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Abstract

This thesis describes the dimer method, which is an algorithm that can be used to find
state transitions in an atomistic system, and the application of this method to two dif-
ferent atomistic diffusion problems.

The dimer method is an algorithm that locates the saddle points of a potential field
of arbitrary dimensionality. These saddle points correspond to the points of transition
between metastable states of an atomistic system. A number of improvements to the
algorithm of the dimer method have been described and implemented in this work.

The first atomistic problem to be described is the diffusion of Au adatoms on a face-
centred cubic Au(100) surface. By applying the dimer method to this system, a number
of state transitions involving varying numbers of atoms are discovered, from the initial
conﬁgpration of a single adatom on the surface and from configurations of two adatoms
close together. The energy barriers are given for the transitions that appeared in the
searches. From all of these initial setups, the preferred diffusion mechanism is a simple
hop of one adatom to a diagonally adjacent hollow site on the surface. The results are
compared and contrasted with previous studies of Al/Al(100) adatom diffusion, which is
a similar system, but in which concerted exchanges of adatoms with surface atoms have
the lowest energy barriers and are therefore the most probable mechanisms.

The second problem studied in this thesis is the diffusion of point defects in bulk
a-Fe with and without P impurities. This problem is important to the study of the em-
brittlement of steel nuclear pressure vessels. Both ffacancy-driven and interstitial-driven
diffusion are considered. The dimer method is used to find the transition mechanisms

and energy barriers in these defect systems. Transitions are discovered in which a va-



ii

cancy or an Fe-Fe dumbbell moves between positions at different displacements from
a substitutional P atom. Kinetic Monte Carlo simulations are then performed at five
different temperatures on three a-Fe defect systems: an isolated vacancy, a P-vacancy
complex and a P interstitial defect. The results show that the isolated vacancy and P
interstitial systems obey the Arrhenius relation, but the P—vacancy complex does not
obey this relation. The P—vacancy complex is the least mobile of these defect systems,
and the P interstitial defect is the most mobile, and hence an important process by which
P impurity atoms can migrate to the grain boundaries of irradiated steel nuclear pressure

vessels.
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Chapter 1

Introduction

An important branch of modern materials science is the investigation of how materials
behave on the atomic scale. Computer modelling plays a major part in these studies.
A common form of this modelling is molecular dynamics (MD) simulation, in which
the movements of the individual atoms that make up the material are simulated over a
span of time. Examples of the ways in which MD simulation has been applied include
nanoindentation and nanoscratching [1], used to measure material properties such as
hardness and friction, and collision cascades used to simulate the damage caused by
radiation on a bulk crystal [2].

MD simulation is performed by using a numerical ordinary differential equation (ODE)
integration algorithm to integrate Newton’s equations of motion, making use of an in-
teratomic potential to model the interactions between atoms. The distances between
atoms are of the angstrom order of magnitude, meaning that only microscopic quantities
of material can meaningfully be modelled using MD. Atoms vibrate on the timescale of
femtoseconds, and this sets an upper limit on the size of the timestep that can be used
in an MD simulation. As such, there is a significant limit to the length of time that can
be simulated using MD in a reasonable amount of computing time.

The theory of MD has been studied over many years. Various techniques have been
~ described and implemented to optimise the calculations that are involved in an MD

simulation. Computing power has also increased by orders of magnitude over the last few

1




2 CHAPTER 1. INTRODUCTION

decades, meaning that larger systems and longer timescales can be modelled with MD
simulation now than were possible in the past. Parallel processing has also increased the
speed at which simulations can be performed on large systems. However, on the fastest
machines available today, even the millisecond timescale is still beyond the reach of MD

simulation without modifications to the underlying principle.

To overcome this difficulty, several accelerated dynamics methods have been devel-
oped [3]. The basic MD technique is sometimes referred to as classical MD to differentiate
it from these methods. Accelerated dynamics methods mostly work on the MD principle,
but incorporate modifications to the principle to increase the length of time that can be
simulated in the same amount of computing time. Methods of this kind include parallel
replica dynamics [4], temperature accelerated dynamics [5, 6] and hyperdynamics (7, 8].
Another accelerated dynamics method is kinetic Monte Carlo (KMC) [9], which is not
based on MD, but is event-driven. To date, most applications of these techniques have
been to surface problems, such as island ripening and crystal growth [3]. In this work,

KMC is adapted and applied to a problem involving bulk material.

Accelerated dynamics techniques are based on transition state theory (TST), which
is based on the treatment of the evolution of an atomistic system as a sequence of tramn-
sitions between metastable states. Each of these states corresponds to a local minimum
in a 3N-dimensional potential surface describing the atomistic system, where N is the
total number of atoms. For a transition to occur, a sufficient amount of energy must be
localised. This is the energy barrier, and it is equal to the potential energy difference be-
tween the saddle point connecting the two potential energy basins and the local minimum

corresponding to the initial state of the transition.

In the MD-based accelerated dynamics methods, transitions between states are de-
tected as they occur during the simulation. In KMC, on the other hand, knowledge of
the possible transitions is the driving force. This information can be provided to the
simulation as a static, predefined event table, or it can be generated as the simulation
progresses; this latter approach is known as on-the-fly KMC (OFKMC). In this work,
KMC is performed using a predefined event table. To perform KMC, it is necessary to




have a means of discovering the transitions that are possible from each state that is en-
countered, and the corresponding energy barriers. There are various algorithms that can
be used for this, which work by locating the saddle points of the potential energy surface.
In this work, the dimer method [10] is used to locate these saddle points, and therefore
determine the transitions in the systems being studied and their associated energy barri-
ers. This method relies only on the first derivatives of the potential function, and on the
initial state from which transitions are to be found. A significant portion of the work of

thig thesis is therefore involved in implementing and applying the dimer method.

The main problem to which the methods are applied in this work is the study of point
defects involving P impurity atoms in bulk a-Fe. This problem was chosen because it is
important to the study of steel nuclear pressure vessels (NPVs). Steel is an alloy composed
mainly of Fe and containing a number of elements, some of which are impurities. Of these
impurities, P atoms in particular are known to segregate towards the grain boundaries
of the steel. When the NPV is subjected to radiation or enhanced temperature, the
impurities become more mobile, thereby enhancing the segregation of P atoms to the
grain boundaries, and this is thought to be a major cause of embrittlement [11, 12, 13, 14].
This can lead to a serious reduction in the lifetime of NPVs. It is therefore very important
to be able to understand the mechanisms by which this segregation takes place, both to
predict the mechanical properties of the NPVs as a function of time and to give pointers
towards measures that could be taken to reduce the embrittlement problem. To estimate
the changes in properties that occur over time at grain boundaries, engineers often use
rate theory models [15, 16]. These can give useful information but require the diffusion
rates of the various impurity elements as input parameters. These are often not known

experimentally.

To understand better the effect of radiation on the impurity elements in NPVs, molec-
ular dynamics (MD) simulations have been carried out [2]. These simulations were per-
formed in o-Fe with a certain concentration of substitutional P impurities, and identified
a number of features that require long-timescale analysis. In this work, some of the defect

structures that were found in the results of these simulations are studied using the dimer




4 CHAPTER 1. INTRODUCTION

method and a newer, more sophisticated interatomic potential than that used in the MD

simulations.

It has also been proposed that substitutional P atoms could diffuse through the lattice
more easily if they were situated close to a vacancy [17]. If this were to be the case, then
the production of vacancies by the collision cascades would be an important factor in the
enhancement of P segregation. Thus it is of interest to understand the mechanisms by
which P atoms diffuse through a-Fe. The problem is addressed in detail in this work,
with the intention of determining the diffusion constants for the most common defect

systems.

1.1 Thesis structure

Chapter 2 gives a detailed theoretical description of molecular modelling, including some
of the most commonly used interatomic potentials describing how the atoms interact
with each other. Interatomic potentials are the driving force behind all forms of molec-
ular modelling. Many interatomic potentials exist for different materials; there are also
different potentials for the same material of which some may be more accurate than
others, or which may be optimised to different phases or arrangements of the materials
involved. The chapter then describes how classical MD simulation works, including some
ways in which the technique can be optimised. Also given is an overview of some of
the accelerated dynamics methods used to perform simulations on timescales longer than

those that can be reached using classical MD.

The dimer method is involved in most of the work of this thesis. Chapter 3 explains
this algorithm, including modifications that have been implemented to make the algo-
rithm more efficient and how it has been adapted to the problems being studied. Some
benchmarks are given to compare the results obtained by varying the parameters on a
simple system, and to test some of the modifications to the algorithm to see if they

achieve the desired improvements.
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In Chapter 4, the dimer method is applied to the diffusion of an Au adatom on the
(100) surface of face-centred cubic Au. This was chosen as a simple atomistic system on
which our implementation of the dimer method could be tested. Energy barriers are given
for transitions from a single-adatom configuration and various two-adatom configurations.
The results are compared with those that were previously found for an Al atom on the
Al{100) surface.

The dimer method is then applied to the main problem of this work in Chapter 5.
This involves looking at common point defect structures in body-centred cubic Fe. For
this study, two different potential models have been used: an Ackland Fe-Fe potential [18]
together with a Morse potential for the Fe-P and P-P interactions, and a newer Ackland
potential [19] designed to model o-Fe containing P impurities. Four different kinds of
defects are covered: an isolated Fe vacancy, an isolated Fe seli-interstitial, a P—vacancy
complex and a P interstitial defect, each of which can occur in various configurations.

By finding the transitions and energy barriers for the Fe and Fe-P defect structures,
an event table is constructed to be used for the KMC work of Chapter 6. The KMC
method is explained in detail, including the specific details of the implementation that
has been used for this work. Three defect systems are studied: an isolated vacancy, a P-
vacancy complex and a P interstitial defect. For each of these systems, KMC is performed
at five different temperatures, and the diffusion constants are calculated and compared.
This makes it possible to determine whether these systems obey the Arrhenius relation,
which is a functional form relating diffusion constant to temperature in typical systems.

Finally, Chapter 7 gives conclusions on the work of this thesis. The results of the
studies that have been conducted are summarised and discussed, and suggestions for

future work in this field are suggested.
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Chapter 2

Molecular modelling

2.1 Interatomic potentials

To model the interactions between atoms, many different interatomic potentials have been
developed for a variety of materials. These are functions used to calculate the potential
energy of a system of atoms, and hence to determine the forces acting upon the atoms
that make up the system. Potentials are typically developed by deciding on a functional
form and then fitting the parameters to a finite set of experimental results.

A more recent development is that of ab initio methods for modelling interatomic
interactions. These methods determine the properties of the elements being modelled,
and hence how the atoms interact, given only the atomic number and atomic mass of
each element. Typically, approaches such as density functional theory are used for this.
These methods can in theory produce more accurate results than those obtained by
using empirical potentials. However, ab initio calculations are more complicated and
computationally expensive than the empirical potentials, so are typically used to model
no more than a few hundred atoms at a time. Therefore, approximate potentials continue
to be developed, variously using experimental or ab initio results as fitting data, and used
for larger atomistic systems.

Some potentials are pairwise, i.e. they consider only the interactions between two

atoms at a time. A pairwise potential is essentially a function of the distance between

7
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two atoms. When such a potential is applied to a system of more than two atoms, the
potential energy calculated for the system is equal to the sum of the potential energies
calculated for all pairs of atoms in the system:
N-1 N
U=3% 3 Vilry) (2.1)
i=1 j=i+l
where Vj; is the pairwise potential energy function itself, r;; is the distance between two
atoms ¢ and j, and N is the total number of atoms in the system. The function V;; itself
depends on the elements to which atoms ¢ and j belong. Usually when there is more
than one element, the V; functions are of the same functional form but take different
parameters. For a pairwise potential, it is necessary that the function is symmetric with
respect to the order in which two elements are given, i.e. Vj; and Vj; are the same function.
In practice for many systems, while the sum of pairwise interactions may give an
accurate indication of the cohesive energy of a system, they often fail to model such
things as the elastic properties accurately. As such, pairwise potentials cannot accurately
model such systems. For these, there are many-body potentials, which do not make this
assumption but consider the interactions between atoms in larger groups.

The following are some examples of interatomic potentials:

e The Brenner [20, 21] potential for modelling hydrocarbons and chemical vapour

deposition (CVD) diamond growth.

e The embedded atom [22, 23] and Ackland [18, 19, 24] potentials, many-body po-

tentials often used to model metals.

e The Morse [25, 26] potential, a pairwise potential designed for the modelling of

diatomic molecules and some face-centred cubic (fcc) metals.

e The Stillinger-Weber [27] and Tersoff [28, 29] potentials, designed for covalently

bonded materials.

e The Ziegler-Biersack-Littmark {(ZBL) [30] universal potential for modelling close-

range interactions in many materials.
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2.1.1 Embedded atom method

The embedded atom method {EAM) was developed by Daw and Baskes [22, 23], and
originally used to model impurities such as hydrogen in metals. The principle is that
each atom is regarded as being embedded in a field of electrons. The potential function

has the form

Filpi) + 3 3" Viglry) (22)

JF

v-3

where p; is the electron density of the local environment from which the contribution of
atom % has been subtracted. This is approximated as the sum of the contributions of

atoms other than ¢ to the electron density at the location of ¢ itself, i.e.

pi = ¢i(ry). (2:3)

J#i

In the original EAM potential, the pairwise interaction takes the form
(2.4)

The F and Z functions are defined by cubic splines.
Other interatomic potentials based on the EAM principle have been developed, in-
cluding the Finnis-Sinclair potential [31] and the Ackland potential described in the next

section.

2.1.2 Ackland potential

The Ackland potential is a many-body potential based on a cubic spline function fitted
at separation distances around the lattice parameter distance. Parameterisations of the
Ackland potential have previously been developed for pure metals, including Cu, Ag, Au,
Ni [24] and Fe [18]. A more recent development is that of a parameterisation suited to

the study of P impurities in a-Fe [19), and this is the potential that has been used for

most of this work.
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The potential energy of a system of atoms modelled by the Ackland potential takes

the form

N N
U= Z [ E Vij(riz) + Fips) (2.5)

i=1 [j=i+1

where r; is the distance between two atoms ¢ and 7, and
pi =Y ¢i(riz). (2.6)
i#
The Vj;(ry;) component represents pairwise interactions between atoms, and the F;(p;)

term encapsulates the effect of electronic kinetic energy (a many-body effect)} on the

behaviour of the atoms. The functions involved take the forms

V(r) = % ar(ry — > H{rg — 1) (2.7)
Flp) = —vp+ew” +cyp (2.8)
¢(T) = ; Ak(Rk - ’l")3 H(Rk — T) (29)

where H is the Heaviside unit-step function, and the parameters are dependent on the
elements involved (the i and j subscripts have been omitted for clarity). Of the parameters
for a given pair of elements, the greatest of the Ry and ry values is the value 7. such that
V{r) = ¢(r) = 0 for all r > r.. The value r, can thus be regarded as a cut-off distance,
and evaluation of the potential can be .optimised by considering only atom pairs such
that ry; < 7, where the correct r, value is chosen for the species of the atoms ¢ and j.
This is achieved by using a neighbour list structure, as will be described in section 2.2.1.

However, there is a serious limitation in the functional form of the Ackland poten-
tial. In reality, as the separation distance between atoms decreases, the potential energy
increases without limit, guaranteeing that two atoms can never occupy the same point.
This effect cannot be correctly modelled by the potential in this form, since it is built from
a finite set of cubic polynomial functions and so cannot increase unboundedly as r — 0.
To overcome this difficulty, in this work the ZBL potential has been used in place of V (r)
for close-range interactions, and a connecting spline has been defined. Section 2.1.8 gives

more information on the connecting spline and how it is used.
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Parameters for Au

Au has a face-centred cubic (fcc) structure, with a lattice parameter of r = 4.078 A.
For the Au work of Chapter 4, the Ackland potential was used with the parameters
taken from [24]. Tables 2.1 and 2.2 give these parameters. For the embedding function,

F(p) = —/p is used.

Eooap(eV)  nmo(A) (rn/ro)?
1 200501 4995  3/2

2 —153.148 4,709 4/3

3 148.179 4.559 5/4
4
5
6

—22.2051 4.078 1
72.714 6 3.532 3/4
199.263  2.8%4 1/2

Table 2.1: The Ackland potential parameters used for Au-Au pairwise interaction.

k Ap(eV®) Ry (A) (Ru/ru)?
1 21.9301 4.559 5/4
2 284996  3.532 3/2

Table 2.2: The Ackland potential parameters used for Au—Au many-body interaction,

Parameters for Fe and P

The potential for Fe with P impurities is inherently more complicated than that of pure
Au. Since there are two elements, three different V' functions are defined, namely those

for Fe—Fe, Fe-P and P-P interactions. Correspondingly, there are three parameterisations

of the ¢ function, and two of F.
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Fe has a body-centred cubic {bec) structure, with a lattice parameter of 2.855 A. The

parameters taken from [19] were used in this work. Table 2.3 gives the parameters of the

pairwise Fe—Fe interactions.

k ar, (eV) x (&)
1 -0.003 04588 5.3

2 —0.0585318 4.7

3 0.350 186 4.2

4  —1.026 04 3.7

d 2.657 74 3.3
6

7

8

9

—2.319 44 3.0
0.806 564 2.8
—0.773 613 2.7
4.209 97 2.6

10 —2.498 98 2.9

11 220771 2.4
12 157381 2.3
13 —27.444 8 2.2

Table 2.3: The Ackland potential parameters used for Fe-Fe pairwise interaction.

The Fe-P and P-P pairwise interactions do not follow the standard Ackland potential

formula. Instead, a single polynomial function is used in place of the cubic spline. The

functions are defined as

1VF@—P (T)

VP_P(T‘)

0.0257790(5.3 — r)™* — 0.396984(5.3 — r)*° + 2.54943(5.3 — r)°

— 8.81207(5.3 — r)® + 17.6293(5.3 — r)7" — 20.3617(5.3 — r)®
+12.6252(5.3 — r)® — 3.31366(5.3 — r)* (2.10)
0.037557(5.3 — r)® — 0.0782938(5.3 — r)*. (2.11)
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ko A (eV?) Ry (A)
1 0471935 42
2
3

—0.014 710 7 3.2
11.686 9 24

Table 2.4: The Ackland potential parameters used for Fe—Fe many-body interaction.

For the many-body interactions, we use the parameters in Table 2.4 for the Fe-Fe

interactions, and

7 2
¢Fe—P(T) = (g) ¢FeFe (1‘) (212)
7 4
sorlr) = (5) drmelr). (219
for the Fe-P and P-P interactions. The embedding functions are
Fre(p) = —+/p—6.73141 x 107%p® + 7.65149 % 1078p* (2.14)
Fp(p) = —+/p-+0.001195030°. (2.15)

2.1.3 Morse potential

The Morse potential [25, 26] is a simple pairwise potential, typically used to model di-
atomic molecules. It is also used to model some face-centred cubic metals for which a
pairwise potential has been found to give a reasonable result. The Morse potential has
also been used for other applications, such as to model Fe-P and P-P interactions, and
applied to the modelling of P impurities in Fe [32].

The potential function is
V(r) = D(e¥(r-r) — 2¢2(ro=r)) | (2.16)

where o and D are respectively the interatomic distance and potential energy depth at
equilibrium of the diatomic molecule.
This potential has no built-in cut-off distance. Under the functional form above,

V(r) = 0 only for a single value r = ro — 2. In order to implement the optimisation



14 CHAPTER 2. MOLECULAR MODELLING

described in section 2.2.1, it is necessary to modify the potential to have a cut-off distance.
This is typically done by using a spline function beyond a certain distance at which the
potential energy is small, to connect it smoothly to zero at the cut-off distance.

The Morse potential is also unsuitable for modelling close-range interactions. This
is because V(0) = D(e?*® — 2¢%0) is still a finite value. As such, as with the Ackland
and other potentials, it is essential to use a close-range potential such as ZBL instead for

interactions at very short distances.

2.1.4 Stillinger-Weber potential

The potential developed by Stillinger and Weber [27] can be used to model covalently-
bonded semiconductors such as silicon. These materials exhibit the diamond crystal
structure. This structure is unsuitable for modelling by means of a pairwise potential,
since such a potential cannot determine the diamond structure to be an energetically
favourable configuration. Rather, pairwise potentials stabilise materials towards more
compact structures in which each atom has many neighbours, such as the face-centred
cubic and hexagonal close-packed structures.

The Stillinger-Weber potential overcomes this difficulty by including a three-body
term. This is specially designed to stabilise the angle between bonds in the diamond
structure, which is cos™'{(—3) & 109.5°.

The Stillinger-Weber potential function takes the form

N-1 N 1y 2
U= > [Virg)+ > gl mie) (cos(?¢kj+§) } (2.17)

i=1 j=it1 ki,

where 0;; is the angle between the bonds ik and jk. It is readily seen that (cos Oir; + %)2

is zero when cos f; = —%, and positive otherwise. The functions V and g are defined by

A(Bp® — p~1) =071 if p<oa
0 if p>a

V (op) (2.18)

Aeler=a) " +(p2=a)™"] it 5 < g and pp < a
glopr,0p) = (2.19)
0 if pp2aorpy>a
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for p, p1,p2 < a. It can be seen that these functions and their derivatives approach zero
as p,p1,p2 — a~. Thus V and g are continuous and have continuous first derivatives.
The form of the function readily gives ao as the cut-off distance of the potential.

For Si, the parameters are A = 15.2849 ¢V, B = 0.602225, p = 4, ¢ = 0, a = 1.8,
M= 455323 eV, v = 1.2, ¢ = 2.0951 A.

2.1.5 Tersoff potential

The Tersoff potential, originally designed for the covalent C and Si systems [28], has also
been adapted for modelling multi-element systems of covalently bonded atoms [29]. The
potential is essentially a sum of interactions between pairs of atoms; however, it is not
a true pairwise potential, since the interaction between two atoms depends not only on
the distance between them but also on the local environment of each atom in the pair.
The potential energy function is

U =5 ST felrullinlra) +sSatro) (220)
where fj is a repulsive term like the first term in the Morse potential, f4 is an attractive
term, fo is a cut-off function that makes the potential zero smoothly over an interval
between the first and second neighbour distances, and b;; is a many-body term. They are

defined by

1 if Tig < _R,ij
folry) = % + %cos {%ﬁ—)] if Ry <rij < Sy (2.21)
0 if n-j 2 Sij
fr(ryg) = Aye™ ™ (2.22)
fa(ry) = —Biye ™™ (2.23)
by = (1 +BPGy) (2.24)
Gy = Y folra)w 1+§— 5 (2.25)
v k#i,j C I d;z d? + (h,, — COS Bg-jk)z ' |

Most of the two-element parameters are defined simply in terms of one-element param-

eters. Two of these are arithmetic means, A;; = 2(\; + ;) and pi; = $(ui + p5). A
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further four are geometric means, A;; = (/A;A; and similarly B;;, Ri; and Sj. This
leaves only two element-pair parameters independent of the single-element parameters,
xij and w;;. These parameters are always 1 between atoms of the same element, and

defined symmetrically (x;; = X;i) between atoms of different elements.

C Si
A(eV) 13936 x10°  1.8308 x 103
B(eV) 34670x 102  4.7118 x 107

A (A1) 3.4879 2.4799
(A7 22119 1.7322
8 1.5724 x 10~7  1.1000 x 107 ‘
n 7.2751 x 1071 7.8734 x 107}
c 3.8049 x 101 1.0039 x 10°
d 4.3840 1.6217 x 10!
h —5.7058 x 1071 —5.9825 x 107!
R(A) 18 2.7
S(A) 21 3.0

Table 2.5: The Tersoff potential parameters for C and Si interaction.

Table 2.5 gives the parameters for C-C and Si-Si interaction. Because of the way
the Tersoff potential works, to model C-Si interactions one needs to know only these

parameters and the element-pair parameters xcs; = 0.9776 and wegi = 1.

2.1.6 Coulomb potential

In ionic compounds, the atoms are held together by attractive forces between positively
and negatively charged ions. This attractive force is governed by a simple pairwise po-

tential function

_ N1
Ve(r) = e (2.26)
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where ¢; and g, are the electrical charges of the respective ions and € ~ 8.85 x 10712 C?
N~ m~2 is the electrical permittivity of the vacuum. It can be readily seen that if ¢; and
g2 are both positive or both negative, V,(r) is positive and diverges to positive infinity as
r — 0, creating a repulsive force. On the other hand, if ¢; and ¢, are of opposite sign,
Ve(r) is negative, causing the ions to be attracted to each other.

When the separation distance is given in A, and the ionic charges are given in units

of the elementary charge, the energy in eV can be thus calculated by

_ 14,3998 q142

Vi(r) = =

(2.27)

The Coulomb potential models only the interactions between atoms as the result of
ionic charge. As such, this form by itself would cause positive and negative ions to
come together to occupy the same point in space, which is impossible. In practice, the
overlapping electron clouds of the two atoms will create a repulsive force between the
atomic nuclei as the atoms approach each other, counterbalancing the ionic attraction.
It is thus necessary to combine the Coulomb potential with another potential, such as
the Buckingham potential [33], to take this into account.

The Coulomb potential is long-ranged compared with most interatomic potentials. As
such, a simple neighbour list implementation as described in section 2.2.1 is not an efficient
and accurate means of evaluating Coulombic interactions. Instead, special algorihtms are
used to evaluate the potential energy and forces that account for these interactions. An
example is the Distributed Paralle] Multipole Tree Algorithm (DPMTA), which is based
on the Fast Multipole Method [34]. This reduces the process of evaluating the Coulomb
potential for N atoms from O{N?) to O(N log N) time complexity.

2.1.7 Ziegler-Biersack-Littmark (ZBL) potential

The potential developed by Ziegler, Biersack and Littmark [30] is a pairwise potential
used to model close-range interactions. It is an improvement of the earlier screened
Coulomb potential [35]. At small distances, the main interaction between atoms is the

Coulombic repulsion of their nuclei. As the distance increases, the surrounding electrons
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come into play, gradually screening the positive nuclear charges from each other and thus
decreasing the repulsion.
The ZBL potential function is thus obtained by multiplying the Coulombic potential

energy between nuclei by a function ¢(r) that represents the electron screening. The

potential energy in eV is defined by

Vi = W398 Az (2.28)

r
(}’3(?") = 0.181756-3'1998”% + 0_509866—0-94229?”/%. + 0.280228—0.40291‘/%

+ 0.028171¢~020162r/au (2.29)
0.468377

ay = (2.30)
/Z12/3_|_ Z22/3

where Z; and Zy are the atomic numbers of the elements being considered.

It can be seen that ¢(r) decreases towards zero as r increases, hence the ZBL potential
is strictly repulsive. Since ¢(0) = 1, as r — 0 the potential energy approaches that of

pure Coulombic repulsion between the nuclei of the two atoms.

400 -
300 4

200 -

Potential energy (keV)
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o
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Distance (A)

Figure 2.1: The ZBL potential appplied to Fe-Fe interaction (solid line) and the potential

energy associated with simple Coulombic repulsion of Fe nuclei (dashed line).

At distances around and beyond the nearest neighbour distance of the atomic lattice,

Coulombic repulsion of nuclei practically disappears and other forces predominate. Thus
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the ZBL potential is useful only to model interactions at distances smaller than some
value typically between 1 A and 2 A, as may occur during the simulation of a collision
cascade. Therefore, it is common to configure simulations to use the ZBL potential only
when the distance between atoms is sufficiently small, with a suitable potential chosen
for greater distances and a connecting spline between the two. See section 2.1.8 for more

about how this is done.

2.1.8 Connecting spline function

Often it is necessary to define a potential function to connect a potential used for close-
range interactions, such as the ZBL potential, to one used for interactions at distances
around the bond lengths of the material and beyond. This connecting function is a single-
segment spline interpolation between the extremities of the distance ranges to which the
two potentials are respectively applied.

For this work, the functional form
VS’(T) — eBo+B1r+BzT2+Bs'r3‘ (2.31)

was used for the spline function. A four-parameter functional form is used because it must
be fitted to four known values in order to connect smoothly with the close-range potential
and the potential used around the bonding distance, so that V{r) is.continuous and has
continuous first derivatives across all r > 0. Since the forces acting at the intermediate
distance are essentially repulsive, the function should have no local maximum or minimum
within the range of distances to which it is applied, as would tend to occur if a simple
polynomial function is used. Studies have shown that the exponential form that has been
chosen tends to produce a strictly decreasing potential energy curve over the applicable
range of distances.

To fit the coeflicients in the connecting function, we solve the simultaneous equations

Vs(rr) = Vi(rz) (2.32)
Vg(re) = Vi(ri) (2.33)
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Vs(ru) = Vylro) (2.34)
Vilro) = Vylro) (2.35)

where Vs is the connecting spline function, ry and ry are the lower and upper bounds of r
for which Vg is being used, and Vz, and Vi are the pairwise components of the potentials
chosen for r < rz and r > ry respectively.

If a many-body potential is being used for r > ry, then its many-body component
(what is left after Vi is subtracted) is applied across all atoms of elements to which it
applies, regardless of their separation distance. Thus many-body effects are taken to apply
across all separation distances, with pairwise interactions being calculated by a function
dependent on the distance between atoms and added to the many-body component to
determine the total potential energy.

In this work, a connecting spline was used to connect the Ackland and ZBL potentials
in the Au and Fe—P systems. For Au, the spline was used for the range 1.7 A<r<2854.
This range was chosen as it was found to give a good approximation of the potential
energy and force of the Ackland and ZBL potentials near its respective boundaries, and a
good compromise between the predictions of both potentials over its range. Solving the

equations of continuity gives

- _ 2. 3
VS(T‘) — e8.08776 2.29308r —1.13806r°-0.0622234r . (236)

Figures 2.2 and 2.3 illustrate the continuity of this spline function with the Ackland and
ZBL potentials.

For the Fe and P system, the range over which the spline was applied was that used

by Ackland. The spline functions are

Vieore(r) = 741227 -0.641807r ~2.60435r2 —0.626254r° (1.0 < r < 2.05) (2.37)
Veop(r) = ¢107619-10.0040r—4.98543r2-1.25008° (7 (j . <2.0) (2.38)

VPaP(T) — eg.93828—8.563727‘—3.45196?‘2—0.6145381’3 (0.9<T< 25) (239)
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Figure 2.2: Graph of V(r) for Au—Au interaction. The spline function connects the ZBL
* potential {(r < 1.7) and the pairwise part of Ackland’s potential function (r > 2.85).
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Figure 2.3: Graph of —V/(r) for Au-Au interaction. The spline function connects the

ZBL potential (r < 1.7) and the Ackland pairwise function (r > 2.85).
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2.2 Molecular dynamics simulation

The classical molecular dynamics (MD) approach uses a numerical algorithm to integrate
Newton’s equations of motion. The analytical first derivative of the potential function,
with respect to the coordinates of the atoms in the system, gives the force acting upon
the system. By using any of various numerical methods to integrate ordinary differential

equations (ODEs}, the trajectory of the atoms in the system can be simulated.

This approach is adequate for the simulation of processes taking place over very
small timescales. However, because of the high frequency of atomic vibrations, very
small timesteps of the order of femtoseconds are needed. As such, simulations are often
terminated after tens of picoseconds, because the approach cannot be used for longer

timescales in a reasonable amount of computing time.

The LBOMD software, developed at Loughborough University, implements molecular
dynamics simulation. It can perform simulations of nanoindentation, collision cascades

and simple diffusion.

To advance the system from timestep to timestep, LBOMD uses the Velocity Verlet
algorithm. Whilst being only a second-order method, its advantage over other numerical
ODE integrators, such as the Runge-Kutta methods, is that it is symplectic, i.e. it pre-
serves Hamiltonian invariants, and hence is efficient at conserving the total energy of the

system over a large number of timesteps [35].

The Velocity Verlet method advances the trajectory of atoms using a fixed finite

timestep At. The position and velocity of atom 4 at each timestep are determined by

FH(An)2
USRI R At_i__il (2.40)
2mi
Fi 4 FFhA
Vz[k+1] _ V,Ek]+( i + )AL (2.41)
Zm,;

where ng] is the force vector acting upon atom i at the k’th timestep, and m; is the mass

of atom 1.
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2.2.1 Cut-off distances and neighbour lists

In principle, the formula for the total potential energy of the system considers all pos-
sible pairs of atoms in the system. This means that, for both pairwise and many-body
potentials, if all interactions are included then calculation of the total potential energy
of a system would be an O(N?) operation.

In practice, there is nearly always a distance beyond which the interaction between
two atoms becomes negligible. (The main exception is the Coulomb potential described
in section 2.1.6, for which other techniques are typically used.) Interatomic potentials
typically make use of this by having a cut-off distance, i.e. a distance beyond which the
potential energy associated with a pair of atoms is taken to be zero. By excluding such

pairs of atoms from the calculations, the efliciency can be increased considerably.

To achieve this improvement in elficiency, a neighbour list structure is used. This
lists, for every atom in the system, those atoms that are within the cut-off distance r.
plus a small defined length r,. This small length creates a ‘skin’ of atoms just outside a
given atom’s cut-off boundary. This allows for some movement of the atoms before it is

necessary to rebuild the neighbour list.

The simplest way to build a neighbour list is to iterate through all pairs of atoms and
pick out those pairs within the appropriate distance. However, this would take O(N?)
time to perform. The process is therefore optimised using a spatial decomposition. This
partitions space into a number of equal cuboid cells, with every side length equal to
at least the maximum cut-off distance in the system plus the skin thickness. That is,
for lattice dimensions L, X L, x L., we have M, x M, x M, cells, each of dimensions
lp x 1, x 1, where I ,1,,l. >= r.+ r,. If there are multiple interactions with different
cut-off distances, then the maximum of them must be taken. The algorithm assigns each
atom in turn to the correct cell, using a linked list structure so that the atoms of each

cell can then be iterated through. This is an O(/N) process.

The spatial decomposition is then used to build the neighbour list of every atom in

the system. An atom can have neighbours only in the same cell and in the immediately
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Figure 2.4: Schematic illustration of the spatial decomposition method of building the
neighbour list. The box of atoms is partitioned into cells, and the algorithm looks through
the atom lists of the shaded cells for neighbours of the atom with a bold border. The
result is that the shaded atoms are picked out. In this instance two atoms are in the skin
~ they do not interact with the central atom at the moment. but are included in case

they move to within the cut-off radius in the time between neighbour list updates.

adjacent cells (a maximum of 27 cells); Figure 2.4 illustrates this. The algorithm iterates
through the atom lists ol these cells to find atoms that are within the required distance.
Thus building the neighbour list has O(DN) time complexity, where D is the maximum
number of atoms in a cell of the spatial decomposition. Since 1) generally has an asymp-
totically linear relationship with the maximum numiber of an atom’s neighbours, it follows
that for systems of the same material in the same atomic density. the time taken to build
the neighbour list increases linearly with the system size.

To determine when it is time to rebuild the neighbour list. at each step of the MD
simulation a measurement is taken of how lar the atoms have moved since the neighbour
list was last constructed. If the distance between any two atoms not in each other's
neighbour lists has decreased by more than the skin thickness. then it is possible that
the two atoms have moved to within the cut-off distance of each other, and therefore the

pair needs to be included in the potential calculation. A simple O(N) calculation is used
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at each timestep to check for this possibility, which is to find the two atoms that are at
the greatest distances from where they were when the current neighbour list was built.
When the sum of these two greatest distances exceeds the skin thickness, the neighbour
list is rebuilt.

To calculate the potential energy and forces, only the interactions between atoms
that are within each other’s neighbour lists are considered. In equations such as (2.1)
and (2.5), the j sums are taken to include only those atoms that are in the neighbour list
of atom 7. The result is the same as that which would be calculated by including all atom
pairs (Z,7) in the sum; using the neighbour list simply speeds up the process, reducing

the time complexity of the potential calculation from O(N?) to O(DN).

2.2.2 Boundary conditions

A molecular dynamics simulation always takes place over a finite set of atoms over a
finite space. Often it is desirable to treat this space as a section of a larger body of
material. This is achieved by implementing periodic boundary conditions (PBC) in the
simulation. Effectively, the box of atoms is treated as if space is tiled with identical copies
of it extending indefinitely.

In a given simulation, PBC may be used in any or all of the three dimensions. A
simulation involving a surface, such as adatom diffusion, would be carried out with PBC
in two dimensions. Simulations involving bulk material, on the other hand, are generally
performed using PBC in all three dimensions.

PBC affect which atoms interact with each other, and hence influences the evaluation
of the potential. It also influences how the atom positions are updated, so that the atom
coordinates, in those dimensions where PBC are active, are always within those that
define the box.

When evaluating the potential energy and forces, it is necessary to consider which
atoms interact with each other not only within the box, but also across periodic bound-
aries. These atoms are identified as part of the process of building the neighbour lists. If

the = dimension has PBC, then in the spatial decomposition used in building the neigh-
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bour list, cells with 0 € < I, and L, — I, < x < L, are treated as adjacent to each
other if their ranges of y and z are equal or adjacent.

When building the neighbour list, a note is made of the direction(s) in which a neigh-
bour crosses a periodic boundary. This information is then used when evaluating the
potential and forces in order to calculate the interaction distance between the atoms.
Figure 2.5 illustrates the principle. For example, if atom j is across the periodic bound-
ary only in the positive = direction relative to atom i, then the distance between the

points (x;, ¥, ;) and (z; + L., y;, 2;) must be taken.

Figure 2.5: Schematic illustration of periodic boundary conditions applied in a single
dimension. The rectangle represents the box within which the simulation takes place,
and the shaded circles the atoms within it, which are the only atoms included in the
simulation data. This arrangement of atoms is considered to repeat itself either side of
the box (unshaded atoms). Consequently, the distance 7;; is taken to be the distance

between the atom ¢ and the atom j" in the adjacent periodic cell corresponding to j.

2.2.3 Parallel processing

Molecular dynamics simulation is inherently a computationally intensive process. One
reason is the very small timesteps, typically of the order of femtoseconds, that are required

to model the atomic vibrations. The second reason is the large number of atoms in a
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typical system. The angstrom scale of the interatomic distances means that billions of

atoms are required to model systems of any size approaching even a cubic micron.

This second cause of computational intensiveness can be countered by employing
many processors to perform the simulation, dividing the work of evaluating the potential

energy and forces at each timestep between the processors.

The simplest form of parallel MD is an atom decomposition (AD) method. In this
approach, each atom is assigned to a processor, and remains assigned to the same pro-
cessor throughout the simulation. Each processor has N/ P atoms assigned to it, where
P is the number of processors. The processor to which an atom is assigned is responsible
for calculating the forces acting on it and for updating its velocity and position vectors.
The inefficiency of the AD method is that each processor must know the coordinates of
all N atoms in the system at any time. Thus under a message-passing parallel paradigm,
each processor has its own copy of the system, occupying a very large amount of memory
and taking a significant amount of time to communicate the information between proces-
sors. However, using a shared memory parallel machine, in which all processors share a
single copy of the atomistic system, AD is an efficient parallelisation technique, and its

simplicity can be an advantage.

A variation of the AD technique is a force decomposition (FD) [36]. Under this
method, the force matrix is decomposed into rectangular blocks to be assigned to pro-
cessors. Each block has two sets of atoms associated with it: the exerting atoms and the
receiving atoms. Each processor calculates the effect of its block’s exerting atoms upon
its block’s receiving atoms. The forces on each receiving atom are consolidated into a
local sum, which is then summed across all blocks having the same receiving atom set in
order to update the position and velocity of each atom. The FD technique thus requires
less communication between processors than AD, since each processor needs to know
only the positions of atoms in its exerting and receiving sets. In an optimal setup with
a square number of processors assigned N /\/1_3 x N/ /P blocks of the force matrix, the
number of atom positions required by each processor is 2N/ vP— N /P. The subtracted
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term is achieved by a permutation of the force matrix so that every block has N/ P atoms

in the intersection of its exerting and receiving sets.

An alternative, implemented in LBOMD, is the spatial decomposition (SD) approach.
The box of atoms is subdivided into P cuboid regions. Each processor has assigned to it
the atoms that are within its region. This is similar to the atom decomposition approach,
except that a rigid principle determines which processor an atom is assigned to, and atoms
can move between processors. The assignment of atoms to processors by location can

considerably reduce the amount of communication between processors compared with

AD and FD.

Under SD, the only information that needs to be constantly passed between processors
is the positions of the atoms that are near the boundaries of the atom regions. This
enables each processor to calculate the potential energy and force applied to every atom
within its region, by having the coordinates of the atoms in neighbouring regions that
may be neighbours of its own atoms. It is convenient if each processor maintains a list
of atoms that it needs to pass to each of its neighbouring regions. At any time, the
neighbour list of any atom is a subset of the set of atoms that the processor to which
it is assigned has either in its own region or passed from neighbouring regions. For this
reason, the list of atoms whose coordinates are communicated between processors needs

to be updated only just before the neighbour list is updated.

Of course, an atom can move from one SD region to another. When this happens,
the processor to which it is assigned changes. This guarantees that the atom correctly
interacts with other atoms in its new region. Similarly, this needs to be done only when
atoms have moved sufficiently that it is time to rebuild the neighbour list. Thus when it is
time to build the neighbour list, there are three stages to the process: moving any atoms
that need to be moved between processors, building the list of atoms whose coordinates

will be passed to each neighbouring cell, and building the neighbour list itself.

Spatial decomposition as an approach to parallel MD is separate from the spatial

decomposition used to optimise the process of building the neighbour list as described in




r
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section 2.2.1. When SD parallelisation is used, the regions that are assigned to processors

are in turn subdivided in order to build the neighbour list.

2.3 Accelerated dynamics methods

Some atomic-scale processes, such as diffusion, are made up of events that rely on a
significant amount of energy being localised in order for them to happen, and are therefore
infrequent on the timescale of atomic vibrations. As such, classical MD simulation is
very limited in its ability to model these processes. Some studies of diffusion have been
successfully carried out using MD simulation, but the accuracy of any results obtained is

inherently limited by the accessible MD timescale.

To enable longer timescales to be modelled, several accelerated dynamics methods
have been developed, studied and reviewed [3]. This section gives a summary of some of

these techniques.

All of the accelerated dynamics methods are based to some extent on transition state
theory (TST) [3, 37], a model that describes the dynamics of a system in terms of tran-
sitions between metastable states. This theory makes it possible to estimate actual tran-
sition times from the times that the transitions take under the accelerated conditions.
A useful approximation to TST is harmonic transition state theory (hTST) [38], which
provides a simple means of estimating the transition probabilities and escape times if the
energy barriers are known. A brief description of hT'ST will be given in Chapter 6.

Some of the techniques work on the principle that an atomic system can be regarded
as a high-dimensional potential field. That is, a system of N atoms has 3N degrees

of freedom, and can therefore be considered as a 3N-dimensional potential surface in

which each coordinate denotes one of the three position coordinates of a single atom.

Transitions then correspond to the saddle points of this surface. The minimum amount
of energy required for a transition to occur is then determined by the height of the saddle

point.
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2.3.1 Parallel replica dynamics

Section 2.2.3 describes methods of parallelising a single MD simulation. Parallel replica
dynamics (PRD), developed by Voter [4], is an alternative way of utilising multiple pro-
cessors, by effectively running a separate MD simulation on each. This is the simplest of
all accelerated dynamics techniques.

The system is replicated across all the processors being used. Each processor then
carries out a classical MD simulation, with an initial dephasing stage so that each proces-
sor follows a different trajectory. During the dephasing stage. the velocities of all atoms
that are allowed to move are randomised periodically.

When a transition has occurred in one copy of the system, all processors stop exploring
the phase space. In a typical system, the escape time follows an exponential distribution,

with the probability density function

p(t) = ——. (2.42)

Under this condition, it has been shown that the total accumulated time (excluding the
dephasing stage) over all of the replicas is a reasonable estimate of the time that the
discovered transition would have taken to occur.

Since a transition occurs when sufficient energy is localised, it is possible that another
transition will occur during the excitation period resulting from this localisation of energy.
This may be a transition back to the original state, or to a new state. The typical length
of time for which this excitation period continues after the initial transition is known as
the correlation time, since any transition occurring during this time is correlated with the
transition that led to it. To accommodate for this possibility, the trajectory that led to
the transition is followed for a length of simulation time equal to at least the correlation
time, in order to catch any correlated transition that may occur. Then, in order to find
further transitions from the new state, the new configuration is replicated and the process
begins again.

The efficiency of PRD depends on the average time taken for a transition to occur

compared with the correlation time. There are two reasons for this. Firstly, the simulation
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time clock is not incremented during the dephasing stage, since dephasing is a process
to generate different initial conditions for each processor and not part of the evolution of
the system. Secondly, during the post-transition correlation time only one processor is at
work, preparing the system for the next replication. A further cause of slowdown lies in
the process of detecting that a transition has occurred. A possible way of implementing
this is to perform a steepest descent or conjugate gradient relaxation at intervals, and
compare the resulting configuration of atoms with that of the potential energy basin of
the state from which it came. The efficiency of the process therefore also depends on

choosing an optimal time interval at which to check for a transition.

However, PRD has its benefits compared with classical MD simulation parallelised in
the system size domain. Firstly, for systems with a relatively small number of atoms, any
of the decomposition-based parallel MD approaches could result in a significant amount of
time being spent communicating between processors compared with that spent evaluating
the potential energy and forces. Thus PRD is useful as a means of modelling the evolution
of small systems over longer timescales rather than as a technique for modelling larger
systems. Effectively, it achieves parallelisation in the time domain. rather than that of

the number of atoms in the system.

A second respect in which PRD can outperform parallel classical MD is if the proces-
sors are unbalanced in speed or load. Load imbalance is especiall; liable to occur when
using an atom-based or region-based decomposition scheme if parts of the system vary
in atomic density or in the computational cost of the potentials being used. Under PRD,
since each processor evolves a trajectory independently of the others, there is no latency
during the parallel parts of the simulation caused by processors waiting for each other
to finish their timesteps before they can proceed with the next. Each processor can run
at its own speed, meaning that the only time a processor is idle is after a transition has
been recorded, while waiting for one processor to follow through the system for correlated
events.

Systems studied using PRD have included an Ag(111) island-on-island configura-
tion [3]. On a system of thirty-two 1-GHz Pentium III processors, the method took five
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days to reach a simulation time of 1 us at a temperature of 400 K. The atoms of the

upper island were found to sink completely into the lower island after 0.45 ps.

2.3.2 Hyperdynamics

The hyperdynamics technique [7, 8] adds a bias to the potential function defining the
system. The bias potential is a function that is non-negative at all points and zero at the
dividing surfaces between states. This effectively reduces the energy barrier enabling the
system to move from state to state more quickly, while preserving the relative probabilities
of the various possible escape paths.

The process of constructing a bias potential is a complex topic. One possibility is
to make use of the eigenvalues of the Hessian matrix of the system. Since the lowest
eigenvalue is always negative at the dividing surface, the bias potential can be made zero
wherever the lowest eigenvalue is zero or negative, and a function of the lowest eigenvalue
otherwise. It is also common to make the bias potential a function of the two lowest
eigenvalues and gy, the projection of the force vector onto the lowest eigenvector.

Evaluating and diagonalising the Hessian is a computationally expensive process, but
an iterative numerical method has been developed that can be used to calculate the two
lowest eigenvalues using only first derivatives of the potential function [8].

The computational speed-up achieved by hyperdynamics depends on two factors: the
boost factor achieved by the bias potential and the computational overhead involved in

evaluating it. The boost factor is determined by

bnyper _ <CAV(r)/A-BT> (2.43)
typ

where AV is the bias potential function, kp is Boltzmann’s constant, 7" is temperature
and the average is taken over successive timesteps. It follows that the boost factor
decreases exponentially with increasing temperature [3]. For hyperdynamics to achieve
the aim of speeding up a simulation, it is important that the bias potential achieves a

sufficiently high boost factor to be worth the computational cost of evaluating it. This
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temperature dependence of the boost factor means that constructing an efficient bias
potential becomes more challenging if higher temperatures are to be modelled.

A weakness of hyperdynamics is that it is necessary to decide in advance the height
of the bias potential at the potential energy minima. If this is too low, then the boost
factor can be considerably sub-optimal. If the bias is too high, the technique will tend
to miss some of the transitions with lower energy barriers.

Voter [8] has tested the hyperdynamics method by applying it to two Ag surface
self-diffusion problems. The first of these is an adatom on the Ag(100) surface. At a
temperature of 400 K, the bias potential used achieved a boost factor of 1356, with each
MD step taking approximately 30 times that of a classical MD step on the same system,
giving a net computational boost of 45. The second system studied was an island of 11
atoms on an Ag(111) surface at 300 K. In this system, the island atoms generally moved
as a cluster, including many hops between the fcc and hep stacking positions.

Hyperdynamics has been studied extensively by Sanz-Navarro [39, 40], who also used
it to study Ag surface diffusion. In these studies, an approximate method [39] was used
to calculate the forces acting on the system as a result of the bias potential, without the
need to evaluate gi,. This approximation was found to give satisfactory results in test

systems, and for both a single adatom and an 11-atom cluster on the Ag(100) surface.

2.3.3 Temperature-accelerated dynamics

The temperature-accelerated dynamics (TAD) method [5, 6] works by evolving an MD
trajectory at a temperature higher than that at which the evolution is to be predicted.
A basin-constrained MD (BCMD) is used, in which the trajectory is reflected back into
the basin when it tries to escape. This generates a list of escape paths and times, from
which it is possible to estimate the expected time at which each transition would occur
at the temperature of interest.

In this process, it is essential to filter out transitions that will not occur as a result

of the energy constraints at the lower temperature. Once the BCMD simulation has run
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for sufficient time, the transition with the lowest escape time is accepted and the TAD
procedure is started again in order to find the next transition.
TAD relies on hTST to calculate the escape time at the temperature of interest. This

escape time can be determined by

tlow — thligh'eE(I/T!ou-*I/ngh)/kB (244)

where Tjig, is the temperature at which the TAD simulation is being run, T}, is the
temperature at which the dynamics are to be predicted, £p;g is the time the system takes
to leave the basin at Thi,, and E is the activation energy of the transition. The BCMD

trajectory can be stopped once it has run for a time of

(2.45)

stop =

1n(1 /6) Vmin Il:iow‘:nrn,in Tl /Thigh
In(1/6)

Vmin

where vy, is an assumed lower bound of the attempt frequency, iy min is the minimum
of all escape times determined for 7}, and § is a parameter determining the desired
accuracy of the simulation. When this time has elapsed, we have a confidence factor
of 1 — ¢ that the transition that gave the escape time of #, min 15 indeed the expected
escape from the initial state. The boost factor is thus %:-"

TAD is especially suited to being used in conjunction with classical MD to model
crystal growth. By using TAD interspersed with classical MD simulations to model the

deposition events, experimental timescales have been reached for Ag/Ag(100) [6] and

Cu/Ag(100) [41] systems at temperatures up to 70 K.

2.3.4 Kinetic Monte Carlo

The kinetic Monte Carlo (KMC) approach is different from other accelerated dynamics
methods in that MD simulation is not used. Instead, a method is used for finding the
possible transitions from state to state, the associated energy barriers and hence the
probability and expected escape time of each. From this information, at each step of the

KMC process a transition from the current state is chosen at random, weighted according
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to the relative probabilities. Chapter 6 explains in detail the KMC method and how it
is applied in this project.

However, the list of transitions can be very large, making it difficult to compile an
adequate catalogue of transitions for use in KMC. The approach used by Henkelman and
Jémsson [9] is to build a catalogue on the fly of transitions from each state encountered
during the process. This is known as on-the-fly KMC (OFKMC). To build the catalogue
of transitions, the dimer method is used. This method is described in Chapter 3. Systems
that have been studied using OFKMC with the dimer method include island ripening of
20 atoms deposited on an Al(100) surface [9]. In this system, the adatoms joined to make
a single island in its most compact shape after 65 270 transitions. This system took about

a week of computer time to simulate on a single-processor system.
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Chapter 3

The dimer method

3.1 Barrier calculation methods

A number of techniques have been used in the past to determine the energy barriers of
transitions between states in atomistic systems. These methods generally fall into two
categories. The first category consists of methods used to determine the transition barriers
between known initial and final states. The second category is those methods that, given
only an initial configuration of atoms, can discover transitions that are possible from this
state and calculate their energy barriers. Methods of both kinds generally work on the
principle of representing a system of N atoms as a 3N-dimensional potential surface, as

described in the introduction to section 2.3.

3.1.1 Molecular statics

Molecular statics (MS) [42] is a means of calculating the energy barrier of a transition
given its initial and final states, based on a simple constrained optimisation. Let R; and
R be the position vectors denoting the initial and final states of the transition path to

be examined. The function

R(a) =(1—a)R;+aRy (3.1)

37




38 CHAPTER 3. THE DIMER METHOD

is evaluated for a set of values a € (0,1). The system is relaxed using an optimisation
algorithm such as a steepest descent or conjugate gradient method, starting from each
R(a) in turn, fixing the vector component parallel to Ry ~R, in each case. This produces
a sequence of minimum energy levels at successive positions along the transition path.
The relaxed configuration having the highest energy level along the path is taken to be
the saddle point of the potential surface, and the difference between its energy level and
that of the initial state is taken to be the energy barrier. Typically a set of equally-spaced
v values is used, and this also makes it possible to plot the energy profile of the transition
path. However, the relaxed configurations for such a sample of o values is unlikely to
include the actual saddle point and therefore the exact energy barrier. A line optimisation
algorithm, such as a golden section search, can be used to find more accurately the value
of v that gives the highest relaxation energy and therefore the energy barrier.

An MS calculation uses derivatives of the potential only to the order required by
the underlying optimisation algorithm chosen to relax each configuration. The steepest
descent and conjugate gradient algorithms both rely only on first derivatives, so using
such an algorithm for the relaxations gives a barrier calculation method that does not
involve the calculation of the second or higher derivatives.

The MS technique has been used previously to study the behaviour of self-interstitial
defects in hep Zr, bee Mo [42] and bee Fe [2, 42]; these Fe studies were carried out using

older potentials (18, 43] than that used in Chapter 5 of this work.

3.1.2 The nudged elastic band method

An alternative to molecular statics is the nudged elastic band (NEB) method [44], which
is an example of a chain-of-states method that uses only first derivatives of the potential
function. In chain-of-states methods, several points on the 3/N-dimensional potential
surface, denoting distinct images of the atomistic system, are connected in sequence to
trace out a path. Two of these images are fixed; these are the initial and final states of
the system, and they serve as the endpoints of the chain. Under NEB, elastic springs of

zero natural length connect successive images of the system. An iterative method similar
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to an MD simulation is used to converge the sequence of images towards the minimum
energy path between the initial and final states. The saddle point is then the maximum
energy point along this path, giving the energy barrier of the transition. The effective

force acting upon image i of the system is determined by
F; = F(R))" + (F} - To) T + f(g0) Fi* (3:2)

where F(R;) is the force vector acting on the image as determined by the potential
function, F?{ is the spring force vector, T, is the unit vector parallel to the elastic band’s
tangent at image ¢, f is a switching function and ¢; is the angle between the vectors

R; — R;_; and Ri;; — R;. The vectors F(R;)* and Fi* are defined by
F!=F—(F-T,)T; (3.3)
and the function f by

(1+cos(mecosg)) if —F<p<3

1
fl9) = ; (3.4)

otherwise.

The form of F; causes the spring forces to act only along the local tangent of the
elastic band, while the true forces are projected onto the normal hyperplane before being
applied. This means that the spring forces and true forces do not interfere with each
other, bringing about an approximately equal spacing between images while allowing the
minimum energy path to be determined correctly. This eliminates some of the problems
with NEB’s predecessor, the plain elastic band method [44], in which the spring forces
could prevent the minimum energy path from being correctly determined, or the forces
acting on individual images could cause the images to slide down from the saddle point.
The term involving f(¢;) is to counteract kinks in the path that may otherwise occur in
some systems.

A limitation of NEB is that it remains possible that two consecutive images remain
either side of the saddle point being sought, meaning that the energy barrier of the
transition is not accurately determined. A refinement of NEB, the climbing image NEB

method [45], eliminates this problem as follows. After a number of iterations of regular
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NEB, the highest-energy link of the chain is chosen to be a ‘climbing image’. This image

then has its effective force determined not by equation 3.2, but instead by

-~

F; =F(R;) - 2(F(R:)- Ty Ty, (3.5)

i.e. the spring force is ignored for this image, and the actual force is reflected in the
direction of the tangent vector. By continuing the process under this modification, the

climbing image will eventually converge to the saddle point.

3.1.3 Mode-following algorithms and the dimer method

An inherent weakness of the MS and NEB methods is the need to specify the initial and
final states between which the transition barrier is to be found. As such, one needs a
preconception of what transition mechanisms exist in order to apply the methods. In
many systems, intuition will not determine all possible transitions in the system. It is
especially likely that co-operative transitions, 7.e. transitions that rely on two or more
atoms moving together, will be missed. We therefore need a method that can find these
transitions given only the initial state of the system.

Such methods exist that work by following the modes of the system, i.e. the paths on
the potential surface determined by the eigenvectors of the potential’'s Hessian matrix.
By climbing ‘up the hill" in various directions from the initial state, saddle points on
the potential surface, and hence transitions in the atomistic system being studied, can
be located without having to know the final states of the transitions in advance. These
mode-following algorithms [46, 47] have existed for many years. However, a disadvantage
of the traditional mode-following methods is that they rely on the ability to evaluate
the Hessian matrix, typically by taking an analytical second derivative of the potential
function, and then to calculate its inverse. For atomistic systems of significant size,
the evaluation and inversion of the Hessian matrix are very computationally intensive
operations.

The dimer method [10] is a modern example of a mode-following algorithm. Like

the older methods, it makes no assumptions about the transitions that may oceur from
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the initial state. The difference is that the dimer method achieves greater efficiency
by eliminating the need to evaluate the Hessian matrix. Instead, it uses only the first
derivative of the potential energy function.

The method involves the manipulation of a ‘dimer’, which consists of two nearby
points on the potential surface, representing two slightly different configurations of the
atoms. These points remain a small constant distance apart throughout the process.
First the dimer is rotated to a line of lowest curvature of the potential surface, since any
saddle point will lie on such a line. The dimer is then translated ‘up the hill’ towards
the saddle point, and the pattern of rotations and translations is repeated until a saddle
is found. By starting the method at a number of different points around the potential
energy minimum, and using different initial orientations of the dimer, different transitions
can be found.

The dimer method has previously been used to find transitions of an Al adatom on
an Al1(100) surface. In this work, it is applied to Au adatom diffusion on Au(100) in
Chapter 4 and to the diffusion of defects in bulk Fe and Fe-P in Chapter 5.

3.2 The standard algorithm

This section explains the dimer method as described by Henkelman [10]. Section 3.3
describes ways in which the algorithm has been varied and adapted in this work.

The following algorithm parameters are defined:

AR Dimer half-axis length

560  Small angular increment used for rotation
At  Timestep used in translation steps

T,  Rotational force tolerance

Ti  Translational force tolerance

The state of the dimer search is determined by two vectors in 3/N-dimensional space.
These are R, the position vector of the midpoint of the dimer on the potential surface,

and N, a unit vector that determines the dimer axis. Several variables are calculated
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from this information. Of these, the main ones are R, and Ry, the position vectors of
the two points that constitute the dimer, and F{ and F, the vectors of the forces acting

upon the system in the configurations represented by R, and R, respectively.

3.2.1 Initialisation

A dimer search is always started near a local minimum in the potential surface. This
is a point of stable equilibrium in the field, which can be found by a damped classical
dynamics simulation or any suitable optimisation algorithm [48]. The dimer vector N
is a random unit vector, which is typically generated by assigning to each coordinate a
random number conforming to a uniform or normal distribution, and then scaling the
whole vector so that it is of unit length. If the system has fixed atoms, the components
of the dimer vector corresponding to these must be set to zero. Sections 3.3.2 and 3.3.3
give more information on fixing atoms and generating the initial dimer vector.

The endpoints of the dimer are set by

and this relation between R;. Ry, R and N is preserved throughout the process.

3.2.2 Rotation

If R is fixed, then the dimer will be on a lowest curvature mode when its energy is
at a minimum. This is achieved by rotating the dimer about R so that the rotational

component F+ of the force acting upon the dimer, defined by

F!=F— (F-N)N (3.8)

tends towards zero, where

F=F—F (3.9)

Figure 3.1 illustrates how the rotational force is derived. A plane in which to rotate is
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Q)

R,

Figure 3.1: Deriving the rotational force on the dimer.

chosen by either a steepest descent method or a conjugate gradient method. This is done
by generating a unit vector ©, perpendicular to N. The vectors N and © then form a
basis that spans the rotation plane. In the steepest descent approach to rotation, O is
simply a unit vector parallel to F*.

A second image of the dimer (Figure 3.2) is specified by
R; R + (N cos 60 + © sin ) AR (3.10)
R;

Il

If

R — (N cosdf + Osindf) AR, (3.11)

and the corresponding forces F} and F3 and the difference F* are calculated.

Calculating the amount of rotation

There are several ways in which the change in rotational force can be used to estimate
the amount of rotation needed to bring the dimer to a lowest curvature mode. The most
basic of these methods is a simple adaptation of Newton’s method. The derivative of F,

the scalar magnitude of the rotational force as the dimer rotates, can be approximated

by

dF F*.0*-F.0O

!
= — g |
F dg a6 534)
Then the angle by which the dimer will be rotated in this step is
F. = F*. A
T i (3.13)

2F"
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r O
\

Figure 3.2: Unit basis vectors and the rotational force in initial and displaced positions.

An alternative is to use a sinusoidal fit. When the dimer is rotated through an angle 0,

the rotational force acting on it can be approximated by
S(0) = Asin2(f — a) (3.14)

for some A and a. It is readily seen that S(#) = 0 when # = a. The problem is thus that

of determining the value of a. Differentiating equation (3.14) gives
S'(0) = 2A cos 2(0 — a). (3.15)

Combining equations (3.14) and (3.15) then gives

S(0) 1
-5%)}_) s 5‘:&}12(9 - ). (3.16)
At 6 = 0, this reduces to
F | & 35
v §t.an(-—2n) (3.17)
1 i {2F y
= A9 ~ 0 = _“2" tan (-"E‘T) . (\3.18)

This formula turned out to be variable in its performance — the number of force
evaluations was sometimes greater, and sometimes less, than that for the same system

using the Newton method.
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Conjugate gradient choice of rotation plane

An alternative method of choosing the rotation plane is to use a conjugate gradient
approach. Instead of rotating in the plane spanned by N and F*+, the conjugate vector
G- is calculated, and the plane of rotation will then be spanned by N and G+.

The formulae involved are a variation of the traditional conjugate gradient algorithm.

For the first rotation, G+ = F* is taken. Subsequently, for the 7’th rotation,

Gl = pLl 4 y|GHE-1| @*b-1 (3.19)

where
el - é)[f'l_l cos AQ[i‘ - NF"‘” sin AQF—1 (3.20)
£ ==

At each step, © is defined as a unit vector parallel to G+ instead of F+. Rotation is

then carried out within the plane spanned by N and ©.

3.2.3 Translation

When the dimer’s energy has been minimised by rotation, a translation step is carried
out. To do this, the resultant force Fr = F; + F3 is calculated. The component of this
force along the dimer axis is Fl = (Fg - N)N. An effective force is defined by

e ~FI if ¢>0 (3.22)

Fr—2Fl if C<0

where C' = (F, — F,) - N is a measure of curvature along the dimer axis. C is positive
when this cross-section is convex downwards, as when near a minimum in the potential.
In this case, the effective force is defined so that it helps the dimer to quickly leave
the potential energy basin (Figure 3.3). When the dimer is nearer the saddle point, C
becomes negative and then the reflected force is used to converge the dimer towards the

saddle point (Figure 3.4).
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Figure 3.3: Effective force along dimer axis for C' > 0.

Figure 3.4: Effective force as reflected resultant force for C' < 0.
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This effective force is used to move the dimer ‘up the hill’ by a simple modification
of a classical dynamics simulation, known as the ‘quick-min’ method. The movement is

governed by these equations:

; Fili
AVHE = mAt (3.23)
. _ (i
AR = (v'*-ll+-‘%) At (3.24)
. } AVl . -1
M= li il il g
v - ava (14 SVEVEr), 29

The symbol m represents mass, but can be considered a mere scaling parameter. This
project uses the value m = 2, effectively taking the unit of mass to be that of a single
image of the system being considered.

The formula for VI streamlines the velocity so that only the component of the velocity

parallel to the current effective force is remembered between steps.
If Vi—1. Pl < 0, the dimer is considered to have overshot the saddle point. In this
case, the velocity at the start of the step is reset to zero, by taking the step using the

alternative equations

: il
AR = sz = (3.26)
vil = AvillL (3.27)

3.3 Adaptations

In this project, a number of adaptations to the dimer method were implemented. There
are two basic kinds of adaptations involved. The first is to set up the dimer searches
in a way that is suited to the problems being studied. The second kind of adaptation,
described from section 3.3.5 onwards, consists of modifications to the algorithm of the

dimer method itself to make it more efficient.
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3.3.1 Generating the initial configuration

The potential energy basin in which a dimer search is started represents the state from
which transitions are to be found. Throughout this work, simple defect structures have
been constructed and used for this. In the work of Chapter 4, this defect structure is an
adatom on a surface. In the work of Chapters 5 and 6, defect structures that were used
as starting configurations include an isolated vacancy, a vacancy next to a substitutional
impurity atom and an interstitial atom forming a dumbbell with another atom in the
lattice.

Since defects often increase or decrease the number of atoms locally, the number of
atoms in a system containing an isolated defect generally differs slightly from the number
of atoms in a perfect lattice of the same material and volume. This in turn affects the
dimensionality of the potential surface. Let Np be the number of atoms in a perfect
lattice of the desired size. To construct the initial configuration, first a perfect lattice is
coustructed, and then a defect is added. The defect adds an atom, giving N = Np + 1,
in the case of an adatom (Chapter 4) or interstitial defect (sections 5.3.3 and 5.3.4). On
the other hand, a vacancy defect, such as those of sections 5.3.1 and 5.3.2, subtracts an
atom giving N = Np — 1 atoms in the system.

It is necessary that the system is near a potential energy minimum before a search
is carried out. To ensure this, after constructing the lattice and placing a defect in it.
the system is relaxed to a stable equilibrinm by using a conjugate gradient minimisation

method.

3.3.2 Fixed and free atoms

The number of degrees of freedom in the system can be reduced by considering only a
small subset of the atoms to be allowed to move. This has been achieved by defining a
region of free atoms around the defect from which transitions are to be found. For the
Au surface work of Chapter 4, a spherical region was used. For the work in Chapter 5

involving Fe and Fe-P bulk systems, a cubic region was used. All atoms outside the
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defined region are fixed. In the calculations of the force acting upon the system, the force
components on all fixed atoms were taken to be zero. Consequently the components of
the dimer vector corresponding to fixed atoms remain zero at all times, and the position
coordinates of these atoms does not change during the steps of the dimer method.

The number of free atoms required to give good results varies from system to system,
and there is no known systematic way of determining the optimum number for any
system. In this work it was found sufficient to use fewer than 100 free atoms for the
surface system. To study bulk defects, a much larger number of free atoms was required;
generally between 200 and 500 free atoms gave good results once the periodic relaxation

of fixed atoms as described in section 3.3.4 was implemented.

3.3.3 Generating the initial dimer vector and displacement from

the minimum

A region around the defect was also used to generate the initial dimer vector N. The
atoms in this region are a subset of the free atoms. Figure 3.5 illustrates the relative size
of this region and the region of free atoms. To generate the dimer vector, each component
corresponding to an atom in the region was given a random value in the interval [—1, 1],
and all other components were set to zero. The vector was then normalised to be a unit
vector.

In many applications, the dimer is initialised with a random small displacement from
the potential energy minimum, independently of the dimer vector. For this work, the
dimer was instead initialised after generating the initial dimer vector, so that Ry is the

potential energy minimum and R = Ry + ARN.

3.3.4 Relaxation of fixed atoms

While performing the dimer search steps, only the atoms in a cubic region defined around

the adatom or bulk defect were allowed to move. Increasing the size of this region can give
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Pigure 3.5: Schematic illustration of the arrangement of fixed atoms (white and blue),
free atoms (green) and atoms included in the initial dimer vector (vellow background).
Also shown is the atoms around the outside (blue) that are fixed even during the periodic

conjugate gradient relaxation.

more accurately converged energy barriers. but making it too big was found to reduce

the success rate of the dimer searches.

In order to achieve more accurate energy barriers when most of the atoms in the
system are fixed, the lixed atoms can be relaxed periodically. This is done by using a
conjugate gradient algorithm to minimise the potential energy of the system in only the
degrees of freedom corresponding to the fixed atoms. Effectively the status of fixed and
free atoms is reversed during the conjugate gradient relaxation. as opposed to the rotation
and translation steps of the dimer method. However, the atoms around the outside of
the cell (blue in Figure 3.5) are still lixed. preventing translation of the lattice as a whole
during the relaxation process. Hence only the atoms that are white in the diagram move

while relaxing the system.
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----- force curve to be fitted
——— approximate tangent

——— line parallel to tangent
leading to the next
dimer orientation

—

0

Figure 3.6: The angle of rotation of the dimer as calculated by the forward difference and

forward average approximations of equations (3.12) and (3.13).

3.3.5 Alternative formulae for the angle of rotation

Some variations of the rotation formula have been implemented. The first of these is a
small adjustment to the value produced by the Newton-based method given in section
3.2.2,

Equation (3.12) given in that section is a forward difference approximation of the
rotational force derivative. Similarly, equation (3.13) gives a forward average. As such,
the value of A@ obtained from the equations is an estimate of the amount of rotation
needed not from the initial orientation, but from an orientation displaced by §6/2 from
it. In some systems, the inaccuracy of equation (3.12) can stop the dimer from properly
converging to within the set tolerance (Figure 3.6). In such cases, a closer covergence can

be achieved by adding this term to the rotation (Figure 3.7), giving the formula

F-©+F .0

AG = S = (3.28)

However, there is another limitation inherent in the Newton method of rotation. When
the dimer’s orientation is near a crest or trough of the sine wave, the derivative of the

rotational force with respect to angle will be small, resulting in over-rotation of the dimer
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~_ 1  swess force curve to be fitted
.. ——— approximate tangent

——— line parallel to tangent
leading to the next
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Figure 3.7: Adjustment of the angle of rotation by §6/2 to produce a closer convergence.

(Figure 3.8). This can be countered by constraining the angle of rotation to a maximum
at each step.
An alternative sinusoidal fit to the one of section 3.2.2 can be constructed using F

and F* directly, producing the result shown in Figure 3.9. The equations are

Asin(—2a) = F (3.29)

Asin2(60 —a) = F*. (3.30)

Combining these two equations and solving for a gives

(3.31)

Al = = cos™? s 1+ Fcos 206 — F*
- 2 VF?+ F2 —2FF*cos2660 )

In some cases, this formula gave similar evaluation counts to equation (3.18), and in other
cases it was found to be an improvement. Compared with the Newton-based formulae,

equation (3.31) consistently improved the efficiency of the dimer method.

3.3.6 Order of steps and stopping criteria

The original paper [10] suggests alternating translation and rotation steps, and early

experiments in this project used this pattern after a number of initial rotations. However,
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Figure 3.8: Over-rotation occurring with Newton’s method.

force curve to be fitted
sinusoidal fit

Figure 3.9: Constructing a sinusoidal fit on the rotational force curve.
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this was found to be wasteful, since there is often no need to rotate the dimer between
translation steps.

The pattern that has been adopted for this work is to take as many rotation steps
as necessary to converge the dimer into the lowest curvature mode. The current im-
plementation of the algorithm takes rotation steps until F/AR < T, at which point a
translation is done. After each translation, the rotational force is checked again to see if
more rotations are necessary.

Further, it has turned out to be useful to break the rotation into two parts: choosing
the rotation plane and actually carrying out the rotation. This means that, after choosing
© and hence the plane of rotation, we can carry out as many steps of rotation as desired in
this plane, rotating © with the dimer, before rotating in a different plane. This is similar
to the iterative line optimisation often used as part of various optimisation techniques,
where straight lines within the objective function’s domain are chosen in turn and an
optimum value is found along each line before choosing another.

The algorithm terminates when a translation step is taken with C' < 0 and ||F'||, <

T;.

3.3.7 Parallelisation

The dimer method can be readily adapted to use parallel processing in order to speed
up the search on large atomistic systems. This is because the computational cost of the
method derives from the evaluations of the force function and the vector operations, each
of which can be parallelised.

To parallelise the vector operations, the components of every vector are divided be-
tween the processors. Only four vector operations need to be considered: addition,
multiplication by a scalar, dot multiplication and calculating the infinity norm. The first
two of these are strictly elementwise, and so each processor simply operates on its own
vector components without communicating with the other processors. To calculate the

dot product, each processor calculates the dot product of its own sub-vectors and then a
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global sum is taken. Similarly, the infinity norm is calculated by the global maximum of
the processors’ local maxima.

To decide which components are assigned to which processors, the spatial decom-
position method is used as described in section 2.2.3, so that each processor’s vector
components are those corresponding to the z, y and z coordinates of the atoms in its
cell. For simplicity, atoms are not moved between processors. We can get away with this
because in the course of a dimer search, the atoms move only small distances. In essence
it is an atom decomposition rather than a spatial decomposition, but the computational
benefit of spatial decomposition is retained. For this to work correctly, a maximum dis-
tance that any atom may move from its initial position is defined, and the skin thickness

is configured to be at least equal to this distance.

3.4 Benchmarks

To test the dimer method, three sample potentials were used. These are referred to as
‘egg-box’ potentials because of the shape of the potential surface. The first two potentials
are two-dimensional, meaning that all dimer rotations occur in a single plane. For the
third example a three-dimensional potential was used, making it possible to compare the

results of the steepest descent and conjugate gradient methods of rotation.

3.4.1 Basic egg-box potential

For the first test system, a simple potential (Figure 3.10) with straight transition paths
was chosen. This means that rotations will only be needed at the beginining of the search,

before translations are carried out. The potential function is
E =sinz 4 siny. (3.32)

Dimer searches in this potential were carried out using several different parameter
sets. In each set of parameters, 50 searches were performed, using the same list of 50

randomly generated initial dimer vectors each time.
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Figure 3.10: Contour plot ol the basic egg-box potential. Light areas are positive and
dark areas are negative. A sample path ol the centre of the dimer in this potential is

shown.

The best parameter set found for this system was AR — 0.1, 00 = 0.01, At = 0.5,

T, = 0.02, T, = 0.01.
The value of Al was found to make a significant difference to the number of evaluations
of the force function required for convergence to the saddle point. Evaluation counts for
three values of At, using the above values for the other parameters. are compared in
Table 3.1.

The third formula is the variation of equation (3.28) where if A > 0.5, the value 0.5 is
used instead. Variations in parameters other than A¢ were found to make comparatively
little difference to the efliciency of the dimer search in this potential, except that when
equation (3.13) was used and 00/7, was too large. the dimer search often failed to settle

to a saddle point.
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Formula N=02 At=05 Ai=1

3.13 85.6 46.6 75.7
3.28 86.6 47.5 74.7
3.28 clipped 82.6 42.1 73.T
3:18 0T 37.6 67.0
331 78.3 38.6 BE.T

Table 3.1: Mean force evaluation counts on the simple egg-box potential for different

values of At.

The relative performances of the rotation formulae varied according to the parameters
that were used, but in this instance the sinusoidal fits, equations (3.18) and (3.31), always
gave the best results. The average number of rotation steps per search varied from 2.5 in
the case of equation (3.28) to 1.5 for equation (3.18); the mean number of translations

was between 16 and 17 in all cases.

3.4.2 Distorted egg-box potential

In the last potential, the lowest curvature modes were all straight lines in the potential
field, so there were not many rotation steps to be done. In real-world systems, however,
the lowest-energy transition paths are not straight. As such, the dimer will need to rotate
not only at the beginning, but also during the process of climbing up the line of lowest
curvature towards the saddle point. To include this factor in the benchmarks, a modified
version of the potential of section 3.4.1 is used, in which the transition paths are curved.

This distorted egg-box potential is defined by the formula

2 2
. y . &
=S it 3 U i ]| y
E = sin (.z 40) + sin ( 20) (3.33)

Dimer searches in this potential took slightly longer. As Figure 3.11 shows, the path
of the dimer towards the saddle point is often not a smooth curve. The best parameters

for this search were AR =0.1, 00 =02, At=0.5, T, =05, T, = 0.01.
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Figure 3.11: Contour plot of the distorted egeg-box potential. Light areas are positive
and dark areas are negative. A sample path of the centre of the dimer in this potential

is shown.

Here. the relative performances of the rotation formulae. given in Table 3.2, were as
expected. Smaller values of 7, and Al were [ound to produce greater evaluation counts.
In this system there was more variation in both the mean rotation counts (ranging from
1.3 10 2.7) and the mean translation counts (from 26 to 31). This shows that choosing an
efficient rotation formula can not only minimise the number of rotation steps required;
it can also orient the dimer more accurately. leading to more efficient. and hence fewer.

translation steps.
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Formula Evaluations
3.13 72.9
3.28 64.2
3.28 clipped 63.0
3.18 60.9
3.31 57.0

Table 3.2: Mean force evaluation counts on the distorted egg-box potential.

3.4.3 Three-dimensional potential

The third test system is a potential similar to the second, but in three dimensions. The

potential function is

2 2 2
; iy : z ; €T ’
E= z—=+ —— ) += —— .
sin (7‘ 40) sin (y 20) sin (z 10) (3.34)

In this instance, the best set of parameters to be found was

AR = 0.1
66 = 0.05
At = 0.5
T, = 0.5
T; = 0.0l

Table 3.3 compares the numbers of force evaluations per search when different rotation
formulae are used, with the steepest descent method used to choose the rotation plane.
Table 3.4 gives the corresponding evaluation counts using the conjugate gradient choice
of rotation plane. However, as the tables illustrate the conjugate gradient method of
choosing a rotation plane was found to be slower than the steepest descent method.
With the two-dimensional egg-box potentials, and when steepest descent rotation on this
potential, the dimer converged to a saddle point in every search. When conjugate gradient

rotation was used, in many searches the dimer failed to settle within 1000 translation
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Formula Evaluations
3.13 89.4
3.28 89.9 |
3.28 clipped 781 |
3.18 TEL
3.31 74.4
Table 3.3: Mean force evaluation counts on the three-dimensional distorted egg-box po-
tential using steepest descent rotation.
Formula Success rate  Evaluations |
3.13 84% 198.6
3.28 82% 246.0 ‘
3.28 clipped 84% 201.8
3.18 90% 115.4
Sl 84% 124.8

Table 3.4: Mean force evaluation counts on the three-dimensional distorted egg-box po- ‘

tential using conjugate gradient rotation. ‘

steps, and even in the cases that did settle, more evaluations of the force function were

carried out in the process.

3.4.4 Effect of relaxation of fixed atoms

To test the periodic relaxation of the fixed atoms as described in section 3.3.4. searches
have been performed starting from a defect structure in a-Fe consisting of a substitutional
P atom separated by a [110] vector (a third neighbour separation) from a [101] Fe-Fe
dumbbell, using the Ackland Fe-P interatomic potential. More about the Fe-P defect
systems is given in Chapter 5. Energy barriers were compared for the transition to a

(110] dumbbell at a site with a £[311] displacement from the P atom (a fourth neighbour
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separation), using different numbers of free atoms with and without the relaxation of the
fixed atoms. As expected, Table 3.5 shows that when no relaxation is performed, the
calculated energy barrier decreases as the number of free atoms is increased. By relaxing
the fixed atoms every 20 steps, a lower energy barrier is calculated, and there is negligible

variation between the figures calculated with different numbers of free atoms.

Free atoms | No relaxation Relaxed only at end Relaxed every 20 translations

181 0.3819 0.3449 0.3346
331 0.3488 0.3400 0.3346
247 0.3401 0.3371 0.3346

Table 3.5: Comparison of the energy barriers calculated for the third-fourth neighbour
transition of Figure 5.14 (e) with different numbers of free atoms, with and without

periodic relaxation of the fixed atoms.

Also compared is the energy barrier obtained by relaxing the fixed atoms only in the
saddle point configuration, not periodically during the dimer search. The results show
that this final relaxation by itself lowers the energy barrier, but for best results the fixed

atoms should be relaxed during the course of the search.

3.5 Scaling with system size

Evaluating and inverting the Hessian matrix is typically an O(N?) time complexity oper-
ation. As such, this operation is the driving factor in the older mode-following algorithms.
It follows that for very large systems, the mode-following algorithms relying on Hessian
inversion will take a long time to perform a single step.

Because the dimer method uses only first derivatives, the driving factor is the evalu-
ation of the force function, which is essentially an O(/N) operation. The time complexity
of a dimer search is therefore a product of two factors: the time taken to evaluate the

force function and the number of force evaluations before a saddle point is found.
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The number of degrees of freedom in the system influences the number of rotation
steps that are likely to be required. This is because as more degrees of freedom are added,
the net rotational force on the dimer needs to be converged to zero in more planes. This
increases the number of force evaluations required to align the dimer along the lowest
curvature mode at the beginning of the search. Experiments [10] showed that there is,
in practice, relatively little difference between evaluation counts on the same system as
more atoms are allowed to move, and observations in this work have agreed with this.
Overall, it appears that the time complexity of the dimer method relative to system size ‘

is O(N?), with a relatively small N? coefficient.

3.6 Conclusions

In this chapter, the dimer method and a number of variations of it have been described,
implemented and tested. In doing so, it has been possible to compare the performance
of the algorithm variations that have been devised.

Five different formulae have been implementd for the rotation of the dimer within
a plane. Although tests on various systems did not show either of the rotation formu-
lae in the original paper as being more efficient than the other, a rotation formula has
been developed that consistently outperforms the orignal Newton-based formula, and has
therefore been used throughout the work of the following chapters.

The work of this chapter has shown that the dimer method works well on simple,
low-dimensional potential surfaces. However, it can be challenging to find the optimum
set of parameters to find saddle points in a given system. In the following chapters, the
method is applied to atomistic systems, which have much greater dimensionalities, and

it will be seen that the dimer method can be used to find transitions in these systems.



Chapter 4

Transitions of gold adatoms on a

gold surface

Several problems involving the surface of a crystal have been studied using the accelerated
dynamics techniques described in section 2.3. These include island ripening and crystal
growth of Al atoms on an Al(100) surface [9], the mobility of MgO dimers [49] and
small Pd clusters [50] on the MgO(100) surface, and vacancy clusters in Cu(100) [51].
Such problems are interesting because of the rich variety of transitions that occur on
surfaces, many of which involve groups of atoms moving together in ways that would not
be predicted intuitively.

In this chapter, the system of an adatom, i.e. an atom placed upon a surface, is
studied. Such a system is simple and yet exhibits a considerable variety of transitions.
These include simple hops of the adatom between surface sites, concerted exchanges of
the adatom with surface atoms, and other mechanisms in which the adatom itself does
not move but influences the movement of nearby atoms. For this work, an Au adatom on
an Au(100) surface has been chosen. This particular system was chosen for two reasons.
First, it is a system for which no previous studies in this manner have been published,
and a good test of our modified dimer method on a real system. Second, the choice of a
single-element system of an adatom on an fce (100) surface makes the study very similar

to one carried out previously on aluminium [10], meaning that we have results with which
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we can compare those of this study and contrast the different transitions between two
materials of the same fee structure.

To model the interactions between Au atoms, the Ackland potential as described in
section 2.1.2 has been used. The ZBL potential and a spline function were also used
as described in sections 2.1.7 and 2.1.8 to model close-range interactions wherever they
occur during the searches.

Au has a face-centred cubic lattice structure, with a lattice parameter of 4.078 A.
Successive (100) layers are therefore 2.039 A apart. At equilibrium, the surface layer is
2.004 A above the next layer down.

Adatoms are generally found at three distinct sites on the surface of a material. These
are the on-top, bridge and hollow sites shown in Figure 4.1. Of these, only the hollow site
was found to be a stable position of an Au adatom on the Au(100) surface. Therefore,
configurations in which adatoms are placed at hollow sites were used for the initial states.
When the system is relaxed, the adatom assumes a position 2.04 A above the surface layer.

(a) On top (b) Bridge (c) Hollow

2

Figure 4.1: The three typical sites at which adatoms occur, shown on an fce lattice. In
all diagrams in this chapter, the atoms are shaded by depth, with the lightest shade used

for the adatom layer.

Lattices of around 500 atoms were used for the dimer searches. This enabled ample
numbers of free atoms to be used, while leaving enough fixed atoms so that the free atoms
do not interact with the boundaries of the lattice. Unlike a defect in bulk material as
described in Chapter 5, the strain field created by a adatom is very small, so it was not

necessary to increase the size of the lattice significantly to accommodate this.
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4.1 Single adatom

The first set of searches was carried out with all atoms fixed except for those within a
5 A radius of the adatom, giving 18 free atoms, and using initial dimer vectors involving
only the adatom and its four immediate neighbours. These searches vielded the eight
transitions shown in Figure 4.2. It is immediately apparent that the lowest-energy barriers
are those for which only the adatom changes site (a, b). Four of the transitions (c, d,
f, g) lead to states in which an atom from the surface layer becomes a second adatom,
and a vacancy is left on the surface. Transition (h) is the only transition found in the
single adatom system that leads to a configuration with three adatoms and two surface

vacancies.

It is already apparvent that the lowest-energy transitions differ from those previously
found for fece Al [10]. The lowest energy barrier found in the Au system is that by which
the adatom simply hops to an adjacent hollow site in a (110) direction (a). In Al, this
transition has the second lowest barrier, 0.37 eV. The lowest energy barrier of the Al
transitions is 0.23 eV for the two-atom concerted displacement, which has a considerably

higher barrier of 1.58 eV in Au (d).

As more atoms are included in the initial dimer vector and the number of free atoms
is increased, more transitions were found. Figure 4.3 shows those transitions that were
found with the same set of 18 free atoms but with all free atoms included in the initial
dimer vector. This led to the discovery of more transitions involving three or more atoms
or atoms further from the adatom. They include three instances of a three-atom concerted
displacement (b, e, h), of which (e) is another low-energy transition (barrier 0.43 eV) in
Al. Transition (f) is unusual in that the atoms that move do not finish in lattice sites.
This is another transition that has a low energy barrier (0.44 V) in Al. Mechanisms such
as (f) are very difficult to include in traditional KMC simulations, because the methods
typically used to build the event table assume that all atoms will be at lattice sites at
the beginning and end of every transition. On-the-fly KMC, on the other hand, can more

readily be implemented to find transitions without making this assumption [9].
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0.73eV
>

1.19 eV
>

1.35eV
>

(d) (h

2.13eV
>

Figure 1.2: Transitions found with 18 free atoms, of which five atoms are included in
the initial dimer vector. In each diagram. the atoms that move between sites have heen

labelled so that the initial and final positions ol each atom can readily be seen.
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(c) (h)

(d)

(e)

179 eV
- >

Figure 4.3: Transitions found with 18 free atoms, all of which are included in the initial

dimer vector.
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Figure Al barrier (eV) Au barrier (eV)

1.2 (e) 0.23 [.58
1.2 1(a) 0.37 0.73
4.4 (e) 0.41 1.94
43 (&) 0.43 1.79
4.3 (f) 0.44 2.05

Table 4.1: The five lowest-energy transitions in Al. with corresponding barriers for Au.

Figure Au barrier (eV)

1.2 (a) 0.73
1.2 (b) 1.19
1.2 () 1.35
4.3 (a) 1.37
1.3 (b) 1.53

Table 1.2: The five lowest-energy transitions in Au. In the Al work [10]. a barrier is given

only for the first of these transitions. 0.37 eV.

Dimer searches have been performed on this system with numbers of free atoms up to
58, still with 18 atoms included in the initial dimer vector. This has led to the discovery ol
additional transitions in which up to six atoms move. given in Figure 4.4. These include
another transition that has a low barrier in Al (0.41 ¢V). namely a four-atom concerted
exchange mechanism (e).

The lowest energy barriers for the Al and Au systems are summarised in Tables 4.1
and 4.2 respectively. Irom these tables it can be seen that energy barriers are generally
higher in Au than in Al. and that the lowest-energy transitions are very different between
the two materials. In general, the lowest energy barriers found on the Au surface are of
transitions in which only one or two atoms move. This is in contrast with the Al system.

in which concerted displacements constitute most of the low-energy mechanisms.
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(a) (d)

1.53eV
>

(b)

1.66eV % 1.94 eV
> »

1.68 eV
—

Figure 4.4: Additional transitions found with numbers of free atoms between 22 and 56.

4.1.1 Transition rates

Using harmonic transition state theory (hT'ST), it is possible to calculate the rate constant
of each transition. This is a measure of how frequently the transition will oceur, defined
as the mean frequency of the transition over the time that the system spends in the
transition’s initial state. Chapter 6 explains more about transition rates and how they
can be used to estimate the relative probabilities of transitions and the time taken for
them to occur.

The rate constant of a transition from state i to state j is determined by the Arrhenius
equation

P = v e FiilksT (4.1)

where E;; is the transition energy barrier, kg is Boltzmann’s constant, 7' is the tempera-
ture and v is the attempt frequency. For this work, the value v = 10" s7! has been used.

This is a typical value assumed for rate theory modelling [15].
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Energy barrier Rate constant (s ')

Figure (eV) 300 K 500 K 700 K

1.2 (a) 0.73 6.1 L7¥10° 5.8 107
1.2 (b) 1.19 LO=10T 10x 19 2.7 x 10°
4.3 (a) 1.37 QTR I 1Le¥10l 14y
4.3 (b) 1.53 9= 107" H2gx10® OExnIY
4.3 (f) 2.05 JER 10 2INWE 1= 1970
4.3 (f) 2.57 5lw il l4xi™ 3an1G®

Table 4.3: The rate constants for a selection of energy barriers at 300 K., 500 K and 700 K.
Four of the lowest energy barriers in the Au/Au(100) svstem. along with two higher ones,

have been chosen to represent the range of barriers in this system.

At a temperature of 300 K. the lowest-energy transition has a rate constant of 6.1 s,
and the second has a rate of 1.0 x 1077 s~ As such, it is to be expected that at this
temperature, only adatom hops will occur. Table 4.3 and Figure 4.5 show that at higher
temperatures, not only do the rate constants increase in order of magnitude. but the
ratio between the rates ol lower-energy and higher-energy transitions becomes smaller.
It follows that a greater variety of transitions will occur as the temperature is increased.
At 500 K. the transition of Figure 1.2 (a) is no longer the only transition that will he
observed. When the temperature is increased to 700 K. the variety of transitions increases
further to include several transitions in which a surface atom moves to become an adatom.
The highest-energy transition found in this system is that of Figure 4.4 (') with a barrier

of 2.57 eV: even at 700 K this transition will very rarely, if ever. occur.
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10" 1
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104 : ; . , e
300 400 500 600 700

Temperature (K)
Figure 4.5: The rate constants for five energy barriers, plotted on a logarithmic scale

against temperature. The ratio between rate constants becomes smaller as the tempera-

ture increases, so that higher-energy transitions become more probable.
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4.2 Two adatoms

Some experiments were also carried out on a surface having two adatoms. The first
of these was a configuration in which the adatoms are separated by a distance that is
significantly greater than the cut-off distance of the interatomic potential. As such. it is
expected that the adatoms will diffuse independently of each other for as long as they
remain separated by more than the ent-ofl distance.

Dimer searches were carried out on this system using 36 free atoms, namely the 18
atoms within a b A radius of each adatom. As expected. most of the transitions discovered
from this conliguration involved the atoms around only one of the adatoms. and were the
same fransitions with the same energy barriers as those that were found with a single
adatom.

By moving the adatoms closer together. so that they can interact with each other.
some interesting results occur. Four different displacements between the two adatoms
have been used as initial states, and the results are described in the following sections.
The first two configurations are those in which the adatoms are placed at adjacent hollow
sites on the surface, forming an addimer. The remaining two setups used initial states
ol two adatoms separated by a single vacant hollow site. Figure 4.6 illustrates the four

states. The

011] addimer (a) is the most energetically favourable of these four states.
with an energy level 0.38 eV below the other three states (b, ¢, d). which are all within

0.01 eV ol each other.

(a) [011] addimer (b) [001] separated (c) [01_1] separated (d) [001] addimer

Figure 4.6: The four two-adatom initial states from which dimer searches were conducted.

in ascending order of potential energy.
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4.2.1 Adatoms at orthogonally adjacent sites

A number of dimer searches were performed from an initial state with two adatoms
at orthogonally adjacent hollow sites, forming a [001] addimer. Figure 4.7 shows the
transitions found. These are essentially the same as those found with a single adatom,
but with different energy barriers. In other words, if a non-moving adatom is removed,
then the transition becomes identical to one of those that was found in the single-adatom

system.

(a)

(b)

1.23eV
o

Figure 4.7: Transitions found in the [001] addimer system.

Two-adatom transition Equivalent one-adatom transition
In Figure 4.7 Barrier (eV) In Figure 4.2 Barrier (eV)
(a) 0.50 (a) 0.73
(b) 1.23 (c) 1.35
(c) 1.50 (d) 1.55
(d) 1.64 () 1.35

Table 4.4: Comparison of energy barriers between transitions in the [001] addimer system

and their equivalent one-adatom transitions given by removing a non-moving adatom.
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]'111(\1';:{.{-' barrier Rate constant (s 1)
[n Figure 4.7 (eV) 300 K 500 K 700 K
(a) 0.50 41%x10% 93x%10" 28 x 10°
(b) 0.54 9.9x% 10° 40x 10" 14x10°
(¢) 1.23 21w 3.9 L4 % 10

Table 4.5: The rate constants for the three lowest-energy transitions in the (001 addimer

svstem at 300 K. 500 K and 700 K.

Table 4.4 compares the energy barriers in the [001] addimer system with those of the
equivalent transitions with only one adatom. It can be seen that, except in the case of
Figure 4.7 (e). the presence of a second adatom lowers the energy barrier of the transition.
This suggests that this state will quickly transition to the more energetically favourable
011] addimer state, which as will be seen in the next section. is a more stable state than
either the [001] addimer or an isolated adatom. Table 4.5 gives the rate constants of
the lowest-energy transitions in this syvstem. The dilference in energy barrier between
Figure 4.2 (a) and Figure 4.7 (a) is suflicient that the rate constant of the latter is four
orders of magnitude higher at 300 K. The transition rate of Figure 4.7 (¢) is still much
lower than that of (a) and (D), so that diffusion remains almost entirelv driven by adatom

hops especially at lower temperatures.

4.2.2 Adatoms at diagonally adjacent sites

Searches have also been carried out starting from the [011] addimer configuration. Fig-
ure 4.8 shows the transitions that were found in this svstem. Two distinct adatom hops

were discovered, namely in the

O11] (a) and [O11] (¢) directions; however. both have
higher energy barriers than the 0.73 eV barrier of the isolated adatom hop. On the other
hand. the two instances of a two-atom concerted exchange, one effecting a rotation of the
addimer (b) and the other moving the two adatoms apart (e). both have lower barriers

than the equivalent transition in the isolated adatom system (1.58 eV). Unlike with a



4.2. TWO ADATOMS 75

(a) (e)

(c) (9)

263eV
>

@

Figure 4.8: Transitions found in the [011] addimer system.

single adatom or [001] addimer, no transition leaving a surface vacancy was discovered

except for (g). which is too high-energy to be expected to occur.

The transition barriers from this state and the [001] addimer state together imply that
an addimer will generally diffuse by moving between these two states. As Table 4.6 shows,
at a temperature of 300 K. even the lowest-energy transition from this state has a rate
constant of 2.3 x 107, This suggests that the [011] addimer is a more stable state than
the isolated adatom and [001] addimer configurations. It follows that the addimer will
diffuse more slowly than an isolated adatom, mainly by moving back and forth between

the [011) and [001] orientations.
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Inergy barrier Rate constant (s 1)
In Figure 4.8 (eV) 300 K 500 K 700 K
(a) 0.93 2ARI0? LI10P 20100
(b) [P 1.2 s 107% 45= 10 7.8 % 10
() .17 1.9 % 1077 15%x 10" 3.5 x 10*

Table 1.6: The rate constants for the three lowest-energy transitions in the [011) addimer

system at 300 K. 500 K and 700 K.

4.2.3 Adatoms separated orthogonally by a vacant hollow site

The initial configuration of two adatoms separated by a single hollow site in the [001]
direction was also studied. Figure 4.9 shows sonie of the transitions found from this state.
Unlike the setup of section 4.2.1. most transitions from this arrangement were found to
have higher energy barriers than the equivalent transitions where only one adatom is
present. as Table 4.7 indicates.

The higher barriers tmply that this configuration is slightly more stable than the
isolated adatom state. However. the barrier of Figure 4.9 (b) is lower than that of the
same transition for an isolated adatom. making it the second lowest barrier for this setup.
The transition leads to the [001] addimer configuration. which can then be expected to

lead to a sequence of [011] and [001] addimer states as was determined in sections 1.2.1

4.2.4 Adatoms separated diagonally by a vacant hollow site

The fourth initial state from which dimer searches were performed was that of two
adatoms separated by a single vacant hollow site in the [011] direction. The transitions
shown in Figure 4.10 were found from this configuration.

In the most likely transition. one of the adatoms moves towards the other to form
the more stable [011] addimer configuration, as shown in Figure 4.10 (a). The energy

barrier for this to happen is similar to the barrier of the isolated adatom hop. Another
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(b)
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(d)
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Figure 4.9: Transitions found in the system of two adatoms separated by a single hollow

site.
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Two-adatom transition Equivalent one-adatom transition
In Figure 4.9 Barrier (eV) Figure Barrier (eV)

(a) 0.75 1.2 (a) 0.73
(h) 1.47 4.2 (e) [.58
(c. g h) 1.56-1.60 4.2 (c) 1.35
(d. e. ) 1.57-1.60 1.2 (d) 155
not shown 1.89 4.2 (f) .85
not shown 2.05 4.2 (g) 2.03
not shown 2.10 4.3 (d) 1.70

Table 4.7: Comparison ol energy barriers between transitions [rom the configuration of
two adatoms separated by a vacant hollow site and their equivalent one-adatom transi-
tions. Where a range ol values is given, the different harriers are for different orientations
ol the transition relative to the displacement vector between the initial locations of the

two adatoms.
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Figure 4.10: Transitions found from the initial state of two adatoms separated diagonally

by a single hollow site.
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adatom hop from this two-adatom state is to a conliguration in which the adatoms are
displaced from each other by a [013] vector (). This also has a similar barrier, and so
it can be expected to oceur with almost the same probability as (a). Two instances of
a two-atom concerted exchange were also observed (e, d). These are both lower-energy
than the same mechanism is for an isolated adatom. Also discovered in this setup is a
four-atom concerted exchange mechanism involving both adatoms (e). and an interesting
seven-atom transition (). The latter has a barrier close to the cohesive energy of Au.

and as such. is unlikely ever to be observed even at 700 K.

4.3 Conclusions

[n this chapter. the dimer method has been applied to the system of Au adatoms on
the Au(100) surface. In the single-adatom case. it was found that the motion of an
adatom will consist almost entirely of adatom hops at lower temperatures. At 400 K
and below. transitions involving surface atoms are unlikely to be seen. but at 500 K and
above these transitions will readily occur. Hence while a simple KMC simulation with a
predefined event table will produce a reasonable result at lower temperatures. for higher
temperatures it is likely that one will need to employ on-the-fly KMC techniques in order
to simulate the adatom diffusion through the various states that will crop up.

The results on the one-adatom system have been compared with the previous studies
of an Al adatom on Al(100). It has been seen that. although both materials have the
same crvstalline structure. they have very different diffusion dynamics. In Al it was
seen that concerted exchanges involving up to four atoms are among the lowest-energy
transitions. In Au, on the other hand. adatom hops and other transitions involving few
atoms are the most energetically favourable transitions.

Some interesting results have also been discovered for an Au(100) surface on which
two adatoms are present and close enough to interact with each other. It has been seen
that two-adatom conligurations can be either more stable or less stable than one-adatom

configurations. In particular, of the initial states studied in this chapter. the [011] addimer
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is the most stable configuration to have been found. The diffusion of the addimer consists
mainly of hops between the [011] and [001] addimer states. Because the hop from the
[011] to the [001] addimer has a somewhat lower rate constant than the isolated adatom
hop, this diffusion process occurs more slowly than the diffusion of an isolated adatom.

The low energy level of the [011] addimer, relative to the other two-adatom configu-
rations, suggests that a property of Al, namely that compact adatom clusters are more
energetically favourable than scattered adatoms [9], may also hold true for Au.

The results presented in this chapter have identified the transitions and energy bar-
riers from initial configurations of one or two adatoms with no defects in the surface or
lower layers. The methodology can be easily adapted to study transitions from other
configurations, such as those involving surface vacancies or larger clusters of adatoms.
This work can also lead towards more complex studies of Au surface effects, such as the

simulation of island ripening and crystal growth.
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Chapter 5

Transitions in Fe and Fe—P systems

The previous chapter was concerned with transitions on the surface of a material. In this
chapter, the dimer method is applied to the study of defect transitions in bulk material.
Systems of a-Fe with isolated point defects have been chosen for this work. These include
two defect systems involving a P impurity atom.

An understanding of the diffusion of P impurities in Fe is important to the study of
the durability of steel nuclear pressure vessels (NPVs). This is because steel is an alloy
containing a number of elements in addition to Fe, some of which are impurities. Of these
impurities, P atoms in particular are known to segregate towards the grain boundaries of
the steel. When such a vessel is subjected to radiation or high temperature, the impurities
become more mobile and the segregation of P atoms to grain boundaries is enhanced.
This is believed to be a major cause of embrittlement in the NPVs [11, 12, 13, 14]. It is
therefore of interest to understand the mechanisms behind this process.

To simulate the damage to a crystal caused by radiation, a collision cascade is typically
used. This involves performing an MD simulation from an initial configuration in which
one atom, known as the primary knock-on atom (PKA), has been given a significant
amount of kinetic energy, typically of the keV order of magnitude [2].

The defect structures and transitions in the system of Fe containing P have also been
studied using molecular statics [2]. Results from these studies include that a substitu-

tional P atom is the most stable of the P defect structures; displacement of the P atoms

83
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from substitutional positions has been observed only during a collisional event or by rais-
ing the temperature to near the melting point. During a collision cascade, the P atoms
often form (110) Fe-P dumbbells (see section 5.1 for more about defect structures). An-
other important observed effect is that clusters of interstitial Fe atoms can aggregate
around a substitutional P atom.

For this work, two different models of the interactions between the atoms involved
were used. The first of these is to use the Ackland Fe potential [18] to model the Fe-Fe
interactions, and the Morse potential [25] to model the Fe-P and P-P interactions; this
combination will subsequently be referred to as Ackland/Morse. The second model tested
is the newer Ackland potential designed for the modelling of Fe containing P impurity
atoms [19]; the details of this potential have been given in section 2.1.2.

Other studies of P impurities in Fe carried out in recent years include an MD in-
vestigation of the interaction of the P atoms with grain boundaries [52], both using
Ackland/Morse and using a modified EAM (MEAM) potential [53. 54]. There has also

been an ab initio study of the transition mechanisms in this system [55].

5.1 Defect structures

The structure of a-Fe is body-centred cubic (bee). Figure 5.1 (a) shows a perfect bee unit
cell. The atoms at the vertices of the cell adjoin the adjacent unit cells, such that there
are are two atoms per unit cell in a bee lattice. Point defects generally occur in three
basic kinds: vacancy, interstitial and substitutional. Figure 5.1 shows typical structures
of vacancy and interstitial defects. Other interstitial defect structures sometimes seen
in bee materials, but which were not observed in this work, include (100) and (111)
dumbbell configurations.

The two kinds of defect involving a P atom that were studied here are the P-vacancy
complex and the P interstitial defect. The P-vacancy complex is a combination of a
vacancy and a P substitutional atom, close enough to interact with each other and treated

as a single defect. The P interstitial defect is created from a locally perfect Fe lattice by
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(a) Perfect bee unit cell (b) Simple vacancy (c) Split vacancy (d) <110> dumbbell

e
u

Figure 5.1: Some defect structures commonly found in bee materials. The green circles
denote lattice sites. The structures shown are a perfect lattice cell (a), two vacancy defect
structures (b, ¢) and four interstitial defect structures (d, e, f, g). The tetrahedron (f)
and octahedron (g) defining the respective interstitial positions have been outlined in

blue.

adding a P atom to it; this defect usually forms a (110) dumbbell with an Fe atom, but
as will be seen, it can also assume a tetrahedral position or become decomposed into a P
substitutional atom and Fe self-interstitial defect.

In this work, the dimer searches were performed on an Fe lattice of 14 x 14 x 14
bee unit cells (giving a total of 5488 atoms) to which a defect has been added. Because
we are working with bulk material, periodic boundary conditions have been used in all
dimensions. When using the dimer method to find transitions in the bulk material, it
turned out that more free atoms were necessary to obtain accurate energy barriers than
for the surface studies of the previous chapter. Generally the searches were performed
with 200 to 500 free atoms and 40 to 100 atoms in the initial dimer vector. The free
atoms and the atoms in the initial dimer vector were selected by defining cubic regions

around the defect that has been created in the lattice to form the initial state.
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5.1.1 Neighbour distances

The states discovered in the work of this chapter include states with a vacancy or Fe
sell-interstitial defect at various different displacements from a substitutional P atom. Ii
is necessary to have a convention for identifying an individual state of this kind.

For this work. the standard convention ol neighbour numbers is used to identify
displacement vectors between lattice sites. and hence distinguish between different states
of the P—vacancy complex and of a {110} Fe-I'e dumbbell near a substitutional P atom.
Given any lattice point. the surrounding lattice points are ranked in ascending order of
their Euclidean distances from the given point. Thus the immediately adjacent lattice
points. which are all at the same distance from the given point. are first neighbour sites.
Those lattice points that are at the next smallest distance are the second neighbours, and

S0 O11.
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Figure 5.2: Nearest neighbour numbers corresponding to small displacements [rom a

given lattice point. represented by a blue sphere.

5.2 gives neighbour numbers [or various displacements in the bee structure.

Figure
[n this structure. the first neighbours of a given lattice point are those points that have
a +{111) displacement from that point, giving a separation distance of @r: ~ 0.87a,

where a is the lattice parameter. The second and third neighbours are those with (100)

and (110) displacements respectively. and distances of a and v2a =~ 1.41a. The tenth



= - -

5.2. RESULTS FROM ACKLAND FE AND MORSE POTENTIALS 87
neighbour distance, equal to %a. occurs for two distinct displacement vectors, 2(111)

and 1(511), which are identified as 10A and 10B respectively in the figure.

5.2 Results from Ackland Fe and Morse potentials

5.2.1 Fe self-interstitial defect

Using the Ackland pure Fe potential [18], the diffusion of self-interstitial atoms in a system
containing only Fe atoms was studied. Only two interstitial defect structures were found

to be metastable, namely the (110) dumbbell and the (111} crowdion shown in Figure 5.1

(d; &).
(a) 110 dumbbell (b) <111 crowdion (c) <111 crowdion @
)
0.16 eV @
& 0.0024 eV o
® ®
& ® 2
@ 0.034 eV
(d) <110 dumbbell (e) <111> crowdion
@® 0.16 eV
) @ —_— @
]
€]

Figure 5.3: A sample sequence of transitions of an Fe self-interstitial defect.

The dimer method was used to find transitions from both of these initial states. The
diffusion of the Fe self-interstitial was found to consist of transitions between the (110)
dumbbell and the (111) crowdion states and translation of the (111) crowdion along its
axis. Figure 5.3 gives a sample sequence of transitions. The (110) dumbbell can become a
(111) crowdion in either of two (111) axes passing through its centre, and in two positions

along each. The (111) crowdion can become a dumbbell again at either of the lattice sites
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it leaves vacant. and in three different (110) axes through each site. By a sequence of
these moves, all (110) and (111) directions are accessible. and therefore the self-interstitial

defect can move freely in the three-dimensional bulk of the material.

Energy barrier Rate constant (s 1)
Transition (eV) 300 K 500 KK 700 K
crowdion translation 0.0024 9.1x 102 95x% 10'* 9.6 x 10'?
crowdion to dumbbell 0.034 =10 45 %102 BY¥x 10"
dumbbell to crowdion 0.16 2I 1Y 24 % 0% 70X 107

Table 5.1: The rate constants for the transitions ol an isolated e self-interstitial defect

found using the Ackland pure I'e potential.

Table 5.1 gives the rate constants for the transitions found in this system. Translations
of the (111) crowdion will often occur several times consecutively. especially at lower
temperatures. producing a one-dimensional random walk until the crowdion changes back
into a (110} dumbbell. Because the energy barriers are much lower than those found for
Au surface transitions. the diffusion is much more rapid. with transitions occurring on
a picosecond timescale. The dependence of the rate constants on temperature is also
much smaller than that found in the Au system. The transitions have heen observed in
MD collision cascade simulations. and even after the collisions have petered out. some

transitions are likely to be seen within the accessible timescale of classical MD.

5.2.2 P interstitial defect

This section describes the transitions that were found in the system of Fe with an inter-
stitial P defect. using the Ackland/Morse model. Systems consisting of a P atom added
to an Fe lattice have been shown to exhibit a variety of mefastable states and transitions
between them (Figure 5.4). The states that were found include two unusual dumbbell

configurations. denoted by the approximate ratios of the components, along the cubic cell

axes. of the displacement between the Fe and P atoms.



5.2. RESULTS FROM ACKLAND FE AND MORSE POTENTIALS 89

(a) [643]) dumbbell (b) [551] dumbbell (c) Face diagonal interstitial
0.0027 eV 0.089 eV
— r -
-« T
0.26 eV 0.080 eV
; @
&
. . A A~
0.0037 eV 0.085 eV 0.066 eV 0.25eV 0.29 eV
b 4
(d) [634] dumbbell (e) [110) dumbbell (f) Tetrahedral
1 0.29 eV
w
« — .
® 0.26 eV \
® .
® ¢ 4
-

0.26 eV
0.041 eV\ G e
0.1 eV

(g) Offset tetrahedral

Figure 5.4: The transitions found in the P interstitial system using the Ackland/Morse

model, with energy barriers.
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Dimer searches were performed on this system with up to 1730 free atoms. which
generally gives convergence of the energy barriers to the 1077 eV level. Various sequences
of transitions that enable the P atom to diffuse through the lattice have been found. With
the (110) dumbbell position considered as a starting point. we have found two distinet

diffusion mechanisms.

The simplest mechanism is a P atom in a (110) dumbbell configuration moving into
a tetrahedral site. From the dumbbell position the P atom can move to either of two
possible tetrahedral positions. From the tetrahedral site the P atom can then move to
one of four possible (110) dumbbells. including the one from which it came. By a series of
stch moves, the P atom can diffuse through the lattice as illustrated in Figure 5.5. From
a dumbbell position about a vertex ol a unit cell (a). the P atom moves to a tetrahedral
site on the face of the cell (b). and then forms a dumbbell in the centre of the face (¢).
[t can then move to another tetrahedral position (d). before forming another dumbbell
in the centre of an adjacent face (e). The P atom is thus able to move throughont the
bulk of the material, not limited to a single plane or cell. The energy barriers involved
in this mechanism are noticeably higher than those found for Fe sell-interstitial defects.
and at temperatures of 300 K to 500 K. diffusion events will occur on timescales around

a nanosecond.

Alternatively, a (110) dumbbell can pivot via a (613) dumbbell configuration as illus-
trated in Figure 5.6. The (110) dumbbell (a) first changes to a (551) (b). after which it
switches to the (643) form (c¢). After a reorientation of the (643) dumbbell (d), the se-
quence of states is reversed and the dumbbell reaches a new (110) orientation (e. [). From
the initial (110) dumbbell. there are two possible (551) positions, each of which leads to
either of two (643) orientations. Consequently. there are four possible orientations to
which the (110) dumbbell can rotate by this mechanism. The main energy barrier in this
process is the 0.26 eV barrier between states (b) and (¢). which has a transition time of
2.1 ns at 300 K. However. from state {¢) there is a moderate probability that the defect
will slip back to state (b) (0.0027 eV) instead of moving on to (d) (0.0037 eV). It may

also flip several times between states (¢) and (d) before going either to (b). leading back
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(a) <110> dumbbell (b) Tetrahedral (c) 110> dumbbell

Dags ey 0.257 eV ®
—_—

|
\|

0.293 eV
(d) Tetrahedral on plane between cells (e) <110 dumbbell

0.257 eV
LS = —f @

Figure 5.5: Sample sequence of transitions between (110) dumbbell and tetrahedral con-

figurations.
(a) [110] dumbbell (b) [551] dumbbell (c) [643] dumbbell
—_—r T
: ' @
O o ° o
0.0037 eV
(d) [634] dumbbell (e) [515] dumbbell (f) [101] dumbbell
o -—’ v , J
e ) @
@)
© @®

Figure 5.6: The rotation of a (110) dumbbell via a (643) dumbbell configuration.
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to (a). or (e). leading to a new state. By this mechanism. the dumbbell can only rotate
about its lattice site. and cannot move to a new site.

In addition to the states explored by these mechanisms. two other metastable states
have been discovered. These are conligurations in which the P atom is interstitial. but
the surrounding Fe atoms remain at their lattice sites. The “offset tetrahedral” (Figure 5.4
(g)) position has the P atom displaced by 0.28 A along a (110} direction from the regular
tetrahedral location, remaining on the square cross-section that bisects the tetrahedral
region. There are transitions from this state to a (110) dumbbell and to a tetrahedral.

In the ‘face diagonal interstitial’ state (Figure 5.4 (c¢)), the P atom lies along the
diagonal of a unit cell face. 1.33 A from a lattice point. There are transitions [rom
this position to the regular tetrahedral position and to the (551) dumbbell. The energy
barriers to and from this state are similar to those involving the (110) dumbbell; hence it
is moderately probable that the system will enter this state instead of the (110) dumbbell

state at the end of either of the diffusion mechanisms.

5.3 Results from Ackland potential for Fe containing

| o

5.3.1 Isolated vacancy in Fe

When an a-Fe crystal contains a single vacancy as the sole defect. this vacancy difluses
through the lattice by a sequence of first neighbour Fe-vacancy exchanges. The mecha-
nism of the exchange follows a two-step process (Figure 5.7). From the vacancy state (a).
any of the eight Fe atoms at first neighbour sites to the vacancy can move hallway to-
wards the vacancy. forming a split vacancy defect (b). This move has an energy barrier of
0.640 eV. The split vacancy then transitions back into a simple vacancy with an energy
barrier of 0.091 eV. by the Fe atom moving either back to its previous position or into

the vacancy of the previous state, leaving its own previous lattice site vacant (¢).
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(a) First neighbour Fe—vacancy (b) Split vacancy (c) First neighbour vacancy-Fe
o DGEORY, » 0.091 eV ®

Figure 5.7: The mechanism of an isolated vacancy (green, unfilled circle) exchanging with
an adjacent Fe atom (red sphere), via a split vacancy state (interstitial Fe atom shown

with a black outline).

Since the vacancy can move in any of eight directions, and these directions span the
three-dimensional vector space, the vacancy can freely explore the three-dimensional bulk

of the material.

5.3.2 The P-vacancy complex

When a P atom and a vacancy are close to each other, the position of the P atom relative
to the vacancy influences the diffusion mechanisms and associated energy barriers.

The most frequent diffusion mechanism is the exchange of the P atom and vacancy
when they are at first neighbour positions (Figure 5.8). From the starting position (a),
the P atom moves in the (111) direction towards the vacancy (b) and then to a position
slightly off the line connecting the two lattice points (¢). Position (b) is 0.9 A from the
lattice site, compared with first neighbour distance of 2.5 A. In position (c), the P atom
has coordinates of (0.7,0.7,0.4) A, giving a distance of 1.1 A, relative to the lattice site
in which it started. To complete the exchange, the system passes through the same three
states in reverse order (d, e, f) with the P atom now in the area of the original vacancy.
This mechanism does not by itself enable the P atom to diffuse through the lattice.

Other transition mechanisms enable the vacancy to move by exchanging with Fe
atoms. Most of these mechanisms involve a split vacancy state similar to that found in

the diffusion mechanism of an isolated vacancy. A frequently occurring example of this is
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(a) First neighbour P—vacancy (b) (c)

0.255 eV 0.048 eV

e (@] —

4‘ —
¢ / C

0.014 eV
(d) / (e) (f) First neighbour vacancy-P

0.0023 eV 0.028 eV

Figure 5.8: The mechanism of a P atom (blue sphere) exchanging with a vacancy (unfilled

circle) when they are in first neighbour positions.

(c) Second neighbour P-vacancy

[ ool

0.098 eV |
— | ®

0.631 eV
(d) (e) First neighbour P-vacancy

0.070 eV
—_— ()

(a) First neighbour P-vacancy

0.629 eV
—

e
|-

N

Figure 5.9: The mechanism of the first neighbour P-vacancy reorientation via the second
neighbour state, with energy barriers. Fe atoms (red spheres) move to exchange with the

vacancy (unfilled cirele). while the P atom (blue sphere) does not move.
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shown in Figure 5.9. The defect transitions from the first neighbour P—vacancy state (a)
through the split vacancy state (b) so that the vacancy becomes a second neighbour of
the P atom (c). There are three possible second neighbour sites at which the vacancy
can become situated from a given first neighbour state. From the second neighbour P-
vacancy state, the vacancy moves by a similar process (d, e) to any of four first neighbour
sites, including the one from which it came. This mechanism enables the vacancy to circle
around the P atom. By a sequence of these moves combined with the P—vacancy exchange

mechanism, the P atom can diffuse through the lattice.

State | Energy level (eV)
Ist 0.000
2nd 0.026
3rd 0.433
4th 0.385
5th 0.371
6th 0.360
7th 0.368
8th 0.364
9th 0.366

Table 5.2: Potential energy levels of states with the vacancy separated at different dis-
tances from the P atom in the P-vacancy system. The first neighbour state has been

taken as a base level.

There are also transitions in which the vacancy moves further from the P atom. The
energy levels of simple vacancy states out to the ninth neighbour position are given in
Table 5.2, and the energy barriers of the transitions between these states are given in
Table 5.3. Since all of the states are within 0.5 eV of each other and the energy barriers
do not exceed 0.65 eV, it should be expected that the system explores a wide variety of

states. Figure 5.10 shows the potential energy profiles of a selection of transition paths in
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Initial state

Final state

Energy barriers (eV)

Initial — intermediate Intermediate — final

L

1st
1st
1st
2nd
2nd
3rd
Jrd
3rd
4th
4th
4th
4th
4th
4th
Sth
oth
5th
6th
Tth
Tth
7th
7th
8th
8th
9th
9th

2nd
Jrd
oth
1st
4th
Ist
4th
Tth
2nd
3rd
5th
6th
8th
9th
1st
4th
Tth
4th
Jrd
Sth
8th
9th
4th
Tth
4th
7th

0.629
1.065
0.582
0.631
0.592
0.632
0.622
0.634
0.307
0.646
0.615
0.639
0.599
0.639
0.528
0.637
0.632
0.647
0.677
0.640
0.635
0.640
0.654
0.636
0.624
0.640

0.098

0.388
0.070
0.165

0.076
0.068
0.090
0.099
0.093
0.077
0.102
0.055
0.071
0.086
0.094
0.094
0.090
0.088
0.089
0.088
0.070
0.091
0.090
0.091

Table 5.3: Transition barriers found in the P-vacancy system. The transition between
the first and third neighbour states was not found to have an intermediate state. Hence

for this case only one energy barrier is given in each direction.
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Figure 5.10: The energy profiles of the P-vacancy exchange mechanism and three Fe-
vacancy exchange mechanisms between different neighbour sites of the P atom. Only the
metastable states (@) and the saddle points (+) are plotted. The letters on the profile of

the P-vacancy exchange refer to the stages of the exchange illustrated in Figure 5.8.

this system. Beyond the eighth neighbour pesition, the energy barriers show very little
deviation from those calculated for an isolated vacancy. This shows that the diffusion of
the vacancy at these greater distances from the P atom can be approximated by that of

an isolated vacancy in Fe.

5.3.3 Isolated Fe self-interstitial

Self-interstitial defects in a-Fe usually assume a (110) dumbbell configuration. The pre-
ferred mechanism for diffusion of this defect is a simultaneous rotation and translation to

a first neighbour site (Figure 5.11). From the [110] orientation, the dumbbell can move
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to any of four first neighbour sites. those with a displacement of [111]. [111]. [111] and
111]. At each site the dumbbell can rotate to either of two orientations: if it moves by

'111] then the dumbbell will have orientation [101] or [011].

0.304 eV
—

Figure 5.11: The mechanism ol migration of an isolated Fe-TFe (110} dumbbell by simul-
o} (@) .

taneots rotation and translation.

Also observed in the Fe sell-interstitial system is a mechanism by which the (110)
dumbbell migrates via a metastable octahedral configuration as illustrated in Figure 5.12.
The octahedral can form at either of two sites, namely those that are adjacent along the
dumbbell axis at either end. The octahedral atom can then move to form a (110) dumbbell

at any of the four lattice sites that are nearest in a (110) direction.

0676 eV 0.034 eV
_.) ,
e "

Figure 5.12: The mechanism of migration of an isolated Fe-Fe (110) dumbbell via an

‘__

octahedral configuration.

5.3.4 P interstitial defect

When a PP atom is added to an otherwise locally perfect Fe lattice. a variety of states
Ll ;

exist. Most of the time. the defect is found in a (110) Fe-P dumbbell configuration.
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In the most common diffusion mechanism, the Fe atom in the dumbbell returns to its
lattice site and the P atom moves to either of two tetrahedral interstitial sites. From this
position, the P atom can form a dumbbell with any of four Fe atoms, including the one
from which it came. By a sequence of these moves as shown in Figure 5.13, P atom can

explore the bulk of the Fe lattice in all three dimensions.

(a) <110> dumbbell (b) Tetrahedral (c) <110> dumbbell
0.263 eV
0.050 eV ‘ o
@®
& 0.263 eV
(d) Tetrahedral on plane between cells (e) (110> dumbbell

2N

0.050 eV
o |o -2,

Figure 5.13: The mechanism of a P atom moving by changing between the (110) dumbbell

and tetrahedral states.

From the (110) Fe-P dumbbell state, the P atom can also become substitutional, with
the Fe atom from the dumbbell moving to form a (110) dumbbell with a first neighbour
Fe atom. The resulting Fe-Fe dumbbell can then move out to lattice sites further from
the P atom. The table of transitions is more complicated than that of the P—vacancy
complex, since different orientations of the dumbbell relative to its displacement from the
P atom are possible. Figure 5.14 shows some of the transitions that were found between
dumbbell states.

Unlike in the P-vacancy system, there are relatively few states with low energy levels
relative to the (110) Fe-P dumbbell state (Table 5.4). Most Fe-Fe dumbbell states have

energy levels at least 1 eV above that of the Fe-P dumbbell. This implies that an
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a)

Figure 5.14: A selection of transitions between (110) dumbbells in the P interstitial defect

system, with energy barriers.
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State Energy level (eV)

(110) Fe-P 0.000

Tetrahedral 0.212
[110] at 1st [111] 0.581
[110] at 1st [111] 1.330
[110] at 2nd [100] 1.040
[011] at 2nd [100) 1.248
[110] at 3rd [110] 1.441
[110] at 3rd [110) 1.058
[101] at 3rd [110] 1.006

Table 5.4: Potential energy levels of different states in the P interstitial defect system,
relative to the (110) Fe-P dumbbell state. All states except for the first two are Fe-Fe
dumbbell positions near a substitutional P atom. For each of these, two direction vectors
are given: the orientation of the dumbbell and the direction of the displacement of the

dumbbell centre from the P atom.

interstitial defect is more strongly attracted to a P atom than a vacancy is. It should
therefore be expected that the system spends most of its time moving between the Fe-P
dumbbell and tetrahedral states. Also, since the main energy barriers for P migration
are lower than those involved in the P-vacancy system, and it also takes fewer events for
the P atom to move the same distance, it is to be expected that the P atom will diffuse

more rapidly by moving as an interstitial defect than as a P—vacancy complex.

5.4 Conclusions

In this chapter, two different potentials have been used to study defect transitions in
bulk Fe with and without P impurities. In carrying out this work, it was discovered that
the choice of potential can have a significant effect on what transitions are found and

on their energy barriers. This demonstrates that in order to obtain realistic results, it is
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necessary to choose an accurate interatomic potential. The Ackland Fe-P potential used
in section 5.3 is fitted to ab initio data, unlike the older potentials used for section 5.2,
and developed with the aim of accurately modelling common defect structures with and
without the P impurity atoms. In this work, the energy barriers found were close to those
determined by ab initio calculations [55, 56]. As such, it appears that the newer Ackland
Fe-P potential is more sophisticated than the older set of potentials used to model this
system.

A difficult aspect of the study of transitions between states in atomistic systems is
knowing which metastable states really exist and which are artefacts of the interatomic
potential being used. In the older potential, several states were found to exist that
did not occur when using the newer potential or in the ab nitio studies, including the
unusual dumbbell orientations. As such, it is very likely that these states are artefacts
of the Ackland/Morse model used in section 5.2. This is further evidence that the newer
Ackland Fe-P potential is more sophisticated for the modelling of Fe in which P impurity
atoms may be present. Therefore, the results from the Ackland Fe-P potential will be
used to draw the remaining conclusions and for the kinetic Monte Carlo work of the next
chapter.

In the studies of this chapter. the lowest energy barriers were generally those found
in transition mechanisms that keep the vacancy close to the P atom in the P-vacancy
complex, and that keep the P atom moving as part of the interstitial defect. It follows
that, in agreement with previous studies, P atoms act as centres of attraction for both
vacancy and interstitial defects in Fe.

The results presented in this chapter provide a catalogue of transitions between various
configurations of point defects in a-Fe with and without a P impurity. In the next chapter,
these results are used to perform kinetic Monte Carlo on three different defect systems

and to calculate diffusion constants for each.



Chapter 6

Kinetic Monte Carlo

The kinetic Monte Carlo (KMC) technique was briefly described in section 2.3.4. This
chapter explains in more detail how KMC works and how it has been implemented for
this project. The technique is then applied to three of the Fe and Fe-P systems studied in

the previous chapter, and used to calculate the diffusion constants of the defect systems.

6.1 Methodology

KMC is an event-driven simulation technique, i.e. it advances the system by one transition
at a time. This is in contrast to the other accelerated dynamics methods described in
section 2.3 which, like elassical MD, still involve simulating an MD trajectory over time.

From a given initial state, a transition is chosen randomly from those that are possible.
The system is advanced to the new state, and the simulation time clock is incremented
discretely. The process is then repeated from the new state, and continued to produce a
sequence of states through which the system passes.

The probability distributions used here to select a random transition and to calculate
the escape time are based on harmonic transition state theory (hTST). The relative
probabilities of the transitions and the mean escape time are determined by the rate
constants of the transitions, which are in turn calculated from the energy barriers and

the temperature of the system. The rate constant of a transition is the mean frequency

103
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of the transition over the time that the system spends in the transition’s initial state. For

a transition from state 7 to state j, the rate constant is given by the Arrhenius equation:
Tij =V e~ Ei/keT (6.1)

where Fj; is the transition’s energy barrier, kp is Boltzmann’s constant, 7" is the temper-
ature and v is the attempt frequency. As with the rate constants that have been given in
previous chapters, the typically assumed attempt frequency v = 10'® s~! has been used
for the rate constant calculations in the work of this chapter.

In the h'TST model, the time for which the system remains in a given state is expo-
nentially distributed and independent of the state to which the system is to exit. The

mean of this distribution, for a state i, is

1
25 T

Ti

(6.2)

where the sum is taken over all possible transitions from state . Consequently, given a
second state j, the probability that a given transition is next to occur is proportional to
its rate constant and is given by

Dij = TijTi- (6.3)
These equations give rise to the formula used to increment the simulation time clock.

Given a uniform random variable R € (0.1), the increment is

At = —7;1n R. (6.4)

6.1.1 Dealing with symmetry

Each distinct state exists in a number of different orientations. Different states also
have different symmetries. This influences the number of possible orientations of the
transition from one state to another, and needs to be taken into account when weighting
the transition probabilities, choosing a transition and updating the coordinates.

For example, in considering an impurity, located at the blue site in Figure 6.1, the first

neighbour site of an impurity—vacancy complex has eight orientations, each of which has
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triangular symmetry about a (111) axis. From a given first neighbour orientation, there
are three possible orientations of the second neighbour impurity—-vacancy state towards
which a transition can be made, three orientations of the third neighbour state and one
of the fifth neighbour state. This is due to the numbers of lattice sites of each kind
adjacent to the first neighbour site (Figure 6.1 (a)). The second neighbour state, on the
other hand, has six orientations and is symmetrical about a (100) axis. Of its eight first
neighbours, four are first neighbours of the impurity, and four are fourth neighbours of it
(Figure 6.1 (b)). The defect can transition from the second neighbour state towards any

of these eight adjacent sites.

(a) First neighbour (b) Second neighbour

Figure 6.1: Neighbour numbers of bece lattice sites adjacent to the first (a) and second (b)

neighbour positions.

Essentially, each orientation of a state should be considered as a state in its own right.
However, to simplify the process of configuring the simulation, it is useful if the user does
not have to duplicate information for each orientation of every state and transition. This
is achieved by implementing symmetry checking at run time. A variation of equation (6.1)

is therefore used:

Tij = 12 l.gij G_Et‘i/kBT (65)

where S;; is the number of orientations of the final state that can be reached from a
given orientation of the initial state. For example, Figure 6.1 shows that S;» = S13 = 3.
Si5 = 1 and Sy = Sa = 4, where the subscripts denote the neighbour numbers of
impurity—vacancy states. In practice, these transitions often involve intermediate split

vacancy states, but this does not affect the number of orientations, since the symmetry
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of a transition does not depend on how far the defect moves in a given direction. The
following section describes how transition symmetries. and hence the S;; values. can be

calculated.

Enumerating the orientations of a transition

Impurity-—vacancy complex

Algorithmically, determining the symmetry of states and transitions is a matter of enu-
merating the transformations of the displacement vector dimensions that yield compatible
but not identical results. In the impurity—vacancy case. three vectors are involved in any
transition: the displacement of the vacancy from the impurity atom in the initial state,
the vector by which the impurity atom moves and the vector by which the vacancy moves.
For split vacancy states, the location of the vacancy is taken to be that of the interstitial
atom between the two vacancies. Compatible orientations are those transformations ol the
three vectors simultaneously that leave the impurity-vacancy displacement unchanged.
Because of the cubie lattice structure. only permutations of the three dimensions and
reflections in coordinate planes are to be considered.

For example. in the first neighbour impurity vacancy state. the impurity-vacancy
displacement is a [111] vector. In the transition to second neighbour. the impurity atom
remains fixed and the vacaney moves in a [111] direction. In this case, permutations of
the dimensions preserve the impurity-vacancy displacement but reflections in coordinate
planes do not. so the possible vacancy moves to a second neighbour state are [111]. [I11]
and [111].

The second neighbour state has a [100] impurity vacancy displacement. and the va-
cancy moves to first neighbour through a [111] vector. Since the first component of
the impurity-—vacancy displacement differs from the others. it cannot interchange with
the others in the vacancy move vector. However, since the other components of the
impurity -vacancy displacement are zero. the transition can be reflected in the coordinate
planes corresponding to these. so that there are four orientations of the transition: [111].

[111], [111] and [111].
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In configuring the KMC simulation, it was useful to devise a canonical form for each
state, and to classify states and fransitions by symmetry. For the impurity-vacancy
complex, the displacement vector between the impurity atom and the vacancy is the only
item of information required to identify a state. In the canonical form. this vector is given
with all components non-negative, and in descending order of value. As an exception,
since for an (abb) vector with a,b # 0 there is no need to distinguish the cases a < b and

a > b, both are canonicalised as [abb|.

Interstitial defect

The system of an interstitial defect involving an impurity atom is more complicated, be-
cause in the defect structures consisting of a substitutional atom close to a self-interstitial
dumbbell, the orientation of a dumbbell relative to the impurity atom also needs to be

considered.

Each state is determined by two vectors as illustrated in Figure 6.2. For dumbbell
defects, the first vector is the displacement of the vacancy at the centre of the dumbbell
from the impurity atom, and the second is the displacement of one of the atoms forming
the dumbbell from the impurity atom. For an impurity atom in a tetrahedral position,
the zero vector is used for the first vector and the displacement to the nearest lattice point
for the second. For a self-interstitial tetrahedral or octahedral defect, the two vectors are

both equal to the displacement of the defect from the impurity atom.

There are then three vectors used to identify each transition. These correspond to
the movement of the impurity atom and the movement of the coordinates denoted by the

first and second state vectors respectively.

Because there is an extra vector to consider, canonicalisation of the interstitial defect
states is a little more complicated than it is for the impurity—vacancy complex. First, all
negative components of the first vector are made positive, and the corresponding com-
ponents of the second vector are inverted in sign. Second, any components of the second
vector corresponding to zero components of the first vector are made positive. Then the

dimensions of the resulting vectors are ranked in descending order of the component of
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(a) <110> mixed dumbbell (b) [011] dumbbell at second neighbour

(0.25,0.25, 0)
¥

. . ¥

(0.5.0.5.0)

(c) Tetrahedral

Figure 6.2: Some examples of vectors used to denote states in the interstitial delect
system. Vectors have been given in units of the lattice parameter. In each case, the lirst

vector is given in blue. and the second in purple.

the first veetor. using the corresponding component of the second vector as a tie-breaker.
As a further canonicalisation. of the two atoms forming a self-interstitial dumbbell. the
one whose displacement is given by the second vector is that which has the greater first

coordinate.

When the vectors defining the state are in canonical form. the orientations of the tran-
sitions from the state can be enumerated in the same basic manner as for the impurity
vacancy complex. However. a few special cases need to be considered. In some states,
such as the [110] dumbbell at a first neighbour bee site. the positions of the two dumbbell
atoms are equivalent, and so it was necessary to consider that transitions can occur from
this state in either direction. Also. because of the way in which a tetrahedral impurity
atom is specified. it is necessary to treat this as a special case when determining the

compatible orientations.
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Updating the coordinates

Having chosen a transition to apply, an orientation of the transition is then randomly
chosen. To update the coordinates, it is necessary to calculate the correct transformation
of the transition vectors for both the state orientation and the orientation chosen for the
transition.

The orientation process is done in two stages. The first is to match the coordinates
of the transition vectors to the coordinates of the actual state. This is done by forming
a one-to-one mapping of the dimensions of the original vectors to those of the current
state, and noting where a negative needs to be taken. This provides a view of the current
coordinates in a vector basis that makes the coordinates match those of the canonical
form. Table 6.1 gives a sample sequence of vector basis transformations to canonicalise

a set of coordinates.

Vector basis | Impurity coordinates | Vacancy coordinates | Displacement
[zy2] (1:2;3) (1,1,4) (0,-1,1)
[2ya] (3,2,1) (4,1,1) (1,-1,0)
[27z] (3,—-2,1) (4,-1,1) (1,1,0)

Table 6.1: Vector basis transformation of the impurity and vacancy coordinates of a
sample impurity—vacancy complex in a bee third neighbour position. The vectors are
given in units of the lattice parameter. The first line gives the raw coordinates of the
impurity atom and vacancy. These coordinates are transformed first by swapping the =
and z coordinates (second line) and then by inverting the sign of y (third line) so that

the impurity—vacancy displacement vector is in canonical form.

The second stage is to orient the coordinates in order to effect the transition in its
randomly chosen orientation. The orientations of a transition correspond to the transfor-
mations of the state coordinates and move vectors together that retain the displacement
vector(s) defining the state impurity—vacancy displacement (or the two vectors defining

an impurity—interstitial state) in canonical form. For example, for the impurity-vacancy
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complex in a bce lattice, the transition from the third to the fourth neighbour state has
an impurity move vector of (0,0,0) and a vacancy move vector of (0.5, —0.5,0.5). This

has four such transformations, given in Table 6.2.

Vector basis | Impurity coordinates | Vacancy coordinates | Vacancy move vector
[27x] (3,-2,1) (4,-1,1) (0.5,—0.5,0.5)
[G2a] (—2,3,1) (—1,4,1) (—0.5,0.5,0.5)
[277] (3,-2,-1) (4,—1,-1) (0.5,—0.5,-0.5)
[727] (—2,3,-1) (—1,4,-1) (—0.5,0.5, —0.5)

Table 6.2: Vector basis transformations of the transition from third to fourth neighbour
P-vacancy states that preserve the canonical form of the P-vacancy displacement and

hence are possible transitions from the state orientation being considered.

Internally, three pointers are mapped to the data relating to the z, y and z dimensions
respectively, and each has an associated sign flag. To prepare for each transition event,
the pointers are arranged to view the current state in canonical form. An orientation
of the chosen transition is then chosen randomly, and the pointers and sign flags are
updated by applying the required basis transformation. To update the coordinates, the

simulation then applies the transition’s move vectors through these pointers.

6.1.2 Dissociation

It is possible for the vacancy or interstitial defect to become dissociated from the impurity
atom. To allow for this, a dissociation distance is defined. When the vacancy or interstitial
is further from the impurity atom than this distance, it is considered to have dissociated,
and then it behaves as an isolated vacancy or an isolated self-interstitial, not influenced
by the impurity.

For a dissociated defect, the canonical form of a state is based on a displacement vector

connecting the defect to a lattice point, ignoring the location of the impurity atom.
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When the defect is dissociated, it may later reassociate with the same impurity atom
or associate with another one. To model the finite concentration of impurity atoms in the
material, periodic boundary conditions were used. Each periodic cell contains a single
impurity atom, and the size of the cell is chosen to represent the concentration of impurity
atoms being modelled. For example, a periodic cell of 11 x 11 x 11 bee unit cells contains

2662 atoms, giving a 0.038% concentration of impurity atoms.

6.2 Calculating diffusion constants

The diffusion constant is a commonly used measure of the rate at which a defect diffuses.

It is calculated by the formula

p= (6.6)

6tsample

where r is the displacement of the defect from its starting position after time tsampre. In
cases such as those studied here, where the defect explores the bulk of the material in
three dimenisons, the diffusion constant is independent of the interval {sgmpe that has
been chosen. To obtain an accurate diffusion constant, many uncorrelated samples must
be taken. In this work, the KMC simulation is run for a long time (see section 6.3),
with samples taken at fixed simulation time intervals of tsampe, with each r taken to be
the displacement of the defect from where it was at the previous multiple of ¢sumpie. For
computational convenience, the equivalent form

_ BuP
6t run

D (6.7)

is used, where %, is the total amount of time for which the simulation has run.
Although the term diffusion constant is used, the measure varies with temperature.

In a typical system, this dependence is governed by the Arrhenius relation
D = Dye~E/ksT (6.8)

where Dy and E are system-dependent parameters. The Arrhenius relation can be visu-

alised by plotting the diffusion constant on a logarithmic scale against the temperature



\
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on a reciprocal scale, thereby producing an Arrhenius plot. For a system that obeys the
Arrhenius relation, the points plotted will lie on a straight line.
One of the aims of this work is to determine whether this relation holds for the systems

being studied and to calculate the values of Dy and E.

6.3 Results for Fe and Fe-P systems

The KMC method has been used to perform simulations on three different defect systems
in Fe. The first of these systems is an isolated vacancy. The other two systems involve a
P impurity atom. The first of these systems is the P-vacancy complex, and the second
is the P interstitial defect system.

For these simulations, the transition table was supplied in advance, and composed of
the states and transitions discovered in section 5.3 using the Ackland Fe-P interatomic
potential.

In order to calculate accurate diffusion constants, it is important both to use a suf-
ficiently large tsampie interval for the r samples to be meaningful, and sufficiently many
samples to achieve convergence of the calculated diffusion constant. Each simulation was
run for at least 10000 samples, which was found to give diffusion constants converged
to two significant figures. At 350 K, where events are infrequent, we found that a sam-
pling interval of 1 ms gave the best results. At higher temperatures, events happen more
frequently, so shorter sampling intervals (down to 10 us) and total simulation times of
about 0.1 s were found to be adequate. Altogether, the total length of time covered in
each simulation ranged from 0.1 s for the simulations run at 700 K, to 10 s as was used at

350 K. In this time, a total number of events in the order of 101° was generally observed.

6.3.1 Isolated vacancy

As was discovered in section 5.3.1, an isolated vacancy diffuses by alternating between

two states, namely the simple vacancy state and a metastable split vacancy configu-
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Temperature (K) | Diffusion constant (m? s™')
350 25 x 1070
400 3.6 % 107
500 LB % 10
600 1.8 x 107
700 1.6 % 16~

Table 6.3: Diffusion constants for an isolated vacancy in Fe.

ration. KMC simulations have been performed on this defect system at five different
temperatures, and the diffusion constants have been calculated.

Table 6.3 gives the diffusion constants at these five temperatures. It can be seen that
as the temperature is increased, the diffusion constant increases in order of magnitude. It
can be seen from Figure 6.3 that this system obeys the Arrhenius relation. The constants
involved in equation (6.8) for the isolated vacancy system are Dy = 4.2 x 1077 m? s!

and F = 0.64 eV.

6.3.2 P-vacancy complex

Simulations were performed on a P-vacancy complex, with the P atom and vacancy
initially at first neighbour positions. As was seen in section 5.3.2, convergence of the
energy barriers towards those of an isolated vacancy was seen beyond the eighth neighbour
distance.

The exchange of the P atom and vacancy when they are at first neighbour positions,
as was given in Figure 5.8, turned out as expected to be the most frequently observed
mechanism. Overall, the system overcomes an energy barrier of 0.287 eV during this ex-
change. At a temperature of 300 K, only the transitions corresponding to this mechanism
were observed, hence the defect did not diffuse through the lattice.

KMC simulations in this system have been performed using two different periodic

cell sizes at five different temperatures. The first cell size is 11 x 11 x 11 bee unit
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Figure 6.3: Arrhenius plot of the diffusion constants of an isolated vacancy in Fe (@),
and of a P atom (M) and a vacancy (&) in a P-vacancy complex with a periodic cell
size of 15 % 15 x 15 bee unit cells. The fine dotted lines show the extrapolation from
the diffusion constants in the P-vacaney system caleulated at 350 K and 400 K if the

Arrhenius relation is assumed.
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Diffusion constants (m? s™1)
Temperature (K) | P atom Vacancy Time associated
350 23 % 107V 1@xI107% 99.8%
400 AR 1w 99.4%
500 11 107" 18 x 107 95.2%
600 LIRI0R L1810 83.9%
700 8lx 1 417%™ 66.9% |

Table 6.4: Diffusion constants and association times for the P-vacancy complex with a
PBC cell of 11 x 11 x 11 bee unit cells, representing a 0.038 at.% P concentration. The
time associated is defined here as the percentage of the time for which the vacancy was

within 6.8 A of the P atom, i.e. at up to the eighth neighbour position.

cells (31.5 A), representing a P concentration of 0.038 at.%. The results are shown in
Table 6.4. The P atom diffusion constants calculated at this cell size for 500 K and 600 K
agree with those calculated by Barashev [57]. The second cell size that was studied is
15 x 15 x 15 bee unit cells (43.0 A), representing a P concentration of 0.015 at.%; the
results at this concentration are given in Table 6.5. For both concentrations and for
all five temperatures, it can be seen that the P impurity makes the vacancy less mobile
than it is in pure Fe. Also, on the Arrhenius plot (Figure 6.3) for this system, neither the
diffusion constants of the P nor those of the vacancy lie on a straight line. The P—vacancy

system therefore does not satisfy the Arrhenius relation.

Tables 6.4 and 6.5 also compare the proportions of the time for which the vacancy
is associated with the P atom. As the temperature is increased, the amount of time
over a given interval for which the system is dissociated also increases. This shows that,
while the vacancy is strongly attracted to a substitutional P atom, the effect of this
attraction weakens as the temperature increases. This is as expected, since the higher-

energy transitions are more probable at higher temperatures.

This increase in the time that the P atom and vacancy spend dissociated also means
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Diffusion constants (m? s™1)
Temperature (K) | TP atom Vacancy Time associated
350 20x 1077 3.0x 107 99.4%
400 2EXIY  43%107° 98.7%
500 1.0x 107 28 x 107" 88.5%
600 89x10°* B8x10°E 66.9%
700 IAxI0-® pIx1prt 43.6%

Table 6.5: Diffusion constants and association times for the P—vacancy complex with a
PBC cell of 15 x 15 x 15 bee unit cells, representing a 0.015 at.% P concentration. The
time associated is defined here as the percentage of the time for which the vacancy was

within 6.8 A of the P atom, i.e. at up to the eighth neighbour position.

that, as the temperature increases, there is less time in which the P can diffuse. On the
other hand, the vacancy is more mobile when dissociated than when moving in the P-
vacancy complex. This accounts for the non-Arrhenius behaviour, since as dissociation
time increases, the overall P mobility is decreased, and the overall vacancy mobility
is increased, compared with what would otherwise be expected with the variation in

temperature.

The diffusion constants were also compared at 500 K for five different periodic cell
sizes, representing P concentrations from 0.038 at.% down to 0.006 at.%. The results
are in Table 6.6. As the P concentration decreases, the diffusion constant of the P
atom decreases, and the diffusion constant of the vacancy increases. The time for which
the vacancy and P atom are associated also decreases at lower P concentrations. This
illustrates that when the P concentration is lower, the vacancy diffuses further before
associating with another P atom. It follows that the vacancy is more mobile, hence the
increased diffusion constant, but the P atom has less opportunity to diffuse, leading to a

decreased diffusion constant.
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Periodic cell size P atom Diffusion constants (m? s™')
(bee unit cells) | concentration | P atom Vacancy Time associated
11 % 11 x 11 0.038 at.% | 1.1x107  1.9x 107 95.3%
18 % 18% 13 0023 at.% |[11x107 22x10°Y 92.3%
15 x 15 x 15 0.015 at.% 1.0% 14 28% 1014 88.5%
17 % 17 % 17 0.010 at.% | 9.6 x 1071% 34 17 84.1%
20 % 20 x 20 0.006 at.% | 8.7 x 1071° 4.5:% 1071 76.1%

Table 6.6: Diffusion constants for the P-vacancy complex at 500 K with different periodic

cell sizes, representing different concentrations of P atoms in Fe.

6.3.3 P interstitial defect

The system of an interstitial defect involving a P atom was studied using KMC simulations
at the same five temperatures as those used for the studies of isolated vacancy and P-
vacancy diffusion, using a periodic cell size of 11 x 11 x 11 bec unit cells.

In section 5.3.4, it was discovered that the attraction of an Fe interstitial defect to
a P impurity atom is stronger than the attraction that holds the P-vacancy complex
together. Indeed, at all temperatures the KMC simulations showed that the interstitial
defect spends over 98% of its time in the (110) Fe-P dumbbell state, with the P atom
migrating via the P tetrahedral state. At 350 K and 400 K, the system was moving
between these two states for over 99.99999% of the time, becoming an Fe-Fe dumbbell
with the P atom in a substitutional position for only a few transition events at a time.
Consequently, the interstitial defect did not become dissociated from the P atom.

This system has previously been studied using preliminary MD simulations [19]. At
1200 K, the interstitial defect dissociated from the P atom after 80 ps; however, at 600 K
no dissociation was seen. However, by extending the simulation beyond the accessible
MD timescale, we have seen that dissociation can occur at temperatures as low as 500 K,
at which the interstitial went beyond the sixth neighbour position approximately 60 times

per second, but only for short periods of the order of nanoseconds. At higher temperatures
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Temperature (K) | Diffusion constant (m* s™') | Time associated
350 2.9 x 1012 100%
400 8.3 % 101 100%
500 38 x 104 99.999987%
600 1.1 % 1= 99.999627%
700 2.2 x 1079 99.993761%

Table 6.7: Diffusion constants and association times for the P interstitial defect system
with a PBC cell of 11 x 11 x 11 bee unit cells. The time associated is defined here as the
percentage of the time for which the interstitial defect was within 4 A of the P atom, i.e.

at up to the sixth neighbour position.
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Figure 6.4: Arrhenius plot of the diffusion constants of a P interstitial defect in Fe.
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dissociations are more frequent, but even at 700 K, the dissociation was for only 0.006%

of the time.

The diffusion constants for this system at a periodic cell size of 11 x 11 x 11 are given
in Table 6.7. In this system, there was no noticeable difference between the diffusion
constant of the P atom and that of the interstitial. As Figure 6.4 shows, there was also
no noticeable deviation from the Arrhenius relation, with Dy = 1.7 x 10~® m? s=! and

E =0.26 eV.

6.4 Conclusions

In the work of this chapter, the kinetic Monte Carlo method has been adapted to study
the diffusion of isolated defects in bulk material. The technique has been applied to the
diffusion of three different defect systems in a-Fe, and used to calculate the diffusion
constants for these systems at various temperatures and concentrations of P impurity

atoms.

It has been noted that in many systems, the Arrhenius relation governs the dependence
of the diffusion constant on temperature. This relation was confirmed in the diffusion of
an isolated vacancy and of a P interstitial defect in a-Fe over the range of temperatures
that was studied. However, a deviation from this relation was seen in the diffusion of a

P-vacancy complex.

In the P-vacancy system, the vacancy is attracted to the P atom. As the temperature
increases, the vacancy becomes more easily able to overcome this attraction and become
dissociated from the P atom. This attraction is even stronger in the P interstitial defect
system, so that at this temperature, even at 700 K dissociation was seen for less than

0.01% of the simulation time.
The diffusion constants that were calculated are very different between the three defect
systems. It has been found that, of the three defect systems studied in this chapter, the

P-vacancy complex is the least mobile and the P interstitial defect is the most mobile.
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This implies that the P interstitial defects in Fe are an especially important process by
which P atoms can migrate to grain boundaries in NPVs subjected to radiation damage.

It has also been seen in this work that diffusion constants calculated using simulation
methods can differ by orders of magnitude from those often used by nuclear engineers in
rate theory models [11] to assess NPV structural integrity. This suggests that the results
of such calculations need to be carefully interpreted. Although the processes described
here are only some of those important in determining the build-up of impurities at grain
boundaries, the methodology has great promise as a means to provide a consistent set of
diffusion data for such rate theory models and hence a more accurate quantification of

NPV structural integrity and reactor lifetimes.



Chapter 7

Conclusions and future work

The dimer method, described in Chapter 3, was the main driving force behind the work
of this thesis. As such, the first part of this work focussed on implementing the dimer
method and adapting it to the systems that were to be studied.

While implementing the dimer method, a number of modifications to the algorithm

were considered, including:

different formulae for rotating the dimer

periodically relaxing the fixed atoms

a modified sequence of rotation and translation steps, with rotation separated from

choosing a plane in which to rotate

parallelisation of the algorithm.

These modifications were found to improve the efficiency of the dimer method. However,
a continuing difficulty is in determining an optimum set of dimer method parameters to
find transitions in a given system. A good set of parameters is one that enables the dimer

method to:
e successfully find a transition in a high proportion of searches

e perform a relatively low average number of force evaluations per search

121
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e yield accurate energy barriers

e find as many as possible of the transitions that are possible from the given initial

state.

Good parameter sets can be found by trial and error, but the computational cost of trying
many sets of parameters is not always outweighed by the increased efficiency of whichever
parameters turn out to be optimal. It would therefore be of interest to users of the dimer
method if a systematic approach to choosing a good set of parameters in the first place
can be developed.

The dimer method has been applied to two very different atomistic diffusion problems.
The first of these is the diffusion of an Au adatom on the Au(100) surface. This is similar
to a previous study of Al adatom diffusion on Al(100) [10] in both the way in which
it was carried out and that both materials have the face-centred cubic structure. The
results of the Au study showed that the energy barriers of the transitions involved are
generally higher than those for the corresponding transitions in Al, and that the lowest-
energy transitions are very different between the two systems. For Au, these lowest-energy
transitions are mainly those in which small numbers of atoms move between sites. For
Al, concerted displacements are the preferred mechanism for an adatom to diffuse. This
is therefore an example of how two materials of the same structure can behave very
differently on the atomic scale. However, the studies of two adatoms on Au suggest that
there may be a similarity between Au and Al, namely that adatoms will tend to form
compact clusters rather than scatter over a (100) surface.

The second diffusion problem that has been studied is the diffusion of point defects
in bulk a-Fe. Both defects in pure Fe and defects involving a P impurity atom were
studied. For this study. two different interaction models were used, and the results were
compared. The first model is the Ackland potential for pure Fe [18] together with a
Morse potential [25] to model the Fe-P and P-P interactions. The second model is the
newer Ackland potential designed for the modelling of P impurities in Fe [19]. With each

potential, different transition mechanisms were discovered, and different energy barriers
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were calculated. Thus it has been demonstrated that in order to model materials on
the atomic scale, a good choice of interatomic potential is essential. In this case, the
newer Ackland Fe-P potential has produced the more accurate results, as compared with
experimental and @b initio studies of the behaviour of Fe with and without P impurities.
As such, it is believed that there is plenty of opportunity for this more sophisticated
potential to be used in more studies of Fe containing P, and to produce more accurate
results than have been derived from studies involving older potentials.

In studying surface diffusion and bulk diffusion, a number of differences between
the two problems were seen. The number of free atoms required to obtain meaningful
results using the dimer method is much higher in bulk material than on surfaces. This
is because bulk defects often create strain fields of significant size around them, and
calculating accurate energy barriers depends on the algorithm being able to determine
how the atoms in the strain field move in the lowest-energy path. On the other hand, an
adatom on a surface has a much smaller strain field, and can therefore be modelled using
smaller numbers of free atoms. A second difference is that on surfaces there are more
transitions possible from a given state than in the bulk. This is due to the possibility
of atoms entering and leaving the substrate in surface configurations, leading to a rich
variety of co-operative transitions such as concerted displacements. On the other hand,
diffusion in bulk material is simpler, with only a small number of atoms moving between
lattice sites in any transition.

Kinetic Monte Carlo simulations have been carried out on three different defect sys-
tems in bulk a-Fe. These are an isolated vacancy, a P—vacancy complex and a P inter-
stitial defect. Diffusion constants were calculated for five different temperatures in each
system, and the results have been compared with those that would be predicted by the
Arrhenius relation

D = Dye B/ksT (7.1)

which is typical of many systems. Two of the systems studied were found to obey the
Arrhenius relation, and the parameters calculated are Dy = 4.2 x 1077 m? s, B =

0.64 eV for the isolated vacancy system and Dy = 1.7 x 1078 m? s~! and E = 0.26 ¢V for
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the P interstitial defect system. The P-vacancy complex, on the other hand, does not
obey the Arrhenius relation. This was found to be because the time that the vacancy
spends dissociated from the P atom increases with temperature. This is also true of the
P interstitial system; however, there was not sufficient dissociation for any deviation to
be seen. It is therefore possible that, if P interstitial diffusion is studied at sufficiently

high temperatures, non-Arrhenius behaviour will begin to emerge in this system.

7.1 Future work

A limitation of the KMC simulations performed in this work is that a constant attempt
frequency of 10" s~! has been used to calculate the rate constant of every transition.
This is a typical value assumed in rate theory studies; however, in practice, the attempt
frequency is not constant. An improvement would be to implement calculation of the
actual attempt frequency of each transition using the method of Vineyard [38]. This
involves calenlating the eigenvalues of the Hessian matrix at the saddle point and the
initial minimum of the potential surface. As such, it would require the calculation of
second derivatives of the potential, which is a computationally expensive operation, but
this calculation needs to be performed only for the initial state and each saddle point
found.

To model Fe containing a finite concentration of P impurity atoms, a periodic cell
with a single impurity atom was used for the KMC simulations. By varying the size
of the cell, different impurity concentrations were considered. An alternative would be
to use a much larger periodic cell with many substitutional impurity atoms distributed
within it. This would be more realistic, since it enables more variation to be seen in how
far a vacancy or interstitial defect moves between dissociating and reassociating with an
impurity atom. A difficulty with this approach is that two impurity atoms may become
sufficiently close together that they interact with each other, or both interact with the
vacancy or interstitial at the same time. This could be addressed by using the predefined

event table when the vacancy or interstitial is associated with only one impurity atom,
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and employing an on-the-fly KMC (OFKMC) approach for the more complicated states
involving multiple impurity atoms.

The methodology could also be adapted to investigate the evolution of defect clusters
created by collision cascades. This would necessarily involve OFKMC simulation, but
when there are isolated defects as well as clusters, a possibility would be to combine the
event table with one generated on the fly. This would work by searching for transitions
of each cluster separately, and combining the sets of transitions that can occur on each
cluster, along with those in the predefined event table for the isolated point defects, into
a single list of transitions from which one is randomly chosen. The separation of the
search effort into clusters produces a divide-and-conquer approach to building the event
table, which may improve the efficiency of OFKMC simulations and also has potential

for parallelisation.

When the event table is predefined, KMC's event-driven nature means that it is faster
than other accelerated dynamics methods, such as hyperdynamics or TAD, which still
rely on trajectories evolved in small timesteps as does classical MD. However, OFKMC is
a much more computationally intensive method than KMC with a predefined event table.
At the moment, it is unknown how OFKMC will compare in its performance to the other
techniques in studying the problems that have been covered in this work, but it is likely
that the aforementioned divide-and-conquer approach will bring about an improvement
in efficiency that may lead to further advances in long-timescale simulation applied to

the problems studied here and to other atomistic modelling problems.

At the moment it is unclear how the various accelerated dynamics methods compare to
each other in their performance. Although the methods have been studied and reviewed
extensively, comparisons of the different methods applied to the same problems have
not been found in the literature. Thus it would be useful to carry out a systematic
comparison of the accelerated dynamics methods, by applying each method to the same
set of problems. This would produce an overview of how efficient and versatile the
different techniques are in relation to each other, including typical boost factors, how

the boost factor scales with temperature, and which problems each technique works well

Byt e
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on. This would, in turn, help scientists to choose the best accelerated dynamics method
for the particular problem being studied, and to gauge the relative performance of new
accelerated dynamics methods that may be developed.

It would also be of interest to attempt studies of the problems that have been presented
here using ab initio models of the interatomic interactions. Ab initio calculations have
already been used [55] to determine the energy barriers of some transitions in the Fe
and Fe-P systems. However, only P-vacancy and P-interstitial separations up to the
fifth neighbour position have been covered in the results published to date. These results
could be extended into a more comprehensive catalogue of ab initio-calculated transition
barriers. which can then be compared with the barriers calculated in this work using the
Ackland Fe-P potential. Transition barriers calculated using ab initio methods can then
be used for an event table to perform KMC on this system or other similar systems.

Most ab initio work has used molecular statics to calculate the energy barriers between
known initial and final states. It would be useful to investigate other applications of ab
initio molecular modelling, including the use of other barrier calculation methods such
as the dimer method. This would mean that ab initio models can be applied not only to
calculate the energy barriers, but also to discover any transitions that are missed when

working with empirical potentials.
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