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SUMMARY
Dewatering may be defined as the displacement of fluid from

a saturated porous medium, The mechanism of the process is not
fully understood, but 1s known to be strongly depen@eﬁt on the pore
structure of ﬁhe porous medium because of the actioﬁ of capillary
forces in the pores, This investigation attempts to describe the
microscopic effeéts of moisture in porous media and to relate these
to the macroscopic process of dewatering, This is divided into _
three parts: The first is concerned with the gtatic effects of
moisture retained in porous media, for which a model of pore space
is developed; The second deals with the flow of fluids in partially
saturated porous media and an attempt is made to relate the model of
pore space to this; Finally a simple theory of dewatering is

~developed to demonstrate the effects of the various variables.
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CHAPTER ONE:

INTRODUCTION AND _DEWATERING THEORIES

1.] INTRODUCTION
In s0lid/1liquid separation the cycle which starts with a slurrf‘

and ends with a moist cake ls often referred to as dewatering. Thus'iﬁ
some processes certain filters or centrifuges are called dewatering
filters or centrifuges. This is especially so in sanitary enginééfing‘
practice where dewatering means the whole process of removing water from
a spewage sludge. The term is used here however in a more restricted
gense to refer to that part of the filtration cycle when filtrate is
mechanically removed from an already formed fllter cake., This
definition also excludes vibration dewatering used in coal and sand
preparation when drainage from a slurry is promoted by vibration on a
screen, Filtration is therefore considered to be composed of two
processes, the formation of a saturated cake by filtration proper, and
the dewatering of that cake by applying pressure stress on the cake to
remove some of the filtrate. Usually it is possible to remove moisture
thoroughly by thermal drying but mechanical dewatering has the advantage
of being much chesper and does not involve loss of the liguid or possible
damage to the gsolid. The process is however limited since there is
always a residual moisture which cannot be removed by dewatering, The
residual moistures reached in laboratory experiments and approximately
predictable by theory are rarely reached in practice for reasons which
are not properly understood,

The final moisture content of filter cakes canbe of importance
for several reasong. If the filter cakes is an intermediste in a
process the moisture content may have to be reduced below a critical
level for further processing., e.ge. if the next operation is granulation.
Furthermore, the filtrate itself or dissolved solids in it may be valuable

or may contaminate the filter cake and have to be removed, It has been
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observed (Himus 1958) that if water used in washing coal to reduce asgh
content is not itself removed it can constitute a larger percentage of
impurity in the coal than did the ash originally, When the filter cake
is a final product, moisture content can be important because it lncreases
transportation costs per unit weight of sblid as the water also has to be
carried, Furthermore,moisture in stored materlals can lead to
degeneration or can cause handling diffiéulties in trucks or bunkers by
cansing caking or freezing up in winter.

If filtration is taken as being concerned with the separation of
solids from liquids then both filtration and dewatering should be
considered together in producing this separation, and the final moisture
content should be chosen by optimisation of the whole filtering operation,
The filtration part of this sequence hag been studied intensively in
recent years. The theory is well developed and has a large literature
much being based on the work done in the general topic of fluid flow in
packed beds, Grace (1959) has stated that the theory of filtration is
in sdvance of the practical application of that‘theory. Dewatering and
the gllied topic of two-phase flow in packed beds have been studied to
a lesser extent and are not yet fully understood. The authors of the
recent Ministry of Technology review of solid liguid separation literature
(Poole and Doyle 1965) stated that "No satisfactory theory exists to
relate the degree of dewatering of a filter cake to its parameters®,

Researchlinto devatering has been tackled in two ways. One an
empirical approach in which the dewatering process is studied as a
function of the varlables which affect it. The other a theoretical
approach which tries to describe the process mechanistically and
mathematically,

In discussing these theoriss here, moisture contents are
expressed as either a percentage of the void volume of the porous

medium or as a percentage of the dry weight. The first method is



preferred and used when the porosity is available; The second is more
convenient to céléﬁlate but does not allow easy comparison between
different materiais; It is however more useful than moisture comtents
expressed as a welght percentage onh a wet basis as these give no
grounds at all for comparisons even with the same material, Only
the moisture existing between grains in a free state is accessible to
dewatering and considered here. Water held by chemical or adsozﬁ%ion
forces is taken as part of the solid phase and if it exiwts corréction
mist be made to moisture contents determined by drying and weighing.
For generality the fluidas existing in a partially saturated porous
medium should be termed_either wetting or non~wetting phase, here

‘however,water and air are used as representative of these.

1.2 EMPIRTCAL CORRELATIONS
Dahlstrom and his co-workers (1952-61) have developed an

empirical correlation for dewatering based on results obtained from &
variety of sources, These include laboratory tests, pilot plant work
and full scale plant tests, all on a wvariety of materials.

The factorsg taken as affecting moisture content are divided
into two groups, filter feed variables and operating variables. The
first includes, size distribution of solids, solids concentration,and the
viscosity of liguid., The second includes, dewatering time, cake
thickness, pressure drop across the cake and air rate through the cake.
These variebles are interrelated and no one variable can be geparated,
e.g. the cake thickness is dependent on the filtration time and this
affects the time available for dewatering, The cake thickness also
affects tha air rate through the cake. The optimum conditions for cake
dewatering are also not the same as for filtration and therefore the
true optimum is always decided by economic criteria, This makes

the correlation procedure very useful for practical problems. The



correlation was taken as

Ar i |8 air rate| plotted against
L area

moisture content, Piros, Brusenback and Dahlstrom (1952)., This

results in two similar eurves shown in Fig. (1). The higher curve

|
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on the moisture content axls is for the case when a significant

~ percentage of fines are present and the lower one when it is removed.
The gharp corner in the curve indicates clearly that filters should
be operated to the right of this point. Too far to the right would
however mean expensive over design for little benefit in terms of
reduced moisture content.

Silverblatt and Dehlstrom (1954) iﬁvestigated the effects of
surface tension and viscosity on the correlation. Laboratory scale
experiments showed that viscosity had a large effect on the rate of
approach to equilibrium and that surface tension did have a
statistically significant,but nevertheless minor,effect on the

equilibrium. The correlation was modified to include viscosity
ZBP Bd air rate
area
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Nelson apd Dehlstrom (1957) extended this using theoretloal relations
ships for the permeability of filter cakes and developed the

tapproach factor!

I
L
This was found to be accurate but less convenient than the corfelating
factor for design purposes (Simons and Dahlstrom 1966) .

Later papers, Emmett and Dahlstrom (1961), Henderson Cornell,
Dunyon and Dahlstrom (1957) have used the correlating factor for a
variety of materials and processes. The method has also been applied
to the study of steam alded dewatering. Shoenberger and Burch (1964),
Silverblatt and Dahlstrom (1964}, Simons and Dahlstrom (1965), Simons
and Dahlstrom (1966), Grice, Major-Marothy, Simons and Dahlstrom (1966).
In this steam is applied to the face of the filter cake during
devatering and gives significant reductions in moisture contents.

The improvement is taken to be caused by the redﬁction in viscosity at
the steaw/filtrate interface and the correlation is successful in
dealing with it.

Lyons (1950) has reviewed dewatering practice in coal
preparation and indicated a relationship between moisture content,
particle size and ash content. He has also compared results obtained
in dewatering coal by various types of centrifuge (May 1951) and
correlated published results in industrial operations for dewatering
coal by a log. log. plot of moisture content versus ash content
(Oct, 1951), This correlation gives a series of straight parsllel
1lines for different processes. He concluded that "apparently all
the makes of filter currently available are equally effective from a
moisture reduction standpoint®., No theoretical development was
included. '



The empirical approach studles the dewatering characteristies
of partiéular systems as a function of changes of the variables. The
methoed therefore lacks generality in that the fundamental mechaﬁism of
the process is obscured. And whilst the Dahlstrom correlation, in
particular, has been shown to be of value for the optimisation of many
ﬁrocesses, iﬁ is not possible to attack the optimisation of the desgign
of dewatering machines unless the actual mechanism of dewatering is
properly understood. For this reason no matter how successful a
correlating procedure is devised it is necessary to pursue theoretical
emuiry which observes the phenomensa occurring in dewatering and seeks
to explain them, Two main lines of theory may be discerned, That
based mainly on the flow of flulds in porous media and that based
mainly on the capillary effects of moisture in porous media.

1.3 THEORY BASED ON FLO4 IN POROUS MEDIA

The first significant work in this field is that of Brownell and
Katz (1947). They developed a seﬁi—empirical correlation for saturated
flow in porous media which they extended for two phase flow and applied
to dewatering.

The correlation is based on a Reynolds number, Friction factor
plot analogous to that used for flow in pipes. The Reymnolds number
and Friction factor are extended to ineclude parameters to describe the
porous media, e.g. Particle size, sphericity and roughness and porosity

of the packing.

£ = 23 AP P

Re = dvp
. 1\:#“ L P

Data from a variety of sources was plotted on log log axes and a curve
gimilar to that obtained for flow in pipes was obtained.

To extend this to two phase flow, one fluid is taken as wetting
the solid and flowing in contact with it., The non-wetting fluid is



congidered ‘to be ﬂowing'in & porous medium modified by the presence
of wetting fluid, Thus a Reynolds nutﬁber and Friction factor can lbe
defined for each phase in the same way as was done for saturated flow
but with the parameters changed by the relative properties of each
fluid,

Investigations showed that an important feature of two phase
flow is the existfnce of a residual saturation of wetting fluid.
This is considered to be the pore-space eliminated from i‘loﬁ by
capillary forces, Saturations used in the correlation are therefore
effective saturations that is actual saturation minus residual
saturation, Itl‘is therefore necessary to know the residual
saturation and for this it was shown that log log plots of residual
satﬁration against a dimensionless group called capillary mmber gave
a straight line

LgT cos@

This is defined as the ratio of the forces driving the fluid
out of the bed to the forces retaining the fluid in the bed.
The equation of the straight line obtained is,

- 1 [ K_AP 1?64
Sx NS [L g T cosB]

With this effective saturations can be determined and a Reynolds number

and Friction factor can be defined for each phase

Wetting phase Re = d v £ =2 ~d AP ¢ 5o
o se Lvp

Non-wetting phase Re = 4.X.P o f = g_zi_gﬂ_j_e_)n
'tt(e )y : Lvp

where e iz a welted porosity definéd as the ratio of the volume of the
voids occupled by non-wetting flu:id and residual saturation of wetting
fluid divided by the volume of the bed,
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The exponenﬁa of porosgsity and saturation which can be seen
in the definitions are taken to be determined by particle size and
shape. Roughness figures were.tﬁken for particles above 1/16® dia.
to be caused by waves at the wettiné fiuid interface and below_l/16"
to be the same as for saturated flow,

The method was used by Brownell and Katz (1947) and Brownell
and Gudz (1949) to make calculations for the various parts of the
cycle of a rotary vacuum filter., This included thse depositi;ﬂ of
the cake, washing and dewatering the cake, and also a calculation
of the capacity required for the vacuum pump, Brownell and Crosier
(1949) applied the method to a rotary filter dryer and calculated the
flow of hot air through the filter cake, 1In these applications
dewatering 1s taken to be egquivalent to non-steady gtate two phase flow
and the method used is a step-by-step application of the correlation,
The method is therefore tedious to use. Furthermore,some of the terms
required are difficult to evaluate accurately. The method has also
been criticised for the way in which the various exponents have been
uged, (See Lapple in the discussion of part 1 of the series of papers).
These can be taken as basically empirical correlation factors and have
been applied without proper consideration of the actual characteristics
of flow in porous media., For instance the exponent used for porosity
can be shown to be only applicable around 40%. A more fundamental
criticism is for the use of Reynolds number for flow in porous media,
The use of such a correlation is only valid if the systems compared
are dynamically similar, This cannot be assumed for porous media
especially for the wide differences used in the correlation,

Furthermore, the onset of non-linearity in
flow in lporéus media 1s not due to turbulence as in pipes but to the
emergence of inertial effects In laminar flow caused by irregularities

in the flow channels,



Another approach which essentially depends on concepts of
saturated flow in porous media is that of Nenniger (1956) and
Nenniger and Storrow (1958) who h&;ve developed differential
equations to predict the drainage rate of packed beds by gravity or
by centrifugal force. They assumed that flow in the packed bed when
the interface had penetrated the bed was the same as for ssturated
flow but with a constant retarding force due to the capillary pull
in the pores of the bed, This was taken as numerically equal to the
height of capillary rise in the bed., Thus the interface is taken
- as moving down the bed under this retarding force and leaving a
residual moisture in the pores behind it. Residual saturation was
taken from the Brownell and Katz corrélation. Capillary rise was
measgured both conventioﬁélly and by a method based on the change in
flow rate observed when the interface enters the draining bed. All
the parameters required by the equations could therefore be obtained
from a gravity drainage experiment.

The equation which was derived predicted a more rapid approech
to equillibrinm than was found in experiments and two possible
explanations were put forward for this. Firstly that variation in
capillary suction throughout the bed could occur. Secondly that as
the interface falls through the bed film drainage of the liquid from
the particles takes place. This latter explanation wes adopted and
a simple equation was derived and experiments carried out to test it
on draining films in burettes and on strings of beads in contact.

The equations were amalgamated and a series solution obtained. This
gave results which agreed closely with experiments both for gravity
drainage columns and centrifuge cakes.

1.4 CAPIILARY THEORY OF DEVATERING

A more fundamental approach to the problem of dewatering is



basod on a study of the effects ausociated with the retention of
moisture in porous media by capillary or surface tension forces.
This was promoted by investigations into dewatering by gravity
drainage which is a quite widely used method of dewatering in coal
preparation practice. Tﬁis is similar to filter dewatering except
that the displacing forece is not air pressure but the hydrostatic
head of the contained water. 1In this process capillary forces play
an obvious and important role and the study of these has been
extended to déwatering in general,

Gravity drainage as a method of dewatering coal was studied
by Gillmore and Wright (1952). They packed columns with fine coal
slurry and allowed them to drain for up to 24 hours. These colums
were then sampled and the saturat{on at various heights determined.
This showed a transition zone between residual moisture and complete
saturation usually called the capillary height and analogous to
rise in capillary tubes. This zone was shown to move down the
column with time but became substantially stationary after about
24 hours, The equilibrium pogition of this capillary height was
shown to be dependant on particle size distribution of the coal and
surface tension of the water,

Burton and Thomas {1953) and Phillips and Thomas (1955)
extended the technique by using an electrical moisture meter to
determine the saturation at various points in the column without
disturbing it. They fully recognised the importance of capillary
effects and considered the problem in two parts. The guantity of
water remaining as residual moisture, and the rate of approach to this
state. "The equilibrium residual moisture represents a balance between
surface tension and displacement forces such as gravity, hydrostatic

head or air pressure®, They showed that capillary rise is related
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to some gort of mean pore size and this mean pore size algo controls
tha permeability of the bed and hence the rate of approach to
equilibrium residusl moisture. They also recognised that residual
molsture in the form of discrete amounts at the points of contact
of the particles could not be caused to flow because they do not form
a continuous phase. The effect of reduction of surface tension by
surfactants and of viscosity by heating was investigated and shown
to be in accord with their explanation but to be uneconomic for
industrial use. The importance of particle size distribution in
dewatering was emphagized and it was shown that coal slurriéd with
& large proportion of -300 meshkwere very difficulf; to dewatef bcifh
because of the capillary height involved and the small pore size
available for flow,

Batel (1954-61) has mé.de an extensive study of the properties
of granular materials containing moisture. This inecludes the
effect of ﬁoisture on mechanical properties and gramulation (1956),
on sieving capacity (1955), as well as an investigation into
dewatering as applied to gravitational drainage and centrifugal and
filter dewatering {1954) (1961), He emphasises the importance of
capillary effects in dewatering and has noted that dewatering can
only occur when the displacing forces are greater than the capillery
height, for which he presents an expression in terms of cake |
parameters, In considering the rate of approach of saturation to

equilibrium residual moisture the process is taken as belng composed

of three parts. Part one in which the most rapid removal of

DEWATERING CURVE ACCORDING TO
BATEL (1961)

%

Moisture

3 Fig. (2)
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moisture occurs when the fluid is being driven out of the capillary
spaces, Part two in which the rate of removal is slower since there
are less capillary spaces to be emptied but with the rate augmented
by some flow of the liquid from the film of moisture left on the
pore walls, DPart three in which the rate of removal of moisture

is slowest of all and the equilibrium residual saturation is
approached only by the flow of the remaining moisture from the pore
walls. This description is essentially the same as that of Nenniger
and Storrow,previously mentioned,but has only been develope&
qualitatively and shown to be capable of giving saturation time

" curves of the requisite shape.

Column drainage experiments have demonstrated the importance
of capillary forces acting in the pores of materials during
dewatering, They are however an um{zéldy way of measuring these
effects and a more simple and accurate method is available, called
the capillary pressure technique, which has been used for a number
of years in solls testing and other work. Harris and Smith (1957),
Gray (1958), Harris (1959) and Morrow(1962) have introduced this
into dewatering research,

The method essentially involves measuring the fluid removed
from a sample of porous material allowed to come to equilibrium with
a glven displacing pressure, This is increased after each
equilibrium until the sample is completely desaturated. The technique
is analogous to gravity drainage experiments but requires less time
to perform, less sample and is capable of a greater accuracy. The
results can be analysed to give a pore size distribution of the sé.mple
used, Harris and Smith, Harris, and Morrow were concerned mainly
with adapting the technigue and its theoretical aspe_ct.s to dewatering,

which is covered more fully when the method is discussed in the next
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section., Gray (1958) used the tééhnique for the study of practical
problems in fine coal dewatering such as the effect of particle

size distribution, porosity and of chemical additives such as
wetting sgents and flocculants,

As mentioned,the pore size distribution of a filter cake can
be measured using this technique and hence the mean pore size
determined, The experimental results for mean pore size of filter
cakes formed from various particle size distributions were
correlated by Gray against the percentage of -120 mesh and -240 mesh
in the distributioni A correlation of increasing porosity with
increasing fines was also noted. Since the volume of water held in
a bed at saturation is governed by the porosity of the bed and the
difficulty of its removal is governed ﬁy the pore sizes inthe bed,<
thése results allow at least a quaiitafiﬁe agssessment of dewatering
problems from consideration of the particle size énalysis of the
filter feed. The possibility of splitting a particle size
distribution of a slurry into two or more fractions and dewatering
them separately before recombining was investigatéd but the improvement
wag shown to be small or nonﬁtexisgéit. Flocculants were demonstrated
to have a beneficial effect on dewatering, even though the
porosity of the filter cake is increased and hence the volume of
water retained at saturation also increased. This is becausge the
mean pore size of the floceculated cake is greater and the moisture
can be removed more easily. Wetting egents were shown to effect -
some lmprovement in the dewaterability of a slurry but the adsorbtion
of the agents on the solld surfaces meant that the amounts required
wers uneconomic (as was found by Phillips and Thomas). The addition
of o1l together with wetting agents was found to bs a practical way

of aiding dewatering because the coal surface is preferentially
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wetted by 0il and any oil residuye affer dewatering enhances the
calorific value of the coal,

By considering a bundle of tubes as a model of the filter
cake with a distribution of tube sizes derived from the experiments
Gray was able to calculate the saturation versus time relationship
for the dewatering process. These calculated results showed a
much faster approach to equilibrium than did experiments. He
concluded that the model used was too simple and that connectivity
between capillary tubes should be incorporated.

1.5 DISCUSSION

The ultimate requirement of a theory of dewatering is the
prediction of the saturation versus time relationship. The two
types of theory outlined may be divided by the way in which they
approach this by considering éifferent aspécts of the déwatering
process. The capillary theory starts from a consideration of a
nicroscopic description of the phenomena assoclated with moisture
retention in packed beds. The flow theory concentrates directly
on the way moisture flows out of a bed and relates this to the
saturation versus time curve.

The second may be criticised because of the application of
saturated flow relationships to what is essentially a two-phase
flow problem. These two types of flow in porous media have
important differences which should not be minimised. Saturated
flow can be treated by using &verage‘pore properties and overall
permeabilities, bubt when two fluids are occupying the same porous
medium then these average and overall properties are not valid for
either fluid. There 1s some reason therefore to think that
Nenniger and Storrow should have applied the other of the two

alternative explanations for the failure of the simple case.



Brownell and Katz attempted to overcome these cfiticisms by
considering each of the two phases in the porous mediﬁm as

separate fluids flowing in porous medie defined by the presende

of the other fluid. They also drew & clear diStincﬁion between the
wetting and non-wéﬁting phases. This approach however relies
essentially on & correlation of saturated flow phenomena,

The capillary theory on the other hand avoids these difficulties
by considering a microscopic desecription of the effects of moisture
in packed beds. It has been able to show that the retention of
moisture 1z contrblled by the pore atructure of the packed bed because
of the way surface tenSion forces act in the pores, The flow of two
phases in packed beds hdas also been shown to be strongly dependent
on the pore étructure of the bed by similar econsiderations. However
Gray has demonstrated that the pore size distribution applied to a
bundle of capillary tubes model is insufficient to describe this
and a more realistic model of pore space in porous media is required.

Therefore it mazy be concluded that for an understanding of
the dewatering process the nature of pore space in porous materials
must be described ag it is this which controls the process both in
the way moisture is retained in a porous medium and the flow
characteristics of its removal. The action of surface tension
forces in porous media which produce the capillary pressure curve can
glve a description of the pore properties of porous media more
simply and completely than most other measurements, Furthermore, 1t
desgcribes the pore space in terms which can be readily related to
deﬁatering characteristics. The next sections are therefore devoted
to a study of these capillary effects and the interpretﬁtion of them

in terms of the characteristics of pore space operating in dewatering.
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CHAPTER _TWO
EFFECTS _OF MOISTURE _IN POROUS MEDIA

2.1 GENERAL

Assoclated with the retention of liguid in porous media are
phenomena caused by the action of surface tension forces in the pores
of the material, The effects include, the depression of the
freezing point, the vapour pressure lowering, and the capillary
pressure exerted by the liguid retained in the pores. These effects
may be related to the curvature of the menisciil of the liquid in the
pores caused by surface tension, which may in turn be related to the
geometry of the pore space. Croney, Coleman and Bridge (1952) have
given a comprehensive review of the methods available for measuring
these effects and the calculation of pore properties from them,
However only the caplllary pressure and the vapour pressure lowering
will be discussed here ag they aremore generally encountered.

2.2 CAPTLLARY PRESSURE

A pressure difference exists across a curved liquid meniscus
such that AP o C where (C) is the curvature of the liquid/air
interface. This is often called the pressure deficiency of the
interface. The constant of proporticnality is the surface tension
of the ligquid (T). The mean curvature may be expressed by the radii
of two curves on which the surface cutsltwo matually perpendicular
planes containing its normal. If these are taken as r; and Ty
conventionally congideresd positive 1if the centre of curvature lies
on the same side of the interface as the non-wetting (i.e. air)phase
the mean curvature 1s

: =[; + .1.]
T1 T2

and the pressure drop across it given by the Laplace equation
AP = [ 1+ 17T
2

1‘1 T
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If the liquid is contained in a circular capillary radius (a) and
the interface has a contact angle (8) against the wall of the
capiliary then the curvature is gilven in terms of the radius of
the capillary tube ry = T, = &/cos ©

AP = hpg = 2T cos &/a
This is the egquation governing the well known phenomena of rise of
liquid in a capillary tube.

In porous materials the curvature of the meniscus at a given
gaturation of capillary pressure from equilibrium considerations must
be everywhere the same, The equation given ghows that the curvature
may be expressed in terms of the capillary pressure to which it
gives rise. The actual shape however is extremely complex and is
dependent on the geometry of the pore space ag well as the degree of
saturation. If circular capillaries are assumed the relationship
between curvature of the meniscii and pore size can be solved,‘
Therefore for this simple case it is possible to relate the expression
for capillary pressure to the radil of the caplillaries. This was
iliustrated by the derivation of the equation for capillary rise of_
liquid in a tube. To displace the liguid in such a tube the
pressure required is just greater than that given by the equation.
Considering a bundle of tubes full of water. If the displacing
pressure is increased from zZero there will be no moisture movement
until a pressure is reached which is just greater than that which the
largest tube in the bundle can support. Tubes of this size will
then be emptied., The pressure may then be increased to displace
water from the next largest tube size and so on until all the water
is rgmoved. It is poss‘ible in this way to build up a tube size
distribution since values of displacing pressure are inversely

proportional to tube radii and the volume of water removed at a given
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pressure is proportional to the volume of tubes of the corresponding
size., Therefore a plot of pressure versus the summation of the
volume of liquid displaced is equivalent to a cumulative tube size

distribution. Fig. (3). This assumes that the porous medium ig

CAPTLLARY PRESSURE
CURVE

Fig, (3)

ZVolume removed
rigid and does not deform under the applied pressure stress.
2.3 VAPQUR PRESSURE LOWERING

It can be shown thermodynemically that at a curved liquid/
gas Interface the liguid exerts a lower vapour pressure than at a

plane surface. The Kelvin equation gives the relationship

¢ = 1 Rt Infh
T b

which can be related to capillary pressure

P = T = Rt Inlh
My

by

This phenomena may be treated in a similar manner to that
adopted for 'capillary pressure by using a bundle of capillary tubes
as a model. Consider a horizontal capillary, <©ompletely filled
with water and not in contact with any outside source of liquid.
Placed in an atmosphere of 100% relative humidity the liguid surfaces
at the ends of the cépillary will be plane, If the relative

humidity is reduced a slight evaporation will create a concave

18



meniscus accerding to the equation given, If the surrounding relative
humidity is reduced further a state will be reached when the radius
of curvature of the meniscus will be equal £o the radius of the
capillary itself and any further reduction in the relative humidity
will cause the meniscus to retreat into the tube and all the waﬁer
will evaporate at this value. Therefore at a given relative
humidity all the capillaries with a radjus greater than a given value
will be empty, and all those smaller than & giveh value will be full;
if equilibrium is attained., Cleariy by measuring the saturation of
a given porous medium in equilibrium with abmospheres of a range of
relative humidiﬁies it is possible to determine the curvature
saturation relationship and for capillary tube bundles the pore-
dize distribution,

2,4 RANGE AND APPLICABILITY OF THE EFFECTS

The upper 1limit of applicability of these relationships is
that when the curvature is plane,and the lower limit is when the
curvature is of the order of molecular dimensions and interfaces

have no real existence., Table I gives the capillary pressures,

TABIE I
pore radius Capillary Pressure Relative Humidity
F em He %
0 100,000
110 | 1 ‘ 99,999
22 . 5 99.995
11 10 99.990
78 14 99.986
54 20 | 99.980
1,1 100 99.901
11 1,000 99.025
0Ll 10,000 90.668
002 50,000 61,270
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relative humidities and fadii of various circulaf'éﬁpillaries caleculated
for water with zero contact angle and surface tension 72.5 dynes/cm.
The two effects,capillary pressure and vapour pressure lowering,can

be seen to be of use in different pore size ranges. The relative
humidity relation is not suitable for pore éizes greater than 'OEP

and the capillary pressures become very large for pores smaller than
.EP. In general here the pore sizes covered in the range of the
practical applicability of capillary pressure éffects will be
considered. The caplllary pressure effect iq,moreover,better

suited to studying dewatering,because the adjustment of equilibrium

is by fluild flow in partially saturated porous material caused by

a displacing pressure. It is possible therefore to say that
capillary pressure saturation measurements are analogous to

dewatering, Furthermore the results of capillary pressure experiments
can be considered as a pore size distribution defined in terms of

' dewatering parameters,

The vapour pressure lowering effect on the other hand does
not bear this analogy to dewatering as equilibrium is attained by
mass transfer across the liguid/gas interface. This also means
that the approach to equilibrium is slow and the technique is less
convenient to use.

For these reasons therefore the capillary pressure saturation
relationship will be used herse in studying cepillary phenomena
applied to dewatering.

2.5 MEASUREMENT OF THE CAPILLARY PRESSURE

SATURATION _RELATIONSHIP

2.5.1 Introduction
In the description of the capillary pressure saturation

relationship in terms of a bundle of capillary tubes it was
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mentioned that the method involves measuring volumes of water held
in the porous material for various displacing pressures. Several
methods exist for doing this and have been reviewed by Croney,
Coleman and Bridge (1952) and Coleman (1963), together with methods
baged on the other capilliary phenomena. '

2.5,2 Gravity Drainage Method

Gravity drainage of a column of porous material is historically
the first method used for investigating the capillary preséufé:
saturation relationship. In a continuous water column the héight
of a point above a free water gurface is the hydrostatid stfess
exerted at that height. Therefore if a saturated column is allowed
to drain, or a dry column is allowed to imbibe, then water
movement will continue until the meniscii in the pores are able to
support a column of water of a height corresponding to thelr gize,
The height aﬁ which a zone of a given gsaturation iz found in the
column gives the capillary pressure at that saturation.

This technique has been used since before the turn of the
century by many workers, chiefly soil scientigts, civil engineers
and oil field researchers. For a review of this work see Prill,
Johnson and Morris (1965). In the literature on dewatering
the technique has been used by Leverett (1941), Dombrowski and
Brownell (1954), Gillmore and Wright (1952), Burton and Thomas (1953),
Phillips and Thomas (1954) and Harris and Smith (1957).

One of the main difficulties in using this technique for
meagurement of capillary pressure saturation relationships is in
the measuring the saturations at various heights, Various methods
have been used, Leverett cut his columns into sections and
determined the saturation of each section directly. Gillmore

and Wright took small samples of material at the various heights,
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These methods however can only be used once on a given column and
it is difficult to study the approach to equilibrium, Furthermoré,
these techniques may introduce errors ag the column is disturbed

to take samples and moisture may be redistributed._ To overcome
these eriticisms Dombrowski and Brownell used an x-ray photographic
techniqus, and Burton ahd Thomas and Phillips and Thomas used an
electrical resistance method. Other workers (Prill, Johnson and
Morris) have used manometers to measure directly the capiliaxy
pressures at various elevations,

The time required for equilibrium to be reached in gravity
drainage is excessive., King (1899) found that even after 2% years,
drainage was not complete. Other workers find that within
acceptable experimental error a lesser time is required but this
may still be in terms of days. More seriously the method is not
capable of high accuracy because large quantities.of sample, and
for small pore sizes very long columns, are required. This ecan
lead to difficulties in obtaining uniform packing along the length
of the columﬁ.

2+5¢3 Suction and Pressure Plate Methods

These are a more simple and convenient way of measuring
capillary pressure saturation relationships. They consist of
applying a displacing pressure directly to a sample of a porous
material and measuring the volume of water removed or retained.

The main feature of the technique is the use of a support plate
for the sample which has smaller pores than the sample. Therefore
in the range of pressures required to desaturate the porous
material the support plate itself will remain saturated and able

to conduct fluld., A range of suitable materials are available for

thisg such as sintered glass, sintered metal and fine pored plactic
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membranes. Other requirements are for a method of applying and
meaguring the displacing pressures and a method of measuring the

volume of water removed. The technigue was first vsed by Haines (1930)

. Fig. (4) shows bis apparatus.

HAINES!S
I APPARATUS

:Sample

Fig. (4)

It consists of a buchner funnel with a fine pore support plate (Haines
used & sealed in filter paper) on which the sample rests. The suction
applied to the sample is the difference in level between the sample
and the water in the burette, Adjustments to this can be made by
moving the buchner funnel relative to the burette, or allowing some
water to run out of the burette using the double stopcock, The
‘water removed from the sample is measured by the change in level in
the burette. |

The apparatus hag faults, notably that the water displaced
from‘the sample changes the level in the burette and thus egquilibrium
is apﬁroached under varying pressure conditions, This is egpecially
unfortunate due to the existance of a hysteresis in cepillary
moisture properties between the moisture advancing and the moisture
receeding conditions which is discussed later, Flexion in the
rubber connections can also make the measurementg of volume erroneous.

Furthérmore,the apparatus is limited by the length of burette to
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capillary presauﬁés below aboﬁt 150 cms of water, This can be
extended by using mercury ag & banometric fluid when the upper limit
becomes 1 atmoéphere, since 1t is & suction method. |

Richards dnd his co-workers (1943) have developed a pressurs
plate apparatus which ia essentialiy the same bubt uses pressure
instead of suctiéﬁs The limits of this type of apparatus are those
imposed by the size of pore in the support plate, Using.regenerated
uncoated cellulose membranes, pressures of up to 10,000 ems of water
can be used, However with pores £ine enough to support this
pressure the approach fo equilibrium is slow.

Many workers have used an apparatus of this general type for
investigations where pore properties or capillary effects are

important, In soil sclence it is a standard technique, it has

also been used in Civil Engineering by Coleman (1963). Textile and
Paper research, Christensen and Barkas (1955), and Preston and
Nimkar (1952), 0il Field research Purcell (1949), Rose and Bruce
(1949) and by Chemical Engineers Newitt and Conway=-Jones (1958) and
Pearce and Donald (1959).

In problems involved in dewatering the method has been
used, as previously mentioned, by Harris and Smith (1957}, Gray (1958),
Harris (1959) and Morrow (1962). In the final form of their
apparatus Morrow and Harris (1965) used a controlled vacuum source
to provide displacing suctions and measured the volumes of displaced
water in a horizontel measuring tube with a small bore to keep the
meniscus vertical, This is very convenient for following the
approach to equilibrium and is also very accurate.

The method can be used on very small samples, Morrow &and
Harris (1965) obtained reproducible results for samples of dewn

to five particles thick, For these small samples the approach to
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equilibrium is quite rapid and 5 %ﬁole capiliary ﬁfessure curve can
be traced in a fow hours. Thé essential simplicity and accuracy
of the technique has lead to a gréafer insight in%o the phenomena
of capillary pressures and the pfoperties.of porous materials in
general,

2.5.. The Mercury Porosimeter

This 1s a similar method to that of the pregssure plate teche
nique. Mercury which is a non-wetting fluid (analogous to the
air phase in the preceeding section) is forced into the porous
material under pressure,-the size of a pore determining its entry
pressure.

The method has besn used by Ritter and Drake {1945} to obtain
pore slze distributions of‘several'different porous materials such
as diatomaceous eaﬁth and sintered glass. In more recent years
Kruyer (1958), Mayer and Stowe (1965) (1966) and Iczkowskil (1967)
have also investigated the technique. Seversl commercial instruménts
are available and have been reviewed in an article in 'Chemical
Processing! volume 1 1968,

The method is not considered further here because the
‘capillary desaturation technique is simpler and better suited for
investigating dewatering. TFurthermore for a given size of pore
a greater pressure is reguired in this method than in capillary
desaturation whiéh inereases the danger of disturbance of the sample,
especially with unconsolidated media considered here. Uncertainty
i3 also associated with the effect of contact angle which is
mentioned later.

2.6 CHARACTERISTICS OF CAPILLARY PRESSURE CURVES

The capillary pressure curve has been described in terms of

a bundle of capillary tubes with a distribution of radii., In
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general however the pores in porous media are not eireular and it
must be remembered that what is actually measured in the technique
is the relation between the volume of liquid retained in (or
removed from) a porous medium and the curvature of the'meniscii.
This meniscus is of complex shape but of constant curvature at a
given gaturation when at equilibrium. It is possible to describe

any part of it (and therefore the whole) by two radii of curvature

r, and r,. When the curvature is 3 + 3 then by considering
1 2 rl I‘z
ri =T, this becomes -% which can be defined as the radius of en
. e

equivalent spherical meniscus which will exert-the same hydrostatic
stress, or pressure deficiency, as the non-spherical meniscus, This
gives a reascnable description of pore radius which for most
purposes is ngt very different from the actual geometrical pore
radiuns which may be Indeterminate. Caution must be exercised
however in using this to relate the volume of water displaced at

a given pressure to the number of pores, sinece it is not =z
geometrical quantity and camnot be used as such., It is therefore
more correct to say only that a given volume of water is held in
pores of a given radius and not to use number of pores.

The bundle of tubes model can therefore give a good picture
of capillary pressure curves from the point of view of pore size, and
distribution and the nature of entry pressure. Capillary pressure
curves of real porous media however exhibit further characteristics
Fig, {6) which cannot be reproduced by the simple bundle of tubes
concept, Most obvious of these discrepancies is the‘existﬂ%be of
a defin#te quantity of residual moisture which cannot be removed
no mattér‘how high a displacing pressure is applied.

Furthermére capillary pressure curves for real porous media

exhibit a hysteresis: On desaturating a given porous material the

26



2 Volume removed

Fig. (6)



curve A in Fig, (6) is followed. Then if the returning or Imbibition
curve is traced by relaxing the displacing pressure in small amounts
and measuring the amount of water imbibed for the new equilibrium,
curve B is traced. This imbibation curve does not return 10100%
saturation., .. On further desaturations of the sample the new
desaturation curve rises to coincide with the first desaturation
curve and then follows it. TFurther cycles of desaturation or
imbibition can be made to folloﬁ tﬁis hysteresis loop, If the
desaturation and imbibition are interrupted at intermediate
saturations then minor hysteresig loops can bte described as showny

Thus a capillary pressure for rggl porous material is not
a unique function of satufation and the previcus saturation history
of the sample must be known to define the capillary pressure for a
given saturation or vice wversa,

Thig behaviour cannot be reproduced by a simple capillary
tube model. Explanations have been offered (Scheidegger (1956))
inlﬁéferms of the hysteresgis in contact angle between moisture
advancing and moisture receeding but the magnitude of the effect is
too great for this to successfully account for it.

Furthermore it is necessary also to explain the trapping of
air on imbibition, A better approximation to the pore space in
unconsolidated media is provided bj sphere packs and with some
properties of such a model an exﬁlanation may be advanced.

2.7 EQUAL SIZE SPHERES IN OPEN AND CLOSE PACKING

Spheres nay be packed‘in a variety of regular arrays but the
most slmple and useful of these are those arrays known as open and
close packing, The geometrical properties of these were investigated
by Slichter (1898).
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He showed that in opsn packing Fig. (7) each sphere touches

Open
Packing

Fig. (7)

six others and the lines joining the centres of eight spheres forms
a cube of side length 2r which is the smallest representative
element of the packing and called a unit cell, The porosity is
47.64%.. The pore space may be taken to be composed of a central
void which can hold a sphere of size .732r and is connected to
other similar voids in the packing by six outlets, one in each
face of the unit cell, The largest sphere which will fit through
thege is of size 4147,

In a close packed system Fig., (8) each sphere has twelve

points of contact and the unit cell is a rhombohedron or cuboid
formed by passing plahes through the centres of eight contié%us

spheres. The length of side is 2r and the face angles are 60°
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and 120°, This gives rise to adjoining cells of two kinds; a
smaller having tetragonal form which ecan contain a sphere of size
«225r and a larger having a cuboidal or rhomboidal form and which
can contain a sphere of gize ,29r. The continuity of pore space
can be imagined as joining the apices of the two kinds of cell.
Each of the four apices of a tetrahedral cell being joined to an
apex of four q;ffereﬁt rhomboidal cells, whilst eight apices of each
rhomboidal cell are joined to eight tetrahedral cells. Thus there
ére twice as msny tetrahedral cellw as rhomboidal and communication
is always between cells of different kinds. The waists between
each cell are all the same size and can contain a sphere of size
.155r. The porosity of close packing is 25.95% and is divided
between large and small cells in the ratio 6 : 13,

2.8 MOISTURE DISTRIBUTION IN SPHERE PACKS

Versluys (1917) identified 3 states of moisture distribution

in sphere packs., Capillary or saturation state in which the whole

of‘the pore space is filled with water. The moisture content in
this case is equivalent to the porosity of the packing., PFPendular
gtate in vhich water is held at the points of contact of the spheres
as pendular rings, In this the air phase is continous and can
flow but the water phase is discontinuous and cannot.  Therefore
moisture can only be removed by evaporation., This state therefore
corresponds to the residusl moisture found in porous media at the
end of a capillary pressure experimenf. Using the geometrical
properties of sphere packs it is possible to show, Keen (1924),
that in close packing the maximum size of pendular rings which do
not touch each other subtend a half angle of 30° at the centres of
the spheres. In open packing this angle has a maximum of 45°.
Fig. (9)
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Pendular ringé in Open and Close Packing

45° 30°

Fig. (9)

Using a simplification that pemiular ring meniscj?i/ are
circular the volume of a pendular ring between two equal size spheres
radius (r) which subtends a half angle (8) has been shown by
Wilsdon (1924) to be:

V = 87712 sinkg [1 ~ tan 29[;1- 29]]
Cos? 20 2

Therefore it is possible to calculate that the maximum amount of
moisture held as pendular rings in open packing is 18.2% of the
void space and 24.3% of the void space in close packing, Fisher

(1926) has shown that thetrus shape of a pendular ring meniscus

is a nodoid, however this makes little difference to the

calculations of volume. The residual moisture found in practice
in sphere packs is of the order of 5 - 10% of the void space, this
discrepancy will be explained in the next section.

Intermediate between these two states is the Funicular state

which can be imagined as when the pendular rings are large encugh

" to meet st their points of nearest approach and to coalesce.

They then form a network or mesh with air still occupying the
wider spaces of the pores, Both the air and the water phaseg are
continuous and can flow, This is the moisture gtate most
concerned in capillary pressure curveg.
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2.9 HAINES THEORY OF CAPILLARY PRESSURE CURVES

2.9.1 Introduction

The effects as moisture distribution in sphere packs varies
between capillary state and pendular state were the subject of a
series of papers by Haines (1925-30). He was concerned with the
cohesion found in packings due to capillary effects. Inaz
controversy with Fisher (1926) (1928) he advanced a theory of
capillary pressure in granular porous media which is still the
most complete available,

The explanation 1s based on the two cases of regular sphere
packs previously considered, namely open and close packing and the
egsentially cellular nature of the pore space. The various
stages as water is removed from a packing can be followed for this
example §f the desaturation of a close packing.

2.9.2 Desaturation of {lose Packing

At first when the packing is saturated é water interface
will surround it which has negligible curvature. As water is
removed the film is drawn into the surface pores, which have
waist like constrictions and open into wider cells beyond (as
previously described). As the meniscii in the surface pores
advance the curvature will increase and the pressure deficiency
of the interface will rise until the narrowest part of the waist
is reached, This has been shown to have a size of .155r and at
this point under a pressure deficiency o

P = T/r .%55 * .'J:f55 = 12,9 V/r
at some pore minutely wider than the others, the meniscus passes
the unstable point and abruptly expands into the cell beyond.

The displaced water redistributes itself and the shaps of the film
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in the evacuated cell is made up of meniscii at each corner
(except the one of entry) ready to penetrate further into the
packing by similar leaps. These meniseii are joined round the
cheeka of enclosing paiticlea by £ilms which are portions of not
yet fully formed pendular rings., TFurther decrements of moisture
are made at the same pféssure deficienéy since the waists are all
the same gize,

The process of evacuation extends cell by cell through the
packing until only pendular rings are left as immobile residual
moisture, The pendﬁlaf rings in this case have a pressure
deficiency of 12.9T/r, the pressure existing at their formation
and are therefore not at their meximum size of subtending a half
angle of 30°, At this maximum size 2 pendular ring has two radii
of curvature ry = 1551 ard vy = -.4221‘, Ty is convex and therefore
negative according to the convention. The presgsure deficiency in

this case is given by

1 1
P = T/x [.155 - .452] = 4,1 T/r

2.9,3 Jmbibition in Close Packing

If a reversal of moisture movement is considered i.e. the
cage of imbibition. The capillary suction is decreased and the
water film in each cell sags towards the centre until in one cell,
minutely smaller than the rest the bubble detaches from the wall
of a cell and collapses by evacuating air through the open pore.

The point of instability in the rhomboidal cell (radius .29r) is

- 1 1
P = Trel|= + =
el 4]

Therefore the entry to the pore remaing open up to this point

6.9T/r

il

because the pressure deficiency would have to fall to 4.1 T/r
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before the peﬁéﬁl&r rings coalesce at the waist., The smaller

tetragonal cell would £i11 at a higher pressure deficiency

Po= tx [.%25+ %.2; = 8.9 /%
“but these are éiwayé separated by the larger rhomboidal cells and
hence the water movement will not be general until the larger
cellg are able £o fiil.

2.9,/ Desaturation and Imbibition in Open Packing

The case for open packing is similar but simpler since
there is ohly one size of cell as well -as one waist size.
The entry value for decreasing moisture is controlled by

the waist size and is

414 )

all the moisture in the packing i1s removed at this value leaving

P =1 |2 + 1 = 4.8 T/r
. 14

pendular rings, For returning moisture the bubble in the cell

will collapse at

1 1
P = T/r|= 0= 27T
/x [.73 ¥ .73] 27 U

Since a pendular ring at its maximum size in open packing has
two radii of curvature ry = J4lrand r, = -y 586r then this hag

& pressure deficiency of

1 1
P = - - =
/v [;414 .586J 7 /v

and therefore the waists will remain open to allow the collapse

of the meniseii in the cells.

2.10 EXPERTMENTAL VERIFICATION OF HAINES THEORY
Haines was able to substantiate these theoretical results
in two experiments carried out on real sphere packs. TFirstly
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ho used 3/32" ball bearings arranged by hand in regular packings .
and observed the meniscus movements as paraffin oil saturating
the pore space was removed. The results show good agreement with

the theory and are ligsted in Table II,

TABLE II
entry pendular rings collapse of
value coalesce rhomboidal cell
Theory 12.9 T/x - 4.1 T/r 6.9 T/v
Experimental 11.3 - 11.5 T/r Le3 TfT 6.7 T/r

Further experiments were carried out using 190p glass
spheres in random packing of between 36 and 37% porosity using
the apparatus shown in Fig. (4) and deseribed in section 2.5.3.
The results of thia. experiment are shown in Fig. (10).

HAINES'S RESULTS

12

Fig. (10)
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Thé irregula; packing gives rise to a‘variable- pore s:‘@;,
which 1s In general wider than the ideal case and thus gives
lovwer values of pressure deficiency. The theoretical value for
entry will therefore be expected at the end of the funicular
stage just before the breakup into pendular rings. ' Gonirersely

for returning moisture the closure will commence at the
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theoretical value., From Fig. (10) it can be gseen that for th‘e;
desaturation curve general entry 'takes place at about 6.1 T/ r
at which pressure most of the moisture is removed indicating a
uniform pore size,  The final breakup inﬁo pendular ringd oeccurs
at about 11.0 T/r which compares ﬁell with the experimental and
theoretical results showm in Table II. The closure of the cells
in imbibition ocommences at around 6.5 T/r which also compares
well with the theory and the previous experiment. | General
closure occurs at around 4.1 T/r. The trapping of air on
imbibition , shown in Fig, (10) by the curve not returning to
100% saturation, was taken as being caused by the irregularities
in the packing, Thus some cells, larger than the average may
become isclated as the water front advances,

Further corroboration of Haine s’theory has been provided
by Hackett and Strettan (1928). They tested the assumption that
the entry pressure required to overcome a meniscus in the pores
of sphere packs could be taken as the largest possible inseribed
cirecle in the pore., Ball bearings were arranged in groups in
contact and the suction required to pull the water/air interfaée
through the pore was measured. The result of 11.3 -~ 11.4 T/r
is close to Haines experimental result. This was considered
also as good agreement with the theory bearing in mind the
complexity of the phenomena and the simplicity of the assumption.
The entx;y pressure for random packihg of equal spheres of
porosity of 36 - 40% was found. to be 4,75 T/r which is lower
than Haines value for random packing of 36 - 37% porosity, which
was 6,1 T/r.
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CHAPTER _THREE

CHARACTERISTICS OF CAPILLARY PRESSURE CURVES

3.1 HYSTERESIS

The Haines theory demonstrates that hysteresis in the
capillary pressure-séturation relationship is due to genuine
alternative configurations of the meniscii in the pore gpace,

A general theory of hysteresis called the domain theory has been
developed by Everett and his co-workers (1952—5) which considers
the case of any system in which a physical property depends on an
independent varisble in a non-reversible mamner, It is assumed
that such a system comprises of a large number of small regions

or domaing which are each capable of taking up more than one
meta~stable state for a single value of the external wvariable
controlling the gystems It is further assumed that transitions
between these states occur at defimi(f;e values of the external
vériable, these values differing according to whether this variable
is inereasing or decreasing. Enderby (1955, 1956) has extended this
by allowing that changes from State I to State II may either aid or
hinder the transition of nelghbouring domains from I to II, Thus
for a given domain the occurence of-a transition depehds not only |
upon the behaviour of the external variable,but also upon the
states of its neighbours.

The domain theory has been applied to capillary hysteresis
by Poulovassilis (1962). The total volume of water taking part
in a hysteresis loop can be divided into volume elements specified
by the capillary pregsures at which they empty or fill by -
experimentally determining the volumes involved as capillary pressure |
is relaxed or imposed. Assuming these elements retain their
identity during changes in suction it is possible to predict the
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state of the system after any sequence of capillary pressure changes.
Excellent agreement was found between predicted and experimental
curves. Philip (1964) has extended this on a less rigorous basis
by assuming that the distribution in geometricél relationships
between desaturation and imbibition curves is independent of pore
glze, This has the advantags of allowing a full description of
hysteresis behaviour from only one curvse, either desaturation or
imbibition,

In dewatering only the desaturation curve is involved and
the hysteresis behaviour is of interest only because it is related
to the pore sturcturs of the porous medium. Fig. (11) shows three
different pore shapes and also their behaviour in emptying or

£111ing.
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Pore (a) does not exhibit hysteresis and the relationship
between dlaplacement pressure and volume is reversible., Pore (b)
represents an independent pore domain which empties at one pressure
and fills at another. This is a contrast to pore (e¢) which empties
at one pressure and fills in two stages of different presgsures.
This sort of non-independence was not detected by Poulovasgsilis
and the whole pore space behaved ag an assembly of pores of
type (b). The dommin theory mey be considered as equivalent to
that of Haines,but on e more géneral basig.

3.2 RESIDUAL MOISTURE

The residual moisture held 1n a porous medium at the end
of a capillary pressure experiment has been shown to coh.sist of
pendular rings at the points of contact of the partieles. The
maximum smount of water held in this form in close packing has been
shown to be 24.3% of the void volume and in open packing to be
18.2% of the void volums. These values were reconciled with the .
5 to 10% moisture usually found at the end of a capillary pressure
experiment by the Haines theory which shows that pendular rings
have a size dependant on the pressure defficiency existing at
their.formation. The ideal case for close packing in which pendular
rings are formed at 12.9 T/r predicts a moisture content
comparable with residusl moistures obtained in practice.

As a consequence of this it is to be expected that different
poendular rings in different parts of a desaturated packing will
exist at different pressure deficiencies and have different volumes
‘since they were formed at different capillary pressures, This has
been confirmed by Harris and Morrow (1964) who made direct

‘nmeasurements of pregsures in pendular rings with a micro-manometer,
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Clearly in cases such as this when liquid in the bed is held at
various pressﬁre deficiencieé true equilibrium conditions do not
obtain. Since pendular rings are not in hydraulic contact with
one another equilibrium can only be attained in such systems by
evaporation and condensation. This will occur because of
vapour pressure lowering at a curved surface, Pendular rings
with a high curvature will grow by condensation and those with
a small curvature will evaporate until they are all at the same
curvature and pressure deficlency. This process is slow and the
effécts in terms of volume of water ih&olved is small and may be
ignored for all practical purposes.

Most theoretical caleulations of the volumes of pendular.
rings rely on an approximatioh of a circular meniscus Wilsdon
(1924}, Keen (1924), Von Englehardt (1955) Roée (1958) and
Mayer and Stowe (1966). TFisher (1926) however demonstrated that
the true shape is that of = nodcid and that the gain in accuracy
by using this to calculate the volumes of pendular rings was
small but could be significant for large curvatures. Kruyer
(1958) and Ieskowski (1966) took the shape to be that of a
hyperboloid of revolution which gives a better approximation than
that of a cirele. Melrose (1966) (1967) has given mathematical
functions for an asccurate solution which are stated to be in a
more convenient form than those given by Fisher in his accurate
solution, All of these concern the pendular ring formed between
two eﬁual and touching spheres. Rose (1958) considered the
general case of twe non-touching unequal spheres, He showed that
the-separation and the non equality of sphere sizes do not have &

| very large effect on the volumes of residusl moisture.
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Residual moisture has been shown expsrimentally not to vary
very much with either surface tension or contact angle (Morrow 1962).
Nemniger and Storrow (1958) however, did find that the volume of a
pendular fing formed in a bed és a water interface passed through
the bed could vary slightly with the velocity of the interface.
Thia effect is,however,insignificent and for most practical
purposes a sufficiently accurate estimate of the volume of a
pendular ring in a packing can be made by kmowing the pressure
deficiency when it was formed and assuming'the meniscus to be
circular.

3.3 SURFACE AREA

An interesting and useful feature of capillary pressure
curves, mentioned by Haines, 1s that they can be used to give
the surface area of the sample used. The work done in removing
moiéture from the sample is -[b dv which 1s the area between

the capillary pressure curve and the volume displaced axis. This
is equivalent to the work done in creating the new surface of the
1liquid, which at residual saturations tends to the surface area of
the bed. The area of the hysteresis loop can be taken as energy
waste& irreversibly. Haines showed that his results from Fig. (10)
were in reasonable agreement with calculated surface areas of the
glass beads used.

This relation was alsc derived Independently by Leveretl
(1941) who studied column drainage. He considered the curvature

saturation relation to be too complex for analytical treatment and
usged measured curves as functions which characterised the pore
'space in the packed bed., He derived on thermodynamic grounds
the relationship
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which in the limits of 100% and 0% saturation gives the surface areas
of the bed., Levééétﬁ also showeé that there are uncertainties
agsociated with usiﬁg this, These are that the relative proportions
of solid/liguid and liquid/gas iniéffacea are indeterminate and that
residual moisture leads to predicted surface areas less than the true
values. Furthermore the existance of hysteresis mast also be
considered. _

Payne (1953) fi954) and Rinqﬁ#ist 11955) investigated the
.method ag an alternative to measurements of surface area by
perméabilityi They obﬁained good results for a range of materisls
and particle size distributions with an error of not more than 10%.

The main advantage is that a shape or tortuosity factor is
not required as in permeability measurements and the method is
independent of particle shape or size distribution. There is also
an additional advantage in that it is possible to measure the area
contribution of different size components of a packed bed by
stopping the summation of the area at appropriate limits.
34 CORRELATIONS TFOR POROSITY VARIATION

An important feature of packed beds is that porosity is a
variable which depends on the way a given bed is formed. For
instance,particles packed into a container by pouring can have
their porosity reduced by tapping or vibration. Scott (1960)
had identified these two states as loose random packing and dense
random packing, Macrae, Finlayson and Gray (1957) and Macrae and
Gray (1961) have shown that in packing formed by pouring, an
increasing impact velocity decreases perosity up to a limit,
Packing formed by pouring particles in a liquid is generally looser
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than that formed by the same particles in air although Rutgers
(1962) has found that the porosity of the demse random packed
state is reproduc.;' 1ls in both air and watér. Different materials
of the same shape pack to different porositiea dependent on thelir
regilience (Macrse and Gray (1961)) and their surface roughness
(Leva (1947),

Theoretically porosity should be ihdependen‘b of particle
aize ag it is the ratio of vold volume and bed volume of a packing.
It has however beéen demonstrated by Andreasen .(1940) and Frazer
(1935) that fine.pa.rbicles pack to a higher porosity than coarse
ones. This is general]jr attributed (Gregg and Hill (1953)) to
the larger surface areas of fine particles and the effect of surface
forces or adsorbed layers. It is possible also that this could be
due to the lower bermeability of packings of small particles which
inhibif air or 1iqﬁid displacement nece-ssazy for conipaction.
McGeary (1961) aftemp{:ed some packing eiperiments in a partial
vacuum but the results were inconclusive due to air lesks causing
transport of the particles. From the point of view of the capillary
pressure curve porosity variation will affect both the volume of
the pore space and the size of the pores. Considerisg a givgf_ir--
pack of particles which may be packed in different porosliﬁ-i.eé.. '. At
the end of a capillary pressure experiment the packing with'the
higher porosity will have released more water than the packing with
the smaller porosiﬁy because it contains mors, The falues of
cepillery pressure will alsc be different because the packing with
the lower porosity will contain smaller pores and hence give rise to
higher capillaﬁ pressurss. These effects may be seen in Fig.. (12).

The saturation axis may be normalised by expressing the volume of
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Effect of

~Porosity
Variation

- Fig. (12)

Volume removed

water removed as a percentage of the volume of water which can be
removed, On this basis all saturations in capillary pressure
experiments are between O and 100% and residual moisture is
ignored. The capillary pressure axis correlation is more complex
gince what is required is 2 correlation for the variation of pore
size with porosity.
| Smith, Foote and Busang (1931) attempbed an analytical
‘treatment of this based on an idealised packlng, All packings
were considered to be made up of close packing with spheres
separated by a distance (d) which can be adjusted to give the
required porosity. A relationship cén be derived between sphere
radius, separatlon and porosity

(2r+ @)3 = 4 /2w

3 (I-e)

It had earlier heen shown that the capillary rise in an
irregular pore could be related to the maximum value of perimeter/
ares,

The pore space governing desaturation may be defined by
three different minlmum pore sizes in the assumed unit cell,

These are shown in Fig. (13) together with their relative frequency
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of oveccurence, The mean value of this quantity for the agsumed unit

¢ell is therefore

P = 2pa+ 3pb+ 3pc
8 2k + 3KE - Bﬁc

and by combining these relationships the meximum capillary rise is

= 2 21 T
; [[.959 / (-3 -1] Tpg

From thig, capillary rise is calculable for any mono-size
pack of spheres of any porosity. Experimental resulfs from
drained columns were shown to agrse with this, A similar expression
could not be derived for the case of imbibition but results were
shown to lie close to a line given by

H=2(1eT1
e Tpg

This was derived by considering a random cross-section of the packing
but could not be gained rigorously.

Leverett (1941) correlated experimental results gained from
colum drainage and imbibition experiments by plotting the dimension-

legs group

Mﬂﬁe{ against saturation
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This is called the Leverett j function is usually expressed (j)s \

and gives tﬁé curves one for drainage and a lower one for

imbibition for a variety of‘teéted materials.. The group can be

derived from éifher of two assumptions. l. That capillary height

is inversely proportional to an equivalent circplar diameter of

the voidse which is ealeulated from porosit& and permeability,

2: That ﬁhe interfacial aﬁrface area between two fluids at a given
C . . ¢ /paw‘t‘f‘( es
saturation 1s a defindte fraction of the total surface of the semd.

The correlﬁtion has been used by oil field research workers and

was modified by Rose and Bruce (1949) to include contact angle

(s = T [K
T cosB | e

Carman (1941) showed that the Laplace equation could be

expressed in terms of a hydraulie radius

AP = T
M
where M = yolume of a column of water in a capillary

area of wetted surface of a capillary
this value of M is the diameter of a circular capillary with the

same ratio of perimeter to area ss a given non-circular capillary.

This was compared with values of [-]-' * -l] for a variety of
T T .
1l 2

regular shapes such as, parallel plates, ellipses, rectangles ete.
and found to show good agreement with both calculated values and _
experimental results based on capillary heights in tubes of various
shapes. The hydraulic fadius of a packed bed may be calculated.
The area of the wetted surface iz L A S and the volums occupied
by liguid is L A e, therefofe

M = LAe = @
LAS S

il

but since 8 (1-e) So

therefore = P So (1-e) T

—————
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The same relationship for h&draulic radius has been
derived by Debbas and Rumpf (1966) from consideration of a
random cross-sectlon of any irregulaf packing.

The experimehtal results Sanckett and Strettan (1928),
and of Smith, Foote énd Busang (1931) show agreement with this.
Furthermore, the Leverett (j) function can be derived from this
by substituting thé Kozeny-Carman equation for permeability.

Harris (1959) amplified this by noting that the same bed
packed in different porosities would nevertheless have the same
total surface area, Therefore in Fig: (ié) the areas under the
two curves should be the same,

Calculations of mean hydraulic radius from both the area
underneath a capillary pressure curve and the average pore size
are pogsible

M M=2T

6] %o hypg

Harris found good agreement between thfse methods which
corroborates the correlation relationship.

An alternative correlation has been proposed by Thomeer
{1960) for consolidated samples in mercury porosimeters. He
noted that capillary pressure curves pleotted on log. log.
| co-ordinates approximate to hyperbolas., Assuming that this is
alvays the cage he has derived a relationship to define the
location and shapes of capillary pressure curves in terms of a
'pore geometrical factor!, This is basically an empirical
correlation and no data has been given to allow its extension to
unconsolidated media nor to the effect of porosity variation,

It may be concluded that it is possible to produce a

unique curve for & given pack of particles no matter what their
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porosity variation. Both Gray and Phillips and Thomas experienced
difficulty with reproducﬁcbility of packing and hence capillary
pressure curves in their experimeﬁts.. This could have been over=
come by using the correlation method.'. Furthermore by including
gpecific . surface all capillary pressure curves for the éa.me pore
gize distribution  should be correlatable to the same curve and
differences in pore size distribgtion will be shown by the ghapes
of' the curves only, "

3.5 EFFECT _OF czmmg ANGLE

The existdnce of contact aﬁgle has ﬁot so far been

considered and it has béen-assuiﬁéd that the solid phase hag
always been fullywetted by the liquid, that is the contact angle
iz zero. For greater generality the contact angle should be
included in the capillary pressure relationship. For the case of-
8 capillary tube this was demonstrated in section 2.2 and it is .
usually extended to other cases &s a multiplying factor to the
surface tension by analogy.

Bartell and Osterhoff (1927) used the relationship

P = 2Tcos®/ r

to determine contact angle in porous systems by measuring the
pressure required to regist imbibitlon of liguid. Rose and
Bruce (1949) incorporated the contact angle in the Leferett (j)

function in a similar way

($)s = 2 /E
TcosB /[ o

Bethel and Calhown (1953) found that this was not sufficient to

¢
accoung for the effect of contact angle in porous media. The

horizontal part of the capillary pressure curve fitted the
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dorrelation but at ﬁhe extremes of saturafion it did not.

The fallacy of using contact angie in porous media by
arialogy with the rise in a capiilhry tube may be séen by considers :
ing the capillary rise in aconical capilldry of angie (¢) to the
vertical, and radius (r) at the liquid/air interface. If the
meniscus can be assumed as having approximately spherical
gymmetry then

P = 27T cos(6 - 0)
T

Thus the contact angle interacts with the geometry of the porous
medium in 2 more complex way than the simple capillary tube can
account for. A further complication is that contact angle
exhibite a hysteresis between moigture advancing and moisture
receeding conditions.

Harris, Jowett and Morrow (1964) attempted to overcome
these difficulties by discussing the effect of contact angle in
porous media in terms of the correlation of capillary pressure
curves. [Using

¢ = APM
T

they took that capillary pressure relationships are always of the
form

5 = £(¢
and results of different capillary pressure experiments are
correlatable if for zero contact angle the function above gives the
same curve, For a correlatable bed having a contact angle greater
than zero an experimental relationship may be obtained

8 = £(c,)

vhere (£5) is analogous to (f). To account for the effect of contact
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angle a correlating factor is introduced in terms of an apparent
contact angle (6) such that
§ = .u‘.‘((}e / cosd)

Therefore a plot of ((2e / cose ) :_againsi; (8) gives the same
curve (f) as was obtained when the contact angle was zero,

‘The apparent contact angle measured using this method for
various treated coals,was compared with equilibrium contact angles
measured by the sessile drop method on polished coal surfaces.

It was shown that apparent contact angle for the imbibition cease
was equivalent to the equilibrium contact angle but for desaturation
the equiliﬁrium econtact angle was thi'ee times greater than the
apparent c;ontact angle, |

. In practice unless the exiété%ce of a contact angle is
defipﬁely gstablished it is usuwal to assume that the solid is
fully wetted by the liquid. Mercury exhibits a contact angle on
most solids of around 140° and this introduces fresh complexity
in to the mercury porosimeter method for measuring pore éize
distribution.

The effect on variation of contact angle on residual
moisture in both bhedgof glass spheres and fine coal was found by
Morrow (1962) to be negligible.

3.6 PORE STZE DISTRIBUTION AND THE

NETWORK _ MODEL

The effect of pore size distributions in porous media on
capilla.rj pressure curves has been discussed in terms lof a bundle
of capillary tubes model of porous media by the method used by
Ritter and Drake (1945) and Gray (1958). Real porous media however

do not consist of single pores going from one face of the material
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through to the other,but rather of a compléx three dimensional
network of small intercomnected pores. These interconnections
which are ignored in the bundle of tubesg model,to make
mathematical operations on the model simpler;are important when
considering the effects of a pore size distribution on the
desaturation mechanism, A more realistic model for pore
structure has been proposed by Fatt (1956) and canlbe used to
demongtrate this,

Fatt considersd that the network of pores which exists in
real porous media could'be repreagented by a relatively small
regular two dimensional array of capillary tubes.

This is equivalent to assﬁming that the actual irregular
configuration of connectivity in the medium is less important
than the faect that it e#ists, and that its three dimengional
agpect can be represented in two. As a justification of this he
noted that a very thin slice of sandstone sandwiched between two
planes hag the same properties as a cube of the material, It is
also assumed that the whole porous medium can be represented by a
relatively small number of tubes (Fatt used 200 to 400). Morrow
(1962) (quoted in Morrow and Harris (1965)) found that capillary
Pressure curves were reprodué?%le for very small samples of the
order of five particles thick which lends support to this.

To obtain a capillary pressufe curve from the network model
a pore size distribution is divided into a number of pores or tubes
which are then randomly located in a regular array ags in Fig. (14).
The volume of a tube of a given radius is reguired for this and
since it can not be measured Fatt used an assumption, later tested,

that the length of a cylindrical pore ig inversely propertional to
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its radiﬁé. A stepwise desaturation procedure can now be followed
by assuming the model to be £illed with wetting phase and
surrounded by non-wetting phase (i.e. water and air) and applying
and imaginary displacing pressure in increments corresponding to
the radil of the tubes in the network

AP = 27T/r
A tube mey be emptied if the displacing pressure is sufficient to
overcome the capillary pressure in it, andif the;e is a non-wetting
phage path to it. For the first pressure increment the tube must
therefore be connected to the edge of the network. Any tubes in
the interior of the network will remain full if they can only be
approached through smaller radius tubes. The network is
examined for all displaceable tubes and their volume contribution
sumed, The values of pressure and displaced volume corxrespond to
one point on the capillaﬁy pressure curve, Further points are
obtained by increasing the displacing pressure until the model is
completely desaturatea and a full capillary pressure curve traced,
It can be seen that as a contrast to the bundle of capillary tubes
this model shows that a capillary pressure curve is not a true

cumulative pore size distribution as it underestimates the
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contribution of iarge pores and overestimates tﬁe contribution of
medium size pores,

Residual moisture is not considered in the desaturation
process described above, and may be taken to consist of immobile
fluid acting like a part of the solid matrix, Alternatively the
trapping of moisture can be similated if,in addition to the _other
tdesaturation rules', the requirement of a continuous wetting

phase path to allow removal of moisture from a pore to be dilsplaced 1s

stipulated. When this rule is adopted quite large amounts of wetting—---
phase beoome trepped and it is more convenlent to assume that this can
be removed by film flow oﬁ the pore walls or through a connection in
the third dimension. |

Fatt tested the model by applying the desaturation procedure
to several different pore size distributions and different network
arrays with 4, 6, 7, and 10 tubes connected to each tube. In all
cases the curves gained from the model were gimilar to usual capillary
pfessﬁre curves. The results showed that as the number of comnections
ﬁ;er tube increase or the pore size distribution is narrowed, the
| capillary pressure curves more approached those given by the bundle
of tubés model. The bundle of tubes model can therefore be
considered as a well connected network best suited to mono-wize
pores. . However the capillary pressure curve was more influenced
by the pore size dlstribution than by the .network type. The
relationship between pore radiuvs and length mentioned earlier ag
being .needed to dlvide a continuous pore size distrihution into a
digerete number of tubular elements was found not to be very eritical,
Several relationships including 2 random combination of p-ore radius

and length were tested and found %o have little effect on the

54



derived capillsry pressure curves. The agsumption that the length
of pore was inversely proportional to radius was preferred because
of the flow properties of the network which are discussed in a
later section,

A network mbdel hag alsc been used by Harris (1965) applied
to a pore size distribution. He noted that any plane or straight
line drawn through a random ;ﬁacking exposes a section which should

be representative of the packing. This can be represented in two

~ dimensions by the rows and colums of-a latin square,  Capillary

pressure curves of the appropriate shape were obtained using a
gimilar set of desaturation rules. Harrig also included the effect
of residual moisture in the form of.pendular rings by designating
the volume of a pendular ring formed by the penetration into a pore
by the pressure difference existing at the time of entry. | He also
examined the effects of a variation in pressure stress through the
model such as occurs in gravity dralnage. Finally he mentioned
the posgibility of building up series of these latin square models
to represent three dimensions in the packing, but 4id not g%&sue
this,

A network model has also been used by Dodd and Kiel (1959)
for capillary pressure curves, to invegtigate the effects of
variable wettability in porous media.

It may therefore be concluded that the network medel provides

an intimate description of the desaturation mechanism which leads to

a capillary pressure curve, This demonstrates that a capillary

pressure curve is not a true cumilative pore slze distribution as
the contribution of large pores is under-estimafed and that of medium

pores over—estimated,
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A quantitative agsessment of these effects has been made

by Meyer (1953): He used probability concepts based on an
agssumption that the different size pores in a porous material are
distributed randﬁml?g and did not include the factor of connectivity.
An expression was derived by which correction could be made to a
capillary pressure curve to give a true pore size distribution,

The method of using this involves a trial and error procedure and

is tedlous to use but does give corrections of the right order.
”Hoﬁéver'it'has'not’gained acceptance and-the assumption-of the . —.
bundle of capillary tubes is still used without correction in

calculating pore size distributions from capillary pressure curves.

3.7 CAPILLARY PRESSURE CURVE3S FOR SPHERE

SIZE MIXTURES

The only quantitative prediction of capillary pressure
curveg mentioned so far are those applicable to regular packings
of mono-gize spheres. The main value in capillery pressure curves
is however that they allow pore size distributions and their effects.
to be handled. The Fatt network model gives a qualitative
description of the effects of pore size distribution but it requires
a pore size distribution to do this, Some assumption 1s therefore
required about the nature of pore space in non-regular packings
such ag those with a range of particle sizes. Naar and Wygal
(1962) have developed a method which has successfully predicted
capillary pregsure curveé for mixtures of up to 13 components.

In this the properties of mono-gize random packs sre
conslidered as known. Binary mixtures of these are taken as
conglwting of two zones: one Zone where the graing form the mogt

denge mixture possibie the properties of which can be calculated,



the other containing only smali corponent, or lafge component
depending on which is in ‘excess, The poresity of these binary
mixtures can be conputed vhen the respective volumes of the two

zZones are known, The pérmsability'and capillary pressure curves

are teken to be defined by a weighfed average of the two zones for
which the averaging functions can be determined experimentally and
should be independent of the composition of the mixture and of the
size ratio of the particles. Two exceptions to this are made

_which carmot be dealt-with,  If the small particles are small - - - -
enough to flow through the pores in the packing of the large
pﬁrticles the mixture segregates into two disgtinet layers and the
packing is anisotropie, When the small grains cannot flow

through the packing of the large ones but can be retained in the
pores then the number of grains per pore is not likely to be constant.
This requires a probabilistic approach which was not attempted.

The method is therefore restricted to particle size distributions with
a spread of aboubt 4.5:1.

Mixtures of more than two components can be considered as
being made up of a humber of binary mixtures, For example a ternary
mixture will consist of three different binary mixtures 1/2 2/3 3/1.
If the theory is consistant the averaging functions found
experirentally for binary mixtures can also be used in predictions
for milti~component packs.

The theory does not make any assumptions about particle
shape but since this will affect pore size distributions spherical
particles were used to test the theory., The effect of particle
shape could be investigated in isolatlon afterwards. Uniform

pores resulting in flat caplillary pressure curves will be exhibited
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by mono-size packs of spheres and also binary mixtures at maximm

density. The other binary mixtures will have capillary pressure

curves which will be welghted averages of the flat curves given by
the different zohes and will also contain uniform pores. Multi-

conmponent ﬁixtures will alsc display a nerrow range of pore sizes

due to the 1imitations on the ratio of the size of 1argé particles
to small ones.

Extehsive tests were madern binary mixtures with a range
of size ratios and on multi-component-packs-of -3, -5 and-13-- -
different sizes, The results confirm the theory and also compare
well with porosity results for ternary mixtures given by Graton
and Frazer (1935).

The method is limited to size ratios less than L5 to 1.
end also relies on a rather rigid conception of how different sizes
of particles interact with one another in random packing, It is
also difficult to use the technigue in a microscopic deseription
of the moigture effects in porous media vwhich would allow extension
to 1llustrate the mechanism of dewatering,

3.8 DISCUSSION OF CAPTILARY PRESSURE  CURVES

"RELATED TO DEWATERING

From this survey of the capillary pressure effects in porous
media it can be seen that the capillary pressure curve provides an
intimate deseription of the nature pore space in porous media in a
way which other properties such ag permeability or porosity cannct,
The curve can be interpreted to give surface area, pore size
distribution or mean pore size, and the results can be u1sed to
calculate porosity. The nature of residual moisture is illustrated
and the exisﬁé%ce of hysteresis-also allows further characteristics
of the structure to be analysed. ' )
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From the point of view of dewatering the capillary pressure
curve provides information on how moisture is held in packed beds
and shows that this is controlled by the pore structure of the bed
especially the distribution of pore sizes. Fﬁrthe}mnre,since the
various quantities which can be measured from the capillary pressure
curve are equivalent to those used in permgability rélationships
is should be possible to use them to predﬁzt the way moisture
flows out of a desaturating packed bed &ithout involving specifically
saturated flow phenomens.

However, the apalytical treatment of the capillagxrprffgu:? i
| é;;vezisuéﬂméé i;”pf;;;dé&_bf gg;"ﬁ;;ﬁés_;heony, only deals
quantitatively with ideal packings of mono—sizeﬁ spheres, Deviation
from ideal behaviour such as is shown by the shapes of the curves
and the trapping of air during imbibition were recognised by_Haines
to be due to the inevitable irregularities present in real porous
media but were not treated quantitatively. These effects and the
effects of a particle size distribution must be included in the
theory because of their importance in dewatering.

Two approaches have been discussed which try to account
for these . The qualitative deseription provided by Fatt's
network model (section 3.6) and the quentitative prediction of
capillary pressure curves from a gphere size diétribution by Naar
and Wygal {section 3.7).

The Naar and Wygal approach, alfhough it is suppoited by
experimental evidence, relies on a rather rigid conceptipn of how
particles of d@ifferent sizes and relative proportions inleract in

a packing., Furthermore,it is restricted to a small runge of

particle size distribution which only involves relatively uaiferm
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size pores. It is also difficult to see how the approach can be
extended to give further ingight into either capillary pressurse
curves or the mechanics of dewatering,

A more satisfactory extension of present theory would be if
the network model could be made predictive. This would allow a
more rigorous test of the model than the subjective ones possible
in its present form and would provide a detailed description of the

action of the two fluid phases in a porous medium during dewatering.
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CHAPTER _FOUR

PROPOSAL _ OF THEORY

4.1 INTRODUCTION

The need for a theory to represent the pore space in packs
of particles with a distribution in sizes has been emphasized. The
Fatt network of capiliary tubes model has been shown to be success-
ful in representing gqualitatively the effect of pore size

distribution and the inter-commectiong of pore space on ecapillary

pressure curves,  Bub in this the tube radius gistribution must™

be derived from a pore size distribution and the lengths of the
individual tubes camnot be properly specified. (For example a
long narrow tube may have the same volume as a short fat one).
Furthermore aé the model was derived mainly for consolidated media
the effect of porosity variation was not considered. In order

to make this model predictive and applicable to unconsolidated media
the pore sgpace in a particle pack must be described.

4,2 PARTICLE SIZE DISTRIBUTION AND PACKING
The effects of particle size distributions on packing has

been the subject of inquiry for many years because of its importance
in many fields of technology. It has been mstablished that packings
of mono-gize particles have in general higher porosities than those
composed of a distribution of gizes., Thus two different sets of
uniform particles having separately the same porosity will when
mixed together produce a packing of a lower poroéity.

Ag a first step to the problem it is possible to compute
the sizes of spheres required to just fill the interstices in
regular packings., Horsfield (1934) and White and Walton (1937)

have ﬁade calculations of this sort aund shown that close packing
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can have its porosity of 25.95% redused to 14.9% by the addition of
gets of smaller spheres of five gelected sizes, If finer and finer
sizes are added the porosity will tehd to zero, This however takes
no account of the complexity of the interactions of different sizes
and relative proportions in random packing.

Experimental investigation of the problem has resulted in
empirical methods for predicting the ﬁinimum.porosity of mixtures,

Furnas (1929) (1931) added fine particles to coarse ones and

repregsented his results as a seéigéﬁbf 5;;;65; ~ These can be used
to prediet minimum porosity for different numbers of components
from their relative proportions and size ratlos, Andreasen (1940)
has made a similar study., Other empirical investigations have been
carried out on irregular particles by Fuller and Thompson (1907),
Westman and Hugill (1930), Adwick and Warmer (1966) and on spheres
by Graton and Fraser (1935), Smith and Lea (1960), Parrish (1961},
Epstéin and Young (1962), Bo, Freshwater and Scarlett (1965),
Lyer and Soppett (1965), McGeary (1961) (1967) and Ridgewsy and
Tarbuck (1968).

Several theoretical treatments have also been advanced.
Lewis and Goldman (1966) have given two theorems by which the
characterigstics of particle size distributions may be used to
predict weight ratlos of different sized components to achieve
maximum packed density. Welckowski and Strek (1966) have given
equations to predict porosities of mixtures in terms of the
properties and relative proportions of components in a mixture,
Ben Aim and Le Goff (1968) investigated the effect of the container
wall on the radisl variation of porogity and have extended the

treatment to binary mixtures, These theorieg are usually based
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on an agsumption of a perfect ordered mixture of the varlous sizes.
Rose and Robinson (1965) have shown that this state is uncbtainable
with practical mixers and the best that can be hoped for is a
perfect random mix, This lesds to higher porositieg than the
theories would predict.

None of these treatments are capable of the extension required

here, ag they mainly concern the bulk property of porosity and leave

‘agide pore size distribution. More fundementally however the

nature of random packing has not yet been adequatelymdesé;:l.il;édx é;ren
for mono-aizes. Much interest has been directed to the problem
because of its relevance to the theory of the structure of liquids,
Bernal (1964). Random packing of spheres by computer simulations
have been attempted. Walkley and Hillier (1967), Mason (1967) and
Smalley (1962)., In general these are not satisfactory because of
the unrealistic methods adopted to produce the packing, iﬁvolving
expanding spheres, or progressive removal of overlapping spheres
etec. These types of operation are made necessary by the fact that
particles occupy a finite amount of space and cannot overlap one
another, In addition to these geomstrical effects, which are
everi more complex for mixtures of sizes, must be added statistical
effects due to the randomness of the packing. A study of this
for unequsl spheres has been made by Higuti (1961).

The complexity and importance of the interactions of thesse
two effects have led: Blum and Wilhelm (1965) to state that the
solution of the packing problem requires a new discipline called,
by them, statistical geometry, Debbas and Rumpf (1966) have used
an amalgamation of geometry and statistics applied to a random

packing, This was done by application of an expression derived
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by Wiecksell (1925) by which the particle size distribution in a
packed bed can be related to the particle cross-sections exposed

by a random section of the packing. It is difficult to see how
this can be made predictive as it depends on the situation already
existing in a given packed bed. A more direct application of
statistics and geometry to the problem has been made by Wise (1952).
He described how the properties of a packing of unequal spheres at
its minimum porosity could be related to the sizes and relative
numbers of gpheres in a packing. This approach is covered in

the next section and is extended to predict a tube size distribution

for a network model.

443 WISE MODEL, OF RANDOM PACKING OF
UNEQUAL _ SPHERES

Representations of pore space already existing, such asg those

of regular packings are used because the geometry is manageable and
adequate for the spplications considered. Here however the
distribution of particle sizes in a random packing mugt be
considered. Wise (1952) and Hogendijk (1963) have provided a
mathematical description of one limiting case of this type of packing
which can be used to extend the network medel.

An assumption is made that in the densest packing possible
of a set of unegual spheres each sphere touches its neighbours.
Thus the space in the packing can be divided up by imaginary lines
joining the centres of touching spheres forming tetrahedral units
containing both solid and void. TFig. (15) shows this ir two -
dimengsions, In practice this assumptiop is false and there will
always exist gaps such as that marked in the figure, The fiiling

of these gaps will be promoted the wider the sphere size dist:ibwution
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but they may never be completely eliminated. Here however they
are assumed 5nt to exist., The packed bed is therefore divided into

tetrahedral units which completely fill the space occupied by
the packing. The properties of the packed bed can then be given
in terms of these units.

Assuming (n) different radii of spheres in the packing
the number of different tetrahedra that are possible is given by
n{n+1l) (n+2) (n+3) /4l

Hogendijk (1963). Therefore in a 3 component pack there exist
15 different tetrahedra which can be constructed from these

3 different sphere sizes, they are listed in Table III

TARIE IIT
(1) 1111 (4) 1122 (7) 1222 (10) 1333 (13) 2233
(2) 1112 (5) 1123 (8) 1223 (11) 2222 (14) 2333

(3) 1113 (6) 1133 (9) 1233 (12) 2223  (15) 3333

The relative frequency of occurence of these tetrahedra in a random
assembly of spheres will depend both on the relative numbers of °
the different spheres and also their relative sizes. This can be

illustrated by considering a three component pack with spheres of
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radil 1, 2, ahd 3 units and relative proportions by number

50, 30, 20 say. Since there are moré spheres of radius (1), then
tetrahedra ¢ontaining (1) will be favoured. From the point of
view of size however a smaller sphere can fit lesd other spheres
around it than a large one, and so can take part in less tetrahedra,

Therefore tetrahedra with (3) in will be favoured Fig. (16) shows

Fig. (léjw .

EFFECT OF SPHERE

SIZE ON TETRAHEDRON
FREQUENCY

this in two dimensions. For a three dimensional measure of thi;
Wise used the sclid angle subtended at the centre of a sphere by
another touching sphere expressed as a fraction, Therefore the
probability of a sphere taking part in a tetrahedron will be
related to

£/ A

where (f) is the number frequency of the sphere in the packing and
(A) is the average solid angle subtended at that sphere by the otherw
in the packing., Assuming that the tetrahedron system in a packing
is obtained by a random combination of groups of four spheresg then
the relative frequencies of the various tetrahedra are given by the

respective terms of the expansion of the expression
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For exanmple the tetrahedron 1233 will have & relatlve frequency
JARE T S A T 12 £ . £, [
1 213 = 1 2

This can be generalised to

41 el? (e.1P [s]e
Huea |2 [33 [-3-}
Ay 2]

where (a) (b) and (c) are the mmber of times 1, 2 or 3 appear in

the given tetrahedron. For the example above this becomes

1 1 2
ST = I I
11 1} 21 |5 1 Z
_2) 3
However the mean solid angle (A) .for each of the different spheres
in the packing cannot be determined analytically unless the
frequency distributicn of the tetrahedra in the packing is knowm.
This in turn cennot be determined without knowing the mean solid

angle for each sphere size, Therefore a solution must be gained

by successive approximations. The logical scheme below may be used

Assume a mean solid angle for each sphere size

caleculate £ / A& for each sphere size =

caleulate tetrahedron frequency distribution
calculate mean soliqlangle for each sphere size

compare calculated and assumed values for

mean solid angles for each sphere size,

If the same If diffevrent
continue repeat using calculated
value

67



It is therefore possible to obtain the freguency distribution of
the tetrahedra constituting the packing. From this Wise has shown
that porosity and mmber of contact; points can be calculated. This
has been verified theoi‘e‘ﬁically by Wise (1952) for a log. normal
distribution of sphere sizes and by Hogendijk (1963) for a discrete
radius distribution. No experimentai ire‘r:ification has yet been
reported.

4ef PORE SPACE IN THE WISE MODEL

4elal Pore Size Distribution

The unit of pore space enclosed by & tetrahedron of four
spheres can be taken to consist of a large central void from which
protude four narrow waists, Using the Haines simplifipation,
this can be taken as a central spherical void and four capillary
tubes, see Fig, (17).

. PORE SPACE IN A TETRAHEDRAL

| UNIT

Fig. (17)

Knowing the radii of the spheres making up a given tetranedron it
is possible to calculate the radii and lengths of the individual
tubes and rthe radius of the central spherical void. Wise 1960}
has given an expression for the radius of the interstitvial =phei:z

in a tetrahedron formed by four spheres.
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Letting the reciprocal of the radius (rj) of a given sphere
be represented by (xy)
x; = 1/ ry fori = 1ltod
then

x interstitial = 13/2 (x) + x, + % + xA) +1/2 /3p

where

P = (xl+):2+x3+x4)2 - 2(1{12*‘3{22*‘3%2*‘3542)

The relationships for calculating the lengths of the tubes
and their ragii are given‘in appendix 1.
In a 3 component pack it has been gtated that there exist
15 different tetrahedra possible, Therefore 15 different sizes
of interstitial sphere are possible, A tube extending from an
interstitial void has a radius dependent only on the 3 spheres
bounding it, and therefore in an (n) component pack there are
n(n+1) (n+2) /31
different tube radil possible. In a three component pack that is
10, as listed in Table IV.
TABLE 1V
(8) 111 {(c) 113 (E) 123 (6) 222 (I) 233
(B) 112 (D) 122 (F) 133 (H) 223 (7) 333
The lengths of these 10 different tubes will however depend
on the fourth sphere in the tetrahedron and therefore each of the
tubes can have (n) different lengths and hence volumes. In this
case that is 3 different lengths. Thus a pore sizc¢ distribution
for the packing is calculsble from the sphere radii. meking wup whe
various tetrahedra and the relative frequency of occurenue of thesa
tetrahedra, A computor program has bzen written to perfurm theze
calculations and is given in appendix 2.
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Liot.2 Continuity of Pofe Space

To use this information the continuity of the pore spece

must be specified. Fig. (18a) shows an assembly of the spheres

! -

PORE SPACE APPROXIMATION '

123 13
2 ,
3( 9 Vi & )3
e | 3
153 113
(8) Fig. (18) (B)

i, 1, 2, 3, 3. Thig is equivalent to two tetrahedra 1233 and
1133 connecting together at a 133 fﬁce. The pore spece can be
taken as being represented by Fig., (18b). Further tetrahedra can
be formed on the system.by adding on spheres in the same mammer,
Pore connectivity is therefore always bstween interstitial cells
bj fwo meeting tubeg both having the same radius but not.necessarily
the same léngth. In theory therefore the structure of the pore
gpace can be described. In practice however this is much too
complicated to be used since the tubes will extend from the central
voids at different angles., Furthermore the assumptlon of gapless
packing will gquickiy bfeakdown ag it becomes apparent that there
nust be discontinuities,

An approximation to pore space connectivity may be made by
agsuming the Fatt type régular network. The tetrahadral system
dictates a 4 tube per junction network of the form shown ia
Fig. (19). ~ Each circle in this repressnts one interstitial void
#nd each connecting link between voids represents two tubes qf“the
same radius.
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4 CONNECTION
NETWORK FORM

4

~ Fig., (19)

To asgsign the pore mizes in this network the tube size
distribution is considered separately from the vold size distribution.
Thig is because it is not possible to keep the tetrahedral pore unit
intact and still have the two tubes meeting between each pair of
voida always of ths same radius; The tubes are therefore located
randomly in the network and for aimplicity each pair of tubes in
one commection is teken to be of the game type i.e, length.

The vold spaces can be assigned in several ways. For instance
by selecting the void for a given junction on the basis of the
predominant tube size at that junction; or dependent on the largest
tube size at the‘junction. These schemes ghow 1ittle difference
from aséigning the void sizes in the netwqu randomly and since this
is simpler this procedure was used.

4+5 SETTING UP_ AND USE OF THE NETWORK MODEL

The largest practicable number of different components in
a pérticle size distribution before the model becomes too wwleldy
for pen and paper operations is 3.

For example using 4 components provides 35 different

tetrahedre and 20 different tube radii, as compared with 15 and 10

for 3 components. The network configuration is fixed by the
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tetrahedral unit of pore space at 4 connections per junction, but
the gize and shape of the array must be decided upon. These will
affect capillary pressure curves obtained from the model in two
ways. Firstly the size of the network must be large enough to
statistically represent the whole whilst still being small enough
for convenient use. Secondly the shape of the network will affect
the initial part of the capillary pressure curve,'in that the proport-
ion of the displacable pores trapped in the interior of the model
at each increage in displacing pressure, will be related to the
ratio of the number of pores on the perimeter of the.model; to
those in the interior, as well as to the pore size distribution,
There is no absolute method of deciding on these matters and a
qualitative choice only is possible baged on results from the
model, |

From the reiative numbers and the radii of the fhree
components in a packing the computor program given in appendix 3
calculates the porosity of the most denge packing, the relative
numbers of the 15 different tetrahedra and also the cell radii
and the tube radil and lengths associated with each of them.
The cells are numbered 1 to 15 and the tube radii & to J (see
Tables III and IV). The length of each tube is defined by the
tetrahedron in which it occurs, therefore a complete specification
of a tube size ig given by a combination of & letter and a number
e.g. Al, A3 or G12, etc.

The number of times a given tube sizs occurs in a given
tetrahedron is also known. For instance tetrahedron (8) 1223, has
faces 122, 123, 123, 223, That is face D once, E twice and

H once. Therefore s complets specification for tetrahedron (8)
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is, one D8 tube, two Eé tubes and one H8 tube. Since the
relative number of tetrahedron 8 in the packing can be calculated
then so also may the relative numbers of the different tubes.

Knowing the relative numbers of the various size cells
‘and tubes the network model can be constructed. FEach cell
location in the network is numbered consecutively and the various
size cells to be fitted in these are listed and given a random
number between 1 and the number of cells in the network. These
random numbers are matched with the numbered cell 1ocgtions in the
network, and so the cell slzes are randomly assigned. The same
procedure is adopted for the tubes.

This network model is now little different from that used
by Fatt and the desaturation rules used by him may be followed to
obtain a caplillary pressure curve.r Two differences exist:
one edge of the network is designated as an outflow face as
opposed to the single pore used by Fatt; and thers exista a void
space at each junction, The desaturation procedure needs
modification for this latter difference.

The rule adopted is that as soon as wetting phase enters
a pore then the voids connected to that pore will also be
emptied. It can happen that in a wide distribution of pore sizes
the largest tube radius is bigger than the smallest cell éize and
because of the way of fitting the sizes in the network these may be
connected to one another, Therefore logically in this case the
cell could not be emptied. However, in practice the cell size
connected to any fube mist be always larger than the tube and the
rule ig therefore not unreasonable. No other modification of .

Fatts rules were made and therefore capillary pressure curves
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may be obtained in the same way as previously described,

The necessity for this representation of the pore space
in the network form is greater here than in the model used by Fatt.
In the Fatt model it is possible to compare the results for
capillary pressure curve with a capillary tube model since the
only extra effect is that of isolation of large pores by small ones.
This is not possible in this model as there is no way of assigning
the volume of a given cell to a given pore size in desaturation
without the network form being available,

4.6 PRELIMINARY TESTS

The justification of the model can only be made by
comparison between experimental and predicted capillary curves but
as a preliminary the model wew tested to give some idea of the size
and shape of the array needed.

Three different sizes of model were tested with 90, 190
and 285 cells or junctions. That is with roughly twice these
numbers of tube sizes each tube representing two pores connected
together. The resultiﬁg capillary pressure curves arse shown in
Fig. 20). Little difference is exhibited between the 285 and the
190 cell models and not much more between these and the 90 cell
model, Therefore the 190 cell model was adopted. This is about
the game size as that used by Fatt.

The figure alsc shows the results for two different shapes
of 190 cell models, one of 10 x 19 cells the other of 7 x 27 cells.
Th_é long 7 x 27 cell model gives results tending towards those of

_'the small 90 cell model and the 10 x 19 cell one is almost the

same ag the larger 285 cell model. 4 10 x 19 shape was adopted.

These simple tests cannot be considered as exhaustive but
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the results for each model are not very different and therefore
bear out Fatts conclusion that with a network model the pore size
distribution is the major factor in determining the shape of
capillary pressure curves, To this extent this model is
succeasfull in that quite widely different model types do not
mask the effect of pore size distribution.

To apply the model to continuous sphere size disﬁributions
a method must be devised of reducing this to a discrete number of
components (3 in this case)., To do this 3 points on a particle
size axis of a distribution were selected which are roughly the
mid points of 3 equal sections of the spread of the distribution.
The number frequency assoclated with these selected sizes was then
taken., To test the effect of this rather crﬁde procedure, four
such sets of 3 components were selected from an agsumed sphere
size distribution of approximately normai shape, Fig., {21).
Capillary pressure curves were obtained from these sets by usiﬁg
the model, and are shown also in Fig. (21). Little difference
can be seen between these results for the different sets. This
may be taken to indicate that as the relative positions of the
selected components are moved the change in particle sgize is
matched by the change in relative number and.the resulting pore
slze distribution is corrected,

In applying the model to experimental results this method
of obtaining the 3 components was only applied to much less wide
distributions than that used here. The spread of the distribution
uged in this test is 240)1for a mean size of ZSQ}I. The widest
distribution split by this method in the experimental section
had a range of ljp about a mean of 5€Pm Wider distributions

were made by mixing sets of 3 selected components.
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4.7 SUMMARY

The Wise model of random packing of unequal spheres has
been extended to describe the pore space existing in such a packing.
This description of pore space has been used to construct a Fatt
type network model using 4 connectiong per junetion.

Preliminary tests indicate that for a 3 component packing
of spheres a 380 tube 190 cell model with a shape of 10 x 19 cells
is adequate to give capillary pressure curves. A simple method
of splitting a continuous sphere gize distribution into a set of
3 components hag been tested and found to give consistent results

when applied to the model,

78



CHAPTER FIVE

EXPERIMENTAY, TEST _OF THEORY

5.1 INTRODUCTION

C‘a.p:ilia'ry pressure curves have been ¢btained from the
theoreticai model and compared with experimental results for similer
‘s‘ize distributions of glass beads. The comparison is made by means
of the preiridusly mentioned correlation method.

The size distributions used in these experiments were
farious mono-3ize and three component packs of glass beads. Each
’sé.mple has been tested in both of two reproduciblg poros.{ties.

Capillary pressure curves have also been determined for &
range of grades of filter aid material and compared using the same
correlations.

5.2 DESCRIPTION OF APPARATUS

5,2.) General

The apparatus used in the experiments is shown in Fig, (22).
It follows the design used by ,Morréw {1962} which is shown in
Fig. (5). There are three main components, the sample cell, the
volume measuring system, and the vacuum system.

5.2.2 Types of Cell

Three different cells were used in the experiments. Each has
a different size and fine pore support plate. The largest cell and
the one used in most of the experiments is shown in the general
layout Fig. (22) and in Fig. (23)« It has a diameter of 10.8 cms.
and a fine pore support plate of a sintered bronze disc with a pore
size of approximately 3 ),1 set in a perspex holder. This could be
used to support a cellulose acetate membrane which are availsble in

pore sizes down to fractions of a micron.
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GENERAL LAYOUT FOR APPARATUS
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Two support plates were oonstructed: One in which the porous
disc was the same diemeter ag the glags container and relies on
Araldite for sealing into the perspex {Disc A); The other, in which
the gasket on the joint face of the glass cover also seals the
sintered disc together with the Araldite, in the perspex holder.
(Diec B). This latter design was found to be more satisfactory
from the polnt of area available for flow. Both are shown in
Fig. (24).

The gample in the cell is enclosed and connected to a
buffer container of about 45 litres as shown in Fig. (22) as
recomended by Morrow (1962). This serves to control the
atmogphere above the sample and inhibit evaporation.

The cell is fitted with a bath which can be filled with
water to allow assembly of the cell components under water. This
feature was included because of the diffieulty in excluding air
bubbles underneath the sintered disc or between it and the plastic
membrane when used,

The water can be removed before experiments are gtarted in
case it should leak in to the cell and cause errors in thes velume
meagurements, or alternatively it can be left to serve as a constant
temperature jacket if required.

Using a plastic membrane this cell should be'capable of
supporting more than one atmosphere without air penetration of the
gupport plate. However the fragility of the plastic membranes and
the large area used meant that in practice this was difficult to
achieve. The 1arg§ area also lead to difficulties with
variability of calibration (see section 5.,3.3) which also made the

use of plastic membranes in the cell unreliable,
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- AFor experiments therefore which required displacing pressures
greatér than about 250 cm, of vater, the 1imit of the sintered metal
._dglac, éh alternative cell was used. This was constructed from the
filter ﬁoléef of & "milli-pore! filter which has a diameter of
36 cms. ard is shown in Fig. (25). The plastic membrane is
sﬁpported on a ground flat sintered glass support plate and the
.componen'l'.s are held together by a spring clamp., A 1id was fitted
to inhibit evaporation. '

A third type of cell was also used and is shown in Fig. (25)1
It was constructed from a sintered glass buchner funnel and has a
diameter of 6.5 ems, Thisg is the largest diameter of sintered glass
disc available with a plane surface, larger ones belng domed to help
support pressure, A lid was fitted to inhibit evaporation.

54243 Volume Measuring System

The different cells were used on a wide range of sample sizes
and therefore the measuring system must be capable of flexibility.
The system used is shown in Fig, (26). Displaced volumes are
measured differentially in the horizontal tube and collected
cumplatively in the burette. This allows high accuracy and a
large capacity. The horizontal measuring tube system is also
convenient for following the approach to equilibrium st each pressure
increment,

The tﬁbe has an accurate bore of about .3 cms, and is about
50 cms. long, It can therefore contain nearly 3,5 ce's, which is
gufficient in most cases for the volume removed in one pressure
increment, This volume can bs transferred to the burette without
relaxing the pressure on the sample, or disturbing the pressure

gystem, by using the appropriate stopcocks, Moasurements are made
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on a centimetre scale which may be resd to within one millimstre.
The tube was calibrated (eection 5.3,1) against this scale for
conversion in to ce's. One millimeter on the scale represents about
4% of the total volume of water removed from a 100 gm. sample of
glass beads.

To minimise discharge errors as the meniscus is moved back
and forth, the tube was treated with !'Repelcote! which is a
2 per cent v/v solution of dimethyldichloropesilane in carbon
tetrachloride for giving a water repellent surface to glass.

5.2,/ Vacuum System

Displacing pressuresare applied by vacuum using the system
shown in Pig. (22). A vacuum pump evacuates a large container
(approximately 45 litres) in which vacuum is controlled by a two
valve air bleed system {one coarse, one fine)., The pressure across
the sample is measured by a 25C cm. water or a 76 cm. mercury
nanometer. Accuracy of control of better than 4+ em, of water
was obtained.

Using the large cell, previously described, it is‘possible
to use positive pressure for displacement, this was not attempted.

5.3 CALIBRATION OF THE APPARATUS

5.3.1 Calibration of the Measuring Tube

The measuring tube was calibrated for volume after treatment
with the silane solution. The tube was filled with distilled water
which was run out in small amounts which were collected and weighed.
Two calibrations were performed, each with 17 readings, which showed
that 14.304 cms. length on the scale was equivalent to 1 cc. with a
standard deviation of .27 cm. on the individial readings. - No
variation in diameter along the length of the tube was detected.



The calibration was carried out at room temperature of 18°C which

was the temperature usually obtaining during all the experiments.

5.3.2 Correction to Pressure Readings

To obtain the p:essure.stress-on a sapple correction must be
made to the manometer readings for the height of the sample above
the measuring tube, and for the slight capillary pull of the
meniscus in the measuring tube. These two corrections may be
measured in one operation. The burette connected to the measuring
tube Is clamped near to the cell., Water in it is allowed to flow
into the measuring tube until an equilibrium is reached betwe_aen
the level in the burette and the menlscus in the measuring tube.
The water level in the burette is now at the same height as the
meaguring tube with the height equivalent of the capillary effect
in the measuring tube included. The difference in levels between
the top of the supﬁort plate in the cell and the water level in
the burette can be measured to within a millimetre, This value
is a constant for each type of cell and must be added to all
pregsure réadings from the manometerg to give the pressure stress
on the sample,

In addition correction must also be made for the height of
the water level inside the sample during an experiment. This
varies with the saturation, being equal to the sample height at
100% saturation, and zero at 0% saturation. TFor a full correction
therefore the capillary pressure curve would have to be known
beforehand,  But with samples used here, which are less than 1 cm.
thick a correction of sufficient accurscy may be made by adding
half the height of the bed. This correction therefore applies

strictly only at about 50% saturation, but this is the most
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vulnerable part of the curve from the point of view of error in the
pressure readings. Some experiments were performed on beds of up
to 5 em., thick to test this assumption.

523:3 ggrrecilziog to Volume Readings

The measurements of displaced volume of water mugt be
corrected for the flexion of the support plate. For this a calibration
curve was obtained for each plate by performing an experiment in the
ushal way ’but wvithout & sample. A curve may then be drawn of volume
of water displaced against pressure from which interpolated results
can be ugsed to correct experimental dats, making the assumption that
the presence of a sample will not affect the calibration. This is
reagonable for the rigid support plates, sintered metal and glass,
but when a plagtic membrane is used care must he taken to seat this
on its support plate by employing a high initial pressure. This
difficulty was never succesafully overcome on the large cell when
using a plastic membrane, and this lead to the construction of the
other cells used when high displacing pressures were required.

Calibrations were performed several times on each support
plate and were found to be reproducible. The maximum correction
applied is about 3% of the void volume of a sample of 100 gm. of
glass beads, The 'milli-pore! cell did not require a calibration.

One short-coming of disc A was detected during calibration.
The dead zone at the edge of the disc where the Araldite sealed it
in the perspex holder tended to retain water which extended the initial
drainage peried for the experiments to about 30 minutes. The
modification introduced in Disc B overcame this as it allows full

use of the wholse area of the cell,



. FXPERIMENTAYL __PROCEDURE
Before an experiment is commenced the apparatus must be

agsembled. This involves ensuring that the gsupport plate is fully
saturated and that no air bubbles are retained bemeath it. The
latter pbint was taken care ofy as mentioned; by assembly of the
various componéhts underwater, To saturate the support plate it
wag kept in a high vacuun for several hours, then air free distilled
water was floodéd in on to it. The support plate was not taken out
of the water during assembly, This procedure need not be performed
offen, as it is possible to remove samples from the celi without
dismantling it.

To obtain capillary pressure curves after the apparatus is
asgembled the following pi'ocedure wasg used.

The sample was weighed and prepared ag a slurry with distilled
wate.r‘using an ultrasonic probe. This ensured that no air becomes
trapped in the beads and the whole sample is thoroughly wetted. The
gample was then introduced into the asgembled cell which contained a
few centimetres of water, by being washed down a funnel and tube
projecting under the surface of the water in the cell, This prevents
inclusion of air in the packing. The shallow depth of water in the
cell inhibits segregation as particles sediment on to the support
plate, Care was taken that rioner of the sample was lost in the_se
operations as ifs weight is important in caleulating the results.

The surface of the sample #ras then levelled out under water
.using a wife probe. This was found to give a reproducible packing
with a porosity of around 39% for mono.gize beads. A more dense
reproducible packing was obtained by vibrating the bed formed in this

way with an electric vibrator, which gave porosities of around 35%.
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7 All glass__pegd_ samples were te:;r_ted with' both of these types of packing.
When beds of glass beads with a greater depth than a centimetre were
used, the reproducibility of the packing iz more difficult to ensure.
Therefore In experiments of this sort only the dense packing was

used and this was formed by vibrating the bed as the glass bead

slurry was run into the cell. |

Having prepared the packed bed the excess water above it was
allowed to drain through into the measuring tube. This is
equivalent te applying a constant pressure of the height difference
between the sample and the measuring tube, to remove the water,

This difference in levels is small compared with the capillary height
of the samples used but provides a starting point when the packing
may be taken to be just 1004 saturated. Usually about 15 minutes
was allowed after the menigcus in the measuring tube had stopped
moving to ensure the accuracy of this point.

The capillary pressure curve is theﬁ obtained by measuring
the incremental volumes of water removed by increments in displacing
pressure. The equilibrium at each pressure level can be found by
following the meniscus in the measuring tube and waiting until
movement had ceased. The time reqguired for this depends on the size
of the pressure inerement, the amount of water to be removed, the
saturation of the hed at that point and the pore size of the bed,
This can be as much as an hour, but by careful plamming of the
pressure increments used, a full curve can be traced in asbout 6 hours.

At the end of the experiment, when no more water can be removed
by increasing the presgsure, several samples of the bed w-ere taken
without relaxing the pressurs, using & scoop. A moisture content

determination was made on each sample by drying and weighing. Care

91



wae taken in this operation to ensure that no beads were lost, all
may be then returned to the cell afterwards and a repeat of the
experiment may be made.

The data taken of, welght of sample, total volume of water
removed after corrections have been made, and the moisture content
at the end of the experiment together with the specific gravity of
the beads, éan be used to calculate the porosity of the bed. The
surface tenéion of the water ﬁse& was Eheckad by the Du Nouy
ring method.

The procsedure followed in the experiments using filter aid
material was slightly different. Precautions against segregation
by sedimemtation as the cake was being formed in the cell were
necessary, because of the wide particle size distribution of the
material., This was done by using a thick slurry which was ?oured
directiy on to the support plate. The welght of slurry used was
found by difference, and the dry welght of solid found by a material
balance by following the amount of water removed in each of the
subsequent operﬁtions. When the cake was formed its surface was
pricked with a pin to puncture any surface layer of fines which could
not be avelded and which would inﬁibit drainage, This technique was
used by both Gray (1958) and Harris (1959) in their experiments on
fine coal gsamples., The rest of the procedure was the same as
previously described.

5,5 FXPERIMENTS _PERFORMED

Capillary pressure curves have been measursd for a sgeries of
samples which may be divided into three types. Mono-size packs of
glass beads, three component mixtures of glass beads and samples of

filter aid material. All the experiments on glass beads were
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performed with both of the two itypes of packing previcusly described,
i,e., poured or vibrated. Bed depths were of the order of half a
centimetre except where special experiments were conducted to test
the correction to the pressure readings for bed depth. In these
cages depths of up to 5 om. were used,

Four different mono-size packs of beads were used with a range

of sizes. Two of these, 36/52 and 150/120, were produced by a siave
cut from the appropriate grade of glass bead, The other two,

52/60 and 72/85,were prepared by elutriation of a sieve cut to
produce & narrower distributlon. 8Size distributions were cbtained
by microscope counting and are given in Appendix III. The samples
are labelled by the sileve cut producing them.

Four three-component mixtures of glass beads were also used.

These were prepared from mono-size packs which had had their mean
diameter determined from a microscope count. The detalls of these
nixtures are also given in Appendix III., The sizes of beads used
in these packs were not very different, the main variation between
“the packs being in the spresd of the distributlion of sizes. The
mixtures are lebelled 1 to 4 in ascending order of the spreed of
their distributions. .

Five different samples of filter aid material were used, all
from the Johns Manville Celite range. They were, Celite 560, 545,
535, 503 and Hyflow Super Cel. Particle size distributions taken
from the manufacturers literature are given in Appendix IILas &
guide to the differences. The surface areas of these samples were
measured both by a Fisher Sub-sleve Sizer, which 1s a permeability

method, and also by a Strolhiem gas Adsorption Area Meter.
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5,6 RESULTS AND DISCUSSION |
5.6.1 Bxperim eni:;al Results
' Bach capiiiﬁry pressure car%é Sﬁiéinad for the glass bead
samples is the résilt of at least two experiments in both porosity
conditions ﬁéedé With the exception of thoée for mixture 4 which
were only done ohce fbr each porosity, and the 36/52 and 150/120
packs which were tested more times,as the results of the deep bed
experiments are also included,

The reproducibility as shown by the figures may be seen to
be satisfactory, with the exception of the initial part of the curves
near saturation for the thick bed samples. It was realised in
using the pressure correction for depth of bed that this would only
apply strictly to the horizontal part of the curve, this
discrepancy is therefore not unexpected, The correction may be
seen to be successful in the horizontal part of the curves.

In the experiments using filter aid only the curve for
Celite 560 was repeated to test reproducibility. This shows
congistancy, Al)l experimental results are tabulated in Appendix V.

5.6+1,2 Porosity Variation

The effect of porosity variation on ‘capillary pressure
curves can be seen mogt clearly in Fig, (27) which is a plot of
capillary pressure against volume of water removed for a given
weight of the 52/60 bed in poured and vibrated packing, This is
taken as representative of the other glass bead samples. It can
be seen that the curves tend to retain their shape but higher
porosities give larger pore sizes and lower capillary pressures than
lowei- porosities, and the voiume of the pore space is also greater.
The gomalisation of capillary pressure curves has been deseribed
(section 3.4) Fig. (28) and (29) and (50) show the first stage in
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MIXTURE 1 and MIXTURE 2
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this where the results of displaéed volumes are plotted aa
percentages of the total volume displaced in a run Versus capillary
px‘essuré for the Yyarious aa.mpless The similar:.ty‘ in the_sha.pe_s of
'l:.he' Hikves for different porosities is now more easii'y seen.  The
néxt atage in the normalisation pfécedure can be ji'oilo@red in

Figures ' (32), (33), (34), . Here ail ﬁh;a results for
the varlous classes of samples used have been pléif&&i The figures
_éhbw that the correlation | |

P @ - versus saturation

T (1 =€)
is succeésfnl in reducing capillery pi'essure cﬁrves for a given
sample to the same curve for any porosity. ﬂ?his fuz;ction has not
been applied to the filter aid samples since each is a distinct
material and each have been tested ab ohly ohe porosity. If
plotbed the dotrelabion would only show the curves in their
respective positions as on & plot of capillary pressure versus
saturation, | "

5.6.1.3 Surface Area

It was previously mentioned in section 3.3 that it is
possaible to calculate surface areas from caplllary pressure curves

using the relationsghip

A = 1 |Pdv v
T

If curves are plotted in termg of saturation and capillary
pressure, expressed in terms of centimetres of fluld , it is necessary
to modify the equation, TFor example

P = hpg

99



500¢

L8O}
460} P c X Bat s

LAV §
420} s (Celite 560
400l X Cellte 545
o Cellte 535

FILTER AID SAMPLES

3801
o Celite 503

3607
240} + Hy Flow Super Geli

320¢
300
280 ¢
260}
2401

220}

‘ +
200} /
180 /
160 F / .
140 } [ °
120 ¢ { ///n///
100 | ,' / X
80 P“?P x / /
60 || ¢ *

40 1
20 rx“)

10 20 30 40 50 60 70 8.0_ ‘ 9(.} ‘ 100
% Volume removed

Pig, (31)



150/120

ﬁllflff llDﬁMll#ﬁix .1\|lﬂLEIiJTﬁ —Hgp —=,

V~/, /b,

MONO-SIZE SAMPLES

\
- B |
¥
o ¥ fﬂ
* )
|\ 4
o ,%ﬂ
| _yu
al
Sl
™
_
_ .
|
x _ wnn
o *
: ! hr
=) _
; _ /
.—o o .__l v“n
. \ ¢
,/M, / .

20 100

80

60 70

50

¢ Volume removed

20 30 40

10




50
.8
46

42
40
38
36

34
32

30

28

[(1=e)

: 100

26

22
20

18 |

16

12 |

10

OO IR S & LS ¢

MIXTURE 1 and MIXTURE 2 - l
'Pc e _v' Sat. X
T(1-0) l
.
ol/L
4
o/ O
a,
Dxu /
/ =
[ Vs
/____ /_/,{ 3/ .,l
a [ P .
o Mixture 1 /_5_54 - /”
/n .-,f-—*—‘“""':y.' ”‘D/l
o ,l’ x 'o/ % / f.
/ - / * o /
/ e .
[t A T
/ S . = Xe .
. Xe . x — ——
)u*//" I
Y B ** . . .
/:/L "
a} 4 .
i
!/' Lt
v
|
o.'l
It
%
10 20 30 40 50 60 70 20 90 100

% Volume removed

Fig. (33)



MIXTURE 3 and MIXTURE 4

Py © ¥ Sat.

hb T (1=e)

Mixture 3

W= T

10 20 30 40 50 60 70 80 90 100

% Volume removed

Fig. (34)



e

18
17
»16
.15

14

013 [

12

_(.1-6) 11

0

10

09

.08

07 f

e experimental results

o theoretical model

MONO-SIZE SAMPLES

Po

e

SoT (1-¢)

¥ Sat.

10

20

30

20 50 60

% Volume removed

Fig. (35)

70

80

90

100



T(1-e)
100

o2k
23

221
2171

«20

191

.18

127

WAl

MIXTURE 1 and MIXTURE 2
P, e ¥ Sat.

SoT (1-e)

e experimental results mixture 1

o theoretical model mixiure 1

= experimental results mixture 2
n theoretical model mixture 2

.
oo-—

10 20 30 40 50 60

% Volume removed

Fig. (36)

70

80

20

100



‘The relationship between éb.:Euration (as defined here) and
volume of fluid is easier to derive if a !pseudo! porosity (&%)
is defined, Thias is taken ag the porosity of a bed caiculated
by assuming the volume of fluld removed in capillary pressure .
experiment is the void wvolume of the pack. That 1g the resiciual
moisture is considered as part of the solid phase which is the same
assumption as that used in calculating saturations. Therefore

& = o~ a_;é 'i%% (1 = e)

in which (R} 1is the residua.l mo:l.sture expressed as a weight pere
cen’oage. Therefore for a given sample the volume of fluid

associated with a value of saturation may be given as

VvV = 8 o Wt

100(L = e) Pg
: x 100 h ds
therefore A = e  p.g Wt 1
o
. 100
or S, = &  R«g§ 1 h 48
1-e T 100
' o

Surface areas have been cslculated from the curves using a
gtraight line interpolation between the points end the above expression.
These resulfs are given in Table V and VI together with surface areas
whichﬁi‘%crk the glass beads have been calculated from microscope counts,
and for the filter aid samples were measured experimentally by both
a permeability method, using a Fisher Sub-Sieve Sizer, and a gas

adsorption method, using a Strolhiem Gas Adsorption Area Meter.
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TABLE

.V

épécific Surfaces of Glass Bead Packs (cm? / cmd)

Sample Calctilated Results from
Theory using
11.4 T/p 12,9 T/r

Experimental. Results

36/52

52/60
72/85
150/120

Mixture 1
Mixture 2
- Mixture 3

Mixture 4

162.3

236.1
319.6
514:3

233.8
160:9
226.4
202.2

157.1

210,
304.1
491.2

218.3
14947
239.2
199.1

177.9  160.3 158.4

177.8  161.2
238.1  230.0 222.4
351.2  315.2 313.3
556,1  520.8 538.6

533.0 539.2
2/6.8 é18.4 228.7
169.2  167.3 160.4
271.0  216.9 213.3
225.1  196.9 196.4
TABLE VI

159.4 162.2 175.6
159.2 152.4

240.8 233.7

310.0 311.2

547.1 529.9

538.7

227.3 231.0

160.6 159.9

227.2 231.0

Specific Surfaces of Filter Aid Samples (cm? / cn?)

Celite 560
Celite 545
Celite 535
Celite 503

Hy flow
Super Cel

13,400
14,700
20,800
24,800
43,500

Gas Adsorption

Permeability
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9,100
11,900
13,300
18,200

22,600

Experimental
75164 7,414
9,733

12,389

14,529

18,823



The.specific surfacé@ ealevlated i‘ram the capillary pressime
curves compers quite well with the calculated specific surfaces.

They are,in general,lover than the results from microscrope count
data,vhich is o be expected since what id measured is the area of
the air/water film which will not exactly be that of the solid bed,
-due to the exisyﬂ%ce of residual moisture,

' The results for the filter aid samples given in Table VI
show less good agreement, Comparing the two standard laboratory
-methods, the gas adso:f%eoion method,as expected, gives much higher
specific surfaces than those given by the permeability method, as it
includes minnte cracks and pores on the particles which are not
accessible to £he permeability method. The permeability results are
eloser to those from the capillary pressure curve but camnot be taken
as absolute values for comparison since in their calculation, using
the Kozeny-Carman equation, a factor is introduced which cannot be
independently chescked. The value usually assumed could be in error,
bhearing in mind the irregular nature of the particles, the high
porosity of the bed (approximately 88%) and the wide size distribution.
Nevertheless there 1s correspondence between these results and those
caleulated from the capillary pressure curve. The error isagain
on the expected side and in this case,since residual moistures of
around 20% of the void volume,this is more exaggerated,

It is therefore possible to conclude that surface areas
calculated from the capillary pressure curve compare with those -
qalculated from microscope counting for glass beads, and from
permeabllity for filter aid material which is a very extreme case.,
The errors may be in part atiributable to the surfaces in the bed

covered by residual moisture at the end of a capillary pressure
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curve, The fact that the surfacé'érea measured by this method 1s
domparable with surface aress invoived in permeability velation-

ships is important for further exténsion.

5e6.1e4 Full Co:;glation |

_Thé firs£ steps in the coﬁélafion of capillary pressure
durves has been covered and illuétféﬁed in Figures
t32); (33); (34). It is now possibie to ini:roduce tHe fizil
correlation given by Carman (1941) and in section 3.4 where

1P e versus Seturstion -

T8, (1 ~9) :
is plotted and normalisesg all capill;.ry pregsure curveg, It is
ofavious that dividing similar shéped curves by the area undernea.th
them will always A'g;i.w_r'e a single i:urvé. on replotting, In this case
however it hag been deﬁonatrate&, both theoretically in section 3:3,
and experimentally, that the area under the capillary pressure curve
has a physical meaning., Its use in this way ls therefore reasonable.

The correlation a;pplied to mono-gsize packs 1s given in
Fig. (35) and for the 3 con1pone;nt mixtures é.nd fllter ald samples
in Figures (36), (37)&(38).. In each case t‘he correlation normalises
all the curvea between the axes. These three sets of curves are
all plotted together on Fig. (40).

It was realised that the correlation does not affect the
shapes of capillary pressure éurves, it merely moves them up and
down the pressure axis to make them co-incident. The mono-size
Packs all have a similar particle size distribution,and therefore
pore size distribution,and hence they all correlate to one curve,
This curve is flat showing a predominantly uniform pore size in the

packs. The particle size distributions in the 3 component packs
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were not the same and the correlation in this cdse shows a family
of curves for the different samples. It may be noticed that the
wider the spread of sizes in the pack)tﬁe wider the pore size
distribution injicated by a grester inelination of the middle parts
of the curves to the horizontal. The results for the filter aid
samples follow this., These samples have a very wide particle size
distribution and give a very wide pore size distribution, the
irregular shape of the particles also promotes this dispersion.

The fact that one curve can be drawn through all the points plotted
for the various grades of filter ajd indicates the similarity of
the pore size distribution of the various grades.

These effects may be seen more closely in Fig. (40) where
all the correlation results are plotted on the same graph. This
correlation wﬁich uges the same function as the Kozeny-Garmsn
equation for permeability indicates both the success and the failure
of the equation. The correlation shows that the function dces
give a reasonable mean pore size in that all the curves for the
different samples come to the same point at around 50% saturation.
However the correlation cannot account for the spread of pore size
distribution as is'shown by the shapes of the curves. This point
is pg%sued at greater length later.

| 5.6.1.5 Surmary |

The éapillary pressure curves measured experimentally have
been shown to be réproducible.

The correction applied to dlsplacement pressures to account
for the depth of the bed has been shown to be successful for the

horizontal part but not the initial part of each curve.
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Specific surfaces calculated from the capillary pressure
curves compare well with surface areas obtained by other means and
are equivalent to the surface axeas involved in permeability
equations. |

The correlations introduced in the literature survey have
been shown to be successful in redﬁcing all capillary pressure
curves for a given particle gize distribution to one curve. The
.éorrelation also emphagises the differences due to pore size
distributions,

5.6.2 Results from Theorstical Model

5.6.2,1 Porosity Correlation

Having justified the use of the correlation method on
experimental results it is now permissible to use the methods in
comparing the experimental results with the results from the
theoretical medel. This is made necessary because the model refers
to a dense random packing of around 20% porosity which can never be
obtained experimentally. It has been pointed out in section 3.4
and section 4.2 that the porosity of a pack of particles depends
both on the mode of formation of the packing and the properties
of the particles themselves, The porogity of a given pack can be
taken to be determined by a balance of the forces causing lessening of
porosity, i.e. vibration compaction, and the ability of the particles
to0 rearrange themselves. In practical cases the lack of freedom
of movement of the particles to rearrange themselves is the main
1imit to porosity reduction below about 30%., The Wise model may
be taken therefore to predict the pore space in a pack of particles
not subject to this restraint and able always to rearrange them-

selves to the limit of porosity determined by the particle size
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distyibution. it follows from this also that a particle size
distribution which will give the most dense packing is that which
gives the Bés‘b Eﬁame of the pé.i'ticles to flow and arrange them-
selves ahd is not a static geomotrical problem. The Wise model
cantiot do this bub the porosity results do tend to follow the
experimental results (Mixture 3 and 4).

The capillary pressure curve results from the theoretical
nodel have been plotted on the appropriate figures 27 - 40, and
are tabulated in Apperdix V. In Fig. (27) for the 52/60 bed,
which is taken as representative of the other results, capillary
pressure versus displaced volume has been plotted. The model does
not provide absolute values of volumes removed and this data has
been caleulated, for comparison purposes, from saturation data using
a value of 100 gms. for the weight of the bed, which is
approximately that used in the experiments., The frend of the curves
for porosity variation is demonstrated. This is continued in
Fig, (28) 707 (30) where the saturation axis is normalised. The
first stage of tha- correlation plotted in Figs. (32 - 34) shows
however that the model predicts too high a capillary pressure
(or too small a pore size) for the porosity of the bed. That is
the assumption that the pressure required to blow a bubble through
a group of three spheres can be calculated from the size of sphere
which will just pass through the assembly gives an over esti.mate,
and the pore gize governing this is slightly larger, Alternastively
the value of capillary pressure calculated may be correct and the
porosity caleulated by the model be too small,

This first conclusion is supported by the experimental

resultsoaf both Haines (1930) and Hackett and Strettan (1928) who
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found a value of 11.4 T/r expe;iﬁénféi for this pressure as opposed

to 12.9 T/r talculated on the assﬁmption ﬁéédi A correction of

11.4 / 12.9 hes been applied to tﬁa &apiliaiy ﬁressuréé on the

theoretical curves and is shown on %ﬁe figures in ddshed lines.

The correspondence between theory ahd eipariment is improved.
5.6+2.2 Surface Area andLResidgglbeistugg

To calculate spscific surfaces from these theoretical
cur&és an estimate is required of the residual moigture existing in
& pack of spheres at abound 22% porosity, The experimental results
for porosity and residual moisture mbe too close together to allow
any predictlions on this basis, it may however be done theoretically.

The change in residual moiasture with porosity 1is governed
by two opposing effects. Aa a packing becomes more dense the
number of contact points per particle incrsases and also the values
of capilla:y pressures in dessturation rises. The first effect
will tend to give an increage in residusl moisture as porosity
becomes lower, since there will bs more pendular rings formed. The
secénd effect will tend to reduce residual molsture as porosity
becomes smaller, since a pendular ring in a packing takes up a size
dependent on the capillary pressure existing at its formation being
smaller for higher pressures., To mske calculations for these
effects three relationships are required. Firstly the volume of
a pendular ring as a function of its formation pressure, secondly
the variation of capillary pressure with porosity, and thirdly the
variation of co-ordination number with porosity. The first has been
given in tabular form by Fisher (1926) for capillary pressures
expressed in terms of T/r. The second may be given by the
correlation

P e = constant
(1= ¢
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by using vne value of the gceapillaxy prossure ét one porosity to
calculate the others, An estimate of the third has recently been
given by Pietsch and ﬁumpf (1967) as
Ce = 77

This follows the results of Smith, Foote and Busang (1929)_ who
found an almost straight line relationship between co—ordination
number {C) and porosity.

Using both 11.4 T/r and 12.9 T/r as the capillary pressure
at 22% porosity in a mono-size bed, calculations have been made

using the relationships. The results are given in Table VII.

TABLE VII
e P Vol./r Residual Moisture P Vol. Residual Moisture
oy x10° wtd Vold . e x10°  Wed  Vol.d
22 12.9 .70 .80 8.5 11.4 +80 1.2 12.8
35 6.7 1.85 1.34 Tedy 6.0 223 2.1 11.8
40 6,1 2.10 1.32 5.9 Le8 2.65 2.2 9.9

There is 1little to choose between the two sets of results
for residual moistures as the predictions for 35% and 40% all 1lie
in the range of experlmentally determined residual molstures, though
the results for 11.} T/r ere a little closer. The agreement is
good considering the coarsness of the assumptions. Also the
predicted value of capillary pressure in a random packed mono-gize
bed of 6,0 m/r caleculated from the value of 11.4 Q/r at 2% 1is very
close to experimental results given by Haines, and Hackett and
Strettan for random packing of 35% porosity.

Specific surfaces have been calculated from the theoretical

capillary presggsure curves using both of these values. The results
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are given in Table V. The results using 11.4 T/r show a better
corregpondence, This is not as obvious as it might appear from
the positions of the curves on Fig.(32-34)Since the corrections
applied by the res‘:ﬂuai moigtures are quite large (of the order of
10% of the void volume at 22% porosity). The same value of
residual moisture has been applied to both mono-gize packs and
the 3-component packs, This agreement supportsthe use of 11.4 T/r
for the pressure reqi:.ired to blow a bubble through a poré formed
by t}{ree spheres as opposed to the value of 12.9 T/r. Full
justifiéation can howevér only be made by a full theoretical
treatment of the problem,

5,6.2.3 Full Correlation

Using the values of specific surface calculated from the
capillary pressure curves the correlation may be completed and is
plotted in Figs. ( 35,36,37.38,3‘9 ‘and 40) . There is no
difference on this basis between the curve using the 11,4 T/x value
of entry pressure and that using 12.9 T/r this is because the areas
under the i'espective curves are used in the correlation. In the
case of the 11, T/r value however the specific surface values do
correspond with measured results and the correlation is justifiable,

The capillary pressure curves predicted from the model do
exhibit the correct shape and tend to follow the curves determined
experimentally, In general however they exhibit a narrower range
of pore sizes than do the experimental results. This variation of
pore size distribution with porosity may be a real effect, not
detectable in the smell range of porosities available experimentally.
Or more likely it may be due to ignoring the effects of gaps in

sphere packing in the Wise model. These would tend to promote
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nore randomness in the packing &nd consequently a wider pore size
distribution, It may also be that if a proper évaluation of the
pressure required to blow an air bubble through an array of three
spheres were availeble this would increase the distribution of
pore sizes., If the assumption used breaks down for three equal
spheres it is also likely to be more in error for an array of say
two large spheres and a small one.

Despite this however the theoretical results do show that
a dispersion in particle size in a 'monot' size sphere pack as
small as 30p in 130n is significant enough to be exhibited in the
curves, Thig particle size distribution is much narrower than
that given in a sieve cut which is often used as a way of
preparing mono size packs. Furthermore the results for the 3
component mixtures have a tendency for the correct shape and as
plotted in Fig.{39) and do show the correct relative positions
even though they are very close together,

It mst also be remembered that the sphere size distributions
used in the model are much et.im':eviated from that actually existing in
the packing. Since the model has been shown to be éensitive to
quite small dispersions in partiéle size a closer correspondence
may be obtained if more components were .used ..'ln the calculations
than three. Also the approximation of the pore space in the paéking
given by using tubes and spherieal cells is very coarse, ' Caleulation
shows that this accounts for only about 50% of the real pore space
in the tetrahedral packing, If these improvements were to be
incorporated then the setting up of the network and the desaturation
procedure would have to be carried out automatically on a computor.
This would not be impossitile.
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One point on the cufvé for mixture 4 has been left out in
drewing the curves. This may be justified by an ingpection of the
results tabulated in the appendix, It can be seen that this point
includes a very large propérblon of isolated pores which are
available for emptying if a path to them was established. As
this is a wider distribution than the others it may be taken that
the size of array used is too small in this case.

5462204, Summary

The theoretical model predicts the properties of a dense
random packing of around 20% porosity and these can only be compared
with experimental results on the basis of the correlation,

Using the correlation methods the capillary pressure
curves derived from the model can be geen to exhibit +the correct
shape, and position relative to experimental results for the same
sphere gize digtributions.

Improved corrqlationrwith experimshtal curves 1s achieved
if an experimental valus for entry pressure into the assumed pore
shape is used instead of the theoretical value derived from a
gimplification, |

This improvement is reflected in values of specific surface
calculated from the curves obtained from the model.

Estimates are made of the variation in residual moisture
with porosity variation in sphere packs these show reasonable
comparison with experimental results.

5.7 _ CONCLUSIONS

The correlations for capillary pressure curves mentioned

in section 3.4 are successful for edperimental results.
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Specific surfaces calculate& from experimental capillary
pressure curves shoir agreement with ihose obtained by other methods
for the same samples,

The theoretical model predicts a low porosity relating to
the densest possible packing.

Capillary pressure curves obtained from the theorstical
model of pore space in sphere packs are of the correct shape but
give a narrower pore size distribution than experimental results
for the same particle size distribution.

The entry pressure into the pore formed by three equal and
touching spheres is nearer 11,4 T/r than 12,9 T/r.

Using thls value for entry pressure into a pore the results
from the theoretical model correlate with experimental results.
This indicates that the model gives correct wvalues of porosity,
specific surface, residual moisture and pore size., The agreement
is less good for pore size distribution.

The model shows that the particle size distribution in so
called mono-gize packs is important in promoting pore size

distribution,
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CHAPTER SIX

FLOW OF FLUIDS IN PORCUS MEDIA

6.1 INTRODUGTION

The capillary pressure curve only involves the equilibrium
effects of moigture in porous media, but dewatering is a flow
process and the rate of flow from the desaturating porous medium
ig the main factor invelved in any optimisation of the_ operation.
Therefore, h;wing studied the equilibrium effects of two fluid
phases in a porous medium,this section ls concerned with the flow
of two immiscible fluide in porous media, This is a particular
part of the general topic of flow of fluids in porous media,
There are many' points of contact between the equilibrium, and |
dynemic effects of-two flulds in porous media and these will be
emphagiszed.

6.2 Single Phase Flow in Poroug Media

6.2.1 Capillary Tube Theories

The permeability of a porous medium is introduced by the
Darcy equation as a characteristic of the porous medium. It is
determined by thel structure of the bed but this is so complex in
practice that if further deseription is reguired,simplification
must be introduced. This is in the hope that theoretical
congiderations can show how to attach physical significance to the
various parameters which can affect permeability.

A common anslogy for flow in pofous media is with gtraight
capillary tubes. The Navier-Stokes equation, fundamental for fluid
flow, can be solved for this case and the result is knownas the

Hagen—Poiseuille egquation
v = AP
' 8:\ L
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vl in 'bh.:is case 1g the flow velocity in a single capillary tube.
If the analogy is made between a porous medium and a bundle of
capillary tubes, the apparent velocity (v) over the whole pack of |
.t.ubes 1s given'by

v = ve
This is called the Dupuit-_-Forcheimef agsumption and is only wvalid
for an assembiy of capillaries if the pére veloelty is an actual
statistical average. Combining (nj capillary tubes as a bundle -
gives | o |

ti;"-nz'aé_lf or q = n 7 AP
8q L 9. n L

where (9) is a volume flow rate. By analogy with Darcy's law the g le(

permeability X'is then
K'= nmet/ §.
Assuming unit cross—sectional area for the tube bundle

e = nmrR S

' K = e-rz/t's_.. = erf/ %

The factor @ 1is usually replaced by a factor (t) vhich is termed the
tortuesity factor and is :lntroducéd to correct for the differences
between the model and an actual porous medium, | To introduce

isotropy into the model it is possible to arrange 1/3 of the .
capillary tubes in each direction and insert a factor 3 in the equation.
This does not alter the essentials of the modei as this cah be in-
corporated in the torﬁuosity factor. However it invlalidat.es the
implieit use of the Dupuit-Forche:i;me;' asgumption in that a facto:é
3 must also be introduced in this.

6.,2.2 Kozeny=-Carman Theory

The average radius of the capillary tubes is required for
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the above eguation and it is a difficult quantity to realise in
practice, egpecially as in.general the poreg in porous media are
not circular. In empirical correlations for flow :Lr_1 ndn-circula;' |
channels it is found that a hydraulic radius (M) defined as the
ratio of cross-sectional area to the perimetér of the cross-gsection
can be used in its place. Therefdre

K = oM?

kb

where (ko) is a factor which is determined by the shape of the
crosgs-section. For a circular eapillary ko = 2, for flow
between two para:illel plates ko = 3, and for most other shapes
(ko) varies between 2.0 and 2.5,Carman (1948). 1Ina poréﬁs medivm,

as was shown in the pi‘evious section

M = pore volume = e
pore surface area (1 ="9) So

e K = &

kt (L= e)° 82

0

This equation is the same as the Kozeny-Carman equation which was
derived Ey Kozeny on a different theoretical basis. Kozeny tock
that the porous medium was not a system of pores which require a
definition of average radius but as one large channel of complex
shape. This channel retards flow by fz;iction at its surface.

The tortuosity factor was introduced by Carman, Scheideggﬂi% (1953)
has stated that although the Kozerw-caman equation makes use of
fewer assumptions than the capillaric model, only invelves concepts
of internal surfaces and leaves aside pore size distribution, it is
fundamentally the same. An inspection shows that it is based on a

two dimensional analysis of the cross~section and is therefore
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equivalent to a parallel set of capillaries, Debbas and Rumpf
(1966) have derived (M) on the basis of the inter-section of a
plane in a random packing which emphasises thig point. Neverthe~
less the equation is accepted as one of the most useful
descriptions of permeability in terms of pore structure that is
available,

6.2.3 Tortuosity

The factor (t) in the Kozeny-Carman egquation ilS usually
taken as (Lg / I.)2 which is the sgquare of the ratio of the actual
flow path léngfh in the porous medium to the thickness of the
po:'rc}us mediﬁm. The value of k (L, / I..)2 has been shown by
Carman (1937) to be about 5.0 for a wide variety of unconsolidated
media, Bartell and Osterhoff (1928) have shown that (Lo /L) is
equal to 77/2 for close packing of equal spheres which gives a
value of k (Lg / 3[.)2 approximately equal to 5. Coulson {1949)
has made extensive tests on a variety of regular shaped particles
in different packings and has found the factor to vary with both
shape and porosity mainly between 4 and 5,but it can be as low as
3.5 or as high as 6. Sullivan and Hertel (1942) measured
tortuosity values for arrays of parallel fibres and found it to
' be given by 1 / (=in 2 6), where (8) is the average angle of
orientation of the fibres, Wyllie and Gregory (195.5) have shown
that pore size distribution and porosity can affect tortuosity and
Bo (1968) has shown theoretically how (Le /L) varies with porosity
for random packing, Values of tortuosity much different to these
mentioned have been reported by Wyllie and Rose (1950} for
consolidated media and Grace (1953) who found values ranging from

5 to several thousand for flocculated filter cakes. Drennan (1964)
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introduced the concept of inert porosity in consolidated media to
correct these to more normal values. This may be applied to
flocculated systems by excluding the pore space in flocs from
flow calculations, but it is usually taken that these systems
are beyond thetrue range of applicability of the Kozeny-Carman

equation.
6.2.4 Discussion

; epualion
The Kozeny~Carman,is widely accepted as giving good results

A

for ﬁany‘different materials and is often used to measure the
specific surface of powders. If tortuosity wvalues are properly
evaluated this can be quite accurate, Wyllie and Gregory (1955).
There are however important conditions which must be observed for
the validity of the equation which have been listed by Carman (1948)
1/. No pores must be sealed off, this would affect the value of
absolute porosity but not the porosity available to flow.
2/. The particles must be in random distribution and reasonably uniform.
3/. The porosity must not be too large.
4/« Diffusion and surface effects must not be involved in the flow,

In addition to this Scheidegger (1954) states that the
equation jmplies a well connected space lattice to allow the pressure
profile in the medium to be even and perpendicular to the flow.

Childs and Collis-George (1950) have severely criticised
the equation on a more fundamental basis. They show that surface
areacan be altered almost independently of permeability since large
pores contribute most to permeability but small pores contribute
most to specific surface, For example in fissured clays the
fissures can contribute negligibly to porosity and specific surface

but dominate permeability. Furthermore the equation cannot be
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applied to anisotropic perméability gince neither (¢) nor (So) are
directed quantities. Wyllie and Spangler (1952) have polnted out
that tortuosity can he vé.ried to account for anisotropy and they
cite the example of Sullived and Hertel's work on flow past fibres.
This however seems to place too great an emphasis §n tortuosity as a
factor in the flow. And since tortuosity was not introduced in
Kozenys treatment it must be geen as essentially a correction to
a bundle of tubes model. |

The Kozeny-Carman equation was developed by Childs and
Collis-George for a bundle of tubes with a distribution in sizes,
to make the error more apparent. In such a tube bundle each group
of capillaries of a given size has agsociated with it a portion
of the solid to give each group the same poros;'Lty {e) as the total.
The cross-section of the group (ap) with capillaries radius (r)

contributes to the total permeability

K = TRypKy
28p

where (Kr) is given for each group by the summation of Poiseuilles

equation for n capillaries

¢ = an g 2r
L L
2
Kr = n'lTrA' = n 77 1% 217 r*
8n gn _Rmr

which may be written

K»

n
I=
—
<
—
n
n

where (V / A) is the reciprocal specific surface of the particles.

Therefore

K = o ey (V/ b) 32

1
2 W-a* TS
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The final term may be written as (V ;.A)2 which represents the mean
value of (Vv / A)z for all the groups. Thig is not the seme as the
overall value of (V / A)2 for all the channels together gince the
first is dominated by the larger and the latter by the smaller
channels. The only sense that thelequation hag applicability is
if two structures are considered such that for every group (mr) in

the other structure then

A (VS
(v7 )%, v/ %, 12

Childs and Collis-George conclude that it is impossible to obtain
a sufficiently wide range of porosities or pore size distributions
to test equatiohs properly, and furthermore the success of the
Kozeny-Carman equation may only reflect the essential similarity
of most porous media.

Brooks and Purcell (1952) have studied the Kozeny-Carman
equation from the point of view of surface area measurement and they
conclude that it is only valid for uniform pore size. This study
relies on concepts of pore size distribution and will be mentioned
later. The correlation used in the previous chapter also
illustrates these points as it is essentially the Kozeny-Carman

function. It can be seen from Fig. (40) that it correlates for
value of 50% saturation for all shapes of distribution, but it does
not involve the shape of the distribution. Therefore in the wide
distribution curves, such as those in the figure for Celite, there
are fewer large size pores than in the more uniformly flat
distributions and it is the large pores which contribute most to
permeability., Tt is of course possible to correct aﬁy value of

permeability or surface area obtained from the Kozeny-Carman
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equation to a correct one by using an appropriate tortuosity factor,
This is however not sufficient if concepts of pore siructure are
investigated.

6.3 TWO_ PHASE FLOW IN POROUS MEDIA

6.3.1 Experimental Study of Two Phase Flow

in Porous Media

In considering the flow of two fluid phases in porous media
it is necessary to start from Darcy's Law where permesbility ig the
congtant of pz‘opo.rti'cl)hality be'ﬁ‘ree;l rate of flow of fluid and pressure
drop. When two ﬁhaée"s are flow:ing in a po"..r.'ous medium, differentiated
as wetting phase (water), and non-wet‘bing phase {gas), it is possible
to define a 'permeability for each phase. These permeabilities will
vary for a given porous medium with the relative degrees of
gsaturation,

An experimental study of this was made by Wycoff and
Botset (1936)., They flowed water and carbon dioxide mimtures
through a horizontal tube 10 feet long and 2 inches dian;er containing
granilar packings. The total pressure drop and the individual rates
of flow of each phase were measured conventionally and the
gsaturation of the packing measured by an electrical resistance
method for which thé water was made slightly conducting. - Their

results are best discussed by reference to Fig. (41)7.7 ~ The

0 ' ‘
| : Relative Permeability
8 Wycoff & Botset

(1936)

%
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2
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permeabilities for each phase are expressed ag a fraction of the
saturated permeability and range therefore from O to 1 and are
termed relative permeabilities. Saturations are expressed as
percentages of the void spaces and range from O to 100%,

Considering the wetting phase {water) it can be seen that
the permeab‘ility drops sharply as the saturation is reduced from
100%. At 80% saturation the reiative permeability is .5 and at
50% it is .1. The curve reaches zero permeability at a finite
saturation (10 - 15%) which corresponds to the residuwal saturation
which exists as phase continuity is broken. The non-wetting
(or gas phase) shows a gimilar shépe. It can be seen that
phage continuity ceases at about 90% saturation and also that from
0 - 20% saturation the permeability is substantially 1.0. - That
ig the residual wetting phase has little effect on the non-wetting
phagse permeability. The two curves cross at between 50 - 60%
daturation and aebout .15 relative permeability. By adding the
two curves together the total permeability at a given saturation can
be arrived at, It can be seen that this is only 1 at Of and 100%
saturation and that there is a pronocunced minimum., The experiments
were repeated for various sands with saturated permeabilities ranging
from 17.2 to 262 Darcy'd (1 Darcy = 9.87 x 10~2 e} all of which
gave the same curves. An interesting point is that marked (Keq)
on the curves. At very low gas/liquid ratios i.e, below this
point, the stéady state of flow is not attained. Gas accumulates
in the pores until the saturation reaches this point and flow begins.
This is a definite characteristic which varies with the porous
medium and was called equilibrium permelability or saturation., It

has been mentioned by Eisenklam (1956) as being one of the causes
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of anomalous permcabilities in saturated flow.,

Some experiments werc also perfgimed on o0il/water mixtures
which gave similar curves but with a wider scatter of the pointa.
choff and Botset concluded that the curves applied generally to
the flow of gas/liquid mixtures in unconsolidated sands and were
probably valid also for immiscible liquids. These findings have
been supported by LBVefett (19395.for oil/water mixtures in
unconsolidated sands and by Botset (1940) for gas/liquid mixtures
in consolidated sands, Leverett in his work concluded that
relative permeability is substantially independent of viscosity
and is related to pore size distribution,as the non-wetting phase
tends to flow in the larger pores and the wetting phase in the
smaller ones,at aﬁy given saturation.

6.3.2 Determination of Relative Permeability

Multi-phase phenomena are of great importance in oil
production and the measurement of relative permeability of rock
cores is a routine laboratory technique., The methods available
for this have been reviewed by Osoba, Richardson, Kerver, Hafford
and Blair.(1951) and Richardson, Kerver, Hafford and Osoba {1952).
Using rock core samples which are much less long than the 10 feet
used by Wycoff and Botéet,difficulties are experienced with the
bouné?y effect, This bouné?y effect was deseribed by Leverett
(1941)7and is caused when fluids flow past a discontinuity in
capillary properties. In the interior of a uniformly saturated
porous mass the capillary pressure acts in all directions and hence
cancels itself out, at the in-flow and out-flow faces however, the
fluids are flowing in a region of no capillary pressure and this

leads to a distortion of the saturation profile. The effect is
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not critical in long sa.mpleé but 'nﬁlst be overcome for small samples
such ag rock cores.

The vai‘idhs methods used in relative permeability may be
divided into :'bhree groups,

1/. mﬁerinients in which measureménts are made under steady-state
flow conditions with both fluids flowing simultaneoﬁsly. The
boundary effect can be overcome by having independent systems for
each p‘hase to héld a pfessure difference between them or by making
measurements only on the central part of the sample, |

2/. TExperiments made under steady-state conditions with only one
fluid flowing. - One fluid is held stationary by capillary forces
exerted through fine pore membranes and flow measurements made on
the other fluid.

3/. Experiments in which measurements are made under trgnsierrb
saturation conditions. The bounq?y effect 1s not eliminated but
is ineluded in the theory by which the calculations are made.

Richardson et. al. (1952) found good agreement between
the different methods of measuring relative permeabiiity except " for -
the method using transient saturation conditions. All the methods
however suffer from complexity and regquire ‘ﬁpwards of a day to
complete a permeability saturation plot. Moreover the methods
are not well adapted for unconsolidated medis and for high
permeabilities generally,

Childs and Collis-George (1950) in their work used a method
rather similar to that of Wycoff and Botset. They noted that when
water flows down a sufficiently long packed column to a water table
the moisture content is uniform over an appreciable length of the

column, The zones of variable moisture being limited to each erd
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of the column, In the zone of uniform moisture the pressure is
solely gravitational and therefore known, and the moisture content
aed justs itself to provide the necessary permeability to conduct the
imposed flow. The permeability may therefore be calculated from
the rate of flow and the moisture content of the column, This
latter determination must be made indirectly and an electrical
method was used.

The method suffers from the same shortcomings &g the
column drainagé method for determination of capillary pressure
curves. That is saturations must be determined indirectly, large
amounts of sample are required and the experiments take a long time.
A method based on the pressure plate technique for capillary
pressure determination has been reported by Gardner (1956). In
this relative permeability is determined from flow datas at each
pressure increment using two assumptions. The slope of the
capillary pressure curve is constant for small increments of pressure
and the flow resistance of the fine pore support plate is negligible.
This latter assumption can lead to error and Richards (1965) has
given a method for allowing for a non-negligible support plate
resistance.

All of these determinations are however tedious to perform
and open to error, furthermore relative permeability curves do not
vary very much even between different materials. A more attractive
approach is therefore to investigate the mechenism involved in two
phase flow and to produce relative permeability curves from more
easily obtained characteristics of porous media.

6+3.3 Characterisation of Two-Phase Flow

Initially it was assumed by analogy with Darcy's Law for
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single phase flow that relative pezflneability éould be defined for
each phase in two phasze flow. Usiﬁg_ experimental techniques this
has been established withih the limifé which also apply to Darcy's
law for homogeneous flow in porous media. That is within the
laminéfr region and also including gas slippage effects for gas
phase relative permeasbility. However the existﬁ%ce of capillary
hysteresis leads to different results depending on the directlon of
saturation clhanges. In general permeability at a given saturation
is greater when wetting phase is decreasing than when it is
increagsing. Naar and Henderson (1962} report that this is true
for unconsolidated medias but the reverse applies to consolidated -
media, no explanation was offered.

Visual studies have been made on two phase immiscihle flow.
Chatenever and Calhoun (1952) studied a mono layer of glass or
_ perspex beads contained between two flat glass or perspex faces.
When a mixture was flowed through the system each fluid was
observed to flow in its own network of interconnecting channels
which véfied from one grain diameter to many in width. These
meandered tortué,iély-through the bed but maintained fixed
geometries and positioné with steady-state flow, With a change
in saturation the geometry of the channels was altered, an
increase in water saturafion was accompanied by a general growth
in the size of the water channels and a decrease ip the size of
01l channels, There was a tendency for the chérmels to hold thei;r
position in the flow bed and in the case of temporary disturbances
the channels adjusted elagtically, returning to thelr former
configuration when the disturbance was past.

At static equilibrium the distribution of two fluids in
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a porous medium has been shown to depend essent:;idiljf ‘clm "eépillary
fordés" and the structure of the porous medium in which they ect.
Rapoport and Leas (1951) described the change as the static
equilibrium 1s turned into & dynamic one, _ "Fér each static
interfaca the dynamic (Lie, flowing) presaure gradient will act
as & local disturbance and thia will be super—imposed on the
stat.!.c capillary preSsﬂre; This breaka down the equilibrium
aince the préssure drob over each interface will vary. Each
interface will therefore have a tendency to modify its position
to agsume a new equilibrium which will include capillary and
dynamic forces. However in general the dynamic pressure 'gradient
will be orders of magnitude less than the caeplllary pressure
gradient and the dynamlc equilibrium will not be much different
to the gtatic equilibrium®., That is the flow of non wetting phase
will tend to be in the large pores and the wetting phase in the
small pore:;:. Templeton (1954) studied displacement in uniform
glass capillaries down to 4}1 in diameter and found that capillary
pressure wa;s independent §f interfacial velocity. This glves
some corroboration of this view.

On the closer eiamination it has been shown that the
presence of one fluld contained in a porous medium can be taken
ags & factor which controls the geometry of the patl_ls available to
the other imuiseible fluid which is also saturating the porous
material. Each fluid acts on the other in the same way that the
porous medium acts on them both, In this sense the application

of Darcys law to each phase is not unreasonable,
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6./ DERIVATIONS OF RELATIVE PERMEABILITY

6.4.1 Capillary Tube Theory
With this explanation for relative permeability it is

possible to make structural assumptions about porous media and
arrive at mﬁfhematical expressions for unsaturated fléﬁ as wag
done for saturatad flow. There is an extra incentive foi' th:ls
in relative permeability work since the curves do not vary much
for different materials and because the determination of relative
permeability i1s tedious, difficﬁlt and. therefore open to errof.
The simplest possible description is that provided by a

bundle of tubes model of uniform capillaries. This would give two
straight lines on a permeability-saturation plot for non-wetting
and wetting phase which would interest at 50% saturation and
relative permeability of .5. The sum of these two lines would
be constant and equal to saturated permeability, The obvious
failure of this model has lead to pore size distribution being
included in the model,

. Purcell (1949) assumed a bundle of tubes model and used
the c.épillary preasure curve as a description of the pore size

distribution. Starting with Polseuilles equation

A = AP = P
ﬂi ® T ’LAI?

,‘ ’ when Vv '= volume of a tube ITr2 L

Using the capillary pressure to define the radius of a pore

e
i

2T cos8 /P,

v o= [T cosBJ2 v éP |
B . anIﬁ

¢}
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ébﬁéidé.fing a bundle of n capiilérjr' tubss with a distribution of

g ¥ = e iej’ﬁ2 a® zil'sn v
, = os T
/ 2 A . . |, —
I{. 1i=1 (Pc)iz
from which
kK = (7 cosb) v
LRE > 2
T (Po)y

The volume of each capillary (Vi) may be expressed as a percentage
(Si) of the total void volune (Viot)
e 8 = Yoo v,y /v,

and since A x L is the volume of the porous medium
(ot /AL) x 100

2 n
(T cosag [ E s
2x - 2
(Pc)i

@ -
i

.

.

=
1]

1l
The quantity 281 / (Pc) 12 can be shown to be equal to
f ds/ (Pc)? and is the area underneath a plot of 1./ Péz

versus saturation. Finelly a factor (F), so called lithology
féctor is introduced to account for differences between the model
and a real porous medium. It may be seen that (f) is equivalent
to reciprocé.l tortuoaity

2 1cc
K =F (T _cosB) e as
2 x 1002 ' (p,)2
o
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Gates and Leitz (1950) extended this expression to relative
permeability

B 2
Ky = Kew = f )(: as /%
' 100

o
This assumes that the term (T cose)"ze can be camelled out,
The lithological factor is now used to.correct observed relative
permeability curves to those that were caleculated. This was
shown to require variation with saturations but was taken as an
' average value by using that obtained at 65% saturation. No
relation was formed between tortuosity and either porcsity or
permeability., Gates and _Leitz“expressed saturations as percentages
of total void space though it 1s more normal to express them ag
percentages of total vold volume less residual meisture, In the
discussion on thigs paper 1t was astated that 1f this was done the
correlation is closer. |

In the previous section the Leverett (j) function was
shown to correlate different capillaxy pressure curves to one
curve when

(Daw = (B / T cose) Jwe

is plotted against saturation. Rose and Bruce (1949) used this
relationship in a similar expression for relative permeability as
that just.given. This sllows relative permeabllity curves to be
predicted from one point on the capillary pressure curve,

Fatt and Dykstra (1951) made an improvement in the method
by taking the tortuosity to be a function of saturation, During
desaturation the wetting phase retreats into smaller pores and it

1s assumed that liquid in these pores has a more tortuous {low
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pethi This is allowed for by making (t) Vary with (r). .
t = a/rP yhere a anci B are constants, 'llsing a similar
deriva.tion to Purcells,

100

K = (T cbébjtz fl*'fﬂe _ dS :
2 .; e .
» ga? ; P*—-éz b

in relative pémeéjjility the 'c;o'tistﬁﬁﬁ (a) is cancelled oub

‘ 8 . A
and K; = f; I-%g'(hb)

Poz (1 +b)
o

which if B 4o taken as ¥ Bédbméé

Couation
Gates and Leitz can be seen as & special case with b = o,

A

The expression can be evaluated from & p}ot of ()/ch) versus
saturation, Comparison with experimental re;'sults ghow that (b)
must also vary with the type of porous medium for best fit.

6.5 ;2 Tortuosity from Electrical Resistivity

The analogy between fluid f_lowa:’:.ge conduciion of electricity
has ellowed tortuosity values to be derived from resistivity data.
Uinseuer, Shearin, Magson and Villiams (1952). Formation factor
(F) | is défined as the ratlo of the resistivity of a porous material
saturated with conducting fluid to the resistivity of the fluid
itself

= Reslstivity of Saturasted Semple
Res:.st.ivi‘by of Fiuid

o
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Wyllie and Spangler (1952) show that

K
e

i
.

B‘W =]

therefors £ = F2 &2

If the Kozény—Carman equation ig used with a poré gize distribution

given by the capillary rressurd curve

K= _e& % o 12
kb 55 £, 72 P00

this is only strietly valid for a set of uniform pores but it mey be
claimed that at eny saturatién (s,) am §'orrespdnding capiliary
pressurs (P,) a Fictitioud porous medium is considered whichha a
porosity of (e ASH) and has uniform pores of mean hydraulic radius
(e As) /8 ot where (S,;) is the specific surface of that group

of pores.

Ky = (0AS) T° amd @ = KP
k, P2 ‘ rtl_
ot "o

since the quantity of fluid passed by all such groups

P = ZAQ where X iz the overall

iy
r{_L
" permeability of the porous medium

S k= eT? Edsw
ko F2 LF3.2
. c

by the method of Purcell in the previousz section

g =

-~
H
o
o o
8
&
It
lha,
@ -
3
ol #
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thisg is clearly the saﬁe arﬂ can be used $4 an e:cpreéa’ibn for
relative permeebility, Howefrer witﬁ thé electricel definition
of vesistivity this osh be ééi;relopea furthe:r. Thorhton (1949)
has shown that for partially saturated pérous med ia

F =118,
where (I) 1s the resistivity index Fa / F for the saturation Sw'

If the permesbility at any saturation is given by

2
o T =% . JSW Py
(%" & &7 Xy ). p_2
and relative permeability by K'e /K = ¥sr,
S
N i, |5
2, g 2 Lo et
(Fo<e 5,°) k, T o0
[,
o p2
¢
s
et b S
L = [_ 2 F
F 2
VT
(o]
PO
(Sw as
Key, = X o PR
t 2 g 2 roo a
s [0 a5
) Pez

this assumes that the shape factor (k) is invarient with
saturation, It has also been demonstrated Hassan and Nielsen

{1953) and Archie (1942) that (I) can be expressed as 2 function

of saturation
I = Sw“n
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This is called Archie's :mn Wyllie ard Spanglér (1952) showed
that the relationship holds for the full range 6f saturations even
to the final breakup bf wetting ph&se into pendular rings.

4,2 ozenyuCarman Applied to Ralative
Permeability R

An alternative spprodch has been taket Yy Rapsport and
Leas (1951) in using the Xezeny-Carman equation

K = _¢&

2
kb 8

Fhis can be extended to two phase flow by replacing porosity by
effective porosity for the phase considered amd using the area
bounding that phase

KL = (Sz 9)3
k.t (AI)
and for relative permeability
K = g 2
(Ar/ &)
It was shown in a previous section that surface areas can be calculated
from capillary pressure curves by taking the integral of, or "
: €
measuring the area underneath,the curve, The existance of
residusl moisture can be taken into account by considering it as
part of the golid matrix and using effective saturation and effective
total ares
- 3
Kre = ___S°
(A1/Ae)?
For any moisture content less than 100% saturation several inter-
facial areas can exist, Soligd/liquid, solid/ges and gag/liquid
and it is not poasible to arrive at definp(te expressions for each.
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It is howesver p&ééiﬁlé o take thé 1limitihg cases which are

Vb

Ky (min) s3_§_é 12
A e

and Ky, (max) s3'i-§ ]2
| A mdn

for the case ‘of (Krl. min) this is physically that the fluid
distribution is such that the liqﬁid interfoce is a maximm which
means that the gas ihterfaéé ‘is a mininnun, the opposite is the case
for (KrL tex) , Ebtpﬂi:ﬂ%%&l results were shown to lie between
maximum and minimulﬁ relative permesbllity curvess TFor a
synthetie alundum core the agreement was good and for a natural
core was less goed, though still reasonable., This wasascribed to
the greater homogenalty of the synthetic core,’

Godisd Discussion

The limitations which apply to the bundle of tubes model
are the samea for multi-phase flow as for saturated flow., Thisg 1s
made clear by the need for the tortuosity parameter. It has been
mentioned that a bundle of uniform capillaries leads to a straight
line relationship between relative permeability and saturation and
the two lines intersect at 50% saturation and 0.5 relative
permeabllity and add together to a constant value equal to
saturated permeabilify. The adoption of = pore size distribution
leads to an improvement in this in that at 50% wetting phase
saturation the wetting phase will be contained In the smaller pores
and thus have a permeability less than 0,5.. However the none -
wotting phase will be conta;ped in the larger vores sud will

therefore have s permeability or more than 0.5. The sum of the
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two curves will atill be constant and equal to saturated
permeability. Therjefore pore alze distribution dlone is not
sufficient to déséré\.lbe relsbive beﬁeability curves,

Tortuosity is seen therefore to be more than a correctionr
for pa.t.h length of flow and must be related to the strusture of
the parous medium, In partibtilar 1t n_lust be related to the way
the networks of wetting aﬁd :m‘h-w'atting phase interact with one
another, Therefore though the connection between resi:etiv:l;tsr and
tortuosity may be valid it cannot overcome the way the parameter
is used in the equatlons,

The game limitations also apply to the use of the Kozeny-
Carmsn equation in nmlti-phasé flow ag were mentioned in Ithe
section on saturated flow. Wylllie and Spangler (1952) in their
derivation, as given previously, take note of the eriticisms of
Childs and Collis-George {1950) but since the end result is the
same as other derivations they camnot be taken as having overcoms
the criticism, The criticisms moreover have more validity in
multi-phase flow. It was shown that the equations cannot be used
for poroaity and pore size distributlions too far away from the
usual, In relative permeability the effective porosities range
from{0) to(e) and the effective pore size distribution is truncated |
at each given saturation. Childs and Collis-George discussed the
~use of average pore properties and how this must be properly
defined and be representative. This is impossible in multi-phase
flow as large pores in general conduct one fluild and the small
pores the other. The relative zizes and proportions of these
change with saturation and cannot be represented by average

properties. From this even the similerity criterion advanced for
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sabirated flow requires nide rigorous appliéatiéﬁi-

A further demonsfration by Brooks and Purcell (1952) will
Q'ervg to ainphasise these points.. It has baen shown that the
'Kozexv-Carman equation can be derived from a bundle of tubes model
by tising functions of surface area.. It has also been shown that
the surface area of a porous me&iuﬁ can be taken as

100 !
A= o 1 P, ds X =
(1T-¢ T | 1995

0
which s indépendent of pors size distribution. Furthermore
the equation

K = o7 100

— D2

gt 2 x 100° . Po
hag been derived for a bundle of capillary tubes with a distribution
of sizess By combining these two equa_tions to eliminate the

surface tension term

100 100 2
K = —23. Q-S- Pc as )(——Z" f‘
kit (1-e)°a e | ‘
‘ 0 )

- this oniy reduces to the Kozeny-Carman equation if

100 2 100 2 .
P, ds x as/2° = 10

o o

which‘wi'll only ocour if (P) is constant for all values of

saturation. That is if all the pores are the same size, _
It may be coﬁcluded that for multi-phase flow, relation-

ships must allow use of pore size distribﬁt.ion and that pore inter-

connection ia important and cannot bé fully ldescribed by tortuosity

parameters.
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645 THEORTES_ INCLUDING PORE INTER-CONNICTION

6:5.1 Cutbing and Toining Mgg‘eié |
The neéd for 1héihs¥6ﬁ of po.‘re‘a‘ inter-donnections in
expressions for relative pé‘:c'méalbiiiit).r has béen :féélised and attempts
have been made to do this to give better representation of
undaturated £low, ‘The cutting and jothihg model was firet N
slighested and used by bhiids an& CbliiéGéo%g'é (1950) and since
then has been developed by a number of woricers Marshall (1958)
Wyllie and Gardner (1958) and Millington and Quirk (1961),.
Reviews of this work have been made by Marshall (1962), Wall (1965)
and Laliberte, Brooks and Corey (1968)'.
Consider a bundle of capillary tubes with a distribution
of tube radil. A slice through the pack normal to the length
will expose two planes, (A) and (B) showing the saine pore size
distribution, Meny such slices may be made and rearranged in
" random juxtaposition to reform the porous medium, Childs and
Collis=-George in their treatment arrived at an equation for
permeability in tergs of the pore size distribution, porosity,_ and
an unknown factor. Experimental justification of the equations was
made for unsaturated flow but the range of materials used was not
sufficient to say much about the character of the factor,which was
gained by graph fitting. The treatment here is that given by
Marshell (1958) which is fundamentally the same but which at arrivea
at an equation with no indeterminate factors.
The assumption is made that permeability is contrelled by
the cross-sectional erea of the necks formed between pores at the
joins in the planes, The cross-sectional area of the neck when

the fit of one pore to the next is perfect is taken as thai of
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the émﬁﬁé"r pore. Since fhé f:l'b is often imperfebf., allowance
is madé in this case for a redustion in the size of the neek
wheﬁ bhe tiro pbres in random alignment do ot fit perfecjc.ij' on to
one ahoﬁhei'i A mean crossaéecfiénéi area 6f_aii the hééks ia
obtained and is taken to répr'eaeht that q':é' a tube through which
flow ocourss It 18 aéadinéd '!:hat the material is isotropic that
is the fractiotial poTe Qréa,éj&poséd in a slice is the same ag the
void volume. The pore sise distribition s divided up in to n
‘equal i:ore clas.;ea .é;ach of area 1/d. The mean necic area for each
of n .pdr'll‘;ioﬁs of sdrf'acé (B) W.itlil ﬁor'as (rl) .in econtact with the
first portion of (A) willBe
eﬂi‘f} em-‘z_é b b .. o ITrp2, -
taking the smellest pore in a sequence as dete;rmihiﬁg the
resistence thus ry >ry >¥,. Also on average the area of contact
is taken to be (e) times its area'. Similarly the portion (A)
containing pores (rz) contacting with (B) will be

enrzz, eﬂ-rzz’ enr32 T EEY) 'Y e”rnz

This series is continued in this way until the nth portion of
surface containing pore radii (i'n) has been considered; This
last portion will providé a neck area of e/'rrn2 for each of the
n pértions of surface (B) with which it makes contacts Therefore
the average srea of neck cross-section for all ne portions of
surface is

' 2

2 2. W2 2“ 2 2
eﬂ/n [(rl + r2 + r3 TR Y rn) + (21'2 + r3

2
+ .. -orn)"'-.

| ee * N rna)]

148



or _
"2 3

on /if T2 B e By
2. 2 -
r2 rz 1‘3 ..o‘ l“ 1Tn

r3 32 rs a--‘ &d rnz
ob Ol ' e e s

2 2
rn rnz rn e . rn2

this .area of neck is taken to represent the crosa—sectional area
of tuhe rad:lus (r) c0ntrolling flow, where ™ ig divided into
the aboves From this &énd Poiaeuilles equation
K = _égg [riz L R R S 1)rn2]
n
The averaging procedure is only valid because equal areag for each
pore class were used. In the particular case for uniform pore

gizes this equation reduces to

K = 9212
8

which is analogous to the Kozeny equation
K = _o
2 x b
if k,t 1s taken a 2 / . That is kot = 5.0.Therefore the porosity
nugt be 0.4 which is reasonable,

Millington and Quirk (1961) used the same treatment but
differed in the pore area résulting from interaction, The
probability of continuity of pore space in the mod.el is dependent
onf{e), Therefore the pore area resulting from an interzction will
lie bétween(e) and (9 x{es The area resulting from an interaction
can ba taken to be e?* i‘.hat js & interacting with & to give an

effective area for flow. Furthermore e may be regarded as a
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maxinmm area and 62X a mihimm area. Therefore the maximm area
pccupied by solid is (1 - é)x and the minimum bdré area given by
1 - (1 - &*, These minimun pore interaction sreas should be
identical |

o e (11 =0
for values of e betwesn ‘033". and 0,6 x is '_beitwé'en 0,6 and 6.7

and may be taken a 2/3 the equation for permeability is therefore

given 2@ ,
Y n . n
K = (o732 2 < 1) r2 = &3 (21 = Dr,?
§ n2 Z : Ry z *

i=1 : 1=1

Wyllie and Gardner {1958) allowed for a reduction in erea and of
individual pore size and their equation contai'ned,a factor 83

n
K = 83 B ry?
"81n = ‘Zl:‘i

The factors B and a are introduced in the derivation
and go out when the equation is uged for relative permgability.
Generally the equations if used for unsatureted permeability
have the summation stopped at the appropria_t.e pore size and also
the porosity junction modified by the saturation. Thus Millington
and Quirk give: the following for non~wetting and wetting phase
permeabilities

Ky = (o Srm)‘lh/3 S=101-1) r,?

R
1
n
K = (e5)¥? 2(1 - V2
8 n°
sw
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‘thesé midt be divided by X, at to give relative pérmeabilities.
The cutting and joining model when the pore interaction
factor is taken as e2 gives an essentially two dimensional model
of poré “space continwity, It néga.écta the routes in the third
aiﬁension which are available in real porous media, The
( 43 ) fector in the Millington%uirk equ,ation is an attempt to
recognise this and provide opportunities for these extra connections.
The equation has beeti shown to give a better f.ttT for relative
permeability valhés, ﬂai'sﬂali ti962), Wall (196;) ) and th_is must
emphasise this point.
Marshell (1962) extended the model into 3 dimensions by

congidering stacks of cells each containing wniform pore sizes which

together gave a distribution

= 2 .2 2.,.2
- C 21‘ + 21‘2 I'i ) + s + Zrn ri
1‘1 + I’i I‘2 +. 1‘12 . l‘nz + ri_z

if the smaller pores in two conneeting cells are taken as dominant-

ing the permeability then this reduces to

n 2
c (21-1)r
2 > 1

1

K =

vhere C is a constant determined by the material.

Lattice models,in which the structure of pore space is
taken to be composed of small units which cari"be added together to
form a porous medium have been proposed by Flood (1958) and Le Goff
(1967). | .
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_ Le Goff (1967) é;pproachea the problem from consideration
of a frahework which aliox;é' repeating apace filling elements to be
‘used to oharacterise the flow regimes in two ﬁhase flow in packed
columns, The simplest éleménf ﬁhich doed hob require orientation
for space filling is _the_ cube, Relatively few parameters are
r'e‘qdiré& to characte.rise the flow properties of this model mﬁ
they can be determiréd by ewperiment, Knowing theseé parameters
allows prediction of behaviour under a range of conditions,.

' A similer model has been described by Flood (1958) to allow
statistical representation. of pore spaces, It has been extended
by Wall (1965) to provide an expression for permeability in terms
of the pore size distribution and the pore structure defined by
the porosity and the formation factor.

The cubical elements comprising the porous medium have a
" range of edge sizes (1i). Each cube contains a model pore, as

shown in Fig, (42), where the square capillary neck has a sige

Flood (1958)

Unit Pore

e

i f@
/ o Fig. (42)

of 1i/a and the central cubical void a side of bli/a., This allows
the porosity and the foymation factor to be calculated

152



e = Bl+3auih F= a(a ib) +a- 35-!,& ~ b
8 | b 12{R = 22 = 2b)

Plots of’porosiﬁi} verﬁtié formation faé%"ér can be made for various
values of (&) and (b)-; ~ Therefore if (F) or (e) is nmown for a
real gystem 1t is"posaib'le to evaluste an expression form
permeability in terms of the pore space parsmeters. Wall

derives the aquat:l.oii
K = ;1 . 2F3
4 (8 = b} n

where (ri) is the equivalent radius of the capillary neck, This
is essentially similar to the other expressions, but really
consliders pore space as a sequence of identical porea. The

extension to relative permeability msy not therefore be success-
full,

6+5.3 Network Models

A more direct introduction of pore space connectivity
was made by Fatt (1956) with the network of tubes model of
porous media, This is the same as previously described in the
capillary preassure section but utilized for permeability studies
and more especially two phase permesbility. Fatt was not able
to calculate the permssbility of the model directly for a
reascnable size of network beceuse the mumber of varisbles was too
great for convenient working with the size of computer then
available, He therefore constructed a:i electrical analogie using
the correspondence between Ohms Lew and¢ Poiseuilles Law

| V=1RI AP =238mlyq £

Resistance':-‘.s_tfl. = CL
' Mr rh
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If only relative values are required it is sufficient to use
resistance proportionsl toL / r¥. Krowing the radius and
length of each tube in the network it is therefore possible to
oalculate an equivalent electrical resistance. A network of
appropriately. sized resistances was then set up and the total
resistance (or permeahility) of the network measured dirvectly.
By removing resistances to simulate desaturation (as previously
deascribed) it 1s possible to measure the permeability of the
network at different saturations, The removed resistances were
fitted into an eguivalent network which represents the non-wetting
phagse flow pafh énd the resistance of this was also measured.
Thus & complete relative permeability saturation plot was obbained
for both wetting and nonewetting phases. The relation between
réaistivity and saturation was also investigated, Thias hovever
requires another set of resistances since the electrical resisiiénce
.of a fluld filled tube is proportional to L / 2 a8 compared with
L / # for the flow resistance. _ __ _
Fatt applied the technique to different network configuiations
and a range of pore size distributions including mono-sgize pérea,
just as in his capillery pressure works He was able to show that
the shape of the relative pErmeability curves could be reproduced
by this network model and that the sum of nonwwetting and wetting
phase relative permeablilities was always less than unity., This
even applied to a network of mono-size tubes which were desaturated
in random sequence. The non-wettlng phase relative permeability
was found to be more sensitive to changes in network shape than the
wetting phase, but the characteristies of two phase flow in general

were shown to be mainly 2 consequehca of the inter-connections in
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the network, Tha measuremeﬁt.él of resintivif§ fé:i- different
saturations foilowed hi-é'hi'e:é Law,

| | Rélailivé Resistivity = g @
fb‘r all sa'.!thrat:!lon.sl.. The exponent (n) was shown to be related to
the number of inter-conmections per pere in the netwo;‘k but not
the pore size dlstribution, From m‘eaisur"ementdl é_f reiativﬂ
resistivity on uncohsolidated medda Fatt concluied that nstiorks
in these have between 4 and 13 connectichs at each junction,

In 2 similer but independent work Probine (1958) used a
6 connection':tj?unétion network arranged in three dimensions.

This was chosen to represent the pore space occurring in a cubical
packing of equal spheres. Even with a relatively small network of
64 resistances this gave a better fit with the measured relative
permeabilities of Childe and Collis-George than 4id their expression
for permeability,

Rose {1957) extended Fatts network concept to larger sizes
by ueing a digital computor. He considered a three dimensional
tetragonal network which has a high degree of connectivity and pore
path possibility, This could be altered to other less well
connected networks by fitting in zero pores randomly. Rose showed
that the number of connections per pore is not sufficient by itself
to specify network configurations in three dimensions as it cannot
account for the number of pore paths avallable between adjacent
junctions. Therefore Fatts conolusion from his essentially two
dimensional model that the shape of relative permeability curves is
mainly determined by number of intere-connections per pore must be
seen as too simpls.

Two methods were outlined for operating on the large network
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1th a computbr; one was a direot method of following consécutive
procésses 1n paros, the other a nétwbrk rblsxation method as
described by Dykstra and Parsons (1951)3 : hosé was fiot primarily
"ooncerned with using the model as a microscdpid description of

fluid flow in pbrous media but rathef of using it to represent the
mncroscopic proc}eaaaa involved in 011 reservoirbs The techniques
hre applicable in principle to miéroscopic descriptiona since he
merely used a less fine network in which the correspondence 1a not on
the basis of individual pores.

So ‘t;ar nd expression for permeabilitjr in term of the
paremsters of pobdus medid has béen dérived from network models.

The flow of fluids in porous meciid has beeh discussed in
terms of expressions for permeability given by parameters of pore
space. It has been shown that models based on the bundle of tubes
concept including the Kozeny~Carman equation rely on tortuosity
factors to account for the true naturs of pore space in an unrealistic
wey, These relationships are not very satisfactory for singie phase
flow in porous media but breakdowm seriously in characterising two
phase flow, This 13 because of the way two immiscible fluid phases
distribute themselves in a porous medium which does not allow average
properties to be useds It has been emphasised therefore that in
expressions for relative permeability pore size distribution and
pore space connectivity mist be incorporated. The network modql
of Fatt is importent in this regpect as it successfully reproduces
relative permeability charscteristics for even 2 system of mono-
size pores. The theoretical model which is similsr to Fatts model

may therefore be applied to this preblem,
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ER sggg
NETWORK M)Q__ APP gp T0 FLUﬁD Fnow
7,1 INTRODUCTID

. Exiating relationships fdf the permeability of porous
media have bben mentioned and their short-comings discuased. In
general they are not sstisfactory beeause they do not take full
account of the true nature of pore spacef This is especially 80
for two phase immiscible flow where pore size distribution and pore
connectivity have been shown to be @fﬁﬁi&ai;factorst In Chapter IV
a theoretical mode) of the poré space in a pack of unequal aphe?es
ih dense rendom packing was develbpgd,in:which the connectivity of
the pores was approximated by a regilar two diménsional erray.
Capillary pressure curves vere 6btéihed from this model whiéﬁ ¢ompare
quite well with experimental resultsf The model 1s based on that
used by Fatt (1956) who obtained permesbilities of the model by
constructing electrical resistance analogues and directly measuring
the total resistance of the arrays, The use of electrical relation-
ships is based on the analogy between Ohms law for electrical
resistance and Poiseuilles law for flow in capillary tubes

I =V/R q= Ji* AP
8L

13 75 .. R oXyp/if
R SJ%L toe

Thus the flow resistance of a network of different sizes of capillary
tubes can be represented by the elecfrical registance of a network
of appropriately sized resistors, The direct measurement of the
resigtance of epeciaily constructed arrays of resistors is of

limited use, bgt Kirchoffs laws can be applied to the network and the
total resistance calculatedf Iné%he next sections a matrix
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expression of Kirchoffs laws is developed which is related to the
permeability of the netwerk of cepillary tubes model developed in
Chapter IV. The derivation is taken from slectrical network
theory but the inter-changeability of these and capillary tube
relationships has been demonstrated.

7.2 MATRIX FXPRESSION TFOR THE RESISTANCE
OF A NETWORK

The following treatment is based on that given in text-
books on electrical network theory such as those by Stigant (1964)
and Tropper (1962) which are based on the work of Kron (1939). |
| The performance of any given network may be derived from
the performance of the ind _.’Lviduagl. elements in the network. 1In
Fig. (43) the real network (a) may be reduced to the so-called

Piél k

AL
7/
"
L I
lfpre—
I~
o/
'J-
o
P

- (b)
PRIMITIVE . NETWORK

Fig. (43)

nprimitivet network form (b) and the relation between the two gystems
can be represented by a transformation or comnection matrix, In
Fig. (43) (b) Ohms law may be expressed

eg] |[Ry 0 o] 11,

ep| = |0 Rz 07 i,

e, 0 0 1'13. &3

] = [l
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But from the real network in Fig. (43) (a)

L = 4
I = iz.
i, = 141 - 12

which may be expressed

- - -
1, 1 0f |4
1b= 0 1} |4,
kioj L
] = [o] [1]

where [G_] 15 the transformaticn or connection matrix and provides
the ralationship between the currents in the actual network and the
primitive network.

Similarly the relationship between the voltages in (s)

and (b) may be given in terms of a matrix which is the transpose

of [G]

R
[o] = [c], [e]

The comnection matrix is a rectdagular matrix with (1)

rows and (j) columns where (i) is the number of elements and (j)
is the number of loops in the actual network., To define the
connection matrix for a network the elements and the loops in the
network are numbered and the directions of current flow arbitrarily
asgsigned, Here loop currents are taken as being clockwise ard
currents in elements taken as either left to right for horizontal
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elements or top to bottom for vertical elements. The elements of

the matrix may be designated according to these rules:

G4y = O If elememt (1) is not part of loop (J)

cij = +1 If the assumed direction of current flow in element
(3) coincides with the assumed loop current flow
in (J)

cij = «1 If the assumed direction of current flow in

element (i) 1s opposite to the assumed loop

current flow in (j)

Therefore going back to the expression of Ohms law for the
[¢7] = [8] [1']

o e ] [c]t [&] [+] = [c]t [2] [¢] 1]

+'e Ohms law for the actual network may be expressed

[e] = [2] 2]
where [Z] [C]t [R] [c J

In electrical terminology this 1s called the tmesh impedance

primitive network

]

matrix' and is an operator which acts as the resistance of the whole
netvork,
In the network showrll in Fig. (43) (a)
"

[2]

=

101R100 1 0
01-10.'&20 0 1

0 0B3 1 -1

. A

Ry +R) -
-B ()

(2]
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This [Z] is a symetrical square matrix With its order gitven by the
number of loops in the network, in this case 2 x 2. . This tay also
be defined directly by a set of rules:

244 The sum of resistances in loop (1)
233 = &y = - (The sum of resistances common to
loops (1)} and (J) )
Thus a matrix expression for the performance of a network

way be given by '

Le] = [[4
where [e] and [1] aré column vectors representing the current and
the volfage sources in each lddii. The matrix [Z] may be dekined
either from the connection matrix and a dlagonal matrix of the
resistance elemsnts

5] = [ B[]
or directly from the configuration of the network and values of
the resistances.

| It must be remembered that a matrix may only be used as

an operator on other matrices and is not a defin,é.';ce quantity,
therefore the total permeability or resistance of a network may
only be obtained in terms of potentials and the currenta in the
network. That is, where in general the potentisl drop scross an
array of ;-esistances is known,the mesh impedance matrix can be used
to caleulate the loop current matrix ‘from '

[ [e] = (1]
Therefore knowing the potential drop across the netwerk and the
current it causes,the - total effective resistance of the retwork may
be calculated, In genersl therefore the problem is one of finding
the inverse of the mesh impedance matrix,
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7.3 APPLICATION OF THE RELATIONSHIPS TO THE

NETWORK_ MODEL _OF _POROUS _MEDIA

The matrix relationships may be used in caleulating the
performance of the network of capillary tube model. The form of
the network used in Chapter IV for ocapillery pressure curves is
slightly changed for convenient operation by using a square array
and removing the voids at each junction., This latter change is
equivalent to assuming that the permeability of the network is
governed by the narrow tubes between junctions, An example of
the network form used is shown in Fig. (44) in which there are
13 loops and 21 elements ' | |

D007
7D
| 007D

1D B,

NETWORK MODEL

-

P,

Fig. (44)

In this by analogy between Ohms law and Poiseuilles law
Resistance o< L / :A'

and voltage o{ AP
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Since there 1is only one potentlal source in this problem then the

whole of the inverse of [Z] is not required. Assuming the inverse

of [2] to be x]

AP “xn X2
Iz[-l 01 |%a Xz
0 |=1¥%3 X5
H H :
SR RSTI RSP

.
X3
213

X313

X

[ AP
0
0

%]

f

Arxyg] [
AP Xy, 1,
OPX, | = |4
H H
AP X 115 |
K 113 "1 |

Therefore it can be seen that only the first column of the inverse

of [2] 1s required. By definition of the inverss of a matrix

[ [ =[]

Where [ I | is the unit matrix which is a diagonal matrix in which

each non-zero element is unity,

Therefore the firast column of the

inverse of [Z_] may be obtained by the solution of a set of

similtaneous equations in which the right hand side cowefficients

are given by the first columm of [I]

le Z12 .e
221 222 LX)
Zsl 232 [ X ]
: H

2131 Zuz L Y]

.

'z

Z)13 |

213
2313

2

1313

—

—

I

Xn

1{31

F131)

0
0

V]

L

ol

A

The overall permeability of the network shown in Fig. (44) may then

be obtained from

but since :L_L

K

11

1, /AP
AP et
therefore K =X
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Thus tha overall permesbility of the ne{mork 18- giveh by one elémeu{:
of the invé:‘sa of the mesh. impedancé matr:lx. o

Thia applies generally no matter which vay 'Ehe loopa 1
the network are numbered as the i‘équired aolution w111 always be .
given by thé equatibn with a right hand side co-effidient of 1.

This is obtained from the appropria{:e colurm of the unit matrix,.

The solution may therefore be seen to be an application of Xirchoffs
voltage law that, the algebraic sum of the products of current and
resistance in teaéh péi't of a closed circuit. is equal to the applied
voltege in the circuit.

However the statement of the relatiéhships in the form
given by the mesh impedence matrix allows the contributions due to
the individusl elements and the contribution of the network to be
differentiated

(2] = [e], [2][c]
The matrix [R] can be taken to be related to a pore sgize distribution
gsince the terms it contains are msde up of the resistances of
individual poress This may be defined almost independently of the
actual configuration of the porous medium by a oapillary pressure
curve, Furthermore capillary pressure curves for similsr particle
gize distributions have been shown to be correlatable to one unique

curve for any porosity or absolute pz_article size by using the relation

(1_-6- e) 8,

This could therefore bs incorporated in [Z] as a scalar
multiplier to the [R] matrix, Thus the individual resistive elements
in a porous medium may be defined by a function simllar to that used
by the Kozeny-»(.":arman equation, Here however an additional factor

of the structure of the pore space is also included. The success
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of the Kozeny-Carmsn squation may be therefore understood by the
success of the correlation used in Chapter V for capillary pressure
curves, and also that the [C] matrix for an actual porous medium
either does not vary very much or, is not critical,in most cases

: qhd can be represented by a single coefficient such ag the
toi‘fuosity‘-.

7./ USE_OF THE MATRIX METHOD FOR PERMEABILITY

AND RELATIVE PERMEABTLITY

The matrix expression for the performance of a network hsaa
been shown to be equivalent to a .statement of Kirchoffs voltage law
and to require the solution of n simultaneocus equations where n
vis the number of loops in the network. It may be possible to give
the solution of the equations for the one element required in terms
of a serles expression imvolving the coefficientas of the equations.
This would then be equivalent to other relationships for
perneability., 1In practice however it is more convenient to retain
the matrix form and to treat the problem on this basis as a set of
simultaneous egquations, The main limitation on the use of the
method is in the size of computor storage required for the matrices.
For example a network of 100 loops requires solution of 100
similtaneous equations which means storage of 10,000 coefficients.
Therefore the direct method of defining the mesh impedance matrix
is preferred as the expression in terms of [G:l and [R] requires
storage of these also,.

The lergest network able to be solved with the computer
available has 91 loops and contalns 171 reslstances, using the method
given as a computor program in appendix 6, A list of the radii and
the volumes of the capillary tubes calculated from the Wise model
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of pore space is used. The flow resistance of each of these is

: t—iu- [ B

éalchlate& i‘rom Pbiaauilles law (i aa i‘. / r‘*) and {:he resistaﬂée |
v'alués afe fhen ai'réhged in rendomn brder in the netﬁork by us:[ng
the iibmry sub-rdutine ZORMAL td); _From this the zgesl;

fnpednnas mitrlk 1s spcified by thé sibtoutine 2 (f, hw

. aspuning the netﬁbrk form in Fig. (Mj . This sub-routine def‘ines
the matrix from the number of loopa in the network and the
appropriate number of resistance wvalues to.fill the network, and
thus the matrix need not be stored., The 91 simultaneous eq&aiibhé
defined by this and tha first column of‘,fhé unit matrix are then .
éoiireci usiné the libiaty sub-routins FASOLVE. This is & sub-routine
for the solution of simultaneous equat.ﬁiﬁb with partial row pivoting
and row normalisa'i;ion. The permeability of the network is then
picked out of the solution,

To apply the method to relative permeability, simplification
has been introduced, As the network desaturates, that is the larger
tubes empty and no longer contribute to the network permeability,
the connectivity of the network chenges, Therefore at each stage
in the desaturation a new [_G:l and [R] should be evaluated. Here
however the desaturation is taken to be simulated by the substitution
of very high resistances for tubes which have been emptied., The
network form and the [G] matrix are therefore considered to be
unchanged by desaturation, Also for convenience the network
desaturation procedure used in defining the capillary pressure curves
from the network is not used and therefore isolation of large tubes
by smaller ones ls not considered. This greatly simplifies the
operations on the matrix and may be used as a first appreximation,

These methods of using the relationships are capable of

166



improvement since thes mesgh impedance matrix is symmetrical
(as shown in 7.2) and is also quite sparse, for the network form
_‘ used here, It should therefore be possible to reduce the storage
' required for the matrix by using these properties, A solution of
: t_.he equations in terms of the compressed coefficient matrix will
tﬁ‘eﬁ have to be deviseds This must be an accurate solution using
piiroting aﬁ .a simple elimination procedure was tried and found
to be unsatusfactory,
7.5 RESULTS AND DISCUSSION

7.5.1 Saturated Permeability

The matrix expression of the permeability of a network has
been applied to networks of capillary tubes calculated from the
Wise model of sphere packing given in chapter IV, From this the
radii lengths and relative numbers of the various capillary tubes
making up a network are known and their individual resistances can
be calculated.r It 1s possible to apply the method to radil or
pores determined from an experimental capillary pressure curve by
making some agsumption about thé relationship of pore volume to
radius but this was not attempted and the method is only applied
to the derived network models. That is relating to the four mono=
size packs of beads and the four 3-component mixtures previouslyl
mentioned,

The various resistances are fitted into the model network
in random order using the library sub-routine ZORMAL (9).

Where (§) is an integer between 1 and 9 which is used to vary the
starting point for the calculation of the random number series.
The effect of changing the randomising order on the calculated
permeabilities is shown in Table VII,

167



TABLE _VII

ved T e cornonsnte T veime valug.

. x5, X 102
36/52 Qe Deh5 Qeldd Qb 958 9449 947 15.34
55/60 3.1 3.2 341 341 3.6 346 32 8.0
:72/35 1.33 1.33 131 1.32 1,32 4e22
150/120 31 W31 31 31 .31 1459
Mixture 1 2.83 3.15 2.86 2.91 2.93 6485
Mixture 2 7.69 8,60 8,81 8,13 8432 13.39
Mixture 3 1.56 1.56 1.56 1,52 1,54 1.56  1.55 3.50
Mixture 4 1,36 1.25 1.21 1.26 1,36 1.27 2.58

It can he seen that in geheral the variability of the
results is greater for the three-component mixtures than for the mono-
size packs, This is because there is a greater capability of
variation in these networks as the pore size distribution and therefore
the resistance distribution is wider. This variability should be
reduced if the network size was greater,

To compare these results with other results for permeabllity
it must be remembered that the relationship between the size and shape
of the network, to the element of the porous material 1% represents
must be ineluded. The network form and shape has been kept constant
for eafh bed and therefore each network represents a similar element
of pore space. However for the given constant number of tubes In
the network the system represents & larger element of the pore space
for the 36/52 bed with an average sphers diameter 370}.\ than that
of the 150/120 bed with an average sphere diameter of 117}1. The

avérage values of the network permesbilities given in Table VII must
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therefcre be divided by the sverage sphere diameters of the pack they
repféléen‘!;..' That is multiplied by the specific surface as is
presented in the last colwmn of Table VII, These values are not
-ﬁbsolu'té valtes of Meability for the various sphere packs but may
be only taken to be proportional ‘o the absolute permeability as a
constant multiplying factor for the network shape used must also
be included.

Permeabilities for each of the samples used has been

calculated using both the Kozeny-Carman equation,

K = o
5.0 (1-e%s

2
o

and also from the experimental and theoretical caplllary pressure
curves using the expression of Millington and Quirk given in 6.5.1

K = 31'/3 (r12.+ 3r22+ 5r32+ oo oo * {(2n = 1) rn2
8o
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E

297

15.58
13,22
1.17

o135
7,68
564
1,36

«2199
4.19
3442
1.22

2195
1.58
1.31
1.20

Permeabliity by Millington & Quirk

Permeability by Kozeny-Carman

PERMEABILITIES OF MONO SIZE PACKS em® x 1

«3575
113.16
84404
1.34

#3532
91.16
79.97
1,13

23528
52450
37.60
1.39

3517
26454
20426
1,30

3471
8,82
© 42
1.20

3420
8.18
6.99
1,17

«3547
11345
81.37
1.39

3725
138,31
99.67
1,38

«3519
54423
37.21
1,45

3445
24,40
18.63
1,30

»3504
8.83
7.71
1.14

«3495
8,63
7.63
1.13
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TABLE VIII

»3528
109,53
79.60
1,37

+3583
117.29
84.82
1.38

+3952
84.23
60.53
1,39

«3844
4245
29434
l.44

«3466
8,56
7437
1.16

«3967
16.38

- 12,97

1.2

«3524
108,15
79423
1.36

3926
196.92
124454
1.58

4003
92.49
63.97
144

«3839
41,41
29,18
1.41

3469
8.78
7440
1.18

g8

«3508
91,25
7177
1.17



TABLE X

PERMEABILITIES OF 3-COMPONENT MIXTURES (erf _x 1079)

Mixture 1
e 32122

0 6469
KKC 5.63
KMY/KKC 1,18

Mixture

e «2112
e 13.75
KXC 11.69
KMQ/KKC 1,17

e #1792
ity 4] 3464
KKC 4418
KM)/KKC .87

«3503
53474
37.26
144

«3434
88,73
72453
1l.22

#3316
ble32
31.85
1.39

»3033
63.96
44a37

.44

+3537
52429
38,76
1.34

03434
92.11
72,53
1.26

«3325
46491
32,20
145

«3404
40.39
28,13
1.43

171

+3924
87.30
59.88
1.45

3871
168.33
119.24
1.41

»3902
91,18
62.36
1.46

»3952
86.5§
61.74
1,40

23881
164 .84
120,56
1.36

+»3867
85.17
60,01
1e4l



| TABLE X
PERMEABILITY OF FILTER AID SAMPLES _cm® x 1078

Sample £ 8o M KKG KMY/KKC
o o’/ cnf

560 8650 7164 27.16 13.84 1.96
560 8747 7,41 29,68 15,51 1.91
545 48633 9,733 11.64 7.08 1.64
535 48566 12,389 6447 3.98 1.62
503 8611 14,529 6435 3.1 2,02
Hy Flow 8547 18,823 2452 1.67 1.50
Super Cel

These show that the
permeabilities calculated by the Millington and Quirk expression
are higher than those calculated by the Kozeny-Carman equation by
a constant factor of about 1.3 except for the filter ald results for
which it 1s around 1.8, Also the tables show that the permeabilities
calculated from the results of the theoretical model are consistant
with those calculated from experimental results. Theser calculated
permeabilities for the model are compared with permeabilities for
the network model obtained by the matrix method in Table XI.
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TABLE XI

Matrix method R  Smabrix  pue X matrix

Jala] KKG

36/52 15.34 15,58 .98 13.22 1,16

52/60 8.07 7.68 1,05 5064 1.43
72/85 4022 419 1,00 342 1.3

150/120 i,"59 1.58 1.00 1.31 1.21
Mixture 1  6.85 6.69 1.02 5,63 1.21

Mixture 2 13.39  13.75 97 169 14

Mixture 3 3450 3.87 +90 4e67 o7h

Mixture 4  2.58 3.64 70 4418 61

The results shown for the three different methods of calculating
the permeability of the model sphere packs are each different by
a constant value, they may therefore be taken to be consistﬂ%t w:l.th‘
one another., Comparison with the experimental results for the
Kozeny-Carman equation and the Millington and Quirk expression
have been shown to be consist,dg% with the calculated values for
the model results and may therefore be also teken to support this.
Permoabilities calculated for the network model by the
matrix method are therefore consist,ﬁfﬁ with other methods of
ca;l.culating the permeability of thé'n;odel and also with calculated
permeabilities from experimental results.

7+5.2 Relative Permeability

The permeability equation of Millington and Quirk may be
used to calculate relative permeabilities from capillary pressure
curves by a modification of the porosity term to include saturation

and by stopping the summation of the radius tefms at the appropriate

point, Thus
K = (e5)43 Tn' (21 - 1) r?
- TR
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S -
Ky = (o (1=8) )43

1
(24-1) riz
8 2 ‘

1l

. and tha relative permeabilities are given by these expresslons
divided by‘ £he sai;urated permeabilities, These expressions have
';:been ‘applii“éd to the measured cepillary pressure curves using 100
‘ :l'nc‘reﬁenz’ts in the summation and a straight line interpolation
between the axperimental points, The results are plotted as
relative permeability curves for the mono-size packs in Fig. (45),
for the three-component packs in Fig. (46) and the filter aid
semples in Fig. (48). The same results celculated from capillary
pressure curves obtained from the theoretical model are shown with
the mono-size pacic results on Fig., (45) armd for the three-component
geparately on Fig. (47).

These curves exhibit all the characteristics noted by
Wycoff ard Botset and mentioned in Chapter VI. The permeabilities
of both the wetting and non-wetiing phases approach zero for quite
appreciable saturations. Resldual moisture is excluded from the
expression of saturation, therefore a margin of an extra 5% - 10%
must be added to the low saturation side of these plots in which
the wetting phase permeability is 2ero and the non-wetting phage
relative permeability is 1,0, 1In each case the wetting and none
wetting phase curves cross below aboul .25 relative permeability
and only add up to 1.0 at 0% and 100% saturation. |

The results from the experimental capillary pressure curves
for the mono-size samples 21l lie on the same curve with the results
from the theoretical cepillary pressure curves slightly to one side,
Comparison with the results for the three-component packs and for
the filter ald material show that wider pore size distributions
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move 'l:he cri}ééJOWr point of the pairs of curves towards the higher
wetting phase sla.fufations. Therefore ‘s.‘ince in general the
__theoréﬂéa_i modal pi‘edict.s a narrowver pore size distribution than
ﬁas found in ?ré.cticé,the relative permeability curves are to the
right of the results calowlated from the experimental curves to
which they relate,

_ Relative permesbility curves have also been calculated for
the ‘bheofefiéal model using the matrix methbd. The results are
shown for all the elght particle size distributions on Fig. (49).

In these calculationa only one value of the randomising function
has been used which goes some way to explaining the wide scatter
of the points. The variability may also be aseribed to the small
size of the network used and to the limitations of the pore size
‘distribution derived from the Wise model and mentioned in Chapter V.
The main deviatlon is that due to mixture 4 which has the widest
particle size distribution and which gives the .greatest variation
for different values of the randomising function and also the poorest
£it for saturated permeability results. There 1is also.doubt attached
to the values of saturation at each point since the desaturation

. procedure used in determining capilliary pressure curves is not used
and alse the void spaces ﬁhich contribute a great deal to the total
pore volume are not included. However a curve can be drawn through
the points which follows the main features of the relative permeability
c;[o;"ves given by the Millington énd Quirk expression, It is however
not possible to. pick out the features due to pore size distribution,
| Congldering the assumptions made in the derivation of the
pore size distributions u‘sed in these ecalculations from the Wige

model, the simplification introduced in setting up the network and
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the emall size of the notwork used the agreement 1s not unreasonabls
and at least justifies ; further invéatigation of the procedure,
However the main point may be taken as the corrobo¥'ation of the
conclusion made by Fatt that the characteristic shape of relative
permeability curves is a result of both the pore size distribution
and the structure of the pore space of porous media. Of these

the most important feature in relative permbab_ﬂity curves may be
taken to be the structure since the effect of pore size distribution
can be shoun to be quite small and only to make minor alteratlons

in the configuration of the curves.
7,6 SUMMARY AND _CONCLUSIONS

A matrix expression for permeability has been developed
from electrical network theory which includes terms for both the
pore size distribution and the structure of a porous medium,

Permeabilities for the j:acks of beads used in the experiments
in Chapter V have been calculated using the matrix method, the
Kozeny-Carman equation ani the expression derived by Millington
and Quirk, The results for each method bear a constant relation
to the others which is taken as indicating self consisig.ﬁ%cy.

Relative permeability curves have been calculated from
experimental and theoretical capillary pressure curves using the
expression of Millington and Quirk. These curves show all the
characteristics outlined in Chapter VI. The effect of pore size
distribution on the curves hag been noted and the results
calculated from the theoretical capillary pressure curves show the
effect of the narrownsss pf their pore size distribution.

Relative permeability curves calculated by the matrix method
show & scatter about curves which are similar to the previous

calculated curves. Reasons for this scatter have been advanced.
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CHAPTER EIGHT
DEWATERING AS A FLOW PROCESS

8,1 INTRODUCTION

The capillar& theory of déuatbfiﬁg hag been applied g&
previous workers to filter cakes by disquséing the effects éhown
by capillary pressure curves. However dewatering is primarily a
flow process ‘and for any optimisation of the operation the relation-
ship betwsen saturation and time during dewatering is easential;
Nenniger and Storrow and Batel have destribed saturation versus |
time curves for dewatering by ineluvding the flow of water as a fiim.
on the pore walls. But the éxis@i%ce of this phenomena in porous
media has not been supported by any of the work covered in the
literature survey. Gray calculated saturation versus time curves
for fine coal filter cakes using a bundle of tﬁbés model of porous
media but showed that this gave poor corresponqﬁgbe with experimental
resulta, The failure of this model may be undeéstood from the
oriticism of it in Chapter VI.

The discussion on two phage flow phenomena in Chapter VI

has shown that a permeability may be defined for each phase, in a
given partially saturated porous medium, in ferma of the saturated
permeability which is depenqdﬁi only on the saturation of the -
material to the phage consiéered; Using these considerations a
déacription of the dewatering process may be advanced asg a succession
of steady-state flows governed by relative permesbility. An analysis
is pregented on these lines which,though it is not completq’does

enable the effects of the various variables to be illustrated,
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8.2 DEJATERING AS A FLOW PROCESS WITH

A _ SUCCESSTON OF - STEADY-STATES

The deﬁgtering of a filter ceke by a dispiac‘ing pressure
may be considereé a8 taking piaéb in two é%a;ges. In the first
stage water alone flows from the material and at a uniform rate of
flow. This gives way to a second stage when the zone of change in
saturation reaches the outflow face of the filter cake and both
water and air flow simltencously. This stage iz characterised by
& steady decline in the rate of flow of the water phase,

The process may be represented by a cell @el of the form
shown in Fig, (50). The filter cake is divided horizontally into

1 _

| i

- -

; 2

3

: % 73 |
i - :'

Iv, Fig. (50)

() sections as shown, with no, (1) section comnected to the inflow
face and na (N) to the outflow face: Flow in the filter cake is
through these sections connected in series)where the Darcy equation
applies to each section., A pressure drop is spplied across the
porous medium to displace the saturating water.. Small increments
of time are considered and a volume (Vi) can be calculated which

fiows from each section in to the next in the series, The satursastion

change in each section is therefore given by (Vy_q = Vi).- For the

183



first time increment each section is 100% saturated and therefore
has the same permeability. (Vi) is therefore the same for each
gection and all remain fully saturated'exceﬁt for the first, The
" whole filter cake is reduced in saturation by the amount (VﬁTD which
the section (N) releases to the outside., In the next time increment
the permeability of (1) is now less than previously since its
saturation is less, therefore (Vl) is smaller. Thus section (2)
becomes less than 100% saturated since (V2:>fV1 + All the other
volumes flowing from section to section are the same and the total
saturation of the whole porous medium is again reduced by the same
amount. This procedure may be followed for further increments of
time and the progress of the saturation changes in the various
gsections and the whole bed may be traced. The saturation change
for the whole assembly of sections may be seen to be alwsys given
by section (N) and as long as this element remains 100% saturated
the rate of flow out of the filter cake will be uniform., From the
point when the zone of saturation chenge reaches this section the
rate of flow out of the filter cake declines according to the
relative permeability saturation plot and the seturation changes
in (). |

Calculations on this model using relative permeabllities
caleulated from capillary pressure curves by the method of Millington
and Quirk mentioned in the last chapter,were performed. The model
as described does not make any assumptions sbout the nature of
relative permeabilities used but this expression has beén shown to
give at least the correct sort of result and may be used here for
demonstration purposes. " In the caiéﬁlatiohé.incfeﬁehial'times for

each étéadyéstate flow are chosen to give a satﬁratibn change'at
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each increment of about 1%.

As a preliminary test the effect of the cholce of number
of divisions of the porous medium was checked. Calculations were
made with N = 1, 5, 10, 20 and 30. These results are plotted
on Fig., (51) and show thst 20 divisions is sufficient to achieve
consist.é%cy in the calculated curves. The case represented by
N=11s squivalent to the dewatering curve of an infinitely thin
filter cseke,

Several simplifications are introduced in this treatment.
The main one is that the effect of the air entering the desaturated
spaces in the filter cake is ignered. This is equivalent to
assuming that the viscosity of air c§mpalred ‘to that of the water is
small enough to be neglect;ad. The effect of the air flow through
the cake on the pressure drop across the cake is also ignoreds In
practice this will depend on the relative permeability charscteristic
of the filter medium and the capacity of the vacuum pump, The
displacing pressure gradlent across each section of the bed is
assumed constant and the effect of the medium <resistance is not
included. | |

Even with these assumptions the model is able to show dewater-
ing curves of the correct shape, as described by Nemger and Storrow,
Batel,and Gray, without_ using agsumptions about film flow ete. It
is also able to show the relative effects of the various varisbles
in the process and the true nature of residual moisﬁure..

8,3 THE VARIABLES WHICH AFFECT DEWATERING

The procedure for calculating the dewatering curve used in
the computer program is basically an application of the Darcy

equation
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4v = EaAP

At Ln\_r .

Since As = AVALe
As = (R (AP) At

szle

In this both (K) and ( A P) vary with gaturation, The variation of
permeability with saturation is gi'}en by the relative permeability
curve and it is this which dictates the shape of the saturation
versus time curve., The effective pregsure causing flow varies ﬁith
‘aaturation due to the contribution of capillary pressure

Apr = (P -.Pc)
vhere (Pd) is the applied displacing pressure and (Pc) 4s the
capillary pressure at the saturation at a given time, From this
it is clear that unless Pd> Pe no saturation will take place.

The effects of changes in these varlables given in the
equation iz shown in Pigs. (52) to (58). - Figs. (52) (53) and (54)
show the effect of changes in the direct variables of viscosity bed
depth and displacing pressure, Fig. (55) shows the effect of
surface tension which acts on the displacing pressure. Figs. (56)
(57) and (58) show the effects of variations in permeability due to
porosity changes, changes in particle size and in particle size
distribution, In all these plots an assumed value for residual
moisture left due to pendular rings is taken to be 10% and has been
added to the curves.

8.4 DISGUSSTON

In general the variables which affect the dewatering curves
do so in the game way as they affect saturated permeability. It
would therefore be possible to nofmaliae dewatering curves by

plotting a function such as
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el n At  versus saturation

Kgat AP
This could be extended to include porosity and specific surface by
including a Kozeny-Carman type function.

' This does not include the effects of relative permeability
or capillary pressure, However according to the Millington and
Quirk expression, relative permeability curves do not vary very
mch as may be seen from Figs. (45), (46) and (48). The result of
these small changes may be seen from Fig. (28) where dewatering
curves are plotted for a mono-size pack and a 3-component pack
with similar saturated permeabilities. The.mono-size pack has &
permeability characteristic which is higher for a given saturation
than the pack with a distribution of pore sizes. Thﬁs for a pgiven
set of conditions, after bresk through of ﬁir, the mono-size pack
becomes deaaturated'slightly faster, The effect may however be
gseen to be small, From the way capillary pressure is included in
the expression for giving fhe effective pressure causing flow, it
may be taken to have a quite large effect on the éurves. However
variations 1n cspillary pressure by chaﬁging surface tansion will
have a quite small effect and the variation due to saturation may
be taken to be also small. Therefore in general the effective
pressurs causing flow.will only vary with the applied pressure.

The main variables which affect dewatering curves may all therefore
be included in normalising functions of the type shown and a unique
curve may ba plotted which would give the dewatering characteristics
of a wide range of materials. The success of‘the Dahlstrom
corrslation may be understood from these considerations.

Emphasis mist however be plsced on the nature of residual
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moisture shown by the dewatering curves given In the figures. The
change of saturation with time rapidly becomes small at saturations
shown here of around 30% because the wetting phase permesbility at
these saturations is very small, If a sufficient amount of time
were allowed the saturations would eventually reach those obtained
in capillary pressui'e experiments, but for all practical purposes
the saturations cease to change at values about 10% saturation sbove
true residual moisture. The residual saturation reached in
dewatering is therefore also an effect given by the shape of the
relative permeability curve. From this the success of the Brownell

and XKatz 'capillary number' correlation for residual saturation may
be taken to depend aiso on the similarity of relative permesbility
curves for most materlals, and also on the fact that residual
ﬁoistue ag pendular rings 1s constant for a wide range of materials,
and is not affected by the variables mentioned,

The importance in the model of the last section (N) has
been emphasised. In practice the last section consists of the
filter medium and the characteristics of this may therefore have a
large effect on the performance of a dewatering operation. 1In
ceplllery pressure experiments a fine pore filter medium which always
remains saturated and allows flow of wetting phase is used. In
practical dewatering operations the permeability saturation
characteristica of the filter medium may be such that it desaturates
faster than the fllter cake when the air/liguid Interface reaches it,
restricting and eventually stopping flow whilst the filter cake is
gtill able to lose some more water. This effect would be difficult
to predict in actual filter media as it would ddpend on the inter—

action of the filter cake and the medium,and alao on the lateral
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connectivity of the pores in the filter medium,

The relative permeability characteristics of the filter
medium also exercise another important effect., Apart from the
residual saturation reached in a given time the efficiency of a
dewatering operation is dependent on the permeability of the filter
cake to air as it is this which mainly determines the capacity
required for the vacuum pump., The model used here is capable of
calculating this) given relative permeability data for the nonw
wetting phase, and it would show that the air flow rate at a given
saturation is always smaller for a mono-size pack than a bed with a
wider distribution in pore size, However the declsive effect is
that of the relative permeability characteristic of the filter
medium, Suggestions have been made, Gray (1958) that fine pore
media as used in capillary pressure experiments would allow the use
of a mch smaller capacity vacuum pumps and a consequent gain in
ecoNomy. However, practical difficulties have not yet been overcoms,
mainly with regard:offafgility of high permeability fine pore media
such asg cellulose scetate membranes, and the low permeability of
strong fine pore media such as gintered metal, Proper evaluation
of these effects has been inhibited by the lack of a proper description
of the mecahnism of dewatering, but using the model given here at
least preliminary caleulations could be made.

For proper evaluation the filteringr and dewatering operations
should be both considered together and a true optimisation of the
whole of a solid/ligquid separation process could then be attempted.
The similarity of the variables for these two stages should allow
this to be done. The value of a theory of dewstering is mainly
that improvements to the process such as the application of fine

pore membranes or steam aided dewatering may be evaluated more
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precisely. Furthermore,as mentioned by Dehlstrom (Nov. 1966% ir

the variables which affect dewatering are isolated then ingtrumentation
can be carried out to control a process by operating on the variables.
This removes the need to measure such things as cake thiclmess or
moisture content which require more complicated devices than those for
flows or pressure.

8.5 CONCLUSIONS

Dewatering must be considered as a flow process and the cell
model presented here, despite simplifications, predicts the major
characteristics of the séturation versus time curves, The shape of
these curves is dictated by the permeability saturation relationship
and the variebles which affect saturated permesbility. A significant
feature is the small effect of surface tension on dewatering.
Residual saturation: reached in dewatering is also a direct result
of the relative permeability characteristics, The filter medium is
shown to have important effects on the efficiency of a dewatering
operation, These findings generally support empirical correlations
such ag that of Dahlstrom for dewatering and that of Brownell and

Katz for residusl saturation.
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CHAPTER NING

SUMMARY AND SUGGESTIONS ¥OR FURTHER WORK

9.1 INTRODUCTION
The dewatering process in packed beds and filter cakes was

shown by previous workers to be dependent on the structure of the
pore space® in porous media, as a consequénce of the capillary
properties of liquid retained in porous media, However a
satisfactory deseription of the mechanism of déwatering and an
expression of the relationships involved in the saturation versus
time curve was not available, This investigetion has therefore
attempted to follow the microscopic effects occuring in unsaturated
porous media due to the retention and flow of water and also to
relate these to the macroscopic process of dewatering.

The investigation msy be taken as a discusasion of the
properties of porous media which are important in dewatering, this
has been divided into three parts. The static ﬁroperties of
méisture in porous media are discussed with reference to the capillary
pressure curve and the nature of the pore space which it reveals.

The dynaemic properties of unsaturated porous media are discussed with
reference to relative permeability curves and the way in vhich the
nature of pore space in porous media is simplified for use in
expiessions for permeability. The conclusiong from these investigations
have been used in 2 simple theory to explain the main features of
dewatering curves and which allows a discussion of the role of the

main variebles of dewatering, These three dividions are followed

in the next sections.
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9,2 CAPILLARY PRESSURE _CURVES
«2:1 Summ
_ Ihe pribperties of moisture retained in porous media have been
investigated dsing the capillary pressure curve and the characteristics
of thes._e curves desci'iﬁed by relation to the nature of pore space in
unconsolidated media:a The analytical treatment of capillary pressure
curves has been extended to multi-componemt mixtures by using the
Wise model of random packing of unequal spheres applied to the Fatt
network model. Cepillary desaturation curves obtained from this
model have been cbmpared with experimental results by using established
correlations. The model gives a reasonsble prediction of porosity,
residual moisture;. surface area and pore size, but predicts a
narrower pore size distribution than was found in practice. The
chief feature of the model ig that the nature of pore space is |
considered in two separate parts, the distribution of pore sizes,
and the connectivity of the pores.
2 srimental Worle

The comparison here of capillary pressure curves obtained
from the model with experimental results provides, as far as is
known, the only experimental test of the Wise model of sphere packing.
One feature of the derived model which is not fully utilized is the
specification of the vold spaces in the interior of each
tetrahedral pore element. The @cisijﬁg&e of these i1s supported by
the fact that their inclusion does not destroy the shape of
desaturation curves, but to test properly for their validity the
experimental study should be extended to imbibition curves which are
chiefly determined by these voids.

The treatment given of capillary pressure curves is almost

exclusively for sphere packs. The extension of the theory to
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irregular particlés is diffioult o envisage but dn experimental
treatment could ﬁé useful, In general the greater the deviation
of particlé shape from that of a sphere, the wider will be the
resulting péré si:'!a' distribution fof the same particle size
distribubion, Tiiis will be shown in the capillary pressure curves
.and mey offer & useful def.':mition of particle shape for use in
btﬁer work, especially in permeability expressions.

9.2.3 Extensions of Theory

The caplllary pressure curves obtained from the theoretical
model predict too small a pore size, if the entry pressure inte a
pore in a sgphere packing is calculated on the basis of the largest
possible sphere which will fit in the pore. When an experimentelly
determined value for this is used the correspondance becomss much
closer. This use of the experimental value requires to be
supported by a theoretical treatment for its validity to be established,
If such a theoretical treatment could be made for an assembly of 3
unequal touching spheres it may also improve the description of pore
size distribution as the error which has been noted for an assembly
of 3 equal spheres is likely to be much greater for 3 unequal spheres.

The model used to obtaln capiliary pressure curves is an
assembly of two parts. The Wise model to provide a desceription of
pore size distribution and the Fatl model to provide a description of
pore connectivity. Both of these may be considered separately and
improved independently.

The Wise model has not been used primarily as a model of
packing but as a description of how the various sizZes and relative
numbers of particles In a multicomponent mixture interact with

one another in 3 dimensions, From this point of view the assumption
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‘bbat the ﬁéﬁ}oib arrangemsnt is a perfectly oxdered mixture shpuJ.d
be inq)roved tb be more in accord with practical cases which can at
best only ba ﬁéi‘fgct randon mixtures. Such a treatment may result
in a better iieséi‘iptibn of pore size distribution as it will lin
general make it wider,

Gonsiderizig the Wise nmicdel as a description of the packing
of particles, the main doubt is in the neglect of the gaps which
exist between spheres. It may be that the method of testing the
model used here cannot reveal this sort of effect. For example if
a gap exists between two spheres in a packing the result will be that
two tetrahedra will open into one another without an intervening
small pore. By the irﬂependé%t domain concept of capillary pressure
curves, two independlég% domains become one and take up the entry
pressure of the lower of the two previous cases., This sort of
effect may be rev;aled by a careful analysls of a full hysteresis
loop but this is not certain, An extension to the model by
ineluding open tetrahedra is known to be in progress, Berresford
(1967) and this may reveal more detail,

The hydraulic radius correlation of capillary pressure curves
for porosity variation may only be checked experimentally In a wvery
small region. In view of its importance here, a theoretical
extension to both low and high porosities would be of great value,
The Wise model modified by open tetrahedra may be capable of this
sort of anelysis as porosity variation in packings must be accompanied
by either an increase in size or number of the gaps between particles.
Alternatively extension of the Debbas and Rumpf theory, which is also
known to be in progress, Scarlett (1968), may also be capable of"

covering changes in capillary rise due to porosity variation. Such
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theoretical treatments may show that the narrow pore size
distribution predicted by the model used is a real effect caused
by the low porosity.

The Fatt network model used here is primarily a simple
approximation to real three dimensional comnectivity in porous media
which only retains the actual fact that comnections axisf. This
is sufficient for the major features of capillary pressure curves
which are mainly depend£%£ on pore size distribution. However if
the treatment of capiliar& desaturation were extended to include the
trapping of moisfﬁ:g due to lack of phase continuity, more refinement
‘should be ineluded. The network form ought to be developed to
include an approximation of 3 dimensionasl connectivity. The natufe
of 3 dimensional connectivity is indicated by the deseription of pore
gpace given by the Wise model and this may provide a starting point
for progress.

Extension to the network model shoqld be made with computor
models. These would allow far more extensive and accurate tests to
be made on much larger arrays than can be managed by hands A .
calculation of the trangient phenomena betwden each equilibrium in a
capillaxry pressure experimeht may also be possible.‘ From the point
of view of dewstering filter cakes this sort of elaboration might not
be jJustified but such models are of use in oil production where the
same sort of problems are involved.

More immediately the assumption of simple network forms may
allow an edpression to be qiived {0 correct pore size distributions
calculated from capillary pressure curves. The expression given
by Meyer may be valid but a more useable, if less accurate

relationship would be more useful,
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9,3 PERMEABILITY. AND RELATIVE  PERMEABTLITY

9:3:1 Sumnary |

Existing expressions for peimeability have been discussed
by relation to their assmnptions about the nature of pore space.

The flow of two immiscible fluids in porous media has been showm to
be characterisable by relative permeability curves and the discussion
of the expressions ls extended to this case,

The uncertainty about permeability expressions centres on
their treatment of pore size distribution and pore connectivity which
are shown to be especlally important for two phase flow. Using the
model derived in the capillary pressure section and applying
electrical network theory an expression for the permeability of the
model has been derived, This involves separate matrix expressions
for pore size distribution and network comnectivity.

Permeability and relative permeabllities have been calculated
using the expression and compared with values calculated using other
relationships.

Permeabilities and relative permeabilities calculated using
the matrix expression compare reasonably well with results calculated
in other ways. But this correapbnd;ﬂ%ce also requires experimental
verification,

A method has been mentlioned of using measurements on the
rate of approach to equilibrium in capillary pressure experiments
which appears attractive. In one experiment a large amount of data
could be obtained about the nature of a porous medium such as
porosity, pore size and distribution, surface area, permeability

and relative permeability, The theory for the extension of this
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sort $o0 flow problems ia however not complete.

More directly the nature of the model used could alsc be
tested experimentally using miscible displacement, residence time,
or perhaps frequency reszponse methods. These techniques allow
more information about the internal structure of a porous medium
to be obtained, which could be compared with results from the
network model.

9.3.3 Extension of Theory

The main limitation to the matrix expression for permeability
is the large computor storage reguired for the coefficients. This
has lead to the application of the method to quite small networks
which give. rather variable resu;l.ts. Using the properties of the
matrix solution it should be possible to extend the method by
" deriving a2 serles expression for the permeability of a given network,
or by devisging a computor solution for the matrix which doss not
require storage of the zero elements. Once the problem of sizme of
the network is solved a study of both the effects of pore size
distribution and the structure of the porous medium could be attempted.
It might also be possible to relate this to the extensive tests of
the Kozeny-Carman equation which have been made and expressed by the
variation of the tortuosity factor with such as porosity and particle
alze distribution.

The relative permesbility curves were shown by Fatt to be a
conasequence of the connectivitj of pore gpace. His tests however,
and those here, were essentially static and the conclusion could be
checked for a dynamic case by a coﬁlputor simmlation of unsaturated
flow in & network. This could be extended by testing various network
forms including three dimensional ones. |
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Here the pore slze distribution and the connectivity of
pores in a2 porous medium aré considered to be independent of one
another, The discussion about the é_ontinuity of pore space shown
by the Wise model (section Aud.2) indicates that this is only an
approximation, If the networic form in real porous media were to
be investigated this should be boprne in mind, Furthermore the
variation in permeability with porosity has been taken to be
determined by the changes in pore size given by the correlation
function, Thus pore size distribution and pore connectivity have
been assumed to remain constent. If theoretical treatment of
porosity variation mentioned in 9.2.3 was successful then this
glew might have to be reviseds For instance if the changes in
porosity in packed bed were shown to take place by variation in the
gize or number of gaps between gspheres the fourfeld connectivity of
the assumed network would no longer be suffieient., For instance two
tetrahedra which open into one another dus to & gap bhetween spheres |
would then give a void with sixfold commectivity, This seems likely
and the inclusion of porosity in the matrix expresgsion ag a geeldr
multiplier to the [R]matrix may have only restricted validity.

9.4 DEWATERING

94441 Introduction
Using the conclusions gained from the study of the statie

and dynamic effects of water in unsaturated media a simple cell model
for the mechaniasm of dewatering has been devised. Despite the
simplification intrdduced the model shows the main features of
dewvatering curves and allows evaluation of the various varisbles
which can affect dewatering, The results support existing

correlations,.
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Q.42 Experimental Work
The dewatering curves derived using the cell model have not

been tested experimentally. For this to be done satisfactorily
relative permeabllity date must be available for the material
involved, as the data used in the model is derived from an expression
which had not itself been testeds The uncertainty attached to the
effect of the filter medium in dewatering has been mentioned and
experimental verification may be more satisfactorily made on a
gystem using a fine pore filter medium, ¥For this a medium should be
used which has a higher permeability than the sample, otherwise the
rate of flow out of the bed will be more affected by the medium than
the saturation changes in the sample., Difficulty will also be
aasociated with following the saturation changes as this is not an
easy quantity to measure, especially as it will not be constant

over the whole of the sample, A test program on the dynanmies of
dewatering has been reported using x-rays, Rozkydalek (1967).

If the process is as sensitive to the effects of the filter
medium as has heen indicated 1t may be more fruitful if further
experimental work on dewatering is performed on actual equipment
to test the effects of the variables given here., This could be
done in conjunction with tests on the value of improvements such
as using fine pore filter media, steam aided displacement or
modifications to cake structure by vibratlions. The true value of
these can only be fully assessed in fullwscale tests.

O,.4.3 Extension of Theory

The theory presented for dewatering is simplified because
the viscosity of air in relation to water can be neglected. The

use of ligquids to displace liquids has been mentioned by Atkinson

207



(1949) as having some advantages in certain circumstances and it
may be of value to extend the cell model to the general cass and
include the viscosity of the displacing fluid.

The difficulties inherent in experimental verification of
the theory have been mentioned. A check could also be made by a
computor simulation of the trangient phenomena as a network
desaturates. This has been mentloned as being of walue for the
ofher sections of theory and may provide a more coﬁvenient test
here also.

This investigation has been solely concerned with displace=
ment dewatering but this can only be performed if the displacing
pressure'exceeds the capillary pressure of the filter cake, Thisg
therefore only applies to relatively coarse materials (> 20 )1) .
For filter cakes with particles smaller than this a pressure applied
to the cake can only displace filtrate by compressing the cake.
This problen is in many ways analogous to displacement dewatering
as 1t is also a flow process in which the permeability of the cake
varies with the progress of the process, in thisigﬁg to the change
in porosity. Furthermore preliminary experiments which were
performed using the gpparatus deseribed earlier for the filter aid
samples, indicate that a pressure/saturation equilibrium curve can
be plotted which is analogous to both a capillary pressure curve
and a stress/strain plot of mechanical properties. |

&n additional feature of this sort of dewatering is the
occurrence of cake cracking which can be a problem in industrial
filtrations. A greater understanding of the proceés would lead to

a better understanding of cake ecracking.
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APPENDIX _ONE

GEOMETRICAL RELATIONSHIPS OF TETRAHEDRA FORMED
BY FOUR SPHERES

The pore space in a tetrahedron formed by four touching
spheres has béen approximated to a central spherical void from which
protrude 4 cylinders, The dimensions of these may be calculated
from the radii of the spheres forming the tetrahedron, |

Wise (1960) has given an expression for the size of an
interstitial sphere in such & tetrahedron which is quoted in (L.4.1).

The radius of the tubes protuding between 3 spheres iz a two

dimensional problem as shown in Flg. (59). The area of a trisngle
! . .

Fig. (59)

in terms of the lengths of its sides is
A =/s5(5-8 (5=-b) (8-c)

where a, b, and ¢ are the lengths of the sides and

S = (a+b+e)/2
For the triangle formed by 3 touching cirvles radii RI, RJ, RK
8 = (RI + RJ+ RK)
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+*s the area [S(S‘(RI*'RJ))(S"(RI*'RK))(S-CRJ'FRK))]%

[(R + R7 + RR) RIRJRK]%

In Fig., {59) Area IJK = Area IJE + Aree IKE + Area JKE
e [(RI + RJ + RK) RI RJ RK]%= [(RI + RJ + RE) RI RJ RE]%
+[(RI+ RK + RE) RI RK RE|? + [(R7 + RK + RE) RJRKRE]%

dividing throughout by[(RI + RJ + RK) RI RJ RK RE]%
[;J=[(RI+RJ+RE) +[(RI+RK+RE) ]%+[(RJ‘+RK+BE) ]’}
RI + RJ + RK} (RI + RT + RK)RJ (RI + RJ + RX)RI

No way was found of isolating (RE) but as the expression was to be

incorporated in a computor program a trial and error solution was
used. An assumed velus of (RE) was used in the right hand side
to calculate a value of (RE) which was used for the next substitution,
This may be seen included In the program in Appendix 2.

The length of a tube from the face of a teteahedron to the
surface of an interstitial sphere is a 3 dimensional problem
see Fig, (60).

|
Y
|

Fig. (60)

I,J and X are the centres of three of the four spheres making up a
tetrahedron., C 1s the centre of the interstitial sphere formed
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by these and the fourth sphere not shown,
The volume of a tetrahedron in terms of the radii of the
spheres constituting it has been given by Wise (1952)
Volume = [2 (aa bb - aa? cc) / 9]%
where aa = RI RJ RK RC
bb= RIRJ+ RJERK+ RI RC + RJ RK + RJT RC + RK RC
cc= 1/RR+1/RR+1/ R+ 1/Re3

alao the volume of a tetrahedron = (base area x height) /3

% 2z _co-ordinate of sphere C = (3 x volume of tetrahedron)/height
This can be found from the above relationship for volume and the
preceding one for area, '

The x co-ordinate of sphere C is (RI + RC) cosd)

where cos0 = (RI *+ RC)® + (RT + RK)2 — (RK + RC)®
2 (RI + RC) {(RI + RK)

The y co-ordinate of sphere C may be found from the right angle

triangle GX Q using Pythagoras theorem, The co-ordinates of the
centre of the circle in the face of the tetrahedron marked E in
Fig. (60) may similarily be found

z _co-ordinate = O (by choice)

(RI + RE) Cosd

{RI + RE) [1 - cosze]%

where cos® (RI + RE)2 + (RI + RK)? - (RE + RK)?
2 (RI + RE) (RI + R

The length of the tube joining these two points (d) mey be found from

]

X co-ordinate

¥ co-ordinate

]

the expression
2
qa = [(xz -x)"+ (y; - y1)2 + (z5 - 21)2]%
The length of the tube in the model is therefore (4 - RC). These

relationships are included in the computor program given in Appendix 2,

211



APPENDIX TWO COMPUTOR PROGRAM FOR PORE SPACE
MODEL

MAS/ER DODD

IN THE WISE

DIMENSTON R(%),X(3);YM“N(1911NMFN(15):FX(15);30L(50);FREQ(50)

3 READ(1,40)N
IF{N_EQ.90)8TOP I, - -
CMENR(NAR)w(N*L)/B, -
MM=Me (N+3Y /4., _ e e
DO 35 TI=1.N o _
READ(Iaaliﬁ.Bm.“m““ - o
CRUTImA : B _ ~
Xtj)=’ L - o -
_ YMEN(] ) t. - L - N .
5 CONVINUE . . B
S50 DD 10 I=1 N__“ e B e B o
) XMcN(i1=Y“FV(I) e e, o e
g ,FX{I)"!(I)/XMFN(I) , vy L o ,
D 99 i,uwﬁw,mn o o o
CoMI=D — —_— }
RO 83 Jd=1,N_ ——
DG 82 X=d,N - e
DO 931 LeX, — S o - _
Ml =MT+1 R e B
ETON - o
. IF(rA(I) ¢X(J))13 12:13 e N - I
3 IFfFX(ILEFX(K))15114115_M__H;&W;“Mm;ﬁm__m.wb,MMm;_ e e
A WEWHY SN
5 _ IF(FX(I)*FX{L))l7r15:17 -~ _ -
6. WeW+i e R
7. I=W+t i S
CA=2. *w(I)*(fR(I)+R(J)+R(K))/(fR(I)+R(J))*(R(I)¢R(K))))“1.
CR=2 AR(II A ((R{I)SRIJI+RILIIZCIRITI+R(IIIX(RILISRLTI I I,
CO=2 *#R{II*((R{ID*R{K)I+RIL))IZCIREII+R{K)IIN(RITI+RIL))) =1,
CSA=SORT(1.~CA®CA) . . _
SB=SORT(L . ~ChBeCR) — i
SC=SARTIL, »cOwCD) . _ - —
AA=ACOS((CA- CB*CD)/(SBtsC)) o _ _
 BB=ACDS((CR-CAXCD)/(SANSC)). R -
CC=ACOS((CD- PA*CB)/(SA*SB}) S -
SOL(MI)=( (AQ+BR+CC=3, 14159)/12 56639) e
o TF(Z=3,120,18,19 _ R .
0. ... P=0, . o S - -
o ‘F(J 1)927r9?6 927 _ e N
26 PapP+i. B _ i
27 . IFH{ J-K)Q2Q ?28 929 _
28 . P=Ps+1, R e . [ ~ I
29  _IF LU= L)q31,a30:931w_w - . i} _
30 . L PsPYY . i . - Ll _ -
A IF(K=,)933, QB?a933 — o - - ) _



3z PP+l . R

33 [F(K=1)935,334,935

34 P=Pef.

35 IF{[=L)937,9%6,837 _ - -

3n . P=P+L, L T -

317 IFiP=2,)923,221,18 — - -

21 ¥=6, e . R

G 0 Q8L o - -

8 Y=4, S ; _ .
60 70 8981 . o e - -

23 IF(P 1 )9?‘5 ‘3?4 924 S

& ¥=I2,

, GO0 88y - S

25  vy=24, e e . - o
GO YO Q31 B e e - - _

o Y=i, _ _ B o e -
60 TO a8y e

8".,__FREQ(?I)=FX(I)*FX(.J)*FX(KHFX(LJ*?*Z e .

2 CONYINUE .

) C(?N"‘IN&)E- o . B o -

CBUMSOL =0, _ _ . B

_SUMFREQ= 0.

00 31 MI=i.v. . T "?;jfi;:;;iij]j;_m;;“[T]_LQJQJIiif:ffgli
CSUMSOL=SUMSOL +SOL(MI )*FRFQ(MI) . - S

 SUMFREQ=SUMFREQ+FREQ(MI)
| CON"INUE

EN(1)=SUMSOL/SUMFREQ fwfifff:fif:Lf:ﬂ;ffffiifﬁf;fTLL[fjfflfﬂQﬂjif

éf'[MCUM!xMuE e e e
U IF(ABS{XMEN({)=YMEN(1))~-. 070112 2,350 T
DA B ImiN '

',Fxff)mx(;)/VMFNtx)
MIz0

CSMOD=O-,

CWRITE(2,82)R(1)/X(1), YMEN(])_ ,ff;_wmuMﬂ@wmwtmf;ff;mjm[fff“M“WM"MW'”

UsERsam0,. T T T

S8ED=O,

SSPERaO, T .. S

CsuvoL=n.

DO B YmA N e }
D0 B ST N e e e
DO BRY KmJ N I N
o DO B93 LakK,N__ 3 o - —
. SPHCERE 8=0, . . . .
,H“’“ e e e e e

o TF{l- .J ) 5 1 3 ‘1 1 2 ' 5 1 3 e e e R N R
A HWeWst, J
3 IFt - K)Bl'i.-aiﬂuals




—~

NN NN
NI RS

o W=+,

— e -
- :,

¥=1, ' ' R
. FREQ(M] )= Fx(I)*FX(J)*FX(KJ*FX(L)*Y .__MUMfHMWﬂwmw”m_u.___Au. e
C SFREN=SFRENFREQ(MI)
CEl, Z{ROIVARIT) I+ ZIROI*RIS) I #1 . /(R(K)*R{K))+1 I(R(L)*R(L))

IrI‘-L)817 916,817

=Y+1,
Z=N+1~, D _
TF(2=3,182),318,319 "
IFiz=2,)822,824,822 R _
IF(L~K)827,823,827
IF(J=K)B2R, 825,828 .
JF(J=L1B27,81R,827 . o )
IR (L - K)’E?Q RA7,829 B _

. ¥Y=24 . ;

GU G0 981 o . - e _ -

L ¥=12, . _ e -

-GN f1 MH ~ N _ L _ e
¥=6, _ _ e .
GO IO AR _

Y=4, S
G N0 83 L _

D=1, /RCE)+1 _/RUJ)+1,/RIK)+1 . /RIL)
RG= {D/? +qunT(( 75*0*9)-1 ExC))

RCELL=1,/RG ,;.‘b,wh”+,m'ﬁWLAA‘WA,&W@;WMWV,,W .

S VCELL=1 +3, 14159*(RCFLL**3)/3 e e e e e
CMRITE(2,4%)M1,FREQ(MI ) \RCELL , VCELL U S
CFACE MMOD=O e

CCFACE=FACE+L .
O

RFi B1. I -
QRT((R(I)+RIJ)+RF1)/((Q(I)+R(J)+R(K))*R(

KIV) . e i
, “”QRT((Q(I)*R(K)+RF1)/((P(I)+R(J)+Rtk))*R(J))J_.mmum__m.mn e e
X3 QQHT((R(J)+R(K)+R¢1)/((R(I)+R(J)+R(K))*R(I)))w SO
C Al=X1ed2ex3 0 o B e i e e s e e e
CBisLL/{AL*AL) O SRR
TF{ABG(R1~RE1 )=, 0001)4 O

AAA=RLT)#R( D) *R{KI*RCELL - -

o BHR“RxI)*R(J)*R(I)*R(K)*R(IJ*RCELL+R(J)*R(K)+R(J)*RCELL*R{K)*RCELL
o BmL /(RO R () )L L /(ROJ)*R{UY Dt /(R(K)*R(K))+l /(RCELL*RCELL)
O VTECSSRRTO (2. 2AAAXBRB-AAARAAARC)Y /9, .. - - R
. ARA= QRT‘(R(I}+R(J)+Q(K))*R{I}*R(J)*R(K))mﬁmm“m; e e
L CO=2, *R(I)*((Q(I}*R(K)*Bt)/lln(l}+RfK)l*(R{!)*31)!)-- e
. CT=2. *R(I)*((R(i)*R(K)*RCELL)/((R(I)*R(K))*(R(I)+RGELL))) 1 C e
CXCECOR{R(T)+31) = ~CT*(RIT)+RCELL ). e - - e e e
. AC=3 wVTEC/ARA . e e s+ 4 e e e e
e YCm SQRT((l -CQ*CO)*(R(I)+91)*(R(I)+Bl)) e 2 e SRS
L YG= YC-SQRT((I.-CT*CT)*(R(I)+RCELL)*!R(I)+PCFLL) ZQ*ZCI_MM_“.”.MMWWMMHM



W

A ,SDH‘RFQHFREQ(MI)*ZtSOI(WI)_Wm”m .
CARARR(I)HR(UIARIK I *RIL) S
. BBR= R(I)*R(J)+R(I)*R(KJ+R(I)*R(L)*R{J)tR(K)+R(J)*R(L)*R(K)*R(L) -
S CZ=L JUREDIAR(ID A LARODARII) DAL ZCRIKIMRIK) D 4E, Z(RILI*R(L) ). L
VTETRSART (2. #AAA+ABR - AAA*AAA*CZ)IQ.1)*FREQ(MI) S B
. SMODRSMOD+YVHMOD E T S LS
. SBED=SASD+VIET,

CFURMAT(6H R(II®(F9,576H X(1)=+F9. 5}9H YMEN(I1)=,F9.5/)

XL1=SQAT(XCaXCHYCHYC+ZC*2CY~RCELL . . ... *
VT1=3,101594R1%B1AXLY
YMODSVUADAVTY L

WRITE(2,100)1, /K, BI VT S
FORMAT(3H I~:IZ:3H JR, 12,34 K=y 12,4H Rim,F8,6,5H VTIH:Fﬂ YA IS
NA={

N .
J=K i i
K=l

L=NA

TFH‘/\C:"@ )71:?2: 2
\!MOD'I(U‘ADD+»I(‘FLL)*FRFQ(MI) e e e e o

CA=2 , #R(T)*((R{I)HRESI+RIK)I/ZLIR(II4RIIIIM(RITI+RIK) ) )
CB=2. #R{I)#((R{I)FRIDIHRILIIZCIRITI+ROIIIN(RILIFRITII))-
C0=2.*R(IJ*(LR!I)*R(K)+R(L))/((R(Il+R(K))*(R(I)+R!L})))
A=SORT(Y =CA*CA)Y

11 lﬁ

S
i
i

- I [ B
¥
i
!

SA=C0RT(! . ~CR*LB) e e e e e+ e e e e

SC=SART(Y , ~cDWCD)

AA=ACOS((CA-CB¥CD)/(SB#SC)) e
BASACOS((CR-CAXCO)/(SAWSC)) . _
CC=ACOS((CD-CA®CR)/(SA#SB)) ___ SR

SOLWKI)=((AR+BR+CC=3,14159) /12, 56639)

TEiMI=¥)14,11,9 B 'wm°fﬁiﬂf}[i]“Qf,mwﬁ

SSPER=SSPER+SPHERES. '”_“ e

CONTINUE. . .

CUNITS=SSPER . e

DD 5 I=i N_ S

 UVOLA(4. 43 1A1B0) e (R (RO ARSI B, T
CSUVOL=SUMOL+UVOL __

VSPHERES= (UNITS/X (1) )*SUVOL o e

CPOROSITY=10). % {SREN-YSPHERES)/SBED e
_REMOIST=100. % (SBED=YSPHERES~SMOD )/ (SRED=-VSPHERES) .
CWRITE(2,101)POROSITY REMOIST

FORMAT (10K _POROSITY=,F7.5,9H REMOIST=,F7, 5/)__MMHMW]ffffjfgﬁ&”uw]fjﬁl;

DU 7 MI=1 N9

F=i99, *FRE@{MI))S%h=a T T T T

FORMAT (2F5, pjﬂwugbyﬂ_im‘ N A

FORMAT(4H.MI=1 120100 FREQ(MI)=/F 15,4, (TH_RCELLR:F8,6,7H VCELLa/FB,6
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APPENDIX THREE

SAMPLES _US IN THE_ EXPERIMENTS

3,1 Glass bead sampleg

preparation: sieve cut

162,28 e/ comd
2,99

36/52 specific surface

i

specific gravity
microscope count:~
dia. () 308 318 328 337 347 357 366 376
no. 10 33 39 45 40 37 29 29
disa. (}-1) 405 41, QR4 434 M3 453 463 472
no, 23 21 11 10 l 1 1 -
preparation: elutriated sieve cut
52/60  specific surface = 236,12 cn’/om’

specific gravity 2.98
microscopé coﬁnt:-

dia, (F) 218 223 228 232 237 242 247 252

no, 3 3 22 38 48 60 66 63
dia. (}1) 7L 276 281 286 250 295 300 315
no. 2@ 27 19 6 4 - 1 1
' preparation:\ elutriated sieve cut _
72/85 specific surface = 319,62 c;mz/cm3
specific gravity = 2,98

nicroscope countsm

dia. 99 145 150 155 160 165 169 174 179
no. 1 - 1 5 11 22 31 60
dia, Qﬂ 19, 198 203 208 213 218 223 228
no. 2, 1% 16 15 9 5 3 1

217

385 395
23 21
481
1
257 261 266
63 36 A
18, 189
57 23



preparation: sieve cut
159[120 specific surface

specific gravity

nieroscope counti—

dia. qn 73 78 83

Noa

dia. 9@ 127 132
Nnoe. 15

Mixture 1

Component 1
Component 2
Gomponent 3

Mixture 2

Component 1
Component 2

Component 3
Mixture 3

Component 1
Component 2

Component 3

3 2 7

12 5 5
gpecific surface
gpecific gravity

mean radius
microns

90

124

170
specific surface
gpecific gravity

mesn radiusg
microns

128.0

186.5

257.7
specific surface

specific gravity

mean radius

microns
4549
117.0
186.5

514.30 cm%/cm3

2,98

8 93 98 102

9 12

137 141 146 151

3 3

107 112 117
26 44 29

= 233.81 orl/erf

= 2.9

weight
grammes

22,259
364292
434968

2.98

i

weight
grammes

23.322
434404
38.546

il

2.98

welight
grammes

5.477
424126
55.478

218

number
%

52437
32,37
15.27

160,91 cﬂ%/cn?

number
%

55.42
33.32
11,25

226437 er?/cm

number

61.64
28.86
9.30

122
26



Mixture 4 specific surface = 202.1%6 cnﬁ/cm?
~specific gravity = 2,98
‘-ﬁean radius welght nunber
microns gramues %
Component 1 58.3 10.647 66,17 .
Component 2 102,9 254750 29.08
Component 3 257.7 65.982 475

3.2 Filter Aid Samoles

! 4o Celite 545
Celite 535 Ce%age
30
| Y Flo gyper
Particle
20
Size

Particle Size
Distributions
of Filter Aid

(1)
10 |

/=20 L0 60 80 00

% Finer Than

219



APPENDIX

FOUR

EXAMPLE OF OBTAINING CAPILLARY PRESSURE CURVES FROM - MODEL

Mixture 2 porosity .2112

1111
1112
1113
1122

1123

1133
1222

1223
1233

1333

2222
2223

2233
2333

3333

Capillary pressure data given with other results in Appendix Five,

111

111
112

111
113

112
112

112
113
123

113
133

122
222
122
123
233

123

133

233

133
333

222

222
223

223
233

233
333

333

N 8 T RN o Y W

15
Ji15

covowlRaRBuovbhrrawiR

Rad.

«2877
+1980
32
+1980
«2221
3350
+1980
+ 24,06
3449
«222],
+2520
3694
«2221
+ 2406
2755
»3973
024,06
3035
«3802
»2520
+2893
#4089
»2520
2755
3194
4417
2755
»3035
«3555
4792
3035
«3991
+4203
«2893
4534
+2893
<3194
+4908
+3194
+3555
+5329
+3555
3991

Network shown in Fig. (61).

. v01 .
09972
.02893

‘.13000

»03489
.03827
+15744,
03891
+ 04685
-17188
«O4741
.05083
»21112
05360

05931

06249
«26276
06780
07710
23026
06532
+ 06652
228643
,07516
08281
08055
«36092
09668
+ 10636
09572
6089
12642
,10815
¢ 31094
.09022
+39036
» 10629
11472
49519
¢13792
L4631
+63391
+18060
18509

220

Pressure Drop
E D £ B A

J I HPF G
1 1
4 1
1 2
1 3
1
2 2
8
2 3
6 4
1 1
2 2
4
1 1
2
1 2
8
4
4 4
1l
2 2

1
11

15

22

NONrORRNNNPL®

o A5 LS T W ]
=P~ Ean000009<>nJ¢-a¢~_ F‘E; x®W O

PRGNS Wi

2

30

30

16

60

58

30

20
20

10
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APPENDIX FIVE: CAPILLARY PRESSURE RESULTS

F=P, e F =F/5, P* = caplllary

T (1~9) presaure not
corrected for
depth of bed
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APPENDIX SIX : COMPUTOR PROGRAM FOR THE PERMEABILITY ‘OF A
NETWORK

FORTRAN G1{2%, J & DODNS
NO TRACE _ o
MASTER MATX O U U
DIMENSION RE173),A(21,91),R(94) NRR(174),REINT(O1Y
COMMON L,R

566 READ(1,31)L S ;
91 FORMAT(13) N e R _
CSTVOL=0,0 o e . ]
CKT=G L - : e e
SKEp=1,0 SR .
IF(L.EQL999)8T0P e _ P
READ(1,108)3ED, N0 . R ) ] e
108 FORMAT(AS,As) e o ) _
o WRITEC(2,103§BEDGNO 0 : -
103 FORMAT(//AH_BED _NO ,A5,AS/) _ o -
. READ(1,113)3EM R I _
113 FORMAT(F3 1) o e i
CNGe2eLalsl S e ; .
NEL® (Lot e e
DO 104 I=guNG_ — g ;
104 RU1)=0,0 e i e -
_T0T=0.2 o B .
“___RFAD(I.qu)rNDEY _ ) S ] ;
198 FORMAT(I2) e b e e ot e
26 IF(INDEX,EQ 10)60 Yo 80 . IR
 READ(1,24)RAD,VOL, N, NRD e . .
24 FORMAT(F5.4,F6,5,12,12,) R o .
.80 1o 3 e
50 READ(1,25)RAD, VﬂerU NRD - SR
25 FORMAT(FB.5/F6,5,12,12,) e . o

51 IF(DEM,EQ.1.0)VOL=VOL*0, 1 o
CRSTNmZ,00#VNL/(314) S4RAD*AR)

XNO=ND - -
CTVOL= UWl*XNB o B - )

CSTVDL=STVOLATVOL e
© TWRITE(2,27)3AD,VOL NGO, RSTN,TVOL, STVOL R
27 FORMAT(2X,F&.,5,2%1F6,5,2¥; 132X F8, 5,4%,FB,5,4%,F¢,5)
DO 28 Isi,ND

29 RN=ZORMAL(EY i B}
JERN®1T1,043,5 . - _
CIF(I=030429800 e e
, IF(R(J)-O 0129,0,29 e ) o
RGJ)=2, OO*UﬁL/(3141.5*PAD**G)_MLJ_ e o ~
C NRR({J)=NRD T S S
_28 TOT=TOT+L,0 R e o .
o IF(TDT-NG’Ear‘llldii o e o B -
111 CONTINYE R, .
 KTeKTsl L e B B B
bo 30 1= 1’“"',,‘* _ ] L L - o
30 B(I}=0[OW - . ~ )
Bti)y=1,0
D0 31 I=1,N=
AL, RZOTe ) L S
31 CONTINUE



37

~IF(KT,

110

ND OF SEGMENT,

N=NE
NA=NF &« NF

NBaNF

INm=y

CALL F2S01LV=z(A,D,

NyNA hb,ln.n 1D, IT,REINTY

IF(KT , £0,1)SKER=R (1)

RELP=8(1}/8<ER

WRITE(2,37)1T,B (1) ,RELPFKT “'“'m‘f;jj;,w,wm__""__M_h_“”
FORMAT(I4,2yY,F10,4,2K,F7,4,2X, 14/’_LMﬂwMW
3T, 10560 TO 110

DO 109 J=1,NG
CONTINJE
GO TO 586

STOP
END

LENGTH

%74,

NAME

IFINRROJ).LELKVIR(I)= qqg aag
109 R S
60 TO 11

MATX

; H. [ o :
S SR U

N H H i i ' i ' 1
. ! ot [ [ !
Ay e L e e b Mt Y TR W e pod




FUNCTION Z(1,d)

DIMENSION R¢171) o v

COMMON L,R

1=0, T
I1=]
Ji=yJ o
Il=2%lei+(1a2)/L -
10 IF(],E2.1167% TO 2 ;
CIF{J=1)1,5, %h“__ o .
1 K=l L -
I=J B ) o L
J=K U S
Ilz2xl+i+fla2y/l .
GC 10 10 . _ § I
6 IF(J,EQ. I+l Z=mp(1I=3)

IF(J.G6T,L*L+2)60 TD 53

IF(J.EQ.T+1 [AND,MOD (J~2,0) .NE, 0)Z=-n{11-2) e

_ G0 T0 53 | P
2 IF(J,E3 1060 FC 3
NNz (J=2) /L |

IF(MOD( J- 2.&0’?6 0, ANR,J LE, (14l = l+2))Z--Rt(2*L+1}*NN*1)_““WW&;“

60 TQ 53
.3 §=0,0
“_“5=L*L alwd
00 4 Kad,NS;L
NNm(Kml )/l '

4 S= S+R((?*L*i)*NN+1) ) -
CRRS i o
GO 10 53 ) ’ 3 )

5 IF(ILLE.Le1iE0 70 51
IF(1.6T.L*L+1)GD TO 52

L ZER(II=) 4R IT~Z) 4RI T2 Y 4R - a2wy 0 7 T T

G0 TO 53

81 IF(I1,67,4)7=R(11-8) R )
1= Z*R(IIfj)*R(IIMQLT“m_ . ~
GO 10 53 - ) i B

52 I=R(1]1=4= ?*LU - _ _

53 I=1{ e
= N o } ) .
RETURN o )
- SToPp - ~
- END B ) - ] )

ID_OF SEGMENT, LENGTH _ 406, NAME 7 ]

IRMAL f.(SEMJfCQEﬁltﬁgﬁililj”'ﬁf"”“'””fﬁ“ﬁl'"“' . o

2SOLVE 7 (SEMI=-COMPILEpY ~~ T

g

.

i

|
RN
|



Appendix Seven: Computor Program for Relative Permeability and
Dewatering Curves from Capillary Pressure Data

RTRAN. G061 4o -DADDS - oo e
MASTER. CORP - oo e
DIMENSION_PC(104) s ST.10L), RI1G1),SXL104)RX (101 4101 ) NRPER(102)——

1 WPER( 1 ‘2):9X(101);SAT(101):VHOH TIM(500),CSAT(800) CSEC(SOD).YSAT(SQC
EAT ts5c0) .

REAL-L...eo . e i : _
 REAL-NAPER-- —— S ' e
66 READ(L p1OIN—— ; _ - — R —
19 FURMAT(IB ) —— o . — : : -
e IR ANLEQLQ9OYSTOP ' i
e NDI VAt . i :
- READ(1,2B)B=D,NO.._  _ S —
28-FORMAT(AS, A5} _ SR e e
e WRITE{2,29)3ED/NO— . . : T
29-FURMAT(//8KH-BED-NO—, A5 ,AB/)—— - - et e —— R
- -READ(1,26)Tx,D,DIA, NT:DS.E#;___ - : e
26 FORMAT(3F5,2:F9.4,F6.4,F8.4)- S I
 READ( 4 BO0RNM S
30 FOCRMAT(FE.3) : -
e VIS =Q L SRS — : oo — - . -
— IF(E,LE.0.25)WT=100,0 ' - S B -
— A=3_1415xD14axD1A/4, u,"“"_mW .........
e L BWT (DS H (L. O~E) %A} : -
- WRITE(2,32)0X9 0 : :
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