
1

How Good Are Distributed Allocation Algorithms for Solving Urban Search and
Rescue Problems? A Comparative Study With Centralized Algorithms

Na Geng , Qinggang Meng , Senior Member, IEEE, Dunwei Gong , Member, IEEE, and Paul W. H. Chung

Abstract— In this paper, a modified centralized algorithm
based on particle swarm optimization (MCPSO) is presented to
solve the task allocation problem in the search and rescue domain.
The reason for this paper is to provide a benchmark against
distributed algorithms in search and rescue application area. The
hypothesis of this paper is that a centralized algorithm should
perform better than distributed algorithms because it has all the
available information at hand to solve the problem. Therefore,
the centralized approach will provide a benchmark for evaluating
how well the distributed algorithms are working and how
much improvement can still be gained. Among the distributed
algorithms, the consensus-based bundle algorithm (CBBA) is a
relatively recent method based on the market auction mechanism,
which is receiving considerable attention. Other distributed algo-
rithms, such as PI and PI with softmax, have shown to perform
better than CBBA. Therefore, in this paper, the three distributed
algorithms mentioned earlier are compared against three central-
ized algorithms. They are particle swarm optimization, MCPSO,
described in this paper, and genetic algorithms. Two experiments
were conducted. The first involved comparing all the above-
mentioned algorithms, both centralized and distributed, using
the same set of application scenarios. It is found that MCPSO
always outperforms the other five algorithms in time cost. Due
to the high failure rate of CBBA and the other two centralized
methods, the second experiment focused on carrying out more
tests to compare MCPSO against PI and PI with softmax. All
the results are shown and analyzed to determine the performance
gaps between the distributed algorithms and the MCPSO.

Note to Practitioners—This paper was motivated by the limi-
tation of current distributed task allocation algorithms as they
cannot achieve performances that are as good as the centralized
ones. Therefore, a centralized algorithm is designed to evaluate
the performance gap between the state-of-the-art distributed
and centralized approaches. In the future research section,
a new distributed particle swarm optimization (PSO) algorithm

This work was supported in part by the National Natural Science
Foundation of China under Grant 61703188, Grant 61673404, and Grant
61873105, in part by the National Basic Research Program of China under
Grant 2014CB046306-2, in part by the Natural Science Foundation of
Jiangsu under Grant BK20160219, and in part by the Natural Science
Foundation of Jiangsu Normal University under Grant 16XLR043. This paper
was recommended for publication by Associate Editor S. Genc and Editor

D. Popa upon evaluation of the reviewers’ comments. (Corresponding author:
Dunwei Gong.)

N. Geng is with the School of Electrical Engineering and
Automation, Jiangsu Normal University, Xuzhou 221116, China (e-mail:
gengna@126.com).

Q. Meng and P. W. H. Chung are with the Department of Computer
Science, Loughborough University, Loughborough LE11 3TU, U.K. (e-mail:
q.meng@lboro.ac.uk; p.w.h.chung@lboro.ac.uk).

D. Gong is with the School of Information and Control Engineering,
China University of Mining and Technology, Xuzhou 221008, China, and
also with the School of Information Science and Technology, Qingdao
University of Science and Technology, Qingdao 266061, China (e-mail:
dwgong@vip.163.com).

is proposed based on this paper as the research has shown that
the proposed centralized PSO algorithm delivers the best results
so it is potentially a strong candidate for adaptation.

Index Terms— Centralized task allocation, distributed task
allocation, particle swarm optimization (PSO), search and rescue.

I. INTRODUCTION
Motivated by recent advances in intelligent systems and

cooperative control, researchers have been studying various
applications of multivehicle systems to accomplish difficult
missions such as search and rescue [1] and logistics [2],
[3]. One of the key problems that need to be addressed in
multivehicle systems is task allocation, which is to assign
vehicles to tasks without conflicts and to minimize a global
cost objective or to maximize some global rewards.

The test scenarios in this paper are based on the rescue
aspect of search-and-rescue applications. A team of unmanned
air vehicles (UAVs) is to be assigned tasks to visit speci-
fied locations to supply medicine or food to victims. The
multivehicle task allocation problem has been shown to be
NP-hard [4]; therefore, obtaining a globally optimal solution
is computationally intensive for complex scenarios.

Multivehicle task allocation problems are often solved in
a distributed manner such as using the market-based mecha-
nisms [5], [6]. The auction approaches are among the most
popular since they are efficient in terms of both computa-
tion and communication [7]. Recently, consensus-based bun-
dle algorithm (CBBA) [8], [9] has attracted more interest.
It is a distributed algorithm that iterates between the bundle
construction phase and the conflict resolution phase. Based
on it, Turner et al. [10] presented a decentralized method
for maximizing the number of tasks allocation under strict
time constraints. It is based on auction theory, and multiple
reassignments among networked robots may be required to
create a feasible time according to the performance require-
ments. Whitbrook et al. [11] addressed two main problems,
i.e., solution trapped in local minima and static structure,
with many heuristic task allocation approaches. The exist-
ing distributed task allocation algorithm known as perfor-
mance impact is used to solve the above-mentioned problems.
Zhao et al. [1] proposed a novel heuristic distributed task
allocation algorithm, i.e., the PI algorithm, for multivehicle
multitask assignment problems, and a new concept of signifi-
cance was defined for each task. “Significance” is a measure
of the local cost to a vehicle if it was to execute that task.
Whitbrook et al. [12] modified the proposed PI algorithm
by integrating ε-greedy and Soft-max-based action selec-
tion strategies; simulation results showed that the modified
algorithms perform better on the number of tasks allocated
than PI algorithm but slower than the PI algorithm.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288358741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-8258-9941
https://orcid.org/0000-0002-9483-5724
https://orcid.org/0000-0003-2838-4301

2

Some researchers have used centralized approaches to solve
the multivehicle task allocation problems [4], [13], [14];
among all these approaches, intelligent optimization algo-
rithms are the most widely used. Zhu et al. [15] proposed an
integrated multiple autonomous underwater vehicle dynamic
task assignment and path planning algorithm by combing the
improved self-organizing map neural network and a novel
velocity synthesis approach. Pujol-Gonzalez et al. [16] focused
on RoboCup rescue simulation challenge and used the max-
sum approach to solve the problem of multi-team allocations.

Many evolutionary algorithms were also employed in the
field of task allocation; for example, Salman et al. [17]
presented a new algorithm based on particle swarm optimiza-
tion (PSO), and its performance was evaluated in comparison
with the well-known genetic algorithm (GA). The results
showed that the solution quality of the PSO algorithm is better
than that of GA in most cases. In addition, the PSO algorithm
runs faster compared with GA in experiments [18].

PSO is a computational method that optimizes a problem
by iteratively improving a candidate solution with regards to
a given measure of quality [19]. The population of candidate
solutions is represented in the problem solution search
space, and they are moved around by altering their velocities
and positions according to some simple mathematical
formulas [20].

PSO is a metaheuristic algorithm as it makes no, or few,
assumptions about the problem being optimized and is suitable
for searching very large solution spaces. More specifically,
PSO does not use the gradient of the problem being optimized,
which means it does not require the optimization problem to be
differentiable as required by methods such as gradient descent
and quasi-Newton methods. PSO is therefore applicable to
optimization problems that are partially irregular, noisy, and
adaptive [21].

Another advantage PSO has over other optimization tech-
niques is that it can be implemented in a few lines of
computer codes using just a few primitive mathematical oper-
ators [22], [23]. Therefore, in this paper, PSO is chosen as
the centralized approach for comparing with the advanced
distributed algorithms. Two PSO algorithms, PSO and modi-
fied centralized algorithm based on PSO (MCPSO), are used.
Another centralized approach chosen is GA, which is a popular
random search method for solving optimization problems.

From previous studies, we can conclude that even though
the task allocation problem has been studied for years, dealing
with complex task scenarios is still an open problem. In this
paper, we investigate the use of centralized algorithms to solve
the multivehicle task allocation problem. As our assumption is
that a well-designed centralized algorithm should outperform
any distributed algorithms because it has all the available infor-
mation, therefore, the proposed algorithm, named MCPSO,
is compared against distributed task allocation algorithms to
gain an insight into how well those distributed algorithms
actually work.

The contributions of this paper are as follows.
1) A benchmark algorithm is proposed to estimate the

difference between centralized and distributed algorithm.
2) A priority sequence and a new decode method are given.

Fig. 1. Rescue environment.

3) The insert operation and local search methods are
presented.

4) New methods for updating global and local best solu-
tions are proposed.

5) Two experiments are conducted to verify the proposed
method.

II. PROBLEM DESCRIPTION

The rescue environment is shown in Fig. 1; we can see
that there exist different types of survivors (tasks) as indicated
by different icons. The vehicles are assigned tasks so that
collectively they will be able to rescue all the survivors. The
goal of task allocation is to schedule and assign a sequence
of tasks to each available vehicle without any conflicts among
all vehicles. The same assumptions are made as stated in [12].

More specifically, we select one optimization criteria to
achieve the objective, e.g., minimum cost. In this paper,
the aim is to minimize the sum of the cost of all paths over
all vehicles. In addition, the path cost includes the travel time
and rescue time. The minimum average time is used as the
problem’s objective.

To formulate the problem mathematically, a list of key
symbols used is provided in Table I. The aim of the problem
is to assign the m locations to n heterogeneous unmanned
vehicles with the minimum average time. The objective for
the scenario can be expressed as

min F = min

{
1

m

n∑
i=1

αi∑
k=1

ci,k (ai)

}
. (1)

III. MCPSO FOR TASK ALLOCATION METHOD

In this section, the proposed MCPSO algorithm is presented,
which is a modification of the basic PSO algorithm. The basic
idea of PSO is first described in Section III-A, followed by
the contributions of the proposed algorithm for optimizing the
stated objective.

3

TABLE I

SYMBOL DEFINITIONS

A. Basic PSO

The PSO algorithm is inspired by how a flock of birds seeks
food collaboratively. It treats each solution of the optimization
problem as a bird that flies at a certain velocity in the search
space, and its velocity is adjusted dynamically. The bird is
abstracted as a particle without weight and volume. Each
particle owns a fitness value determined by the function that
needs to be optimized, and a record of the best location so
far is kept, i.e., lbest. Each particle also knows the best global
location, i.e., gbest. The particles determine their next and
further movements according to their own and their com-
panions’ experiences. Taking the PSO algorithm with inertia
weight [24] as an example, the updated formulas of a particle’s
velocity and location are as follows:

vi j (t + 1) = wvi j (t) + c1r1(pi j (t) − xi j (t))

+ c2r2(pgj (t) − xi j (t)) (2)

xi j (t + 1) = xi j (t) + vi j (t + 1) (3)

where w is the inertia weight, which is a user-specified para-
meter, c1 and c2 are the positive constants called acceleration

coefficients, r1 and r2 are the random numbers in the range
of [0, 1], j = 1, 2, . . . , n; i = 1, 2, . . . m, and m is the size of
the swarm and n is the dimension of the particles.

B. Priority Determination

If the distance between a rescue location and a vehicle is
too far or the mission’s end time is too short, then the vehicle
is unable to reach the location before the end time even if it
is the first task in the schedule. In this paper, we call it an
impossible task. It is better to ignore such tasks to allow time
for other tasks.

Priorities are set for the tasks according to the time cost
between the rescue locations and vehicles. The priority is
determined by the time difference between the end time and
the travel time from the vehicle to a location. If the time
difference is greater than zero but small, then the priority
of the task for the vehicle is high; if the time difference is
greater than zero but the value is large, then the priority for
the vehicle is low; otherwise, the priority is set to the lowest.
Priority assignment is given in Algorithm 1.

Algorithm 1 Getting the Priority of Each Task
Input: locations of tasks and vehicles, end time of each task
Output: priority set of each vehicle
1: For i = 1 to n
2: For j = 1:m
3: Distance(i, j) = |vehicle(i)-task(j)|
4: Time(i, j) = Distance(i, j)/velocity(i)
5: DifTime(i, j) = Endtime(j)-Time(i, j)
6: End
7: If DifTime(i,j) > 0
8: Set1(i) = {Set1(i) ∩ j}
9: Else
10: Set2(i) = {Set2(i) ∩ j}
11: End
12: Priority = { sort(Set1(i)) ∩ sort(Set2(i)) }
13:End

C. Particle Coding and Decoding Methods

One particle represents one solution, and it should contain
all of the tasks that need to be carried out. For simplicity,
the length of particle coding is the same as the number of
rescue locations that need to be visited. Since there are m
locations, the length of the particle coding is set to m.

In order to calculate the average time cost, we need to
know the rescue sequence, so the decoding strategy of the
particle is needed. In this paper, an integer coding method is
used to determine the task sequence. Assuming the coding of
a particle is xi = (xi1, xi2, . . . , xim) and after decoding the
task sequence is Xi = (Xi1, Xi2, . . . , Xim), that there are u
kinds of tasks to be carried out, and the task numbers for each
vehicle are

t N = {t N1, t N2, · · · , t Nu } = �m/u�,
⌈

m − �m/u�
u − 1

⌉
, · · · ,

m −
⌈m

u

⌉
−

⌈
m − �m/u�

u − 1

⌉
− · · ·

4

Fig. 2. Insert operation. (a) One vehicle has the max number of tasks. (b) Two vehicles have the max number of tasks.

and the number of vehicles for each type is

vN = {vN1, vN2, · · · , vNu } =
⌈n

u

⌉
,

⌈
n − �n/u�

u − 1

⌉
, · · · ,

n −
⌈n

u

⌉
−

⌈
n − �n/u�

u − 1

⌉
− · · ·

Then, the decoding method is as described as follows.
First, for the first kind of tasks, the former �m/u� elements

in xi , i.e., x1
i = (xi1, xi2, . . . , xit N1), the length of x1

i is �m/u�;
for the first element xi1, apply the mod and add operations,
i.e., mod (xi1, �n/u�)+1, the result is an integer representing
the numerical order of the vehicle to which the first task is
allocated. The process is repeated until all the elements in x1

i
are assigned. Second, for the remaining elements in xi , e.g.,
x2

i = (xi(t N1+1), . . . , xi(t Nu−1), xit Nu), it is also necessary to
calculate which task is assigned to which vehicle by applying
the mod and add operations, i.e., mod (xi(t N2+1), vN2) +
�n/u� + 1. The process continues until all elements in xi are
assigned to a task sequence for each vehicle. Third, since the
number of tasks is larger than the number of vehicles, a vehicle
may have more than one task assigned to it so the assigned
tasks will need to be reordered.

When multiple tasks are assigned to the same vehicle, then
the rescue sequence is determined according to the priority
described later in Section III-B.

D. Lbest and Gbest Solutions Update Methods

In this paper, the aim is to obtain the minimum mission
time cost to complete all tasks with the minimum number
of failures. The following method is used to obtain lbest and
gbest at each iteration with the condition that the final solution
has the tasks assigned with the minimum number of failures.
The update method is given in Algorithm 2.

E. Particle Velocity and Location Update Method

As particles use an integer coding method, the update
formulas for the particle’s velocity and location are different
from those of the common PSO. The following formulas are
used instead:

vi j (t + 1) = ωvi j (t) + c1r1(pi j (t) − xi (t))

+ c2r2(g j (t) − xi j (t)) (4)

xi j (t + 1) = �xi j (t) + vi j (t + 1)�. (5)

Algorithm 2 Local and Global Best Solutions Update
Input: lbest, gbest, fail, and the current particle
Output: lbest, gbest, fail
1: If fail(curPar) < fail(lbest)
2: lbest = curPar
3: Elseif (f (lbest)> f (curPar)) and (fail(curPar)= fail(lbest))
4: lbest = curPar
5: Else
6: lbest = lbest
7: End
8: If fail(gbest) > fail (lbest)
9: gbest = lbest
10: Elseif (f (gbest)> f (lbest)) and (fail(lbest) = fail(gbest))
11: gbest = lbest
12: Else
13: gbest = gbest
14:End

F. Insert Operation

PSO is a stochastic algorithm so there may exist situations
such that some vehicles are assigned to no task, or very few
tasks, and other vehicles are assigned to too many tasks.
This will result in mission failure or a high mission time
cost. In order to avoid such situations, an insert operation is
proposed.

First, the number of tasks assigned to each vehicle is
calculated. The vehicles with the largest and smallest number
of tasks are noted. Second, determine whether the smallest
number of tasks assigned to a vehicle is lower than [m/n].
If yes, delete the last task in the task list of the vehicle with the
largest number of tasks, and insert it into the vehicle with the
smallest number of tasks. Repeat the above-mentioned steps
until the smallest number of tasks assigned to a vehicle is
equal to [m/n]. After the iteration terminates, the new task
list is reordered according to the priority set. Fig. 2 shows an
example.

G. Local Search Methods

After applying the gbest update method, local methods are
employed to increase the convergence speed to find better
solutions. However, it is time consuming to apply local search

5

Algorithm 3 Modified 2-OPT Method
Input: gbest, and fail
Output: gbest
1: For i = 1: u
2: For j = 1:ni
3: [a,b]=randint(2,1, ni), and b �= a
4: c = randint(1, ma), d = randint(1, mb),
5: task c ↔ task d
6: sort task list according to the priority set
7: If total time cost improves or failure time

declines
8: modify the sequence
9: End
10: End
11: End

Algorithm 4 Modified Exchange Method
Input: gbest, and fail
Output:gbest
1: For i = 1 to u (number of vehicle types)
2: [k j] = randint(2, 1, ni), and k �= j
3: ak ↔ a j

4: sort the task list according to the priority set
5: If solution improves,
6: modify the task list
7: End
8: End

methods to all of the particles or even a portion of the particles.
Therefore, local search methods are performed on gbest after
decoding.

We modified the 2-opt and exchange operations as described
in [25] and used them in this paper for their advantages.
2-opt is a well-known local search method [26] with an O(n2)
computational complexity that aims to improve a solution by
changing the sequence of tasks for each vehicle. However,
in this paper, the task sequence for each vehicle is sorted
according to the priority order, so changing the sequence of
tasks within a task list may have the opposite effect. Therefore,
changes take place between two different types of vehicles
rather than the same type. The detailed steps of this operation
are given in Algorithm 3 (note: the modified 2-opt method in
this paper can only be done between the vehicles of the same
task type).

Exchange operation [25] does not change the positions
between tasks among vehicles of the same type; it changes
the tasks between different vehicles with different types,
as different types of vehicles are located in different positions
(note: the exchange operation only can be performed between
vehicles that carry out the same type of tasks). The details are
given in Algorithm 4.

Algorithms 3 and 4 are combined into Algorithm 5. If an
improved solution is found, then the algorithm stops. Other-
wise, it carries on until the maximum number of iterations is
reached.

Algorithm 5 Local Search Method
Input: gbest, and fail
Output: gbest
1: If (iter1 < maxiter1)
2: perform modified 2-opt method
3: If solution improves
4: modify the task list
5: Break
6: Else
7: If (iter2 < maxiter2)
8: perform modified exchanged method
9: If solution improves
10: modify the task list
11: Break
– 12: Else
13: record the best one so far
14: End
15: iter2 = iter2+1
16: End
17: End
18: iter1 = iter1+1;
19:End
20:Output the gbest after coding the new generated task list

H. Local Optimum Avoidance

Although the PSO algorithm has many advantages, it may
trap into a local optimum. If the particles cannot jump out of
the local optimum, then the whole swarms will be trapped.
The following strategy is used to avoid trapping into a local
optimum.

First, the global best solutions of the current and previous
generations are compared and the difference between the two
is calculated. Second, count the number of consecutive gains
that are smaller than a set threshold. The threshold number is
to evaluate whether the optimum value is trapped into a local
optimum. If the number is larger than the threshold, then the
population is reinitialized.

IV. OVERVIEW OF SIMULATION CONFIGURATIONS

This section presents the simulation scenarios for evaluating
the proposed centralized task allocation method together with
other centralized and decentralized methods. The scenario
description and its corresponding results are introduced and
analyzed first in Section V, followed by the detailed simulation
results in Section VI obtained from a large number of scenarios
with different initial settings using random seeds and different
numbers of vehicles and tasks.

Since CBBA and its modified versions are among the most
popular market-based methods to solve the task allocation
problem, MCPSO is compared with CBBA, PI, and PI with
softmax. In order to further illustrate the effectiveness of
MCPSO, it is also compared with the PSO and GA.

Two experiments are carried out. The first one is based
on the search-and-rescue scenarios reported in [1] and [12];
the second one is conducted using more difficult scenarios
to test MCPSO further. The scenarios used in Section VI are

6

Fig. 3. Comparison results between MCPSO and the other five methods in seven different scenarios. (a) Total number of failure for nine missions in each
scenario. (b) Average mission time for all nine missions in each scenario.

more complex than those in Section V with a larger number of
vehicles and tasks and also the parameter values are smaller;
besides, there is no situation that the ratio between the number
of the tasks and the vehicles is 2.

V. EXPERIMENT ONE

A. Test Scenario
In this section, MCPSO is evaluated for multivehicle mul-

titask allocation problem based on the 69 search-and-rescue
scenarios reported in [1] and [12].

In this experiment, nine seeds are used to generate the
3-D scenarios with 4, 6, 8, 10, 12, 14, and 16 vehicles,
i.e., 63 different problems are tackled. The corresponding
number of tasks is exactly double the number of vehicles, and
the number of helicopters and UAVs is always the same. The
problems are solved using CBBA, the PI algorithm, the modi-
fied PI algorithm with softmax, PSO, GA, and MCPSO. If the
problem is solved, i.e., all tasks are scheduled to complete on
time, the fitness is calculated and recorded. If some tasks are
not completed within the allocated time, then the number of
failed tasks for each task type will be recorded instead.

For all the test scenarios, the x and y coordinates range
from −5000 to 5000 m and the z coordinate ranges from
0 to 1000 m. In addition, the unmanned helicopters travel
at 30 m/s and the UAVs at 50 m/s, and all the vehicles are
available from the time it is scheduled to start. The time
window within which the scenario must finish is set at 2000 s
and the earliest start time is 0 s for a task. The latest start time
is generated for each task using a random fraction of 2000 s.
The time set for delivering medicine is 300 s, and the time
needed to supply food is set to 350 s.

The parameters of MCPSO are set the same as [27]. All
the experiments are conducted using MATLAB R2013a in the
same 64-bit machine running Windows 7 Enterprise Edition
and using a 2.5-GHz Intel Core i5-2400S Processor.

B. Simulation Results and Discussion

Fig. 3 shows the comparison results among CBBA,
PI, PI with softmax, GA, PSO, and MCPSO using the
63 problems (nine missions in seven configurations) presented
by Zhao et al. [1]. Fig. 3(a) shows the total number of
failures of all nine missions for the seven configurations.

7

TABLE II

AVERAGE ALGORITHM RUNING CPU TIMES (SECONDS)

Fig. 3(b) shows the average mission time of the successful
missions for each scenario.

Table II summarizes the CPU times for all the algorithms
for all the scenarios, and the best results are highlighted in
bold.

From Fig. 3, we can see that CBBA has a high failure rate.
Out of 63 problems, CBBA is only able to solve 13 of them
and none of them is one best solution when compared with the
other algorithms. However, CBBA is fast, only slightly slower
than the PI algorithm.

The PI algorithm is modified from the CBBA algorithm,
and it inherits the merits of the original algorithm. It can
solve the different scenarios very quickly even when there
are many vehicles and tasks. All the scenarios, although not
all nine missions in each of the configuration, can be solved
by PI. However, PI cannot offer one best solution out of the
63 problems. Hence, the fitness values are in the middle place
among all algorithms.

The PI with softmax algorithm consistently outperforms the
original PI algorithm with a small margin but it cannot offer
any best solution either. However, it is the slowest of all the
algorithms.

PSO solved 18 out of all the 63 problems, and three of them
are the best solutions. The PSO algorithm is faster than PI with
softmax, MCPSO, and GA, but it is slower than PI and CBBA.
However, PSO cannot solve the complex problems, i.e., with
more than 10 vehicles and 20 tasks.

GA, which is modified to solve the task allocation problem,
has some improvements, including the coding and decoding
methods (the same as PSO), modified one-point crossover
operator, and modified selection operator (adding the number
of failures as an index to select the best solution). The
parameters in GA are given the same values as those of
MCPSO. Fig. 3 shows that GA only solved 7 out of the 63
problems, and none of them is the best solution; besides, its
CPU running time is a bit longer than that of PSO.

For MCPSO, there are only four problems unsolved out
of the 63, and 56 out of the 59 solutions are the best
results. For MCPSO, the CPU running time increases quite
significantly with the increase of the numbers of vehicles and
tasks. However, the time required is still acceptable for the
scenarios considered.

VI. EXPERIMENT TWO

A. Test Scenario
A limitation of experiment one is that for each scenario,

the number of tasks is always twice the number of vehicles.
In experiment two, a wider range of more realistic scenarios is

considered by changing the parameters for the scenario simu-
lation platform, enlarging the search and rescue environment,
and extending the end time for each mission. In addition,
the number of the tasks is increased to make the scenarios
more complex, and the number of tasks is not exactly twice
that of the vehicles. Eight vehicles are used to carry out
20, 30, 40, 60, 80, and 100 rescue tasks. For each scenario,
nine seeds are used to generate nine missions.

The parameters in the simulation experiment are changed
as well. In all algorithms, the world x and y coordinates
range from −10 000 to 10 000 m, and z coordinates range from
0 to 1000 m. The time window within a mission must finish
is set as 20 000 s for all algorithms, and the earliest start
time is always 0 s for all tasks. The latest start time was
generated for each task using a random fraction of 20 000 s.
Other parameters stay the same as experiment one.

Since GA, CBBA, and PSO produced high failure rates in
experiment one, in this experiment, MCPSO is only compared
with PI and PI with softmax.

B. Simulation Results and Discussion

Fig. 4 shows the results for PI, PI with softmax, and MCPSO
from six scenarios, each with nine missions. Fig. 4(a) shows
the total number of failures out of nine missions in a sce-
nario for each algorithm. Fig. 4(b) shows the average fitness,
i.e., the average mission time, for all successful missions for
each algorithm.

Table III shows the CPU times taken to tackle the scenarios.
Fig. 4 shows that all three methods can solve all the missions

with 20 and 30 tasks but with several failure missions. PI can
solve them significantly faster than the other two methods,
but its average mission time is the worst one, and its failure
number is the largest; while for its modified version, PI with
softmax method, it can solve both of the two problems within
nine missions but cannot offer any best results for these six
different missions, and its failure number ranks the second
among the three algorithms. MCPSO method offers six best
results and the differences between PI and PI with softmax is
big, its failure time is the least, and MCPSO makes a huge
improvement.

Fig. 4 also demonstrates that MCPSO can solve most of
the missions in a configuration with just a small number
of failures. When the task number is 40, 60, 80, and 100,
respectively, MCPSO performs the best in offering the best
results and least failure times. While for the other rescue
configurations where there are eight vehicles and 60 tasks,
it tells a different story. MCPSO cannot reduce the failure
time; among the total of nine missions, it fails twice, and PI
and PI with softmax only fail once. However, our method
offers seven best results including the failure times, and the
average results are the best.

Table III shows the CPU running time of the three methods.
PI with softmax consumes the longest time. When the tasks
number is small, the PI runs the fastest. For example, when
there are eight vehicles and 40 tasks, the CPU running time
of PI is just 7.27 s, and when the number of tasks increases
to 60, the CPU running time of PI is 17.48 s, which is 0.95 s
shorter than MCPSO (18.43 s). However, when the number

8

Fig. 4. Results for MCPSO, PI, and PI with softmax methods in six different missions. (a) Total number of failure for all successful missions out of nine
missions. (b) Average mission time for all nine missions.

TABLE III

AVERAGE CPU TIMES (SECONDS) FOR THE SIX MISSIONS

of tasks is higher, e.g., above 80, MCPSO outperforms PI in
terms of CPU running time.

VII. CONCLUSION

From the above-mentioned experiments, we can see that
MCPSO can solve almost all scenarios in this paper. Even in
complex scenarios, MCPSO only fails 10 times, while the PI
fails 23 times, and PI with softmax fails 19 times. These exper-
iments demonstrate that the proposed centralized MCPSO
solves more problems and with better solutions than state-
of-the-art distributed algorithms. Therefore, the development
of distributed algorithms still has a long way to go to improve
their performance. In closing, we can see that MCPSO can be
used as a benchmark for distributed algorithms for determining
the performance gap, which will guide further development.

REFERENCES

[1] W. Zhao, Q. Meng, and P. W. H. Chung, “A heuristic distributed task
allocation method for multivehicle multitask problems and its application
to search and rescue scenario,” IEEE Trans. Cybern., vol. 46, no. 4,
pp. 902–915, Apr. 2016.

[2] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
cooperative policy for conflict resolution in multivehicle systems,” IEEE
Trans. Robot., vol. 23, no. 6, pp. 1170–1183, Dec. 2007.

[3] D. Shishebori, “Reliable multi-product multi-vehicle multi-type link
logistics network design: A hybrid heuristic algorithm,” J. Indusmission
Syst. Eng., vol. 9, no. 1, pp. 92–108, 2016.

[4] W. Guo, J. Li, G. Chen, Y. Niu, and C. Chen, “A PSO-optimized real-
time fault-tolerant task allocation algorithm in wireless sensor networks,”
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 12, pp. 3236–3249,
Dec. 2015.

[5] D. Jiang, Y. Pang, and Z. Qin, “Coordinated control of multiple
autonomous underwater vehicle system,” in Proc. 8th World Congr.
Intell. Control Autom., Jul. 2010, pp. 4901–4906.

[6] Y. Eun and H. Bang, “Cooperative task assignment/path planning of
multiple unmanned aerial vehicles using genetic algorithm,” J. Aircraft,
vol. 46, no. 1, pp. 338–343, 2009.

[7] K. Zhang, E. G. Collins, Jr., and D. Q. Shi, “Centralized and distributed
task allocation in multi-robot teams via a stochastic clustering auction,”
ACM Trans. Auton. Adapt. Syst., vol. 7, no. 2, 2012, Art. no. 21.

[8] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. Robot., vol. 25, no. 4,
pp. 912–926, Aug. 2009.

[9] S. D. Vries and R. Vohra, “Combinatorial auctions: A survey,” Discus-
sion Papers, vol. 15, no. 3, pp. 284–309, 2000.

[10] J. Turner, Q. Meng, G. Schaefer, A. Whitbrook, and A. Soltoggio,
“Distributed task rescheduling with time constraints for the optimization
of total task allocations in a multirobot system,” IEEE Trans. Cybern.,
vol. 48, no. 9, pp. 2583–2597, Sep. 2018.

[11] A. Whitbrook, Q. Meng, and P. W. H. Chung, “Reliable, distrib-
uted scheduling and rescheduling for time-critical, multiagent sys-
tems,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 2, pp. 732–747,
Apr. 2018.

[12] A. Whitbrook, Q. Meng, and P. W. H. Chung, “A novel distrib-
uted task allocation algorithm for urban search and rescue,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Hamburg, Germany, Sep. 2015,
pp. 6451–6458.

[13] N. Nedjah, R. M. de Mendonça, and L. de Macedo Mourelle, “PSO-
based distributed algorithm for dynamic task allocation in a robotic
swarm,” Procedia Comput. Sci., vol. 51, pp. 326–335, 2015.

[14] J. Yang, H. S. Zhang, Y. Ling, C. Pan, and W. Sun, “Task allocation
for wireless sensor network using modified binary particle swarm
optimization,” Sensors J., vol. 14, no. 3, pp. 882–892, Mar. 2014.

[15] D. Zhu, H. Huang, and S. X. Yang, “Dynamic task assignment and path
planning of multi-AUV system based on an improved self-organizing
map and velocity synthesis method in three-dimensional underwa-
ter workspace,” IEEE Trans. Cybern., vol. 43, no. 2, pp. 504–514,
Apr. 2013.

[16] M. Pujol-Gonzalez, J. Cerquides, A. Farinelli, P. Meseguer, and
J. A. Rodríguez-Aguilar, “Binary max-sum for multi-team task allo-
cation in RoboCup rescue,” in Proc. Int. Joint Workshop Optim. Multi-
Agent Syst. Distrib. Constraint Reasoning, Paris, France, 2014, pp. 1–15.

[17] A. Salman, I. Ahmad, and S. Al-Madani, “Particle swarm optimization
for task assignment problem,” Microprocessors Microsyst., vol. 26, no. 8,
pp. 363–371, 2002.

[18] D. R. Karger, S. Oh, and D. Shah, “Budget-optimal task allocation for
reliable crowdsourcing systems,” Oper. Res., vol. 62, no. 1, pp. 1–24,
2014.

[19] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. Int.
Conf. Neural Netw., Washington, DC, USA, 1995, pp. 1942–1948.

[20] J. Kennedy, “The particle swarm: Social adaptation of knowledge,” in
Proc. IEEE Int. Conf. Evol. Comput., Indianapolis, IN, USA, Apr. 1997,
pp. 303–308.

[21] P. Vasant, Meta-Heuristics Optimization Algorithms in Engineering
Business, Economics and Finance, Information Science Reference.
New York, NY, USA: Springer, 2012, pp. 6–7.

[22] D. Ruan, Computational Intelligence in Complex Decision Making
Systems. Singapore: World Scientific, 2010, p. 23.

[23] K. E. Parsopoulos and M. N. Vrahatis, “Recent approaches to global
optimization problems through particle swarm optimization,” Natural
Comput., vol. 1, nos. 2–3, pp. 235–306, 2002.

[24] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Francisco, CA,
USA: Morgan Kaufmann, 2001, pp. 475–495.

[25] J.-F. Cordeau, M. Gendreau, A. Hertz, G. Laporte, and J.-S. Sormany,
“New heuristics for the vehicle routing problem,” in Logistics Sys-
tems: Design and Optimization. New York, NY, USA: Springer, 2005,
pp. 279–297.

[26] G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet, “Classical and
modern heuristics for the vehicle routing problem,” Int. Trans. Oper.
Res., vol. 7, nos. 4–5, pp. 285–300, 2000.

[27] R. C. Eberhart and Y. Shi, “Particle swarm optimization: Developments,
applications and resources,” in Proc. Congr. Evol. Comput., vol. 1.
May 2001, pp. 81–86.

