		ang		
				•
			. • . • ⁻	
			ана страна с Страна страна с	
	la per a la Na ferra di La centra da la			
Пънч	LOUGHBOROUG		•	
UNIVI	LIBRARY	THNOLOGY		
AUTHOR			<u> </u>	. **
		-	• •	••
(c) A Mathematical States (Sec.) (201)	HEPPARD, P	J		2010 1947 1947
COPY NO.	031310/02			•
A STATE OF S	/	`.		
VOL NO.	CLASS MARK		<u> </u>	•
	ARCHIVES O	IOP7		· ·
			- . i	. · ·
FOR	REFERENCE	OWLY		
				1. s.
		e de la composition de		• .
			~	· · ·
		1		
an an tha An an Anna an Anna an Anna an Anna An an Anna a	l ·			
				•
	·			 -
<u></u>	· · · · · · · · · · · · ·			· · ·
· · · ·			· . · ·	
	.* .*			

• -• •

THE DETERMINATION OF PLATE EFFICIENCIES IN UNSTEADY-STATE PLATE COLUMN MODELS

by

PAUL FREDERICK SHEPPARD

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy of the Loughborough University

of Technology

October 1973

Supervisor: F. P. LEES, M.A., B.Sc. (Eng.), Ph.D., A.C.G.I., C.Eng., A.M.I.Chem.E., M.B.C.S., M.Inst.M.C.

Department of Chemical Engineering

by Paul Frederick Sheppard, 1973

 \bigcirc

Loughborough University Cl. Treinclogy Library Date Jan. 74 Class No. 031310/02

THE DETERMINATION OF PLATE EFFICIENCIES

IN UNSTEADY-STATE PLATE COLUMN MODELS

P. F. SHEPPARD

ACKNOWLEDGEMENTS

The author wishes to thank Dr. F. P. Lees for his encouragement and guidance during the investigation; Mr. H. W. Kropholler for his advice on computation and suggestions in multicomponent distillation; Dr. B. A. Buffham for his advice and suggestions on the experimental investigation. The author is indebted to Professor D. C. Freshwater, Head of the Department of Chemical Engineering, and the Science Research Council for its financial support. The author wishes to thank the Process Control Group for its help in instrumentation and for the on-line computing facilities without which the experimental investigation could not have been carried out.

CONTENTS

Contents

Sec	tion		Page
		Acknowledgements	**
1.		Abstract	1
2.		Introduction	5
3.		Literature Survey on Plate Efficiency: General Considerations	
	3.1	The Function of Efficiency	8
	3.2	Column and Overall Efficiency	. 8.
	3.3	Point Efficiency	9
	3.4	Murphree Plate Efficiency	11
н 11 г. т.	3.5	Generalised Plate Efficiency	13
. '	3.6	Vaporisation Efficiency	19
	3.7	Factors Affecting Efficiency	
• •	- -	3.7.1 General Discussion	21
		3.7.2 Physical Properties of the System	22
•	•	3.7.3 The Effect of Heat Loss	23
		3.7.4 Thermal Distillation	23
		3.7.5 Tray Design	24
	· .	3.7.6 The Effect of Reflux Ratio	24
	3.8	Discussion on Efficiencies	25
4.	·	Literature Survey on Liquid Mixing on Distillation Plates: Mixing Effects	• • •
	4.1	The Importance of Liquid Mixing for Plate Efficiency	29
	4.2	The Diffusion Model	29
	4.3	The Pools-in-Series Model	33
	4.4	The Pools-in-Series with Backflow Model	35
•	4.5	The Comparison of Mixing Models and Estimation of Efficiency	37
	4.6	The Effect of Liquid Mixing on Plate Efficiency	41
	4.7	The Effect of Vapour Mixing on Plate Efficiency	42

				•
· · ·	Sec	tion	Ę	age
	5.		Experimental Investigation of Mixing on Sieve Plates: Liquid Mixing	
<i>.</i> .		5.1	Experimental Apparatus	46
	· ·	5.2	Experimental Procedure	
		-	5.2.1 Experimental Work	47
			5.2.2 Tests to Validate Assumptions	51
		5.3	Response Analysis	52
	н 1911 - 19	5.4	Comparison with Other Work	5 7
		5.5	Theoretical Simulation Using Mixed Pools- in-Series with Backfl ow	62
	6.		Experimental Investigation of Mixing on Sieve Plates: Vapour Mixing	
		6.1	Vapour Mixing Experiments	87
	•	6.2	Experimental Procedure of Steady-State Calculation	88
	•	6.3	Experimental Results	
			6.3.1 Experiments with Liquid Absent	91
	• •	· .	6.3.2 Experiments with Liquid Present	92
		6.4	Discussion on Vapour Mixing	94
	7.		Unsteady-State Mathematical Models of Plate Columns	-
		7.1	Literature Survey on Distillation Column Simulation	•
			7.1.1 General Investigations	107
			7.1.2 Column Models and Review of Main Investigations	111
		7.2	Proposed Unsteady-State Models	
			7.2.1 Mixing Models and Assumptions	115
•	•		7.2.2 Material Balance Equations for Generalised Model	118
	•	• [•] •	7.2.3 Material Balance Equations for Linearised Model	121
•			7.2.4 Gas Absorption Model	124

Section

8.

9.

7.3	Comput	ation	÷.,
	7.3.1	Integration Method Used	125
	7.3.2	Disturbances Introduced for Unsteady-State Operation	126
7.4	Determ	ination of Steady-State Variables	127
· .		dy-State Simulation of Large Columns	.*
8.1	The Si	mulation Program	129
8.2	Unstead	dy-State Plate Efficiency Results	
	8.2.1	The Effect of Feed Composition Changes: Vapour Unmixed	130
	8.2.2	The Effect of Feed Composition Changes: Vapour Perfectly Mixed	133
	8.2.3	The Effect of Feed Flow Changes	135
	8.2.4	The Effect of Reflux Changes	136
	8.2.5	The Effect of Vapour Flow Rate Changes	137
	8.2.6	The Effect of Feed Composition Changes Using Larger Trays	139
8.3		mparison of the Generalised Model s with those of the Simplified Models	5
	8.3.1	The Linearised Model	140
	8.3.2	The Simplified Model: Perfect Liquid Mixing	143
8.4		fect of Feed Composition Changes in sorption	145
8.5		sion on Unsteady-State Plate encies for Binary Systems	147
	Multico	Omponent Distillation	
9.1		ion Model	179
9.2	The Eff	ect of Feed Composition Changes	
	in Terr	hary Systems	182
9.3	Multico	mponent Distillation Investigations	187
9.4	Discuss	sion on Ternary Distillation Results	190

Page

Section

10.	Discussion	
	10.1 Review of Work	206
	10.2 Suggestions for Further Work	208
	NOTATION	209
	REFERENCES	213

Page

Appendices

Appendix	A. Perforated Tray Hydraulics	Al
	B. Steady-State Experimental Theory: Liquid Mixing	B1
	C. Theory of Eddy Diffusion in the Gas Phase	Cl
· · · · · · · · · · · · · · · · · · ·	D. Generalised Model Unsteady-State Simulation Program	
	D.l Generalised Model Subroutines	Dl
· · ·	D.2 Integration Routine	D48
	E. Multicomponent Simulation Program	El
· · · ·	 F. Unsteady-State Simulation Results for a Feed Composition Change: Binary System 	Fl
	G. Unsteady-State Simulation Results for a Feed Composition Change: Ternary System	Gl
	H. Unsteady-State Vaporisation Efficiency Results	Hl

Tables

Table	3.1 Variables affecting efficiency			
	4.1	The comparison of estimated plate efficiencies	40	

Tables	<u>i</u>		<u>Page</u>
Table	5.1	Column dimensions	47
	5.2	Operating conditions for experimental runs on liquid phase	50
	5.3	Comparison of predicted Peclet numbers for different sized downcomers	55
	5.4	Comparison of eddy diffusivity between steady-state and dynamic experiments	66
•	5.5	Comparison of Peclet numbers for various investigations	67
	6.1	The eddy diffusivity and Peclet numbers for the vapour phase	97
	6.2	Experimental tracer distribution	98
	6.3	Experimental eddy diffusivity and Peclet numbers for vapour phase with liquid present on the tray	99
	8.1	Liquid and vapour flows and other operating conditions for the unsteady-state simulation of binary systems	149
	8.2	Comparison of simulation results for the vapour phase being unmixed and perfectly mixed	134
J	8.3	Comparison of liquid phase response for the linearised and generalised models	s 142
· · · · ·	9.1	Liquid and vapour flows and other operating conditions for the unsteady-state simulation of ternar systems	y 181
. *	9.2	Ternary steady-state values	193

Figures	,		<u>Page</u>
Figure	3.1	Schematic representation of atray n in a multitray column.	10
	3.2	Graphic representation of the Murphree and Hausen plate efficiencies.	17
	3.3	Comparison of the Murphree vapour plate efficiency with the Hausen plate efficiency.	18
	4.la	Mixed pools-in-series model.	34
	4.1b	Mixed pools-in-series with backflow model.	34
	4.2	Vapour cell model using 3 liquid pools to 1 vapour cell.	44
	4.3	The effect of liquid and vapour mixing on the Murphree vapour plate efficiency.	45
	5.1	Plan and front elevation of the experimental rig.	68
1 1 1	5.2	Photographs of observation tray after a dye injection has been introduced.	69
	5.3	Experimental and theoretical impulse responses for different sampling positions using a weir height of 2.25".	70
	5.4	Experimental and theoretical impulse responses for different operating conditions using a weir height of 1.5" and sampling at the outlet weir.	e 74
	5.5	Experimental and theoretical impulse responses, sampled at the outlet weir for the tray with larger diameter holes.	e 77
• •	5.6	Experimental impulse responses sampled at the outlet weir for four different-sized downcomer segments.	79
	5.7	Experimental results of two of the steady-state experiments showing computed reponse and experimental points.	81

5.8a	Comparison of empirical equations derived using weir heights of 2.25".	. 82
5.8b	Comparison of empirical equations derived using weir heights of 1.5".	8 3
5.9	Theoretical comparison of backflow ratio with the number of mixed pools used.	84
5.10	Comparison of responses for fixed sample points when the number of mixed pools in the theoretical model is varied.	85
6.1	Schematic representation of vapour mixing apparatus.	88
6.2	Helium in the sample stream for the two extreme experimental cases.	100
6.3	Cumulative percentage of tracer passed for Run 1.	101
6.4	Experimental points for vapour mixing investigation with liquid present.	102
6.5	Mole fraction of helium tracer in the sample streams of the two extreme experimental cases, for when liquid was present on the tray.	104
6.6	Helium tracer passed within certain radii about the injection axis.	105
6.7	Comparison of eddy diffusivity with Reynolds No. for vapour flow in a distillation column.	106
7.1	Theoretical model presented by Tetlow (99).	112
7.2	Theoretical column model showing liquid and vapour streams.	116
8.1	Exit liquid and downcomer composition responses for a step increase of 0.1 in the feed composition (α =2).	150
	5.8b 5.9 5.10 6.1 6.2 6.3 6.4 6.5 6.6 6.7 7.1 7.2	 derived using weir heights of 2.25". 5.8b Comparison of empirical equations derived using weir heights of 1.5". 5.9 Theoretical comparison of backflow ratio with the number of mixed pools used. 5.10 Comparison of responses for fixed sample points when the number of mixed pools in the theoretical model is varied. 6.1 Schematic representation of vapour mixing apparatus. 6.2 Helium in the sample stream for the two extreme experimental cases. 6.3 Cumulative percentage of tracer passed for Run 1. 6.4 Experimental points for vapour mixing investigation with liquid present. 6.5 Mole fraction of helium tracer in the sample streams of the two extreme experimental cases, for when liquid was present on the tray. 6.6 Helium tracer passed within certain radii about the injection axis. 6.7 Comparison of eddy diffusivity with Reynolds No. for vapour flow in a distillation column. 7.1 Theoretical model presented by Tetlow (99). 7.2 Theoretical column model showing liquid and vapour streams. 8.1 Exit liquid and downcomer composition responses for a step increase of 0.1 in the feed

Figures			Page
Figure	8.2	Murphree vapour plate efficiency responses for a step increase of 0.1 in the feed composition $(\alpha = 2)$.	151
	8.3	Condenser, reboiler and exit pool liquid composition responses for step changes in the feed composition ($\alpha = 1.5$).	152
	8.4	Murphree vapour plate efficiency responses for step changes in feed composition ($\alpha = 1.5$).	153
	8.5	Murphree vapour plate efficiency responses for a step increase in feed composition ($\alpha = 1.1$).	154
	8.6	Efficiency ratio responses for a step increase in feed composition (α =1.1)	155
	8.7	Condenser, reboiler and exit pool liquid composition responses for step changes in the feed composition ($\alpha = 1.1$).	156
	8.8	Condenser, reboiler and exit pool liquid composition responses for step changes in the feed composition Relative volatility of 1.1 and vapour perfectly mixed.	on. 157
	8.9	Murphree vapour plate efficiency responses for a step decrease in feed composition ($\alpha = 1.1$).	158
	8.10	Murphree vapour plate efficiency responses for a step increase in feed composition ($\alpha = 1.1$).	159
	8.11	Condenser, reboiler and exit pool liquid composition responses for step changes in the feed flow rate (α =1.1).	160
	8.12	Plate efficiency responses for a step decrease in feed flow rate ($\alpha \approx 1.1$).	160
	8.13	Plate efficiency responses for a step increase in feed flow rate (<=1.1).	161

Figures			Page
Figure	8.14	Condenser, reboiler and exit pool liquid composition responses for step changes in liquid reflux	
		$(\alpha = 1.1).$	162
	8.15	Plate efficiency responses for a step increase in liquid reflux (α =1.1).	162
	8.16	Plate efficiency responses for a step decrease in liquid reflux (α =1.1).	163
	8.17	Point efficiency responses for a step change in liquid reflux (α =1.1).	164
	8.18	Condenser, reboiler and exit pool liquid composition responses for a step increase in vapour flow. ($\alpha = 2$).	165
	8.19	Plate efficiency responses for step changes in vapour flow ($\alpha=1.1$)	166
	8.20	Plate efficiency responses for ste changes in vapour flow ($\alpha = 2$).	p 167
	8.21	Condenser, reboiler and exit pool liquid composition responses for step changes in feed composition using 15 ft diameter column ($d = 1.1$)	168
	8.22	Plate efficiency responses for a step increase in feed composition using 15 ft diameter column (α =1.1).	169
	8.23	Plate efficiency responses for a step decrease in feed composition using 15 ft diameter column (α =1.1).	170
	8.24	Condenser, reboiler and exit pool liquid composition responses for a step change in feed composition using a linear equilibrium relationship.	171
	8.25	Plate efficiency responses for a step decrease in feed composition using a linear equilibrium relationship	171

			<u>rayc</u>
Figure	8.26	Liquid composition responses for a step increase in feed composition using simplified models.	172
	8.27	Point efficiency responses for a step decrease in feed composition in gas absorption ($m = 31.66$).	173
	8.28	Plate efficiency responses for a step decrease in feed composition using an equilibrium slope of 31.66.	174
	8.29	Exit pool and top two downcomer liquid composition responses for a step decrease in liquid feed composition ($m = 31.66$).	175
۰. ۱۰۰۰ - ۱۰۰ ۱۰۰۰ - ۱۰۰ ۱۰۰۰ - ۱۰۰	8.30	Exit pool and top two downcomer liquid composition responses for a step decrease in feed composition ($m = 190$).	176
	8.31	Point efficiency responses for a step decrease in liquid feed composition using an equilibrium slope of 190.	177
	8.32	Plate efficiency responses for a step decrease in liquid feed composition using an equilibrium slope of 190.	178
	9.1	Liquid composition responses for step changes in feed composition ($\alpha = 1$, 1.33, 1.67).	194
	9.2	Middle component plate efficiency responses for step changes in feed composition.	195
	9.3	Liquid composition responses for step changes in feed composition ($\alpha = 1, 2, 3$).	196
	9.4	Middle component plate efficiency responses for step changes in feed composition ($\alpha = 1, 2, 3$).	197

Page

Figure	9.5	Middle component liquid composition responses for step changes in feed composition ($\alpha = 1, 2, 3$).	198
	9.6	Light component plate efficiency responses for step changes in feed composition ($\alpha = 1, 2, 3$).	199
•	9.7	Heavy component plate efficiency reponses for step changes in feed composition ($\alpha = 1, 2, 3$).	200
	9.8	Middle component liquid composition responses for step changes in feed composition ($\alpha = 1, 2, 3$).	201
	9.9	Liquid composition responses for step changes in feed composition ($\measuredangle = 1, 2, 3$).	202
· · ·	9.10	Light component plate efficiency responses for step changes in feed composition ($\alpha = 1, 2, 3$).	203
	9.11	Middle component vaporisation efficiency responses for step changes in feed composition.	204
	9.12	Light component vaporisation efficiency responses for step changes in feed composition.	204
	9.13	Heavy component vaporisation efficiency responses for step changes in feed composition.	205
· · · ·	c.1	Schematic representation of the vapour mixing system.	cl

Page

1. ABSTRACT

.

,

1. Abstract

Other investigations have shown the relationship between various plate efficiencies and the relationship between the Murphree plate efficiency and the point efficiency for steady-state conditions. So far there has been no work done on the relationship between the Murphree plate efficiency and the point efficiency for unsteady-state conditions. In unsteady-state distillation simulation, the Murphree plate efficiency has been held constant and it is thought that this may be the reason for the differences between experimental and theoretical liquid composition responses in some cases. Further, the liquid mixing models used to represent the mixing occurring on a distillation plate, do not include downcomer sections and the need for experimental investigation of the downcomer effect is required to produce a realistic model.

Experimental conductivity impulse responses, using potassium chloride tracer, are obtained on a 7ft. x 1.5 ft. sieve plate using the system air-water. The sieve trays, weir height and downcomer segmental area are variable, and the responses are compared with those obtained by the diffusion model. Intermediate responses along the tray are also compared with those of the diffusion model and with

those of the theoretical model to be used in the unsteadystate simulation. Empirical equations for estimating the eddy diffusivity are given and the significance of the downcomer area is shown.

Steady-state experiments using a continuous helium injection in the vapour stream are used to show that the general assumption of perfect vapour mixing between the sieve trays is untrue. An equation for estimating the eddy diffusivity in the vapour phase is given and the assumption of no vapour mixing is shown to be more realistic.

From the experimental results, a generalised model of a sieve tray is given, taking into account the liquid and vapour mixing characteristics. This generalised model consists of a series of perfectly mixed liquid pools with recycle between each pool and the vapour leaving each pool rises to the pool immediately above on the next tray.

Using the theoretical model, the unsteady-state equations for a 5-plate distillation column are formulated. Step changes in the feed composition, feed flow rate, boilup and reflux are investigated for binary systems and the effect of these changes on the Murphree vapour plate efficiency and liquid compositions are shown.

The generalised model was used for various investigations. The liquid composition responses of the

generalised model were compared with those obtained by simplified models using a constant Murphree plate efficiency which included the liquid mixing effect and for those obtained where the liquid was perfectly mixed.

The unsteady-state equations of a linearised model are also formulated using constant Murphree vapour plate efficiencies and the comparison of the liquid composition responses is made with those of the generalised model where the plate efficiency is variable. From the comparison, simplifying assumptions about the significance of the Murphree plate efficiency during unsteady-state operations are given. The relationship between the extent of plate efficiency changes during unsteady-state and the equilibrium relationship is shown.

The generalised model is also used in representing a gas absorption column and the unsteady-state equations for the trays are the same as those for the distillation column. Step changes in the liquid feed composition are made and the unsteady-state composition responses are investigated and simplifying assumptions are again given.

The generalised model is also used for investigating ternary systems in distillation. Step changes in the feed composition are made and constant relative volatilities are used. It is shown that large differences between the initial and final steady-state values of the Murphree plate

efficiency for the middle phase component occur and thus when using simplified models with constant plate efficiencies, the light and heavy phase components should be those operated on.

A general discussion on the type and size of disturbance introduced and its effect on the Murphree vapour plate efficiency is given. The limiting values of the equilibrium relationships and the simplifications that can be made from this investigation are given. A discussion on the results of this investigation for simplifying distillation simulation and suggestions of its use in future workare given.

2. INTRODUCTION

2. Introduction

Since the late 1950's, the unsteady-state behaviour of plate columns has been extensively investigated. Chemical engineers have for a long time been interested in the column dynamics, but until the introduction of computers, little work had been done. With the arrival of computers came an increased interest in the unsteady-state simulation of plate columns, but due to the inadequate numerical integration routines and the actual computation time, assumptions of perfect liquid mixing on the plates or at any rate constant plate efficiencies were made. Making the assumption of perfect liquid mixing gives the Murphree plate efficiency equal to that of the point efficiency which hardly changes for composition disturbances introduced.

Work done using linearised models and matrix methods for solving the unsteady-state behaviour also assumed constant plate efficiency. There were no grounds for this assumption and the assumption of perfect liquid mixing is only valid for small diameter columns, but for large diameter columns (i.e. greater than 0.5 metre diameter) there is a concentration gradient across the tray and the liquid mixing must be accounted for.

The aim of this work is to investigate the liquid mixing characteristics of large sieve tray columns in order to derive a theoretical model which can be easily used in unsteady-state simulation and still give accurate transient responses. The extent of vapour mixing between the trays and its effect on the numerical solution are investigated. The theoretical model used in the unsteady-state simulation is based on the experimental results.

The theoretical model is used to investigate the changes in the liquid compositions and the Murphree plate efficiency for unsteady-state operations. The disturbances investigated for binary systems are step changes in:-

- 1) feed composition
- 2) feed flow with vapour and liquid reflux flow held constant
- 3) vapour flow with liquid reflux flow held constant
- liquid reflux flow with vapour flow held constant

The magnitude and transient behaviour of the plate efficiency responses and the difference in their initial and final steady-state values are investigated.

The liquid transient responses of the theoretical model for step changes in feed composition are compared

with those obtained from a simplified model with perfect liquid mixing and with those of a linearised model with constant plate efficiency to see if any simplifying assumptions can be made.

As most, but not all, distillation systems are gas phase limited, a gas absorption column which was liquidphase-limited was simulated so that small values of the plate efficiency could be investigated.

The theoretical model is further used to investigate the composition and plate efficiency responses of a ternary distillation system for step changes in the feed composition. The conclusions drawn from the binary results are reviewed to see if they apply to multicomponent systems.

In all the cases where composition changes only occur, the assumption of constant molal flow is made. This assumption is also made for the initial and end steadystate simulation periods when flow changes occur.

The numerical integration routine used to solve the unsteady-state equations is relatively new. The integration routine used in this problem must be able to solve stiff equations as unstiff methods increase the actual computation time by an order of 20 or more and are less accurate. Thus it is only the increased speed of modern computers and the greater efficiency of modern integration routines that have made this work possible.

3. LITERATURE SURVEY ON PLATE EFFICIENCY: -GENERAL CONSIDERATIONS

3. Literature Survey on Plate Efficiency: General Considerations

3.1 The Function of Efficiency

Equilibrium-stage efficiencies mentioned in this work can be applied to all stagewise separation processes. Separation efficiencies for plate columns were introduced as a means of presenting the extent of mass and heat transfer between the phases in con_tact on an actual plate. If an ideal column can be defined as one where the two phases in contact on a plate leave the plate in perfect equilibrium and where its behaviour can be calculated using material and enthalpy balances, the efficiency can be used to estimate true compositions on plates compared to what they would have been if the plate had been ideal. The equilibrium value used for defining efficiency is that of the streams leaving the plate.

3.2 Column or Overall Efficiency

There are three main efficiencies to be considered in distillation processes; point efficiency, plate efficiency and column or overall efficiency. The column or overall efficiency is calculated from:-

Column efficiency $E_0 = \frac{\text{Number of ideal stages}}{\text{Actual number of stages}}$

The plate efficiency estimated for specified operating conditions has generally been the basis of estimating the column efficiency. The overall column efficiency can be calculated for the case where the equilibrium and operating lines are essentially straight but not necessarily parallel, by the equation (1):- where $\lambda = \frac{mV}{L}$

$$E_0 = \frac{\ln(1 + E_a(\lambda - 1))}{\ln \lambda}$$

where E_a is the tray efficiency if the entrainment is considered. If the column has two different values of λ for the rectifying section and the stripping section then equations 3.1 and 3.2 are to be applied for both sections.

A different approach using empirical equations for calculating the overall column efficiency was presented by O'Connell (73). For standard operating conditions of vapour and liquid flows and for standard tray design, he derived some simple relationships between column parameters and the overall efficiency for absorption and distillation bubble-cap tray columns.

3.3 Point Efficiency

Fig 3.1 shows a schematic representation of one tray 'n' in a multitray column. This tray n delivers liquid to the tray below of average composition X_n . If a specific point

9

3.2

Fig 3.1 Schematic representation of one tray 'n' in a multitray column.

on that tray was investigated, it would have an element of vapour of composition $Y_{n-1,local}$ which enters the liquid of concentration $X_{n,local}$ and leaves with a concentration of $Y_{n,local}$. The efficiency for this point can then be defined by:-

$$E_{OG} = \frac{Y_{n,local} - Y_{n-1,local}}{Y_{n,local}^{*} - Y_{n-1,local}} \dots 3.3$$

where $Y_{n,local}$ is the vapour composition in equilibrium with the liquid $X_{n,local}$. The point efficiency as defined above, plays a great part in distillation simulation if the liquid on a plate is not perfectly mixed. The means of calculating the point efficiency has been given in many papers (1,93,104, 107) but the main relationships are:-

$$E_{OG} = 1 - \exp(-N_{OG}) \qquad \dots \qquad 3.4$$
where $\frac{1}{N_{OG}} = \frac{1}{N_{G}} + \frac{mV \cdot 1}{L N_{L}} \qquad \dots \qquad 3.5$

In equation 3.5 the terms on the right represent the gas and liquid resistances to mass transfer, respectively. The theory for estimating N_{OC} is given in the A.I.Ch.E Manual (1).

3.4 Murphree Efficiency

If the average compositions of all the local elements of vapour across the tray (Fig 3.1) are considered, then the Murphree efficiency (69)can be defined as:-

$$E_{MV} = \frac{\frac{Y_{n} - Y_{n-1}}{*}}{\frac{Y_{n} - Y_{n-1}}{*}} \dots 3.6$$

where y_n^* is the vapour in equilibrium with the liquid leaving the plate. The Murphree efficiency based on the liquid phase can be defined as:-

$$E_{ML} = \frac{X_{n+1} - X_n}{X_{n+1} - X_n^*} \qquad \dots \dots 3.7$$

If the liquid on a tray is perfectly mixed giving a uniform concentration across it and the vapour entering is of uniform concentration, then:-

$$E_{MV} = E_{OG}$$
 3.8

If the liquid travels across the tray in 'plug flow', then by integrating across the tray the following relationship

is obtained (64):-

$$E_{MV} = \frac{1}{\lambda} \{ e^{\lambda E} OG - 1 \} \qquad \dots 3.9$$

If the liquid on the tray is partially mixed then for steady-state conditions the vapour plate efficiency can be estimated using (1):-

$$E_{MV} = \frac{1 - e^{-(\eta + Pe)}}{(\eta + Pe)(1 + \eta + Pe)} + \frac{e^{n} - 1}{\eta(1 + \eta)}$$
where $\eta = \frac{Pe}{2} \left\{ \sqrt{1 + \frac{4\lambda E}{Pe^{OG}}} - 1 \right\}$
...... 3.10

For steady-state conditions and for constant λ across the tray, relationships between the liquid and vapour plate efficiencies can be derived (1,35).

$$E_{MV} = \frac{E_{ML}}{E_{ML} + \lambda (1 - E_{ML})}$$
 3.11

Standart (95) pointed out that the vapour-phase plate efficiency is useful for plate-to-plate calculations up the column while the liquid-phase plate efficiency is convenient for plate calculations down the column.

For unsteady-state systems and where the significant holdup is that of the liquid phase, Lees (60) showed that the vapour and not the liquid-phase plate efficiency should be used in principle. However, Lees (59) also showed that for some particular gas absorption columns, the difference between the computed frequency responses of the models

using the liquid-phase and those using the vapour-phase plate efficiency was small although the principle of using the liquid-phase plate efficiency is wrong.

3.5 Generalised Plate Efficiency and Hausen Efficiency

In 1953 Hausen (42) introduced his definition of efficiency based on the assumption of constant molal flow rates. Hausen considers only material efficiency and ignores the requirement of phase saturation. The Hausen plate efficiency will be defined after the generalised plate efficiency has been derived.

To include heat transfer between liquid and vapour phases, Standart (95) in 1965 introduced the generalised plate efficiency which is a generalisation of the Hausen efficiency. The analysis was later extended by Standart and Kastanek (97) to include the effect of liquid weeping and entrainment.

The idea of the generalised plate efficiency is based on keeping the inflowing streams constant when comparing the actual and ideal plates. Ho and Prince (45) related the Hausen plate efficiency to the mass transfer coefficient and discussed its use in design calculations. For an actual and ideal plate, Standart set down:-

1) overall material balance

$$V_{n-1} + L_{n+1} = V_n + L_n = V'_n + L'_n \qquad \dots \qquad 3.12$$

2) material balance for the ith component

$$V_{n-1}Y_{n-1,i} + L_{n+1,i} = V_n Y_{n,i} + L_n X_{n,i} = V'_n Y'_{n,i} + L'_n X'_{n,i} \qquad 3.13$$

3) overall enthalpy balance

$$V_{n-1}H_v = h^{+L}h^{+1}H_{1} + h^{-Q}h = V_n H_v + h^{+L}h^{+1}h h^{-1}h^$$

where Q_n is the rate of heat lost from the plate n to the surroundings. Thus the definition of efficiency is:-

$$E_{G} = \frac{\text{Total change-in-property across the actual plate ... 3.15}}{\text{Total change in property across the ideal plate}}$$

1) overall material efficiency:-

$$E_{V} = \frac{V_{n} - V_{n-1}}{V_{n} - V_{n-1}} ; E_{L} = \frac{L_{n} - L_{n+1}}{L_{n} - L_{n+1}} 3.16$$

2) material efficiency for component i:-

$$E_{Vi} = \frac{V_{n}Y_{n,i} - V_{n-1}Y_{n-1,i}}{V_{n}Y_{n,i} - V_{n-1}Y_{n-1,i}}; E_{Li} = \frac{L_{n}X_{n,i} - L_{n+1}X_{n+1}}{L_{n}X_{n,i} - L_{n+1}X_{n+1}} \dots 3.17$$

3) overall thermal efficieny:-

$$E_{HV} = \frac{V_{n}H_{v}n^{-V}n^{-1}H_{v}n^{-1} + r_{n}Q_{n}}{V_{n}H_{v}n^{-V}n^{-1}H_{v}n^{-1} + r_{n}Q_{n}};$$

$$E_{HL} = \frac{L_{n}H_{1}n^{-L}n^{-1}H_{n}H_{1}H_{n} + (1-r_{n})Q_{n}}{L_{n}H_{1}H_{1}n^{-L}H_{1}H_{1} + (1-r_{n})Q_{n}} \qquad \dots 3.18$$

where r_n is the fraction of the heat lost by the vapour phase. From equations 3.12 to 3.14 it can be seen that:-

$$E_V = E_L = E$$
; $E_{Vi} = E_{i}$; $E_{HV} = E_{HL} = E_{HL}$

Unlike the Murphree plate efficiency, the generalised plate efficiency is the same for both phases. For multicomponent systems of k components then there are k+1 independent generalised efficiencies including the overall thermal efficiency.

If only binary systems are considered with constant molal flow then:-

$$V_n = V_n' = V_{n-1}$$
; $L_n = L_{n+1} = L'_n$

and from the equation 3.17

$$E_{HG} = E_1 = E_2 = \frac{Y_{n,1} - Y_{n-1,1}}{Y'_{n,1} - Y_{n-1,1}}$$
 3.19

which by definition (42) is the Hausen plate efficiency and is of the same form as the Murphree plate efficiency:-

$$E_{MV} = \frac{Y_{n} - Y_{n-1}}{Y_{n}^{*} - Y_{n-1}} \qquad \dots \qquad 3.20$$

but the value of Y_n^* does not equal Y_n^* as can be shown by comparing the operating lines. Y_n^* is the vapour composition in equilibrium with the liquid X_n^* which has been shifted from X_n in order to satisfy both the material balance and the thermal equilibrium.

The Murphree ideal plate for the vapour phase is based on:-

$$L_{n}^{*} = L_{n}$$
; $V_{n-1}^{*} = V_{n-1}$; $X_{n}^{*} = X_{n}$; $Y_{n-1}^{*} = Y_{n-1}$
3.21

The Hausen ideal plate is based on:-

$$L_{n+1}^{i} = L_{n+1}$$
; $V_{n-1}^{i} = V_{n-1}$; $X_{n+1}^{i} = X_{n+1}$
 $Y_{n-1}^{i} = Y_{n-1}$ 3.22

For the component balance:-

$$v_{n-1}y_{n-1}^{*} + L_{n+1}x_{n+1}^{*} = v_ny_n^{*} + L_nx_n^{*}$$
 3.23

The Murphree operating line for an ideal plate is obtained using equation 3.21 :-

$$Y_{n}^{*} - Y_{n-1} = \frac{L_{n}}{V_{n}} (X_{n+1}^{*} - X_{n})$$
 3.24

which is a straight line passing through the point (X_n, Y_{n-1}) with a slope of L/V and is identical to the operating line of the real plate.

The Hausen operating line is obtained using equation 3.22

$$Y'_{n} - Y_{n-1} = \frac{L_{n}}{V_{n}} (X_{n+1} - X'_{n})$$
 3.25

This is a straight line passing through the points (X_{n+1}, Y_n) and (X_n^{\prime}, Y_{n-1}) with a slope of L/V. (see Fig 3.2). This is parallel to the actual operating line, but not the same. The liquid concentration leaving the plate X_n^{\prime} with which Y_n^{\prime} is in equilibrium, shifts from X_n to satisfy the material balance.

For steady- state conditions and for linear equilibrium and operating lines, a relationship between the Murphree and Hausen plate efficiencies can be derived from the definitions of these efficiencies (45).

16

Fig 3.2 Graphic representation of the Murphree and Hausen plate efficiencies.

A comparison of the Hausen and Murphree efficiency is shown in Fig 3.3 from which it can be seen that if the vapour phase is controlling and λ is small then the Murphree efficiency tends to that of the Hausen plate efficiency. Similarly for large λ and liquid phase controlling, the Murphree liquid-phase efficiency tends to that of Hausen. The need to differentiate between the two phases is eliminated if the Hausen or generalised efficiency is used.

3.6 Vaporisation Efficiency

Vaporisation efficiency was initially defined by McAdams (70) in batch steam distillation for a system containing one volatile component. Carey (15) derived a relationship between the efficiency and the characteristics of the substance being distilled.

$$E = 1 - \exp(-\frac{KL}{D}) \qquad \dots \qquad 3.27$$

(where L_h is the depth of the liquid through which the steam rises

D is the diameter of the steam bubbles

K is the constant characteristic of the volatile)

The vaporisation efficiency was extended to apply to multicomponent systems by Holland and Welch (46). Holland (47) defines an equilibrium vapour composition for a component i on plate n as:-

$$Y' = K X$$

n,i n,i n,i

(Y' in the vaporisation efficiency is not the same as that used by Standart, but has been used again to comply with the notation of Holland). The equilibrium constant K is calculated at the same temperature and pressure as that of the liquid

3.28

leaving plate n with composition X n,i. Assuming the liquid
to leave at its bubble point, then the sum of vapour
compositions must be unity and the vaporisation efficiency
is defined as (47):~

$$E_{n,i}^{O} = \frac{Y_{n,i}}{Y'} \qquad \cdots$$

where $Y_{n,i}$ is the average vapour leaving the tray. Substituting in equation 3.28 gives:-

$$E_{n,i}^{O}K_{n,i}X_{n,i} = Y_{n,i}$$
 3.30

For a multicomponent system of k components and for a set of known values of $E_{n,i}^{0}$ and $X_{n,i}$, the temperature of the plate is the positive value of T_n which makes $f_n=0$ where:- $f_n = \sum_{i=1}^{k} E_{n,i}^{0} K_{n,i} X_{n,i} - 1$ 3.31

The definition of the multicomponent Murphree efficiency is:-

$$E_{Mn,i} = \frac{Y_{n,i} - Y_{n-1,i}}{Y_{n,i} - Y_{n-1,i}} \dots 3.32$$

(where $Y_{n,i}^* = K_{Mn,i}X_{n,i}$; $\sum Y_{n,i}^* = 1$; K_M is calculated at the bubble point temperature.)

Holland (48) defined a modified Murphree efficiency where he substituted Y' for $Y'_{n,i}$ giving:-

$$E_{n,i}^{M} = \frac{Y_{n,i} - Y_{n-1,i}}{Y_{n,i}' - Y_{n-1,i}} \qquad \dots \dots 3.33$$

In a recent paper, Holland and MoMahon (49) showed the relationship between these efficiencies and the vaporisation efficiency.

.... 3.29

$$E_{n,i}^{o} = \frac{Y_{n-1,i}}{Y_{n,i}^{'}} + E_{Mn,i} \left\{ \frac{K_{Mn,i}}{K_{n,i}} - \frac{Y_{n-1,i}}{Y_{n,i}^{'}} \right\} \dots 3.34$$

$$E_{n,i}^{o} = \frac{Y_{n-1,i}}{Y_{n,i}^{'}} + E_{n,i}^{M} \left\{ 1 - \frac{Y_{n-1,i}}{Y_{n,i}^{'}} \right\} \dots 3.35$$

21

They showed the vaporisation efficiency to be nonzero, finite and positive, provided the equilibrium constants are non-zero and positive for the component to which the efficiency applies. From examples taken in the paper (49), the Murphree efficiency values were in the range of - ∞ to + ∞ and the conclusion was drawn that the vaporisation efficiency was superior to that of the Murphree efficiency for multicomponent systems.

3.7 Factors Affecting Efficiency

3.7.1 General Discussion

Due to the large amount of work done on factors affecting efficiency, only a brief review will be carried out in this section. It can be seen from the definitions of various efficiencies, that they are dependent on a large number of system variables. Other variables not treated in this section which also affect efficiency can be found in the reviews given by Treybal (104) and Van Winkle (107).

In the case of physical properties, their effect on plate efficiency is mainly due to their effect on point efficiency. This is also true of changes in the vapour and reflux flows. (Table 3.1)

3.7.2 Physical Properties of the System

The physical properties that affect plate efficiency include relative volatility, liquid density, viscosity and surface tension. These parameters really affect the point efficiency which in turn affects the plate efficiency in the same way.

From the correlations derived by O'Connell (73), it can be seen that as the viscosity is increased and the other system parameters held constant, the plate efficiency decreases. Similarly as the relative volatility is increased, the plate efficiency decreases. This relationship shows that for multicomponent systems whose components have the same viscosity, the lighter phase has the lower plate efficiency and that all component plate efficiencies are different.

Investigations into the effect of surface tension on plate efficiency have been numerous. Defining a positive system as one where the less volatile component has the higher surface tension and a negative system has the lower surface tension, Zuiderweg (118) showed that the positive systems have higher plate efficiencies than those of neutral or negative systems. Sawistowski and Bainbridge (6) showed that this generalisation is untrue and that the reason it was arrived at was that Zuiderweg worked only in the foam regime. The surface tension affects efficiency in two ways:-

1) the surface tension alters the interfacial area between the liquid and the vapour either by promoting foam formation in positive systems or by inhibiting foam formation in negative systems.

2) the surface tension/composition relationship may also affect surface renewal and liquid mixing and was investigated by Ellis and Biddulph (26,27).

Haselden (40) in his work, verified that one of the most important factors affecting plate efficiency was the magnitude of the surface tension gradients in the dispersion on the plate.

3.7.3 The Effect of Heat Loss

It is inevitable that all fractionating columns lose heat to the surroundings. If, therefore, the column is non-adiabatic, the heat loss must be considered in the enthalpy balance (40). It can be shown by using the method of Ponchon and Savarit (104), that adiabatic columns where all the heat is extracted in the condenser are more efficient than non-adiabatic columns

3.7.4 Thermal Distillation

Thermal distillation is the separation achieved

when there is local superheating or direct condensation of vapour due to local subcooling. Much work has been carried out on thermal distillation (21,27,64,85).

24

Sawistowski and Smith (86) stated that the contribution of thermal distillation to the effective mass transfer coefficient was greatest when the temperature difference between bulk phases was greatest. Dankwerts (21) pointed out that the effect of thermal distillation was to increase the rate of attaining equilibrium. Both Dankwerts (21) and Liang (65) pointed out that although thermal distillation may be the cause of discrepancy between results on plate efficiency, the true reason can only be stated after investigating all other factors especially the physical properties.

3.7.5 Tray Design

The tray design variables that affect the plate efficiency are numerous and a review is given by Smith (93). The way in which they affect the efficiency is not given here but a list of the variables is given in Table 3.1.

3.7.6 The Effect of the Reflux Ratio

Ellis and Hardwick (28) showed that in the rectifying section plate efficiency decreased as reflux

ratios fell below 0.4 and between 0.4 and 1 stayed constant. This was also verified by other investigations (14,41,43,84). Ellis and Hardwick (28) further showed that for the stripping section, as the reflux ratio increases, the plate efficiency falls off rapidly for **an orderary** sieve plate column but remains constant for a constant interfacial pool column. From these investigations, it was concluded that for a reflux increase, the rectifying section decreased in efficiency due to the liquid film resistances increasing and that the decrease in the stripping section was due to decreasing interfacial area.

3.8 Discussion on Efficiency

The conclusion drawn by Holland (49) that the vaporisation efficiency was superior to that of the Murphree plate efficiency was disproved by Standart (96). The case taken was where one of the components of a ternary system was at a 'pinch point' and the vaporisation and Murphree plate efficiency were compared. Although the vaporisation efficiency has positive values, the Murphree plate efficiency can be estimated from realistic models of the detailed transfer mechanism on the tray.

The Murphree plate efficiency has been generally accepted in distillation design work and is easily used in simulating unsteady-state operations. If the liquid mixing

characteristics are included in the simulation model, then the Murphree plate efficiency can be quite easily calculated while the vaporisation efficiency, which gives no more information and is less generally used, would require more data and would be less readily calculated.

Standart (95) showed that the Murphree plate efficiencies had limitations in that certain streams had to be saturated (i.e. also in thermal equilibrium). The Murphree vapour plate efficiency demands that the liquid leaving the nth plate with composition $X_{\underline{x}}$ be saturated in order that a vapour phase of composition \mathbf{y}_n^{\star} can exist in equilibrium with it. The question of saturation has been ignored by Murphree for both liquid and vapour-phase efficiences. For a binary system if the two phases leaving the plate were in temperature equilibrium, they cannot be saturated or they would be in full equilibrium. However, there is no reason to suppose that the streams leaving a plate are saturated and in many practical cases they are not. From this point it would seem that if the generalised efficiency was used, it would be more accurate than that of the Murphree plate efficiency for systems whose streams leaving the plate were saturated, but less accurate if they were not saturated.

From this brief review on efficiency, it can be seen that the Murphree plate efficiency has the advantage of being easily calculated and has been generally accepted and

widely used in column design. The generalised plate efficiency has been shown to be more accurate if the phases leaving the plate are saturated, but as most practical cases are not and as the generalised plate efficiency is less readily calculated, there seems no advantage in using the generalised plate efficiency instead of the Murphree plate efficiency for simulation purposes. Similarly, as the vaporisation efficiency has shown no advantage over the Murphree plate efficiency is superior for simulation purposes as it is more readily estimated.

Sieve tray operating variables

Operating variables

System variables

- 1) Temperature (heat losses)
- 2) Pressure
- 3) Liquid flow rate; internal reflux; L/V
- 4) Vapour flow rate
- 5) Liquid diffusion coefficient
- 1) Density of liquid
- 2) Viscosity of liquid
- 3) Relative volatility of components
- 4) Gas properties
- 5) Surface tension
- Plate design variables
- Free hole area
 Hole diameter
- 3) Hole pitch
- 4) Hole arrangement
- 5) Plate thickness
- 6) Overflow weir height
- 7) Inlet weir design
- 8) Length of active tray and settling areas
- 9) Splash baffles
- 10) Flow patterns

Column design variables

- 1) Downcomer area
- 2) Downcomer arrangement
- 3) Plate spacing
- 4) Flow arrangement (counter current or parallel flow)

4. LITERATURE SURVEY ON LIQUID MIXING ON DISTILLATION PLATES: MIXING EFFECTS.

Literature Survey on Liquid Mixing on Distillation Plates: Mixing Effects

4.1 The Importance of Liquid Mixing for Plate Efficiency

The existence of a concentration gradient in the liquid phase on a distillation tray was realised as early as 1936 by Lewis (64). He made the first successful attempt at relating the Murphree plate efficiency to the local point efficiency. If the liquid on the plate is perfectly mixed, then the Murphree plate efficiency is equal to the point efficiency. However, if the plate is large, then a concentration gradient exists due to partial liquid mixing and the plate efficiency is different from the point efficiency as only the liquid leaving the plate is considered when calculating the equilibrium vapour composition. From these observations, it can be seen that in order to simulate a distillation column, the liquid phase mixing must be considered and accurately modelled.

Since the first work of Lewis (64), many investigations have been carried out on liquid mixing on distillation plates and the following sections briefly review some of the general models derived.

4.2 Diffusion Model

The first known residence time distribution was done by Stewart (98) in 1894. He studied the passage of a salt tracer through blood vessels. In 1953 the concept was revised by Dankwerts (19) who emphasised its importance in chemical engineering. Zwietering (119), Spalding (94) and Dankwerts (20) presented generalised discussions on the residence times and distribution functions, whilst Bischoff and McCracken (10) showed their importance in describing flow patterns in chemical reactors.

Foss (29) and Gerster (36) used Dankwerts approach to investigate the liquid mixing characteristics. Foss (29) applied step changes to the inlet salt concentration and plotted salt concentration against time after initiating the step for various distances along the tray.

Making the assumptions:-

1) The only concentration gradient existing in the liquid is in the direction of flow and that the liquid is perfectly mixed in the vertical and horizontal directions perpendicular to the direction of flow.

2) The depth of liquid on the plate is constant along the plate.

3) That the outer regions of the plate, outside the rectangular section between inlet and outlet weirs are neglected.

it was found that the concentration responses could be accurately represented by use of the diffusion model which has been extensively reviewed by Levenspiel (61,62,63) and

Crank (18).

De
$$\frac{d^2c}{dz^2} - u_1 \frac{dc}{dz} = \frac{dc}{dt}$$
 4.1

From a plot of experimental data, Foss derived an empirical equation for estimating the eddy diffusivity:-

Similar expressions were derived by other workers (8, 37). Gilbert (37) varied the tracer input sinusoidally for both bubble-cap and sieve plates and the relationship derived for the estimation of the eddy diffusivity for both types of tray was:-

1) for weir heights of 3, 2 and 4 inches:-

$$\frac{2De}{u_{1}^{3}h_{c}} = 0.0098 \left\{ \frac{h_{u}u_{1}}{h_{f}} \right\}^{-2.91} \dots 4.4$$

2) for weir heights of 1 inch:-

Welch et al (110) used 27 diameter bubble-cap tray

column for investigating the liquid mixing for various systems and flow rates. He found that the Peclet number defined as:-

stayed constant for systems of different physical properties and for different flow rates and thus only varied with length of liquid flow path z. He derived a simple expression for the eddy diffusivity:-

$$De = 0.29u_{1}$$
 4.7

The work generally used for estimating the eddy diffusivity is that presented in the A.I.Ch.E Manual (1). This work gives an equation for both bubble-cap and sieve trays:-

$$De = (0.0124 + 0.0171u_g + 0.0025L_g + 0.015W)^2 \dots 4.8$$

Thomas and Campbell (109) investigated liquid mixing on sieve trays with downcomers, using dye injections and measuring the colour intensity at the outlet weir. They stated that the diffusion model was a good representation of the liquid mixing on sieve trays.

Further discussions on the results and experimental procedure of these works are given in section (5.4) comparing them with the author's experimental results.

4.3 Pools-in -Series Model

Although the diffusion model has been generally accepted as an accurate representation of the liquid mixing model, it is awkward to use in numerical simulation and a simpler yet accurate model would be preferred.

The concept of modelling the liquid phase by a series of perfectly-mixed pools was first introduced by Kirschbaum (53,54). This type of model was later revised by Gautreaux and O'Connell (31) who stated that about every 1.25 ft of tray length could be represented by a perfectly mixed liquid pool. This type of model is illustrated in Fig 4.1a and the differential equation for the pool j on the nth plate for constant molal holdup is:-

 $\frac{dx}{dt}n, j = L_n(x_{n,j-1} - x_{n,j}) + V_{n,j}(x_{n-1,j} - x_{n,j}) \dots 4.9$

In these investigations, the vapour phase was assumed to be perfectly mixed between the plates.

Eduljee (25) tried to relate the number of pools to be used in series with the degree of mixing on the plate (i.e the Peclet number) and derived the empirical equation:-

Pe = $(2.155 - 0.75\log_{10}(\lambda E_{OG}))(M-1)$ 4.10 where M is the number of mixed pools to be used. This equation is used to find the number of pools to be used in the equation derived by Gautreaux and O'Connell for a known

Fig 4.1a Mixed pools-in-series model.

Fig 4.1b Mixed pools_in_series with backflow model.

Peclet number. However, there seems no real reason why the parameters λ and E_{OG} should be included in describing the mixing. This point also applies to the equation 4.14 given by Ashley and Haselden (5).

From the impulse response of a series of continuous stirred tank reactors (22), Ashley and Haselden (5) used gamma functions to derive a theoretical relationship for the dimensionless variance:-

$$\sigma^2 = \underbrace{1}_{M} \qquad \dots \qquad 4.11$$

The dimensionless variance for the impulse response to the diffusion model was derived by Foss (29), Crank (18) and Levenspiel (63) and when the theoretical relationship is reduced for large values of the Peclet number (above 6), the relationship becomes:-

$$\sigma^2 = \underline{2}_{\text{Pe}}$$

Combining the equations 4.11 and 4.12 a relationship between the number of liquid pools and the Peclet number is derived:-

$$2M = Pe$$
 4.13

Ashley and Haselden (5) pointed out that when the Peclet number is zero, the number of mixed pools must equal unity. From this they derived two analytical equations:-

$$M = (Pe - 1)/2 for large Pe M = Pe/2 + 1 for Pe > 2, $\lambda E_{OG} < \frac{1}{2}$... 4.14$$

These two equations converge for high values of Pe whilst the latter is intuitively more satisfactory for low values of Pe.

4.4 The Pools-in-Series with Backflow Model

The perfectly mixed pools-in-series model as described above does not allow for any backmixing between the pools. By introducing a recycle between these pools, the backmixing

35

.... 4.12

and splashing can be represented in the model (Fig 4.1b).

36

Steady-state operations in liquid-liquid extraction columns have been described using the recycle model by Miyauchi and Vermeulen (68) while Colburn (17) and Sleicher (92) used similar models with recycle to account for the effect of entrainment on plate efficiency in distillation and for extractor efficiency in mixersettlers.

The backflow model was investigated by Retallick (79) who treated the model probabilistically in terms of the number of recycles a tracer particle undergoes.

Roemer and Durbin (80) give the transient response and a moments analysis of the backflow model, while Dickey and Durbin (23) analysed the backflow model of a distillation plate with linear interface mass transfer. The analysis was for a component disappearing at a rate proportional to its concentration and is analogous to first-order isothermal reactors as shown by Baldwin and Durbin (7).

Buffham (12) gives analytical expressions for the impulse response for an infinite series of stirred tanks with backflow when the impulse is introduced at the first tank (unilateral), and when there is an infinite number of stirred tanks before the injection point as well as after (bilateral). When a disturbance is introduced in the feed to a distillation column, operating with a low relative volatility, the early part of the response is accurately described by the useful approximations given.

4.5 The Comparison of Mixing Models and the Estimation

of Efficiency

It was **quoted** in section 4.3 that by comparing variances between the diffusion model and the poolsin-series model a relationship between the Peclet number and the number of pools to be used could be derived. Using the same procedure as van der Laan (74,106), the variance for the diffusion model in its full form is:-

which for large values of Pe can be reduced to the equation given by Foss (equation 4.12).

Retallick (79) derived the residence time distribution for the backflow model probabilistically, but also incorporated an error by ignoring the different characteristics of the two end pools. Residence time distributions in a cascade of mixed vessels with backflow were derived by Klinkenberg (55). The relative variance of the backflow model was derived by van der Laan (74) for the same boundary conditions and is given as:-

where $B = B_{f} / L$

..... 4.17

From the relationship given by equation 4.13, for a large number of pools equation 4.16 can be reduced to:-

$$\sigma^2 = \frac{1+2B}{M}$$
 4.18

The boundary conditions for all the above equations are the same.

Miyauchi and Vermeulen (68) derived the relative variance of the backflow model from the material balance on each stage of a liquid extration column:-

$$\sigma^{2} = \frac{1}{M} - 2 \left[\frac{B}{M} + \left[\left(\frac{1}{2M} + \frac{B}{M} \right)^{2} - \frac{1}{M^{2}} \right] \left[1 - \exp \left[\frac{-\frac{(\frac{1}{2} + B) \ln(1 + 1/B)}{1/(2M) + B/M} \right] \right] \right]$$
 4.19

Comparing this variance with that of the reduced diffusion model (equation 4.12) gives:-

$$B = \frac{M - \frac{1}{2}}{Pe} - \frac{M(M - \frac{1}{2})}{(M - 1)(2M + 1)}$$
 4.20

The more common relationship (23,68,79) can be obtained by substituting the variance of equation 4.18 in the reduced diffusion model variance equation 4.12 to give:-

$$B = M - 1$$
 4.21
Pe 2

Kramers and Alberda (56) presented the analytical equation:-

B = M - 1 - 1 for small M 4.22 Pe 2

Thus by comparing the variances of the models, relationships between the mixing parameters can be found. In the case of the backflow model two of the three parameters must be known. For work using bubble-cap trays, Holland (48) suggested that the number of pools in series to be used could for convenience be equal to the number of bubble-cap rows and the backflow worked out later.

The estimation of the plate efficiency for these various models can now be made for steady-state conditions. It has been mentioned before (see section 3.4) that if the liquid on the plate is perfectly mixed then the Murphree plate efficiency is equal to the point efficiency.

$$E_{MV} = E_{OG}$$
 4.23

and if the liquid travels in plug flow across the plate:-

$$E_{MV} = \frac{1}{\lambda} (e^{\lambda E} OG - 1) \qquad \dots \qquad 4.24$$

The diffusion model as proposed by Gerster et al (1,29,36) gives an accurate representation for the case with complete vapour mixing and partial liquid mixing, but the relationship for the estimation of efficiency is complex:-

$$\frac{E_{MV}}{E_{OG}} \approx \frac{1 - e^{-(n+Pe)}}{(n+Pe)(1+n+Pe)} + \frac{e^n - 1}{n(1+n)}$$

where $n = \frac{Pe}{2} \left\{ \begin{array}{c} 1 + \frac{4\lambda E}{Pe} - 1 \\ Pe \end{array} \right\}$

The mixed pools-in-series model as described by Gautreaux and O'Connell (31) gives a much simpler relationship for the Murphree plate efficiency:-

$$E_{MV} = \frac{\left(1 + \frac{\lambda E}{M} OG\right)^{M} - 1}{\lambda} \qquad \dots \qquad 4.26$$

Table 4.1 shows the comparison of the predicted Murphree plate efficiency using the equation derived from the diffusion model (4.25) and the pools-in-series model (4.26) for various fixed point efficiencies and absorption

39

4.25

Ta	ble	4.	. 1

The comparison of estimated plate efficiencies

		r						
	λ	$^{\rm E}$ og	М	E _{MV} %	$E_{MV}^{}$ % calculated from diffusion model			
				from	••			
				pools	Pe=2M	Pe=2M-1	Pe=2M-2	Eduljee
	0.5	0.5	2	53.12	54.04	53.50	52.76	53.24
1.		· ·	5	55.26	55.43	55.30	55.14	55.47
			9	55.93	55.99	55.94	55.89	56.09
			14	56.24	56.26	56.24	56.22	56.35
			20	56.41	56.42	56.41	56.40	56.49
			27	56.51	56.52	56.51	56.51	56.57
			35	56.58	56.58	56.58	56.57	56.63
							· · · · · · · · · · · · · · · · · · ·	
	0.5	0.8	ຸ 2	88.00	90.54	89.12	87.15	88.13
			5	93.87	94.38	94.02	93.59	94.31
			9	95.80	95.95	95.84	95.70	96.15
			14	96.70	96.77	96.71	96.65	96.95
	•		20	97.19	97.23	97.20	97.17	97.38
			27	97.49	97.51	97.50	97.48	97.64
			35	97.69	97.70	97.69	97.68	97.81
<u>µ.</u>			<u> </u>	FO 37	<u> </u>	<u> </u>		59.33
	1.5	0.5	2	59.37	62.99	61.14	58.63	67.76
			5	67.42	68.28	67.76	67.15	70.65
			9	70.35	70.65	70.46	70.25	71.99
		1	14	71.76	71.89	71.80	71.71	72.72
			20	72.54	72.89	72.57	72.52	
			27	73.03	73.07	73.04	73.02	73.17
			35	73.35	73.38	73.36	73.35	73.46
	1.5	0.8	2	104.00	115.46	110.04	102.96	103.73
			5	128.78	132.09	130.36	128.36	129.16
		1	9	138.98	140.26	139.58	138.83	139.41
		J	14	144.16	144.75	144.43	144.09	144.51
1			20	147.14	147.45	147.28	147.11	147.42
			27	149.01	149.19	149.09	148.99	149.24
			35	150.27	150.37	150.32	150.25	150.45
		•						
	· •							
1		I	1	l	L	L	1	· · · · · · · · · · · · · · · · · · ·

factors. The number of pools is varied and the Peclet number used in the diffusion model equation is estimated using equations 4.10,4.13 and 4.14.

4.6 The Effect of Liquid Mixing on Plate Efficiency

Lewis (64) in his classical paper considered three limiting cases:-

1) Liquid unmixed on the plate with vapour perfectly mixed between the plates

2) Both the liquid and the vapour unmixed and the liquid flowing in the same direction on each plate (parallel flow)

3) Both the liquid and the vapour unmixed and countercurrent liquid flow on adjacent plates.

He showed that a greater overall efficiency was achieved with parallel liquid flow on adjacent plates (case 2) than that of counter-current liquid flow (case 3). However, little use is made of this fact because a high point efficiency and a low liquid to vapour ratio is needed before the difference becomes significant and at these conditions the extent of the mixing in the main phases is impossible to calculate. Ashley and Haselden (5) also showed that parallel flow gave a higher efficiency than counter-current flow while Shore (89,90) obtained experimental values of the plate efficiency for both parallel, and counter-current flow of liquid using a three-plate column and accounted for the difference between parallel and counter-current flow in terms of the system properties.

By substituting constant values of λ and E_{OG} in equation 4.26 and varying the number of mixed pools, it can be shown that as the degree of mixing decreases, so the Murphree plate efficiency increases.

4.7 The Effect of Vapour Mixing on Plate Efficiency

In all the models and equations discussed so far, the assumption of perfect vapour mixing between plates has always been made. If the liquid on the tray is assumed to be perfectly mixed, itdoes not matter how the vapour flow is described.

A relationship between the point and Murphree plate efficiency for partial liquid mixing using the diffusion model and no vapour mixing was derived by Diener (24). Both counter-current and parallel flow (Lewis case 3 and 2) of the liquid on successive plates was considered. Assuming a point efficiency of 0.8, he calculated the Murphree plate efficiency for the case where the vapour phase was unmixed and for where it was perfectly mixed. Dividing the Murphree plate efficiency calculated for unmixed vapour by the efficiency calculated for perfectly mixed vapour gave a ratio. This ratio was shown to be greater than unity for the case where the liquid was in parallel flow and it increased with an increase in λ .When the liquid was in

counter-current flow, this ratio decreased with an increase in λ . Diener concluded that most systems have point efficiencies less than 0.8 and that the effect[of vapour mixing on plate efficiency was of little importance.

43

Due to the complexity of Diener's equations, it is doubtful whether his method can be exploited. A simpler approach was illustrated by Ashley and Haselden (5). They used a series of perfectly mixed pools to describe the liquid mixing and the vapour leaving these pools joined vapour leaving adjacent liquid pools to form a vapour cell, see Fig 4.2. The number of vapour cells to be used to describe the mixing was arbitrary as not enough data existed for vapour mixing characteristics.

They further showed that for $\lambda = 1$, a point efficiency of 0.8 and counter-current flow of liquid, that the plate efficiency increases with decrease in the number of vapour cells but this decrease was so small that the only significant difference can be seen between using one and two vapour cells. For parallel liquid flow the plate efficiency increased with increase in vapour cells and again, as shown in Fig 4.3, the only major increase was seen using one and two vapour cells. Fig 4.3 shows the effect of liquid and vapour mixing on the Murphree plate efficiency. For a point efficiency of 0.8 and $\lambda = 1$, when the number of liquid pools and vapour cells are both infinity, the plate efficiency for parallel liquid flow is 133% and that

Fig 4.2 Vapour cell model using 3 liquid pools to 1 vapour cell.

for counter-current liquid flow is 116%. Although the difference in plate efficiency values for vapour phase unmixed and mixed, varies at the most by 5% for the liquid in counter-current flow, this is only true for steady-state conditions and the difference may be more important in unsteady-state conditions.

Fig 4.3 The effect of liquid and vapour mixing on the Murphree vapour plate efficiency.

5. EXPERIMENTAL INVESTIGATION OF MIXING ON SIEVE

PLATES: LIQUID MIXING.

5. Experimental Investigation of Mixing on Sieve

Plates: Liquid Mixing.

5.1 Experimental Apparatus

To investigate the liquid and vapour mixing taking place in a large plate column, a long rectangular column with three plates and segmental downcomers was constructed. The plates represented the centre section of a large circular plate. The top section of the column was made of half-inch thick clear perspex sheets, giving an open view of the top two plates. Marine-plywood was used for the bottom section, the plates and the inlet and outlet downcomers. All joints between the sections were sealed with strip rubber. The system air-water was used to represent the vapour and liquid streams. Fig. 5.1 shows the design of the column and the variable sections.

The sieve plates, weirs and downcomer sections were constructed such that they could easily be replaced with different sections or, in the case of the inlet downcomer on the observation tray, could be reduced in sectional area. The investigation was carried out using two different hole diameters and free areas for the plate and different weir heights.

The active tray length of 6 ft. was the distance between the inlet and outlet weirs and the actual active part depended on the number of holes and the pitch. At the outlet and inlet weirs, there was about two inches of unperforated space to act as a smoothing section ...

The centre tray was the observation tray, the other two trays were present to ensure equal vapour and liquid distribution. A list of the column and tray dimensions used in the investigation is given in Table 5.1.

Table 5.1 Column dimensions

Column length	8 ft.	
Column width	1.5 ft.	
Tray length	7 ft.	
Active tray length	6 ft.	
Outlet downcomer leng	th 1 ft.	
Inlet downcomer lengt	h 1" to 1 ft. (var	iable)
Weir height	1.5" and 2.35" (var	iable)
Tray thickness	.14"	
Tray spacing	1.5 ft.	

	Trays		
	_1	2	
Hole diameter	•375"	.1875"	
No. holes	1172	4819	
Free area	7.5%	7.7%	
Triangular pitch	1"	• 5"	
Apron clearance	1"	ן "	

The downcomer length on the observation tray was variable and was the distance between the end blanking section and the downcomer outlet (see Fig. 5.1)

5.2 Experimental Procedure

5.2.1 Experimental Work

Many investigations into liquid mixing have been

47

carried out (1,8,9,29,37,66,77,100,106), not only for calculating the eddy diffusivity, but more recently to investigate channelling at the outer regions of the column (i.e. near the perimeter wall). The main experimental work carried out in this investigation was concerned with the determination of the eddy diffusivity from impulse responses for the whole tray (active area and downcomer) and not just the active area as in previous investigations. Impulse response data at intermediate positions on the plate was compared with that predicted by the theoretical model to ensure that the model was suitable for describing the whole tray.

The impulse response experiments started by operating the column for at least thirty minutes to allow steady-state conditions to be reached. At the start of an actual experimental run, the conductivity of the water at the sampling positions was continuously read in to a computer at a sample interval of 0.2 seconds for a period of 15 seconds. These values were stored after being smoothed by a second order digital filter with small time constants of 0.08 to give a mean base-line for the dynamic response. The digital filter was confined to the calculation of the base line.

A small injection of potassium chloride was then introduced into the liquid stream between the outlet weir

Computer Specification and Use: -

The computer used for data logging was a Digital PDP11. The data points recorded were first read on to the disk and at the end of a batch of experiments, these results were then transfered to magnetic tape for storage. As the PDP11 was only a small capacity machine with no graph plotting facilities, the results were then transfered from the magnetic tape to paper tape for processing on a larger computer (an ICL 1900) with graph plotting facilities. 48a

Conductivity Cell: -

The conductivity cell used was a 2 ml. capacity cylindrical cell. The conductivity of the sampled stream was continuously measured and had a small residence time in the cell thus no significant lag occurred. of the top plate and the holdup in the downcomer of the observation plate. The injection was evenly distributed across the tray to ensure that a constant concentration existed across the plate perpendicular to the liquid flow.

The conductivity at the outlet weir was continuously measured for at least four times the mean residence time of the liquid on the tray. The data-logging program was written so as to sample every second for the first two thirds of the run time, then to sample every three seconds for the tail end of the response. The data points and the sample time were stored and the same experiment was repeated for at least ten experimental runs. Intermediate points along the tray were also investigated for the samo operating conditions and the conductivity and sample times were logged.

The dimensions of the weir height, downcomer length, hole diameter and the range of operating conditions over which the conductivity experiments were performed are given in Table 5.2.

From the steady-state theory given by Kropholler and Buffham (13), (Appendix B) further experimentation was carried out to illustrate the presence of backmixing and to compare the results between the impulse response and steady-state experimental methods of determining the eddy diffusion coefficient.

Experiment	Hole diameter	Weir height	Downcomer	Operating ranges			
	(inches)	(inches)	length (inches)	u ft/sec	Lg gal/min ft	Pe	
1	.1875	2.25	6	3.7 to 4.4	4.2 to 17.5	5 to 13	
2	.1875	1.5	6	3.9 to 4.3	3.5 to 11	4.5 to 14	
3	.1875	1.5	3,6,9,12	3.9 to 4.1	4.2 to 9.2	4 to 13	
4	.375	1.5	3,6,9,12	2.5 to 4	6 to 11.5	5.5 to 15	
	•					· · ·	

Table 5.2 Operating conditions for experimental runs on liquid phase.

The experimental rig was operated and potassium chloride was continuously injected across the plate, (perpendicular to the liquid flow) two feet from the exit weir. After thirty minutes running steady-state was reached and samples of the liquid phase towards the inlet weir were taken and the conductivity measured. The concentration and sample distances from the injection point were stored and later plotted. Readings of the liquid phase, towards the exit weir were also taken to check for uniform concentration. The experimental results obtained showed this to be true. These steady-state experiments were carried out using the large hole diameter and a weir height of 1.5".

5.2.2 Tests to Validate Assumptions

A few tests were carried out to test the validity of the assumption of a constant concentration profile across the plate perpendicular to the liquid flow. This was done by taking a long probe and moving it quickly across the tray and continuously measuring the conductivity. It was found that the assumption was true if the injection was evenly distributed across the tray.

Further tests were also carried out to ensure that there was no channelling in the vertical direction (i.e. concentration constant in the vertical direction). By

moving the sample probe up and down in the froth and measuring the conductivity continuously, the assumption of perfect vertical mixing was shown to hold.

Visual tests using nigrosine were also carried out to show the presence of backmixing in the liquid phase. Fig. 5.2 shows two photographs of the observation tray after an impulse dye injection has been introduced. The photograph 'A' was taken 10 seconds after the injection and photograph 'B' was taken 20 seconds after the injection. The weir height for these visual runs was 1.5". It can be seen from these photographs that the liquid is not perfectly mixed and also that there is backmixing. The visual tests also showed the validity of the previously made assumptions of perfect mixing in the vertical and horizontal directions.

5.3 <u>Response Analysis</u>

For each operating condition there was a set of ten experimental responses. Each one of these responses in the set was examined. The mean time and variances were calculated to see if the set could be combined to give one statistically significant, smooth response curve for that set. From the examination, it was found that the responses could be operated on to produce one response curve.

Each response in the set had been subjected to

exactly the same disturbance and sampled at the same times and thus for each individual sample time in the set there were ten data points. A root mean squared value of these ten points was taken to give a modal point for that sample time. The response curve was then normalised to give an area of unity under the curve. This normalised curve was then compared with that of the diffusion model operating under the same flow conditions. The eddy diffusion coefficient used in the diffusion model was operated on until the coefficient giving the closest fitting response was found. The limit for finding the closest response was set by minimising the actual area between the two response curves. The time range over which this minimisation operated was 0 to 2 on the dimensionless time scale. The dimensionless time was the true time divided by the mean residence time of the liquid on the tray and the dimensionless concentration was the actual concentration divided by the average concentration had the injection been evenly distributed over the whole tray.

The conductivity experiments were carried out for varying weir heights, hole dimensions, hole pitch, and downcomer lengths. The comparison of experimental data with the diffusion model can be seen in Fig. 5.3 to 5.5.

The height of clear liquid, froth height and froth velocity were all calculated using the empirical equations

given by Gerster (1) and Treybal (104) and are reproduced in Appendix A. From the calculated eddy diffusion coefficients and the computed heights and velocities, the parameter 2 De was plotted against h_{u_1} on log-log $u_1^{3}h$

paper and a least squares fit was used to find the best linear correlation through the points. From this a relationship for the eddy diffusion coefficient was derived and is given in the section comparing other work.

From the experiments carried out where the downcomer lengths were varied, and dye injections were introduced, it was seen that the downcomer segment when extended to its fullest length (i.e. 1 ft.), appeared to have some inactive regions which were reduced as the downcomer length was shortened. Further, there seemed little visual difference between the responses for the four different sized downcomers, but numerically the difference was quite significant. The Peclet number increased as the downcomer segment decreased. The downcomer length, Peclet number and operating conditions are given in Table 5.3.

From this table it can be seen that as the downcomer decreases in length, so the liquid mixing for the whole tray becomes less. It would seem from this, that a segmental downcomer tends to increase the liquid mixing characteristics. The response curves of Runs 4 and 6 for the four different sized downcomers are shown in Fig. 5.6a, b.

·		Peclet numbers	
Run	Weir height	Downcomer lengths	Liquid flow

Table 5.3 Comparison of predicted Peclet numbers for different length downcomers.

Run	Weir height (inches)	Downcomer lengths				Liquid flow	
		3"	6"	9"	1'	(gal/min ft.)	
1	1.5	9.897	8.274	6.99	5.923	6.187	
2	1.5	12.15	10.61	8.5	7.27	7.631	
3.	1.5	12.45	10.21	9.09	9.073	9.167	
4	1.5	11.26	11.75	8.676	7.798	9.9	
5	1.5	14.29	13.53	10.12	7.34	11.293 '	
6	2.25	10.57	9.52	8.661	8.088	11.073	

ម ហ From the steady-state experiments, a plot of concentration against distance from the injection axis was drawn and by using an optimisation technique (72) for minimising the least squares fit between the experimental data and the values computed from the equation (Appendix B):-

$$De = u_1 z / ln c_{out}$$

the best single value of the eddy diffusivity can be calculated. Fig. 5.7 shows the results of two of the steady-state experiments and Table 5.4 compares some of the experimental steady-state values of the eddy diffusivity with those predicted by the empirical equation derived by the impulse experimental values. The values of the eddy diffusion coefficient from the steady-state experimentation were higher than those predicted by the dynamic experiments except for the very small values of Run 4 and 5 in Table 5.4.

From experience in fitting curves to the experimental points in the steady-state experimentations, it was found that only a slight deviation in the experimental points was needed to cause a significant shift in the curve and alter the value of the eddy diffusion coefficient predicted. This illustrates the sensitivity of the steadystate experimentation as the dynamic experiments using

56

. 5.1

varying downcomer lengths showed that the absence of a downcomer would give less mixing and hence a smaller eddy diffusion coefficient. The absence of a downcomer makes little difference when the mixing tends to 'plug flow'. The Peclet numbers associated with Run 4 and 5 of Table 5.4 are:-

57

4) Pe = 11.325) Pe = 19.6 which are intermediate cases of liquid mixing.

5.4 Comparison with Other Work

The investigation into liquid mixing on sieve trays done by Barker and Self (8) was carried out using trays 13½" wide by 5 ft. 8½" long with 3/16" diameter holes based on ¾" triangular centres. Both dye and salt tracers were used. The salt injections were of the steady-state type of experiments where the injection was continuous and the amount of backmixing upstream was measured. Although the theory was the same as that described in Appendix B, the author's work indicates that this method of experimentation gives rise to more scattered results than does dynamic experimentation. Further the work done by Barker and Self did not include downcomers. On correlating their results, they derived two equations for the determination of the eddy diffusion coefficient.

$$\frac{2\text{De}}{u_1^{3}h_c} = 0.0098 \left\{ \frac{h_c u_1}{h_f} \right\}^{-2.91} 2, 3 \text{ and } 4' \text{ inch weirs} \dots 5.2$$

$$\frac{2\text{De}}{u_1^{3}h_c} = 0.0024 \left\{ \frac{h_c u_1}{h_f} \right\}^{-3.02} 1 \text{ inch weir} \dots 5.3$$

Gilbert (37) investigated the liquid mixing on both bubble-cap and sieve trays using frequency response methods. The plates were 1 ft. wide with an active area length of 3 ft. perforated by 3/16" diameter holes in a 4" equilateral pitch. The tracer, sodium thiosulphate, was varied in a sinusoidal manner. The equation derived for determining the eddy diffusivity from the bubble cap tray experiments was also a good estimate for that of the sieve trays.

$$\frac{2De}{u_1^{h}c} = 0.458 \left\{ \frac{h_c u_1}{h_f} \right\}^{-2.4} \dots 5.4$$

The main work done on eddy diffusion is that of the A.I.Ch.E. Manual (1) and further details of the work given in the manual are based on the work carried out at Delaware. The liquid flow Lg ranged from 6 to 30 gal/min ft. and the liquid flow length was 2.6 ft. The column used consisted of bubble-cap trays with split flow. It would seem that the flow rates used were rather large for the actual liquid flow path and thus only gave short residence times. The equation derived for the eddy

diffusivity and the heights of clear liquid and froth are all given in detail.

 $De = (0.0124 + 0.0171 u_q + 0.0025 Lg + 0.0015W)^2 \dots 5.5$

Welch, Durbin and Holland (110) used a 27 inch diameter bubble-cap plated column with segmental downcomers to investigate the liquid mixing. A salt tracer was injected in the form of an impulse input and the conductivity was measured in the downcomers at the end of the first and second plates. Within the limits of the investigation (4.4<Pe<27), it was found that the ratio of Peclet number over liquid path length was independent of liquid and vapour flow as well as the physical properties (density, viscosity and surface tension). From this work they derived a simple equation for determining the eddy diffusion coefficient.

 $De = 0.29 u_1$

..... 5.6

Foss (29) used a rectangular column 9.5 inches wide by 3 ft. active length. There was a preaeration section which was partitioned off from the active area to stop backmixing. Various trays were used all with 3/16" diameter holes but with 7/8", 5/8", 17/32" triangular pitch. A unit-step salt injection was introduced at the inlet, thus directly giving the cumulative residence time distribution which was then differentiated with respect to time to give the response of a unit impulse. From a plot of his data, Foss derived the empirical equation: -

$$\frac{2De}{u_1^{3h}c} = 0.0247 \left\{ \frac{h_c u_1}{h_f} \right\}^{-2.8} \dots 5.7$$

From a least squares fit of the data points obtained in the author's work, the following empirical relationships were derived:-

1) 1.5" weir, $\frac{3}{6}$ " holes giving 7.5% free area and a downcomer length of 6"

$$\frac{2\text{De}}{u_1^{3}\text{h}_c} = 0.088 \frac{\binom{\text{h}_u}{\text{c}^{1}}}{\binom{\text{h}_f}{\text{f}}}^{-3.06} \dots 5.8$$

2) 2.25" weir, 3/16" holes giving 7.7% free area with a downcomer length of 6"

$$\frac{2\text{Le}}{u_1^{3}h_c} = 0.1289 \left\{ \begin{array}{c} h & u_1 \\ c & 1 \\ h_f \end{array} \right\}^{-2.56} \dots 5.9$$

3) 1.5" weir, 3/16" holes giving 7.7% free area with all downcomer lengths

$$\frac{2\text{De}}{u_1^{3}h_c} = 0.137 \quad \left\{\frac{h_c u_1}{h_f}\right\}^{-2.68} \dots 5.10$$

A plot of $2De/u_{1}^{3}h_{c}$ against $h_{c}u_{1}/h_{f}$ for all the investigations mentioned above can be seen in Fig. 5.8a,b. The difference in the value of De predicted by the above relationships for the same values of u_{1} , h_{c} and h_{f} is in some instances quite large.

If the computed values of De are then used to

calculate a Peclet number for the mixing parameter of a distillation plate, it can be seen from Table 5.5 that for reasonable working conditions, large Peclet numbers occur using some of the empirical equations. If large Peclet numbers, (above 40) are predicted, then the model can easily be represented by a plug flow model with no mixing.

With the exception of Barker and Self and the work done by the author, tray lengths of 3 ft. maximum were used. It was stated (1) that liquid paths greater than 3 ft. would tend to that of plug flow. However, this has been shown to be untrue. The difference in the works might be due to large liquid flow rates being used over small liquid paths which would give the appearance of plug flow. Further only the work of Welch and the author have included downcomers which tends to give better mixing characteristics and thus their work would give lower values of Peclet number.

From the wide range of results derived, it would seem that there are more factors that effect the liquid mixing on a plate than those incorporated in the parameters u_1 , h_c , h_f . One of these factors appears to be the hole diameter and the triangular pitch used. Downcomers have been ignored by other investigators except that of Welch, and thus they only predicted the eddy diffusivity for the active area and not the whole tray. The empirical equations

derived in this work are based on segmental downcomers of about 10% of the column cross sectional area which is the usual tray design.

For these reasons, the empirical equations derived by this work will be used in the mathematical model along with the associated column dimensions (i.e. weir height, hole diameter, tray length etc.) to ensure a true prediction of the eddy diffusion coefficient and hence the Peclet number.

5.5 <u>Theoretical Simulation Using Mixed Pools in Series</u> with Backflow.

Although the diffusion model has been shown to be a good representation of the liquid mixing on a distillation plate, it is awkward to use for continuous simulation work. For this reason, a more suitable yet accurate model is needed. It has been mentioned in the previous chapter, that the mixed pools-in-series with backflow model is the most appropriate.

The concept of a perfectly mixed pool is purely hypothetical and as to the number of pools to be used is uncertain. The first major work using pools-in-series was done by Gautreaux and O'Connell (31) who used a series of pools without backflow to describe the liquid mixing on a distillation plate. The parameters affecting the degree of liquid mixing and hence the number of pools to be used

are:-

- 1) the length of liquid path
- 2) the vapour flow rate
- 3) the liquid flow rate
- 4) the actual tray design

Gautreaux and O'Connell (31) showed that the limiting number of stages to be used is a function of the length of the liquid path. They found that every 2.5 ft. of liquid path could be represented by 2 mixed pools.

63

Durbin (7,23,80) worked with the pools-in-series with backflow model and by introducing the 'phi number', which is a characteristic parameter of the pool model:-

it was shown that for a given number of pools M and with the backflow ratio B set for equal variances at the outlet, the deviations in moments at intermediate points were of the same value as those evaluated when B was determined by setting \emptyset = Pe. Thus for a set number of pools and a calculated Peclet number, the backflow ratio can be calculated by the theoretical equation:-

$$B = M - 1$$

 $Pe - 2$ 5.12

This is suitable if $M \ge Pe/2$. Again the actual number of pools was undefined.

An investigation into defining the number of pools and optimum B to be used was carried out by comparing the normalised variances and the root mean squared deviations of the computed analytical impulse response of the diffusion model (48) with those of the pools-in-series model with backflow for different pairs of M and Pe. Starting with an equation of the sort described by Durbin but with unknown coefficients $K_1 - K_4 :=$

$$B = K_1 \frac{M^2}{K_3} - K_4$$
 5.13
Pe

an optimisation routine (72) was used to determine these coefficients. The objective function to be minimised was $0.5\sigma^2$ and 0.5 RMSD. It was found that the optimum value was in a shallow area and the best fitting coefficients gave the equation:-

$$B = 0.9698 \underbrace{M^{1.009}}_{Pe} - 0.54 \dots 5.14$$

which is almost the same as that defined by Durbin but giving better fits for large Pe. A plot of the backflow ratio against the number of pools for given Peclet numbers using equation 5.12 is shown in Fig. 5.9. The equation derived by this work (equation 5.14) can be approximated to that of equation 5.12 for ease in calculation.

To test the limiting factors described by Gautreaux and O'Connell (31) a series of computations were performed where the number of pools was increased for fixed Peclet number and tray dimensions. The tray length was 6 ft. and the number of pools was increased for different runs. It

can be seen from Fig. 5.10a,b that the responses for the fixed positions are similar and as the number of pools is increased, the backflow ratio using equation 5.12 compensates to give roughly the same response. As can be seen from Fig. 5.10b as the number of pools exceeds that of 1 pool per foot of length, the responses at the same positions are virtually identical.

The Peclet number can be estimated from the eddy diffusion coefficient, evaluated from the empirical equations derived, the liquid flow path and the froth velocity. Thus from the above results it appears that if the backflow ratio is determined by equation 5.12, then as long as the number of pools used is greater than Pe/2, then the mixing is well represented. For the simulation work, the limits of Gautreaux were observed and one pool per foot of tray was used except where the liquid path was so large as to make the number of pools excessive for computation.

Table 5.4

Comparison of eddy diffusivity between steady-state and dynamic experiments. ft²/sec.

Run	Experimental values from steady-state	Predicted values from correlation derived from dynamic experiments			
1 2 3 4 5 6	.230112 .205743 .218054 .052265 .045716 .185131	.17985 .169106 .140827 .052434 .046963 .153922			
7	.164354	.153922			

Table 5.5

Comparison of Peclet numbers for various works.

Weir heig	ht 2.25"	Vapo	our flow u	3 ft/sec	•	$h_{f} = .3744 \text{ ft.}$		
hcft	u _l ft/sec	A.I.Ch.E.	Barker and Self.	Foss	Welch	Gilbert	Sheppard	
.1291	.023	13.57	13.81	9.33	20.69	3.49	5.86	
.1325	•056	30.01	32.62	19.92	20.69	5.16	10.09	
.1358	.0874	42.71	51.29	29.75	20.69	6.38	13.5	
.1391	.1172	52.47	70.22	39.32	20.69	7.43	16.57	
.1425	.1457	59.93	89.55	48.84	20.69	8.38	19.45	
.1458	.1729	65.56	109.35	58.38	20.69	9.26	22.22	
.1491	.1988	69.56	129.69	68.01	20.69	10.11	: 24.92	
.1558	•2474	74.9	172.03	87.65	20.69	11.73	30.21	
.1692	.333	77.3	263.81	128.9	20.69	14.83	40.66	

Front elevation of the experimental rig

Fig 5.1 Plan and front elevation of the experimental rig.

The removable backing sheets allow the downcomer length on the observation tray to be 3",6",9"and 1 ft. The inlet downcomer and tray clearance on all trays was 1" and the weir heights except for the observation tray were 1.5". Fig 5.2 Photographs of observation tray after dye injection has been introduced.

Photograph A. Taken 10 seconds after the injection. Injection point. The photograph shows the absence of perfect mixing and the presence of backmixing.

Photograph B. Taken 20 seconds after the injection. Injection point. 'The photograph shows the dye being more evenly distributed, but the liquid is not perfectly mixed nor is it travelling in plug flow.

.

.

Fig 5.6a Responses of experiment No. 4 Table 5.3

Fig 5.8b Comparison of empirical equations derived using weir heights of 1.5".

6. VAPOUR MIXING BETWEEN DISTILLATION PLATES

6. Vapour Mixing Between Distillation Plates

6.1 Vapour Mixing Experiments

Reports on the extent to which liquid or vapour mixes between closed boundaries were scarce before the 1950s due to the difficult techniques involved in studying the eddy diffusivity. Experiments in water have been carried out by Van Driest (105), who injected a mixture of benzene and carbon tetrachloride and recorded the distribution of the tracer in the main stream by photography. Investigations into the diffusion in gases have been carried out by Towle (102,103), who investigated the eddy diffusion of carbon dioxide and hydrogen in a turbulent air stream using different sized pipe work; and by Sherwood and Woertz (88) and Slattery (91).

The theory used by the author to determine the eddy diffusivity of the vapour phase between two distillation plates has been given in Appendix C and is the same as that described by Slattery (91) for diffusion of gases in pipes. The purpose of the experimentation is not to determine accurately the vapour mixing characteristics, but to determine whether the vapour is:-

1) Perfectly mixed

or 2) Partially mixed but not enough to justify the assumption of perfect mixing

or 3) Not mixed at all

Fig 6.1 Schematic representation of vapour mixing apparatus .

6.2 Experimental Procedure of Steady-state Calculation

A micro-katharometer with a maximum travel time constant of a few milli-seconds was used to measure the thermal conductivity of the continuously sampled stream. The main flow stream was air, which was assumed to be far removed from any bounding walls or surfaces and to move in steady-state turbulent flow with a uniform and constant velocity u_{rr} .

From the diagram of the apparatus Fig. 6.1, the tracer was continuously and uniformly injected into the

main air stream at the origin of the central axis in the diagram. The tracer used was helium and its mass injection rate C was constant and small compared to the mass flow rate of air, thus giving a negligible increase in total flow. Diffusion of the helium occurs in both the axial and radial directions as it moves up between the two plates. The eddy diffusion coefficient can be found from the concentration distribution of the helium in the air stream.

Due to the sensitivity of the element in the micro-katharometer any contact with liquid would overload and damage it. For this reason the initial experimentation was carried out with no liquid present on the trays. At the start of an experiment, only the main air stream was passed and readings from the micro-katharometer were continuously recorded for a period of twenty seconds and stored in a computer to determine a mean base line for the experiment. Having calculated the mean base line, the helium tracer was introduced and steady-state was allowed to be reached. At steady-state, continuous readings of the thermal conductivity of the sampled stream were taken every 0.1 of a second over a period of ten seconds and stored in the computer. The value of the mean base line was subtracted from the experimental values and the area under the curve given by the experimental readings was

calculated. The mean value was found by dividing the area by the sampling time and was the mean voltage given as output from the micro-katharometer. This voltage was then converted into the mean concentration of tracer passing. The experiments at each sample point were repeated several times to form a set of mean concentrations for each particular sample point.

The sample probes were small stainless steel tubes of 1 mm. internal diameter. Being of such a small diameter, the sample probes would not affect the vapour mixing and the volume of sample taken was very small compared to the main flow. The sample probes were placed at various radial distances around the injection axis. The helium injection probe was a point source resting on the centre of distillation tray while the sample probes were positioned directly below the tray above.

From the set of mean concentrations for each sample probe position, one value was calculated using a least squares fit to represent the average concentration for that particular sample position. From the theory given in Appendix C, the equation:-

$$\mathbf{c} = \underbrace{\mathbf{Q}}_{\mathbf{h}} \exp\left\{\frac{-\mathbf{u}}{2\mathrm{De}} \quad (\mathbf{\vec{r}} - \mathbf{h}_{t})\right\} \quad \dots \quad 6.1$$

can be arranged to give:-

$$\ln c\tilde{r} - \ln Q_{h} = \frac{-u_{q}}{2De} (\tilde{r} - h_{t}) \qquad \dots \qquad 6.2$$

The eddy diffusion coefficient can be found by plotting ln cr against (r - h_t) and by least squares fitting finding the best straight line joining the experimental points, the slope of the line being equal to - $u_{\alpha}/2De$ from which De can be calculated.

Having performed the experiments with no liquid present on the trays, the same experiments were repeated with the water flowing. To safe-guard the micro-katharometer, a small volume water trap was inserted in the sample probe. The injection probe was no longer resting on the tray but was raised to the height of the froth as only the vapour mixing between the froth and the tray above is of interest. The Peclet number was calculated using the superficial gas velocity and the vertical distance between the injection probe and the tray above.

6.3 Experimental Results

6.3.1 Experiments with Liquid Absent

The eddy diffusion coefficient was determined for various vapour flow rates. Table 6.1 lists the run numbers, the main stream velocity, the determined eddy diffusion coefficient and the Peclet number. The mole percentage of helium in the sampled stream at various points can be determined. Fig. 6.2 shows the two extreme cases in the eight experimental runs. In Run 8 where the vertical velocity was largest, the helium tracer shows a greater dispersion than that of Run 1. The values for these two extreme cases calculated using equation 6.1 are given in Table 6.2.

From Fig. 6.3, showing the cumulative percentage of tracer passed for Run 1 it can be seen that within a radial distance of 15 cms about the injection axis, 83% of the tracer is passed and within a radial distance of 20 cms 96% of the tracer is passed.

From these results it would seem that the vapour is not perfectly mixed though at this stage the effect of liquid present on the tray is not known.

6.3.2 Experiments with Liquid Present

The same experimental procedure as previously explained was carried out except that the injection probe was raised to the height of the froth. The eddy diffusion coefficient was determined by plotting the data points and by least squares fit finding the best line joining the points, the slope of which is given by $-u_g/2De$. The eddy diffusion coefficient was determined for various vapour flow rates, and a list of air velocities, eddy diffusion coefficients and Peclet numbers are given in Table 6.3. The actual experimental values and the best fitting lines are shown in Fig. 6.4a,b.

The mole fraction of helium tracer in the sample stream for the two extreme experimental cases (no. 6 and 7) are shown in Fig. 6.5 and their percentage of helium tracer passed within radial distances from the injection axis are shown in Fig. 6.6. It can be seen from Fig. 6.6 that the dispersion of the helium tracer is approximately the same even though the air velocities are different.

Comparing the eddy diffusion coefficients determined under dry conditions with those determined with liquid present, the first set give higher values for the same air velocity. This is thought to be due to the air leaving the tray perforations in the form of jets which later create a greater disturbance when they mix giving better mixing characteristics and thus a higher value of the eddy diffusion coefficient. As the vapour velocity is lowered, the eddy diffusion coefficients of those determined with liquid present tend to those determined with liquid absent. This is due to the froth height or holdup on the tray decreasing and giving less resistance to the jet streams. When liquid is present, the vapour leaves the perforations as jets which are then squashed by the presence of the liquid thus giving a smoother, less active vapour stream leaving the froth.

Plotting the values of the eddy diffusion coefficient against the Reynolds number (Fig. 6.7) for both sets of experiments, it can be seen that the best linear relationship joining the experimental points where the liquid is absent, is steep and is most likely some function of u_g^3 . The line joining the experimental points with liquid present, if assumed to pass through the origin, cuts the line predicted by the experiments with liquid absent. When the vapour flow rate reaches a certain limit weeping occurs and the liquid holdup decreases rapidly until it becomes negligible. This can be seen by the eighth experiment where the liquid holdup was negligible and gave good agreement with the experiments with liquid absent.

The comparison of the eddy diffusion coefficients determined by this work and the eddy diffusion coefficients determined by other works for free turbulent flow in pipes, show that the mixing characteristics of vapour between the distillation plates is greater than that occurring in pipes. This must be due to the presence of the sieve trays which disturb and cause mixing of the vapour. However, the extent of the mixing is small.

6.4 Discussion on Vapour Mixing

From Fig. 6.7 it can be seen that the sieve trays cause the vapour to mix and that the presence of liquid

If the line is assumed to pass through the origin.

on the tray causes the vapour to be more uniformly dispersed (less mixing). If the Peclet numbers for all but the last experiment listed in Table 6.3 are considered, then the range is from 31 to 39 and the degree of mixing is thus very small. If the same concept as that shown in the liquid mixing section is used, then this could be represented by 15 vapour cells consisting of thin elements perfectly mixed in the direction of vapour flow which is approximately the same model as that of no mixing at all.

Ashley and Haselden (5) tried to describe the vapour mixing between plates by a series of vapour cells which crossed the tray perpendicular to the vapour flow (Fig. 4.2). The vapour leaving a specified number of mixed liquid pools on the tray was averaged and introduced directly to the tray above. The actual number of vapour cells to be used was unknown due to lack of data. The same vapour mixing model as described by Ashley and Haselden (5) was adopted by the author for the mathematical model used in the distillation simulation.

From this work on vapour mixing and assuming the superficial gas velocity to be within the same range (0.8 to 2.0 m/s), from Fig. 6.6 it can be seen that 91% of the tracer passes within a radius of 15 cms. From this it can be concluded that for standard tray spacings and superficial gas velocities of about 0.8 to 1.5 m/s, it can be assumed that there is no vapour mixing between plates

for large plate columns. This means that for the liquid mixing model, the vapour leaving any liquid pool passes directly to the liquid pool above it.

96

From the best fitting linear relationship between the eddy diffusivity and the Reynolds number, a relationship between the eddy diffusivity and the vapour velocity has been derived.

$$D_{c} = u / 95$$
 6.3

This relationship is only valid when the vapour velocity is great enough to eliminate weeping.

Superficial gas velocity m/hr	Eddy diffusivity m ² /hr	Peclet number
2064.6	10.75	88.6337
2272.1 2486.9	42.077	50.7587 27.2762
2676.0 2724.2	39.105 36.066	31.5836 34.8588
2991.9 3470.4	58.44 88.061	: 23.6269 18.1866
3724.8	94.539	18.1829
	m/hr 2064.6 2272.1 2486.9 2676.0 2724.2 2991.9 3470.4	m/hr m ² /hr 2064.6 10.75 2272.1 20.658 2486.9 42.077 2676.0 39.105 2724.2 36.066 2991.9 58.44 3470.4 88.061

Table 6.1 The eddy diffusivity and Peclet numbers for the vapour phase

S.I. units are used in this section on the vapour phase as there are no empirical equations dependent on old units involved.

Radius (inches)	Helium in sample mole %		
	Run l	Run 8	
0	6417×10^{-1}	.7517 x 10 ⁻²	
1	.6 x 10 ⁻¹	$.7406 \times 10^{-2}$	
2	$.4909 \times 10^{-1}$	$.7082 \times 10^{-2}$	
3	$.3520 \times 10^{-1}$	$.6576 \times 10^{-2}$	
. 4	.2218 x 10 ⁻¹	.5934 x 10 ⁻²	
5	$.1234 \times 10^{-1}$.5209 x 10 ⁻²	
6	.6086 × 10 ⁻²	$.4452 \times 10^{-2}$	
7	$.2676 \times 10^{-2}$.3710 x 10 ⁻²	
8	$.1055 \times 10^{-2}$	$.3019 \times 10^{-2}$	
9	$.3756 \times 10^{-3}$	$.2402 \times 10^{-2}$	
10	.1214 x 10 ⁻³	.1872 x 10 ⁻²	
11	$.3586 \times 10^{-4}$	$.1430 \times 10^{-2}$	
12	$.0974 \times 10^{-4}$	$.1073 \times 10^{-2}$	

Table 6.2 Experimental tracer distribution

Table 6.3 Experimental eddy diffusivity and Peclet numbers for vapour phase with

Run	superficial air velocity	Eddy diffusivity	Peclet number
 	m/hr	m ² /hr	
an a			
1	2696.36	32.8466	31.5728
2	3200.71	36.7838	33.4656
 3	3415.1	39.2483	33.4664
 4	3688.7	39.4186	35.9899
5	4143.69	42.7781	37.2541
6	4205.0	41.3388	37.2554
7	2559.08	25.1392	39.1508
8	2061.99	10.8264	87.8926

liquid present on the tray. Liquid Flow :- 350 gal/hr.

Fig 6.2 Helium in the sample stream for the two extreme experimental cases.

Fig 6.3 Cumulative percentage of tracer passed for Run 1 .

Fig 6.4b Experimental points for vapour mixing investigation with liquid present.

Fig 6.5 Mole fraction of helium tracer in the sample streams of the two extreme experimental cases, for when liquid was present on the tray.

Fig 6.7 Comparison of eddy diffusivity with Reynolds No. for vapour flow in a distillation column.

7. UNSTEADY-STATE MATHEMATICAL MODELS OF PLATE

COLUMNS

7. <u>Unsteady-state Mathematical Models of Plate Columns</u> 7.1 Literature Survey on Distillation Column Simulation

7.1.1 General Work

Critical reviews on the unsteady-state behaviour of plate distillation columns have been given by Holland (48); Rosenbrock (83), Archer and Rothfuss (2), Gould (38). Column dynamics were of main interest to chemical engineers but little work had been done before the introduction of computers when studies in batch distillation were presented by Lapidus and Amundson (58) and Pigford et al (75). Early publications concerning control of distillation columns were presented by Rosenbrock (83), Voetter (108) and Armstrong and Wilkinson (115).

The main approaches to solving the mathematical formulation of distillation processes has been the use of digital and analogue computers to obtain numerical solutions of the equations by the Laplace transformation of the equations followed by inversion to obtain the time response or by determination of the frequency response. Mah, Michaelson and Sargent (67), and Holland (48) present good reviews on numerical methods used to obtain solutions of the equations using a digital computer. Nonlinear equations are solved using integration routines such as Runge-Kutta and Adams Bashforth, while matrix integration methods are used for solving linear equations.

The disadvantage occurring with matrix methods is that the coefficients of the plant matrix are functions of time.

Methods of solution have been developed (67,85) where the coefficients of the plant matrix are assumed to be linear functions of time or treated as constants over a small range.

The frequency response and transient behaviour of a column with 16 theoretical trays was given by Lamb et al (57) who used a curved vapour-liquid equilibrium relationship and calculated by use of an analogue computer the oscillations in tray compositions due to input oscillations in reflux or feed composition. The response of top product composition to reboiler vapour composition was expressed as a transfer function which for low frequency gave a single transfer lag for which the time constant was approximately proportional to the square of the number of plates. Franks (30) also used an analogue computer when simulating the dynamics of a multicomponent, 60-plate column.

An implicit method involving an arbitrarily fixed constant 0 was used by Rosenbrock (83) in his study on numerical methods. The definition of efficiency, equilibrium relationship and simple differential equations were set up for a binary system and he compared the theoretical step responses obtained with the experimental responses obtained by Wilkinson and Armstrong (3).

A different θ method for the solution of unsteadystate distillation equations was made by Waggoner and Holland (109), Groves (39) and Tetlow et al (100), while Holland (47) used the θ method in steady-state distillation column design. The θ method in these cases was effectively an implicit and corrector method.

Most of the work done using the analytical approach has been concerned with binary distillation where the equations are expressed in terms of transient deviations. Laplace transformation, derivation and inversion of the transfer function have been used by Wilkinson and Armstrong (115) to give the step response of the top product composition for feed composition changes in a column at finite reflux. A mathematical solution for the simplified equations is given showing good agreement between experimental and theoretical values for the early part of the response. The solution for the tail end of the response was given by Wood and Armstrong (117).

Izawa and Morinaga (51) presented the transfer functions based on material balance equations of a binary distillation column for changes in flow rates and feed composition. The existence of dead time was found as the liquid flow lag caused a large phase lag in the high frequency range. This adversely affects the controllability of the column.

The dynamic behaviour of a binary distillation column in the vicinity of an equilibrium state was investigated by Pohjola and Norden (76). The process was divided into two subprocesses, mass transfer and liquid flow and the total response for small perturbations in the feed composition was the sum of the two independently obtained responses. Further investigations in the attempt to derive simplified models and finding limiting cases have been carried out (4,56a,57).

Except for the work presented by Holland et al (39,48,100,109), the works discussed in this review on distillation column simulation all assume the liquid on the trays and the vapour between trays to be perfectly mixed. All assume constant plate efficiency and most make the specification of perfect liquid mixing as efficient numerical integration routines were not available for computing the responses of distillation columns where partial liquid mixing was present. Further the responses of large dimensional models assume perfect liquid mixing, giving the Murphree plate efficiency equal to the point efficiency.

Two of the main investigations on unsteady-state distillation simulation where liquid mixing occurs and the

study of charges in plate efficiency are reviewed in the next section.

7.1.2 Column Models and Review of Main Work

Holland (48) studied distillation responses using a generalised model with perfect mixing on the plate and bypassing of the downcomer. A further extension of his work was to use the model presented by Tetlow (99), where any transfer lags, mixing and channelling are accounted for in the downcomer. This model is basically the same as his generalised model except the downcomer holdup is split into three different parts (Fig. 7.1):-

a) Perfect mixing b) Plug flow c) Bypassing

Molal holdups are calculated using the usual empirical equations, but the fraction of the liquid stream $(\lambda_{\rm M}, \lambda_{\rm D}, \lambda_{\rm C})$ passing through the above three sections seems to be arbitrary, except they must sum to unity. From the responses of the top and reboiler products given in an example, it is shown that there is a great difference between assuming perfect mixing and partial mixing of the liquid phase. However, he considers that all the mixing can be described in the downcomer. This is more than likely untrue as only the downcomer holdup was considered while that of the plate and downcomer should have been considered.

When investigating the changes in plate efficiency

for a multicomponent system, Holland (48) ignores the mixing effects by setting $\lambda_{\rm C}$ to unity thus giving a series of first order differential equations for the plates. Groves (39), who continued Hollands work on plate efficiencies, stated that the convergence of the (iteration) Θ method for a new

112

set of inputs was acceptable for the general model where $\lambda_{\rm C}$ is 1, but for the more realistic model convergence was slow. He further stated that more data must be known to be able to describe the model more fully and that the existing model is of limited use due to the great amount of computer storage needed.

A more explicit investigation into the effect of unsteady-state operating conditions on plate efficiency was presented by Huang and Yaws (50). A single bubble-cap tray was considered and the liquid mixing was described by the diffusion model. Impulse, sinusoidal and step inputs for the incoming liquid concentration were introduced to the plate. Keeping the mass transfer and point efficiency constant, the changes in efficiency ratio were plotted against dimensionless time for the disturbances introduced. From these plots it could be shown that the Murphree plate efficiency changes drastically during unsteady state but after about two residence times of the liquid crossing the plate, steady-state was approached. These observations were caused by the facts that

1) the model was dependent on constant vapour composition entering the plate.

2) the effect of the disturbance on adjacent trays was not considered.

3) from the definitions of the disturbances

introduced:- Xp, Xs the responses showed large differences in the efficiency ratio. This was due to the magnitude of the disturbances introduced.

Example: - in the responses given

$$\sigma_{s} = \Delta x_{s} = 1 \qquad \dots \qquad 7.1$$

where

$$X_e = (Y_{n-1}-b)/m$$
, $Y^* = mX + b$ 7.2

Taking m = .875 and b = .13 which is equivalent to α = 1.3 then for the feed plate at steady-state:-

$$xe = .427$$
 , $x_{n+1} = .51218$, $\Delta xs = .08518$

where X_{n+1} is the composition of the total incoming flow and is equal to the respective proportions of the actual feed composition of 0.5 at 300 moles/hr and the liquid from the plate above of 0.5174 at 700 moles/hr. Thus the new total input is 0.59736 which means that the actual feed composition must change from 0.5 to 0.7839, as the composition of the plate above is assumed constant, which is a 56% change in feed composition. For systems where the relative volatility is greater than 1.3 this change increases and for one real system of methanol and water which was studied, the feed composition had to change, in order to give a unit step, from 0.3 to 1.3 which is impossible.

In industry, disturbances of about 0 to 20% occur

and it is therefore suggested that the above disturbances are practically unrealistic and that the plate efficiency will not vary as much.

7.2 Proposed Unsteady-State. Models

7.2.1 Mixing Models and Assumptions

The model used to describe the characteristics of a large plate column included liquid mixing and vapour mixing models. The liquid mixing characteristics were represented by a pools-in-series with backflow model and the number of pools used was governed, with one exception described later, by one pool per foot of column diameter with the downcomer represented by one of these pools. The volumes of these pools were proportional to the molal holdups on the active tray and downcomer respectively. The backflow ratio was determined by the equation given in section 5.5:-

$$B = M - 0.5$$
 7.3

The vapour model was represented by the vapour cell model, but as the vapour mixing has been shown to be negligible, the vapour was assumed to rise to the mixed pool directly above during simulation with the one exception when perfect vapour mixing was assumed.

The estimation of the eddy diffusivity was carried out using the empirical equations derived by the author.

Fig 7.2 Theoretical column model showing liquid and vapour streams.

An illustration of the column model is given in Fig. 7.2 for a five-plate column of approximately 7 ft diameter. This model is referred to as the generalised model.

The main assumptions of the model are:-

 the liquid crossing the plate is only partially mixed and the pools-in-series with backflow model is a good representation of the mixing.

2) the downcomer can be represented by one pool which no vapour leaves or enters.

 the liquid flow leaving the tray and the backflow are constant across the tray.

4) there is no vapour holdup in the liquid phase and the latent heat of vaporisation is constant:-

 $v_{n-1} = v_n = v$

5) as the vapour holdup above a plate is a function of pressure above the plate, the vapour holdup is assumed negligible compared to that of the liquid and can be ignored.

6) any changes in molar holdup on the trays are so rapid that they can be included in the arithmetic equations and do not warrant any differential equations.

7) the estimated point efficiency for each tray is the same for each liquid pool on that tray.

8) there is no heat lost by the column.

7.2.2 Material Balance Equations for the Generalised

<u>Model</u>

The rate of change in molal holdup for a plate n, where F is zero except for the feed plate, is given by:-

$$\frac{dH_n}{dt} = L_{n+1} - L_n + QF \qquad \dots \qquad 7.4$$

For a single pool j on the plate, this equation is:-

$$\frac{dH_{n,j}}{dt} = \frac{H_{n,j}}{H_n} (L_{n+1} - L_n + QF) \qquad \dots \qquad 7.5$$

however, in the computation, these equations have been worked out arithmetically. The number of pools representing the active tray is M.

<u>Plate n</u>

Downcomer:- (Pool O)

$$\frac{dx_{n,0}}{dt} = \left\{ \begin{array}{l} L_{n+1} X_{n+1,M} + B_{f,n} X_{n,1} - (L_{n} + B_{f,n}) X_{n,0} \\ X_{n,0} (L_{n+1} - L_{n}) H_{n,0} \\ H_{n} \end{array} \right\} \frac{1}{H_{n,0}} \qquad \dots \dots \quad 7.6$$

Dividing by L and defining T as H gives:n L_n

$$\frac{dx_{n,0}}{dt} = \left\{ \frac{L_{n+1}X_{n+1,M} + B_{n,N}X_{n,1} - (1+B_{n})X_{n,0} - X_{n,0} \left\{ \frac{L_{n+1}}{L_{n}} - 1 \right\} + \frac{H_{n,0}}{H_{n}} \right\} \frac{1}{T_{0}} \dots 7.7$$

Centre pools:- $1 < j \leq M$ Dividing by L and substituting

for
$$T_j$$
, $V = V_s$ below feed plate and V_B above feed plate.

$$\frac{dx_{n,j}}{dt} = \begin{cases} B_{n,n,j+1}^{-(1+2B_{n})X_{n,j}^{+(1+B_{n})X_{n,j-1}^{+}\frac{V}{ML_{n}}} (Y_{n-1,j}^{-Y_{n,j}}) \\ -X_{n,j} \left\{ \frac{L_{n+1}^{-1}}{L_{n}} \right\} \frac{H_{n,j}}{H_{n}} \right\} \frac{1}{T_{j}} \qquad \dots \dots 7.8$$

Exit pool:-

$$\frac{dx_{n,M}}{dt} = \left\{ {}^{(1+B_{n})X_{n,M-1}-(1+B)X_{n,M}+V_{ML_{n}}(Y_{n-1,1}-Y_{n,1})} -X_{n,1}\left\{\frac{L_{n+1}-1}{L_{n}}\right\}_{\frac{H}{H_{n}},M}^{H} \right\} \frac{1}{T_{M}}$$

$$\cdots$$
7.9

· ÷

Feed plate

$$L_n = L_{n+1} + QF$$
; $V_B = V_s + (1-Q)F$ 7.10

Downcomer:-

$$\frac{dx_{n,0}}{dt} = \left\{ \frac{(L_{n+1}X_{n+1,M} + QFX_{f}) + B_{n}X_{n,1} - (1+B_{n})X_{n,0}}{L_{n}} - X_{n,0} \left\{ \frac{(L_{n+1} + QF) - 1}{L_{n}} \right\} + \frac{H_{n,0}}{H_{n}} \right\} \frac{1}{T_{0}}$$
 7.11

Centre pools:- $l < j \leq M$

$$\frac{dx_{n,j}}{dt} = \begin{cases} B_{n,n,j+1}^{X} - (1+2B_{n})X_{n,j}^{Y} + (1+B_{n})X_{n,j-1}^{Y} + (V_{s}Y_{n-1,j}^{Y} - V_{s}Y_{n,j}^{Y}) \\ ML_{n} \end{cases}$$

$$\frac{-X_{n,j} \left\{ \left(\frac{L_{n+1} + QF}{L_n} \right)^{-1} \right\} + \frac{H_{n,j}}{H_n} \frac{1}{T_j} }{\prod_{j=1}^{L_{n,j}} T_j}$$
 7.12

Exit pool:-

$$\frac{dx_{n,M}}{dt} = \begin{cases} (1+B_n)x_{n,M-1} - (1+B_n)x_{n,M} + (V_sY_{n-1,1} - V_BY_{n,1}) \\ ML_n \\ -X_{n,M} \left\{ (\frac{L_{n+1} + QF}{L_n}) - 1 \right\} + \frac{H_{n,M}}{H_n} \frac{1}{T_M} \\ \end{cases}$$
7.13

Q line conditions:-

Liquid below bubble po	int Q<1.0		
Saturated liquid	Q = 1	:	
Liquid and vapour	1.0>0>0	• • • • •	7.14
Saturated vapour	Q = 0		
Superheated vapour,	Q < 0		

Reboiler:-

It was assumed that the molal holdup of the reboiler was constant and the bottoms flow rate W_s ' was governed by:-

$$W_{s} = L_{1} - V_{s} \qquad \dots \dots \qquad 7.15$$

component balance (efficiency = 1):-

$$\frac{dx_{R}}{dt} = (L_{1}x_{1,M} - W_{s}x_{R} - V_{s}y_{1}^{*})/H_{R} \qquad \dots \dots 7.16$$

Condenser: -

It was assumed that the vapour was totally condensed and the liquid was returned at its boiling point. Further, any change in vapour flow was assumed only to affect the top product flow 'D_'.

$$L_{N+1} + D_s = V_B$$
 7.17

$$R = \frac{L_{N+1}}{D_{S}}$$

.... 7.18

component balance:-

$$\frac{dx_{N+1}}{dt} = (\bar{y}_N - x_{N+1}) \frac{v_B}{H_C}$$
 7.19

The equilibrium relationship was estimated using constant relative volatilities or, when comparing with the linear model, linear equilibrium relationships.

7.2.3 <u>Material Balance Equations for the Linearised</u> <u>Model</u>.

The linearised model assumed constant Murphree plate efficiency and constant molal flow rates as only feed composition changes were made and compared with the results of the generalised model.

Defining

 $x_n = \overline{x}_n + x_n$ where $\overline{x}_n =$ the steady-state value and $x_n =$ the deviation from steady-state

Equilibrium

Efficiency

$$E_{MV,n} = \frac{y_n - y_{n-1}}{y_n^* - y_{n-1}}$$
 7.21

The Q line was assumed to be unity. $V_s = V_R = V$

Reboiler:-

$$H_{R} \frac{dx_{R}}{dt} = L_{1}x_{1} - W_{s}x_{R} - Vy_{R}^{*}$$
 7.22

General plate n:-

$$H_{n} \frac{dx}{dt} = L_{n+1} x_{n+1} - L_{n} x_{n} + V(y_{n-1} - y_{n}) \qquad \dots \qquad 7.23$$

Feed plate f:-

$${}^{H}_{f} \frac{dx_{f}}{dt} = {}^{L}_{f+1} {}^{x}_{f+1} {}^{+Fx}_{ff} {}^{-L}_{f} {}^{x}_{f} {}^{+V} ({}^{y}_{f-1} {}^{-y}_{f}) \dots 7.24$$

Condenser:-

$$H_{C} \frac{dx}{dt} = -(L_{N+1} + D_{S}) x_{C} + V y_{N} \qquad \dots \qquad 7.25$$

$$y_n^* = \frac{1}{E_{MV,n}} (y_n - y_{n-1}) + y_{n-1}$$
 7.26

$$x_{n} = \frac{1}{E_{MV,n}} (y_{n} - y_{n-1}) + \frac{y_{n-1}}{m_{n}}$$
 7.27

$$\frac{dx_n}{dt} = \frac{1}{E_{MV,n}} \left\{ \frac{dy_n}{dt} - \frac{dy_{n-1}}{dt} \right\} \frac{\pm 1}{m} \frac{dy_{n-1}}{dt} \dots 7.28$$

Defining
$$\lambda_n = \frac{Vm}{L_n}$$
 and $\tilde{\mathcal{T}}_n = \frac{H}{L_n}$ 7.29

Condenser:-

Assumed perfect efficiency $y_{N+1} = y_{N+1} = m_{N+1} x_{C}$

$$\frac{dx_{c}}{dt} = \frac{\lambda_{N+1}}{\tau_{N+1}^{m}} (y_{N} - x_{c}) \qquad \dots \qquad 7.30$$

General plate: - (where $\frac{L_{n+1}}{L_n}$ is omitted as it is assumed to be unity)

$$\begin{aligned} \Upsilon_{n} \quad \frac{1}{E_{MV,n}^{m}n} \left\{ \frac{dy_{n}}{dt} - \frac{dy_{n-1}}{dt} \right\} + \frac{\Upsilon_{n}}{m} \frac{dy_{n-1}}{dt} = -\frac{1}{E_{MV,n}^{m}n} (y_{n} - y_{n-1}) \\ -\frac{Y_{n-1}}{m} + \frac{1}{E_{MV,n+1}^{m}n+1} (y_{n+1} - y_{n}) + \frac{Y_{n}}{m} - \frac{Y_{n}}{L} (y_{n} - y_{n-1}) \cdots 7.33 \end{aligned}$$

Multiplying by $E_{MV,nn}$ and rearranging gives:-

$$\frac{dy_{n}}{dt} + (E_{MV,n} - 1) \frac{dy_{n-1}}{dt} = \left\{ \frac{E_{MV,n}m_{n}}{E_{MV,n+1}m_{n+1}} \frac{y_{n+1}}{E_{MV,n+1}m_{n+1}} - \left[\frac{E_{MV,n}m_{n}(1 - E_{MV,n+1})}{E_{MV,n+1}m_{n+1}} \right] + (1 - (1 - \lambda_{n})E_{MV,n}) y_{n-1} \right\} / (\tau_{n}) \dots (7.32)$$
Let $\mathcal{M}_{n} = 1 - (1 - \lambda_{n})E_{MV,n}$; $\mathcal{M}_{n} = \frac{E_{MV,n}m_{n}}{E_{MV,n+1}m_{n+1}}$; $\mathcal{M}_{n} = \frac{\psi_{n}(1 - E_{MV,n+1}) + (1 + \lambda_{n}E_{MV,n})}{E_{MV,n+1}m_{n+1}}$; $\mathcal{M}_{n} = \frac{\psi_{n}(1 - E_{MV,n+1}) + (1 + \lambda_{n}E_{MV,n})}{E_{MV,n+1}m_{n+1}}$; $\mathcal{M}_{n} = \frac{\psi_{n}(1 - E_{MV,n+1}) + (1 + \lambda_{n}E_{MV,n})}{E_{MV,n+1}m_{n+1}}$; $\mathcal{M}_{n} = \frac{\psi_{n}(1 - E_{MV,n+1}) + (1 + \lambda_{n}E_{MV,n})}{E_{MV,n+1}m_{n+1}}$; $\mathcal{M}_{n} = \frac{\psi_{n}(1 - E_{MV,n+1}) + (1 + \lambda_{n}E_{MV,n})}{E_{MV,n+1}m_{n+1}}$; $\mathcal{M}_{n} = \frac{\psi_{n}(1 - E_{MV,n+1}) + (1 - \lambda_{n}E_{MV,n})}{E_{MV,n+1}m_{n+1}}$; $\mathcal{M}_{n} = \frac{(1 - E_{MV,n})}{dt} \frac{dy_{n-1}}{dt} = \left\{ -\frac{\psi_{n}(1 - E_{MV,n})}{E_{MV,n}} + \frac{\psi_{n}(1 - E_{MV,n})}{E$

Reboiler:-

$$\tau_{R} = \frac{H_{R}}{L_{1}}$$
; $y_{R}^{*} = y_{R} = m_{R} x_{R}$ 7.38

$$\frac{\gamma_{R}}{m_{R}} \frac{dy_{R}}{dt} = \frac{W_{S} y_{R}}{L_{1} m_{R}} + \frac{1}{E_{MV,1} m_{1}} (y_{1} - y_{R}) + \frac{y_{R}}{m_{1}} - \frac{V_{N} y_{R}}{L_{1}} \dots 7.39$$

$$\frac{dy_{R}}{dt} = \left\{ -\frac{W_{S} y_{R}}{L_{1}} - \frac{\lambda_{R} y_{R}}{R} + \frac{V_{R} y_{1}}{R} - \frac{V_{R} y_{R}}{R} + \frac{V_{R} E_{MV,1} y_{R}}{R} \right\} / \gamma_{R} \dots 7.40$$

$$\frac{dy_{R}}{dt} = \left\{ \frac{V_{R} y_{1}}{L_{1}} - (\lambda_{R} + (1 - E_{MV,1})) \frac{V_{R}}{V_{R}} + \frac{W_{S}}{L_{1}} \right\} / \gamma_{R} \dots 7.41$$

Four unsteady-state computation equations (7.41,7.34,7.37 and 7.30) were used and solved in that order. To solve these double differential equations, the reboiler equation is solved first then the value of the differential equation for the reboiler is used in the differential equation for the plate above and so on up the column.

L

7.2.4 Gas Absorption Model

The gas absorption model had the same form as that of the generalised model except that there was no feed plate, reboiler or condenser. Therefore, the actual column had the same equations as that of the general plate in the generalised model (equations 7.7,7.8,7.9).

The liquid composition entering was X_{N+1} and leaving was X_{O} , while the vapour composition entering was Y_0 and leaving was $Y_{N\pm 1}$. The molal holdups, point efficiencies and all other column parameters were calculated

the same way as that described for the generalised model.

7.3 Computation

7.3.1 Integration Method Used

Numerical methods used for solving the unsteadystate equations have been mentioned in section 7.1. Until recently Runge-Kutta and variations of the Runge-Kutta method, many having adjustable step lengths, were the main integration programs used. A more powerful method of integration has been presented by Gear (32,33,34). He gives a multistep predictor-corrector method whose order is automatically chosen as the method proceeds. The integration routine contains two methods of integrating,

 an Adams predictor-corrector (32), suitable only for ordinary, non-stiff differential equations.

2) a multistep method suitable for stiff equations.

The generalised model is a stiff system and requires the multistep method as use of the Adams method makes the computing time longer by α factor of 20 or more.

The starting procedure is automatic and information retained by the program about previous steps is stored in such a way as to make the interpolation to a non-mesh point straightforward.

7.3.2 <u>Disturbances Introduced for Unsteady-state</u> Operation

It was shown by Huangand Yaws (50) that if large changes in the feed composition are made then there are large changes in plate efficiency during the unsteadystate period. In industry the disturbances that occur in stagewise processes, are usually not greater than 20% of the original value of the parameter changed and in linear models used for simulation, changes are not greater than 10% of the steady-state value. For this reason, disturbances introduced for unsteady-state operation will not exceed 20% of the parameters original value.

The disturbances introduced for the generalised model of a large plate binary distillation column were:-

1) changes in feed composition

2) changes in feed flow with vapour and liquid reflux flow held constant

3) changes in liquid reflux with vapour flow held constant

4) changes in vapour flow with liquid reflux held constant

For vapour changes the simulation has been simplified for the case where liquid dumping occurs. For this case it is assumed that the liquid dumped from the plate above is instantaneously mixed with the liquid in the downcomer of the plate below and that after the new molal holdups have been calculated, constant molal flow exists.

The disturbances introduced for the linear model were changes in feed composition. The equilibrium relationship was linear and the results were compared with that of the generalised model with a linear equilibrium relationship.

The generalised model of the gas absorption column was used to investigate extreme values of the absorption factor and only liquid feed compositions changes were investigated.

7.4 Determination of Steady-State Variables

The steady-state values for both liquid and vapour compositions were estimated using the unsteady-state simulation program, but no disturbances were introduced and the program was allowed to continue until the estimated top product determined by:-

$$ETP = QFX_{ff} - W_{SR}$$
 7.42

was within 0.0001 of the calculated top product defined by :-

$$CTP = D_X \qquad \dots \qquad 7.43$$

and the values of liquid and vapour composition throughout the column were constant.

Steady-state values were estimated using the generalised model for the actual systems of methanolwater; benzene-toluene and methylcyclohexane-toluene. The equilibrium relationships were represented by polynomials calculated by doing a least squares fit on the data presented in the literature (16). Working with real systems causes the problem that any results found cannot be directly related to any specific distillation parameter and therefore most work was carried out using constant relative volatilities or a linear equilibrium relationship.

The steady-state values for the linear model were taken from those estimated by the generalised model. The plate efficiencies were also those calculated for the generalised model.

The gas absorption column steady-state values were estimated using a linear equilibrium relationship whose slope was in the range of 10 to 500. These values are typical of the removal of carbon dioxide from water by air stripping. The values of the plate efficiency were in the range of 0.1% to 10% as the system was liquid film limiting while the binary distillation was gas film limiting and thus gave higher values of plate efficiency.

8 UNSTEADY-STATE SIMULATION OF LARGE PLATE COLUMNS

8 Unsteady-State Simulation of Large Plate Columns

8.1 The Simulation Program

The column dimensions, number of plates, liquid pools, feed plate number, weir height, flow rates, physical properties of the system and the steady-state compositions of all the liquid pools were required as input data for the program. The simulation time for which the program runs at steady-state was also read in. At the end of this time, a step change of not more than 20% of the original value was made in one of the system inputs. The total simulation time was 4 times that of the period operated at steady state.

Although the number of plates and liquid pools could be varied, most simulations were carried out using a 5-plate column with the feed input situated on the second tray and 6 liquid pools representing the active area. Each column consisted of a reboiler and condenser of specified size and the column diameter was usually 7 ft.

A stiff integration method was needed for solving the generalised model otherwise the computation time increased by a factor of 20.

Equilibrium data for real systems (16) were used for the initial simulations, but as no direct relationship between transient responses and system parameters could be

made, constant relative volatilities were used instead.

For the linear model simulation, the plate efficiencies calculated at steady-state, were held constant during the unsteady-state period and used to calculate the transient behaviour of the liquid and vapour phases. A listing and an explanation of the use of the integration routine and the generalised model simulation program are given in Appendix D.

8.2 Unsteady-State Plate Efficiency Results

The liquid and vapour flows and other operating conditions for the sections in this chapter are given in Table 8.1. In all the simulation work carried out by the author, the liquid composition responses and the vapour leaving the liquid pools was calculated first then the plate efficiencies were calculated from these values. The initial steady-state values for most of the simulations can be found at the beginning of Appendix F.

8.2.1 The Effect of Feed Composition Changes

The feed was introduced on the second plate with a steady-state composition of 0.5 mole fraction and step changes of ± 0.1 were made in it. Constant relative volatilities were used for the equilibrium relationship.

For the system with a constant relative volatility of 2, the change in the plate efficiency was found to be small. The largest change in the plate efficiency was that of the feed plate which for a step increase in feed composition went from 0.6295 to 0.6476 in 32 seconds then dropped again to its new steady-state value of 0.6203. The transient responses of the liquid compositions for the reboiler, condenser, exit pools and downcomers for the 5 plates are shown in Fig 8.1. The transient responses for the plate efficiencies are shown in Fig 8.2. The values of the point efficiencies rose only slightly (by 0.17 of a percent) and thus can be assumed constant. Systems with a constant relative volatility greater than 2 showed even less of a change in plate efficiency.

Using dlower relative volatility of 1.5 and introducing step changes in feed composition of \pm 0.1, it was seen that the change in the plate efficiency was rather greater. For the step decrease of 0.5 to 0.4 the plate efficiency for the feed plate dropped from 0.6321 to 0.5817 in 32 seconds then rose to 0.6380 and for the step increase of 0.5 to 0.6 it rose from 0.6321 to 0.6718 then dropped to 0.6276. The transient responses for the liquid phase are shown in Fig 8.3 for both these cases and the plate efficiency responses are shown in Fig 8.4. Again the point

efficiency remained virtually constant.

The lowest value of the relative volatility used was 1.1. For a step increase in feed composition of 0.5 to 0.6 the plate efficiency for the feed plate rose from 0.6407 to 0.7466 in 32 seconds, an increase of 0.1 which is an increase of 16.5% on the original value. The plate efficiency then quickly fell and settled at a new steadystate value of 0.6418. Unlike the systems with higher values of relative volatility, the plate to show the greatest change in plate efficiency was the plate above the feed plate. This plate efficiency rose from 0.5713 to 0.8235 in 39 seconds then fell to a new steady-state value of 0.5761. It will be seen in later sections that when the vapour is perfectly mixed and when the equilibrium relationship is linear giving a slightly higher value of 1.1 for the relative volatility, the feed plate always shows the greatest changes in the plate efficiency for composition disturbances. The efficiency responses for the step increase in feed composition are shown in Fig 8.5 and the plot of efficiency ratios is shown in Fig 8.6. The exit pool liquid composition responses are shown for both an increase and decrease in feed composition in Fig 8.7. When the feed changes from 0.5 to 0.4 the plate efficiency drops rapidly and even goes negative. The values of the efficiency for the feed plate go from 0.6407 to -0.8177 in 36 seconds then rise to 0.6322. From these results

it can be seen that a step decrease in feed composition affects the value of the plate efficiency more than a step increase.

The mean residence time for the liquid crossing a plate in the stripping section was 14 seconds and 10 seconds in the rectifiying section. From the plate efficiency response, it can be seen that the major changes only occur in the first minute after the disturbance has been introduced which is 4 times the mean residence time. For systems with relative volatilities greater than 2 the plate efficiency changes are so small that they can be ignored.

In all the above cases, the vapour was assumed to travel from the liquid pool it was leaving to the one directly above it.

8.2.2 Comparison with Vapour Phase Perfectly Mixed

For a steady-state feed composition of 0.5, step changes of $\stackrel{+}{-}$ 0.1 were introduced. Using a relative volatility of 2 showed the changes in plate efficiency to be as small as those when the vapour is unmixed but the changes were more rapid and died away before the end of one minute.

In the case when the relative volatility was 1.1, the plate efficiency responses showed the changes were large, but not as great as those where the vapour was unmixed.

When the step decrease was introduced the plate efficiency for the feed plate did not go negative but dropped from 0.6407 to 0.3727 in 18 seconds then rose again to 0.6396. The transient responses of the liquid compositions leaving the plates for the two step changes can be seen in Fig 8.8. The responses of the plate efficiencies for the decrease in feed composition are shown in Fig 8.9 and for the increase in Fig 8.10.

The difference in overall separation between the vapour being perfectly mixed and unmixed was very small and a comparison of the final steady-state liquid compositions in the reboiler and condenser for relative volatilities of 1.1 and 2 is given in Table 8.2.

<u>Table 8.2</u> Comparison of simulation results for the vapour phases being unmixed and perfectly mixed.

	d=	1.1	<i>d</i> ≈ 2.0			
Vapour	Reboiler	Condenser	Reboiler_	Condenser		
Unmixed	0.45967	0.54032	0.23821	0.76178		
Mixed	0.45956	0.54046	0.23757	0.76229		
Ĺ		· · · · · · · · · · · · · · · · · · ·	·			

It can be concluded from these results that whether the vapour is perfectly mixed or not, the changes in plate efficiencies are large for systems with small relative volatilities though the systems where the vapour is unmixed have slightly larger changes and take longer to respond.

8.2.3 The Effect of Feed Flow Changes

The feed flow rate at steady-state was 300 lb moles/hr and step changes of $\frac{+}{-}$ 50 lb moles/hr were introduced. The boilup was kept constant and any changes in the liquid flow to the reboiler were immediately followed by changes in the bottom product flow, thus keeping the reboiler holdup constant. The point efficiency changed by $\frac{+}{-}$ 0.01 for the bottom two trays, thus giving slightly different final steady-state values in the plate efficiency.

For systems with constant relative volatilities of 2 the changes in plate efficiency were no greater than $\frac{+}{-}$ 0.007 and thus the plate efficiency can be assumed constant.

Systems with relative volatilities of 1.1 showed changes of $\stackrel{+}{-}$ 0.055 in plate efficiency during the first 2 minutes of unsteady-state, but quickly reach the new steadystate values. Fig 8.12 and 8.13 show the plate efficiency responses for a decrease and increase disturbance in the feed flow.

Again it has been found that for systems with relative volatilities of 2 or over, changes in the flow rate do not affect the plate efficiencies to any appreciable extent. Liquid composition changes due to the disturbances in feed flow are small and the exit pool composition responses for the system with constant relative volatility of 1.1 are shown in Fig 8.11.

8.2.4 The Effect of Reflux Changes

The liquid flow being recycled to the column from the condenser at steady-state was 700 lb moles/hr. Step changes of $\frac{+}{-}$ 50 lb moles/hr/were introduced and the top product flow was accordingly changed. The bottom product flow was varied to keep the reboiler holdup constant. The steady-state reflux ratio was 4.667 and the flow rate changes caused the reflux ratio to change to 3.25 or 7.5 depending whether the change was positive or negative. The liquid composition changes and the point efficiency changes were of the same sign as the disturbance introduced. The point \ll efficiency changes were no greater than 0.02.

The plate efficiency responses for the system with a constant relative volatility \ll of 2 were no greater than 0.04. As the relative volatility was lowered, the unsteadystate changes in plate efficiency increased. For systems with \ll equal to 1.1 the plate efficiency of the top plate changed from 0.57 to 0.66 in 11 seconds for an increase in liquid reflux. The top plate showed the greatest changes and when a decrease in the liquid reflux was introduced, the plate efficiency changed from 0.57 to 0.46 in 11 seconds then rose to a new steady-state value of 0.555. The responses of the plate efficiencies for both positive and negative disturbances are shown in Fig 8.15 and 8.16. The exit pool

liquid concentration transients are shown in Fig 8.14 and the point efficiency responses for both cases are shown in Fig 8.17

Again it can be concluded that liquid flow rate changes in the recycle from the condenser do not affect the plate efficiency for systems with relative volatilities greater than or equal to 2, but the changes increase with a decrease in α .

8.2.5 The Effect of Vapour Flow Rate Changes

In simulations concerning the changes in vapour flow rate, difficulties in describing the immediate changes in liquid flow rate due to dumping or accumulation of liquid on the plate arose. When the liquid molal holdup on the plate rose, as the change in molal holdup was small for the disturbances introduced, the liquid holdup was adjusted to its new steady-state value but the liquid flows and liquid compositions were not adjusted. For the case where liquid dumping from the plates occurred, it was assumed that the liquid dumped was the same composition as that of the exit pool on the plate and was dumped into the downcomer of the plate below. The amount of liquid dumped from one plate to the next was cumulative as it travelled down the column and the liquid composition in the downcomer was the average value after the liquid had been dumped.

These assumptions give inaccurate overall material balances and it was found that small amounts of liquid were either lost or gained depending on the disturbances introduced. However, it will be shown that these discrepancies can be ignored as the main effect on the system was due to the actual vapour flow rate change and not the dumping and accumulation of liquid.

For the disturbances where liquid dumping occurred, very small step changes in the downcomer liquid compositions were observed. These composition changes were so small that their effect on the system was negligible. In the case of liquid accumulation, no instantaneous changes in composition occurred.

The steady-state vapour flow rate was 850 lb moles/hr and disturbances of $\frac{+}{-}$ 50 lb moles/hr were introduced with the liquid recycle from the condenser remaining constant. For an increase in the vapour flow of 50 lb moles/hr, the reflux ratio changed from 4.667 to 3.5 and the point efficiency dropped by 0.01. The liquid compositions gradually dropped due to more of the volatile being taken off in the top product. The changes in composition were more noticeable for the systems with large relative volatilities and the transient responses of the exit pools are shown in Fig 8.18 for $\alpha = 2$ and for an increase in vapour flow.

The point efficiency changes were the same size regardless of the relative volatility used and the changes in plate efficiencies were also the same size and followed the same response pattern. The plate efficiencies increased for a decrease in vapour flow rate and the maximum change for a system with $\alpha = 2$ was that of plate 3 whose plate efficiency rose from 0.5577 to 0.5825 in 34 seconds then settled at a new steady- state value of 0.5644. Fig 8.19 shows the plate efficiency responses for both disturbances using a relative volatility of 1.1 and Fig 8.20 those using a relative volatility of 2.

From these responses it can be seen that the main effect was due to the changes in top product flow and point efficiency changes. It is doubtful whether the liquid dumping and accumulation, had they been accurately described in the model, would have had any effect on the overall responses.

8.2.6 The Effect of Larger Trays

The generalised model was used to investigate the difference in using larger trays of 15 ft diameter. The average Peclet number during the operation was 12 and the number of liquid pools for the active part of the tray was 9. This was the only case where 1 liquid pool for the active area was not equal to 1 ft of tray. The same physical properties of the system as those of the 7 ft diameter column were used. Only step changes in the feed composition were

investigated for varying values of relative volatilities. The steady-state feed was introduced on the second plate with a composition of 0.5 and step changes of $\frac{+}{-}$ 0.1 were made.

For systems with large relative volatilities of 1.5 and over, very little change in the plate efficiency occurred and the changes decreased with increase in \measuredangle . However, for systems with \measuredangle of 1.1 or less, the changes become larger. The largest change in the plate efficiency was that of the feed plate which for a decrease in feed composition went from 1.011 to 0.5367 in 27 seconds then rose to a new steady -state value of 1.001. The changes of the other plate efficiencies were not as great, but took longer to reach their maximum changes and to settle back down to their new steady-states.

The exit pool liquid composition transients for both disturbances and relative volatility of 1.1 are shown in Fig 8.21. Their corresponding plate efficiency responses are shown in Fig 8.22 and 8.23.

8.3 <u>Comparison of the Generalised Model with Simplified</u> Models

8.3.1 The Linearised Model

For the comparison of the generalised model results with those of the linearised model, constant linear equilibrium

relationships were used. The values of the gradient and constant were chosen so as to give relative volatilities that varied only slightly throughout the column. Using the equilibrium relationship of:-

Y = 0.975X + 0.05 8.1 gave a relatively constant & value of 1.16. The feed entered the five plate column on the second plate with a composition of 0.5. The linearised model used constant plate efficiencies in the liquid composition calculations during the unsteadystate period.

Only step changes of ⁺ 0.1 in the feed composition were investigated. The liquid composition transients given by the generalised model for a step decrease in composition are shown in Fig 8.24 and the plate efficiency responses are shown in Fig 8.25. The liquid composition responses given by the linear model were so close to those of the generalised model that graphically they were indistinguishable and the comparison of the results is listed in Table 8.3. From this table it can be seen that the difference between the two models was very small and the end steady-state values vary only by about one in the third decimal place.

Using different equilibrium relationships to give the effect of a larger relative volatility, showed the end steady-state values and the intermediate unsteady-state values of the end plate compositions to agree more closely between the two different models.

Table 8.3 Comparison of liquid phase responses for the generalised and linearised models.

Time (sec.)	Reboiler	1	2	3	4	5	Condenser
0.0	.43586	.4691	.4867	.5032	.5215	.5418	.56440
12.9	.43544	.4656	.4766	.5003	.5199	.5406	.56270
21.7	.43443	.4629	.4713	.4983	.5185	.5393	.56136
39.3	.43131	.4564	•4628	•4940	.5149	.5362	.55800
56.9	.42719	.4505	•4578	.4898	.5112	.5327	.55443
74.5	.42277	.4457	.4541	.4859	.5075	.5290	.55080
92.1	.41843	.4418	.4508	.4822	.5038	.5254	.54725
144.9	.40661	.4317	.4423	.4721	•4936	.5152	.53725
294.5	.38211	.4107	.4241	.4501	.4710	.4926	.51527
505.7	.36082	.3923	.4080	.4305	.4508	.4725	.49566
646.5	.35188	.3846	.4012	.4222	.4424	.4640	.48740
857.7	.34330	.3772	.3947	.4143	.4342	.4559	.47984

Generalised model feed composition 0.5 to 0.4

Linearised model feed composition 0.5 to 0.4

					F		
Time (sec.)	Reboiler	1	2	3	4	5	Condenser
0.0	.43586	.4691	.4867	.5032	.5215	.5418	.56440
12.9	.43533	.4648	.4727	.5013	.5205	.5412	.56346
21.7	.43402	.4599	.4667	.4987	.5189	.5401	.56225
39.3	.43027	.4532	.4614	.4939	.5153	.5371	•55923
56.9	.42593	.4488	.4573	.4898	.5116	.5336	.55580
74.5	.42138	.4445	.4536	.4858	.5077	.5298	.55202
92.1	.41700	.4407	.4503	.4819	.5039	.5260	.54830
144.9	.40500 -	.4304	.4415	.4714	.4931	.5153	.53773
294.5	.37941	.4080	.4225	.4490	.4695	.4918	. 5149 7
505.7	.35917	.3911	•4070	•4298	.4495	.4714	.49470
646.5	.35070	.3835	.4003	.4211	.4413	.4631	. 48653
857.7	.34226	.3763	.3940	.4133	.4332	.4550	.47856

It must be remembered that in the linearised model, the plate efficiencies were constant whereas in the generalised model the plate efficiencies were allowed to vary and that the two steady-state values may vary a little. This fact is the reason for the slight differences between the end steady-state composition values of the two models as it can be seen that the transients of the two models follow each other closely over the period when the plate efficiency of the generalised model was changing. If the final steady-state plate efficiencies differ appreciably from those of the initial values, then to eliminate errors in the end steady-state values, the final plate efficiencies must be used in the linear model for the unsteady-state operation.

8.3.2 The Simplified Model: Perfect Liquid Mixing

The simplified model assumes a plate with the same molal holdup, but with only one liquid pool. For normal operations, this model gives the value of the Murphree plate efficiency equal to that of the point efficiency. The simulation was carried out using the equilibrium relationship given in equation 8.1. Initially the Murphree plate efficiencies estimated by the generalised model for partial liquid mixing was held constant and used in the unsteady-state estimation. Transient responses the same as those for the linearised model were obtained for feed

composition changes of $\frac{1}{2}$ 0.1. This shows that both the linearised and simplified model can be used if the Murphree plate efficiency estimated for partial liquid mixing is available and can be held constant without incorporating any errors.

The simplified model was also used with the Murphree plate efficiency being set equal to that of the point efficiency which was calculated according to the operating conditions present. This value of the plate efficiency was lower than that estimated by the generalised model. The overall column efficiency for this case was less than that of the previous case. The liquid compositions on each plate were lower than those predicted by the generalised model and the liquid transient responses for both this case and the previous case, where the plate efficiency was not equal to that of the point efficiency, are shown in Fig 8.26 for a step increase in feed composition.

It can be seen from this investigation that simplified models assuming perfect liquid mixing on the plate can only be used if the plate efficiency used in the unsteady-state estimation has taken the actual partial liquid mixing into account.

8.4 The Effect of Feed Composition Changes in Gas Absorption

The generalised model was used to describe the liquid and vapour mixing characteristics of a large sieve tray gas absorption column. The simulation was similar to the decarbonation of water by air and the physical properties of this system were used in the computation. The equilibrium relationship was linear and the gradients used were high giving extreme values of the absorption coefficient. The steady-state liquid feed entered the downcomer of the top plate with a composition of 0.005 and step changes of $\frac{+}{-0.0025}$ were made.

The concentration gradient on the lower plates was very small due to the low composition of the liquid. The top plate showed a very large concentration gradient thus verifying the need for the liquid mixing model.

For the system with an equilibrium slope of 31.667 giving an absorption coefficienct λ of 25.9, the plate efficiencies were about 0.09. For a step decrease in the feed composition the point efficiencies of the top plates changed (Fig 8.27) and the plate efficiencies changed giving oscillatory responses about the new steady-state plate efficiencies (Fig 8.28). It can be seen from Fig 8.28 that the final and initial steady-state plate efficiencies do not change appreciably, but the top tray plate efficiency goes to a new value corresponding to the change in the point efficiency. The liquid composition responses of the exit pools and the top two downcomers are shown in Fig 8.29. Step increases in the feed composition gave similar plate efficiency responses but in the opposite direction to those with a decrease in composition. The plate efficiency responses showed that during the unsteady-state period, the values of the efficiencies vary appreciably and the time period of the changes was greater than that for distillation.

A more extreme value of 155 for the absorption coefficient was obtained using an equilibrium slope of 190. The plate efficiencies for this system were about 0.0185. The responses of the exit pool compositions for the five plates and the downcomer compositions of the top two plates for a step decrease in feed composition are given in Fig 8.30. The corresponding responses of the point and plate efficiencies are shown in Fig 8.31 and 8.32 respectively. It can be seen that only the top tray plate efficiency strays from its original steady-state value.

Larger values of the equilibrium slope were investigated only showing similar results to those already given. Although the step changes introduced were 50% of the original composition value, it can be seen that while large changes in the plate efficiencies do occur during the unsteady-state period, they do not change appreciably between the two steady-state values.

If only the initial and final steady-state values were of interest, a linearised model using constant plate efficiencies in the liquid composition calculations could be used and the end results would be accurate solutions.

8.5 <u>Discussion on Unsteady-State Plate Efficiencies</u> for Binary Systems

From the investigations of unsteady-state plate efficiencies using the generalised model, it can be concluded that for systems with relative volatilities greater than 2, feed composition and liquid flow rate changes do not affect the plate efficiency. As the relative volatility decreases, so the changes in plate efficiency increase during the unsteady -state period, but they soon settle down to the new steadystate value which is almost the same as the original value.

In the case of vapour flow rate changes, the effect of liquid dumping can be ignored as it is the change in reflux ratio which changes the liquid compositions. However, the changes in the point efficiencies give rise to changes in the two steady-state plate efficiencies and must be accounted for if a linear model is to be used.

The comparison with the linear model showed that as long as the initial and final steady-state plate efficiencies were the same, a constant plate efficiency would give the same transient responses of the liquid phase and the end steady-state values would be the same. Thus although the unsteady-state plate efficiencies showed large

changes in the generalised model for systems with a low relative volatility, little difference is seen if these efficiencies are held constant.

From the investigation of the gas absorption column, the plate efficiencies were shown to be more oscillatory during unsteady-state, but the original and final plate efficiencies did not differ and use of a linearised model using constant plate efficiencies would give no inaccuracies in the final steady-state values of the liquid compositions.

The same results are obtained for columns with larger diameters of 15 ft, but the responses during unsteady-state take longer to reach their maximum deviations due to the larger liquid holdup on the plates. Again constant plate efficiencies and a linearised model would give accurate steady-state values.

Table 8.1 Liquid and vapour flows and other operating conditions for the

	unsteady-state	simulation	of	binary	systems.
--	----------------	------------	----	--------	----------

		lb moles/hr							Reflux
		L s	L _R	v	Ws	D S	Pe	Xf	ratio
Steady-state	· . [1000	700	850	150	150	7.7	0.5	4.667
Unsteady-state changes in:-	1	\$							
Feed compositi	on	1000	700	850	150	150	7.7	0.4 0.6	4.667
Feed flow	1)	1050	700	850	200	150	8.2	0.5	4.667
	2)	950	700	850	100	150	7.3	0.5	4.667
Reflux	1)	1050	750	850	200	100	8.2	0.5	7.5
	2)	950	650	850	100	200	7.5	0.5	3.25
Vapour	1)	1000	700	800	200	100	10.5	0.5	7.0
· .	2)	1000	700	900	100	200	6.0	0.5	3.5
Large trays	·				· ·				
Steady-state		6500	4500	5500	1000	1000	12.0	0.5	4.5
Unsteady-state	•	6500	4500	5500	1000	1000	12.0	0.4 0.6	4.5

step changes in feed composition. Relative volatility of 1.5 .

Fig 8.5 Murphree vapour plate efficiency responses for a step increase in feed composition. Relative volatility of 1.1 .

Fig 8.7 Condenser, reboiler and exit pool liquid composition responses for step changes in the feed composition. Relative volatility of l.l.

Fig 8.9 Murphree vapour plate efficiency responses for a step decrease in feed composition.

Plate efficiency responses for a step decrease in feed flow rate. Relative volatility of 1.1

160.

Fig 8.13 Plate efficiency responses for a step increase in feed flow rate. Relative volatility of 1.1

Fig 8.14 Condenser, reboiler and exit pool liquid composition responses for step changes in liquid reflux.

Fig 8.15 Plate efficiency responses for a step increase in liquid reflux. Relative volatility of 1.1

Fig 8.16 Plate efficiency responses for a step decrease in liquid reflux. Relative volatility of 1.1

Fig 8.17 Point efficiency responses for a step change in liquid reflux. Relative volatility of 1.1

Fig 8.18 Condenser, reboiler and exit pool liquid composition responses for a step increase in vapour flow. Relative volatility of 2

------ Step increase in vapour flow

Fig 8.21

Fig 8.22 Plate efficiency responses for a step increase in feed composition using 15 ft dia. column. Relative volatility of 1.1

Fig 8.23

3 Plate efficiency responses for a step decrease in feed composition using 15 ft dia. column. Relative volatility of 1.1

Fig 8.24 Condenser, reboiler and exit pool liquid composition responses for a step change in feed composition using a linear equilibrium relationship.

Fig 8.25 Plate efficiency responses for a step decrease in feed composition using a linear equilibrium relationship.

171

Fig 8.27

Point efficiency responses for a step decrease in liquid feed composition in gas absorption. Equilibrium slope of 31.667

Exit pool and top two downcomer liquid composition reponses for a step decrease in feed composition. Equilibrium slope of 31.667

Fig 8.30

Exit pool and top two downcomer liquid composition responses for a step decrease in feed composition. Equilibrium slope of 190

Fig 8.31 Point efficiency responses for a step decrease in liquid feed composition using an equilibrium slope of 190

9. MULTICOMPONENT DISTILLATION

9 Multicomponent Distillation

9.1 Simulation Model

The generalised model of large plate columns presented for previous simulations of binary systems was used to describe the liquid and vapour mixing characteristics. The differential equations of the multicomponent system were the same as those for the binary system except that there were k - 1 of each equation, where k is the number of components. The value of the kth component was obtained from the sum of the others:-

$$x_{k} = 1 - \sum_{i=1}^{k-1} x_{i}$$

Due to most distillation systems being gas film limiting, the following assumption was made to increase the ease in calculating the individual component point efficiencies for each pool:-

$$\frac{1}{N_{OG}} = \frac{1}{N_{G}}$$

This assumption was verified by computing the vapour and liquid-phase resistances. The liquid-phase resistance was so small compared with that of the vapour-phase resistance that it could be ignored.

The modified equations presented by Wilke (111, 112) for calculating the average viscosity of the vapour and the diffusion coefficient of each component, were used

9.1

in estimating the number of gas-phase transfer units. The point efficiency of each component was also calculated for each liquid pool and not just for the total tray.

Constant relative volatilities were used and the equation presented by Wood (116) for calculating the equilibrium vapour composition was also used:-

$$\mathbf{x}_{i}^{\star} = \frac{\boldsymbol{\alpha}_{i} \mathbf{x}_{i}}{\sum_{r=1}^{k} \boldsymbol{\alpha}_{r} \mathbf{x}_{r}}$$

Further the slope of the equilibrium data was calculated from the partial derivatives:-

$$m_{n,i} = \frac{dy_{n,i}^{*}}{dx_{n,i}} = \sum_{\substack{r=1\\r=1}}^{k} \frac{df_{i}}{dx_{n,r}}$$

where

$$\frac{df_{i}}{dx_{i}} = \frac{\alpha_{i}\sum_{r=i}^{k} \alpha_{r} x_{n,r}}{\left\{\sum_{r=1}^{k} \alpha_{r} x_{n,r}\right\}^{2}}$$

p=l to k ≠i $\frac{df_{i}}{dx_{p}} = \frac{\alpha_{p} \alpha_{i} X_{n,i}}{\left\{ \sum_{r=1}^{k} \alpha_{r} X_{n,r} \right\}^{2}} \dots 9.6$

as the slopes depend on all the changes in the component compositions, the equilibrium line is no longer of a fixed gradient but is a line in vector space.

The actual simulation program was set up only to deal with changes in the feed composition. The same column

.... 9.3

9.4

9.5

dimensions as those for the binary systems were used and the feed was introduced on plate 2 of the 5-plate column. Two different sets of systems were investigated;

1) relative volatilities of 1, 1.333, 1.667

2) relative volatilities of 1, 2, 3

and Table 9.1 gives the operating conditions for all the simulations.

<u>Table 9.1</u> Liquid and vapour flows and operating conditions for the unsteady-state simulation of ternary systems. Steady-state values for feed composition changes:-Liquid and vapour flows (1b moles/hr)

	Systems: - relative volatilities	
	1, 1.333, 1.667	1, 2, 3
Ls	1000	1000
L _s L _R	700	700
v	850	850
W s	150	150
D _s	150	150
Pe	7	5
Reflux ratio	4.667	4.667

The increase in the number of components increases the number of computational operations carried out. This increase is equal to the square of the number of components being operated on multiplied by the number of operations

carried out in the binary simulation. The actual computation time was roughly equal to the cube of the number of components operated on multiplied by the simulation time for the binary systems. Thus as the number of components was increased, the actual computation time increased rapidly. Although the simulation program was set up to handle up to 5 components, only ternary mixtures using the generalised model were investigated due to the computation time involved. The multicomponent program and instructions in use are given in Appendix E.

The generalised model operates on only two of the components in the material balances, but the third component is taken into account in the calculation of the point efficiencies. For this reason, it does not matter which two components are operated on as the results are the same.

9.2 The Effect of Feed Composition Changes on Ternary

Systems

The first system investigated was that with constant relative volatilities of 1, 1.333, 1.667: The feed entered on the second plate with a feed composition of 0.30, 0.35, and 0.35 going from light to heavy components. The middle component feed composition was kept constant while step changes of ± 0.05 were introduced into the light and heavy components. For an increase in the light component feed composition and a corresponding decrease in the heavy, the liquid compositions on the trays showed the usual smooth step increase and decrease responses. The middle component compositions showed that this component was not separated off and that the top and bottom product streams of the middle component were of the same value. The highest middle component composition was found at the exit pool of the third plate. The composition responses of the middle component for the feed change showed a slight separation occurring; the reboiler value increased and the condenser decreased. The highest composition of this component was now found on the second plate.

The plate efficiency responses for both the light and heavy components rose by 0.02 in the value for the feed plate, then dropped quickly to the new steady-state value. Just like the binary cases, the feed plate showed the greatest change and the new steady-state values did not differ from the initial values by more than 0.01. The plate efficiency responses for the middle component showed large changes, the greatest being that of the plate above the feed. For this plate the Murphree plate efficiency rose from 1.28 to 1.52 in 19 seconds then fell gradually to a new steady-state value of 0.7176. The liquid composition responses of the light and heavy components are shown in Fig 9.1 and the plate efficiency responses of the middle

component are shown in Fig 9.2.

The reason for the large differences between the two steady-state values of the middle component plate efficiencies was due to a substantial drop in the absorption factor λ . The initial and final steady-state values of λ for the feed plate were 2.786 and 1.732 respectively and the values for the plate above were 2.9 and 1.56 respectively. If these values of λ , Peclet number and point efficiency for this simulation are used in the equation for the prediction of the steady-state plate efficiencies (1), (equations 3.10 and 4.25), it can be shown that the simulation results are verified.

Increasing the heavy component feed composition and decreasing the light component by 0.05 for the same system and initial feed conditions, the light and heavy component composition responses were as expected and the plate efficiencies for the feed plate both fell by 0.02 then rose again to the new steady-state values which were approximately the same as the initial values. The middle component plate efficiencies showed very large changes, both positive and negative. The plate efficiency for the feed plate rose slowly at first then rapidly reach a huge value of 75 then fell to a negative value of -7 then rose to a new steady-state value of 0.61. From these responses, it can be seen that ridiculous and meaningless values of the plate efficiency are found which cannot be used in unsteady-state calculations.

The system with constant relative volatilities of 1, 2, and 3 and feed compositions of 0.30, 0.35 and 0.35 showed larger differences in the top and bottom products of both the light and heavy components. Further this system showed that if the middle component had a relative volatility equal to the mean value of the others, and the feed was nearly central, then the top and bottom products of this component would be equal and the highest composition value of this component would be found on the central tray.

An increase in the light and a decrease in the heavy component feed composition of 0.05, showed the usual smooth step increase and decrease in the light and heavy component liquid compositions respectively. The plate efficiency responses of the light and heavy components showed slight increases of about 0.01 then fell to new steady-state values which were about 0.01 less than the initial values. The middle component, however, showed its greatest change to occur on the plate above the feed. Both the feed plate and the plate above showed sharp rises in the plate efficiency of about 0.03 then fell to new steadystate values of 0.72 and 0.64 respectively, which were about 0.2 less than their initial values.

When the increase in the light component feed composition was 0.1 and corresponding decreases in both the middle and heavy components of 0.05 were made, similar, but more pronounced responses to those mentioned above, were obtained. The computed step increase and step decrease responses of the light and heavy component liquid compositions, are shown in Fig 9.3 and the middle component liquid composition responses, showing the high liquid composition in the middle of the column, are shown in Fig 9.5. The plate efficiency responses of the light and heavy components are only slight and can be assumed constant (see Fig 9.6 and 9.7). The middle component plate efficiency responses show large changes and are shown in Fig 9.4. The liquid and vapour compositions for every liquid pool on each plate, the condenser and the reboiler values, plate efficiency and all computed data for this simulation are given in Appendix G.

If large changes in the light and heavy component feed compositions are made, the changes in the middle component plate efficiencies become. large and meaningless in both the +ve and -ve directions. Going from light to heavy, the feed composition changes were from 0.35,0.35 and 0.3 to 0.1, 0.4 and 0.5. The middle component liquid responses are shown in Fig 9.8. The plate efficiency responses for the heavy component showed little difference for the rectifying section but the response for plate 1 showed a decrease from 1.31 to 1.23 in 40 seconds then gradually settled out to a new value of 1.15. The feed plate response for the heavy component showed a rapid drop of 0.557 to 0.523 in 6 seconds then a sharp rise to 0.546 in the next 13 seconds then gradually rose to a new steady-state value of 0.59 in the following 13 minutes.

The light component plate efficiency responses shown in Fig 9.10, show the plate efficiency of the feed plate to drop suddenly and rise again then gradually rise to a new steady-state value about 0.1 higher than the original. Further the plate efficiencies of the rectifying section all rise gradually to new steady-state values 0.1 higher than the initial values.

When the initial steady-state feed compositions were 0.45, 0.1 and 0.45, the middle component plate efficiency for the feed plate had a high value of 2.43. The initial steady-state values showing the middle componentliquid composition distribution, plate efficiencies and the wide composition range through the column of both the light and heavy components are shown in Table 9.2. Changes in the feed composition for this system gave similar results to those where the feed compositions were 0.35, 0.35 and 0.3.

9.3 Multicomponent Distillation Investigations

From an extension of his earlier work on batch distillation (81), Rose et al (82) presented one of the first methods of solving multicomponent distillation problems by finite difference formulation. Since then improvements in numerical integration techniques have been made and alternative methods of solution have been given, the most important being that of matrix methods which have been presented by Mah et al (67) and Sargent (85).

Following the works of Armstrong and Wood (4) and Lamb, Pigford and Rippin (57), Wood (116) presented the frequency responses of a multicomponent system. Constant relative volatilities were used and the equations were linearised. Matrix methods were used for the solution and equations for estimating the equilibrium data and the equilibrium slope of each component was given.

The changes in plate efficiencies for multicomponent systems has been investigated by Holland (48). The model used by Holland in the investigation into binary systems was that presented by Tetlow (99, 100) which described all the mixing characteristics in the downcomer. However, for the multicomponent systems he ignores the mixing effects and has complete bypassing of the downcomer and just has a perfectly mixed plate. The plate efficiency used was that of the vaporisation efficiency which is defined as:-

$$E_{n,i}^{o} = \frac{Y_{n,i}}{Y_{n,i}}$$

188

9.7

The vaporisation efficiency was further defined by two parameters introduced by Holland (47):-

$$E_{n,i}^{O} = \overline{E}_{i}\overline{B}_{r}$$

where \bar{B}_n was the plate factor for plate n and \bar{E}_i was the component efficiency for component i. Equations for estimating these factors for the system and the disturbance investigated were given as a function of the time since the changes were made. For the 5-component system investigated, the major part of the unsteady-state was over after 3 minutes even for a 10 plate column and the initial steady-state values of the vaporisation efficiency of each component was the same for every plate but did not converge to a new constant value for each component at the new steady-state.

The advantage of using the vaporisation efficiency is that negative values are not obtainable. The advantage of using the Murphree vapour plate efficiency is that for a liquid composition change, the Murphree plate efficiency may remain constant while the vaporisation efficiency changes.

The system investigated by Holland was for feed composition changes of 0.1, 0.25, 0.3, 0.25, 0.1 to 0.35, 0.25, 0.2, 0.15, 0.05 going from light to heavy. The vaporisation efficiency responses for the light, middle and heavy components obtained by Holland (48), are shown in Fig 9.11 to 9.13 and numerical values of the vaporisation efficiency responses are given in Appendix H.

9.8

Groves (39) who did the latest work on Holland's technique of estimating plate efficiencies, stated that the convergence of the Θ method for a new set of inputs was acceptable for the simple model where the downcomer was bypassed, but for the more general model convergence was slow. He further stated that more data had to be known to be able to describe the model more fully and that the model was of limited use due to the great amount of computer storage needed.

9.4 Discussion on Ternary Distillation Results

From the work carried out in this investigation, it has been shown that the Murphree vapour plate efficiency of the middle component changes drastically, and settles at new values which are far removed from the initial steadystate values for small changes in the feed composition. Responses of the light and heavy component plate efficiencies show very little change during the unsteady-state period and between the initial and final steady-state values.

In the work done by Holland (48), large changes in the feed compositions were made, but there were no dramatic changes in any of the component vaporisation efficiencies. This was due to the vaporisation efficiency not being dependent on the composition of the incoming vapour stream to the plate. Further, from the responses of the vaporisation efficiencies, it can be seen that the responses for each component are similar and that their response paths are dominated by the plate factor. It would seem unlikely that the vaporisation efficiency of each component was the same on every plate at the initial steady-state, but if this was so , then they should also converge to a new constant value at the final steady-state which they do not. Due to the inaccessibility of the complex functions for describing the plate factor and component efficiency for random systems and the great dependence of the vaporisation efficiency on the plate factor responses, it would seem that simplifications using the vaporisation efficiency cannot be made.

From the work carried out by the author on the comparison of liquid composition responses using a generalised model, the linearised model and the simplified model with only one liquid pool, it has been shown that if constant Murphree plate efficiencies are used which have been estimated for partial liquid mixing, then the simplified model and the linearised model show good agreement in responses with those obtained using the generalised model. It can be concluded, therefore, that if the light and heavy components are operated on and their Murphree plate efficiencies are kept constant during unsteady-state, then the simplified model or the linearised model may be used and good agreement in transients will be achieved.

It must be noted that the middle component must not be operated on in the simplified models or large errors will be produced due to the great changes occurring in plate efficiency values. Table 9.2 Ternary steady-state values.

Г		TIME	FEED	BOLLC	MS 1	OPS	R.RATI	O RB.	HOLDUP	C.HC	OPDOb.			· ·		· · ·
		0.00	700.0	150.	01	50.0	4.66	57 13	3,9425	2.8	3390					
	cc	MPONENT	REL.	VOL F	EED CC	MP. BC	DILER	COND	ETF.	•	CTP.				•	•
		1	ेः ३ ००	00	0.45	0.	1463	0.7542	2 113.	055]	L13.131	• .	·		· .	
Į		2	2.0	0	0.10	0.	0903	0.1098	3 16.	449	16.476	5 1				
		3	1.0	0	0.45	0.	7634	0.1360	20.	495	20.393	1				
	PLATE	HOLDUP	TEME	PEC	LET NO	BAC	KFLOW	LIQUI	D FLOW	VAPC	OUR FLO	W	н 1		· .	•
ł	1	3.3113	104.	.67	4.72	C	.9819	10	00.00		850.0					
	2	3.5423	100.	69	5.61	, C	7473	10	00.00		850.0			•	· .	· .
	3	3.3952	96.	.38	4.86	н н ^а (0.9411	7	700.00		850.0		· · ·			
	4	3.6524	93.	70	5.62	(.7446	7	700.00		850.0			1	· · · ·	
	5	3.9076	89.	.51	6.39		<u>).5951</u>		700.00		850.0	<u></u>			·	الارومية الفقال مروعين والتاني معر أواحيا وا
	COMPON	NENT = 1	· · · ·	LIQUI	D COME	OSITIC	N		{	7	VAPOUR	COMPOS	SITION	· .	MEAN	EMV
	PLAI	•	1	2	3	4	5	- 6	1	-	· 3	4	. 5	6		
Ì	1								1							0.8505
	2								_		-				· - • -	0.5810
	3															0.5050
	4	_	_						1							0.4949
Ĺ	5		.7317	.7183	.7058	.6943	.6845	.6777	.7608	.7567	<u>.7537</u>	.7517	•7508	<u>.7514</u>	<u>.7542</u>	0.4896
.	COMPON	NENT = 2		LIQUI	D COME	POSITI				7	VAPOUR	COMPOS	SITION		MEAN	EMV
	PLAT		1	2	3	4	5	6	1	2	3	4	5	6		
	1								1		-					0.9372
	2															2.4383
ł	3								-							1.0802
	4															0.6154
╞	5		.1146					.1245	.1076					.1108	.1098	0.5611
		VENT = 3		-	ID COM						VAPOUR				MEAN	EMV
	PLAT		1	2	3	4	5	6	1	2	3	4	5	6		
ł	1															1.2510
	· · 2		_													0.5687
	3	A CONTRACT OF													-	0.4932
	4															0.4822
L	5_	.1426	.1537	.1644	.1745	.1840	.1921	.1978	.1316	.1344	.1363	.1376	.1382	.1377	.1360	0.4755

Liquid composition responses for step changes in feed composition. Light component goes from condenser to reboiler down the page, while the heavy component goes from reboiler to condenser. Relative volatilities of 1, 1.33 and 1.67 used.

Fig 9.2 Middle component plate efficiency responses for step changes in feed composition. Relative volatilities of 1, 1.33 and 1.67 used.

- Light component; going from condenser to reboiler down the page.
- _____ Heavy component; going from reboiler to condenser down the page.

Relative volatilities of 3, 2 and 1 used.

Fig 9.6 Light component plate efficiency responses for step changes in feed composition. Relative volatilities of 3, 2 and 1 used.

Fig 9.7 Heavy component plate efficiency responses for step changes in feed composition. Relative volatilities of 3, 2 and 1 used.

Fig 9.8

Middle component liquid composition responses for step changes in feed composition. Relative volatilities of 3, 2 and 1 used.

Fig 9.9 Liquid composition responses for step changes in feed composition.

- Light component, going from condenser to reboiler down the page.
- Heavy component, going from reboiler to condenser down the page.
 Relative volatilities of 3, 2 and 1 used.

Fig 9.10 Light component plate efficiency responses for step changes in feed composition. Relative volatilities of 3, 2 and 1 used.

Figures 9.11 to 9.13 are the vaporisation efficiency responses for the feed composition changes predicted by Holland (48).

204

10. DISCUSSION

10 Discussion

10.1 <u>Review of Work</u>

From the computed unsteady-state liquid composition values the plate efficiencies were calculated. It can be seen from these responses that the magnitude of the unsteadystate plate efficiency responses have little effect on the liquid composition responses.

For a binary system whose relative volatility is greater than or equal to 2, step changes of less than 20% of the original value of the feed composition, liquid reflux from the condenser and liquid feed flow rate have no effect on the Murphree vapour plate efficiency. Systems with relative volatilities less than 2 and approaching unity show increases in plate efficiency changes as the relative volatility decreases. The plate showing the greatest change in its plate efficiency is the one on which the disturbance is introduced. Changes in the feed composition affect the plate efficiency responses more than the other disturbances.

Changes in boilup show that the size of the relative volatility is unimportant and that the responses for any relative volatility used follow the same pattern. Differences in the initial and final steady-state values of the plate efficiency are about 0.01 with maximum deviations of about 0.03 at unsteady-state. This difference is due to step changes in the point efficiency. The assumption of perfect vapour mixing gives a more rapid response but also diminishes the magnitude of the maximum deviations. However, the dependence on the size of the relative volatility still holds. Similar responses are produced for larger diameter columns, only the response times are enlarged.

In gas absorption, the main changes in the plate efficiency are due to corresponding changes in the point efficiency. The time for the responses to settle seem to be longer, but the initial and final values of the plate efficiencies are similar.

Simplified models using perfect liquid mixing and linearised models can be used to produce the same liquid composition responses, if the plate efficiency used in the unsteady-state simulation has been calculated with the liquid mixing being accounted for. Use of the point efficiency in simplified models ignores the liquid mixing characteristics of the true model and gives different responses. From this it can be seen that the liquid mixing must be included either in the model or in the plate efficiencies used. The main point to be made is that if the initial and final steady-state values of the plate efficiencies differ, then if the final steady-state liquid compositions are required, it is best to use the final values of the plate efficiencies in the computation.

For the case of ternary systems, the plate efficiency responses of the light and heavy components showed little change during unsteady-state, while that of the middle component was erratic. Ternary systems can be evaluated using simplified models if the light and heavy components are the two operated on while the middle component is estimated by subtracting their sum from unity.

10.2 Suggestions for Further Work

From the work using the generalised model, model simplifications for the binary and ternary systems have been given. For these systems it has been shown that the changes in the plate efficiencies at unsteady-state have no effect on the liquid composition responses if the initial and final values of the plate efficiencies are the same.

The generalised model can be used to investigate systems that have more than three components. This work must be done as the work carried out by the author on ternary systems showed that the middle component was sensitive to disturbances and that the simplified models should operate on the light and heavy components in simulation work. If there are more than three components it may be that simplified models using constant plate efficiencies cannot be used.

NOTATION

Notation

B	backflow ratio B _f /L (eqn. 4.17)	-
Ē	plate factor for vaporisation efficien	су -
B _f	recycle flow	lb moles/hr
C	concentration (specified units)	-
cout	concentration at exit weir	-
CTP	calculated top product (eqn. 7.43)	lb moles/hr
De	eddy diffusion coefficient	ft ² /sec
Ds	top product flow	lb moles/hr
Ē	component efficiency for vaporisation	
	efficiency (eqn. 9.8)	-
Ea	plate efficiency if entrainment conside	ered -
E _G	generalised plate efficiency	-
E _H	thermal efficiency	-
E _{HG}	Hausen plate efficiency	-
EL	overall liquid efficiency	-
E	modified Murphree plate efficiency	-
 <u>.</u>		-
EM	multicomponent Murphree plate efficien	су -
EML	Murphree liquid plate efficiency	
EMV	Murphree vapour plate efficiency	1999 - 19
^Е о	column efficiency (eqn. 3.2)	
E	vaporisation efficiency	-
^E OG	vapour point efficiency	<u> </u>
ETP	estimated top product (eqn. 7.42)	lb moles/hr
Ev	overall vapour efficiency	

			·
F	feed flow rate	lb	moles/hr
Hc	condenser molal holdup	lb	moles
hc	height of clear liquid	•	ft
h _f	height of froth	-	ft
HL	enthalpy of liquid stream		-
Hn	total molal holdup on tray n	1b	moles
H _{n,j}	molal holdup of pool j on tray n	lb	moles
^H n,O	molal holdup of downcomer on tray n	lb	moles
H _R	reboiler molal holdup	lb	moles
ht	tray spacing		ft .
Чv	enthalpy of vapour stream		
L	liquid flow rate	1b	moles/hr
Lg	liquid flow	ga	als/min ft
М	number of liquid pools representing the	9	
.* .*	active area of the tray		· -
m	slope of equilibrium line		-
N	number of plate in the column		-
N _G	number of stages for gas phase		
N _L	number of stages for liquid phase		-
N _{OG}	overall number of stages for gas phase		
Ре	Peclet number		- -
Q	feed condition		-
ř	vapour flow path (Fig 6.1)		ft
r _D	radial distance from injection axis		ft
Т	residence time (eqn. 7.7)		-

ug superficial gas velocity ft/sec froth velocity ft/sec u₁ lb moles/hr vapour flow rate V weir height inches W bottom product flow rate lb moles/hr Ws mole fraction Х liquid phase composition $\bar{\mathbf{x}}$ steady-state liquid phase composition mole fraction liquid composition, deviation from x mole fraction steady-state vapour phase composition mole fraction Y vapour composition, deviation from У steady-state mole fraction length of liquid path ft \mathbf{z} α relative volatility λ absorption factor mV/L μ_n, ψ_n, α_n as defined by equation 7.33 standard deviation 1 2 normalised variance; area under the curve is unity γ space time , as defined by equation 7.29 unit time and 7.38 ø phi number; characteristic mixing parameter (eqn. 5.11)

Subscripts

B	rectifying section
C	condenser
ff	feed input
i	component number
j	pool number
n	tray number
	(these subscripts are always used in the
	order n,j,i ; the component subscript is
	always last)
R	reboiler
S	stripping section
SS	steady-state
us	unsteady-state

Superscripts

t	generalised equilibrium value
*	equilibrium value
-	average value in vapour cell model
—	steady-state value in linearised model

REFERENCES

References

 A.I.Ch.E. Manual, "Bubble-Tray Design Manual Prediction of fractional efficiency", The Science Press Inc. 1958. 213

- ARCHER, D.H. and ROTHFUS, R.R., "The dynamics and control of distillation units and other mass transfer equipment", Chem. Eng. Prog. Symp. Ser. 36, 1961, <u>57</u>, 2.
- 3. ARMSTRONG, W.D. and WILKINSON, W.L., "An investigation of transient response of a distillation column Part II. Experimental work and comparison with theory", Trans. Inst. Chem. Eng., 1957, <u>35</u>, 352.
- 4. ARMSTRONG, W.D. and WOOD, R.M., "The dynamic response of a distillation column to changes in the reflux and vapour flow rates", Trans. Inst. Chem. Eng., 1961, <u>39</u>, 65.
- ASHLEY, M.J. and HASELDEN, G.G., "The calculation of plate efficiency under conditions of finite mixing in both phases in multiplate columns and potential advantage of parallel flow", Chem. Eng. Sci. 1970, Vol 25, 1665.
 BAINBRIDGE, A. and SAWISTOWSKI, H., "Surface tension

Chem. Eng. Sci. 1964, 19, 992.

effects in sieve plate distillation columns"

7. BALDWIN, J.T. and DURBIN, L.D., "The backflow cell model of isothermal first order flow reactors with axial dispersion", The Cand. J. of Chem. Eng., 1966, <u>44</u>, 151.

8. BARKER, P.E. and SELF, M.F., "The evaluation of liquid mixing effects on a sieve plate using unsteady and steady-state tracer techniques", Chem. Eng. Sci., 1962, <u>17</u>, 541.

 BELL, R.L., "Experimental determination of residence time distributions on commercial scale distillation trays using a fiber optic technique", A.I.Ch.E J., 1972, Vol 18, 491.
 BISCHOFF, K.B. and McCRACKEN, E.A., "Tracer tests in flow systems", Ind. Eng. Chem., July 1966,

Vol 58, No 7, 18.

11. BOLLES, W.L., Petrol Process, 11(2),64; (3),82; (4),72;
(5),109 1956.

12. BUFFHAM, B.A., "Impulse response of infinite and semiinfinite sequences of identical stirred tanks with backflow", I & E.C. Funds. Aug. 1969, Vol 8, 428.

13. BUFFHAM, B.A. and KROPHOLLER, H.W., "Tracer kinetics: some general properties, the mean residence time and applications to phase and chemical equilibria", Chem. Eng. Sci., 1973, <u>28</u>, 1081.

- 14. CALDERBANK, P.H., Trans. Inst. Chem. Eng. 1956, 34, 79.
- 15. CAREY, D., Sc. D. Thesis Mass. Inst. Tech. 1930.

16. CHU, JU CHIN, "Distillation Equilibrium Data" Reinhold Publishing Company 1950.

 COLBURN, A.P., "Effect of entrainment on plate efficiency in distillation", Ind. Eng. Chem. 1936, <u>28</u>, 526.
 CRANK, J., "The Mathematics of Diffusion", Oxford Press 1957.

 DANCKWERTS, P.V., "Continuous flow systems -distributions of residence times", Chem. Eng. Sci. 1953, <u>2</u>, 1.
 DANCKWERTS, P.V., "Local residence times in continuous flow systems", Chem. Eng. Sci. 1958, <u>9</u>, 78.

21. DANCKWERTS, P.V., SAWISTOWSKI, H. and SMITH, W.,

"The effects of heat transfer and interfacial tension in distillation", International Symposium on Distillation, Brighton 1960, (Inst. Chem. Eng.). 22. DENBIGH, K., "Chemical Reactor Theory", Cambridge

University Press 1965.

23. DICKEY, B.R. and DURBIN, L.D., "Continuous and discrete time response analysis of the backflow cell model for linear interphase mass transfer on a distillation plate", The Cand. J. of Chem. Eng., Vol 46, 1968, 369.
24. DIENER, D.A., "Calculation of the effect of vapour

mixing on tray efficiency", Ind. Eng. Chem. Process Design and Development, 1967, Vol 6, (4), 499.

- 25. EDULJEE, H.E., "Design of bubble-cap distillation plates; Part I Hydraulic behaviour", Br. Chem. Eng, 1964, <u>9</u>, 820
- 26. ELLIS, S.R.M. and BIDDULPH, M.W., "The effect of the direction of mass transfer on liquid mixing characteristics", Bgham. Univ. Chem. Eng. 1965, 16, 30.
- ELLIS, S.R.M. and BIDDULPH, M.W., "The effect of surface tension characteristics on plate efficiencies", Trans. Inst. Chem. Eng. 1967, Vol 45, No 6, T223.
 ELLIS, S.R.M. and HARDWICK, M.J., "Effect of reflux

ratio on plate efficiency", I. Chem. Eng. Symposium Series No 32, (1969, Inst. Chem. Eng., London).

- 29. FOSS, A.S., GERSTER, J.A. and PIGFORD, R.L., "Effect of liquid mixing on the performance of bubble trays", A.I.Ch.E.J. 1958, <u>4</u>, 231.
- 30. FRANKS, R.G.E., "Hybrid simulation of multistage system dynamics", Chem. Eng. Prog., 1964, 60, (3), 65.
- 31. GAUTREAUX, M.F. and O'CONNELL, H.E., "Effect of

length of liquid path on plate efficiency", Chem. Eng. Prog., 1955, <u>51</u>, 232.

- 32. GEAR, C.W., "The numerical integration of ordinary differential equations", Mathematics of Computation, 1967, Vol 21, 146.
- 33. GEAR, C.W., "The automatic integration of stiff ordinary differential equations", Proceedings of 1968

I.F.I.P.S. Congress, Edinburgh, A81.

- 34. GEAR, C.W., "The numerical integration of stiff differential equations", Dept. Computer Science Report, 1967, No 221, Univ. of Illinoi.
- 35. GERSTER, J.A., "A new look at distillation; tray
- efficiencies", Chem. Eng. Prog., 1963, <u>59</u>, (3), 35. 36. GERSTER, J.A., HILL, A.B., HOCHGRAF, N.N., ROBINSON, D.G., "Tray efficiencies in distillation columns", Final report Univ. of Delaware, A.I.Ch.E. New York, 1958.
- 37. GILBERT, T.J., "Liquid mixing on bubble-cap and sieve plates", Chem. Eng. Sci., 1959, <u>10</u>, 243.
- 38. GOULD, L.A., "Process control in distillation", Chem. Eng. Prog. Symp. Ser. 46, 1963, 59, 155.
- 39. GROVES, D.M., "Determination of unsteady-state plate efficiencies", Ph.D. dissertation, Texas A & M. Univ. College Station Texas. 1966.
- 40. HASELDEN, G.G., "Influence of mixture composition on distillation plate efficiency", I.Chem. Eng. Symp.

Ser. No 32, (1969, Inst. Chem. Eng., London). 41. HASELDEN, G.G. and SUTHERLAND, J.P., "The study of

- plate efficiency in separation of ammonia-water solutions", Symposium on Distillation, 1960, 27. 42. HAUSEN, H., Chem. Ing. Tech. 1953, 25, 595.
- 43. HELLUMS, J.D., BRAULICK, C.J., LYDA, C.D. and VAN WINKLE, M., "Perforated plate efficiency-effect of design and operating variables", A.I.Ch.E.J., 1958,4, 465.

- 44. HIRSCHFELDER, J.O., CURTISS, C.F. and BIRD, R.B.,
 "Molecular Theory of Gases and Liquids",
 John Wiley and Sons, New York 1954.
- 45. HO, G.E. and PRINCE R.G.H., "Hausen plate efficiency for binary systems", Trans. Inst. Chem. Eng., 1970, Vol 48, T101.
- 46. HOLLAND, C.D. and WELCH, N.E., "Steam batch distillation calculations", Pet. Refiner, 1957, <u>36</u>, (5), 251.
- 47. HOLLAND, C.D., "Multicomponent Distillation", Prentice Hall Inc. Englewood Cliffs, N.J. 1963.
- 48. HOLLAND, C.D., "Unsteady-State Processes with Applications in Multicomponent Distillation", Prentice-Hall Inc. Englewood Cliffs, N.J., 1966.
- 49. HOLLAND, C.D. and MCMAHON, K.S., "Comparison of vaporisation efficiency with Murphree type efficiency in distillation", Chem. Eng. Sci. 1970, <u>25</u>, 431.
- 50. HUANG, CHEN_JUNG and YAWS, C.L., "Transient concentration profile and dynamic tray efficiency of interphase mass transfer on a single bubble tray", I.F.A.C. 1966, Vol 1, Book 3, 38A.1.
- 51. IZAWA, K. and MORINAGA, T., "Dynamic characteristics of binary distillation column", 2nd I.F.A.C. Congress Basle 1963.

- 52. JOHNSON, A.I. and MARANGOZIS, J., "Mixing studies on a perforated distillation plate", The Cand. J. of Chem. Eng., Aug. 1958, <u>36</u>, 161.
- 53. KIRSCHBAUM, E., "Efficiency of rectification and appropriate path for liquid flow", Forsch Gebiete Ingenieurw 1935, B5, 245.
- 54. KIRSCHBAUM, E., "Distillation and Rectification", Brooklyn, N.Y. Chem. Publishing Co. 1948.
- 55. KLINKENBERG, A., "Distribution of residence times in a cascade of mixed vessels with backmixing", I.&E.C. Funds, May 1966, <u>5</u>, (2), 285.
- 56. KRAMERS, H. and ALBERDA, G., Chem. Eng. Sci. 1953, 2,173. 56a. KROPHOLLER, H.W. and LEES, F.P., "Coupling between

the liquid flow and liquid concentration responses in unsteady-state plate and gas absorption column models", Chem. Eng. Sci. 1971, <u>26</u>, (1), 39.

57. LAMB, D.E., PIGFORD, R.L. and RIPPIN, D.W.T.,

"Dynamic charateristics and analogue simulation of distillation columns", Chem. Eng. Prog. Symp. Ser. 36, 1961, <u>57</u>, 132.

 58. LAPIDUS, L. and AMUNDSON, N.R., "Stagewise absorption and extraction equipment. Transient and unsteadystate operation", Ind. Eng. Chem. 1950, <u>42</u>, 1071.
 59. LEES, F.P., "Unsteady-State Models of Gas Absorption Columns", Ph.D. Thesis Loughborough 1969.

- 60. LEES, F.P., "Point efficiency in unsteady-state plate distillation and gas absorption column models", The Chem. Eng. J. 1970, 1,137.
- 61. LEVENSPIEL, O. and SMITH, W.K., "Notes on the diffusion type model for the longitudinal mixing of fluids in flow", Chem. Eng. Sci. 1957, <u>6</u>, 227.
- 62. LEVENSPIEL, O., "Mixed models to represent flow of fluids through vessels", The Cand. J. of Chem. Eng. Aug 1962, <u>40</u>, 135.
- 63. LEVENSPIEL, O., "Chemical Reaction Engineering",
 John Wiley and Sons Inc., N.Y. London 1962.
 64. LEWIS, W.K., Ind. Eng. Chem., 1936,28,(4), 399.
- 65. LIANG, W.and SMITH, W., "Effect of heat transfer between phases on the performance of counter-current distillation columns", Chem. Eng. Sci. 1962, <u>17</u>, 11.
- 66. LOCKETT, M.J., LIM, C.T. and PORTER, K.E., "The effect of liquid channelling on distillation column efficiency in the absence of vapour mixing", Trans. Inst. Chem. Eng. 1973, <u>51</u>, 61.

67. MAH, R.S.H., MICHAELSON, S. and SARGENT, R.W.H.,

"Dynamic behavior of multicomponent multistage systems. Numerical methods of solution", Chem. Eng. Sci. 1962, <u>17</u>, 619.

- 68. MIYAUCHI, T. and VERMEULEN, T., "Diffusion and backflow models for two phase axial dispersion", I.E.C. Funds. 1963, <u>2</u>, 304.
- 69. MURPHREE, E.V., "Rectifying column calculations",

Ind. Eng. Chem. 1925, <u>17</u>, 747.

- 70. McADAMS, J., "Chemical Engineers Handbook", J.H.Perry ed. McGraw Hill Book Co. Inc. 3rd ed. 1950, p582.
- 71. McCABE, W.L. and THIELE, E.W., "Graphic design of

fractionating columns", Ind. Eng. Chem. 1925, <u>17</u>,605.

- 72. NELDER, J.A. and MEAD, R., "A simplex method for function minimisation", The Computer J. 1965, 7, 308.
- 73. O'CONNELL, H.E., Trans. A.I.Ch.E. 1946, <u>42</u>, 741.
- 74. OVERCASHIER, R.H., TODD, D.B. and OLNEY, R.B., "Some effects of baffles on a fluidised system",

A.I.Ch.E.J. 1959, 5, (1), 58.

75. PIGFORD, R.L., TEPE, J.B. and GARRAHAM, C.J.,

Ind. Eng. Chem. 1951, 43, 2592.

76. POHJOLA, V.J. and NORDEN, H.V., "Process dynamics of

binary distillation", Chem. Eng. Sci. 1969, <u>24</u>,1687. 77. PORTER, K.E., LOCKETT, M.J. and LIM, C.T., "The effect

of liquid channelling on distillation plate efficiency", Trans. Inst. Chem. Eng. 1972, <u>50</u>, 91. 78. QURESHI, R. and SMITH, W., "The distillation of binary and ternary mixtures", J. Inst. Petrol 1958,<u>44</u>,137.

- 79. RETALLICK, W.B., "Distribution of residence times in a cascade of mixed vessels with backmixing",
 I & E.C. Funds., Feb 1965, <u>4</u>, (1), 88.
 80. ROEMER, M.H. and DURBIN, L.D., "Transient response a
 - D. ROEMER, M.H. and DURBIN, L.D., "Transient response and moments analysis of backflow cell model for flow systems with longitudinal mixing", I & E.C. Funds. 1967, <u>6</u>, 120.
- 81. ROSE, A, JOHNSON, R.C. and WILLIAMS, T.J., "Batch fractional distillation; Calculated and experimental curves for batch distillation with appreciable holdup", Ind. Eng. Chem., 1950, <u>42</u>, 2145.
- 82. ROSE, A., SWEENY, R.F. and SCHRODT, V.N., "Continuous distillation calculations by relaxation method", Ind. Eng. Chem. 1958, <u>50</u>, 737.
- 83. ROSENBROCK, H.H., "The transient behavior of distillation columns and heat exchangers. A historical and critical review", Trans. Inst. Chem. Eng. 1962, <u>40</u>, 376.
 84. RUSH, F.E. and STIRBA, G., "Measured plate efficiencies

and values predicted from single phase studies", A.I.Ch.E.J., 1957, <u>3</u>, 336.

85. SARGENT, R.W.H., "The dynamic behavior of multistage systems. Further improvements in the numerical solution", Trans. Inst. Chem. Eng., 1963, <u>41</u>, 51.

86. SAWISTOWSKI, H. and SMITH, W., "Performance of packed distillation columns", Ind. Eng. Chem. 1959, <u>51</u>, 915.

87. SHERWOOD, T.K. and PIGFORD, R.L., "Absorption and

Extraction", McGraw-Hill Book Co. Inc. 1952, 2nd ed. 88. SHERWOOD, T.K. and WOERTZ, B.B., Ind. Eng. Chem.

1939, <u>31</u>, 1034.

89. SHORE, D., Ph.D. Thesis, 1968 University of Leeds.90. SHORE, D. and HASELDEN, G.G., "Liquid mixng on

distillation plates and its effect on plate efficiency", Distillation Symp. 1969, 2:54.

91. SLATTERY, J.C., "Momentum, Energy and Mass Transfer in Continua", McGraw-Hill Book Co. Inc. 1972.

92. SLEICHER, C.A.Jr., "Entrainment and extractor efficiency

of mixer-settlers", A.I.Ch.E.J., 1960, 6, 529.

93. SMITH, B., "Design of Equilibrium Stage Processes", McGraw-Hill Book Co. Inc. 1963.

94. SPALDING, D.B., "A note on mean residence times in steady flows of arbitrary complexity", Chem. Eng. Sci. 1958, <u>9</u>, 74.

95. STANDART, G.L., "Studies on distillation:- V",

Chem. Eng. Sci. 1965, 20, 611.

96. STANDART, G.L., "Comparison of Murphree-type efficiencies with vaporisation efficiencies", Chem. Eng. Sci. 1971, <u>26</u>, 985.

97. STANDART, G.L. and KASTENEK, F., "Studies on distillation:- VIII; The effect of carryover on

plate efficiency", Separation Sci., 1966, <u>1</u>,(1), 27. 98. STEWART,G.N., "Research on the circulation time in

organs and on the influence which affect it",

J.Physiology 1894, <u>15</u>, 1.

99. TETLOW, N.J., "Analysis and Control of Distillation Columns", Ph.D. Thesis, Texas A&M University 1966.
100. TETLOW, N.J., GROVES, D.M. and HOLLAND, C.D.,

"A generalised model for the dynamic behavior of a distillation column", A.I.Ch.E.J. 1967, <u>13</u>, 476. 101. THOMAS, W.J. and CAMPBELL, M., "Mixing, efficiency

- and mass transfer studies in a sieve plate downcomer system", Trans. Inst. Chem. Eng. 1967, <u>45</u>, (2), T64.
- 102. TOWEL, W.L. and SHERWOOD, T.K., Ind. Eng. Chem., 1939, <u>31</u>, 457.
- 103. TOWEL, W.L., SHERWOOD, T.K. and SEDER, L.A., Ind. Eng. Chem. 1939, <u>31</u>, 462.
- 104. TREYBAL, R.E., "Mass Transfer Operations", 2nd ed., McGraw-Hill Book Co. Inc. 1968.
- 105. VAN DRIEST, E.R., J.Applied mech. 1946, 13, A-231.
- 106. VAN DER LAAN, E.T., "Notes on the diffusion-type model for the longitudinal mixing in flow", Chem. Eng. Sci., 1958, 7, 187.

107. VAN WINKLE, M., "Distillation", McGraw-Hill Book Co. Inc., N.Y., 1967.

108. VOETTER, H., "Plant process dynamic characteristics, response of concentration in a distillation column to disturbances in the feed composition", Proc. Conf., Butterworths Scientific Publications 1957, 73.

109. WAGGONER, R.C. and HOLLAND, C.D., "Solution of problems involving conventional and complex distillation columns at unsteady-state operations", A.I.Ch.E.J., Jan 1965, <u>11</u>, 112.

- 110. WELCH, N.E., DURBIN, L.D. and HOLLAND, C.D., "Mixing on valve trays and in downcomers of a distillation column", A.I.Ch.E.J., 1946, <u>10</u>, (3), 373.
- 111. WILKE, C.R., J. Chem. Phys. 1950, <u>18</u>, 517.
- 112. WILKE, C.R. and PIN CHANG, "Correlation of diffusion coefficients in dilute solutions", A.I.Ch.E.J., 1955, <u>1</u>, (2), 264.
- 113. WILKE, C.R. and LEE, C.Y., "Estimation of diffusion coefficients for gases and vapours", Ind. Eng. Chem, 1955, <u>47</u>, (6), 1253.

114. WILKINSON, W.L. and ARMSTRONG, W.D., "An approximate method of predicting composition response of a fractionating column", Chem. Eng. Sci. 1957, 7, 1.
115. WILSON, H.A., Cambridge Phil. Soc. 1904, 12, 406.

116. WOOD, R.M., "The frequency response of multicomponent distillation columns", Trans. Inst. Chem. Eng. 1967, <u>45</u>, (5), T190.

117. WOOD, R.M. and ARMSTRONG, W.D., "The transient reponse of a distillation column to changes in feed composition", Chem. Eng. Sci., 1960, <u>12</u>, 272.
118. ZUIDERWEG, F.J. and HARMENS, D., "The influence of surface phenomena on the performance of distillation columns", Chem. Eng. Sci. 1958, <u>9</u>, 89.
119. ZWIETERING, T.N., "The degree of mixing in continuous flow systems", Chem. Eng. Sci., 1959, <u>11</u>, 1.

APPENDICES

Appendix A

<u>Perforated Tray Hydraulics (1, 104, 107)</u> Liquid depth

The liquid depth on a tray should not be less than 2", and for a large tray 4" or greater is desirable. The liquid depth is the sum of the weir height h_w and the crest over the weir h_{ow} . The weir crest is calculated from the Francis formula:-

$$h_{OW} = 5.38 \left\{ \frac{L_{c}}{l_{eff}} \right\} \qquad \dots \qquad A.1$$

Pressure drops

The pressure drop for the vapour phase is the sum of the effects for the vapour flow through the dry plate and those caused by the presence of the liquid:-

$$h_v = h_D + h_c + h_R$$
 A.2

The pressure drops are expressed as equivalent heads in inches of clear liquid of density ℓ_L lb/ft³ on the tray.

 h_D , the dry pressure drop on entrance to the perforations, the friction within the passage through the plate, and the loss on exit from the plate is given by: $h_D = \frac{12C_D v_h^2 l_V}{\frac{2g l_L}{2g l_L}} \left\{ \begin{array}{c} 0.4(1.25-A_h) + 4l_t f + (1-A_h)^2 \\ A_n & d_h \end{array} \right\} \dots A.3$

The friction factor f is taken from a standard chart (9,114). The orifice coefficient is dependent on the plate thickness to hole diameter ratio. When the ratio is in the range 0.2 to 2 the coefficient is given by:-

$$C_{\rm D} = 1.09 \left\{ \frac{d_{\rm h}}{l_{\rm t}} \right\}^{\frac{1}{4}} \qquad \dots A.4$$

 h_c , the hydraulic head, is the pressure drop due to the depth of liquid on the tray. In the active area of the tray, the liquid is actually froth. The equivalent depth of clear liquid h_c , is that which would be obtained if the froth collapsed. The height decreases with increase in vapour flow and is usually less than the height of the outlet weir. It is difficult to accurately determine this height, but it can be best calculated using:-

$$h_{c} = 0.24 + 0.725h_{w} - 0.29h_{w}u_{g}v_{v}^{0.5} + 4.48 \frac{L_{c}}{1_{w}} \dots A.5$$

h_R, the residual vapour pressure drop is thought to be due to the necessity of overcoming surface tension as the vapour issues from a hole. The balance of the internal pressure in a static bubble required to overcome surface tension is:-

$$\frac{\pi d_p^2}{4} \Delta P_B = d_p \sigma_s \qquad \dots \quad A.6$$

..... A.7

where ΔP_B is the excess pressure in the bubble owing to surface tension. The bubble of vapour grows over a finite

 $\Delta P_{\rm B} = \frac{4\sigma'}{\frac{s}{d}}$

time when the vapour flows and by averaging over time, it developes that the appropriate value is ΔP_R .

$$\Delta P_{R} = \frac{6\sigma'_{s}}{\frac{d_{p}}{d_{p}}}$$

As d cannot be readily calculated, the substitution of $d_h/12$ for d can be made to give an approximate diameter.

$$h_{R} = \frac{12 \Delta P_{R}}{\ell_{L}} \frac{g_{c}}{g} = \frac{0.06\sigma}{\ell_{L}d_{h}} \qquad \dots \qquad A.9$$

It has been stated (104) that the comparison of observed data with values of h_v calculated by these equations, show a standard deviation of 14.7%.

h₂, the pressure loss due to the liquid entering under the downcomer apron can be estimated by:-

$$h_2 = 0.558 \left\{ \frac{L}{A_{da}} \right\}^2 \qquad \dots A.10$$

where A_{da} is the smaller of the two areas; the downcomer sectional area or the free area the downcomer apron and the tray.

h₃, the height of the backup in the downcomer, is the difference in liquid level inside the downcomer to that outside. This is equal to the sum of the pressure losses due to liquid and gas flow.

$$h_3 = h_v + h_2$$

A.3

.... A.8

. A.11

It is inevitable that some of the liquid in the downcomer will be in the form of froth and thus a safe design requires that:-

$$h_w + h_{ow} + h_3 \leq \frac{h_t}{2}$$
 A.12

The visual froth height on the active tray can be estimated using:-

$$h_f = 2.53F^2 + 1.89h_w - 1.6$$
 A.13

where the priming factor F is given by:-

$$F = u_g \begin{pmatrix} \frac{1}{2} \\ v \end{pmatrix}$$
 A.14

The froth velocity is calculated by considering the tray length, the clear liquid height, and the average weir length $w_1:-$

$$w_1 = (T_d + T_w)/2$$
 A.15
 $u_1 = h_c w_1/L_c$ A.16

From these computed values of the clear liquid height, downcomer backup, froth height, froth velocity and the known column dimensions, vapour and liquid flow rates, the eddy diffusion coefficient can be determined from the empirical relationships derived in Chapter 5. From the eddy diffusion coefficient, the Peclet number and the backflow ratio can be calculated. Further, from calculated compositions and densities, the molal holdups for the theoretical model can be calculated.

Notation for Appendix A

A da	smaller of the areas, downcomer sec	- ·
	downcomer and tray clearance.	ft ²
A _h	hole or free area	ft ²
An	net column cross-sectional area for	vapour
· ·	flow	ft ²
c _D	orific coefficient	
d _h	hole diameter	inches
đ p	bubble or partical diameter	ft
F	priming factor	
f	Fanning friction factor	
h ₂	head loss due to liquid flow under	downcomer
		inches liquid
h ₃	backup in downcomer	n
h C	hydraulic head	12
h _D	dry pressure drop , loss on entranc	e "
h f	froth height	inches
h _{ow}	liquid crest over weir	inches
h _t	tray spacing	inches
h _R	residual vapour pressure drop	inches liquid
h	sum of vapour pressure head	
h W	height of weir	inches
L _c	liquid flow rate	ft ³ /sec
l _{eff}	effective length of weir	ft
1 _t	tray thickness	inches

Α5

superficial gas velocity	ft/sec
velocity of vapour through holes	ft/sec
liquid density	lb/ft ³
vapour density	lb/ft ³
surface tension	dynes/cm

ug

v_h

۴Ľ

۴_v

_S

Appendix B

Steady-State Experimental Theory: Liguid Mixing (13)

An axially-dispersed plug flow stream which is tracer free enters via a closed boundary at $z = -z_1$ with a velocity of u_{11} . A second stream containing tracer joins the first stream via another closed boundary at z = 0 and is instantaneously mixed. The cross section remains the same and the flow now has a velocity u_{12} , (z>0). The fluid stream then leaves the system at a third closed boundary $z = z_2$ with a concentration c_{out} . For steadystate there is no flux between $(-z_1, 0)$ and a constant net flux in $(0, z_2)$:-

$$u_{11}^{c} - De_{1}\frac{dc}{dz} = 0$$
 $-z_{1}^{c} < z < 0$ B.1

$$u_{12}^{c} - De_{2} \frac{dc}{dz} = u_{12}^{c} \text{out} \qquad 0 < z < z_{2} \qquad \dots \qquad B.2$$

The solution of equation B.l is:-

$$c = c_{out} \exp(u_{12} z/De_1) \qquad \dots B.3$$

For experimental purposes, the tracer input was negligibly small compared with the bulk flow:-

 $u_{11} = u_{12} = u_1$; $De_1 = De_2 = De$ B.4 From equation B.3, the eddy diffusivity can now be determined:-

$$De = \frac{u_1 z}{\ln(c/c_{out})} \qquad \dots \qquad B.5$$

Appendix C

Theory of Eddy Diffusion in the Gas Phase (91)

It is assumed that the main flow is in free turbulence and that the mass flux may be expressed in terms of a constant eddy diffusivity. Therefore, it is justifiable to assume that there is only one nonzero component of the velocity in the cylindrical coordinate system Fig C.1.

Fig C.l Schematic representation of the vapour mixing system.

$$V_r = V_{\theta} = 0 \qquad \dots \dots C.1$$

Assuming incompressible flow the equation of continuity becomes zero and the steady-state rate of change in concentration for any constant distance \tilde{r} is zero.Thus the reduced form of the diffusion equation for the tracer is:-

$$V_{h_{t}} \left\{ \begin{array}{c} \frac{dc}{dh_{t}} \\ \end{array} \right\}_{\widetilde{r}}^{2} = De \left\{ \begin{array}{c} \frac{d^{2}c}{dh_{t}^{2}} \\ \end{array} \right\}_{\widetilde{r}}^{2} \qquad \dots C.2$$

C2

As the air is pure downstream from the point of injection, one of the boundary conditions is:-

as $\tilde{r} \rightarrow \infty$ $c \rightarrow 0$ C.3

for a constant value of \tilde{r} , the mass flow rate of the tracer at the injection point is given by:-

$$C = \int_{0}^{2\pi} \int_{0}^{\pi} \tilde{r}^{2} \sin \Theta d\Theta d\psi = 2\pi \int_{0}^{\pi} (\bar{v}_{\tilde{r}} - v \operatorname{Dedc}) \tilde{r}^{2} \sin \Theta d\Theta \dots C.4$$

If it is assumed that:-

as
$$\tilde{r} \rightarrow 0$$
 $\bar{\ell} \tilde{r} \rightarrow k_1 = a \text{ constant}$ C.5

then it follows that:-

as
$$\tilde{r} \rightarrow 0$$
:

$$\int_{0}^{\tilde{r}} \tilde{r} v_{\tilde{r}} \tilde{r}^{2} \sin \theta d\theta = \int_{0}^{\tilde{r}} \tilde{r} v_{h} \tilde{r}^{2} \sin \theta \cos \theta d\theta = 0$$
and as $\tilde{r} \rightarrow 0$:

$$c = -2\pi \int_{0}^{\pi} \theta \frac{\partial \theta}{\partial \tilde{r}}^{2} \sin \theta d\theta$$

$$= -2\pi (\theta \frac{\partial \theta}{\partial \tilde{r}} \int_{0}^{\pi} \theta \sin \theta d\theta$$

$$= -4\pi (\theta \frac{\partial \theta}{\partial \tilde{r}} \int_{0}^{\pi} \theta \sin \theta d\theta$$

$$= -4\pi (\theta \frac{\partial \theta}{\partial \tilde{r}} \int_{0}^{\pi} \theta \sin \theta d\theta$$

$$= -4\pi (\theta \frac{\partial \theta}{\partial \tilde{r}} \int_{0}^{\pi} \theta \sin \theta d\theta)$$

Equation C.7 has been derived using equation C.5 in that

as
$$\tilde{r} \rightarrow 0$$
 $\tilde{r}^2 \frac{dc}{d\tilde{r}} = -\frac{k_1}{2}$ C.8

A solution to equation C.2 consistent with the boundary conditions C.3 and C.7 was suggested by Wilson (115) to be of the form:-

$$c = e^{-\alpha h} t \phi(\tilde{r})$$
 C.9

From this assumed solution the following equation can be calculated:-

$$\left\{\frac{\mathrm{d}\mathbf{c}}{\mathrm{d}\mathbf{h}_{t}}\right\}_{\mathbf{r}}^{-\alpha \mathbf{h}_{t}} = -\alpha \mathbf{e}^{-\alpha \mathbf{h}_{t}} \boldsymbol{\phi} + \mathbf{e}^{-\alpha \mathbf{h}_{t}} \left\{\frac{\mathrm{d}\boldsymbol{\phi}}{\mathrm{d}\mathbf{h}_{t}}\right\}_{\mathbf{r}}^{-\alpha \mathbf{h}_{t}} \qquad (10)$$

From which equation C.2 becomes:-

$$V_{h_{t}} \left\{ \begin{array}{c} -\alpha e \\ -\alpha e \\ \end{array} \right\}_{p} + e \\ \left\{ \frac{d\phi}{dh_{t}} \right\}_{r} \left\{ \begin{array}{c} -\alpha h_{t} \\ \end{array} \right\}_{r} = De \left\{ \alpha^{2} e^{-\alpha h_{t}} \phi - \frac{dh_{t}}{dh_{t}} \right\}_{r} = De \left\{ \alpha^{2} e^{-\alpha h_{t}} \phi - \frac{dh_{t}}{dh_{t}} \right\}_{r} = De \left\{ \alpha^{2} e^{-\alpha h_{t}} \phi - \frac{dh_{t}}{dh_{t}} \right\}_{r} = De \left\{ \alpha^{2} e^{-\alpha h_{t}} \phi - \frac{dh_{t}}{dh_{t}} \right\}_{r} = De \left\{ \alpha^{2} e^{-\alpha h_{t}} \phi - \frac{dh_{t}}{dh_{t}} \right\}_{r} = De \left\{ \alpha^{2} e^{-\alpha h_{t}} \phi - \frac{dh_{t}}{dh_{t}} \right\}_{r} = De \left\{ \alpha^{2} e^{-\alpha h_{t}} \phi - \frac{dh_{t}}{dh_{t}} \right\}_{r} = De \left\{ \alpha^{2} e^{-\alpha h_{t}} \phi - \frac{dh_{t}}{dh_{t}} \phi - \frac{dh_{t}}{dh_{t}} \right\}_{r} = De \left\{ \alpha^{2} e^{-\alpha h_{t}} \phi - \frac{dh_{t}}{dh_{t}} \phi - \frac{dh_{t}}{dh_{$$

 $\alpha e^{-\alpha h} \left\{ \frac{d\emptyset}{dh_{t}} \right\}_{r} - \alpha e^{-\alpha h} \left\{ \frac{d\emptyset}{dh_{t}} \right\}_{r} + e^{-\alpha h} \left\{ \frac{d^{2}\emptyset}{dh_{t}^{2}} \right\}_{r} \right\} \dots C.11$ rearranging and dividing by $e^{-\alpha h} t$ gives:-

If a is defined by:-

then equation C.12 reduces to:-

$$\emptyset \propto^2 = \left\{ \frac{\mathrm{d}^2 \emptyset}{\mathrm{dh}_t^2} \right\}_r$$

which in cylindrical coordinates gives :-

C3

.14

c.15

Taking a change of variable:-

gives equation C.15 as:-

$$e^{2}Y = \frac{d^{2}Y}{d\tilde{r}^{2}} \qquad \dots \dots \quad C.17$$

for which the solution is :-

$$Y \equiv \tilde{r}\phi = Ae^{\alpha r} + Be^{-\alpha r}$$
 C.18

For boundary condition C.3 to be satisfied $r \rightarrow \infty$; $c \rightarrow 0$ constant B = 0 as α is always negative.

From this result and from equations C.9, C.16, C.18 it is found that:-

$$c = \underbrace{A.exp}_{\widetilde{r}} (\alpha (\widetilde{r} - h_t)) \qquad \dots \dots \quad C.19$$

Boundary condition C.7 states that:-

as
$$r \rightarrow 0$$
; $C \rightarrow 4 \uparrow \uparrow (DeA$ C.20
or $A \equiv C$ C.21

 $A = \frac{C}{411 \text{ (De}}$

Equations C.13, C.19, C.22 represent the mass fraction distribution for the tracer in free-turbulent flow described.

The useful result for experimental purposes is given by the equation for mass fraction:-

$$c = \frac{C}{4 \pi \text{De} \tilde{r}^{\text{exp}}} \left\{ \frac{-V_{\text{h}}}{2\text{De}} \cdot (\tilde{r} - h_{\text{t}}) \right\} \qquad \dots C.22$$

If the volumetric flow of the tracer is Q_h , then:-

$$c = \frac{Q_h}{4\pi De\tilde{r}} \cdot \exp\left\{\frac{-V_h}{2De}t \cdot (\tilde{r} - h_t)\right\}$$

C4

C.16

... C.22

Notation for Appendix C

А, В	constants	-
C	mass flow rate of tracer	lb/sec
С	mole fraction of tracer	-
De	eddy diffusion coefficient	ft ² /sec
ht	tray height	ft
k ₁	constant	
0 _h	volumetric flow rate of tracer	ft ³ /sec
r	radial distance	ft
ŕ.	distance from injection to sample	ft
v _h t	velocity of main stream	ft/sec
v _r , v _e	velocity in cylindrical coordinate	
	system	ft/sec
Y	change of variable (eqn. C.16)	-
a	(see eqn. C.13)	-
ę	density of tracer	lb/ft ³
ह	molal density of tracer lb r	noles/ft ³
θ	angle in coordinate system	radians
ø	(see eqn. C.9)	-

C5

Appendix D

Generalised Model, Unsteady-State Simulation Program

D.1 Generalised Model Subroutines

Master Unsteady

This subroutine gives a listing of the nomenclature used for all the subroutines. Any parameters that are not listed in this section but appear in the program are of no importance but have been introduced to ease the computation. At the end of the subroutine the initial working subroutine is called.

Subroutine Sec 1

This subroutine reads in the data needed to set the initial steady-state data and calculate column dimensions and system parameters. Subroutine System

This subroutine is the centre of the program. The initial data read in includes the run time and printout step lengths for the initial steady-state calculation and the flag markers which indicate how the flow changes, if any, are made. The liquid and vapour flow rates are calculated and the integration parameters are initialised. The subroutine calls the integration routine and the calculated data is returned and written onto a disc in order to save on core storage. The maximum and minimum values of the

Appendix D

Generalised Model, Unsteady-State Simulation Program

D.1 Generalised Model Subroutines

Master Unsteady

This subroutine gives a listing of the nomenclature used for all the subroutines. Any parameters that are not listed in this section but appear in the program are of no importance but have been introduced to ease the computation. At the end of the subroutine the initial working subroutine is called.

Subroutine Sec 1

This subroutine reads in the data needed to set the initial steady-state data and calculate column dimensions and system parameters. Subroutine System

This subroutine is the centre of the program. The initial data read in includes the run time and printout step lengths for the initial steady-state calculation and the flag markers which indicate how the flow changes, if any, are made. The liquid and vapour flow rates are calculated and the integration parameters are initialised. The subroutine calls the integration routine and the calculated data is returned and written onto a disc in order to save on core storage. The maximum and minimum values of the plate efficiencies, point efficiencies and efficiency ratios are estimated for use in the graph plotting. The routine then goes back to the integration routine for another integration step.

Subroutine Diffun

This routine contains all the differential equations to be operated on. At the end of this routine the top product comparison is carried out to see how near to steadystate the calculation is. This subroutine calls two other subroutines which are needed to calculate the average densities of the liquid and vapour phases, the molal holdups and the point efficiency for each plate. Subroutine Flow 1

This subroutine calculates the average densities of both the liquid and vapour phases and the volumetric flow rates. If liquid flow rate changes are introduced, the subroutine Flow 2 is called.

Subroutine Flow 2

The subroutine is only called if flow changes occur. The new flow rates are estimated and then the routine returns to Flow 1. Subroutine Equida

The vapour composition in equilibrium with the liquid and the temperature of the liquid are calculated according to the equilibrium relationship used.

Subroutine AICHE .

All the parameters involved with calculating the point and plate efficiencies are brought over into this routine. The slope of the equilibrium line and the point efficiency for each plate is calculated according to the relationships given in the A.I.Ch.E Bubble-Tray Design Manual (1). Subroutine IPNEU

This subroutine contains a polynomial equation for calculating the collision integral for diffusion. Subroutine IDNEU

This subroutine contains a polynomial equation for calculating the collision integral for diffusion. Subroutine Writer

The calculated data stored on disc is read and written in a presentable form. The storage used for the integration routine is now used for storing this data. The liquid composition data, the plate and point efficiency data and the efficiency ratio data are stored in an array for carrying over to the plotting routine. This array is finally written on to disc to be stored for plotting. Master Drawer

This is the master routine of another program that is run immediately after Master Unsteady. The reason for having to run another program is that the plotting routine available had a limitation on the core storage that could be used during the program and this was exceeded in the unsteady-state simulation. The values to be plotted are read from the disc and transfered to the plotting routine. Subroutine Plot 1

This routine plots the liquid composition responses, the point efficiency, plate efficiency and efficiency ratio responses for the 5 plate column.

The data needed for running the program is always read in in free format. The parameters read in are in the order:-

N, NF, QFS, W, TL

AMA, BMA, DMA, DMB, VZ1, VZ2

AKI, FS, XFS, WS, LP, LQ, AREL

XS(1)

XS(2) to XS(total)

YV(1) to YV(N)

SLOPE, CONST, IREL, TB1, TB2 ... TCAN, STEP1, STEP2, HMAX1, HMAX3

IDIST

IREL

IMARK, NIMP, AIN, VVS, XFS

Nomenclature used:-

N

the number of plates including the reboiler as one

plate•

 \mathbf{NF}

the feed plate number counting upwards from the reboiler.

QFS the q-line feed condition.

W the weir height (inches).

TL the column diameter (ft).

AMA, BMA the molecular weights of the volatile and nonvolatile components.

DMA, DMB the liquid densities at the boiling temperature of the volatile and nonvolatile components. (gm/cc) VZ1,VZ2 the liquid viscosity at the boiling points of the

volatile and nonvolatile components. (centipoise)

AKI the liquid flow rate leaving the bottom plate for the reboiler. (lb moles/hr)

FS feed flow rate. (lb moles/hr)

XFS the volatile component feed composition, (mf)
WS the bottom product flow rate. (lb moles/hr)
LP the number of liquid pools going to form l vapour
cell. For no vapour mixing LP = l and for perfect
mixing LP = LQ

Lq the number of liquid pools for the active area. AREL the relative volatility.

XS the liquid composition of the more volatile component, (mf). XS(1) is the reboiler value and XS(2) is the composition of the last pool on the bottom plate.

YV

the average vapour composition leaving the plate. YV(1) is the reboiler value, (mf).

SLOPE slope of the equilibrium line if linear relationship

is used. If not used then any values as they are not considered during computation.

CONST the constant in the linear equilibrium relationship. IREL equilibrium relationship flag: set to 1 if constant relative volatility used: set to 2 if linear equilibrium relationship used.

TB1, TB2 the boiling points of the volatile and nonvolatile components respectively. (^oc)

TCAN the time for the steady-state simulation before the disturbance is introduced. (sec)

STEP1, STEP2 the time between write statements being operated. (sec)

HMAX1, HMAX3 the maximum integration step lengths that will be allowed for the steady-state and unsteadystate simulations. (sec)

IDIST an integration flag that if set to 2 uses the step length taken by the integration program, but if set to 1 doubles the allowable step length to decrease the computation time needed.

IREL

a flag set to 1 for ordinary use but set to 2 for vapour flow changes.

IMARK a constant molal flow flag: set to 1 for variable molal flow and set to 2 for constant molal flow in the unsteady-state simulation.

D6

NIMP the plate number where the disturbance is introduced.
AIN the change in the flow. (lb moles/hr)
VVS the change in vapour flow. (lb moles/hr)
XFS the new unsteady-state liquid feed composition. (mf)

D7

MASTER UNSTEADY

N=NUMBER OF PLATES WHERE REBOILER IS PLATE ONE NF=FEED PLATE QFS=Q LINE VALUE, ASSUMED = OR > THAN 1 COLUMN DIMENSIONS:- TW=WIDTH, TAA=ACTIVE LENGTH, TL=TOTAL LENGTH, NONVOLATILE VOLATILE PHYSICAL PROPERTIES:= DMB GM/CC. DENSITIES Ďма BMA MOLE WEIGHTS Ама VZ2 VISCOSITIES VZ1 **YB2** BOILING TEMP. TB1 WEIR HT, INS, = W ACTIVE AREA=TA POINT EFFICIENCY=E ; EP NUMBER OF POOLS FOR ACTIVE AREA=LQ NUMBER OF VAPOUR CELLS=KR, NUMBER OF LIQUID POOLS/VAPOUR CELL=IP REFLUX RATIO=RR BACKFLOW RATIO=BETA VAPOUR FLOW #VV,VS,VR LIQUID FLOW #ALS MOLAR HOLDUPS= VD, VT, VR, VC FOR DOWNCOMER, TRAY, REBOILER, CONDENSER FEED RATE=FS, FEED CONCENTRATION=XFS ROTTOM RATERWS TOP RATERDS ESTIMATED TOP PRODUCT=ETP, CALCULATED TOP PRODUCT=CTP CONCENTRATIONS:- LIQUID=XS ; Y VAPOUR CELLEYC VAPOUR=YS PECLET NO. = PE, EDDY DIFFUSION COEFFICIENT=DE HEIGHTS :- CLEAR LIQUID=HC FROTH=HF VELOCITIES: - FROTH=UL SUPERFICIAL GAS=UG DENSITIES LB/CU.FT LIQUID=PL VAPOUR≠PV SPACE TIMES SECS. REBOILER= AUR TEMPERATURES TBOIL DOWNCOMER=TAUD TEXIT TEXIT TRAYSHTAUT TCOND CONDENSER=TAUC

EQUILIBRIUM VALUE OF VAPOUR=YE AVERAGE VALUE OF VAPOUR=YV MURPHREE VAPOUR PLATE EFFICIENCY=EMVP

ğ

PARAMETERS TO BE READ IN AND THE ORDER NUMBER OF DATA/CARD. ALL READS ARE IN FREE FORMATS. N.NF.QFS.W.TL AMA, BMA, DMA, DMB, VZ1, VZ2 AK1, FS, XFS, WS, LP, LQ, AREL XS(1) XS(2) TO XS(TOTAL) VV(1) TO VV(N) SLOPE, CONST, IREL, TB1, TB2 TCAN, STEP1, STEP2, HMAX1, HMAX3 IDIST MF IREL IMARK, NIMP, AIN, XFS TCAN =ONE QUARTER OF THE TOTAL TIME TO BE RUN. STEP1=THE PRINTING STEP AND HMAX1=INTEGRATION STEP. IDIST=1 IF THE INITIAL INTEGRATION STEP AFTER THE DISTURBANCE HAS BEEN INTRODUCED CAN BE DOUBLED. MF=0.1.2 DEPENDING ON THE NUMERICAL INTEGRATION USED. IREL=1,2,3 DEPENDING ON THE BOIL UP RATE AND REFLUX. IMARK=2 FOR CONSTANT MOLAR HOLDUP, OTHERWISE IMARK=1 NIMP=PLATE NUMBER FOR DISTURBANCE . AIN=THE SIZE OF FLOW CHANGE XFS=THE NEW VALUE OF THE FEED COMPOSITION CALL SEC1 STOP END

E

```
SUBROUTINE SEC1
    DIMENSION XS(40), ALS(10)
    DIMENSION EMVP(10), YV(10), TEXIT(10), YE(10)
    COMMON/FEED/XFS, E, FS, WS, DS, EMVP, YV, TEXIT, YF
    COMMON/ALPH/AREL, IREL
    COMMON/DATE/AMA, BMA, DMA, DMB, W, TAA, TL, TA, TR, AD, VZ1 + VZ2+QFS+N, NF, TW,
   1LQ, XS, ALS, KR, LP, LZ, HDIA, TTH, HOA, ANT, AUD, COV
    COMMON/EQU/SLOPE, CONST, TB1, T82
    THIS SUBROUTINE CALCULATES THE COLUMN DIMENSIONS AND THE
    RELAVANT AREAS FOR USE IN EMPIRICAL EQUATIONS.
    SET COLUMN AND SYSTEM PARAMETERS
    READ(1,101)N,NF,QFS,W,TL
101 FORMAT(210,3F0.0)
    ₩≈₩/12
    READ(1,103)AMA, BMA, DMA, DMB, V21, V22
103 FORMAT(6F0.0)
    READ(1,104)AKI, FS, XFS, WS, LP, LQ, AREL
104 FORMAT(4F0.0,210,F0.0)
    TW=.885+TL
    TA1=SQRT((TL/2)++2-(.385+TL)++2)
    T01=TL/2-TA1
    TW1= 77+TL
    AD2=TW1+TD1
    THETA=ASIN(TW1/TL)
    TTA=3.1415926+TL++2/4
    TTA=3.1415926*(TL++2)/4
    AS=TTA+THETA/3 1415926
    AD=AS=0.5+TA1+TW1
    TD2=TD1+AD/AD2
    TR=TD2+2+TA1
    TAA=2+TA1
    TA=TTA-2+AD
```

DIO

```
HDIA=.1875
   TTH=0.1
    HOA= 1+TTA
    ANT=TTA-AD
    AUD=TW1+1.0/12.0
    COV=1.09*(HDIA/TTH)**0.25
    PIT=0.5
    APR=1.0
    w2=w+12.0
    WRITE(2.200)
200 FORMAT(1H1,///////28X,31HDISTILLATION COLUMN DIMENSIONS.)
    WRITE(2,202)
202 FORMAT(/30X,21H WEIR AND DOWNCOMER.)
    WRITE(2,201)
                                         LENG_FT
201 FORMAT(/15x,6HDIA,FT,4x,38HHT,INS
                                                   SEC AREA
                                                                  APRON)
    WRITE(2,203)TL,W2,TW1,AD,APR
203 FORMAT(17X,F3+1,6X,F4+2,6X,F6+4,5X,F6+3,8X,F3,1)
    WRITE(2,204)
                                           TRAY AREAS.)
204 FORMAT(//21X,35HPERFORATIONS
    WRITE(2, 205)
205 FORMAT(15X,48HDIA.INS PITCH
                                     AREA
                                              NFT
                                                     ACTIVE
                                                               GROSSI
    WRITE(2,206)HDIA, PIT, HOA, ANT, TA, TTA
206 FORMAT(15X, F6+4, 5X, F3+1, 3X, F7+4, 2X, F6+3, 2X, F6+3, 2X, F6+3)
    WRITE(2,207)
207 FORMAT(//30X,26HDATA USED FOR COMPUTATION.)
    WRITE(2,208)
208 FORMAT(15X, SOHM, WT.A M.WT.B
                                     ROF A
                                             ROF B
                                                   VIS A
                                                             VIS B
                                                                      RE
   11. ....
    WRITE(2,209)AMA, BMA, DMA, DMB, VZ1, VZ2, AREL
209 FORMAT(15X,2(F6.2/3X)/2(F5.3/3X)/2(F5.2/3X)/F6.2)
    READ IN INITIAL ESTIMATES OF TRAY CONCENTRATIONS
    SET FEED RATE AND COMPOSITION
    NLIM=(N=1)+(LQ+1)+2
    READ(1,102)XS(1)
```

```
READ(1,102)(XS(I),I=2,NLIM)

102 FORMAT(7F0.0)

READ(1,100)(YV(I),I=1,N)

100 FORMAT(6F0.0)

READ(1,105)SLOPE,CONST,IREL,TB1,TB2

105 FORMAT(2F0.0,I0,2F0.0)

ALS(2)=AKI

KR=LQ/LP

LZ=LQ=LP

CALL SYSTEM

RETURN

END
```

D12

```
SUBROUTINE SYSTEM
 DIMENSION EP(10), DL(10), DG(10), ANO(10), ANG(10), ANL(10), AB(10), FS(1
10)
 DIMENSION ALE(10), ERA(10), TIM(100)
 DIMENSION TEXIT(10)
 DIMENSION XR(40),XS(40),ALS(10),YS(40),YC(50),YE(10),YV(10),EMVP(1
10)
 DIMENSION V(8,40), YMAX(40), SAVE(40,12), PSAVE(1600), ERROR(40),
1A(8), PFRTST(7,2,3)
 DIMENSION DENS(10), VDEN(10), PEN(10), B(10), SL(10), WD(10), WT(10)
 COMMON/SSL/ALLS(10)
 COMMON/METH/MF
 COMMON/NUM/IY
 COMMON/GRAF/EQMAX, EQMIN, ELMAX, FLMIN, AMAXE, AMINE
 COMMON/FEED/XFS, E, FS, WS, DS, EMVP, YV, TEXIT, YF
 COMMON/ISAR/1
 COMMON/PFS1/Y, SAVE, PSAVE, YMAX, ERROR, A, PERTST
 COMMON/EPRS/ALE, ERA, EP, DL, DG, ANO, ANG, ANL, AB, ES, XR, WD, WT, VR, VS, DENS
1, VDEN, R, PEN, CTP, ETP, TCOND, VD, VT, VC, VB, YS, YC, TBOIL, IC, IZ, HT
 COMMON/DIST/IMARK, 1DIST
 COMMON/DATE/AMA, BMA, DMA, DMB, W, TAA, TL, TA, TR, AD, VZ1, VZ2, QFS, N, NF, TW,
1LQ,XS,ALS,KR,LP,LZ,HDIA,TTH,HOA,ANT,AUD,COV
 COMMON/ALPH/AREL/IREL
 COMMON/REFL/IREF
 COMMON/RELV/RV(10)
 THIS SUBROUTINE IS THE CENTRE OF THE PROGRAM.
 INITIALISES THE INTEGRATION PARAMETES, CALLS THE INTEGRATION
```

ROUTINE THEN WRITES ON TO DISC. IT THEN CALLS THE WRITING ROUTINE WHICH READS THE STORED DATA ON DISC AND WRITES IT OUT.

READ(1,100)TCAN, STEP1, STEP2, HMAX1, HMAX3

```
100 FORMAT(5F0,0)
READ(1,101)10IST
READ(1,101)MF
READ(1,101)1REF
```

D

101	FORMA	T(10)
-----	-------	-------

C		
Ĉ		CALCULATE FLOW RATES OF STREAMS
Ċ		SET VALUES FOR THE BUTTOM RATE
Ċ.		
- · ·		HT=0.0
		12=0
		1 C = 0
		DS#FS-WS
		00 2 1=2/NF-1
	2	ALS(1+1)=ALS(1)
	-	DO 8 1=(NF+1), (N+1)
. •	8	ALS(1)=ALS(NF)-FS+OFS
	-	DO 14 1=2,N+1
	14	
		VS=(ALS(2)-WS)/LQ
		VR=(QFS+FS+ALS(NF+1)-WS)/LO
		XWS=XS(1)
c		
Ċ.		SET INTEGRATION PARAMETERS.
č	•	
V .		EPS=0.1
		DO 3 1=1,40
		YMAX(I)=1.0
		ERROR(T)=0
		00 3 1=1,40
3		PSAVE(J+(1-1)+40)=0.
		DO 4 I=1,8
	÷.,	00 4 J=1,40
4		Y(I,J)=().
		p0 5 I=1,12
		DO 5 J=1,40
5		SAVE(J, T)=0.
-		DO 6 1=1,8
6		A(1)=0.
		DO 7 1=1,7
		n n tit.

Ę

	PERTST(1,J,K)=0. T=0.					
·	SET THE MAXIMUM T SET THE MINIMUM,	TIME TO RUN	NIT BIGT	I INTEGRATIO	N STEP LENGTH	s
	SET THE INITIAL I	LIMITS FOR	PLOTTING	PURPOSES.		- -
-	H=1,0E-7					
	HMIN=1,E=20					
	BIGT=4+TCAN					
	STEP=STEP1					
	HMAX=HMAX1			· · ·	Ч	
	JSTART=0					
	MAXDER=7			• •		
	NLIM=(N-1)+(LQ+1))+2			2	
	DO 24 I=1.NLIM				· .	• ·
	Y(1,1)=XS(1)			•	н. -	
24	CONTINUE	· · · ·				
÷.	NN=(N-1)*(LQ+1)+i	2				
	N4=NN+NN					
	TMAX=0.0					
	1=0			• .		•
	AMINE=2.0			-		
·	AMAXE=0.5					
	EOMAX=0.0					
	EOMIN=1,0	'n				
	ELMAX#0.0			•		
	ELMIN=2.0					
	RR≠ALS(N+1)/DS				~	
20	CONTINUE				_	
	IY≠()				-	

D15

```
IF(KFLAG)11,11,12
11 WRITE(2,13)KFLAG
   EPS*EPS*10
13 FORMAT(3X,6HKFLAGE,15)
   GO TO 20
12 CONTINUE
   DO 1 JX=1.NLIM
1 XS(JX)=Y(1,JX)
   REFLUX SETTINGS.
   IREF=1 FOR CONSTANT REFLUX WITH BOTTOMS VARYING.
   IREF=2 CHANGE IN VAPOUR RATE
   IREF=3 FOR NEW CONSTANT REFLUX WITH CHANGE IN BOTTOMS WITH
   LIQUID FLOWS HELD CONSTANT AT NEW VALUE.
   WS=ALS(2)-VS+LQ
   RR=ALS(N+1)/DS .
   DS=VR+LQ-ALS(N+1)
   IF(T.LT. TMAX)GO TO 20
   HT=T
   TMAX=TMAX+STEP
   1=1+1
   KC≖Ü
   IF(IC, LT, 1) TST=T
```

TACT=T-TST TIM(I)=T/60

C

WRITE CALCULATED DATA ON TO DISC.

```
WRITE(3)TACT

WRITE(3)FS,XFS,WS,DS,RR

WRITE(3)VB,VC

WRITE(3)Y(1,1),Y(1,NLIM)

WRITE(3)YS(1),CTP

WRITE(3)TBOIL,TCOND,ETP

WRITE(3)(Y(1,J*(LQ+1)+1),J=1,N-1)
```

Э Ē

```
00 26 JJ=1,LQ
      1=10+2-11
      WRITE(3)((Y(1, )+(KK-1)*(LQ+1)),YS()+(KK-1)*(LQ+1))),KK=1,N-1)
   26 CONTINUE
      WRITE(3)(ALS(J), J=2,N)
      V8=VS+10
      VR1=VR*1Q
      WRITE(3)V8,V81
      WRITE(3)(YV(J), J=1, N=1)
      WRITE(3)(YV(J), J=2, N)
      WRITE(3)(YE(J),J=2,N)
      WRITE(3)(TEXIT(J),J=2,N)
      WRITE(3)(PEN(J), J=2,N)
      WRITE(3)(B(J), J=2,N)
      WRITE(3)(ES(J), J=2,N)
      WRITE(3)(AB(J),J=2,N)
      WRITE(3)(EP(J),J=2,N)
      WRITE(3)(EMVP(J),J=2,N)
      WRITE(3)(ERA(J), J=2,N)
      WRITE(3)(RV(J), J=2, N)
      WRITE(3)(XR(J), J=2, N)
C
      SET NEW LIMITS FOR PLOTTING.
C
      00 10 JJ=2,N
      IF(EMVP(JJ).GE_AMAXE)AMAXE=EMVP(JJ)
      IF(EMVP(JJ).LE.AMINE)AMINEGEMVP(JJ)
      IF(EP(JJ), LE, EOMIN)EOMIN=EP(JJ)
      IF(EP(JJ).GE.EOMAX)EOMAX#EP(JJ)
      IF(ERA(JJ) LE.FLMIN)ELMIN#ERA(JJ)
      IF(ERA(JJ).GE.ELMAX)ELMAX#ERA(JJ)
   10 CONTINUE
      CHECK FOR TIME THE DISTURBANCE IS TO BE INTRODUCED.
5
      SET NEW LIMITS FOR INTEGRATION STEP LENGTHS.
```

D17

```
IF(IC.EQ.1)IC=2

IF(IC.EQ.2)GO TO 22

IF(IC.EQ.0.AND.T.GE.TCAN)IC=1

IF(IC.EQ.0)GO TO 22

IF(IC.EQ.1)TMAX=T

IF(IC.EQ.1)H=0.02

STEP=STEP2

EPS=0.001

22 CONTINUE

IF(I.GE.90)GO TO 31

IF(T.LT BIGT)GO TO 20

31 CONTINUE

SET FINAL LIMITS FOR PLOTTING
```

C

Ĉ

Ċ

C

```
EOMIN=(INT(EOMIN*10))/10.0
EOMAX=(INT(EOMAX*10+1))/10.0
ELMIN=(INT(ELMIN*10))/10.0
ELMAX=(INT(ELMAX*10+1))/10.0
AMINE=(INT(AMINE*10))/10.0
AMAXE=(INT(AMAXE*10+1))/10.0
```

CALCULATED TRUE TIME IN MINUTES :- TIM(J)

```
DO 9 J=1,I
9 TIM(J)=TIM(J)=TST/60.0
CALL WRITER(1,TIM,LQ.N)
RETURN
END
```

E ω

```
SUBROUTINE DIFFUN(T, Y, SAVE, N2, NN)
DIMENSION PWD(10), PWT(10)
DIMENSION V8(40), AB(10), ES(10), EPP(2), WTM(2), DSD(2), CD(2), VIS(2)
DIMENSION THI(2), DG(10), VLG(10), DL(10), ANG(10), ANL(10), ANO(10), EP(
110)
DIMENSION SN(10), SLM(2)
DIMENSION V(8,37), SAVE(444,1)
 DIMENSION VE(10)
 DIMENSION EMVP(10), YV(10), TEXIT(10)
 DIMENSION XR(40), XS(40), ALS(10), YS(40), YC(50)
 DIMENSION DENS(10), VDEN(10), PEN(10), B(10), SL(10), WD(10), WT(10)
 DIMENSION ALE(10), ERA(10)
 COMMON/ALPH/AREL, IREL
 COMMON/REFL/IREF
 COMMONINSINIMP
 COMMON/DATE/AMA, BMA, DMA, DMB, W, TAA, TL, TA, TR, AD, VZ1, VZ2, QFS, N, NF, TW,
1LO, XS, ALS, KR, LP, LZ, HDIA, TTH, HOA, ANT, AUD, COV
 COMMON/HOLD/HOL(10)
 COMMON/RELV/RV(10)
 COMMON/HDIE/TPD(10), TPT(10)
 COMMON/SSL/ALLS(10)
 COMMON/DIST/IMARK, IDIST
 COMMON/FEED/XFS, E, FS, WS, DS, EMVP, YV, TEXIT, YF
 COMMON/NUM/IY
 COMMON/FPRS/ALE, ERA, EP, DL, DG, ANO, ANG, ANL, AB, ES, XR, WD, WT, VR, VS, DENS
1. VDEN. B. PEN. CTP, ETP, TCOND, VD. VT. VC. VB. YS. YC. TBOIL, IC. IZ. HT
 THIS ROUTINE CONTAINS ALL THE DIFFERENTIAL EQUATIONS
```

```
WTM(1)=AMA
WTM(2)=BMA
DSD(1)=DMA
DSD(2)=DMB
IY=IY+1
IF(IMARK.NE.2)IMARK=1
IF(IY.NE.1)G0 TO 20
```

IF(IC.NE.1)60 TO 20

SET IMARK EQUAL TO 2 FOR NO CHANGE IN FLOWS.

```
STEP CHANGE MADE IN ONE OF THE PARAMETERS
```

```
INITIATE ANY CHANGES IN FLOW RATE
CHANGES IN THIS SECTION ARE FOR STEP CHANGES ONLY,
```

```
READ(1,100)IMARK,NIMP;AIN;VVS,XFS
```

```
100 FORMAT(210,3F0.0)
```

```
JF(IREF_EQ.2)VS=VS+VVS/1Q
IF(IREF.EQ.2)WS=ALS(2)=VS+1Q
```

```
20 CONTINUE
ALS(1)=WS
IF(IV.NE.1)GO TO 2
IF(IMARK.EQ.2)GO TO 2
IF(IREF.EQ.2)GO TO 2
```

```
INITIALISE THE FLOW CHANGES AND THE STEADY-STATE VALUES THAT WILL
BE ACHIEVED EVENTUALLY
```

```
IF(IC.NE.1)GO TO 1
IF(NIMP EQ.NF)GO TO 3
ALS(NIMP+1)=ALS(NIMP+1)+AIN
DO 4 J1=1,N+1
```

```
4 ALLS(J1)=ALS(J1)+AIN
GQ TO 2
```

3 TSTOT

```
TAU = (WD(NF) + WT(NF)) + 3600.0/ALS(NF)
ALSS=A(S(NF)
```

00 5 J1=1.NF

```
5 ALLS(J1)=ALS(J1)+AIN
```

Ñ 0

```
FS=FS+AIN
1 IF(IC.NE.2)G0 TO 2
IF(NIMP NE.NF)GO TO 2
TSI=(T-TST)/TAU
IF(TSI.GE.20.0)TSI=20.0
ALS(NF)=ALSS+AIN*(1,0=EXP(-TSI))
IF(TSI.GE.20.0)ALS(NF)=ALSS+AIN
2 CONTINUE
IF(IY.EQ.1)CALL FLOW1(IMARK,IC,N,XR,WD,WT,VS,ALS,WS,LQ,VR,QFS,FS,D
1S,XS,AMA,BMA,YS,DMA,DMB,DENS,TEXIT,VDEN,SL,VVB,VB,TL,TW,T,HT,TBOIL
2,YV)
```

IF(IY,EQ.1)CALL AICHE(IMARK,SL,YV,Y8,EPP,WTM,DSD,CDD,VIS,THI,VLG,S 1N,SLM,TEXIT)

```
REBOILER BALANCE
```

```
xZ=Y(1,1)
   CALL EQUIDA(XZ,YZ,TEP)
   TBOIL=TEP
   YS(1)≈YZ
   YV(1) = YS(1)
   TAUR=3600, +VB/ALS(2)
   SAVE(N2,1)=(Y(1,2)-(WS+Y(1,1)+VS+YS(1)+LQ)/ALS(2))/TAUR
   00 12 1=1,KR
12 \text{ yC(I)} = \text{YS}(1)
   KT=KR
   DO 13 J1=2,N
   VV = VS
   IF(J1.GE.NF)VV=VR
   J = (J1-1) + (LQ+1) - (LQ+1)
   SUM3=0.0
   SUM2=0.0
```

```
-BETA=B(J1)
ALPHA=B(J1)/(1+B(J1))
```

SET HOLDUPS

Ĉ.

NY

```
VD=WD(J1)
   VT=WT()1)
   TAUT=3600, *VT/ALS(J1)
   TAUD=3600+V0/ALS(J1)
   IF(JY, NE. 1)G0 TO 22
   IF(IMARK.EQ.1.AND.IC.LT.1)GO TO 27
   IF(IMARK, EQ. 2)GO TO 27
   IF(ALLS(J1).EQ,ALS(J1))GO TO 27
   GO TO 26
27 TVC=0.0
   TVD=0.0
   TPT(J1) ±0.0
   TPD(J1)=0.0
   GO TO 28
26 CONTINUE
   TVC = VT/((VT+VD) + LO)
 TVD=VD/(VT+VD)
   TPT(J1)=TVC+(ALS(J1+1)/ALS(J1)-1,0)+LQ/TAUT
   TPD(J1)=TVD*(ALS(J1+1)/ALS(J1)-1,0)/TAUD
   IF(J1.NE.NE)GO TO 28
   TPT(J1)=TVC+((ALS(J1+1)+QFS+FS)/ALS(J1)-1.0)+LQ/TAUT
   TPD(J1)=TVD*((ALS(J1+1)+QFS*FS)/ALS(J1)=1.0)/TAUD
28 CONTINUE
22 CONTINUE
   E = EP(J1)
   EXIT POOL
  KZ=(J+LQ+2-J1-L7)/LP
  XZ=Y(1, j+2)
  CALL EQUIDA(XZ, VZ, TEP)
  YS(J+2)=YZ
  TEXIT(J1)=TEP
  SUM3=YS(J+2)
  VS(J+2) = E + YS(J+2) + (1 = E) + YC(K2)
```

C

0

D2 N

```
SAVE(N2+J+1,1)=((1+BETA)+Y(1,J+3)-(1+BETA)+Y(1,J+2)+VV+(YC(KZ)-YS(
1J+2))/ALS(J1)-Y(1,J+2)+(ALS(J1+1)/ALS(J1)-1.0)+TVC)+LQ/TAUT
IF(J1.FQ.NF)SAVE(N2+J+1,1)=((1+BETA)+Y(1,J+3)-(1+BETA)+Y(1,J+2)+(V
1S+YC(KZ)-VR+YS(J+2))/ALS(J1)-Y(1,J+2)+((ALS(J1+1)+QFS+FS)/ALS(J1)-
21.0)+TVC)+LQ/TAUT
SUM2=SUM2+YS(J+2)
```

```
CENTRE POOLS ON THE TRAY
```

```
DO 16 I=3,(LQ+1)

XZ=Y(1,J+I)

CALL EQUIDA(XZ,YZ,TEP)

YS(J+I)=YZ

KZ=(J+I+LQ-J1-LZ)/LP

YS(J+I)=E*YS(J+I)+(1=E)*YC(KZ)

SUM2=SUM2+YS(J+I)

SAVE(N2+J+I-1,1)=((1+BETA)*Y(1,J+I+1)-(1+2*BETA)*Y(1,J+I)*BETA*Y(1

1,J+I-1)+VV+(YC(KZ)-YS(J+I))/ALS(J1)-Y(1,J+I)*(ALS(J1+1)/ALS(J1)-1.

20)*TVC)*LQ/TAUT

IF(J1.NE.NF)GO TO 6

SAVE(N2+J+I-1,1)=((1.0+BETA)*Y(1,J+I+1)-(1.0+2.0*BETA)*Y(1,J+I)*BE

1TA*Y(1,J+I-1)+(VS*YC(KZ)=YS(J+I)*VR)/ALS(J1)-Y(1,J+I)*((ALS(J1+1)+

20FS*FS)/ALS(J1)-1.0)*TVC)*LQ/TAUT
```

```
6 CONTINUE
```

C

Ċ

```
16 CONTINUE
```

DOWNCOMER AT BEGINNING OF TRAY

```
SAVE(N2+J+LQ+1,1)=((ALS(J1+1)*Y(1,J+LQ+3)/ALS(J1)+BETA*Y(1,J+LQ+1)
1)=(1.0+BETA)*Y(1,J+LQ+2)=Y(1,J+LQ+2)*(ALS(J1+1)/ALS(J1)=1.0)*TVD)/
2TAUD
IF(J1.FQ.NF)SAVE(N2+J+LQ+1,1)=((ALS(J1+1)*Y(1,J+LQ+3)+QFS*F5*XFS)/
```

```
1ALS(J1)+BETA+Y(1,J+LQ+1)=((1+BETA)+((ALS(J1+1)+QFS+FS)/ALS(J1)+1.0
2)+TVD)+Y(1,J+LQ+2))/TAUD
```

D2

VAPOUR CELL CONCENTRATION

```
YE(J1)=SUM3
RV(J1)=YE(J1)+(1.0-Y(1,J+2))/(Y(1,J+2)+(1.0-YE(J1)))
YV(J1)=SUM2/LQ
```

PLATE EFFICIENCY AND EFFICIENCY RATIO CALCULATIONS

```
EMVP(J1)=(YV(J1)-YV(J1-1))/(YE(J1)-YV(J1-1))
K2=J+LQ+2
D0 17 J=1,KR
```

SUM1=0.0

Ĉ

C

```
DO 18 K1=1,LP
```

18 SUM1=SUM1+YS(K2-K1) K2=K2-IP KT=KT+1

```
17 YC(KT)=SUM1/LP
ALE(J1)=EP(J1)*AB(J1)
ERA(J1)=EMVP(J1)/EP(J1)
```

```
13 CONTINUE
SUM1=0_0
```

```
DO 19 KP=1,KR
```

```
19 SUM1=SUM1+YC(KT-KR+KP)
SUM1=SUM1/KR
YOUT=SUM1
```

CONDENSER BALANCE

```
TAUC=3600+VC/(VV+LQ)
SAVE(N2+LQ+J+2,1)=(YOUT-Y(1,J+LQ+3))/TAUC
XZ=Y(1,J+LQ+3)
CALL EQUIDA(XZ,YZ,TEP)
TCOND=TEP
DS=VR+LQ+ALS(N+1)
```

TOP PRODUCT COMPARISON.

CTP=DS+V(1,J+LQ+3)ETP=FS+XFS-WS+Y(1,1) DIFF=CTP=ETP RETURN

SUBROUTINE FLOW1 (IMARK, IC, N, XR, WD, WT, VS, ALS, WS, LQ, VR, QFS, FS, DS, XS, 1AMA, BMA, YS, DMA, DMB, DENS, TEXIT, VDEN, SL, VVB, VB, TL, TW, T, HT, TBOIL, VV) DIMENSION XR(40), WD(10), WT(10), ALS(10), XS(40), YS(40), DENS(10), TEXI 1T(10), VDEN(10), SL(10), YV(10)

THIS ROUTINE CALCULATES THE AVERAGE DENSITIES AND VOLUMETRIC FLOWS

CALCULATE THE AVERAGE DENSITY, TEMPERATURE AND VOLUMETRIC FLOW ON EACH PLATE.

```
25 XR(J)=WD(J)+WT(J)
VS#(ALS(2)-WS)/LQ
VR=VS+(1-QFS)*FS/LQ
```

```
CALLS FLOW2 IF FLOW CHANGES ARE INTRODUCED
```

```
IF(IMARK.EQ.1.AND.IC.GE.1)CALL FLOW2(TEXIT, VS, VR, YS, WD, WT, DENS, VDE
 1N, YV, T, HT, FS, IMARK)
  DO 10 1=2,N
  J3=(1-1)*(LQ+1)~(LQ+1)+1
  ZT=0.0
  ZD=0.0
  zV=0.0
  ZL=0.0
  00 3 J=1,LQ+1
  14=13+1
  ZD=ZD+XS(J4)+AMA/(XS(J4)+AMA+(1-XS(J4))+BMA)
  ZL=ZL+XS(J4)*AMA+(1-XS(J4))*BMA
  XZ=XS(14)
 IF(J.E0. (LQ+1))60 TO 3
  CALL EQUIDA(XZ, YZ, TEP)
  YS(J3+J)=YZ
  ZT = ZT + TEP
  ZV=ZV+VS(J3+J)+AMA+(1+YS(J3+J))+BMA
3 CONTINUE
  ZD=ZD/(LQ+1)
```

D2

```
ZL=ZL/(LQ+1)
  ZV=ZV/LO
   27=27/10
7 CONTINUE
   DENS(1)=20+DMA+(1-20)+DMB
  TEXIT(1)=ZT
  VV≠VS
   IF(I.GF_NF)VV=VR
  VDEN(I)=VV+LQ+ZV
   SL(I)=ALS(I)+ZL
10 CONTINUE
   IF(IMARK, EQ. 2)GO TO 4
   REBOILER BALANCE
   IF(V8.GT.0.0)GO TO 4
   IF(IC,GE,1)VVB=VB
   PL=DENS(2)+62.4
   VB=TL*TU*0.5*PL/(SL(2)/ALS(2))
```

¢.

```
4 CONTINUE
RETURN
```

C.

C

```
END
```

```
SUBROUTINE FLOW2(TFXIT, VS, VR, YS, WD, WT, DENS, VDEN, YV, T, HT, FS, IMARK)

DIMENSION Y(8,40), YMAX(40), SAVE(40,12), PSAVE(1600), ERROR(40), A(8),

1PERTST(7,2,3), TK1(10), TK2(10)

DIMENSION WW(10)

DIMENSION ALS(10), XS(40), WD(10), WT(10), YS(40), SL(10), DENS(10), VDEN

1(10), WTM(2), DSD(2), EPP(2), VIS(2), THI(2), CDD(2), YV(10), TWO(3)

DIMENSION TEXIT(10)

COMMON/DATE/AMA, BMA, DMA, DMB, W, TAA, TL, TA, TR, AD, VZ1, VZ2, QFS, N, NF, TW,

1LQ, XS, AIS, KR, LP, LZ, HDIA, TTH, HOA, ANT, AUD, COV

COMMON/PFS1/Y, SAVE, PSAVE, YMAX, ERROR, A, PERTST

COMMON/SSL/ALLS(10)

COMMON/REFL/IRFF

COMMON/NS/NIMP

THIS SUBROUTINE IS ONLY CALLED IF FLOW PATE CHANGES ARE MADE.
```

THIS SUBROUTINE IS ONLY CALLED IF FLOW RATE CHANGES ARE MADE. IT FINDS THE CHANGE IN HULDUP WITH RESPECT TO FLOW AND COMPOSITION CHANGES AND HENCE CALCULATES THE NEW FLOW RATES.

```
NST=NIMP
   IF(NIMP EQ.NE)NST=NST=1
    TK2(NST+1)=0.0
    DO 1 I=2,NST
    J=NST+2-I
   WRITE(2,202)WD(J),WT(J)
202 FORMAT(//3X,2(F8.5,3X))
    +K1(])=U1(])+W0(])
    IF(ABS(ALS(J)-ALLS(J)), LE.0.001)ALS(J)=ALLS(J)
    IF(ALS(J)_EQ.ALLS(J).AND.IREF.NE.2)GO TO 1
    .13=(1=1)+(LQ+1)=(LQ+1)+1
    00 2 ISET#1.3
    7T = 0.0
    20 = 0.0
    ZV=0.0
    1F(1SET_EQ.2)AUS(J)=AUS(J)=21.0/20.0
    DO 3 K=1,LQ+1
```

```
14=13+K
  IF(ISET/EQ.3)XS(J4)=XS(J4)+21.0/20.0
  ZD=ZD+XS(J4)*AMA/(XS(J4)*AMA+(1+XS(J4))*BMA)
  ZL=ZL+XS(J4) + AMA+(1-XS(J4)) + 6MA
  XZ=XS(J4)
  IF(K.EQ. (LQ+1)) GO TO 4
  CALL EQUIDA(XZ,YZ,TEP)
  YS(J3+K)=YZ
  2T=ZT+TEP
  ZV=ZV+YS(J3+K) + AMA+(1-YS(J3+K)) + BMA
4 IF(ISET, EQ. 3)XS(J4)=XS(J4)+20.0/21.0
3 CONTINUE
  2D=2D/(LQ+1)
  ZL=ZL/(LQ+1)
  ZV = ZV / + Q
  ZT=ZT/LQ
  DENS(J)=ZD+DMA+(1-ZD)+DMB
  TEXIT(J)=ZT
  VV=VS
  IF(J.GEUNF)VV=VR
  VDEN(J)=VV+LQ+ZV
  SL(J)=ALS(J)+ZE
  ALC=SL(J)/(3000.0+DENS(J)+62.4)
  UG=VV+359.05+LQ+(TEXIT(J)+273)/(3600.0+TA+273)
  PV=ABS(VDEN(J)/(3600.0+UG+TA))
  PL = DENS(J) + 62.4
  WI=W+12
  F=UG+PV++0.5
  FL=60 + 2642 + ALC+6,24/(,22 + TW)
  HC=(103 0+11.8+WI+40.5+F+1.25*FL)/(PL*12)
  HF=(2.53*F*F+1.89+WI-1.6)/12.0
  UL=FL+,22/(6,24+,2642+60+HC)
  WT(J)=TA+HC+PL/(SL(J)/ALS(J))
  HV8#21*(TEXIT(J)+273.2)
  SIG=HVB+DENS(J)/364.0
  H2=(0.558+(ALC/AUD)++2)/12.0
```

U N

```
HSJG=0.06 + SIG/(PL + HDIA + 12)
 VH=UG+TA/HOA
 G4=SQRT(TA+4/3,1415926)
  WTM(1) = AMA
 WTM(2) = BMA
  DSD(1) = DMA
  DSD(2)=DMB
 TEXIT(J)=TEXIT(J)+273.2
 DO 5 L=1.2
 XZ=1.0
 1F(L_E0.2)X2=0.0
 CALL EQUIDA(XZ, VZ, TEP)
 TEP=TEP+273.2
 EPP(L)=1,15*TEP
 XXZ=TEXIT(J)/Epp(L)
 CALL IPNEU(XXZ, ANS)
 CDD(L)=1.18*((WTM(L)/DSD(L))**(1.0/3.0))
 VIS(1)=0.00646+ANS+SQRT(WTM(1)+TEXIT(1))/(CDD(1)++2)
5 CONTINUE
 YY1=YV(J)
 VY2=1.0-YY1
 YY3=YY1/YY2
 DO 6 L=1.2
 11 ≭2
 IF(L.EQ.2) JL=1
 THI(L)=SQRT(2.0)+((1+(VIS(L)/VIS(JL))++0.5+(WTM(JL)/WTM(L))++0.25)
1++2)/(4+SQRT(1+WTM(L)/WTM(JL)))
6 CONTINUE
 VG=VIS(1)/(1+THI(1)/YY3)+VIS(2)/(1+THI(2)+YY3)
 G3=PV+UG+G4/(VG/3600.0)
 FF=0.014+G3+*(-0.0055/9600.0)
 HD=12+CQV+PV+(VH++2)+(0.4+(1.25+H0A/ANT)+4+TTA+FF/HDIA+(1-H0A/ANT)
 1**2)/(64*PL*12)
 TEXTT())=TEXIT())-273.2
 H3=HD+HC+H2+HSIG
 WD(J)=AD+H3+PL/(SL(J)/ALS(J))
```

```
TWO(ISFT) = WT(J) + WD(J)
    IF(ISET EQ.1)WRITE(2.203) HC.H3.HF.WD(J).WT(J).F.UG.J
203 FORMAT(/3X,7(E13.5,2X),12)
    IF(ISET, EQ. 1)WW(J)=WD(J)
    IF(ISET_EQ.2)ALS(J)=ALS(J)+20.0/21.0
  2 CONTINUE
    AX1=XS(J3+1)
    AX2=XS(J3+1)+21,0/20.0
    FK1(J)=(TWO(2)-TWO(1))/(ALS(J)+0.05)
    FK1(J)=3600.0+FK1(J)
    FK2(J) = (TWO(3) - TWO(1)) / (AX2 - AX1)
    1F(1REF_EQ.2.AND.172.GF.(NST-1))60 TO 1
    IF(IREF, EQ. 2)60 TO 9
    GO TO 10
  9 122=122+1
    IF(TWO(1).GT.TK1(J))GO TO 10
    TK2(J) = TK1(J) = TWO(1) + TK2(J+1)
    IF(J.EQ NSY)GO TO 8
    JJ4=1+(LQ+1)*(J-1)
    Y(1,jj4)=(WW(j)+Y(1,jj4)+TK2(j+1)+Y(1,jj4+1))/(TK2(j+1)+WW(j))
    IF(J.NF.2)60 TO 8
    VB=TL*TW+0.5+PL/(SL(2)/ALS(2))
    Y(1,1) = (VB + Y(1,1) + TK2(2) + Y(1,2)) / (TK2(2) + VP)
    60 TO 8
10 CONTINUE
    JE(J.NE.NE)GO TO 7
    ALS(J)=(FK1(J)+ALS(J)+(T=H7)+(ALS(J+1)+0FS+FS))/(FK1(J)+(T=H1))
    GO TO 8
  7 CONTINUE
    ALS(J) = \langle FK1(J) + ALS(J) + (T - HT) + ALS(J + 1) \rangle / \langle FK1(J) + (T - HT) \rangle
  8 CONTINUE
  1 CONTINUE
    IF(IREF.EQ.2)IMARK=2
    RETURN
    END
```

```
SUBROUTINE EQUIDA(X7,Y7,TEP)
COMMON/ALPH/AREL,IREL
COMMON/EQU/SLOPE,CONST,TB1,TB2
```

THIS SUBROUTINE CALCULATES THE VAPOUR COMPOSITION IN EQUILIBRIUM WITH THE LIQUID AND THE TEMPERATURE.

```
IF(IREL_EQ.2)GO TO 3

YZ=AREL+X2/(1+X2+(AREL-1))

GO TO 2

3 YZ=SLOPF+X2+CONST

2 CONTINUE

XXZ=1-X2

IF(ABS(XX2).GT.20.0)XX2=20.0

TEP=TB1+EXP(XX2)+(TB2-TB1)

RETURN
```

END

SUBROUTINE AICHE(IMARK,SL,YV,Y8,EPP,WTM,DSD,CDD,VIS,THI,VLG,SN,SLM 1,TEXIT)

DIMENSION Y8(40), AB(10), ES(10), EPP(2), WTM(2), DSD(2), CDD(2), V1S(2) DIMENSION THI(2), DG(10), VLG(10), DL(10), ANG(10), ANL(10), EP(10), ANO(110), SN(10), SLM(2), YV(10), TEXIT(10), XS(40), XR(40), ALS(10), YS(40), YC 2(50), DFNS(10), VDEN(10), PEN(10), B(10), SL(10), WD(10), WT(10), ALE(10), 3FRA(10)

COMMON/ROLD/HOL(10)

COMMON/SSL/ALLS(10)

COMMON/DATE/AMA, BMA, DMA, DMB, W, TAA, TL, TA, TR, AD, VZ1, V72, QFS; N, NF, TW, 1LQ, XS, ALS, KR, LP, LZ, HDIA, TTH, HOA, ANT, AUD, COV

COMMON/EPRS/ALE.ERA.EP.DL.DG.ANO.ANG.ANL.AR.ES.XR.WD.WT.VR.VS.DFNS 1.VDEN.R.PEN.CTP.ETP.TCOND.VD.VT.VC.VB.YS.YC.TBOIL.IC.IZ.HT COMMON/REFL/IREF

THIS SUBROUTINE CALCULATES ALL THE PARAMETERS INVOLVED WITH PLATE AND POINT EFFICIENCIES.

CALCULATES THE LIQUID AND FROTH HEIGHTS, AND FLOW RATE PARAMETERS. CALCULATE PECLET NUMBER AND BACKFLOW RATIO

```
DO 1 J1=2.N

J=(J1-1)*(LQ+1)-(LQ+1)

VV=VS

IF(J1.GF.NF)VV=VR

ALC=SL(J1)/(3600*DENS(J1)*62.4)

UG=VV*359.05*LQ*(TEXIT(J1)+273)/(3600*TA*273)

PV=ABS(VDEN(J1)/(3600*UG*TA))

PL=DENS(J1)*62.4

WI=W*12

F=UG*PV**0.5

FL=60*.2642*ALC+6.24/(.22*TW)

HC=(103.0+11.8*WI=40.5*F+1.25*F1)/(PL*12)

HF=(2.53*F*F+1.89*WI=1.6)/12.0

UL=FL*.22/(6.24*.2642*60*HC)
```

```
DE=(0.0609395+HC+UL++3)/((HC+UL/HF)++2.5664)
PE=UL+TR/DE
AN=LQ+1
BETA=AN/PE=0.5
IF(IREF_NE.2.AND.IMARK.EQ.2)G0 T0 6
IF(IC.EQ.2.AND.IMARK.EQ.2)G0 T0 6
IF(IC.GE.1.AND.ALLS(J1).EQ.ALS(J1))G0 T0 6
2 CONTINUE
PEN(J1)=PE
B(J1)=BETA
IF(IMARK.NE.2)G0 T0 5
6 BETA=B(J1)
PL=DENS(J1)+62.4
```

```
c
```

Ĉ

Ĉ.

5 CONTINUE

THE CALCULATION OF THE POINT EFFICIENCY ACCORDING TO THE A.I.CH.E. MANUAL, THESE CALCULATIONS INCLUDE NUMBER OF GAS STAGES ; THE SLOPE OF THE EQUILIBRIUM LINE ; ABSORPTION COEFFICIENT.

```
TEXIT(J1)=TEXIT(J1)+273.2
  153=3+2
  151=J+2+LQ
 DO 8 ISK=ISJ, ISI, LO
  XZ=XS(ISK)
  CALL EQUIDA(XZ, YZ, TEP)
8 Y8(ISK)=YZ
  SUMA=XS(1S1)-XS(1SJ)
  FS(J1) = (Y8(ISI) = Y8(ISJ))/SUMA
  AB(J1) = FS(J1) + LQ + VV/ALS(J1)
  DO 24 1=1.2
  xZ=1.0
  1F(1,EQ,2)XZ=0.0
  CALL EQUIDA(XZ,YZ,TEP)
  TEP=TEP+273.2
  EPP(1)=1.15*TEP
```

ω

```
XXZ=TEXIT(J1)/EPP(I)
          CALL IPNEU(XXZ,ANS)
         CDD(I) = 1.18 \times ((WTM(I)/DSD(I)) \times (1.0/3.0))
          VIS(1)=0.00646+ANS+SQRT(WTM(1)+TEXIT(J1))/(CDD(1)++2)
24 CONTINUE
          YY1 = YV(J1)
         IF(YV(J1), LE.0.0) YY1=Y8(ISJ)
         YY2=1.0=YY1
          YY3 = YY1 / YY2
          DO 11 1=1,2
          JL=2
         IF(I.EQ 2)JL=1
         THJ(I)=SQRT(2.0)*((1+(VIS(I)/VIS(JL))**0.5*(WTM(JL)/WTM(I))**0.25)
  1++2)/(4+SQRT(1+WTM(1)/WTM(JL)))
11 CONTINUE
         VG=VIS(1)/(1+THT(1)/YY3)+VIS(2)/(1+THI(2)*YY3)
          S((2)) = (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (2) + (
          BC2=SQRT(EPP(1)*EPP(2))
          BC3=TEXIT(J1)/BC2
          CALL IDNEU(BC3.AMS)
          BC4=SQRT((WIM(1)+WTM(2))/(WTM(1)+WTM(2)))
          BC5=(10,7=2.46+BC4)+1.0E=4
          DG(J1) = (BC5 * BC4 + TEXIT(J1) * * (3.0/2))/(AMS * BC1 * + 2)
          TE(DG(J1), LE, 1, 0E=10)DG(J1)=1.0E=10
          SN(J1) = VG/(PV * DG(J1))
          ANG(J1)=(0,776+0,11+WI-0,29+F+0,0217+FL)/SGRT(SN(J1))
          DO 14 1=1.2
          JL=2
          IF(I_EQ_2)JL=1
         SLM(I)=2.87E-7+WIM(JL)++0.5/((WIM(I)/DSD(I))++0.6)
14 CONTINUE
         BC6=0.0
         DO 15 I=2,LQ+1
15 BC6 = BC6 + XS(J + I)
          BC6=BC6/LQ
         IF(BC6_GE.1.0)BC6=1.0
```

Π

```
IF(BC6, | E, 0, 0)BC6=0.0
    BC7 = (SIM(2) - SLM(1)) + BC6 + SLM(1)
    BC8=ABS(PL/62.4)
    VLG(J1) = BC8 + EXP(BC6 + ALOG(V71/DMA) + (1 - BC6) + ALOG(VZ2/DMB))
    DL(J1)=BC7+TEXIT(J1)/VLG(J1)
    CTL⇒TAA/UL
    ANL(J1)=SQRT(1,065E4+DL(J1))+(0,15+0,26+F)+CTL
    BC9=1/ANG(J1)+AB(J1)/ANL(J1)
    ANO(J1) = ABS(1.0/BC9)
    IF(ANO(J1).LE.1.0E-3)ANO(J1)=1.0E-3
    IF(ANO(J1), GE.90.0) ANO(J1)=90.0
    EP(J1)=1.0-EXP(-ANO(J1))
    TEXIT(J1)=TEXIT(J1)-273.2
    IF(IREF, EQ.2, AND. IC. EQ. 1)GO TO 3
    IF(IMARK, EQ. 2)GO TO 1
    CALCULATES MOLAR HOLDUPS ON THE TRAY AND THE DOWNCOMERS.
    IF(IC.GE.1, AND, ALLS(J1), EQ, ALS(J1))GO TO 1
  3 CONTINUE
    HOL(J1)=HC+PL
    WT(J1)=TA+HOL(J1)/(SL(J1)/ALS(J1))
    HVB=21 * (TEXIT(J1) + 273.2)
    sig=HVB+DENS(J1)/364.0
    H2=(0.558+(ALC/AUD)++2)/12.0
    HSIG=0.06+SIG/(PL+HDIA+12)
    VH=UG+TA/HOA
    G4=SQRT(TA+4/3, 1415926)
    G3 = PV + (IG + G4) (VG/3600.0)
    FF=0.014+G3++(-0.0055/9600.0)
    HD=12+COV+PV+(VH++2)+(0.4+(1.25-HOA/ANT)+4+TTA+FF/HDIA+(1-HOA/ANT)
   1**2)/(64*P(*12)
    H3=HD+HC+H2+HSIG
    WD(J1) = AD + H3 + PL/(SL(J1)/ALS(J1))
    1F(IMARK.EQ.1)WRITE(2,203)HC,H3,HF,WD(J1),WT(J1),F,UG,J1
203 FORMAT(/3X,7(E13.5,2X),12)
```

30

IF(VC.GT.0.0)GO TO 1 IF(J1.NE.N)GO TO 1 VC=2*1*2*PL/(SI(N)/ALS(N)) 1 CONTINUE RETURN END

SUBROUTINE IPNEU(XXZ,ANS)

THIS SUBROUTINE CONTAINS A POLYNOMIAL EQUATION FOR CALCULATING THE CORRECTED COLLISION INTEGRAL FOR VISCOSITY

 $X = X \times Z$

ANS=-.401220751E-3*X**7+.72353998E-2*X**6-.052798314*X**5+.1985071 1*X**4-.39222949*X**3+.29797*X**2+.32825044*X+.245213819 RETURN

D38

END

SUBROUTINE IDNEU(BC3, AMS)

THIS SUBROUTINE CONTAINS A POLYNOMIAL EQUATION FOR CALCULATING THE COLLISION INTEGRAL FOR DIFFUSION

X≃8C3

AMS=-.00224977819+X++7+.0420454127+X++6-.32383476+X++5+1.33657855+ 1X++4-3.22085296+X++3+4.633577+X++2-3.90948762+X+2.162113535 RETURN

D39

END

```
SUBROUTINE WRITER(I,TIM,LQ,N)
DJMENSION CX(100),RX(100)
DIMENSION TIM(I)
COMMON/CR/CX,RX
COMMON/GRAF/EQMAX,EOMIN,ELMAX,ELMIN,AMAXE,AMINE
COMMON/GRAF/EQMAX,EOMIN,ELMAX,ELMIN,AMAXE,AMINE
COMMON/FRS/BX(281),IC,IZ,HT
COMMON/PFS1/AX(2530)
```

THIS ROUTINE READS THE CUMPUTED DATA ON DISC AND WRITES

```
REWIND 3
  DO 32 11=1,1
  WRITE(2,18)
  READ(3)BX(1)
   READ(3)(BX(J), J=1,6)
  WRITE(2,19)(BX(J),J=1,6)
  WRITE(2,20)
  READ(3)8X(7),8X(8)
  WRITE(2,21)BX(7),BX(8)
   READ(3)8X(9),8X(10)
  WRITE(2,22)BX(9),BX(10)
  RX(II) = BX(9)
  CX(TI) = BX(10)
   READ(3) RX(11), BX(12)
  WRITE(2,23) BX(11), BX(12)
   READ(3)(BX(J), J=13, 15)
  WRITE(2,24)(8X(J),J=13,15)
  WRITE(2,25)(121,121=1,N-1)
  WRITE(2,26)
  READ(3)(BX(J), J=16, (15+N=1))
  WRITE(2.17)(BX(J), J=16, (15+N-1))
  DO 33 13=1.N-1
   TK=(IJ=1)+1
33 AX(11+TK)=BX(15+1J)
   J1=15+N-1
   N2=N+2-2
```

```
DO 31 JJ=1,LQ
   READ(3)(BX((JJ-1)+N2+J1+J), J=1, N2)
   WRITE(2,27)(BX((JJ-1)*N2+J1+J),J=1,N2)
31 CONTINUE
   N3=15+N-1+LQ+2+(N-1)
   READ(3)(BX(N3+J),J=1,N+1)
   N4=N3+N-1
   WRITE(2,28)(BX(N3+J),J=1,N-1)
   READ(3) 8X(N4+1), 8X(N4+2)
   WRITE(2,29) BX(N4+1), BX(N4+2)
   N5 = N4 + 2
   1ZZ = 1 + (N-1)
   IJ2=(N-1)+2
   111=N3-1J2
   DO 34 11=1,N-1
   TK=(IJ-1)+I+IZZ
34 AX(TI+TK)=BX(IT1+EJ+IJ-1)
   IST=2
   DO 56 TK=1,13
   JK=(1K-1)+(N-1)+N5
   READ(3)(BX(JK+JF), JF=1, N=1)
   GO TO (40,41,42.43,44,45,46,47,51,52,54,55,57),IK
40 WRITE(2,1)(BX(JK+JF), JF=1, N-1)
   GO TO 30
41. WRITE(2,2)(BX(JK+JF), JF=1, N-1)
   GO TO 30
42 WRITE(2,3)(BX(JK+JE),JF=1,N-1)
   GO TO 30
43 WRITE(2,4)(8X(JK+JF), JF=1, N=1)
   GO TO 30
44 WRITE(2,5)(BX(JK+JF), JF=1, N-1)
   GO TO 30
45 WRITE(2,6)(BX(JK+JF), JF=1, N-1)
   GO TO 30
46 WRITE(2,7) (BX(JK+JF), JF=1, N-1)
   GO TO 30
```

```
47 WRITE(2.8)(BX(JK+JF), JF=1, N-1)
GO TO 30
```

```
51 WRITE(2,12)(BX(JK+JF),JF=1,N-1)
GO TO 30
```

```
52 WRITE(2,13)(BX(JK+JF), JF=1, N-1)
GO TO 30
```

```
54 WRITE(2,15)(BX(JK+JF),JF*1,N-1)
GO TO 30
```

```
55 WRITE(2,16)(8X(JK+JF),JF≈1,N+1)
GO TO 30
```

```
57 WRITE(2,36)(BX(AK+JF),JF=1,N=1)
```

```
30 CONTINUE
```

```
IF(IK,LE.8)GO TO 56
```

```
IF(IK,GE,12)G0 T0 56
```

```
122#1*(N-1)*1ST
```

```
IST=IST+1
```

```
DO 35 IN1=1.N-1
```

```
IN2=(IN1-1)*1
```

```
35 AX(122+11+1N2)=8X(JK+1N1)
```

```
56 CONTINUE
```

```
32 CONTINUE
```

Ĉ.

REWRITE ONTO DISC THE INFORMATION NEEDED FOR PLOTTING.

```
REWIND 3
N9=(N-1)*IST*I
WRITE(3)I,N,N9
WRITE(3)(AX(J),J=1,N9)
WRITE(3)(TIM(J),J=1,I)
WRITE(3)(CX(J),J=1,I)
WRITE(3)(CX(J),J=1,I)
WRITE(3)EOMAX.EOMIN.ELMAX.ELMIN.AMAXE.AMINE
1 FORMAT(15X.10HV ENTERING.5X.5(F8.5.8X))
2 FORMAT(15X.10HV LEAVING..5X.5(F8.5.8X))
3 FORMAT(15X.13HV EQUILIBRIUM.2X.5(F8.5.8X))
4 FORMAT(15X.13H80ILING TEMP..2X.5(F8.3.8X))
```

```
5 FORMAT(15X,9HPECLET NO,6X,5(F8.3,8X))
6 FORMAT(15X,8HBACKFLOW,7X,5(F8.3,8X))
 7 FORMAT(15X,9HEQ, SLOPE,6X,5(F8,4,8X))
8 FORMAT(15X,6HLAMBDA,9X,5(F8.4,8X))
12 FORMAT(15X,4HEOG.,11X,5(F8,4,8x))
13 FORMAT(15X,4HEMV,,11X,5(F8,4,8X))
15 FORMAT(15X,8HEMV/EOG.,7X,5(F8.4,8X))
16 FORMAT(15X,13HR, VULATILITY, 2X,5(F8-4,8X))
17 FORMAT(15X,9HDOWNCOMER,1X,5(F8.5,8x))
18 FORMAT(1H1,///////28X,5HTIME,,5X,4HFEED,6X,2HXF,6X,2HWS,7X,2HDS,
  15X.6HRFFLUX)
19 FORMAT(27X, F7+3, 3X, F7+2, 3X, F4-2, 2(3X, F6, 2), 3X, F6.3)
20 FORMAT(//32X,8HREBOILER,11X,9HCONDENSER,9X,12HTOP PRODUCTS)
21 FORMAT(15X,12HMOLAR HOLDUP,5X, F8.5, 12X, F8.5)
22 FORMAT(15X,12HLIQUID COMP., 5X, F8.5, 12X, F8.5)
23 FORNAT(15X,12HVAPOUR COMP.,5X,F8.5,26X,SHCAL.=,F9.4)
24 FORMAT(15X,12HBOILING TEMP,5X,F7.3,13X,F7.3,7X,5HEST.#,F9.4)
25 FORMAT(//15X,5HPLATE,5X,5(7X,12,7X))
26 FORMAT(25X,5(4x,1HX,7X,1HY,3X))
27 FORMAT(25X,10F8.4)
28 FORMAT(15X,11HLIQUID FLOW,4X,5(F8.3,8X))
29 FORMAT(15X,11HVAPOUR FLOW,6X,9HSTRIPPER=,F8.3,10X,10HRECTIFIER=,F8
  1.31
36 FORMAT(15X,13HMOLAR HOLDUPS,2X,5(F8.4,8X))
```

RETURN

END

Ð

```
MASTER DRAWER
DIMENSION RX(100),CX(100),TIM(100)
COMMON/GRAF/EQMAX,EUMIN,ELMAX,ELMIN,AMAXE,AMINE
COMMON/PF$1/AX(2530)
COMMON/CR/CX,RX
```

THIS SURROUTINE READS FROM THE DISC ALL THE DATA TO BE PLOTTED

Ā

```
CALL UTPOP

REWIND 3

READ(3)I,N,N9

READ(3)(AX(J),J=1,N9)

READ(3)(TIM(J),J=1,I)

READ(3)(CX(J),J=1,I)

READ(3)(CX(J),J=1,I)

READ(3)FOMAX,EOMIN,ELMAX,EIMIN,AMAXE,AMINE

CALL PLOT1(I,TIM,N)

CALL UTPCL

STOP
```

END

```
SUBROUTINE PLOT1(I,TIM.N)
DIMENSION RX(100),CX(100),TIM(100)
COMMON/PFS1/AX(2530)
COMMON/GRAF/EOMAX,EOMIN,ELMAX,ELMIN,AMAXE,AMINE
COMMON/CR/CX,RX
```

THIS SUBROUTINE PLOTS THE DATA REQUIRED.

C.

```
CALL UTPOP
   TLIM=TIM(I)-TIM(1)
   XINS=5.0
   YINS=8.0
   VMIN=0.0
   YMAX=1:0
   XMIN=TIM(1)
   XMAX=TIM(I)
   X2=XINS*(-TIM(1)/TLIM)
   NX = 2
   NY=3
   x4=0.1
   Y4=7.8
   ANG=0.0
   n0 2 J=1,5
   x1=8.0
   Y1=6.0
   CALL UTP2(X1, Y1, -1)
   GO TO (29,30,31,32,33),J
29 CALL UTP4A(XMIN, XMAX, YMIN, YMAX, XINS, YINS, 14HTIME. MINUTES, NX, 20HC
  10NC. AT EXIT WEIRS , NY>
   CALL UTP4B(TIM, CX, 1, 3)
   CALL UTP4B(TIM,RX,1,3)
   11=1
   GO TO 8
30 11=0
   CALL UTP4A(XMIN, XMAX, YMIN, YMAX, XINS, YINS, 14HTIME. MINUTES., NX, 20HC
```

```
10NC. AT DOWNCOMERS., NY)
   60 TO 8
31 11=2
   VMAX=EOMAX
   YMIN≖EOMIN
   NY = 4
   CALL UTP4A(XMIN, XMAX, YMIN, YMAX, XINS, YINS, 14HTIME. MINUTES, ,NX, 28HC
  THANGES IN POINT EFFICIENCY., NY)
   60 TO 8
32 t1=3
   YMIN=AMINE
   VMAX=AMAXE
   NY = 4
   CALL UTP4A(XMIN, XMAX, YMIN, YMAX, XINS, YINS, 14HTIME, MINUTES., NX, 28HC
  THANGES IN PLATE EFFICIENCY. NY)
   60 TO 8
33 11=4
   VMINELMIN
   YMAX=EI MAX
   NY = 4
   CALL UTP4A(XMIN, XMAX, YMIN, YMAX, XINS, YINS, 14HTIME. MINUTES., NX, 28HC
  THANGES IN EFFICIENCY RATIO. NY)
 8 DO 5 JJ=1.N-1
   IK=(JI-1)+I+(N-1)+I+I1
   DO 6 JJ=1,1
 6 CX(JJ) * AX(IK+JJ)
 S CALL UTP4B(JIM, CX, I, 3)
   V1=0.0
   Y2=8.0
   CALL UTP2(X2, Y1, 1)
   CALL UTP2(X2, Y2, 2)
   CALL UTP6(40HSTEADY-STATE.
                                            UNSTEADY-STATE. 15.40, ANG. X4.
  174)
   x1=8.0
   Y1=6.0
   CALL UTP2(X1, Y1, -1)
```

04 $\overline{\mathbf{n}}$

2 CONTINUE CALL UTPCL RETURN END FINISH

D.2 The Integration Routine

The subroutine integrates a set of N ordinary equations one step of length H, where H may be specified by the user, but is controlled by the subroutine to control the estimated error within a specified tolerance if possible.

A multistep predictor corrector method is used whose order is automatically chosen by the subroutine as the integration proceeds. Either an Adams method or methods suitable for stiff equations can be selected. The starting procedure is automatic and the information retained by the program about previous steps is stored in such a way as to make the interpolation to a non mesh point straightforward. The methods used are described from a mathematical point of view in the following papers (32,33,34).

The integration routine may call up to three subroutines:-

- 1) DIFFUN
- 2) PEDERV
- 3) MATINV

DIFFUN must always be provided and must evaluate the derivatives of the dependent variables Y with respect to the independent variable T.-

MATINV is only called if stiff methods are requested and is a matrix inversion routine. The parameter Jl should be set by MATINV to +1 if the inversion is successful and -1 if the matrix is nearly singular. PEDERV need only be provided if the method flag MF is set to 1, otherwise a dummy subroutine should be provided. If PEDERV is required, then the equations for evaluating the Jacobian matrix should be provided.

All floating point variables are taken to be double precision except for those whose name begin with P. These may be calculated in single precision if an increase in speed and reduced storage is required.

The parameters for the subroutine DIFSUB have the following meanings:-

Ν

т

Y

the number of first order differential equations. N may be decreased on later calls if the number of active equations reduces, but it must not increase without setting JSTART = 1.

the independent variable.

an 8 by N array containing the dependent variables and their scaled derivatives. Y(j+1,1) contains the jth derivative of Y(1) scaled by H**j/j! where H is the current step size.

SAVE

Η

a block of atleast 12N floating point locations used by the subroutines.

the step size to be attempted on the next step. H may be increased or decreased by the program to achieve an economical integration.

the minimum step size that will be used for the

HMIN

HMAX the maximum step length that is required.

EPS the error test constant. Single step error estimates divided by YMAX(I) must be less than this in the euclidean norm. The step and/or order is adjusted to achieve this.

D50

MF

YMAX

this is the method flag:-

0 an Adams predictor corrector is used.

1 a multistep mehtod suitable for stiff equations is used. The subroutine PEDERV must be provided.

2 the same as for 1 except the partial derivatives are estimated by the numerical differencing of the derivatives and the subroutine PEDERV is not called. an array of N locations containing the maximum of each Y seen so far and should normally be set to 1 on starting.

ERROR an array of N elements which contains the estimated one step error in each component.

KFLAG a completion code with the following meanings:-

+1 the step was successful.

-1 the step was taken with H=HMIN, but the requested error was not achieved.

-2 the maximum order specified was found to be too large.

-3 corrector convergence could not be achieved for H greater than HMIN. -4 the requested error is smaller than could be handled.

D51

JSTART an input indicator with the following meanings:-

- -1 repeat the last step with a new H.
- O perform the first step. The first step must be done with value of JSTART so that the subroutine can initialise itself.

+1 take a new step continuing from the last.

JSTART is set to NQ, the current order of the method at exit. NQ is also the order of the maximum derivative available.

MAXDER the maximum derivative that should be used in the method. The order is thus restricted as it is equal to the highest derivative used and must be less than 8 for the Adams method and 7 for stiff methods. PSAVE a block of N*N floating point locations.

SUBROUTINE DIFSUB(N,T,Y,SAVE,H,HMIN,HMAX,EPS,MF,YMAX,ERROR,KFLAG, 1JSTART, MAXDER, PSAVE, N4) DIMENSION Y(8,N), YMAX(N), SAVE(N,12), ERROR(N), PSAVE(N4), DATA PERTST /2.0.4.5.7.333.10.42.13.7.17.15.1.0. 12.0,12.0,24.0,37.89, >3.33,70.08,87.97,3.0,6.0,9.167,12.5,15.98. 11.0.1.0.12.0.24.0.37.89.53.33.70.08.87.97.1.0.1..1..0.5.0.1667. 10.04133.0.008267,1.0,1.0,1.0,2.0,1.0,.3157.07407.0139/ DATA A(2) /-1.0/ IRET=1 KFLAG=1 IF(JSTART, LE. 0) GO TO 140 100 DO 110 T=1.N 00 110 J=1,K 110 SAVE(1, J)=Y(J, I) HOLD=HNEW 120 IF(H.EQ.HOLD)GO TO 130 RACUM=H/HOLD IRET1=1 GO TO 750 **130 CONTINUE** NGOLD=NG TOLD=T RACUM=1.0 IE(JSTART.GT.0)GO TO 250 GO TO 170 140 IF(JSTART.E4,-1)GO TO 160 NQ=1 N3=N N1 = N + 10N2=N1+1 N4=N++2 N5=N1+N N6=N5+1 CALL DIFFUN(T,Y,SAVE,N2,N) DD 150 [=1,N Ω N

, na minan an mug dar

· ·			e e e e e e e e e e e e e e e e e e e	مه یې د کې د د	and an a second	a a secondaria	مرابعون به ^{المرابع} متعقور به ا	ر. مارونیا این رو کارد سال	in in the second second in	e de la composición d
•		· · · · ·			مىيە 1944-يىرى	· · · · · · ·				
				e e e e e e e e e e e e e e e e e e e	an a		an an Arang Arang ang Arang Arang Arang Arang Aran			
			ND=N1+I	na na sana ang sana sana sana sana sana	n an					
$ _{L^{\infty}(\mathbb{R}^{n})} = _{L^{\infty}(\mathbb{R}^{n})}$		150	Y(2,1)=SAVE(ND,1)+H		· .	· · ·			•	· .
· · · ·			HNEW=H				· · · .	· .	: #**	
بالعرياني رائيك الاكتلامان إرتجا	والمراجعة أأثريهم مالاركناني والمناطق والم		°K≢2	يەت ئىڭلاپ خاتىرىيەمە مالىرى. -	antonina di Angela (Miller, 77) y	and the second states of the second	ى ئىلىيەن ئېيىنى ۋە يىلىيە بىلىيە ئېيىلىكى ئىلىيە تېرىكى ئىلىيە تېرىكى ئىلىيە تەرىپىدىكى ئەتتىكە ئېيىلىكى ئەتت ئىلىيە ئىلىيە ئېيىلىيە	يعند 6- 5 محمد (10- ومحمد 20- 10- وترقيد 	in e cane problemente ∰ricalisti Tana i Tana i	ين 19 مين المب ري مرجومين ا
		160	IF(NQ.EQ.NQOLD)JSTART=1		·					
		100	T=TOLD							
			NG=NGOLD				• •	·		و الحد الم الجو حالي و
· ·			K=NQ+1		•		· · ·			en de la companya de Companya de la companya de la company de la companya de la c
			GO TO 120				·	•		
		170	IF(MF.EQ.0)GO TO 180			•				
-			IF(NQ.GT.6)G0 TO 190 G0 TO (221,222,223,224,225,	2261 40						
		180	1F(NQ.GT.7)G0 TO 190	264),114						
			GO TO (211,212,213,214,215,	216,217) · NQ			an a		· ·
i le		190	KFLAG=-2							
			RETURN	• •		.'				
		211	A(1) = -1.0			•				
.*		212	GO TO 230 A(1)=+0.500000000				· .	۰.		
	· .		A(3)=-0,500000000							م من بر محمد من من بر محمد من من من من من
			GO TO 230						н. Н	
		213	A(1)=-0,41606666666666666							ta shekara .
	÷		A(3)=-0.750000000					· · · · · ·		
			A(4)==0 16666666666666666							
		214	GO TO 230 A(1)=-0.375000000		10 C	· .			•	
ng kanala sa kanala s	رد بالمعر معتاليا ها		A(3)=-0 ,91666666666666666	تحالفاني فالمولية الرجابة الأ	bo na el seconomica	ing Protocol Market Way 1999 Ber 7 11	in the area and a second second	a toto de la gran ancé de especies.	and a second	et al areas
			A(4)=+0.33333333333333333333				•			
		• •	A(5)=-0,04166666666666666		4 C C C C C C C C C C C C C C C C C C C					
			GO TO 230	· · ·	· · · ·				ан сайтан ал ал ан ал ан ал ан ал ан ал ан	· •
		215	A(1)==0.3486111111111111		•	. '			•	•
			.A(3)=-1,04166666666666667 A(4)=-0,4861111111111111					•	•	
			A(5) = -0, 10410666666666667	•		•				
			A(6)=-0.0083533333333333333			ار بار الم المربق محمد الم	and the second	n ann a mar a an a	· · · · · · · · · · · · · · · · · · ·	
							•			i

D53

المجمع المجمع المحمد

ta la sua la compañía. Na

 $(x,y) \in \{y_i\}$

GO TO 230 216 A(1)=-0.329861111111111 A(3)=-1,141006666666666667 A(4)=-0_625000000 A(5)==0.17708333333333333 000000050000000 GO TO 230 217 A(1)=-0,315>919312169312 A(3)=-1 235000000 A(4)==0.7518518518518518519 A(5)==0.2552083333333333333 A(6) = -0.0486111111111111111A(7)=-0.0048011111111111 A(8)==0.0001984126984126984 GO TO 230 221 A(1)=-1,00000000 GO TO 230 222 A(1)=-0.6666666666666666666 A(3)==0.3333333333333333333333 GO TO 230 223 A(1)=-0.545454545454545455 A(3) = A(1)A(4)=-0.09090909090909091 GO TO 230 224 A(1)=-0.480000000 A(3)=-0.700000000 A(4)=-0,200000000 A(5)=-0_02000000 GO TO 230 225 A(1)=-0.437956204379562 A(3)==0.8211678832116788 A(4)=-0 3102189781021898 A(5)=-0.05474452554744526 A(6)=-0,0036496350364963204 GO TO 230

D

ŨΠ

```
226 A(1)=-0.4081632653061225
     A(3)==0.9206349206349206
     A(4)==0,41666666666666666
A(5)==0.0992063492063492
     A(6)==0.011904761904/619
     A(7) = -0.000566893424036282
 230 K=NQ+1
     TDOUB≠K
     MTYP=(4-MF)/2
     ENQ1=0.5/FLOAT(NQ)
     ENQ2=.5/FLOAT(NQ+1)
     ENQ3=.5/FLOAT(NQ+2)
     PEPSH=EPS
     EUP=(PERTST(NQ,MTYP,2)+PEPSH)++2
     E=(PERTST(NQ,MTYP,1)*PEPSH)+*2
     EDWN=(PERTST(NQ,MTYP+3)+PEPSH)++2
     IF(EDWN, EQ. 0)GO TO 780
     BND=EPS+ENQ3/FIGAT(N)
 240 IWEVAL=MF
     GO TO (250,680), IRET
 250 T=T+H
     00 260 J=2.K
     nd 260 J1=J.K
     J2=K-J1+J-1
     00 260 T=1.N
 (1, 1+2L)Y+(1, 2L)Y=(1, 2L)Y 005
     DO 270 [=1,N
 270 ERROR(T)=0,0
     00 430 1=1.5
     CALL DIFFUN(T,V,SAVE,N2,N)
     IF (TWEVAL, LT. 1) GO TO 350
     IF (MF.EQ.2) GO TO 310
     CALL PEDERV(T/Y.PSAVE,N3)
     R#A(1)+H
     00 280 1=1.N4
 280 PSAVE(T)=PSAVE(T)+R
```


ហ៊

19154 290 DO 300 I=1,N ND = I + (N3 + 1) - N3300 PSAVE(ND)=1.+PSAVE(ND) undata se vezi na vezi 🕇 🗰 🛛 🗛 🛔 👘 👘 vezi 🖉 vezi na vezi CALL MATINV(PSAVE, N, J1, N3, N4) IF(J1.GT.0)G0 TO 350 GO TO 440 310 CCC≠EPS 00 320 1=1,N 320 SAVE(1,9)=Y(1,1) DO 340 J=1,N R=EPS+DMAX1(EPS,DABS(SAVE(1.9))) 601 Y(1,J)=Y(1,J)+g D=A(1)*H/R CALL DIFFUN(T, Y. SAVE, NG, N) 00 330 (=1,N ND=I+(J-1)+N3 NDD = NS + TNDDD = N1 + I330 PSAVE(ND)=(SAVE(NDD,1)-SAVE(NDDD,1))+0 340 Y(1,J) = SAVE(J,9)7 EPS=CCC GO TO 290 350 IF(MF.NE.0)G0 TO 370 00 360 1=1,N ND = N1 + 1360 SAVE(1,9)=Y(2,1)=SAVE(ND,1)+H 14 A second state of the second state of the first state of the state of the second state of the second state of the state of the state of the second state of the second state of the second state of the state of the second GO TO 410 370 00 380 1=1.N NDD = N1 + TND = N5 + 1380 SAVE(ND, 1)=Y(2, 1)-SAVE(NDD, 1)+H DO 400 1=1.N 0=0.0 00 390 .1#1,N ΰī δ ND=1+(J-1)+N3

ND0=N5+J 799 400 SAVE(1,9)=D DO 420 1=1.N Y(1,1)=Y(1)1)+A(1)*SAVE(1,9) 801 y(2,1)=y(2,1)-sAVE(1,9)802 ERROR(I)=ERROR(I)+SAVE(1,9) 803 IF(DABS(SAVE(I,9)).LE.(BND+YMAX(I)))NT=NT=1 9 420 CONTINUE IF(NT, LE. 0) GO TO 490 430 CONTINUE 440 T=T-H IF((H, LE, HMIN+1.00001) AND. ((IWEVAL-MTYP). LT. -1))GO TO 460 IF((MF, EQ.0).OR, (IWEVAL.NE.0))RACUM=RACUM+.25 **IWEVAL=MF** TRET1=2 GO TO 750 460 KFLAG=-3 470 DO 480 1=1,N 10 480 J=1,K 480 Y(J,I) = SAVE(I,J)10 H=HOLD NQUNQULD JSTART=NQ RETURN 490 D=0.0 DO 500 1=1.N 500 D=D+(ERROR(I)/YMAX(I))++2 IWEVAL=0 1F(D_GT_E)G0 TO 540 IF(K.LT.3)GO TO 520 00 510 J=3,K 00 510 1=1.N 510 Y(J,I)=Y(J,I)+A(J)+FRROR(I) ភ 520 KFLAG=1

```
A. 12.2 M.
      HNEW=H'
      IF(IDOUB.LE.1)GO TO 550
     IDOUB=IDOUB-1
     TF(IDOUB.GT.1)GO TO 700
      DO 530 I=1.N
 530 SAVE(1,10)=ERROR(1)
                                                                              11
      GO TO 700
 540 KFLAG=KFLAG=2
      IF(H.LF. (HMIN+1.00001))GO TO 740
      TETOLD
      IF(KFLAG.LE.=5)60 TO 720
 550 pR2=(D/E) ++ ENQ2+1.2
      PR3=1.E+20
      IF((NQ.GE.MAXDER).OR.(KFLAG.LE.-1))GO TO 570
      D=0.0
      DO 560 1=1.N
  560 p=p+((erROR(I)-SAVE(1,10))/YMAX(I))**2
                                                                               12
      PR3#(D/EUP) ** ENQ3+1.4
  570 PR1=1.F+20
      IF(NQ.LE.1)G0 TO 590
      b = 0.0
      00 580 T≠1.N
      D=D+(Y(K+I)/YMAX(I))++2
580
      PR1=(D/EDWN) ** ENQ1 *1.3
  590 CONTINUE
      IF(PR2.1E.PR3)60 TO 650
      IF(PR3_LT, PR1)G0 TO 660
  600 R=1.0/AMAX1(PR1.1.E-4)
      NEWQ=NO-1
  610 TDOUB=10
      IF((KFLAG.EQ.1) AND.(R.LT.(1.1)))GO TO 700
      IF (NEWQ LE NQ) GO TO 630
      DO 620 I=1,N
  620 Y(NEWQ+1,I)=ERROR(I)+A(K)/FLOAT(K)
  630 K=NEWQ+1
                                                                                                 U.
      IF(KFLAG.EQ.1)GO TO 670
                                                                                                 СП
                                                                                                 \infty
```

							· ·
			مىيە ئەرىپ	•	: 		
			e an in them and the second	an an <u>an A</u> raith an			
	• • • • • • • • • • • • • • • • • • •			يونية 6 مانيانيا (م. 1997). محافظ محافي والأنونو			
	IRET1=3			an a	na for an an State State State	an the second	-
	RACUM=RACUM*R						
	GO TO 750 CONTINUE	a the state of the state of the state	and service and the service of the s	n an an an an an an an ann an anns an an Arainne.	n Mare a brancaste anna 2 an ambran a mar an	·	a status and the second
	IF (NEWQ. EQ. NQ) GO TO 250				and a series for the series series with the transformer of the series	and a second	
· · · ·	NQ=NEWQ						
	GO TO 170						
450	IF(PR2_GT, PR1)G0 T0 600	•					
0-0	NEWQ=NQ		. .				
	R=1.0/AMAX1(PR2,1.E-4)						ار از المنظور و الم المحمد الحمد الحمد المحمد ال
	GO TO 610				•		
660	R=1.0/AMAX1(PR3,1.E-4)						
·	NEWQ=NQ+1				1		
	GO TO 610				· · ·		
670	IRET=2		· · · · · · · · · · · · · · · · · · ·				
	R=DMIN1(R,HMAX/DABS(H))						
	H=H+R						
· · · ·	HNEW=H			· .		· · ·	. •
	IF(NQ,EQ.NEWQ)GO TO 680				a		
· · ·	NQ=NEWO						19-11-19-1- 19-14-4 19-11-19-1-19-1-19-1-19-1-19-1-1
	GO TO 170						
680	R1=1.0	•					
	DO 690 J=2,K		•				autor se p
,	R1=R1+P	4				а. н. н	
(0.0	DO 690 1=1,N						
6×0	Y(J,I)=Y(J,I)*R1						
	100UB=K 00 710 I=1 - N	ويعراب بيعه يحيف وتربعهم وتربع	ي. يوميكونيه الدونة ومواله مراواته القيار	ومرار وأورج المنتجور ووراور والمراجع والمراجع	ى « روىيە ئېزىن ئە ^{رى} تىرىمۇسىيەر « بەرەپەر يارىمەر».	Share M. The State of the second second	and a second second
700	YMAX(I)=DMAX1(YMAX(I).D.	100 A					
710	JSTART=NQ	AP2(ACI)I	,,,,	. •			
	RETURN		· .	· ·	· .		
720	IF(NQ.FQ.1)G0 TO 780						
120	CALL DIFFUNCTIVISAVEINS	NY.			•		
	R=H/HOLD	F . 4 F					
	DO 730 1=1,N		· · ·		· · ·	· · ·	
	Y(1,1)=SAVE(1,1)				· · · · · · · · · · · · · · · · · · ·		ç
	••••••		•	, •		13	L V

الميكان من يوادي 1986 كان كان الميكوني كالميكون الماطن كالمسؤلية فالعراضة الأربية المراجع المراجع الأرداد كان كالميكان المحاد المطال المراجع المراطق كان الميكون كالميكون الماطن كالمسؤلية فالعراضة الأربية المراجع مراجع المراجع المراجع الم

.

.

- ND=N1+1 SAVE(1,2)=HOLD+SAVE(ND,1)
- 730 Y(2,1)=SAVE(1,2)+R
- KFLAG=1 60 TO 170 740 KFLAG=-1
 - HNEW=H JSTART=NQ
 - RETURN
- 750 R2=DMAX1(DABS(HMIN/HOLD),RACUM) R2=DMIN1(R2,DABS(HMAX/HOLD))R1=1.0

. . . .

موجد المراجب

n An Alisa Alipipaka 15

16

17

D90

- 00 760 J=2.K
- R1=R1+R2
- 00 760 1=1,N
- 760 Y(J,I)=SAVE(I,J)+P1 RACUM=R2
 - H#HOLD+RACUM D0 770 1=1.N
- 770 Y(1,I)=SAVE(I,1) IDOUB=K
- 60 TO (130,250,640), IRET1
- 780 KFLAG=-4 GO TO 470
 - END
 - EAU

SUBROUTINE MATINV(A, N, J1, NN, N4) DIMENSION A(N4), L(100), M(100)

And the second second

	น ค	INTEGRATION PROGR	i el Di F									
	L	D=1.0										
1 - C		NK=-NN			÷.		. 1					م الاند م
ж. -		DO 80 K=1.N						• • •				
		NK=NK+NN										
		£(K)=K										و القريمة ا
						201						
		KK=NK+K							-			
	•	BIGA=A(KK)										
		DO 20 J=K,N			an a							•
	· · · · ·	IZ=NN+(J-1)	, · · ·					•				
		DO 20 1=K.N										
		IJ=IZ+T		,								
	10	IF(ABS(BIGA)-ABS	S(A(IJ)))15,20,2	20							
	15	BIGA=A(IJ)							•	÷.,		2000 - 200 1000 - 200 1000 - 200
		L(K)=I			÷							1919) A 1917
		M (K) = J										
	20	CONTINUE										
		J=L(K)										
		£F(J-K)35,35,25						· · ·				
	25	KI=K-NN	-			a de la composición d		. •		· · ·		
	t totas roma	DO 30 T=1,N	a ana ang ang kata sang sa	n and states a searchair share	المحلة المراجع المحافة المراقع وز	an a water in a state of the state of the	a we could be do to a	na santana sa	or Ka ling and a state of the second state		-	
		KI=KI+NN								· · · · · · · · · · · · · · · · · · ·		
		HQLD=-A(KI)										
		JI=KI-K+J							an an an Araba. An Araba	· · ·	•	
× • 1		A(KI)#A(JI)		-		1	, ¹	3				
	30 .	A(JI)=HOLD										
	-35	I=W(K)						•		· · · · ·	· · ·	
		1F(1-K)45,45,38				-			· .			
	38	JP=NN+(1-1)						·	· · · · · ·	· -···		
		DO 40 J=1,N			-			· · · · · · · · · · · · · · · · · · ·				

. •

			· · · ·			1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	2 4 4	· · · ·						
											· .· ·			
	fairthachta	STATENK+J	19 - Alexandre de la companya de la			inter a stario. L	estra e	an tara di	re di tan de			· · · · ·		
		JI=JP+J			•									
		HOLD==A(JK)				· .	•	•		ан 19	$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$	14		1
an an a' an an Araban an Araban Araban an Araban an Ar	in an an tha an tha Tha an tha an t	A(JK)=A(JI)	an an the second	nar et 200 anti el 20	يني موسى مارج ير ^ي في معمر ا	عيلين يا الدورو ن معا المعاري	umani (Congress - 1 - 4 Million	unisa nganggan na ka	The second second	್ರಾಂಗಳವರ್ ಗೆ, ಕ್ರಾಂತಿಯ (ವಿಧ್ಯಾತ	a da persona da persona da angle da	کرمی رس _{کا} با مرکز می معطور – این	alana kata kata Sana	ne more este reneration
· .	40	A(JI)=HOLD												
· · · ·	45	IF(BIGA)48,46,48							:	9	- 1	· · · · ·		· · ·
	46	0=0.0					-			н. 1				
		J1=-1						•					•	
		RETURN						1	.t.,					
	48	DO 55 I=1.N			÷.,	•		:						
·		IF(I-K)50,55,50				: ·								
	50	IK=NK+I												
	·	A(IK)=A(IK)/(-BIGA)							. *		•			
	55	CONTINUE		e ant spe			, 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999		a an an an a'					·
		DO 65 1=1.N		ч ÷,		· · · ·			· • • • •	• • • • •	1997 - 1997 -	•		
	•	1K=NK+I	•		•••	•	•						*-	
									•					
		DD 65 J=1,N						· .						
		1J=1J+NN ****							*					•
		1F(1-K)60,65,60												
	60 62	IF(J≁K)62,65:62 KJ=1J-1+K				• •						l.		
	02	A(IJ)=A(IK)+A(K3)+A	(T.I.)											and the second
	65	CONTINUE	(19)									11.00		1.
•	03 -	KJ#K-NN				÷.,				· · · ·				,
		DO 75 J#1.N			· ·				•					
		KJ=KJ+NN												
	anga statutet.	1F(J-K)70.75.70	e Versener 1 b	н калана ослођан	town waar alaan t	n i kana nagi na magana M	an sheed a	and managed and an		مار المقارب ميا - معالى المن	esarko ali casi Schola	lan interaction	and the same that is	en a late
	70	A(KJ)=A(KJ)/BIGA							٠			1. A.	1. A.	
· · · · · · · · · · · · · · · · · · ·	75	CONTINUE		;			· -	· .			· · · ·			
		D=D+BIGA	•											
		A(KK)=1_0/BIGA												
•	.80	CONTINUE										-		
and the second second	,u v	K=N					*				· ·			•
	100	K=(K-1)							1				-	
		$\mathbf{w} = \mathbf{v} \cdot \mathbf{v}$						-						
		IF(K)150,150,105				19 Jack 19 19	the second second	2.48.2.2.2.2.2.2.2	1 - C - A	والمرجوع والمراجع		Av. 1. 4. 1	and a second second	

	· · · · · · · · · · · · · · · · · · ·										· ·			1.1				
							ante La companya				. •	. '	••		•	• •		· · · · ·
105	I=L(K)		· ·			•				·					÷		100 B	
	IF(I-K)120,120		•	· ·	· .	1 A _ 14		· . · .	÷ .		•		2				Na se	
108			e e e e		1	1. A.		e i se	e de la composición d La composición de la c			e 1	. •	. : -				•••••••••••••••••••••••••••••••••••••••
		• •	·			6 - 50 - 51 ^{- 11}						·	•		1 . 	terra de la composición de la		
		n an	1.14 June 1.4444-19-1			ante e cam	L'AMENTAN .	n i tra contra fue				***	s Lotterot re	1995 - 127 - 129 - 1		سې د ژوو د پېدر سې د.	رحود مادند رواد را	ي. ماريف ممرض
										•								· · ·
				•													· · · ·	
								•								· .	•••	
110		1.2					. •											
120	J=M(K)			· · ·														
	IF(J-K)100,100	,125							· ·						•			
125		• •	-		÷		÷					•	·		•			
			• .										1.16					
									· · .									
			· .		1.1		ų.				1 A			·				
		· · · · · · · · · · · · · · · · · · ·	9.12 S 1 					e e e e e e e e e e e e e e e e e e e	· · · ·									• •
130					- 	: * *			· . · ·		211 21		e de la composición de		. ···			
. –	GO TO 100		•				·			•					· .		٩.	
150	J1≖1			· .		•												
•					•			· .				•						
	END									۰.								
			•											•				
								1 A.										
	108 110 120 125 130	$IF(I-K) 120, 120$ $IO8 \qquad JQ=NN+(K-1)$ $JR=NN+(I-1)$ $D0 110 \qquad J=1, N$ $JK=JQ+J$ $HOLD=A(JK)$ $JI=JR+J$ $A(JK)=-A(JI)$ $110 \qquad A(JI)=HOLD$ $120 \qquad J=M(K)$ $IF(J-K) 100, 100$ $125 \qquad KI=K-NN$ $D0 \qquad 130 \qquad I=1, N$ $KI=KI+NN$ $HOLD=A(KI)$ $JI=KI-K+J$ $A(KI)=-A(JI)$ $130 \qquad A(JI)=HOLD$ $G0 \qquad T0 \qquad 100$	IF(I-K)120,120,108 $JQ=NN+(K-1)$ $JR=NN+(I-1)$ $DO 110 J=1,N$ $JK=JQ+J$ $HOLD=A(JK)$ $JI=JR+J$ $A(JK)=-A(JI)$ $110 A(JI)=HOLD$ $120 J=M(K)$ $IF(J-K)100,100,125$ $125 KI=K-NN$ $DO 130 I=1,N$ $KI=KI+NN$ $HOLD=A(KI)$ $JI=KI-K+J$ $A(KI)=-A(JI)$ $130 A(JI)=HOLD$ $GO TO 100$ $150 J1=1$	IF(I-K)120,120,108 $JQ=NN*(K-1)$ $JR=NN*(I-1)$ $DO 110 J=1,N$ $JK=JQ+J$ $HOLD=A(JK)$ $JI=JR+J$ $A(JK)=-A(JI)$ $110 A(JI)=HOLD$ $120 J=M(K)$ $IF(J-K)100,100,125$ $125 KI=K-NN$ $DO 130 I=1,N$ $KI=KI+NN$ $HOLD=A(KI)$ $JI=KI-K+J$ $A(KI)=-A(JI)$ $130 A(JI)=HOLD$ $GO TO 100$ $150 J1=1$	IF(I-K) 120, 120, 108 $JQ=NN+(K-1)$ $JR=NN+(I-1)$ $D0 110 J=1, N$ $JK=JQ+J$ $HOLD=A(JK)$ $JI=JR+J$ $A(JK)=-A(JI)$ $110 A(JI)=HOLD$ $120 J=M(K)$ $IF(J-K) 100, 100, 125$ $125 KI=K-NN$ $D0 130 I=1, N$ $KI=KI+NN$ $HOLD=A(KI)$ $JI=KI-K+J$ $A(KI)=-A(JI)$ $130 A(JI)=HOLD$ $G0 TO 100$ $150 J1=1$	IF(I-K) 120, 120, 108 $JQ=NN*(K-1)$ $JR=NN*(I=1)$ $D0 110 J=1, N$ $JK=JQ+J$ $HOLD=A(JK)$ $JI=JR+J$ $A(JK)=-A(JI)$ $110 A(JI)=HOLD$ $120 J=M(K)$ $IF(J-K)100, 100, 125$ $125 KI=K-NN$ $D0 130 I=1, N$ $KI=KI+NN$ $HOLD=A(KI)$ $JI=KI-K+J$ $A(KI)=-A(JI)$ $130 A(JI)=HOLD$ $G0 TO 100$ $150 J1=1$	IF(I-K) 120, 120, 108 $JQ=NN+(K-1)$ $JR=NN+(I-1)$ $D0 110 J=1, N$ $JK=JQ+J$ $HOLD=A(JK)$ $JI=JR+J$ $A(JK)=-A(JI)$ $110 A(JI)=HOLD$ $120 J=M(K)$ $IF(J-K) 100, 100, 125$ $125 KI=K-NN$ $D0 130 I=1, N$ $KI=KI+NN$ $HOLD=A(KI)$ $JI=KI-K+J$ $A(KI)=-A(JI)$ $130 A(JI)=HOLD$ $G0 TO 100$ $150 J1=1$	<pre>IF(I-K)120,120,108 JQ=NN+(K-1) JR=NN+(I-1) DO 110 J=1,N JK=JQ+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI)=HOLD 120 J=M(K) IF(J-K)100,100,125 125 KI=K-NN DO 130 I=1,N KI=KI+NN HOLD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI)=HOLD GO TO 100 150 J1=1 RETURN</pre>	<pre>IF(I-K)120,120,108 JQ=NN*(K+1) JR=NN*(I=1) DO 110 J=1,N JK=JQ+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI)=HOLD 120 J=M(K) IF(J-K)100,100,125 125 KI=K-NN DO 130 I=1,N KI=KI+NN HOLD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI)=HOLD GO TO 100 150 J1=1 RETURN</pre>	<pre>IF(I-K)120,120,108 JOENN+(K-1) JR=NN+(I=1) DO 110 J=1,N JK=JQ+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI)=HOLD 120 J=M(K) IF(J-K)100,100,125 125 KI=K-NN DO 130 I=1,N KI=KI+NN HOLD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI)=HOLD GO TO 100 150 J1=1 RETURN</pre>	<pre>IF(I-K)120,120,108 JQ=NN+(K-1) JR=NN+(I-1) DO 110 J=1,N JK=JQ+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI)=HOLD 120 J=M(K) IF(J-K)100,100,125 125 KI=K-NN DO 130 I=1,N KI=KI+NN HOLD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI)=HOLD GO TO 100 150 J1=1 RETURN</pre>	<pre>IF(I-K)120,120,108 JQ=NN+(K-1) JR=NN+(I-1) DO 110 J=1,N JK=JQ+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI)=HOLD 120 J=M(K) IF(J-K)100,100,125 125 KI=K-NN DO 130 I=1,N KI=KI+NN HOLD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI)=HOLD GO TO 100 150 J1=1 RETURN</pre>	<pre>IF(I-K)120,120,108 J0=NN*(K-1) JR=NN*(I-1) D0 110 J=1,N JK=JQ+J H0LD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI)=H0LD 120 J=M(K) IF(J-K)100,100,125 125 KI=K-NN D0 130 I=1,N KI=KI+NN H0LD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI)=H0LD G0 T0 100 150 J1=1 RETURN</pre>	<pre>IF(I=K)120,120,108 JQ=NN+(K=1) JR=NN+(I=1) DO 110 J=1,N JK=JQ+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 10 A(JI)=HOLD 120 J=M(K) IF(J-K)100,100,125 125 KI=K=NN DO 130 I=1,N KI=KI+NN HOLD=A(KI) JI=KI-K+J A(KI)==A(JI) 130 A(JI)=HOLD GO TO 100 150 J1=1 RETURN</pre>	<pre>IF(I-K)120,120,108 JQ=NN+(K-1) JR=NN+(I-1) D0 110 J=1,N JK=JQ+J H0LD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI)=H0LD 120 J=M(K) IF(J-K)100,100,125 125 KI=K-NN D0 130 I=1,N KI=KI+NN H0LD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI)=H0LD G0 T0 100 150 J1=1 RETURN</pre>	<pre>IF(I-K)120,120,108 JG=NN*(K=1) JR=NN*(I=1) DO 110 J=1.N JK=JQ+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI)=HOLD 120 J=M(K) IF(J-K)100,100,125 125 KI=K-NN DO 130 I=1.N KI=KI+NN HOLD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI)=HOLD GO TO 100 150 J1=1 RETURN</pre>	IF(I-K)120,120,108 JOENN+(K-1) JRENN+(I-1) DO 110 J=1,N JK=JQ+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI)=HOLD 120 J=M(K) IF(J-K)100,100,125 125 KI=K=NN DO 130 I=1,N KI=KI+NN HOLD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI)=HOLD GO TO 100 150 J1=1 RETURN	<pre>IF(I-K)120,120,108 J0=NN*(K=1) JR=NN*(I=1) D0 110 J=1,N JK=JQ+J H0LD=A(JK) JI=JR+J A(JK)=-A(JI) 10 A(JI)=H0LD 120 J=M(K) IF(J-K)100,100,125 125 KI=K-NN D0 130 I=1,N KI=KI+NN H0LD=A(KI) JI=KI-K+J A(KI)=-A(JI) 130 A(JI)=H0LD G0 T0 100 150 J1=1 RETURN</pre>

on an a ----

4.00

.

يساريه فالترو وكمر الوحات وتتبعه

D63

Appendix E

Multicomponent Simulation Program

The multicomponent simulation program is similar to that of the binary simulation program. The subroutines for the integration and the matrix inversion DIFSUB and MATINV are exactly the same as those preduced in Appendix D. The subroutines for calculating the collision integrals IPNEU and IDNEU are also the same as those for the binary case in Appendix D.

In this section only the subroutines which are different to the binary case are produced. These subroutines are:-

Master Ternary:- this subroutine estimates the column dimensions after first reading in the required data. The data and the order inwhich it is read in is given in detail before the subroutine listings. The nomenclature used for the program is roughly the same as that for the binary system.

The subroutines SYSTEM, EQUIDA, AICHE, WRITER, DIFFUN, MASTER DRAWER and PLOT 1 all have the same function as those described for the binary system. The only difference in the subroutines is that the multicomponent simulation program is not set to handle flow changes and that the DO LOOPS are more nested to handle the extra equations due to more than one component being operated on. The only major difference between the binary subroutines and the multicomponent subroutines is that:-

SUBROUTINE AICHE combines all the work needed for estimating average liquid and vapour densities, Peclet number and the parameters needed to estimate the point efficiency. Further, the assumption of one point efficiency per plate is replaced by one point efficiency per pool. In this way the point efficiency can vary along the plate for any one component due to the interaction of the other components on it.

SUBROUTINE EQUIDA no longer estimates the linear equilibrium relationships but requires constant relative volatilities for using in the equations derived by Wood (116).

Data to be read in:-

N,NF,QFS,W,TL,NK

AMA,DSD,TBO,AREL,VZ1 (1 data card per component) XFS(1 to NK)

XXS(1)

XXS(2 to total)

YA(1)

YA(2 to total)

TCAN, STEP1, STEP2, HMAX1, HMAX3

IMARK, XFS(1 to NK)

Nomenclature:-

number of plates counting the reboiler as plate 1.

n

NF feed	plate number.
---------	---------------

QFS q-line feed condition.

W weir height (inches).

TL column diameter (ft).

NK number of components.

AMA molecular weight.

DSD density of the liquid (gm/cc).

TBO boiling point of liquid c.

AREL relative volatility

VZl viscosity (centipoise).

XFS feed composition (mf).

XXS(1 to NK) reboiler compositions at steady-state (mf). XXS(NK to total) steady-state liquid compositions working

up the column (mf).

YA(1 to NK) average vapour composition leaving the reboiler. YA(NK+1 to NXNK) average vapour composition leaving the

plates (mf).

XFS(1 to NK) the new unsteady-state values of the feed

compositions (mf).

```
MASTER TERNARY
     DIMENSION ALS(10). AMA(5). DSD(5). TBO(5). AREL(5). VZ1(5). XFS(5)
     DIMENSION XXS(150), XS(150)
     "DIMENSION YS(150), YA(150), YC(150), EMVP(30), ALE(30), YV(50)
     DIMENSION TEXIT(10)
     COMMON/AIS/XXS.XS.ALS.XFS.YS.YA.YC.EMVP.ALE.YV.FS.WS.DS.VS.VR.RR.T
    1COND, TROIL, SEXIT
     COMMON/WEIR/W
     COMMON/DATE/TW, TL, TR, AD, TW1, TA, TAA, HDIA, TTH, HOA, ANT, AUD, COV
     COMMON/DHYS/AMA, TRO, DSD, AREL, V71
     COMMON/PARS/N, NF, NK, LQ, QFS
C
Ĉ
     THIS ROUTINE READS IN COLUMN AND SYSTEM PARAMETERS, THEN
C
     CALCULATES THE COLUMN AND TRAY AREAS.
Ĉ.
     NF=FEED PLATE N=NUMBER OF PLATES WHERE THE REBOILER IS NO. 1
     RES=0 LINE FEED CONDITION, ASSUMED = OP > 1.
C
     COLUMN DIMENSIONS: - TWEWIDTH: TAAEACTIVE LENGTH: TLEDIAMETER
      PHYSICAL PROPERTIES: - DENSITLES
                                               nSn.
                             MOLE WEIGHTS
                                               AMA
                             VISCOSITIES
                                               V21
                             BOILING TEMP.
                                              TBO
                             RELATIVE VOLS.
                                               AREL
      WEIR HT. INS.=W ACTIVE AREA=TA POINT EFFICIENCY EP
     NUMBER OF POOLS FOR ACTIVE AREA=LQ
C
      REFLUX RATIO=RR BACKFLOW RATIO=BETA,B
C
                        VAPQUR FLOW=VV,VS,VR
      LIQUID FLOW=ALS
     MOLAL HOLDHPS=VD, VT, VR, VC FOR DOWNCOMER, TRAY, REBOILER, CONDENSER.
C
      FEED RATE=FS FEED COMPOSITION =XFS
C
      BOTTOM RATE =WS TOP RATE =DS
      FSTIMATED TOP PRODUCTS=ETP CALCULATED TOP PRODUCTS=CTP
C
                                                                                             E
      COMPOSITIONS: - LIQUID=XS :Y VAPOUR=YA VAPOUR CELL=YC
C
```

									2
					·. ·				
			•			- -			·
	* 1 × ¹		ter an the second second	201327 4337444	· · · · · ·	معهد الد المعالم المعالم المعالم الم	and a second second		
	2		DDY DIFFUSION COE		Ę				
	-	HEIGHTS :- CLEAR							
		VELOCITIES :- FRO					· ·		
an a		DENSITIES LB/CU.F. SPACE TIMES SECS.					್ಷ ನಿರ್ದೇಶಕ ಕಾರ್ಕ್ರಮ ನಿರ್ದೇಶಕ ತಮ್ಮ	neter in the production	 Martin Para Alista + 1
·	G 5.	SPACE LIMES SELS.	CONDENSER=TAUC		RAIUKES	TBOIL			
	և Բ		DOWNCOMER=TAUD			TEXIT		· .	
	с Г		TRAYS=TAUT			TEXIT			
	6. Č		TRATS-1401			TEXT			مېنې، تورېد
н. - С	с л								
	r	****		********					
	r.								i testate.
	ř.		• .						
	č	SET COLUMN AND SY	STEM PARAMETERS		· · ·				
	C	· · · · · · · · · · · · · · · · · · ·			- 144 4			e da en la proposición de la proposición	,
	-	READ(1,101)N,NF,Q	FS,WITLINK						
	101	FORMAT(210,3F0.0,	10)	· · ·		1. · · · ·			
		W=W/12							
		00 1 I=1,NK	· ·						
		PEAD(1,100)AMA(1)	,DSD(I),TBO(I),AR	EL(1),VZ1(1)				
	100	FORMAT(SE0,U)							
		00 5 I=1 . NK	•						
	5	AREL(I)=AREL(I)/A							1. A.
		READ(1,102)AKI, FS						·	
	102	FORMAT(3F0,0,210)							
		READ(1,103)(XFS(I),T=1,NK)						
н. 1		FORMAT(5E0,0)							
يها منازعين الألة المالين المالية الم	n ay Aray Awarawa	TW=.885+TL	الارتيانية المحادثة المحتمر المحافظ المحافظ المحاد شريقية ليون المحادثين الارتمانية. المحادث المحادث المحتمر المحافظ المحادث المحادث المحادث المحتم المحادث المحادث المحادث المحادث المحادث المحادث	ം. ആപ്പോഷ്ട്രസം ക്രീത്തില് പ്രകേഷം പ്രംപം	and the second second	ی کار ان میں میں میں میں ایک کار ا	an an ann an	teres where the states of	na a series de la s
		TA1=SQRT((TL/2)++	2-(.385*TL)**2)				•	100 A.	
		TD1=T1/2-TA1							
•		TW1=.77+TL				*			
		AD2=TW1+TD1				1 .			• .
·		THETA=ASIN(TW1/TL							
		TTA=3.1415926+(TL		•			•	-	
		AS=TTA+THETA/5.14 AD=AS=0.5+TA1+TW1				···			
· · · · · ·		AU#A5-0.3*141*1W1							
						•			

	an a	14.000 - 10.00	والعي متستني والجرد العالم والداد المعجور	and and the second s	
				· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	- iii 4		•		
	TD2=T01+A0/AD2	The second se	a second a second s		
	TR=TD2+2+TA1				
n for first de la service de la compression de la compression de la compression de la compression de la compres	TAA=2+TA1	· · · · · · · · · · · · · · · · · · ·	the second s		
	TA=TA-2*AD	• •			
	HDIA=_1875	4 			
1997年,1997年4月1日,1995年1月23日本代史代史·新州市大学家的新闻中国的研究。 1997年———————————————————————————————————	exercise the second	anderse and the second states with the second s	د دور به در دور در دور در در دور در در در در در در دور در در دور در در در در در در در دور در در دور در در در در در در	and the state of the second	والمعاجم والمعروب
· · · · · · · · · · · · · · · · · · ·	TTH=0.1			,	
	HOA=0,1+TTA				
	ANT=TTA-AD		•		
	AUD=TW1+1.0/12.0			•	_
	COV=1.09*(HDIA/TTH)**0.25				
	w2=w+12.0				and the second sec
	APR=1,0				
	PIT=0.5				
• • •	WRITE(2,200)	·		· · · · · · · · · · · · · · · · · · ·	
200	FORMAT(1H1,///////28X,31HDISTILLA	TION COLUMN D	IMFNSIONS.)		
	WRITE(2,202)	and an an an			
202	FORMAT(/30x,21H WEIR AND DOWNCOMER.)		the second second second	-
	WRITE(2,201)				•
201	FORMAT(/15x, 6HDIA. FT, 4x, 38HHT, INS	LENG.FT S	EC.AREA APRON	N 3	1. T. 1.
	WPITE(2.203)TL,WZ,TW1,AD,APR			.,	
203	FURMAT(17X, F3.1, 6X, F4.2, 6X, F6.4, 5X, F	6.3.8X.F3 1)			
	WRITE(2,204)				والمراقبة المراقبة ا
204	FORMAT(//21X,35HPERFORATIONS	TRAY AREA	c \		
• • •	WRITE(7,205)	TRAL ARCA			
205	FORMAT(15X,48HDTA.INS PITCH AREA	NET A	CTIVE GROSS)		
	こうちゃうちょう しょうきょうひょうしゃ くりめ うごう おもしり しいしん せいしん				
	URITE(2 206) HOTA, DIT, HOA, ANT, TA TTA	ы г • д	CITAC ANDER		
•	WRITE(2,206)HDIA, PIT, HOA, ANT, TA, TTA				
•	WRITE(2,206)HDIA,PIT,HOA,ANT,TA,TTA FORMAT(15X,F6.4,5X,F3.1,3X,F7.4,2X.F				
206 C	FORMAT(15X, F6.4, 5X, F3.1, 3X, F7.4, 2X.F	6.3,2X,F6.3,2		۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	
206 C	FORMAT(15X, F6.4, 5X, F3.1, 5X, F7.4, 2X, F READ IN INIFIAL ESTIMATES OF TRAY CO	6.3,2X,F6.3,2		n a stand for the stand at a stand	.e
206 C	FORMAT(15X, F6.4, 5X, F3.1, 3X, F7.4, 2X.F	6.3,2X,F6.3,2		n an an an San (19 an an San San San San San San San San S	tera y anti-
206 C	FORMAT(15X, FÓ.4, 5X, F3.1, 5X, F7.4, 2X, F READ IN INIFIAL ESTIMATES OF TRAY CO SET FEED RATE AND COMPOSITION	6.3,2X,F6.3,2		tan atan data (Manada) data ang tang tang tang tang tang tang ta	
206 C	FORMAT(15X,F6.4,5X,F3.1,5X,F7.4,2X.F READ IN INTEIAL ESTIMATES OF TRAY CO SET FEED RAFE AND COMPOSITION NPOOL=(N-1)+(LQ+1)+2	6.3,2X,F6.3,2		na an a	'e. •''.
206 C	FORMAT(15X,F6.4,5X,F3.1,3X,F7.4,2X.F READ IN INIFIAL ESTIMATES OF TRAY CO SET FEED RAFE AND COMPOSITION NPODL=(N-1)+(LQ+1)+2 NLIM=NPOOL+NK	6.3,2X,F6.3,2		n a transformation and a star and a star and a star and a star	••••• ••• •• •
206 C	FORMAT(15X,F6.4.5X,F3.1.5X,F7.4.2X.F READ IN INITIAL ESTIMATES OF TRAY CO SET FEFD RAFE AND COMPOSITION NPOOL=(N-1)+(LQ+1)+2 NLIM=NPOOL+NK READ(1.104)(XXS(I),I=1.NK)	6.3,2X,F6.3,2		na na sana sana sana sana sana sana san	141 - 1 - 121 ¹¹ - 1 1 1
206 C	FORMAT(15X, F6.4.5X, F3.1, 5X, F7.4, 2X, F READ IN INIFIAL ESTIMATES OF TRAY CO SET FEFD RAFE AND COMPOSITION NPOOL=(N-1)+(LQ+1)+2 NLIM=NPOOL+NK READ(1,104)(XXS(I),I=1.NK) READ(1,104)(XXS(I),I=1.NK)	6.3,2X,F6.3,2		199 - Thank Tay Tay and the agent factor and the top of the second second second second second second second s	•••• • • • • • • • • • • • • • • • • •
206 C	FORMAT(15X,F6.4.5X,F3.1.5X,F7.4.2X.F READ IN INITIAL ESTIMATES OF TRAY CO SET FEFD RAFE AND COMPOSITION NPOOL=(N-1)+(LQ+1)+2 NLIM=NPOOL+NK READ(1.104)(XXS(I),I=1.NK)	6.3,2X,F6.3,2		na an an an Angara an	1997 - 19

•

.

ິດ

READ(1,104)(YA(1),I=(NK+1),(NLTM-NK)) 104 FORMAT(12F0.0) ALS(2)=AKT FR=L0/LP L2=LQ-L0 WRITE(2,207) 207 FORMAT(//17X,4HDENS,4X,6HMOL WT,4X,4HVISC,4X,6HB.TEMP,5X,SHR,VOL) n0 2 J=1,NK 2 WPITF(2,208)DSD(J),AMA(J),V21(J),TBO(J),ARFL(J) 208 FORMAT(16X,2(F6.3,3X,F6.2,3X),F6.2)

and the second second

CALL SYSTEM

STOP

END

~

t d

a share and and

· · · ·	01100011-011F	CONTRACTOR AND AND					
e de la construction de la constru La construction de la construction d	SUBROUTINE 1)	EQUIDA(J4, J3, N)	(,XX3,X3,Y3+A	RELATOUATOUI	L. FCONDELGIN, T	EP	
an a	DIMENSION A	REL(5), YS(150)	, XX\$(150), XS(150).ES(150)	, TBQ (5) + EP (150)	n Norman Martine Martine States → Martine States
C C C C	PHASE USING	TINE CALCULATE CONSTANT RELA TURES ARE ALSO	TIVE VOLATELI			DS	
C	N4 TM= (/ N = 4 N	*(L0+1)+2)*NK					
	DU 6 I=1.NU				·		
	6 XXS(I)=XS(I						
• •	SUM1=0_0	•					
	SUM6=0.0	·	· .			· •	
	DO 1 1=1.NK				n de la companya de l Tenente de la companya	and a second	
	II=1+J3+J4	· · · ·					
		80(1) *XS(II)				-	• · · · · · · · · · · · · · · · · · · ·
	SUM1=SUM1+A	REL(T) +XS(IT)				· .	
• • •	1 CONTINUE	•					
	SUM3=SUM1++	12					
	TEP=SUM6						
	DO 2 11=1.N	١K				•	
	1=11+33+34					-	
		(IE) + XS(I)/SUM1					
	SUM5=0.0						
	0_0=8MU2	•					
	SUM2=0.0				· .	×	
an an an Arrient ann an Arrientair an Arrientair an Arrientair. An	and the DO 3 - JJ=1 . N	↓K − − − − γs − − − − γs	an in the second state and the second second	na kati na nanjari na kwata kata kita kita na	er an in name water e groot sevenes	n Charles a Constant and a second	e sy estate e source a source
	J=JJ+J3+J4			1	•		
	1F(JJ.FQ.11				,		
	CIIM J + SIIM J + J	AREL(JJ)+XS(T)	1				
		くつだし よっすち しょりだり とり	ココキスろして チー・・	s.			•
	SUM8=SUM8-A	AREL(II) + AREL(J			•		
	SUM8=SUM8-A GO TO 3	AREL(II)+AREL(J		· · ·			
	SUM8=SUM8-A	AREL(II)+AREL(J		· · ·	· · ·		·

a a star a st A star a star

- ES(I)=SUM5 2 CONTINUE NLIM=NK+N*(LQ+1)-NK+LQ We wanted a state of the state SUM1=0.0 DO 5 1=1,NK SUM2=SUM2+XS(NLIM+I)+TBO(I) SUM1=SUM1+XS(I)+TBO(I) 5 CONTINUE TBOIL=SUM1 TCOND=SUM2
 - RETURN END

Eg

SUBPOUTINE SYSTEM DIMENSION VA(150), VS(150), VC(150), XXS(150), XS(150), TEXIT(10), ALS(1 10), AREL(5), AMA(5), TBO(5), DSD(5), VZ1(5), XR(10), WD(10), WT(10), B(10) DIMENSION EMAXE(5), EMINE(5) DIMENSION ALE(30) DIMENSION PEN(10), EP(150), XFS(5), TIM(100), EMVP(30), YV(50) DIMENSION Y(8,80); SAVE(80,12), PSAVE(6400), YMAX(80), ERROR(80), A(8) DIMENSION PERTST(7,2,3) DIMENSION ETP(5), CTP(5) COMMON/TOPS/ETP.CTP COMMUN/MAS/WT, WD, XR, B, PEN, EP, VB, VC COMMON/GRAF/PSAVE, SAVE, Y, EMAXE, EMINE COMMON/PHYS/AMA, TBO, OSD, AREL, VZ1 COMMON/METH/ME COMMON/CTER/IY, IC, IMARK COMMON/AIS/XXS,XS,ALS/XFS,YS,YA,YC,EMVP,ALE,YV,FS,WS,DS,VS,VR,RR,T 1COND, TROIL, TEXIT COMMON/PARS/N, NF, NK, LQ, QFS THIS SUBROUTINE IS THE CENTRE OF THE PROGRAM. IT INITIALISES THE INIFGRATION ROUTINE PARAMETERS, CALLS THE INTEGRATION ROUTINE THEN WRITES THE GENERATED DATA ONTO DISC. WRITE(2,201) 201 FORMAT(1H1) READ(1,100) TCAN, STEP1, STEP2, HMAX1, HMAX3 100 FORMAT(5F0.0) TZ=0 IC=0CALCULATE FLOW RATES OF STREAMS SET VALUES FOR THE BOTTOM RATE C DS=FS-WS DD 2 J=2,NF-1 2 ALS(I+1) = ALS(I)E

```
DO 8 I=(NE+1),(N+1)
 8 ALS(I) = ALS(NF) - FS + QFS
  VS=(ALS(2)-WS)/LQ
FPS=1.0E-3
  MF=2
   NL=NK-1
  NLIM=(N-1) + (LQ+1) + NL+2 + NL
  DO 3 I=1,NLIM
  FRROR(1)=0.0
  IF(((I/2)+2),E0,I)GO TO 10
  YMAX(I)=0.1
  YMAX(I+1)=0.3
10 CONTINUE
  DO 3 J=1.NLIM
 3 PSAVE(J+(I-1)*N(IM)=0.0
   DO 4 I=1,8
   00 4 J=1,NLIM
 4 y(1, J) = 0.0
  00 5 I=1,12
   00 5 J=1,NLIM
 5 SAVE(J,1)=0.0
 00 6 I=1,8
 6 A(1)=0.0
 . DO 7 I=1.7
   DO 7 J=1.2
   00 7 K=1,3
 7^{\circ} DERTST(1, J, K) = 0.0
   SET THE MAXIMUM TIME TO RUN :- BIGT
   SET THE MINIMUM, MAXIMUM AND INITIAL INTEGRATION STEP LENGTHS
   SET THE INITIAL LIMITS FOR PLOTTING PURPOSES.
   T=0.0
  H=1 0E-7
   HMIN=1,0E-20
```


- . 15 24 BIGT=4*TCAN STEP=STEP1 HMAX=HMAX1 -JSTART=0 MAXDER=7 MLIM=((N-1)*(LO+1)+2)*NK TI=0DO 9 1=1,MLIM XS(T) = XXS(T)IF(((I/NK)+NK)_EQ.I)GO TO 9 TI=11+1 Y(1,11) = XXS(1)9 CONTINUE NN=NLIM N4=NLIM*NLIM TMAX=0.0 00 23 T=1,NK EMAXE(T)=0.023 FMINE(1) = 4.01=0 20 CONTINUE TY=0 TF(T.GF. 1. AND. KFLAG. LE. 0) IY=1 CALL DIFSUR (NN, T, Y, SAVE, H, HMIN, HMAX, EPS, MF, YMAX, ERROR, KFLAG, JSTART 1, MAXDER, PSAVE, NG) IF(KFLAG)11,11,12 11 WRITE(2,13)KFLAG FPS=EPS+10 13 FORMAT(3X,6HKFLAG=,15) GO TO 20 12 CONTINUE HT=T 33=0 DO 1 JX=1,NLIM 33=33+1 XS(JJ) = Y(1, JX)

臣12

				·	
					$ \psi_{i}(t) = \frac{1}{2} \int_{t_{i}} \frac{1}{ \psi_{i}(t) } \frac{1}{ \psi_{i}(t) } dt = \frac{1}{ \psi_{i}(t) } $
	IF((CJX/NL)*NL)_NE	JX)60 TO 1			
	JJ=JJ+1				
	XS(JJ)=1.0-XS(JJ-1)-XS(JJ-2)			
and the constraint of the second	CONTINUE CONTINUE	ما هوي را تجامع الروميين الحديدي المداور المراجع في الرومين المراجع المراجع المراجع المراجع المراجع الرومي الم	والمتحافظ والمعالية والمعالية والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ	an a	na na sana sana sana sana sana sana san
	12=12+1		•.		
	TECT.LT. TMAX) GO TO	20			
	TMAX=TMAX+STEP				• •
	IF(1,NF,0)G0 TO 32				
	WRITE(2,202)				
	202 FORMAT(1H1,////5X,	6HLAMBDA, 6X. 5HSLOPE,	7X+6HPT EFF+6X+SH	C.P.E.7X.4H	
	1EMVP,8X,5HC+E+R,6X	,8HEMVP/EOG)			and an
	N, S=L 88 00				
	JG = (LQ+1) + NK				
	JF=(J-2)*JG+NK				
	<u>1 = 1 + 1</u>				
·	IF(IC+LT,1)TST=T			and the second sec	
	TACT=T-TST		· .		
	RR=ALS(N+1)/DS				
	TIM(1) = T/60.0	· · · ·			
	WRITE(2,200)T				
-	200 FORMAT(3X, F10.5)			· ·	
	MLIM=((N-1)+(LQ+1)				
	WRITE(3)TACF.FS.WS	,DS+RR+VB,VC			•CL. 2000 L.
	00 15 J=1,NK				
·	15 WRITE(3)ARFL(J), XF	S(J),XS(J),XS(MLIM-N	K+]]'FID(])'CID(]	>	
	DO 16 J=1,N-1				··· .
وراهر والعروب البران المتحاور فالتارين		n	er en statement andere en anter a statement a statement a statement a statement a statement a statement a state	and the second sec	an a
	VF=VS+LQ	TTILL OFNILLS OF IS			
	16 WRITE(3)XR(JJ),TEX DO 17 JI=1,NK	[I(1)]+HEN(1))+R(1))	• ALS(JJ), VF		
	00 17 J=1,NK				
	MX1=((j-1)+(LQ+1)+	# 5 + K(y	•		
	MX1=((()=()=()=()=)				
	JS=MX2-NK+J1	· · · · · · · · · · · · · · · · · · ·		· · ·	
			• •		•
		'-1)*NK),JY=1,LQ+1),(VALLenlin_Althur		and the second sec
	MUTIE/J//V9/93=/94		1#135"1JY#1J#NKJ;-	JY= <td>1</td>	1
					·

. • • المحمد . المراجع المحمد المحمد المحمد والمحمد محمد معالية المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم المحمد المحمد المحمد المحمد المحمد والمحمد محمد محمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد الم

> υ ω

1.YV(JV), EMVP(JV-NK)

C

C

SET NEW LIMITS FOR PLOTTING.

```
ar parat taka wasa internet a tanan wana ing parata dan ing tatang tagat pati ang panakan kenya kenya kenya kenya pang ang pang tang kenya kenya
    IF(EMINE(JI),GE_EMVP(JV-NK))EMINE(JI)=EMVP(JV-NK)
    IF(EMAXF(JI), LE. EMVP(JV-NK))EMAXE(JI)=EMVP(JV-NK)
17 CONTINUE
    IF(IC.EQ.1)IC=2
    IF(T.GE.(2+TCAN))HMAX3=HMAX4
    IF((T-TST-4+TAU).GE.0.0.AND.IC.FQ.2)HMAX=HMAX3
    IF(IC.EO.0.AND.T.GE.TCAN)IC=1
    IF(IC.NF.1)60 TO 22
    TAU=3600+XR(NE)/ALS(NE)
    HMAX2=TAH/2.0
    HMAX=HMAX2
    STEP=HMAX2/2.0
    HMAX3=(BIGT=TST=8.0+TAU)/20.0
    IF (HMAX3, LE, HMAX2) HMAX3=HMAX2
    HMAX4=4 + HMAX3
    H=0.02
    TMAX=T
    JSTART=0
22 CONTINUE
    TF(I.GE, 60)GO TO 31
    CALCULATED TRUE FIME IN MINUTES: - TIM(J)
    IF(T.LT.BIGT)GO TO 20
31 CONTINUE
    00 18 J=1,T
18 \text{ TIM}(J) = \text{TIM}(J) = \text{TST}/60.0
    SET FINAL LIMITS FOR PLOTTING
    DO 24 J=1,NK
    EMAXE(J)=(INT(EMAXE(J)+10.0)+2.0)/10.0
```


IF(EMINE(J).LT.0.0)GO TO 25 EMINE(J)=(INT(EMINE(J)+10.0))/10.0 GO TO 24

25 EMINE(J)=(INT(EMINE(J)+10.0)-2.0)/10.0 24 CONTINUE

CALL WRITER(I.N.NK,LQ,TIM) RETURN

a a sananan a dara sa sanan ang ang 192 a dara na sa sa sa sanan na sa

E15

```
SUBROUTINE WRITER(I.N.NK.LQ.TIM)
DIMENSION TIM(100)
DIMENSION EMAXE(5),EMINE(5)
COMMON/AIS/AX(893)
COMMON/GRAF/BX(8000),EMAXE,EMINE
```

THIS ROUTINE READS THE COMPUTED DATA ON DISC AND WRITES

```
NLIM=I+NK+2+N
 NX1=1+(N+1)
  NX5=1+2+N
  REWIND 3
 NO 1 11=1.1
 WRITE(2:204)
 READ(3)(AX(J), J=1,7)
 WRITE(2,200)(Ay(J),J=1,7)
 WRITE(2,205)
 DO 2 K=1 NK
 NX2=(K-1)+NX5
  NX3=NX2+N+1
 N2=7+(x-1)+6
  READ(3)(AX(N2+1), J=1,6)
  BX(NX2+11)=AX(10+(K-1)+6)
  RX(NX3+11)=AX(11+(K-1)+6)
2 WRITE(2,208)K, (AX(N2+J), J=1,6)
  N3=N2+6
  NZ=6+(N-1)+7+6+NK-
  WRITE(2,206)
```

WRITF(2,206) 00 3 K=1,N-1 N4=N3+(K+1)*6 READ(3)(AX(N4+J),J=1,6) WRITE(2,201)K,(AX(N4+J),J=1,6) 3 CONTINUE N5=N4+6 N0 4 JT=1,NK WRITE(2,202)JI

an Maria an Antonio **ma**rina an Antonio an Antonio antona di Antonio Maria antonio a

E16

```
 \begin{array}{l} & \text{WRITE}(2,207)(J,J=1,LQ),(K,K=1,LQ) \\ & \text{NO} \quad 4 \quad JK=1,N-1 \\ & \text{NX4}=(JI-1)*NX5+JK*I \\ & \text{NX6}=NX4+NX1-I \\ & \text{NO}=N5+((JI-1)*(N-1)+(JK-1))*(3+2*LQ) \\ & \text{READ}(3)(AX(NO+J),J=1,(2*LQ+3)) \\ & \text{WRITE}(2,203)JK,(AX(NO+J),J=1,(2*LQ+3)) \\ & \text{NNX}=NZ+LQ+1+((JK-1)+(JI-1)*(N-1))*(2*LQ+3) \\ & \text{NNY}=NZ+(JK+(JI-1)*(N-1))*(2*LQ+3) \\ & \text{NNY}=NZ+(JK+(JI-1)*(N-1))*(2*LQ+3) \\ & \text{RX}(NX4+II)=AX(NNX) \\ & \text{RX}(NX6+II)=AX(NNY) \\ \end{array}
```

```
4 CONTINHE
```

1 CONTINUE

Ĉ

REWRITE ONTO DISC THE INFORMATION NEEDED FOR PLOTTING,

```
REWIND 3
```

```
WRITE(3)NLTM,N,LQ,NK,I
WRITE(3)(BX(J),J=1,NLIM)
```

```
WRITE(3)(TIM(J),J=1.1)
```

```
WRITE(3)(EMINE(J), EMAXE(J), J=1. NK)
```

```
204 FORMAT(1H1,////////Ax,59HTIME FEED BOTTOMS TOPS R, RATIO
1 RB, HOLDUP C, HOLDUP)
```

```
205 FORMAT(16X,45HCOMPONENT REL.VOL FEED COMP. BOILER COND.,4X,12H
1FTP. CTP.)
```

```
206 FORMAT(12X,68HPLATE HOLDUP TEMP, PECLET NO. BACKFLOW LIQUID F
1LOW VAPOUR FLOW)
```

```
208 FORMAT(19X,11,2X,2(6X,F4.2),3X,2(2X,F6.4),1X,2(F7.3,2X))
```

```
200 FURMAT(16X, F7.3, 2X, F5.1, 2X, F6.1, 3X, F6.1, 3X, F6.3, 2(3X, F7.4))
```

```
201 FORMAT(14X, 11, 4X, F6. 4, 2X, 2(F6. 2, 5X), 2X, F7. 4, 2(5X, F/. 2, 1X))
```

```
202 FORMAT(12X, 10HCOMPONENT=, 12, 8X, 18HLIQUID COMPUSITION, 22X, 18HVAPOUR
```

```
1 COMPOSITION, 9X, 10HMEAN EMV.)
```

```
203 FOPMAT(16X,11,7X,14(1X,F5.4),F7.4)
```

```
RETURN
```

```
SUBROUTINE AICHE
   DIMENSION AB(150)
   DIMENSION ES(150)
  DIMENSION FXS(150), EVA(150)
   DIMENSION AUS(10), AREL(5), VZ1(5), AMA(5), DSD(5), TEXIT(10), B(10), PEN
  1(10), WD(10), WT(10), XR(10), HOL(10), SL(10), DENS(10), VDEN(10)
  DIMENSION EPP(5), CDD(5), VIS(5), DG(5), ANG(150)
   DIMENSION XXS(150), XS(150), YS(150), YC(150), YA(150)
   DIMENSION EP(150), TBO(5)
   DIMENSION XES(5)
   DIMENSION EMVP(30), ALE(30), VV(50)
   COMMON/LAM/ES
   COMMON/AIS/XXS, XS, ALS, XFS, YS, YA, YC, EMVP, ALF, YV, FS, WS, DS, VS, VR, RR, T
  1COND, TROIL, TEXIT
   COMMON/WEIR/W
   COMMON/CTER/IY, IC, IMARK
   COMMON/DHYS/AMA, TBO, DSD, AREL, V71
   COMMON/DATE/TW.TL.TR.AD, TW1, TA. TAA, HDIA, TTH, HDA, ANT, AUD, COV
   COMMON/PARS/N.NF, NK, LQ, QFS
   COMMON/MAS/WT, WD, XR, B, PEN, EP, VB, VC
   THIS SUBROUTINE CALCULATES ALL THE PARAMETERS INVOLVED WITH PLATE
   AND POINT EFFICIENCIES.
   DO 1 J=2,N
1 XR(J) = WD(J) + WT(J)
   VS=(ALS(2)-WS)/10
   VR=VS+(1-4FS)+FS/LO
   JE(JV_NE_1)G0 TO 20
   Nt 1M=((N-1)+(Lg+1)+2)+NK
20 CONTINUE
   SUM1=0_0
   DO 23 J=1;NK
23 SUM1=SUM1+AREL(J)+XS(J)
   SUM2=1.0/SUM1
   DO 19 J=1,NK
```

E18

YS(J)=AREL(J)*XS(J)/SUM1 DO 19 1=1,LQ+1 IF(1.E0.(L0+1))G0 TO 19 NL=J+I+NK VC(NL)=YS(J) 19 CONTINUE 00 2 J=2.N J3=(J-2)+(LQ+1)+NK+NK ZT=0.0 70=0.0 ZV=0.0 ZL=0.0 NO 3 1=1,10+1 J4=(I-1)*NK 7S = 0.0DO 4 IK=1.NK 4 75=ZS+XS(J3+J4+IK)+AMA(IK) DO 5 IK=1.NK 7D=ZD+XS(J3+J4+IK)+AMA(IK)+DSD(IK)/ZS 5 71=21+XS(J3+J4+TK) + 4MA(TK) TF(1,E0,(L0+1))60 TO 3 CALL EQUIDACJ4, J3, NK, XXS, XS, YS, AREL, TBU, TBOIL, TCOND, LQ, N, TEP) 7T=2T+TFP 00 6 IK=1,NK 6 . 7V=2V+VS(33+34+1K) + AMA(IK) 3 CONTINUE 7D = 2D/(+Q+1)77=77/10 ZV=ZV/LQ DENS(J)=2D TEXIT(J)=2T VV=VS IF(J.GF.NF)VV=VR SL(J)=A1S(J)+Z1 VDEN(J)=VV+LQ+7V E

```
1.12 M
                                   9.2 A
    2 CONTINUE
      TF(IMAPK.EQ.2)GO TO 7
C
     REBUILER BALANCE
C
      (F(IC.GE.1)VVB=VB
      PL=DENS(2)+62.4
      VB = TL + TW + 0.5 + PI / (SL(2) / ALS(2))
                                                                                                1.2
    7 CONTINUE
C
C
      CALCULATES THE LIGUID AND FROTH HEIGHTS, AND FLOW RATE PARAMETERS.
      CALCULATE PECLET NUMBER AND BACKFLOW RATIO
C
C
      00 8 J1=2,N
      J3=(J1-2)+(LQ+1)+NK+NK
      VV = VS
      TE(J1_GE_NE)VV=VR
      ALC=SL(11)/(3600+0ENS(11)+62.4)
      UG=VV+359.05+L0+(1FX[1(J1)+275)/(3600+1A+273)
      pv = v p E N (J1) / (3600 + HG + TA)
      4.50*(11)*02.4
      WI=W+12
      F=UG+PV++0.5
      F1=60+ 2642+ALC+6.24/( 22+TW)
      HC = (103, 0+11, 8+WI-40, 5+F+1, 25+FE)/(PL+12)
      HF=(2.53+F+F+1.89+WI=1.6)/12.0
      HL=FL*.22/(0.24+.2642+60+HC)
      DE=(0.0609395*HC*UL**3)/((HC*UL/HF)**2.5664)
      PE=UL+TR/DE
      AN=LO+1
      BETA=AN/PE-0.5
      1F(IMARK.E0.2)G0 T0 9
      PEN(J1)=PE
      B(J1) = PFTA
    9 CONTINUE
                                                                                                      E20
Ĉ
```

·					
			e de la companya de l	· · · · · · · · · · · · · · · · · · ·	
	THE CALCULATION OF THE POINT EFFIC.	FENCY ACCORDIN			
	MANUAL. THESE CALCULATIONS INCLUDE			· · · · · · · · · · · · · · · · · · ·	
č	SLOPE OF THE EQUILIBRIUM LINE ; AB			1.	,
n in a constant a statement a constant water with the statement of the sta	e e stander i dentre een enverver wijnen wijne erende is standen is teknike enverse gebeurgeste beverdijs.			യും പ്രത്യായം പ്രത്യാം പാന്ത്രം. യും പ്രത്യായം പ്രത്യാം പാന്ത്രം കുണ്ണും പാന	n Leider News (2010)
	TEXIT(J1)=TEXIT(J1)+273.2				
	IXI = (LO+1) * NK * 2				
	DO 10 JK=1,LQ				
	TJK=(JK-1)*NK+J3				
	DO 11 11=1,NK		•		
	AB(IJK+II)=ES(IJK+II)+LQ+VV/ALS(J1)			
10	CONTINUE DO 14 JK=1,LQ				the first sector
	1JK=(JK=1)+NK+J3				
	IK=JK+NK	•			
	DO 12 IT=1,NK	ي هي او يا و څخې ي			
	EPP(11)=1.15*(TBO(11)+273.2)				
	XXZ=TEXIT(J1)/FPP(II)	· •		· • ·	
	CALL IPNEU(XXZ,ANS)	,			
	CDD(II)=1.18*((AMA(I[)/DSD(II))+*(1.0/3.0))			
· · · · · ·	VIS(II)=0.00646+ANS+SQRT(AMA(II)+T		D(II)++2)		
	CUNTINHE				
	t C O = 0				
	SUM2=0,0				
· · · ·	no 15 J1=1,NK		•		
	SUM1=0_0				
	SUM3=0.0				
	DO 16 JJ=1,NK				
 International Control of the Control of the State of the	IF(YA(TJK+JJ), LE.0, 0)YA(IJK+JJ) = YS	(IJK+JJ)	n na sana ang kanang kanang Kanang kanang	مېنىي∂ىلايىسىسىيە ئەرەپ ئامۇرىم بىر. يەرىھەھە تە	
	TF(JJ,FQ,J1)G0 TO 16				
	IC0=IC0+1	1	· · · · · ·	· · · ·	
	BC1=(ChD(JJ)+CDD(JI))/2.0	· · · ·	· · · · · ·		
· · ·	BC2=SQRT(EPP(JJ)+EPP(JT))				
	RC3=TEXIT(J1)/BC2				
	CALL IDNEU(BC3,AMS) BC4=SQRT((AMA(JT)+AMA(JJ))/(AMA(JT	*****			
	RC4=SQRF(CAMA(JT)+AMA(JJ))/(AMA(JT)+AMA(JJ))/(AMA(JT)+AMA(JJ))/(AMA(JT)+AMA(JJ))/(AMA(JT)+AMA(JT)+AMA(JJ))/(AMA(JT)+AMA(JT)+AMA(JJ))/(AMA(JT)+AMA(JT)+AMA(JJ))/(AMA(JT)+AMA(JT)+AMA(JT)+AMA(JT))/(AMA(JT)+AMA(JT)+AMA(JT)+AMA(JT))/(AMA(JT)+AMA(JT)+AMA(JT)+AMA(JT)+AMA(JT))/(AMA(JT)+AMA(JT	J#AMA(J J)})			
	HUJHIIV, ("K, 49 #BU4) # () UE "4		and the second	· · · · · · · ·	

.

```
DGG=(BC5+BC4+TEXIT(J1)++(3.0/2.0))/(AMS+BC1++2)
  SUM1=SUM1+YA(IJK+JJ)/DGG
  THI=SQRT(2.0)*((1+(VIS(JI)/VIS(JJ))**0.5*(AMA(JJ)/AMA(JI))**0.25)*
SUM3=SUM3+YA(IJK+JJ)+THI
16 CONTINUE
  DG(JI) = (1, 0 - YA(IJK+JI))/SUM1
  SUM2=SUM2+VIS(JI)/(1+SUM3/YA(IJK+JI))
15 CONTINUE
  VG=SUM2
   SUM1=0.0
  DO 17 JT=1.NK
   SN=VG/(pV*DG(JT))
   ANG(JI+IJK)=(0.776+0.11+WI-0.29+F+0.0217+FL)/SQRT(SN)
   FP(JI+JK)=1, 0+FXP(-ANG(JI+IJK))
  DG(JI) = (1 - EP(JI + IJK)) + VC(JI + IJK) + EP(JI + IJK) + VS(IJK + JI)
   SUM1 = SUM1 + DG(JT)
17 CONTINUE
   DO 18 JT=1.NK
   VA(JI+TJK) = DG(JI)+VS(JT+IJK)+(1,0-SUM1)
18 VC(JXI+J3-LK-NK+JT)=YA(JI+TJK)
14 CONTINUE
  TEXIT(J1)=TEXIT(J1)-273.2
   IF(IMARK.EQ.2)GD TO 8
   CALCULATES MOLAR HOLOUPS ON THE TRAY AND THE DOWNCOMERS.
   HOU(J1)=HC+PL
   WT(J1)=TA+HOL(J1)/(SL(J1)/ALS(J1))
   HVB=21*(TEXIT(J1)+273.2)
   SIG=HVG+DENS(J1)/364.0
   H2=(0.558+(ALC/AUD)++2)/12.0
   HSIG=0.06+SIG/(pL+HDIA+12)
   VH=UG+TA/HOA
   G4=SORT(TA+4/3 1415926)
   G3=PV+UG+G4/(VG/3600.0)
                                                                                        E2
                                                                                        N
```

- FF=0.014*G3**(-0.0055/9600.0)HD=12*COV*PV*(VH*+2)*(0.4*(1.25-H0A/ANT)+4*TTA*FF/HDIA+(1-H0A/ANT) 1*+2)/(64*PL*12) H3=H0+HC+H2+HSIG WD(J1)=AD*H3*PL/(SL(J1)/ALS(J1)) IF(J1.NE.N)GO TO 8 VC=2*1*2*PL/(SL(N)/ALS(N)) 8 CONTINUE IF(IY.NE.1)GO TO 21
- 21 CONTINUE
- RETURN
- END

123

```
SUBROUTINE DIFFUN(T,Y,SAVE,N2,NN)
DIMENSION PWD(10).pwT(10)
DIMENSION XXS(150),XS(150),YS(150),YC(150),YA(150),YOUT(5),XR(10)
DIMENSION ALS(10),YV(50),B(10),TEXIT(10),Y(8,NN)
DIMENSION SAVE(888,1),PEN(10)
DIMENSION SAVE(888,1),PEN(10)
DIMENSION WD(10),WT(10),SUM2(5),EP(150).ALE(30).EMVP(30),XFS(5)
COMMON/AS/WT,WD,XF,S,YS,YS,YS,YA,YC.EMVP,ALE,YV,FS,WS,OS,VS,VR,R9,T
COMMON/DARS/N.NF,NK,LQ,QFS
COMMON/MAS/WT,WD,XF,B,PEN,FD,VB,VC
COMMON/HDIF/TPD(10),TPT(10)
```

THIS ROUTINE CONTAINS ALL THE DIFFERENTIAL EQUATIONS

```
NL=NK-1
ALS(1)=WS
TY=TY+1
IF(IMARK.NE.2)IMARK=1
IF(IY.NF.1)GO TO 1
TF(IC.NE.1)GO TO 1
```

SET IMARK EQUAL TO 2 FOR NO CHANGE IN FLOWS.

```
INSERT THE STEP CHANGE TO BE MADE.
READ(1,100)IMARK,(XFS(I),I=1,NK)
100 FORMAT(10,5F0.0)
```

1 CONTINUE

C

tF(IC.GF.1.AND_IY.EQ.1)WRITE(4,200)IMARK,(XFS(I),I=1,NK),T 200 FORMAT(3X,14,3x,4F10,4) IF(IY.EQ.1)CALL AICHE

REPOILER BALANCE


```
Ĉ
     TAUR=3600_0+VB/ALS(2)
      D0 3 1=1,NK-1
     *SAVE(1+N2-1,1)=(Y(1+I+NL)+(WS*Y(1+1)+VS+LQ+YS(1))/ALS(2))/TAUP
      VV(I) = VC(I)
    3 CONTINUES
      VV(NK)=YC(NK)
      NO 4 J1=2.N
      VV=VS
      TF(J1.GE.NE)VV=VR
      VR = VS + (1 - OFS) + FS/LQ
      J = (J1 - 2) + (LQ + 1) + (NK - 1) + (NK - 1)
      J2=(J1-2) + (L0+1) + NK+NK
      00 5 I=1,NK-1
    5 SUM2(I)=0.0
      SUM2(NK)=LQ
      ALPHA=R(J1)/(1+R(J1))
      BETA=B(11)
      SET HUIDUPS
      VT=WT(J1)
      VD=W0(J1)
      TECTV.NE. 1)60 TO 22
      TVD = PWD(J1) - WD(J1)
      TVC=PWT(J1)-WT(J1)
      PWD(J1)=WD(J1)
    IF(IMARK, EO.2) GO TO 16
      IF((T-HT).LE.0.0)GO TO 16
      TVD = TVD / (T - HT)
      TVC=TVC/((T-HT)+LQ)
      TPD(J1)=TVD
      TPT(J1)=TVC
      60 TO 17
   16 TVD=0.0
```

τVC=0.0			And Anna Ang San Ang S
TPD(J1) = TVD	an an tha an Tha an tha an		entes change and change in struc- na change in the structure
TPT(J1)=TVC			
17 CONTINUE			
IF(IMARK.E0.2)G0 TO 22	n an	n an	anna an an an an ann an an an an an an a
1F(XR(J1), LE, 2, 0)G0 TO 22	· ·		
IF(IC.LT.1)GO TO 22			
27 CONTINUE			
22 CONTINUE	• • • • • •		
		• •	
EXIT POOL			
		1	· · ·
TAUT=3600.0+VT/ALS(J1)			
DO 6 I=1,NL	· ·	· .	
SAVE(J+N2-1+I,1)=((1+BETA)*(Y(1	J+NL+I)-Y(1,J+I))+VV'	<pre>(YC(J2+I)-YA(</pre>
1J2+J))/ALS(J1)-Y(1,J+I)*TVC/ALS	S(J1))*LQ/TA	UT	
SUM2(I)=SUM2(I)+YA(J2+I)		general second second	· .
SUM2(NK)=SUM2(NK)-YA(J2+I)			
6 CONTINUE			· · · · ·
CENTRE POOLS ON THE TRAY		· •	
		,	
DO 7 1K=2,19			
3K=(3K-1)+NL+J		· .	
JL=(IK-1)*NK+J2			
00 8 I=1,NL			
SUM2(I) = SUM2(I) + YA(JL+I)			
SUM2(NK)=SUM2(NK)-YA(JL+I)	n and the same same second and a second s	ريان الإلايين 100 10 10 10 10 10 10 10 10 10 10 10 10	بصادرة الاستناصل أسترار ورباد المتعليهم راهور التي
SAVE(JK+N2+1+1,1)=((1+RETA)+Y(JK+[+NL)=(1+2*BETA)*'	Y(1,JK+I)+BETA
1 + Y(1, JK + I - NL) + VV + (YC(JL + I) - YAC)	JL+I))/ALS(J	1)-Y(1,JK+)	()+TVC/ALS(J1)
2)+LO/TAUT		· · · · · · · · · · · · · · · · · · ·	•
FCJ1,NF,NF)GO TO 8	· · · ·		
SAVE(JK+N2-1+1,1)=((1+BETA)+Y()	-		
1 + Y(1, JK + 1 - NL) + (VS + VC(JL + 1) - YA(.)	JL+I)+VR)/AL	s(J1)-Y(1,	JK+I) +TVC/ALS(
2.11))*1.0/TAUT			· · · · ·
8 CONTINUE	. * .	1	the second s
الأهم من المعمد التي المعام المن المناطق المناطق المناطق المناطق المناطق المناطق المناطق المناطق المناطق	and the second second second	and the production of the	and the second second second second second

-max

یو ای**ر چینجی در د**ر در در این و در

ene franciska and angeland

E26

```
7 CONTINUE
```

C

C

0

C

C

C

DOWNCOMER AT BEGINNING OF TRAY

```
TAUD=VD+3600.0/ALS(J1)

DO 10 I=1,NL

NLL=LQ+NL+J

SAVE(NLL+N2-1+I,1)=(ALS(J1+1)*Y(1,NLL+NL+I)/ALS(J1)+BETA*Y(1,NLL+I

1-NL)-(1+BETA+TVD/ALS(J1))*Y(1,NLL+I))/TAUD

TF(J1.FQ.NF)SAVE(N2-1+I+NLL,1)=((ALS(J1+1)*Y(1,NLL+NL+I))/ALS/J1)+

1BETA*Y(1,NLL+I-NL)-(1+BETA+TVD/ALS(J1))*Y(1,NLL+I)+QFS*FS*XFS(I)/A

2LS(J1))/TAUD
```

10 CONTINUE

VAPOUR CELL CONCENTRATION

```
PLATE EFFICIENCY AND EFFICIENCY RATIO CALCULATIONS
```

```
PLATE EPPICIENCY AND EPPICIENCY RATIO CALCULATIONS
```

```
DO 11 I=1,NK
JN=(J1-1)*NK
VV(JN+I)=SHM2(I)/LQ
EMVP(JN+I-NK)=(YV(JN+I)-YV(JN+NK+I))/(YS(J2+I)-YV(JN+NK+I))
ALF(JN+I-NK)=EMVP(JN-NK+I)/EP(J2+I)
```



```
11 CONTINUE
4 CONTINUE
```

CONDENSER BALANCE

```
TAUC=3600+VC/(VV+LQ)
00 12 T=1,NK
SUM1=0_0
D0 13 JJ=1,LQ
JI=JJ+NK-NK
13 SUM1=SHM1+VA(J2+JI+I)
YOUT(I)=SUM1/L0
```

E27

- JI=(N-1)*(LQ+1)*NL+NL IF(I.EQ_NK)GO TO 14 SAVE(JI+N2-1+I,1)=(YOUT(I)-Y(1,JI+I))/TAUC
- 14 CONTINUE
- 12 CONTINUE JI=(N-1)+(LQ+1)+NK+NK
 - TOP PRODUCT COMPARISON.
- DO 15 1=1,NK CTP(I)=DS*XS(JI+I) 15 FTP(I)=FS*XFS(I)-WS*XS(I) RETURN
 - END

n ann a' stàite Chuirtean Chuirtean anns

MASTER DRAWER DIMENSION TIM(100) DIMENSION EMAXE(5), EMINE(5). COMMON/GRAF/BX(8000), EMAXE, EMINE CALL UTPOP REWIND 3 READ(3)NLIM, N, LQ, NK, T READ(3)(BX(J),J=1,NLIM) READ(3)(TIM(J), J=1, I) READ(3)(EMINE(J), EMAXE(J), J=1, NK) CALL PLOTI (NLIM, N. LQ, NK, I, TIM) CALL UTPCL STOP

END


```
SUBROUTINE PLOT1(NLIM,N,LQ,NK,I,TIM)
DIMENSION TIM(100),C(100)
DIMENSION EMAXE(5),EMINE(5)
COMMON/GRAF/BX(8000),EMAXE,EMINE
```

THIS SUBROUTINE PLOTS THE DATA REQUIRED.

```
\times INS=5.0
YINS=7.0
XMAX=TIM(I)
XMIN=TIM(1)
X1=6.0
V1=2.0
v2=4.0
v3=0_0
V4=7.0
x_{2}=(-TTM(1)/(TTM(1)-TTM(1)))*XTNS
DO 1 JK=1,NK
CALL UTP2(X1)Y1,-1)
VMAX=1 ()
 TE(JK.F0.2)YMAX=0.35
VMIN=0.0
 NY=5.
 NK = 2
 CALL UTD4A(XMIN, XMAX, YMIN, YMAX, XINS, YINS, T3HTIME MINUTES., NX, 39HLI
IQUID CONCENTRATION LEAVING THE PLATES, NY)
```

N2=(JK-1)+2+N+1 N3=N2+1+(N+1)

DO 2 J=1.N+1 N1=(J-1)+I+N2 DO 3 K=1.I

3-C(K)=BY(N1+K)

2 CALL UTP48(TIM,C,I,3) CALL UTP2(X2,Y3,1)

CALL UTP2(X2, Y4, 2)

NY=2

C

E30

	VMIN=EMINE(JK)				1	- 				
	CALL UTP2(X1,Y2,-1)	·							· · · · ·	·
	CALL UTP44CXMIN,XMAX+YMIN,	YMAX.XINS	+YINS+	13HT1	IME M)	INUTES		16HPL-	a la la Francia	
	ATE EFFICIENCY, NY)									
	00 4 J=1,N-1	·		-		· · ·		÷		
	N4=N3+(J-1)*I					· •		1. I.		
	DO 5 K=1,I						· ·			
- 5	$C(K) = B \times (N4 + K)$									
4	CALL UTP48(TIM, C, I, 3)									
	CALL UTP2(X2,Y3,1)									
	CALL UT02(X2, Y4, 2)	. •	1.	· .					۰۰۰۰ - ۲۰۰۰	
	CALL UTP2(X1,Y1,-1)							1.		
1	CONTINUE								·	
	RETURN		e tete de la ju	a se		Viel ing fer	e vietek v Lite		ti da Constante da	s est
1	END									

FINISH

E31

and the second state of th

1. 1.

Appendix F

Unsteady-State Simulation Results for a Feed Composition Change: Binary System

The simulation results of a step change in the feed composition for a binary system are given. The operating conditions are also given in the results. The step change made was a step change in the feed composition from 0.5 to 0.4.

Not all the simulation results are given as there were too many, but results at suitable intervals were selected to give a comprehensive list showing the trends of the responses.

DISTILLATION COLUMN DIMENSIONS.

HETR AND DOWNCOMER.

DIA.FT	HT.INS	I.ENG.FT	SEC_AREA	APRON
7.0	2.25	5.3900	4.747	1.0

PF	REDRATIO	15	TRA	Y AREAS.	
DIA. TNS	РІТСН	AREA	HFT	ACTIVE	
0.1873	0,5	3.8485	33.737	28,990	

DATA USED FOR COMPUTATION.

4. 9T. A	н. 1т. в	RUEA	ROE B	VIS A	VIS B	REL.V.
78.00	92.00	0,680	0.776	0.26	0.27	1.10

	THEF.	FEED	XF	W	S	DS i	REFLUX	:			
	0 000					0,00	4.667		•		. *
	D C .	BOILER		CONSCH	C = n	705					
MULAR HOLD IP		64460		CONDEN 2.15		101	PRODUC	rs		• •	· · · · ·
LIQUID COMP.		45967	`	0.54				· · ·	. •		
VAPOUR COMP		48342		V	(/) /	CAL.=	81.0497	7		· · ·	
BUILTNG TE P		4,331		91.6	71	EST.=	81.049				
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·		•			,			1997 - A.
								_			
PLATE	X		2			3		4		5	
DUUNCOMER D.	. 49004	Y .	X 2 20007	Y	X	Y	X		Υ΄.	X	. y
	.4×004 1.4879 1	0,4988	0.49997	A 5000	0.51106	0 5400	0.5238			0.53827	
	1.4360	0.4977			0.5088	0.5193			5301	0.5354	0.5424
	1.4841	0.4967	1	0.5085	0.5067	0.5184			5290		0.5412
	1.4825	0 4958		0.5080	0.5049	0.5176		-	5283	• •	0.5402
	1.4810	0.4950		0.5076		0.5170		•	5277		0.5396
	1.4709	0.4944		0.5074		0.5167		-	5274		0.5392
LIQUID FLOD	3000		1000.		0.5011	0.5167			5275	0.5258	0.5393
VAPOUR FLOT		<tpper= -<="" td=""><td></td><td>909</td><td></td><td></td><td></td><td>00,00</td><td>0</td><td>700</td><td>.000</td></tpper=>		909				00,00	0	700	.000
V ENTERING		3742	0,49 n	610		188= 850 50802			~		
V LEAVING.	0.40	•	0.50			51762		5176			2834
V EQUILISRIUS			0.51			52490		5283			4033
BUILTNG TENP.		.645		276		2.938	t t	5365			4946
PECLET NO		781		834		5.619		92.55			.136
BACKFLOU		400		394).746		5.66			.714
EN. SLOPE		006		986		.9966		0.73			.725
LAMBDA		3505		483		2101		0.994			9917
- EUG.		5419		418		4742	· .	1.207			2042
EMV.		6409		345				0.474			4741
ENV/EDG		826	1.1			,5684 1986		0.567			5678
R.VOLATILITY.		000		000		1000		1.196			1978
WULAR HOLD P		128	4.0			4837	· .	1.100			1000
(1) F = 3473 (3) 74 74 74 16 (30)				e ()	, э,	140-27		3.492	7	5.	5029

FЗ

			e de Constantes de la constantes de la constante	•		
•		TIUE. FEED 0.020 300.00	XF WS 0.40 150.00	0S 150.00	REFLUX 4.667	
		REBOILER	CUNDENSER	TOP	PRODUCTS	
	HULAR HOLD P		2.15163 0.54033			
•	VAPOUR COMP. BUILING TEMP	0.48342 94.331	91.671	CAL.= EST.=		
	PLATE	· · · · · · · · · · · · · · · · · · ·	2	3	4	

	PLATE	1		2		3		4		5	
•		X	Y	X	Y I	Х	Y	X	Y	X	Ŷ
	DUMNCOHER 9.	49004		11.49996		0.51106	· .	0.52389		0.53827	
	. egit - e e e e Alfred ()	4879	0.4988	0.4979	0.5092	0.5088	0.5193		0.5301	0.5354	0.5424
	Сана О	.4860	0.4977	0 4961	0.5085	0.5067	0.5184	0.5190	0.5290	0.5328	0,5412
	<u>)</u>	. 4841	0,4967	0.4944	0.5080	0.5049	0.5176	0,5169	0.5283	0 5305	0,5402
	0	.4825	0.4958	0.4930	0.5076	0.5033	0,5170	0.5152	0.5277	0.5285	0.5396
	^	.4810	0,4950	0.4918	0.5074	0.5020	0.5167	0.5137	0.5274	0.5268	0.5392
	С. н. О	.4799	0.4944	0.4909	0.5074	0,5011	0.5167	0.5127	0.5275	0.5258	0.5393
	LIQUID FLOW	1000	0.00	1000 1 000	.000	70.0	.000	700	.000		.000
	VAPOUR FLOW	S T	RTPPER≕	850.000		RECTIFI	ER= 850.	.000			· · ·
	V ENTERING:		8342	6.4	9640	0.5	0802	0.5	1762	0.5	2834
	V LEAVING.		9640		0802	0.5	1762	015	2834	0.5	4033
	V EQUILITBRIUM		1367		1471	0.5	2490	0.5	3651	0.5	4946
	BUILING TEMP		645		.276		.938	65	. 557	92	.136
	PECLET NO		, 781		.834		.619	5	664	5	.714
	BACKELOU		400		- 394		.746	0	.736	0	.725
	ER, SLOPE		0006		9986		9966	0.	9943	0,	9917
	LAMBDA		3505		8488		21 01	1.	2073	· 1.	2042
	FUG.		5419		5418		4742	0.	4742	0.	4741
	ienV. i		5409		6345		5684	. 0.	5674	0.	56791
	EMV/EDG		1826		1711		1985	1.	1967	1.	1978
•	R. VOLATTI, ITV.		1000		1000	1.	1000	1.	1000	1.	1000
	MULAR HOLD IPS	4.(5128	4.	0211	3.	4837	3.	4927	. 3,	50291

		TTHF. 10.737	FEFD X 300,00 0.				EFLUX 4.667			
	HULAR HOLD D LIQUTD COMP.	REBOI 11.644 0.459	60	CONDENS 2.151 0.539	63	10P	PRODUCTS	• •		
. '	VADOUR COMP - BUTLING TEMP	0.483 94.33		91.69			80.9186 51.0745			
	PLATE	1		· · · ·	3		4		5	4.
		. 46517	X 0:47450 966 0.4767	Y 0.4974	× 0.51037 0.5080	Y 0.5163	X 0.52324 0.5204	Y 0.5259	x 0.53770 0.5349	Y 0.5411
		1.4830 0.4 0.4819 0.4	960 0.4738 954 0.4806	0.4988 0.5000	0.5057 0.5037	0.5150	0.5180 0.5159	0.5254	0.5323	0,5397 0,5386
."		0.4796 0.4	948 0.4819 942 0.4829 937 0.4835	0.5010 0.5018 0.5024	0.5018 0.5002 0.4991	0.5121 0.5108 0.5095	0.5141 0.5127 0.5118	0.5251 0.5252 0.5255	0.5278 0.5261 0.5250	0.5377 0.5370 0.5367
• .	LIQUID FLOW VAPOUR FLOW	1000,000 STRTPP	ER= 850,000	0.000	700 Rectifi	.000 ER= 850.	700.			.000
	V ENTERING V LEAVING. V FQUILIBRIN	0.48325 0.49513 4.0.50256	0.5	9513 0024 0735	0.5	0024 1288 2295	0.51 0.52 0.53	538	0.5	2538
	BOTLING TEIP		93	-522 -834	93	.003	92.	587 664	92	4868 161 714
•	BACKFLOW Fy, slopf Laybda	0.400	1.	0.002	0.	.746	0.9	736 943	0.0	725
	E06. E07.	0.8505	0.	8502 5418 4181	0.	2102 474 2 5568	0.4	073 742 505	0.	2042 4741 5619'
	- ENVZEUG - R. VOLATILIYÝ. - MULAR HOLDIPS	1.1355	0. 1	7716 1000 0211	1.	1742 1000 4837	1.1	611 000	1.1	1852
۰.	THE CALL THE CONTRACTORS	*******	•••			4027 .	3.4	927	2 - 2 - 3	5029

.

Ъ

		13.937		KF US .40 150.			4.667		.*	
:	MULAR HOLD'S LIQUID COMP. VAPOUR COMP.	0.45	460 001	CONDENS 2.151 0.538	63 31		PRODUCTS			
	BDILING TEHE	94.3.	54	91.73			51.1482			
•	PLATE	1		2	3		4		S	
	DUNNCOMER (. 47949	Y X 0,47039 4937 0,4715		X 0,50921 0,5066	Y 0.5132	X 0.52236 0.5195	V 0.5240	x 0.53676 0.5339	Y 0,5395
		0.4782 0.	4935 0.4728 4932 0.4740 4978 0.4752	0,4955	0_5043 0_5021 0_5001	0.5118	0_5169 0_5147	0.5234	0.5313 0,5290 0,5269	
	FISALD FURT	1000.00	4922 0.4771 0 100		0.4985 0.4973 700.	0.5078 0.5068 .000	0.5105	0.5229	0.5252	0,5355 0,5353 000
	VAPOUR FLOT V ENTERING	STRTP 0.4827	5 0.	49298		586	.000	0982	0.5	2321
	V LEAVING. V EQUILIBRI' BUILING TEMP	93,76	30. 355	49586 50091 3.738	0.52	0982 2111 .064	0.5	2321 3428 .630	0.5	3689 4774 191
	PECLET NO BACKFLOU ER. SLOPE	7.78 0.40 1.001	n	7.834 0.394 .0017	0.	.619 .746 9968	0	-664 -736 9944	5 0	.714 .725 9918
	LAMBDA Fug Fav.	0,851/ 0,5419 0,586/		.8515 .5419 .3637	1.2 0.4	2104 4742 5528	1.	2075	1.	2043
	ENV/FDGU R.VOUATTLIT? MULAR HOLDIP	1.082	5 ()) 1	.0211	1.1	1656 1000 4837	1. 1.	5476 1549 1000 4997	1.	5576 1763 1000 5029

Ħб

rtiif. 23.33				* * * *	EFLUX 4.667			
MULAR HOLD IP 1	EBOILER 1 64460	CONDEN 2.15	163	TOP	PRODUCTS	· ·	·	
VAPOUR COMP	0,45813 0,48187 94,384	0.53 91.7		CAL.≠ EST.≠	80.5440 51.2807			
PLATE	1 Y X	2. Y	3 X	Y	4			
DUUNCOHER 0.47445	0.46		0.50777	Ŷ	X 0.52126	Y	.x 0.53555	¥ .
0.4744		686 0.4914		0.5103		0.5223	0.5327	0,5377
0.4743		693 0.4918		0.5090		0.5215	0.5301	0,5364
0.4741	0.4905 0.4			0.5076		0 5210	0.5278	0.5353
0.4238				0.5064		0.5207	0:5257	0.5345
9.4735				0.5053		0.5207	0.5240	0.53391
0.4732	0.4901 0.4			0.5046		0.5210	0.5229	0,5338
		1000.000		.000		.000	700	.000
	TRIPPER= 850.			ER= 850				1.1.1
	48187	0.49043		9251		0721	0.5	2121
	49043	0.49251		0721		2121		3527
	49704	0.49604		1919		3280		4656
	3.869	93,903	•	.127		. 679		229'
	7.781	7.834		.619		. 664		714
	0,400	0.394		.746		.736		,725
	.0019	1.0027		9971		9946		9920
	. 3516	0.8523		2108		2077		2045
	.5420	0.5420		4743		4742		4741
· •	. 5648	0.3700		5509		5473		5545
-	.0421	0.6826		1616		1541		1697
	.1000	1.1000		1000		1000		1000
HULAR HOLD IPS 4	.0128	4.0211	3,	4837	3.	4927	3.	5029

								1	
		FEED X 300.00 0.			S F	REFLUX 4.667			
	REBOIL	F R	CONDEN	5=2	TOD	PRODUCTS			· ·
MULAR HOLD'S			2,15	-	1.14	19000013			ан 1
LIQUID COMP.			0.53						
VAPUUR COMP.	-		U 1 1 U 1		CAL.≠	80,3227		а. Та	
BUTLING TETS			91.8		EST.=	51.4665		•	
		· .							
PLATE	1		2	3		4		5	
	-	X	Y	X	γ .	X	y	x	Υ Y
DU'INCOHFR (1.47051	0.46631		0.50620		0.51999		0.53417	
	0.4705 0.4		0.4892	0.5034	0.5079	0_5170	0.5206	0.5313	0.5360
	0.4704 0.48		0.4394	1,5008	0.5066		0.5197	0.5287	0.5347
	0.4703 0.48		0.4397	0_4985	0.5053		0.5192	0.5264	0.5336
	0.4702 0.48		0.4900	0.4964	0.5042	· •	0.5188	0 5243	0.5328
	0.4701 0.48	• •	0.4903	0.4946	0.5032	· · ·	0.5187	0 5226	0.5323
· · · · · · · · · · · · · · · · · · ·	0.4692 0.48		0,4905	0_4935	0.5025	-	0.5190	0 5215	0.5323
I LIQUID FLOI	1000.000		0.000		.000		.000	700	.000
VAPOHR FLOT		ER= 850.000		RECTIFI					
V ENTERING	0.48062		48788		8984		0494		1934
V LEAVING.	0.48788		48084		0474		1934		3364
- V EQUILIBRI: BOTLING TE IP	-		49257 4.020		1728 1791		3125		4523
PECLET NO	7 781	, -	4.020 7.834		.619		.729		273
BACKELON	0 400).394		.746		.664		.714
FR. SLOPE	1,0027		0034		9974		.759 9949		.725 9922
LA'IBDA	0.8523		8529		2112		2080		2048
F93	0 5420		5421		4743		4742		4741
E47.	0.5538		4167		5504		5474		5524
F-1V/FOG	1.0218		7688		1606		1545		1653
R. VOLATTLITY			1000		1000		1000		1000
HULAR HOLD A			0211		4837		4927		5029
						ы л (-y 6.	·* •	ج سه يه کې

	CTHE. 39.937	FEF0 300,00			-	EFLUX 4.667			· · · ·
MOLAR HOLD IP		4460 -		5163	TOP	PRODUCTS			- - - -
LIQUID COMP. VAPOHR COMP. BUILING TEIP	0.41	5538 7010 479	0.51			80.0913 51.6926		· · ·	
PLATE	1 X	Y X	?	3	•	4		5	
-	. 46751	0.46 .4856 0.4	484	X 0.50460 2 0.5017	Y 0.5058	X 0.51858 0.5156	Y 0.5190	X 0.53268 0.5298	Y 0.5344
	0.4672 0.	.4856 0.4 .4855 0.4	654 0.4875	5 0.4991 5 0.4967	0.5045	0.5129	0.5180	0 5272 0 5249	0.5330
	9.4670 Ó.	.4855 0.4 .4854 0.4 .4854 0.4	660 0_4878	0.4928	0.5022	0.5069	0.5170 0.5169 0.5171	0.5228 0.5212 0.5201	0.5312 0.5308 0.5307
VAPOHR FLOM VAPOHR FLOW V ENTERING	1000 00 STati 0.4791	PPER= 850.	1000.000 000 0.48550	RECTTEI	.000 ER= 850 8750	200	.000	700.	.000
V LEAVING. V FANILIBRIN	0.4850 M 0.4908	50 57	0,48760. 0,49000	0.5	1541	0.5	0292 1757 2968	0 - 5 1 0 - 5 3 0 - 5 4	3202
BUILING TE 12 PECLEI NO BACKELON	- 94908 7 78 0.40	31	94.107 7.834 0.394	5	.253 .619 .746	5	.781 .664 .736	5.	320
FR. SLOPF LAMBDA	1,003 0,852	54	1.0039	0. 1.	9978 2116	0.	9951 2084	0.5	,725 9925 2051
E93。 月日V。 月日V/E06]	0.542	29	0.5421 0.4668 0.3610	0.	4743 5508 1613	0.	4742	0.5	.741 5512
R.VOLATTLITY MULAR HOLUTP	. 1.1 00	0	1.1000	1.	1000 4837	1.	1548 1000 4927	1.1	626 000 029

		TUDE. FEF 54.537 300		s ps .00 150.00	REFLUX 4.667			
	MULAR HOLD ID	REBOILER 11 64460 0 45193	CONDEN 2.15 0.53	163	P PRODUCTS	· · · ·	•	
	NAPOUR CO'IU RUILING TEIP	0,47372 94.595	91.9	CAL.=				
	PLATE	1	3	3,	4		5	
•	DOUNCOHFR 0.	X V 46317	X Y 0.46220	X Y 0.50138	X 0.51555	Y	x 0.52956	Υ.
		.4629 0.4814				1.5156		0.5311
	•	.4626 0.4813	• • • • • • • • • •		07 0.5098	1.5147	-	0.5298
		.4624 0.4811	0,4622 0,4836	0.4933 0.49	95 0.5074 (0.5140	0.5218	0.5287
		.4622 0.4810	0.4623 0.4837	0.4911 0.49	84 0.5054 (1.5136	0.5197	0.5280
		.4620 9.4810	0.4624 0.4838	0.4893 0.49		5135	0 5181	0.5275
	3	.4619 0.4809	0.4624 0.4338	0.4880 0.49		5137	0.5170	0.5275
	FIJALD EFOL	1000.000	1000.000	700.000	700.0	000	700.	
	VAPOUR FLOT	STRIPPER=	850.000	RECTIFIER= 8				
	V ENTERING	0.47572	0.48112	0.48358	0.494	21	0.51	417
	V LEAVING.	0.43112	0.48368	0.49921	0.51		0.52	
•	V EQUILIBRE PL	0.48528	0.48589	0.51180	0.520	52	0.54	
	BUTLING TETP.	94,268	94.247	93.373	92.8	385		419
	PECLET NO	7,781	7,834	5,619	5.4	564	5.	714
	BACKELOU	0.400	0.394	0.746	0.7	736		725
	ER. SLOPE	1.0045	1,0046	0.9984	0.99	57	-	930
	LATBDA	0.8538 .	0,8530	1.2124	1.2() 9 1		058
	FUG.	0.5421	0.5421	0.4743	0.47	42		741
	EMV.	0.5648	0.5364	0.5520	0.54			498
	ENV/EUG	1.0417	0.9894	1.1639	1.1			596
	R.VOLATILITY.	1.1000	1.1000	1.1000	1.10	00		000
	MULAR HOLDUPS	4.0128	4.0211	3.4837	3.49	27		029
						-		+

REBOILER HULAR HULD DO DDREBOILER 11 64460CONDENSER 2.15163 0.52759TOP PRODUCTS CAL.=HULAR HULD DO DD VADDUR CO DD DULING TEDP0.44829 0.471970.52759 2.077CAL.=79.1382 EST.=VADUR CO DD DULING TEDP94.72492.077 2.077EST.=52.7559PLATE NOUNCUMER1234X DU NCUMER0.45989 0.45950.45979 0.45960.49818 0.45950.51241 0.49890.5263 0.5094	
BUILING TENP 94.724 92.077 EST.= 52.7559 PLATE 1 2 3 4 X Y X Y X Y X Y X DUNCUMER 0.45989 0.45979 0.49818 0.51241 0.5263	
X Y X Y X Y X Y X A Y X A Y X A Y X A A A A	
DUINCUMER 0 45989 0.45979 0.49818 0.51241 0.5263	5
0 / 505 0 / 780 0 / 506 0 / 805 0 / 652 0 / 6806 0 5007 0 5105 0 523	Υ `
0.4591 0.4778 0.4595 0.4805 0.4925 0.4975 0.5067 0.5115 0.520	
0.4567 0.4776 0.4595 0.4805 0.4960 0.4963 0.5043 0.5108 0.518 0.4584 0.4774 0.4594 0.4805 0.4878 0.4953 0.5022 0.5104 0.516	0.5256
0.4581 0.4772 0.4594 0.4806 0.4860 0.4944 0.5006 0.5103 0.514	0.5244
	0,5244
VAPUUR FLD STRIPPER= 350.000 RECTIFIER= 350.000 VENTERING 0.47197 0.47750 0.48055 0.49602 0	E4 0224
	51099 52560
	53756
	2.523
PECLEY HD 7.781 7.834 5.619 5.664	5.714
BACKFLOU 0.400 0.394 0.746 0.736	0.725
	.9936 2065
	.4741
	5498
	1596
	1000
	5029

											1
		111F. 63.737	FEE! 300.					REFLUX 4.667		• • •	
	MOLAR HOLOTH	o 11	301LER .64460 .44471		CONDENS 2.15 0.52	163	TOP	PRODUCTS			
	MAPOUR COMP BUILING TEN	. 0	.46832 4.850		92.1)		CAL.= EST.=	78.6662 53.2980			
	PLATE	1		2				4	, •	5	÷.,
	DUTNOOMER	Y 45703	۷	X 0,45752	. Y	X 0.49503	Y	X 0.50926	Y	X 5077/	Υ
	inoringe,oni⊨er a	0.4565	0.4747	0.4573	0.4776	0.4921	0.4958		0.5094	0.52324	0.5248
		0,4560	0.4745	0.4571	0.4776	0.4893	0.4945		0.5084	0 5178	0.5235
÷		0.4556	0.4742	0.4569	0.4776	0.4849	0.4933		0.5077	0.5155	0.5224
		0,4552	0.4740	0.4563	0.4776	0.4847	0.4922	0.4991	0.5073	0.5134	0.5217
		0.4549	0,4738	0_4567	0.4777	0.4828	0.4914	0.4975	0.5072	0.5117	0.5213
·		0.4546	0.4737	0.4566	0,4777	0.4816	0,4908		0.5074	0.5106	0,5213
	Γισαρ ειαί	1000		1000	.000		.000).000	700	.000
	VARDUR FLOT		RTPPER=				EP= 850				
	V FATERING		6332		7416		7764	-	7300	-	0771
	V.LEAVING.		7416		7764		9300		0791		2249
	V EQUILIBRI		7822		8029		0538		2021		3441
	BUTEING TE 11 PECLET 110		.509 .781		. 438 . 834		1.588 1.619		094		. 626
	BACKFLOU		.400		. 394).746		. 664		.714
•	FU. SLOPE		0050		0057		997		9969		,725 9942
	LAMBDA		8550 -		8548		2139		2105		2073
	- EOG		5422		5422		4743		4742		4742
	FAV.		5900		5672		5537		5480		5501
	FHY/FUG		0882		0460		1674		1556		1602
	R. VULATILITY		1000		1000		1000		1000		1000
	TULAR HOLD'I		0128				4837		4927		5029
	· ·			÷							

•		71(16. FFE 98.337 300	D XF .00 0.40	us 150.00	DS 150.00	REFLUX 4.657			
•	MULAR HOLDID LIQUID COMP_ VAMUUR COMP_ BUILING THIP	REBOILER 11 64460 0 44127 0 46484 94.971	,	ONDENSER 2.15163 0.52138 92.277	TOP CAL.= EST.=	PRODUCTS 78.2046 53.8160			
		1 45438 4533 0.4717 4532 0.4714 4532 0.4714 4523 0.4714 4523 0.4714 4523 0.4708 4519 0.4706 4519 0.4705 1000 000 STatpper= 0.46484	0.4547 0. 0.4545 0. 0.4543 0. 0.4541 0. 0.4540 0. 1000.00	.4749 0.47 .4750 0.47)0 RECT	390 0.4929 363 0.4916 38 0.4904 316 0.4893 98 0.4885 86 0.4889 700.000 1FIER= 850	0.50615 0.5031 0.5004 0.4981 0.4960 0.4944 0.4933 700	Y 0.5054 0.5054 0.5048 0.5043 0.5042 0.5044 000		Y 0.5218 0.5204 0.5194 0.5187 0.5182 0.5182
	V LEAVING. V ROULLIARTOM BUILING TEND BECLET NO BACKFLON FR. SLODE LAMBDA FUG. FMV. EMV/EJGT S.VOLATILITÝ. MULAR HOLOMPS	0.47101	0.4710 0.4748 0.4777 94.52 7.83 0.39 1.006 0.855 0.542 0.576 1.062 1.100 4.021	38 2 3 4 4 2 2 7 1 6 0	0.47488 0.49010 0.50236 93.690 5.619 0.746 1.0003 1.2146 0.4744 0.5541 1.1681 1.1000 3.4837	0.5 0.5 93 5 0.5 1.2 0.5 1.1	9010 0493 1713 .196 .664 .736 9975 2112 .743 .564 .564 .000 .927	5. 0.9 1.2 0.4 0.5 1.1 1.1	945

0.4493 0.4670 0.4514 0.4710 0.4818 0.4874 0.4959 0.5011 0.5102 0.510 0.4487 0.4667 0.4511 0.4709 0.4794 0.4862 0.4936 0.5005 0.5079 0.515			HF. FEF 1.236 300			REFLUX 4.667			
HULAR HOLD'ID 11 64460 2.15163 LIQUED COND. 0 43639 0.51692 VADUHK COND. 0 43639 0.51692 RULLING TEIP 95.141 92.422 EST.= PLATE 1 2 3 4 5 DU'INCUMER 0.4506 0.45223 0.48747 0.50163 0.5128 0.512 0.4300 0.4673 0.4518 0.4711 0.4845 0.4887 0.4986 0.5021 0.5128 0.517 0.4300 0.4673 0.4514 0.4711 0.4845 0.4887 0.4986 0.5021 0.5128 0.517 0.4407 0.4670 0.4514 0.4710 0.4845 0.4887 0.4986 0.5011 0.5128 0.517 0.4437 0.4661 0.4709 0.4724 0.4862 0.4990 0.5014 0.517 0.4427 0.4664 0.4508 0.4709 0.4724 0.4842 0.4899 0.5014 0.517 0.4477 0.4664 0.4709 0.4742 0.4842 0.4899 0.5014 0.513 URUTAT									•
LIQUID COMD. 0 43639 0.51692 VAPOHR COMD. 0 43639 0.51692 CAL.= 77.5344 RUILING TEID 95.141 92.422 EST.= 54.5467 PLATE 1 2 3 4 5 DUNCOMPER 0.45566 0.45723 0.48747 0.50163 0.51565 0.4500 0.4673 0.4518 0.4711 0.4845 0.4887 0.4986 0.5021 0.5128 0.513 0.4030 0.4673 0.4518 0.4711 0.4845 0.4887 0.4986 0.5021 0.5128 0.513 0.4493 0.4667 0.4511 0.4700 0.4794 0.4848 0.4936 0.5005 0.5079 0.513 0.4493 0.4667 0.4511 0.4709 0.4772 0.4852 0.4936 0.5005 0.5079 0.513 0.4487 0.4667 0.4511 0.4709 0.4772 0.4852 0.4915 0.5000 0.5058 0.514 0.4477 0.4664 0.4508 0.4709 0.4772 0.4852 0.4915 0.5000 0.5058 0.514 0.4473 0.4659 0.4504 0.4710 0.4742 0.4839 0.5001 0.5038 0.513 LIQUID FLUI 5000 000 1000.000 700.000 700.000 700.000 VAPOUR FLOI 5000 0.4554 0.4709 0.4772 0.4852 0.4915 0.5001 0.5030 0.513 LIQUID FLUI 5000 000 1000.000 700.000 700.000 700.000 VAPOUR FLOI 5000 0.4554 0.4709 0.4772 0.48556 0.50062 0.51062 V EQUILIBRIJM 0.46556 0.47096 0.48596 0.50062 0.51062 V EQUILIBRIJM 0.47095 0.46656 0.47096 0.48596 0.50062 0.51066 V EQUILIBRIJM 0.47095 0.47407 0.49800 0.51267 0.52682 BOLLING TEID 9.4.750 9.4.452 93.836 93.844 92.875 PECLET H00 7.781 7.834 5.619 5.464 5.714 BACKEL03 0.400 0.394 0.7466 0.736 0.725 PECLET H00 7.781 7.834 5.619 5.464 5.714 BACKEL03 0.400 0.3358 1.2156 1.2123 1.2090 FUS. BODEF 1.0072 1.0068 1.0011 0.7984 0.9957 LA180A 0.8562 0.8558 1.2156 1.2123 1.2090 FUS. BODEF 1.0072 1.0068 1.0011 0.7364 0.5957 LA180A 0.8562 0.5558 1.2156 1.2123 1.2090 FUS. 0.616 0.5357 0.5547 0.5541 0.5511						PRODUCTS	5. S		
VAPOUR COND. 0 45992 CAL.= 77.5344 BUTLING TE 10 95.141 92.422 EST.= 54.5467 PLATE 1 2 3 4 5 DUNCOMFR 0.4506 0.45225 0.48747 0.50163 0.51565 0.4500 0.4673 0.4513 0.4711 0.4845 0.4887 0.4926 0.5016 0.5128 0.517 0.4407 0.4667 0.4514 0.4710 0.4845 0.4887 0.4926 0.5011 0.5128 0.517 0.4427 0.4667 0.4514 0.4710 0.4845 0.4867 0.4926 0.5015 0.5012 0.5128 0.517 0.4427 0.4667 0.4514 0.4710 0.4842 0.4862 0.4862 0.5006 0.5000 0.5010 0.5128 0.517 0.4477 0.4661 0.4506 0.4709 0.4722 0.4835 0.4899 0.5001 0.5030 0.512 UTUTD FLUT 5 0.4679 0.4710 0.4722 0.4835 0.5001 0.5030 0.512 0.4477			-						
RULLING TEIP 95.141 92.422 EST.= 54.5467 PLATE12345NOUNCOMER 0.45666 0.45273 0.48747 0.50163 0.51565 0.4300 0.4673 0.4513 0.4711 0.4845 0.4887 0.4926 0.5021 0.5128 0.5175 0.4493 0.4677 0.4514 0.4710 0.4818 0.4874 0.49259 0.5011 0.5102 0.5176 0.4493 0.4667 0.4514 0.4710 0.4818 0.4874 0.4926 0.5005 0.5079 0.517 0.4427 0.4667 0.4514 0.4709 0.4772 0.4862 0.4936 0.5000 0.5011 0.5102 0.517 0.4427 0.4667 0.4514 0.4709 0.4772 0.4862 0.4936 0.5000 0.5011 0.5102 0.517 0.4473 0.4667 0.4709 0.4772 0.4842 0.4889 0.5001 0.5030 0.513 0.4473 0.4656 0.4709 0.4742 0.4834 0.4899 0.5001 0.5030 0.513 0.4473 0.46656 0.47096 0.48396 0.5000 0.5000 700.000 700.000 700.000 V EQUID FLOI 1000.000 $PCTIFIER= 850.000$ V Concol V SUCONC V SUCONC V SUCONC V SUCONC V SUCONC V SUCONC V EQUID FLOI 0.46656 0.47096 0.48596 0.50062 0.52682	•			0.51				-	
PLATE 1 2 3 4 5 NOUTNODMER 0.45666 0.45223 0.48747 0.50163 0.51565 0.4500 0.4673 0.4513 0.4711 0.48747 0.50163 0.51565 0.4493 0.4673 0.4514 0.4710 0.4818 0.4887 0.4986 0.5021 0.5128 0.517 0.4493 0.4677 0.4514 0.4710 0.4818 0.4874 0.4936 0.5005 0.517 0.517 0.4437 0.4667 0.4514 0.4709 0.4724 0.4862 0.4936 0.5005 5079 0.517 0.4432 0.4667 0.4508 0.4709 0.4724 0.4862 0.4936 0.5005 5079 0.514 0.4477 0.4661 0.4508 0.4709 0.4724 0.4842 0.4939 0.5041 0.511 0.4477 0.46654 0.4709 0.4746 0.4939 0.5041 0.511 UQUID 1.000.000 700.000 7									
X V X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X		BUILING TEIP	95.141	92.4	42 ESI.=	54.5467			
X V X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X				· · ·		. *	1.		
X Y X Y X Y X Y		PLATE	1	2	3	4		5	
0.4500 0.4673 0.4513 0.4711 0.4845 0.4887 0.4986 0.5021 0.5128 0.512 0.4493 0.4670 0.4514 0.4710 0.4818 0.4874 0.4959 0.5011 0.5128 0.512 0.4437 0.4667 0.4514 0.4710 0.4818 0.4874 0.4959 0.5011 0.5102 0.512 0.4437 0.4664 0.4508 0.4709 0.4724 0.4862 0.4936 0.5005 0.5079 0.512 0.4477 0.4664 0.4508 0.4709 0.4722 0.4852 0.4915 0.5000 0.5038 0.512 0.4473 0.4659 0.4506 0.4709 0.4722 0.4839 0.4999 0.5041 0.513 0.4473 0.4659 0.4506 0.4709 0.4762 0.4839 0.5001 0.5030 0.512 0.4473 0.4659 0.4709 0.4752 0.4839 0.5001 0.5030 0.5006 V ENTERING 0.4592 0.46656 0.47096 0.48596 0.50062 0.51062 V EAVING		X	v - 1	X Y	X Y	X	•		•¥ 11
0.4493 0.4670 0.4514 0.4710 0.4818 0.4874 0.4959 0.5011 0.5102 0.516 0.4437 0.4667 0.4511 0.4709 0.4794 0.4862 0.4936 0.5005 0.5079 0.511 0.4437 0.4664 0.4508 0.4709 0.4772 0.4862 0.4915 0.5000 0.5058 0.511 0.4473 0.4661 0.4506 0.4709 0.4754 0.4839 0.4999 0.5041 0.513 0.4473 0.4650 0.4709 0.4754 0.4839 0.4839 0.4999 0.5041 0.513 0.4473 0.4650 0.4709 0.4754 0.4839 0.4999 0.5041 0.513 0.4473 0.4650 0.4709 0.4743 0.47439 0.4839 0.4999 0.5041 0.513 0.4473 0.4656 0.4709 0.47439 0.47439 0.47439 0.4709 0.4709 0.49800 0.5000 700.000 700.000 V EAVING 0.46656 0.47096 0.48596 0.50662 0.51506 0.50662 0.51506		DOTINGOMER 0.45	666	0.45223	0.48747	0.50163	0.5	1565	
9.4437 0.4667 0.4511 0.4709 0.4794 0.4862 0.4936 0.5005 0.5079 0.519 9.4432 0.4664 0.4508 0.4709 0.4772 0.4852 0.4915 0.5000 0.5058 0.519 0.4477 0.4661 0.4506 0.4709 0.4754 0.4852 0.4999 0.5011 0.5030 0.519 0.4473 0.4659 0.4504 0.4710 0.4742 0.4839 0.4999 0.5011 0.5030 0.513 UIQUID FLOT 1.000 0.4504 0.4710 0.4742 0.4839 0.4889 0.5001 0.5030 0.513 VAPOUR FLOT 1.000 0.4504 0.4710 0.4742 0.4839 0.4889 0.5001 0.5030 0.513 VAPOUR FLOT 50.000 PECTFFLER 850.000 700.000 700.000 700.000 700.000 V EQUILTBRITH 0.45656 0.47096 0.48596 0.5062 0.51506 V EQUILTBRITH 0.47095 0.47407 0.49800 0.51267 0.52682 BOLLING 7.781 7.					-	7 0.4986 0.5	021 0.	5128 0	.5174
0.4402 0.4664 0.4508 0.4709 0.4772 0.4852 0.4915 0.5000 0.5058 0.514 0.4477 0.4661 0.4506 0.4709 0.4754 0.4844 0.4899 0.4999 0.5011 0.513 0.4473 0.4659 0.4504 0.4710 0.4742 0.4839 0.4889 0.5001 0.5030 0.513 LIQUTD FL91 1000.000 1000.000 700.000 700.000 700.000 700.000 VAPDUR FL01 STRIPPER# 850.000 PECTIFIER# 850.000 70.48596 0.50062 0.50062 V EAVING. 0.46656 0.47096 0.48596 0.50062 0.51506 V EAVING. 0.46656 0.47096 0.48596 0.5062 0.51506 V EAVING. 0.46656 0.47096 0.48596 0.5062 0.52682 BOLLING TEIP 94.652 93.836 93.344 92.875 0.52682 BOLLING TEIP 9.400 0.746 0.736 0.725 0.5642 0.52682 BACKELON 7.781 7.834 5.619 5.464 5.714									5160
9.4477 0.4661 0.4506 0.4709 0.4754 0.4844 0.4899 0.4999 0.5041 0.513 0.4473 0.4659 0.4504 0.4710 0.4742 0.4839 0.4889 0.5001 0.5030 0.513 LIQUID FLD1 1000.000 1000.000 700.000 700.000 700.000 700.000 VAPDUR FLD1 STRIPPER# 850.000 RECTIFIER= 850.000 700.000 700.000 VENTERING 0.45992 0.46656 0.47096 0.48596 0.50062 0.51506 VERVILIBRI M 0.47095 0.47096 0.48800 0.51267 0.52682 BULING TEIP 94.652 93.836 93.844 92.875 PECLET HO 7.781 7.834 5.619 5.464 5.714 BACKLON 0.400 0.394 0.746 0.726 0.725 PECLET HO 7.781 7.834 5.619 5.464 5.714 BACKLON 0.400 0.394 0.746 0.726 0.725 PEOLET HO 0.400 0.3558 1.2156 1.21					-				
0.4473 0.4659 0.4504 0.4710 0.4742 0.4839 0.5001 0.5030 0.513 LIQUTD FL01 1000 1000.000 700.000 700.000 700.000 700.000 VAPUUR FL01 STRIPPER= 850.000 RECTIFIER= 850.000 0.48596 0.50062 0.50062 V ENTERING 0.46656 0.47096 0.48596 0.50062 0.51506 V EQUILIBRING 0.46656 0.47096 0.49800 0.51267 0.52682 SOLLTNG 7.781 7.834 5.619 5.664 5.714 BACKFLON 0.400 0.394 0.746 0.736 0.725 EN 1.0072 1.0068 1.0011 0.9984 0.9957 LANDA <									. 5143
LIQUIDFLOI10001000000700.000700.000VAPOURFLOISTRIPPER= 850.000RECTIFIER= 850.000RECTIFIER= 850.000VENTERING0.459920.466560.470960.485960.50062VERVILTBRING0.466560.470960.485960.500620.51506VERVILTBRING0.466560.470960.485960.500620.51506VERVILTBRING0.470950.474070.498000.512670.52682BULLINGTEIP94.75994.65293.83693.34492.875PECLET HO7.7817.8345.6195.4645.714BACKFLOU0.4000.3940.7460.7360.725EN. SLOPE1.00721.00681.00110.99840.9957LANBDA0.85620.35581.21561.21231.2090EUS0.54230.54230.47440.47430.4742EUY0.60160.38570.55470.54910.5511EdV/FUG1.10941.08011.16221.15781.1623									
VAPOUR FLO! STRIPPER= 850.000 PECTIFIER= 850.000 V ENTERING 0.45992 0.46656 0.47096 0.48595 0.50062 V LEAVING. 0.46656 0.47096 0.48596 0.50062 0.51506 V EQUILIBRIUM 0.47095 0.47407 0.49800 0.51267 0.52682 BOILING TEIP. 94.759 94.652 93.836 93.344 92.875 DECLET NO 7.781 7.834 5.619 5.4644 5.714 BACKFLOW 0.400 0.394 0.746 0.736 0.725 ER. SLOPF 1.0072 1.0068 1.0011 0.9984 0.9957 LA'IBDA 0.8562 0.3558 1.2156 1.2123 1.2090 EOS 0.5423 0.5423 0.4744 0.4743 0.4742 EOS 0.5016 0.5857 0.5547 0.5491 0.5511 EdV/FUG 1.1094 1.0801 1.1622 1.1578 1.1623									•
V ENTERING 0.45992 0.46656 0.47096 0.48596 0.50062 V LEAVING. 0.46656 0.47096 0.48596 0.50062 0.51506 V EQUILIBRIJA 0.47095 0.47407 0.49800 0.51267 0.52682 BULING TELP. 94.759 94.652 93.836 93.344 92.875 DECLET NO 7.781 7.834 5.619 5.464 5.714 BACKFLOM 0.400 0.394 0.746 0.736 0.725 ER. SLOPE 1.0072 1.0068 1.0011 0.9984 0.9957 LANDA 0.8562 0.3558 1.2156 1.2123 1.2090 ENG 0.6016 0.5857 0.5547 0.5491 0.5511 ENV 0.6016 0.5857 0.5547 0.5491 0.5511		• • • •			-) 	700.00	0.0
V LEAVING. 0.46656 0.47096 0.48596 0.50062 0.51506 V EQUILIBRIAND 0.47095 0.47407 0.49800 0.51267 0.52682 RULLING TEIP. 94.759 94.652 93.836 93.344 92.875 DECLET NO 7.781 7.834 5.619 5.464 5.714 BACKFLOW 0.400 0.394 0.746 0.736 0.725 ER. SLOPE 1.0072 1.0068 1.0011 0.9984 0.9957 LAMBDA 0.8562 0.3558 1.2156 1.2123 1.2090 EUS 0.5016 0.5857 0.5547 0.5491 0.5511 EUV 0.6016 0.5857 0.5547 0.5491 0.5511 EHV/FUG 1.1094 1.0801 1.1692 1.1578 1.1623									•
V EQUILIBRIJM 0.47095 0.47407 0.49800 0.51267 0.52682 BULING TEIP 94.759 94.652 93.836 93.344 92.875 PECLET HO 7.781 7.834 5.619 5.464 5.714 BACKFLOW 0.400 0.394 0.746 0.736 0.725 ER. SLOPF 1.0072 1.0068 1.0011 0.9984 0.9957 LAMBDA 0.8562 0.3558 1.2156 1.2123 1.2090 EUS 0.6016 0.5857 0.5547 0.5491 0.5511 EMV/FUG 1.4094 1.0801 1.1692 1.1578 1.1623	•								
BUILING TEIP. 94.759 94.652 93.836 93.344 92.875 DECLET HO 7.781 7.834 5.619 5.464 5.714 BACKFLOW 0.400 0.394 0.746 0.736 0.725 ER. SLOPE 1.0072 1.0068 1.0011 0.9984 0.9957 LABDA 0.8562 0.3558 1.2156 1.2123 1.2090 EUG 0.5423 0.5423 0.4744 0.4743 0.4742 EUV 0.6016 0.5857 0.5547 0.5491 0.5511 EHV/FUG 1.1094 1.0801 1.1692 1.1578 1.1623									
0ECLET HO 7.781 7.834 5.619 5.464 5.714 BACKFLOW 0.400 0.394 0.746 0.736 0.725 ER. SLOPE 1.0072 1.0068 1.0011 0.9984 0.9957 LABDA 0.8562 0.8558 1.2156 1.2123 1.2090 EUG. 0.5423 0.5423 0.4744 0.4743 0.4742 EUV. 0.6016 0.5857 0.5547 0.5491 0.5511 EUV. 1.094 1.0801 1.1622 1.1578 1.1623									
BACKFLOW 0,400 0.394 0.746 0.736 0.725 ER. SLOPE 1.0072 1.0068 1.0011 0.9984 0.9957 LABDA 0.8562 0.3558 1.2156 1.2123 1.2090 EUS. 0.5423 0.5423 0.4744 0.4743 0.4742 EUV. 0.6016 0.5857 0.5547 0.5491 0.5511 EUV/FUGT 1.1094 1.0801 1.1622 1.1578 1.1623									
ER. SLOPE1.00721.00681.00110.29840.9957LA'IBDA0.85620.35581.21561.21231.2090EUS0.54230.54230.47440.47430.4742EUV0.60160.58570.55470.54910.5511EAV/FUG1.10941.08011.16921.15781.1623		-	-		-				
LA 18DA 0.8562 0.6558 1.2156 1.2123 1.2090 EUS 0.5423 0.5423 0.4744 0.4743 0.4742 EUV 0.6016 0.5857 0.5547 0.5491 0.5511 EUV/FUG 1.094 1.0801 1.1692 1.1578 1.1623									
EUG. 0.8423 0.5423 0.4744 0.4743 0.4742 EUV. 0.6016 0.5857 0.5547 0.5491 0.5511 EUV/F0G 1.1094 1.0801 1.1692 1.1578 1.1623		-							
FILV 0.6016 0.5857 0.5547 0.5491 0.5511 EAV/FOG 1.1094 1.0801 1.1692 1.1578 1.1623									
EHV/FUG 1.1094 1.0801 1.1692 1.1578 1.1623									
					-				
R.JULATTLIFY. 1.1000 1.1000 1.1000 1.1000 1.1000									
401.AR HOLD 1PS 4.0128 4.0211 3.4837 3.4927 3.5029		MULAR AULOIPS	4.0128	4.0211	5.4857	3.4927	· ·	3,502	19

F14

-		TTHE. 156.736	FEE 300,		W 0 150			EFLUX 4.667				• • • • • •
	MULAR HOLDID LIQUID COND VADDUR COND RUILING TEND	11 0 0	3011.ER 64460 42900 45249 5.401		CUNDEN 2.15 0.50 92.6	1 6 3 7 8 9'	CAL.=	PRODUCTS 76.5600 55.6501			· · ·	• • • •
		1000	RTPPER=		Y 0.4652 0.4650 0.4649 0.4649 0.4649 0.4649 .000 5980 6496	0.4686 0.4674 700 RECTIFI 0.4	Y 0.4822 0.4809 0.4798 0.4788 0.4780 0.4775 .000	0.4889 0.4865 0.4845 0.4829 0.4818 700 .000 0.4	Y 0.4955 0.4945 0.4938 0.4933 0.4932 0.4933 .000 7954 9392	0	7 0.5 1 0.5 8 0.5 7 0.5 0 0.5	105 092 081 074 070
	V EQUILIBRI 901LING TERP 901LING TERP 9002ET NO BACKFLOW EQ, SLOPE LAMBDA EOS. EMV. EMV/EDGT R.VOLATILITY MOLAR HOLD P	1 0.48 94 1.0 0.8 0.8 0.7 1.1		0.40 94 7 0 1.0 0.5 0.5 1.0 1.0	6845 -846 -834 -394 0079 8567 5423 5964 0997 1000 0211	0.4 94 5 0 1. 1. 0. 1. 1.	9120 -066 -619 -746 0024 2173 4744 5556 1710 1000 4837	0,5 93 0 0. 1. 0. 1. 1.	0567 .578 .664 .736 9997 2139 4743 5503 1602 1000 4927	0	51976 5.714 5.714 0.725 0.9970 1.2107 0.4743 0.5524 1.1647 1.1600 3.5029	

	TUHE. 229_736	EEED 300,				os f 0.00	REFLUX 4.667	•		
MULAR HOLD'I LIQUID CO'IP VAPOUR CO'IP RUILING TE'I	p 11 - 0 - 0	011.ER 64460 41640 43973 .850		CONDEN 2.15 0.49 93.0	163 739	CAL.=	PRODUCTS 74.6081 57.5402			
PLATE	1	•	2					· •	5	
	X	v	X	Y	X	Y.	x	Y	X	γ
DUINCUMER	0.43499		0.43881		0.46793		0.48181	•	0.49593	•
	0.4339	0.4493	0.4379	0.4549	0.4651	0.4708		0.4836	0 4931	0.4982
	3.4329	0.4488	0.4372	0.4546	0.4626	0.4695		0.4826	0 4905	0.4969
	0,4320	0.4483	0.4365	0.4544	0.4603	0.4684	• •	0.4819		0.4959
	9.4311	0.4478	0.4359	0.4543	0.4583	0.4675	• •	0.4814	0 4861	0.4952
	0.4303	0.4474	0.4354	0.4543	0.4566	0.4668		0.4812	0.4844	0.4948
	0.4298	0.4471	0.4350	0.4544	0.4554	0.4664		0.4814	0.4833	· ·
- LIQUID FLUI	1000	000	1000.	,000		.000		000		.000
VAPOHR FLOT	STR	TPPER=	850.000		RECTIFI	EP= 850		• • • •		
V ENTERTIG	0.43	973	0.44	4811		5449		5824	0 4	8203
V LEAVING.	0.44	811	0 45	5449	0.4	6824		8203		2596
V EQUILIBRI	JM 0,451	328	0.45	5858		7916		7318		0714
BUILTNG TETH	¢. 25.:	373	95.	188	94	.477		. 999		529
PECLETING	. 71	781 👘	7.	834		.619		. 664		714
BACKFLOU	- O 4	406	0.	394		.746		.736		725
EN. SLOPE	1.00	099		092		0042		0015		988
I A'IBDA	0.8	584		1578		2193		2161		2128
FUG	0.5			424		4745		4744		4743
TENV .	0.6			193		5574		5528		5548
EHV/EUG	1.10			234		1747		1653		698
R. VULATTLIT				000		1000		1000		000
MULAR HOLD'I				211		4837		4927		5027
					51	· ·· · ·	., .		ن و فن	1 'T 'M #

		· .			· .			. •
							·	
		IUE. FEE 6.536 300			REFLUX 4.657		. *	
••.	NULAR HOLDIP	REB01LER 11 64400	CONDENS 2.151	63	PRODUCTS			
	LIQUID COMP. MAPOUR COMP. RUILING TEMP	0:40113 0:42423 96:401	0.481 93.58	CAL.=	72.2406		· · · · ·	
	PLATE	1	2	3	4		5	
	DUNNCOMER 0.4	X V 2265 4213 0.4353	X Y 0.42810 0.4269 0.4422	X Y 0.45221 0.4426 0.456	0.46578 5 0.4630 0.	4688	x 1.47999 1.4771	Y 0.4828
	s. s.	4200 0.4346 4189 0.4340 4173 0.4334	0.4259 0.4418 0.4249 0.4415 0.4241 0.4413	0.4450 0.454 0.453	3 0.4582 n. 5 0.4563 n.	4677 4670 4665	0 4745 0.4722 0.4701	0.4815 0.4805 0.4798
	LIGUTO FLUT	4168 0.4329 4161 0.4325 1000 000	0.4234 0.4412 0.4229 0.4413 1000.000	0.4415 0.452 0.4404 0.452 700.000	6 0.4537 0. 700.00	4643 4664 0	0.4685 0.4674 700	0.4794 0.4794 000
	VAPOUR FLD [†] V ENTERING V LEAVING. V EQUILIARTIM	STRTPPER= 0.42423 0.43379	0.43379 0.44156	RECTIFIER= 85 0.44156 0.45416	0.4541 0.4671	2	0.41	5712 3055
	BUILTNG TEIP BUILTNG TEIP PECLET HO PACKELOU	0.43047 95 850 7.781 0.400	0,44632 95,617 7,834 0,394	0_46405 94_978 5_619 0.746	0.4774 94.53 5.66	6	94.	9117 .067 .714
	FQ. SLOPF LAMBDA EUS.	1.0127 0.3603 0.5426	1.0116 0.8598 0.5725	1,0074 1,2232 0,4746	0.73	7	1_0	725 021 2158
	FUV FUV FUV/EUG R.VOLATILITV.	0.6275	0.6203	0.5602	0.474 0.556 1.173	6 ´ 0	0.5	4744 5585 1773
	MOLAR HOLD LOS	4.0128	4.0211	3.4837	1.100 3.492			1000 5029'

		0111E. 434,136	FEE 300),00	EFLUX 4.667			
•	MULAR HOLD I LIQUID CONP VADOUR CONP	p 11	BOILER 64460 39256 41551		CONDEN 2.15 0.47	163		PRODUCTS			
	BUILING TE'		6.714		93.8	91	EST.=	61.1158			
	PLATE	•		ž	н. т.		5			5	
. 1		X	Y .	X	Y	X	Y	Х	Y	x	Y .
	DUNNCOMPR	0.41567		0.43202	· ·	0.44326		0.45664		0.47088	
		0.4142	0.4274		0.4350		0.4483		0.4603	0.4580	0,4740
		0.4123	0.4266	0.4194	0.4345	0.4384	0.4472	-	0.4593	0 4654	0.47.27
		0.4115	0_4259	0.4184	0.4342	0 4363	0.4463	-	0.4585	0.4631	0.4717
		1.4103	0.4253	0.4174	0.4340	0.4345	0.4455	-	0,4580	0.4610	0.4710
		0.4092	0.4247	0.4166	0.4339	0.4329			0.4578	0.4594	0.4706
		n.4084-	0_4243	0.4160	0.4339	0.4319	0.4447		0.4579	0 4583	0.4706
	LIQUID FLOY	10.00		1000	<u>_000</u>		1.000		1.000	700	.000
	AVADING EFOIL			850.000			EP= 850				
	V ENTERING		1551		2571		3424		4516		5862
	V LEAVING.		2571		3424		4616		5862		7175
٠,	A SQUILTBRU		3165		3936		5544		6845		8204
	BUTLING TEL		136		. 863		297		.845		378
	PECLEY NO		. 781		.834		619		. 664		.714
	BACKELOU		4001		. 394		746		.736		.725
	ER, SLOPE		0142		0129		0025		0066		0040
	LA'18DA		8621		5610		2254		2223		2191
	Ę03.		5427		5426		4747		4746		4745
	E147		6318		6251		5620		5590		5608
	EMV/FDG		1642		1519		1841		1779		1819
	R. VOLATTLIT		1000		1000		1000		1000		1000
	MOLAR HOLD'	Þ\$ 4,	0123	4.0	0211	3.	4837	3,	4927	3.	5029

		•	15 DS 0.00 150.00	REFLUX 4.667	
MULAR HOLD'S LIQUID CONP. MAPONR CONP. BUILING TENS	0 38393	2.15	6163 6343 CAL.=	PRODUCTS 69.5143 62.4105	
PLATE	1	2	3	4	5
DUUNCOMER LIQUID FLUI VADOUR FLOI	X Y 0.40360 0.4059 0.419 0.4054 0.418 0.4040 0.417 0.4027 0.417 0.4027 0.417 0.4015 0.416 0.4007 0.416 1000 000 STRTPPER	X Y 0.41586 4 0.4143 0.4277 6 0.4130 0.4272 8 0.4117 0.4268 1 0.4107 0.4265 4 0.4097 0.4264 0.4091 0.4264 1000.000 ∞ 850.000	X Y 0.43419 0.4317 0.440 0.4295 0.439 0.4275 0.438 0.4257 0.437 0.4243 0.436 0.4233 0.436 700.000 RECTIFIER= 85	0 0.4423 0.450 1 0.4401 0.4499 4 0.4382 0.4499 9 0.4367 0.4499 7 0.4358 0.4499 700.000	x y 0.46162 7 0.4588 0.4650 7 0.4562 0.4637 9 0.4538 0.4627 4 0.4538 0.4627 4 0.4538 0.4627 1 0.4532 0.4617 2 0.4491 0.4617 700.900
V ENTERING V LEAVING. V EQUILIBRI BUILING TEN PECLET NO BACKFLOM EN. SLOPF LAMBDA EUG. ENV. EMV/EUGI R.VOLATILITY MULAR HOLD F	96 418 7,781 0 400 1.0158 0.3634 0.5428 0.6357 1.1712 1.1000	0.41754 0.42684 0.43232 96.112 7.834 0.394 1.0143 0.3621 0.5427 0.6292 1.1594 1.1000 4.0211	0.42684 0.43806 0.44672 95.603 5.619 0.746 1.0110 1.2277 0.4747 0.5641 1.1883 1.1000 3.4837	0.43806 0.45933 95.167 5.664 0.736 1.0085 1.2247 0.4746 0.5617 1.1834 1.1000 3.4927	0.45000 0.46282 0.47276 94.697 5.714 0.725 1.0059 1.2214 0.4745 0.5633 1.1870 1.1000 3.5029

	TTHE. 607.735	FEFD X 300.00 0.				EFLUX 4.667			
	REBO	ILER	CUNDENS	ER	TOP	PRODUCTS			:
MULAR	HOLD 10 11.6		2 151	63			· · · ·		
		7767	0.456	74					: .
VAPOUR	0.0019.0 0.4	0032			CAL.=	68.5117			
BOILTN	IG TE 1P 27.	265	94.43	2	ES7.=	63.3490			
					•			•	
	, 		•					·	
PLATE	Y Y	v X	V	- 3 X	· Y	X 4	Y	S 5	14
DOWNED	,	a, 41138	•	0.42759	Y	0.44061	Ť	X 0.45487	¥
0.0 - 0.0 - 0.0		.4136 0.4097		0.4252	0.4341		0.4455		0,4585
		4127 0 4082	0 4218	0,4230	0.4331		0.4443	0 4424	0.4572
		.4119 0.4069	0,4214	0.4211	0.4322		n. 4436	0,4474	0.4562
		.4111 0.4057	0.4211	0.4194	0.4315	· •	0.4431	0,4451	0,4555
·		.4104 0.4048	0.4210	0.4180	0.4311		0.4428	0,4434	0,4552
1997 - 19		.4099 0.4041	0.4210	0,4170	0.4309		0.4429	0 4424	0.4552
113911	÷ .		0.42.0		014309	-	.000		000
- 1,1 3070 - VADOUR	-	PPER# 850.000	0-000	RECTIFI			. 990	700	. 000
V ENTE			41161		2146		3216	0 4	4372
V CNEE V LEAN			42146		3216		4372		5630
	LIBRIAN 0.418		42720		4037		5267		6598
	IG TE 10. 76 6		6,295		.827		.394		931
DECLET			7.834		.619		. 564		714
BACKEL			0.394		,746		.736		725
FUL SL			,0153		0124		0099		0073
LA'1804			,8630		2293		2264		2231
E03.	0,54		,5427		4748		6204 474 7		4745
~~₽МV.	0,65		.6319		5658		5638		5652
- EMATE(- EMATE(1642		1917		1878		1908
	1.17 1.19		.1000		1000		1000		1000
			.0211	-	4837		4927		5029
	ા કે	δ'Σ 4 <u>4</u>	W VET 8 8	3.		پ ھ.	W7 G1		

TINE. FE 755,335 30	ED XF US 0.00 0.40 150	· · · · · ·	EFLUX 4.667	
REBOILER	CUNDENS 2.15	163	PRODUCTS	
LIQUID COMP. 0.37414 VANOUR COMP. 0.39671 BUILING TEMP. 97.397	()_45)	CAL.=	67.9428 63.8793	
		3	4.	S
PLATE 1 X Y	X Y Y	X Y 0.42385	X Y 0.43677	у У 0.45104
DU'INCOMER 0.40056 0.3937 0.410 0.3971 0.409		0.4215 0.4307	7 0.4342 0.4419	0 4482 0.4548
0.3955 0.408 0.3940 0.407	5 0.4042 0.4184	0.4174 0.4288	8 0.4297 0.4401 2 0.4279 0.4395	0.4413 0.4518
0.3928 0.407	0 0.4019 0.4179 5 0.4012 0.4179	0.4144 0.4278	7 0.4254 0.4393	
LIQUID FLOI 1000.000 VAPOUR FLOI STRIPPER	1000.000 = 850.000	700.000 RECTIFIEP= 850 0:41841	700,000 0,000 0,42881	0.44016
V ENTERTING 0.39671 V LEAVING. 0.40826	0.40826 0.41841 0.42429	0.42881	0.44016	0.45260
V FQUILTRRING 0.41476 BUILTNG TENP. 96.741 DECLET NO. 7.785	96,399	95.955 5.619	95.527	95.065 5.714
BACKFLOU 0 400 EQ. SLOPF 1.0176	0.394 1.0159	0.746	0.736	0,725
LA'IBDA 0.8649 EUG. 0.5429	0,8635	1,2303	1.2273 0.4747 0.5651	1.2241 0.4746 0.5663
ENV. 0.6397 ENV/EUG 1.1784	0.6333 1.1667 1.1000	0.5668 1.1938 1.1000	1.1000	1.1931
R.VOLATILITY. 1.1000 MULAR HOLD'IPS 4.0128	4.0211	3,4837	3.4927	3,5029

Appendix G

Unsteady-State Simulation Results for a Feed Composition Change: Ternary System

The simulation results for a step change in the feed composition is given. The operating conditions also given in the results. The step change made was:-

Component		XFS (SS)	XFS (US)
1		0.35	0.45
2	2	0.35	0.3
3		0.3	0.25

Not all the simulation results are given as there were too many, but results at suitable intervals were selected to give a comprehensive list showing the trends of the responses.

DISTILLATION COLUMN DIMENSIONS.

WEIR AND DOWNCOMER.

DIA.FT	HT.INS	LENG.FT	SEC.AREA	APRON
7.0	2.25	5,3900	4.747	1.0

PEI	REORATION	S	TRAY AREAS.						
DIA.INS	PITCH	AREA	NET	ACTIVE	GROSS				
0.1875	0.5	3,8485	33,737	28.990	38.485				
DENS	MOL WT	VISC	B.TEM	IP R.	VOL				
0.700	60.00	0,270	80.0	0 3.	00				
0.900	90.00	0,270	100.0	0 2,	00				
1,100	120.00	0.270	120.0	0 1.	00				

ment in a statute and environment

....

. • •

، بېغەر 14 غاي

G2

المستور المحمور المحموم والمحموم والمحمور و

and a second I have been as a second seco I have been as a second sec

		.											· ·			N	
		TIME	FEED	BOTTOM	IS TOP	PS R	RATIC) RB,H	OLDUP	C.HOL	DUP	÷.,	• •				
		0.000	300.0	150.0	150	0.0	4.667	7 13.	9660	2.74	25		•		- x - i	· .	1. N
	C 0	MPONENT	r REL.	VOL FE	ED COM	P. 80	ILER	COND.	ETP		TP.						
		1	3.0		0.35			0.5675			5,126		•		14 M-1		
	a see a see as der	2	2.0	0	0.35	0.3	476 (3524	52,86	2 52	.865	was	CHATTE IN MARY	med lange an	NE NAME OF A COMPANY	and the second second	a ang tao sa sa
		3	1.0	0	0.30	-		0.0801	-		2.009						
	PLATE	HOLDUP			ET NO.			LIQUID				1					
•	1	3.4561			4.95		9143		0.00		350.00						
	2	3.6088			5.52				0,00								
	3	3.3529	_		4.49	-			0.00								
	4	3,5219			5.00												
	5	3.6982			5.54			70	00.00	8	-						
		IENT= 1			COMPO				-			COMPOSI			MEAN	EMV.	
		TE DC		2				6					-	6			
	1		.2704														
	<u> </u>		8.3321														
	5		3,3959														
	4	.4814	2 .4677	4222	.4441	4344 6075	.4200	.4210	.2149	-2090	.2020	. 2035	.5022	.5029	. 5064	0.5300	
			B .5427					.4733	, 21.02					,2037			
		VENT= 2 re dC	1	-	COMPO:	4		4	1			OMPOSI 4	_	,	MEAN	EMV.	
	91A) 4		5 .4206	-	-		-		•		-	-	5	6	1724	0 0742	
	2		0 4137														
			0 .4262														
	ے د		7 4023														
	Š		4 3662														
	COMPO	NENT= 3			D COMPO							COMPOSI				EMV.	
	PLA			2	3	4	5	6	. 1	2	3	4	5	6			
	1		5 .3090	3198		3392	3469	.3521	.2373	2412	2448	.2481	2510	2529	2459	1.3111	1
	Ż		2 .2542														
	3		6 1779														
	4	.122	2 .1300	.1374	.1442	,1504	.1555	.1588	.1067	.1083	.1093	.1099	.1100	1094	1089	0.4813	
	5	.084	8 .0911	.0970	.1027	.1078	.1122	.1151	.0776	.0791	.0803	.0810	.0813	.0810	.0801	0.4771	

· ·

.....

GЗ

(1) Comparison of the second se second second

· · · ·						-					•				
							ر 19 مورورون دور 19						• <u>1</u> <u>1</u>		
TIME	FEED	BOTTOMS	TOPS	R.RA	TIO	RB.H	OLDUP	C.HOL	DUP	·			. 1.		
	300.0	150.0	150.	0 4.	667	13.	9660	2.74	25						
		OL FEED	COMP.	BOILE	R I	COND.	ετρ	·. (TP.						
un 1				-		-	-			a sector de la Carte	يستحديد والان	e (f the strange st	در ایک مرجع	. San gran san san sa	v sa se se
2				-		-						•			
3															
			•							4					
-	· · · · -														
			.) 2	0.705	, U		-								
-	•						-								
•	71.0				30	10				OMPAS	1 1 1 0 1		MEAN	EMV	
	1		3	4 4	5	6	1					6	CIC A M	C114 +	
												-	.3210	0.8758	3
5568	5427	.5297 .	5179 .5	075 .49	990	.4934	.5763	,5710	.5671	.5645	.5634	.5644	.5678	0.5273	5
)NENT= 2													MEAN	EMV.	
NTE DC	1						•					6			
•	+ 2002				007	. 37 (3	.3401					.3340			•
	· · · ·				5	· A · · · · ·		2.	אריטוג י ז	L L		· · · · · · · · · · · · · · · · · · ·			
			-		-						-	-	2459	1 3111	4
	1 2 3 HOLDUP 3.4561 3.6088 3.5219 3.5219 3.6982 NENT=1 TE 2824 .4083 .4812 .5568 NENT=2 NENT=2 NENT=3 .4024 .4024 .4024 .4024 .4203 .4230 .4230 .4230 .4230 .4230 .4230 .4230 .4230 .4230 .4230 .4230 .4230 .4230 .4230 .4230 .4230 .3584 .3584 .3584 .3584 .4230 .4230 .3584 .4230 .4230 .4230 .4230 .4230	1 -3.00 2 2.00 3 1.00 HOLDUP TEMP 3.4561 101.7 3.6088 99.1 3.5219 96.5 3.5219 94.0 3.6982 91.7 NENT= 1 1TE DC .2824 .2706 .3609 .3439 .4083 .3959 .4812 .4678 .5568 .5427 NENT= 2 NENT= 2 NENT= 2 .4023 .4203 .4203 .4205 .4024 .4078 .4230 .4262 .3966 .4023 .3584 .3662 NENT= 5 .3584 .3662 NENT= 5 .42973 .3089 .2367 .2482 .1686 .1779 .1222 .1300	1 3.00 0. 2 2.00 0. 3 1.00 0. HOLDUP TEMP. PECLET 3.4561 101.71 4. 3.6088 99.16 5. 3.529 96.50 4. 3.5219 94.09 5. 3.6982 91.79 5. NENT=1 LIQUID 1TE DC 1 .2824 .2706 .2598 .3609 .3439 .3292 .4083 .3959 .3845 .4083 .3959 .3845 .4083 .3959 .3845 .4083 .3959 .3845 .4083 .3959 .3845 .4083 .3959 .3845 .4083 .3959 .4812 .4024 .4078 .4121 .4230 .4262 .4288 .3966 .4023 .4073 .3584 .3662 .3732 NENT= 3 LIQUID ATE 2 <tr< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>13.000.450.1325022.000.300.3476031.000.250.51990HOLDUPTEMP.PECLET NO.BACKFLOW3.4561101.714.950.91433.608899.165.520.76903.352996.504.491.05743.521994.095.000.90063.698291.795.540.7636NNENT=1LIQUID COMPOSITIONNTEDC122.8242706.2598.2499.2824.2706.2598.2499.2824.2706.2598.3655.3609.3439.3292.3168.3609.3439.3292.3168.3609.3439.3292.3168.3609.3439.3292.3168.4083.3959.3845.3743.3655.3586.4083.3959.5427.5297.5179.5075.4990.4203.4205.4203.4205.4201.4196.4190.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262<td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>3.00 0.45 0.1325 0.5675 115.129 85.129 2 2.00 0.30 0.3476 0.3524 37.862 52.863 3 1.00 0.25 0.5199 0.0800 -2.991 12.008 HOLDUP TEMP. PECLET NO. BACKFLOW LIQUID FLOW VAPOUR FLOW 3.4561 101.71 4.95 0.9143 1000.00 850.00 3.3529 96.50 4.49 1.0574 700.00 850.00 3.4982 91.79 5.54 0.7635 700.00 850.00 3.6982 91.79 5.54 0.7635 700.00 850.00 3.6982 91.79 5.54 0.7635 700.00 850.00 3.6083 3393 3292.3168 3067.2988 2939 4034 3771 3927 3890 3935 0.6176 4.083 3979 32826 .5035 .5030 .5070 0.5366 .5143 .4562 .4510 .4473 .4450 .4462 .4457 .4480 .554 .5644 .5630 .5035</td></td></tr<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13.000.450.1325022.000.300.3476031.000.250.51990HOLDUPTEMP.PECLET NO.BACKFLOW3.4561101.714.950.91433.608899.165.520.76903.352996.504.491.05743.521994.095.000.90063.698291.795.540.7636NNENT=1LIQUID COMPOSITIONNTEDC122.8242706.2598.2499.2824.2706.2598.2499.2824.2706.2598.3655.3609.3439.3292.3168.3609.3439.3292.3168.3609.3439.3292.3168.3609.3439.3292.3168.4083.3959.3845.3743.3655.3586.4083.3959.5427.5297.5179.5075.4990.4203.4205.4203.4205.4201.4196.4190.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262.4230.4262 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>3.00 0.45 0.1325 0.5675 115.129 85.129 2 2.00 0.30 0.3476 0.3524 37.862 52.863 3 1.00 0.25 0.5199 0.0800 -2.991 12.008 HOLDUP TEMP. PECLET NO. BACKFLOW LIQUID FLOW VAPOUR FLOW 3.4561 101.71 4.95 0.9143 1000.00 850.00 3.3529 96.50 4.49 1.0574 700.00 850.00 3.4982 91.79 5.54 0.7635 700.00 850.00 3.6982 91.79 5.54 0.7635 700.00 850.00 3.6982 91.79 5.54 0.7635 700.00 850.00 3.6083 3393 3292.3168 3067.2988 2939 4034 3771 3927 3890 3935 0.6176 4.083 3979 32826 .5035 .5030 .5070 0.5366 .5143 .4562 .4510 .4473 .4450 .4462 .4457 .4480 .554 .5644 .5630 .5035</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.00 0.45 0.1325 0.5675 115.129 85.129 2 2.00 0.30 0.3476 0.3524 37.862 52.863 3 1.00 0.25 0.5199 0.0800 -2.991 12.008 HOLDUP TEMP. PECLET NO. BACKFLOW LIQUID FLOW VAPOUR FLOW 3.4561 101.71 4.95 0.9143 1000.00 850.00 3.3529 96.50 4.49 1.0574 700.00 850.00 3.4982 91.79 5.54 0.7635 700.00 850.00 3.6982 91.79 5.54 0.7635 700.00 850.00 3.6982 91.79 5.54 0.7635 700.00 850.00 3.6083 3393 3292.3168 3067.2988 2939 4034 3771 3927 3890 3935 0.6176 4.083 3979 32826 .5035 .5030 .5070 0.5366 .5143 .4562 .4510 .4473 .4450 .4462 .4457 .4480 .554 .5644 .5630 .5035							

•

G4

and a second s

ана Спорти и прости страница и прости и про

		·	e de la composition d		Na tanàna amin'ny tanàna mandritra dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kao	an a	
			н 		· ·		
				**** 37 7 4			
		an a	n an an <mark>tin</mark> La santa ang ang ang ang ang ang ang ang ang an	an a	and the second second second	e de la companya de l	•
	TIME F	FEED BOTTOMS TO	PS R.RATIO RB.	HOLDUP C.HOLDU	P		
	12.134 3	300.0 150.0 15					
	COMPONENT						•
- 	no nazione e e escaració de la concerció de la	3.00 0.45 2.00 0.30	0.1326 0.5682			n 1944 att 1924 and 1944 and 1947 and 2012 and 2014 and 1949 and 1947 and 1947 and 1947 and 1947 and 1947 and 1	-ಕ್ರಾಂಧ ಗ್ರಾ
	2	2.00 0.30 1.00 0.25	0.5199 0.0799				
	PLATE HOLDUP	TEMP. PECLET NO.					
	1 3,4561	101.64 4.95			.00	· .	
	2 3.6088	•		00.00 850	-	· · · · ·	
•	3 3,3529	-		00.00 850			사망 관계 : 100 · · · · · · · · · · · · · · · · · ·
		-		00,00 850			
	5 3,6982 COMPONENT= 1	91.78 5.54 LIQUID COMPO		00.00 850 VAPC	UR COMPOSITION	MEAN EMV.	
	PLATE DC	1 2 3	SITION 4 5 6	1 2	3 4 5	6	
	1 2898	.2766 .2646 .2538				.3106 .3224 0.8766	
	2	.3563 .3427 .3304	.3196 .3107 .3049	.4114 .4054 .4	007 .3973 .3953	.3953 .4009 0.6235	
		.3967 .3855 .3755					
		.4685 .4563 .4451					
		.5431 .5301 .5184			OUR COMPOSITION	.5002 .5094 U.5202 MEAN EMV.	
	COMPONENT= 2 PLATE DC	LIQUID COMPO	4 5 6	1 2	3 4 5	6 MEAN ERV.	Alto Sie
		.4178 .4183 .4184				-	đề số lự
	2 .3973	4018 4057 4089	.4116 .4136 .4148	.4061 .4100 .4	4131 .4155 .4171	4176 4132 0.9406	
		.4256 .4281 .4300					
		.4017 .4066 .4109					
	-	.3659 .3729 .3791					
	COMPONENT= 3 PLATE DC	LIQUID COMPO 1 2 3	4 5 6		OUR COMPOSITION	MEAN EMV.	
·		3056 3171 3278				2527 2454 1 3119	
		2419 2516 2606					
	3,1684	1777 1864 1944	.2016 .2075 .2113	.1394 .1418 .*	435 .1447 .1453	1451 .1433 0.4880	
		.1297 .1371 .1439					
	5 .0847	,0909,0969,1025	.1077 .1120 .1149	0//2 .0/8/ .0	0798 .0804 .0807	.0803 .0795 0.4775	
	· .				· · · ·		
		· ·				na an a	-
			· •		and the second second second	 A subscription of the second se	ភ្វ
	•						

_						,	·			· · · ·	tutu ya suya		6	• T.		
					•											
						,			•••							
						**71	•		1. T							
· · ·				••	e sue e su	21 - L			an ta	e je kaoli i	· · · · · · ·			· .		
· · · ·	TIME I	FEED	BOTTOM	іс т <i>і</i>			O RB.H		<u>с</u> йл.	L N H N						
	19.036															
	OMPONENT						COND.		×،،،) (
بي ديار جيجور دارم			-	0.45	-		0,5690			5.282		an a ⁿⁿ staistactus st	معروب المراز المراز			
	2	2.00		0.30			0.3514			2.755						-
	3	1.00		0.25			0.0796			1.963						
PLATE	HOLDUP				-		LIQUIC				N .					
1	3,4561	101.5			0,		100			850.00	-					
2	3.6088	98.6			0.		100	00.00		850,00						
3	3.3529	96.4			1.	0574	70	0.00	ł	850.00						
4	3,5219	•		5.00	0.	9006	7(00.00		850.00						¥~ ⇔h
5	3,6982	-		5.54	0.		70	00.00		850.00						
	NENT = 1		LIQUID				_				COMPOS	+		MEAN	EMV.	
PLA			2				6			3		5	6			
1	-2966	.2829	.2704	-2590	.2489	.2406	.2352	.3409	.3336	.3269	.3209	.3159	.3126	.3252	0.8757	7
2	.3741	.3000	.5472	. 3556	.5275	.51/1	.3116	.4146	4092	.4052	.4023	.4007	.4010	.4055	0.6136	5
5	.4102	.3701	.30/7	, 2//2	.3008	.3021	.3580	.4055	.4284	.4350	.4529	.4521	.4532	.4558	0.5376	5
4 5	.4027 5570	4074 5/20	,4372 5700	5104	4300 5/190	.4200	.4238	-200	.2125	.2112	. 2084	.5070	.5076	.5117	0.5344	4
с Сомра	NENT= 2	. 1430	. 2207	- 7171) Comdi	.5008 051TI0	, 2002 N	. 4948		. 27.28	.)/01	.3076 Compos:	.2605	. 5674)
PLA			2							APUUR (3			6	MEAN	EMV.	. • •
1							.4162						0	6202	0 0717	7
2	3956	. 3999	4035	4065	4089	4108	4118	4039	4073	.4101	4122	4125	.4324	4101	0.7117	₽ ₹
3	4218	4247	.4270	4289	4302	.4310	4313	3984	4009	-4025	4034	4034	4024	4018	1 1028	3
4	3957	.4011	.4060	.4102	.4137	.4164	4181	.3742	3780	.3810	3832	3844	3844	3809	0 6514	4
5	3577	.3654	.3724	.3786	.3838	.3879	3905	.3441	.3479	.3506	3524	3531	3526	3501	0.5869	,
COMPO	INENT= 3		LIQUID) COMP	OSITIO	N			V.	APOUR (COMPOS				EMV.	
PLA							6		2	3	4	- 5	6	* .		
1	.2894	.3019	.3137	.3247	,3347	.3430	.3486	.2353	2394	,2433	.2469	.2499	.2520	.2445	1,3159	9
2	.2303	.2401	.2493	.2578	.2656	.2721	.2765	.1815	.1834	.1847	.1855	.1858	.1852	.1844	0.5593	3
3	1680	.1772	.1859	1939	.2010	.2069	2107	.1383	.1407	.1425	.1438	.1445	.1444	.1423	0.4883	3
-		1205	1368	1436	.1497	.1548	.1581	.1050	.1067	.1078	.1084	.1086	1080	.1074	0.4825	5
4	1218	. 16/5	. 1000	+1-00			1147					-	-		• • • •	

- - - - **-**

G6

							•		•					
	•			- 			1.1.2							
					e de la composición d Recentra de la composición de la composic	n na star na star na star Na star na star Na star na star	• * _ * * *					e de la composition de	-	
-					00 41	DLDUP	C 2017							
	• • • •	FEED BOTTOMS		.RATIO 4.667		9660	2.742						1 · · · ·	
		300.0 150.0		ILER I	· + •	ETP.		Γ Ρ .				- 	· · ·	
the second second	COMPONENT	REL.VOL FEE 3.00 0		344 0	5704 '	114 96		434	π° λ - i mine)πrie _{nstatio}	untra i sterioù î n fastan.	an a		e a an the second second	an na h-si
	1		.30 0.3			37.92		645						
	. 2		.25 0.5	187 0	0792	-2.89	4 11.	.921						
D	LATE HOLDUP			FLOW		FLOW			4				. •	
	1 3,4561		.95 0.	9143	100			50.00					1	
	2 3.6088	98.50 5		,7690	100			50.00						
	3 3.3529		.49 1.		70			50.00					· .	
	4 3.5219	94.02	5.00 0.		70 70			50.00						
	5 3.6982	91.74	54 0. Composition	-	<i>(</i> U	0,00			COMPOSI	TION		MEAN	EMV.	
C	OMPONENT= 1		COMPOSITION	E	6	1	. 2	3	6	5	6			
	PLATE DC		3/10 35/7	2143	2408	3449	3376	3308	. 3246	,3195	.3161	,3289	0.8728	
			2207 2000	< 211	<1 NV	4176	4173	- 4007	. 4004	. 4076			0.0000	
		トー・トー・マンウイ	2200 2715	7220	ZANX	4557	4017	. 4387	_ 4330	_ 4 2 4 7	. 4//0		V. JJUV	
			1130 1797	2207		5//(2175	- 21 54					V.JJ	
	5 559	5452 5323	5205 5102	.5017	.4962	.5808	. 27.22	, 2717	. 2071	. 2000	,5687		0.3270	
.	OMPONENT= 2		COMPOSITIO	N		_	V A	YUUN .	COM5021	LITON		MEAN	EMV.	
			3 4	5	6	1	2	3	4	5	6	1280	A 0738	
	1 411	6 .4128 .4136	4141 4143	.4143	.4142	.4212	.4244	,4273	.4277	4317	.4335	4075	0 8256	7
1	2 .394	6 4128 4130 3 3985 4020 3 4231 4254	4049 4072	4089	4099	.4019	2087	4077	4077	4105	4005	3997	1.1634	
and the second second	3 .420	3 4231 4254 8 4002 4049	.4271 .4284	.4296	,4273	3701	3766	3795	.3815	3827	3826	3793	0.6531	
	4 394	8 4002 4049 7 3645 3715	4090 41CJ	1014	3895	3429	3466	3494	.3512	3520	3516	3489	0.5888	
			, 3770 , 3020 NITI2NUMA	N			V A	POUR	COMPOS	ITION	•	MEAN	EMV.	
	COMPONENT= 3 PLATE DC		+ /	5	~	- 1	- 2	`	- 4		6			
			7744 7710	3704	.3450	.2339	.2380	.2419	.2455	.2486	.2507	.2431	1.3237	
		1 3344 3104	- つとえて つんてり	2700	2161	1 80 5	1863		. 1041	. 1096	1020		0,2206	
	_ `	7 4 T 7 1 4 0 C 0	1020 2001	2060	2097	11//	1390	1413	1 . 1467	. (4))	1491		V. 4002	
		·	4/24 4/04	1572	1576	1045	1061	_ 1076					0.4062	
	5 .084	2 .0903 .0963	.1019 .1070	.1113	.1143	.0763	.0779	+07.85	,0797	.0000	*0141	.0101	V.4700	
l										•				
									· ·					

ار ها المحمد في من معرف المحمد الموجوع والمالية المحمد من المحمد والمحمد والمحمد المحمد ا

													•			
								· .						·· .		
							*		< 1.27 3 +1				· ·			:
		the strength of the	, *			gen en g		r national 🗧			i e da ga	· · · .				
		CEN	BOTTOM			DATI	D RB_H		C 1101	DIID			. *	• • •		·
							7 13.				1. A. A. A. A.			. *		
	18.647 3 MPONENT									TP.						
L L	1990 N C N F						0.5724		•							
	.	2.00		0.30			0.3488				a a traa	ومهادين ريمانين مريكان	n 1403 lanun 1 80 0	ana an State I - I -	يې د دو دون مونې مونو د . دې د د و دون مونې مونو د	a transmillar
•	<u>ר</u>	1.00		0.25			0.0787			.850						
PLATE	HOLDUP						LIQUID				1					
1	3 4561	101 1	7	4.95	-	9143		0.00		350.00						•
ż	3.6088	98.4	1	5.52			100			350.00						
3	3.3529	96.3	0	4.49	. 1.	0574	70	0.00	8	350.00						
ž	3.5219		6	5.00	Ó.	9006	70	0.00	8	350.00						
5	3,6982		, <u>9</u>		0.	7636	70	0.00	Ę	350.00						
-	NENT=1	-	I TOUTO		ISTTTON	4			V /	APOUR C	OMPOS	TION		MEAN	EMV.	
PLAT		1	2	3	4	5	6	1 -	2	3	4	5	6			
1		.2926	.2803	.2690	.2590	.2508	.2453	.3496	.3424	.3358	.3298	.3247	,3214	.3339	0.8691	
2	3787	3651	.3527	.3415	.3319	.3241	.3190	.4216	.4166	.4131	.4108	.4097	.4103	4137	0.6037	
3	4150	4033	3926	,3830	.3747	.3682	.3641	,4704	.4655	.4620	.4597	.4588	.4597	,4627	0.5369	
4	4859	4729	4610	4502	.4408	.4332	.4283	.5256	,5203	.5164	.5138	.5126	.5132	.5170	0.5337	
5	5610	.5472	.5343	.5226	.5123	:5039	4983	.5832	.5780	.5741	.5716	.5704	.5711	.5747	0,5303	
COMPO	NENT= 2		LIQUID	COMP(DSITIO	N				APOUR C				MEAN	EMV.	
PLA	TE DC						6						6			
1	.4098	4111	. 4119	.4124	.4127	.4127	.4127	.4183	.4214	.4243	.4268	.4288	.4301	.4249	0.9767	
2	.3928	.3969	.4004	.4033	.4056	.4072	4082	.3993	.4025	.4049	4066	.4076	.4076	.4048	0.8163	
3															1.1394	
4	.3934	.3987	.4034	.4075	.4109	.4135	.4151	.3707	. 3744	.3772	.3792	.3804	.3803	.3770	0.6534	
5		.3630					.3880	.3410					.3498		0:5902	
-	NENT = 3	· • · ·	LIQUI	D COMPI	OSITIO	N _		A .		APOUR (1. A.	MEAN	EMV.	
PLA	TE DC	1	2	3	- 4	77/5	6	1	27/4	3700	. 4		6	3/44	4 77/5	•
1	2842	.2963	.3078	.3185	.3285	.3367	.3420	.2322	.2301	.2399	1074	4077	.2402	.2411	1.3345	
2	.2285	2580	.2469	.2002	.2025	2001	2120	4744	1205	1/0/	1/10	4/24	4/25	4/07	0.5548	
5	,1664	1754	.1840	4/77	1707	,£041	4644	4027	1007	104	4070	1460	1065	10403	0.4883 0.4823	
4	.1208	.1284	10057	1042	104	11004	. 300 . 117∡	.1037	0772	1004 0787	0704	1071 070/	0701	0785	0.4781	
5	.0830	100AQ	, 4421	.1015	.1004		.1130	+ 01 31	. 4113	* V F O 4		4 ∨ (7 4	. 1771		V. # TO I	

· · · · ·

المتيار المحمد وتتناب والمحمد المحمد محمد فالمحمد المراجع

G õ

.

· .					· .	
		en e	یری در در محمد از محمد در از از م	مورد الأربي ويتعملهم ومراجع والرواح وم	an a	n 1. an San San San San San San San San San
				and the second	and the second	
	TIME F	FEED BOTTOMS TO	PS R.RATIO RB.	OLDUP C.HOLDUP		
		and the second	0.0 4.667 13			n - Aren er dige en de ser en d
		REL.VOL FEED COM				
	1	3.00 0.45	0.1395 0.5750	114,285 86.051		۲ <i>۵</i> .
4 1 4 4 4 7	2		0.3453 0.3469	38.146 52.183	ಕನೆ ಎಂದಿನ ಸಂಸ್ಥೆತೆಗಳು ಅಗಳಿಗೆ ನಿನೇಶಕರ್ ಮಾಡಿದ್ದಾರೆ. ಇದು ಮಾಡಿದ ಸ್ಥಿತಿಗೆ ಕಾರಿಸಿದ ವಿನೇಶಕರ್	n den ner han fan de ser gegen en de ser en ser en de ser en Ten ser en de ser en d
	- 3	1.00 0.25	0.5152 0.0781	-2.431 11.766	·	
· .	PLATE HOLDUP			FLOW VAPOUR FLO		
	1 3.4501	101.05 4.95	0.9143 10	00.00 850.00		
	2 3.6088	98.32 5.52		00.00 850.00		
	3 3,3529	96.21 4.49	1.0574 70	0.00 850.00		
	4 3.5219		0.9006 70			and the second
	5 3.6982 COMPONENT= 1	91.63 5.54 LIQUID COMPO	0.7636 7		COMPOSITION	An er A bi Prasi
	PLATE DC	1 2 3		1 2 3	4 5 6	MEAN EMV.
·		.2960 .2837 .2725			, , ,	3 3382 0 8692
		.3679 .3556 .3446				
		4066 . 3960 . 3864				
		.4759 .4640 .4533				
	5 5636	.5498 .5370 .5254	.5151 .5067 .5012	,5859 ,5806 ,5768	.5743 .5731 .5738	3 .5774 0.5303
	COMPONENT= 2	LIQUID COMPO		VAPOUR		MEAN EMV.
	PLATE DC		4 5 6			
	1 .4080	.4093 .4102 .4108	.4111 .4112 .4112	.4158 .4190 .4218	.4243 .4263 .4270	6.4225 0.9775
		.3952 .3987 .4015				
		.4191 .4213 .4230				
		.3967 .4013 .4054 .3611 .3680 .3741				
	COMPONENT= 3		-5775 -5854 -5800 SITION		COMPOSITION	
	PLATE DC			1		MEAN CMY.
		.2947 .3061 .3167				5 2396 1 3388
		2368 2457 2538				
		1743 1827 1905				
	4 .1199	.1275 .1347 .1414	.1473 .1523 .1555	.1030 .1046 .1056	.1062 .1063 .105	7 .1052 0.4822
	5 .0830	.0891 .0950 .1005	.1056 .1099 .1128	.0752 .0767 .0778	.0785 .0788 .078	5 .0776 0.4780

G9

means and the second

and the second second

	an ann an Arran an A Arran an Arran an Arr
TIME FEED BOTTOMS TOPS R.RATIO RB.HOLDUP C.HOLDUP	
64.631 300.0 150.0 150.0 4.667 13.9660 2.7425	
COMPONENT REL.VOL FEED COMP. BOILER COND. ETP. CTP.	
1 3.00 0.45 0.1422 0.5778 113.868 86.457	· A:
2.00 0.3446 0.3447 38.259 51.868	n an the sector and the sector of the sector
3 1.00 0.25 0.5132 0.0775 -2.128 11.675	
PLATE HOLDUP TEMP. PECLET NO. BACKFLOW LIQUID FLOW VAPOUR FLOW	
1 3,4561 100,95 4,95 0,9143 1000,00 850,00	
2 3,6088 98,24 5,52 0,7690 1000.00 850.00	1. AT 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
3 3.3529 96.12 4.49 1.0574 700.00 850.00 4 3.5219 93.80 5.00 0.9006 700.00 850.00 5 3.6982 91.56 5.56 0.7636 700.00 850.00	
4 3,5219 93,80 5,00 0,9006 700,00 850,00	
	1820 2. 17 m g m
COMPONENT= 1 LIQUID COMPOSITION VAPOUR COMPOSITION	
PLATE DC 1 2 3 4 5 6 1 2 3 4 5	6
1 .3124 .2991 .2868 .2757 .2657 .2575 .2521 .3576 .3506 .3441 .3382 .3333	
2 .3839 .3705 .3583 .3474 .3379 .3302 .3252 .4287 .4239 .4204 .4182 .4171	
3 .4215 .4099 .3993 .3898 .3816 .3751 .3711 .4774 .4726 .4691 .4669 .4660	
4 4918 4790 4671 4564 4471 4396 4347 5318 5266 5228 5203 5191	
5 5664 5527 5399 5283 5181 5097 5042 5888 5836 5798 5773 5761	-
COMPONENT= 2LIQUID COMPOSITIONVAPOUR COMPOSITIONPLATEDC12345612345	MEAN EMV.
PLATE DC 1 2 3 4 5 6 1 2 3 4 5 1 _4064 _4077 _4087 .4093 .4096 .4097 .4097 .4134 .4166 .4194 .4218 .4239	
2 3897 3938 3972 4000 4022 4039 4048 3947 3978 4001 4018 4027	
3 4143 4170 4192 4210 4222 4229 4233 3885 3909 3925 3934 3936	
4 _ 3892 _ 3945 _ 3992 _ 4032 _ 4066 _ 4092 _ 4108 _ 3660 _ 3696 _ 3724 _ 3744 _ 3755	
5 .3512 .3589 .3658 .3719 .3771 .3812 .3838 .3366 .3403 .3430 .3448 .3457	3453 3426 0 5898
COMPONENT= 3 LIQUID COMPOSITION VAPOUR COMPOSITION	MEAN ENV.
PLATE DC 1 2 3 4 5 6 1 2 3 4 5	6
1 _ 2812 _ 2932 _ 3045 _ 3151 _ 3247 _ 3328 _ 3382 _ 2290 _ 2329 _ 2365 _ 2400 _ 2429	2448 2377 1.3401
2 2264 2357 2445 2526 2599 2659 2700 1766 1784 1794 1800 1802	
3 1642 1731 1815 1893 1962 2020 2056 1342 1365 1383 1397 1405	
4 1190 1265 1337 1403 1463 1512 1544 1022 1038 1048 1054 1055	
5 .0824 .0884 .0943 .0998 .1048 .1091 .1119 .0746 .0761 .0772 .0779 .0782	

- **·**

and the second second

G10

and a second second

. · · · · · · · · · · · · · ·

											. San ta Rational			· · · · · · ·	• • • • •		
									** **	,				· .	e e e e e		
	1.							a Santa tana manakata ang santa sa	. . .				· · · · ·	• •			
ŤŤ	ME F	EED	BOTTOM	15 70		RATIO) 08 4	IOLDUP	С.НОЦ	БНО							
			150.0		50.0		13.		2.74			-	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			· •	
-	ONENT		-	ED COM	-	4.007)ILER			-	TP.	•				100 A		
LOMP 4	UNENT	3.00					-	113,30	-	2.111				· ••• ••			
الموجد بيوسيني الأريان 2	n taya waya takaza k	i na ko lento en la		0.45		438 (-	38.39			an a	an an a start of	an a	- بەرەپەيەيە 1-		and a state of	
3		2.00						-1.70		.353 .537		· ·					
-	OLDUP	TEMP.		.ET NO.				FLOW		-							
	4561	100.8		.ei NV. 4.95		9143		0.00		350.00	Ň						
	6088	98.1		5.52		7690		0.00		350.00						antes es	
	3529	-								-							
	-	95.9		4.49		,0574 ,9006				350.00			•				
	-	93.6					70	0.00		350.00							
COMPONEN	6982	-		5.54			\sim	10.00		350.00	CONDOO	***			- • • • •		
-	= 1 ₽C	1		COMPC	4		4	1			COMPOSI 4		,	MEAN	EMV.		
PLATE				4	•							5	6	7/70	0,8719		
1	2075	, 30, 34	26712	. 60VI	2/10	27/2	2207	. 3029	.2200	. 3490	.3438	.3390	. 5 5 5 7	.3479	0,8719		
. 2	1367	.3146	. 2021	- 30/7	2045	2000	7760	.4334	. 4201	.4234	.4231	.4221	.4221	4239	0.6008		
3																	
4															0.5321		
5								. 27.26	3000		2018				0.5296	•	
CUMPONEN	_) C 7 7 1 // 4	a								-			
PLATE						۹ د			VI	APOUR (COMPOSI	TION	-	-	EMV.	···	
4	DC	1	2	3	4	5	6	1	2	APOUR (3	COMPOSI 4	TION 5	6	MEAN	EMV.		
1	.4042	1 .4056	2 ,4066	3 .4072	4 .4076	5 .4077	6 .4078	1 .4103	2 _ 4134	APOUR (3 .4162	COMPOS 4 .4186	TION 5 .4206	6.4219	MEAN	EMV.		
2	4042	1 .4056 .3917	2 ,4066 ,3951	3 .4072 .3979	4 .4076 .4001	5 .4077 .4017	6 .4078 .4027	1 .4103 .3917	VI 2 . 4134 . 3947	APOUR 3 .4162 .3970	COMPOS) 4 .4186 .3986	TION 5 .4206 .3995	6 .4219 .3995	MEAN .4168 .3968	EMV. 0.9792 0.7983		
2 3	4042 3877 4111	1 .4056 .3917 .4139	2 .4066 .3951 .4162	3 .4072 .3979 .4179	4 .4076 .4001 .4192	5 .4077 .4017 .4200	6 .4078 .4027 .4204	1 .4103 .3917 .3849	V/ 2 .4134 .3947 .3874	APOUR 3 .4162 .3970 .3890	COMPOS 4 .4186 .3986 .3899	TION 5 .4206 .3995 .3901	6 .4219 .3995 .3893	MEAN .4168 .3968 .3885	EMV. 0.9792 0.7983 0.9875	·	
2	.4042 .3877 .4111 .3859	1 .4056 .3917 .4139 .3912	2 .4066 .3951 .4162 .3959	3 .4072 .3979 .4179 .3999	4 .4076 .4001 .4192 .4033	5 .4077 .4017 .4200 .4060	6 .4078 .4027 .4204 .4076	1 .4103 .3917 .3849 .3625	2 .4134 .3947 .3874 .3660	APOUR 3 .4162 .3970 .3890 .3688	COMPOS 4 .4186 .3986 .3899 .3707	TION 5 .4206 .3995 .3901 .3718	6 .4219 .3995 .3893 .3718	MEAN .4168 .3968 .3885 .3686	EMV. 0.9792 0.7983 0.9875 0.6465	·	
2 3 4 5	.4042 .3877 .4111 .3859 .3478	1 .4056 .3917 .4139 .3912	2 .4066 .3951 .4162 .3959 .3624	3 .4072 .3979 .4179 .3999 .3685	4 .4076 .4001 .4192 .4033 .3736	5 .4077 .4017 .4200 .4060 .3778	6 .4078 .4027 .4204 .4076	1 .4103 .3917 .3849 .3625	2 .4134 .3947 .3874 .3660 .3368	APOUR 3 .4162 .3970 .3890 .3688 .3395	COMPOS 4 4186 3986 3899 3707 3413	TION 5 .4206 .3995 .3901 .3718 .3422	6 .4219 .3995 .3893 .3718	MEAN .4168 .3968 .3885 .3686 .3391	EMV. 0.9792 0.7983 0.9875 0.6465 0.5885	·	
2 3 4 5 Componen	.4042 .3877 .4111 .3859 .3478 IT= 3	1 .4056 .3917 .4139 .3912 .3554	2 .4066 .3951 .4162 .3959 .3624 LIQUII	3 .4072 .3979 .4179 .3999 .3685 COMPC	4 .4076 .4001 .4192 .4033 .3736 DSITIO	5 .4077 .4017 .4200 .4060 .3778	6 .4078 .4027 .4204 .4076 .3804	1 .4103 .3917 .3849 .3625 .3331	2 .4134 .3947 .3874 .3660 .3368	APOUR 3 .4162 .3970 .3890 .3688 .3395 APOUR	COMPOS) 4 .4186 .3986 .3899 .3707 .3413 COMPOS	TION 5 .4206 .3995 .3901 .3718 .3422 LTION	6 .4219 .3995 .3893 .3718 .3418	MEAN .4168 .3968 .3885 .3686 .3391	EMV. 0.9792 0.7983 0.9875 0.6465 0.5885 EMV.	·	
2 3 4 5 Componer Plate	.4042 .3877 .4111 .3859 .3478 IT= 3 DC	1 .4056 .3917 .4139 .3912 .3554 1	2 .4066 .3951 .4162 .3959 .3624 LIQUIG	3 .4072 .3979 .4179 .3999 .3685 COMP(3	4 4076 4001 4192 4033 3736 0SITIO 4	5 .4077 .4017 .4200 .4060 .3778	6 .4078 .4027 .4204 .4076 .3804	1 . 4103 . 3917 . 3849 . 3625 . 3331 1	2 .4134 .3947 .3874 .3660 .3368 V/ 2	APOUR 3 .4162 .3970 .3890 .3688 .3395 APOUR 3	COMPOS 4 4186 3986 3899 3707 3413 COMPOS	ITION 5 .4206 .3995 .3901 .3718 .3422 ITION 5	6 .4219 .3995 .3893 .3718 .3418	MEAN . 4168 . 3968 . 3885 . 3686 . 3391 MEAN	EMV. 0.9792 0.7983 0.9875 0.6465 0.5885 EMV.		
2 3 4 5 Componen Plate 1	.4042 .3877 .4111 .3859 .3478 IT= 3 DC .2791	1 .4056 .3917 .4139 .3912 .3554 1 .2910	2 .4066 .3951 .4162 .3959 .3624 LIQUIC .2 .3022	3 .4072 .3979 .4179 .3999 .3685 COMP(.3 .3127	4 .4076 .4001 .4192 .4033 .3736 .3736 .5ITI0 4 .3222	5 .4077 .4017 .4200 .4060 .3778 S .3302	6 .4078 .4027 .4204 .4076 .3804 6 .3356	1 .4103 .3917 .3849 .3625 .3331 1 .2267	2 .4134 .3947 .3874 .3660 .3368 V 2 .2306	APOUR 3 .4162 .3970 .3890 .3688 .3395 APOUR .3 .2342	COMPOS 4 4186 3986 3899 3707 3413 COMPOS 4 2376	TION 5 .4206 .3995 .3901 .3718 .3422 ITION 5 .2404	6 .4219 .3995 .3893 .3718 .3418 .6 .2424	MEAN .4168 .3968 .3885 .3686 .3391 MEAN .2353	EMV. 0.9792 0.7983 0.9875 0.6465 0.5885 EMV. 1.3420		
2 3 4 5 COMPONEM PLATE 1 2	.4042 .3877 .4111 .3859 .3478 IT= 5 DC .2791 .2249	1 .4056 .3917 .4139 .3912 .3554 1 .2910 .2341	2 .4066 .3951 .4162 .3959 .3624 LIQUIG .3022 .2428	3 .4072 .3979 .4179 .3999 .3685 COMPC .3 .3127 .2508	4 .4076 .4001 .4192 .4033 .3736 0SITI0 4 .3222 .2580	5 .4077 .4200 .4060 .3778 5 .3302 .2640	6 .4078 .4027 .4204 .4076 .3804 6 .3356 .2680	1 .4103 .3917 .3849 .3625 .3331 1 .2267 .1749	2 .4134 .3947 .3874 .3660 .3368 V/ 2 .2306 .1766	APOUR 3 .4162 .3970 .3890 .3688 .3395 APOUR .2342 .1777	COMPOS 4 4186 3986 3899 3707 3413 COMPOS 4 2376 1783	(TION 5 .4206 .3995 .3901 .3718 .3422 (TION 5 .2404 .1784	6 .4219 .3995 .3893 .3718 .3418 .3418 .6 .2424 .1778	MEAN .4168 .3968 .3885 .3686 .3391 MEAN .2353 .1773	EMV. 0.9792 0.7983 0.9875 0.6465 0.5885 EMV. 1.3420 0.5536		
2 3 4 5 Componen Plate 1	.4042 .3877 .4111 .3859 .3478 IT= 3 .00 .2791 .2249 .1624	1 .4056 .3917 .4139 .3912 .3554 1 .2910 .2341 .1713	2 .4066 .3951 .4162 .3959 .3624 LIQUIG .3022 .2428 .1796	3 .4072 .3979 .4179 .3999 .3685 COMP(.3 .3127 .2508 .1874	4 .4076 .4001 .4192 .4033 .3736 0SITI0 .4 .3222 .2580 .1943	5 .4077 .4200 .4060 .3778 5 .3302 .2640 .2000	6 .4078 .4027 .4204 .4076 .3804 6 .3356 .2680 .2036	1 .4103 .3917 .3849 .3625 .3331 1 .2267 .1749 .1327	2 .4134 .3947 .3874 .3660 .3368 .3368 .2306 .1766 .1350	APOUR 3 4162 3970 3890 3688 3395 APOUR 2342 1777 1368	COMPOS 4 4186 3986 3899 3707 3413 COMPOS 4 2376 1783 1382	TION 5 .4206 .3995 .3901 .3718 .3422 ITION 5 .2404 .1784 .1390	6 .4219 .3995 .3893 .3718 .3418 .3418 .6 .2424 .1778 .1389	MEAN .4168 .3968 .3885 .3686 .3391 MEAN .2353 .1773 .1368	EMV. 0.9792 0.7983 0.9875 0.6465 0.5885 EMV. 1.3420 0.5536 0.4872		
2 3 4 5 COMPONEM PLATE 1 2	.4042 .3877 .4111 .3859 .3478 IT= 3 .00 .2791 .2249 .1624 .1177	1 .4056 .3917 .4139 .3912 .3554 1 .2910 .2341 .1713 .1251	2 .4066 .3951 .4162 .3959 .3624 LIQUIG .3022 .2428 .1796 .1322	3 .4072 .3979 .4179 .3999 .3685 COMP(.3 .3127 .2508 .1874 .1388	4 .4076 .4001 .4192 .4033 .3736 DSITIO 4 .3222 .2580 .1943 .1447	5 .4077 .4200 .4060 .3778 5 .3302 .2640 .2000 .1496	6 .4078 .4027 .4204 .4076 .3804 6 .3356 .2680 .2036 .1528	1 .4103 .3917 .3849 .3625 .3331 1 .2267 .1749 .1327 .1010	2 .4134 .3947 .3874 .3660 .3368 .3368 .2306 .1766 .1350 .1026	APOUR 3 4162 3970 3890 3688 3395 APOUR 2342 1777 1368 1036	COMPOS 4 4186 3986 3899 3707 3413 COMPOS 4 2376 1783 1382 1042	TION 5 .4206 .3995 .3901 .3718 .3422 ITION 5 .2404 .1784 .1390 .1043	6 .4219 .3995 .3893 .3718 .3418 .3418 .6 .2424 .1778 .1389 .1037	MEAN .4168 .3968 .3885 .3686 .3391 MEAN .2353 .1773 .1368 .1032	EMV. 0.9792 0.7983 0.9875 0.6465 0.5885 EMV. 1.3420 0.5536		

.

· . .

.•

•

а.* 1141 ж.

			•	· ·		
						and the second
				· ·	· · · · · ·	
TIME FEE	ED BOTTOMS TOP		OLDUP C.HOLDUP	and and a second se		- No.
	0_0 150.0 150		-			
				·		
COMPONENT	REL.VOL FEED COMP					
1	3.00 0.45				- a -	
n na ser se	2.00				an an an ann an Ann An Ann an Ann	na (Principalitation de la company) en la company
. 3		0.5077 0.0757				
	TEMP. PECLET NO.			1		
· · -		0.9143 100	-			-
	98.01 5.52					
	95.84 4.49		0.00 850.0			
	-	0.9006 70			•	
5 3.6982	91.33 5.54	0.7636 70	0.00 850.0	0.0		1447 s
COMPONENT= 1	LIQUID COMPOS			R COMPOSITION	MEAN	EMV.
PLATE DC	1 2 3	4 5 6	1 2 3	4 5	6	
1 .3206	3075 .2954 .2843 .	2744 .2663 .2609	.3679 .3611 .354	47 .3490 .3442	.3410 .3530	0.8730
· <u> </u>	3778 .3658 .3551 .	3420 .3302 .3332	+4377 +4332 +445	<i>,4211</i> ,4207	.4273 .4303	U.3770
3 .4313 .	4197 4090 .3995 .	3913 .3848 .3807	.4870 .4823 .478	89 .4766 .4757	4765 4795	0.5326
3 .4313 . 4 .5012 .	4197 4090 .3995 . 4885 .4767 .4661 .	3913 .3848 .3807 4568 .4492 .4444	.4870 .4823 .478 .5410 .5360 .538	89 .4766 .4757 23 .5298 .5286	.4765 .4795 .5292 .5328	0.5326 0.5313
3 .4313 . 4 .5012 . 5 .5753 .	4197 .4090 .3995 . 4885 .4767 .4661 . 5617 .5490 .5376 .	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136	.4870 .4823 .478 .5410 .5360 .538 .5975 .5924 .588	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850	.4765 .4795 .5292 .5328 .5857 .5892	0.5326 0.5313 0.5290
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2	4197 4090 3995 4885 4767 4661 5617 5490 5376 LIQUID COMPOS	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION	.4870 .4823 .474 .5410 .5360 .53 .5975 .5924 .58 VAPOU	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION	.4765 .4795 .5292 .5328 .5857 .5892 MEAN	0.5326 0.5313 0.5290
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2 PLATE DC	4197 4090 3995 4885 4767 4661 5617 5490 5376 LIQUID COMPOS 1 2 3	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6	.4870 .4823 .473 .5410 .5360 .533 .5975 .5924 .583 VAPOU 1 2 3	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION 4 5	4765 4795 5292 5328 5857 5892 MEAN 6	0.5326 0.5313 0.5290 EMV.
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2 PLATE DC 1 .4022 .	4197 .4090 .3995 . 4885 .4767 .4661 . 5617 .5490 .5376 . LIQUID COMPOS 1 2 3 4036 .4047 .4053 .	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6 4057 .4059 .4060	.4870 .4823 .473 .5410 .5360 .533 .5975 .5924 .583 VAPOU 1 2 3 .4075 .4105 .413	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION 4 4 5 33 .4157 .4177	4765 4795 5292 5328 5857 5892 MEAN 6 4190 4139	0.5326 0.5313 0.5290 EMV. 0.9803
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2 PLATE DC 1 .4022 . 2 .3857 .	4197 .4090 .3995 . 4885 .4767 .4661 . 5617 .5490 .5376 . (IQUID COMPOS 1 2 3 4036 .4047 .4053 . 3897 .3930 .3958 .	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6 4057 .4059 .4060 3981 .3997 .4007	.4870 .4823 .474 .5410 .5360 .53 .5975 .5924 .58 VAPOU 1 2 3 .4075 .4105 .41 .3889 .3918 .39	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION 4 33 .4157 .4177 41 .3957 .3966	4765 4795 5292 5328 5857 5892 MEAN 6 4190 4139 3966 3939	0.5326 0.5313 0.5290 EMV. 0.9803 0.7914
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2 PLATE DC 1 .4022 . 2 .3857 . 3 .4080 .	4197 4090 3995 4885 4767 4661 5617 5490 5376 LIQUID COMPOS 1 2 3 4036 4047 4053 3897 3930 3958 4108 4132 4150	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6 4057 .4059 .4060 3981 .3997 .4007 4163 .4172 .4176	.4870 .4823 .474 .5410 .5360 .53 .5975 .5924 .58 VAPOU 1 2 3 .4075 .4105 .41 .3889 .3918 .39 .3816 .3841 .38	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION .4 33 .4157 .4177 41 .3957 .3966 57 .3866 .3868	4765 4795 5292 5328 5857 5892 MEAN 6 4190 4139 3966 3939 3861 3851	0.5326 0.5313 0.5290 EMV. 0.9803 0.7914 0.9364
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2 PLATE DC 1 .4022 . 2 .3857 . 3 .4080 . 4 .3824 .	4197 4090 3995 4885 4767 4661 5617 5490 5376 LIQUID COMPOS 1 2 3 4036 4047 4053 3897 3930 3958 4108 4132 4150 3878 3925 3966	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6 4057 .4059 .4060 3981 .3997 .4007 4163 .4172 .4176 4001 .4027 .4044	.4870 .4823 .473 .5410 .5360 .533 .5975 .5924 .583 VAPOU 1 2 3 .4075 .4105 .413 .3889 .3918 .39 .3816 .3841 .38 .3590 .3626 .365	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION .4 4 .5 .4157 33 .4157 .4177 41 .3957 .3966 57 .3866 .3868 53 .3672 .3683	.4765 .4795 .5292 .5328 .5857 .5892 MEAN 6 .4190 .4139 .3966 .3939 .3861 .3851 .3682 .3651	0.5326 0.5313 0.5290 EMV. 0.9803 0.7914 0.9364 0.6420
3 4313 . 4 5012 . 5 5753 . COMPONENT= 2 PLATE DC 1 4022 . 2 3857 . 3 4080 . 4 3824 . 5 3442 .	4197 4090 3995 4885 4767 4661 5617 5490 5376 (IQUID COMPOS 1 2 3 4036 4047 4053 3897 3930 3958 4108 4132 4150 3878 3925 3966 3519 3588 3649	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6 4057 .4059 .4060 3981 .3997 .4007 4163 .4172 .4176 4001 .4027 .4044 3702 .3743 .3769	.4870 .4823 .473 .5410 .5360 .533 .5975 .5924 .583 VAPOU 1 2 3 .4075 .4105 .413 .3889 .3918 .399 .3816 .3841 .38 .3590 .3626 .365 .3296 .3333 .335	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION .4 4 .5 33 .4157 .4177 41 .3957 .3966 57 .3866 .3868 53 .3672 .3683 59 .3377 .3386	4765 4795 5292 5328 5857 5892 MEAN 6 4190 4139 3966 3939 3861 3851 3682 3651 3382 3356	0.5326 0.5313 0.5290 EMV. 0.9803 0.7914 0.9364 0.6420 0.5870
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2 PLATE DC 1 .4022 . 2 .3857 . 3 .4080 . 4 .3824 . 5 .3442 . COMPONENT= 3	4197 .4090 .3995 4885 .4767 .4661 5617 .5490 .5376 LIQUID COMPOS 1 2 3 4036 .4047 .4053 3897 .3930 .3958 4108 .4132 .4150 3878 .3925 .3966 3519 .3588 .3649 LIQUID COMPOS	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6 4057 .4059 .4060 3981 .3997 .4007 4163 .4172 .4176 4001 .4027 .4044 3702 .3743 .3769 ITION	.4870 .4823 .474 .5410 .5360 .537 .5975 .5924 .587 VAPOU 1 2 3 .4075 .4105 .417 .3889 .3918 .399 .3816 .3841 .387 .3590 .3626 .365 .3296 .3333 .337 VAPOU	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION .4 4 .5 33 .4157 .4177 41 .3957 .3966 57 .3866 .3868 53 .3672 .3683 59 .3377 .3386 R COMPOSITION .4177	4765 4795 5292 5328 5857 5892 MEAN 6 4190 4139 3966 3939 3861 3851 3682 3651 3382 3356 MEAN	0.5326 0.5313 0.5290 EMV. 0.9803 0.7914 0.9364 0.6420
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2 PLATE DC 1 .4022 . 2 .3857 . 3 .4080 . 4 .3824 . 5 .3442 . COMPONENT= 3 PLATE DC	4197 .4090 .3995 . 4885 .4767 .4661 . 5617 .5490 .5376 . [IQUID COMPOS 1 2 3 4036 .4047 .4053 . 3897 .3930 .3958 . 4108 .4132 .4150 . 3878 .3925 .3966 . 3519 .3588 .3649 . EIQUID COMPOS 1 2 3	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6 4057 .4059 .4060 3981 .3997 .4007 4163 .4172 .4176 4001 .4027 .4044 3702 .3743 .3769 ITION 4 5 6	.4870 .4823 .474 .5410 .5360 .53 .5975 .5924 .58 VAPOU 1 2 3 .4075 .4105 .41 .3889 .3918 .39 .3816 .3841 .38 .3590 .3626 .36 .3296 .3333 .33 VAPOU 1 2 3	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION .4 4 .5 33 .4157 .4177 41 .3957 .3966 57 .3866 .3868 53 .3672 .3683 59 .3377 .3386 R COMPOSITION .4 4 .5	4765 4795 5292 5328 5857 5892 MEAN 6 4190 4139 3966 3939 3861 3851 3682 3651 3382 3356 MEAN 6	0.5326 0.5313 0.5290 EMV. 0.9803 0.7914 0.9364 0.6420 0.5870 EMV.
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2 PLATE DC 1 .4022 . 2 .3857 . 3 .4080 . 4 .3824 . 5 .3442 . COMPONENT= 3 PLATE DC 1 .2771 .	4197 4090 3995 4885 4767 4661 5617 5490 5376 LIQUID COMPOS 1 2 3 4036 4047 4053 3897 3930 3958 4108 4132 4150 3878 3925 3966 3519 3588 3649 LIQUID COMPOS 1 2 3 2889 3000 3104	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6 4057 .4059 .4060 3981 .3997 .4007 4163 .4172 .4176 4001 .4027 .4044 3702 .3743 .3769 ITION 4 5 6 3198 .3278 .3331	.4870 .4823 .474 .5410 .5360 .537 .5975 .5924 .587 VAPOU 1 2 3 .4075 .4105 .417 .3889 .3918 .397 .3816 .3841 .387 .3590 .3626 .367 .3296 .3333 .337 VAPOU 1 2 3 .2246 .2284 .23	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION .4 4 .5 33 .4157 .4177 41 .3957 .3966 57 .3866 .3868 53 .3672 .3683 59 .3377 .3386 R COMPOSITION .4 4 .5 .2353 .2381	.4765 .4795 .5292 .5328 .5857 .5892 MEAN 6 .4190 .4139 .3966 .3939 .3861 .3851 .3682 .3651 .3382 .3356 MEAN 6 .2400 .2331	0.5326 0.5313 0.5290 EMV. 0.9803 0.7914 0.9364 0.6420 0.5870 EMV. 1.3441
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2 PLATE DC 1 .4022 . 2 .3857 . 3 .4080 . 4 .3824 . 5 .3442 . COMPONENT= 3 PLATE DC 1 .2771 . 2 .2234 .	4197 4090 3995 4885 4767 4661 5617 5490 5376 LIQUID COMPOS 1 2 3 4036 4047 4053 3897 3930 3958 4108 4132 4150 3878 3925 3966 3519 3588 3649 LIQUID COMPOS 1 2 3 2889 3000 3104 2326 2411 2491	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6 4057 .4059 .4060 3981 .3997 .4007 4163 .4172 .4176 4001 .4027 .4044 3702 .3743 .3769 ITION 4 5 6 3198 .3278 .3331 2562 .2621 .2661	.4870 .4823 .474 .5410 .5360 .537 .5975 .5924 .587 VAPOU 1 2 3 .4075 .4105 .417 .3889 .3918 .397 .3816 .3841 .38 .3590 .3626 .367 .3296 .3333 .337 VAPOU 1 2 3 .2246 .2284 .23 .1733 .1749 .177	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION .4 4 .5 .4157 .4177 41 .3957 .3966 .3868 53 .4157 .4177 41 .3957 .3966 57 .3866 .3868 53 .3672 .3683 59 .3377 .3386 R COMPOSITION .4 4 .5 .2353 .2381 60 .1766 .1767	.4765 .4795 .5292 .5328 .5857 .5892 MEAN 6 .4190 .4139 .3966 .3939 .3861 .3851 .3682 .3651 .3382 .3356 MEAN 6 .2400 .2331 .1761 .1756	0.5326 0.5313 0.5290 EMV. 0.9803 0.7914 0.9364 0.6420 0.5870 EMV. 1.3441 0.5531
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2 PLATE DC 1 .4022 . 2 .3857 . 3 .4080 . 4 .3824 . 5 .3442 . COMPONENT= 3 PLATE DC 1 .2771 . 2 .2234 . 3 .1608 .	4197 4090 3995 4885 4767 4661 5617 5490 5376 LIQUID COMPOS 1 2 3 4036 4047 4053 3897 3930 3958 4108 4132 4150 3878 3925 3966 3519 3588 3649 LIQUID COMPOS 1 2 3 2889 3000 3104 2326 2411 2491 1695 1778 1855	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6 4057 .4059 .4060 3981 .3997 .4007 4163 .4172 .4176 4001 .4027 .4044 3702 .3743 .3769 ITION 4 5 6 3198 .3278 .3331 2562 .2621 .2661 1924 .1980 .2016	.4870 .4823 .473 .5410 .5360 .533 .5975 .5924 .583 VAPOU 1 2 3 .4075 .4105 .413 .3889 .5918 .399 .3816 .3841 .38 .3590 .3626 .365 .3296 .3333 .333 VAPOU 1 2 3 .2246 .2284 .23 .1733 .1749 .17 .1314 .1336 .13	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION .4 4 .5 33 .4157 .4177 41 .3957 .3966 57 .3866 .3868 53 .3672 .3683 59 .3377 .3386 R COMPOSITION .4 4 .5 .2 20 .2353 .2381 60 .1766 .1767 54 .1367 .1375	.4765 .4795 .5292 .5328 .5857 .5892 MEAN 6 .4190 .4139 .3966 .3939 .3861 .3851 .3682 .3651 .3382 .3356 MEAN 6 .2400 .2331 .1761 .1756 .1375 .1354	0.5326 0.5313 0.5290 EMV. 0.9803 0.7914 0.9364 0.6420 0.5870 EMV. 1.3441 0.5531 0.4867
3 .4313 . 4 .5012 . 5 .5753 . COMPONENT= 2 PLATE DC 1 .4022 . 2 .3857 . 3 .4080 . 4 .3824 . 5 .3442 . COMPONENT= 3 PLATE DC 1 .2771 . 2 .2234 . 3 .1608 . 4 .1164 .	4197 4090 3995 4885 4767 4661 5617 5490 5376 LIQUID COMPOS 1 2 3 4036 4047 4053 3897 3930 3958 4108 4132 4150 3878 3925 3966 3519 3588 3649 LIQUID COMPOS 1 2 3 2889 3000 3104 2326 2411 2491	3913 .3848 .3807 4568 .4492 .4444 5274 .5191 .5136 ITION 4 5 6 4057 .4059 .4060 3981 .3997 .4007 4163 .4172 .4176 4001 .4027 .4044 3702 .3743 .3769 ITION 4 5 6 3198 .3278 .3331 2562 .2621 .2661 1924 .1980 .2016 1432 .1480 .1512	.4870 .4823 .473 .5410 .5360 .533 .5975 .5924 .583 VAPOU 1 2 3 .4075 .4105 .413 .3889 .3918 .399 .3816 .3841 .38 .3590 .3626 .365 .3296 .3333 .333 VAPOU 1 2 3 .2246 .2284 .23 .1733 .1749 .17 .1314 .1336 .13 .0999 .1015 .10	89 .4766 .4757 23 .5298 .5286 87 .5862 .5850 R COMPOSITION .4 4 .5 33 .4157 .4177 41 .3957 .3966 57 .3866 .3868 53 .3672 .3683 59 .3377 .3386 R COMPOSITION .4 4 .5 .20 20 .2353 .2381 60 .1766 .1767 54 .1367 .1375 25 .1030 .1031	4765 4795 5292 5328 5857 5892 MEAN 6 4190 4139 3966 3939 3861 3851 3682 3651 382 3356 MEAN 6 2400 2331 1761 1756 1375 1354 1025 1021	0.5326 0.5313 0.5290 EMV. 0.9803 0.7914 0.9364 0.6420 0.5870 EMV. 1.3441 0.5531 0.4867 0.4813

.

این از روید میروی بادی از میرودید. از میرودید از میروید میروید میروید میرود از این این میرود این این این این م ا

. . .

•

.

G1 2

· · · · ·

n di seri				т 						1997 - E					•	e de la composition de la composition	
		· .	an a			n de george				1990 BA							
		n The sectors		· · · ;					والمحمد بحمدتها	e			•		1 - 24	•	
									e e la Maria Transferencia Maria								
	TIM	E F	EED	BOTTOM	IS ТО	PS R	RATI	O RB.H	IOLDUP	C.HOL	DUP				•	14 m	
A Longer								7 13.									
	COMPO	NENT	REL.V	OL FE	ED COM	P. 80	ILER	COND.	ETP	¢. (۵	TP.				, 41 7		an work in the second
in the second second	n an ann an Arran an Arran an Arran an Arraigh an Arraigh an Arraigh an Arraigh an Arraigh an Arraigh an Arraig	an a sere carrier	3.00		0.45			0.5910			.431	e generale de la companya de la comp	and a state of the last				
	2		5.00		0.30			0.3342			.300						
	3		1.00		0.25			0.0748			.269						
	PLATE HO		-		ET NO.			LIQUIC			-	4					
		4561	100.5		4.95	0.	9143	100			50.00						
		6088	97.9		5.52	0.		100			50.00			·.			
	· · ·	3529	95.7 93.4					7(50.00			•			
	-		91.2					7(7(8							
	5 3. COMPONENT								10,00			COMPOSI	אמדד	`	MEAN	EMV.	
	PLATE		1					6	. 1		3		· 5	6	REAN	E Pr V +	
															.3577	0.8740	
,	2.	3942	3812	.3693	.3587	3494	.3419	3369	.4420	4374	4342	4321	.4311	4317	4347	0.5988	
÷	. 3 .	4360	.4244	.4137	.4042	.3960	.3894	.3853	.4915	4868	.4834	.4811	.4801	4809	.4840	0.5317	
	4.	5059	.4952	.4814		.4615	.4540	.4492	.5454	.5404	,5368	.5343	.5331	.5338	.5373	0.5305	
· · · ·	5.	5797	5662	.5536	.5421	.5320	.5237	,5183	.6018	5967	.5930	.5905	.5893	.5900	,5936	0.5284	
	COMPONENT			-) COMPO							COMPOSI	TION		MEAN	EMV.	
	PLATE		1	2				6		2	3	4_	5	6			
	1.	4004	4018	.4029	.4036	4041	4045	_4044	.4049	.4080	4107	.4131	.4151	_4163	.4113	0.9814	
	2.	, 5838	.5878	.5911	. 34 34	. 5902	. 3978	. 5988	. 5865	2000	.5914	.5950	, 39 39	. 3938	.3912	0.7846	
	5.	4047 2700	4070	2802	.4721	2060	3005	4149	.3184	2502	. 3022	.3835	.3857	.3830	.3820	0.8922	
	· · · · ·	3/74	3787	2552	3415	3667	3708	3775	* 2 2 2 2	2008	2225	. 2020	, 2047	.3040	+ 3017	0.5852	
a.	COMPONENT														MEAN		
	PLATE	DC		2		4				2		4	5	6	- ri g r if	EMA *	
 							•								.2310	1.3460	
	2	.2220	.2310	,2395	.2474	2544	.2603	.2643	.1717	.1734	.1744	.1750	.1751	1745	.1740	0.5527	
	3	1591	.1678	.1760	.1837	.1905	.1961	.1997	.1300	.1323	.1341	,1354	.1362	1361	.1340	0,4863	
	· 4	1151	1224	.1294	.1359	.1417	.1465	.1496	.0989	1004	.1014	.1019	,1020	1014	.1010	0.4810	
	5	0795	.0854	.0911	.0964	.1013	.1054	,1082	.0720	.0735	.0745	.0752	.0755	.0752	.0743	0.4770	

G13

											1				L	
									 **							
									' n							
						- ~		.	. .							
	TIME F	EED	BOTTOM	s to)PS R	RATIO	D RB_H	OLDUP	C.HOL	LDUP						
	194.346 3															
	COMPONENT	REL.V		ED COM			COND.		·. (
	1	3,00		0.45			0,6008			9.520	. •	an Aline a serve	ta in a suite se	هده دريو در	1997 - 29 4 - 2000 - 2000 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 2000 - 2000	1994 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 - 1995 -
	2	2.00		0.30	-		0.3263			9.423						
	3	1.00		0.25	-		0,0730			1,058						
_	E HOLDUP	TEMP.		ET NO.				0.00			d					
1 2	3,4561 3,6088	100.2	7	4.95	0.	,9143 7690	100			850,00 850,00						
23	3.3529	95.4		4.49	1.	0574	70			850.00						
4	3.5219	93.1		5.00	0.	9006	70			850.00						
5	3,6982			5,54	0.		70			850.00						
-	• -	-	LIQUID		SITIO	વ			V	APOUR	COMPOS			MEAN	EMV.	
PL	ATE DC		2	-			6						6			
															0.8777	
															0.5973	
															0.5295	
	4 ,5189	.5064	. 49 49	4844	.4753	.4680	.4633	.5549	.5500	.5464	.5441	.5430	.5436	.5470	0.5284	,
								.6105					.5989		0.5266	ł
-	ONENT= 2 ATE DC		LIQUID				6	4			COMPOS: 4		6	MEAN	EMV.	an a
-													-	4050	0.9833	
	2 .3773	3812	3845	. 3873	3895	- 3912	.3921	.3801	. 3830	.3851	. 3866	.3875	3875	.3850	0.7748	
															0.8194	
															0.6279	
	5 3323	3398	.3464	.3523	.3574	.3614	.3640	.3193	.3228	.3254	.3271	.3280			0.5812	
COMP	ONENT= 3		LIQUID	COMP	OSITIO	N	6		V.	APOUR	COMPOS	ITION		MEAN	EMV	
ΡL	ATE DC	1	2	3	4	5	6	1	2	3	4	. 5	6			
															1.3475	
															0.5518	
															0.4854	
	الاست الم			7 7 7 7 1	1 5 7 7	. 1424	.1405	.0767	10495	.0991	. 0976	.0997	.0772	.0987	0.4002	
	4 .1119															
															0.4764	

G14

на страна н На страна н

		•.	· .			3 *	•	and the second				• •.				
T	IME F	EED	BOTTOM	IS TO)PS F	RATIC) RB_H	OLDUP	C.HOL	DUP						
267.	.287 3	00.0	150.0	15	50.0	4.667	7 13.	9660	2.74	25						
COM	PONENT	REL.V	IOL FE	ED COM	1P. BC	ILER	COND.	ETP		TP.						
•	1	3.00)	0.45	0_1	744 (.6105	109,71	0 90	807				***		
	2	2.00		0.30	0.3	5378 (3184	39,13	6 48	3,382			(· · · · · · · · · · · · · · · · · · ·			
	3	1.00		0.25	0.4	877 (0.0711	1.15	4 10	1.811						
PLATE		TEMP		ET NO.				> FLOW		-	1					
	3,4561	99.9			0.	-		00.00		350.00						
	3.6088				0,			10.00		350.00						
	3.3529		3				70			350.00						
	3.5219		0		0.			0.00		350.00						
-	3.6982	-				,7636	7(00.00		350.00						
COMPONE	NT= 1		LIQUIC	COMP(DSITIO	4		_	V A	POUR I	COMPOSI	TION		MEAN	EMV.	
• PLATE			2									5	6			
1	.3473	3346	.3229	.3122	.3027	2948	.2895	.3956	3892	3833	.3780	.3735	.3705	.3817	0,8810	
2															0.5952	
3															0,5273	
4	.5304	.5181	.5067	.4964	.4874	.4802	.4755	.5653	. 5605	.5571	.5548	,5538	.5544	.5576	0.5265	
5							.5420	.6197					.6086		0.5251	
CUMPONE			LIGUIC				,				COMPOS			MEAN	EMV.	
PLATE		1	2	-	4	-	6	1		3		~	6			
1															0,9859	
2															0.7617	
5	.3304	. 2090	.3763	. 3944	2701	10412	- 3710	.3032	. 2021	- 20/3	. 3003	.3686	. 3680	. 3669	0.7662	
· •	, 30 40		.3797	, 3740	- 2103	- 2010 7530	, 3021	.3403	.3430	.3403	. 3401	.3490	. 3489	. 5401	0.6191	
							. 5534	.3117							0.5778	
COMPONE					051710		4	•				ITION		MEAN	EMV.	
PLATE								. 1.					6	2201	4 7503	
1															1.3502	
2.	4640	1601	.1670	17/7	12421	1842	1807	1242	1242	1201	1207	12/10	1700		-	
3															0.4845	
4 5																
, c	.07.24	• VOIU	.0004	<u>-</u> V714	.0700	• 0 7 7 7	+1020	.0000		+ V f I V	-0110	• 07 19	.0717	.0708	0,4759	

. **. . . .**

دمهر ۱۹۹۱ کنیو (

. .

.

د م میراند. میراند و میراند و میراند و میراند و میراند.

				Ŷ	· ·
	یه در اس از سر ۲۰۰۰ در ۲۰۰۰ ا	en e	ير مرسور کې ور دو د د د د د د	الايد مرد الديمة المرد المرد من يكونه مرد مر الانتخاب المرد المرد من يكونه مرد مرد مرد مرد	an an Arran an Arran ann an Arran an Arrainn an Arrainn an Arrainn an Arrainn an Arrainn an Arrainn an Arrainn Arrainn an Arrainn an A
		····	±147 .	-	n an an Arrange an Arr
		- *	24 3 4-	· ·	
		in in the second se	-	A	
TIME F	FEED BOTTOMS TOPS R.RA	TIO RB.HOLDUP	C.HOLDUP		
356.820 3	300.0 150.0 150.0 4.0	667 13.9660	2.7425		and the second
COMPONENT	REL.VOL FEED COMP. BOILE		. Стр.		
1		0.6221 108.10			and the second
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2.00 0.3367			and a sea an anna ann an tarth ann an tarth ann an tarth ann an tarth. Ann an tarth ann an tarth ann an tarth ann an tarth ann an tarth an tarth ann an tarth an tarth ann an tarth an	an an an tha anna 2019 ann an 1999 an
3		0.0689 2.42		1	
PLATE HOLDUP	TEMP. PECLET NO. BACKFLO				
1 3.4561	99.60 4.95 0.914		850.00	;	
2 3.6 088 3 3.35 29	97.10 5.52 0.769 94.76 4.49 1.057		850.00 850.00		
3 3 3 5 2 9 4 3 5 2 1 9		4 700.00 6 700.00	850.00		
5 3.6982	90.47 5.54 0.763	6 700.00	850.00		12 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18
COMPONENT= 1	LIQUID COMPOSITION		VAPOUR COMPUSI	TTON M	EAN EMV.
PLATE DC		6 1	2 3 4	5 6	
	.3460 .3344 .3239 .3144 .30			.3880 .3851 .3	959 0,8841
	4115 4004 3905 3819 .37				
	4648 4543 4448 4366 43				
	5311 .5199 .5097 .5008 .49				
	.5994 .5878 .5771 .5677 .55				236 0.5232
COMPONENT= 2	LIQUID COMPOSITION		VAPOUR COMPOSI		EAN EMV.
PLATE DC	1 2 3 4 5			5 6	
	.3841 .3855 .3865 .3873 .38				
	.3697 .3729 .3757 .3779 .37				
	.3806 .3834 .3858 .3876 .38 .3563 .3611 .3653 .3689 .37				
	.3220 .3285 .3343 .3392 .34				
COMPONENT= 3	LIQUID COMPOSITION		VAPOUR COMPOSI		EAN EMV.
PLATE DC		6 1	2 3 4	5 6	
	2699 2801 2896 2983 30		2102 2134 2163	2188 2205 2	144 1.3541
	.2189 .2266 .2338 .2402 .24				
3 1465	1546 .1623 .1694 .1758 .18	11 .1845 .1206	.1227 .1243 .1255	.1262 .1262 .1	242 0.4834
	.1125 .1190 .1250 .1303 .13				
5 .0731	.0785 .0837 .0886 .0931 .09	69 .0995 .0665	.0678 .0688 .0694	.0697 .0694 .0	686 0.4752
			•		· · ·
	•		· • · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
					Gl
					თ

COMPO 1 2 3 4TE HO	74 300 VENT RI	.0 1 EL.VOL 3.00 2.00	L FEE	15 D COM	0.0		RB.H	ΟΙ ΠΗΡ	с цоз			·				
460.44 COMPO 1 2 3 ATE HO	74 300 VENT RI	.0 1 EL.VOL 3.00 2.00	150.0 L FEE	15 D COM	0.0			01 D11P	они Саран Саран Саран Саран							
460.44 COMPO 1 2 3 ATE HO	74 300 VENT RI	.0 1 EL.VOL 3.00 2.00	150.0 L FEE	15 D COM	0.0			01 D11P	ани Саран С. Ц. С. 1 С. Ц. С. 1				un.			
460.44 COMPO 1 2 3 ATE HO	74 300 VENT RI	.0 1 EL.VOL 3.00 2.00	150.0 L FEE	15 D COM	0.0				анан С Ц () () С Ц () ()		1					
460.44 COMPO 1 2 3 ATE HO	74 300 VENT RI	.0 1 EL.VOL 3.00 2.00	150.0 L FEE	15 D COM	0.0						ni jina Nationalia Nationalia					1999 - 19
460.44 COMPO 1 2 3 ATE HO	74 300 VENT RI	.0 1 EL.VOL 3.00 2.00	150.0 L FEE	15 D COM	0.0				C 1101			A second second				
460.44 COMPO 1 2 3 ATE HO	74 300 VENT RI	.0 1 EL.VOL 3.00 2.00	150.0 L FEE	15 D COM	0.0					DUD	·	1.55			· • • • •	•
COMPO 1 2 3 4TE HO	NENT R em contra da com	EL.VOI 3.00 2.00	L FEE	D COM		4_00/						100 A			rr, è	
1 2 3 ATE HO	ی معادی کی را دیکی تعلیم	3.00 2.00	n the average of the 🕻		U DII					TP.			·	· ·		
2 3 ATE HO		2.00						ETP	-	+			1	, m. 1997		
. 3 ATE HO			~ ~							.642	the second second	l negetti osotu zan Vate i I	1979-1980 00-2000-00-00-00 	server and the second	an g e s tang ing .	44 A.
		4 00					.2997			168				•		
		1,00		.25			.0667 LIQUID			•			÷	•		
				ET NO.			100			50.00		•				
-			. 4		0.		100	-		50.00					,	
-	-	-								-						
	-									-						
-		_					70									
				• -						-	OMDOCT	TION			EMV	
						5	κ.	4	2 10				6	FIG A II	PERCENT	
PLAIE	1)6 7487 7	1	2 21.1.7	כ זיז ז		7165	2114	4204	4144				3967	4073	0 8857	7
1.	2002 2	220 . 206 .	1007	3000	1016	3844	3798	4851	4812	4784	4766	4758	4764	4789	0 5901	1 ·
6 . 1	4364 ₀₄ 4 1963 1	777	4071 .	1576		4425	4383	5370	5325	5292	5270	5258	5263	5297	0.5226	5
	4072 .4	1.70	5337	5225	5137	5065	5018	5890	5845.	5814	5792	5783	5790	5819	0.5219	2
	4738 K	41/	5000	5894	5801	5724	5674	6421	6376	6343	6321	6310	6316	.6348	0.521	5
-	= 2	• • • •	TOUTD		SITION	1	•		V A	POUR (COMPOSI	TION				
		1	2	3	4	5	6	1					6			- 1979 - 1979 - 1979
1	3775 3	795	3811	. 3823	3833	.3839	.3843						.3884	.3837	0.9931	1
2	3606 3	645	3678	.3706	.3729	.3746	.3756	.3588	3614	.3633	.3646	.3653	.3652	.3631	0.7269	9 -
3	3685 3	721	3752	.3778	3798	.3813	3822	.3457	3482	.3499	.3510	.3514	3509	.3495	0.6778	8
4	3415 3	470	3519	.3562	3598	.3627	3644	.3223	3254	.3277	.3294	.3302	3301	.3275	0.598	0
5	3054 .3	126	3190	.3248	.3297	.3337	.3362	.2934	.2966	.2990	.3007	.3014	.3011	.2987	0.568/	4
-									V A	APOUR (COMPOSI	ITION		MEAN	EMV.	
PLATE	DC	1	2	3	- 4 1	5									1999 - 1997 - 19	
1	2542 .2	647	2746	.2839	.2924	.2996	.3043	.2018	.2050	,2081	,2109	,2133	,2149	.2090	1.359/	4
2	2070 2	2150	2225	.2295	,2357	.2410	.2445	,1561	.1575	.1583	.1588	.1589	.1584	.1580	0.5484	4 -
3	1423 1	502	1578	.1648	,1711	.1762	.1796	,1173	,1193	.1208	.1220	.1227	.1227	.1208	0.482	3
4	1025 1	091	1154	.1213	1265	.1309	,1337	.0888	.0901	.0909	.0914	.0915	0910	.0906	0.4776	6
5	0708 0	1761	n811	.0859	.0902	0030	1406	0665	0457	^***	0672	A 4 7 €	01 77	N K K S	A 171	
	3 3. 4 3. 5 3. 4 90NENT 9LATE 1 2 3 4 5 MPONENT PLATE 1 2 3 4 5 MPONENT PLATE 1 2 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	3 3.3529 4 3.5219 5 3.6982 4 1 9 3.4324 4 3.4324 3 4892 4 5560 5 6238 MPONENT= 2 9 1 3 4892 4 5560 5 6238 MPONENT= 2 9 1 3 3645 3 3645 3 3645 4 3415 5 3054 4 3645 4 3415 5 3054 4 3415 5 3054 4 3423 1 2542 2 2070 3 1423 4 1025	3 3.3529 94.40 4 3.5219 92.22 5 3.6982 90.16 4 1 3683 3558 2 4324 4206 1 1 3683 3558 2 2 4324 4206 3 3 4892 4777 4 4 5560 5439 5 5 6238 6114 4 MPONENT= 2 1 1 1 3775 3795 2 2 3645 3721 4 4 3415 3470 5 5 3054 3126 1 MPONENT= 5 1 1 4 3415 3470 1 5 3054 3126 1 MPONENT= 5 1 1 1 2542 2647 2 2 2070 2150 3 3 1423 1502 4 4	3 3.3529 94.40 4 3.5219 92.22 5 3.6982 90.16 4 982 90.16 4 1 1000000000000000000000000000000000000	3 3.3529 94.40 4.49 4 3.5219 92.22 5.00 5 3.6982 90.16 5.54 4PONENT= 1 LIQUID COMPO PLATE DC 1 2 3 1 .3683 .3558 .3443 .3338 2 .4324 .4206 .4097 .3999 3 .4892 .4777 .4670 .4574 4 .5560 .5439 .5327 .5225 5 .6238 .6114 .5999 .5894 MPONENT= 2 LIQUID COMPO PLATE DC 1 2 3 1 .3775 .3795 .3811 .3823 2 .3606 .3645 .3678 .3706 3 .3685 .3721 .3752 .3778 4 .3415 .3470 .3519 .3562 5 .3054 .3126 .3190 .3248 MPONENT= 5 LIQUID COMPO	3 3.3529 94.40 4.49 1. 4 3.5219 92.22 5.00 0. 5 3.6982 90.16 5.54 0. 4 3.6982 90.16 5.54 0. 4 3.6982 90.16 5.54 0. 4 3.6982 90.16 5.54 0. 4 5683 3558 .3443 .3338 .3243 2 .4324 .4206 .4097 .3999 .3914 3 .4892 .4777 .4670 .4574 .4491 4 .5560 .5439 .5327 .5225 .5137 5 .6238 .6114 .5999 .5894 .5801 MPONENT= 2 LIQUID COMPOSITION PLATE DC 1 2 3 4 1 .3775 .3795 .3811 .3823 .3833 2 .3606 .3645 .3678 .3706 .3729 3 .3685 .3721 .3752 .3778 .3798	3 3.3529 94.40 4.49 1.0574 4 3.5219 92.22 5.00 0.9006 5 3.6982 90.16 5.54 0.7636 4PONENT= 1 LIQUID COMPOSITION PLATE DC 1 2 3 4 5 1 .3683 .3558 .3443 .3338 .3243 .3165 2 .4324 .4206 .4097 .3999 .3914 .3844 3 .4892 .4777 .4670 .4574 .4491 .4425 4 .5560 .5439 .5327 .5225 .5137 .5065 5 .6238 .6114 .5999 .5894 .5801 .5724 MPONENT= 2 LIQUID COMPOSITION PLATE DC 1 2 3 4 5 3 .6645 .3678 .3706 .3729 .3746 3 .3645 .3721 .3752 .3778 .3798 .3813 4 .3415 .3470 .3519 .3562	3 3.529 94.40 4.49 1.0574 70 4 3.5219 92.22 5.00 0.9006 70 5 3.6982 90.16 5.54 0.7636 70 4PONENT=1 LIQUID COMPOSITION PLATE 0.7636 70 9LATE DC 1 2 3 4 5 1 3683 3558 3443 3338 3243 3165 3114 2 .4324 .4206 .4097 .3999 .3914 .3844 .3798 3 .4892 .4777 .4670 .4574 .4491 .4425 .4383 4 .5560 .5439 .5327 .5225 .5137 .5065 .5018 5 .6238 .6114 .5999 .5894 .5801 .5724 .5674 MPONENT=2 LIQUID COMPOSITION	3 3.3529 94.40 4.49 1.0574 700.00 4 3.5219 92.22 5.00 0.9006 700.00 5 3.6982 90.16 5.54 0.7636 700.00 4 3.6982 90.16 5.54 0.7636 700.00 4 3.6982 90.16 5.54 0.7636 700.00 4 3.6982 90.16 5.54 0.7636 700.00 4 3.683 3558 3443 3338 3243 3165 3114 4204 2 4324 4206 4097 3999 3914 3844 3798 4851 3 4892 4777 4670 4574 4491 4425 4383 5370 4 560 5439 5327 5225 5137 5065 5018 5890 5 6238 6114 5999 5894 5801 5724 5674 6421 MPONENT= 2 LIQUID COMPOSITION 1 2 3 6 1 3 3 <t< td=""><td>3 3.3529 94.40 4.49 1.0574 700.00 8 3 3.5219 92.22 5.00 0.9006 700.00 8 5 3.6982 90.16 5.54 0.7636 700.00 8 4 0.7636 700.00 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>3 3.3529 94.40 4.49 1.0574 700.00 850.00 4 3.5219 92.22 5.00 0.9006 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 4 5.54 0.7636 700.00 850.00 850.00 4 5 6 1 2 3 4 5 6 1 2 3 1 3683 3558 3443 3338 3243 3165 3114 4204 4144 4089 2 4324 4206 4097 3999 3914 3844 3798 4851 48412 4784 3 4892 4777 4670 4574 4491 4425 4383 5370 5325 5292 4 5560 5439 5327 5225 5137 5065 5018 5890 5845 5814 5 6238 6114 5999 5894 5801 5724 5674 6421 6376 6333</td><td>3 3.3529 94.40 4.49 1.0574 700.00 850.00 3 5219 92.22 5.00 0.9006 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 PUNENT=1 LIQUID COMPOSITION VAPOUR COMPOSI PLATE DC 1 2 3 4 5 6 1 2 3 4 1 .3683 .3558 .3443 .3338 .3243 .3165 .3114 .4204 .4144 .4089 .4038 2 .4324 .4206 .4097 .3999 .3914 .3844 .3798 .4851 .4812 .4784 .4766 3 .4892 .4777 .4670 .4574 .4491 .4425 .4383 .5370 .5325 .5292 .5270 4 .5660 .5439 .5327 .5225 .5137 .5065 .5018 .5890 .5845 .5814 .5792 5 .6238 .6114 .5999 .5894 .5801 <</td><td>3 3.3529 94.40 4.49 1.0574 700.00 850.00 3 3.5219 92.22 5.00 0.9006 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 PONENT= 1 LIQUID COMPOSITION VAPOUR COMPOSITION VAPOUR COMPOSITION PLATE DC 1 2 3 4 5 1 3683 3558 3443 3338 3243 3165 3114 4204 4144 4089 4038 3995 2 4324 4206 4097 3999 3914 3844 3798 4851 4812 4784 4766 4758 3 4892 4777 4670 4574 4425 4383 5370 5325 5292 5270 5258 4 5560 5439 5327 5225 5137 5065 5018 5890 5845 5814 5792 5783 5 .6238 .6114 5999 .5894 .5801 .5724 .5674</td><td>3 3.3529 94.40 4.49 1.0574 700.00 850.00 4 3.5219 92.22 5.00 0.9006 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 4PONENT=1 LIQUID COMPOSITION VAPOUR COMPOSITION VAPOUR COMPOSITION 9LATE DC 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 5 1 3 3995 .3967 2 .4324 .4206 .4097 .3999 .3914 .3844 .3798 .4851 .4812 .4784 .4766 .4758 .766 .5263 .5270</td><td>3 3.3529 94.40 4.49 1.0574 700.00 850.00 4 3.5219 92.22 5.00 0.9006 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 PLATE DC 1 2 3 4 5 6 1 2 3 6 1 .3683 .3558 .3443 .3338 .2243 .3165 .3114 .4204 .4144 .4089 .4038 .3995 .3967 .4073 2 .4324 .4206 .4097 .3999 .3914 .3844 .3798 .4851 .4812 .4784 .4766 .4758 .4774 .4779 .4670 .4574 .4491 .4425 .4383 .5370 .5325 .5292 .5783 .5790 .5819 5 .6238 .6114 .5999 .5894 .5801 .5724 .6421 .6376 .6343 .6321 .6310<td>3 3,3529 94.40 4.49 1.0574 700.00 850.00 4 3,5219 92.22 5.00 0.9006 700.00 850.00 5 3,6982 90.16 5.54 0.7636 700.00 850.00 5 3,6982 90.16 5.54 0.7636 700.00 850.00 PLATE DC 1 2 3 4 5 6 1 .3683 .3558 .3443 .338 .3243 .3165 .3114 .4204 .4144 .4089 .4038 .3995 .3967 .4073 0.8857 2 .4324 .4206 .4097 .3999 .3914 .3844 .3798 .4851 .4811 .4764 .4764 .4769 .5970 3 .4892 .4777 .4670 .4574 .4491 .4425 .4881 .4784 .4764 .4789 .5970 .5814 .5792 .5783 .5790 .5819 .5215 5 .6238 .6114 .5999 .5844 .5874 .6421 <td< td=""></td<></td></td></t<>	3 3.3529 94.40 4.49 1.0574 700.00 8 3 3.5219 92.22 5.00 0.9006 700.00 8 5 3.6982 90.16 5.54 0.7636 700.00 8 4 0.7636 700.00 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3 3.3529 94.40 4.49 1.0574 700.00 850.00 4 3.5219 92.22 5.00 0.9006 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 4 5.54 0.7636 700.00 850.00 850.00 4 5 6 1 2 3 4 5 6 1 2 3 1 3683 3558 3443 3338 3243 3165 3114 4204 4144 4089 2 4324 4206 4097 3999 3914 3844 3798 4851 48412 4784 3 4892 4777 4670 4574 4491 4425 4383 5370 5325 5292 4 5560 5439 5327 5225 5137 5065 5018 5890 5845 5814 5 6238 6114 5999 5894 5801 5724 5674 6421 6376 6333	3 3.3529 94.40 4.49 1.0574 700.00 850.00 3 5219 92.22 5.00 0.9006 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 PUNENT=1 LIQUID COMPOSITION VAPOUR COMPOSI PLATE DC 1 2 3 4 5 6 1 2 3 4 1 .3683 .3558 .3443 .3338 .3243 .3165 .3114 .4204 .4144 .4089 .4038 2 .4324 .4206 .4097 .3999 .3914 .3844 .3798 .4851 .4812 .4784 .4766 3 .4892 .4777 .4670 .4574 .4491 .4425 .4383 .5370 .5325 .5292 .5270 4 .5660 .5439 .5327 .5225 .5137 .5065 .5018 .5890 .5845 .5814 .5792 5 .6238 .6114 .5999 .5894 .5801 <	3 3.3529 94.40 4.49 1.0574 700.00 850.00 3 3.5219 92.22 5.00 0.9006 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 PONENT= 1 LIQUID COMPOSITION VAPOUR COMPOSITION VAPOUR COMPOSITION PLATE DC 1 2 3 4 5 1 3683 3558 3443 3338 3243 3165 3114 4204 4144 4089 4038 3995 2 4324 4206 4097 3999 3914 3844 3798 4851 4812 4784 4766 4758 3 4892 4777 4670 4574 4425 4383 5370 5325 5292 5270 5258 4 5560 5439 5327 5225 5137 5065 5018 5890 5845 5814 5792 5783 5 .6238 .6114 5999 .5894 .5801 .5724 .5674	3 3.3529 94.40 4.49 1.0574 700.00 850.00 4 3.5219 92.22 5.00 0.9006 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 4PONENT=1 LIQUID COMPOSITION VAPOUR COMPOSITION VAPOUR COMPOSITION 9LATE DC 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 5 1 3 3995 .3967 2 .4324 .4206 .4097 .3999 .3914 .3844 .3798 .4851 .4812 .4784 .4766 .4758 .766 .5263 .5270	3 3.3529 94.40 4.49 1.0574 700.00 850.00 4 3.5219 92.22 5.00 0.9006 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 5 3.6982 90.16 5.54 0.7636 700.00 850.00 PLATE DC 1 2 3 4 5 6 1 2 3 6 1 .3683 .3558 .3443 .3338 .2243 .3165 .3114 .4204 .4144 .4089 .4038 .3995 .3967 .4073 2 .4324 .4206 .4097 .3999 .3914 .3844 .3798 .4851 .4812 .4784 .4766 .4758 .4774 .4779 .4670 .4574 .4491 .4425 .4383 .5370 .5325 .5292 .5783 .5790 .5819 5 .6238 .6114 .5999 .5894 .5801 .5724 .6421 .6376 .6343 .6321 .6310 <td>3 3,3529 94.40 4.49 1.0574 700.00 850.00 4 3,5219 92.22 5.00 0.9006 700.00 850.00 5 3,6982 90.16 5.54 0.7636 700.00 850.00 5 3,6982 90.16 5.54 0.7636 700.00 850.00 PLATE DC 1 2 3 4 5 6 1 .3683 .3558 .3443 .338 .3243 .3165 .3114 .4204 .4144 .4089 .4038 .3995 .3967 .4073 0.8857 2 .4324 .4206 .4097 .3999 .3914 .3844 .3798 .4851 .4811 .4764 .4764 .4769 .5970 3 .4892 .4777 .4670 .4574 .4491 .4425 .4881 .4784 .4764 .4789 .5970 .5814 .5792 .5783 .5790 .5819 .5215 5 .6238 .6114 .5999 .5844 .5874 .6421 <td< td=""></td<></td>	3 3,3529 94.40 4.49 1.0574 700.00 850.00 4 3,5219 92.22 5.00 0.9006 700.00 850.00 5 3,6982 90.16 5.54 0.7636 700.00 850.00 5 3,6982 90.16 5.54 0.7636 700.00 850.00 PLATE DC 1 2 3 4 5 6 1 .3683 .3558 .3443 .338 .3243 .3165 .3114 .4204 .4144 .4089 .4038 .3995 .3967 .4073 0.8857 2 .4324 .4206 .4097 .3999 .3914 .3844 .3798 .4851 .4811 .4764 .4764 .4769 .5970 3 .4892 .4777 .4670 .4574 .4491 .4425 .4881 .4784 .4764 .4789 .5970 .5814 .5792 .5783 .5790 .5819 .5215 5 .6238 .6114 .5999 .5844 .5874 .6421 <td< td=""></td<>

· · · · · · · · ·

G17

المراجع الأني المتعجر مماد

a series and a series of the s

inter.

		1997) 1997 - 1997 - 1997	·										• •	an a	· . ·	·
								·		• • • •	···· • •• • • ••·	n ann ann ann ann	an ni histori shishi karanta	ana na na manana na manana Na manana na mana na	•	
	· · ·	ga Alina		·								· · · ·	1. 1.	2		
									1.18 9 -			• •		алан алан Алан алан		
		and the second	et de la composition de la com	e generalise Alfrederigen	and the second			·······			·	•	·	e a ser de la		•
TI	ME F	EED	BOTTOM	S TO	PS R	.RATIO	RB_H	OLDUP	C.HOL	DUP	· · ·			•		
574.	053 3	00.0	150.0	15	0.0	4.667	13.	9660	2.74	25				1. 11. 11. 11. 11. 11. 11. 11. 11. 11.		
COMP	ONENT		OL FE	ED COM				ETP		CTP.					÷	•
1		3.00		0.45				105.78		5,871						
2		Z.00						39.63		280	an antoning tarahangan	antigen offenting a contra sealar A	electron (film) y la mentacione	an a	Rada (Fridana - Naja	a ga ann an a
3	,	1.00						4.58		7.848						
PLATE H								FLOW			4					
	.4561			4,95		9143		00.00		350.00						
	.6088		5				100			350.00				. •	•	
		94.0					70			350.00						
	-	91.9					70			350.00						
	.6982			5.54			7(350.00					F 6434	
COMPONEN						· .	6		2 1/		COMPOSI	_		MEAN	EMV.	
	DC 7747		2		4						4	5.	0	1479	0.8875	
1															0.5883	
															0.5209	
															0.5200	
. 4															0.5196	
COMPONEN	-		LIQUID					+ 4 2 6 3			COMPOSI				EMV.	
PLATE	<u>ה, ב</u> הכ		2					1	2		4 4	-5	6	1.6.4.0		1. 1. 1. 1.
1		•	_	-							•	•	-	. 3783	0.9963	121
2															0.7140	
3															0.6527	
4															0.5893	
5															0.5638	
COMPONEN	NT= 3	-	LIQUIC	COMP(SITIO	1			V.	APOUR	COMPOS	ITION		MEAN	EMV.	
PLATE	DC	1	2	3.	. 4	. 5	6	1	2	3	4	5	6			
1															1.3637	
2															0,5474	
															0.4813	
- 4 -															0.4767	
5	_0687	.0738	.0787	.0833	.0876	.0912	.0937	.0625	.0638	.0646	.0652	.0655	,0653	.0645	0.4737	
								$X_{ij} = \frac{1}{2}$								
				•							1				• .	
							•		•							Gl
									• • •							81
		•										$V_{ij} = -i \epsilon_{ij}$				~

							· · ·			· · ·	_	-	•			· · · · ·	
		· · ·			-	e esta est	· · ·	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	a e e	e a se s	s de la seconda	دهيرة مصارك الرواب	••••••	ويتصفي أجاريك	· . •	المتحادين المشر	
																· ·	
										· ••••••							
								•					•				
	ter ser en en					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		 • 1 - 1 - 1 	n in the second s	1. j. 1.			· .				
	T 1	IME F	EED	BOTTOM	IS TO)PS f	RATI	0 RB_H	IOLDUP	C.HO	LDUP	5 A A		· .	· · · ·		
		.234 3		-			4,66	7 13.	.9660	2.74	425		•				
	COMI	PONENT	REL.V	/OL FE	ED COM	1P. B(ILER	COND.	ETF	· . (СТР.						
		1	3.00)	0.45	0.2	2060	0,6534	104,97	'0 9 7	7,323				$(1+\frac{1}{2})_{1} = 0$		
*· · ·		2	2.00)	0.30	0.3	5347	0.2837	39.63	2 4:	3.108	n yn seini er er ei ar ac raf	and the second second	n rith England Amerikan	s Baund ago, nath, in 1944.1	energen e la casa	····
		3	1.00)	0.25	0.4	4594	0.0629	5.39	9 9	9.569					1. A.	
	PLATE I	HOLDUP	TEMP,	. PECL	ET'NO,	BACH	(FLOW	LIQUIC	> FLOW	VAPOI	UR FLO	w					
	1	3.4561	98.7		4.95		9143	100	00.00	ł	850.00						
		3.6088	96.3		5.52		,7690	100	00.00	1	850.00						
-		3,3529	93.8		4.49	1.	,0574	7(00.00	ł	850.00						1. S
		3.5219	91 _ 0		5.00	0,	9006	7(00.00	Į	850.00						
	5	3.6982	89.0	52	5,54	. 0.	,7636	7(00.00	1	850.00						
	COMPONE	NT= 1		FIGNIC	COMP(DSITIO	1		1	V	APOUR	COMPOSE	ITION		MEAN	EMV.	
	PLATE			2		4	-		1	2		4	5	6			÷
	1	.3847	.3724	.3610	.3505	.3411	.3333	.3282	.4380	.4322	,4268	,4219	.4177	.4150	.4253	0.8885	r F
	2	.4476	.4360	4254	.4158	.4074	.4006	.3961	.5017	.4980	.4954	.4937	.4929	4935	.4959	0.5868	i
	3	- 5112	.4995	.4887	.4790	.4705	.4637	.4594	.5556	5512	.5479	.5455	.5443	5447	.5482	0.5197	,
	4	:577 8	.5657	.5546	.5445	,5356	.5284	.5238	.6079	.6036	.6005	.5985	.5977	.5984	.6011	0.5186	
	5	.6440	.6320	.6207	.6105	.6013	.5938	5889	.6608	.6564	.6533	.6511	.6501	.6506	,6537	0,5182	
	COMPONE	NT = 2	•	FIONI C	D COMPI	0211101	N			V.	APOUR	COMPOS	ITION			EMV.	
	PLATE		1	2	3				1		3	4	5	6			
	1	.3697	.3720	. 37 39	.3754	.3767	.3776	.3781	.3686	.3714	.3740	.3763	.3782	.3794	.3747	0.9990	
	2	.3519	.3558	.3593	.3622	.3646	.3664	.3676	.3488	.3512	.3531	.3543	.3550	.3548	.3529	0,7032	
	3	. 3538	.3579	.3614	.3644	.3668	.3686	.3697	.3326	.3352	.3370	.3383	.3388	.3384	.3367	0.6360)
	4	.3253	.3311	.3362	.3407	.3446	.3476	.3495	.3079	_3109	.3132	.3148	.3156	.3154	.3130	0.5827	,
	5	- 2895	.2963	,3028	.3085	.3135	.3175	.3201	.2783					.2858	,2835	0.5601	
	COMPONE			LIQUIC		051710I						COMPOS	ITION		MEAN	EMV.	
	PLATE		1	2	. 3	4	.5	6	1 ′↓	2	3	4	. 5 .	6.		1. A.S. 1.	
	1	.2456	.2556	.2651	.2741	.2822	.2891	.2937	.1933	.1963	.1992	,2018	.2041	.2056	.2001	1.3681	
	2	.2006	2082	.2154	.2220	.2580	.2330	.2363	.1495	.1508	.1516	.1520	.1521	.1516	.1513	0.5465	1
	3	.1349	,1426	,1499	1566	.1627	.1677	.1709	.1117	.1136	.1151	,1162	.1169	.1169	.1151	0.4804	•
	4	.0968	.1032	.1092	.1148	.1198	.1240	.1267	.0842	.0855	.0862	.0867	.0867	.0862	.0859	0.4759	•
	5	.0667	.0717	.0765	.0810	.0852	.0887	.0911	.0609	.0621	.0630	.0636	.0638	.0636	.0628	0.4730	ł

G19

and the second second second

an An an					a a server d'ana	and the second	en en tra	e Televis	- Caraa ayaa a	• • • • •	ي. منطقة محمد من	1	a share a su		stand Marine Standard Stand Standard Standard Stan	enter de la composición de la	
				•						•							
	·		and the second							_			1 - A 1				
·												. `	• *				· · · · ·
1. 1. 1.	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,			•		yan ya	en na give a		i matrix surre d'al.				t de la composition de	in de la c	n an tain a	<u>1</u>	
4. A. A.	1	IME F	EED .	BOTTOM	S TO	PS R	RATI	O RB.H	OLDUP	С.НОЦ	DUP						
		.481 3								2.74			• .		'	29 	
	COM	PONENT	REL.V	OL FE	ED COM	P. 80	ILER	COND.	ΕΤΡ	. 0	CTP.						
in An an An Arian	en e	1	3.00	i The Starts Starts	0.45	0.2		0.6611			3.658	n in statut	and a state of the state	. The states in success of states	nen Generation	an 🕮 a chun chui t	y waa sa sa sa sa
	· · · · · · · · · · · · · · · · · · ·	2	2,00		0.30	0.3	359	0.2775	39.69	2 42	2.035				n in stratig grant		
		3	1.00					0.0614			0.307					· .	
	PLATE	HOLDUP						LIQUID				4					
		3.4561	98.4		4.95				0.00		350.00						
		3.6088	96.1	1	5.52	0.	7690	100	0.00		350.00						
· .		3,3529	93.5	3	4.49	1.	0574	70 70	0.00	8	350.00						
		3,5219	91.3	8	5.00	0.	9006	70	0.00	8	350.00						
		3,6982	÷ -	9				70	0.00								
	COMPONE											COMPOSI			MEAN	EMV.	,
	PLATE	00		.2				6				4	5	6	(
	1	.3898	.3776	.3661	. 3557	. 3463	.5384	.3333	.4465	.4408	.4355	.4308	.4268	.4241	.4341	0.8887	
	2							.4012									
	3							.4657									
	4							.5308									
	5							.5963		.0040	.0014	.0273 .004000	.0303	,0200			
	COMPONE			114010	J GUMPU	211101 1211101	N E	6	4	·	APOUR S	COMPOSI 4		6	MEAN	EMV.	10000
		E DC .	· 1 77704	7724	2779	. 4 7750	フママンク	.3769	7415					-	2701	4 0.030	
	· 1·							.3654									
	2 . 7							.3663									
	3.							3449									
	· •	2832	- 2007	2070	3028	3070	3120	3146	2718	2740	2772	2788	2796	2792	2769	0 5570	
	COMPONI	ENT = 3	-					10110								EMV.	
	· PLAT	E DC.	1	. 2			5	6	: 1 .	. 2		. 4	5	6			
	1							2898						-	1958	1.3735	
	2							.2334									
· .	-3							1680									
	4							1243									
	5							0891									
		•									•					1	
					1								•				•

· · · ·	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		in an	1	ng ang site P	eren aran		n a shan a she A		ar na trí a Las guns 119 T			anda Antonia Antonia Aus Antonia	al de la composition de la composition Composition de la composition de la comp	14 17 - 14 - 1	
	•	· · · ·		· · ·			ан стала Ал									
				· · · ·						· · · · · · · ·		• ••••••	· · ·			
	TIME	FEED	BOTTO	MS TO	DPS F	RATI	D RB_I	HOLDUP	C.HO	LDUP				e se de la composición de la composición La composición de la c		
	5,297				50.0	4.66	7 13	9660		425						
CO	MPONENT						COND.	ETF		CTP.						1. A.
ant i an star star	1 ••• •••	3.00		0.45	0.2	2099 (0.6660	103.73	34 9	9.562	eterti di Constanti Scari	ر. موجوع الديني المرجد ال	en for Hellen af Bertra i na in Berna	an a	s. Description	a Sector and a sector
	2	1.00		0.25				39.58		1.314						•
PLATE	HOLDUP	-		LET NO.				-		9.125 Ur floi	J					
1	3,4561		36			9143		00.00		850.00	N					
2	3.6088	96.0		5.52		7690		00.00		850.00					• * •	
3	3.3529	93.3		4.49	1.	0574	7			850.00						
4	3.5219	-		5.00			7		1	850.00			1			
5	3,6982	-		5.54		7636	7(00.00		850.00						
	ENT= 1			D COMPO							COMPOSI	ITION		MEAN	EMV.	
PLAT			2		4 7/80) 7/44	6	1	2	3	4	5	6			
2	4550	4435	4330	4235	. 3407	4086	. 5539	+407 5122	-4432	4378 5040	.4550	.4289	.4261	.4363	0.8896	•
<u>ح</u>	.5228	5109	4998	4899	4812	.4742	4037	5677	5632	5508	557/	.2037	.5045	.5065	0.5848	
4	.5901	5780	.5667	.5564	5475	.5402	5355	.6203	6161	6171		. 5502	.3303	. 2001	0.5180	
5	6566	6445	.6333	.6230	6138	.6063	.6013	.6734	.6691	.6659	6638	4678	.0111	.0137	0.5168	
COMPON	NENT = 2		FIGNI	D COMPO	0.5.1.T.1.O	1	•••		V.	APOUR	COMPOSI	ITION	.0000		EMV.	
PLAT			. 2	3	4	5	6	1	2	र	4	5	6			
1	.3667	.3693	.3714	.3732	.3746	.3757	.3764	.3634	.3662	.3689	.3712	.3731	. 3744	.3695	1.0032	
2	.5481	.3522	. 3558	, 3588	,3613	.3632	.3644	.3427	.3451	.3469	- 3481	- 3488	3486	3467	0 6893	
. 3	.3466	.3510	.3549	.3582	.3609	.3629	.3641	.3244	.3270	.3290	.3303	.3309	.3306	.3287	0.6166	
. 6	.3193	- 3663	- 5279	.3520	.5507	- 5599	.3419	.2986	.3016	.3038	.3054	.3062	.3059	.3036	0.5740	t
Сомрож	12775 NENT= 3	. 2003	. 2931	.2990 D COMP(-2041 101110	*2002	.5109	.2082	.2715	.2730	.2752	.2760	.2757		0.5549	
	FE - DC	1	2	3 3	4	5	6	1	2	3 APOUR	COMPOSI	5		MEAN	EMV.	
1						2832	2877	1877	1906	1977	1050	1080	1995	1042	1.3753	
2	. 1969	,2043	.2113	.2177	2235	.2284	.2317	.1450	.1463	-1471	.1475	1475	1471	1467	0 5451	
3	130 0	1381	.1455	.1519	1579	.1628	.1660	.1079	.1098	.1112	.1123	.1130	1130	1112	0 6702	
4	_09.54	-0996	.1055	.1109	.1158	.1199	.1226	.0811	.0823	.0830	.0834	.0835	.0830	0827	0 4748	
5	.0641	.0689	.0736	.0780	.0820	.0855	.0878	.0585	.0596	.0604	.0610	.0612	.0610	.0603	0.4720	· ·
		* .			18. 1			:					÷.,	2000 1		
· . ·			•										•			
												· · · · · · · · · · · ·	······································	، متبور خرد ً	• • •	G2
										•			·• · · ·			· · ·

. . . .

												5. A				•
	1.1.1.1.1.1.1	1. A.	. *		e ga an an an	19 - A. A.		•	1	1997 - A.		· · · ·				
		· ··· ·-			· ···- •											1.1
	7 - L ¹						· • ·									
												•				
													•			
	•															· -
								0 RB,1			DUP					
		15,755	-					667 1			7425	· .	• .			
	COMI	PONENT								-			To de Agrico de Como e Agrico.	t gottersen hetersen a r	e prago (province) p	and the second s
		1	3,00		0,45			0,6696			,179 -					
	Ĩ	2	5.00					0.2708	-		.824	•	۰.	· · ·		
	-	3	1.00		0.25			0.0596			3.997					
P	LATE I		TEMP,		LET NO.			LIQUID	FLOW	VAPOL	IR FLOU	A				
		3,4561	98.2		4.95			10(350.00					
		3,6088	95.9		5.52	0.	7690	100		8	150.00		•			
	3 3	3,3529	93.2	7	4.49	1.	0574	7(0.00	8	350.00					
		3,5219	91.1	1	5.00	0.	9006	70	00.00	8	350.00			1. A.		
	5	3.6982	89.1	3	5.54	0.	7636	7(00.00	8	350.00					
Ċ	OMPONE	NT= 1		LIQUI	D COMPC	SITION	1	,		V A	POUR I	COMPOS	ITION		MEAN	EMV.
	PLATE			2		4		6	1	2	3	4	5	6		
	1	, 3959	.3836	.3722	.3618	.3524	.3446	.3395	,4521	.4464	.4411	.4363	,4322	.4295	.4396	0.8903
	2	4579	.4465	.4360	.4266	.4183	.4116	.4071	.5151	5115	.5090	.5074	5067	5073	5095	0.5845
	3				.4940		.4783					.5606	5593			0.5178
	3	.5269	.5150	.5040		,4853		.4739	.5709	.5665	.5631			.5596	,5633	0.5178
	3 4 5	.5269 .5942	.5150	.5040 .5708	.5606	.4853 .5516	.5443	.4739	.5709 .6237	.5665 .6195	.5631	.6146	.6138	.5596	.5633	0.5162
	3 4 5 COMPONE	.5269 .5942 .6604	.5150	.5040 .5708 .6372	.5606	.4853 .5516 .6178	.5443 .6103	.4739	.5709 .6237 .6768	.5665 .6195 .6725	.5631 .6165 .6694	.6146	.6138 .6662	.5596	.5633 .6171 .6698	
(3 4 5 COMPONE PLATE	.5269 .5942 .6604 NT= 2 DC	.5150 .5820 .6484	.5040 .5708 .6372 LIQUI 2	.5606 .6269 D COMPC 3	.4853 .5516 .6178 SITION 4	.5443 .6103 N 5	.4739 .5397 .6053	.5709 .6237 .6768	.5665 .6195 .6725 .V/ 2	.5631 .6165 .6694 APOUR .3	.6146 .6672 Compos 4	.6138 .6662 ITION 5	5596 6145 6668	.5633 .6171 .6698 MEAN	0.5162 0.5158 EMV.
		.5269 .5942 .6604 NT= 2 DC	.5150 .5820 .6484	.5040 .5708 .6372 LIQUI 2	.5606 .6269 D COMPC 3	.4853 .5516 .6178 SITION 4	.5443 .6103 N 5	.4739 .5397 .6053	.5709 .6237 .6768	.5665 .6195 .6725 .V/ 2	.5631 .6165 .6694 APOUR .3	.6146 .6672 Compos 4	.6138 .6662 ITION 5	5596 6145 6668	.5633 .6171 .6698 MEAN	0.5162 0.5158 EMV.
ſ	PLATE	.5269 .5942 .6604 NT= 2 DC .3653 .3465	.5150 .5820 .6484 1 .3679 .3506	.5040 .5708 .6372 LIQUI 2 .3700 .3542	.5606 .6269 D COMPC .3719 .3573	.4853 .5516 .6178)SITION .4 .3733 .3598	.5443 .6103 5 .3745 .3618	.4739 .5397 .6053 .6053 .6 .3752 .3630	.5709 .6237 .6768 1 .3619 .3411	.5665 .6195 .6725 .0755 .07555 .07555 .07555 .07555 .07555 .075555 .0755555 .07555555555 .075555555555	.5631 .6165 .6694 APOUR .3 .3674 .3453	.6146 .6672 COMPOS 4 .3697 .3465	.6138 .6662 ITION 5 .3716 .3471	.5596 .6145 .6668 .6 .3729 .3470	.5633 .6171 .6698 MEAN .3681 .3451	0.5162 0.5158 EMV. 1.0042 0.6869
	PLATE	.5269 .5942 .6604 NT= 2 DC .3653 .3465	.5150 .5820 .6484 1 .3679 .3506	.5040 .5708 .6372 LIQUI 2 .3700 .3542	.5606 .6269 D COMPC .3719 .3573	.4853 .5516 .6178)SITION .4 .3733 .3598	.5443 .6103 5 .3745 .3618	.4739 .5397 .6053 .6053 .6 .3752 .3630	.5709 .6237 .6768 1 .3619 .3411	.5665 .6195 .6725 .0755 .07555 .07555 .07555 .07555 .07555 .075555 .0755555 .07555555555 .075555555555	.5631 .6165 .6694 APOUR .3 .3674 .3453	.6146 .6672 COMPOS 4 .3697 .3465	.6138 .6662 ITION 5 .3716 .3471	.5596 .6145 .6668 .6 .3729 .3470	.5633 .6171 .6698 MEAN .3681 .3451	0.5162 0.5158 EMV. 1.0042 0.6869
(PLATE	.5269 .5942 .6604 NT= 2 DC .3653 .3465 .3440 .3136	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196	.5040 .5708 .6372 L1001 .3700 .3542 .3524 .3251	.5606 .6269 D COMPC .3719 .3573 .3558 .3299	.4853 .5516 .6178)SITION 4 .3733 .3598 .3586 .3340	.5443 .6103 .5 .3745 .3618 .3607 .3372	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961	.5665 .6195 .6725 V/ 2 .3648 .3435 .3249 .2991	.5631 .6165 .6694 .90UR .3674 .3453 .3269 .3014	.6146 .6672 COMPOS .3697 .3465 .3282 .3029	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037	.5596 .6145 .6668 .3729 .3470 .3285 .3034	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721
	PLATE	.5269 .5942 .6604 NT= 2 DC .3653 .3465 .3440 .3136	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196	.5040 .5708 .6372 L1001 .3700 .3542 .3524 .3251	.5606 .6269 D COMPC .3719 .3573 .3558 .3299	.4853 .5516 .6178)SITION 4 .3733 .3598 .3586 .3340	.5443 .6103 .5 .3745 .3618 .3607 .3372	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961	.5665 .6195 .6725 V/ 2 .3648 .3435 .3249 .2991	.5631 .6165 .6694 .90UR .3674 .3453 .3269 .3014	.6146 .6672 COMPOS .3697 .3465 .3282 .3029	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037	.5596 .6145 .6668 .3729 .3470 .3285 .3034	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721
	PLATE	5269 5942 6604 NT= 2 DC 3653 3465 3440 3136 2763	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836	.5040 .5708 .6372 L10U1 2 .3700 .3542 .3524 .3251 .2902	.5606 .6269 D COMPC .3719 .3573 .3558 .3299	.4853 .5516 .6178 .51710 .4 .3733 .3598 .3586 .3340 .3012	.5443 .6103 .5 .3745 .3618 .3607 .3372 .3054	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961	.5665 .6195 .6725 .725 .725 .725 .725 .725 .725 .725	.5631 .6165 .6694 .90UR .3 .3674 .3453 .3269 .3014 .2709	.6146 .6672 COMPOS .3697 .3465 .3282 .3029	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733	.5596 .6145 .6668 .3729 .3470 .3285 .3034	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011 .2706	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721 0.5535
	PLATE 1 2 3 4 5 COMPONE	5269 5942 6604 NT= 2 DC 3653 3465 3440 3136 2763	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836	.5040 .5708 .6372 L1001 2 .3700 .3542 .3524 .3251 .2902 L1001	.5606 .6269 D COMPC .3719 .3573 .3558 .3299 .2961	.4853 .5516 .6178 .51TION .4 .3733 .3598 .3586 .3340 .3012 .51TION	.5443 .6103 .3745 .3618 .3607 .3372 .3054	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392 .3080	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961	.5665 .6195 .6725 .725 .725 .725 .725 .725 .725 .725	.5631 .6165 .6694 .90UR .3 .3674 .3453 .3269 .3014 .2709	.6146 .6672 COMPOS 4 .3697 .3465 .3282 .3029 .2725	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733	.5596 .6145 .6668 .3729 .3470 .3285 .3034	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011 .2706	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721
	PLATE 1 2 3 4 5 COMPONE	5269 5942 6604 NT = 2 DC 3653 3465 3465 3440 3136 2763 NT = 3 DC	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836 .2836	.5040 .5708 .6372 LIQUI .3700 .3542 .3524 .3251 .2902 LIQUI .2	5606 6269 0 COMPC 3719 3573 3558 3299 2961 0 COMPC 3	.4853 .5516 .6178 0SITION .4 .3733 .3598 .3586 .3340 .3012 0SITION .4	.5443 .6103 .3745 .3618 .3607 .3372 .3054 .5	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392 .3080 .6	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961 .2655	.5665 .6195 .6725 .2 .3648 .3435 .3249 .2991 .2686 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	.5631 .6165 .6694 .3014 .3674 .3453 .3269 .3014 .2709 APOUR .3	.6146 .6672 COMPOS 4 .3697 .3465 .3282 .3029 .2725 COMPUS 4	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733 ITION 5	5596 6145 6668 6 3729 3470 3285 3034 2729 6	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011 .2706 MEAN	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721 0.5535 EMV.
	PLATE 1 2 3 4 5 COMPONE PLATE 1	5269 5942 6604 NT = 2 DC 3653 3465 3465 3440 3136 2763 NT = 3 DC 2388	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836 1 .2485	.5040 .5708 .6372 L1001 .2 .3700 .3542 .3524 .3251 .2902 L1001 .2 .2577	5606 6269 0 COMPC 3 3719 3573 3558 3299 2961 0 COMPC 3 2664	.4853 .5516 .6178 .51TION .4 .3733 .3598 .3598 .3586 .3340 .3012 .51TION .4 .2743	.5443 .6103 .3745 .3618 .3618 .3607 .3372 .3054 .3054 .5 .2809	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392 .3080 .6 .2854	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961 .2655 1 .1860	5665 6195 6725 725 2 3648 3435 3249 2991 2686 7 2 1888	.5631 .6165 .6694 .700R .3674 .3453 .3269 .3014 .2709 .3014 .2709 .3014 .2709 .3014 .2709 .3014	.6146 .6672 COMPOS 4 .3697 .3465 .3282 .3029 .2725 COMPUS 4 .1940	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733 ITION 5 .1961	5596 6145 6668 6 3729 3470 3285 3034 2729 6	.5633 .6171 .6698 MEAN .3681 .3266 .3011 .2706 MEAN .1923	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721 0.5535 EMV. 1.3765
	PLATE 1 2 3 4 5 COMPONE PLATE 1 2	5269 5942 6604 NT = 2 DC 3653 3465 3440 3136 2763 NT = 3 DC 2388 1956	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836 1 .2485 .2029	.5040 .5708 .6372 L10U1 2 .3700 .3542 .3524 .3251 .2902 L10U1 2 .2577 .2097	5606 .6269 D COMPC .3719 .3573 .3558 .3299 .2961 D COMPC .3 .2664 .2161	.4853 .5516 .6178 .51110 .4 .3733 .3598 .3586 .3340 .3012 .511101 .2743 .2219	.5443 .6103 .5 .3745 .3618 .3607 .3372 .3054 .5 .2809 .2267	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392 .3080 .6 .2854 .2299	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961 .2655 1 .1860 .1437	5665 6195 6725 V/ 2 3648 3435 3249 2991 2686 V/ 2 1888 1449	.5631 .6165 .6694 .90UR .3674 .3453 .3269 .3014 .2709 .3015 .2757 .2757 .27575 .27575 .275755 .27575555555555	.6146 .6672 COMPOS .3697 .3465 .3282 .3029 .2725 COMPUS .1940 .1461	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733 ITION 5 .1961 .1462	5596 6145 6668 6 3729 3470 3285 3034 2729 6 1976 1457	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011 .2706 MEAN .1923 .1454	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721 0.5535 EMV. 1.3765 0.5448
	PLATE 1 2 3 4 5 COMPONE PLATE 1	5269 5942 6604 NT = 2 DC 3653 3465 3440 3136 2763 NT = 3 DC 2388 1956 1290	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836 1 .2485 .2029 .1365	.5040 .5708 .6372 LIQUI .3700 .3542 .3524 .3251 .2902 LIQUI .2577 .2097 .1436	5606 .6269 D COMPC .3719 .3573 .3558 .3299 .2961 D COMPC .3 .2664 .2161 .1502	.4853 .5516 .6178 .51110 .4 .3733 .3598 .3586 .3340 .3012 .51110 .2743 .2743 .2219 .1561	.5443 .6103 .5 .3745 .3618 .3607 .3372 .3054 .2809 .2267 .1610	.4739 .5397 .6053 .6053 .3630 .3619 .3392 .3080 .6 .2854 .2299 .1642	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961 .2655 1 .1860 .1437 .1068	5665 6195 6725 V/ 2 .3648 .3435 .3249 .2991 .2686 V/ 2 .1888 .1449 .1086	.5631 .6165 .6694 .90UR .3674 .3453 .3269 .3014 .2709 .3014 .3157 .3014 .3157 .3014 .3157 .3014 .3157 .3014 .3157 .3014 .3157 .3014 .3157 .3014 .3157 .3014 .3157 .3014 .3157 .3014 .3157 .3014 .31577 .31577 .315777 .315777777777777777777777777777777777777	.6146 .6672 COMPOS 4 .3697 .3465 .3282 .3029 .2725 COMPUS 4 .1940 .1461 .1111	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733 ITION 5 .1961 .1462 .1118	5596 6145 6668 6 3729 3470 3285 3034 2729 6 1976 1457 .1118	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011 .2706 MEAN .1923 .1454 .1101	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721 0.5535 EMV. 1.3765 0.5448 0.4789
	PLATE 1 2 3 4 5 COMPONE PLATE 1 2	5269 5942 6604 NT = 2 DC 3653 3465 3440 3136 2763 NT = 3 DC 2388 1956 1290 0922	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836 .2836 .2836 .2485 .2029 .1365 .0983	.5040 .5708 .6372 L10U1 2 .3700 .3542 .3524 .3251 .2902 L10U1 2 .2577 .2097 .1436 .1042	5606 .6269 D COMPC .3719 .3573 .3558 .3299 .2961 D COMPC .2664 .2161 .1502 .1096	.4853 .5516 .6178 .51710 .4 .3733 .3598 .3586 .3340 .3012 .51710 .2743 .2219 .1561 .1144	.5443 .6103 .3745 .3618 .3607 .3618 .3607 .3054 .3054 .2809 .2267 .1610 .1185	.4739 .5397 .6053 .6053 .6 .3752 .3630 .3619 .3392 .3080 .6 .2854 .2854 .2299 .1642 .1211	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961 .2655 1 .1860 .1437 .1068 .0802	5665 6195 6725 V/ 2 3648 3435 3249 2991 2686 V/ 2 1888 1449 1086 0814	.5631 .6165 .6694 .90UR .3674 .3453 .3269 .3014 .2709 .3015 .1457 .2015.2015 .2015.2015.2015.2015.2015.2015.2015.2015	.6146 .6672 COMPOS 4 .3697 .3465 .3282 .3029 .2725 COMPUS 4 .1940 .1461 .1111 .0825	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733 ITION 5 .1961 .1462 .1118 .0825	5596 6145 6668 6 3729 3470 3285 3034 2729 6 1976 1457 1118 0821	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011 .2706 MEAN .1923 .1454 .101 .0818	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721 0.5535 EMV. 1.3765 0.5448 0.4789 0.4744
	PLATE 1 3 4 5 5 0MPONE PLATE 1 2 3 4 5	5269 5942 6604 NT = 2 DC 3653 3465 3440 3136 2763 NT = 3 DC 2388 1956 1290 0922 0633	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836 .2836 .2836 .2485 .2029 .1365 .0983 .0681	.5040 .5708 .6372 11001 2 .3700 .3542 .3524 .3251 .2902 L1001 2 .2577 .2097 .1436 .1042 .0726	5606 6269 0 COMPC 3 3719 3573 3558 3299 2961 0 COMPC 3 2664 2161 1502 1096 .0770	.4853 .5516 .6178 .51710 .4 .3733 .3598 .3586 .3340 .3012 .51710 .2743 .2219 .1561 .1144 .0810	.5443 .6103 .3745 .3618 .3607 .3372 .3054 .3054 .2809 .2267 .1610 .1185 .0844	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392 .3080 .6 .2854 .2854 .299 .1642 .1211 .0867	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961 .2655 1 .1860 .1437 .1068 .0802 .0578	5665 6195 6725 V/ 2 3648 3435 3249 2991 2686 V/ 2 1888 1449 1086 0814 0589	.5631 .6165 .6694 .700R .3674 .3453 .3269 .3014 .2709 .3015 .1457 .30577 .30577 .30577 .305777 .305777777777777777777777777777777777777	.6146 .6672 COMPOS 4 .3697 .3465 .3282 .3029 .2725 COMPUS 4 .1940 .1461 .1111 .0825 .0602	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733 ITION 5 .1961 .1462 .1118 .0825 .0605	5596 6145 6668 6 3729 3470 3285 3034 2729 6 1976 1457 1118 0821 .0603	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011 .2706 MEAN .1923 .1454 .1101 .0818 .0596	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721 0.5535 EMV. 1.3765 0.5448 0.4789
	PLATE 1 3 4 5 5 0MPONE PLATE 1 2 3 4 5	5269 5942 6604 NT = 2 DC 3653 3465 3440 3136 2763 NT = 3 DC 2388 1956 1290 0922 0633	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836 .2836 .2836 .2485 .2029 .1365 .0983 .0681	.5040 .5708 .6372 11001 2 .3700 .3542 .3524 .3251 .2902 L1001 2 .2577 .2097 .1436 .1042 .0726	5606 6269 0 COMPC 3 3719 3573 3558 3299 2961 0 COMPC 3 2664 2161 1502 1096 .0770	.4853 .5516 .6178 .51710 .4 .3733 .3598 .3586 .3340 .3012 .51710 .2743 .2219 .1561 .1144 .0810	.5443 .6103 .3745 .3618 .3607 .3372 .3054 .3054 .2809 .2267 .1610 .1185 .0844	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392 .3080 .6 .2854 .2854 .299 .1642 .1211 .0867	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961 .2655 1 .1860 .1437 .1068 .0802 .0578	5665 6195 6725 V/ 2 3648 3435 3249 2991 2686 V/ 2 1888 1449 1086 0814 0589	.5631 .6165 .6694 .700R .3674 .3453 .3269 .3014 .2709 .3015 .1457 .30577 .30577 .30577 .305777 .305777777777777777777777777777777777777	.6146 .6672 COMPOS 4 .3697 .3465 .3282 .3029 .2725 COMPUS 4 .1940 .1461 .1111 .0825 .0602	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733 ITION 5 .1961 .1462 .1118 .0825 .0605	5596 6145 6668 6 3729 3470 3285 3034 2729 6 1976 1457 1118 0821 .0603	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011 .2706 MEAN .1923 .1454 .1101 .0818 .0596	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721 0.5535 EMV. 1.3765 0.5448 0.4789 0.4744
	PLATE 1 2 3 4 5 5 0 MPONE PLATE 1 2 3 4 5	5269 5942 6604 NT = 2 DC 3653 3465 3440 3136 2763 NT = 3 DC 2388 1956 1290 0922 0633	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836 1 .2485 .2029 .1365 .0983 .0681	.5040 .5708 .6372 11001 2 .3700 .3542 .3524 .3251 .2902 11001 2 .2577 .2097 .1436 .1042 .0726	5606 6269 0 COMPC 3 3719 3573 3558 3299 2961 0 COMPC 3 2664 2161 1502 1096 0770	.4853 .5516 .6178 .51710 .4 .3733 .3598 .3586 .3340 .3012 .51710 .2743 .2219 .1561 .1144 .0810	.5443 .6103 .3745 .3618 .3607 .3372 .3054 .3054 .2809 .2267 .1610 .1185 .0844	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392 .3080 .6 .2854 .2854 .299 .1642 .1211 .0867	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961 .2655 1 .1860 .1437 .1068 .0802 .0578	5665 6195 6725 V/ 2 3648 3435 3249 2991 2686 V/ 2 1888 1449 1086 0814 0589	.5631 .6165 .6694 .700R .3674 .3453 .3269 .3014 .2709 .3015 .1457 .30577 .30577 .30577 .305777 .305777777777777777777777777777777777777	.6146 .6672 COMPOS 4 .3697 .3465 .3282 .3029 .2725 COMPUS 4 .1940 .1461 .1111 .0825 .0602	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733 ITION 5 .1961 .1462 .1118 .0825 .0605	5596 6145 6668 6 3729 3470 3285 3034 2729 6 1976 1457 1118 0821 .0603	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011 .2706 MEAN .1923 .1454 .1101 .0818 .0596	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721 0.5535 EMV. 1.3765 0.5448 0.4789 0.4744
	PLATE 1 2 3 4 5 5 0 MPONE PLATE 1 2 3 4 5	5269 5942 6604 NT = 2 DC 3653 3465 3440 3136 2763 NT = 3 DC 2388 1956 1290 0922 0633	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836 1 .2485 .2029 .1365 .0983 .0681	.5040 .5708 .6372 11001 2 .3700 .3542 .3524 .3251 .2902 11001 2 .2577 .2097 .1436 .1042 .0726	5606 6269 0 COMPC 3 3719 3573 3558 3299 2961 0 COMPC 3 2664 2161 1502 1096 0770	.4853 .5516 .6178 .51710 .4 .3733 .3598 .3586 .3340 .3012 .51710 .2743 .2219 .1561 .1144 .0810	.5443 .6103 .3745 .3618 .3607 .3372 .3054 .3054 .2809 .2267 .1610 .1185 .0844	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392 .3080 .6 .2854 .2299 .1642 .1211 .0867	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961 .2655 1 .1860 .1437 .1068 .0802 .0578	5665 6195 6725 V/ 2 3648 3435 3249 2991 2686 V/ 2 1888 1449 1086 0814 0589	.5631 .6165 .6694 .700R .3674 .3453 .3269 .3014 .2709 .3015 .1457 .30577 .30577 .30577 .305777 .305777777777777777777777777777777777777	.6146 .6672 COMPOS 4 .3697 .3465 .3282 .3029 .2725 COMPUS 4 .1940 .1461 .1111 .0825 .0602	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733 ITION 5 .1961 .1462 .1118 .0825 .0605	5596 6145 6668 6 3729 3470 3285 3034 2729 6 1976 1457 1118 0821 .0603	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011 .2706 MEAN .1923 .1454 .1101 .0818 .0596	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721 0.5535 EMV. 1.3765 0.5448 0.4789 0.4744
	PLATE 1 2 3 4 5 5 0 MPONE PLATE 1 2 3 4 5	5269 5942 6604 NT = 2 DC 3653 3465 3440 3136 2763 NT = 3 DC 2388 1956 1290 0922 0633	.5150 .5820 .6484 1 .3679 .3506 .3485 .3196 .2836 1 .2485 .2029 .1365 .0983 .0681	.5040 .5708 .6372 11001 2 .3700 .3542 .3524 .3251 .2902 11001 2 .2577 .2097 .1436 .1042 .0726	5606 6269 0 COMPC 3 3719 3573 3558 3299 2961 0 COMPC 3 2664 2161 1502 1096 0770	.4853 .5516 .6178 .51710 .4 .3733 .3598 .3586 .3340 .3012 .51710 .2743 .2219 .1561 .1144 .0810	.5443 .6103 .3745 .3618 .3607 .3372 .3054 .3054 .2809 .2267 .1610 .1185 .0844	.4739 .5397 .6053 .6 .3752 .3630 .3619 .3392 .3080 .6 .2854 .2299 .1642 .1211 .0867	.5709 .6237 .6768 1 .3619 .3411 .3222 .2961 .2655 1 .1860 .1437 .1068 .0802 .0578	5665 6195 6725 V/ 2 3648 3435 3249 2991 2686 V/ 2 1888 1449 1086 0814 0589	.5631 .6165 .6694 .700R .3674 .3453 .3269 .3014 .2709 .3015 .1457 .30577 .30577 .30577 .305777 .305777777777777777777777777777777777777	.6146 .6672 COMPOS .3697 .3465 .3282 .3029 .2725 COMPUS .1940 .1461 .1111 .0825 .0602	.6138 .6662 ITION 5 .3716 .3471 .3288 .3037 .2733 ITION 5 .1961 .1462 .1118 .0825 .0605	5596 6145 6668 6 3729 3470 3285 3034 2729 6 1976 1457 1118 0821 .0603	.5633 .6171 .6698 MEAN .3681 .3451 .3266 .3011 .2706 MEAN .1923 .1454 .1101 .0818 .0596	0.5162 0.5158 EMV. 1.0042 0.6869 0.6132 0.5721 0.5535 EMV. 1.3765 0.5448 0.4789 0.4744

Appendix H

Unsteady-State Vaporisation Efficiency Results

The vaporisation efficiency responses for step changes in the multicomponent system investigated by Holland (48) are listed. The five component system was $C_{3}H_{8}$, $n-C_{4}H_{10}$, $n-C_{5}H_{12}$, $n-C_{6}H_{14}$ and $n-C_{7}H_{16}$. The initial steady-state and unsteady-state feed inputs were:-

Component	F.X. (SS) i moles/min	F.X _i (US) moles/min
1) C ₃ H ₈	10	35
2) n-C ₄ H ₁₀	25	25
3) n-C ₅ H ₁₂	30	20
4) $n-C_{6}H_{14}$	25	15
5) n-C7 ^H 16	10	5

It can be seen from the listings that the vaporisation efficiencies were the same on every plate for each component and if this was true then they should converge to a constant value for each plate at the final steady-state which is shown to be untrue.

Hl

REBOI	ISATION EF			COMPONE	NT
TIME	1	2	3	4	5
0.0	1.05000	1.02000	1.05000	0,99000	0.96000
	1.04154	1.02589	1.04627	0,98650	0.95760
0.1 0.2	1.03476	1.03205	1,04374	0,98415	0.95629
0.3	1.02948	1.03854	1.04229	0.98498	0.95599
	1,02457	1,04440	1,04086	0,98427	0.9557
0.4		1.04876	1,03850	0.98132	0.95460
0.5	1.01908	1,05099	1,03454	0.97944	0.9520
0.6	1.01232	1.05083	1.02869	0.97622	0.9477
0.7	1.00399	1.04843	1.02107	0.97160	0.9417
0.8	0,99420	1.04421	1,01210	0.96582	0,9345
0.9	0.98332		1,00228	0,95929	0,92659
1.0	0.97184	1.03875	0.99212	0.95440	0.91829
1,1	0.96024	1,03260	0.98202	0.94550	0.9100
1.2	0.94889	1.02621	0 97227	0.93884	0.9041
1.3	0.93804	1.01989	0.96304	0.93455	0.8946
1.4	0,92783	1,01385	0.95436	0.92673	0.8876
1.5	0.91832	1.00820	0.94634	0.92139	0.8813
1.6	0.90955	1.00302		0.91654	0.8755
1.7	0.90148	0.99830	0,93889	-	0.8702
1.8	0,89407	0,99404	0.93205	0,91416	0.86547
1.9	0.88729	0.99022	0,92574	0,90822	
2.0	0.88107	0.98680	0.91994	0,90467	0.86118
5.5	0.87017	0.98107	0,90968	0,89867	
2.4	0.86101	0,97660	0,90093	0.89389	0.84794
5.6	0,85330	0.97317	0.89343	0.89011	0.8452
2.8	0.84679	0.97061	0.88695	0.88717	0.83940
3.0	0,84129	0.96876	0.88131	0.88492	0.8365
3.2	0.83664	0.96751	0.87637	0,88325	0.83427
3.4	0.83271	0.96676	0,87201	0.88406	0.83259
3.6	0,82939	0,96642	0,86814	0,88127	0.83138
3,8	0,82659	0.96643	0,86466	0,88082	0.83058
4.0	0.82424	0.96673	0.86153	0,88066	0.8301
4.2	0.82227	0.96728	0,85867	0.88075	0.8299
4.4	0.82063	0.96803	0,85604	0,88103	0.8300
4.6	0.81927	0.96894	0,85361	0.88148	0.83029
4.8	0,81816	0.97000	0.85134	0,88407	0.83073
5.0	0.81725	0.97116	0.84920	0,88478	0.83132

The second se

•

1

.

1.000

\$* - ·

•

ŝ

Sector Sector Sector

Ĺ

• ...•

1

		CATION ES	CTOTENCIES.			,
			FICIENCIES.		COMPONE	N T
	PLATE	•	2	3	4	5
	TIME 0.0	1 1,05000	1,02000	1,05000	0.99000	0.96000
	0.0	1.04154	1.02589	1,04627	0.98650	0.95760
	0.2	1 03476	1.03205	1.04374	0.98415	0.95629
	0,3	1,02948	1.03854	1.04229	0.98298	0,95599
	0.4	1.02457	1.04440	1.04086	0.98227	0,95572
2	0,5	1.01908	1.04876	1.03850	0.98132	0.95460
-, *	0,6	1 01232	1,05099	1 03454	0.97944	0.95202
	0.7	1,00399	1.05083	1.02869	0.97622	0.94771
1.	0.8	0.99420	1.04843	1.02107	0,97160	0.94177
	0.9	0,98332	1.04421	1,01210	0,96582	0.93457
	1.0	0,97184	1,03875	1,00228	0.95929	0.92659
•	1.1	0.96024	1,03260	0.99212	0,95440	0,91829
	1,2	0.94889	1.02621	0.98202	0,94550	0.91004
	1.3	0 93804	1.01989	0.97227	0,93884	0.90410
-	1 4	0,92783	1.01385	0.96302	0.93255	0,89461
	1,5	0.91832	1,00820	0.95436	0,92673	0.88767
	1.6	0,90955	1.00302	0,94632	0.92139	0.88130
	1.7	0.90148	0,99830	0.93889	0.91654	0.87550
	1 8	0.89407	0.99404	0,93205	0.91216	0.87023
	1,9	0,88729	0.99022	0.92574	0.90822	0.86547
	2.0	0.88107	0.98680	0.91994	0.90467	0.86118
. '	5.5	0.87017	0.98107	0.90968	0.89867	0.85384
	2.4	0.86101	0.97660	0.90093	0.89389	0.84794
	2.6	0.85330	0.97317	0.89343	0.89011	0.84321
	2.8	0.84679	0.97061	0.88695	0.88717	0.83946 0.83653
	3.0	0.84129	0.96876	0,88131	0.88492 0.88325	0.83427
	3.2	0.83664	0,76751	0.87637	0.88406	0.83259
1	3.4	0.83271	0.96676 0.96642	0,87201 0,86814	0.88127	0.83138
	3.6	0,82939	0.96643	0.86466	0.88082	0.83058
	3.8	0.82659 0.82424	0.96673	0.86153	0.88066	0.83012
1	4.0	0.82227	0.96728	0,85867	0.88075	0.82995
•	4.2 4.4	0.82063	0.96803	0.85604	0.88103	0.83002
	4.4	0.81927	0.96894	0.85361	0.88148	0.83029
	4.8	0.81816	0.97000	0.85134	0.88407	0.83073
	5.0	0.81725	0.97116	0.84920	0.88278	0.83132
	• ••	v. • • • • • • •	₩₩ \ \ \ ₩		1	
			:			
	4				· · · · · · · · · · · · · · · · · · ·	

ŝ

i

1 3

.

Į

HЗ

į

(i)

		SATION EF	FICIENCIES.			
	PLATE				COMPONE	T I
	TIME	1	2	3	4	5
¥	0.0	1,05000	1.02000	1,05000	0.99000	0.96000
•	0.1	1.04419	1,02849	1.04894	0.98901	0.96003
•	0.2	1 03988	1.03715	1,04890	0.98902	0.96102
	0.3	1,03596	1.04508	1.04885	0.98917	0.96201
	0.4	1,03238	1,05237	1.04880	0.98976	0.96301
	0.5	1.02911	1.05908	1.04872	0.99097	0.96400
1		1,02609	1.06529	1,04861	0.99276	0.96497
÷	0.6	1.02330	1.07104	1.04847	0 99499	0.96593
•	0.7	1,02070	1.07637	1,04829	0.99750	88669.0
1	0.8		1.08134	1.04809	1.00017	0.96781
	0.9	1,01828		1.04784	1.00490	0.96872
14	1.0	1,01602	1,08598		1.00>63	0.96962
	1.1	1,01391	1,09032	1.04757	1.00832	0.97050
14. P	1.2	1,01193	1.09438		-	0.97136
	1.3	1,01006	1,09820	1.04692	1.01093	
	1.4	1,00831	1.10179	1.04655	1.01345	0.97221
	1.5	1,00665	1,10518	1.04615	1.01587	0,97305
.)	1.6	1,00509	1.10837	1,04572	1,01818	0.97387
	1.7	1,00361	1.11140	1,04526	1.02038	0.97468
. ·	1.8	1.00220	1.11426	1.04477	1,07248	0.97548
÷	1.9	1,00087	1,11698	1.04425	1,02448	0.97627
	2.0	0.99961	1,11956	1.04371	1,02638	0.97704
÷ .	2.2	0,99725	1,12435	1.04253	1.02991 /	0.97854
	2.4	0,99512	1,12871	1.04125	1,03311	0.98000
	2.6	0.99316	1,13268	1,03986	1,03601	0.98142
•	2.8	0,99137	1,13653	1.03838	1,03864	0.98279
	3.0	0 98972	1.13968	1,03680	1,04105	0.98411
. t.	3.2	0.98820	1,14277	1,03512	1,04325	0.98540
	3.4	0.98679	1.14563	1,03336	1.04526	0,98664
· .	3,6	0.98548	1,14829	1,03152	1.04712	0.98784
	3.8	0.98425	1,15077	1.02959	1.04884	0,98901
+		0.98312	1,15308	1,02759	1.05042	0,99013
	4.0		1.15524	1.02555	1.05189	0.99122
	4,2	0.98205		1,02339	1.05326	0,99228
. •	4.4	0.98105	1,15726	1.02119	1.05453	0.99330
	4.6	0.98011	1,15917	1,01894	1.05573	0.99428
1	4.8	0,97923	1.16096		1.05684	0.99523
÷.,	5.0	0,97839	1,16265	1.01664	1 + 0 2 4 0 4	V + 7 7 J C J
· .	5. -1. -1. -1.			-	÷.	
f::	Ì	•				
	1		¢.			
	20 20 20				۵. ۲. ۹.	
-	ŝ		1 A.			

1.4.1

i di Poli

			· ·		• .	
	VADO	DISATION FF	FICIENCIES.			· · · · · ·
	PLAT				COMPONE	YT .
,	TIME	F - J 1	2	' 3	4	5
	0.0		1.02000	1,05000	0.99000	0.96000
••	0.1	1.04006	1.02443	1.04479	0,98510	0.95624
	0.2	1.03090	1,02820	1.03984	0.98049	0.95272
1	0.3	1.02269	1.03169	1,03542	0.97650	0.94969
	0.4	1,01552	1,03517	1.03166	0,97359	0 94727
<u>e.</u>]	0.5	1.00940	1.03880	1.02863	0.97199	0.94553
ана 1911 г.	0.6	1.00427	1.04264	1.02631	0.97165	0.94445
Ne	0.7	1 7	1,04667	1.02462	0.97235	0.94396
	0.8	0.99652	1.05087	1.02346	0.97386	0.94397
	0.9	0 99363	1.05517	1.02272	0.97595	0,94438
	1.0	0,99125	1.05950	1.02229	0,97845	0.94510
n del Nation	1.1	0.98927	1.06382	1.02211	0,98119	0,94605
	1.2	0.98760	1.06807	1,02209	0.98408	0.94717
•	1.3	0,98619	1.07224	1.02218	0.98703	0.94840
. •	1.4	0 98497	1,07628	1,02233	0.98999	0,94971
·	1.5		1,08020	1,02251	0.99291	0.95106
	1.6	0,98296	1,08397	1,02270	0,99576	0,95243
· ·	1.7	0,98211	1,08760	1.02288	0.99853	0,95381
ب	1.8	0,98135	1,09107	1.02303	1.00121	0.95518
	1,9	0,98065	1.09441	1.02315	1,00378	0.95654
÷	2,0	0,98000	1,09760	1,02324	1,00625	0,95787
·	5.5	0,97883	1.103>8	1,02327	1,01088	0.96046
	2,4	0.97778	1.10905	1,02311	1.01511	0.96293
	2.6	0,97683	1.11406	1.02277	1.01898	0.96578
•	2,8	0,97596	1.11867	1.02224	1.02450	0,96751
÷1.	3.0	0.97515	1.12290	1.02155	1,02572	0.96962
:	3,2	0.97439	1.12681	1.02066	1,02867	0.97163
	3.4	0,97368	1.13042	1.01965	1,03138	0.97353
٠.	3,6	0,97300	1.13376	1.01846	1.03387	0.97534
	3.8	0,97237	1,13687	1,01716	1,03617	0.97706
	4.0	0,97176	1,13976	1.01575	1,03829	0.97870
	4.2	0,97119	1,14247	1.01419	1.04026	0.98026
	4.4	0,97065	1.14499	1,01254	1.04209	0,98175
	4.6	0.97013	1.14736	1,01079	1,04379	0.98318
	4.8	0,96963	1.14958	1,00896	1.04538	0.98454
	5,0	0,96916	1.15168	1,00704	1,04687	0.98584
					÷	

Н5

		FICIENCIES	•	COMPONE	ч т
FEED		•			5
TIME	1	2	3	4	0.96000
0.0	1,05000	1.02000	1:05000	0,99000	0.97028
0.1	1,05533	1.03947	1,06013	0,99956	0.97992
0,2	1,06033	1.05755	1,06953	1.00848	
0.3	1,06499	1.07437	1.07825	1.01689	0.98897
0.4	1.06931	1.09001	1.08631	1.02517	0.99/45
0.5	1,07330	1.10456	1.09375	1,03352	1.00539
0.6	1.07696	.1.11810	1,10059	1,04198	1.01281
0,7	1,08030	1.13070	1,10688	1.05041	1.01974
0.8	1 08334	1.14243	1,11262	1,05871	1.02621
0.9	1,08607	1.15333	1,11786	1,06675	1.03224
1.0	1,08853	1.16347	1,12262	1,07446	1.03785
1 1	1,09070	1.17290	1,12691	1,08180	1.04305
1.2	1,09262	1,18165	1,13077	1,08872	1.04789
1.3	1.09428	1.18977	1,13422	1,09522	1,05236
1.4	1 09571	1,19730	1,13727	1,10130	1.05649
1.5	1 09691	1.20427	1.13996	1,10695	1.06030
1.6	1 09790	1.21072	1,14229	1,11220	1.06580
1.7	1 09868	1,21668	1.14428	1,11705	1.06702
1.8	1 09927	1,22218	1,14596	1,12151	1.06996
1.9	1.09968	1,22725	1.14734	1,12562	1,07264
2.0	1,09991	1.23190	1 14844	1,12938	1.07508
2,2	1.09991	1.24009	1,14985	1.13593	. 1,07928
2.4	1 09934	1.24692	1,15031	1,14131	1,08264
2.6	1.09827	1 25255	1,14991	1.14565	1,08528
2.8	1 09676	1.25712	1 14876	1.14906	1.08726
3.0	1.09487	1,26076	1 14695	1.15165	1.08867
3,2	1,09266	1.26358	1 14455	1,15353	1.08757
3.4	1,09018	1,26567	1 14163	1.15478	1,09002
3.6	1 08746	1,26713	1 13827	1.15549	1,09008
3.8	1 08456	1.26804	1 13452	1.15572	1.08979
-	1,08150	1,26847	1 13045	1,15554	1,08922
4.0	1.07832	1.26848	1 12605	1.15500	1.08839
4,2	1.07504	1,26814	1.12143	1.15417	1.08734
4.4	-	1.26748	1,11661	1,15507	1.08611
4.6	1,07169		1,11163	1.15176	1.08472
4.8	1.06830 1.06488	1,26656 1,26542	1.10650	1.15026	1.08321

Н6

				· · · ·	
4	·				
VAPOR	ISATION EF	FICIENCIES	•		
PLATE	= 5			COMPONE	
TIME	1	2	3	4	5
0.0	1,05000	1,02000	1,05000	0,99000	0.96000
0.1	1.05022	1.03443	1.05498	0.99471	0.96557
0.2	1,05037	1.04762	1,05948	0.99900	0.97072
0.3	1,05048	1.05973	1,06356	1.00304	0.97550
0.4	1,05056	1,07089	1.06726	1,00719	0.97996
0,5	1,05060	1.08120	1,07062	1.01167	0.98413
0.6	1.05062	1,09076	1,07368	1,01650	0,98804
0.7	1.05062	1.09964	1,07647	1,02156	0.99173
0,8	1,05061	1,10792	1,07902	1,02673	0.99522
0.9	1,05059	1,11565	1,08134	1,03190	0,99851
1.0	1,05056	1,12289	1,08346	1,03698	1.00164
1.1	1.05052	1,12968	1 08539	1.04194	1.00462
1,2	1.05047	1,13606	1,08715	1.04672	1.00746
1.3	1.05042	1.14207	1,08875	1.05132	1.01017
1.4	1.05036	1.14774	1.09020	1.05572	1.01276
1,5	1.05031	1,15310	1 09152	1.05992	1.01525
1.6	1.05025	1,15817	1 09271	1,06392	1,01763
1.7	1.05019	1.16298	1,09377	1.06774	1.01992
1 8	1.05012	1,16754	1 09473	1,07137	1.02212
1.9	1.05006	1,17188	1 09558	1,07483	1.02425
2.0	1.05000	1.17600	1 09632	1.07813	1.02629
2,2	1.04988	1,18368	1 09754	1.08426	1.03018
2.4	1.04975	1,19068	1,09842	1,08983	1.03581
-	1.04963	1,19709	1,09899	1.09491	1.03722
2.6	1.04951	1.20297	1 09928	1,09956	1.04043
2.8		1.20840	1.09932	1,10382	1.04345
3.0	1.04940	1.21342	1.09912	1.10774	1.04632
3,2	1.04929	1,21808	1 09870	1,11136	1.04903
3,4	1,04918		1.09809	1,11471	1,05160
3.6	1.04908	1.22241	1.09730	1,11781	1.05405
3,8	1,04898	1,22645	1.09634	1.12070	1,05638
4.0	1,04889	1.23022			1.05859
4.2	1,04880	1,23376	1.09525	1,12339	
4.4	1,04871	1.23708	1.09397	1,12590	1.06071
4.6	1.04863	1.24020	1.09258	1,12825	1.06273
4,8	1.04855	1.24314	1.09107	1,13046	1,06466
5,0	1.04847	1,24592	1,08945	1,13253	1.06651

2

A STATEMENT

÷.,	× 1
; ;	
	્યુ

VAP	ORISAT	ION E	FFICIENCIES.			
PLA			- · · · ·		COMPONEN	T
TIM		1	2	3	. 4	5
0.		05000		1,05000	0,99000	0,96000
0.		04523	· · · · · ·	1 04998	0.99000	0.96099
Ŏ.		04089		1.04992	0.98998	0.96195
ò,		03691	1.04604	1.04984	0.99008	0,96290
0.		03325		1,04968	0.99059	0,96381
0.		02987		1.04949	0.99171	0.96471
0.		02674		1,04927	0.99339	0,96558
0		02382		1,04901	0,99550	0.96643
0.		02110	1.07680	1.04871	0.99789	0.96726
0.		01855	1,08163	1,04837	1.00043	0.96807
1.		01616	1,08613	1.04799	1.00303	0.96885
1.		01391	1.09031	1,04757	1.00563	0.96961
1.		01178	1.09422	1.04711	1,00817	0.97035
1,	31,	00976	1,09787	1_04661	1,01062	0,97107
1.	41.	00784	1.10148	1.04607	1,01298	0.97177
1.		00602	1.10448	1.04550	1.01523	0.07244
1.	61,	00428	1.10749	1.04489	1.01736	0.97310
1.	7. 1.	00262	1.11031	1.04424	1.01938	0.97373
1.	8 1.	00103	1.11296	1,04355	1.02129	0,97434
1.		99951	1,11545	1.04283	1,02308	0.97493
2,		99804	1,11780	1.04207	1.02477	0,97551
2,	- ' -	99526	1.12210	1,04045	1.02786	0.97659
2.		99267	1,12593	1,03869	1,03057	0.97759
2.		99023	1,12934	1,03680	1.03295	0.97852
2.	80.	98793	1.13238	1.03477	1.03504	0.97937
3.	0 0	98574	1.13509	1,03263	1.03686	0.98015
3,	20.	98365	1,13751	1,03036	1.03845	0.98086
3.		98165	1,13967	1.02798	1,03982	0.98150
3.		97972	1,14159	1,02550	1.04101	0.98208
3,		97786	1,14330	1,02291	1.04202	0,98259
4		97606	1 14481	1.02022	1,04289	0,98303
4		97432	1,14614	1.01745	1,04361	0.98342
4.	-	97261	1.14731	1.01459	1.04420	0,98374
4.		97096	1.14834	1.01165	1.04468	0.98402
4		96933	1.14923	1.00865	1,04506	0.98423
5.		96775	1:15000	1.00557	1.04534	0.98440
			4.1 			

зi $\overline{0}$

VAPORISATION EFFICIENCIES.

5 :!

łŗ

VAPORISA	ITON ELLE	CIENCIES.			
PLATE= 7				COMPONENT	_ • •
TIME	1	5	3	4	2
0.0 1	.05000	1,02000	1,05000	0.99000	0.96000
•	03480	1.01924	1.03950	0.98011	0,95139
•	.02026	1.01758	1.02911	0.97036	0.94289
	00667	1,01553	1,01920	0.96120	0.93481
•	99449	1,01373	1,01030	0,95343	0.92765
· .	98422	1.01289	1 00298	0.94/75	0,92195
	97625	1.01355	0 99768	0.94454	0.91810
· •	97070	1,01598	0,99458	0.94384	0.91629
· · · •	.96738	1.02015	0.99354	0.94539	0.91638
	96593	1.02574	0.99420	0.94874	0.91805
	.96583	1.03233	0.99608	0.95336	0.92087
· · · · · · · · · · · · · · · · · · ·	· · · · ·	1,03948	0 99873	0.95875	0.92441
	.96664	1,04683	1.00176	0.96451	0.92833
•	.96796		1.00489	0.97034	0.93236
	,96951	1.05411	•	0.97605	0.93634
•	.97110	1.06113	1.00793	0.98151	0.94015
	.97261	1.06780	1.01078		0.94374
· · · · ·	97398	1,07407	1,01336	0.98667	0.94708
	,97519	1.07992	1,01566	0.99149	
	97622	1.08537	1.01768	0.99597	0,95019
	,97707	1.09042	1,01943	1.00012	0.95305
•	.97778	1.09511	1.02092	1.00397	0.95570
	97878	1,10352	1.02322	1.01083	0,96041
2.4 0	,97934	1,11081	1.02474	1,01673	0.96447
2.6 0	97957	1,11718	1.02564	1.02183	0.96799
2,8 0	,97957	1,12280	1.02602	1,02628	0.97109
3.0 0	, 97939	1.12779	1,02598	1.03018	0.97384
3,2 0	.97909	1.13224	1,02559	1,03364	0.97632
	97871	1,13626	1,02491	1.03671	0.97856
	97827	1.13989	1,02397	1,03946	0.98062
	97779	1,14321	1,02285	1.04194	0,98251
•	97728	1.14624	1,02150	1.04419	0.98426
• • •	97676	1,14902	1,02000	1,04623	0.98589
•	97674	1.15159	1,01837	1.04810	0,98741
	97572	1,15397	1.01662	1,04981	0.98884
•	97520	1,15618	1 01475	1,05138	0.99019
•	.97469	1.15824	1,01279	1.05284	0.99146
· · · · · · · · · · · · · · · · · · ·	•••••		• •		

Н9

VAPORISATION EFFICIENCIES.	
VADADD # 6 A T T A H E E T A T E H A T E C	
VAPURISALIUN EFFICIENCIES.	
PLATE= 8 COMPONENT	_ ·
TIME 1 2 3 4	5
0,0 1,05000 1,02000 1,05000 0,90000 0	.96000
0,1 1,04525 1,02953 1,05000 0,99001 0	.96100
0,2 1,04095 1,03822 1,04998 0,99004 0	.96201
0,3 1,03705 1,04618 1,04996 0,99022 0	.96303
	.96405
	.96507
0,6 1,02729 1,06654 1,04984 0,99392 0	,96610
	.96714
	.96819
	.96924
	.97030
	,97136
	.97243
	.97351
	.97460
	.97569
	.97679
	.97790
	.97901
	.98013
	98125
	98353
	98582
	98815
	99049
	.99286
	99525
	99766
	.00009
	.00254
	.00500
	.00747
	.00995
	01244
	.01493
	.01743

۱^۱

1 5

VAPOR	ISATION EF	FICIENCIES.	•		
CONDE	NSER.			COMPONE	VT
TIME	<u> </u>	2	3	4	5
0.0	1,05000	1,02000	1.05000	0.99000	0.96000
0.1	1.05474	1.03888	1 05953	0.99900	0.96973
0.Z	1 05826	1,05548	1.06744	1.00650	0.97801
0.3	1 06089	1.07023	1.07409	1.01298	0.98516
0.4	1.06286	1.08343	1 07975	1.01898	0,99143
0.5	1.06433	1,09533	1 08461	1.02489	0.99699
	1.06543	1,10613	1,08882	1.03083	1.00197
0.6		1.11599	1.09247	1,03674	1,00647
0.7	1,06624	1.12502	1.09567	1.04257	1.01057
8_0	1,06683		1.09847	1.04824	1.01433
0.9	1,06723	1,13332		1.05371	1.01780
1.0	1.06750	1.14100	1.10095	1.05894	1.02102
1.1	1,06766	1,14811	1,10310	·	1.02401
.1.2	1.06773	1.15473	1,10501	1,06592	1 02682
1.3	1,06773	1,16089	1,10669	1.06864	1.02945
1.4	1,06767	1,16666	1,10817	1,07311	
1.5	1,06757	1.17206	1.10946	1.07734	1.03194
1.6	1.06744	1,17713	1,11059	1.08134	1.03429
1.7	1,06727	1,18190	1,11157	1.08511	1.03651
1,8	1,06709	1,18640	1.11241	1.08868	1.03863
1,9	1,06688	1,19065	1,11313	1,00205	1.04065
2.0	1.06667	1.19467	1,11375	1.09524	1.04258
5.5	1,06621	1,20209	1,11461	1,10112	1.04620
2.4	1,06572	1,20879	1,11513	1,10641	1.04954
2.6	1,06523	1.21487	1,11532	1,11118	1,05263
2,8	1,06474	1.22042	1,11522	1.11551	1.05552
3.0	1,06425	1,22550	1,11487	1.11944	1,05822
3.2	1,06377	1.23017	1,11429	1,12305	1,06076
3.4	1,06331	1.23447	1,11350	1.12632	1,06315
3.6	1,06286	1,23846	1,11251	1.12934	1.06541
3 8	1.06242	1.24216	1.11136	1,13213	1,06/55
4.0	1,06200	1.24560	1,11005	1,13471	1,06958
4 2	1 06159	1.24881	1 10859	1,13709	1.07151
4.4		1,25181	1,10700	1,13931	1.07335
4.6	1.06083	1.25463	1 10529	1.14138	1.07510
4.8	1.06047	1,25727	1 10347	1 14531	1.07677
5,0	1.06012	1.25976	1 10156	1,14512	1.07836
. J.V.	I . WWVIE	1		• · · · · · · · · · · · · · · · · · · ·	

്

1è

. . . •. . •