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Abstract
Piecewise testable languages are a subclass of the regular languages. There are many equivalent
ways of defining them; Simon’s congruence ∼k is one of the most classical approaches. Two
words are ∼k-equivalent if they have the same set of (scattered) subwords of length at most k.
A language L is piecewise testable if there exists some k such that L is a union of ∼k-classes.

For each equivalence class of ∼k, one can define a canonical representative in shortlex normal
form, that is, the minimal word with respect to the lexicographic order among the shortest words
in ∼k. We present an algorithm for computing the canonical representative of the ∼k-class of a
given word w ∈ A∗ of length n. The running time of our algorithm is in O(|A|n) even if k ≤ n is
part of the input. This is surprising since the number of possible subwords grows exponentially
in k. The case k > n is not interesting since then, the equivalence class of w is a singleton. If
the alphabet is fixed, the running time of our algorithm is linear in the size of the input word.
Moreover, for fixed alphabet, we show that the computation of shortlex normal forms for ∼k is
possible in deterministic logarithmic space.

One of the consequences of our algorithm is that one can check with the same complexity
whether two words are ∼k-equivalent (with k being part of the input).
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1 Introduction

We write u 4 v if the word u is a (scattered) subword of v, that is, if there exist factorizations
u = u1 · · ·un and v = v0u1v1 · · ·unvn. In the literature, subwords are sometimes called
piecewise subwords to distinguish them from factors. Higman showed that, over finite
alphabets, the relation 4 is a well-quasi-ordering [3]. This means that every language
contains only finitely many minimal words with respect to the subword ordering. This led
to the consideration of piecewise testable languages. A language L is piecewise testable if
there exists a finite set of words T such that v ∈ L only depends on {u ∈ T | u 4 v}; in
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62:2 Testing Simon’s congruence

other words, the occurrence and non-occurrence of subwords in T determines membership in
L. Equivalently, a language L is piecewise testable if it is a finite Boolean combination of
languages of the form A∗a1A

∗ · · · anA
∗ with ai ∈ A (using the above notation, the sequences

a1 · · · an in this combination give the words in T ). The piecewise testable languages are a
subclass of the regular languages and they play a prominent role in many different areas. For
instance, they correspond to the languages definable in alternation-free first-order logic [20]
which plays an important role in database queries. They also occur in learning theory [10, 15]
and computational linguistics [2, 14].

In the early 1970s, Simon proved his famous theorem on piecewise testable languages: A
language is piecewise testable if and only if its syntactic monoid is finite and J -trivial [18].
An immediate consequence of Simon’s Theorem is that it is decidable whether or not a given
regular language L is piecewise testable. Already in his PhD thesis [17], Simon considered
the complexity of this problem when L is given as a deterministic finite automaton (DFA).
His algorithm can be implemented to have a running time of O(2|A|n2) for an n-state DFA
over the alphabet A. This result was successively improved over the years [1, 9, 19, 21] with
the latest algorithm having a running time of O(|A|2 n); see [8]. If the input is a DFA, then
the problem is NL-complete [1]; and if the input is a nondeterministic finite automaton, the
problem is PSPACE-complete [4]. Restricting the length of the relevant subwords T to some
constant k leads to the notion of k-piecewise testable languages. At first sight, it is surprising
that, for every fixed k ≥ 4, deciding whether a given DFA accepts a k-piecewise testable
language is coNP-complete [8]; see also [11].

One of the main tools in the original proof of Simon’s Theorem is the congruence ∼k for
k ∈ N. By definition, two words u and v satisfy u ∼k v if u and v have the same subwords of
length at most k. Naturally, the relation ∼k is nowadays known as Simon’s congruence. It is
easy to see that a language L is piecewise testable if and only if there exists k such that L is
a union of ∼k-classes. Understanding the combinatorial properties of ∼k is one of the main
tools in the study of piecewise testable languages. For example, in the proof of his theorem,
Simon already used that (uv)k ∼k (uv)ku for all words u, v. Upper and lower bounds on the
index of ∼k were given by Kátai-Urbán et al. [7] and Karandikar et al. [6].

There are two natural approaches for testing whether or not u ∼k v holds. The first
approach constructs a DFA Ak,u for the language {w 4 u | k ≥ |w|} of the subwords of u of
length at most k and a similar DFA Ak,v for v. Then u ∼k v if and only if Ak,u and Ak,v

accept the same language. This can be tested with Hopcroft’s algorithm in time almost linear
in the size of the automata [5]. Here, almost linear in n means O(n · a(n)) where a(n) is the
inverse Ackermann function. It is possible to construct the automata such that Ak,u has at
most k |u|+ 2 states, see the remark at the end of Section 2 below. Hence, the resulting test
is almost linear in |A| k |uv| if the alphabet is A.

The second approach to testing u ∼k v is the computation of normal forms. A normal
form is a unique representative of a ∼k-class. In particular, we have u ∼k v if and only
if u and v have the same normal form. By computing the normal forms for both words
and then checking whether they are identical, the complexity of this test of u ∼k v is the
same as the computation of the normal forms. We should mention that the computation
of normal forms is also interesting in its own right since it can provide some insight into
the combinatorial properties of ∼k. Normal forms for k = 2 and k = 3 were considered by
Kátai-Urbán et al. [7] and normal forms for k = 4 were given by Pach [12]. An algorithm for
computing normal forms for arbitrary k was found only recently by Pach [13]. Its running
time is O(|A|k (n+ |A|)) for inputs of length n over the alphabet A, that is, polynomial for
fixed k and exponential otherwise.
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We significantly improve this result by providing an algorithm with a running time in
O(|A|n) even if k is part of the input. For every fixed alphabet, the running time is linear,
which is optimal. Moreover, the algorithm can easily be adapted to run in deterministic
logarithmic space, thereby addressing an open problem from [7]. As a consequence we
can check with the same running time (or the same complexity) whether two given words
are ∼k-equivalent even if k is part of the input, thereby considerably improving on the above
automaton approach.

Our algorithm actually does not compute just some normal form but the shortlex normal
form of the input word u, i.e., a shortest, and among all shortest the lexicographically
smallest, word v such that u ∼k v. Our main tools are so-called rankers [16, 22]. For each
position i in the input word, the algorithm computes the lengths of the shortest X-rankers
and Y-rankers reaching i. One can then derive the shortlex normal form by deleting and
sorting certain letters based on these attributes. A more detailed outline of the paper is
given in Section 3.

2 Preliminaries

Let A be a finite alphabet. The elements in A are called letters and a sequence of letters
u = a1 · · · a` is a word of length |u| = `. The set of all words over the alphabet A is A∗.
Throughout this paper, a, b and c are used to denote letters. For a word a1 · · · a`, the
numbers {1, . . . , `} are called positions of the word, and i is a c-position if ai = c. The letter
ai is the label of position i. Two positions i and j with i < j are consecutive c-positions
if ai = aj = c and a` 6= c for all ` ∈ {i+ 1, . . . , j − 1}. A word a1 · · · a` is a subword of a
word v ∈ A∗ if v can be written as v = v0a1 · · · v`−1a`v` for words vi ∈ A∗. We write u 4 v

if u is a subword of v. A congruence on A∗ is an equivalence relation ∼ such that u ∼ v

implies puq ∼ pvq for all u, v, p, q ∈ A∗. For k ∈ N, Simon’s congruence ∼k on A∗ is defined
by u ∼k v if and only if u and v contain the same subwords of length at most k.

We assume that the letters of the alphabet are totally ordered. A word u is lexicographically
smaller than v if, for some common p ∈ A∗, there exists a prefix pa of u and a prefix pb
of v such that a < b. (We apply the lexicographic order only for words of the same length;
in particular, we do not care about the case when u is a proper prefix of v.) Given a
congruence ∼ on A∗, we define the shortlex normal form of a word u to be the shortest
word v such that u ∼ v and such that no other word w ∈ A∗ with w ∼ v and |w| = |v|
is lexicographically smaller than v. In other words, we first pick the shortest words in
the ∼-class of u and among those, we choose the lexicographically smallest one.

Our main tools are so-called rankers [16, 22]. An X-ranker is a nonempty word over the
alphabet {Xa | a ∈ A} and a Y-ranker is a nonempty word over {Ya | a ∈ A}. The length of
a ranker is its length as a word. The modality Xa means neXt-a and is interpreted as an
instruction of the form “go to the next a-position”; similarly, Ya is a shorthand for Yesterday-
a and means “go to the previous a-position”. More formally, we let Xa(u) = i if i is the
smallest a-position of u, and we let rXa(u) = i for a ranker r if i is the smallest a-position
greater than r(u). Symmetrically, we let Ya(u) = i if i is the greatest a-position of u and
we let rYa(u) = i if i is the greatest a-position smaller than r(u). In particular, rankers
are processed from left to right. Note that the position r(u) for a ranker r and a word u
can be undefined. If r(u) is defined, then we say that r reaches the position r(u). Similarly,
r visits a position i if s(u) = i for some prefix s of r. A word b1 · · · b` defines an X-ranker
Xb1 · · ·Xb`

and a Y-ranker Yb`
· · ·Yb1 . We have u 4 v if and only if r(v) is defined for the
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X-ranker (resp. Y-ranker) r defined by u. Similarly, if r is the X-ranker defined by u and s
is the Y-ranker defined by v, then uv 4 w if and only if r(w) < s(w). The correspondence
between X-rankers and subwords leads to the following automaton construction.
I Remark. Let u be a word of length n. We construct a DFA Ak,u for the language
{w 4 u | |w| ≤ k}. The set of states is {(0, 0)} ∪ {1, . . . , k}× {1, . . . , n} plus some sink state
which collects all missing transitions. The initial state is (0, 0) and all states except for
the sink state are final. We have a transition (`, i) a (` + 1, j) if ` < k and j is the
smallest a-position greater than i. The idea is that the first component counts the number
of instructions and the second component gives the current position.

3 Attributes and outline of the paper

To every position i ∈ {1, . . . , n} of a word a1 · · · an ∈ An, we assign an attribute (xi, yi) where
xi is the length of a shortest X-ranker reaching i and yi is the length of a shortest Y-ranker
reaching i. We call xi the x-coordinate and yi the y-coordinate of position i.

I Example 1. We will use the word u = bacbaabada as a running example throughout this
paper. The attributes of the positions in u are as follows:

1 2
b

1 2
a

1 1
c

2 2
b

2 3
a

3 2
a

3 1
b

4 2
a

1 1
d

2 1
a

The letter a at position 5 can be reached by the Y-ranker YbYaYa and the a at position 6 can
be reached by the X-ranker XcXaXa. Both rankers visit both positions 5 and 6. No X-ranker
visiting position 6 can avoid position 5 and no Y-ranker visiting position 5 can avoid position
6. Deleting either position 5 or 6 reduces the attributes of the other position to (2, 2).

We propose a two-phase algorithm for computing the shortlex normal form of a word u
within its ∼k-class. The first phase deletes letters and results in a word of minimal length
within the ∼k-class of u. The second phase sorts blocks of letters to get the minimal word
with respect to the lexicographic ordering. Both phases depend on the attributes. The
computation of the attributes and the first phase are combined as follows.

Phase 1a: Compute all x-coordinates from left to right.
Phase 1b: Compute all y-coordinates from right to left while dynamically deleting a position

whenever the sum of its coordinates would be bigger than k + 1.
Phase 2: Swap consecutive letters b and a (with b > a) whenever they have the same

attributes and the sum of the x- and the y-coordinate equals k + 1.
As we will show, a crucial property of Phase 1b is that the dynamic process does not mess
up the x-coordinates of the remaining positions that were previously computed in Phase 1a.

The outline of the paper is as follows. In Section 4, we prove that successively deleting all
letters where the sum of the attributes is bigger than k+ 1 eventually yields a length-minimal
word within the ∼k-class of the input. This statement has two parts. The easier part is to
show that we can delete such a position without changing the ∼k-class. The more difficult
part is to show that if no such deletions are possible, the word is length-minimal within its
∼k-class. In particular, no other types of deletions are required. Also note that deleting
letters can change the attributes of the remaining letters.

Section 5 has two components. First, we show that commuting consecutive letters does
not change the ∼k-class if (a) the two letters have the same attribute and (b) the sum of
the x- and the y-coordinate equals k + 1. Moreover, such a commutation does not change



L. Fleischer and M. Kufleitner 62:5

any attributes. Then, we prove that no other types of commutation are possible within
the ∼k-class. This is quite technical to formalize since, a priori, we could temporarily leave
the ∼k-class only to re-enter it again with an even smaller word.

Finally, in Section 6, we present an easy and efficient algorithm for computing shortlex
normal forms for ∼k. First, we show how to efficiently compute the attributes. Then we
combine this computation with a single-pass deletion procedure; in particular, we do not
have to successively re-compute the attributes after every single deletion. Finally, an easy
observation shows that we only have to sort disjoint factors where the length of each factor
is bounded by the size of the alphabet. Altogether, this yields an O(|A|n) algorithm for
computing the shortlex normal form of an input word of length n over the alphabet A.
Surprisingly, this bound also holds if k is part of the input.

4 Length reduction

In order to reduce words to shortlex normal form, we want to identify positions in the
word which can be deleted without changing its ∼k-class. The following proposition gives a
sufficient condition for such deletions.

I Proposition 2. Consider a word uav with a ∈ A and |ua| = i. If the attribute (xi, yi) at
position i satisfies xi + yi > k + 1, then uav ∼k uv.

Proof. Let w 4 uav with |w| ≤ k. Assume that w 64 uv. Let w = paq such that p 4 u and
q 4 v. Note that pa 64 u and aq 64 v. If |p| ≥ xi − 1 and |q| ≥ yi − 1, then

k ≥ |w| = |p|+ 1 + |q| ≥ (xi − 1) + 1 + (yi − 1) = xi + yi − 1 > k,

a contradiction. Therefore, we have either |p| < xi−1 or |q| < yi−1. By left-right symmetry,
it suffices to consider |p| < xi − 1. The word pa defines an X-ranker of length less than xi

which reaches position i. This is not possible by definition of xi. Hence, w 4 uv. Conversely,
if w 4 uv for a word w, then obviously we have w 4 uav. This shows uav ∼k uv. J

I Example 3. Let u = bacbaabada as in Example 1 and let k = 3. Note that the attributes
(xi, yi) at positions i ∈ {5, 6} satisfy the condition xi + yi > k+ 1. By Proposition 2, deleting
any of these positions yields a ∼k-equivalent word. However, deleting both positions yields
the word bacbbada 6∼k u since cab 4 u and cab 64 bacbbada.

Consider a position i with attribute (xi, yi) in a word u. Let

Ru
i = {r | r is an X-ranker with r(u) = i and |r| = xi} .

We have Ru
i 6= ∅ by definition of xi. We define a canonical X-ranker ru

i ∈ Ru
i by minimizing

the reached positions, and the minimization procedure goes from right to left: Let Sxi
= Ru

i

and, inductively, we define Sj as a nonempty subset of Sj+1 as follows. Let pj be the minimal
position in u visited by the prefixes s of length j of the rankers in Sj+1; then Sj contains all
rankers in Sj+1 such that their prefixes of length j visit the position pj . Since the minimal
positions (and their labels) in this process are unique, we end up with |S1| = 1. Now, the
ranker ru

i is given by S1 = {ru
i }. By abuse of notation, we will continue to use the symbol r

for arbitrary rankers while ru
i denotes canonical rankers. The following example shows that

minimizing from right to left (and not the other way round) is crucial.

I Example 4. Let u = abcabcdaefccabc. The attributes of the letters are as follows:
1 3
a
1

1 3
b
2

1 3
c
3

2 2
a
4

2 2
b
5

2 2
c
6

1 1
d
7

2 2
a
8

1 1
e
9

1 1
f
10

2 3
c
11

3 2
c
12

2 1
a
13

2 1
b
14

3 1
c
15
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62:6 Testing Simon’s congruence

The last c is at position 15 and its attribute is (3, 1). It is easy to verify that XeXaXc is an
X-ranker of length 3 visiting position 15 and that there is no X-ranker of length 2 reaching
this position. The unique Y-ranker of length 1 reaching position 15 is Yc. We have

Ru
15 = {XdXbXc,XeXaXc,XeXbXc,Xf XaXc,Xf XbXc} .

Using the above notation, it is easy to see that S3 = Ru
15, S2 = {XeXaXc,Xf XaXc}, and

S1 = {XeXaXc}. All prefixes of length 2 of rankers in S2 reach position p2 = 13; the prefix
of length 1 of the ranker in S1 reaches position p1 = 9. The ranker visiting positions 9, 13
and 15 (and no other positions) is ru

15 = XeXaXc, the unique ranker in S1.
Also note that the minimal positions mj visited by prefixes of length j of the rankers

in Ru
15 are m1 = 7, m2 = 13, and m3 = 15; but there is no single ranker of length 3 visiting

positions 7, 13, and 15.

While ru
i is defined in some right-to-left manner, it still has an important left-to-right

property when positions of the same label are considered.

I Lemma 5. Let i < j be two consecutive c-positions in a word u with attributes (xi, yi) and
(xj , yj), respectively. If xj > xi, then ru

j = ru
i Xc.

Proof. Since no position ` with i < ` < j is labelled by c, we have ru
i Xc(u) = j. In particular,

xj ≤ xi + 1 and, hence, xj = xi + 1 by assumption. This shows Ru
i Xc ⊆ Ru

j . Let ru
j = rXc.

We have r(u) ≥ ru
i (u), since otherwise rXc(u) ≤ i < j, a contradiction. The minimization

in the definition of ru
j now yields r(u) = ru

i (u). The remaining minimization steps in the
definition of ru

i and ru
j consider the same rankers and thus the same positions. Hence,

r = ru
i . J

We now want to prove that the condition introduced in Proposition 2 always results in a
shortest word within the corresponding ∼k-class. To this end, we first need the following
technical lemma and then prove the main theorem of this section.

I Lemma 6. Let u = a1 · · · an be a word and let i < j be consecutive c-positions. Moreover,
let the parameters (xi, yi) and (xj , yj) satisfy xi + yi ≤ k + 1 and xj ≤ k, respectively. For
every word v with u ∼k v, we have ru

i (v) < ru
j (v).

Proof. We have xi ≤ k and xj ≤ k. Therefore, both ru
i (v) and ru

j (v) are defined because
this only depends on subwords of length at most k which are identical for u and v. Since
j = ru

i Xc(u), we have xj ≤ xi + 1. If xj = xi + 1, then ru
j = ru

i Xc by Lemma 5 and hence
ru

i (v) < ru
j (v). Therefore, we can assume xj ≤ xi. Suppose that ru

i (v) ≥ ru
j (v). Let qYc be

a Y-ranker with qYc(u) = i and |qYc| = yi. Let wi be the word which defines ru
i , let wj be

the word which defines ru
j , and let z be the word which defines q. We have:

wiz 4 u since ru
i (u) = i < q(u)

⇒ wiz 4 v since |wiz| = xi + yi − 1 ≤ k and u ∼k v

⇒ wjz 4 v since ru
i (v) ≥ ru

j (v)
⇒ wjz 4 u since |wjz| = xj + yi − 1 ≤ xi + yi − 1 ≤ k
⇒ q(u) > j

⇒ qYc(u) ≥ j > i.

This contradicts qYc(u) = i. Therefore, we have ru
i (v) < ru

j (v). J
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I Theorem 7. If u is a word such that the attribute (xi, yi) of every position i satisfies
xi + yi ≤ k + 1, then u has minimal length within its ∼k-class.

Proof. Let v be any word satisfying u ∼k v. Let ρ map the position j of u to the position
ru

j (v) of v. Consider some letter c occurring in u. Then, by Lemma 6, the function ρ is
order-preserving on the set of c-positions in u. In particular, the word v has at least as many
occurrences of c as u. This holds for all letters c in u. Hence, |u| ≤ |v|. J

I Example 8. Consider u = bacbaabada from Example 1 and let k = 3. As explained in
Example 3, we must not delete both position 5 and position 6. However, we can delete
positions 5 and 8 to obtain a ∼k-equivalent word with the following attributes:

1 2
b

1 2
a

1 1
c

2 2
b

2 2
a

3 1
b

1 1
d

2 1
a

By Theorem 7, there is no shorter word in the same ∼k-class.

5 Commutation

In the previous section, we described how to successively delete letters of a word in order to
obtain a length-minimal ∼k-equivalent word. It remains to show how to further transform a
word of minimal length into shortlex normal form. In the first two statements, we give a
sufficient condition which allows us to swap letters b and a while preserving the ∼k-class.

I Lemma 9. Consider two words ubav and uabv with a, b ∈ A. Let (x`, y`) denote the
attribute of position ` in ubav, and let (x′`, y′`) denote the attribute of position ` in uabv.
Suppose that |ub| = i and that the attributes (xi, yi) and (xi+1, yi+1) satisfy xi = xi+1. Then
all positions ` satisfy x′` = x`.

Proof. Throughout this proof, we frequently rely on the following simple observation: If rs
is a ranker of minimal length reaching position ` in a word w, then r is also of minimal
length reaching position r(w).

We can assume that a 6= b. It suffices to show that no ranker in Rubav
i+1 visits position i in

ubav and no ranker in Ruabv
i+1 visits position i in uabv. This implies that for all ` ∈ {1, . . . , n},

no ranker in Rubav
` or in Ruabv

` visits both i and i+ 1 in the corresponding words and thus,
we have Rubav

i = Ruabv
i+1 and Rubav

i+1 = Ruabv
i as well as Rubav

` = Ruabv
` for ` 6∈ {i, i+ 1}. Note

that all rankers in Rubav
i and in Rubav

i+1 have length xi = xi+1.
Suppose, for the sake of contradiction, that a ranker r ∈ Rubav

i+1 visits position i in ubav.
Then, we can write r = sXbXa with sXb(ubav) = i. Note that |sXb| ≥ xi by the definition
of xi. Since xi+1 = xi ≤ |sXb|, there exists a ranker of length at most |sXb| < |r| reaching
position i+ 1 in ubav, contradicting the choice of r.

Suppose that a ranker r ∈ Ruabv
i+1 visits position i in uabv. Let r = sXaXb with sXa(uabv) =

i. Note that sXa(ubav) = i + 1 and, since xi+1 = xi, there exists a ranker ŝ of length at
most |sXa| such that ŝ(ubav) = i. Now, ŝ is a ranker of length |ŝ| ≤ |sXa| < |r| with
ŝ(uabv) = i+ 1, a contradiction to r ∈ Ruabv

i+1 . J

I Proposition 10. Let ubav be a word with |ub| = i and attributes (xi, yi) = (xi+1, yi+1)
satisfying xi + yi = k + 1. Then ubav ∼k uabv.

Proof. Suppose that there exists a word w with |w| ≤ k such that w 4 ubav but w 64 uav

and w 64 ubv. Then we can write w = w1baw2 such that w1b 4 ub, w1b 64 u, aw2 4 av, and
aw2 64 v. Thus, the word w1b defines an X-ranker r with r(ubav) = i and, similarly, aw2

MFCS 2018



62:8 Testing Simon’s congruence

defines a Y-ranker s with s(ubav) = i+1. We see that |r|+ |s| = |w| ≤ k, but this contradicts
|r|+ |s| ≥ xi + yi+1 = k + 1. Therefore, every subword of ubav of length at most k is also a
subword of uabv.

By Lemma 9 and its left-right dual, the attributes of the positions i and i+ 1 in uabv are
both identical to (xi, yi). Therefore, the same reasoning as above shows that every subword
of uabv of length at most k is also a subword of ubav. This shows ubav ∼k uabv. J

I Example 11. Let us reconsider the length-minimal word u = bacbabda from Example 8
and let again k = 3. The attributes are as follows:

1 2
b

1 2
a

1 1
c

2 2
b

2 2
a

3 1
b

1 1
d

2 1
a

The attributes (x4, y4) and (x5, y5) at positions 4 and 5 satisfy x4 = x5, y4 = y5 and
x4 + y4 = k + 1. By Proposition 10, we obtain bacabbda ∼k u. Note that the attributes
(x1, y1) and (x2, y2) at the first two positions satisfy x1 = x2, y1 = y2 but x1 + x2 < k + 1.
And, in fact, abcbabda 6∼k u since abc 4 abcbabda but abc 64 u.

It remains to show that repeated application of the commutation rule described in
Proposition 10 actually suffices to obtain the lexicographically smallest representative of a
∼k-class. The next lemma shows, using canonical rankers, that indeed all length-minimal
representatives of a ∼k-class can be transformed into one another using this commutation
rule.

I Lemma 12. Let u ∼k v such that both words u and v have minimal length in their ∼k-class.
Let (x`, y`) denote the attribute of position ` of u. Consider two positions i < j of u. If
either (xi, yi) 6= (xj , yj) or xi + yi < k + 1, then ru

i (v) < ru
j (v).

Proof. If i and j have the same label, then the claim follows from Lemma 6. In the remainder
of this proof, let their labels be different. In particular, we cannot have ru

i (v) = ru
j (v). Suppose

(xi, yi) 6= (xj , yj) or xi + yi < k + 1. If xi + yj ≥ k + 1 and xj + yi ≥ k + 1, then, by
minimality and Proposition 2, we have xi + yi = k + 1 and xj + yj = k + 1. This yields
xi + yj = k + 1 and xj + yi = k + 1. Thus, xi = xi + xj + yj − k − 1 = xj and, similarly,
yi = yi + xj + yj − k − 1 = yj ; this shows (xi, yi) = (xj , yj), a contradiction. Therefore, we
have either xi + yj ≤ k or xj + yi ≤ k.

Let pi and pj be the words defining the rankers ru
i and ru

j , respectively. Symmetrically to
the definition of the canonical X-ranker, we could also define canonical Y-rankers su

i and su
j

such that su
i (u) = i, |su

i | = yi, su
j (u) = j, and

∣∣su
j

∣∣ = yj . If the label c of u at position i is the
`-th occurrence of the letter c in u, then, by Lemma 6, both ru

i and su
i end up at the position

with the `-th occurrence of the letter c in v. This shows ru
i (v) = su

i (v). Similarly, we see
that ru

j (v) = su
j (v). Let qi and qj be the words defining the rankers su

i and su
j , respectively.

First, let xi +yj ≤ k. Then piqj 4 u yields piqj 4 v since u ∼k v and |piqj | = xi +yj ≤ k.
This shows ru

i (v) < su
j (v) = ru

j (v), as desired. Let now xj +yi ≤ k and assume ru
i (v) > ru

j (v).
Then pjqi 4 v yields pjqi 4 u and, thus, j = ru

j (u) < su
i (u) = i. This is a contradiction;

hence, ru
i (v) < ru

j (v). J

Using the previous lemma, we can finally show that iterating the commutation procedure
from Lemma 9 and Proposition 10 yields the desired shortlex normal form.

I Theorem 13. Let u = a1 · · · an with ai ∈ A be a length-minimal word within its ∼k-class.
Suppose that the attributes (xi, yi) for all positions i < n satisfy the following implication:

If (xi, yi) = (xi+1, yi+1) and xi + yi = k + 1, then ai ≤ ai+1. (1)

Then u is the shortlex normal form of its ∼k-class.
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Proof. Let v be the shortlex normal form of the ∼k-class of u. We want to show that u = v.
Let ρ map position i of u to position ru

i (v) of v. As we have seen in the proof of Theorem 7,
the function ρ is bijective. It remains to show that ρ is order-preserving. By contradiction,
assume that there are positions i and j of u with i < j such that ρ(i) > ρ(j); let i be minimal
with this property and let i = ρ(j), i.e., we choose j to be the preimage of position i in v.
We already know that ρ(i) < ρ(j) in all of the following cases:

ai = aj (by Lemma 6),
(xi, yi) 6= (xj , yj) (by Lemma 12),
xi + yi < k + 1 (again by Lemma 12).

Therefore, the only remaining case is ai 6= aj , (xi, yi) = (xj , yj) and xi + yi = k + 1. First,
suppose that (xi, yi) = (x`, y`) for all ` ∈ {i, . . . , j}. Then, by the implication in Equation (1),
we have ai ≤ · · · ≤ aj . Since ai 6= aj , we have ai < aj . Now, u has the prefix a1 · · · ai and
v has the prefix a1 · · · ai−1aj . In particular, u is lexicographically smaller than v; this is a
contradiction. Next, suppose that there exists a position ` ∈ {i, . . . , j} with (xi, yi) 6= (x`, y`).
Note that i < ` < j. By Lemma 12, we have ρ(i) < ρ(`) and ρ(`) < ρ(j). In particular, we
have ρ(i) < ρ(j) in contradiction to our assumption. Altogether, this shows that i < j and
ρ(i) > ρ(j) is not possible, i.e., ρ is order-preserving. Hence, u = v. J

We summarize our knowledge on shortest elements of a ∼k-class as follows. A word u has
minimal length within its ∼k-class if and only if all attributes (xi, yi) satisfy xi + yi ≤ k + 1.
The canonical rankers define a bijective mapping between any two shortest words u and v of
a common ∼k-class. This map preserves the labels and the attributes. It is almost order
preserving, with the sole exception that i < j could lead to ru

i (v) > ru
j (v) whenever the

attributes in u satisfy both xi + yi = k + 1 and (xi, yi) = (x`, y`) for all ` ∈ {i, . . . , j}.

6 Computing shortlex normal forms

The results from the previous sections immediately lead to the following algorithm for
computing shortlex normal forms. First, we successively delete single letters of the input
word until the length is minimal. Let a1 · · · an be the resulting word. In the second step, we
lexicographically sort maximal factors ai · · · aj with attributes (xi, yi) = · · · = (xj , yj) and
xi + yi = k + 1. We now improve the first step of this algorithm.

Algorithm 1 Computing the x-coordinates of a1 · · · an.
1: for all a ∈ A do na ← 1
2: for i← 1, . . . , n do
3: suppose ai = c

4: xi ← nc

5: nc ← nc + 1
6: for all a ∈ A do na ← min(na, nc)

The following lemma proves the correctness of Algorithm 1. Its running time is in O(|A|n)
since there are n iterations of the main loop, and each iteration updates |A| counters.

I Lemma 14. Algorithm 1 computes the correct x-coordinates of the attributes of a1 · · · an.

Proof. The algorithm reads the input word from left to right, letter by letter. In each step it
updates some of its counters na. The semantics of the counters na is as follows: if the next
letter ai is c, then xi is nc. This invariant is true after the initialization in the first line.
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Algorithm 2 Computing the y-coordinates of a1 · · · an plus deletion.
1: for all a ∈ A do na ← 1
2: for i← n, . . . , 1 do
3: suppose ai = c

4: if xi + nc ≤ k + 1 then
5: yi ← nc

6: nc ← nc + 1
7: for all a ∈ A do na ← min(na, nc)
8: else
9: position i is marked for deletion

Suppose that we start an iteration of the loop at letter ai = c. Then the invariant tells
us that xi = nc. If ai+1 were c, then one more step Xc would be needed for a ranker to reach
position i+ 1, hence nc ← nc + 1. If ai+1 were some letter a 6= c, then we could either use
the ranker corresponding to the old value na or we could use the ranker going to position i
and from there do an Xa-modality; the latter would yield a ranker whose length is the new
value of nc. We choose the shorter of these two options. Since all counter values were correct
before reading position i, there is no other counter na which needs to be updated before
proceeding with position i+ 1. J

With Algorithm 2, we give a procedure for computing the y-coordinates of a1 · · · an

similar to Algorithm 1, but with the modification that we mark some letters for deletion.
The positions marked for deletion depend on the number k in Simon’s congruence ∼k. The
computed y-coordinates are those where all marked letters are actually deleted. We assume
that the x-coordinates of the input word are already known.

The algorithm correctly computes the y-coordinates of the word where all marked letters
are deleted. This follows from the left-right dual of Lemma 14 and the fact that the counters
remain unchanged if a position is marked for deletion.

I Lemma 15. Let u be the input for Algorithm 2 and let v be the word with all marked
letters removed. Then u ∼k v.

Proof. Whenever a position i with label c is marked for deletion, the value xi is correct
since no letter to the left of position i is marked for deletion. The counter nc would be the
correct y-coordinate for position i if we deleted all positions which have been marked so far.
By Proposition 2 we know that each deletion preserves the ∼k-class. J

It remains to show that the x-coordinates are still correct for the resulting word in which
all marked letters are deleted.

I Lemma 16. Consider a word u = a1 · · · an with x-coordinate x` at position `. Let i be
the maximal position of u such that xi + yi > k + 1 and let v = a1 · · · ai−1ai+1 · · · an. The
x-coordinate of position ` of v is denoted by x′`. Then, for all j ∈ {i+ 1, . . . , n}, we have
x′j−1 = xj.

Proof. It suffices to prove the statement x′j−1 = xj for all positions j of u reachable by a
ranker of the form rXc with r(u) = i and c ∈ A. By contradiction, suppose that there exists
some position j = rXc(u) with x′j−1 6= xj where r(u) = i and c ∈ A; we choose c ∈ A such
that j is minimal with this property. Let b = ai. We have to distinguish two cases.
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First suppose that there is no b-position f with i < f < j in u. The ranker ru
j has to

visit position i in u; otherwise ru
j (v) = j − 1 and rv

j−1(u) = j, a contradiction to x′j−1 6= xj .
This implies xi < xj . Moreover, position i is reachable from j in u with a single Yb-modality,
and hence, we have xi + yi ≤ (xj − 1) + (yj + 1) ≤ k + 1. This contradicts the choice of i.

Next, let f be the minimal b-position with i < f < j. In particular, we have b 6= c because
j 6= f is the smallest c-position of u greater than i. Let rXc be an X-ranker of length xj

such that rXc(u) = j. If r(u) = i, then r(v) = f − 1 and hence rXc(v) = j − 1. If r(u) < i,
then the ranker rXc does not visit the position i in u and we have rXc(v) = j − 1. Finally, if
r(u) > i, then (by choice of c) the position r(u) < j keeps its x-coordinate. In other words,
there exists an X-ranker r′ with |r| = |r′| and r′(v) = r(u)−1. It follows that r′Xc(v) = j−1.
Therefore, in any case, there exists a ranker s of length at most xj such that s(v) = j − 1.
This shows x′j−1 ≤ xj , and together with x′j−1 6= xj we obtain x′j−1 < xj .

Consider an X-ranker sXc of length x′j−1 < xj with sXc(v) = j − 1. We are still in the
situation that there exists a b-position f in u with i < f < j. We cannot have s(v) < i

since otherwise s(u) = s(v) and, thus, sXc(u) = j; the latter uses the fact that b 6= c. Let
now s(v) ≥ i and write s = tXd. We have t(v) < i since otherwise tXc would be a shorter
X-ranker with tXc(v) = j − 1. We have d = b: if d 6= b, then s(v) = s(u)− 1 and sXc(u) = j;
this would show x′j−1 ≥ xj , thereby contradicting x′j−1 < xj . It follows that s(u) = i and
sXc(u) = j. As before, this is a contradiction. This completes the proof that x′j−1 = xj . J

I Example 17. Let u = bacbaabada be the word from Example 1 and let k = 3. Suppose
that the alphabet A = {a, b, c, d} is ordered by a < b < c < d. The attributes of u are as
follows:

1 2
b

1 2
a

1 1
c

2 2
b

2 3
a

3 2
a

3 1
b

4 2
a

1 1
d

2 1
a

Note that each of the attributes (xi, yi) at positions i ∈ {5, 6, 8} satisfies the condition
xi + yi > k + 1. As seen in Example 3 we must not delete all these positions. The algorithm
only marks positions 6 and 8 for deletion and takes these deletions into account when
computing the y-coordinates of the remaining letters:

1 2
b

1 2
a

1 1
c

2 2
b

2 2
a

3
a

3 1
b

4
a

1 1
d

2 1
a

The letters are now sorted as in Example 11 and the resulting normal form is bacabbda.

The following lemma allows us to improve the estimated time for the sorting step of the
main algorithm by showing that any sequence of letters which needs to be sorted contains
every letter at most once.

I Lemma 18. Consider a word uaav with a ∈ A and |ua| = i. Then xi 6= xi+1 and yi 6= yi+1.

Proof. Suppose xi = xi+1. Let ri and ri+1 be X-rankers with ri(uaav) = i, |ri| = xi,
ri+1(uaav) = i + 1, and |ri+1| = xi+1 = xi. Let ri+1 = sXa. If s(uaav) < i, then
i+ 1 = ri+1(uaav) = sXa(uaav) ≤ i. If s(uaav) = i, then |s| = xi− 1 < xi = |ri| contradicts
the definition of xi. Therefore, we cannot have xi = xi+1. Symmetrically, we cannot have
yi = yi+1. J

We are now able to state our main result.
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I Theorem 19. One can compute the shortlex normal form of a word w of length n, including
all attributes of the normal form, with O(|A|n) arithmetic operations and with bit complexity
O(|A|n logn). Alternatively, the computation can be done in deterministic space O(|A| logn).

Proof. The attributes of the normal form can be computed as described in Algorithms 1 and 2.
The normal form itself is obtained by filtering out all positions i where the corresponding
attribute (xi, yi) satisfies xi + yi ≤ k + 1 and by sorting blocks of letters with the same
attributes satisfying xi + yi = k + 1. By Lemma 18, the sorting step can be performed
by reading each such block of letters, storing all letters appearing in the block and only
outputting all these letters in sorted order once the next block is reached.

If we assume that the comparison of two letters and the modification of the counters
is possible in constant time, then running Algorithm 2 on the output of Algorithm 1 takes
O(|A|n) steps for input words of length n over alphabet A: for each position of the input
word, we need to update |A| counters. Over a fixed alphabet, the resulting algorithm runs in
linear time – even if k is part of the input. We could bound all arithmetic operations by
k + 2, i.e., by replacing the usual addition by n⊕m = min(k + 2, n+m). This way, each
counter and all results of arithmetic operations would require only O(log k) ⊆ O(logn) bits.
Similarly, O(log |A|) ⊆ O(logn) bits are sufficient to encode the letters. This leads to a bit
complexity of O(|A|n logn). Note that if k > n, then the ∼k-class of the input is a singleton
and we can immediately output the input without any further computations. If |A| > n,
then we could replace A by the letters which occur in the input word.

For the O(|A| logn) space algorithm, one can again use Algorithms 1 and 2 to compute
the attributes of each position. To compute the shortlex normal form, we do not store all
the attributes but use the standard recomputation technique to decide whether a letter gets
deleted. The sorting step can be implemented by repeatedly scanning each block of positions
with common attributes (x, y) satisfying x + y = k + 1. A single scan checks, for a fixed
letter a ∈ A, whether a occurs in the block. This is repeated for every a ∈ A in ascending
order. The attributes of the currently investigated block and the current letter a can be
stored in space O(logn). J

7 Summary and Outlook

We considered Simon’s congruence ∼k for piecewise testable languages. The main contribution
of this paper is an O(|A|n) algorithm for computing the shortlex normal form of a word of
length n within its ∼k-class; surprisingly, this bound also holds if k is part of the input. The
algorithm can be adapted to work in deterministic logarithmic space over a fixed alphabet.
As a consequence, on input u, v, k, one can test in time O(|A| |uv|) whether u ∼k v holds.
The main tool are the minimal lengths of X-rankers and Y-rankers reaching any position of a
word. The key ingredient in the proofs are the so-called canonical rankers.

It would be interesting to see whether the space complexity for an arbitrary alphabet can
be further improved from O(|A| logn) to nondeterministic log-space or even deterministic
log-space if the alphabet A is part of the input. In addition, we still lack corresponding lower
bounds for the computation of shortlex normal forms and for the test of whether u ∼k v

holds.
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