
University Library

n tI. Loughborough
\:;J University

Author/Filing Title S.~.~.'!.,::t .. fr..

..

-r
Class Mark .. .

Please note that fines are charged on ALL
overdue items.

~il~li\~iliUill \11 II \ 11\11\" \ IIIII

COMPLIANCE FLOW - AN INTELLIGENT
WORKFLOW MANAGEMENT SYSTEM TO SUPPORT

ENGINEERING PROCESSES

By

YEE CHUNG CHEUNG

A doctoral thesis submitted in partial fulfilment of the requirements for the award
of Doctor of Philosophy of Loughborough University

March 2003

© by Yee Chung Cheung (2003)

Abstract

This work is about extending the scope of current workflow management systems to support

engineering processes. On the one hand engineering processes are relatively dynamic, and on the

other their specification and performance are constrained by industry standards and guidelines

for the sake of product acceptability, such as IEC61508 for safety and IS0900 1 for quality.

A number of technologies have been proposed to increase the adaptability of current workflow

systems to deal with dynamic situations. A primary concern is how to support open-ended

processes that cannot be completely specified in detail prior to their execution. A survey of

adaptive workflow systems is given and the enabling technologies are discussed.

Engineering processes are studied and their characteristics are identified and discussed. Current

workflow systems have been successfully used in managing "administrative" processes for some

time, but they lack the flexibility to support dynamic, unpredictable, collaborative, and highly

interdependent engineering processes. The key requirements which have to be addressed by

future systems, if they are to succeed in supporting engineering processes, are identified and

discussed. A novel framework to deal with such requirements is proposed.

One serious limitation of current workflow systems is that they lack of the ability to ensure the

planning and the execution of a process is compliant with a standard. In this thesis, process

model reasoning is proposed to identify compliance errors of a user-defined process by matching

it against a standard model both during process specification and execution and preventing

unacceptable products being made as the result of a wrongly planned process.

This thesis contributes towards a better understanding of adaptive workflow technology, and

shows how new techniques can be used to support engineering processes. In particular, the novel

ability of managing process compliance with standards forms a key contribution in workflow

technology research. It raises the importance and the application of meta-process management,

which points the direction to a major new area of research.

Keywords: Workflow Management, Process Compliance Management, Process-based

Reasoning, Capability Matching

~ j -

Acknowledgement

r am indebted to my research supervisor Professor Paul Chung for his guidance, encouragement

and enthusiasm throughout the duration of the research.

I would like to express sincere gratitude towards my research director Mr. Ray Dawson and all

the members of the Department of Computer Science, both past and present, for their useful

advice and assistance.

~ ii -

To my parents

Table of Contents

Abstract .•....•...•...•...•..•.....•........ _ .•.•.•....•......•...•..•.......•..•.......••.........•.....•....•...•..•.......•.........•. i

Acknowledgement. .•.•......•...•.....•...•.•....•...•..•...••.•....•..••••....••..•..............•.....•..•...•..........•...•..•. ii

Dedication ... iii

Table of Contents ... iv

List of Figures .. xiii

List of Tables .. xviii

List of Equations .. xix

List of Abbreviations •...•..•...•..••.•....•....••...•.•....•......•.......................•.•...............•...•...•.•.....•...• xx

Part 1: Introduction

Chapter 1. Overview .. 1

1.1 Introduction .. 1

1.2 Problem Statement and Objectives .. 2

1.3 Approach .. 3

1.4 Contributions ... 4

1.5 Thesis Organisation ... 4

Chapter 2. Introduction To Workflow Management Systems .. 7

2.1 Introduction .. 7

2.2 Definition ofWorkflow Terms .. 8

2.2.1 Workflow .. 8

2.2.2 Process Definition, Process Instance aod Activity Instance 8

2.2.3 Workflow Management System ... 9

2.3 Workflow Characteristics .. 10

2.4 Workflow Taxonomy Scheme ... 11

2.4.1 Production ... 12

2.4.2 Administrative........... 12

2.4.3 Collaborative ... 12

- iv -

2.4.4 Ad-hoc .. 12

2.5 Process ModeJIing and Workflow Specification ... 13

2.5.1 Workflow Process ModeJIing Methodologies .. 13

2.5.1.1 Communication-based methodologies ... 13

2.5.1.2 Artifact-based Methodologies .. 15

2.5.1.3 Action-based Methodologies ... 16

2.5.2 Process Descriptive Views .. 17

2.5.2.1 Function View .. 17

2.5.2.2 Structural View .. 18

2.5.2.3 Behavioural View .. 19

2.5.3 Workflow Specification .. 20

2.5.3.1 XML Process Definition Language ... 2 I

2.5.3.2 Process Interchange Format.. ... 22

2.5.3.3 Process Specification Language .. 23

2.5.3.4 Generalised Process Structure Grammars .. 23

2.5.3.5 Petri Nets .. 24

2.5.3.6 Unified Modelling Language ... 25

2.6 Workflow Engines and Workflow implementation ... 26

2.6.1 Process Selection and Instantiation ... 27

2.6.2 Task Allocation ... 27

2.6.3 Enactment Control, Execution Monitoring, and Failure Recovery 28

2.7 Workflow Standards .. 30

2.7.1 Workflow Management Coalition's Reference ModeL 30

2.7.1.1 Workflow Enactment Service .. 31

2.7.1.2 Interface 1: Process Definition Interchange 31

2.7.1.3 Interface 2: Workflow Client Application Interface 32

2.7.1.4 Interface 3: Invoked Application Interface 33

2.7.1.5 Interface 4: Workflow Interoperability Interface 34

2.7.1.6 Interface 5: Administration & Monitoring Tools Interface 34

2.7.2 Workflow Management Coalition's Workflow Interoperability 35

2.7.3 Object Management Group's Workflow Facility .. 36

2.7.4 Simple Workflow Access Protocol.. ... 38

• y •

2.7.5 Workflow Management Coalition's Wf-XML Specification 38

2.8 Chapter Summary .. 40

Chapter 3. Workflow Adaptation and Enabling Technology .. 41

3.1 Introduction , ... 41

3.2 Survey of Adaptive Workflow Products .. 42

3.2.1 InConcert .. 42

3.2.1.1 Workflow Process .. 42

3.2.1.2 Flexibility Features .. 44

3.2.2 TeamWare Flow ... 45

3.2.2.1 Workflow Process .. 45

3.2.2.2 Flexible Features .. 47

3.2.3 Task Based Process Management (TBPM) .. 48

3.2.3.1 Workflow Process .. 48

3.2.3.2 Flexibility Features .. 50

3.2.4 Agent Enhanced Workflow .. , 51

3.2.4.1 Workflow Process .. 52

3.2.4.2 Flexibility Features .. 53

3.3 Levels of Work flow Adaptation .. 54

3.3.1 Domain Level Adaptation ... 54

3.3.2 Process Level Adaptation : ... 55

3.3.3 Resource Level Adaptation ... 55

3.3.4 Organisational Structure Level Adaptation .. 56

3.3.5 Infrastructure Level Adaptation .. 56

3.4 AI Technologies for Building Adaptive Workflow ... 56

3.4.1 Reactive Control. .. 56

3.4.2 AI Scheduling ... 58

3.4.3 AI Planning ... 60

3.4.4 Software Agents .. 62

3.4.5 Dynamic Capability Matching .. 64

3.4.6 Ontology ... 65

3.5 Chapter Summary .. 67

- vi -

Part 2: Supporting Engineering Process with a Novel Framework

Chapter 4. Understanding Engineering Process .•....•.....•..•..•.......•..•...•...•..•....•.......•....•.•..•• 68

4.1 Introduction .. 69

4.2 Introduction to Product Development Process .. 69

4.2.1 Production Planning .. 69

4.2.2 Design ... 70

4.2.3 Manufacturing Planning ... 72

4.2.4 Manufacturing ... 72

4.3 Concurrent Engineering ... 72

4.4 Quality Control through Industry Standards .. 76

4.5 Characteristics .. 77

4.5.1 Task Scale-Up ... 77

4.5.2 Task Uncertainty ... 77

4.5.3 Task Interdependence ... 78

4.5.4 Unit Size ... 79

4.5.5 Compliance with IndustryStandards .. 79

4.5.6 Mechanistic and Organic Systems .. 80

4.6 Requirements of an Ideal Support System ... 81

4.6.1 Compliance Management.. ... 81

4.6.2 Traceability ... 81

4.6.3 Selection of Agent... ... 82

4.6.4 Flexibility .. 82

4.6.5 Common Process .. 83

4.6.6 Management at Different LeveL ... 83

4.6.7 Process and Information Management. .. 83

4.7 Chapter Summary .. 84

Chapter 5. A Flexible Framework to Support Dynamic Process Management ..•..•...•..... 85

5.1 Introduction .. 85

5.2 Compliance Flow Framework. .. 86

5.2.1 Ontology Server... 87

- vii-

5.2.2 Organisation Server .. 90

5.2.3 Plan Library .. 91

5.2.4 Workspace .. 91

5.2.5 Tracking Server ... 94

5.2.6 Task Manager ... 95

5.2.7 Model of Standards ... 97

5.2.8 Standard Modeller ... 98

5.2.9 Compliance Agent. ... 98

5.3 Process Management. .. 99

5.3.1 Planning .. 99

5.3.2 Running ... 100

5.4 Chapter Summary .. 101

Part 3: Managing Process Compliance

Chapter 6. Standards Modelling .. 103

6.1 Introduction .. 103

6.2 IEC61508 International Standard .. 104

6.2.1 Structure ofIEC61508 .. 104

6.2.2 Safety LifecycJes ... 105

6.2.3 Safety Integrity and Safety Integrity LeveL .. 106

6.2.4 Requirements for Development Safety Equipments 107

6.3 Standard Modelling Consideration .. 110

6.3.1 Fnnctional and Behavioural Perspective ... 110

6.3.2 Infonnation Perspective .. 111

6.3.3 Organisational Perspective ... 112

6.3.4 Technological Perspective .. 112

6.4 Model of Standards .. 113

6.4.1 The Use of Ontology ... 113

6.4.2 Modelling of Task Framework ... 114

6.4.3 Modelling of Task Recommendation ... 114

6.4.4 Modelling of Task Capability ... 115

6.5 Chapter Summary .. 116

- viii -

Chapter 7. Managing Process Compliance Based on Process Model Reasoning•.•....•• 118

7.1 Introduction .. lIS

7.2 Compliance with IEC6150S ... 119

7.3 Compliance Checks ... I 19

7.3.1 Definition of Terms .. 121

7.3.2 Identifying the Corresponding Specifications and Tasks 124

7.3.3 Correctness Check .. 126

7.3.4 Completeness Check. .. 129

7.3.5 Capability Check. .. 133

7.3.5.1 UDP and the Model at the Same Level of Abstraction 133

7.3.5.2 UDP at a Higher Level of Abstraction than the ModeL 134

7.3.5.3 UDP at a More Detailed Level of Abstraction than the ModeL 135

7.3.6 Recommendation Check ... 136

7.3.6.1 UDP and the Model at the Same Level of Abstraction 136

7.3.6.2 UDP at a Higher Level of Abstraction than the ModeL 139

7.3.6.3 UDP at a More Detailed level of Abstraction than the Model... 139

7.3.7 Planning Assistance .. 141

7.3.7.1 UDP and the Model at the Same Level of Abstraction 141

7.3.7.2 UDP at a Higher level of Abstraction than the ModeL 141

7.3.7.3 UDP at a More Detailed Level of Abstraction than the ModeL 142

7.3.8 Information Navigation ... 145

7.3.S.1 UDp and the Model at the Same Level of Abstraction 145

7.3.S.2 UDP at a Different Level of Abstraction than the Model.. 146

7.3.9 Cross-Referencing .. 149

7.3.10 Error Prevention .. 149

7.4 Coupling Issue ... 150

7.5 Summary .. 151

Part 4: System Development and Evaluation

Chapter 8. Design and Implementation ... 152

8.1 Introduction .. 152

- ix -

8.2 Process Modelling .. 153

8.3 Standard Modelling to Support Compliance Management... 156

8.4 Task Enactment. ... 157

8.5 Three-Tier System Architecture .. 158

8.6 Four Tier Object-Oriented Implementation of the client tier.................................... 160

8.6.1 First Tier - User Interfaces .. 161

8.6.2 Second Tier - Framework Components ... 163

8.6.3 Third Tier- Workflow Objects .. 164

8.6.3.1 Workflow Objects in User-defmed Process ... 164

8.6.3.2 Workflow Objects in the Model of Standards 165

8.6.3.3 Workflow Objects in the Plan .. 166

8.6.3.4 Ontology Object. .. 167

8.6.4 Fourth Tier - Database Access Object... ... 168

8.7 Capability Matching.................. 168

8.7.1 Capability Specification .. 168

8.7.1.1 Traditional Ontology Hierarchy ... 169

8.7.1.2 Traditional Approach to Assess GOF .. 170

8.7.1.3 Treating Ontology as Sets .. 172

8.7.1.4 Optional Capability Parameters ... 176

8.7.1.5 Beyond Technical Capability ... 177

8.7.1.5 Capability Scheme ... 177

8.7.2 Assessing Goodness of Fit Using Fuzzy Matching .. 178

8.7.2.1 Assessing Goodness of Fit between Two Capabilities 180

8.7.2.2 Assessing Goodness of Fit between Two Capability Sets 182

8.7.2.3 Matching Example ... 184

8.8 Chapter Summary .. 185

Chapter 9 Evaluation and Comparison ... 187

9.1 Introduction .. 187

9.2 Case Study 1 - Lightguard Development... .. 188

9.2.1 Project Overview .. 189

• x •

9.2.2 Lightguard Development Process ... 189

9.2.3 Compliance Management with IEC61508 Requirements 192

9.3 Case Study 2 - Safety Shutdown System Modification ... 197

9.3.1 Project Overview .. 197

9.3.2 Study Findings .. 197

9.3.3 Recommendations from ABB Limited ... 201

9.4 Case Study 3 - Capability Specification and Matching .. 202

9.4.1 Study Overview .. 203

9.4.2 Study Findings .. 204

9.5 Process-based Vs Document-based ... 207

9.6 System Comparison ... 208

9.6.1 Compliance Flow Vs InConcert ... 209

9.6.2 Compliance Flow Vs TeamWare .. 209

9.6.3 Compliance Flow Vs TBPM ... 210

9.6.4 Compliance Flow Vs Agent Enhanced Workflow ... 210

9.6.5 Comparison Summary .. 211

9.7 Chapter Summary .. 211

Chapter 10 Conclusion and Future Work•..•..••.....•.•..........•....•......•......•...•.•••.•..•..•... 213

10.1 Introduction .. 213

10.2 Thesis Review .. 214

10.3 Summary of Contributions ... 217

10.4 Limitation and Future Directions ... 218

10.5 Overall Conclusion .. 220

References ..•...•...•....................•.........•....•...........•...•..•..•..•...•.•....•...•....•..•....•.•...•......•.•...•.....•.. 221

~ xi -

Appendix

Appendix I. List of Publications ... 233

Appendix II. Database Schema ... 234

Appendix Ill. Object Operation Descriptions ... 244

Appendix IV. Managing Hierarchical Data .. 249

Appendix V. Capability Specification and Matching Evaluation Form 254

- xii -

List of Figures

Figure 1-1. Thesis organisation .. 6

Figure 2-1. Process definition to process instance object modeL .. 9

Figure 2-2. Process Definitions, Process Instances and Work Lists 9

Figure 2-3. Workflow system architecture and data structure (WfMC, 2000) 10

Figure 2-4. Characteristics of work flow (Marshak, 1994) ... 11

Figure 2-5. Conversation for Action ModeL ... 14

Figure 2-6. Communicated-based workflow of procure equipment process 14

Figure 2-7. Artifact-based workflow of procure equipment process 15

Figure 2-S. Activity-based workflow of procure equipment process 16

Figure 2-9. WfMC's relationships among basic terminology (WfMC, 2000) 17

Figure 2-10. Data flow diagram of procure equipment process ... IS

Figure 2-11. OMT object diagram of procure equipment process ... 19

Figure 2-12. OMT state model integration for the procure equipment process 19

Figure 2-13. Workflow process definition meta-model (WfMC, 2002) 21

Figure 2-14. Hierarchy ofPIF core components (Lee, 1999) .. 22

Figure 2-15. Example ofa Petri Net.. .. 24

Figure 2-16. WfMC's workflow reference modeL .. 31

Figure 2-17. Process definition interchange ... 32

Figure 2-1S. Client application interface .. 33

Figure 2-19. Invoked application interface .. 33

Figure 2-20. Workflow interoperability interface .. 34

Figure 2-21. Systems administration & monitoring interface .. 35

- xiii -

Figure 2-22. Joint Wokflow Management Facility Model (OMG, 1999) 37

Figure 2-23. WfXML Data Representation .. 39

Figure 3-1. Example job structure in InConcert (Sarin et aI., 1991) 43

Figure 3-2. InConcert meta-model. .. 44

Figure 3-3. TeamWare Flow meta-model (Swenson, 1993) .. 46

Figure 3-4. A sample process model ofTeamWare Flow (Swenson, 1993b) 47

Figure 3-S. The architecture of the TBPM system (Peter et al., 1999) 49

Figure 3-6. Examples of plans from the plan library (Moore, 2000a) SO

Figure 3-7. Correspondence Handling Centre context (Judge et aI., 1998) 51

Figure 3-8. A sample business process ofCHC (Judge et aI., 1998) S2

Figure 3-9. High level system architecture (Judge et aI, 1998) .. 53

Figure 3-10. Software agent negotiation protocol (Judge et aI., 1998) 53

Figure 3-11. Levels of Work flow Adaptation (Jarvis et aI., 1999a) ; .. 54

Figure 3-12. Operation of a Procedure-based Reactive Controller (Myers and Berry, 1999)57

Figure 3-13. Agent Infrastructure Schematic (Jarvis, 2000) .. 63

Figure 3-14. A Federated System (Genesereth and Ketchpel, 1994) 63

Figure 3-1S. Ontology as Inter-Lingua: an example (Uschold and Gruninger, 1996) 66

Figure 4-1. Life phases of a product.. .. 70

Figure 4-2. Product Development Processes .. 74

Figure 4-3. Overlapping of activities in planning, design, and manufacture (Hundal, 1995) 75

Figure 5-1. The consolidation of three types of support systems in Compliance Flow 86

Figure 5-2. Framework of Compliance Flow•... 87

Figure 5-3. An Example of Hierarchical Ontology Network ... 89

- xiv-

Figure 5-4. Ontology Server as a translator ... 89

Figure 5-5. Tasks and their workspaces ... 92

Figure 5-6. Information transmission across workspaces .. 94

Figure 5-7. A screen shot of the Task Manager ... 95

Figure 5-8. An example of penetrative view between two levels in a HTN 97

Figure 6-1. IEC61508 Overall Safety Lifecycle .. 106

Figure 6-2. Meta-model of Standard Modelling .. 113

Figure 7-1. Some terms used in the description of compliance check mechanisms 122

Figure 7-2. An example ofUDP is at a more detailed level than the ModeL 125

Figure 7-3. An example ofUDP is at a higher level of abstraction than the ModeL 125

Figure 7-4. Correctness Check when UDP and the Model are at the same level of
127

abstraction

Figure 7-5. Correctness Check algorithm .. 128

Figure 7-6. An example of applying Completeness Check to a task 129

Figure 7-7. Completeness Check algorithm used at process build-time 131

Figure 7-8. Completeness Check algorithm use at process run-time 132

Figure 7-9. Three capability views are given in the Capability Check. 133

Figure 7-10. Capability Check when UDP and the Model are at the Same Level of
134

Abstraction .. .

Figure 7-11. Capability Check when UDP at a higher level of abstraction than the Model. 134

Figure 7-12. Capability Check when UDP at a more detailed level of abstraction than the
135

Model.

Figure 7-13. Capability Check Algorithm .. 137

Figure 7-14. RC when UDP and the Model are at the same level of abstraction 138

- xv-

Figure 7-15. Recommendation Check algorithm ... 140

Figure 7-16. PA when UDP and the Model are at the same level of abstraction 141

Figure 7-17. PA when UDP is at a higher level of abstraction than the ModeL 142

Figure 7-18. PA when UDP at a more detailed level of abstraction than the ModeL 142

Figure 7-19. The algorithm to find the possible capability for a user-defined task. 144

Figure 7-20. The algorithm to find the possible recommendation for a user-defined task. ... 144

Figure 7-21. IN when UDP and the Model are at the same level of abstraction 146

Figure 7-22. IN when UDP at the more detailed level of abstraction than the ModeL 147

Figure 7-23. Algorithm of copying a document to the possible workspaces 148

Figure 7-24. An example of Error Prevention .. 149

Figure 8-1. Meta-process model.. ... 153

Figure 8-2. Interfaces between parents and their children ... 154

Figure 8-3. The modelling of different types of task interdependence 155

Figure 8-4. Meta-model of standard modelling ... 156

Figure 8-5. An open architecture to deploy compliance agent .. 157

Figure 8-6. States in a task lifecycle .. 158

Figure 8-7. Three tier Remote Data Services (RDS) architecture .. 159

Figure 8-8. Four tier object-oriented architecture .. 160

Figure 8-9. Function Structure Chart ... 162

Figure 8-10. Screen layout. .. 163

Figure 8-11. Class diagram of the framwork components ... 163

Figure 8-12. Class diagram of user-defined processes ... 165

Figure 8-13. Class diagram of the Mode of Standards ... 166

~ xvi-

Figure 8-14. Class diagram of plans ... 167

Figure 8-15. Class diagram of an ontology .. 167

Figure 8-16. A traditional ontology hierarchies ... 170

Figure 8-17. An example of agent selection without a perfectly fitted agent exist... 171

Figure 8-18. Relationahip between capabilities ... 173

Figure 8-19. Example of ontology hierarchies based on the 'overlap' approach 176

Figure 8-20. Examples of an agent selection with and without organisation knowledge 177

Figure 8-21. Five categories in matching two capability terms ... 178

Figure 8-22. GOF of agent capability set against task capability set... 182

Figure 8-23. Venn diagram for example 8 ... 183

Figure 8-24. An example of agent selection using fuzzy matching 184

Figure 9-1. Lightguard components and interconnections ... 189

Figure 9-2. A screen shot of the high level process model of a lightguard development
195

process .. , " .. .

Figure 9-3. High level process model ofthe modification project... 200

Figure 9-4. High level process model of software lifecycIe ofIEC61509 200

Figure 9-5. Participants construct different ontology hierarchies .. 204

Figure 9-6. A sample knowledge overlap given by the participants 205

Figure 9-7. Different weighting points given by the participants .. 207

- xvii-

List of Tables

Table 2-\' Workflow and Petri Net.. .. 25

Table 6-\. Safety Integrity Levels .. 107

Table 8-1. Examples GOF calculation using traditional distance approach 172

Table 8-2. Examples GOF calculation using overlap approach ... 180

Table 9-\. Design stages and corresponding input and output specifications. 190

Table 9-2. Compliance summary of light guard development project... 191

Table 9-3. Summary offeature comparison ... 211

- xviii -

List of Equations

Equation 8-1. Relationship between two sibling capabilities ... 174

Equation 8-2. Relationship between three sibling capabilities ... 174

Equation 8-3. Relationship between sibling capabilities AI, A2 ... An 174

Equation 8-4. Assess GOF of an available capability against a required capability 180

Equation 8-5. The GOF of an available capability set against a required capability 183

Equation 8-6. The GOF of an available capability set against a required capability set... 184

- xix. -

List of Abbreviations

AI

APES

API

ALARP

B2B

CA

CAD

CD

CHC

CN

CORBA -

CRN

CSCW

CTO

DBMS

DCS

DFD

ECA

EDP

EIEIPES -

ERD

ERM

EUC

FTP

FSD

GPSG

GUI

Gum
HPN

Artificial Intelligence

Assuring Programmable Electronic Systems

Application Programme Interface

As Low As Reasonably Practicable

Business to Business

Central Administration

Computer Aided Design

Conceptual Distance

Correspondence Handling Centre

Change Note

Common Object Request Broker Architecture

Change Request Note

Computer Supported Cooperative Works

Chief Technical Officer

Database Management System(s)

Distributed Controlled System

Data Flow Diagram

Event Condition Action

Electronic Data Process

ElectricallElectroniclProgrammable Electronic System

Entity-Relationship Diagram

Entity Relationship Modelling

Equipment Under Control

File Transfer Protocol

Final Switching Device

Generalised Process Structure Grammars

Graphic User Interface

Globally Unique Identifier

High-level Petri Nets

- xx-

HR

HTN

HTTP

lE

lEe

IDL

IETF

IIS

IN

I/O

IPO

IS

IT

JCALS

KlF

MIME

MOM

NIS

NPD

NR

ODBC

OIS

OMG

OMT

0-0

OSSD

PA

PERT

PIF

PN

Highly Recommended

Hierarchical Task Network

Hypertext Transfer Protocol

Internet Explorer

International Electrotechnical Commission

Interface Definition Language

Internet Engineering Task Force

Internet Information Server

Information Navigation

Input / Output

Input Process Output

Information System

Information Technology

Joint Computer-aided Acquisition and Logistics Support

Knowledge Interchange Format

Multipurpose Internet Mail Extensions

Message Oriented Middleware

National Institute of Standard and Technology

New Product Development

Not Recommended

Open Database Connectivity

Office Information System

Object Management Group

Object Modelling Technique

Object Oriented

Output Signal Switching Device

Planning Assistance

Program Evaluation and Review Technique

Process Interchange Format

Petri Nets

- xxi-

PSL

R

RC

SIL

SMTP

SWAP

TBPM

TCPIIP

UDP

UML

VB

WAPI

WfM

WfMC

WfMF

WfMS

WPC

WPDL

XPDL

XML

Process Specification Language

Recommended

Recommendation Check

Safety Integrity Level

Simple Mail Transfer Protocol

Simple Workflow Access Protocol

Task Based Process Management

Transmission Control Protocol over Internet Protocol

User-Defined Process

Unified Modelling Language

Visual Basic

Workflow Application Programme Interfaces

Workflow Management

Workflow Management Coalition

Workflow Management Facility

Workflow Management System(s)

Work Processing Centres

Workflow Process Definition Language

XML Process Definition Language

eXtensible Markup Language

- xxii-

Part 1

Introduction

Chapter 1. Overview

1.1 Introduction

Chapter 1

Overview

"To be, or not to be: that is the question:

whether 'tis nobler in the mind to suffer

the slings and arrows of outrageous fortune,

or to take arms against a sea of troubles,

and, by opposing, end them. "

- William Shakespeare

Workflow Management is a fast evolving technology which is being increasingly exploited by a

variety of businesses. Its primary characteristic is the control of tasks execution in accordance

with a well defined process plan. After a decade of endeavour, current workflow management

systems are widely used for the management of "administrative" business processes. However,

they lack flexibility to cope with the more dynamic situations encountered in ad-hoc and

collaborative engineering processes.

• I .

Chapter J. Overview

This chapter gives an introduction to this thesis. It is organised as follow: § 1.2 identifies the

problem addressed in this thesis and its objectives; § 1.3 discusses the approach adopted to meet

these objectives; §1.4 outlines the contributions; and the thesis organisation is given in §1.5.

1.2 Problem Statement and Objectives

The problem addressed in this thesis is formulated as:

How is it possible to provide intelligent support for the management of dynamic

engineering processes, with the focus of ensuring that their specification and

peiformance are compliant with particular industry standards?

Recently, significant efforts have been made in increasing the flexibility of workflow

management where a variety of technologies are proposed. There is, however, no existing

framework to integrate these cutting edge technologies to support dynamic engineering

processes.

As regards to the management of an engineering project, significant resources are devoted to

managing its compliance with industry standards to ensure product acceptability. In this context,

process compliance means that there is a clear description of the design stages and, at each stage,

the inputs to that stage are fully and unambiguously defined, and also all the objectives and

requirements of the standard are met. The standards are generic but every application is different

because of the differences in the project details. Thus, ensuring the compliance of a user-defined

process with a particular standard forms a key challenge.

In an engineering project, particularly in the safety engineering domain, much of the time of

developers, managers and quality assurance teams is occupied with tracking and managing the

compliance of the project. A workflow system with compliance management ability can not only

shorten the development time and reduce the cost, but also ensure the quality of the process and

product. Thus, a solution to this problem is strongly industrially motivated.

It is not the intention of this work to substitute the current risk assessment methods with a

computerised system. Instead, the aim is to endow workflow systems with compliance

management ability to provide assistance in the management of an engineering project. As the

non-compliant elements of a process are identified and handled earlier, the required development

- 2-

Chapter 1. Overview

time and cost will be reduced.

The objectives ofthis research are:

• To develop a novel framework that provides a platform where a variety of cutting edge

technologies work together to provide flexible support for the management of dynamic

engineering processes.

• To develop a series of compliance check algorithms to ensure the specification and the

execution of a process comply with a particular standard.

1.3 Approach

In order to meet these objectives, the thesis explores three parallel and interrelated threads:

• The concept of adaptive workflow management and its enabling technologies.

• The specification of engineering process characteristics in relation to workflow

management.

• The computer support that is required for compliance checks, using IEC61508

international safety standard as an example.

Insights achieved from understanding the concept of adaptive workflow management and its

enabling technologies are used as a basis for the proposal of a new framework. Workflow

management is a relatively new technical field with around ten years' history. This report focuses

on the utilisation of various technologies in increasing the adaptation of workflow management

systems to the dynamic world.

Engineering processes differ from business processes for which the current workflow

management systems are well suited. Hence, the characteristics of engineering processes have to

be studied and accordingly the requirements of a system which is to succeed in supporting

engineering processes are identified. A novel workflow management framework which builds on

a variety of technologies is proposed to deal with such requirements.

The international safety standard IEC61508 is used as an example for compliance management.

The proposed solution to ensure the compliance of a process with a selected standard is to use a

software agent to match a user defined process against a model of standards during the process

build-time and run-time to identifY possible errors. To do so, there must be a representation of

-3-

Chapter 1. Overview

the standards in the system. The modelling of a standard in terms of process management are

studied and discussed. Finally, a number of compliance check algorithms are developed for

matching the process against the model of standards.

To assess the proposed approach, several key components are implemented and three evaluation

studies are performed.

1.4 Contributions

The contributions of this thesis are:

• Through the application of workflow management to engmeenng processes, it has

contributed to an enhanced understanding of "adaptive workflow technology".

• It contributes to the compliance domain by empowering the compliance management at

process level where errors are detected and prevented in advance of process execution.

• The novel feature of process compliance management creates a new research direction in

the workflow community, and its application in managing project compliance indicates the

importance of this meta-process control capability.

• A new approach of using set theory to tackle the problem of traditional "distance"

approach to assess goodness of fit (GOF) between two concepts of interest.

• A new approach of integrating the concept of CSCW with workflow management is

proposed, allowing users to collaborate while the process is running.

• A new approach of agent selection based on fuzzy capability matching.

• A novel process model that further captures capability knowledge and enables that

information objects are linked to their related tasks.

• The proposed framework gives a platform where a variety of technologies can be used to

increase the required adaptation of a workflow management system in supporting dynamic

processes.

1.5 Thesis Organisation

This thesis is organised into four parts where each part focuses on a particular subject and can be

read separately based on the reader's background, as depicted in Figure 1-1.

·4·

Chapter 1. Overview

Part 1: Introduction

Chapter 2 gives an introduction to workflow management technology, process modelling

paradigms and the latest workflow standardisation works.

Chapter 3 gives a review of several adaptive workflow products and research prototypes. A

variety of different technologies together with their utility in increasing the adaptation of

workflow management are introduced and discussed.

Part 2: Supporting Engineering Processes with a Novel Framework

Chapter 4 studies engineering processes, identifies their characteristics and outlines the

requirements of a workflow system that is to succeed in supporting engineering processes.

Chapter 5 introduces the proposed framework which integrates several technologies to address

the requirements identified in Chapter 4. The comprising components and their underlying

technologies are presented and discussed.

Part 3: Managing Process Compliance

Chapter 6 gives an overview of the international safety standard IEC61S08 and discusses the

modelling of a standard for meta-process management, followed with a proposed solution.

Chapter 7 presents the proposed solution of managing process compliance which is based on the

concept of process model reasoning and compliance checks for ensuring standard compliant.

Part 4: System Development and Evaluation

Chapter 8 describes the design and the implementation of the system. The process model to

support the proposed framework is introduced. The implementation architecture is presented,

followed with the proposed fuzzy matching algorithm for agent selection.

Chapter 9 evaluates the system. Three cases are studied. A comparison, in terms of flexibility, is

also made between Compliance Flow and the adaptive workflow systems discussed in Chapter 3.

Finally, Chapter 10 concludes the thesis with a summary of contributions, limitations and future

directions.

·5-

Chapter 1. Overview

I:
I: t- Reader with interest in workflow

I:
" >-
I:

management system and its
enabling technology

!'~" _ Readerwlth Interest In process
compliance management

" I:

.,
"
"
" ..

.,
"
"
"
"

Cl1apler 1
OVerview

----------.

Chapter 7
Managing Process
Compliance Using

Process Model Reasoning

Chapter 9
Evaluation and Comparison

Chapter 10
Conclusion and Further

Wo",

Figure 1-L Thesis organisation.

r:
P- Reader with a good understanding

[:

': of adaptvie workflow management
~ or with Interest In the system '4

framework ~ .,
'" 4

I:
r: Reader with Interest In system
i= development and evaluation

!:
:l ..
" .,

,6,

Chapter 2. Introduction to Worliflow Management System

2.1 Introduction

Chapter 2

Introduction to
Workflow Management System

"What we observe is not nature itself.

but nature exposed to our method of questioning. "

- Werner Heisenberg

Workflow technology has been used for decades. It derives partly from the Office Information

System (arS) field and partly from the Computer Supported Cooperative Work (CSCW) field. A

workflow system includes a set of technological solutions intended to automate or support

business or work processes that are described in an explicit process model. Therefore, workflow

technology can be seen as a specific type of groupware for supporting collaboration work in

which procedures are planned and expressed in process models. There are two perspectives of

workflow: the group work support perspective and the organisational process automation

. 7·

Chapter 2. Introduction to Workjlow Management System

perspective, which shows the breadth of work flow as a technology area.

This chapter gives an overview of the general features of workflow management systems and

their enabling technologies. It is organised as follow: §2.2 gives the definitions of some

important workflow terms and concepts; §2.3 identifies the workflow characteristics; §2.4

presents Ader's workflow classification scheme; §2.5 discusses contemporary process modelling

and workflow specification techniques; §2.6 introduces the idea of workflow engine and

discusses implementation issues of workflow systems; §2.7 describes the standardisation effort

in the workflow community. This chapter ends with a summary section.

2.2 Definition of Work flow Terms

2.2.1 Workflow

The Workflow Management Coalition (WfMC) published a glossary of terms related to

workflow (WfMC, 2000a). Workflow is defined as:

"The automation of a business process, in whole or part, during which documents,

information or tasks are passed from one participant to another for action,

according to a set of procedural rules"

Georgakopoulos et al. (1995) gave a more explicit description of the relationship between

humans and computer systems in a workflow process. They defined a workflow or a process as a

collection of activities organised to accomplish some business goals. An activity can be

performed by one or more software systems, one or a team of humans, or a combination of these.

Human activities may range from interacting with a computer closely or loosely. In the "closely"

case, a human uses computer tools as part of an activity. In the "loosely" case, the human uses a

computer system only to communicate that an activity has been completed. In addition to a

collection of activities, a workflow may include constraints that influence the order of

performing activities as well as information flow between them.

2.2.2 Process Definition, Process Instance and Activity Instance

A process definition provides a template for an actual process instance. A single process

definition may be instantiated many times to create a number of process instances. Each process

- 8-

Chapter 2. Introduction to Workjlow Management System

instance consists of activity instances to be executed. Enactment involves instantiating a process

definition by assigning activities to humans and software system while maintaining the

constraints between activities (Jarvis, 1998). These relationships are illustrated in Figure 2-1 as

an Entity-Relationship Diagram (ERD).

Process Definition

l

Realisation of 1
Process Instance --.-----~ Activity Instance

Is based upon

Figure 2-1. Process definition to process instance object model.

The relationships between process definition, process instance, activity instance, and the users of

workflow systems are illustrated in Figure 2-2. The process definition on the left is instantiated

twice to create two separate process instances. The activities within each process instance are

assigned to individuals for execution via work lists.

r;::~W:::O:;'k~U='t:;:' ~ -'L
Work Item 1 ~

't<r~W:::O:,:'k~U:::'t:;;2 ::::;-j-'L
WorkUem3 A
Work Item 4

,---.. ----.------.- ---... -------.-.......... ------·----··--···--··t-------· .. ··· .. --... ----...... ---.... ---... -.-.----.. ----~-..... -- ... -.-... --.-----.-.... -------.------.----.--.--.--.--."'_'-
Process Definition

,
Process Instance Work List

Figure 2-2. Process Definitions, Process Instances and Work Lists.

2.2.3 Workflow Management System

Workflow Management System (WfMS) is a system that aims to provide computer-based

support for the task of workflow management. It supports the specification (build-time

functions), execution (run-time control functions), and dynamic control of workflows involving

humans and information systems (run-time interactions) (McCarthy & Sarin, 1993). WfMS runs

·9·

Chapter 2. Introduction to Workjlow Management System

on one or more workflow engines that are able to interpret the process definition, interact with

knowledge participants and, where required, invoke the use ofIT tools and applications (WfMC,

2000a). In some workflow systems, the workflow engines are located in different areas and the

communication between them is through the Internet.

Figure 2-3 shows an outline of workflow management architecture. The process analysis,

modelling and definition tools facilitate the specification of the components of a workflow as a

process definition. The workflow enactment service enacts a process definition by assigning

tasks to humans and software systems while also maintaining the constraints between tasks. The

workflow control data represents the dynamic state of the workflow system and its process

instance, which is managed and accessible by the workflow management system or workflow

engine. The workflow relevant data is used by the workflow management system or workflow

engine to determine the state transitions of the workflow instance. The application data is strictly

used by applications supporting the process instance.

BuHdTIm.

Process Design
&. Definition

Run Tfme

ProceSS' Instanciation
& Control • t Process change.

I WorkflowEnactment SelV"ice I ~Worknow Control Data

Figure 2-3. Workflow system architecture and data structure (WfMC, 2000a).

2.3 Workflow Characteristics

The essential workflow characteristics are persons, tasks/activities, application tools and

resources (Marshak, 1994; 1997). The (role-playing) persons perform tasks using application

tools that provide access to various shared information resources. This characteristics model of

workflow is shown in Figure 2-4.

- /0-

Chapter 2. Introduction to Workflow Management System

Business Process

Figure 2-4. Characteristics of work flow (Marshak, 1994).

Marshak (1994; 1997) defines the "3Rs" and the "3Ps" of work flow technology:

Rules. Workflow systems take various business rules into account. The rules should be

maintainable and understandable by business professionals.

Routes. A route is strongly coupled to the concept of information logistic that typically support

organisation flow of all kinds of objects including documents, forms as well as processes.

Roles. Information is routed to roles rather than to a particular person. The role in an

organisation is a group of people with the required skills and authority.

Processes. Business processes span over organisation units and legacy information systems.

Policies. Policies correspond to a normative process model that describes how certain processes

should be handled.

Practices. This is the way that a work is actually performed in the organisation.

2.4 Workflow Taxonomy Scheme

There are several attempts to classify current workflow products. The most useful and well

known is the Ader's Workflow Classification Scheme (Ader, 1997) which consists of four

categories: production, administrative, collaborative and Ad-hoc. Other works include Human

Oriented and System-Oriented classifications (Georgakopoulos, 1995), and Abbot and Sarin's

• lJ •

Chapter 2. Introduction to Workflow Management System

Dimensions (Abbott and Sarin, 1994).

2.4.1 Production

Production workflow systems are used to manage large numbers of similar tasks, and to optimise

productivity. This can be achieved by automating numerous highly repetitive and complex

activities, usually in a non-stop manner to achieve Straight-Through· Processing. Human input is

required only for managing exceptions. They can be tightly integrated with legacy systems.

2.4.2 Administrative

Administrative workflow systems are used to automate administrative tasks driven by form

filling. A very important requirement of this type of tool is that processes can be easily defined.

The process definition is hardly changed during the execution. Typically, there are many

different processes running concurrently and they tend to involve numerous staff, thus, flexibility

is more important than productivity in administrative workflow systems.

2.4.3 Collaborative

Collaborative workflow systems are used to automate business-critical processes that are not

transaction oriented. They are used to support collaborative teamwork. Groups can vary from

small, project-oriented teams to widely dispersed people with common interests. Throughput is

not an important consideration, and process definitions are not rigid and can be amended

frequently. The use of Internet and the World Wide Web (W3s) to support team communications

across organisations is a critical success factor.

2.4.4 Ad-hoc

Ad-hoc workflow systems are used to support routing and tracking of routine office work that is

based on nnstructured information. The process definition can be created and amended very

quickly to meet new circumstances. Ad-Hoc workflow systems maximise flexibility in areas

where throughput and security are not major concerns. Unlike production workflow systems

where the processes are owned at the organisation level, in Ad-hoc workflow systems the

practitioners own the processes.

·12·

Chapter 2. Introduction to Workflow Management System

The most important distinction between various workflow types is the distinction between

production workflow and Ad-hoc workflow. It differs in who is allowed to change the process

definition (administrators or users) and when it can be changed (build-time or both build-time

and run-time).

2.5 Process Modelling and Workflow Specification

The purpose of process modelling is to produce an abstraction of a process that serves as a basis

for workflow specification. The model of a process enables users to understand what tasks,

dependencies among tasks and roles are necessary to the process. The level of process

abstraction in a workflow specification depends on its intended use. The workflow specifications

provide understanding, evaluation, and redesign of processes at conceptual level, and describe

the details of the processes at lower levels for workflow implementation.

Many process modelling methodologies, workflow specification techniques and languages have

been proposed to deal with various business processes and workflow types. A "silver bullet" for

all types of domains is considered unrealistic. Instead, methodologies and techniques should be

suitable for their problem domains (Barros and Hofstede, 1998).

2.5.1 Workflow Process Modelling Methodologies

Process modelling methodologies can be divided into three main categories, namely

communication-based, artifact-based and activity-based.

2.5.1.1 Communication-based Methodologies

The communication-based methodologies are based on the "Conversation for Action Model"

(Winogard and Femando, 1986). The methodologies assume that the objective of business

process re-engineering is to improve customer satisfaction. Every action in a workflow system

has four phases based on communication between a customer and a performer, as illustrated in

Figure 2-5.

Request is the stage when a customer requires an action to be performed. Negotiation is entered

when both customer and performer agree on the action to be performed and define the terms of

satisfaction. Performance is the stage where the action is performed according to the terms

- J 3-

Chapter 2. Introduction to Workjlow Management System

established. Acceptance is the stage when customer informs satisfaction (or dissatisfaction) with

the result of performing action.

~ ___ R-,eqy ~Orti_at_io_n_--,
I Customer I Workflow Loop I Performer I

AccePta~ ~ormance
Figure 2-5. Conversation for Action Model.

There could be more than one workflow loop in a process model, each of which can be joined

with other workflow loops to form a complete business process. The performer in one workflow

loop can be a customer in another workflow loop. In this way a network of connected loops is

generated recursively. As a result, an organisation can be seen as a network of a series of

workflow loops that fulfil a business process.

Figure 2-6 gives an example of equipment procurement using communicated-based approach to

define a process as a network of workflow loops.

Customer
~~ Procument

Office
Procure Equipment

Procument V'fy S~tat
Office ~;/

Procument ?::..G t B~d
Office e ~

Procument 0 d~
Office ~~

Accounts
Office

Vendors

Vendor

Figure 2-6. Communicated-based workflow of procure equipment process.

In Figure 2-6, the performance of Procedure Equipment loop requires three child loops. The

three child loops are: (1) verifYing of the account of the customer; (2) getting bids from vendors;

and (3) ordering the equipment. While the procurement office serves as a performer in the main

-14 -

Chapter 2. Introduction to Workjlow Management System

loop, it acts as a customer in the three child loops. The satisfaction of the three child loops

represents the end of the performance stage ofthe main loop, followed with the acceptance stage.

The communication-based methodologies emphasise the customer, which assumes the objective

of business process is to satisfy customer. However, they are not appropriate for modelling

business process with objectives other than customer satisfaction. In addition, the approach does

not support the development ofworkflow implementatious for specifications (Georgakopoulos et

aI., 1995). Other specifications languages that are in different form of process representation is

required to model the process for workflow engine execution.

The "Action Workflow Analyst" tool (Medina-Mora et aI., 1992) from Action Technologies is

based on the "Conversation for Action Model" as is the "Business Transformation Management"

tool from Business Transaction Design (Marshak, 1994).

2.5.1.2 Artifact-based Methodologies

Artifact-based methodologies focus on the objects, such as data or information that are created,

modified and used within a process. The modelling process is based on work products and their

path through series of workflow activities. An example of equipment procurement using

artifacts-based approach to define a process is given in Figure 2-7.

Customer-Proc't Office
Negotiation

Communication
with Vendor

Bids

Ordering

o Refinement

Equipment
Requirement

Verification of
Customer

Status

Equipment

) -a-;.n
End

Deflivery

Figure 2-7. Artifact-based workflow of procure equipment process.

- 15-

Chapler 2. Introduction 10 Workjlow Management System

2.5.1.3 Action-based Methodologies

Action-based methodologies emphasise modelling the work instead of modelling the

commitments among people. Workflows are modelled as a series of tasks with ordering

constrain. Workflows may be decomposed into sub-workflows at lower level of abstraction.

Unlike communication-based methodologies, they do not capture objectives such as customer

satisfaction. The main advantage is that this model can be translated into a workflow

specification as the activities are modelled.

Figure 2-8 provides an example of equipment procurement using activity-based approach to

define a process. The activity Procure Equipment consists of three sub-activities namely Verify

Status, Get Bids and Order. Arrows show the dependencies among the activities.

Procure ~

• Equipment

()
Consists of

I I
~ {verify Status]

~(
Get Bids 1 (

Order 1 -.... 1 ~ J

Figure 2-8. Activity-based workflow of procure equipment process.

The WfMC adopts activity-based methodologies for process modelling. This characteristic is

reflected in their taxonomy of workflow concepts presented in Figure 2-9. In this figure, the

concepts related to organisational and mission-critical knowledge are absent. The expanded view

of organisational process might include representations of authority. Several research projects

such as Task-based Process Management (TBPM) (Stader et ai, 2000), address various aspects of

organisation theory in workflow process.

Many commercial WfMS provide activity-based workflow models. For example, workflow

models supported by InConcert (Marshak, 1997) (McCarthy and Sarin, 1993) are comprised of

tasks. Each task may be further divided into sub-tasks. Each task has dependencies on other task

at the same level. Task may also contain a description of the capabilities required of a performer.

GTE's RAPID (Eckerson, 1994) also adopts activity-based methodologies. There are two

workflow models in RAPID: a high-level workflow model for performing conceptual business

process analysis and a lower-level model for describing the corresponding information process.

·16·

Chapter 2. Introduction to Workjlow Management System

A high-level workflow model contains the tasks for a particular business process. These tasks

can be ordered to indicate alternatives or parallel execution of business process steps.

BII.d.nt# Prote.
(it _ what "" IIIhIWd to MJ>J"n)

.<kfl"'7 ~~~,"6ya
- .. Proc.u.s ~flnitiQD

(a 11JprIl86~to.tfult t(lffuli
It t11t11J!did to iappn)

_ •. w". . . . !,"""M"~

Workflow Man.gement ")'Item
(i:.<>'lttrrJ14al1t(IIM/ed mpectl

t,iftb bwlni!lll pr<><me)

"'i
Procfll& Instmus

(a f8prW8f11lltioll r:fwTlat
<>;tuQlIJ' MtpPf4t.r.g)

A.1ttOOl.:lttd At.dvttlt$... Adi.nty Instlllce,
(w~tciartMtmaJU'lf:td«l

JX7t<d'th Wor.iflow [;;Num) d!vt/lg r.ucvtw~ A'"' we repr,"Rled by illclud,

all4lw

InVOk6d
Wwk 1tm18 AppUcatioru

(taJkI a/kxatfd wa (Cr.mplltw todtklpp/t(;al14IIs
W"'"~~ p.;II"ltcjpaJl!i wed tQ nlPP()I't all acttvlt)?

Figure 2-9. WfMC's relationships among basic terminology (WfMC, 2000a).

2.5.2 Process Descriptive Views

It is noted that for anyone process or workflow representation, all three methodologies can be

used simultaneously. The concepts that are used for the purpose of process modelling include, or

combine, the three process descriptive views, namely functional view, structure view,

behavioural view (Christie, 1995).

2.5.2.1 Functional View

The functional view is focused on activities and the entities that flow into and out of these

activities. This view is often expressed based on Data Flow Diagrams (DFD).

A DFD is essentially a static structure that expresses all possible data flow and data store

interactions of a process. The strength of DFD is that its basic concepts are simple and general.

Its decomposition feature provides comprehensibility. DFD is useful for the early phase of

analysis where the broader functionality of a system is still being determined. An example of a

procure equipment process modelled using DFD is given in Figure 2-10.

- 17-

Chapter 2. Introduction to Worliflow Management System

equipment

Vendor

Bid

equipment vendors

issue

confirm 1_--__.

Figure 2-10. Data flow diagram of procure equipment process.

The process control, however, is implicit in detailed process specification meaning that the

execution structure is hidden or unavailable. The absence of formal semantics is a critical

omission (Opdahl and Sindre, 1993), which lead to ambiguities and inconsistencies. As a result,

the precision that workflow specification requires cannot be achieved.

2.5.2.2 Structural View

Structural View is focused on the static aspect of the process. It captures the objects that are

manipulated and used by a process and the relationships between them. This view is often

expressed based on the Entity-Relationship Diagrams (ERD) or more comprehensive object

diagrams that are used by various object-oriented methods, such as Object Modelling Technique

(OMT).

Figure 2-11 is an example of procure equipment process described using OMT diagram. This

object model can be interpreted as: Procurement Office and Accounts Office are the

specifications of an Office. Customers can request equipment from Procurement Office and their

Accounts are managed by the Accounts Office. Procurement Office is associated with Accounts

Office for the purpose of customer verification. Procurement Office is associated with Vendors

and base on the Bids the selected Vendor is used to provide the required equipment to Customer.

The relationship between the objects in a process can be easily captured using object-oriented

modelling. Objects can be used to model workflow resources such as documents, processes and

performers. The main advantage of object-oriented modelling is that objects provide a close

- 18-

Chapter 2. Introduction to Workflow Management System

mappmg to real-life things and message passing is more powerful than the function call

approach.

I
receives
equipme nt

I

has

Customer I I Office I
equipment A

I
Procurement verifies

Office customer with

I issue

selected

Vendor
I get bids J
I l

I

Accounts J

held by

I
Accounts

Office

1
Bids I

Figure 2-11. OMT object diagram of procure equipment process.

2.5.2.3 Behavioural View

The behavioural view is focused on the execution dependencies between processes. It captures

the control aspect of the process model which is often expressed based on the state diagram or

Petri Nets.

request account not verified •

equipment
r---~~~~~.

Figure 2-12. OMT state model integration for the procure equipment process.

An example of the procure equipment process defined using state diagram is given in Figure

2-12. The event request (in the state diagram) triggers the action of account verification to create

a Bid object (having no previous state) in the state Verifying Status. The Bid object is stated

Getting Bids after account is verified and stated Ordering after a vendor is selected and the order

is in process.

- 19-

Chapter 2. Introduction to Workjlow Management System

On the other hand, Petri Nets (PN) can precisely capture behavioural aspects of process models

in a formal and expressive way, with the ability to exhibit asynchronous and concurrent activities

(Peterson, 1977). PN are widely used in the context of logistics and manufacturing production

control. Through PN, a precise integration of data and process models is possible. High-level

Petri Nets (HPN) are PN extended with 'colour', 'time' and 'hierarchy', which have been

proposed to improve the expressiveness and readability of classical PN (W.M.P. van der Aals!,

1998).

The Behaviour Network Model (Kung, 1993) integrates DFD, ERD and PN together, which

transfer behavioural aspects from higher levels of abstraction to the lowest level (Barros and

Hofstede, 1998). DFD are used at high levels, and each process is transformed into a PN at

lowest level. A PN is tightly coupled with an ER schema. Thus, PN specifications replace

traditional structured English. At all levels of abstraction, model integration is process-centric.

Using graphical representation in behavioural process models, however, is problematic, even for

basic specifications the process models will become cluttered. The use of

abstraction/decomposition and conceptual specification languages can reduce the impact on the

graphical representation. Using PN does not guarantee a formal foundation; formal semantics

still have to be defined. Algebraic systems like Process Algebra provide an alternative

mechanism for the definition offormal semantics (Barros et aI., 1996).

2.5.3 Workflow Specification

A workflow needs to be specified in some way to enable a workflow engine to understand and

execute it. A number of workflow specification languages have been defined for representing

process models. However, almost all vendors use proprietary formats for process specification,

which makes it difficult to migrate a process definition from one workflow engine to another.

Thus, several initiatives have emerged that focus on the development of a standard language of

the workflow specification.

Current workflow specification languages describe a workflow in either text format or visual

diagram. The advantage oftext-based languages is the ability to interchange a process definition

among different workflow engines which adopt the same language. Text-based languages enable

different visual presentations of a process model which will be turned into a text format for

·20·

Chapter 2. Introduction to Workjlow Management System

execution.

On the other hand, a standard visual presentation of process model enables the integration of

different tools from different suppliers at information system (IS) level. However, the lower level

process specification converted from visual diagram for workflow engine interpretation in these

tools may vary, and therefore a conversion is also necessary when exchange a process definition

between two different workflow engines. A workflow system may adopt two workflow

specification languages, one for process model presentation and another for process interchange.

Following are six prevalent meta-languages (Michael and Joerg, 1999) for process specification.

A meta-language is a superset of constructs that can be found in process modelling languages

and that can be used to map concepts from one process modelling language to another.

2.5.3.1 XML Process Definition Language

The XML Process Definition Language (XPDL) (WfMC, 2002) is an extension of the Workflow

Process Definition Language (WPDL) which was first introduced by WfMC in 1994. XPDL uses

eXtended Markup Language (XML) to represent a process, forming a common interchange

standard that enables different workflow products exchange the process definition through a

batch import/export procedure. The keywords of XPDL are based on the terms defined in the

WfMC glossary.

1
Workflow Prac8$$

Definition

~~ "
.

1
Activity Set

1 1
1 rlook A<11v11yi -I-

la System
and Environmental Workflow

Workflow Process

~ S~"'::::~'I Data Relevant Data
Activity f'J"

I I)
Atomic I

woaflow~J . r .,""". Activity
Participant

·F" I Specification ·T.

f W'''d,owl I TranSItion. ~ Application
D8(;iaratlon Information

resource Repository
or Organizational

Model

Figure 2-13. Workflow process definition meta-model (WfMC, 2002).

·21·

Chapter 2. Introduction to Workj1ow Management System

The language is design based on a meta-model which defines the basic components that have to

be supported by a workflow engine. The meta-model is depicted in Figure 2-13. The core

concept of XPDL is a Workflow Process Definition that is comprised of one or many Workflow

Process Activities. The ordering of activities is determined by Transition Information elements

that connect single activities. For more complex routing, a Transaction may relay on Workflow

Relevant Data. The organisational model and system environmental mode are specialisation of

the Workflow Participant Specification and thus are not elementary components.

2.5.3.2 Process Interchange Format

The Process Interchange Format (PIF) is built on top of Ontolingua (Gruber, 1992) and

Knowledge Interchange Format (KIF) (Genesereth, 1999) that is designed for the interchange of

knowledge among separate computer systems. The advantage of PIF is its ability to explicitly

represent the similarities and differences among related processes and to easily find or generate

sensible alternatives on how a given process could be performed (Lee et ai, 1998).

Figure 2-14. Hierarchy ofPIF core components (Lee, 1999).

The description of a process in PIF is based on a set of frame definitions and each of which

denotes an entity type that can be instantiated. These types are arranged in a hierarchy as shown

in Figure 2-14. Each type has a set of predefined attributes that define various aspects of the

instance. The attributes of each type can be inherited into its sub-types and their instances.

- 22-

Chapter 2. Introduction to Workflow Management System

The PIF is a powerful exchange platform for process models. Through its modular design, it can

be easily extended to accommodate the needs of workflow process modelling.

2.5.3.3 Process Specification Language

The Process Specification Language (PSL) steams from a National Institute of Standard and

Technology (NIS) project to investigate a common unifying model of processes. The core

concept of PSL for the mapping between two applications is to represent the processes of these

two applications using KIF and transformed into processes that conforms to the PSL ontology.

The basic components ofPLS are:

Activities - the tasks to be performed.

Objects - the resource, such as human resources or machines, or states, such as pre and post

activity state.

Timepoints - the temporal relationships between activities or the duration of performance.

Through this intermediate process, therefore, the process definitions can be exchanged and

understood by both applications.

2.5.3.4 Generalised Process Structure Grammars

While WPDL, PIF and PSL represent Input-Process-Output (IPO) process modelling languages,

Generalised Process Structure Grammars (GPSG) (Glance et aI., 1996) adopts a constraint-based

approach to process modelling. For the modelling of process, a specific grammar is constructed,

which contains the legal elements of the process together with their relationships. The grammar

spans a process space that contains only the vital constraints and construction rules, there are no

restriction by default until the time of process enactment. Each GPSG can contain two kinds of

rules:

Activity-centric rules. These rules separate a process goal into sub-goals together with

execution constraints.

Document-centric rules. These rules describe the data object used in process.

- 23-

Chapter 2. Introduction to Workflow Management System

GPSG-based process definition provides more flexibility during process enactment, because the

processes are not executed following a strict set of control flow paths and conditions, but rather

emerge within process space opened by the process-specific grammar.

Freeflow (Dourish et aI., 1996) is one of prototype systems using the GPSG approach for process

representation. The complexity of the constraint-based workflow model restricts the process

specification within textual representation approach, while graphical representation seems

difficult because of many possible paths of the process at run-time. The process specification of

transactional workflows using GPSG will result complex grammar, therefore it may be done

more efficiently using IpQ-based modelling language.

2.5.3.5 Petri Nets

The concept of Petri nets that was first proposed in Carl Adam Petri's thesis submitted in 1962

(Petri, 1962). A Petri net is a graphical and mathematical modelling tool. It consists of places,

transitions, and arcs, as illustrated in Figure 2-15.

a place wiih
twO token, a t7«".i!Wn

(exponwti.:t)
il.tmtGitiOll
(immediate)

a transition

2

Figure 2-15. Example ofa Petri Net.

Input arcs connect places with transitions, while output arcs start at a transition and end at a

place. Places can contain tokens. The current state of the modelled system is given by the

number of tokens in each place. Transitions are active activities, which are used to model

activities. The current state of the modelled system (the marking) will be changed when the

modelled activities occurs (the transition fires). The transitions are only allowed to fire when all

the pre-conditions for the activity are fulfilled (there are enough tokens available in the input

places). When a transition fires, it moves tokens from its input places to its output places. The

number of tokens move depends on the cardinality of each arc.

- 24-

Chapter 2. Introduction to Workjlow Management System

Petri nets are able to precisely and fully model the workflow processes. The relationship of the

components between workflow and Petri net are shown in Table 2-1.

The main distinction between Petri-net and other process modelling languages is that Petri-net is

state-based but others are event-based. In event-based methodology, the tasks are modelled

explicitly and the states between subsequent tasks are suppressed. There are several reasons for

using a state-based description (W.M.P. van der Aalst, 1996) in which the provision of a clear

distinction between the enabling of a task and the execution of a task is the key motivation.

Workflow Petri Net

Activity Transition

Subject / Role Attribute of Transition

Execution of Activity Firing of Transition

Control Flow Flow Relation

State of Work flow Marking of Petri Net

Table 2-1. Workflow and Petri Net.

2.5.3.6 Unified Modelling Language

The Unified Modelling Language (UML) defines a standard notation for object-oriented

systems. The UML is comprised of different diagram types, each of which provides the design of

different views of a system. However, no single notation in UML can be used to model all

aspects of a workflow model. Instead, several diagram types have to be employed in order to

model all aspects of work flow processes (Hruby, 1998). These diagram types include:

Use Case Diagrams. These diagrams are used to depict the interaction of a system with its

environment. The workflow process use cases can be used to model the interaction between

process and actors.

Sequence Diagrams. These diagrams depict the temporal and logical order of activities and

involved participants. The different actors within a workflow process can be arranged in parallel

lanes in sequence diagrams, therefore the interaction between participants can be modelled in

- 25-

Chapter 2. Introduction to Worliflow Management System

workflow processes.

Collaboration Diagrams. These diagrams depict the interaction between actors and use cases

are described in terms of the messages that are sent between the different elements of the

diagram. In addition, collaboration diagrams also depict the ordering and directed relationship of

messages, thus it can be seen as an extension of Use Case Diagrams.

State Transition Diagrams. These diagrams depict all possible states of a use case and the

transitions between these states. In workflow management, a state transition diagram can be used

to describe the possible starting and ending point of a workflow model together with legal

transitions between states. In addition, state transition diagrams can also be used to describe the

transformation of process objects in a workflow process.

Activity Diagrams. These diagrams display all possible paths of action between activities. The

activity diagrams depict relationships between activities. The transition between two activities is

only active when the proceeding activity has finished and an optional constraint at the transition

is evaluated to be true.

The UML offers a variety of diagram types that accommodate several aspects of workflow

process modelling. However, there are still a number of shortcomings in UML with regard to

workflow process modelling (Wiegert, 1998), and the necessity of using different diagram types

to model all aspects of a workflow process makes the current UML standard difficult to be used

in current workflow tools. With the development of new versions of the UML this situation is

likely improve overtime.

2.6 Workflow Engines and Workflow Implementation

Workflow engines provide the run-time environment for activating, managing, and executing

workflow processes. There are three kinds of paradigms employed, namely scheduler-based,

data-flow and information pull paradigms (Cichocki, 1998).

Scbeduler-based paradigms. These paradigms are the most common and are supported by

WfMC, where workflow engines instantiate process specification, decomposes it into taskable

activities, and then allocates activities to be performed. The implementation and deployment of

the scheduler-based approach to workflow can be seen in terms of state transition machine. The

- 26-

Chapter 2. Introduction to Workflow Management System

process instances change state in response to workflow engine decisions or external events.

Data-flow paradigms. The workflow in these paradigms is referred to as an information

repository in which the data is passed between process components according to sets of rules.

Thus, the data-flow paradigms are especially suitable for the workflows that can only be partially

specified, dynamic and goal oriented.

Information-pull diagrams. These paradigms are developed base on the network and

information management, where the requirement for information drives the creation and

enactment of processes. This kind of diagrams is relatively new in the workflow domain.

The workflow engines manage the transition of process states, selecting process to be instantiate,

initiating activities by scheduling them to work lists, and controlling and monitoring the whole

progress. In addition, the contemporary WfMS should be able to perform enactment and

management of process within highly dynamic and uncertain environments. However, most of

the workflow engines are limited that are only able to provide support for predicable process and

handling expectable events (Georgakopoulos et aI., 1995) (Han et aI., 1998) (Peter et aI., 1999).

2.6.1 Process Selection and Instantiation

The selection and instantiation of process templates is one of the key responsibilities of the

workflow engines. In response to some stimuli such as triggering event, the workflow engines

will select a suitable process from the template library. The workflow engines also handle the

instantiation of the relevant processes. There may have more than one applicable process against

the same stimulus; thus, the comparison of the triggering conditions must be performed in order

to select the most appropriate one.

2.6.2 Task Allocation

Once a process is selected and instantiated, the process manager forwards activities to a worklist

handler to control the task of selecting suitable performer for the activities. Each activity is

assigned to a process performer according to its capability and availability, with temporal and

ordering constraints of the activity. The worklist handler can be implemented as a simple in-tray

of work items, or a complex set of agenda-based load balancing and interrelated work

assignments with complex supervisory roles. Allocating tasks in workflow management involves

- 27-

Chapter 2. Introduction to Workjlow Management System

scheduling techniques. The techniques such as straightforward enumerative or heuristic-based

algorithms have been widely employed. Thus, the workflow engines take a centralised role in

coordinating the operation of performers.

The complexity increases when one of more workflow engines make up a workflow domain that

provides a homogeneous process execution environment. The workflow enactment service is

required to support the execution of specific workflow over one or more workflow engines,

which may be in one or more separate domains. Thus, more sophisticated approaches that

provide robust reactive scheduling is critical to accommodate this situation. For example, there

are some works on exploiting the dependencies between activities within the workflow task

allocation problem (Attie et aI, 1996).

2.6.3 Enactment Control, Execution Monitoring, and Failure Recovery

The workflow engines must maintain all the knowledge and internal control data to identifY the

states of each instantiated activities, transition conditions, and connections among processes. The

WfMC defines two types of data, as shown in Figure 2-3, which is relevant to the control and

monitoring of workflow processes:

Workflow Control Data. These internal data represent dynamic state of workflow system and

process instances. It is internal information managed directly by the workflow engines and is not

normally accessible by applications.

Workflow Relevant Data. These external data are used by WfMS to determine when to enact

new processes and when to transit among states within enacted processes. It may be manipulated

by workflow applications as well as by the workflow engine.

The WfMS provide support for monitoring of process execution and responding to the events

appropriately when detected. Some WfMS provide Graphic User Interfaces (GUI) that can

present different view of workflow execution. GUI are provided for both graphical workflow

specification and graphical task specification. Graphical workflow specification languages

support the iconic representation of workflow tasks and the ability to sequence those tasks

graphically. Managers can use these monitoring tools to access workflow statistics such as task

completion times, workloads, and user performances as well as to generate reports and provide

periodic summary of work flow executions.

- 28-

Chapter 2. Introduction to Workflow Management System

Contemporary WfMS have limited abilities to recover from failures. Workflow failures may be

caused by a process that cannot be completed correctly or on time, or by an unexpected event in

the environment. The work in this area at present has focused on the use of transactional methods

to ensure data correctness and reliability, especially when concurrent activities must share data.

The concurrency control is essential in many situations where two or more user access same data

object. However, commercial WfMS adopt different approaches to concurrency control. For

example, InConcert workflow supports a form of check-in and check-out on documents therefore

users can lock data to preclude concurrent access by other users.

Other WfMS, such as Lotus Notes, provide access to the same data object concurrently. When

one user update the data object, the existing version will be saved into the versions achieve

which would be merged later by users. The rationale for this approach is the assumption that data

object updates are rare. Thus, the consistency can be maintained by users through viewing the

version history and decide which one they want to keep. However, this approach is not suitable

for WfMS as there hundreds objects are accessed by multiple users. This will result in thousands

of object versions all requiring user intervention. Besides time consuming, it also poses a

problem for conflicting information that cannot be correctly merged.

Still other WfMS, such as StaffWare, use a pass-by-reference and pass-by-value approach for

concurrency control. Documents that can be shared among multiple users are passed by

reference (pointer).

There are two popular techniques in workflow recovery, namely checkpoint and rollback.

Checkpoint. These schemes rely on the use of log files that store safe states. Thus, system can

be reset to the latest available safe state when problem occurs, and then processing restarted.

Roll back. These schemes relay on the availability of invertible actions. The system will perform

corresponding inverse actions in reverse order when problem occurs, until the expected former

stage is achieved.

These recovery techniques are suitable for data-driven workflow. However, they are inadequate

for the domains that involve highly dynamic environment where changes continuously and

unpredictably, therefore actions may not be undoable. Thus, more powerful and flexible methods

- 29-

Chapter 2. Introduction to Workflow Management System

for failure recovery are required in order to be effective in a broader range of application

domains.

2.7 Workflow Standards

Today, many software vendors provide workflow management (Wfl\1) products, and there is a

continuous introduction of more products into the market. Individual product vendors focus on

particular functional capabilities where users have adopted particular products to meet specific

application needs. It has been recognised that all Wfl\1S have some common characteristics

which enable them potentially to achieve a level of interoperability through the use of common

standards for various functions. With the emergence of business to business (B2B), business

processes have a heavy dependence on widely-accepted and viable standards for their successful

deployment. There are a number of attempts to standardise workflow in many aspects. The

following introduces the latest works ofworkflow standardisation.

2.7.1 Workflow Management Coalition's Reference Model

The Workflow Management Coalition (Wfl\1C) was founded in 1993 as a non-profit,

international organisation of workflow vendors, users, analysts and university/research groups.

Wfl\1C has proposed a framework for the establishment of workflow standards, which includes

five categories of interoperability and communication standards that will enable multiple

workflow products to coexist and interoperate within a user's environment. The illustrations in

this section are taken from the standards published by Wfl\1C.

Wfl\1C's workflow reference model is developed from the generic workflow product structure by

identifying the interfaces within this structure, which enable products to interoperate at a variety

of levels. The reference model with its major components and interfaces is illustrated in Figure

2-16.

The interface around the workflow enactment service is the workflow application programme

interface (WAPI) - workflow APIs and Interchange format. WAPI denotes a unified service

interface to support workflow management functions across the five functional areas, rather than

five individual interfaces.

·30-

Chapter 2. Introduction to Workflow Management System

&: Monitoring
Tools

Figure 2-16. WfMC's Workflow reference model.

WfMC's standardisation is ongoing. Some of the interfaces are rudimentary specifications that

have been published and will be withdrawn when new version is derived.

2.7.1.1 Workflow Enactment Service

The workflow enactment service is a software service that may consist of one or more workflow

engines in order to create, manage and execute workflow instances. Applications may interface

to this service through the WAP!.

The workflow enactment service may be centralised or functionally distributed, homogeneous or

heterogeneous. Process definitions are imported and exported through interface 1: Process

Definition Tools. Interaction with external resources accessible to the enactment service is via

Interface 2: Workflow Client Application Interface. Specific applications to undertake a

particular activity is activated by interface 3: Invoked Applications. Interface 4: Workflow

Interoperability Interface enables a standardised interchange across workflow engines. Finally,

Interface 5: Administration & Monitoring Tools provides access to common administration and

monitoring functions, possibly in heterogeneous environment.

2.7.1.2 Interface 1: Process Definition Interchange

The output from a process modelling activity is a process definition, which can be interpreted at

run-time by a workflow enactment service. The nature of the interface is an interchange format

and API calls, as depicted in Figure 2-17. Interface 1 provides the support for exchange of

process definition information over a variety of physical or electronic interchange media.

- 31 -

Chapter 2. Introduction to Workjlow Management System

Workflow Reference Modoel

Process Analysis
Modelling & Definition

Tools

/0---....
o ~

, ~ ~~D
Workflow Enactment SelVice ~ 0

Process Structure
Activitic:3 & Navigation
Roles & Participants
Trigger CondItions
Appfication invocation
Etc ...

Figure 2-17. Process definition interchange.

By using this standardised from, the build-time and run-time environments are separated,

enabling a process definition generated by one modelling tool to be used as input to a number of

different workflow run-time products. In addition, it offers the potential to export a process

definition to several different workflow products that could cooperate to provide a distributed

run-time enactment service. The XML Process Definition Language (WfMC, 2002) is proposed

which takes advantage of eXtended Markup Language (XML) to support process definition

import and export over any transport mechanism.

2.7.1.3 Interface 2: Workflow Client Application Interface

Worklist is a well-defined interface which handles interaction between the client application and

the workflow engine. It presents to the end user the work items assigned by workflow engine that

he is responsible for. It may also invoke tools to present tasks and related data with

corresponding deadlines, status etc.

The Worklist handler is a generic application that may be part of a workflow system. It may also

be customised by a workflow user to integrate it with other applications or services, like e-mail,

into a common desktop environment. The overall approach to the workflow client application

API is illustrated in Figure 2-18. The work items in workIist may contain items that relate to

several different active instances of a single process and/or individual items from instantiation of

several different processes. In addition, it may be interacting with several different workflow

engines and several different enactment services.

·32·

- - - - - --------

Chapter 2. Introduction to Workjlow Management System

Worktlow Enactment SelVlce

SlandardisedAPIs & Interchange Command Set

Client
Ap~ljcation

ConnectioniDisconnection

Process and Activity Control Functions

Process Slatua Functiol\!

Worklist Manipulation Commands

Figure 2-18. Client application interface.

2.7.1.4 Interface 3: Invoked Application Interface

For invoking external applications, it is assumed that no particular WfMS will have sufficient

logic to understand how to invoke all potential applications that might exist in a heterogeneous

product environment. Thus, WfMC's initial work focuses on developing a catalogue of interface·

types, together with a set of APIs for use in future workflow specific applications, as illustrated

in Figure 2-19. The application agents are used to contain a variety of method invocation behind

a standard interface into the workflow enactment service, so that the invocation of applications in

heterogeneous environment becomes possible.

Workflow Enactment Service

Standardised APIs & Inter<:hange - ~ - - - - - - - - _ -

Application
Agent

Application Specific * * t Interfaces
(Local or Remote
Many Variant,)

Invoked
Applicatiorm

Workftow
enabled

Applications

Figure 2-19. Invoked application interface.

_~~J

Chapter 2. Introduction to Workjlow Management System

2.7.1.5 Interface 4: Workflow InteroperabiIity Interface

A key objective of the WfMC's standardisation work is to allow workflow system produced by

different vendors to pass work items seamlessly between one another. In order to achieve this

objective, a variety of interoperability scenarios have been developed and described.

Interoperability is described at a number of levels, ranging from simple task passing to full

workflow application interoperability with interchange of process definitions and workflow

relevant data. In addition, a number of solutions against each scenario are introduced. The

general nature of the information and control flows between heterogeneous workflow systems is

illustrated in Figure 2-20.

Workflow Enactment Service

.. ~
Activity or sub-process invocation
Process! Ac tivity status/co ntrol

Applicationlwork:fiow relevant dal:! transfer
Synchpoint coordination

Process deftnition read/write

Figure 2-20. Workflow interoperability interface.

2.7.1.6 Interface 5: Administration & Monitoring Tools Interface

The final area ofthe proposed reference model is a common interface standard for administration

and monitoring functions that will allow one vendor's management application to work with

another's engine(s). This will provide a common interface that enables several workflow services

to share a variety of common administration and system monitoring functions, as illustrated in

Figure 2-21.

·34·

Chapter 2. Introduction to Workjlow Management System

WAPI
Internce 5

I

Workflow Enactment SelVice
A

~ I L-====== ______ ~
Typical Functional Areas ~

User management
Role management
Audit management
Resource control

I

Process :mpervisoxy functions, ate

Workflow Enactment Service
B

Figure 2-21. Systems administration & monitoring interface.

2.7.2 Workflow Management Coalition's Workflow Interoperability

The WfMC Workflow Interoperability standard (WfMC, 2000b) defines an abstract protocol for

peer-to-peer interaction of workflow enactment services across different business domains, such

. as an inter-enterprise workflow. The standard concerns only the interoperability on the process

level; internals of a process instance need not to be aware across business domains.

According to the standard, a set of workflow process attributes define the operating context and

another set of attributes present results produced during the process lifetime, and another

property represents the current state of the process, including running, completed, and

terminated.

The standard defines three types of interactions namely Request, Acknowledgement and

Response between a service requester and a service provider. The request operations include:

CreateProcessInstance. These requests create new instances of workflow process to be

controlled by the service provider.

Get or ChangeProcesslnstanceState. These requests obtain or change the current remote

process state.

Get or SetProcesslnstanceAttribute. These requests provide access to the values of the context

of a process or result data attributes.

An Acknowledgement is used in asynchronous implementations by a service requester receiving

a Wf-XML message to inform the service provider that the message has been received.

- 35-

Chapter 2. Introduction to Workjlow Management System

The service provider answers each request with a matching response. The service provider can

also send notifications to the service requester, including:

ProcesslnstanceStateChanged. These notifications indicate that the state of the remote process

was changed due to some event in the service provider'S domain.

ProcesslnstanceAttributesChanged. These notifications indicate that the context or result data

of the remote process was changed.

WfMC also propose a binding of the standard which uses asynchronous interaction via email as

the transport with Multipurpose Internet Mail Extensions (MIME) coding of the information to

be exchanged. The MIME binding of standards (WfMC, 2000b) specifies the protocol for

exchange interoperability between service requester and service provider via email, taking into

account e-mail's unreliability as a communication vehicle.

2.7.3 Object Management Group's Workflow Facility

The Object Management Group (OMG) is an international organisation with over 800 members.

Founded in 1989, OMG promotes the theory and practice of object-oriented technology in

software development, defines and standardise a common architecture framework across

heterogeneous hardware and software platforms, so called the Object Management Architecture

(OMA) (OMG; 1995). WfMC and OMG attempt to coordinate their activities to integrate

workflow and CORBA technology. In 1997, a Request for Proposal (RFP) (OMG; 1997) for a

Common Object Request Broker Architecture (CORBA) based Workflow Management Facility

(WfMF) was issued by OMG., and a joint submission so called jFlow specification was adopted

in 1999 which is based on standards and technology interfaces defined by WfMC.

The WfMF specifies interfaces of a framework for implementation of distributed workflow

applications, enabling interoperability of workflow process components, monitoring of workflow

execution and association of workflow components to resources involved in a workflow process.

The core workflow interfaces are defined in the Workflow Model module presented in Figure

2-22 in UML class and object interaction diagrams and specified by Interface Definition

Language (IDL) interfaces.

- 36-

Chapter 2. Introduction to Workflow Management System

+reqlll'slt 0 .. 1

"perfurm.:>r "

.---=L---........... illstancO! of

,.
i'acllvily

+a.:signmoent

, ,

Io;:y:~ring

priorily ; long
nam~ ; Mrill!!;

Figure 2-22. Joint Workflow Management Facility Model (OMG, 1998).

The primary interfaces relevant to workflow interoperability that concerns mainly on service

requester and service provider are:

WtRequester. It represents the requests for some work to be done. As it provides operations to

be used by the process to propagate status update, it has a direct concern with the execution and

results of a workflow process.

WfProcess. It performs work requests and provides operations to control execution of the work

request and to observe its state.

WfProcessMgr. It presents a template for a specific workflow process which is used to create

instances of workflow process.

WfActivity. It is a step in a process that is associated with a single WfProcess. There are can be

many active WfActivity objects in a WfProcess at the same time. A WfActivity represents a

request for work in the context of the containing WfProcess.

- 37-

Chapter 2. Introduction to Worliflow Management System

WfMF also defines interfaces for worklist handling (WfAssignment and WfResource) and

process auditing (WfEventAudit). The standardisation of workflow process definitions is not

included in WfMF, but another RFP for extending WfMF to standardise these definitions is in

development.

The OMG workflow standard defines a unified object model covering the different WfMC

standards, which provides the base for future evolution of the WfMC standards. Examples

include the Simple Workflow Access Protocol (SWAP) and Wf-XML message set.

2.7.4 Simple Workflow Access Protocol

The SWAP proposal (Swenson, 1998) attempts to define an Internet-based workflow access flow

protocol to control and monitor workflow process instances. The basic idea of the SWAP

proposal is to render the interaction between components of workflow applications as XML

encoded, providing a platform for the integration of message-based enterprise application.

The SWAP object model defines four types of Internet resources namely Observers,

Processlnstances, ProcessDefinitions, and Activities. These correspond to the WfRequester,

WfProcess, WfProcessMgr, and WfActivity interfaces in the WfMF.

In order to achieve workflow and tool integration on the Internet, SWAP defines a Hypertext

Transfer Protocol (HTTP) based protocol to enable the task request and task execution to take

place at workflow engines located at different Internet locations. The information in the

interactions between the two parties is Extensible Markup Language (XML) encoded.

The SWAP proposal was presented to the Internet Engineering Task Force (IETF) at its 43'd

meeting in 1998. SWAP was successfully demonstrated in a prototype linking the V.S.

Government Joint Computer-aided Acquisition and Logistics Support program (JCALS)

workflow engine and IBM MQSeries workflow engine in different areas within the General

Dynamics Electic Boat Division offices (Computer Sciences Corp., 1998).

2.7.5 Workflow Management Coalition's Wf-XML Specification

The Wf-XML specification (WfMC, 2001) addresses the issues of interoperability between

workflow systems by taking advantage ofXML standards. It is based on the WfMC's reference

- 38-

Chapter 2. Introduction to Workflow Management System

model, OMG's WfMC and SWAP. Wf-XML provides a structured and well-formed XML

message set encoding for both synchronous and asynchronous message-handling that is

independent of the particular transport mechanism. Business data associated with an inter

organisational process would be passed as attachments in XML format, as show in Figure 2-23.

Otxnn hwtiuD ,;\.

XM'L Data Rel)rHelltxtion

Wr.XM,t...-lhsineu Process Description
a ,I)roceu: Control I)ata

XMI..JEDI~ A,ppUntlon Data

Figure 2-23. WfXML Data Representation

Orgalliution 8.

Wf-XML specification does not define a standard for business process interfaces; rather, it

provides a language and protocol that enables interaction among such processes. Wf-XML can

work with HTTP or a number other transport mechanisms, including emaiJ and direct

Transmission Control Protocol over Internet Protocol (TCP/IP) connection, Simple Mail Transfer

Protocol (SMTP) or Message Oriented Middleware (MOM).

The key benefit of Wf-XML is summrised by Jon Pyke, the Chair of the WfMC and Chief

Technical Officer (CTO):

"The release of this proven XML-based standard provides organisations with an

interoperability standard that facilitates a consistent method of interfacing between

disparate worliflow engines. This means that organisations will be able to simply and

effectively implement Business to Business process integration as well as maximising

their existing investment in BP technology and legacy applications ... There is no

doubt that take up of this standard will enhance the availability, quality and

timeliness of management information regardless of location and technology

deployed. "

·39·

Chapter 2. Introduction to Workflow Management System

2.8 Chapter Summary

This chapter gave a presentation of the workflow technology area, focusing on its underlying

technologies. It first, introduced some important workflow terms, concepts, workflow

characteristics, and Ader's classification scheme of workflow products. It further provided a

comprehensive discussion on the process modelling, the underlying concepts and workflow

specification languages. From which, it can be seen that the approach of process modelling is

application domain dependent. As each of WfMS within the market focuses on particular

functional capabilities, their approaches on process modelling are different. The chapter

proceeded to introducing workflow engines and their general functionalities. Finally, the

standardisation works in workflow community was given.

WfMC proposed a framework for the establishment of work flow standards, which includes five

categories of interoperability and communication standards that will enable multiple workflow

products to coexist and interoperate within a user's environment. To enable the interoperability

among different workflow engines, WfMC's workflow interoperability standard defines an

abstract protocol for peer-to-peer interaction of workflow enactment service across different

business domains. As the earlier standards of WfMC are not concerned with object-oriented

standards, a joint submitted WfMF called jFlow specification was proposed in response to a

Request for Proposal from OMG. WfMF proposes an object-oriented workflow model which

specifies interfaces for implementation of distributed workflow applications. With the emergence

of the Internet and B2B businesses, SWAP made an attempt to define a workflow access flow

protocol to control and monitor process instances over the Internet. By taking advantage of

XML, Wf-XML enables the business processes and their data to be passed among workflow

engines regardless of the location and technology deployed.

·40-

Chapter 3. Workjlow Adaptation and Enabling Technologies

3.1 Introduction

Chapter 3

Workflow Adaptation
and Enabling Technologies

"In order to Jorm an immaculate member oJ a flock oJ sheep

one must, above all, be a sheep. "

- Albert Einstein

The change in today's business process is a nonn, not an exception. It occurs at every level in an

organisation structure. To support current business process, WfMS needs to address these

changes.

This chapter introduces workflow adaptation and considers various enabling technologies. It is

organised as follows: §3.2 surveys four workflow systems which demonstrate the current best

practices of work flow flexibility; §3.3 introduces Han's framework of work flow adaptation. The

requirements of handling workflow adaptation at each level in the framework are identified; §3.4

·41 .

Chapter 3. Worliflow Adaptation and Enabling Technologies

presents and discusses the five technologies in the context of enabling adaptive WfMS; finally, a

chapter summary is given in §3.5.

3.2 Survey of Adaptive Workflow Products

The following are four adaptive workflow products which adopt different approaches to flexible

process support. The first two are classic workflow systems, InConcert Workflow and Team Ware

Flow. Their success in turning from research prototypes into two of the most famous commercial

workflow products in the market indicates that their process models possess vital flexibilities

required by nowadays business processes support systems. The rest are two recent research

prototypes demonstrating two types of cutting edge technologies. TBPM system focuses on the

support of scale-up processes. Agent Enhanced Workflow utilises software agent technology to

solve a typical workflow management problem occurring in a traditional workflow system. It is

noted that these systems are devised to deal with the requirements from different domain, and

therefore their approaches are different.

3.2.1 InConcert

InConcert from XSOFT is a commercial workflow product implemented using object-oriented

technology upon client server architecture. This product, like other traditional workflow products,

offers routing of work based on roles, providing users to-do lists and management information

regarding process tracking and reporting. In addition, InConcert provides special features for

dynamic workflow modification and ad-hoc routing. An application programming interface (API)

is provided which includes a full range of application development options for creating custom

solutions.

3.2.1.1 Workflow Process

InConcert's Process model (Sarin et aI., 1991) is simple, consisting of jobs (corresponding to

processes) containing tasks. The process model is represented as abstract object classes with

operations. The top level concept job describes a multi-person collaborative activity with some

goal. A job consists of a task structure and a shared workspace. The job's tasks are represented

through a simple hierarchically decomposed network of tasks and their dependencies. The shared

workspace, an important notion in CSCW research (Bannon and Schmidt, 1991), is represented

by pointers to documents. A document is an abstract data object that may be manipulated as a unit

·42 -

Chapter 3. Worliflow Adaptation and Enabling Technologies

at some chosen level of granularity determined by the application.

A task in InConcert is a unit of work to be performed by a user through application of the role

concept. A role is a placeholder for the task's actor, which can be a person, a user, or a program.

The actor concept refers to as user, and each user is associated with a quest of "ready" tasks.

Users manipulate tasks through the operations on a queue, such as acquire (get a task), release

(back to the queue), and transfer (to another user).

-Edilor
Re\l'EtM:!r'I

Dooumomo
RFP
Pro sal

Figure 3-1. Example job structure in InConcert (Sarin et aI., 1991).

Jobs are composed of tasks where the task structure (dependencies), the shared workspace

(documents) and organisational role references are included. The InConcert API allows for

viewing of the whole job as a single data object with task structure, shared workspace and role

assignment as constant objects. Tasks may be hierarchically decomposed into subtasks to form a

Hierarchical Task Network (HTN). The most interesting is its process model which resembles

Input-Process-Output (IPO) models as depicted in Figure 3-1. There is no concept of initial input

or fmal output. All work process results and deliverables are captured indirectly through side

effects on the state of running jobs and tasks, and through side effects on updated or created

documents that actually are deliverables. Thus, all the "flows" in process models correspond to

simple "signals" or triggers that capture synchronisation and dependencies.

The document model is document centric but nevertheless not limited to simple "document

flow". It covers the flow of work as jobs composed of tasks and documents that are indirectly

referred to, updated and created by theses tasks (Abbott and Sarin, 1994). It is assumed that

documents are managed by an external document management system, and InConcert provides

facilities for checking documents in and out, and for versioning. The InConcert meta-model is

illustrated in Figure 3-2.

·43·

Chapter 3. Workjlow Adaptation and Enabling Technologies

shape

Users

operele

links consist-(::{

Figure 3-2. InConcert meta-model.

3.2.1.2 Flexibility Features

InConcert supports process change during process enactment where both job structure (task

dependencies) and shared workspace (documents) may change at run-time. The process change is

realised through graphical editors operating on process models according to a defined API, and

this enable a flexible way for user to make changes.

The concept of process fragments (Miers, 1996) is supported through libraries of job templates

that may be minimally structured in order to capture ad-hoc processes. The reuse in InConcert is

realised based on "copy and paste", it is therefore difficult to harvest best practice from passed

experience in finished process instances (Carlsen, 1997).

InConcert's object oriented design together with API and language bindings provide flexibility

for system developers deploying workflow solutions regarding integration with other systems,

extendibility and customisation. The user interface integration is also flexible because of the use

of API to provide tailored desktop integration, or archived by customising particular tasks

through a supplied task user interface design tool.

·44·

Chapter 3. Workflow Adaptation and Enabling Technologies

3.2.2 Team Ware Flow

TeamWare Flow is a commercial product that stem from the Regatta research project (Swenson,

1993b; Swenson et aI., 1994b), which focused on workgroup support and help in reengineering of

work processes. The aim of this research project is to develop a software which supports the

coordination of activities among members of work group, providing support for individuals to

gain better understanding of the processes, and support change through increased understanding

(Swenson, 1993b).

3.2.2.1 Workflow Process

Following requirements were made for the process model (Swenson, 1993b).

• Ease of process definition. Every user is able to create and change process models.

• Ease of monitoring process. Visualisation of an instance's current state to help actors to

understand the progress of process execution.

• Dynamic modification. Changes in process definition are allowed at run-time.

• Partial definitions. Details of process model may be added at run-time.

• Individually tailorable. Policies (process templates) for tasks and goals are maintained in

multiple versions for individual groups.

• Abstraction and decomposition. The process model may be viewed at various levels of

abstraction through hierarchically decomposition.

• Control of plan. Each person maintains control of tasks that are assigned to him, including

the process model describing the task.

• Authority. Process owner may need authorisation to assign tasks to actors.

• Negotiation. Assignment of task is subject to negotiation between process owner and

actors.

• Delegation. Delegating tasks to other persons is possible.

• Open. The use of external tools to perform tasks is supported.

The process model provides a shared collaboration space called a colloquy which coordinates the

various tasks that make up a process with goals. The colloquy consists of a shared information

space and a set of plans that are composed of stages and roles. A stage represents a task request,

commitment or question as a specific process step. The stages include user options representing

Chapter 3. Workjlow Adaptation and Enabling Technologies

declarations the actor may make to represent the results of the task or a decision. Each option is

associated with a particular action and a corresponding message describing it. Plan history is

maintained as a set of executed actions. The stages represent not only tasks, but also

communications needed for task coordination. A stage is a request from the plan owner to the

actor that performs the role associated with stage. Events are associated with each action, and

may result in activation or deactivation of other stages. Each stage has a start node for receiving

initialisation events and an exit node for sending events to its parent plan. Various stage options

represent exclusive alternatives, AND-nodes may be utilised to describe AND-fork. Each sub

plan has its owner and may be associated with a particular stage. The meta-model for the

concepts in the TeamWare Flow process model is illustrated in Figure 3-3.

has-plans

Figure 3-3. TeamWare Flow meta-model (Swenson, 1993a).

An example process model is depicted in Figure 3-4. A Quality Assurance Plan with a start and

exit node is shown together with its stages. Stages are represented as ellipses and annotated with

the stage role as well as stage options, depicted as small labelled circles. One of the stages is

decomposed into a sub plan. The actor can hierarchically decompose the task at his discretion,

what he has to do is to ensure the external interface is maintained.

- 46-

Chapter 3. Workjlow Adaptation and Enabling Technologies

Figure 3-4. A sample process model of TeamWare Flow (Swenson, 1993b).

3.2.2.2 Flexible Features

Teamware Flow is flexible in the sense of providing support for dynamic modification and partial

definition of work processes. It is claimed to support what is called collaborative planning

(Swenson, 1994; Swenson et aI., 1994a) that includes several aspects of flexibility.

• There is no sharp distinction between the work process planner and work process users.

Users may construct sub-plans for their process in a visual language.

• There is also no sharp distinction between process build-time and process run-time. Partial

definitions may be elaborated, refined and changed by users at run-time.

• Processes are defined by supporting the planning activity in a collaborative way, where

process actors may have input to and control over different parts of the plan.

• Individuals or groups can control over their own process definition versions to achieve the

same goals, so that they can build and collect their own libraries of suitable organisational

actions.

The concept of collaborative planning is supported in the sense of allowing individuals to "plan

their own parts". This is an important feature for processes which have to be executed by highly

technical staffs, where their superiors raises only the requirements oftasks for which they have to

detail, plan and perform themselves.

-47-

Chapter 3. Workjlow Adaptation and Enabling Technologies

3.2.3 Task Based Process Management (TBPM)

Task Based Process Management (TBPM) (Stader et aI., 2001) system is a research workflow

prototype created jointly by Loughborough University and Edinburgh University in collaboration

with several industry partners. The overall aim of TBPM project is to investigate the provision of

knowledge-based support for workflow management in the area of new product development

(NPD) within the chemicals industries. TBPM project takes a system-wide approach to consider

how different techniques can be utilised to create a principled and flexible framework, which

shall contribute to the speed and effectiveness of the product development process in the

chemicals industries. These techniques include dynamic capability matching, the use of the

knowledge of organisational structure and authority, and ontology.

An application of the TBPM system is its ability to manage scale-up processes that is part of

NPD in the chemicals industries. Scale-up is a long-term process of experimentation and design,

requiring a high degree of flexibility, and collaboration between specialists from many business

and technical disciplines. The system architecture of the TBPM project consists of three main

components (Stader et aI., 2001):

• A modelling system that allows that the user to provide information about processes, agents

and their organisational context.

• A planning system that uses knowledge-based planning techniques to assist in the planning

of processes, using a library of templates for common processes.

• A process enactment system that uses a multi-agent paradigm for coordination of activities

and dissemination of information.

The TBPM's knowledge-rich models that are based on a set of ontologies are developed in order

to enable these components with the ability to reason about the domain in which they are

deployed.

3.2.3.1 Workflow Process

TBPM's approach relies heavily on the use of knowledge about business processes and the

context within which they occur (organisational structure, etc). Thus, a set of domain ontologies

is used to ensure these knowledge-rich models being unambiguous, carrying the same semantics

for the users, as well as the ability of a system to interpret and manipulate models (Peter et aI.,

- 48-

Chapter 3. Workjlow Adaptation and Enabling Technologies

1999). There are two distinct sets of ontologies employed in TBPM. The process ontologies

defining the concepts central to the management of business process provide support for the task

manager in the way of independent of the particular domain. The domain ontologies are a small

number of interrelated ontologies that specialise the general concepts of the process ontologies

for the particular application domain, for example, the scale up. The architecture of the TBPM

system is illustrated in Figure 3-5.

Figure 3-5. The architecture of the TBPM system (Peter et aI., 1999)

A task in TBPM's process model (Moore et aI., 2000a) is a basic unit of work. Tasks are

represented through a simple hierarchically decomposed network of tasks and their dependencies.

The dependencies related to the tasks include temporal precedence, pre and post conditions, and

resource constraints.

Tasks can be hierarchically decomposed into subtasks if necessary. In this hierarchical task

network (HTN), a set of tasks located on the same level to be executed toward a particular

objective is called a process plan or method that is stored and managed in a process library.

Process plans are indexed in the library by the name of task or high level actions which can be

further refined. An objective of a task can be achieved by one or more process plans. Just like a

task, each process plan may consist of sub-plans.

When planning a task, user can choose a suitable process plan from the process library and

customising it as needed. Each activity in the process plan can also be refined by selecting

suitable sub-plans from the library, and so forth. This new construction of activities can be saved

as a new process plan, and can be reused in the future. Thus, the process libraries act just like a

knowledge base that provides different approaches to achieve certain objectives.

- 49-

Chapter 3. Workjlow Adaptation and Enabling Technologies

When changes that lead to a task or a sub-task cannot be executed occur, the TBPM's workflow

engine can base on this process knowledge to provide a list of suitable process plans in the library

to achieve the same objective of the task, allowing user to make a selection for substituting the

inevitable one. Figure 3-6 is an example of where two possible alternative plans are shown for

achieving the "obtain" task.

Plan: standard acquire
Achieves: acquire

, , ,
r---------------~--, , ,

Plan: design & build
Achieves: obtain

spcx:ification

Plan: purchase
Achieves: obtain

I"P~;fi~';~
design r agree purchase l

design I contractJ-i
I re<:eive I

artifact I ",;r,'a s=r
Figure 3-6. Examples of plans from the plan library (Moore, 2000a).

The organisational structure and authority context are modelled in the TBPM system, and agents

together with their capabilities are mapped into this model (Peter et aI., 1999). The level of

satisfaction of an agent's capability for task execution can be achieved by matching the required

capability of task execution and the capability that an agent has. Thus, the workflow engine can

provide support for selecting the most suitable agent for each task through considering their

authority in the organisation in performing the task and their technical capability.

3.2.3.2 Flexibility Features

TBPM allows interleaving between task specification, task planning and task execution, which

enables parts of the plans to be specified while the overall process is in progress. Thus, the

traditional task cycle in which any individual task must be specified before it is planned and

planned before it is executed does not have to be strictly followed. This just-in-time feel in

TBPM system provides an extension of flexibility that is particularly suitable for the scale-up

processes such as NPD.

- 50-

Chapter 3. Workflow Adaptation and Enabling Technologies

The plan library provides support in the form of pre-specified plans. These plans can be

assembled and used within the interleaved task execution cycle, which enable the system with the

adaptability to suit the specific needs of the current situation. Furthermore, these plans can be

seen as the knowledge of providing different solutions to achieve particular objectives, and this

knowledge can be enriched as time goes on because of past experiences.

The dynamic capability matching enables the system to deal with the changes occurring at agent

level and infrastructure level (Jarvis et aI., 2000a). Because of the use of power and finely

grained representation of capabilities, and infusing the system with the knowledge about

organisational structure and authority context, the system is able to provide support, through

dynamic capability matching, to select a suitable agent who has technical capability with required

authorisation to perform the task.

3.2.4 Agent Enhanced Workflow

Agent enhanced workflow (Judge et aI., 1998) is a technique that uses intelligent, distributed,

autonomous software agents to improve the management of business processes under the control

of a traditional workflow management system. A typical workflow management problem, a

Correspondence Handling Centre (CHC), is used to demonstrate the feature of agent enhanced

workflow. In this demonstrator, the software agents are used to negotiate the distribution of work

items and to collaborate in performing real-time exception handling.

The CHC is composed of a Central Administration (CA) and several disparate Work Processing

Centres (WPCs) as shown in Figure 3-7.

Cormspond09nr»
Handling C .. ottQ

0 .. ,
WPC.

Figure 3-7. Correspondence Handling Centre context (Judge et aI., 1998).

. JI.

Chapter 3. Workjlow Adaptation and Enabling Technologies

CHC may handle all or part of the correspondence received by the enterprise it serves. The

correspondence could be many types, ranging from requests to quote for new business to

complaints about goods or services, depending on the business in which the enterprise is running.

A simple demonstrative purpose business process in a typical CHC is shown in Figure 3-8. It

comprise of six specific categories of activity, namely reception, classification, distribution,

processing, inspection, and dispatch. Only processing activities are performed by the WPCs and

the rest are the concern of CA.

r
rl Processing r • ReCQption """ • hspeC!:ion

• Clanijication • Ilspatch """""'" • OistribJticn
F • .,,,,,,,

-,
~ I-->

lnillalad:Mties flre.ladMlies
p;rlr:rm;d QJ t/'IQ

H ProCClulng r ~QJt/IQ

'" CA
W'C2

I , , ,
Pro;::osslng r ""'"

Figure 3-8. A sample business process of CHC (Judge et aI., 1998).

3.2.4.1 Workflow Process

There are two types of software agents in the system. CA agent is responsible for managing the

activities of the central administration. Work Process agents are responsible for managing the

activities of the work-processing centres. Both CA and WPC agents implement the Agent Based

Process Management System reference model architecture (O'Brien and Wiegand, 1996) that

includes communication, environment and collaboration modules.

The basic construct in this demonstrator system is that the agent layer manages the overall

distribution of work by establishing contracts between the CA and individual WPCs. The

contracts, which are an extended form of the standard contract net protocol (Davis and Smith,

1983), are used to regulate the flow of work items within the workflow management system.

Figure 3-9 shows the high-level system architecture.

·52·

Chapter 3. Workjlow Adaptation and Enabling Technologies

Agent Layer

WOrkllow
Idanagerrenl

Sy"'m

c
..... _ _ _ _ _ ..•... _...... H

Task! and R&sourtes
W'HldIow

ManagerMot
Domain

C

Figure 3-9. High level system architecture (Judge et ai, 1998)

In the contract net tenns, the CA agent plays the role of a manager, who divides the problem

(work distribution) into sub problems (distributing work items), searches for contractors (wpC

agents) to carry out the task and monitor the overall solution. In the bidding progress, as

illustrated in Figure 3-10, it progressively excludes successful bidders of portions of the total

work, which results in fair distribution of work items to a number of WPC agents, rather than a

"winner takes all" scenario.

CA

OHers from W peAs

Multiple Narr<)wcasl bid
requi!lslforshortleU

Oilers from W P CAs

C(tntracts tor
Cl p P ro prlede W peAs

W PCAII

Contract Nlllt

Limited
Contrec:t N.t
P.eslII

Figure 3-10. Software agent negotiation protocol (Judge et aI., 1998).

3.2.4.2 Flexibility Features

The use of agent in this agent enhanced workflow demonstrator shows its ability to handle two

classes of exception. The modelling of the processes of CHC is difficult to implement in the

traditional streamline administration workflow systems; human intervention must be involved in

decision making in exception handling.

There are two classes of exception in the CHC process, the external and the internal exceptions.

The external exception is the positive or negative change in the amount andlor composition of

·53·

Chapter 3. Workflow Adaptation and Enabling Technologies

work received from the outside world. The internal exception is the positive or negative change

in the amount and/or composition of work that a WPC can currently process.

CA and WPC agents are autonomous entities. By making a contract that is based on a negotiation

process between CA and WPC agents, such exceptions can be handled automatically. Thus, the

human intervention is unnecessary.

3.3 Levels of Workflow Adaptation

Han et al. (1998) identified a conceptual framework for workflow adaptation which indicates the

support of adaptation should be provided at various levels. The framework has been extended by

Jarvis et al. (I 999a) and is illustrated in Figure 3-11.

External situation to
Domain I which a WfMS Is

conflgured

···············1· Operation reall~ed by
... --" .. '.'.'"

I
WfMS Internat

Process conligurs\\on

EXElCUtlOnreqUI~

Reources
Organised Into I Organl$atlOna~

I Agent I -L Structure

~ Operating on top of

Infrastructure

i

Figure 3-11. Levels of Work flow Adaptation (Jarvis et aI., 1999a).

3.3.1 Domain Level Adaptation

Workflow systems usually exist with other business systems that are domain-specific. At the

domain level, workflow system can be viewed as a single component that requires adaptation and

reconciliation to be integrated into a specific business. The change of business context may have

an impact on the application and embedding of workflow systems. Thus, workflow systems

should be able to adapt themselves to a range of different business and organisation settings, and

also to a changing context. The domain level adaptation may result in a series of adaptation

taking place at different levels.

- 54·

Chapter 3. Workjlow Adaptation and Enabling Technologies

3.3.2 Process Level Adaptation

Process level adaptation deals with the changes to workflow models and their constituent

workflow tasks. The changes of workflow process resulting adaptive issues can be grouped into

three categories where each poses different challenges for WfMS (Jarvis et aI., 2000)

Changes between executions of a process. These changes occur when the requirements of

process varies during each execution. For example, the process of designing an artefact may

differ from the process which is to be deployed in different countries because of the need for

compliance with different regulations. To address changes of this type, workflow engines must

support the tailoring of a general process that meets the requirements under particular situation.

Changes during the execution of a process. These changes occur when a process does not

always proceed along the predicted path. To address changes of this types, workflow engines

must be able to adapt an executing process to changes.

Business process changes. These changes occur when a business consciously changes the way in

which it operates. To address changes of these types, workflow engines must support the

identification of all instances within a process repository of the process logic that is to be

changed. In addition, workflow engines must also support adaptation of processes that are

currently executing.

3.3.3 Resource Level Adaptation

Resources include human and non-human resources. To perform process execution, normally at

least one agent (person or software system) must be assigned to perform each activity in a

process. The availability of a given agent is highly dynamic, such as staff turnover, vacations and

work load. In addition, for certain processes, some data-related resources, such as documents,

might be required during process execution. Therefore, the changes in resources may have direct

impact on workflow process execution. WfMS should adapt to resource changes, assisting on

each invocation of a process in the identification of agents that are capable and available to

perform its constituent activities.

On the other hand, data and data structure may also change during the execution of a workflow

process. Workflow relevant data can be managed by both workflow engines and applications; it

·55·

Chapter 3. Worliflow Adaptation and Enabling Technologies

can be changed independently and accessed by applications. Thus, the workflow engines should

adapt to the data changes and react to these changes appropriately.

3.3.4 Organisational Structure Level Adaptation

Agents are arranged into an organisational structure. The changes in organisational structure not

only have impact on selecting agent, but also on retrieving critical data for process execution. For

example, if the data holders are moved to other departments, this may lead to a difficulty in

assigning an updating request to them. In addition, in the context of an organisational structure,

an agent may be technically proficient in performing an activity but not organisationally

empowered to do so. Thus, workflow engines should account for these organisational norms

when identifying appropriate agents for process execution.

3.3.5 Infrastructure Level Adaptation

Within a dynamic business world and fast growing computing industry, the supporting software

systems may need to adapt quickly to a modified business environment or a technical setting,

resulting in new system configurations. Thus, workflow engines must support flexible system

infrastructures by being able to communicate with distributed and heterogeneous software

systems, and therefore keep up with the changes.

3.4 Technologies for Building Adaptive Workflow

An adaptive workflow engine must be able to provide process management capabilities,

allocation of resources in response to process requirements, and adaptation of process and

allocations in response to changes in assigned tasks and dynamic operating environments. The

work on reactive control, scheduling, planning, Software Agent, Dynamic Capability Matching

and Ontology provide the underlying technologies meeting the requirements for adaptive

workflow engines.

3.4.1 Reactive Control

Reactive control systems are a form of knowledge-based software controller that operates as an

embedded system within highly dynamic environments. A reactive control system is typically

organised around an interpreter that runs with an uninterrupted detection of key changes in the

- 56-

Chapter 3. Workjlow Adaptation and Enabling Technologies

operating environment or sets of tasks, deliberating to determine how to respond to sensed

changes, and acting to execute relevant responses.

Reactive control systems with procedural approaches in which predefined procedure libraries

describe process that can be executed to achieve some goals, or that serve in responses to

designed events (Musliner, 1993) (Pohl et aI., 1999) (Tabbara et aI., 2000), are particularly welI

suited for the activity-based paradigm for workflow (Berry and Drabble, 1999). The bodies of

these procedures employ rich operations and control constructs that provide a highly expressive

framework for representing events and activities.

In activity-based paradigms, a process is decomposed into individual modules that provide small,

coherent units of functionality. Each of the units generally consists of a description of the purpose

of that unit together with conditions of applicability. These hierarchical representations enable the

encoding of complex activities at multiple levels of abstraction. High-level activities can be

initiated without low-level details, and low-level decisions are made on an as-needed basis when

the time comes to execute those actions. For example, in TBPM (Stader, 2001) the high-level

tasks can be initiated firstly to deal with the requirements of scale-up processes execution, and

the details oflow-level tasks can be defined when the critical figures are specified.

New Facts & Goals

. Facts·
&

Goals

Activation Graph

Procedure Library

Figure 3-12. Operation of a Procedure-based Reactive Controller (Myers and Berry, 1999)

·57·

Chapter 3. Workjlow Adaptation and Enabling Technologies

Figure 3-12 depicts a single execution cycle of a procedural reactive control system (Myers and

Berry, 1999). (1) At a particular time, some goals are established and some events occur that

change the beliefs held in an internal model of world. (2) The changes in beliefs trigger various

procedures in response, (3) one or more of which will then be chosen for activation. (4) The

interpreter then selects a task from the set of activated procedures and (5) executes portion of that

task. (6) The result will be either the execution of a primitive action in the world, (7) or the

establishment of a new sub-goal, (8) or a modification to the activated procedures. At this point,

the execution cycle begins again.

Monitors in reactive control systems are used to check the status of activated processes,

determining when to adapt or abandon activities, and to respond to key changes in the operating

environment. The monitor is invoked by a set of pre-defined triggering conditions. To respond to

such conditions, the monitor will invocate the pre-defined processes, adapt them to current

activities, or abandon current activities that will be substituted by a new process that is suited to

current environment.

Reactive control systems operate as embedded systems in dynamic environments in which the

processes are executed in irrevocable ways. Thus, the recovery techniques grounded in

checkpoint paradigms and rollback paradigms that rely on storing coherent state periodically to

enable rollback to consistent state in case of unrecoverable failure, are impracticable. Instead,

forward recovery methods are adopted for process recovery and repair that will perform further

appropriate actions to transit a failed state into some safe state. For example, TBPM's "plan

patch" approach (Moore et aI., 2000a) that is used to identifY the difference between the new and

old methods, and to support user in moving them while the business processes are changed

during processes execution.

More effort has been made to failure presentation within reactive control systems. Forward

search methods have been defined, so-called safety rules, to determine the actions to take from

various states in order to avoid failure states (Godefroid and Kabanza, 1991).

3.4.2 AI Scheduling

Workflow systems require efficient scheduling for enabling process execution during dynamic

and uncertain environment. However, though traditional scheduling algorithms are powerful, they

·58·

Chapter 3. Workflow Adaptation and Enabling Technologies

often failed to address the complexities of the domain or the dynamics of the enviromnent. AI

scheduling techniques provide a strong foundation for building such capabilities, particularly in

the area of reactive scheduling, uncertainty management, and the propagation of capability and

availability constraints. There are two main AI scheduling approaches, namely generative and

stochastic.

Generative scheduling. This approach starts with an empty schedule and iteratively selects and

assigns resources to each activity over time, and backtracks whenever a problem is found. The

generative techniques have many advantages: the search strategy is complete and straightforward,

solution quality can be controlled dynamically, and load-balancing techniques such as the use of

capacity analysis can be easily incorporated. However, they provide little direct support for

recovery while the schedules are disrupted, therefore unsuitable for the integration with reaction

control systems.

Stochastic scheduling. This approach is based on the principle of iterative improvement. The

idea starts with a completed scheduled containing unsatisfied (i.e. broken) constraints and

iteratively selects and reassigns resources to an activity over time that satisfy as many unsatisfied

constraints as possible. Although there have more techniques compare with generative scheduling

of addressing schedule repair problem, they require additional machinery to accommodate

schedule failures.

Both generative and stochastic methods have failed when applied to real time dynamic execution

environments. The techniques in reactive scheduling that emphasises on building robust

schedules, in which a valid schedule can be maintained while new activities are added, are

helpful in addressing these problems. The ability to reschedule during execution is still an

ongoing research topic. There are mainly two methods for addressing these problems, namely

constraint-directed methods and constrained iterative repair methods.

Coustraint-directed methods. These approaches use constraint analysis to prioritise outstanding

problems in the current schedule, identify critical modification goals, and estimate the

possibilities for modification with disrupting schedule. Possible modification actions include

reordering the sequences of activities, re-sequencing the groups of activities on one resource,

substituting resources, temporal shift activities, and pair wise exchange of resource or temporal

assignments (Sycara and Miyashita, 1992).

·59·

Chapter 3. Worliflow Adaptation and Enabling Technologies

Constrained iterative repair methods. These approaches are developed based on anytime

algorithms in which a legal but Iow quality solution is generated quickly, which are then

continuously updated to higher-quality solutions (Zweben et aI., 1994). Stochastic techniques can

be used to iteratively improve a schedule by making small changes, but must be constrained to

repair only the disrupted part of the schedule in order to maintain stability.

3.4.3 AI Planning

Adaptive workflow systems have been involved in dealing with dynamic process execution in a

rich domain where a priori process libraries that provide full spectrum of situations and

conditions are difficult to be defined. When it is impractical for human to supply new process

definitions, a process must either be created through synthesis form domain descriptions, or

obtained by adapting previous defined processes to meet the new requirements, called plan

repairing.

Automated planning techniques can be used to synthesise new processes from previously defined

process templates that are guaranteed correct relative to current commitments and knowledge.

Various planning systems have been explored; two of them provide synthesis of new processes

from libraries of previous defined processes, namely hierarchical task network planning and case

based planning.

Hierarchical task network (HTN) planning. These systems synthesise plans using process

libraries. The objective is usually specified as a high-level task to be performed. Planning

proceeds by recursively expanding high-level tasks into networks ofIower-level tasks, eventually

bottoming out into a set of directly executable tasks. The expansions of high-level tasks into sets

of lower-level tasks are described by transformation rules called methods. A method is a mapping

from a task into partially ordered networks together with a set of constraints. Methods are stored

and managed by process libraries in workflow systems. Through this decomposition architecture,

the overall set of processes is feasible with respect to both stated applicability conditions or

process definitions and any resource requirements.

HTN planning can be used to compose long-range processes from smaller units with the help of

look-ahead analysis that ensures the viability of the constructed processes. The domains which

successfully adopt HTN planning to synthesis processes attest to its values, include new product

·60·

Chapter 3. Workjlow Adaptation and Enabling Technologies

development within chemical industries (Stader et aI., 2001), manufacturing process plans

(Hebbar et aI., 1996), commercial bridge playing (Smith et aI., 1996), air campaign planning (Lee

and David, 1996), crisis action planning (Wilkins and Desimone, 1994), oil-spill planning

(Agosta and Wilkins, 1996), and antenna operations (Chi en et aI., 1997).

Case-based planning. These systems (Hammond, 1989) (VeJoso, 1992) generate new plans for a

given situation and task by retrieving solutions for similar problems from a previous defined case

library, then adapting them to meet the new requirements. Case-based planning methods provide

a way to build on experience with previous defined processes, usuaJIy with the help of knowledge

based systems (KBS), providing adaptation to meet new situations.

HTN planning and case-based planning can be used to create processes when rich libraries of

process are already defined. For the situation where current processes are inadequate, the

machine learning methods may be used to generate new processes. For example, machine

inductive approaches have been used to refine applicability conditions for process templates

based on experiences (British Aerospace, 1996). Statistical pattern recognition approaches have

been used to identity possible causes of failures by analysing execution traces, producing

suggestions to improve the robustness of processes (Howe, 1995). Even though machine learning

is an important area and the research on it has a long history, using learning methods for creating

and improving process description is stiJI in its preliminary stage.

Plan repair methods provide the basis for recovery from problems during process execution. Most

plan repair methods start with analysis of the dependence structures that enable a plan to

determine problems relevant to the current state and execution results (Kambhampati and

Hendler, 1992). There are two main sources of such problems, precondition failure and execution

failure. Precondition failure occurs when defined preconditions of a process cannot be satisfied at

the time the process is to be executed. Execution failure occurs when a process execution does

not obtain its expected result.

Several plan repair methods have been developed under different methodologies for different

plan recoveries. The plan repair in generative planning systems focuses on replanning. New sub

plans are generated to substitute for problematic portions of the original plan that are identified

by dependency analysis (Manuela, 1998) (Kambhampati and Hendler, 1992). The replanning

methods in generative emphasise correctness preserving and minimal disturbance. Correctness

·61·

Chapter 3. Workjlow Adaptation and Enabling Technologies

preserving includes ensuring the modified plan that is relevant to the current state of knowledge,

and minimal disturbance refers to the modification only performed on the portion that must be

changed to ensure correctness. The redirecting processes execution potentially involves high cost,

therefore keeping minimal changes is critical to ensure the continuity of the plan. In case-based

approaches, the problematic portions of the plan are replaced by applying the libraries of

predefined domain-independent adaptation methods. Thus, case-based approaches are generally

correctness preserving but do not guarantee minimal disturbance.

The ideal plan repair methods should provide effective repair in problematic plans but costing

minimum disturbance. On the other hand, the robust process plans that are less likely to fail in the

first place, are more effective in maintaining smooth workflow executions. The work in this area

is stilI in its preliminary stage but will become increasingly important as the need of adaptive

workflows that are executed in dynamic, real-word environments. For example, the plans in

contingency planning are conditioned with several sets of possible alternative situations, such as

providing different sub-plans for good and bad weather. However, these methods are only

suitable for the situations where the uncertainty is limited and well circumscribed. For rich

domains where the uncertainties are ubiquity, more sophisticated methods are needed.

3.4.4 Software Agents

Software agents provide two facilities relevant to adaptive workflow. Firstly, they offer

infrastructure that enable distributed and heterogeneous systems to communicate, based on

heterogeneous agent architectures. This facility is directly relevant to infrastructure level

adaptation. Secondly, they are compatible with the framework for dynamic capability matching.

These facilities are directly relevant to agent level adaptation and will be discussed in the next

section. This section focuses on infrastructure facilities.

To enable communication between distributed and heterogeneous software systems, these

software systems need to be converted into software agents. There are three ways of doing the

conversion (Nwana, 1996). First of all, is to rewrite the legacy systems to meet the criteria for

agenthood, but it is the most costly approach. The second approach is to use a transducer that is a

separate piece of software that receives messages from other agents and translates them into the

legacy software's native communication protocol, and passes the message to the program.

Similarly, it also translates the program's responses into Agent Communication Language (ACL)

·62·

Chapter 3. Workjlow Adaptation and Enabling Technologies

that is sent on to other agents. This approach is suitable for the situation where the code may be

too delicate to tamper with or is unavailable. The final approach is the use of wrapper technique.

In this approach, a software "wrapper" is developed and attached to software systems to allow it

to communicate in ACL, as show in Figure 3-13. The wrapper translates outgoing messages of

software systems into the ACL and incoming messages from the ACL into their native

communication protocols. This approach brings about more intervention that requires the code to

be available, but offers greater efficiency than the transduction approach.

Software Soft'Nare
System System

Agents
Wrapper Wrapper

Agent
Infrastructure

ACL Routing Messages

Figure 3-13. Agent Infrastructure Schematic (Jarvis, 2000).

When the agents are available, there are two possible architectures. In the first one, all the agents

handle their own coordination. In another one, groups of agents can rely on special system

programs to achieve coordination. The disadvantage of the first one is that the communication

overhead does not ensure scalability that is a necessary requirement for the future of agents. As a

result, the latter federated approach is preferred. Figure 3-14 shows an example of a federated

system.

Figure 3-14. A Federated System (Genesereth and Ketchpel, 1994)

In Figure 3-14, there are five agents distributed into machines, one has two agents and the other

has three. The agents do not communicate directly with one another but do so through

intermediaries called facilitators. The facilitators are able to locate agents on the network to

provide various services. They also establish the connection across the environments and ensure

correct conversation among agents.

- 63-

Chapter 3. Workflow Adaptation and Enabling Technologies

These agent based architectures and technologies endow with the workflow systems not only the

capability to communicate with the distributed and heterogeneous software systems, but also the

deployment in the distributed and heterogeneous environments. This agent based architecture

enables workflow systems that are capable of dealing with the situation where the underlying

infrastructures are frequently changed as a result of exploiting technological advances.

3.4.5 Dynamic Capability Matching

The sensitiveness of workflow systems to the organisational structure and authority context

within which it operates has increasing importance (Joosten, 1996) (Tate, 1993) (Kappel, 1995)

(Dellen, 1997) (Rupietta, 1997). Within the workflow, every task has to be assigned to one or

more agents (humans or systems) for execution. Agents, particularly the human agents, are

arranged into an organisational structure in which the authorities of agents are explicitly

represented. Thus, the changes in organisational structure and authority may affect the workflow

execution. Automatic selection of a suitable agent to instead of unavailable one may not be able

to cope with all cases. In this situation, the workflow engine can assist planner with a prioritised

list of agents based on their capabilities and authorities. The planner can then pick the most

suitable agent to takeover the tasks or resolve the situation by alternatives like change the plan.

Endowing workflow systems with the knowledge of capability of agent, organisational structure

and authority is an effective way in addressing the problems from the changes in agents and

organisational structure while processes execution (Jarvis et aI., 1999a; 2000) (Moore et aI.,

2000b). Using this knowledge with capability matching functions, workflow engines can identify

suitable agents for performing the task by matching the capabilities required by the task against

the capabilities held by available agents, within the organisational norms. For example, an

engineer has been identified as the only suitable agent to perform a design task by capability

matching. However, because he is not the member of the team, the workflow systems should

notify the planner that the permission from the superior before assigning the task to the engineer

is required.

A capability specification approach is proposed by Jarvis et al. (I 999a). The terms used to

describe a capability are drawn from a capability ontology that provides a hierarchy of

capabilities. For example, database provides a Store capability and more specifically, a relational

database provides a Store Relational capability. A capability specification is composed of two

- 64-

- _._----'

Chapter 3. Workjlow Adaptation and Enabling Technologies

parts: the technical capability itself and the area in which it can be applied. For example, if a

specific database application can store data about skills, it can apply its Store capability to Skills.

Each ofthe parts uses its own hierarchy of terms.

Finding a perfect matching, however, is highly unlikely. The situations like that if an agent knows

c++ and Java programming, how well he fits the requirement where the knowledge of LISP is

required, are not tackled. Therefore, a more intelligent capability matching method is required.

3.4.6 Ontology

An ontology is a data model that "consist of a representational vocabulary with precise

definitions of the meanings of the terms of this vocabulary plus a set of formal axioms that

constrain interpretation and well-formed use of these terms." (Campbe\l & Shapiron, 1995) An

ontology is therefore an explicit representation of a " ... shared understanding of some domain of

interest ... " (Uschold & Gruninger, 1996). It can be started and re-used by others in the same

domain to minimise ambiguity. Key features of the ontology include:

• An ontology of some domain of interest identifies and precisely describes the important

concepts and their relationships in the domain.

• The terms and their definitions are agreed between all participants within the domain, and

form a basis for communication about the domain.

• An ontology can be specified independently from the intended particular application. This

enables its reuse for other purposes and applications touching the same domain. Thus,

different applications can use this ontology to communicate with each other in the matter of

the same domain.

• An ontology can be formalised and thus support communication between computer

systems.

Ontology is not a technique that is directly relevant to adaptive workflow, whereas it provides

support for inter-operability where all the adaptation enabling techniques described can

communicate with each other, so as to form an integration solution to deal with the requirements

of different levels of adaptation as a whole.

Ontology is sets of vocabularies or terms used to refer to the shared understanding of some

domain of interest, which may be used as a unifying framework to solve the communication

·65.

Chapter 3. Workjlow Adaptation and Enabling Technologies

problems among stakeholders (Uschold and Gruninger, 1996). To develop a flexible workflow

system, it is necessary to employ ontology that enables not only the communication among

constituent systems, but also covers the people and organisations. In TBPM project (Peter et aI.,

1999), a set of ontologies that includes tasks, plans, resources, organisations and application

domains, is employed for providing support for communication among participants.

Normally, multiple tool sets, including workflow systems, are used in an organisation. However,

due to the different needs and background contexts, there can be widely varying viewpoints and

assumptions regarding what is essentially the same subject matter. For example, each of off-the

shelf software uses different jargon which may have differing, overlapping and/or mismatched

concepts, structures and methods. The consequent lack of a shared understanding leads to poor

communication within and between these systems. In this situation, the ontology can be used to

support the translation among the different constituent systems that use different languages and

representations. Figure 3-15 illustrates the use of ontology as an inter-lingua to integrate different

software tools. The term "procedure" that is used by one tool is translated into the term "method"

that is used by another tool through the ontology, whose terms for the same underlying concept is

"process".

p1:OCedUl"e

hete is the
pro.:t$S for~.

MEUIOD=

•

Id

glve me the:
2d MEmOD foc~.

3.

Figure 3-15. Ontology as Inter-Lingua: an example (Uschold and Gruninger, 1996).

- 66-

Chapter 3. Workj/ow Adaptation and Enabling Technologies

3.5 Chapter Summary

This chapter gives an introduction to the workflow adaptation and several enabling technologies

from the AI community. A survey of two classic commercial products and two research

prototypes which demonstrate various flexible features of workflow is presented. While

commercial products focus on providing advanced process models, current research prototypes

emphasise on using innovative technologies, particularly in AI aspect, to overcome some

limitations of current WfMS.

Han's conceptual framework for workflow adaptation is employed for understanding the different

levels of changes that may have impact on workflow execution. The framework categorises the

adaptations of workflow systems to changes into five levels, and the requirements of handling

workflow adaptation for each are identified.

This chapter than introduces various AI technologies for enabling adaptive workflow. The

application of each at different levels of adaptation is considered. Planning, scheduling and

reactive control are useful in solving the changes at process level. Dynamic capability matching

helps in identifying agents in a dynamic environment. Software agent technology provides

support for adapting infrastructure changes. Ontologies work as a common language that enabled

communication among modules.

.67·

Part 2

Supporting Engineering Process with a

Novel Framework

I

I

I

I

I

---~

Chapter 4. Understanding Engineering Process

Chapter 4

Understanding Engineering Process

4.1 Introduction

"If you try to catch the tail of your leading competitors,

you will always remain behind them.

Instead, you have to focus on the direction in which their head is turning.

Only then can you ever think of overtaking them. "

- Edward Biernat, Bausch and Lomb

Engineering process refers to the governing of technical management process that manages and

control product development. It addresses all aspects of total system performance and provides

technical interface with other key processes. It defines the technical processes and interfaces and

provides the technical baseline for the integrated master plan for development and production.

The primary function of an engineering process is to ensure that the product meets the cost,

schedule, and performance needs encompassing the product development life cycle.

- 68·

-- --

Chapter 4. Understanding Engineering Process

Engineering process differs from general business processes. It is highly technical, dynamic, ad

hoc, collaborative and involves vast amount of information interchange of which current WfMS

lack the ability to support.

This chapter introduces the concept of an engineering process by means of a product

development process. The requirements necessary of a successful supporting system are

identified. It is organised as follows: §4.2 gives a general introduction to a new product

development process; §4.3 discusses the overlapping of development activities, particularly in

the engineering aspects; §4.4 introduces the role of industry standards in a product development

process; §4.5 identifies and discusses the characteristics of tasks in an engineering process; §4.6

outlines the challenges that have to be addressed by a system which is to succeed in supporting

engineering processes; a summary of this chapter is given in §4.7.

4.2 Introduction to Product Development Process

The idea of a new product normally comes from either an external or internal desired need.

External causes for a new product include, for example, the direct order from a customer, the

obsolescence of an existing product, or a change in market demands. On the other hand, it may

come from new discoveries and development of a company or the need for a product identified

by the marketing department.

Once the need has been established, the product has to be designed and manufactured. To

understand the product development process, it is necessary to review the product life cycle that

is shown in Figure 4-1. The life of a product begins with its planning and ends with its disposal.

The product development process refers to the steps in the product life cycle, from its go-ahead

to when the product physically exists. In general, the product development process consists of

four steps, namely product planning, design, manufacturing plarming and manufacturing.

4.2.1 Product Planning

Product plarming is the process of search, selection and development of ideas for new products.

A systematic product planning process will lead to a more successful project in meeting the

constraints of cost and time. A product planning process include following tasks:

• Establishing product goals.

- 69-

Chapter 4. Understanding Engineering Process

• Conducting market analyses.

• Detailing the benefits the product will provide the customer.

• Deciding on the features the product will have.

• Establishing product performance.

• Conducting an economic analysis and setting the cost target.

• Establishing the expected sales volume.

• Setting deadlines for completion of tasks and setting up the manufacturing line.

1
(1)

DESIGN

.J (2) CONCEPTUAL
PRELIMINARY PROTOTYPE
DETAIL MOCKUP

~l
(3) MANUFACTURING PLANNING

~

j (4) MANUFACTURING PARTS
MATERIALS
EQUIPMENTS

Figure 4-1. Life phases of a product.

4.2.2 Design

Design is a process of devising the product to meet desired needs. It is a decision-making

process, in which a number of technologies are applied to convert resource optimaUy to meet a

stated objective. The design process starts from the preparation of the requirements or

specification list. The list includes the overall function of the product and any sub-functions

- 70-

Chapter 4. Understanding Engineering Process

foreseen by the designer. The requirements are classified according to (a) life phases of the

product (refer to Figure 4- I) and (b) types of requirements (e.g., technical, economic, ergonomic,

and legal) in which the technical requirements are the most important.

The design process consists of three sub-processes: conceptual design, preliminary design and

detail design. They are normally performed sequentially, proceeding from a more abstract level

and takes on a more concrete form at the end (Pahl and Beitz, 1996).

Conceptual design is a very important process which looks for different concepts that can be

used to achieve the requirements. Each concept is an outline solution to a design problem,

identifying the spatial and structural relationship of the principle components in achieving each

major function of the product. Enough details have been worked out so that the cost, weight, and

overall dimensions can be estimated.

The starting point of the concept development process is the determination of the functions that

must be fulfilled. Each function can be realised by one or more methods, and therefore a

functional analysis of the requirements is needed, in which a complex function may breakdown

into simpler sub-functions. In the next step, the physical effects on determining how the

functions are realised are considered. By considering different solutions for the functions, a

number of different concepts can be generated, in which the one or more that best satisfies the

specification are chosen.

The second step of the design process is preliminary design which is more concrete and technical

in nature. Engineers begin to select and size the major sub-systems, based on lower-level

concerns that take into account the performance specifications and requirements. The final

choice from among the proposed concepts is made in this phase, including part shapes and size,

fastening methods and materials.

The final step of the design process is detail design where engineers turn to refining the choices

made in the preliminary design phase, articulating early choices in much greater detail, down to

specific part types and dimensions. The detail design process typically consists of standard

procedures and techniques. Relevant knowledge is found in design codes, handbooks, databases

and catalogs, and is normally performed by component specialists because the design is now

close to being assembled from a library of standard pieces. The final decisions on dimensions,

- 71·

Chapter 4. Understanding Engineering Process

arrangement, shapes of components, and material are made.

4.2.3 Manufacturing Planning

The process of manufacturing planning involves decisions on how the product is to be

manufactured. A plan of the steps required to manufacture the product, the manufacturing

processes, machines, tools required, how the parts are to be assembled and so forth is developed.

The manufacturing planning process includes productivity analysis, initial process design,

vendors or sourcing selection, and tools design.

4.2.4 Manufacturing

The product is produced in manufacturing process which includes materials handling, production

of parts, assembly, quality control, and related activities. Many of the decisions regarding

manufacturing have already been made during the design stage, knowingly and unknowingly.

Some of them are inappropriate and therefore have to be changed in this stage. The following

decisions made in the design process have the largest influence on manufacturing process

(Ehrlenspiel, 1985):

• The nature and number of sub-assemblies and components defined in overall design

arrangement.

• The methods used and their quality in the design of components.

• The material selected for components.

• The number and type of standards to which the product has to conform.

4.3 Concurrent Engineering

In a traditional product development process, the activities of product planning, design,

manufacturing planning and manufacturing are carried out in a relatively independent and

sequential way, as shown in Figure 4-2 (a). A process cannot start until its ancestor process has

been completed and signed off. In this approach, product design and manufacturing processes

involved in development and production of new products are compartmentalised with different

specialists. The collaboration between the different functional areas is limited to a series of

standard engineering change orders, and information is transferred in batches at the end of

stages, via documents and computer networks (Clark and Fujimoto, 1991). New product

- 72-

i

I

I

I

I

I

I

I

I

Chapter 4. Understanding Engineering Process

development, however, suffers from this sequential engineering.

Development time is relatively long because of the sequence of different activities and the

problems that occur at the interface between two different stages of product realisation process

(Azzone and Bertele, 1994).

The poor product quality and the higher life-cycle costs is a consequence of the sluggishness of

dealing with last-minutes changes that must be made at manufacturing stage (Hundal, 1998).

This single direction batch information transfer does not encourage marketing people to take into

account engineering considerations (Wind and Robertson, 1983) or product design engineers to

take into account manufacturability considerations (Clark and Fujimoto, 1991), leading to

problems of marketability and manufacturabiIity.

This single direction batch communication often leads to subtle inconsistencies in the

information transmitted downstream, creating further problems for downstream functions (Clark

and Fujimoto, 1991).

Smith and Reinertsen (1991) identify the key ingredients to keep a manufacturing company alive

are (1) product innovation and (2) rapid development and marketing of new products. As

manufacturing has become more globally competitive in recent years, some techniques of the

time-driven development (Hundal, 1998) have been used to shorten the product development

cycle. Time driven development can also be called rapid product development, accelerated

product development or integrated product development. Use of these techniques allows a

certain level of coordination and overlap of product development process, such as the

concurrency of product and process design, as shown in Figure 4-2 (b).

Figure 4-2 (b) illustrates the time-driven product development process. The development

activities are overlapped in order to reduce the development time and cost and to increase quality

(Hayes et ai, 1988). The overlapping of these activities implies that a process might be started on

the basis of incomplete information. To deal with that, a continual sharing of information take

place between teams engaged in the activities and their successors. The downstream team always

makes quick changes in its processes in response to revised information from the upstream team.

This two way flow of information also leads to fewer misunderstandings and errors (Dean and

Susman, 1989), and early resolution of conflicts (Hundal, 1998).

-73 -

Chapter 4. Understanding Engineering Process

1

j

(1)

(2)

Traditional Sequential
Product Development Process

DESIGN
CONCEPTUAL
PRELIMINARY
DETAIL

(3) MANUFACTURING PLANNING

(4) MANUFACTURING

(a)

Time-Driven Overlapping
Product Development Process

PRODUCT

PLANN-;.I::..:N-=G_--'--__ ~

DESIGN

MANUFACTURING
PLANNING;;-__ L-_--..

MANUFACTURING

(b)

Figure 4-2. Product Development Processes.

The benefits obtained from concurrent product and process design can be extended by

overlapping of the activities in the development cycle. Concurrent engineering may also include

interplay with marketing, sales, field service and even suppliers. Figure 4-3 illustrates a high

degree of interplay among all three key activities in product development cycle. Usually,

sufficient information is available at appropriate stages for each activity to enable some

operations to begin in the next stage. For a larger project, this interplay can be decomposed into

smaller units if necessary.

- 74-

Chapter 4. Understanding Engineering Process

PLANNING

Product goals DESIGN
Product benefits ""'---

--.......... Specifications
Technology survey MANUFACTURING

Market survey .../

Conceptual design
Product Features """-
Product performance Function structures ~

""-- Solution structures Initial process design

~ Final concept ': Cost target Cost estimates Producibilityanalysis

S I 1
./ Vendorslsourcing

aesvoume~ ~

Deadl"nes Embodiment ~ .
~ Component testing

--............ Component design .
Assembly............ Prototype testing

Prototype d8Si9:J' --- . d . Tooling eSlgn

Detail design Process Design
~ Part procurement

. . ~ Equipment procurement
Bill of matenals Production line set-up

Assembly instructions
Service instructions, Test runs

--...... Production runs

Figure 4-3. Overlapping of activities in planning, design, and manufacture (Hundal, 1998).

The sequence of overlapped activities in Figure 4-3 is as follows:

I. After the planning has identified the market position, price range etc. of the product, the

design team can begin preparing the requirements list and performing the technology

survey.

2. The concept can be developed based on the identified product features, performance and

price range.

3. Perform sales forecasting and set deadlines for subsequent activities concurrently with, or

following, the concept development.

4. Manufacturing begins to look at .the production process design, analyses producibility,

and begins selecting vendors. This is performed in parallel with conceptual design after

the product structure is finalised.

5. At this time, the embodiment has started, and specific components are shaped and

assembled and then to the initial prototype design.

6. Build and test prototypes to validate the component production and procurement.

·75·

Chapter 4. Understanding Engineering Process

7. The details of the design are finalised after the final tooling and process design are

implemented.

S. The final activities are the procurement of materials or special production equipment and

setup of the production line.

9. Design prepares the final documents on bills of material and assembly and service

instructions, while manufacturing setup up the test run. This is followed by actual

production.

4.4 Quality Control through Industry Standards

"Standards are documented agreements containing technical specifications or other

precise criteria to be used consistently as rules, guidelines, or definitions of

characteristics, to ensure that materials, products, processes and services are fit for

their purpose. "(ISO, 1997)

In order to achieve the required quality for a product, a number of industry standards or

regulations have to be used. The standards that have to be used are subject to the country where

the product will be produced or consumed, and the function of the product. Well established

engineering standards, such as IEC6150S (IEC, 1997), set down the properties that both the

development process and its product have to possess. These properties are documented at a

particular point or at the end of the development process. Once a standard has been adopted by

an engineering project, it is important to manage compliance with that standard.

Standards constrain the product development process, resulting in a number of activities that

must be included in a development process and have to be performed in the suggested sequence

by qualified staff using appropriate techniques and methods. These standards are generic; their

every application, however, is different because of the differences in project details. Thus, no

canonical process structure can be applied to all engineering projects where the processes and

products have to be compliant with a particular standard. The current best practice of compliance

checking is to compare the development documents with the standard at the end of every

development stage. If incompliance is found, the relevant development processes may need to be

rewound to a suitable state and re-processed again.

·76·

Chapter 4. Understanding Engineering Process

4.5 Characteristics

Paashuis (1998) summarised the characteristics of product development process and its

organisation. The summary is drawn upon the work of Burns and Stalker (1961), Thompson

(1967), Galbraith (1973), Van de Ven et al (1976) and Pelled and Adler (1994). They identify

some fundamental factors which in a sense explain the need for coordination and overlapping of

development activities. The summary is extended based on our observation on product

development processes in general.

4.5.1 Task Scale-Up

Scale-up typically occurs at a point during a product development process when a promising

product has been identified, preliminary marketing investigation has been done, and a potential

process for design and manufacturing of the product has been proposed, but not fully

investigated. The intention of scale-up is to investigate the behaviour of the proposed process.

During the scale-up process, a series of experiments are performed at a gradually increasing

scale, starting in the laboratory and ending (if all proves satisfactory) with a working pilot plant.

As the scale of the development task increases, an increasing number of different disciplines and

departments will get involved, and interaction and ad-hoc processes will also increase.

Many organisations adopt process models to organise and control various activities involved in

the development of a new product. A canonical process model provides a skeleton by which each

project manager can build his/her own program evaluation and review technique (PERT) or

network diagram specific to anyone project. These process models consist of a series of

"golkill" decisions spanning the whole product development life cycles, particularly in the early

stages (Cooper, 1983). This situation causes the design and manufacturing plans to be devised

only at a higher level, the details of which will then emerge as some tasks have been done.

Therefore, the planning in a scale-up project is relatively dynamic. The results from former tasks

are used in planning the details of sub-sequential activities. The process plan grows along with

its tasks execution.

4.5.2 Task Uncertainty

Task uncertainty refers to the difficulty and variety of the work in new product development

process (Van de Ven et aI, 1976), in which the information is difficult to understand, and

- 77-

Chapter 4. Understanding Engineering Process

changes are frequent. People need to apply more knowledge and skills to use the information that

is difficult to understand. The information can be explained and changes can be communicated

through coordination. Thus, the more complex a product and its process technologies, a higher

level of expert knowledge and skills is required. The more tasks that are carried out, the more it

is likely that these tasks will have to be coordinated.

If the process is analysable and does not have variables, most of its activities can be standardised

and programmed (Perrow, 1970). However, as more and more complex technologies are applied

and developed, the development process becomes increasingly difficult to standardise. This is

because a greater number of exceptions are likely to arise (March and Simon, 1958) and

technologies are more difficult to analyse (Van de Ven et ai, 1976). If a product or process is not

well understood, it will result in changes in role allocations, schedules and priorities (Perrow,

1967) (Galbraith, 1973). And thus, it is necessary to have group judgements in dealing with

complex situations, in a process of collaboration between the different function teams involved

in product development process.

4.5.3 Task Interdependence

Task interdependence refers to the degree of dependence of people on the information, resources

and materials from other functions in accomplishing their individual tasks. The greater the

dependences, the greater the need of coordination between participants will be.

There are three kinds of interdependence in terms of task flow in product development process,

namely pooled, sequential, and mutual. A hierarchy of increasing levels of task interdependence

can be determined by observing these task interdependences (Thompson, 1967) (Van de Ven et

aI, 1976). Pooled interdependence implies that each task is part of the process and contributes to

the common goal, but each function is also relatively independent because work does not often

flow between tasks. Sequential interdependence implies that the output of a task become the

input of another tasks in a serial fashion. The first task must perform correctly so that the second

task can performed without any problem. Mutual interdependence implies that the output of task

Tl is the input of another task T2 and the output of task T2 is the input back into task Tl (Daft,

1994).

Pooled interdependence concerns with standardisation of task executions, rules and regulations.

·78·

Chapter 4. Understanding Engineering Process

Sequential interdependence reqUires further planning and scheduling so that the flow of

information and resources are coordinated. Scheduled meetings and face-to-face discussions take

place through day-to-day coordination between teams. Mutual interdependence is most

complicated because integrated collaboration is required which enable high capacity of

information processing (Galbraith, 1973).

In a product development process, the tasks are likely to be more interdependent when more

complex product and process technologies are applied and developed. Complex technologies are

likely to have complex interfaces and the processes in which will require more attention, thereby

increasing task interdependence. Such situations lead to a higher demand for coordination and

overlapping of the development activities.

4.5.4 Unit Size

Unit size refers to the total number of people involved in a product development project (van de

Ven et ai, 1976). In general, the greater the number of people participating in a project, the

greater the need for the division of labour, differentiation of functions, and growth of

professional staffs will be, which will eventually increase the need for a high degree of

coordination of production development process. When a team grows larger (10 or more people),

it requires more rules, policies and procedures and increasingly uses hierarchical leaders to

control the team members. On the other hand, a relatively flat authority system is used in small

teams, even greater use is made of rules, policies and procedures to coordinate work activities

(Van de Ven, 1976). In these cases, an increase can be distinguished from the use of rules and

regulations, and increase the use of internal systems for control, reward, and innovation (Draft,

1994).

4.5.5 Compliance with Industry Standards

The products and their development processes are required to comply with industry standards.

These standards are often involved in an engineering project in order to ensure the required

quality or safety of the product can be achieved, such as IEC6108 for safety and IS0900 1 for

quality. Many standards propose a development IifecycIe to deal with all the activities necessary

to achieve the required quality. The development process is constrained by these standards in

many aspects. First, the objectives of the activities in the framework corresponding to the nature

·79 -

Chapter 4. Understanding Engineering Process

of product must be achieved in its development process. Second, the sequence of achieving these

objectives must follow the guideline in the standards. Third, the identified methods or techniques

have to be used in achieving these objectives. Forth, the deliverables of each activity are defined

and have to be achieved. Finally, the task performers have to possess required skills,

qualifications and experiences.

4.5.6 Mechanistic and Organic Systems

There are two extreme management systems that can be used to adapt to a specific technical and

commercial change. Stalker (1994) characterise two systems as follows:

"In mechanistic systems the problems and tasks facing the concern as a whole are

broken down into specialisms. Each individual pursues his task as something distinct

from the real task of the concern as a whole, as if it were the subject of a

subcontract. 'Somebody at the top' is responsible for seeing to its relevance. The

technical methods, duties, and powers attached to each functional role are precisely

defined Interaction with management tends to be vertical, i.e., between superior and

subordinate. Operations and working behaviour are governed by instructions and

decisions by superiors. This command hierarchy is maintained by the implicit

assumption that all knowledge about the situation of the firm is and its tasks is, or

should be, available only to the head of the firm. Management, often visualised as the

complex hierarchy familiar in organisation charts, operates a simple control system,

with information flowing up to a succession of filters, and decisions and instructions

flowing downwards to a succession of amplifiers.

Organic systems are adapted to unstable conditions, when problems and

requirements for action arise with cannot be broken down and distributed among

specialist roles within a clearly defined hierarchy. Individuals have to perform their

special tasks in the light of their knowledge of the task and the firm as a whole. Jobs

lose much of their formal definition in terms of methods, duties, and powers, which

have to be redefined continually by interaction with others participating in a task.

Interaction runs laterally as much as vertically. Communication between people of

different ranks tends to resemble lateral consultation rather than vertical demand.

Omniscience can no longer be imputed to the head of the concern. "

- 80-

Chapter 4. Understanding Engineering Process

The organic system is appropriate for dealing with a changing environment where the unforeseen

requirement cannot be broken down automatically on the basis of the function role defined. On

the other hand, the mechanistic form is suitable for stable conditions. In addition, the organic

system is inappropriate for in a large project as a large team is difficult to manage. The two

systems are sometimes mixed in order to utilise the human resources of an organisation in the

most flexible manner.

4.6 Requirements of an Ideal Support System

Engineering processes are relatively complex, dynamic changing, collaborative and

unpredictable. A number of challenges are identified which are not addressed by current

workflow systems, and which must be addressed by a system if it is to succeed in supporting

complex, dynamic changing, collaborative and unpredictable engineering process. These

requirements are discussed below.

4.6.1 Compliance Management

The current best practice of project compliance check takes place at only documentation level

where the processes in the project have been done and that their results have been documented. If

any incompliance output is discovered, its relevant processes may need to be rewound to a

suitable state and re-perform again. Currently, a large amount of human effort is consumed in

managing project compliance.

An intelligent support system should be able to provide support for managing project compliance

at process level. If the incompliance errors can be identified and removed at the time of process

planning and execution, the efforts wasted in the re-processing can be dramatically reduced, and

thus shorten the development time.

4.6.2 Traceability

Engineering design should be carried out in a manner that shows explicitly how the required

requirements are implemented. Therefore, the process rationale (information used to make the

decisions during the process) should be recorded so that the members of an engineering team,

particularly the assessors, can review the decision path to understand how the requirements are

implemented at any time during the development process as required.

- 81 -

Chapter 4. Understanding Engineering Process

4.6.3 Selection of Agent

An engineering process is highly complex and technical. Many standards emphasise that all

persons involved in any activity of the development lifecycle, including management activities,

should have the appropriate training, technical knowledge, experience and qualifications relevant

to the specific duties they have to perform. An engineering project usually spans multiple

departments where managers may not have a clear picture of every available agent. In order to be

able to assist with the selection of appropriate agents and delegation of tasks to them, the system

needs to have access to the knowledge about the capabilities of those required by the process and

those possessed by the agents. Together with the availability information, the system can rank

the available agents according their degree of fitness so that the most suitable agent can be

identified.

4.6.4 Flexibility

No single process model can fit all engineering processes. Each project typically takes a unique

form, depending on many factors. While certain characteristics and development processes can

be defined, much of the activity details cannot be fully specified at the beginning, since it

requires information that only becomes available some way into the project. For example, before

the safety integrity level (SIL) of a safety system can be identified, it is not possible to specify

the detail of its design process, as different levels of SIL requires different techniques, methods

and technical staffs in the development process.

On the other hand, guidelines and norms (which may come from industry standards or

organisational culture) are established to deal with the increasing complexity and difficulties of

engineering projects. These guidelines and norms are open to interpretation by the project's

management team: people trusted with managing projects are experienced and expert in the field;

and much is left to their discretion. While expected norms can be stated, such as "never do any

work without an approved budget for it", these are open to interpretation and variation in

particular circumstances. For example, a project manager might choose to undertake a few days

of work without a specific budget in an initial feasibility study for a regular customer where it

seems likely that the work wiII lead to the placing of a valuable contract.

To take account of these situations, the system should allow the process models to be expressed

- 82-

Chapter 4. Understanding Engineering Process

at an appropriate abstract level in the beginning, and details added when they become available.

Therefore, it is necessary to interleave the planning and execution of processes, deferring the

complete specification of later stages while earlier stages are being executed. In addition, the

system should not impose fixed constraints. Instead, constraints should be advisory, so that the

manager is aware of situations when he is breaking them, but is still at liberty to do so.

4.6.5 Common Process

There are commonalities between parts of the design process at different levels of detail. As the

process model of product development described before, most engineering activities have very

similar structures at high level with a consistent breakdown into several design stages,

particularly among similar type of projects. At a more detailed level, many of the engineering

activities follow some identifiable type of basic processes that reflect common best practice and

experience within the industry. These common process structures should be maintained as a

resource for those setting up a specific process. The task of process planning is therefore

accelerated by selecting the template process that best matches current situation and customising

it as required.

4.6.6 Management at Different Levels

Different stakeholders in the process may work at different levels of detail for both process

specification and execution. For example, a project manager is interested in the overall project

structure, but may delegate management of the details of the engineering activities to other

experienced people. Each of them may then further subdivide their respective responsibilities to

relevant specialists. Therefore, the system must support this kind of hierarchically structured

distribution of management responsibility.

4.6.7 Process and Information Management

Different technical disciplines are involved in different parts of the activities in an engineering

project. Many activities are performed in parallel in order to minimise the time needed for

development process. These disciplines have to communicate effectively with one another since

the work of one discipline may impact on another. The delay, or absence, of information that is

crucial for the activities may lead to effort being wasted. Thus, there is a need of a flexible

approach where information is mapped to the interested parties so that they can obtain the

- 83-

Chapter 4. Understanding Engineering Process

required information in the first instance.

4.7 Chapter Summary

This chapter introduced the general product development process, and discussed concurrent

engineering activities. Engineering processes are different from business processes. The needs

for flexibility and uncertainties lead to frequent changes being made to the process plan. The

interdependence, unit size and different management styles further increase the difficulty of

information management. Compliance management is another challenge for which current

systems can only provide support at the documentation level, taking place normally when

relevant processes have completed. As such, a number of requirements that have to be addressed

by a support system were identified.

The most important requirement identified IS the flexibility requirement, emphasising the

interleaving between process build time and run time. One serious limitation is that current

systems provide no support to ensure a process is planned and performed in accordance with a

standard.

- 84-

Chapter 5. A Flexible Framework to Support Dynamic Process Management

Chapter 5

A Flexible Framework to Support
Dynamic Process Management

5.1 Introduction

"By seeing the seed of failure in every success, we remain humble.

By seeing the seed of success in every failure we remain hopejUl. "

- Me/ Zieg/er

Flexibility is one of the most important requirements for a system that is to succeed in supporting

engineering processes. While workflow management systems (WfMS) are widely used in

providing support for well-defined and predictable "administrative" processes, current workflow

products are not flexible enough to handle complex, dynamic changing, collaborative

engineering processes and to ensure their compliance with a selected standard. More seriously,

they lack the ability to ensure the planning and the execution of a process is compliant with an

industry standard.

·85·

L-_____________________________ __~ _____ -'

Chapter 5. A Flexible Framework to Support Dynamic Process Management

This chapter presents the novel framework of Compliance Flow system which provides a

platform to enable the integration of various technologies to deal with more complex and flexible

engineering processes. It is organised as follows: §5.2 presents the novel framework and

describes the functions of its components; §5.3 provides a comprehensive view of process

management in the system; §5.4 concludes the advantage of this framework against the

challenges identified before; a summary is given in §5.5. Some examples drawing from a draft

version of IEC6l508 safety standard are used.

5.2 Compliance Flow Framework

Compliance Flow is designed as a process management tool, rather than a task specific tool for

performing specific computation, such as risk calculation. Instead of a single, fully integrated

and monolithic IT system, its approach is to provide a process management framework that

integrates existing tools. This is particularly important in highly technical fields where the use of

specialist third-party software, such as simulation and analysis tool, is essential (Stader et aI.,

2000).

Workflow
Management

Figure 5-\. The consolidation of three types of support systems in Compliance Flow.

Compliance Flow consolidates three types of system function together, as depicted in Figure 5-1.

It serves three types of stakeholders involved in an engineering project:(I) the people who

manage the project, such as project managers and team leaders; (2) the people who perform the

tasks in the project, such as technical engineers; and (3) the people who are responsible for

quality assurance, such as quality assessors.

·86·

Chapter 5. A Flexible Framework to Support Dynamic Process Management

The project management function enables managers to plan the project and track its progress

using workflow technology. Unlike the typical project management tools which only serve the

managers' needs, Compliance Flow is intended to be used by all stakeholders of a project where

the tasks are performed under the control of the workflow engine according to the specified

process. As the results are updated quickly after an individual task has been performed, the latest

progress of the project can be shown instantly at any time by request. The project compliance is

managed at the process level, which enables the identification of compliance errors and concerns

in advance of task execution. The integration of CSCW enables the sharing of information

between stakeholders, assisting, for example, a quality assessor to easily retrieve the required

information. A framework developed to support the proposed approach is depicted in Figure 5-2.

Figure 5-2. Framework of Compliance Flow.

5.2.1 Ontology Server

As communication will take place among components as well as between systems and users, the

terms used in describing a concept of interest must be consistent. A set of ontologies is adopted

to enable communication. These ontologies are available within the system and are maintained

- 87-

Chapter 5. A Flexible Framework to Support Dynamic Process Management

by the ontology server. Users are allowed to add, change, remove or extend an ontology to adapt

to a particular environment where the system is running. It is noted that the ontologies provided

by Compliance Flow do not follow a particular industry standard in the context of workflow

management. Other works like Workflow Management Coalition Terminology & Glossary

(WfMC, 2000a) and Enterprise Ontology (Uschold et aI., 1998) provide ontologies with more

rigorous definitions. The following ontologies are part of Compliance Flow:

Process Ontology. This ontology describes the processes and their activities in the context of

development process, including tasks, pre-conditions and post-conditions.

Capability Ontology. This ontology describes the domain specific skills possessed by agents

and the skills that are required to perform particular tasks.

Application Ontology. This ontology describes the application areas of the domain specific

skills defined in Capability Ontology.

Technique. Ontology. This ontology describes the techniques or methods that are used to

perform tasks.

Artifact Ontology. This ontology describes the physical equipment, or tools used in performing

particular tasks.

Document Ontology. This ontology describes the information required for performing a task or

tbe information created during a task, such information is normally stored in a document.

The terms of an ontology in Compliance Flow are organised into a hierarchy in which a term

located in a higher level implies a higher level of abstraction, while a lower level term represents

a more concrete concept or object. A term can be changed, removed or extended if necessary.

Therefore, a concept can be refined by decomposing it into a set of such concepts. An example

hierarchy is given in Figure 5-3.

- 88-

Chapter 5. A Flexible Framework to Support Dynamic Process Management

Ontology

;
----.1········.·.··.······----·.-·······--·---····----········--··T .. ·······----···-·------·-··--L---.••••• -----········----······---·--··-r·-----····-----··········--····--···--··1-·-·------········-··

Process CClpability Application Documentation

'-·····r············r··························L···· .. ·T··T···················T·····L·-·····T·······
Qualification Organisation Programming Hardware System Department Software System

... ~ .. "··1 I I··' I n·· ... ·· -r-II----,------,r
CEng System Analyst Programmer Logic Object·Oriented Structure IT Accounts Interface Process Logic Business Object

···~"·"'(··I I r .. ·· ... h.... ··"·T·~
System Programmer Pro1og C++ VB Java COBOl RPG Checking

···h·····
VB6 VS.Net

Figure 5-3. An example of ontology hierarchy.

The tenns at any level in the hierarchy can be used in naming an appropriate object in the

system. A tenn may become outdated or may need to be changed. An example is that the tenn

Electronic Data Processing (EDP) is replaced by Infonnation Technology (IT). This change can

be perfonned at any time. Once it has been updated, all its instances in the system will be

automatically changed to maintain consistency.

4. check Safety Plan for ...

6. Safety Plan = ? ~;j~~~~~#~ 2. Quality Plan = ?

8. retum Quality Plan for ...

Figure 5-4. Ontology Server as a translator.

Occasionally, two tenns that represents the same domain of interest will coexist in an

organisation, particularly when two different domain teams are working together. For example,

Quality Plan has the same meaning as Safety Plan in some way. To deal with this, a synonym

- 89-

Chapter 5. A Flexible Framework to Support Dynamic Process Management

can be rewritten to the ontology server if required at any time. The only constraint is that the

synonym cannot be a duplicate of other terms used in the system. Ontology server will perform

the translation between the terms and their synonyms if necessary. Figure 5-4 illustrates the use

of Ontology Server as a translator. The synonym "Quality Plan" that is used by Task Manager is

translated into the original term "Safety Plan" that is used by the Plan Library.

5.2.2 Organisation Server

It is critical in an engineering project that all persons involved have the appropriate qualifications

to perform the tasks that they are assigned to. Thus, the selection of agents to perform specific

tasks based on the knowledge about their abilities and roles within the organisation is a key

feature that an intelligent workflow management system needs to offer (Moore et al. 2000). An

agent here refers to a person, a software system or a machine which is involved in executing a

process. To provide decision support in this area, the knowledge of the capabilities required of

agents to perform certain tasks and the capabilities possessed by the agents are captured and

maintained in the Organisation Server. Capability matching can be performed to identify the

most appropriate agent for performing a task.

Agent selection in current workflow systems is mainly based on some pre-defined agent

selection polices (Rupietta, 1997) (Kappel et aI., 2000). There are mainly three kinds of agent

selections policies: (l) agent related selection - select an agent by means of its identifier, (2) role

related selection - select an agent who plays a certain role, and (3) workflow related selection -

select an agent based on various data about actual and previous workflows. The initial concept of

using dynamic capability matching to select a suitable agent for a task was proposed by Moore et

al. (2000). A more flexible approach is proposed which extends the capability matching to not

only considering technical capabilities but also organisation knowledge and authority. The

details of capability matching are described in Chapter 8.

The reason for using dynamic capability matching function in a workflow context is that it is

impossible to predict the exact environment where a process is executed, as a consequence of the

uncertainties and changes in a process or an organisation. For example, specific agents may not

be available at the time of task execution (people take holidays or leave the organisation), or

more suitable agents may have become available (new people are employed or new systems are

developed). A system that can instantly identifies the most suitable agent for task execution is

- 90-

Chapter 5. A Flexible Framework to Support Dynamic Process Management

critical, particularly for engineering projects where the processes span multiple departments and

penetrate various management levels.

The Organisation Server also provides support for handling resource conflict, e.g. the most

capable staff for performing a particular task is not available at the time of process execution.

Availability of task agents not only has an impact on assigning tasks, but also on the decision on

which method to use to achieve a given task. If a method for carrying out a task requires a

particular capability but currently there are no available staff with that capability, then an

alternative method for achieving the task is sought.

5.2.3 Plan Library

Engineering processes have a similar structure at a high level as they are planned based on

similar type of canonical process models. At a more detailed level, many activities follow some

identifiable type of basic process that reflects common best practice and experience. These

process structures at any level of a hierarchical task network (HTN) can he saved as a process

template called a Plan. A plan can be a set of tasks representing a process at an abstract level, or

with the detail as a single HTN. Thus, a Plan represents one possible way of achieving a given

type of task by breaking it down into a particular structure of sub-tasks.

The Plan Library maintains a database of plans. A hierarchical folder structure is provided, with

each folder containing solution plans for a task at a specific level. As more plans are stored in the

library, automatic plan selection to meet the requirements of a given task is possible.

An engineering process is usually required to be refined by breaking it down into further set of

sub-processes. Its decomposition continues until the required detail is reached. For each sub

process, a plan may exist in the library which can be selected to specialise the sub-process so that

a multi-level hierarchical task network can be generated. If necessary, users can modify it to

adapt to a particular environment or situation.

5.2.4 Workspace

In an engineering project, many engineers are required to work together where each person is

responsible for a part of the design, sharing information among them as they are created during

the design process. The final solution will emerge as different pieces of information are

·91 -

Chapter 5. A Flexible Framework to Support Dynamic Process Management

combined. Hence the concept of workspace is integrated into process management to provide a

highly transparent environment to support collaborative design work.

Each task in the task hierarchy is associated with a workspace in which the task related

information, such as the design requirements and specifications, are linked. Once an agent is

assigned to a task, he/she will become the owner of the associated workspace and is able to

manipulate all the objects in the workspace. The key concept of workspace is shown in Figure

5-5.

In Figure 5-5 and Figure 5-6, the rounded rectangles with identifiers beginning with the letter T

represent the tasks of a process and the rectangles with identifiers beginning with the letters WT

represent the workspaces. A document is represented using a document icon.

T6

Level N

p ~(TS}---

Level N + 1

Figure 5-5. Tasks and their workspaces.

In Figure 5-5, the level N workflow represents a higher level of abstraction of a process than

level N + 1. Agent-l is appointed as responsible for task T4 and becomes the owner of the

associated workspace for task T4, denoted as WT4. Agent-l subdivides task T4 into sub-tasks

T4.1 and T4.2, which are then assigned to engineers Agent-2 and Agent-3 respectively.

Therefore, Agent-2 becomes the owner of the workspace WT4.1 and Agent-3 becomes the

owner of the workspace WT4.2.

When a task is decomposed into a set of sub-tasks, the parent task owner can access the

·92 -

Chapter 5. A Flexible Framework to Support Dynamic Process Management

workspaces associated with the child tasks, but the child task owners are not allowed to access to

the higher-level workspace. Because Agent-l is the owner of the parent task ofT4.l and T4.2,

he, therefore, becomes a member of the workspaces WT4.l and WT4.2. However, Agent-2 and

Agent-3 both are not allowed to access the workspace WT4.

A number of staff can be a member of any workspace by making an application to the workspace

owner. Once the application has been accepted, the staff will then gain the access rights granted

by the owner. In the example, Agent-4 is a member of the quality assurance team who is required

to frequently access the documents created in T4.2.

In Figure 5-5, the same document BC exists in the workspaces WT4, WT4.l and WT4.2. There

is, however, only one copy of BC which is stored in a secure place, i.e. an FTP server where

hyperlinks are used to link the document to the appropriate workspaces. Other document

management features, like version control, can be achieved by integrating workspace with third

party systems. In addition, objects stored in a workspace can be any infonnation represented in a

digital form, such as Computer Aided Design (CAD) diagram or video clips.

The concept of workspace also contributes towards information transmission between tasks

within a project. In an engineering project, an output of a task usually will be used as an input to

one or more subsequent tasks. When this happens, the workflow engine will link the output to

the workspaces where it will be used as an input. An example of the infonnation transmission is

given in Figure 5-6.

In Figure 5-6, because document B is the output of task T1 and is required for performing the

tasks T2 and T3, it is defined as a post-condition of the task T! and a pre-condition of the tasks

T2 and T3. When the task Tl is completed and the document B is uploaded to the workspace

WT!, a link to the document will appear in the workspaces WT2 and WT3 for downloading and

therefore the pre-conditions of tasks T2 and T3 will be fulfilled automatically. Similarly, when

the tasks T2 and T3 are completed, links to the documents C and D will appear in the workspace

WT4 automatically.

·93·

Chapter 5. A Flexible Framework to Support Dynamic Process Management

Workspace WT1 Workspace WT2 Works pace WT3 Workspace WT4

~ ..•

Figure 5-6. Information transmission across workspaces.

Workspaces provide an all-in-one view of the processes at any level of abstraction. While high

level workspaces provide a broader view, the leaf workspaces focus on the required information

for particular tasks. However, this kind of information sharing may cause inconvenience. For

example, an agent may be reluctant to expose a document which is still a draft. Compliance Flow

provides every agent a private space called a 'Bag'. The objects in a bag can only be accessed by

the owner. Thus, Agent-l is prohibited from accessing other agents' Bags, including the ones

belonging to his subordinates, even though he is the owner of the parent task.

5.2.5 Tracking Server

The Tracking Server records the rationale of process planning and execution by logging the

transactions of the objects in a workspace and capturing the cause of abnormal decisions. During

the development process, information is moved from one workspace to another for further

processing until the expected deliverables are achieved. The transactions of information objects

are recorded by the Tracking Server. Once an abnormal decision is made, the rationale of that

decision has to be provided by the user and is stored in the Tracking Server. The following

actions will be treated as abnormal operations and each would lead to a request from the

Tracking Server for an explanation:

•

•
•

A structure change occurring after a process has started. Structure changes include

addition, insertion or removal of tasks in a process.

The rewinding of the status ofa task. For example, rewind from 'Completed' to 'Active'.

Adoption of a non-recommended technique to perform a task.

·94 -

Chapter 5. A Flexible Framework to Support Dynamic Process Management

• Employment of a non-qualified person to perform a task.

• Forced to perform a process that does not fully comply with the required standards.

The decision rationale is recorded by the Tracking Server to form a process rationale database so

that the members of the engineering team can review the decision path to understand how the

design requirements are implemented and at any time during the development process if

necessary.

5.2.6 Task Manager

Task Manager is the presentation layer of a workflow engine through which users model and

manage their tasks. Task Manager integrates two key workflow system functions in its interface:

process planning and user work-list management, and allows interleaving between them.

The tasks of current user
can be Identified by tnelr
dl&tlnct colours.

"pn",,". In different

changes made by
other users are updated
In the task hierarchy

I

I
tasks at a

Task Information can be
viewed from different
aspects.

TO\I,2,3."Jl,()MtU04M:1O.I;ESlGN
1('902.,,1. sw IMT. TESTING

,,,

Figure 5-7. A screen shot of the Task Manager.

A screen shot of the organisation of Task Manager is given in Figure 5-7. The task hierarchies are

presented on the left hand side where the tasks belong to the current user together with their

status can be identified by their distinct colours and patterns. Process planning is performed

using the Process Planner located at the right hand side. The task flow is modelled and presented

graphically. Planning starts from the high level by selecting appropriate sub-plans in the library

and adapting them to the current situation if necessary. Plan refinement is done level by level

- 95·

Chapter 5. A Flexible Framework to Support Dynamic Process Management

until a sufficient level of detail is reached. Once a plan is updated (whether by the current user or

others), the changes made are updated to the task hierarchy inside the Task Manager of every

user to keep the information up to date. In addition, the management of pre- and post-conditions,

task capability, and workspace, is performed by the Task Manager.

For the normal users (beside the system administrator), the Task Manager is the only tool to be

used to manage their activities. Task Manager is able to provide users with a clear picture of all

their tasks with the interdependence among all other tasks in HTN, including all projects, in a

project-based perspective.

The interleaving between process planning and execution becomes possible as a consequence of

their integration. The interleaving implies that a portion (normally the earlier part in the process

flow) of a process plan can be performed while the rest of plan is not complete, and the planning

is on going. This situation often occurs in an engineering process where the planning of further

tasks is dependent on the execution result of some previous one. As the results of some tasks

become available, the scope of the process, including the completed part, has to be re-planned to

better match the project objectives. This iterative process of planning and execution is handled

by Task Manager without any problem.

Collaborative planning is also possible in the Task Manager. Collaborative planning occurs in an

engineering project in both horizontal (people with similar authority but in different disciplines)

and vertical (people with different authorities but in the same professional discipline)

organisation directions. As all users use the Task Manager for process planning and work-list

management, any changes to tasks done by a user will instantly be reflected on the Task

Manager's interface. All team members will be made aware of them without delay.

The task flow cannot be obtained from the hierarchy provided in the Task Manager, and the

process planner can only display the relationship of tasks that are at the same level in HTN with

the same parent task. The "penetration" feature provides a more transparent view of the task

hierarchy. The penetration function allows a user to view a hierarchical process model visually,

starting at any level, moving upward or downward level by level, with the ability to add or

remove any task attributes, such as agent information, in the visual interface at any time. An

example of a penetration view is given in Figure 5-8.

- 96-

Chapter 5. A Flexible Framework to Support Dynamic Process Management

LevelN

L~ - .-.!""T1n< '",""~;

:1;J~' .-~~

Level N + 1

'~ID~~

~ --~ ",v ~' """.- ~ ;"",,-,; ,~, .'%j~.1; ,;>(~ .eol
~~~> 

Level N + 1 with agent Information (p fI (p 
t /('fIJ .€:~!2>-D 

'fp ot <~ 1il' t 
D--+~.- ,t,<:> (P '" rn,~ .~ .. # ~ 

(..!Jl:: ~d ;',Ta.4 

(p "T3., 

'"t' 
Figure 5-8. An example of penetrative view between two levels in a HTN. 

5.2.7 Model of Standards 

The Model of Standards acts as a knowledge database system providing information about the 

standards for process management. The information is used in the compliance checking 

performed by Compliance Agent. Four types of information about a standard are modelled: 

• 

• 

• 

The tasks framework of the standard development lifecycle that is used to deal with all the 

necessary activities to achieve the acceptable quality of products or services. 

The requirements and deliverables of every task in the lifecycle. 

The techniques, measures, tools or methods that are recommended to be used to achieve 

specific objectives or requirements. 

• The required capability of task agents. Capability refers to qualifications, roles, 

experiences or other attributes identified by a standard, which a staff must possess in order 

to be qualified to perform a specific task. 

The Model of Standards that comes with the system is capable of providing information on a 

number of standards. It allows users to change the information as well as adding new standards. 

Therefore, the standards modelled in the system can fully represent their actual applications in an 

organisation. For example, suppose the full version of IEC6l508 safety standard comes within 

the Model of Standards. If the business of a company only concerns safety software 

·97· 



Chapter 5. A Flexible Framework to Support Dynamic Process Management 

development, the users may consider removing the hardware development section in the Model 

of Standards. In addition, users can amend it to the required details for which the organisation is 

using. Changes to the Model of Standards are made using the Standard Modeller. 

5.2.8 Standard Modeller 

Standard Modeller provides a visual interface for the user to model a new standard or amending 

an existing standard in the Model of Standards. The modelling is performed using a visual 

process modelling language. The design of the Standard Modeller is similar to that of the Task 

Manager. The left side of the Standard Modeller is the task hierarchy; the right hand side 

provides further information about the tasks, which includes task flow, pre- and post-conditions, 

capabilities and recommendations. To enable communication and prevent misunderstanding 

between different stakeholders, all the terms used in naming the objects of a standard have to be 

chosen from the Ontology. 

5.2.9 Compliance Agent 

Compliance Agent is a software· agent that is responsible for ensuring the planning and the 

execution of a process is compliant with a selected standard. It will continually monitor the 

planning and execution of the engineering activities, providing proactive assistance in managing 

the project compliance. Compliance Agent performs the following duties: 

Error identification and prevention: 

• Correctness Check - to ensure the sequence of tasks specified in a user-defined process is 

in accordance with a selected standard. 

• Completeness Check - to ensure all the required tasks within a standard are defined in the 

user-defined process. 

• Capability Check - to ensure the required capabilities of an agent are specified according 

to a selected standard. 

• Recommendation Check - to ensure the recommended techniques, measures, tools or 

methods for performing a particular task are fully considered. 

·98· 



Chapter 5. A Flexible Framework to Support Dynamic Process Management 

Process management assistance: 

• Planning Assistant - to remind the user of possible pre-conditions, post-conditions, 

recommendations, and required capability of a particular task while it is being planned. 

• Information Navigation - to transfer the required information, once it is available, to the 

tasks where the information may be used for their execution. 

• Cross-Referencing - to refer a user-defined task to the relevant part of a standard or vice 

versa. 

5.3 Process Management 

The generallifecycle of a workflow comprises two stages: 

1. Planning: decide what and how it is to be done. 

2. Running: do it. 

In conventional workflow systems, these two stages must be performed in sequence. This 

restriction is not suitable for an engineering process where many tasks may be too complex or 

unpredictable to be fully specified in advance. Furthermore, some other tasks may have to be 

performed in a dynamic environment that leads to frequent changes to the original plan. 

The Compliance Flow's process management approach allows the interleaving between the two 

stages as long as any individual task execution follows the associated constraints. Each of the 

two stages is outlined below. 

5.3.1 Planning 

Planning is brought into the system either as a new top-level activity, such as for a completely 

new project, or the need to create part of a plan to implement another process specification. 

Initial planning support is provided by the process planner in the Task Manager, which can be 

used to edit the structure and detail of sub-plans in the Plan Library, enabling the owner of a 

process to adapt the plan to the current situation. Such changes can be made in advance of 

execution, but they can also be made when the overall process has already started. Collaborative 

planning is supported where agents can plan their tasks concurrently; a complete plan can be 

delivered by integrating all these partial plans. 

- 99-



Chapter 5. A Flexible Framework to Support Dynamic Process Management 

A new method (a sub-process) of the task execution can be saved as a Plan if an agent believes 

that it may be possible to be reused in the future or may be useful to others. While a process is 

decomposed into sets of more concrete sub-processes, the details of a sub-process may be found 

in the Plan Library. Therefore, a multi-level hierarchical task network may be generated by 

bringing together of many Plans. The necessary changes can be made to the process plan to adapt 

it to a particular situation. 

When a task agent decides to delegate a task to another more appropriate agent instead of 

performing it himself, he can directly appoint another agent or use the capability matching 

facility to identifY the most suitable available agent before assigning the task. 

During process planning, the Compliance Agent provide pro-active assistant in ensuring that the 

process plan complies with the standards by performing the compliance checks where the user 

will be notified if any incompliance error in the plan is discovered and reminded if any possible 

solution for specifying a current task is found. 

5.3.2 Running 

A workspace can be viewed as a virtual information container of a process at any level of the 

hierarchy task network. Once a process is initiated, its associated workspace is created. From that 

moment onwards, its members can upload or download information. Uploading information 

takes place either when a task has been completed with the deliverables being uploaded to the 

workspace or when a document requires sharing with others. When a deliverable of a task is 

uploaded, a link to that deliverable will be sent to the workspaces where it is required as a pre

condition. 

During run-time, the Tracking Server registers many types of operations carried out by the task 

agents on the objects inside a workspace. If a process needs to be undone, the Tracking Server 

will provide the history and guide the us!:r to undo the process, returning it to a suitable state. 

When an agent starts execution of a task, the Compliance Agent will perform compliance checks 

and the task will be prohibited if any error is discovered until an explanation is provided or the 

error is eliminated. 

-/00-



Chapter 5. A Flexible Framework to Support Dynamic Process Management 

5.4 Chapter Summary 

This chapter presented the novel Compliance Flow framework, which is able to deal with the 

identified requirements for supporting engineering process. 

The hierarchical task-based process model is capable of modelling and managing complex 

engineering project. The interleaving between process build and run time allows an abstract 

process plan to be performed in the beginning and the details added when they are available. It 

forms an essential part of a system to support engineering processes. 

The use of ontology facilitates communication between the system stakeholders, including 

system components and users. It is also the key element to enable the compliance checks. By 

using dynamic capability matching, the Organisation Server can assist in identifying the most 

suitable task agent for a specific task. As the Plan Library becomes rich along with the use of the 

system, the hierarchical task network planning and case-based planning can make process 

planning easier. 

The workspace provides a base to allow collaboration among task agents. The rationale for 

engineering process is captured by the Tracking Server so that engineers can trace back the 

decision path at any time if necessary. Task Manager gives an integrated working environment, 

allowing users to manage their tasks and keeping updated with project progress. 

A Compliance Agent is used to provide support for compliance management. By performing a 

number of compliance checks, it can effectively identify the compliance errors and proactively 

prevent unqualified products from being produced. 

In conclusion, the requirements for a supporting system identified are dealt with by the 

Compliance Flow approach in the following ways: 

• Compliance with Standards: A Compliance Agent performs a number of compliance 

checks between the Model of Standards and the user-defined processes during process 

build and run time. As a result, compliance errors are identified during process planning, 

and tasks with compliance problems are prohibited from execution during run time. 

• Traceability: A Tracking Server records decision rationale so that the implementation and 

decision paths can be traced. 

-101 -



Chapter 5. A Flexible Framework to Support Dynamic Process Management 

• Selection of Agent: An Organisation Server provides a fuzzy capability matching 

mechanism for this purpose. 

• Flexibility: The interleaving between process build and run time allows parts of a process 

to be executed while other parts are being refined. 

• Common Process: A Plan Library provides support in the form of pre-specified process 

structure that can be assembled and adapted to suit the specific needs of the current 

situation. 

• Process and Information Management: The process management facilities together with 

the provision of workspaces provide a collaboration environment for engineering 

processes. The information will be transferred to the relevant tasks once they are ready. 

The personal 'Bag' can effectively maintain the necessary privacy for each agent. 

-102 -



Part 3 

Managing Process Compliance 



Chapter 6. Standards Modelling 

6.1 Introduction 

Chapter 6 

Standards Modelling 

"What we observe is not nature itself 

but nature exposed to our method of questioning. " 

- Werner Heisenberg 

To automatically perform the process compliance evaluation in a software system, an essential 

requirement is the ability to retrieve the information about a standard. In Compliance Flow, the 

Model of Standards is responsible for providing such information. It describes the processes that 

have to be followed to develop a standards compliance product. The traditional process 

modelling concepts are insufficient in describing the processes recommended by standards. To 

develop an approach to modelling a standard, it is necessary to understand the standard and 

analyse the key requirements that have to be fulfilled to achieve the required level of 

compliance. The IEC61508 international standard is used to explain the proposed approach. 

·/03· 



Chapter 6. Standards Modelling 

This chapter describes and discusses the standard modelling in Compliance Flow. It is organised 

as follows: §6.2 gives a general introduction to IEC61508 international standard and identifies 

the key requirements for developing a standard compliance product; §6.3 discusses the 

perspectives of process modelling and points out that an extra technological perspective is 

necessary for modelling a standard; §6.4 presents Compliance Flow's approach to model a 

standard; §6.5 is the summary of this chapter. 

6.2 IEC61508 International Standard 

IEC61508 is an international standard for the development of ElectricaIl Electronic/ 

Programmable Electronic Systems (EIEIPEs) that are used to perform safety functions. There are 

two different groups of sub-systems in IEC61508: the Equipment Under Control (EUC) and 

safety-related system. The former performs the required manufacturing, process, transportation, 

medical or other activities, while the later provides the safety functions required to ensure that 

the EUC is suitably safe. The scope of IEC61508 is limited to the functional safety of the 

ElElPEs and is concerned with hazard analysis on the EUC in order to identify requirements for 

safety-related system. The design issues relating to the EUC is not included. 

6.2.1 Structure of IEC61508 

IEC61508 consists of three main parts, together with definitions and guidance. Part 1 specifies 

the general requirements that are applicable to all parts of IEC61508. In addition, it provides an 

introduction to the safety lifecycle and the overall structure for the technical requirements for 

safety-related EIEIPES. Supplementary information on concepts and suggested methods is in 

Part 5. Part 1 sets out requirements for: 

• Conformance (Clause 4) 

• Competence of persons (Clause 5) 

• Safety management (Clause 6) 

• Overall safety lifecycle (Clause 7) 

• Functional safety assessment (Clause 8) 

• Documentation (Clause 9) 

-104 -



Chapter 6. Standards Modelling 

Part 2 presents a safety lifecycle for the hardware aspects of EIEIPEs. The requirements for the 

design, test and validation of the hardware used in safety-related ElElPEs are presented in Clause 

7 of Part 2. In particular, there is useful detail on: 

o The architecture ofEIEIPEs. 

o The guidance on architectures encourages consideration of the sensors and actuators that 

form part of the safety function. 

o The detection and protection against component faults for the components of hardware 

architectures, including measures to detect and protect against random failures in hardware 

which relate to Safety Integrity Level (SIL) 

o The avoidance of design errors for hardware related to SIL. 

Part 3 specifies the requirements for software, with some additional guidance in Part 6. It also 

identifies the measures and techniques for specific software development activities within the 

lifecycle. These techniques are listed in Annex A of Part 3 and supplemented by an example of 

their application in Part 6. These requirements are particularly for: 

o The selection of requirements and design methods and notations related to SIL. 

• The levels of testing and the types oftest related to SIL. 

• The choice of programming language related to SIL. 

• The hazard analysis of software designs related to SIL. 

o The software validation techniques and level of independence of validation related to SIL. 

IEC61508 has two important concepts which are fundamental to its application - namely, Safety 

Lifecycle and Safety Integrity Level. Safety Lifecycle forms the central framework which links 

together most of other concepts introduced in this section. 

6.2.2 Safety Lifecycles 

A Safety Lifecycle is used, as the key framework, to deal in a systematic manner with all the 

activities necessary to achieve the required Safety Integrity Level. The Safety Lifecycle 

encompasses the risk reduction measures that include EIEIPES safety-related systems, "other 

technology" safety-related systems, and external risk reduction facilities. 

-105 -



Chapter 6. Standards Modelling 

The Overall Safety Lifecycle proposed by IEC61508 is shown in Figure 6-1 with simplified 

views of reality and as such do not show all the iterations relating to specific phases or between 

phases. However, the iterative process is an essential and vital part of development throughout 

the Safety Lifecycles. 

I Concept I 
J 

I Overall scope definitionl 

t 
I Hazards and risk analysis I , Phase 1 

I Overall safety requirements I 
t 

I Safety requirements allocation I 

+ 
t t t t 

Overall Overall safety Overall Safety related Safety related ~){temal 
operation and validation installation & 

-=~ 
systems: other r'" maintenance planning commissioning echo I ~~tion 

planning planning Realisation Realisation facilities 

I I 
jRealisation 

I I I I 

4 t . 

Overall installation & commissioning 

Phase 2 

+ 
Overall safety validation I 

+ Overall modification t 
(}venI.\t <Jperatkm. and mai1\tena=e & retrofIt 

+ 
Phase 3 

I Decommissioning J 

Figure 6-1. IEC61508 Overall Safety Lifecycle 

IEC61508 requires that the Overall Safety Lifecycle shall be followed (or concluded) by a 

verification activity, and that this verification shall be planned. The verification techniques to be 

applied will depend upon the specific phase but shall include such things as document and design 

reviews, testing and analysis ofresults. 

6.2.3 Safety Integrity and Safety Integrity Level 

In IEC61508, safety requirements are defined as safety functions together with a safety integrity 

level for each function. The safety integrity is the probability of a safety-related system 

performing the required safety function under all stated conditions within a stated period oftime. 

The Safety Integrity Level (SIL) is one of four discrete levels for specifYing the safety integrity 

-106 -



Chapter 6. Standards Modelling 

requirements. Safety integrity levels are numbered from I to 4 with 4 having the highest level of 

safety integrity. Table 6-1 shows the safety integrity levels and relates them to quantified 
I 

probabilities of failure for systems. The probability figures are noted as indicative in IEC61508 

and could be altered to suit different industries. 

Safety Integrity Levels: Target Failure Measures 

Safety Integrity Demand Mode of Operation Continuous I High Demand Mode of 
Level (Probability of failure to perform its Operation (Probability of a 

design function on demand) dangerous failure per hour) 

4 ~ 10-5 to < 10-4 ~ 10-9 to < 10-8 

3 ;::: 10-4 to < 10-3 ;;::: 10-8 to < 10-7 

2 ~ 10-3 to < 10-2 ;;::: 10.7 to < 10.6 

1 ~ 10.2 to < 10-1 ;?; 10-6 to < 10-5 

Table 6-1. Safety Integrity Levels 

6.2.4 Requirements for Development Safety Equipments 

Similar to other safety standards relating to safety-related systems, IEC61508 defines a set of 

requirements for developing EIEIPES for use in safety-related systems. Implementing such 

requirements is the current best practice for developing high quality product. The key 

requirements (ERA Technology, 2000) are: 

Quality and Safety Management 

Requirement 1: The development shall be performed in accordance with a defined quality and 

safety plan. 

A clearly defined quality plan and a separate safety plan for complex safety-related system that 

identify all development activities, the methods and associated procedures to be followed in 

performing the identified activities, and the allocation of responsibilities for performing the 

identified activities is necessary. The purpose of the quality plan is to facilitate the overall 

development process management. The process of overall development can be reviewed at any 

point during the development and the misunderstandings of identified activity among performers 

can be avoided. 

·]07· 



Chapter 6. Standards Modelling 

Requirement 2: Suitable techniques and measures shall be selected. 

Suitable techniques, measures and supporting tools shall be selected for each of the identified 

activities. IEC61508 identifies possible techniques and measures that should be consider for 

developing EIEIPES with different safety integrity level targets. The basic principle in making a 

selection is that the use of the selected techniques, measures and tools should reduce the risk to a 

level that is As Low As Reasonably Practicable (ALARP). 

Requirement 3: The project organisation and allocated responsibilities shall be defined. 

The project organisation should be clearly defined in terms of the process of interactions 

between the individual members of the organisation and the allocation of responsibilities. The 

persons who have responsibilities for any safety lifecycle activities should be competent to 

discharge those responsibilities. In particular, it should be clear on how the responsibilities for 

addressing the safety of the equipment will be shared amongst the members of the organisation. 

Requirement 4: Configuration management and change control procedures shall be defined. 

Procedures for managing changes, both during the initial development of the equipment and 

subsequent design corrections and enhancements, should be clearly defined and understood by 

all staff involved in the development process. 

Requirement 5: Design reviews shall be planned and carried out. 

The activities of design review should be included in the quantity plan. 

Requirement 6: Document shall be produced. 

The results of all development and review activities should be documented and presented in an 

auditable form. 

Safety Requirements 

Requirement 7: Hazard analysis and risk assessment shall be performed. 

The hazards associated with the safety-related system application and the associated risks should 

first be identified in order to derive safety requirements. The resulting requirements should then 

-108 -



Chapter 6. Standards Modelling 

be analysed in the context of the identified hazards and risks to ensure that they are correct and 

complete with regard to all possible eventualities. 

Requirement 8: The specification of safety requirements shall be documented 

The safety requirement should be clearly specified, using an appropriate notation, in terms of the 

required functionalities. The safety requirements specification should also include a definition of 

a required safety integrity level, which is based on the results of the hazard and risk analysis 

activities. 

Requirement 9: There shall be clear tractability from requirements through design. 

The design of a safety-related system should be carried out in a manner that shows explicitly 

how the safety requirements are implemented. 

Architecture 

Requirement 10: Appropriate programmable electronics architecture shall be selected. 

The suitable EIEIPES architecture should be designed based on the required safety integrity level 

of the design. 

Design 

Requirement 11: Suitable design techniques shall be employed depending on the required safety 

integrity level. 

The design of the EIEIPES should be performed in accordance with the quality and safety plan in 

which the methods, techniques and measures to be adopted are specified. 

Test and Analysis 

Requirement 12: Test specification shall be prepared prior to testing. 

The test to be performed on the design should be specified in parallel with the actual design 

activities, and should be clearly documented. 

Requirement 13: The results of test and analysis activities shall be recorded 

·109· 



Chapter 6. Standards Modelling 

The results of test and analysis activities shall be documented for subsequent review. 

Independent Safety Assessment 

Requirement 14: The development shall be subjected to independent safety validation and 

assessment. 

The development process, and the results of the process, should be subjected to review that is 

performed by a suitable competent individual or organisation that is independent of the 

development team. 

6.3 Standard Modelling Consideration 

To describe a process related to a standard, several concepts called process perspectives (Curtis 

et aI., 1992) are necessary. 

6.3.1 Functional and Behavioral Perspective 

First of all, processes contain functions to be executed. Examples of such functions in IEC61508 

are hazard and risk analysis, overall safety requirement or overall safety validation. These 

functions are examples of tasks. Every task has a particular objective. If a task is too 

complicated, it can be decomposed into sub-tasks. For example, overall safety validation can be 

decomposed into hardware validation or software validation. The task decomposition can be 

performed continually if necessary, forming a hierarchical task network (HTN). The lowest level 

tasks in the HTN are called leaf tasks. A leaf task is performed normally by a human or a 

machine and produces a single deliverable. For example, designing a car is a complicated task 

which consists of a set of sub-tasks each of which further consists of other sub-tasks and so on. 

Finally, hundreds of functions are executed to build a car. 

The behavioral aspect of a task defines in which order its sub-tasks are performed. The order is 

specified through control constructs such as sequence or parallel branching, and is constrained 

by the pre-conditions of tasks. A task can only be performed when its previous tasks have been 

completed and its pre-conditions have been fulfilled. 

-110-



Chapter 6. Standards Modelling 

Applying to the recommended processes of IEC61508, functional perspective concerns what are 

the required processes and behavioral perspective defines in which order they are performed. 

Following are the key requirements of applying IEC61508. concerned by these two perspectives: 

o Requirement I: The development shall be performed in accordance with a defined quality 

and safety plan. 

o Requirement 4: Configuration management and change control procedures shall be 

defined. 

o Requirement 5: Design reviews shall be planned and carried out. 

o Requirement 7: Hazard analysis and risk assessment shall be performed. 

o Requirement 10: Appropriate programmable electronics architecture shall be selected. 

o Requirement 12: Test specification shall be prepared prior to testing. 

6.3.2 Information Perspective 

In general, a task requires data as input and produces data as output. The input data may come 

from the output of other tasks. Similarly, the output data may become the input of other tasks. 

The information might be moved or transformed. For example, software safety validation 

requires a software validation plan from another task as an input data, and will produce a 

software safety validation report after the task has completed successfully. In regard to the 

recommended processes ofIEC61508, the input data and output data of a task are recorded and 

presented in a document form. As task can be decomposed to sub-tasks, the input data and output 

data will also be decomposed to granulated pieces each of which will be assigned to relevant 

sub-tasks. For example, software validation can be decomposed into sub-tasks where each output 

data is a sub-section of the software safety validation report. A completed report can be obtained 

when all sub-tasks have been completed successfully. Following are the key requirements of 

applying IEC61508 concerned by information perspective: 

o Requirement 6: Document shall be produced. 

o Requirement 8: The specification of safety requirements shall be documented. 

o Requirement 13: The results of test and analysis activities shall be recorded. 

- 111-



Chapter 6. Standards Modelling 

6.3.3 Organisational Perspective 

The organisational perspective of a process is concerned with who is responsible for perfonning 

a task. As soon as a task is chosen to be executed through the behavioural perspective, it has to 

be decided which agent is responsible for perfonning this task. This perspective uses the concept 

of agent selection polices, such as (Kappel et aI., 2000), (Rupietta, 1997) and (Moore et aI., 

2000). There are mainly four kinds of agent selection polices: (l) agent related selection - select 

an agent by means of its identifier, (2) role related selection - select an agent playing a certain 

role from an organisation structure, (3) workflow related selection - select an agent based on 

various data about actual and previous workflows, and (4) capability matching - select an agent 

base on the satisfaction of its capability against the required capability for perfonning the task. 

Following are the key requirements of applying IEC61508 concerned by the organisational 

perspective: 

• Requirement 3: The project organisation and allocated responsibilities shall be defined. 

• Requirement 14: The development shall be subjected to independent safety validation and 

assessment. 

6.3.4 Technological Perspective 

The three perspectives from traditional process modelling are not complete. There are further 

important perspectives in the context of process modelling. The technological perspective is an 

example which defines how a task is perfonned. The technology perspective captures the 

IEC61508 recommended techniques which have to be used to perfonn identified tasks. 

Following are the key requirements of applying IEC61508 concerned by this perspective: 

• Requirement 2: Suitable techniques and measures shall be selected. 

• Requirement 11: Suitable design techniques shall be employed depending on the required 

Safety Integrity Level. 

Out of the fourteen key requirements only requirement 9, which emphasises the importance of 

tractability of the design process, is not covered by the perspectives discussed. Tractability is 

concerned with the follow-up of tasks execution which belongs to the scope of workflow engine. 

The tractability issue has clearly been discussed in Chapter 5. 

- 112-



Chapter 6. Standards Modelling 

6.4 Model of Standards 

The Model of Standards is a process model which acts like a knowledge database providing 

information about a standard in terms of process management. In Compliance Flow, such 

information will be used as a check spelling process in which a number of matching mechanisms 

will be performed to assess the degree of compliance of a user-defined process with a standard. 

The standard modelling is based on the four perspectives discussed above, with capability of 

modelling a wide range of standards. The approach has successfully modelled IEC61508 with its 

two important concepts: the Safety LifecycIe and Safety Integrity Levels (SIL). Safety Lifecycle 

is the proposed development process necessary to achieve the required SI1. SIL, a number 

between I and 4 is an indicator for specifying the safety integrity requirements with 4 having the 

highest level of safety integrity. For different level SIL, the detail of development process may 

vary. The meta-model of standard modelling presented using Object Modelling Technique 

(OMT) is illustrated in Figure 6-2. 

Standard control flow 

consists of 

Capability 

legend: 
6 represents generalisation 
0. represents consists of relationship Post-condition Pre-condition 
• represents many cardJnality 

italic text represents the name of association 
normal text identifies the role of object in association 

Figure 6-2. Meta-model of standard modelling. 

6.4.1 The Use of Ontology 

As the information provided by the Model of Standard is used in compliance checks by matching 

it with the user-defined processes, the terms used in describing a concept of interest existing in 

both side must be the same. Compliance Flow takes the advantage of ontology to enable a 

matching process. All terms used to describe the concepts in the context of process management 

-Il3 -



Chapter 6. Standards Modelling 

such as task, pre-conditions and post-conditions have to be selected from the ontologies. The 

terms of an ontology is organised into a hierarchy in which a term located in a higher level 

implies a higher level of abstraction, while a lower level term represents a more concrete concept 

of object. A set of ontologies comes with the system which, however, can be changed, removed 

or extended by users to adapt to the particular environment where the system is running. 

6.4.2 Modelling of Task Framework 

The task framework in the Safety Lifecycle proposed by IEC61508 is modelled into a 

hierarchical task network (HTN). A task is a basic unit of work, which can be hierarchically 

decomposed into sub-tasks if necessary until the required details are modelled, as long as the 

parent-child relationship between tasks are maintained. 

Each task is associated with two sets of conditions: pre-conditions and post-conditions. The post

conditions of a task are sometimes the pre-conditions of its subsequent tasks. Performing a task 

requires the fulfilment of its pre-condition, and to do so, the preceding tasks that can satisfy 

those conditions with their post-conditions must be completed successfully in advance. The post

conditions of a task will be achieved when the task is completed successfully. Therefore the 

order of the execution of tasks is constrained by their dependencies. 

IEC61508 views the requirements simply as the input to a distinct stage in the lifecycle, and the 

design specification as the output of that stage. The requirements and specifications are 

equivalent to the pre-conditions and the post-conditions respectively as they have to be achieved 

under the recommended sequence in order to comply with IEC61508. A condition is presented in 

the form of checklists, and it is stated as fulfilled when the checklist is checked. 

6.4.3 Modelling of Task Recommendation 

The recommended techniques, measures, tools or methods that have to be used for performing 

specific tasks to achieve the specified objectives are modelled with four parameters: (I) the task 

for which the technique is applied, (2) the requirements for applying the technique, (3) the 

technique itself, and (4) the level ofrecommendation. The value of second parameter can be null, 

implying that no requirement is necessary to apply the technique. 

- 114-



Chapter 6. Standards Modelling 

IEC61508 introduces sets of techniques for specific development activities with different levels 

of applicability according to the SIL of the product to be developed. The SIL is normally 

achieved after the safety requirements are addressed. Therefore, the level of SIL (from I to 4) 

becomes the requirement for applying the recommended techniques. These techniques are 

categorised into four levels of recommendation in IEC61508 namely Highly Recommended 

(HR), Recommended (R), No Recommendation (-) and Not Recommended (NR). 

These recommendations can be modelled, for example, IEC61508 recommends that the 

technique 'Structure Methodology' (parameter 3) is Highly Recommended (parameter 4) during 

the achievement of objective of Clause B.30 (parameter I) when the SIL of the product being 

developed is equal to I (parameter 2). 

6.4.4 Modelling of Task Capability 

A task capability refers to the required capabilities of an agent who is going to perform a specific 

task. The modelling of task capability adopts the same approach as the modelling of agent 

capability. A capability consists of two parts: the technical capability and its application area. 

Two sets of ontologies are used in modelling of a task capability, namely capability ontology and 

. application ontology. While the capability ontology defines the required techniques, skills, roles 

and other attributes of an expected agent, the application ontology defines their application areas. 

The terms in an ontology are organised into a hierarchical structure which provides a hierarchy 

of capabilities. This hierarchical structure can ease the process of specifYing capabilities since 

specifYing a high-level capability implies that all its lower-levels are covered. 

A single capability is denoted as Capability(te,ta) where te is the term drawn from represents the 

capability and ta represents the application area of te. The capability part and the application part 

may have different weight in representing a capability, and therefore two weighting points are 

required: Wc for the percentage of weights of te and Wa for the percentage of weight of ta. The 

sum of Wc and Wa must equal 100. On the other hand, performing a task may require its agent 

possessing multiple capabilities that forms a capability set, denoted as Capability(pl,p2 ... pn). 

Each capability in the capability set may have different weight. A weight, denoted as ws, is 

therefore required for each capability in the capability set. Similarly, the sum of Ws of all 

capabilities in a capability set must equal to 100. Therefore, a full description of a capability is 

denoted as Capability(te,ta, Wc, Wa, ws) where Wc, Wa and Ws are optional parameters. The details of 

- 115-



Chapter 6. Standards Modelling 

capability representation and capability matching can please refer to Chapter 8, Design and 

Implementation. 

The task capability is normally implicitly specified in most of the industry standards. A standard 

can be applied to wide areas where the situations are different and therefore agents with different 

capability will involve in performing similar tasks but in different projects or in different 

companies. Standards normally give the guidelines for agent selection rather than the details of 

required capability. For example, IEC61508 gives a number of competence factors which should 

be addressed when assessing and justitying the competence of persons to carry out their duties, 

including: 

H(1) Engineering appropriate to the area; (2) Engineering appropriate to the 

technology; (3) Safety engineering appropriate to the technology; (4) Knowledge of 

the legal and safety regulatory framework; (5) The consequences in the event of 

failure of the safety-related systems. The greater the consequences the more rigorous 

shall the specification and assessment of competence be; ... " (IEC. 1997) 

Thus, the task capabilities of a standard have to be defined by users according to their 

understanding to these factors and the particular environment where the system is running. The 

factors such as the nature of the product, the country where product will be consumed, and 

organisational culture can affect the capability specification. 

The required capability for the same process in different projects may vary because of different 

situations. For example, different techniques may require for different levels of SIL. The group 

of required capabilities together with the suitable weights for a particular situation can be saved 

as a scheme. A task is possible for assigning with multi schemes. As a result, users can choice 

suitable scheme of capability during the runtime. 

6.5 Chapter Summary 

This chapter described the standard modelling approach in Compliance Flow, using IEC61508 

international standard as an example to identity the required requirements which have to be 

fulfilled for the application. The Model of Standard is a process model which provides 

information of a standard in terms of process management to be used. Such information will be 

used for compliance checks. To do so, such requirements have to be concerned by the standard 

-116 -



Chapter 6. Standards Modelling 

model. The standard model is developed based on a number of process perspectives. The 

traditional perspectives of the process modelling are insufficient in modelling a standard. A 

further technical perspective is required. 

The Model of Standards is capable of capturing four important aspects of a standard in terms of 

workflow management: (1) the proposed task framework, (2) the requirements and the 

deliverables of every task in the framework, (3) the required techniques, measures, tools or 

methods to perform a task, and (4) the required capability of task agents. As the approach of 

standard modelling has succeeded in modelling IEC61508, it is capable of modelling a wide 

range of similar standards. 

-/17 -



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Chapter 7 

Managing 
Process Compliance 

Based on Process Model Reasoning 

7.1 Introduction 

"Everything should be made as simple as possible, 

but not simpler. " 

- Albert Einstein 

The current best practice of providing reliable systems is to embody the development process in 

recent industry standards and guidelines, such as IEC61508 for safety and IS0900 1 for quality 

assurance. These standards are generic, but every application is different because of the 

differences in project details. Once a standard has been adopted, it is important to manage project 

compliance according to the standard. However, current WfMS lack the ability to ensure that a 

process is planned and performed such that it complies with the selected standard. 

• JIB· 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

This chapter presents Compliance Flow, focusing on the compliance check mechanisms. It is 

organised as follow: §7.2 gives a definition to process compliance. §7.3 introduces the 

Compliance Flow's approach, describing the compliance check mechanisms that assist users to 

specify a compliant process and ensure its execution is in accordance with the standards. 

Examples drawing on a draft version oflEC6l508 standard are used to illustrate the checking 

mechanisms. § 7.4 discusses the coupling issue between the compliance agent and the Model of 

standards. A chapter summary is given in §7.5. 

7.2 Compliance with IEC61S08 

IEC6l508 specifies a safety lifecycle as a guide for product development, which deals in a 

systematic manner all the necessary activities to achieve a required safety integrity level. As 

every project has its unique process details, it is therefore impracticable to impose a canonical 

safety lifecycle on all projects. 

The following are three quotes from a draft version ofIEC61508 standard: 

" ... a different overall safety lifecycle can be used ... prOVided the objectives and 

requirements of each clause of standard are met. " 

"The EIEIPES Safety Lifecycle that should be used ... Jf another EIEIEPS Safety 

Lifecycle is used it shall be define in the Safety Plan and all the Objectives and 

Requirements of each Clause of this International Standard shall be met. " 

" ... the documentation requirements in standard are concerned, essentially, with 

information rather than physical documents. " 

Thus, a safety system development process is IEC61508 compliant: 

There is a clear description of the design stages and, at each stage, the inputs to that 

stage are folly and unambiguously defined, and also all the objectives and 

requirements of the standard are met. 

7.3 Compliance Checks 

In Compliance Flow, a standard that is required to be complied by a development process is 

- 119-



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

represented as a Model of Standards (hereinafter referred as the Model). The Model acts as a 

knowledge base to provide the required information to support compliance checks. It captures 

four important aspects of a standard in terms of workflow management: 

I. The task framework of the standard development lifecycle that is used to deal with all the 

necessary activities to achieve the acceptable quality of product or services. 

2. The requirements and the deliverables of every task in the framework. 

3. The techniques, measures, tools or methods that are recommended to be used to achieve 

specific objectives or requirements. 

4. The required capability of task agents. Capability refers to qualifications, roles, 

experiences or other attributes identified by a standard, for which a performer must 

possess in order to be qualified to carry out a specific type of task. 

Compliance checks are for checking a user-defined process against the Model to identify 

compliance errors and assists users in specifying a process that meets the requirements of a 

selected standard. Compliance checks can be grouped into two categories. 

Error identification and prevention: 

• Correctness Check - to ensure the sequence of tasks specified in a user-defined process is 

in accordance with a selected standard. 

• Completeness Check - to ensure all the required tasks within a standard are defined in the 

user-defined process. 

• Capability Check - to ensure the required capabilities of an agent are specified according 

to a selected standard. 

• Recommendation Check - to ensure the recommended techniques, measures, tools or 

methods for performing a particular task are fully considered. 

Process management assistance: 

• Planning Assistant - to remind the user of possible pre-conditions, post-conditions, 

recommendations, and required capability of a particular task while it is being planned. 

• Information Navigation - to transfer the required information, once it is available, to the 

tasks where the information may be used for their execution. 

• Cross-Referencing - to refer a user-defined task to the relevant part of a standard or vice 

·120· 

------------------------ - --



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

versa. 

Process planning normally starts at an abstract level and becomes more concrete as planning 

continues. Compliance checks can be applied at any stage during process planning. The checks 

can also be applied to a task at any level of a HTN. If the selected task in the user-defined 

process is a high level task, then its child-tasks will be checked. A high level task is standard 

compliant if all of its child-tasks passed the compliance checks. The levels of abstraction 

between the user-defined process and the Model may vary. There are three possible situations: 

1. A user-defined process (UDP) is at the same level of abstraction as the Model. 

2. A user-defined process is at a higher level of abstraction than the Model. 

3. A user-defined process is at a more detailed level than the Model. 

Compliance agent will perform checks on a process or a task in response to a request from the 

user at build-time, but it will automatically perform them before the execution of a task at run

time. The behaviors of a compliance check during build-time and run-time may vary. In the 

following section, compliance checks are described based on the three situations identified above 

and the different behaviors during build-time and run-time are identified and discussed. 

7.3.1 Definition of Terms 

The basic concept of a compliance check is to perform a variety of mappings between a user

defined process and the Model of Standards to identify the compliance errors. The following 

terms are frequently used in the description in the rest of this thesis. 

User-defined Task 

A user-defined task is a task specified in a user-defined process. For figures in the rest of this 

chapter, a user-defined task is presented using a rounded rectangle with an identifier beginning 

with the letter '1'. In Figure 7-1, Tl is an example of a user-defined task. 

Standard Task 

A standard task is a task contained in the Model. A standard task is presented using a rounded 

rectangle with an identifier beginning with the letters' ST'. In Figure 7-1, STl is an example of a 

standard task. 

-121· 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Task Specification, User-defined Specification, and Standard Specification 

IEC61508 views requirements simply as input to tasks in an engineering process, and 

specifications as output of tasks. An output specification from one task can be an input 

requirement of another task in the same process. The term 'specification' refers to a design 

specification which is modelled as a post-condition of a task. A specification is normally 

described in a document so it is represented using a document icon. 

A task specification is a kind of specification that relates to a standard and is included in a user

defined process. A user-defined specification is another kind of specification defined by a user 

but its context is outside the scope of a standard. A specification that is included in the Model is 

called a standard specification. 

Model of Standards 
I~~~~"", 

Ontology 

Documentation 
! 

.... j I J I 1"" 
? ! X AY BZ 

~~S~'''''~'~'~R'''''~m~m~,"~d'~'OO~I\-f~ .. ~"",,-~:di~",~ljn~. ~' ~~i~r~~~§~~~rl···rl _ ..... 1 --, r-Lr" 
User-Deflned Process '\', A1 A2 81 B2 

User-(lefined Specjlica~or1 ••• ~ ~ •• 

M.l A2.2 82.1 92.2 

... ~ .... 
62.1.1 62.1.2 

Figure 7-1. Some terms used in the description of compliance check mechanisms. 

Corresponding Specification and Corresponding Task 

A task specification corresponds to a standard specification if they have the same concern and 

the two corresponding specifications will have the same name because of the use of ontology. In 

Figure 7-1, the standard specification A in the Model is the corresponding standard specification 

of the task specification A in the user-defined process. A corresponding line is used to represent 

the corresponding relationship between two specifications. Its empty arrow indicates the 

matching direction in a particular example. 

Two tasks that produce corresponding output specifications are corresponding tasks, but the tasks 

can have different names. For example, STI is the corresponding standard task ofTI. Therefore, 

all the specified constraints at a standard task, including pre- and post-conditions, capability, 

- /22-



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

recommendations and information must be applied to its corresponding task in the user-defined 

process in order to comply with the standard. 

Corresponding Parent and Child Relationship 

A specification may partially correspond to another specification. This relationship is captured 

by the parent-child relationship between two specification terms in the Documentation Ontology. 

For example, in Figure 7-1, Bl is a child-term ofB in the ontology hierarchy, this means that the 

standard specification B 1 corresponds to part of the task specification B. This relationship is 

described in the following sections as: Bl is a corresponding child-specification of B, or B is a 

corresponding parent-specification ofB 1. 

There are two possibilities: (1) a standard task corresponds to mUltiple tasks in a user-defined 

process, and (2) a user-defined task corresponds to mUltiple tasks in the Model. For the first 

situation, all the constraints specified with the standard task must be applied to its corresponding 

tasks in a user-defined process. Similarly, for the second situation, the constraints associated with 

the standard tasks must be applied to the corresponding task in the user-defined process. 

However, some cases will override this general rule. They will be discussed in particular 

compliance checks. 

Sibling Specification and Sibling Task 

If two specifications have the same pareot, then they are sibling specifications. In Figure 7-1, 

B2.1 is a sibling standard specification of B2.2, and ST3 is the sibling standard task of ST4, and 

vice versa. 

Immediate Previous Specification and Immediate Previous Task 

Specifications located in front of another specification in a process are called its previous 

specifications. An immediate previous specification is one that is immediately before another 

specification. In Figure 7-1, A is the immediate previous task specification of B. Similarly, ST2 is 

the immediate previous standard task of ST3 and ST4. 

Agent Capability 

An agent capability is a capability possessed by a task agent. 

·123· 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Task Capability 

A task capability is a capability required to perfonu a particular task as specified by the process 

planner. 

Standard Capability 

A standard capability is a capability specified in the Model that a task agent has to possess in 

order to carry out a particular task. 

Standard Recommendation 

A standard recommendation is a recommendation defined in the ModeL 

Task Recommendation 

A task recommendation is a recommendation defined in a user-defined process. 

7.3.2 Identifying the Corresponding Specifications and Tasks 

A common but important function in all the compliance checks is to identify the corresponding 

specifications and tasks in the Model in order to retrieve the required information for checking. 

In the figures that follow, the rounded rectangles with identifiers beginning with the letters 'ST' 

represent standard tasks and identifiers that begin with letter '1' represent user-defined tasks. 

The document icons represent the pre- and post-conditions of tasks. The dotted lines represent 

the corresponding relationships between standard specifications and task specifications. The 

arrows of the dotted lines represent the mapping directions of identifying the corresponding 

specifications and tasks in the examples. 

If UDP and the Model are at the same level of abstraction, the task specification and the 

corresponding standard specification can be matched directly as they have the same name. 

If the corresponding standard specification cannot be matched directly, it could be because UDP 

and the Model are at different levels of abstraction. The system will first establish whether UDP 

is more detailed than the ModeL To do so, its parent-tenus are matched with the Model, starting 

from the immediate parent. As an example using Figure 7-2, to identify the corresponding 

·1Z4 • 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

standard specification ofB2.1.l, its parent-tenns are matched with the Model in the order B2.1, 

B2 then B. In this example, B2.l can be located. 

Model of Standards Ontology 

Documentation 
I 

... , I I I I 
X A Y Blt Z 

1----------------".''---------1 "'rl --1..1"'1 .-u; ... 
• ./ A1 A2 81 82 

.... 
/ .... .-..... "'r-, lfr-," 

A2.1 />.2..2 82.1 82.2 

#,L, .... 

User-Oefined Process 

82.1.1 82.1.2 

Figure 7-2. An example ofUDP is at a more detailed level than the Model. 

If no parent-tenns can be matched, then its child-tenns will be tried. As an example, in Figure 

7-3 three of the child-tenns ofB (Bl, B2.l and B2.2) matched the Model. They are considered 

the corresponding child-specifications of B. 

Model of Standards Ontology 

Documentation 

I 
---I j I I I 

X f Y If' B~ z 
1-------------1+----¥------1 "'rl -.1.""1 r-9 .. 

\ i / ..... __ ._ ..... __ ...... / A1 l81 ¥i2~ 

.. ,
J .... J/ .. /. ...... A2.1 A2.2 atB2.~B2.2 

. ...,.~ .... 

User-Defined Process 

82.1.1 82.1.2 

Figure 7-3. An example ofUDP is at a higher level of abstraction than the Model. 

If a specification or any of its parent and child-tenns cannot find a match in the Model, then it is 

a user-defined specification, and it is not a concern of the compliance checks. An example is the 

specification X in Figure 7-3 

·125· 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

7.3.3 Correctness Check 

The Correctness Check is to verify that the placement of a task specification complies with the 

model, and therefore ensure that the execution sequence of the tasks in the user-defined process 

is correct. 

To verify that a task specification is placed correctly, first is to identify its corresponding 

standard specification in the Model. Second is to ensure its immediate previous specification is 

also located in front of the corresponding standard specification. If this is the case then the task 

specification is placed correctly. If the immediate previous specification is a user-defined 

specification, then the next previous specification will be matched instead. 

As an example, consider Figure 7-4, to check the compliance of the task specification 'Software 

Safety Validation Report', first is to identify its corresponding standard specification in the 

Model. Its previous specification is then matched against' Software Safety Validation Plan' in the 

Model. The matching of X failed as it is a user-defined specification. The previous specification 

of X, 'Software Safety Validation Plan', is then tried. It is found in the Model and is placed in 

front of the corresponding standard specification. Therefore, it can be claimed that the 

specification 'Software Safety Validation Report' is placed in the right order. 

If a user-defined process is at a higher level of abstraction than the Model, then the specifications 

cannot be matched directly. The identification of two corresponding specifications at different 

levels of abstraction is described in section 7.3.2. 

When applying Correctness Check to a task, all the specifications of the task will be checked. A 

task is compliant if all of its specifications passed the Correctness Check. Similarly, a process is 

compliant when all of its tasks are compliant. 

·126· 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Model of Standards 

User~Oefined Process 

Software 
Safety 
Validation 

SoftWe:ro 
Safety 
Validation 
Report 

Figure 7-4. Correctness Check when UDP and the Model are at the same level of abstraction. 

The Correctness Check algorithm is given in Figure 7-5. 

./27· 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Function CorrectnessCheck(spec, Std) as Boolean 
spec: A specification in a user-defined process for which 

the correctness check is applied to. 
Std: The Model of the selected standard. 
IrnSpec( ... } ~ (x:x E Standard Specification); 
IrnSpec ~ GetImmediatePreviousStandardSpecification(spec,Std); 

If IrnSpec * 0 Then 

Else 

PvTSpec(_} ~ (x:x E Task Specification); 
PvTSpec ~ GetPreviousTaskSpecifications(spec); 
If (ImSpec ~ PvTSpec) Then 

Return True; 
Exit Function; 

End If 
PImSpec(_} ~ (x:x E Standard Specification); 
For each i E ImSpec 

Next i 

PImSpec ~ GetParent(i); 
If «PImSpec n pvTSpec) * 0) Then 

ImSpec ~ ImSpec - (i) 
End If 

CImSpec{ ... } ~ {x:x E Standard Specification}; 
For each i E ImSpec 

Next i 

CImSpec ~ GetChildren(i); 
If «ClmSpec n PvTSpec) * 0) Then 

ImSpec ~ ImSpec - (i) 
End If 

If ImSpec * 0 Then 
Return False 

Else 
Return True; 

Endif 

Return True; 
End If 

End Function 

Figure 7-5. Correctness Check algorithm. 

_m: 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

7.3.4 Completeness Check 

Completeness Check is to ensure that the required specifications are included in UDP and 

therefore ensures that the required tasks are also included. It can be applied to the whole process 

or a sub-process at build-time as long as the corresponding part in the Model is given. For 

example, to check the completeness ofUDP that is related to the part of software development in 

IEC61508, the corresponding sub-process entitled 'Safety Software Design and Development' in 

the Model must be identified. Selecting an inappropriate corresponding standard sub-process will 

lead to a long list of missing specifications or some of the required specifications are not 

checked. 

In Completeness Check, all the standard specifications in the given standard process are matched 

against the task specifications in UDP. If all the specifications are found, then the Completeness 

Check succeeds. In Figure 7-6, the Completeness Check fails because specification C is not in 

the user-defined process. 

To pass Completeness Check during run-time, the required specifications to perform the user

defined task must be ready. The required specifications can be retrieved from the corresponding 

task in the Model. The user does not need to identifY a corresponding part in the Model. 

Model of Standards 

Figure 7-6. An example of applying Completeness Check to a task. 

As an example using Figure 7-6, the user-defined tasks T1 and T2 are completed and the 

required specifications X and B for T3 are ready. STJ is the corresponding task of T3 as they 

- 129 -



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

have the same post-condition. From the Model, it is known that a specification C is required for 

T3 to produce a specification D but it is not specified as a pre-condition of T3. Therefore, the 

Completeness Check applied to T3 fails. 

The Completeness Check algorithm used at process build-time and run-time are given in Figure 

7-7 and Figure 7-8 respectively. 

- /30-



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Function CompletenessCheck(Pros, Spros) as Boolean 
Pros: A user-defined process consisted of a set of tasks 

for which the completeness check is applied to. 
SPras: A corresponding process in the Model of a 

selected standard. 
TaskSpec{ ... } ~ {x:x E Task Specification}; 
StdSpec{_} ~ {x:x E Standard Specification}; 
TaskSPec = GetSpecifications(Pros}; 
StdSpec ~ GetSpecifications(SPros); 
For each i E StdSpec 

Next i 

If (i E TaskSpec) Then 
StdSpec ~ StdSpec - (i); 

Else 

End If 

PTaskSpec{_} ~ {x:x E Task Specification}; 
PTaskSpec ~ GetParent(i}; 
If «PTaskSpec n StdSpec) ~ 0) Then 

StdSpec = StdSpec - (i); 
Else 

End If 

CTaskSpec{_} = (x:x E Task Specification); 
CTaskSpec = GetChildren(i); 
If «CTaskSpec n StdSpec) ~ 0) Then 

StdSpec ~ StdSpec - (i); 
Else 

Return False; 
End If 

If (StdSpec ~ 0) Then 
Return False; 

Else 
Return True; 

End If 
End Function 

. 

Figure 7-7. Completeness Check algorithm used at process build-time. 

- 131-



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Function CompletenessCheck(task, SPros) as boolean 
task: A user-defined task which user is trying to start. 
SPras: A corresponding process in the Model of a 

selected standard. 
PvTaskSpec{",} = {x:x E Task Specification}; 
PvTaskSPec = GetPreviousSpecifications(task); 
TaskSpec{ ... ) = {x:x E Task Specification}; 
TaskSpec = GetSpecifications(task) 
CorStdSpec{_} = {x:x E Standard Specification}; 
For each i in TaskSpec 

Next i 

CorStdSpec = CorStdSpec V _ 
GetCorresdpondingStdSpecifications(i,SPros); 

StdTask = (x:x E Standard Task); 
For each i in CorStdSpec 

StdTask = StdTask V GetAssociatedTask(i); 
Next i 
StdSpec = {x:x E Standard Specification}; 
For each i in StdTask 

StdSpec = StdSpec V GetPreviousSpecification(i); 
Next i 
For each i in StdSpec 

Next i 

If (i E PvTaskSpec) Then 
StdSpec = StdSpec - (i); 

Else 

End If 

ParentTaskSpec{ .. ,} {x:x E Task Specification}; 
ParentTaskSpec = GetParent(i}; 
If ((ParentTaskSpec n StdSpec) * 0) Then 

StdSpec = StdSpec - \i); 
Else 

End If 

ChildTaskSpec{ .. ,) = (x:x E Task Specification); 
ChildTaskSpec = GetChildren(i); 
If (ChildTaskSpec n StdSpec) * 0) Then 

StdSpec = StdSpec - \i}; 
Else 

Return False; 
End If 

If (StdSpec * 0) Then 
Return False; 

Else 
Return True; 

End If 
End function 

Figure 7-8. Completeness Check algorithm used at process run-time, 

- 132-



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

7.3.5 Capability Check 

Capability Check is to ensure that a task agent possesses the required capability specified in a 

standard for performing a task. Capability Check returns a goodness of fit (GOF) value 

indicating how well an agent matches the required capabilities. The GOF is assessed from three 

different views: (l) the GOF of task capability against the standard capability requirement; (2) 

the GOF of agent capability against task capability requirement; (3) the GOF of agent capability 

against standard capability requirement, as shown in Figure 7-9. Each GOF is assessed through a 

fuzzy capability matching algorithm which requires two sets of capabilities: the required 

capability and the available capability. Using the first view as an example, the standard capability 

specified in the Model is the required capability and the task capability specified by the process 

planner is the available capability. Details of the matching algorithm are discussed in Chapter 8. 

User-defined Task Standard Task J 
Standard Capabfllty 

Figure 7-9. Three capability views are given in the Capability Check. 

7.3.5.1 UDP and the Model at the Same Level of Abstraction 

If a user-defined task is at the same level of abstraction as its corresponding standard task then 

the standard capability for the corresponding standard task is the required capability for the user

defined task. 

As an example using Figure 7-10, Capability Check is applied to the user-defined task T4. The 

required capability can be retrieved from its corresponding standard task, 'Software Safety 

Validation', in the Model. The agent capability is retrieved from the Organisation Server. These 

two sets of capability are sent to the fuzzy capability matching algorithm to assess the GOF 

values. 

·133· 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Model of Standards CID 
Software Software 
Safety Software Safety 
Validation Safety Validation 
Plan Validation Report 

" 
\\ 

\ " ST4 , 

./ 
ST6 

User-Defined Process /1 

~ CID " T4;"> T6 

~ 
T7 

Figure 7-10. Capability Check when UDP and the Model are at the Same Level of Abstraction. 

7.3.5.2 UDP at a Higher Level of Abstraction than the Model 

If a user-defined task is at a higher level of abstraction than the Model, then it may correspond to 

multiple standard tasks. The collection of the capabilities of these standard tasks will be treated 

as the required capabilities for the user-defined task. 

Model of Standards Ontology 

Documentation 

I · .. ·1 J I I I'" 
X A Y B Z 

1-----------i----:"..-"~--1'__----_I ""1 --LI -'1 ~ ... : .......' A1 A:2 81 B2 \ ///''''''''''''''''''''''/ "'n n" 
j f / A2.1 A2.2 62.1 82.2 

"n"" 

User-Defined Process 

62.1.1 82.1.2 

Figure 7-11. Capability Check when UDP at a higher level of abstraction than the Model. 

In Figure 7-11, Capability Check is applied to the user-defined task T2 which has three 

corresponding standard tasks, ST2, ST3 and ST4, in the Model. The specified capabilities of 

these tasks are the required capabilities for T2. 

If UDP is at a higher level of abstraction than the Model, then Capability Check is advisory at 

-134 -



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

build-time but is enforced at run-time. At build-time, Capability Check can be applied to a task at 

any level of abstraction. A high level task may be assigned to a management staff who is not 

going to perform the sub-tasks. The sub-tasks will be specified in detail and assigned to suitable 

technical staffs to execute. Consequently, the manager does not need to fulfil the required 

technical capability specified in the Model. As process planning starts at an abstract level, 

compliance agent is unable to determine whether a task is to be executed or further decomposed. 

Therefore, the result from Capability Check is only advisory. 

However, when Capability Check is applied to a task to be performed at run-time, a task should 

not be allowed to proceed if it fails Capability Check. 

7.3.5.3 UDP at a More Detailed Level of Abstraction than the Model 

If a user-defined task is at a more detailed level of abstraction than the Model, then it is only 

concerned with part of the corresponding staodard task. Therefore, the standard capability in the 

Model may exceed the actual requirement for the user-defined task. Because there is no way of 

filtering out the exceeding part, the whole standard capability will be considered as the required 

capability. 

Model of Standards Ontology 

Documentation 
I 

nol I I I I'" 
X A Y B Z 

I-----------------;~-----__f ···rl ---'-1'1 ~ ... 
A1 A2 81 82 

User~Defined Process 
// ....•. 

... ......... . .. ~ ~ .. 
A2.1 A2.2 82.1 82.2 

···h···· 
82.1.1 82.1.2 

Figure 7-12. Capability Check when UDP at a more detailed level of abstraction than the Model. 

As ao example using Figure 7-12, Capability Check is applied to a user-defined task T2 where 

the corresponding parent-staodard task ST3 is identified in the Model. Capability Check assumes 

that the standard capability specified for ST3 is required for T2 even though it may exceed the 

actual requirement. Therefore, the standard capability is used as the required capability for 

capability matching. 

·135· 



Chapler 7. Managing Process Compliance Based on Process Model Reasoning 

Capability Check can also be applied to a process at build time. To do so, compliance agent will 

perform Capability Check to every task in the process. The process will pass only when all its 

tasks passed. 

The Capability Check algorithm for retrieving the task capability of a given user-defined task 

and its required standard capability is given in Figure 7-13. These two sets of capability are 

passed to the capability matching function to access GOF. 

- 136-



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Function CapabilityCheck(task, Std) as Integer 
Task: A task in a user-defined process for which 

the capability check is applied to. 
Std: The Model of the selected standard. 
TaskCap{_} - {x:x E Task Capability}; 
TaskCap - GetCapability(task); 
TaskSpec{ ... } - {x:x E Task Specifiation}; 
TaskSpec - GetSpecifications(task); 
StdSpec{ ... } - (x:x E Standard Specification); 
For each i E TaskSpec 

Next i 

StdSpec - StdSpec V 
(GetCorrespondingStdSpecification(i,Std) }; 

StdTask{_} - (x:x E Standard Task) 
For each i E StdSpec 

StdTask - StdTask V (GetAssociatedTask(i)}; 
Next i 
RequiredCap{ ... } - (x:x E Standard Capability); 
For each i E StdTask 

RequiredCap - RequiredCap V (GetCapability(i)); 
Next i 
GOF - AssessGOF(TaskCap, RequiredCap); 
Return GOF 

End Function 

Figure 7-13. Capability Check Algorithm. 

-137 -



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

7.3.6 Recommendation Check 

Recommendation Check is to ensure that the techniques, measures, tools or methods which are 

recommended by a standard for in perfonning particular tasks are fully considered by the user in 

planning a process. 

IEC61508 recommends techniques and measures for the development of safety related systems 

for the control of failures. These recommendations are defined and related to standard tasks in 

the Model. On the other hand, a task recommendation is modelled as the pre-condition of a user

defined task in a user-defined process. 

7.3.6.1 UDP and the Model at the Same Level of Abstraction 

When carrying out the Recommendation Check (RC), the pre-condition of a user-defined task is 

matched against the standard recommendations retrieved from the corresponding standard task to 

verify whether the recommended techniques are selected. If any highly recommended (HR) 

technique is not used or a non-recommended technique is chosen, than an explanation is required 

and it will be recorded in the Tracking Server. 

Model of Standards 

User-Defined Process 

Functional and BJack-box TestIng HR 
Probabilislic Testing R 
Simulation I Modeling R 

SoftWare 
Safety"~" 

Validation 

ST4 

Probabilislic Testing 

Simulation I Modeling 

Software 
Safety 
Validation 
Report 

/ .... __ J 

Figure 7-14. RC when UDP and the Model are at the same level of abstraction. 

·138· 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

In Figure 7-14, the Recommendation Check is applied to a user-defined task T4 which is to 

prepare the 'Software Safety Validation Report' where two recommended (R) techniques are 

selected and defined as pre-conditions. Its corresponding standard task 'Software Safety 

Validation' has three recommended techniques one of which is a highly recommended (HR) 

technique 'Functional and Black-box Testing'. Because the highly recommended technique is not 

used in T4, the Recommendation Check fails. The check will only pass when either the reason 

for not using the technique is provided or the technique is added to T4 as a pre-condition. 

7.3.6.2 UDP at a Higher Level of Abstraction than the Model 

If a user-defined task corresponds to multiple standard tasks in the Model, then all the 

recommendations related to the corresponding tasks in the Model must be used or considered. If 

the user-defined task is to be further decomposed, then the selected recommendations will be 

kept with the child-tasks. 

7.3.6.3 UDP at a More Detailed Level of Abstraction than the Model 

When a standard task corresponds to mUltiple tasks in UDP, all its recommendations must be 

considered by the corresponding user-defined tasks. 

The Recommendation Check algorithm is given in Figure 7-15. 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Function RecommendationCheck(task, Std) as Boolean 
task: A task in a user-defined process for which the 

recommendation check is applied; 
Std: The Model of a selected standard. 
TaskSpec{ ... } = {x:x E Task Specification}; 
TaskSpec = GetSpecifications(task); 
StdSpec{ ... } = {x:x E Standard Specification}; 
For each i E TaskSpec 

Next i 

StdSpec = StdSpec u _ 
(GetCorrespondingStdSpecification(i,Std) ); 

StdTask{ ... ) = (x:x E Standard Task); 
For each i E StdSpec 

StdTask = StdTask U (GetAssociatedTask(i»; 
Next i 

Rcom{ ... ) .= (x:x E Recommendation); 
For each i in StdTask 

Ream Rcom U (GetRecommendations(i)}; 
Next i 
PreCond( ... ) (x:x E Task Pre-Condition); 
PreCond = GetPreConditions(task); 
If (Rcom k PreCond) Then 

Return True; 
Else 

Return False; 
End If 

End Function 

Figure 7-15. Recommendation Check algorithm. 

- 140-



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

7.3.7 Planning Assistance 

The Planning Assistance (PA) is to provide the user with the possible related information of the 

task being planned, including the possible pre-conditions, post-conditions, recommendations and 

the required capability ofthe task. 

The concept of Planning Assistance is that if any pre- or post-condition of a user-defined task are 

already specified, then its corresponding standard task in the Model can be identified and the 

information related to the standard task may retrieved to assist task specification. 

7.3.7.1 UDP and the Model at the Same Level of Abstraction 

If a user-defined task is at the same level of abstraction as the Model, then the related 

information is retrieved from its corresponding standard task. In Figure 7-16, a user is specifying 

the user-defined task T3. Its corresponding standard task ST2 can be identified as specification C 

is given. Planning Assistance will then provide the information related to ST2 to the user for 

consideration. The possible information includes the pre-conditions, required capabilities and 

recommendations. 

Model of Standards 

Figure 7-16. PA when UDP and the Model are at the same level of abstraction. 

7.3.7.2 UDP at a Higher Level of Abstraction than the Model 

If a user-defined task corresponds to more than one standard tasks in the model, all the 

information from the corresponding standard tasks will be treated as they are related to the user

defined task. 

·141 -



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Ontology 

Documentation 

I om, I I I ( .. .o-
X A Y B C 

... ,-1, h ~ ... 
1-----.1--+---,.'-----+-7-:--------1 A1 A2 B1 82 C1 C2 

User-Defined\ProceS$, (plannlngiln progress)./ / mn I I I I 
It .•.•.•• ). ~_, (:~::_:::::::-.:'.~'_~:: .••• / Al.1 A2.2 82.1 82.2 82.3 

I 
I I I 

82.1.1 B2.1.2 82.1.3 

Figure 7-17. PA when UDP is at a higher level of abstraction than the ModeL 

As an example in Figure 7-17, a user is specifYing the user-defined task T2 where a specification 

B is defined as the post-condition. Its corresponding standard tasks are ST2, ST3 and ST4 in the 

ModeL Therefore, their recommendations, R2, R3 and R4 become the possible techniques for 

T2. 

7.3.7.3 UDP at a More Detailed Level of Abstraction than.the Model 

If a standard task corresponds to multiple user-defined tasks in a user-defined process, then all 

the information from the standard task will be treated as they are required for all the 

corresponding user-defined tasks. An example is given in Figure 7-18. 

Model of Standards Ontology 

Documentation 
I ... , I I I r ..... 

x A Y B C 

"',-1, h ~ ... 
~--------------~,--------~ A1 ~ B1 82 C1~ 

User-Defined Process (planning In progress) /) non I I I I 

A2.1 A2.2 82.1 82.2 82.3 
I 

I I I 
82.1.1 82.1.2 82.1.3 

Figure 7-18. PA when UDP at a more detailed level of abstraction than the ModeL 

In Figure 7-18, a user is specifYing the user-defined task T2 where the specification B2.L2 is 

defined as a post-condition. Its corresponding standard task ST2, which is at higher level, is 

identified in the ModeL It has three recommendations. Although R2 is already used in its sibling 

·142-



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

task Tl, all of the recommendations are treated as possible techniques for T2. 

The Planning Assistance algorithms are given in Figure 7-19 and Figure 7-20 respectively. 

·143· 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Function FindPossibleCapability(task, Std) as PossibleCap{ ... } 
Task: A task in a user-defined process for which 

the capability check is applied to. 
Std: The Model of the selected standard. 
TaskCap{ ... } ~ {x:x E Task Capability}; 
TaskCap ~ GetCapability(task); 
TaskSpec{ ... } ~ (x:" E Task Specifiation); 
TaskSpec ~ GetSpecifications(task); 
StdSpec{ ... ) ~ {x:x E Standard Specification}; 
For each i in TaskSpec 

Next i 

StdSpec ~ StdSpec U _ 
(GetCorrespondingStdSpecification(i,Std»; 

StdTask{ ... ) ~ (x:x E Standard Task) 
For each i in StdSpec 

StdTask ~ StdTask U (AssociatedTask(i»; 
Next i 
RequiredCap ( ... ) ~ (x: x E Standard Capability); 
For each i in StdTask 

RequiredCap ~ RequiredCap U (Capability(i»; 
Next i 
PossibleCap ~ TaskCap ~ RequiredCap; 

End Function 

Figure 7-19. The algorithm to find the possible capability for a user-defined task. 

Function FindPossibleRecommendation(task, Std) as PossibleRcom{ ... } 
task: A task in a user-defined process for which the 

recommendation check is applied. 
Std: The Model of a selected standard. 
TaskSpec{ ... ) ~ (x:x E Task Specification); 
TaskSpec ~ SetSpecifications(task); 
StdSpec{ ... ) ~ (x:x E Standard Specification); 
For each i in TaskSpec 

Next i 

StdSpec ~ StdSpec U _ 
(GetCorrespondingStdSpecification(i,Std»; 

StdTask{ ... ) ~ (x:x E Standard Task); 
For each i in StdSpec 

StdTask ~ StdTask U (GetAssociatedTask(i)}; 
Next i 
Rcom{ ... } = {x:x E Recommendation}; 
For each i i"n StdTask 

Ream Ream u {GetRecommendations(i)}; 
Next i 
PreCond(_) (x:x E Task Pre-Condition); 
PreCond = GetPreConditions(task); 

PossibleRcom = Ream ~ PreCond; 
Return PossibleRcom; 

End Function 

Figure 7-20. The algorithm to find the possible recommendation for a user-defined task. 

·144· 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

7.3.8 Information Navigation 

The use of workspace enables information to be transferred from one task to another according 

to the task flow. However, the task flow does not guarantee that all the information has been 

considered. 

Consider Figure 7-21, according to the Model, the specification 'Software Safety Validation 

Plan' is required for the task to produce a 'Software Safety Validation Report'. The user-defined 

process is compliant with the standard as both specifications exist and are placed in the correct 

sequence even though two user-defined tasks are in between. It is unknown whether T2 and T3 

require the 'Software Safety Validation Plan' for their execution. However, it is certain that the 

plan is required for T4 as it is the actual task to produce 'Software Safety Validation Report' but 

it is not defined as a pre-condition because of a user mistake. Therefore the report will only exist 

in the workspaces ofTl and T2 when it is ready. 

Information Navigation is to transfer the information, according to the Model, during process 

run-time to the related tasks where such information may be required for their execution. For a 

standard specification that is used as an input to a task to produce another standard specification 

(hereinafter refers to as the output specification), Information Navigation assumes that the input 

specification will be used for all the tasks in between these two specifications in UDP. 

7.3.8.1 UDP and the Model at the Same Level of Abstraction 

Once a document is uploaded to a task workspace, Information Navigation (IN) will identify the 

input and output standard specifications in the Model, and then copy the links of the documents 

to the workspaces of the user-defined tasks in between the corresponding specifications in UDP. 

As an example in Figure 7-21, 'Software Safety Validation Plan' has just been uploaded to the 

workspace of Tt. Here the 'Software Safety Validation Report' is the post-condition of the next 

standard task. In UDP, the tasks in between the input and output specifications are T2, T3 and 

T4. Therefore, links to the document are put in the workspaces ofT3 and T4 also. 

-145 -



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Model of Standards 

Software 
Safety 
Validation 

User-Defined Process (withoutUif~rmatlon Navigation) 
;/ 
! 
i 

User-Oefined Process .. (wlth Infoarmtion Navigation) 
'" ( 

Software 
SafetY ' 
Validation 
Plan 

,,----------'\ , , 
" I,;l '~ • 

I ~ 

Figure 7-21. IN when UDP and the Model are at the same level of abstraction. 

7.3.8.2 UDP at a Different Level of Abstraction than the Model 

When UDP is at a different level of abstraction than the Model, the mechanism to identifY the 

corresponding specifications of the input and output specifications is the same as described in 

section 4.1. 

For some tasks in the Model, a specification is required by more than one task. This implies that 

all the tasks in between that specification and every output specification require that specification 

too. An example is given in Figure 7-22. 

In Figure 7-22, specification B2.1.1 has just been up loaded to the workspace of TI. Its 

corresponding parent-specification B2.1 in the Model is required for standard task ST3 and ST4 

where B2.2 and B2.3 are the output specifications. The corresponding specifications for B2.2 

and B2.3 are B2.2.1 and B2.3.1 respectively, which forms two process paths: from B2.1.l to 

B2.2.! and B2.1.1 to B2.3.1. The tasks on the paths are assumed that B2.1.1 is required for their 

execution. Therefore, links to the documents are put in the workspaces ofB, T4 and T6. 

- 146-



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

Model of Standards Ontology 

Documentation 
I 

---, I I r"'" 
X A Y 6 C 

I----f------+--+-------j ... ,-l, ···n r1, ... 
User-Defined Process{ (planning in progress) \' .. ___ ._ .. -_ ... --. ____ . A1 A2. 61 62 C1 C2 . '\ "on 11 I I .. J -~~=~ 

. ·"1 Ih~··· // 
:::::::: ::::: ::~ ---~,,< ----/ 

62.1.1 62.1.2 62.2.1 62.3.1 

Figure 7-22. IN when UDP at the more detailed level of abstraction than the Model. 

The Infonnation Navigation algorithm is given in Figure 7-23. 

·/47· 



Chapler 7. Managing Process Compliance Based on Process Model Reasoning 

Function NaviqateDocument(doc, workspace, Std) 
doc: A document uploaded into a workspace of a 

user-defined task. 
workspace: The workspace where the document is uploaded. 
Std: The Model of a standard. 
task ~ GetTask(workspace); 
StdPreCond{ ... ) ~ (x:x E Standard Specification); 
StdPreCond ~ GetCorrespondingStdPreCond(doc,Std); 
StdPostCond{._) ~ (x:x E Standard Specification); 
StdPostCond ~ GetStdPostCond(StdPreCond,Std); 
StdTask{ ... ) ~ {x:x E Standard Task); 
For each i E StdPostCond 

StdTask ~ StdTask U {GetAssociatedTask{i»); 
Next i 
TaskPreCond{ ... ) ~ {x:x E Task Pre-Condition); 
For each i in StdPostCond 

TaskPreCond ~ TaskPreCond U 
{GetCorrespondingTaskPreCond(i) ); 

Next i 
UserTask{ ... ) ~ {x:x E User-defined Task); 
For each i in TaskPreCond 

UserTask ~ UserTask U {GetAssociatedTask(i)); 
Next i 
PossibleTask{_) ~ (x:x E User-defined Task); 
Workspace{ ... ) ~ {x:x E objects in a workspace); 
For each i in UserTask 

Next i 
End Function 

PossibleTask ~ GetTaskslnBetween(task, i); 
For each j in PossbileTask 

Next j 

Workspace ~ GetlnformationObjects(j); 
If {{doc) c Workspace ~ 0 ) then 

Workspace ~ {doc) U Workspace; 
End If 

Figure 7-23. Algorithm of copying a document to the possible workspaces. 

·148· 



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

7.3.9 Cross-Referencing 

Finally, given a task or specification in UDP, Cross-Referencing will locate the relevant part of 

the standard and the associated information. The inverse search is also allowed, it identifies all 

user-defined tasks or specifications that relate to a particular part ofthe standard. 

7.3.10 Error Prevention 

Error Prevention is performed at run-time to prevent the execution of non-compliant tasks. It 

includes: 

• Correctness Check to ensure the required specifications are modelled properly. 

• Completeness Check to ensure the required specifications are included. 

• Capability Check to ensure the task agent possesses the required capability. 

• Recommendation Check to ensure the required techniques are considered. 

When the workflow engine starts a task, Error Prevention will perform the checks. Execution can 

go ahead only after passing all the checks or an explanation is provided, otherwise the task will 

be frozen until all the detected errors are resolved. 

Model of Standards 

.- ..... -.........•.. , 

User-Defined ~rocess (planning In progress) \ 
i"., ) 

\ / ... 
1 / ill 

Figure 7-24. An example of Error Prevention. 

Consider Figure 7-24, the user-defined tasks Tl and T2 are completed and the required 

specifications X and B are ready. When T3 starts, for which ST3 is the corresponding standard 

task, Error Prevention will be performed to ensure process compliance: Correctness Check 

- 149-



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

ensures that specification D is placed in a correct sequence; Completeness Check ensures that 

specification C is available; Capability Check ensures that the task agent possesses the required 

capability; and Recommendation Check ensures that the required techniques or skills are used. 

Because specification C is not available, the completeness check failed and T3 is not allowed to 

proceed. 

7.4 Coupling Issue 

The development processes in different projects can be very different because of their details. 

Checking the user-defined process against the Model is the most flexible way to tackle the 

compliance problem. The degree of compliance relies greatly on the level of detail the 

information that the Model of Standards provides and the matching algorithm. 

Sometimes, multiple standards may be used in an engineering project. To deal with this situation, 

there are two approaches: (1) employ a number of compliance agents, each of which is 

responsible for handling a particular standard, or (2) employ a single compliance agent that is 

capable of handling multiple standards. The difference between these two approaches is the 

degree of coupling between the compliance agent and the Model of Standards. 

In the first approach, different standards may be modelled in different ways and the checking 

algorithm varies for each standard. This approach may achieve a higher degree of compliance as 

it can describe a standard more precisely and a dedicated algorithm is used to tackle any special 

features in a particular standard. However, system applicability is impaired as standard 

modelling cannot be performed by the user and programming work is normally required when a 

standard is updated or a new standard is required. 

Compliance Flow advocates the second approach where a generic standard modelling language 

is developed with the capability of modelling a wide range of standards together with a 

comprehensive set of checking algorithms to ensure compliance. Users are able to model or 

update a standard without any programming involved. This enables users to tailor the Model to 

fit their organizations. 

-150 -



Chapter 7. Managing Process Compliance Based on Process Model Reasoning 

7.5 Summary 

This chapter introduced the compliance checks performed by the compliance agent. Correctness 

Check, Completeness Check, Capability Check and Recommendation Check can identify errors 

at process build-time while Error Prevention is able to prohibit the execution of non-compliant 

tasks at run-time. Cross Referencing function allows the user to locate the relevant part of a 

standard by giving a user-defined task or specification, or vice versa. Planning Assistance and 

Information Navigator provide planning support and information management at build-time and 

run-time respectively. 

Compliance checks could be performed at different stages during process build-time and run

time when the sub-processes may be at different levels of abstraction from the Model. There are 

three possible situations: (l) a process is at the same level of abstraction as the Model; (2) a 

process is at a higher level of abstraction than the Model; and (3) a process is at a more detailed 

level than the Model. Some compliance checks have different behaviours during process build

time and run-time, and which are identified and discussed. 

Finally, the degree of coupling between the compliance agent and the Model was discussed. 

Compliance Flow advocates the use of a generic modelling language and a comprehensive set of 

checking algorithms to deal with multiple standards. 

- 151 -



Part 4 

System Development and Evaluation 

---------



Chapter 8. Design and Implementation 

Chapter 8 

Design and Implementation 

"There are two ways of constructing a software design: 

one way is to make it so simple that there are obviously no deficiencies, 

and the other way is to make it so complicated that there are no obvious deficiencies. 

8.1 Introduction 

The first method is far more difficult. " 

- C.A.R. Hoare 

Compliance Flow prototype is developed in order to demonstrate and evaluate the proposed 

workflow framework for supporting the management of dynamic engineering processes, for 

which it has to include three features: process modelling, process management and compliance 

management. 

This chapter presents the design and implementation of Compliance Flow. It is organised as 

follows: §8.2 describes the process modelling methodology which provides the basis for 

- 152-



Chapter 8. Design and Implementation 

supporting process management; §8.3 describes standard modelling which is used to provide 

information for compliance management, §8.4 depicts the workflow enactment process; §8.5 

discusses the system architecture. §8.6 presents the four tier object-oriented implementation 

architecture; §8.7 discusses the proposed capability matching approach and the fuzzy matching 

algorithm used. A chapter summary is given in §8.8. 

8.2 Process Modelling 

To facilitate process management, an enhanced activity-based modelling methodology is 

developed. In this methodology, a process model not only models the task structure of a project, 

but also captures the capabilities that are required of the tasks and possessed by the agents. In 

addition, it links the information objects that are required or created during task execution to the 

related tasks. The meta-model of process modelling is illustrated in Figure 8-1. 

Workspace 

Post-condition 

application data storage 

manag& 

requires fullfils 

knows how 

Legend: 
L::::.. represents generalisation 
.:::> represents consists of relationship 
• represents many cardinality 

italic text represents the name of association 
normal text identifies the role of object in association 

Figure 8-1. Meta-process model. 

In Compliance Flow, a project is represented as a task which can be further divided into sub

tasks. Task decomposition can be performed to any level of detail, which forms a Hierarchical 

Task Network (HIN). The tasks at the lowest level are concrete work instructions, while the 

-153 -



Chapter 8. Design and Implementation 

tasks at higher levels are more abstract. HTN helps to manage complexity by hiding less 

important details until they are required. 

The execution sequence of tasks is modelled through links. A link represents the connection 

between two tasks and the execution order. The input and output links of a task have to be 

maintained in the task decomposition, as illustrated in Figure 8-2. Only the leaf tasks that have 

no child tasks will finally be performed. 

Figure 8-2. Interfaces between parents and their children. 

Task execution is constrained by the pre- and post-conditions. A pre-condition normally 

represents information that is required for the execution of a task, and it has to be ready or true 

before the task can begin. A post-condition is an objective of a task that will be achieved if the 

task is completed successfully. The different types of task interdependence discussed in Chapter 

4 that can be modelled are illustrated in Figure 8-3. 

In Figure 8-3, the rounded rectangles are tasks, the white document icons are pre- and post

conditions. The pooled and sequential interdependence can be modelled in a traditional way. To 

model the mutual interdependence where the output of task T1 is the input of another task T2 

and the output of T2 is the input back into task T1, the recursive loop is represented by a linear 

task flow. As in the example, document A is used in task T1 to create document B and document 

B is used in task T2 to create document C that is needed to send back as input to task Tt. A 

shadow task T1 • that has the same concern as task T1 is used with both the documents A and C 

as inputs, to capture an interaction of the recursive loop. 

·154· 



Chapter 8. Design and Implementation 

Pooled Interdependence Sequential Interdependence Mutual Interdependence 

Figure 8-3. The modelling of different types of task interdependence. 

Pre- and post-conditions can only be assigned to leaf tasks. The pre-condition of a parent task is 

the collection of all the pre-conditions of its child-tasks. Thus, the higher level a task is, the more 

pre-conditions it has. This is also true of post-conditions. Pre- and post-conditions are often 

represented as documents. Another type of pre-condition is the technique that has to be used to 

carry out a task. 

The assigning of execution constraints at the lowest level of tasks fits the planning practice of 

engineering projects. A project plan usually starts at an abstract level where the constraints are 

defined at a relatively high level. While the delegation-planning continues, these constraints, like 

the tasks, will be refined and assigned to the appropriate sub-tasks. The constraints assigned to 

the higher level tasks are removed, but the task flow and structure are maintained. 

A task is performed by a task agent and the progress of the execution of the task is represented 

through a number of states. A task agent could be a human or a system. A system may need a 

human to operate it. A capability is a skill, technique, method, knowledge or any attribute that an 

agent required to perform a task. While the required capability of an agent to perform a particular 

task is defined as the task capability, the agent capability is used to describe the capability 

possessed by an agent. The specifications of task capabilities and agent capabilities enable 

automatic identification of the most appropriate agent for a task. 

Every task is associated with a works pace that is used to store the information objects related to 

that task, induding the documents corresponding to the pre- or post-conditions of the task. A 

workspace associated with a high level task contains all the information objects of its child-tasks. 

A workspace is managed by the agent assigned to that task. Information objects can be copied or 

moved from one workspace to another. The information objects in a workspace are hyperlinks 

that link to the concrete objects stored in a secured space, such as a FTP server. Therefore, an 

information object may appear in multiple workspaces, but only one physical copy is stored. 

·155· 



Chapter 8. Design and implementation 

8.3 Standard Modelling to Support Compliance Management 

The information of a standard that is required in compliance checks is captured through a 

standard process model called the Model of Standard or simply the Model. The meta-model of 

standard modelling is illustrated in Figure 8-4. In this meta-model a standard is represented as a 

Hierarchical Task Network (HTN). A pre-condition of a task has to be fulfilled before the 

execution of that task. The objective of a task is seen as a post-condition that will be achieved 

after the completion of the task. The task flow is modelled using links. According to the standard, 

the agent of a task requires certain capabilities. The standard also gives recommendations that 

need to be considered for task execution. A recommendation may be a technique and its 

applicability is subjected to some requirements. 

Both the User-Defined Process (UPD) model and the Model of Standards are designed based on 

the same activity-based modelling metbodology, and thus facilitates compliance check between 

the two models. 

Standard 
ropresenlad by 

control flow 

consistSQf 

Capability 

Legend: 
L:::,. represents generalisation 
<> represents consists of relationship Post-condition Pre-condition 
• represents many cardinality 

italic text represents the name of association 
normal text identifies the role of object in association 

Figure 8-4. Meta-model of the standard modelling. 

The Model and compliance agent are designed to work independently of Compliance Flow's 

workflow engine. Therefore, the compliance checks can potentially be deployed on other WfMSs 

where the user-defined processes are represented using different modelling languages. The most 

open approach is to convert the user-defined process stored in a particular WfMS into a standard 

format, such as XML Process Definition Language (XPDL), and perform the compliance checks 

upon it. This open architecture that enables compliance management of different systems is 

- 156-



Chapter 8. Design and Implementation 

illustrated in Figure 8-5. 

To adapt to this open architecture, the Model can remain in its proprietary format but a little 

amendment to the compliance agent is required to access a process specified in XPDL format. A 

middleware can be used to convert the process specification used in a particular WfMS into 

XPDL format. Therefore, to deploy compliance checks to a new WfMS where a process is 

represented using a proprietary language, only the middleware needs to be changed. 

The model of a standard I .. 
in Complinace Flow·'· 

Compliance agent I 
performing compliance checks .................... ~ 

Raw 
process 

data 

Middleware retrieves the raw 
process data and converts 
them into XPDL format 

Figure 8-5. An open architecture to deploy compliance agent. 

8.4 Task Enactment 

Once a task is specified, it can be started if (1) all of its pre-tasks are completed successfully and 

(2) its pre-conditions are fulfilled. 

An agent who has been delegated a task can execute it in two different ways: 

Direct. Work is done directly on the task. Tools and documents may be used to get results. 

Normally, the results are recorded in a document and it is uploaded to the associated workspace 

after the task has been completed. 

Delegation. A task can be delegated to other agent(s). This can be done by delegating the whole 

task or by dividing the task into sub-tasks and delegating the sub-tasks to other agents. 

• J 57· 



Chapter 8. Design and Implementation 

The progress of a task is represented by a state variable which is maintained by the workflow 

engine. A task can be in six possible states, as illustrated in Figure 8-6. 

Inactive Ready 

Suspended 

Suspendl 
Resume 

Active 

Unsucessful 

Terminated 

Figure 8-6. States in a task lifecycIe. 

Compleled 

Inactive. This is the initial state of a task, indicating that the pre-conditions are not fully fulfilled 

or the pre-tasks are not yet complete. A parent task is indicated as Inactive when none of its child 

tasks is being performed or at least one of its pre-conditions is not ready. 

Ready. The system will automatically turn a task to this state when all of its pre-conditions are 

ready and the pre-tasks are completed. A task can start at any time by turning its state to 'Active'. 

Active. This state indicates a leaf task is being performed. A parent task is stated as Active if one 

or more of its child-tasks is being performed. 

Suspended. This state indicates the execution of a leaf task is temporarily stopped but it can be 

resumed later. A parent task is ·stated as Suspended when all of its child-tasks are suspended. 

Terminated. This state indicates the failure of the task execution caused by some internal or 

external problems, which will lead to either reprocessing of some tasks or changes made to the 

process plan. If a parent task is stated as Terminated, then all of its child tasks will be terminated. 

Completed. This state indicates a leaf task is completed successfully and its post-conditions 

have been achieved. A parent task is stated as Completed when all of its child tasks are 

completed. 

8.5 Three-Tier System Architecture 

Compliance Flow is designed and developed as a web-based prototype, intending to be deployed 

on a three-tier system architecture based upon Microsoft technologies. The system front-end is 

composed of a variety of ActiveX components, developed using Microsoft Visual Basic (VB), 

-158 -



Chapter 8. Design and Implementation 

and embedded in a web page. The system back-end is supported by a Microsoft SQL server 

connected to an Internet Information Server (liS), which is the middle tier of the data access 

architecture, as depicted in Figure 8-7. 

Client Tier Middle Tier Oo.to Source Tier 

, I 

I 
Figure 8-7. Three tier Remote Data Services (RDS) architecture. 

Three-tier data access uses an intermediate agent to handle data between the client and database 

components, which is typically used to access data across the Internet. The ActiveX components 

on the client side communicate with the lIS web server via Remote Data Service (RDS) on 

Hypertext Transfer Protocol (HTTP). When a request is launched, the client-side RDS 

component sends a query to the lIS web server. The server side RDS component processes the 

request and then sends it to the SQL server. The SQL server responds to the request, sending 

back the data. The lIS Web server then transfers the data back across the Internet to the client

side RDS component where the ActiveX components can access. 

It is noted that directly accessing a SQL server database through Web protocol, such as HTTP or 

FTP, is impractical. In most cases, these standard protocols are the only way for people outside 

of their company to access the web site as security firewalls and proxy servers would not allow 

any other kind of traffic. Thus, connecting the database server to a web server is the best way to 

enable an Internet database access for a web or Internet based application. 

Once a user opens the web page, the ActiveX components together with the required libraries 

will be downloaded to the client's workstation. As such components are built upon the 

Microsoft's architecture, it can only run on lE browsers that are running on Microsoft Windows 

operating systems. 

-159 -



Chapter 8. Design and Implementation 

8.6 Four Tier Object-Oriented Implementation of the Client Tier 

Every component inside the system is designed as an object. These objects are arranged into four 

tiers, as shown in Figure 8-8. An object can communicate with other objects in the tiers 

immediately above or below it. 

ActlveX Objects TIer 

Framework Compoents TIe ........ 

Database Access Object TIer 

Figure 8-8. Four tier object-oriented architecture. 

The first tier is the ActiveX objects which are embedded in the web pages to form the user 

interface. ActiveX objects are built on the functions provided by the framework components in 

the second tier where the system functions are abstractly presented. The more concrete workflow 

objects, such as the tasks, ontologies, etc are in the third tier. Such objects are saved in a SQL 

database, and therefore the bottom tier is a database access object that is used to provide the 

required database connection. 

There are a number of advantages of using this four tier object oriented architecture: 

Separation of concerns. The major advantage is that the different tiers are clearly separated, 

particularly the separation of the process objects from the data manipulation facility, which 

allows details of the data storage mechanisms to be abstracted away from the client processes. 

All the objects in the higher tier are operation requests for output from lower level objects. 

Objects implementation and modification. Objects can be implemented independently which 

reduces the complexity of system development. New high level objects can be introduced or 

existing objects can be removed without, or with little needs, of modification to lower level 

- 160-



Chapter 8. Design and Implementation 

objects. Furthermore, modification to database access is not required. 

Enabling database migration. Database upgrades, migration or other changes can be performed 

without the necessity to alter the high level objects. 

Reduced network loading. Required objects are instantiated on the client side after the 

information is transferred from the Web server. They together with the newly created objects will 

stay on the client side for further reuse. Thus, the database throughput and the network loading 

are reduced, which is particularly important in the stateless Internet connection. However, a 

mechanism to verifY the update of the objects is still required to ensure the integrity in a multi

user environment. 

In order to reduce the programming load, four third party's ActiveX components are used: 

• DataExplorer from Infragistics Inc. (www.infragistics.com). which facilitates the creation 

of an outlook style User Interface (Ul) where the system functions are integrated. 

• AddFlow from Lassalle Technologies (www.lassalle.com). which facilitates the creation of 

a visual process editor by providing a drawing tool where nodes and links can be created 

visually. 

• HFlow from Lassalle Technologies (www.lassalle.com). which is an associated object of 

AddFlow component. HFlow enables hierarchical layout of a process in the visual process 

editor. 

• KFTP from Katam Corporation (www.katarncorp.com). which simplifies the programming 

of up loading and downloading of files to and from a FTP server. 

8.6.1 First Tier - User Interfaces 

A user only requires interacting with a single web page to assess all system functions. The web 

page consists of an ActiveX component that is composed of a number of other reusable ActiveX 

objects. Figure 8-9 is the system function chart where every function is presented through a 

screen, which is composed of one or more small ActiveX components. All basic functions 

required for process management are integrated inside the Task Manager, and therefore it is the 

only interface required for most users. Some system functions, such as standard modelling and 

ontology manipulation, are organised separately. 

·161· 



Chapter 8. Design and Implementation 

\ Compliant:\! Flow Sy~tem I 

I I I I 
Clnology \ I Task Manager I I Slandllrd Modeller I l InspectDf J L Organisation I L P1l1nLlbraryJ 

Lr DllloJogy Edilor H Prtx:ess Modeller 

If Dbje<:l Flrdor ! 
H Wolitsp3ce 

Task Edltot 

\l Fila Do\I!Il)oadBr 

Lf Fila Uploadllr 

H Task Pl"9-t:OJ1ojitiDn Manllllsr 

'-""'=, H Staooard MOdel Lr Agent Editor 

Task Editor I 
G:===~~:::::..J Y CompllanceChed<er I 

--{ _ Task Foal-condition MIInagar 

r--j Process Modeller 

~ Task PllKXlndltlon Matlager 

Constraint Editor 

--L Racoml'l\eooatalon Manager 

--; Ontology Picker I R8commenda~on Edllot 

Constraint Editor 

Capability Editor I 
H Task Agent Manager 

H . Task Information 

~ Ontology Picker I 

--; Object finder I 

Capability Fuzzy Malcher 

Figure 8-9. Function Structure Chart. 

System functions are integrated into an Outlook style interface, as depicted in Figure 8-10. On 

the left hand side are the Outlook bar items (2) where each item represents a key function group, 

such as Task Manager, in the function structure chart. The outlook bar items are grouped into 

appropriate outlook bar groups (3). The system items are located in the 'Compliance Flow' group 

and a standard model is organised in an individual group. Object tree (1) is used to represent 

hierarchical structure of tasks and ontologies. The information area (5) shows the particular 

information of the selected item in an object tree. Information is presented in different functional 

perspectives based on the function tab (6) selected by current user (7). On the right hand side is a 

set command buttons which can be applied to the current selected item. The Inspector can be 

called by right clicking the mouse button to perform compliance checks. 

• J62-



Chapter 8. Design and Implementation 

1. ObjectT!'(M 

2. Outlook Bar Itern; 

3. OuUook Bar Groups 

P,.triT"", -AD,"INISTAATOR , 

Figure 8-10. Screen layout. 

8.6.2 Second Tier - Framework Components 

4. Corrmand buttons 

5. Information Area 

6. Functional Tabs 

7. CUrrent USei'" 

Each framework component provides a number of specific services, some of which are used to 

support other components. A component performs specific functions and can request services 

from other components. The relationship between the framework objects with their key attributes 

and major operations are presented in the class diagram in Figure 8-11. The operation 

descriptions please refer to the appendix. 

StandardModeller +Performer 
Ontology Server ModelOfStal1dards 

+Performer 
+Requester 

GetOntologyO FlndCarrespoodmgTask() 
+Performer '_M ProcessModellingO TranslateO GetCorrespondfngTaskO 

~' 
GetReq-olredPostCondilion() 

+Performer GclRequiredPreCondilion() 
GetRequi redRecommendationO 

GetRequlredStandardCapabilityO .--... 

17 OrganlsallonServer 
Inspector 

CapabilityMatchingO 
CapabilityCheck{) 

+Performer 
ComplelenessCheckO 

+Requester CorrectnessCheckO 
ErrorPreventionO 

+Performer InformationCheck() 

+Requester 

ILM 
P!armingAsSistanee{) TracklngServer 

Recommend8lionCheck(} +Performer 
TaskManager DisplayLogO 

+Req<J6Wlr LogOperatJonO 

Workspace COfTllleteTask() 
FreezeTask() 

CopYO ~ 
ProcessModeJling() +Requester PlanLlbrary 

ProvisfonTask() Download() ResumeTaskO loadPlanO RemoveO +Perlonner SelQctAgentO 
+Requester 

SavePlanO Upload() +Performer 
SI811TaskO RemovePlanO 

SuspendTaskO 
TenninateTaskO 

Figure 8-11. Class diagram of the framwork components. 

-/63 -



Chapter 8. Design and Implementation 

8.6.3 Third Tier - Workflow Objects 

The third tier consists of workflow objects. They can be conceptually mapped with the entities in 

the meta-process model given in Figure 8-1. Their operations provide services support to the 

second tier. Unlike the component objects in the second tier, multiple instances of an object class 

could exist in the system at the same time. For example, one Task Manger (framework 

component) can manage multiple tasks (workflow objects) at a time. The identification of an 

object is based on a Globally Unique Identifier (GUID) that is assigned to every object when it is 

first created. The workflow objects can be grouped into four categories: (1) User-defined 

Process, (2) Model of Standards, (3) Plan, and (4) Ontology. 

All objects in the third tier have four basic operations: 

• Create a new object and assign it with a GUID. 

• Update the attributes of an object and its information in the database. 

• Remove an object from the system, including its record in the database. 

• Find an object. 

8.6.3.1 Workflow Objects in User-defined Process 

A user-defined process comprises of a number of objects, including tasks, links, pre- and post

conditions, task capabilities, agent capabilities, task agents, and workspaces. 

The hierarchical structure of tasks is captured by adding a 'parent' attribute to the task object. It 

stores the GUID of its parent so that the path of a hierarchy can be identified by searching the 

parent-child relationship. For a root task which has no parent, the value of its 'parent' attribute 

wi1\ be its own GUID. Link object is used to capture the flow of tasks at the same level in a 

hierarchy. 

·164· 



Chapter 8. Design and Implementation 

[ C8ll8CC1:1SS 

Workspac8 Task consists of 

N,me N,me 
Task Parent 

GelOocumenlO Status 

RemoveDocumenl() GetCapabilityO I SendDocumentO GetChildO conlrolfloow Link 

conslrolnrx/ by GetLinkO I GelDestinalionO I 

1 
GetNextTaskO 
GelParenlO 

msyrefarlo GeIPostCondilion() 
Constraint GetPreConditionO I GelPreviousTaskO 

N,me GelSlalusO TaskAgent Document 
Location N,me 
Status 
Task Capability GetMyTaskO 

GetTaskAsPostConditlonO requires Application GetCapability() 

GetTaskAsPreCondtionO Capability 

~ ~ m.. 

I I I Task Capability I I Agent Capability L I Pre·Condtlllon l I Post·Condltlon I 

Figure 8-12. Class diagram of user-defined processes. 

The relationships among the workflow objects together with their key attributes and major 

operations are presented in a class diagram in Figure 8-12, followed with operation descriptions. 

The four common operations of each object are not included to make the diagram simpler. 

8.6.3.2 Workflow Objects in the Model of Standards 

The Model of Standards comprises of the objects in a standard, including tasks, links, pre- and 

post-conditions, capabilities, and recommendations. Like the user-defined process, a standard is 

represented as a Hierarchical Task Network (HTN) with the details of each task included. Thus, 

the objects inside a standard model are similar to the workflow objects in a user-defined process. 

One key difference between them is that the required techniques are modelled as pre-conditions 

in a user-defined process, but as recommendations in the Model of Standards. 

- 165-



Chapter 8. Design and Implementation 

" Task (xJnsilJlsof 

N,me 
consJl'9iood bv Parent -

1 Status 

GetCapabitityO 

Constraint 
GetChildO 

control floow Link 
GetLink() 

N,me GetNextTask() GetOeslinalionO 
Document GelParentO 
Location GetPostConditiono 

""''' Status GetPreCondilionO 

1 Task GetPrevious T askO 
GelRecommendationO 

GelTaskAsPoslConditionO GetTaskCapability() Recommendation 
GeITaskAsPreCondlion() 

~ 
Applicability 

ruquires 
Requirement 
Technique 

GetTaskO 

I I Capability 

I Pre-Condtltion I I Post-Condltlon I Application 
Capability 

Figure 8-13. Class diagram of the Model of Standards. 

The relationships among the objects with their key attributes and the major operations are 

presented in a class diagram in Figure 8-13, followed with the description of object operations 

which do not exist in the user-defined process. The four common operations of each object are 

not included. 

8.6.3.3 Workflow Objects in the Plan 

A user-defined process can be saved as a Plan for future reuse. A Plan is a simplified form of a 

user-defined process, which consists of tasks, links, pre- and post-conditions, and standard 

specified capabilities. 

Plans are categorised and stored into different Plan group folders according to their natures in 

order to ease later retrieval. Plan groups are hierarchically organised. Therefore, all the Plans in a 

Plan group represent different possible solutions of a situation. The higher level of Plan group in 

the hierarchy, the more abstract its solutions will be. 

·166· 



Chapter 8. Design and Implementation 

conS;S/$ 01 

LoadO 
stored ifJ 

~M~"i·(~)~~~~~~ 
process template 

consisl3 of 

requires 

Figure 8-14. Class diagram of plans. 

8.6.3.4 Ontology Object 

An ontology is a set of terms which are organised into a hierarchy. Each term could have 

multiple synonyms. The terms for naming the different workflow objects are drawn from the 

appropriate ontology hierarchy. For example, capabilities are drawn from the capability ontology. 

The relationship between an ontology and a workflow object is presented in the class diagram in 

Figure 8-15. 

Tenn L:[J r Workflow Object l 
"'~ 

fName r String 
Parent 

'" 
Synonym 

String 

Figure 8-15. Class diagram of an ontology. 

Each term is represented as an object. Like other workflow objects, the GUID is its identity and 

other information is represented as its attributes. Thus, a workflow object is named by giving a 

GUID of a term object. If the term is changed, the names of all its named objects will be changed 

automatically. This ability of dynamic ontology update is critical because of its dynamic nature: 

new terms or synonyms may be added and updated to the ontologies while processes have been 

started. 

·167· 

-- - --------



Chapter 8. Design and Implementation 

8.6.4 Fourth Tier - Database Access Object 

All workflow objects in the third tiers are stored in a database. The database access object 

located in the fourth tier provides a connection to access the database, including adding, 

updating, removing, searching and retrieving the records. A large number of process data, such as 

tasks, ontologies, and the plan group folders, are organised in a hierarchical structure. An 

enhanced adjacent model (please refer to appendix) is used to manage such hierarchies. In the 

model, a node not only remembers its parent, but also the number of its children and the level it 

is allocated in the hierarchy. The addition or re-allocation of node may lead to changes of others 

which need to be automatically updated. Therefore, this enhanced adjacent model can only be 

managed by the database management systems (DBMS), such as MS SQL server and Oracle, 

which have the ability of dynamically triggering the user-defined procedures. The database 

structure and the hierarchical data handling technique used are provided in the appendix. 

8.7 Capability Matching 

In the capability matching process, the available capability is matched against the required 

capability and a figure in the interval (1, 100) is used to indicate their Goodness of Fit (GOF). 

An example of an available capability is the agent capability, and a capability specified by a 

standard is an example of required capability. Capability matching is used agent selection and 

Capability Check. To enable capability matching, the two sets of capability have to be specified 

in the same way. 

8.7.1 Capability Specification 

To facilitate capability matching, the main desired features of capability specifications are: 

• Preciseness: The capability knowledge should be modelled to provide a precise capability 

specification. The entities in the model are quantitatively related to facilitate fuzzy 

matching. 

• Expressiveness: The method of capability specification should be expressive enough to 

represent not only the technical capability, but also a wide range of knowledge such as 

qualification, role and authority, which are relevant for assessing suitability of an agent in 

performing a task. 

·168· 



Chapter 8. Design and Implementation 

• Comprehensiveness: A user can easily understand the capability representation and 

specification statement, and the system is able to process it. 

• Ease of use: Every capability description should not only be easy to read and understand, 

but also easily defined by the user. 

Capability knowledge is captured by two ontologies: Capability Ontology and Application 

Ontology. Capability Ontology describes the domain specific knowledge possessed by agents or 

required to perform particular tasks. Application Ontology describes the application areas of the 

specific knowledge defined in the Capability Ontology. Both ontologies are domain specified. 

The concepts of interest related to a particular domain are organised into a separate ontology 

hierarchy. 

Examples of capability hierarchies are 'Programming' and 'Approach'. The Programming 

hierarchy describes the languages that can be used in system development, and Approach 

hierarchy defines the development methodologies. An example application hierarchy is 

'System'. It describes the different types of software. An application hierarchy, sometimes, could 

be used with more than one capability hierarchies in capability specification. For example, the 

System hierarchy can be used with Programming and Approach hierarchies: a programming 

language is used to program a type of system, and a methodology is used to develop a type of 

system. 

A capability description consists of two compulsory parts: knowledge capabilities denoted as te 

and their application areas denoted as ta, i.e. Capability(te, ta). The term te is drawn from the 

Capability Ontology and the term ta is drawn from the Application Ontology. An example is 

Capabi/ity(Logic,ProcessLogic), which means that the agent knows all the logic programming 

languages and has experience in using these languages in programming the process logic of 

software system. 

8.7.1.1 Traditional Ontology Hierarchy 

A traditional ontology hierarchy is specified as a single generalisation hierarchy. The advantage 

of this hierarchy in terms of capability specification is that it provides a hierarchy of capabilities: 

a parent term includes all knowledge that is represented by its child-terms. For example, using 

the ontology given in Figure 8-16, if an agent is specified as knowing Object-Oriented 

Programming, it means that he/she knows all the object-oriented programming languages 

·169· 

- - --------------------~---------



Chapter 8. Design and Implementation 

specified below the node "Object-Oriented" in the Programming hierarchy. 

Capability Application 

~ _______________ IL-______ ~, ~4----------~1------------~ 
{Qualification} {Organisation} {Programming} {Hardware System} (Department) {Software System} 

·/1,/\ ~ /\ 
Cb, S~lemAoa~1 i r ,1<, A s7\ IT Accounts Interface Process logic Business Object 

System Programmer Prolog CH Java VB COBOL RPG 

/\ ~ 
Borland e+. MS C++ VBS VBS VB.Net 

/r··~ 
Standard Architect Developer Professional 

Figure 8-16. A traditional ontology hierarchies. 

8.7.1.2 Traditional Approach to Assess GOF 

The purpose of capability matching is to assess the Goodness of Fit (GOF) of an available 

capability set against a required capability set. However, finding a perfect match, i.e. all the 

required capability can be fulfilled perfectly by an agent, is highly unlikely. 

Consider the example in Figure 8-17, all three available agents partially fulfil the requirements. 

To identify who is the most suitable candidate, it has to assess the closeness of each agent's 

capability with the required task capability. 

Task.' : ••• .' .'. • Result Agent. 
• ••••• 

....•........ 

Task-2:Codlng [i) Agent-1: 
p1-Capability(C++, Process Logic); Capability(C++, Business Object); 
p2-Capability(CEng, Software System); Capability(Java, Software System); 
p3-Capability(Programmer, IT); Capability(Programmer, IT) 

[i) Agent-2: 
Capability(VB, Process Logic); 
Capability(Prolog, Process Logic); 
Capability(Programmer, IT); 

[i) Agent-3: 
Capability(C++, Interface); 
Capability(V86, Interface); 
Capability(System Analyst, IT); 
Capability(CEng, Software System); 

Figure 8-17. An example of agent selection without a perfectly fitted agent exist. 

- 170-



Chapter 8. Design and Implementation 

The most common approach to assess the GOF is based on the idea of conceptual distance as 

discussed in (Rada et aI., 1989). The conceptual distance (CD) between two terms is defined as 

the length of the shortest path that connects the terms in a hierarchy. This distance approach to 

estimate the similarity of words has been widely used, for example, in medical bibliographic 

retrieval system (Rada et aI., 1989), spelling correction (Agirre et aI., 1994), spatial query 

(Papadias and Delis, 1997) and word sense disambiguation (Fernandez-Amor6s et aI., 2001) etc. 

Assume Oa refers to a term used to describe the available capability and Or refers to a term used 

to describe the required capability. The GOF of Oa against Or is denoted as GOF(oa,or). The GOF 

between two terms is represented as a number in the interval (0, 100). The upper limit 100 

implies a perfect match between two terms. 

Table 8-1 provides some examples based on the "distance" method used in ReMind (1992), 

which is a case-based reasoning tool, according to the ontology hierarchies given in Figure 8-19. 

The equation used to assess GOF is: 

GOF=(1 IP+EP)XlOO 
IR+ER 

where 

IP is the number of links between Or and the common parent between Or and Oa. 

EP is the number of links between Oa and the common parent. 

IR is the number oflinks between Or and the root of the hierarchy, and 

ER is the number of links between Oa and the root of the hierarchy. 

From these examples, it can be seen that this approach does not always produce appropriate GOF 

values for the purpose of capability matching. Consider example 2 and example 3, if the required 

capability is Java, both available capabilities VB and C++ have the same GOF with value 50. 

Obviously, an agent who knows C++ language requires less effort to learn Java than another 

agent who knows VB. 

Another problem can be found in examples 4 and 5. In example 5, the required capability is C++ 

and the available capability is Object-Oriented that includes C++ and thereby it should fully 

match the requirement. However, it has the same GOF as example 4 where the required 

capability is Object-Oriented and the available capability is C++. Finally, examples 6 and 7 show 

a serious problem when the root term is used as either Oa or Or, the GOF value is 0 always. The 

·171· 



Chapter 8. Design and Implementation 

results show that the symmetric nature and the lack of an ability to represent knowledge overlap 

make the distance approach is inappropriate for capability matching. A different way of assessing 

GOF is required and an ontology model that precisely describes the capability knowledge is 

necessary. 

Example 0. 0, GOF(o.,o,) 

1 Java Java 100 

2 VB Java 50 

3 C++ Java 50 

4 C++ Object-Oriented 66 

5 Object-Oriented C++ 66 

6 MS C++ Programming 0 

7 Programming MS C++ 0 

Table 8-1. Examples GOF calculation using traditional distance approach. 

8.7.1.3 Treating Ontology as Sets 

One way to improve the accurateness in assessing GOF is to emich the hierarchy with additional 

information and develop an algorithm that makes use of the knowledge. Sussna (1993) proposed 

to assign a weight to each link in the Wordnet (Miller et aI., 1990) hierarchy and calculates the 

closeness between two words as the total weight of the path with minimum weight. The use of 

weights to capture additional data, e.g. for the two pairs of terms with the same path length, the 

pair at lower level in the hierarchy seem to be conceptually closer. Another similar work (Agirre 

and Rigau, 1996) took the density of concepts in the hierarchy into consideration: concepts in a 

deeper part of the hierarchy should be ranked closer, and the Conceptual Density (Agirre and 

Rigau, 1995) formula is used to provide more accurate results. However, these approaches are 

still not suitable for capability specification and matching. The estimate of knowledge overlap in 

constructing the ontology hierarchy and capability matching is therefore proposed. 

It is clear that the concepts represented by two sibling capabilities, i.e. both having the same 

parent, usually have certain overlap. For example, general programming knowledge can be 

treated as the overlap between the specific knowledge of C++, Java and VB languages. However, 

- 172-



Chapter 8. Design and Implementation 

in general, it is easier for a C++ programmer to learn Java than a VB programmer. This is 

because besides the general programming knowledge, there is a further overlap between C++ 

and Java due to the similarity in their object-oriented approaches. The degree of knowledge 

overlap between capabilities can be estimated and given by a domain expert. 

There are two basic overlapping relationships between two capabilities: parent-child relationship 

and sibling relationship as illustrated in Figure 8-18. 

s 

~ 
AI A2 A3 

(a) 

s 

( b ) 

S 
I 

@ 
~ 

( c ) 

Figure 8-18. Relationship between capabilities. 

Figure 8-18 (a) shows that the term S includes three child-terms: AI, A2 and A3• It is assumed that 

each child-term has the same importance in relation to the parent term. The default is. the 

knowledge represented by the siblings terms do not overlap. In this case, the relationship can be 

illustrated using a Venn diagram as in (b). However, if the knowledge overlaps, as shown in (c), 

the user is allowed to give the values of overlap between these capabilities. 

The conventional set theory is used as a basis to quantify the relationships between capabilities. 

The knowledge covered by a parent term is treated as a universal set S and each child .4; as a 

subset that represents a certain percentage of the knowledge P(AJ of S . An ontology hierarchy 

employs five basic axioms to guarantee consistent results from specifications and calculations. 

I. For any capability Ai ~ S , and 0 $; p(.4;) $; 1, i.e. a capability is included in its parent. 

2. P(S) = P (AI U A, U .,. U Ai) = 1 , i.e. a parent capability is the union of is child 

capabilities and it is quantified as 1. 

3. If .4;,A" ... .4; have no overlap, then P(AI U A, U ... U Ai) = P(AI)+P(A,)+ ... +p(.4;), 

i.e. the union of the isolated sibling capabilities is equal to their sum. 

4. p( AI) = p( A,) = ... = p( A'), i.e. every child capability is assumed to have the same 

coverage within the parent set. 

- 173-



Chapter 8. Design and Implementation 

5. If p(A" I1A"I1 ... I1A,.) is not given, then p(A" I1A"I1 ... I1A,.)=P(I,j). Using the 

example in Figure 8-18, if the overlap between Al and A2 (P(A, 11 A,) ) is not given, then 

the general overlap between AI, A2 and A3 (P(A,11 A, 11 A,» will be used as the default 

overlap value of P(A,11 A,). 

Therefore, by applying the set theory, the relationship between two sibling capabilities Al and A2 

can be described as: 

Equation 8-1. Relationship between two sibling capabilities. 

If and A, and A, have no knowledge overlap, i.e. they are disjoint sets, then P(A, 11 A,) = 0 and 

thus P(A, v A,) = P(A,) + P(A,) that matches Axiom 3. 

Similarly, the relationships ofthe three sibling capabilities AI, A2 and A3 can be described as: 

P(A, v A, v A,) = P(A,)+P(A,)+P(A,)-P(A, 11A,)-P(A, 11 A,) 

-p(A, 11A,)+P(A,I1A, 11A,) 

Equation 8-2. Relationship between three sibling capabilities. 

The relationship of sibling capabilities AI, A2 ... An can be described as: 

p( t;~)= ~P(A,)-~P(A, I1Aj,)+"~'3 P(A, 11A"I1~)+ ... 
+(-It' L P(Aj,I1A"I1 ... I1A,.)+ ... 

Equation 8-3. Relationship between sibling capabilities Aj, A2 ... An• 

- 174-



Chapter 8. Design and Implementation 

Based on the equations, the user is only required to give the overlap values between the sibling 

capabilities. The relationship between a child capability and its parent peA,) can be calculated. 

Consider the example in Figure 8-16, let C++ beAp Java be A, ,VB beA, and Object-Oriented 

be the parent S, by using Equation 8-2, their relationship can be described as: 

p(S) = p( C++uJavauVB) = P(C ++)+P(Java)+P(VB)-P( C++nJava) 

-P(JavanVB)+P( C ++nJavanVB) 

Let x = p( C++) = P(VB) = p( Java) (by axiom 4) and the overlap between C++ and Java is 

given as 40%, i.e.P(C++nJava) = O.4x, the overlap among C++, VB and Java is given as 

15%, i.e.P( C++nJavan VB) = 0.15x. By Axiom 5, p( C ++nVB) = P(Javan VB) = 0.15x. 

Therefore, 

p( s) = p( C + +u VBu Java) = x+ x+x- O.4x- 0.15x-0.15x+ 0.15x 

It is also known that p(S) =p( C++uVBuJava) = 1 (axiom 2), then 

1= 2.45x 
I 

x=--
2.45 

x = 0.41 

The result means that, for example, if an agent knows C++, then he knows about 41% of all 

Object-Oriented programming languages. 

Both Capability Ontology and Application Ontology are created based on the 'overlap' approach. 

P( A,) are calculated immediately after a term is added to the ontology hierarchy by the user. The 

given knowledge overlaps and peA,) will be stored in the database. Using some sample overlap 

figures and the above formula, the traditional ontology hierarchy given in Figure 8-16 can be 

enriched as in Figure 8-19. 

-175 -



Chapter 8. Design and Implementation 

Capability Application 
~ ________________ IL-______ ~I ~4------------~1------------~ 

{Qualifica~on} {OrganisaUon} {Programming} (HardWare System) (Department) {Software System} 

·····t,A ~ /\ ~ 
CEo, Sy'.m~~ !~' /1: ~ s~ IT 

Accounts Interface Process Logic Business Object 

System Programmer Prolog c++ Java VB COBOl RPG 

Legend: A ~ 
Bo~and CH MS C++ VBS Va6 VS.Net /t\ ~ 

u. ~,~ 
Standald ArcIIitect Developer Professional 

Figure 8-19. Example of ontology hierarchies based on the 'overlap' approach. 

8.7.1.4 Optional Capability Parameters 

The two compulsory parts may have different importance III a capability specification. For 

example, a task may require an agent who is familiar with C++ is prefer and is experienced in the 

development of system interface. An additional weighting parameter can be assigned to each 

compulsory part to indicate its importance. The weighting parameter for te is denoted as Wc and 

another for ta is denoted as Wa. To indicate that koowledge of C++ is less important than the 

experience in system interface, the user can, for example, assign Wc = 70 and Wa = 30. The total 

value of Wc and Wa must equal to 100. The default value is 50, implying each has an equal 

importance to another. If the default value is used, then Wc and Wa do not need to be specified. 

To perform a task, multiple capabilities may be required. Each capability in such capability set 

can have different importance from the others. Therefore another weighting parameter denoted as 

Ws is assigned. The total value of all the Ws in a capability set must equal to 100. The default 

value of Ws is 100 where n is the number of capabilities in the capability set. 
n 

Thus, a full description of a required capability is denoted as Capability(te.ta• Wc. Wa• ws). For 

example, Capability(C++,Interjace,70.30,JOO) means that the expected agent knows C++ with 

the experience in system interface implementation is preferred. The value 100 of Ws implies that 

there is only one required capability. 

- 176-



Chapter 8. Design and Implementation 

8.7.1.5 Beyond Technical Capability 

Based on this approach, a capability is not limited to skills or techniques, but can specify a wide 

range of knowledge, such as authority, as long as such knowledge is captured and represented 

through the use of hierarchical ontology. An example of agent selection with and without 

organisation knowledge is given in Figure 8-20. 

C •• e 1. AgerifSelectlon without Organl •• tlon Knowl~dge 

Task-I: 
Capability(C++, Interface); 

[{] Agent·l: 
+----r---.,.:~ Capability(C++, Interface); 

Capability(SSADM, System Implementation); 

[{] Agent-2: 
'---+ Capability(C++, Interface); 

Capability(Prolog, Process Logic); 

IRI Agent-3: 
Capability(C++, Process Logic); 

Case 2. Agent Selection' with Organisation' Knowledge :1; 
" , , , , " " ' 

Task-I: 
Capability(Programmer, IT); +----, 
Capability(C++, Interface); 

IRI Agent-I: 
Capability(System Analyst, IT); 
Capability(C++, Interface); 
Capability(SSADM, System Implementation); 

[{] Agent-2: 
1---+ Capability(Programmer, IT); 
'---+ Capability(C++, Interface); 

Capability(Prolog, Process Logic); 

IRI Agent-2: 
Capability(Programmer, IT); 
Capability(C++, Process Logic); 

Figure 8-20. Examples of an agent selection with and without organisation knowledge. 

In case I, the agent selection process considers only technical capability issues. Both Agent-l 

and Agent-2 are suitable candidates as they both fulfil the capability required of Task-I. 

In case 2, agent selection is extended to take organisational knowledge into consideration where 

Capability(Programmer, IT) means that the expected agent is a programmer who works in the IT 

department. Based on this information, a more suitable agent is identified, resulting in a more 

appropriate selection. 

8.7.1.6 Capability Scheme 

The same task in different projects may have different required capabilities. Therefore, the 

required capabilities in the Model for different situations are specified in different capability 

schemes. Users can select a suitable scheme for a given task, as different situations can be dealt 

-177 -



Chapter 8. Design and Implementation 

with appropriately. For example, assumes that the required assessor for a SILl system is an 

independent person and SIL2 system is an independent organisation. These two different 

requirements can be saved into two capability schemes. Once the required SIL for current project 

is identified and given, the suitable required capability can be retrieved from the Model for the 

compliance checks. 

8.7.2 Assessing Goodness of Fit Using Fuzzy Matching 

The inappropriate outcomes from traditional approach in assessing GOF show that the different 

types of relationship between Oa and 0, have to be identified and dealt with appropriately. Chung 

and Jefferson (1998) identified four different categories in matching conceptual terms. In 

applying the categories to capability matching, we have: 

I. Oa is the same as 0,; 

2. Oa is an ancestor of 0, in the hierarchy; 

3. Oa is a descendant of 0, in the hierarchy; 

4. Oa and 0, are on different branches in the hierarchy; 

Additional category in the Compliance Flow framework would be: 

5. Oa and 0, are on different hierarchies; 

(1 ) (2) (3) (4) (5 ) 

Figure 8-2 I. Five categories in matching two capability terms. 

The five categories are illustrated using Venn diagrams in Figure 8-21. 

In category 1, as Oa is the same as 0" i.e. Oa = 0" it is obvious that GOF(oa'o,) = 1. 

In category 2, Oa includs 0" i.e.oa ;;:> 0" implying that the available capability includes the 

required one, and thus GOF(oa'o,) = I. 

In category 3, Oa is part of 0" i.e. Oa ~ 0" implying that the agent only partially fulfils the 

required capability. In this case, the area of Oa partitioning 0, should be the GOF, and thus 

GOF(oa'o,) = P(oJ. 

- 178-



Chapter 8. Design and Implementation 

In category 4, 0 0 and Or are located on different branches in a hierarchy, i.e. x E 0
0 

nOr 

~ X E 0 0 and X E Or where x is the overlap element. In this case, the overlap between 0 0 and Or 

should be the GOF, and thus GOF(oo,or) =P(oo nOr) where {x: Op xp lh;;; P(oo nOr)' 

In category 5, o. and Or are located on different hierarchies, i.e. X E 0
0 
~ x <t. or or 

X E or ~ x <t. 0
0

, As every hierarchy represents a particular domain of interest, there should has 

no knowledge overlap be.tween ontology hierarchies, and thus GOF(oo,or) = O. 

For the categories I, 2 and 5, once the locations of 0 0 and Or in the hierarchy is identified, the 

default GOF values can be given. For the categories 3 and 4, further calculations are required. 

For category 3, for example, let MS C++ is o. and Programming is Or, then 

GOF(MSC++,Programming) = 

P(Programming nP( Object- Oriented ( C++(MSC ++»))) 
as 

P(MSC++) = 0.83 

p( C ++(MSC++») = 0.83x0.41 

p( Object-Oriented( C ++(MSC++»)) = 0.83x0.41 

P(Programming np( Object -Oriented( C ++(MSC ++»))) =0.39xO.83x0.41 = 0.13 

Therefore, 

GOF(MSC ++,Programming) = 0.13 

For category 4, for example, let Prolog is 0 0 and MSC++ is 0" then 

GOF(Prolog,MSC++) = 

p( Logic (Pro!og )n Object - Oriented ( C ++(MSC++»)) 

where 

p( Logic ( Prolog») = 0.4 

p(( Object-Oriented( C ++ (MSC ++») )) = 0.83x 0.41 = 0.34 

and 

- 179-



Chapter 8. Design and Implementation 

P(Logic n Object-Oriented) = 0.2 

Therefore, 

GOF(Pr%g,MSC++) = 0.4x0.34xO.2 = 0.03 

Upon applying the overlap approach to the examples in Table 8-1, using the overlap value shown 

in Figure 8-19 the results are much more reasonable as shown in Table 8-2, 

Example 0. Or GOF( O.,Or)Distance GOF(O.,Or)Overlap 

1 Java Java 100 100 

2 VB Java 50 15 

3 C++ Java 50 40 

4 C++ Object-Oriented 66 41 

5 Object-Oriented C++ 66 100 

6 MS C++ Programming 0 13 

7 Programming MS C++ 0 100 

Table 8-2. Examples GOF calculation using overlap approach. 

8.7.2.1 Assessing Goodness of Fit between Two Capabilities 

As a capability is specified with two compulsory parts, the assessment of GOF between two 

capabilities involves two matches: the matching of capability and the matching of its application 

area. The GOF of an available capability capJ against a required capability cap2 can be 

formulated as follow: 

GOF[ cap, (t",la,),capz (tcAz' wcz' waz,w,z) ] = ~~ x[~~ X GOF(t",tcz) + ;;~ x GOF (tCI' toz ) ] 

Equation 8-4. Assess GOF of an available capability against a required capability. 

Example 6. If a task requires Capability(C++,ProcessLogic,70, 30, JOO), and an agent has 

Capability(C++,BusinessObject), then the GOF of agent's capability against the required 

capability can be calculated as: 

- J80-



Chapter 8. Design and Implementation 

GOF[ Cap ( C+ +,BusinessObject), Cap ( C+ +,ProcessLogic,70, 30,100)] 

= 100 x[ 70 x GOF( C++,C++)+ 30 X GOF(BusinessObject,proceSSLOgiC)] 
100 100 100 

Where 

GOF(C++,C++)=l by category 1; 

GOF(BusinessObject,ProcessLogic) = P(BusinessObject n ProcessLogic )=0.2 

= 100 x( 70 xlOO+ 30 XO.2) 
100 100 100 

=76% 

Example 7. If a task requires Capability(C++,ProcessLogic,70,30,l00), and an agent has 

Capabi/ity(Prolog,ProcessObject), then the GOF of agent's capability against the required 

capability can be calculated as: 

GOF [ Cap ( C++, ProcessLogic), Cap (Prolog,ProcessLogic,70, 30, 1 00)] 

= - x - x GOF ( C + +,Prolog) + -x GOF (ProcessLoglc, ProcessLoglC) 100 [70 30 .. ] 
100 100 100 

Where 

GOF( C++,Prolog) = p( C++nProlog) (category 4.) 

p( C ++nProlog )=p( Object -Oriented( C++)n Logic ( Prolog)) 

It is known that 

p( Object- Oriented ( C++ ))= 0041 

P(Logic(Prolog)) = 0.4 

p( Object - Oriented n Logic) = 0.2 (given by the user) 

Therefore, 

p( Object- Oriented ( C ++ )nLogic(Prolog)) = 0041x0o4xO.2 = 0.03 

GOF(ProcessLogic,ProcessLogic) = 1 (Axiom 1) 

Therefore, 

100 [70 30] =-x -xO.033+-xl 
100 100 100 

=32.31% 

It is noted that if tcl and t,2 are not from the same hierarchy, then the GOF = O. The reason is that 

• 181 • 



Chapter 8. Design and Implementation 

if two capabilities are from two different domains, then they should have no relationship even 

though they are applied to the same area. 

Example 8. If a task requires Capability(C++,ProcessLogic.70,30,]OO}, and an agent has 

Capability(CEng,SoftwareSystem}, then the GOF of agent's capability against the required 

capability is O. 

8.7.2.2 Assessing Goodness of Fit between Two Capability Sets. 

To perform a task sometimes requires multiple capabilities which form a capability set. 

Similarly, an agent also possesses a set of capabilities. When assessing the GOF of two 

capability sets, the total GOF of agent capability set against every task capability is assessed. The 

sum of GOF of every task capability is the finial GOF between the two capability sets, as 

illustrated in Figure 8-22. 

R, S 

Figure 8-22. GOF of agent capability set against task capability set. 

Suppose that S is the universal set that represents a required capability set. The required 

capabilities in the set are disjoint and each partitions w, percent (the third option parameter of 

capability specification) space S. Let RI' R2 ••• Ri be the required capabilities and G is the 

knowledge overlap between the two capability sets. Then 

Since the Ri are disjoint, the (G (\ Ri) are disjoint too. So, 

p( G) = I;p( G (\ Ri) (by axiom 4) 

- 182-



Chapter 8. Design and Implementation 

To assess a P( G n R) , i.e. all the available capabilities against to a single required capability, the 

sum of GOF of every available capability against the required capability is inappropriate as there 

may have overlap among the available capabilities. 

Consider example 8, suppose the required capability is Java and the available capabilities are 

C++ and VB. It is known that the overlap between C++ and Java is 40% and the overlap among 

the three languages is 15%. However, the knowledge inside the area P( C++ n Java) should 

include the 15% common knowledge overlap. Therefore the sum, i.e. p(C++nJava) 

+P(Javan VB)= 0.4 + 0.15 = 55%, is not corrected. 

The Venn diagram in Figure 8-23 illustrates the scenario given in example 8. The GOF should be 

the shadow area. Therefore, 

P(G) = p( C++nJava)+P(Javan VB)- P(C++nJavan VB) 

=0.4+0.15-0.15 

=0.4 or 40% 

Figure 8-23. Venn diagram for example 8. 

Let AI'~ ... Ak are the available capabilities and R is the required capability. P(G) can be 

formulated as: 

k 

= I(A,nR)- I(RnA1 n~)- ... 

-( -It+1 
p( Rn 4. n ~ n ... n A,) 

Equation 8-5. The GOF of an available capability set against a required capability. 

.183· 



Chapter 8. Design and Implementation 

Let A, A, ... Ak are the available capabilities and RI' ~ ... R, are the required capabilities. P( G) 

can be fonnulised as: 

Equation 8-6. The GOF of an available capability set against a required capability set. 

8.7.2.3 Matching Example 

In Figure 8-24, Task-2 requires three capabilities: pi, p2 and p3 with the three optional 

parameters of each capability are given. Agent-I also has three capabilities: ai, a2 and a3. 

.•.. '.. ...... '. :rask ... •• ,. ..•... 
• •• 

.. 
Wc Wa Ws (GOF(%)'" ~esuit Age"tt~. ..' ...., ... ·l 't' ". 

Task·2:Coding Final = 50 IRl Agent·1: 
pl·Capability(C++.Process logic); 70 30 30 pl =30 a 1-Capability(C++ ,Business Object): 
p2.CapabiIiIy(CEng.Software System); 50 50 50 p2=0 a2·CapabiliIy(Java.Software System); 
p3·Capability(Programmer.IT); 50 50 20 p3 =20 a3·CapabiliIy(Programmer,IT) 

Final = 62 IRl Agent·2: 
p1 = 42 al-Capability(VB.Process Logic); 
p2 = 0 a2-Capability(Prolog.Process logic); 
p3=20 a3·Capability(Programmer,IT); 

Final =84 I1l Agent·3: 
pl =21 al·capability(C++,lnterface); 
p2 =50 a2·Capability(VB6,1 ntertaco ); 
p3 = 13 a3·Capability(System Analyst,IT); 

a4-Capability(CEng,Software System); 

Figure 8-24. An example of agent selection using fuzzy matching. 

Stepl: assess GOF(al...a3,pl) 

Capabilities of al and a2 come from the same hierarchy of pi, therefore 

GOF(al...a3,pl) = P((alva2)npl) 

[ (
0.7XP((C++VJava)nc++) JJ 

=IOOx O.3x 
+0.3 x p( (BusinessObject v SoftwareSystem) n ProcessLogic) 

Where 

p(( C ++vJava)nC ++) = I (by category I) 

P ((BusinessO. v SoftwareS.) n ProcessL.) = I (by category 2) 

Therefore, 

·184· 



Chapter 8. Design and Implementation 

GOF(al...a3,pl) = 100x (0.3x(0.7xl+0.3xl)) = 30 

As a3 come from a different hierarchy from pI, it has no overlap between them (by category 5) 

and therefore can be ignored. 

Step2: assess GOF(aI..Ll3,p2) 

As aI, a2 and a3 come from different hierarchies fromp2, GOF(al...a3,p2) = 0, i.e. peG) = 0 

(by category 5). 

Step3: assess GOF(al...a3,p3) 

Asa3come from the same hierarchy fromp3anda3= p3, GOF(al...a3,p3)=I, i.e. P(G) =20 

(by category I). 

Step4: sum the GOFs . 

GOF(Agent -1,Task- 2) = 30+0+ 20 = 50 

The GOFs of Agent-2 and Agent-3 against the task are calculated in the same way. Agent-3 is 

selected as he/she has the highest GOF value. 

s.s Chapter Summary 

This chapter introduces the design and implementation of the Compliance Flow system. A 

specific hierarchical activity-based process model is developed. The integration of workspace 

and the ability to capture the knowledge of capability are two major differences from other 

process models. 

A standard is modelled using the same approach. This does not mean that compliance checks can 

only be applied to workflow systems that adopt a similar process model. The architecture of 

deploying the compliance agent on different workflow systems is discussed. 

Compliance Flow is a web-based system and is developed based on Microsoft's technology. The 

three-tier system architecture is described. The prototype is developed based upon a four-tier 

object-oriented implementation architecture, and its benefits are outlined. 

A fuzzy agent selection approach is developed, which advocates the use of set theory to assess 

the GOP. The use of ontology to modelling capability knowledge and an algorithm for the 

purpose is proposed and discussed. A comparison between the proposed approach and the 

.185. 



Chapter 8. Design and Implementation 

traditional approach is perfonned. It is found that the traditional "distance" approach is not 

suitable for the purpose of capability matching. The proposed approach gives more reasonable 

results. 

-186 -



Chapter 9. Evaluation and Comparison 

Chapter 9 

Evaluation and Comparison 

9.1 Introduction 

''All our science, 

measured against reality, 

is primitive and childlike -

and yet it is the most precious thing we have. " 

- Albert Einstein 

This chapter provides an evaluation of the Compliance Flow system. Two real-life case studies 

are performed to evaluate the system and a factitious case is used to evaluation the capability 

specification and matching approach. The first is the lightguard development in the Assuring 

Programmable Electronic System (APES) project from ERA Technology Limited. The second is 

the modification of a safety shutdown system from ABB Limited. The two studies focus on the 

evaluation of (I) the ability of managing process compliance through compliance checks and (2) 

·187· 



Chapter 9. Evaluation and Comparison 

the ability of task management based on the proposed framework. The factitious case focuses on 

the evaluation of the proposed capability specification in tenns of the main desired features 

identified in Chapter 8 and the degree of precision is assessed. Finally, two comparisons between 

Compliance Flow and other existing systems are given. The first one compares the proposed 

treatment of compliance management against traditional document based approaches. The 

second compares Compliance Flow against the flexible workflow systems discussed in Chapter 3 

in the context of supporting engineering processes. 

This chapter is organised as follow: §9.2 and §9.3 describes the lightguard development and 

safety shutdown system modification case studies respectively; §9.4 describes the factitious case 

for the evaluation of capability specification and matching. §9.5 compares the idea of 

compliance management in Compliance Flow with traditional approaches; §9.6 compares 

Compliance Flow with other flexible workflow systems; a chapter summary is given in §9.7. 

9.2 Case Study 1- Lightguard Development 

The lightguard development project is one of three trail applications in the Assuring 

Programmable Electronic Systems (APES) project from ERA Technology Limited. The 

Iightguard is originally developed by MTE Limited to comply with BS EN61496, Safety of 

Machinery - Electro-Sensitive Protective Equipment, and BS EN954, Safety of Machinery -

Safety Related Parts of Control Systems. BS EN61496 is a product family standard specifically 

with requirements for lightguard using active opto-electronic protective devices. BS EN954 is an 

application standard which provides guidance on the design and assessment of machinery control 

systems. 

The lightguard development process is, however, incompliant with IEC61508. It has been 

analysed in APES project and a number of correction issues towards IEC61508 compliance are 

given. A safety plan is proposed by ERA, however, neither the original process nor the corrected 

one are explicitly given in the publication. For the case study, a simulation of using Compliance 

Flow to manage the re-organised development tasks was perfonned. Many of the errors of the 

development process were identified and Compliance Flow is an effective process management 

tool. 

• /88-



Chapter 9. Evaluation and Comparison 

9.2.1 Project Overview 

A lightguard performs a single generic safety function. These sets of infrared beams are used to 

scan a protected area. If a light beam is blocked, the machine it is guarding will be switch off. 

The main components ofthe lightguard and their interconnections are illustrated in Figure 9-1. 

In a lightguard, a set of transmitter (Tx) and receiver (Rx) processors transmit and receive data 

via a set of infrared light beams. Two independent controlling and monitoring channels (Controll 

and Control2) are incorporated which control the state of the two outputs signals that connect to 

the final switching devices (FSD 1 and FSD2) in the machinery under control. Once any beams 

are blocked, Controll and Control2 will be de-energised and therefore de-energised FSD I and 

FSD2. In order to limit common mode failures of the equipment, the two channels make use of 

two different microcontrollers, an Atrnel microcontroller and a PlC microcontroller. A cross 

check is performed within the controlling and monitoring channels for fault detection purposes. 

The data from Control2 are shown on a local LED display that is controlled by a diagnostics 

processor. The programs for the transmitter, receiver, control and diagnostics processors are 

written in an assembly language. 

~-.--.--::: Rx11-_. 

FSDl 

~===--=-=::: Rx 21-_.., 

FSD2 
1---0-\ Conlrol2 1----'----..... 

Display 

Figure 9-1. Lightguard components and interconnections. 

9.2.2 Lightguard Development Process 

Table 9-1 lists the high level stages of the lightguard design process and the specification that is 

produced for each stage. The dependencies between the different stages are identified by their 

input and output requirements. 

·189· 



Chapter 9. Evaluation and Comparison 

Stage ID Specifications Produced 
Dependencies 

(Required Input Specifications) 

I Requirements Specification for the None. 
Lightguard System 

2 Hardware Specification for the Stage I (Requirements Specification for 
Lightguard System the Lightguard System) 

3 Functional Descriptions of individual Stage I (Requirements Specification for 
modules the Lightguard System) 

Stage 2 (Hardware Specification for the 
Lightguard System) 

4 Circuit Diagrams, Component Lists Stage 3 (Functional Descriptions of 
etc. individual Modules) 

5 PCB Layout Diagrams etc. Stage 4 (Circuit Diagrams, Component 
Lists etc.) 

6 Software Requirements Specification Stage 1 (Requirements Specification for 
for the Light Guard the Lightguard System) 

Stage 2 (Hardware Specification for the 
Lightguard System) 

7 Software Design Specification for the Stage 6 (Software Requirements 
Light Guard Specification for the Lightguard) 

8 Software Flowcharts Stage 6 (Software Requirements 
Specification for the Lightguard) 

Stage 7 (Software Design Specification 
for the Light Guard) 

9 Software Source Code Listings Stage 8 (Software Flowcharts) 

Table 9-1. Design stages and corresponding input and output specifications. 

The lightguard development process was designed to comply with BS EN61496 and BS EN 954, 

one of the purposes of the case study was to check whether it complies with the IEC61508 

application requirements discussed in Chapter 6. The summary of the result is listed in Table 9-2. 

-190 -



Chapter 9. Evaluation and Comparison 

Requirement I: The development shall be carried out in accordance Not compliant. 
with a defined quality and safety plan. 

Requirement 2: Suitable techniques and measures shall be selected. Partially compliant. 

Requirement 3: The project organisation and allocated responsibilities Not compliant. 
shall be defined. 

Requirement 4: Configuration management and change control Partially compliant. 
procedures shall be defined. 

Requirement 5: Design reviews shall be planned and carried out. Partially compliant. 

Requirement 6: Documentation shall be produced. Partially compliant. 

Requirement 7: Hazard analysis and risk assessment shall be carried Partially compliant. 
out. 

Requirement 8: A safety requirements specification shall be Unsure 
documented. 

Requirement 9: There shall be clear traceability from requirements Unsure 
through design. 

Requirement 10: Appropriate programmable electronics architecture Compliant. 
shall be selected. 

Requirement 11: Appropriate design techniques shall be employed Partially compliant. 
depending on the required safety integrity level. 

Requirement 12: Test specifications shall be prepared prior to testing. Not compliant. 

Requirement 13: The results of test and analysis activities shall be Not compliant. 
recorded. 

Requirement 14: The development shall be subjected to independent Unsure. 
safety validation and assessment. 

Table 9-2. Compliance summary oflightguard development project. 

-191-



Chapter 9. Evaluation and Comparison 

9.2.3 Compliance Management with IEC61508 Requirements 

For the case study, the lightguard design process and its relevant information, such as the input 

(design requirements), the output (design specifications) and the techniques, involved in each 

stage were input to Compliance Flow. A screen shot of modelling the high level process structure 

using Compliance Flow is given in Figure 9-2. The simulation demonstrates that Compliance 

Flow is able to provide intelligent assistance in detecting and managing many of the compliance 

errors. The findings of using Compliance Flow to deal with such errors are discussed below. 

Requirement 1: The development shall be performed in accordance with a defined quality and 

safety plan. 

Error: Identified some procedures are in place, which cover programmable electronics and 

software development activities carried out generally within the Design and Development stage. 

However, a document that defines the lightguard development process in full is missing. 

Compliance Flow Solution: The use of a workflow system to mange the development process is 

a solution. As the development process is modelled as a process plan in a workflow system 

where all the details can be captured during task execution, and relevant reports can be generated 

as required. 

Requirement 2: Suitable techniques and measures shall be selected. 

Error: Identified test specifications are not available, and therefore what testing techniques are 

employed is not clear. 

Compliance Flow Solution: Completeness Check can ensure that test specifications are prepared 

before testing, and Recommendation Check ensure that the recommended techniques are 

considered for particular tasks. The recommended techniques for each test task can be listed by 

the system. 

Requirement 3: The project organisation and allocated responsibilities shall be defined. 

Error: Identified the lightguard project organisation and allocation of responsibilities are not 

documented explicitly. 

Finding: The staff information, such as role and capability, can be maintained in the Organisation 

-192 -



Chapter 9. Evaluation and Comparison 

Server. As a task has to be assigned an agent before execution, the project organisation and 

allocation of responsibility must be defined and will be captured in the process model. In 

addition, the Capability Check can ensure that the assigned agents have the required authorities 

and skills to perform their tasks. 

Requirement 4: Configuration management and change control procedures shall be difzned. 

Error: The Change Request Notes (CRN) and Change Notes (CN) are used. A spreadsheet is 

maintained of all firmware releases in which references are made to the corresponding CN. 

However, it is not clear that the impact of changes are systematically reviewed and documented. 

Compliance Flow Solution: The procedures to deal with a change can be defined as a plan and 

maintained in Plan Library. Once an update is released, an appropriate plan is called and the 

required reviews will be performed and documented during the execution. 

Requirement 5: Design reviews shall be planned and carried out. 

Error: There is an only ongoing process of review during the lightguard development process 

rather than organised design review meetings. In addition, the formal minutes of these review 

meetings are not produced. 

Compliance Flow Solution: The design tasks, including review meetings, can be modelled in the 

process plan. The post-condition is a set of minutes that will be produced after a meeting task is 

completed. 

Requirement 6: Documentation shall be produced. 

Error: Identified there are no test specifications relating to testing of the system. 

Compliance Flow Solution: Compliance Check can ensure the required test specifications are 

prepared before the testing. 

-193 -



Chapter 9. Evaluation and Comparison 

Figure 9-2. A screen shot ofthe high level process model of a lightguard development process. 

-194 -



Chapter 9. Evaluation and Comparison 

Requirement 7: Hazard analysis and risk assessment shall be carried out. 

Error: Potential failure modes of the lightguard equipment are identified and recorded in a 

database. However, the objectives and procedures for these activities are not clearly defined. 

Compliance Flow solution: The required objectives will be dealt with by Completeness Check 

while Correctness Check will ensure that the related activities are defined in a proper sequence. 

Requirement 8: A safety requirements specification shall be documented. 

Error: No error can be identified even though the software design specification does not provide 

a complete and unambiguous specification of the safety requirements for the lightguard 

development. For example, in the software design specification, it is simply stated that "the serial 

numbers shall be contained in the transmitter and by each independent microprocessor in the 

receiver". 

Compliance Flow Solution: Compliance Flow can provide a little assistance in managing errors 

that concern with the document content. It is only able to ensure that the required information 

(sections) is involved in a document by defining the structnres of such information in the 

hierarchical documentation ontology, and which will be defined as the post-conditions of 

relevant tasks. A document with such contents will be produced after the tasks are completed. 

However, the document context is unable to be assessed. 

Requirement 9: There shall be clear traceability from requirements through design. 

Error: Because Compliance Flow is unable to assess the document context, no error can be 

detected even through the structnre of the requirements and design documentation for the 

lightguard does not exhibit explicit traceability between the safety requirements and the 

associated implementation. 

Compliance Flow Solution: As the development process is captured by the process model and 

the details of the task executions are recorded in Tracking Server, a limited support can be 

provided by replaying the implementation process and the decision paths. However, tracking 

process is far away from what the standard required. 

- 195· 



Chapter 9. Evaluation and Comparison 

Requirement 11: Appropriate design techniques shall be employed depending on the required 

safety integrity level. 

Error: Identified only timing diagrams and software flow charts are used in the software design. 

Some highly recommended techniques are not used and required explanations are not provided. 

Compliance Flow Solution: The recommended techniques for different SILs are provided, 

ordered by their importance, by Recommendation Check. Suitable techniques are selected and 

defined as pre-conditions of particular tasks. Explanations of not using the recommended 

techniques have to be provided by users. 

Requirement 12: Test specifications shall be prepared prior to testing. 

Error: Identified a test plan and test specifications are not documented. Functional testing of the 

integrated software and target hardware are informal. 

Compliance Flow Solution: Completeness Check and Correctness Check can ensure the test plan 

and test specifications are developed in advance of testing. Recommendation Check can ensure 

every test task is performed with appropriate techniques while Capability Check ensures the task 

is performed by qualified people. 

Requirement 13: The results of test and analysis activities shall be recorded 

Error: Identified software testing is performed informally and only recorded III project 

notebooks. 

Compliance Flow Solution: The test procedures and activities are specified in a process plan with 

their executions under the control of the workflow engine, the required test results and analysis 

activities are recorded. 

Requirement 14: The development shall be subjected to independent safety validation and 

assessment. 

Error: It is unclear how the requirement for independent validation of the lightguard design is to 

be handled. 

Compliance Flow Solution: As procedures and activities can be specified in a process plan, the 

- 196-



Chapter 9. Evaluation and Comparison 

validation and assessment activities should be included. The independence of an assessor can be 

defined as a capability so that suitable assessors can be identified in the agent selection process 

supported by capability matching. The concept of workspace facilitates the assessors to retrieve 

the required information effectively. 

9.3 Case Study 2 - Safety Shutdown System Modification 

A safety shutdown system modification was conducted by ABB limited for one of their clients. 

The project detail cannot be published because of its disclosure restriction. Unlike the lightguard 

development, the project is fully complied with IEC61508. The project size is relative small; the 

physical documentation is within 1500 pages. For the case study, a simulation that uses the 

reorganised development process is performed. It shows that Compliance Flow not only provides 

support for process compliance, its framework also facilitates the management of development 

tasks. A number of suggestions for extension were given by ABB Limited. 

9.3.1 Project Overview 

Modifications were made to a safety shutdown system during a plant shutdown. The software 

was upgraded from version I to version 2, and minor changes were made to a pair of existing 

trips. Although the changes are minor, the high integrity nature of the trip system meant that the 

entire logic within the shutdown system, together with its links to the distributed controlled 

system (DCS), be re-tested. 

During the modification, a fundamental assumption is that the existing system has been 

comprehensively tested and that the test procedure used are complete and accurate, and that no 

changes have been made to the DCS that could impact on the safety shutdown system. 

Therefore, testing of existing trips is reduced to re-validating the existing logic. Only the 

mappings of tags to I/O points and I/O revalidation tests that include confirming associated DCS 

functionality are required. 

9.3.2 Study Findings 

The tasks of the Modification together with its relevant information were used as input to 

Compliance Flow system for a simulation. The case study was performed together with three 

ABB staffs, a safety project manager, a safety software manager and a programmer. The findings 

·197· 



Chapter 9. Evaluation and Comparison 

against the requirements identified in Chapter 4 are outlined and discussed as follow: 

Compliance Management 

Like the lightguard development project, the process structure differs from the framework 

proposed by IEC61S08. As expected, Compliance Flow dealt with it without any problem. 

Screen shots of the high level tasks of the modification and the software lifecycIe are given in 

Figure 9-3 and Figure 9-4 respectively. For the purpose of the simulation, a number of required 

specifications are deliberately left out in the process plan and some other specifications are 

specified in improper sequence. For example, 'Test Specification' is placed behind the 'Test 

Report'. All mistakes were successfully detected by Completeness Check and Correctness 

Check. 

The IEC6l508 recommended techniques for performing a particular task are successfully 

retrieved and listed out by Recommendation Check. The highly recommended techniques that 

have not been specified in the user-defined process were highlighted for attention. 

ABB has a competent library which records the capabilities of every technical staff in the context 

of developing safety related equipments. The competent list is defined based on a proprietary 

ontology used in ABB and can be used in capability matching. Capability Check succeeded in 

the assessment of whether an agent can fulfil the required capability. However, as expected, the 

value of goodness of fits (GOF) retrieved by a capability matching is only meaningful when it is 

equal 100 which implies a perfect compliance or it is used to compare with another, for example, 

the agent with GOF(7S) should be more suitable than another with GOF(60). 

Traceability 

Although IEC61508 emphasises process compliance, current best practice can only be assessed 

based on project documentation. The traceability proposed in Compliance Flow facilitates the 

identification of project compliance at process level, which is the concern of most projects. 

Compliance Flow can also illustrate how a document is produced. 

Selection of Agent 

As the number of staff involved in this project is relatively small, the proposed agent selection by 

capability matching cannot manifest its full power. However, ABB agrees that the approach is 

·198-



Chapter 9. Evaluation and Comparison 

valuable for selecting an agent from a large pool of resource, particularly for companies that 

adopt matrix organisation. 

Flexibility 

The original Gantt Chart for the Modification was not available. The process structure used as 

the input to the system was recreated by the software safety manager based on his memory. A 

number of mistakes, such as improper task structure, were made as he cannot remember every 

project details. Such errors were discovered during the evaluation and corrected in the system 

immediately. Some errors were detected and corrected when simulation of the process had 

started. Users found it is easy to update the process plan. The interleaving between the process 

build-time and run-time was successfully demonstrated. 

Process Reuse 

A number of Plans were created during the simulation of the Modification project. Such sub

Plans were used to construct a new process plan for a fictitious project with certain similarity. It 

shows that the use of Plans can effectively shorten and ease the planning process. 

Management at Different Level 

The hierarchical presentation of project structure enables that users with different responsibilities 

in a project have an overview of the progress at a glance while concentrating on their own tasks. 

The use of workspace facilitates the senior staffs to monitor and access the information relevant 

to tasks performing by their teams. 

Process and Information Management 

The use of workspace demonstrated the ability to automatically transfer information from a task 

to another according to the user-defined process. Information Check has further transferred the 

information to the subsequence tasks for which the flow of information is not specified in the 

process plan but may be needed. Although not all the information transferred by Information 

Check will be used during the task execution, it demonstrates that Information Check can 

effectively reduce the impact from such mistakes where the task interdependence is inefficiently 

captured. 

- 199-



Chapter 9. Evaluation and Comparison 

2-FUNCTION REVIEW 
3.1£51 SPEC. 

,-.. ,,'. 3.t.FACfORY TEST SPEc. 

:--: ~'i~~:~:;/::i~PEC-AEV1EW 
',,-,. 'l4.Sm TEsr SPEc.. REVIEW 

• ~ 4. CODING 
11 5,CODING REVI£W 
.. 6.FACTORYTESl 

.- .. 7.511E INSTALlATION & TEST 
,- - .. 7.1.1NSTAI.1.ATlON PROCEDLlRE 
I _ .. 7.251TE INSTALlATION 

" .. 7.3 SITE TEST 
BEGIIoI 

'" INSTALlATIDI'I SPEc. 
INSTAlLATION SPEC. REVlE'N' 

ERA· UGHTGUARQ 

Figure 9-3. High level process model of the modification project. 

~ loa '.HW SAFETYUFECYO..E 
El 1lim_!!I!l1!il 
$- L:l T09.2.l.SWSAFETYREQ. SPEc. 

- Ll T092.1,1,SAfETYFUN.REQ.SI'EC. 
CJ 109.2.1.2. SAfETYINT. REQ. SPEc. 

i -,,0 Ton.2.SWVAUD, PlAN 
~- LI T09.2.3.SW DESIGN &OEVP. 

, L:l r(lS.2.3.1.SWARCHIT. 

; _ -§ T!~oa~':'~'''lS''W'O",''.''O!ES(''IG'"'S MIO "ID, 
"CJ T09.2.H.lNDMOUAlMOO. DESIGN 

,'-. Ll T09.2.3.5.CODING 
-CJ 109.2.3.6. MOO. TESTING 

I • Cl T09.2,ll. SWINTT. TESTING 
f- LJ 109.2.4. PE INTEGRATJON 
I _ L:l T09.25,SWOP,&MAlNT_PAOC. 
\". L:l r09.2,S.$WSAFElYVALlO. 

nas.fl SYS.: OTHER 1EOI. 
T11.EXTERNAl R.fI, FAQLlTtES 
T12.DVERAllINST. & COMM. 

Figure 9-4. High level process model of software lifecyc1e ofIEC6l509. 

·200· 



Chapter 9. Evaluation and Comparison 

9.3.3 Recommendations fromABB Limited 

ABB is impressed by Compliance Flow. They are encouraged by the demonstration and give 

following summaries: 

"Compliance Flow has potential! We will definitively buy it!"-Mr. John Walkington 

"It is intelligent! Many of the errors can be detected by the system ... Capability 

matching suits our competent library .. .facilitates the selection of suitable staffi for 

tasks. " - Mr. Paul Lucas 

In addition, a number of recommendations are given to further improve Compliance Flow for 

practical use. 

Enriched Standard Model 

Standards, such as IEC61508, are generally sizeable. It is very difficult for a person to remember 

every detail, particularly for the projects for which multiple standards are applied. Thus, a rich 

standard process model that provides sufficient information to assist users to understand 

particular situation in the context of standard compliance is necessary. For example, when a 

specification is identified as being wrongly placed, compliance agent should give further details 

of the specification, such as its objectives and issues of concern, rather than just points out its 

possible locations in the user-defined process plan. 

Using Wizard to Deal with Complex Operations 

Pointing out the identified errors and providing relevant information are not enough as most of 

people may be still vague about the detail steps of correction procedures. For these situations, 

wizards can be used to guide the user step by step to perform some complex operations. Wizards 

can be widely used in the Compliance Flow framework, which includes (I) fixing errors 

identified by compliance agent, (2) selecting appropriate Plans for a task, (3) assisting process 

specification, (4) retrieving track records of task execution, (5) specifying capability and (6) 

selecting task agent. 

Security and Authority Control 

Security and authority are important issues in safety product development. Although capability 

- 201-



Chapter 9. Evaluation and Comparison 

matching is able to ensure the tasks are assigned to appropriate staff, to identify that the tasks are 

actually performed by the assigned staff is necessary. Thus, some advanced identification 

methods, such as fingerprint identification, could be used in Compliance Flow system. 

Integration with Other Applications 

Besides the task management system, implementing an engineering project also requires other 

types of supporting tools, such as risk assessment systems. The ability to work together with 

other types of systems is also critical. For example, workspaces can be integrated with a 

document management system to provide versioning control. 

9.4 Case Study 3 - Capability Specification and Matching 

A factitious case was specifically developed and performed to evaluate capability specification 

and matching in five aspects. 

In terms of the capability specification: 

1. Preciseness: The capability knowledge should be modelled to provide a precise capability 

specification. The entities in the model are quantitatively related to facilitate fuzzy 

matching. 

2. Expressiveness: The method of capability specification is expressive enough to represent 

not only the technical capability, but also a wide range of knowledge such as 

qualification, role and authority, which are related for assessing suitability of an agent in 

performing a task. 

3. Comprehensiveness: A user can understand the capability representation and 

specification statement, and the system is able to process it. 

4. Ease of use: Every capability description should not only be easy to read and understand, 

but also easily defined by the user. 

In terms of the capability matching: 

5. Accuracy: The proposed fuzzy matching algorithm should be able to deliver an 

acceptable result, particularly when a perfect match between the required capabilities and 

available capabilities is not possible. 

- 202-



Chapler 9. Evaluation and Comparison 

9.4.1 Study Overview 

Four research and MSc students were invited to participate in the case study. They all have 

programming experience and some system development knowledge. The general concept of 

capability specification and matching and their applications in terms of workflow management 

were described to them before the case study. The case study includes four phases. The 

evaluation forms are attached as an appendix of this thesis. 

Phase 1 

The first phase evaluates the difficulty of creating ontology hierarchies and assessing conceptual 

overlaps between different terms. This phase has two steps. First, a description of a software 

company with the focus on the development department is given to the participants. They are 

required to construct the capability and application ontologies, based on the given description. 

Second, the participants are required to assign the knowledge overlap values between the 

concepts of interest in these ontologies. 

Phase 2 

The second phase evaluates the difficulty of interpreting the formal capability representations. 

Two sets of capability and application ontologies, one with knowledge overlap and another 

without, which are created based on the given scenario, are given as the standard ontologies to 

participants for phases 2, 3 and 4. The reason for not using the ontologies created by the 

participants is that they are different, both in their structures and the overlap figures, which may 

lead to inconsistent results in the latter phases. In the second phase, a number of formally 

represented capability specifications are given. The participants are required to describe the 

meaning of these formal specifications, using the given ontologies, in words. 

Phase 3 

The third phase evaluates the difficulty of specifying capabilities. The general descriptions of a 

number of capabilities, including required and available capabilities, are given, and the 

participants are required to give the formal capability specifications accordingly. 

- 203-



Chapter 9. Evaluation and Comparison 

Phase 4 

The final phase evaluates the accuracy of the proposed fuzzy matching algorithm. The 

participants are given capability specifications of the three tasks and eight agents where a perfect 

match does not exist between them. The participants are required to select the most suitable 

agent for each task. The results produced are used to compare with the system's choice. 

9.4.2 Study Findings 

The results show that the capability scenario is effectively expressed by the ontologies. The 

proposed formal capability representation is easy to learn, understand and use. Most importantly, 

the fuzzy matching algorithm is able to deliver an accurate result. 

Phase 1 

Suitable ontology hierarchies can be constructed by every participant in minutes, though the 

ontology structures are different. A sample is given in Figure 9-5 where (a) integrates Role and 

Department into a single hierarchy while (b) treats them separately. However, in general, (b) is 

preferred as each hierarchy is more specific, and more accurate result will be generated by the 

proposed algorithm. 

~ 
cust.Acounling 

l,ment/1\ 
Project Manager Programmer Analyst Tester 

(a) 

Role 

~ l,mem A 
Project Manager Programmer Analyst Tester 

(b) 

~ 
Cust Service IT Accounting 

Figure 9-5. Participants construct different ontology hierarchies. 

To assess the knowledge overlap between two concepts of interest is the most difficult in the 

whole evaluation. Some figures given by the participants vary significantly. After a discussion 

with each participant, the reasons can be identified as either due to their different perspectives on 

knowledge overlap or the lack of a complete consideration. Using Java and c++ as an example, 

the figures given by the four participants are shown in Figure 9-6. The knowledge overlaps 

• 2D4· 



Chapter 9. Evaluation and Comparison 

between the two languages should be twofold: the common programming statements, like 

If... Then ... Else, and the use of object-oriented (0-0) concept. Participant-l and Participant-2 

consider all parts while Participant-3 and Participant-4 only take one part into consideration, and 

therefore lead to the significant different overlap figures. 

Participant-3 and participant-4 have the same limited perspective and gave figures that are quite 

similar. Participant-3 only considers the statement similarity between two languages and gives an 

overlapping value 10. He agrees that the 0-0 concept should be considered in the assessment but 

was missed out. Participant-4 insists that the similarity of the programming statements is enough 

to represent the overlapping between two languages. He gave a value of20. 

Though Participant-l and Participant-2 were thinking similarly, they gave very different 

subjective figures. However, through a group discussion, a capability and an application 

ontology with figures accepted by the participants were constructed in minutes. 

100r---------------------------------, 

80+---------------------------------4 

60 +----------

40 -------------------1 a Knowledge o~rlap between 
Java and C++ 

20 

O+--~ 

Participant 1 Participant 2 Participant 3 Participant 4 

Figure 9-6. A sample knowledge overlap given by the paticipants. 

Therefore, it is recommended that a guideline of assessing knowledge overlap for particular 

domain is necessary and need to be understood and followed by users otherwise they may not be 

able to specifY capability properly. 

The expressiveness of ontology hierarchy is also demonstrated. It is agreed by all participants 

that the scenario can be modelled by the ontologies in the proposed hierarchy structure and the 

relationship between the terms in the ontology hierarchy can be quantified based on their 

understandings. 

-205· 



Chapter 9. Evaluation and Comparison 

Phase 2 

In the second phase, all the participants gave the correct descriptions of the given capability 

specifications instantly. This demonstrates the the formal capability specification is easy to 

understand. 

Phase 3 

In the third phase, all the participants were able to correctly specifY the given capability 

description, though different weights given. Using question 5 as an example, in which 'chartered' 

qualification is the most important requirement. 

Question 5: A task requires a Borland C++ programmer. The programmer must be a 

chartered software engineer and is experienced in developing safety system. The 

programming will be performed under Windows environment. 

I. Capability(Programmer, IT) 

2. Capability(C.Eng, Safety) 

3. Capability(C++, Windows) 

All the participants can construct the above capability set based on the description. Although 

different weights were assigned to the capabilities by the participants as shown in Figure 9-7, the 

importance of qualification is emphasised. The variations only slightly affect the GOF values and 

the most suitable agent is ranked on the top of the list in all the cases. 

- 206-



Chapter 9. Evaluation and Comparison 

60 

50 

40 

30 

20 

10 

0 
Capability 1 Capability 2 Capability 3 

-+-Participanf 1 
___ Participant 2 

-.-Participant 3 

~ Participant 4 

Figure 9-7. Different weighting points given by the participants. 

The results indicate that the proposed capability specification and representation approach is 

comprehensive and easy to use as the participants can put it into practice with a quick learn. 

Phase 4 

In the fourth phase, the results generated using the proposed fuzzy matching algorithm and the 

selections made by the participants are exactly the same, indicating its ability to deliver a human

alike decision. All participants realise that endowing ontology hierarchies with knowledge 

overlaps facilitates understanding of a capability specification and matching, particularly when 

perfect matches do not exist. 

9.5 Process-based Vs Document-based 

Much of current research regarding compliance management, such as the work by Emmerich et 

al. (1998), adopt a document-based approach in which the development processes are implicitly 

represented in the product. The compliance is treated as a problem that is closely related to 

inconsistency management in specification (Easterbrook et aI., 1994; Finkelstein et aI., 1994). 

Such an approach uses a document schema specification to elaborate and formalise the 

definitions of document structure suggested in the standard so that properties can be checked 

against them. Appropriate checks will be triggered when events occur on documentation during 

the development process. This approach can ascertain that the expected qualified document is 

produced, which matches current quality control practices where the compliance checks are 

performed at the end of development stages by individual assessors. However, it lacks process 

- 207-



Chapter 9. Evaluation and Comparison 

management ability that proactively prevents unqualified products resulting from a wrongly 

planned process, which is an essential requirement for standards like IEC6l508. As Moore 

indicated: 

"Some companies in our industry claim to have IEC61508 compliant products. In 

fact they have only had an assessment done on a single product, not on their 

company's processes to design and produce that product. This is a severe shortcut, 

and certainly not in keeping with the intention of the standard" - (Moore, 2002) 

The following are two key benefits in tenns of compliance management that Compliance Flow 

can provide over other document-based support systems. 

Process Level Compliance Management 

Compliance Flow is able to provide support for compliance management at process level. Like 

IEC6l508, many standards emphasise that compliance should be managed at the process level as 

a proper process is more likely to produce a quality product. However, for systems that provide 

support at documentation level, a key challenge is that it is difficult to prove that a document is 

produced through a correct process. This is tackled in Compliance Flow as a result of the 

management of the development process. 

Pro-active Error Identification 

Compliance Flow is able to identify errors before the execution. For many current solutions, 

errors are identified when the documents are produced and tasks are perfonned. There significant 

resources are devoted to managing standard compliance. However, the earlier the errors can be 

identified, the cheaper will be the development cost and the proper process will result a higher 

quality product. 

9.6 System Comparison 

Compliance Flow is designed to provide intelligent support for engineering processes, for which 

an emiched process model and flexibility of task management are essential. The following is a 

comparison of Compliance Flow with the adaptive workflow systems discussed in Chapter 3, 

with the focus on their flexibility features. 

.208· 

- - - -------------------



Chapter 9. Evaluation and Comparison 

9.6.1 Compliance Flow Vs InConcert 

The two major features provided by InConcert are: (1) the interleaving between process build

time and run-time, and (2) the use of workspace to enable the sharing of documents. The 

interleaving between process build-time and run-time is fully supported in Compliance Flow. 

The use of workspace in the two systems, however, is different. In InConcert, the documents 

inside a workspace are linked to the relevant tasks with no relationship to the task dependences. 

In Compliance Flow, a document can be linked to a task as a pre- or post-condition. A document 

can be an independent object inside a workspace. A document will be transferred to another task 

automatically once it is available if it has been defined as a pre-condition of another that task. 

The conceptual difference in the use of workspace is that InConcert sees a document as a 

resource required for a job and needs to be shared; Compliance Flow emphasises information 

management where the required documents will be automatically collected into the workspace of 

the related tasks, which is more powerful than the workspace concept in InConcert. 

9.6.2 Compliance Flow Vs TeamWare 

The strength of Team Ware is its support for collaborative planning which allows individuals to 

"plan their own parts". This important feature for supporting an engineering process is supported 

in Compliance Flow where the superior raises only the requirements of tasks for which the 

technical staff have to detail, plan and perform themselves. Each member of staff has a collection 

of his own library of organisational sub-process. A process plan can be delivered on-the-fly by 

individuals working on their parts. 

Collaborative planning is also supported in Compliance Flow. High level tasks are specified by 

senior staff and dispatched to their teams. Team members can then further specifY the assigned 

tasks, dispatch them to other staff, or directly perform them. This planning-dispatching process 

can be performed until the required details of tasks are reached. 

Past experience can be captured and maintained in the Plan Library. A Plan represents a possible 

method of achieving a task at a particular level of abstraction. Unlike Team Ware where the 

process templates are represented as lists, in Compliance Flow they are represented as task 

hierarchies. 

- 209-



Chapter 9. Evaluation and Comparison 

9.6.3 Compliance Flow Vs TBPM 

TBPM's process model is designed to support scale-up processes where parts of a process 

specification can only be specified and performed when the results of particular tasks are 

available. Process plans are selected to enable the system to adapt to specific needs. In addition, 

capability matching is proposed for agent selection. 

A task in Compliance Flow can be started when its pre-conditions are fulfilled and pre-tasks are 

completed. With the ability of interleaving process built-time and process run-time, a scale-up 

processes can be handled without any problem. The hierarchically organised process plans are 

also used to increase system adaptability where a suitable Plan to correct a process at different 

level of abstraction can be easily identified. 

Capability matching is extended in Compliance Flow by adopting a flexible scheme approach. It 

is limited in TBPM as both task and agent can only assign with one set of technical capability 

where each capability has the same importance. In Compliance Flow, a scheme can be applied to 

(1) allow each capability in a capability set has different importance and (2) enable a task has 

multiple capability sets where each is used to deal with a particular situation. In addition, 

capability in Compliance Flow is extended to refer to not only technical capability but also the 

organisational knowledge and authority. 

9.6.4 Compliance Flow Vs Agent Enhanced Workflow 

The use of agents to handle internal and external process exceptions in a traditional workflow 

system is demonstrated in Agent Enhanced Workflow. Such exceptions cannot be completely 

perceived and therefore difficult to model. The beauty of using agent is that no or minimum 

amendment is needed to the workflow system. 

A similar concept is used in Compliance Flow to manage process compliance where a 

compliance agent called Inspector is responsible for checking the compliance of the user-defined 

process by matching it with a standard process model. The Inspector and the standard process 

model can be seen as separate components from a workflow system. This architecture enables 

the deployment of compliance management on different workflow systems with minimum 

amendment. 

- 210-



Chapter 9. Evaluation and Comparison 

9.6.5 Comparison Summary 

Compliance Flow has all the flexible features provided in the four adaptive workflow systems 

with significant improvements. More importantly, the ability of ensuring the compliance of a 

user-defined process with a standard is a novel feature that current workflow systems do not 

support. The key features provided in Compliance Flow and the four adaptive workflow systems 

discussed above is summarised in Table 9-3. 

Features 
Compliance 

InConcert TeamWare TBPM AEW 
Flow 

Process Modelling 

Capability Information X X 

Information Object X X X 

Task Decomposition X X X X 

Visual Modelling Language X X X X 

Task Management 

Agent Selection by Capability 
X X Matching 

Collaborative Planning X X 

Information Management X X 

Interleaving Between Process 
X X X X build-time and run-time 

Meta-process (Compliance) 
X 

Management 

Partial Definition X X X X 

Process Template (Plan) X X X X 

Shared Workspace X X 

Use of Software Agent X X 

Table 9-3. Summary of feature comparison. 

9.7 Chapter Summary 

This chapter evaluated the Compliance Flow system. Three case studies were performed. The 

originallightguard development project does not comply with IEC61508 standard as it does not 

fulfil all the requirements. Compliance Flow demonstrated its ability in detecting errors and 

- 211-



Chapter 9. Evaluation and Comparison 

managing a standard complied project. The safety shut down system modification project was 

design and implemented using the guidance of IEC6l508. Its process is inputted into 

Compliance Flow with a number of fictitious errors. The case study shows such errors are 

successfully detected and managed by the system. Insights gained from the case study are 

discussed. Finally, the case study of capability specification and matching shows that the 

proposed capability specification approach is easy to learn, understand and use, and the fuzzy 

matching algorithm can perform precise matching and deliver a human-alike decision. 

From the compliance management perspective, Compliance Flow provides process level 

compliance management, pro-active error identification and document production control. These 

three features are critical in compliance management, but are not supported by current systems. 

From the workflow management perspective, Compliance Flow is able to support all the flexible 

features provided in the four adaptive WtMS discussed before. The ability to check process 

compliance against a standard is a innovation in workflow management. 

- 211-



Chapter 10. Conclusion and Future Work 

10.1 Introduction 

Chapter 10 

Conclusions and Future Work 

"Starting a PhD is one thing, 

finishing it is another. " 

-PaulChung 

This chapter gives a brief review of this thesis, summarises the achievements and points out 

some directions for future work. It is organised as §1O.2 gives a review of this thesis; §lO.3 

summarises the major contributions; §lO.4 outlines the limitations of this thesis and some future 

directions. 

- 213-



Chapter 10. Conclusion and Future Work 

10.2 Thesis Review 

The research question this thesis chose to explore was: 

How is it possible to provide intelligent support for the management of dynamic 

engineering processes, with the focus of ensuring that their specification and 

performance are compliant with particular industry standards? 

Currently, a large amount of time of engineers, managers and quality assurance teams is 

occupied with tracking and managing the compliance of projects to ensure product acceptability 

or safety. In this context, process compliance means that there is a clear description of the design 

stages and, at each stage, the inputs to that stage are fully and unambiguously defined, and all the 

objectives and requirements of the standard are met. If a workflow system has compliance 

management ability, then it not only shortens the development time and reduces cost, but also 

improves the quality of the process and product. Thus, a solution to this problem is important to 

industry. 

To answer the question, current workflow technologies were studied first, with the focus on the 

technologies that enable workflow systems to adapt to a dynamic enviromnent. Han's conceptual 

framework, which categories the adaptations of workflow systems to changes into five levels, 

was discussed. In addition, a survey of five adaptive workflow systems was carried out. 

Product development processes were studied in order to understand engineering processes, and 

their characteristics were identified. Engineering processes differ from general business 

processes, because they are highly technical, dynamic, ad-hoc, collaborative and involve a vast 

amount of information interchange of which current workflow systems lack the ability to 

support. A number of requirements of a system which is to succeed in supporting engineering 

processes were identified and discussed, including (1) compliance management, (2) traceability, 

(3), selection of agent, (4) flexibility, (5) common process, (6) management at different levels, 

and (7) process and information management, in which flexibility is the most important 

requirement while the ability of compliance management becomes the major challenge of this 

project. 

A novel framework was proposed which provides a platform to enable the integration of a 

number of enabling technologies to deal with more complex and flexible engineering processes. 

- 2/4-



Chapter 10. Conclusion and Future Work 

The requirements identified are dealt with in the following ways: 

• Compliance with Standards: A Compliance Agent performs a number of compliance 

checks between the Model of Standards and the user-defined processes during process 

build and run time. As a result, compliance errors are identified during process planning, 

and tasks with compliance problems are prohibited from execution during run time. 

• Traceability: A Tracking Server records decision rationale so that the implementation and 

decision paths can be traced. 

• Selection of Agent: An Organisation Server provides a fuzzy capability matching 

mechanism for this purpose. 

• Flexibility: The interleaving between process build and run time allows parts of a process 

to be executed while other parts are being refined. 

• Common Process: A Plan Library provides support in the form of pre-specified process 

structure that can be assembled and adapted to suit the specific needs of the current 

situation. 

• Process and Information Management: The process management facilities together with 

the provision of workspaces provide a collaboration environment for engineering 

processes. The information will be transferred to the relevant tasks once they are ready. 

The personal 'Bag' can effectively maintain the necessary privacy for each agent. 

To support this framework, a novel workflow model that captures capability knowledge and 

integrates the concept of CSCW is proposed. A new capability matching approach which utilises 

a fuzzy matching algorithm was developed to enhance the agent selection procedure. The use of 

workspace not only allows users to collaborate when a process is running but also provides 

information management support where the required documents will be automatically collected 

into the workspace of the related tasks. This is more powerful than the workspace concepts used 

in other workflow systems. 

The proposed solution to the compliance management problem is to use a compliance agent to 

perform a number of compliance checks between a standard model that captures the required 

knowledge of a standard, and the user-defined process during both process specification and 

execution to identify and resolve errors. To do so, the first step is to investigate standard 

- 215-

.. - _. -------



Chapter 10. Conclusion and Future Work 

modelling which is used to capture the knowledge of a standard into a standard model for further 

retrieval in performing compliance checks. 

A standard modelling approach was proposed, which is capable of capturing four important 

aspects of a standard in terms of workflow management: (1) the proposed task framework, (2) 

the requirements and the deliverables of every task in the framework, (3) the recommended 

techniques, measures, tools or methods to perform a task, and (4) the required capability of a task 

agent. The approach has been successfully used in modelling IEC6l508. 

Compliance management is broken down into six separate issues and tackled appropriately: (1) 

the required tasks are included in the user-defined process; (2) they are performed in the correct 

sequence (3) with sufficient information (4) using suitable techniques (5) by qualified persons; 

and finally (6) the required documents are delivered. Accordingly, a number of compliance 

checks were developed. 

During the process build-time, while the Completeness Check ensures the required activities are 

included in a user-defined process, the Correctness Check ensures these activities are performed 

in the recommended sequence. On the other hand, the Capability Check makes certain that the 

task agents possess the required capability for performing their tasks and the Recommendation 

Check reminds task agents of the techniques or skills which are recommended to be used to 

perform their tasks. In addition, the Planning Assistance assists process specification by 

providing possible required information, such as required capability for tasks. Furthermore, 

when a task starts, the compliance agent wi1l check its compliance. If the task is not fully 

compliant with the selected standard, it will be frozen until the identified errors are resolved or 

an explanation is given. During process run-time, the documents created during the process will 

be transferred by the Information Navigation to these tasks which may require them for their 

execution. Finally, the Cross Referencing function allows a user to refer a user-defined task to a 

standard or vice versa. 

A system prototype was developed to evaluate the proposed ideas. Three case studies were 

performed. The first is the lightguard development from ERA technology. The second is the 

modification of a safety shutdown system from ABB limited and the third is capability matching 

evaluation. The original lightguard development project does not comply with the IEC61508 

standard as it does not fulfil all the requirements. Compliance Flow demonstrated its ability in 

·216· 



Chapter 10. Conclusion and Future Work 

detecting errors and managing a standard compliant project. The safety shut down system 

modification project was designed and implemented using the guidance ofIEC61508. Its process 

was input into the prototype with a number of fictitious errors. The case study shows such errors 

are successfully detected and managed by the system. The evaluation of capability matching 

shows that the proposed capability representation is easy to understand and use, and the 

matching algorithm is able to deliver a human-alike decision in selecting agents for tasks. 

Two comparisons between Compliance Flow and other existing systems are also given. The first 

compares the proposed treatment for compliance management against traditional document 

based approaches. The second compares Compliance Flow against the flexible workflow systems 

discussed in Chapter 3 in the context of supporting engineering processes. From the compliance 

management perspective, Compliance Flow provides process level compliance management, 

pro-active error identification and document production control. These three features are critical 

in compli~ce management, but they are not supported by current systems. From the workflow 

management perspective, Compliance Flow is able to support all the flexible features provided in 

the four adaptive workflow systems discussed before. The ability to check process compliance 

againsta standard is an innovation in workflow management. 

10.3 Summary of Contributions 

The contributions ofthis thesis are: 

• 

• 

Through the application of workflow management to engineering processes, it has 

contributed to an enhanced understanding of "adaptive workflow technology". 

It contributes to the compliance domain by empowering the compliance management at 

process level where errors are detected and prevented in advance of process execution. 

• The novel feature of process compliance management creates a new research direction in 

• 

• 

• 

the workflow community, and its application in managing project compliance indicates the 

importance of this meta-process control capability. 

A new approach of using set theory to tackle the problem of traditional "distance" 

approach to assess goodness of fit (OOF) between two concepts of interest. 

A new approach of integrating the concept of CSCW with workflow management is 

proposed, allowing users to collaborate while the process is running. 

A new approach of agent selection based on fuzzy capability matching. 

·217· 



Chapter 10. Conclusion and Future Work 

• A novel process model that further captures capability knowledge and enables that 

information objects are linked to their related tasks. 

• The proposed framework gives a platform where a variety of technologies can be used to 

increase the required adaptation of a workflow management system in supporting dynamic 

processes. 

10.4 Limitations and Future Directions 

The following issues are currently being addressed, or should be addressed in future work: 

Handling multiple standards 

In this thesis, IEC61508 is used as example to evaluate (I) the proposed approach to modelling a 

standard and (2) the compliance checks for managing process compliance. The use of one 

standard is insufficient. Instead, evaluation of the system can be extended to include different 

standards as there are differences between them. For example, the European Space Agency 

(ESA) PSS-05 (Mazza et aI, 1994) standard for software development does not prescribe a 

particular lifecycle model. It lists almost 200 practices which are comparatively ambiguous and 

need to be interpreted and integrated to form a standard model. A typical practice is: 

UR04 - For incremental delivery, each user requirement shall include a measure of 

priority so that the developer can decide the production schedule. 

This practice can be interpreted and modelled as: (1) the concerned task: incremental delivery, 

(2) its post-condition: a measure of priority, and (3) a consequential task: decide the production 

schedule. 

The created model may not accurately represent the original standard due to misinterpretation or 

ambiguity in the standard. On other hand, the modelling framework may not be appropriate for 

particular standard. In this case, the process model and compliance checks have to be extended, 

which may lead to another research project. 

Extensions to manage compliance at document level 

The proposed approach is designed to ensure that a product is developed through a standard 

complied process. However, a qualified document is not a guaranteed outcome from a proper 

- 218-



Chapter 10. Conclusion and Future Work 

development process. Therefore, it is a need to provide support to assess the document context as 

other compliance management tools do. There are two possible approaches. The first is to 

integrate Compliance Flow with a current document based compliance management system. 

However, significant redundancy will exist as a result of the overlapping between these two 

approaches. The second approach is to extend current process model to capture the required 

information at documentation level. Further checking of the documents against the model can 

then be carried out. Simply combining the proposed process model with the document 

management model used in current systems is likely to be impractical. A more sophisticated 

modelling and reasoning approach may be required. 

Extensions to comply with workflow standards 

Compliance Flow is a research prototype and will to be further developed to conform to 

workflow standards introduced in Chapter 2. Compliance with workflow standards is important 

and benefits Compliance Flow in two ways: (1) it facilitates the integration and the 

communication with other WfMS, and (2) it enables the deployment of compliance agents in 

otherWfMS. 

A workflow application interface (WAPI) that is complied with WfMC's workflow reference 

model should be developed in order to allowed third party's tools to integrate into Compliance 

Flow framework. However, as the proposed process model concerns extra aspects of workflow 

management, to access such information through the WAPI can be a big problem. 

The deployment of a compliance agent is discussed in Chapter 8. The best solution is to use 

middleware to convert the process information into a file in XPDL format and then perform the 

compliance checks upon that file. Similarly, the use of XPDL to represent the required 

information for compliance checks needs to be investigated. 

Change Management 

For task management in particular engineering domains, such as construction, the changes 

cannot be directly made to the original plan. Suitable change procedures, such as change 

identification and evaluation, must be performed to study the current situation. The use of the 

Tracking Server to record the process planning and execution activities is insufficient. The 

causes of changes and the decision rationale must be recorded. 

.219· 



Chapter 10. Conclusion and Future Work 

One possible solution is to define the change procedures as process plans. When a change has 

occurred, an appropriate process plan will be instantiated and performed so that the change will 

be under control. However, identifying the related process plans and generating a solution based 

on past experiences are ongoing research topics. 

Knowledge Representation 

The proposed knowledge modelling in which the knowledge hierarchies are endowed with 

overlapping information between the concepts captured is preliminary evaluated. The result 

shows that the approach contributes to assessing the GOF between two terms, in the area of 

capability matching, is better than the traditional approaches. This modelling approach has the 

potential to be applied in other areas, such as retrieval of images using descriptors (Smeaton and 

Quigley, 1996). To do so, larger scale tests should be carried out in terms of the type of hierarchy. 

Agent selection 

The proposed capability specification and matching using fuzzy matching algorithm for agent 

selection is based on an assumption that one task is performed by one person or a team. It is 

unable to deal with the situations where, for example, multiple agents are dynamically selected 

from a resource pool to collaborate to perform a task. 

One possible solution is to merge the capabilities of multiple agents into a capability set and 

match it with the required capabilities. However, the large number of merged capabilities may 

leads to an unacceptable matching time in a selection process and the degree of accuracy is still 

unknown. Therefore, further research and evaluation in this context are required. 

10.5 Overall Conclusion 

An advanced solution to the engineering process management is proposed in this project. The 

requirements of a workflow system in supporting engineering processes are tackled successfully 

by the Compliance Flow's framework. In particular the novel feature of process compliance 

management creates a new research direction in the workflow community, and its application in 

managing project compliance indicates the importance of a meta-process control capability in 

workflow management. 

·220· 



References 

References 

Abbott K. R. and Sarin S. K., 1994, Experiences with Workjlow Management: Issuesfor the Next 

Generation, in Furuta and Neuwirth, pp. 113-120. 

Ader M., 1997, Seven Workjlow Engines Reviewed, Document World, vol. 2, no 3. 

Agirre E. and Rigau G., 1995, A Proposal for Word Sense Disambiguation using Conceptual 

Distance, International Conference on Recent Advances in Natural Language Processing. 

Tzigov Chark, Bulgaria, September 1995. 

Agirre E. and Rigau G., 1996, Word sense disambiguation using conceptual density, In 

proceeding of COLING-96. 

Agirre E., Arregi X., Artola x., Daz de IIarazza A., and Sarasola K., 1994, Conceptual Distance 

and Automatic Spelling Correction, In Proceedings of the Workshop on Computational 

Linguistics for Speech and Handwriting Recognition, Leeds. 

Agosta J. M. and Wilkins D. E., 1996, Using sipe-2 to plan emergency response to marine oil 

spills. IEEE Expert 11(6), pp. 6-8. 

Attie P. C., Singh M. P., Emerson E., Sheth A., and Rusinkiewicz M.,1996, Scheduling 

Work flows by Enforcing Intertask Dependencies, Distributed Systems Engineering, 3(4), 

pp. 222-238. 

Azzone, G. and Bertele, D., 1994, Techniquesfor comparing the economic effectiveness of 

Concurrent and Traditional Engineering, in: Leondes, C.T. (Ed), Concurrent Engineering, 

techniques and applications, Academic Press, San Diego, pp. 25-58. 

BAeIWlTIMLlGEN/SWEI1227, British Aerospace, PLC, Warton Aerodrome, Preston, DK. 

desJardins, M. 1996, Knowledge acquisition tools for planning systems, in Tate, pp. 53-61. 

Bannon L. and Schmidt K., 1991, CSCW· Four Characters in Search on context, in J.M. Bowers 

and S.D. Benford (eds): Studies in Computer Supported Cooperative Work. Theory, 

Practice and Design, North-Holland, Amsterdam. 

Barros A.P. and Hofstede A.H.M. tef, 1998, Towards the Construction ofWorkjlow-Suitable 

Conceptual Modeling Techniques, Information Systems Journal, 8(4), pp313-337, October 

1998. 

·221-



References 

Barros A.P., Hofstede A.H.M. ter, Proper H.A., and Creasy P .N., 1996, Business Suitability 

Principles/or Workjlow Modelling, Technical Report 380, Department of Computer 

Science, University of Queensland, Brisbane, Australia, August 1996. 

Berry P.M. and Drabble B., 1999, SWIM: An AI-based System/or Workjlow Enabled Reactive 

Control, In proceedings of the nCAl Workshop on Workflow and Process Management 

held as part ofIJCAl-99, August 1999. 

Burns T. and Stalker G.M., 1961, 1994 Revised Edition, The management o/innovation, Oxford 

University Press, Oxford. 

CampbeU A. E. and Shapiron S. C., 1995, Ontological Mediation: An Overview, Proceedings of 

the nCAl Workshop on Basic Ontological Issues in Knowledge Sharing, Menl0 Park CA: 

AAAIPress. 

CarIsen S., 1997, Conceptual Modelling and Composition o/Flexible Workjlow Models, PhD 

Thesis, Department of Computer Science and Infonnation Science, Norwegian University 

of Science and Technology, Norway. 

Chien S. A., Govindjee A., Estlin T., Wang X., and Hill R., 1997, Automated Generation 0/ 
Tracking Plans/or a Network o/Communications Antennas, Proceedings of the 1997 IEEE 

Aerospace Conference, Aspen, CO, February 1997, vol. 1, pp. 343-359. 

Christie A., 1995, Software Process Automation, Springer-VerIag. 

Chung P. and lefferson M., 1998, A Fuzzy Approach to Accessing Accident Databases, Applied 

Intelligence 9 (2): 129-13 7. 

Cichocki, Helal A. S., Rusinkiewicz M., and Woelk D., 1998, Workjlow and Process 

Automation: Concepts and Technology, Kluwer. 

Clark K. B. and Fujimoto T., 1991, Product Development Performance, Harvard Business 

School Press, Boston. 

Cognitive Systems Inc., ReMind Re/erence Manual, Boston. 

Computer Sciences Corp., Integrated Systems Division, 1998, JCALS PC Client Simple 

Workjlow Access Protocol (SWAP) Inter/ace Design Document, December 1998. 

·222· 



References 

Cooper R. G., 1983, A Process Model Jor Industrial New Product Development, IEEE 

Transactions on Engineering Management, 30(1). 

Curtis B., Kellner M., and Over J., 1992, Process Modelling, in Communications of the ACM, 

35(9). 

Daft, R L., 1994, Management, The Dryden Press, Fort Worth. 

Davis D. and Smith RG., 1983, Negotiation as a Metaphor Jor Distributed Problem Solving, 

Artificial Intelligence, Vo\. 20, pp. 63-109. 

Dean J. W. and Susman G.I., 1989, OrganisingJor ManuJacturable Design, Harvard Business 

Rev., Vol. 67, No. 1, pp. 49-57. 

Dellen B., Maurer F., and Pews G., 1997, Knowledge-based Techniques to Increase the 

Flexibility oJWorkjlow Management, Data and Knowledge Engineering, North-Holland. 

Dourish P., Holmes J., MacLean A., Marqvarsdsen P., and Zbyslaw A., 1996, Freeflow: 

mediating between representation and action in workjlow systems, In Proceedings, 

CSCW'96, Boston, ACM, 190-208. 

Easterbrook S., Finkelstein A., Kramer J, and Nuseibeh B., 1994, Coordinating Distributed 

ViewPoints: the Anatomy oJ a Consistency Check. International Journal on Concurrent 

Engineering: Research and Applications, 2, 3, pp. 209-222. 

Eckerson W., 1994, Case Study: The Role oJ1S in Reengineering, Open Infonnation Systems, 

Patricia Seybold Group, Vo\. 9, No. 2, February 1994. 

Ehrlenspiel K., 1985, Kostenguenstig Konstruieren (DesignJor Cost), Springer-Verlag, Berlin. 

Emmerich W., Finkelstein A., Montangero C., Antonelli S., Armitage S., and Stevens R, 1999, 

Managing Standards Compliance, IEEE Trans. Software Engineering, 25 (6), 

NovemberlDecember 1999. 

ERA Technology, 2000, Assuring Programmable Electronic Systems (APES) Project. 

Fernandez-Amoros D., Gonzalo J., and Verdejo F., 2001, The role oJ conceptual relations in 

Word Sense Disambiguation, In Proceedings ofthe 6th International Workshop on 

Applications of Natural Language for Information Systems (NLDB-Ol). 

- 223-



References 

Finkelstein A., Gabbay D., Hunter A., Kramer J., and Nuseibeh B., 1994, Inconsistency 

Handling In Multi-Perspective Specifications, IEEE Transactions on Software 

Engineering, 20, 8, pp. 569-578. 

Galbraith J.R., 1973, Designing Complex Organisations, Addision-Wesley, Reading, 

Masschusets. 

Genesereth M. R. and Ketchpel S. P., 1994, Software Agents, Communications ofthe ACM 37 

(7), pp. 48-53. 

Genesereth M.R., 1999, Knowledge Interchange Format- draft proposed American National 

Standard (dpANS), NCITS.T2/98-004. Online Paper as of 1999-09-04. 

Georgakopoulos D., Homick M., and Shet A., 1995, An Overview of Work flow Management: 

From Process Modeling to Workflow Automation Infrastructure, Distributed and Parallel 

Databases, 3(2), April 1995, pp 119-153. 

Glance, Natalie S., Daniele S. Pagani, and Remo Pareschi, 1996, Generalized Process Structure 

Grammars (GPSG) for flexible representations of work, in Proceedings ofthe 1996 ACM 

Conference on Computer Supported Cooperative Work, Boston, Massachusetts, pp. 180-

189. 

Godefroid P. and Kabanza F., 1991, An efficient reactive plannerfor synthesizing reactive plans, 

In Proceedings of AAAI-91, pp. 640-645. 

Gruber T. R., 1992, Ontolingua: A mechanism to support portable ontologies, Knowledge 

Acquisition, vol. 5, no 2. 

Hammond K. J., 1989, Case-Based Planning: Viewing Planning as a Memory Task, Perspectives 

in Artificial Intelligence, Academic Press, Boston, USA. 

Han Y., Sheith A., and Bussler C., 1998, A Taxonomy of Adaptive Workflow Management, 

Proceedings of the CSCW-98 Workshop Towards Adaptive Workflow System, held during 

the 1998 Conference on Computer-Supported Cooperative Work in Seattle, USA. 

Han Y., Sheith A., and Bussler c., 1998, A Taxonomy of Adaptive Workflow Management, Proc. 

CSCW -98 Workshop Towards Adaptive Workflow System, held during the 1998 

Conference on Computer-Supported Cooperative Work in Seattle, USA. 

·224· 



References 

Hayes R. H., Wheelwright S.C., and Clark, K.B., 1988, Dynamic Manufacturing, Free Press, 

New York. 

Hebbar K., Smith S. 1. 1., Minis 1, and Nau D. S., 1996, Plan-based evaluation of designs for 

microwave modules, ASME 1996 Design Engineering Technical Conference and 

Computers in Engineering Conference, Irving, California. 

Howe E., 1995, Improving the reliability of artificial intelligence planning systems by analysing 

their failure recovery, IEEE Transactions on Knowledge and Data Engineering, vo!. 7, pp. 

14-25. 

Hruby P., 1998, Specification of Worliflow Management Systems with UML, Proceedings of the 

1998 OOPSLA Workshop on Implementation and Application of Object-oriented 

Workflow Management Systems, Vancouver. 

Hundal M.S., 1998, Time-Driven Product Development, in Integrated Product and Process 

Development: Methods, Tools, and Techniques, edited by Usher J., Roy U., and Parsaei 

H., John Wiley and Sons Inc., pp. 59-83. 

lEC, 1997, Draft Standard IEC61508 Functional safety of electrical! electronic! programmable 

electronic (EIEIPES) safety-related systems, Parts 1 to 7, December 1997. 

ISO, Introduction to ISO, 1997, http://www.iso.ch/infoe/intro.html. 

Jarvis P., 1998, Worliflow literature Survey: the state-of-the-art in worliflow systems, Artificial 

Intelligence Applications Institute, The University of Edinburgh. 

Jarvis P., Stader J., Macintosh A., Moore J.P., and Chung P.W.H, 1999a, A Frameworkfor 

Equipping Worliflow Systems with Knowledge about Organisational Structure and 

Authority, Proceedings ofthe Workshop on Systems Modelling for Business Process 

Improvement (SMBPI-99), University of Ulster, Co Antrim, Nthn Ireland, pp. 205-219. 

Jarvis P., Stader J., Macintosh Ann., Moore J., and Chung P., 1999b, Exploiting AI Technologies 

to Realise Adaptive Workjlow Systems, 15th European Conference on Artificial 

Intelligence, ECAI '02, Lyon, France, July 1999. 

Jarvis P., Moore J.P., Stader J., Macintosh A., and Chung P.W.H, 2000, Harnessing AI 

Technologies to Meet the Requirements of Adaptive Worliflow Systems, in Enterprise 

·225· 

--- -------



References 

Infonnation Systems, Filipe, J. (ed), Kluwer Academic Publishers, pp. 163-170, ISBN 0-

7923-6239. 

Joosten S., 1996, Workjlow Management Research Area Overview, Proceedings of Second 

Americas Conference on Infonnation Systems, Phoenix, Arizona. 

Judge D. W., Odgers B.R., Shepherdson 1.W., and Cui Z., 1998, Agent Enhanced Workjlow, BT 

Technology Journal, 16, No 3, pp. 79-85. 

Kambhampati S. and Hendler J., 1992, Validation-structure -based theory of plan modification 

and reuse, Artificial Intelligence, 55(2), pp. 192-258. 

Kappel G., Lang P., Rausch-Schott S., and Retschitzegger R., 1995, Workjlow Management 

Based on Objects, Rules, and Roles, IEEE Bulletin of the Technical Committee on Data 

Engineering, 18(1), pp. 11-17. 

Kappe1 G., Rausch-Scott S., and Retschitzegger W., 2000, A frameworkfor workjlow 

management systems based on objects, rules and roles, ACM Computing Surveys, 32(1). 

Kappel G., Rausch-Scott S., and Retschitzegger W., 2000, A frameworkfor workjlow 

management systems based on objects, rules and roles, ACM Computing Surveys, 32(1). 

Kung D.C., 1993, The Behaviour Network Model for Conceptual Information Modelling, 

Infonnation Systems, 18(1); pp. 1-21. 

Lampson B.W., 1974, Proctection, ACM Operation Systems Review, Vo!. 8, pp 18-24, 1974 

Lee J., Grunninger M., Jin Y, Malone T., Tate A., Yost G., and other members of the PIF 

Working Group, 1998, The PIF Process Interchange Format and Framework Version 1.2, 

The Knowledge Engineering Review, Vo!. 13, No. I, Cambridge University Press, March 

1998, pp. 91-120. 

Lee Thomas 1. and David E. Wilkins, 1996, Using SIPE-2 to integrate planningfor military air 

campaigns, in Trends and Controversies, IEEE Expert, December 1996. 

Manuela M. Ve1oso, Martha E. Pollack, and Michael T. Cox., 1998, A rationale-based 

monitoringfor planning in dynamic environments, In Proceedings of the Fourth 

International Conference on Artificial Intelligence Planning Systems (AIPS--98). 

March J.G. and Simon H. A., 1958, Organisations, Wiley, New York, USA. 

·226-



References 

Marshal< R.T., 1994, Worliflow white paper: An overview of work flow software, In 

WORKFLOW '94 Conference Proceedings, San Jose, August 1994. 

Marshak R.T., 1997,InConcert Worliflow: Independent from XSOFT, InConcert Inc. Provides 

Flexible Worliflow Underlying Engineering Team Support, Workgroup Computing Report, 

Patricia Seybold Group, March 1997. 

Mazza c., FaircIough J., Melton B., De Pablo D., Scheffer A., and Stevens R., 1994, Software 

Engineering Standards, Prentice Hal!. 

McCarthy D.R. and Sarin S.K., 1993, Worliflow and Transaction in InConcert, Bulletin of the 

Technical Committee on Data Engineering, Vo!. 16 N2 - IEEE, June. Special Issue on 

Workflow Extended Transaction Systems. 

Medina-Mora R., Wong H., and F10res P., 1992, The ActionWorliflow Approach to Worliflow 

Management, Proceedings of the Fourth Conference on Computer-Supported Cooperative 

Work, June 1992. 

Michael zur Muehlen and Joerg Becker, 1999, Worliflow Process Definition Language

Development and Directions of a Meta-Language for Worliflow Processes, Proceedings of 

the 1st KnowTech Forum, Potsdam, September, 17th-19th 1999. 

Miers D., 1996, The Workware Evaluation Framework, ENIX Ltd. 

Miller G.A., Beckwith R., Fellbaum C., Gross D., and Miller KJ., 1990, Introduction to 

wordnet: An on-line lexical database, Journal of Lexicography, 3(4):234-244. 

Moore J., Inder R., Chung P., Macintosh A., and Stader J., 2000a, Combining and Adapting 

Process Patterns for Flexible Worliflow, In 11 th International Conference on Database and 

Expert Systems Applications (DEXA'OO), London, Greenwich, September 2000. 

Moore 1., Inder, Chung P., Macintosh A., and Stader J., 2000, Who Does What? Matching 

Agents to Tasks in Adaptive Workflow, In Proceedings of the 2nd International Conference 

on Enterprise Information Systems (lCEIS 2000), B. Sharp, J. Cordeiro, and J. Filipe (eds), 

Stafford, July 2000, pp 181-185, ISBN 972-98050-1-6. 

Moore J.P., lnder R., Chung P.W., Macintosh A., and Stader J., 2000b, Who Does What? 

Matching Agents to Tasks in Adaptive Worliflow, Proceedings of the Second International 

-227-



References 

Conference on Enterprise Information Systems, Y, Sharp, B., Cordeiro, J. and FiIipe, J. 

(eds) , Stafford, July 2000, pp. 181-185, ISBN 972-98050-1-6. 

Moore L., 2002, Epigram Profit from Safe Systems, Edited by Nunns S., Spring 2002. 

Musliner DJ., Durfee E.H., and Shin K.G., 1993, CIRCA: a cooperative intelligent real-time 

control architecture, IEEE Trans. Systems, Man, and Cybernetics, 23(6), pp. 1561-1574. 

Myers K. and Berry P., 1999, Worliflow Management Systems: An AI Perspective, Technical 

Report, AIC, SRI International, USA. 

Nwana H.S., 1996, Software agents: an overview, In The Knowledge Engineering Review, 11, 

no. 3, pp. 205-244. 

Object Management Group, 1995, Object Management Architecture Guide, Third Edition, R.M. 

Soley (ed.), John Wiley & Sons, Inc., New York, June 1995, 

Object Management Group, 1997, Worliflow Management Facility RFP, Issued on May 1997, 

Document Numbers cfi'97-05-06. 

Object Management Group, 1998, Worliflow Management Facility, Joint Final Submission for 

the Business Object Component Architecture (BOCA) by DataAccess, EDS, NIIIP, 

Sematech, Genesis Development Corporation, Prism Technologies and IONA, Document 

Number bom/98-06-07, revised submission, 4 July 1998. 

O'Brien P.D. and Wiegand M.E., 1996, Agents of change in business process management, BT 

Technology, 14, no. 4, pp. 133-140. 

Opdahl A.L., Sindre G., 1993, A taxonomy for real-world modelling concepts, Information 

Systems, 19(3), pp. 229-241. 

Paashuis V., 1998, The Organisation of Integrated Product Development, Springer-Verlag 

Berlin Heidelberg, New York, USA. 

Pahl G. and Beitz W., 1996, Engineering design - a systematic approach, 2nd edn, Springer

Veriag, London, UK. 

Papadias D. and DeJis V., 1997, Relation-Based Similarity, ACM-GIS 1997: 1-4. 

Pelled L.H. and Adler P.S., 1994, Antecedents of Integro up Conflict in Multifunctional Product 

Development Teams: A Conceptual Model, IEEE Transactions on Engineering 

Management, vo!' 41, no. 1, pp.21-8. 

- 228-



References 

Perrow C., 1967, A Framework for the Comparative Analysis of Organisations, American 

Sociological Reivew, vol. 32, pp. 194-208. 

Perrow C., 1970, Organisational Analysis: a sociological review, Wadsworth. 

Peter J., Jonathan M., Jussi S., Ann M., Adrew C.M., and Paul C., 1999, Ontologies to Support 

the Management of New Product Development in the Chemical Process Industries; In 

Proceedings of the International Conference on Engineering Design (ICED 99), Munich, 

Germany; ISBN 3-922979-53-X, VoU, pp. 159 - 164. 

Peterson J.1., 1977, Petri nets, ACM Computing Surveys, 9(3):233 - 251, September 1997. 

Petri C.A., 1962, Kommunikation mit Automaten, PhD thesis, University of Bonn, Bonn, 

Germany. 

Pohl K., Weidenhaupt K., Domges R., Haumer R., Haumer P., Jarke M., and Kiamma R., 1999, 

PRIME-Toward Process-Integrated modelling Environments: 1, ACM Transactions on 

Software Engineering and Methodology, Volume 8, Issue 4, October, 1999. 

Rada R., Mili H., Bicknell E., and Blettner M., 1989, Development an Application of a Metric on 

Semantic Nets, IEEE Transactions on Systems, Man and Cybernetics, 19(1), pp. 17-30. 

Rupietta W., 1997, Organisation and Role Modelsfor Workflow Processes, in Workflow 

Handbook, P. Lawrence (ed.), Wiley. 

Sarin S.K., Abbott K.R., and McCarthy DR., 1991, A Process Model and System for Supporting 

Collaborative Work, in P. de Jong #ed.#, Proc. of the Conf. on Organizational Computing 

Systems COOCS'91, ACM, ACM Press, pp. 213-224. 

Smeaton A. and Quigley 1., 1996, Experiment on Using Semantic Distance Between Words in 

Image Caption Retrieval, in 19th International Conference on Research and Development 

in Information Retrieval SIGIR'96, Zurich, Switzerland. 

Smith SJ.J., Nau D.S., and Throop T.A., 1996, A Planning Approach to Declarer Play in 

Contract Bridge, Computational Intelligence, 12(1). 

Smith P. G. and Reinertsen D. G., 1991, Developing Products in Half the Time, Van Nostrand 

Reinhold, Network. 

Stader J., Moore J., Chung P., McBriar 1., Ravinranathan M., and Macintosh A., 2000, Applying 

Intelligent Worliflow Management in the Chemicals Industries, In The Workflow 

- 229-



References 

Handbook 2001,1. Fisher (ed), Published in association with the Workflow Management 

Coalition (Wfl\1C), October 2000, pp 161-181, ISBN 0-9703509-0-2. 

Stader J., Moore J., Chung P., McBriar 1., Ravinranathan M., and Macintosh A., 2001, Applying 

Intelligent Workflow Management in the Chemicals Industries, In The Workflow 

Handbook 2001, 1. Fisher (ed), Published in association with the Workflow Management 

Coalition (Wfl\1C), October 2000, pp. 161-181, ISBN 0-9703509-0-2. 

Stader J., Moore J., Chung P., McBriar I., Ravinranathan M., and Macintosh A., 2000, Applying 

Intelligent Workflow Management in the Chemicals Industries, In The Workflow 

Handbook 2001, Fisher L (ed), Published in association with the Workflow Management 

Coalition (Wfl\1C), Oct 2000, pp. 161-181, ISBN 0-9703509-0-2. 

Sussna M., 1993, Word Sense Disambiguation/or Free-text Indexing Using a Massive Semantic 

Network, in Proceedings of the Second International Conference on Information and 

Knowledge Management, Airlington, Virginia USA. 

Swenson K.D., 1993b, Visual Support/or Reengineering Work Processes, in S. Kaplan #ed.#, 

Proc. of the Conf. on Organizational Computing Systems COOCS'93,ACM, ACM Press, 

pp. 130-141. 

Swenson KO., 1994, The Future Workflow Technology: Collaborative Planning, Groupware 

1994, San Jose, California. 

Swenson K.O., Irwin 1., Matsumoto T., Maxwel R. J., and Saghari B., 1994a, Collaborative 

Planning: Empowering the user in a Process Support Environment, 15th Interdisciplinary 

Workshop on "Informatics and Psychology", Schaerding, Austria. 

Swenson KO., Maxwell R. J., Matsumoto T., Saghari B., and Irwin 1., 1994b,A Business 

Process Environment Supporting Collaborative Planning, Journal of Collaborative 

Computing, vo!. I, no.1, pp. 15-34. 

Swenson KO., 1998, Simple Workflow Access Protocol, IETF internet draft, August 1998. 

Swenson K.O., 1993a, A Visual Language to Describe Collaborative Work, in Proceedings of 

the 1993 IEEE Symposium on Visual Languages, IEEE CS Press, pp. 298-303. 

-230-



References 

Sycara K. and Miyashita K., 1992, Incremental Schedule Modification, Working Notes: 

Symposium on Computational Considerations in Supporting Incremental Modification and 

Reuse, AAAI Spring Symposium Series, Stanford University. 

Tabbara B., Tabbara A., and Alberto Sangiovanni-Vincentelli A., 2000, Task Response Time 

Optimization Using Cost-based Operation Motion, In Proceedings of the Eighth 

International Workshop on Hardware/Software Codesign, San Diego, California, USA. 

Tate A., 1993, Authority Management - Coordination between Planning, Scheduling and 

Control. Workshop on Knowledge-based Production Planning, Scheduling and Control at 

the International Ioint Conference on Artificial Intelligence (IJCAI-93), Chambery, France. 

Thompson I.D., 1967, Organisations in Action, McGraw-Hill, New York, USA. 

Uschold M. and Gruninger M., 1996, Ontologies: Principles, Methods and Applications, The 

Knowledge Engineering Review, Vo!. 11, No. 2, pp. 93-136. 

Uschold M., King M., Moralee S., and Zorgios Y., 1998, The Enterprise Ontology, The 

Knowledge Engineering Review, vo!. 13, Special Issue on Putting Ontologies to Use (eds. 

Mike Uschold and Austin Tate). 

Van de Ven A. H., Delbecq A.L., and Koenig Jr.R., 1976, Determinants of Coordination Modes 

within Organisations, American Sociological Review, vo!. 41, pp. 322-38. 

Veloso M.M., 1992, Learning by Analogical Reasoning in General Problem Solving, Technical 

Report CMU-CS-92-174, Department of Computer Science, Carnegie Mellon University. 

W.M.P. van der Aalst, 1998, The Application of Petri Nets to Workflow Management, The 

Journal of Circuits, Systems and Computers, 8(1), pp. 21 - 66. 

W.M.P. van der Aalst., 1996, Petri-net-based Workjlow Management Software, In A. Sheth, 

editor, Proceedings of the NFS Workshop on Workflow and Process Automation in 

Information Systems, Athens, Georgia, May 1996, pp. 114 - 118. 

WfMC, 1996, Workjlow Interface 4 - Interoperability Abstract Specification WFMC-TC-1012 V 

1.0, Workflow Management Coalition. 

WfMC, 1998, Workjlow Interface 2 - Workflow Client Application Application Programming 

Interface (Interface 2 & 3) Specification WFMC-TC-1009 V 2.0 Naming Conventions 

WFMC-TC-1013 V 1.4, Workflow Management Coalition. 

- 231-



References 

WfMC, 1999, Workflow Interface 1 - Process Definition Interchange V 1.1 Final WjMC-TC-

1016-P, Workflow Management Coalition. 

WfMC, 1999, XML based Process Management Standard, launched by Workflow Management 

Coalition - "Wf-XML", WfMC Press, July 1999. 

WfMC,2000a, Workflow Handbook 2001, Future Strategies Inc., 2000, ISBN 0-9703509-0-2. 

WfMC, 2000b, Workjlow Interface 4 -lnteroperability Internet e-mail MIME Binding WFMC

TC-1018 V 1.2, Workflow Management Coalition. 

WfMC, 2001, Workflow Standard-Interoperability Wj-XML Binding 1.1, WfMC-TC-1023, 

Version 1.1, November 2001. 

WfMC, 2002, Workjlow Process Definition Interface-XML Process Definition Language 

(XPDL) WFMC-TC-I025 Final, Workflow Management Coalition, October 2002. 

Wiegert 0.,1998, Business Process Modelling and Workflow Definition with UML: Deficiencies 

and Actions to Improve. 

Wilkins D.E. and Desimone R.V., 1994, Applying an AI Planner to Military Operations 

Planning, Intelligent Scheduling, M. Zweben and M. Fox, eds., Morgan Kaufinann. 

Wind Y. and Robertson T.S. (1983), Marketing Strategy: New Directions for Theory and 

Research, Journal of Marketing, vo!. 47, no. 2, pp. 12-25. 

Winograd T. and Fernando F., 1986, Understanding Computers and Cognition: A New 

Foundationfor Design, Ablex Publishing Corporation. 

Zweben M., Daun B., Davis E., and Deale M., 1994, Scheduling and Rescheduling with Iterative 

Repair. In Zweben, M., and Fox, M. S. (eds.), Intelligent Scheduling, Morgan Kaufmann, 

pp. 241-255. 

·232· 



Appendix 



Appendix I - List of Publications 

List oCPublications 

Larry Y. C. Cheung, Paul W. H. Chung, Ray J. Dawson, Supporting Engineering Design 

Process with an Intelligent Compliance Agent: A Way to Ensure a Standard Complied 

Process. Fourth International Conference on Enterprise Infonnation Systems, Spain, pp 

341-349, April 2002. 

Larry Y.C. Cheung, Paul W. H. Chung, Ray J. Dawson, Managing Process Compliance with 

Standards, Issues & Trends of Infonnation Technology Management in Contemporary 

Organizations, Infonnation Resources Management Association, USA, Edited by Mehdi 

Khosrowpour, May 2002. 

Larry Y. C. Cheung, Paul W. H. Chung, Supporting Engineering Design Process with 

Compliance Flow - An Intelligent Workjlow Management System, Engineering Design 

Conference, London, July 2002 

Larry Y.C. Cheung, Paul W.H. Chung, Ray J Dawson, Managing Process Compliance, 

Infonnation Management: Support Systems & Multimedia Technology, Edited by Dr. 

Ditsa. (In Press) 

Paul W.H. Chung and Larry Y.C. Cheung, Managing the Compliance of Dynamic and Complex 

Process, Workflow Handbook 2003, Workflow Management Coalition, 2003. (In Press) 

P. W. H. Chung, L. Cheung, J. Stader, P. Jarvis, J. Moore and A. Macintosh, Knowledge-based 

process management - an approach to handling adaptive workflow, Knowledge-based 

Systems Journal. (In Press) 

- 233-



Appendix Il - Database Schema 

Database Schema 

The database schema of Compliance Flow system is presented from five different views. They 

are (I) task management, (2) plan library, (3) standard modelling, (4) task agent and (5) tracking 

services. The brief description of each table and its fields is given. 

C.Ud:(-"n - '" ... - -"'-,-,-"-
'1roMunrel 

t: .... iIJ.oT 
(al1O.,,1<r19r7'Lr 

~l1tolotTle7 

CllP'lbilitTEc:,. 

-~~~--,-,--,--- I 
~7~:i~"~~~r.r~~, _-.~.; 
lM&ulVlIo. 

Pdfllled 

Schema view 1. Task management. 

CF _PostConditionToTask 

Post-conditions of particular user-defined tasks. 

Field Name Description 

TaskKey GUIO key of the task. 

PostConditionOntologyKey GUID key of the post-condition. 

Description DeSCription of the post-condition. 

Fulfilled A Post-condition is either fulfilled or not fulfilled. 

PoslConditionKey GUID key of the post-condition. 

Ontologies used in naming objects. 

Field Name I Description 

- 134-



Appendix 1I - Database Schema 

Ontology Term. 

Synonym' Synonym of the term. 

Synonym2 Synonym of the term. 

Description Description of the term. 

Children The number of the child terms of the ontology. 

Treelevel1 Tree level in the ontology hierarchy. 

System Field 'True' if the term is used by internal system which cannot be changed by user. 

OntologyKey GUID key of the ontology. 

CF _CapabitityToTask 

Capability required for performing particular user-defined tasks. 

Field Name Description 

TaskKey GUID key for the task the capability specified. 

CapOntologyKey GUID key for the ontology as the technical part in a capability. 

AppOntologyKey GUID key for the ontology as the application of the technical part. 

CapabililyKey GUID key for the capability. 

CF _PreConditionToTask 

Pre-conditions of particular user-defined tasks. 

Field Name Description 

TaskKey GUID key of the task the pre-condition specified. 

PreConditionOntology GUID key of the ontology for naming the pre-condition. 

Mandatory Nature of the pre-condition, either 'Y' or 'N' 

Description Description of the pre-condition. 

FulFilled A post-condition is either fulfilled or not fulfilled. 

PreConditionKey GUID key of the post-condition. 

CF _Participants 

System users. 

Field Name Description 

Name User name that is required for system login. 

Password Password that is required for system login. 

Email Email address. 

UserKey GUID key of the user. 

CF _TaskLinks 

Links to capture the task flow in processes. 

Field Name Description 

TaskKey GUID key of the 'from' task. 

DstTaskKey GUID key of the 10' task. 

- 235-



Appendix 11 - Database Schema 

TaskLinkKey GUID key of the link. 

CF_Tasks 

User-defined tasks. 

Field Name Description 

ProjectTaskKey GUID key of the project which will be the same as the task key for the root task. 

UserKey GUID key of the user. 

PTaskKey GU1D key of the parent which will be the same as the task key for the root task. 

TaskOntologyKey GUID key of the ontology for naming the task. 

Children Number of child task of the task. 

TreeLevel Number of level in the task hierarchy. 

Type Task type, either 'User-defined' or 'Projected', 
. 

GUID key of the project task that is used by system to maintain the interfaces for task ProjectedTaskKey decompositions. 

ValidPlan Process status, either 'Valid' or 'Not valid'. 

Description Description of the task. 

Status Status of the task. 'Inactive', 'Ready', .... 

TaskKey GUID key of the task. 

CF _Workspaces 

Workspace. 

Field Name Description 

TaskKey GUID key of the task the information object associated. 

CurrentTaskKey GUID key of the task the workspace associated, which is the workspace key too. 

PreCondition Key GUIO key of the pre-condiUon that is fulfilled by the information object. 

PostConditionKey GUID key of the post-condition that is fulfilled by the information object. 

Title ntre given of the information object. 

Description Description of the information object. 

Location FTP where the information object is stored. 

FileName Physical name of the information object. 

Upload8y GUID key of the user who upload the information object. 

InfoObjectKey GUID key of the information object. 

- 236-



Appendix 11 - Database Schema 

, ~ton' "~,_"' ____ ' ___ " 

l\c;.~b·t:io. 

~!~!~i~,~~~~ ___ ",,"_,". __ 
1'1~u~~ _____ "' ___ , _______ """_'" 

.~ I'!.-.... ~-.--
';- p,","

PluDe.ail'th,. ,1: iW.,;--

'.5 '~!,~L __ 
~~~~t"!:"~,~~L 
~il',~_~ __ ._

["ilares
Tn,:~~,~ __ , ____ _

PL~ovL.r

Tasks in plans.

Field Name

PTaskKey

TaskOntologyKey

Children

TreeLevel

Type

ProjectedTaskKey

ValidPlan

Description

TaskKey

PlanKey

PlanTaskKey

I lIt:Itr1:ptio:lo

l'o:lltColldt11o~T

-/i-" ?lilLll.r"",kkr

;!~ ~,~~~~~~,1_!_!!~!_,_,_,,_ .. _

Schema view 2. Plan library.

CF _Plan_Tasks

Description

GUID key of the parent which wHl be the same as the task key for the root task.

GUID key of the ontology for naming the task.

Number of child task of the task.

Number of level in the task hierarchy.

Task type, either 'User-defined' or 'Projected'.

GUID key of the project task that is used by system to maintain the interfaces for task
decompositions.

Process status. either 'Valid' or 'Not valid'.

Description of the task.

GUID key of Ihe task.

GUID key of the Plan.

GUID key of the task in the Plan which Generated by Plan.

·237-

Appendix 11 - Database Schema

Links of tasks.

Field Name Description

TaskKey GU1D key of the 'from' task.

DstTaskKey GUID key of the 'to' task.

PlanTaskKey GUIO key of the task which is generated by Plan.

PlanTaskUnkKey GUID key of the link which is generated by Plan.

CF _Plan_TaskLinks

Links of tasks.

Field Name Description

TaskKey GUID key of the 'from' task.

DstTaskKey GUID key of the 'to' task.

PlanTaskKey GUID key of the task which is generated by plan.

PlanTaskLinkKey GUID key of the link which is generated by plan.

CF _Plan_PreConditionToTask

Post·conditions of particular user-defined tasks.

Field Name Description

TaskKey GUID key of the task.

PreConditionOntologyKey GUIO key of the pre-condition.

Mandatory Nature of the pra-condition, either 'V. or 'N'

Description Description of the pra-condition.

PreConditionKey GUIO key of the pre-condition.

PlanTaskKey Guro key of the task which is generated by plan.

PlanPreConditionkey GUID key of the pre-condition which is generated by plan.

CF _Plan_PostConditionToTask

Post-conditions of particular user-defined tasks.

Field Name Description

TaskKey GUID key of the task.

PostConditionOntologyKey GUID key of the post-condition.

Description Description of the post-condition.

PostConditionKey GUID key of the post-condition.

PlanTaskKey GUID key of the task which is generated by plan.

PlanPostConditionkey GUID key of the post-condition which is generated by plan.

- 238-

Appendix II - Database Schema

Plans.

Field Name Description

PlanGroupKey GUID key of the plan group the plan associated.

PlanName Name of the plan.

Plan Description Description of the plan.

Plankey GUID key of the plan.

CF _PlanGroups

Plan groups to store plans.

Field Name Description

PPlanGroupKey GUID key of the parent of the plan group.

PlanGroupOntologyKey GUID key of the ontology for naming the plan group.

Description Description of the plan group.

Children Number of the children of the plan group.

TreeLeveJ Number of level of the plan group in the group hierarchy.

PlanGroupKey GUID key of the plan group.

CF _Plan_CapabililyToTask

Capability required for performing the tasks in the plans.

Field Name Description

TaskKey GU1D key for the task the capability specified.

CapOntologyKey GUID key for the ontology as the technical part in a capability.

AppOntologyKey GUID key for the ontology as the application of the technical part.

CapabililyKey GUID key for the capability.

PlanTaskKey GUID key of the task which is generated by plan.

PlanCapabililyKey GUID key of the capability which is generated by plan.

-139-

Appendix Il - Database Schema

r---~========~Jj 111
u=======~!~----,

.. --

Schema view 3. Standard modelling.

CF _SM_ Tasks

Standard tasks.

Field Name Description

ProjectTaskKey GUID key of the project which will be the same as the task key for the root task.

UserKey GUIO key of the user.

PTaskKey GUID key of the parent which will be the same as the task key for the root task.

TaskOntologyKey GUID key of the ontology for naming the task.

Children Number of child task of the task.

TreeLevel Number of level in the task hierarchy.

Type Task type, either 'User-defined' or 'Projected'.

ProjectedTaskKey GUID key of the project task that is used by system to maintain the 1nterfaces for task
decompositions.

Valid Plan Process status, either 'Valid' or 'Not valid',

Description Description of the task.

Status Status of the task. 'Inactive', 'Ready',

TaskKey GUIO key of the task.

links to capture the task flow in standard processes.

Field Name 1 Description

-240-

Appendix 11 - Database Schema

TaskKey GUIO key of the 'from' standard task.

DstTaskKey GUID key of the 'to' standard task.

TaskLinkKey GUID key of the link.

CF_SM PostConditionToTask

Post-conditions of particular standard tasks.

Field Name Description

TaskKey GUID key of the standard task.

PostConditionOntologyKey GUID key of the post-condition.

Description Description of the post-condition.

Set1 Not Used.

Set2 Not Used.

Set3 Not Used.

PostConditionKey GUID key of the post-condition.

CF _SM_PreConditionToTask

Pre-conditions of particular standard tasks.

Field Name Description

TaskKey GUID key of the standard task.

PreConditionOntologyKey GUID key of the pre-condition.

Description Description of the pre-condition.

Set1 Not Used.

Set2 Not Used.

Set3 Not Used.

PreConditionKey GU1D key of the pre-condition.

CF _SM_CapabilityToTask

Capability required for performing particular standard tasks.

Field Name Description

TaskKey GUID key for the standard task the capability specified.

CapOntologyKey GUID key for the ontology as the technical part in a capability.

AppOntologyKey GUID key for the ontology as the application of the technical part.

CapabililyKey GUID key for the capability.

- 241-

Appendix II - Database Schema

I

" .' ',~ , " :± UurK.,." ",,""'" __ ~"" .. ;~ 'M.
l _~,~~~~lo_~X~ ____ ,,"" f~~';;~ ~.-.. ". --"" '"

,~ --._'"-'"

-,: I.ppOntoloc:rX",

.~
---"--'--

;~ c~.b'i'l;:~,~~~~~"==-~~"==="
Fm.il

U~.r.x.y

, • ..,,'

;~
lCI!'l_~,~o~~_~ __
Ontol,o~, ____ """ .. " ___

S?"~~_l,, .. ~ __
s~~,...!......_, __ ~ __
~,!_~~,~p\..i~ _____
Childrm.

~~~!.ot.~ ___ , 

~:~!~!~-'--, 
~~~~~K_~r ___ 

Schema view 4. Task agent.

CF _ CapabilityToParticlpant

Capability possessed by users.

Field Name Description

UserKey GUID key for the user who has the capability.

CapOntologyKey GUIO key for the ontology as the technical part in a capability.

AppOntologyKey GUIO key for the ontology as the application of the technical part.

CapabilityKey GUID key for the capability .

. "

.~
~~._~_l.~~ __

;~t~::'~_ T.nt ________

~~~(!~~~~-~---- "'7~_~~~Y ___ 
~.uK~r, _ '. 
A.c~~~~ ___ ,,,,,",,_, ___ ",_,,,_ 
T}~,!",_",","_,"_," ____ """,,"_" __ ,c., 
Mu ... ,_ '" 

.~ '!r.~'Y ___ . ___ 

Schema view 5, Tracking Service. 

CF_Tracklt 

Keep track the user operations. 

Field Name Description 

ObjectlD The object the user operated on. 

Type Type of operation. 

Associate To GUID key of the task the object associated. 

UserKey GUlD key of the user perform the operation. 

ActionlD Key of the pre-defined actions. 

Time Operation time. 

Message Reason of the operation, if given. 

TrackKey GUID key of the tracking. 

·242· 

,-- -_ .. -----_. ---



Appendix II - Database Schema 

CF_Action 

Action types for operations tracking. 

Field Name Description 

ActionlD Key of the action. 

Action Description of the action. 

ActionKey GUID key of the action. 

-243 -



Appendix III - Object Operation Descriptions 

Object Operation D escriptions 

Followings are the operation des 

Implementation. 

criptions of the system objected described in Chapter 8, Design and 

Second Tier - Framework Corn ponents 

StandardModeller 

Operation Description 

ProcessModellingO To model the proposed framework of a standard. 

OrganisationServer 

Operation Description 

CapabilityMatchingO To assess the Goodness Of Fit (GOF) of the available agents against 
the required capability. 

Workspace 

CopyO To copy a document from one workspace to another. A document in a 
workspace is a hyperlink linking to the document stored in a secure 
place. Thus, only a hyperlink will be copied instead of the document 
itself. 

DownloadO To download a document from a workspace to the client machine. 

RemoveO To remove a document from a workspace. 

UploadO To upload a document from a client machine to a workspace. 

OntologyServer 

GetOntology() To allow user to select an ontology from the ontology hierarchy. 

TranslateO To translate a term based on its pre-defined synonyms. 

-244 -



Appendix III - Object Operation Descriptions 

TaskManager 

Complete TaskO To complete a task by setting its state to 'Completed'. 

FreezeTaskO To freeze a task by setting its state to 'Suspended'. 

ProcessModellingO To specify a process. 

ProvisionTaskO To set the state of a task to 'Provisioned'. 

ResumeTaskO To resume a suspended task to its previous state. 

SelectAgentO To select a suitable agent for a selected task. 

StartTaskO To start a task by setting ijs state to 'Active'. 

TerminateTaskO To terminate a task by setting its state to Terminated'. 

Inspector 

CapabilityCheckO To check the compliance of a task agent with a standard in terms of 
capability. 

CompletenessCheckO To check the required activities are concerned by a user-defined 
process. 

CorrectnessCheckO To ensure the sequence of the tasks in a process is complied with a 
standard. 

ErrorPrevention() To detect the compliance error on a task and freeze it if any error is 
found. 

InformationCheckO To identify any tasks which may require the information that is just 
uploaded, and copy that information to the worKspaces. 

PlanningAssistanceO To look for information which may be useful in specifying a selected 
task. 

RecommendationCheckO To ensure the standard recommended techniques of a task is 
concerned during its speCification and execution. 

-245 -



Appendix III - Object Operation Descriptions 

ModelOfStandards 

FindCorrespondingTaskO To identify the corresponding standard tasks of a user-defined task. 

GetCorrespondingTaskO To retrieve the corresponding standard tasks of a user-defined task. 

GetRequiredPostConditionO To retrieve the standard specified post-conditions of a user-defined 
task. 

GetRequiredPreConditionO To retrieve the standard specified pre-conditions of a user-defined 
task. 

GetRequiredRecommendationO To retrieve the standard specified recommendations of a user-defined 
task. 

GetRequiredStandardCapabilityO To retrieve the required capability to perform a user-defined task. 

TrackingServer 

DisplayLogO To retrieve show the operation history related to a task. 

LogOperationO To store a user operation into the database. 

PlanLibrary 

LoadPlanO To load a Plan the visual process editor. 

SavePlanO To save a process structure as a Plan in Plan Library. 

RemovePlanO To remove a plan from Plan Library. 

Third Tier - Worktlow Objects 

Workspace 

GetDocumentO To receive a document and store it into the workspace. 

RemoveDocumentO To remove a document from the wori<space. 

SendDocumentO To send the copy (hyperlink) of a document to another works pace. 

TaskAgent 

GetMyTaskO To identify all the tasks belonging to a task agent. 

GetCapabilityO To retrieve the capability of a task agent. 

-246 -



Appendix III - Object Operation Descriptions 

Task 

GetCapability() To retrieve the required capability of a task. 

GetChildO To retrieve the immediate child tasks of a task. 

GetLinkO To retrieve the links associated to a task. 

GetNextTaskO To retrieve the immediate subsequent tasks of a task. 

GetParentO To retrieve the immediate parent task of a task. 

GetPostConditionO To retrieve the post-conditions of a task. 

GetPreviousTaskO To retrieve the immediate previous tasks of a task. 

GetStatusO To retrieve the current status of a task. 

TaskCapability 

GetAgentO 1 To retrieve the agents who possess a specific capability. 

Link 

GetDestinationO To retrieve the destination task of a link. The destination task is one of 
the immediate subsequent tasks of the task. 

Pre- and Post-condition 

GetTaskAsPostConditionO To retrieve the tasks which have the same post-condition. 

GetTaskAsPreCondition() To retrieve the tasks which have the same pre-condition. 

StandardTask 

GetRecommendationO I To retrieve the recommendations of a task. 

Recommendation 

GetTaskO I To retrieve the tasks for which the recommendation can be applied. 

Plan 

-247· 

-- ------------------------------------------------------------------------~ 



Appendix III - Object Operation Descriptions 

LoadO To load a Plan and its components. 

MoveO To move a Plan to another Plan Group. 

- 248-



Appendix IV - Managing Hierarchical Data 

Managing Hierarchical Data 

The user-defined tasks, standard tasks, ontologies, and the plan group folders have hierarchical 

structures. While XML handles hierarchical data quite well, the rational database doesn't. The 

handling of hierarchical data therefore becomes critical to support the system. 

The hierarchical structure is presented using an advanced adjacent model. A simplified data 

schema is presented in Table-I. 

Field: Type: Comments: 

GUID GUID The object's ID 

Ontology GUID The object Name, drawing from an ontology term. 

ParentlD GUID The GUID of the parent to this object. ParentlD = GUID for the root 

object. 

TreeLevel Integer The number of level of this object in the object hierarchy. 

NoOfChild Integer The number of child of this object. 

Table-I. Data schema of hierarchical structure objects. 

To deal with object hierarchy, a number of functions are required to support the operations of the 

objects in the third tier. These functions are outlined and discussed. 

Adding a leaf obj ect into a hierarchy. An example is to create a new term in an ontology where 

the term is a specification of another term. Adding a leaf object is simple; the parent-child 

relationship can be established by filling the ParentID field. 

Function AddLeafObject(Obj) 
INSERT INTO 

TABLE (GUID, Ontology, ParentID, TreeLevel, NoOfChild) 
VALUES (Obj.GUID, Obj.OntologyGUID, Obj.ParentGUID, 
Obj.TreeLevel, Obj.NoOfChild); 

End Function 

Removing a leaf object from a hierarchy. An example is to delete an outdated term from an 

ontology. 

Function RemoveLeafObject(Obj) 
DELETE TABLE WHERE GUlD = Obj.GUlD; 

End Function 

·249· 



Appendix IV - Managing Hierarchical Data 

Adding a parent object into a hierarchy. An example is to insert a new high level term into an 

ontology. While the adding object becomes the parent of some existing objects, it also becomes a 

child of another objects, as depicted in Figure-I. Adding a parent object involves two steps: (1) 

Adding the new object to the table and link to the parent; (2) Linking the original child objects to 

the new object. 

2 3 2 3 

Figure-I. Adding a parent object into a hierarchy. 

Function AddParentObject(Obj, ParentObj) 
INSERT INTO 

TABLE (GUlD, Ontology, ParentlD, TreeLevel) 
VALUES (Obj.GUlD, Obj.OntologyGUlD, 

Obj.TreeLevel); 
UPDATE TABLE 

End Function 

SET ParentID~Obj.GUlD WHERE 
GUlD~ParentObj.GUlD; 

ParentObj.GUlD, 

Removing a parent object from a hierarchy. An example is to remove an unsuitable 

conceptual term from an ontology. Once the parent is removed, the grandparent will take care of 

the children, as depicted in Figure-2. It involves two steps: (1) Link the child objects to the 

grandparent; (2) Remove the parent object. 

1 

4 5 

Figure-2. Removing a parent object. 

Function RemoveParentObject(Obj) 
UPDATE TABLE 

SET ParentlD~Obj.ParentGUlD 
WHERE ParentlD~Obj.GUID; 

DELETE TABLE WHERE GUlD~Obj.GUID; 
End Function 

5 

Moving a branch. An example is to move a term with its children to become a child to another 

·250· 



Appendix IV - Managing Hierarchical Data 

term. Moving a branch can be simply achieved by changing the parent of the top object in the 

branch. 

Function MoveBranch(Obj, NewParentObj) 
UPDATE TABLE 

End Function 

SET ParentID=NewParentObject.GUID 
WHERE GUID = Obj.GUID; 

Removing a branch. An example is to remove an abstract term with its specific terms. As the 

Microsoft SQL server does not support internal recursion which is support by Oracle using 

CONNECTED BY keyword, removing a branch requires an external recursive operation. 

Function RemoveBranch(Obj) 
SET Chi1dObj IS AN OBJECT; 
IF Obj.NoOfChi1d > 0 THEN 

End IF 

FOR EACH Chi1dObj in Obj 
RemoveBranch(Chi1dObj); 

NEXT Chi1dObj 

DELETE TABLE WHERE ParentID OBJ.GUID; 
End Function 

Updating the TreeLevel and NofOfChild. The values of tree level and number of child of some 

objects will be changed because of the adding, moving or deleting an object in the hierarchy. 

Thus, the recalculation of TreeLevel and NoOfChild has to be performed if the object hierarchy 

is changed. The SQL server will trigger the following two stored procedures the table is updated. 

Function UpdateTreeLeve1() 
UPDATE TABLE 

SET TREELEVEL=CASE WHEN ParentID=GUID THEN 0 ELSE -1 END; 
WHILE EXISTS (SELECT ' FROM TABLE WHERE TREELEVEL=-l) 
BEGIN 

END 
End Function 

SET @TreeLevel=@TreeLeve1+l; 
UPDATE CF TASKS 

SET TREELEVEL=@TreeLeve1 WHERE TREELEVEL=-l AND EXISTS 
( 

SELECT ' FROM TABLE Tmp 
WHERE Tmp.GUID=TABLE.ParentID AND TREELEVEL=@TreeLeve1-l 
) ; 

Function UpdateNoOfChi1d() 
UPDATE TABLE 

End Function 

SET NoOfChi1d=(SELECT COUNT(') FROM TABLE AS Tmp 
WHERE Tmp.ParentID=TABLE.GUID); 

Creating an object hierarchy. An example is to create ontology hierarchy to allow user to select 

- 251-



Appendix IV - Managing Hierarchical Data 

a term for naming a workflow object. In this case, all the objects in the hierarchy are loaded. 

Another case is to load just a branch. Loading a process that is part of a project is an example. 

The two cases have to deal with appropriately. 

Loading the whole object hierarchy only requires a single query to the database. 

Function LoadHierarchy(ObjTree) 
SET Obj IS AN OBJECT; 
SELECT * FROM TABLE 

ORDER BY TREELEVEL; 
FOR EACH Obj in TABLE 

ObjTree.Add Obj; 
NEXT Obj 

End Function 

Loading a branch is recursive operation, which is performed by retrieving objects level by level. 

Function LoadBranch(ParentObj) 
SET Obj IS AN OBJECT; 
SELECT * FROM TABLE WHERE ParentID = ParentObj.GUID; 
FOR EACH Obj IN TABLE 

ObjTree.Add Obj; 
IF Obj.NoOfChild > 0 THEN LoadBranch(Obj); 

NEXT Obj 
End Function 

Loading the child objects' associated objects of high level object in a hierarchy. An example is to see the 

documents inside a workspace of a high level task. The documents inside the workspace include 

the documents inside the workspaces of its child tasks. Loading the associated objects includes 

two steps: (1) retrieving the object hierarchy by recursion; (2) retrieving the associated objects of 

each object in the hierarchy. 

Function LoadAssociatedObject(Obj) 
SET ChildObj IS AN OBJECT; 
SELECT * FROM TABLE WHERE ParentID = Obj.GUID; 
FOR EACH ChildObj IN TABLE 

IF Obj.NoOfChild > 0 THEN LoadAssociatedObject(Obj); 
SELECT * FROM WORKS PACE WHERE ObjGUID=ChildObj.GUID 

NEXT Obj 
End Function 

Loading a Plan into a project. A Plan is created by saving an existing process as a template into 

the Plan Library. The GUID of the task objects in a Plan are taken from the original tasks stored 

in project database. The primary key of plan tasks is PlanGUID + TaskGUID. Thus no 

duplication will occur even a process is used to create two similar Plans. However, when loading 

a Plan into a project as a sub-process, a new GUID must be assigned to every newly created task, 

- 252-



Appendix IV - Managing Hierarchical Data 

and thus the GUm of the parent ofa newly created task is also changed. Loading a Plan involves 

two parts: (1) Copy Plan tasks into the project as user-defined tasks, and record both new and old 

GUm of the newly created tasks in a hash table. (2) Copy the associated objects into the project 

and link them to the corresponding tasks by referring to the hash table. 

Function LoadPlanToProject(PlanObj, ParentTaskObj) 
SET ChildPlanObj IS AN OBJECT; 
SET AssObj IS AN ASSOCIATED_OBJECT; 
SET TaskObj AS NEW PlanObj WITH New GUID; 
SET TaskObj.ParentID~(SELECT NewGUID FROM HashTable 

WHERE OldGUID~PlanObj.GUID); 
AddLeafObject(TaskObj,ParentTaskObj); 
INSERT INTO FASHTABLE (NewGUID,OldGUID) 

VALUE(TaskObj.GUID, PlanObj.GUID); 
SELECT * FROM PLAN_ASSOCIATE_TABLE WHERE LinkObjGUID~PlanObj.GUID; 
FOR EACH AssObj IN PLAN_ASSOCIATED_TABLE 

AssObj.LinkObjGUID ~ TaskObj.GUID; 
INSERT INTO PROJECT _ASSOCIATE_TABLE (GUID, LinkObjGUID, ... ) 

VALUE (AssObj .GUID, AssObj. LinkObjGUID, ... ) ; 
NEXT AssObj 
IF PlanObj.NoOfChild > 0 then 

FOR EACH ChildPlanObj IN PlanObj 
LoadPlanToProject(ChildPlanObj,TaskObj); 

NEXT ChildPlanObj 
END IF 

End Function 

·253 -



Appendix V-Capability Specification and Matching Evaluation Form 

Capability Specification and Matching Evaluation 

Evaluation Part 1 

Instruction: Please outline capability and application ontology based on the following scenario, 

and give the knowledge overlap of the concepts of interest according to your understanding. 

Scenario: 

ABC Consultants provides software development services, specialising in engineering systems 

but also perform customised software applications for businesses. The supporting operating 

systems include Windows, Linux and AS400. The development tools can be categorised into 

three groups: object-oriented, structure and logic. Object-oriented tools include C++, Java, 

Visual Basic. Structure tools include Assembly Language, COBOL and RPG. Logic tools include 

LISP and Prolog. For each language, different version may be included. 

The company has three key departments: Customer Service, IT and Accounting. There has no 

high degree of interdependence among the three departments. 

There are four kinds of technical expertises in the company: programming, system analysis, 

testing, and project management. The system development is divided into three layers: 

presentation layer, process logic layer and database layer. Most of the programmers are familiar 

with more than one programming languages, but they are only used to programming a single 

system layer. 

A system analyst is familiar with one or two kinds of application areas. Such as safety plant, risk 

assessment, accounting and stock management. Different system development approaches, such 

as RAD, SDLC and SSADM, will be used depends on the project types. 

The test engineers are independent from development team. They will perform the independent 

test according to the system requirements during and after the programming stage. Most of the 

test engineers and some programmers possess professional qualifications that are required for 

particular type of system assessment, based on the customer's requirements. The professional 

qualifications include C.Eng (chartered software engineer), MBCS (member of British Computer 

Society), MCAD (Microsoft Certified Application Developer), MCSD (Microsoft Certified 

System Developer) etc. 

A senior staff is assigned to manage a project. He/she is responsible to plan the project and select 

- 254· 



Appendix V - Capability Specification and Matching Evaluation Form 

suitable staffs to perform particular tasks. Any technical staff may be involved in more than one 

project at the same time. 

Part 2 

Instruction: Please describe following capability specifications based on the given scenario and 

ontologies. 

Capability(Java, ProcessLogic) 

Capability(VB, Database) 

Capability(Java, ProcessLogic, 70, 30, 100) 

Capability(Java, ProcessLogic, 70, 30, 40) 

Capability(Programmer, Windows, 50, 50, 20) 

Capability(MBCS, Programmer, 50, 50, 40) 

-255 -



Appendix V - Capability Specification and Matching Evaluation Form 

Evaluation Part 3 

Instruction: Please fonnally specifY following capabilities based on the gIven scenario and 

ontologies. 

1. A staff who knows VB and experienced in database programming. 

2. A programmer who knows VB.Net and experienced in database programming under Windows 

enviromnent. 

3. A task requires a system analyst who is experience in designing workflow system. 

4. A task requires a Window based programmer who is required to use I. Builder to develop a 

workflow system. 

5. A task requires a Borland C++ programmer. The programmer must be a chartered software 

engineer and is experienced in developing safety system. The programming will be perfonned 

under Windows environment. 

- 256-



Appendix V - Capability Specification and Matching Evaluation Form 

Evaluation Part 4 

Instruction: Please select the most suitable agent for each task. 

Task ,;" ,',',,',,;,' 
, 

',' . Wc" Wa; Ws Result" Available Agent 'cc ,,' ' ;c "'cc"~"~ ","'I 

Task-l 0 Agent-l: 
pl-Capability(ProjectManager,IT); 50 50 60 Capability(ProjectManager, IT); 
p2-Capability(ProjectManager,ERP); 50 50 40 Capability(ProjectManager, SSADM); 

Capability(VB, Database) 

Task-2 0 Agent-2: 
pl-Capability(Programmer, IT); 50 50 40 Capability(ProjectManager, IT); 
p2-Capability(VB.Net, DataBase); 70 30 40 Capability(ProjectManager, Safety); 
p3·Capability(VB.Net, Workflow); 50 50 20 

0 Agent-3: 

Task-3 
Capability(Programmer, IT); 
Capability(Java, Presentation); 

pl-Capability(Analyst, IT); 50 50 50 Capability{Java, ProcessLogic) 
p2-Capability(Analyst, CEng); 50 50 50 Capability(VB,Database) 

Capability(VB,Accounting) 

0 Agent-4: 
Capability(Programmer, IT); 
Capability(Programmer, MBCS); 
Capability(C++,ProcessLogic) 
Capability(C++,Safety) 

0 Agent-5: 

Capability(Programmer, IT); 
Capability(VB.Net, Accounting); 
Capability(VB.Net,Presentatlon); 

0 Agent·6: 
Capability(Analyst,IT); 
Capability(Analyst,RAD); 
Capability(Analyst,ERP); 
Capability(Analyst,MBS); 

0 Agent·7: 
Capability(Analyst, IT); 
Capability(Analyst, SDLC); 

0 Agent-B: 
Capability(Tester, IT); 
Capability(Tester, CEng); 

- 257-



Appendix V - Capability Specification and Matching Evaluation Form 

Followings are the GOFs of every available agent against each task which are calculated by the 

proposed fuzzy matching algorithm. 

Task 
. , ;J,T [WC' Wa W" Result \·····GO" (%):.< Available Agent ", ' .. :.'<'. 

Task-1 @] Final = 80 Agent-1: 
pl-Capability(ProjectManager,[T); 50 50 60 pl = 100 Capability(ProjectManager, IT); 
p2·Capability(ProjectManager,ERP); 50 50 40 p2 = 50 Capability(ProjectManager, SSADM); 

Capability(VB, Database) 

[l] Final = 82.4 Agent-2: 
pl = 100 Capability(ProjectManager, IT); 
p2 = 56 Capability(ProjectManager, Safety); 

0 Final = 0 Agent-3: 
pl = 0 Capability{Programmer, IT); 
p2=0 Capability(Java, Presentation); 

Capability(Java, Processlogic) 
Capability(VB,Database) 
Capability{VB,Accounting) 

[K) Final = 0 Agent-4: 
p1 = 0 Capability(Programmer, IT); 
p2= 0 Capability(Programmer, MBCS); 

Capability(C++.ProcessLogic) 
Capability(C++,Safety) 

0 Final = 0 Agent-5: 

p1 = 0 Capability(Programmer, IT); 

p2 =0 Capability(VB.Net, Accounting); 
Capability(VB.Net,PresentaUon); 

0 Final = 0 Agent-6: 

p1 = 0 Capability(Analyst.IT); 

p2 =0 Capability(Analyst,RAD); 
Capability(Analyst,ERP); 
Capability(Analyst,MBS); 

0 Final = 0 Agent-7: 
p1 = 0 Capability(Analyst, IT); 
p2 = 0 Capability(Analyst, SDLC); 

0 Final = 0 Agent-8: 

pl = 0 Capability(Tester, IT); 

. p2 =0 Capability(Tester, CEng); 

·258· 



Appendix V-Capability Specification and Matching Evaluation Form 

,Task 
.. .'. Wc Wa I,Ws Result I·.·. ·GOF·· .'. Available Agentt~ ....... 

Task-2 QJ Final = 50 Agent-1: 
p1-Capability(Programmer, IT); 50 50 40 p1 = 0 Capability(ProjectManager, IT); 
p2-Capability(VB.Net, DataBase); 70 30 40 p2 = 100 Capability(ProjectManager, SSADM); 
p3-Capability(VB.Net, Workflow); 50 50 20 p3 =50 Capability(VB, Database) 

CKI Final = 0 Agent-2: 
p1 = 0 Capability(ProjectManager, IT); 
p2=0 Capability(ProjectManager, Safety); 
p3 = 0 

Q] Final = 84 Agent-3: 
p1 = 100 Capability(Programmer, IT); 
p2 = 100 Capability(Java, Presentation); 
p3 = 70 Capability(Java, ProcessLogic) 

Capability(VB,Database) 
Capability(VB,Accountingl 

[l] Final = 46.8 Agent-4: 
p1 = 100 Capability(Programmer, IT); 
p2 = 11 Capability(Programmer, MBCS); 
p3 = 12 Capability(C++,ProcessLogic) 

Capability(C++,Safety) 

[l] Final = 72 Agent-5: 

p1 = 100 Capability(Programmer, IT); 

p2 =50 Capability(VB.Net, Accounting); 

p3 = 60 Capability(VB.Net,Presentation); 

[l] Final = 28 Agent-6: 

p1 = 70 Capability(Analyst,IT); 

p2 ~O Capability(Analyst,RAD); 

p3 =0 Capability(Analyst,ERP); 
Capability(Analyst,MBS); 

[l] Final = 28 Agent-7: 
p1 = 70 Capability(Analyst, IT); 
p2 ~O Capability(Analyst, SDLC); 
p3 = 0 

[l] Final =28 Agent-6: 

p1 = 70 Capability(Tester, IT); 

p2 = 0 Capability(Tester, CEng); 

p3 =0 

-259-



Appendix V - Capability Specification and Matching Evaluation Form 

Task .' . .. Wc. IWa Ws. Result GOf-:-- Available Agent, ',' , 'c' 

Task-3 CKI Final = 0 Agent-1: 
pl-Capability(Analyst, IT); 50 50 50 pl = 0 Capability(ProjectManager, IT); 
p2-Capability(Analyst, CEng); 50 50 50 p2 =0 Capability(ProjectManager, SSADM); 

Capability(VB, Database) 

CKI Final = 0 Agent-2: 
pl = 0 Capability(ProjectManager, IT); 
p2 =0 Capability(ProjectManager, Safety); 

[1J Final = 35 Agent-3: 
pl = 70 Capability(Programmer, IT); 
p2 =0 Capability(Java, Presentation}; 

Capability(Java, ProcessLogic) 
Capability(VB,Database) 
Capability(VB,Accounting) 

[1J Final = 35 Agent-4: 
pl = 70 Capability(Programmer, IT); 
p2=O Capability(Programmer, MBCS); 

Capability(C'H,ProcessLogic) 
Capability(C++,Safety) 

[1J Final = 35 Agent-5: 

pl = 70 Capability(Programmer, IT); 

p2 = 0 Capability(VB.Net, Accounting); 
Capability(VB.Net,Presentation); 

Q] Final = 86 Agent-6: 

pl = 100 Capability(Analyst,IT); 

p2 = 72.5 Capability(Analyst,RAD); 
Capability(Analyst,ERP); 
Capability(Analyst,MBS); 

[1J Final = 75 Agent-7: 
pl = 100 Capability(Analyst, IT); 
p2 = 50 Capability(Analyst, SDLC); 

[1J Final = 35 Agent-8: 

pl = 70 Capability(Tester, IT); 

p2 = 0 Capability(Tester, CEng); 

- 260-






