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Abstract 

Previous work has already modelled an open periodic cylindrical tube constructed 

from aFrequency ~lective Surface (FSS) .. to form the Fr~~ency Selective Guide 

(FSG). This model is used to expand the understanding of the FSG and known mode 

content that it can support. The results of the model have been authenticated directly 

by measurement techniques. The range ofFSGs measurements undertaken was 

expanded to enable greater understanding Qfthe structure utilising parameters that 

could not be included in the theoretical model. This extensive measurement set 

combines with the modelled data to provide a very comprehensive understanding of 

the FSG operation based on both physical and theoretical data. This extensive 

knowledgtl of the FSG performance will be. util~ed in the solution of the junction 
'. . 

between a solid circular waveguide and the FSG. The theory is developed to model 

the junction using mode matching techniques. The assumptions made and the 

complications encountered due to the open nature of the structure are discussed. 

R.easons a(e given for the. poor agreement between th.e computer simulation using the 

mode matching theory and the measured results. An alternative junction modelling 

technique, finite element method, is then used to obtain good agreement with the 

measured data This method produced data detailing the field distribution of the 

modes within the ESG and the affect upon them of the transition. This gave. an 

invaluable insight into the mechanism of operation of both the FSG and the junction. 
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1. Introduction 

The structures referred to in this work as Frequency Selective Guides or FSGs have 

been under development in the department of Electronic and Electrical Engineering at 

Loughborough University for some time [6-9] & [11-14]. They are fabricated from 

sheets of Frequency Selective Surface or FSSs, which are formed into long hollow 

tubes. These tubes can in theory have a cross-section of any shape, but so far the 

investigations have been mainly confined to tubes of cylindrical form [6] & [14] with 

some early rectangular examples having been made [11]. They look like conventional 

waveguides except that the walls are made from FSS and not metal. 

The basic properties of the walls of these FSGs are similar to the properties seen in 

conventional planar FSS sheets. The FSS sheets are made from thin dielectric sheets 

with a periodic array of small copper elements on the surface of the sheet. An 

Electromagnetic (EM) wave, incident upon the FSS, will experience almost total 

reflection from the surface, at a particular frequency where the elements of the FSS 

resonate. Away from this resonant frequency the FSS will reflect almost none of the 

incident EM wave with the majority of the power transmitted through the sheet, for 

further information on FSS see section 1.1. When the wall of the FSG becomes 

reflective at the resonant frequency, the structure will behave like a wave guide. Power 

will be transmitted along the axis of the structure with virtually none lost through the 

FSS walls. At all other frequencies the FSG will allow the fields of an EM wave to 

radiate through the surface into free space like a periodic grating antenna. 

With the extensive work already carried out into the theoretical modelling of the FSG 

by Loukos [9] and some limited measurement of the scattering parameters of real 

FSGs. The last major problem in the development of the FSG and covered in this 

work, was the investigation and modelling of a method of feeding the new structure. 

As it is not possible to practically place a source inside an FSG, some form of 

conventional transmission line must be used to feed the structure. The work to date 

has ignored the effect that the junction between the FSG and the transmission line 
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may have on the performance of the FSG. A greater understanding of the junction 

. between the transmission line feed and the FSG will lead to improved information 

about the operation of any practical FSG. Information will be obtained about which 

propagation mechanisms, the modes of the EM fields, are actually excited in the FSG 

by the transition. Future workers will be able to use this information to build and feed 

FSG structures to perform to defined specifications. 

The FSG can be used in any situation were conventional solid metal waveguides are 

currently used, but in particular where a light weight structure is required. As it is 

made from a dielectric with small amounts of metal contained in the elements on the 

surface it is inherently lighter in weight than a conventional wave guide. Another 

property of the FSG is that it could be used in an area of high magnetic flux without 

causing a large deformation to the surrounding magnetic fields. This was initially of 

particular interest to the research team at Loughborough University who hoped to use 

the FSG to build a microwave radiometer that could be placed inside a Magnetic . 

Resonance Imaging (MRI) machine without a significant degradation of the MRI 

image [12]&[13]. The microwave radiometry and MRI scans could then be carried 

out, on a human body, simultaneously to enable 'hot spot' carcinomas to be located 

without the need for invasive surgery. The MRI scans are needed to provide 

information on the dielectric makeup of the body and so allow accurate image 

processing of the radiometer data. However, to date, funding has not been 

forthcoming for the project and it has not progressed beyond investigation of basic 

FSG structure of which this Ph.D. is a part. 

The antenna properties of the FSG can also be used in applications that require a 

conical main beam that can be scanned away from the axis of the antenna 

electronically. This would utilise the FSG at frequencies away from the resonance 

point of the FSS wall where it behaves like a leaky wave antenna [16] & [17]. This 

class of scanning antenna is not new, but the fact that the FSG has walls that are open 

and periodic around the entire circumference, means that the main beams produced 

are conical and not pencil shaped. Scanning antennas have been used extensively for 

target tracking and as a high gain communications antenna where one end of the link 

is not stationary. 
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1.1 FSS Background 

Frequency Selective Surfaces (FSS) have been under investigation for many years. 

One of the earliest references, Collin [I], described an 'artificial dielectric' made from 

a three dimensional array of conducting elements and gave expressions for the 

reflection and transmission coefficients. FSS has two main configurations; firstly a 

thin conducting sheet with a matrix of apertures cut through it, Aperture FSS and 

secondly a matrix of conducting elements usually supported on a thin dielectric sheet, 

Element FSS. This second form can be thought of, with regard to the metalled area, as 

a negative image of the first type. Some of the earliest work in the area of two 

dimensional arrays was carried out by Chen, [2]&[3], these papers detail the theory of 

analyses of the two forms of FSS and describe the properties that they exhibit. The 

dielectric sheet of the element FSS was originally omitted by Chen, but the analyses 

was extended to include it by Montgomery [4]. A great deal of further work has been 

carried out and a good resume has been given by Mitra [5] and more recently by 

Vardaxoglou [15]. 

The scattering of EM waves propagating normal to and incident upon a sheet of 

element FSS, a dielectric sheet covered by a periodic array of identical conducting 

elements, is such that it exhibits very high transmission through the sheet, at 

frequencies away from the resonance of the elements. At the resonant frequency of 

the conducting elements, the sheet becomes highly reflective, with virtually no 

transmission through the surface. To an incident EM wave it appears to behave as if it 

were a continuous conducting sheet and not at all like the dielectric sheet with a small 

amount of conductor on its surface. The rate at which the FSS changes from being 

transmissive to reflective can be adjusted, along with the resonant frequency, by 

changing the dimensions and shape of conducting elements used in the FSS. Various 

authors have investigated many different types of FSS element and a diagram of three 

types of element used in planer FSS sheets is given in Figure 1-1. Each one has 

different scattering characteristics. 
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s uare element FSS circular element FSS di ole element FSS 
Figure 1-1 Example of Three Types of Element used in Planer FSS Sheets 

As well as the Aperture FSS being the negative image physically of Element FSS, so 

too are its scattering properties. It appears to be near totally reflective at virtually all 

frequencies, except at the aperture resonant frequency, where it becomes almost 

totally transmissive. The properties of the FSS have thus made it ideal for use as a 

plane wave filter. It has been used extensively in many transmission systems at 

microwave and millimetre wave frequencies, either as a selective band pass filter or 

band stop filter or to make reflector antenna systems dual band [IO]. 

1.2 The Basic FSG 

A short section of FSG is shown in Figure 1-2. It is an FSG made from square loop 

element FSS on a thin dielectric substrate. The cross section of the FSG is clearly 

circular as this is the easiest cross section to model and manufacture. All the elements 

on the surface are identical and are square loops made from very thin copper sheet. 

Etching away the unwanted copper from a large sheet, the copper sheet having 

already been attached to the thin dielectric sheet, using PCB production techniques 

left only the square loops of the required dimensions on the dielectric surface. Once 

the elements are formed the dielectric sheet is rolled into a tube and the edges are 

secured together with adhesive along the seam. 

The elements do not have to be square loops; they can be any shape as long as they 

are all identical and tessellate exactly into an array of uniform periodicity. Previously, 

Loukos [9] modelled dipole elements, but found that they had limited guiding 

properties. He found that square loop elements offered good guidance at resonance as 

6 



well as being easy to model. Consequently the use of square loop for the elements on 

the FSG surface will be continued in this work. He showed that the operation of an 

infinite length of FSG was governed by it's element length, L, it's array periodicity, 

D, and it's radius ro. The Loukos theory did not model the dielectric sheet present in 

real FSG's and this is also a design parameter that must be taken into account when 

building an actual FSG. 

The Loukos model revealed that the infinite length square loop FSG could support 

three distinct Hybrid modes. The modes are hybrid because they contain all three E 

field components and all three H field components. This mode can be thought of as 

being made from the addition of a TE and a TM mode of the same order. This is 

caused by the open nature of the FSG structure and is unlike the modes found in solid 

wave guides. The distinct Hybrid modes were a surface wave that propagated at the 

lower frequencies along the surface of the FSG, and two leaky modes that propagated 

at the higher frequencies. One leaky mode was the EHll mode as it contained a large 

amount of the TEll mode and the other mode was the HEll mode as this contained a 

high proportion ofTMll mode. This second mode propagated at a higher frequency 

than the first. Both of these modes were not confined within or bound to the structure 

surface and radiation leaked away into free space. However, at a particular resonant 

frequency for each mode the amount of power radiated was reduced to a very small 

level. At these frequencies the structure operated like a frequency selective waveguide 

with low loss. 

In addition to the work to turn planar element FSS sheets into FSG work has also been 

carried out make horn antennas from FSS, using a technique similar to that of the 

FSG. Here Jayawardene [7],[8], instead of making tubes of constant cross-section, has 

rolled the FSS sheet into a cone. The tip of the cone was removed and the feed 

wave guide was attached to the hole that this left in the top of the cone. These 

structures have been dubbed Frequency Selective Horns (FSH). It is anticipated that 

the transition/feed work carried out here could also be applicable to the FSH feeds as 

well as the FSG junctions as they are made of the same material and exhibit similar 

properties. 
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Figure 1-2 An example section of Square Loop FSG with 6 Elements around the 

circumference 

1.3 Transition Problem Definition 

The aim of this Ph.D. is to fully understand the operation of a transition from solid 

circular waveguide to FSG. The transition and FSG will be measured and modelled so 

that the 'real life' structure can be compared with the predicted infinite length FSG 

model [9]. The modelling of the junction will allow the effect of the transition on the 

modal field distributions to be assessed as the EM fields move from the feed structure 

to the FSG. The reflection and transmission coefficients of the measured and 

predicted results can be compared to ascertain the accuracy of the model. 

The simplest junction that could be modelled is that between a standard circular 

waveguide and an FSG defined in section 1.2. Both the structures have the same basic 

shape and can both be defined in terms of the cylindrical co-ordinate system r, I/J, z. 
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The mode definitions are also similar for the two structures, the solid waveguide 

containing TE and TM modes and the FSG containing hybrid modes that have TE and 

TM components. The similar co-ordinate systems and mode definitions mean that no 

complicated axes redefinitions are needed in defining the junction between these 

structures. Also, solid circular waveguide was readily accessible, so that the 

measurements could be made without having to buy costly new equipment. 

The solid waveguide and the FSG were positioned so that the axes of the two 

structures were aligned along the z axis. The junction between the structures was then 

defined as the transverse plane that was normal to the z axis. This ensured that the 

cross sections of both the structures were concentric circles in the junction plane. The 

direction of propagation in both structures was along the z axis, so the junction plane 

contained only the transverse modal fields. This junction set-up is shown in Figure 

1-3, a standard section of circular guide is connected to a roughly similarly 

dimensioned section of FSG, an arbitrary step change can be added to the model if the 

diameter of the FSG should be different from that of the solid wave guide. 

Also shown is the flange on the end of the solid waveguide. This flange is used when 

mating two solid wave guides together, however in this case the FSG has no flange 

and so it is not used for connection purposes. The presence of the mating flange on 

solid waveguide increases the complexity of the problem that must be solved. The 

diffraction of the field around the edges of the flange would have to be calculated as 

an integral part of the junction model. 

The flange could be removed in which case the fields external to the solid wave guide 

must also be calculated as well as the fields external to the FSG. The external FSG 

fields must always be calculated, as they are inherently part of the modal fields of the 

FSG. However the fields on the exterior of the solid waveguide are not related 

directly to the fields inside the solid wave guide and just add extra complexity and 

calculations to the model. Alternatively the flange can be extended into an infinite 

conducting plane with a hole in the plane centred on the z axis and with the same 

radius as the solid wave guide. This then separates the space outside the radius ofthe 

FSG elements from the space outside the solid waveguide. This removes the need to 
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calculate the fields in this second region, as it is completely isolated from the fields of 

interest. 

Square Loop 
:....-----6 Element FSG 

~ Waveguide Flange or 11' 11 infinite conducting plane 
11/ (in the plane of the 
; 1 transition) , . 

............................. IJ 

Solid Circular 
Waveguide 

Figure 1-3 Simplified diagram of a Solid Waveguide to FSG Transition 

However some reflection will occur from this plane as the exterior fields of the FSG 

bounce off its surface and a reflection coefficient will need to be taken into account 

for the fields at the plane. This will fundamentally affect the operation of the junction 

and so the modelled results must only be compared with junctions that also have large 

conducting plates in the plane ofthe transition. The EM fields outside the radius of 

the junction aperture along the plane will be simplified. No E field components 

parallel to the plane or H field components perpendicular to the plane will be present, 

reducing the number of mode field coefficients by half. 

The length of the individual sections of solid waveguide and FSG has not been 

specified. Ideally it would, in both cases, be infinite in extent so that no other changes 
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in either of the structures affect the behaviour of the junction of interest. For physical 

measurements the short sections of each structure should be terminated with matched 

terminations to ensure that no reflected fields could interact with the junction and alter 

the measurements. 

The analysis of the junction would ideally give not only the magnitude of the 

scattering parameters for the total field in each structure, but also the scattering 

parameter of each individual mode in each of the structures. This would also give full 

details of any mode conversion that may take place at the junction as well as the 

reflection and transmission of the fundamental mode. 

1.4 Structure of the Thesis 

This thesis is organised as follows:-

Chapter 2 contains details concerning the mode spectrum of the FSG and further 

details on the theory of the infinite FSG modes. This chapter builds directly upon the 

work of Loukos [9] and makes use of his prediction program to find a large amount of 

the FSG mode spectrum. Details are given of the alterations that were made to the 

original method in order to find the mode spectrum. The mode spectrum that was 

found for a particular FSG is given along with a new method of displaying the 

complex eigenvalue information. Finally some detail is added to that which is given in 

[9] on the theoretical nature of the FSG modes produced by this theory for infinite 

length FSGs. 

Chapter 3 presents a parametric investigation into the nature of FSG operation by 

measurement methods. The details of FSG construction are given along with the 

dimensions of the FSGs produced for the measurement study. The SIl and S21 

scattering parameters were measured for each FSG over a range of frequencies. The 

radiation patterns of these FSGs were also measured. This measurement data was 

analysed qualitatively to identify some of the key features of FSGs and their modes of 

operation. The differences between the different FSGs manufactured were used to 

derive qualitative design trends of the effects of altering the FSG parameters. Finally 

several methods were compared that extracted the propagation constants of the FSG 
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from different measured data. The extracted data was then compared against the eigen 

value data found in the previous chapter and the agreement of this data was assessed. 

Chapter 4 details the various options available for the theoretical modelling of the 

FSG to solid waveguide junction modelling. The selected mode matching theory is 

developed and adapted for the open structure of the FSG and the assumptions and 

simplifications are justified. The field integral equations required by the theory are 

given along with details about the development of the program to calculate the modal 

amplitudes. The testing procedure for the program is examined and the results 

produced by this program are presented along with thoughts about the reasons for it's 

failure to calculate any sensible values of reflection or transmission. 

Chapter 5 looks at the junction modelling by the alternative method of finite element 

modelling. A brief outline is given into the operation of this version of the finite 

element method. The development of the computer models at increasing levels of 

complexity is explained along with descriptions of them. The main body contains the 

scattering, radiation patterns and field plots for the vast amount of data obtained by 

this simulation method. The simulated data is, where possible, compared to the 

measured data collected in chapter 3. Good agreement is seen between the finite 

element simulations and the measured information. The field plots are then used to 

confirm the qualitative information extracted from the measurements in chapter 3 as 

to how the modes propagate in the FSG. Due to the high level of detail contained in 

the field data from the finite element simulations the understanding of the operation of 

the FSGs is increased beyond that which was inferred from the measurements in 

chapter 3. 

Conclusions and recommendations for possible further work to extend that which is 

presented here, is given in chapter 6. 
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2. Extension of Existing FSG Mode Theory. 

In order to understand fully how the FSG works at different frequencies it is important 

to ascertain the complete mode content of the FSG, i.e. the number of modes that 

make up the field in the FSG at anyone frequency. This will show which mode is 

dominant at which frequency. With this knowledge the FSG can be designed to 

behave as either a monomode guiding structure or a leaky wave antenna. The design 

can be altered to ensure that the most efficient mode is used at the frequency of 

operation. The full mode content is also a fundamental requirement if the transition is 

to be modelled using mode matching theory. A detailed account this theory and the 

reasons for using this method of transition modelling are given in chapter 4. This 

chapter will assume that the majority of modes of the FSG and propagation 

characteristics of each must be found. 

The investigations carried out to date into the FSGs by Loukos [1] & [25] have 

concentrated on only three modes. These are the fundamental surface mode, the 

fundamental leaky (EHIl ) mode, both of which have been verified experimental (see 

chapter 3) and the next higher order leaky mode, the HEll mode. This chapter details 

the work undertaken and the results found in the search to find a significant number of 

modes to approximate the complete set of modal solutions. 

2.1 Literature Relating to Existing Leaky Wave Open Structures 

As the FSG is an open structure it can never be truly guiding like a wave guide or a 

coax cable. In these transmission line structures the conductor is continuous and 

surrounds the field so that it is confined within it's cross section. Electromagnetic 

energy can never be radiated from the structure, unless some gap is formed in the 

outer conductor, like the well known slot waveguide antenna, p305 of [3]. However, 

there are many other types of transmission line which are open structures and do not 

have a confining outer structure. These include microstrip line, dielectric guides, slot 
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line, coplanar wave guide and coupled strip line. These structures as, with all open 

transmission lines, can exhibit radiation under certain circumstances. The radiation 

modes that exist in a dielectric guide are detailed in p316 of [2]. Also p303 of [3] 

gives a more general, but detailed account of the complete spectrum of field solutions 

that exist for any open structure. 

It is well known that the fields that exist in any structure can be found by solving 

Maxwell's equations for the particular boundaries for that geometry. They also obey 

the radiation condition that all fields must decay to zero at infinity. For a structure that 

has a separable field solution an inhomogeneous equation can be formed, the solution 

to which gives the eigen modes of the structure, which correspond to the propagation 

constants of the modal fields. These modes fall into distinct categories. There are a 

number of discrete bound surface wave modes, which propagate along the structure. 

These modes have distinct real single valued solutions to the eigen mode equation. 

They have fields that exist outside the guide diameter that decay away to zero at 

infinity, but that only propagate in the direction parallel to the axis of the guide. They 

do not propagate away from the surface and so can be considered not to radiate 

energy from the structure. 

The only other real solutions to the eigen value equation, for open structures, exist 

along a line where any value on that line is a valid solution. This line is known as the 

spectrum of radiation modes where the propagation constants obviously have an 

infinite number of values along it. These values correspond to either, modal fields that 

propagate away from the surface of the structure and account for the energy that 

radiates away from the structure, or to modes that are 'evanescent' which have purely 

imaginary propagation constants. The fields of these modes decay in all directions 

away from the field source and do not propagate. 

Other solutions of the eigen mode equation can be found. These solutions have 

complex propagation constants and do not obey the radiation condition and so do not 

exist and can never be physically realised. They are unreal. One of these unreal 

solutions, however, has been found to be useful in studying the radiation field close 

into the open structure. Several authors have shown that the radiation field can, under 
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certain conditions, be approximated by the field of one of these unreal eigen modes. 

This unreal eigen solution has come to be called the leaky mode. 

By looking at the work done on other open waveguide structures, and in particular the 

leaky mode, a better understanding can be found for the likely working of the FSG. 

The leaky wave mode of an open structure first came to prominence in the 1950's 

with several authors publishing early investigations into them; Zucker[4], 

Marcuvitz[5] & Glodstone & Oliner[6]. The first detailed work on the leaky mode 

was by Tamir & Oliner[7]. This work showed how the field integral equation could be 

solved to give all the proper and improper modes of an arbitrary structure. These 

eigen modes may have real, imaginary or complex propagation constants. The modes 

have been classified based ,on the field distribution and a full description of each is 

given. It states that if a pole of the eigen equation does not satisfy the radiation 

condition then it is an improper mode and although not part of the spectral(proper & 

physically realisable) solution it does contribute to the field in a limited region. It also 

states that the leaky mode cannot be orthogonal to any other mode and that 

normalisation is not possible. This is because the mode does not exist outside it's 

limited region and so the integral, Equation 2-1, can not be evaluated. 

(fxH*dS 

Equation 2-1 

Standard integration methods will give the total field as a continuous radiation 

spectrum and evanescent modes plus a set of discreet bound proper modes. A method 

is introduced, the steepest decent path integration, that allows the field to be made up 

of some of the leaky modes plus the set of discreet bound proper modes with reduced 

contribution from the complete spectrum. This method involves a transformation of 

the eigen mode poles from the twin Riemann sheet rPlane to the single sheet complex 

~plane, see Equation 2-2. 

r = k sin fjJ, k r = k cos fjJ 

Equation 2-2 
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In this plane the standard integration path can be deformed to allow a small portion of 

the radiation field(space wave) to be represented by the pole residues that correspond 

to the leaky modes. This allows the region over which the leaky mode exists to be 

identified and the magnitude of its contribution in that region to be defined. 

It also states that if a complex proper wave is present then the pole will appear as a 

pair of degenerate modes (not orthogonal). One mode will be forward propagating 

and the other backward propagating, so that no net power propagation will occur. 

These mode pairs are associated with stored energy in a manner similar to evanescent 

modes in solid wave guide. Modes with complex eigen modes can either carry power 

into the radiation pattern or account for losses in a lossy structure. 

A major class of open structures that support leaky modes, for which it possible to 

analytically determine the values of the propagation constants, are dielectric guides of 

uniform cross section. A subsection of these are optical fibers. The general behaviour 

seen in fibers is applicable when they are studied in terms of electromagnetic fields, 

found from the solution of Maxwells equation. Marcuse has confirmed, p24 [81, that 

the leaky mode of an optical fiber exists and can be thought of as representing a 

discrete part of the radiation field close to the fiber. The rest of the field consists of 

the remainder of the radiation mode continuum. This reference also confirms the 

procedure for the normalisation and orthogonalisation of the continuum of radiation 

modes. It also reiterates that it is not possible to apply this to the leaky modes. 

The inability to normalise and apply orthogonality to the leaky mode hampers it's 

usefulness, but just 2 years later Sammut & Snyder [91 published useful 

approximations for these functions. It details two methods for approximating the 

orthogonality of leaky modes. The first is to truncate the leaky mode at some small 

distance from the guide where the mode will be finite and nearly power orthogonal. 

However some small part of the mode will not be orthogonal and so some coupling 

between modes will occur. The second approximation is found by deforming the path 

of integration of the orthogonality condition into the imaginary radius space. That is 

to say that as the real distance from the fiber core increases an imaginary term, that 

increases faster that the real term, must be added to the radius value. The imaginary 

radius will then act to cancel out the increasing field strength of the leaky mode when 
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the integral is evaluated. This form of orthogonality does lose the definition of power 

orthogonality. It is however an exact orthogonality condition that can be used on both 

proper and improper modes. This reference also re-states that for weakly leaky modes 

a long way from the source and close to the guide the radiation field is approximately 

the sum of the leaky modes. 

In [10] Snyder & Love give an account of the process by which leaky modes form in 

optical fibers. This is given both in the form of a mathematical approach and a 

heuristic one, which may aid understanding of leaky modes a little more. It also 

reiterates the orthogonality and normalisation procedures for the leaky mode given in 

[9]. Confirmation of the presence of leaky modes in dielectric guides has been 

achieved by Shigesawa et al in [11], where they were able to predict and measure the 

presence of a leaky mode on a dielectric strip guide. To practically find the presence 

of the leaky mode the far field pattern was measured and the main beam of the 

radiated pattern was found. This main beam can be represented by the leaky mode and 

was compared to the beam that the theoretical leaky mode would produce. 

Another open guiding structure where the presence of leaky modes has been studied 

in recent years is that of the widely used Microstrip Transmission Line. Oliner and his 

co-workers have carried out most of this work. In [12] they determined that higher 

order microstrip modes have a cutoff frequency where the propagation constant 

ceases to be real and becomes complex. These complex propagation constants 

correspond to leaky modes, which radiate either as space waves or surface waves 

away from the line. They also reiterate that not all leaky modes are physically 

realisable, even though they may be solutions of the eigenvalue equation. They make 

use of the Steepest Decent Path integration, described in [7], to show which modes are 

physically relevant. They found that the most of the radiation from an over moded 

microstrip line came from a single leaky mode. In [13] a leaky mode that has a similar 

field structure, in the proximity of the conductor, to that of the dominant mode is 

shown to exist. Measuring the S21 of a length of microstrip line and observing the 

frequency at which the slope of S21IFrequency changes was used to authenticate the 

theoretical data. The reason for this being that below this frequency the line is subject 

only to resistive losses and above this frequency energy is also lost through radiation 

into the leaky mode. In [14] the frequency range over which the leaky mode is 
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analysed is lowered. As the frequency tends to 0 the real and imaginary parts of the 

propagation constant tend to infinity. This means that as the beam corresponding to 

the leaky mode approaches broadside it will broaden considerably and become very 

weak eventually becoming indistinguishable from the background radiation spectrum. 

It also states that if f3 increases so much that f31k> I, the leaky mode can no longer 

contribute to the space wave at any angle from the normal. 

Several of the preceding papers show that the leaky mode can be used to approximate 

the radiation field in a section of space close to the guide structure. This section is 

bounded on one side by the structure and on the other by a line at an acute angle to the 

structure that intersects the structure at the field source. A good diagram of this region 

of space is given in [7]. It shows wave fronts propagating at some angle away from 

the surface and power increasing away from the surface, as seen in [11]. The 

characteristic main beam of a leaky mode structure can be used as an antenna. There 

has been much published of the subject. One of the attractions of this type of antenna 

is that as the frequency changes the angle of the main beam changes as the value of f3 
of the leaky mode changes, producing a frequency scanable antenna. Bahl & Gupta 

[15] give some useful general design equations to determine the beam characteristics 

for a leaky mode antenna. They also detail the Kirchhoff-Huygens and steepest decent 

path methods for accurately predicting the radiation pattern of an antenna. Mittra & 

Kastner [16] have developed a spectral domain method for finding the radiation 

pattern of a leaky mode antenna. This reference also details how to obtain ~ from the 

angle of the main beam of the radiation pattern and ex from the width of the main 

beam. 

One common method used to get a structure to exhibit leaky mode behaviour is to 

make the surface of the structure periodic in some way. This has been achieved with 

corrugations in the surface of the material itself or by adding periodic perturbations of 

another material, for instance metal strips (or slots) have been used extensively. These 

periodic leaky mode structures are obviously directly relevant to the FSG as it is also 

a periodic open structure. One of the first papers published on the subject was by 

Sigelmann & Ishimaru [17] in 1964. They studied a grounded dielectric slab with 

periodic metal strips on the upper surface. There is a good discussion on how the klf3 
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diagram changes for periodic structures and how this relates to the complex y 

diagram. An import point to remember is that the complex ydiagram changes with 

frequency. Each complex ydiagram is a cut plane through the klfJ diagram at a 

particular value of k. Where the klfJ diagram only shows the fJ values for a=O, i.e. the 

x axis of the complex ydiagram. In the following year Li & Oliner [18] studied the 

leaky waves that existed on a simple parallel plate waveguide with periodic slots cut 

in one plate. They found that a leaky mode could exist on this fast wave structure 

regardless of the periodicity of the slots. They also investigated the relationship of 

woods scattering anomalies to plane wave incidence and the relation to leaky modes. 

In the late seventies work was undertaken to improve the leaky antenna properties of 

dielectric waveguides. This was done either by adding metal strips [21] or by 

changing the profile of the upper dielectric interface so that it resembles the toothed 

battlements of a castle [19], [20]. Itoh in [l9] develops a structure where the klfJ 
diagram shows the first negative harmonic of the fundamental is a leaky mode whilst 

all the other harmonics and the fundamental are surface wave modes. There is also a 

development detailing how mode coupling can cause a stop band to form for surface 

modes when a & fJ values are equal. [20] gives detailed account of the development 

dielectric slab leaky wave antenna with measured results of the prototype antenna. 

Kobayashi et al [21] details the strip loaded leaky mode antenna. It determines the 

design relationships required in order to ensure only one leaky mode is significant in 

the radiation field and hence there is only one main beam. 

Finally, the paper by Shigesawa et al [22] is significant in that it investigates the 

conditions for coupling to take place between leaky modes. It found that for large 

leakage, there is coupling between two leaky modes if fJ & a are equal for the two 

modes. If this condition is not met, then there can be no coupling effects between 

them. 

2.2 Determination of Mode Content of FSG 

The discovery of the major proportion of the mode spectrum of an FSG is important 

as it enables improved understanding of the propagation mechanisms at work in the 

FSG. This would then allow the determination of the excitation frequencies that give 
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rise to a mode that propagates with the least loss or a mode that would operate as the 

most efficient leaky wave antenna. The full mode content is also important, as it is a 

fundamental requirement if the transition is to be modelled using mode matching 

theory, which is covered in greater detail in chapter 4. In summary, this theory 

simultaneously approximates the total excitation field at the FSG feed to that of an 

infinite sum of incident and scattered FSG modes and scattered waveguide modes, the 

amplitudes of which are to be determined. The summations are then truncated so that 

only the most significant modes are included, and the amplitudes of these modes are 

ascertained by multiplying the equations by a set of orthogonal basis functions and 

integrating over the cross-section to form a complete system of independent 

equations. The equations are placed in matrix format and inverted to give the 

amplitudes of the truncated set of FSG modes. From these mode amplitudes the 

modes that are most readily excited by a particular feed can be determined. The feed 

characteristics may then be altered to give the desired mode content in the FSG, such 

that it will operate in a manner consistent with a particular design specification. 

The investigations carried out to date into the FSGs by Loukos[l] and [25] have 

concentrated on only three modes. These are the fundamental surface mode, the 

fundamental leaky (EHII) mode and the next higher order leaky mode that being the 

HEll mode. This section details the work undertaken and the results found in the 

search to find a significant number of modes from the complete mode spectrum. 

The eigen value spectrum, other than the three discrete eigen values already found, 

was not previously known. As the FSG is an open structure it is unlikely that this 

spectrum will be similar to that of a solid waveguide, i.e., an infinite series of discrete 

eigen modes. It is likely that it will have a spectrum similar to other open structures, a 

finite number of discrete eigen modes (bound modes) and an infinite number of eigen 

modes that form a continuous spectrum of values (radiating and evanescent modes). 

An example of this type of eigen mode spectrum is given for dielectric slab guides in 

Collin [24] p4 7 4. The reason for the difference between the spectrum for this type of 

guide and that of solid guides is because the modal field solutions must satisfy the 

radiation condition (lEI & IHI --? 0 as! --? 00). This difference with a continuous 

spectrum can be visualised by considering what happens in a solid guide as the 
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waveguide walls are moved towards infinity. The spacing between the solutions of the 

infinite discrete spectrum reduces, until at infinity the spacing disappears and the 

spectrum becomes continuous. The radiation modes propagate in both rand z and are 

not bond to the guide, so energy is lost from the guide via these modes. It should be 

noted that these are not leaky waves as the fields are proper and tend to zero at 

infinity. A leaky mode, by definition, does not obey the radiation condition and has a 

field strength that tends to infinite at infinity. Indeed it can be proved that a surface 

guide can have leaky modes p31 [8]. These modes have propagation constants (kz) 

with real values and the phase constant (~z) equal to those of radiation modes that lie 

in the continuous spectrum. However, unlike the radiation modes they are complex 

valued and have an imaginary part, the attenuation constant (az). The Pt values of the 

leaky modes can only have discrete values and according to [7] are not part of the 

spectral field solution that exists for an open structure. As they do not obey the 

radiation condition they can never physically exist. They can however be used to 

represent the field contribution from the continuous radiation modes in a limited 

region close to the outside of the guide, as shown in [7]. If sufficient leaky modes of 

the FSG could be found then they can replace the continuous radiation spectrum and 

hence mode matching at the FSG to solid waveguide junction becomes a viable 

prospect. The mode matching method can not be used if a continuous radiation 

spectrum is present, as detailed in chapter 4. The field representation used for the FSG 

then ceases to be that of the spectral field and becomes an approximation of it, the 

spatial field. 

The modes of an infinite length of FSG were found using a program developed by 

Loukos, the theory of which can be found in [1]. In essence the theory uses Floquet 

modes to allow an FSG of infinite extent in the z and t/J co-ordinates to be represented 

by a finite unit cell. The field equations are then simplified by imposing the trans verse 

boundary conditions and the radiation condition. A trial value of the propagation 

constant (k,o) for the fundamental Floquet mode is then substituted into the equation 

before the element currents are approximated by a set of roof top basis functions. The 

method of moments is applied to the resulting system of equations to simplify them 

into a convenient matrix form. The determinant of the characteristic matrix is taken 

23 



and if the trial propagation constant is a root (eigen value) of the characteristic 

equation then the determinant will be zero. 

In order to find the eigen values of the FSG, which give the propagation constant, 

many trial values must be used and many iterations of the calculation performed to 

find the determinant's zeros by trial and error. These trial propagation constants must 

be complex (k,D = pza - ja,) as the structure is open. It is confirmed in [7] that modes 

with complex propagation constants may exist in an open structure. This greatly 

increases the number of trial computations that have to be performed, as both the real 

and imaginary values must be varied independently. In [I] the values of the free space 

propagation constant and the FSG phase and attenuation constants have been 

normalised to the FSG periodicity to make graph plotting easier. The same 

normalisation process will be adopted here and trial values over the normalised ranges 

p,ol),127!= 0 to 1.0, rxzD,I27!= 0 to 1.5 and kD/27!= 0.1 to 0.65 will be used. This 

search range was considerably more extensive than that previously used. 

: The computer program that implemented the FSG propagation constant prediction 

model was not user friendly and required constant attention and manipulation in order 

to find an eigen value at a single frequency. In its basic form the program calculated 

the determinant of the characteristic matrix for each trial value. At each frequency the 

user defined the range of the trial values of normalised beta & normalised alpha to use 

by declaring the start, stop and step value of each. Initially the normalised alpha value 

was held constant while the normalised beta value was incremented by the step size 

from its start point to its stop point. The value of normalised alpha was then 

incremented and the sweep over all the normalised beta trial values was repeated. This 

process was repeated until the determinant for every trial value in the specified search 

range had calculated. 

The determinant can never become zero because of the truncation of numerical values 

that inevitably occurs in a numerical system and that only the first twenty to thirty 

Ploquet modes can be used. Instead a sharp minimum in the determinant value is 

observed at the trial value which is the closest approximation to the actual value of the 

eigen root. The degree to which the determinant tends to zero can be taken as a 

measure as to how good an approximation to the eigen root the trial value is. 
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To assist in the location of the roots, Loukos, used a minimum value determination 

routine in the program. This routine could only find the minimum value of the 

determinant for a fixed value of normalised alpha, i.e. with normalised beta as the 

variable. The on screen output consisted of a minimum value and it's location for 

each normalised alpha value. This then required the user to interpret these numerical 

outputs and to determine the position of the minima in normalised alpha as well as 

normalised beta. 

As the program was run interactively, and hence was more costly than batch 

processes, at the Manchester Computer Centre the roots needed to be found as quickly 

as possible. This reduction in run time was achieved by reducing the size of the search 

space in alpha and beta. With a smaller search space there was no guarantee that the 

minimum would lie within it. To overcome this, the user was required to have some 

skill and practice in interpreting the data by spotting trends. Once a trend was spotted 

the user would abort the process and change the search space to a more appropriate 

set of values before re-starting the program to find the root more quickly. This process 

required large amounts of user input and costly processor time and the number of 

roots found was solely down to the skill of the operator. 

To find the complete eigen spectrum a more rigorous, lower cost method was 

required. The program was altered so that it was straight forward to use and to enable 

it to run as a batch process. As a batch process it was found that the program would 

run on the Loughborough University Sun and HP workstations, although taking more 

than twice the time to run than on the Manchester super computer for the same search 

space. The use of a different computing platform meant a large reduction in 

computing costs. With the batch program very large search spaces could be used and 

although these could take many hours the fact that the program now needed no user 

input meant that it could be run overnight if necessary. In fact the entire search space 

was used in one go for each frequency in the search range of ko. 

This generated a very large amount of data and although the minimum finding code 

was useful it did not always give correct answers and could only find the first 

minimum in any row of beta data for a fixed alpha value. If mUltiple minima existed 
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on the same row the later ones were ignored. With the increased search space and 

more minima likely to be found a robust and fast method was required to pin point all 

the minima. A more complex minimum finding algorithm could have been developed. 

but it was felt that this would again leave the user removed from the actual output data 

and vital information and trends may be lost. It was decided that the best way to 

process all the relevant data quickly and easily was with a graphical method and 

example is shown in Figure 2-1. With visual processing the user can identify the 

minimum values from the graphical data far more easily than from tabular data. The 

graphical method that was chosen to display the data was a three dimensional surface 

plot. one for at each frequency simulated. 

Alpha 

Magnitude of 
Determinant 

Figure 2-1 Surface plot showing a minimum in a small alpha and beta search space. 

The axis of the surface plot were the beta values along the x axis. the alpha values 

along the y axis with the magnitude of the determinant shown as a height up the z axis 

above the z=O plane. The magnitudes of the determinants were very small numbers 

with a very large range. This initially made the surface difficult to plot so a log 

magnitude scale is chosen on all surface plots for the Z axis. All the log magnitude 

data points were then combined to form a shaded three dimensional surface 
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representation of the determinant values. The minima corresponding to the roots 

appear in this surface as deep spiked holes and the closest approximation of the root is 

the data point at the tip ofthe spiked hole. The user can quickly identify where these 

spikes are and determine if further investigation of the root is required with a finer 

separation between the trial values in the small area around the root. As can be seen in 

Figure 2-1, the position of the minimum is not very clear when the surface is viewed 

from above. However if the surface is rotated through 1800
, as shown in Figure 2-2, 

the minimum appears as a maximum and is very easy to pinpoint. All subsequent 

surface plots were plotted similarly, with the underside uppermost, so that all the 

minima can be found easily. 

Determinant 

Alpha 

Figure 2-2 Surface plot showing the same minimum as Figure 2-1 rotated 1800 about 

the alpha axis. 

It was also felt that the only way to be sure that all the eigen roots of the spectrum 

could be found was to search the entire search space given previously. The required 

range for the fundamental beta value was found to be a normalised value between 

zero and one. As these beta roots are those of Floquet modes, then the fundamental 

27 



Floquet mode normally resides between these normalised values. If it should move 

outside this range then the beta value of a higher order Floquet mode must move into 

this range as the fundamental value leaves. This is a fundamental property of Floquet 

modes, a detailed description is given on pl95 of [23], and means that the beta value 

of one Floquet mode of the eigen mode will always be in the zero to one normalised 

beta range. A normalised separation of I is the same as actual separation in beta of 

27dD, (rads/m) which is equal to the separation between Floquet modes by definition, 

see Equation 2-3. This states that the phase constant of each Floquet mode is related 

to the fundamental phase constant by integer mUltiples of 27dD,. 

Equation 2-3 

2Jr 
k,q =-q+k,o 

D, 

The normalised alpha and free space propagation number can of course have any 

positive value. However a limit was placed on the normalised alpha of between 0 and 

1.6. This corresponded to an attenuation along the FSG from zero nepers/m in the 

lossless case to nearly 1150 nepers/m, which is so lossy as to render any mode with 

that amount of loss to not be a significant contributor to any measurement. These 

modes will still be present in the aperture however and will need to be taken into 

account in order to match the fields correctly. The normalised free space propagation 

constant was varied from 0.1 to 0.65 corresponding to a frequency range from 3.6GHz 

to nearly 24GHz and a frequency range well beyond that which has been measured in 

chapter 3 (to which any data here will be compared). For the first sweep over the 

search space the step size between the trial values was set to be relatively large. This 

was 0.1 for both normalised beta and alpha, thus for each frequency 15,000 trial 

values of the determinant were calculated. Once the surface was plotted and the 

positions of the minima were determined from it. Many small search spaces that 

bracketed an area around each of the minima could then be run separately. These 

small search spaces can be run with very small steps 0.0005 in beta and alpha, so that 

the root can be found very accurately. 
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2.3 Nature of Modes Within the FSG 

The FSG design to have the full mode content investigated was the same as that 

designated as FSG 1 in chapter 3. This consisted of square loop elements 6.6mm by 

6.6mm with the conductor 0.942mm wide. In the model the conductor had no 

thickness and was constructed from a perfect conductor. The elements were all 

7.85mm from the axis of the FSG and curved as if they were on the surface of a 

cylinder, so that all parts of the elements were the same distance from the axis. Unlike 

the samples that were made, the computer model required no dielectric to keep the 

elements in position and they were surrounded by free space. The periodicity between 

the elements in the axial and circumferential directions was 8.22mm, which gave 6 

compete unit cells around the circumference of the FSG. The search space detailed 

previously was used and one of the resulting surface plots, for normalised ko=O.35 

(l2.7GHz), is shown in Figure 2-3 rotated through 1800 so that the underside of the 

surface is uppermost. 

From the surface plot the "peaks" which are the minima, giving the positions of the 

eigen solutions, can be easily seen. They are distributed around three edges of the plot 

where the beta values are close to zero and one and where the alpha values are close 

to zero. Curiously there is also a large discontinuity in the surface. This vertical 

escarpment in the surface exists at the point where normalised P=0.35, the same value 

as the normalised ko value at which the simulation was run. This value of beta 

corresponds to that used in the simulation code to make the distinction between the 

fast and slow wave regions. Values of beta that are less than the current value of ko 

are designated fast waves and values of beta greater that ko are designated slow 

waves. This distinction between fast and slow waves is covered in more depth in 

Section2.4. In general slow waves tend to be surface type modes and fast waves, can 

be radiative, evanescent or leaky modes. This clear separation on the surface makes it 

very easy to tell by inspection whether a mode is fast or slow. 
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The minima in the fas t wave region can be designated by the values of the ir 

propagati on constants, con fi rmed in [7]. The modes that have beta va lues of zero, or 

vi rtually zero, are evanescent modes. These three peaks have very high va lues of 

attenuation and no beta va lue. They do not propagate in the z direction, although the re 

may be some transverse power fl ow. The other three fas t wave minima almost 

certain ly represent leak y modes. The two modes with values o f beta around 0.05 will 

radi ate energy at approx imate ly 10° from the normal to the FSG. The beam width w ill 

be considerably larger for the mode with the highest attenuation as it will radi ate 

energy from a shorte r length of FSG than the mode with lower attenuati on. The 

attenuation fo r both these modes ( I 066nepers/m and 10 1 nepers/m) is far too large for 

them to be considered fo r a practical leaky wave antenna suggested by [1 5]. The 

radiation angle of a leaky mode can be approx imated using the equation be low given 

in [1 4]. 

Equation 2-4 

The final peak in the fas t wave reg ion corresponds to another leaky wave mode, 

which has a ma in beam that is closer to endfire at 66°. This mode also has a 

signi ficantl y lower anenuation constant of j ust 28nepers/m. This mode could be of use 

in a leaky wave antenna a lthough the attenuation is still fa r higher than that required 

for a resonant structure waveguide. 

The minima in the slow wave can be di vided into two groups. Those with zero 

attenuati on and those with beta va lues of one. The modes with zero attenuation are 

surface wave modes. It should be noted that these modes have beta values that place 

them an equa l di stance from the (J=O.S centre line of the surface . The significance of 

thi s w ill be d iscussed later in this secti on. The mode at (J=0.99 and very high 

attenuation is a lossy surface wave from [7]. T his mode is a fundamental Floquet 

mode and is consistent with a mode that is bound to the surface , but does not 

propagate fo r any s igni ficant distance as it is very highl y attenuated. These highl y 

attenuated Floquet modes may be higher order Floquet modes that are backward 

propagating, as will be discussed later. The o ther th ree peaks in the slow wave region 

and cl ustered around the (J= I va lue are the nex t higher order Floquet modes (q= I) of 
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the three evanescent modes on the opposite edge of the selUch space in the fas t wave 

region. This is obvious as the alpha va lues are identica l for each pair of minima and 

are separated by fJ= I or D:I2 7r, the separation between adjacent Floquet modes. 

The values quoted in Figure 2-3 are those taken fro m subsequent fine s tep 

investigat ions around each of the mi nima seen on surface plol. Each min ima was 

"gated" with a range in alpha and beta of +/- .0 I centred on the va lue taken from the 

surface plots. This is a range twice that o f the prev ious search step and represents the 

max imum area within which the minimum could lie. The s imulation was then re- run 

with thi s range at the same ko value and the fi ne search step of 0.0005 in a lpha and 

beta. The resulting surface plots for two of the min ima from Figure 2-3 are shown in 

F igure 2-4 and F igure 2-5. 

Figure 2-4 Close-up of first evanescent mod e, ~=0.0030 & a =0.5635 @ ko=0.35. 

Showing how 0.0005 steps reveal the cha nge in position of the minimum. 

The minima in both F igure 2-4 and Figure 2-5 can be seen to have sharp peaks that 

indicate that they tend to a zero determinant value and are good approx imations of the 

eigen roots. The value of the alpha ancl beta va lue can be ca lcu lated from the graph by 
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counting the squares from the point where the "peak" occurs to a known point. The 

two graphs illustrate the differences between a min imum that occurs on the edge of 

the search space and is a minimum in one dimension onl y and one that has a 

minimum in both alpha and beta dimensions. 

Figure 2-5 Close-up of second evanescent mode, ~=O & a=0.8425 @ ko=0.35. 

Showing how 0.0005 steps reveal the chlmge in position and shape of the 

minimum. 

With the mode spectrum examined for one frequency the value of ko was changed so 

that the operation of the FSG with freq uency could be ascert ai ned. The va lue of 

normali sed ko was incremented from 0. 1 to 0.6 in 0.025 steps . Around ko=O.4 thi s was 

increased to steps of 0.0 I in order to provide some finer detai l at this cruc ial poi nt. 

For compari son wi th the previous surface plot at ko=0.35 in Figure 2-3, the surface 

plot of ko=O.4, equ ivalent to 14.7G Hz, is included in 

Figure 2-6. 

This surface is si milar to that in Figure 2-3 except that all the minima have moved. 

Some like the fast evanescen t modes and very leaky mode have moved very little wit h 
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the large change in ko. Others have moved considerabl y, the fast leaky mode closest to 

the discontinuity has moved even closer to, but separate from it and the allenuation 

has con tinued to fall. So the mai n beam of this mode w ill appear c loser to enclfire ancl 

with reduced beamwidth. The largest change has taken place in the lowest leaky mode 

that previous ly radi ated near norma l to the FSG . The beta va lue has changed 

significantl y to 0.2205 , which gives ri se to a main beam 33° from the FSG normal. 

The allenuation has also fa llen significant ly to 4 .2nepers/m. This value is of the 

correc t order of magnitude to be used as a leaky mode antenna and if it were to fall 

lower then low loss propagation may be poss ible with the mode in an open resonant 

waveguide. This mode is approaching it 's resonant frequency, where it 's allenuation 

wil l become a minimum. 

The other major change to the di stribution o f minima is the movement of the surface 

wave modes. The surface plots at the intervening freque ncies show that the ei gen 

values move together and meet at (J=0.5 and a=0.0. They then combine into one e igen 

va lue with constant beta value of (J=0.5 and with inc reas ing values of aas ko 

increases. This could be mistaken for a lossy surface wave if the informat ion about 

the combination of the two loss less surface modes were not known. This process of 

the meeting of two surface waves is described on p2l6 in [23). The two surFace waves 

form a degenerate pair, which act as a modal stopband. This stopband is characterised 

by the constant beta value and the increas ing alpha value. 

The remaining " peaks" at (J=O, a=0.826 & (J=0.7795 & a=0 in the surface plots were 

investi gated, alo ng with all the others to improve acc uracy, with fine step gated plots. 

[t was found that these "peaks" were in fact local minima that did not te nd to zero, as 

can be seen in Figure 2-8 for (J=O, a=0.826. [f this plot of the minimum is compared 

wi th same minimum in the plot at ko=O.35, in Figure 2-5 , then the root that had 

appeared to tend to zero, now certainly does not. 
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The fact that at lower freque nc ies the root was present and had a /3=0 va lue gives a 

clue to the fate of the root. Instead of the root moving to increas ing beta va lues with 

increas ing ko values it has moved to negati ve beta values. These va lues are outs ide the 

search space and hence the bottom of the minimum where it tends to zero can not be 

seen. The local minimum that is left is a section through one edge of the act ual 2 

dimensiona l minimum. This decreasing beta movement o f the root is confirmed by 

the movement of the 11=- 1 backward trave lling Floquet mode from /3= 1,0:=0.8425 at 

ko=O.35 to /3=0.996, 0:=0.826 at ko=O.4. From a basic knowledge of conic sections thi s 

can be extended to say that any local minimum at the edge of the search space is a 

sec tion fro m a root that faJ Is outside the search space. The re levance of these roots 

will be covered in the fo llowing section on the decision making process in the model. 

Figure 2-8 Close-up of second evanescent mode, ~=O.O & a =0.8260 @ ko=0.40. 

Showing how 0.0005 steps .·eveal the minimum tending to zero. 

Figure 2-9 shows a fine step detai l plot for the lowest evanescent mode in the ko=O.4 

spectrum for comparison against the same mode at ko=O.35 in Figure 2-4. This also 

shows some small movement of the root in the -{3 direction. 
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Figure 2·9 Close·up of first evanescent mode, ~=0.0005 & a =0.5185 @ ko=0.40. 

Showing how 0.0005 steps reveal the minimum tending to zero. 

The extraction of the e igen mode roots from the surface plots gives a large amount of 

data that needs to be drawn together. One of the most des irable ana lyses required was 

to combine the roots From all the different Frequencies. So that the frequency response 

of each mode in the FSG can be formed. This information wi ll enable the FSG 

operation to be beller understood and compared to the measured values . It will , most 

importantl y, enable the resonant frequency of the FSG to be found. This is the point 

where the leaky wave attenuation becomes a minimum value. This process was found 

to be easy at val ues of ko<O.4 as there were relati vely reasonably stationary few roots. 

Above thi s value the number of roots increases very Fast and the values of alpha 

and/or beta begin to change rapidl y fo r some modes. In fact above ko=O.S it became 

impossible to be certain if roots on adjacent frequency plots were of the same mode. 

This could be allev iated to some degree by taking Frequency steps much closer 

together. However as these frequencies are above the freq uency range of primary 

interest for mode matching, it was decided not to do very fine steps and to leave a 

break in any response where the locus o f a eigen va lue is not one hundred percent 

certain . 
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Figure 2-10 shows the changes of the beta values of the fundamental Floguet eigen 

mode spectrum with frequency and Figure 2- 11 shows the change o f the alpha value 

with frequen cy. It must be remembered that these are complex roots and so both 

graphs must be viewed together and ne ither can be taken in isolati on. 

The fundamenta l loss less surface mode and the 11=-1 Floguet mode of the backward 

trave lling sur face mode are shown in Figu re 2- 10. They depart from the T EM mode 

(shown as the line where /3=+I-ko) and arch towards each othe r and meet at /3=0.5 and 

ko= 0.38. As already stated this point is the beginning of a stop band for thi s surface 

mode. The modes become degenerate and the beta va lue remains constant, the 

increase in avalue can be seen in Figure 2-1 1 from thi s point finall y finishing at 

a=0.2840 an attenuation of 217nepers/m. [t is stated in (7), when degenerate thi s pair 

of modes is not orthogonal, have no net power flow and are assoc iated with stored 

energy. 

The mode of most interest is the fundamental leaky mode as found by Loukos in [1]. 

The beta and alpha of Figure 2- 10 & Figure 2-11 show that it is a leaky mode with 

initiall y a s light backward propagation with decreasing attenuation. As the ra te at 

which the attenuation decrease increases the mode propagates in the forward 

direction. The beta curve in thi s region looks more like assoc iated with a fast 

propagating mode. [n thi s region at ko=0.41 I the attenuation becomes a minimum 

value of 0.5nepers/m. At thi s point the FSG is operating as a resonant structure and 

the loss is reduced to a minimum value and the mode phase constant crosses the TEl l 

curve of a so lid waveguide of the same rad ius. 

There does appear to be a type of leaky wave cutoff, a point where the mode changes 

from a very lossy mode that rad iates close to the no rmal , to a mode that ex hibits all 

the standard leaky mode characteristics. One that has a rapidl y changing beta value 

and a narrow main beam of radiation. The second and third higher order leaky modes 

ploued in Figure 2-10 & Figure 2- 1 1 both appear to adhere to this same cutoff 

phenomenon . However the first leaky mode and first higher order leaky mode do not 

ad here to thi s. The first leaky mode appears to be a quas i TEM mode a lways having a 

steadi ly decreasing attenuation and a beta value that does not stray far from the TEM 
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line. At ko=0.42 the mode crosses the TEM line and is lost. At thi s time it is unc lear 

what thi s leaky mode trul y is. The final leaky mode des ignated as the first highe r 

order leaky mode also does not have a simil ar cu toff. It does unde rgo a rap id change 

in the beta value, and thi s is not accompanied by a rapid decrease in the attenuation. 

The alpha value does in fact ri se very slightly. Thi s mode is so lossy that it w ill ex ist 

over very sho rt lengths of FSG and have very wide beams if it is exc ited . 

The modes designated as backward modes in Figure 2- 10 & Figure 2- 11 are the 

backward travelling equivalents of the leaky modes prev ious ly desc ribed . However as 

these start to propagate with increased -/3 values they move out of the search space 

and the plot is lost. However the fact that they are backward travelling is confirmed 

by the appearance of the 11=- 1 mode moving in a -/3 direction from the fJ= 1.0 edge o f 

the search space . A value in this reg ion of the search space must have an 11=0 Floquet 

mode - D/ 2Jraway in the beta value. This confirms what was suspected about the 

minimum seen in Figure 2-8 at ko=O.4. 

Finally the group of modes are included in Figure 2- 10 & Figure 2- 1 I and are labe lled 

unknown fast, stop band and lossy surface. These 5 modes are fast, stop band and 

lossy surface modes as labelled. They sudden ly appear in the spectrum and with no 

history o f their movement it is difficult to be certain in their identifi cati on. There is 

however some concern over the decision making used in the model and the validity of 

these modes for inclusion in the physical space field is unclear. This is di scussed in 

more depth in the next secti on 2.4 and so no further c lass ificati on o f these modes wil l 

be carried out. 
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The mode des ignated second higher o rde r mode was investigated fu rthe r to find out 

exactly iF it resonated as the fundamental mode did . From Figure 2- 10 & Figure 2-1 I 

it was c lear that it remained in its very lossy, virtuall y evanescent state unti l it s 

'cutoff' frequency was reached. It then clearl y starts to propagate in the z direc ti on. It 

was des irable to know if it did have a resonance like the fundamental. Did it behave in 

a similar fashion to a second higher order mode in a solid guide? OF course , be ing a 

leaky mode it would still have allenuati on. The program was run many times with a 

small locali sed search space, the frequency be ing increased each time and the position 

o f the peak found. It was necessary to move the search space each time in orde r to 

keep the peak within range. The predicted values for the second higher mode are 

shown in Figure 2-1 2 along with the TEM , TE ll solid guide and the fundamental 

leak y mode. 

From Figure 2- 12 it is c learl y ev ident that indeed the second higher mode has some 

s imilarities to the second higher mode in solid guides. It does have a pseudo cuto ff, 

around 19 GHz, after which it begins to propagate with greatl y reduced allenuation. 

Ol ice how the attenuati on fall s generall y as the frequency increases, but fa lls even 

more sharpl y at the cutoff freq uency. Unfortunate ly the at tenuation is very high, even 

at the resonant po int , taken to be around 2 1.5 GHz. This would make it unsuitable for 

any prac ti cal use, as the mode would die away before pro pagating any di stance. 

2.4 Implicati ons of k- B di agrams on ascertaining the properties of an FSG mode 

In the prev ious sec ti on several mentions were made of the dec ision making code in 

the Loukos model [I] . This process was required to ensure that all the tri al roots o f the 

e igenva lue equation were physicall y realisab le roots of the characteri sti c equation and 

represented real spectral modes , or that they were unreal non-spectral roots that had 

phys ical meaning within a limited area, i.e. leaky modes that represented the radi ation 

fi eld in a sector close to the FSG . This process is requi red , as the tri al roots of the 

axia l propagation constant k, are complex and so when the transverse radi al 

propagati on constant k, is calculated from Equation 2-5 there are two possible 

complex va lues that it can take. So me o f these values are rea lisable and some are 

phys ica ll y impossible. Only the physica ll y re levant values o f k, can be used in the 
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ca lculation to find the determinant and these determine the class ificat ion of the mode, 

when a root is found. 

Eq uat ion 2-5 

In [I] Loukos gives the decision mak ing used in hi s model for each Floquet mode as 

either:-

Leaky Wave (i.e. a,>O & /l,>0) WH EN q=O & /l,<ko OR q<O & ko>/l,>O 

OR 

Surface Wave ( i.e.a .. <O & /l,<0) WHE q=O & /l,>ko OR q>O OR q<O & /l,<-ko 

OR 

Proper Radiative (i.e.a,<O & /l,>0) WHE q<O & O>/l,>-ko 

N.B. [n all these cases lXz~O in order th at these waves are physical in the z directi o n as 

we have a pass ive, non ampli fyi ng, system and q is the Floquet mode number in the z 

direction 

The fi e ld propagati on in z is defined by e -j' ,., and k", = ~ q + k,o with kzo=~z-j a., ,. 
, 

In the radi al directi on inside the FSG the fie lds are governed by the Bessel fu ncti o n o f 

the first kind j"(k,.,,r) and outside the FSG by the Hankel function of the second kind 

1f2)"(k,,,r) where k,,, = ~kg -k ~, so that k,.,,=/l,.-ja,. 

This information is traditionall y disp layed on a twin surfaced Rie mann sheet whic h 

relates the k, values to the k, va lues see Figure 2- 13. The branch cuts corresponding to 

the continuous spectrum of radiation modes are shown as dotted lines. The poss ible 

values of /l,. & a, are shown in the respecti ve quadrants fo r particul ar va lues of /l, & 

lXz. N.B. As the ex ternal fields are defined by Han kel functions of the second kind, 

proper and improper Riemann sheets have been interc hanged with respect to those 

that are usuall y quoted in tex ts, where the ex ternal fie lds are denoted by Hankel 

functions of the Jirsl kind. 
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Figure 2- 13 Two surfaced Riemann sheets for the equati on k", = ~k~ - k ~, 

Two sheets are required to represent the mapping of o ne complex value to anothe r. 

The branch cut that li nks the two sheets is represented by the dashed axis. If the locus 

of a point crosses the branch cut on one of the sheets, then it switches to the ident ical 

point on the branch cut of the other sheet and the locus continues on the other sheet. 

More detailed informat ion on Riemann sheets can be found in [23]. From [3] the 

modes of the continuous radiation and evanescent spectrum lie along the branch cuts 

o f the proper sheet. The lines that represent the Loukos dec ision mak ing are verti cal 

lines through the 1{J, I=ko on the proper and improper sheets . A {J, value between zero 

and ko is forced on to the improper sheet and so is a leaky mode, a.ll other values faJ l 

on the proper sheet and so are rea l modes. This is the reason for the di scontinuity in 

the value of the determinant surface. The modes are forced from one sheet to another 

withou t havi ng passed through the branch cut , except at a,.=O. 

For any value of a,. the useful information about Floquet modes can be displayed on a 

kI{J diagram, as described on 19 1 in [23]. This format of diagram has already been 

presented in Figure 2- 10 and was used ex tensively by Loukos in [I]. It stems from the 

plott ing of the boundary between fast and s low wave regions for unatten uating 

structures, the line where ko= +I-{J,. If the modal field in question is represented by a 

infin ite sum of Floquet modes , thi s mode is known from [23] as a Bloch wave and 

these lines are repeated an in finite number of times at ko= +1-({J,27l!D, ) as shown in 

Figure 2-14. 
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Figure 2-14 k/~ Diagram for Floquel Modes and (X..=O. 

The Floquet modes o f a Bloch wave are characteri sed as each hav ing differen t phase 

veloci ties, but idelllical group veloc ities from the well known Equation 2-6. 

am 
v.' = a(3, 

Equation 2-6 

This implies that all energy in each Floquet mode is transmilled along the structure at 

the same speed and reaches a distant point at the same instant. A s ing le forward 

propagating Bloch wave is formed from both forward and backward travelling 

Floquet modes. A mode that is forward propagating, yet backward trave ll ing has a 

phase veloci ty in the -(3 direc tion , but a group veloc ity in the +(3 direction. 

The kI(3 diagram in Figure 2-14 shows that there is only one region in which fas t 

waves can exisl. Any Floquet mode in this region must be a fast wave. All other 

Floquet modes outs ide th is region must remain slow waves at all times. The 

replication of the I" I =0 fast and slow wave boundary along the axis to the other 

origin values of I" I >0, allows easy identification of the poi nt when a higher order 

Floquet mode enters or leaves the fast region. This occurs when the locus of the 

fundamental mode crosses one of the higher order boundary lines. This means that the 

corresponding higher order Floquet mode has entered or left the fast wave region, so 
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the loc i o f the hi gher order Floquet modes do not have to be trac ked . Fro m [23] in 

open structu res, the modes of the fast reg ion te nd to be radiative in nature. The 

decision making used in [I] is taken from thi s klI3diagram. If 13, fall s into the slow 

wave region then it is a surface wave. If it is a forward propagating fast wave then it is 

a leaky mode and a backward propagating fast mode is backward radi ati ve. The klI3 
diagram shown in Figut°e 2-14 can be thought of as ly ing along the 0:=0 axi s of a 

Riemann sheet. The Riemann sheet is drawn for a fi xed va lue of ko and as thi s is 

changed the sheet can be moved accordingly up or down the ko axis of the klI3 
diagram . The point where the branch cut starts is the line that separates the fast and 

slow reg ions on the klI3 diagram. 

However [23] suggests that the klI3 diagram should be altered if the propagation 

constants are complex and the allenuation is non zero, as in the case of the FSG . 

Equation 2-7 

Equation 2-7 shows that in order for 13/ -a/ to be zero then k" 2 = 13,2 - a,2 . The 

s ignificance of j3/-a/=O is that this marks the boundary between fast and s low wave 

in the klI3 diagram and is any point where 13/ = a/. This means that for a ny mode with 

allenuation the boundary between the fast and slow wave moves to form a hype rbola 

as shown in Figure 2-15. The position of the branch cuts on the Rie mann sheet is 

unaltered with allenuated mode and is given by the condit ions that 2ja,.j3,=0 & 13/­
a/ ;:o:O. This trans lates to the position already given in Fi gure 2- 13 for the branch cut 

that e ither a,=0 or 13,=0 & k/ cj3/- a/. 

47 



~ 2 ./ 
~. , 

Fast ivave 

vV Reg on 
0 1.5 ~ 

u 

~" 
• •• .. 
E 

. J owwa 
0 , z 

Sow Wave , 

Region Region 

I'·. 0.5 
.' .) 

I 
-2.5 ·2 · 1.5 ., -0.5 

a , 
0 a , 0.5 1 1.5 

Normal iscd ~z 

Figure 2-15 kl(J Diagram showing the fundamental 11=0 separation lines 

deformed by attenuation 0<. 

e 

2 

This means that as the allenualion increases then the slow wave region sh rinks and the 

fast wave region gets bigger. This means that the boundary between fast and slow 

waves is not invari ant with a. It should be noted though that not only does the 

di splacement of the boundary increase with increasing allenuation, but it also 

becomes more bLurred. When there is zero attenuation the wave is either a radiative 

mode or a surface mode, with increased attenuation this becomes a little more of a 

grey area in the vicinity of the boundary. It becomes a case of the mode behaving 

more with the characteri stics of one mode type, bu t still with some aspects of the 

other. The degree to which thi s is true depends on the prox imity of the root to the 

boundary. 

2.5 
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With the new knowledge of the kI(J di agram when attenuation is present, a series of 

altered kI(J diagrams can be placed on a Riemann para lle l to the pos ition of the a:=0 

kI(J diagram talked about earlier. A three dimensional representati on cannot be made 

which combi nes the Riemann sheet and the kI(J diagram, see Figure 2- 16. With 

modern computer plott ing packages thi s diagram can be rotated on screen to view 

each part from the best angle. It unfortunately does not translate to static two 

dimensional representati ons very well. The full benefit to the researcher would be to 

have th is three dimensional graph represented in virtual reality. This is beyond the 

remit o f thi s work, but the author believes th at thi s three dimensional graph is a useful 

first step the development of more informative three dimensional graphica l methods. 

The advantage of thi s is that the separation boundary of the fast and slow reg ions can 

be seen for all values o f ko, (J, and Ixz. 

The three dimensional kI(Jla graph of Figure 2- 16 allowed the easy investi gation of 

the proximity of the loc i of the eigen roots to the surface that made up the boundary 

between the s low and fast wave regions. In most cases there was seen to be sufficien t 

separation between them to make any concerns about any alterations required to the 

dec ision making, of the model from [I], unnecessary. However in the region of 

ko>0.45 the appearance of the unknown modes of Figure 2-10 & Figure 2- 1 I does 

cause some concern . However the decis ion in chapter 4 to carry out mode matching 

around the resonan t frequency reduced the cri tical ity for thi s investi gation to be 

carried out in thi s piece of work . It is recommended that this area of the mode 

spectrum, at higher ko values, be looked into more c losely with close attention paid to 

chang ing the deci sion making employed in [I] to take account of the attenuation 

constant. 
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3. Investigation of FSG by Measurement 
Methods 

The open structure o f metallic e lements that is periodic in two d irections and fonned 

into a cy linder of circul ar cross section referred to as a "Frequency Selective Guide" 

(FSG), has been modelled and described extensively by Loukos in [6]. However, 

little measurement work, of a structured nature , had been undertaken to investi gate 

experimentally the physical characteristics of the structure and to ascertain the 

accuracy o f the result s produced by the model. Only when the measured propagation 

constants match the predicted values can the accuracy of the model be assured. 

The measurements of the FSG can a lso be used themselves to deduce many of the 

properties of the structure independent ly from the data obtained from the mode l. As 

the FSG is an open structure that has been fo und to exhibit a mixture of both open and 

clo ed properties , measurement techniques can be employed that are trad iti onall y 

used e ithe r for onl y open rad iating structures or else for closed non radi ati ve 

structures. Use was made of broadside radiation plots taken at many individual 

frequencies to give a rough freq uency response of the radiation field . As well as these 

radiation pattern measurements, re fl ection and transmiss ion scattering parameters 

were also taken over a large frequency range, by treating the FSG as a two port 

device. 

3. 1 FSG Des ign 

Before any measurement work could be undertaken, FSG's of a high quality and 

manufactured to strict production standards were des igned and built. The FSG 

mode lled by the computer program consists of iden ti ca l freestanding metal elements 

at a constant rad ial distance from the FSG ax is and separated from each other by a 

constant peri od ic di stance in the axial and c ircumferential directions. In reality the 

e lements require some structura l support to make it poss ible to manufacture thc FSG . 
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The support materi al used must be of a suitab le dielec tric type, which is not go ing to 

aher the properti es of the FSG signi ficantl y. It must also allow easy construction of 

the metalli c elements upon its surface. Design procedures are li sted here : -

o The fi rst requi rement when des igning an FSG is the frequency of operatio n. In 

most cases thi s will be the frequency at which the FSG resonates and where the 

least amount o f leakage occurs. However it could also be a frequency away from 

resonance where a spec ified amount o f power is radiated at a spec ific angle, in the 

leaky region of FSG operation. In thi s investi gation it was required that the 

resonan t frequency be within the frequency band at which the feed ing wavegu ide 

operates . Idea ll y if the resonant frequency is in the centre of the band thi s allows 

investi gation o f the characteristics not onl y at resonance, but also the 

characteri sti cs during the transition into and from the resonant region, the leaky 

reg ion. 

o To determine the size of the e lements CL) and the spac ing between them. It should 

be noted that the element s ize added to the spac ing between adjacent e lements is 

called the periodicity (D) and is the di stance between adjacen t element centres. 

The element size and periodic ity define the resonant frequency and behaviour of 

the array. As a start ing poin t computer model, developed previously at 

Loughborough Uni versity, that calculates the resonant frequency of a planar sheet 

of FSS . This program has a run time cons iderably faster than the FSG modelli ng 

program and so is ideal to gain an indication of the e lement size and period ici ty 

required. The program was run with the exc itation plane wave incident upon the 

FSS at an angle of around 60°. This was done because it was feh that we would 

get a more accurate va lue of the element size and periodicity than if we used the 

normal inc ident case. Drawing a paralle l wit h so lid waveguide theory, then 

propagating modes wi thin the guide must also be inc ident upon the guide surface 

at some acu te angle. The angle used though was decided upon arbitraril y as thi s 

step is only used to get an initia l starting po in t for the next stage of the des ign. 

This can be seen to be a valid technique in secti o n 3.4. 1, where the measured 

results of the FSS sheet are presented. 

o A further difficulty in defin ing the element periodic ity dimensions of the FSG is 

that the c ircumference must be an imeger multiple of peri od icity. This is 

necessary so that a uniform array is seen arou nd the circumfe renti al direc tion and 
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the cylinder has an overall rotational periodicity of 211:. The elements used are 

square loops and have side lengths and periodicities identical in both directions. 

This simplification makes the calculation of the array dimensions easier and 

ensures that the arms of the loop resonate at the same frequency in each direction. 

o Once the rough size and periodicity of the FSG elements has been established, 

these dimensions, along with the radius of the FSG, are used as inputs into the 

FSG simulation program written by Loukos [6]. This program only produces the 

values of solutions to the boundary value problem, see chapter 2 for details, at a 

particular frequency. The output consists of either the complex propagation 

constants of the various modes in the FSG, or the model field patterns, allowing 

confirmation that the modes are either EH or HE. The program must be run many 

times at different frequencies to find the resonant frequency of the structure. This 

has been identified as being the point at which the value of the real part of the 

propagation constant in the axial direction (fiz) of the fundamental FSG mode plot 

intersects the TEll mode plot of a solid guide of identical radius. As at resonance 

the FSS is reflective and approximates to the PEC boundary of the solid 

waveguide and so should have similar phase constants. Alternatively it is the point 

where the imaginary part of the propagation constant in the axial direction (a,) of 

the fundamental FSG mode is a minimum. 

o Once the resonant frequency has been found it can be compared with that given in 

the specification. If there is not a close match then the element size, periodicity or 

FSG radius can be altered and the FSG simulation program run again, this process 

is repeated until the desired resonant frequency is obtained. Guidelines of how this 

may be done are detailed in chapter 2. 

o The width of all the conductor arms in the square loop was set to ll7th of the 

length of the arm in this study. This was done to reduce the computation time 

required by the FSG modelling program, see [6] for details. Also the separation 

between elements should be designed to be as large as possible in relation to 

manufacturing tolerances that may cause a variation in the element size. It was 

found that for arrays where the resonators were designed to be spaced very close 

together, the manufacturing tolerances of the FSS caused the variation in actual 

spacing to be large. When elements are very close together very high levels of 

mutual coupling are seen between the element edges. When placed very close 
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together small changes in the spacing can cause very large changes in the 

magnitude of the inter element coupling and this gives rise to a large and 

noticeable shift in the resonant frequency of the elements. 

3.2 Dimensions of the FSG 

Loukos had modelled several circular cylindrical FSGs, with square loop resonating 

elements of particular dimensions. Although not all of ideal size, i.e. the radius was 

not the same as that of a standard waveguide (e.g. Cl40 = 7.35mm), one did have a 

radius of 7.85mm, only slightly oversize. It was felt that the feed guide and the FSG 

should have a similar radius so that the effect of the change from solid waveguide 

wall to the FSG wall made of resonant elements was isolated from any effects caused 

by the change in wall radius. The predicted resonant frequency of this FSG was 

l5.3GHz. This frequency was within our test equipment's operating range, unlike the 

others modelled. Although this frequency coincides with the cut-off frequency of the 

next higher order mode in the solid feed waveguide (CI40), it was felt that this would 

not be a problem. The feed waveguide would remain in single mode operation at the 

input because it can only be fed by a TEIO mode from the rectangular waveguide and 

the transition between the rectangular and circular waveguide will only convert this 

mode into the TEll mode. 

The FSG dimensions were: -

Radius = 7.85mm 

Periodicity of square unit cells along the circumference <I> and along the axis z 

(D$' Dz) = 8.22mm (which gives 6 unit cells around the circumference in <1» 

Length of each side of square conductor (L$' Lz) = 6.85mm 

Width of conductor line (W) = .9786mm 

Length ofFSG section = 28.lmm 

3.3 FSG Manufacture 

It was decided to use an established composite material consisting of a copper sheet 

l8Jlm thick with an attached Mylar dielectric backing, that came in two thicknesses 

either 0.03mm or 0.04mm, Er= 3.0 and tan Ii;: 0.03. The metal elements on the 
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surface of the FSG can be manufactured from the copper sheet by using the same 

etching technique used in PCB manufacture. The etching removes most of the copper 

sheet apart from the places where a patch of copper is required to form the array of 

elements of the correct shape. This technique is widely available and inexpensive, so 

many iterations of the design can be manufactured cheaply while prototyping. The 

end result is a planar sheet of metal elements on a thin dielectric substrate, the 

Frequency Selective Surface (FSS). This was then rolled into a tube to form the FSG 

and the edges stuck together. 

Although FSG's had been made previously for measurement, by this same method, 

they were very crudely made, suffering from poor longitudinal uniformity and a 

distinctly non-circular cross section. Development of a methodical production 

procedure would allow FSG's to be manufactured repeatedly to the high standard 

needed to obtain good measurement results. 

The production procedure developed is: -

o Once the FSG element size, periodicity and radius has been finalised then the FSG 

can be made. To etch the copper elements from the sheet using the standard PCB 

production process, a photonegative mask must first be produced with the element 

design upon it. The design was drawn using a CAD package, to accurately place 

the square loop elements of the correct size, shape and line width into the matrix 

of elements, which forms the FSS. The design was transferred onto an acetate 

sheet with a photo plotter. This sheet was then used to create a photonegative 

mask of the design on another acetate sheet. 

o When exposed with ultra violate light through the photonegative mask the design 

was transferred onto a photo-resist layer that was stuck onto the surface of the 

copper. The unwanted copper and unexposed photo-resist was eaten away in an 

acid bath to leave the array of square loop elements. Although some under cutting 

of the elements by the acid is possible the etching process is very accurate and 

produces elements to within +/- 61lm ofthe mask dimensions. It was found 

however that the mask production technique using the photo plotter with 0.1 mm 

pens was only accurate to +/- O.lmm. The error in pen placement and ink 

spreading from the pen when it dwelled for any length of time, meant that it was 

highly likely that the elements would not all be exactly identical. As no other 
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facility was available, it was hoped that these accuracy limitations would not have 

a significant effect upon measured FSG results especially as the Loughborough 

Microwave group had obtained good agreement between measured and predicted 

scattering parameters for planar elemental FSS sheets using this production 

process. 

o Before the planar FSS sheets were turned into FSGs, the frequency response of the 

sheet was measured. This ensured that the resonant frequency of the planer array 

was as expected and the FSS had been produced correctly. It also meant that later 

comparison between resonant frequencies of the planar FSS and the FSG was 

possible, see section 3.4.1. 

o The excess dielectric around the edge of the strip of elements was trimmed so that 

the sheet was exactly the correct length; an integer number of elements, and 

width, again an integer number of elements equal to the circumference of the FSG 

cylinder plus one to two millimetres to act as an overlap at the join or seam. The 

overlap is positioned so that when the sheet is rolled into a cylinder the periodicity 

between the adjacent elements across the seam is the same as that between any 

other two elements on the sheet. Also the overlap dielectric should not project 

under any of the elements on the other side of the sheet so that the cylinder is as 

symmetrical as possible. The overlapping dielectric edges were stuck together 

with spray mount adhesive, which gave a very even layer of glue and stayed tacky 

for several minutes, allowing fine adjustments to be made to the positioning of the 

overlap seam. 

o The sheet was rolled with the elements on the inside of the tube so that the feeding 

fields act directly on the element and not on the element having first passed 

through the dielectric. To achieve a good shaped cylinder the tube should be 

rolled on a former machined to a diameter such that the dielectric can be formed 

into a cylinder of the correct circumference and therefor an integer number of 

elements with the correct periodicity, see Figure 3-1. The former was made from a 

length of aluminium as it is cheap, relatively light and ridged enough not to 

deform while being machined. The rolling process was only possible because the 

material was thin and had low rigidity. It was assumed that the thickness of the 

dielectric sheet would have a minimal impact on the FSG operation, although it 

was known that dielectric materials cause some increase in the electrical length of 

the loops. 
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Aluminium Former 

Overlap for Seam 

Dielectric Sheet 

Figure 3-1 FSS sheet being rolled on its former to make an FSG. 

o In order for the FSG to have a good circular cross section the sectors of the 

circumference with metal elements must have the same radius of curvature as the 

dielectric only segments between the conductors. It was found that a former ofthe 

correct diameter could not induce sufficient bending stress on each element to 

ensure that it held the correct curvature when the former was removed. In fact the 

elastic rigidity in the elements meant that they sprang back into their original flat 

form without the former present. The FSG produced therefore had an undesirable 

multi-sided polygonal cross section (hexagonal in this case), where the corners 

were formed by the dielectric between the elements that could bend. The standard 

way to treat the metal so that it has the correct curvature would be to heat it while 

it is curved and then to cool it quickly. However this method is not practical as the 

Mylar dielectric melts at a far lower temperature. A method was required where 

more bending stress and curvature could be put into the elements so that when the 

stress was released they would sprang back to the desired curvature. The method 

adopted to form a circular FSG cross section was to wrap the sheet around a much 

smaller diameter former. When this was done tightly, so that the strip was wound 

many times round the thinner rod, the copper was forced to take on some shape. 

When the strip was unwound it was found to have slightly too much curvature, but 

this disappeared once the FSG was place on the correct size former and drawn 
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tight and the seam sealed firmly. The cross section of the FSG was now almost 

perfect in cross section shape and of the correct radius. It was found that the 

thicker the dielectric sheet the easier it was to form the circular cross section and 

the better the FSG held the finished shape. Wherever possible the finished FSGs 

were stored on the formers to ensure that they were not damaged or lost the all­

important circular cross section. 

3.4 Measurements & Characterisation of the Initial FSG Produced 

The first FSG produced to the design dimensions given in section 3.2 was tested 

thoroughly with SII, S2l scattering parameters and radiation patterns being taken over 

a large frequency range. This data was analysed and hypotheses about the modes of 

operation of the FSG were made. Before the FSG was constructed the FSS sheet was 

measured and these results are given first. 

3.4.1 Set-up and measurement of Planer FSS sheet before being made into an FSG 

The FSS sheet was held taut on a supporting, picture like, frame which in turn was 

placed upon a rotating stand in the centre of the anechoic chamber. A plane wave 

source was placed about I.Sm in front of the FSS sheet with the centre of its main 

beam aimed at the centre of the sheet. A similar receive horn was placed a similar 

distance behind the sheet, again with the main beam aimed at the centre of the sheet. 

Both the horns were connected to an HP84 10 scalar network analyser in order to take 

the measured transmission response of the FSS as shown in Figure 3-2. The 

transmission response was measured over the frequency range 12-18 GHz at several 

different angles of incidence. Measurement of the FSS limited to a maximum angle of 

incidence of 600
, at angles beyond this the edge of the frame partially obscure the FSS 

and so affected the measurements. The orientation of the transmit horn was such that 

the E field vector is always parallel to the FSS surface while it was rotated, this is a 

TE incident field measurement. 
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Figure 3-2 Equipment Set-up for the Measurement of the Planer FSS 
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Figure 3-3 Frequency Response of the Planar FSS sheet used to make FSG 1 
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The transmission plots obtained were as expected and identical to the standard 

theoretical form of FSS response [7]. These showed a large sharp dip in the 

transmission plot at resonance were the sheet becomes highly reflective to the incident 

field and the transmitted power is at a minimum, Figure 3-3. The resonance point 

shifts to lower frequencies as the angle of incidence is increased. Here if the incident 

wave is 60° then the resonance is 15.5GHz and is close to the measured value of 

15.2GHz, the resonance of the FSG. This shows that the design technique that uses 

the planer modelling program, with 60° incident fields as a starting point for the FSG 

design, is a valid and time saving method. 

3.4.2 SII & S21 Test Equipment Set-up 

The S21 & S II scattering parameters of the FSG were measured using an HP 841 OB 

Vector Network Analyser with the test set-up shown Figure 3-4. The coaxial cable 

from the analyser was connected to WG 18 rectangular waveguide via standard 

commercially available post transitions that excite the fundamental TEIO mode. A 

tapered rectangular to circular transition was used to convert the TEIO mode of the 

rectangular guide to the fundamental TEll mode of the CI40 circular guide. The FSG 

was then placed on the end of the C 140 guide, these both having similar diameters. 

The C 140 guide was used to ensure that any evanescent modes created at the 

rectangular to circular transition had died away before the signal was fed into the 

FSG. Following the FSG another identical circular to rectangular transition converted 

the circular FSG modes back into rectangular waveguide modes. For S21 

measurements any evanescent modes generated by the transitions were allowed to die 

away in another section of rectangular wave guide before reaching another probe 

transition and the coaxial cable connected to the second port of the analyser. A 

matched termination replaced this transition for the Sll measurements and again was a 

standard commercially available rectangular waveguide item. Ideally a matched 

termination would have been place directly on the end of the FSG replacing the 

circular waveguide or circular to rectangular transition, but not enough is known 

about the operation of the FSG to build one at this point. 
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To attach the FSG to the solid waveguide a small length (3cm) of expanded 

polystyrene was turned on a lathe, so that half of it was the same radius as the FSG 

and the other end was the same radius as the solid wave guide. This was then inserted 

into the waveguide ends, such that they snugly butted up against each other. This 

method ensured that both the FSG and wave guide were co-axial and secure, while 

being easy to move and change if required during development. Clearly a more 

permanent method would need to be developed if this were to be used in a practical 

environment. The dielectric constant of the polystyrene is very close to air and so 

should have relatively little affect on the transition performance. 

S21 

a 
n ~ ~ ~ [I I 

WGI8 CI40 FSG WGI8 

Figure 3-4 Test Equipment Set-up 
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A standard calibration procedure of through, short circuit, offset short circuit and 

matched termination measurements were used to set the analyser reference plane to 

the end of the C140 waveguide. The FSG was removed and the far circular transition 

was attached to the C140 circular guide. The analyser calibration routine was then 

followed for the appropriate S21 or S II procedure. Taking either an S21 measurement 

of the connection through solid waveguide or an S II measurement with the matched 

termination in place then tested the calibration. The calibration test values were as 

expected, OdB in both cases, so the calibration was accurate. 

3.4.3 Sll & S21 Measurement 

The S21 frequency response obtained for the O.04mm thick dielectric FSG had several 

distinct regions, see Figure 3-5. In region "A" from 12 -13 GHz it can be seen that 

there is a 4dB periodic fluctuation superimposed onto a -7dB horizontal line that 
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gentle rolls off to -15dB. In region "B" there is a very sharp drop in S21 to a 

minimum value of -35dB followed by a slower rise back towards the "A" region 

value. Region "c" contains a shallow maximum that forms the top of a bell curve, 

which peaks at a maximum value of -4.3dB at 15.1GHz. In the final region the fall­

off of the bell curve continues to such a low level, that it is hard to distinguish any 

signal amongst the noise floor of the analyser. 
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Figure 3-5 Initial S21 Measurement of the FSG with a Solid Waveguide at Each 

End, with FSG Dimensions D=8.22mm, L=6.6mm, r=7.85mm, t=O.04mm & 

length=28.1cm. 

The S 11 response ofthe FSG was then taken see Figure 3-6. There were some very 

large ripples in the response, up to a maximum of l3dB peak to peak with an average 

magnitude of 6 to 7dB, seen in regions "A" &"C". The average level of SI I in region 

"A" was about -l3dB and in region "c" that had dropped to -20dB. Region "B" has a 

relatively ripple free response slopping from -13dB to -20dB. Finally Region "D" has 

a slope in the opposite direction going from -20dB to -9dB where it flattens out at 

that level. 
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3.4.4 S 11 & S21 Intemretation 

These scattering parameter responses will now be analysed to try to extract a rationale 

for the behaviour of the FSG that would give rise to these results. They can also be 

tied into the known theory about the FSG that comes from analysing the results of the 

Loukos simulations and given in [6]. The main points of the theory suggest that there 

is a surface wave with a real propagation constant that propagates along surface of the 

elements of the FSG at low frequencies. As the frequency increases further then this 

mode is replaced by a leaky mode that has an improper complex propagation constant. 

This leaky mode is not entirely bound to the FSG and a proportion of the modal 

energy radiates away from the FSG. However the theory also predicts that at a 

particular resonant frequency of the structure the amount of radiation that leaks away 

from the FSG is reduced to a minimum value. 
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Figure 3-6 Initial S11 Measurement of the FSG with a Solid Waveguide at Each 

End, with FSG Dimensions D=8.22mm, L=6.6mm, r=7.85mm, t=O.04mm & 

length=28.1cm. 
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Looking at the low frequency region "A" the S21 results show that a reasonable 

amount of power is being transmitted to the second port, certainly more than would be 

expected if the FSG were removed and the wave guides were left open ended. Also the 

ripple in the SII measurements is indicative of a standing wave being created between 

two imperfectly matched junctions with a length of guiding structure between them. It 

is thought that a small standing wave is being set up within the FSG, between the two 

wave guide to FSG transitions. The average S 11 match is also slightly better than 

would be expected for an open-ended waveguide radiating into free space. 

This evidence suggests that the FSG is guiding the fields to some extent in region 

"A", but it does not prove the presence of a surface wave as theory suggests there 

should be. The evidence that it is indeed a surface wave is anecdotal, but compelling. 

The structure of any surface wave mode is such that some of the field is contained 

inside the structure, while a large amount exists on the outside of the structure [8] & 

[2]. 

Here it propagates along the exterior of the surface, but does not radiate away from it 

as it is bound to the surface. With a large amount of the modal field energy 

propagating along the outside of the FSG an annulus of RAM, internal radius == 8mm 

& external radius == 80mm, placed around the FSG, but not touching the surface, 

would have a large effect on a surface wave mode. It would have virtually no effect 

on a mode that existed largely within the FSG. With the RAM not in close proximity 

to the surface the currents that exist on the surface of the FSG should not be disturbed. 

It should only suppress and disrupt the external fields of a surface wave mode causing 

the amount of transmitted surface wave mode power to be attenuated. Indeed the only 

affect seen on the S21 plot was significant reduction of the values seen within region 

"A". The other regions remained virtually unchanged by the presence of the RAM. 

Therefore, the measurements (that there is some guidance which is attenuated by the 

presence of the RAM) indicate that a surface wave mode does propagate along the 

FSG at low frequencies as the theory suggested. 

The next region "B" shows a very sudden drop in the magnitude of the S21 value, 

indicating that very little power is reaching the far end of the FSG. At the same time 

the ripples in the S 11 plot disappear, while the value of I sill also becomes less and 
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the amount of reflected power is reduced. As the transmitted and reflected powers are 

both reduced, then by the law of conservation of energy there can only be one place 

for the power to go, it must be radiated. The structure can no longer support the 

surface wave mode and power is radiated away from the feed and FSG surface. 

Indeed the very nature of a leaky wave mode is that it must radiate power away from 

the structure surface at some angle that is frequency dependent. It is likely that the 

surface wave is replaced by a leaky wave mode that has a very high imaginary part to 

its propagation constant. This means that virtually all it's power is radiated before the 

mode reaches the far end of the FSG. 

As region "B" moves into region "C" the S21 value steadily increases until it reaches 

it's maximum value. The S 11 value continues to decrease towards its lowest level 

where it enters the "C" region where more ripples occur. Here the standing wave 

pattern has returned showing that the fields are again being guided and that a standing 

wave is being set up along the FSG. Again because the S 11 value is low there must be 

a good match and little reflection off the first transition back down the solid guide at 

port 1. The increase in the S21 value must mean that less power is being radiated and 

more must be contained inside the FSG, again evidence of FSG becoming more 

guiding. Indeed the maximum amount of power received at port 2 (maximum 1 S21 I) 
coincides with the maximum magnitude of ripple in Sll and hence the largest standing 

wave inside the FSG. This ties in very nicely with the theory that the leaky wave 

becomes progressively less radiative until at some resonant frequency there is a 

minimum amount of loss and maximum amount of containment of power within the 

FSG. 

Finally as the frequency increases further and the plots move from region "C" into 

"D" the 1 S211 value reduces from it's maximum value until there is virtually no 

power transmitted to port 2. At the same time the standing wave ripple disappears and 

the reflection off the first solid waveguide to FSG transition increases to it's 

maximum value. However as the SII levels off at -9dB then not all the incident power 

is reflected, little power reaches port 2 and the remainder must again be radiated. This 

again ties in well with the FSG theory as it states that after the resonant frequency the 

amount of radiation from leaky wave modes will again increase significantly. So 
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much so that what power does enter the FSG is lost through the walls before any can 

reach port 2. 

Further confirmation that regions "B", "e" & "D" are leaky wave regions was 

obtained by the absorber experiments described previously when discussing the nature 

of the surface mode in region "A". A guided leaky wave will not suffer a significant 

change in S21 when the absorber is held in position, because the majority of its field is 

contained within the guide. The proportion of the power that leaks out through the 

walls has been radiated. It does not affect the fields within the FSG whether the 

radiation is absorbed by the RAM or whether it reaches the far field. It has already left 

the FSG structure and hence the value of S21 is changed little by the presence of the 

absorber. 

3.4.5 Radiation Pattern Equipment Set-up 

In order to obtain a final confirmation of the above measurement characterisation 

theory it was decided to measure the radiation patterns of the FSG at various 

frequencies. As the structure is open and leaky modes must radiate, by definition, it 

should be possible to measure the radiated power patterns in an anechoic chamber. 

The radiated energy from a leaky mode has one main beam that emerges at some 

acute angle to the axis of propagation of the mode. The angle and beam size is 

directly related to the frequency and the amount of leakage the mode has. Indeed the 

amount of power radiated is a measure of how well the structure is containing the 

field; no radiation would be detected for a solid wave guide for example. The FSG 

was placed in the microwave anechoic chamber with the measurement system as 

shown in Figure 3-7. The matched load was attached to the circular to rectangular 

transition at the far end of the FSG, similar to the S 11 case, to absorb any power that 

reached the far end of the guide. The measured power pattern was via a solid 

wave guide horn connected to the second port of a HP84 10 scalar network analyser. 

The instrument was set to its maximum power output with the first port of the 

analyser connected to the solid waveguide of the input feed to the FSG. The receive 

horn was then rotated around the centre point of the FSG from _700 to 700 on a 

stabilised arm 1.5 meters long. This should be in the far field of the radiation pattern 
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for measurements above 12GHz .. As this measurement is of the radiation pattern at an 

angle to the axis of the solid wave guide no calibration or normalisation of the system 

could be carried out as it might be for a wave guide horn for example. The radiation 

measured at these off axis angles can only be measured once the FSG is in place and 

so the only meaningfully normalisation is to the peak value of any beam recorded in 

the radiation pattern. 

a--_~ 
J WGl8 

\1:W:G:18~[C~14:0J:~F~S:GIIT~,:an:si~ti0:ln & match load 

Figure 3-7 Test Equipment Set-up for Radiation Pattern Measurement 

3.4.6 FSG Radiation Patterns 

The radiation pattern measurements were repeated for several frequencies over the 

band displayed in the S21 & Sll measurements above and are all displayed in Figure 

3-7. The frequencies at which the pattern was measured were 12, 13.5,14, 14.5, 15, 

15.5, 16, 16.5 GHz with the FSG in place. Also included in the graph is a comparison 

measurement at 12GHz without the FSG present, i.e. the radiation pattern for an open­

ended wave guide. It is worth noting that other radiation patterns were taken at higher 

frequencies for the open ended wave guide without the FSG present, but the patterns 

were almost identical to the 12GHz pattern displayed here. This invariance in open­

ended wave guide patterns is in stark contrast to the patterns for the FSG. These 
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clearly show marked differences in the patterns at each frequency. The l2GHz FSG 

pattern is not that different from that of the open ended wave guide. This along with 

the Iow magnitude of the measured pattern is a clear indication that very little power 

is radiated at this frequency and that indeed a surface wave mode must exist at this 

frequency (region "A" of Figure 3-6). 

All the other patterns between the frequency range of 13.5 to 16.5 GHz are very 

different. There is clearly a main beam of radiated power associated with each one. 

The main beams all occur between -IS° & -55°, which is always an acute angle with 

the axis of propagation along the FSG. The higher the frequency the closer the main 

beam to the axis the lower the frequency the closer the main beam to the normal to the 

axis. This shows yet another property of a leaky wave mode, where by the main beam 

is scanned from the normal towards the end-fire axis by changing the frequency. 

Antenna designers often exploit this property as it allows them to produce scanning 

antennas simply by changing the frequency of operation. The relative magnitude and 

beam width of each main beam also changes with increasing frequency. At 13.5 GHz 

the beam is wide with a Iow magnitude, as the frequency increases the beam gets 

narrower and more intense. 

These frequencies are in section "B" of graph Figure 3-5 and show that the leaky 

mode only starts to form at 13.5 GHz as not all of the radiated energy is being 

channelled into a well defined beam rather it radiates over a broad range of angles. At 

14GHz the leaky mode is fully formed and produces the narrow well-defined main 

beam as expected. It should be noted that the asymmetrical shape of the beam is very 

indicative of the presence of the leaky mode. The side of the beam closest to the FSG 

is very steep and the side closest to the normal is very shallow, as explained in [4]. 
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As the frequencies change through the "C" region of Figure 3-5 the magnitude of the 

main beam reduces. With the minimum value recorded at 15GHz, which is the closest 

measurement point to the postulated resonant frequency of the FSG. This confirms the 

theory that the radiated power from the FSG should become low at the resonant 

frequency. After 15GHz the main beam magnitude becomes large again reaching a 

maximum value at 16GHz. It should be noted that in this region of well-defined leaky 

modes the patterns are almost symmetrical about resonant frequency. This same well­

defined symmetry about the resonance is also seen in Figure 3-5 in region "C". The 

leaky mode becomes more or less radiative regardless of how the resonant frequency 

is approached. Finally the radiation pattern at 16.5GHz shows the magnitude of the 

main beam falling off and some beam width broadening. This is certainly due, in part, 

to the increased mismatch at the input feed to the FSG. The beam broadening is not as 

bad as at 13GHz so it does not suggest a return to poorly defined leaky modes, but 

possibly it points to increased total radiation over a wider beam width. 

3.5 S21 & SI I Parametric Study by Measurement Methods 

With the basic operation of the FSG understood a parametric study of the FSG 

concept was undertaken. This involved making several different FSGs each having 

one or two parameters altered to see the affect that this had upon the operational 

characteristics when measured. This information can then be pulled together to give a 

fuller insight into how the FSG operates and an idea of some of the design 

considerations when making an FSG. 

However when the characterisation measurements of the previous chapter were being 

taken a strange variation in the results was observed from one measurement to next. 

If an FSG was measured, removed from the set-up and then replaced and re­

measured, the S parameter values changed. Although the general shape of the 

response didn't change the amount of ripple at various points along the response 

altered each time the measurement was repeated. By trying various set-up procedures 

it was discovered that the variation was being caused by the orientation of the seam, 

where the supporting dielectric overlaps at the join of the two edges, relative to the 

polarisation of the incident TEll field from the feed Cl40 waveguide. The variation of 
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the S21 as the seam angle changes relative to the TEll polarisation vector is shown in 

Figure 3-9. As the angle moves away from 0° towards 90° the response at resonance 

gets steadily worse until at 90° the response with a minimum I S21 I value at 

resonance and the largest ripple is seen throughout the frequency range. The 

frequency where surface wave cut off occurs also increases along with an increase in 

the resonant frequency and the frequency at which the leaky wave region starts. 

However there is not a corresponding increase in the frequency at which the leaky 

wave region ends and so the range over which the leaky wave exists decreases. After 

90° the response improves until at 180° it reaches the same values as seen at 0°. The 

same cyclic variation is observed as the seam angle is rotated from 180° to 360°. 
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Figure 3-9 Graph of measured I S21 I Vs frequency as the seam of the FSG is 

rotated away from the feed TEll polarisation vector, for C140 at each end, for 

D=8.22mm, L=6.6mm, r=7.85mm, t=.04mm, length=28.1cm. 

The only possible cause for this variation can be that of the angle between the seam 

and the polarisation vector of the feed waveguide. The only other difference that 

occurs as the FSG is rotated is that the polarisation vector of the feed will cut the 

73 



square loop at the top of the guide at a different place. However it can not be due to 

this as there are six loops around the circumference of the FSG, which would imply a 

different rate of variation in the S21 measurement. This means that when rotated by 

60° the FSG would have exactly the same pattern of metalisation at the same angle to 

the feed polarisation vector is seen at 0°. This would then be manifested in the S21 

patterns having a 60° cyclic variation in response rather that the 180° variation that 

we observe. This proves that the variation seen in the S21 is due to the effect of the 

increased dielectric thickness and glue of the seam, where it unbalances the TEll field 

of the feed. 
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Figure 3-10 Graph of measured I S II I Vs frequency as the seam of the FSG is rotated 

away from the feed TEll polarisation vector, CI40 at each end, for D=8.22mm, 

L=6.6mm, r=7.85mm, t=.04mm, length=28.lcm. 

Figure 3-10 shows that the effect is seen in the Sll response as well as in the S21. It 

again shows that the magnitude of the ripples increases as the seam approaches 90° 

and that the amount of reflection back down the feed guide also increases. This 

corresponds to the S21 graph where a decrease in the transmission down the guide on 
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the far side of the FSG is observed. N.B. it should be noted that all the data shown in 

the preceding graphs (Figure 3-5, Figure 3-6, Figure 3-8) were all taken with the seam 

orientation at 00 to the feed polarisation vector. 

The first FSG manufactured was on a 0.04mm thick layer of Mylar dielectric. There 

was another thickness of Mylar dielectric material available which was thinner than 

was first used, 0.03mm. The use of two different thicknesses of dielectric will allow 

the affect of the dielectric on the FSG operation to be ascertained. The other 

parameters that can be altered are the size and spacing of the elements and the radius 

and number of elements around the circumference. The effect on performance of the 

structure of the FSG elements themselves can then also be ascertained. 

With the first FSG that was made referred to as number I, the other FSGs that were 

manufactured were referenced as: -

2. Radius = 7.85mm 

Periodicity (D~, Dz) = 8.22mm (giving 6 unit cells around the circumference in cp) 

Length square conductor (L~, Lz) = 6.85mm 

Width of conductor line (W) = 0.9786mm 

Dielectric thickness = 0.03mm 

Length of FSG section = 280mm 

3. Radius = 7.54mm 

Periodicity (D~, Dz) = 9.48mm (giving 5 unit cells around the circumference in cp) 

Length square conductor (L~, Lz) = 7.80mm 

Width of conductor line (W) = 1.llmm 

Dielectric thickness = 0.04mm 

Length ofFSG section = 284mm 

4. Radius = 7.54mm 

Periodicity (D~, Dz) = 9.48mm (giving 5 unit cells around the circumference in cp) 

Length square conductor (L~, Lz) = 7.80mm 

Width of conductor line (W) = 1.llmm 

Dielectric thickness = 0.03mm 

Length of FSG section = 284mm 

5. Radius = 12.07mm 

Periodicity (D~, Dz) = 9.48mm (giving 8 unit cells around the circumference in CP) 
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Length square conductor (L~, Lz) = 7.80mm 

Width of conductor line (W) = 1.l1mm 

Dielectric thickness = 0.04mm 

Length ofFSG section = 284mm 

S21 measurements were taken for the O.03mm thick dielectric FSG number 2. The 

results obtained were very similar to those of the 0.04mm thick dielectric Figure 3-5 

with the maximum value at resonance slightly higher at -4 dB. There was also a small 

shift in the resonant frequency from 15.1GHz to 15.3GHz when the thickness of the 

dielectric was reduced. A comparison of the S21 responses for the two different 

dielectric thicknesses of FSG 1 & 2 is given in Figure 3-11. The change in resonant 

frequency can be clearly seen along with a shift upwards in frequency of the whole 

S21 response. The obvious cause for the increase in frequency is the reduced amount 

of dielectric supporting the FSG elements, which reduces the dielectric loading effect 

on the elements. Although the change in thickness is small at just O.Olmm, the high 

coupling fields that are thought exist between elements amplify the affect of dielectric 

loading for the small change in thickness. The thicker or higher the dielectric constant 

the lower the frequency of operation and the greater dissipation losses. This accounts 

well for the decrease in magnitude and resonant frequency with increased dielectric 

thickness. A reduction in the magnitude of the surface wave response is also 

observed. The reason for this is unclear, a possibility is that a reduction in the amount 

of dielectric changes the way the surface wave propagates. 

The effect of the thickness of the dielectric on the S 11 measurements is shown in 

Figure 3-12. Again these measurements tie up exactly with the S21 measurements. The 

surface wave of the O.03mm thick dielectricner FSG has a higher cut-off frequency, 

shown by the ripples at the lower frequencies finishing at 13.5GHz. The slope of the 

S 11 graph as it moves into the leaky region is similar and starts to ripple again at 

14.1GHz and eventually reaches a very similar average SII value in the leaky resonant 

region. It then becomes less matched following a similar path, as it becomes less 

leaky. This shows the same characteristic as seen in the S21 graph; the bandwidth of 

the leaky region is reduced as the dielectric becomes thinner. 
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Figure 3-11 Graph of measured I S21 I Vs frequency as the thickness of the 

dielectric sheet is altered for FSG 1 & 2 with a 0° seam angle, C140 at each end, 

for D=8.22mm, L=6.6mm, r=7.85mm, seam angle=O, length=28.1cm. 

To confirm that the above affect is indeed correct the 3,d and 4th FSG's were built. As 

the periodicity and elements are of a completely different design, if a similar effect is 

observed then it is certain that the thickness of the Mylar dielectric is having a loading 

affect on the elements. 

At this time, it was also decided to ascertain what the affect of the dielectric alone was 

on the scattering parameters if the elements of the FSG were removed. To this end the 

copper cladding was etched away to leave just the Mylar sheets and these were then 

used to make dielectric tubes of the same length and radius as FSG's number 3 & 4. 

Also a baseline measurement of the S21 was made with an air gap of 284mm left 

between the two ends of the solid guides. This data has been collated together into a 

single graph and is shown in Figure 3-13. 
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Figure 3-12 Graph of measured I S 11 I Vs frequency as the thickness of the dielectric 

sheet is altered for FSG 1 & 2 with a 0° seam angle, C 140 at each end, for 

D=8,22mm, L=6.6mm, r=7.85mm, seam angle=O, length=28.1cm. 

First let us consider the S21 and S Ilof the air gap between the feed wave guides and the 

dielectric tubes. The S21 in Figure 3-13 of the air gap is a relatively flat response 

around -30dB, with a slight slope upwards from the low frequency to the higher 

frequency. The S 11 response has far more ripple than the S21 response, so trends 

become important, rather than actual values, A trend line would show a fairly straight 

line starting at -lOdB at 12,5GHz and finishing at -28dB at 16GHz. The open end of 

the feed wave guide radiates power into free space around it, the match to free space 

getting steadily better as the width of the waveguide becomes wider in terms of 

wavelengths and as the match improves more power is radiated. The other open ended 

waveguide has a fixed area and so only receives a proportion of the radiated power. 

Again the amount of received power increases very slightly due to the increase in the 

effective area as the wavelength decreases, 
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Figure 3-13 I S21 I Comparisons of FSGs 3 & 4 and Dielectric Tubes and the Air 

Gap with a 00 seam angle. 

The S 11 of the dielectric tubes in Figure 3-14 are also very similar to that of the air 

gap. The sometimes quite considerable ripples occur in the same places for response 

and they are only a few dBs lower in value. The S21 of the dielectric tubes in Figure 

3-13 is also almost identical to the air gap measurements. This time they were only 

slightly higher (2 to 3dB) than the air gap values and differed from each other, due to 

the changes in dielectric thickness, by only I dB. The dielectric tubes have a very 

small effect in increasing the field transmitted from the feed waveguide to the receive 

wave guide. The effect is, however, very small when compared to the measurements 

taken for the FSG's, as can be seen in Figure 3-13 & Figure 3-14_ It is truly the FSG 

elements that give rise to the leaky mode and the surface wave and not the dielectric. 

16 
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It is quite clear from Figure 3-13 & Figure 3-14 that FSG's 3 & 4 resonate at different 

frequencies from that seen in FSG's 1 & 2; 13.2GHz & 13.4GHz as opposed to 

15.IGHz & 15,3GHz.1t should also be noted that the shapes of the S21 graphs are 

similar for the two designs. The difference with FSG 3 & 4 is that they are designed to 

resonate at a lower frequency than the design used for FSG 1 & 2, further comment 

will be on this shortly. From the figures it can be seen that a similar effect is seen for 

the changes in thickness ofthe dielectric layer. The thicker dielectric reduces the 

resonant frequency of the FSG by 0.2GHz, the same amount as seen with FSG's 1 & 

2. As we are considering two completely different FSG's and measurements taken on 

different occasions the cause can be taken to be dielectric loading. 
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Figure 3-14 I s1I1 comparison of FSGs 3 & 4 and dielectric tubes and the air gap 

with a 0° seam angle. 

As the design for FSG's 3 & 4 resonated at a lower frequency, Figure 3-15 & Figure 

3-16 are given to allow an easy comparison of FSG's 1,3 & 5, each of which has a 

different design. It is very obvious in Figure 3-15 that the response for FSG 3 & 5 is a 
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similar response to FSG 1 but shifted down in frequency. They have been shifted so 

much so that the surface wave region "A" in Figure 3-5 is below the cut-off of the 

feeding waveguide. For this reason the surface wave region cannot be measured for 

FSG 3 & 5. For these FSG's we are left with the leaky wave region with the resonant 

frequency at the upper centre of the bell curve followed by the roll off of the upper 

leaky radiative region. The main difference between FSG I and FSG 3 & 5 is the 

change in size of the periodicity and length of elements. From planar FSS theory [7] it 

is known that changing these dimensions will change the resonant frequency of the 

structure. 
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Figure 3-15 S21 Comparisons of FSGs 1,3 & 5 with a 0° seam angle. 

However it must be acknowledged that these were not the only dimensions to change 

between FSG I and FSG 3 & 5. The radius and the number of elements were also 

altered. As stated earlier, because the FSG is a cylinder the parameters of element size 

and periodicity, radius and number of elements are all interlinked and changing one of 
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these parameters invariably changes the others. To ascertain which one of these 

changes had the greatest affect on the resonant frequency FSG 5 was made with the 

same periodicity and element size as FSG 3, but with a different number of elements 

and radius. As can be seen from Figure 3-15 the change in resonance between FSG I 

and FSG 3 was from 15.IGHz to 13.2GHz (1.9GHz), but the change between FSG 3 

and FSG 5 was from 13.2GHz, to 12.7GHz (O.5GHz). The FSG resonant frequency 

must therefore, like the planar FSS theory, be controlled more by the element size and 

spacing than by the radius and the number of elements. However they all play some 

part and so any FSG design must take all of these factors into account making it a 

very complicated process. 

The important things to notice about the FSG 3 response in Figure 3-\5 and Figure 

3-16, apart from the resonance shift, is that the peak magnitude of the S2! is lower 

than that of FSG 1. With a considerably narrower bell curve followed by a familiar 

region where no S2! could be measured. 

The Sll graph shows similar standing wave ripples in the resonance region, but with a 

high or average value. The region is also narrower as noted for the S2! graph and the 

trace settles to a similar level as that for FSG 1. As well as moving the resonance, the 

mismatch between the feed wave guide and the FSG is worse and more leaky radiation 

occurs through the FSG walls, shown by the narrowness of the leaky region and lower 

S2! peek value. FSG 5 on the other hand has the widest and highest S2! response yet 

seen, suggesting that leaky radiation is considerably less for this design and at 

resonance has the maximum containment of field seen in the measurement study. The 

match between the feed and the FSG is also the lowest seen as well. All the evidence 

points to the fact that the number of elements and radius is inversely related to the 

amount of leakage there is in the leaky mode. As the number of elements/radius 

increases then the amount of leakage decreases. 
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However FSG 5 has a feature not seen in either of the other two designs. At 15 GHz 

the point where I S2l I reaches its lowest value Is Il I also reaches its highest value, a 

level not seen in any other FSG response. Most of the power is not entering the FSG 

and is being reflected back down the feed. The level of I sill however then fell away 

towards the -lOdB level where all the other I sill plots levelled off. At the same time 

the value of I S2l I increased suddenly to -22dB and then started to decay away 

slowly. In solid waveguides this kind of sudden change in S parameters occurs when 

the wave guide is capable of supporting more than one propagating mode, the 

waveguide becomes over-moded. It is unclear at this stage what exactly is causing the 

observed characteristics. It does occur at the correct frequency for the C 140 feed 

waveguide to over-mode, but it is unlikely to be this alone as it was not seen in 

measurements of FSG 1 to 4. Also, in solid waveguides there is a small finite 

transition band before the higher order mode will start to propagate with a significant 
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magnitude, this is not in excess of O.5GHz as in this case. It could well be either the 

over-moding of the FSG itself or some complex interaction between the feed guide 

over-moding and reacting with the FSG, as this FSG has the lowest loss of any of the 

FSGs tested. Further work would need to be carried out to discover what this 

phenomenon is, but it has been deemed beyond the scope of this Thesis at present. 

To complete the investigation into FSGs 3 & 5 the radiation patterns were also 

measured using the same equipment set-up as shown in Figure 3-7 and methodology 

used for FSG 1. Again the graphs show patterns normalised to the maximum beam 

measured over the frequency range, the pattern with the FSG absent is also included 

for reference. The results, see Figure 3-17 & Figure 3-18, were as expected, a main 

beam emerging from the side of the FSG at some frequency dependent angle. The 

angle from the normal to the FSG increased as the frequency increased. 

The magnitude of the beam and beam-width also varied, as before, a minimum value 

was seen in both cases at a frequency corresponding to resonance, proving that at 

resonance the field is contained within the FSG and the leakage is minimised, 

although not eliminated. For a beam to have maximum possible magnitude then the 

frequency must be such that it is in the mid point between the resonant frequency and 

the frequency that corresponds to a minimum value on the S21 curve. There are two 

such maximum magnitude beams possible from the FSG one either side of the 

resonant frequency. However Figure 3-17 has only one maximum beam as the lower 

point is below the cut-off of the feed waveguide. 
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It should be noted in all the radiation patterns that the difference between the 

maximum and minimum main beam value changes with the number of elements. 

When the FSG has a low number of elements the reduction in the main beam value is 

. small at resonance, confirming that the leakage is high. As the number of elements 

goes up the main beam value gets increasingly lower at resonance, confirming that the 

leakage is low. 

By measuring different FSG's it has been ascertained that the FSG has a propagating 

surface wave region that gives way to a leaky radiative region. This leaky region has 

an area within it where the elements resonate and reduce the amount of leakage. The 

thickness of the dielectric was found to have a loading effect on the response, 

increasing the thickness shifted all the frequency points down in frequency. The 

orientation of the seam with respect to the feed TEll polarisation vector was found to 

have a big influence on the performance. The best being achieved when the angle 

between them was 0°. All the FSG parameters of radius, periodicity and size of 

elements and number of elements affect the resonant frequency. However the ones 

with the greatest influence are the periodicity and element length. The number of 

elements and radius appears to have the greatest influence on the amount of leakage 

through the FSG wall at resonance. As the number/radius increases the leakage 

decreases. 

3.6 Extraction of FSG Propagation Constant 

The results in the preceding section give a good idea of how the FSG functions, but 

these measurements can not be directly compared to the results from an infinite FSG 

analysis program. The output from the program is the complex propagation constant 

of the FSG. The practical measurements must be manipulated to extract the 

propagation constant information from them. Several measurements and methods 

were identified as suitable candidates with which to extract this information. These 

were: -

• Use the S2l (or Sll) measurement to calculate the propagation constant directly. 

This can either be done directly ignoring the junction transitions between the FSG 
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and the solid guide, or else using multiple measurements of different lengths of 

FSG to eliminate the junctions. 

• Use the radiation pattern beam angle and magnitude to find the beta (/J) and alpha 

(er) parts of the propagation constant respectively. This makes use of the fact that 

the leaky wave main beam is radiated at an angle dependent upon the phase 

constant (/J) and it's magnitude is related to the loss (a). 

• The final method is related to the previous method, but requires the radiation 

pattern to be made with a short circuit over the far end of the FSG. This reflects 

some of the leaky mode back down the FSG and another beam is produced 

radiating in the opposite direction to the first. The elements of the propagation 

constant are then found from the difference between the two beam magnitudes and 

the angle between them. 

3.6.1 Calculation of Propagation Constant from S21 measurements 

A lot of information about the FSG can be obtained from the S21 (and SI I) response. 

The measured scattering parameters are those of the entire system under test, 

consisting of the two FSG to solid waveguide junctions and the length of FSG itself. 

In order to obtain FSG propagation constants or junction scattering parameters the 

two sets of information will have to be de-embedded. A study was done to see if by 

taking repeated measurements, the propagation constants could be extracted from the 

effects of the junctions. In order to do this the whole system must first be modelled. 

The FSG system was converted into an idealised block diagram. The junctions 

between the solid feed guides and the FSG are represented as two blocks each with 

it's own set of scattering (S) characteristics and the FSG as an attenuated transmission 

line connecting the blocks together. From transmission line theory this is represented 

by e- jkl where e is the natural number,j is the imaginary operator, k is the complex 

propagation constant (which has a real phase constant f3 and an imaginary attenuation 

constant -ja. and l is the length of (or distance down) the transmission line. The block 

diagram of the FSG as it was tested is shown in Figure 3-19, with the FSG 

represented by the parallel lines in the centre and modelled as a perfect leaky 

transmission line with propagation factor e - j(P+ ja)1 • 
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Figure 3·19 Block Diagram of the FSG under Test. 

The junction blocks above have the scattering S matrix form of: • 

Equation 3-1 

8' 

Second 
Junction 

A' , --
-B": 

Where a and b are the field magnitudes in and out of the junction boxes at each of it's 

ports. 

The S 11 measurements in the previous section were measured at port 1 of the first 

junction and the 821 was measured from port 1 of the first junction to port 2 of the 

second junction. Using Mason's rules to cascade the S parameters of the 8 blocks and 

the intervening transmission line the system S 11 and 821 equations can be written in 

terms of the above as: -

Equation 3-2 

Equation 3-3 

S S'S e-2j(p+ja)L 

SI I S 21 11 12 = 11 + --=-'--'-_'o-2j~(p~+""ja"") L:---,­
l-e S22SI1 

S S' e-j(p+ja)L 
S21= 21 21 

l_e-2j(p+ja)LS S' 
22 11 

Where in the above L is the length of the FSG. 

In order to reduce the number of unknowns some products were combined into a 

single unknown, i.e. 821 S'21 = XS21 in Equation 3-4. This reduced the number of 

unknowns allowing the propagation constant to be found more easily, we now have 3 
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and not 5. However it would not allow the junction S parameters to be calculated, but 

it would give an idea of their values. 

Equation 3-4 

Of course if the junctions are reciprocal then S21 & S22 of the first junction will be the 

same as the S'21 & S'l1 of the second junction, but this will not be assumed yet. If the 

problem can be solved it would also yield values of the propagation constant, it being 

the remaining unknown. It must be remembered that all the unknowns and scattering 

parameters are complex values, which makes the calculations very much harder. A 

similar procedure could be carried out for Equation 3-2, but it obviously has four and 

not three unknowns, as is the case for Equation 3-4. 

It was decided that if we measured the S21 of three different lengths of FSG, then two 

of the unknowns could be eliminated and the third unknown found. In order to 

achieve this two more FSGs were made, from the 0.03mm thick dielectric sheet, 

which were shorter than the first 0.03mm thick dielectric FSG number 2. These other 

FSGs were 23.9cm and 20.7cm long, made in the same manner as before, and with 

the same periodicity, radius and element size. 

The S21 responses for these new lengths were taken with the same test set-up and 

procedures as before. Again there was a variation of the S21 values dependent on the 

orientation of the FSG in the IjJ direction. The graphs of the responses obtained were 

very much like those obtained for the longer 0.03mm thick dielectric FSG. There 

were two definite regions, a slow wave region which died away, followed by a leaky 

wave 'band pass' type region with a break between them. Following the leaky region 

there was almost no S21 value recorded above the noise floor of the analyser. The 

changes in orientation also had a similar effect, with seam aligned to the polarisation 

vector of the feed guide, the position where the resonance value became a maximum 

and the magnitude of the ripples minimised. As the orientation was moved away from 
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this angle the resonance value became lower and the ripples became increasingly 

large. 

Figure 3-20 shows the responses of the three 0.03mm thick dielectric FSGs of design 

2 with different lengths. Each plot was taken at the seam angle corresponding to 0° 

from the TEll polarisation vector. It should be noted that although each FSG has the 

same element size and spacing, which it was thought would give the same resonant 

frequency, this was clearly is not the case and more will be said about this shortly. 

Also notice that the upper skirts, or S21 roll off, of the responses are more or less 

coincidental with each other for each length and is thought to be linked to the 

movement in resonant frequency. The reduction in the maximum value of S21 at the 

resonance as the length increases is to be expected, as more energy will radiate as the 

leaky mode has further to travel and hence the S2I value will drop. With this data from 

the three FSGs of different lengths the propagation constants can be found using a 

numerical equation solving routine in the PC mathematics package, MathCad. 
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Initially the package was tested to see how accurate it was at solving three S21 

simultaneous equations of Equation 3-4 for a known set of values. The S21S'21o 

S22S'", ,B+jaquantities were set to arbitrary values, with the same ones being used 

for each length. The S21 was then calculated for each length using Equation 3-4. Using 

these calculated values of S21 the numerical solution routine was used to find the 

arbitrary values which generated them. To this end, the equations to be solved for 

each length were declared in the routine, along with any other restrictions, such as the 

f3 solution being positive and the a solution being negative (i.e. a leaky wave), and the 

initial guess values. The numerical routine uses these initial guess values as a starting 

point from which to iteratively converge on a solution. Not all initial values will 

converge to the same solution or indeed converge at all. In evaluating this method one 

of the most important things is to estimate how close to the real solution the initial 

guess values need to be. To this end the initial guess values were placed close to the 

actual solutions, but then moved further away in order to give an idea of this method. 

Example of MathCad program: -

First define the arbitrary values of XS21 and XS22 and the S21 equation as a function of 

the propagation constant k and the FSG length t. 

x . . X 
-'1 1-

xS21:= 0.55·e 3 xS22:= .014e 6 

-i ·k·1 
S21(k, 1):= xS21·e 

1_ xS22e-2i 'U 

Calculate the three S21 values with the arbitrary values. 

S21(- .5733i+ 206.382 .281) = 0.42727- 0.18293i 

S21(- .5733i+ 206.382 .239) = -0.19562+ 0.43374i 

S21( - .5733i+ 206.382 .207) = -0.3253+ 0.35722i 
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Define function to solve equation 

L1 := .281 L2:= .239 L3:= .207 

. 5" 
,~ 

. 3,1t 
,~ 

XS21:= .65.e 12 XS22:= .Ol·e 
12 

K:=-I·i +210 ~ 3 initial guess values 

Re(K»O ~ declaration of system to solve. 

Irr(K)<O 

Values of transmission to 5 sig figs. 

lrans(tO, 11, t2) :=Find(K,XS2l,XS22) 

[ 

206.38181" 0.57341 i ] 

Irans( 0.42721- 0.18293j-0.19562t- 0.43374j-0.3253+ 0.35722) = 0.27502+ 0.47632i 

0.01213+ 0.007i 

k :=206.382- i '.5733 xS21= 0.275+0.4763li xS22= 0.01212t0.007i 

[ 

k ] [-0,00013" O.Ooolli 1 
Irans (0.42721- 0.18293j-0.19562t- 0.43374j-0.3253+ 0.35722) - xS21 = 2.2051810-5 + 2.6479310-6 i 

xS22 5.8528'10-6 - 8.814~1O-7 i 

It was found that for the solution to converge to the correct value the initial guess 

value for xS 12 and xS22 could be as far as 50% from their actual values. The 

attenuation constant could vary by as much as 200%, but the phase constant has to be 

quite accurate, the guess value being within 5% of the actual value. • 

With this information it was decided that this method could find the required values of 

the junction S products and the propagation constant. The S21 values, from 140Hz to 

16.20Hz, for the three lengths of FSO were read into the application. From a set of 

initial guess values, a solution to the system of simultaneous equations was attempted 

for each frequency. However it was found that no solution could be found from any of 

the guess values that were tried. As only one ~ guess value could be supplied to the 

numerical equation solving routine, then for any ~ values outside the 5% tolerance 

range, no solution will be found. As there is a large range of frequencies being solved 
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for then there must be a corresponding large range of ~ values and hence no solution 

was found. 

The range of data was therefore divided into several parts so that a different ~ guess 

value could be assigned to each range, where all the solutions would have their ~ 

values within the 5% tolerance. A rough idea of what the guess value should be was 

gained from the Loukos prediction program, although the actual values from the 

program were never used. To simplify matters initially, it was also decided to remove 

the dependence on supplying guess values for the S products by eliminating them 

from the equation, they can be calculated separately once the propagation constant has 

been found. The single simplified Equation 3-5, replaced the three simultaneous 

equations in the definition block of the numerical solution routine and was solved by 

the method already described. 

Equation 3-5 

Where tl,t2,t3 are the S21 values for the three lengths (Ll,L2,L3) ofFSG and K is the 

propagation constant. Note that now only one initial guess value need be provided. 

The frequency range again had to be split into small sections, because of the small 

tolerance range over which beta could be found for one guess value. 

When all the small frequency sections of the solved propagation values are stitched 

together the overall solution for the propagation constant for real and imaginary 

magnitude across the entire frequency range is shown in Figure 3-21. 
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Figure 3-21 Real & imaginary propagation constants as calculated from three S21 

measurements from different lengths of FSG 2. 

As can be seen the results look plausible until 15.2 GHz, with decreasing attenuation 

approaching the resonance point, the point where the least amount of power leaks 

through the FSG wall and P smoothly increasing over the initial frequency range. 

However after the resonance point the solutions found appear to be incorrect with the 

P value decreasing with increasing frequency and the attenuation initially rising as 

expected but then reversing and falling away towards low values. The p value should 

have continued to increase with increasing frequency and the attenuation should have 

continued to increase as more power is radiated through the FSG wall. 

The solution obtained clearly does not fit the model of FSG operation based on the 

evidence collected to date. However the numerical solution method is not at fault 

because closer consideration of the three S21 curves in Figure 3-20 does indeed give 

the result obtained as a plausible solution to Equation 3-5. As mentioned previously 

the resonance points of the three FSGs are at different frequencies and after this point 

the roll off skirts of the 3 plots are almost coincidental. This means that the evaluated 

propagation constant for this region must be such that it gives almost identical S21 

values even though the length has changed. A change in length should yield a 
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different set of S21 plots if the propagation constant is the same for each FSG 

measured, they should never have plots that are near identical. Therefore the 

propagation value found is correct, but only for the flawed data that was used in this 

extraction technique. 

The problem with the S21 values of the three FSGs of different lengths is that although 

the etched elements on the surface are identical, they are unfortunately not completely 

identical in cross section. The supporting dielectric tubes are the problem; they are all 

slightly elliptical and the major and minor axes of the ellipses are never the same from 

one FSG to another. This arises because the rolling process during manufacture can 

never be truly identical when carried out by hand. Also closer inspection reveals small 

undulations and depressions that appear randomly around the circumference and 

along the length. These arise when handling the FSGs, even though great care was 

taken when moving and storing them and such dimples are inevitable purely because 

the structure is so delicate. 

Given that the FSGs are not identical then it is not surprising that the resonant 

frequencies and S21 plots are different for each one, even though the elements used are 

identical. This implies that the uniformity and degree to which the cross-section is 

circular have a pronounced effect on the performance of the FSG. By making the 

FSGs from thin Mylar sheet they are very susceptible to small local deformations in 

the cylinder surface. In order to try to reduce the effect of the manufacturing 

differences the S21 measurements for three different lengths were repeated for FSG 5 

by cutting small amounts off one end after each measurement was taken. This means 

that most of the FSG is identical for each measurement, although it means that the 

measurements can never be repeated as the longer lengths are by definition destroyed 

in order to make the shorter lengths. 

The results are shown in Figure 3-22, with the raw data on the left hand side and the 

data when smoothed on the right hand side. The smoothing was carried out to remove 

the small ripple in the raw data plots. When the numerical solution method is applied 

to the raw data, meaningful propagation constant values cannot be found as the 

relationship between the S21 values changes from one frequency to the next due to the 

ripple. The ripple is no worse than that seen before, but for FSG 5 because the loss at 
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resonance is small the three plots are closer together and so they do stay in a 

consistent order or separation. The raw measurements were smoothed to try to over 

come this problem, but as can be seen in Figure 3-22 the plot for the shortest length 

has some very low ripple values near resonance which meant that instead of the 

22.1cm values being consistently above those of the other two plots it is below them 

around the resonance point. This makes it impossible to extract meaningful 

propagation constants from this data as well. The fluctuations in the magnitudes are 

caused by deformations and dimples in the dielectric support caused while handling 

the FSG during cutting. From this work it is obvious that another production method 

is required for accurate measurements to be undertaken. A more robust structure 

would also be required should any commercial exploitation be undertaken. The 

opportunity to explore these alternative construction methods was unfortunately not at 

my disposal during the course of this Ph.D. 
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Figure 3-22 Measured data for 3 different lengths of FSG 5 & the same data 

when it has been smoothed. 

All efforts to extract the propagation constant from the S21 measurement had so far 

failed due to the inaccuracies in measuring multiple lengths of similar FSGs. It was 

therefore decided to obtain an estimate of the propagation constant from a single 

length of FSG by ignoring the effect of the solid wave guide to FSG transitions. If the 

unknown S parameters of the transitions are set to unity then the equation of the S21 

that needs to be solved is that of Equation 3-6. 
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Equation 3-6 

e- j(p+ja)L 

S21 = I -2j(p+ja)L -e 

This can be done by again employing the MathCad numerical solution method, only 

this time much simplified with only Equation 3-6 in the equation definition area and 

only one guess value, that of the propagation constant. Again due to the large 

frequency range and low tolerance of P in solving the equation the range had to be 

split into several smaller sections. Solutions could be found for all the values and a 

relatively smooth curve was produced for P and 0:. The curves for the whole 

frequency range for P and cl are shown in Figure 3-23 & Figure 3-24, along with the 

curves obtained by other methods and from the theoretical program simulations. This 

estimate of P using the S2l data produces results that are below the predicted value 

and there is a slight kink in the line from 15.7GHz to 16GHz. This is a subsection of 

the solution where there is a dip in the S2l data values, which causes the downward 

shift in the propagation constants, 0: & p. Apart from this the line runs parallel to the 

theoretical line. However the frequency at which the TEll line crosses the S2l P line 

from Equation 3-6, if the kink is removed and the line smoothed, is 15.7GHz. This is 

much too high because the effect of the dielectric should move this point to below the 

predicted 15.4GHz. 

The prediction was run for the design of FSG I, but with no allowance for the 

dielectric substrate. It is the same data as shown in chapter 2. Also included, for 

reference, is the fJ value of the TEll mode that exists in a solid waveguide of the same 

radius as FSG I. The intersection of the TEll fJ with that of the FSG mode fJ defines 

the resonant frequency of the FSG. Using this the program predicts the resonant 

frequency to be 15.4GHz, which is in good agreement with the predicted resonance 

frequency given by the minimum in the aplot of Ineper/m at 15.4GHz. 
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Figure 3-23 Comparison of ~ calculated theoretically by different methods from 

measured data 
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The alpha values for the S21 estimate follow a similar curve to the predicted, but the 

values of attenuation are much higher, 4nepers/m compared with a prediction of 

1neper/m. This is partly due to the presence of the dielectric, which increases the 

structures dissipative losses and also causes the shift downwards in frequency of the 

point at which minimum attenuation occurs, the resonant frequency 15.1 GHz. 

However part of this higher value of attenuation is caused by the reflections from the 

junctions between the FSG and the solid feed guide. As they could not be de­

embedded from the S21 values they will result in errors in the calculated propagation 

constant. This could well be the cause for the frequency at the TEll crossing point on 

the ~ line not matching the minimum resonance point on the ex plot. 
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Figure 3-24 Comparison of et calculated theoretically by different methods from 

measured data. 

3.6.2 Calculation of Propagation Constant from Radiation Pattern Measurement 

This method takes advantage of the fact that the structure can support leaky wave 

modes. As shown in Figure 3-8 the radiated energy from the leaky structure has a 

single main beam, which emerges at an oblique angle to axis of the FSG. The angle 

and size of the beam are directly related to the propagation constant of the mode [I] & 

[3 - 5]. In order to find the propagation constant of the FSG it is merely necessary to 

measure the FSG radiation pattern at different frequencies and find the angle of the 

main beam and its magnitude. The FSG was set-up in the microwave anechoic 

chamber as shown in Figure 3-7 and detailed in 3.4.5. The system was set up as 

shown above with the matched load attached to the circular to rectangular transition. 

No calibration of the system was possible and a raw value of the power received at the 

test horn was recorded. 
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The FSG used to test this method was FSG I with the 0.04mm thick dielectric support 

to match the extracted constants gained via the S21 method. The change in the beam 

angle as the frequency increases is clearly seen in Figure 3-8. 

Equation 3-7 

From [3] e mb in Equation 3-7 is the angle from the normal to the FSG surface and 

from this the value of f3 can be found. Equation 3-8 gives the relationship between the 

width of the beam and the attenuation constant. The measure of the beam magnitude 

used to calculate the avalue is the angle between the -3dB points either side of the 

main beam in radians, e ~;;~ . As the leaky mode gets wider more energy is being 

radiated and hence the attenuation constant must be higher. 

klradS~l_ fJ 2 
o -3d8 k 

o ex = ---'--->--""-
2 

Equation 3-8 

As can be seen in Figure 3-23 & Figure 3-24, it was found that this beam angle 

method gave poor results for both f3 & ex. This is due to two difficulties associated 

with the chamber in which the measurements were taken. The positioning of the FSG 

perpendicular to the line joining the 0° position of the measurement horn and the 

centre of the FSG was very hard to achieve with the equipment. There is no 

permanent jig to support the device under test in the chamber and so on each 

measurement occasion a makeshift jig must be erected and aligned to support the FSG 

and feed waveguides. This is relatively easy for horns and other antennas with 

symmetrical geometries as the patterns themselves can be used in the alignment 

process. As the leaky FSG has asymmetrical beams that do not radiate normal to the 

FSG this was not possible. The FSG was aligned by eye using protractors and straight 

edges. It is conceivable that the miss-alignment may have been as much as 10°. The 

equipment that measures the angle of receive horn in the chamber is also inaccurate. It 

is thought that this could be as much as 5° out for each measurement. In all the 
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maximum possible error in these measurements could be 15° and would account for 

the poor correlation of the f3 values to the predictions. The TEll crossing point is 

14.7GHz instead of the predicted 15.4GHz. There is no way that dielectric loading 

could have caused 700MHz of down shift in the value which must be primarily caused 

by measurement errors. 

Also it was difficulUo find the -3dB points on the beam patterns collected. The angle 

at which the -3dB point occurred had to be interpolated from the adjacent points that 

it fell between. With a non-linear pattern with quite often a large spread in values 

between points it is very hard to find the beam widths to any certainty, especially 

when compounded by the difficulties in measuring the angles with any great 

accuracy. This resulted in the a values being very different from those predicted and 

followed no discernible path or were even close to the expected shape of the 

attenuation constant. Given the measuring difficulties, this method should not be used 

and a better way of finding the propagation constant was required. 

3.6.3 Calculation of Propagation Constant from Short Circuit Radiation Patterns 

In order to find the propagation constant of the FSG from the radiation beam pattern, 

but without the need for exact alignment of the equipment, a forward and reverse 

beam measurement system was employed. This involved replacing the matched 

termination and the circular transition at the far end of the FSG with a short circuit. 

This was a metal plate three times the diameter of the FSG and was held over the far 

end of the FSG with a small lug on it to hold the FSG in place. The effect of the short 

circuit was to reflect all the energy reaching the far end of the FSG back down the 

guide. These reflected fields are also in the form of FSG modes and travel down the 

guide in the same way as the forward travelling waves. So these modes also radiate 

power in the form of a leaky wave main beam. The beam now makes a positive angle 

to the normal from the FSG surface, as the first beam angle was measured as negative. 

As both leaky waves must have the same propagation constant they must also leave 

the guide at an angle from the FSG normal with the same magnitude. Now it is the 

angle between these two main beams, which can be related to the p value by the 

Equation 3-9. 
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Equation 3-9 

Where eD is the angle between the main beams in radians and is far easier to measure. 

As the 0° point of the receive horn positioner does not need to be aligned with the 

FSG normal the measurement inaccuracies will be reduced by 113 and all alignment 

errors are removed. Also further enhanced accuracy is achieved because the error 

contributed by the angle measuring equipment is halved, as the measured angle is 

twice as large as before. 

The attenuation constant can also be found using this short circuit measurement, not 

by using the -3dB points and beam width as before, but by looking at the difference in 

magnitude between the peak values of the forward and backward main beams CN). 

The magnitude of the beam is due to the leakage of energy from the FSG as a mode 

travels along it's length CL). This loss of energy is expressed as the attenuation per 

unit length. Hence the difference between the two beams is related to how much 

energy was lost from the guide, in the form of radiation, whilst it travels up and then 

back down the FSG. This assumes that the short circuit is a perfect reflector and that 

no energy is lost there. The equation governing the calculation of ex by this method is 

given in Equation 3-10. 

a= 

Equation 3-10 

N 

In(lO'O) 

2L 

The equipment was set up as given in Figure 3-7, but with the matched termination 

replaced by the short circuit. All other set-up procedures were followed as before for 

the radiation pattern measurements. FSG 1 was measured and the resulting radiation 

patterns are shown in Figure 3-25; the FSG seam was again aligned to the polarisation 

vector of the TE 11 feed mode. 
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Figure 3-25 Short circuited radiation patterns for FSG I at different frequencies. 



It is noticeable how the patterns have changed from Figure 3-8 with the addition of 

the short circuit. From 140Hz onward sufficient energy reaches the short circuit to be 

reflected back and form a leaky mode travelling in the opposite direction. The beams 

caused by the reflection are smaller mirror images of the forward main beams. The 

beam peaks do not occur at the same angle from 00 suggesting that the normal of the 

FSO is not correctly aligned, in this instance it is 40 out of alignment, but alignment is 

not required in this method. The reflected beams also follow the same behaviour as 

the main beams. They move away from the normal with increasing frequency and 

they increase in magnitude from the lowest frequency to a maximum and then reduce 

to a minimum at resonance before increasing again towards the maximum value and 

then reducing before they disappear. 

Once this data was collected it was analysed with the aid of the MathCad package. 

The data was sorted to find the maximum beam angles and magnitudes in the forward 

and reverse direction for each frequency. From this the angle BD between them and 

the difference in magnitude N was calculated. The p and a values were calculated 

using Equation 3-9 & Equation 3-10 for each frequency. Once all the frequencies had 

been computed the p and a plots were added to Figure 3-23 & Figure 3-24 to help 

ascertain which method of propagation constant calculation was best. 

The frequency at which the TEll line crosses the p plot calculated by the short circuit 

method is IS.20Hz. This is only 200MHz lower than that ofthe predicted resonance 

point. This is about the amount expected, from the earlier parameter study, for the 

dielectric loading on the manufactured FSG. The line is also reasonably parallel to the 

predicted plot although the relatively low number of points in each of these lines 

hampers an accurate measurement. The resonant frequency predicted by the crossing 

point on the p graph matches the resonant frequency implied by the minimum 

attenuation value on the a graph, of IS.2GHz. This is the only method by which this 

occurs and thus matches the comparison in the predicted pand atraces of Figure 3-23 

& Figure 3-24. The difference in magnitude of Ineper/m in the attenuation constant 

minimum value between the short method and the predicted is also far more 

acceptable. The increased level of the extracted value at 2neper/m is far more likely to 

be purely due to the increased losses in the dielectric and the conductors. The fact that 

105 



all of these factors match only for the calculated propagation constants from the short 

circuited radiation pattern method suggests that it is the best method with which to do 

the extraction. The other methods are not reliable enough to be used to calculate the 

propagation constant with the equipment available. 

3.6.4 Summary of Calculation of a and 8. 

The acalculations based on the measured results show a minimum (resonance point) 

at 15.IGHz (S21 method) and 15.2GHz (short circuit method) while the simulation 

predicts a resonance at 15.4GHz. The beam angle method is so poor that a position of 

the resonance cannot be found. The variation from predicted to calculated value from 

the short circuit method can primarily be put down to the dielectric loading effect of 

the substrate. Apart from this the agreement is good, although the measured values are 

higher, 4nepers/m (S21 method) and 2nepers/m (short circuit method) than the 

prediction of I nepers/m. It would be expected with dielectric and lossy metal being 

present that the calculated values would be higher. However the S21 estimate must be 

incorrect due to the junctions have not being taken into account. The values of a 

obtained by the short circuit method are generally closer to the predicted values. 

The three calculated values track the slope of the predicted fJ well and in terms of 

percentage values they are close to the predicted, with the short circuit method values 

being the closest. Calculated resonant frequencies from the point at which the TE II 

line is crossed vary from 14.7GHz (beam angle) through 15.2GHz (short circuit) to 

15.9GHz (S21 method). This crossing point frequency for the short circuit method is 

the only one that matches the resonant frequency given by the avalue being a 

minimum. The variation in the value given by the beam angle method can be 

attributed to the set-up errors discussed earlier while the S21 method variance can be 

partly attributed to the effects of the transitions (FSG to solid guide), as discussed 

above for the a results. More information on the extraction process can be found in 

[9] & [10]. 
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3.7 Conclusions and Comments on FSG Measurements 

This study has shown that, at some frequencies, reasonable guidance can be obtained 

from cylindrical FSGs with square resonators. However, the transmission losses are 

quite high. To use this technology for a commercial system the losses would need to 

be significantly reduced and the structure ruggedised. The poor transmission 

measured is partly due to mismatches at the transitions as well as leakage from the 

guiding system. The results here suggest that a route to reducing the leakage at 

resonance is to increase the number of resonators around the circumference of the 

FSG. 

The effect of the dielectric substrate is obvious in terms of reduction of resonant 

frequency and increased loss. An increase in the number of resonators in the 

circumference gives improved guidance/less leakage. To make use of the FSG as a 

guiding structure either oversized FSGs or dielectrically loaded FSGs, which would 

reduce the radius to that of the feed while allowing more circumferential resonators, 

would be required. 

The short circuit method gives improved accuracy for measurements of aand p, but 

getting accurate readings around the resonant frequency is extremely difficult, 

particularly when a higher number of circumferential elements are used because of the 

very low power levels leaking form the guide. A more rugged, solid construction 

would allow the extraction of a and p from the S21 parameters accurately even at 

frequencies where the leaky main beams do not exist. 

Although the values of a and p calculated from the short circuit method do not match 

the predicted ones exactly, they are close enough to provide strong support that the 

prediction program developed by Loukos [6) does provide accurate propagation 

constants for an infinite length of FSG. This confirmation of the accuracy of the 

prediction prograrn means that the evaluation of the junction effect between the FSG 

and the solid feed guide can begin in earnest. 
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4. Transition Analysis by Mode Matching Method. 

As with FSS there has been a great deal of work undertaken by many authors into the 

analyses of discontinuities that occur in the many forms of transmission line that exist. 

It was hoped that an existing waveguide junction model could provide a suitable 

method to act as a base from which the FSG discontinuity could be modelled, 

especially as one half of the junction is a solid waveguide. The intention is then to 

extend the theory so that the open structure on the other side of the junction is 

included. However, other methods used in open guiding structures other than 

waveguides should not be ruled out initially as it may be possible to start from an 

open structure discontinuity model and force one side of it to be a waveguide. 

4.1 Existing Waveguide Junction Modelling Techniques 

One of the earliest waveguide junction modelling methods used was approximation 

by the variational principle. Marcuvitz used this on the waveguide T-junction problem 

[1]. However this can only provide information about the dominant mode interactions 

at the junction. As the FSG is an open periodic structure, the interactions between 

many more modes must be found, which would not be possible with this technique. 

Therefore any solution that could be found by this method could only ever given a 

partial and incorrect approximation of the solid waveguide to FSG junction. It was felt 

that this method was not directly applicable to the junction problem under 

investigation. 

An analytic Fourier Transform method [2] matches the transverse E and H fields at a 

waveguide T' junction in the frequency domain by using the Fourier transform of the 

junction continuity equation. For a more flexible solution it was decided that a 

numerical method would prove more versatile than an analytic one as less work 

would be required to develop it for new junction configurations. 

Finite element and finite difference methods have been used where the geometry of 

the discontinuity becomes complex and/or inhomogeneous or anisotropic objects are 
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involved. In this method the region surrounding the discontinuity boundary is split 

into many polygonal sub-regions. These sub-regions are then used as points or areas 

at which the field calculations, dependent on the method, are performed. The 

appropriate boundary conditions are applied along with a suitable algorithm, used to 

find the solution as quickly as possible. It is used widely in the solution of rectangular 

waveguide junctions and [3].(4] are just two of the papers written on the subject, 

where only a two dimensional mesh of points needs to be generated. In the FSG 

discontinuity problem a three dimensional mesh of points would be required in the 

model to provide sufficient information to solve the required problem to a high degree 

of accuracy. This then demands a very large amount of computer memory to store the 

vast number of data values taken at each point. 

The Least-Squ'lres Boundary Residual Method (LSBRM), first proposed in [11], has 

been used to good effect in the solution of a five port rectangular waveguide junction 

[5]. This method forms a continuity equation of the transverse E and H fields 

expressed as a truncated series of waveguide modes. An error function is then formed 

by summing the product of each field, with its complex conjugate and integrating over 

the boundary. The coefficients are then found by finding the minimum unique value 

for this error function. Although this method does not suffer from any relative 

convergence problems, it does have a very slow convergence rate and so requires 

large matrices in order to achieve good accuracy, which again implies large computer 

memory requirements. 

The method of moments has been applied to junctions by replacing the aperture fields 

with the equivalent imaginary magnetic current walls at the boundary [6].(7]. The 

method of moments and Galerkins approach are then used to solve for the fields on 

either side of the discontinuity. This method also requires large matrices to expand the 

currents as a series of bases functions, hence large memory, and also suffers from the 

relative convergence phenomenon. 

The model that was chosen was the Modal Analysis Method. It was first proposed by 

Wexler [8] and Clarricoats and Slinn [9] and at the same time and has been used 

extensively to model these types of two dimensional waveguide discontinuities. In 

this approach the transverse fields are matched in each wave guide on either side of the 
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common connecting aperture. Each E and H field is expanded as an infinite series of 

normal wave guide mode functions that exist in the two respective waveguides. The 

amplitudes of each mode in the continuity equation across the junction are then 

expressed as an infinite series of waveguide mode amplitudes from the opposite side 

ofthe junction. This produces two infinite sets of simultaneous linear equations, 

which can be truncated and solved for the mode coefficients and from these the 

generalised scattering matrix formed. This method does suffer from relative 

convergence problems when the infinite series on each side of the wave guide are 

truncated, but this can be avoided with the correct choice of series sizes that are used. 

This produces matrices of modest size, and hence reasonable memory requirements, 

whilst maintaining a very high degree of accuracy. Therefore this method was chosen 

to model the FSG discontinuity. 

In addition to the low memory requirements, the other great advantage of this method 

over other forms of transition modelling is that the amplitude of each mode in the 

each structure is known. If the amplitudes are known then it will be instantly possible 

to calculate which mode in the solid waveguide excites which FSG mode. This 

information will allow the determination of the most efficient method and design 

required to transfer maximum power into the FSG. As the FSG mode is a Bloch mode 

made from many Floquet modes then it may be that several solid wave guide modes 

will produce the best matched structure. 

4.2 Modal Analysis of Wave guide Step Junctions 

After the original papers written by Wexler and Clarricoats and Slinn, many other 

papers have been written which build on and improve the method either generally or 

make it more applicable to a particular discontinuity situation. One such 

improvement was developed by Masterman and Clarricoats [10] and by Masterman 

alone in [19]. The method was improved to cope with infinitely thin conducting iris's 

placed in the junction plane and containing an arbitrary number of arbitrarily shaped 

apertures. By manipulation, the number of simultaneous equations needing to be 

solved was also reduced. This form of modal analysis was preferred as the basis of 

the solid wave guide to FSG discontinuity due to its simplified nature over the 
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original, thus requiring less computer memory. Also this method gave more flexibility 

as it allowed an intermediate matching section of modal basis functions to be inserted 

for the aperture fields. If this eventuality should arise the model could be easily 

expanded to incorporate it without the need for a major rewrite of the program. 

The modal analysis proposed by Masterman is, as previously stated, concerned with 

the general case of an infinitely thin conducting iris placed at the junction of two 

different waveguide sections. As the initial investigation does not require the 

presence of the conducting iris, the theory quoted here shall be that of this simplified 

case. That is a step discontinuity junction between two dissimilar guiding structures 

of different cross sectional concentrically mounted. There are two possible junction 

set-ups for the solid waveguide to FSG discontinuity. The feed can either be from the 

FSG with reflection from the junction in the FSG and transmission into the solid 

wave guide calculated. Or the feed can be from the solid waveguide with reflection 

from the junction in the solid wave guide and transmission into the FSG calculated. 

Although the junction is reciprocal, it was found that the FSG fields had to be treated 

differently depending if it was the feed or not. These two cases will be handled 

separately in the following two sections. 

4.2.1 FSG to Solid Waveguide Mode Matching with FSG as Feed 

With a large amount of the FSG eigen value spectrum found in Chapter 2, the mode 

matching theory can now be developed for the solid wave guide to FSG transition. As 

mentioned above mode matching works by expressing the fields in the aperture 

between the two structures as an infinite summation of all the possible modes that 

exist in the FSG. Each mode must have a particular amplitude such that the 

summation of all the modes equals the aperture field exactly. The aperture field is 

then expressed by a similar infinite summation of all the possible modes of the solid 

waveguide. The summations from each side of the aperture are then equated to each 

other and the unknown modal amplitudes solved from the simplification of the 

resulting simultaneous equations. The aperture of the junction between an infinite 

length of FSG and an infinite length solid circular waveguide is defined as being at 

z=O. The aperture fields can then be thought of as the summation of those modes in 
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the FSG taken at an infinitesimally small step into the FSG, in the -z direction, at a 

point z=O-. Correspondingly the solid waveguide mode summation can be though to 

take place at z=O+. 

The fact that the FSG is an open structure means that the fields beyond the radius r=ro 

of the FSG elements must be taken into account and consequently so must the fields 

that will exist beyond the radius of the solid wave guide. This makes the problem very 

complicated as the solid wave guide wall is an annulus in cross section and divides the 

z=O+ region into two unconnected regions. To simplify the problem let the width of 

the solid waveguide wall be extended to infinity. The removal of this region from the 

field equations can also be achieved by placing an infinite conducting plane at z=O 

and cutting a hole in it, centred on the waveguide axis and of the same radius r=ro' as 

the solid wave guide, as seen in Figure 4-1. This then prevents the fields from outside 

the FSG entering the region above the solid waveguide. This, it must be said, is not a 

perfect simplification as it will reflect propagating waves off it and hence the solution 

is only valid for junctions incorporating large conducting planes. However at this 

early stage it is hoped that this will allow a reasonable insight into the way the 

junction and model behaves. 

It is assumed here that both guide structures are semi-infinite in the respective 

direction away from the junction. This ensures that there are no other discontinuities 

to reflect power back into the junction for any mode. This also ensures that the only 

incident modes are those of the feed, whose magnitudes are set at the start of the 

analysis. An alternative method of ensuring that no unwanted incident modes reach 

the junction is to say that a perfectly matched load terminates the structure on either 

side of the junction. If more junctions need to be modelled then the perfectly matched 

load terminations can be removed and several junctions can be cascaded together. A 

detailed procedure to do this is given in [19] and allows all the transmitted and 

reflected mode amplitudes to be calculated. For the FSG to solid waveguide junctions 

the analysis will be limited to calculating the amplitudes for a single junction with 

perfectly matched load terminations in place. 
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Figure 4-1 Set-up of FSG to solid wave guide transition - cross section through the 

<1>=0 plane 

To define the sum of FSG modes that gives the complete spectrum presents the 

greatest challenge for this method. The mode spectrum must consist of all the real 

modes of the structure. For an open structure, such as the FSG, this is the sum of 

Bloch waves that are formed entirely from real F10quet modes and the summation of 

the infinite radiation spectrum. See Equation 4-1 for the summation of the transverse 

E fields and Equation 4-2 for the summation of the transverse H fields. 

Et = I, {aim +ann)e:Y + j(a;aJ{kr)+a;aJ{kr)},ad{k"r,t/».dkr 
m=1 0 

Equation 4-1 

Ht = I, {aim -ann)h::.r + j(a;ad{k,)-a;ad{kr)~rod{kr,r,t/».dk, 
m=l 0 

Equation 4-2 

where:-

aim & a;'" (k
t

) are the modal coefficients in the FSG of Bloch modes and radiation 

modes respectively incident on {travelling towards) the junction. 

ann & a;'" (k,) are the modal coefficients in the FSG of Bloch modes and radiation 

modes respectively reflected (travelling away) from the junction. 
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e=r ,h=r ,e mJ ,h",d are the transverse electric and magnetic field components of the 

m'h hybrid Bloch mode and transverse components ofthe radiation field in the FSG 

respectively. The summation of the radiation modes becomes an integration over kr 

because of the continuous nature of the infinite set and kr is used rather that kz as it is 

the transverse summation. 

The integration of the radiation modes cannot be defined because the radiation 

spectrum of the FSG is not known and hence the total aperture field of the FSG can 

not be found. However as discussed in chapter 2 and proved in [24] & [26], a good 

approximation for the radiation fields close to the surface of an open structure is the 

field summation of the leaky modes of the structure. This approximation only holds to 

the boundary of the observation angle calculated by the steepest decent method in 

[24]. The steepest decent method also defines which leaky modes of the structure 

should be included in the summation, some leaky mode poles can be found in the 

complex kr plane, but cannot be included in the physical approximation of the 

radiation field. The observation angle and the valid leaky mode contributors can not 

be calculated for the FSG because the modal solutions were found numerically and 

contain Floquet modes. 

This problem was overcome with the aid of information in [25], Lee et al used mode 

matching to analyse the junction between two dielectric slab waveguides, both open 

structures. They approximated the radiation field integral in the aperture summations 

to a summation of leaky modes. They showed that the observation angle could be 

safely approximated by the angle of the main beam of each leaky mode in the 

summation. As already discussed in chapter 3 the angle of the main beam is 

proportional to the pz value of the leaky mode propagation constant. Thus as the set of 

discrete propagation constants was found in chapter 2 the observation angles over 

which all the leaky modes are valid approximations is known. 

It was also felt that initially ifthe frequency at which this matching program was run 

was restricted to values very close to the resonant frequency, then most of the field is 

contained within or very close to the FSG. If the vast majority of the field is in the 

vicinity of the FSG surface then intuitively the error in the approximation of the 
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radiation field must be reduced. There is less field that is not accounted for in the 

leaky modes within the angle of the main beam as most is within the FSG and [25] 

states that the field within the surface of the structure is very well defined by the leaky 

mode. 

However the modes that should be used in the approximation are still not known and 

cannot be calculated. However [25] does state that in most cases the fundamental 

leaky mode will fully approximate the radiation field inside the observation angle. So 

the strategy adopted was that of a trial and error approach. The radiation field will 

initially be approximated by the fundamental leaky Bloch mode, which should be 

sufficient. If the resultant transmission and reflection coefficients did not match the 

measured results, then it will be assumed not to be sufficient and more leaky modes 

will be added. This approach is similar to that taken by Masterman [19] to get the 

correct number of modes in each aperture summation to overcome the relative 

convergence phenomenon. It is expected that as well as finding the correct number of 

leaky modes experimentally the total numbers of modes required in each guide to 

overcome the relative convergence phenomenon will also have to be deduced 

experimentally. 

So when the radiation mode integral is replace be a sum of leaky hybrid Bloch modes 

transverse aperture E and H fields can be approximated as a single summation of FSG 

hybrid Bloch [16] modes. Here no distinction is made between the leaky modes and 

real modes as they are all discrete solutions found in chapter [2] and so the two 

summations can be combined. 

~ 

Er ~ L, (a;m + arm )e:Y Hr ~ L,(a;m -arm)h:Y 

m=1 m=1 

Equation 4-3 

The transverse aperture fields can also be expressed as a summed series of modes 

taken from the solid waveguide. 

~ 

E; = L, (a;n + a~ )e: H; = L,(a;n - a;n )h: 
11=1 n=1 

Equation 4-4 
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where:-

aim & a;" are the modal coefficients of modes incident on(travelling towards) the 

junction in the FSG and solid waveguide respectively. 

a,m & a;" are the modal coefficients of modes reflected from (travelling away) the 

junction in the FSG and solid waveguide respectively. 

HY Hr • • 
e , h , en' hn are the transverse electric and magnetic field components of the mth 

" " 
hybrid Bloch mode (real or leaky) and nth mode in the FSG and solid wave guide 

respectively. The mode subscripts vary from m & n =1 (the fundamental mode) to 00. 

The FSG hybrid mode consists of a doubly infinite sum of Floquet modes over the 

integers p & q (each varies from _00 to 00) which represent the Floquet mode number 

in the I/J and z directions respectively. Such that:-

- - - -
e!Y = '2, '2,cmpqempq h::

Y 
= '2, '2,cmpqhmpq 

p=-.oq= __ p= __ q=-oa 

Equation 4-5 

N.B. in this work any quantity which is denoted with an apostrophe is one from the 

output guide, anything that has no apostrophe is from the input guide. 

The transverse aperture field is equated to both of the infinite sums of transverse 

modes, one from the FSG and the other from the solid waveguide. As they can be 

taken to identically match the aperture field, a continuity equation of the transverse E 

and H fields across the junction can be formed. 

Equation 4-6 

m=1 n=1 

Equation 4-7 

117 



Substituting the Floquet mode representation of the Hybrid E field in Equation 4-6 

and then vector post-multiplying through by the basis function h~, being an N'h H 

mode transverse field function taken from the solid waveguide, gives:-

~(a;m +a,rntt qtCmpqernpq }h~ ~ ~(a;, +a:,)e~ xh~ 

Equation 4-8 

As vector cross products are distributive Equation 4-8 can be rearranged to give:-

I,ca;rn +a",,) I, I,crnpq(empq Xh~)~ I, (a;, +a~)e~ xh~ 
m=1 p=_ q=__ '1=1 

Equation 4-9 

Equation 4-9 can then be integrated over the area of the solid wave guide cross 

section, s , to give:-

I, (a;m + a,m) I, I,cmpq f empq xh~ ·ds ~ I,(a;" +a;,,) f e;, xh~ ·ds 
m=l p=- q=- s' 11=1 s' 

Equation 4-10 

Where N can be used to represent the subscript of any wave guide mode from n = 

1,2,3, ..... ,00 and therefore the basis function can be any solid waveguide mode. 

When the orthogonality of the wave guide modes in the solid waveguide is applied to 

Equation 4-10, the right hand side of the equation can be simplified so that only non 

zero values are included in the summation. This occurs only when n=N i.e. for the 

mode in the summation that is identical to the basis function. All the other modes in 

the summation produce a zero value for the integration. N.B. Orthogonality does not 

apply to the integral on the left hand side of the equation as the mode functions are for 

a different guide and so are not solutions to Maxwell's equations under the same 

boundary conditions. Then the simplified equation becomes Equation 4-11. 
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Where N = 1,2,3, ..... ,00 

Equation 4-11 

Waveguide orthogonality simply states that the vector product of the E field of any 

mode and the H field of any mode, that can exist in the same lossless waveguide (so 

that they are solutions of the same boundary conditions), when integrated over the 

cross sectional area of the waveguide will be zero, unless the E and H fields are from 

the same mode. The proof of this property of waveguide modes is explained on p225 

in [14] and given in Equation 4-12. 

={O forbd} 
1 for k =1 

Equation 4-12 

Equation 4-13 

The orthogonality given in Equation 4-12 is more commonly seen as Equation 4-13 

where the complex conjugate of the H field has been taken. This form of the 

orthogonality equation is likened to the calculation of the Poynting vector of a mode; 

it is the mode power orthogonality equation. Ideally, power orthogonality would be 

used because if two modes are power orthogonal then the fields do not interact and no 

power can flow between the modes. The field orthogonality given in Equation 4-12 

does not imply that power cannot flow between two modes only that the fields do not 

interact. Marcuse on p30 of [18] details that complex propagation constants associated 

with the modal fields of open structures can only found to be orthogonal with the use 

of the field orthogonality equation, Equation 4-12. This equation will work equally 

well for solid enclosed waveguides, but again with the power orthogonality dropped. 
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It should be noted that if many different values of N are tried in Equation 4-11 one 

after another, N separate equations will be formed, each one having as its subject the 

incident and reflected amplitudes of that particular mode and not dependent on any 

other mode from the solid wave guide. If the dependence on the incident and reflected 

modal amplitudes of the FSG is removed then the equations could be solved for the 

amplitude of each solid waveguide mode in turn. 

Returning to E field aperture equation a similar procedure must be applied to 

Equation 4-7, but this time pre-multiplying by the basis function of the M'h FSG mode 

- -
:L HY HY:L· ·HY· (aim -ann)e xh "" (am -ain)e xhn 

M • M 
m=l ,,=1 

Equation 4-14 

Substituting the Floquet mode summation of Equation 4-5 for the FSG hybrid mode 

in Equation 4-14. 

~(aim -arm)p~ q~CMpqeMpq X p~q~Cmpqhmpq "" ~(a~, -a;n)C~q~CMpqeMpq }h;, 

Equation 4-15 

To simplify Equation 4-15 the fact that vector cross products are distributive can be 

used. Instead of the two Floquet mode summations being vector multiplied together, 

each individual E Ploquet mode is vector multiplied in turn with each of the H 

Ploquet modes and all of the vector products are then summed together. 

m=l p= __ q=--oo 11=1 p=-q=--

Equation 4-16 

As with Equation 4-10, Equation 4-16 can also be integrated over a cross section, 

Equation 4-18. However, this time it must be the cross section of the FSG which, as it 
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is an open structure, has an infinite cross sectional area. Some simplification can be 

made to the integration of the right hand side of Equation 4-16 as the transverse field 

of the solid waveguide does not exist beyond the radius of the waveguide wall. The 

integral over the cross sectional area outside must therefore vanish, Equation 4-17. 

Where S is the infinite cross sectional area over which the FSG integral is taken, S' is 

the cross sectional area ofthe waveguide and So = S - S· , is the difference between 

them. 

feMpqXh~ ·ds=O 
'0 

Equation 4-17 

f(a;rn -ann) f fC~pq f eMpq xhrnpq . ds '" f(a~, -a;n) f fC MPq f eMpq xh~ . ds 
m=! p=-- q=--- S 1/=1 p=--- q=- s 

Equation 4-18 

In order to follow the mode matching form given by Masterman [19) Equation 4-18 

must be simplified by applying the orthogonality conditions to the Floquet modes. 

However, the Floquet modes can either be real proper or improper leaky modes. 

Improper leaky modes cannot ordinarily be normalised or orthogonalised. The fields 

of a proper mode decay to zero as they approach infinity and so from the proof in [18) 

any proper mode of an open structure is orthogonal to any other proper mode. The 

fields ofthe improper leaky modes do not decay as they approach infinity, they 

increase, so they can never be orthogonal as the integral in Equation 4-12 cannot be 

defined. 

However, Sammut & Snyder [26) offer two methods for approximating the 

orthogonality of leaky modes. The first is to truncate the leaky mode at some small 

distance from the guide where the mode will be finite and nearly power orthogonal. 

However, some small part of the mode will not be orthogonal and so some coupling 

between modes will occur. The second approximation is found by deforming the path 

of integration of the orthogonality condition into the imaginary radius space. That is 
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to say that as the real distance from the fiber core increases, an imaginary term that 

increases faster that the real term must be added to the radius value. The imaginary 

radius will then act to cancel out the increasing field strength of the leaky mode when 

the integral is evaluated. This form of orthogonality does lose the definition of power 

orthogonality. It is however an exact orthogonality condition that can be used on both 

proper and improper modes. 

Lee [25] opts to use Sammut & Snyders first technique and sets the distance over 

which the orthogonality approximation is applied for the leaky modes to be the same 

as that of the observation angle. This has already been defined for the FSG as the 

main beam angle of the mode and the only area over which the leaky mode exists in 

this model. All the required techniques are assembled to simplify the mode matching 

equations and approximate the values of the mode coefficients. When applying the 

orthogonality condition to a leaky mode the radius of integration was reduced to the 

angle of the main beam, otherwise for a proper mode the upper limit of integration 

was left at infinity. The integrand was also in the form ExH as the equations are still 

dealing with complex propagation values and ExH* will not work under these 

conditions. 

For any Proper mode:-

Equation 4-19 

2,,_ 
f f ek xh, . rdrdifJ = (ju 
00 

For any leaky mode:-

Equation 4-20 

21CrMR f f ek xh, . rdrdifJ = (ju 
o 0 

={ 0 fork *l} 
1 for k =1 

={ 0 fork * I} 
1 for k = I 

When the orthogonality conditions, Equation 4-19 & Equation 4-20, are applied to 

Equation 4-18 the equation is simplified to a form similar to Equation 4-11 and gives 

Equation 4-21. 
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I,(a;,,-a;,,)I, I,cMpqfeMpqXh~.ds 
-'''-'=l-'-______ ~p_=_--_q~=_--____ ~, ________ __ 

aiM -arM :::::-

Where M = 1,2,3, ..... ,00 

Equation 4-21 

There are now two infinite sets of linear simultaneous equations, given by Equation 

4-11 & Equation 4-21. Obviously these two infinite sets must be truncated, so that 

they can be solved. Let the value of M range from I to M' and the value of N range 

from I to N'. The summations of FSG modes must also be truncated, so let rn range 

from I to rn' and n range from I to n'. So M' becomes the total number ofFSG testing 

basis functions; N' becomes the total number of solid wave guide testing basis 

functions; rn' becomes the total number of FSG modes and n' becomes the total 

number of solid wave guide modes. The infinite summation of Floquet modes must 

also be truncated, again the infinite summation can not be evaluated numerically. The 

first 2P+l & 2Q+l modes are taken, so the range becomes p=-P to P and q=-Q to Q. 

The large number of simultaneous equations they can be written in a concise matrix 

form, so Equation 4-11 becomes:-

Equation 4-22 

Where the elements ofthe matrix R are given by the equation:-

Rij = f" ei xhi ·ds 
s· 

Equation 4-23 
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Where i andj are the matrix row and column number of the particular R value being 

calculated. This matrix form can be written in compressed form for convenience as:­

a; +a; ~ R(ai +a,) 

Equation 4-24 

Similarly the same treatment can be carried out on Equation 4-21:-

Equation 4-25 

Where the elements of the matrix S are given by the equation:­

p Q 

L L cipq J eipq xh~ ·ds 
S p=-Pq=-Q s 

ij = -"-:p,...:-:'-:Q::-"----'------

L LC~q J eipq xhipq . ds 
p=-Pq=-Q s 

Equation 4-26 

Which can be written in compressed form for convenience as:­

ai-a, ~S(a;-a;) 

Equation 4-27 

This system of simultaneous equations can be simplified by matrix pre-multiplying 

Equation 4-24 by S. It can then be rearranged and substituted into Equation 4-27 for 
, 

Sa T, eliminating it from the equations. The resulting set of simultaneous linear 

equations can then be solved for an given that the incident mode coefficients ai & a'i 

are already known:-

a i -a, ~ SRai +SRa, - 2Sa; 

Equation 4-28 
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Which is rearranged to give:-

(I + SR)a, ~ (I - SR)a, + 2Sa: 

Equation 4-29 

To make ar the subject of the equation, it is necessary to matrix pre-multiply the 

equation by the inverse of I+SR. 

a, ~ (I + SR)"' (I - SR)a, + 2(1 + SR)"' Sa: 

Equation 4-30 

If the inverse of I+SR is to be found then SR must be a square, non singular matrix. If 

the matrix product SR is to be square then the number of basis functions in the FSG 

must be the same as the number of FSG modes chosen to represent the aperture field, 

M' =m '. Similarly the number of basis functions in the solid wave guide must be the 

same as the number of solid wave guide modes chosen to represent the aperture field, 

N'=n'. 

The values of M' and N' relative to each other will be investigated. For solid 

waveguides [10] shows that this method can suffer from the relative convergence 

phenomenon. The degree and speed at which the mode matching method converges is 

dependent not only on the number of modes used in each guide, but also on their ratio. 

In [10] Masterman details a procedure allowing the correct numbers of waveguide 

modes to be used in each guide to ensure that the numerical solution converges with 

the least number of modes. To determine the optimum ratio, the normalised 

susceptance of the discontinuity was plotted against M for different ratios of M'IN'. 

This gave the ratio of the number of basis functions in each waveguide, for the most 

rapid convergence of the solution, equal to the ratio of the waveguide radius', see 

Equation 4-31. If a different ratio is used then more modes will be required in each 

guide to get convergence. 

Equation 4-31 
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Once the values of a, have been found then the values of a', can be found by 

substituting a, into Equation 4-24 to give:-

a; ~ R(a, +a,)-a; 

Equation 4-32 

The above theory shows how the values of the coefficients of the modes scattered 

from the FSG to solid waveguide junction can be approximated. These coefficients 

can be used to calculate the scattering parameters of the junction and to determine 

how the modes make the transition from one structure to the next. 

4.2.2 Solid Waveguide to FSG Mode Matching with Solid Wave guide as Feed 

For the solid wave guide to FSG transition, a similar procedure to that detailed in 

section 4.2.1 is employed. The diagram in Figure 4-2 shows the junction to be 

modelled. In this instance the FSG is not the feed structure and all items related to it 

are denoted with an apostrophe '. The solid wave guide is the feed structure and all 

items related to it have no dash. Again both structures are assumed to have perfectly 

matched load terminations and the incident coefficients are known for all the 

waveguide modes. 

Infinite Ground Plane 

r! 

• ~ , 
aj aj 9! 

FSG 
\I ------t::;-----------r 

r=rj ~ 

I 

Solid Waveguide 

~ , • ar a r 

- + 
z=o 

Figure 4-2 Solid wave guide to FSG transition - cross section through the $=0 plane 
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In the above diagram aj and ar represent the modal field amplitudes of the modes 

incident on and reflected from the junction in the solid wave guide. Similarly a·j and 

a· r represent the modal field amplitudes of the modes incident on and reflected from 

the junction in the FSG. As in Equation 4-5 the transverse aperture fields can be 

expressed as a summation of modes from each structure that forms the junction. These 

two summations can be equated to each other and here the hybrid FSG mode is given 

as the summation of it's Floquet modes:-

00 00 00 00 

E~p = E T
- = ET+ = I. (a jm +ann)em = I. (a'j,+a'", ) I. I.c,pqe',pq 

m=l n=1 p=--q=--

Equation 4-33 

~ ~ ~ 

H;pp =H T- =HT+ = I. (a;m -ann)hm = I.(a'",-a';,) I. I.cnpqh'npq 
m=1 n=1 p=-- q=--

Equation 4-34 

where m is the mode number in the solid waveguide, em is the transverse electric 

modal field distribution of the mth mode and hm is the transverse magnetic modal field 

distribution of the mth mode in the solid wave guide. n is the mode number of distinct 

Bloch modes (not Floquet) in the FSG and p and q number the Floquet modes that 

exist in the <p and z directions for a particular Bloch mode. e·npq is the transverse 

electric modal field distribution of the nth eigen mode solution and pth and qth Floquet 

modes and h·npq is the transverse magnetic modal field distribution of the nth eigen 

mode and the pth and qth Floquet modes in the FSG. 

To simplify the magnetic field equation of Equation 4-34 vector pre-multiply through 

by an e mode basis function from the solid wave guide and integrate over the infinite 

plane at z=O. This process is identical to that employed in Equation 4-21 except that 

the guide on the feed side of the junction is solid wave guide and so a solid wave guide 

basis function is used. 

aiM -arM = J 
eM xhM ·ds 

S 

Equation 4-35 
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The cross-sectional area of the solid wave guide is S, the integral outside this region is 

zero. The summation of Fioquet modes has been truncated to only include the most 

significant 2P+ 1 and 2Q+ 1. As in Equation 4-21 the number of hybrid Bloch modes 

in the FSG has been truncated to N and M basis functions were used to test the solid 

waveguide modes. This then generates M simultaneous equations which can again be 

expressed in matrix form as:-

[;: ]-[:~] = [:~::~ n :~l-[ J 
Equation 4-36 

where the elements [S] are given by:-

P Q 

I. I. C jpq f ei xh~pq • ds 
s .. = p=-Pq=-Q s 

" f eixhi ·ds 
, 

Equation 4-37 

To simplify the electric field equation it is necessary to follow a procedure similar to 

that given in Equation 4-14. Vector post multiply Equation 4-33 by the testing 

function hN
HY ofthe magnetic field of N'h Bloch mode in the FSG. The Floquet mode 

summation has again been substituted for the Bloch mode in Equation 4-38. 

Equation 4-38 

If the cumulative vector product simplification similar to that in Equation 4-16 is 

carried out and the equation is integrated over the infinite cross sectional area s' on the 

plane at z=O the result is Equation 4-39. 
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I, (aim + a,m) I, I,eN?q fern X h~pq . ds = I, (a;, + a~) I, I,e;pq f e;pq X h~pq . ds 
m=l p=- q=-- S n=l p=-oo q=-- s' 

Equation 4-39 

Following the procedure used in Section 4.2.1, Equation 4-39 would now be 

simplified by the orthogonality conditions to produce a system of N simultaneous 

equations. However the partial radius orthogonality condition is only valid out to the 

radius of the main beam. In this case the radius of the main beam is zero as the 

junction plane is the source of the FSG modes. If the junction is the source of the FSG 

modes then the approximations used in [24],[25] & [26], that the radiation field is 

approximated be the leaky mode summation, break down. If the approximation breaks 

down then the fact that the leaky modes are not orthogonal is no longer important as 

the entire analysis for the solid wave guide to FSG junction is invalid. This junction 

model will not be taken any further, but the FSG to solid waveguide model will be 

implemented. 

4.3 Development of Mode Matching Program 

Throughout the development of the program to implement the mode matching theory 

detailed in Section 4.2.1, a structured software engineering design methodology was 

used. This allowed the program development to be broken up into several distinct 

sections: definition of program functions and requirements; conversion of functions 

and requirements into a conceptual data flow diagram; conversion of data flow 

diagram into a structure chart that depicts the program elements; coding the program 

and testing the program to ensure it meets the design. Although more time is spent 

designing the program before any code is written, this makes the task a simpler one as 

it separates the creative design of the program to meet the functions required, from 

coding the algorithms. Once coding starts it is simply a matter of concentrating on the 

syntax of converting the design of the program in the structure chart into the computer 

language. The code produced is also of a high quality as the structure chart drives the 

program to be written in a well formatted and structured way so that at any point it is 

easy to derive the functionality from the code, unreadable "spaghetti code" is avoided. 
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It also improves the testing of the program as the design documents generated in the 

initial stages give a clear definition of how the program is to function. Simple test data 

can be build up from the design documents and the expected answers calculated. This 

can then be fed into the program and the results compared to ensure that the program 

functions as expected. 

This software engineering approach also proved invaluable during the lifetime of the 

project as it significantly speeded up any required alteration of the program to change 

the functionality. The change can be made to the data flow diagram and then fed into 

the structure chart and so the relevant areas of the program that need changing are 

easily identified. It is then a simple matter to change the program code to reflect the 

change in the structure chart. Over the duration of the project the use of the software 

design approach undoubtedly saved time and improved understanding of the program 

operation. 

4.3.1 Solid Waveguide Step Discontinuity Program 

To develop a good understanding of the mode matching method it was felt that an 

initial computer model should be written to replicate the simple case of a step 

discontinuity between two solid circular waveguides. The solid waveguides had 

different radii, which formed the step in the plane of the junction as seen in Figure 

4-3. The extra insight gained into the design and development of the code to achieve 

the simple case would give a stable, workable platform on which to base the FSG 

junction work. This work gave valuable experience and insight into the details of the 

mode matching analysis technique. 

The mode matching method implemented for the solid circular wave guide step 

junction was that of Masterman as detailed in [19]. The equations and theory 

formulated in [19] were transformed via the structured software engineering approach 

into a data flow diagram and a structure chart of the design. The program was then 

coded to the design, which was implemented in a highly modular way, to make future 

development easier, and tested. 
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Figure 4-3 Step discontinuity between 2 Circular Wave guides 

Once the program was tested an example was tried for which published results were 

available. The results of the percentage of transmitted and reflected power given in 

[12] were replicated to a very high degree of agreement and are shown in Figure 4-4. 

To further test the validity of the results given by the program, good agreement with 

other published work was found. The results given in [19] and [10] were emulated 

with some simple post processing of the mode amplitudes to get the values in the 

correct format of the mode conversion coefficient. This gave an indication as to how 

much of the fundamental input mode was converted into a higher order mode in the 

output waveguide. Again the results from the program, written with the structured 

software design procedure, was a good match to that given in [10]. 

4.3.2 FSG to Solid Waveguide Mode Matching Program 

The solid wave guide mode matching modelling program can be changed so that it 

calculates the mode amplitudes at the FSG to solid waveguide junction. This was 

achieved by changing the software design and then the program. The mode matching 

theory relies on taking the integrals of the vector cross products in order to simplify 

the equations. The integration process can be achieved in two ways, either by a 

numerical integration routine or else with a predetermined integrated analytic 
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equation. The numerical integration process takes the integral and using many 

numerical samples over the integration range calculates by successive approximation 

the value of the integral. The accuracy and time taken to carry it out is dependent on 

the number of steps in the approximation process, however there is some degree of 

flexibility with this process as the integrand expression can be changed to reflect 

changes in the transition structure. 
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The alternative requires the vector cross product of the fields to be pre-calculated. The 

integral is then derived analytically and an equation that gives the value of the integral 

from the input program variables is "hard coded" into the program. It is absolutely 

accurate and is very quick to execute, however there is no flexibility to change the 

structure under investigation, as the program is limited to solving only one problem. 

To change the setup of the problem to be simulated requires a change to the program 

code. It is also not always possible to integrate an expression analytically; if this 

should be the case for a particular problem then a numerical method must be used. As 

there already exists expressions for the definite integrals where the integrand is 
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fonned from both fields in the solid waveguide, it was decided to solve analytically 

the integrals involving FSG fields. Despite the lack of flexibility, the accuracy and 

speed of execution in the analytical approach make it the most desirable as there are 

many modes, with a large number of these being made up of many Floquet modes. 

4.3.3 Solid Waveguide Integrals 

The solid waveguide integrals are given in [19], but were calculated by the author for 

the previous solid waveguide step junction. There are two fonns of the solid 

waveguide integral equation used in the denominator of the R matrix, depending on 

whether the mode in the integrand is TE or TM. The transverse field equations used to 

represent the E and H fields in the solid waveguide for the TE and TM mode are 

Equation 4-40 & Equation 4-41. As all the fields are time dependent as e jliJt this 

factor is assumed in all field equations and has been dropped from the written fonns 

given here. 

For TE modes:-

er = ~J n (kJ) sin(nrp) 
kc r 

eq, = J~ (kJ) cos(nrp) 

Equation 4-40 

hr = _LJ~ (kJ)cos(nrp) 
OJj.1 

hq, =~LJn(kcr)sin(nrp) 
kcr OJj.1 

Where k, = j,m & jnm is the mth zero of I. 
a 

For TM modes-

Equation 4-41 
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., 
Where kc = Jnm & j'nm is the m'h zero of J' n 

a 

For a TE mode in the Waveguide:-

fetXht·ds= wJ1 f( ~2 2 J;(kcr)Sin2(nt/»+J~2(kcr)cos2(nt/»)'dS 
s j3 s kc r 

Equation 4-42 

When the order of the mode is zero. n=O then by Lommel's equation, given in Relton 

[23) p.52 and applying the simplification that J~(kcO-) = 0 for TE modes, Equation 

4-42 becomes:-

Equation 4-43 

When the order of the mode is non zero, n>O then applying an integration method 

similar to that given in Waldron [22) p.58 and the simplification that J'n(kca) = 0 for 

TE modes, Equation 4-42 becomes:-

Equation 4-44 

N.B. It was found by carrying out the above integration that the integral formula given 

in Waldron p.58 has a misprint, the correct form is quoted here. 

For a TM mode in the waveguide:-

fe t xht .ds = We f( ~2 2 J;(kcr)Sin2(nt/»+J~2(kcr)cos2(nt/»)'ds 
s j3 s kc r 

Equation 4-45 
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When the order of the mode is zero, n=O then by Lommel's equation given in Relton 

[23] p.52 and applying the simplification that likc;a} = 0 for TM modes, Equation 

4-45 becomes:-

Equation 4-46 

When the order of the mode is non zero, n>O then applying an integration method 

similar to that given in Waldron [22] p.58 and the simplification that In(kc;a} = 0 for 

TM modes, Equation 4-45 becomes:-

J a2w£7C '2 
etXht ,ds= in (kca) 

s 2/3 

Equation 4-47 

4.3.4 FSG Integral Equations 

Apart from these solid wave guide integral expressions, there are two other integrals, 

which must be evaluated, The integral of the vector cross product, where both the E 

and H transverse fields are from the FSG, exist in the denominator of the elements of 

the S matrix in Equation 4-26. This integral appears similar to that used to normalise 

proper modes, however, as improper modes are contained in the integrand it is not a 

normalisation integral. However, this integral will be referred to as the "FSG 

normalisation" integral for want of a better description, even though it is understood 

that it is not. The other integral forms the numerator of both the Sand R matrices and 

has transverse E fields from the FSG and transverse H fields from the solid 

waveguide. This integral will be referred to as the "across junction" integral and has 

two forms, the type of H field mode in the integrand, TE or TM, determines which 

one should be used and both forms will be derived. 
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The analytic process for evaluating a definite integral involving the pth & qth Floquet 

mode of the nth Bloch wave of the FSG is given here. The transverse hybrid field 

equations of the of the pth & qth Floquet mode of the nth Bloch wave of the FSG are 

given in [20]. The field equations quoted in [20] are for general circularly polarised 

modes where the field value is proportional ejnp~ . However, the equipment used to 

make the measurements in chapter 3, to which this analysis will be compared, can 

only excite linearly polarised modes. Therefore the transverse field equations used 

inside the FSG from [20] have been converted into linearly polarised form and given 

in Equation 4-48. 

Equation 4-48 

To make the calculation of the integral simpler it was found to be necessary to alter 

the value of the coefficients a & jj which determine the amount of TE of TM 

component in the hybrid mode. These coefficients were replace with the coefficients 

A & B and are related to each other by the equation:-

Equation 4-49 

w·e·a 
A & 
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Such that the transverse field equations inside the FSG T:O; To become:-

Equation 4-50 

The transverse field equations outside the FSG T> ro become:-

Equation 4-51 

In Equation 4-51 the Bessel function, I n• which describes the field with respect to T is 

replaced by a Hankel function of the second kind. They are both cylindrical functions 

with the Bessel function representing fields that are standing waves and the Hankel 

function represents fields that exist to infinity. The sign of the complex krq value will 

determine whether the field is proper, improper, propagating or evanescent. 
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4.3.4.1 Integration of the "FSG normalisation" Equation 

As there are two separate sets of equations that describe the FSG fields in each region 

the integral for each region can be handled separately. So concentrating on the fields 

inside the FSG, where r:O; ro the "FSG normalisation" integral fe x h . ds can be 
"pq Ilpq 

s 

evaluated to give an analytic expression for the integration. As the fields are solely 

transverse, the integral can be written as Equation 4-52. 

21l' TO 

f e,pq xh,pq . ds = f f (empq . h",pq - e",pq . hmpq )' rdrdlj> 
s ,=Or=O 

Equation 4-52 

The field dependence on e - jk,qz is dropped from all subsequent equations as it is a 

factor in all the equations and so is assumed. Substituting the transverse field 

equations into Equation 4-52, the equation becomes:-

Equation 4-53 
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Multiplying out the brackets of Equation 4-53 and simplifying the terms gives:-

Equation 4-54 

It is easy to carry out the integration in Equation 4-54 with respect to !p. As the hybrid 

mode can never have a zero order, the integral over 0 to 2lt of sin2(np!p) or cos2(np!p) is 

always It. This leads to further simplification of Equation 4-54 to give:-

Equation 4-55 

Making use of the same identity used to integrate the solid wave guide field equations 

and the fact that the last term in Equation 4-55 is the integration of the product of a 

function and its differential, gives:-
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Equation 4-56 

Therefore the analytical integral equation for the fields inside the FSG is:-

Equation 4-57 

By a similar procedure the integral involving the fields external to the FSG can be 

calculated. However, the integrated equation differs depending on whether the 

F10quet mode being integrated is a proper or improper mode. This is purely because 

the integration limits have to be altered if it is an improper mode. The integration 

limits of a proper mode are from r=ro to r=oo, however, an improper mode cannot, by 

definition, be integrated to infinity as the integral is divergent. An artificial upper 

integration limit can be set at the boundary of the region were the leaky mode 

approximates the radiation field as discussed in section 4.2.1, so the integrated 

equation for proper modes is:-
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Equation 4-58 

The integrated equation for improper modes with the artificial integration limit set to 

r=re :-

Equation 4-59 

4.3.4.2 Integration of the "Across Junction" Equation 

The "across junction" integral that appears in the numerator of both the S matrix, in 

Equation 4-26, and the R matrix, in Equation 4-23, is the vector cross product of the E 

field from the FSG and the H field from the solid wave guide. As solid waveguide 

modes are involved as seen in Section 4.3.2, the expression must be calculated for 

both the TE and TM wave guide modes. The first integral equation given will be that 

for the interaction of the hybrid FSG mode with the TE mode in the solid waveguide, 
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followed by the integral for the TM mode. The integral that must be evaluated can be 

written, using the notation of the R & S matrices, as Equation 4-60. 

21C ro 

f (empq xh~)· ds = f f(ennpqh~ - e~mpqhJ. rdrdifJ 
s· ~~O,~O 

Equation 4-60 

Where empq is the hybrid E field p'h and q'h Floquet modes of the m'h Bloch mode in 

the FSG with e,mpq and el/>npq the radial and circumferential field components of the 

mode. Also, h'n is the H field of the n'h mode of the solid waveguide with h'm and h'"" 

the radial and circumferential field components of the mode. Substituting the 

component field values given in Equation 4-50 for the FSG & in Equation 4-40 the 

TE mode ofthe solid waveguide into Equation 4-60 gives:-

Equation 4-61 . 

When Equation 4-61 is expanded the terms will contain functions of either 

cos(mp~)sin(n~) or sin(mp~)cos(n~). It can easily be shown that regardless of the 

values of mp and n, when either of these functions is integrated over the interval 

[0,2nl the result is zero. In order to get a non-zero result the integrand should be of 

the form sin2(x) or cos2(x). This can be achieved by rotating the linear polarisation 

vector of the solid waveguide mode through 90°. This will add a rrJ2 factor to the 

solid waveguide sin and cos functions to give sin(n9+m'2) and cos(n9+m'2). Using 

trigonometrical identities these can be simplified to sin(n9+ m'2) = cos(n~) and 

cos(n9+m'2) = sin(n~). Further if the value of mp = n then the trigonometrical 

functions in the integrand will be of the form sin2(n~) or cos2(n~) and the integral will 
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equal1t, as the order of the hybrid mode can never be zero. Applying the rotation of 

the TE polarisation vector and the condition that, for a non-zero result the order of the 

FSG Floquet mode must equal the order of the solid waveguide TE mode, mp = n, 

glvmg;-

f(empqXh~).ds= f 1 ( ~nk,qk; (k,qJ; (krqr)J n (kJ)cos 2 (ntP)+kJn (k,qr)J;(kJ)sin 2 (ntP)) 
s ;=0,=0 0) ej.Jk,k,qr 

_ Bk; (J; (krqr)J; (k,r)sin 2 (ntP) + n
2 

2 J.(k,qr)Jn (k,r)COS 2 (ntP)JJ' rdrdtP 
0)11 k,krqr 

Equation 4-62 

Carrying out the integration with respect to tP Equation 4-62 becomes:-

Equation 4-63 

To integrate Equation 4-63 with respect to r an identity used in the "across junction" 

integration of the solid waveguide step discontinuity program of section 4.3.1 is used; 

it is also given on p237 of [22). This identity gives the integrated equation for the 

second term in Equation 4-63. The first term was integrated by noticing that 

J'n(ax)Jn(bx)+ In(ax) J'n(bx) is the differential of In(ax) In(bx) when differentiated with 

respect to x by the UV method. Thus the integral equation of Equation 4-63 

becomes:-

Equation 4-64 
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Which when evaluated over the interval [0, roJ, the "across junction" integral between 

the FSG and solid waveguide TE mode becomes:-

Equation 4-65 

For a TM mode in the solid waveguide Equation 4-61 is re-written as Equation 4-66. 

It should be noted in Equation 4-66 that as long as Impl=n then the I/J integration will 

be non-zero. No manipulation of the TM polarisation vector is required to achieve this 

non-zero result. 

Equation 4-66 

Following the same integration steps as given for the TE mode, the integration of the 

TM mode over the cross sectional area of the solid wave guide is given by Equation 

4-67. 

Equation 4-67 
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4.3.5 Structure of Program 

With the integral equations evaluated and available in an analytical format the 

program design was possible. The design was developed on a computer based CASE 

tool, in this instance EASYCASE Pro 4.21. This allowed different levels of the design 

to be built up graphically. Descending to a lower level allowed more graphical 

diagrammatic detail to given about an item in the design. At the lowest level a text 

description of the operation is given. This top down approach, split into levels, allows 

the outline of the whole program and sub-sections of it to be given more detail at each 

level. The CASE tool ensures that changes made at the more detailed levels of one 

sub-section are fed back up to the top levels and cascaded down into other sub­

sections that may affected by the change. In Appendix A all the design diagrams are 

listed in descending level order, in the CASE tool they would pop up when the higher 

level object is clicked upon. The text details have been collated and listed after the 

diagrams in a similar order. 

The data flow diagram, see Appendix A, of the program converts the theory of section 

4.2.1 into a segmented logical structure. The segments are arranged such that the data 

flowing between them will produce the desired result, in this case the mode 

coefficients. This also allows the data requirements of the program to be analysed. 

The data that is required for each operation in the segmented theory can be easily 

identified. This allows all the variable declarations of the program to be made and to 

ensure the all the input data is available. The data inputs to the program are also given 

in the text description section of the data flow diagram. 

The basic structure of the program is to initially assemble all the required information 

with which to operate. This is via data files containing constants and the zeros of the 

Bessel functions for the calculation of the solid waveguide propagation constants. A 

file formatted from the output of the altered Loukos program containing all the 

information on the FSG propagation constants and the values A & B of the relative 

strength of the TE and TM mode components. Also, a control file containing all other 

required parameters and the information needed to ensure the program will execute as 

desired. 
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The next stage is to calculate the values of the integrals for each mode combination 

using the expressions calculated previously. Summing the integrated values of the 

relevant "across junction" modes and dividing by the lower "normalisation" integral 

value then forms the elements of the Rand S matrix. These matrices are multiplied 

together, the unit matrix is added and the resulting matrix is inverted. The values of 

the coefficients can then be found after some further simple matrix manipulation. 

The structure chart of the program was then developed from the data flow diagram, 

with a few elements evolving from the stepped discontinuity in the solid wave guide 

design. The structure chart breaks the data flow diagram down further and is a 

graphical representation of the program structure. It shows where decision points and 

loops are required and a word description of the exact operation of each small section 

of code. The structure chart is included in Appendix A after the data flow diagram. 

Again the structure chart, like the data flow diagram, is hierarchical. The top most 

level breaks the program into its basic functions. Then each successive level adds 

more detail to each item until the program is almost written in a type of pseudo 

computer language. However this is far easier to write with no attention paid to the 

syntax, because it is not the actual computer language, the focus can be placed on 

getting the functionality correct. As with the data flow diagram the CASE tool allows 

each level of chart to be accessed by clicking on the object. All the charts have been 

placed in Appendix A in descending order and all the text information has been 

collated after the diagrams. 

4.4 Program Testing & Results. 

The testing strategy was designed to ensure that the program worked at all stages and 

to build confidence in the results that it produced. Once the program was written the 

theory was rechecked for accuracy in the equations used and their manipulation. The 

conversion of the theory into the data flow diagram and then into the structure chart 

was desk checked and "walked through" to ensure that it produced the desired 

information correctly. The program was then cross-checked with the structure chart to 

ensure that the code matched the design. 
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The structure chart was studied to identify the crucial areas ofthe program. These 

consisted not only of the expressions and the values that they produced, but also key 

decision points, i.e. points that governed the number of time the program went around 

a summation loop, or whether it had identified the correct solid waveguide mode. A 

set of limited test data was then drawn up that would test these crucial areas. If the test 

data ran through all the decision points and gave the correct answers then the 

probability that the program was working correctly was very high. The test data was 

not limited in the variety of values and mode types used, but just in the number of 

modes and Floquet modes executed. The reason for this being that, for each mode in 

the test data, all the results had to be calculated manually, with the aid of a 

mathematical calculation program called MathCad. The manual calculations being 

taken directly from the theory and not from the program. Ifthe program and manual 

results matched, this ensured that the program was working correctly. The manual 

calculations also provided all the interim answers at each stage of the calculation 

process, which could be compared against the program step by step to pin point where 

any incorrect value might have been generated. 

The number of Floquet modes was limited to just the fundamental for each of the FSG 

modes, purely because of the length of time taken to carry out the manual 

calculations. To ensure that the Floquet mode processing was tested, a separate set of 

data was developed. This consisted of one mode in the FSG, but with +/- five Floquet 

modes in both the p and q Floquet indices. Five modes were present in the solid 

waveguide, each one with a different mode order value, in order to test the "across 

junction" integral equations where Impl=n. 

Once the program results for the test cases have been thoroughly checked against the 

manual calculations then the next stage of testing is to identify the number of leaky 

modes required to get a good approximation to the radiation field. This can only be 

done experimentally by comparing the results that have only one leaky mode with the 

measured data presented in chapter 3. If the measured and simulated data are wildly 

different then more leaky modes must be added until good agreement is achieved. 

However at the same time notice must be taken of whether the relative convergence 

phenomenon is at work for the FSG to solid waveguide mode matching model. For 
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each trial of leaky modes it is prudent to change the number of Floquet and Bloch 

modes in the FSG and the number of modes in the solid wave guide. This is potentially 

a huge amount of testing that would take some time. The extent of the relative 

convergence phenomenon testing that is required cannot be ascertained until testing 

starts. For solid waveguides Masterman used a maximum of thirty six modes, 

although he found that rapid convergence could be achieved with six modes if the 

correct ratios were chosen. 

The first set of test data chosen for each structure consisted of the first four FSG and 

solid waveguide modes. The value of ko was set to 320.661, 1 5.3GHz, which was the 

resonant frequency of the FSG. The FSG was the same 6 element one used in chapter 

2 and designated FSG 1 in chapter 3. The FSG dimensions were: ro=7.85mm, 

periodicity D~, Dz = 8.22mm, conductor length L~, Lz = 6.85mm, conductor width W 

=0.9786mm and FSG length = 28.lcm. The solid waveguide had dimensions 

comparable to a section of CI40 solid circular waveguide and had ro'= 7,66mm, In 

fact the structure under test is identical to that tested in chapter 3. The first four solid 

waveguide modes had phase constants of k,'= 244.19 (TEll); 508,18 (TMIl); 707.09 

(TEl2); 930.45 (TM12) radians/m. The four FSG modes had propagation constants of 

k,o= 216, 0.7645 (resonant fundamental leaky); 319.2, 11.85 (first leaky mode); 382.2, 

106.3 (surface mode in stop band); 0, 379.9 (evanescent mode), The number of 

Floquet modes was forced to just the fundamental value for this test p=q=O. The input 

mode was the resonant fundamental leaky mode and had a unit amplitude of I. 

The values of the coefficient amplitudes for the reflected FSG modes were:- (0.9968, 

-L357·e·\ (-3.65·e·4, -5.976·e-5
), (-3.445 e·3

, 4,505·e·3) & (-1.4628, 0.1106) in order 

of the listing in a previous paragraph. 

The values of the coefficient amplitudes for the transmitted solid wave guide modes 

were:- (-2.522, -22.592), (-1.96·e·3
, -2.4·e·\ (1.867, -0.362) & (2,711·e·4

, 2.352·e·5
) in 

order of listing in previous paragraph. 

These coefficients were placed into the normalisation equations for each mode to give 

the mode power for the proper modes and an approximate value for the improper 
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modes. This is expressed as a percentage of the approximate power in the incident 

mode. 

Reflected percentage power for the FSG modes were:- 99.36%, 5.011·e·s%, 

1.682·e·4% & 1.662·e·4% in order of listing coefficient amplitudes. 

Transmitted percentage power for the solid waveguide modes were :- 1.096·e·3%, 

1.74·e·II %, 1.127·e·s%, 3.36·e·14% in order of listing coefficient amplitudes. 

The manually calculated values matched those produced by the simulation program. 

However the values calculated are clearly incorrect. They predict that virtually all the 

power is reflected back from the junction. The measurements in chapter 3 show that at 

resonance the power transmitted through the FSG was a maximum. As only one 

junction is being simulated and because no dielectric is present it would be expected 

more than 50% of the incident power would be transmitted through the junction into 

the solid waveguide. 

All the matrix manipulation operations were checked for agreement between the 

simulation program and the manual values. When these were found to match exactly, 

all the field equations and the values placed in the Rand S matrices were examined all 

agreed with the same accuracy. There appeared to be no error in the calculation of the 

values in the computer program compared to the values calculated manually. With 

programming error eliminated as the cause of the incorrect amplitude values another 

error must be found. The integral equation derivations were checked and re-checked 

and no error was found. The accuracy of the data obtained from the infinite FSG 

program used in chapter 2 was re-checked and this too was found to be accurate. 

The manually calculated values were then inspected closely and the mechanism by 

which the amplitude error was generated in the amplitude coefficients was found. It 

lies in the normalisation of the FSG mode by the factor given in Equation 4-57, 

Equation 4-58 & Equation 4-59. The normalisation, by Equation 4-58 or Equation 

4-59 of the fields external to the FSG radius, give answers similar to those of the solid 

waveguide normalisation. However Equation 4-57, which calculates the normalisation 
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value for the fields of the FSG modes inside the element radius gives believable 

answers for the surface mode and evanescent mode, but for the leaky modes the 

calculated value is 105 times larger than for the solid waveguide. The relative size of 

these modes is critical, as is seen in this case when the elements of the Rand S 

matrices are populated. The R matrix ends up being populated with many values 

almost equal to I, as was seen in the earlier solid wave guide step simulations. The S 

matrix though was populated by very small values some as small as 10-10
. The SR 

matrix is consequently full of small values and this is swamped by the unit matrix and 

leads to the poor amplitude coefficients. 

The fact that normalisation seems to work for the surface mode and evanescent mode 

suggests that it is in itself not at fault. The only inputs that have not been 

independently checked are the values that govern the relative amplitudes of the TE 

and TM modes in the hybrid FSG modes. This data is generated be another program 

written by Loukos [27] that calculates field plots. The program and data produced by 

it has not been authenticated. It is not certain that this data is the cause of the problem. 

It could be an error in the normalisation of the leaky mode fields. The error got worse 

when more Floquet modes were added so it cannot be due to a lack of mode 

information. After many months this mode matching investigation was brought to a 

close in favour of obtaining the data using another method as detailed in chapter 5. 
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5. Transition Analysis by Finite Element Method 

With the transition analysis failing to produce results of any accuracy, see Chapter 4, 

an alternative method of modeling the FSG to solid wave guide transition was 

required. Mode matching was chosen primarily as it was the only method which could 

give the amplitudes of the modes in each guide structure. None of the other methods 

could provide this and in this respect there was little to chose between many of the 

other numerical routines. Another concern, at the time that the decision was taken to 

use mode matching, was that of computer memory requirements. Many of the 

methods needed far more computer memory than mode matching, although advances 

in computer hardware were starting to reduce these concerns. By the time that an 

alternative method was required the availability of computer memory was sufficiently 

high to enable most numerical methods to simulate very complex structures. The 

computer that the junctions eventually simulated on, was a Hewlet Packard J5000 

workstation with four gigabytes of RAM. This represented at least a ten fold increase 

in the amount of computer memory available over the lifetime of the project. 

The opportunity to use a computer with a large amount of RAM was given to the 

author by BAE SYSTEMS, Cowes, Isle of Wight. It was the use of this machine that 

drove the choice of the Finite Element method as the numerical method to simulate 

the FSG to solid wave guide junction. This was because BAE SYSTEMS have a 

commercial finite element program installed on this machine. The finite element 

simulator was Ansoft's High Frequency Structure Simulator (HFSS) v6/v7. The 

combination of a fast machine with a large amount of memory and an established 

simulation tool whose, accuracy was well known, was a powerful package. The 

availability and easy of use of this combination, along with the fact that there was 

only short time remaining to carry out the simulated investigation into the FSG 

junctions, meant that the J 5000 and HFSS were the obvious combination to carry out 

the work. 
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5.1 Fundamentals of Finite Element method 

The Finite Element method is a numerical technique that can be used iteratively to 

solve an electromagnetic boundary problem. As described in the literature review of 

chapter 4, it works by splitting a structure into a large mesh of points and 

approximating the fields at the mesh nodes that obey the boundary conditions of the 

structure. By an iterative successive approximation technique the field approximations 

can be refined, until a reasonably accurate set of field values is obtained. 

The HFSS implementation of this technique is described in the HFSS help manual [1]. 

In summary, any three dimensional structure can be entered as the model to be 

simulated by using the integral drawing package. This drawing is then made into the 

model required model by defining the materials and the boundaries from which it is 

made. Once the model is submitted for simulation HFSS must create an initial mesh 

of points. Unlike many other packages HFSS can calculate the initial mesh itself with 

no user input required, although it is possible to do this meshing manually if required. 

The mesh that is built is made up of many tetrahedrons, all adjacent points in the 

mesh are joined by triangles, and this is the most efficient mesh for solving the field 

values. Very long and thin tetrahedra give poor field accuracy and to avoid producing 

these HFSS uses the Delaunay Tessellation procedure. This maximises the sum of the 

minimum angles in the tetrahedra to virtually eliminate long thin ones. It also 

automatically adds extra tetrahedra around the boundaries of different objects in the 

model and ensures that the distance between the vertices of the tetrahedra is less than 

a tenth of a wavelength. 

The field is calculated at the tetrahedron vertices and the mid points of each edge 

giving 10 calculation points. The field is approximated with a second order quadratic 

polynomial:-

Equation 5-1 
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At each of these points the approximation is refined with a variational method. 

However, instead of using Poisson's equation, Equation 5-2, for this, it is replaced by 

the energy function Equation 5-3, which is minimised to give a better value of Az. 

V2A =-,uJ 

Equation 5-2 

Equation 5-3 

Over all the triangles on the faces, a sparse matrix equation can be formed [sIAj=[Jj. 

This matrix equation is solved by either the sparse gaussian elimination method or the 

pre-conditioned conjugate gradient method. 

The accuracy of the overall solution produced is dependent on the mesh. If the mesh 

is not fine enough then significant characteristics of the field in a particular part of the 

model may be missed. Conversely if the mesh is too fine then the simulation will use 

large amounts of memory and take a long time to execute for little improvement in the 

accuracy of the result. To overcome the problem of getting the mesh size optimised 

HFSS will solve the field solution for the initial mesh as described above, but then it 

will put the solution of Az back into Poisson's equation to find error function in each 

tetrahedron. The mesh is refined, or adapted, using a proprietary refinement algorithm 

that identifies each tetrahedron that has too large an error function and makes that 

tetrahedron and those around it smaller. The program can calculate the S parameters 

for the model, based on the areas defined as the ports of the structure, at each level of 

mesh adaptation. The S parameters for the current mesh and the previous mesh are 

then compared and the re-meshing will continue until the S parameters have 

converged to a user defined level. 

The field solving and mesh adaptation can only take place at a single frequency. This 

is a major draw back of the finite element method. Traditionally, if multiple 

frequencies were required, the model would have to be solved at each individual 

frequency unlike the FDTD method, where a pulse response is found and using 
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Fourier transforms the frequency response of the structure calculated. However 

Ansoft have developed a couple of frequency sweep options, fast and discrete, to 

reduce the amount of time needed to calculate a frequency response. They both 

require the adaptive solution to be found for a single frequency, as a rule of thumb 

this should be three quarters of the highest frequency in the band. The fast sweep 

relies on an algorithm to extend the single frequency solution over a range of 

frequencies, while the discrete sweep uses the single frequency mesh to solve the 

fields at each specified frequency in the sweep range. Both methods are band limited 

and the discrete method is more accurate although it has a far longer execution time 

compared the fast sweep. 

Finite elements with their tetrahedra are far better than the FDTD method for 

modelling curved surfaces. As the FDTD method uses a mesh made of "sugar cubes" 

any curve can only be approximated by a 'staircase' quantisation of the curve. This 

staircase can have a large affect on the results produced by the FDTD simulation if 

the quantisation steps are not small enough. However HFSS with its tetrahedra can 

approximate curved structures far better. A curve in HFSS is split into a number of 

points and chords are drawn between each point, as can be seen in the figures in 

Section 5.2. The circles are all polygons with 20 to 24 sides. The FSG elements are 

each made of 8 segments across the curve. The close approximation of the many 

curved surfaces of the FSG to solid waveguide model makes the HFSS finite element 

package a memory efficient way for it to be simulated. The staircase method would 

have required a finer mesh and more memory. 

5.1.1 Presentation of Results Produced by HFSS. 

HFSS produces a large amount of information from the converged solution that can 

be presented in different forms. As stated previously HFSS can calculate the S 

parameters of the structure if the input or output ports are declared. In the model 

developed for the solid waveguide to FSG junction the port can only be defined in the 

solid wave guide. This is because the port must be able to resolve the mode that would 

exist in the port cross section. The port solving algorithm in HFSS is unable to resolve 

the hybrid mode that would exist in the FSG and so only one port can be placed in the 
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single junction case. A model with only a single port can by definition only have one 

S parameter the S 11 value. If a second waveguide is added to the other end of the FSG 

then a port can be defined at the end of that wave guide as well so that a two port 

model is created. A two port structure will have not only an SII value but also S2!. SI2 

& S22 values. There is no limit to the number of ports that can be added to a model, 

but it is dependent on the layout and requirements of the structure being simulated. 

For each port it is also possible to calculate the characteristic impedance and 

propagation constant of the mode that the port supports. 

In addition to the port data, field data may also be displayed. It is possible to plot E 

and H field magnitude contours, phase contours or both combined in vector form and 

Poynting vectors on any cut-plane through the model. The phase of the feed or the 

position of the cut-plane can be varied to produce a movie like animation that can be 

replayed at different speeds. This facility is very useful for studying the field 

distribution and the power flow at various points in the model. The animations allow 

large amount of data to be presented easily so that propagation details can be easily 

seen. These can easily be missed on standard static plots. As well as cut-planes, 

volume plots of the field magnitude can also be made and animated. These have the 

appearance of a 'snowstorm' type plot. The plotted dots are colour coded with the 

colour giving the field magnitude. A dot is only printed at a point in space where the 

field crosses a colour threshold. This plot is very useful as it too can be animated and 

can be rotated on the screen to given a three dimensional view of the fields from any 

viewing angle. 

If a structure is an open one, a special type of boundary is required to enable the 

problem to be solved. Obviously the fields extend for a considerable distance from the 

structure, which would require a large number of tetrahedra in order to simulate 

unbounded free space. This obviously would not be solvable, so a special absorbing 

'radiation' boundary condition is placed around the open structure to be simulated. 

This radiation boundary has the special property that it will absorb the propagating 

fields as if they did exist out to infinity. There are two possible implementations of the 

radiation boundary, the ABC and the Perfectly Matched Layer (PML). The ABC 

boundary is a surface on the outside of the model that absorbs virtually all power 

incident upon it from a near normal direction. However it is very poor at absorbing 
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power from waves incident upon it at any angle away from the normal. In this case a 

PML must be used. This is a layer of lossy anisotropic dielectric such that it absorbs 

most field incident upon it from any angle. It is not as efficient an absorber as the 

ABC boundary near normal incidence, but is better at all other angles of incidence. 

If an open structure has a radiation boundary then HFSS is able to take the fields that 

are incident upon it and extrapolate them to give field patterns outside the confines of 

the model. Both far field and near field, patterns are possible. These radiation patterns 

can display field polarisation information in all the principal conventions and the gain 

and directivity of the radiating structure. It will be possible to compare the predicted S 

parameters and radiation patterns with those that have been measured to ascertain the 

validity of this model. 

5.2 Development of Transition Model 

Although the J5000 had plenty of memory it was initially unclear as to how much of 

the transition structure it would be possible to model in HFSS. With no analytical 

method capable of estimating the size of the model which could be simulated, trial 

and improvement was the only way to find out what size of junction could be 

modelled. 

To this end a whole series of models were drawn using the HFSS drawing package to 

represent the FSG junction; each one with increasing complexity. The increases in the 

complexity were carefully incremented with steps such that any change in the results 

could be directly attributed to a particular cause. For most of the simulations the 

Mylar dielectric layer, that supported the elements of the FSGs that were measured in 

Chapter3, was omitted. This was done because, although it was recognised that its 

presence would alter the propagation properties of the FSG by dialectically loading 

the elements, the very thin layer would require a very large number of tetrahedra to 

mesh it, increasing the memory requirements of the model. Therefore, to ensure that 

the largest FSG structures could be simulated in the shortest possible time, the 

dielectric layer was generally omitted. The dielectric was included for one of the 

smaller models to see if its affect on the model was the same as that seen in the 
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measurements. When this was done the number of tetrabedra increased significantly 

along with the simulation time. 

The first model simulated was the least complex, which was the three element whole 

ring FSG. It consisted of a section of solid metal waveguide feeding the first three 

rings of elements from a FSG, see Figure 5-1. This consisted of a IOmm long section 

of solid circular waveguide, 7.65mm in diameter, that intersected a conducting plane 

which also had a 7.65mm diameter hole cut in it coincidental with the waveguide 

aperture. The FSG dimensions that were modelled were those of FSG 1 from Chapter 

3. The radius of the imaginary cylinder on which the conducting elements were placed 

was 7.85mm. The square elements had a side length of Lz.F6.6mm, periodicity 

D~F8.22mm and loop width W=O.95mm. The first ring of elements were place a 

distance of half the gap between elements Lz- D/2=O.81mm from the conducting 

plane. The FSG consisted of only three rings of elements in the z direction making the 

total length ofthe waveguide and FSG was 33.85mm. The radiation boundary was a 

cylinder 29.35mm long width a radius of 18mm and was of the ABC type. This type 

of boundary is very effective at absorbing fields that fall upon it with near normal 

incident, hence the cylindrical shape of the boundary so that most fields from the FSG 

are propagating in a near normal direction to the boundary. This meant that the 

radiation boundary was 10. 15mm radially from the FSG elements and 5.5mm from 

the last ring of elements along the axis. This ran successfully using 25649 

tetrabedrons, O.87Giga Bytes (Gbytes) of RAM and 0.46Gbytes of disc space, 

converging to ~S=O.OI6 at 14.8 GHz. Where the ~S value is the aggregate change in 

the scattering matrix for the model from one HFSS adaptive pass to the next, and is 

the user defined convergence criteria. 
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Figure 5-1 The Three Element Whole Ring Model - a junction of a solid wave guide 

to an FSG. 

The size of the model simulated above was then increased to four rings of FSG 

elements. As this also ran successfully the number of rings was increased further to 

six, see Figure 5-2. This six element whole ring model was the same as the three 

element whole ring model except that the total overall waveguide and FSG length was 

considerably longer at 58.Slmm, an increase of 70%. An FSG of six elements in the z 

direction is approximately three wavelengths long at the resonant frequency. This is a 

highly desirable number as the theory of planer phased arrays requires the radius of an 

array of radiating elements to be at least three wavelengths before the coupling affects 

of the edge elements on the centre element can be considered negligible. So for an 

FSG longer than three wavelengths in length, the coupling effects of the elements 

beyond the sixth element from the junction would also be negligible. Thus the 

simulation of the junction of the six element whole ring FSG to the solid wave guide 

has, with respect to the aperture, taken into account the majority of the coupling affect 

that would be present had the FSG been longer. 
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The orientation of the polarisation vector of the TEll field in the solid waveguide feed 

could be altered. It was decided to see if the FSG was sensitive to orientation of the of 

the polarisation vector in relation to the elements on the FSG surface. Two 

orientations were chosen; the first with the polarisation vector passing through the 

centre of an element and the second with the vector passing through the mid point of 

the gap between two adjacent elements. These two orientations have an angular 

separation of 30°, exactly half the angular periodicity of the FSG. This is the 

maximum possible separation for the two polarisations and if the FSG is sensitive to 

polarisation it should be apparent in these two simulations. The radiation boundary 

was a cylinder 54.01 mm long width a radius of l8mm and was of the ABC type. This 

meant that the radiation boundary was 10.15mm radially from the FSG elements and 

5.5mm from the last ring of elements along the axis. This ran successfully for both 

polarisation orientations, the polarisation passing through the mid point of the gap 

between two adjacent elements used 53639 tetrahedrons, 1.4Gbytes of RAM and 

1.4Gbytes of disc space, converging to ~S=0.018 at 15.35 GHz. For each polarisation, 

the model was solved over the frequency range 13.9GHz to 16.5GHz. This model 

was deemed to be the largest that could be simulated with the memory available on 

the J5000 machine, as an attempt to simulate 7 rings of elements failed with an out of 

memory error. 

Having found that the six element whole ring was the largest model that could be 

simulated, a way of assessing the transition with the Mylar support sheet in position 

was required. The addition of the dielectric should make the simulated results more 

like those of the measured structure. However if the dielectric were added to the six 

ring model, which was already at its maximum simulation size, it would not be 

possible to get the simulation to converge before it ran out of memory. The number of 

rings could have been reduced back to three or four and the dielectric added. However 

this would remove some the coupling effects from elements further down the FSG 

and would affect the calculated aperture fields. 
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Figure 5-2 The Six Element Whole Ring Model- a junction of a solid waveguide to 

an FSG. 

A solution was found in the form of an artificial boundary that could be placed in the 

model along a plane of symmetry. HFSS has a set of boundary conditions, which can 

be placed along a plane of either E or H plane symmetry, resulting in only half the 

actual model needing to be simulated. Using a symmetry boundary the model 

remained at six elements along the z axis, but with only half a ring of elements, three 

instead of six. It will be referred to as the "six element half ring" model. A 

symmetrical boundary was placed such that it cut through the circumference of the 

FSG halfway between two elements on both the top and bottom of the guide and 

contained the z axis. This reduction in the amount of memory required to simulate the 

junction should allow the dielectric to be added to the model. 

Before the dielectric was added the symmetrical six element half ring model was 

simulated to ensure that there was sufficient agreement between it and the full six ring 
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model. Both types of symmetry plane were investigated and required a different 

polarisation of the input field for each one. The H symmetry plane required the 

polarisation vector of the TEll field to be in the plane of the symmetry plane and 

perpendicular to the z axis. The E symmetry plane required the polarisation vector of 

the TEll field to be perpendicular to the symmetry plane and perpendicular to the z 

axis. This also gave two models that mirrored the six element whole ring model with a 

polarisation vector passing through the centre of an element and gap between adjacent 

elements. The model was identical to that of the full six element whole ring model, 

see Figure 5-2, but simply divided into two halves, one of which was then removed to 

leave half of the model, as can be seen in Figure 5-3. This ran successfully using 

39628 tetrahedrons, O.94Gbytes of RAM and 1.55Gbytes of disc space, converging to 

L1S=O.OI7 at 14.8GHz. For each polarisation and boundary condition the model was 

solved over the frequency range of 13.7GHz to 16Ghz. 

~~:-___ -'-:Top Surface 
- ofABC FSG Elements 

Symmetry an 

Conducting plane Solid wave guide 

Figure 5-3 The Six Element Half Ring Model- a symmetrical model of junction of a 

solid wave guide to an FSG. 
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Figure 5-4 The Six Element Half Ring Dielectric Model- a symmetric solid 

waveguide to FSG junction with Mylar sheet and expanded polystyrene plug. 

Solid 

The mylar dielectric sheet 0.04mm thick was then added to produce the six element 

half ring dielectric model. The Mylar sheet was positioned so that its outer surface 

was in contact with all the conducting elements on the FSG surface. At one end the 

mylar sheet was in contact with the infinite conducting plane and was concentric 

around the aperture. This was the same positioning of the dielectric as employed in 

the test setup for the measurements taken in Chapter 3. At the other end the mylar 

sheet ended flush with the end of the last half ring of elements. To further make the 

model reflect the Chapter 3 measurement setup, an expended polystyrene mating plug 

was added at the junction. As polystyrene has an effective dielectric constant £,.=1.03 

it was expected that this would have little affect on the simulated results. The plug 

was stepped in the middle having two radii, one 7.65mm completely filling the 

waveguide and the other 7.77mm in the FSG, completely filling the inner dimension 

of the Mylar tube. The waveguide section of the plug was 10mm long and the FSG 

164 



section of the plug was 32mm ending nearly flush with the end of the 4th element 

along the length of the FSG. The whole structure can be seen in Figure 5-4 & Figure 

5-5 at two different orientations, and clearly shows the O.03mm thick dielectric sheet 

of mylar and the expanded polystyrene plug. 

The six element half ring dielectric model ran successfully using 73580 tetrahedrons, 

l.92Gbytes of RAM and 1.85Gbytes of disc space, converging to L'l.S=0.041 at 

14.9GHz. The dielectrically loaded FSG model was simulated over the frequency 

range of 13.7GHz to 16GHz. 

Surface of 

Solid 

plane 

Dielectric Plug 

/~--- S:ymlnetry Plane 

Figure 5-5 The Six Element Half Ring Dielectric Model- a symmetric solid 

waveguide to FSG junction with Mylar sheet and expanded polystyrene plug. 

As with the measurements taken in chapter 3, the effect of just the Mylar sheet 

without the FSG elements and the expanded polystyrene plug on the waveguide 

junction was assessed. This was achieved by simply deleting all the FSG square loop 
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elements from the model in Figure 5-4 and keeping all the remaining dimensions 

unaltered. The resulting half cylinder dielectric model that was simulated is shown in 

Figure 5-6. This ran successfully using 29328 tetrahedrons, O.5Gbytes of RAM and 

O.65Gbytes of disc space, converging to ~S=O.004 at 14.6GHz. This gave a baseline 

prediction of the operation of the waveguide junction without the FSG elements, 

which graphically illustrates their effect on the junction propagation characteristics. 

The band of frequencies over which this model was swept was limited to 14.3GHz to 

15.3GHz because it was simulated to confirm that the dielectric had no effect itself on 

the S 11 results. 

End Faces of Solid 

Figure 5-6 The Half Cylinder Dielectric Model - a junction between a solid circular 

waveguide and a tube of Mylar sheet. 

The FSG measurements of Chapter 3 were all taken with the length of FSG under test 

suspended between two solid wave guides. As discussed in Chapter 3 the measured 

structure was a cascade of a solid waveguide to FSG junction, followed by a length of 

lossy structure with another FSG to solid waveguide junction at the end. It would be 
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desirable if the HFSS model could be made to mirror the measurement setup of 

Chapter 3 more closely. In the single feed wave guide structures described above, the 

structure under test consisted of a solid wave guide to FSG junction and a very short 

length of FSG followed by a transition into free space. The differences from the 

measured FSGs were the very short length of FSG and the free space transition. The 

use of the symmetry boundary to reduce the model size, so that the dielectric could be 

added, could also be used to make the FSG model longer. The longer the FSG was, 

with a second solid circular waveguide at the far end, the more like the measured 

FSG's the HFSS model would look. 

Figure 5-7 The Twelve Element Half Ring Model - an FSG twelve elements long 

with a junction to solid circular waveguide at each end. 

In fact the six element half ring model was used as a starting point to redraw the 

HFSS model so that it would have a solid waveguide at each end of the FSG. The 

existing model was copied and mirrored in the plane z=59.32 (assuming that z=O is 

the plane of the input port of the first solid waveguide. This produced a FSG with 12 
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elements 9S.64mm long with lOmm of solid circular wave guide at each end, the 

"twelve element half ring" model. Both the junctions between the solid waveguides 

and the FSG were through apertures in conducting planes at z=lO and z=10S.64mm 

with the port of the second solid waveguide in the plane z=IIS.64mm. The structure 

of the FSG with twelve half rings of elements in the axial direction and solid 

waveguides at each end can be seen in Figure 5-7. This ran successfully using 57562 

tetrahedrons, 1.45Gbytes of RAM and 1.98Gbytes of disc space, converging to 

tl.S=0.0046 at 14.SGHz. The frequency sweep of this simulation was carried out over 

the largest frequency range of all the models, from 13.3GHz to 17.3GHz. It was not 

possible to extend this range either up or down in frequency, as outside this range the 

simulation would not converge sufficiently before the computer platform exceeded its 

memory limit. 

To ascertain the longest possible FSG that could be modelled in HFSS on the J5000 

with the feeds at each end, the number of elements in the axial direction was 

increased. It was found that the maximum number of elements that could be placed in 

half rings along the axial direction, before an out of memory termination of the 

simulation occurred, was sixteen. The dimensions of the model were as for the model 

in Figure 5-7, but with sixteen elements the length of the FSG was now 131.52mm. 

This ran successfully using 94271 tetrahedrons, 2Gbytes of RAM and 2Gbytes of disc 

space, converging to tl.S=O.012 at I5.4GHz. The maximum range of simulated 

frequencies for this model, with good convergence, was 13.9GHz to I6.9GHz. 

5.3 Results ofHFSS Simulation of an FSG Six Whole Rings in Length with a Single 

Feed Port. 

To validate the results of the simulations produced by HFSS, physical measurements 

of the simulated structure were required. The measurements taken in section 3 were 

for FSG' s that were very much longer than could be simulated and had a solid 

wave guide feed at each end of the FSG. It was decided to measure a short length of 

FSG consisting of six rings of elements long and with only a single C 140 solid 

wave guide feed, as modelled by HFSS. The omission of the second solid wave guide 

meant that all the energy not reflected back down the feed wave guide would radiate 
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into free space, either in the form of a leaky mode from the waveguide walls or else 

from the aperture at the end of the FSG in 'endfire' mode. The transition into free 

space, as with the measurements with a second solid waveguide, will affect the 

measured values of SII.1t is inevitable that some energy will reflect from the free 

space transition and propagate back through the feed junction. Again the S 11 measured 

and simulated is not that of the junction alone, but that of the entire system. 

The short stub of FSG was attached to the end of the solid waveguide with a small 

plug made from expanded polystyrene. The plug was about 60mm in length, with half 

of it in the FSG and the other half in the solid wave guide. The diameter of the plug 

was stepped at the mid point, so that it completely filled the solid wave guide and the 

FSG. A length of WG 18 rectangular waveguide fed the solid circular waveguide, via 

a rectangular to circular waveguide transition. The rectangular waveguide was in turn 

fed from the HP841 OB vector network analyser by a length of coax cable and a 

standard probe feed. The equipment setup used to take the measurements is shown in 

Figure 5-8. The feed network to the end of the circular waveguide was calibrated out 

of the measurements using a standard technique with a set of short, open and matched 

terminations. The FSG was then added to the end of the feed network and the S 11 

measurement was taken over the frequency range 13GHz to 17GHz, the results are 

shown in Figure 5-9. 
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Figure 5-8 Equipment set-up to measure the S 11 of a short length of FSG radiating 

into free space. 
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5.3.1 SIl Results for the Six Element Whole Ring FSG Model Measured and 

Simulated. 

The results of the models with one solid wave guide feed can now be compared with a 

set of measured values for a structure comparable to that which was simulated. They 

are plotted together in Figure 5-9. 
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Figure 5-9 Comparison plot of measured & simulated Is 11 I of an FSG, 6 elements 

long. 

The comparative difference between the two plots of the six element whole ring FSG 

simulation with the polarisation vector either at the centre of an element or between 

two adjacent elements is very small. There is only a significant difference between 

them above 15.6GHz and below 14.5GHz. The plots are a composite of two sets of 

frequency swept data from HFSS. As mentioned in section 5.1, HFSS can only 

produce the very accurate adaptive solution at a single frequency. Using an algorithm 

the adaptive solution can be swept over a range to approximate the S 11 for a band of 

frequencies. The error in the approximation increases with the distance from the 
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adaptive frequency. The adaptive frequencies for the six element whole ring plots, for 

both cases, were I4.7GHz and I5.35GHz. This would explain the high degree of 

agreement between the two polarisations between 14.5GHz and 15.6GHz and why 

beyond this band the difference between them slowly increases. This implies that the 

orientation of the polarisation vector of the field in the input waveguide is not 

significant to the operation of the FSG. 

There is a noticeable difference between the plots of the six element half ring FSG 

model with different symmetry boundaries, although theory says that there should be 

no difference between the different symmetry boundaries and the whole ring model. 

The range over which the agreement between the E plane symmetry and the H plane 

symmetry is closest is only from 14.85GHz to I5GHz. If the tolerance on agreement 

is extended to be within 2dB of each other then the range is I4.6GHz to I5.3GHz. 

The adaptive frequency of these simulations was 14.8GHz. The result ofthe six 

element whole ring model that shows that the polarisation vector orientation has no 

affect means that the polarisation different can also be eliminated as a possible cause 

for the difference between the two six element half ring models. This implies that any 

significant difference between the implementations is probably due to the numerical 

inaccuracies in the way HFSS processes the fields in the gap between the closest 

elements of the FSG and these two different boundary conditions. Of the two six 

element half ring models the performance of the model that uses the H symmetry 

boundary is the closest match to the results for the six element full ring models. All 

further models that used symmetry boundaries were developed using H plane 

symmetry boundaries, although it must be noted that there is some discrepancy 

between the results. 

The comparison of the measured S II for the short length of FSG six elements long to 

the simulated Sll for the four models with no dielectric show plots of similar shape, 

but with a variation in the Sll magnitude. There is also evident a noticeable shift in 

frequency, the plots of the models with no dielectric being shifted up in frequency by 

about 250 to 300 MHz, depending on the model examined. The measurement work 

undertaken in chapter 3 suggests that the thickness of the dielectric has a loading 

effect on the dielectric. The thicker the dielectric the larger the loading effect and the 

lower the resonant frequency. The addition of the Mylar sheet and the polystyrene 
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plug to the six element half ring H symmetry plane model gave rise to a 400MHz 

downward shift in the frequency response. This categorically proves that the dielectric 

does have a significant loading affect on the frequency of operation of the FSG. 

Some of the difference in the levels of the magnitude of the S 11 seen in the measured 

results and those from the simulation can be attributed to the fact that the simulation 

uses perfect conductors and loss-less dielectrics. The real FSG obviously has losses in 

the material from which it is constructed. As previously mentioned in chapter 3 it is 

impossible to ensure that the FSG that is measured is perfectly cylindrical and free 

from kinks in the surface of the Mylar and copper elements. This can account for 

other differences in the SII magnitudes and also why the modelled FSG with the 

dielectric has a resonance shifted down in frequency by lOOMHz compared with the 

measured S 11 response. Another contributor to this 100MHz shift must also be due to 

the fact that the model with the dielectric has a symmetry boundary. The difference 

between the whole element and half element models suggests that the effect of the 

symmetry boundary could account for up to half of the observed IOOMHz shift. 

The final line on the graph was that of the simulated S 11 for the solid waveguide 

junction with the mylar dielectric tube, without any conducting elements of the 

surface and the polystyrene plug. This simulation was carried out over a restricted 

frequency range to ensure that the dielectric tube was not acting as a guiding structure 

in its own right and that the results were similar to those given in chapter 3 when a 

similar structure was measured. The fact that the obtained results are very Iow at less 

than -20dB and a straight line, not following the trends of the simulations with 

elements, show that the dielectric on its own is not responsible for S parameter 

responses that were observed. The simulated S 11 response for the mylar tube was of 

the same order of magnitude as that of the measurement from chapter 3 and had the 

same trend with I Sill slo~ly decreasing with increasing frequency. 

5.3.2 HFSS Field Plots of the Six Element Whole Ring FSG Model at 14.7GHz. 

The field plots from the HFSS package reveal a large amount of information about the 

way in which the fields propagate in the FSG and the transition from the solid 
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waveguide. From Figure 5-9 it can be seen that in the six element whole ring model 

there is a minimum in the SII response at 14.7GHz, where it is well matched to the 

feed. It was decided to initially model the fields at this frequency as there would be 

little reflected energy observed travelling back down the structure, which may confuse 

the field plots somewhat. Field plots were then taken at other frequencies moving both 

up and down the spectrum, in particular looking at 15.35GHz the resonant frequency 

predicted by the Loukos program [2]. In every field plot in this section the input TEII 

field of the feeding solid waveguide is linearly polarised along the y axis such that E 

field vector with the largest magnitude passes through the mid point of the gap 

between two adjacent elements on the surface of the FSG. The model is orientated 

such that the z axis lies along the axis of the FSG and solid circular feed wave guide 

and consequently any cross section plane lies parallel to the x and y axis. The junction 

discontinuity between the FSG and the solid waveguide lies entirely in the xy plane 

wherez=O. 

The first field plot, I E I shown in Figure 5-10, is on a cut plane through the model 

along the z and y axis, the plane where x=O. The field points with the highest 

magnitude are shown in red and the weakest field strength in blue. The solid 

waveguide feed is shown on the left-hand side of the plot where no colour has been 

filled external to the waveguide walls. The FSG elements are just visible in yellow, 

with three being shown across the diameter of its cross section. The remainder of the 

cross section outside the FSG is free space out to the radiation boundary. The junction 

is clearly seen as the point where there is a discontinuity in the boundary dimensions; 

the step in the plotted colour map. 

The plot shows a small amount of field on the outside of the FSG elements with the 

majority of the field contained within the radius of the FSG. The almost rectangular 

shape of the area of high electric field strength is exactly as would be seen within a 

conventional solid waveguide p430 of [3]. The lines of dark blue colour between 

these high field areas are the field nulls for the mode within the FSG; the distance 

between the field nulls being the half FSG guide wavelength. This is one magnitude 

plot, where the input phase was zero degrees, from an animation where the input 

phase was varied from 00 to 1800
, that showed the field propagating from -z to +z 

173 



Figure 5-10 IEI for yz cut-plane through axis (x=O) at 14.7GHz and lIP phase=O° 

Figure 5-11 E Vector for yz cut-plane at x=6.8 at 14.7GHz and lIP phase=O° 

Figure 5-121EI for xz cut-plane through axis (y=0) at 14.7GHz and lIP phase=O° 
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Figure 5·13 E Vectors in xz cut·plane at y=3.9 at 14,7GHz and lIP phase=O° 

Figure 5-14 Current and E vector information for the 6 whole ring FSG model at 
14.7GHz & lIP phase=Oo:. 

(a) Current on the surface of 3 of the elements in the first 2 rings, the vector E 
field shown is in an xy cut-plane 8.2mm from the aperture, 

(b) The vector E field in an xy cut-plane 8,2mm from the aperture, 
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Figure 5-15 Four E vector cut-planes for the 6 whole ring FSG model at 14.7GHz 
& lIP phase=Oo:-

(a) The vector E field shown is in the xy aperture plane. 
(b) The vector E field in an xy cut-plane 1.2mm from the aperture. 
(c) The vector E field in an xy cut-plane 4.1mm from the aperture. 
(d) The vector E field in an xy cut-plane 7mm from the aperture. 
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along the inside of the solid waveguide and the FSG. As the fields move to the right 

the field strength in the FSG diminishes and the areas of high field strength move 

from the highly rectangular shape seen in the solid wave guide to a very much more 

elliptical shape. 

Up to and at the junction the fields are perfectly contained in the aperture in the 

conducting discontinuity plane and instantly spread out along the surface of the plane 

once out of the aperture. The intensity of the spreading field increases with some 

small distance down the FSG. However, this spreading ceases and is reversed at the 

point where the first element of the FSG starts. After this point along the length of the 

FSG the E fields do not appear to extend radially from the FSG with any great 

magnitude or for any considerable distance. At the end of the FSG, where the 

elements stop, considerable spread outwards of the E fields can be seen. This is 

exactly the pattern that would be expected from an open end of a solid waveguide 

radiating into free space. If it was possible to have placed the radiation boundary 

further away from the end of the FSG it is expected that radiated fields would clearly 

be observed propagating spherically outward from the end of the FSG. 

Figure 5-10 alone shows very clear evidence that the FSG contains the fields and 

guides them along the inside of the FSG although it is obviously a lossy structure. 

Further field plots are included to build of this basic position and give more detail of 

the propagation method and the operation of the junction. Figure 5-11 shows the cut­

plane parallel to that of Figure 5-10 but positioned at x=6.8mm. This cut plane passes 

through the gaps, betv.:een adjacent elements, both above and below the element that 

is uppermost when viewed in the yz plane. The type of plot has also changed to a 

vector plot, where the colour of the vector represents the field magnitude and the 

arrow gives the vector direction in three dimensions. Although the cut-plane gives the 

vectors on a two dimensional plane only, the field direction is not restricted to being 

in that plane. Therefore any vector that appears to be shortened has some component 

in the x direction and any vector that appears as a point or dot is entirely in the x 

direction. 

The vectors in the solid waveguide generally have their largest component along the y 

axis which is consistent with the expected fields of a TEll mode p430 in [3]. Inside 
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the FSG the majority of the vectors are also aligned along the x axis, which suggests 

that a mode similar to the TEll mode is propagating in the FSG. This matches the 

theory put forward in Loukos [2] is that the fundamental hybrid mode in the FSG is 

indeed composed mainly of a TEll component. An aspect of the HFSS plotting of 

vector fields is evident from Figure 5-11, when a vector has a very small magnitude 

the vector direction becomes difficult to plot. This manifests itself at the null points of 

the modal field. The vectors cease to line up and start to rotate through 180° in 

preparation for next half wavelength where the field vectors lie in the opposite 

direction. The areas within the FSG in Figure 5-11 where the vectors appear to lie 

parallel to the z axis match exactly the null points in the field magnitude in Figure 

5-10. These areas are where the vector orientations "flip" and are very good for 

visualising the position and shape of wave fronts in the HFSS plots. This can be seen 

very well outside the FSG where these regions of vector orientation flip extend 

outwards and then curve, increasing back towards the junction. 

This is the shape that would be expected if a wave front were radiating away from the 

wall of the FSG. As Figure 5-10 suggests that the FSG is 10ssy, due to the decrease in 

field strength along its length and the theory suggests that the propagation should be 

in the form of a leaky mode when radiation from the surface would be expected. The 

reason that this radiating E field is not seen in Figure 5-10 is that the radiation is week 

and the field magnitude is small, and is below the value at which the next colour 

contour is plotted. A good match between the position of the areas of highest field 

intensity is seen between Figure 5-10 and Figure 5-11 although the highest vector 

field strengths (shown in red) appear to be between adjacent longitudinal arms of the 

first, second, forth and sixth rings of elements. More will be explained about the 

significance of this later in this section, but for now it must be noted that the field 

maximums lie between the elements and not at the centre of the FSG. 

The cut plane for the magnitude plot shown in Figure 5-12 has been rotated through 

90° about the z axis from its position in Figure 5-10 so that it lies in the xz plane 

where y=O. The field in the feed wave guide is identical to that in Figure 5-10 and is 

as expected for a slice through the centre of a TEll mode. see p430 in [3]. The contours 
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of constant magnitude being fairly circular in shape with a circular area of maximum 

field halfway between two null points, the second null point is not shown on Figure 

5-12. In the FSG the field shape generally retains the same shape as that of the field in 

the solid waveguide. However, there are points where the field varies from the 

circular shape, where the field bulges out through the centre of an element. The 

amount that the field bulges out through the element centre seams to be linked to the 

proximity and size of a field maximum to the element centre. This is the most obvious 

sign so far that the containment induced by the FSG elements is far from perfect. Also 

visible is the same trend, as in Figure 5-10, that the field strength decreases as the 

field propagates down the FSG. 

At the junction the field confinement at the discontinuity is far better and although 

some field exists outside the FSG radius along the conducting plane, the magnitude is 

not as high and it does not extend as far as observed for the yz plane. However the 

fields that appear to propagate away from the side of the FSG do show up in light blue 

as the fields that propagate in this cut are of a higher strength than before. When the 

animation was run for changing phase the light blue field strengths exterior to the 

FSG propagated away from the FSG surface at some angle from its normal as would 

have been expected for a leaky mode. Spherical type radiation is again observed from 

the end of the FSG. 

Figure 5-13 is again an offset cut-plane, but this time parallel to the xz axis at 

y=3.9mm, showing the three dimensional vectors of the E field sample on that two 

dimensional plane. The cut-plane was positioned so that it passed through the centre 

of the gaps between two sets of adjacent elements. The gaps in this instance were the 

first ones reached on either side of the FSG when the cut-plane was move from y=O 

along the positive y axis. The majority of the vectors are end on to the plot as would 

be expected for a TEll solid waveguide mode that was viewed looking down in the 

direction of the polarisation vector. The mode in the FSG again conforms to the 

hypotheses in [2] that the hybrid field of the fundamental mode in the FSG would 

consist mainly of TE type modes, with most of the vectors pointing in or out of the 

plane of the cut. 
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The high field magnitudes, vectors coloured red, can again be seen in identical 

positions as the field maxima seen in Figure 5-12. The vectors that show the highest 

field strength are again between the longitudinal arms of the elements on either side of 

the gap through which the cut-plane passes. This is to be expected as both vector cut­

planes pass through the same gap. The flipping of the vectors along lines of low field 

strength at nulls is also more clearly visible in Figure 5-13 than it is in Figure 5-11. 

The wave front that is shown in Figure 5-13 outside the FSG surface is clearly shown 

as curved surfaces which move away from the surface at some angle as the animation 

in phase is run. Note also that these wave front nulls also lie halfway between the 

adjacent areas of higher field intensity that were seen to propagate away from the 

external surface of the FSG in Figure 5-12. 

The two plots in Figure 5-14 (a) and (b) show the cross sectional vector E field in the 

gap between the first and second ring of elements, 8.2mm from the waveguide 

junction and the current that exists on the surface of the elements in these first two 

rings. Figure 5-14 (b) is viewed from the normal to the xy cut-plane along the z axis 

and so the FSG elements are not visible as they are being viewed edge on and have 

been modelled as infinitely thin conducting two dimensional sheets. Figure 5-14 (a) is 

viewed at an angle to the cut-plane and so that the elements and the cut-plane are 

visible simultaneously. The field on the cut plane is the same vector E field, but the 

elements have the magnitude of the current shown as a colour coded contour map on 

their surface. The colours of the vectors and current magnitudes on the elements may 

appear different but this is due to an in built HFSS ~hading tool that cannot be turned 

off. It makes the two dimensional object appear three dimensional by changing the 

colour, however this makes it difficult to compare the relative field or current 

strengths. It is however still the best way for HFSS to display this information. 

The vector plot in Figure 5-14 (b) looks almost totally TEll inside the radius of the 

FSG elements. It has the characteristic maximum field magnitude in the centre of the 

FSG with vectors all lining up in a straight line across the centre of the FSG and 

curving more until they become semi-circular at the edges of the circle, see p430 in 

[3]. However, as there is no confining conductor on the FSG surface, the fields 

continue onward out into free space. The fields that pass out of the top of the FSG, 

where the polarisation vector crosses the FSG circumference, bend back around 
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towards the FSG surface at 90° to the polarisation vector. Around the circumference 

of the FSG surface there are many points where the field vectors have either some 

small or large z component. This can be seen in (a) where the E fields are coupling 

from the edges of the first ring of elements to the adjacent edges of the second ring of 

elements. 

Also on each side of the circumference, just below the line at 90° to the polarisation 

vector, is a point from which field vectors appear to emanate and just above the line is 

a point to which field vectors appear to converge. If these points are traced to the 

current plot in (a) it corresponds to points in the gap just above the two longitudinal 

arms with red current magnitude of the lower left hand element. This element and the 

one on the exact opposite side of the FSG have the highest current magnitudes and 

from the animation resonates like a loop antenna. The centre of the top and bottom 

circumferential arms always having null points and the longitudinal arms having 

currents alternating from a maximum along its length to zero and then back to 

maximum. This is why the E field vectors appear to flow from one longitudinal arm 

of this element to the other. One longitudinal arm has the current moving in the 

positive z direction and the other must have the current flowing in the negative z 

direction in order to obey Kirchofs current Law. By Maxwell's equations the E fields 

must therefor appear to flow from one arm to the other. 

The element shown in the centre of the right hand ring in (a) has a very different 

current distribution from that of the bottom element. The current in the two 

longitudinal arms is unbalanced, with the arm nearest to the bottom element having a 

much high magnitude. However the higher current is not uniform across the width of 

this longitudinal arm. The high current magnitude appears only down the bottom edge 

of the arm and it is thought that this is most likely to be an impressed current from the 

neighbouring element. The top element shown on the right hand ring is a mirror 

image of the centre element because the field polarisation vector passes through the 

centre of the gap between them. 

The current on the second ring of elements has not yet become very intense as the 

field maximum has not yet reached the proximity of the second ring and it is the 
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proximity of the field magnitude which gives rise to the very high currents seen on the 

element surfaces. Although a similar type of distribution of current to that on the first 

ring is evident on the surface of this ring it has a much reduced magnitude. 

Figure 5-15 shows four cross sectional E vector field plots, (a), (b), (c) & (d), that 

show how the E field changes from the aperture to the field observed at z=8.2mm, 

which was shown in Figure 5-14. Particular points are chosen along this 8.2mm 

length to illustrate all the possible field characteristics in the vicinity of the first ring 

of elements. (a) is a cross section through the aperture plane at z=O. The expected 

TEll E vector field is evident, but is not the only mode present in the aperture. Around 

the aperture edge, especially in the vicinity beneath the two elements with very high 

currents seen in Figure 5-14 (a), there are some vectors with components in the z axis 

direction. A true TEll field would have no such component it is, by definition, a mode 

with only transverse E fields. The presence of the FSG has altered the fields around 

the edge of the aperture so that the field is matched into the FSG, however, despite the 

presence of these higher order waveguide modes the aperture field appears to be 

overwhelming composed of a TEll mode. The fields outside the aperture on the 

conducting plane are not wholly axial as the boundary condition for a perfect 

conductor dictates. The plot shows a small transverse component to the field, but this 

is very small and due to numerical inaccuracies. 

The next cut-plane (b) is placed such that z=l.2mm from the aperture. This cut plane 

passes through each element in the first ring, close to the centreline of the bottom 

circumferential arms. In this cut plane there are six strips of metal which almost form 

a complete circle around the FSG, the gaps between the elements accounting for less 

than 20% of the circumference. The two elements at the left and right hand side of the 

FSG in the plot have fields internally that emanate away from half of it below the 

centreline of the FSG and rejoin the same element above the centreline. The semi­

circular curve that these fields follow from the lower half to the upper half is similar 

to that which is seen in a standard TEll field, but more exaggerated with the fields 

seeming to curve further into the centre. The cause of this is the currents in the 

vertical arms, which cause the very high fields previously seen in the gaps between 

the adjacent elements. The vectors of these high magnitude fields lie in the direction 

opposite to that which would normally be seen in a TEll mode. These are the fields in 
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red in (b) and can clearly be seen to go from the elements at the top and bottom of the 

cross section as viewed to the elements at the left and right of the FSG. This causes 

the extra curvature in the fields at the left and right of the internal cross section. These 

then are the basic features of the FSG fields that have been observed. The centre strip 

contains fields that are generally similar to a TEll mode, but the fields to the left and 

right of this strip have fields that are obviously far more complex. 

(c) is a cross section at z=4.1 mm through the centre of the element. The very high 

fields emanating from and to the currents in the longitudinal arms of the left and right 

elements are even more evident in this plot. In this case there is no metal connecting 

them together as in (b) and so the field is not so curved as before in this area and it 

can take a direct path from one arm to another. The apparent leakage of the field 

through the centre of the elements seen in Figure 5-12 is directly attributable to the 

fact that the field taking a direct path from one arm to another is a reasonably high 

strength field. The coupling of E fields from these arms to the impressed currents in 

the upper and lower elements is also very strong. This field pattern different from that 

in (b), but still has predominantly TEll fields in the centre strip and more complex 

fields to the left and right. Note also that the field magnitude in the centre of the FSG 

has increased. This is not a consequence of the cut-plane being in the centre of the 

element, but the fact that the input phase of zero degrees puts the first field maximum 

at z~8mm as seen in Figure 5-12. 

Finally plot (d) is the cross section through the centreline of the circumferential 

conductor of the elements of the first ring at z=7mm. As could be expected the field 

here is similar to that seen in (b), except that the vector magnitudes are higher as the 

cut-plane is closer to the field maximum value. This can easily be explained because 

the cross section of the structure seen here is identical to that seen in the cross section 

of the lower arm. 
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5.3.3 HFSS Field Plots of the Six Element Whole Ring FSO Model Over an 

Extended Frequency Range. 

Having investigated the fields of the FSO and junction at l4.70Hz where the match 

was very good the frequency was changed and to frequencies where the match was 

not as good to observe the change in the fields. The first frequency chosen was 

l3.70Hz as this was at the lower end of the band of simulated frequencies and the 

match was not very good, at SII=-8dB. In this section the polarisation vector of the 

feed TEll mode is identical to that used for the l4.70Hz simulation, i.e. along the y 

axis. 

Figure 5-16 shows four plots showing the vector E fields in the cross sectional cut­

planes ofz=Omm (b), 1.2mm (c), 4.lmm (d) and 8.2mm (a) along with the currents on 

three of the elements on one side of the FSO on the bottom 2 rings of elements (a). 

The current distributions on the surface of the elements are similar to that seen at 

l4.70Hz. The highest magnitude is seen on the element that is on the lower right 

hand side, which is in an identical position in relation to the polarised field as the 

lower left hand element in Figure 5-14 (a). At 13.70Hz the element still has large 

current flowing the longitudinal arms and a null in the middle of its circumferential 

arms. The centre element in Figure 5-l6(a) has a much larger field flowing in the 

longitudinal arm adjacent to the right hand element and the field flowing elsewhere on 

its surface are also larger that seen before. The currents on the second ring of elements 

are similar, but lower in magnitude than at 14.70Hz. The effect of this can be seen in 

the cut-plane at z=8.2mm because the coupling field between the elements is very 

large. 

This increased E field coupling between the elements is seen in both (c) and (d). The 

vector plots in both cases being dominated be the inter-element coupling between the 

elements on both the right and left hand sides of the plots. Some semblance of the 

TEll type vector field can be seen in (a) and (c) although it is very weak in strength. 

The field plot in (d) coincides with a null in the TEll incident field and so the vector 

field is dominated completely by the field coupling between elements. A visual 

inspection of this plot reveals how hard it would be to extract the modal amplitudes of 
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Figure 5-16 Current and E vector information for the 6 whole ring FSG model at 
13.7GHz & lIP phase=Oo:-

(a) Current on the surface of 3 of the elements in the first 2 rings, the vector E 
field shown is in the xy cut-plane 8.2mm from the aperture 

(b) The vector E field shown is in the xy aperture plane 
(c) The vector E field in an xy cut-plane 1.2mm from the aperture 
(d) The vector E field in an xy cut-plane 4.1mm from the aperture 
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Figure S-171EI volume plot viewed from y axis at 13.7GHz lIP phase=O° 

Figure S-181EI volume plot viewed from y axis at 13.7GHz lIP phase=60° 

'-
-.. 

, " 
'" 

Figure S-191EI volume plot viewed from y axis at 13.7GHz lIP phase=120° 
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the poss ible component modes of thi s fi e ld. The apertu re fi e ld in (b) shows the TEl l 

of the input field from the solid waveguide c learly, however, unlike the 14.7G Hz 

aperture fie ld , the 13.7G Hz fie ld shows considerable distortion from the expec ted 

T Ell vec tor plol. There is heavy di stortion on both sides with many longi tudinal 

vectors showing coupling to the lower element ring. This increased di stortion of the 

apert ure fi eld would be sufficient to cause the very poor matching seen in the S II 

value at thi s frequency. 

To show the movement of the fields along the FSG it was decided not to plot mUltiple 

cut -planes, but to use the final type of HFSS fi eld plolling output the magnitude of the 

E fi eld volume plol. The volume plot in Figure 5- 17 shows the s ix e lement who le ring 

model viewed from the y axis looking down on the e lement surface. The colour coded 

'snow storm' of points that correspond to the magnitude of the E fi e ld has been 

superimposed on thi s drawing as if the fi e lds were be ing viewed from the same place. 

The phase in thi s plot is set to 0°. To show how badly the fields propagate along the 

FSG, Figure 5-18 shows the same model except wi th the phase of the input changed 

to 60° and Figure 5-19 has the input phase changed again to 120°. These three figures 

c learl y show the fi eld propagating in the solid waveguide, with the area of max imum 

fi eld dens ity, of the TEl l mode, moving from leflto ri ght as the input phase increases. 

Although diffi cult to tell from the printed plo t the animation of this clearly showed the 

expected increase in guide wavelength because the frequency of operation was lower. 

In all three plots the only significant very intense inter-element coupli ng fields are 

around the fir~t ring of elements. The link obse rved in the prev ious section that high 

inter-element coupling occurs near the field maxima has disappeared. In fac t very 

lillle fie ld can be seen to propagate ins ide FSG. Large fields are seen propagating 

away from the surface at some acute angle, aIthough these are not plotted very well 0 11 

the graphs. 

This all seems to suggest that the FSG has become leaky and does nor propagate a 

well confined fie ld. The very high coupl ing a round the first ring of e lements seems to 

act as a choke to the incident fi elds in the solid waveguide. 
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The frequency was increased to 15 .35G Hz, the theo retical resonant frequency of thi s 

FSG , and the volume magnitude of E fi elds at input phase of 0°, 60°, 120° were 

plotted in Figure 5-20 to Figure 5-22. These plots clearl y show that the fi e ld is we ll 

confi ned . There is no appreciable fi e ld propagating away from the surface o f the FSG, 

although there is a large fi e ld attached to the outside of the edge elements as noted in 

Fi gure 5-1 2. This external fi eld is associated with the areas o f very high inter-element 

coupling and decays away very rapidl y in radial directi on. The large inter-element 

coupling fi e lds again seem to be assoc iated with the pos itions of the fi e ld maxima 

inside the FSG . These fi eld max ima propagate seamless ly from the so lid waveguide 

into and down the FSG. The coupling mo ves down the FSG and does not s it only on 

the first ring o f e lements. 

A pulsing effect is seen in the fi e ld max i ma as they propagate down the structure, the 

maxima in Figure 5-22 are much larger that those in Fi gure 5-20 or Figure 5-2 1. This 

is always a s ign that a standing wave is present in the structure. The po int at which the 

pulsing end in a propagating fi elds path is the po int at wh ich the standing wave is 

be ing generated from. In this case the pulsing continues down the entire length of the 

solid waveguide and the FSG . This means that the cause o f the poor SI I measurement 

at thi s frequency is not the junction be tween the solid waveguide and the FSG, but the 

mismatch between the FSG and free space. This is good proof that at this frequency 

the FSG is acting more like a transmission line and less li ke an antenna structure. The 

good match seen in the 14.7GHz simulation is due to the fact that the FSG is still 

reasonably well matched to the solid waveguide at th is frequency and the FSG is well 

matched to free space. The FSG at thi s freque ncy is operating as an effecting 

transition between the waveguide and free space. 

The wavelength of the fi elds in the structure are shorter that seen in any of the 

previous simulations, as would be expec ted at a higher frequency. However, that fact 

that the wavelength in the FSG is about the same as that in the solid waveguide is 

another mark o f how good the match between the FSG and the solid waveguide is at 

this frequency. 
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Figure 5-20 IEI volume plot viewed from y axis at 15.35GHz lIP phase=O° 

Figure 5-21 IEI volume plot viewed from y axis at 15.35GHz lIP phase=60° 

Figure 5-22 IEI volume plot viewed from y axis at 15.35GHz lIP phase=120° 
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Figure 5-231EI volume plot viewed from y axis at 16.6GHz lIP phase=O° 

, 

Figure 5-24IEI volume plot viewed from y axis at 16.6GHz lIP phase=60° 

Figure 5-25 IEI volume plot viewed from y axis at 16.6GHz lIP phase=120° 
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Figure 5-26 Current and E vector information for the 6 whole ring FSG model at 
16.6GHz & lIP phase=Oo:-

(a) Current on the surface of 3 of the elements in the first 2 rings, the vector E 
field shown is in the xy cut-plane 8.2mm from the aperture 

(b) The vector E field shown is in the xy aperture plane 
(c) The vector E field in an xy cut-plane 1.2mm from the aperture 
(d) The vector E field in an xy cut-plane 4.1mm from the aperture 
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The frequency was increased again to 16.6GHz, the very top end of the simulated 

band and where the SIl match of the system was ajust reasonable -12dB. The volume 

plots showing the magnitude of the E field were re-plotted for this higher frequency in 

Figure 5-23 to Figure 5-25. The fields propagate down the structure in the expected 

manner except that the wavelength in the FSG is now shorter than that in the solid 

waveguide. The fields appear to be reasonably well contained in the FSG, but closer 

inspection did reveal a small, but not insignificant field propagating away from the 

surface of the elements. The field also propagates away from the end of the FSG into 

free space very well. This combined with an FSG to solid wave guide junction match 

that does not scatter too much energy is the reason for the -12dB match for the model 

input. 

The localised very high inter-element coupling seems to have disappeared and has 

been replaced by inter-element coupling of moderate field strength along virtually the 

whole length of the FSG. This still seems to be linked to the positions of the maxima, 

but the reduced wavelength means that these are now only approximately l'A periodic 

cells apart and hence why a large length of the FSG seems to be excited most of the 

time. 

For the top of the band the plots showing the cross sectional vector E fields and the 

current on the surface of the elements were again plotted. This is shown in Figure 

5-26 and as before the four cut-planes chosen were placed at z=Omm (b), 1.2mm (c), 

4.lmm (d) and 8.2mm (a). Again the current magnitudes plotted were on six elements 

of the FSG over the bottom 2 rings of elements (a). The increase in frequency 

produces different current distributions on the surface of the elements from that seen 

at 14.7GHz or 13.7GHz. The currents of largest magnitude were still present on the 

elements, or section of elements, away from the point were the polarisation vector 

crossed the gap between elements. The highest current values were congregated in the 

corners of the elements and extended down both arms for a short distance. The null 

points between these current maximums can now exist at the mid point of either the 

longitudinal or the circumferential arms. Although they do not seem to occur on 

connected arms at the same time. The currents on the elements are clearly resonating 

in some higher order state other than that observed previously. 
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The reduction in the inter-element coupling can be seen in all the cross section vector 

plots. In (a) the z orientated vector magnitude between the first and second rings is 

much reduced. In the aperture (b) the similar axial vector magnitudes is again very 

much reduced. In (c) and (d) the very high intensity vector fields that went from one 

longitudinal arm to another on the left and right sides are very much reduced in 

magnitude and are only really noticeable in (d). In all the vector plots the field looks 

very much more like the standard TEll field distribution. However the lack of inter­

element coupling appears to allow the fields to spread out beyond the radius of the 

FSG elements. Even in the aperture the field has spread out beyond the confines of the 

solid wave guide radius. This can be seen to continue down the guide and is very 

evident in (d) even though this is the plot with the highest inter-element coupling. 

Although still present the inter-element coupling appears to be of insufficient 

magnitude to confine the field to the vicinity of the FSG. 

5,4 Results for the Twelve Element Half Ring FSG Model with Two Feed Solid 

Waveguide Ports 

The results of the twelve element half ring FSG model were very similar to those 

obtained for the fourteen and sixteen element models. There were some differences, 

which will be included in the appropriate area, but essentially the majority of results 

given in this section are for the twelve element model. These form the representative 

set of results for the half ring models with a solid wave guide at each end of the FSG. 

5,4.1 SI I Results for the Half Ring FSG Model- Measured and Simulated. 

The S 11 results were taken from the feed port of the solid waveguide, which was 

exciting the FSG. The S22 results were taken from the feed port of the other solid 

waveguide at the other end of the FSG and were identical to the SII results. The S21 

and S 12 scattering parameters were also identical to each other; the system must be 

fully reciprocal, as would be expected. 
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The SI I results from the measured FSG 1 data from chapter 3 and the twelve, fourteen 

and sixteen element half ring FSG models is presented in Figure 5-27. The mode in 

the solid circular feed waveguide (both simulated and measured) is that of the 

fundamental TEll mode and so the S parameters, in Figure 5-27 and Figure 5-28 are 

those for this mode only. 

The three simulated S II plots are very similar, each having the shape of a minimum 

curve or a "valley", but with a large amount of ripple in the curve around the minima 

which are centred roughly on 15.5GHz. In the regions of the curve where no ripple is 

present the agreement between the curves is very good. The ripple in each plot is a 

series of peaks and troughs in the plot and they all have roughly similar magnitude, 

but occur at slightly different frequencies. This is exactly the response that would be 

expected if a small standing wave were present in the FSG. As the length of the FSG 

increase the difference in frequency between adjacent peaks or troughs decreases. 

Although there is poor agreement between the measured S II plot and any of the 

predicted plots, there is very good agreement between the general shape of the S II 

plots. The measured plot also follows the general trend of a minimum curve and has a 

large amount of ripple around the minimum centred roughly on 15GHz. It also has a 

decreasing amount of ripple in it up toI3.2GHz. Only the twelve element model was 

simulated at frequencies below 13.5GHz and there is a suggestion that there may be a 

ripple at the lower end of the band for this model. The S II of the 12 element model 

has a sudden dip in its value at 13.5GHz. It was not possible to see if this dip 

developed into a standing wave ripple as the model would not converge sufficiently 

for any frequency below 13.3GHz before the simulation died due to a lack of memory 

resource. 
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Figure 5-271 SII 1 Comparison between a measured FSG, 34 elements long, and the 

simulated half ring models, 12,14,16 elements long 

The agreement between the simulated and the measured results would be improved if 

the predicted plot were shifted down in frequency by about O_5GHz. The fact that the 

Mylar sheet and polystyrene plug included in the structure of the measured FSG is 

known, from chapter 3, to cause a dielectric loading effect could account for this shift 

in frequency. The SI1 values at frequencies above the ripple in the minimum region 

would then be very similar, There would still be some difference in the magnitude at 

frequencies below the ripple, but the difference would be significantly reduced. The 

reduced S 11 magnitudes in the measured results can be explained because the 

dielectric, ohmic and radiative losses in the structure attenuate all the measured 

values. The perfect conductors in the simulated models will ensure that the reflected 

and transmitted power will be the maximum possible value. More energy is also lost 

from the measured FSG in the form of radiation due to its greater length over which 

more radiation can take place_ 
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5.4.2 S2! Results for the Half Ring FSG Model- Measured and Simulated. 

The S2! values plotted in Figure 5-28 are for the same twelve, fourteen and sixteen 

element half ring FSG models and are compared with the measured values of a real 

FSG taken from chapter 3. As with the Sll measurements of Figure 5-27, Figure 5-28 

shows excellent agreement between the plots of S2! taken for the three different 

simulations. The plots follow the shape of a maximum curve or "hill", with the 

highest value of S2! equal to -D.8dB at 155GHz. 
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Figure 5-281 S21 1 Comparison between a measured FSG, 34 elements long, and 

the simulated half ring models, 12,14,16 elements long 

The only difference between the three simulations is that the bandwidth of the curve is 

reduced as the length increases_ This simulated result, showing that the length of the 

FSG affects the bandwidth of the S21 response curve, is excellent conformation of the 

existent of this effect, which was also observed in the measured results of chapter 3. 
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The comparison of the simulation with the measured S21 is very good in that the 

curves have very similar shapes. The maximum value of the measured S21 is -4.5dB 

at 15.1 GHz, which ifthe affect of the dielectric loading and losses, dielectric, ohmic 

and radiative are taken into account, could be said to be of an expected level in 

relation to the simulated values. The maximum portion of the measured curve is also 

narrower than the simulated curves, which is also to be expected due to the 

significantly longer length of the measured FSG reducing the bandwidth of the S21 

response. 

The rapid increase in the S21 value of the measured FSG below 13.2GHz is seen in the 

simulated twelve element model at 13.7GHz, again note the shift in frequency of 

about 400MHz. The magnitude of this region of rapidly increasing values is still 

higher than the measured S21 even when the shift in frequency is taken into account. 

However, convergence simulation problems prevented further investigation below 

13.3GHz to see if a similar ripple in S21 occurred. 

The scattering parameters of the measured FSG and simulated models match very 

well, given that the memory limitations meant that simulations could only be done for 

short models with no dielectrics or ohmic losses. They consistently show responses 

that have virtually identical shape to that of the measured response and that the effect 

of the differences between the simulated and real FSG is to increase the bandwidth 

due to shorter lengths, increase the magnitudes due to reduced losses and to add a 

frequency shift of roughly 400MHz to 500MHz due to the lack of dielectric loading. 

Significantly, the response of the six element whole ring model was also shifted up in 

frequency from that of the measured values by about 500MHz. 

However HFSS has the ability to excite any mode in the solid waveguide feed. So in 

addition to the fundamental TEll mode in the twelve element half ring FSG model the 

next higher order mode TMol was also excited. The higher order mode was only 

excited in the twelve element wave guide because its shorter length and reduced 

memory requirements meant that it could be simulated to a higher frequency than 

either the fourteen or sixteen element lengths. As a general rule with numerical 

models, as the frequency increases the number of points required in the mesh 

increases. The higher order mode was only added to the simulation for frequencies 
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above 15GHz because the TMol mode will only propagate in the solid circular feed 

waveguides above 15.3GHz. Below this frequency it will always be evanescent and so 

could not propagate down the short length of waveguide to the measuring port. 
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Figure 5·29 Comparison of Is II I and I S21 I values for the TEll and TMol modes of 

the simulated 12 element half ring model. 

The results of this investigation into the higher order mode are shown in Figure 5-29. 

No measured results are available to confirm the behaviour of the simulated higher 

order mode as the transitions required to set-up a TMol mode were not available, 

However as the simulation has been successful in its prediction of the behaviour of 

the model with a TEll mode in' the feed waveguide there is no reason to believe that 

the simulation will not be correct for the TMol mode feed. The cut-off frequency of 

the solid wave guide higher order mode is clearly visible at the point where the TMol 

mode suddenly begins to propagate after 15.3GHz, SII rapidly drops and the value of 

S21 undergoes an equally rapid increase. From 15.5GHz to 17.3GHz, the largest 

frequency that could be simulated, the plot of I SII I has a great number of ripples that 
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increase in magnitude. This suggests a standing wave propagating in the FSO again 

between the two FSO to solid waveguide junctions. 

Unlike the fundamental mode, the TMoI mode also has a small ripple in its S21 

response. This ripple starts when the response reaches -2dB at 16.30Hz and has the 

same periodic wavelength as that of the mode's Sll ripple. After the initial rapid 

increase in 1 S21 I at the cut-off frequency, the rate of increase slows, but continues to 

the end of the simulated region at 17.30Hz. The average value of 1 S211 at 17.30Hz, 

excluding the effect of the ripple, is -O.5dB. This value is higher than that for the 

--_. fundamental mode-and suggests that there must be better confinement of the-TMoI 

mode along the FSO to give a higher transmission of power to the receiving solid 

waveguide on the far end of the FSO. 

5.4.3 HFSS Field Plots of the Simulated 12 Element Half Ring FSO Model. 

As with the fields of the six element whole ring model of sections 5.3.2 & 5.3.3, the 

fields for the twelve element half ring model were plotted at several different 

frequencies. The first frequency chosen to examine the field plots at was the resonant 

frequency, identified in section 5.4.2 as 15.50Hz. At this frequency the confinement 

of the fields within the FSO should be clear and well defined. The method by which 

the fields propagate in the FSO can then be determined at this resonant frequency. 

The next frequency that was investigated was 13.80Hz which was very close to the 

frequency (13.70Hz) where minimum transmission of power in to the second solid 

waveguide occurs, i.e. where 1 S21 1 for the structure is a minimum. Investigation at 

this frequency will reveal the reason for this reduction in S21 and the increase in S II at 

this frequency. The next significant frequency of investigation is that of the lowest 

frequency in the simulated range, 13.30Hz, where the value of the S21 rises 

considerably from the minimum value seen at 13.7GHz. The 1 SI I 1 also falls so the 

power contained in the fields is again propagating through the structure. The 

measurements in chapter 3 suggested that this region below the minimum 1 S21 1 value 

may be a surface wave mode, the field plots will reveal if this is the case. It would be 
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desirable to have investigated the possibility of the existence of this mode at a lower 

frequency, but as previously mentioned this was not possible due to problems getting 

the model to converge at frequencies below 13.3GHz. Finally a frequency at the other 

end of the simulated spectrum, l7GHz is investigated. Here of course, as shown in 

Figure 5-29, there are sets of field plots to be made, one for each of the possible input 

modes in the solid circular waveguide. 

Figure 5-30 shows the longitudinal E field magnitude plots for the twelve element 

half ring FSG at 15.5GHz. A mixture of volume plots (a) & (b), with the E field 

---magnitude shown by the colour snowstorm and a cut-plane plot (c), with the E field--­

magnitude shown by coloured contours, give a good description of the fields 

propagating down the inside of the FSG structure. The volume plots are viewed in the 

yz plane and the cut-plane is through the z axis along the xz plane. The phase of the 

input mode is also altered to improve the information available even further. It is set 

to 00 for the first volume plot (a) and for the cut-plane (c), but changed to 600 for the 

second volume plot (b). This allows some information on the propagation process to 

be extracted. When viewed in HFSS many more input phases can be defined and the 

plots stitched together to form an animated movie. 

As with the six element whole ring model at 15.35GHz, Figure 5-20, most of the 

field in Figure 5-30 is contained within the FSG or along the surface elements. Some 

fields of low magnitude can be seen to propagate away from the surface at some angle 

as a leaky mode field would. The reduction in field magnitude as the field 

propagatesfurther down the FSG can be seen in (c) with the initial red colour at the 

centre of the mode at the top of the plot reducing to orange by the time it has reached 

the other end of the FSG. This is a radiated energy loss, which is still present at 

resonance, but significantly reduced. The wavelength of the mode in the FSG is about 

equal to the wavelength in the equivalent solid wave guide at this frequency, which is 

to be expected as chapter 2 shows that the values of P of these two modes are 

identical at resonance. The fields in the FSG keep their resemblance to the TEll along 

the entire length of the FSG and are very similar to those seen for the six element 

whole ring FSG model. 
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The cross sections through and close to the feed junction between the solid waveguide 

and the FSG for the vector E fields are shown in Figure 5-31. The aperture field (a) 

shows a large amount of TEll mode field with a small amount of field coupling out of 

the plane in the z direction to the edge of the first element situated at 90° to the 

polarisation vector. Moving O.4mm down the FSG, in the gap between the first 

element and the aperture, (b) still shows the large amount of TEll type mode present 

in the gap. There is also a significant increase in the magnitude of the Ez fields 

coupling the edge of the first element at 90° to the polarisation vector. (c) is the cut­

plane through the centre of the lower circumferential arms of the first ring of 

. --- -elementS;1.2mm- into- the FSG:-The-fields--are still-TEll like; but-more curved than­

might be expected if in a solid waveguide. The circumferential arm of the element 90° 

from the polarisation vector is acting very much like a dipole causing much stronger 

fields to curve from one end to the other inside the FSG. The E fields in the z 

direction have now virtually disappeared and the field is mainly transverse. 

The cut-plane through the centre of the element 4.2mm into the FSG still show the 

very TEll like mode near the centreline of the polarisation vector, but near to the gaps 

between adjacent elements the E field vectors are in the opposite direction to that of 

the main polarisation vector. Here the E field is coupling from the z directed arms of 

the element perpendicular to the polarisation, to the z directed arms of the adjacent 

elements. There is also a large field between the two arms of this element. (e) has the 

cut-plane through the circumferential arm of the first ring of elements furthest away 

from the aperture. The field pattern is very similar to that of (c), except that the field 

magnitudes are much less. Figure 5-30 shows the reason for this reduction in the field 

strength, a null is present in the region around the gap between the first and second 

rings of elements when the input phase is 0°. The plot does show a large amount of 

coupling in the z direction between the first and second elements, implying that these 

coupling fields are partially independent of the field magnitude inside the FSG at that 

point. The cut-plane (f) through the middle of the gap between the first and second 

rings of elements, shows a similar picture to (e). The shape of the TEll mode is 

present, but the field magnitude is even lower due to this being closer to the null in the 

z direction for input phase equal to 0°. The high coupling fields between the rings of 

elements are clearly visible. In fact analysis of the animation for the structure shows 
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that the high coupling fields are linked to the size of the current flowing in the z 

directed arms of the element. Once an area of high field strength from the internal 

field has set up the element currents, the coupling fields will emanate from all the 

edges of the element to adjacent metal structures. So coupling can be present between 

elements even when a null is closer to that portion of the element than the field 

maximum. 

The current flowing on the arms of the elements can be seen in Figure 5-32 for the 

first two rings of the twelve element model for an input phase of 0° at l5.5GHz. The 

elements seen atthecentre-of the-picture are- those which-are perpendicular to the- -- --­

polarisation vector and have the most current flow in the z directed arms. The current 

flow across both the circumferential arms have minimum values in the centre of their 

lengths, the whole element then looks like a one wavelength loop resonator. The 

currents in the other loop elements of a ring have much lower current levels with large 

induced currents flowing in the edges, caused by the coupling fields from the 

perpendicular element. 

The field plots for 13.8GHz are covered in two plots, the longitudinal plots in Figure 

5-33 and the cross-sectional plots in Figure 5-34. Several longitudinal volume plots 

are given so that the propagation of the fields down the structure can be seen from 

several angles. The first three plots (a), (b) and (c) are viewed in the xz plane with the 

input phase varied from 0°, 600 and 1200
• The final two plots (d) and (e) are viewed in 

the yz plane and only cover the 0° and 60° input phases. In all plots the progression of 

the area of maximum field density in the solid guide can be clear! y seen as the circular 

red areas on the left hand side of the plot. The other solid waveguide of the right hand 

side of the plot only has a very small amount of field shown inside it. Low intensity 

fields can be seen on the FSG surface between the elements with some very low 

levels of field contained within it. This is why the I S21 I value is so low; virtually no 

field propagates down the FSG and into the second solid waveguide. 

There is also evidence of radiation, especially in plot (d), with field streaming away 

from the surface of the FSG. In the animations it is possible to see wave fronts of 
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these fields propagating away from the surface of the FSG. This accounts for some of 

the power not reaching the second solid wave guide. 

The I Sll I plots show that at l3.8GHz most of the energy is reflected back down the 

feed waveguide. This is clearly seen in the animations with a pulsing of the field 

magnitude colours. If a perfect standing wave existed in the structure no motion of the 

field would be seen, as the field strength increased from zero the colour of the fields 

would change up the magnitude scale to red. This would produce a pulsing colour 

field. With a significant amount of reflection the pulsing colour changes are 

---superimposed on the slow moving-field distribution as the phase changes.-Thepulsing--­

of the field colours can be seen here in the change in colour, from yellow to red ,of the 

field maximum between (a) and (b) and also in (d) to (e). The fact that in (b), (c) and 

(d) some of the field at the centre of the maximum has been coloured black is a sign 

that the field strength is so strong it has gone past the threshold at which HFSS applies 

for the red colour. So it can not apply a colour to that area, but is surrounded by red 

indicating that it is in a maximum area of field strength and not a minimum. 

The extent of this pulsating marks the extent of the standing wave and so clearly the 

point where the pulsating ends is the cause of the reflections in the structure. The 

pulsating of the field colour extends very clearly to the first ring of elements of the 

FSG with a small amount at the second ring of elements. This is also the only part of 

the FSG that has any significantly high field strength. There is a small increase in the 

field strength in the region of the third ring of elements, but within the remainder of 

the structure it is very low. This suggests that the combination of the solid waveguide 

to FSG junction and the first few elements of the FSG are responsible for the large 

reflection of power seen at this frequency. The fact that the FSG itself is partially 

responsible and not just the junction suggests that the FSG cannot support a 

significant propagating mode at this frequency. 

The cross sectional xy plane plots for this frequency are given in Figure 5-34 (b) 

through the aperture; (c) through the centre of the circumferential arm closest to the 

aperture of the first ring of elements; (d) through the middle of the first ring of 

elements and (e) through the middle of the gap between the first and second rings of 
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elements. These vector field plots are very similar to those seen in Figure 5-31, where 

the fields propagated down the FSG with minimum loss and reflection. The only 

difference found in the plots of Figure 5-34 has been the very high field magnitudes 

seen in the region of the elements where the polarisation vector, that passes through 

the centre of the FSG, crosses the FSG boundary at radius ro. These very high 

magnitude vectors are longitudinal in the aperture and between the first and second 

rings of elements, They are transverse in the region of the first ring of elements. The 

surface current plot in (a) gives some clue as it appears that all the elements in the 

first ring of elements are resonating strongly. Note the large amount of red in the 

current density plot.Itappears to be the strong resonance of all the elements in the-----­

first ring that that is causing the high field magnitudes around all the longitudinal 

arms of the elements and reflecting the majority of incident power back down the feed 

waveguide. 

When the frequency is lowered to 13.3GHz the longitudinal field plots are given in 

Figure 5-35 and the cross sectional vector plots are presented in Figure 5-36. It was 

suspected that at this low frequency the propagation in the FSG was by means of a 

surface wave mode, from chapter 3. To aid the confirmation of this the longitudinal 

field plots were taken with many input phase values, so that the steps between the 

positions of the propagating fields would be small from plot to plot. This allows· 

details about the mode of propagation to be picked out easily. The cut-plane of Figure 

5-35 contains the y and z axes and the plots in (b) to (f) have the input phase changing 

in 30° steps from 0° to 120°. On the right hand side of the plots the feed solid 

wave guide can be clearly seen with red circle depicting the maximum values of the 

TEll mode E-field distribution. On the left hand side of the plots the second 

waveguide clearly has the same circular field distribution of the TEll mode, but with a 

reduced intensity. This shows that some, but not all, of the power from the feed 

waveguide propagates to the second waveguide. In both these waveguides the field 

distributions propagate from right to left with increasing values of input phase. 

There is no circular field distribution inside the FSG, except near to the solid 

waveguides, as was seen inside the FSG at 15.50Hz, see Figure 5-30. If there is no 

power transfer along the FSG by means of the hybrid mode that looks similar to the 
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TEll mode, then another propagation mechanism must be at work in the FSG at this 

frequency to transfer power to the second waveguide. Along the length of the FSG 

reasonably high field concentrations can be seen at the surface of the FSG in the 

vicinity of the elements. These field concentrations also move along the surface of the 

FSG as the phase changes. However they move from left to right with increasing 

phase. It would be expected for a mode to move from right to left away from the 

source not towards it. 

There is a class of modes described by [5] as backward propagating modes. These 

modes have phase propagation in the -z direction, but a group velocity and hence 

power transfer in the +z direction. Indeed the Floquet mode theory used by [2] to 

form the propagating hybrid Bloch modes of the FSG means that it is certain that 

some of the Floquet modes will be backward propagating. If the Ploquet mode with 

dominant amplitude in the Bloch wave were to be backward then the entire mode 

would appear to be a backward mode. The fact that the fields hug the periodic surface 

elements and appear to propagate in the -z direction, with power transferred to the 

second wave guide in the +z direction make this mode a backward surface mode. Plot 

(a) shows the volume plot of the E fields hugging the elements of the FSG at 0° 

phase. 

The surface current distributions in Figure 5-36 (a) appear to be very similar to those 

seen in all the previous current plots. They are however more symmetrical on each 

element and each ring of elements has very similar distributions. Whereas the other 

plots showed current differences from one ring of elements to the next. The vector 

field cross sections in (b) to (e) are taken at the same cut planes as previously at 60° 

phase. They clearly show the transition from the TEll mode to the surface wave 

mode. Initially, in (b), the plot looks very similar to that seen at 13.8GHz. The TEll 

field distribution in the aperture with the high longitudinal field vectors around all the 

elements. As the cuts progress down the FSG the TEll mode dies away along with the 

high intensity coupling fields that were seen at 13.8GHz at the point where the 

polarisation vector crossed the FSG. The coupling fields between the element 

perpendicular to the polarisation vector and the element edges on either side in I/J are 

still present, but have become completely transverse, even in the gap between the first 
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and second rings of elements. The fields appear to be tied to the elements on the 

surface of the FSG, adding the final proof that is indeed a surface wave mode that 

propagates in the FSG at this frequency. 

At l7GHz the field plots are given in two sections, one set of plots for the TEll input 

mode and the other for the TMol input mode. A selection of the plots for the TEll 

input mode are given in Figure 5-37 covering the surface currents (a), E field vector 

cross section plots (b) & (c) and a longitudinal E field magnitude volume plot (d). The 

surface currents on the elements ofthe first and second rings (a) are of a similar 

distribution, but 2/3 of the magnitude, of those seen at l55GHz, Figure 5-32. As are 

the E field vector plots in the aperture cut-plane (b) and through the centre of the first 

element ring (c) similar to those seen in Figure 5-31. There is however, some 

difference in the coupling fields between the adjacent elements. As these field vectors 

follow much smaller looped loci from one longitudinal arm to the next. There is also 

very little field coupling between the two longitudinal arms of the element positioned 

perpendicular to the polarisation vector. The volume plot of the E field magnitude in 

(d) shows a large amount of field external to the FSG. There is clearly a great deal of 

radiation from the FSG at this frequency. The wavelength of the field is shorter than 

that of the field in the solid waveguide. This is to be expected as the predicted 

propagation constant of the FSG, see chapter 2, was much larger than that of the solid 

waveguide at frequencies above the resonance point. Although weak some field does 

reach the far end of the FSG and enters the second solid waveguide. This weak field is 

contained within the FSG along the entire length and is not a different mode, like the 

surface mode at 13.3GHz produced by the TMol input mode as will be seen next. 

The behaviour of the fields in the FSG at l7GHz with the TMol mode in the feed 

waveguide is very different from that seen to date with the TEll mode feed. The 

longitudinal plots in Figure 5-38 show the E field magnitude in volume plot format 

and are viewed in the yz and xz orientations for two different input phases. The 

change in the input phase clearly shows that the field distributions propagate down the 

FSG in the +z direction and that there is very little field radiated from the FSG 

surface. Although it is clear that some E field exists outside the radius of the elements 

this field seems to be reasonably well bound to the surface of the structure. The E 

field distributions in the solid waveguides and inside the FSG are those expected for a 
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TMoI mode. The view of the internal E field distribution in the FSG is obscured by 

surface E fields that extend in bands circumferentially around the FSG in the gaps 

between elements. These areas of surface coupling between elements are linked to the 

proximity of an internal E field maximum, in a similar manner to that seen for the 

TEll mode feed at 15.5GHz. 

The conformation that the mode is TMoI in origin is seen in Figure 5-39 (b). This 

cross-sectional H field vector plot is taken through the feed port of the solid 

waveguide and clearly shows vector distribution of the magnetic fields of a TMoI 

mode. The remaining cross sectional plots (c) to (e) combine the vector E and H field 

plots, each one having a different colour scale as seen on the diagrams. As the cut­

plane is moved from the aperture down the FSG the field patterns do not change 

significantly. The circular H field distribution remains evident in each plot and 

appears to change little between each plot. The E field distribution is a little complex, 

having longitudinal field components, but it is not significantly different from that 

which would be expected for the E fields of any TMoI mode in a solid waveguide. 

The E fields between the rings of elements are longitudinal, and have very high values 

coupling from one element to another. 

The current plots of Figure 5-39 (a) are completely different from those observed for 

the TEll mode feed. Instead of the longitudinal arms of the elements carrying the 

currents with the highest magnitudes, they have the null points situated half way down 

their lengths. The circumferential arms now have the currents with the largest 

magnitudes on them. Also all the elements around the circumference have similar 

current distributions and magnitudes on their surfaces unlike the TE 11 mode feed at 

15.5GHz, where only the element perpendicular to the polarisation vector had high 

current magnitudes present. 
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Figure 5-30 IEI along the length of the 12 element half ring FSG model at 15_5GHz:­
(a) for volume plot yz view at lIP phase=Oo_ 
(b) for volume plot yz view at lIP phase=60°. 
(c) for xz cut-plane through axis (y=O) at lIP phase=O°. 
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Figure 5-31 E Vector cross-section plots for the 12 element half ring FSG model 
at 15.5GHz & lIP phase=Oo:-
(c) The vector E field in an xy cut-plane through the aperture. 
(d) The vector E field in an xy cut-plane OAmm from the aperture, 
(e) The vector E field in an xy cut-plane L2mm from the aperture, 
(0 The vector E field in an xy cut-plane 4.1mm from the aperture. 
(g) The vector E field in an xy cut-plane 7mm from the aperture, 
(h) The vector E field in an xy cut-plane 8.2mm from the aperture. 
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Figure 5-32 Current plot on the surface of the elements of the first 2 rings of the 
12 element half ring FSG model at 15.5GHz & lIP phase=O°. 
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Figure 5-33 IEI along the length of the 12 element half ring FSG model at 
13.8GHz:· 
(a) for volume plot xz view at lIP phase=O°. 
(b) for volume plot xz view at lIP phase=60°. 
(c) for volume plot xz view at lIP phase=120°. 
(d) for yz cut-plane through axis (y=O) at lIP phase=O°. 
(e) for yz cut-plane through axis (y=O) at lIP phase=60°. 
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Figure 5-34 Current & E vector cross-section plots for the 12 element half ring 
FSG model at 13.8GHz & lIP phase=120o:-
(a) The current plot on the surface of the elements of the first 2 rings. 
(b) The vector E field in an xy cut-plane through the aperture. 
(c) The vector E field in an xy cut-plane 1.2mm from the aperture. 
(d) The vector E field in an xy cut-plane 4.1mm from the aperture. 
(e) The vector E field in an xy cut·plane 8.2mm from the aperture. 
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Figure 5-35 IEI along the length of the 12 element half ring FSG model at 13.3GHz:­
(a) for volume plot xz view at lIP phase=O°. 
(b) for yz cut-plane through axis (y=O) at lIP phase=O°. 
(c) for yz cut-plane through axis (y=O) at lIP phase=30o. 
(d) for yz cut-plane through axis (y=O) at lIP phase=60°. 
(e) for yz cut-plane through axis (y=O) at lIP phase=90o. 
(f) for yz cut-plane through axis (y=O) at lIP phase=120°. 
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Figure 5-36 Current & E vector cross-section plots for the 12 element half ring 
FSG model at 13.3GHz & lIP phase=60o:-
(a) The current plot on the surface of the elements of the first 2 rings. 
(b) The vector E field in an xy cut-plane through the aperture. 
(c) The vector E field in an xy cut-plane 1.2mm from the aperture. 
(d) The vector E field in an xy cut-plane 4.1mm from the aperture. 
(e) The vector E field in an xy cut-plane 8.2mm from the aperture. 
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Figure 5·37 IEI, current & E vector cross-section plots for the 12 element half 
ring FSG model at 17GHz for the fundamental (TE l1 ) lIP mode & lIP phase=Oo:­
(a) The current plot on the surface of the elements of the first 2 rings. 
Cb) The vector E field in an xy cut-plane through the aperture. 
Cc) The vector E field in an xy cut-plane 4.1rnrn from the aperture. 
Cd) The IEI volume plot xz view. 
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Figure 5-38 IEI along the length of the 12 element half ring FSG model at 17GHz 
for the second higher order (TMo1) lIP mode:-
(a) for volume plot zy view at lIP phase=O°. 
(b) for volume plot zx view at lIP phase=O°. 
(c) for volume plot zx view at lIP phase=60°. 
(d) for volume plot zy view at lIP phase=60°. 
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Figure 5-39 Current & E & H vector cross-section plots for the 12 element half 
ring FSG model at 17GHz for the second higher order (TMo1 ) lIP mode & lIP 
phase=Oo:-
(a) The current plot on the surface of the elements of the first 2 rings. 
(b) The vector H field in an xy cut-plane through the solid waveguide feed. 
(c) The vector E & H field in an xy cut-plane through the aperture. 
(d) The vector E & H field in an xy cut-plane 1.2mm from the aperture. 
(e) The vector E & H field in an xy cut-plane 4.1mm from the aperture. 
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5.4.4 Radiation patterns for the Hal f Ring FSG Model - Measured and Simulated. 

The radiation patterns produced by HFSS for the 12 element half ring model were 

compared with the measured radiation patterns from chapter 3. Although similar in 

set-up, each one having a so lid waveguide at each end of the FSG, the length of the 

two FSGs was different, twelve ri ngs long for the simulation compared to thirty four 

rings long for the measured . The measured also had the dielectric loading affects of 

the Mylar sheet. The radiation patterns for each, taken in 0.5GHz steps from 13.5 

GHz to 16.5GHz, are shown in Figure 5-40. The measured patterns are shown with 

solid lines and the simulated patterns are shown with dashed lines. Plots of similar 

colour denote measured and s imulated patterns at the same frequency. 

It should be noted that no comparison can be made between the E field magnitudes of 

the simulated and measured plots, because the measured plots were never normalised, 

see chapter 3. The sca le of the y ax is of the graph is included to allow compari sons 

between plots of different frequencies from the same source, measured or simulated . 

It is evident from Figure 5-40 that there is very good agreement between the 

simulated and measured data in the reg ion of the main beam. At all frequencies, 

except 16GHz, the angle of the simul ated mai n beam is within 1.5° o f the measured 

angle of the main beam. The simulated value at 16GHz does not in fact fo llow the 

same trend as all the other simulated main beams. It is thought that there may be a 

problem with thi s simu lated result and further investi gat ion around thi s frequency 

would be recommended. However, thi s aside the remaining frequencies poi nt to 

exce ll ent agreement in the angle of the main beam between the simulated and 

measured result s. 
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Figure 5-40 Comparison of radiation patterns from simulated 12 element half 
ring model and measured FSG 34 elements long. 
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There is a large difference in the width of the main beams between the simulated and 

measured patterns. The beam widths of the measured patterns are considerably 

narrower for all frequencies except at 13.5GHz. This is to be expected again due to 

the difference in length of FSG that was simulated compared to that which was 

measured. The standard antenna theory of an aperture antenna provides the rational 

for this difference [4]. The beam width of any antenna in a particular direction is 

inversel y proportional to its width in the same direction. The larger the antenna the 

narrower the main beam will be. The measured FSG is longer than the simulated FSG 

so the main beam of the measured FSG should be narrower than that of the simulated 

one. 

One other thing to note from the radiation pattern graph is that the minimum value of 

the main beam for the measured FSG is at 15GHz. The minimum value of the main 

beam for the simulated FSG is at 15.5GHz. This is consistent with the theory put 

forward in chapter 3, that when the FSG is resonating, leakage from the FSG will be 

at a minimum. This is the point where the attenuation of the leaky mode is at a 

minimum and the maximum amount of power is transmitted down the inside of the 

FSG structure. The fact that the maximum value of the S21 plot coincides with the 

minimum value of the main beam in the radiation plots, for both the simulated data 

and the measured data, proves the hypotheses about the operation of the fundamental 

hybrid FSG mode at resonance. 
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6.Conclusions and Recommendations for 
Future Work 

In order to undertake the transition modelling a detailed understanding of the FSG 

was required. The determination of a large proportion of the mode spectrum was 

carried out using the previously developed modelling program for FSGs of infinite 

length. The eigenvalues of the spectrum were found using a graphical technique over 

a large frequency range. The modes found in the FSG consisted of either surface wave 

modes or leaky modes. The surface wave modes found consisted of the fundamental 

surface mode and many higher order complex surface modes that were lossy, which in 

many cases were backward propagating Floquet modes. The leaky modes were found 

to exhibit behaviour similar to a mode in a solid wave guide, appearing to have a cut­

off frequency above which they propagated very freely in the structure and below 

which they remained highly evanescent. 

It was observed that there was an increase in the number of modes that suddenly 

appeared in the mode spectrum when propagation constants had large imaginary 

values and the normalised free space wave number was also large. The appearance of 

these modes in the solution space should be investigated further to ascertain if they 

are physical modes. This would require a change in the way that the modelling 

program chooses the radial propagation constant. The value of the imaginary part of 

the propagation constant of a mode should be taken into account when the choice of 

radial propagation constant is made. 

The measurement study evaluated three ways of extracting the propagation constant 

information of an FSG from a series of measurements. The real and imaginary 

propagation constants, found by using the short circuited leaky wave antenna method, 

were in good agreement with the values found by the modelling program. The 

accuracy of this method is good, although it does require an anechoic chamber for 

accurate measurement of radiation patterns and can only measure the propagation 

constant over the frequency range where the structure supports a leaky mode. 
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The radiation pattern measurements and the scattering parameters were examined 

without reference to the information obtained from the modelling program and 

confirmed the presence of surface and leaky modes. The data revealed the presence of 

a resonant frequency where the radiation of the leaky mode is reduced to a minimum 

value and the power transmitted through the FSG is at a maximum. At frequencies 

away from this resonant frequency the FSG becomes increasing leaky. Below the 

band of frequencies where the leaky mode exists the surface wave is evident. Above 

this leaky mode band the end of the feed wave guide radiates into free space as if the 

FSG were not present. The interpretation of these measured values agrees very well 

with the operation that would be expected from the predicted modes found from the 

simulation program. 

A parametric study of the FSG was carried out experimentally with different sizes of 

element, periodicity, radius and dielectric thickness. The changes to the dielectric 

thickness revealed a larger than initially expected dielectric loading effect. However, 

if the field strengths were high between the elements on the surface, the loading effect 

would be large. The presence of high strength coupling fields was shown to be correct 

when the structure was modelled using the finite element method. Increasing the 

radius of the FSG and keeping the element periodicity constant gave a reduction the 

value of the resonant frequency and a reduced amount of radiation loss through the 

FSG walls. This FSG has more elements around its circumference, but a significantly 

oversized radius compared to that of a solid wave guide feed. Adding more elements 

to the circumference of the FSG, with a possible reduction in size achieved by loading 

the structure with dielectric, may reveal an FSG with very low levels of loss. The 

main effect of changing the size and periodicity of the elements was to alter the 

frequency of resonance. Making the element size and periodicity larger would, as 

expected, reduce the frequency at which the structure resonates. If these structures are 

to be used widely than it would be advantageous to have design curves available that 

give rough information on the value of the resonant frequency and the strength of the 

resonance, in terms of how little loss there is in the structure. 

The junction modelling was attempted using mode matching. This initially seemed 

like a very good method, allowing the amplitudes of the modes excited by the 

junctions to be ascertained. However the improper nature of the leaky modes meant 
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that many approximations were required, which affected the accuracy of any results 

produced. These approximations also meant that the solid waveguide to FSG junction 

could not be modelled. The approximations required by the presence of leaky modes 

broke down at this junction as it was essentially a source and leaky modes are not an 

accurate representation of the radiation field at this point. The implementation of the 

mode matching method gives results that are inherently approximations of the actual 

solutions. This is because of the truncation of the infinite set of solid modes and Bloch 

modes used to model the aperture field in each structure. These approximations are 

amplified by the FSG, as the Bloch waves are constructed from a doubly infinite set 

of Floquet modes. The number of these modes must also be truncated to allow the 

numerical solution to be found. Had results been produced, careful consideration of 

the validity of the results would have been required to assess the minimum number of 

modes required. The method was ultimately abandoned due to the difficulty in 

normalising the portion of the leaky mode inside the FSG. It is still unclear where the 

cause of this problem lies, but given the limitations of this method in terms of large 

approximations and its lack of transportability to other problems it was considered not 

worth pursuing further, especially when the success of the junction simulation by the 

finite element method is considered. 

The finite element package, HFSS, produced a huge amount of data on the scattering 

parameters, radiation patterns and the field distributions. The scattering parameters 

and radiation patterns matched those of the measured FSGs given the practical 

constraints imposed. The scattering parameters prove that the dielectric load effect 

was high even though only a thin sheet of dielectric was present. Large coupling 

fields between elements were shown to exist which accounted for the high dielectric 

loading effects that were seen. The reasonably close match between simulated and 

measured radiation pattern data means that the propagation constant of the HFSS 

model must be very close to that of the measured FSG. As the measured propagation 

constant was also close to that predicted by the infinite length FSG model the two 

simulation methods reinforce each other. 

The field plots of the HFSS models give insight into the methods of propagation in 

the FSG structure at various frequencies. At resonance it was shown that the field 

magnitudes are highly confined within the FSG radius and propagated with a 
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wavelength similar to that seen in the solid wave guide. The high coupling fields 

between the elements excited by the large currents on the longitudinal arms of each 

element appear to be the mechanism by which the field is contained. Further work 

would be advantageous in understanding the mode of propagation completely. The 

predicted presence of the surface mode was shown to be correct at the lower end of 

the simulated frequency band. Surprisingly, this mode was a backward propagating 

mode. This was unexpected, but not inconceivable, as the Bloch mode is constructed 

of many forward and backward propagating Floquet modes. 

The elements of the FSG were also shown to support a well defined leaky mode only 

over a band of frequencies centred around the resonant frequency. At the edges of this 

band the field does not propagate in the FSG and the power is either reflected back 

down the feed guide of else radiated into fee space. This confirmed the results found 

by the measurement of leaky modes on a real FSG. 

Finally, the discovery of the mode that propagates from a TMol feed mode in the solid 

circular wave guide is very exciting. It does not appear to match any mode found by 

the infinite length modelling program and has not been measured due to a lack of 

equipment. The mode has a predicted transmission loss through the FSG of roughly 

half of that seen at resonant frequency of the EH 11 mode. The mode of propagation is 

also interesting as the TMol mode field appears to continue down the length of the 

FSG without any visible change in the field distributions, as were seen in the EHII 

mode. More work into the nature of this mode should be carried out, as it may be a 

low loss transmission mode and could have many applications. 

This thesis has expanded the number of modes known to exist in the FSG and 

identified previously unknown characteristics of these modes. The validity of the 

infinite length mode was demonstrated by measurements made on manufactured 

FSGs. These measurements have confirmed many of the characteristics that the FSG 

modes were thought to have from the analysis of the propagation constants. The 

junctions and short lengths of FSG were modelled successfully using a finite element 

approach. The results of these simulations matched those of the measured data very 

well and identified the mechanisms of propagation of the FSG modes. 
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1.2.3 & 1.11.3 E x H Across Junction 

The transverse E and H modes are vector cross multiplied across the junction. The E 
field is take from the I st guide and the H field is taken from the 2nd guide. The result 
is the (product of 2 bessels + the product of a bessel and a differential of a bessel) 
multiplied by a sin(n theta)sin(m theta) term. Plus the product of the differentials of 
the 2 bessels + the product of a bessel and a differential of a bessel) multiplied by a 
cos(n theta)cos(m theta) term. 

1.3.1 & 1.12.1 Integrate wrt Theta 

When the mode cross product is integrated wrt theta the sinsin terms and the coscos 
terms are the ones that are integrated. Now these will be subject to orthogonality 
principle. If the order n & m is different (i.e n not = m) then the result of the 
integration is zero and the modes are said to be orthogonal. If the order is the same (n 
= m) then when n=O the sin squared term integrates to give zero and the cos squared 
term integrates to give 2lt; when n not = 0 then the sin squared and cos squared terms 
integrate to give It. 
This result simplifies the integration of the bessel functions as now we are only 
concerned with the integration of a bessel product where they are of the same order, 
but the arguments can still differ. We have definite formulas for the integration of the 
bessel products. 

N.B. If a sin(x)*cos(x) or cos(x)*sin(x) product is produced then this can be turned 
into a sin(x)*sin(x) or a cos(x)*cos(x) term by twisting the output fields through 1tI2. 
this means that aTE, TM interaction can take place. 

1.3.2 & 1.12.2 Integrate wrt Radius 

Use definite integral formula. The one which is used depends on the order and 
whether a TE or TM mode is considered. 

If the integral is of the cross junction vector product it is taken over the radius of the 
solid guide - as E tangential is zero of the surface of the rest of the flange surface. 

If the integral is of the modes in the solid guide then it is taken over the radius of the 
solid guide and similarly if the modes are those in the fsg the radius used for surface 
wave is 0 to infinity and 0 to main beam radius for leaky modes in the integration. 

1.4.1 Formulate R Elements 

The value of the R elements is the cross section integral of the vector product taken 
across the guide junction divided by the normalisation of the fields in the FSG. 
Normal R elements use the hybrid surface wave fields. R(L) elements uses the hybrid 
leaky fields only. 
N.B. the fields in the solid guide have already been normalised. 



1.4.2 Formulate S Elements 

The S element is the cross section integral of the vector product taken across the guide 
junction divided by normalisation of the FSG modes. Normal S elements use the 
hybrid surface wave fields. SeLl elements uses the hybrid leaky fields only. 
N.B. the solid guide modes have already been normalised. 

1.5 multiply matrix 

Post multiply the R matrix by the S matrix to give a p'by p' matrix, where p is the 
number of test modes in the output guide. Post multiply the R(L) matrix by the SeLl 
matrix to give a p' by p' matrix, where p is the number of test modes in the output 
guide. 

1.8.4 Mult [S] by ai' 

This process will normally by zero as aj' is usually zero and the second guide is 
considered infinite or matched. 

1.8.8 Mult [SeLl] by ai' 

This process is usually zero as ai' is normally zero as the second guide is considered to 
be infinite or matched. 

1.9 invert Matrix 

Invert the sum of [R(L)S(L)]+[RS]+[I] to give the inverse matrix. 

1.10 Add Unit Matrix 

Add a p by P unit matrix to RS product matrix and add in R(L)S(L) product matrix. 

User Data Input 

The structure radius'; Number of modes in the solid waveguide; i/p mode coefficients; 
FSG propagation constants; Number of Floquet modes; relative levels of the TE to 
TM in the hybrid mode; number of Bloch modes in the FSG; the FSG length from the 
source. 

System Input 

All physical constants and the propagation constants of the solid waveguide. 
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