH and (c) the salt
concentration. (d) Polymer zeta potential (40) against pH.
The experimental data in (b) are from Figure 2a of Ref. [15],
the data in (c) from Figure 4 of the supporting information
of Ref. [15], and the data in (d) from Figure 1b of Ref. [15].
The chemical reaction constants of the pore are pKm = 6.1,
pLm = 3.75, and pTm = 1.0, and the dissociable site density
σ0m = 0.33 e/nm2. The reaction constants for the avidin
protein are pKp = 9.5 and pLp = 8.5, and the surface density
σ0m = 0.055 e/nm2.

III. RESULTS

A. Apparent zeta potential of the SiN pore

We compare here the experimentally determined ap-
parent zeta potential of the pore obtained from the
streaming potential measurements [15] with the theoreti-
cal prediction of the present formalism. In the derivation
of the apparent zeta potential for the polymer-free pore
(i.e. for a = 0 and σp = 0), we will use the notation of
Ref. [25]. For a symmetric electrolyte with ionic charges
q± = ±1 and bulk density ρb, the net charge current
through the pore is

I = 2πeρb
∑
i=±

qi

ˆ d

0

drre−qiφ(r) [uc(r) + uTi] . (30)

In Eq. (30), the convective liquid velocity uc(r) is given
by Eq. (3). Then, the conductive velocity component of
the ionic species i reads uTi = −sign(qi)µi∆V/Lm, with
the mobility of K+ ions µ+ = 7.616×10−8 m2V−1s−1 and
Cl− ions µ− = 7.909 × 10−8 m2V−1s−1 [26]. Substitut-
ing into Eq. (30) the convective and conductive velocity
components, and using the PB Eq. (23), one obtains

I = Gv∆V +Gp∆P, (31)

with the conductance components

Gv =
2πeρb
Lm

∑
i=±

ˆ d

0

drre−qiφ(r) {qiµ [ζ − φ(r)]− µi|qi|} ;

(32)

Gp =
πd2µζ

Lm

{
2

d2ζ

ˆ d

0

drrφ(r)− 1

}
, (33)

where we introduced the zeta potential ζ = φ(d).
The streaming potential corresponds to the volt-

age that cancels the current (31), i.e. ∆Vstr =
− (Gp/Gv)∆P . Introducing the reduced conductivities

Kv =
2

d2

{∑
i=±

σi
σT

ˆ d

0

drr
[
e−qiφ(r) − 1

]
(34)

+
µe

σT

ˆ d

0

drr
∑
i=±

qie
−qiφ(r) [φ(r)− ζ]

}
;

Kp =
2

d2ζ

ˆ d

0

drrφ(r), (35)

with the bulk conductivity of the species i σi = eµi|qi|ρbi
and the total conductivity σT = σ+ + σ−, one obtains

∆Vstr = −εwkBTζapp
eησT

∆P, (36)

where the apparent zeta potential is given by

ζapp =
1−Kp

1 +Kv
ζ. (37)

At the bulk KCl concentration ρb = 0.4 M, our computed
bulk conductivity σT = 6.0 S/m compares well with the
experimentally measured value of 4.7− 5.1 S/m[15].

Figures 2(a) and (b) display the pH dependence of the
surface charge and apparent zeta potential of the SiN
pore [15]. The chemical parameters providing the best
agreement with the experimentally measured zeta poten-
tial are given in the legend. Starting at pH = 10 and ris-
ing the acidity of the solution, H+ binding to the silanol
and primary amine groups increases the pore charge and
zeta potential (pH ↓ σm ↑ ζapp ↑), and turns them from
negative to positive at pH ≈ 5. Our model can accu-
rately reproduce the pH dependence of the experimental
data, except at pH = 2 where the data is overestimated.

Figure 2(c) displays the salt dependence of the ap-
parent zeta potential ζapp at pH = 8.2 where the pore
is anionic. One sees that salt addition amplifies charge
screening and lowers the magnitude of this potential, i.e.
ρb ↑ |ζapp| ↓. With the same model parameters as in
Fig. 2(b), the theoretical prediction for ζapp agrees well
with the experimental data. As the apparent zeta poten-
tial (37) involves, in addition to the bare potential ζ, the
pore conductance components (34) and (35), the agree-
ment with experiments indicates that our model is also
accurate in predicting the pressure and voltage-driven
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FIG. 3: (Color online) (a) pH dependence of the avidin translocation rate (black curve) and drift velocity (blue curve), and
(b) experimental rate of translocation events from TABLE 1 of Ref. [15]. (c) Liquid velocity profile (3) at various pH. The salt
concentration ρb = 0.05 M and external voltage ∆V = −150 V are taken from of Ref. [15]. In the corresponding drift regime,
the curves have no visible dependence on the precise value of the polymer length set to Lp = 10 nm.

charge conductivity of the pore. We finally note that the
contribution from H+ ions to salt screening is expected
to increase at low pH or KCl concentration. Thus, in the
corresponding regimes of Figs. 2(b) and (c), the devia-
tion of the theoretical curves from the experimental data
may originate from the spectator H+ ion approximation
introduced in Eq. (23).

B. Voltage-driven translocation of avidin proteins

We investigate here the pH controlled translocation of
avidin proteins through SiN nanopores under an exter-
nally applied voltage [15]. According to the zeta potential
measurements of Ref. [15], avidin is an amphoteric poly-
electrolyte. Thus, we model the pH dependent inversion
of the avidin charge by the chemical reaction scheme

SOH
k′
d−⇀↽−
k′
r

SO− + H+; SOH + H+ l′r−⇀↽−
l′d

SOH+
2 , (38)

with the characteristic dissociation rates Kp = 10−pKp =

k′d/k
′
r and Lp = 10−pLp = l′d/l

′
r. Following the derivation

of Eq. (22), the protein charge density follows as

σp =
10pLp+pKp−2pHe−2φ(a) − 1

1 + 10pKp−pHe−φ(a)
[
1 + 10pLp−pHe−φ(a)

]σ0p,
(39)

where σ0p stands for the density of the dissociable groups.
Figure 2(d) compares the avidin zeta potential ob-

tained from the charge regulation scheme of Eq. (38) with
the experimental values of Ref. [15] extracted from the
polymer mobility. The theoretical prediction for the zeta
potential is obtained from the bulk limit of Eq. (27) where
φd → 0 and κd → κb, which yields

ζp = lim
d→∞

φ(a) =
4π`Bσp(0)

κb

K0(κba)

K1(κba)
. (40)

The chemical reaction parameters providing the best
agreement with the experimental data are given in the
legend of Fig. 2. One notes that the pH reduction in-
creases the avidin charge (the blue curve in Fig. 2(a))

and the zeta potential (pH ↓ σp ↑ ζp ↑), and switches
their sign at the point of zero charge pH ≈ 9. Within the
experimental scattering, the charge regulation model (38)
can account for the pH induced inversion of the avidin
zeta potential with a reasonable accuracy.

Having established the pH dependence of the pore and
protein surface charges, we characterize the avidin con-
ductivity of the SiN pore. Figures 3(a) and (b) display
respectively the translocation rate and the experimen-
tal rates of translocation events from Ref. [15]. One
notes that for pH . 4, translocation events are rare. At
pH & 4, the translocation rate quickly rises (pH ↑ Rp ↑),
reaches a peak at pH ∼ 6 − 8, and drops beyond this
value (pH ↑ Rp ↓). The comparison of Figs. 3(a) and
(b) shows that our model can accurately reproduce the
overall pH dependence of the experimental translocation
data. The slower decay of the theoretical curve at large
pH may be due to the contribution from the diffusion-
limited capture regime not included in our model.

According to Eqs. (8) and (9), translocation is driven
by electrostatic polymer-pore interactions embodied in
the potential Vp(zp), and the EP and EO drags resulting
in the velocity vdr. In Fig. 3(a), the strong correlation
between the vdr and Rp curves implies that due to the
weak avidin surface charge, avidin translocation is drift-
driven and protein-pore interactions play a minor role.

To characterize the pH dependence of the avidin
translocation rates in terms of the electrohydrodynamic
drift, in Fig. 3(c) we report the liquid velocity profile (3)
at various pH values. This plot should be interpreted to-
gether with the surface charge density plots in Fig. 2(a).
We note that the electric field E induced by the negative
voltage ∆V = −150 mV is oriented towards the trans
side corresponding to the positive velocity direction (see
Fig. 1). From pH = 2 to 4, the Cl− ions attracted by
the cationic pore (σm > 0) result in a negative liquid
velocity uc(r) < 0. As σm > σp, the corresponding EO
drag in the cis direction dominates the EP drift in the
trans direction and results in a negative polymer velocity
vdr = uc(a) < 0. Thus, the hinderance of polymer cap-
ture at pH ≤ 4 stems from the drag force induced by the
anionic EO flow.
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Rising the solution pH in the subsequent regime 4 ≤
pH ≤ 8, the protein charge σp remains constant while the
pore charge σm drops and turns from positive to negative.
The resulting cation excess leads to a positive EO veloc-
ity uc(r) > 0 and polymer drift velocity vdr = uc(a) > 0
(see Fig. 3(c)). Thus, the quick rise of the event rates
at pH > 4 is induced by the cationic EO flow that drags
the protein in the trans direction. Finally, increasing the
pH beyond the value pH ∼ 8, σm remains constant while
σp turns from positive to negative. The protein charge
inversion switches the sign of the avidin zeta potential
φ(a) and turns the direction of the EP velocity compo-
nent vep = µEφ(a) from trans to cis side, reducing the
translocation rate in Figs. 3(a) and (b). Thus, beyond
the charge inversion point pH ≈ 9, protein capture is
solely driven by the EO flow. These results confirm a
similar mechanism that was proposed in Ref. [15] based
on the comparison of the experimental pore and protein
zeta potentials.

C. pH controlled DNA trapping

In nanopore-based biosensing approaches, serial poly-
mer translocation necessitates fast polymer capture while
accurate sequencing requires long signal duration, i.e. ex-
tended translocation time. We characterize the ds-DNA
conductivity of SiN pores to show that mutual enhance-
ment of the polymer capture speed and translocation
time can be achieved by tuning the acidity of the so-
lution. We have recently showed that ds-DNA transport
can be accurately described by an inert polymer surface
charge [14]. Thus, we fixe the DNA surface charge den-
sity to the value σp = −0.4 e/nm2 obtained from current
blockade data [12].

Figures 4(a)–(c) display the pH dependence of the ds-
DNA translocation rate Rp and rescaled translocation
time τp/τdr (black curves), and the polymer potential
profile Up(zp). The behavior of these quantities can be
described in terms of the inverse lengths λd,b introduced
in Eq. (10). At pH = 6.5 where the system is located
in the barrier-dominated regime λb > λd, the pore en-

trance is characterized by an electrostatic barrier that
reaches the value Up ≈ 2.5 kBT/nm at zp = Lp = 10 nm.
Figure 4(a) shows that this barrier leads to a negative
capture velocity

vc = vp(zp < Lp) = vdr

(
1− λb

λd

)
, (41)

resulting in a vanishingly small translocation rate Rp and
large translocation time τp. Thus, at large pH values
where the membrane is anionic, polymer capture is hin-
dered by electrostatic DNA-pore repulsion. Then, the
increase of the acidity to the point of zero charge pH = 5
suppresses the barrier and takes the system to the drift-
driven regime λd > λb > −λd where the polymer poten-
tial Up(zp) turns to downhill. This enhances the capture
velocity and translocation rate, and reduces the translo-
cation time (pH ↓ vc ↑ Rp ↑ τp ↓) by orders of magnitude.

Below the value pH ≈ 5 where the pore becomes
cationic, the translocation rate and time rise mutually
with the acidity of the solution, i.e. pH ↓ Rp ↑ τp ↑. This
departure from the drift transport picture originates from
the onset of opposite charge DNA-pore interactions. In-
deed, Fig. 4(c) shows that the variation of the acidity
from pH = 5 to 2.5 lowers the potential Up(zp) and gives
rise to an attractive potential minimum at the pore exit
zp = Lm = 30 nm. At the corresponding pH value, the
system is located in the trapping regime λb < −λd where
the polymer-pore attraction enhances the DNA capture
velocity (41) (vc > vdr) but also traps the molecule at the
pore exit. Figure 4(b) shows that upon the variation of
the acidity from pH = 6.5 to 2.5, this mechanism reduces
the polymer capture time and increases the polymer es-
cape time (pH ↓ τc ↓ τe ↑) from their drift limit by several
orders of magnitude. This prediction is of high relevance
for the optimization of nanopore-based biosensing tech-
niques.

The effect of the polymer length on these features can
be characterized by recasting the capture velocity (41) as

vc = vdr

[
1− sign(ψp)

L∗
p

Lp

]
, (42)
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with the critical length

L∗
p =

ln(d/a) |ψp|
2πηβvdr

(43)

separating the drift (Lp > L∗
p) and barrier/trapping

regimes (Lp < L∗
p). Figure 4(d) displays the pH de-

pendence of the length (43). The location of the bar-
rier and trapping regimes below the critical line L∗

p −pH
stems from the fact that the external voltage acts on
the whole polymer sequence while polymer-pore inter-
actions originate solely from the polymer portion in the
pore. Thus, polymer-pore interactions have a stronger ef-
fect on the translocation of shorter sequences. According
to Eq. (42), this results in the faster capture of shorter
polymers by cationic pores, i.e. Lp ↓ vc ↑ for ψp < 0.
One also notes that in the same cationic pore regime of
Fig. 4(d), due to the enhancement of the polymer-pore
attraction, the upper length (43) for polymer trapping
rises with increasing acidity (pH ↓ L∗

p ↑) and decreasing
salt (ρb ↓ L∗

p ↑). This phase diagram may provide guid-
ing information for probing the pH controlled polymer
trapping in translocation experiments.

IV. SUMMARY AND CONCLUSIONS

In this Letter we have introduced an electrohydro-
dynamic model of pH controlled polymer translocation
through SiN pores whose surface charge can be inverted
upon protonation. Our model incorporates a charging
procedure that can quantitatively reproduce the experi-
mentally established pH and salt dependence of the pore
surface charge. Within the framework of this model, we
have investigated the electrohydrodynamic mechanism

behind the avidin conductance of SiN pores. Our model
can accurately reproduce the experimentally measured
non-monotonic dependence of the avidin translocation
rates on the solution pH [15]. We showed that this pecu-
liarity originates from the interplay between the EO drag
and EP drift forces on the avidin protein.

We have also investigated the transport of ds-DNA
molecules through SiN pores. Our analysis unraveled an
electrostatic trapping mechanism that allows the mutual
increase of the polymer capture speed and translocation
time by pH tuning. As polymer trapping occurs in
the escape regime zp > L−, the scanning of the entire
polymer sequence at reduced velocity is possible only
if the pore is longer than the polymer. Our finite-size
analysis also shows that faster polymer capture followed
by extended translocation occurs for sequences of length
Lp < L∗

p. This inequality is consistent with the above-
mentioned length hierarchy Lp < Lm required for the
slow sequencing of the entire polymer in the electrostatic
trap. We have also shown that the upper sequence
length L∗

p for polymer trapping can be tuned upon
the variation of the acidity or the salt concentration.
Future works can extend our model by including the
diffusion-limited capture regime, the electrostatics of the
finite membrane size, or entropic polymer fluctuations.
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