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Abstract 

The present thesis examines the quantitative characteristics of driver 

braking and pedal operation and discusses the implications for the design of 

braking support systems for vehicles. After the current status of the relevant 

research is presented through a literature review, three different methods are 

employed to examine driver braking microscopically, supplemented by a 

fourth method challenging the potential to apply the results in an adaptive 

brake assist system. 

First, 30 drivers drove an instrumented vehicle for a day each. Pedal 

inputs were constantly monitored through force, position sensors and a video 

camera. Results suggested a range of normal braking inputs in terms of 

brake-pedal force, initial brake-pedal displacement and throttle-release 

("throttle-off') rate. The inter-personal and intra-personal variability on the 

main variables was also prominent. 

Then, 48 drivers drove the instrumented vehicle on a predetermined 

course on a public-road section before encountering an emergency brake test 

on a closed-road section. This study allowed for the comparison and the 

exploration of relationships of the main parameters between normal and 

emergency braking. Results supported the pre-established theoretical 

--distinction between normal and emergency braking and provided evidence of 

relationships between normal and emergency braking parameters. 

One of those relationships was selected to be incorporated to a virtual 

adaptive brake assist system. The behaviour of the system was tested using 

data from the real trips of 25 drivers. The study indicated the superiority of the 

VII 



-
particular system specification over conventional non-adaptive specifications. 

However, results suggested weaknesses of the system to adapt to driver

braking style quickly enough under certain circumstances, and therefore, the 

need to improve its specification further. 

, The accident study provided the actual context within which driver braking 

and interaction with braking systems becomes critical. The road-user

interactions file of 301 cases where "failure to stop" was identified as the 

precipitating factor (1099 interactions) and 39 cases where "sudden braking" 

was identified as the precipitating factor ( 152 interactions) were examined. 

Results suggested that longitudinal control and support systems like the 

proposed system address some of the contributing factors to this type of 

accidents; however, there are many more factors that are not addressed by 

such systems or other conventional active safety systems. Therefore, new 

streams of research and development within road safety need to be 

established. 

In parallel, if the full potential of technological advancements is to be 

harvested and accidents to be mitigated, current streams, such as the one 

followed by the present research, need to grow and evolve. 
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Chapter 1: Introduction 

The purpose of this chapter is double: first, it clarifies the theme of this 

thesis and prepares the reader for the chapters that follow. Second, it 

underlines the main ideas the reader should have in mind when browsing the 

latter chapters. This should enhance comprehension of the results and the 

function of the suggested system in the end. 

What do we mean by "ergonomics of intelligent vehicle brake 

systems"? 

Ergonomic 0 Jntelligen 
ehicle brake stem 

is 

J 
Human - Machine is 

is 

(effective/safe/comfortable) 1 
interaction 1 

Adaptive Technology 

Part of the 
basic driving 

task 

Figure 1: A semantic analysis of the title 

Ergonomics or human factors (term used in the US predominantly) is a 

multidisciplinary science that focuses on the human needs and capabilities in 

the design of products, processes and technological systems. A large number 

of different, though overlapping, definitions of ergonomics/human factors now 

1 



exist (Wogalter, Hancock, & Dempsey, 1998). The combination of scientific 

characteristics (fundamental information/knowledge) with technological 

characteristics (application of this knowledge to problems of 

design/engineering in their wider sense) is a common ingredient of most 

definitions (Wilson, 2005). The ergonomics/human factors sphere contains all 

elements of human-environment interaction, be it interaction with hardware, 

software or other people. The International Ergonomics Association (lEA - the 

international ergonomics association.) defines ergonomics as the scientific 

discipline concerned with the understanding of interactions among humans 

and other elements of a system, and the profession that applies theoretical 

principles, data and methods to design in order to optimise human well-being 

and overall system performance. 

Key words in this definition are "interactions", "humans" and "systems". 

Ergonomics is about human-system interaction and is associated with 3 main 

criteria - efficiency, comfort and safety. This is the first element of this thesis 

title (figure 1). The ideas in this document must tend towards improving the 

human-system interaction in terms of efficiency, comfort and safety. 

The second element of the title is "intelligent systems". Within the 

framework of ergonomics, intelligent systems are human-centred systems, 

which have not only the capability to sense, process information and "make 

decisions" or change status, but are also engineered to match human 

capabilities and adapt to human variability. As every human being is unique, 

individual differences are one of the major problems to engineers and 

designers. The "common sense" of using simple averages to accommodate 

users is a fundamental fallacy (Pheasant, 1996). There are two ways to 

2 



overcome this. The first is to customise design to each user. This is ideal as it 

directly eliminates the problem at its heart; each producUsystem is designed 

for each individual specifically. In reality though, there are only a handful of 

instances when this is applicable. With the exception of users involved in 

high-end technology projects with virtually unlimited budgets (space 

exploration program, special army units), no projects can support the financial 

and human resources necessary to support such a design approach. The 

second solution to deal with the individual differences of the user population is 

to make use of the "smart" electronics technology and utilise it in a design that 

adapts to each user's characteristics. In the case of this thesis, the users are 

road vehicle drivers. 

The system of interest in this case is the vehicle braking system. This is 

the third element of the thesis title. It is the group of mechanical and electronic 

devices installed in a road vehicle in order to achieve negative deceleration, 

when activated. Without dismissing completely the mechanical/electronics 

part of the system, the current document focuses on the interaction with the 

driver, the ergonomics. There is a constant momentum in brake engineering 

(materials, mechanics, electronics) since the birth of automobiles, however as 

we shall see in the following chapters, little has been done to improve the 

interaction with the driver. The latter deserves particular attention as it is 

associated with two of the three elements of a safe road system (safe driver

safe vehicle - safe road environment). Successful communication between 

driver and vehicle could contribute further towards the achievement of the 

ultimate goal; accident mitigation. For the moment, this goal is some way in 

the distance. 
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Road accidents as a global epidemic 

"An automobile is a convenient means of private transportation, but it is also a 

prime killer of both passengers and pedestrians" (Ben net, Degan, & Spiegel , 

1963) 

Road fatalities with under-reporting adjustments 

Highly Africa CIE EI¥Qp8 Asia-Pacific. Latin ,,",erica MiQdIe Ent Global 
Motorised 
COlKltriOS 

• 1999 estimate 
_ 30 day fatality 

Olow under·reportjng adjustments 

a U r \IOOeH~ a \I$\menl, 

Figure 2: estimated road fatalities with under reporting adjustments per region 

The exact number of global traffic accidents is unknown and so are the 

exact figures of fatalities and injuries. What is known is that the estimated 

values are long numbers with more than six digits. Common estimations are 

based on hospital and insurance data (Ghee, Silcock, Astrop, & Jacobs, 

1997). However, data for most countries in the world are full of gaps and 

some are inaccessible. At the same time hospital and police accident records 
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have a lot of mismatches (Cercarelli, Rosman, & Ryan, 1996) indicating that 

the problem of under-reporting is global (Laumon & Martin, 2002). To address 

the issue of inconsistency the World Bank and the Department for 

International Development UK (DFID) funded a project with the Transport 

Research Laboratory (TRL) aiming to provide accurate numbers of global 

fatalities (G. D. Jacobs & Aeron-Thomas , 2000) . Figure 2 presents the main 

outputs of this: data from 192 countries are assigned to six major regional 

groups, namely highly motorised countries (HMC), Africa , Central and Eastern 

Europe, Asia and Pacific countries, Latin America , Middle East and North 

Africa (MENA) . Accordingly a realistic number for global road deaths is 

estimated between 750000 and 880000 for the year 1999. 

Although we tend to think of "drivers" as the main road victims , quite a 

significant part of road casualties consists of non-drivers. 38% of those killed 

in a traffic accident are not the vehicle driver (Fatality analysis reporting 

system (FARS) web-based encyclopedia. data files and procedures to 

analyse them.2005) . A basic distinction of road victims is based on their 

location at the time of the accident: of all traffic fatalities, 86.51 % are vehicle 

occupants, and 13.49% are outside the vehicle environment. Of the vehicle 

occupants, 61.59% are drivers and 24.91 % are passengers. The non-vehicle 

occupants are predominantly pedestrians (11 .59%) and the rest 1.9% 

consists of cyclists in majority. The group of drivers can be analysed into car 

drivers (32.89%), light truck/van drivers (19.20%), truck drivers (1.45%), 

motorcycle riders (6.85%), bus drivers (0.03%) and "other" drivers (1 .18%). 

Within the passenger victims , 15.16% are car occupants, 8.56% are van 

occupants, 0.27% are truck occupants, 0.56% are motorcycle co-riders, 
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0.05% are bus passengers and 0.32% are passengers in "other" type 

vehicles. 

Road traffic fatalities data are abundant in European and North American 

literature, but also can be found in many national statistics globally . 

Underneath those data lie injury and non-injury accidents with higher 

monetary costs (L. Evans, 2004; J. D. Lee , 2006) and impact in quality of life 

(Bames, 2006). Non-fatal accidents cost more and in many different ways to 

the society. Table 1 presents the frequency of different types of vehicle 

collisions and an estimate of the annual economic cost of each. 

Table 1: Frequency and Severity of Major Crash Types (adapted from Wang, Knipling, & 
Blincoe, 1999) 

Crash type Frequency, Number per Year Severity, Economic 

and Percentage of Tota l Cost per Year1 

Rear-end 1,454,000 (23%) 33.8 billion $ 

Single-veh icle/roadway 1,310,000 (21 %) 33.2 billion $ 

departure 

Intersection 899,000 (14%) 27.4 billion $ 

Left turn across path 396,000 (6%) 11 .9 billion $ 

Lane change/merge 234,000 (4%) 4.1 billion $ 

Opposite direction 190,000 (3%) 12.7 billion $ 

Pedestrian 176,000 (3%) 9.7 billion $ 

Backing 171 ,000 (3%) 2.4 bi ll ion $ 

Total 6,261 ,000 (100%) 164.4 billion $ 

The total of $164.4 billion rises to 432 billion per year when derived valuations of loss 
of life and pain and suffering are included. 
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What is apparent from a quick look at the table is prevalence of rear-end 

collisions and road departures, both in terms of frequency and monetary cost. 

Further examination of the table indicates proportionately high economic costs 

for "opposite direction" collisions and those involving pedestrians. It should be 

noted however, that the values presented in the table do not include 

consequential costs in quality of life, which in the case of non-fatal accidents -

as rear-end collisions commonly are - multiply the figures significantly (Wang 

et aI. , 1999). The main problem is that it is hard to find information about 

"minor"-injury cases and even harder to know or estimate the impact of this 

accident in the life of those involved and their families . 

In one of the few studies that addressed this issue (Barnes , 2006), 

participants with relatively minor injury had significant physical problems 

compared to the population norms for the health outcome measures 

particularly in the first 6 months post injury . At 12 months all participants had 

returned to work with both physical and mental health rated similar or worse 

than the population norms (Barnes, 2006) . Adding this evidence to the widely 

acknowledged predominance of rear-end collisions in road accidents (l. 

Evans, 1991 ; L. Evans, 2004; J. D. Lee, 2006; National Safety Council , 1996; 

Parker, West, Stradling, & Manstead, 1995) , the impact of those accidents to 

the society can be seen differently. Rear-end collisions are no longer as 

innocent as one might think based on fatality rates. Therefore, it is worth 

investigating non-fatal accident cases and investing in resources that aim at 

the amelioration of such accidents. 

There are three main areas where developments aim at minimising road 

accidents: road environment, vehicle and driver. The three-agent systematic 
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approach has been adopted formally by the Swedish Road Administration and 

has been validated as an effective generic approach (Stigson, Krafft, & 

Tingvall , 2008). The vehicle branch of this model has seen significant 

developments in the recent years with the introduction of active safety 

technologies in the vehicle. These consist of electro-mechanical systems 

engineered to mitigate accidents. 

Safety Technology 

Vehicle safety technology was first implemented with the introduction of 

seat belt in cars during the sixties, based on a concept developed at the 

beginning of the century. After that, harness systems have been continuously 

developed and airbags were added later. Frontal airbags began initially as 

alternatives to seat belts in the US, however the their suspected contribution 

to some fatalities (Airbagcrash, 2001) soon shifted their use to supplementary 

to seat-belts. In the '90s side-airbags and anti-whiplash seats were introduced 

by Autoliv (Autoliv, 2009). In the new millennium, knee airbags were 

introduced and the first car to include them as standard received excellent 

marks in leg protection during crash-tests (Euroncap, 2003). All these 

systems are based on the notion that accidents are inevitable and the focus 

was on mitigation of their consequences. 

However, as cars become faster and faster, the physical limits of how 

kinetic energy can be dissipated will soon be reached (Evans, 2004), and the 

example of aerospace industry needs to be followed . As had been the case 

with aeroplanes in the middle of the 20th century (De Haven, 2000), road 
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vehicle development creates more and more powerful cars and a setting 

where the effect of passive safety will be limited. Thus, more and more it is 

acknowledged in the automotive world that the focus should shift from 

"minimal casualties" to "no accidents". Under this notion a new trend in vehicle 

technology was born , commonly named "active safety" technologies. 

Table 2: Haddon's matrix with examples of how human, vehicle and roadway 
environment measures can contribute to crash avoidance, injury minimisation and 

miti ation of conse uences 

Human Vehicle Environment 

Pre- Training, Collision warning/mitigation Roadway design, 

crash traffic law systems, ABS, ESC, In-vehicle availability of 

phase enforcement information systems other modes of 

transportation 

Crash Bracing Seat-belts, Pre-tentioners, Barriers and lane 

phase action Airbags, separation 

Post- Emergency Automatic emergency call Emergency 

crash call services 

phase response 

Already since the early '70s, Haddon's matrix (Haddon, 1970) provided 

the theoretical background for additional safety measures that target the pre-

crash phase and reduce the opportunities for an accident to occur in the first 

place (table 2) . Starting with the Antilock Braking System (ABS) developed by 

Bosch in 1978, a series of vehicle control systems has been developed in 

order to either support the driver or acquire control and prevent accident 

occurrence. First, the ABS aimed at preventing the wheels from locking and 
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allowing steering to be possible when full brakes are applied . After that, many 

systems claim that they allow controllability in many different situations, 

although essentially most of them are based on the same concept as ABS -

preventing wheels from locking. 

Generally, there are four main types of systems already in production . 

These are: systems that support or take over control of headway (e.g. 

Collision Warning! Collision Mitigation Systems) , Stability Control Systems 

[e .g. Electronic Stability Program (ESP) , Vehicle Stability Control (VSC) etc.]. 

lateral support or automatic control systems [Lane Change Support (LCS)]. 

and systems that augment driver input to the brake pedal [Brake Assist 

System (BAS) or Emergency Brake Assist (EBA)]. 

The Collision Mitigation Brake System (CMBS) is a contemporary 

example of headway-based safety system. Based on previous collision 

warning and headway controlling systems is viewed as a promising solution to 

rear-end collisions. CMBS uses a long range radar or lidar (light detection and 

sensing) sensors to detect target vehicles in front and adjusts the vehicle 

speed and gap accordingly. CMBS automatically decelerates or accelerates 

the vehicle according to the desired speed and distance settings established 

by the driver or by default (figure 3) . When the system detects an imminent 

collision , it even applies brakes automatically to avoid or mitigate the 

consequences of the crash . Almost every car manufacturer and every system 

developer offers its own version of such system using a different label to 

name it. Essentially however systems like Delphi's Smart Cruise Control 

(De/phi active safety products for automotive manufacturers.), Honda's 
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Collision Mitigation Brake System (Honda safety - active safety.) , and TRW's 

Collision Warning System (Adaptive cruise control.) fall in this category. 

Figure 3: Collision Mitigation Brake System (CMBS) (Honda safety - active safety. ) 

Electronic Stability Program (ESP) was originally developed by Bosch 

(BOSCH, 2000; Society for Automotive Engineers , 1999) as a promising 

system to mitigate roadway departures and rollover accidents. Based on ASS 

and traction control, the system identifies differences in wheel spin during 

road curve driving and brakes each wheel as necessary in order to maximise 

friction (the original ESP braked the front in- or outside wheel only, depending 

whether the tendency is towards under- or oversteering) . Significant evolution 

followed, names and specification changed slightly (Electronic Stability 

Control, Vehicle Stability Control, Dynamic Stability Control and Vehicle 

Dynamics Control, to name few) but the notion behind the system remained 

the same; maximise friction by controlling wheel spin. 

Lane Change Support systems aim to assist the driver in controlling 

lateral position of the vehicle and completing the typical task of lane changing. 

They support the driver and assist in preventing unintentional lane departures. 

Utilizing a forward-looking video camera that continuously monitors the 
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vehicle's lane (figure 4) the system can determine whether or not a driver is 

unintentionally drifting from their lane or the road . If the driver unintentionally 

begins to wander out of their lane, the system alerts the driver visually, 

audibly or by vibrating the steering wheel -specifications vary by 

manufacturer. When integrated with Electrically Powered Steering, some 

specifications of the system are also capable of providing a light steering 

input, helping the driver keep the vehicle within its lane. 

Figure 4: TRW Guide System (Adaptive cruise control.) 

Emergency Brake Assist (Breuer, Faulhaber, Frank, & Gleissner, 2007) 

supports the drivers who do not apply brakes vigorously enough in an 

emergency situation. The function of the system is presented in figure 5. 

Based on findings regarding the inability of most drivers to use the full 

potential of the vehicle brakes (Kiesewitter, Klinkner, Reichelt, & Steiner, 

1997) the system applies full brakes when quick brake reaction by the driver 

is detected. The system uses pedal application speed as an indicator of 

emergency situations . If an unusually high pedal speed is detected, the 

system infers an emergency situation and applies full brakes, rather than the 
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typically limited braking force applied via the brake pedal. Wheel lock is 

prevented through ASS and the system function is terminated as soon as the 

driver lifts their foot off the brake pedal. 

~ 
o 
u. 
• '" e 
"' 

Brake Assist Function 

Brake Pedal Force 

Figure 5: the general function of Emergency Brake Assist 

- withEBA 
- without EBA 

Apart from the above basic system categories there is a huge pool of 

ideas and applications coming from the automotive industry as well as 

academia . Building on the systems described above and some other 

components system developers suggest new integrated systems that 

combine active and passive safety elements. Figure 6 presents the 

components of the Active Passive Integration Approach (APIA) by Continental 

(Continental automotive systems -APIA: Active passive integration 

approach.). A similar integration is being developed by Bosch aiming at 

predicting an accident based on driver behaviour and vehicle factors 

(BoschLive.). Of course , each one of the systems comes with a series of 
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ergonomics issues to be addressed. The introduction of automation and the 

transfer of control away from the driver is an issue identified across the 

spectrum, as happens with automation in other domains (Dixon & Wickens, 

2006; Gao, Lee, & Zhang , 2006; J. D. Lee & Moray, 1994; Miller & 

Parasuraman, 2007; R. Parasuraman & Mouloua, 1996; Riley, 1996; Rovira , 

McGarry, & Parasuraman, 2007), however possible problems with each 

system need to be addressed separately and in depth. 

Figure 6 shows an additional characteristic of many modern active safety 

systems; they consist of previous systems or share elements with previous 

systems. For example , the APIA system by Continental includes Adaptive 

Cruise Control, Electronic Brake System (as an EBA system would have) and 

Electronically Controlled Steering (as a Lane Departure Warning/Avoidance 

system would have). Marketing and sales pressure has possibly led to the 

regular bombardment of the vehicle market with new acronyms, without 

necessarily corresponding to new technologies. There are exceptions of 

course, when a new acronym is the name of a system with new functions and 

offers a new accident mitigation opportunity. Such was probably the ASS 

when first introduced and the early Collision Warning systems. The majority of 

systems however, probably follow the example of APIA. This approach is not 

necessarily wrong or disapproved. On contrary, practice indicates this is the 

safest method to come around accident mitigation through technology. The 

next section describes some of the system groups and the prominent 

ergonomics issues associated to them. 
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Figure 6: The APIA system (Continental automotive systems -APIA : Active passive 
integration approach.) 

15 





(R. Parasuraman & Riley, 1997), by overreliance on automation (J . D. Lee & 

Moray, 1994), or even by mental "underload", if the task-demand falls 

occasionally (M. S. Young & Stanton , 2002). 

All active safety systems introduce some sort of automation in the 

vehicle . Figure 7 indicates the position of the systems presented in the 

previous section relative to their level of automation and the type of vehicle 

control they refer to. Thus, Lane Change Support (LCS) refers more to a 

lateral control task and introduces a high level of automation in the task, as it 

tends to be combined with force feedback or small inputs from the steering 

wheel. The system does not acquire complete control , but contributes to 

"correct" steering , when a lane deviation is sensed . Electronic Stability 

Program or Control (ESP/ESC) controls wheel-spinning of individual wheels 

when understeer or oversteer of the vehicle is identified. It does not intervene 

directly to the basic control task (steering and braking/accelerating) and does 

not assume any type of control over the vehicle . For this reason the level of 

automation introduced is relatively low. ESP aims at lateral control during 

curve negotiation; however, its intervention is on a longitudinal control 

parameter (i .e . individual wheel speed) . Therefore, although basically a 

system pertinent to lateral control , it has some association with longitudinal 

control as well . Adaptive Cruise Control (ACC) on the other hand is almost an 

exclusive longitudinal control system. It introduces very high levels of 

automation , as it acquires control of headway and stopping before obstacles, 

the major parts of longitudinal control. This fact has raised significant 

concerns , analogous to those encountered in other domains high automation 

entered (J . D. Lee & See, 2004; Lees & Lee, 2007; Rajaonah, Anceaux, & 
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Vienne, 2006) . Still though , probably because of the litigation issues caused 

otherwise, ACC is marketed as a "comfort" system rather than a "safety" 

system, as the manufacturers do not want to assume responsibility for the 

proportion of control that corresponds to the system. Therefore, the benefits of 

the system could be limited in practice by the issues quoted above (transfer of 

workload into monitoring tasks , complacency on automation and underload) . 

Emergency Brake Assist (EBA) or just Brake Assist is also predominantly a 

longitudinal control system. Its function is directly effective on braking and 

thus on longitudinal control. In practice of course, it can be also associated 

with longitudinal control , as its "augmented braking" effect is accompanied by 

ASS when an emergency stop takes place. Thus, it enhances steering control 

during the event. Introduced automation is relatively low, as the system is 

probably rarely activated and mainly acts as additive force to certain driver 

reaction , rather than automatic control with limited contribution of the driver. 

Therefore , it is acts as a "support" rather than as an "automatic control" 

system. 

As braking/accelerating is longitudinal control it is easy to see its 

importance in the (effective) operation and function of active safety systems 

that are closer to longitudinal control on the x axis in figure 7. However, as 

braking affects speed control , which is so central to driver safety (Summala, 

1996), then braking has indirect effect on the other types of active safety 

systems. Thus, the next chapter is dedicated on its study so far. 
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Summary 

Chapter 1 acted as the introduction to the theme of the Thesis. The title 

was analysed to its three key elements: ergonomics, intelligent systems and 

vehicle braking . Then , the real-world context and the relative epidemic against 

which vehicle systems should be effective was described. Global road

accident statistics were presented and the predominant type and 

consequences of accidents in terms of frequency, loss of life, and monetary 

cost were briefly discussed . 

Then , contemporary counter-accident/active safety technologies were 

presented . The general characteristics of each family of active-safety systems 

were described (headway-control, stability-control , lane-change support, and 

augmented braking). Example instantiations of each type were presented and 

then positioned on Cartesian plane, with respect to the level of automation 

each induces and their pertinence to either lateral or longitudinal vehicle 

control. Thus , a theoretical link was created between systems and the type of 

accidents and failures they refer to. 
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Chapter 2: Literature review 

This chapter describes both general and braking-specific driver models 

before moving on to detailed description of previous studies of driver-braking 

and implications for assistive technology. It is expected that the driver models 

will help the reader understand the general framework of driver ergonomics, 

before the braking-specific studies provide an image of the current status of 

directly relevant research . Following a particular stream of research in the 

area , the research questions for this Thesis are set out at the end of this 

chapter and challenged in the chapters that follow. 

A description of the general driver models 

Research and observation in the field of driving has produced a series of 

characteristics commonly found during performance of the task; those efforts 

contributed or explicitly suggested three models describing the driving task. 

On a theoretical level, driving has been suggested as "threat-avoidance" and 

control of speed and direction through the "safe field of travel". On a more 

practical level, literature has pointed out a time-based description of the 

driving task, where both longitudinal and lateral control is controlled by relative 

distances to possible obstacles in the road environment. Finally, models of 

driving as a multi-level control task provided a more holistic and integrated 

view of the task. The main literature behind those models is presented in the 

following section . 
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Driving as "threat-avoidance" 

Possibly the earliest attempt to introduce a theoretical model of the 

driving task is sourced in the work of Gibson and Crooks (1938) . In their 

model drivers adjust their speed and direction avoiding hazards and moving 

towards their destination. The roadway and other vehicles define the field of 

safe travel - the total of unimpeded paths that the vehicle can take (Gibson & 

Crooks, 1938). The driver adjusts the steering wheel in order to maintain a 

course relatively on the central line of the safe path , however any trajectory 

within the safe field is possible, as long as it is satisfactorily safe (figure 8) . 

Figure 8: Examples of the safe field of travel (adapted from Gibson & Crooks, 1938) 

Speed is also influenced by the field of safe travel. The distance required 

to stop the vehicle and driver's intention to decelerate is defined by the 

minimum stopping distance. As the stopping zone approaches the end of the 
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safe field of travel , the drivers decelerate proportionally. The ratio of depth of 

the field of safe travel to the minimum stopping zone defines the index of 

cautiousness. Smaller safety margins are accepted, thus the index decreases, 

when drivers are in a hurry. 

The field theoretic description of driving suggests driving as an 

interaction between perceptual cues and vehicle dynamics for avoiding 

obstacles while moving toward a destination, while location and direction of 

other vehicles influence the field of safe travel. Thus the theory underlines 

some important characteristics of driver behaviour (J . D. Lee , 2006): 

• Driver and vehicle characteristics cannot be considered separately. 

Drivers adapt to improved vehicle characteristics by increasing speed 

and closer following distances. This hints of the risk homeostasis 

theory that appeared many years later (Wilde, 1986; Wilde, 1989) . 

• Adverse weather, traffic or sharp curves are dangerous only to the 

extent to which they lead drivers to misperceive a field of safe travel or 

minimum stopping zone . Roadway conditions can jeopardise safety 

only if the driver fails to perceive and adjust to them. 

Time-based models 

The field theory of driving implies that drivers are continuously monitoring 

the roadway. However we now know that people in vehicles engage in a 

range of activities related or unrelated to the driving task (Neale, Dingus, 

Klauer, Sedweeks, & Goodman, 2005). People adjust and listen to radio, talk 

on the phone, eat, drink, talk to other passengers and interact with navigation 

and computer devices. A series of experiments and a mathematical model 
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sought to quantify this phenomenon (Senders, Kristofferson , Levison , Dietrich , 

& Ward , 1967). This was the start of a trend to describe the driving task or 

parts of it using time-related measures. Two measures that arose in the late 

70s/early 80s aspired to describe the driving task based on measurable time 

criteria: Time to Lane Crossing (TLC) and Time To Collision (TIC) . TLC 

provides a direct estimate of the amount of time the driver has available 

before crossing the lane or the roadway limits (Godthelp, Milgram, & Blaauw, 

1984). It is calculated by dividing the distance to the lane boundary by the 

lateral velocity of the vehicle. Relatively recently , the element of road 

CUNature has been also added in the calculation (W. van Winsum, Brookhuis, 

& de Waard , 2000) . Time-Ta-Collision (TIC) and Time-Headway are the most 

basic measures of longitudinal control. Both measures seem to be shaping 

factors of driving behaviour in the car-following context. TIC is the distance 

between the vehicles divided by the relative velocity of the vehicles. Time

headway is the distance between the vehicles divided by the velocity of the 

following vehicle only and essentially it represents the time available for the 

following driver to respond to the deceleration of the leading vehicle - officially 

the time available for the following vehicle to match the acceleration (usually 

negative values matter) of the leading vehicle. Evidence is available that 

drivers' preferred time headway is independent of speed and distance (W. van 

Winsum & Heino, 1996; W. van Winsum & Brouwer, 1997). The authors of 

these studies suggest some numerical formulae which are supported as an 

estimate of the tendency by the data presented , however of high importance 

is the qualitative result that time headway is the safety margin that controls 

driver's following behaviour. Furthermore, although individual differences and 
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preferences are significant, experimental evidence is available that suggests 

that preferred time-headway is correlated with the driver's skill to transform 

visual information to an action in driving - reaction skills in effect (W. van 

Winsum, 1998). Preferred time-headway is not only defined by individual 

skills, but also by the driver state and visual conditions (W. van Winsum, 

1999). Van der Hulst (van der Hulst, 1999) demonstrated that fatigue leads to 

increased headways. Another experiment by Van der Hulst (van der Hulst, 

1999), suggests that drivers adopted longer headways as result of a foggy 

environment. This was not the case with drivers in a hurry - leading back to 

the important issue of driver motivation. TIC on the other hand, guides the 

response to dangerous situations by triggering and modulating braking 

behaviour (W. van Winsum & Godthelp , 1996). 

Another, slightly different time-related parameter in driving control is Tau 

(r), proposed by Prof Lee from Edinburgh University (Lee, D. N., 1976». Lee 

argued that the time a driver applies brakes to control a vehicle is affected by 

the perceived visual information they have about the vehicle's TIC to the lead 

vehicle. His theory was expanded to the control of locomotion outside the 

driving setting (Lee, D.N., 2004) . Lee suggested a mathematical description of 

how drivers control the timing of their braking inputs based on TTC change 

and he named it tau . Tau is a temporal variable that represents the time-to

closure of a motion-gap at its current closure rate (Lee, D.N., 2004) . In the 

driving setting , tau is the perceived TIC according to the information provided 

by the visual field of the driver. Tau is perceived directly from the changing 

visual properties of the stimulus, more specifically the ratio between image 

size and its rate of change. In simple words, the rate by which the size of the 
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back of the car in front is changing in the driver's retina affects the time they 

will apply brakes during approach. Similar vision-based descriptions of driving 

control have been suggested on steering (Land & Lee, D. N., 1994). 
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Figure 9: Graphic illustration of the time-based driving model 

The time-measures quoted above are commonly employed as measures 

driving performance and behaviour. Time-headway for example, is measured 

as an indication of risk-taking behaviour (e.g. Fuller, 1981 ; Heino et al ., 1996) 

and TLC as an indication of driving performance and lateral control (e .g. 

Gkikas & Richardson, 2007). In parallel, the relevant literature behind those 

measures provided the parts of a synthetic model to describe the driving task 
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(figure 9) . Using the observed patterns with regards to the annotated driving 

measures, driving can be described as a control-task regulated by time-based 

variables. Thus, drivers drive to their destination while engaging the 

necessary steering and braking to retain between 2.5-5s headway to the lead 

vehicle, TTC above 1.5s and TLC above 3s , 

Nevertheless, because of the generalisation of driving in the developed 

world and the volume of traffic on the roads, instances outside the time-limits 

in the model above are not uncommon in practice. Although the time-based 

description describes the driving reality for the majority of drivers during the 

majority of circumstances, it is limited to such cases only, and ignores cases 

outside those borders. Concurrently, it is a rather superficial model for driving, 

as it is confined to a descriptive level of driving based on a handful of 

variables and fails to examine underlying explanations/justifications for the 

observed control-behaviour of the drivers. This is an issue another league of 

driving literature attempted to address: the multi-level control approach to the 

driving task. 

Driving as multi-level control task 

Parallel to the development of time-based descriptions of the driving task 

and driver behaviour, another stream of research focussed on driving as a 

mUlti-level control task. Alien, Lunenfeld and Alexander (1971) used a task

analysis method originally developed in the military domain to analyse the 

driving task. Data was obtained through verbal observations during one long 

(interstate, US) trip and several short trips in urban roads. The result was 

1,000 feet of tape-recorded material. The analysis and categorisation of the 
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data into subtasks supported the development of the driving model in figure 9 

(Alien , Lunenfeld , & Alexander, 1971). 
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Figure 10: A description of the driving task (adapted from Alien et aI. , 1971) 

When driving, the driver performs a series of subtasks. These subtasks 

are interrelated and a hierarchy can be developed according to the time scale 

and the level of cognitive activity of the driver. Some tasks, like steering , are 

performed within fractions of a second , while others , like journey route 

decision-making, might take hours to complete. In addition , the cognitive 

activity required to perform an over-learned task such as turning the steering 

wheel is minimal compared to the task of route finding which requires mental 

processes in terms of abstract symbols, maps and language. The 

"microperformance" part of driving in figure 1 0 corresponds to driving at a 

detailed level, basic control tasks like steering , changing gears, accelerating , 

decelerating/braking etc. The "macroperformance" part corresponds to tasks 
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at a highly cognitive level, like navigational decisions, which are on the high 

end of the hierarchy. The remaining subtasks in between have to do with 

responses/adaptation to roadway and traffic situations and are defined as 

"situational performance". Tasks on a lower level of the scale are part of tasks 

on a higher level. For example , steering is necessary in order to navigate to 

the desired destination and speed choice is instantiated though the amount of 

acceleration (both positive and negative) the drivers utilise. 

The model has another dimension: primacy. Objectively tasks in the 

lower levels of the scale are more important for the safety of the journey, and 

therefore when there is a perturbation there, tasks on a higher level can be 

suspended or cancelled in order to devote mental resources to the critical 

tasks. For example, when there is a puncture in one of the tyres, the driver is 

expected to stop considering which route is the fastest and focus on the basic 

steering/decelerating control tasks, in order to pull over safely and change the 

wheel. Primacy is also subjective ; the driver can choose where to focus 

attention and does not necessarily focus his/her mental resources where 

expected. 

Contemporarily with Alien , Lunenfeld and Alexander, another team of 

researchers focussed on the control level of the driving task 

("microperformance" according to Alien et aI. , 1971). Influenced by the models 

of aircraft manual control, Weir and McRuer (1970) attempted to quantify 

driver steering . To achieve this, they modelled steering as part of a closed

loop control structure. Figure 11 presents the layout of the system. It depicts 

how the driver interacts with the vehicle and how the driver/vehicle system 

interacts with the roadway. The controlled element consists of the vehicle 
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dynamics, the steering system and the geometry of the visual field from which 

the driver extracts information for guidance and control. The roadway 

environment provides inputs both in terms of commands to be followed as 

well as disturbances to be avoided. The key elements in the system are the 

two "Quasilinear Compensatory Control" blocks . This is because all feedback 

loops from vehicle movement end here and thus these are the factors of 

steering wheel angle that change continuously. This means that steering is a 

continuous compensatory task, where drivers compensate to any 

disturbances of their desired path through steering wheel movements. The 

researchers went on quantifying the relationship between driver-steering and 

vehicle lateral-control parameters like heading angle (Weir & Mcruer, 1973). 
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Figure 11 : Steering as a closed-loop control system (adapted from Weir & Mcruer, 1970) 

The multi-level performance model was adopted, developed (Hale , 

Stoop, & Hommels, 1990; Michon, 1985; Michon, 1993; Summala, 1996) and 
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adapted to explain specific facets of interaction with technology (J . D. Lee & 

Strayer, 2004; J. D. Lee, 2006) . Michon (1985;1993) renamed 

microperformance, situational performance and macroperformance into 

"operational", "tactical" and "strategic" controlleve!. Hale et a!. (1990) 

positioned Rasmussen's (Rasmussen, 1983) skill-rule-knowledge framework 

against Michon's control hierarchy (table 3). Although for most drivers in most 

cases strategic, tactical and operational control correspond to knowledge, rule 

and skill- based behaviour, there are instances where this is not the case (i.e. 

novice drivers, or unfamiliarity/exceptional familiarity with the route) . A first-

time driver might have to adapt knowledge-based behaviour in order to shift 

gears and even an experienced driver might have to adapt rule-based 

behaviour temporarily when driving a new vehicle for the first time. 

Table 3: Michon's control classification against Rasmussen's skill -rule-knowledge 
behaviour model (adapted from Hale et aI. , 1990) 

Strategic Tactical Operational 

Knowledge Navigating in Controlling skid Novice on first 

unfamiliar area lesson 

Rule Choice between Overtaking other Driving unfamiliar 

familiar routes vehicles vehicle 

Skill Route used for Negotiating Vehicle handling 

daily commute familiar on curves 

intersection 

Summala (1996) expanded the three-level model in order to explain 

behavioural adaptation and risk homeostasis (Wilde, 1988; Wilde, 1989) on 
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driving safety. To achieve this, he added two more dimensions of driving as a 

complete human behaviour. The result is the driver task cube (figure 12). The 

model was originally developed as a driver-based accident-causation model. 

The functional hierarchy corresponds to Michon's control model (1993) and 

Alien 's (1972) three-level performance description of driving. The functional 

taxonomy consists of the major categories of continuous lane and headway 

control , control of conflicting flows at crossings and specific manoeuvres such 

as lane changing and overtaking , based on the taxonomy by McKnight & 

Adams (1972) . The third dimension (level of psychological processing) is 

closely associated with Rasmussen's framework (1983) , however directly 

applied to the driving setting . It focuses on the distinction between the 

automated motor control and the conscious decision-making and monitoring 

element of driving , while attention control is in between. Attention control is 

sometimes closer to conscious processes (e.g. when a driver chooses to pay 

attention to sports news on radio while driving) and other times it is more of a 

semi-automatic response to a stimulus (e .g. when a driver shifts attention 

back on the road when a sudden storm starts) . 

Speed control is underlined as the central task (Summala, 1996). Speed 

and time control determine mobility, the basic goal in transportation . 

Increased speed capability enlarges the area of reach and this affects trip 

decisions. Trip decisions themselves together with driving costs and speed 

limits set the approximated desired speed level (Summala , 1989). The desired 

speed determines lower-level decisions like overtaking . 
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Figure 12: The Driver Task Cube (Summala, 1996) 

With the introduction of multiple in-vehicle information/communication 

devices, there was a shift towards models that explain/predict possible effects 

on the driving task and driving safety . Such models can be found in J. D. Lee 

& Strayer (2004) ; J . D. Lee (2006); Sheridan (2004). Figure 13 shows three 

levels of control while interacting with a telematics device like a navigation 

system or a cell phone (J. D. Lee & Strayer, 2004) . The top section describes 

driving in terms of strategic behaviour, where driving and in-vehicle activities 

occur at a very molar level with a time scale of minutes to days. Tactical 

behaviour describes driving and in-vehicle activities at a finer level, with a time 

scale of 5-60 seconds. At the bottom of the figure, operational behaviour 

describes the micro-level activity with a time scale of 0.5 to 5 seconds. The 

conceptual model described in the figure captures several critical elements 

that govern driving safety (Lee, 2006) : 
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• It shows that failures of control at any of the several levels can 

compromise safety. 

• Behaviour at the higher levels imposes performance requirements on 

the lower levels . 

• It shows that the parallel demands of driving and non driving tasks 

compete for driver's attention. 

• It demonstrates that these demands evolve and that drivers adapt to 

these demands with time constants ranging from seconds to days. This 

means that the drivers can always compensate for limits at one level by 

adapting at another. 
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Figure 13: Driving as mUlti-level control task that is shared between the main task and 
other in-vehicle tasks (adapted from J. D. Lee & Strayer, 2004) 

Most of the presented models have been criticised for too much focus on 

accidents and safety (Ranney, 1994). As accidents are rather rare 

occurrence, driving models should explain facets of driving, other than safe 

(and unsafe) driving . Nevertheless, the reality remains that safety is of 
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paramount importance to driving. Without safety, every other goal of driving is 

at risk. To arrive quickly, first one needs to arrive ... 

Where does braking control fit in all this? 

All the models described so far include, a basic vehicle control element, 

which in turn consists of longitudinal and lateral control. In Gibson and Cooks 

(1938) , drivers "adjust speed" and "direction" in order to reach their 

destination "avoiding hazards and obstacles". The time-related measures are 

essentially vehicle control-related measures. TLC is a measure of lateral 

control and nc and time-headway refer to longitudinal control. 

"Microperformance" (Alien et aI., 1971) is vehicle (longitudinal and lateral) 

control. Weir and McRuer's work (1970) on steering is basically a study of 

driver/vehicle lateral control. Then , Michon (1985) explicitly suggests a basic 

control level of driving and so does Summala (1996) . Furthermore, the 

"driving task cube" includes the functions of headway and lane control in its 

"Functional Taxonomy" (figure 12). 
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Figure 14: Basic vehicle control 

In line with the aforementioned distinction between lateral and 

longitudinal control, figure 14 presents the components of basic vehicle 

control. Lateral control is instantiated through steering and longitudinal control 

is instantiated through acceleration . Acceleration can be both positive and 

negative. The typical vehicle control instruments are the steering wheel for 

lateral control and the pedals (+ the gearshift for manually transmissioned 

vehicles) for longitudinal control. Focussing on longitudinal control, as 

illustrated on figure 15, positive acceleration is initiated by the depression of 

the throttle-pedal while negative acceleration commences by the depression 

of brake pedal in principle. In practice however, negative acceleration is 

initiated by the release of the throttle and/or the change of gear as well . It is 

not uncommon that people refer only to the depression of the brake pedal 

when using the term "braking", however literally brake is "an apparatus for 

retarding the motion of a wheel" (Oxford english dictionary brake, n. 7.) and 

36 



thus "braking" could be identified with any control-reaction of the driver that 

results in negative deceleration of the vehicle; be it brake pedal depression, 

throttle pedal release or gearing down. There are two objectives of driver 

braking ; brake to decelerate (before a corner, adjusting headway etc.) and 

brake to stop (and avoid collision with a stationary object) . The existence of 

the former is supported by Gibson and Crook's model (drivers decelerate 

proportionally) and the distinction with the latter (brake to stop) is backed by 

previous studies described in the next section and will be challenged by the 

original studies described in the later chapters of this thesis. 

Throttle Brake 

Increase Speed Reduce Speed 

Figure 15: Longitudinal vehicle control in practice 

Braking-specific studies 

In this section , the main studies where driver braking was examined in 

some detail are presented. The review of driver-braking studies is split 

between studies that examined the timing of the braking input in relation to 

other driving variables (e.g. headway to the lead vehicle or type of warning) 
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and a second group examining the quantifiable characteristics of the braking 

input itself. Both groups are described in detail before further attention is paid 

to the "braking-input" studies. The latter will lead to the development of the 

main research questions of the Thesis, before the following chapter explores 

the methods that can be employed to address them. 

Focus on the timing of braking 

Literature on and the timing of braking has been rich since the early '90s . 

Two factors contributed to this trend : first, the development of time-based 

descriptions about driving as described in the previous chapter (Godthelp et 

aI. , 1984; Godthelp , 1986; Senders et aI. , 1967). Within this framework, 

driving control can be described in terms of Time to Lane Crossing (lateral 

control) and Time to Collision (longitudinal control) . Second, the various 

sensors necessary were integrated into collision avoidance or cruise control 

systems and by 1993 "Full systems for autonomous intelligent cruise control" 

were expected (Emberger, 1993). Such systems needed data about the 

"natural" timing of driver braking for their successful HMI (Human-Machine 

Interface) specification . 

Among other publications that addressed timing of braking , two Doctoral 

Theses examined the phenomenon in detail. Van der Horst (1990) used nc 

and related measures to describe road user behaviour in normal and critical 

encounters. Through the use of video recorders close to signalised road 

junctions and grade railway junctions, he estimated and compared the relative 

time-measures (Time To Intersection predominantly) of drivers. With regards 

to braking, the author concludes that nc values below 1.5s rarely do appear 
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and the average in all intersections was about 2.5s. Furthermore, in the 

penultimate chapter of that thesis, an experimental study was presented 

where participants were asked to drive towards a stationary object and either 

brake hard at the latest moment they thought possible to stop or brake 

normally at the latest point they thought they could stop in front of the object. 

Testing at 30kmh, 50kmh and 70kmh indicated that speed had an effect on 

the time of the onset of braking after both normal and hard-braking 

instructions although considerable differences among subjects were found. 

Achieved vehicle decelerations ranged from 3.5 to 5ms·2 for normal braking 

and between 5.5 and 7ms·2 for hard braking instances. The respective values 

for minimum nc ranged approximately from 2.5s to 1s for normal and 

between 2s and 1 s for hard braking . Although this was not the main purpose 

of that thesis, the stUdies support a minimum nc of 1.1 s acceptable and a 

desirable nCmin of about 1.5s for the specification of Adaptive Cruise Control 

(ACC) systems. Most importantly - and this was within the purpose of that 

thesis - they established measurable/quantitative differences between normal 

and critical encounters. This was accomplished through the use of time

related measures of vehicle behaviour. 

Gap acceptance and adaptive control of safety margins was the explicit 

topic of another thesis (van der Hulst, 1999). In the fourth chapter of van der 

Hulst's thesis, a study is presented where time-headway was measured 

during driving on a simulated rural roadway with opposite coming traffic. 

Twenty participants ' car-following behaviour and reaction to expected and 

unexpected deceleration of the lead vehicle were tested . The lead vehicle had 

a constant speed of 80kmh, except during the decelerating phase, when the 

39 



speed would drop at a rate of either 1 ms·2 (slow) or 2ms·2 (fast) down to 

60kmh for 3 seconds. Taking time-headways over 5s out of the calculation , 

average time-headway during driving was 2.6s. At the onset of lead vehicle's 

deceleration mean time-headway was almost 3s for fast-expected , 2.7s for 

slow-expected , 2.4s for both fast and slow-expected deceleration. Mean 

reaction times ranged between 3.5s for expected-fast deceleration and 6.2s 

for the unexpected slow deceleration scenario. 

The fifth chapter of van der Hulst's thesis examines time-headway in 

reduced-visibility conditions based on two experimental studies. The same 

driving simulator was used (Van Wolffelaar & Van Winsum , 1992) to test the 

hypotheses that (a) drivers choose a longer time-headway at lower speeds, 

(b) adaptation of time-headway is smaller, when time-pressure is also 

present, (c) and lead vehicle deceleration results in more conflicts (as per van 

der Horst, 1990) in the foggy condition compared to the clear-visibility 

condition . Twenty-four participants completed the two studies, although 4 

participants were excluded from the analysis of the first study due to their 

"extremely safe" driving (very low speed/long headways) . Results indicated 

that during steady-state driving, time-headway is longer and during the 

deceleration of the lead vehicle, the minimum time-headway is significantly 

longer under foggy than under clear conditions. The second experiment 

indicated reduced speed behaviour and longer time-headways in foggy 

conditions, while the introduction of time-pressure increased speed under 

clear visibility but not under foggy conditions. Regarding the last hypothesis 

(d) , results indicated that drivers compensated for the limited visibility under 
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foggy conditions by driving slower and increasing the safety margin . Thus, 

contrary to the hypothesis, less conflicts (TTC<1.5s) took place. 

The penultimate chapter of the thesis is based on a study on prolonged 

driving and collision-avoidance performance. Again, the same simulator was 

used (Van Wolffelaar & Van Winsum, 1992) and twenty-four drivers 

participated. Car-following behaviour was measured in two 3D-minute rides, 

with a route-memorisation experiment in-between. This involved the 

memorisation of complex routes while driving through built-up areas and 

lasted an hour and fifteen minutes approximately. Again , time-pressure was 

introduced to one group of participants while another factor was visibility 

(clear/fog). Results did not confirm the hypothesis that prolonged task 

execution results in longer headway. Again though, time-pressure resulted in 

shorter time-headway, higher speed and lower minimum TTC irrespective to 

the visibility conditions. 

Van Winsum and Heino (1996) were the first to combine the study of car

following with that of detailed driver braking . The study examined drivers' 

preferred headway and its relation to brake reaction-time, braking intensity 

and quality of braking control. Braking intensity was indicated by percentage 

of brake pressure. The harder the drivers braked, the greater percentage of 

the brake system's pressure capabilities they employed. Quality of brake 

control was indicated by the absolute time interval between the instant of 

maximum vehicle deceleration and the instant TTC is minimum. Effectively 

this is the time it took the drivers to achieve maximum vehicle deceleration 

since the moment they got "closest" to the lead vehicle. Experiments were 

carried out in the same driving simUlator as van der Hulst's studies (Van 
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Wolffelaar & Van Winsum, 1992). Participants were asked to drive "safe" but 

reach the leading vehicle as soon as possible abiding to the 80kmh limit. The 

protocol included a 1 O-minute familiarisation pre-session. In the first part, lead 

vehicles had a constant velocity of 40, SO, 60 or 70kmh. Vehicles merged in 

front of the participant's car and controlled their speed so that they were 100m 

in front of the participant's car every time he was SOm from an intersection. In 

the second part of the study, vehicles merged in front of the participant and 

held speeds of 60kmh or SOkmh . When headway was SOm, the lead vehicle 

would decelerate at a rate of 2ms·2 to 40kmh or 30kmh respectively (-20kmh) . 

S4 male driver with an average age of 29 years participated in the study. Four 

of them failed to reach a stable speed at the 70kmh condition and further two 

of them failed to display a clear braking response in the two braking 

conditions. Results suggested that preferred time-headway remains constant 

over different speeds per individual , while individuals differ on their preference 

in time-headway . 

The studies described so far, shaped the human element of car-following 

and (safe) headway keeping . Van der Horst (1990) suggested an average 

TIC of 2 .S s in car following and a desirable TICmin of 1.S s. He also 

distinguished normal and hard braking quantitatively; achieved vehicle 

decelerations were between 3.S and Sms·2 for the former and between S.S 

and 7ms·2 for the latter group. Regarding time-headway during car-following, 

van der Hulst (1999) suggests a 2.6 s as typical value. Van Win sum and 

Heino (1996) suggested that preferred time-headway is constant over 

different speeds per individual. At the same time, there are individual 

differences to deal with . Last but not least, there is behavioural adaptation to 
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be taken into account, both at adopted time-headways as well as at brake 

reaction times and braking intensity (van Winsum & Brouwer, 1998). These 

parameters set the ergonomics basis for any type of longitudinal control 

support; however, the introduction of support systems may change the 

previously observed patterns in timing of driver braking . Another major study 

addressed this issue within the context of the "complex issues surrounding the 

appropriate design of headway maintenance and rear-end collision warning 

systems" (Dingus et aI. , 1997). 

Dingus et al. (1997) carried out three on-road studies ; the first study 

concentrated on the na"lve user and the design of an appropriate collision 

avoidance system. The second experiment compared the relative merit of 

different display modalities (visual-auditory) for collision warning . The third 

experiment explored the effects of false alarms on driver behaviour and trust 

in automation . The instrumented vehicle used was equipped an infrared laser 

range finder system that detected the car in-front and calculated the headway. 

Fifty-four male and fifty-four female drivers participated in the first study. 

They were told they were performing a marketing assessment of a prototype 

information-system and asked to follow another (confederate) vehicle on a 

40km rural and residential route. The confederate driver was instructed to 

avoid any abrupt braking for safety purposes. The lead vehicle was described 

to the participants as another participant testing a new navigational system. 

During each trial , one of the following displays was fitted on the dashboard : a 

car icon display, a bars display or a blinking blocks display. The first two 

(figures 16, 17) included grades of criticality while the third (figure 18) one 

provided only imminent warning information. Maximum, minimum and 
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average time-headway were the variables of interest. Results indicated that 

both the car icon and the bar display resulted in longer maximum time-

headway and the bar icon display had the edge over the other two in the 

mean time-headway criterion by O.4s. Also, with bars and icons display the 

frequency of instances when time-headway was below 2s was significantly 

lower. Overall the results supported superiority of graded warnings and 

headway information in supporting driver headway maintenance. 

Green 

Orange/Amber 

Red 

Red 

Car icon 
position 
under safe 
following 
conditions 

Figure 16: The car icon display. Adapted from Dingus et al. (1997) 
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Figure 17: The Bars display. Adapted from Dingus et at. (1997) 

Amber fl ashes at 4Hz when 
target is acquired 
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headway < 0.9s 

Figure 18: The blinking blocks display. Adapted from Dingus et al. (1997) 

The second study aimed to compare different modalities of collision-

warning display. Sixteen young (aged 18-24) drivers participated in the study 
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and drove the instrumented vehicle equipped with visual only, visual/auditory 

combination or auditory only warning . Results indicated that the combined 

visual/auditory warning led to longer headways. Results were congruent both 

during coupling with another vehicle and during braking events. The final 

experiment tested the effect of false alarms on forty participants . The collision 

warning was the combination of visual bars (figure19) with an auditory 

warning . Four false-alarm rates were compared to each other and to a 

baseline no-warning condition . Results suggested that younger drivers drove 

closer to the lead vehicle ; however with the introduction of false alarms they 

increased their headway more than the older drivers - up to the 60% false

alarm rate. After that point their trust in the system fell dramatically. The 

authors concluded that overall results indicate a beneficial effect of collision 

warning devices in headway maintenance. This conclusion has been 

supported by additional studies (Shinar & Schechtman, 2002) . 

Driver's trust in automation - as the Dingus et al (1997) study indicated -

is one of the key issues in the effectiveness of headway -supportlcollision

avoidance systems. Another doctoral thesis attempted to tackle this issue 

(Abe, 2005) . That thesis includes five original simulator-studies on drivers' 

trust in collision warning systems. Three of these investigated the relationship 

between alarm timing and driver performance in a range of driving conditions. 

Results indicated that an early alarm-timing leads to quick brake reaction-time 

and higher level of trust, while a late alarm-timing can delay braking response 

when driving with long time-headway. The fourth study examined the nature 

of trust in forward collision warning systems (FCWS). The effect of false and 

missing alarms was tested and it was found that trust has two separate 
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aspects; one related to individual alarms and another related to system 

integrity. The former was correlated to false alarms, the latter to missing 

alarms. The final study suggested that previous exposure to early alarm

timing resulted to negative driver-reactions during alarm failures. This was not 

the case with drivers exposed to late alarm-timing. 

As reported in the previous chapter, the motor industry has already 

developed fully-automated headway-control systems named after various 

acronyms. Although research on ergonomic issues must have started earlier 

(at least by the system developers) , it is only recently that system-specific 

research was published (Hoedemaeker & Brookhuis, 1998; Pauwelussen & 

Minderhoud, 2008; Rudin-Brown & Parker, 2004; M. S. Young & Stanton, 

2007) with Adaptive Cruise Control (ACC under the limelight). The major 

issue examined was behavioural adaptation to the system, due to its strong 

automation element. 

Hoedemaeker and Brookhuis (1998) used a driving simulator to explore 

this issue. Twenty-five male and thirteen female participants, aged between 

25 and 60 years completed a Driver Style Questionnaire (DSQ; West, 

Elander, & French, 1992). Accordingly, they were split in groups based on two 

driving style dimensions (Speed and Focus) . The virtual ACC system tested 

was configured to 1s time-headway, 1.5s time-headway or the preferred 

headway selected by the driver. Also, two versions of the system were tested : 

one which the driver could overrule by pressing either the throttle or brake

pedal, and one which they could not overrule. In both versions the ACC 

system was always able to stop the vehicle avoiding any collision without the 

intervention of the driver. Thus, system failure was not examined in this study. 
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Results suggested that although acceptance of the system was generally 

satisfactory, fast drivers rated significantly lower. Furthermore, low-speed 

drivers performed significantly higher maximum brake effort when an 

emergency stop was required . Generally, participants experienced less 

workload when driving with ACC rather than driving without it and particularly 

the overrule-able version was preferred by most participants. However the 

encouraging results , authors stressed the fact that the system might not have 

the expected benefits in practice. Drivers in the study tended to drive more 

frequently on the fast lane and weave from one lane to the other. Also, short

following occurred more frequently when the system was engaged. 

Hoedemaeker and Brookhuis' (1998) concerns are shared by another 

two researchers who examined behavioural adaptation to ACC, using a test

track study instead (Rudin-Brown & Parker, 2004). Eighteen experienced 

drivers drove an instrumented vehicle following another vehicle in a closed 

road track. The experimental design included three conditions: no ACC (2s 

target time-headway) , ACC short-headway setting (1.4s time-headway) , and 

ACC long-headway setting (2.4s time-headway). Results indicated that 

participants drove faster with the ACC, and as in the previous study spent 

more time on the fast lane and weaving than without the system. Also, during 

the emergency-stop in low-speed scenario, where the ACC's deceleration 

properties were far exceeded , drivers brake reaction time (BRT) was longer, 

maximum brake force was higher and the minimum headway shorter. 

Nevertheless, no matter the issues in the above scenarios , participants rated 

positively the system for its comfort attributes, a result the authors found 

encouraging for the market of such systems. 
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The effect of ACC on brake reaction times was revisited by another study 

(M. S. Young & Stanton, 2007). In this study, 20 learner and 24 expert drivers 

drove a car with ACC in the virtual environment of the Brunei University 

Driving Simulator. They were asked to follow a lead vehicle and made aware 

that it would brake periodically. Two conditions were examined; one where 

ACC was supplemented by Active Steering (keeping the vehicle in the middle 

of the lane until overruled by driver input) and one where only ACC was 

active. An automation failure took place short before the end of each trial and 

drivers' response was measured. Results indicated that BRT is extensively 

affected by automation (average BRT was 2s longer than the BRT quoted by 

Liebermann, Bendavid , Schweitzer, Apter, & Parush (1995) . The authors 

conclude that it is ironic that the safety benefit of the controlled headway 

provided by ACC is accompanied by the necessity for increased headways 

and time, in order to react to emergencies. Furthermore, it is worrying that the 

common configuration of ACC between 1 and 2s is not enough to satisfy the 

required reaction times. 

Probably the boldest attempt to explore issues with ACC is the Field 

Operational TrialfTest (FOT) commenced in the Netherlands (Pauwelussen & 

Minderhoud , 2008) . During the 6-month period of the trial , 19 participants 

drove an instrumented vehicle equipped with ACC and Lane Departure 

Warning (LOW). Results indicated a decrease in time-headway during 

disengagement of the system, similar to the one quoted in the above 

simulator and test-track studies (Hoedemaeker & Brookhuis, 1998; Rudin

Brown & Parker, 2004) . Behaviourally, participants tended to deactivate the 

system during urban driving and speeds between 20-40kmh. The authors 
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support that there are two categories of ACC deactivation: the mandatory 

deactivation, when the situation urges vehicle speed/acceleration out of the 

system's boundaries. In such case, the system requests the driver to take 

over. The second category is the discretionary deactivation, when the driver 

disengages the system temporarily by depressing the throttle of brake pedal. 

This was associated with lane-changing. 

Very recently, Sommer and Engeln (2009) explored effects of automatic 

braking on driver behaviour. 46 drivers experienced autonomous emergency 

brake (AEB) activation driving a vehicle on a closed test track. A correct and 

an incorrect activation of AEB took place while driving on the test track. The 

correct activation took place when an obstacle was erected during the test 

drive. The incorrect activation was initiated by the experimenter, while the 

driver attempted to swerve and avoid another vehicle on the track. Based on 

the results , the authors claim that they developed two algorithms that 

recognise driver intent to overrule the system or undertake an emergency 

brake manoeuvre. If they are as successful as the authors claim , these 

algorithms could be integrated to ACC and Collision Avoidance systems. 

The proposed characteristics of braking with regards to timing 

In summary, the Headway Control-related studies presented above 

suggested the following with regards to the timing of braking: 

• Typical time-headway is around 2.6s and braking inputs occur 

while trying to maintain the desired headway 
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• "Normal" braking inputs tend to take place when the TIC 

approaches 2.5s and heavier inputs tend to take place when TTC 

falls to 1.5s. 

• Drivers control their speed (through braking) when approaching 

an intersection with another vehicle, in order to retain TTI about 

2.5s. 

• Visibility is a factor affecting time-headway - drivers tend to 

increase headway to the lead vehicle , when visibility deteriorates. 

• Time-pressure is associated with shorter time-headways under 

clear weather conditions . This effect is cancelled under poor 

visibility. 

• Drivers adopting shorter time-headways , tend to compensate by 

means of stronger inputs to the brake pedal. 

• Driver-support technology affects the timing of driver braking . 

• The use of graded warning by collision warning systems is 

beneficial both to the timing of braking and the length of the 

adopted headway. 

• Auditory modes have beneficial effects to the timing of driver 

braking , when used in conjunction with visual modes. 

• The timing of the warning itself can have an effect on driver's trust 

- earlier warnings can cause more distrust than later warnings . 

• Headway-control systems, such as ACC, are generally acceptable 

by drivers; however, the option to override the system through the 

application of the brake-pedal should be provided. 
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• Headway-control systems are susceptible to side effects caused 

by behavioural adaptation ; drivers driver faster with the ACC on, 

and perform longer reaction times. 

• Drivers prefer to deactivate ACC when vehicle speed is between 

20 and 40 kmh. 

Focus on the braking input itself 

Van Win sum and Heino (1996) , as described in the previous section , 

examined the timing of the onset of braking in tandem with the intensity of the 

braking input itself. The intensity (force, effort applied on the pedal) is one the 

main characteristics of driver's braking inputs, however not the only one. The 

input is characterised by the speed of pedal movement, the speed the feet 

move between pedals etc. A series of studies investigated such variables 

under various circumstances. Initially, the aim was to define the operational 

properties of (brake) pedals ; however, within the active safety and driver

support framework, the plausibility of identifying the urgency for augmented 

braking through the aforementioned variables has recently been examined. 

The general notion is that if enough information is known about the 

quantifiable properties of driver-braking input, these could be exploited by 

brake-assist systems that decrease realistic stopping distances. A description 

of the major relevant studies follows. 

Probably the earliest published attempt to quantify driver braking is the 

work commenced by Eaton and Dittmeier (1970). In a period when 

"improvements in automotive braking and steering systems generally reflect 

refinement of mechanical design" (Eaton & Dittmeier, 1970), the authors 
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instrumented two vehicles with the means of the time (mainly strain gauges) 

to measure the effort capabilities of drivers when they operate vehicle 

controls. Specifically for the brake-effort study, 48 female drivers drove an 

"intermediate-sized" and a "full -size" sedan in a test track. Both were altered, 

so that an experimenter could vent the power brake booster and cause a 

power-assist "failure". As they would drive around performing various 

manoeuvres, they would have to come to a "dead end" formed by pylon-

barrier. They were asked to stop as close to the barrier as possible, after 

adopting a 35mph speed. The participant would reverse and continue their lap 

performing this stop three times before the experimenter would activate the 

recorder and deactivate the brake power booster for the fourth stop . Results 

indicated a mean 708 N force for the "full sedan" and 620N force for the 

"intermediate sedan". A T-test comparison indicated the difference between 

the two vehicles to be statistically significant (p<0.05) . The authors suggested 

that the difference is explained by the considerable difference in the 

decelerating properties of the two vehicles under brake-boost failure. For the 

typical maximum brake force applied in the intermediate sedan, the full -sedan 

would generate less than half the deceleration. For this reason and because 

of the tendency to exert only the force perceived necessary to stop in time, 

the authors claim that the results with the larger car are more realistic. The 

authors conclude that the results represent the maximum abilities of female 

drivers in surprise failure situations. 

Table 4: Maximum brake pedal forces in a surprise brake-failure test, adapted from 
Eaton & Dittmeier 1970 

Full size sedan Intermediate size sedan 
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Mean 

SO 

708 N 

139 N 

620 N 

125 N 

Many years later, a similar experimental design was used to investigate 

drivers' reaction to a servo or circuit failure (Curry, Southall , Jamson, & Smith , 

2003) . For this purpose 48 drivers experienced both types of failure in their 

brake system while driving an instrumented vehicle in a closed test track. 

Results indicated that while everybody managed to bring the vehicle from an 

initial 64kmh speed to a stop within 58m distance, only 17 of them did so 

under a circuit failure and only 14 under a servo failure. Gender comparison 

indicated the expected superiority of male drivers in terms of the physical 

strength in their response to the failure (especially in the servo failure) and 

also in maintaining their strong input for longer. Also, during the tests when 

prior information about the system-failure was available, males improved their 

performance while female drivers performed worse . The closed-track study 

was complemented by a simulator-study where 48 drivers encountered an 

"unexpected" failure . Half of the drivers were given extracts of an artificial 

handbook referring to different failures of the brake system. Results indicated 

an improved performance of these drivers compared to the other half in terms 

of stopping the vehicle during the brake system failure . However, the 

information provided to the first group must have also reduced the surprise 

element of the system failure . 

An alternative scenario was adopted by researchers at the Laboratoire 

d'Accidentologique, Biomecanique et facteur humain (LAB) . Perron , 

Kassaagi , & Brissart, (2001) commenced a closed-track study for the 

54 



specification of active safety systems that comply with driver behaviour during 

an emergency. The study was supported by two manufacturers and yielded 

data out of more than 100 participants. 114 drivers drove and instrumented 

vehicle , following another vehicle with a trailer on the test track. The 

emergency was triggered by the release of the trailer. This took place at a 

relative distance of 17m and at a speed of 70kmlh . The trailer braked with a 

deceleration of 7m/s2. Gas pedal travel , brake pedal travel and force , and 

steering wheel angle were the driver-related variables measured. Results 

showed that although all drivers braked , only half of them braked strong 

enough to trigger the ABS. 85% of the drivers who swerved avoided the 

crash , but only 20% of those that brake strong enough to activate the ABS, 

take advantage of it by swerving. 65% of those who swerved , braked before 

swerving . The typical effective (release to start of deceleration) reaction time 

was 1.7s. No significant genders differences were reported , while driving 

experience had an effect on throttle release speed and brake pedal force . 

The published paper (Perron et aI. , 2001) included a section dedicated to 

Emergency Brake Assist (EBA) . The ABS was not activated in 50% of trials 

because the drivers did not press the brake pedal hard enough to do so. 

Moreover, for 85% of drivers the maximum braking was delayed because of a 

plateau phase during braking. Therefore , the authors suggest that the EBA 

could significantly enhance driver braking by enabling them to reach 

maximum deceleration quicker. They suggest that the data from the study can 

be used for the specification of such systems. For example, the threshold 

value for triggering such systems can be based on the comparative analysis 
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of the brake pedal speed distribution in normal and emergency conditions 

(figure 19) . 
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Figure 19: Distribution of brake pedal speed in normal and critical conditions , adapted 
from Perron et aJ. (2001 ) 

LAB researchers went a step further and run a simulation of all cases 

including a virtual EBA. Results of the simulation suggest that up to 40% of 

collisions would have been avoided . Additionally, in another 30% of cases the 

impact speed would have been reduced by more than 15kmh. Further 

simulations of a conceptual EBA that would activate brakes as soon as the 

throttle was released, suggested that over 70% of crashes would have been 

avoided . The analytical procedure followed for those studies can be found in a 

confidential PhD thesis (Kassaagi, 2001). 

However exciting and promising this result is, it is based on the 

assumption that EBA is always activated when needed. This might be ideal , 

but far from reality. As the authors admit in the paper (Perron et al. , 2001), 

due to the significant overlap of braking parameter distributions between 

normal conditions and emergency situations, triggering criteria based on a 

single braking parameter cannot both detect all emergency braking actions 

and never activate the assistance in situations in which it is not absolutely 
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necessary". Both false-positives (unintended activation) and false-negatives 

(non-activation when in fact needed) can have negative consequences. It is 

obvious that if the system is not activated when intended by the driver, then 

any claimed safety benefit is gone. In practice, the driver will have the same 

longitudinal collisions they would in the absence of the system. On the other 

hand, if the system is activated when the driver does not intend to, then this 

could be an automation surprise for the driver, and also other road users 

would have to deal with a vehicle that decelerates at its maximum capability 

for no apparent reason . 

In an attempt to overcome this problem, researchers in LAB employed 

hybrid neural networks and genetic algorithm (Genetic programming -

wikipedia, the free encyclopedia. 2009) methodology in order to find 

parameters that could be used in combination to distinguish emergency 

situations from normal braking (Bouslimi, Kassaagi , Lourdeaux, & Fuchs, 

2005) . The study presented in this paper was part of another confidential PhD 

thesis attempted to tackle the problem within the general sense of shaping a 

model for driver behaviour in emergency situations (Bouslimi, Kassaagi , 

Lourdeaux, & Fuchs, 2005) . Data was collected through another series of 

critical situations replicated in the test track. 95 drivers (59 male - 36 female) 

took part in the study. Also, improved trailer and released mechanism were 

used to increase the internal validity of the study. After extensive analysis of 

driver parameters and their ability to distinguish between normal and 

emergency situations, Bouslimi used Bayesian neural networks to create a 

model that predicts the criticality of the situation. The aim was to combine the 

quantitative properties of Bayesian logic with the qualitative properties 
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(Yes/No, NB, etc.) of neural networks. The final model came down to 26 

variables that were used to predict the presence of an emergency. The major 

limitation was that some of those variables referred to post-critical-event 

parameters , such as the "emergency manoeuvre result". Therefore, although 

highly efficient in theory, the model is rendered inapplicable in practice. 

Contemporary to Bouslimi's thesis, another group of researchers based 

in Germany employed Fuzzy-Logic technique to improve EBA (Schmitt & 

Farber, 2005). Based on this method, Schmitt and Farber (2005) developed a 

model that distinguishes between normal and emergency brake inputs by the 

driver. Their model is based on three parameters of throttle-pedal operation : 

change of radius, jerk, and foot displacement time (from throttle to brake 

pedal) . Data for this study was collected through the CAN bus of the vehicle 

54 participants drove in a test-track study. Speed was restricted to 60km/h 

and the obstacle appeared on-route about 35m before the vehicle. Authors 

claim that their model predicts correctly 85% of emergency braking and 97% 

of braking before a corner, against 77% emergency braking and 99% braking 

before a bend correctly predicted by a system with a fixed trigger-level. 

Recently, McCall and Trivedi (McCall & Trivedi , 2007) utilised Bayesian 

networks to fuse driver behavioural information with vehicle/environment 

information to predict an emergency or non-emergency situation . Inputs to the 

system include time-headway (from lidar sensor) , wheel speed, brake 

pressure, accelerator position, steering angle , vehicle longitudinal and lateral 

acceleration, yaw rate, steering angle and gaze and face expressions through 

cameras. The authors provided data supportive of the effectiveness of the 

system in predicting critical situations; however they admitted that the main 
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problem was the number of false positives (undesired system activation) . This 

was the case particularly when drivers covered the brake pedal but eventually 

decided not to brake. Although titled "brake support" by its authors, the model 

aims more towards "brake automation" - automatic braking rather than 

augmented braking . 

The properties of driver-braking input. as suggested bv the literature 

In summary, the aforementioned studies on the characteristics of driver input 

to the pedals under braking suggested the following : 

• The typical maximum effort capability of drivers is about 620N , and the 

standard deviation is 125N. 

• There is a slight effect of vehicle size on the numbers above - greater 

forces were witnessed in larger vehicles. 

• During an emergency-brake situation only 50% of drivers apply brakes 

hard enough to engage the ASS. 85% of drivers also swerve to avoid 

collision and 65% of those brake before swerving . 

• 85% of drivers' braking exhibit a plateau phase, where the braking 

force remains constant for the middle part of the input. 

• Up to 40% of collisions could be avoided if a system successfully 

identifies an emergency-brake input. 

• If the emergency could be identified from the throttle-release phase, 

then more than 70% of crashes could have been avoided . 

• However, in practice, there is significant overlap between normal and 

emergency braking inputs. 
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• If a constant level of a variable is utilised to trigger the Brake-Assist 

System, then both false-positive and false-negative activation of the 

system is possible . 

• Methodologies such as neural networks, genetic algorithms and fuzzy 

logic have provided improved results in distinguishing between normal 

and emergency inputs; however, in many cases , such methods are 

inapplicable in practice. 

• Automatic Emergency Braking solutions, although promising for the 

future, exhibit even more weaknesses at their current status. 

The scope and the research questions of this thesis 

In the first section of this chapter a series of studies in the area of time

based vehicle-control parameters and the timing of the onset of braking were 

presented . The relative merits and problems with the associated technology 

were discussed by some studies. The human element in the main variables of 

interest (TIC and time-headway) for such systems specification was 

reasonably delivered. Simulation (Hoedemaeker & Brookhuis, 1998; 

Rajaonah et aI. , 2006) and even FOT studies (Dingus et al., 1997; 

Pauwelussen & Minderhoud, 2008) explored behavioural issues with the 

implementation of such . The main problems were : 

• the behavioural adaptation to the system - drivers drive faster, 

change lane more frequently and adapt shorter headways 

(Hoedemaeker & Brookhuis, 1998; Pauwelussen & Minderhoud, 

2008) 
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• Complacency to automation - during automation failures driving 

control deteriorates as increased BRTs (Hoedemaeker & 

Brookhuis, 1998; M. S. Young & Stanton, 2007) indicates and 

driver workload increases (Wille , Rbwenstruck & Debus, 2008) 

• The legislative framework - as blame is a key issue of any failure 

within our society, the manufacturers would do everything to 

avoid liability in case of an accident. Therefore, such systems are 

still marketed as "comfort" rather than "safety" systems. 

The studies of the driver braking input, on the other hand, focussed on 

parameters of driving/braking that correspond predominantly to the primary 

level control in the hierarchy of the driving task (Alien et aI. , 1971 ; Michon, 

1985). The study of braking at this operational/control level is only a part of 

the whole mUlti-level task, however according to the principle of "primacy" 

(Alien et aI. , 1971), the operational/control level of driving is objectively 

prioritised over the tactical and strategic level. This is because failures at the 

basic level of control , unless recovered , result directly to accidents , while 

failures/unsafe decisions in the higher levels do not have immediate effects . 

Similarly, it is worth examining the operational level of braking control for a 

future with enhanced driver safety. 

Additionally, driver-support technology can enhance driver control by 

augmenting driver input when needed, without abstracting control out of 

him/her. Perron et al (2001) simulation provided exciting numbers of crash 

amelioration , if driver's emergency braking could be detected directly from 

throttle pedal release. As mentioned earlier though , systems' intervention 

"when needed" is a complex objective to achieve. This is among the main 
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aims of this thesis and an improvement the author is hoping to be achieved by 

the end of it. 

Last but not least, driver support systems can be - and actually are -

implemented to road vehicles in the short term. The applications of relative 

research can contribute to road safety at the present and near future. 

Furthermore, they can serve as an intermediate level between manual driving 

and semi or fully automated driving in the future, preparing gradually the 

drivers of tomorrow for the technology being developed today. In the 

"technology" section of the introduction, we encountered some of the latest 

developments in the area. With a careful read-through , one could notice that 

new systems are either evolution of previous or integration of multiple other 

systems. Thus , familiarisation with low levels of automation found in previous 

systems could mitigate the surprise element when transiting to a future highly

automated vehicle . This approach is in line with a proposed roadmap for the 

cognitive car of the future (figure20). 
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Figure 20: The roadmap of the cognitive car (RWTH Aachen, 2004) 

For a complete examination of the ergonomics of braking , the 

examination of driver braking should not be limited to critical conditions but 

should also include field studies , where the most typical/normal instantiation 

can be found . The braking literature encountered so far emphasises the 

longitudinal control behaviour during the onset of a critical event, but little 

information of the quantitative characteristics of driver braking in "normal" 

driving is available. This "normal" needs numbers attached to it. A field study 

of driver braking could provide th is. 

Regarding the emergency-brake studies themselves, there is still room 

for improvement, especially on the external-validity side of them. Eaton et aL 

(1971) made a basic assumption that maximum pedal effort equals pedal 

effort in an emergency. Curry et al (2001) focussed on the nature of driver 

reaction when a brake system fails and had no intention to replicate 
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emergency braking in their studies . Even the LAB studies (Bouslimi, 2006; 

Kassaagi , 2001) used data from simulation and test track experiments to 

measure emergency and normal brake pedal inputs. As they conclude in one 

of their publications (Bouslimi et ai. , 2005), their results could be 

supplemented by field data too. The same applies to Schmitt and Farber's 

(2005) study. This thesis will attempt to combine data collection methods, in 

order to improve data-quality. However, there is another worthy goal partially 

achieved by three most recent of the above studies: to examine relationships 

and successfully identify the emergency brake input. 

Therefore, the research questions this thesis attempts to address are: 

• What constitutes normal braking and how it can be defined 

quantitatively? Typical brake pedal operation and its characteristics. 

• Are there distinctive characteristics between "normal" and "emergency" 

brake application? Further validation of the quantitative differences 

quoted by Kassagi (2001) , Bouslimi (2006) , Schmitt & Farber (2005). 

• More importantly, is there a constant relationship between "normal" and 

emergency brake application, per individual? If great variability is found 

regarding the previous question (Perron et aI. , 2001; Schmitt & Farber, 

2005), it is important for any prospective application to know whether 

people that are harder on brakes in the first condition (typical/normal), 

are hard on brakes in the second (emergency) as well . 

• Is it possible to use the relationships above to design an intelligent 

brake system that "learns" from the driver and adapts to his/her braking 

characteristics? 
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It is surprising how quickly the previously quoted literature (Bouslimi et 

aI. , 2005; Bouslimi , 2006; Kassaagi , 2001 ; McCall & Trivedi, 2007; Perron et 

aI. , 2001 ; Schmitt & Farber, 2005) overlooked the f irst question. No attempt 

was made to provide even a practical definition. Instead, the "non-emergency" 

measurements either on the track (Bouslimi et aI., 2005; Kassaagi , 2001 ; 

Perron et aI. , 2001 ) or on the road (McCall & Trivedi , 2007) were taken as 

"common sense" would direct. Again , however, in order to have a meaningful 

definition of "non-emergency" we need to have one for the "emergency". 

It is therefore necessary to at least attempt a working definition of 

emergency braking at th is stage. For the purpose of this thesis, driver 

emergency braking is defined as the driver's reactive operation of vehicle 

pedals in response to the sudden appearance of a perceived obstacle, with 

which the vehicle will collide unless the reactive pedal operation takes place. 

This definition includes three key elements. a)The surprise element ("sudden 

appearance"): previous studies where the drivers were aware they would 

have to respond to the appearance of an obstacle or were just prompted to 

press hard a brake lever, did not replicate emergency braking . b)The 

importance of driver perception ("perceived obstacle"): no matter whether the 

danger is real or not, the consequent pedal-operation is emergency braking, if 

the driver perceives the situation as such. c)The imminent collision with this 

perceived obstacle ("vehicle will collide unless ... "): instances when the 

collision is avoidable without any pedal-reaction by the driver (longitudinal 

control) , do not constitute emergency braking . 

Regarding normal braking, if we try to avoid it being defined qualitatively 

as "non-emergency braking", we should look towards a statistical definition. 
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The statistical definition in turn, first requires the quantification of braking 

input, as some form of quantification is a required for statistical analyses. 

Such issues, however, as the methods to be employed in the present attempt 

to address the research questions are discussed in the following chapter, 

titled Methods. 

Summary 

Chapter 2 presented the prominent theories and models about the 

driving task and the literature with regards to the ergonomic aspects of driver 

braking in normal and emergency situations. Driver and driving models were 

grouped according to the facet of the task they focused on. First, early 

theories of driving as threat-avoidance (Gibson & Crooks , 1938) were 

described, before moving on to the time-based descriptions and the model 

this literature collectively implied. Then , models of driving as a multi-level 

control task were presented and the most popular among them were 

described in detail. 

After a brief discussion of the role of driver braking within the driving task 

and vehicle control, the second part of the chapter presented the literature of 

driver-braking studies: first, the studies aiming at the timing of driver braking 

inputs, followed by the studies which aimed at the braking input itself and its 

quantifiable characteristics. The latter group of studies set the background for 

the research questions and the context for the studies presented in the 

following chapters of the present Thesis. The four research questions and the 

associated objectives are: the provision of a functional definition for "normal" 

driver braking, the examination of the differences between normal and 
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emergency braking input, the exploration for exploitable characteristics and 

relationships between driver-braking parameters, and finally, the examination 

of the plausibility for such relationships to be integrated to an 

intelligent/adaptive braking system. 
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Chapter 3: Methods 

For the research questions to be answered satisfactorily, the appropriate 

methods need to be employed . The purpose of this chapter is to provide the 

appropriate and realistically plausible methods to be employed within this 

framework. The methodology commonly employed in driving-related research 

will be described and discussed here, and the rationale behind the selection 

of the finally adopted methods will be given. 

There is a variety of measures and techniques employed in driver

ergonomics/driving-safety research. They range from high-tech (and cost) 

equipment such as advanced driving simulators, which are capable of 

measuring a range of driving performance measures in a secure and 

controlled environment, to relatively "Iow-tech" (and less costly) measures 

designed to measure specific aspects of distraction, such as the visual 

occlusion technique. The relative merits of driving research methods can be 

presented as being dependent on two variables, one being extrinsic validity 

(realism) and the other being control over the environment - and confounding 

variables (figure 21) . The major methods for measuring distraction are 

presented and their relative merits are discussed in this section . 

On a generic level, methods could be distinguished between laboratory

based studies and field-based studies. Studies employing all sorts of driving 

simulators fall under the first category, and studies which examine driving in a 

closed or open road section fall under the second category. Within each group 

however, there are further differences regarding the level of control, the level 

of realism provided and costs involved. A description of those methods, 
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starting with driving simulation and moving on to instrumented-vehicle based 

studies and accident investigation follows . 

Increasing 
control 

• Laboratory testing (e.g . PC 
simulation) 

• Low-cost driving simulator 
• Advanced graphics, fixed base 

simulation 
• Advanced, dynamic simulation 
• Test track trials 
• Road trials 
• Naturalistic driving 
• Accident investigation 

Increasing 
realism 

Figure 21: Extrinsic and intrinsic validity of common methods used in driving research 

Driving Simulators 

Driver ergonomics are often examined using driving simulators to reflect a 

controlled version of the traffic environment. The first important merit of using 

them is that they provide a safe driving environment, where driver errors and 

failures do not have severe consequences . Phenomena with inherent risk of 

injury or damage in the real world can be examined in simulated 

environments. As such, simulators have been commonly used to test effects 

of distraction on driver performance (Gkikas & Richardson, 2007; Jamson, 

Westerman , Hockey, & Carsten , Winter 2004; Salvucci & Macuga, 2002) , 

driver complacency to ACC and other vehicle automation (Abe & Richardson, 
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2006; Hoedemaeker & Brookhuis, 1998; Lin, Hwang, Su, & Chen, 2008; R. 

Ma & Kaber, 2007; Rajaonah et aI., 2006; Rajaonah et aI. , 2006) and driver 

braking in critical situations (Curry et aI., 2003; Kassaagi , 2001). Realism and 

fidelity varies from simulator to simulator. High-fidelity simulators offer a 

realistic driving environment, complete with realistic components and layout, a 

coloured , textured visual scene with roadside objects, trees, signposts . Some 

of them are motion-based; the whole chamber where the simulation takes 

place moves in accordance with vehicle movement in the simulated 

environment, effectively simulating acceleration via vestibular stimuli. Low

fidelity instantiations offer less realistic environments and are fixed-based. 

The advantages of simulators over on-road and test-track stUdies are: 

• Simulators provide a safe environment to conduct research that is 

too dangerous to be conducted on the road . A research design where 

distraction is a core element, can be too dangerous to be tested in 

naturalistic driving conditions. Although test-tracks can be used to 

examine driver behaviour using single vehicle scenarios, multiple 

vehicle scenarios are hazardous in such conditions. On the contrary, 

driving simulators offer a safe environment for the examination of such 

issues. 

• Simulation includes the key element of control ; greater 

experimental control compared to on-road studies can be applied . 

Simulation allows the experimenter to specify the type and difficulty of 

the driving task and eliminate confounding variables such as 

environmental conditions. 

70 



• The cost of modifying the in-vehicle environment to address 

different research questions may be significant less than modifying an 

actual vehicle and ensuring that the modifications meet the design 

rules. 

• Driving simulators offer the capability to examine a large number 

of measures, from speed control and lateral position on the road , to 

eye-movements and glance-behaviour. 

• Test conditions (night, day, weather, roads) can be manipulated 

and administered relatively easy. Such conditions could include 

hazardous situations that would be difficult or dangerous to generate 

under real driving conditions. 

Instrumented-vehicle based approaches 

On-road evaluation stUdies are one of the most realistic methods that have 

been employed to measure driver behaviour and driver performance 

characteristics. With this method, data loggers are used to gather driving 

performance data while drivers drive an instrumented vehicle for a specified 

period of time. This time period varies from a lap on a test track up to months 

of continuous monitoring (see naturalistic studies below) . Even though this 

method yields huge amounts of data in real-like conditions, it can be time

consuming (needs months or years to complete analysis) and expensive, and 

thus is less common than simulator-based methods in driver studies . Short

duration on-road evaluations or test-track studies also represent real world 

driving and are often used to examine the effects of technologies. They 

appear typically in studies with manufacturers' involvement (Reymond, 
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Kemeny, Droulez, & Berthoz, 2001; Yoshida , Mouri , Sato, & Nagai , 2006; K. 

L. Young et aI. , 2008) , because they provide in-depth vehicle-centred data 

quickly and cost-efficiently to them. 

Typically, an instrumented vehicle is equipped with sensors on the vehicle 

controls, monitoring pedal and steering wheel operation by the driver and 

computers to store the data electronically. Depending on the scope of the 

study, cameras can be used to measure the immediate road environment and 

driver behaviour qualitatively, eye-tracking facilities to monitor visual attention, 

Global Positioning Systems (GPS) to monitor vehicle position or sensors on 

the wheels and chassis to monitor vehicle dynamics, velocity, accelerations 

etc. Examples of various types of vehicle instrumentation can be found in 

Bener, Lajunen, OZkan, & Haigney (2006) ; Blaauw (1982) ; X. Ma & 

Andreasson (2007) ; McCall & Trivedi (2007); Reed & Green (1999) ; Zheng, 

McDonald, & Wu (2006); Arakawa , Matsuo, & Kinoshita (2006); Dingus et al. 

(1997) . Participants are asked to drive an instrumented vehicle on a test 

route, on actual roads or on a closed test track. While participants are driving 

the vehicle, data is collected either by a logger and/or by an observer. This is 

a method with high extrinsic validity, reflecting real world driving, and -

especially in the case of closed test track - minimises safety risks associated 

with driving on actual roads. However, biases can be induced by learning and 

adapting to the environment, the nature of the course, or the fact that the 

participant is being observed . For example , if the course is relatively short and 

there is little or no traffic or obstacles, then the drivers may not perform the 

driving task as they would on actual roads. 
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Naturalistic studies 

Naturalistic studies are an extreme case of instrumented-vehicle based 

method. Evolution of sensors and data acquisition technology has made 

monitoring driver behaviour in the real-world for prolonged periods of time 

feasible . Now, it is possible to collect data from people driving vehicles on the 

public road network doing their everyday routine for months or years without 

interruptions. It is even possible to use participants' own vehicles for the 

purpose. This method offers maximum external validity and at the same time 

microscopic data. The vast amounts of data generated are a two-edged 

sword : on the one hand, researchers have access to virtually unlimited depth 

of data on one hand; on the other, there is strong need for data cleaning and 

huge resources for analysis. The Virginia Tech 100-car Naturalistic Driving 

Study (Neale et ai. , 2005) was anticipated with enthusiasm by the research 

community. Since this method uses empirical tools to measure phenomena in 

the field, it tends not to have a specific focus. It attempts to measure 

"everything" instead, a goal very difficult to be achieved . Although this is not 

inherent to the conception of the method, in practice it turns out necessary in 

order to justify the immense cost involved . In the end however, it is only 

possible for the research team to use parts of the data to support arguments 

regarding specific issues. In the case of the annotated study, that was road 

accidents and "near-misses", Then again , as road accidents are rare 

occurrences , analysis focused on the "near-miss" instances, which although 

helpful in confirming the "accident pyramid" (Heinrich , 1936) are not quite the 

same as actual accidents, 
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However, it is still early, both for this study and the naturalistic driving 

method in general , to be judged definitely, as this was the first study of its 

kind . It has been five years since the study commenced (2004) and data are 

still being analysed and results are to be published . The method is still quite 

new and the cost-benefits have still to be fully assessed. 

Accident Investigation 

Accident investigation is a traditional method used to tackle road safety 

problems. Its merit lies in the fact that it refers to the problem - i.e. accident -

in a direct way. All data collected are real-world data. Therefore, if it were to 

be in figure 20, it would be on the lower rung of the "ladder", where maximum 

realism but limited control lies. This is its main limitation as a method; there is 

no control over the event studied and thus there is variance and limited depth 

in the data - especially the "human" data. 

Data on road accidents in the UK has been collected since 1909 (Hillard , 

Logan, & Fildes, 2005). However, it was not until 1949 that a nationwide 

system for accident data collection was introduced, namely STATS19. The 

original system collected both objective factors (speed limit, time, weather 

etc.) as well as contributory factors , i.e. the factors which the reporting officer 

on the accident scene believed contributed to the accident's occurrence. The 

system has been reviewed and improved every five years since its 

introduction. After some arguments about the reliability of the subjective 

nature of contributory factors , such data ceased to be a national requirement 

in the 1959 review. Collection and central collation of objective data continued 

as before. However, in 1994 half the country's police forces still used some 

kind of contributory factors in accident data collection (Broughton, 1997). 

74 



This subjective dataset is both an advantage and disadvantage of this 

method. This is because it provides information about otherwise 

unapproachable facets of accidents, but on the other hand it relies heavily on 

expert judgement and is very hard to validate objectively. Thus, it can be 

extremely useful in practical terms (road design, policy advice , etc .) but it 

allows room for arguments in an academic setting. 

In an effort to compensate for that limitation, the On-The-Spot (OTS) 

accident study commenced in 2000 in the UK, building upon the long 

experience from retrospective examination of police files (STATS19) and 

previous on-the-spot studies (Mackay, 1969; Sabey & Staughton, 1975) and 

concurrent work in Germany (Otte, 1999) and France (Girard , 1993). Against 

the traditional retrospective studies, where accident data is collected several 

days after an accident occurred , the OTS offers the ability to collect invaluable 

data which would otherwise be lost such as vehicle rest position , debris 

locations, weather conditions, road surface conditions, tyre pressures, 

temporary changes in the road environment at the time of impact, immediate 

driver and witness descriptions. In addition to this , it includes data which is 

collected retrospectively in days or months after the accident (road signs, 

impact damage on vehicles, road dimensions etc.).The project has been 

operational since the year 2000 and is now in its third phase. More 

information about OTS can be found in the following chapter. 
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The relative strengths and weaknesses of each method 

Table 5: Summary of the strengths and weaknesses of each method described so far 

Method Strengths Weaknesses 

Driving Simulators Control over the road Low level of realism 

environment usually. Can be 

improved, but this 

process comes at a high 

price . 

Test-Track trials Reasonable control over Inappropriate for 

the road environment. examination of long-

Reasonable level of term (strateg ic) driver 

realism . behaviour issues. 

Road Trials Highly realistic road Can be expensive and 

environment. logistically demanding. 

Naturalistic Studies Maximum achievable Expensive, logistically 

realism . most demanding, data 

analysis can be very 

long. 

Accident Data Maximum achievable Limited to cases that 

realism. accidents did happen. 

Depth of data is 

superficial and partly 

subjective compared to 

the other methods. 
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The aforementioned methods exhibit relative strengths and weaknesses. 

Each one of them can be appropriate or inappropriate, depending on the 

framework within which they are employed and the detailed issues they 

attempt to tackle. In general, however their comparative characteristics are 

such as described on table 5. 

Starting with the simulation-based methods, their greatest strength is the 

virtually infinite control over the simulated environment they exhibit. Road and 

vehicle parameters can be pre-set according to the desired specification . 

Thus, the variance of the variables of interest can be studies while controlling 

variables , which could otherwise become confounding . In addition to the level 

of control available , simulation-based studies tend to take place in confined 

spaces (e .g. laboratories) ; therefore, it is not only the variables in the 

simulation which can be controlled , but also the real physical environment in 

which the participants are exposed is easier to control. The risk assessment 

and control for such studies tend to be a lot easier than for studies in open 

road environments. 

Although the safety of participants tends to be a key factor in the selection 

of the method over other alternatives, it can also be the greatest weakness of 

this method. Risk and sense of danger are important characteristics of the 

driving task in a real world setting, and the dismissal of both alters the nature 

of the driving task that is tested in a virtual environment (Goodman et aI. , 

1997). A driver's behaviour and the amount of cognitive resources he/she 

devotes to performing concurrent tasks while in the simulator may differ 

significantly from his/her behaviour in real cars on actual roads because there 

are no serious consequences that result from driving errors in the simulator. 
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Because their safety is not compromised, a driver may look away from the 

road or move his/her hands off the steering wheel for greater lengths of time 

in the simulator than he would do in the real world , This is a basic issue in 

simulator research and raises the issue of the validity of simulation as a tool 

for human factors research (Blaauw, 1982; Blana & Golias, Summer 2002; 

Brown, 1976; K, Young , Reegan , & Hammer, 2003) , Other weaknesses of the 

method include learning effects from simulator use (Moraal & Poll, 1979) and 

any other concurrent task, and the amount of resources necessary to 

construct and operate state-of-the-art, high-fidelity simUlators , Finally, 

simulation discomfort and sickness is an issue sometimes encountered 

(Goodman et aI. , 1997) and is particularly common among older and female 

drivers, 

Above all , validity is the main concern in the case of using driving 

simulators, Blaauw (1982) proposed two aspects of simulation validity, The 

first is the physical correspondence between the simulator's components, 

control layout, and its response characteristics, with its real-world counterpart, 

This has been labelled physical validity or simulator fidelity , A simulator that 

offers a realistic visual scene with a coloured and textured background has 

greater fidelity than one, which offers a black and white representation of the 

environment, with only major road line markings visible , Similarly, a simulator 

that has a motion-base and can simUlate kinaesthetic and motion cues 

present in real world driving would be considered to have greater fidelity than 

a fixed-base simulator (Reed & Green, 1999), 

The second aspect of simulation validity is behavioural validity and 

concerns the correspondence between the ways in which the driver or the 
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operator behaves in the simulator and in actual vehicles (Blaauw, 1982). 

Ideally, the method that determines the behavioural validity is to compare 

driving performance in the simulator to driving performance in real vehicles 

using the same driving tasks . Behavioural validity has two levels: absolute 

validity and relative validity. Absolute valid ity is achieved when the numerical 

values for certain tasks obtained from the simulator match with those from 

actual vehicles. Relative validity is achieved when variations in driving tasks 

have a similar impact on driving performance in both simulator and real 

vehicles. Generally, simulators demonstrate good relative behavioural validity 

for many driving performance measures (Carsten , Groeger, Blana, & Jamson, 

1997), though absolute validity is rarely the case (Blana & Golias , Summer 

2002). The comparative study by Reed & Green (1999) using a low cost 

driving simulator and an instrumented vehicle revealed that mean speeds 

were similar in both conditions, while lane-keeping was less precise in the 

simulator than in the instrumented vehicle. The authors concluded that the 

simulator demonstrated good absolute validity for speed measurements and 

good relative validity for the effects of a distraction source on driving. However 

this result does not guarantee that every simulator has the same 

characteristics with the one Reed and Green tested. 

The above issues with behavioural validity can be mitigated through the 

use of an instrumented actual vehicle instead of a simulated one. Since the 

vehicle dynamics and the objective feedback to the driver correspond to a real 

vehicle . The use of a real vehicle for the study of driving, however, 

necessitates the use of real road-section as well. If that road-section is limited 

to a closed test-track, then much of the control over variables encountered in 
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simulation studies can be retained . Variables such as the nature of the route 

travelled , the presence of other vehicles , and the behaviour of other actors 

can be controlled during a test-track study. In parallel, the limited and 

controlled road environment comes with limited ecological validity. The road 

environment tends to be locally and temporarily different to the real road 

environment. A session with a participant on a test-track takes place in a 

relatively sterile environment and lasts for a few miles distance and a few 

minutes time. Real driving on the contrary, rarely takes place on roads and 

environments free of other road users, pedestrians or other human activity. In 

addition , temporarily and locally it is not subject to the limitations imposed to a 

test -track study. 

The above weakness can be mitigated through the use of an open road

section instead of a closed track . Thus, the road environment becomes less 

sterile and includes many more elements of the natural road environment. In 

terms of length , on-road studies can benefit from the virtually unlimited length 

of the road network. Nevertheless, control over environmental variables 

decreases in proportion to the increase in realism , while the temporal 

limitations of the test-track studies still apply. The latter can be further raised , 

if the necessary resources are available to turn the on-road study into a 

naturalistic study, as described in the previous section. In such case, 

maximum realism is possible through the study of participants longitudinally 

over a period of time, when they commence their normal driving routine, on 

the road environments of their choice. The resources necessary to support 

such a study are beyond the limits of many research projects , on the other 

hand, and control of confounding variables can be a real challenge from the 
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conceptual stage all the way up to the administration of the study and the data 

analysis . 

Data collection from road accidents can be equally demanding in terms of 

resources - especially if microscopic data re to be collected. Nevertheless, 

accident investigation is often part of the law enforcement authorities and 

enjoys political support. Therefore, as long as cooperation with the respective 

authority is established , in practice the logistics are not as demanding as 

those in the case of a naturalistic study. In addition the ecological validity of 

the data is sound , as these are collected directly from the real road 

environment, without any interference from the researcher. Nevertheless, 

there are two key weaknesses: first, all the data collected refer to phenomena 

and behaviours that took place immediately before, during and after an 

accident. By definition, information regarding driving parameters outside that 

window is excluded. It is therefore impossible to produce evidence regarding 

driving in a "normal" framework. Second, even in the case of "microscopic" 

studies, accident investigation provides relatively superficial data. In the 

absence of in-depth measures and apparatus to provide accurate quantitative 

data regarding drivers' input and vehicle's feedback, significant part of 

accident databases consists of qualitative information inferred through the 

measurements available to the accident investigator during the assessment of 

an accident scene. Furthermore , as mentioned above, data tend to be 

collected by police forces rather than research teams. Accordingly, the focus 

has traditionally been on enforcement policies and attribution of blame, rather 

than the in-depth analysis of driving behaviour and performance. Therefore, 
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the quality of data yielded by accident-studies tends to be quite different to 

those yielded by the other methods discussed previously. 

Overall , this section discussed the relative merits of each of the methods 

commonly employed in driving research . The following step is to discuss them 

in relation to the research questions in particular, before the most appropriate 

of those applicable, are selected to formulate the methodology of the Thesis. 

This discussion takes place in the following section . 

The methods to be used for the purpose of the present Thesis 

As described so far, each method has its pros and cons and different 

research questions favour different methods. The first research question in 

this thesis , the examination of the constitution of normal driver braking , 

requires microscopic, numerical data, such as those collected using 

simulators and instrumented vehicles in controlled environments; however, at 

the same time the nature of the examined phenomenon - "normal" braking -

demands maximum ecologic validity . This can be provided only in a 

naturalistic environment. 

The second and third research questions, comparison and examination of 

relationships between normal and emergency braking , require the same type 

of microscopic, numerical data and realistic environment, however, due to the 

safety-critical element of emergency braking and for ethical reasons, more 

control is needed over the environment. Therefore, the naturalistic setting 

needs to be somewhat compromised for the safety requirement to be in place. 
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A combination of a naturalistic environment for the "normal" part and the 

controlled environment of a closed road section for the "emergency" part can 

fulfil such requirements. A simulator could also be employed altematively, but 

it would probably compromise ecological validity further. 

The fourth research question has multiple prerequisites before a method is 

employed to provide relative evidence. The above naturalistic and controlled 

methods have to be used first, and provided useful results and exploitable 

characteristics indicated. Then , unless resources are available for the 

integration of the results to a system prototype and the commencement of 

field operational trials (FOT) of the system on public roads , the system needs 

at least to be simulated. Real-world data can be provided from the previous 

naturalistic and controlled studies. 

No matter how good one method is in dealing with a particular research 

question, there are always weaknesses. The employment of several methods 

in conjunction can compensate for the weaknesses of one method. The 

rationale is that the relative merits of each can be used to compensate for the 

weaknesses of the other. A full-scale naturalistic study seems ideal for the 

purpose of this research; however the required budget and resources exceed 

the context of the PhD project. Accident-studies provide direct access to real

world data; however the depth of these data is comparatively limited. 

Simulation can be used for maximum control and access to the desired depth 

of data; however application of results to the real-world can only be indirect 

through analogies. This is the issue of ecological validity mentioned 

previously. In general, there are two, often conflicting , conditions this project is 

attempting to fulfil : internal validity and external validity. 
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Validity refers to the degree to which what we measure is actually what we 

think we are measuring. For example the degree to which an index developed 

to measure workload is actually measuring workload instead of attention, 

perception or something else. Internal validity refers to the degree to which 

the design of the study and the resulted measures are accurately measuring 

the desired variables . For example in an experiment, how accurately the 

measurements taken replicate the results of the processes that took place. 

Thus, it is closely associated with reliability. External validity is about the 

degree to which what we measure has a reference in the real world . For 

example, if we measure response times to a stimulus in the laboratory, how 

accurately our measures reflect the participant's response times to the same 

stimulus in the real-world (Carmines & Zeller, 1979; J . Evans, 2007) . 

In the current project, both controlled and realistic methods will be used in 

order to maximise both internal and external validity. In general, the 

employment of an accident study and/or a naturalistic study will improve 

external validity, while the use of a controlled/empirical study will allow for the 

measurement of the exact variables of interest and increase internal validity. 

With the focus on brake-assistive technology, these would be pedal-operation 

parameters , including speed, force and pressure during pedal-operation , 

a.k.a. "pedipulation" (Oxford english dictionary pedipulate, v.). Furthermore, 

additional measures for each method to be used will help decrease the impact 

of the inherent weaknesses of each of them. 

For this reason , an accident study of real-world relevant accident files will 

be based on accident files from the OTS accident investigation. This dataset 

is currently the most microscopic accident data available in the UK. As 
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braking/decelerating is essentially longitudinal control (figures 14, 15), the 

focus will be on longitudinal control failures. Additionally, to test reliability , 

results will be compared to results using the National Statistics (STATS19) 

files for the same accidents (Figure 23). The combination of microscopic data 

use with comparative analysis of the same accidents using another database 

should increase internal validity. In the case of the naturalistic study, there is 

not much space for improvement as in this case the internal validity is the 

external validity - i.e. the experimental measurements are at the same time 

field measurements; "the field is a laboratory". This stands as long as the 

study is appropriately designed . This is the main advantage of this method , as 

it allows for maximum depth of data through the use of instrumentation, while 

at the same time it is as realistic as a study can be. Accidents and emergency 

reactions are comparatively rare though , and the risk of acquiring only a few 

useable data from emergency brake reactions is very high. So, while this 

method is ideal for the study of "normal"/"natural "/"common", average braking , 

it would not provide enough instants of emergency braking and any attempt to 

induce such in the open road could render the study unethical. This is where 

the empirical study comes in , allowing for an ethical and safe data collection 

measure and maximum internal validity. The latter is enhanced through the 

use of repeated measures and a strict experimental protocol (figure 22) . 
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Figure 22: Rationale aiming at internal validity 
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Regarding overall external validity, two of the three methods to be used 

(accident study and naturalistic study) are strong in this type of validity. The 

"normal" part of the controlled study described in a following chapter, is 

validated by comparison with the naturalistic study (figure 23). Identical 

measurements can be taken during both studies and compared directly. Due 

to the nature of the emergency part, replicating this parallelism for the 

emergency-braking study is much more challenging ; it is very hard to validate 

it directly with real-world emergency-brake inputs, simply because these data 

do not exist. So far researchers do not have direct access to the ECU units of 

vehicles which recorded data from emergency brake reactions (before 

accidents or near misses). However, the study design will opt for realism and 

parameters will be compared with the reaction-variables from the OTS cases. 
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The comprehensive description of each study can be found in the relevant 

chapters (4-7) 

I 
External Validity 

I 

Data for 
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~ I Accident Study Emergency Normal Naturalistic Study 

Figure 23: Rationale aiming at external validity 

To conclude, individual methods are employed to provide the evidence 

regarding the research questions of this thesis, but also combined methods 

are used to supplement and compensate for the weaknesses of individual 

methods. A naturalistic braking study is employed to provide evidence 

regarding the issue of normal braking . A controlled study using an 

instrumented vehicle on both public and closed roads is employed to provide 

evidence regarding the differentiation between normal and emergency braking 

and then the presence of relationships between braking parameters in these 

two instances. Results are then integrated into an "adaptive brake assist" 

concept and the respective system is tested virtually using simulation 
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software. The simulation study is expected to provide evidence of the 

exploitability of the results by an intelligent brake system, the final research 

question. Ultimately, the naturalistic study complements the normal-braking 

part of the controlled study, and a detailed accident study complements the 

emergency-braking part of the same study. 

Summary 

The purpose of the chapter 3 was to present the most common methods 

employed in road-driving research and identify the appropriate methods to 

address the research questions, as these were set out in the previous 

chapter. The range of methods used in driving research was presented; from 

lab-based low-cost methods of driving simulation to studies on the test track 

or the public highway, and even methods employing road-accident data. 

The relative merits of each methodology were then discussed with 

regards to the level of control and realism offered by each and their suitability 

for the established research questions. A hybrid methodological plan was 

developed to incorporate the advantages of each method and compensate for 

the individual weaknesses of each method within . With realism as priority, an 

accident-study in conjunction with a controlled road-study, a test-track study 

and a "naturalistic" study will form the core hybrid methodology. Depending on 

the results from the core methods, a supplementary simulation-study will be 

used to indicate the practical potential and limitations of the results. 
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Chapter 4: The in-depth accident study2 

As accident mitigation is the ultimate goal of any safety technology; any 

vehicle system should incorporate the demands of the accident characteristics 

to its design . Additionally, as explained in the "Methods" chapter, it is 

beneficial to any empirical evidence to be supplemented by real-world data. 

This chapter describes a study based on the analysis of accident files from 

cases pertinent to longitudinal vehicle control and driver braking in particular. 

The most in-depth accident data available, the road-user interactions file, from 

3024 road accidents in Thames Valley and Nottinghamshire in the UK were 

analysed. The focus was on the interactions where "failure to stop" or "sudden 

braking " on behalf of a user was the precipitating factor of the accident. Main 

variables of interest were the contributing factors to the precipitating factor 

and the reactions of each user during the accident occurrence. Results 

indicate that both automated braking and brake assist technologies can only 

address some of the factors and the development of other measures and 

technologies is necessary in order to achieve accident-free longitudinal 

control. 

2 Chapter based on two research studies published in: 
Gkikas, N., Hill , J.R. , and Richardson, J.H, (2008). Getting back to basics: using road 
accident investigation to identify the desirable fu nctionality of longitud inal control systems. In 
D. de Waard, F.O. Flemisch, B. Lorenz, H. Oberheid, and KA Brookhuis (Eds.), Human 
Factors for assistance and automation (pp. 203-216). Maastricht, the Netherlands: Shaker 
Publishing 
Gkikas, N., Hill , J.R. , and Richardson, J.H., (2009). Reset to zero and specify active safety 
systems according to real-world needs. Journal of Transportation Engineering. Submitted 
August 28, 2008; accepted April 27, 2009;posted ahead of print April 29, 2009. 
doi:10.1061 /(ASCE)TE.1943-5436.0000042 
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Rationale 

As described in the Methods chapter, there are two main reasons behind a 

study of accident cases pertinent to longitudinal control failures. First, 

although attempts to examine driver control microscopically are necessary for 

the specification of safety technologies, there is always room to miss the 

target of accident mitigation, if their results are used in isolation. The 

integration of empirical with road accident data still remains to be successfully 

accomplished . The main studies for the specification of successful brake 

assist systems (80uslimi , 2006; Kassaagi, 2001; Perron et aI. , 2001 ; Schmitt 

& F arber, 2005) previously described almost took no account of the accidents 

these systems are supposed to mitigate, other than the general notion that 

"since most drivers don't operate the pedal effectively, there is a need to 

augment driver braking" . Second, it is part of the methodology in this Thesis 

to employee in-depth accident data in tandem with empirical methods in order 

to maximise overall ecologic validity, without compromising internal validity 

(See figure 23 in chapter 3) . Thus, any solution or application yielded by this 

three-year research project can benefit from integrated data at its inception 

level. In this case such application would be an ergonomical/driver-centred 

brake system. 

To achieve this and succeed the systems approach of Ergonomics 

(Wilson, 2005) , the environment and circumstances, under which such system 

is expected to operate and achieve its target, need to be investigated. Such 

an approach will allow for important parameters outside the basic control-level 

driver reactions (Alien et aI. , 1971 ; J. D. Lee & Strayer, 2004; Michon, 1985; 

Summala, 1996) to be identified. If nothing more, it is expected that this study 
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will provide the framework in which the system described later in the "system 

simulation" chapter should operate and the qualitative data to support its 

further development. 

However, the nature of traditional accident data is quite different from the 

data presented so far. Integration and comparison of accident data to 

empirical data is therefore not straightforward. The major challenge is the 

difference in depth ; the accident data usually being too "shallow" and the 

empirical data being too "deep"; essentially another expression of the 

methodological pros and cons described in chapter 3 (pp 72-74) . A way to 

tackle this problem is to use the most microscopic accident data available. 

These data are available from a relatively recent accident investigation project 

titled On-The-Spot Accident Study (OTS) , which since the year 2000 collects 

the most detailed data from road accidents in the UK (Hill , Thomas, Smith, & 

Byard , 2006) . As the shift in type of data in the following chapters is 

significant, a section on its background is presented before the main part of 

the OTS data analysis. This section can be skipped by readers familiar with 

in-depth accident investigation methods. 

Background - Recording the Causes of Accidents in the 

British National Data 

Data on road accidents has been collected since at least 1909 (Hillard et 

aI. , 2005) . However, it was not until 1949 that a nationwide system for 

accident data collection was introduced, namely STATS19. The original 

system collected both objective factors (speed limit, time, weather etc.) as 

well as contributory factors , i.e. the factors which the reporting officer on the 
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accident scene believed had contributed to accident occurrence. The system 

has been reviewed and improved every five years since its introduction. After 

some debate about the reliability of the subjective nature of contributory 

factors , such data ceased to be a national requirement following a review in 

1959. However, in 1994 half the country's police forces still used some kind of 

contributory factors coding in accident data collection (Broughton , 1997). 

The report by Maycock (Maycock, 1995) classifies in three broad groups 

the contributory data collected by the police forces at the time. Some police 

forces opted to record a simple list of causes, while others preferred to use a 

list of contributory factors ta ilored to the level of flexibility considered 

necessary for individual local users. Devon and Cornwall police forces used 

one of the more systematic and comprehensive systems: the causation factor 

could be selected from seven broad categories, namely: driver error, 

pedestrian error, passenger error, vehicle defect, highway defect, weather 

conditions and animal/object involvement. One of those broad factors was 

supplemented then with up to two qualifiers , from a list of twenty six (figure 

24). 
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1 causation+1 or 2 
supplementary 

Pool of 26 supplementary factors 

Figure 24: classification system used by Devon & Cornwall police forces 

That report persuaded the Department for Transport to commission the 

Transport Research Laboratory (TRL) to develop and test a prototype system 

for the collection of contributory factors data. TRL elaborated on the previous 

hierarchical system and presented a "new system for recording contributory 

factors in road accidents" (Broughton , 1997). The suggested system was an 

amalgam of the theoretical model suggested by a team of researchers at 

Leeds University during the late 80's (Carsten , Tight, Southwell, & Plows, 

1989), plus the aggregated experience and practical needs indicated by the 

police forces . Therefore, a two-level hierarchy with the following terminology 

was developed: 

• Precipitating factors are the failures and manoeuvres that immediately 

led to the accident. 
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• Contributory factors are the causes for these failures and manoeuvres. 

A recorded contributory factor always relates to a precipitating factor 

that has already been recorded . 

In its early version , the system was flexible enough to allow up to three 

precipitating factors to be chosen and up to three contributory factors per 

precipitating factor. Factors had also to be entered in decreasing order of 

importance. The authors suggested that the hierarchical model has the 

advantage that it allows for the same factors to be recorded as in the case of 

a single tier approach, however in application it imposes a discipline upon the 

investigator and thus leads to a more reliable coding . 

Police involvement was substantial in the development as well as in the 

support of the project. During the first stage of its development police accident 

files were examined to decide whether such system was applicable in real 

world incidents. This was followed up by interviewing and consultation with 

police officers. 

The new system should : 

• be comprehensive enough to accommodate within standard codes the 

majority of road accidents 

• be simple and compatible with operational procedures 

• be self-explanatory and minimising the need for extensive training 

• encourage the collection of high-quality data. 

The finally tested version allowed for only one precipitating factor to be 

selected , as only a few of the accident files revisited in the previous step 

included more than one precipitating factor and thus, the design of the form 

becomes simpler. The option "other" was introduced to allow flexibility and 
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also check the completeness of the coverage in the current form. This allowed 

for new factors to be incorporated within the rapidly changing transport 

environment. The final innovation introduced was the "definite , probable , 

possible" option for the investigator to rate each contributory factor he/she so 

chooses . 

After consecutive reviews in the year 2000 (Neilson & Condon, 2000) and 

2002 (Wilding, 2002) suggested itemised amendments and especially the 

latter acknowledged the internal "blame machine" of the system, as it tended 

to lay blame on an individual and was totally inappropriate for accidents where 

there was contribution from multiple road users. The issues identified in the 

review in conjunction with the previous paper by Neilson and Condon (2000) 

lead the Department for Transport to commission the Transportation 

Research Group in Southampton University to go one step further and make 

suggestions to the Standing Committee on Road Accident Statistics (SCRAS) 

for the improvement of the contributory system. The subsequent report 

(Hickford & Hall, 2004) , among other recommendations, suggested a revised 

form for collecting contributory data. However for ease of use, after 

consultation with the local authorities and the police, a different layout was 

adopted by SCRAS. The outcome of that work was the STATS19 contributory 

factors form now in use, including seventy-six contributory factors and also an 

option to report "other factor" by text description. The factors are grouped in 

five main categories: road environment contributed (nine factors) ; vehicle 

defects (six factors); driver/rider only (forty-seven factors) ; pedestrian only 

(ten factors) ; and four factors for special codes (stolen vehicle, vehicle in 

course of crime, emergency vehicle on call, vehicle door open/closed 
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negligently). The driver/rider category is further subdivided into five 

subcategories: injudicious action, error or reaction, impairment or distraction, 

behaviour or inexperience and vision affected (by) . The reporting officer can 

select up to six factors from the grid , relevant to the accident. Previously 

suggested three and four-point scales of confidence are now substituted by a 

simple two-point scale: the officer indicates for each factor whether he/she 

considers it "very likely" or just "possible". The system allows for more than 

one factor to be related to the same road user and for the same factor to be 

related to more than one road user, if appropriate. This allows the police 

officer sufficient flexibility to include the necessary details and in a concise 

manner. 

In-depth OTS Causation Studies 

The current On-The-Spot (OTS) accident research study commenced in 

the UK in the year 2000. Unlike the more traditional retrospective research 

studies , where accident data is collected several days after an accident 

occurred , the OTS study offers the ability to collect invaluable data which 

would otherwise be lost such as vehicle rest position, debris locations, 

weather conditions, road surface conditions, tyre pressures, temporary 

changes in the road environment at the time of impact, immediate driver and 

witness descriptions. Expert research teams attend the scene of road 

accidents, typically within 20 minutes of the incident occurring to make an in

depth investigation that includes the highway, vehicles and human factors 

present. In addition, it includes data which is collected retrospectively in days 
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or months after the accident (road signs, impact damage on vehicles, road 

dimensions, injury details, etc.) . 

The procedure starts with the arrival of the investigation team at the scene 

of an accident. The serving police officer on the OTS team makes contact with 

the police officer in charge of the accident scene and briefs him/her about the 

intended activities of the investigators. After fulfilment of protocols and safety 

requirements, the team makes contact with the people and the various 

elements involved in the crash . Data is coded in a library of some 200 forms 

with over 3000 individual variables. More details about the OTS method and 

protocols can be found in Hill et aI. , 2001 . 

OTS investigators analyse the causes of accidents in detail and record 

their findings using a suite of causation coding systems. National contributory 

factors forms [both the current (Hickford & Hall, 2004) and previous 

(Broughton, 1997) forms, as described above] are routinely coded for all OTS 

cases according to the same protocols followed by police officers. Thus 

accident causation is coded in two levels: a precipitating factor and up to six 

contributory ones. 

OTS cases are further analysed to determine more complex descriptions 

of accident causation in terms of possible interactions between the active road 

users. A system called "interactions" has been developed to allow analysis 

and recording of one or more interactions between each road user and his/her 

environment to provide a description of pre-crash events at any degree of 

necessary complexity. All information is held on an anonymous accident 

database and does not include personal identifying details or other similar 

documentation. 

97 



Methodology 

Accident cases were studied from Phase 2 of the OTS project covering the 

period from September 2003 to October 2006 and include detailed , 

disaggregated data from 3024 accidents in the Thames Valley and South 

Nottinghamshire regions. This study selected accidents where "failure to stop" 

or "sudden braking" had been coded as the factor initiating the accident 

sequence. While other precipitating factors are also relevant for the study of 

longitudinal control failures , those two factors were considered to be of prime 

interest within the scope of the current study. 

It should be noted that "failure to stop" here defines a very specific set of 

accidents where that is the single, precipitating factor causing the accident. 

Clearly all accidents are in some way the result of a failure to stop before the 

collision occurs, but the sub-set under study here represent drivers who were 

considered to be the predominate, precipitating cause of their accident by 

failing to stop their vehicle in time. Each "failure to stop" will have been 

assigned as the precipitating factor following an accident investigation to 

eliminate other possible precipitating factors, such as for example, the driver 

travelling too fast, or a pedestrian stepping into the road . This is therefore a 

set of drivers who were not able to stop for a variety of personal psychological 

or other reasons. There will of course be other drivers who did not stop before 

collision (all the other drivers in the database) . This study, focuses, however, 

on the unique group for which "failed to stop" was the precipitating factor 

(together with the additional "sudden braking" group, as explained above) . 
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This study cannot therefore attempt to consider all possible reasons for 

drivers failing to stop in time to avoid their accident. 

Case selection resulted in 301 cases involving "failure to stop" and 39 

cases involving "sudden braking". The study went on to analyse precipitating 

and causal factors in the context of driver behaviour and longitudinal control of 

the vehicle. Case analyses focused on the more detailed OT8 road-user 

Interactions coding system, as has been described above. The Interactions 

file included 1099 interactions in "failure to stop" accidents and 152 

interactions in "sudden braking" accidents . Thus, the level of detail goes deep 

down to analyses per interaction , per road user, per case. To the author's 

awareness , this is the most detailed level of accident data available in the UK. 

The database has been compared against the national data for Great Britain 

(8TATS19) and validated as broadly representative of accidents occurring 

over Great Britain (Hill et aI. , 2006) . The first section of results is based on the 

accident causation form of these cases completed by the police and included 

in the STATS19 database. The second section supplements these results 

with data from the additional OT8 causation form , which is completed by the 

OT8 accident investigators on the spot of the respective accidents. All results 

presented hereafter have been tested for asymptotic significance (chi-square 

test) and found below the criterion a=0.01 . 

Results (Contributory Factors 2005 data) 

"Failure to stop" 
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Failure of a driver or vehicle to stop in time to avoid a collision with 

another road user or object is identified as the precipitating factor in 301 

cases investigated by the OTS team (Phase 2). However, these cases were 

the result of interactions of more than one road users at a time. Browsing 

through the cases one by one, it is very rare - and naIve - to attribute 

accidents to a single factor. This is in accordance with experience of accident 

investigation in high-hazard industry, aerospace and space applications 

(Columbia Accident Investigation Board, 2003; Kirwan , 1994; Reason , 1990; 

Whittingham, 2004) . Therefore it is necessary to look further into the factors 

that contributed to the precipitating factor. 

Collision types resulting from "failure to stop" are shown in table 6. One 

might expect junction overshoots and rear-end collisions to predominate, 

however the OTS cases show a wider variety of collisions . Common collision 

types associated with such accidents include crossing, merging, turning , and 

others. 

Table 6: Collision type as a result of failure to stop compared to general 

accident data 

General Failure to stop 

(aJl accidents) 

rear-end 20.6% 65.3% 

cornering 12.4% 0% 

lost control or off-road 10.4% 0.7% 

(straight roads) 

overtaking and lane change 10.4% 0% 
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collision with obstruction 3.1% 1.4% 

head on 5.5% 1.7% 

turning versus same 3. 2% 0.9% 

direction 

crossing (no turns) 6.1% 15.9% 

crossing (vehicle turning) 8.5% 3. 1% 

merging 3.4% 3.3% 

right turn against 5.5% 3.5% 

manoeuvring 2.6% 0% 

pedestrians crossing road 6.3% 1.9% 

pedestrians other 0.5% 0% 

miscellaneous 0.6% 0% 

Table 6 also makes a comparison with the overall collision-type frequency 

distribution from the OTS database and that comparison underlines 

differences in the result of failure to stop in particular collisions. Apart from the 

widely acknowledged predominance of rear-end collisions (+44.7%), crossing 

without turning is particularly common (+9.8%). while cornering , overtaking, 

manoeuvring do not appear at all , and pedestrian crossings are less common 

(-4.4%). 

In terms of contributory factors (Table 7) drivers' "too close" car-following 

strategy is identified as the most common contributory factor, followed by non

adherence to automatic traffic signals and speeding. Cognitive failures - to 

look and to judge others' paths - and inappropriate reactions - sudden 

braking - are also commonly found in such accidents. Comparing that with 
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the general OTS distribution (table 7) , "too close" car-following behaviour is 

more frequent as a contributor (+16.81%), non-adherence to automatic traffic 

signals is more common in failures to stop (14.06%), while too-fast driving is 

more frequent (+7.33) and psychological parameters (reckless/in hurry) more 

common (+7.30%) in failures to stop. On the contrary, non-adherence to give

way signals is less common factor (-9 .03) and failure to judge other paths is 

somewhat less frequent (-2.71 %). 

Table 7: Common contributors in failure to stop compared to general 

accident data 

following too close 

disobeyed automatic traffic signal 

careless, reckless or in a hurry 

travelling too fast for conditions 

failed to look properly 

exceeded speed limit 

failed to judge other person's 

path or speed 

sudden braking 

special codes: stolen vehicle 

slippery road (due to weather) 

disobeyed give-way or stop-sign 

or markings 

102 

failure to 

stop 

22.93% 

16.65% 

13.74% 

12.01 % 

6.19% 

4.19% 

4.19% 

2.37% 

2.37% 

1.55% 

1.36% 

general (aI/ 

accident cases) 

6.12% 

2.59% 

6.44% 

4.68% 

5.15% 

5.10% 

6.90% 

1.01 % 

0.73% 

2.06% 

10.40% 



impaired by alcohol 1.36% 2.08% 

To make the picture clearer, it is necessary to check the type of road 

users involved in such accidents (table 8). About 80% of road users are car 

occupants, 3.5% are Light Goods Vehicle (LGV) occupants and 3.1 % are 

Heavy Goods Vehicle occupants. Motorcyclists and bus occupants each 

constitute about 1 % of the road users involved in such accidents. Sensitive 

road-users comprise 3% in total , 1.3% are pedestrians and 1.7% are pedal 

cyclists . 

Table 8: The distribution of road user involvement in " failure to stop" 

accidents 

Road users involved in "fai lure to stop' 
accidents 

Car occupants 80.3% LGV occupants 3.5% 

HGV occupants 3.1 % Cyclist 1.7% 

Pedestrian 1.3% Motorcyclist 0.9% 

Bus occupant 0.9% 

"Sudden braking" 

"Inappropriate reaction-sudden braking" is identified as the precipitating 

factor in 39 cases investigated by the OTS team. The interaction-files of those 

cases include 152 road-user interactions. 73% of those involved are car 
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occupants , while 9.2% are Light Goods Vehicle (LGV) and 6.6% are Heavy 

Goods Vehicle (HGV) occupants. Bus occupants and cyclists each consist 

2 .6% of total road users and motorcyclists are 5.9%. 

Table 9: The distribution of road users involved in "sudden braking 

accidents" 

Road users involved in "sudden 
braking" accidents 

Car occupants 73% LGV occupants 9.2% 

HGV occupants 6.6% Bus occupant 2.6% 

Cyclist 2.6% Motorcyclist 5.9% 

Compared to "failure to stop" cases, there is more frequent involvement 

of LGVs and HGVs and motorcyclists (more than 6 times more common) . On 

the other hand, there have been, as might be expected , no pedestrians 

involved in this type of accident (compared to 1.3% in failures to stop) , and 

differences below 1 % exist in bus occupant and cyclist involvement. 

Comparison of collision types in "sudden braking" cases with the general 

and the "failure to stop" cases reveals some interesting differences (table 10). 

While the predominance of rear-end collisions is there, collisions commonly 

associated with lateral control such as overtaking , cornering and loss of 
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control collisions are initiated by a sudden-braking reaction . Furthermore, 

miscellaneous collisions (with a trailer mostly) are common results of sudden

braking , unlike other precipitating factors. On the other hand , collisions while 

crossing and collisions with pedestrians are not found at all in "sudden 

braking" accidents, unlike "failure to stop" accidents and the database in 

general. 

Table 10: Collision-type relative frequencies in "sudden braking", 

"failure to stop" and general accident data 

sudden general failure to 

braking stop 

rear end 62.5 20.6 65.3 

overtaking and lane change 7.9 10.4 0 

Cornering 7.9 12.4 0 

lost control or off road 7.2 10.4 0.7 

Miscellaneous 5.9 0.6 0 

turning versus same direction 3.9 3.2 0.9 

head on 2.6 5.5 1.7 

collision with obstruction 2 3.1 1.4 

crossing(no turns) 0 6.7 15.9 

crossing (vehicle turning) 0 8.5 3.1 

Merging 0 3.3 3.7 

right turn against 0 5.5 3.5 

Manoeuvring 0 2.6 0 

pedestrians crossing road 0 6.3 1.9 
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pedestrians other o 0.5 o 

Examination of the contributory factors in accidents initiated by a 

sudden-braking reaction indicated a "wave effect" of sudden braking reaction 

in response to one or more other drivers also braking suddenly to be the most 

common factor (table 11). Similarly with "failure to stop", close car-following 

behaviour is a major contributor to this type of accident. Failures of judgement 

and masked road markings and signs are among the most common 

contributors as well as distraction. However failure to look properly, junction 

overshooting and cyclists' intrusions are not common as in "failure to stop" 

cases. 

Table 11: Comparison of contributors in "sudden braking" and general 

accident data (percentage values) 

sudden braking 

following too close 

failed to judge other person's path or speed 

inadequate or masked signs or road markings 

careless , reckless or in a hurry 

exceeded speed limit 

road layout (e.g. bend, hill , narrow carriageway) 

travelling too fast for conditions 

distraction outside vehicle 
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sudden 

braking 

35.53 

24.34 

7.89 

4.61 

4.61 

3.29 

2.63 

2.63 

2.63 

general (all 

cases) 

1 

6.1 

6.9 

0.4 

6.44 

5.10 

6.1 

4.68 

0.9 



aggressive driving 2.63 0.3 

slippery road (due to weather) 1.97 2.1 

animal or object in carriageway 1.97 0.5 

junction overshoot 1.97 0.5 

vision affected by road layout (e.g. bend, winding 1.97 0.4 

road , hill crest) 

cyclist entering road from footway 0.66 0.3 

failed to look properly 0.66 5.2 

Results (OTS causation data) 

All the above results are based on the Contributory Factors 2005 forms of 

each accident case completed by the police officer. The OTS database 

benefits from an additional causation system based on the forms completed 

by independent accident investigators on the scene of an accident. 

Examination of the data coded by OTS investigators in the accident causation 

files reveals a more detailed picture. Additional contribution is founded in 

psychological factors such as distraction , panic behaviour, nervousness and 

inattention (tables12, 13). 
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Table 12: Contribution of cognitive failures in "failure to stop" accidents 

% Definitely % Probably % Possibly Total 

causative causative causative 

Inattention 19.5 30.6 23.2 73.3 

Failure to judge other 15.8 8.8 7 31 .6 

person's path or speed 

Failure to look 5.6 8.7 14.4 28.7 

Lack of judgement of 7.8 7.4 11 .5 26.7 

own path 

Look but did not see 2.2 7.4 14.5 24.1 

Table 13: Contribution of emotional factors in "failure to stop" accidents 

% Definitely % Probably % Possibly Total 

causative causative causative 

Aggressive driving 0.6 3.6 4 .2 8.4 

In a hurry 1.7 8.8 8.8 19.3 

Carelessness, reckless 18.6 17.7 14.1 50.4 

or thoughtless 

Sudden braking 

In terms of injury outcomes, as was the case in "failure to stop", sudden 

braking initiates accidents with small amount of fatalities and serious injuries. 

The biggest part of road users remains uninjured or leave the crash scene 

with minor injuries. However this does not include any long-term effects of the 
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accident occurrence (Barnes & Thomas, 2006) . Further examination of the 

cases by OTS investigators reveals increased contribution of emotional (table 

14) and cognitive factors (table 15) , while contribution of close following and 

speed behaviour (table 16) is about the same level as in the National 

Causation data. 

Carelessness/recklessness/thoughtlessness was found contributing 

between 15.8% - 32.2 % of interactions, panic behaviour between 7.2% and 

23.6%, aggressive driving between 13.2% - 15.8%, while 

nervousness/uncertainty contributed from 2% to 11 .9%. Inattention was a 

major factor not immediately identified in the Contributory Factors (STATS19) 

2005 form . Its contribution was found between 9.2% - 42%. Failure to judge 

other road users' path or speed had a contribution between 15.1 % and 

29.6%, higher than the STATS19 form suggests, while lack of judgement for 

own path ranged between 2.6 and 11 .2 percent, and "look but did not see" 

failures had a 0-8 .5% contribution . The important contribution of too close car

following found previously (table 7) was confirmed (16.4%-34.8%) as well as 

the contribution of speeding (5.9%-14.4%). 

Table 14: Relative contribution of emotional factors in "sudden-braking" 

accidents 

%definitely %probably %possibly total 

causative causative causative 

careless/reckless/thoughtless 15.8 3.3 13.2 32.3 

Panic behaviour 7.2 7.2 9.2 23.6 

aggressive driving 13.2 0 2.6 15.8 
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nervous or uncertain 2 5.3 4.6 11 .9 

Table 15: Relative contribution of cognitive failures in "sudden-

braking" accidents 

%definite/y %probab/y %possib/y total 

causative causative causative 

Inattention 9.2 16.4 16.4 42 

failure to judge others path 15.1 79 6.6 29.6 

or speed 

lack of judgement of own 2.6 0 8.6 11 .2 

path 

look, but did not see 0 2.6 5.9 8.5 

Table 16: Relative contribution of tactical/strategic-level behaviour in 

"sudden-braking" accidents 

%definitely %probab/y %possibly total 

causative causative causative 

following too close 16.4 12.5 5.9 34.8 

excessive speed 5.9 4.6 3.9 14.4 

Road user reaction 

Taking into account how critical the human input is in the driver-vehicle

road environment system, road-user reaction is a necessary bit of information, 

very hard to extract accurately though . In "failu re to stop" cases, almost half 
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the road users have no significant reaction as the accident phase commences 

(table 17). 

Table 17: Percentage distribution of road users' reaction in "failure 

to stop" cases 

Frequency Percent Valid 

Percent 

No significant braking, steering or 518 47.1 48.2 

accelerating 

Accelerated (also steering somewhat to 9 .8 .8 

the Right) 

Steered Right (also Accelerating 3 .3 .3 

somewhat) 

Steered Right without significant braking 10 .9 .9 

or acceleration 

Steered Right (also Braking somewhat) 13 1.2 1.2 

Braked (also steering somewhat to the 29 2.6 2.7 

Right) 

Braked without significant change in 399 36.3 37.1 

steering 

Braked (also steering somewhat to the 34 3.1 3.2 

Left) 

Steered Left (also Braking somewhat) 13 1.2 1.2 

Steered Left without significant braking 2 .2 .2 

or acceleration 
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Steered Left (also Accelerating 3 .3 .3 

somewhat) 

Accelerated (also steering somewhat to 12 1.1 1.1 

the Left) 

Accelerated without significant change in 5 .5 .5 

steering 

Unknown 25 2.3 2.3 

Total 1075 97.8 100.0 

Missing System 24 2.2 

Total 1099 100.0 

In "sudden braking" cases the proportion of road users that applied brakes 

is much greater than in the previous cases. Combined steering and braking 

inputs consist about 15% of reactions while steering only reactions are 

minimal (table 18). 

Table 18: Percentage distribution of road users' reaction in "sudden 

braking" cases 

No sig brkng, strng or ace: 

stayd else to orig line or 

curve 

Frequency 

37 
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Percent Valid Percent 

24.3 24.7 



Steered Right (also 2 1.3 1.3 

Braking somewhat) 

Braked (also steering 11 7.2 7.3 

somewhat to the Right) 

Braked without significant 92 60 .5 61 .3 

change in steering 

Braked (also steering 3 2.0 2.0 

somewhat to the Left) 

Steered Left (also Braking 1 .7 .7 

somewhat) 

Steered Left without 2 1.3 1.3 

significant braking or 

acceleration 

Unknown/missing data 4 2.6 2.6 

Total 152 100.0 100.0 

Discussion 

Earlier in the introduction, the Emergency Brake Assist (EBA) system was 

presented , a system supposed to identify the instances when full-brake 

application is needed and avoid engaging when the need is not there. Failure 

to succeed on those two objectives leads to false-negatives and false

positives. The dangerous consequence of a false-negative is the failure to 

stop the vehicle, when necessary to avoid collision . Respectively, the relevant 
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accident-case of a false-positive is a "sudden-braking" accident. Thus, the 

system function is pertinent to this type of accidents and its successful 

operation can mitigate these accidents. On the contrary, inaccurate 

engagement of the system can exacerbate the occurrence of this type of 

accidents. The results of the accident study indicated a few more patterns that 

should be taken into account when designing any active safety system. 

Close following , as expected , was found as one of the common 

contributors to longitudinal control failures . More than 20% in "failure to stop" 

and more than 24% contribution in sudden braking cases was attributed to 

road users' close-following behaviour. As following distance is not included in 

the system simulated in the previous chapter, there are two ways to account 

for that. Either the proposed adaptive brake system should incorporate a time

headway parameter or it should be integrated with an ACC system. In both 

cases the notion is the same: "take into account headway". In practice one of 

them might be more practical. 

The road user reaction data (tables 17-18) point out another limitation of 

the EBA system: even if the system adapts perfectly to the driver's braking 

input, almost half the road users involved in pertinent accidents do not use the 

brakes significantly (i.e. enough to be traced by the accident investigator) . In 

application, this would mean that half the users that would need the system's 

intervention to avoid the collision or minimise its consequences , would not get 

it because they virtually do no have a brake input at all. On the other hand, 

braking is by far the most common driver/rider reaction , when there is any, 

both in "failure to stop" and in "sudden braking" cases (>90% of reactions in 

both cases) . This trend is in accordance to the results from an experimental 
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study testing driver reactions to imminent collisions (Muttart, 2005), however 

the extent of this trend is much wider in the present accident study. 

The results on tables 17-18 additionally support the development of a valid 

design for the controlled road! emergency test study that follows in chapter 6. 

As happened in the accident cases, it is expected that almost half the drivers 

will not brake significantly during the release of the trailer from the 

confederate vehicle on the closed track. The design of the empirical study will 

be influenced by the prevalence of rear-end collisions found in both "failure to 

stop" (65 .3%) and "sudden braking" cases (62.5%; table 10). This is the type 

of collision risk the empirical study will attempt to replicate on the test track 

and is also the most typical collision associated to longitudinal control failures 

according to the accident data. 

The second most common type of collision in "failure to stop" cases is 

collisions during crossing (table 6). This result points towards a brake system 

that should be particularly effective at junctions. It also supports the 

engagement of a braking system at traffic junctions, when the intention is to 

stop; any suggested technological solution should account for that. It will be 

interesting to see how future solutions will deal with this situation . 

There is however a variety of collision types associated with sudden 

braking that cannot be directly accounted for by a brake system (table 10). 

Although still less common than in other types of accidents, overtaking, loss of 

control , and head-on collisions do happen as a result of sudden braking . 

Mitigation of such diverse type of accidents calls for the integration of 

longitudinal and lateral control safety systems. 
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The prevalence of car drivers as the road users involved in road accidents 

initiated by a longitudinal control failure (tables 8-9) influences the choice to 

use a car as the test vehicle for the road studies that follow. About 80% of 

road users involved in such accidents are car occupants. On the other hand, 

more than 15% of road users involved in "sudden braking" cases are LGV and 

HGV occupants. There might be a need for follow-up studies of braking in 

commercial vehicles specifically . Another notable result of the road-user type 

analysis, is the limited involvement of pedestrians and cyclists (less than 3% 

in aggregate), while manufacturers promote brake assist systems as 

particularly helpful targeting pedestrian accidents and contributing to the 

safety of sensitive road users (Breuer et aI. , 2007; Page, Foret-Bruno, & 

Cuny, 2005) . Sudden braking cases in particular have no involvement by 

pedestrians at all and the cyclists have same representation as bus occupants 

(2.6%). 

Special note should be made about the 5.9% of motorcyclists involved in 

"sudden braking" cases. The frequency is not unexpected per se, however 

careful examination of the cases indicated that all of them involved loss of 

control during heavy braking and had fatal results. They were also the only 

single-vehicle cases in both datasets. 

The OTS causation system revealed a much more "psychological" profile 

for these accidents. The commonly quoted contribution of driver inattention 

and distraction (Harbluk, Noy, Trbovich , & Eizenman, 2007/3 ; J. D. Lee, 2006) 

on compromised longitudinal vehicle control is here supported by accident 

data. Aggregating all three levels of confidence, 73.3% of road user 

interactions in "failure to stop" cases were influenced by inattention (table 12). 
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Also , other cognitive factors like failure to judge other paths and failure to look 

appears to have contribution over 25% each (table 12). Cognitive factors have 

also strong impact on "sudden braking" cases (table 15). These are factors 

that cannot be associated directly or dealt with by a brake system. However, 

cognitive support is a promising area of driver support for the future . 

Psycho-motive 
parameters 

Rear enders Close following 

ACC & Brake Assist 
Psycho-meter? 

Cognitive failures · · · .~rossing 

Decision/Cognitive 
Support 

".' 

Figure 25: Main characteristics of longitudinal control failures and conceptual 
remedies 

The same applies to psycho-emotional factors that contribute to such 

accidents as indicated by tables 13-14. In "failure to stop", aggressive driving, 

urgency to get to the destination and recklessness in aggregate contribute to 

nearly 80% of road user interactions. In "sudden braking", recklessness , panic 

behaviour, aggressiveness and nervousness have aggregated contribution of 

over 80%. All the above are strong contributory factors that cannot be directly 

addressed by the proposed adaptive braking system. On the contrary, a 

holistic approach is necessary (figure 25) . 
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A successfully-specified brake assist system in conjunction with 

successfully specified ACC systems aims at the rear-end type of collision and 

the strong contribution of close-following behaviour conceptually. In addition, 

in the system simulation chapter (chapter 7), it will be examined whether an 

adaptive version of such system can identify the intention to stop before 

junctions and queued traffic. This trend of the system could mitigate 

longitudinal failures when crossing junctions (a common collision type , see 

table 6) . However, even if the maximum potential of these systems is 

achieved, the psychological and cognitive factors cannot be addressed by the 

proposed system in chapter 6 or any other brake system engineered so far. 

Separate technologies and policies are needed . 

The introduction of a "psycho-meter", a technology that would not allow 

upset, nervous, "day-dreaming" drivers to get a car moving and supplement a 

legislative policy on the matter. Of course, such technology does not exist, 

however there is a wealth of research in psychoneurology/neurobiology (e.g. 

Schneider, Burgess, Horton, & Levine, 2009; Siever, 2008; S. N. Young , 

2008) that can support the biochemical basis for the development of such 

technology. There is also a group of ergonomists with a special focus on 

neurobiology and technology (PIE.) , with active research portfolio in the area. 

The final major block of the driver support necessary, corresponds to 

cognitive support. The OTS accident data clearly suggested the importance of 

cognitive failures in the cases examined. It is therefore rational to argue for 

cognitive support technologies and policies. Specifically, drivers need 

enhancements that facilitate conspicuity, traceability of other road users, 

judgement of relative paths, and finally decision making. The significance of 
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cognitive support has been identified in previous studies, especially in 

accidents with senior driver involvement (Ball, 1997; McGwin Jr., Owsley, & 

Ball, 1998; McGwin & Brown, 1999). The significance is further increased by 

the growing population of senior-aged drivers in Europe, USA and Japan (L. 

Evans, 2004; G. D. Jacobs & Aeron-Thomas, 2000) . This is a promising area 

for the development of driver support technologies. 

Overall , this chapter provided real-world data from accidents pertinent to 

the proposed adaptive brake system. Evidence was provided to support the 

design of the empirical studies that follow, but at the same time, the limitations 

in mitigating accidents through engineering braking systems in isolation were 

revealed . A more holistic approach, as described above, is necessary in order 

to target the multiple parameters in this type of accidents. On the other hand 

and although its limitations, systems like an effective EBA and systems like 

ACC target some of the major factors in longitudinal control failures and 

accidents . It is therefore worth developing them further and harmonising their 

functions according to human user's characteristics - as will be attempted 

throughout this Thesis. 

Summary 

Chapter 4 presented the in-depth accident study of longitudinal control 

failures - accident cases pertinent to incorrect driver braking control. The 

accident-study provided the real-world reference for the empirical studies to 

follow. The road-user-interaction files from 3024 accident cases in Thames 

Valley and South Nottinghamshire regions of the UK, as covered by the OTS 
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study, were employed . The cases where "failure to stop" or "sudden braking" 

reaction was deemed as the precipitating factor of the accident were 

identified. First, the relevant contributory factors from the National Statistics 

(STATS19) data were examined. Results indicated a strong contribution of 

emotional and cognitive factors as well as the established perception that 

close-following behaviour contributes to longitudinal control failures. Then, the 

same analysis was repeated using the OTS causation form from the same 

accident cases. Contribution of cognitive failures and distraction was even 

more prominent in the OTS causation data. In addition , examination of driver

reaction data indicated that about 50% of the drivers do not engage significant 

braking during the course of an accident. Overall , results indicated the 

potential of headway-control and effective augmented braking technologies to 

address some of the contributory factors ; however, significant part of the 

causation behind longitudinal failures requires alternative methods and 

technologies. 
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Chapter 5: "Naturalistic braking" study3 

As described in the methods chapter, the plan included a naturalistic 

study to provide a comparison for the quantitative data from the empirical 

studies and to confirm the validity of the methodology as a whole. 

Furthermore, as established in the chapter on braking studies , it is obvious 

that no matter how much information is obtained on driver braking in specific 

instants regarding specific accident mitigation (Perron et aI., 2001; Schmitt & 

Farber, 2005) , too little is known about how (qualitative) and how much 

(quantitative) people use braking systems while driving. To put it plainly, it 

looks like we know more about the ergonomics of "intelligent" brakes than we 

know about the ergonomics of brakes as they have been for almost a century. 

As Eaton and Dittmeier (1970) suggested that "the wealth of reported data on 

human efforts on foot and hand controls" may explain the limited number of 

study on the ergonomics of braking and steering controls, we could say that 

today the amount of interest in "intelligent", "future", "active", "autonomous" 

longitudinal control is to be partially blamed for the limited interest in basic 

ergonomic aspects of the controls as they stand. Studies like Perron et al. 

(2001) and Schmitt & Farber (2005) provided a lot of information about how 

drivers operate the pedals to avoid an obstacle during an emergency event, 

however little can be inferred about how drivers typically interact with the 

pedals during their daily trips. In such studies, the "normal" trend is inferred 

3 Part of this study was published here: Gkikas, N., Richardson , J., & Hill , J. (2009) . A 50-
driver naturalistic braking study: Overview and first results . In P. D. Bust (Ed.), Contemporary 
ergonomics 2009 (pp. 423-431). London: Taylor & Francis. 
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from the participants' braking in a closed road-section right before the 

emergency event. A similar approach was used in the empirical study 

described in the next chapter. The assumption that such an approach covers 

the whole spectrum of driver braking within such limited time and space is 

arguable. Therefore, data is needed which can be directly associated to 

drivers' routine braking. 

Closest to "natural" is "naturalistic". Although collecting real-time data 

from drivers while driving their own cars to their own destinations (natural) 

was beyond the resources of the current research, using an instrumented 

vehicle that is given out to drivers and driven for a limited period was possible. 

As quoted in the "methods" chapter, evolution of data collection technology 

has made it possible for such methodologies to be used in driver safety 

research. With a few limitations, it is now possible for such a study to be 

carried out within the frame of a PhD course, if the right amount of resources 

to plan , prepare, buildlinstall , and commence is available. The study that 

follows testifies this. 

Thirty fully-licensed drivers drove an instrumented car for a day. The 

types of trip analysed included commuting to work, shopping , and picking up 

children from school. Measures taken included throttle-pedal angle , brake

pedal pressure, and clutch pedal pressure. The foot well was constantly video 

recorded during each trip. This chapter presents the naturalistic braking study 

in detail. 
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Aims 

The main aim of the study was to provide evidence in regards to the 

nature of "normal" driver braking input and tackle the respective research 

question of the thesis. In parallel, the study is expected to provide evidence 

with regards to the validity of other more limited on-road studies of braking . 

Thus, further studies will be able to examine in-depth more variables within a 

controlled environment and still have a point of reference regarding their 

ecological/external validity. In line with this, as described in the Methods 

chapter, a naturalistic study is included in the research-plan for the 

ecological/external validity of the research presented in the Thesis as a whole. 

Design 

The variables of interest 

The dependent variables of interest were the sequence of quantitative 

parameters of driver'S input to the brake-pedal, starting from the speed by 

which the throttle-pedal is released (expressed in degrees/sec), to the time it 

takes for the foot to move between throttle and brake-pedal and finally the 

input to the brake pedal itself. The latter measured both in terms of the speed 

by which the pedal moves at the beginning of its movement and the force 

which is applied on the surface of the pedal itself. 

Apparatus 
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Any study of drivers in a "naturalistic" environment, requires the 

employment of at least one instrumented vehicle. This is a vehicle fitted with 

sensors that monitor the driving variables of interest. The same vehicle and 

similar equipment as for the "Controlled Road Study" (chapter 6) were 

employed . The equipment in detail: 

• A video camera (Microsoft® Litecam VX-1000) was fixed in the 

footwell to record feet/pedal movements (figure 26) . 

Figure 26: The position of the VX-1000 in the nearside of driver's footwell . 

• A potentiometer was fixed at the centre of the throttle-axis rotation 

(figure 27) to record throttle depression/release. Speed of throttle 

release or "throttle-off' was recorded in terms of the change in 

angle at 0.02 sec intervals . This measurement provided the rate 

by which the angle changed over a period time (e.g. during 

release). 
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Figure 27: The potentiometer at the centre of rotation (throttle pedal) 

• Two Tekscan Flexiforce® pressurefforce sensors were attached 

on the surface of the brake pedal and concealed by the rubber 

cover (figure 28). As the cost for a customised pressure sensor 

was beyond the financial resource of the study, Two smaller 

sensors were employed , one at the top-half of the surface and 

one at the bottom-half. Thus, the total forcefpressure on the 

surface could be extrapolated by the data from those two sensors. 

• An additional pressurelforce pad was attached on the surface of 

the clutch pedal and concealed by its rubber cover. Flexiforce® 

sensors were calibrated and conditioned according to Tekscan 

guidelines (Tekscan, 2008) . Clutch-pedal inputs were measured 
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as per previous pedal operation studies (Kassaagi , 2001 ; 

Bouslimi , 2005) . 

Figure 28: The layout of the force sensors on the brake pedal 

A U12 Labjack® Data Acquisition card in conjunction with a Toshiba 

Tecra 3 laptop using the Data Acquisition Factory Express® software 

were used for data logging (figure 29) . The laptop was hidden 

underneath the passenger's seat. The instrumentation had no visible or 

tangible alterations to the foot-well . 
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Figure 29: Parts of the vehicle instrumentation 

The sample 

30 drivers were recruited through adverts in the local press and posters 

around the Loughborough University Campus. The advertising media invited 

volunteers to contact the experimenter for the opportunity to "own a car with 

free fuel for a day". Participants had to be at least 21 years of age and have 

less than 6 penalty-paints on their driving license to be eligible to drive a 

University-vehicle, able-bodied and have no history of serious illness (stroke, 

heart-disease etc) . Seventeen of them were male and twelve were female 

drivers, while one of them preferred not to declare their gender. Age ranged 

between 24 and 60 years (figure 30) and driving experience between 4 and 
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41 years (figure 31) . Their annual mileage ranged from 1 000 to 30 000 miles 

(mean=8 178.6 miles) and two of them had 3 points on their driving license 

(mean=0.21). Two drivers did not report age. Overall , the sampling strategy 

did not intend to favour any driver group within the vicinity of Loughborough in 

particular. In practice however, participation was more convenient to drivers 

based near the University Campus or somehow associated with it (in order to 

hear about the study). National data available for comparison are limited to 

drivers' age (DVLA, 2007) . In comparison to the sample, the national fully-

licensed driver population exhibits similar mean age (41 against 39 years) , but 

wider spread (SO is 14 years against 10 years in the sample) . The latter is not 

surprising, as the general population includes many drivers over 60 years and 

below 21 years of age. 

age 
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Figure 30: The age distribution of the sample 
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Figure 31: The driving experience distribution of the sample (in years) 

Drivers' size is one of the variables reported to affect posture and the 

way in which they interact with the vehicle environment and controls (Porter & 

Gyi, 1998). Stature ranged between 158cm and 195cm (figure 32) and weight 

ranged between 58kg and 93kg (figure 33) . Distributions were "normal-like" 

and the range matches the 5th female to 95th male percentile stature and 

weight range (with some corrections for secular growth) quoted by Pheasant 

(1996) 
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Figure 32: Height distribution among participants 

Mean :174 .39 
Std , Dev . .. 8.139 

N-28 

The sample benefited from the multi-cultural nature of the local 

community and consisted of 5 different nationalities. 17 participants declared 

English nationality, and 7 other identified themselves as non-English British . 2 

participants were Turkish , 1 Chinese and 1 Greek. 2 participants choose not 

to report nationality. 
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Figure 33: Weight distribution among participants (kg) 
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The insurance for the study would only cover drivers with less than 6 

penalty points on their driving license. This effectively restricted the eligible 

drivers to those who had up to 3 points on their license. Those eligible were 

required to provide a copy of the paper counterpart of their license and 

complete the insurer's form before the study commenced. Additional 

paperwork included the demographics form , the information sheet and the 

consent form that had to be completed in advance. A date was then arranged 

during which the participant would effectively "own" the vehicle. On the day, 

the vehicle would be delivered early in the morning to the address of the 
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participant. The participant would use the vehicle as preferred during the day. 

A confederate to the study would collect the vehicle during the evening. 

Participants had almost absolute freedom in terms of the journeys they made 

and the routes they chose to follow. However, the location of their home and 

its relationship to Loughborough provided an estimate of the main area within 

which the trips would likely take place (figure 34) . The area includes A-roads, 

8-roads, motorways and urban road sections. 

Figure 34: The main area of driving according to home and work locations 

Data analysis 

Throughout each day, pedal operation in terms of throttle pedal 

movement, brake-pedal force, clutch-pedal force through the sensors and feet 
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movements through the video were recorded . All data was saved in the 

laptop's hard disk and was then analysed using Statistics Package for Social 

Sciences (SPSS®) version 15, and Microsoft® Excel. Descriptive statistics , 

gender differences, intra-personal differences and correlations of braking 

parameters were examined. For the video analysis, 11 randomly selected 

braking sequences per participant were examined . The scenes examined 

were randomly selected to satisfy typical sampling criteria (Coolican , 2009) . In 

addition, it was expected that video analysis would offer the ability to identify 

qualitative characteristics of braking, otherwise untraceable. 

The rationale behind this selection is in accordance to previous braking 

studies (Bouslimi et aI. , 2005; Eaton & Dittmeier, 1970; Kassaagi , 2001 ; 

Schmitt & Farber, 2005), which saw the variables of pedal movement and 

force as the predominant descriptors of driver braking operation . Compared to 

those studies , the additional element of video recording could provide 

secondary information on parameters that could not be measured through the 

other sensors . All these variables can provide the basic characteristics of 

"normal" braking , as requested by the first research question. 

To explore general properties and quantitative characteristics of 

naturalistic driver braking , descriptive statistics will be used. Such statistics 

indicate the concentration, the spread and the shape of the distribution of 

each variable examined . Those parameters may yield a statistical definition of 

"normal" driver braking . In addition , correlation-analysis will be employed to 

examine interactions between variables. Thus, the quantitative interactions 

between variables will be revealed. 
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Results 

Table 19: Summary of main results 

Typica Typical TYPIcal Typical angle Estimated 

force on force on force on change, force on 

lower brake upper brake clulch th rottle pedal brake 

sensor (N) sensor(N) sensor(N) (degIO.02sec) pedal (N) 

N 28 21 28 28 29 

Mean 6.5317 8.2359 58.3797 .5402 140.774 

Median 4.2881 4.7429 24.6723 .5394 85 .558 

Std . Deviation 5.92062 8.13111 6201004 .01255 124.7026 

Percentiles 2.1522 2.2000 2.4960 .4984 43.044 

5 2.2584 2.2000 2.6765 .5124 45.37 

95 25 .2519 31.1325 181.5245 .5662 508 .948 

99 29.8536 32.2529 193.6403 .5730 621 .066 

Table 19 summarises the main results of the study. 28 participants had an 

input on the lower brake pedal sensor, while 2 participants did not use this 

area of the brake pedal at all. Mean force input was 6.53 newtons, median 

was 4.28 and the standard deviation was 5.92 newtons. Estimated first, fifth , 

ninety-fifth and ninety-ninth percentile was 2.15, 2.25, 25.25 and 29.85 

newtons respectively. Fewer people used the upper area of the brake pedal 

(21 persons). Nine drivers had no input to the upper brake pedal sensor. The 

average input though was stronger than on the lower sensor (8 .23 newtons) . 

The standard deviation was 8.13 and the median value was 4.74 , relatively 

close to the lower-sensor median. Due to a disconnected wire, data from the 

clutch-pedal sensor was not collected in two cases. In the 28 cases 

4 This variable represents the average of all participants' average input during their trips 
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remaining , average typical input on the clutch-pedal sensor was 58.38 

newtons, the median was 24.67 newtons and the standard deviation was 

62.01 . The estimated 1st percentile was 2.5 newtons, the 5th percentile was 

2.68 newtons, the 95th percentile was 181 .52 newtons and the 99th percentile 

was 193.64 newtons. A similar problem with the wiring influenced throttle

pedal data acquisition in the first two days. Therefore , reliable data from 28 

participants were collected . Average throttle-off angle change at 50Hz 

sampling rate was just over half a degree (0.54) . The median was quite close 

to that - 0.54 - and the standard deviation quite smaller at 0.01 degrees. The 

estimated percentiles were 0.5, 0.51 , 0.57 and 0.57 for 1st
, 5th

, 95th and 99th 

percentile respectively. Regarding the estimated force applied on the full 

brake-pedal surface, there was an interesting result with one driver, who 

almost didn't use the brake pedal at all or at least below the 2newton/sensor 

criterion during sensor-noise cleaning. The average for the other 29 drivers 

was 140.77 newtons, the median value was 85.56 newtons and the standard 

deviation was 124.7 newtons. The estimated first percentile value was 43.04 

newtons, the fifth percentile was 45.37, the ninety-fifth percentile was 508.95 

newtons and the ninety-ninth percentile was 621 .07 newtons. 
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Figure 35: The distribution of typical force inputs on the lower brake-pedal sensor 
(newtons) 

The distribution of typical inputs to the lower pedal-sensor as can be seen 

on figure 35 looks rather skewed towards its lower bound. Thus a Kolmogorov 

-Smirnov test was employed to test for normality (table 20). Additionally, as 

its shape suggested an exponential distribution, an additional K-S test 

commenced (table 21) . The results showed asymptotic significance above a 

typical 0.05 criterion (p=0.12) for normality, thus it cannot be assumed that the 

distribution is not normal, while the asymptotic significance for an exponential 

distribution was below the 0.05 criterion (p=0.03) . This result allows for 

assumption that the distribution is not exponential. 

136 

- I 

I 

I 
I 



12 

10 

8 

>-
u 
c: .. 
:> 
~ 6 
~ 

u.. 
,/~ 

4 V 
/ 

2 

~ Mean =82 4 

I 1'--1 I std . Dev. =8.131 
PI! ",21 

0 
40:00 0.00 10.00 20.00 30.00 

Average force input to upper brake sensor 

Figure 36: Distribution of typical force inputs on the upper brake sensor (newtons) 

The distribution of typical inputs to the upper pedal-sensor, as can be seen 

on figure 36, looks skewed towards its lower bound. A Kolmogorov - Smirnov 

test was employed to test for normality (table 20) . Additionally, as its shape 

looks much like an exponential distribution, an additional K-S test commenced 

(table 21) . The results showed asymptotic significance above a typical 0.05 

criterion (p=0.06) for normality, thus it cannot be assumed that the distribution 

is not normal. Regarding comparison to an exponential distribution , results 

showed an asymptotic significance above the 0.05 criterion (p=0.22) , thus it 

cannot be assumed that the distribution is not exponential either. 
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Figure 37: The distribution of typical force inputs on the clutch pedal sensor (newtons) 

The distribution of typical inputs to the clutch pedal-sensor as can be seen 

on figure 37 looks rather skewed towards its lower bound. Thus a Kolmogorov 

-Smirnov test was employed to test for normality (table 20) . Add itionally, as 

its shape looks very much like an exponential distribution an additional K-S 

test commenced (table 21) . The results showed asymptotic significance below 

a typical 0.05 criterion (p=0.02) for normality, thus it can be assumed that the 

distribution is not normal. The asymptotic significance for an exponential 

distribution was above the 0.05 criterion (p=0.17) , thus it cannot be assumed 

that the distribution is not exponential. 
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Figure 38: The distribution of typical throttle-off rate (deg/O.02sec) 

The distribution of typical throttle-off rate as can be seen on figure 38 looks 

normal with a few gaps in data near its bounds. A Kolmogorov -Smirnov test 

was employed to test for normality (table 20) . Additionally, although its shape 

does not look very much like an exponential distribution, it was included in the 

additional K-S test (table 21). The results showed asymptotic significance 

above a typical 0.05 criterion (p=0.33) for normality, thus it cannot be 

assumed that the distribution is not normal. The asymptotic significance for an 

exponential distribution was below the alpha criterion (p=0.0001) , suggesting 

very low probability that the distribution could correspond to an exponential 

one. 
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Figure 39: Distribution of average force inputs between both brake pedal sensors 
(newtons) 

The distribution of combined typical forced inputs on both brake-pedal 

sensors as can be seen on figure 39 looks rather skewed towards its lower 

bounds. Thus a Kolmogorov -Smirnov test was employed to test for normality 

(table 20) . Additionally, as its shape looks like an exponential distribution an 

additional K-S test commenced (table 21) . The results showed asymptotic 

significance above a typical 0.05 criterion (p=0.15) for normality, thus it cannot 

be assumed that the distribution is not normal. The asymptotic significance for 

an exponential distribution was on the alpha criterion (p=0.05) , thus it can be 

assumed that the distribution is not exponential. 
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Tab le 20: One-Sample Kolmogorov-Smirnov Test 

N 

Normal Mean 
Parameters(a,b) 

Std . 
Deviation 

Most Extreme Absolute 
Differences 

Positive 

Negative 

Kolmogorov-Smirnov Z 

Asymp. Sig . (2-tailed) 

a Test distribution IS Normal. 
b Calculated from data. 

Average 
force input to 
lower brake 

sensor 

28 

6.67 

5.96 

.225 

.210 

-.225 

1.19 

,119 

Average 
force input Average 
to upper force input 

brake to clutch 
sensor sensor 

22 28 

8.70 58.38 

8.23 62.01 

.280 .286 

.280 .286 

-.215 -. 184 

1.31 1.52 

.064 .020 

normal) 

Average 
angle 

change 
rate 

28 

.54 

.013 

.180 

.180 

-.176 

.950 

,327 

Table 21: One-Sam p le Kolm ogo rov -Smirnov Test (exponential) 

N 

Exponential Mean 
parameter. (a, b) 
Most Extreme Absolute 
Differences 

Positive 

Negative 

Kolmogorov-Smirnov Z 

Asymp. Sig. (2-tailed) 

a Test Distribution IS Exponential. 
b Calculated from data. 

Gender differences 

Average 
force input to 
lower brake 

sensor 

28 

6.67 

.276 

.125 

-.276 

1.46 

.028 

Average 
force input Average Average 
to upper force input angle 

brake to clutch change 
sensor sensor ra te 

22 28 28 

8.70 58.38 .540 

.223 .210 .603 

.157 .210 .346 

-.223 -. 170 -.603 

1.05 1.11 3.19 

.222 .168 .000 

Mean force 
between 
sensors 

29 

7.38 

6.36 

.213 

.213 

-.206 

1.15 

.145 

Mean 
force 

between 
sensors 

29 

7.38 

.253 

.077 

-.253 

1.36 

.049 

Table 22 presents the gender group statistics of the main variables plus 

two variables for intra-personal variance (SO of brake pedal force and SO as 

percentage of brake pedal force). Average force input to the lower brake-

pedal sensor was 7 newtons and the standard deviation was 7.36 newtons for 

male drivers. For female drivers, the mean was 6,16 newtons and the 
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standard deviation was 3 newtons. Average force input to the upper brake-

pedal sensor was 11 .26 newtons for males and 6 newtons for female drivers. 

The respective standard deviations were 10.2 and 3.42 newtons. On the 

clutch-pedal sensor, average inputs were 57 .35 newtons for male and 59.75 

newtons for female drivers. The relevant standard deviations were 61 .09 

newtons for the male and 65.93 newtons for the female group. Regarding 

throttle-off, average release-rate for both gender groups was 0.54 

degrees/0.02sec, while standard deviations were 0.02 for male and 0.01 

degress/0.02sec for female drivers. Combining input from both sensors on the 

brake pedal , the mean for male drivers was 8.06 newtons and the standard 

deviation was 7.95 newtons. For female drivers the mean was 6.4 newtons 

and the standard deviation was 3.05 newtons. 

Table 22: Group statistics for gender 
gender N Mean Std. Deviation Std. Error 

Mean 

Average force input to male 17 6.99 7.36 1.78 
lower brake sensor female 11 6. 16 299 .90 

Average force input to male 12 11 .26 10.21 2.95 
upper brake sensor female 9 5.96 3.43 1.142 

Average force input to male 16 57.35 61 .09 15.27 
clutch sensor female 12 59.75 65.93 19.03 

Average angle change male 16 .54 .015 .004 
rate (throttle-off, 50hz 
sampling) 

female 12 .541 .008 .002 

Mean force between male 17 8.06 7.95 1.93 
sensors female 12 6.40 3.06 .88 

SO of brake pedal force male 17 8.20 15.03 3.65 

female 12 4.19 3.04 .876 

SO as percentage of male 17 .586 .555 .135 
brake pedal force female 12 .589 .299 .086 

Looking at intra-personal differences, "SO of brake pedal force" is the 

standard deviation of the force inputs on the brake pedal sensors during each 

driver's day. This provides an indication of the variation in each driver's 
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braking. The "SO as a percentage of brake pedal force" variable is the 

proportionate comparison between the "SO of brake peda l force" and the 

mean for each driver's day. For male drivers, the mean SO for brake-pedal 

force was 8.2 newtons, and the standard deviation of this measure was15 .03 

newtons. For the female group, mean SO for brake-pedal force was 4.12 

newtons and the standard deviation of this, 3.03 newtons. The SO as 

percentage to the average brake pedal force was 58.64% for male drivers 

(SO=55.57%) and 58.9% for female drivers (S O=29 .83%). Intra-personal 

differences are further examined in the next section of the results . 

Tab le 23: Inde oendent samDles T-tes t for gender groups 
Levene's Test for 

Equality of 
Variances t-test for Eaualitv of Means 

F Sia. t df Siq. (2-tailed) 
Average 
force input to 2.18 .152 .355 26 .725 lower brake 
sensor 
Average 
force input to 19.59 .000 1.677 14.11 .116 upper brake 
sensor 
Average 
force input to .052 .821 -.099 26 .922 
clutch sensor 
Average 
Ihrottle angle .538 .470 -.575 26 .570 
change rale 
Mean force 
between 5.96 .022 .782 21 .99 .442 
sensors 
SD of brake 
pedal force 4.11 .052 .923 27 .364 

SD as 
percenlage 
of mean 2.57 .120 -.015 27 .989 
brake pedal 
force 

Table 23 presents the results of independent samples T-test for 

differences between the two gender groups. Regard ing average force input to 
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the lower brake sensor, Levene's test indicated that equal variances between 

the two groups can be assumed. Thus, for 26 degrees of freedom (df) , the 

resulted t-value of 0.35 has statistical significance p=0.73 (>alpha=0.05). For 

inputs to the upper brake-pedal sensor, Levene's test indicated that equal 

variances cannot be assumed. According to Levene's test, df were corrected 

to 14.11 in order to account for that. With this amount of df the t-value of 1.68 

had statistical significance p=0.12 (>alpha=0.05) . Regarding inputs to the 

clutch-pedal sensor, Levene's test indicated equal variances between groups 

and the full df were used. For df=26 the t-value of 0.09 has a significance of 

92.2% (>alpha=0.05). Comparison of throttle-off rate between genders 

provided a t-value of 0.58, which for 26 (full) df had significance p=0.57. 

Regarding combined inputs from both brake-pedal sensors, Levene's test 

indicated inequality of variance between groups, thus df were corrected to 22 . 

For these df, the t-value of 0.78 had significance p=0.44. Levene's test for 

equality of variance between groups indicated that for SO of brake pedal force 

and SD as percentage of mean brake-pedal force exhibited equal variance 

between the two gender groups. For df=27, SO of brake pedal force had 

t=0.92 , p=0.36 and SO as percentage of mean brake-pedal force had t=(

)0 .02 and p=O.99. Overall comparative analysis did not provide statistically 

significant values low enough to satisfy the typical alpha=O.05 criterion. 

Intra-personal differences 

Table 24 presents statistics regarding the intra-personal variation in the 

pedal-operation parameters measured. The standard deviation against the 

mean value for the brake-pedal inputs of each individual driver ranged 
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between 4% and 199%. The mean percentage was 58.75%. For the lower 

section of the brake pedal, the range was between 4% and 201 %, with a 

mean of 57 .96%. For the upper brake pedal section, the standard deviation of 

the force appl ied to the sensor ranged between 0% and 198% of the mean 

value per driver. The mean percentage was 52.55%. Regarding throttle-off 

rate, SO as proportion of mean throttle-off rate per driver ranged between 0 

and 21 %. The mean percentage was 9.63%. As for force on the clutch pedal 

sensor, SO ranged between 1 % and 1880% of the mean clutch pedal input 

per driver. Overall, with the exception of throttle-off, these results suggest 

intra-personal variations and differences. 

Table 24: Descriptive statistics of intra-personal differences 

N Range Minimum Maximum Mean 

SO as proportion of 29 1.95 .04 1.99 .5875 
mean brake pedal force 

SO as proportion of 27 1.97 04 2.01 .5796 
mean brake pedal force 
at lower section 

SO as proportion of 19 1.98 .00 1.98 .5255 
mean brake pedal force 
at upper section 

SO as proportion of 28 .20 .00 .21 .0963 
mean throttle-off rate 

SO as proportion of 28 18.80 .01 18.80 1.6391 
mean clutch pedal force 

Valid N (Iistwise) 17 
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Correlations 

hie data Table 25: Correlation parameters between demograpl 
age experienc Annual Licence heighl weight 

e mileage points 

age Pearson 1 .920(") -.147 -.059 -.333 -.010 
Correla tion 
Sig. (2- .000 .455 .767 .084 .962 
tai led) 
N 28 28 28 28 28 28 

experience Pearson .920("") 1 -.109 .004 -. 158 .097 
Correlation 
Sig. (2- .000 .580 .984 .421 .625 
tai led) 
N 28 28 28 28 28 28 

Annual Pearson -.147 -.109 1 -.126 .468(") .218 
mileage Correlation 

Sig. (2- .455 .580 .523 .012 .264 
tai led) 
N 28 28 28 28 28 28 

Licence Pearson -.059 .004 -.126 1 -.100 -.241 
points Correlation 

Sig. (2- .767 .984 .523 .611 .217 
tai led) 
N 28 28 28 28 28 28 

height Pearson -.333 -.158 .468(") -.100 1 .651("") 
Correlation 
Sig . (2- .084 .421 .012 .611 .000 
tailed) 
N 28 28 28 28 28 28 

weight Pearson -.010 .097 .218 -.241 .651 ("") 
Correlation 
Sig . (2- .962 .625 .264 .217 .000 
tai led) 
N 28 28 28 28 28 28 

"" Correlation is Significant at the 0.01 level (2-tailed). 
" Correlation is Significant at the 0.05 level (2-tailed) . 

Exploration of correlations (Pearson's R) between variab les showed some 

predictable relationships. Table 25 shows the correlation pa rameters between 

demographic data. Age and driving experience shared a cor relation of 92%, 

which for N=28, has statistical significance p<O.0001 . Correl ations between 

age and the rest of the other variables (mileage, license poi nts, height and 

weight) did not satisfy the typical alpha=O.05 criterion of stati stic significance. 

The same applied between driving experience and the other variables. Annual 

mileage exhibited a 46.8% correlation with driver's statu re. The correlation 
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had p=0.01 statistic significance, which is below the critical alpha 0.05 level. 

Other than this, annual mileage did not exhibit any correlation with other 

variables that satisfies the statistic significance criterion . Similarly, license 

points had no correlation with other variables that could satisfy this criterion . 

Apart from the aforementioned correlation between annual mileage and 

driver's height, height had another correlation that satisfied the 5% criterion 

for statistical significance. Correlation with weight was 65.1 %, which has 

0.0001 statistic significance for N=28. Neither driver's height nor weight had 

any other correlation that satisfied the criterion for statistical significance with 

another demographic variable. 

Table 26: Correlations between demographic and main edalo eration variables 
Average Average Average Average Mean SO of SO as 

force force force angle force brake percent 
input to input to input to change between pedal age of 
lower upper clutch rate sensors force brake 
brake brake sensor pedal 
sensor sensor force 

age Pearson -.247 -.371 .196 -.058 -.278 -.282 -.123 
Correlalio 
n 
Sig. (2- .215 .108 .327 .778 .152 .146 .534 
tailed) 
N 27 20 27 26 28 28 28 

experience Pearson -.228 -.319 .222 -.Q20 -.254 -.263 -.158 
Correlatio 
n 
Sig. (2- .252 .171 .265 .921 .192 .176 .421 
tailed) 
N 27 20 27 26 28 28 28 

Annual Pearson -.340 .061 -.041 -.099 -.142 -.194 -.267 
mileage Correlatio 

n 
Sig . (2- .083 .799 .840 .631 .471 .323 .169 
tailed) 
N 27 20 27 26 28 28 28 

Licence Pearson -.127 -.012 -.211 .238 -.110 -.091 -.034 
points Correlatio 

n 
Sig. (2- .528 .959 .292 .242 .578 .645 .865 
tailed) 
N 27 20 27 26 28 28 28 

height Pearson -.085 .147 .030 -.225 .008 .053 -.039 
Carrelatio 
n 
Sig. (2- .673 .536 .884 .270 .969 .790 .842 
tai led) 
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N 27 20 27 26 28 28 28 

weight Pearson -.013 .196 -.008 -.433(') .039 .062 .098 
Correlatio 
n 
Sig. (2- .950 .407 .969 .027 .845 .754 .619 
tai led) 
N 27 20 27 26 28 28 28 

, Correlation is significant at the 0.05 level (2-tailed). 

Correlation-analysis between main pedal-operation variables and 

demographics showed only one interaction that satisfied the criterion for 

statistic significance (table 26). A negative correlation of 43.3% between 

weight and average throttle-off rate was found . The associated statistical 

significance was p=0.03. Other demographics did not exhibit any correlation 

with variables of pedal operation that satisfied the alpha=0.05 criterion for 

statistical significance. 

Correlation analysis between the main variables of pedal operation 

revealed multiple correlations that satisfy the criterion for statistical 

significance (table 27) . Average force inputs to lower and upper brake-pedal 

sensors had an R corre lation of 84%, statistically significant below the 

p=0.0001 level. Average force input to the lower brake-pedal sensor shared 

54.8% correlation with the average throttle-off rate, 95.2% correlation with the 

mean force between both brake-pedal sensors , 95% correlation with the SO 

of brake pedal force and 80.5% of the SO as percentage of the mean brake 

pedal force. All these correlations satisfy a 0.01 criterion for statistical 

significance. Similarly, force input to the lower brake-pedal sensor had 75.9% 

correlation with throttle-off rate, 96.8% correlation with mean force between 

both brake-pedal sensors, 83.8% correlation with SO of brake pedal force and 

75.5% corre lation with SO as percentage of mean brake pedal force. All these 

correlations were statistically significant at least at p=0.001 level. Average 
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input to the clutch-pedal sensor did not show any strong correlations with the 

rest of the variables. Throttle-off rate though , showed additional correlations 

that satisfy criteria of 0.05 and 0.01 for statistical significance. Correlation with 

mean force between the two brake-pedal sensors was 63.8%, statistically 

significant at p=0.0001 level. Correlation with SO of brake-pedal force was 

49.3%, significant at p=0.009 level. Correlation with SO as percentage of 

typical brake pedal force was 46.5%, statistically significant below 0.05 

(p=0.015) . Mean force between the two brake-pedal sensors exhibited 

additional correlations with SO of brake-pedal force and SO as percentage of 

brake pedal force - 92.4% and 77.1 % respectively. Both correlations satisfy 

the 0.01 criterion for statistical significance. Unsurprisingly, the correlation 

between the two indicators of intra-personal differences (SO of brake-pedal 

force and SO as percentage of that force) shared a correlation of 85 .1 %, 

statistically significant below 0.001 . 
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Table 27 : Correlations between main variables of oedal ooeration 
Average Average Average Average Mean SOaf 

farce farce foree angle foree brake 
input to input to input to change between pedal 
lower upper clutch rate sensors force 
brake brake sensor 
sensor sensor 

Average Pearson 1 .840(**) -.002 .548(") .952(") .950(**) 
force Correlatia 
input to n 
lower 
brake 
sensor 

Sig. (2- .000 .993 .004 000 .000 
tailed) 
N 28 20 27 26 28 28 

Average Pearson .840(**) 1 -.03 1 .759(**) .968(**) .838(**) 
force Correlatio 
input to n 
upper 
brake 
sensor 

8ig. (2- .000 .894 .000 .000 .000 
tai led) 
N 20 21 21 21 21 21 

Average Pearson -.002 -.031 1 - .082 -.034 .036 
force Correlatia 
input to n 
clutch 
sensor 

8ig . (2- .993 .894 .686 .862 .855 
tailed) 
N 27 21 28 27 28 28 

Average Pearson .548(**) .759(**) -.082 1 .633(**) .493(**) 
angle Correlatia 
change n 
rate 

Sig. (2- .004 .000 .686 .000 009 
tai led) 
N 26 21 27 28 27 27 

Mean Pearson .952(**) .968(**) -.034 .633(**) 1 .924(**) 
force Correlatio 
between n 
sensors 

Sig. (2- .000 .000 .862 .000 .000 
tailed) 
N 28 21 28 27 29 29 

SO of Pearson .950(**) .838(**) .036 .493(**) .924(**) 1 
brake Correlatio 
pedal n 
force 

Si9. (2- .000 .000 .855 .009 .000 
tailed) 
N 28 21 28 27 29 29 

SO as Pearson .805(**) .755(**) -.176 .465(*) .771(**) .851 (**) 
percent Correlatio 
age of n 
brake 
pedal 
force 

Sig. (2- .000 .000 .371 .015 .000 .000 
tailed) 
N 28 21 28 27 29 29 

** Correlation is significant at the 0.01 level (2-tailed). 
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• Correlation is significant at the 0.05 level (2-tailed). 

Video data 

Video analysis provided additional data about foot and pedal operation 

that could not be collected via the other sensors. Table 28 displays the 

descriptive statistics for the two quantified variables of the video analysis. 

Eleven random braking sequences were included from each of the 20 drivers 

that video quality allowed for such an analysis . The time for the foot to move 

from throttle to brake pedal was measured in frames (30frlsec). This is the 

difference between the first frame the foot looses contact with the throttle-

pedal and the frame the foot is in contact with the brake-pedal. Initial brake 

pedal displacement was measured in the number of pixe ls on the camera lens 

image the brake pedal moved within 0.08sec. Again , descriptive statistics, 

comparisons and correlations were examined. 

Table 28: Aggregate descriptive statistics for throttle-to-brake-pedal displacement time 
and brake- edal initial dis lacement 

N Minimum Maximum Mean Std. Deviation 

Foot displacemenllime 
during public road driving 
(frames) 

Brake pedal displacement 
al BOms during public road 
driving (pixels on camera 
lens) 

Valid N (listwise) 

220 4.00 

220 1.00 

220 

138.00 12.6065 14.06886 

166.00 17.3972 30.64849 

Out of 220 braking sequences examined, the mean foot displacement time 

was 12.6 frames, with a minimum of 4, a maximum of 138 frames and a 

standard deviation of 14.07 frames. For initial brake pedal displacement, the 

average was 17.4 pixels and the standard deviation 20.65. Minimum value 

was 1 pixel and maximum value was 166 pixels. 
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Table 29: Correlations between the two uantified video variables 

Foot displacement time Pearson Correlation 
during public road driving Sig. (2-tailed) 
(frames) 

N 

Brake pedal displacement Pearson Correlation 
at 80ms during public road Sig. (2-tailed) 
driving (pixels on camera 
lens) 

N 

Foot 
displacement 

time duting 
public road 

driving 
(frames) 

220 

.042 

.543 

220 

Brake pedal 
displacement 

at BOms during 
public road 

driving (pixels 
on camera 

lens) 

.042 

.543 

220 

220 

Then , the re lationship between the two variables was examined (table 29) . 

Pearson R correlation was just 4.2% and the statistica l significance at p=O.54, 

nowhere near the typical criterion for significance. 
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Figure 40: Distribution of typica l foot displacement time per driver (number of video 
frames) 

Looking at the data as typical values per driver (table 30). the typical foot 

displacement time ranged between 5.6 and 44.2 frames (see also figure 40) . 

The mean was 12.44 frames and the standard deviation 8.7 frames. For initial 

brake-pedal displacement (figure 42) . typical values per driver ranged 

between 5.5 and 22.6 pixels. The average was at 11.2 pixels and the 

standard deviation was 4.9 pixels. 

Table 30: Descri tive statistics for t 

N Minimum Mean Deviation 
Typical foot 

20 5.60 44.20 12.44 8.72 displacement time 

Typical brake pedal 
20 5.50 22.60 11 .20 4.B7 displacement at BOms 

Valid N (Iistwise) 20 

5 average 
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Figure 41: Distribution of typical initial brake pedal displacement per driver 

As both distributions on figure 40 and figure 41 do not seem to be normally 

distributed, a Kolmogorov-Smirnov test for normality was employed to 

investigate the issue. Distributions were tested against a calculated normal 

(table 31) and an exponential distribution (table 32). 

orov-Smirnov test for normalit 

N 

Normal Parameters(a,b) 

Most Extreme 
Differences 

Kolmogorov-Smirnov Z 

Asymp. 5i9. (2-tailed) 

Typical foot 
displacement 

Mean 

Std . Deviation 

Absolute 

Positive 

Negative 

a Test distribution is Normal. 
b Calculated from data. 
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20 

12.4437 

8.71958 

.316 

.316 

-.216 

1.412 

.037 

Typical brake 
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displacement 
at 80ms 

20 

11 .2030 

4.86996 

.162 

.162 

-.121 

.725 

.670 



The test showed a 1.41 z-value for typical foot displacement time and a 

0.73 z-value for typical initial brake pedal displacement. The former was 

statistically significant below a typical alpha=0.05 criterion while the second 

was not. Thus, the distribution of typical foot displacement time could be 

assumed non-normal, while the distribution of initial brake pedal displacement 

could not. 

Table 32: One-sample KolmoQorov-Smirnov test aQainst an exponential distribution 

Typical brake 
Typical foot pedal 

displacement displacement 
~ ______________________________ ~ __ ~tim~e~ __ +-~at80ms 

N 

Exponentiat Mean 
parameter.(a,b) 
Most Extreme Differences Absolute 

Kotmogorov-Smirnov Z 

Asymp. 5i9. (2-tailed) 

Positive 

Negative 

a Test Distribution is Exponential. 
b Calculated from data. 

20 

12.4437 

.362 

.178 

-.362 

1.621 

.010 

20 

11 .2030 

.388 

.133 

-.388 

1.735 

.005 

Compared against an exponential distribution, both variables exhibited z-

values above 1.6 (table 32) . For foot displacement time the z-value of 1.62 

had asymptotic significance 0.01 . The z-value for initial brake-pedal 

displacement was 1.73, which has asymptotic significance 0.005. These 

results allow the assumption that the distributions are not exponential. 

Table 33 presents the correlations between the two video variables and 

the demographics. Neither foot displacement time nor initial brake-pedal 

displacement showed any correlations with age, experience, height, or weight 

that yielded statistical significance indicators close to the 0.05 criterion . 
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Table 3 3 C I . orre atlons b h ·d etween t e VI . bl eo-varra es an d the d emOl1.raehics 

Typical brake 
Typical foot pedal 

displacement displacement 
time at SOms 

Age Pearson Correlation · .145 ·.001 

Sig . (2-tailed) 554 .997 
N 19 19 

Experience Pears on Correlation -.167 -.031 

Sig. (2-lailed) .494 .901 
N 19 19 

AnnuaLmileage Pearson Correlation .114 -.384 

Sig. (2-tailed) .643 .104 
N 19 19 

Licence_points Pearson Correlation -.219 .413 
Sig . (2-tai led) .368 .079 
N 19 19 

Height Pearson Correlation -.066 -. 166 

Sig . (2-tailed) .789 .496 
N 19 19 

Weight Pearson Correlation .261 -.145 

Sig . (2-ta iled) .281 .555 
N 19 19 

Typical foot Pearson Correlation 
1 -.329 

displacement time 
Sig. (2-tailed) .157 
N 20 20 

Typical brake pedal Pearson Correlation 
-.329 1 displacement at 80ms 

Sig. (2-lailed) .157 
N 20 20 

In contrast, both foot displacement time and initial brake pedal 

displacement showed significant relationships with the main pedal-operation 

variables (table 34). Force input to the lower brake-pedal sensor shared a 

56 .6% correlation with initial brake-pedal displacement. This had statistical 

significance below 0.01 level. Similarly high was the correlation between initial 

brake-pedal displacement and force input to the upper brake-pedal sensor 

(60.7%). This correlation was significant below 5% level. Additional significant 

correlations were found between initial brake-pedal displacement and the 
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other brake-pedal related variables. Correlation with combined input from both 

brake-pedal sensors was 61.6%, significant below 0.01 level. Correlation with 

the SD of brake pedal force was 49.4%, which was significant below 0.05 

level, and correlation with SO as percentage of mean brake force was 55.7%, 

which is significant at 0.01 level. Foot displacement time had one strong 

correlation with throttle-off rate (70.2%). This correlation had statistical 

significance of 0.001. Foot displacement had no other correlations that satisfy 

a typical alpha=0.05 criterion for statistic significance. Force on clutch-pedal 

sensor did not exhibit any significant correlations either. 

Table 34: Correlations between the video-variables and the main pedal-operation 
variables 

Typical foot Typical brake 
displacement pedal 

time displacement 
at80ms 

Average force input to Pearson Correlation -.219 .566(") 
lower brake sensor 

8ig. (2-tailed) .355 .009 

N 20 20 

Average force input to Pearson Correlation -.168 .607(') 
upper brake sensor 

8ig. (2-tai led) .583 .028 

N 13 13 

Average force input to Pearson Correlation .014 -.411 
clutch sensor 

8ig. (2-tailed) .955 .080 

N 19 19 

Average angle change Pearson Correlation -.702(") 395 
rate 

8ig. (2-tailed) .001 .105 

N 18 18 

Mean force between Pearson Correlation -.236 .616(") 
sensors 

8ig. (2-tai led) .316 .004 

N 20 20 

8D of brake pedal force Pearson Correlation -.091 .494(') 

8ig. (2-tailed) .704 .027 

N 20 20 

SD as percentage of Pearson Correlation -.102 .557(') 
mean brake pedal force 

8ig. (2-tailed) .669 .011 

N 20 20 
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•• Correlation is significant at the 0.01 level (2-ta iled) . 
• Correlation is significant at the 0.05 level (2-tailed). 

Regarding qualitative characteristics of driver braking , two trends were 

transparent: first, a hesitant movement of the foot from the throttle to the 

brake pedal and then briefly back to the throttle pedal was not uncommon 

before an input to the brake pedal. In fact, this hesitation was apparent before 

more than 10% of all braking sequences examined (25 out of 220 sequences 

examined) . Second, the clutch was engaged in tandem with the brake pedal 

in about 60% of sequences (124 out of 220) , but predominantly after the initial 

brake input (117 sequences) . 

Discussion 

In general 

The naturalistic study was undertaken to support two main purposes within 

the scope of this PhD thesis . The establishment of what constitutes "normal" 

braking was the first purpose. The study provided a statistical/quantitative 

definition based on the main empirical results. As discussed below, although 

the visualisation of the distributions for some variables did not imply they were 

normal (figures 32-36), statistical testing for normality suggested that the 

distributions cannot be seen as non-normal- with the exception of clutch-

pedal force (tables 20-21). Since tests for normality, allow for the rest of the 

variables to be treated as normally distributed, it can be assumed that the 

mean is the most common and representative value of the distribution (Field, 

2005). By definition, this is the most "normal" value . These values can be 

found on table 4. The most meaningful values are the estimated typical force 
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on the brake pedal surface (140.8N) and the typical throttle-off rate (0.54 

deg/0.02s = 27deg/sec). Normal braking is limited to those values universally; 

however for the population examined and the vehicle used, according to the 

data it can be assumed that statistically any values within two standard 

deviations from the annotated means are "normal". 

The second purpose of the naturalistic study was to provide a point of 

reference for more confined , more controlled on-road studies of driver 

braking . Within this framework, the results and distributions encountered here 

will be compared to the respective results of the "controlled study", in the 

following chapter (chapter 6) The average of both brake pedal force (approx. 

140N, figure 54) and throttle-off rate (25 .8 deg/sec, figure 53) in that study are 

within one standard deviation from the respective means in the current 

naturalistic study. There is more discussion of this issue in the chapter that 

follows. 

Design 

Regarding the apparatus of this study, the use of only one vehicle for all 

participants is a limiting factor: participants did not drive their own vehicle, 

even though they selected their own routes. As discussed in the Methods 

chapter, it is desirable to have participants being monitored in their regular 

vehicles , or at least accounting for vehicle effects through the use of various 

vehicles within the framework of naturalistic-driving studies. Nevertheless, 

within budget limitations, the vehicle used was one of the most common 

vehicles on the road (Colorado Springs Gas Prices, 2009), and thus among 

the best options as a single instrumented vehicle. 
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The use of two sensors on the brake-pedal surface provided the ability to 

localise the area of the pedal to which force was applied , however it did not 

allow for direct collection of force data for the whole pedal surface. Total force 

applied on the pedal surface had to be estimated instead based on the 

assumption that the same amount of force placed on each sensor is also 

placed on its neighbouring areas . Of course , the use of multiple sensors 

compensated for that partly, however ideally a sensor exactly at the size of 

the pedal should be employed . At the time these lines are written , the cost for 

such a customised sensor is far outside the financial boundaries of this 

project. It remains as a possibility for future research studies. 

Regarding the sample used in the study, size was sufficient for the type of 

statistical analysis undertaken - with the exception of estimating percentiles 

for gender groups. For such a purpose sample size should increase 

significantly to minimise uncertainty. This can be achieved through an 

extended future study. In terms of quality, demographic data indicated a 

desirable spread in mileage, stature and weight of drivers. The distribution of 

the last two variables had very similar properties to UK adult anthropometric 

data (with correction for secular growth, (Pheasant, 1987). The age 

distribution had two peaks at 30 and 50 years (figure 27). This is coherent 

with UK (OVLA, 2007) and US data (Idaho Office of Highway Operations and 

Safety, 2006) on licensed driver statistics. This phenomenon can partly be 

attributed to the "baby-boomers" population. Ethnically, the sample drew 

participants from a variety of backgrounds. The wealth of ethnic backgrounds 

in the area where this study commenced (Leicestershire) should have a 

contribution to this (Leicester: Ethnicity profile.). 
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On the negative side, insurance terms did not allow for drivers with 

probable history of risk-taking to be included in the sample. Effectively, only 

drivers with up to three points on their license were included in the study. 

Therefore the sample was missing an important part of the driver population -

arguably the one that needs driver assistive technology more. Also, the 

benefit from the mUlti-ethnic background of the drivers was not supplemented 

by a multi-national road environment. Although there was no mileage 

restriction during the day they "owned" the car, participants drove on UK 

roads only. 

Results 

According to the results summary on table 19, more people used the lower 

part of the brake pedal than the upper when braking . This qualitative tendency 

to use the lower part of the pedal was balanced quantitatively however, as 

inputs to the upper brake pedal area were more powerful. This finding might 

be explained by the orientation of the pedal controls; as they are positioned in 

an angle against the floor, it is the lower part that is closer to the driver seat. 

Thus, this was the first area of the pedal a foot would touch aiming at pedal 

depression. However, it should be noted though that the correlation-analysis 

with driver-stature did not show evidence that smaller people had stronger 

inputs to the lower sensor and weaker to the upper one. An alternative 

analysis or even a new study-design is necessary to examine this further. 

As per the following "controlled" study (chapter 6) , throttle-off showed the 

least within-groups variance. Its standard deviation was very small compared 

to its mean and the strong concentration of values around the mean suggest 
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the latter is a very good representative number for the whole distribution. The 

major difference with the studies in chapter 6 is that in this chapter the 

variable also showed the most normal spread as a distribution (figure 34). 

This result enhanced the rel iability of the parametric statistics for the variable 

that followed in the results section. 

Table 35: Comparison of current results against previous drive:-;r..:b",ra::.;k.:;;in:.:.:"-.::;st:.:u",d,:.:ie:.:s_:-
Eaton & Humanscale (Curry et al., (Kassaagi, Present 
Oittmeier (Oiffrient, Tilley, 2003) 2001) study 
(1970) & Harman, 

1993) 
Max force/ 620 N 266.9 N '" 500 N 1261 N 
99th 
percenti le 
Optimum 
force/50th 
percentile 
Minimum 
force/ 1st 
percentile 

18 - 133 N 

17.8 N 

314 N 

45 N 

621 N 

140 N 

43 N 

Results regarding the distribution of driver brake-force are not directly 

comparable to results from previous studies (table 35) , primarily because all 

those data came from different experiments serving different purposes. To the 

author's awareness, this is the first study on driver-braking force in a 

naturalistic setting. Note that the values on table 35 are not directly 

comparable, as apart from the fact that data was collected in different 

settings; data was also collected from different areas of the braking 

mechanism. Despite the differences, it is still constructive for the results of the 

studies to be discussed in parallel. The early study by Eaton & Dittmeier 

(1970) was designed to discover the maximum effort capabilities of female 

drivers. Thus, only results on maximum effort were provided . The result of 620 

newtons is very close to the 99th percentile value for brake-pedal force in the 
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present study (621 N). Humanscale's recommendations (Oiffrient, 1993) refer 

to what the acceptable limits of force for the operation of the brake pedal are. 

The maximum force of 266.9 newtons is far from the maximum observed in 

the other studies or the 99th percentile in the current study; however it is 

recommendation rather than an absolute maximum and as such is close to 

one standard deviation from the mean in the current study. The optimum 

range according to Humanscale is between 18-133 newtons, and the upper 

bound is close to the mean reported in the present study. The minimum 

recommended force is 17.8 newtons which is less than the 1st percentile for 

the current study. 

The differences can be further explained by the particular purpose of the 

Humanscale; it is a tool to help designers and engineers design for human 

use. Its recommendations are for the resistance of the brake pedal during 

application . It recommends an 18N-133N requirement for the pedal to be 

operated , so that the pedal can be operated by the driver without being "too 

soft" and result in random engagement of the brake mechanism. The relevant 

value in the distribution observed in this chapter's study is not the mean; it is 

the 1st percentile. This is the value that would be recommended as the 

absolute maximum resistance of a brake pedal mechanism for use by the 

population of drivers that this study's sample came from . This value is actually 

within the recommendation by Humanscale. 

The studies by Curry et al (2003) aimed at exploring drivers' reaction and 

perception of primary brake systems failure. So the only related result 

provided was the maximum brake pedal force during the system failure, as 

measured through the car's ECU . The maximum value reported was about 
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500 N, which is actually quite close to the 95th percentile brake pedal force 

value for the current study (table 19). Again though , the settings upon which 

data were collected are quite different; in Curry et al (2003) pedal-force data 

were collected during circumstances (brake circuiUservo failure) that are 

extremely rare in the natural road environment (Sabey & Staughton, 1975; 

Treat et ai. , 1977). 

Reported maximum, average and minimum values for brake force were far 

greater in Kassaagi's (2001) study than in any of the other studies. This can 

partly be attributed to the fact that his thesis was about emergency braking 

and his studies examined mainly collision-imminent situations in a simulator 

as well as on a test track. Force values were estimated through the measured 

pressure in the brake circuit cylinder, which is different to the methods the 

other studies used to collect brake force data. For all those reasons, it is not 

surprising that, with the exception of the minimum value observed, both 

average and maximum values were more than twice the amounts in all the 

other reported studies. 

Detailed results 

Looking back to the present study's results and the qualitative 

characteristics in particular, normality testing (table 20) suggested that lower

brake force, throttle-off rate, and combined force from both brake-pedal 

sensors can be assumed as normally distributed. On the other hand, cJutch

pedal force can be assumed exponentially distributed (table 21), while upper 

brake-pedal force can be assumed as neither a normal nor an exponential 

distribution. These characteristics did not affect the analysis much, as there 
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was no other indication that data does not fulfil the prerequisites for 

parametric statistical testing (Field , 2005) . 

Gender comparisons 

Comparative analysis between genders across the range of variables did 

not reveal any statistically significant differences. The sample size might have 

played a role, as splitting it into gender groups resulted in groups with size 

between 17 and 12 participants. Thus , although the total sample was 

sufficient for most other analyses , it is probably necessary to have greater 

numbers for a reliable comparison between genders. Nevertheless, it is worth 

reporting the average estimated brake-pedal force values of 161 .3 N for male 

and 128N for female participants . Variance was significant within groups (this 

partly explains the absence of meaningful statistical differences) as well as 

within individuals; standard deviations of brake pedal force averaged above 

50% of the means for both male and female drivers (table 22) . 

Intra-personal differences 

This amount of variance was noticed for the total sample as well. With the 

exception of throttle-off rate, all other variables exhibited standard deviations 

up to 1880% of their respective means with all average standard deviations 

above 50% of the means (table 26) . These results suggest that braking varies 

not only from driver to driver; it also varies from braking sequence to braking 

sequence for the same driver. It is not only that participant X's braking is 

different to participant Y's, but also participant X's braking is different at time Z 
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to time W. And these differences are quantitative; they can be observed in 

braking parameters like the ones measured and reported in this study. 

Correlation-analysis 

The exploration of relationships between the variables provided some 

interesting results. Apart from the more-or-Iess expected relationship between 

age and experience, a 47% correlation between driver stature and annual 

mileage suggested that the taller drivers in the sample also drove more during 

the year. As general driver-population data on the matter is not available, it 

would be risky to expand this result to the general population , just on the 

grounds of this result. The relationship though , could be partly explained if 

male drivers have longer mileage. 

Another demographics-related correlation was that found between driver 

weight and throttle-off rate. The correlation was 43.3% and the heavier the 

drivers were, the slower the release of the throttle-pedal. Although 

theoretically a correlation does not show effect, as it is bidirectional , in this 

case it could be assumed that weight somewhat slows throttle-off responses 

down, rather than throttle-off affects drivers' weight. In addition , although the 

above correlations fulfil the criterion for statistical significance, they both 

exhibit values below 50%. Such values imply low (below 25%) interactions 

between variables . Furthermore, considering the size of the sample (:S30), 

the extensive correlation-analysis (twenty-seven correlations in total) which 

took place could facilitate Type I errors. Type I errors occur, when the 

experimenter accepts the alternative hypothesis as true, although the nil 

hypothesis is true. Within the present study, this argument implies that 
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relationships such as those reported above, could be random rather than 

represent a true phenomenon. Therefore, the two aforementioned correlations 

should be interpreted with caution . 

Outside those two correlations, all the brake-pedal force measures were 

closely related . Their correlations ranged between 84% and 96.8%. Between 

the three variables , there could be a common underlying mechanism. Their 

high correlations to the intra-personal indicators (SO of brake pedal force & 

SO as percentage of brake pedal force) also indicated that the higher the 

typical pedal force values for a participant, the greater the intra-personal 

variance. 

Throttle-off rate had a similar relationship to the indicators of intra-personal 

variance. Its correlation to SO of brake pedal force was 49.3% and 46.5% to 

the SO as percentage of brake pedal force. Quicker throttle-off rates were 

associated with more intra-personal variation. Throttle-off rate was also 

directly associated to brake-pedal force; they shared a correlation of 63.3%. 

The results are in line with an argument that throttle-pedal release is part of 

the braking task itself and thus should be included in a study of braking . 

Clutch-pedal force on the other hand , did not show noteworthy relationships 

with any other braking variable, raising questions regarding how much it really 

fits into the braking task. 

The two indicators of intra-personal differences have, as expected , very 

high correlation . It should be noted that, although the second (SO as 

percentage ... ) derives from the first (SO of brake-pedal force) , they are not 

identical; their correlation is meaningful and implies that the greater the 

personal SO, the greater its proportion to the mean of the individual braking 
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force distribution. In other words, as the SO increases from person to person , 

the mean does not increase equally. 

Video 

Video analysis was neither easy, nor problem-free. Practically, it was 

outside human limitations to analyse in-depth every single braking sequence 

in the videos. If a minute of action requires one hour to be analysed in-depth, 

there were enough hours of video-recorded material to occupy more than half 

of the time available for the whole PhD programme. Thus, braking sequences 

had to be sampled to be analysed by frame. Eleven braking sequences per 

participant were randomly selected for that purpose. This number, multiplied 

by the number of participants, is substantial ; however the sample of braking 

sequences examined is only a fraction of the thousands of sequences 

performed during those 30 days the participants drove the vehicle. Further 

limitations came from the tendency of a couple of drivers to cover the lens 

with their left foot/shoe/boot, the video quality and the sensitivity of the 

camera during really dark days/evenings. All the problems together resulted in 

useful data from 20 participants in the end . 

However, there were some useful and valid results. The correlation 

between the two video-variables was very low (4%). The initial travel of the 

brake pedal seems to be irrelevant of the speed in which the foot moves from 

throttle to brake pedal. Also, it was interesting to see slight differences 

between the statistics of aggregate braking sequences (table 28) and those of 

descriptives per driver (table 30). The K-S tests (tables 31 , 32) suggested that 

the distribution of foot-displacement time might be neither normal nor 
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exponential. Initial pedal-displacement did not show similar results. 

Exploration of relationships with other variables (tables 33-34) revealed no 

significant relationship with the demographics; however both variables shared 

significant correlations to other brake-related variables. Foot-displacement 

time shared a 70.2% correlation with the throttle-off rate . At the same time, 

initial-pedal displacement time shared a 56 .6% correlation with the lower 

brake-pedal sensor force, a 60.7% correlation with the upper brake-pedal 

sensor force , a 61 .6% correlation with the combined brake-pedal sensor input, 

49.4% correlation with the SO of brake pedal force and 55.7% with the SO as 

percentage of mean brake pedal force. All these correlations suggest that the 

time to move the foot between throttle and brake pedal is associated more to 

the throttle-related part of the braking sequence. The initial speed of brake 

pedal application on the other hand is associated with the rest of the brake

pedal variables, basically creating a two-stage basis of driver braking . The 

issue is discussed further in the final chapter of this Thesis. 

The two qualitative results of the video analysis can be quite important for 

the specification of braking systems and the "hesitation phenomenon" partly 

explains some of the irregularities in the foot-displacement time measure. This 

is , because the appearance of a hesitant movement, where the foot is not 

determined to depress the brake pedal, results in disproportionately long foot

displacement times. The foot spends time touching neither the throttle nor the 

brake pedal, and thus, when decided to brake, the starting point of the 

movement is not the throttle pedal. No contemporary sensor-technology can 

account for this and the incorporation of foot-displacement time to intelligent 

brake systems might be challenged by this trend . Equivalently problematic 
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might be the employment of clutch-related variables; first, not all vehicles 

have a clutch pedal. Automatic/semi-automatic transmission is becoming 

increasingly common . Second , although the application of clutch pedal in 

tandem with the brake pedal was noticeable in the video analysis, it was very 

rare that the clutch-pedal application would precede the brake-pedal 

depression. Therefore, incorporation of clutch input to future brake systems 

has the potential to delay the response of the system. 

The lessons derived through the naturalistic study 

The examination of driver braking in a naturalistic setting provided a 

series of findings with regards to the nature of driver braking input. First, 

evidence for a statistical definition of normal driver braking was provided. 

Inputs within two SD of the mean force-input to the brake-pedal , are 

considered statistically "normal", whereas values outside those bounds are 

considered "extreme". Therefore, braking inputs between 40N and 390N of 

force can be assumed as "normal" according to the statistical evidence 

provided by the study. 

Second, the underlying intra-personal variability of driver braking was 

revealed. The standard deviations in brake-pedal force input for each 

participant ranged between 50% and 1880% of their respective mean input. 

This range implies that, during the same day, the same driver may perform 

braking inputs as much as eighteen times stronger than their average input. 

Such size of intra-personal variability is huge and indicates how demanding a 

task it is to design braking systems that account for it. 
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Third , relevant results were coherent with results from previous test-track 

studies regarding minimum, average and maximum brake-pedal force applied 

by drivers under braking . The ecological validity of those test-track studies 

(Eaton & Dittmeier, 1970; Curry et aI. , 2003) is supported by the findings of 

the current study. However, there were other studies , whose scope was such 

that direct comparison with the current results is problematic. 

Finally, correlation-analysis between pedal-operation parameters 

indicated that clutch-pedal operation is probably irrelevant to the operation of 

the brake-pedal during braking . Although clutch-pedal operation is often 

included in the measures of driver braking (e .g. Kassagi , 2001) , in this 

instance it showed no relationship to the other variables. On the contrary, 

brake-pedal force, throttle-off and initial displacement of the exhibit 

considerable interaction among them. 

Summary 

Chapter 5 presented a naturalistic braking study. 30 fully-licensed drivers 

"owned" an instrumented vehicle for a day. Operation of the pedals was 

monitored through force, positions sensors and a camera in the foot-well. 

Each day, the vehicle was delivered to the participant's home address early in 

the morning and collected from the same location in the evening. Typical trips 

during the day included commuting to work, getting the children to school , 

going shopping etc. Some participants reported extra-urban use such as for 

trips in the countryside. 
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Results indicated strong individual differences as well as intra-personal 

variation in terms of the force applied and the speed of operation of the brake 

pedal. Comparison with previous results from studies examining braking 

indicated a slight incoherence, which can be attributed to the difference in the 

scope and the consequent design of each study. 
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Chapter 6: Controlled Road Studl 

In the previous chapter, driver braking was examined within a naturalistic 

setting . That investigation produced a realistic image of the quantitative 

characteristics of driver braking. Within this framework, a statistical definition 

of normal driver braking was developed. However, the limited control provided 

by the design of the study did not allow for the examination of extreme braking 

inputs, such as emergency braking . The present chapter describes an 

extensive driver braking study on a pre-determined public road route and on a 

closed road track. The public road section was employed for data collection in 

a realistic setting and the closed road track was used for the execution of an 

emergency braking experiment in a setting where risk can be controlled . 48 

drivers (24 male - 24 female) drove an instrumented vehicle on a 

6.7mile/10km public road section before they arrived at the test track where 

they were instructed to follow, at their preferred distance, another vehicle 

towing a trailer. They were told the aim was to measure their preferred car-

following distance. They were naIve of the fact that 0.2 miles down the track 

the trailer would be released . Throughout both sessions (publ ic and closed 

road) pedal-operation data was collected through position and force sensors 

as well as video cameras in the foot-well. Data from each session were 

explored before they were compared between sessions, and finally , 

relationship models between parameters were tested. Comparison aimed at 

6 Parts of this study were published in : Gkikas, N., Richardson , J., & Hill , J. (2009) . Towards a 
driver-centred brake assist. Braking 2009, St Williams College, York, UK. 85-92. 
And: 
Gkikas, N., Richardson, J. H., & Hill, J. R. (2009). Exploitable characteristics of driver braking. 
Proceedings of the 21st International Technical Conference on Ihe Enhanced Safely of 
Vehicles (ESV), Stuttgart. (Paper Number 09-0247) 
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exploring the previously established difference between normal and 

emergency braking (Perron et aI. , 2001), while relationship models between 

parameters were tested to provide evidence regarding the third research 

question, regarding the relationship between normal and emergency braking 

parameters. 

Aims 

The controlled road-study commenced with four objectives in mind: 

1. The overarching aim was to examine both normal and emergency 

driver braking microscopically in a highly realistic environment. 

2. Within the above aim, the study attempted to challenge results 

from previous studies supporting quantifiable differences between 

normal and emergency driver braking (Kassaagi, 2001) . 

3. Furthermore, it aimed to test the hypothesis that there are 

additional intra-personal relationships among braking parameters 

and between normal and emergency braking. 

4. Depending on the result of the investigation above, the final 

objective of the study was to examine the relative merits of the 

dominant relationships as the basis for future braking-assist 

systems. 
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Design 

The variables of interest 

The main dependent variables were the sequence of quantitative 

parameters of driver's input to the brake-pedal, starting from the speed by 

which the throttle-pedal is released (expressed in degrees/sec) , to the time it 

takes for the foot to move between throttle and brake-pedal and finally the 

input to the brake pedal itself. The latter measured both in terms of the speed 

by which the pedal moves at the beginning of its movement and the force 

which is applied on the surface of the pedal itself. 

The above variables were examined comparatively in two conditions: 

first on an open road section and then on a closed test-track, where an 

emergency braking test took place. 

Sample 

48 (24 male - 24 female) local drivers were recruited through adverts in 

local press (newspapers and magazines within Leicestershire and 

Nottinghamshire). In order to satisfy the insurance requirements, drivers had 

to be at least 21 years old and hold a UK or equivalent full driving license with 

no more than 5 penalty-points charged . There were no other exclusion criteria 

and virtually anybody within the local area could take part. The local 

population is also highly diverse in terms of the ethnic background of its 

residents, and thus the participants came from 18 different ethnicities. Of 

course, English and other British ethnicities comprised half of the sample 

(49%), however drivers with Afghan , Australian, Brazilian , Cypriot, German, 
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Greek, Indian, Persian , Irish, Italian , Korean , Malaysian, Pakistani, Spanish , 

St Helen, and Turkish background made for the other half (51 %). Table 36 

presents the driving demographics information of the participants ' sample 

recruited . 

Table 36: Descriptive demographics of driver sample 

N Minimum Maximum Mean Std. Deviation 

Age 48 21 .00 84.00 31.33 13.47 

Experience 48 1.00 48.00 11.9184 11.55 

(years) 

Annual mileage 48 1000.00 30000.00 965306 6619.26 

Licence points 48 .00 3.00 .3673 .993 

Height (cm) 48 152.00 193.00 171.29 10.08 

Weight (kg) 48 50.00 115.00 73.85 15.90 

Val id N (listwise) 48 

The sample included a wide range of ages in line with the general UK 

driver age-data (OVLA, 2007). The youngest participant was 21 year old and 

the oldest was 84 years of age. The standard deviation was very similar to the 

standard deviation of the national driver population (about 14 years); however 

the mean of the sample was 31.33 years against 42 years for the general 

population . The most experienced driver participating held a full driving 

license for 48 years and the novice had just one year of driving with a full 

license. Mean experience was 11.92 years and the SO was 11 .55 . Annual 

mileage ranged between just 1 000 miles/year to some 30 000 miles/year. 

The respective mean was 9 653 miles and the SO was 6 619 miles. 6 

participants had 3 points charged on their license, while most participants had 

no points at all . In terms of size , stature (figure 42) ranged between 152cm 
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and 193cm, with an average of 171 .3cm and a SO of 10cm. Weight (figure 43) 

ranged between 50 and 115 ki lograms, with a mean of 73.8kg and a standard 

deviation of 15.9kg . 

All participants were paid £10 in compensation for their time. 
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Figure 42: Participants' distribution of stature (cm) 
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Figure 43: Part icipants' distribution of weight (kg) 

Apparatus 

A Ford Fiesta ('00 model year) was fitted with sensors on the pedals, two 

video cameras, a data acqu isit ion module and a laptop to log all data. A 

potentiometer was fitted at the centre of throttle pedal axis rotation (figure 28). 

Its purpose was to provide information on the position of the pedal and the 

resultant changes in angle during operation. The release of this pedal before 

depression of the brake pedal is commonly considered as part of the braking 

reaction (Perron et aI. , 2001) and on its own results in vehicle deceleration . It 

therefore contributes to successful longitudinal control (see also discussion in 

the previous chapter). 
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Two Tekscan Flexiforce® sensors were fixed on the brake pedal surface. 

One provided data from the higher part of the surface and one from the lower 

(figure 29). One sensor was placed 25mm from the top edge of the pedal and 

25mm from each side edge and another 20mm from the lower edge of the 

pedal and 20mm from each side (pedal was not square). Another Flexiforce® 

sensor was fitted on the clutch-pedal surface. Sensors were calibrated 

according to Tekscan's guidelines (Tekscan, 2008) . 

Two cameras were installed in the vehicle cabin . A Microsoft® lifeCam 

VX-1 000 was installed on the inside of the footwell , approximately parallel to 

the pedal rods (figure 27) . This provided a constant view of the pedals during 

trials. A Sony DCR-HC22E camcorder was mounted on the dashboard, facing 

the windscreen , to record the road environment. 

A Labjack® U12 data acquisition module was connected to a Toshiba® 

Tecra 3 laptop using Azeotech® DAQFactory® Express software for data 

logging . Power was provided through the vehicle's battery when the engine 

was on and through the laptop's battery when it was off. All quantitative and 

qualitative data was stored on the laptop's hard drive, except the video from 

the on-board camera which was stored on digital tapes . 

A lightweight (m<30kg) trailer was built for the purpose of replicating a lead 

vehicle's sudden braking (a<-5m/s2
) on the test track. The trailer's stopping 

properties were representative of average emergency decelerations of real 

vehicles in experimental (Vangi & Virga , 2007) and field studies (van der 

Horst, 1990). The trailer (figure 44, see appendix A for more detail) was three

wheeled for extra straight-line stability; with dimensions of 2.2m length, 1.25m 

rear width , 0.3m front width, and OAm height at the back. Wheels were 20inch 
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standard road bicycle wheels. It was basically a sheet of waterproof wood 

reinforced with an aluminium skeleton. Two 0.75xO.5xO .5 cardboard boxes 

were filled with closed empty plastic bottles and wrapped with white plastic 

bags before they were attached at the rear of the trailer to create a "bulkiness" 

illusion (figure 45) . Standard bicycle "V-brakes" were installed and were 

activated by the rotation of a lever which was activated by two springs upon 

release from the car (figure 46) . During testing , average acceleration of the 

trailer after release was -6.81 m/s2 with an instantaneous minimum of-

17.24m/s2 achieved. 

Figure 44: The trailer, close to its completion phase 
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Figure 45: Driver's view during the test 

Figure 46: The simple but effective "auto-brake" mechanism 

A Mercedes Benz G-class equipped with a tow bar was used as the 

confederate vehicle. A track about 1 mile long, which had a crest at its 
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midpoint, was used for the emergency test described in the next section. A 

map of the track can be accessed using the following link: 

http://maps.google.co.uklmaps?f=d&source=s d&saddr=Unknown+road&dad 

dr=52 . 790202,-

1.132364&geocode=FYiSJQMd8Ibu w%3B&hl=en&gl=uk&mra=mi&mrsp=1,0 

&sz=14&sll=52.793784,-

1.129446&sspn=0.037628,0 .076904&ie=UTF8&1I=52.793316,-

1.137192&spn=0.009407,0.02738&t=h&z=16 

Also, a simple stress index where participants could rate their subjective 

stress level from 1 to 7 was administered before and right after completion of 

the study. 

Protocol 

The study had two parts: first, participants drove the test vehicle on a 

public road route, across Loughborough, via the town centre (urban section) . 

Then , via a combination of road types (rural section) , they drove to the test 

track, where the second part would take place: the emergency test (figure 47) . 
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Participants provided the necessary demographic information as well as 

completed a health-screen questionnaire and the Loughborough University's 

General Driver Application Form (see Appendix B) , in order to be eligible to 

drive University vehicles. They met the experimenter at the Holywell car park 

and provided a subjective measurement of their level of stress on a scale from 

1 to 7. They were asked to make themselves comfortable in the driver's seat, 

adjusting seat, mirrors and ventilation. They read the participant's information 

sheet and signed the relevant consent form. The experimenter initiated data 

logging and placed the laptop below the carpet on the passenger/co-driver's 

side. Then , the participant drove the car out of the car park, on to the A512 

towards Loughborough town centre. At the end of the A512, they would join 

the A6 southbound briefly, before turning towards the A60 . This road turns 
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rural after the railway bridge and runs through the village of Cotes . 

Participants would leave the A60 by turning right at the entrance of Hoton 

village to find the entrance of Wymeswold Airfield that served as the test track 

for the study. 

Closed Test Track 

0000000000000000000000 

Ii Instrumented 
OOC> 

Towing OOC> 
vehicle V vehicle 

0000000000000000000000 

0000000000000000000000 
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vehicle vehicle ~ 

0000000000000000000000 

Figure 48: The design of the emergency-brake test 

Upon arrival at the test track, the driver was asked to pull over in a lay-by 

at the site entrance. The experimenter checked with the marshals on site that 

everything was ready for the test. The track used for the experiment can be 

viewed through the internet link on page 182. The long strip of tarmac was 

separated into two lanes using road-cones. The left-hand lane was used for 

the experiment. The participants were informed that the purpose of the study 

was to identify their preferred driving distance from other vehicles and for this 
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purpose they would follow an instrumented trailer that would record their 

headway distance. Accordingly, they were prompted to enter the track and 

adjust their headway to the leading vehicle according to their preference. 

They were naIve of the fact that the trailer would be released after 0.2 miles 

(321 .86m) in the straight (figure 48-49). The lead vehicle accelerated to 

30mph (speed measured using GPS) and kept to this speed until the release 

of the trailer. 

Figure 49: Driver's view sequence of the emergency test on the test track 

Data analysis 

Throughout each session pedal operation was recorded in terms of throttle 

movement, brake-pedal force, clutch-pedal force through the sensors and feet 

movements though the video. Also, trailer size on the on-board camera lens 

(pixel size) was calibrated and the instantaneous time-headway during the 
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emergency test was calculated . Then , data were analysed using Statistics 

Package for Social Sciences (SPSS®) version 15, and Microsoft® Excel. Both 

sessions - on public and closed road - were analysed separately and in 

comparison. 

To explore the general quantitative characteristics of driver braking under 

each condition , the descriptive statistics will be presented for each variable 

examined. Those include indicators of central tendency, spread and shape for 

each distribution. To challenge the hypothesis that normal and emergency 

braking inputs are quantitatively different, a t-test will be employed for 

pairwise comparisons of driver braking between the open-road and the test

track/emergency-test section . To test the hypothesis that relationships exist 

between each driver's normal and emergency braking inputs, linear and non

linear regression analysis will be employed . Then , the respective equations 

will be developed to describe the relationship between normal and emergency 

braking input. 

Results 

Public Road Section 

Table 37: Descriptive statistics of the main variables recorded on the public road 

section 

Force input on lower 

part of the brake pedal 

(newtons) 

Force input on upper 

part of the brake pedal 

N 

46 

46 

Minimum Maximum 

.00 17.17 

.00 21 .54 

186 

Mean Std. Deviation 

5.23 2.97 

6 .17 5.18 



(newtons) 

Force input on clutch 48 9.32 208.72 111.93 56.15 

pedal (newtons) 

Throttle-off rate, public 48 9 27 25.18 3.70 

road driving 

(degrees/sec) 

Average force on brake 47 1.10 16.93 5.68 3.39 

pedal sensors, publ ic 

road driving (newtons) 

Table 37 presents the descriptive statistics of the main variables recorded 

during driving on the public road section (figure 47) . Force input on the sensor 

fixed on the lower part of the brake pedal ranged between 0 and 17.17 

newtons. Mean input was 5.23 newtons and the standard deviation 2.97 

(figure 50). 2 drivers out of the 48 did not use the lower section of the pedal 

surface and had no input to the sensor during the public road trial. 
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Figure 50: Distribution of typical force inputs to the lower part of the brake pedal 

during the public road trial (newtons) 

Force input on the sensor fixed on the upper part of the brake pedal 

ranged between 0 and 21.54 newtons. Mean input was 6.17 newtons and the 

standard deviation 5.17 (figure 51) . 2 drivers out of the 48 did not use the 

lower section of the pedal surface and had no input to the sensor during the 

public road trial. 
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Figure 51 : Distribution of force inputs on the upper brake pedal sensor during public 

road driving (newtons) 

Nominal values of force on the clutch pedal were significantly higher than 

on the brake pedal. Force input on the sensor fixed on the centre of the clutch 

pedal ranged between 9.32 and 208.72 newtons. Mean input was 111 .93 

newtons and the standard deviation 56.14 (figure 52) . All 48 drivers had 

inputs on this sensor. 
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Figure 52: Distribution of typical clutch pedal inputs during the public road tria l 

(newtons) 

Throttle release was measured as rate of change of throttle pedal of angle . 

Typical values per participant ranged between 9 and 27 degrees per second. 

Mean was 25.18 deg/sec and the standard deviation was 3.7 deg/sec. 

Compared to the previous pedal force inputs, "throttle-off' values were a lot 

less dispersed and concentrated around 25 and 18 deg/sec (figure 53) 
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Figure 53: Distribution of typical throttle release rates during the public road section 

(deg/2' 10-2 sec) 

Finally, combined inputs from both sensors on the brake-pedal surface 

were similarly dispersed as the other force inputs (figure 54) . The average 

force between the two brake pedal sensors ranged between 1.1 and 16.93 

newtons. The mean for the whole sample was 5.68 newtons and the standard 

deviation was 3_39. 
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Figure 54: Distribution of average input between the two brake pedal force sensors 

(newtons) 

Controlled Test-Track Section 

Table 38 presents the descriptive statistics of the main variables recorded 

during the emergency brake test on the closed road track. Force input on the 

sensor fixed on the lower part of the brake pedal ranged between 0 and 98.2 

newtons. Mean input was 14.14 newtons and the standard deviation 19.27 

(figure 55) . 2 drivers out of the 48 in total did not use the lower section of the 

pedal surface and had no input to the sensor during the test on the closed 

track. Another 25 participants had inputs lower than 10 newtons. The resu lting 

distribution was quite skewed towards its lower bounds. 
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Table 38: Descriptive statistics of main variables during the closed track emergency-

event session 

N Minimum Maximum Mean Std. Deviation 

Force inpul on lower part of 46 .00 98.20 14.14 19.27 

the brake pedal (newlons) 

Force inpul on upper part of 46 00 123.90 19.02 27.09 

Ihe brake pedal (newlons) 

Force inpul on clutch pedal 47 00 285.50 208.49 97.41 

(newlons) 

Throltle-off rale, emergency 48 26 61 .5 33.75 6.53 

lesl (degrees/sec) 

Average force on brake 46 .00 74.30 16.81 19.13 

pedal sensors , emergency 

lesl (newlons) 

lime_headwaLat_30mph 48 1.53 2.73 2.60 .19 
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Figure 55: Distribution of force inputs on the lower brake pedal sensor during the 

emergency test 

Force input on the sensor fixed on the upper part of the brake pedal 

ranged between 0 and 123.9 newtons. Mean input was 19.02 newtons and 

the standard deviation 27.09 (figure 56). 2 drivers out of the 48 in total did not 

use the lower section of the pedal surface and had no input to the sensor 

during the test on the closed track. Another 25 participants had inputs lower 

than 10 newtons. The resulting distribution was quite skewed towards its 

lower bounds, but demonstrated higher nominal values than brake inputs on 

the public road section . 
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Figure 56: Distribution of force inputs on the upper brake pedal sensor during the 

emergency test 

Again , nominal values of force on the clutch pedal were significantly higher 

than on the brake pedal. Force input on the sensor fixed on the centre of the 

clutch pedal ranged between 0 and 285.5 newtons. Mean input was 208.4849 

newtons and the standard deviation 97.4 (figure 57). Only one driver had no 

input on this sensor during the test (F=O). Compared to the public road 

section , this distribution exhibits a strong skew towards its higher bound . 
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Figure 57: Distribution of force inputs on the clutch pedal sensor during the 

emergency test 

Th rottle-off in the emergency test was measured in degrees of change 

against time . Peak va lues per participant ranged between 26 and 61 degrees 

per second . Mean was 33.75deg/sec and the standard deviation was 6 .53 

deg/sec. Compared to the previous pedal force inputs, "throttle-off" values 

were a lot less dispersed and concentrated around 25 and 35 deg/sec (figure 

58). 
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Figure 58: Distribution of peak throttle release rate during the emergency test 

(deg/2'10·' sec) 

Combined input from both sensors on brake pedal surface was dispersed 

as its source (upper and lower-sensor) force inputs (figure 59) . The average 

force between the two brake pedal sensors ranged between 0 and 74.30 

newtons. The mean for the whole sample was 16.81 newtons and the 

standard deviation was 19.13. Twenty drivers had a lower input than 5 

newtons and another 5 participants had inputs below 10 newtons. 
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Figure 59: Distribution of average input between the two brake pedal force sensors 

during the emergency test 

Time headway at the instant of trailer release ranged between 1.53 and 

2.73 sec. The mean was 2.6sec and standard deviation 0.19. The resultant 

distribution (figure 60) was quite skewed towards the upper bound . 
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Figure 60: Distribution of estimated time-headway at the instant of the trailer release 

Comparative analysis 

The measured braking parameters in both sections were compared using 

parametric and non-parametric analysis. To focus on the meaningful part of 

the data, participants who had an average brake input below 5 newtons 

during the emergency test were not included in this analysis (in essence, they 

did not brake). A similar comparative analysis was made between self-rated 

stress level at the start of the session and on completion of the session . 
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Table 39: Paired sample statistics of pedal operation between the public road and the 

test track sections 

Mean N Std. Deviation Std. Error 

Mean 

Pair 1 Typical torce input on 5.04 25 1.93 .38 

lower part of the brake 

pedal (public road) 

Force input on lower 16.14 25 14.48 2.89 

part of the brake pedal 

(test track) 

Pair 2 Typical force input on 8.48 24 5.03 1.03 

upper part of the brake 

pedal (public road) 

Force input on upper 25.85 24 20.97 4.28 

part of the brake pedal 

(test track) 

Pair 3 Typical force input on 127.94 25 56.64 11.34 

clutch pedal (public road) 

Force input on clutch 226.26 25 84.31 16.86 

pedal (test track) 

Pair 4 Throttle-off rate, public .50 25 .09 017 

road driving 

Throttle-off rate, .66 25 .15 .03 

emergency event 

Pair 5 Typica l force on brake- 6.69 25 3.12 .62 

pedal sensors, public 

road driving 

Force on brake-pedal 20.94 25 12.59 2.52 

sensors, emergency 

event 
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Table 39 presents the paired statistics of the comparative analysis. Mean 

(typical) input on the lower brake pedal sensor during public-road braking was 

5.04 newtons and the standard deviation of this variable was 1.93 newtons. 

The respective values on the emergency test on the closed track were 16.14 

and 14.49 newtons. Typical force input on the upper brake-pedal sensor 

during the public road session was 8.48 newtons and the standard deviation 

was 1.03 newtons. On the test track, average force on the upper brake-pedal 

sensor was 25.85 newtons and the standard deviation was 20.97 newtons. 

Regarding clutch pedal operation, typical force on the sensor on the public 

road was 127.94 newtons and the standard deviation was 56.64 newtons. On 

the closed track, mean force on the clutch-pedal sensor was 226.25 newtons 

and the standard deviation 84.31 newtons. Average throttle-off rate on the 

public road was 0.50 degrees/2sec*1 0.2 and the standard deviation 0.09. On 

the closed track, mean throttle-off rate was 0.66 deg/2sec*1 0.2 and the 

standard deviation 0.14. Taking into account both brake-pedal sensors , 

average input between them was 6.69 newtons on the public road section and 

20.94 newtons on the test track. The respective standard deviations were 

3.12 and 12.52 newtons. 

Table 40: Paired correlations of pedal operation parameters 

N Correlation Sig. 

Pair 1 25 .511 .009 

Pair 2 24 .386 .062 

Pair 3 25 .281 .173 
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Pair4 25 -.029 .892 

Pair 5 25 .454 .023 

The correlation (table 40 , pair 1) of force input to the lower brake-pedal 

sensor between the two road sections was 51 .1 %, statistically significant 

below 0.01 (p=0.009) . The correlation of force input to the upper brake-pedal 

sensor between the two sections (pair 2) was lower (38.6%) and the statistical 

significance over a typical alpha=0.05 criterion. The combined inputs of both 

brake-pedal sensors between the two sections (pair 5) demonstrated a 

correlation of 45.4%, statistically significant below 0.05 (p=0.023). The other 

pairs demonstrated very low correlations. 

Table 41: Paired Student's T-test of pedal operation between the two sections 

Pair 1 

Pair2 

Pair 3 

Pair 4 

Pair 5 

Mean 

-11 .10 

-17.37 

-98.32 

-.16 

-14.24 

Std. Deviation df Sig. 

(2-

tailed) 

13.60 -4.08 24 .000 

19.59 -4.34 23 .000 

87.33 -5.62 24 .000 

.17 -4.79 24 .000 

11 .51 -6.19 24 .000 

Table 41 presents the results of T-test comparison between each pair. The 

mean difference of force inputs to the lower brake-pedal sensor between the 
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two road sections (pair 1) was 11.1 newtons and the standard deviation of this 

difference was 13.6 newtons. The mean standard error was 2.72 and the 95% 

confidence interval of the difference was between 16.72 and 5.49 newtons. 

The respective t-value was 4.081 , which for 24 degrees of freedom (df) is 

highly statistically significant (p<0.0001) . The mean difference between the 

second pair (upper brake sensor) was 17.37 newtons, with a standard 

deviation of 19.59 newtons. The standard error mean was 4 newtons and the 

estimated 95% confidence was between 25.64 and 9.09 newtons. The 

resultant t-value was 4.34, which for df=23 is statistically significant below 

0.0001 level. The mean difference between the third pair (clutch force sensor) 

was 98.32 newtons and its standard deviation 87.34 newtons. The mean 

standard error was 17.47 and the 95% confidence interval between 134.37 

and 62.26 newtons. The resultant t-value was 5.63, highly significant below 

0.0001 level for df=24. The mean difference between the fourth pair (throttle

off rate) was 0.16 and the standard deviation 0.17. Mean standard error was 

0.03 and the boundaries of the 95% confidence interval of the difference were 

0.23 and 0.09. The resulted t-value of 4.79 was statistically significant below 

0.0001 level for df=24. However, because the distributions of throttle-off rates 

both on public roads (figure 53) and on track (figure 58) were clearly lacking 

both homogeneity and normality, this pair's difference was also analysed 

using a non-parametric test. Table 42 displays the comparison employing 

Wilcoxon's non-parametric test. In 6 cases throttle-release rate on public road 

was greater than on the closed track. The resultant mean rank was 3.83 and 

the sum of ranks was 23. In 18 cases the throttle-off rate was greater on the 

test track and the mean rank was 15.39. The sum of ranks was 277. There 
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was also one case where throttle-off was tied between the two sessions . The 

resultant Z-value of 3.629 has an asymptotic significance below 0.0001 (table 

43). 

Table 42: Wilcoxon's signed ranks for throttle-off on the public road and on the test 
track 

N Mean Rank Sum of Ranks 
Throttle-off rate, Negative Ranks 6(a) 3.83 23.00 
emergency event -
Throttle-off rate, 

Positive Ranks 18(b) 15.39 277.00 

public road driving Ties 1 (c) 
Total 25 

a Throttle-off rate, emergency event < Throttle-off rate, public road driving 
b Throttle-off rate, emergency event> Throttle-off rate, public road driving 
c Throttle-off rate, emergency event = Throttle-off rate, publ ic road driving 

Table 43: Wilcoxon signed ranks test statistics 

Z 
Asymp. 5ig. (2-tailed) 

Throttle-off 
rate, 

emergency 
event -

Throttle-off 
rate, public 
road drivinQ 

-3.629(a) 

.000 

a Based on negative ranks. 

Combined input on the brake pedal sensors (pair 5, table 41 ) displayed a 

mean difference of 14.24 newtons between public road and test track. The 

standard deviation was 11 .51 and the mean standard error 2.3. The 95% 

confidence interval of the difference was between 19.00 and 9.49. The 

resulted t-value of 6.189 was significant (p< 0.0001) for 24 degrees of 

freedom . 
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Relationships 

The relationships between the braking parameters of interest were 

examined. All the measurable variables of pedal operation were included, 

including throttle, brake and clutch pedal inputs. These are the variables 

included in the previous relevant studies (e.g . Kassaagi , 2001) and also as 

this is the first time the relationships are examined in this way, it was 

considered reasonable to be exploratory and include all the variables of pedal 

operation measured during the road and track-trials . Linear and non-linear 

regression models were tested - predominantly linear, logarithmic, inverse, 

quadratic, cubic, compound , power, S, growth, exponential and logistic 

regression models. Again , the focus was on variables possibly exploitable by 

a system identifying emergency braking . 

Brake force 

Figure 61 is the graphical representation of the regression analysis for the 

lower brake sensor data. The typical values for each driver during the public 

road section are plotted on the X-axis, while the Y-axis displays the 

corresponding values during the emergency test on the closed road track. 

Table 44 presents the analysis of variance for each model tested . Compound, 

power, S, growth, exponential and logistic regression cannot be calculated 

because the data set contains zeros (see also the graph on figure 61). Linear 

exhibited an F-value of 8.14, which is significant below 0.01 (p=0.009), and 

explained 26.1% of the variance (R2=0.261) . There are two columns for 

degrees of freedom, as they are affected by the number of parameters in the 

equation of each regression model. First column is based on the degrees of 
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freedom for the regression and the second column is the degrees of freedom 

for the residuals. The "parameter estimates" section on table 44 presents the 

parameters of the equation upon which the emergency-test input on the lower 

sensor can be calculated if the typical public-road value is known. logarithmic 

regression explained 19.6% of the variance and exhibited an F-value of 5.62, 

which has statistical significance below 0.05 (p=0.027) . Inverse regression 

provided an R2=14.6% and an F=3.93, resulting in statistical significance 

above 0.05 (p=0.06) . Quadratic regression yielded R2=41.9% and F=7.93, 

which is statistically significant below 0.01 (p=0.003). Cubic regression yielded 

R2=59.2% and F=1 0.17, which resulted in the highest statistical significance 

(p<0.001) . 
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Figure 61 : Application of various regression models to explain the relationship 
between emergency and non-emergency bra king using the lower part of the brake 

pedal 

Table 44: Summary of regression models and analysis of variance for lower brake 
force data in the two sessions 

Equation Model Summary Parameter Estimates 
R df 

Square F 1 df2 Sig . Constant b1 b2 b3 
linear .261 8.140 1 23 .009 -3 .186 3.835 
Logarithmic .196 5.620 1 23 .027 -8.816 16.161 
Inverse .146 3.934 1 23 .059 29.648 -58 .603 
Quadratic .419 7.934 2 22 .003 35.552 -12.380 1.483 
Cubic .592 10.172 3 21 .000 -82.128 64.843 -13.727 .914 
Compound(a) .000 .000 
Power(a) .000 .000 
S(a) .000 .000 
Growth(a) .000 .000 
Exponential(a) .000 .000 
Logistic(a) .000 .000 

Dependent Vanable. test_brake_forceJower 
The independent variable is pub_road_brake_forceJower_avg. 
a The dependent variable (tesCbrake_forceJower) contains non-positive values. The minimum value is 
.00. Log transform cannot be applied. The Compound, Power, S, Growth, Exponential, and Logistic 
models cannot be calculated for this variable. 
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Figure 62: Application of various regression models to explain the relationship 
between emergency and non-emergency braking using the upper part of the brake 

pedal 

Figure 62 is the graphical representation of the regression analysis for the 

upper brake sensor data. The typical values for each driver during the public 

road section are plotted on the X-axis, while the Y-axis displays the 

corresponding values during the emergency test on the closed road track. 

Table 45 presents the analysis of variance for each model tested . Compound, 

power, S, growth, exponential and logistic regression cannot be calculated 

because the data set contains zeros (see also the graph on figure 62). Linear 

regression exhibited an F-value of 3.86, which is not significant below 0.05 
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(p=0.06), and explained 14.9% of the variance (R2=0.149). There are two 

columns for degrees of freedom, as in the previous table. The "parameter 

estimates" section, as in table 44 , presents the parameters of the equation 

upon which the emergency-test input on the lower sensor can be calculated if 

the typical public-road value is known. Logarithmic regression explained 

14.6% of the variance and exhibited an F-value of 3.86, which does not have 

statistical significance below 0.05 (p=0.06). Inverse regression provided an 

R2=13.4% and an F=3.41, resulting in statistical significance above 0.05 

(p=0.08). Quadratic regression yielded R2=15.3% and F=1.9 , which is not 

statistically significant below 0.05 (p=0.17). Cubic regression yielded 

R2=15.7% and F=1 .24, which resulted in the minimum statistical significance 

(p=0.32). 

Table 45 : Summary of regression models and analysis of variance for upper brake 
force data in the two sessions 

Equation Model Summa 'Y Parameter Estimates 
R 

Square F df1 df2 Sig. Constant b1 b2 b3 
Linear .149 3.859 1 22 .062 12.184 1.61 1 
Logarithmic .149 3.859 1 22 .062 -.068 13.194 
Inverse .134 3.408 1 22 .078 38.685 -76.755 
Quadratic 

.153 1.901 2 21 .174 8.380 2.583 -
.046 

Cubic .157 1.243 3 20 .321 16.526 -.640 .283 -.009 
Compound(a) .000 .000 
Power(a) .000 .000 

Sea) .000 .000 
Growth(a) .000 .000 
Exponential(a) .000 .000 
Logistic(a) .000 .000 

Dependent Vanable. test_brake_force_upper 
The independent variable is pub_road_brake_force_upper_avg. 
a The dependent variable (test_brake_force_upper) contains non-positive values. The minimum value 
is .00. Log transform cannot be applied. The Compound, Power, S, Growth , Exponential, and Logistic 
models cannot be calculated for this variable. 
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Figure 63: Application of various regression models to explain the relationship 
between emergency and non·emergency braking pedal force 

Figure 63 is the graphical representation of the regression analysis for the 

combined brake sensor data. The typical values for each driver during the 

public road section are plotted on the X-axis, while the Y-axis displays the 

corresponding values during the emergency test on the closed road track. 

Table 46 presents the analysis of variance for each model tested . Linear 

regression exhibited an F-value of 5.98, which is not significant below 0.05 

(p=0.023) , and explained 20.6% of the variance (R2=0.206) . The "parameter 

estimates" section , as on table 46 , presents the parameters of the equation 

upon which the emergency-test input on the lower sensor can be calculated if 

the typical public-road value is known. Logarithmic regression explained 

15.2% of the variance and exhibited an F-value of 4 .11 , which has statistical 
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significance p=0.05. Inverse regression model provided an R2=9.8% and an 

F=2.5, resulting in statistical significance above 0.05 (p=0.13). Quadratic 

regression yielded R2=25.9% and F=3.84, which is statistically significant 

below 0.05 (p=0.04). Cubic regression yielded R2=26% and F=2.46, which 

resulted in statistical significance above the typical 0.05 criterion (p=0.09) . 

Table 46: Summary of regression models and analysis of variance for combined brake 
force data in the two sessions 

Eauation Model Summa" Parameter Estimates 

R Sauare F dfl df2 SiQ. Constant bl b2 b3 
Linear .206 5.976 1 23 .023 8.674 1.832 
Logarithmic .152 4.114 1 23 .054 1.44 10.819 
Inverse .098 2.496 1 23 .128 29.96 -49.735 
Quadratic .259 3.837 2 22 .037 22.900 -2 .434 .265 
Cubic .26 2.464 3 21 .091 30.125 -5.767 .711 -.018 
Compound .129 3.41 8 1 23 .077 10.96 1.073 
Power 0.79 1.984 1 23 .172 8.845 .382 
S .038 .906 1 23 .351 3. 142 -1 .511 

Growth .129 3.41 8 1 23 .077 2.394 .071 
Exponentia l .129 3.418 1 23 .077 10.960 .071 
Logistic .129 3.418 1 23 .077 .091 .932 

Throttle Release 
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Figure 64: Application of various regression models to explain the relationship 
between emergency and non-emergency throttle release 

Figure 64 is the visual representation of the regression analysis for the 

throttle-release data. The typical values for each driver during the public road 

section are plotted on the X-axis, while the Y-axis displays the corresponding 

values during the emergency test on the closed road track. Table 47 presents 

the analysis of variance for each model tested . As can be clearly seen in 

figures 53 and 58 , the data lacks normality and is concentrated on particular 

coordinates. It is no surprise that the regression models tested, fail to provide 

statistical evidence anywhere near the typical criterion a=0.05. Linear 

regression exhibited an F-value of 0.2, which has p-value 0.89 , and explains 

just 0.1 % of the variance (R2=0.001). Logarithmic regression explained 0.2% 

of the variance and exhibited an F-value of .04 , which has a p=0.85. Inverse 
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regression provided an R2=0.2%, an F=O.06, and p=0.B1. Quadratic 

regression yielded R2=O.7%, F=O.77, and p=O.93. Cubic regression yielded 

R2=O.7%, F=0.OB1 , and p=O.92. One of the cubic parameters is excluded, 

because the best fit happens when it functions as a quadratic model instead 

(with 2+1constant parameters, where one parameter is raised to the cube). A 

compound regression model explained 0.4% of variance and analysis of 

variance provided F=O.OS3 and p=O.77. The power regression yielded 

R2=O.005, F=O.119 and p=O.77. The respective values for the S-model were 

R2=O.007, F=O.155 and p=O.69S. Growth re9ression explained 0.4% of 

variance and had F=O.OS and p=O.77. The results for exponential regression 

and for logistic regression were R2=O.004. F=O.OB and p=O.77. 

Table 47: Summary of regression models and analysis of variance for throttle-off data 
in the two sessions 

Eauation Model Summan' Parameter Estimates 

R Souare F dll dl2 SiQ . Constant bl b2 b3 
Linear .001 .019 1 23 .892 .688 -.048 
Logarithmic .002 .036 1 23 .850 .646 -.024 
Inverse .002 .058 1 23 .813 .644 .009 
Quadratic .007 .077 2 22 .926 .869 -1 .102 1.346 
Cubic .007 .081 3 21 .922 .829 -.675 (a) 1.283 
Compound .004 .083 1 23 .775 .696 .875 
Power .005 .11 9 1 23 .733 .625 -.057 
S .007 .155 1 23 .698 -.472 .020 
Growth .004 .083 1 23 .775 -.363 -. 133 
Exponential .004 .083 1 23 .775 .696 -. 133 
Logistic .004 .083 1 23 .775 1.437 1.142 

a The tolerance limit lor entering variables IS reached. 

Clutch force 
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Figure 65: Application of various regression models to explain the relationship 
between emergency and non-emergency clutch-pedal use 

Figure 65 is the graphical representation of the regression analysis for the 

clutch-force sensor data. The typical values for each driver during the public 

road section are plotted on the X-axis, while the Y-axis displays the 

corresponding values during the emergency test on the closed road track. 

Table 48 presents the analysis of variance for each model tested. Linear 

regression exhibited an F-value of 1.98, which has a p-value 0.17, and 

explains just 7.9% of the variance (R2=0.079) . Logarithmic regression 

explained 18% of the variance and exhibited an F-value of 5.04, which has a 

p=O.04. Inverse regression provided an R2=26.7%, an F=8.36, and p=0.01 . 

Quadratic regression yielded R2=15.6%, F=2.04, and p=0.15. Cubic 

regression yielded R2=21 .3%, F=1 .89, and p=O.162. A compound regression 
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model explained 6.6% of variance and analysis of variance provided F=1.623 

and p=O.215. The power regression yielded R2=O.22, F=6.584 and p=O.017. 

The respective values for the S-model were R2=O.387, F=14.536 and 

p=O.001 . Growth regression explained 6.6% of variance and had F=1 .62 and 

p=O.21. The results for exponential regression and for logistic regression were 

R2=O.07, F=1 .62 and p=O.21 . 

Table 48: Summary of regression models and analysis of variance for clutch-pedal 
force data in the two sessions 

Equation Model Summary Parameter Estimates 
R df 

Square F 1 df2 Siq . Constant b1 b2 b3 
Linear .079 1.979 1 23 .173 172.655 .419 
Logarithmic .18 5.037 1 23 .035 -20.727 52.566 
Inverse .267 8.362 1 23 .008 254.433 -2150.934 

Quadratic .156 2.038 2 22 .154 84 .965 2.222 -.007 
Cubic .213 1.891 3 21 .162 4.291 6.168 -.051 .000 
Compound .066 1.623 1 23 .215 107.62 1.004 

Power .223 6.584 1 23 .017 9.283 .634 

S .387 14.536 1 23 .001 5.577 -28.108 
Growth .066 1.623 1 23 .215 4.679 .004 
Exponential .066 1.623 1 23 .215 107.62 .004 

Logistic .066 1 623 1 23 .215 .009 .996 

Video data 

Video recording of the vehicle's footwell provided both qualitative and 

quantitative data for foot and pedal movements. The quantitative measures 

were time for foot displacement (between throttle and brake pedal) and brake 

pedal displacement at 80ms (after initial contact with the pedal). Time was 

measured as the number of video-frames it took the foot to touch the brake-
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pedal after losing touch with the throttle-pedal. Pedal-displacement was 

measured by the number of pixels one end of the pedal travelled on the 

camera lens. The frame at 80ms was the nearest to the 100ms time stamp 

used previously by Kasaagi (2005) . Again , data from the emergency test was 

compared against the data from the public road section. Due to the nature of 

manual video-analysis , ten random brake instances in the public road section 

per individual were used for the analysis (250 in total) . The number of braking 

scenes examined was limited by the number of drivers (25) who had 

significant input (>5N on the sensor) to the brake pedal during the emergency 

test and the plausible number of frame-by-frame analyses of braking 

sequences (10 per driver) . 
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Figure 66: Public-road brake pedal displacement at 80ms against the same variable in 
the emergency test (in pixels through the camera lens) 

Figure 66 presents a plot of participants ' braking in terms of initial (80ms) 

brake pedal displacement and figure 67 presents braking in terms of foot-

displacement time (from throttle to brake pedal) during "normal" driving on the 

public road route and emergency braking on the closed track. Table 49 

presents the paired statistics of the comparative analysis between the two 

sections. Mean (typical) pedal displacement during the public road section 

was 19.04 pixels (on the lens) and the standard deviation of this variable was 

7.87 pixels. The respective values on the emergency test in the closed track 

were 45.4 and 24.48 pixels. Typical foot displacement time during the public 

road session was 8.13 frames and the standard deviation was 2.32 frames. 
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On the test track, average foot displacement time was 4.8 frames and the 

standard deviation was 1.6 frames. 

Table 49: Paired sample statistics for foot displacement time and brake pedal 
displacement at 80ms between public road and emergency test braking 

Mean 

Pair 1 Typical foot displacement 8.13 

time 

Emergency foot 4.BO 

displacement time 

Pair 2 Typical brake pedal 19.05 

displacement at BOms 

Emergency brake pedal 45.40 

displacement at BOms 
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Figure 67: Foot displacement time (in video frames) between throttle and brake pedal 
during public-road driving and during the emergency test 
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Table 50 presents the results of the T-test employed to test the difference 

of foot-displacement time and initial brake-pedal displacement between 

normal driving and the emergency test. The mean difference in foot-

displacement time was 3.33 frames and the standard deviation of the 

difference was 2.54 frames. For 24 degrees of freedom , the resultant T-value 

6.54 is statistically significant below 0.001 (p<0.0001) . The mean difference of 

initial brake-pedal displacement was 26.35 pixels and the standard deviation 

was 23.39 pixels. The resultant T-value of (-) 5.63 is statistically significant 

below 0.001 (p<0.0001) for df=24. 

Table 50: Paired samples T-test comparison between public road driving and 
emergency test 
Mean Std. df Sig. (2-

Deviation tailed) 

Pair 1 Typical foot displacement 3.32800 2.54501 6.538 24 .000 

time - Emergency foot 

displacement time 

Pair 2 Typical brake pedal -26.35422 23.39338 -5.633 24 .000 

displacement at 80ms -

Emergency brake pedal 

displacement at 80ms 

Relationships 
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Figure 68: Application of various regression models to explain the relationship 
between emergency and non·emergency initial brake·pedal displacement 

Figure 68 is the graphical representation of the regression analysis for 

initial (80ms) brake-pedal displacement data. The typical values for each 

driver during the public road section are plotted on the X-axis, while the Y-axis 

displays the corresponding values during the emergency test on the closed 

road track. Table 51 presents the analysis of variance for each model tested . 

linear regression exhibited an F-value of 2.20, which is not statistically 

significant below 0.05 (p=0.15), and explained 8.8% of the variance 

(R2=0.088) . Logarithmic regression explained 13.7% of the variance and 

exhibited an F-value of 3.662, which has statistical significance above 0.05 

(p=0.07). Inverse regression provided an R2=17.8% and an F=4.99, resulting 

in statistical significance below 0.05 (p=0.04). Quadratic regression yielded 
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R2=31 .1 % and F=4.96, which is statistically significant below 0.05 (p=0.02). 

Cubic regression yielded R2=31 .2% and F=3. 18, which resulted in statistical 

significance below 0.05 (p=0.045). Compound model explained 13. 8% of the 

interaction between the two variables, while analysis of variance provided an 

F=3.67 , which is significant above 0.05 level (p=0.07). Power regression 

exhibited R2=17.5%, F=4.88 and p=O.04 (below the 0.05 criterion) . The S 

regression model explained 19.3% of the variation and analysis of variance 

gave an F=5.5, which is statistically significant below 0.05 (p=0.03). Growth 

and exponential models had identical results ; R2=1 3. 8%, F=3.67 and p=0.07. 

Table 51 : Regression model summary and parameter estimates for brake pedal 
displacement between public road and emerqencv test sessions 

Enuation Model SummarY Parameter Estimates 
Constan 

R Sauare F df1 df2 Sia. t b1 b2 b3 
Linear .088 2.207 1 23 .151 27 .861 .921 
Logarithmic .137 3.662 1 23 .068 -17.131 21.828 

Inverse .178 4.989 1 23 .036 70.869 -41 2.022 
Quadratic .31 1 4.962 2 22 .017 -51.621 9.713 -.208 
Cubic .312 3.178 3 21 .045 -67.665 12.348 -.339 .002 
Compound .138 3.673 1 23 .068 19.702 
Power .175 4.882 1 23 .037 4.703 

S .193 5.499 1 23 .028 4.410 
Growth .138 3.673 1 23 .068 2.981 
Exponential .138 3.673 1 23 .068 19.702 

Dependent Vanable: Emergency brake pedal displacement at 80ms 
The independent variable is Typical brake pedal displacement at 80ms. 

1.035 

.726 

-12.636 

.034 

.034 

Figure 69 is the graphical representation of the regression analysis for foot 

displacement data (throttle to brake pedal). The typical values for each driver 

during the public road section are plotted on the X-axis, while the Y-axis 

displays the corresponding values during the emergency test on the closed 

road track. Table 52 presents the analysis of variance for each model tested . 

linear regression exhibited an F-value of 1, which is not statistically significant 

below 0.05 (p=0.33), and explained 4 .2% of the variance (R2=0.042) . 
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Logarithmic regression explained 5.7% of the variance and exhibited an F-

value of 1.4, which has statistical significance above 0.05 (p=0.25) . Inverse 

regression provided an R2=6.7% and an F=1 .6 , resulting in statistical 

significance above 0.05 (p=0.21) . Quadratic regression yielded R2=1 0.1 % and 

F=1.23, which is statistically significant above 0.05 (p=0.31). Cubic regression 

yielded R2=12.7% and F=1 .01, which resulted in statistical significance above 

0.05 (p=O.4). Compound model explained 4.5% of the interaction between the 

two variables, while analysis of variance provided an F=1 .08, which is 

significant above 0.05 level (p=0.30). Power regression exhibited R<=5.9%, 

F=1.45 and p=0.24 (above the 0.05 criterion). The S regression model 

explained 6.7% of the variation and analysis of variance gave an F=1 .65, 

which is statistica lly significant above 0.05 (p=0.21). Growth and exponential 

models had identical results ; R2=4.5%, F=1 .09 and p=0.31. 

Table 52: Regression model summary and parameter estimates for foot displacement 
time between J)ublic road and emer~ency test sessions 

Equation Model Summa y 
R 

Square F df1 df2 SiR 
Linear .042 1.001 1 23 .328 
Logarithmic .057 1.397 1 23 .249 
Inverse .067 1.640 1 23 .213 
Quadratic .101 1.235 2 22 .310 
Cubic .127 1.017 3 21 0405 
Compound .045 1.086 1 23 .308 
Power .059 1.454 1 23 .240 
S .067 1.647 1 23 .212 
Growth .045 1.086 1 23 .308 
Exponential .045 1.086 1 23 .308 

Dependent Vanable: Emergency foot displacement time 
The independent variable is Typical foot displacement time. 
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Figure 69: Application of various regression models to explain the relationship 
between emergency and non-emergency foot displacement time (from throttle to brake 

pedal) 

Discussion 

Overall , the study employed methods to provide evidence regarding the 

second and third research questions as those were quoted in chapter 2. In 

summary, the results supported a quantitative distinction between normal and 

emergency brake application and confirmed the results from Perron et al 

(2001) , Kassaagi (2001) , Bouslimi (2005) and Schmitt & Farber (2005). The 

findings also went one step further, providing evidence of relationships 

between emergency and non-emergency braking inputs per driver. The 
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potential of employing this relationship for the specification of adaptive brake 

systems is examined in the penultimate main study of this Thesis ("System 

Simulation"). In this section , a closer look is taken and discussion of the study 

as a whole and is made. 

Sampling 

The sample used in the current study compares favourably with those 

reported in the previous driver-braking studies quoted in the "Literature 

review" chapter (Bouslimi et aI. , 2005; Perron et aI. , 2001 ; Schmitt & Farber, 

2005). Participants were neither recruited from a "customer" participant 

database, as in (Kassaagi, 2001) , nor were specialist test drivers ; they were 

recruited through adverts in local press and contributed to a realistic variability 

within the sample. The range of ethnic backgrounds represented in the 

sample could both represent the local population (Leicester: Ethnicity profile.) , 

as well as facilitate future application of results outside the UK. This inclusive 

trend is repeated in age, driving experience, size and weight. Size is 

particularly important as the angle through which a force is applied on a pedal 

effects its resultant movement (Diffrient et aI. , 1993; Pheasant, 1987). This is 

affected by driving posture and in turn this is affected by size (Porter & Gyi, 

1998). Those characteristics of the sample displayed normal or "normal-like" 

distributions (figures 42, 43) . The weight distribution lacks another column 

below 50kg to compensate for the extreme values found at the other end of 

the range, however, this can also be seen as representative of the commonly 

quoted obesity in the modern society (Department of Health - Freedom of 

Information). The main limitation of the sampling method was imposed by the 
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insurance company; nobody with more than five points on their driving license 

could take part. This requirement, ruled out any opportunity to collect data 

from drivers who objectively take more risks according to society's legislative 

and enforcing system. 

Apparatus 

The instrumented vehicle used in the study is among the most common 

road vehicles in Europe (Colorado Springs Gas Prices, 2009). This is an 

advantage of independent (from manufacturers' involvement) research, as 

vehicle selection for the study was not restricted to a particular manufacturer's 

fleet. Thus , one of the most common vehicles could be selected and 

compensate for having to use a single vehicle for the study. However, this is 

one side of the coin ; the other side is the fact that independent research 

comes with limited budget and thus only one vehicle could be instrumented. 

Funds could cover the cost of the vehicle and its instrumentation but could not 

go further into supporting the employment of an additional vehicle. 

Accordingly, although the results should be representative of a significant part 

of the vehicle fleet, they will reflect the vehicle's particular design and 

specification of controls. The discussion of results regarding the throttle-pedal 

operation that follows provides an example of what this might involve. An 

insight can be provided by the early study from Eaton (1970) , where drivers 

were tested in two types of vehicle (medium-large). Results from that study 

indicated that there is a very small effect for vehicle size; the large vehicle 

was associated with heavier braking, although nominal values remained 

proportionate to the same values in the other car. Thus, as the focus of this 
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study is on proportions, trends and relationships rather than the exact values, 

the vehicle factor has probably little effect on the results . 

Taking into account the cost for each part of the equipment used, the 

throttle-pedal potentiometer proved reliable throughout its 3-month use for the 

study. Against initial intention , another potentiometer was not installed on the 

brake pedal axis, as the design of the latter made it impossible to fit the 

former there. Thus brake pedal movement was recorded through the video 

camera . This solution had two consequences; first, data logging rate fell from 

50Hz to 30Hz (60Hz interpolated), and second , data would be affected by the 

lens properties and limitations (resolution , light, occasional cover of the object 

of interest) . Again though , that was not too big a problem, as the focus is on 

trends and relationships , not precise numbers. 

The force sensors used to measure brake pedal activation provided high 

precision and proved very reliable. This precision was enhanced by the 

conditioning of the sensor (Tekscan, 2008) performed before each trial. In 

addition , the use of two sensors on the brake pedal surface provided 

information on the localisation of pedal inputs (upperllower part) . However, 

the limited size of the sensors compared to the total pedal surface, 

necessitated extrapolation for the actual forces applied on the pedal to be 

estimated. 

The second camera , mounted on the dashboard , apart from recording 

information of the road environment, allowed (after calibration) estimation of 

time headway through measuring the size of the image of the trailer. Again , 

such process could be open for argument regarding its precision ; however the 

results (figure 60) exhibit the expected resolution in accordance with previous 
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studies regarding time-headway in relation to human-eye properties (Olson, 

1996). 

Of course, the most impressive element of the equipment used in this 

study was the custom-made trailer. And it is so, not because it stopped 

equally quickly as road vehicle (Vangi & Virga , 2007), or because it proved 

extremely safe. It was impressive because it achieved both , without 

compromising on either. Finally, the test site necessitated a strict schedule for 

the sessions, as access was restricted to specific days and times, however 

taking into account the fact it was offered for free, this was a limitation the 

project could easily manage with. The alternative option , hiring a venue, 

would impose unbearable costs to the project and it is doubtful the above 

access limitations would not apply in that case too. Last but not least, the 

location of the test site was ideal; the 10km route to there provided a wealth of 

realistic "normal" data including both urban and rural road sections. 

Execution 

A key advantage of this study over previous driver braking studies 

(Bouslimi, 2006; Curry et al ., 2003; Eaton & Dittmeier, 1970; Kassaagi , 2001; 

Perron et aI. , 2001 ; Schmitt & Farber, 2005; Tijtgat, Mazyn, De Laey, & 

Lenoir, 2008; W. van Winsum & Brouwer, 1997) is the collection of "normal 

braking" data on a public road with uncontrolled traffic. Accordingly, the 

results obtained from this part of the study exhibit a high degree of ecological 

validity. Although this fact does not guarantee that the data collected is 

"normal", it approximates "normal" more than any previous study. 
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Continuing on the issue of ecological validity, safety-related, ethical and 

practical reasons demanded an experimenter to be in the car with the 

participant at all times. Although it is not certain that this could influence the 

results , it is equally uncertain that it did not. Some insight is provided through 

comparison of the results from the public road section in this study against 

results from the naturalistic study described in the previous chapter. Under 

contemporary regulations, technologies available and research ethics it is 

doubtful that any further step can be taken without compromising the safety of 

participants . In addition , the sample exhibited similar inputs to the brake-pedal 

during the road section of the present study (figure 55) and the naturalistic 

study in the previous chapter (figure 40) . A t-test comparison between the two 

distributions results in a p-value of 0.22 , far above the typical statistical 

criterion for significance. 

Regarding the emergency test, the design of the study matched the 

definition of driver emergency braking on page 62. The two key elements, 

causal to the reactive operation of vehicle pedals , were: the element of 

surprise (sudden) and the introduction of an obstacle with which the vehicle 

would collide unless the reactive pedal operation takes place. Although some 

participants had more complex reactions, involving steering , gearing down 

and minimising brake pedal use, the use of the released trailer and the cones 

separating the two lanes (figure 48) satisfies the definition without putting the 

participants at serious risk. 

The restriction of vehicle speed to 30mph/48kmh was imposed by the 

safety management of the study. Therefore, any results from this study might 

not be applicable to higher speeds. In reality however, this is the most 
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pertinent speed level, as at present most rear-shunts happen at low speed (L . 

Evans, 2004) and future integrations with ACC systems should take into 

account the tendency for drivers to disengage ACC at speeds below 50kmh 

(Pauwelussen & Minderhoud , 2008). 

Results 

The descriptive statistics of the main variables during both the public road 

section (table 37) showed more inter-personal variation in some and more 

concentrated values around the mean for other variables . As mentioned 

above in the discussion of the apparatus, the nominal values from the force 

sensors cannot be used per se for a vehicular application . However, the 

individual differences regarding pedal force are directly indicated by the large 

standard deviations (compared to the means). This diversity is in line with 

previous results regarding brake-pedal force and speed of operation reported 

by Perron et al. (2001) . In more detail, force on different areas of the brake 

pedal was almost identical overall ; however some drivers used one area more 

than the other (upper-lower sensor data). Thus in practical terms it seems 

reasonable to use the total pedal force when designing/specifying the pedal 

controls. All distributions of force-related measures (figures 50-52, 54) were 

"normal" or "normal-like", taking into account that in practice there cannot be 

values below "0". 

Throttle-off showed a much more typical behaviour; values were very 

much concentrated indicating much more constant throttle-release operation 

(figure 53). Looking at figure 53 , it is possible to distinguish two groups of 

typical throttle-off, one around 0.37 degrees and another around 0.53 degrees 

per 0.02 sec. Furthermore, this distribution is obviously non-normal and 
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homogeneous, thus non-parametric tests were employed in the comparative 

analysis that followed . 

Similar trends were noted in the closed track (table 38). Force-related 

measures showed more variation and inter-personal differences. There was 

one difference though ; since some drivers' reaction was not restricted to pedal 

operation to avoid collision with the obstacle, a substantial amount of near

zero values made their appearance. This applies mainly to the brake-related 

variables (figures 55 , 56 , 59) and less to the clutch variable, which showed a 

heavily skewed distribution, even by ruling the near-zeros out (figure 57) . 

As on the public road , throttle-off in emergency showed responses 

concentrated around two values. There was a shift though , as in this case the 

values were 0.50 and 0.70 degrees/0.002 sec (figure 58) . Again , the 

distribution is unlikely to be seen as normal, and thus the non-parametric test 

in the comparative analysis. 

The closed track session included a variable that could not be calculated 

in the public road section ; time-headway at the instant the trailer was 

released . The instant the trailer was released was considered a key moment 

for headway measurement, as it was the headway temporarily closest to the 

braking input that follows. It was also expected that following the given 

instructions, drivers would have adopted their preferred headway by then . The 

distribution is very much skewed towards the top end , and seems to map very 

well on the visual properties of humans when judging distances (Olson , 1996). 

The size of objects on our retina follows an exponential curve, much like the 

one that could fit on the distribution on figure 60. This result follows previous 

findings supporting the use of rate of object-size change by drivers to estimate 
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their headway and control this headway through braking (Li & Milgram, 2005; 

Olson, Cleveland, Fancher, Kostyniuk, & Schneider, 1984). 

Previously, in the "apparatus" section , it was noted that although the 

method and apparatus used is close to the limit of what is possible in terms of 

ecological validity , still it is far from ideal. The availability of a single vehicle , 

instead of multiple vehicles that would allow for vehicle effects control , could 

be a shaping factor of the nominal values of the results and possibly influence 

slightly some trends . Although previous study of vehicle-type effects on 

braking showed only a slight shift towards heavier braking when moving from 

a smaller to a larger vehicle (Eaton & Dittmeier, 1970), there is no evidence 

regarding effects on other variables. Notably, throttle-off in this study was 

limited by the maximum angle of movement of the throttle pedal in the Ford 

Fiesta «50deg in this model) . A similar effect of the vehicle specification of 

controls to the nominal values of force during brake and clutch pedal 

operation could be behind their differences. Greater resistance of the clutch 

pedal during depression could explain the higher forces compared to the 

brake pedal, although these values could be influenced by other factors like 

the leg in use (left for clutch, right for brake pedal and for most people the 

right leg is more controlled and thus "gentle" when used). On the other hand, 

modern vehicle engineering has been very much standardised at its basics, 

and it is arguable that the fine differences can have significant impact on 

variables such as those measured here. 

Comparative and relational analysis 
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Comparative analysis between normal braking as measured on the public 

road section and the emergency brake response as measured on the 

emergency test on the closed track indicated that there are differences 

between the two types of braking . Parametric and non-parametric statistics 

tests indicated very low probabilities that the differences in all five braking 

variables are random (tables 41 , 43 , all probabilities p<0.001). These results 

provide further evidence in line with previous studies (Kassaagi , 2001 ; Perron 

et aI., 2001 ; Schmitt & Farber, 2005) in support of the argument that there are 

quantifiable differences between normal and emergency driver braking . 

Regression analysis for the examination of the relationships of braking 

variables between conditions (emergency-normal) provided arguably the most 

important result of this study. Meaningful regression models can be applied 

for the force applied to the lower part of the brake pedal , the total pedal force 

and the clutch-pedal force between the two conditions . The properties of the 

throttle-off variable - mainly the concentration of values around specific points 

- did not allow for meaningful models to be established . 

Clutch pedal force is a variable which was not included in the results 

reported either in Perron et al. (2001) , Bouslimi (2005) , or Schmitt & Farber 

(2005). Results in the current study indicated that not only is clutch-pedal 

force different between normal and emergency conditions (table 41), but there 

is also a relationship that can be expressed through a logarithmic, inverse, 

power or S regression model (table 48). The S model in particular is both the 

most representative of the relationship (only 0.001 probability for the 

relationship to be result of chance) and the best predictor, explaining 38.7% of 

the interaction between normal and emergency clutch-pedal force . The main 
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drawback of using this variable for intelligent brake applications is the fact that 

clutch is not always used while braking and is also commonly used after the 

brake pedal depression . 

The distinction between brake pedal areas and the separate analysis of 

each were not included in the methodology or the results reported either in 

Perron et al. (2001) , Bouslimi (2005) , or Schmit! & Farber (2005). Results in 

the current study indicated that not only there are two areas (upper-lower) 

subject to different amounts of force between normal and emergency 

conditions (table 41) , but also, in the case of the lower brake pedal area, there 

is a relationship that can be expressed through a linear, logarithmic, quadratic 

or cubic regression model (table 44) . The cubic model in particular is both the 

most representative of the relationship (only 0.001 probability for the 

relationship to be result of chance) and the best predictor, explaining 59.2% of 

the interaction between normal and emergency clutch-pedal force . The 

quadratic model is also relevant; statistical significance p=0.003 and 

R2=41 .9%. The main weakness of incorporating this relationship in an 

intelligent braking system is the fact that some drivers rarely use this area of 

the pedal , as noticed both on the public road section and during the 

emergency test. 

The use of the whole pedal surface as the area of force application during 

driver braking overcomes this problem, as it accounts for drivers who do not 

use one part of the pedal. This is not a significant compromise as the 

combined force on both areas of the pedal exhibits a relationship between 

normal and emergency instances (table 46) . The linear and quadratic 

regression models satisfy the 0.05 statistical significance criterion . Between 
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them, it is the quadratic model that explains greater part of the interaction -

25.9% for the quadratic against 20.6% for the linear regression model. It 

should be noted that the cubic model has the highest R-square (26%) , 

however the analysis of variance did not satisfy the typical criterion of 0.05 for 

statistical significance (0.09 in this case) . According to statistical criteria, only 

the linear and quadratic models are valid though . 

Video data 

Results of the quantitative parameters measured through the footwell 

camera supported both the differentiation between normal and emergency 

braking and the relationship of another two braking parameters between the 

two conditions. The T-test comparison on table 50 indicated that both foot 

displacement time (from throttle to brake pedal) and initial (at BOms) brake 

pedal displacement differentiated significantly between normal and 

emergency conditions. In both cases T-values have probabilities below 0.001 

of being the result of chance . This result provides extra evidence in support of 

the argument that normal and emergency braking are quantitatively different. 

Analysis of variance to examine the validity of using various regression 

models to describe the relationship between normal and emergency braking 

showed the potential of initial brake pedal displacement (table 51) . Inverse, 

quadratic, cubic, power, and S regression models satisfied the typical 0.05 

criterion of statistical significance. Among them, cubic and quadratic models 

explain more of the variance in the variable between the two conditions 

(31 .2% and 31 .1% respectively) . Such meaningful regression models could 

not be applied to the foot-displacement time variable. However, the results of 
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the application and analysis of variance of the regression models for brake 

pedal displacement in normal and emergency conditions is another result in 

support of the argument that relationships do exist between normal and 

emergency braking parameters. 

The presence of relationships of variables between normal and emergency 

conditions is important because the relationships can be used by an intelligent 

brake system that adjusts its full-brake-activation trigger according to the 

typical normal braking values for each driver. An example of how this can be 

implemented is given in the "System Simulation Study" chapter. 

Acording to the statistical criteria and analysis presented, the study 

provided good quality evidence in support of arguments that answer the 2nd 

and 3rd research questions of this Thesis; whether normal and emergency 

braking inputs are quantitatively different and whether a relationship exists 

between each driver's normal and emergency braking inputs. The evidence 

provided showed that there are quantitative differences between normal and 

emergency braking . In addition , evidence of relationships of variables 

between conditions was found . These relationships can potentially be 

incorporated in the specification of intelligent brake systems that adapt to 

different driving (braking) styles . Chapter 7 provides more details on this . 

Lessons from the controlled on-road study 

The present chapter yielded basic evidence regarding driver braking 

inputs under normal and emergency conditions. First, evidence was provided 

of quantifiable differences between normal and emergency driver braking 

input. Among the dependant variables, throttle-off was found to be the best 
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variable in distinguishing between the two conditions (normal - emergency) . 

Additional variables that exhibited statistically significant differences under the 

two conditions included brake-pedal force, initial displacement of brake-pedal 

(at 80ms after initial contact with the pedal) , and foot-displacement time 

(between throttle and brake-pedal) . Therefore, it is reasonable to adopt the 

hypothesis that measurable differences exist between normal and emergency 

braking inputs. 

Second , evidence of interactions and relationships between variables 

under both conditions was provided. The result suggested that for each driver, 

the braking inputs under an emergency are not random ; they rather are 

related to the previous history of braking inputs and the representative mean 

of the respective distribution . Therefore, the hypothesis that relationships exist 

between normal and emergency braking inputs can be assumed. 

Third , some of the various models employed to examine and explain the 

relationship between normal and emergency braking inputs were more 

successful than others. Among them, brake-pedal force and initial brake-pedal 

displacement (at 80ms) exhibited the strongest statistical properties. Between 

them, seven models in total satisfied the criterion for statistical significance 

(table 53). The quadratic and cubic models of the initial brake-pedal 

displacement between the two conditions explained more variance that the 

rest; however, the raw data upon which they were developed came from 

recorded video. Therefore, compared to data recorded through the force 

sensors, video data were inferior in terms of the rate and accuracy by which 

they were recorded . The quadratic model for the brake-pedal force somewhat 

lacks the statistical rigour of the two aforementioned models ; however, it is 
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based on a wealth of accurate data, while it still retains strong statistical 

properties relatively to the rest of the models . 

Table 53: Relative merits of the most pertinent variables and models for modelling the 

relationship between normal and emergency braking inputs 

Model- Variable Total variance 

explained 

Quadratic - Initial brake- 31 % 

pedal displacement (at BOms) 

Cubic - Initial brake-pedal 31 % 

displacement (at BOms) 

Quadratic - Brake-pedal 26% 

force 

Linear - Brake-pedal force 

S - Initial brake-pedal 

displacement (at BOms) 

Inverse - Initial brake-pedal 

displacement (at 80ms) 

Power - Initial brake-pedal 

displacement (at 80ms) 

20% 

19% 

18% 

17% 

Weaknesses 

Based on video data 

Based on video data 

There are statistically 

stronger models 

Explains only 20% of 

variance 

Explains only 19%; 

based on video data 

Explains only 18%; 

based on video data 

Explains only 17%; 

based on video data 

The research question regarding the exploitability of the relationships 

between braking-input parameters under normal and emergency braking is 

predominantly tackled in the following chapter, where a basic adaptive brake 

237 



assist concept is presented and virtually tested based on on-road and on-

track data from 25 drivers. Nevertheless, the results of the studies in the 

present chapter qualified two braking parameters as the basis for the 

development of a method to continuously adapt the triggering value which 

engages the brake assist (figure 70). For this purpose, the instantaneous 

average/typical value of all the previous braking inputs can be employed. For 

example, the instantaneous mean of the initial displacement of the brake 

pedal can be used to estimate the "ideal" initial displacement, over which 

additional braking torque should be engaged by the braking system. An 

extensive example of this opportunity is provided in the following chapter. 

~:Cons;~nt trigger ~ 
I ...... A • 

, Throttle-off Brake-pedal force Initial brake-pedal 
displacement 

Figure 70: The appropriate braking-input parameters for the successful specification of 
conventional and adaptive brake assist systems, as suggested by the results of the 

present study. 
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Summary 

Chapter 6 described an extensive study of driver braking on an open 

and a closed road section . 48 drivers drove an instrumented vehicle on a 

public road section before arriving at a test track, where they were instructed 

to follow at their preferred distance another vehicle towing a trailer. They were 

told the aim was to measure their preferred car-following distance. They were 

na'fve to the fact that 0.2 miles down the track the trailer would be released 

and rapidly decelerate to a stop . The main variables analysed included 

"throttle-off' rate, brake pedal pressurefforce, and clutch pedal 

pressurefoperation . The results indicate a series of relationships exploitable 

by an intelligent brake assist system. An intelligent brake assist system could 

take advantage of those characteristics and adapt its performance to 

individuals' braking style. 

Limitations of the study include resource constraints (use of a single 

instrumented vehicle , time-limited access to the test track) and the contrived 

nature of the emergency braking scenario (need for surprise element, 

practically a one-off study, limitation of speed to 30mphf48kmph) . The study 

provides evidence of a background for a customisable brake assist system 

that learns from the driver and adjusts its trigger for maximum braking torque 

accordingly. 
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Chapter 7: System simulation studl 

Introduction 

Results from chapter 6 (controlled road study) indicated relationships 

between driver braking parameters in normal and emergency conditions . 

Further regression analysis provided some meaningful models to simulate the 

relationship between some variables . Analysis of variance supported the 

validity of regression models for two driver braking parameters : pedal-force to 

the brake pedal and initial displacement of the brake-pedal (at 80ms after 

contact) . 

Such models can be exploited by a brake system that constantly adapts 

the full-brake trigger according to the braking history of the driverlvehicle. 

Previous approaches by Schmitt & Farber (2005) and Bouslimi (2005) 

suggested fusion of multiple variables in order to predict emergency braking . 

However, in both approaches it is not the trigger that changes; it is the relative 

contribution of the component/agents of the respective predictive systems. To 

express it in plain language, although these two models are different, they are 

based on the notion that "if X is such and Y is such or A is such , then apply 

full-brakes". Either a single or a combination of values of parameters (e.g. 

throttle-off rate) consist the trigger which is the same for all drivers on all 

occasions. 

Bouslimi et al. (2005) aimed at "modelling driver behaviour in a straight

line emergency situation". They employed the behavioural dataset provided 

7 The basic Matlab code used for the simulation can be found in Appendix C 
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by the earlier studies at LAB (Perron et aI. , 2001) with neural networks and a 

genetic algorithm. A Multi Layer Perception (M LP) architecture was adopted 

for the neural networks, based on its merit in modelling functions of high 

complexity (Rumelhart, Hinton, & Williams, 1985). Then the genetic algorithm 

was developed to optimise the structure of the neural networks. The results 

supported the improved performance of the hybrid (neural networks + genetic 

algorithm) against the neural-network model in predicting an emergency 

situation . Nevertheless, the model exhibited two basic weaknesses: first, the 

results of its validation were incongruent regarding some basic variables (e.g. 

throttle-off) . Data from earlier on-track and driving simulator studies indicated 

inconsistencies in the accuracy of some variables. Second, some of the 

variables in the model, refer to the result of the emergency manoeuvre; in 

practice, such variables are inapplicable, as their value cannot be 

known before the end result of the manoeuvre (crash - evasion) is confirmed. 

Schmitt and Farber (2005) utilised Fuzzy-Logic (Klir & Yuan , 1995) to 

create a model that could distinguish successfully between normal and 

emergency braking . The model was based on three parameters of throttle

pedal operation: change of radius, jerk, and foot-displacement time (from 

throttle to brake pedal) . Data for this study was collected through the CAN bus 

of the vehicle 54 participants drove in a test-track study. The authors claimed 

that their model predicts correctly 85% of emergency braking and 97% of 

braking before a corner, against 77% emergency braking and 99% braking 

before a bend correctly predicted by a system with a fixed trigger-level. 

Although , both models resulted in high theoretical predictability of the 

emergency situation, they failed from their conceptual phase to account for 
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the fact that driver braking is variable, as indicated by the results of the 

naturalistic braking study in chapter 5. The issue is discussed further at the 

end of this chapter. 

Coming back to the results of the study in chapter 6, each of the variables 

with meaningful results has its own merit as an adaptive function for brake 

assist systems. Force input to the lower part of the brake pedal proved to be 

highly representative of the data as well as important in accounting for 

variance. The problem with incorporating these models in a brake system is 

the fact that some drivers do not use this part of the brake pedal at all. If this 

model were to be used, then some drivers would be designed out by the 

system specification . Clutch-pedal force also generated a similarly 

representative model. In application though, the implementation of this model 

suffers by the fact that not all vehicles have a clutch pedal - there is also 

automatic transmission available . Furthermore, video data from the studies in 

chapter 5 showed the clutch is not always used when braking and, even when 

it is used, it is after the initial brake-pedal displacement. Total brake-pedal 

force, on the other hand, explains slightly less variance compared to the 

aforementioned models. However, in practice it accounts for both sections of 

the brake pedal and thus does not exclude any driver (other than those who 

do not apply brakes at all). In addition, it is more compatible with current 

trends in brake assist system specifications (The Society of Motor 

Manufacturers and Traders Ltd , 2008). Initial brake-pedal displacement, as 

measured through the video analysis, had very high amounts of variance 

explained by its models and satisfied the statistical criteria for quality of 

evidence. However the limitations imposed by the method this datum was 
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collected (video data , sampling necessary, limited precision compared to the 

continuous flow of numerical data from the force and position sensors), make 

this variable less favourable at the current stage. 

Therefore, among the measurements with continuous and high-frequency 

sampling , total brake-pedal force was selected to be incorporated into a virtual 

adaptive brake assist system, as the best compromise between the strength 

of the conceptual models and the characteristics of driver braking . 

Furthermore, for this variable there were two models (linear, quadratic) that 

analysis of variance indicated as representative of the relationship between 

normal and emergency braking and another model (cubic) that explained 

more variance that these two . The latter can be dismissed as it does not 

satisfy the statistical requirement set at the beginning of the analysis (a=O.05) . 

Between the two that remain , the linear one is theoretically more powerful, as 

it exhibited lower probability of randomness (p=2%), however it explains less 

variance (21 %) compared to the quadratic model (26%). Thus, it is 

reasonable to incorporate the quadratic model into an adaptive brake assist 

system. 

The following section does exactly this; the algorithm of the model is 

incorporated into a virtual adaptive brake assist system and the system's 

behaviour is simulated using braking data from twenty-five participants that 

drove the instrumented vehicle on the public road and the test-track route 

described in chapter 6. These participants are the ones that had an input of at 

least 5 Newtons to the brake-pedal sensors during the emergency test on the 

test track. 
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The system 

Global Average 
Braking force 

. 
Brake application 

M;iI; ~ 
Emergency Brake Incorporation in 

Trigger-level Calculation 

New Avg 
Braking force 

Figure 71 : The basic layout of the adaptive function of the system 

The system starts with a universal trigger (much as current EBA 

specifications do) . This is the value of the variable (force in this case) that 

activates full-brakes (effectively the Antilock Brake System too). The first time 

the driver applies brakes, the force applied is averaged with the "global 

average" and a new "average braking force" emerges (figure 71). Then , this 

becomes input in the equation to calculate the emergency brake trigger (using 

the selected algorithm - quadratic function in this case) . This circle takes 

place whenever the driver makes use of the brake pedal. Thus, the trigger 

moves along the quadratic-model line on figure 63. 

To simulate the behaviour of the system, MatLab® r2008a was employed. 

The MatLab code employed as a base for the system can be found in 

Appendix C. A program reflecting the system function described in figure 71 
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was developed and the system's behaviour was examined using the actual 

driving/braking data from 25 participants from the controlled road study 

(chapter 6) . These subjects were the drivers that had a minimum brake pedal 

input of 5 Newtons during the emergency test on the closed track. The steps 

of the algorithm for adapting the threshold for a maximum braking torque 

request are: 

1. When the engine is switched on, the system has a triggering-force 

value, as per a conventional Brake Assist System. 

2. Whenever the driver applies an average force above 5N between 

the two sensors on the brake-pedal, the system employs these data 

to calculate the mean force applied by the driver on the brake

pedal. 

3. Then, the quadratic equation described previously employs the 

instantaneous mean brake-pedal force to estimate a new triggering

force value . 

4. The above cycle is continuously repeated and the threshold 

adapted whenever the driver employs the brake-pedal. 

Concurrently, when a braking input exceeds the adapted threshold, 

the system communicates a maximum braking torque on the 

wheels. 
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Simulation 
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Participant 1 's journey would have had the system engaged in four 

instances. Examination of the respective instances in the joumey video 

showed that the first instance was just before a red-light situation at a 

signalised traffic junction. The second instance was in a similar situation when 

queuing before a signalised intersection and while the vehicle was almost still. 

The third instance was when queuing in traffic in almost identical situation as 

the second instance. Finally, the fourth instance was at the release of the 

trailer in the test track. Overall, the system "engaged" only when the driver 

intended to stop during the emergency test to prevent an imminent collision. It 

was never engaged when the pedal was used to decelerate the vehicle. 
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The second participant used the brake pedal on mUltiple occasions (figure 

73). This frequent use gave the system the opportunity to adapt quite quickly; 

the trigger went up by 25% within a few minutes. Thus, repetitive engagement 

of the system during the first part of the journey was avoided . In fact , the 

system was engaged only at the end of the journey after the trailer was 

released in the test track. Again, the system identified successfully the 

emergency in the test on the closed track without engaging when there was 

no intention to stop the vehicle. 
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Figure 74: 3rd participant's journey and system behaviour 

The very first input of the third participant took place even before the 

vehicle started moving and was strong enough to activate the system (figure 

74) . However, in practice it made no difference as the vehicle was still 

stationary with the engine running . The input had an effect on the system 

though , as it changed the triggering level (upwards). After a few further inputs 

the triggering level decreased and another engagement of the system took 

place during a yellow-light phase at a signalised traffic junction . The abrupt 

input resulted in a complete stop before the pedestrian crossing. The final 

system engagement took place right after the release of the trailer during the 

emergency test in the test-track. Overall , the system was successful in 

identifying the emergency on the test track, as well as identifying a critical 

situation on the public road section without compromising with any unintended 

full-brake application . 
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Figure 75: 4th participant's journey and system behaviour 

The behaviour of the system during the fourth driver's journey was almost 

ideal (figure 75) . As the driver was gentle on the pedals the system adjusted 

the trigger accordingly with in two minutes. Furthermore, it did not engage in 

any of braking inputs until the release of the trailer in the emergency test on 

the test track. 
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Figure 76: 5th participant's journey and system behaviour 

The simulation with data from the 5th participant showed the system's 

inability to adapt in time to trigger full-brake application during the emergency 

test on the track. An initial strong input before the car started moving altered 

the triggering level significantly. Thus, the system avoided being activated 

during the early stage of journey; however it did not lower the trigger in time to 

match the final input upon the trailer release on the test track. It should be 

noted however, that the execution of the trailer release was not perfect and 

the trailer steered to the right upon braking . Thus, even though the final input 

on the sensors was above 10N, it was combined with a strong steering input 

to the left that resulted in the avoidance of the trailer (figure 76). 
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journey and system behaviour 

Participant 6 was among the gentle "pedipulators" (figure 77). She made 

multiple inputs of just over 5N to the brake-pedal sensors and few over 10N 

before the final 15+N input on the test track. During the test, the trailer had a 

slight right-departure that allowed the driver to use both steering (to the left) 

and braking to avoid it. Although under the current specification the brake 

assist system was not triggered , the threshold was within 2N of the brake 

input of the participant at that moment. The system behaved well initially by 

quickly lowering the triggering-level; however, no matter how close it got to it, 

it did not match the pedal input on the test track. 
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At the start of ih participant's journey the system raised the triggering-

level and then compensated after a few inputs. The first time it was activated 

was during queuing in traffic when the vehicle was close to a stop. The inputs 

that followed were not strong enough to activate full braking until the trailer-

release phase on the test track. There, the input by the driver was both strong 

and persistent. Overall , the system behaved quite well , as it identified the 

emergency input in the emergency test and avoided being triggered in 

circumstances other than in the slow-moving queuing traffic scenario. 
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The 8th driver would probably be happy to have a real implementation of 

the virtual system during his journey. His initial input during driving out of the 

parking bay increased the trigger-level dramatically; however a few inputs 

later the level was almost identical to the final input on the test track (figure 

79) . As the session took place on a wet day, the immediate augmentation of 

his braking and the direct engagement of ASS would probably be of benefit to 

him. Again , the system adaptation worked very well avoiding engagement 

throughout the journey up to the emergency test with the release of the trailer. 
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journey and system behaviour 

The glh driver was quite smooth on the pedals and used the brake pedal 

scarcely throughout his journey (figure 80). Apart from the final input on the 

test track, there were only two other inputs stronger than 5N. Since this was 

the lower bound of the inputs the algorithm accounts for, two inputs were not 

enough for the system to adapt in time to accommodate for the final input 

during the emergency test. In this case the system avoided being activated on 

the way to the test track, however it failed to identify the emergency input as 

such. However, the driver barely used the brakes at all during the journey and 

there was limited opportunity for the system to adapt. 
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Driver number 10 was another gentle "pedipulator". He used the pedal 

multiple times through the journey, and one of them exceeded the system-

activation threshold . This was during a yellow-light phase before a traffic 

junction (see picture on figure 81) . However, the driver's brake input after the 

release of the trailer on the closed track was less powerful and did not trigger 

the system. Overall , the system was successful in identifying a critical 

situation on the road; however it failed to replicate this success on the test 

track. 
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Figure 82: 11th driver's journey and system behaviour 

The eleventh driver was among the regular users of the brake pedal 

(figure 82) . She used the pedal about three times per minute during the 

joumey to the test track. Thus the system adapted quickly to the "ideal" level 

for the trigger and was not activated until the very last input on the test track. 

In that case the threshold perfectly matches the brake input to the sensors 

during the emergency test with the trailer release. Overall , this journey is 

another "ideal" example of how good the adaptive algorithm can be in 

avoiding unintended activation and identifying the need for full-brake 

activation when necessary. 
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The 1ih driver in the simulation was another example of successful 

function of the system. She used the brake pedal on multiple occasions, 

however in none of those was the system engaged, apart from the strong 

input at the end of the journey. In the test track, she had an input over 50% 

over the concurrent nominal value of the trigger. A real implementation of the 

system would have helped her stop further from the trailer (the car stopped a 

few centimetres from the trailer) . 
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Figure 84: 13th driver's journey and system behaviour 

The 13th driver had only three noticeable inputs in the first seven minutes 

of the journey, but they were enough for the system to lower the triggering-

level by about 20%. Then , system-engagement happened during the red-light 

phase at a traffic junction (figure 84) . This input at the traffic lights increased 

the threshold dramatically, but a series of inputs over 5N that followed brought 

the trigger back close to the pre emergency-stop phase. Finally, during the 

emergency test on the closed track, the driver's input was barely over 5N, just 

enough to be included in this analysis. However, examination of the video 

showed that she had adopted the longest time-headway of all participants 

examined in this study (approx 3 s) . This fact might have allowed her to 

compensate with less powerful but prolonged input, as she had more time 

available to deal with the situation than others. Overall , the system was 
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successful in supporting the driver at the traffic-lights situation; however it was 

not engaged during the emergency-test on the closed track . 
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Figure 85: 14th participant's journey and system behaviour 

.. 10' 

The 14th driver was another particularly gentle "pedipulator". Her inputs 

were both scarce and weak. She had two significant inputs at the beginning of 

the journey, but then there were no inputs sensed by the system (remember 

5N criterion) up until the last one in the emergency test. Even this one though 

was just over 5N (figure 85). The situation was very similar with the previous 

driver, as she had a similarly long time-headway (about 3s) at the release of 

the trailer and, although gentle, the input to the brake pedal was prolonged. 

Overall , the weakness of the system to adapt quickly with drivers who do not 

use the brake pedal significantly was obvious. 
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Figure 86: 15th driver's journey and system behaviour 

The 15th case was probably the most problematic for the system (figure 

86). There was a gentle input at the start of the journey, however up to the 

very end on the closed track there was no input over 5N on the sensors. This 

means the adaptation circle (figure 71) of the system remains idle and the 

trigger does not change. This effectively renders the adaptive function of the 

system redundant. The system cannot operate successfully, unless the 

drivers use the brake pedal. Again, this weakness of the system dominated 

the simulation . 
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The 16th driver did not use the brake pedal significantly until arrival at the 

town centre about 8 minutes into the journey (figure 87) . Then , a few inputs 

made the system increase its threshold and avoid activation until about 

halfway through the journey when the system engaged for the first time . 

Coming over a blind summit (Gran Union Canal Bridge) the driver 

encountered queued traffic on the other side and her brake input was enough 

to activate the system. A few minutes later, at the beginning of the rural 

section, cars ahead queued as the leading car stopped before leaving the 

main road and taking a right turn into a minor road . The driver's braking 

reaction was strong enough to activate the brake assist in this session too. 

After that, there was only one significant input before entrance to the test track 

and the system was not activated again during the journey. Even on the track, 

the brake input was not strong enough (or the threshold was not low enough) 
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to activate the system. Overall , the system identified two critical situations on 

the public road section; however it failed to be triggered during the emergency 

test on the track. 

TIME .,~ 

Figure 88: 1 participant's journey and system behaviour 

Participant 17 was among both the strong and regular "pedipulators". Thus 

the system quickly adapted the triggering level and avoided activation as the 

power of the inputs rose. About half-way through the journey, the brake assist 

was activated (figure 88) . It was during the red-light phase at a junction with 

queued traffic and the vehicle was brought to a stop. Shortly afterwards , the 

driver encountered queued traffic over the brow of the Grand Union Canal 

bridge. The braking response was strong enough to activate the brake assist 

system. The presence of an actual brake assist with an adaptive function 

would probably be beneficial as (without it) the vehicle stopped very close to 
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the lead vehicle. After that, the system is not activated during the rural section 

of the journey thanks to its adaptation to the regular strong inputs. However, 

this also results in failure to be activated on the test track, where the input to 

the sensors was lower than the inputs during the rural section. 

TIME , . ' 

Figure 89: 18th participant's and system behaviour 

The 18th driver was both a gentle and infrequent operator of the brake 

pedal till the emergency test on the test track. The system adapted by 

lowering the threshold from the very first notable brake input (figure 89). Then , 

there were very few inputs in the middle section of the journey. A handful of 

braking inputs took place towards the end of the journey and baSically 

confirmed the triggering-level as it was. The final brake input on the test track 

triggered the brake assist system. Overall , the system was successful in 

identifying the emergency-brake input during the test and avoided being 

engaged when unintended. 
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The 19th driver made little use of the brake pedal during the first minutes of 

the journey and then had a strong input about 6 minutes into the journey 

(figure 90) . This input was over the triggering-level and the system was 

engaged. This happened just before a signalled junction at a roundabout at 

very low speed and resulted in a stop. After that, the system increases the 

threshold by 100%and therefore is not activated during the few brake inputs 

that followed. The final part of the journey is virtually brake-free and the 

threshold does not change since the third major input in the urban section . In 

addition the input during the emergency test is just over 5N , although from the 

video the vehicle looks like achieving major (negative) acceleration (>5m/s2
) . 

The incoherence between the input to the sensors and the resulting vehicle 

behaviour allows room for consideration whether something might have 

interfered with the accuracy of the measurement through the sensors. This is 
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discussed further later. Overall , the brake assist system was activated when 

the intention was to stop the vehicle once during the journey, however failed 

to identify the emergency on the test track. This was particularly important as 

there was a slight contact as a result of the trailer release. 
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system 
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The 20th driver made some strong inputs at the very beginning of the 

journey that dramatically changed the triggering-level briefly. Soon though, as 

more inputs followed the threshold came down again and remained at about 

24N for a few minutes, before a strong input while driving in the town centre 

increased it by a few newtons again . This input also engaged the brake assist 

system. Looking at the circumstances under which this input took place, it was 

while approaching a red traffic on the left lane at a controlled junction with 

queued traffic on the right (figure 91). Suddenly, a passenger from a vehicle 
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on the right lane opens the door and enters the left lane. Then , the system is 

not activated until the end of the journey at the test track . During the 

emergency test, the driver's input to the sensors was over SN and was thus 

included in the analysis . However, it was too weak an input to engage the 

brake assist system. Checking the time headway at the instant of trailer-

release, the driver held almost 3 sec headway to the trailer and this allowed 

her to compensate with a persistent input rather than an abrupt one. She also 

stopped the vehicle comfortably without making contact with the obstacle. 

Overall , the system successfully identified a critical situation on the public 

road section, however failed to be activated during the emergency test. 
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Figure 92: 21st participant's journey and system behaviour 
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Figure 93: 22nd participant's journey and system behaviour 

The journeys of both the 21 st and the 22nd driver were very similar. Both 

drivers had few inputs over 5N and those were relatively weak. Thus, the 

system lowered its triggering-level , however not enough to accommodate their 

input during the emergency test on the closed track. In addition, both drivers 

were among those with long time-headway distances and both drove under 

wet conditions. Overall , the system could not (and probably should not) be 

activated at such low-force brake inputs. 
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Figure 94: 23rd participant's journey and system be r 

With the 23'd driver the system functioned as a conventional constant-

trigger brake assist system. As the driver barely used the brake pedal on the 

way to the test track , when she arrived there, the system had only the initial 

triggering-level when the emergency test took place. Her input was more than 

50% lower than the threshold for system activation . The system started 

adapting when this input took place, but this was not enough for the system to 

be triggered . This case is another example of the system's inability to adapt 

quickly to drivers who do not use the brake pedal significantly . 
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Figure 95: 24th participant's journey and system behaviour 

,10' 

The 24th driver was another gentle "pedipulator". His inputs on the brake 

pedal sensors were both rare and gentle during the journey to the test track. 

However, a few minutes before arriving at the test track, he suddenly realised 

that he was about to miss a right turn into a minor road and almost stopped 

the vehicle in order to take the turn . The input was above the triggering-level 

and the system was activated (figure 95) . As this was the first significant input 

to the sensors, it also had a profound effect on the triggering-level of the 

system. However, a couple of inputs later the trigger was balanced again and 

arriving at the test track, it was about 25% above its initial value. The input 

during the emergency test was strong enough to activate the system. The 

deceleration of the vehicle was just enough to avoid contact with the trailer. 

Overall, the system behaved surprisingly well , considering the limited brake 
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inputs, and identified correctly one critical situation on the public road section 

as well as the emergency brake input on the test track. 

w 
U 

'" o 
~ 

96: 

TIME 

pa journey and system behaviour 

The 25th participant's journey had a few significant brake inputs; however 

the system avoided being activated throughout the public road section. The 

early gentle inputs lowered the threshold, before a stronger and persistent 

input raised it again . The second part of the journey did not have any 

significant inputs and thus the triggering-level remained unchanged. On the 

test track, the release of the trailer elicited a strong input that engaged the 

system. The actual presence of the system would probably be beneficial for 

the driver, as she narrowly missed collision with the trailer. Overall , the 

system was successful in avoiding unnecessary activation on the public road 

section and was engaged when needed on the track. 
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Discussion 

The simulation of an adaptive brake assist system based on the results 

from the controlled public and closed road study (chapter 6) showed some 

promising strengths as well as some weaknesses. Matching the on-board 

video with the pedal-force data showed the ability of the system to detect the 

emergency inputs both on the public road and the closed track . On the other 

hand , the most prominent difficulty was encountered in dealing with drivers 

who neither use the brake pedal regularly nor significantly when they do use 

it. Of course, data was captured during a single trip from University campus to 

the test track and the system could adapt more effectively after prolonged use 

of the vehicle, however within the framework of this study and with the data 

avai lable, it did not. A case-per-case examinaiion should help clarify this. 

The first driver had the virtual system activated on three occasions during 

the trip: once before the red traffic lights and twice while almost stationary in 

queued traffic. In all three cases the driver intended to stop the vehicle. In the 

first occasion the engagement of the system would be beneficial in facilitating 

vehicle stopping before the junction comfortably. In the other two cases , it 

would be at least not troublesome; the vehicle was barely moving anyway. In 

the test track, the system identified the emergency input and would help the 

driver avoid contact with the obstacle easily. The efficiency of the system 

becomes more apparent if compared against a conventional EBA with a 

universal trigger; as the driver was generally strong "pedipulator", the system 

would be activated multiple times during the trip, even while braking to keep 

speed to the legal limit. This would be a fearsome scenario. The proposed 
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adaptive version on the other hand managed to avoid all those unintended 

activations. 

This strength of the system was even more apparent in 2nd
, 3rd and ]'h 

participant's journey. Facilitated by a wealth of information through the 

frequent use of the pedal, the system adapted quickly, avoided all false 

activations and matched the input during the emergency test on the track. 

Again , without the adaptive function, the system would be unintentionally 

activated multiple times during the journey. During the 3rd journey, the system 

also correctly recognised the intention to stop promptly during a yellow-to-red 

phase at a road junction. 

The 4th driver's journey was a case where both a conventional and the 

adaptive system would identify the critical situation on the test track . Driver 

input was clearly distinctive between the public and the closed road sections. 

This pattern was also observed with the 8th, 11 th, 12'h, 18th, 24th and 25th 

driver's journey. According to the data, both versions of the system would 

behave efficiently - i.e. be activated only when intended - in those cases. 

Then , there were the cases of mutual "failure" to recognise the criticality of 

the emergency test. The word "failure" is in quotation marks, because closer 

examination of the individual characteristics of these tests, indicated that there 

might not have been so much of an urgency to use the brakes to avoid the 

obstacle. The relevant cases (6th , 9th, 14th, 15th , 21 st, 22nd
, 23rd driver's 

journeys) were characterised by combinations of limited braking on the way to 

the test track, long time headways on the test track, and or use of steering to 

avoid contact with the obstacle. Thus the universal version by definition could 
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not accommodate such gentle inputs and the adaptive version did not have 

enough data to adapt in time. 

In between the total successes and total failures lie many cases where the 

adaptive system showed promising behaviour on the public road section , but 

was not activated during the emergency test on the track. In these cases a 

universal-trigger system would be activated unintentionally or miss critical 

instances. The relevant journeys that fall in this category are the 5th
, 10th

, 13th
, 

16th
, 1 ih, 19th

, and 20th driver's journeys. In some of them (5th
, 1 i h in 

particular) , the trigger was very close to the actual input during the emergency 

and the latter would have probably been accommodated, had there been a 

few more inputs before the test. 

In an attempt to put some numbers down, the success rate of the system 

can be examined in two ways: first every test-track session can be assumed 

as an emergency situation , according to the subjective reports of participants 

after completion of the test. Second, the definition of emergency braking 

assumed from the beginning of the Thesis as "the driver's reactive operation 

of vehicle pedals in reponse to the sudden appearance of a perceived 

obstacle, with which the vehicle will coli id unless the reactive pedal operation 

takes place". 

Using the first method , assuming that every test-track session was an 

instance of emergency, the false-negatives can be identified. These are the 

cases in which the system should have identified the emergency, and it did 

not. By definition, there are can be no false-positives, as every case was an 

emergency. In this context, the adaptive system, although imperfect, shows 

superior performance to every possible conventional specification .(table 54, 
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right column) . Assuming that all emergency tests on the closed track involved 

emergency braking, the adaptive system detected 12. Against that, the 

maximum achievable number of emergency instances a conventional system 

may detect is 11 . However, this number is achievable only after the best 

compromise is identified and the trigger is optimised according to the data. 

Using the second method and examining the instances of system 

activation on the open-road section , yields instances of successful detection 

and false detection of an emergency (false-positives) . During the case-by

case examination that preceded this section (figures 72-96), the adaptive 

system was engaged 13 instances. Examination of the concurrent video cues 

indicated that all 13 cases exhibited at least two of the characteristics of 

emergency braking according to the aforementioned definition: "perceived 

obstacle" (either actual vehicle/pedestrian or red traffic lights) , and "imminent 

collision" unless the driver intervenes with the pedals. The third element of the 

definition, surprise, cannot be objectively extracted through the video data and 

requires the subjective report of each driver for each instance. Unfortunately, 

such data were unavailable in the current study. Nevertheless, it is still 

possible to compare against the number of false-positives of the optimised 

conventional brake assist system (table 54, middle column). The best possible 

conventional specification performs 9 additional false-positive activations of 

the system. The difference is much more obvious than in the test track, 

although this result is partly explained by the optimisation of the conventional 

solution for the test-track. Overall , of course, the true picture cannot be 

demonstrated by a tabulation of two characteristics; however it is indicative of 

the improvement offered by the adaptive function in the system. 
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Table 54: Comparative performance of the proposed system against a conventional 
one 

Type of brake assist 

Conventional 
Adaptive 

Limitations 

Fa/se-positives (road Fa/se-negatives (test track) 
section) 

9 14 
o 13;:,... 

The definition of driver emergency braking is a decisive factor when 

judging the success of an emergency braking system. Under the present 

definition , it proved difficult to decide on each case without the subjective 

judgement of the participants. Therefore, the test-track data yielded an 

advantage, as it was decided in line with the definition and supported by the 

subjective reports of the participants after each session . By comparison, the 

open-road data was limited by the absence of the subjective judgement by the 

participants after each "activation" of the system. The collection of such data 

on-route was impossible in practice , as the "activations" were unknown until 

the data was analysed, long time after completion of the sessions. 

Nevertheless, due effort was placed in setting the relevant strict criteria when 

judging on the success and failure of each case both on track and open road . 

On a more general level, it is surprising that all previous studies on 

emergency braking , did not consider the provision of a definition within their 

scope. They considered suffice to assume any input associated to their 

"critical event" as emergency braking and considering all other inputs as 

"normal". Kassaagi (2001) , Bouslimi (2005) and Schmitt & Farber (2005) 

followed such an approach. In addition , all their data was collected either on a 
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closed track or in a simulator. Therefore, the validity of the success rates they 

report for their respective solutions is questionable. 

Ideally, it would be useful to have the multi-variable methods for 

emergency braking detection by Schmitt & Farber (2005) and Bouslimi (2005) 

compared against the adaptive version developed in the present Thesis. It is 

particularly interesting, as Schmitt & Farber (2005) claimed that their fuzzy

logic method correctly predicted 85% of emergency inputs and 97% of non

emergency braking inputs. It is further interesting as they compare it against a 

"conventional" system that according to them it predicts correctly 77% of 

emergency and 99% of non-emergency brake inputs. According to the data 

from the present study , those numbers are unachievable. Unfortunately, the 

exact particulars of the study were not published, so that fuzzy-logic method 

cannot be tested using the present data. Same applies to Bouslimi's (2005) 

study, although as mentioned in an earlier chapter, this model used post

event variables as well and consequently has limited practical use. The 

conclusion is that direct comparison with those studies is impossible. 

Another point that needs to be mentioned is the possible alternative 

specifications of the adaptive system. For the reasons explained at the 

beginning of this chapter it was decided to test the specification described on 

figure 71 . In theory, alternative specifications are possible according to the 

results in chapter 6. Initial brake-pedal displacement or force from particular 

areas of the pedal could be used instead of total pedal-force. The system 

used only inputs to each sensor that exceeded 5N; a criterion of 2N, 10N or 

any amount could be used alternatively, depending on how responsive the 

system is needed to be and how much noise the sensors suffer. There is no 
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strict guideline on this. The system could have an initial triggering-level or not; 

it could start with an "immunity" period for some length of time before being 

engaged. The possibilities are many. It is impossible to examine them all 

within this Thesis. In fact, it is quite realistic to think of a whole Thesis on 

these issues. There is a wealth of room for future research in this area and 

this cannot be addressed within the scope of the current Thesis. It is hoped 

though that this Thesis will stimulate the interest of other minds to build further 

the knowledge on the subject. 

Finally, it should be acknowledged that every piece of evidence and every 

idea proposed so far refers to the initial part of the Human-Machine 

Interaction (HMI) loop (Oborne, 1987). All material reported to this point 

regards the inputs of the driver and the adaptation of the machine to human 

input. However, a huge area of research opens with regards to the feedback 

to the driver and the relevant adaptation he/she may commence in response. 

Even though the studies and solution developed within the present Thesis 

provided evidence of opportunities for adaptation of the machine (brake assist 

system in this case) to human input, it remains unknown what the possible 

adaptation of the human to this adaptation by the machine might be. 

Collection of data regarding driver adaptation to the adaptive properties of the 

braking system is impossible until a prototype of the system is installed to a 

vehicle and studies commence examining exactly that. The issue is discussed 

further in the following chapter. 
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Summary 

This chapter presented a simulation-study to examine the behaviour of 

an adaptive brake assist system, based on the results of the controlled road 

study described in chapter 6. The proposed system incorporated an algorithm 

exploiting the relationship between normal and emergency braking . The 

system continuously calculates the instantaneous average brake-pedal force 

and employs the algorithm to estimate the respective "ideal" threshold for 

engaging maximum braking torque . 

To test the behaviour of the system in practice, data from 25 drivers who 

took part in the controlled road study were employed. The function of the 

system was simulated in a Matlab environment, and the behaviour of the 

system during each trip was monitored for inappropriate activation on the 

open road and inappropriate non-activation on the test track (emergency test) . 

Unfortunately, previous attempts to propose alternative solutions to 

conventional brake-assist systems did not publish enough data for a direct 

comparison with the system proposed in this chapter. However, results were 

encouraging in comparison to a constant-threshold system. The proposed 

system also exhibited the ability to adapt fairly quickly after a few braking 

inputs. Nevertheless, it was by definition unable to adapt to drivers who 

scarcely use the brake-pedal. 
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Chapter 8: General Discussion 

Each of the study-chapters concluded with a section titled "discussion". 

There, the implications and contributions of each study's results to the topic of 

this manuscript were discussed. Similar sections were also included in the 

early chapters too (chapters 1-2). In this chapter however, the aggregated 

results and limitations of the whole thesis are discussed within the general 

framework of road safety and driver ergonomics. 

In the introduction of this Thesis , the title was analysed into its three main 

components and the associated areas for research were described. 

"Ergonomics" was associated with man-machine interaction; "vehicle brake 

systems" was associated with driver longitudinal control and road safety; the 

term "intelligent" was associated with adaptive technology that is intended to 

accommodate the different characteristics of operators . It is hoped that most 

readers will agree that the present thesis has made contributions in all three 

areas. 

The contribution and discussion of each study was presented in the 

respective chapter and further discussion regarding each chapter follows in 

the next pages. In summary, it is argued that the "naturalistic braking" study 

provided novel data regarding the general characteristics of driver braking , 

with the key characteristic being its variability, while the controlled road and 

closed track studies provided evidence of differences in driver braking in 

different conditions and, most importantly, revealed certain relationships 

between conditions. Both chapters contributed to both the knowledge 

regarding driver longitudinal control and that of man-machine interaction 
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regarding vehicle brake systems. The controlled study set the foundations and 

the "system simulation" chapter built on it by presenting a system articulation 

and specification , testing it virtually, and indicating the plausibility of the 

particular adaptive technology. Last but not least, the accident study of 

longitudinal control failures presented the core of the relevant real-world 

problem and put the current research output within its realistic limitations 

towards road accident mitigation. 

The result of the above was the provision of good-quality evidence to 

address the research questions as they were set at the early chapters of this 

thesis. The naturalistic study provided microscopic data on the nature of driver 

braking and established a statistical definition based on the quantitative 

boundaries of normal driver braking . The controlled studies on public and 

closed roads provided evidence that iterates the results from previous studies 

(Perron et ai. , 2001) , regarding the quantitative difference between 

emergency and non-emergency driver braking inputs to the pedals . Then , the 

controlled studies provided evidence of certain relationships between 

variables in two types of driver braking (non-emergency - emergency) . 

Finally, based on one of those relationships, the design and virtual trial of an 

adaptive brake assist system provided evidence of the possibilities that arise 

to exploit such relationships for the evolution of brake assist systems. 

Placing the research into the context of previous literature 

It is not easy to connect microscopic data, such as the majority of what 

was presented in this manuscript, to general theoretical models. The 

association can be made though, when the data are "translated" to 
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phenomena that as abstract instantiations can have implications within the 

respective theory or model. This "translation" was made in the final parts of 

the respective chapters where each study was described. There, results were 

interpreted in terms of their meaning and the consequences of the arguments 

they suggested. Thus , now it is possible to position them within the context of 

the various models of the driving task as described earlier in pages17 to 32. 

As such, they can supplement the speed-control element in Gibson & 

Crooks (1938) . According to this theory, vehicle speed is influenced by the 

field of safe travel. The naturalistic study provided the range of inputs the 

drivers have on the brake pedal in order to keep the vehicle within the "safe 

field of travel ". The controlled study and the subsequent system simulation 

suggested a technological development that effectively increases the safe 

field of travel. As this system can reduce the stopping distances, it increases 

the ratio of depth of the field of travel against the stopping distance. 

Therefore, although the field does not increase in space, it increases in time. 

On the other hand however, the benefit could be limited by possible 

behavioural adaptation of the drivers (Howarth, 1987). According to Gibson & 

Crooks (1938), the index of cautiousness is defined by the ratio of the depth 

of field of safe travel to the minimum stopping zone. If the drivers 

systematically choose smaller safety margins after getting accustomed to the 

presence of the system, then they will effectively decrease the index. 

In relation to the time-based model for the driving task, the naturalistic and 

controlled studies did not provide results that can be associated directly with 

the theory - such aims were not within the scope of the studies. However, the 

accident study indicated that inattention and distraction are common 
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contributors to longitudinal control failures by the drivers. This result is in 

accordance with previously reported contribution of distraction to rear-end 

collisions (National Safety Council, 1996). Empirical studies have suggested 

that this is partly explained by the late Brake Reaction Time associated with 

the presence of distractions (Harbluk et al., 2007/3 ; Strayer & Johnston, 2001; 

Summala, 2000) . It would be worth examining in the future whether distraction 

affects driver braking in ways other than by delaying the response (e.g. 

increase pedal force or initial pedal velocity) . This could be done through 

studies of similar design to the ones presented in this thesis with the added 

element of distraction. 

Regarding the three-level models for the driving task, the output of the 

present research seems to fit them well ; the quantification of driver braking as 

performed in the previous pages affects decisions made at the strategic level , 

choices made at the tactical level , and rapid actions made at the 

manoeuvring/control level. The way and how much one brakes might affect 

not only the concurrent inputs on the other vehicle controls (steering , 

changing gear etc.) directly, but also what route he/she chooses for a 

destination or even what type of car she/he prefers to drive. Although Lee 

(2005) suggests the importance of behaviour at the higher levels as main 

force affecting the performance requirements at the lower levels of the driving 

task, it is still worth examining the other side of the interaction: from the lower 

level to the higher. The extent of the impact braking has on the upper levels 

of the driving task remains to be systematically explored . 
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Implications for technology 

In pages 8-13 the major contemporary active safety technologies were 

presented. Evaluation of some of these technologies have already provided 

concrete results of their potential for accident mitigation (Breuer et aI. , 2007; 

Lie, Tingvall, Krafft, & Kullgren , 2006; Page et aI., 2005; Thomas, 2006) . 

However, the level of accident reduction is below the projected potential of the 

systems as originally conceived (Emberger, 1993). The present thesis 

described studies descending from a human-centred philosophy for 

technology and showed how this philosophy can lead to the development of 

an adaptive brake assist system; a system that continuously adapts to driver 

braking and reduces the number of false interventions. Such a system may 

have a greater probability of achieving its potential for accident reduction . The 

same philosophy can be applied to other safety systems as well . Lane change 

support could adapt to the lane deviations of the driver, ACe could adapt to 

the preferred time headway of the driver and ESP could adapt to the 

oversteering characteristics of each driver's style. Successful specification of 

such systems can take driving interfaces to another level. 

In the shorter term, adaptive brake assist and ACe can support each other 

quite well in achieving collision mitigation; ACC controls time-headway and 

nc the variables that matter before the brake reaction takes place, while 

adaptive brake assist controls the variables that matter during the braking 

reaction: brake force and brake torque on the wheels, thus controlling braking 

distance. These systems can be further integrated with passive safety 

systems - e.g. seat belt pretensioners - to further support casualty 
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reductions, even when a collision finally takes place. All these of course 

require further studies of possible behavioural issues during the integration . 

Driver-braking research 

The driver-braking studies from the literature presented in pages 32-53 

provided evidence regarding basic characteristics of driver longitudinal and 

braking control. Van der Horst (1990), van Winsum and Heino (1996) and van 

der Hulst (1999) addressed the issue of TTC and time-headway during car 

following . Van Win sum (1997) further investigated the relation with brake 

reaction time (BRT) . The studies in the present thesis quantified the braking 

control input itself studying detailed characteristics under normal and 

emergency conditions. There was a shift from the factors that matter before 

the braking input takes place to the characteristics that matter when it does 

take place. 

There is also a clear shift in the methods undertaken. In the early nineties, 

van der Horst (1990) video recorded actual vehicles on the street, but the 

studies of driver braking during that period are dominated by simulator-based 

studies (Hoedemaeker & Brookhuis, 1998; van der Hulst, 1999; W. van 

Winsum & Heino, 1996; W. van Winsum & Brouwer, 1997; W . van Winsum, 

1998). Subsequently, more instrumented-vehicle based studies on test track 

have been undertaken (Bouslimi et aI. , 2005; Curry et aI. , 2003; Kassaagi , 

2001 ; Schmitt & Farber, 2005) . Now, this thesis presents a controlled and a 

naturalistic braking study, so the trend towards realism is continued. It is 

hoped that more studies will replicate such realism while improving on the 

limitations of the present studies . 
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Methods 

The trend to move towards more ecologically valid research method has 

been supported by the evolution of data-collection tools and utilities. 

Hardware and software that required the space of a proper building decades 

ago has equal data-logging and processing power as a modern laptop with a 

multi-channel , multi-mode (digital/analogue) data acquisition card . The 

relative cost has also shrunk in proportion to size . Sensors and transducers 

have also evolved in terms of precision , reliability and cost. Intrusion, which is 

critical when sensors are used on human subjects, has been minimised too. 

More data can be collected with improved precision , validity and reliability . 

However, beyond the hardware-issues, approaches where "the field is the 

laboratory" remain financially demanding . Long working hours are required for 

the support of the logistics and researchers have to be flexible and ready to 

intervene when problems. As naturalistic and on-the-road studies tend be 

prolonged, staff-time adds up to a significant number and, consequently, cost. 

In addition, there is a level of detail in driver research (neurophysiology/

psychology) , where despite technological developments, data of this quality 

cannot be collected in naturalistic environments. There are some attempts 

however to use low-intrusion methods in closed-road studies (Pettit, Clarion , 

Ramon, & Collet, 2009). Still , though, the introduction of more intrusive 

methods like electroencephalography (EEG) and functional magnetic 

resonance imaging (fMRI) out of the lab environment has not materialised and 
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even low-intrusion methods like electro-dermal activity (EDA) measurement 

have been applied in closed environments only. 

At the same time there is an opposite movement where rapidly advancing 

simulation technology aspires to turn the laboratory into a realistic "field " 

environment. The fidelity of driver simulators is advancing quickly and for 

many types of driver research the necessary realism can be found there. 

However, unlike the technical equipment for vehicle instrumentation, there 

has not been so big a reduction in the costs associated with purchasing , 

running and maintaining high-fidelity simulators. Anything above a fixed-base, 

standard-controls, wide-screen simulator requires technical staff dedicated to 

doing the required programming, maintaining its components and supervising 

its operation during studies. 

In parallel , the depth of accident data accessible is deepening. The 

developments from the early road accident investigation up to the 

microscopic, on-the-spot contemporary studies show an evolution of methods. 

While the breadth of data remains large, with datasets now including 

thousands of accident cases, the depth goes deeper and deeper and more 

detail is possible. However, as was discussed in the road accident study 

chapter, the necessary depth and type of data required for contributions to the 

specification of safety systems is still misSing. It is a technically demanding 

and time consuming procedure to extract "black-box" data (precise history of 

inputs on controls, vehicle speed, lateral acceleration etc) from a crashed 

vehicle, and authorised in special cases only. However, the technology is 

there, it has recently been standardised (IEEE, 2009), and when the 

stake holders come to an agreement over the particulars of the related 
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legislation, accident studies will be taken to another level. Accident 

reconstructions will be less relied on indirect transformation estimates and 

witness' perception for vehicle velocities, impact forces, driver reactions etc. 

Precise values of vehicle dynamics and driver inputs will be available instead. 

Then, studies like the one presented here (chapter 7) will contribute not only 

as a validating benchmark for the empirical studies and the general 

framework within which the related technology will come into effect, but also 

as a source of data directly useful to the design of the technology itself. A lot 

of potential arises in this area. 

Accident Study 

As mentioned in the relevant chapter, due to its methodological nature, 

results from the accident study are not directly comparable with those from 

the other studies. Nevertheless, the study provided the context within which 

the thesis is positioned. The need for technologies alternative to the currently 

proposed adaptive and existing brake assist systems was concluded. In 

addition , results from this study validated the design of the emergency test as 

well as drivers' reaction during the test. 

The most microscopic data available, those of driver reactions during 

accident occurrence, showed that in about 50% of cases driver'S reaction did 

not include a significant input to the brake pedal. In the relevant cases -

where failure to stop the vehicle promptly was the main factor in the accident 

- steering inputs were extremely rare too . So, essentially this limits the 

maximum effectiveness of any system based on the input on the brake pedal 

by about 50%. On the other hand, accident cases showed interesting 

similarity to the instances when the adaptive system was "activated" during 
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the simulation study (chapter 7) . Junction overshooting and rear-end shunts 

were among the most common type of collisions and these correspond to the 

controlled junction instances on the public road and emergency test on the 

closed road when the system was "engaged". 

Finally, the accident study suggested that many factors contribute to 

longitudinal-control failures and accidents which most of the current 

technologies fail to address. These factors can be grouped into two 

categories : cognitive failures - where drivers are distracted, fail to look or to 

see something in the road environment - and emotional failures - where 

drivers are stressed, panicked or uneasy. At the moment, there is negligible 

technology addressing such issues. 

Naturalistic Study 

The naturalistic study in chapter 5 provided the quantitative characteristics 

of "normal braking" , validated the results of the controlled public road study 

and complemented the previous driver braking studies. The "anthropometrics" 

of brake-pedal operation in terms of force and pedal displacement were 

provided and normal braking can statistically be defined as the range between 

5th and 95th percentile pedal force and displacement. This range was 

compared to the one provided by the controlled public road study (chapter 6) 

and showed very similar characteristics , thus validating it. Further, the study 

was the most extensive in time and depth of all the driver braking studies 

quoted in this thesis. 

This was not without issues and limitations though . First, by definition, a 

naturalistic study has no control over the type of trips and distance the drivers 
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travel. The accompanied ecological validity of such a study though limits the 

capability to identify what sort of roads each participant used . Therefore , the 

sort of research questions that can be addressed with such a study-design is 

limited in this aspect. Indirectly, this can be balanced through the employment 

of a controlled study like the one described in this thesis, but only if the 

general profile of the target variables is similar and the results transferable 

between the two studies. This problem is cured if the study-vehicle is 

equipped with a Global Positioning System (GPS) device and its position 

monitored constantly. Such a solution was beyond financial boundaries of the 

current project, however it may well be included in future studies. Finally, the 

study could benefit from an increase in sample and vehicle-fleet size. There 

can be no certain satisfactory number, however in this case "more is more". A 

better funded study could employ more participants, more instrumented 

vehicles and, potentially, the instrumentation of the participants' own vehicles. 

Such a design would further increase the external validity of the study and 

allow for the valid comparison of sub-groups within the sample (gender, level 

of experience, age etc). 

Overall though , face validity for the current study was high and included all 

levels of processes according to the driving models described in the early 

chapters of the thesis (pp 17 -32) . Looking at table 2, which combines the two 

major vectors of the relative models, for example, most of the spectrum of 

processes, decisions and actions was included in the study. Participants did 

not decide on the vehicle they would drive (knowledge - strategic) , but they 

probably knew the type of trips they would drive before entering the vehicle. 

Some of them consciously discussed whether to change the route when 
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facing traffic along the way (knowledge - tactical) . Others had to think to 

select reverse, because they were accustomed to a different layout of the 

gear-selection (knowledge - operational) . Some participants encountered 

roadwork diversions and followed them (rule-tactical) and most applied brakes 

prompted by traffic lights or give-way signs at some point (rule-operational) . 

Some of the more experienced drivers in the area followed the works 

diversions without having to pay attention to the signage, as they had been 

exposed to the particular road environment repeatedly during that period (skill 

- tactical) . Finally, in most cases, basic vehicle control was an automatic 

process, and did not require conscious thinking (skill - operational) . 

Controlled Road Study 

The controlled studies on public and closed roads had to be well planned 

and executed to provide meaningful results within the time and resource 

constrains of a PhD project. The sample of drivers employed was of 

substantial size and was representative of the local driver population . Multiple 

nationalities, ethnic backgrounds , ages , lengths of mileage, experience and 

people-sizes were included. The apparatus worked with precision and 

reliability up to the expected standards. The validity of the design for the 

emergency test was supported both objectively by the achieved decelerations 

of the auto-brake trailer as well as subjectively by the participants after the 

test. The results supported arguments regarding the second and third 

research questions, as these were set at the early part of this Thesis , and set 

the foundations for the study (system simulation) that addressed the fourth 

question. 
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In contrast to previous results reported by Kassaagi (2001) , throttle-off 

exhibited comparatively better properties than brake-pedal force or initial 

displacement in distinguishing between non-emergency and emergency 

braking inputs. However, that study employed slightly different methods to 

extract the relevant information (force was estimated from the pressure in the 

brake cylinder and pedal position was measured directly through the CAN bus 

of the vehicle) and instead of data from actual braking on public roads, used 

data from the test track as non-emergency/normal braking . This bias is 

obvious on table 40 in chapter 5, where the respective statistic parameters 

from the most important driver-braking studies are presented . 

Probably the most important result in the thesis is the relationship of 

brake-pedal force between normal/non-emergency and emergency braking . 

The shape of the two distributions is such , that unlike other variables, it allows 

for a successful model and algorithm for their relationship to be developed. 

And this lead to the "System Simulation" chapter that followed . 

Of course, the study would have benefited from a few more resources, as 

video had to be used to monitor brake-pedal position and displacement and 

the sampling frequency of all sensors was limited to 50Hz by the data 

acquisition module. Better resourced studies could employ special high

frequency data acquisition equipment and/or a direct link to the vehicle central 

processing unit could be established. In a contemporary vehicle , this would 

provide pedal-position data directly and enhance precision . 
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System Simulation Study 

The system simulation study acted as an example application and a test

bench for the exploitability of the results in the previous study. Simulation of 

system function during actual journeys, showed good results avoiding 

activation during non-emergency braking and identifying the need to stop the 

vehicle on the closed track. Equally significant was the ability it demonstrated 

to engage during rapid stops at controlled traffic junctions on public roads. In 

fact, if the instantaneous time-headway is taken into account, it identified most 

emergency-braking inputs during the emergency test on the closed track as 

well. This finding suggests improved effectiveness of an integrated system , 

combining pedal-inputs with time-headwayfTTC information. For example, if 

cutting point was set at about 2.5s for time-headway in the simulations in 

chapter 7, then the success rate for identification of emergency and normal

braking inputs would approach 100%. Of course, such approach would further 

limit the number of eligible cases to be included in the study. 

As mentioned on several occasions in this manuscript, the simulation 

study in chapter 7 is both a test and an example of a possible system 

articulation. Although the heart of the system, the relationship-algorithms, 

remains constant, the surrounding functions (e.g. initial threshold , initial idle 

period , minimum force-inputs taken into account, etc) allow for further 

changes and testing . Also , the combination of multiple variable histories might 

lead to even more accurate identification of emergency inputs ; or it might not. 

There is plenty of room left for further research in this area. 

Furthermore, even if this was the best possible system specification , it has 

only been tested on a virtual setting , in which the system was not 
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operational. Thus, the method employed did not allow for examination of 

feedback issues and behavioural adaptation of the human operator in the long 

term (Howarth , 1987). Since the participants had no cues of the systems 

intervention, when this was virtually engaged, there are no means to tell 

whether the actual system could be associated with behavioural side-effects, 

untraceable by the current method used. Most of the work presented in this 

Thesis is focused on the Driver-Vehicle side of the interaction loop and little is 

implied about the Vehicle-Driver side of the loop. 

However, by definition even a conventional Brake-Assist is a system that 

is not expected to intervene regularly - in most cases it rarely intervenes. 

According to Howarth (1987), the level of behavioural adaptation depends on 

how much the technology makes its presence obvious. Therefore, a system 

with rare intervention, such as Brake Assist of Stability Control , is expected to 

yield less behavioural side-effects than a system which has regular or 

continuous function , such as Headway Control systems. On a similar line, 

some researchers suggest a distinction between "above" and "below the line" 

systems (Young, Stanton & Harris, 2007). 

On a more theoretical level , normal driver braking was defined statistically 

and distinguished form emergency braking . This is an important advancement 

compared with previous approaches (Kassaagi , 2001 ;Bouslimi , 2005) where 

"normal" is considered as the sum of test-track braking outside the 

emergency test or other studies that avoided providing a definition. However, 

the wide variety of braking instants grouped under the umbrella of normal 

braking , might include sub-groups of braking inputs with different intentions 

behind them. For example, vehicle speed or desired deceleration might be 
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associated with certain driver-braking parameters and this might open another 

opportunity for adaptive braking systems. It remains to be explored in future 

studies. 

Similarly, the issue of what emergency braking really is and what EBA and 

similar systems really refer to, has never really been addressed. The often 

quoted previous studies (e .g. Perron et aI. , 2001 ; Bouslimi , 2005; Schmitl & 

Farber, 2005) did not consider it necessary to provide a definition upon which 

they based their experiments. In the present Thesis, a definition was provided 

and formed the basis for the design of the emergency-braking test. The 

provision of a definition and the subsequent comparison of the findings 

against it, make it possible to realise that what is commonly marketed under 

the title of "Emergency Brake Assist", is actually a system (which aims at) 

identifying the intention to stop the vehicle. The element of "perceived 

obstacle" in the definition allows for the subjective nature of what an 

emergency is and what is not, under various circumstances. The objective 

parameter is the "intention to stop", irrespective of the presence of an 

imminent collision or not. Therefore, brake-assist systems essentially 

measure the "intention to stop" through the pedal-input. 

It could be argued that in practice this differentiation has not got any 

significant implications; the title does not affect the essence of things. 

However, it affects human perception of things and may lead to 

misunderstandings. Unless the differentiation is acknowledged , it is 

reasonable to question the engagement of a brake assist system , when the 

collision is otherwise avoidable. In chapter 7 for example , the simulated 

system should only be activated if a collision did take place. On contrary, 

294 



understanding that all measurements refer to the "intention to stop" the 

vehicle promptly, leads directly to the established expectancies about the 

system function : a system that augments braking torque when the driver 

perceives an emergency. 

Summary of Limitations 

The limitations of the original studies presented in the current Thesis can 

be summarised in : 

• The inability of the Accident-Study to yield data microscopic 

enough (e.g. "black-box" data) for direct comparison with the 

results from the instrumented-vehicle studies . 

• The temporal restrictions the Naturalistic Braking study to just one 

day per participant. 

• The use of a single instrumented vehicle (Ford Fiesta) and the 

inability to measure participants' braking inputs in their own 

vehicles (applies to both the Naturalistic and the Controlled-Road 

Study). 

• The restricted speed during the emergency braking study (limited 

to 30mph/50kmh) . 

• The limited number of meaningful simulations (25) from the pool 

of participants in the controlled-road study. 

• The weakness of the proposed solution/system to adapt to drivers 

who do not make significant use of the brake-pedal. 
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Conclusions and Future Work 

In summary, the results of the studies provided evidence in support of 4 

main arguments: 

1. There are differences between normal and emergency braking 

inputs in terms of the throttle-release rate, the initial displacement of 

the brake pedal and force applied to it. 

2 . At the same time, there are relationships between normal and 

emergency braking parameters and these can be modelled 

systematically. 

3. These relationships can be integrated into an adaptive brake assist 

system and further improve its success rate in identifying whether 

an input is normal or emergency - braking . 

4 . Such a system could contribute to the reduction of certain types of 

accidents ; however, there is a variety of factors contributing to 

these accidents that is addressed neither by this system nor by any 

other known active safety systems. 

The future of vehicle braking and control ergonomics: systems integration 

The work presented in this thesis should be viewed as the beginning of a 

research area rather than as a piece of work that completes one. The 

proposed system remains to be prototyped and tested in the field through 

further field operational trials and naturalistic studies. Such studies would 

benefit from extra resources compared to the present studies, as discussed 

earlier. Additional/alternative variations of the system could be developed and 

tested as well ; nonetheless, the fact remains that any implementation of the 
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findings would require extensive testing before the solution is distributed 

widely. 

Adaptive brake assist can also be integrated with ACC, Collision Mitigation 

Systems and even passive safety systems (e.g. seat-belt pretensioners). 

Such an approach would lead to a more spherical solution against the 

consequences of longitudinal control failures and collisions. During the system 

simulation study, it became obvious that people who adopted long headways 

to the vehicle in front, had too gentle inputs for the system to intervene. On 

the other hand, Pauwelussen & Minderhoud, M. (2008) report that drivers 

prefer to deactivate ACC during low-speed driving (speeds between 20-

40kmh) . When their limits are exceeded or they have been deactivated by the 

driver, headway-control systems need a successful braking-assist system to 

reduce stopping distances. A (adaptive) braking assist system can be more 

successful if it incorporates headway-data. The combination of the above 

results suggests an opportunity for a reduction in rear shunts, if the two 

systems are integrated. 

Integration, nevertheless, is not an easy process (Engstrbm, Arfwidsson , 

Amditis, Andreone, Bengler, Cacciabue, Eschler, Nathan & Janssen, 2004) . 

Possible conflicts between system functions, interventions and effects on the 

human operator/driver are the main issues to deal with . There are some 

research projects dealing with these issues and suggesting some solutions, 

albeit limited to adaptive prioritisation of IVIS systems (Amditis, Kussmann , 

Polychonopoulos & Andreone, 2006) . In the case of adaptive brake assist 

systems and integration with headway-control systems, it remains to be 
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investigated what the fine details of such integration are and how the relevant 

integrated systems should be specified . 

Finally, on a more theoretical level, the results presented in the present 

Thesis exhibited the benefits of human-centred philosophy and adaptive 

technology employment within this context. An adaptive brake assist system 

was proposed and a method to continuously adapt its trigger in accordance to 

the previous inputs by the operator/driver. Similar principles could be applied 

for the development of other vehicle control systems: steering , stability 

control , lane change support etc. Steering response could adapt to the 

steering style of the driver, depending how sharp or gentle her/his input is in 

general. In parallel, lane departure warning and/or lane change support 

systems could adapt the alarm-timing and the level of interference depending 

on the driving style of the driver. The same adaptive principle can be 

employed for the specification of future stability control systems. In such case, 

the system will decrease or increase the envelope of its interference 

depending on how the instantaneous vehicle-dynamics compare to the 

previous history with the particular driver on-board. 

The same philosophy can be applied and tested in applications outside the 

current framework. It has already been suggested as beneficial against 

automation-related issues (Steinhauser, Pavlas, & Hancock, Spring 2009), 

however there is room for development of more direct and quantitative 

solutions in many areas. The human operator has been adapting to the 

technical environment for some time now. At best, it has been considered 

sufficient to accommodate individual differences under a single 

"representative" average. It is time to realise the potential for actively adapting 
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technologies . It is time for the technical environment to start adapting to the 

human operator. 
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Appendix A: The design of the trailer 

Project title: Quantification of driver emergency braking 

Proposal Number: R07 -P114 

Equipment Specification 

Part 1: the trailer 

Nick Gkikas 
January 2008 

323 



This document describes the proposed design for the trailer to be used in the 
main experiment. It aims at providing a guide to any prospective fabricators 
and documents the necessary details to serve the purpose of the study. The 
design is heavily based on the successful design of the trailer used in a 
similar study in France (Bouslimi, Kassaagi , Lourdeaux, & Fuchs, 2005; 
Perron , Kassaagi , & Brissart, 2001) with necessary changes to minimise risk 
and keep cost at reasonable levels. Before going down to the details, it is 
useful to give a broad description of the study it is designed to serve. 

The study 

0000000000000000000000 

Inslrumented DD~ It_~ Towing DD~ -- ~ ~ ~~ ~ 
0000000000000000000000 

Figure 1: The study design 

The study is expected to take place in a closed road track (old airfield) . 
Participants drive the instrumented vehicle to the test track - normal 
braking measurement. 
In the track, they are instructed to follow the leading vehicle which tows the 
trailer as close as they feel comfortable. The leading vehicle accelerates to 
30mph when the trailer is released by the lead driver. 

The trailer 

To serve the purpose of the study a lightweight trailer needs to be 
manufactured. Figures 2 and 3 present the particular dimensions of it. Its 
base is an aluminium sheet across which aluminium triangles are welded to 
support another aluminium plate - where card box is attached (grey area in 
figures 2, 3) . The main aluminium sheet is cut open in three points for the 
wheels to fit in as indicated on figure 2. Additional brackets are bolted on the 
sheet, so that the wheels can be easily mounted and removed . 20" wheels 
and V-brake mechanisms are to be mounted when the aluminium sheets are 
cut and welded together according to the designs in figures 2 and 3. An 
additional hole is to be drilled right in front of the front wheel , for the tow
release mechanism to be fitted (see figure 4) . 
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Figure 3: Side view of trailer 
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Easy mount bracket 

Front hole 
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Appendix B: Printed materials used during the studies 

Participant demographics sheet 

Date of session -------------------------
Participant Number ___________ _ 

Gender -------------------------------
Age ____________________________ ___ 

Height ______________ _ 

Weight _______________ _ 

Ethnicity _______________ _ 

Driving Experience __________ _ 

Annual Mileage ______________________ _ 

Licence Points -------------------------

Current Vehicle -------------------------
Desirable Vehicle ____________________ ___ 
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Generic health screen for study volunteers 

It is important that volunteers participating in research studies are currently in 
good health and have had no significant medical problems in the past. This is 
to ensure their own continuing well-being and to avoid the possibility of 
individual health issues confounding study outcomes. 

Please complete the questions in this brief questionnaire to confirm 
fitness to participate: 

If YES to any question, please describe briefly in the spaces provided 
(eg to confirm problem waslis short-lived, insignificant or well 
controlled. ) 

1 At present, do you have any health problem for 
which you are: (Please tick as appropriate) 

(a) on medication, prescribed or otherwise Yes § No § 
(b) attending your general practitioner Yes No 
(c) on a hospital waiting list Yes No 

2 In the past two years, have you had any illness which required you 
to: (Please tick as 

(a) consult your GP 
(b) attend a hospital outpatient department 
(c) be admitted to hospital 

3 Have you ever had any of the following : 
(a) Convulsions/epilepsy 
(b) Asthma 
(c) Eczema 
(d) Diabetes 
(e) A blood disorder 
(f) Head injury 
(g) Digestive problems 
(h) Heart problems 
(i) Problems with bones or joints 
Ol Disturbance of balance / co-ordination 
(k) Numbness in hands or feet 
(I) Disturbance of vision 
(m) Ear / hearing problems 
(n) Thyroid problems 
(0) Kidney or liver problems 
(p) Allergy to nuts 
(q) Migraines 
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(Please tick as appropriate) 

Yes No 
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Yes No 
Yes No 
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Yes No 
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Yes No 
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Optional questions for female participants 
(a) are your periods normal/regular? Yes No 1----1 

(b) are you on "the pill"? Yes No 
(c) could you be pregnant? Yes No 

t-------I 
(d) are you taking hormone replacement Yes No 
therapy (HRT)? 

Thank you for your co-operation! 
Date of Birth: DI M IY 

Declaration Of Consent 

I .................................. .. ... .......................... .. ... hereby volunteer to be an 
experimental participant in a driver ergonomics experiment during the period 
of / on 
............. ..... .. .. ....................... ..... ... ....................................... .. .... .......... 200 ... .. 

My replies to the above questions are correct to the best of my belief and I 
understand that they will be treated with the strictest confidence by the 
experimenter. The purpose of the experiment has been explained by the 
experimenter and I understand what will be required of me. 

I understand that I may withdraw from the experiment at any time and that I 
am under no obligation to give reasons for withdrawal or attend again for 
experimentation . I also understand that the experimenter is free to withdraw 
me from experimentation at any time. 

I undertake to obey the laboratory regulations and the instructions of the 
experimenter regarding safety. participant only to my right to withdraw as 
declared above. 

Signature of Participant ........ ... .... ... ..... .. ... ............... ... ......... Date 

Signature of Experimenter ... ..... ....... ..... .. ... .. ... ..... .. ..... .... Date 
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- - - - - - - - - - - - - - - ---

General Driver Application Form (for driving University 
vehicles) 

• • Loughborough 
., University 

GENERAL DRIVER APPLICATION FORM 

IMPORTANT 

It is an offence under the Road Traffic Act to make a false statement or withhold any material 
information . Grea t care must be taken to ensure that this form is completed correctly in every 
particular detail. 

A copy ofyourUK driving licence in card and paperform MUST be aIIa ched to this form. 

!FULL NAME: 

!ADDRESS: 

r EL NO: I 
IDATE OF BIRTH: 

!OCCUPATION : 

~ listful~time and any part· time vuoll<) 

IDEPAATMENT: 

PLEASE ANSWER "YES' OR " NO· AS APPLICABLE · A DASH IS NOT ACCEPTABLE . 

\lVe you suffering fro m any physical defecl, infirmity, impaired v ision or hea ring? 
- - -

If "YEs", please give full details (including medicatio n) . 

lOo you hold a full UK Dri.'ing Ucenee? 

IF or how long? 
~ype/c lass af vehicle s. 

lOo you have any motoring convictions? 
IState conviction code(s) noted on drivi ng licence. 

IDate of conviction. I 
IFine imp ased ~ 
Give full details of offence. 

yrs 

Page 1of2 

330 



Have you ever had your licence suspended or withdrawn? 

If "YES", please give full details. 

Have you been involved in an accident within the last 3 years? 

If 'YES", please give full detai ls and costs incurred, 

Has any company or underwriter in respect of any motor insurance proposed or effected t:¥ 
you oronyou_r~be~h_a~l~t __________ __ 

- declined such a proposal? 

- cancelled or refused to renew a policy? 

- increased the premium or imposed special conditions? 

- required you to bear any part of any loss? 

If ''YES'', please gwe detaifs. 

Date: Date: 

Signature of Applicant Signature of Head of Departme-=-n~t ______________ _ 

Applicant: A copy of your driving licence in card and paper fonn MUST be aHached . 

Send completed form to Hilen Palel. Insurance Officer. Admin. 1. Sir Amold Hall Building. 

Updated 6 July 2007 
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Appendix C: the basic MatLab code for system 

clc 

X=MeanForce ; 
n=length (X) ; 
Tr_ keep=zeros(n , l) ; 
B= zeros(n , l) ; 

Tr=20 . 9392 ; 

for cQunter=l : n 

simulation 

X_mean=sum(X(l :counter))/length(X(l : counter)) ; 

Tr 1=O. 2646435288626*X mean A 2- 2 . 43381551641*X mean+22 . 90 ; - - -
%Tr= (Tr+Tr_ l) 12 ; 
Tr_ keep(counter)=Tr_l ; 
end 

cr i ter i a =+ (B>Tr_ keep) ; 
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