
Loughborough
University

Mathematical Modelling of Solid Tumour Growth:
A Dynamical Density Functional Theory Based

Model

by

Hayder M. Al-Saedi

A thesis submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in the

Mathematical Modelling
Department of Mathematical Sciences

Loughborough University
United Kingdom
October 2018

© H. M. Al-Saedi 2018
Supervisors: Prof. Dr. Andrew Archer and Dr. John Ward



CERTIFICATE OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this thesis, that the
original work is my own except as specified in acknowledgements or in footnotes, and
that neither the thesis nor the original work contained therein has been submitted
to this or any other institution for a degree.

Hayder Al-Saedi

ii



ACKNOWLEDGEMENT

[All] praise is [due] to Allah, Lord of the worlds.
Then, I would like to express my deep and sincere gratitude to my supervisor,

Prof. Andrew Archer, who is an extraordinary person, and has been very sup-
portive and nice since the first day I arrived in Loughborough. Prof. Archer has
made my PhD life worthwhile and unforgettable. I am very blessed to have been
given the opportunity to work on a very interesting topic, mathematical modelling
of cancer.

I also would like to thank the second supervisor Dr. John Ward who gave
me great support, reassurance and valuable advices throughout the progress of this
work.

Family, friends, and colleagues surely have provided support that I can never
thank enough. I am very grateful with this life that I have been bestowed with, in
which I have and know you all in my life.

In addition, I would also like to thank to the Iraqi ministry of higher education
and scientific research, Iraqi cultural attache in London and Baghdad university for
their financial support granted through doctoral scholarship.

Hayder Al-Saedi

iii



DEDICATION

In appreciation of sacrifice,
this thesis is dedicated to my brother Marwan

and to all those Iraqis,
who,

sacrifice themselves to protect our country from the barbarous terrorists.

Hayder Al-Saedi

iv



PUBLICATION

Al-Saedi, Hayder M., Andrew J. Archer, and John Ward. “Dynamical density-
functional-theory-based modeling of tissue dynamics: Application to tumor growth.”
Physical Review E, vol. 98, no. 2, p. 022407, 2018.

v



ABSTACT

We present a theoretical framework based on an extension of dynamical density
functional theory (DDFT) to describe the structure and dynamics of cells in living
tissues and tumours. DDFT is a microscopic statistical mechanical theory for the
time evolution of the density distribution of interacting many-particle systems. The
theory accounts for cell pair-interactions, different cell types, phenotypes and cell
birth and death processes (including cell division), in order to provide a biophys-
ically consistent description of processes bridging across the scales, including the
description of the tissue structure down to the level of the individual cells. Analysis
of the model is presented for a single species and a two-species cases, the latter
describing competition between a cancerous and healthy cells. In suitable parame-
ter regimes, model results are consistent with biological observations. Of particular
note, divergent tumour growth behaviour, mirroring metastatic and benign growth
characteristics, are shown to be dependent on the cell pair-interaction parameters.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Cancer is a disease that may be viewed as a complex system whose dynamics and

growth results from nonlinear processes coupled across a wide range of spatiotem-

poral scales. Cancer is recognised as one of the major causes of premature death,

soon to overtake heart diseases as the leading cause in the developed nations [1]. At

current rates, in the USA a third of women and half of men will develop a cancer

at some point in their life [2]. A recent report by the World Health Organisation’s

International Agency for Research on Cancer (IARC) [3] states that North Amer-

ica leads the world in the rate of cancers diagnosed in adults, followed closely by

Western Europe, Australia and New Zealand [4]. In Britain, for example, according

to Imperial Cancer Research Fund, one in three are expected to develop the disease

over their lifetimes, with a likely increase to one in two in the near future based
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1.1. Introduction

on the trends at that time [5]. Similarly, in Australia it has been predicted that a

third of men and a quarter of women will be affected by cancer by the age of 75 [4].

Though significant progress has been made in cancer treatment in recent decades,

much research is still required in order to control all forms of the disease.

The human body is made up of order 1013 cells [6]. Genetic mutations are

frequent, but most affected cells die by apoptosis (programmed cells death) which is

a regulated process involving the systematic dismantling of cells into smaller bodies

and then are removed by the immune system. However, a few may escape the

regulatory process to produce an abnormally growing colony that in time recruits

its own vascular system (via angiogenesis) and form a cancer. A tumour is a mass

of tissue formed as a result of abnormal and uncontrolled cellular proliferation, the

growth of which continues indefinitely and regardless of the mechanisms that control

normal cellular proliferation [7]. Tumour growth varies depending on type, location

and circumstance. Solid tumours can be develop to be either benign or malignant [8].

Cells in the former case are highly differentiated, usually uniform, grow slowly,

and neither invade the adjacent tissues nor give rise to metastases elsewhere in the

body. They proliferate locally, but their continued growth can cause atrophy and

disappearance of cells of neighbouring healthy tissues due to the mechanical forces

applied. Frequently, they are completely enclosed in a protective capsule of tissue. A

benign tumour may remain in situ for years without causing ill effects and if detected

it is easily removed by surgery. On the other hand, malignant tumours are less well

differentiated and their cells tend to grow rapidly and show differences in size and

shape. As they develop, individual cells are able to escape the main tumour mass

(metastasis) and colonise elsewhere in the body; it is these cells that give rise to the

greatest clinical concern. Malignant tumours can be removed by surgery if they are
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1.1. Introduction

recognised before the stage of metastasis [7]. Table 1.1 summarise the differences

between the benign and malignant tumours.

Table 1.1: Contrasting Differences between Benign and Malignant Tumours

Features Benign Malignant
Pattern Uniform Not uniform

Growth rate Slow Rapid
Periphery Encapsulated Absence of encapsulation
Metastases Never occur Can occur
Treatment Removed by surgery Varied

Despite major scientific, medical and technology over the last few decades, a

fundamental gap that is currently hampering progress in individualised cancer care

is the extrapolation of patient-specific micro scale quantitative information into for-

mulations of therapeutic and intervention strategies at clinically relevant scales (e.g.,

organ scales).

Tumour growth modelling is the study of the complex dynamics of cancer pro-

gression using mathematical descriptions. The internal dynamics of cancerous cells,

their interactions with each other and with healthy tissue, nutrition and oxygen

transport, extracellular matrix (ECM), properties of vascularisation, vascular net-

work, chemicals signals secreted by tumour and host cells, properties of the under-

lying tissue are amongst the factors modelled using dynamical equations. These

equations rely on biological and clinical observations coming from different sources

at different scales. Experimental observations are key to create models depicting the

tumour growth process precisely.

Mathematical growth models give important information for both clinical and

specialists in oncology. Creating a mathematical framework that combines exper-

imental results lead to enhanced understanding of the underlying mechanisms of
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1.2. Mathematical Growth Models

tumour growth. Experiments and simulations enable the impact of different treat-

ments on cancerous cells to be assessed and can lead to improved treatments or

suggestions for new ones. Personalised models adapted to patient specific cases,

could in the future be used in therapy planning, e.g. model prediction can indi-

cate focussed application of irradiation to minimise side effects in combination with

optimally timed chemotherapy.

1.2 Mathematical Growth Models

Mathematical modelling of cells growth in tumours is one of the oldest and best

developed topics in biomathematics [9]. Mathematical modelling of tumour growth

can be classified into two broad groups: microscopic models and macroscopic models.

The main difference between these two classes is the scale of observations they are

trying to clarify and depict. Microscopic models focus on the cellular microscopic

scale, often connecting to in vitro (in laboratory vessel) and in vivo (occur with a

living organism) experiments. As a result, they formulate the growth phenomena

at this scale. Macroscopic models on the other hand, concentrate on describing

structures that are at the naturally visible scale like the ones provided by medical

images. They formulate the average behaviour of tumour cells and their interactions

with underlying tissue structures, which are visible at this scale of observation (grey

matter, white matter, bones, etc). These models try to describe the behaviour of

the tumour, consisting of millions of cells as a whole [4].
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1.2. Mathematical Growth Models

1.2.1 Microscopic Models

Microscopic growth models aim to describe the tumour growth process at the cellular

level based on observations at this level from microscopy on biopsy samples and

other such experiments. They take into account physical and chemical interactions

between cancer cells, the extracellular matrix and the healthy cells. Mechanical

phenomenon like pressure, cohesion and adhesion forces are often included in these

descriptions. Mathematical models for these are usually very detailed because they

try to take into account all the observed factors. As a consequence, the number of

parameters in such models is very high. From the technical point of view, formulating

such microscopic models requires a large variety of mathematical methods. The most

commonly used are discrete stochastic models, such as cellular automata or agent

based models, that are analysed through competition.

1.2.2 Macroscopic Models

Observations at the macroscopic scale consist of medical images like computed to-

mography scans (CT), magnetic resonance images (MRI) and MR diffusion tensor

images (MR-DTI). Since the resolution of these imaging processes is limited, typi-

cally around 1mm × 1mm × 1mm in the best case, observable features are limited.

Mathematical models at the macro-scale try to formulate the tumour growth using

the observations coming from this scale. For this reason, these models include fewer

factors and are mathematically simpler than the microscopic models discussed in

Sec.1.2.1. From the mathematical point of view, all macroscopic models are mostly

continuum formulations based on a continuous local density or proportion of tumour

cells. As a result, these types of model formulations contain several ordinary and/or
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1.2. Mathematical Growth Models

Figure 1.1: Diagram illustrating various aspects of different mathematical modelling
approaches of tumour growth.

partial differential equations to describe the growth process [10,11].

1.2.3 Dynamic Density Functional Theory Models

To help bridge this gap between micro and macro scale modelling, we propose a

mathematical approach based on Dynamic Density Functional Theory (DDFT) [12],

which provides a mesoscale continuum framework directly derived from a stochastic,

discrete model as shown in Fig.1.1. Unlike standard mean-field models, the DDFT

approach accounts for correlations and is able to describe the density distribution at

the microscopic (cellular) level [12, 13]. We extend the approach to model the spa-

tiotemporal dynamics of multicellular systems by including cell type and birth/death

processes, which are major features of biological tissues. Whilst built on the princi-

ple of discrete statistical models, the approach leads to a system of integro-partial

differential equations and thus makes available a greater range of mathematical tools

6



1.3. Further Classification of Tumour Growth

for their study.

1.3 Further Classification of Tumour Growth

Further classification within these groups can be made based on the tumour growth

dynamics and mechanisms, such as diffusion, tumour cell invasion and mechanical

properties and the stage of the tumour growth being analysed (i.e. avascular growth,

angiogenesis or vascular growth).

1.3.1 Avascular Growth/Solid Tumour

Avascular growth (tumours without blood vessels) corresponds to the stage where

the growth process is mostly governed by the proliferation of the tumour cells. In

this stage the tumour takes the form of a solid mass, which is growing by mitosis (i.e.

growth by individual cells splitting to create two identical copies of the original cell).

Although not totally known, it is thought that at this stage there is no invasion of the

healthy tissue. Furthermore the interactions between tumour cells and the healthy

tissue are also thought to be limited [4]. The tumour cannot grow indefinitely in the

avascular stage because as the tumour mass grows, less and less nutrition is available

for the cells found at the centre of the avascular mass. As a result, necrosis begins,

whereby tumour cells that are not getting enough nutrition die, and only cells on the

outer perimeter of the tumour continue to proliferate. At some point necrosis and

the proliferation balance each other out and the avascular tumour reaches a limit

size, which is typically around 1–3 mm in diameter [14]. The building blocks for

mathematical models of these are generally coupled ordinary and partial differential

equations, such as population growth and reaction-diffusion models [15].
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1.3. Further Classification of Tumour Growth

1.3.2 Tumour-Induced Angiogenesis

This is the stage where tumour cells in the avascular mass modify the existing vas-

cular structure to make new blood vessels to feed the growing tumour. Through this

process the tumour can overcome its size limit, grow much faster, and invade the

surrounding tissue. Due to this crucial role of angiogenesis, the underlying mecha-

nisms of this stage have captured attention and many models have been proposed.

Tumour induced angiogenesis is a very complex process including lots of chemi-

cal and mechanical phenomena, which have not yet been totally understood. The

building blocks of mathematical models for these processes are stochastic differential

equations [16–19].

1.3.3 Vascular Growth/ Invasive Tumour

The intricacy of the tumour growth in this stage is higher because there are sev-

eral processes going on at the same time. In addition to the cellular and chemical

interactions going on as in the first two stages, tumour cells start to invade the

surrounding tissue via mechanisms that are not clearly known yet. At this stage,

parts of the tumour becomes diffusive and is not considered to be solid anymore.

While the difference between cancerous and healthy regions is clear in the avascular

stage, this difference vanishes during the vascular growth because tumour cells move

towards healthy regions. Vessels inside the vascular tumour might have been formed

by angiogenesis or the tumour might have grown around an existing vessel, as in

the case of tumour cords. Unlike avascular tumours, the source of nutrition is not

limited to diffusion from the perimeter. Thus, the formation of necrotic regions is

much more complex, if they exist at all. For the same reasons, vascular tumours are

not compact masses of cancerous cells, they do not have a size limit and can grow
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1.3. Further Classification of Tumour Growth

indefinitely [20].

1.3.4 Diffusion based Models

Almost all diffusive macroscopic models use the reaction-diffusion formalism. This

formalism models the invasive tumour by adding a diffusion term to simple solid

tumour growth models, which describe the proliferation of cells [10]. The central

building block of this approach is a partial differential equation (PDE) of the fol-

lowing form
∂ρ

∂t
= ∇ · (D∇ρ) +R(ρ, t), (1.3.1)

with the Neumann boundary condition

n · ∇ρ = 0, (1.3.2)

where ρ is the tumour cell density, D is the diffusion tensor of tumour cells and

R(ρ, t) is the growth (or reaction) term. This equation incorporates two different

characteristics of the tumour growth in the two terms: diffusion and proliferation.

The first term on the right hand side describes the invasion of tumour cells by means

of (a perhaps directed) Brownian motion, which is characterised by the diffusion

tensor D. The second term in the equation, R(ρ, t), describes the proliferation of

tumour cells. The second equation represents a no flux boundary condition and n

is the normal vector to the boundary [21].

1.3.5 Mechanical Models

Mechanical models concentrate on the mass displacement effects of the tumour

growth on the surrounding structures. When the tumour grows, surrounding tissues
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1.3. Further Classification of Tumour Growth

are deformed. This deformation is described by coupling the pressure caused by the

change in tumour density with the material characteristics of the organ structures.

Most of the models use rather a simpler formulation consisting only of mitosis caus-

ing an outward pressure. They focus on mechanical interaction between a growing

tumour and the tissue [22].

This thesis is laid out as follows: In the next chapter, we discuss the relevant liter-

ature on the above topics in more detail. Chapter 3 gives an introduction to density

functional theory (DFT), which is the basis of our model for the density distribution

of the particles (i.e. cells). In chapter 4 we present a dynamical density functional

theory (DDFT) of solid tumour growth with application of cell birth/death pro-

cesses. In chapter 5, we present results from the DDFT for a single species of cells,

including a linear stability analysis and some typical simulation results are discussed

in details. The model presented in chapter 5 is further extended in chapter 6 in or-

der to describe the competition between cancer cells and healthy cells. We also

present a linear stability analysis and typical results from this model. In chapter 7

we present a preliminary analysis of a model to describe the haptotaxis process of

cell movement in response to gradients in the extracellular matrix (ECM). Finally,

in chapter 8, we present our conclusions and suggestions future works.
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CHAPTER 2

LITERATURE REVIEW ON TUMOUR

GROWTH: THE CONTRIBUTION OF

MATHEMATICAL MODELLING

2.1 Introduction

Addressing the challenges posed by cancer, Perumpanani compares the research

community taking these challenges to a military action in the war and adds that

this has resulted in recent years in an expansion of our understanding of cancer

[5]. Interestingly, Alberts et al. [23] observe that the emphasis given to cancer

research has contributed greatly to a much wider area of medical knowledge than

that of cancer alone, explaining that the effort to eradicate cancer has led to many

fundamental discoveries in cell biology. Nevertheless, the study of cancer is not new.

11



2.2. Models of tumour growth by diffusion

Ward, in [24] asserts that various texts of ancient Greece, Egypt and Rome make

clear that the early physicians were well aware of the nature of cancer and were able

to make a correct diagnosis and perform successful therapy.

Clearly the study of tumour growth and the development of anti-cancer therapies

have significant potential to enhance quality of life and increase life expectancies,

which may, in turn, yield extensive financial and social advantages [4]. Experimen-

talists and clinicians are becoming increasingly aware of the role of mathematical

modelling as a new way forward, recognising that current medical techniques and

experimental approaches are often unable to distinguish between various possible

mechanisms underlying important aspects of tumour growth [25].

The forthcoming literature review discusses some of the important mathematical

contributions to the study of tumour growth. It gives a brief history, presenting some

of the most notable mathematical models and their relationship to experimental

studies, and illustrating how the field of cancer research has evolved due to these

interactions between theoretical and experimental approaches.

2.2 Models of tumour growth by diffusion

The earliest mathematical studies in the early 1950s of tumours neglected the diffu-

sion processes and focused purely on growth dynamics. Mayneord [26] in 1931, for

instance, noticed that in the final stage of growth the tumours grew linearly with

time through his experiments on the effects of X-radiations on the growth of Jensen’s

rat sarcoma. A perception corroborated by the study of spontaneous carcinomas of

the mouse reported by Haddow [27] some six years later in 1938.

The diffusion processes would later become a crucial part of tumour models. Hill

12



2.2. Models of tumour growth by diffusion

was the one of the first work on diffusion in tissues in 1928 [28]. He set the scene

for many mathematical models of solid tumours. Hill understood that the diffusion

of dissolved substances through cells and tissues is a determining factor in a myriad

of vital processes, for example, the diffusion of oxygen into a solid tumour where it

is consumed by metabolic processes.

As experimental studies on radiotherapy continued, many researchers became

interested in the role of hypoxic (oxygen deprived) tumour cells in the radiosensitivity

of tumours, starting with the irradiation investigations of tumour slices in vitro by

Cramer [29] and the in vivo studies culminating in an influential paper by Gray

et al. [30], which first guided clinicians to try radiotherapy at increased oxygen

pressures.

Several explanations have been advanced for the underlying mechanism of ex-

ponential retardation in tumour growth rates. While Laird [31] argued that "con-

sidering the data available at the present time, it seems likely that the observed

deceleration of tumour growth is due at least in part to an actual increase in the

mean generation time during tumour growth", Mayneord [26] in 1932 has shown

that such a retardation could be achieved by the formation of a necrotic (messy

cells death) region in the centre of a tumour, gradually reducing the region of active

growth to a thin shell at the tumour surface. Burton [21] in 1966 favoured Mayne-

ord’s explanation, modelling the effects of a decreasing growth fraction, while the

mitotic rate of viable cells stayed constant. The hypothesis of Mayneod is confirmed

by Roose et al. [32] in 2007.

13



2.3. Models of avascular tumours growth

2.3 Models of avascular tumours growth

This section aims to describe the current state of mathematical modelling of avascu-

lar tumour growth. The in vitro version of these tumours, i.e. multi-cell spherical

growth, can be readily produced and widely used in experimental studies. They are

reproducible and are relatively easy to work with. Consequently they are easier to

model than vascular tumours.

The study of avascular tumours continues to make a fundamental contribution to

mathematical models devoted to solid tumour growth, for example, the sequence of

papers by Ward and King [24,33–35] have made a worthy contribution to the recent

literature on avascular tumour growth and are often cited. The first paper [24]

presented a system of non-linear partial differential equations to model, within a

continuum, the evolution of living and dead cells (depending on the concentration

of a generic nutrient). The birth and death processes are assumed to create local

volume change, generating movement which can be described by a velocity field,

the aim being to make predictions about tumour heterogeneity and growth, without

making any a priori assumptions about the spatial structure of the tumour. Though

the model successfully predicts much of the growth of the pattern, it does not predict

growth saturation.

An extension to the model was proposed [33] in order to permit a considera-

tion of growth saturation by incorporating a necrotic volume loss by diffusion of

extracellular material out of the tumour.

We will now present an overview of other models in this area, treating separately

continuum and discrete models.

14



2.3. Models of avascular tumours growth

2.3.1 Continuum Models

In tumour modelling these models consider the interactions between the cell den-

sity and one or more chemical species that provide nutrients, typically resulting

in a system of reaction-diffusion-advection equations. The first paper to propose

that incorporated diffusion and nutrient consumption might be limiting solid tumor

growth was by Burton [21], and since then a large number of studies have described

the spatiotemporal interactions between tumour cells and nutrients [36–39]; whilst

most of these considered one specie, Casciari et al. [40] examines the interaction of

tumour cells with oxygen, glucose, lactate, carbon dioxide, chloride and pH. Early

models of nutrient-limited tumour growth calculated the nutrient concentration pro-

files as a function of tumour spheroid radius that was changing due to the rate of

cell proliferation [21, 36, 39, 41–43]. The later models have incorporated differing

degrees of complexity for cell movement. For example, cells can be considered to

move either via advection [24, 44–46], actively via diffusion [47–51] or via diffusion

and chemotaxis [46, 47,52].

2.3.2 Discrete Models

In contrast to the continuum models, discrete models can deal with the individual

cells more efficiently so that it can include more details about cell movement and

interaction with the surrounding tissues. With the huge advances in biotechnology,

a lot of information on phenomena occurring on a single cell scale are presently

accessible. This, combined with in vitro experiments using high power confocal

or multi-photon laser microscopy that enables tracking of individual cells in space

and time, has brought about the possibility of modelling single-cell-scale phenomena

and then using the techniques of upscaling to obtain information about the large-
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2.4. Models of tumour-induced angiogenesis

scale phenomena of tumour growth. There are several upscaling techniques; the most

popular ones are cellular automata [53–60], lattice Boltzmann methods [61,62], agent

based [63,64], extended Potts [65] and the stochastic (Markov chain combined with

Fokker–Planck equations) approach [64,66–68,68]. As in the case of phase-averaged

continuum models discussed in the previous section, the main difficulty with the

discrete cell-based models lies in their parameterisation, and thus these models are

more appropriate for giving qualitative insights, instead of detailed quantitative

predictions.

2.4 Models of tumour-induced angiogenesis

Initially, solid tumours are avascular and depend on diffusion from adjacent vessels

to supply them with oxygen and nutrients and to remove waste products. As the

tumour grows, nutrient demand increases so that eventually the flux of nutrients

through the surface of the tumour is not enough to supply the whole mass of cells.

In time, a necrotic centre of dead cells emerges in the middle and ultimately limits

the tumour growth to a steady state size of 1–3 mm, whereby the number of dying

cells counterbalances the number of proliferating cells [32]. Growth can resume

only if the tumour becomes vascularised. A response of cells, including tumour

cells to hypoxia (the reduction of oxygen levels) is the expression of genes that

code for signalling molecules, e.g. growth factors, primarily vascular endothelial

growth factor (VEGF), and basic fibroblast growth factor (bFGF; also called FGF-

2) that are used to induce nearby vessels to grow new capillaries that infiltrate

and ultimately vascularise the tumour through a process called angiogenesis [69].

Thus angiogenesis is the essential condition for cancer development and clinical
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significance, and understanding the mechanisms that control it will provide the basis

for rational therapeutic interventions.

Mathematical models of tumour-induced angiogenesis fall into two main cate-

gories: (i) continuum models that treat the endothelial cell EC density and chemical

species as continuous variables that evolve according to a reaction-diffusion system,

(ii) discrete, cell-based models in which cells are treated as units and move, grow,

and divide according to prescribed rules.

2.4.1 Continuum Models

The first model that addresses the question of site location is due to Orme and

Chaplain [14]. This model is based on reaction-diffusion and haptotaxis mechanisms

and invokes equations on a one-dimensional domain, which are coupled nonlinearly

with the set of mass balances describing selected factors in the endothelial cells (EC)

environment. In [70] the site is determined from the interaction of ECs and ECM,

while in [71] the dynamics of angiostatin, pericytes, and macrophages are included.

Anderson and Chaplain in [72] developed a one-dimensional continuum model to

describe the dynamics of the endothelial cells density, migrating toward a tumour and

forming angiogenesis in response to a specific chemical signal, the tumour angiogenic

factors (TAF). Later, Anderson and Chaplain extended the one-dimensional work

in [72] to two space dimensions in order to obtain a more realistic picture of the

angiogenic process [73,74].

Holmes and Sleeman in [75] developed a mechanochemical model to study the

role of the extracellular matrix in a more direct way by including the dynamics of

the ECM displacement in the model and by considering the ECM to be an active

participant in the process. The model represents an attempt to actively investigate
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the role of the extracellular matrix in the angiogenic process.

2.4.2 Discrete Models

One of the first and most successful models to approach the problem using a discrete

framework was that of Stokes and Lauffenburger in [76]. This model is discrete in the

sense that it treats buds individually and tracks the motion of the tip of a growing

bud in two space dimensions. Each bud is characterised by the position and velocity

of its tip cell at a given point in time, and the average density of buds is computed.

The evolution of the tip velocity is governed by a stochastic differential equation that

comprises a viscous damping term, a white noise term to model random motion of

the cells, and a chemotactic component.

Anderson & Chaplain [73] and Chaplain [74] used an alternative approach. They

started by discretising a two dimensional continuum using finite differences and

explicit Euler and they used this discrete form to assign probabilities of cells moving

to different grid points at the next time step. These probabilities obviously contain

contributions from diffusion, chemotaxis, and haptotaxis.

2.5 Models of vascular tumours and metastasis

Despite the fact that some research deals with a vascular growth and metastatic

tumour as different types of tumours, in this study, we consider that the metastasis

tumour is an advanced stage from the vascular tumours.
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2.5.1 Models of vascular tumours

A number of noteworthy attempts have been made to model vascular tumour growth,

though notably less in number when compared with models of avascular tumour

growth. Byrne and Chaplain [18] developed a model of non-necrotic tumour growth

which studies the roles of nutrients and growth-inhibitory factors being supplied to

tumour cells by both diffusion and a source term representing blood-tissue transfer

by the vasculature. This was an important contribution to the theoretical study of

growth inhibition.

Hahnfeldt et al. [77], on the other hand, developed a quantitative theory of

vascular tumour growth and treatment response under angiogenic stimulator and

inhibitor control by investigating the effects of the angiogenic inhibitors endostatin,

angiostatin on tumour growth dynamics. Angiostatin is a naturally occurring protein

found in several animal species, including humans. It is an endogenous angiogenesis

inhibitor, and it is currently undergoing clinical trials for its use in anticancer ther-

apy. In addition, the analysis offered a ranking of the relative effectiveness of the

inhibitors.

In contrast to many other studies, Breward et al. [78, 79] proposed a model of

the vascular tumour, considering the interactions between a compliant vessel and

the live and dead tumour cells in its neighbourhood. Here, the oxygen levels in the

tumor tissue depended on the spacing of the blood vessels as well as their thickness,

with larger vessels supplying greater levels of oxygen.

A poroelastic description of a vascular tumour was developed by Netti et al. [80]

such that microscopic and macroscopic descriptions of transvascular and interstitial

fluid movement were united, with a view to providing a theoretical tool to comple-

ment experimental investigations of drug delivery in solid tumours.
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2.5.2 Invasion and metastasis

Ruoslahti [81] explained that metastasis, the spread of cancer to distant sites in

the body, is in fact what makes cancer so deadly. A surgeon can remove a primary

tumour relatively easily, but a cancer that has divided usually reaches so many places

that surgery alone cannot be a cure. For that reason, he concludes, metastasis and

the invasion of normal tissue by cancer cells are the hallmarks of malignancy.

It was not until the 1970s that quantitative experimental work and mathematical

models were proposed to elucidate the dynamics of the metastatic process. An

experimental model was first developed by Liotta et al. [82]. In a later study, Liotta

et al. [83] confirmed the presence of tumour cells (both singly and in clumps) in

the perfusate shortly after the appearance of the tumour vascular network, with the

concentration of tumour cells increasing quite rapidly initially and later diminishing.

2.5.2.1 Continuum Models

Orme and Chaplain [14] extended the study of Liotta et al. [84] to consider, in more

detail, the interactions between tumour cells and capillary vessels. Whereas the

earlier work had proposed coupled diffusion equations with source and sink terms

to describe the density of the tumour cells and vessel surface areas, the new model

assumed that tumour cells react to the presence of blood vessels in a similar manner

to that of ‘taxis’, so that tumour cells move up a gradient of capillary vessels.

Moreover, a crucial aspect of the model was the assumption that a necrotic core

develops as a consequence of the overcrowding of tumour cells and eventual collapse

of blood vessels, in contrast to the hypothesis by Liotta et al. [84] that necrosis

occurs due to the inability of the process of neovascularisation (new blood vessel

formation in abnormal tissue) to keep pace with tumour cell proliferation.
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The theoretical studies by Perumpanani and co-workers [5, 85, 86] have made a

significant contribution to the recent mathematical literature pertaining to malig-

nant invasion. These models followed a more detailed phenomenological understand-

ing of tumour cell invasion by incorporating mathematical descriptions of biological

processes ignored from the majority of previous studies. They also contrasted with

previous mathematical models of cell motility which focused on the angiogenesis.

In the 1990s, Gatenby [87, 88], Gatenby and Gawlinski [89] and Webb et al.

[90] wrote a number of important mathematical papers on tumour invasion which

contrasted quite markedly with the former publications, investigating alternative

mechanistic bases for experimentally-observed behaviour.

2.5.2.2 Discrete Models

Cellular automata for multiscale modelling of tumour growth and invasion has been

used to a large extent, for example, in models by Alarcon et al. [91,92]; Betteridge et

al. [93]; Byrne et al. [94,95]; Deroulers et al. [96]. In their model Alarcon et al. [91]

couple cell growth to the environmental conditions and intracellular processes. They

used a hybrid cellular automaton as a basic theoretical framework to combine and

couple models from the tissue scale, such as vascular structural adaptation, to the

intracellular scale, such as the cell cycle.

Agent-based models are also widely used in multi scale cancer modelling. Zhang

et al. [97] present a 3-dimensional multi scale agent-based model to simulate the

cellular decision process to either proliferate or migrate in the context of brain tu-

mours. The same cell modelling technique used in Athale et al. [98] is adopted and

each 3-dimensional fixed grid point can be occupied by only one cell at each time

step.
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Rubenstein and Kaufman [99] use the Potts model for their multi scale modelling

of glioma invasion, cell adhesion and cell-matrix adhesion.

2.6 Models of cell-cell interactions

Much work has gone into developing mathematical models of cancers. Of partic-

ular interest here is the spatiotemporal dynamics, which can be described using

continuum, discrete or hybrid models. Continuum approaches usually result in

a system of coupled partial differential equations and have been used to describe

avascular growth [21, 24, 36, 100–103], vascular growth [11, 14, 20, 21, 78], angiogen-

esis [16, 18, 19] and treatment [104–106]. Most of these consider the overall growth

as being dependent on nutrient(s) that diffuses in from the outside, whilst more

sophisticated extensions of these models treat the tumour as a poro-viscous [81–83]

or poro-elastic [18,20,37,107] structure. In such models the cell-cell interactions en-

ter via coefficients in the mass conservation terms and (usually) linear constitutive

relations describing the macroscale material properties of the tissue, rather than via

any genuine microscale description of the interaction between cells. Of course, the

advantage of such models is that they are amenable to analytical techniques and

relatively small-scale computation. However, the microscopic cell-cell interactions

play a crucial role in the development and function of multicellular organisms [108],

so it is desirable to incorporate cell-cell interaction effects in the modelling. These

interactions determine the structural integrity of tissue and allow cells to commu-

nicate with each other in response to changes in their micro-environment, which is

essential for the survival of the cells and the host. Such communications include

that from physical contact and chemical signals, transported directly through gap
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junctions between cells or by passive diffusion. Some of these aspects can differ

between healthy and cancer cells, so modelling these differences can be important.

Greater detail of the cell-cell interactions are routinely incorporated in discrete

models for tumour growth, such as cellular-automata [109–112], agent-based mod-

els [113–115] and Potts models [112, 116–118]. In these, cells are described at a

microscopic level as entities that move and respond to neighbours via a set of bi-

ologically motivated rules. Simulating the action of a group of many of these cells

then gives the evolution of a tumour on the macroscale. Cellular automata models

consists of a regular grid of cells, each in one of a finite number of states, such as

‘on’ or ‘off’. In agent based models their actions typically follow discrete event cues

or a sequential schedule of interactions, rather than simultaneously performing ac-

tions at constant time-steps, as in cellular automata models. Potts type models are

able to incorporate how internal elements of the cells respond to one another based

on certain characteristics that each possess [110, 115, 117]. Though discrete models

are good for incorporating the biology and physics of cell-cell interactions, they are

designed for computation and are generally difficult to study analytically.

A continuum theory that also incorporates the cell-cell interactions at a micro-

scopic level was proposed (but not analysed) by Chauviere and his group in [119].

The central idea is to base the model on dynamical density functional theory (DDFT)

[12, 13, 120], which is a theory for the dynamics of interacting Brownian (colloidal)

particles, able to describe the time evolution of variations of the density distribution

of the particles over length scales comparable with the size of the individual parti-

cles. This is the approach we extend and implement in this thesis. DDFT provides

a systematic means of obtaining a continuum description of the density distribu-

tion of the cells that also incorporates a description of the microscale interactions
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between cells. One can solve the DDFT numerically for large enough systems to

enable a macroscopic description at the population level, but perhaps more impor-

tantly is amenable to mathematical analysis (e.g. determination of linear stability

thresholds) that gives good insight into the population collective behaviour. DDFT

is itself based on equilibrium density functional theory (DFT), an approach that has

long been used to describe the structure of matter, be it (crystalline) solid, liquid or

gas [121–123]. We analyse in detail a version of the DDFT proposed in [119] (here

we specify a particular model for the interaction potential between cells) and also ex-

tend the model to describe the dynamics of systems representing multiple cell types,

incorporating the various different pair interactions between pairs of healthy cells,

between pairs of cancer cells and the cancer-healthy pair interaction. The DDFT we

use is based on a DFT able to describe both the fluid and (crystalline) solid phases

of soft particles. In the latter, the density distribution corresponds to a regular array

of peaks, defining where the particles are located. It is in this regime, where the

peaks represent the loci of cell centres, that the theory is relevant to describing the

microscopic density distribution of both cancer and healthy cells, which are treated

as soft particles.

In the model of tumour growth discussed in this thesis, cells are viewed as colloid

particles so that liquid state theory dynamic density functional theory is applicable

as a basis for this model. In the next chapter, we will present this theory with

application to cell birth/death processes.
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CHAPTER 3

DENSITY FUNCTIONAL THEORY

(DFT)

3.1 Introduction

Classical density functional theory (DFT) is a theory for the density distribution

of the atoms, molecules, colloids, etc (henceforth referred to as "particles") under

the influence of an external potential [121–123]. It is a theory built on statistical

mechanics and thermodynamics. We use DFT as a basis for modelling cells with

each of the particles being a cell. The particles interact via a pair potential. We

begin this chapter by recalling some of the relevant background. We develop the

thermodynamics of a system by considering a number of different ensembles. In

statistical mechanics we are interested in average statistical properties of a system.

This can be obtained by making a time-average on a single system, or by making
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many copies of the system (an ensemble) and averaging over these. It was Gibbs in

1878 who introduced the concept of considering an ensemble. This is an idealisation

in which one considers making a large number of copies (or replicas) of the system,

each one of which represents a possible state the system could be in. There are a

variety of different ensembles that tend to be used in thermodynamics, but the three

that are of interest here are:

(1) The microcanonical ensemble: an ensemble of systems that each have the same

fixed total energy U, volume V and number of particles in the system N .

(2) The canonical ensemble: an ensemble of systems, each of which can exchange

energy with a large reservoir of heat; this fixes the temperature T of the system.

Also, V and N are fixed.

(3) The grand canonical ensemble: an ensemble of systems, each of which can

exchange both energy and number of particles with a large reservoir. This fixes the

system’s temperature T and the system’s chemical potential µ (the energy needed

to insert a particle into the system). V is also fixed.

3.2 Thermodynamics of homogeneous fluids

The first law of thermodynamics states that energy is conserved in macroscopic

bodies, which leads to the identity [124]

dU = dQ+ dW, (3.2.1)

where dU is a change in the internal energy brought about by heat transfer to the

system dQ and work done on the system dW [125]. We also have the following

thermodynamic relations [124]
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dW = −PdV, (3.2.2)

dQ ≤ TdS, (3.2.3)

where P is the pressure, dV is the change in volume, T is the temperature and dS

is the change in entropy. The equalities hold when the changes are reversible.

We initially consider a system in the microcanonical ensemble i.e. where U , V

and N are all fixed. From the definition of this ensemble we see that dU = 0 and

dV = 0. There is no work done dW = 0, due to the constant volume of the system.

Substituting these values into the conservation of energy law Eq. (3.2.1) we find

that dQ = 0 and therefore, from the identity Eq. (3.2.3) we obtain dS ≥ 0.

This tells us that spontaneous change in the system might increase the entropy

and so the equilibrium configuration of this system is the one which maximises the

entropy S. This is a statement of the second law of thermodynamics; entropy, which

in simple terms is often a measure of the disorder, increases monotonically as the

system relaxes towards equilibrium.

An alternative set up is the canonical ensemble, where particles cannot cross

the heat conducting boundary of the system. The volume V of the system and the

number of particles N are fixed as before, but now we also fix the temperature T by

coupling the system to a thermal bath and allow the internal energy U to fluctuate

through the coupling to the bath. The constant volume means that there is no work

done, i.e. dW = 0. Combining the two thermodynamic identities Eqs. (3.2.1)and

(3.2.3) we obtain

dU − TdS ≤ 0, (3.2.4)
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which can be re-written as

dF ≤ 0, (3.2.5)

where F = U − TS is the Helmholtz free energy and dF is the change in the

Helmholtz free energy. Any spontaneous changes will decrease F. This therefore

tells us that the equilibrium configurations of the system in the canonical ensemble

corresponds to minima in the Helmholtz free energy.

We can modify the canonical ensemble by retaining the fixed volume V and

temperature T but now allowing particles to pass in and out of the system. Thus,

the number of particles N in the system is no longer fixed, but is regulated by

the chemical potential µ of the bath. The chemical potential defines the energy

associated with adding or removing particles from the system and so it contributes

to the conservation of energy identity Eq. (3.2.1) by adding the term µdN , where

dN is the change in the number of particles. Following similar arguments to the

previous case and including the µdN term to account for the change in energy when

adding or removing a particle, we arrive at the following expression [124]

dU − TdS − µdN ≤ 0, (3.2.6)

which can be re-written as

dΩ ≤ 0, (3.2.7)

where Ω = F − µN is the grand potential free energy of the system and dΩ is the

change in the grand potential. So in a similar manner to the canonical ensemble, a

system in the grand canonical ensemble reaches equilibrium when the grand potential

Ω is at a minimum. We now introduce the number density of the system, which is

the number of particles per unit volume ρ = N
V

, which allows us to rewrite the
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grand potential as Ω = fV − µρV , where f is the Helmholtz free energy per unit

volume. Equivalently we may calculate these volumes as integrals over the system,

leading to the following notation:

Ω =

∫
V

drf −
∫
V

drµρ, (3.2.8)

where r is a continuous vector representing the cartesian coordinates of points in

the system. So far we have only considered homogeneous systems, which are found

in the bulk, where there are no spatial variations in any external fields influencing

the system.

3.3 Thermodynamics of inhomogeneous fluids

The density distribution becomes inhomogeneous when there is a spatially varying

external field acting on it, such as that due to the wall of a container. The wall in-

troduces inhomogeneity into the system causing for example in a liquid the particles

to pack into layers near the wall. Thus, the local density is a quantity which is a

function of the position r in the system, i.e. ρ = ρ(r), the Helmholtz free energy

per unit volume, the grand potential become functionals of the density, f [ρ(r)] and

Ω[ρ(r)], so Eq. (3.2.8) becomes [121–123]

Ω[ρ(r)] =

∫
drf [ρ(r)]− µ

∫
drρ(r). (3.3.1)

As previously discussed, the equilibrium configuration corresponds to the minimum

of the grand potential. Therefore we may state that density profiles ρ∗(r) which min-

imise the functional Ω[ρ(r)] must be equilibrium density profiles; i.e. the equilibrium
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density profile satisfies the Euler–Lagrange equation

δΩ[ρ(r)]

δρ(r)

∣∣∣∣
ρ(r)=ρ∗(r)

= 0. (3.3.2)

Given a suitable approximation for the Helmholtz free energy term F [ρ(r)] =
∫
drf [ρ(r)]

in Eq. (3.3.1) we now have a formalism to enable us to describe the structure of

fluids or any other state of matter under the influence of a given external potential.

Using the minimisation principle in Eq. (3.3.2), we can calculate the equilibrium

density profile for a given external potential. For an ideal gas, i.e. a fluid composed

of non-interacting particles, the Helmholtz free energy functional F [ρ(r)] is known

exactly [121]

F [ρ(r)] = kBT

∫
drρ(r)

[
ln Λdρ(r)− 1

]
+

∫
drVext(r)ρ(r), (3.3.3)

where d is the dimensionality of the space in which the system exist, kB is the Boltz-

mann constant, Λ is the thermal de Broglie wavelength (this quantity is irrelevant

and one may assume Λ=1 [121,122]) and Vext is the external potential. The ideal gas

is worth briefly considering to give greater insight when below consider the influence

of the interactions between particles. Using the minimisation principle in Eq. (3.3.2)

for the ideal gas free energy in Eq. (3.3.3) we obtain:

kBT ln
(
Λdρ∗(r)

)
+ Vext(r)− µ = 0, (3.3.4)

which can be solved for ρ∗(r) to give:

ρ∗(r) = Λ−deβµe−βVext(r), (3.3.5)
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where β = 1
kBT

is the inverse temperature. Thus, if we consider an ideal gas under

the influence of an external potential that only varies in one direction, the density

profile will only vary in that direction. An example of this is the external field above

the surface of the Earth due to gravity (i.e. substitute Vext = mgz into Eq. (3.3.5),

where z is the vertical distance from the earth’s surface), then the resulting density

profile abides by the barometric law

ρ(r) = ρ(z) = ρoe
−mgz
kBT , (3.3.6)

where ρo = Λ−deβµ is the density at z = 0.

Usually the interactions between the particles have a significant impact on the equi-

librium density profiles and so one must add an additional term Fex[ρ(r)] to the free

energy which takes these interactions into consideration. Thus, the Helmholtz free

energy in general is of the form [121–123]

F [ρ(r)] = Fid[ρ(r)] + Fex[ρ(r)] +

∫
drVext(r)ρ(r), (3.3.7)

where

Fid[ρ(r)] = kBT

∫
drρ(r)

[
ln Λdρ(r)− 1

]
(3.3.8)

is the ideal gas contribution to the free energy. Applying the minimisation principle

(3.3.2) we find that the equilibrium density profile takes the form

ρ∗(r) = Λ−deβµe−βVext(r)+c(1)(r), (3.3.9)

31



3.3. Thermodynamics of inhomogeneous fluids

where the one body direct correlation function is defined as

c(1)(r) = −β δFex[ρ(r)]

δρ(r)
. (3.3.10)

The external potential Vext is a potential which acts on each particle of the

system individually. However, if we were to consider an effective external potential

V eff
ext which is the potential ‘felt’ by an individual particle, we need to consider

a contribution from the neighbouring particles in the system. It is clear from Eq.

(3.3.9) that the effective external potential felt by an individual particle is V eff
ext (r) =

Vext(r)− kBTc(1)(r) and so the one body direct correlation function can be thought

of as a correction to the external potential Vext that describes the effective potential

due to all the other particles in the system.

Alternatively, one could consider the effective force acting on a particle located

at position r in the system, due to the other particles in the system, which is simply

given by the gradient of the one body direct correlation function kBT∇c(1)(r) and

so if we assume that the particles interact only via pair potentials Vint(r, r′) , where

r and r′ are the locations of the two interacting particles, then the following sum

rule applies [121],

− kBT∇c(1)(r) =

∫
dr′ρ(2)(r, r′)∇Vint(r, r′), (3.3.11)

where ρ(2)(r, r′) is the two-body density distribution which gives the probability of

there being a particle at r′, given there is another particle at r. Similar sum rules

may be derived when the particles do not just interact via pair potentials, but there

are also higher body potentials [120].

The excess free energy term Fex[ρ(r)] is usually unknown. There are many
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different approximations which may be used, with some being more appropriate than

others, depending on the nature of the interactions between the particles. In the low

density limit the following is a good approximation for the excess free energy [123]

Fex[ρ(r)] =
1

2

∫
dr

∫
dr′fm(|r− r′|)ρ(r)ρ(r′) +O(ρ3), (3.3.12)

where fm(r) = e−βVint(r) − 1 is the Mayer function and Vint(r) is the now assumed

(spherically symmetric) pair potential used to model the interactions between the

particles in the system. There are many other different approximations that can be

used to take the particle interactions into account, for example a gradient expansion

Fex[ρ(r)] =

∫
dr

∫
dr′[fo(ρ(r)) + f2(ρ(r)) |∇ρ(r)|2 +O(∇4)], (3.3.13)

or a Taylor series expansion

Fex[ρ(r)] = Fex[ρo] +

∫
dr
δFex
δρ(r)

∣∣∣∣
ρo

∆ρ(r)

+
1

2

∫
dr

∫
dr′

δ2Fex
δρ(r)δρ(r′)

∣∣∣∣
ρo

∆ρ(r)∆ρ(r′) + · · · , (3.3.14)

where ∆ρ(r) = ρ(r)− ρo and where ρo is some reference uniform density.

For discussions on these and other approximations for the excess Helmholtz free

energy, see Refs. [122,123]. For soft purely repulsive particles the following is a good

approximation for the excess free energy [123]

Fex[ρ(r)] =
1

2

∫
dr

∫
dr′Vint(|r− r′|)ρ(r)ρ(r′). (3.3.15)

Note that this is the functional which generates the following random-phase approx-
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imation (RPA) for the pair direct correlation function

c(2)
eq (|r− r′|; ρ0) = −β δ2Fex[ρ]

δρ(r)δρ(r′)

∣∣∣∣
ρ(r)=ρ0

= −βVint(|r− r′|). (3.3.16)

3.4 Microscopic statistical mechanical origin of DFT

Density functional theory may also be derived from the statistical mechanics of a

system of interacting particles. Using statistical mechanics, thermodynamic quanti-

ties (such as those discussed previously in Sec.3.3; density ρ, chemical potential µ,

etc) can be calculated by performing an ensemble average for the system. Since the

system is in equilibrium, the resulting quantities are statistical average quantities,

and so do not depend on the degrees of freedom of the individual particles nor the

form of the equations of motion. Here we closely follow Evans’ formalism [121] and

neglect the details and proofs. For more details see the Refs. [121,122].

We start by considering a system treated in the grand canonical ensemble, where

the temperature T and the volume V are fixed and the system can exchange particles

with a reservoir with a fixed chemical potential µ. The total energy of the N

particles, each of mass m is given by the Hamiltonian [122,123]

HN =
N∑
i=1

pi
2

2m
+ Φ(r1, · · · , rn) +

N∑
i=1

Vext(ri), (3.4.1)

where pi is the momentum of particle i, Vext(r) is the one-body external potential

and the total interatomic potential energy, Φ =
∑

i,j Vint(ri, rj) + · · · , where the

"· · · " denotes three-body interaction potential terms. The first term K =
∑N

i=1
pi

2

2m

of the Hamiltonian represents the kinetic energy of the system.

34



3.4. Microscopic statistical mechanical origin of DFT

The partition function (a sum over all the possible microscopic configurations)

is an important statistical mechanical object, which allows us to obtain thermody-

namics quantity from microscope information. The grand partition function, which

corresponds to the sum over states in a grand canonical ensemble, is given by [121]

Ξ = Tr(e−β(HN−µN)), (3.4.2)

where Tr is the trace operator which sums (integrates) over all possible microstates,

incorporating the microscopic detail of the system

Tr(x) =
∞∑
N=0

1

h3NN !

∫
xdr1 · · · drN

∫
dp1 · · · dpN , (3.4.3)

where h is Planck’s constant, ri denotes the position of particle i and the factor N !

is present because particles are indistinguishable.

The grand potential is given by [121–123]

Ω = −kBT ln Ξ. (3.4.4)

The average one body density is the ensemble average of the density operator ρ̂(r) =∑N
i=1 δ(r− ri) and where δ(r− ri) is the usual Dirac δ-function. Using the fact that

N =
∫
drρ̂(r), from Eqs. (3.4.4), (3.4.2) and (3.4.3) we see that the average density

ρ(r) can be obtained by a functional differentiation of Ω

ρ(r) = − δΩ

δu(r)
, (3.4.5)

where

u(r) = µ− Vext(r). (3.4.6)
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3.4. Microscopic statistical mechanical origin of DFT

The density functional approach focuses on expressing thermodynamic quantities

as a functional of ρ(r), rather than u(r), It is clear that ρ(r) is a functional of u(r),

and so it follows that the probability density fN , for observing the system at a

certain point ({pi, ri}) in phase space

fN = Ξ−1e−β(HN−µN), (3.4.7)

where Ξ is the partition function given in Eq. (3.4.2), is uniquely determined by ρ(r).

The latter fixes Vext(r), which then determines fN . Since fN is a unique functional

of ρ(r), so is the quantity

F [ρ] = Tr
[
fN(K + Φ + β−1 ln fN)

]
. (3.4.8)

Although this functional is usually unknown because the trace Tr can not be eval-

uated, this functional is defined exactly here using microscopic quantities. We may

also consider the following functional, which is equal to the grand potential Ω when

the density is at equilibrium ρ = ρ∗

Ω[ρ] = F [ρ] +

∫
drρ(r)Vext(r)− µ

∫
drρ(r) (3.4.9)

This is an alternative notation for the functional given in Eq. (3.3.1). As discussed

in Sec. (3.3), the minimum of this functional corresponds to the equilibrium density

profile and this lead to the minimisation principle Eq.(3.3.2). We can calculate the

equilibrium density ρ∗ for the given intrinsic Helmholtz free energy functional F and

external potential Vext(r) by using the minimisation principle.
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CHAPTER 4

DYNAMICAL DENSITY FUNCTIONAL

THEORY (DDFT)

4.1 Introduction

Gradients in certain quantities can lead to fluxes. For example, a gradient in the

temperature T leads to a flow of heat energy jE = −κ∇T, where jE is a local heat

flux density and κ is the material’s thermal conductivity. On the other hand, a

gradient in the chemical potential µ (the energy needed to insert a particle into the

system) leads to a flux of particles

j = −M∇µ, (4.1.1)
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4.1. Introduction

where the mobility M is a function of the local particle density ρ. Considering the

dynamics of the density, if it is a conserved quantity, the time derivative of the

density is equal to the divergence of the current, i.e. it is given by the continuity

equation
∂ρ

∂t
= −∇ · j. (4.1.2)

In the density functional theory [121, 123, 126] the equilibrium properties of the

system are obtained by minimising the grand potential functional

Ω[ρ(r)] = F [ρ(r)]− µ
∫
drρ(r), (4.1.3)

where ρ(r) is the one-body density profile, µ is the chemical potential and F is

Helmholtz free energy functional given by Eq. (3.3.7).

Recall that the equilibrium density profile is given by the minimum of Ω, Eq.

(4.1.3), which leads to

µ =
δF [ρ]

δρ
. (4.1.4)

For an equilibrium system, the chemical potential µ takes a constant value in space.

DDFT assumes that (4.1.4) still holds out of equilibrium. Now, if we substitute

Eqs.(4.1.1) and (4.1.4) into Eq.(4.1.2), yields

∂ρ(r, t)

∂t
= ∇ ·

[
M∇δF [ρ(r, t)]

δρ(r, t)

]
. (4.1.5)

Setting

M = Γρ(r, t), (4.1.6)
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4.2. DDFT of solid tumour growth

we obtain
∂ρ(r, t)
∂t

= Γ∇ ·
[
ρ(r, t)∇

(
δF [ρ(r, t)]
δρ(r, t)

)]
· (4.1.7)

In the low density (ideal gas) limit, where the free energy is given by Eq.(3.3.3), we

have δF [ρ]
δρ(r)

= kBT ln(Λdρ(r)) + Vext(r). Taking the gradient of this expression, we

obtain

∇δF [ρ]

δρ(r)
=
kBT

ρ(r)
∇ρ(r) +∇Vext(r). (4.1.8)

Substituting Eq.(4.1.8) into Eq.(4.1.7) and imposing Vext(r) = 0, we obtain the

diffusion equation
∂ρ(r, t)

∂t
= D∇2ρ(r, t), (4.1.9)

where the diffusion coefficient D = ΓkBT. Thus we see that Eq.(4.1.6) is the correct

form for the mobility function M . Recall that the diffusion equation describes the

time evolution of the density distribution of Brownian particles. Thus, in applying

this theory, we treat the particles as Brownian particles with stochastic differential

equations of motion. In the following, we make this connection more formally.

4.2 DDFT of solid tumour growth

We now apply the methods of the previous section to derive a Fokker–Plank equation

for a set of interacting particles, namely the cells in a tissues. Our presentation

is based on the discussion in Refs. [13, 119]. Thus, we seek to derive equations

describing the spatiotemporal evolution of the tissue on a cellular–scale description.
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4.2. DDFT of solid tumour growth

4.2.1 Langevin equation

We model the motion of each of the N interacting cells (assuming all are of the same

species) by the over-damped Langevin equation, which is a stochastic differential

equation describing Brownian motion of the cells

dri
dt

= Γ

(
N∑
j=1

Fint
ij + Fext

i

)
+
√

2Dηi(t), (4.2.1)

where ri = (rαi )α=1···d ∈ Ψd is the position of the centre of mass of the i-th cell in

the d-dimensional physical domain Ψd, Γ is the cell motility coefficient linked to the

diffusion coefficient D by the Einstein relation D = ΓkBT (T is the temperature and

kB is Boltzmann’s constant). The forces

N∑
j=1

Fint
ij = −

N∑
j=1

∇riVint(|ri − rj|), (4.2.2)

model cell-cell interactions by a pair potential Vint that depends on the distance

between two cells. The force

Fext
i = −∇Vext(ri, t), (4.2.3)

where Vext is the external potential e.g. due to any confining walls of other structures

present. The vector ηi(t)=(ηxi (t), ηyi (t)) is a Gaussian random noise whose compo-

nents satisfy 〈ηαi (t)〉=0 and 〈ηαi (t)ηβj (t′)〉 = δijδαβδ(t − t′) where 〈.〉 denotes the

statistical average over different noise realisation, δij and δαβ are Kronecker deltas,

δ(t− t′) is a Dirac delta function and α, β are coordinate indices. This random term

models the stochastic motions of the cells. We assume there is no cell-cell friction,

which would involve the inclusion of an additional viscous drag force in Eq. (4.2.1).
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4.2. DDFT of solid tumour growth

4.2.2 Smoluchowski equation

Let P (r1, · · · , rN , t) denote the probability density function (PDF) of the position

coordinates {ri}, i = 1, · · · , N for all N cells in the system. The time evolution of

this PDF is given by the Smoluchowski equation [127, 128], which we now derive.

Eq. (4.2.1) can be rewriten as

dri = Γ

(
N∑
j=1

Fint
ij + Fext

i

)
dt+

√
2D dW i(t), (4.2.4)

where dW i(t) is an n variable Wiener process: dW i(t) = W i(t + dt) −W i(t) =

ηi(t)dt. Then by using the multivariable Ito formula of stochastic calculus [129], i.e.

the analogue of going from Eq. (A.2.2) to Eq. (A.3.5) in Appendix A, we obtain

∂P (rN , t)
∂t

= −
N∑
i=1

∇i ·ΓFi(rN , t)P (rN , t) +
1

2

N∑
i=1

N∑
j=1

∇i · ∇j

[(√
2D

)2

δijP (rN , t)
]
.

(4.2.5)

Simplifying Eq. (4.2.5), we obtain the Smoluchowski equation

∂P (rN , t)
∂t

=
N∑
i=1

∇i ·
[
− ΓFi(rN , t) +D∇i

]
P (rN , t), (4.2.6)

where rN = {ri}i=1,··· ,N is the Nd-dimensional vector containing the position vectors

of all the cells and Fi =
∑N

j=1 Fint
ij + Fext

i denotes the sum of forces exerted on a

single cell. Using Eqs. (4.2.2) and (4.2.3), we can rewrite Eq. (4.2.6) in the form

∂P (rN , t)
∂t

= Γ
N∑
i=1

∇i ·
[
kBT ∇i +∇iU(rN , t)

]
P (rN , t), (4.2.7)
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4.2. DDFT of solid tumour growth

where U(rN , t) is the potential energy due to the inter-particle interactions and any

external potentials. Thus, from Eq. (4.2.1) we derived Eq. (4.2.7) which is the

time evolution equation of the N–particle position probability distribution P (rN , t).

There is another way to derive Eq. (4.2.7); see Appendix B.

4.2.3 From Smoluchowski to DDFT

In this section we derive an equation for the time evolution of the one body density

profile, ρ(r, t), from the Smoluchowski equation, Eq. (4.2.7). The one body density

is merely the integral of the probability distribution function

ρ(r1, t) = N

∫
dr2 · · ·

∫
drNP (rN , t), (4.2.8)

similarly, the two-body density is

ρ(2)(r1, r2, t) = N(N − 1)

∫
dr3 · · ·

∫
drNP (rN , t), (4.2.9)

and in general the n-particle density is

ρ(n)(rn, t) =
N !

(N − n)!

∫
drn+1 · · ·

∫
drNP (rN , t). (4.2.10)

Above, we have assumed that the potential energy function can be expressed in

terms of a one-body external potential acting on each particle, Vext(ri, t), and that

the particle interactions are sums of pair potentials, Vint(ri, rj), [see Eq. (4.2.2)],

however the argument is more general and can be extended to systems with three

body potentials, v3(ri, rj, rk), and higher body interactions, where the potential
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4.2. DDFT of solid tumour growth

energy is

U(rN , t) =
N∑
i=1

Vext(ri, t) +
1

2!

∑
j 6=i

N∑
i=1

Vint(ri, rj)

+
1

3!

∑
k 6=j

∑
j 6=i

N∑
i=1

v3(ri, rj, rk) + · · · . (4.2.11)

For appropriate boundary conditions, we integrate Eq. (4.2.7) by parts and assume

either periodic boundary conditions or that ρ(r, t) is zero on the boundaries [120]

Γ−1∂ρ(r, t)
∂t

= kBT∇2
1ρ(r1, t)

+∇1 ·
[
ρ(r1, t)∇1Vext(r1, t)

]
+∇1 ·

∫
dr2ρ

(2)(r1, r2, t)∇1Vint(r1, r2)

+∇1 ·
∫
dr2

∫
dr3ρ

(3)(r1, r2, r3, t)∇1v3(r1, r2, r3)

+ · · · . (4.2.12)

where ρ(2)(r, r′, t) is the two–particle density distribution function. Since ρ(2) de-

pends on ρ(3), the three–particle distribution function, and so on, Eq.(4.2.12) is not

closed. To close Eq.(4.2.12), the system needs to be truncated and ρ(2) needs to be

approximated.

The approach taken in deriving DDFT is to recall that in equilibrium, there is an

exact sum rule which relates the gradient of the one body direct correlation function

to the interparticle forces acting on a particle (recall that −kBTc(1)(r) is the effective

one-body potential due to interaction in the system). If the particles interact solely

43



4.2. DDFT of solid tumour growth

via pair potentials

− kBT∇c(1)(r1) =

∫
dr2ρ

(2)(r1, r2)∇1Vint(r1, r2). (4.2.13)

This result can be generalised to systems where the particles interact via many-body

potentials,

− kBT∇c(1)(r1) =
∞∑
n=2

∫
dr2 · · ·

∫
drnρ

(n)(rn, t)∇1vn(rn). (4.2.14)

From equilibrium statistical mechanics we also knows that c(1)(r) is equal to the

functional derivative of the excess part of the Helmholtz free energy functional,

Eq. (3.3.10). Making the approximation that these identities, Eqs. (4.2.14) and

(3.3.10), valid for the equilibrium system, hold also for the non-equilibrium system

and substituting into Eq. (4.2.12), we obtain the DDFT equation,

∂ρ(r, t)
∂t

= Γ∇ ·
[
ρ(r, t)∇

(
δF [ρ(r, t)]
δρ(r, t)

)]
, (4.2.15)

where F [ρ(r, t)] is the equilibrium Helmholtz free energy functional in Eq. (3.3.7).

There are other alternative ways to derive Eq. (4.2.15), the first one is that given

in Ref. [130], which uses a free energy minimisation principle. The second one, in

Ref. [12], is obtained by defining a coarse geared density ρ̄ which takes the form of

a sum of noise averaged Dirac delta functions, without appealing to a free energy

minimisation principle. For more details, see Refs. [12,130]

To summarise in deriving Eq.(4.2.8) we have assumed that

ρ(r, t)∇δF
ex[ρ(r), t]

δρ(r, t)
=

∫
dr′ρ(2)(r, r′, t)∇rVint(|r− r′|). (4.2.16)
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4.2. DDFT of solid tumour growth

In addition, we must in practice make a further approximation, since F [ρ] is in

general unknown. The simple mean-field approximation [131] used here is

F [ρ] = kBT

∫
drρ
(
r)(ln ρ(r)− 1

)
+

1

2

∫
dr
∫
dr′ρ(r)ρ(r′)Vint(|r− r′|)

+

∫
drVext(r)ρ(r). (4.2.17)

One may view this approximation as having stemmed from assuming that ρ(2)(r, r′, t) ≈

ρ(r, t)ρ(r′, t). However, this view is somewhat simplistic, for the reasons discussed

in [132]. Using Eq. (4.2.17), Eq.(4.2.15) becomes [12]

∂ρ(r, t)
∂t

= D∇2ρ(r, t) + Γ∇ · [ρ(r, t)∇Vext(r, t)]

+Γ∇ ·
[
ρ(r, t)

∫
dr′ρ(r′, t)∇rVint(|r− r

′|)
]
. (4.2.18)

The mean-field approximation which is used in Eq. (4.2.17) can only be used when

Vint(r) is finite for all values of r and also fails when the particle density is low, where

the particles largely interact two at a time and so the mean-field assumption that

many particles interact simultaneously breaks down. It may also be the case that

when the system is far from equilibrium the adiabatic approximation ρ(2)(r, r′, t) ≈

ρ
(2)
eq (r, r′) fails, where ρ(2)

eq is a two-particle density distribution function evaluated

for a system with equilibrium density ρo(r) = ρ(r, t). An alternative expression that

could be used together with the expression in Eq. (3.3.14), is a Taylor expansion
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4.3. Cell birth/death processes

truncated, at O(∆ρ2). This series expansion gives

F ex[ρ(r, t)] = F ex[ρ0] + µex0

∫
dr∆ρ(r, t)

−kBT
2

∫
dr∆ρ(r, t)

∫
dr
′
∆ρ(r

′
, t)c(2)

eq (|r− r′|; ρ0)

+ · · · , (4.2.19)

where ∆ρ(r, t) = ρ(r, t)− ρ0, c
(2)
eq (|r− r′|; ρ0) = −β δ2Fex[ρ]

δρ(r)δρ(r′ )

∣∣∣
ρ(.)=ρ0

is the direct two-

point correlation function of the uniform system and µex0 is the excess chemical

potential. With this approximation Eq. (4.2.18) becomes

∂ρ(r, t)
∂t

= D∇2ρ(r, t) + Γ∇ · [ρ(r, t)∇Vext(r, t)]

−D∇ ·
[
ρ(r, t)

∫
dr′(ρ(r′, t)− ρ0)∇rc

(2)
eq (|r− r

′|; ρ0)

]
. (4.2.20)

We note that in both of these models, the nonlocal terms may be further approxi-

mated using a gradient expansion [121].

4.3 Cell birth/death processes

We may extend the DDFT framework developed above to describe cells, which

additionally have a non-conserved component to the dynamics due to birth/death

(BD) processes. We consider combining BD and cell-movement processes. Then Eq.

(4.2.15) becomes

∂ρ(r, t)
∂t

= Γ∇ ·
[
ρ(r, t)∇

(
δF [ρ(r, t)]
δρ(r, t)

)]
+DBD[ρ(r, t)] (4.3.1)
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4.4. Model Formulation

which describes both BD processes and cell movement simultaneously in a multicel-

lular system, DBD[ρ(r, t)] represent the non-conserved dynamics duo to birth/death

processes. We describe below in Sec. 4.4 how we use approximate this term.

4.4 Model Formulation

We present an example that contains the basic phenomenology of tumour growth

to clarify the DDFT modeling framework. We assume that tumour cells move in

response to cell-cell interaction forces, cell-extracellular matrix ECM (a complex

network of proteins such as collagen secreted by support cells, which serves as a

structural element in tissues [133]) interactions, which can be modelled as an external

force Vext = −ξEE, where E denote the density of the ECM. We assume that ECM

is degraded and produced by tumour cells.

As a simple model for the cell-cell forces, we assume the cells interact via a soft,

purely repulsive and radially symmetric pair potential

Vint(r) = ε exp[−(r/R)N ], (4.4.1)

where r is the distance between the centres of the cells and the parameters ε and

R define the strength and range of the potential, respectively. This is the so called

generalised exponential model with exponent N , or ‘GEM-N ’ potential [134–142].

Here, we set the exponent N = 4 (see Fig.4.1). Such soft potentials arise as the

coarse-grained effective potential between soft polymeric macromolecules in solution

[134]. In this study, the parameter R typically represents the radius of a cell, so

cells strongly repulse each other when the distance between their centres becomes
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Figure 4.1: The GEM-N pair potential between the particles, for N = 4, 8,∞.

. 2R. Whilst this property of Vint is necessary for biological relevance, longer

range effects (for distances & 2R), such as cell-cell adhesion [113, 115, 118], can be

straightforwardly built into the interaction function [121–123]. We consider this

model because the bulk structure and phase behaviour of the GEM-N systems are

well understood in both two-dimensions (2D) and three-dimensions (3D).

Accordingly, the over-damped Langevin equation (4.2.1) becomes

dri
dt

= Γ
N∑
j=1

∇Vint(|ri − rj|) + χE∇E(ri) +
√

2Dηi(t), (4.4.2)

where χE is the diffusion coefficient of the external potential and defined as χE = ΓξE

and E is the density of the extracellular matrix (EMC). The ECM evolves according

to
dE

dt
= λE

N∑
i=1

δ(r− ri(t)), (4.4.3)
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4.4. Model Formulation

where λE is the net rate of ECM production. In this model if we assume that E = 0,

Eq. (4.4.2) reduces to Eq. (4.2.1).

The proliferation of tumour cells is dependent on the availability of nutrient (e.g.

dissolved O2) with concentration n. As a simple model of BD, we assume that a

single cell can undergo mitosis with a nutrient-dependent rate am = am(n). We

model cell death (apoptosis) as occurring with a rate constant λd. This can be

implemented as a Markov process and affects the number of cells in the population

N = N(t). The nutrient provided by the vascular system, diffuses through the

microenvironment and is up-taken by tumour cells, and thus satisfies the reaction-

diffusion equation

∂n(r, t)
∂t

= Dn∇2n+ Snf(r)− λ̃n
N(t)∑
i=1

δ(r− ri(t)), (4.4.4)

where Dn is the nutrient diffusion coefficient, Sn represent the amplitude of the

nutrient source and f(r) is a function that defines where in space the nutrient source

is located and f(r)=1 corresponds to a uniform source. We consider a Gaussian

f(r) = e−(x−L/2)2 , (4.4.5)

which corresponds to a source of nutrient along the line x = L
2
where L is the domain

width, e.g. due to a capillary being there. λ̃n is the nutrient uptake rate assumed to

be proportional to n, λ̃n = λnn.

From the fact that the BD process is the result of two mass action laws gives

DBD[ρ] = am(n)ρ − λdρ, where am(n) is a nutrient-dependent growth rate and λd

is the death rate. We assume that am(n) = λmn. We can derive the corresponding

deterministic equation for the cell density. Taking correlations into account and
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4.4. Model Formulation

using the approximation (4.2.19), the cell density equation becomes

∂ρ(r, t)
∂t

= D∇2ρ(r, t) + [λm(n(r, t))− λd]ρ(r, t)

+Γ∇ ·
[
ρ(r, t)

∫
dr′ρ(r′, t)∇rVint(|r− r′|)

]
. (4.4.6)

Finally, when we average over all realisations of the noise in (4.2.1), since ρ(r, t) =

〈
∑N(t)

i=1 δ(r− ri(t))〉, we obtain the following equation for the nutrient concentration

∂n(r, t)
∂t

= Dn∇2n(r, t) + Snf(r)− λnn(r, t)ρ(r, t). (4.4.7)
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CHAPTER 5

MATHEMATICAL MODEL FOR A

SINGLE SPECIES OF CELLS

5.1 Introduction

The model system of integro-partial differential equations derived in Sec.4.4, is

∂ρ(r, t)
∂t

= Dc∇2ρ(r, t) + [λmn(r, t)− λd]ρ(r, t)

+Γ∇ ·
[
ρ(r, t)

∫
dr′ρ(r′, t)∇rVint(|r− r′|)

]
, (5.1.1)

∂n(r, t)
∂t

= Dn∇2n(r, t) + Snf(r)− λnρ(r, t)n(r, t). (5.1.2)

The variables in the above system and their descriptions are summarised in Table

5.1. In this chapter we analyse this model using a linear stability analysis and by

solving the model numerically. To solve the above model numerically, the convo-
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5.1. Introduction

lution integral is evaluated using Fourier transforms to turn the the above system

to a system of partial differential equations. The second step is using the method

of lines to discretise a partial differential equations to obtain system of ordinary

differential equations. We use both Euler’s Method and Adam’s Method for the

time stepping as a final step as explained in the Sec. 5.5. However, before this we

nondimensionalise the model.

Table 5.1: Summary of the key quantities and model parameters in the one compo-
nent model for cells plus nutrient, with governing equations Eqs.(5.1.1) and (5.1.2).

Quantity Description
ρ(r, t) Local number density of the cells
n(r, t) Local concentration of nutrients
Vint(r) Interaction potential between cells
f(r) Nutrient source function
N(t) The total number of cells in the population
ρ̄(t) Average cell number density
n̄(t) Average nutrient density
λm Nutrient-dependent growth rate constant
λd Cell death rate constant
λn Nutrient uptake rate constant
Dc Cell diffusion coefficient
Dn Nutrient diffusion coefficient
Γ Cell motility coefficient
kBT Thermal energy
ε Cell-cell interaction energy
R Cell radius
ρ0 Constant reference density
N The exponent in the GEM-N pair interaction
Sn The nutrient source amplitude
Λ Thermal de Broglie wavelength
L2 System domain area
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5.2. Scaling and nondimensionalisation

5.2 Scaling and nondimensionalisation

5.2.1 Nondimensionalisation for the system of ODEs

Nondimensionalisation, or rescaling, refers to the process of transforming a series of

equations (usually ODEs or PDEs) to dimensionless (i.e. unitless) forms by rescaling

the model variables. To help choose the most appropriate rescaling, we first consider

the case where the density and nutrients are spatially uniform, i.e. ρ(r, t) = ρ(t)

and n(r, t) = n(t). From Eq. (5.1.1) and Eq. (5.1.2) we then obtain

dρ

dt
= [λmn− λd]ρ,

dn

dt
= Sn − λnρn. (5.2.1)

Note that Eq. (5.1.1) and Eq. (5.1.2) are now ODEs since there is now only one

independent variable, t. This (dimensional) system of ODEs has 4 model parameters.

λm is the nutrient-dependent growth rate, λd is the cell death rate constant, λn is

the nutrient uptake rate constant and Sn is the nutrient source rate.

For the model variables shown in Table 5.1, we rescale the density of the cancer

cells ρ, the local concentration of nutrients, n and time t as follows, denoting the re-

spective dimensionless variables ρ∗, n∗ and t∗, and corresponding rescaling variables

are ρ̂, n̂ and t̂, i.e.

ρ = ρ∗ρ̂, n = n∗n̂ and t = t∗t̂. (5.2.2)

First we substitute for ρ, n and t in our original equations.

ρ̂dρ∗

t̂dt∗
= [λmn

∗n̂− λd]ρ∗ρ̂, (5.2.3)
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5.2. Scaling and nondimensionalisation

n̂dn∗

t̂dt∗
= Sn − λnρ∗ρ̂n∗n̂. (5.2.4)

Next we rearrange so that we only have the derivatives of the rescaled variables on

the left-hand side. In other words, we multiply each side of the first equation by

t̂
ρ̂
and the second equation by t̂

n̂
, and cancel similar terms on the right hand side,

yielding
dρ∗

dt∗
= t̂[λmn

∗n̂− λd]ρ∗, (5.2.5)

dn∗

dt∗
=
t̂

n̂
[Sn − λnρ∗ρ̂n∗n̂]. (5.2.6)

Our aim is to choose values of ρ̂, n̂ and t̂ that simplify the model structure by reducing

the total number of parameters. For the uniform system (5.2.1) the natural next

step is to define our three parameters ρ̂ = Snλm
λnλd

, n̂ = λd
λm

and t̂ = λd
Snλm

. to get

dimensionless equations
dρ∗

dt∗
= c[n∗ − 1]ρ∗, (5.2.7)

dn∗

dt∗
= 1− ρ∗n∗, (5.2.8)

where c = (λd)2

Snλm
. The above exercise nondimensionalising the homogeneous ODE

model gives good insight to the behaviour of the model. We now proceed to consider

the inhomogeneous case. We should also mention that in the inhomogeneous model,

there are additional length and energy scales, so there are better choices for ρ̂ and t̂.
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5.2. Scaling and nondimensionalisation

5.2.2 Nondimensionalisation of the full model

We now nondimensionlise the system of integro-partial differential equations given

in Eqs. (5.1.1) and (5.1.2). These can be rewritten as

∂ρ(r, t)
∂t

= ∇ ·
[
Γρ(r, t)∇

(
kBT ln ρ(r, t) +

∫
dr′ρ(r′, t)Vint(|r− r′|)

)]
+[λmn(r, t)− λd]ρ(r, t) (5.2.9)

∂n(r, t)
∂t

= Dn∇2n(r, t) + Snf(r)− λnρ(r, t)n(r, t). (5.2.10)

We rescale each of the variables as ρ = ρ∗ρ̂, n = n∗n̂, t = t∗t̂, x = x∗/R, y =

y∗/R and Vint(r/R) = εṼint(r
∗), where the asterisked quantities are dimensionless

variables and Ṽint(r) = exp(−rN ) is the dimensionless pair potential, we obtain from

Eq. (5.2.9)

∂(ρ∗(r, t)ρ̂)

∂(tt̂)
=

1

R
∇∗ ·

[
Γρ̂

R
ρ∗(r, t)∇∗

(
kBT ln(ρ̂ρ∗(r, t)) +R2ρ̂ε

∫
dr′ρ∗(r′, t)Ṽint(|r− r′|)

)]
+[λmn

∗(r, t)n̂− λd]ρ∗(r, t)ρ̂. (5.2.11)

We integrate over two dimensional space, so from the integral we get R2 in the sec-

ond term in the above equation. This can be simplified to

∂ρ∗(r, t)
∂t

=

(
t̂

ρ̂

ΓkBT ρ̂

R2

)
∇∗ ·

[
ρ∗(r, t)∇∗

(
ln ρ∗(r, t) +R2ρ̂βε

∫
dr′ρ∗(r′, t)Ṽint(|r− r′|)

)]
+t̂λd

[(
λmn̂

λd

)
n∗(r, t)− 1

]
ρ∗(r, t), (5.2.12)

where ΓkBT = Dc, the cell diffusion coefficient and β = 1/kBT . By choosing t̂ = R2

Dc
,

ρ̂ = 1
R2 and n̂ = λd

λm
, dropping the superscript * for clarity and noting that ln ρ̂ does
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5.2. Scaling and nondimensionalisation

not feature because of ∇, we obtain

∂ρ(r, t)
∂t

= ∇2ρ(r, t) +∇ ·
(
ρ(r, t)∇

∫
dr′ρ(r′, t)βεṼint(|r− r′|)

)
+c1 [n(r, t)− 1] ρ(r, t), (5.2.13)

where

c1 =
R2λd
Dc

. (5.2.14)

Now consider Eq. (5.2.10). We obtain

∂(n∗(r, t)n̂)

∂(t∗t̂)
=
Dn

R2
∇∗2n∗(r, t)n̂+ Snf(r)− λnρ∗(r, t)ρ̂n∗(r, t)n̂.

∂n∗(r, t)
∂t∗

=
Dnt̂

R2
∇∗2n∗(r, t) +

Snt̂

n̂
f(r)− λnρ∗(r, t)ρ̂n∗(r, t)t̂.

from the definition of n̂, t̂ and ρ̂, we get

∂n∗(r, t)
∂t∗

=

(
Dn

Dc

)
∇∗2n∗(r, t) +

(
R2Snλm
λdDc

)
f(r)−

(
λnR

2

DcR2

)
ρ∗(r, t)n∗(r, t).

Writing

D̃ =
Dn

Dc

, S̃n =
R2Snλm
λdDc

and λ̃n =
λn
Dc

, (5.2.15)

and omitting the superscript *, we get

∂n(r, t)
∂t

= D̃∇2n(r, t) + S̃nf(r)− λ̃nρ(r, t)n(r, t). (5.2.16)

The above equation together with Eq.(5.2.13) constitutes the non-dimensionalised

model equations that we study.
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5.3. Parameter values

5.3 Parameter values

We now consider what are suitable parameter values for our model. For the homo-

geneous system (5.2.1), we know that

ρ(t) = ρ0e
(λmn∗−λd)t. (5.3.1)

If we assume a typical value that after 12 h the population density ρ is assumed to

double in time [143], i.e. ρ(t=12 h)= 2ρ(t = 0), then Eq. (5.3.1) implies

ln
2ρ(0)

ρ(0)
= (λmn

∗ − λd)12 h,

from which we can deduce the following estimate for λmn∗ − λd,

ln 2 = 12(λmn
∗ − λd) h⇒ (λmn

∗ − λd) =
ln 2

12
h−1. (5.3.2)

According to [144], a typical value for the concentration of oxygen in fresh water

[O2] = n∗ = 6.383 mg/L, so we estimate that the critical level nd for [O2] is ap-

proximately n∗

20
= 6.383

20
≈ 0.32 mg/L (equivalent to about 1% of atmospheric levels).

Hence, λmnd − λd = 0 leads to

λm =
λd

0.32 mg/L
. (5.3.3)

Substituting Eq.(5.3.3) into Eq.(5.3.2) gives

(
λd

0.32
6.383− λd

)
=

ln 2

12
h−1 ⇒

(
6.383

0.32
− 1

)
λd =

ln 2

12
h−1,
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5.3. Parameter values

hence,

λd =
ln 2

12× 18.95
= 0.003 h−1 = 0.00005 min−1,

and from Eq.(5.3.3) we find that

λm =
λd

0.32
=

0.00005

0.32
= 0.00015 min−1. (5.3.4)

The length scale R is the mean radius of the cells, so from Table 5.2 we have

R ≈ 10µm=0.001 cm and in 2 dimensions the typical diffusion distance in time

t, is estimated from the average distance diffused squared over time, 〈r2〉 = 4Dct.

Assuming the time taken to travel a distance of order the diameter of the cell R is

12 hours, then

(2R)2 = 4Dc × 12 h⇒ R2 = 12Dc

hence,

Dc =
R2

12hrs.
=

0.0012

12× 60min
= 1.3× 10−9 cm2/min.

The population growth constant is c1 = R2λd
Dc

, so we get c1 = 0.038. From the

definition of D̃c = Dn

Dc
, and Dn = 2× 10−5 cm2/sec (Dn = 12× 10−4 cm2/min) [24],

this leads to

D̃ =
12× 10−4

13× 10−10
≈ 1× 106. (5.3.5)

The nutrient source term S̃n = R2Snλm
λdDc

is estimated to be O(106) so that in

Eq. (5.2.16) n̄ is in balance with the diffusion term. Hence 3
13
× 104Sn ≈ (106)

⇒ Sn = 433. From Eq. (5.2.16) we also see that the term involving λ̃n also must

balance with diffusion, hence from Eq. (5.2.15) we see λn must be O(10−4) to ensure

that λ̃n is of O(106).
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5.3. Parameter values

Thus, typical choices for the initial conditions might be

ρ∗(r, 0) =
ρ(r, 0)

ρ̂(r, 0)
=

106

1/R2
= 1, (5.3.6)

n∗(r, 0) =
n(r, 0)

n̂(r, 0)
=

1

λd/λm
=
λm
λd

=
15× 10−5

5× 10−5
= 3. (5.3.7)

Recall that the number density of the system, is the number of cells per unit area

ρ = N
A
. Since R ≈ 10µm =0.001 cm, this implies that the area covered by one cell =

πR2 ≈ 3×10−6 cm2. This then implies that a typical cell density is ρ ≈ 1
3
×106 cm−2

i.e. 3× 105 cm−2.

We summarise the values of the various dimensional parameters in Table 5.2 and

the dimensionless parameter values in Table 5.3.

5.3.1 Standard parameter set

The ratio of diffusion coefficients in Eq. (5.3.5) is large which means that quantities

take dimensionless values covering several order of magnitudes O(10−2) – O(106).

This is because the nutrient evolves on much faster time scales than the cells, which

creates challenges for the numerical methods. Since the algorithm must run over

a long time, the (nutrient) terms associated with the O(106) parameters values

equilibrate very rapidly O(10−6), compared to the slower (cells evolution) processes

O(102). Consequently, tempering the large valued parameters, say (106) → 1, has

little effect on the long term results, but greatly helps in the running of the numerical

code. See below in Sec. 5.5.4.1, where we vary D̃ over the range [1, 103] and see

very little effect on the results. We therefore select the parameter set given in Table

5.3 and henceforth use these as our standard parameter set, where γ(r) is a random
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5.4. Linear stability analysis

Table 5.3: Dimensionless parameter values of the model.

Nondimensional parameter Dimension form Value Used value
c1 R2λd/Dc 0.038 1
D̃ Dn/Dc 106 1, 10, 102, 103

S̃n R2Snλm/λdDc 106 10, 35, 65
λ̃n λn/Dc 106 1
ρ∗ ρ/ρ̂ 1 1 + γ(r)
n∗ n/n̂ 3 1

εṼint(r
∗) Vint(r/R) See Eq. (4.4.1) ε/kBT

variable with γ(r) ∼ U(0, 1), where U is a uniform distribution

5.4 Linear stability analysis

The aim of a linear stability analysis is to determine where in the phase diagram

(parameter space) the uniform density state becomes unstable. We seek to locate

the region of the phase diagram in which the modulated (periodic) state occurs,

since this is the state modelling the distribution of cells.

For S̃n > 0 and f(r)=1 there is a unique uniform density steady state that is a

stationary solution of Eqs. (5.2.13) and (5.2.16), that is

n = no = 1, ρ = ρo = S̃n/λ̃n. (5.4.1)

We now investigate the linear stability of the uniform density state (ρo, no) to non-

uniform perturbations (δρ(r, t), δn(r, t)), with ‖δρ‖∞= ξ and ‖δn‖∞= χξ, where

ξ � 1. The analysis also applies more generally to determine the growth or decay of

a perturbation about a uniform density state (ρo, no), with values different to those

in Eq. (5.4.1), i.e. the timescale for cell repositioning in response to the perturbation
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5.4. Linear stability analysis

is much faster than cell growth; we note c1 � 1 from data, see Table 5.3. Note that

it is the parameter values where the uniform system is unstable (and forms peaks)

that are of biological relevance.

To determine the linear stability of the flat (uniform density) state in this model,

we assume that the order parameter profile of both components takes the form

ρ = ρo + δρ(r, t)

= ρo + ξei(k.r)+ωt, (5.4.2)

and

n = no + δn(r, t)

= no + χξei(k.r)+ωt, (5.4.3)

where 0 < ξ � 1 is the initial amplitude of the sinusoidal perturbation that has

wavenumber k = |k|, χ is the ratio between the amplitude of the modulation in the

two components, and the growth or decay rate of the perturbations is given by the

dispersion relation ω = ω(k). Substituting Eqs. (5.4.2) and (5.4.3) into the dynamic

equation (5.2.13), we get

ωδρ(r, t) = −k2δρ(r, t)

+∇ ·
[
(ρo + δρ(r, t))∇

(∫
dr′(ρo + δρ(r′, t))βεṼint(|r− r′|)

)]
+c1 ([no + χδρ(r, t)− 1][ρo + δρ(r, t)]) . (5.4.4)
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5.4. Linear stability analysis

Splitting the term in ρo + δρ(r, t) inside the integral in two separate terms, we get

ωδρ(r, t) = −k2δρ(r, t)

+∇ ·
[(
ρo + δρ(r, t)

)
∇
(
ρo

∫
dr′βεṼint(|r− r′|)

+ξeωt
∫
dr′ei(k.r′)βεṼint(|r− r′|)

)]
(5.4.5)

+c1

(
[no − 1]ρo + (ρoχ+ no − 1)δρ(r, t) +O(δρ2)

)
.

writing −r + r′ = r′′, and using the fact that dr′ = dr′′ and ei(k.r′) = eik.(r′′+r), we

get

ωδρ(r, t) = −k2δρ(r, t)

+∇ ·
[
ρo∇

(
ρoβεV̂ (0) + ξei(k.r)+ωtβεV̂ (k)

)]
(5.4.6)

+c1 ([no − 1]ρo + (ρoχ+ no − 1)δρ(r, t)) +O(δρ2),

where V̂ (k) is 2D Fourier transform of the pair potential [147,148]

V̂ (k) =

∫
drei(k.r)Ṽint(r) = 2π

∫ ∞
0

rṼint(r)J0(kr)dr, (5.4.7)

and J0(x) is the Bessel function of order 0. Using the fact that ∇δρ(r, t) = ikδρ(r, t)

and that ∇2δρ(r, t) = −k2δρ(r, t), we obtain

ωδρ(r, t) = −k2
[
1 + ρoβεV̂ (k)

]
δρ(r, t)

+c1(no − 1)ρo + c1(ρoχ+ no − 1)δρ(r, t) +O(δρ2), (5.4.8)

recalling that δρ(r, t) = ξei(k.r)+ωt.

At the fixed points, the second term on the right hand side is zero. Dividing both
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5.4. Linear stability analysis

sides by δρ(r, t) then assuming δρ(r, t) is small, we arrive to the dispersion relation

ω(k) = −k2
[
1 + ρoβεV̂ (k)

]
+ c1 (no + ρoχ− 1) . (5.4.9)

The limit of linear stability is defined as the locus of points in parameter space where

the maximum in the dispersion relation (5.4.9) is at zero, i.e. ω(k = kc) = 0, where

kc is the wave vector where ω(k) is maximum, where dω
dk
|k=kc = 0. In the case of

c1 � 1 we have

1 + ρoβεV̂ (k = kc) ≈ 0, (5.4.10)

where kc = 5.1 and V̂ (kc) = −0.16 (recall that in the non dimensionalisation we

effectively set the unit of length R = 1), which implies that the locus of where the

system becomes linearly unstable is

ρo ≈
1

βε|V̂ (kc)|
(5.4.11)

which in the density ρo versus “dimensionless temperature” kBT/ε = 1/βε plane

is a straight line passing through the origin, as shown in Fig 5.1 (c.f Fig. 2 in

Ref. [149] for comparison.) For densities greater than this value, the system is

linearly unstable. Note that even though we have assumed c1 � 1 in the derivation,

it turns out that even when c1 ∼ O(1), Eq. (5.4.11) gives a good estimate for where

the system is linearly unstable. Given the data in Table 5.3, the analysis suggests

that the dominant terms governing the instability are the cell density and the cell-cell

interaction parameters; cell growth and nutrient consumption rates are secondary

to this process.
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Figure 5.1: The linear stability threshold (5.4.11) for the one cell species model [see
Eq. (5.2.13)] for c1 = 0. To the right of this line the uniform density is linearly
unstable, forming the modulated state used to model the cell distribution.

5.5 Numerical results for the cell evolution

The coupled equations (5.2.13) and (5.2.16) are solved numerically using the method

of lines. The density profiles are discretised on a spatially uniform grid, with the

convolution integral evaluated in Fourier space using fast Fourier transforms, whilst

the time stepping is implemented through either an Euler method or an Adams–

Bashforth method, via the freeware ODEPACK routine DLSODE [150, 151]. Here

we compare two approaches for solving the model numerically. We note that the

Adams–Bashforth time stepping method is significantly faster than the Euler time

stepping routines used for the similar problem as explained in the next sections and

also in [149]. The Euler method is described below in Sec. 5.5.3 and the Adams

method is described in Sec. 5.5.4.
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5.5. Numerical results for the cell evolution

5.5.1 Evaluating the convolution integral

For each time step, the first step of our numerical algorithm is to evaluate the

convolution integral term in Eq.(5.2.13), C(r) =
∫
dr′ρ(r′)βεṼint(|r − r′|), by using

Fourier transforms and the convolution theorem as follows:

• Computing the Fourier transform of each function ρ(r′) and Ṽint(|r− r′|),

ρ̂(k) =

∫
drei(k.r)ρ(r), (5.5.1)

V̂ (k) =

∫
drei(k.r)Ṽint(r) = 2π

∫ ∞
0

rṼint(r)J0(kr)dr,

where ρ̂(k) and V̂ (k) are 2D Fourier transforms of the density profile at that

specific time and pair potential respectively.

• Computing the Fourier transform of the convolution integral is the product

F

(∫
dr′ρ(r′)βεṼint(|r− r′|)

)
= βερ̂(k)V̂ (k), (5.5.2)

• Computing the inverse Fourier transform of the product, gives the convolution

integral

F−1

(
βερ̂(k)V̂ (k)

)
= C(r). (5.5.3)

The integro-partial differential equation (5.2.13) then appears as a partial differential

equation after the convolution integral has been evaluated,

∂ρ(r, t)
∂t

= ∇2ρ(r, t) +∇ ·
(
ρ(r, t)∇C(r, t)

)
+c1 [n(r, t)− 1] ρ(r, t). (5.5.4)
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Eq. (5.5.4) together with Eq. (5.2.16) then forms a system of partial differential

equations which we can deal with using the method of lines, as explained in the next

section.

5.5.2 Method of lines

The method of lines (MOL) is a general way of discretising a partial differential

equation (PDE) to obtain system of ordinary differential equations (ODEs). The

basic idea of MOL is to replace the spatial derivatives in the partial differential

equation with algebraic approximations. Once this is done, the spatial derivatives

are no longer stated explicitly in terms of the spatial independent variables. Thus,

in effect, only one remaining independent variable t remains and we have a system

of ODEs that approximates the original PDE. We write Eq. (5.5.4) in the form

∂ρ(r, t)
∂t

= ∇2ρ(r, t) +

(
ρ(r, t)

(
C(r, t)

)
x

)
x

+

(
ρ(r, t)

(
C(r, t)

)
y

)
y

+c1 [n(r, t)− 1] ρ(r, t). (5.5.5)

We subdivide the xy-plane into a set of equal rectangles of sides ∆x and ∆y and let

the coordinates (x, y) of the representative mesh points be x = i∆x and y = j∆y

where i and j are positive integers. We denote the value of ρ and n at point(i, j)

by ρi,j and ni,j respectively, where 0 ≤ i ∆x ≤ L and 0 ≤ j ∆y ≤ L. By using the

finite difference equation and setting ∆x = ∆y, we can rewrite Eq (5.5.5) as
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dρi,j
dt

=
ρi−1,j + ρi+1,j + ρi,j−1 + ρi,j+1 − 4ρi,j

∆x2

+
ρi,j Ci+1,j − 3ρi,j Ci,j + ρi+1,j Ci,j + 2ρi,j Ci−1,j − ρi+1,j Ci−1,j

∆x2

+
ρi,j Ci,j+1 − 3ρi,j Ci,j + ρi,j+1 Ci,j + 2ρi,j Ci,j−1 − ρi,j+1 Ci,j−1

∆x2

+c1 [ni,j − 1] ρi,j. (5.5.6)

Let us denote the right hand side of Eqs.(5.5.6) by f(ρi,j, ni,j), to obtain,

dρi,j
dt

= f(ρi,j, ni,j). (5.5.7)

By a similar technique, we can transform Eq. (5.2.16) into

dni,j
dt

= g(ρi,j, ni,j), (5.5.8)

where g(ρi,j, ni,j) is the spatial discretisation of the right hand side of Eqs.(5.2.16).

In the next section we describe how to solve the system of ODEs (5.5.7) and (5.5.8)

using the Euler method and in the section after how to do so using the Adams

method.

5.5.3 Euler method

The explicit Euler method is perhaps the simplest algorithm to use to solve the

model (5.5.7) and (5.5.8), which consists of a pair of coupled PDEs. If we assume

that t = m∆t, where ∆t is a small time increment and m is an integer, then

ρ(r, t) = ρm(r), n(r, t) = nm(r), we can iterate the following equations to obtain the

68



5.5. Numerical results for the cell evolution

time-evolution of the profiles [152]

ρm+1(r) = ρm(r) + ∆t

[
∂ρm(r)

∂t

]
, (5.5.9)

nm+1(r) = nm(r) + ∆t

[
∂nm(r)

∂t

]
. (5.5.10)

These expressions come from forward finite difference approximations for the expres-

sion in the square brackets. The terms in the square brackets are then replaced by

the right hand sides of Eqs.(5.5.7) and (5.5.8), respectively. To evaluate the spatial

derivatives and convolution integrals we use spatial finite differences and fast Fourier

transforms as explained in Sections 5.5.1 and 5.5.2, to obtain

ρm+1
i,j = ρmi,j + ∆t

[
f(ρmi,j, n

m
i,j)
]
, (5.5.11)

nm+1
i,j = nmi,j + ∆t

[
g(ρmi,j, n

m
i,j)
]
. (5.5.12)

For the diffusion equation (i.e. the ideal gas limit), using central differences and a

forward Euler time step, stability requires ∆t ≤ (∆x2 + ∆y2)/4 [152]. From this we

expect the method to be stable for small enough ∆t. In the simulations that follow,

we set ∆t = 0.002. We found this to be a large enough suitable value that provides

acurate results in all the test simulations.

5.5.3.1 Results using the Euler Method

We apply the Euler method which is explained in Sec. 5.5.3, with initial conditions

ρ(r, 0) = 1 + γ(r) and n(r, 0) = 1, (5.5.13)
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where γ(r) is a random variable with γ(r) ∼ U(0, 1), where U is a uniform distribu-

tion, as shown in the profile at t=0 in Fig. 5.2. We assume that the energy scale in

the interaction potential between cells βε = 1, that the population growth constant

c1 = 1, the nutrient source parameter S̃n = 35 with the Gaussian function f(r)

given in Eq.(4.4.5), that corresponds to there being a nutrient source along the line

x = L
2
. The diffusion coefficient D̃ = 1 and the nutrient uptake rate λ̃n = 1. We set

the grid spacing ∆x = 0.1 the system size to be (25.6)2 and time step ∆t = 0.002.

We use periodic boundary conditions on all sides. This system size is big enough

to avoid significant effects due to the boundaries whilst being small enough to not

make computations take too long.

In Fig. 5.2, the plots in the first column is the density profile of the cells at a

series of different times (t=0, 0.5, 0.7 and 5), while the second column consists of

plots of the local concentration of the nutrient and the last one displays plots of

the logarithm of the density profile, ln ρ(r), which allows to see the details in the

density profile away from the density peaks. From the last column, it is clear that

we start with a small amplitude random cell distribution at t=0. By t=5.0 the cells

further away from the nutrient source have died off, while the density profile near the

nutrient source takes the form of a stripe pattern. This pattern is only temporary as

the stripes break up into peaks (i.e. cells) arranged in a nearly hexagonal pattern.

The cell ordering also impacts the nutrient concentration distribution.

We see that around the nutrient source, along the line x = L
2
, there is a region

where the peaks grow and then split –modelling cell division– and then move away

from the nutrient source, where they subsequently die. In Fig. 5.3 we display a

magnification of the cell density profile to highlight the mitotic events. The sequence

of snapshots in Fig. 5.3 illustrates the cell splitting events that occurs between the
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times t =2.05 and t =2.10 with time increments of 0.01. We observe that a peak

first elongates and then splits to form new peaks which remarkably mirrors a mitotic

event. In the fourth snapshot (t = 2.08) in Fig. 5.3, a peak spontaneously emerges

between two existing ones, describing the average location of a new cell resulting

from mitosis of one of the cells either side of it.

We plot in Fig. 5.4 the average cell density and nutrient density (over the whole

system) as function of time. These are calculated as

ρ̄(t) =
1

L2

∫ ∫
ρ(x, y, t)dxdy, (5.5.14)

n̄(t) =
1

L2

∫ ∫
n(x, y, t)dxdy. (5.5.15)

Fig. 5.4 shows that the cell density reaches a maximum and the nutrient reaches

a minimum when t ≈ 1. As time further increases, both the cell and the nutrient

densities vary over time, with an average cell density of approximately 5, while the

nutrient density is approximately 0.5. Note that the small amplitude oscillations

in ρ̄(t) for t > 3 are associated with the cell division, which is an approximately

periodic process.
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Cells Density, ρ(r) Nutrient Cells Density, ln[ρ(r)]

Figure 5.2: Density of cells and local nutrition concentration. We assume that
the population growth constant c1=1 and an energy scale in interaction potential
between cells βε=1. The diffusion coefficient D̃=1, nutrient source S̃n=35 with f(r)
given in Eq.(4.4.5) and nutrient uptake rate λ̃n=1. The area of the model is 25.62

and ∆x=0.1. These results were obtained using Euler Method.

72



5.5. Numerical results for the cell evolution

Figure 5.3: Snapshots of several peak splitting events that occur between the times
t = 2.05 and t = 2.10. The figures above are in time increments of 0.01 going from
top left to bottom right, corresponding to the profiles plotted in Fig. 5.2.
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Figure 5.4: The average cell density, [see Eq.(5.5.14)] and the average nutrient den-
sity [see Eq.(5.5.15)], corresponding to the results in Fig. 5.2.
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5.5.4 The Adams Methods

In this section we introduce the alternative Adams numerical method because the

Euler method is very slow in time to get the results. For example, the results in Fig.

5.2 required the code to run for approximately one day. The Adams Methods is faster

than the Euler’s method, taking roughly half an hour to obtain the corresponding

results using a desktop iMac with 3.2 GHz processor and 8 GB memory.

To derive the Adams–Bashforth method, we write Eqs. (5.5.9) and (5.5.10) as

follows [152]

ρm+1(r) = ρm(r) +

∫
dρ(r)

dt
dt = ρm(r) +

∫
f
(
ρ(r), n(r), t

)
dt, (5.5.16)

nm+1(r) = nm(r) +

∫
dn(r)

dt
dt = nm(r) +

∫
g
(
ρ(r), n(r), t

)
dt, (5.5.17)

where the terms f(ρ(r), n(r), tm) and g(ρ(r), n(r), tm) are then replaced by the right

hand sides of Eqs. (5.2.13) and (5.2.16) respectively. Adams methods are based

on the idea of approximating the integrand by a polynomial within the interval

(tm, tm+1). Using a kth order polynomial results in a (k + 1)-th order method.

There are two types of Adams methods, the explicit and the implicit types. The

explicit type is called the Adams–Bashforth (AB) method and the implicit type is

called the Adams–Moulton (AM) method. The first order AB and AM methods

are simply the forward and the backward Euler methods respectively. The second

order versions (obtained by using a linear interpolation) of these methods are quite

popular. The second order Adams–Bashforth (AB2) method is given by [152]

ρm+1
i,j = ρmi,j +

∆t

2

[
3f(ρmi,j, n

m
i,j)− f(ρm−1

i,j , nm−1
i,j )

]
, (5.5.18)
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nm+1
i,j = nmi,j +

∆t

2

[
3g(ρmi,j, n

m
i,j)− g(ρm−1

i,j , nm−1
i,j )

]
. (5.5.19)

Note that the AB2 method is explicit and hence only conditional numerically stable.

Moreover, the AB2 method requires the solution from the (m− 1)-th and the m-th

steps to find the solution at the (m+ 1)th step. The second order Adams–Moulton

(AM2) is an implicit technique, sometimes referred to as the trapezoidal rule. The

time-stepping equation for AM2 is given by [152]

ρm+1
i,j = ρmi,j +

∆t

2

[
f(ρm+1

i,j , nm+1
i,j ) + f(ρmi,j, n

m
i,j)

]
, (5.5.20)

nm+1
i,j = nmi,j +

∆t

2

[
g(ρm+1

i,j , nm+1
i,j ) + g(ρmi,j, n

m
i,j)

]
, (5.5.21)

We have to solve a non-linear algebraic equation at every time step. This is much

more expensive compared to the explicit AB2 method. However, being an implicit

technique, AM2 has more favourable stability properties than the AB2 for relatively

large values of the time step. Once again, it is a trade-off between stability and com-

putational cost, since both AM2 and AB2 are second order accurate. We note that

the time step used by the ODEPACK routine is selected internally and adaptively.

5.5.4.1 Results with an inhomogeneous nutrient source

In this section we solve the system of integro-partial differential equations (5.2.13)

and (5.2.16) using Adams method. We assume that the population growth constant

c1 = 1, the energy scale in interaction potential between cells βε = 1, the nutrient

uptake rate λ̃n = 1 and the diffusion coefficient D̃ = 1. We set the area of the domain

in which the model is solved to be 25.6× 25.6 and the nutrient source S̃n = 35 with

Gaussian f(r) given in Eq. (4.4.5) along the line x = L
2
. We use periodic boundary
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conditions for both the sides and corners.

We plot in Fig. 5.6 the total cell density and nutrient density (over the whole

system) as function of time, [see Eqs. (5.5.14) and (5.5.15)]. As time increases, the

nutrient density varies, settling on a value of about 0.5, whereas the cell density

oscillates around a constant cell density of 5. Note that the oscillations are less

clearly visible than in Fig. 5.4 due to the longer time period over which results are

displayed. Fig. 5.6 shows the total cell numbers and nutrient for different values of

the grid spacing, showing that the solutions are robust to the change of grid.

Figs. 5.5, 5.7 and 5.9 show the results for the cell density profile time evolution

for three different values of D̃ = 1, 10 and 100. For example, the results in the left

hand column of Fig. 5.5 shows the evolution of cell density, displaying snapshots for

the times t=1.2, 2, 2.1 and 5 for the case D̃ = 1. In these cases the nutrient source

is located along the vertical mid line of the system [c.f. Eq. (4.4.5)]. From an initial

randomised distribution, the cell density grows in the vicinity of central nutrient

source. When the density is sufficiently large, an instability (c.f. Sec. 5.4) leads first

to a striped pattern and then peaks. The density peaks (i.e. cells) are arranged in a

roughly hexagonal pattern, which also impacts the nutrient distribution. the second

column consists of plots of the local concentration of the nutrient and the last one

displays plots of the logarithm of the density profile, ln ρ(r), which allows to see the

details in the density profile away from the density peaks.

In Fig. 5.8 we display plots of the total cell density and nutrient density calculated

using Eqs. (5.5.14) and (5.5.15), corresponding to Figs. 5.5, 5.7 and 5.9. These

results are for three very different values of D̃ = 1, 10 and 100. Nonetheless, we

see that in all three cases the results are all qualitatively rather similar, which

demonstrates that for D̃ & 1 the results do not qualitatively depend on the precise
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value of D̃. Recall that in Sec. 5.3 we note that the true value is D̃ ≈ 106 [see Eq.

(5.3.5)], but also argue that we do not need to have such a large value. Owing to

the qualitative similarity of the results shown in Figs. 5.5, 5.7 and 5.9, we see that

smaller values of D̃ ≈ 10 are acceptable.

The similarities for different values of the diffusion coefficient ratio D̃ can also

be seen from the results in Fig. 5.8, whereby the steady value of ρ̄ ≈ 5 and n̄ ≈ 0.5

is reached by t ≈ 4. Note that for the smaller D̃ = 1 case there are small amplitude

oscillations in both the cell and nutrient average densities for t > 2. These are due

to new cells being formed and then dying in a periodic fashion.

5.5.4.2 Results with a homogeneous nutrient source

In this section we solve the system of integro-partial differential equations (5.2.13)

and (5.2.16) with a uniform nutrient source with f(r)=1 and S̃n = 10. All other

parameters are the same as Fig. 5.5, i.e. we assume that the population growth

constant c1=1, the energy scale in the interaction potential between cells βε = 1,

the nutrient uptake rate λ̃n = 1 and the diffusion coefficient D̃ = 1. We set the

grid spacing ∆x = 0.1 and the system size to be (25.6)2, with periodic boundary

conditions on all sides. The time stepping is implemented via the Adams method.

In Fig. 5.10, the plots in the first column is the density profile of the cells at a

series of different times (t=2.6, 2.7, 2.8 and 5.0), while the second column displays

plots of the local nutrient concentration and the last column displays the logarithm

of the density profile, ln(ρ(r)), which allows to see the details in the density profile

away from the density peaks. From column 1, it is clear that the total density of
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Cells Density, ρ(r) Nutrient Cells Density, ln[ρ(r)]

Figure 5.5: The local density of the cells (left column) for D̃=1, the nutrient density
(middle column) and the logarithm of the cells density (right hand column). The
population growth constant c1=1 and the energy scale in the interaction potential
between cells βε=1. The nutrient source S̃n=35 with f(r) given in Eq.(4.4.5) and
the nutrient uptake rate λ̃n=1. The area of the model is 25.62 and ∆x=0.05.
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Figure 5.6: The average cell density, [see Eq.(5.5.14)] and the average nutrient den-
sity [see Eq.(5.5.15)], corresponding to the results in Fig. 5.5. These results are for
varying numbers of grid points (G.P.), = 27, 28, 29 and 210.

cells increase with the time. We see the peaks (i.e. cells) grow and split to fill

the entire domain, due the fact that there is a source of nutrient everywhere, in

contrast to the behaviour seen e.g. in Figs. 5.5 or 5.7 where the source of nutrient

is localised along the mid-line of the system. We plot in Fig. 5.11 the average cell

density and nutrient density (over the whole system) as functions of time. Initially

the nutrient density increases, due to the low initial average cell density. Then, as

the cell density increases at t ≈ 0.5, the nutrient density starts to decrease. During

the time t=2–3 the peaks in the cells density distribution form. Consequently, the

nutrient concentration then increases again at t ≈ 3. After this, n̄(t) is a constant

≈ 1.2, as shown in Fig. 5.11. The cell density continues to slowly increase to plateau

at a constant value ≈ 10 at time t ≈ 6.
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Cells Density, ρ(r) Nutrient Cells Density, ln[ρ(r)]

Figure 5.7: Profiles the same as in Fig. 5.5, except here D̃=10.
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Figure 5.8: The average cell density, [see Eq.(5.5.14)] and the average nutrient den-
sity [see Eq.(5.5.15)], corresponding to the results in Figs. 5.5, 5.7 and 5.9 when the
diffusion coefficient D̃=1, 10 and 100 respectively.

What the results in this chapter show is that we have developed a model that

is able to describe cell dynamics, cell growth (including cell division), cell death

due to a shortage of nutrients and also how the cell density field evolves coupled to

the nutrient concentration field. In the following chapter we extend the model to

describe two species of cells.
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Cells Density, ρ(r) Nutrient Cells Density, ln[ρ(r)]

Figure 5.9: Profiles the same as in Figs. 5.5 and 5.7, except here D̃=100.
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Cells Density, ρ(r) Nutrient Cells Density, ln[ρ(r)]

Figure 5.10: Profiles the same as in Fig. 5.5 which has D̃=1, except here the nutrient
source is uniform with f(r)=1 and S̃n=10.
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Figure 5.11: The average cell density, [see Eq.(5.5.14)] and the average nutrient
density [see Eq.(5.5.15)], corresponding to the results in Fig. 5.10.



CHAPTER 6

MODEL INCLUDING COMPETITION

BETWEEN CANCER AND HEALTHY

CELLS

6.1 Introduction

In this chapter we extend the model discussed in chapter 5, to study the competition

between cancer cells and healthy cells, i.e. we introduce a second species of cells. The

model system of integro-partial differential equations for the time evolution of the

density profile of the cancer cells, the healthy cells and nutrient is given by the

following generalisation of Eqs. (4.3.1) and (4.4.7)

∂ρ1(r, t)
∂t

= Γ1∇ ·
[
ρ1(r, t)∇

(
δF [ρ1(r, t), ρ2(r, t)]

δρ1(r, t)

)]
+ [λm1n(r, t)− λd1]ρ1(r, t),
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∂ρ2(r, t)
∂t

= Γ2∇ ·
[
ρ2(r, t)∇

(
δF [ρ1(r, t), ρ2(r, t)]

δρ2(r, t)

)]
+ [λm2n(r, t)− λd2]ρ2(r, t),

∂n(r, t)
∂t

= Dn∇2n(r, t) + Snf(r)− λn1ρ1(r, t)n(r, t))− λn2ρ2(r, t)n(r, t). (6.1.1)

The generalisation of DDFT to two species of interacting Brownian particles was

discussed in [153]. The above is the natural further generalisation to include cell

birth and cell death and the coupling to the local nutrient concentration. The

variables and parameters in the above system and their descriptions are summarised

in Table 6.1.

For such a binary system we may approximate the intrinsic Helmholtz free energy

as [134,153]

F [{ρi(r, t)}] = kBT
2∑
i=1

∫
drρi(r, t)

(
ln
(
Λ2
i ρi(r, t)

)
− 1

)

+
1

2

2∑
i,j=1

∫
dr
∫
dr′ρi(r, t)ρj(r′, t)Vij(|r− r′|). (6.1.2)

where Vij are the pair interactions potentials, discussed further below. The indices

i, j = 1, 2 label the two different species of particles (healthy and cancer); we assign

1 for cancer cells and 2 for healthy cells. The first variation of the free energy is

δF
δρi(r, t)

= kBT ln
(
Λ2
i ρi(r, t)

)
+

2∑
j=1

∫
dr′ρj(r′, t)Vij(|r− r′|). (6.1.3)

Taking the gradient of Eq.(6.1.3) and substituting the result into Eq.(6.1.1), we
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Table 6.1: Summary of the variables and parameters in the model given in Eqs.
(6.1.4), (6.1.5) and (6.1.6).

State variables Description
ρ1(r, t) Density of the cancer cells
ρ2(r, t) Density of the healthy cells
n(r, t) Local concentration of nutrients
N1(t) Total number of cancer cells in the system
N2(t) Total number of healthy cells in the system
ρ̄1(t) Average cancer cell density
ρ̄2(t) Average healthy cell density
n̄(t) Average nutrient density

V11(|r− r
′|) Interaction potential between cancer cells

V12(|r− r
′|) Interaction potential between cancer and healthy cells

V22(|r− r
′|) Interaction potential between healthy cells

f(r) Function that defines where in space the nutrient source is located
λd1 Cancer cell death rate constant
λd2 Healthy cell death rate constant
λn1 Nutrient uptake rate constant for cancer cells
λn2 Nutrient uptake rate constant for healthy cells
λm1 Nutrient-dependent growth rate constant for cancer cells
λm2 Nutrient-dependent growth rate constant for healthy cells
Dc Cancer cell diffusion coefficient
Dh Healthy cell diffusion coefficient
Γ1 Cancer cell motility coefficient
Γ2 Healthy cell motility coefficient
T Temperature
kB Boltzmann’s constant
ρ0 constant reference density
Dn Nutrient diffusion coefficient
Sn The nutrient source

Λ1,Λ2 Thermal de Broglie wavelengths
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6.1. Introduction

obtain

∂ρ1(r, t)
∂t

= ∇ ·
[
Γ1ρ1(r, t)∇

(
kBT ln(Λ2

1ρ1(r, t)) +

∫
dr′ρ1(r′, t)V11(|r− r′|)

+

∫
dr′ρ2(r′, t)V12(|r− r′|)

)]
+
[
λm1n(r, t)− λd1

]
ρ1(r, t), (6.1.4)

∂ρ2(r, t)
∂t

= ∇ ·
[
Γ2ρ2(r, t)∇

(
kBT ln(Λ2

2ρ2(r, t)) +

∫
dr′ρ1(r′, t)V21(|r− r′|)

+

∫
dr′ρ2(r′, t)V22(|r− r′|)

)]
+
[
λm2n(r, t)− λd2

]
ρ2(r, t), (6.1.5)

∂n(r, t)
∂t

= Dn∇2n(r, t) + Snf(r)− λn1ρ1(r, t)n(r, t))− λn2ρ2(r, t)n(r, t). (6.1.6)

We model the interactions between the cells via pair potentials of the same form as

in Chapter 5,

Vij(r) = εije
[−(r/Rij)4], (6.1.7)

where the indices i, j = 1, 2 labels the two different species of particles (cancer and

healthy); we assign 1 for cancer cells and 2 for healthy cells. The parameter εij

specifies the strength of the repulsion between pairs of cells of species i and j and

Rij defines the range of the interaction. Thus we choose R11 ≤ R22, since cancer cells

are generally a little smaller than the healthy cells and we choose ε12 > ε11 = ε22 to

make sure that density peaks of one species do not coincide with density peaks of

the other. In some cases we choose R12 = 1
2
(R11 + R22), but we also consider cases

where R12 >
1
2
(R11 + R22) since this promotes demixing of the two cell species and

also R12 <
1
2
(R11 + R22) which promotes penetration of the cancer cells in between

the healthy cells [134,153,154].
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6.2. Nondimensionalisation

6.2 Nondimensionalisation

We now nondimensionlise the system of integro-partial differential equations given

in Eqs. (6.1.4), (6.1.5) and (6.1.6). We scale each of the variables as

ρ1 = ρ∗1ρ̂1, ρ2 = ρ∗2ρ̂2, n = n∗n̂, t = t∗t̂, x = x∗/R11, y = y∗/R11 and

Vij(r/R11) = εijṼij(r
∗),

where the quantities with aˆare the rescaling constants. As in Sec. 5.2.2, on substi-

tuting into Eq. (6.1.4) we obtain,

∂(ρ∗1(r, t)ρ̂1)

∂(t∗t̂)
=

1

R11

∇∗ ·
[

Γ1ρ̂1

R11

ρ∗1(r, t)∇∗
(
kBT ln ρ∗1(r, t)

+R2
11ρ̂1ε11

∫
dr′ρ∗1(r′, t)Ṽ11(|r− r′|)

+R2
11ρ̂1ε12

∫
dr′ρ∗2(r′, t)Ṽ12(|r− r′|)

)]
+[λm1n

∗(r, t)n̂− λd1]ρ∗1(r, t)ρ̂1, (6.2.1)

noting that constants Λi drop out because ∇ ln Λ2ρ = 1
ρ
∇ρ. This can be simplified

to

∂ρ∗1(r, t)
∂t∗

=

(
t̂

ρ̂1

Γ1kBT ρ̂1

R2
11

)
∇∗ ·

[
ρ∗1(r, t)∇∗

(
ln ρ∗1(r, t)

+R2
11ρ̂1βε11

∫
dr′ρ∗1(r′, t)Ṽ11(|r− r′|)

+R2
11ρ̂1βε12

∫
dr′ρ∗2(r′, t)Ṽ12(|r− r′|)

)]
+t̂λd1

[(
λm1n̂

λd1

)
n∗(r, t)− 1

]
ρ∗1(r, t), (6.2.2)

where the cancer cells diffusion coefficientDc = Γ1kBT and the healthy cells diffusion

coefficient Dh = Γ2kBT . By choosing t̂ =
R2

11

Dc
, ρ̂1 = ρ̂2 = 1

R2
11

and n̂ = λd1
λm1

, dropping
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6.2. Nondimensionalisation

the superscript * for clarity, we obtain

∂ρ1(r, t)
∂t

= ∇2ρ1(r, t) +∇ ·
(
ρ1(r, t)∇

∫
dr′ρ1(r′, t)βε11Ṽ11(|r− r′|)

)
+∇ ·

(
ρ1(r, t)∇

∫
dr′ρ2(r′, t)βε12Ṽ12(|r− r′|)

)
+ c1

[
n(r, t)− 1

]
ρ1(r, t), (6.2.3)

where the dimensionless growth constant for cancer cells is

c1 =
R2

11λd1

Dc

. (6.2.4)

Now by the same technique for Eq.(6.1.5), we get

∂(ρ∗2(r, t)ρ̂2)

∂(t∗t̂)
=

1

R11

∇∗ ·
[

Γ2ρ̂2

R11

ρ∗2(r, t)∇∗
(
kBT ln ρ∗2(r, t)

+R2
11ρ̂2ε21

∫
dr′ρ∗1(r′, t)Ṽ21(|r− r

′ |)

+R2
11ρ̂2ε22

∫
dr′ρ∗2(r′, t)Ṽ22(|r− r

′ |)
)]

+
[
λm2n

∗(r, t)n̂− λd2

]
ρ∗2(r, t)ρ̂2. (6.2.5)

This can be simplified to

∂ρ∗2(r, t)
∂t∗

=

(
t̂

ρ̂2

Γ2kBT ρ̂2

R2
11

)
∇∗ ·

[
ρ∗2(r, t)∇∗

(
ln ρ∗2(r, t)

+R2
11ρ̂2βε12

∫
dr′ρ∗1(r′, t)Ṽ21(|r− r

′|)

+R2
11ρ̂2βε22

∫
dr′ρ∗2(r′, t)Ṽ22(|r− r

′|)
)]

+t̂
[
λm2n

∗(r, t)n̂− λd2

]
ρ∗2(r, t), (6.2.6)
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6.2. Nondimensionalisation

where the healthy cells diffusion coefficient Dh = Γ2kBT and using the previously

defined cell diffusion coefficients, dropping the superscript *, we obtain

∂ρ2(r, t)
∂t

= D̃1∇2ρ2(r, t) +∇ ·
(
ρ2(r, t)∇

∫
dr′ρ1(r′, t)βε21Ṽ21(|r− r

′|)
)

+∇ ·
(
ρ2(r, t)∇

∫
dr′ρ2(r′, t)βε22Ṽ22(|r− r

′ |)
)

+ c2

[
n(r, t)− α

]
ρ2(r, t), (6.2.7)

where D̃1 = Dh

Dc
, the dimensionless growth constant for the healthy cells is

c2 =
R2

11λm2λd1

Dcλm1

(6.2.8)

and the dimensionless threshold nutrient concentration for healthy cells is

α =
λd2λm1

λd1λm2

. (6.2.9)

Now consider Eq. (6.1.6). We obtain,

∂(n∗(r, t)n̂)

∂(t∗t̂)
= Dn∇∗2n∗(r, t)n̂+Snf(r)−λn1ρ

∗
1(r, t)ρ̂1n

∗(r, t)n̂−λn2ρ
∗
2(r, t)ρ̂2n

∗(r, t)n̂,

which can be rearanged to obtain

∂n∗(r, t)
∂t∗

=
Dnt̂

R2
11

∇∗2n∗(r, t)+Snt̂
n̂
f(r)− t̂

n̂
λn1ρ

∗
1(r, t)ρ̂1n

∗(r, t)n̂− t̂
n̂
λn2ρ

∗
2(r, t)ρ̂2n

∗(r, t)n̂.
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6.3. Parameter values

From the definition of n̂, t̂, ρ̂1 and ρ̂2, we get

∂n∗(r, t)
∂t∗

=

(
Dn

Dc

)
∇∗2n∗(r, t) +

(
R2

11Snλm1

λd1Dc

)
f(r)−

(
λn1

Dc

)
ρ∗1(r, t)n∗(r, t)

−
(
λn2

Dc

)
ρ∗2(r, t)n∗(r, t).

Writing

D̃2 =
Dn

Dc

, S̃n =
R2

11Snλm1

λd1Dc

, λ̃n1 =
λn1

Dc

and λ̃n2 =
λn2

Dc

, (6.2.10)

and omitting the superscript ∗, we get

∂n(r, t)
∂t

= D̃2∇2n(r, t) + S̃nf(r)− λ̃n1ρ1(r, t)n(r, t)− λ̃n2ρ2(r, t)n(r, t). (6.2.11)

The above equation together with Eq.(6.2.3) and Eq.(6.2.7) constitutes the non-

dimensionalised model equations that we study.

6.3 Parameter values

For both the healthy and cancer cell growth rate parameters, diffusion coefficients,

etc. and the parameters related to the nutrient dynamics we use the same values as

in Sec. 5.3 for the model with only one species of cells. The main change is to make

the growth rate parameters for cancer cells larger than those of the healthy cells in

order for them reproduce and grow faster (or die slower) than the healthy cells. The

parameter values are summarised in Table 6.2 and the corresponding dimensionless

parameter values are given in Table 6.3. The other main addition in the model for

both healthy and cancer cells that must be considered are the parameter values for
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6.3. Parameter values

the interaction potential between the different types of cells, given in Eq. (6.1.7).

The parameter values we choose are given in Table 6.2. These values are chosen in

order to (i) make the cancer cells either the same size or slightly smaller than the

healthy cells [155] and also (ii) to make sure the cancer cells do not overlap with the

healthy cells.
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6.4. Linear stability analysis for two species system

Table 6.3: Dimensionless parameter values of the model.

Nondimensional parameter Dimension form value Used value
ρ∗1 ρ1/ρ̂1 1 6 + γ(r)
ρ∗2 ρ2/ρ̂2 1 6 + γ(r)
n∗ n/n̂ 3 3
c1 R2

11λd1/Dc 0.038 0.5, 0.6
c2 R2

11λm2λd1/Dcλm1 0.0038 0.5, 0.6
α λd2λm1/λd1λm2 2 2
D̃1 Dh/Dc 1.1 1
D̃2 Dn/Dc 106 1
S̃n R2

11Snλm1/λd1Dc 106 8, 9, 60
λ̃n1 λn1/Dc 106 1
λ̃n2 λn2/Dc 106 1

ε11Ṽ11(r∗) V11(r/R11) See Eq. (6.1.7) ε11/kBT

ε12Ṽ12(r∗) V12(r/R11) See Eq. (6.1.7) ε12/kBT

ε22Ṽ22(r∗) V22(r/R11) See Eq. (6.1.7) ε22/kBT

6.4 Linear stability analysis for two species system

The governing equations for the time evolution of the density profile of the cancer

cells, the healthy cells and the nutrient are given by Eqs. (6.2.3), (6.2.7) and (6.2.11).

We note that for α 6=1 there is no spatially uniform positive steady-state to this

system. We consider here the linear stability of uniform state ρ1 = ρb1 > 0 and

ρ2 = ρb2 > 0 for the case c1, c2 � ξ � 1, where ξ is the amplitude of the density

perturbation; the small magnitude of c1 and c2 in comparison to the other parameters

is evident from Table 6.3. In setting c1 = c2 = 0 for the purposes of the linear

stability analysis, we are assuming the growth of cells occurs on a much longer

time scale than that of the cell motion. This assumption means that the nutrient

equation (6.2.11) decouples from Eqs. (6.2.3) and (6.2.7), so that in what follows,

the stability of uniform states is predominantly governed by cell density and the

cell-cell interaction process.
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6.4. Linear stability analysis for two species system

We assume the cell density perturbations are of the form

ρ1(r, t) = ρb1 + δρ(r, t)

= ρb1 + ξei(k.r)+ωt, (6.4.1)

and

ρ2(r, t) = ρb2 + χδρ(r, t)

= ρb2 + χξei(k.r)+ωt, (6.4.2)

where 0 < ξ � 1, k is the wavenumber, χ is the ratio between the amplitude of

the perturbation in the two components and the growth or decay rate is determined

by the dispersion relation ω = ω(k), where k = |k|. The growth/decay rate of this

model is given by the dispersion relation ω = ω(k), where k = |k|. If we substitute

Eqs. (6.4.1) and (6.4.2) into Eq. (6.2.3), we get

ωδρ(r, t) = −k2δρ(r, t) (6.4.3)

+∇ ·
[(
ρb1 + δρ(r, t)

)
∇
(∫

dr′(ρb1 + δρ(r′, t))βε11Ṽ11(|r− r′|)
)]

+∇ ·
[(
ρb2 + χδρ(r, t)

)
∇
(∫

dr′(ρb2 + χδρ(r′, t))βε12Ṽ12(|r− r′|)
)]

.

As before, when going from Eq. (5.4.4) to Eq. (5.4.8), we obtain

ωδρ(r, t) = −k2[1 + ρb1βε11V̂11(k) + ρb2χβε12V̂12(k)]δρ(r, t) +O(δρ2), (6.4.4)

where V̂ij(k) is the Fourier transform of Vij(r), defined as in Eq. (5.4.7). Dividing
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6.4. Linear stability analysis for two species system

both sides by δρ(r, t) and neglecting terms O(δρ) and higher we get

ω(k) = −k2(1 + ρb1βε11V̂11(k) + ρb2χβε12V̂12(k)). (6.4.5)

In the same way, if we substitute Eqs. (6.4.1) and (6.4.2) into Eq. (6.2.7), we get

χω(k) = −k2(χ+ ρb1βε21V̂21(k) + ρb2χβε22V̂22(k)). (6.4.6)

Eqs. (6.4.5) and (6.4.6) can be represented in matrix form, allowing for easier

analysis,

ω(k)

1

χ

 = M

1

χ

 , (6.4.7)

where

M = −k2

1 + ρb1βε11V̂11(k) ρb2βε12V̂12(k)

ρb1βε21V̂21(k) 1 + ρb2βε22V̂22(k)

 . (6.4.8)

We can rewrite the matrix M as a product of two matrices N and E as follows,

M = N · E (6.4.9)

where

N =

−ρb1k2 0

0 −ρb2k2

 , (6.4.10)

and

E =

[ 1
ρb1

+ βε11V̂11(k)
]

βε12V̂12(k)

βε21V̂21(k)
[

1
ρb2

+ βε22V̂22(k)
]
 . (6.4.11)

We can now determine the dispersion relation ω(k) by calculating the eigenvalues of
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6.4. Linear stability analysis for two species system

N · E,

ω(k) =
Tr(N · E)

2
±
√

Tr(N · E)2

4
− |N · E|, (6.4.12)

where |N · E| denotes the determinant of the matrix N · E [149]. When ω(k) < 0

for all wave numbers k, the system is linearly stable. If, however, ω(k) > 0 for any

wave number k, then the uniform density state is linearly unstable. Since N is a

(negative definite) diagonal matrix its inverse N−1 exists for all nonzero densities

and temperatures, enabling us to write Eq. (6.4.7) as the generalised eigenvalue

problem

(E−N−1ω)χ̂ = 0, (6.4.13)

where χ̂ = (1, χ).

As E is a symmetric matrix, all eigenvalues are real. It follows that the linear stability

threshold is determined by |E| = 0, i.e. by the condition [149]

D(k) ≡ [1 + ρb1βε11V̂11(k)][1 + ρb2βε22V̂22(k)]− ρb1ρb2β2ε2
12V̂

2
12(k) = 0. (6.4.14)

In Fig. 6.1 we display the linear stability threshold for different values of the con-

centration φ ≡ ρ1/ρ, where ρ ≡ ρ1 +ρ2 is the total density and ρ1, ρ2 are densities of

cancer and healthy cells respectively. For points above the linear stability threshold

line in Fig. 6.1, the system forms peaks, modelling the distribution of the cells. The

instability line is obtained by tracing the locus defined by D(kc) = 0 and D′(kc) = 0,

where D(k) is given by Eq. (6.4.14) and kc 6= 0 is the wave number at the minimum

of D(k) [i.e. D(k = kc) = 0]. Note that if R22/R11 is further increased, then the

two wavenumbers at which the system can become linearly unstable kc1 ≈ 2π/R11

and kc2 ≈ 2π/R22 move apart leading to the linear stability threshold to develop a
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Figure 6.1: The linear stability limit for the two species cells [see Eqs. (6.2.3) and
(6.2.7)] with R22/R11 = 1.2, R12/R11 = 1.1, βε11 = 1, βε22 = 1 and for varying βε12

as given in the key, plotted in the total density ρ ≡ ρ1 + ρ2 versus concentration
φ ≡ ρ1/ρ plane. The uniform density state is linearly unstable above this line.

cusp, see Fig. 6.2 for several examples. The cusp corresponds to a discontinuity of

the first derivative along the linear stability threshold line. When a cusp exists, at

the cusp point the system is marginally unstable at two distinct wave numbers.

The cusp appears when the two minima of D(k) first appear and have D(kc) = 0.

Thus, the parameter values at which this occurs can be determined by simultaneously

solving the system of algebraic equations

D(kc) = 0, (6.4.15)
d

dk
[D(kc)] = 0, (6.4.16)

d2

dk2
[D(kc)] = 0, (6.4.17)

d3

dk3
[D(kc)] = 0. (6.4.18)

We find that the cusp appears at R22/R11=1.73, ρ=8.26 and φ=0.74, (red curve in
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Figure 6.2: The linear stability limit for the two species cells [see Eqs. (6.2.3) and
(6.2.7)] plotted in the total density ρ ≡ ρ1 +ρ2 versus concentration φ ≡ ρ1/ρ plane.
The curves are for varying R22/R11 = 1, 1.5, 1.7, 1.73, 1.8 and 2. We set the cross-
interaction radius R12 = 1

2
(R11 +R22) and βε11= βε12=βε22=1. The uniform density

state is linearly unstable above this line.

Fig. 6.2) and is present for R22/R11 > 1.73. The onset wavenumber kcR11=4.31.

The linear stability threshold line including this point is displayed in Fig. 6.2 along

with the linear stability threshold for various other values of R22.
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6.5. Results for cancer invading healthy tissue

6.5 Results for cancer invading healthy tissue

6.5.1 Results with a homogeneous nutrient source

In this section we discuss some representative results showing the competition be-

tween healthy and cancer cells, obtained by solving numerically the system of integro-

partial differential Eqs. (6.2.3), (6.2.7) and (6.2.11) using the numerical methods

discussed in Sec. 5.5. We investigate the evolution of the cells starting from various

different initial arrangements and the effect of the cross-species interaction range R12.

Table 6.4 summarises all of the parameter values used in the simulations presented

below. With each type of initial conditions we test three cases for the parameter

R12 such that R12 = 1
2
(R11 + R22) in the first case, then R12 <

1
2
(R11 + R22) and

finally R12 >
1
2
(R11 +R22) according to the discussion in Sec. 6.1.

6.5.1.1 Half-half domain case

In this section, we assume that the population growth constant for both the cancer

and the healthy cells are c1=c2 =0.5 and the threshold nutrient concentration for

healthy cells α = 2 [c.f. Eq. (6.2.9)]. We fix the energy scale in the interaction

potential between both cancer cells and healthy cells to be βε11 = βε22 = 1, and the

energy scale in the interaction potential between different species to be βε12 = 1.5,

so that density peaks of the two different cell types do not overlap. The nutrient

uptake rate for cancer cells λ̃n1 = 1 and for healthy cells λ̃n2 = 1. We set the area

of the domain in which the model is solved to be 25.6× 25.6 and nutrient source to

be uniform with constant f(r) = 1 and S̃n = 8. The diffusion coefficient D̃c = 1 for

cancer cells and the diffusion coefficient D̃h = 1 for healthy cells. We use periodic

boundary conditions on all sides. The initial conditions are
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6.5. Results for cancer invading healthy tissue

Table 6.4: Dimensionless parameter values of the different examples

Density of cells R11 R12 R22 βε12 c1 c2 D̃c D̃h S̃n λ̃n1 λ̃n2

Fig. 6.3 1 0.9 1 1.5 0.5 0.5 1 1 8 1 1
Fig. 6.4 1 1.1 1.2 1.5 0.5 0.5 1 1 8 1 1
Fig. 6.5 1 1.1 1 1.5 0.5 0.5 1 1 8 1 1

Fig. 6.6 1 0.9 1 1.5 0.5 0.5 1 1 8 1 1
Fig. 6.7 1 1.1 1.2 1.5 0.5 0.5 1 1 8 1 1
Fig. 6.8 1 1.1 1 1.5 0.5 0.5 1 1 8 1 1

Fig. 6.9 1 0.9 1 1.5 0.5 0.5 1 1 9 1 1
Fig. 6.10 1 1 1 1.5 0.5 0.5 1 1 9 1 1
Fig. 6.11 1 1.1 1 1.5 0.5 0.5 1 1 9 1 1

Fig. 6.12 1 0.9 1 1.5 0.5 0.5 1 1 9 1 1

Fig. 6.14 1 0.9 1 1.5 0.5 0.5 1 1 60 1 1
Fig. 6.15 1 0.9 1 1.5 0.5 0.5 1 1 60 1 1
Fig. 6.16 1 0.9 1 1.5 0.5 0.5 1 1 60 1 1

Fig. 6.17 1 1.1 1.2 1.5 0.5 0.5 1 1 9 1 1
Fig. 6.18 1 0.9 1 1.5 0.5 0.5 1 1 9 1 1
Fig. 6.19 1 1 1 1.5 0.5 0.5 1 1 9 1 1
Fig. 6.20 1 1.1 1 1.5 0.5 0.5 1 1 9 1 1

ρ∗1(r, 0) =


6 + γ(r) x ≤ 12.8

0 x > 12.8

and ρ∗2(r, 0) =


0 x ≤ 12.8

6 + γ(r) x > 12.8

(6.5.1)

where γ(r) is a random variable with γ(r) ∼ U(0, 1), where U is a uniform dis-

tribution. For the results displayed in Fig. 6.3, we set R11 = R22 = 1 and the

interaction range between cancer cells and healthy cells is R12/R11 = 0.9 such that

R12 <
1
2
(R11 + R22). The top four plots in Fig. 6.3, are the density profile of the

cancer cells minus the density of the healthy cells, at times (t= 0.1, 1.1, 6 and 15),

it is clear that the total density of cancer cells increases with time and we can see
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6.5. Results for cancer invading healthy tissue

the peaks (i.e. cells) grow, then split and then move into the area occupied by the

healthy cells. As a result, the healthy cells start to subsequently die. By the time

t = 6, the region occupied by the cancer cells has significantly increased and the

area occupied by the healthy cells has shrunk. Note the hexagonal pattern due to

packing, which is retained as the size of the region occupied by cancer cells grows.

In the bottom of Fig. 6.3, we see that the average density of the cancer cells

increases with time while the average density of the healthy cells decreases with

time. However, this decrease is not monotonic; there are oscillations with three

clear maxima. These oscillations correspond to the death of the healthy cells layer

by layer and short periods of recovery to occupy the newly available space whilst

simultaneously being replaced by the multiplying cancer cells. Finally, after t ≈ 7

the density of the healthy cells decreases to zero monotonically.

In a second example displayed in Fig. 6.4 we set R11 =1 and increase the radii

of the healthy cells to R22/R11=1.2, and also set R12/R11=1.1 such that R12 =

1
2
(R11 + R22). All the rest of the parameters remain the same as in Fig. 6.3. In

this example we see different behaviour for both types of cells. The cancer cells

do not grow row by row as in the previous example in Fig 6.3. We see instead

the formation of individual cancer cells ahead of the main front. We also observe

some formation of cancer cells with the region still occupied by healthy cells, see for

example the profile for t=9 in Fig. 6.4. Beyond t=13, the number of cancer cells

remains constant. At the same time the number of healthy cells generally decreases

over time. However, this decrease is once again not monotonic. For example, we see

an increase in the average density at t ≈ 10. Ultimately the average density of the

healthy cells decreases and tends to zero (there remaining no healthy cells at all) as
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Figure 6.3: Top four panels: Plots of ρ1 − ρ2, the density profile of the cancer cells
minus the density of the healthy cells, at times t = 0.1, 1.1, 6 and 15, when the initial
conditions are defined in Eq. (6.5.1).The nutrient uptake rates λ̃n1 = 1 and λ̃n2 = 1,
the population growth constants c1 = 0.5 and c2 = 0.5 and the threshold nutrient
concentration for healthy cells α = 2. The nutrient source is homogeneous with
f(r)=1 and S̃n = 8. The area of the domain is 25.6×25.6 and ∆x = ∆y = 0.1. The
cell-cell pair interaction potential parameters are βε11 = 1, βε12 = 1.5, βε22 = 1,
R11 = R22 = 1 and R21 = 0.9. Bottom: the corresponding average cell density, [see
Eq. (5.5.14)] and the average nutrient density [see Eq. (5.5.15)].
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Figure 6.4: Snapshots of (ρ1−ρ2) at time t = 1.1, 5.8, 9 and 19.6. All the parameters
here are the same as those in Fig. 6.3, except here the cross interaction pair potential
radius is R12 = 1.1 and R22 = 1.2.
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shown in the Fig. 6.4.

In a third example displayed in Fig. 6.5 we set R11 = R22 = 1, and also set

R12/R11=1.1 such that R12 >
1
2
(R11 + R22). All the rest of the parameters remain

the same as in Fig. 6.3. In this example we see different a behaviour for both types

of cells. The cancer cells penetrate in between the healthy cells, see for example

the profile at t=5.8 in Fig. 6.5, we can see the new cancer cell layer that are being

formed. This layer of cancer cell was formed in the middle of the healthy cells area,

starts to form a coil-like shape as it seems that there is another melting state is

taking place and at the same time the cancer cells continue to divide up and the

number of healthy cells generally decrease over time. This decrease in this case is

also not monotonic and the average densities for this case is similar to example 2 in

Fig 6.4 more than example 1 in Fig. 6.3 because the average density of the healthy

cells density has local maximum at t ≈ 4, as shown in Fig. 6.5.

6.5.1.2 Diagonal domain case

In Fig. 6.6 we present results for the same system as in Fig. 6.3, except we change

the initial conditions to

ρ∗1(r, 0) =


6 + γ(r) x ≤ y

0 x > y

and ρ∗2(r, 0) =


0 x ≤ y

6 + γ(r) x > y

(6.5.2)

where γ(r) is a random variable as before. This corresponds to two triangular do-

mains, with periodic boundary conditions. Given the hexagonal crystal like ordering

of the density peaks, this allows us to locate the interface between the two cell types
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Figure 6.5: Snapshots of (ρ1 − ρ2) at the times t = 1.1, 5.8, 9 and 17.7. All the
parameters here are the same as those in Fig. 6.3, except here the cross interaction
pair potential radius is R12 = 1.1.
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Figure 6.6: Top four panels: Plots of ρ1 − ρ2, the density profile of the cancer
cells minus the density of the healthy cells, at times t = 0.1, 4, 7 and 15.5, All the
parameters here are the same as those in Fig. 6.3, except here the initial conditions
are defined in Eq. (6.5.2).
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Figure 6.7: Snapshots of (ρ1−ρ2) at the times t = 1, 4, 6 and 20. All the parameters
here are the same as those in Fig. 6.6, except here the cross interaction pair potential
radius is R12 = 1.1 and R22 = 1.2.

109



6.5. Results for cancer invading healthy tissue

at a different orientation to the lattice plane.

In Fig. 6.6, we set R11 = R22 = 1 and the interaction range between cancer cells

and healthy cells is R12/R11 = 0.9 such that R12 <
1
2
(R11 + R22), the four plots in

the top are are the density profile of the cancer cells minus the density of the healthy

cells at a series of different times (t= 1, 4, 7 and 15.5). In bottom of Fig. 6.6 we

display the corresponding plots of the average densities over time. Comparing with

Figs. 6.3, we see that the results have some similarities, but there are also significant

differences. In particular the average density of the healthy cells has less prominent

oscillations. Recall that these oscillations correspond to the death of the healthy

cells layer by layer.

In Fig. 6.7 we present results using the same parameters as in Fig. 6.4, except

we change to the diagonal initial conditions in Eq. (6.5.2). The results in top of the

Fig. 6.7 show density profiles for a series of different times t =1, 4, 6 and 20 . The

corresponding average densities over time are shown in bottom of the Fig. 6.7. The

total density of the cancer cells increases with the time whilst the total density of

the healthy cells decreases. However, the decrease is not monotonic, as can be seen

Fig. 6.7 which exhibits a single peak at t ≈ 10.7.

In Fig. 6.8 we present results for system same as in Fig. 6.5, except we change

to the diagonal initial conditions in Eq. (6.5.2). The results in the top of the Fig.

6.8 show density profiles for a series of different times t =1.1, 4.6, 6.0 and 12.8. The

corresponding average densities over time are shown in bottom of the Fig. 6.8. The

total density of the cancer cells increases with the time whilst the total density of

the healthy cells decreases, although the decrease in Fig. 6.8 is not monotonic and

similar to the example in Fig 6.6 rather than example in Fig. 6.7. The interesting

aspect that we observe in Fig. 6.8 when comparing with Fig. 6.5 is the degree to
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Figure 6.8: Snapshots of (ρ1 − ρ2) at the times t = 1.1, 4.6, 6 and 12.8. All the
parameters here are the same as those in Fig. 6.6, except here the cross interaction
pair potential radius is R12 = 1.1.
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which the cancer cells penetrate into the healthy tissue, forming in the midst of

region of healthy cells.

6.5.1.3 Initial small circular cancer case

The figures 6.9–6.11 we display results for the evolution over time starting from the

initial condition

ρ1(r, 0) =


6 + γ(r) (x− 12.8)2 + (y − 12.8)2 ≤ 62

0 (x− 12.8)2 + (y − 12.8)2 > 62,

(6.5.3)

ρ2(r, 0) =


0 (x− 12.8)2 + (y − 12.8)2 ≤ 62

6 + γ(r) (x− 12.8)2 + (y − 12.8)2 > 62

(6.5.4)

where γ(r) is a random variable drawn from a uniform distribution on the interval

(0, 1) and n(r, 0) = 0.5. This initial condition corresponds to a small circular cancer

of radius 6 in the middle of healthy cells. Figs 6.9–6.11 show simulations with

R12 = 0.9, 1, 1.1, respectively, with all other parameters fixed as in Fig. 6.3, noting

that R11 = R22 = 1. In the case of R12 =0.9, the two cell types can tolerate

being closer to each other thereby promoting mixing behaviour; this despite the

repulsive strength across types, βε12 = 1.5, being stronger than that between them

βε11 = βε22= 1. For R12= 1.1 we expect more demixing type behaviour.

We see in Fig. 6.9 that although within the domains where the different cell

species are initiated – see Eqs. (6.5.3) and (6.5.4) – the densities are uniform, i.e.

liquid–like, rather than a “crystalline” state with density peaks, the peaks corre-

sponding to the locations of the cells rapidly form and are already present by the
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Figure 6.9: Top four panels: Snapshots of (ρ1− ρ2), the density profile of the cancer
cells minus that of the healthy cells, at the times t = 1.1, 7, 8.5 and 20 evolving from
the initial conditions defined in Eqs. (6.5.3) and (6.5.4). The system parameters are
λ̃n1 = λ̃n2 = 1, D̃c = D̃h = 1, c1 = c2 = 0.5 and α = 2. The nutrient source is
homogeneous with f(r) = 1 and S̃n = 9. The area of the domain is 25.6× 25.6 and
∆x = ∆y = 0.1. The parameters in the pair interaction potentials between the cells
are βε11 = 1, βε12 = 1.5, βε11 = 1, R11 = R22 = 1 and R12 = 0.9. In the bottom left
panel are plotted the corresponding average cell densities [see Eq. (5.5.14)] and the
average nutrient density [see Eq. (5.5.15)]. In the bottom right panel we plot the
trajectory of the time evolution in the (ρ, φ) plane. Note that the red cross points
from left to right on this trajectory correspond to the integer times t = 1, 2, . . . . We
also plot the linear stability threshold for this system. When the trajectory dips
below this line, the system temporarily “melts”.
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time t = 1.1. However, this sudden initial growth leads to a drop in the nutrient

level, as can be seen at t ≈ 6 in the bottom left panel of Fig. 6.9. The drop in

nutrient level then leads to a drop in the overall number of healthy cells, which leads

to the “crystal” melting temporarily, which corresponds to the cells being distributed

in disordered liquid-like configurations; biologically, this melting phenomena can be

viewed as a temporary state of flux, whereby cells are moving around relatively

rapidly and the densities shown are the average density distribution of the cell cen-

tres. The nutrient level then recovers and the system “refreezes” and over time the

cancer cells penetrate the healthy tissue and eventually the healthy cells all die out.

The temporary “melting” can be understood if one plots the trajectory of the sys-

tem in the total density versus concentration (ρ, φ) plane, in addition to plotting

the threshold for the system to be linearly unstable, given by Eq. (6.4.14). This is

displayed in the bottom right panel of Fig. 6.9. Recall that above the stability line

the system is linearly unstable and forms peaks. We see that when the trajectory

dips below this line is when the system temporarily “melts”.

In the Fig. 6.10 we plot results for the case when all the model parameters are

the same as those in the previous case (that displayed in Fig. 6.9), except now the

radius in the cross interaction pair potential R12 = 1, which is slightly larger (for

the results in Fig. 6.9 we have R12 = 0.9). In Fig. 6.10 we plot (ρ1 − ρ2) at the

times t=1.1, 6.5, 8.5 and 20. As before, we see that the total density of the cancer

cells increases with time and the healthy cells retreat from the centre. Finally all

the healthy cells die by t = 20. The consequence of the increased value of R12 is

that there is now a tendency for the cancer cells to penetrate into layers beyond

the initial interfacial layer of healthy cells, and so form alternating layers of healthy

and cancerous cells – see e.g. the plot for the time t = 6.5. The averages densities
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Figure 6.10: Snapshots of (ρ1 − ρ2) at the times t = 1.1, 6.5, 8.5 and 20. All the
parameters here are the same as those in Fig. 6.9, except here the cross interaction
pair potential radius is R12 = 1, which is slightly larger.
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over time are shown in the bottom left panel of Fig. 6.10 and in the bottom right

end is the trajectory in the (ρ, φ) plane and also the corresponding linear stability

threshold line.

In Fig. 6.11 we present results for an even larger value of the cross interaction

radius, R12 = 1.1. Comparing with Figs. 6.9 and 6.10, we see that the effect of

this increase is to further increase the tendency of the cancer cells to penetrate into

the healthy tissue (metastasis) and in this case forming roughly circular clumps of

cancer cells ahead of the main tumour, rather than layers.

The dynamics shown in each of Figs. 6.9 and 6.10 reflects metastasis. Smaller

cross species interaction range, R12, lead to a disordered infiltration of healthy tissue

by individual tumour cells, which is more ordered for R12 = 1. For the larger

R12, tumour cells appears to infiltrate healthy tissue as small clusters. In each

case, much of the initial mixing of cell types occurs during the transient melting

phase, the timescale for which decreases on increasing R12 (as can be seen from the

linear stability threshold diagrams); we note, however, the central core structure of

tumour regions is maintained during the melting phase. The different manner of

infiltration is an interesting consequence of the modelling assumptions, but it would

be experimentally challenging to discern which of these patterns, if any, are relevant

biologically.

To avoid the system exhibiting the temporary “melting” phenomenon, we increase

the radius in the initial conditions (6.5.3) and (6.5.4). We adjusted the radius of the

initially cancerous area such that the size of this region becomes equal to the size

of the healthy area. In Fig 6.12, we plot (ρ1 − ρ2) for three cases, the first column

demonstrate the case when R12 = 0.9
[
R12 <

1
2
(R11 + R22)

]
at times t = 1, 5, 8 and

15, The second one represent the case when R12 = 1
[
R12 = 1

2
(R11 +R22)

]
at times
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Figure 6.11: Snapshots of (ρ1 − ρ2) at the times t = 1.1, 5.5, 8.5 and 20. All the
parameters here are the same as those in Figs. 6.9 and 6.10, except here the cross
interaction pair potential radius is even larger, R12 = 1.1.
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t = 1, 7.5, 9.5 and 16. The last column illustrates the situation when R12 = 1.1[
R12 >

1
2
(R11 + R22)

]
at times t = 1, 5.5, 8 and 19. From the figure, we can see

the time at which a new row of cancer cells penetrates with the healthy tissue is at

times t=5.0, 7.5 and 5.5, respectively. The transition stage (between penetration and

the final steady state) is similar in all cases. However, for R12 <
1
2
(R11 + R22), the

healthy area is the largest compared to the other two. The time at which the system

forms the final steady state for all the three cases is t ≈ 15, 16 and 19 respectively.

Although the averages densities over time of the cancer cells and nutrient are similar

for all cases, the average density over time of the healthy cells is somewhat different,

as shown in Fig. 6.13.

6.5.2 Results with inhomogeneous nutrient sources

In this section we discuss some results showing the competition between healthy and

cancer cells, obtained by solving numerically the system Eqs. (6.2.3), (6.2.7) and

(6.2.11), using a nutrient source located along the vertical mid–line of the system,

see Eq. (4.4.5). These results are for the population growth constants c1 = c2 = 0.5

and the threshold nutrient concentration for healthy cells α = 2. We fix the various

cell-cell interaction parameters to be βε11 = βε22 = 1, βε12 = 1.5 (so that density

peaks of the two different cell types do not overlap), R11 = R22 = 1 and R12 = 0.9.

The nutrient uptake rate for cancer cells λ̃n1 = 1 and for healthy cells λ̃n2 = 1. The

area of the domain in which the model is solved is 25.6× 25.6 and ∆x = ∆y = 0.1.

The nutrient source is non uniform, with f(r) = e(−(x−L/2)2) and S̃n = 60. The

diffusion coefficients for both cell species are equal, D̃c = D̃h = 1.

Notice that the value of S̃n with inhomogeneous nutrient is greater than the value
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6.5. Results for cancer invading healthy tissue

Figure 6.12: Density profile of (ρ1−ρ2) when R12 <
1
2
(R11 +R22) at times t = 1, 5, 8

and 15 (left), (ρ1 − ρ2) when R12 = 1
2
(R11 + R22) at times t = 1, 7.5, 9.5 and 16

(middle) and (ρ1 − ρ2) when R12 >
1
2
(R11 + R22) at times t = 1, 5.5, 8 and 19 when

the initial conditions are defined in Eqs. (6.5.3) and (6.5.4). The system parameters
are λ̃n1 = λ̃n2 = 1, D̃c = D̃h = 1, c1 = c2 = 0.5 and α = 2. The nutrient source
is homogeneous with f(r) = 1 and S̃n = 9. The area of the domain is 25.6 × 25.6
and ∆x = ∆y = 0.1. The pair potential between cells are βε11 = 1, βε12 = 1.5 and
βε11 = 1, R11= R22=1.
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Figure 6.13: The average cell density, [see Eq.(5.5.14)] and the average nutri-
ent density [see Eq.(5.5.15)], corresponding to the results in Fig. 6.12. When
R12<1

2
(R11 +R22) (above), R12=1

2
(R11 +R22) (middle) and when R12>1

2
(R11 +R22)

(bottom).
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6.5. Results for cancer invading healthy tissue

of S̃n used with homogeneous nutrient which is described in Sec. 6.5.1 because we

want the total flux of nutrient into the system to be the same in all cases i.e. we

choose Sn so that the quantity Sn
∫

Ω
f(r)dr is the same in all cases. Note that in

particular for the two cases we consider here

∫
Ω

f(r)dr =


L2, f(r) = 1

L3/2
√

π
2
, f(r) = e(−(x−L/2)2),

(6.5.5)

which leads to Sn2 = Sn1L
1/2
√

2
π
where L is the domain width.

In contrast to the results in previous sections, which gave similar behaviour when

we used different initial conditions, the time evolution profile of the cells (healthy

or cancer) is shown to be different depending on the initial conditions.

In our first example, we use the initial conditions given in Eqs. (6.5.3) and (6.5.4)

[see Fig. 6.14]. The cancer cells are located in a circular area at the four corners of

the domain (recall the system has periodic boundary conditions) and the remaining

space is occupied by healthy cells. Since the nutrients are only in the mid vertical

line of the area, the (mostly healthy) cells that are in the middle are provided with

the nutrients needed to grow and reproduce whereas all cells on left and right edges,

have no nutrients resulting in the death of these cells, over the period t = 2–3.

At t=3, a few surviving cancer cells start to appear in the middle, surrounded by

healthy cells. This is due to a low level of penetration of cancer cells in this region. In

time, these cancer cells divide and grow, emerging at various parts along the region

where there is a good source of nutrients. As both the cancer and healthy cells are

splitting and increasing in number, the new cells formed push the cells around then

forcing them to the side where, as a result of a lack of nutrients, they die. As time
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Figure 6.14: Top six panels: Plots of ρ1 − ρ2, the density profile of the cancer cells
minus the density of the healthy cells, at times t = 1, 2, 3, 7, 15 and 20, where the
initial conditions are defined in Eq. (6.5.3). The nutrient uptake rates λ̃n1 = 1 and
λ̃n2 = 1, the population growth constants c1 = 0.5 and c2 = 0.5 and the threshold
nutrient concentration for healthy cells α = 2. The nutrient source f(r) is centred at
12.8 as given by Eq.(4.4.5) with S̃n = 60. The area of the domain is 25.6× 25.6 and
∆x = ∆y = 0.1. The cell-cell pair interaction potential parameters are βε11 = 1,
βε12 = 1.5, βε22 = 1, R11 = R22 = 1 and R21 = 0.9. Bottom: the corresponding
average cell density, [see Eq. (5.5.14)] and the average nutrient density [see Eq.
(5.5.15)].
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6.5. Results for cancer invading healthy tissue

progresses, the cancer cells displace the healthy cells. This is almost completed by t

= 15, and finally, at t=20 all healthy cells are dead and the area is filled with cancer

cells which carry on dividing and producing new cancer cells. The averages densities

of the cancer cells, the nutrient and the healthy cells is shown in the bottom of Fig.

6.14.

As a second example we use the initial conditions given in Eqs. (6.5.2) [see Fig.

6.15]. As before, cells of both types die out at the edges of the domain due to lack

of nutrient. However, in this case there is already a substantial population of cancer

cells on the centre line. This leads to a relatively rapid collapse of the healthy cell

population as the cancer cells invade this space. Healthy cells have vanished by

t=10. The averages densities for cancer cells, nutrient and healthy cells is shown in

the bottom end of Fig. 6.15, showing clearly the rapid decline of healthy cells in

comparison to that shown in Fig. 6.14.

In the third example we use the initial conditions given in Eqs. (6.5.1) [see

Fig. 6.16]. Three important points in this model are different from the other two

examples. The first point is that there is no penetration of the cancer cells into

the healthy region. The second point is that the healthy cells die due to lack of

nutrient rather than cancer cell invasion. The final crucial point in this example is

that the system reaches the steady state very quickly compared with the other two

examples, such that by t=5, all the healthy cells have died out, as seen in Fig. 6.16.

The averages densities for cancer cells, nutrient and healthy cells is shown in bottom

of Fig. 6.16.
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Figure 6.15: Top six panels: Plots of ρ1 − ρ2, the density profile of the cancer cells
minus the density of the healthy cells, at times t = 1, 1.5, 4, 6, 10 and 11.8. All the
parameters here are the same as those in Fig. 6.14, except here the initial conditions
are defined in Eq. (6.5.2)
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Figure 6.16: Top six panels: Plots of ρ1 − ρ2, the density profile of the cancer cells
minus the density of the healthy cells, at times t = 1, 2, 2.5, 3, 5 and 10. All the
parameters here are the same as those in Fig. 6.14, except here the initial conditions
are defined in Eq. (6.5.1)
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6.5. Results for cancer invading healthy tissue

6.5.3 A few cancer cells dispersed throughout healthy tissue

In order to model the growth and spread of a tumour within healthy tissue we con-

sider a case where we first initiate the system with one half containing predominantly

healthy tissue, the other half containing cancerous tissue (with uniform densities in

each half) and a uniform nutrient density. As the system evolves, peaks form in

the two cell density profiles and over time the cancer cells displace the healthy cells

until the total average density of healthy cells is small. We then stop the simula-

tion and swap the labels on the two density profiles, so that the (more realistic)

initial condition for the following simulation consists of an array of peaks (cells) in

the healthy cell density profile and a low density of cancer cells; i.e. for the initial

conditions we define ρ1(r, t = 0) = ρ‡2(r, t = 20) and ρ2(r, t = 0) = ρ‡1(r, t = 20),

where ρ‡1(r, t = 20) and ρ‡2(r, t = 20) are the final profiles at time t = 20 from the

preliminary simulation.

Snapshots from the subsequent evolution are displayed in Fig. 6.17. These results

are for the population growth constants c1 = c2 = 0.5 and the threshold nutrient

concentration for healthy cells α = 2. We fix the various cell-cell interaction param-

eters to be βε11 = βε22 = 1, βε12 = 1.5 (so that density peaks of the two different

cell types do not overlap), R11 = 1, R22 = 1.2 and R12 = 1.1. The nutrient uptake

rate for cancer cells λ̃n1 = 1 and for healthy cells λ̃n2 = 1. The area of the domain

in which the model is solved is 25.6× 25.6 and the nutrient source is uniform, with

f(r) = 1 and S̃n = 9. The diffusion coefficients for both cell species are equal,

D̃c = D̃h = 1.

In Fig. 6.17 we plot the difference between the density profiles, (ρ1−ρ2). Positive

values in this quantity correspond to regions where the cancer cells are present (where
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Figure 6.17: Snapshots of (ρ1−ρ2) at the times t = 0.1, 16, 26 and 34.2. The nutrient
uptake rates λ̃n1=1 and λ̃n2=1, the population growth constants c1 = c2 = 0.5 and
the threshold nutrient concentration for healthy cells α = 2. The nutrient source
is homogeneous, with f(r) = 1 and S̃n = 9. The area of the domain is 25.6 × 25.6
and ∆x = ∆y = 0.1. The cell-cell pair interaction potential parameters are βε11=1,
βε12=1.5, βε11=1, R11 = 1, R12 = 1.1 and R22=1.2. Bottom: the corresponding
average cell density, [see Eq. (5.5.14)] and the average nutrient density [see Eq.
(5.5.15)].
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6.5. Results for cancer invading healthy tissue

the peaks are purple-red, with yellow maxima) and negative values where the healthy

cells are present (where the peaks are green). In regions that are grey, both densities

are low. The Fig. 6.17 profiles are snapshots at the times t=12.2, 16, 26 and 34.2.

At t=12.2 the first cancer cell becomes visible. As time increases, the cancer cells

proliferate to form a vertical strip of cancerous tissue, shown in the top right panel.

The fact that it is a vertical strip is due to the original initial conditions. By the

time t = 26 the cancer cells have invaded two thirds of the healthy area and by

t = 34.2 they cover the entire domain, having displaced all the healthy cells.

In the bottom panel of Fig. 6.17, we plot the average densities of the two species

of cells and also of the nutrients, calculated using the two component generalisation

of Eq. (5.5.14) and Eq. (5.5.15), respectively. We see that over time the average

nutrient density is roughly constant, but the density of the healthy cells decreases

over time, whilst the average density of the cancer cells increases. Interestingly,

the average density of the healthy cells does not decrease monotonically; there are

instances of brief increase, where healthy cells momentarily find gaps around the

evolving cancer into which they try and grow. However, the overall trend is for the

healthy cells to be displaced and die out.

Repeating the simulations corresponding to the results in Fig. 6.17 but using

R12 = 0.9, such that R12 <
1
2
(R11 + R22) [see Fig. 6.18], R12 = 1, such that R12 =

1
2
(R11 + R22) [see Fig. 6.19], and also R12 = 1.1, such that R12 >

1
2
(R11 + R22) [see

Fig. 6.20]. Table 6.5 shows a summary of the information about the figures which

include a few cancer cells dispersed throughout healthy tissue with different values

of R12.
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Figure 6.18: Top four panels: plots of (ρ1−ρ2), the density profile of the cancer cells
minus the density of the healthy cells, at times t = 0.1, 13.5, 17 and 35.5. All the
parameters here are the same as those in Fig. 6.17, except here the cross interaction
pair potential radius is R12 = 0.9 and R22 = 1.
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Figure 6.19: Snapshots of (ρ1 − ρ2) at the times t = 0.1, 15, 17.5 and 36.6. All the
parameters here are the same as those in Fig. 6.18, except here the cross interaction
pair potential radius is R12 = 1, which is slightly larger.
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Figure 6.20: Snapshots of (ρ1 − ρ2) at the times t = 0.1, 15, 25 and 34.2. All the
parameters here are the same as those in Fig. 6.18, except here the cross interaction
pair potential radius is R12 = 1.1.
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6.6. The effect of varying βε12 on the results

Table 6.5: Dimensionless parameter values of the different examples

Density of cells R11 R12 R22 βε12 c1 c2 D̃c D̃h S̃n λ̃n1 λ̃n2

Fig. 6.17 1 1.1 1.2 1.5 0.5 0.5 1 1 9 1 1
Fig. 6.18 1 0.9 1 1.5 0.5 0.5 1 1 9 1 1
Fig. 6.19 1 1 1 1.5 0.5 0.5 1 1 9 1 1
Fig. 6.20 1 1.1 1 1.5 0.5 0.5 1 1 9 1 1

6.6 The effect of varying βε12 on the results

Guided by the results in Fig. 6.1, we now investigate the effect on the cancer devel-

opment of varying the cross-species repulsion strength, βε12. In Fig. 6.21 we display

results for three different values, βε12 = 1, 1.75 and 2. The speed of penetration of

the cancer cells into the healthy tissue increases as we increase the value βε12. For

the results in the left hand column, which are for βε12 = 1, there is no penetration of

cancer cells into the healthy tissue. For βε12 = 1.75 (middle column) the penetration

starts at t ≈ 5.5 whereas it begins at t ≈ 4.5 for βε12 = 2 (right hand column).

In Fig. 6.22 we plot the average densities of the cells and the nutrient as a function

of time and also the trajectory of the system in the (ρ, φ) plane, corresponding to

the results displayed in Fig. 6.21. This allows us to see that the increased degree of

“melting” at times t ∼ O(1) for smaller βε12 (particularly in the case with βε12 = 1),

is due to the fact that the linear stability threshold line is at higher total densities

and is closer to the initial state. This means that the system spends a greater amount

of time below the linear stability threshold line as it evolves along its trajectory in

the (ρ, φ) plane. We also see from the plots of the average cell densities over time

that the fluctuations over time in the density of the healthy cells increases with

increasing βε12. In the (ρ, φ) plane, these fluctuations manifest as a meandering

trajectory with zig-zag-like portions.
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6.6. The effect of varying βε12 on the results

Table 6.6: The effect of varying βε12 and R12 on the penetration. See Figures 6.9,
6.10, 6.11, 6.21, 6.23 and 6.25 .

R12 <
1
2
(R11 +R22) R12 = 1

2
(R11 +R22) R12 >

1
2
(R11 +R22)

βε12=1.00 No penetration No penetration No penetration
βε12=1.50 penetrate at t ' 7.0 penetrate at t '6.5 penetrate at t '5.5
βε12=1.75 penetrate at t ' 5.5 penetrate at t '4.5 penetrate at t '3.5
βε12=2.00 penetrate at t ' 4.2 penetrate at t '3.5 penetrate at t '3.0

Repeating the simulations corresponding to the results in Figs. 6.21 and 6.22,

but using R12 = 1.1, such that R12 >
1
2
(R11 + R22) [see Figs. 6.23 and 6.24], and

also R12 = 1, such that R12 = 1
2
(R11 + R22) [see Figs. 6.25 and 6.26], we find that

the results are qualitatively similar, but the melting phenomenon for βε12 = 1 is

prolonged for the smaller value of R12 and shortened for the larger value of R12.

Also, the time at which the cancer cells penetrate into the healthy tissue first, is

earlier for larger R12.

Table 6.6 shows the relationship among the βε12, R12 and the penetration.
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6.6. The effect of varying βε12 on the results

Figure 6.21: Snapshots of (ρ1− ρ2), for various βε12 = 1 (left), βε12 = 1.75 (middle)
and βε12 = 2 (right) and various different times, with time increasing from top to
bottom, as indicated above. The other pair potential parameters are βε11 = βε22 =
1, R11 = R22 = 1 and R12 = 0.9. All the other model parameters are same as those
in Fig. 6.17.
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Figure 6.22: On the left are plots of the average cell densities [see Eq. (5.5.14)]
and the average nutrient density [see Eq. (5.5.15)] and on the right plots of the
trajectory in the (ρ, φ) plane with the corresponding linear stability threshold line,
corresponding to the results in Fig. 6.21. These are for varying βε12 = 1 (top),
βε12 = 1.75 (middle) and βε12 = 2 (bottom).
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Figure 6.23: Snapshots of (ρ1 − ρ2) at different times . All the parameters here are
the same as those in Fig. 6.21, except here the cross interaction pair potential radius
is R12 = 1.
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Figure 6.24: On the left are plots of the average cell densities [see Eq. (5.5.14)]
and the average nutrient density [see Eq. (5.5.15)] and on the right plots of the
trajectory in the (ρ, φ) plane with the corresponding linear stability threshold line,
corresponding to the results in Fig. 6.23. These are for varying βε12 = 1 (top),
βε12 = 1.75 (middle) and βε12 = 2 (bottom).
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Figure 6.25: Snapshots of (ρ1 − ρ2) at different times . All the parameters here are
the same as those in Fig. 6.21, except here the cross interaction pair potential radius
is R12=1.1
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Figure 6.26: On the left are plots of the average cell densities [see Eq. (5.5.14)]
and the average nutrient density [see Eq. (5.5.15)] and on the right plots of the
trajectory in the (ρ, φ) plane with the corresponding linear stability threshold line,
corresponding to the results in Fig. 6.25. These are for varying βε12 = 1 (top),
βε12 = 1.75 (middle) and βε12 = 2 (bottom).
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CHAPTER 7

MODEL INCLUDING HAPTOTAXIS

7.1 Introduction

In this chapter we extend the model of the competition between cancer cells and

healthy cells to include taxis which refers to several mechanisms through which

cells can move in the direction corresponding to increasing or decreasing gradient of

particular stimuli, such as the extracellular matrix (ECM). We present a preliminary

analysis of a model to describe the haptotaxis process of cell movement in response

to gradient in an extracellular matrix (ECM), based on the model proposed by

Lowengrub [103]. The aim is to get an initial understanding of how other potentially

destabilising processes interact with those discussed in previous chapters.
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7.2. Mathematical model

7.2 Mathematical model

The model system of integro-partial differential equations for the time evolution of

the density profile of the cancer cells, the healthy cells, extracellular matrix (ECM)

and nutrient is given by the following generalisation of the system of Eqs. (6.1.1)

∂ρ1(r, t)
∂t

= Γ1∇ ·
[
ρ1(r, t)∇

(
δF [ρ1(r, t), ρ2(r, t)]

δρ1(r, t)

)]
+ [λm1n(r, t)− λd1]ρ1(r, t),

∂ρ2(r, t)
∂t

= Γ2∇ ·
[
ρ2(r, t)∇

(
δF [ρ1(r, t), ρ2(r, t)]

δρ2(r, t)

)]
+ [λm2n(r, t)− λd2]ρ2(r, t),

∂E(r, t)
∂t

= −λE1(E(r, t)− E1)ρ1(r, t)− λE2(E(r, t)− E2)ρ2(r, t),

∂n(r, t)
∂t

= Dn∇2n(r, t) + Snf(r)− λn1ρ1(r, t)n(r, t))− λn2ρ2(r, t)n(r, t). (7.2.1)

The variables and parameters in the above system and their descriptions are sum-

marised in Table 7.1. For such a system we may approximate the intrinsic Helmholtz

free energy of the system as [134,153],

F [{ρi(r, t)}] = kBT
2∑
i=1

∫
drρi(r, t)

(
ln
(
Λ2
i ρi(r, t)

)
− 1

)

+
1

2

2∑
i,j=1

∫
dr
∫
dr′ρi(r, t)Vij(|r− r′|)ρj(r′, t)

−χc
∫
drρ1(r, t)E(r, t)− χh

∫
drρ2(r, t)E(r, t). (7.2.2)

The last two terms are key for modelling the haptotaxis; these incorporate the effect

of the cells moving in the direction of gradients in E(r, t). For this preliminary work,
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7.2. Mathematical model

we simplify the interaction potential by approximating as follows

Vij(|r− r′|) = δ(r− r′)(αij − γij∇2). (7.2.3)

This results in the system being a PDE model, noting that

∫
dr′δ(r− r′) = 1. (7.2.4)

The first variation of the free energy is

δF
δρi(r, t)

= kBT ln(Λ2
i ρi(r, t)) +

2∑
j=1

(αij − γij∇2)ρj(r, t)− χiE(r, t), (7.2.5)

where χi represent the chemotaxis coefficients relevant to cancer and healthy cells

respectively. Taking the gradient of Eq.(7.2.5) and substituting the result into

Eq.(7.2.1), we obtain

∂ρ1(r, t)
∂t

= ∇ ·
[
Γ1ρ1(r, t)∇

(
kBT ln(Λ2

1ρ1(r, t)) + α11ρ1(r, t) + α12ρ2(r, t)

−γ11∇2ρ1(r, t)− γ12∇2ρ2(r, t)
)]
− χc∇ ·

[
ρ1(r, t)∇E(r, t))

]
+
[
λm1n(r, t)− λd1

]
ρ1(r, t), (7.2.6)

∂ρ2(r, t)
∂t

= ∇ ·
[
Γ2ρ2(r, t)∇

(
kBT ln(Λ2

2ρ2(r, t)) + α21ρ1(r, t) + α22ρ2(r, t)

−γ21∇2ρ1(r, t)− γ22∇2ρ2(r, t)
)]
− χh∇ ·

[
ρ2(r, t)∇E(r, t))

]
+
[
λm2n(r, t)− λd2

]
ρ2(r, t), (7.2.7)

∂E(r, t)
∂t

= − λE1(E(r, t)− E1)ρ1(r, t)− λE2(E(r, t)− E2)ρ2(r, t). (7.2.8)
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∂n(r, t)
∂t

= Dn∇2n(r, t)+Snf(r)−λn1ρ1(r, t)n(r, t))−λn2ρ2(r, t)n(r, t). (7.2.9)

The above PDE model is a simplified further generalisation of the model from

the previous chapters to include the coupling to the local concentration of ECM. The

variables and parameters in the above system and their descriptions are summarised

in Table 7.1.

7.3 Linear stability analysis for the system

The governing equations for the time evolution of the density profile of cancer cells,

healthy cells and the ECM are given by Eqs. (7.2.6), (7.2.7) and (7.2.8). We first

consider the stability properties of a uniform state with densities ρo1, ρo2 and Eo

(defined later) and we consider small density fluctuations about the bulk values, of

the form

ρ1(r, t) = ρo1 + δρ(r, t)

= ρo1 + ξei(k.r)+ωt, (7.3.1)

ρ2(r, t) = ρo2 + ζ1δρ(r, t)

= ρo2 + ζ1ξe
i(k.r)+ωt, (7.3.2)

and

E(r, t) = Eo + ζ2δρ(r, t)

= Eo + ζ2ξe
i(k.r)+ωt, (7.3.3)
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7.3. Linear stability analysis for the system

Table 7.1: Summary of the variables and parameters in the model given in Eqs.
(7.2.6), (7.2.7) and (7.2.8).

State variables Description
ρ1(r, t) Density of the cancer cells
ρ2(r, t) Density of the healthy cells
E(r, t) Local concentration of ECM
n(r, t) Local concentration of nutrients
N1(t) Total number of cancer cells in the system
N2(t) Total number of healthy cells in the system
ρ̄1(t) Average cancer cell density
ρ̄2(t) Average healthy cell density
n̄(t) Average nutrient density
f(r) Function that defines where in space the nutrient source is located
αij, γij Coefficients of interaction potential
λd1 Cancer cell death rate constant
λd2 Healthy cell death rate constant
λn1 Nutrient uptake rate constant for cancer cells
λn2 Nutrient uptake rate constant for healthy cells
λm1 Nutrient-dependent growth rate constant for cancer cells
λm2 Nutrient-dependent growth rate constantfor healthy cells
χc Chemotaxis coefficient relevant to cancer cells
χh Chemotaxis coefficient relevant to healthy cells
λE1 Net rate of ECM production of cancer cells
λE2 Net rate of ECM production of healthy cells
E1 Saturated ECM value for cancer cells
E2 Saturated ECM value for healthy cells
Dc Cancer cell diffusion coefficient
Dh Healthy cell diffusion coefficient
Γ1 Cancer cell motility coefficient
Γ2 Healthy cell motility coefficient
T Temperature
kB Boltzmann’s constant
ρ0 constant reference density
Dn Nutrient diffusion coefficient
Sn The nutrient source

Λ1,Λ2 Thermal de Broglie wavelengths
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7.3. Linear stability analysis for the system

where ξ is the initial amplitude of the sinusoidal perturbation that has wavenumber

k, ζ1 is the ratio between the amplitude of the modulation in the cancer and healthy

components and ζ2 is the ratio between the amplitude of the modulation in the

cancer and ECM components. The growth/decay rate of this model is given by the

dispersion relation ω = ω(k), where k = |k|. If we substitute Eqs. (7.3.1), (7.3.2)

and (7.3.3) into Eq. (7.2.6), we get

ωδρ(r, t) = −k2δρ(r, t) (7.3.4)

+∇ · [(ρo1 + δρ(r, t))∇ (α11(ρo1 + δρ(r, t)) + α12(ρo2 + ζ1δρ(r, t)))]

−∇ ·
[
(ρo1 + δρ(r, t))∇

(
γ11∇2(ρo1 + δρ(r, t)) + γ12∇2(ρo2 + ζ1δρ(r, t))

)]
−χc∇ · [(ρo1 + δρ(r, t))∇(Eo + ζ2δρ(r, t))] .

As before, when going from Eq. (5.4.4) to Eq. (5.4.8), we obtain

ωδρ(r, t) = −[k2(D1 + ρo1(α11 + α12ζ1 − χcζ2)) + k4(ρo1(γ11 + γ12ζ1))]δρ(r, t)

+O(δρ2), (7.3.5)

Dividing both sides by δρ(r, t) and neglecting terms O(δρ) and higher we get

ω(k) = −[k2(D1 + ρo1(α11 + α12ζ1 − χcζ2)) + k4(ρo1(γ11 + γ12ζ1))]. (7.3.6)

In the same way, if we substitute Eqs. (7.3.1), (7.3.2) and (7.3.3) into Eqs. (7.2.7)

and (7.2.8), we get

ζ1ω(k) = −[k2((D2 + α22ρ
o
2)ζ1 + (α12 − χhζ2)ρo2) + k4(ρo2(γ12 + γ22ζ1))] (7.3.7)
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and

ζ2ω(k) = −λE1(Eo − E1)− λE2(Eo − E2)ζ1 − (λE1ρ
o
1 + λE2ρ

o
2)ζ2. (7.3.8)

From the steady state of Eq. (7.2.8), we get

E = Eo =
λE1ρ

o
1E1 + λE2ρ

o
2E2

λE1ρ
o
1 + λE2ρ

o
2

. (7.3.9)

Substituting Eq. (7.3.9) into Eq. (7.3.8), we obtain

ζ2ω(k) = −λE1λE2ρ
o
2

(
E2 − E1

λE1ρ
o
1 + λE2ρ

o
2

)
− λE1λE2ρ

o
1

(
E1 − E2

λE1ρ
o
1 + λE2ρ

o
2

)
ζ1

−(λE1ρ
o
1 + λE2ρ

o
2)ζ2. (7.3.10)

Eqs. (7.3.6), (7.3.7) and (7.3.10) can be represented in matrix form, allowing for

easier analysis,

ω(k)


1

ζ1

ζ2

 = M


1

ζ1

ζ2

 , (7.3.11)

where

M =


−k2(D1 + ρo1α11)− k4ρo1γ11 −k2ρo1α12 − k4ρo1γ12 k2ρo1χc

−k2ρo2α12 − k4ρo2γ12 −k2(D2 + ρo2α22)− k4ρo2γ22 k2ρo2χh

−λE1λE2ρ
o
2

(
E2−E1

λE1
ρo1+λE2

ρo2

)
−λE1λE2ρ

o
1

(
E1−E2

λE1
ρo1+λE2

ρo2

)
−(λE1ρ

o
1 + λE2ρ

o
2)

 .

(7.3.12)

We can now determine the dispersion relation ω(k) by calculating the eigenvalues

of M. When Re{ω(k)} < 0 for all wave numbers k, the system is linearly stable. If,

however, Re{ω(k)} > 0 for any wave number k, then the uniform density state is
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linearly unstable. The linear stability threshold is therefore associated with |M| = 0

[149,156].

7.3.1 No cell-cell interactions

In case of no cell-cell interactions, the coefficients of interaction potentials

αij = γij = 0 i, j = 1, 2. (7.3.13)

Substituting (7.3.13) into (6.4.8), we get

M0 =


−k2D1 0 k2ρo1χc

0 −k2D2 k2ρo2χh

−λE1λE2ρ
o
2

(
E2−E1

λE1
ρo1+λE2

ρo2

)
−λE1λE2ρ

o
1

(
E1−E2

λE1
ρo1+λE2

ρo2

)
−(λE1ρ

o
1 + λE2ρ

o
2)

 .

(7.3.14)

We can now determine the dispersion relation ω(k) by calculating the eigenvalues of

M0. The eigenvalues are the roots of the characteristic polynomial

|M0 − λI| = 0, (7.3.15)

where I is the identity matrix. The characteristic polynomial in this case take the

form

P (λ) = λ3 + a1λ
2 + a2λ+ a3 = 0, (7.3.16)

where the coefficients ai, i = 1, · · · , 3 are given by

a1 = (D1 +D2), k2 + λE1 ρ
o
1 + λE2 ρ

o
2 (7.3.17)
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a2 =

(
k2

λE1ρ
o
1 + λE2ρ

o
2

)[
D1D2k

2λE1ρ
o
1 +D1D2k

2λE2ρ
o
2 − E1χcλE1λE2ρ

o
1ρ
o
2

+E1χhλE1λE2ρ
o
1ρ
o
2 + E2χcλE1λE2ρ

o
1ρ
o
2 − E2χhλE1λE2ρ

o
1ρ
o
2 +D1λE1

2ρo1
2

+2D1λE1λE2ρ
o
1ρ
o
2 +D1λE2

2ρo2
2 +D2λE1

2ρo1
2 + 2D2λE1λE2ρ

o
1ρ
o
2

+D2λE2

2ρo2
2
]

(7.3.18)

a3 =

(
k4

λE1ρ
o
1 + λE2ρ

o
2

)[
D1E1χhλE1λE2ρ

o
1ρ
o
2 −D1E2χhλE1λE2ρ

o
1ρ
o
2

−D2E1χcλE1λE2ρ
o
1ρ
o
2 +D2E2χcλE1λE2ρ

o
1ρ
o
2

+D1D2λE1

2ρo1
2 + 2D1D2λE1λE2ρ

o
1ρ
o
2 +D1D2λE2

2ρo2
2
]

(7.3.19)

We require conditions on the ai, i = 1, · · · , 3 such that the zeros of P (λ) have

Re{λ} < 0. The necessary and sufficient conditions for this to hold are the Routh–

Hurwitz conditions. The form of these conditions for the cubic equation are [157]

a1 > 0, a3 > 0; a1a2 − a3 > 0. (7.3.20)

According to the Routh–Hurwitz conditions (7.3.20) of stability, a sufficient con-

ditions for instability induced by haptotaxis alone are E1 6= E2 and D1χc 6= D2χh.

7.3.2 Full model

The linear stability threshold is determined by |M| = 0, i.e. by the condition [149,

156]

D(k) ≡ C1k
8 + C2k

6 + C3k
4 = 0, (7.3.21)
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where

C1 = −(λE1ρ
o
1 + λE2ρ

o
2)(γ11γ22 − γ2

12)ρo1ρ
o
2 (7.3.22)

C2 = −
(

1

λE1ρ
o
1 + λE2ρ

o
2

)[
− E1χcγ12λE1λE2ρ

o
1

2ρo2 − E1χcγ22λE1λE2ρ
o
1ρ
o
2

2

+E1χhγ11λE1λE2ρ
o
1

2ρo2 + E1χhγ12λE1λE2ρ
o
1ρ
o
2

2 + E2χcγ12λE1λE2ρ
o
1

2ρo2

+E2χcγ22λE1λE2ρ
o
1ρ
o
2

2 − E2χhγ11λE1λE2ρ
o
1

2ρo2 − E2χhγ12λE1λE2ρ
o
1ρ
o
2

2

+α11γ22λ
2
E1
ρo1

3ρo2 + 2α11γ22λE1λE2ρ
o
1

2ρo2
2 + α11γ22λ

2
E2
ρo1ρ

o
2

3

−2α12γ12λE1

2ρo1
3ρo2 − 4α12γ12λE1λE2ρ

o
1

2ρo2
2 − 2α12γ12λE2

2ρo1ρ
o
2

3

+α22γ11λ
2
E1
ρo1

3ρo2 + 2α22γ11λE1λE2ρ
o
1

2ρo2
2 + α22γ11λE2

2ρo1ρ
o
2

3

+D1γ22λE1

2ρo1
2ρo2 + 2D1γ22λE1λE1ρ

o
1ρ
o
2

2 +D1γ22λE2

2ρo2
3

+D2γ11λE1

2ρo1
3 + 2D2γ11λE1λE2ρ

o
1

2ρo2 +D2γ11λE2

2ρo1ρ
o
1

2
]

(7.3.23)

C3 = −
(

1

λE1ρ
o
1 + λE2ρ

o
2

)[
− E1χcα12λE1λE2ρ

o
1

2ρo2 − E1χcα22λE1λE2ρ
o
1ρ
o
2

2

+E1χhα11λE1λE2ρ
o
1

2ρo2 + E1χhα12λE1λE2ρ
o
1ρ
o
2

2 + E2χcα12λE1λE2ρ
o
1

2ρo2

+E2χcα22λE1λE2ρ
o
1ρ
o
2

2 − E2χhα11λE1λE2ρ
o
1

2ρo2 − E2χhα12λE1λE2ρ
o
1ρ
o
2

2

+α11α22λ
2
E1
ρo1

3ρo2 + 2α11α22λE1λE2ρ
o
1

2ρo2
2 + α11α22λ

2
E2
ρo1ρ

o
2

3

−α2
12λ

2
E1
ρo1

3ρo2 − 2α12
2λE1λE2ρ

o
1

2ρo2
2 − α12

2λE2

2ρo1ρ
o
2

3

+D1E1χhλE1λE2ρ
o
1ρ
o
2 −D1E2χhλE1λE2ρ

o
1ρ
o
2 +D1α22λE1

2ρo1
2ρo2

+2D1α22λE1λE2ρ
o
1ρ
o
2

2 +D1α22λE2

2ρo2
3

−D2E1χcλE1λE2ρ
o
1ρ
o
2 +D2E2χcλE1λE2ρ

o
1ρ
o
2 +D2α11λE1

2ρo1
3

+2D2α11λE1λE2ρ
o
1

2ρo2 +D2α11λE2

2ρo1ρ
o
2

2

+D1D2λE1

2ρo1
2 + 2D1D2λE1λE2ρ

o
1ρ
o
2 +D1D2λE2

2ρo2
2
]

(7.3.24)
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From the coefficients of dispersion relation we conclude that the additional sufficient

condition for instability for the full system is α11α22 − α2
12 6= 0.

In Fig. 7.1 we display the linear stability threshold for different values of the

concentration φ ≡ ρ1/ρ, where ρ ≡ ρ1 + ρ2 is the total density and ρ1, ρ2 are

densities of cancer and healthy cells respectively for varying χc. For state points

above the linear stability threshold line in Fig. 7.1, the system exhibits a separation

of the cells. The instability line is obtained by tracing the locus defined by D(kc) = 0

and D′(kc) = 0, where D(k) is given by Eq. (6.4.14) and kc 6= 0 is the wave number

at the minimum of D(k) [i.e. D(k = kc) = 0] [154]. We see that increasing χc makes

the system work against demixing by being stable over a larger region. However,

we see the opposite effect in Fig. 7.2, where we see that increasing χh increases the

unstable area.

In Figs. 7.3–7.4 we display the linear stability threshold for varying λE1 and λE2

respectively. The graphs show that unstable area decreases when we increase the

values of λEi
for small values, λEi

=0.1 and 1.0. however, this area increases again for

large values, for example when λEi
=10, and becomes close to the original area (i.e.

the case when λEi
=0). This is to be expected as the stabilising λE1(E(r, t) − E1)

term is more dominant in Eq. (7.2.7).

7.4 Conclusion

Haptotaxis (and by mathematical equivalence chemotaxis) can change the stability

properties of the system and can induce instabilities when the cell-cell interaction
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Figure 7.1: The linear stability limit for the two species cells [see Eqs. (7.2.6), (7.2.7)
and (7.2.8)] with E1=3, E2=10, α11 = α22 = 1, α12=2.1, γ11 = γ22 = 1, γ12=0.5,
λE1=0.5, λE2=0.25, χh=0.03, Dc = Dh = 1 and for varying χc as given in the key,
plotted in the total density ρ ≡ ρ1 + ρ2 versus concentration φ ≡ ρ1/ρ plane. The
uniform density state is linearly unstable above this line.
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Figure 7.2: The linear stability limit for the two species cells [see Eqs. (7.2.6), (7.2.7)
and (7.2.8)] with E1=3, E2=10, α11 = α22 = 1, α12=2.1, γ11 = γ22 = 1, γ12=0.5,
λE1=0.5, λE2=0.25, χc=0.3, Dc = Dh = 1 and for varying χh as given in the key,
plotted in the total density ρ ≡ ρ1 + ρ2 versus concentration φ ≡ ρ1/ρ plane. The
uniform density state is linearly unstable above this line.
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Figure 7.3: The linear stability limit for the two species cells [see Eqs. (7.2.6), (7.2.7)
and (7.2.8)] with E1=3, E2=10, α11 = α22 = 1, α12=2.1, γ11 = γ22 = 1, γ12=0.5,
λE2=0.5, χc=0.6, χh=0.03, Dc = Dh = 1 and for varying λE1 as given in the key,
plotted in the total density ρ ≡ ρ1 + ρ2 versus concentration φ ≡ ρ1/ρ plane. The
uniform density state is linearly unstable above this line.
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Figure 7.4: The linear stability limit for the two species cells [see Eqs. (7.2.6), (7.2.7)
and (7.2.8)] with E1=3, E2=10, α11 = α22 = 1, α12=2.1, γ11 = γ22 = 1, γ12=0.5,
λE1=0.5, χc=0.6, χh=0.03, Dc = Dh = 1 and for varying λE2 as given in the key,
plotted in the total density ρ ≡ ρ1 + ρ2 versus concentration φ ≡ ρ1/ρ plane. The
uniform density state is linearly unstable above this line.
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parameters lead to stability in the taxis-free case.

This is a preliminary analysis and work to be done includes simulating the full

PDE system and exploring further the parameters space.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

8.1 Conclusions

In this study, we have used DDFT to describe microscopic cell-cell interactions within

a simple model of nutrient driven tissue growth. The theory was applied for a single

cell type (chapter 5) and for two cell types (chapter 6), the latter representing, for

example, the interaction between healthy and tumour cells; this approach can eas-

ily be generalised to describe more cells for example, and also one can extend the

model of the competition between cancer cells and healthy cells to include hapto-

taxis (chapter 7). The resulting models consist of coupled integro-partial differential

equations with nonlinear source terms describing nutrient driven growth. This level

of description is common in discrete models, but their analysis is limited mainly to

numerical simulation; one of the main advantages of the DDFT approach is that the

model is amenable to mathematical analysis, providing greater insights into the na-
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ture of the numerical results. For instance, the linear stability analysis of Secs. 5.4,

6.4 and 7.3 identified parameter regimes for which stable peaks arise, representing

the locations of cell centres, as demonstrated in the simulations in Secs. 5.5 and 6.5.

Whilst some parameters can be estimated readily from the experimental literature,

this analysis also goes some way to estimate the associated parameters in the model

that are difficult to determine from direct measurements (e.g. the effective cell-cell

cross interaction radius R12). A further outcome of our linear stability analysis in

the competition case, is the observation that as the cell radii ratio R22/R11 is in-

creased, the two wavenumbers at which the system can become linearly unstable

move apart leading to the linear stability threshold to develop a cusp. If the radii

ratio is sufficiently large then the system can be linearly unstable at two quite dif-

ferent wavenumbers and the interaction between these can produce a wide range of

different structures [149, 156, 158] which are interesting from the pattern-formation

perspective, and may also have some biological relevance.

There is still much required in the development of the basic theory before it

can be applied directly to experimental results. However, numerical results reflect

qualitatively the expected results based on observation, despite the use of simple

growth kinetics and interaction potentials. For example, the mean densities (a proxy

for total number of cells) in Figs. 5.8 and 5.11 qualitatively resemble Gompertzian

or logistic type growth curves often reported in tumour growth models [159]. A

further noteworthy aspect of the model is the splitting events shown in Fig. 5.3,

reflecting mitosis. We note also that for a uniform nutrient distribution, such events

are not observed at very large times as the arrangement of the cells settles to fixed

configuration; such results are reflective of the cellular rest states observed in mature

liver and muscle tissues.
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In the simulations of Chapter 6, the parameter values for the kinetics guarantee

that the tumour cells will overrun the healthy cells. However, it is interesting that the

manner by which this is done depends on the value of the interaction parameters Rij

and εij and in particular the cross-interaction radius R12 and energy ε12. Although

the critical values for R12 suggested here are not strictly defined, it was found that

(i) if R12 <
1
2
(R11 +R22), i.e. the cross-species interaction range is less then mean of

the two same-species interaction ranges, then tumour cells tended to penetrate the

healthy regions, whilst (ii) if R12 >
1
2
(R11 + R22) the tumour cells tend to displace

the the healthy cells at the tumour edge, in accordance with the insight gained

from studies of mixtures of soft particles [154,160–163]. Situation (i) is reminiscent

of metastasis, whilst (ii) reflects a benign tumour state. Of course, some caution

should be applied to such interpretations on the basis of the current analysis, but it is

noteworthy that the DDFT approach does identify a potential behavioural property

of the cells that can govern benign and virulent tumours. The present work also

shows that the overall collective behaviour is sensitive to the details of the pair

interactions between cells.

The complex dynamics that the system can exhibit is rather striking. For in-

stance, the drop in the nutrient level observed e.g. in Figs. 6.9–6.11 that then leads

to a drop in the overall number of healthy cells, which results in the “crystal” melt-

ing temporarily corresponds to the cells being distributed in disordered liquid-like

configurations. The nutrient level then recovers and the system “refreezes” and sub-

sequently over time the cancer cells penetrate the healthy tissue and eventually the

healthy cells all die out.

Despite the current model being very simplistic in comparison to many models

of tumour growth, these initial results demonstrate that DDFT has considerable po-
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tential as an effective modelling approach to describe microscale cell-cell interactions

that can provide new insights into the dynamics of tissue and tumour growth.

8.2 Future works

The current work is the first to analyse a model using DDFT to describe the growth

of tissues and tumours. There is considerable scope to extend the model in order to

create a more realistic description of tissue growth. The following areas are included

for consideration.

• Instead of considering the pair potential Vint(|r|) = εexp[−(r/R)4] which is

used in Sec.4.4, we can use another alternative pair potential models such

as that proposed in Ref. [164]. It would be interesting to compare results

with those from alternative soft potential models such as that proposed in

Ref. [164]. However, in reality there is also attraction (adhesion) between

cells, which points to the possibility of the analogue of the gas-liquid or gas-

solid phase transitions in collections of cells. Incorporation of both attraction

and repulsion between particles in a DFT is straightforward [121–123], but the

theory becomes much more elaborate, which is why we avoided such theories

for this initial study.

• We can use more sophisticated approximations for the free energy functionals,

such as a weighted density functional [123].

• We can use more accurate methods for the time stepping, to solve the system

of ODEs (5.5.7) and (5.5.8), such as a Runge–Kutta methods [152].

• Instead of combining birth-death and cell-movement processes, we can use
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logistic growth instead of linear birth death term for single species model Eqs.

(5.1.1) and (5.1.2). In the case of competition between cancer and healthy

cells system of equations (6.1.1), we can use a predator-prey type model for the

interacting populations instead of a simple competition interaction. This would

be particularly appropriate for describing the interaction between immune cells

and cancer cells.

• Instead of considering the pair potential Vij(|r − r′|) = δ(r − r′)(αij − γij∇2)

which is used in Sec.7.2, we can use Vij(r) = εije
[−(r/Rij)4], or other pair po-

tential models, to add more biologically realistic description.

• We can extend the preliminary results of chapter 7 to undertake numerical

simulations and a parameter survey akin to those discussed in chapter 5 and

chapter 6.

• Instead of manually determining the time of cancer penetration in the healthy

tissue used in Sec. 6.6, we could develop an algorithm to analyse the cell

structure and detect such processes.
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APPENDIX A

THE ITO CALCULUS

In order to render this thesis self-contained, we rederive briefly the Ito stochastic

differential equations and the Ito formula. A more detailed account can be found

in [129]. This allows us to obtain the time evolution equation for the probabil-

ity distribution function for a "particle" with position x having a fluctuating (i.e.

Langevin) equation of motion.

A.1 The Ito stochastic differential equations

A general Langevin equation can be written in the form

dx

dt
= a(x, t) + b(x, t)η(t), (A.1.1)

where x is the variable of interest, a(x, t) and b(x, t) are certain known functions and

η(t) is the rapidly fluctuating random term satisfying 〈η(t)〉 = 0 and 〈η(t)η(t
′
)〉 =
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δ(t− t′), where 〈·〉 denotes a statistical average. The second of these means there is

no correlation in the values of η(t) at different times. Eq. (A.1.1) must be integrable

and hence we have

W (t) =

∫ t

0

dt′η(t′) (A.1.2)

exists. Suppose that W (t) is a continuous function of t, this implies that W (t) is a

Markov process. Also, since W (t) is continuous, we must be able to describe W (t)

by Wiener process. From Eq. (A.1.2), we obtain

dW (t) = W (t+ dt)−W (t) = η(t)dt, (A.1.3)

Now, returning to Eq. (A.1.1), we are in a position to be able to integrate over time,

in the manner similar to in Eq. (A.1.3). Doing this we obtain the Ito stochastic

differential equation (SDE).

dx(t) = a
[
x(t), t

]
dt+ b

[
x(t), t

]
dW (t). (A.1.4)

A.2 The Ito formula

Consider an arbitrary function of x(t), f [x(t)] and expand df [x(t)] to second order

in dW (t):

df
[
x(t)

]
= f

[
x(t) + dx(t)

]
− f

[
x(t)

]
= f ′

[
x(t)

]
dx(t) +

1

2
f ′′
[
x(t)

]
dx(t)2 + · · ·

= f ′
[
x(t)

](
a
[
x(t), t

]
dt+ b

[
x(t), t

]
dW (t)

)
+

1

2
f ′′
[
x(t)

]
b
[
x(t), t

]2[
dW (t)

]2
+ · · ·
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where all other terms have been discarded since they are of higher order. by using[
dW (t)

]2
= dt (see the proof in [129]), we obtain

df
[
x(t)

]
=

{
a
[
x(t), t)

]
f ′
[
x(t)

]
+

1

2
b
[
x(t), t

]2
f ′′
[
x(t)

]}
dt

+b
[
x(t), t

]
f ′
[
x(t)

]
dW (t). (A.2.1)

This formula is known as Ito’s formula.

To develop Ito’s formula for functions of an n dimensional vector x(t) satisfying

SDE

dx(t) = A(x, t)dt+ B(x, t)dW(t), (A.2.2)

we simply follow the previous procedure. The result is

df(x) =

{∑
i

Ai(x, t)
∂f(x)

∂xi
+

1

2

∑
i,j

[
B(x, t)BT (x, t)

]
ij

∂2f(x)

∂xi∂xj

}
dt

+
∑
i,j

Bij(x, t)
∂f(x)

xi
dWj(t). (A.2.3)

A.3 The Fokker–Plank Equation

Consider the time development of an arbitrary f(x(t)). Using Ito’s formula Eq.

(A.2.1)

〈df
[
x(t)

]
〉

dt
=

〈
df
[
x(t)

]
dt

〉
=

d

dt
〈f
[
x(t)

]
〉

=

〈
{a
[
x(t), t)

]∂f
∂x

+
1

2
b
[
x(t), t

]2∂2f

∂x2

〉
. (A.3.1)
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Since x(t) has conditional probability density P (x, t) and

d

dt
〈f
[
x(t)

]
〉 =

∫
dxf(x)

∂P

∂t

=

∫
dx
[
{a
[
x(t), t)

]∂f
∂x

+
1

2
b
[
x(t), t

]2∂2f

∂x2

]
P (x, t). (A.3.2)

We integrate by parts (the complete proof in [165]), to obtain

∫
dxf(x)

∂P

∂t
=

∫
dxf(x)

{
−∂[a(x, t)P ]

∂x
+

1

2

∂2[b(x, t)2P ]

∂x2

}
. (A.3.3)

and hence, since f(x) is arbitrary,

∂P (x, t)

∂t
= −∂[a(x, t)P (x, t)]

∂x
+

1

2

∂2[b(x, t)2P (x, t)]

∂x2
, (A.3.4)

In general, the Fokker–Planck equation for many variable system of SDE is [129]

∂P (x, t)

∂t
= −

∑
i

∂
[
Ai(x, t)P

]
∂xi

+
1

2

∑
i,j

∂2
{[
B(x, t)BT (x, t)

]
ij
P
}

∂xi∂xj
. (A.3.5)
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THE SMOLUCHOWSKI EQUATION

In statistical physics, the Fokker–Planck equation is a partial differential equation

that describes the time evolution of the probability density function of the positions

and velocities of a system particles. The Smoluchowski equation is the Fokker–

Planck equation for the probability density function of a system of over-damped

Brownian particles [13, 120].

A physically intuitive way of arriving at this equation proceeds as follows [13,120]:

For a fluid of N Brownian particles, one imagines applying a force on the particles,

where the force on the jth particle is Fj = −∇jV (rN , t), where rN = {ri}i=1,··· ,N is

the set of position coordinates for N particles, so that the system is prevented from

relaxing to its equilibrium distribution. The non-equilibrium probability density

function in this situation will be:

P (rN , t) =
1

Z
exp[−βV (rN , t)− βU(rN , t)], (B.0.1)
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where Z is a normalisation factor and U(rN , t) is the potential energy due to the

interparticle interactions and any external potentials influencing the particles are

include in U . Taking the gradient of Eq. (B.0.1) we obtain:

Fj = ∇jU(rN , t) + kBT
∇jP (rN , t)
P (rN , t)

. (B.0.2)

for overdamped particles, the velocity of the ith particle is

vi = −
N∑
j=1

ΓijFj, (B.0.3)

where Γij = βD is the mobility coefficient. Since the particle number is conserved,

we can expect the fluid to obey the continuity equation:

∂P (rN , t)
∂t

= −
N∑
i=1

∇i · [viP (rN , t)]. (B.0.4)

Substituting Eqs. (B.0.2) and (B.0.3) into Eq. (B.0.4), we find

∂P (rN , t)
∂t

=
N∑
i=1

N∑
j=1

∇i · Γij[kBT ∇j +∇jU(rN , t)]P (rN , t). (B.0.5)

We can replace Γij by its "mean-field" value, Γδij and Eq. (B.0.5) reduces to a

generalised diffusion equation, termed the Smoluchowski equation:

∂P (rN , t)
∂t

= Γ
N∑
i=1

∇i · [kBT ∇i +∇iU(rN , t)]P (rN , t). (B.0.6)
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