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SUMMARY 

Aerobio desaturation of long ohain fatty acids is virtually a 

universal process and it has been noted that under identical oonditions the 

same organism or enzyme system will introduoe the double bond into the 

same position in the fatty aoid chain. The biosynthesis of long chain 

tatty acids is therefore a highly specific process. To date the specific 

factors whioh govern the position of the double bond in the fatty aoid 

molecule have not been investigated. This thesis deals with work done 

to demonstrate the existence of aerobio desaturation in five systems 

typ:Lcal of the whole spectrum of life viz. the ye ast l.2l:!llopsis apicola 

tha green alga .Q.!!.12.rella vull':~, the embryo and endosperm of the castor 

plant 1£cin1s cOllllll1.tni!!., a microsomal fraction of hen liver and a 

microsomal fraction from the mammary gland of a goat. When aerobic 

dasaturation had been demonstrated to be operativ, in the system the 

positional speoificity of enzymic de saturation was investigated by 

incubation of a homologous series of radiolabelled saturated fatty acids 

and radiolabelled homologous andpositionally isomeric monoenoic fatty 

acids, synthesised as part of the work, with the above systems. Conclusions 

were drawn concerning the number of enzymes responsible for the de saturatior...s 

and also ooncerning the control of the positional specificity of enzymic 

desaturation in these systems. 

Some indirect evidence of the shape of the enzyme in the vicinity 

of the substrate in the enzyme substrate complex was also obtained. 

The incorporation of the substrate fatty acids and the products of aerobic 

de saturation into various lipid classes was studied in some of the systems 

and investigations were also made into the positional specificity of 

hydroxylation of homologous and positionally isomeric monoenoic fatty 

acids in the embryos and endosperms of' the castor plant .Bi£.inis communis. 
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Abbreviations used in this thesis:-

NADH Nicotinamida adenine dinucleotida 

NADPH Nic:?tinamide adenine dinucle ot:l.de phosphate 

TLG Thin layer chromatography 

'c ~. . '."': RTLC Radiochemical thin layer chromatography 

(;.LC (;.as liquid chromatography 

R(;'LC Radiochemical gas liquid crxomatography 

AT£' Adenosine S' triphosphate 

CoA Coenzyme A 

ACP Acyl carrier.protein 

DMSO Dimethyl sulphoxide 

FFAP Free fatty acid phase 

PJlG.A· Polyethylene glycol adipate 

PFS particle free supernatent 

BSA Bovine Serum Albumin 

PPO 2,5 diphenyloxazole 



g~IE~ INTRaDOCTIO~ 

This thesis concerns som aspects of the formation of long chain fatty 

acids in natural systems. Fatty acids are naturally occurring materials 

saldom found in the free acid form but rather as esters oombine d with the 

triqydrio alcohol glycerol to form lipids. This having been said, in the 

de scription of fatty acids which foll(>ws they will be di scussed in their free 

acid form.. Long chain fatty acids, for the sake of this thesis, have an 

aliphatic carbon chain having at least 10 carbon atoms and also having a 

terminal oarboxyl group. 
1 

By virtue of their mode of synthe sis from acetate 

the maJcrity of naturally occurring fatty acids have an even number of caFbon 

atomo. Odd chain acids arising from an initial proprionic acid molecule2 

are very mllch le ss common. 

Naturally oocurring fatty acids may be c ... nveniently divided into threa 

groups - the saturated fatty acids, the unsaturated :f'a.tty acids and the 

substituted fatty acids. Some examples of each of these groups alQng with 

the trivial name, where commonly used, is contained in ths tables below • 

. ~.'lstematic Na]l!!. 1'ti:.YlB.l naJt3 structure 

n .• decanoic acid Oapric CH.3( CH2 )8 caOH 

n-dodecanoic lauric CH.3(C~)lO eOOH 

n-tetrad90anoic myristio CH.3(C~)12 COOH 

n-hexadecanoic palmitic CH.3(CH2)14 coon 

n-heptadecanoic mar.,.rio CH.3(C~)l5 eo OH 

n-octadecanoic steario eH3(CH2)16 eOOH 

n-eicosanoio arachidio CH.3(C~)18 coon 

n-do co sanoic l'ehanic eH.3(C~)20 eaOH 

n-tetracosanoio lignocFlric CH.3 (CH2 ) 22 eo OH 
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.S.Y!ltematic n~ TriYj.al Name 

.!'i!! 9 hexadecanoic palmitoleio 

..2i! 9 octadecenoic Oleic 

2! 9, ~ 12 octadecadienoic linoleic 

.E! 9, ~ 12 •• ~ 1.5 linolenic 
octadecatrienoic 

.£!! 5, ci!! 8, .£i1! 11, ill 14 arachidonic 

e ioo sa tet re llO ic 

.£:Jd ll, octadecenoic vaccenic 

E1! 13, oicosenoio erucic 

tr£U8 9 octadocenoic slaiOio 

9 octadeoynoic stearolic 

CH3(CH2)5CH = CH (CH2)7 COOH 

CH3(CH2)7CH = CH (CH2)7 COOH 

CH~(C~)4CH = CH CH2 CH = CH(CII2)7 
COOH 

CH3(CH2)5 CH = CH(CH2)9 COOH 

CH3(CE2)7 CH = CH(CH2)9 COOH 

CH3(CE2)7 CH = CH(CH2)7 COO~ 

CH3(CH2)7 c.: C(CH2).7 COOH 

Unsaturated :tatty acid.s usually have .cl.'!. double bonds and whera 

there are two or more unsaturated centres they are arranged in the methylero 

interrupted or divinyl metho.ne pattern see below: 

R - CH = CH - CH., - CH " CH - R' 
~ 

.A,.m"thylene 1.nterrupteg,_seq1,Oence of do.JlJ>J~bol1ds 

trans Double bends acetylenic bonds and conjugated double bonds occur 

more rarely and ere discussed later. 

table I~~me substj.~ted fatty acids 

Syste~t:!2_~~ 1;l:!i.~~ 

18 fluoro 9 cis octadecenoic 

9,10 epoxyoctadecanoic 9;10 epoxystearic 

l~ hydroxyoctadecano:i.c 

d-10 methyl octadecano:i.c tuberculostearlo 

w-(2-n-octyl cyclo propyl)- lactobacillic 

octanoic 

- 2 -

structure. 

FCH2(CH2)7CH = CH (CH2)7 COOH 

CH3(CH2)7 CH~'CH(C~)7 eOOH 

CH3CHOH (CE2)l.5 COOH 

d~CH3(CH2)7 ~~CE2)8 CO OH 

CH,3(CH2)r C~ - /H(CE2), COOl! 

CH" 
e 



Some substituted acids also have unsaturated centres e.g. ricinoleioc" 

acid, 12 I:tvdroxy ~ 9 octadecenoic acid and hence can be included in either 

classification. 

The importance of certain unsaturated fatty aoids as essential 

oonstituent s in the diet of animals has been realised for a long time3 • 

Animals defioient in these so called essential fatty aoids do not maintain 

normal growth, or reproduotion, develop skin lesions and eventually die. 

The aoids which have been found to alleviate the above symptoms are the linoleic 

aoid series e.g. linoleic, y linolenic and arachidonic acids4 • These all 

have the sane struoture at the methyl end of the molecule and linoleio aoid 

oan be converted to arachidonic by sequential elongations and desaturations. 

Recently the W3 linolenio aoid series has been found to have some essential 

properCle? • 

Recently a relationship between essential fatty acids and a group of 

naturally occurring substance s called prostaglandins which have marked 

physiological properties moh as vas'o depressor aotiviti has bee:~ disoo,\,-ared. 

For ~xample araohidonio aoid may be conve rted to the prostaglandin (PGZ~)' 

as shown below. 

H H 

CH
3

(CH2)4 CHOH - CH = CH..;--t(- CH
2 

CH = CH (CH2 )3 COOH 

HO OH 

Work is still continuing, but it may well be that the ability to 

form these oompounds is the sole reason for tl:a special essential properties 

of oertain polyanoio fatty aoids. 

Although the essential fatty aoids linoleio and linolenio are pl'OO.ucs,i. 

exolusively by plant systems the biosynthesis 'of unsaturated fatty aoids is 

oarried out by the whole speotrum of living systems. It is the object ef 

this thesis to investigate the biosynthesis of unsaturated fatty acids in 
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selected systems representative of' this spectrum and to add to the existing 

knowled.ge of this important proce ss. 

The synthesis of saturated fatty acids is now well understood. The 

studies of lVak:u7,8, Vagelos9, GurinlO- 12, and Porterl3 with animal systems, 

q 14-23 24. 1 25 26 .. 27-30 . vagelos' , , YamallRlra , Lynen , Blooh , Klein and VvakloIWl.th 

baoteria and stumpz3l - 33, James34 and Ghenia035 with plants have shown that the 

synthesis of saturated fatty acids in all these systems is essentially the SaiL'Cl. 

This pathway,the so called malonyl CoA pathway, prooeeds in the f'ollowing steps 

and. is repeated until the required chain length is obtained. 

Acetyl CoA + enzyme-SH ---~) acetyl enzyme + CoASH 

Malonyl CoA + acetyl-enzyme ~ acetoacetyl-enzyme + CoASH "" CO2 
+ + Mctoacetyl-enzyme + HADP!! + H ---) ~.·hydr{)xy butyryl-enzyme + NADP 

~-hydroxybutyryl-enz;\'ra3 )crotonyl-enzyme + ~(j 

'orot~nyl-enzyme + NADPH .~ H+ --? mtYl'yl-enzyme + HAD.P+ 

butyryl-enzyme + malonyl CoA ~R.9p6at cyo1e. 

This cycle then repeats to give the I"qLlired saturated fatty n.oiif. 

The enzyme whioh carries tl:9 funotional groups during the synthetio cycle 

ho.s .as an integral p'lrt of it an acyl carrier protein. In some systems 

e.g. yeast and pigeon liver;3it is not separable f'rom the enzyme whilst in other 

systems e.g. E.eo~i14,25 it is easily separable and has been fractionate.d fr-om it. 

The heat stable protein which carries the acyl residues during the above se'lUence 

of reactions was first isolated by Vagelos from .Q.dtlumri19,36 and was called 

acyl carrier protein A.C.P. This protein which has since been studied in 

has the same active prosthetic grouping as Coenzyme A (see below) viz the 

• •. • •• 36.!::. ',)61"; 4' phosphopqntetheine and lon the protelon t.'1l.S loS bound to a ~erlone resJ.due ,. 

in the peptide chain. 

-4-



4-'-pho sphopantetheine 
( 

4-'-Ibo sphopo.ntethenia 
acid. 

( 

.§i.~ of Coenzvne A 

) 

'.em biosynthesis of unsaturated. fatty acid,s haa been shown to 

pro~e9d via. two distinot pathwtlys. These pe.tromys are not oompetltiy" tn 

any respect, indeed thoy are belieyad to bo r~Jtually exclusive sine'l no l5.Ying 
" 

system has been discovered that is capahle of performing both. 

These two pathways are referreD. to e.a either the aerobic <'IT the 

anaerobic depending on the req;Iirement of the system for molecular ~xygen as 

an essential oo-factor. 

The anaerobic pathway was firs~ pcstulated by Bloch4,o who deJllonstrate,~, 

obligate anaerobe. This pethway appears to be restricted to bactoria of the 

ord.ers Jibbacteriales and pseudcmonad.ales. 

In hluJ!!.PS}!.'!! and. C.kl>m~:l,; Bloch4-0,4-1,4-2 showed tl1J,t lauriQ and 

myristic acids were converted only to long chain saturated acids whilst o0to.,~C"".", 

and decalloic acids were conve rted to 9-hexadecenoic acid. and ll-cctadecenoio 

acid and to 7-hexadecenoic acid and 9-octad.ecenoic acid respectively. 

To account for this the following pathway was po stulated43 • 
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acetate Malon;z:l Cc-A 
Co el.ons"'+' io,,~) ) ectano.£l:f:o (1) 

octanoate + C2 
Malonyl CoA ) .3 ketodecaneate (2) 

.3 ketodeoanoa.te 
Reductase ;) .3 nydroxydecanoate (3) 

.3 nydroxydecanoate 
Dehydrase ) ili .3 decencate (4) 

ili .3 decenoate + 3C2 ) ili 9 hexa~cenoate (5) 
Malonyl CoA 

*9 hexadecenoate + C2 
Malonyl CoA > ili 11 octadecenoate (6) 

This demands that the pathway for the synthesis of saturated fatty 

acids may branch at the nydroxy stage of the Ca - CIa levels but no higher and 

that the division occurs at the dehydration step with the formation of the ili .3 

acid yielding a fina1 unsaturated productl instead of the trans 2 acid v.hich is 

tr.e intermediate for the saturated fatty acid pathway. 

Finally the scheme demands that the subsequent elongation of the 

unsaturated acid thus formed occurs by the addition of C2 units at the carboxyl 

end without reduction or isomerisation of the double bond. 

Amongst evidence which established this as the correct se quence was 

the identification by a tLeary44 of small amounts (J% or le ss) of cia .3 decenoic, 

cis 5 dodecenoic and cis 7 tetradecenoic aoids in several lactobacilli and --- ---
streptococci. Similar evidence of intermediates in the identical se·quence 

beginning at decanoic acid has also been obtained44• 

Evidence for the retention of the ili d~uble bond during the extension 

of the chain by C2 unit s at the carboxyl end was obtained by Baronowski et a145 

who demonstrated the conversion of (l14C),",Cis .3-decenoic acid into ~ 9-

hexadecenoic acid and ili ll-octadeoenoic acid with n6 evidence of any saturated 

acids being formed at all. 

The ke y react ion of the se quence, viz the ~y de hydrat ion 0 f the .3 

hydroxy acid to yield the ili.3 monoenoic acid (reaction (4) above), was provided 

by Lennarz et a125 who shovled that a partially purified fatty acid synthetase 

- 6 -
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from 1L£.oli, whioh produoes a large amount of ill 11-octadecenoic acid, would 

furnish the ~ 3 acid from} hydroxydecanoyl CoA. Norrh et 80146 on further 

purification of this enzyme showed that it was specific for the D-f3-hydroxy-

decanoyl thioester. 

The mechanism of the anaerobic pathway has trus been largely elucidated 

and the factors which govern the position of the double bond in the final 

product can easily be seen. 

The anaerobic pathway however is confined to some bacteria and is not 

of major importance in nature generally. By far the more important pathv/fl-y in 

the prcduction of unsaturated fatty acids is the direct de saturation or aerobic 

pathway. This pathway occurs across the whole range of living systems frpm 

the protozoa and bacteria to the higher animals. 

Early studies40 indica':ed. that monounsaturated fatty acids could be 

form~d by direot desaturation of a long ohain precur~or. This was proved by 

BloollifleJ.d fm:i l31oc!f~7 who showed tha·t cell froe o,tb~acts of the yeast 

.§.aceh!1;!2.!1':f£e,s cerevi~.i!1! could convert palm:i:tate to palmitoleate via 1t3 

co-·enzyme A thiolester. Direct desaturation of stearate to oleate in yeast 

has been demonst:r!lted in the same W3.y by BlochJ~7. 

Direct aerobic desaturations have been observed in aninJals4E ,49,50 , 

baoteria47,51-54, fungi53,55 and algae53,56. Although some of the more 

primative photosynthetic algae e.g. chlorella vUlgaris56 are able to produce 

010a+.a f!'om d:'.zectly added stearate, the h5.gher plants are not. 

show9cl that even chain length acids of 14 carbon atoms or le ss would yield 

aorobically but not anaerobically oleic acid and linoleic aoids in the isola-l;ed 

leave s of the caEtor plant Ricin~mm\1nis, whereas neither palmitat e nor 

stearatel'ffl~ converted at all though they were incorporated into lipid/! showj·~t, 

that the CoA thiolester had been formed. In the same work ha showed that tb.B 

formation of oleate was an aerobic process and that oleate could also be 

converted directly to linoleata in these leaf systems. On the basis of these 

- 7 -
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and other corroborative results in barley seedlings58 and in the ice plant 

9.~FPobrotus chilens!!.59 a separate plant pathway was postulated. James and 

Harris60 showed the conversion of stearic acid to oleic acid in plant leaves. 

If. the stearic acid was allowed to be built up first from acetate in a 

non .. photosynthetic environment i.e. anaerobically in the dark, then on allowing 

photosynthesis to begin, the conversion to oleic acid was observed. Thus it 

was shown indirectly that the higher plants had the ability to desaturate stearate 

formed fl.'Om acetate but were not able to desaturate added stearic acid. This 

desaturation pathway in higher plants was proved to be the same as the aerobic 

!)athway by Nagai and Bloch6l who demonstrated the conversion of stearoyl-S ... ACP 

to oleato in spinach leaf chloroplasts. Thus it would seem t~t the inability 

to de~atu!'9.te palmitate and stearate or their coenzyme A derivatives is simply 

due to the fact that these systems lack the acyl transferase enzymes capab:;'~ of 

convertlng ste aroyl-S-CoA to st earoyl.·S-ACP. 

When the green alga .Q.hJ-2.E~Ui:...TI1B::EJ!'. was ~_ncubated with stearic a~id 

it !"8i;.(1iJ.;" clesD.turated H to olc;_,~ and linole~c 8..:lii
2

• This is alAo 9 

differen"" between plant systems and other living systems. Plants tend to 

unS.orgo a sequence of desatura'cio>:s to yield trienes by direct d.esatu:cation, 

The formation of polyanoic acids will be discussed later in more detail. 

T~"lrefore, from the above result, it was clear that Chlorella vulg'!-ris deel,! 

possess the acyl transferases necessary to convert the acyl-S-CoA to the 

corresponding acyl-S-AGP. However, when James~ Harris and Bezard63 carrJed 

out the incubations in the presence of sterculic acid 8-(2-octyl-l-£yclopropcnyl) 

octanoic acid, th8 system behaved as if it was following the plant pathway i.e. 

stearate was incorporated into lipids but was not desaturated although the buHd 

up of oleate from acetate was unaffected. Clearly the sterculia aaid inh:l.".~;I .. i~" 

was acting on the acyl transferase enzyme s, which convert the stearoyl-coenzy;'.o~ ".' 

thiolester to the stearoyl AGP thiolester. This work is further evidence that 

the true substrate for de saturation in the plant kingdom is the AGP thiolester, 

M, C "'. 



s-t1.!mpf'3l and Bloch6l have shown the presence of' similar proteins in higher plants 

a~ leaf chloroplasts. 

The aerobic desaturation process was found to require either the 

reduced form of nicotinamide adenine dinucleotide (NADH) or the reduced form of 

nicotinamide adenine dinucleotide phosphate (NADPH) and has an absolute regui.e­

ment f'or molecular oxygen47 • 

The precise role of the oxygen and the reduced pyridine nucleotides 

is not clear at the IIlOment and further investigation awaits the f'ractionation 

and purification of the enzyme system. 

With molecular oxygen being an essential cofactor and the fact that 

the artificial electron acceptors methylene blue or phen!l.zine methosulphate 

do not ~ubstitute for oXYf!fJn47 makes a flavoprotein linked dehydrogenase 

cecha:oiSlll unlikely. 

Th", requirement for NADPH ?:1d o~'Ygcn along with the insensitivity of 

the reaction to cyanide47 would .,.'lCl" to favour a'l 0xygenase reaction. ~'hi~ 

wo·~1.1(1 :i..n~lf·olY$ "the i'ol"mation ef a hydroxy in'Cenlladiate which, on subsequent; 

®hyd:C3tion, would gi VG tIle requi:'':'8d mOnaGES. 

This tbeory has the advantage -;;I,a0 fatty acids possessing an 

oxygenated function are <l!J.i-G9 common. Some example s are shown below:-

9(10) hydroxy stearic CH} (C~)8 CHOH(CH2 )7 COOH 

ric~Lno leic CH} (CH2) GIIOH CH2 CH = CH -( CH2)7 COOH 

'a.snsipolic CH3CH2CH = CH (CIIz)2 CHOH CH2 CH = CH - (CH;!)7 COOH 

o 
9,10 epoxystearic 

/' \ 
CH} (CH2)7 CH - CH (CH2 )7 COOH 

o 
/ , 

CH} (C~)4 CH - CH CH2 CH = CH - (C~)7 COQH ve rno lie 

coronaric 
/0, 

CH - CH(CH2)7 COOH 



15,16 epo'llY1inoleic 

o 
1\ 

CH
3

CH2 CH CH CH2 CH = CH - CH2 CH = CH - (CH2)7 COOH 

9-ke'bostearic CH3(CH2)a ~ (CH2)7 COOH 
o 

studying the structures· of the above naturally oocurring oxygena1;ed 

acids the dehydrase theory is very attractive. 

James et al64 having discovered large amounts of 10 hydroxy stearic 

acid in faecal lipids of persons who suffered from stcatorrhea and showed that 

faecal Ilpids could convert stearat e to 10 hydroxystearate sugga sted that this 

might be ea intermediate in the forM:t:i.on of oleic acid. 

Marsh and James49 demonstrated. that .10 significant amount of olea~e was 

produc0cl from 9 or 10 lVd.roxyztea!'ate substrata by ei thar fr,'\ctionated ra·t liver 

j,lrepa~·a,'dons or cell free yeast systems. Similar re~ults were obtaimd when 

the GoA thio1ester;) ef the hydroxy acids were used showing that it ~,as 110t an 

ItCtivs.tiun barrier that was operating in the cese of the l;ydroxy ac1.a~. 

Tlus they concluded that the hYl'"the3io of an hydroxyintermetliatll in 

the biosyn·bhe sis of oleate from stear.lte wat' only feasible if' it was assu~<). 

tha.t this intermediate was irreversibly bound to the enzyme. This reservation 

is the same 

fatty acids 

as has been postulated in the 

65 from malonyl CoA • 

case of ·the biosynthesis of long, chai;l 

Keto acids have bean suggested as passible intermediates in thl 

biosynthesis of ullsaturated fatty aCids
66

, but 9 keto stearate was not converted 

to oleate either in a yeast or a liver system49 ,67• 

Other ~ygenated species that were found to be incapable of conve~Gion 

to oleate were the phosphate e sto of 10 hydroxystearate, 9,10 dihydroxysteare.;;c, 

9,10 ili epoxyvteara·te49 ,67 and stearolic acid68 • 

I::l the race of this evidence Light et a152 suggested that the 

desaturation of saturated ratty acids oco:J.rs by the direot abstraction of hydrogGn 
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atoms from the saturated chain by orygen acting as an eleotron acceptor wlthont 

ai; arry time entering into covalent linkage with the carbon atom of the acid. 

Shroepfer and Bloch69 produced evidence as to the stereospeoificity 

of the desaturation vihen they incubated all four stereospecifically labelled 

mcnotritiated stearic acids prepared from the enantiomorphic 9-hydroxystearates 

and lO-hydrorystearates with growing cultures of Cory'nebao~Eil!m diphtheE~2.' 

The oleic acid formed in each case was isolated and there was found 

to be complete loss of tritium in the 9D and lOD tritiostearic acids and re'f;ention 

in the case of the 9-L and 10-L tritiostearic aoids. Thus it appears that the 

removal of the ~drogens at the 9 and 10 carbon atoms is stereospecific in the , 
formation· of oJ.eate from stearate, the D ~drogens being removed at each position. 

Furthermore the presence 01' a rubstantial kinetic isotope effect on the 

l:"3move.l 0:<:' the hydrogen atom at the C9 posHion and not at ClO suggested tl'.a~ the 

reLl<l"Val wa.~ not synchronot:s but stepwise w·tth the initial removal of th" l:wdrogen 

Al1;hough this wo:.:k estaulished the absdute configuration of the twdrogcns 

::,,,ltO'le d in the de satura~.;lcn, it di,l not 8011le th'3 mechanism by which the;\, wera 

reooved. or the confol'IJatio~ ef the st~betrate molecule at the active site. The 

ros:rlts m~.y be interpreted by suggesting a .;ili. abstraotion, a substitution )V~th 

mtention of ccnf'igurat:ton followed by a m abstraction or a substitution with 

in17l'lrsion followed by a .:t~.lE elimination. The substitutions of, for examp13, 

~)J·droxy groups would have to oocur with the substrate irreversibly bound to the 

en::yme but these results de not preclude this as a possibility, indeed the stepwise 

IIlGchanism suggested by the kinetio isotope studies is in favour of this as t!.9 

meohanism in this system. 

The meohanism and stereochemistry of de saturation was also inve8ti5~:'.;ei!_ 

by Morris et a170 in the green alga .p.hl0reua vuJil~!. 

~his organism forms not only monOEllle by direct desaturation of the 

saturated precursor but also by a series of sequential desaturations forms a dienf) 
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ar.i aloo a triene. In the case of stearic acid the de saturation products are 

oleio acid, linoleic acid and q. linolenic acid respectively. 

By the synthesis of racemic ez;ythro and~ - 9,10 dideutero stE/al'ltte, 

e1nI:ra and threo 12,13, diti.(3utero oleate and ez;ythro and ~ 15,16 dideutero 

oleate, Morris et al70 ware able to show in all three cases that the hydrogen 

atoms removed. were of the .£h relative oonfiguration since the ~hr2 substrate 

lost both deuterium atoms from one enantiomer and none from the other. The 

jJ-~ substrata lOllt half the deuterium from each enantiomer. Removal of' tran~ 

rather thll.n.l!i!!. hyd.rogens wIluld have given the opposite results. 

By synthesis of D- and. L-9 tritie steario aoid and D- and 1-12 i:ri-yio 

~l'toa:r.-lo ae;til. these workers were also able to show that the D hydrogens are the 

ores removed in de saturation at these centres. 

It may be reasonably assumed the.t the hyd.rogens removed in formation 

of the 15,16 double bond of linolenic acid are also of the D configuration 

although this has not yet been aotually proved. All three desaturations were 

oompletely stereospecific and all the salOO as the cle satul'lttion of' atea ... 'ate ·to 
69 71 -2 '77 

oL~ate in bacteria , goat mammary gland , hen liver! and fish liver .J. 

Too results of Morris et e.l with the deute:-ated substrates indicated 

a substan'~ial kinetio :\a~tope effect against d~uterium in the formation of all 

tlu:'J'3 double bonds ancJ. for the steare;to to oleate de saturation at least this 

O::.'f3ct had. to apply at b ... th positions of' the putative doubla bond, This reruH 

wh:i.oh was observed also in animal systems7l suggests It simultaneous concortei1. 

~ilmovQl of the hydrogen atoms rather than the stepwise process as suggested by 

Shroepfer and Bloch as a re suIt of their work in the bacterial system. 

Aerobic desaturation '!~ not con:f'lned to the formation of one doubla 

vcnd per chain. All animals, plants and micro organisms with the exception of: 
\ 

J.;)-,s Pfl3udomonada1es, l!l1bacteriales and Actinomycetales are able to form poly-

unsaturated fatty acids e.g. 74, 75, 76. 

These polyunsaturated fatty aoids are different in animal and plant 
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systems. Although the position of the first double bond in both kingcltlma is 

almost exclllsively in th!:l 9-10 position, the position of the other double bonds 

differs according to the system. 

In the plant kingdom successive desaturations are carried out towards 

the methyl end of the molecule except in a few isolated cases. Animal system,~, 

on tte other hand, can only introduce bonds between an existing one and the 

oarboxyl end of the molecule. It is because of this that animals require die'l;ary 

linoleic and linolenio acids, partioularly the former, since only from these can 

they produoe the essential polyenoio acids they require for ideal membrane function 

and prost9.g1andin synl;hesia e.g. arachidCnic acid by elongaticn coupled with 

s;;.cc'lssim desatura.tions tower'ds the carboxyl end of the molecule. 

In animal systems there are essentially three series of polyenoic ad.as. 

'ihe W9 r,eries, which is the only c.ne they can synthosise de novo (e,g. 5, 8, 

11-20 : 3) and the w6 series (e.g. 5, 8, 11, 14-20 r 4) and the W~ series 

(e,e. 4, 7. 10, 13, 16, 19-22 : 6). For +.he W3 and. w6 series ani.mals re ql1ire 

dieta~ linoleate or linolenate as starters. Plants generally proc!uce oJ..ea·~s, 

linolea1.:e and. Cl. linolen.9.te as their charaoteristic nma+'ul'ated acids alt~,oueh 

rDill!:l animal type produots haye becn i~ola:l;ed fron plant s. .l\.ra.chidemic ncid 

has ;,een demonstrated in mosses and forn/7, y linolenic in seeds of the 

O!'2,gracea.o78 and Boragine.ceae79 and steari,lonio i.n the seeds80 and fruit79 ot 

,·c.rious genara of the Boraginaceae. 

Fxe9 fatty acids are not uS1).ally found in living systems in any larf,-'O 

amount, indeed they bind read.ily to many proteins and are potent enzyme i."'.h:ibitors. 

1'hey eXist, usually bound as esters, to the trihydric alcohol glycerol. 

\1119n :ratty acids are stored as energy reserves in depot fats or as 

:i.noulation, they are bound up as triglycerides I. 

iH2 OeOR 

CH OCOR' 

I 
C~ oeOR" 

I 
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R, R' R" are fatty aoyl groups and may be similar or different. 

Where the lipids have a more physiologioal function their structure 

is more oomplex. Examples and structures of these oomplex lipids are as 

fellows: 

I Fhospholipids 

R.COO C~ 

\ 
R'.COO CH 

I Pt 
CH

2
0 - F - OB 

~H 
R Md R I are fatty aoyl groups. 

B is an organio base or polyhydroxy oompound Md depending on this group 

then tho 'pho spholipids are named as bell1w. 

B 

B 

B 

B 

B 

+ .. -C~ CH2 N (CH3)3 OH 

'" C~ CH2 NH2 

::: sel"ine 

::: inositol 

::: glyoerol 

GlycolipiJs 

3 - phosphetidyl choline (P.C.) 

3 - phosphatidyl ethanolamine (r.E.) 

3 - phosphatid,yl serine (r.s.) 

3 - pl:nsphaUdyl iI'ositol (F.I.) 

3 - phosphatid,yl glycerol (F.G.) 

R.COO \H2 

R'.COO CH 
I 
CH

2 
0 G. 

G is a oarbolvdrate unit, whioh is either galactose, or a dimer of 

galaotose usually, though other residues are possible. Tm lipide are denoted 

as MGDG moncgalactosyl diglyoeride or DGDG digalactosyl diglyoeride. 

It is in these more complex lipids that the fatty acids that have 

been freshly syntmsised or desaturated are first found. t. aCOUll11late. In 

animal systus they are found. in the phospholipids especially in leoithin (PC). 

In soma plant systems actively synthesised fatty acids are found first in PC, 
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PG and MGDG. Nichcls and Jomes
81 

studied the time sequence of uptake of 

label from :l1rC-acetate into the individual fatty acids of the separate lipid 

classes of Chlorolla vulgaris and showed that uptake and turnover of label was ,; 

most rapid in PC, PG and MGDG. From their results they oonoluded that all 

these three lipid olasses were "carriers" of stearic acid while PG and MGDG 

:f\mction for myristic, palmitic and palmitoleic acids. Both oleic and linoleio 

acid appeared to pass through PC, PG and MGDG and the high turnover rates 

suggested that the aoyl lipid is behaving in a manner similar to that expeqted 

for a true intermediate in the fatty acid synthetio sequence, This oould be 

aohieved in one of three ways, either with the aoyl lipid aoting as a tranllPort 

agenl; moying the acid to the enzyme or the lipid could act as the true substrate 

for de saturation or that the peols of' acid in the synthetic sequence are enly 

connected via the acyl lipid. 

The close involvement of' lipid in the desatllration steps of fatty 

82 acid biosynthesis is further indicated by the observed teIl'lenoy for the 

freshly desaturated acyl groups to appear at the seoond position IDf the l:1.pH. 

Gurr James and Robin~on83 d.emonstrated in .9.1l1()~!." vulgar~ chloroplas·~ 
prepera.tiflns that 2-01eoyl phosphatidyl choline was as good a precursor for 

iiesaturation as oleyoyl CoA thioester and that the resulting linoleate was 

];Q',.nd. exolusively to the 2 position of' the same lipid class (i.e. PC). As 

a result of this they concluded that either the acyl group was transferrqd 

dit'ectly f'rom the lipid to the desaturase and immediately returned in a 

de saturation-acylation cycle er that the lipid itself is the aotual substrate 

for desaturation. They intend to distinguish between these two possibHH:LG's 

by the use of the oleyl ether anahgue of' lecithin which is isosteric I'(ith tb3 

natural ester linked lipid but which will not be affected by acyl transferaDA3. 

Although the vast major! ty of' double bonds that ocour in natural 

fatty acids have the nis configura"l;ion, soma fatty acids having tran~ bonds 

have been found. Little is knDwn of the biosynthesis of ~1!.!!. aoids except 

8~ 
for the ~.orJc of lIichols at al on .1E:!M~ 3-hexadecenoic acid. 
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-- ---------------------------------------------------

These workers found that this acid was derived from palmitic acid by 

a direct oxygen requiring dehydrogenation. However unlike the usual ili 9-10 

aoid formation this prooess also recpired light. Although the formation of 

.501II'l ili acids in photosynthetic systems is increased by the presence of· 

light e.g. Cl. linclemc acid, they are in faot synthesised to a maned degree 

in the absenoe of light. Thus the absolute requirement of trans 3 

hexadeoenoio aoid forJllation for light ill unique in these systems, 

There also appears to be a olose lipid involvement in the formation of , 

this aoid since Niohols et al8q. showed that it was present only in phosphatidyl 

glycerol. Furthermore Haverkate and Van Deenen85 showed in spinach thP-t this 

acid was present only in the 2 position of PG with usually a. linolenic ac:\.d in 

the 1 position. 

As mentioned earlier, a main feature of the oommon polyunsaturated acids in 

both plants and animals is their methylene interrupted sequence of double bonds. 

The b:Losynthatio oontrol giving rise to this structure is as yet unknown I\nd 

although the vast majority of polyunsaturated acida havJ this arrangem~nt of 

bonds, SOlll3 40 aoidd are known which exhibi t oonjugation
86

• 

All these aoids are found in the plant kingdom and have eighteen oarbon 

atom chains. The majod ty of these acids have two or three unsaturated 

oentres which may be either.!:!! or traM. A table of these acids is shown 

below. 

Table IT: N!l,tural1)1 occllrriM con.]lIjat ed fatty aoids 

Carbon chain Position and Trivial name Source (Seed} ~. length oonf.of bon"!.!!. 

18 80, lOt, 120 jaoario Jaoaranda 87 
mimosifolia 

18 8t, lOt, 120 calendio Calendula. 88 
6:f'ficinalis 

18 9c, llt, 13c p'J.nicic punic,!!!! G') 
granatum 

18 9c, lIt, 13t o.-elo;o steario Aleurites fordii· 89 --
18 9t, llt, 130 oatalpia Catalpa. ovata 90 

18 9a , lla, 130 bo1ekia On/illekoa. 5!lre 9l 

18 9c. 12a, l4c <l$hydroc re pe nynic Af'zel:l.a coomon31;!_ 92,97 
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a = acetylenic, c = cis, t = j~ 
Althcugh the biosynthe sis of' these acids is unknoW!l, there have been 

several speculative pathways put f'orwarde •g• 93,94. One of' the most interesting 

is due to Gunstone94 who sug~sted that the precursor of' these aoids is linoloic 

acid and that conjugation occurs via hydroxylation or epoxidation and 

rearran~ment f'ollowed by dehydration. This is illustrated below f'or the 

case of ~-eleostearic acid (fig.I). This hypothesis has the advantage that 

its intermediates are known naturally occurring materials and that oxygenated 

fUnctions are common amongst this class of' material. 

Wig.I Proposed biosynthetic route to ~-eleostearic acid 

ili 9 £!! 12 octadecadienoic ---4) 12 : 13 epoxy ~ 9 octadecenoic 

(linoleio) (vernolic) 

1 
13 hydroxy cis 9, trans 11 octadecadienoic 

. / (~artesmic) 
ili 9, ~ 11, ~ 13 octadecatrienoic 

(punicic) 

ili 9, trans 11, ~ 13 octadeoatrienoic 

(~ eleosteario) 

;r.a~b~l:::e:"VL. __ N!:!;a~t~u~r;;::a::.=l:..:l:.ly:...>!o~c!:::cu~r~r!:::i!;.!n;J;g~c~o~n,,!..ju~gQ:a::..t~e:.';d~e~t.;:!w~le~n!!;i~c:....:!w~d!;.!ro~y.yJ...;.f':.:a::..t~t~y~a:!ic~i",d;2s 

9 hydroxy trans 10 
trans 12 octadecadienoic 

13 hydroxy cis 9 trans 
11 octadecadIenoic 

9 hydroxy .:!iran~ 10 
ili 12 octadecadienoic 

Trivial ~'! 

dimorpbecolic 

artemssic 

Source (Seed} 

Dimorphotheca sinuata 

Coriaria nepalensis 

Calendula of'f'icinalis 

Ref'. 

95 

Some f'atty acids which ocour naturally, contain acetylenic bonds both 

in conjugate de • g. 

bondse •g• 98,99 

92,97 
and mstljylene interrupted arrangements with ethylenic 

Bu'Loc1:
l00 

po stulated tl.at acetylenic bonds were f'ormed by 
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the further dasaturation of olefinio aoids and Bohlmann and Scrull01 have 

demonstrated that linoleic acid is oonverted to orepenyn::.o aoid (00tadeC-9~n-12 

yn~io acid) in Chrysanthemum flosoulosum and CoreoEsis lanoeolata, 

102 Haigh Morris and James showed in CreEis ruba that crepenynio acid 

was not formed from linoleio aoid but from oleio acid in a reaction requiring 

oxygen. It was thus shown that in this plant system Bu 'Lock's proposed 

pathway was not in operation although tie usual reservations about linoleata being 

an irreversibly enzyme bound intermediate must be oonsidered. 

Although aoetyleniO bonds, oonjugated bonds and. trans double bonds 

do exist in naturally ocou!Ting :ratty acids, by far the most common arrangement 

is of ru double bonds and where more than one bond occurs in a ohain, for them 

to be methylene in'.;errupted. 

A general picture of the biosynthetic relationships between these acids 

is shown below in Fig.II. 

trans b. 3 16 1 

/'Caq.) 
aoetste + malonate ) 16 : ° >18 · 0 • (1) 

~) 
(1) 

(103) 
16 · 1 ~ 9 • 

16 : lA? 18 
(103) 

: lA9 

(103) (62) 

16 • 2$.,12 
• 

16 2A7,10 
(102) 

18 2A9,12 , 
18 I 2 ois A9 12yne / (62) 

- Known pathway (Crepenynio) , '(94) 
I 

/ 
-- - - proposed pathway , 

18 1£ · 3 A 9,12,15 • 

18 : 3 9 c:.is Ut 13t 
(CL elaosteatiC) 

Fig II Defined biosyntheii,!' pathways in p1~. 
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From what has been said before, it is clear that many of the problems 

surrounding the direct aerobic pathway for the biosynthesis of unsaturated 

fatty acids have been solved. The enzyme system responsible has been shown 

to be firmly partiole bound to the chloroplasts in plant systems and to tha 

endoplasmic recticulum 0:1' animals. The substrates for the enzyme activity 

have been shown to be the coenzyme A thicester in some systems and the A.C.P. 

thioester in others. In all systems NADH and oxygen are necessary cofaotQrs. 

The !laohanism and stereoohemistry of the h;ydrogen removal has been 

elucidated in some systems and the final product s of the reaction i.e. the 

unsaturated fatty aoids have been isolated from many sources and much kllowledge 

has been gained by examining their struoture partioularly the positions of the 

double bonds. Tha olose involvement of certain lipid classes with the process 

of aerobic desaturation has also been observed, both in the chloropl~sts of, 

plants and the microSO!la s of animals. Despite all this there remains many 

unanswered problems about the process and much work has still to be done and 

the fact that the enzymes are particle bound and resistent to fractionation 

makes direct investigations difficult. 

One of the tple stions that remains unanswered is what are the factors 

which govern the position of the bonds in the chain in aerobic de saturation? 

For example, why is the first double bond introduced in the position that it is 

and what governs the position of the subsequent double bonds in the case of 

polyunsaturated fatty acids? 

It Vias therefore of interest to synthasise unnatural fatty aoids and 

study the position and degree of the subsequent desaturation, if any, and 

hence attempt to elucidate the factors which influence the positional 

speoificity of the desaturation. 

It is al~ng these lines that this thesis is directed. 
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SECTION J. 

Chemical synthesis cf Radiolabelled 

Fatty acids for use as substrates. 
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Introduction 

'. Synthesis of fatty acids is necessary for both confirming the struoture 

of naturally occurring fatty acids and for the production of unnatural fatty 

acids to elucidate their physical, cmmical and biological properties •... 

The literature on the syntliesis of these compounds is far too vast for 

thascope of this thesis and dates back to 1871 when Lieben et al104<1.prepared 

all the n-saturated acids from acetic to heptanoic by chain extension from . -
. 104P 

llllthanol, and in the same year Kraffl starting from naturally occurring 

stearic acid by degradation prepared all the n-saturated acids from C
9 

- C18~ 

The topic has been the subject of many reviews among whioh the ones ~y 

Gunstone,l05 W. J. Gensler 106 andK • MarkHeyt01 are the better F. D. 

presented and most comprehensive. These cover the synthesis of all the classes 

of fatty acids i.e. saturated, unsaturated and substituted fatty acids. 

Since most of the interest in general, and flf this thesis in partic~l~, 

is the synthesis and biolllgioal properties of unsaturated fatty aoids it is , 

intended to limit the rest of this introduction to the methods whereby unsatu~ated 

fatty acids .f the correct chain length, having unsaturation of the require4' 

configuration and in the right position can be synthesised. 

~f synthesis fall into two broad classifications. 

Briefly the ,nethods 

, 
The first is the preparation of fatty acids from other fatty acid~ or , 

cl,osely related compounds. The second is by the build up of the molecule from 

Smaller units - de novo synthesis. Usually where the fOrmer method can be used 
"t 

it.provides a more convenient synthesis. 
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1. Synthlsis of unsaturated fatty acids from closely related compounds 

(i) Reactions involving no change in chain length 

Thlse reactions usually involve either elimination from a. substituted 

acid er partial reduction of an acetylonic or polyunsaturated acid. Methods 

which fall into the former category are the dehydration of hydroxy acids, the 

dehydrohalogenation ef halo acids and the deha10genation of halo compounds. 

In the case of dehydration the positionof the hydroxy group affects 

the product. a.-Hydroxy aoids have a tendency to undergo several pyrolyti~ 

dehydratiohs to yield aldelvdes or cyolic lactides in preference to the 

a.1O-unsaturated acid. a.o8 

p-JiYdroxy acids on the other hand do delvdrate to yield the a.(3-unsl\turated 

acid in preference to other products. 103, 110, lJ.l Where the a.p-unzatu~ted 

compound is struoturally impossible as in the dehydration of ethyl 3-lvdroxy, 
1.12 . 

2,2 dimethylbutyrate with phosphorus pentoxide the (3y-olefin is prod1.!cod. 

With the hydroxy group in the 3 or 4 position the reactions undergone 

are much more those of the lactone. 113 As a rule beyond the 4 posi.tion 

the yield of monoenoio aoid over lactone formed increases as the hydroxy group 

becomes more removed from the carboxyl group, 

The presence of an isolated double bond does not influence the 

dehydration and Fokin 114 and other workers 115,116 all found that ricipoJ.eic 

acid gives a mixture of 9,11 and 9,12 dienes. Baudart 117 also showed that a 

terminal olefin could be prepared by dehydration. 

The main agent used for dehydration is 9yrolysis "!ohrough phospporus 

pentoxidej thionyl chloride and phosphorus oxychloride are also used. 

Dihydroxy acids delvdrate to give dienoic acids as above, but yicin;:.:!. . 
dihydroxy acids yie Id only the conjugated acids e.g. 9, 10-dihydroxy steario 

acid yields only 8,10 octadecadienoic acid. 

Dehydrohalogenation of a halo cowpound is ~~other common method of 

introducing a double bond into a chain. The most common reagents used to effect 
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118 
the dehydrohalogenati~n are dry alcoh~lic solutions of alkali hydroxides •• 

The absence (Of water in these reactions makes the system less ionic and thus 

favours elimination over nucleophilic sub stitution ,119 • 

These dehydrohalogenations take place without rearrangement of the 

carbon skeletons 120 .. and theeiimination is tran~·-;;:'iways. 121 

stereospecificity of the elimination mechanism both fu and trans olefins are 

produced by this method. 

Other non polar dehydrohalogenating agents a1'9 pyridine and collidine. 

Also more recently the heterocyclic bases DBU (1,5-diazabicyclo (5.4.0) undec-

5-ena) and DBN (1,5 diazabicyclo (4.3.0) non-5-ene) a.re being used. 122, 123 

Once again with 2 and 3 halo c~mpounds the products are largely speqific 

yielding the CLj3-unsaturated species 124 , but when the halogen is mid chain a 

. 125 
mLXture of products is obtained • With vicinal dihalides, however, 

acetylenes are formed along with the conjugated dienes. This is especially 

noticeable with D.B.N. and D.B.U. where the acetylene is the major product.}?? 

Dehalogenation can be used also to form ratty acids from vicinal d:l.h"'lic . .9s" 

The most common agent is nascent hydrogen generated by metal-acid or metal';: 

126,127 . . . 123 
alcohol comb~nat~ons. Another method is the Finklestein reaction ,1 , 

where the di-halo compound is refluxed with dry sodium iodide in acetone! This 

depends on the faot that the vicinal diiodide is not stable for steric rilssons 

'and loses iodine spontaneously to yield the olefin. 

The other class of reactions for generating olefinic acids of given bond 

Pllsition involves partial reduction. The initial materials may be eUhe'!' . ' 
polyenoic fatty acids or acetylenic fatty acids. Reduction of polyenoic a,dds 

forms a mixture of produots but these can often be separated by thin-layer 

chromatography. 129 I One of the most selective methods of reduction is with 

h d 
. 130 Y raz~ne • Since this is considered later no more will be said here. 

The other method of reduction of synthetio importance is the partia.l 

reduction of acetylenes. This is especially so since many of the de novo 
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syntheses involve acetylenic couplings. This reduction may be achieved e:!.ther 

catalytically or chemically. Its most important feature is control o,ver the 

stereochemistry of the olefin formed. Chemical reducing agents that have been 

used are zinc and hydrochloric acid containing acetic acid and titanous chlo~ide 

withwhich Robinson and Robinson 131 , reduced stearolic acid to oleic, aCid, and 
. " -'. '.:.' ~ ,~' . 

sodlllm in liquid ammonia which Howton and Davis 132 used t& produce trans-

5-ootenoic acid from 5-octynoio acid. 

By far the most oommon and useful methods for partial reduction of 

acetylenes are the catalytic reductions. Half hydrogenation over Raney nickel 

has been extensively used but the literature varies as to its usefulness. 

Adkins and Billica 133 and W.:llborsky et al l3l~ are among many workers who 
" 

found it BUcce ssful. Palladium is the most used reagellt in the reduction of 

acetylenes to cis olefins. The difficulty with this is that there is a te!~dency 

for the reaction to continue to give alkanoic acids if the hydrogen is not 

limited. 

In an attempt to stop the rJaction at the olefinic stage and improve 

the stereo~pecificity Lindlar 135, 131" developed a catalyst of palladium in ~he 

form of a 5% suspension on calcium carbonate which was pOisoned with lead ;J.nd. 

quinoline. More recently the reproducibility of this catalyst has been, 

improved by Cram and Hallinger 137 who use d pure synthetic quinoline to poj,Don 

palladlllm in the form of a 10}6 suspension on barium sulphate. This has the 

advantage of stopping at the olefin stage and yielding the pure cis isomer. 
, -

(:I;i) Reactions involving degradation by one or two carbon atoms 

The first degradation of fatty acids was the pyrolysis of the bari.um 

sa~t. 104b) This is now only of historical interest. The Hofmann degrad8;cion',38.UJ 

h~s also been used. 

;: 
Alkanoio acids may be degraded by Co bromination 14-0 followed by 

hydrolysis to the a. hydroxy compound. This is then cleaved with potassium 

14-1 permanganate or lead tetraacetate 142 • 
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double bond oleavage is not easily applioable to al.kenoio aoidsunless the 

unsaturated funotion has been proteoted before the oleavage. 

For unsaturated aoids the most 

143 lfu.nsdieoker silver salt degradation. 

generally used method is the 

Using this, Nevenzel and Howton 144-
r14.5 

and a. and y linolenio acids.· have suooessfully degraded oleic; linoleio, 

A more convenient method for degradation is the Cristol and Firth 

modification 146,147 af the lfunsdiai<:er reaction. This involve s the use of 

mercurio oxide, removing the need to prepare a metal salt of the aoid. 

146 
Al.kenoic acids have been suocessfully degraded using this method. 

(i11) Extension of the chain by one or two oarbon atoms 

The most usual methods for extending the carbon ohain by one oarbon 

. 147 149) atom are the treatment of the al.kenyl hall.de, mesylate, . or p-toluene 

1.50 1.51' sulphonate, with potassium cyanide in either acpeous alcohol or dimethyl 

sulphoxide. 1.52 

Another method for extension of the chain by one carbon atom is to 

treat the alkenyl magnesium halide or other organometallic compound with carbon 

dioxide lJ.53, 1.54- Both these reaotions are useful in the preparation of • 

iSlJtcpically labelled fatty aoids e.g. 1.5.5. 

Another very useful homologation reaction is the Arndt-Eistert 

synthesis'l.56. This synthesis involves the preparation of the diazoketone 

which undergoes a Wolff rearrangement with the loss of nitrogen to give the 

homologous product. This is useful in cases where moleoules are oomplex ,or 

sensitive to reducing agents·l .57 and has been used by Karrer and Koenig l .58 

to prepare the C19 and C20 homologues of linoleio acid. 

Several methods exist fo r extending chains by two carbon atoms, Como!',g 

the most useful of whioh is the treatment of the Grignard reagent with ethyle!l9 

oxida :.59 Another much used extension reaction is the reaction of malonio ester 

with alkenyl halides. l60 

~l ~2 Both the Doebner reaction and the Reformatsky reaotion 

have been used to produce unsaturated fatty aoids, but these are not SO commonly 

used. 
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II Build up nf_ the mo::"ecules from smaller ~ 

1. .Q!tain extension by larger units 

(i) Alkenoio aoids oan be elongated by five ar six oarbon atems at a 

time by the use of the enamine ef cyclopentanone er oyolohexanone on the 

aoid ohloride16.3 • ~ -!, . 
.- ~ 

There are several other methods of ohain extension by fC/ur, fi~ 

or six oarbon atoms and th3se are oomprehensively dealt with in tabular fFm 

164-in F •. D. G-unstone I s most rece nt book • 

(ii) Coupling with acetylenio oompounds 

The most widelY used ref.otion for the synthesis of alkenoio acids is 

16<; 
ooupling with acetylenic comprunds -, • Indeed it is the most useful route 

to some of the polyunsaturated fatty acids espeoially the methylene interruptell 

naturally ooourring ones. An example of the usefulness of aoetylenes as 

intermediates is the syntheses of the essential fatty aoids linoleic and 

arachidonic by R. T. Holman 166. 

The usefulness of acetylenes stems from their ability to form al,kali 

metal. and G-rignard derivatives whioh allows them to be ooupled with alkyl 

hali;ies, oarbonyl oOiDpounds, oarbon dioxide eto. and thus build up long aliphatic 

chains with multiple bonding at known positions. 

Since aoetylenes can be semi hydrogenated to give eXClusively £i:J. 

or ~ olefins 167, 168, the ability to tailor fatty acids is oomplete. 

Muc.h initial work in this field was done by Ahmad and strong who 

. first realised the potential of this route when they prepared 6 hendeoeno).o 

:169 
acid and went on to use it tcJ prepare many other' monoenoio fatty acids 170 .• 

(iii) The Wittig ReaottQ!l 

The Wittig reaotion 171 has been a well used route to olefins fc'> 

many years. The drawbaok to it-s use in the fatty aoid field has been the fa~t 

that in normal non polar solvent systems e.g. benzene, the ylid reaots with the 

carbonyl compound to form a ~ olefin. 
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Mora recently however Russian chemists 172,17bave shown that by using 

more pillar solvents (e.g. d:l.methy1 formamide or Lewis bases e.g. the iodide ion), 

the.£1!! Ollefin can be produced. This renders the reaction of much I".ore use in 

the synthesis of fatty acids. Examp1es.f the use of this reaction are the 

syntheses of ds 8 hexadecanoic acid, .£!.~ 7 ocatadecenoic acid and cis 11 

eicosenoic. '. Furthermore this reaction has been used in the syntheds of the 

very important naturally occ'lrring methylene interrupted acids 174-. The 

Wittig reaction can als~ be used to prepare conjugated olefins and the synthesis 

of a. eleostaaric acid 175 is an example. 

(iv) ~b6 elec.J;rnJytic synthesis 

The mixed Kolb~ electrolytic synthesis using a carboxylio acid and 

the half ester of a dicD.rboxylic acid yields a mixture of products among which 

is a monocarboxy1ic fatty ester (see page 4-1). 

Because the separation of this mixture is easy the method has been 

used for the synthesis of many and diverse tatty acids despite only moderate 

yields of about 3Q%. 

The reaction is usually carried out in glass vessels between platinum 

e1eotrodes 176 • The reactants are d:1s solved in methanol with enough sodium 

methoxide added to allow ionisation 177 • 178 An excellent review of this 

reaction has been published and only it s application to the synthe sis ef 

unsaturated tatty aoids will be considered here. 

The presence of a substituent in the a. position or unsaturation either 

a.fl or fly to the acid oarbony1 group will inhibit the reacti~n 179. Thus 

180 • 181 182 
maleic , fumarl.c or muconic half esters will not undergo the 

trans fl Di.hydromuco.nic half ester will not undergo the reaction 

though protection of the double bond with a dihydroxy function will enable the 

183 
reaotion to proceed • Terminal double bonds do not affect the reaction 

reaction. 

and both 7-octenoio aoid 184. and 10-undecenoio acid 185 have been prepared 

186 
although thaTe is some evidence 'that polymerisation occurs at the electrodes 
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to some extent during electrolysis. 

Apart frcm the above restrictions this method is perfectly satisfactory 

and has been used in the synthesis of nervonio acid 187 and behenolic ao1<l. 188 
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-----------------------------------------------

In his review of the chemical synthesis of fatty acids 105 Gunstone 

divides his discussion into the following separate headings: Methods involving 

no chenge in chain length; ohain extension; methods involving chain degradation; 

the modification of existing fatty acids; the isolation of ratty aoids from 

natural materials and de novo synthesis. In preparing the preoursors necessa~ 

for the biochemical studies which form the real point of this thesis, use has 

been made of all of these methods to some extent. In most cases, because of 

the need to provide these acids labelled, a chain extension step has been 

necessary anyway. 

The two most usual ways of labelling t'a.tty acids are either to t~eat 

14 -J.M. JM
o 

the alkyl or alkenyl magnesium halide with CO2 ; tor to react the mesylate 

189 190 14 
the tosylate or helide with K eN. Both methods have been used' 

successfully with bcth saturated and unsaturated ratty acids 149, 191 For 

conveniFlnce the method used throughcut this WO:K was thet of labelled potassium 

cyanide. 

Tests with unlabelled potassium oyanide showed that the use of di~,ethyl 

sulphoxide (DMSO) at 90°C 152! gave a cleaner reaction yielding fewer bY-:9f.:ducts 

and higher yields then more conventional solvents e.g. aqueous alcohol 15;1. • 
iJ , 

Conversions have been shown in the literature using potassium cyanide 

150 ° 152 148 192 
with p-toluene sulphonates , alkyl chlorides , bromides and iodide & , 

All f"ur !;If these have been used in the course of these synthe se s. 

Wi~h D.M.S.O. as solvent it was unnecessary in the case of alkenyl 

bromides to use cuprous cyanide in place of the alkali cyanide. This was fcund , 

by Celmar and Solomcns 193 to improve the yield in the case of aqueous alcohol. 

Similarly the slightly aoid medium with copper powder in T.H.F. as used by 

: 194 
Bohlman and Viehe was also not used. 

Nevertheless the labelling step did give difficulty and yields generally 

were low. It is not easy to account for the lDw yields since in all cases the 

reactions were homogeneous and a considerable excess of alkyl helide was used, 
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and trial reactions onthe same scale but with unlabelled potassium cyanide 

oonsistently gavealmo~t quantitative yields. 

Two major impurities arose from the labelling step. The :f'irstwas 

a very polar material whioh did not mi~ra.te from the origin on T.L.C. when 

even quits polar developing solvents w~re use~ and the seoond was a sligh~ly 

less polar (by T.L.C.) compound than the first. These materials gave no mass 

spot on the plate men the reaction was tried wUh unlabelled potassium o,)"anide. 

Hence it was conoluded that they were artefacts of the radio preparation alone. 

;195 
It is not unknown that radio cyanide may react differently from ordinary cyanidt:' 

These materials were isolated and attempts were made to identify them. 

This identification was made very difficult by the minute mass present <: 1 Ilg. 

The only hope was to charaoterise them by T.L.C. against known compounds. The 

possibility of them being amide s arising by some combination with moisture 

present, isonitriles, or isocyanates was discounted by virtue of a oomplete . 

resistance to either acidic or basio hydrolysis. Free acid ocourring by 

hydrolysis was discounted by the fact that it did not respond to treatment with 

diazomethane. It is possible that some formoxy derivative has been formed. but 

in the absenoe of further material only speculation can be made. 

It was a simple matter to isolate the pure ester after methanolysis, 

so apart from the loss of yield these artefacts were not a serious hendioap. 

(i) ~!1i>ds requiring no change in chain length. 

Methods use.d requiring no change in chain length for the sake of this 

thesis merge into the heading of modifioation of existing fatty aoids. Two 

11· 
suoh synthe se s were oarrie d out. The first was the partial reduction of (1 re)_ 

linoleio acid to give (l14C) ~ 12 octadecenoio aoid.l30 and the seoond Vias the 

elaidinisation of (l14C)_ oleio aoid to give (l14C)_ elaidio acid 196 • 

The reagent used for the partial reduction of methyl (l14C)_ linoleate 

was hydrazine hydrate. This reaotion was chosen since it does not alter the 

position or geometrical oonfiguration of the residual bonds. ,197,198 
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This redu.ction is effected by the unstable di-imide intermediate I 

whioh is formed by autoxidation. 

199 

The whole reaction proceeds according to 

the following e~ations 

·~N - NH2 + io2 --40) H20 + HN = NH 

I 

HH 
-C=C- ) -~-~-

HR 

Variation of reaction time, temperature, solvent and volume of 

available oxygen allows control of the reaction and hence permits a maxilJll\m 

yield of monoene to be formed. 

The solvent used in this case was methanol, faster reaction is brought 

about with acetopitrile as solvent with pure oxygen bubbling through. Since the 

prime re~irement of this reaction was seleotivity for partial reduction advantage 

was gained by use of the slower solvent system. For the same reason the bubbling 

of oxygen was substituted by agitation with a wrist action shaker. The 

temperature used was 6ooc. This combination of conditions was tried and found 

t!l give the optimum rate of reduction (about two hours). 

200 The reaction was followed by injecting samples on to the R.G.L.C. 

Here disappearance of the diene peak was observed as monoene and saturated peaks 

grew. By experience it has been shown that the optimum yield for this reaotion 

is about ~ monoene. This state remains for a while as diene is further 

converted to monoene and monoene converted to saturated but no greater build up 

of monoene is achieved. 

When this state was attained the re~ction was ~enched by adding 

dilute acid. to destroy the excess reagent. 

The four products from this reaction were separated by the method or: 
201 

Morris, Wharry and Hammond •. This consisted of' T .L.C. separation on si11.<:;' 
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o 
impregnated witho3Oft silver nitrate developed three tiJll!ls in toluene at - 25 C. 

The low temperature is used to give greater stability to the bond ccmplex of the 

unsaturated centre with the silver and hence achieve better separation than at 

room temperature. Since benzene which is the best solvent at room temperature 

is solid at this temperature, toluene is used. 

This method geve Rf values as. shown below:-

Substanoe .Rf 

18 • 0 0.86 • 

18 : 1.1112 0.53 

18 · 1 C.9 0.47 • 

18 2 0.16 

The methyl (l14c) m 12 ootadecenoate was thus isolated and purified. 

114c mU ootadecenoic acid was prepared from this by hydrolysis in the usual 

way (see page 45). 

The second preparation that requires no elongation and is in faot the 

modification of an existing compound was the preparation of (l14C)- elaidic 

acid. The method used in this conversion was Grif'f'iths and Hilditch's 

elaidinisation with the oxides of' nitrogen 196 • 

The nitrogen oxides are generated by the interaction of 6M nit:rio 
I 

acid with.2Msodium nitrite. These oxides do not produce a complete iB!'meris-

ation but set up an equilibrium oonsisting of' about 60% ef the trans iso~r 

irrespective of whioh isomer is used as starting material. 

This definite ratio of' 2 : 1 trana to ili suggests that the mechanism 

ef' the reaotion involves the attaok of' nitro and nitroso radicals en the 

unsaturated oentre f'ollflwed by the elimination of nitrogen trioxide in s1,!ch a 

way as to yield the observed ratio of' the isomers. 
202 

More reoent work has 

s1.!ggested that the ratio is 3 : 1 and this is more in line with the yieldS in 

this experiment. Despite the inoomplete oonversion of oleate to elaidate the 

2 ease of' separation of these isomers by silver ion ohromatography 
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method se-tisfactory for the purposes of this thesis. 

Reoently, however, Gunstone et al have published a paper 203 in which 

they used selenium to effect a similar steromtitation which gave a greater 

peroentage of the trans produot. Less double bond migration we-a found if the 

stere"mutation was carried out by irradiation of the ester with ultra violet 

light in the presence of diphenyl sulphide. 

(ii) Met hods u sing chain extension 

The preparation of (214C) .£ll-lO-nonadecenoic acid, (214C) pentadecanoic 

acid or (214C )-nonadecanoic acid are examples of the u se of chain extension to 

prepare a re<rJired fatty acid. 

Because of the difficulties of labelling oompounds with radio active 

potassium oyanide advantage was taken of using a commercially labelled acid. 

The chain extension was effected for convenience by the reaotion sequence X, 

see page 43. This was preferred on grounds of convenience to either the 

Arndt-Eistert homologation or carbonation of the oleyl magnesium halide, the 

latter being not very suitable for suc)l a small scale. 

In the elongation of the commercially labelled alkanoio acids use 

was made of oleic acid as a carrier. The function of the carrier is te 

provide a mass of acid large enough to allow the reagents to be used in a 

visible amount without being in too large an excess and to minimize the losses 

during extractiens and transfers since the mass of the radioactive alkanoic 

aoids was very small indeed. It follows from this that the material chpsen 

to act as 6 oarrier must undergo the same reactions as the radioactive compound 

but at the end of the reaction scheme must be oapable of isolation from the 

re<rJired radioactive product. 

In the case of alkanoic acids alkenoic acids are ideally suited to 

act as carriers since they will undergo all the reactions of the carboxyl group 

but can be easily separated from the saturated compound by silver ion 

chromatograpl:\Y. 
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The following reactions were used not only during these ohain extension 

reactions (Scheme I page 43 ) but also prior to the labelling with radioactive 

potassium cyanide (Scheme llr page 58 ). 

Although lithilim aluminium hydride has been used successfully to 

reduce carboxylic acids 204 the reduction of esters proceeds more readily?05 

and hence the alcohols were prepared from the ester. The ester was prepared 

by the action of an excess 'of an ethereal solution of diazomethane on the aoid 

in methanolic soluticn. The acid was dissolved in methanol in order to ensure 

. m6 
methanol waa present in the reaction solvent since Gallerman and Schlenk 

showed that without methanol complete reaction could not be guaranteed. 

Throughout this thesis wherever an acid is m3thylated with iliazGmethane ii;; is 

done in methanolic solution for this reason. 

Although Marcel and Holman 149 use mesylates as the immediate 

precursors of the homologation sten in these syntheses the p-toluene sulphOnate 

has been used. This is because of the difficulty of dealing with Marcel I!Jld 

Holman'$ procedure on such a small scale and hecause the extent of conversion of' 

El fatty alcohol to its p-toluene sulphonate can be checked easily by T.L.C~ on 

silica, the tosylate being much less polar than the alcohol in 2O)t ether i~. 

petrol ether for example. On the other hand mesylates behave very similariy 

to a1cohols having similar Rf value s. 

the conversion by T.L.C. 

Hence it would be difficult to follew 

The homologation with potassium cyanide was performed in D.M.S.O. 

sclution 152 f'or the same reasons as in the case of the labelling with x;adio­

active potassium cyanide, namely that it afforded better yields and feWElr reaction 

products. 

Sinoe in all cases following the preparation of the nitrile some 

purification was necessary the ester was prepared directly from the nitrile, 

This was done by treating the nitrile with a 25% w/v solution of hydrogen 

ohloride gas in methanol 149 '. 
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After purit'leation by either or.L.C. er G..L.C. or both, the acid was 

obtained by hydrolysis of the ester with ~ potassium lwdroxide in methanol. 

After reaction the solution was acidified with concentrated lwdroohloric acid 

to avoid making the reaction solution heterogenous. 

Better yields of the aoid were obtained this way, This was important 

since all carrieI's had been removed by this stage and very small masses of 

material were being handled. Following the addi.tion of ether, with the fatty 

acid still in homogenous solution, the aoid and salts were washed out with a 

minimum of water. 

(iii) Preparation of compounds requiring a degradation 

Compounds that require a reduotion in chain length fall into two 

categories. The former are those which were kindly donated by F. D. Gunstone 

and I. A. Is¥mail whioh were in faot of' the oorraot chain lElngth but required 

degradation prior to labelling. 

The latter category is represented by (llA-C)-ili heptadecenoate whioh 

is in itself a degradation produot of oleic acid but in order to be labelled had 

to undergo two degradations. 

Despite the papers of Howton, Davis a~d Nevenzel 144,lA-5I!1lch diffioulty 

was encountered with the funsdieker silver salt degradation 207 Although it 

had been sucoessfully used in trial reactions and heptadeoyl bromide had bE/en 

prepared in 75.% yield from stearic acid, with threo dibromo octadecanoic aoids 

great difficulty was enoountered in the obtaining of a pure dry sample of the 

silver salt. When some of the salt was prepared none of the desired reaction 

products could be isolated. 

Difficulty in performing the funsdiecker reaotion with unsaturat~d 

compounds has been confirmed by other workers. 
,208 

Corly found difficulty j.n 

i 
applying the reaotion to unsaturated acids and only obtained reasonable y~elds 

when perfoming the reaction at low temperature. Furokawa et a1 209 could 

only obtain yields of ~ of liberated carbon dioXide in their wolk with 
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unsaturated aoids. 

Attempts were made to substitute the lead salt for the silver salt 

by refluxing the ~ dibromo alkanoic aoid with lead tetraacetate in 

aoetic acid. On removal of the acetic acid by vacuum distillation and 

refluXing with brcmine in carbon tetrachloride a yield of 10% of the 

required tribromo compound was obtained. 

The best results however were obtained using the Cristol and Firth 

modification of the Hunsdieoker teohnique l46,14~ This reaotion is 

postulated to proceed aocording to the following equation: 

2R COOH + HgO + 2 Br2-~} 2R Br + Hg Br2 + ~O + 2C02 

By observation of identical yields of ~ and.!lll.22 profulcts from 

both the silver salt method and this method l46a oommon intermediate ReOOX 

was postulated (X = halogen). Despite this evidence the mercuric salt 

when prepared separately did not give good yields 210 and in the CAse of 

glutaric acid the reactiol1 did not give the usual profulct expected from a 

metal salt viz y butyrclactane. 

The more probable eXplanation of the reaotion meohanism is that 

211 
the mercurio oxide gives a positive halogen species which reacts with 

the acid to give the acyl hypohalite. 

This reaction has the advantage over the silver salt technique the.+. 

it does not require the isolation of the metal salt and since water is 

produced o.s a by-product, strictly anhydrous conditions are not required .• 

The reaction had to be done in the dark to minimize polybrominatio:l 

but despite muoh care some polybromination was observed. 

This amounted to about 2q% of the total yield and it was isolateu 

as a slightly more polar oompound on T.L .C. and identified as tetra and 0",c:~a 

bromo alkane by mass spectrometrY (see page 62). 

The above prooefulre was slightly modified in the oase of the 

oompounds being degraded prior to a labelling step. Beoause ot' the small 
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amount of s",lvent th9.t had to be used stirring was very diffioult and some 

agitation of the slurry was essential for reaotion. If a wrist aotion shaker 

was used refluxing was difficult but after several test reactions the best 

yields were obtained using a wrist action shaker and prolonging the 

reaotion time to 72 hours. In the caae of these compounds the vicinal bromine 

atoms were removed using zinc dust in ethanol • 

In the preparation of (l14C)_~ 8 heptadecenoic acid from oleic 

acid a double degradation had to be used. Some difficu;Lty was observed in 

proceeding from the alkyl halide to the carboxylic acid to begin the second 

degradation. 

Following the removal of the vicinal bromine atoms by zinc ill 

ethano1212 attempts were made to convert the alkenyl bromide to the alcohol 

with caustic potaah. This was not successful since aqueous alkali gave an 

heterogenous reaction mixture and methanolic alkali favoured elimination. 

Two methods that were more successful both required the alkeny1 

iodide as starting m9.terial. This was conveniently prepared from the 

1,7,8 tribromoheptadecane by refluxing with anhydrous sodium iodide in dry 

acetone. The vicinal bromine atoms were removed by a Finklestein reaction 128 

whilst a substitution of iodine for bromine was effected at the 1 position, 

The .Ei! 8 heptadecenyl iodide thus prepared was first comret1ed 

to .E:! 8 heptadecanoic acid by the reaction of Johnson and Pelter21.3 • This 

uses DMSO as an oxidising agent. With sodium bicarbonate present as a proton 

acceptor the aldelWde is prepared by heating the iodide with DMSO at 150
0

C 

under dry nitrogen. The reaction is thought to go via the following mechanism:-

R CH_I CH.3_ S+ _ 0----" RCH - 0 ~+....cH.3 + 1-
""2 + CH"/ -, IJ 'CH 

trioxide 

.3 H 1 .3 

RCHO + (CH3)Z S + It + x 

Too acid was prepared by oxiilation of the aldehyde with chromium 

214 
in acetic acid • 
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Although this reaction worked well the preparation was finally 

achieved by oonverting the alkenyl iodide to the aoetate with potassium aoetate 

in acetio acid • 

The acetate thus formed was hydrolysed to give the fatty alcohol whbh 

oxidisEld to thEl aloohol wit h chromium trioxide in aoetic acid. 2:14. 

The oxidation system was used in "rder to leave the double bond 

unaffected. 

Because the double bond is in the centre of the chain with very similar 

groups to either side in all these oompounds, the dipole ohange on stretching' 

the double bond is very small and therefore the infra red peak at 1658om-1 

is very weak. N.M.R. was found to be lIRlch more useful in determining the 

structure of compounds during this sequence of reactions (Scheme II page 52 ). 

The mid chain double bond gave a characteristio triplet at 4. 7~16 whilst the 

~ dibromo compounds gave a doublet at 5.87 for the protons on the same 

carbon atoms as the bromine atoms. A terminal bromine atom gave a triplet 

at 6.7'1' whilst the methoxy group of an ester gave a singlet at 6 • .3 '1'. The 

peaks identified from these spectra are listed below for completion. 

~ Multiplicity Assignment 

variable 0 sil15let acid proton 

4-.7 triplet ~ - CH=CH-

5.8 doublet - CHBr-CHBr -

6.3 singlet ester OCH
3 

6.7 triplet methyle ne-CH~r 

7.7 triplet methylene group a. 
to carbonyl 

8.7 broad band - methylene protons -

9.1 triplet . terminal metljyl 

Infra red spectrophotometry was used to demonstrate the presence Or 
absenoe of oarbonyl peaks for example before and after the deoarboxylatio1';l 

reaotions and for identifioation of the primary hydroxyl group in ~ 8 
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heptadecen~l (page 56 ). 

Although the preparation of' (l14C)_~ 8 heptadecenoic acid is a 

l~ng one the fact that the starting material ( ... leic acid) is readily available 

and that the mass of final product I'Elquired is small Scheme III is a perfectly 

satisfactory route for the purpose. 

Isolation of fatty acids from natural materials 

Many of the fatty acids used both c~mmercially and in the laborRtory 

are not synthesised chemically but are extracted from natural materials, 

amongst the commonest being fish oils and seed oils. 

In the ~ase of labelled acids the particular living system has to be 

grown with a suitable radioactive precursor. This can be carbon dioxide 

(usually in the form of sodium bicarbonate in solution), acetate or in the 

case of the two precursors synthesised here, the saturated fatty acid of ths 

same chain length. 

The compounds pre pared were (l14C) ~-9-r.eptadecenoic acid and 

(l14C) ~-9-nonadecenoic acid. 

From work done which is dealt with in other parts of this thestS it 

was known that the yeast Torulopsis apicola would convert (l14C) heptadecanoic 

acid into (l14C) .!ll-9-heptadecel'oio acid in about 70'/0 yield. Apart from the 

residual (l14C)-heptadecanoic acid there were no other radioactive acids 

produced by this system. It only recpired the separation of the product 
~ . 

from all~tr.e_other acids present to obtain a pure sample. 

Ths amount cf time consumed and the yield obtained compares very 

favourably with any of the de novo chemical synthstic routes. The yeast 

was grown with (l14C)-hepta decanoic acid ex. Amersham, in its nutrient medium 

and incubated at room temperature for six hours. The lipids were then 

extracted with chloroform-methanol (2 1, v/v) and washed with physiological 

saline to remove the protein ~terial. The lipids were transmethylated to 

yield the methyl esters of the fatty acids. 
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The :r'eg)lired (l:u..C) ~-9-heptadecenoic acid was isolated by preparative 

T .L. C. on lofo silver nitrate impregnated silica 129 to rellJOve all but the 

moncencic fatty acids. The moncenoic fatty acids were then fractionated into 

their respective chain lengths by preparative G.L.G. on F.F.A.F. at 230°C. 

This yielded the methyl (l:u..C) cis-9-heptadecenoate chemically and radio-

chemically pure. Alkaline hydrolysis in the normal way yielded the required 

acid. 

(l:u..C) cis-9-Nonadenenoic acid was also prepared biologicallj'. The 

yeast used in the previous preparations did not give a good enough yield to be 

considered. Two systems which would give a moderately good conversion (about 

30%) from nonadecanoic acid were tne green alga Chl"rella vulgaris or a 

microsomal preparatjon from hen liver. 

Of the two the liver system gave a more specific reaction. The alga , 

being a whole cell system, and a photosynthetic one at that, gave radio!'qtive 

dienes as well as much breakdown and resynthesis. 

The hen liver microsomal system, as the yeast in the previous preparation, 

gave only (lll,C) ili-9-nonadecanoic acid as a radioactive produot which 

therefore, apart from the unconverle<l. (l:u..C) nonadeoanoic acid, was th~unly 

radioactive compound present. 

(l14C) Nonadecancic acid was synthesised by the action of l4c potassium . 
cyanide on octadeca:=yl p-toluene sulphonate in DMSO as in Scheme I (p/l.ge 45 ). 

This acid was dispersed in bovine serum albumin for better absorption into the 

system and incubated for six hours at 37°C with a microsomal preparation from 

a hen liver suspended in phosphate buffer with the required cofactors added. 

After the incubation the lipids were extracted, transmethylated and the plre 

methyl (l_:u..C) ~-9-ncnadecenoate isolated in a manner similar to the methyl 

(l_14C) ~-9-heptadecenoate before (see page 39 ). 

Bond positions were checked in both cases by oxidative cleavage according 

to the method of von Rudloff 2~7 The radioactive dicarboxylic acids were 

identified by R.G.L.C. 
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Synthesis of fatty acids from smaller chain length materials 

Only one fatty acid was synthesised from mch smaller chain length 

material. This was (ll4-C) IB-nonadecenoic acid. 

Due to the fact that this was required labelled the initial tar~t 

for synthesis was 17-octadecenoate. The method chosen was a Kolb~ ele9trolytic 

synthesis,178 Other possible methods were those used by F. D. Gunstone, and 

I. A. IShma:L1163• However in this case, bearing in mind that the starting 

material 10-undecenoic acid was readily available, that methyl hydrogen azelate 

is easily prepared and that only a small amount (50 mg) was required, the Kolbe 

route seemed the most convenient. 

The KolM' electrolysis is an anodio oxidatioil of a mixture Id'two acids. 

For the synthesis of the ester of a fatty acid one of the two initial acids 

must be the half ester of a dicarboxylic acid 218. 

From the reaction of a monocarboxylic acid (R.COOH) and a dicarboxylic 

half ester (HOOC-RI-COOCH}), three products were obtained as shown bel!IW:-

1 R.COOH + HOOC.R • COOCH} 
1 

---?R-R COOCH} 

+ 
R - R 

+1 1 
CH}OOC.R .R .COOCH} 

I 

II 

III 

The amount of product III can be minimised by the use of a four molar 

219 
excess of the monobasic acid R.COOH • 

The isolation of the pure product I can be easily achieved by· silicic 

acid column chromatography using ether-petroleum ether mixtures. 

Thus the Kclb6 synthesis is a route to many and diverse fatty acids187,l8~ 

In the case in question, lO-undecenoic acid was used in excess of ~ethyl 

hydrogen azelate in sufficient methanol to give a lq% w/v solution. Q% of the 

total acids were neut ralised with sodium metal to produce some ions to ca',,;·.)' ·~hp. 

current. The electrodes used were 2.5 cm square platinum foils, 1 mm apar.;, 

between which was 120 volts D.C. In this particular preparation polymeric 

material (probably due to the terminal olefin) was also generated and period Le ally 
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Synthenis of fatty acids from smaller che.in length materials 

Only one fatty acid was synthesised from auch smaller chain length 

mil.ter:l.il.l. This was (l14e ) l8-nonadecencic acid. 

Due to the fact that this was required labelled the initial target 

for synthesis was l7-octadecenoate. The method chosen was a Kol])$ electrolytic 

synthasis. 178 Other possible methods were those used by F. D. Gunstone and 

I. A. lS)lmail163• However in this casa, bearing in mind that the start~ng 
material lO-undecenoic acid was readily available, that methyl hydrogen !\zelate 

is easily prepared and that only a sm'J.ll amount (50 mg) was required, the Kolbe 

route seemed the most convenient. 

The KolM electrolysis is an anodic oxidation of a mixture af two aoids. 

For the synthesis of the ester of a fatty acid one of the two initial acids 

must be the half ester of a dicarboxylic acid 218. 

From the reaction of a monocarbcxylic acid (R.eOOH) and a dicarbofylic 

half ester (HOOC-RI -COOeH
3

), three products were obtained as shown below:,!, 

R.eooH + HOOe.Rl • COOCH
3 
~R_Rl COOCH

3 
I 

t-
R-R II 

+ 1 1 
CH

3
00C.R .R .COOCH

3 
III 

excess 

The amount of product III can be minimised by the use of a four molar 

219 
of the monobasic acid R.COOH • 

The isolation of the pure product I can be easily achieved by silicic 

acid column chrom'J.togrspb¥ using ether-petroleum ether mixtures. 

, . 187 188 
Tlms the Kclbe synthesis is a route to many and diverse fatty aCl-ds ' • 

In the case in question, lO-undecenoic acid was used in axc~ss of ~sthyl 

b¥drogen azelate in sufficient methanol to give a 10% w/v solution. 510 of the 

total acids were neut ralised with sodium metal to produce some ions to ca',:,.;,' ·thp. 

current. The electrodes used were 2 • .5 cm square platinum fOils, 1 mm apart .• 

between which was 120 volts D.C. In this particular preparation polymeric 

material (probably due to the terminal olefin) was also generated and period:Lcally 
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the eleotrodes had to be cleaned and the current reversed. 

It is important during the Kolbe reaction that the temperature be kept 

o 178 
below 50 C. This was achieved by th3 use of COOling coils around the 

electrodes. Mixing of the solution is adequately carried out by the escaping 

carbon dioxide bubbles. 

The methyl hydrogen azealate was prepared by the reaction of dimethyl 

azelate with one oquivalent of potassium hydroxidE. in methanol. This gave a 

mixture of the diester, the h'llf ester and the diacid~ . The required half e~ter 

was isolated by column chromatograpliY on silioa eluted with chloroform-methanol 

lll~xttirdS. 
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FoXPERlMENTAL 

I Ereparation of sUbstance s by elongat ion of commercially labelled material 

1. .§xnthesis of 214c pentadecanoic acid 

Reaction Scheme I 

R.~OOH 

'" 
RICH::: 

in 
methanol 

(KCN in 
DMSO 

'" RCOOCH
3 

) 

LiALH 

in dr~ ether) 

(i) Esterification of the acid with diazomethane 2tl~ 

p. toluene 
sulphonyl 
chloride 

Oleic acid (25 mgm) was mixed wi~h(114C)myristic acid (100I-lC; 

15.4 mC/mM). The oleic was aoting as "carrier" to provide a mass of acid 

large enough to allow the reagents to be used in a visible amount without 

being in too large excess and to minimi$9 losses during extractioru; an\'! 

transfers. 

The acids were dissolved in methanol (0.2 ml.) and an ether~al 

solution of diazomethane added until the solution remained yellow. Tre 

solution was allowed to stand for 15 minutes and then the excess diazomllthane 

and solvents were removed at the pump to yield the corresponding esters in 

quanti tati ve yield. 

The diazomethane was prepared by placing ether (30 mls) am 40% 

aqueous potassium hydroxide solution (30 mls) in a 100 ml round bottom flask. 

N nitroso methyl urea (4 g) was tlJln added to the flask and the e":hereal 

solution of diazomethane which was formed was distilled off into an ice cold 

receiving flask. 



This ID0thod for the preparation of diazomethane was used throughout 

this thesis and wherever diazomethane was used it was prepared as above. 

(ii) Reduction of the esters to the alcohols 205 

The methyl esters prepared in (i) above were dissolved in sodil,lm 

dried ether (5 mls) and refluxed for two hours with lithium aluminium hydr~de 

(30 mgm). Water (5 mls) containing dilute hydrochloric acid (5 drops) was 

added cautiously to destroy the excess lithium aluminium hydride at'l;er the. 

refluxing had been completed. The product was extracted into ether (10 mls) 

which was washed acid free with 5 ml aliquots of water and finally dried by 

azeotropic dlstillation with ethanol. 

A little of the product was examined by T.L.C. on 0.25 mm silic~ 

plates run in 2<:% ether in petroleum ether. This showed no residual acid at 

the origin or ester by comparison with suitable standards. The whole proquct 

corresponded to the alcohol standard indicating a total conversion to the 

alcohol. 

(iii) Alcohol to p toluene sulphonate 220. 

The alcohols were dissolved in pyridine (dried over potassium 

hydroxide pellets) end to this solution was added p toluene sulphonyl cliJ<;1ride 

(30 mgm). The mixture was allowed to stand overnight. 

The whole was then dissolved in ether (30 mls) and the pyrid~ll3 

washed out with dilute hydrochloric acid. The acid was destroyed and the 

,p toluene sulphonic acid washed out with dilute potassium hydroxide solption. 

The whole was then washed to neutral pH with water and dried by azeotro~ic 

distillation with ethanol. 

The product was checked at this stage ~ T.L,C. of an aliquot 

on 0.25 mm silica pla·tes. This showed about 9<:% conversion to th~ p tolt~')na 

SUlphonate and 1<:% to the alkyl chloride. 

(iv) p toluene sulphonate to nitrile. '189 

No alcohols remained unreacted. 

The mixture of the p toluene sulj:honate and alkyl chloride from 
! 

(iii) were dissolved in dimethyl sulphoxide (DMSO) (0.5 mls) dried by standing 
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over calcium hydride and redistilled under reduced pressure (BP 116°_118
o

C at 

5 mm). potassium cyanide (30 mgm) was dissolved in this solution and reated 

o 150 at 90 C for 3 hours. After oooling, tre reaotion mixture was dissolved 

in ether (10 mls) and the DMSO and potassium salts washed out with suooessive 

5 ml aliquots of water. The etrer was then removed in vacuo and the nitriles 

dried by azeotropic distillation with ethanol. 

(v) Methanolyds of tre nitrile. 149 

The nitriles were oonverted directly into the methyl esters by tre 

addition of 25)1. w/v hydrogen chloride in methanol (5 mls). The solution was 

allowed to stand at room temperature overnight. Etlsr (20 mls) was added to 

extract the esters and the acid washed away by successive aliquots of water. 

The ether was removed at the pump and the esters dried by azeotropic 

distillation with ethanol. 

The radiocl:emical purity of the esters was tested by RGLC 

o 
on a PESA column at 198 C. All the label was shown to be in pentadecanoic 

acid by comparison with standard material. T.L.C. on silica gel showed 

quantitative oonversion to ester. ' 

(Vi) Isolation of tl}e pure (214C )methyl pentadecanoate. 

(214C)methyl pentadeoanoate was separated from the carrier material, 

now methyl ~ 10 nonadecenoate by preparative layer chromatography. This 

was achievad on 0.25 mm silica plates impregnated with 1010 w/w silver nitrate. 

The solvent system employed was 10% etrer in petrol ether. The plate w~s 

visualised by spraying with a methanolic solution of dichlorofluorosoein ana 

viewed under U.V. light. The band corresponding to the saturated esters was 

scraped off and the pure C214c) methyl pentadecenoate eluted from the silica 

with etrer. 

(Vii) Hydrolysis of the ester to give (l14C)Pentadecanoic aoid. 

The ester was dissolved in 5)1. potassium hydroxide in methanol and 

the mixture refluxed for 30 mins. Then the solution was cooled and acidified 

with ooncentrated hydrochloric acid (0.2 mls). The (114C)pentadecanoio acid 
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was extracted with .3 x 5 ml aliquots of' ether. The etror extracts were 

bulked aui washed acid f'ree with water and dried by azeC1tropic distillation with 

ethanol. 
o 

The acid thus prepared was dissolved in dry benzene at - 8 C. An 

aliquot of' this solution was counted by scintillation in.4% P.P.O. in toluene 

using a packard Tri-carb scintillation spectrometer. The overall yield was 

.30.3!lc equivalent to 30.3)1,. 

2. Synthesis of' (214C) nonadecanoic acid f'rom(l14C) steario acid 

This synthesis was achieved by an identical procedur~ to the one 

used f'or(214C)pentadecanoic aoid described above i.e. Reaction Scheme I (page 43) 

R = CH3(C~)16-' The overall yield was 25.61-'c equivalent to 25.610. 

3. Synthesis of'(214C) cis 10 nonadecenoic acid f'rom (l14C) oleio aoid. 

This synthesis was also achieved by Reaction Soheme I (page 43) 

R = CH
3

(CH2 )7 CH = CH(C~)7-' except that the carrier employed was palmitic 

acid. The overall yield was 20.11-'c equivalent to 20.1%. 

I1 Preparation of' Substrates using a biological system to modify commercially 

.available labelled compounds. 

(i) The preparation of' (l14C}cis 9 heptadecenoate from (l.14C) margat'ic acid. 

(l14C)margaric acid (50[.1c IJh 8 mc/mM) was dispersed in water (5 mls) 

to which had been added 1 drcp of' lq% sodium bicarbonate solution and 1 drop of' 

Tween 20. The final dispersion was achieved by sonication. This dispersion 

was added to 20 mls of' a oulture of' Torulopsis apicola (equivalent to 1 gram 

cf' dry cells) in the nutrient medium in which it was grown (see Page 117 ). 

This culture was then incubated at room temperature f'or 6 hours. 

During this time the flask was shaken to improve. aeration. At the end of' 

this period the lipids were extracted by the addition of' 2:1 v/v chloroform 

IIlE'thanol (100 mls). This was allowed to stand overnight to enrura complete 

extraction. 0.73)1, saline (25 mls) was then added to the . t 260 d mu ure .. an 

the organic layer removed. The aqueous layer was wasred once with chloroform 

(25 mls) and the organic layers bulked. The solvent was removed at the pump 

and the lipid residue dried by azeotropic distillation with ethanol. 
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Till dry extracted lipids were then transmeil:1JTJated by refluxing with 

methanol,.benzene-sulphuric acid (20:10:1) v/v/v" (20 mls) for 90 minutes. 

Etlllr (100 mls) was added after oooling and the solution washed aoid f'ree with 

water. The ether was then removed at the pump and dried by azeotropio 

distillat ion with ethanol to yield the pure methyl esters. 

The esters were dissolved in dry ether and spread on to two 20 om 

x 20 cm 0.25 mm sil:ica plates impregnated with silver nitrate (10%). These 

plates were developed in 15% ether in petrol. ether and visualised by spraying 

with diohlorof'luorescein ani observed under U. V. light. Till monoenoio band 

was isolated and the e ste rs eluted from the silica with etrer. The uethyl (ll4-C) 

.<lis 9 h'>ptadecenoate was separated from the monoenoio homologues by prepc.rc.tive GLC 

on an apiezon G column at 198°C. 

The 6.14C)meth;ylili 9 heptadeoencate was tested f'or radiochemical 

purity by Radio GLC on PEGA at 198
0
C. It was f'ound to be chemically and 

radiochemioally pure. 

~ of' the ester thus obtained was oxidised with potassium 

217 
permanganate potassium periodate according to von Rudlof'f' s method. 

After decol"risation with sulphur dioxide the half' ester was extraoted with 

ether and the ethereal layer washed acid free with water. The etrer was 

removed at the pump end the produot dried by azeotropic distillation with 

ethanol. 

The half ester thus produced was dissolved in methanol (0.5 mls) 2O'i 

and an ethereal solution of diazomethane addad until the solution remaired 

yellow. After 5 mina the solvent and excess diazomethane were removed at 

tm pump and the pure radioactive diester obtaired. By ccmparison with a 

known standard an RCLO at 198
0
0 (PECA) the diester was shown to be dimethyl 

azelate. 

The (l14C) methyl .£!!! 9 heptadecenoate was dissolved in 5fo methanolic 

potassium h;ydroxide solution (5 mls) ani re£l.uxed for 1 hour. After cooling 

the solution was made acid with cone hydrochlorio aoid. Tm (ll4-C).£!!! 9 
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heptadecenoic acid was extracted with ether, wasl:ed acid free and dried as 

before. An aliquot of the acid vIas counted in.4% P.P.O. toluene solution on 

a packs-rd Tri-catb scintillation spectrometer and the yield was foum to be 

3511c equivalent to a 7QJ(, yield. 

The acid was dissolved in dry benzene and stored at _8°C. 

(ii) PrEParation of(l14C)m 9 nonadecenoic acid from(l14C)none.decanoic acid. 

A W>rren hen wad sacrificed and its liver (39.6g) removed. The 

liver was homogenised with 0.3M sucrose buffer pH7.4 (120 mls) in a potter 

homogeniser. All operations were done in an ice bucket to keep the tissue 

as cold as possible. The homogenate was centrifuged at 12,000 rpm for 

J5 mine. The supernatent was taken off and. centrifuged at 30,000 rpm for 

1 hour in an i\!SE40 refrigerated centrifuge. TI:e microsomal pellet was 

separated from th9 particle free supernatent. The microsomes ware stored 

at _300 C umer nitrogen and the particle free supernatent at _8°C. 

Microsc.mes (equivalent to 6g of the original liver) were suspended 

in particle free supernatent (12 mls) at 4°0 by homogenising the system in a 

p:rl;ter hand homogeniser. To this suspension was added the following 

cofactors; coenzyme A (0.6 mgm), NADH (4 mgm), NADPH (2 mgm), O.lM AT? (0.8 mls) 

0.5M phosphate buffer pH7.4 (2 mls) and a substrate suspension. The substrate 

suspension was made up as follows : (l]4C) nonadecanoic acid (prepared P 60 ) 

(lOfJ-c 17.3 mC/mM) suspended on O.lg1ml Bovine S<lnlm albumin (2.5 mls) to whioh 

hed been added O.lM magnesium chloride solution (1.0 ml) and 0.5M phosphate 

buffer pH 7.4 (1 ml). 

After the addition of the substrate the incubation medium was 

gassed with 70'/0 oxygen in air for 1 minute and then incubated for 6 hours at 

37°C in a reciprocating water bath. At the end of the inCUbation period 

tl:e reaction was quenched by pouring into 2:1 v/v chloroform-methanol. (50mls) 

and the mixture allowed to extract overnight. The precipitat ed milt erial was 

filtered off' and the lipids extracted and transmethylated as in the previous 

experinant (page 46 ). 
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The mixed methyl esters containing the (l14C) methyl cis 9 

nonadecenoate were dissolved in ether (5 mls) and spread on to two 20 cm x 

20 cm silica plates impregnated with l~ silver nitrate. These were ron in 

l~ .ether in petrol ether and the monoene band isolated by visualisation with 

dichlorofluoros()ein and viewing under U.V. 

The radioa.ctive (1 llt-c) methyl ili 9 nonadecenoate was isolated by 

an identical procedure to tha.t used for(l14C)ili 9 heptadecenoate. (page 47). 

Once again von Rudloff oxidation 217 yielded dimethyl azelate as the only 

radioactive 1lroduct. Radio GLC on pEGA at 19BoC showed the ester to be 

chemically and'radiochemically pure. After hydrolysis with ~ potassium 

hydroxide in methanol as before (page 45 ) an aliql.lOt was counted in.liJ1, p.p.a. 

toluene solution. This showed that thsre were 3.12fic equivalent to a 31.210 

yield. 

The acid was dissolved in dry benzene and stored at _BoC. 

II preparation of substrates requiring chemical modification of commercially 

labelled material. 

(:1.) Preparation of Q.
14c )ois 12 octadecenoic acid by reduction OfQ.14,£) 

linoleic acid 130 

(l14C) linoleic acid (lOOpc 5.91 mC/mM) was dissolved in dry methanol 

(0.2 mle). Diazomethane in dry ether was added until the solution remained 

yellow. After allowing the solution to stand for 5 mins the excess 

diazomethane and solvents were removed at the pump to yield (l14C)methYl 

linoleate in ouantHative yield. This ester was dissolve-d in dry methanol 

(1 ml) and 6(J'1 wlw h,ydrarj:m. hydrate (7.5111) was added. The course of the 

reaction was followed by the injection of lJll aliquots on to a RGLC containing 

o a FFAP column at 230 C. After 2 hours the reaction was stopped by the 

addition of water (5 mls) and dilute hydrochloric add (1 ml). The producb 

were extracted with 3 x 5 ml aliquots of ethsr which were bulked and washed 

acid free with water. Ths ethsr was removed at the pump and ths products 

dried by azeotropic distillation with ethanol. 
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Tl~ produots were separated by preparative TLC on silioa plates 

impregnated with 30,% silver nitrate and run in toluene 

(l14C) methyl ~ 12 ootadeoenoate was isolated from the plate by elution of the 

silica band with ether after it had been identified by TLC soanning using tr~ 

panax RTLS-l. 

The (l14C) methyl ~ 12 ootadecenoate was dissolved in 5fo potassium 

hydroxide in methanol (5 mls) and refluxed for 30 mins. After cooling and 

aoidifioation with oono. hydroohlorio aoid the procluot was extracted with 

3 x 5 mls of ether. The ether extracts were bulked and washed acid free with 

water. The ether was removed at the pump and the produot dried by azeotropic 

distillation with ethanol. A portion of the acid was cheoked for band 

position by von Rudloff's oxidative cleavage 217 and contained only the 

12 ootad.ecenoio acid isomer. An aliquot was also oounted by sointillation 

counting in,lfo P.P.O. toluene solution and this indioated that 201-'0 had been 

prepared equivalent to a yield of 20,%. 

A small quantity of the ester prior to hydrolysis was examined by 

RGL oontaining a PEGA oolumn at 198
0

C and was found to ba ohemically and 

radiochemically pure. 

(H) Preparation of (l14c)elaidic acid by isomerisation of oleic aoid. 

Oleio acid (501-'0 40 mC/mM.) was mixed. with stearic acid. (50 mgm) 

and. dissolved in methanol (2001-'1). An ethereal solution of diazomethane 

was add.ed. until the solution remained. yellow. This solution Vias allowed. to 

stand. for 15 mins and. the exoess diazomethane and. solvents Vlere removed at the 

pump yielding the corresponding methyl esters in quantitative yield. 

The methyl eaters were then dissolved in dimethyl cello solve. To 

this solution Vias ad.ded 6N nitrio aoid (751-'1) and 2N sodium nitrite (10C\.11). 

The solution was then heated at 650 C for 1 hour. After oooling the products 

Vlere extraoted with 3 x 20 mls of petrol ether. The petrol extracts Vlere 

bulked and. washed acid free with 5 x 10 mls of water. The petrol was removed 

at the pump and the products dried. by azeotropic d.istillation with ethanol. 
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A sample of the products was run on a 10% silver nitrate impregnated 

silica plate in 15(0 ether in petroleum ether. The plate was scanned on the 

panax TLC scanner and the peaks corresponding to the two geometrical isomers 

were observed. On spraying with chlorsulphonic aoid and acetic aoid and 

charring, the carrier stearate was also observed having a greater Rf value. 

(0.61) than the ~ isomer which in turn had a greater Rf value (0.55) than 

the ili isower Rf = 0.48. 

Two preparative plates were run exactly as above and the two 

radioactive bands scraped off separately. The product9 were eluted from the 

silica with ether and the elaidate band was run again on a similar plate to 

ensure all the stearate had been removed. The radiochemioal purity of the 

(114c) methyl elaidate was tested on RGLC on FFAP at 230 0 C. It was found to 

contain no radiochemical impurities. 

The (l14C) me'l'hyl elaidate was dissolved in 5(0 potassium hydroxide in 

methanol (5 mls) and the solution refluxed for 30 mins. After cooling the 

solution was made aoid by the addition of concentrated hydrochloric acid and 

the product extrd.cted with 3 x 5 ml aliquot s of ether. The eth3r extracts 

were bulked and washed acid free with water, The ether was removed at the 

pump and dried by azeotroping with ethanol. The pure acid thus prepared was 

stored in benzene at _8°C, 

An aliquot was dissolved in.1(o PPO toluene and counted on the 

packard Scintillation counter. This showed l2~c (= 21(0 Radiochemical yield) 

of (l14C) methyl elaidate to have been prepared, 

IV Preparation of suhstrates requiring introduction of the labelled atom 

A. Preparation of the precursors to the labelling step. 

1. cis 8 heptadecenoic acid 

This synthesis was aohieved using reaction soheme 11. 
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1?CHEME II 

CH
3 

(CH2)7 CH = CH - (CH2 )7 - COOH 

lBr/CTC 

CH3 (CH2 )7 IH - fH - (CH2 )7 - COOH 

Br Br 

l~/Br/cTc 
CH3 (CRZ)7 rH - fH - (CRZ)7 Br + CO2 

Br Br 

INa I/Acetone 

CH
3 

(CH2 )7 CH = CH - (CH2 )7 I 

tKOAC/HOAC 

CH
3 

(CH2)7 CH = CH (CH2 )7 - 0 COCH
3 

. lKOH/McOH 

CH
3 

(CH2)7 CH = CH (CH2 )7 OH 

lorO/IlOAC 

CH
3 

(CH2 )7 CH = CH - (CH2)6 COOH 

(a) Addition of bromine to oleic acid 

Oleic acid (20g) was dissolved in carbon tetrachloride, dried over 

calcium chloride and redistilled BP 76 - 77°C, (200 mls). Bromine (llg) was 

similarly dissolved in carbon tetrachloride (200 mls). The oleic acid 

solution was stirred magnetically and cooled in an ice bath. The bromine 

solution was then added slowly over a period of two hours and. the solution 

stirred overnight. Activated animal charcoal (5g) was then added and the 

stirring discontinued. After 3 hours the charcoal was filtered off leaving 

a colourless solution. The carbon tetrachloride was distilled off under 

vacuum to yield threo 9,10 dibromooctadecanoic acid (32.lg) equivalent to a 

yield of 99.6f.. 

The infra red spectrum of the product was determined as a thin film 

between sodium chloride plates on a Perkin Elmer 625 infra red spectrophotometer. 

Major peaks were as shown below:-

- 52 -



Broad OH (acid) 

carbonyl 

- Clf:2-

Product 

3000 - 3500 

1715 om- l 

2950 cm-l 

-1 cm 

starting Material 

-1 
3000 - 3500 cm 

1715 cm-l 

-1 2950 cm 

The weak peak at 1653 -1 cm due to the .£i!!. olefin was very difficult 

to observe but was visible in the case of the oleic aoid but not in the produot. 

The N.M.R spectrum was obtained from a pelidn Elmer 60 mos instrument with TM. S 

as standard e qual to 10f,. The spectrum of the starting mQterial was also 

determined. 

product 

Peak (')' ) 

- 3.6 

5.8 

7.5 - 9.1 

starting material 

~('1') 

- 3.6 

4.7 

7.5 - 9.1 

Multiplicity 

Singlet 

Doublet 

Multiplet 

Multiplici ty 

Singlet 

Triplet 

Multiplet 

Assignmen~ 

acid proton 

- CIIBr- CHBr-

Assignment 

acid proton 

- CH = CH -

CH3 ; C~ 

(b) Decarboxylation 0 f' threg 9! 10 dibromooctadecanoic acid 

No. of Protons 

1 (STD) 

2 

31 

No. of Protons 

1 (STD) 

2 

31 

~ 9,10 Dibromooctadecanoic acid (30g) was dissolved in dry, 

redistilled carbon tetrachloride (100 mls). To this was added red mercuric 

oxide (15g). 

This mixture was slurried by the use of a magnetic stirrer. The 

whole was then set under reflux in the absence of light and bromine (1l.2g) 

in dry, redistilled, carbon tetrachloride (50 mls) was added dropwise over the 

period of' 1 hour. Finally the refluxing was continued for 4 hours. The 

excess bromine was removed by the addition of sodium bisulphite and the yellow 

mercuric bromide and mercuric oxide were filtered off'. The organic layer was 

isolated and washed several times with water and finally dried by azeotropic 

distillation with ethanol. 
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A little of' this orude produot was run on a 0.25 mm layer in 

3ay. ether in petroleum ether with formio aoid (1 ml) addild. The product was 

muoh less polar (Rf 0.9) than the starting aoid (Rf 0.15) and appea~d in 

good yield. 

The pUre produot, 1,8,9, trtbromoheptadecane was isolated by 

column chromatography on Davison silica gel and eluted with lay. in 

petroleum ether. The produ~t was a white, low melting solid (28.3g) 

equivalent to a yield of 81% based on the acid starting ma.terial. 

Elemental analysis showed 0 = 42.12, H = 6.73, Br = 50.30. 

1,8.9 tribromoheptadeoane requires 0 =42,72, H = 6.91, Br" 50.37. 

Infra red data on a Perkin EIlJl9r 625 showed the absenoe ot.' the 

-1 h' ale broad bonded-oH a.t 2500 - 3500 cm and the loss of t e aCJ.d oarbonyl pe 

at 1715 cm-I. 

NMR showed tne loss of the aoid proton at - 3.6 'T. 

~Q-) Multiplicity Assignment Integration 

5.8 Doublet Br Br 2 (STD) 
- CH - CH -

6.8 Triplet - O~ Br 2 

8.0 - 9.2 Multiplet OH,3, - OH2 - 29 

(0) Finklestein Reaction of 1.8.9 tribromoheptadecane 

1,8,9 tribromoheptadecane (25g) was refluxe d in a 14% solution 

of dried sodium iodide in dry acetone (100 m18) for six hours. The solution 

was then f'iltered and added to a,solution of' sodium thiosulphate in water. 

The product was isolated by ether extraction and the bulked ether layers 

washed with water. Finally the solution was dried by standing over an-

hydrous sodium sulphate. 

-1 Infra red spectroscopy showed the presence of a weak band at 16580m 

due to ~ unsaturation. N.M.R. in carbon tetrachloride was also perf'ormed 
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~b1 Multiplicity Assignment Integration 

4.7 Triplet - CH = CH- 2 

6.8 Triplet -CH2 -Br 2 (STD) 

8.0-9.2 nb1r.iplet CH); - CH2 - 27 

The product was a viscous, clear liquid (12.6g) equivalent to a. 

yield of 67'/0. 

(d) Preparation of ,.a:, (cia 8~nYl acetate from the alkyl iodide 

1 IOdo ~ 8 heptadecene (12.5g) was dissolved in glacial acetic 

acid (10 mls) and refluxed for 2t hours with freshly fused, finely ground 

potassium acetate (5g). The reaction mixture was dissolved in diethyl ethar 

(100 mls) and washed free of acid with water. The ether solution was dried 

OYer an hydrous sodium sulphate. The product was obtained pure by column 

chromatography on Davison silica gel. The eluting solvent being 10% ethe:r 

in petroleum ether. 

LR. spectroscopy showed an ester peak at 1740 cm-l and a weak 

peak at 1658 cm
1 

indicating the retention of the 2.!!! double band. This was 

confirmed by the following N.M.R. data. 

~(T) 

4.7 

6.8 

7.4 - 9.1 

Multiplicit"Y 

Triplet 

Triplet 

Multiplet 

The product was a colourless 

(e) Hydrolysis of the ester 

Assignment 

- CH = CH -

- CH2 - 0 

No. of Protons 

2 

2 

CHy 'CHy CH2 .32 

oil (5.0g) equivalent to a yield of 

I, £i!! 8 heptadecenyl acetate (5.0g) was dissolved in 5.Po methanolic 

potassium hydroxide for It hours. At the end of this period the solution was 

made acid by the addition of concentrated hydrochloric acid. The product was 

extracted into ether. The ethereal layer was washed "acid free with water and 

finally dried with ethanol. This yielded ,3.85g. equivalent to a yield of 9:1% 

of a colourless liquid. 
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The infra red spectrum of a thin film showed the complete absence 

-1 6 -1 of a carbonyl peak at 1740 cm and. the pI'\lsence of an OH at -' 00 cm • 

(f) Oxidation of the alcohol to the corresponding acid 

Cis 8 li;ptadecenol 0.7g) was dissolved in glacial acetic acid - . 
(10 mls) and added to a solution of chromium trioxide (1.5g) in glacial 

acetic acid (45 mls) and water (5 mls). The solution was stirred magnetically 

and cooled in ice during the addition. The stirring was continued for -' hours 

after the addition had been completed. After this period the solution was 

poured out on to ice. When the ice had melted the product was extracted with 

ether. The ether layer was washed acid free with water and dried with 

ethanol. This yielded a yellow viscous liquid (lISg) equivalent to 46.3% 

yield. 

A sample of the product (5 mgJiI) was esterified with diazomethane and 

the resulting ester run on a PEGA column at 19SoC. The product gave a peak 

corresponding to metlwl heptadecenoate by comparison with a standard carbon 

number plot. 

2. Preparation 9f Methyl 17 octadecenoate by Kolbe coupling 

(a) Preparation of metiwl hydrogen azelate 

Azelaic acid (lOg) was dissolved in methanol (50 mls). Concentrated 

sulphuric acid (2.5 mls) was added dropwise and then the whole solution was 

refluxed for 90 mins. After this the methanol was reduced in volume to 

15 mlR and ether (100 m1s) was added. This ethereal solution was washed acid 

free with water and dried by standing over anhydrous sodium sulphate. This 

yielded (1l.25g) of dimethyl azelate (BP 146 - 147°C at 15 mm) equivalent to 

a yield of 97)~. 

Dimethyl azelate (lO.Og) was dissolved in methanol (100 mla). To 

this was added a solution of potassium lwdroxide (2.6g) in methanol (100 mls). 

The solution was allowed to stand overnight. The methanol volume was tren 

reduced to 20 mls at the pump. Ether (100 m1s) and water (100 mls) were 

added and the ethe1'eal layer discarded after shaking. The water layer was 

then made acid and the products extracted into ether, washed acid free and 
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dried over sodium sUlphate. The ether was distilled off to yield a 

mixture of azelaic acid and the half ester. These were slurried with 

chloroform and the half ester isolated by colum chromatograpqy on silica 

gel. The eluting solvent was pure chloroform. The acid remained on the 

column whilst the half ester was eluted in 500 mls of chloroform. On 

removal of the chloroform at the pump (2.8g) of a clear viscous liquid was 

obtained. This is e qui valent to a yield of 3Of. based on the diester. 

T.L.C. on silica plates eluted with ether, petrol ether formic 

aoid (30 : 70 : 1) and visualised in iodine vapour showed this to be pure 

and free from any diacid or diester by comparison with standards and having 

an Rf value between the two. 

NMR data showed a ratio of 3 1 between the methoxy protons at 

6.4 T and the aoid singlet at 0.87'. 

(b) !2.:lJle' ooupling of 10 undeoenoio acid and methyl hydrogen azelai!!, 

Metqyl hydrogen azelate (2.5g), 10 undeoenoio acid (lOg) and sodium 

(200 mgm) were dissolved in dry methanol (200 mls). Platinum eleotrodes 2 cm 

square were plaoed 1 mm apart in this solution. Eleotrolysis at 240v DC 

was oarried out for 32 hours at which time the solution beoame just alkaline. 

The current which flowed was 0.4 amps. The solution was kept just below 

o 
40 C by the use of cooling coils in the solution. Periodically the current 

was reversed to help keep the electrode surfaces olean. 

After electrolysis the polymer l1hich had been formed was filtered 

off and the volume of methanol was reduced to 20 mls and ether (100 mls) 

was added to the solution. This solution was then washed with water to 

remove the sodium salts. The ether was removed at the pump and the 

products dissolved in petrol ether (25 mls). 

The individual products were separated by silicic acid column 

chromatograpqy by elution with petrol ethe~ rising to 5,% ether in petrol 

ether. The yields of products w.ere as follows:-
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Polymeric material 2.0g 

Hydrocarbon 

Diester not detected 

Methyl 17 octadecenoate 1.0g equivaleilt to 25% yield 

based on half ester. 

The above data was obtained by triangulation of GLC traces obtained 

by injection of the petl:'ol ether solution on to a PEGA column at 19SoC. 

The methyl 17 octadecenoate had a retention volume equal to 18.75 

carbon atoms compared with methyl oleates 18.45, 

NMR data was as follows:-

peak (:r) .M!c'l tiplic ity 

6.4 Singlet 

J •• O ... 4.5 Multiplet 

5.1 Triplet 

7.6 - 8,8 Multiplet 

Assignment 

- 0 - CH3 

= CH -

C~ = 
- C~ -

No. of protons 

3 (STD) 

1 

2 

30 

B. Labelling of Precursors requiring elongation of the carbon ohain with 

14C potassium oyanide 

Reaction Scheme III 

R COOCH LiAl Hi.. > 
• 3 in ether 

* RCH2COOH ~(----

* = 

(i) Reduotion of ester to alcohol 

Methyl 17 octadecenoate (30 mgm) was dissolved in sodium dried 

etb3r (5 mls) and refluxed for 1 hour with lithium aluminium hydride (20 mgm). 

At the end of this period the excess lithium aluminium hydride was destroyed 

by the addition of we.ter (5 mls) containing dilute hydrochloric acid (1 ml). 

The alcohol produced by the reaction was extracted into ether which was washed 

aoid free with 5 ml aliquots of water and finally dried by azeotropic distHI-

ation with ethanol. This product was examined by TLC on silica plates run in 
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20% diethyl ether in petroleum ether. This showed complete conversion to 

aloohol by oomparison with suitable standards. 

The yield of cis 17 octadeoenol was (26.4 mgm) equivalent to 98.5%. 

(ii) Al£.Q.hol to p-toluene sulphonate 

ci~ 17 Ootadecenol (26 mgm) was dissolved in pyridine (0.5 ml) 

which had been dried over potassium hydroxide pellets.· To this solution 

was added (26 mgm) of p-tcluene sulphonyl ohloride. This mixture was 

allowed to stand overnight at room temperature. The whole waR then 

dissolved in ether and the pyridine washed out with dilute hydrochlorio aoid. 

The solution was then made alkaline by the addition of 5N oaustio potash and 

the excess p-toluene sulphonic acid washed out as the potassium salt with 

water. Finally the solution was washed to neutral pH with water and dried 

by azeotropic distillation with ethanol. 

The reaction was once again tested by TLO on silica plates develcped 

in 30% ether in petroleum ether. This showed that the reaction had yielded 

about 80% of the required produo+, and given about 20% of the alkenyl chloride. 

No starting material remained unchanged. 

(ili) Preparation 'lf the alkenyl nitti-le - intro~£!W'f the label 

The reaction products from stage (ili) above were dissolved in 

:!).M.S.O •. containing 140 potassium cyanide ex Amersham 10CJi.!.c (200 Ill). 

The solution was heated at 90°0 overnight. After cooling the whole was 

dissclved in ether (20 mls) and washed five times with water to remove the 

DMSO and the potassium salts formed as by products. The etblr was then 

removed at t~ pukp and the nitrile and excess starting material dried by 

azeotropic distillation with ethanol. 

(iv) Methanolysis of the nitrile 

The products from stage (ili) were dissolved in a solution of 2510 

hydrogen chloride in methanol (;:; mls) and allowed to stand overnight. Ether 

(20 mls) was tbln added to extract the products and the ether washed acid free 
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with successive aliquots of water. The reaction was tested by TLe on 

silica run in 15% ether in petroleum ether. As well as the usual ch9.rring 

with sulphuric aoid the plate was scanned on the panax radio soanner to 

identify the position of the label. It was found to correspond to the 

ester. The active ester was isolated by preparative TLC on a 1 mm silioa 

plate in the same solvent system as above. The active band was identified 

by scanning and scraped off the plate. The active ester was eluted from 

the silica with ether. 

The radiochemical purity of the ester was tested by RGLC on FFAP 

at ZlrOoC. Although the major constituent was founa to run at 19.75 

oarbon numbers there were several impurities present also. 

The radiochemically pure (l1lrC) methyl 18 nonadecenoate was 

isolated by preparative GLC on FFAP at 230
0
C. 

Cv) Hydro:j,y§is of the ester 

The pure ester from (iv) was dissolved in 5% potassium hydroxide 

in methanol (5 mls) and the solution refluxed for 30 mina. After oooling 

the solution was made acid by the addition of concentrated hydrochloric 

acid. 

The 18 nonadecenoio acid was extracted with 3 x 5 ml ali~uots of 

ether whioh were bulked and washed aoid free with water. The ether was 

evaporated at the pl!mp and dried by azeotropic distillation with ethsnol. 

The purs acid thus prepared was stored in benzene at -SoC. 

An aliquot of the above benzene solution was dissolved in.4% 

PPO toluene and counted on a packard sointillation counter. This showed 

that 8 Ilc of the aoid had. been prepared. 

(l1lrC) nonadecanoio aoid was prepared using reaction soheme III 

(page 58 ) R = CH
3

(CHZ)l6-' 

stearic aoid was lllethylated with diazomethane in the usual manner 

to give the starting material. 10llc of'(lllrC) nonadeoanoic aoid was 

prepared in this manner and used to prepare (lllrC) ois 9 nonadeoenoio aoid 

(see page 1r8 ). 
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c. r,abelling of precursors requiring the labelled material to be of the 

same chain length 

Reaotion Scheme IV 

CH3(CH2)n CHBr CHBr(CH2)mCOOH 

1·"'/Br2 

Compounds prepared using this reaction scheme:-

.!!! !! 

(l14C).£i!! 8 heptadecenoic acid 6 7 - (1) 

(l14C).£i!! 7 octadecenoic acid 5 9 - (2) 

(114C)ili 11 octadecenoic acid 9 5 - (3) 

(1) was prepared (see page 52) and (2) and (3) were the kind 

gift of F. D. Gunstone and I. A. Is~ail. 

(i) Addition of bromine to the $ a1keno~.£,M; 

This reaction was carried out exaotly as before (page 52 ). 

(ii) Deoarboxylation of the threo~moal!!:anoio acids 

The product from stage (i) above (30 mgm) was dissolved in dry 

redistilled carbon tetrachloride (0.5 mls). To this was added red mercuric 

oxide (15 mgm) and bromine (11.2 mgm). This mixture was shaken ~n a wrist 

action shaker for 72 hours in the dark at room temperature. The excess 
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bromine was removed by the addition of sodium metabisulphite and the yellow 

mercuric brom:.de filtered off. More carbon tetrachloride (20 mls) was 

ad'led and the organic layer washed several times with water. The carbon 

tetrachloride was removed at the pump and the products dried by azeotropic 

distillation with ethanol. 

A small amount of this product was run on TLG on silica plates 

developed in :% ether in petrol ether. This showed in each case unreacted 

acid Rf = 0 and two reaction products. The major one approximately 

60% Rf 0.72 and a minor one approximately 20f0 Rf = 0.65. Both these 

products were isolated by preparative TLC in the above solvent system. The 

bands were visualised by spraying with dichlorofluoroscein in methanol and 

viewing under U. V. light. 

ether in the usual way. 

The products were eluted from the silica with 

A mass spectrum of each material was obtained on a MS12 mass 

spectrometer. This showed tm major peak to be the desired tribromo 

product and the slightly more polar material to be polybrominated, containir.g 

four or five bromine atoms. 

The major oompound had a molecular ion at 476 which is correct 

Also the splitting pattern of the molecular ion peak showed 

that there were three bromine atoms in the molecule. This can easily be 

detected because bromine has two naturally occurring isotopes in similar 

abundance and therefore a tribrominated compound will split the molecular 

ion peak into 4 peaks whose heights are in the ratio of 1 : .3 : .3 : 1. 

Also loss of two bromine atoms could be seen in the spectrum at 397 and 

317. 

The oompound having an Rf value equal to 0.65 had a molecular ions 

at 557 oorresponding to C17H32Br4 and. a smaller one at 63i' oorresponding to 

C17H31Br5' The splitting of the peaks in the lower region of tm spectrum 

is also in agreement with this. 
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(ill) Debromination of the tribromoalkane 212 

The desired reaction product from (ii) above i.e. the 

tribromoalkane Rf 0.72 was dissolved in absolute alcohol (2 mls). This 

solution was added dropwise to a mixture of finely divided zinc (100 mgm) 

in reflux1ng absolute alcohol (2.5 mls) to which had been added ~ w/v 

hydrogen bromide in water (3 drops). The refluxing was continued for 

1 hour. After this time the zinc was filtered off and the filtrate 

dissolved in ether (20 mls). The ether was washed with 5 x 5 mls of water. 

The ether was then removed at the pump and the products dried by azeotropic 

distillation with ethanol. 

A sample of the product was run on TLC on silica plates in 4% 

ether in petroleum ether. This showed that the product had a larger Rf 

value (0.72) against the starting materials value of (0.63). This was 

strong evidence in favour cf the reaction having proceeded to yield the 

alkenyl bromide. The overall yield of this reaction was 8q1o. 

(iv) Labelling of the alkenyl bromide 

This reaction was performed exactly as the labelling of the 

tosylates (page 59 ). 

(v) Methanolysis of the nitrile 

This reaction was performed exactly as before (page 59). 

When the ester had been prepared an aliquot was tested by TLC 

on a silica plate run in 1510 ether in petroleum ether. The plate was 

scanned on a panax RTLS-l thin layer scanner to identify the position of 

the labelled material then sprayed with dilute sulphuriC acid and charred 

o 
at 250 C to visualise the mass spots. Apart from label in the ester spot 

there was also label identified at the origin and in a more highly polar 

material Rf 0.05. 

(vi) Isolation of the pure ester 

A primary separation was made by running a preparative plate in 

the solvent used in (v) above. The radioactive band corresponding to 
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methyl ester was id3ntified using the Panax RTLS-l thin layer scanner. 

The silica band was scraped off and the radioactive compound eluted from 

it with ether. The radiochemical purity was checked by RGLC on a FFAP 

o 
column at 230 C. This showed some impurities but these were removed by 

preparative ~LC under the same conditi0ns as above. 

The bond position was also cwcked by v:m Rudloff oxidation 217 

(Vii) HYdrolysis of the ester 

This reaction was carried out as before (page 45 ). The pure 

acids were stored in benzene at -SoC. Aliquots were dissolved in.4% PPO 

in toluene as usual and counted by scintillation counting on a packard 

TriCarb scintillation counter. This showed that the follOWing :tediochemical 

yields had been obtained. 

ID}2-1!£.i 

(114C)~ S heptadecenoic acid 

(l14C) cis 7 oChdecenoic acid 

o.14-C)Cis 11 octadecenoic aoid 
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SECTION II 

Studies of the positional specificities of enzymic 

de saturation of saturated. long chain fatty acids 



Introduction 

Apart from tb3 ubiquitous oleic and palmitoleic acids a wide vl).riety 

of naturally occurring monoenoic fatty acids have been characterised. These 

acids hava not only a range cf different chain lengths but also different 

positions for the unsaturated centre. Examples to illustrate this point are 

given v.ith references in the tables below:-

Table I. Naturally occurring mancenoio fatty acids having the unsatura.teg. 

~re nine oarbon atoms from the methyl end of the molecule. 

~ 

~ 3 dodecenoic 

~ 5 tetradeceI'.oic 

ili 7 hexadecenoic 

ill 9 octadecenoic 

~ 11 eicosenoic 

~ 13 docosenoic 

~ 15 tetraco senoic 

Trivial~ 

oleic 

cetoleic 

e:ruoic 

nervonic 

Source 

Lactobacilli 

Sperm Whale 

Euglena Gracilis 

In most fats 

Simmodsia 

Californica 

Tl:.'opl!.eolum seed 

Brain tissue 

cerebosides 

E!:i. 

44 

222 

223 

224 

225 

226 

Table II Naturally ocourring moncenoic fatty acids having the unsat'.lrated 

centre in the 9-10 position 

.£i! 9 decAnoic 

~ 9 dodecenoic 

~ 9 tetradecenoic 

~ 9 hexadecenoic. 

~ 9 octadecenoic 

~ 9 eicosenoic 

Trivial name 

myristoleic 

palmitoleic 

oleic 

gadoleic 

- 66 -

Ocourrence 

Milk fats 

Butter fat 

Pycnanthus kombo 

- marine fats 

constituents of 

nearly all natural 

fats 

marine oils 

~. 

227 

228 

229 

230 



·Table Ilr Naturally occurring monoenoic fatty acids which do not fit in 

the above classes 

Trivial nana 

ill 3 decenoic 

ili 5 dodecenoic 

ili 7 tetradecenoic 

~ 3 hexadecenoic 

~ 5 hexadecenoic 

ili 10 hexadecenoio 

ili 5 octadecenoic 

ili 6 octadecenoic pe trose linic 

ili 11 octadecenoic ili vaccenic 

trans 11 octadecenoic trans vaccenic 

trans 10 ootadecenoi.o 

Occurrence 

Jactobacilli 

lactobacilli 

lactobacilli 

algae and spinach 

12.:megate~ 

M. phle:h 

B.megaterium 

parsley seed 

brain ti ssue 

animal and milk 

fats 

animal and milk 

:Cats 

Ref. -

84,85 

54 

43 

54 

231 

232 

19 

19 

The series of acids in .Table I have their double bond.s in the 9-10 

position if the methyl group is assigned as the first carbon atom. These acids 

will be referred to hereafter as W9 acids. The acids in Table 11 are tho 

carboxyl 9 series of acids since their double bond is 9-10 using the carboxyl 

carbon as carbon 1. The acids of Table llr do not fall into either of the se 

oategorie s. 

The ooncern of this section is the positional specifioity of double 

bond formation by direct aerobic de saturation. Some of the above acids 

listed in Table III occur in systems where the anaerobic pathway is operative 

e.g. those isolated from lactcbacilli and streptococci, 

43 governing the bond position are fully understood 

and hence the factors 

• All the others 

occur under aerobic conditions. This does not mean however that they all 

occur by a direct aerJbic desaturation of the saturated precursor of the same 

chain length. Many of the acids are formed by a direct aerobic desaturation 
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of a shorter chain length material followed by a subsequent elongation by 

1 
units of two carbon atoms tn the malonyl CoA pathway • An example of 

this is the pathway postulated by Nagai and Block for the synthesis of 

unsaturated acids in photoa\1xotI'qJhi.o ];'uglena 231: This explains the occurrence 

of ~ .5 tetradecenoic and ili 7 hexadecenoic acids Fig.I, without direct 

de saturation of myristic and palmitic acids respectively. 

C10: 0----+) C12:q,~.Gl4- : 0 --)C16 : O--~>C 18 0 . '.~ . 

.21! 3 C12:1~~ 5 Cl4-:1~.21! 7 c16:l ~cis 9 C18:1 

Fig.l pathway proposed for the syathesis of unsaturated acids in 

.\Jhot~auxotropic Jl)\glen~ 

23.5 
JacOD and Grimmer demonstrated the presence of a large number of 

monoenoic acids of varied chain length and double bond position in human depot 

fat but suggest that many of' them arise by either ~-oxi@tion or chain 

elongation ot' monoenoic acids of various chain length having thei'~ double 

bond in the usual 9 :10 positien. Another possibility to account for SO'1)9 of 

the isomers is that they are assimilated in the diet. 

HOwever despite the points made above many acids are formed by direct 

de saturation of the compound having the same chain length. Bloch 43 showed that 

whole cells of Mycobacterium phlei would con~ert palmitic acid directly into 

~ 10 hexfl.decenoic acid. The same author showed that llC.cillus megaterium 54. 

converted stearic acid to..£!.! .5 octadecenoio acid and palmitic acid into 

.21! .5 hexadecenoic acid. The conversion of stearic acid to petroselinic acid 

by parsley has not been finally proved to be a direct de saturation though there is 

evidence which suggests this 236. 

As well as the above examples of double bonds being placed in positions 

other than 9:10 in the carbon chain there are a great many examples of direot 

desaturation of' fatty acids of several different chain lengths to their 
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corresponding 9:10 monoenes oocurring throughout the whale spectrum of living 

47, 49, 56 systems e.g. • 

In all systems however, where aerobic de saturation occurs, the 

position of the double bond whether it is in the 9:10 position or not is 

specific for that system. There is no variation, under identical oonditions, 

in the position of the double bond. 

This raises the question of what feature of the· substrate molecule 

determines the position of de saturation. 

It is an investigation into that positional specificity with which 

this section is concerned. Animal, plant and yeast systems have been 

investigated to determine whether or [lot direct aerobic desaturation of labelled 

compounds oould be demonstrated. Where this has been established the bond 

position of the monoene has been determined and attempts have been made to 

alucidate the factors which cause the bond to be in that position. This has 

been dore by using a homologues series of fatty acids as substrates. 

Other factors, for example incorporation into lipid and the rate of 

de saturation over a given time for all the homologues, were studied. The 

latter gave an indication of the number of enzymes involved in dasaturaticn and 

their o!ltimum chain length. 

The other Vlork which is described in this section is the effect of 

chain length of substrata on the inhibition of desaturation by sterculic 

acid 8-(2-octyl-l-~propenyl) octanoic acid. sterculic acid is a potent 

inhibitor of the desaturation of stearate to oleate in both animal237 and plant 

63 
systems • 

cyclopropene 

this linkage 

The action of the inhibition is believed to be due to the 

ring sinoe alcohols, methyl esters and hydrocarbons containing 

63 
all cause inhibition • The mechanism of inhibition of the 

stearate to oleate desaturation is thought to be due to the irreversible binding 

by the cyclopropene ring of an essential thiol group of the total enzyme 

activation complex. Evidence to support th::'s comes from the fact that sterculic 

acid when treated with L-cysteine showed evidence of consuming the sulphyd'!'yl 
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groups. Also simila.c inhibitions to the one s caused by sterculic acid are 

'trought about by iodos,'Jetanide 238 a known sulphydryl inhibitor. 

Dietary sterculic acid causes inoreased amounts of steario acid and 

reduced e.mounts of oleic a'Jid .. in the lipids of chicken tissue238-,241Rieser and 

Raju 242 showed that an in vivo effect of dietary sterculic acid could only be 

demonstrated if labelled acetate was replaced as precursor by stearic acid. 

Johnson 237 exte!1ded this work to show the inhib::.tion of desaturation of 

stearic acid to oleic acid in liver preparations. The same author went on to 

study the effect of chain length from CIO - C20 on the inhibition 241<; 

Since sterculic aoid is a plant produot the effect of sterculio acid 

on de saturations in plants is an interesting problem. It was initially 

inyestigated by James Harris and Bezard 63 who also showed that syntheses 

of unsaturated acids from aoetate were unaffected by sterculic acid. They 

also studied the effect of sterculic acid on decaaoic, lauric, myristic, 

palmitic, stearic and oleic acids and discovered that inhibition increased with 

chain length and was complete at the stearic acid level. Also they discovered 

that the effect of the sterculic acid on the enzyme converting oleate to 

linoleate was not as sensitive to sterculic acid as the stearate desaturase. 

The whole of this picture was rounded off in this seotion when all the aoids 

from C14 --? C19 were incubated vd th Chlorella vul,garis together with 

sterculio acid and the total effect of ohain length on the steroulate inhibition 

was studied. 
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RESUM'S AND DISCUSS!Q.!1 

The ef?e~t 01' the structure of the substrata molecule in the desaturation 

of a saturated fatty acid to pro<luce a monoe-noic fatty acid revolves around the 

chain length of the acid since substituents along the chain form an unnatural 

complication to the enzyme system. James49 a~ong8t several workers have used 

~droxy and epoxy fatty acids in animal and plant systems and have been ~nable 

to demonstrate any de saturation at all. If individual members of a homobgous 

series of fatty acids are incubated with a living syctem, the position of the 

resulting bond will tell whether the desaturase system is specific for one chain 

length, for a given number of carbon atoms from the methyl end, or for a given 

number of carbon atoms froIt the carboxyl end of the molecule. The fact that a 

specificity is involved is assumed from the well re~orded observations that a 

given prp.cursor will, under the same conditions in the same system, always yield 

the sa me mo noe ne • 

In talking about number of carbon atoms from ends of the substrata molecule, 

a p~sical distance along the enzyme surface from a point of reference is implied 

and this work would hope to show where the point of referenoe for the substrate 

molecule on the enzyme surface occurs. 

This point of reference for the substrate molecule could be a covalent 

attachment of the fatty acyl resi<lue by its carboxyl end either directly to the 

enzyme or indirectly via its AcP or CoA thioesters. Any point of reference 

involving the distance from the methyl end could only arise by a physical "fit" 

of the substrate into a cleft in the enzyme surface for example. Clearly it 

could not involve covalent bonding. If the sUbstrate had to be of a given 

chain length in order to be de saturated, points of reference for both ends of 

the molecula would be necessary. 

From these studies also data about the actual shape of the enzyme surface 

in the active region and some evidence of the actual interaction between substrate 

moleoule and enzyme may also be gained. 
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The close involvement of lipid class, in desaturation, as previously descrlbea, 

prompted the investigation in some 'of the systems of the lipid formation 

accompanying the desaturation and the amount of freshly desaturated acid found in 

the classes of polar lipids studied. 

The first system studied was the photosynthetic green alga .Qhl9!:~lli 

vull'jaris. The culture was grown in the "rich" medium (page137) and then 

transferred to ph~spllate buf:!'er in which the incubations were carried out. The 

reason for this is that in the rich gluccse medium the alga exists heterotrophically 

and under these conditicns will not desaturate palmitate or stearateGo •62 • The 

longest chain aoid that it will convert to oleate is myristic acid. When the 

cells are transferred to phosphate buffer, they undergo a change in tatty ~cid 

com!,osition. This is due to a change from the heterotrophic to a photo<lynthetic 

mode of existence. This is shown by the fact that more linoleic Md linolenic 

acid is formed. These acids are typical of photosynthetic systems24..5-247. 

The incorporation of the added saturated precursors is shown in table I. 

Desaturation, elongation, breakdown and resynthesis are all taking place in this 

system. Elongation was only noted in the case of even ohain lengtb fa·~ty acids 

and decreased with increased chain length. See fig.!. No direct desaturation 

was observed in the oase of the laurate and the majority of the added preou~sor 

was elongated mainly to oleate which showed that aotivation was not disoriminated 

against by this chain length. It is cpite likely that one of the reasons for 

the 1aok of de saturation in this case is the faot that elongation or incorporation 

into lipid is so favoured th9.t direct desaturation has no time to ocour rather 

than being itself prohibited. The increase of' direct de saturation of substrate 

as the extent to which it is elongated decreases,(Cl2'-;C18). may in fact be 

merely a reflection of 'the relative rates of the two competing reactions. This 

assumes a dependence of reaction rates on the chain length of ths precursor. 

with this kinetic approach however, it is not easy to explain the complete non­

existenoe of elongation in the case of pentadccanoic acid exoept that this is 

not a known interme diate in the malonyl Co! pathwayl Md it may be that as suoh 

it cannot be incorporated into it although the yeast Torulopsis apicola did 
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extend pentadeoanoic aoid to margario aoid (see page 79). 

I Ra. dioac ti ve Labelled Precursors I 
Product 

.. . , ·_.0-. 

16:0 
I 

18:0 12:0 14:0 I 1.5:0 17:0 19:0 
I 

12:0 8 • .5 - - - - - -, 
12:1 - - - - - - -
14:0 Trace 32.5 - - - - -
14:1 - I 15.8 - - - - -
15:0 - - 60.5 

, .. - - -
15:1 - - 33.1 - - - -
15:2 .- - 8.4 - - - -
16:0 8.0 21.1 - 64.2 - - 6.1 

16:1 2.1 5.6 - 17.8 - - Trace 

16:2 - 2.0 - 6.8 - - -
17.0 - - - - 32.3 - -
17:1 - - - - 48.2 - -
1712 - - - - 19.5 - -
18:0 Trace Trace i - Trace - 9.5 1.0 I 
18:1 25.2 9.0 I - 5.0 - 27.9 8.0 

I I 18:2 56.2 I 15.8 - 5.8 - 62.6 2.1 , 
I ! 

19:0 - - I - - - - 48.4 

I 19:1 - - - - - 29.1 

I 
-

I 

6.31 19:2 
I, 

- I - - - - -
I I I " I 

Table I 

Labelled fatty acids p~ed from labelled saturated precursors by whole cella of' 

Cb1npeJJa mllgaris 

However, having said all this every other saturated precursor except 

the laurate was not only aotivated by the system but did also yield monoenea of' 
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the same chain length. Tl:e f'act that the se occurred by direct aerobic 

de saturation alone was indicated by the retl'l11.1'ri.on of' the radio label in its 

original position in the de saturated products. All the precursors exoept 

laurate and myristate produced dienes of' the same chain length as well as 

monoenes. Since the dienes were produced f'rom monoenes by a f'urthel" 

desaturation the f'igures f'or saturated to monoene conversion which occur in 

table II are the sums of' U.e conversion to monoenes plus dienes •. 

I Total Desaturation 

Preoursor 
(Monoene + Diene ) , 

A7 Series /:>.9 Series 

(l14C)_ do decanoio - -
(l14C)_ tetradecanoic 10.6 5.2 

(21l~C)_ pe ntadecanoio· 12.8 28.7 

(l~C)- hexadeoanoio 8.3 15.5 

(l14C)_ heptadecanoio - 67.7 

(l~ 
C)- ootadeoanoio - 90.6 

(2~C)- nonadeoanoio - 35.4 

Table II 

Total amount of' de saturation in individual monoenoio series produoed f'rom 

~led ~aturated pr'loursors by whole cells of' Cblpw-'1.la yu]gar~s"" 

When the bond positions of the monoenes were determined, all the 

precursors were f'ound to have given a 9: 10 monoene. However myristio, 

pentadecanoic and paltnitic had also produoed a 7:8 monoene. The relative 

amounts of each appear in table II and are plotted in fig.II. Clearly there 

are at least two enzymes active in this system. The first of these is chain 

length dependent and introduoes the double bond in the 7:8 position. This has 

an "ptilIUm chain length of fifteen carbon atoms but will not accept acids 

longer than sixteen carbon atoms. The second enzyme system aooept s any aoid 
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longer than thirteen carbon atoms and introduces a double bond in the 9 ;10 

po:Si:tion. The fact that the radio label is retained in its original position 

in all these studies excludes the possibility that any of these produots arise 

from breakdown and resynthesis and verifies that direct de saturation has 

occurred. 

Looking quantitatively at the desaturation caused by this second 

, ehzyme (see fig.II) it has tVf,J peaks in the curve which indicates that this 

9;10 desaturase could, in fact, be two enzymes, one which deals with shorter 

chain length acids (C14- Cl6) which has its optimum at pentadecenoic acid 

and another which deals with longer chain acids which has an ()ptiJlllm at C18. 

It is not unknown fer more than one enzyna to be used, to perform the same 

reaction from a series of acids depending on their chain length. Wald1248 

showed a similar thing when what was thought originally to be a single enzyme 

for conversion of the ~-Qydroxy acid to the ~~ monoenoic acid in the malonyl 

CoA pathway (see page 4o), turned out to be three, each responsible for a small 

range of chain lengths. 

The rea;30n behind the sudden out-off of the 7:8 desaturase at margaric 

acid could be due t .. a side group from the peptide chain ef the enzyme 

projecting !)ut from the enzyme surface at the position the seventeenth carbon 

atom would occupy, causing a steric block. This would prevent the substrata 

lying down on the enzyme surface in general and the active site in particular. 

Alternatively, it could indicate the depth of a oleft in the enzyme tertiary 

structure if associati~n with the substrata involves enfolding. The 

implications of these results to the environment of the substrate in the enzyme 

substrate complex will be dealt with in more detail later. 

All the desaturases in ChJnrella vulgaris produce their characteristj,Q 

desaturation at the same position (whether it be 7:8 or 9:10) irrespective of 

the chain length, providing that this is acceptable at all to it. Thus, 

providing it does not completely inhibit ddsaturation, as in the case of the 

7:8 desaturase, the number of methylene groups beyond the desaturatiancentre 
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does not affect the position of the double bond .• In other vrords it is the 

distance from the carboxyl group which is specific to the enzyme so far as the 

position of de saturation is conoerned. A pqysical attachment of tha carboxYl 

end of the substrate molecule to the desaturase enzyme complex is indicated by 

this, although the precise form of the attaohment, whether it is the actual acid 

that is joined to the enzyme, or either its coenzyme A or ACP thiolester, is not 

yet known. 

The 7:8 desaturase and the shorter chain length requiring 9:10 

desaturase are very similar in that they both have the same optiI1llm chain length 

(pentadecanoic acid) and are unable to deal with lauric acid. This lends strength t", 

the theory that they were originally the same enzyme but that the 7:8 desaturase 

has arisen by the loss of one amino acid between the active site and th" point 

Gf attachment of the acyl function. 

The loss of one amino acid from the polypeptide chain, as suggested, 

would reduce the distance by an amount corresponding to two methylene units in 

the acyl chain. If the difference between the 7:8 desaturase and the 9:10 

desaturase is one amino acid residue and since the cut-off point of the 7:8 

desaturase is at a substrate chain length C17 then, if' the hypothesis is correct, 

it would mean that the cut-off point of the 9:10 desaturase should be at a substrata 

chain length of C19. This would place the side group in the enzyme chain, or 

too limit of the oleft or hole responsible for the cut-off, at a position in the 

protein molecule co::>rresponding to the C19 position in the chain of an acyl 

substrate. Although the piotm'(l is masked by the presence of the lOllg ohain 

9: 10 de saturase, there is a marked fall off at a sUbstrate ohain length of C19. 

In addition, incubations with (l14C) 18- nonadeoenoio acid is found to give I1lloh 

more desaturation than nonadecanoic aoid, see Table III and the existenoe of 

such a side group on the enzyme surface could explain this, see fig. IlIa. 
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precursor 

(l14C) _ heptadecanoic 

(l14C) _ octadecanoio 

(214C) _ nonadecanoio 

(l14C )-18 nonadecenoio 

. 

Total Desaturation 
monoene + diene 

49.1 

80.0 

24.1 

'72.7 

Table In 

Bond Positions 
of diene 

9: 10, 12:13 

9: 10, 12:13 

9:10, 12:13 

18:19, 9:10, 
12:13 

Direct dehydrogenation of labelled p:recurs'lF.~lVhole cells "f GhJ.Qwl~ vulr.llti,. 

The presence of a side ch9.in not large enough to completely inhibit the 

long chain desatu!'ase but enough to reduce its effectiveness must also be present 

in a similar position to account for the fall off of desaturation at C19 in all 

the systems studied and also to explain the magnitude of the increase in 

desaturation of the l8-nonadecenoic acid. 

sterculic aoid inhibition h9.s been studied in Chlorella vulgaris by 

Harris Je,rre sand Bezard63 • They incubatp.d acetate and all the even uhain fatty 

aoids from C10 C18 with Chlorella in the presence of sterculic acid and 

studied the distribution of the label amongst the fatty acids. 

In this present work the acids from C14 ~ C19 were similarly studied 

and the results appear in Table IV. This worlt confirms the results of Barris 

et al63 and S!IOWS that the inhibition does steadily increase with inoreasing 

chain lengt!l. The extent to which a given even ch9.in monoene has been 

produced by direct desaturation or by ~-ox:ldation of the substrate and 

resynthesis cannot be stated as distribution of label in these produots was 

not determined but in the production of odd chain monoenes direct desaturation 

mst have taken place. Thus direct de saturation of margario acid i3 not 

completely inhibited by sterculic aoid though direct desaturation of stearic 

and nonadecanoic acids is completely inhibited. Nonadeeanoic gives much more 

label in palmitate, oleate and linoleate formed by !3-oxidation and resynthesis 
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than does margaric aoid. This increased tendency to breakdown has been noted 

in other experiments with Chlcrella vulgaris and Torulopsis apioola. 

recursor 

I>te rculic I 

~abel 

:14:0 

14:1 

15:0 

15:1 

15.2 

16:0 

16:1 

16;2 

17:0 

17:1 

17:2 

18:0 

18:1 

18:2 

19:0 

19:1 

19:2 

:14:0 15:0 

_I 
+ + 

32.5 60 

15.8 2.0 -

- 60.5 

- I - -33.1 

- 8.4 

8.0 :14.0 6.0 

2.1 Trace 

16:0 

+ 

17:0 I 
! 

+ 

Trace -

64.2 

17.8 

84.0 

8.3 

6.8 Trace 

0.5 

32.3 88,0 

48.2 7.0 

19.5 -

18:0 I 19:0 

- + I 
I 

6.1J 
Trac 

TraoE :!raoe Traoe Traoe Trace - trraoe 9.5 100 1.0 

25.2 11.3 

56.2 12.7 

-

5.0 

5.8 

Table IV 

).1 

4.6 

1.8 27.9 

2.8 62.6 

8.0 

2.1 

- 48.4 

6.3 

+ 

Trace 

10.8 

1.2 

8.2 

10.6 

68.0 

Radioactive pr.Jdllcts from the incubathn of labelled saturated precursors with 

whole oells of Chlorella vulgaris with and without added sterculio acid. 

The second organism studies was Torulopsis apicola. This is a ;yeast 

which grows ael"lbically ani is known to perform aerobio desaturations of long 
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ohain tntty aoids. Sinoe this organism is heterotrophio, the radiolabelled 

precursor had to be introduoed to it in the medium in whioh it had been grown. 

~he results of the experiment are given in Tarle V. This system is studied 

more easily so far as monoene synthesis is ccnoerned sinoe it does not form 

. dienes. Being a whOle cell culture however it does possess the ability to 

elongate aoids by the malonyl CoA pathway. Decanoic and dodecanoio acids 

are activated almost oompletely but form no desaturated produot..Here, as 

in the case of Chlorella, it may well be that the rate at whicn there acids 

az:e elongated or inoorporated into lipids pre"Emts any de saturation. In this 

system also the amount of e!ongation deoreases as the chain length inoreases but 

.in this case, unlikeChlorella, pentadecanoic aoid is elongated. 

I Radioaoti ve Precursors . . 
produ.:t 

, I 1.5:0 16:0 I 10:0 i 12:0 , i-- 14:0 ! 17:0 18:0 19:0 
I i T I 

10:0 .~. 7 - - - - - - -
12;0 - 7.5 - - - - .- -
14:0 - - i 21.0 - - - - -
14:1 - - 4.8 - - - - -
15:0 - - - 37.6 - - - -
15:1 - - - 11.5 - - - -
16:0 8.0 8.3 12.0 - 31.2 - - 1.8 , 

16:1 13.3 . 18.9 31.5 - 43.2 - - 1.2 

17:0 - - - .4.6 - 54.4 - -
17:1 - - - 45.9 . - 45.6 -

, 
- I 

18:0 - - I - - - . - 51.2 -I 

18:1 74.5 I 65.3 28.7 - 22.3 - 47.9 7.9 

19:0 - - - I - - - - 87.0 I 
19:1 - j 3.5 • - - - - - - I 

! I I I 
• ; 

I , , 

Table V 

Labelled fatty aoids produoed from 114C precursors by Torulopsis apicola in its - --~========....::::....=.;;.: 

nu tr:i.ent 1119 dium 
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As mentioned above, nonadecanoic aoid provides the only case where 

(3-oxidation has taken place. In this organism, though not in the case of' 

Chlorella, the breakdown of' nonadeoanoic acid may be only an initial loss of' 

two carbon atoms rather than a complete breakdown to short chain materials, 

Since the label was at the 2 position of' the acid then rad101abelled acetate 

would be f'ormed iI'. this case and as f'ar as labelled acids are conGArmd, a 

liormaJ. resynthesis pattern is observed. 

If' a 3 la':lelled acid had been used, it is quite possible that no 

resynthesis would be 

Tulloch et al24B who 

observed. These statements are based on the worl:: of' 

:ferJlented all the even chain saturated acids f'rom Cl6-C24 

and even chain length alkanes f'rom C16-024 and f'ound that the organism always 

degraded them to C17 or C18 compounds before converting them to the W .. ,l l:!YdroXy 

compound. Jones and Howe249 confirmed the results in a further series of' 

experiments. In the present w.)rk with Torulopsis no l:!Ydroxylation was observed 

at aU. The variation with chain length of' the am')unt of' elongated products 

formed is shown in fig.IIlb. 

Saturated precursors of' fourteen carbon atoms and above, all 

produced monoenes of the sane chain length as the precursor. All these monoenes 

had the doublB bond in the 9:10 position. Thus in this system also the position 

of' the double bond is controlled by the distance from the carboxyl end of the 

molecule. This also indicates that the substrate moleoule is joined to the 

de saturase either directly or via it s CoA or ACP thiolester at the carboxyl 

end. In studying the amount of desaturation there seems evidence that thore 

may only be one :l.esaturase active in this system and that there is a broad 

optimum for chain length with mch batter desaturations being obtained with 

palmitic, margaric and stearic acids than with the shorter chain acids. 

Nonadecanoio acid is very unfavourable to desaturation in tl:>is system. See 

fig. IV. 

Since the amount of lipid incorporation was not determined in 

these experiments, it could be that the disorimination against nonadecanoio 
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Fig,iv.Conversions of saturated precursors to 9:10 monoenoic fatty acids of the same 

chain length by whole cells of Torulopsis apicola 
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aoid as a substrate for desaturation is an aotivation or a permeability problem. 

The major product of chain elongation in all the even narbon 

nu>nber Mids is oleic acid. ThR fact that no oleic acid is produced from 

pentadeoanoio acid, however, whilst almost belf the precursor is elongated to 

a sewnteen carbon atom mo:'loene, seems good e\idence that little brsak.iown and 

;':'6synthesis is involved in this system and tr..at the monoenes of the same chain 

length are formed by .iireot de saturation. 

Since this system is able to elongate substrates by two carbon atoms 

and form monoenes of more than on€: chain length from a given saturated substrate 

e. g. myristic, it is possible that, if the system can elongate moll0enoic acids 

as well as saturated acids, mono~nas with the ~ond in the 11:12 posit:on may be 

formed. There e.re three possi1Jilities, either tha system elongates saturated 

preoursors only, or the system tllongates monoenoio p."6cursors only, or it can 

do both. 

In order to solve this problem the bdividual monoenes were isolAted 

and the bond position determined. This showed that all monoenes were 

exclusively 9:10 monoenes and thereforo showed that ouly saturated acids were 

elongated and that no elcngation of the products of desaturation had taken place 

in this f\Ystem. This is illustrated in fig. V. 

Had tha forbidden pathways above been able to operata 11:12 and 

1.3: 14 monoentlS would have been isolate d. On this evidence it is assumed that 

all the mo~enes of longer chain length than the precursor in Table V are 9:10. 

The effect of substrate structure on desaturation in animals was 

studied first ef all in the goat mammary gland. Optimum fat metabolism occurs 

in t11e se tissues whan the animal is fully lactating and hence this was the. 

tissue used. Milk production is not only of academic but commercial importance 

and hance the study of this system was ohosen. Although lE.ti:!2 studies with 

perfused glands is a :recognised techniquJ50 , i!! vitro studies of a subcellular 

fraction has the advantage of more controlled conditions. 
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tetradecanoic acid 

tetradecanoyl-5-CoA 

AEROBIC DESATURATION 
) 

tetradecanoyl-S-ACP ) ~ 9-tetradecenoyl-S-ACP 

MALONYL Lipid 

CoA 

PATlNIAY 
/~ 

hexadecanoyl-S-ACP X) ~ ll-hexadecenoyl-S-ACP 

~/ 
Lipid 

/ 
o ctadecanoyl-S-ACP -

permitted pathway 

prohibited pathway x 

~ 
)< ) .£i!!. 13-octadecenoyl-S-ACP 

~ 6£. 9-octadecenoyl-S-ACP 

) 

) 

Fig.v. Permitted and prohibited pathways in Torulopsis apicola. 



The microsomal freotion was chosen since this is the site ef the 

desaturase251 and. eliminates any chain elongation or (3-oxidation which are 

carried ClUt by mitochondrial enzymes. These latter processes tend to make the 

study more involved and hence their exclusion here is of some advantage. 

The in vitro incubations with labelled CIO - C19 acids ..ere carried 

out 1:oth with and without tre presence of partiole free supernatent. The amount 

of desaturation Gbtained. is shown in Table VI 

Mionsemes Bond Microsome s + P.F.S. Precursor % Desaturation t Position % De sa turation 
L~'. 

(l14.C) _ deoanoio I (l14.C) dodecanoio -
(l14.C) _ tetradecanoio 5.75 9 - 10 3.5 

(214.C) - pentadecanoic 5.0 9 -10 3.0 

(l14.C) ..; hexade cano io 15.5 9 - 10 11.25 

(l14.C) _ heptadeoanoic 20.25 9 - 10 18.75 

(l14.C) - ~otadeoanoio 25.5 9 - 10 22.5 

(zl 4c) _ no na de 0 ano io 2.5 9 - 10 2.5 

Table VI 

Degree of desaturation of labelled preoursors in subcellular freotions of goat 

mammary gland. 

Tm lipid incorporation of the added substrates was alse studied and 

the results appear in Table m. Plots of de saturation and polar lipid inoorpor­

ation appear on the same set of axes belowj figs. VI and VII. The bond position 

ef all the monoenes produoed was identified and found in all oases to be in the 

9 - 10 position. The. faot that all the homologues were des'l.tureted in the same 

position indicates that the number of methylene gr'lups beyond the tenth oarbon 

atem doe s not affect the pesition of de saturati<>n. This in turn means that 

again the speoificity of desaturetion in this system is the distance from the 
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carboxyl end ot: the molecule. A specific attachment ot: the carboxyl end ot: the 

substrate molecule to the d.asaturase enzyme complex is indicated by this result 

though the precise t:orm at: the attachment is, ot: course, still not l<"nown. 

~~oo<,,< 
, 

% Count Distribution I 
Microsomes MicrosomeR + P.F.S. 

I 
FFA TG PT. FFA TG PL 

(l14C) 

I 
10:0 100 0 0 100 0 0 

(l14C) 12:0 95.5 0 0.5 96.5 4.0 0.5 

(l14C) 14:0 96.75 0 3.25 83.7 13.2 3.1 

(214C) 15:0 87.0 0 13.0 78.5 15.3 6.2 

I (l14C) ~.6 :0 85.5 0 14.5 66.0 25.0 9.0 

(l14C) 17:0 80.5 0 19.5 77.8 10.8 11.4 

(l14C) 18:0 74.5 0 25.5 78.5 4.0 17.5 

(214C) 19:0 99.25 0 0.75 97.5 2.0 0.5 

Table VII 

I,Il.Qf!JJed 'i!U..~duced by the i..!E!Patien ef saturated precursors with subcellular 

t:racttona of goat mammary gland 

The microsomal fraction gives no desaturation with decanoio or 1aurio 

acids and gives little or no evidence of activation of trese substrates. The 

curve produced, t:ig. VI, has an optimum desaturation at C18 and the usual steep 

deoline to almost zero dasaturation in the case ot: nonadeoanoio acid. The t:orm 

.t: the dasatultltion vs chain length curve appears to be typical of a one enzyme 

system although the .dd ohain acids seem to be less tav?urab1e than would be 

expeoted. 

One t:eature ef thl> nicrosom31 system is the f'act that the amount ot: 

polar lipid formation is almost identical to the amount ot: de saturation in most 

cases. This suggests s~me close involvel1'ent of lipid formation with desaturation, 
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but, on investigation, it proved that both labelled saturated and monoenoic acyl 

groups occurred in the polaI' lipid fraction and also that unsaturated acids occurred. 

in the free form. There was an increased tendency for the unsaturated acids to 

be bound to lipid as the chain length increased to 18. In the case of myriatic 

acid, most of its monoene was in the free acid form. It appears from this as if 

the enzymes involved in the formation of polar lipids have some cl$in langth 

spdcifici ty. 

The inclusion of the particle free supernatent in the incubations had 

the effect of decreasing the amount of polar :'.ipid formed but resulted in the 

formation of an appreoiable amount of triglyceride such th9.t ove-rall more lipid 

formation was achieved. Optimum triglyceride formation ol.lcurred at C16. As 

in the case of the microsomes alone desaturated acids appeared in the tree fatty 

fraction to a similar amount showing that the lipolytic enzyme involved was in 

the microsomes themselves and not enhanced by the supernatent. All other teatul'e s 

of this combined system were the same as for the microsomes alone except the 

de saturation vs chain length curve did have only one apparently irregular point 

at 015 an~in the light of the ~hlorella and hen liver results, it could be 

indicative of two enzymes. A repeat Of' the experiment s using only microsomes 

to check the margaric acid result would have been desirable since it seemed 

unusually low but further tissue was unavailable, 

Since goat tissue was difficult to obtain and as a resul~ of work acne 

by Vlakil252 and Jonnson237 f!lrther in vitro stUdies of subcellular animal systems 

were perforJl1Cd on the combined microsomal and the particle free supernatent 

fraction from hen liver. The hens used wers either urown Warren hens or white 

shaver hens. Best results were obtained from hens fed on a balanced diet and 

the older and more fatty the liver the greater the degree of desaturation obtained.. 

The variation between individual livers as to the absolu";e amount of aesaturation 

of a given precursor varied greatly but the relative variation from precursor to 

precursor was very similar in all cases. Thus it was imperative to do all 
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compa!t1tive studies on the same liver. The precise reason for the variati\>n in 

desaturase activity from liver to liver is not known and only the above observations 

of the visible state of the liver have been noted. 

Sinoe the incubation conditions used in the goat system above differed 

considerably from those used in the hen liver system by Johnson237 initial 

experiments Vlere uE-d,ark:,~"to investigate the requirements of the system. The 

first comparison was of the nucleotide systems used. In the goat system the 

required reduced nucleotide had been added but in Johnson's system the reduced 

nucleotide had been generated as required in si ~. The method involved the 

addition of the oxidised form of the nucleotide and sodium lactate. Aotion of 

lactate dehydrogenase253 provided the required reauoed nucleotide according to the 

follewing reaction : 

I 
pyruvate + NADH + H4 Lactate + NAD+ I 

The result of this experiment vias that there was no advantage in th:.s 

system over the direct foddition of NADH so far as desaturation was concerned (Table 

VIIIa). Indeed the addition of NADH seemed to result in greater incorporation 

into lipids. 

, 

I % FFA I Prec..lrsor 
Cofac",or % De saturation % TG 

% Polar % Desaturation 
System Lipid in FFA 

stearic j 

t 
(lJ4C)_ 

j I Lactate I 46.6 35.3 7.6 57.0 11.3 
NAD+ 

(lJ4C )- stearic NAI:H 46.9 22.0 8.5 69.5 I 10.7 

I , -
lable VIIIa 

Effect of l'Rlcleo'~idq dystem,...cp dAsaturatjop and lipid formation in A bAn Jiver 

microsomal fraction 

I 
I 

The inorease in phospholipid. produced. was a gene ral effect and no partlcular 

phospholipid was favoured. The phospholipids ~_abelled in these experiments are 

listed in Table Vlllb. 
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I f I I 
Precursor 

Cofactor Phosphatidyl , P he spha tidyl I Phe spha tidyl 
System inositol I oholine ethanolamine 

! 

(lll,C _ stearic Lactate 5.8 69.2 25.0 
NAD+ 

I 

I 
I 

I (1140) - steario 
I 

NADH 7.4 70.5 I 22.0 I i 
! , 

Table 1fIIIb 

~ect of nuoleotide s~tem on individual phospholipid oomposition in a hen liver 

miorosomal fraotion 

As well as changing the nuoleotide requirement, experiments were done 

to see if the mass of the otner oofaotors could be reduced. Some cefactors 

can inhibit at high levels so the mass was reduoed. The results are shown in 

Table IX and they show no advantage in the high level of oofactor~ in ;faot a 

slight advantage appears to be gained both in lipid incorporation and desaturation 

with the lower level. The existence of a lipolytio enzyme is indioated with the 

presenoe of (% of desatur<>ted acid appearing in the free fatty acid pool. 

I I Cofaotor* De saturation I % FFA 1 % TG I % PL 
! % Desaturation I Precursor % oonon. I , in FFA 

, 
I ; 

(l!4c)-stearic 1 High 22.8 66.4 5.0 28.6 5.7 

! (1140 )-stearic I Low 25.6 
I 

65.8 5.1 29.1 5.9 , \ ! , I , 

Table IX 

Effect of cofaotor concentration on lipid formation and de saturat'ion in a hen liver 

microsomal preparation 

* Cofactor amounts/incubation were as follows:-

CoA 

ATP 

NADH 

N.ADPH 

"High" 

1 mgm 

60.5 mg:.! 

2 mgm 

1 mgm 
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0.15 mgm 

11 mgm 

1 mgm 
., -
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With the high levels of free fatty acids (approximately 2/3 of the 

added label) despite the evidence of lipolytic enzymes, there was some doubt about 

the ability of this system to activate the added acid. Thus incubations were 

performed in which the mass of fatty acid substt:ate added was varied up to forty 

times the usual amount. The results are shown in Table X. This shows that the 

mass of added acid does not affect either the desaturation or the lipid inoorporation. 

1 
-

I M9.bS of I I % De saturation 
p(lc~)sor I % Desaturation % FFA % TG % Polar Lipid 

rue:: I . I j in FFA 

6 25.6 65.8 5.1 29.1 5.9 

125 24.8 63.4- 4-.8 31.8 6.3 

250 24.5 64.7 5.0 30.3 6.1 

, I 

Table X 

Effect of mass of steadc acid on the degree of desatul'B.'!;ion and lipid formalion in 

a mbrosomal preparation 'If hen liver. 

Clearly thE're is no question of the enzyme system being eatura-ted in this 

case and some seleotio!"_ process must be in operation. 

A similar r~sult was obtained by using an increased amount of enzyme 

(microsomes) and the same mass of acid, Table XI. The same conclusions were drawn _. 

i.e. the extra enzyme caused no increase in either de saturation or lipid incorporat-

ion; see Table XI. 

Quantity of I % Desaturation FFA TG Polar LiP:-! Enzyme Source'" 

I 

3 mls 27.0 65.7 5.1 29.2 

6 mls 26.1 67.0 5.0 28.0 

9 mls 26.7 63.8 5.0 31.2 I t , 
'" See experimental section (page III ). 

Table XI 

Variation of the amount of de saturation and lipid incorporation with the increase of 
2z ... v.~e source 
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Having deoided upon the optimum oondi tions for this system, the 

homologous series of acids from CIO - C19 was incubated under those conditions. 

In the first experiment the bond position and extent of desaturation and the 

percentage of activity in polar lipid was measured, Table XIra. The desaturation 

data once again show complete carboxyl end control of the positional specificy of 

the desaturation process with the double bond always in the 9:10 position and is 

indicative of carboxyl attachment to the enzyme. ~~antitatively, the data, 

fig VIII, show the characteristic pattern of two enzyme s, ene responsible for the 

shorter chain acids with an optimum at C14 and a longer chain enzyme with its 

optimum at C18. In this system for the first t:;'me decanoic a,c~.a Las been 

directly desaturated. Apart from this, however, the pj.cture is very IIIilch the 

same as the Chlorella 9:10 desaturase. 

r---

I Precursor % De saturation % Polar Lipid Rt' ~ Desa1urat:ion x 100 aJ.o% 1 L"d • Po ar J.p:' 

(l14C) _ decanoic 2.5 5.1 49 

(l14C) _ dodecanoic 8.8 12.7 69 

(l14C) _ tetradecanoic 27.0 40.0 67 

(214C) _ pentadecanoic 7.5 19.0 39 

(l14C) - hexadecanoic 18.0 26.4- 68 

(1l4c) - heptadecanoic 20.8 29.8 70 

(l14C) - octadecanoio 25.0 36.0 69 

(214C) _ non9.deoanoio 12.5 , 22.7 55 

! I 

Table XIra 

Degree of de saturation produced ,in labelled satv.rated precursors by a miorosomal 

rami on of e hen 11.ver 

There is a marked cut-off at C19 whereas 18 ~ nonadeoanoio aoid is 

desaturated to the same extent as stearic acidJ Table XITh. Once again this 

points to a side group projeoting from the enzyme chain in such a way as to 
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Fig.viii. Conversions of saturated pr&ettrSors to 9:10 monoenoiefnttI acids of the 

'i+.me CMin length by a micro~olMl fraction of hen liver. 



interfere with the terminal methyl group of nonadecanoic acid. 

I I Precursor % Desaturation Bond Position , 

. '(114c) - hexadecanoic 45.1 9-10 

(l14C) _ heptadecanoic 56.8 9-10 

l! (1 +C) - octadecanoic 57.8 9-10 

(2140) - nonadecanoic 47.1 9-10 

(l14C) - 18 nonadecenoic 57.0 18-19, 9-10 

(l14C) - .2ll 7 octadecenoic - -
(l14C) - £1! 11 octadecenoic - -
(l14C) - ill 12 octadecenoic 23.6 12-13, 9-10 

i 

Table Xnb 

Degree of desaturetion of labelled precursors by a microsomal fraction of~ 

] Jyer 

..£ll12- Octadecenoic acid is also desaturated - this system to 

give .£i!, .£i! linoleic acid although not to the same extent that steareate 

is de saturated to oleate. Although unlike bonds in the 7:8 and 11:12 position 

which give no desaturation, the bond at the 12:13 position does not completely 

prevent de saturation but it does reduce its efficiency. This secondary effect 

is probably due to the bend in the molecule caused bJ7 this double bond reduoing 

the binding efficiency of ths substrate to the enzyme surface by reducing the 

total London dispersion force. Another possible explanation is the simple 

steric factor that the bend, in ths molecule produced by this double bond makes 

intel'action between the desaturase active site and the D-9 and D-lO hydrogen 

atoms of the substrate more difficult. , 
Ths production of linoleah by the action of the 9:10 monoene 

desaturase on .£!!12 - octadecenoic acid has been noted in Chlorella vulgaris, 
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the microsomal fraction from the manunary gland of a fully lactating goat and 

the microsomal fraction of hen liver. This result in these three systems is 

of considerable interest for the reasons outlined above. However, the last 

two are particularly important for they represent known cases of.animal systems 

synthesising in situ an essential fatty acid from vmich they can ultimately 

form prostaglandins. . Normally, linoleic acid and thenC'e arachidonio aoid 

cannot be l'J'nthesised from any other animal produc t and has to be taken in 

the diet. This result is not only of great aoademic interest but it has 

potential commercial possibilities as an alternative means of supplying 

essential fatty acids for animals. The only J;vint of res&I'yM:.cn is that the 

effect of large amounts of .!!ll12-octadecenoic acid in the diet is unknown 

although the hen liver system incorporates it into lipids to the sama extent as 

oleic acid, Table XIV. If it has no hat'mful effects, the inclusion of 

ill l2-octadec~noic acid in the diet of animals or man could substitute to 

some extent for linoleic acid. Since it is likely that this monoenoic acid 

oould be synthesised industrially more easily tt~n linoleic aOid, these results 

may be of substantial commeroial importance. 

The fact +'hat cis 7-octadecenoic acid and cis ll-octadecenoic 14cid - -
are not further desaturated shows the prllfound effect of a double bond so cloS'! 

.' 

".;0 the active site, see Table XITh. However, these acids are activated and 

incorporated into polar lipids, Table XIV, as effeotively as oleic acid. 

In the second experiment with the series of aoids CIO - C19, 

although the overall amount of de saturation was less than in the first series, 

the results wore identioal in relative terms, Table Xll1 and F:'.g IX. Here it 

is shown that the total lipid incorporation is always greater than the amount 

of de saturation but follows the same chain length pattern, Fig.IX. The amount 

of de saturation product in the free flltty aoid fraotion and in too polar lipid 

fraction is shown in Fig.X. Half ef the shorter chain length acids tend to 

:remain in the free form s.fter ilesaturation, whereas the longer chain acids have a 

IIRlch greater tendenoy to become bound into lipids. This is further evidence 
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Fig.ix. Conversions of saturated fatty acid precursors to 9110 monoenoic 

fatty acids of the same chain length (x- x) and incorporation into polar 

Bpias (0 - - 0) b:r a microsomal fraction of a hen liver. 
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Fig. xoConversions of saturated fatty acids to 9:10 monoenoic fatty 

acids of the same chain length(x-x) in both graphs. (0 - - 0) represents 

the amount of labelled 9110 monoenoic fatty acid in the polar lipid 

fraction in the top graph a.nd the amount of labelled monoenoic fatty 

in the free fatty acid pool in the bottom graph. The enzyme system was 

the microsomal fraction of a hen liver. 



fur the existence of two enzymes with the chain length specificities outlined 

before. 

Total % as monoena 
L::rsor % Desat. 

% Incorpor-I Ratio 
a tion into iLQe sat. :x: 100 
p"lar Livid 1, Polar Livid in FFA polar Lioidl 

, 

(l14C )-de canoic 3.1 8.4 36.5 3.6 1.0 

(l14C)-dodecanoic 5.5 8.6 64-.0 5.9 2.0 

(l14C)-tetradecanoic 9.9 19.5 50.5 9.1 11.5 

(214C)-penta aecanoic 3.9 14.0 27.8 3.1 5.6 

14 . . 
(1 C)-hexadeoanol.c 14.3 23.8 62.0 7.8 24.6 

( 1 ]}j.C )-heptaae cano ic 16.7 25.2 66.4 6.1 37.8 

(l14C )-octadecanoic 18.2 27.2 67.0 5.0 39.0 

(214C)_nonadecanoic 7.2 12.5 I 60.0 3.9 . 13.0 

! 

Table XIII 

Degree of de saturation of labellei saturated preoursor in total acid in the 

individual free fatty acid and p"lar lipid fractions of a micros~m9.1 preparation 

of hen liver 

In the investigation of the fates of exogenous (free) monoenoic 

fatty acids all the added labelled monoenoic acids were found to be activated and 

inoo17orated into polar lipids, Table XIV, whereas when stearoyl CoA was 

incubated with the system labelled. oleic and stearic acid were found in both the 

polar lipids and the free fatty acid fractions, Table XIV. All the above data 

invoiving the fate of acyl. groups in this system sugges!; that the metabolic path- . 

W9.ys illustrated in Fig XI are operative. 

Assuming that theoe pathways are correct and that the masses of the 

activated acyl groups are negligible compared to the ~asses of the lipids and 

free fatty acids, then applying simple algebra, it is possible from the three 

measurements shown in Table XII to calculate the ratio of desaturated acid from 
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the added label on lipid to desaturated acid from th9 added label which occurs 

free. This ratio for each chain length has been plotted, Fig XII, and shows 
, -

that the optilmlm chain length for the desaturated label to occur bound into 

polar lipid is 18 which confirms quantitatively the facts which appeared , 
qualitatively in Fig X. t 

, 

i 

I % monoene I 

Precursor % Desaturation % Polar in % FFA 
. % monoene 

Total Lipid polar Lipid in FFA 

(l14C)ciS 9-octadecenoic 
I - 22.5 

, 
71.51 100.0 100 

(l14C)cis 7-octadecenoic - 18.,7 100.0 73.7 100 

(l14C)cis ll-octadecenoic - 19.5 100.0 72.9 100 

(l14c )ois 12-octadec13noic 7'4- 21.7 
/2.' (, 
~ 73.0 41 

(l14C) stearoy1 CoA 25.8 32.6 38.1 5~.21 11.3 
, 

Table XIV 

Degree of desaturation of labelled precursors in total and in the individual free tatty 

acid and polar lipld fractions of a !!!,icrosomal preparation of hen liver • 
. 

The graph of the conversion of saturated precursor to 9:10 ruonoene 

of the same chain length with chain length, Fig VIII, shows a depression at C15 . 

which suggests the preserce of two enzymes one for CIO - C14 the other for 

C14 - C19. Certainly the low desaturation at C15 is not an experimental error 

since it was reproduced some .six times and is corroborated by the results of 

Johnson244 working with the same system. 

It is just possible that this C15 chain length is discriminated 

against on another ground and one explanation of it might lie in the binding of 

substrates to the Bovine Serum Albumin. If for some reason pentadecanoic acid 

is bound more strongly than the other acids this could explain the lower 

de saturation and lipid inoorporation value. The variation of degree of 

desaturation with chain length would then become typical of a one enxyne sys'~em 
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rising steB.dily to an optimum value at CIB. 

Goodman254 and Reyno1ds et 0.1
255 have investigated the binding of fatty 

acids to Albumin and have discovered three different classes of site on the 

albumen molecule where fatty acyl groups can be attached. In the first site 

the acyl groups are bound most tightly and usually there are two acyl groups per 

albumin moleoule. The secondary sites have a srualler binding force !md hold 

4- & 6 fatty acyl residues whilst the third class of site which has the smallest 

binding force tends to have a larger less determinate number of acyl groups. 

Tabl~ XV shows G-oodman' s values of the association for the even numbered fatty 

acids for eaoh of the three types of binding site. 

, , , 
Fa·tty Acid Anion kl k2 k3 

octanoate >I< 5 x 104 

decanoate * 6 x 10'+ 

dodecanoate 1.6 x 106 2.4 x 105 6.0 x 102 

tetradecanoate 4.0 x 106 1.4 x 10
6 

2 x 102 

hexadecanoate 6.0XI07 3.0 x 10
6 

1 x 103 

octadecanoate B.O x 107 8.0 x 105 1 x 103 

Table XV 

The Apparent Asscciation constants for the interaction of human serum albumin 

with fatty acid anions at pH 7.5 

>I< The se re suIts are due to Reynolds et 0.1
255. 

Although there is a general increase in binding force with the incr<il>8se 

in chain length due to the increased number of short range non specific van der 

Wads interactions between the non polar portions of the binding ion an1. the 

non polar side chains of the albumin molecule, G-oodman suggests that there is a· 

great deal of structural specificity for individval chain lengths as well as 

this general effect. No data for pentadecanoic acid is available and Goodman's 
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data is for human serum albumin and although there is no evidence to suggest the 

overall picture is not the same in bovine serum albumin, an experiment was done 

to investigate the precise effect of the bovine serum albumin in the hen liver 

system. 

The homologous series of fatty acids was again incubated with a 

microsomal preparation of hen liver and a duplicate serie s of experiments were 

done in which th3 added fatty acid was merely suspended in water to which Tween 

20' had been added instead of being suspended on bovine serum albumin in the 

normal way. The results appear in Table XVI.(allcl. 118 XH) These results show 

a general reduction in the amount of d,esatulati~ll by a factel" of ,-,"'-'out 15 - 20% 

at all ch'lin lengths, although a study of the ratios of the two sets of figures 

sl'>o",o that the increase in de saturation with the addition of Bovine serum albumin 

decreases as the binding force increases i.e. with chain length. Despite this 

the over9.ll pattern of de saturation with chain length is the same both with and 

without the albumin. Pentadecanoic acili especially gives its characteristic 

lower value in both cases showing that any reason for its lower value is not to 

be found here. 

- I • , , 
% Desaturation Rat! without ! 

Precursor ! 100 With BSA I Without BSA o with x 

I 

(1 l4-C) - Dodec3.noic 
, 

51.0 34.0 66.7 

(1 l4-C) _ tetraliecanoic 80.6 55.0 68.7 

(214c) - pentadecanoic 59.5 39.0 j 71.5 

(ll4-C) - hexadecanoic 73.0 55i5 76.0 

(ll4-C) - heptadecanoio 79.0 64.0 81.0 

(ll4-C)_ ootadeoanoic 83.0 66.5 80.0 

(214C) - nonadecanoic 64.0 l 50.0 78.0 
I I 

Table XVI 

Effect of bovine serum alhumin on the degree of de saturation of saturated 

pl'9CUrSOrs in a microsomal fracticn of hen liver. 
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A final study into the rates of de saturation with chain length was 

undertaken to see whether the overall figures for the degree of de saturation 

represented the true initial and continuing rates of desaturation or whether 

the initial rates were similar but that for some reason a chain length speoificity 

fer lipid formation, for example, caused a particular chain length to cease being 

desaturated as its requirement ceased. This is of special interest since the 

requirement for..£ll 9 pento.decenoic acid will be less than either myristoleic 

or palmitoleic and might explain the reason for the low values of the penta-

decanoic figure. Though less likely, if this were the case the overall figures 

quoted throughout this section would have a dif'f~.cent meaning ani!, wculd, in 

fact, represent the requirement cf the system for give:J monoenoic acids. 

r-----' 

(mins) I (1 C)-Tetradecanoic 

% Desaturation Ratio 
Tire 14 

I (~14C)-pentadecanoic I (l14C )-hexadecanoio C14 
C15 , 

j 5 31.0 22.0 29.3 0.71 

1.0 42.0 30.0 40.7 0.71 

20 55.0 37.6 53.5 0.68 

30 64.5 42 • .'3 63.0 0.66 

60 68.0 51.7 65.0 0.76 

120 72.0 52.2 66.2 0.71 

240 76.0 53.3 68.2 0.70 

480 79.0 56.0 70.0 0.71 , 
Table XVII 

Rate of de saturation at various time s of saturated precursors by a microDoma1 

fraction of hen liver. 

Thus the amount of de saturation produced by myristate, palmitate and 

pentadecanoate was measured after given pe riods of time and the individual rates 

of de saturation at all these time s were me as.1red. The figures appear in 

Tn,ble XVII and the myristic and pentadecanoic graphs appear in Fig.XIII. 
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------ --- ---------------

From these results it would appear that the fall off of enzyme 

aotivity is exponential with time with the majority of desaturation produced 

under these conditions in the first 30 mins. The initial rates of ,iesaturation 

and indeed the rates at all the times during the experiment, are in the same 

ratio (see th3 given myristic - pentadecanoic figures, Table XVII) and equal to 

the ra~io of the final samples. This proves that at all times duri.ng the life 

"f the enzyme, the speoificHies indicated by the u3ual final sample are in 

aotion and that the figures quoted thronghout this section are a reflection of 

the rates at any given time during the enzymic activity. 

Q!2.£c,lu sion 

Much kn('wJ.,t;dge about the effect of bovine serum albumin, rates of 

de5lJ.tllration, lipid involvement in desaturation and meta'bolic pathways in general 

has been learned from the results in this section and are discussed in the 

preceeding pageu. There is no need to restate them here but it would be useful 

t:. bring out the points that have a direot bearing on the spClcificities, the 

steric environment and the interaction of the fatty acyl substrate and the 

enzymes resporlsiblo :'or the introducti0n of the first double bond in tnese systems. 

Isolatioll of the pure crystalline enzyme followed by a precis€> X-ray 

study wi.ll provj.de the ultimate data about the structure of the desaturase and 

e"zyme-substrate cClllplex. Howe-rer, since this does nct seem possible in the 

foreseeable future, inal!'ect studies of the desaturase yields knowledge about 

it s structure and relationship with the substrate. This section describes 

several investigati,ons and would indicate the following situation. 

MOl'ris and James256, 257 have postulated that the a~tive desatctrase 

site may be a stra5.ned -8-8- bridge between two peptide chains which, on 

interaction with the substrate molecule, are oonverted to two sulphydryl groups. 

The release of strain between the chains provides the energy necessary to perform 

the reaction and to expel the 5ubstra,te from the site. This th~ry has the 

advantage that the -S-S- bond dl.stance is "f the right order to undergo such a 

reaction and it would explain the inhibitory action of SH reacting compounds 
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e.g. iodoacetamide. 

The highly specific position of desaturation in a given species olearly 

involves some specificity of attacJurent other than just randomly by London 

dispe rsion force s. In addition, 501113 feature of the system ensures that it is 

always th~ D~ and DIO hydrogen atoms in stearic acid that are situated in such 

a position s·s to interact with the hypoth~tical disulphiil.e bridge. The work 

described in -this section suggests that the positiC'nal specificity is brought 

about either by the direct attachment of the carboxyl group of the substrate 

to the enzyme either directly or by a specific association of the CoA or ACP 

activat:.ng group w:i.th an "attachlll3nt" sJ.te un -1:1:(; enzyme ill zuch !\ position as 

to bring the D9 anI' 1)]0 carbon atoms of the substrate into action with the 

d8:)e.turase site. ~'his C'ccurs irrespective of the number of methylene groups 

l:;syond the tenth carbon atom. However, in general with enzymes capable of 

accepti:lg the J.onger chain lengths (17, 18 and 19), there is a secondary chain 

length effect wh1ch suggests that desaturation is more favoured as the chain 

length increases. This is interpreted as being due to the fact that as the 

chain length increases, so does the London dispersion forces which hold the 

substrate to the ennyl'le surface. Thus myristate is much less tightly held to 

the desaturase than is stearate and hence the reaotion at the active site is 

,-ess favourable. 

This is also illustrated by the faot that £k - 12 octadecenoic acid 

is de saturated but not as well as stearate. In other words, the primary 

speciricity ls satisfied but the secondary effect finds that the bend in the 

chair. at l2ilJ position renders the actual binding of the molecule to th~ 

substrate le ss favcurable. 

in the case of the da 7 octadecenoiC and cis 11 octadeoenoic acids, - -
the fact that de saturation is complet"lly inhibited could be due to the steric 

effect of the actual desaturase centre being too far removed from C9 and CIO by 

the bend in the molecule being so close. Alternatively, being in conjugation 

with the aotual hydrogen atoms whiCh would be removed, it is more likely that 
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the chemistry o~ the dasaturation is a~~ected. 

The increase in desaturation with chain length reaohes a maximum at 

C18 and falls off, in soma cases dramatically, .vith the addition o~ one 

further oarbon atom in nonadecanoio acid. 

This is probably due to the position o~ a steric block, e.g. a 

side group on the enzyme sur~ace interaoting with the terminal methyl group. 

This would tend to lift the substrate moleoule of~ o~ the enzyme surfaoe 

. and hence weaken the binding forces. This is also indicated by the ~act 

that 18-nonadecenoic acid is desaturated s·lmost as well as stearate and 

this is discussed. 11<)re fully on (page 77 ). 

Thus, in the ~ormation of a monoenoio acid from a saturated precursor, 

the position of the double bond depends on the distance from the carboxyl 

end of the molecule which is attached to the enzyme and the rate of dasaturation 

depends on the strength of the combined binding ~orces between the enzyme and 

the substrate. 
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EXJoERIMENTAL 

In this section all solvents used were redistilled before use and 

all chemicals used were of the analytical grade. 

The specific activity ~f p.l~;_ :·'·:iioactive substrates used was 

approximately 40 mC/mM and where 8].,,"11,,010 materials have not been used 

the precursors were supplied by tte Radiochemi.::al Centre, Amersham, Bucks. 

All radioactive precursors were dispersed in distilled water containing a 

small amount of sodium carbonate. I drop of a 1.0% aqueous solution of Tweer.· 

20 was added and ultrasonication used to aid dispersal. The concentration 

of each radiosubstrate was tlnls made up to 10flc lml. 

Radiochemical Gas liquid chromatographx 
h) 

Throught this thesis reference 
I 

is made to radiochemical gas li~id 

chromatography (R~LC) with little detail given. The radiochemical gas li~id 

chromatograph is an instrument that separates, ~antitatively detects and 

r9cords both the mass and the radioactivity of compounds labelled with 14C 

and. capable of separation on normal gas-Hq.lid chromatograms. The instrurrent 

referred tu throughout this thesis is a radiochemical gas liquid chromatograph 

based on the original design of James and piper 200, 258· later modified by 

James and Hitchcock.2~~ 

The basic principle of the instrument is that the components 

emerging from a conventional gas li~id column are converted to carbon dioxide 

and ""drogen. The mass of the products is estimated by the response of a 

Katharometer detector to the ""drogen in the gas stream and the radioactivity 

counted as 14C carbon dioxide in a proportional gas flow counter. 

The sample is introduced to the column by pipetting a solution into 

a small loading tube and evaporating off the solvent. This loading tube is 

then placed at the top of the column where the sample is volatilised at the 

temperature of the column and is carried on to the column by the stream of 

carrier gas flowing through the loading tube. 
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The columns used were normally packed columns of FFJlP which is a 

polar stationary phase obt~ined from Varian Aerograph AG, or SE30 which is a 

methyl silicone gum rubber stationary phase having non polar characteristics. 

At the end of the column is a ~l~nace tube to combust the eluted 

materials to carbon dioxide and water. This tube is half filled with 

copper oxide to oxidise the materials to carbon dioxide and water and the 

s3cond half of the tube is packed with iron f:i.lings to reduce the water to 

hydrogen. 

The Katharometer is sensitive to hydrogen in argon and detects the 

mass of materials in this way and the message is passed to a lmV recorder 

where a trace is obtained. 

After passing through the Katharometer the effluent gases have 

carbon dioxide bled into them to give a concentration of ;% carbon dioxide 

in argon. 

This mixture then flows through a proportional counter tube the 

signal from which is passed to a ratemeter and hence to a 1 mV recorder. 

The output of the ratemeter can be presented as a differenti.al 

record or electronically integrated. 

The sensitivity of this instrument is su:lh that it will detect 

1 nc 14C with .,ase as a differential record and 0.1 nc with ease as an 

integrated record, counting efficiency being 100%. 

The Katharometer response is linear from 1 - 500lig. Once the 

response to a master compound is known too response to any other compound. 

can be calculated from the molar hydrogen yield relative to that master 

substance. Some 'cypical trace s are shown on the next page. 

scintillation Counting 

Unless it is reported to the contrary, all sointillation counting 

has been done in 0.4% P.P.O. in toluene solution and counting has been on the 

packard 4000 series Tri··carb liquid scintillating spectrometer set to count 

for 10 minutes or 20,000 counts. P.P.O. is 2,5 diphenyl oxazole scintillation 

- 100 -



" 

I 
~·i 

~ , 

Conversion of 

9 heptadecenoic acid to ' 

9,12 heptadecadienoic 

acid by: Chlorella 

vulgaris. " 

, 1811 

- -------'. 

Conversion or oleic acid 

o 

to linoleic acid by Chlorella. 

AiASS. --

! ' 

RADIOAcTIVITY:', ' 

16:1 

, l' 
1 , 

., •.. ~ 

1610 , 

..... -..---_ .... 
. -- ,; .~ : . 

I' RADIOACTIVITY." 

~ 1&: 0; , :," 
, ! ,~': ' 

! I" 

Fig. i. EXAMPLES OF RADIOCHEMICAL aAS-LIQUID CIfROMA'~OaJ1APHY. --

I 

" I " 

, " 

, ........ , 

i , , , 

" , , 
! 
~ 
" 

i I 



f'luid supplied by paokard. 

Radiochemical Thin layer ChromatograuhY Scanning 

The scanning here was done on either a prototype instrument designed 

.260 
and built by James et al or on a commercially adapted versicn of it. The 

latter was the panax R~'LS-l with a proportional counter tube of dead time 

20l-'sec5, a time oonstant of .3 seccnds and a carrier gas of ;% propane in 

argon. 

The basic principle of' both the se machines is that a proportional 

counter tube with an open slit (10 x 1 mm) is placed about lmm above the 

surface of the thin layer plate which is traversed slowly under the slit. 

The pulses are once more fed via a ratemeter to a lmV recorder, the chart 

paper of which travels at the same speed as the plate, where they are 

displayed either as an integrated trace or a differential record. An 

example of the use of this instrument is shown on the next page. 

I Experiment 1 To determine the extent and p~sition of de saturation of 

various saturated fatty acids by a microsomal preparation from the 

mammary ghnd of a fully lactating goat. 

Mammary gland tissue (17.0g) was obtained surgically from a fully 

lactating goat. Care was taken during all the following procedures 

including the centrifUgation to keep the tissue and reagents below SoC. 

All solutions were chilled and all operations were carried out in a cold 

o 
room at about +2 C. The tissue was minced with sharp pointed soissors and 

washed vdth suorose-EDTA tris buffer adjusted to pH 7.6 (50 mle) to remove 

the milk. The washed tissue was then homogenised with sucrose EDTA tris 

buffer adjusted to pH 7.6 (Ba mls) using a Potter homogeniser. This 

homogenate was oentrifUged. for 6 mins in a Serval centrifuge at 8,000 rpm. 

The supernatent from this spin which removed the cell debris was oentrifUged 

again for 10 mins at 12,000 rpm with a AH 50 head USing a MSE super 40 

ce ntrifUge • This process removed the mitochandria. The supernatent was 
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The above scan is of the reaction products from the partial reduction 

of (l14C)-linoleic acid with hyd'razinei. The platn is 10% silver nitrate 

impregnated silica gel and has been developed twice with toluene at -1500. 
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once more centrifuged this time at 40,000 rpm for 40 mins. This spin 

produced a microsomal pellet and a particle free supernatant. Both these 

materials were isolated and kept at low temperature (oOe). The microsomal 

pellet was rehomogenised in 25 mls buffer using a small potter hand 

homogeniser. 

The complete isolation proo3dure is shown diagr!lmatically below 

G-<:l1t Tissue 

,I, 

PARTICLE FREE 

suPERNATEtl! 

1 
(i) 

(ii) 

Minced 

washed with buffer (50 mls) 

washed Sediment 

Homosenate 

I 

homogenised 

J, 8000 rpm for 6 mins 

DEBRIS:.. 

-~ 12,000 rpm fur 10 mins 

MITOeHAND~ 

. "" 40,000 rpm for 40 mins 
MICROSOMES 

The sucrose tris EDTA buffer used was 0.25M Sucrose, 3M tris and 

5M EDTA adjusted to pH 7.6 with sodium hydroxide. 

Nine transmethylation tubes were set up each containing the follow­

ing DO factors dissolved in distilled water. 

- 102 -



,-.'" 

C<>factor Concentration Amount/tube (mls) 

phosphate Buffe r 0.5M pH 7.4 Q.5 

ATP 200 mM 0.1 

CoA 2mM 0.1 

MgC12 
200 ,I'll, 0.1 

NADH 10mgm/ml 0.1 

NADPH 5 mgm/ml 0.1 

WATER 3 mls. 

To each of these tubes was added a substrate preparation made up 

of 100 lil of substrate suspension (= !fio), O.lg 1 ml bovine serum albumdn 

solution (300 lil) and phosphate buffer pH 7.4 100lil. 

The substrates used in this experiment were (l14C) - decanoic, 

(l14C) _ dodecanoic, (l14C) - tetradecancic, (214C) _ pentadecanoic, (114C) _ 

hexadecanoic, (l1.4C) _ heptadecanoic, (l1.4C) _ ootadecanoic, (214C) _ 

nonadecanoic and (l14C) -.!?i!!. 12 octadecenoic. 

A second series of nine tubes were set up exactly as above except 

that the 3 mls of' water was replaced by 3 mls of the particle f'ree 

supernatent. 

To each of the eighteen tubes was added 600li1 of the microsomal 

preparation and oxygen gas was bubbled through f'or 1 minute. The tubes 

were then sealed and incubated at 37°C for 1 hour in a reciprocating water 

bath. 

Termination of the incubation 

At the end of the incubation period the whole of the incubation 

medium was poured into 2 : 1 w/v chloroform methanol (50 mls) and allowed 

to stand for 1 hour to extract the lipids and precipitate the protein 

material. This method of ending incubations was used in all cases and the 

details will not be referred to again during this section. 
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Extraction o~ the lipids 

This procedure which is a modification IIf that used by Folch et 

261 
al and was used exactly as below for all the incubations per~ormed in 

this thesis. 

The incubation medium quenched by the addition of chloroform 

methanol as above was filtered to remove any precipitated material. The 

I'iltrete was transferred to a separating funnel and 0.7r:t/o saline (15 mle) 

was added and the whole shaken. Two layers separated on standing and the 

bottom layer was collected in a flask. The upper layer was once more shaken 

with chloroform (20 mls) and the lower layer added to the flask containing the 

first extract. The solvent was removed from this flask at the pump to yield 

the extraoted lipids which were dried by azeotropic distill@.tion with ethanol. 

The lipids thus extracted were ilissolved in 2 : 1 v/v chloroform methanol 

o (5 mls) and stored at -}O C. 

Tranmnethvlation of the extracted lipids 

This method of conversion of lipids to the methyl esters of their 

262 ccmponent fatty acids is that used by Nichols and James and is standard 

procedure throughout this thesis. 

A portion of the extracted lipids was placed into a 25 ml tube and 

the solvent removed at the pump. The lipids were redissolved in a mixture 

of benzene, methanol, sulphuric acid, (10 I 20 : 1) v/v/v (5 mls) and 

refluxed for 90 mins. After this time the tube was cooled and ether (10 mls) 

was added. The ether was then washed acid free with 5 x 5 ml aliquots of 

water. The ether was then removed at the pump and the methyl esters formed 

in the reaction dried by azeotropic distillation with ethanol. The est ers 

were finally dissolved in ether (0.5 mls). 

Identification and measurement of the radioactive products 

The radioactive products from incubations were identified by the 

injection of a samp~e of the methyl esters on to a radiochemical gas liquid 
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chromatograph and records of both the mass peaks and the radiochemical 

peaks were obtained. 5y comparison of the retention volumes with a 

standard run of known esters the radiochemical peaks were identified. 

The relative proportions of the radiochemical peaks ware determined b;y 

triangulation. 

Separation of the monoenoic products from the saturated precursors 

A portion of the ester solution was dissolved in ether (5 mls) 

and streaked on to a O.25mm silver nitrate impregnated silica plate using 

a Desaga sample applicator. The plate was developed with a solvent 

consisting of 1,5% ether in petrol ether. The bands were visualised by 

spraying with dichlorofluoroscein solution and illumin~ting with U.V.light. 

The monoene band was isolated and the esters eluted from the 

silica with ether. The ether was removed at the pump ar.d the monoenes 

dissolved in von Rudloff's oxidation solutions. 

These solutions were made up as fl)llows:-

Solution if. 

Solution] 

20 mls water 

8 mgm KMn0
4 

4-27 mgm NaI04-

50 mls water. 

The monoenes ware first dissdlved in solution A (1 ml) and 

solution B (1 ml) was immediately added. The solution was shaken at room 

temperature for 2 hours. If during this time the solution lost its pink 

colouration equal amounts of both oxidant solutions were added to the 

reaction. 

After t!:le 2 hours water (5 rols) was added and the excess reagents 

were destroyed by bubbling sulphur dioxide gas through the solution until 

it became colourle ss., 

The products were then extracted with 3 x 5 mls diethyl ether and 
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the extraots bulked. The bulked extracts were washed aoid free with distilled 

water (5 x 5 mlr.). The ether was removed at too pump and the produots dried by 

azeotroping with ethancl. 

The dried produots were dissolved in methanol (2001-'1) and an ethereal 

solution of cliazomethane was added until the yellow oolouration remained. The 

exoess diazomethane ancl the solvent was removed at the pump to yield a mixture 

of mono and di oarboxylic esters which were diasolved in diethyl ether (0.5 mls). 

Since the label was in the 1 on 2 position it was only the dioarboxylio 

e ste rs that we re radioaotive. The radioactive dioarboxylio esters were 

identified by injeoting 1001-'1 of the solution on to a RGLC oontaining an FFAP 

o oolumn at 230 C. Too radioactive peaks were identified by oomparison with 

standard dioarboxylio esters run uncler the same oonditions. 

Investigation of liE id inoorporath£ll 

In order to investigate the amount of inoorporation into lipids the 

original lipid soL.ttion (1 ml) was oonoentrated to 1001-'1 and this solution 

pipetted on to a 0.25mm silioa plate drawn into ohannels lem wide. Suitable 

lipid standards were also plaoed on too plate whioh was developed in 1:% cliethyl 

ether in petrol ether to which had been added formic acid (1 ml). 

By association with the formio acid free fatty acids migrate as a 

discrete spot; otherwise they smear up from the origin. 

After developing the solvent was removed, care being taken to see that 

all the formic acid had evaporated, and the plate scanned for radioaotivi ty 

260 on the panax RTLB-l to obtain a differential record or the prototype scanner for 

an integrated soan. i'he plate was then sprayed with dilute sulphuric aoid and 

oharred at 250°C to allow the spots to be identified by comparison with the 

standards. 

Investigation of the distribution of labelled EI'E'oursor and desaturation 

p-.:-oduot in polar lipids and free fatty aoids 

The above prooedure was repeated exoept that after the plate had been 

soanned the bands corresponding to the free fatty aoid and polar lipid were 
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scraped off, eluted with ether and 2 : 1 v/v chloroform methanol respectiveJ.y, 

and converted to methyl esters with diazomethane or by transmethylation respect­

ively as described before. 

The proportion of saturated precursor and monoene produced in each 

fraotion W!'.s a.etermined by RGLC as before. 

Estimat5.on of the amount of desaturation that hag occurred when the conversion 

is low i.e. < 5$ 

When the conversion to monoene is small less than 5$ errors in 

triangulation due to peak tailing and triangulation became large. This was 

overcome by running the ester solution on a 1,% silver nitrate impregnated 

0.25 mm silioa plate channelled into 1 cm channels and developing it in 15.10 ether 

in petrol ether. After evaporation of the solvent the plate was scanned on an 

integrated setting. A second check was dons by scraping off the monoene and 

saturated bands, dissolving the fatty esters in 0.4% P.P.O. toluene and counting 

the activity on a ~ointillation counter. 

I Experiment with a microsomal fraction of hen liver 

1. 

a) 

Determin,'ltion of the optimum requirements of the system 

To check the nucleotide requirement 

A warren hen was sacrificed and the liver (35 g) removed. From the 

time of removal until the incubation, care was taken to keep the tissue and 

reagents at 0-50 C. 

The liver was minced with sharp pointed scissors, 0.3 molar sucrose 

buffer pH 7.4 (90 mls) was added and the miXture was homogenised by means of 

a mechanically driven Pot ter homogeniseI'. The homogenate thUs pnpared was 

centrifuged at 12,000 rpm for 15 mins. using an MSE super 40 centrifuge. 

This process renioved the blood cell debris and mitochandria and left a 

suspension of miorosomes in a particle free supetnatent with a fatty layer at 

the top which was removed by straining the suspension through muslin cloth. 

Six tubes were set up as follows:-
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Enzyme 

o .5M pho sphate b.iffer pH 7.4 

CoA 

O.lM. ATP solution 

0.5M Laotic aoid 

NAD+ 

NADH 

Tubes 1 -

3 mls 

1 ml 

1 mgm 

Iml 

1 ml 

2 mgm 

3 Tubes 4 - 6 

3 mls 

1 ml 

1 mgm 

1 ml 

2 mgm 

All the above solutions were previouslY adjusted to pH 7.4 with sodium 

hydroxide solution. To each of the siX tubes was added a substrate prepared 

as follows: (l14C) octadecanoic acid suspension (0.2 mls) suspended in 2.5ft 

Bovine serum albumin (4 mls) to which had been added O.lM magnesium chloride 

solution (lOOlll). 

After the addition of the substrate the tubes were gassed with oxygen 

for 1 minute then incubated in a reciprocating water bath at 37°C for 6 hours. 

At the end of this period the reaotion was stopped and the lipids 

extracted. A portion of the. lipids was converted to the respective methyl esters 

by transmethylation. A 50111 aliquot of each of the siX ester solutions was 

separately injected on to a radiochemical gas liquid chromatograph with an 

FFAP column at 2300C. The radioaotive esters were identified and measured 

as before. 

Thu lipid incorporation was investigated by T.t.C. on silica plates 

developed in ether petrol ether formic acid and scanned as before. An invest­

igation of' the incorporation of label into the individual phospholipids was 

performed by following the above procedure except that the developing solvent 

was chloroform methanol, acetic acid, water. (85: 15 : 10 : 3.7) v 263 • 

The distribution of labelled precursor and desaturated product in the 

polar lipid and free fatty acids was determined as before and the results 

obtained by radioohemical gas liquid chromatography on SE30 at 23O oC. 

- 108 -



bl To check the masS of reduced nucleotides 

Co enzyme A and AT!' required 

A warren hen was sacrificed and its liver (39.0g) removed and a 

microsomal suspension was prepared as desoribed in the previous experiment. 

SiX tube s were set up as follows:-

Microsomal Suspension 

0.5M KH2P04- pH 7.4-

CcA 

O.lM An> 

NADIi 

NADPH 

Tubes 1 - 3 

3 mls 

1 ml 

1 mgm 

Iml 

2 mgm 

To each tube was added a substrate as follows:-

Tubes 1 - 3 

114C octadecanoio 0.2 ml 

Bovine serum albumin 4- ml (2.5%w/v) 

O.lM )'g C12 0.1 ml 

0.5M phosphate buffer pH7.4-

Tubes 4- -6 

3 mls 

0.5 ml 

0.15 mgm 

0.2 ml 

Imgm 

~ mgm 

Tubes 4- - 6 

0.2 ml 

0.6 ml (O.lg/ml) 

0.2 ml. 

0.2 ml. 

After the addition of the substrate the tubes were o~genated for 

1 minute, stoppered and incubated in a reCiprocating waterbath at 37°C for 

6 hours. . After this time the lipids ware extracted and a portion of the lipid 

soltition transmethylated to yield the methyl esters. The methyl esters were 

then identified and measured by RGLC on a SE30 column at 230°C. The lipid 

incorporation was determined by TLC followed by scanning in the usual way and 

the individual phospholipids eltamined as in the previous experiment. The 

distribution of labelled precursor and desaturated product in the polar lipid 

and free fatty acid fraction was determined as before by RGLC of the derived 

o methyl esters on SE30 at 230 C. 

I 

I 

I 

! 

I 

I 

I 
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2. Illvestigat!,.on of the activat.ion reaction. 

a) The effect of the mass of sy.bstrate on the degree of de se.tu rat icm , 

A warren hen was sacrificed and a miorosomal suspension was prepared from 

its liver as before. six incubation tube a were set up as follows:-

Miorosomal preparation 

o .5M KH2P04- pH 7.4-

CoA 

O.lM AT!? 

mDR 

NADPH 

:5 mls 

0.5 ml 

0.1,5 mgm 

0.2 ml 

1. mgm 

In addition to the usual (ll4.C) stearic aoid suspension which had a specific 

activity of 0.2 Ilc/flg non radioactive stearic was mixed with this suspension. 

A spot of sodium bicarbonate and Tween 20 was added and the whole resonicated to 

give specifio acti vitie s of 0.008 flC/flg and 0.004- Ilc/Ilg. 

1 flo of each of these substrates were suspended on (O.lg/ml) of Bovine 

serum albumin solution (0.6 ml). O.lM Magnesium chloride solution (0.2 mls) 

and 0.5M phosphat.3 buffer pH 7.4- (0.2 mls) were also added. Half of each of 

these three substrates were added to a separate incubation tube and the whole 

oxygenated for 1 minute, stoppered and incubated in a reoiprocating waterbath 

o at 37 C for 6 hours. After this time the lipids were extracted and a portion 

of the lipid solution transmethylated to yield the methyl esters. The methyl 

esters were identified and measured by RC-LC on a FFAP column at 230°C. With 

the 0.2 flC/mg and the 0.004. Ilo/mgm samples the mass charts from the above RC-LC 

runs were triangulated to estimate the actual mass of oleate produced. 

The lipid incorporatidn and the distribution of labelled preoursor and 

desaturated product in the polar lipid and free fatty aOid fraotions wes 

determined as in the previous experiments. 

b) The Effeot of enzyme concentration on desaturation 

Using the enzyme source prepared in the previous experiment six tubes 

were set up as follows:-
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Enzyme Source 

o .3M Sucrose Buffer 

O.M An> 

NADH 

NADPH 

Tubes 1 and 2 

3 mls 

6 mls 

0.5 ml 

0.15 mgm 

0.2 ml 

1 mgm 

0.5 mgm 

Tubes 3 and 4 

6 mls 

3 mls 

0.5 ml 

0.15 mgm 

0.2 ml 

1 mgm 

0.5 mgm 

Tubes 5 and 6 

9 mls 

0.5 ml 

0.15 mgm 

0.2 ml 

1 mgm 

0.5 mgm 

To eaoh of these tubes was added a substrate oonsisting of (l14C) -

octadecanoic acid suspended on (0.1 glml) Bovine serum albumin (0.6 ml) to 

which had been added O.lM magnesium chloride (0.2 mls) and 0.5M phosphate buffer 

pH 7.4 (0.2 mls). The contents of each tube were oxygenated for 1 minute and 

the tubes stoppered and incubated for 6 hours at 37°C in the usual way. The 

reaction was stopped and the lipids extracted as before. Half the lipid sample 

wes transmethylated and the methyl esters formed were identified and measured 

o 
by RGLC on anFFAP column at 230 C. The lipid incorporation was investigated 

by T.L.C. and scanned as in all previous experiments. 

3. Investigation of the transfer of exogenous monoenoic fatty acids an~ 

immediate products of de saturation in this system 

a) Exogenous monoenoic fatty acids 

A warren hen was sacrificed and a microsomal suspension was prepared 

from its liver as before. Eight tubes were set up containing enzyme source 

and cofactors as in experiment 2a (pa~ 107). The substrate s used in this 

experiment were the isomeric monoenes (l14C) ~ 7 octadeoenoic, (l14C) _ 

~ 9 octadecenoic, (l14C) - ~ 11 octadecenoio and (l14C) - .2i!!/1ootadecenoio 

aoids. These were suspended on bovine serum albumin as before in experiment 

2b (page 109. After the, addition of the substrates the incubation media we re 

cxy~nated for 1 minute and incubated at 37°C. for 6 hours. The reaction was 

quenohed and the lipids extraoted in the usual way and a portion of the lipids 

transmethylated. The methyl esters were identified by RC-LC on an FFAP column 
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The lipid inoorporation was investigated by T.L.C. followed by 

soanning in the usual way. 

The metbyl esters were subjeoted to silver ion chromatography to 

separate the monoenoio esters from the dienoio esters. The conditions. for 

this separation are identical to those used to separate the monoenoio esters 

from the saturated esters (page 105). 

When the monoenoio esters and the dienoic esters had been isolated tb3y 

217 were separately 8Ilbjeoted to von Hudloff's oxidstive oleavage as before 

(page 105). 

b) Tb3 immediate products of desaturation 

The enzyme source produoed in the above experiment was incubated for 

2 hours at 37°C with (l14C) stearoyl coenzyme A thiolester*(15!lg) and NADH (lmgm). 

The reaction was quenched in the usual way and the lipids extracted. Half the 

lipid sample was transmethylated and the I'e8lllting methyl esters identified and 

measured by RGLC on an FFAP column at 230oC. The lipid incorporation was 

investigated by T.L.C. The amount of desaturated produot and labelled 

precursor in the polar lipids and free fatty aoid fraction was determined in 

the usual way. 

4. To determine the effect of chain length of substrate on the extent and 

position of deflaturation in a microsomal preparation from the liver of a ren 

A Warren ren was sacrificed and the liver (37.5g) removed. From the 

time of removal until the inoubation, care was taken to keep .the tissue and 

reagents as cold as po ssible. 

The liver obtained was minced with sharp pointed scissors and O.3M 

sucrose buffer pH 7.4 (100 ml) was added. The above mixture was homogenised 

by means of a mechanically driven Potter homogeniser. The homogenate thus 

prepared was centrifUged at 2,000 r.p.m. for 15 minutes using an M.S.E. super 

40 refrigerated oentrifUge. 

This process removed the blood oe11 debris and mioroohondria and left 
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a suspension o~ miorosomes in a particle free supernatent. 

The supernatant from this spin was strained through muslin to remove 

the layer of fat which had collected on the surfaoe during the spin and reoentrif­

uged at 30,000 r.p.m. for 90 minutes. 

This spin produced a microsomal pellet and a particle free supernai;qnt. 

Both these materials were isolated and kept at low temperature, (ooe). 

The microsomal pellet was rehomogenised in 0.3M suorose buffer pH 7.~ 

(25 ml) using a small potter hand homogeniser. 

The oomplete isolation procedure is shown diagramatioally-below. 

Blood oells 

oell debris 

mihchondria 

HEN LIVER (37.5g) 

(i) Minoed with 0.3M suorose 

buffer pH 7.~ 

(H) Homogenised 

HOMOG-ENATE 

12,000 r.p. m. 

15 mins 

SUPERNATENT 

30,000 r.p.m. 90 mins. 

Microsomal Partiole free 

Pellet supernatent 

Nine transmethylation tubes were set up and to eaoh was added the following­

oo,:"faotors dissolved in distilled water:-

Co-faotor 

Microsomal suspension 

0.5M KH2 PO~ (pH 7 .~) 

CoA 

O.lM ATP 
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Iml 

0.5 mls. 

15 mgm 

0.2 mls 



Co-facto r Amount 

NADH 1 I'lgm 

NADPH t mgm 

0.3M Sucrose buffer pH 7.4 3 mls 

To each of these tubes was added. a substrate preparation made up of 

100 ",I of substrate suspended on bovine serum albumin to which had been added 

magnesium chloride and phosphate buffer as in experiment 2b. The substrates 

used in this experiment were (l14C) - decanoic, (l14C) - dodecanoic, (l14C) -

tetradecanoic, (214C) - pentadecanoic, (l14C) _ hexadecanoic, (l14C) _ 

heptadecanoic, (l14C) - octadecanoic and (214C) - nonadecanoic acids. 

Another set of eight tubes were set up exactly as al)Qve except that 

the 3 mls of sucrose buffer was replaced by 3 mls of the particle free super-

natent. Also a last tube was set up containing the microsomal suspensi$n (3 mls), 

NADH (1 mgm) and (1l4c) stearoyl coenzyme A thioester (15/.1g)*. All the tubes 

were aerated for 1 minute with air containing 7010 oxygen:264 , the tubes 'Stoppered 

and incubated at 37°C tor 6 hours~ The reaction was stopped and the lipids 

extracted in the usual way. Half the lipids were transmethylated in the normal 

way and the radioactive esters identified and measured after injection of a 

portion on to a RGLC containing an FFAP column at 230oC. The monoenoio fatty 

esters were isolated from the rest of the ester solution by silver ion 

chromatography and the esters subjected to oxidative cleavage by von,Rudlott's 

technique. (see page 105). Comparison of the RGLC trace of the resultant 

dicarboxyUc esters injected on to a FFAP column at 230°C with a standard run 

"f known esters, allowed the monoenoic ester band position to be determined. 

The lipid incorporation was determined by T.L.C. as before and the 

amount of labelled precursor and desaturated product in both the polar lipids 

and the free fatty acids determined by the RGLC on SE30 at 230 0C of the methyl 

esters prepared from them. 
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5. To Investigate the effect of Bovine Serum Albumin as substrate caITier, 

on de saturation 

A white shaver hen was sacrificed, its liver removed, and a microsomal 

suspension prepared as in experiment 2a. Sixteen tubes were set up as follows:-

Tubes 1 - 8 Tubes 9 - l§. 

Enzyme source 3 mls 3 mls 

0.5M KH;zP04 
0.7 mls 0.5 m1s 

CoA 0.15 mgm 0.15 mgm 

O.lM AT? 0.2 mls 0.2 mls 

NADH 1 mgm 1 mgm 

NADPH i mgm t mgm 

O.lM Magn.esium chloride 0.2 mle 

Radioactive SUbstrate 0.1 ml 

To tubes 9 - 16 were added substrates prepared as before (see 

experiment 2b page 109 ). The radioactive substrates used in this experimsnt 

were (l14C) - decano1c, (l14C) - dodecanoic, (l14C) ~ tetradecanoic, (214C) _ 

pentad.ecanoic, (l14C) hexadeoanoio, (l14C) _ heptadecanoic, (l14C) _ 

octadecanoic and (214C) -. nonadecanoic acids. All the tubes were aerated 

for 1 minute with 70'/0 oxygen in air and incubated as usual for 6 hours at 3"1°C. 

The reaction was quenched and the lipids extracted as usual.· TIl'I 1ipids were 

transmetlv1ated to yield tll'lir corresponding methyl esters and these esters 

identified and measured by RGLC on an FFAP column at 230oC. 

6. To investigate the effect of chain length on the rate of desaturation. 

A white shaver Il'In was saorificed and a microsomal suspension produced 

from the liver in the usual way. Three tubes were set up as follows:-

Enzyme Source 6 mls 

0.5M KH2 P04 1.0 ml 

CoA 0.3 mgm 

O.lM AT? 0.4 mls 

NADH 2 mgin 

NADPH 1 mglll 
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Tre dubstrate s were set up as follows:-

Radioaotive substrate 0.5 mls (= 5 110) 

O.lg/ml Bovine serum albumin 0.4 mls 

0.5M phosphate buffer 0.2 mls 

O.lM magnesium cn'.oride 0.2 mls 

The radioactive substro.tes used in this experiment were (1 JA.O) -

tetradeoanoic, (2140) - pentadecanoic and (lJA.C) - hexadecanoic acids. The 

inoubation media in the tubes were aerated for 1 minute with 7CY/o oxygen in 

air and the inoubation was begun at 37°0. Samples of 0.5 mls of the inoubation 

medium were removed after 5 mins, 10 mins, 20 mins, 30 mins, 1 hour, 2 hour, 

4 hours and 8 hours. As each sample was removed it was quenohed by addition 

to 2 : 1 v/v ohloroform-methanol (20 mls) in the usual way. The 1ipids were 

extraoted and transmethylated to give the oorresponding methyl esters whioh 

were identified and measured by RGLC on an FFAP oolumn at 230°C. 

7. To Investig9.te the effeot of a terminal double band on the amount of 

de saturation 

The microsomal suspension from the liver of a shaver hen was prepared 

as in the previous experiment. Five tubes were set up oontaining 3 mls of this 

suspension and oofaotors as in experiment 2a. Radioaotive substrates were 

suspended on hovine serum albumin with magnesium ohloride and phosphate buffer 

added as in experiment 2b. The radioactive substrates used in this experiment 

were (1 JA.C) _ he xadecanoio , (1 JA.C) - heptadeoanoic, (114C) - ootadecanoic, 

(21)'0) _ nonadeoanoio and (1 JA.O) - 18 nonadecenoio acids. The incubations 

were oarried out exaotly as before and after the reaotions had been quenched 

the lipids were extraoted and trahsmethylated as before. Ail aliquot of the 

methyl esters was injeoted on to a RGLC oontaining an FFAP column at 230°0. 

The radioaotive esters were thus identified and measured. In the oase of 

the esters from the inoubation with (1140) - 18 nonadecenoic aoid trey were 

oxidatively cleaved by von Rudloff's teohnique '217' and the position of the 

double band determined as before. 
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II Experiments with whole cell cultures of Torulop...ll.is apicsla 

1. Effects of chain length on degree of de saturation 

A culture of Torulopsis apicola was grown from a dried culture in 

50 mls of the following medium for 24 hours at room temperature and then the 

whole transferred to 500 mls of medium in a 2 litre flask equipped with a 

glass tube to allow the contents to be aerated. This inoubation was carried 

out at room temperature under oontinuous lllumination for 2 - 3 days by which 

time a -malthy growth had been obtained. 

The medium used was as follows:-

Glucose 100 gm. 

Yeast extraot 5 gm. 

Urea 1 gm. 

K~ P04 1 gm 

Mg 304 7H2O 3 gm 

Metal concentrate Iml 

water to 1 litre 

The pH of this solution was adjusted to 5.8. 

The metal ooncentrate was made up as follows:-

Fe 304 7 H2O 0.1 gm 

Cu 304 5 ~O 0.075 gm 

Zn 304 7 ~O 0.1 gm 

Mn 3°4 4 H2O 0.1 gm 

K2 Mo 04 0.01 gm 

water to 100 mb 

1 ml of dilute HCl was added to give a clear solution. 

After 2 - 3 days when the culture was growing vigorously 5 ml aliquots 

were removed and placed in eight incubation tubes. To each of these tubes 

was added a radioactive precursor suspension (0.1 ml). The radioactive 

substrates used in this experiment were (l14C) - decanoic, (l14C) _ dodecanoio, 

(l14C) _ tetradecanoio, (214C) _ pentadecanoic, (l14C) _ hexadecanoic, 

(l14C) _ heptadecanoic, (l14C) _ octadecanoic and (214C) - nonadecanoic acids. 
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The incubations were allowed to run for 6 hours at 200 C under constant 

illumination from 4 x 40 watt daylight emission tubes. At the end of this 

period the reaction was quenched and the lipide extracted in the usual way. 

The lipids were transmethylated and an aliquot of the resulting methyl ester 

solution examined by RGLC on an FFAP column at 230°C. From this the 

radioactive compounds were identified and measured. 

The rest of the methyl e~ter solutio~ was s;):bjected to silver ion 

chromatography to isolate the monoene fraction. Because there was more 

than one monoene formed in some of these incubations the required monoene 

1.e. the one of the same chain length as the labelled precursor was isolated 

by preparative GLC on an FFAP oolumn at 23QoC. 

The instrument used for this and all subsequent preparative gas liquid 

procedures was a pye 104 flame ionisation instrument equipped with a stream 

splitter. This allowed ~ to go to the deteotor whilst the other 99% oould 

be oolleoted in a trap filled with Ballotini beads wetted with 2 : 1 v/v 

chloroform-methanol. Int erchange of these traps allowed different fraotions 

to be collected. 

After collection the required compound was eluted from thecI'8.pwith 

2 I 1 v/v chloroferm-methenol. When the required monoene had been isolated 

by this technique it was subjeoted to von Rudloff's oxidation (see page 10.5 ). 

The dicarboxylio esters obtained after methylation with diazomethane were 

identified by their relative retention volume on RGLC oontaining an FFAP 

o 
column at 2.30 C i 

2. To investigate the band position in monoenes of longer chain length 

then the preoursor saturated fatty acid. 

The above experiment was repeated and (l14C) tetradecanoio acid 

suspension (0.5 mls) (0: .5 !-lc) was added to the yeast in its nutrient medium 

(5 mls) and incubated as before. At the end of the inoubation the lipids 

were extracted and transmethylated to yield the methyl esters. The monoenoic 

esters were isolated by silver ion chromatography and then separated into their 
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individual chain lengths by preparative GLC as in the previous experiment. 

The band positionsof all these esters were separately determined by von 

Rudloff's oxidativo oleavage as before. 
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SECTION III 

st'Jdies of the positienal specificities of 

enzymic de saturation and hvdroxylation ~f monoenoic fatty acids. 
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Introduotion 

With the exception of bacteria (pseudomonodales Eubacteriales and. 

Actino mycetales) animals, plants and mioro organisms form polyunsaiurated. 

fatty acid.,s 264,266. This: section is primarily concerned. with the second. 

de saturation to form the dienoio fatty acid.. 

Dienoic fatty acids of various chain ::'engths are known in which the 

two bonds are separated by more than two oarbon atoms (Table I below). . Most 

of these acid.s have a double bond which may be either ili or ~ in a 

position relatively olose to the oarboxyl group and the other are in a position 

more us~ally associated with the methylene inhrr7upted patterns of desaturation. 

Table I Naturally occurring dienoio fatty aciQs having their bonds separated 

by at least two carbon atoms 

ili 5 .£i!!. 9 hexadecadienoic 

ili 5 .£i!!. 9 heptadecadienoic 

25 £ll9 octadecadienoic 

.£i!!. 5 ~ lJ. octadeoadienoio 

trans 5 ~ 9 octadecadienoic 

£ll 5 ill 11 eioosadienoic 

~ 5 £i!. 13 docosadienoic 

trans 3 ois 9 ootadecadienoio -

Source Reference 

Dictyostelium disooideum 2(.7 

Dictyostelium discoiddum 267 

Dictyostelium discoideum 267 

Ginkgo biloba 268 

Thalictrum venulosum 269 

Ginkgo biloba 268 

Limnanthis douglasii 270 

Aster alpinus 271 

Although the majority of fatty acids exhibiting ('onjugation have more 

86 
than two unsaturated. oentre s SOIll3 conjugat ed dienoio aoids are known e.g. 

trans 10 trans 12 octadeoadienoio aoid isolated from the seeds of Chilopsis 

272 
linearis by Hopkins .• 

Perhaps the most unusual dienoic fatty acid isolated fnom natural 

souroes is laballenio acid I which was isolated from the seed. oil of Leonotis 

nepetaefolia by Bagby and co-workers 273 and. since reoognised in the seeds of 

other members of the Labiatae ~74. This acid has the struoture as shown belOW 
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with all alleno grouping between the fifth and seventh carbon atom:. 

= C 

I Laballenio acid [CLm - 4zO 

Apart from the examples cited above the vast majority of the dienoic 

fatty acids which are found to occur naturally have a methylene interrupted 

se 'Pence of double bonds. The most common dienoic methylene interrupted fatty 

acid is linoleic aoid which occurs in all higher plant s and animals and is an 

essential fatty acid. Be side s this acid however seve ral other dienoic fatty 

acids of various chain length having a methylene interrupted sequence ef 

double bOnds are known and examples are shown in table II be::'ow. 

Table II Naturally occurring methylene interrupted dienoic fatty acids 

cis 9 cis 12 octadecadiendc - -
cis 9 trans ::'2 octadecadienoio --
trans 9 trans 12 octadecadienoic 

~ 7 * 10 hexadecadienoic 

cis 11 cis 14 eicosadienoic - -

Scurce 

In many natural fats 

Creph rubra 

Chilopsis linearis 

Ginkgo biloba 

Ephedra compylopoda 

.B!!. 

275 

276 

268 

277 

The biosynthesis of al.1 these dienoic aoids occurs under aerobic 

conditions. Several theories ltlve been advanced as to the biosynthetio route 

to the conjugated fatty aoids. 94 The allenic acids are also the subject of 

speculation but all the other dienoic acids are tha result of aerobic 

desaturations although in several cases either !'I-oxidation or chain elongation 

has taken place after the actual desaturation. 

Despite this many dienoic fatty acids occur as the direct result of 

the aerobic desaturation of a monoenoic precursor of the sane chain length. 

Although in different systems the same precursor may be desaturated to give a 
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different diene product e.g. in Chl~re11a vulgaris and higher plants oleate is 

desaturated to lino1eat~7~i1st in the slime mould dictyosie1ium discoideum it 

is desaturated to ~ 5 ~ 9 octadecadienoic acid~7~n a given systen. under 

given conditions the same product is always produced. Thus sone positiona1 

specificity is seen to be acting and it is the object of this section, amongst 

other things, to investigate the factors which control the position of the 

second double bond, in particular the features of the substrate molecule. 

Two systems, whole cells of Chlorella vulgaris and the embryo and 

endosperm of' the beans of the castor plant Ricinis communis, which are known to 

produce dienes from monoenes by direct de saturation 280 were studied. 

Monoenes of various chain length and bond position were incubated with the above 

systems and where dienes were produoed the bond position and amount was determined. 

281-283 284. 285 It has been shown by James , yamada and Stumpf and CcnVl.n 

that in the developing oastor bean oleic acid is the direct precursor of 

ricinoleic acid and furthermore that molecular oxygen and N.A.D.H. are obligatOI'y 

cofaotors. Sinoe these oonditions are exactly the sama as those required in the 

formation of linoleic acid in the sane system it was expected that some synthesis 

of an hydroxy1ated species might be noted during the studies of diene formation 

in this system. 

Galli~rd and Stumpt2%ve shown that a microsomal fraction of the 

immature beans catalyses the conversion of oley1-S-CoA to ricinoleate whilst 

neither linoleic acid nor 1inoleyl-S-CoA was converted to ricinoleate at all. 

This work suggests that the mechanism of ricinoleate formation does not involve 

the hydration of 1iro1eate even though this is synthesised at the same time. 

However the possibility remains of the Iwdration of an enzyme bound 1inoleate 

species not interchangeable with a pool of exogenous 1ino1eio acid er lino1eyl-

S-CoA could not be excluded • 

.480 
Morris however removed any doubt about this enzyme bounitheor,y and 

proved that the mechanism was one of hydroxyl substitution proceeding with 

overall retention of configuration at the 12 position. In the same work he 
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also proved that the stereochemistry of formation of linoleate in this system 

is the same as in Chlorella vulgaris. 

Since the mechanism of the formation of ricinoleic acid does not 

involve linoleate but is a direct qydroxylation of till parent monoene it ' 

follows that any specificity of qydroxylation need not be connected with the 

specificity "f introduction of the second double bond. This ueans that the 

factors controlling the position of the introduction of the double bond are not 

necessarily ths same as those controlling ths position of qydroxylation. In 

this section al\Y hydroxylated species forued from tre added monoene was isolated 

and. the position of the qydroxyl group determined sepal'ately in an attempt to 

find out which features of the parent monoene determine the position of 

qydroxylation. This work was carried out as an extension of the work by 

Galliard end Stumpf who could obtain no qydroxylation in either elaidic or 

~ va.ccenic acids. Other monoenes of various chain lengths and bend positions 

were incubated with slioed embryos and. endosperms of castor bean and al\Y 

hydroxylation or further desaturation noted. 
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RESO~TS AND DISCUSSION 

The work in this section concerns the formation of dienes :f'rom 

monoenes. In the incubation of saturated precursors with whole cells of 

Chlorella vulgaris not only 17ere monoenes formed but also dienes of the 

same c~in length. ~hese were formed by direct aerobic desaturation as 

proved by the retention of label in the prod'~ct. The bond pos::.tiollSof 

these di~nes were determined by partial reduction with h,ydrazine130, 

isolation of the resultant isomeric mvnoenes followed by von Rudloff oxidation 

217, to giva the bond position of the original diene. 

In the case of the Q.!:lgrella incubations the bond positions and 

the amounts of the monoenes and dienes formeu. is given in Table 1. This 

shows the presence of two enzymes, one which seemed highly speoific for 

conve-rting.£!! 7 monoenes to 7,10 die ne s and another tml.ch le ss chain length 

specifio which converted the more usual 9-10 monoene s into 9,12 dienes. 

The connection between these two enzymes may be that of the loss of an 

amino acid between tho desaturase site and the point of attachment of the 

substrat,; molecule to the enzyme. This was discussed in Section :::r with 

reference to the desaturases responsible for the first double bond and the 

same arguments apply here. (See page 76 ). 

I Percentage conversion to • • 
PreC"olrsor 7 7/10 9 

I 
9/12 I Ratio Diene 

mo hoe ne Diene monoene Die ne to monoene 

14:0 I 10.6 0 5.2 0 0 

15:0 12.8 0 20.3 8.4 0.41 

16:0 5.3 3 12.5 3 0.24 

17:0 0 0 48.2 19.5 0.4 

18:0 0 0 27.9 62.6 2.25 

19:0 0 0 29.1 6.3 
I 0.22 

! I 
,Table 1 

The direct dehydrogenation of saturated acids by .Chlorella vulgaris to 
unsaturated acids of the same chain length. 
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Ignori.ng this unusual enzyme and COl'si.der:l.ng only the enzyme tha·~ 

introduces the second double bond in the 12-13 position, it can be seen that 

this is much le SS chain length specific being active in all chain lengths from 

015 - 019 and having an optimm at 018 as shown by the diene/monoene ratio 

Table r, Fig .r. 

Since variat ion of c!i'l.in length doe 5 110t affect the position of the 

double bond, it can be said that the position of the double bond is not specific 

for the distance from the methyl end of the molecule, nor is there any attach­

ment there. These results clearly indicate the attachment of the monoeneoic 

fatty acyl group to the enzyme either directly via the acyl group or the OoA 

or ACP thlolester as in the case of monoene formation. There are however two 

factors which may be specific for the position of the second double bor.d. 

The first is the distance from the attached carboxyl group as in the case of the 

monoene formation and the second is that the position of the first double ·uond 

fixes the position of the second double bond. 

In order to inVestigate and clarify this issue and to verify that. 

individually added monoenes behaved in the same way as those formed ill situ, 

Ohlorella cells were incubated with a series of V\9 monoeneoic fatty acids of 

various chain lengths and a similar series of 9-10 mon~enoic fatty acids. 

The results of these experiments are shown in Tables na and lIb. Aa strongly 

indicated by the first experiment using saturated precursors, the 9-10 monoenes 

all gave 9-10, 12-13 dienes with an optimum conversion at C18, Table lIb, 

Fig nb, which confirms the first experiment, Table I fig I. The more interesting 

figures are those in Table lIb, Fig.IIb, which show whether the control is solely 

mediated by the carboxyl dnd of the molecule as in the case of the monoenes or 

dependent in anyway on the first double bond. The V\9 series had only three 

members since it was known that .£1! 7 hexadecanoio aoid would yield the 7,10 

diene but that this was due to a separate enzyme. The question revolve s 

around whether .£ll 8 heptadecenoic acid gave the 8,11 diene and the.£!.!!. 10 
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CHAIN LENGTH. 

Fig. i. Ratio of the amount of dienoio fatty aoid to the amount of roonoenoic 

~atty aoid formed from saturated fatty aoid precursors of the same chain length 

by whole cells of Chlorella vulgaris. 
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nonadecenoic aoid gave the 10,13 diene showing oontrol by the first double 

bond or whether..2i:!. 8 - heptadecenoio aoid gave the 8,12 diene and the 

ois 10nonadeoenoio gave the oonjugated 10,12 diene or nothing whioh would 

show carboxyl control. If' oarboxyl "ontrel were the case it would be quite 

reasonable to expect the cis 10 nonadeoenoio acid to give no further desaturation 

in the light of' the experience of' the £i:!. 7 octadecenoic and ili 11 octadecenoio 

aoid with the ruonoene forming enzyme in Section II. 

I preoursor ! % Convers!.on to Bond Position 
Diene 

ois 8 heptadecenoio 26.0 8/9, 11/12 

ili 9 octadecenoio 79.0 9/10, 12/13 

ill 10 nonadecenoic 24.1 10/n, 13/14 

Table lIa 

The direot de hydro Ij9 nat ion of 114C labelled. VI.9 monosnoic fatty acids by 

Chlo~ella vulgaris 

Preoursor % Conversion to Bond Position Die ne 

..2i:!.9 hexade ce noic 21.0 9/10, 12/13 

.2ll9 heptadeoenoio 37.4 9/10, 12/13 

.£ll9 ootadecenoio 79.0 9/10, 12/13 

9&9 no nadecenoic 25.5 9/10, 12/13 
, 

Table IJ;h 

The direot dehydregenation of 114C labelled carboxyl monoenoio acids by Chlorell3. 
== .. -. 

vulgaril! 

- 127 -



However the result of the experill¥lnt was to show that the position of 

the first double bond iR the factor which governs the second double, the 

second double bond always being methylene interrupted from it. The 1''8 

series of acids gave a series of W6 .!?il1. Lnes with an optimum conversion 

at C18, Fig.Ub. Tmse acids have tm same terminal structure as linoleic 

aoid and both SOhlenk289 and van Dorp290 have shown them to have essential 

propertiEl s. 

The same experiments were carried out in another system known to convert 

oleic acid to linoleio acid, namely the slioed embryos ard endosperm of the 

castor bean Ricinis co mmu nis 280 • Here the salJl3 results ware obtained, 

see Table III, Fig.III. 

Precursor Dienoic Bond Position !It'droXYlated 11ydroXyl 
Produot P::'Oduct position , 

Carboxyl 9 Series I 
!l!'9 hexadece noio 6.7 9/10, 12/13 6.2 12 

~.9 heptadecenoic 6.8 9/10, 12/13 9.0 12 

.21!!. 9 o~tadecenoic 9.2 9/10, 12/13 17.4 12 

.21!!. 9 nonadecenoic 4.5 I 9/10, 12/13 4.8 12 

EZ...§erias 

~ 8 heptadecenoio 2.8 8/9, 1:1/12 5.6 11 

~9 octadecenoic 9.2 9/10, 12/13 17.4- 12 

cia 10 - no nadeceno ic 2.0 10/11, 13/14- 4.3 13 
I , 

1'able III 

114C labelled monoenoic fatty acids incubated with B..iginis cpIDnnlnis embryo + 

e ndo sperms 

Since both these sydtems seemed capable of converting 8, 9 and 10 

monoenes to theiz' respective methylene interrupteddienes it was decided to 
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see if they would convert 7 and 11 monoene:;;.Accordingly, both Chlorella 

and celstor bean systems were inC'.lbated with a serie 5 of monoenoic acids and 

stearolic acid, see Table IV. This showed that Chlorella could not 

desaturate either m 7 octadecenoic or ili 11 octadecenoio and proved that 

only double bonds 8, 9 or 10 can be acoepted by the system. The cptimum 

bond position was 9-10 (Fig.IV). ~ 12 octadecenoic acid was desaturated 

but this wes in the 9 position not the 15 r:.o the diena produced was not due 

to the enzyme being studied and was, in fact, due to the 9-10 monoene 

desaturase in a similar wey to that in which linoleate wes formed in the 

hen liver microsomal system (see page 92). The ;f'act that elaidia acid 

gave no de saturation showed that tne 1:ond has to be ili for desaturation to 

.,ccur. Similarly stearolic acid was not desaturated • 

Precursor % Conversion to Bond, Position Die ne 

ili 7 octadecenoic <.1% -
,Ell 9 octadecenoic - 54.0 9/10, 12/13 

elaidic <1% -
stearolic <.1% -
~ 11 octadecenoic <.l% -

I £ll.12 octadecenoic 48.0 12/13, 9/10 

L~ I 

Table IV 

Ths direct dehydrogenation of various labelled precursors by Chlorella vulgaris' 

As a result of this experiment a precise specificity is difficult 

to see. For desaturation to occur to form a diene in Chlerella or castor 

then there IIllst be a ~ double bond in the 8, 9 or 10 position, Therefore 

it would seem once again as if it is a pl:\Ysical distance from the point of 

attachment of the carboxyl group to the enzyme that really determines the 
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position of do saturation. 

Fig.V shows in scale drawing the system as it might be on the 

enzyme surface. It can be seen that, assuming the aliphatic ahain is in 

the energetically favoured staggered oonformation, on rotation of' the ohain 

:through 1800 about its axis, the 11 and 12 oarbon atoms of..£i!! 8 heptadecenoic 

acic! and the 13 and 14 carbon atoms of ds 10 nonadecanoio acid fall on either 

side of the 12 and 1.3 oarbon atoms of oleic acid. Thus, if the active site 

is directly under the 12 and 13 atoms of oleic acid, the ideal sub st rate , 

there is the possibility of some overlap with the 11 am 12 or 13 and l)~ 

carbon atoms of a cis A 8 or cia MO system respectively. - -
Although the 10 and 11 hydrogen atoms of.£i! A. 7 octadecenoic 

Mid fall alongside those of the ~ A. 8 variety they are sufficiently far 

away from the actual desaturas9 site for there to be no desaturation. The 

sa!I13 arrangement holds for ~ 11 octa<iecenoi~ acid or ili J.2 octadecenoio 

aoid. 

Having said this it is olear why neither elaidio or stearolic 

acids gave any desaturation since they have no oarbon atoms anywhere near 

the de sr. tura se site. 

Thus the real factor that governs the position of the seo$nd 

double bond is that the hydrogen of the substrate chain should fall within 

the sphere of influence of' the desaturase site. The reason w~ this system 

appears less specific than the first double bond system is that; having a 

bend in the molecule, it is possible to get two different struotures having 

carbon atoms olose enough hgether for either to be in the sphere of influence 

of' the active site. In the monoene case sinoe the saturated precursor is 

linear, there oan only be one structure capable of placing hydrogen atoms 

within the sphere of influenoe of the acti Ye site. 

The magnitude of' too sphere of' infl;lence of' the desaturase site 

is in keeping with the suggestion of a disulphide bridge. To conclude, 
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the preoiee position of the second dcuble bond is that it is formed between 

two adjacent carbon atoms which fall in the rectangle of enzyme surface 

shown, Fig.V, when the carboxyl group is attached to the binding site of 

the enzyme. So in a less obvious way, this is also a case of carboxyl 

contrel. Quantitatively speaking, it is easy to see why c18 is the 

optimum ~hain length for the W9 serie,;, Tables IIa and IlI, as this gives 

the best cover of the active site, whilst the optimum of C18 in the 

carboxyl-9 series can only be explaine<i by saying that up to 18 better 

binding is obtained by having a longer ohll.in and henoe a greater London 

dispsrsion force up to 18 but an adverse interaotion with the enzyme at the 

19th carbon atom causes a less favourable arrangement in the case of C19. 

The results obtained in the experiments with the carboxyl 9 and 

W9 series of ~bnoenes with cestor and Chlorella VUlgaris, Tables III and IV 

ani Figs III and IV respeotively oould also be explained in al'<lther wa~r. 

Desaturation was only observed in either the W9 or carboxyl 9 series and 

never with any other bond position. Therefore it is possible that there 

are two anzymes responsible i'or the introduction of the second dot'.ble bond, 

one that is carboxyl and oontrolled and the other that is controlled by the 

distance from the methyl end of too molecule. Qualitatively this would 

explain th; results as satisfactorily as the previous theory expounded above 

but quantitatively the results lend an extra strength to this theory. 

The previous theory explains quite satisfactorily the qualitative 

data and also the reason for the JB caro<bn arom substrata being the optimum 

point in the W9 series. The previous theory has a less obvious explanation 

of the reason why the C18 manoene should be so favoured in the carboxyl 9 

serie s. This second theory would explain this in this way. In castor 

bean, for example, if the carboxyl 9 enzyme was capable of converting 6.5f. 

of the label to dienoic fatty acids and the W9 enzyme oapable of converting 

2.5f. of the label to :lienoic fatty acid irrespective of chain length, then 

the reason oleio acid is favoured in both series ir because it is the only 
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~.,,:\iI. oapahle of beir.e; a subatr<>te f'or both enzymes and hence is de saturated 

to 9%. This agrees well with the observed individual components in the 

seventeen and nineteen carbon atom cases. Similar results were obtained 

in the Chlorella vulgaris incubations and a comparison of theda.ta appears 

in Table V below. 

, 
% De sat • :,y % Desat. by \ observed 

Enzyme Langth System W.9 carboxyl Total Desat. f'or 
c~ntrolled contralled 

enzyme I enzyme oleic 

Ricinus cOlLlllUnis 2.4- 6.6 9.0 9.~ 

Chlorella vulgaris 22.0 31.5 53.5 79,0 

Comparis.m of the individual conversions of t~ Vi'} and oarboxyl '} desaturases 

with the overall conversion in the case of oleic acid 

The postulation of two enzymes responsible f'or the introduction of 

the second double bond in the conversion of oleate to linoleate raises the 

question of whether the substI'lte is the sane for both. If it is not then 

it could explain the close involvement of lipid in these desaturations (of 

Chlorella) with the actual lipid as a pOSSible substrate for one of the 

8183 enzyrr..as ", most l:ikely the 1A9 desaturase for steric reasons. The 

carooxyl oontrolled desaturasa could t~n have the sane substrate, the 

CoA or ACP thiolester, as has been more generally observed to be the case 

in desatuI'ltion studies47 ,6l. 

No lipid involvement has yet been demonstreted in the oastor bean 

but it has not been looked for to date. 

Incubations of tlJ3se systems with ili-ll-eicosenoic, ili 8-

octadecenoic and cia 10 octadecenoic acids would help to differentiate 

between these two theorie s of the specificitie s of de saturation. 
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In experiments with castor beans, the actual beans were picked 

35 - 40 days after flowering to ensure maximum conversion to linoleate283 • 

At this time the same workers found that ricinoleate was also being actively 

synthe sised. Since the conditions of ricinoleate synthesis are the same 

as those for aerobic de saturation286 viz molecular oxygen and reduced 

pyridine mcleotides formation of an hydroxylated species was ncted in tie 

desaturation studies. This was of great interest since Galliard and 

stump~86 working with a microsomal preparation of castor bean had been 

unable to demonstrate hydroxylation of any substrate other than oleate. 

A series of 9:10 monoenes of varying chain length were incubated 

with sliced embryos under conditions similar to these used by Morris et 

a12SO in their stereochemical studies of ricinoleate formation in Ricinis 

conmunis. All the substrates tested i.e. those possessing carbon chain 

lengths between 16 and 19 carbon atoms produced an hydroxylated species 

Table Ill. The optimum chain length for this was at 18, see Fig. VI. The 

series of W9 acids also yielded an hydroxylated species, Table HI, and, 

once again, the optimum was at C18, see Fig. VI. 

It was unknown, at this stage, at what position the hydroxylation 

had ocourred and there have been observations by Galliard and. Stumpf that 

a ~ hydroxy species 

of NADPH. However 

is formed in experiments with castol86 in the absence 

von Rudloff oxidation217 of the acids, gave the regular 

non hydroxylated decarboxylic diesters and this eliminated the possibility 

of the hydroxylation ocourring between the double bond and the oarboxyl end 

of the mole cule • 

These results did not tell where the exact position of hydroxylatio!l. 

ooourred and what effect the substrate ohain length and position of the 

double bond hed on the enzyme which produced the hydroxylation. The 

position of the hydroxy group was determined by first reducing the hydroxy 

alkenoic acid to an h,ydroxy alkancio aoid sinoe oleavage at the double bond 

would yield a ragular dioarboxylio aoid and yield no information about the 
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position of the !Jiydroxyl group. The hydroxy alkanoio acid was then oleaved 

by strong oxidative cor.ditions287 which first of all oxidises the hydroxy 

acid to the corresponding keto acid and then causes cleavage on either side 

of the carbonyl group. This yields two dicarboxylic acids as products 

differing by one carbon atom (see page ~. Thus a 12 !Jiydroxy acid yields 

dodecanedioic and undecanedloc acids in this reacticn. By studying the 

dicarboxylio acids formed the position of !Jiydroxylation can be determined. 

The !Jiydroxy alkanoic acids formed by relluction from the produots of 

the incubations were all oxidised in this way and the indivillual dicarboxylic 

diesters formed from the products. The individual diesters were then 

separated and the activity counted by sointillation counting. The radio-

active dicarboxylic esters gave the position of the Jvdroxy group in the 

mclecule. 

These results are given below in Table VI in detail and are also 

included in Table III. However, despite tm occurrence of hydroxylated 

species in these above incubations, no desaturation or hiYdroxylation could 

be demonstrated in eitmr .£1§. 7 octadecenoic acid or in ~ 11 octadecenoio 

aOid. This latter result confirms the findings of G-alliard and stumpi 86 • 

Thus it appears that the specifioity for Jvdroxylation in castor 

beans is similar to that f'or the formation of' a diene. That is that the 

enzyme shows a pI'i!'!ll-ry speoificy for the hydroxylation to oocur (3 to the 

dcublo bond and then only in the direction of the methyl end 'of the molecule. 

The work of G-alliard and Stumpf shows that this has to be a ~ double bond 

and the work of this thesis shows that that double bond mst be in the 

8, 9 or 10 positioll in the chain and that double bonds in the 7 and 11 positions 

do not yield hiYdroxy species. 

Table VII summarises the total work done on this system. 
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Counts Dioarboxylio Esters I 
Precursor I 

OH position I 
Cio I Cli °12 

n 1 v13 
I -

.cis 9 hexadecenoio 871 20,136 20,605 423 12 

~9 he pta6.e ce no io 908 30,110 27,578 519 12 

~9 octadecenoio 417 63,883 60,191 334 12 

ili 9 nonadecenoic 631 23,192 21,544 449 12 

~,8 ootadecenoio 47,415 30,279 1,971 853 10 

ili lO ootadecenoio' 716 1,313 23,071 22,015 13 
~ . 

Table VI 

Total counts in the oollected dicarb~xylio esters from the oleavage of the 

hydroeY aoids rormed in the inoubation of labelled preoursors with sliced 

embryos of Rioinis oommunis 

I .f. t Precursor I:\ydroxyla t~.on Reference 

dis 0 hexade cenoi" Yes I a -' 
ili 9 heptadecenoio Yes a 

ili 9 ootadecenoio Yes ab 0 

~9 nonadeoenoio Yes a 

ili 8 heptadecenoic Yes a 

~ 10 nonadeoenoio Yes a 

ili 7 octadeoenoio No a 

~ 11 ootadecer.oio No ab 

~ 9 octadecenoic No b 

octadecanoic • No b 

I ili 9, ill 12 octadecadienoic No b 0 

Table VII 

Possible precursors for h¥droxylation in Rioinis communis 

a) This thesis b) Galliard and Stumpr286 0) A.T.James, H;C.He.daway 

and J.P. webb283 
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Thus, to crono.rude, this work suggests thll.t the fatty acyl residue 

is connected to the enzyme at the carboxyl eN though trn precise form. of 

attachment is n()t known and that the real specificity of r,ydroxylation is 

that the carbon atom must be i3 to a ili double bltnd in such a position in 

·the chain that it falls within the area shown in Fig. VII which is the area 

of influence of the active site. The optinum bond position is 9:10 

since this gives the Gptinum orientation of the chain on the aotive site. 

There is an optimum chain length of 18 carbon atoms among the 9: 10 acids. 

The secondary ch<iin length effeot is best explained by once again 

postulating that the greater the number of van den Waals interaotions the 

better the binding to the active· site although therenust be a further 

unfavourable interaction in the case of the 19 carbon at~m chain. 

The possibility of ho enzyJOOs being responsible for the 

r,ydroxylation, one oarboxyl controlled and one methyl end controlled as 

postulated in the case of trn desaturases responsible for the introduction 

of the aecond double bond (see paget'3l) is not ruled out. . Qualitatively 

and seIri quantitatively, it rould fit the data although the precise agree­

ment of the figures does not quite bear it out completely. Here oleic 

acid is more favoured than the sum cf the two seventeen isomers for 

axamplll. Also, no lipid involvement has been studied in the case of 

ricinoleate formation and so the position is a little less certain here 

although this work provides a useful basis for further work oni;his system. 

Once again however, these two theories could be tested and 

differentiated .y using ili 8 octe.decenoic and ili 10 octadecenoic acids. 
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EXl'~lJ~~ 

I Experiments with whole cell cultures of Chlorella Vulgaris 

The original Chlorella vulgaris (strain 21l/llh) culture was obtained 

from the Culture Collection of Algae and Protozoa, Cambridge, and maintained on 

"Cambridge" agar slope s (the "poor" medium de scribed below). 

Chlorella 7Ulgaris was grown by the following procedure. 

One loop of cells was inoculated from an agar slope into .5 mls of 

"rich" medium (see belOW) and incubated for 24 hours at 30°C under continuous 

illumination 18 inches from 4 x 40 watt fluorescent tubes (daylight emission). 

The .5 ml culture was then poured into 2.50 ml of "rich" medium ina Roult 

o bottle and incubated for 2 - ) days in the light incubator at 30 C. 

Rich Medium KH2 P04 

K2H P04. 

(~)2H P04 

Mg S04 7Hz0 

CoClz 

Mn 304 4H2O 

4. mM FerIic citrate 

glucose 

tryptose 

Difco Yeast extract 

Water to 

Final pH 6 • .5 

Poor Medium Prctooae peptone 

K NO) 

K2 H P04 

Mg 004 7Hz0 

Agar 

Water to 

Final pH 6.5 

- 1)7 -

.500 mgm 

.500 mgm 

800 mgm 

200 mgm 

40 mgm 

2.2 mgm 

2.5 ml. 

10 g. 

10 g. 

2 g. 

1 litre 

2 gi 

200 mgm 

200 mgm 

10 g. 

1 litre 



la) To investigate the effect of chain length of substrate on the extent 

and position of de saturation in a whole cell culture of ChlorAlla lDIJgaris 

The culture of Chlorella vulgaris was grown in the "rich" medium 

as before and harvested acoording to 
. 62 

the method of Harrl.s et al. This 

involves spinning down the cells at 1,000 r.p.m. for 10 mins. The cells were 

then reauspended in the same volume of 0.2M phosphate buffer pH 7.4 and the 

oentrifUging repeated to obtain the cells free of the rich medium. The cella 

were finally resuspended in 0.2M phosphate buffer pH 7.4 at a concentration of 

1 gm of cells to 10 m1s of buffer. This suspension of cells was then 

preincubated for 1 hour at 27°C at a distance of 1 ft from three 250 watt 

photo flood lamps with a 6" deep water filter to remove the heat. 

3 ml aliquots of this suspension were placed in eight tubes. To 

each was added a radioactive precusor suspension (0.2 mls) and the whole 

incubated for 6 hours at 27°c in an illuminated incubator. The radioactive 

substrates used in this experiment were (l14C) - decanoio, (l14C)_ dodecanoio, 

,,(l14C) _ titradecanoic, (214C) _ pentadecanoic, (l14C) _ hexadecanoic, (114c) _ 

heptadecanoic, (1 J.l, C) - octadecar.oic, (214C) _ nonadecanoic acids. At th .. end 

of the incubation period the reaction was quenched and the lipids extracted with 

2 I 1 v/v chloroform methllnol as in section II. The lipids were transmethylated 

and the radioactive esters identified and measured by RGLC on an FFAP cohmn 

at 2300 C. The monoenes and dienes were isolated from the esters by silver 

ion chromatography and then the ester having the same chain length as the 

labelled precursor isolated by preparative G.L.C. on FFAP at 230°C as before. 

The band position of the monoenes was determined by von Rudloff's 217 oxidative 

cleavage technique and the band positions of the dienes was determined as below. 

The determination of the diene band positions 

The dienoio ester isolated above was dissolved in methanol (0.5 mls). 

Where there was little endogenous cold acid present e.g. in the case of methyl 

heptadecadienoate, uethyl lino le ate (lOOf.lg) was added as carrier. 6O}b 

,11' 
hydrazine hydrate (50j.ll) and hexoic acid (2 mgm) were added to the solution 

" 
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which was sheken in an unstoppered tube at 50oC. The course of the reaction 

was followed by G.L.C. on a pye 104 instI'llII!3nt ccntaining an FFAP column at 

230oC. The disappearance of the diene peak is accompanied by the appearance 

of a split mollC>ene peak due to the two isoII!3ric monoenes and a saturated ester 

peak. These peaks correspond in chain length to the carrier where it wes 

added. 

The reduction was quenched when an optimum yield of monoena had 

been achieved by the addition of dilute ~drochloric aoid (1 ml). The reaction 

mixture was dissolved in ether (50 mls) and washed acid free with suc~essive 

aliquots of water. The ether was finally removed at the pump and the produots 

dried by azeotropic distillation with ethanol. The esters were dissolved in 

ether (5 mls) a.nU. the monoenoic esters isolated in the usual Wi3.y by si:!.ver ion 

chromatography. The band positions in th9se esters were determined by von 

Rudloff's oxidative cleavage technique followed by RGLC on an FFAP column at 

Since much brenkdown resynthesis bed occurred in this system it 

was thought necessary to determine the pr-sition of the radiolabel in the final 

dienoic product. This was done as follows. 

Determinatioa of the position of the radiolabel.~88 

The saturated esters from the partial reduction above were isolated 

by silver ion chromatogre.pliY and dissolved in acetone (0.5 mls). potassmm 

permanganate (50 mgm) was added and dissolved. The solution was placed in a 

glass tube cooled in dry ice and sealed. The sealed tube was heated at 600 C 

for 4 hours. The tube was then cooled and opened with a glass file. The 

contents were added to ether (20 mls) and washed with sodium bisulphite solution. 

followed by dilute sulphuric acid and finally washed acid free with water. The 

ether was then evaporated at the pump and the products dried by azeotropic 

dis·cillation with ethanol. After methylation w::'th diazomethane an aliquot of 

the products was injected on to a RGLC containing an FFAP column at 230oc. 
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A single radioactive peak of the appropriate chain length was indicative of 

retention of label. 

b) To investigate the effect of the chain length of substrate on ~ 

inhibition produced by steroulic acid. 

Qh10rella vulgaris cells were grown in the rich medium, harvested, 

washed and resuspended in 0.2M phosphate buffer as in the previous experiment. 

After preinoubation as before 3 ml alicpots were added to each of six tubes. 

Radioactive precursor (0.1 ml) was added. To eaoh of an identical set of 

six tubes was added steroulio aaid suspension prepared as below equivalent to 

(3 mgm) giving an overall sterculia acid concentration of 3 x 10-3M and 

radioaotive precursor suspension (0.1 ml). The radioactive precursors used 

in this experiment were (l14C) - tetradecanoio, (214C) - pentadecanoic, (l14C) -

hexadecanoic, (l14C) - heptadecanoic, (1140) - ootadecanoio and (214C)_ 

nonadecanoic acids. 

The sterculic acid. suspension was prepared by dissolving a urea 

olathrate oompound of mthyl sterculate (50 mgm)* in IN potassium lwdroxide in 

methanol (5 mls) and refluxing for 30 mins. When cool the soluti on was 

oareful1y acidified to pH5 with IN su1phurio acid and the product extracted 

three tims with ether (10 mls) and the combined ether phases washed acid free 

with water. The ether was removed at the pump and water (0.6 mls) was added 

to the acid which was emulsified by the addition of 1 drop of 10% w/v sodium 

carbonate and 1 drop of a l% aqueous solution of Tween 20 followed l>y 

ultl~sonication. 

The tubes set up as above were incubated for 6 hours at 27°C under 

constant illumina".;ion as before. At the end of this period. the reaction was 

q1lOnched nnd the lipids extraoted and transmetlwlated in the usual way, The 

mthyl esters thus formed were identified and measured by RGLC on an FFAP 

o column at 230 C. 
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2a) .Investigation of the position and degree of de saturation produced in 

! series of monoeno~.c fatty acids whose do,:ble band is in the 9 - 10 

position by w~le cells of Chlorella yll~ 

Whole cells of Chlorella vulgaris were grown, harvested and resuspended 

as 1.n th'3 p.revious experiments. Four tube s were set up each contalning 3 mls 

of till 0.2M phosphate buffer suspension ef cells and a suspension of radio­

active precurs~r (0.1 ml) was added. The radioactive precursors used in this 
. .~ ~ 

experiment were ( C) - ili 9 hexadecenoic, (1 C) - ili 9 heptadece.noic, 

(ll!,.C) _ £i! 9 octadecanoic and (ll!,.C) - m. 9 nonadecenoic acids. The 

incubations were carried out at 27°C for 6 hours in an illuminated incubator. 

At the end of this period the reaction was quenched, thg lipids extracted and 

transmathylated in the usual way. The methyl esters were identified and 

o measured by RGLC on FFAP at 230 C. The c1ienes formed were isolated by silver 

ion chromatography and the diene of the same chain length as the precursor 

isolated by preparative G.L.C. on FFAP at 230oC. The band position of the 

dienes formed were determined by von Rudloff's oxidetive cleavage 217 following 

partial redllctior, with hydrazir>e as before. 

b) Investigation of the position and degree of de saturation produced in a 

series of W9 monoenoic fatty acids by whole cells of Chlpml1a ynlgari 5 

The suspension of cells used for this experiment was the salm as 

prepared for experiment 2a above. That experiment was repeated exactly with 

the I'ollowing three radioactive precursors (ll!,.C) - £i! 8 heptadecenoic, 

(l14C) - £i! 9 octadecenoic and (l14C) £i! 10 nonadecenoic acid. 

3a) Investigation of the effect of stearolic acid and positional and 

geometrical isomers of oleic acid on the extract and position of 

desaturatitm in whole cells of Chlprella l!!4.gN:ia. 

Whole cells of Chlorella vulgaris were grown, harvested and resuspended 

as in the previous experiments. Aliquots (3 mls) of this suspension were 

placed in tubes and incubated with a radioactive substrate suspension (0.1 ml) 
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for 6 hours at 27°C in an illuminated incubator. 

The radioactive substrates used in this e:x.periment were (l14C) - .2i! 

700tadecenoio, (l14C) ili 9 octadecenoic, (114c) ili 11 octadecenoic, (:,14C) 

.2ll120otadecenoic, (l14C) - elaidic and (l14C) - stearolic acid., When the 

inoubations had been quenched and the lipids extracted half were transmethylated 

in the usual way. '.:he methyl esters were jdentified and measured by RGLC on an 

FFAP column at 2,300C. A 10)1: silver nitrate impregnated silica plate was 

channelled into 1 cm channels and aliquots of the extracted methyl esters were 

run in l~ ether in petrol ether and the plates soanned as a seoond oheck to 

establish whether any de saturation had occurred. In the two cases where it 

had the dienes were isolated by silver ion chromatography and their band 

217 positions determined by von Ihldlof'f's oxidative oleavage following partial 

reduction with hydrazine as bef'cre 0 The lipid incorporation v.as determined 

by silver ion chromatograpqy in the usual lmnner except that the developing 

solvent was chloroform-methanol acetic aoid (65 : 25 : 4) v. 

4. Investigation of the effect of a termir.al double band in the substrate 

to thE: degree of desaturation in whole cells of ChlpreJJa lDIJgnria. 

Whole cella of Chlorella wlgaril! were grown, harvested and resuspended 

in the usual way and .3 ml aliquots of the suspension were incubated with radio­

active substrote suspension (0.1 mls) for 6 hours at ,27°C in an illuminated 

incubator. At the end of the incubation the lipids were extracted and 

transmetqylated in the usual way and the methyl esters identified and measured 

o 
by RGLC on FFAP at 230 C. 

A double check was done to identify the products. ~e monoenes, dienes, 

trienes and tetraenes were isolated by chromatography on a: 10)1: silver nitrate 

impregnated silica pli'tte which was :run in 30)1: ether in petrol ether. A portion 

of each of these fraotions was.separately run on R~LC at 2300C and their 

retention volume and carbon lUmber determined. These were compared with the 

unseparated chart and lots peaks more positively identified. The fractions 

... The kind gift of Mr. M. Crouchman 
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isolated above were each subjected to band cleavage by von Rudloff's method 217 

to determine the position of the double band nearest the carboxyl end of tha 

moleoule. 

11 Experiments with the embryos and endosperms of the castor bean Riqipis 

cgmmun1 § '._ 

The castor oil plants (Ricinis communis.) wer!') grown in the greenhouses 

of the Basic H(\rticulture Section Unilever Research Laboratory, Colworth House, 

Bedford. .3.5 days after flowering when the seed coat was a deep maroon colour 

test incUbations with (114c) oleic acid were done to check the stago which 

the seeds had reached in their maturity. These incubations were carried cut 

exactly as the eXperimental incubations later. These test incubations were 

repeated daily u'ltil the seed was syntha si sing ricinoleic acid vigorously. 

(abO'lt 20)& of the label being incnporated into ricinoleic acH). When this 

stage had been reached beans of a similar age from the same stem of the same 

plant were picked and the experimental incubations performed as follows. 

The bean pod was opened with a she.rp razor blade and the three beans 

removed, the three individual beans were then sliced down the middle. The 

three embryos and one of the endosperms were sliced with the razor blade and 

plaoed in a tube to whioh had previously been added 0.2M phosphate buffer 

pH 7.4 (2 mls) and radioactive substrate suspension (0 • .3 mls) dispersed in it 

by sonication. Eight tubes were set up in this fashion and incubated for 

o 24 bours in a reciprooating waterbath at 30 C under subdued light. The 

racll.oactive precursors used in this experiment were (l14C) - ~ 9 hexadecenoic, 

(l14C) - ~ 9 heptadecenoic, (l14C) - ili 9 octadecenoio, (l14C) - ili 9 

nonadecenoic, (l14C) ~ 8 heptadecenoic, (l14C) - ill 7 octadece'10ic, (l14C)_ 

~ 11 oc+,adecenoic and (l14C) - mlO nonadecenoic acids. At the end of 

this period the reaction was quenched and the lipids extracted with 2 : 1 v/v 

chloroform-methanol as before and the lipids transmethylated. An aliquot of 

the methyl esters thus formed was run on 10% silVt:r nitrate impregnated silica 

plate divided into 1 cm channels and developed 8 cm in .50% ether in petrol ether. 
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The solvent was then evaporated and the plate developed twice in 20}& ether in 

petrol ether. The channels were then scanned Oil -.he panax RTLS-l and the 

monoenoic, dienoic am hydroxy bands scraped off-. The esters were dissolved 

in O.~ 1'1'0 in toluene and counted on the packard Tri-Carb series 4000 

scintill~tion spectrometer. 

Preparati<e T.L.C. plates were r\!n under the same conditions as above 

and the monoenes, dienes and hydroxy speoies isolated. The bOnd positions of 

the monoenes and dienes were determined as before in the experiments with 

Chlorella vulgaris. An aliquot of the hydroxy compound was subjeoted to 

RGLC on SE.30 at 2300 c to cheok the ohain length of the compound and a further 

217 
aliquot was subjeoted to von Rudloff's oxidative oleavage to identify the 

position of any double bond present and also to prove that the hydroxy group 

had !leen introduoed beyond the double bond. Finally the exaci; position of the 

hydroxy group was determined as follows. 

~~ination of the position of the hydroxyl group 

The position of the hydroxyl group was determined by the following 

set of reactions:-

CH3(CH2)C fH-(C~~ CH=CH-(CH2)a COOCH3 
OH 

H/Adems catalyst 

CH3 (C~)o rH (C~)(8.+b+2) COOCH3 
OH 

cra,laoetio aoid 

+ 
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1 CH!2 in ether 

CH300C - (Caa)(B+b+2) COOCH3 + CH300C(Caa)(a+b+l) COOCH3 

The remlJ.ining amount of' the qydroxy esters were dissolved in absolute 

alcohol (10 mls) and Adams platinum oxide oatalyst (25 mgm) added. The flasks 

oontaining the above mixture were connected to a system which allowed an atmos-

pbere of hydrogen gas at atmospheric pre ssur", to be plaoed over the solvaJIt 

surface. The flasks were agitated at room temperature for 3 hours. After 

this time the flask was removed and the oatalyst filtered off'. The ethanol 

was then removed at the pump and the ester redissolved in glacial acgtic acid 

(3 mls) in which had been dissolved chromium tl1.oxide (90 mgm). This solution 

was heated at 400 C for 24 hours. At the end of' this time water (15 mls) was 

added a!lC1 the products extracteJ. with 3 x 10 mls of' ether. The ether extraots 

were bulked and washed acid free with water. The ether was removed at the 

p<lmp and the products dried by azeotropio distillation with ethanol. The 

products were then methylated with diazomethane. Dimethyl undeeanedioate 

(20 mgm) a:.d dimethyl tridecanedioate (20 mgm) were added to the products 

and the mole subjeoted to preparative Gc.L.C. The dicarboxylic esters 

having carbon chains 10, 11, 12 and 13 atoms long respectively ware collected 

and di~solveC; in 0.4% PPO in toluene and counted on the packard Tri-Carb 

scintillation spectrometer. By identifioation of the radioaotive esters the 

pOSition of the hydroxyl group was determined. 
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