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Abstract 

The aim of this research was to look at the strategies used by children when doing 

mental addition problems of the varying levels of complexity. An authentic arithmetic 

task was designed for use in a school environment. The central aim was to study 

developing fluency in mental arithmetic as achieved through recruiting various 

strategies into solving more complex problems than those studied by existing 

research. The nature of mental addition strategies was inferred from children's 

solution times when doing sequences of sums. Three studies were carried out on 7-11 

year old children from two local schools. The first study examined children's 

strategies at simple single-digit sums (of the type a +b), fmding a dominance of 

counting methods and some emerging number-fact knowledge. This study also 

explored performance on more complex decade sums (of the type ab+c) and 

performance on three-digit serial addition sums (a+b+c). Both arrangements were 

followed up in more detail in the two subsequent studies. In the second study, the aim 

was to find out how children would use their existing strategic knowledge in 

conjunction with decomposition when required to do more complex decade sums. The 

results showed that children were capable of using decomposition-based strategies 

when required but only on certain types of sums. The third study looked at children's 

addend-reordering strategies when doing three-digit serial addition. Results suggested 

that although children were able to make strategic use of their existing number 

knowledge, they were reluctant to approach sums differently and relied primarily on 

counting methods. The overall pattern of results suggested slow progress towards 

versatile forms of mental addition and suggested there would be value in addressing 

this within curriculum design. 

Keywords: 

children's addition strategies; mental arithmetic; counting; decomposition; number

facts; solution times 
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Chapter 1 

Introduction 

How we acquire, understand and use mathematical concepts is crucial to our 

numerical competence, it relates to many aspects of everyday life. Research in this 

area is of both theoretical and practical significance. Numerical ability, as exemplified 

by the particular skill of mental arithmetic, has a very high cultural status in 

developed societies. But what does having this ability mean? How do we do 

arithmetic in our head? What computational strategies do we use? More particularly, 

how do we gain competence at mental arithmetic? What motivates learners to find 

new strategies? 

The first three chapters of this thesis provide a review of existing mental arithmetic 

research. In the present chapter I consider the topical status of mental arithmetic in 

popular imagination. In Chapter 2 I then go on to look at the history of this area as a 

research problem, and the theoretical traditions within which it has been studied. 

Chapter 2 also looks at the emergence of mental/cognitive arithmetic as a disciplinary 

topic in its own right. In Chapter 3 I further focus on the theme of cognitive research 

in arithmetic processing. The studies reviewed include some research done with 

adults, as well as developmental research. Chapter 4 examines the methodology used 

in mental arithmetic research. In particular, I would like to highlight what I see as the 

limitations of the current methodology employed in developmental mental arithmetic 

research. In Chapters 5, 6, and 7 I discuss the results from my own research projects. 

Chapter 8 is the conclusion to this thesis. 

1. The Current Status of Mental Arithmetic 

In this chapter, my aim is to sketch the social and political background of research in 

the area of mental arithmetic. 
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1. 1 Popular Opinion on Mental Aritlunetic 

Mental arithmetic is an important everyday skill and a major aspect of an elementary 

education. Mental arithmetic is woven into our everyday lives. Arithmetic skills are 

required for such everyday tasks as handling money to buy lunch, doing grocery 

shopping, cooking etc. Adults regularly encounter mental arithmetic skills when doing 

building and construction tasks like DIY (do-it-yourself) or playing games like darts. 

Early on, children utilise arithmetic skills when taking part in "fun" activities such as 

playing board games like Monopoly, or even Pokemon. It provides children with the 

necessary skills for later mathematics and science education. Recently, there has been 

much emphasis on the mental arithmetic skills of children, or rather, there has been 

lament for their dismal lack of them. The national concern with mental arithmetic has 

preoccupied both the government and schools and this has been fuelled by the press, 

especially since children in the Far East have been shown to outperform those in the 

UK and the US (Geary, 1994; Stevenson, Chen and Lee; 1993). National concern for 

numeracy skills in general is evident in the formation of the National Numeracy 

Project, with its subsequent numeracy hour (National Numeracy Project, 1997, 1998). 

Numeracy skills are essential if we are to fully participate in the modern world. But 

numeracy skills, especially complex numeracy skills, are also cognitively demanding 

and are therefore difficult to master. Most people live in cultures where (basic) 

numeracy is central to their everyday lives e. g. as a result of the evolution of currency 

and the need to deal with quantities for even the simplest trading transactions. In fact, 

arithmetic is so central to our everyday lives that, even where it is not taught, people 

(including children) will invent their own ways of dealing with numbers. For 

example, Carraher, Carraher and Schliemann (1985) looked at child street vendors in 

Brazil and found that they had developed their own mathematical practices for dealing 

with currency conversions, adding/ taking away large quantities of goods etc. If 

numeracy is so valuable a skill that we create ways of dealing with it even when it is 

not formally taught, then it is even more valuable for an increasingly technologically 

advanced society. Moving on from such street maths, as society becomes more 
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technologically advanced, its members need evermore advanced numeracy skills. 

Thus any culture with a formal education system includes numeracy as part of its 

everyday curriculum e. g. as one of the three 'r's (reading, writing and arithmetic). 

Compared to other subjects children learn in school, the area of numerical ability is 

unique. This is because the rules of arithmetic are generative, they allow any infinite 

number of sums to be obtained with knowledge of the rules and basic facts. It is an 

area of knowledge in which all items of knowledge can be retrieved from memory or 

computed due to their relationship with each other. All arithmetic facts have well

defined relationships to each other, something which does not hold true for most other 

disciplines. In geography, for example, we cannot "compute the capital of Guinea 

from first principles, nor derive it from the capital of Mali" (Butterworth, 1995). 

These very features also make arithmetic a cognitively intense activity. Yet, in spite 

of the mental nature of arithmetic activity and what it involves, it is not an exclusively 

private cognitive phenomenon. Arithmetic incorporates both mental and material 

aspects. Numerical ability is also about the artefacts and technologies we use when we 

interact with numbers. Because of the everyday nature of numerical tasks (e. g. 

buying and selling), doing arithmetic does not mean that the learner is isolated from 

the external world. 

A significant consequence of this has been that numeracy standards have become a 

victim of intense scrutiny. This is not a new preoccupation, officials have deplored 

what they perceived as falling levels of numeracy since at least the middle of the last 

century (when they were supposedly high)! The topic of mental arithmetic has 

become a matter for fierce debate, an issue guaranteed to raise hackles and cause 

controversy. Although central to peoples' lives, this is an issue for debate. 

Distinguished commentators in this area hold differing views on how children should 

be taught the important skill of mental arithmetic. In the following passage (taken 

from a newspaper report) Professor David Reynolds of the Numeracy Task Force 

highlights the government-backed programme for the teaching of mental arithmetic

seen as the solution to falling standards in numeracy. His status as a high profile 
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policy adviser means that his opinions on this matter are important since they will 

undoubtedly influence policy. 

"A report by the task force ... set up immediately after the general election, will 

call for the memorising of tables, a daily dose of 'mental maths' and an 

emphasis on whole-class teaching to ensure all children progress at a 

predetermined pace. 

In 40 per cent of the [National Numeracy] project's schools the results of 11-

year-olds leapt by 15 per cent after a regime of mental arithmetic was 

introduced." 

(The Observer, 18th January 1998) 

Journalists are aware of the significance of efficient numeracy skills and that research 

is needed in order to successfully execute high-profile progranunes such as the 

Numeracy Project. Their views tend to reflect popular opinion. They are likely to 

influence public debate by alerting readers to the political motives for the necessity of 

such progranunes since there is a competitive element behind such government-led 

drives i. e. in order to get ahead in a hi-tech world we need to be better than, for 

example, the Germans or the Japanese. 

The setting up of the Numeracy Project shows that the government realises that there 

is a problem, and is keen on remedying the situation by doing something to raise 

numeracy standards. However, this raises issues regarding how this should be 

achieved and how it should be taught. For example, should it involve ritualistic 

methods i. e. "know by heart" which bring to mind rote-methods of teaching and the 

competitive elements underlying this need to "know by heart". 

"The National Numeracy Project states, among other things, that numerate 

pupils, 'know by heart number facts such as number bonds, multiplication 

tables, doubles and halves.' 
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The task force has noted better results in countries such as Hungary and 

Switzerland which concentrate on mental arithmetic for the first few years of 

primary school, delaying written methods of calculation until pupils are eight 

or nine." 

John Carve!, Education Editor 

(The Guardian, 22"d January 1998) 

But not everyone is in accord as to how these numeracy skills should be taught. In an 

interview for The Observer, Director of the Quality in Education Centre at the 

University of Strathclyde, John Macbeath, values the significance of being numerate 

but seems to be unsure about 'traditional' (such as those hinted at above) methods of 

teaching it. 

"Personally I am all for numeracy and I am a whiz at mental arithmetic. I 

know my tables backwards and forwards because they were belted into me by 

an old sadist whose methods worked for a fast learner and devout coward like 

myself, but it terrified about a fifth of the class into lifelong number phobics." 

John Macbeath, Director of the Quality in Education Centre at the University 

of Strathclyde 

(The Observer, 22nd February 1998) 

His comments suggest that he is also aware that the process of learning arithmetic, if 

not managed sensitively, can sometimes be a traumatic experience that can turn 

people off mathematics for life. 

Of course, the lofty status accorded to mental arithmetic skill in our society (as well as 

the various methods implemented for its teaching) is itself a matter for discord. In 
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addition, there is a possible emotionally affective element regarding the acquisition of 

arithmetic skills and the quality of that experience i. e. is it somehow "emotionally 

deadening" to learn these skills by rote, as pointed out above by John Macbeath. Or 

does the end result justify the means as Heinz Wolff claims. There seems to be 

discontinuity about the experience of learning arithmetic. Below Heinz Wolff scoffs 

at the notion that numeracy skills are unique and a sign of genius and suggests that 

anyone can master them with enough practice. He also suggests that the only way of 

learning such skills is through rote practice and, by making the analogy between 

arithmetic and other relatively difficult activities, claims that even if the actual 

method may not be enjoyable the end result will be worth the effort. 

"Getting the right answer to 7x8 instantly, a feat which recently got my picture 

in the Times, is not the measure of a mathematical genius. It is merely a 

tribute to the fact that I have learnt the result as a concept, just as I can 

recognise a horse without performing a zoological analysis. Detractors of rote 

learning forget the pleasure to be derived from doing something effortlessly, 

like skipping or roller-blading." 

(Heinz Wolff, in Frontiers 1998) 

Raising another issue in mathematical cognition, Stanislas Dehaene points out the 

significant practical implications of calculators in our everyday lives, suggesting that 

certain arithmetic skills are likely to become obsolete in the future, but that this does 

not necessarily imply that arithmetic skills in general will no longer be essential. He 

goes on to argue that mental arithmetic is actually advantageous to our mathematical 

knowledge, so the very process of doing mental arithmetic is beneficial to us. 

"There is a general trend in mathematics towards inventing tools that 

discharge our brains from tedious work. Learning long division is doomed to 

disappear. The meaning behind calculations is more important than the 

mechanics .. .I am not saying that we should stop teaching arithmetic at school. 
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Mental manipulation of numbers is an excellent exercise that enhances 

mathematical intuition." 

(Stanislas Dehaene, The Guardian 1998) 

Dehaene's comments remind us of the dynamic nature of numeracy skills. By raising 

the increasing significance of calculators in our dealings with numeracy, he sums up 

the importance of being computationally numerate and that those skills may be more 

important than ever before. We need to be aware of what we are doing when using a 

calculator. 

1. 2 The Preoccupation with Numeracy Standards 

Section 1. 1 reminded us that, in the public arena, debate on numeracy standards is 

lively and brimming with differing personal opinions. Such public debate influences 

policy. It also shows that there are contradictory opinions on precisely how to 

improve these numeracy skills. Still, at the forefront of government led initiatives 

such as the National Numeracy Project is the view that children must "learn their 

arithmetic facts", master the simple number combinations so they can be recalled 

fluently and accurately. Regardless of the diversity of views in this area, the general 

consensus is that competent number fact knowledge is still highly valued and the 

governments in most Western countries are evermore concerned with raising what 

they perceive as falling standards. 

Perhaps it is our popular belief in differential numerical ability that has renewed 

enthusiasm for somewhat mechanical teaching methods. This drive to raise falling 

standards has gained in intensity over the last few years (1997 onwards). Yet it is also 

likely to be the source of some tension due to the deep-seated belief, so thoroughly 

embedded in our culture, that mental arithmetic is "difficult" and that although some 

people will be good at arithmetic (hence the popular aphorism about "having a head 

for numbers"), most will not. This is the point that Heinz Wolff (see above) was 

stressing. It is as if we are aiming for an ideal perfect mastery of arithmetic facts that 
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at the same time we know to be difficult to achieve. Possibly this may be why those 

who advocate rote methods of teaching arithmetic facts see it as such a popular 

remedy for dealing with this problem. Rote learning is essentially about committing 

facts (number facts in mental arithmetic) to memory so that they can be accurately 

retrieved at any time and so it is seen by some as the 'perfect' solution. This 

widespread belief that some people will be better at arithmetic than others and will 

always remain so reinforces the temptation to use drill-based methods. The view that 

mental arithmetic is inherently difficult is what may sometimes lead to educationalists 

and policy-advisers advocating blind rote methods in an attempt to mitigate this lack 

of confidence in our mental arithmetic skills. 

Concern with this perceived lack of arithmetic ability is used to imply the "failure" of 

modern methods of schooling and to justify decisions to revert back to old-fashioned 

rote-methods that, in retrospect, are seen as having been more efficient somehow. It 

may be that such concerns are justified. After all number fact knowledge may only be 

a small component of more complex numerical skills, but it is undeniably a critical 

foundation for higher-level numerical problem-solving abilities. While this may be 

true, research suggests that extensive mastery of number facts (especially 

multiplication facts) is a rare occurrence. After years of classroom drill, university 

students still have relatively high error rates (near 30%) on certain number 

combinations such as 4x8 and 6x9 (Campbell and Graham, 1985). This suggests that 

even implementation of drill/rote/practice methods may fail to achieve 'perfect' 

mastery of number facts. However, even at younger ages errors are systematic rather 

than random thus suggesting that some problems are inherently more difficult than 

others and so harder to master. Even adults frequently use multiple strategies to solve 

simple number combinations instead of relying solely on retrieval from memory. 

Therefore it is clear that competence involves going beyond number facts. It is not 

enough for children to have good mastery over the basic number facts themselves. 

Does improvement in arithmetic skills only involve rote learnt facts? Most adults 

probably use flexible strategies to manage and generate their number fact knowledge 

and apply it effectively and children should be encouraged to do the same. We should 
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be looking at what good foundational skills are really about i. e. how children can use 

the foundational skills they do have effectively and strategically. Where do the 

weaknesses lie and how can this situation be made easier? For example, if confronted 

with a problem like 6+9+4 most adults could quickly come up with an answer by 

thinking strategically (6+4 = 10+9 = 19) but what about children? Children, even 

those who may otherwise be competent at number facts, may be slow at doing this. So 

it is not enough to have good number fact knowledge if it cannot be used strategically 

to make mental arithmetic easier. 

1. 3 The Debate About Mechanical Teaching Methods 

Recently, there seems to have been an increase in the trend to revert back to older 

(primitive and less optimal?) methods of teaching number facts although there are 

vehement denials by the popular press that this means a return to 

"A Victorian era when pupils spent their time chanting tables. There is no 

evidence that these old methods benefited slow learners. Professor Reynolds is 

recommending a daily maths lesson for every primary class, lasting 45-60 

minutes and ideally in the morning." (The Guardian, January 1998). 

This excerpt regarding Dr Reynolds' proposals also illustrates the ongoing tensions 

and debates in the recent press involving journalists' recognition of mental arithmetic 

as a topic of popular concern. 

Professor Reynolds seems aware of the difficulty of successfully implementing such 

government initiatives. He knows that teachers and educationalists can be uneasy 

about such schemes (sometimes rightfully so because they are often held responsible 

for any failures) and tries to offer some reassurance. But there does seem to be a move 

to "make a definitive break with progressive ideas that said children should work at 

their own pace" (The Observer, January 1998). These progressive ideas (such as 

concepts first, number facts later) are based on the constructivist view of mathematics 

education that has influenced educational practice in the West. The constructivist 
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view in education grew and developed mainly from the views of Piaget. The 

assumption behind this educational philosophy is that children are active learners and 

must construct mathematical knowledge for themselves. This will be discussed more 

thoroughly in a later chapter but the constructionist approach has come under some 

criticism recently for somehow 'failing to deliver' (Geary, 1995). 

The most recent popular consensus seems to be that we tried drill and practice 

('basics') to no avail, so we tried more concept-based approaches but that didn't work 

either. It seems to me that perhaps we now need to revert to more regimented methods 

like drill and practice (hence 'back to basics') but without all their negative 

connotations because at least they drummed in some knowledge of number facts even 

if it was only rote-learning of multiplication tables. The obvious conclusion to be 

derived from popular opinion seems to be that we should consider a return to older 

methods of drill-based rote learning but in a less draconian fashion (Isaacs and 

Carroll, 1999). So we need to retain something fairly traditional but make it richer, 

and more strategic. 

Cross-cultural comparison has sometimes been used to support a return to drill-based 

rote learning but this needs careful evaluation. Effective arithmetic teaching varies 

from one culture to the next. For example, in Japan (where numeracy standards are 

high), although teaching practice is often viewed as being somewhat generally 

regimented, teachers hold a more exploratory view regarding teaching in some areas 

of mathematics (Stigler and Perry, 1990). A lesson is likely to consider only two or 

three problems, discussing them from many angles and exploring underlying 

principles and implications whereas an American lesson emphasises accuracy and 

speed, as opposed to understanding (Resnick, 1989). Thus, we need to exercise 

caution when making such comparisons. This is not an easily solved debate, we need 

to be careful when looking at the Far East because schooling, a cultural institution, 

varies across cultures and things are not always as they may seem on the surface. 

Even in the West, traditional teaching methods are difficult to destabilise. There are 

conflicting beliefs about the nature of arithmetical expertise and the cultivation of 
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basic number fact knowledge. Ginsburg, Klein and Starkey (1998) suggest 

psychologists contributing to mathematics education should take into account the 

forces that shape education. They show how traditional conceptions of the curriculum 

can survive in textbooks and with teachers, despite changes in the thinking of 

mathematics education researchers. They also show certain basic mathematical 

understandings have been neglected as a result of teachers' resilience to change. 

Traditional educational methods are still lurking beneath the gloss of modern 

constructivist methods. 

In the face of all this concern and debate, the British government has been galvanised 

into taking critical action. It has recently agreed proposals for a National Numeracy 

Strategy that they claim is based on evidence about "what works". The Numeracy 

Task Force claim that their recommendations are based on research evidence. Brown, 

Askew, Baker, Denvir and Millett (1998) explore the extent to which this claim is 

supported. They conclude: 1) that the research findings are sometimes equivocal and 

allow differences of interpretation and admit that the complex nature of such findings 

suggests that "ministerial desires for simply telling 'what works' are unrealistic", but 

2) that there are always many practical constraints on policy which are likely to over

ride empirical evidence. 

Above I have looked at some of the issues surrounding the area of early numeracy 

skills. In light of some of the concerns regarding the teaching of these skills, educators 

have attempted to deal with the situation through a variety of methods. Everyone 

agrees that there is a genuine need to bring numeracy knowledge to children in a way 

that is inherently interesting (Isaacs and Carroll, 1999). But can we retain the 

"regimented" drill and practice that children seem to find boring? One response has 

been to design computer games. 

One example of doing this effectively is the maths education computer game Math 

Blaster (published by Davidson Knowledge Adventures). The program uses the 

sophisticated graphics and design of a conventional computer game to enliven what is 

essentially arithmetic skill practice at varying degrees of complexity. Math Blaster 
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basically involves doing calculations but in a more interesting and enriched context 

(compared to traditional drill). It illustrates how the use of cleverly glossed drill-and

practice games means mental arithmetic practice need not be a deadening experience. 

One that, John Macbeath believes terrifies less competent children into "lifelong 

number phobics". So this deals with the motivational aspects of becoming numerate 

but it is still essentially about traditional arithmetic skill i. e. basic drill and practice 

under various cosmetic guises. 

The intention of this thesis is to examine how children gain competence at mental 

arithmetic, more specifically mental addition. Considering the "knowing by heart" 

aspect of having knowledge of number facts suggests that some of it will be in the 

form of a "number fact dictionary" from which we pull out facts as and when we need 

them. But does it always have to be this way? We first need to look at what children 

do naturally (and creatively) when required to do sums and see just how foundational 

abilities can be taken forward to make their existing number knowledge work 

effectively for new problems. We also need to find out what age children recognise 

such possibilities, as well as finding out if this can be made to happen earlier. 

The aim of this chapter has been to demonstrate why numerical ability matters so 

much, not only to educators and academics but also to politicians and popular 

commentators. There has been a growth in research on children's mathematical 

development in recent years. Numerical ability is a major focus of cognitive research, 

since it has a unique inherent structure that cannot always be applied to other forms of 

knowledge. All items of numerical knowledge can be retrieved from memory or they 

can be computed. So all arithmetic facts are, in some way, related to each other. The 

area of numerical ability is of vital theoretical and practical importance. The aim of 

developmental research in this area is to further investigate the developmental trend in 

the mastery of arithmetic knowledge, from an initial reliance on procedural methods 

e. g. counting to retrieval from a network representation of arithmetic facts. 

To conclude, the extent of this public and political interest should encourage more 

psychological research on the processes underlying children's developing fluency with 
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basic computations. Arguably, there is a particular urgency for more work on the 

topic of mental arithmetic. My own research will endeavour to make more visible the 

hidden processes that underlie such computations, indicating something of their 

developmental trajectory. First it is necessary to review existing psychological 

research that has been carried out in this spirit. I turn to this in the next chapter. 
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Chapter 2 

2. Development of Research in Mental Arithmetic 

Chapter 1 was about the topical nature of mental arithmetic research and how this has 

provoked popular media, thus highlighting the need for academic research. The 

current chapter will overview the development of research in mental arithmetic. It 

encapsulates some of the psychological concerns relevant to this topic. Section 2. 1 

provides a brief historical perspective of arithmetic research in psychology. In 

Sections 2. 2, 2. 3, and 2. 4, I examine the research traditions within which arithmetic 

has been studied from its roots in Thorndike's behaviourist view on arithmetic to the 

development of the current cognitive tradition of mental arithmetic research. In 2. 5 I 

look at the tradition of cultural research in this area. In that section, I begin by 

differentiating between cultural psychological and traditional cross-cultural research 

and go on to look at the effect of language on numerical processing. I conclude the 

section by looking at other cultural factors that may influence numerical processing. 

2. 1 Historical Perspective on Educational Practice 

Historically, distinctions have been made between two different conceptions of 

arithmetical expertise. One emphasises the development of competence in calculation/ 

computation i. e. the manipulation of number fact relations; the other stresses the 

development of mathematical thinking that involves a deeper, and perhaps more 

abstract, understanding of numbers. 

According to Cowan (1999), nineteenth century English elementary schools for 

working class children stressed the importance of the calculation aspect of arithmetic. 

This was because the children were not expected to continue their education beyond 

elementary school and the aim was to give them all the skills necessary for work. This 

emphasis on calculation was evident in the way it shaped educational policy at the 

time, e.g. the setting up of the payment-by-results scheme in 1862. The payment-by

results scheme meant that the amount of funding a school received depended on 
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numbers of pupils and their performance in examinations. The examinations were 

based on standards set for each year and covered only arithmetic, reading and writing 

geared very much towards the demands of work and everyday life. Matthew Arnold, 

an inspector who was also a critic of the scheme, reported in 1869 that teachers only 

"taught to the test". This meant that for a reading test the same book would be read 

frequently. For an arithmetic test, children were taught mechanical rules for sums that 

they were then forced to practice repetitively. In addition to this, teachers were not 

concerned about teaching arithmetic principles or the science of arithmetic (Arnold, as 

cited in Gosden, 1969). 

The system was slowly dismantled after 1890 but despite such influential critics as 

Arnold, reform of the curriculum was slow and the computational aspects of 

arithmetic continued to be emphasised. For example, in 1930 a primary school 

syllabus might suggest addition and subtraction up to 10 in the first year, up to 99 in 

the second year, up to 999 in the third year and to 10,000 in the fourth year (Schonell 

and Schonell, 1957). Inspectors would attribute children's deficiencies in either oral 

or written arithmetic to defects in teachers or children and not the method. 

The Hadow Report (Great Britain Board of Education Consultative Committee, 1931) 

was a report on primary education that challenged these traditional views of the 

primary school curriculum. The report made new recommendations for a more child

centred curriculum with a wider scope than previous ones. Meanwhile, Jean Piaget 

was carrying out his constructivist research with its emphasis on the importance of 

children's conceptual mathematical knowledge. This was to have a far-reaching 

influence on how arithmetic came to be taught in schools. 

Traditionalist attitudes changed as some educators began to believe that deficiencies 

in children's arithmetic were more likely to result from premature introduction to 

number facts and computation. Schonell and Schonell (1957) argued that such failure 

could be avoided if teachers grounded arithmetic in experience before progressing to 

calculations. They also claimed that practice in number facts without understanding 

had little value and that arithmetic problems should be rooted in familiar experience 
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before written computation was required. However, the development of fast and 

accurate computational skill continued to be the goal. 

As mentioned earlier there are two orientations towards arithmetic, the first is about 

the calculation aspect of arithmetic; the second view - the area more of interest to this 

thesis - is about a deeper more abstract understanding of mathematical principles. 

Despite internal debate on this matter, the computational aspect continued to be taught 

in primary schools in the early part of the century. The second view of arithmetical 

expertise came about as the result of the reform of the school curriculum in the 1950s 

prompted by the gap between university and school mathematics (Kilpatrick, 1992). 

It led to the secondary curriculum being revised in order to provide a better 

preparation for university mathematics. Another influence was the invention of 

calculators that rendered computational skill as being of less importance than 

knowledge and understanding of mathematical principles underlying calculations. In 

Britain, the aim of primary mathematics became to make children think for 

themselves, to give them knowledge and appreciation of mathematics as a creative 

subject, and to develop facility with number and quantity relationships (Schools 

Council, 1966). This new conception of arithmetical competence emphasised 

mathematical understanding. Educators relied on Piaget's research, for example, to 

justify the new emphasis on children's activity and experience and to provide insight 

into the difficulties children would have in understanding abstract mathematical ideas. 

Recently, govermnent bodies have stressed the importance of mental arithmetic and 

"back-to-basics". Cowan (1999) argues that this does not, however, involve retreating 

to the traditional conception of arithmetical expertise that exclusively emphasises 

calculations. This does raise questions on the precise nature of these "basics". Both 

advisors on the National Numeracy Project (1997, 1998) and Cowan (1998) would 

agree on the importance of encouraging fluency in mental arithmetic. However, there 

are unavoidable elements of "drill and practice" learning in mental arithmetic. For 

example, learning a number fact like 7+7 = 14 cannot really be made into a more 

"constructive" process. Clearly, at an early level "7 + 7 = 14" must be learnt as a "fact" 

with little constructive processing behind it. Perhaps what matters most is the way in 
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which such number fact knowledge (i. e. once it has become a "fact") can be 

manipulated swiftly and effectively to solve other types of related problems. 

Recognition of such deceptively simple strategies does make mental arithmetic 

learning into a constructive process. Such concerns are very much at the core of this 

thesis. 

Even at the early stages of research there was recognition of two kinds of knowledge 

of arithmetic: 1) declarative knowledge (number facts/combinations) and 2) 

procedural knowledge ("knowledge about" or an understanding of arithmetic concepts 

and procedures). These two are intertwined. 

1) Declarative knowledge (refers to stored knowledge of addition facts e. g. 2 + 3 = 5 

and depends on retrieval from memory) 

2) Procedural knowledge (refers to stored knowledge about arithmetic e. g. n x 0 = 0, 

n + 0 = n, orn + 1 = one greater than the original number n and depends on rules 

such as commutativity, heuristics and computation) 

It is because these two types of knowledge are inter linked that research should pay 

more attention to this relationship, rather than looking at one or the other in isolation. 

From a brief history of how these two distinctions in mental arithmetic developed, in 

the following sections I will examine the research paradigms under which numeracy 

has been studied. 

2. 2 Research in Mental Arithmetic 

Mental arithmetic has been studied under four somewhat loosely defined research 

traditions. There is a considerable amount of overlap between these. Not all research 

has respected these distinctions, nor is it being claimed here that this should be the 

case. I have chosen to describe four theoretical frameworks in which computational 

mental arithmetic research has been carried out: 1) associative theory and stimulus

response (S-R) learning, 2) cognitive research based on response/reaction times, 3) 
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research stressing the modular aspects of mental arithmetic, and 4) research looking at 

cultural resources for calculation. The first two are more closely linked than the latter. 

In the first two, mental calculation is considered an individual isolated process that is 

private and contained and where people act as calculators. The last two look at the 

biological and cultural influences that may situate such mental calculation. 

2. 2. 1 Associative Theory and Stimulus-Response Learning 

Thorndike (1922) carried out some of the earliest research in this area in his book 

entitled The Psychology of Arithmetic. This was rooted within the behaviourist 

tradition so dominant in the US at the time. Thorndike's theory was deeply entrenched 

in his theoretical concern for the "law of effect". Thorndike saw knowledge of the 

basic arithmetic facts, e. g. the 100 addition and 100 multiplication number facts, as 

the formation and subsequent strengthening of individual stimulus-response 

associations. Repeated presentations of the correct stimulus-response pairs meant that 

the arithmetic facts would be learned, i. e. simple facts learned with differing 

strengths 

While Thorndike's theory itself may have been sound, his proposed method of 

teaching via carefully planned drill exercises came under heavy criticism as being a 

"mindless" rote method that ignored the principles of arithmetic and failed to teach 

"understanding". Even at the time, commentators (e. g. Brownell, 1928, 1935) argued 

against this approach and advocated meaningful instruction as opposed to rote 

practice as being crucial for better transfer to untaught number combinations. 

Brownell believed that drill methods distorted the goal of learning. He saw arithmetic 

skill as being about the ability to think quantitatively rather than being about the 

capacity for accuracy at a list of set arithmetic problems. 

Thorndike's ideas did, however, set the stage for the more current cognitive arithmetic 

research that describes number fact representation as networks of associations that 

strengthen over time. This is because he was essentially looking at the formation of 

simple bonds and using a language for describing associations between the elements, 
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associations that took the fonn of a stimulus-response. Currently, though, there seems 

to be a move away from this view and researchers are trying to distance themselves 

from the extreme versions of this somewhat simplistic theory. Cognitive theories are, 

nevertheless, continuous with S-R and associative theory in that both are concerned 

with hidden/ unseen processes i. e. the S-R bond is as invisible and abstract as a node 

in the mental modelling of cognitive theory. Both theories are reductionist, in that 

they reduce mental processing to elemental processes; because both S-R bonds in 

behaviourist theories and associative bonds in current cognitive research were about 

elemental associations. Although proponents of both might disagree, both were 

interested in behaviour. In stimulus-response theories, the focus was on the seemingly 

"visible" components of behaviour (responses), while cognitive psychology is about 

abstractions such as mental models. Where the continuity between S-R and cognitive 

theory lies is in the associations that are supported by both frameworks. But unlike 

earlier behaviourist theories, cognitive theorists want to model these as invisible 

relationships. Thus, cognitive theories differ from early S-R and associative theory in 

that they provide a richer mechanism for studying mental processes. 

2. 2. 2 The Emergence of Cognitive Arithmetic and the Chronometric Method of 

Measurement 

Until twenty or so years ago, mental arithmetic (in psychological experiments) was 

largely used as a distracter task in memory experiments (e. g. people counting 

backwards in 3's), a tool that would merit little research interest in its own right 

(Peterson and Peterson, 1959). There was very little interest in arithmetic knowledge 

itself. According to Ashcraft (1995), Groen and Parkman (1972) revived "genuinely 

cognitive" research into mental arithmetic. Since then (and especially within the last 

decade), however, mental or cognitive arithmetic has developed into an active area of 

interest and has generated a wealth of research. Ashcraft (1992 and 1995) believes 

that cognitive arithmetic is a rich enterprise because it provides links with other areas 

in cognitive psychology, and that the study of cognitive arithmetic can advance 

cognitive psychology as a whole. He believes work on mathematical cognition has 

applications outside traditional cognitive interests (e. g. studying working memory) in 
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areas such as neurocognition, mathematics disabilities, cross-cultural differences and 

mathematics anxiety (Ashcraft, 1995). 

For example, the underlying question concerning cognitive or mental arithmetic is 

simple: How do we do arithmetic without any overt/ tangible props? In more technical 

terms, this means asking: What do we do mentally when we perform simple 

arithmetic and what cognitive processes, memory representations and mental 

components are necessary for this skill? 

Ashcraft (1995) attributes a surge in research on cognitive arithmetic to the cognitive 

revolution in psychology and believes that the "computer analogy" in particular was 

responsible for the revival of a certain type of method (namely, studying reaction 

time). Cognitive psychologists saw the potential of studying cognition via response 

times and mental arithmetic was an attractive candidate for their research. Although, 

cognitive psychologists had always been interested in using reaction/ response times 

as a measure of cognition, arithmetic provided them with a more optimal medium for 

doing this because it meant that mental processes could be manipulated directly. The 

topic of mental arithmetic had been pushed aside during the "heyday" of 

behaviourism, to re-emerge in the late 1960s and early 1970s. Between the 1930's and 

1950's American experimental psychology involved studying a few narrow topics in 

human memory such as paired-associate learning. Behaviourist theorists were 

concerned only with S-R theory as applied to laboratory settings with strict 

experimental control in a somewhat introspectionist manner i. e they were not 

concerned with mental arithmetic as such. So they made little contribution to this 

area. Looking back, it seems that while behaviourist-inspired teaching techniques, e. 

g. for classroom management flourished, the area of education and educational 

psychology regarding mathematics and its teaching was left to languish. 

According to Ashcraft (1995}, the cognitive revolution and the developments that he 

collectively refers to as the "computer analogy" inspired the information-processing 

model and a preferred methodology in the use of RT as a primary dependent variable. 

Whatever the research interest, the emphasis was on stage-by-stage analysis of the 
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components of performance and the flow of information through the processing 

system (Lachman, Lachman and Butterfield, 1979). 

Reaction time emerged as a measure for practical purposes after World War 11. 

Reaction time became the "gold standard" of dependent measures in such research, 

where the independent stages of processing were revealed by component RTs. 

Research involved analysing the "time" necessary for certain mental steps or stages to 

be completed. This research built on years of investigation on RT itself, i. e. the 

values of RT measurement under various conditions. Sternberg's (1969) research on 

short-term memory led to cognitive psychology's reliance on RT (or response latency) 

as an explanation of underlying mental processing. Posner's book Chronometric 

Explorations of Mind (1978) identified research that depends on RT as a measure as 

"mental chronometry" and uses RT evidence to define "chronometric" methods (Luce, 

1986). 

Reliance on RT became one of the fundamental tools of cognitive psychology and this 

had a significant impact on the area of "cognitive arithmetic". This influence is 

exemplified in the earliest major cognitive study of mental arithmetic (Groen and 

Parkman, 1972) and is still evident in current research. Chronometric methodology 

will be used as a measure in my own research. 

Associative (S-R) theory and the cognitive approach both consider mental arithmetic 

to be a private activity that is contained within the individual. Both approaches are 

concerned with links between elemental processes i. e hidden mental processes 

because they look at the formation of bonds and learning associations all located 

mentally 'inside our heads'. But, in addition to traditional cognitive psychological 

explanations, mental arithmetic can also be influenced by external events beyond our 

private mental abilities. Thus, biology and culture also have a significant impact on 

the development of our numerical abilities. For example, research suggests that 

certain numerical abilities are innate and it is their further development that is 

culturally determined. Research has also found that cultural differences exist not only 

in the way mathematics is taught but also in our perception of what it is about. The 
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next two sections look at how biology and culture contribute to our understanding of 

numeracy. 

2. 2. 3 Modularity 

There is currently a large amount of research looking into the "innate" nature of 

certain numerical skills or abilities and this has, to some extent, been influenced by 

the notion of mental modularity. According to Cole (1996) both modularity and 

cultural context affect our mental development He argued that the origins of the 

concept of modularity arose from the debate between Piaget and Chomsky (among 

others) on language development. Chomsky expanded from Piaget's claim that 

language construction depends on previously developed sensorimotor schemata. 

Chomsky argued for the existence of what is now referred to as "a language module". 

In his book The Modularity of Mind (1983), Fodor applied the logic of Chomsky's 

theory of language to general cognitive development. Basically, Fodor claimed that: 

1) Psychological processes are domain-specific. Information from the environment 

passes through special input systems or modules (special-purpose sensory 

transducers) that output data in a format processed by a "central processor". 

2) The psychological principles that organise each domain are innate, in the sense that 

they have a fixed neural architecture, are fast and automatic and are "triggered" by the 

environment. That is, they are not constructed, as implied by Piagetian theory of stage 

development. 

3) Each different domain is a separate mental module and they do not interact directly 

but through a "central processor". 

4) The modules cannot be influenced by other parts of the mind. 
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Fodor proposed several modules in addition to language such as those implicated in 

the perception of colour, shape, three-dimensional relations and the recognition of 

voices and faces. Others have since suggested an even wider variety of possible 

modules: e.g., for mechanical causality, intentional movement, number, animacy and 

music (Hirschfeld and Gelman, 1994). 

There are two versions of the modularity hypothesis, a weak version and a strong 

version. In the weak version of the modularity hypothesis, behaviour is richer and 

more complex than recognised by traditional theories of cognitive development. 

According to the strong version of the modularity hypothesis, the behavioural 

characteristics within domains do not really develop because they are innate and only 

need the right enviromnent to develop. So culture affects the development of modules 

which are there from the outset. 

Cole (1996) supports the weaker version of modularity as skeletal principles and 

starting points, because this can be effectively combined with cultural mediation. He 

argues that such a combination is a good way of describing the 'intertwining of 

"natural" and "cultural" lines of development as part of a single process'. 

Mathematics is a good concrete and representative example of how culture and 

modularity can be integrated, because there is enough evidence about phylogeny, 

ontogeny and the cultural organisation of thinking in this area. 

Evidence suggests that some numerical abilities are innate because there are some 

numerical skills present in young babies (Gallistel and Gelman, 1992). Although there 

remains some debate about exactly how number is processed by preverbal infants. 

Research on infants has involved habituating them to visual displays (Starkey, Spelke, 

and Gelman, 1990; Wynn, 1992). Klein and Starkey (1988) favour the explanation 

that infants use a special perceptual process called subitizing. Subitizing is the ability 

to recognise very small number sets (sets of four or less) without counting. More 

complex counting procedures elaborate the primitive subitizing process. But 

according to Gallistel and Gelman (1992) infants actually have a preverbal 

enumeration system identical in its basic properties to the elementary numerical 
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abilities found in non-human primates. Counting procedures are then imposed upon 

this initial set of constraints. Evidence of these early enumeration abilities is 

important because it provides the initial crude, module-like structure which can be 

supplemented by a more elaborate cultural system of mathematics (Cole, 1996). 

Geary (1995) has moved this issue on from such studies on infant numeracy to 

propose that there are two kinds of numeracy skills: biologically primary and 

secondary. These are not exclusive to numeracy and various cognitive abilities 

(language as well as maths) fall into these two groups. Biologically primary cognitive 

abilities are found panculturally and across related species. Secondary cognitive 

abilities are found in some cultures but not found in others. Cultural practices 

influence cognitive abilities that are not completely related to evolutionary pressures. 

This is because the specialised neurocognitive systems that support biologically 

primary abilities can be used in a variety of ways apart from the original evolution

based function. The extent to which children in various cultures (and across 

generations) acquire secondary abilities varies directly with the extent to which 

formal cultural institutions (e. g. schools) emphasise them. For example, while 

language is found cross-culturally, the ability to read is not; so reading is therefore a 

biologically secondary cognitive domain. The following section looks at this 

distinction in more detail. 

2. 2. 3. 1 Acquisition of biologically primary cognitive abilities 

Just because certain abilities are biologically primary does not mean that experience is 

not necessary for their development. According to Gelman (1990) implicit knowledge 

or skeletal principles of the domain (skeletal principles of neurocognitive systems) 

provide only initial structure. For Trick (1992) the determination of numerosity or the 

quantity of small (less than 4) sets of visually presented objects involves preattentive 

processing in the visual system. 

Arising from this, biologically primary mathematical abilities emerge early on in 

development. Evidence for the existence of this comes from various studies (Antell 

26 



and Keating, 1983; Starkey, 1992; Starkey, Spelke, and Gelman, 1983, 1990) 

suggesting that human infants are sensitive to the numerosity of an array of up to 

three and sometimes four items, even as early on as their first week of life. They can 

also distinguish between homogeneous versus heterogeneous collections of objects 

and are sensitive to displays in motion. lntermodal studies (Starkey, Spelke and 

Gelman, 1983) are especially important because they suggest that an infant's 

sensitivity to numerosity is based on an abstract representation. That is, an infant's 

knowledge that a set of two items differs from a set of three items is not dependent on 

whether the items are seen or heard (as in a series of two or three drumbeats). Infants 

as young as five months are aware of the effects of addition and subtraction of one 

item on the quantity of a small set of items (Wynn, 1992). At eighteen months, human 

infants can recognise ordinal relationships, e. g. that 3 is more than 2 and 2 is more 

than 1. This general sensitivity to more than and less than is also evident in many 

animal species, such as cats, laboratory rats, African grey parrots and chimpanzees 

(Davis and Perusse, 1988). Well-controlled experimental studies have shown that 

non-human primates are able to make very precise ordinal judgements (Boysen, 1993; 

Boysen and Bernston, 1989). 

So humans are born with the basic biological foundations of numeracy and our later 

experiences influence exactly how these will develop. They are, for example, 

"fleshed-out" through play. Eibl-Eibesfeldt (1989) described play as "self-activated 

practice" that allows children to rehearse and experiment with social roles and to start 

acquiring functional abilities. Saxe et a! (1987) found children as young as 2 years 

frequently engaged in solitary or social play that involved numerical abilities such as 

counting toys. Piaget (1962) believed that not all but certain types of play activities 

were likely to be universal and therefore probably served similar functions across 

cultures. 

Therefore, learning about numerical features of the enviromnent is evident in 

children's activities across cultures and engaging in these activities fleshes out the 

skeletal principles associated with the biologically primary mathematical abilities. 

However, many abilities are not similarly advantaged by skeletal principles or contain 
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a bias for engaging in activities that help in their acquisition. These abilities are 

classified as biologically secondary cognitive abilities. 

2. 2. 3. 2 Acquisition of secondary cognitive abilities 

Because development of these abilities does not have biological advantages, their 

acquisition is slow, effortful, and occurs only with sustained formal or informal 

instruction. To deal with this, complex societies have developed formal institutions 

(schools) so that children can acquire social and cognitive skills that otherwise would 

not emerge. Flynn (1987) noted that universal schooling is found only in 

technologically and socially complex societies. As the technological and social 

complexity of the society increases, so does the amount of formal schooling for 

children. Therefore, universal schooling even in complex societies is relatively recent. 

Geary (1994) points out that there is no reason that skills taught in schools are 

inherently interesting or enjoyable for children. Similarly, Ericsson, Krampe, and 

Tesch-Romer (1993) pointed out that deliberate practice that improves performance at 

a task is not inherently enjoyable even for experts in the area. 

Thus, it is cultural institutions like schools that lead to difference in secondary 

mathematical abilities such as arithmetic. So while there are no differences between 

the biologically primary mathematical abilities of East Asian children and North 

American children, Geary (1994) argues there is a significant advantage for Asian 

children in secondary mathematical domains that rely on educational practice. The 

exception here is the possible influence of language structure (e. g. number words) on 

early development, an advantage that coincides with the start of formal schooling. 

This is an issue that will be discussed later on in Section 2. 2. 4. 3. 

Biologically primary mathematical abilities include management of numerosity, 

ordinality, counting and very simple arithmetic (involving increases and decreases of 

sets of three or four items i. e. very simple addition and subtraction). Biologically 

secondary mathematical abilities include counting, number, and arithmetic. The 

former are found "pan-culturally and are evident in non-human primates and some 
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other animal species" i. e. a sensitivity to numerosity has been found in cats, lab rats, 

the African grey parrot and chimpanzees, (Davis and Perusse, 1988; Boysen, 1993). 

The latter are culturally specific, and emerge with formal schooling so they must be 

taught. 

Basic (biologically primary) numeracy skills are present in young babies and some 

animals, while complex (secondary) numeracy skills are taught in school and through 

formal/informal instruction. This distinction seems to have implications for 

encouraging the use of more drill and practice. So Geary (1995) recommends a 

"modified form of drill-and-practice" which, he argues, "is probably the only way to 

ensure the long-term retention of basic biologically secondary procedures". He argues 

that while the constructivist approach may be suitable for the acquisition of 

biologically primary mathematical abilities such as number and counting, it is not 

conductive to the development of biologically secondary skills. Geary (1995) is . 

critical of the constructivist approach, because he believes that education researchers 

who have adopted this approach and put it into practice have ignored or dismissed a 

significant amount of relevant psychological research and theory. According to Geary 

(1995), constructivist philosophers and researchers fail to make the distinction 

between biologically primary and biologically secondary mathematical abilities and 

so treat all of mathematics as though it were a biologically primary domain. The 

selective use of psychological theory by some researchers, he believes, is highly 

problematic. 

Compared to other cultures, such as the Asian culture, American culture is more 

liberal about the extent to which individuals are allowed to pursue their own self

interests or take part in inherently interesting activities. Geary argues that, apart from 

basic number and counting activities, many mathematics-related activities are not 

likely to be inherently interesting for most people. So it requires cultural values that 

reward mathematical development and strongly emphasise mathematics education in 

school, in order to develop complex secondary mathematics abilities. He concludes 

that constructivism is a reflection of current American cultural beliefs. As a result, 

29 



this involves developing instructional methods that attempt to make learning complex 

mathematical skills an enjoyable activity, taken up due to interest and choice. 

While these social-constructivist methods work well for the development of 

biologically primary skills, because constructivist activities are similar to contexts in 

which biologically primary activities naturally emerge (Eibl-Eibesfeldt, 1989), they 

are not sufficient for developing secondary skills. It is for secondary skills, many of 

which are not inherently enjoyable, that drill-and-practice techniques are useful. It is 

not that mathematics instruction should not be interesting or engaging, it should. It is 

just that an environment that supports the further development of biologically primary 

abilities is not sufficient for the acquisition of secondary abilities. Geary 

acknowledges that many constructivists hotly dispute the use of drill-and-practice and 

that formal drill-and-practice does not seem to be necessary for the acquisition and 

maintenance of many biologically primary cognitive abilities (such as language). 

Cultural values that support and foster students' interest in complex mathematics are 

essential because evolution has meant that children do not have a natural enjoyment 

of activities such as the drill-and-practice that is needed to master abilities in complex 

secondary domains. Practice, he argues, "provides an environment within which 

children can flesh out their understanding of the procedure and any associated 

conceptual knowledge". 

Certainly, every attempt must be made to make drill-and-practice enjoyable and 

interesting for children. Even an associationist like Thorndike was concerned with the 

"meaningfulness" of arithmetic problems and recognised that such problems should 

be relevant to daily activities outside the classroom. Yet, drill-and-practice may be 

· hard to avoid in developing arithmetical knowledge. Geary (1995) suggests that we 

carmot expect children to enjoy the process of acquisition of all secondary abilities. 

But in this case the ends justify the means, since the motivation to acquire these 

abilities comes from the needs of an increasingly complex society rather than the 

interests of the children. 
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--·---------------------------

If some numeracy skills are innate (biologically primary abilities) and biologically 

advantaged, while others (secondary abilities) depend mostly on formal educational 

practice, then the role of cultural practice is critical in determining what will be learnt. 

Culture has a significant impact on the development of numeracy since the teaching 

of mathematical abilities depends on the type of formal schooling a child receives and 

the cultural attitude about academic achievement. Cultural research has been carried 

out through various exciting and innovative methods. The next section will briefly 

examine some of the influential research done in a cultural framework. 

2. 2. 4 Cultural Research 

Like biology, culture also exemplifies an influence somewhat beyond our control in 

how it contributes to our development of numeracy. Maths is a cultural tool that has 

evolved in social time rather than just historically or biologically. It is crucial for us to 

understand the variety of conditions under which we acquire numerical skills and 

arithmetic knowledge. This section looks at how cultural variation affects the 

outcomes of learning. Cultural research can be realised from two perspectives. One is 

to take a cultural psychological perspective - in general: looking at how cognitive 

activities are affected by the cultural context in which they take place, e. g. to take 

control of cultural tools for doing number work. The other is more traditional 

comparative cross-cultural research. This often involves looking at how people in 

different cultures deal with the similar tasks, e. g. looking at the significance of 

number words found in different languages. 

2. 2. 4. 1 Cultural psychological research 

Numeracy is about manipulating number systems (including common tools like using 

fingers). This means invoking culture as a context for doing numeracy research. Models 

of number fact retrieval arising from a cognitive memory oriented approach (e. g. 

network retrieval and network interference models) have a tendency to bypass the fact 

that all this learning is going on in a social context. So they can seem more mechanical 

than active. The cognitive tradition does not seem to pay full attention to cultural 
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research, because it is more concerned with the "internal" or "mental" aspect of 

computation rather than culture which is viewed as variables "out there" and "not in the 

head". Thus, the cognitive approach tends to neglect the fact that all this cognitive activity 

is going on within a cultural context. 

Mathematics is, of course, a cultural product. Children's understanding of mathematics 

including mental arithmetic will ultimately depend on cultural practices especially 

resources encountered in education/school practice. This varies not only culturally but 

may even, to a lesser extent, vary from one school to another. Culture influences the way 

we do mathematics in both formal and informal settings. This has led to both cross

national research in children's of numerical ability as well as research looking at how the 

local cultural context affects numerical ability. 

Some fascinating research has been carried out in this tradition. Researchers have carried 

out studies that have provided us with insight into how culture exerts a powerful influence 

on numerical and arithmetical ability. This is the reason behind studying cultural 

variation. It gives us insight into the competing sets of cultural tools within one culture e. 

g. "street" versus "school" mathematics (Nunes, Schlieman and Carraher, 1993 and 

Carraher, Carraher and Schlieman, 1985). 

There are differences between formal and informal versions of mathematics. This was 

illustrated by Reed and Lave (1979) and Lave (1977) who looked at the way Vai tailors in 

Africa used Vai and English number systems in arithmetic problem solving. They looked 

at the how mathematical skills acquired by tailors in their everyday practices were used 

when they had to deal with unfamiliar problems. Lave also wanted to see how the tailors' 

formal educational experience affected their mathematical problem solving abilities. She 

presented the tailors with a set of tasks, including problems that required either school 

experience or tailoring experience in order to be solved. Lave (1977) found that when 

problems were modelled on school-type problems, the extent of schooling was a more 

significant predictor of performance than tailoring experience. For the problems that had 

been modelled on tailoring practice, the years of tailoring practice were a better predictor 

than years of schooling. Lave's research effectively illustrated how cultural practices 
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directly influence our mathematical thinking. It turned out that there is a variety of 

methods people employ for dealing with problems involving maths. That is, mathematical 

ability varies because of the culture we grow up with. 

Similarly, Carraher et al (1985) looked at the case of "street" versus "school" maths in 

practice. They looked at the social practices of mathematics among child street vendors in 

Brazil and found how arithmetical abilities varied depending on whether the task used 

was an "everyday" task or a "psychologist-imposed" task. The children engaged in 

different practices depending on the task. They generally found school-type arithmetic 

tasks harder to follow whereas similar tasks involving familiar "street" mathematics (e. g. 

currency conversions, adding/ taking away large quantities of goods) were simple. 

This cultural variation in devising tools for dealing with numeracy was also studied by 

Saxe (1979) who found that the Oksapmin tribe of Papua New Guinea had a complex 

method of counting. In this method, they count by starting with the thumb of one hand 

and then pointing to twenty-seven places on the arms, head and body, ending with the 

little finger of the opposite hand. If they have to count further, they continue back up the 

wrist of the second hand and progress back around the body again. According to Saxe, 

this system of counting is used for everyday counting activities that do not require the use 

of calculational procedures e. g. such as counting pigs. It suffices because the Oksapmin 

usually do not need to engage in computations involving numbers. Saxe (1982) observed 

actual arithmetic calculations (similar to those studied by Klein and Starkey among US 

children) only among children who attended school and adults who became involved with 

the money economy of New Guinea. However, Saxe (1982) also observed Oksaprnin 

children using the Oksapmin body-counting system to generate answers in school lessons. 

This study, in addition to those discussed above, all illustrate how culture influences how 

people have developed various methods for dealing with similar ideas. 

Although the results are less immediately striking than those described above, more 

traditional cross-cultural research (i. e. giving the same task to school children in different 

cultures) has also shown cultural differences in performance on mental arithmetic tasks. 

Various explanations are cited for why these occur. Political interest in this area, 
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especially in the West, has stemmed from research showing cultural differences between 

the mathematical competence of children in the US plus some Western European 

countries, and children from the Far East. These differences are more fine-grained and 

subtle than those that arise from other, more comparative cultural research interested in 

celebrating the cultural roots of numeracy rather than comparing systems (Saxe, 1982; 

Reed And Lave, 1979; Carraher et a!, 1985). Yet these are seen as more fundamentally 

significant results because they may have far-reaching political implications in an 

international and hi-tech global society. Research has shown that children from the Far 

East seem to have superior mathematical and arithmetical skills than their Western 

counterparts and this is seen as a threat to economic competitiveness with the Far East 

(Geary, Bow-Thomas, Liu and Siegler, 1996; Reys and Yang, 1998). 

2. 2. 4. 2 Cross-cultural research 

Cultural differences are attributed to various factors such as language structure and 

schooling and these processes complement each other. Interestingly enough, language is 

an area that unites the cognitive and cultural approaches because this is where cultural 

differences feed into the information-processing cognitive approach. It is crucial that we 

understand how and why this occurs What follows is an example of how one 

methodology (cross-cultural research) affects the another (cognitive numerical 

processing). 

2. 2. 4. 3 The effect of language on numerical processing 

There is evidence that language structure influences digit span. The mean digit span for 

normal adults using different languages depends on the length of time it takes to 

pronounce the words for digits in those languages. For example, the digit span in Welsh is 

lower than digit -span in English because Welsh words take longer to say than their 

English equivalents (Ellis and Henelley, 1980). The converse is true for English and 

Chinese. This is often used as an explanation for the superior performance of Far Eastern 

children at arithmetical tasks. 
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Geary et al's (1996) findings support the view that the structure of Asian and English 

language number words influences the development of early numerical and 

arithmetical competency. Digit span is influenced by the speed with which number 

words can be spoken and is a language-related influence on children's strategy 

choices; especially on the use of finger counting as a back-up strategy. Chinese 

children were more likely to use verbal counting than finger counting as a back-up 

strategy. Exposure to mathematics in school is one reason for the national difference 

in mathematical achievement. Geary et a! (1996) found that Chinese children's 

addition test performance (at all grades) improved significantly across the academic 

year compared to the American children. 

The use of 1 0-based decomposition by Chinese children reflects both language and 

schooling effects. The structure of Chinese number words makes it easier to teach the 

base 10 system and base 10 problem-solving strategies. Therefore, Chinese teachers 

are more likely than American teachers to teach 10 based decomposition and Chinese 

students more likely to understand its usefulness. 

Language may also affect Chinese children's speedy transition from back-up 

strategies to retrieval. According to Siegler (1998) and Siegler and Jenkins (1989), 

direct retrieval depends on the formation of associations between addition problems 

and their correct answers. These associations appear to develop with the use of back

up strategies. For the association to be formed, the problem's addends and its 

generated answer must be simultaneously active in working memory. The quantity of 

numbers that can be active in working memory is related to speed of counting. 

While language influences seem to give Chinese children an early advantage in 

arithmetical competency, these should influence only the early stages of skill 

acquisition and not the ultimate level of skill that can be achieved in arithmetic. This 

is supported by the finding that American children who received their elementary 

school education in the 1930s developed the same level of competency (100% 

retrieval by 3rd grade) as the Chinese children in this study. So while language may 

influence early mathematical development, Geary et al (1996) argue it is an 
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inadequate explanation for the advantages that East Asian children have over 

American children in almost all mathematical domains. 

The early use of retrieval is not restricted to Chinese children. Adams and Hitch (1997) 

found that most British children used counting at mental addition tasks whereas German 

children were more likely to rely on retrieval or strategies that did not show overt signs of 

counting. They believe that this is because they receive more practice in mental 

arithmetic, they start school later and there is more emphasis on practising oral mental 

addition skills. 

In conclusion, language is one of the factors that affects our arithmetic processing and 

one that can influence our early arithmetic development. However, it is an influence that 

may not have a lasting impact on our arithmetic skills because schooling seems to play an 

important role in evening out this early advantage. 

2. 2. 4. 4 Other cultural factors that may influence numerical processing 

In addition to cross-cultural factors, there also seem to be social factors that may 

influence children's mental arithmetic performance. I began by looking at almost 

crude cross-cultural comparisons to examine exactly where the differences lie. At one 

end we have the striking examples of how people manipulate numbers, followed by 

the more mundane differences between cultures that reveal interestingly coherent 

cultural practices. However, different social practices also affect mathematical 

development. 

Saxe et a! (1987) identified social processes in early number development such as age 

and social class differences in children's numerical understanding. They found that 

children are regularly engaged with social number activities involving number, 

though the nature of the numerical understandings and environments differ. Children's 

numerical environments are linked to their own understandings and to the socio

cultural context of their own development. 
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Uses of counting procedures to solve arithmetic problems are not unique to children 

raised in Western settings that place high value on early mathematical skills. Middle

class children are better at tasks involving cardinality, numerical reproduction and 

arithmetic. Social factors influence children's intellectual development through 

cognitive socialisation. Social organisation of young children's numerical activities 

can be understood as providing opportunities for children to use previously learnt 

skills on new functions and to elaborate and specialise existing strategies. This may 

have implications for children's later understanding of numbers as it suggests how 

some children from some families have different access to mathematical concepts in 

the classroom. 

Children's socially organised experiences with numbers in everyday activities are 

emergent, they are negotiated in interactions and result from parent and child's 

adjusted efforts. Different social class groups are creating different environments in 

daily lives but for each group the process is the same. Numerical environments consist 

of active participation and negotiation. 

Thus, Section 2. 2. 4 illustrates how cultural research encompasses a wide range of 

approaches, from a broad understanding of culture such as looking at different 

cultural practices in cross-cultural studies to cultural research at a micro-level such as 

studying interactions between a mother and child. 

2. 3. Summary 

The aim of this chapter was to look at the development of research in mental 

arithmetic as well as some of the broad research traditions within which mental 

arithmetic has been studied. Therefore, I have presented a general overview of the 

research traditions that have been concerned with psychological studies of human 

numerical computation. There are many strands from within this work can inform the 

practical concerns illustrated in Chapter 1. In my own work, I have chosen to focus on 

the tradition of cognitive psychology that has emphasised an understanding of the 

mental processes underlying simple computational activity. My particular interest will 
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be in the development of such skill. Moreover, within that developmental trajectory, I 

shall concentrate on the emergence of skills that might be broadly termed "strategic". 

As a grounding for the empirical work that follows, I shall therefore review existing 

work in the cognitive tradition that seems to be relevant to these broad aims. 
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Chapter 3 

3. Cognitive Research in Mental Arithmetic 

Chapter 1 identified the topical nature of mental arithmetic research and sketched the 

social and political background of research in this area. Chapter 2 looked at the 

history of mental arithmetic as a research problem, the research traditions within 

which it was studied, and the gradual emergence of mental/cognitive arithmetic as a 

discipline in its own right. The present chapter takes up more specific issues of mental 

arithmetic research that were raised in Chapter 2 and looks at them in more detail. In 

this chapter, I will begin by looking at some of the early cognitive research in mental 

arithmetic. This will be followed by a discussion of current theories of simple 

arithmetic processing, such as the number-fact retrieval, and the evidence used to 

support them. I will then move on to look at issues of working memory and present 

schema-theory as an alternative to some of the current cognitive models on offer. 

3. 1 Early Cognitive Research 

Groen and Parkman (1972) and Parkman (1972) undertook the early explorations of 

cognitive research in this area. They carried out some of the original experiments looking 

at mental arithmetic and reaction times. They also pioneered the min model (the counting 

model that best fit their data). The rnin model set a precedent for future cognitive models 

and represented an important early achievement, since it was an observation of mental 

computation development over and above fact-retrieval. In the "min" model, subjects set 

an internal counting register to the larger of the two numbers (n, and m) being added (e. g. 

m) and then to increment this value by ones a total of n times i. e. until the smaller or 

minimum addend value was reached. At the end of this incrementing process, the 

counting register contained the value of the correct sum, and simple "read-out" 

(translation into an overt response) or comparison with the answer could occur. 

They found that the size of the smaller number affects solution time in simple addition. 

The size of the smaller number was a good predictor of solution times on simple addition 
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and solution times increase linearly with the size of the smaller number. But this was 

found to be the case only when this strategy (counting-on) was being used. The min 

model also failed to account for fast performance on tie problems and Groen and Parkman 

suggested this was due to these problems being stored directly in memory, and therefore 

retrieved by some direct access process. They also proposed that it was due to memory 

retrieval and that addition and multiplication "tables" were stored as hierarchical 

networks in LTM and RT was due to the location of the solution in the network. Although 

the min model was found to be insufficient early on in their research, later research 

extended and modified their findings. Theirs were among some of the earlier studies 

looking at the similar processes underlying simple mental addition and multiplication. 

Their research was essentially about looking into the counting-based strategies people 

used when doing mental arithmetic. 

Another significant earlier study looking at the effects of practice, gender and individual 

differences on RT was carried out by Aiken and Williams (1973). Results showed that 

subjects used a variety of techniques in performing mental calculations and this depended 

on the type of arithmetic operation, amount of practice and individual differences in 

computational ability. They found that RT for addition increased linearly as a function of 

the smaller number. They claimed that certain well-learned sums were obtained by 

random access retrieval from memory. They also found subjects to be faster on addition 

problems having a sum of 10 and multiplication involving 5 and 1, a finding which has 

since been replicated in several studies. Even after practice, there was a significant linear 

relationship between number magnitude and mean RT. Their findings led them to 

conclude that several varieties of storage and retrieval mechanisms are in operation 

during the performance of mental arithmetic and this varies with the nature of the 

problem, amount of practice, level of motivation and individual differences in 

computational ability. 

These early studies had implications for future cognitive research into mental 

arithmetic. They revived interest in research into mental arithmetic as a topic of 

interest in itself, instead of being a distracter task for memory experiments. The next 

40 



section will look at the development of some of the current dominant theories of 

arithmetic processing. 

3. 2 Current Theories of Simple Arithmetic Processing 

There are three basic models of simple arithmetic and these have been revised and 

elaborated to account for new empirical evidence. Although referred to here as 

current models these are developing models in that they are under constant revision 

and change. The focus in these contemporary theories is on single-digit number bonds 

(this structural feature is common to all these cognitive models) and the way that 

these number facts are organised in human memory. 

These models have in common several basic underlying assumptions. The first is that 

performance on simple number facts depends on retrieval from LTM. The second is 

that this memory representation is organised and structured according to the strength 

of individual connections and reflects amount of "relatedness" among the elements. 

The third assumption is that the strength of the associations with which the elements 

are stored, and therefore the probability or speed of retrieving information, depends 

on more than just the numerical characteristics i. e. what determines speed of response 

is the amount and type of exposure to those numbers. 

Below is a brief summary of these models, which will then be discussed in greater 

depth. The models to be examined are summarised here as follows: 

Ashcrajt's network-retrieval model (Ashcraft, 1982; Stazyk, Ashcraft and Hamann, 

1982). In the simplest network model the basic facts of addition and multiplication are 

stored in inter-related memory networks with number problems in the networks 

varying as a function of strength or accessibility. Each problem in memory is thus 

distinguished by the strength of its association in the network. 

Campbell's network-interference model (Campbell and Graham, 1985; Campbell, 

1987; Campbell and Clark, 1992; Campbell and Oliphant, 1992). This interprets 
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retrieval from the organised network as a process heavily affected by interference. 

This seems to be the only current model to account for various interference and 

priming effects that are now well documented in the literature. 

Siegler's distribution-of-associations model (Siegler and Shrager, 1984; Siegler and 

Jenkins, 1989; Shrager and Siegler, 1998). The basic representation of a problem in 

memory is accompanied not only by that problem's correct answer but also by the 

incorrect answers that the individual has generated or computed across experience. 

Campbell, Siegler and Ashcraft are not only interested in correct/ accurate responses 

but are also interested in the specific errors observed in mental arithmetic. This is 

because these errors reveal aspects of the memory representations and processes that 

underlie retrieval i. e. they use errors as evidence for network interference because 

they find errors are more likely to be systematic (related to operands) rather than 

miscellaneous (unrelated to operands or correct answer). They identify types of errors 

and error rates are computed for each subject. The next three sections provide more 

in-depth information about each of these models. 

3. 2. 1 Ashcraft's Network-Retrieval Model 

Ashcraft (1982, 1987) proposed a network retrieval model of mental arithmetic 

performance. Basic addition and multiplication facts are stored in network 

representations with each learned fact represented as a node in a network structure. 

Simple addition and multiplication facts are represented in an associative network in 

memory, each with its own accessibility value. Ashcraft notes that is "absurd" to 

suggest that e. g. 7x4 is stored in some independent, isolated fashion from other 

knowledge of multiplication in the network. So what factors affect the influence of 

these strengths? The most recent version of the model (1987) accounts for the effect 

of early schooling on arithmetic, as well as other influences (e. g. frequency of 

occurrence, practice, small-fact bias), as having a direct effect on the strength of 

problem representation in long-term memory. 
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Ashcraft's experiments involved the use of reaction times as the dependent variable. 

Basically, adult performance on addition and multiplication facts can, to a great 

extent, be explained by memory retrieval. That is, in the simplest network model the 

basic facts of addition and multiplication are stored in interrelated memory networks 

in an organised interrelated network structure and that multiplication and addition are 

highly similar cognitive processes. The network contains associations to both correct 

and incorrect answers and these vary in strength. 

But Ashcraft's theory neglects to make much mention of the procedural aspects of 

computation. Baroody (1983) attempted to provide an alternative to the network

interference explanation for chronometric (RT) trends in mental arithmetic. He argued 

that Ashcraft' s model underestimates the role of procedural processes in the efficient 

production of number facts by adults. This is due to the questionable assumption that all 

procedural processes are or remain slow. According to Baroody (1983) procedural 

processes become more secure and interconnected and thus become automatic so that 

problem solving (even basic number facts) becomes more efficient. He concluded that 

there was a developmental shift from a reliance on slow-counting procedures to a reliance 

on automatic principled knowledge (analogous to syntactic language production). This 

seems to suggest that perhaps the strategic aspects of mental arithmetic have been 

somewhat neglected. It is possible that perhaps, for some sums at least, strategic 

processes become automatic and are thus carried out almost as swiftly as recalling 

number facts. 

For example, the addition-subtraction inverse principles in stored procedural knowledge 

could be used to generate subtraction facts. This would be achieved through utilising 

automatic addition combinations, thus eliminating the need for another network in 

declarative memory. The developmental trend toward faster RT might be accounted for 

by the development of either declarative or procedural knowledge. This also accounts for 

difference in RT among various kinds of number-facts i.e. it arises from automaticity of 

procedures. 
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Baroody also claims that errors that reflect associative confusion (used as evidence for 

fact-retrieval by Ashcraft and other proponents of fact-retrieval) may actually be due to 

accessing the inappropriate rule in procedural knowledge. The "mastering" of number 

facts may be the development of procedural knowledge. It is, he claims, cognitively more 

economical to use procedural knowledge. 

Although Ashcraft (1983) found Baroody's original idea intriguing and potentially 

important, he believed in his early criticism that its exposition was quite vague and 

speculative. According to Ashcraft (1983) Baroody's proposal only applied to special 

cases e.g. N +0 and N + 1 and there were no concrete suggestions about the nature of the 

rules and heuristics especially for routine problems e.g. 4+3 and 8x5. Ashcraft (1983, 

1985) argued that Baroody's alternative was an inadequate explanation of existing RT 

results. However, Baroody's (1994, 1999) proposals are now more sophisticated and do 

take into consideration existing RT results but I will return to this point later on. 

In Ashcraft's model, young children compute simple sums by slow counting algorithms 

but older children and adults have stored it in memory and can retrieve it. However, 

Baroody (1983) claims such mental arithmetic performance (whole number facts) can be 

explained without resorting to the emphasis on declarative knowledge and memory 

retrieval, procedural knowledge is enough. 

Ashcraft argues that the "confusion effect" in multiplication (e. g. recalling the answer to 

4x6 (32) vs 4x8 (24), because both are answers to a "4x" problem) is support for the 

memory network approach, whereas Baroody provides no descriptions of rules other than 

N +0 and NxO. Another issue, of the problem-size effect, shows that procedures are less 

automatic and more difficult to execute, and so this implies reliance on conscious rather 

than automatic processing, therefore a "sacrifice of efficiency and economy". If 

procedures were all that efficient there would be no problem-size effect. Procedural 

processing is thus inefficient and uneconomical. Fact storage in Ashcraft's model is 

comparable to storing the words of language for a language model, while according to 

Baroody, making sentences involves both rules and words. 
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According to Siegler's Distribution of Associations model (discussed further on in 

Section 3. 2. 3), the basic representation of a problem in memory is accompanied, in a 

rather mechanical fashion, by both correct and incorrect answers that the individual 

has generated or computed across experience. This is what may slow down responses 

for certain problems. Using this information, Ashcraft argues that while adult 

performance is interpreted as representing fact retrieval, other studies give evidence 

for strategy use even on simple addition and multiplication facts, perhaps because of a 

lack of confidence at recalling the correct answer. 

In his own research project, Ashcraft (1995) looked at another less researched issue in 

mental arithmetic: the cognitive consequences of mathematics anxiety. Although he 

found that there was research available on mental arithmetic and mathematics anxiety, 

no one had considered looking at the possible cognitive consequences of mathematics 

anxiety, i.e. whether or not such anxiety makes any difference to how a person 

performs mental arithmetic. What was interesting was his finding that high maths 

anxious subjects achieve rapid RTs but at the cost of substantially higher errors (a 

speed-accuracy trade-off) in their desire to end the experiment and that there are 

physiological changes as a result of mathematics anxiety. This has significant 

implication for numeracy skills in general, as well as implications for educational 

practice especially for older children. This reminds us how useful it is to be confident 

at numeracy skills. Confidence in their general ability could affect children's 

competence at mental arithmetic although this would be more likely to become an 

issue for older children. Although it is doubtful that this would be the case with 

younger children, it may well be an issue that depends on early experiences with 

mental arithmetic. 

3. 2. 2 Campbell's Network-Interference Model 

In this further fact-retrieval model, the emphasis is on the interference from various 

number-facts in the network. In Campbell's network-interference model, retrieval 

from the organised network is viewed as a process heavily affected by interference. In 

this model, a presented problem activates the memory representations for a large 
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number of related number facts. The strength of the activation of specific facts is 

determined by featural and magnitude similarity to the presented problem. 

Campbell's (1995) network model simulates number-fact retrieval processes for 

single-digit multiplication facts up to 9 x 9 and addition facts up to 9 + 9. Camp bell 

(1995) was a revision of Campbell and Oliphant's (1992) network-interference model 

of number fact retrieval. Although they first proposed an earlier model of their theory, 

I will be discussing the most recent one. 

In the network-interference theory, whenever a problem is presented, memory codes 

that correspond to all the addition and multiplication facts in the network are activated 

to some degree (activation here is a metaphor for the changing strengths within the 

cognitive system). In this theory the dominant idea is that there are memory codes and 

processes that mediate retrieval of simple arithmetic facts such as 4 + 8 = 12 and 8 x 6 

= 48. A problem activates memory representations for a large number of related 

number facts. When faced with a problem, memory codes corresponding to all the 

addition and multiplication facts in the network are activated to some degree. Adults 

and older children often rely on such retrieval strategies. Camp bell (1995) claims that 

the network-interference model is a theory of number fact retrieval, not a general 

model of basic arithmetic skill. Within a general theory of basic arithmetic skill, he 

argues, the network-interference model provides a detailed theory of a component 

memory skill. 

It is assumed that arithmetic memory involves both a magnitude code and physical 

codes. The magnitude code represents the approximate numerical size of the answer 

to a problem and primes the associated physical codes that represent exact answers. 

Physical codes for the problems are assumed to be visual or verbal associative units 

that consist of the operand pair, operation sign, and answer. Camp bell refers to the 

physical-code representations of problems as nodes. Retrieval in this model involves a 

series of processing cycles, and each cycle represents a few tens of milliseconds of 

processing. On each cycle, each node receives excitatory input determined by both 

physical and magnitude code similarity to the presented problem. This excitatory 
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input is modulated by inhibitory input that is proportional to the total activation 

associated with all other currently activated nodes. Across cycles, the strengths of the 

excitatory and counteracting inhibitory inputs gradually approach equilibrium, and a 

response is generated when one of the nodes in the network reaches a critical 

threshold level of activation. The excitatory input to the correct node is generally the 

same for all problems, so that differences in retrieval ability are mainly the result of 

differences in inhibition due to the activation of incorrect nodes. 

One observation that provides support for this theory comes from one of the most 

frequently researched occurrences in cognitive arithmetic, i. e. the problem-size 

effect. The problem-size effect is the finding that the difficulty of simple arithmetic 

problems generally increases with numerical size. This is true for both children and 

adults, with correlations of about +0.6 to +0.8 observed between measures of 

problem-size and retrieval time (RT) on simple addition and multiplication problems 

(Ashcraft, 1987; Campbell and Graham, 1985; Geary, Widaman and Little, 1986; 

Miller, Perlmutter and Keating, 1984; Norem and Knight, 1930; Parkman and Groen, 

1971). Various explanations have been offered for why the problem-size effect 

occurs. 

Campbell and Graham (1985) proposed that the problem-size effect is due to larger 

number problems being learnt later on than smaller-number problems. This results in 

cumulative proactive interference that they claim might produce long-term effects in 

the impairment of retrieval for larger problems. They claim that although there is no 

direct evidence that such long-term cumulative interference effects exist, research has 

shown that children's performance on recently learned addition facts is disrupted 

when related multiplication facts are learnt (Miller and Paredes, 1990; Graham and 

Campbell, 1992). 

Another reason for the problem-size effect may be that larger number problems are 

practised less frequently. Hamann and Ashcraft (1986) and Siegler (1988) found that 

larger problems appeared less often in elementary-school textbooks. Campbell (1995) 

also suggests it is likely that we come across smaller problems more frequently than 
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larger ones in everyday context e. g. 2x3 or 2+3. However, McC!oskey, Harley and 

Sokol (1991) believe that since all single-digit problems will probably have been 

encountered very often by adulthood, any differences arising from frequency should 

be minimal. 

A further explanation for the problem-size effect is that numerical magnitude (the size 

of the number) has a direct effect on retrieval difficulty (Gallistel and Gelman, 1992). 

Support for this approach comes from magnitude effects found in arithmetic and 

numerical-comparison tasks. For example, most errors on simple arithmetic problems 

involve the correct answer to a "neighbour" problem (i. e. the answer to a problem if 

an operand was changed by + 11-1 or +2/ -2; Campbell and Graham, 1985; Miller et 

a!, 1984). In addition to this, in arithmetic verification tasks (e. g. 4+8 = 11: true or 

false?), false answers close to the true answers are more difficult to reject than false 

answers that are numerically further away. 

Campbell (1995) concludes that the problem-size effect arises because larger-number 

problems are more similar in magnitude to their neighbours than smaller-number 

problems. Thus larger-number problems are more likely to activate neighbours, and 

so they encounter more interference due to inhibition from neighbours than smaller

number problems. This is due to the slowing of the rate of activation of the correct 

node for larger-number problems making them more susceptible to retrieval errors. 

However, this account of fact-retrieval is not without its problems. There are other 

performance differences that cannot be explained by problem-size, although the latter 

is a good predictor of difficulty. Performance on problems with a repeated operand 

such as 3x3, or 8+8 (referred to as "ties") is better relative to "non-tie" problems of a 

similar magnitude (Campbell and Graham, 1985; Miller et a!, 1984). Campbell (1995) 

believes that one explanation for this ties advantage may be a higher occurrence 

frequency relative to non-ties. Although Graham and Campbell (1992) found that, 

when practice frequency was controlled, learning and performance on tie 

"alphaplication" problems (these are arithmetic-like memory items consisting of 

letters rather than numbers) was still better than for non-ties. 
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Another reason, argues Campbell (1995), is that they may be "intrinsically" easier 

(Beem, Ippel and Markusses, 1987; Gallistel and Gelman, 1992). Graham and 

Campbell (1992) found evidence that tie and non-tie problems form categorically 

distinct sub-clusters of items because most errors on tie problems involved correct 

answers to other tie problems (52%). In contrast, tie answers were infrequent error 

responses to non-tie problems (4%). This propensity to confuse answers within but 

not between these subsets of problems leads Campbell to suggest that ties and non

ties form different categories of problems. Within the network interference model, 

this means that if activation is stronger within rather than across category boundaries, 

ties are easier because they cause relatively weak activation of the more numerous 

non-ties and so encounter less interference than non-ties. Campbell makes a similar 

observation for 5-times problems, and sum to 10 problems which also have faster and 

more accurate solution times and he attributes this as being due to these problems 

being categorically distinct (and so resulting in strong associative links). 

In surmnary, Campbell (1995) proposed the network-interference model and a 

formula to test number fact retrieval in a computer simulation. He then tested it with 

both real and simulated subjects. He also found RTs to be longer for multiplication 

than addition in both actual and simulated data and that multiplication is more error

prone than addition. The model demonstrates that similarity based interference 

accounts for errors (where the incorrect answer is similar to the correct one or is the 

answer to another problem) and provides accurate prediction of variability in RTs of 

correct answers. 

3. 2. 3 Siegler's Distribution of Associations Model 

In Siegler's distribution-of-associations model (Siegler and Jenkins, 1989; Siegler and 

Shraeger, 1984), the model is distinguished by its attitude towards the representations 

of problems in memory which, in this theory, include both correct and incorrect 

answers that the individual has generated or computed over time and experience. So, 

due to its solution history, any particular problem may have a very strong, unique 
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associative bond to its correct answer, or it may have several weaker associations, one 

to its correct answer and several to incorrect solutions. They used this distribution-of

associations model to describe the strategy choice process. Representation in memory 

involves associations of varying strengths between each problem and its correct and 

incorrect answers. 

Siegler and Jenkins (1989) include another class of associations for each problem in 

which the most common or most favoured solution strategy for that problem is also 

represented. For example, counting as a solution process would also get attached to a 

problem on which it was likely to have been the most frequently invoked strategy. 

Therefore problems that have been solved with no or few errors across experience 

will be represented by a relatively strong association to its answer, as well as to the 

strategy responsible to obtaining that answer e. g. retrieval. However, a problem 

solved with an inconsistent accuracy, in addition to an erratic strategy, will mean 

multiple weak pathways of association for that problem accompanied by a slower, 

more error-prone performance. 

This is a multiple procedure model because it accounts for the view that there are 

multiple routes to solution, i. e. individual children and adults often use multiple 

strategies to solve problems and this affects the strength and type of associations that 

form as a result (Siegler, 1988). Siegler (1988) argues that wise choices allow people 

to meet situational demands and overcome limited knowledge. He found that even 

young children can be fairly skilled at choosing strategies, e. g. between retrieval 

which may be fast and back-up strategies such as counting which are high in 

accuracy. 

This is the most developmental of the three models discussed here, since it has been 

used to account for the performance of children and is the least concerned with 

processing effects in adults. Therefore, it is also the only model in which processing 

strategies other than retrieval strategies are prominent. This is because non-retrieval 

strategies are more likely to be used by child rather than adult samples. In this model 

a distribution of associations for each problem is built up through the cumulative 
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experience of retrieval and other procedures. This includes a separate representation 

of each fact associated with a variety of possible answers (both correct and incorrect) 

and stored procedural knowledge about non-retrieval solutions. According to Siegler, 

in multiplication, there is· a very strong continuity between the performance of young 

children learning to multiply and that of highly skilled adults. 

Siegler and Shipley's (1995) revision of the distribution-of-associations model 

includes a computer simulation of strategic development called the adaptive strategy 

choice model (ASCM), designed to predict the way in which children learn strategies 

for mental arithmetic. Lemaire and Siegler (1995) found that improvements in speed 

and accuracy that generally accompany learning can reflect at least four types of 

specific strategy changes. Their findings supported several predictions of the adaptive 

strategy choice model. If retrieval is chosen, ASCM operates identically to its 

predecessor, the distribution-of-associations model. Acquisition of the min strategy, 

where the minimum addend is added to the larger one (Groen and Parkman, 1972), 

leads to an overall increase in speed and accuracy. Retrieval starts to be used more 

consistently on problems and is extended to larger size problems as well. An increase 

in frequency of use of the fastest and most accurate approaches can contribute to a 

general increase in speed and accuracy. Speed and accuracy will improve if children 

execute the strategies more efficiently. With learning, the relative frequencies of use 

of these strategies change, e. g. the more difficult the problem, the more frequent the 

use of back-up strategies. 

In ASCM, the strategies operate on problems to give data about the particular answer 

that was generated, the speed with which the answer was generated, and whether the 

answer was correct. This information about particular answers, speeds and accuracy 

feeds back to the databases about the effectiveness of strategies and the difficulty of 

problems. The assumption is that stated answers become associated with the problem 

on which they are stated. Within ASCM, as the associative strength between a 

problem and its correct answer grows relative to associations between the problem 

and incorrect answers, the probability of retrieving the correct answer grows. This is 

followed by increasing use of more effective back-up strategies (strategies such as 
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counting that we fall back on when unable to easily retrieve an answer) relative to less 

effective ones. According to Lemaire and Siegler (1995) a similar trend should be 

evident in multiplication. Children find it easier to add the larger multiplicand the 

number of times indicated by the smaller. 

ASCM incorporates three levels of information: 1) global information (which is 

generic information averaged over all problems), 2) local information (which is 

information about individual problems), and 3) featural information (which is 

information about problems with particular characteristics). Problem-solving 

experience leads to children obtaining increasingly useful featural information, i. e. 

that there are patterns/ rules that can help solve certain problems. 

By encoding featural information, ASCM can learn about the general characteristics 

of the answers that accompany problems as well as specific answers to specific 

problems. This includes the odd-even status i. e. when two odd numbers are 

multiplied, the answer is always odd and when two even numbers, or an odd and an 

even number are multiplied, the answer is always even. Although few adults and even 

fewer elementary school children know this rule explicitly, their performances seem 

to be affected by implicit knowledge of the odd-even pattern (Lemaire and Fayol, 

1994). On verification tasks, both children and adults are faster at rejecting errors that 

have incorrect odd-even status for a pair of multiplicands (e. g. 5 x 4 = 21) than ones 

that have the correct status (e. g. 5 x 4 = 22). Siegler (1988) also found that children 

tend to produce errors that reflect odd-even status early on when learning to multiply. 

However, these errors are more likely to conform to the odd-even pattern of addition 

rather than multiplication, e. g. on problems with one add and one even operand (5 x 

4) their errors tend to be odd numbers. An odd and an even number producing an odd 

number is the correct pattern for addition but not multiplication. 

To conclude, Siegler's distribution-of-associations model and ASCM suggests that 

strategy choices are highly adaptive even early on in learning. The more accurate 

execution of the back-up strategies leads to stronger associations between each 

problem and its correct answer, and to weaker associations between the problem and 

52 



incorrect answers. This in turn leads to more frequent use of retrieval. This model 

differs from the traditional view of children moving from Strategy A to Strategy B to 

Strategy C. In young children's arithmetic, both more and less advanced strategies 

coexist and compete with each other for a long time. Only gradually do more 

advanced strategies become prevalent. 

So it is evident to Siegler that research shows that from an early stage becoming 

efficient at mental arithmetic is a dynamic process involving the introduction of new 

strategies, shifts toward a greater use of the more efficient existing strategies, 

improved execution of the strategies, and more adaptive choices among the strategies. 

According to Siegler and Jenkins (1989) it is not always the child with the most 

advanced knowledge who first discovers a new strategy. Innovators are likely to be 

those with the willingness to consider diverse strategies and to continue using them 

even when they are not working perfectly. 

3. 3 Overview 

At first glance it might be thought that these theories resemble behaviourist models 

but this is not the case. Cognitive psychology is concerned with mental models rather 

than the stimulus-response theory which was influential in the earlier part of this 

century. For example, Ashcraft, Camp bell and Siegler talk about cognitive models 

and associations. Behaviourist models were considered theoretically limited and were 

not seen as being rich or powerful enough as explanations for behaviour. It is possible 

to claim that cognitive models are also rather mechanical in their general outlook. 

Ashcraft counters possible claims that network models are mechanical with the 

argument that cognitive psychology uses the notion of associations among facts, items 

of information, nodes in memory etc and is therefore a more dynamic, more adaptive 

process compared to the simple S-R theories. This does not suggest the formation of 

S-R associations in the Thomdike tradition. It is wrong, he claims, to equate 

associative network models with a S-R approach. 
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However, at a significant level network models are looking for mechanical 

associations but they are theoretically more sophisticated and therefore of richer and 

more productive capabilities. The earliest examples of cognitive research looked for 

more than just simple S-R associations. Cognitive models go beyond the behavioural 

level of association by conjuring up a "system of networks". For example, Campbell's 

(1995) network-interference model is meant to aid the construction of computer 

models that simulate children's thinking. Here the aim is to build a program that 

follows the rules of the model and behaves similarly to the way people behave when 

learning arithmetic. However, there is a tendency to bypass the fact that this learning 

is going on in a social context and so such theories can seem more passive than active. 

Following on from this discussion of three prevalent theories of mental arithmetic 

processing, I will now look at some of the evidence used to provide support for 

network-retrieval models. Some of this comes from neuroscience research, more 

specifically from studies looking at selective impairment. 

3. 3. 1 Neuroscience Research 

One method of assessing cognitive (network/ fact-retrieval) models is by looking at 

how they are supported by neuropsychological research involving brain-damaged 

patients. It is important to take into consideration neurological research because 

mental arithmetic also involves neurological processes. As with all cognitive 

psychology, a lot can be learnt about processes (and certain functions associated with 

certain processes) from studying selective impairment, especially since new 

technology has allowed brain scans to become increasingly sophisticated. In mental 

arithmetic, selective associations between function and storage ability are crucial to 

arithmetic processing. The most convincing evidence for this comes from studies of 

people who have suffered from brain damage that has led to impairments in their 

arithmetical abilities. Selective impairment resulting from case studies of brain

damaged patients gives credibility to certain functional processes. If, for example, 

brain damage leaves a person unable to remember tie-sum number facts while still 

remembering other number-facts, then this is strong evidence for the view that this 
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knowledge is somehow "distinctive" and is stored separately from other number-fact 

knowledge. 

This has prompted neuropsychologists like Dehaene and Cohen (1995) to argue that 

while basic empirical findings in numerical processing are remarkably similar, there is 

disagreement about the models proposed to account for these data. While the 

arithmetic processing models themselves make similar predictions, it is difficult to 

discriminate between the models on the basis of peoples' performance which tends to 

be fairly consistent, e. g. the prevalence of the problem-size effect and the short RTs 

for tie-sums. The precise nature of the mental representation underlying simple 

number processing in adults remains a relatively controversial topic of debate. 

Dehaene and Cohen (1995) proposed a model which accounts for the mental 

processes and neuroanatorriical circuits involved in number processing and mental 

arithmetic, looking at the mental representation underlying simple number processing 

in adults. Their model elaborates on a previous "triple-code" model of arithmetic 

processing proposed by Dehaene (1992). It assumes that arabic and magnitude 

representations of numbers are available to both hemispheres but that the verbal 

representation that underlies arithmetic fact-retrieval is available only to the left 

hemisphere. 

In the triple code model, arithmetic facts such as 2x3 == 6 cannot be retrieved unless 

the problem is coded into a verbal code "two times three" which then triggers the 

retrieval of the result "six" in the same verbal format. Support for the model comes 

from case studies of patients with various forms of neurological disorders that affect 

performance at numerical tasks. For multiplication, rote-memory retrieval is the main 

strategy. Various neurological conditions are shown to yield predictable impairments 

in the numerical domain. Dehaene and Cohen reject the phrenological notion of a 

"centre for calculation", or a single brain area where numerical knowledge would be 

centred. 
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Evidence from studies of neurological damage seems to support the network-retrieval 

model. Such evidence has played a significant role in testing models of mental 

representation of numbers (Campbell and Clark, 1988; Dehaene and Cohen, 1991). 

Dehaene and Cohen (1995) argue that since most studies have been carried out within 

the context of cognitive neuropsychology, they have looked at the behaviour of brain

lesioned patients at a purely functional level, without regard for brain localisation or 

lesion site. Therefore, models of number processing have also been studied within a 

functional level. Dehaene and Cohen (1995) are more interested in the networks of 

brain areas that underlie the functional architectures for number processing and how 

data from case-studies and functional brain-imaging techniques in normal subjects can 

be used to constrain models. Their intention is to provide an illustration of the form 

that a neuro-functional model of number processing could take. The assumption is 

that brain damage disrupts the network, perhaps by destroying or weakening 

associative links between nodes in the network. McCloskey (1992) found that three 

patients had considerable higher error rates for 8 x 8 than for 8 x 9 or 9 x 8. This 

supports low RT and error rates for tie problems that are seen as special cases (distinct 

facts) by proponents of the network model. It suggests that some distinct number-facts 

such as tie-sums may be stored separately from others, and this may be why they are 

so easy to recall i. e. generate faster RTs. 

So, it seems that some of the most convincing evidence for network/ fact-retrieval 

models of arithmetic processing comes from such studies of selective impairment. Yet 

more evidence for network retrieval theories comes from studies looking at factors 

such as priming and errors that reveal much about our arithmetical processing. 

3. 3. 2 Further Evidence Supporting Network Models 

1n addition, some of the evidence for the network theories comes from studies looking 

at people's performance at arithmetic tasks looking at priming and research on error 

patterns. LeFevre, Bisanze and Mrkonjic (1988) studied reaction times and found that 

activation of simple arithmetic facts is obligatory, in that activation of a sum occurs 

even when mental arithmetic is completely irrelevant to the task. They measured a 
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"Stroop effect" by presenting subjects with a combination such as 5 + 1 (the prime) and 

then replacing this display with a number (the target), the number is either one of the 

numbers presented previously (5 or 1), their sum (6) or some other number (e. g. 3). 

The subject was then required to indicate whether or not the number was presented 

previously in the combination display. They found evidence of an interfering Stroop 

effect. Subjects rejected sums more slowly than other numbers. 

Their findings are compatible with the view that arithmetic knowledge is represented 

in an associative network and is accessed by means of spreading activation. They 

support network model theories that number facts are represented as nodes in a 

network of associative links and that arithmetic knowledge is a highly interconnected 

network of associations. They assume that the principles of semantic representation 

and processing that apply to network models of word knowledge also apply to 

arithmetic facts. Their findings also support the development of automaticity. This is 

the view that over time, some number facts may become automatised (Baroody, 1983, 

1994). LeFevre et a! (1988) concluded that although the task did not require the recall 

of combination sums, subjects did so automatically, and this slowed their response 

when evaluating a sum problem. 

Evidence from error data also provides support for network theories of arithmetic 

processing, because they may reflect associative patterns that formed early on in learning 

and arithmetic development. While looking into this, Campbell and Graham (1985) 

claimed that despite research, no firm conclusions can be drawn about how basic 

arithmetic should be taught to children or about why the acquisition of simple number 

facts often presents a serious challenge to children. Some have argued that drill is 

necessary because the number facts need to be available effortlessly to avoid competition 

with higher level problem-solving processes. Campbell and Graham argue that the more 

thoroughly understood the basic operations are the more useful arithmetic tasks become 

as experimental tools. They believe that children initially use counting strategies to 

perform simple addition and that procedural models used by children are also used by 

adults. As a result, the problem-size effect in adults may reflect the presence of 

unconscious automatic counting procedures. The assumption in network-distance and 
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procedural models of arithmetic memory is that the problem-size effect is a consequence 

of numerical magnitude. Since the problem-size effect is due to the search distance in the 

network, small number problems have fast response times (RT), because their operands 

are closely associated with the correct answer node in the memory structure, and larger 

number problems take longer because their answers occupy semantically remote regions 

of the network. Similarity among items to be memorised promotes interference, because 

competing associations are a source of confusion during learning and their impact is 

preserved in adult performance. 

Analysing error patterns was useful because Campbell and Graham (1985) believe that 

errors reflect associative patterns. Activating a false association of a problem slows down 

correct retrieval and they found a positive correlation between problem error rates and 

RT. Children establish false associations during learning that weaken or interfere with the 

formation of correct associations. Looking at multiplication errors, they found that both 

adults and children are highly consistent in the errors they make and that children's errors 

start to resemble those of adults. They identified two kinds of multiplication errors: table 

errors (answers are correct for other simple problems e. g. 4 x 8 = 24 etc that are 

influenced by proximity) and miscellaneous errors (any other incorrect response e. g. 4 x 

8 = 29). They found that errors were related to one or both of the operands in a problem. 

With increasing skill there is a tendency for errors to be numerically closer to the correct 

answer. So, errors reflect associative links between problems and false candidates. It is 

the frequency of occurrence which determines the strength of associations, i. e. the order 

in which arithmetic combinations are learned (small ones first, then larger ones). As a 

result, problems introduced later in the sequence must be learned in the context of many 

competing associations, whereas problems learned early are free from competition, and 

thus more free from errors. Ties (e. g. 4 x 4) are faster because associations form between 

operands and products and, since retrieval is slowed by false associations, ties which have 

only one number will activate fewer interfering false candidates. This would result in a 

strong association being formed between the tie-problem and it's correct response and 

lead to the fairly fast and accurate responses consistent with existing findings. Thus 

supporting the view that multiplication performance of both children and adults involves 

fact retrieval from an associative network. 
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Campbell and Graham (1985) also looked at how errors reflect associative patterns 

because errors are often systematic, i. e. errors are related to one or both of the operands 

in a problem. Thus multiplication errors reflect the activation of "false candidates" in an 

associative network structure in memory. They conclude that acquisition of simple 

multiplication skills is a process of associative bonding between problems and candidate 

answers. The problem-size effect is not due to distance searched through the network but 

is due to large problems being tested less often and occurring later in the learning 

sequence leading to weak correct associations and more/ stronger competing associations. 

There is, however, intrinsic variability among problems e. g. 4 x 8 (8 x 4) is one of the 

most difficult of problems whereas 8 x 9 (9 x 8) is relatively easy even though it is one of 

the last ones to be learnt. Network-interference explains multiplication performance but 

so does procedural (rule-based) knowledge. Any rule that constrains the candidate set for 

a problem should facilitate learning. The learning of multiplication facts can be facilitated 

by minimising the formation of false associates. They also believe that simple arithmetic 

can be used as a paradigm to define precise mechanisms of interference that have general 

implications for semantic memory and its development. 

More support for the early versions of the network approach to mental arithmetic came 

from Stazyck, Ashcraft and Haman (1982). This earlier account of the network approach 

to mental multiplication looked at how multiplication facts are stored in an organised 

interrelated network structure. They had also argued that multiplication and addition have 

highly similar cognitive processes, in that there are no fundamental differences between 

fact-retrieval for addition and fact-retrieval for multiplication. Their results did not 

suggest adults usually reconstruct or calculate the simple multiplication facts. Instead of 

counting, adults use a nearly error-free fact retrieval process. However, infrequent 

extreme scores suggested that fluent retrieval was not absolutely error or difficulty free. 

Their results provided supporting evidence for the network approach. 

The research discussed above provides some of the strongest evidence for the network 

based cognitive models of mental arithmetic. The following section will examine more 

closely some of the wider issues raised by adopting a network approach. 
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3. 3. 3 Overview of the Current Models of Simple Arithmetic Processing 

To provide a brief summary, according to Ashcraft's network-retrieval model 

(Ashcraft, 1982; Stazyk, Ashcraft and Hamann, 1982), the simplest network model 

claims that the basic facts of addition and multiplication are stored in inter-related 

memory networks, with problems in the networks varying as a function of strength or 

accessibility. Meanwhile, Campbell's network-interference model (Campbell, 1987; 

Campbell and Clark, 1992; Campbell and Graham, 1985; Campbell, and Oliphant, 

1992) interprets retrieval from the organised network as a process heavily affected by 

interference. This seems to be the only current model to account for various 

interference and priming effects that are now well documented in the literature. In 

Siegler's distribution-of-associations model (Siegler and Jenkins, 1989; Siegler and 

Shrager, 1984), the basic representation of a problem in memory is accompanied not 

only by that problem's correct answer but also by the incorrect answers that the 

individual has generated or computed across experience. 

These are not isolated competing theories of number-fact processing. They are concerned 

with numerical processing and the formation of associations and/or networks of 

associations, and how these are accessed. They are rather more like variations on the 

same problems, i. e. how associations and associative links are formed in human memory 

because the three are quite closely linked but where each is a self-contained 

comprehensive theory of number fact processing in human memory. While each remains 

a self-contained comprehensive theory, this does not imply that they are in competition 

with each other. Nor are they static theories, since they are constantly being updated and 

developed to account for new findings. The cognitive theories mentioned above resource 

our understanding of how children learn mental arithmetic. Yet they are more provocative 

for certain areas e. g. how such research can be used to design computer simulations that 

will further our understanding of numerical processing by "learning" arithmetic in a way 

similar to that used by children learning arithmetic. 
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While it must be stressed that these models of simple arithmetic processing are not 

isolated competing theories (because the focus remains on single-digit numbers, instead 

of looking at sums which encourage the use of strategy and reordering digits), the domain 

of interest for all three theories seems relatively narrow. This is primarily because the 

three models of simple arithmetic processing outlined above are concerned with single 

number bonds. While this is appropriate for building models of number fact 

representations, it neglects the issue that real-life mental arithmetic is about more than 

just single-digit number bonds. It is about dealing with multi-digit problems i. e. adding 

up larger numbers or sequences of digits. Authentic addition problems usually involve 

two or more numbers with several digits. 

3. 4 Implications for Education Practice 

Since the domain of application of these theories (e. g. for teaching practice) is narrow, 

what these theories do not do enough of is put the results of their findings into practice for 

improving number fact processing. Campbell does consider this problem with the 

suggestion that perhaps number facts should be taught in a different order to the ones 

currently in practice, i. e. to minimise interference effects. Ashcraft looks in depth at how 

mathematics anxiety can hinder the process of learning number facts. 

One of the proposals to arise from network models is the tentative suggestion that perhaps 

associative confusions could be minimised by not teaching multiplication problems in the 

context of times-tables. Maybe tradition has led educators into incorrectly believing that a 

well-ordered systematic introduction to number facts gives learners a helpful conceptual 

framework (Graham, 1987). On the other hand, there is no evidence as yet of whether any · 

alternative orders would be better. 

Graham (1987) suggests that computerised drills that deal with individualised needs are 

possible with computers in the classroom. Review programs could be designed so that all 

problems are periodically maintained while error-prone problems and responses are 

concentrated on. Graham also believes that computer drills would be much more practical 

than paper and pencil tests since more trials could be run and error histories automatically 
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recorded. Furthermore, instant feedback at a computer screen would help identify the 

correct associations and minimise the impact of false retrievals. New technology allows 

more interactive, more adventurous forms of practice especially as computers become 

increasingly ubiquitous in classrooms. This allows for a potentially richer context for 

developing fluency at arithmetic skills. 

Most research so far has focused on single-digit number facts and their retrieval from 

a network of stored number facts in human memory. However, this is changing and 

the focus of some research is shifting to how procedural rather than declarative 

knowledge is manipulated to solve arithmetic problems. While research focusing 

exclusively on single-digit number facts is useful for theorising about network 

models, real-life arithmetic is about larger numbers e. g. adding sequences of numbers 

such as 4+9+5+ 1 +9. This type of serial addition quickly gets into larger double 

figures (such as 84 + 7), another form of neglected problem. Problems such as these 

can be solved more effectively by strategic use of existing number knowledge but 

younger children may be slow at doing this. 

3. 5 The Role of Working Memory in Mental Arithmetic 

3. 5. 1 Working Memory 

Adding larger numbers involves calling up the network and this can be constrained by 

working memory. This raises the issue of what more complicated problems would 

demand in the way of working memory resources. Working memory is significant 

because mental arithmetic involves both simple networks of data and the complex 

constraints of working memory. Ashcraft (1995) suggests that adding numbers seems 

to rely mainly on the central executive component and the articulatory loop seems 

especially involved in counting, but that evidence for the role of the visuo-spatial 

sketchpad seems speculative and needs further research. 

The long-term memory aspects of mental arithmetic lead researchers in this area to 

look at a more process-oriented explanation of arithmetic performance. This is done 
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by examining performance by looking at the involvement of working memory. 

Ashcraft (1995) stresses the role of working memory in simple arithmetic as proposed 

by Baddeley and Hitch (1974). Their highly influential system of working memory 

comprised a number of components. Working memory refers to the temporary storage 

and manipulation of information. In this system, a central executive component is 

responsible for reasoning and language comprehension, decision making, and for 

holding retrieved and intermediate information for further processing. It is served by 

subsidiary specialised "slave" systems. Initially, two systems were proposed, the 

visuo-spatial sketch pad and the articulatory loop. The visuo-spatial sketchpad was 

considered to be responsible for the temporary storage and manipulation of visuo

spatial material and the articulatory loop performed a similar function for verbal 

material. Together these systems maintained and recycled phonological/ articulatory 

information in the auditory rehearsal system, maintaining visual and spatial 

information. This system has remained fairly intact (Baddeley, 1986, 1992) although 

the role of the components of working memory has become clearer and the 

articulatory loop is now referred to as the phonological loop. 

The working memory model was able to account for a wide variety of data with 

relatively few assumptions (Logie, 1995). Although it was set in the context of 

dissociation with long-term memory, it argued that short-term memory could be 

usefully fractionated. It can also account for aspects of everyday cognition. The 

phonological loop seems to be involved in counting and in mental arithmetic (Logie 

and Baddeley, 1987; Logie, Gilhooly, and Wynn, 1994), in vocabulary acquisition by 

young children and by adults learning a second language (Gathercole and Baddeley, 

1990). Working memory is also thought to be involved in problem-solving and in 

comprehension. Until recently, the role of the visuo-spatial working memory system 

has been less clear, although it was assumed to be separate from both the central 

executive and from the phonological loop. 

Hitch (1978) did the earliest research on the involvement of working memory in 

arithmetic performance. His results demonstrated an important role for working 

memory in the computation of arithmetic answers for complex problems. He 
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identified working memory as the storage system for initially presented operands and 

intermediate values computed during solution. But he did not account for possible 

working memory involvement in the simple fact retrieval process. Retrieval of basic 

facts, especially difficult ones, also uses working memory resources. This area has 

only recently been investigated. 

Ashcraft, Donly, Halas and Vakali (1992) looked at the involvement of working 

memory resources in successful performance and the role of automaticity. They used 

the term "attention" to refer to mental resources or effort used in a cognitive task (a 

task that probes knowledge within the domain of simple arithmetic) with the 

assumption that attentional resources for cognition are limited. Handling numbers can 

be managed in two ways: the first is conscious processing which is the effortful, 

deliberate performance that relies on attentional resources. Whereas the second, 

automatic or autonomous processing is the very rapid, skilled performance 

accomplished with few, if any, demands on working memory resources. 

A problem that has long intrigued researchers in this field is the problem size effect. 

Explanations of this effect in adults support memory representation of simple 

arithmetic fact knowledge in which the strength of the association or network 

connection between operands and answers affects the time taken for successful 

retrieval. For simple single-digit number facts in addition and multiplication adults' 

processing is mostly automatic. Even third graders show some automatic facilitation 

of retrieval on the smaller, less difficult multiplication problems. As mentioned 

earlier, this has been used to provide support for fact-retrieval theories of arithmetic 

processing. 

Ashcraft et a! (1992) looked at explicit manipulation of the working memory load as 

in the dual-task paradigm (where subjects were required to count the number of 

visually presented targets while performing various secondary tasks) used by 

Baddeley and Hitch (1974). They found that concurrent tasks influenced arithmetic 

performance. Important elements of simple fact retrieval in addition rely on working 

memory resources, especially for difficult problems. For two column problems, no-
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carry and carry represent the factor of problem difficulty. Even basic fact retrieval 

relies on working memory resources, at a subtle level for difficult ones and at a 

higher, more central level for complex addition with carrying. For adults, this is 

retrieval from organised memory (basic addition facts). Mental arithmetic should 

show clear evidence of automatic processing and there should be progression in 

childhood from conscious to automatic processing of basic facts. 

Elementary school education stresses the need for "memorisation of the basic facts" to 

aid solution of more difficult problems, so there is a practical need for some degree of 

automaticity in performance on basic facts. The memory retrieval process in adults 

depends on an organised, interconnected memory representation of the facts. In 

semantic representation, the retrieval process involves spreading activation which 

activates both target and related information within the memory structure. Related 

information can therefore alter processing of an arithmetic stimulus. For example, any 

prime stimulus other than the correct answer has a disruptive effect and this is 

evidence that the prime is activating information in memory and has an influence on 

the retrieval process (Lemaire, Barret, Fayol and Abdi, 1994; Campbell, 1987). 

There is evidence that small facts are "advantaged" (become automatised) early on at 

school level (Ashcraft and Christy, 1995). So it may be that automaticity will only 

develop quickly only for small addend problems. Multiplication knowledge, in 

particular, and possibly all arithmetic knowledge is prone to interference. 

Performance at less than automatic level implicates the working memory system. 

Strategic processing, especially on larger and more difficult facts is more common in 

adults than previously believed and competes with memory retrieval when the 

information is of low strength in memory. They conclude that there is lack of 

complete automaticity or autonomy in arithmetic performance. 

3. 5. 2 Issues in Working Memory 

The three structural components of working memory are relevant to mental 

arithmetic. Ashcraft (1995) found that arithmetic research in this area suggests that 

65 

- --~J 



adding numbers seems to rely mainly on the central executive component and that the 

articulatory loop seems especially involved in counting. Evidence for the role of the 

visuo-spatial sketchpad seems speculative and needs further research. However, as 

yet, empirical evidence within these areas is scarce. The effects of the components of 

working memory, in particular the role of visuo-spatial working memory, in mental 

arithmetic require further research. Ashcraft (1995) identified how the three 

components of working memory are particularly relevant to mental arithmetic: 

First, that adding numbers seems to rely especially on the central executive 

component. The central executive is presumably the component that retrieves and 

then manipulates number fact information. Retrieval of less accessible facts, i. e. those 

of lower strength in long-term memory, will presumably consume more of the central 

executive's resources. As a result, when such retrieval is accompanied by a secondary 

task that drains the central executive's resources, it should result in interference 

(slowing of the normal retrieval operation). This would occur whether performance 

was driven by relatively slow effortful retrieval or by more conscious application of a 

reconstructive strategy (non-retrieval processing). From our understanding of the 

working memory system in general, this would provide more compelling evidence 

than depending on verbal reports to demonstrate reliance on strategies ( Geary and 

Wiley, 1991). 

Secondly, the articulatory loop seems especially involved in counting, both the one

by-one incrementing process and genuine counting. Tasks or problems that rely on 

such counting mechanisms should therefore consume resources in the articulatory 

system. So keeping track of counted and to-be-counted items, and keeping track of 

one's progress in a counting sequence may also put demands on the central executive 

component. Any other reconstructive strategy that involves the counting mechanism 

should also consume resources from the articulatory loop. 

Thirdly, evidence for a visuo-spatial sketchpad role in arithmetic performance is quite 

speculative. 
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Two further studies have looked at this issue. Logie et a! (1994) and, more recently, 

Adams and Hitch (1997) have looked at the role of working memory in arithmetic 

· problem solving. They argued that while there is extensive research on the acquisition 

of concepts and procedures for mental arithmetic, relatively little has been done on the 

role of working memory. The specific role of working memory in supporting mental 

calculation is still not well understood. 

Logie et al's (1994) results led them to conclude that the central executive component 

of working memory is involved in performing the calculations required for mental 

addition and in producing approximately correct answers. Although visuo-spatial 

resources in working memory may also be involved in making approximations it is 

unlikely that mental arithmetic relies heavily on visualising. Their results suggest that 

the subvocal rehearsal component of working memory helps maintain accuracy in 

mental arithmetic, i.e. by keeping the sub-components active and this is supported by 

previous research on counting (Logie and Baddeley, 1987). So mental arithmetic may 

involve general purpose resources, verbal short-term storage and/or visual imagery as 

well as LTM. The phonological loop seems to be involved in counting and mental 

arithmetic. 

Adams and Hitch (1997) looked at whether children's mental arithmetic is constrained 

by working memory. They found that the spans for mental addition were higher when 

the numbers to be added were visible throughout calculation than when they were not 

(working memory constraint). Their results support the assumption that working 

memory is a central general purpose resource supporting children's mental arithmetic. 

When working memory load was reduced by visual presentation, performance 

improved. They conclude that a natural task like mental addition which combines 

processing and storage as intrinsic components reflects working memory in a similar 

way to an artificial task. These studies isolate working memory as a constraint on 

arithmetical development. 

Therefore, working memory presents us with the bigger picture in the area of mental 

arithmetic research. Whereas the network/ fact-retrieval models present us with the 
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fairly simple view on arithmetic processing, working memory research highlights the 

complex underlying issues that can constrain arithmetic processing particularly in 

children. The next section is a brief look at the area of mathematical disabilities 

which, particularly in children, can also be due to short-comings in memory. 

3. 7 Mathematical Disabilities 

In light of what has just been discussed in the previous section, in cognitive 

development, constraints on mental arithmetic performance due to working memory 

are expected to be more severe in children. A significant number of arithmetical 

handicaps are due to deficiencies in short-term memory. There also seems to be 

evidence for working memory deficits in children with learning difficulties (Geary, 

1990; Geary, Hamson and Hoard, 2000) since working memory deficits are 

exaggerated in children. Currently research is being carried out in the area of 

mathematical disabilities. Research has been carried out in which cognitive models 

are being applied to children who have difficulties in early educational settings. 

Geary's (1990, 1993) results suggest that a deficiency in working memory capacity is 

a component of children's developmental difficulties in mathematics. 

Geary, Brown and Samaranayake (1991) tracked first grade (6-7 year old) children 

who had been identified as "mathematics disabled" across the nine-month school year 

along with a control group of normal first grade children. At the end of the year, a 

greater number of normal children showed evidence of a basic change in their 

arithmetic strategies for addition (from counting to retrieval-based performance). For 

problems that were still being solved by counting, the children showed faster 

performance. So normal children showed developmental progression towards more 

sophisticated strategies, as well as becoming more efficient at executing counting 

strategies when these were used. However, children who were initially identified as 

mathematics deficient failed to show greater reliance on retrieval at the end of the 

year. In addition to this, their counting-based performance remained slow and error

prone. They continued to rely on a less mature counting strategy, and their use of this 

strategy did not show improvement across the year. These findings suggest that 
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working memory capacity constraints are exaggerated in children and this is 

especially so with subsets of children whose mathematical abilities are a problem. 

In the above sections I provided a review of three current theories of arithmetic 

processing and the evidence that has been used to support them. I then went on to 

examine the role of working memory regarding mental arithmetic and also provided a 

brief view on the relevant themes from mathematical disabilities. In the following 

section I will consider schema-theory as an alternative approach to fact -retrieval! 

network-based theories. 

3. 8 Schema-theory 

The network/ fact-retrieval based approach appears to offer a comprehensive method 

of studying and theorising about numerical development and the extensive evidence 

used to support its theories is seductive. However, the same facts and evidence used to 

provide such compelling evidence for network based approached can be deployed in 

another way to support alternative theories. We can take the same facts and the same 

evidence but we need not have the same theories to explain them. Schema-theory can 

be used to explain the results of several key studies used to support fact-retrieval 

models. Baroody (1994) compares fact-retrieval models with a schema-based view 

and argues that relational/ procedural knowledge is an important component in 

learning and representing basic number facts (e.g. 8x3 = 24) and offers 

recommendations for more clearly determining how the basic number facts are 

learned and represented. 

3. 8. 1 An outline of schema-theory 

Schema-theory refers to the building up of a representation from familiar subparts. 

The term refers to what is essential to category membership and connotes a plan or 

expectation that can be used to receive or organise incoming stimulation. 

According to Fiske & Taylor (1984): 
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"A schema is a cognitive structure that contains knowledge about the 

attributes of a concept and the relationships among those attributes. All types 

of schemata guide perception, memory, and schema-consistent information. 

Disconfirming or incongruent information requires more effort to process than 

congruent information; if that effort is made, it may be well-remembered." 

Bartlett (1932) introduced the term "schema" into psychological literature, in the 

sense of an active organisation of past reactions, or of past experiences supposedly 

operating in any well-adapted response. He shifted emphasis onto cognitive aspects, 

as revealed to him by his memory experiments. Jean Piaget also used the term schema 

within a cognitive context. The Piagetian schema is the internal representation of 

some generalised class of situations that enable an organism to act in a co-ordinated 

fashion over a whole range of analogous situations. 

Schema-based theory appears to be a viable alternative explanation for some of the 

fmdings discussed here, but it is one that is over-looked by proponents of fact

retrieval. The fundamental argument here is that there are schemas for procedures/ 

rules/ heuristics, as well as networks of number facts. There is a relative lack of RT 

research in this particular area that tests some of the underlying assumptions of this 

view especially since a considerable amount of existing research has been done on 

multiplication facts. The lack of research within the framework of schema-theory in 

an area such as mental addition, where it may have fascinating implications, needs to 

be addressed. Empirical research is needed to examine in detail some of the questions 

it raises. 

There is agreement that children initially use a variety of strategies to reconstruct 

sums, differences and products of single-digit number combinations. They learn to 

respond to addition, subtraction and multiplication combinations efficiently (quickly 

and accurately) and, as experts, have some kind of network representation. However, 

theorists argue about the acquisition process and the nature of such network 

representation. 
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3. 8. 2 Evidence for schema-theory 

Baroody (1994) looks at how evidence used to support fact retrieval models can be 

explained by the schema-based view. The schema-based view was originally 

developed to account for observations about children's early mental addition 

performance not predicted by fact-retrieval models at the time. 

According to Baroody (1994), in the fact-retrieval theories described earlier in Section 

3. 2 (Siegler's distribution-of-associations model, Campbell's network-interference 

model and Ashcraft's network-retrieval model errors) errors are due to retrieval 

strategy and reflect nature of the associative network. Practice is the key 

developmental mechanism and the retrieval network does not embody relational 

knowledge. However, Baroody argues that, contrary to Siegler's (1988) fact-retrieval 

model but consistent with the schema-based view, fact-related errors may increase on 

unpractised combinations i. e. as a result of searching for related answers. 

One of the short-comings of the fact-retrieval models of mental arithmetic is their 

somewhat cavalier approach to alternative explanations for some of their findings. 

Baroody (1994) examines existing data used to support fact-retrieval theories and 

argues that their findings can also be used to support the schema-based view. For 

example, error patterns, the problem-size effect, and neurological data are used to 

support fact-retrieval theories but there is no reason why they should not be consistent 

with schema-theory. 

For example, according to the distribution of associations model, every time an 

answer is stated or computed (correct or incorrect) a trace is laid down in LTM. As 

the number of traces build up in LTM, the bond or association between an answer and 

a problem is strengthened. So, the practice errors made in childhood shape the type 

and frequency of errors made as an adult. 
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In fact-retrieval models, the basic number combinations are stored as an independent 

system (the "arithmecon") and this is separate from conceptual or procedural 

knowledge (Campbell and Graham, 1985). Unlike other semantic systems, the 

associative network for the basic facts does not involve representations of 

relationships such as the commutativity principle. 

Experts may use rules to generate the answers of combinations involving 0 or 1 but 

these rules are not considered an integral part of the network retrieval system. In the 

distribution of associations model, the representation consists of each single-digit 

combination, which has a unique associative strength with a correct answer. So even 

8x2 and 2x8 (commuted combinations) are represented separately with their own 

degree of association with 16. 

A schema-based view suggests that children and adults may both strategically employ 

related conceptual and factual knowledge to generate answers to "unrecallable" or 

unknown combinations. Proponents of fact-retrieval find that non-retrieval processes 

(back-up strategies) are basically slower than retrieval strategies. But according to the 

schema-based view, although some non-retrieval strategies such as (mental or finger) 

counting are slower, others such as reasoning or estimating may be almost as fast as 

retrieval. According to the schema-view, children or adults required to respond 

swiftly to unmastered combinations may draw on their existing knowledge to rapidly 

estimate an answer. They may even reason out the exact answer quite rapidly (i. e. in 

under a couple of seconds). 

In the schema-based view, practice frequency alone cannot account for changes in 

mental arithmetic performance or the underlying mental representation of basic 

number facts. Insight or pattern recognition is important for the evolution of errors 

and mastering number facts. Relational knowledge may become embodied in the 

mental representation underlying the retrieval strategy. Children initially have few 

resources so their earliest estimation strategies for generating answers may be 

ineffective. People evolve procedures after a while as a result of practice and learning. 
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A good example of this is the way error patterns change because, with experience, 

children can bring more knowledge to bear and can devise more sophisticated 

estimation strategies. For example, they may restrict estimates of the product for 2x8 

to 11 to 18. Even more sophisticated children may recognise all 2x are even and will 

only choose an even teen and if they know 2x7 = 14 the estimate for 2x8 may be 

further restricted to 16 or 18. In some cases they may master specific combinations 

with little or no practise e.g. 8+8 = 16 knowledge can be used to answer 8x2 = ? or 

knowing 8x2 = 16 and the commutative property of multiplication to answer 2x8 

efficiently. 

Patterns or relationships may become incorporated as an integral component in the 

processing of basic combinations by experts and shape the organisation of factual 

arithmetic knowledge. The basic combinations of number facts, procedures and 

representations may be represented in LTM as a structural framework consisting of a 

network of propositions and statements of relationships among facts. The associative 

network of number combinations and the semantic network of general arithmetic 

knowledge are not independent systems but are functionally dependent. Knowledge of 

commutativity permits related combinations like 8x2 and 2x8 to share the same data 

(answer) node in LTM. 

Although over time schemas can become automatic, initially the schema underlying 

exact estimation strategies would be almost entirely under conscious control. With 

experience, elements of such processes may become automatic. As exact and inexact 

answer schemata become more automatic, they might serve as component parts for 

more complex schemata. Repeated reasoning out of an answer may lead to an 

association between the problem and the answer, but the schema-based view suggests 

that this is not necessary for efficient mental arithmetic. The advantage of 

automatized procedures over associative links is that the former is more cognitively 

economical (Baroody, 1983). For example, the schema for commutativity means that 

both 8x2 and 2x8 can be represented by a single-associative link rather than two 

separate links. 
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The schema-based view is more parsimonious compared to fact-retrieval models. 

Fact-retrieval models propose competition between the fact-retrieval network and 

procedural knowledge, whereas in the schema-based view the efficient rule-based 

answers to problems involving zero and 1 are not an exception or an oddity. In a fact

retrieval theory (e. g. Ashcraft's theory) these are oddities. The rules for these 

combinations are an integral aspect of a system of schemata that underlie the efficient 

production of all combinations including multi-digit combinations e. g. 79+ 1, 85-85, 

104x0, 0/217. 

There is a large amount of empirical evidence to support fact-retrieval models 

(especially distribution of associations). According to Baroody, however, the 

empirical basis for such models is not unequivocable. Some of the evidence 

supporting fact-retrieval models does not hold up under scrutiny (a lot of it may 

confound retrieved responses with fast non-retrieved responses). Current fact-retrieval 

models, if not inaccurate are at least incomplete because they do not account for 

estimation strategies and compiled procedures (such as derived-fact strategies). There 

is now growing evidence to support key aspects of the schema-based view. 

Children become fluent at "surreptitiously and quickly" using back-up strategies. For 

example, on both retrieved-required and open-ended tasks, a child might reason that 

the product of 7x6 must be 6x6 plus 7 more but may be prone to mis-adding 36 and 7. 

Until recently, mental arithmetic error data of adults have been collected without 

regard to RT, so it had been difficult to get to the underlying processes. Evidence 

suggests some adults reason out some answers on timed tests and so it is entirely 

possible that factor-related and close-miss errors on mental arithmetic tasks are partly 

the result of reasoning strategies. An error of this sort suggests using a non-retrieval 

strategy. 

The schema-based view also suggests that children and adults might use estimation 

strategies, which would also tend to produce factor-related and close-miss errors. 

Fact-retrieval theorists have often used evidence from research on errors to support 

their models (Campbell and Graham, 1985). However, Baroody argues that here is no 
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direct evidence on a link between children's computational errors and subsequent 

mental arithmetic errors in adults. Baroody (1988) directly compared children's 

mental arithmetic errors to their frequency of computational errors and found no 

association between the two. In fact, existing evidence suggests that computational 

errors are not associated with error patterns or changes in these patterns. Error 

research could actually be used to support schema-theory. 

So although incidental learning of erroneous answers may occur, it would be wrong to 

believe that every stated incorrect answer has an impact on LTM or that 

miscomputing answers is necessary for mental arithmetic errors to evolve as seems to 

be suggested by some researchers (e. g. Siegler). Not every stated incorrect answer 

becomes associated with a particular sum. 

Most fact-retrieval models, including the distribution-of-associations model do not 

explicitly include a mechanism for pattern recognition or insight (Nesher, 1986). So 

they do not predict transfer (the mastery of unpractised combinations). However, 

recent research suggests that relational knowledge and transfer may play an important 

role in the learning of multiplication combinations involving larger numbers. 

Baroody (1993) found fd graders apparently took advantage of their existing 

knowledge of addition doubles (tie-sums) such as 50+50 to roaster (respond correctly 

within 3 seconds) unpractised combinations like 50x2. Jerman (1970) found that with 

age children continued to use reasoning strategies with ever increasing efficiency. 

These results are consistent with the schema-based view that relationships are 

incorporated as schema and the use of the schema becomes increasingly automatic. 

Various researchers have also noted that some adults use reasoning strategies (e.g. 

transforming 9 + 8 into the equivalent but easier combination of 10 + 7) to determine the 

sums of larger combinations. Though somewhat slower than that for retrieved answers 

the RTs for such reasoned answers may not be so much slower that they are 

considered as outliers and eliminated from a chronometric analysis. What needs to be 

done is to determine whether children are also capable of doing this. For example, 
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primary school children may also be able to mobilise strategically their existing 

mental arithmetic knowledge (e.g. knowledge of ties) to solve problems such as 6+7, 

7 +8, and 8+9 as well as more complex multi-digit problems. This attempt at strategic 

behaviour on their part would be interesting to observe because it hints at strategy use 

that was probably not taught to them by anyone. 

Evidence of how perceived responses become obligatory and affect responses is 

evident in the much investigated phenomena of the Stroop effect or obligatory 

activation LeFevre et a! (1988). This has also been cited in support of fact-retrieval 

models. In theory, a fact-retrieval network is an autonomous or at least a 

semiautonomous system i.e. once set in motion by the display of a combination, the 

retrieval process should run its course (look up an answer) with no conscious effort or 

only some conscious control. 

LeFevre et a! (1988) measured a Stroop effect by presenting subjects with a 

combination such as 5 + 1 (the prime), and then replacing this display with a target 

number, the number is either one of the numbers presented previously (e. g. 5 or 1), 

their sum (6) or some other number (e.g. 3). The subject was then required to indicate 

whether or not the number was presented previously in the combination display. 

LeFevre et a! (1988) found evidence of an interfering Stroop effect. Subjects were 

likely to reject sums more slowly than other numbers. They concluded that although 

the task did not require the recall of combination sums, subjects did so automatically, 

and this slowed their response when evaluating a sum problem. This interference 

effect was relatively short-lived and consistent with the spreading-activation-decay 

processes proposed fact-retrieval models. 

These results are not, however, inconsistent with the schema-based view that a 

retrieval network consists of both facts and relationships, i. e. the schema-based view 

would predict a Stroop effect if subjects were presented a problem like 46-46 and then 

presented one of the digits (4 or 6) the difference (0), or some other number (e.g. 5). 

Half the problems in this experiment involved the addition of 1 which may involve 
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(automatic) relational knowledge: the number-after rule i. e. n + 1 = one greater than n. 

(Baroody, 1983 and 1985,). 

Brain injury data is frequently used to support fact-retrieval theories. However, 

Baroody (1994) argues that the brain-injury data cited by Sokol, McC!oskey, Cohen 

and Aliminosa (1991) are not entirely consistent with existing fact-retrieval models 

and provides some support for the schema-based view. Sokol et a! (1991) found 

evidence for a zero-rule for multiplication. McC!oskey, Harley and Sokol (1991) 

concluded that the pattern of impairments observed by Sokol et a! (1990) was 

inconsistent with table-search models of fact-retrieval. For example, one subject had 

difficulty with 8x8 but no difficulty with 8x9 or 9x8, supporting Siegler's (1988) view 

that each fact is accessed independently according to its unique distribution of 

associations. Table-search models would predict that the search down the 8 column 

and across the 8 row would have been disrupted. 

However, an analysis of the data presented by Sokol et a! (1991) reveals an interesting 

pattern that contradicts this view. According to fact-retrieval models, in general, and 

the distribution-of-associations model, in particular, impairment in the recall of 2x6 

should not necessarily imply the impairment of 2x6 because commuted combinations 

are stored independently in LTM. The schema-based view suggests that impairment 

with a combination should necessarily imply impairment of the commuted 

combination. According to Sokol et a! (1991), the number of errors on problems are 

associated with that on commuted problems. The number of errors for a problem is a 

significant predictor of the number of errors for its commuted counterpart. Sokol et a! 

(1991) concluded that though this pattern of results described above is consistent with 

the view that commuted problems access the same stored fact-representation, the 

close similarity of error-rates for commuted problems does imply a unified 

representation. 

The evidence supporting fact-retrieval models and the distribution of associations 

model in particular is not as unequivocal as claimed. Research is needed to test the 

key assumptions of such models directly. But, as yet, there is no direct evidence that 
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prior associations and computational errors shape the mental arithmetic errors of 

children or adults as suggested by proponents of fact-retrieval/network models. Some 

evidence actually appears inconsistent with such assumptions. Much evidence is 

ambiguous in that there are plausible alternative explanations e.g. confounding 

nonretrieved and retrieved responses may account for the problems size effect. 

Efficient proceduralisation may account for research used to resource fact-retrieval. 

Error priming or confusion effects may be due (at least in part) to nonautomatic 

responses. We need to be careful about drawing conclusions from existing data about 

how the basic combinations are internalised and then organised in LTM. Although 

there has been increased awareness about the effects of non-retrieval processes on 

mental arithmetic (Campbell, 1990; Koshmider and Ashcraft, 1991) possible 

confounding factors are still not given adequate attention. 

To study the learning and representation of basic number combinations, researchers 

need to make every effort to eliminate the effects of non-retrieval processes and to 

distinguish between rule-based and fact-retrieval processes (Baroody, 1985). It is not 

merely enough to distinguish between fact-retrieval processes and counting based 

processes. There is more potentially going on than just this dichotomy. Whether or 

not the size effect is due to other non-retrieval processes such as automatic or 

relatively fast non-automatic reasoning is the real issue and what must be discounted, 

even though this is a much more difficult task. Discrediting purely counting-based 

explanations for adult mental arithmetic is like "knocking down a strawman". 

The available evidence does not indicate whether fact-retrieval models are essentially 

correct but incomplete or fundamentally incorrect. Existing research seems consistent 

with the schema-based view and suggests that its basic principles are at least 

plausible. However, more research needs to be done before we can establish the 

validity of this view. 

Further research is needed to study the role and development of estimation and 

reasoning strategies in mental arithmetic. Research is also needed to examine whether 

the representation of the basic number combinations involves both facts and 
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relationships or facts only. Schema-theory would be a satisfactory explanation for 

why certain combinations of numbers may be faster than others. If tie problems have 

a shorter latency than other problems, schema theory would adequately explain why 

for example, for older children at least 9+8 would take less time than 9+7 if they were 

using relational knowledge to deduce that the answer would be one less than the 

answer for 9+9. 

3. 9 Summary 

Evidently, there are a variety of research perspectives relating to the development of 

the basic numerical skills in childhood. My own work will pursue the traditions 

established by the cognitive psychologists who have considered the concealed mental 

processes that mediate the solution of arithmetic problems that are unaided by 

external supports. In particular, I shall dwell on the case of mental addition. 

At various points in the present chapter I have stressed that research has been focused 

on the particular case of two-digit sums - problems of the kind a+ b in the case of 

addition. If we are to address the concerns of public commentators as they were 

identified in Chapter 1, it is important that we go beyond these theoretically 

interesting but narrow cases, to address forms of mental calculation that are more 

demanding - yet quite typical of everyday tasks. Thus, I shall converge here on an 

examination of cases of mental addition that have been neglected in the existing 

research literature. In particular, I shall consider situations where single-digits are 

added to two digit numbers, and where single digits are added in series. 

However, the general aims of my research are presented in fuller detail in the 

following chapter. There, I shall also present the methodological basis of the 

empirical work to be reported. 
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Chapter 4 

4. General Aims and an Appropriate Methodology 

4. 1 Review 
( 

In the present chapter I will begin by setting out the aims and objectives of the current 

research project, including the methodology I have used. From the psychological 

aspects of doing mental arithmetic, I will then go on to evaluate the methodology used 

by others in this area, mentioning both its strengths and limitations. 

In Chapter 1, I began by looking at the topical status of mental arithmetic and the 

social and political background of research in this area. I examined our national 

concern with numeracy skills and the significance of such skills in a technologically 

advanced society. I briefly looked at popular media opinion on numeracy including 

opinions on educational practice and the setting up of the Numeracy Task Force. 

Chapter 2 was a bird's eye view of the development of research in mental arithmetic. 

Section 2 began by providing a historical perspective in this area. I did this by looking 

at the early historical significance of arithmetical ability and the evolution of 

arithmetical education and how it gradually led to an interest in arithmetical research. 

In Section 2. 1, I examined the research traditions within which arithmetic has been 

studied, from its roots in Thorndike's behaviourist perspective of arithmetic to the 

development of mental arithmetic as a research area. This involved looking at how 

arithmetic was viewed within associative theories, such as stimulus-response theories, 

where basic arithmetic facts were seen as stimulus-response associations. These 

associative theories became progressively cognitive in nature, going from simplistic 

stimulus-response theories to looking at associations within networks of number 

bonds. In Section 2. 2, I went on to look at the emergence of cognitive arithmetic and 

the chronometric method of measurement. This section looked at the evolution of 

mental arithmetic into a mature research area in its own right and how the growth in 

cognitive arithmetic research led to the emergence of reaction time as a widespread 
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measure of cognitive abilities/ cognitive processing. In Section 2. 3, I moved on to 

consider another dimension of children's computation, i. e. the innate nature of certain 

numerical abilities and the existence of modules for mental arithmetic. This section 

also considered how two types of numeracy skills (biologically primary and 

secondary skills) might have implications for teaching practice. Section 2. 4 examined 

the tradition of cultural research in this area. I began by differentiating between 

cultural psychological and cross-cultural research and then looked at the effect of 

language on numerical processing. I concluded this section by looking at other 

cultural factors at work that may influence numerical processing. 

Chapter 2 encapsulated a number of psychological concerns relevant to mental 

arithmetic. In Chapter 3 I chose to focus on one aspect of these concerns: cognitive 

research. Chapter 3 considered current models of simple arithmetic processing. It 

began by looking at early cognitive research in this area, and went on to look at three 
1 fact-retrieval based models of arithmetic processing, as well as providing supporting 

evidence for each one. Section 3. 2 looked at the role of working memory i!l mental 

arithmetic. In this chapter, I also provided a brief review of research (such as 

neurological research) which has been used as a lever to evaluate fact-retrieval 

theories. I made brief mention of the issue of mathematical disabilities. I concluded 

this chapter by examining schema-theory (Section 3. 3) as an alternative approach to 

some of the network models and looked at how evidence used to support network 

models can also be used to support schema-theory. I identified the areas in which 

further research would be beneficial for a better understanding of schema-theory. 

4. 2 Generic Aims 

My central aim has been to be more confident about the 'cognitive geography' of 

arithmetic development. In part, this means tracing this development to discover precisely 

where it is occurring across an important 3-4 year time span over which arithmetic skills 

are being vigorously cultivated. The aim of this project is to go beyond the analytic 

building block methods of the network models discussed earlier. Research on number fact 
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knowledge has concentrated mainly on single-digit number facts because this feeds 

existing theories. Towards the end of Chapter 3, I suggested arithmetic research seemed 

to be concerned primarily with analytic number facts as building blocks of arithmetic 

knowledge. In the real world of computation, however, there may be issues that arise that 

these theories are not ready for. However, while there is a practical issue here, such 

findings may also be theoretically interesting. 

As illustrated in Section 3. 8, schema-theory has been valuable in identifying gaps in 

existing research. Certain areas of numerical processing have been neglected by existing 

mental arithmetic research. For example, further research is needed to study the role and 

development of estimation and reasoning strategies in mental arithmetic. Research is also 

needed to examine whether the representation of the basic number combinations involves 

both facts and relationships, or facts only. Schema-theory would be a satisfactory 

explanation for why certain combinations of numbers may be faster than others, because 

sometimes children and adults may act more strategically. Iftie problems have a shorter 

latency than other problems, schema theory would predict why, for example, 9+8 would 

take less time than 9+7. This could be explained if individuals were using relational 

knowledge to deduce that the answer would be one less than the answer for 9+9. The 

objective here is to look at how evolving knowledge for simple problems gets recruited 

into solving more difficult problems, e. g. using 9+9 to solve 9+8. 

As discussed in an earlier section, there are two types of arithmetic knowledge. One is 

declarative knowledge; this refers to stored knowledge of addition facts e. g. 2+3 = 5 and 

depends on retrieval from memory). The other is procedural knowledge; this refers to 

stored knowledge about arithmetic e. g. nxO = 0, n+O = n, orn+l = 1 > n (e. g. 6+1 will be 

one number more than the original number) and depends on rules, heuristics and 

computation. 

A significant amount of cognitive arithmetic research so far has focused on the former 

(declarative knowledge), i. e. single-digit number facts and their retrieval from a network 

of stored number facts in human memory. However, this is changing. The focus of some 

research is shifting to how procedural as well as declarative knowledge is manipulated to 
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solve aritlunetic problems (Baroody, 1994 and 1999). While research focusing 

exclusively on single-digit number facts is useful for theorising network models, real-life 

aritlunetic is often about more complex problems. This can include, for example, adding 

sequences of numbers such as 4+9+5+ 1 +9: this type of addition (that will referred to in 

this thesis as serial addition) rapidly generates double figures (e. g. 84 + 7), i. e. the 

subtotals can become quite large. We may anticipate that problems such as these can be 

solved more effectively by strategic use of existing number knowledge, but younger 

children may be slow at doing this. 

Furthermore, as will be identified later in this chapter, the methods used for carrying out 

mental aritlunetic research on children are less than ideal and have their limitations. The 

methodology used for such research should ideally be relatively simple and easy to carry 

out in naturalistic conditions (for schoolchildren). These should allow me to carry out 

chronometric research, i. e. allow me to measure response times accurately and 

efficiently. Thus, a significant further aim of this project has been to refine a method. I 

accomplished this by designing an authentic classroom aritlunetic task that would allow 

chronometric research to be carried out under naturalistic conditions. Therefore, my aim 

was to devise, test and implement a set of methods that were relatively fast to carry out 

with a large number of children, while looking at the emergence of addition strategies 

when children are doing mental addition. To this end I needed methods that were 

sensitive to this. 

4. 2. 1 Generic Aims Summarised 

My wider psychological aims are outlined below. 

4. 2. 1. 1 Developmental Perspective 

My research is about development. Because computation development normally 

accelerates at the primary/ junior school level, this is the period of development I shall be 

concerned with. In particular, I am interested in studying the development of fluency in 
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mental arithmetic (particularly mental addition) through the emergence of new knowledge 

or strategic capability. For example, at what age do certain addition problems become 

number facts and when do these facts get recruited to help with the solution of the next 

more complex problems. Microgenetic research would be an optimal way of looking at 

change in this area. However, this is not going to be employed in this thesis, although 

methods will allow me to identify and follow up areas where microgenetic research 

would be beneficial. In short, my aim was to look at developing fluency in this area of 

calculation. 

4. 2. 1. 2 Processes Underlying Simple Computation 

My research is about basic cognitive processes. This is because my aim is to reveal in 

detail just what underpins the production of simple addition. For example, to what extent 

is counting being used as a solution process. From competency at computing simple 

single-digit addition sums to rather more complex (three-digit) serial addition sums, I 

want to examine how this changing fluency gets recruited into solving other more 

demanding problems. In addition, to study how these emerging core competencies are 

recruited into the service of solving more complex problems like exploiting ties (6+6) to 

reorder three digit problems or being faster at 9 + 8 than 9 + 7 because 9 + 8 is one less than 

the tie-sum 9+9 .. 

4. 2. 1. 3 Acquisition of Strategic Knowledge 

My research is essentially about the acquisition of strategic knowledge, i. e. it asks what 

elements of existing knowledge get mobilised into solving complex addition problems. 

My aim is to infer the nature of mental strategies that are deployed for more demanding 

problems; for example, the use of sum to 10 number facts (e. g. 7+3) to solve more 

difficult problems. In addition, to look at what new problems arise, and what 

developments in strategy can be observed when children are asked to solve serial 

arithmetic tasks (as in computing the sum of a series of single-digits). I intend to look at 
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how children process mental addition problems of the following two types: 1) decade 

problems, and 2) serial (three-digit) addition problems. 

4. 3 Methodologies Currently Used to Study Mental Arithmetic 

The mental arithmetic research described earlier has relied heavily on the use of 

response times (RT) as a measure of inferring mental processes. This involves the use 

of RT as a measure of hidden or unseen mental operations and processes that reflect 

separate stages or operations which occur between the presentation of a stimulus and 

a response (Ashcraft, 1982). Although chronometric research gives us valuable insight 

into the processes underlying mental arithmetic, it also raises some methodological 

concerns regarding self-report studies and reliance on RT as a dependent variable. 

The models of processing described in Chapter 3 rely heavily on the use of chronometric 

analyses of mental arithmetic. Ashcraft's network-retrieval model, Campbell's network

interference model, and Siegler's distribution-of-associations and ASCM models rely 

extensively on the use of response times to infer cognitive processes. How do we deal 

with some of the problems that arise when we study these hidden, private processes? One 

way of doing this has been to rely on RT as a sole measure of processing. However, this 

approach of relying solely on RT as a dependent variable raises a number of 

methodological concerns, which will be examined in detail in the following sections. 

There will also be a brief discussion of the use of verbal reports (which involve people 

describing their solution processes immediately after solving a problem) in mental 

arithmetic research. 

4. 3. 1 Response Times versus Verbal Reports 

4. 3. 1. 1 Response Times 

Siegler (1987, 1989) has made extensive use of chronometric methodology in his research 

and is aware of some of its limitations. He looks at the problems arising from 

conventional chronometric analyses being used as a sole index of cognitive activity (using 
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mental subtraction and addition as an example), as this can lead to a distorted view of 

processes especially when people use diverse strategies such as counting and/or retrieval. 

He examines the view that either people cannot often accurately report their cognitive 

processes (Nisbett and Wilson, 1977) and that this may be an even greater problem for 

children, or that children's explanations do reflect their strategies (he provides evidence 

for the latter). He obtained both solution times and verbal reports on strategy use from 

each child on each trial. He found that multiple strategies were being used and that the RT 

data supported this. People can accurately describe their processing when they report 

immediately after the processing episode and when this episode was not too short. 

There are advantages to using RT especially when solution times are classified (on the 

basis of the self-report) according to the strategy that generated them and then separately 

analysed. It is just that the very success of RTs as indirect indexes of cognitive activity 

may have led to an over-emphasis on their uses and to excessive scepticism about verbal 

reports as data. Siegler (1989) concludes that this model needs to explain how, with age, 

the speed and accuracy with which children execute different strategies increases. It also 

needs to account for their progressive movement toward more frequent use of the faster 

strategies such as retrieval and use of addition reference (i. e. using addition facts to solve 

subtraction problems) for their decreasing use of the slower strategies such as counting 

down and guessing. 

4. 3. 1. 2 Verbal Reports 

Cooney and Ladd (1992), however, questioned the validity of children's verbal reports 

about the cognitive processes underlying their mental arithmetic and found that 

immediately retrospective and concurrent verbal reports increased student's solution 

accuracy compared to a no verbal report condition. According to Cooney and Ladd, the 

two types of measure (studying both overt behaviour and use of immediately 

retrospective verbal reports) used in Siegler's (1989) study to infer that children used a 

variety of strategies are not consistent with results from previous studies of children's 
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subtraction performance that used verbal report procedures (Carpenter and Moser, 1984; 

Fuson, 1984). 

Verbal report data might seem to provide a more accurate picture of the mental operations 

underlying arithmetic but their use may be questionable on both theoretical and empirical 

grounds. Cooney and Ladd (1992) argue that accurate information about mental processes 

can be obtained by taking special precautions. Processes that have become automated 

through practice are unavailable to STM and so unavailable for verbal reports. Cognitive 

operations underlying mental multiplication may be automated in young children (3rd and 

4th graders) and so their traces (in memory) are unavailable for reporting. Hence 

automated cognitive operations are not believed to be available for reporting and simple 

arithmetic is a task that may become automated even in young children. 

However, rather than rejecting the use of verbal reports per se, they argue for the need 

to refine verbal protocol methodology. Any inaccuracies stem from incompleteness 

rather than fabrication through the reconstruction of events from memory. They 

encourage investigators to include a silent control group in research designs that 

utilise verbal reports. 

To conclude, it seems that both response times and verbal reports provide a suitable 

measure for looking at strategic behaviour. However, in the ideal situation, both 

would be employed because when used together they would provide a richer, more 

detailed picture of events. Both qualitative and quantitative information is valuable for 

doing research in mental arithmetic. 

4. 3. 2 Experimental Procedures Used In Current (RT) Research: Two Types of 

Mental Arithmetic Tasks 

Above, I looked at some of the issues arising from the use of chronometric methods to 

study mental arithmetic, highlighting some of the problems associated with using this 

method. I will now look at some of the strengths and limitations associated with the 
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specific types of procedures used to study mental arithmetic performance. Two types of 

procedure have been used to study mental arithmetic, production tasks and verification 

tasks. Each has its strengths and limitations. 

4, 3. 2. 1 Production versus Verification 

Production tasks require the participant to generate an answer (7x8 = _). Whereas in 

verification tasks the participant is presented with an answer and must state whether this 

is true or false (7x8 = 56, true/false). Little and Widaman (1995) argue that while some 

studies have used production tasks, these are few compared to verification task studies. In 

the production task, research looks at the time taken to produce an actual verbal answer 

without the presence of a stated answer. Simpler mental arithmetic processing is required 

because there is no comparison with a stated answer. It is, therefore, less susceptible to 

bias. 

Ashcraft (1985) also considers the issue that where information processes are involved, 

verification requires at least an explicit decision stage that is presumably not present in 

the production task. He found that although there is a task effect in the performance of 1st 

grade children, there are similarities at later stages. He argues that task type (production 

vs. verification) is largely irrelevant for RT measures beyond 1st grade. 

4. 3. 2. 2 Tools Used to Measure RT Within Verification and Production Tasks 

Three methods seem to be common when measuring RT in mental arithmetic. These are 

· · voice-activated relay, manual timing and video timing. 

Use of voice-activated relay seems to be the preferred method in most experiments when 

using a production task. Where the task is a verification task, i.e. true/false or yes/no, an 

internal (in-built) timer is used to record the time taken to press the right keys. 
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Campbell and Graham (1985) actually used manual timing (where an experimenter 

pressed a key) in research involving children instead of voice-activated relay, to avoid 

trials being spoiled by extraneous vocalisations (something which children are 

particularly prone to doing especially when doing arithmetic). However, this method is 

procedurally cumbersome as it is inherently rather awkward to use. It is also noisy, 

uncomfortable and disruptive of normal routine. 

Siegler recorded RT through use of a digitiser that fed into the VCR and printed digital 

times across the bottom of the taped scene. This is because he is specifically interested in 

what strategies children are using and details of what they are doing at the time, 

especially because the children in his study were quite young (preschoolers). 

In brief, the production methods used by others have involved recording RT and then 

asking children what methods they have used to come up with the answer. The strategies 

revealed are then classified into groups. 

Siegler uses videotaped interviews and the children are filmed solving problems while the 

RT is recorded using a digitiser. The recording verifies their computational strategy even 

if they say they did not use it. The subsequent analysis of the RT usually supports the 

verbal reports of the strategy observed. Studies that relied on verbal reports found that RT 

data usually supported what was said. 

Possibly, one of the reasons why verification tasks are so popular with researchers is 

because voice-activated relay /voice-activated recording software used with production 

tasks has been found to be rather "messy". It can be easily disrupted by unpredicted 

vocalisations/ change in responses (although this method is still frequently used). Some 

trials are lost because the response fails to trigger the relay, or because extraneous sounds 

stop the timer prematurely. It therefore relies on the continuous presence of the 

experimenter to record each response and/ or record whether each response was correct or 

incorrect. So, fewer production trials than verification trials can be carried out in the same 

time period. Thus, the verification task is more convenient to use than the production task 

and it also allows false answer manipulations. 
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To conclude, neither of these methods is ideal. An aim of my project is achieve a balance 

by taking advantages of the strengths of both the production and the verification methods. 

The production task research looks at exact answers generated by the participant and 

therefore requires simpler mental processing, because there is no comparison with a 

stated answer. However, the verification task allows for a more accurate measure of 

response time due to the ease of using an in-built timer. My research method allows me to 

use a production task that will record both the answer and the response time accurately 

and easily and furthermore is easy to use with children in a classroom setting due to its 

mobility. 

4. 4 Method 

The aim of my research is to look at junior school children (7-11 year olds) as to whether 

they are slow in acquiring strategies that would ease their performance at mental addition. 

But previous mental arithmetic research has employed research methods that were 

relatively inflexible and awkward to use in settings other than in a laboratory or otherwise 

carefully constructed experimental setting. The method I will use is more flexible than the 

voice-activated relay previously used in production tasks. It is relatively easy to set up in 

a school environment since it requires only a classroom computer to run the software 

program. 

Since my intention was to use a chronometric method with a production task to study the 

development of children's mental arithmetic skills, a school environment was an obvious 

setting. Children would be relaxed and at ease. Any program being used to study mental 

arithmetic in children should be designed to encourage the children's interest in the tasks 

they will be doing so there will be greater motivation on their part. This is an aspect of 

research that seems to have been neglected in some of the previous research in this area, 

although Siegler has touched on it through his use of video-recorders, i. e. the children 

involved were quite fascinated by the idea of being filmed and seeing themselves on 

video. The design of the program used here gave the child maximum control over the 

pace of the task. It also allowed the child to use the task quite independently of the 
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researcher. The program should also give clear and rapid feedback. Therefore, in the 

current project, the time taken to reach the solution to a problem flashed across the screen 

and so provided the child with instant feedback on progress plus added incentive to do 

better. So, the program was designed to maximise the child's engagement with the task 

but in a non-threatening way, i. e. the only element of competition involved would be if 

the child were attempting to improve on his/her own solution time. 

By doing so, I hope to gain some insight into the strategies children develop when doing 

mental arithmetic and how readily they make use of the most effective use of what they 

do know. My aim is to look at children's developing strategic methods for solving 

arithmetic problems and to help identify where teaching efforts need to be concentrated. 

In the next section, I will describe the general methods used in the current research 

project. 

4. 4. 1 Contacting Schools 

Arrangements were made to visit two local schools on a regular basis. Both schools 

used the Acorn A3000 series computers that were needed to run the program that 

would be used to obtain my data. 

The following two schools from a medium-sized town were chosen to participate in 

this project: 

Wymeswold Primary School (10-20 children in each year group). This school 

contained mostly middle-class rural children. 

Outwoods Edge Primary School (20-30 children in each year group). This school 

contained middle/ working-class suburban children. 

There was informed contact with the teachers and they were given generic 

information about the children's progress and an informal arrangement was made 
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about the appropriate times to visit, in order to keep any disruptions to the lessons to a 

minimum. The computers on which the children were tested were usually kept in a 

corner of the classroom. The task required each child to come over to the computer 

and do an arithmetic task for about 15-20 minutes (more or less depending on the 

child's abilities). 

4. 4. 2 Task Design 

The study involved children in the junior school years solving arithmetic sums 

presented on their own classroom computers. So this ensured the setting was as 

natural as possible for children doing the mental arithmetic. The problems were 

appropriate for their age but challenging. The solutions were entered quite easily by 

clicking on screen numbers. A schematic picture of the screen layout can be found in 

the Appendix 1 (Diagram 1). The program provided feedback to the pupil and the 

teacher and more detailed information about which problems required longer thinking 

time to solve. This allowed the use of RT to make inferences about how children must 

be solving certain types of problems. 

The initial task began with some introductory sessions at both schools to familiarise 

the children with the tasks that would be required of them later on. All children were 

familiar with using a mouse and graphical computer interface. However, they were all 

given an introductory practice session with the program. This got them used to the 

idea that they were to use the mouse, rather than the keyboard. 

Although the program design was child-centred and allowed the child to complete the 

task without my being present, all the children did have sessions with the program in 

which I was available and seated nearby in order to advise and observe as necessary. 
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4. 4. 3 Tools and Techniques 

Research into mental arithmetic has been carried out within two paradigms: 

production tasks and verification tasks. Production tasks require the participant to 

generate an answer (7x8 = _ ) whereas in verification tasks the participant is presented 

with an answer and must state whether this is true or false (7x8 = 56, true I false). The 

task used in this study was a production task since it required the participant to 

generate the appropriate answer. 

Use of voice-activated relay seems to be the preferred method in most of the 

experiments when using a production task. Where the task is a verification task i. e. 

true I false or yes I no, an internal timer is used to record the time taken to press the 

right keys. Previous mental arithmetic research has employed methods that were 

inflexible and awkward to use in settings other than in a laboratory, or otherwise 

carefully constructed experimental setting. The method I used was more flexible than 

the voice-activated relay which has previously been used with production tasks. It was 

relatively easy to set up in a school environment, since it required only an Acorn 

computer to run the software. This would involve using a chronometric method with a 

production task to study the development of children's mental arithmetic skills. 

The program was designed for Acorn A3000 series computers. It measured the time 

taken (to the nearest hundredth of a second) to solve various arithmetic problems. It 

was designed to be easy to use in a classroom with minimal interference from the 

researcher. The problems were prepared in a file and were presented in computer

generated random order. The names of the participants were entered into a further file 

along with details such as age, school year, gender, the types of problems that would 

be presented etc. The program recorded all the data from each individual in a data file 

to enable easy retrieval for future analysis. This meant that the data was stored and 

recorded in a self-contained form. 

The participant clicked on his I her name and was presented with a set of problems 

that were generated in random order according to the constraints of the particular 
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experimental design. The precise nature of the task varied depending on what issue 

was being studied. The tasks were all mouse and screen-keypad driven. 

4. 4. 4 Participants 

As pointed out in earlier chapters, computational development normally accelerates in the 

junior school age range (at 7 + years). The greatest change is during the early years of 

school, after which improvement in the basic adding skills is much less obvious. As a 

result, it is a significant curricular concern in junior school years. Relatively little is 

known about early competence beyond handling pairs of single-digit problems. The 

findings of this project should have implications for how we manage teaching priorities 

and could also have implications for the design of exercise material. 

The participants were 7-11 year old primary school children and the arithmetic tasks 

were solved in the "computer corners" of the classrooms. This ensured that the task 

was as least intrusive as possible and kept disruption of regular classroom activities to 

a minimum level. This classroom setting was a naturalistic one for children, because it 

provided a familiar context for them, to do both arithmetic and use the computer in a 

non-threatening capacity. There was nothing threatening or unusual about the task the 

children were required to do i. e. there was nothing "scary" or "test-like" about it. 

There were about 15-35 participants in each year group in both schools. The 

following year groups were tested: 

Wymeswold 

Outwoods Edge 

Years 3 & 4 (sharing one classroom) 

Years 4, 5, 6 (sharing one classroom) 

Year 3 

Year4 

Year5 

Year 6 
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Each child's age was recorded at the time they participated in the experiment. Their 

date-of-birth was also recorded. 

4. S Ways forward: Competence and Development 

In current mental arithmetic research, change is usually studied through longitudinal 

studies looking at the same children's performance at different ages and/or cross-sectional 

studies looking at the performance of different children. The research in this thesis falls 

into this latter group. While these methods yield valuable information about change they 

do not show exactly how change occurs. Longitudinal studies, for example, involve 

examining children at relatively wide-spaced intervals (1-3 years) and only rarely make 

more frequent observations. In mental arithmetic research, for example, it may involve 

testing children at the start and end of the school year and maybe once in between. 

Generating a new strategy requires more mental resources than using a well-established 

one. Therefore there are fewer resources for monitoring what had been done and 

generating words to describe it. Understanding often comes only with use and use is 

especially important to children's understanding, i. e. to make accessible previously 

uncommon approaches. But children can be very slow to use new strategies. There almost 

seems to be a 'resistance to learning/ improvement'; a failure to learn despite repeated 

exposure to a problem. Children (and sometimes adults) often seem quite content to make 

use of adequate but inefficient strategies. They tend to stick with what has worked best in 

the past, where they did not use the wrong strategy but neither did they find the most 

optimal or most efficient strategy. It seems that once we have attained a certain level of 

competency at a task we are often resistant to improvement. 

Siegler (1987) and Siegler and Jenkins (1989) have attempted to examine this issue by 

studying in detail how children discover new strategies. They are interested in the 

"strained and halting nature of the breakthroughs". In young children's arithmetic more 

and less advanced strategies coexist and compete for a long time. Only gradually do more 
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advanced strategies become prevalent. But they looked only at young children's discovery 

of the min method of counting on in addition. 

One way of studying mental arithmetic development is to use a microgenetic approach. 

Microgenetic methods are sensitive to a wider range of changes than alternative more 

frequently used methodologies. Greater use of this method will result in improvement in 

the quality of developmental theorising because it reveals crucial mediators of change and 

constrains forms of transition theories, i. e. where children gradually go through one stage 

then the next (Cauzinille-Marmeche and Julo, 1998). This is important where transition 

theories are central. Microgenetic methods offer a lot of promise once we have 

understood mechanisms for moving forward. For mental arithmetic development, the 

early primary school years (7 + years) are a crucial period of development. But what sort 

of progress is made during these junior school years? These areas need to be identified 

before we can move forward. We need to know what questions to ask before we can 

progress to studying change through micro genetic methodology. 

Although the current project has not applied a microgenetic approach to mental 

arithmetic, the methodology has been designed in a way that can conveniently inform 

future research in this area. My research project uses one such mechanism for moving 

forward through the use of cross-sectional research. This will allow me to identify 

precisely the specific areas in mental arithmetic where development does or does not 

occur. By devising a methodology that would easily lend itself to a microgenetic 

approach, I can look at how various aspects of computational fluency i. e. use of 

certain strategies develop over time and to get beneath the change as it occurs. 

96 



Chapter 5 ,-' -

5. Children's strategies for single-digit, decade, and three-digit serial addition 

In Chapter 1, I examined the social and political background of mental arithmetic 

research. In Chapter 2, I considered the development of research traditions in mental 

arithmetic and in Chapter 3 I reviewed the current theories of simple arithmetic 

processing. In Chapter 4, I discussed the general aims of this thesis and its underlying 

methodology. The current chapter will discuss the findings of my preliminary study. 

The aim of the present study was to look at children's performance at single-digit, 

decade, and three-digit (serial) addition - identifying any emerging strategies. This 

study was divided into two experiments. In Experiment 1, the children were presented 

with the 45 single-digit addition "number-facts" and a selection of "decade" sums 

(sums of the type ab+c) in order to identify their baseline performance on these sums. 

In Experiment 2, the children were presented with a selection of three-digit serial 

addition problems, to investigate whether or not they could exploit their existing 

knowledge of numbers in a serial addition context. The aim of these two foundational 

studies was to discover any emergent patterns in the results, thus laying down the 

framework for the research in my following studies. 

5. Introduction 

There has been a strong tradition in mental arithmetic research of focusing on 

addition, subtraction and multiplication of the simplest kinds of sums as being the 

"building blocks" of mental arithmetic research. Groen and Parkman (1972) and 

Parkman (1972) carried out some of the earliest cognitive research in the area of 

mental arithmetic. Their research was chronometric, i. e. it looked at response times 

as indicators of mental processing. They found that the size of the smaller number 

affects solution time in simple addition. The size of the smaller number was a good 

predictor of solution times on simple addition. Solution times increased linearly with 

the size of the smaller number. However, this was found to be the case only when the 

min strategy was being used. The "min" strategy refers to the "minimum addend" 

97 



counting on strategy where the individual sets an internal counting register to the 

larger of the two numbers being added, then increments this value by ones a total n 

number of times i. e. until the smaller or minimum addend value is reached. At the 

end of this incrementing process, the counting register contains the value of the 

correct sum. The "min" model as Groen and Parkman (1972) called it, also failed to 

account for fast performance on tie problems such as 7 + 7. Although the early min 

model was found to be insufficient, later research extended and modified its findings. 

Another significant earlier study looking at mental arithmetic found that subjects used 

a variety of techniques in performing mental calculations and this depended on the 

type of arithmetic operation, amount of practice and individual differences in 

computational ability (Aiken and Williams, 1973). They found RT for addition was an 

increased linear function of the smaller number, and claimed certain well-learned 

sums were obtained by random access retrieval from memory. They also found 

subjects to be faster on addition problems having a sum of 10, a finding which has 

since been replicated in several studies. 

However, these studies looked at adult performance. Both adults and children use a 

wide range of strategies to solve problems. Siegler (1988) found that individual 

children and adults often use multiple strategies. Wise choices allow people to meet 

situational demands and overcome limited knowledge. Even young children can be 

skilled at choosing strategies. Retrieval is fast (if number-facts have been mastered) 

and back-up strategies (such as counting) high in accuracy. According to Ashcraft 

(1985) children must "learn their arithmetic facts", i. e. master the simple number 

· combinations so they can be recalled fluently and accurately. He found that from 7 

years and onwards children's response times at number facts are similar to adults, 

shifting towards those indicating fact retrieval by middle grade. But children's ability 

to be strategic can be constrained by their willingness to actually do so in practice. 

Thus, children have the ability to make use of their number-fact knowledge but only if 

they are willing to exploit this. 
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Research has shown that children can initially use a variety of strategies to reconstruct 

sums, differences and products of single-digit number combinations, they learn to 

respond to addition, subtraction and multiplication problems efficiently (quickly and 

accurately) and experts (adults) have some kind of network representation. There is 

basic agreement on this but there is some debate surrounding the acquisition process 

and on the precise nature of the network representation, i. e. the extent to which 

declarative and/ or procedural strategies underlie the developmental changes in 

arithmetic skills. Certain number facts have been found to be more salient than others 

and this is for both children and adults. Tie-sums (problems with a repeated operand 

such as 3x3 and 8+8 have faster response times than other problems of a similar 

magnitude (Campbell and Graham, 1985; Miller, Perlmutter and Keating, 1984). 

Sum-to-10 problems also have also been found to have faster and more accurate 

solution times (as do 5-times problems). 

Counting, however, is one of the ways children learn to be "strategic" about doing 

mental addition. Use of the min strategy is constructive to developmental research in 

mental arithmetic because the "min" strategy is one of the best and earliest examples 

of strategy use in children. This is because it requires children to identify the largest 

addend and then reorder them, placing the largest addend first, thus demonstrating a 

recognition of the addition principle of commutativity. Counting is one of the solution 

procedures children have available to them when doing mental arithmetic. Using 

number-fact knowledge is another. Some pairs of numbers such as tie-sums, and sum 

to 10s become "number-facts" earlier than others. If children can be better at some 

number facts can they then use this existing number fact knowledge strategically? The 

aim of this study is to identify the solution patterns that emerge as a result of doing 

single-digit mental addition, as well as a selection of decade sums. The single-digit 

sums would allow me to discover whether the performance of the children in my 

sample would be consistent with previous research. Thus, allowing me to echo the 

"building block" type of foundational research that has been carried out in this area. 

However, the area of decade addition is less well researched. So the aim here would 

be to discover any emergent strategies for this neglected context. In addition, I would 
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be exploring a novel and authentic method for doing chronometric research in 

naturalistic classroom environments. 

Previous research has focused on simple addition but, in real-life, addition problems 

are more complex and involve two or more numbers with several digits. There is a 

lack of mental arithmetic research looking at addition of sequences of numbers. 

Widaman and Little (1992) and Widaman et a! (1989) theorised about how cognitive 

models account for three-digit additions. For example, the network-retrieval model 

would involve searching the memory network for the sum of the two largest addends 

and then either searching for the sum of the provisional sum and the smallest addend 

or increment the smallest addend onto the provisional sum. In the three-sum models, 

three-digit addition would mean incorporating the product of all three addends as a 

structural variable. In this, the product of the three addends is a direct function of the 

volume of a 3-D network that must be searched to arrive at the intersection of the 

three nodal values. The preceding three-sum model reflects simultaneous summing of 

all three addends rather than summing of two addends at a time. Subjects first 

obtained a provisional sum of the two largest addends, via the very fast and efficient 

memory network retrieval process and then incremented the smallest addend onto the 

provisional sum. However, this research was carried out on an adult sample, children's 

performance would necessarily fit this model. 

Therefore, a fact-retrieval approach may not be adequate for describing what happens 

when children solve three-digit addition problems. As mentioned in 2.1 there are two 

kinds of arithmetic knowledge, declarative knowledge and procedural knowledge and 

these two are intertwined: 

Declarative knowledge (about number facts and combinations) which refers to stored 

knowledge of addition facts e. g. 2 + 3 = 5, and depends on retrieval from memory. 

Procedural knowledge ("knowledge about" or an understanding of arithmetic 

concepts and procedures) which refers to stored knowledge about arithmetic e. g. n x 

0 = 0, n + 0 = n, or n + 1 =one greater than the original number, and depends on 
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rules, heuristics, computation and the understanding of principles such as 

commutative and associative principles. 

Research should, however, be paying greater attention to this relationship, rather than 

focusing exclusively on one or the other. Most chronometric research has focused on 

single-digit number facts and their retrieval from a stored network of number facts in 

human memory (Ashcraft, Fierman and Bartolotta, 1984). However, this is changing 

and the focus of some research is shifting to how procedural rather than declarative 

knowledge is manipulated to solve arithmetic problems (Sohn and Carlson, 1998). 

Baroody (1983, 1994, and 1999) portrayed strategy choice in mental arithmetic 

development as a move away from slow procedural processes such as the min strategy 

to faster and more principled procedural processes. As mentioned earlier, while 

research focusing exclusively on single-digit number facts is useful for theorising 

about network models, real-life arithmetic is about larger numbers, e. g. adding 

sequences of numbers such as 4+9+5+1+9 and this type of serial addition quickly gets 

into larger double figures (84+7). Problems such as these can be solved more 

effectively by strategic use of our existing number fact knowledge but younger 

children may be slow at doing this. 

Experiment 1 was carried out in order to track changing fluency on the complete set 

of single-digit addition problems. It would also identify some performance 

benchmarks for decade sums of the type ab+c. Experiment 2looked at children 

performance at the simplest sort of serial addition problems, those involving three

digits. Experiment 2 was carried out to find out whether this fluency (at single-digit 

sums) would be mobilised into three-digit serial addition problems. 

The issue of individual difference is another matter in which researchers are 

sometimes interested. One aspect of individual variation that relates to arithmetic 

performance1s gender (Geary, 1996). Maths is an area where this is an obvious issue. 

For various claims have been made about gender difference in children's 

mathematical ability. For example, in the area of mental arithmetic research, Carr and 

Jessup (1997) found evidence of gender differences in first-grade mathematics, in that 
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girls were more likely than boys to use overt strategies and boys were more likely to 

use retrieval to solve addition and subtraction problems. However, boys and girls 

were equally able to solve basic maths problems but showed differences in the 

strategies they used for problem solving. Although looking at gender difference was 

not a central aim of this research, this study did consider any gender effects relating to 

general competency i. e. at the single-digit number-facts. A basic analysis of this 

found no significant differences between solution times for these sums. Therefore, 

this issue was not returned to for the rest of this study or the ones carried out in 

Chapter 6 and 7. Regarding the issue of other individual differences, the schools 

chosen for my research were those that would provide a good cross-section of the 

local area and would be thus be representative of the local population. 

5. 1 Experiment 1 

Experiment 1 looked at children's performance on the 45 single-digit addition facts 

from 1 + 1 to 9+9. Mixed in with these number facts were two-digit decade problems. 

This experiment was carried out to get preliminary information on children's 

performance at basic addition number facts. Response time measurements would 

indicate the relative difficulty of the various combinations in these sets. 

5. 1. 2 Method 

5. 1. 2. 1 Participants 

A total of 167 participants were recruited from two local schools as described in 

Section 4.4: 

Wymeswold Primary (10-20 children in each year group). This school's population 

consisted mostly of middle-class rural children. 

Outwoods Edge Primary (20-30 children in each year group). This school's 

population consisted mostly of middle/ working class suburban children. 
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Table 5. 1 

Year male female Total number in each year 

3 27 28 55 

4 22 23 45 

5 14 16 30 

6 13 24 37 

Total number 167 

of participants 

All the children were familiar with using a mouse and graphical computer interface. 

These are the numbers of children who took part in the study and completed all the 

sums. However, there were cases where a child's data for a particular sum or number 

combination was lost as a result of a computer error/ missing data and would not 

therefore be available for analysis. In these cases the child's data for the rest of the 

sums he/she completed would still be included in the analysis for those sums. 

5. 1. 2. 2 Tools/ task 

As described in Section 4.4, the progranune was configured to deliver problems of the 

following type: 

1) The 45 single-digit addition facts involving numbers 1-9. These 45 sums were 

presented in a random order generated by the program. Whether the smaller 

addend of the pair was written first or second was also randomly determined, e. g. 

for the 8+9 sum, half of the children would be given a 9+8, the other half would 

be given 8+9. 

2) These problems were mixed with 9 decade (those involving 20s, 50s and 80s) 

problems of this type: 
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a) Problems in the twenties decade: 

22+n (where the tens digit is repeated and sums to less than 10, e. g. 22+2) 

23 +n (where the tens digits differ and sum to less than 10, e. g. 23 +4) 

26+n (where the tens digits differ and sum to more than 10, e. g. 26+7) 

b) Problems in the fifties decade: 

52+n (where the tens digit is repeated and sums to less than 10, e. g. 52+2) 

53 +n (where the tens digits differ and sum to less than 10, e. g. 53 +4) 

56+n (where the tens digits differ and sum to more than 10, e. g. 56+7) 

c) Problems in the eighties decade: 

82+n (where the tens digit is repeated and sums to less than 10, e. g. 82+2) 

83 +n (where the tens digits differ and sum to less than 10, e. g. 83 +4) 

86+n (where the tens digits differ and sum to more than 10, e. g. 86+7) 

Within each decade the problems would be within these constraints. The three types 

of decade problems were chosen to make sure the children received a representative 

selection of problems that would include both easy and difficult sums. The decade 

sums were mixed in with the single-digit sums so that they would not arouse any 

special attention. 

This made up a total of 54 problems, which were divided into two sessions so that the 

task was not too demanding for the child. All problems were randomly selected within 

these constraints. For the decade problems, whether the smaller units digit was 

presented first (e. g. 23+4) or the larger (e. g. 24+3) was made to match the order for 

those two digits in their single-addition format for each participant. For example, 

when the 24 and 3 had been selected, if 4 + 3 was chosen for the single-digit case then 

24+3 was presented. This allowed within subject comparisons (and its possible 

interactions) for this issue. The program recorded errors and presented that sum a 

second time at a random point within the remaining sequence. The time recorded for 

that case would be the sum of the two response times thus giving a longer time. Errors 

were thus incorporated in the analysis of the results. For this reason the logarithms of 
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the RTs were calculated for each sum and these were analysed. Error rates for all 

sums can be found in Appendix 2: Tables 1 and 2. 

5. 1. 2. 3 Procedure 

The computers on which the children were tested were usually kept in a corner of the 

classroom. The task required each child to come over to the computer and do the 

arithmetic problems for about 15-20 minutes. Care was taken not to make the task too 

long or too tedious for the children. All participants were supervised while doing the 

task (as described in Section 4.4). 

The participant would see his/ her name as a button on the screen and clicked on it. 

He/ she was then presented with the set of problems generated in a random order. The 

problem appeared on the screen along with a "got it" button. The participant was 

instructed to click on "got it" when he/ she had come up with the answer. The 

participant then saw a screen with a small number pad (numbered 0-9), an "OK" 

button and a "reset" button. The original problem disappeared from the screen but it 

would be brought back by clicking on "reset" if it was forgotten, "reset" could also be 

used if the child felt that he/ she had entered the wrong numeral when completing 

their answer. Each child had two trials at each sum. That is, if a child made an error 

on a sum, that sum would then re-appear later in the sequence at a point randomly 

allocated by the program. If the child made an error at that sum the second time then 

that would be classed as an error. Children received feedback about errors, getting an 

incorrect answer would bring up a message informing them "oops! Incorrect 

answer!". 

Participants selected answers from the number pad by clicking on the number buttons 

and, when satisfied with the answer, clicked on "OK". The time taken to solve the 

problem would then flash on the screen, e. g. "correct answer in 4 seconds" or if the 

answer was incorrect the word "oops!". This was incorporated into the program to 

provide the child with instant feedback on progress and this instant feedback on 

solution times functioned as an incentive for the child to do better. 
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The response time used in the analysis was the time it took for a child to click on the 

first digit of the answer, not the time it took for him/ her to click on the "got it" or the 

"OK" button, although this latter time was the time that the child would see on the 

screen as feedback. 

5. 1. 3 Results 

The graphs below in Sections 5.1.3.1, 5.1.3.2, and 5.1.3.3 all plot absolute solution 

times, while the graphs in the results in Section 5.1.3.4 summarise the RT difference 

(solution time "overhead") between a single-digit sum and its decade realisation (e.g., 

RT (23+4) - RT (3+4)). 

Results were analysed according to junior school year, since it has been found that 

this may be a more accurate measure of skill development in mental addition than 

age. For years of schooling reflects the amount of practice and formal instruction in 

addition (Widaman and Little, 1992). Widaman et a! found that grade in school 

provided a better fit to the data than chronological age. School year would therefore 

be a more accurate guide to the developmental changes underlying efficient strategy 

use in both simple and complex addition. The summary statistic plotted in the 

following graphs is the median response time. The means and standard deviations can 

be found in Appendix 3. Where post hoc tests are described (in this and in other 

chapters), the results are based on the Tukey HSD post hoc analysis which was used 

throughout this thesis. 

5. 1. 3. 1 Graphical results for single·digit sums 

These are the findings from single-digit addition problems, starting from the 1 +n to 

9+n. The following graphs plot the median response times (RT) in centi-seconds. The 

results suggest that the smaller tie-sums from 1 + 1 to 5 +5 (Figures 5.1 to 5.5) seem to 

be recognised as facts across all age groups. RT for number facts from 6+6 (Figures 

5.6 to 5.9) onwards suggest counting is going on for all age groups, but this is less so 

for older children who do seem to be recognising the tie-sum facts. For these single-
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digit sums, half of the participants in each year groups would have received the large 

addend first (e. g. 5+4) and the other half the smaller addend first (e. g. (4+5). For the 

analysis these two were treated as the same number-facti. e. 4+n or 5 +n. The analysis 

for the results for the single-digit sums in this section was not carried out on the 

logarithms of the RTs. 

Figure 5 .1 illustrates the median solution times for the single-digit sums 1 + n. 

RT 1 + n 

600 

]' 500 -+-yr3 "' ~ 400 --yr4 !2 300 ···it·· yr 5 
~ :a 200 --yr6 .., 
a 100 

1+11+21+31+41+51+61+71+81+9 

sum 

Figure 5.1 Solution times for 1 +n. 

A one-way AN OVA carried out on the RTs for the sum 1 +2 and the tie-sum 1 + 1 for 

children in year 3 found that there was no significant difference between these 

solution times, F (2, 113) = 0.59. A one-way AN OVA carried out on the RTs for the 

sum 1 + 2 and the tie-sum 1 + 1 for children in year 4 found that there was a significant 

difference between these solution times, F (2, 85) = 3.38, p < 0.05. A one-way 

AN OVA carried out on the RTs for the sum 1 +2 and the tie-sum 1 + 1 for children in 

year 5 showed that there was no significant difference between these solution times, F 

(2, 56) = 1. 77. A one-way ANOV A carried out on the RTs for the sum 1 +2 and the 

tie-sum 1 + 1 for children in year 6 found that there was a significant difference 

between the solution times, F (2, 71) = 3.9, p < 0.05. 
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Figure 5.2 illustrates the median solution times for the single-digit sums 2+n. 
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Figure 5.2 Solution times for 2+n. 

A one-way AN OVA carried out on the RTs for the sums 2+ 1, 2+3 and the tie-sum 

2 + 2 for children in year 3 showed that there was no significant difference between the 

solution times for these sums, F (4, 168) = 1.54. A one-way AN OVA carried out on 

the RTs for the sums 2 + 1, 2 + 3 and the tie-sum 2 + 2 for children in year 4 found that 

there was a significant difference between the solution times, F (4, 127) = 2.98, p < 
0.05. A one-way AN OVA carried out on the RTs for the sums 2+ 1, 2+3 and the tie

sum 2 + 2 for children in year 5 found that there was no significant difference between 

the solution times, F (4, 85) = 1.24. A one-way ANOVA carried out on the RTs for 

the sums 2 + 1, 2 + 3 and the tie-sum 2 + 2 for children in year 6 found that there was no 

significant difference between the solution times for these sums, F (4, 105) = 0.45. 
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Figure 5.3 illustrates the median solution times for the single-digit sums 3 +n. 
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Figure 5.3 Solution times for 3 +n. 
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A one-way ANOV A carried out on the RTs for the sums 3 +2, 3 +4 and the tie-sum 

3 + 3 for children in year 3 showed that there was no significant difference between the 

solution times for these sums, F (4, 166) = 0.44. A one-way ANOVA carried out on 

the RTs for the sums 3+2, 3+4 and the tie-sum 3+3 for children in year 4 showed that 

there was no significant difference between the solution times for these sums, F (4, 

126) = 0.95. A one-way AN OVA carried out on the RTs for the sums 3 +2, 3 +4 and 

the tie-sum 3 + 3 for children in year 5 showed that there was no significant difference 

between the solution times for these sums, F (4, 85) = 2.05. A one-way ANOVA 

carried out on the RTs for the sums 3+2, 3+4 and the tie-sum 3+3 for children in year 

6 showed that there was a significant difference between the solution times for these 

sums, F (4, 106) = 6.89, p < 0.05. 

The results above, for the single-digit sums 1 +n to 3 +n, suggest that small tie-sums 

seem to be salient number facts for children in all year groups. Counting seems to be 

the prevalent strategy for the youngest children, as well as some of the older children. 

The solution times for sums 1 +n to 3 +n seemed relatively flat. For the following sums 

one-way AN OVA were carried out on the four year groups to find out whether the 
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solution time for the tie sum in each case would be significantly different from the 

sums adjacent to the tie sum. 

Figure 5.4 illustrates the median solution times for the single-digit sums 4+n. 
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A one-way ANOVA carried out on the RTs for the sums 4+3, 4+5 and the tie-sum 

4+4 for children in year 3 found that there was no significant difference between the 

solution times, F (4, 167) = 1.51. A one-way ANOVA carried out on the RTs for the 

sums 4+3, 4+5 and the tie-sum 4+4 for children in year 4 found that there was no 

significant difference between the solution times, F (4, 127) = 2.35. A one-way 

ANOVA carried out on the RTs for the sums 4+3, 4+5 and the tie-sum 4+4 for 

children in year 5 found there was a significant difference between the solution times, 

F (4, 85) = 2. 68, p < 0.05. A one-way ANOVA carried out on the RTs for the sums 

4+3, 4+5 and the tie-sum 4+4 for children in year 6 found that there was a significant 

· difference between the solution times, F (4, 107) = 3.35, p < 0.05. This suggested that 

for the children in the older year groups 4 + 4 seems to be emerging as a distinct 

number fact. 
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Figure 5.5 illustrates the median solution times for the single-digit sums 5 +n. 
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Figure 5.5 Solution times for 5+n. 
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A one-way ANOV A carried out on the RTs for the sums 5 +4, 5 +6 and the tie-sum 

5 + 5 for children in year 3 found that there was no significant difference between 

solution times, F (4, 168) = 1.79. A one-way AN OVA carried out on the RTs for the 

sums 5 +4, 5 + 6 and the tie-sum 5 + 5 for children in year 4 found that there was a 

significant difference between the solution times, F (4, 127) = 6.09, p < 0.05. A one

way ANOVA carried out on the RTs for the sums 5+4, 5+6 and the tie-sum 5+5 for 

children in year 5 found that there was no significant difference between the solution 

times, F (4, 85) = 1.67. A one-way ANOVA carried out on the RTs for the sums 5+4, 

5 + 6 and the tie-sum 5 + 5 for children in year 6 found that there was a significant 

difference between the solution times, F (4, 106) = 3.49, p < 0.05. This suggests that 

for children in year 4 and year 6 5 + 5 seems to be emerging as a distinct number fact. 
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Figure 5.6 illustrates the median solution times for the single-digit sums 6+n. 
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Figure 5.6 Solution times for 6+n. 

A one-way ANOVA carried out on the RTs for the sums 6+4, 6+7 and the tie-sum 

6 + 6 for children in year 3 found that there was no significant difference between the 

solution times, F (4, 166) = 2.21. A one-way ANOVA carried out on the RTs for the 

sums 6+4, 6+7 and the tie-sum 6+6 for children in year 4 found that there was a 

significant difference between the solution times, F (4, 127) = 5.98, p < 0.05. A one

way ANOVA carried out on the RTs for the sums 6+4, 6+7 and the tie-sum 6+6 for 

children in year 5 found that there was a significant difference between the solution 

times, F (4, 81) = 2.66, p < 0.05. A one-way ANOVA carried out on the RTs for the 

sums 6+4, 6+7 and the tie-sum 6+6 for children in year 6 found that there was a 

significant difference between the solution times for these sums, F (4, 107) = 6.45, p < 
0.05. This suggests that for the children in the older year groups the 6+6 tie-sum does 

seem to be emerging as salient number-fact. 

The graphical results for the single-digit sums 5 +n (Figure 5. 5) and 6+n (Figure 5. 6) 

seem to suggest that 5+5 and 6+6 are becoming salient number facts for children in all 

years, although they are more likely to be salient number-facts for children in older 

year groups. However, for the oldest children 6 + 5 also seems to have a shorter 

solution time than 6+4, suggesting that perhaps this is being solved in a more strategic 

method i.e. that 6+5 is one less than 6+6. 
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Figure 5.7 illustrates the median solution times for the single-digit sums 7 +n. 
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Figure 5. 7 Solution times for 7 +n. 
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A one-way AN OVA carried out on the RTs for the sums 7 +6, 7 +8 and the tie-sum ~, 

7 + 7 for children in year 3 found that there was no significant difference between the 

solution times, F (4, 167) = 0.172. A one-way ANOV A carried out on the RTs for the 

sums 7+6, 7+8 and the tie-sum 7 +7 for children in year 4 found that there was no 

significant difference between the solution times, F (4, 127) = 1.71. A one-way 

AN OVA carried out on the RTs for the sums 7 +6, 7 + 8 and the tie-sum 7 + 7 for 

children in year 5 found that there was a significant difference between the solution 

times, F (4, 81) = 3.24, p < 0.05. A one-way ANOVA carried out on the RTs for the 

sums 7 +6, 7 +8 and the tie-sum 7 + 7 for children in year 6 found that there was no 

significant difference between the solution times, F (4, 107) = 2.06. 

The results for the single-digit 7 + n sums suggest that the tie-sum 7 + 7 is emerging as a 

number-fact for some older children and also some of the younger children (as 

illustrated by Figure 5.7). As with the results in Figure 5.6, the adjacent to tie-sum 

7 + 6 also seems to have shorter times compared to 7 + 5. 

113 



Figure 5. 8 illustrates the median solution times for the single-digit sums 8 + n. 
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A one-way ANOVA carried out on the RTs for the sums 8+7, 8+9 and the tie-sum 

8 + 8 for children in year 3 found that there was no significant difference between the 

solution times for these sums, F (4, 168) = 0.33. A one-way ANOVA carried out on 

the RTs for the sums 8+7, 8+9 and the tie-sum 8+8 for children in year 4 found that 

there was no significant difference between the solution times, F (4, 127) = 0.51. A 

one-way ANOVA carried out on the RTs for the sums 8+7, 8+9 and the tie-sum 8+8 

for children in year 5 _found that there was a significant difference between these 

solution times, F (4, 83) = 3.04, p < 0.05. A one-way ANOVA carried out on the RTs 

for the sums 8+7, 8+9 and the tie-sum 8+8 for children in year 6 found that there was 

no significant difference between the solution times, F (4, 105) = 0.28. 

The results for the single-digit 8+n sums suggest that counting seems to be the 

dominant solution strategy for children across all years. However, the patterns of 

results as illustrated by the graphs suggest that tie-sums do seem to be emerging as 

number facts for children in all years (i e. they do seem to be taking less time to solve 

than similarly large sums), while for the oldest children in years 5 and 6, the sums 

adjacent to tie-sums also seem to be emerging as number-facts. 
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Figure 5.9 illustrates the median solution times for the single-digit sums 9+n. 
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Figure 5.9 Solution times for 9+n. 
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A one-way ANOV A carried out on the RTs for the sums 9 + 8 and the tie-sum 9 + 9 for 

children in year 3 found that there was no significant difference between the solution 

times for these sums, F (2, 113) = 0.48. A one-way ANOVA carried out on the RTs 

for the sums 9+8 and the tie-sum 9+9 for children in year 4 found that there was no 

significant difference between the solution times, F (2, 85) = 0.54. A one-way 

ANOVA carried out on the RTs for the sums 9+8 and the tie-sum 9+9 for children in 

year 5 found that there was no significant difference between the solution times, F (2, 

57) = 0.37. A one-way ANOVA carried out on the RTs for the sums 9+8 and the tie

sum 9 +9 for children in year 6 found that there was no significant difference between 

these solution times, F (2, 70) = 1.58. This suggests that the tie-sum 9+9 was not yet a 

particularly salient number fact. 

However, the trend in the results for the single-digit 9+n sums (as illustrated by 

Figure 5.9) does suggest, although this is not shown by the analysis, that the tie-sum 

9+9 seems to be a salient number fact for children in the oldest year groups, and for 

some of the children in the youngest year groups. However, for children in years 5 

and 6 the solution times for 9 + 8 seem to be dropping compared to solution times for 

9 + 7, suggesting that perhaps the adjacent to tie-sums are being solved through a 
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procedural "derived-fact" strategy compared to the counting strategies that seemed to 

be in use for the other sums. 

The results illustrated in Figure 5.1 to 5.9 suggest that counting seems to be the 

prevalent strategy across all year groups, while tie-sums seem to be emerging as 

salient number-facts. For the younger children, this is limited to mostly the smaller 

tie-sums while for the older children this is for all single-digit sums. For the older 

children, the sums adjacent to tie-sums also seem to be emerging as number-facts. 

5. 1. 3. 2 Graphical results for single-digit tie-sums 

Figure 5.10 illustrates the median solution time for the single-digit tie-sums. 
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Figure 5.10 Solution times for single-digit tie-sums. 

The results shown above suggest that tie-sums from 1 + 1 to 5+5 do seem to have 

become number-facts for chilren across all year groups. Tie-sums 6+6 to 9+9 seem to 

have bcome number-facts for the older children while for the youngest children they 

still seem to be resulting in long solution times. 
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5. 1. 3. 3 Graphical results for single-digit sum-to-10 

Figure 5.11 illustrates the median solution times for the single-digit sum to 10 sums. 
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Figure 5.11 Solution times for single-digit sum to 10 sums. 

The results for the single-digit sums involving a sum to 10 suggest that 9+ 1 and 5 +5 

seem to be salient number facts for children across all year groups. 

5. 1. 3. 4 Results for decade sums 

The graphs below illustrate the "extra time" or overhead for solving a decade sum 

compared to its single-digit counterpart i.e. RT (23+3)- RT (3+3). It was this time 

difference that was analysed in the following section. The graphs plot median RTs or 

RT overheads unless otherwise stated. The analysis was carried out on the logarithms 

of the actual RT difference. 
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Figure 5.12 illustrates the overall RT overhead for children across all years doing a 

decade sum. 
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Figure 5.12 The effect of doing a decade sum on the overall RT overhead. 

Figure 5.13 illustrates the effect of problem type on RT overhead for all three types of 

decade sums. 
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Figure 5.13 The effect of problem type on decade sums. 
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Figure 5.14 illustrates the RT overhead of the answer "crossing the decade boundary" 

on all decade sums. 
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Figure 5.14 The effect of doing sums with answers that "cross the decade boundary". 

Figure 5.15 illustrates the RT overhead for all decade sums. 
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Figure 5.15 The effect of decade (20s, 50s, 80s sum) on solution overhead. 
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Figure 5.16 illustrates the effect of problem type on RT overhead. 
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Figure 5.16 The effect of problem type (solution< 10, solution> 10, and tie-sum) on 

solution overheads. 

5. 1. 3. 4. 1 Analysis for decade addition 

An AN OVA carried out on the solution time differences (extra time) found that there 

was no significant overall effect of year, F (3, 144) = 1.40, suggesting that children 

across all year groups had similarly long solution times for decade sums. This is 

illustrated by Figure 5.12. There was a significant main effect of the decades (whether 

the sum was in the 20s decade, the 50s decade, or the 80s decade), F (2, 143) = 9.99, p 

< 0.05. This indicated that whether a problem involved a 20, 50 or an 80 did have an 

effect on the RT difference; children across all years had longer RTs for sums 

involving larger numbers such as 50 and 80 (as shown in Figure 5.15). There was a 

significant interaction between decade and year, F (6, 288) = 2.59, p < 0.05, 

suggesting that children in the youngest age groups had longer solution overheads 

than older children at sums that involved larger decade numbers (as illustrated by 

5.15). There was a significant effect of problem type i.e. whether the answer of the 

problem remained within the same decade (answer < 10, easy), involved a tie-sum, or 

crossed the decade boundary (was > 10, difficult), F (2, 143) = 5.06, p < 0.05. This 
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meant that problems with answers that crossed the decade boundary were difficult 

across all sums (as shown in Figure 5.16). There was no significant interaction 

between problem type and year, F (6, 288) = 1, indicating that problems with answers 

that crossed the decade boundary were difficult for children across all year groups (as 

shown in Figure 5.14). There was a significant interaction between decade and 

problem type, F (4, 141) = 2.53, p < 0.05, indicating that sums with answers that cross 

the decade boundary(> 10 problems) were the most difficult when they appeared in 

50s or 80s problems as illustrated by Figure 5.13. There was no interaction between 

decades, problem type and year, F (12, 429) = 0.61. 

Post hoc tests carried out on the results found that there was no significant difference 

between the mean RTs for the four year groups. 

5. 1. 4 Discussion 

The sums in this study were chosen to look into emerging patterns that would enable 

me to identify where the possible difficulties would be found. Results would help me 

decide which areas needed further investigation. Overall, the findings suggested that 

1) children across all years seemed to be relying primarily on counting strategies, 2) 

that tie-sums are the earliest sums that emerge as number-facts, and 3) that children 

showed that they had the ability to use their existing knowledge (e. g. of ties) 

strategically. This seemed to be indicated by their recognising the tie-sum in the 

decade sums as illustrated by Figure 5.13 and Figure 5.14, as well as their recognition 

of adjacent to tie-sums in some of the single-digit sums. 

The findings from the single-digit sums demonstrated that ties seemed to become 

increasingly salient for all age groups from 6+n onwards, i.e. there were short 

response times f~f ties so they seem to be becoming facts. However the results for 

6+6 and onwards (Figure 5.10) suggest that counting still seems to be the preferred 

strategy. The graphs show a gradual increase in solution time which suggests counting 

is going on. Although they still appear to be counting, it is still taking them less time 
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to do the tie-sums than the others. Figures 5.6 to 5.9 however show that RT for the 

sums adjacent to tie-sums also have lower RTs especially for the older children. This 

seems to suggest that next to ties are also being recognised as "facts" by older age 

groups. Findings for tie-sums support other findings (children encouraged to do 

"doubles" at school). However, findings for adjacent to tie-sums suggest these are 

taking less time and this seems to be evidence for strategy use. It seems that children 

using derived facts are being more strategic than those simply counting. Therefore, it 

would seem that children are being more procedural. It is possible that they are being 

more strategic by doing the tie-sum e. g. 9+9 because they either know it as a number 

fact and then address the sum next to the tie-sum e. g. 9+8 as they know it is one 

number less than the tie. 

Figure 5.11 suggests that some sum-to-10 problems take less time than others. 

However, the overall pattern of results suggests that with the exception of 1 +9 and 

5 + 5 the sum-to-10 problems are not particularly salient for most children in this 

sample. Experiment 2 looked at this issue in more detail. 

The results for the decade sums suggested that decade sums of the type ab +c were 

quite difficult for most children and seemed to result in consistently long solution 

times. The results suggested while children found sums in larger decade difficult, the 

sums that had the highest RT overhead were those with answers that crossed the 

decade boundary. These decade sums posed the biggest challenge for the children. 

Overheads for decade sums involving a tie suggested that children were recognising 

the tie-sum and were being strategic - using a transformational strategy like 

decomposition to solve these sums. Figures 5.13 and 5.16 suggest that tie-sums had 

fairly constant overheads even when they appeared in larger decades such as the 50s 

and the 80s. This issue would be investigated in greater detail in Chapter 6. 

The consistently lower RTs for tie-sums support the findings of fact-retrieval research 

(Ashcraft, 1982; Campbell, 1987; Siegler and Jenkins, 1989). However, the lower 

RTs for the adjacent to tie-sums such as 6+7, 8+7, 9+8 do seem to support the schema 

theory proposed by Baroody (1994). The schema-based theory suggests that children 
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and adults may both strategically employ related conceptual and factual knowledge to 

generate answers to "unrecallable" or unknown combinations. Proponents of fact

retrieval find that non-retrieval processes (referred to as back -up strategies) are 

basically slower than retrieval strategies. But according to the schema-based view 

although some non-retrieval strategies such as computing are slower, others such as 

reasoning or estimating may be almost as fast as retrieval. According to the schema 

theory children or adults required to respond swiftly to unmastered combinations may 

draw on their existing knowledge rapidly to estimate an answer. They may even 

reason out the answer in a relatively short time (Baroody, 1994). 

In the schema -based view, practice frequency alone cannot account for changes in 

mental arithmetic performance or the underlying mental representation of basic 

number facts. Insight or pattern recognition is important for the evolution of errors 

and number fact knowledge. Relational knowledge may become embodied in the 

mental representation underlying the retrieval strategy. So, recognising the tie-sum as 

a number fact may encourage older children and some of the younger ones to use it 

strategically to solve another sum. Casual observation suggested that finger-counting 

was prevalent even among the oldest children. Even those children who had relatively 

fast RTs at the single-digit number facts would frequently rely on fast finger counting. 

However, it was also observed that that they would often begin by using their fingers, 

or mental counting (aloud) and then recognise that they were doing a tie-sum, or sum

to-10 and then say "I know that" or even something like "7+7, that's easy, I should 

know that" . 

Canobi, Reeve, and Pattison (1998) argued that children's use of retrieval strategies is 

related to their conceptual knowledge. They found that children who attend to and 

-understand the relationships between problems are more able to store and retrieve 

addition combinations in memory. There is a link between conceptual understanding 

and storage and retrieval. Knowledge of addition principles may act as an organising 

framework for mental representations of the problem domain. They found that 

children who showed advanced conceptual understanding were relatively faster, more 

accurate and more flexible in their use of problem-solving compared to those who did 
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not. This illustrated the relationship between conceptual knowledge and addition 

procedures. More research should look at the relationship between conceptual and 

procedural knowledge. 

5. 2 Experiment 2 

In Experiment 1, I measured performance on all possible single-digit addition pairs, 

and a selection of decade problems. The reason for investigating decade sums was to 

look at what happens when children solve sums of a greater complexity than simple 

single-digit sums, i. e. when adding sequences of numbers, the sum totals rapidly add 

up into larger double digits (decades). The aim of this second experiment was to look 

at just what makes those sequences of numbers (serial addition) so demanding for 

children. Would they be able to make use of their existing knowledge of number-facts 

such as tie-sum, sum to 10s or strategic reordering to use the min strategy to make 

these sums easier for to solve? My findings from Experiment 1 illustrated the 

difficulty children had when solving decade sums that had larger answers that crossed 

the decade boundary. The aim of this experiment was to find out where the difficult 

lay when it came to solving sequences of numbers, in this case three-digit serial 

addition. 

Experiment 2 involved longer sequences of single-digit problems. Higher decade 

problems seemed to be persistently difficult. This led to interest in how performance 

might change as children progress through a long sequence of such problems that had 

the potential of generating large totals. Same digit (tie-sum) additions and some digits 

that sum to 10 seemed to have shorter RTs (Experiment 1). This could help in 

understanding children's performance on longer sequences of mental addition 

problems. What would children do when faced with longer sequences of addends that 

involved tie-sums and sum to 10 number facts? Would they be more likely to be 

strategic on sums on which these number-facts were made more visible, e. g. 4+4+3 

as opposed to 4+3+4? Such sums could be solved more easily if children were 

strategic about reordering their addends, but only if they were willing to do so. Would 
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they also be able to exploit their knowledge of the min reordering strategy in this case 

i.e. when faced with a sum such as a+b+9, would they reorder this into 9+a+b, thus 

making it easier to solve by counting? 

Considerably less research has been done on addition problems involving more than 

two digits (Widaman et a!, 1989). This study looked at serial addition problems of the 

simplest sort, three digit addition problems. Problems involving tie-sums and some 

sum-to-10 number-facts (such as 9+1 and 5+5) seemed easier for children and took 

less time to solve. Would children make strategic use of their addition number bond 

knowledge in solving these longer sequences? Would they be slow at strategicaiiy 

reordering sequences of digits e. g. 7+9+3 = 19 to 7+3 = 10+9 = 19 in order to 

optimise performance (which would result in both speed and accuracy)? With the 

exception of 9 + 1 and 5 + 5 sum to 10 number facts did not seem to emerge as 

particularly salient number facts. It is a cause for concern that after 6-7 years of 

primary school, children still do not seem to have picked up on the sum to 10 number 

facts given that they are potentially more powerful than tie-sums, for example. 

However, this experiment gave me the chance to look at this issue in greater detail 

because children might be more willing to recognise and exploit the strategic potential 

of sum to 10 number facts when the sum was generally more difficult to solve. 

I looked at three digit (serial) addition problems where the sums were chosen to 

incorporate number facts such as tie-sums (Problem Type A) and sum-to-10 problems 

(Problem Type B). I also looked at problems where the largest addend was 9 to find 

out whether children's RTs would be affected by the position of the largest number 

i.e. would they have shorter times for problems which would encourage use of the 

min strategy (9 +a+ b)? The min strategy is usuaiiy studied in the context of single

digit sums but my aim was to look at this issue in the context of serial addition. The 

aim was to find out exactly how longer addition sequences were demanding for 

children and at what age children would start to exploit their existing knowledge 

strategicaiiy. 
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For example, a problem such as 7 + 5 + 3 might have a significantly longer RT than 

7+3+5 because it was not being solved strategically i.e. was being solved in a linear 

way with the numbers being added up in the order in which they appeared. Similarly, 

a sum such as 4+n+4 might have a much longer solution time than 4+4+n because it 

was being solved in a fairly mechanical, linear method. A sum such as 4+4+n might 

have a much shorter solution time, so children could use their number-fact knowledge 

of 4+4 (because tie-sums have shorter RTs i. e. they are number-facts), and then add 

the third addend, unless they were using counting on the whole sums. 

1) Problem Type A- three digit sums incorporating a tie-sum (4+4) 

2) Problem Type B - three digit sums incorporating a sum-to-10 (7 + 3 and 9 + 1) 

3) Problem Type C - three digit sums looking at reordering of the largest number 

(9+a+b, a+9+b, 9+a+b) 

4) Problem Type D - three digit sums chosen as filler sums 

5. 2. 2 Method 

5. 2. 2. 1 Participants 

A total of 175 participants were recruited from two local schools (for more detail see 

Section 4. 4. 1). The children in this experiment were the same children that took part 

in Experiment 1. However, as a result of new children in the classrooms, there were 

some more additions to the original sample. The new members of the classroom were 

given the sample lesson to familiarise them with the task. All the children were 

familiar with using a mouse and graphical computer interface. 
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Table 5. 2 

Year female male Total no. in eac hyear 

3 27 26 53 

4 21 23 44 

5 23 20 43 

6 20 15 35 

Total no. of 91 84 175 

participants 

5. 2. 2. 2 Tools/ task 

The following problems were carefully chosen so that they could be solved through 

strategic methods, simple counting or a combination of both. The problems were 

chosen in a way that would enable strategic reordering and also pick up the problems 

on which it was being used. The problems chosen fell into four categories. Problems 

in Problem Type D were used as filler sums only, and were not included in the 

analysis. All the problems appeared on the screen in a linear horizontal format i. e. 

a+b+c. 

Problems in Problem Type A were chosen to discover whether or not children would 

exploit their knowledge of the tie-sum 4+4. The sums in Group 1 looked at the tie-

sum 4+4 ( + 1) to find out whether or not the visible tie-sum would override the special 

"+ 1" case. Problems in Group 2 looked at the tie-sum 4 +4 ( + 3) to find out whether or 

_ not 4+4 would be exploited. 

Problems in Problem Type B were chosen to discover whether or not children would 

exploit their knowledge of sum to 10 number facts. The sums in Group 1 were chosen 

to look at knowledge of the sum to 10 7+3 and the sums in Group 2 were chosen to 

look at knowledge of the sum to 10 9+ 1 which also looks at the case of "+ 1". 
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Problems in Problem Type C were chosen to discover whether or not children would 

exploit the min reordering strategy and reorder the largest addend first. Similar 

solution times for these sums would suggest that they were doing so, whereas 

different solution times would suggest that they were not. 
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The 14 three-digit addition problems were of the following type: 

Table 5. 3 

Problem Type Sum Problem First Second Third 

addend addend addend 

A (Exploit tie-

sum) 

Group 1 4+4 4+4 (+1) 4 4 1 

4 1 4 

Group2 4+4 4+4 (+3) 4 4 3 

4 3 4 
. 

3 4 4 

B (Exploit sum to 

10) 

Group 1 7+3 7+3(+n) 7 3 (4,5,6) 

7 (4,5,6) 3 

Group2 9+1 9+ 1( +n) 9 1 (4,5,6) 

9 (4,5,6) 1 

C (Reordering the 9+a+b 9+a+b 9 (2,3,4,5) (2,3,4,5) 

largest addend) 

a+9+b (2,3,4,5) 9 (2,3,4,5) 

a+b+9 (2,3,4,5) (2,3,4,5) 9 

D (Filler sums) a+b+c 5+4+3 5 4 3 

b+a+c 4+5+3 4 5 3 

Each child received 14 problems of the type shown above and for the sums in 

Problem Type B, the third addend (n) was randomly selected by the program from a 
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combination of the digits 4, 5, 6, i.e. each participant would receive the sum to 10 

(7+3) where n would be chosen randomly from this selection of 4, 5, or 6. For 

example, if a child received the sum-to-10 7 + 3 +4 then he/ she could also receive the 

sum 7+4+3 but he/she could also receive 7+5+3. However, the difference between the 

size of this second or third addend would always be plus or minus one, i. e. the child 

could receive either 4 and 5, or 5 and 6 as the random addend but not 4 and 6. The 

aim of this was to prevent the child from actively noticing a similar pattern between 

the sums. 

Similarly, in Problem Type C, in addition to the largest addend (9) the second and 

third addends a and b were randomly chosen from a selection of digits 2, 3, 4, or 5 so 

9 would be constant but a and b were not. A tie-sum would only be presented in the 

context of Problem Type A, i. e. for Problem Type C a tie-sum such as 9 + 3 + 3 would 

not be presented. 

5. 2. 2. 3 Procedure 

All the children were familiar with the task because they had completed Experiment 

1, which looked at their performance at basic single-digit number facts. The problems 

appeared on the computer screen in the same as those in Experiment 1 , but this time 

they would see three-digit addition problems, instead of the single-digit addition 

problems mixed with the decade problems. 

5. 2. 3 Results 

Results were analysed according to junior school year. It has been found that this may 

be a more accurate measure of skill development in mental addition than age, because 

schooling reflects the amount of practice and formal instruction in addition (Widaman 

and Little, 1992). Widaman et a! found that grade in school provided a better fit to the 

data than chronological age. School year would therefore be a more accurate guide to 
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the developmental changes underlying efficient strategy use in both simple and 

complex addition. The summary statistic plotted in the following graphs is the median 

response time. Errors were dealt with as described earlier in Section 5.1.3. As 

mentioned earlier, the program recorded errors and presented that sum a second time 

at a random point within the remaining sequence. The time recorded for that case 

would be the sum of the two response times thus giving a longer time. Errors were 

thus incorporated in the analysis of the results. For this reason the logarithms of the 

RTs were calculated for each sum and these were analysed. All the analyses were 

carried out on the logarithms of the RTs. The error frequencies for these sums can be 

found in Appendix 2: Table 3. The means and standard deviations can be found in 

Appendix 3. 

Results showed that three-digit addition problems generally took longer to solve than 

two-digit problems. 

5. 2. 3. 1 Results for sums in Problem Type A (three-digit sums involving tie

sums) 

The following results suggested that three digit serial addition problems including ties 

such as 4+4 ( + 1) and 4+4 ( +3) take significantly less time than 4+ 1 +4 and 4+3 +4 and 

this is across all age groups. This is consistent with the findings in Section 5.1, which 

suggested that tie-sums do seem to emerge as salient number-facts. 
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Figure 5.17 illustrates the median solution times for three-digit sums involving the tie

sum 4+4 ( + 1). 
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Figure 5.17 Solution times for 4+4 ( + 1) 

An ANOV A on these results (illustrated in Figure 5 .17) found a significant overall 

effect of year, F (3, 168) = 6.19, p < 0.05, suggesting that children in younger age 

groups had longer solution times for these sums. There was significant main effect of 

digit order, F (1, 168) = 13.39, p < 0.05. This indicates that children had faster 

solution times for sums such as 4+4+ 1 where the tie-sum was made more visible. It is 

possible that the " + 1" is a potent distraction from forming the tie from the separated 

digits. There was no significant interaction between digit order and year, F (3, 168) = 

0.19. This would suggest that children across all years had similarly long solution 

times for these two types of sums. 

Post hoc tests on the results revealed that the RT for children in year 3 was not 

significantly different from the RT for children in year 4. However, the RT for year 5 

was significantly different from the RT for year 3, p < 0.05, and the RT for year 6 was 

significantly different from the RT for year 3, p < 0.05. There was no significant 

difference between the RTs for year 4 and year 5. There was a significant difference 
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between the RT for year 4 and year 6, p < 0.05. There was no significant difference 

between the RTs for year 5 and year 6. 

Figure 5.18 illustrates the median solution times for three-digit sums involving the tie

sum4+4 (+3). 
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Figure 5.18 Solution times for 4+4 ( +3) 

An AN OVA on these results (illustrated as in Figure 5.18) found a significant overall 

effect of year, F (3, 167) = 8.81, p < 0.05. This suggests that children in younger age 

groups took generally longer to solve these sums. There was a significant main effect 

of digit order, F (2, 166) = 7.61, p < 0.05, suggesting that children has faster solution 

times for sums in which the tie-sum was made more visible such as 4+4 ( +3) and (3+) 

4+4 compared to sums in which the tie sum seemed less visible such as 4+3+4. There 

was no significant interaction between digit order and year, F (6, 334) = 0.38, 

suggesting that children across all years had similar solution times for these three 

types of problems. 

Post hoc tests on the results showed that there was a significant difference between 

the RTs for children in year 3 and year 4, p < 0.05. There was also a significant 

difference between the RTs for year 3 and year 5, p < 0.05, and between the RTs for 
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year 3 and year 6, p < 0.05. There was no significant difference between the RTs for 

year 4 and year 5, and there was no significant difference between the RTs for year 4 

and year 6. There was no significant difference between the RTs for year 5 and year 6. 

The results shown in Figures 5.18, demonstrate that tie-sum do seem to be emerging 

as salient number-facts, although this may be over-ridden by a "+ 1" distraction 

(Figure 5.17). Children across all years do seem to be willing to make use of their tie

sum number fact knowledge. The following section looks at results for three-digit 

sums that involved a sum to 10 number-fact. 

5. 2. 3. 2 Results for sums in Problem Type B (three-digit sums involving a sum 

to 10) 

The following results suggested that children did not seem to be making use of the 

sum to 10 number-fact 7+3, while they did seem to be taking advantage of the sum to 

10 9 + 1. However, 9 + 1 also has the distinction of being a "plus 1" case. This would 

suggest that the 7 + 3 number-fact is not yet a salient number-fact for most children. 
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Figure 5.19 illustrates the median solution times for sums in Group 1, three-digit sums 

involving the sum to 10 7+3 (+n). 
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Figure 5.19 Solution times for sum to 10 (7+3+n) 

An ANOVA on the results (illustrated in Figure 5.19) found that there was a 

significant overall effect of year, F (3, 169) = 6.08, p < 0.05, suggesting that younger 

children were taking longer to do these sums. There was no significant effect of digit 

order, F (1, 169) = 2.13. This indicates that children did not have significantly faster 

solution times for three-digit sums with the visible sum to 10 (7 + 3). It seemed that the 

sum to 10 7 +3 was not being exploited as salient number-fact, but that the digits were 

probably being counted in turn. There was no significant interaction between digit 

order and year, F (3, 169) = 0.15. 

Post hoc tests showed that there was no significant difference between the RTs for 

year 3 and year 4. There was, however, a significant difference between the RTs for 

year 3 and year 5, p < 0.05 and there was also a significant difference between the RT 

for year 3 and year 6, p < 0.05. There was no significant difference between the RTs 

for year 4 and year 5, and there was no difference between the RTs for year 4 and 

year 6. There was also no significant difference between the RTs for year 5 and year 

6. 
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Figure 5.20 illustrates the median solution for times for sums in Group 2, three-digit 

sums involving the sum to 10 9+ 1 ( +n). 
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Figure 5.20 Solution times for sum to 10 (9+ 1 +n). 

An ANOVA on these results (illustrated in Figure 5.20) found that there was a 

significant overall effect of year, F (3,167) = 8.65, p < 0.05, suggesting that younger 

children had longer solution times for these sums. There was a significant main effect 

of digit order, F (1,167) = 18.33, p < 0.05. This suggested that children had 

significantly faster solution times for sums in which the sum to 10 (9+1) was made 

more visible (9+1+n) compared to sums in which it was not (9+n+1). There was no 

significant interaction between digit order and year, F (3, 167) = 0.54. 

Post hoc tests on these results found that there was no significant difference between 

the RT for year 3 and year 4. However, the RT for year 3 varied significantly from the 

RT in year 5, p < 0.05 and the RT in year 6, p < 0.05. There was no significant 

difference between the RT for year 4 and year 5, and there was no significant 

difference between the RT for year 4 and 6. There was no significant difference 

between the RT for year 5 and year 6. 
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5. 2. 3. 3 Results for sums in Problem Type C (reordering of the largest addend 

9) 

The following set of results looked at the solution time for sums that reordered the 

largest addend 9 to find out whether or not the position of the largest addend would 

affect the solution times for these sums. That is, would RTs for these sums indicate 

whether or not the children were reordering the addends to select the largest number 

first, i. e. using the "min" strategy? The results suggested that children had long 

solution times for sums such as a+ b + 9 and that the youngest children had the longest 

times. 

Figure 5.21 illustrates the solution times for three-digit sums involving a visibly large 

addend (9). 
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Figure 5.21 Solution times for sums with a visibly large addend. 

An AN OVA on the results (illustrated in Figure 5 .21) found that there was an overall 

significant effect of year, F (3, 164) = 6.71, p < 0.05, suggesting, as before, that 

younger children had longer solution times for these sums. There was no significant 

effect of digit order, F (2, 163) = 0.69, suggesting that the position of the largest 

addend did not affect the solution times for these sums. Children do seem to be 
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reordering to select the largest addend first, i.e. they may be exploiting the min 

reordering strategy. The graphs do imply that the youngest children (in years 3 and 

might be counting, because it is taking them progressively longer to do sums in which 

the largest addend is not made as visible. However, there was no significant 

interaction between digit-order and year, F (6, 328) = 1.57. 

Post hoc tests on these results found that there was no significant difference between 

the RTs for year 3 and year 4. However, there was a significant difference between 

the RTs for year 3 and year 5, p < 0.05, and there was also a significant difference 

between the RTs for year 3 and year 6, p < 0.05. There was no significant difference 

between the RTs for year 4 and year 5, and there was no significant difference 

between the RT for year 4 and year 6. There was no significant difference between the 

RTs for year 5 and year 6. 

5. 2. 4 Discussion 

The aim of this experiment was to look at children's solution times for three-digit 

serial addition with the intention to discover whether or not they were solving such 

sums strategically. The children were presented with three types of three-digit sums: 

1) Problems designed to look at children's use of tie-sum number facts (Problem 

Type A, Group 1 and Group 2). 

2) Problems designed to look at children's use of sum to 10 number facts (Problem 

Type B, Group 1 and Group 2). 

3) Problems designed to look at children ability to use the min reordering strategy 

(Problem Type C). 

The results from Experiment 2 showed that, overall, three-digit sums were difficult 

for most children because they took longer to solve compared to the two digit sums. 

One of the aims in looking at three-digit sums was to find out exactly what made 

longer addition sequences so demanding for children. The three-digit sums were 
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particularly demanding for children in younger age groups and took them longer to 

solve. Doing three-digit mental addition can add a considerable memory load 

especially for younger children (Little and Widarnan, 1992). The results also showed 

an expected developmental trend across all types of sums. 

The results for the sums in Problem Type A suggested tie-sums such as 4+4 are 

salient number facts for children across all age groups and this supported earlier 

findings with single-digit sums (in Section 5 .1) which showed the emergence of ties 

as early number facts. It took children significantly longer to solve the problem 4+3+4 

compared to problems where the tie-sum appeared first. This seemed to suggest that 

children, at least for these smaller tie-sums, were using their existing number fact

knowledge of the tie-sum since the problems with the visible tie-sum (i. e. the tie 

appeared first) took less time. However, it also suggested that they are not doing this 

very efficiently, because it seems they are not using this knowledge when the tie-sum 

was paired with a + 1 item. This may strongly prompt the 4 + 1 solution over the 

reordered 4 +4 - thus leading to a longer overall solution time. 

The results for the sums in Problem Type B found that 7 + 3 sum-to-10 problems do 

not seem to be emerging as salient number fact problems. This supported my findings 

in Experiment 1, which showed that the 9+ 1 (and 5+5) was the only sum-to-10 

problem that seemed to emerge as a number fact. With the three-digit sums, whether 

the 7 +3 appeared first did not have a significant effect on RT. However, there did 

seem to be a trend towards this as was illustrated by Figure 5.19. 

The sums in Problem Type C (9+a+b) had been included to enable me to find out 

whether it would take children less time to solve problems where the largest number 

appeared first thus suggesting the children were using the min strategy. However, the 

problem type did not have an effect on their RT. This does suggest that reordering 

according to a min strategy is going on. 

So, the children seemed to be making use of their existing number fact knowledge of 

ties. The findings from Experiment 2 showed that they were recognising ties and were 
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attempting to make use of them .. These findings seemed to support the schema-theory 

view that relational knowledge may become embodied in the mental representation 

underlying the retrieval strategy. 

Overall, the results suggested that children were, to an extent, being strategic by 

exploiting their existing number knowledge. But it seemed that children were not 

fully exploiting the potential of sum to 10 combinations. One general problem here 

might be that seeing the problems on the screen in a horizontal format inhibited them 

from being as strategic as they could be. That is, the order in which to add the digits 

had been more or less imposed upon them and they tended not to deviate from this. 

Therefore, one thing to consider was the possibility that seeing the problems in a 

linear format (9 + 1 +n) may actually have prevented the children from being strategic 

and they were simply adding the numbers mechanically in the order in which they 

saw them. Another consideration was that it might not be enough to just look at RT 

for such problems, it may be more important to know the order in which the children 

were actually adding the numbers. 

The next step in investigating serial addition would be to find out whether children 

would use an efficient reordering strategy if they were given control over the order in 

which they could add the numbers. In problems presented in a linear format the 

children might have thought the order in which to solve the problems had been 

imposed upon them and simply solved the sums as they saw them. So, when presented 

with serial addition sums in a linear format, they seemed to be fairly mechanical in 

adding them. Would this change if they were free to choose the order of the numbers 

they were required to add? This was studied in greater depth in Chapter 7. 

5. 3 Conclusion 

To conclude, the aim of the foundational research in this chapter was to set the 

framework for the following studies. I have looked at the patterns that would emerge 

as a result of children doing single-digit sums, a selection of decade sums and three

digit serial addition sums. This has helped me clarify the baseline performance and 
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strategy-use for the children in my sample. Three types of solution procedures seemed 

to emerge from the fmdings in this chapter, counting, the use of number-facts and 

transformational strategies. Of these, counting seemed to be the most prevalent. 

However, children were also willing to use some number-facts such as tie-sums and, 

to a very limited extent, sum to 10 number facts. Transformational strategies such as 

the use of adjacent to tie-sums, and use of the min reordering strategy seemed to be 

exploited, but not to any great extent. These issues would be studied in further detail 

in the next two chapters. 
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Chapter 6 

6. Importing single-digit solution procedures into double-digit decade sums 

1 
6. !Introduction 

In 5.2; I began by looking at the 45 single-digit addition problems mixed with a 

selection of slightly more complex decade problems. The single-digit problems 

reflected the type ofchronometric research that is commonly carried out in this area. 

·· Results from these single-digit addition problems suggested that when children were 

doing single-digit problems their solution procedures (as inferred from the time taken 

to solve the problems) seemed dominated by a combination of three very basic 

solution methods. These solution methods involved counting procedures, number fact 

knowledge, and strategic procedures (such as using derived facts) which often seemed 

to be comprised of both counting and number fact knowledge. The latter are based on 

the idea that some forms of solution involve redefinition (transformation) of the 
/ 

problem in some way. This chapter will concern the continuity between my earlier 

findings on children's solution methods for single-digit sums and whether children 

will apply these solution methods to more complex double-digit situations. 

The chapter will begin by summarising existing research on these solution methods 

used for mental addition. This will involve a discussion on the use of counting-based 

procedures and procedures involving number fact retrieval (e.g. for tie-sums), as well 

as more sophisticated strategic solution methods that go beyond simple number fact 

retrieval and counting (such as using derived-fact and decomposition). The 

introduction will conclude by describing the aims of the current study. In short, the 

research in this chapter will investigate the extent to which children export the 

solution methods they use to solve simple addition sums into complex problems to 

make them more manageable. 

So, one vital question here concerns the extent to which children use these strategies 

when solving other, rather more complex, problems. Are strategies that emerge early 
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in single-digit addition problems also evident in solutions to decade addition 

problems? The central aim of the present experiment was to investigate the extent to 

which the above mentioned strategies would be applied to decade problems. The 

decade problems children received in the study described in Section 5.2 had been 

designed to look at the general effects of doing complex decade sums. These 

problems had been chosen to look at how the absolute size of the numbers in a 

problem would affect the time taken to solve it and the effects on response times of 

crossing the boundaries between successive decades. However, the choice of actual 

sums that were suitable for clarifying this issue may not have been optimal for my 

current interest in revealing the strategies children might be using to make certain 

types of sums more manageable. The decade problems presented here were designed 

to reveal the more strategic solution methods that children could use. 

The single-digit problems in 5.2 had been mixed in with slightly more complex 

decade problems. The children were originally presented with decade problems 

involving a single-digit being added to a double-digit decade problem. These fell into 

one of nine categories. In brief, the results showed that there was a significant 

overhead associated with simple addition in higher decades. The extent of this 

overhead was exaggerated for problems in which the single-digit answer was greater 

than 10 making the decade version of the problem cross into the next decade range, 

i.e. problems such as 24 + 8, where the answer (32) was in the thirties. These problems 

that crossed over into the next decade range were more difficult for children across all 

year groups. Sums that crossed this decade range did seem most difficult when they 

appeared in a larger decade problem (such as 50s or 80s problems). Yet, it was not so 

much a matter of appearing in a large (50s or 80s) decade that was the issue but 

crossing the decade boundary that made problems difficult. 

These decade problems had been chosen as exploratory problems to allow generic 

understanding of the effect of decades on doing addition sums, i.e.· within the 

constraints of certain categories the actual numbers being added were determined 

randomly by the program. This randonmess of the actual sums that children received 

meant that it was not possible to target precisely what computations might be 
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occurring for specific types of problems. It did not reveal enough about the underlying 

solution processes. So, while the earlier study was about looking at a narrow selection 

of sums, the present interest in looking at computational processes for decade sums 

demanded more specific comparisons. What would happen when children were faced 

with types of problems specifically chosen to make their computational methods more 

visible? 

In the following section, I will review the strategies children have available to them 

when doing single-digit sums and how these might be recruited when children have to 

solve more complex sums. 

6. 1. 1 Beyond single-digit computations 

Developmental research in this area of mental arithmetic seems to have been strongly 

oriented towards the addition of single-digit number facts. In comparison, solving 

slightly more complex decade addition problems requires more than just fact

retrieval, especially for children. It also requires knowledge of procedures and 

principles of addition as well as how to use existing number fact knowledge 

strategically. My earlier results suggested that children could make use of their 

existing (derived) number fact knowledge (e.g. such as using their knowledge of the 

tie-sum 7+7 or 6+6 to solve 7+6) to solve other problems. Maybe children could be 

strategic when faced with rather more complex addition problems that could be solved 

faster and more efficiently with strategic use of number-fact knowledge. They could 

make decisions based on their existing knowledge or they could retreat to effective 

yet primitive counting strategies. What would happen when the problems were of a 

more complex nature? What, for example, would happen to tie-sum knowledge and 

the min strategy when children are faced with problems in a decade context? 

The following sections look at some of the complex procedures children might utilise 

when dealing with mental addition beyond the single-digit case. Research on how 

children solve single-digit sums is useful for anticipating what they might do when 
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confronted with sums involving larger numbers. Real-life everyday mental 

computation makes greater demands on children's arithmetic ability than do simple 

single-digit additions (such as a+b). To look at this in greater depth we need to study 

sums that go one step beyond such single-digit sums. This means looking at sums at 

the next level of complexity, such as adding a double-digit (decade) number to a 

single-digit sum (i.e. ab+c). Sums of this type (ab+c) were chosen because of their 

relevance to everyday mental arithmetic. For example, when adding up numbers in 

single columns, the totals rapidly start to add up to larger numbers and usually it is a 

case of single-digits being added to larger numbers e.g. when adding 5+9+7+6 we are 

sequentially adding 9 to 5, 7 to 14,6 to 21: i.e. 5+9 =14, 14+7 = 21, 21+6 = 27 and so 

on. Where possible, and certainly when doing written addition, we tend to reduce 

larger sums into such single-digit columnar addition in order to make addition easier 

for us. 

So, although it is unlikely that such problems (ab+c) would come up frequently in this 

isolated form, they are more likely to appear indirectly as a by-product of doing serial 

addition with single-digits (i.e. when adding strings or columns of single-digit 

numbers). When confronted with problems of the type ab+c, would children use 

counting solution procedures, or would they make use of more efficient and strategic 

procedures? 

However, we need to start .by reviewing some of the ways in which children can solve 

simple problems with particular reference to how these solutions might be made 

available for more complex tasks. 

6. 1. 2 Taxonomy of methods for managing mental addition 

The results reported in 5.2 suggested that when children solved single-digit sums they 

used more than one type of solution method. These can be best described as falling 

under the following three headings: 
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1) Counting (solution processes built upon incremental counting of successive 

adjacent numbers on the number line). 

2) Retrieval or recall of known facts (solution processes which relied on the retrieval/ 

recall of number fact knowledge from memory). 

3) Strategic deconstructive/ transformational methods (multi-step solution 

procedures involving breaking a sum down into simpler forms). 

The next few sections will look at some of the options open to children when faced 

with cases of single-digit problems. Inevitably, counting remains a "basic" 

computational method that will still apply when moving on to complex decade sums. 

Direct recall of number-fact knowledge seems a somewhat less viable option in this 

case, i.e. if by this we mean recalling all the possible ab+c combinations that are 

logically possible. The challenge here is to look at what "strategic" transformations 

are going to be helpful. Reordering is one type of strategic behaviour. Another 

arithmetical principle, decomposition, also offers an opening for strategic thinking 

and thus a way of importing existing strategies into these more difficult problems. 

6. 1. 2. 1 Addition with counting-based procedures 

To begin with, we need to consider what types of counting methods children have 

available to them that they can use to solve mental addition problem. There are three 

aspects of the conduct of counting that invite analysis. First, a decision the child must 

make regarding the ftrst term of the counting sequence - where to start. Second, a 

mechanism for incrementing numbers in a principled manner. Third, a decision that 

must be made about the last term in the counting sequence - where to stop. 

The decision regarding the start number for a counting-based addition is the issue that 

has attracted most research. It has led to a four-way distinction. I will start here by 

looking at these four types of counting-start options, although the third of them will 

be revisited in a later section as an example of more strategic computational thinking. 
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Existing research has shown how children are strategic in managing counting-based 

solutions to addition problems with two addends (Carpenter and Moser, 1984; 

Baroody, 1987; Siegler, 1987). Their choices become increasingly efficient as they 

get older. Four basic counting-start procedures have been reported as available to 

children: 

1) CA (counting all) -This requires counting out all i.e. both of the addends and is 

the least economical of the counting strategies. 

2) CAL (counting all to the larger addend) - This requires counting to the larger 

addend and then counting on to the smaller addend. It also requires identifying the 

larger addend and ignoring addend order. 

3) COF (counting on from the first addend) -This requires counting on from the first 

addend regardless of the size of the addends. 

4) COL (counting on from the larger addend)- This is the most economical of the 

counting-based strategies available to children. It requires the child to first identify 

the larger addend, then count on from it the amount of the smaller addend while 

keeping track of the total counts. The COL procedure assumes that the order of 

the addends is irrelevant to their sum. 

The most efficient of these is the COL strategy (also referred to as the "minimum 

addends" or "min" counting strategy) which implicitly assumes that the order of the 

addends is irrelevant to their sum. While the min procedure can be termed a counting

related "strategy", in a sense it is a "pre-counting" strategy because it requires 

reordering first and then counting. Children must reorder the digits, putting the larger 

number first and thus, it depends on children's willingness to reorder the digits before 

beginning to work on counting them. This involves utilising the addition principle of 

commutativity. For this reason, I shall return to COL (in Section 6. 1. 2. 3) as an 

example of an addition procedure that involves a "strategic" component. 

How rigidly do children adhere to the counting strategies outlined above? In other 

words, how consistently do they adopt any particular counting strategy? This may not 

be a straightforward "stage-like" developmental process as they progress from one 
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strategy to the next. Is it always a case of one counting strategy or the other i.e. to 

what extent do they discriminate between various counting strategies? According to 

Fuson (1992), children are rather careless about their starting addend for "marks" 

problems (what they referred to as written subtraction and addition situations 

including numerals, +,-,and=) as opposed to word-problems. This distinction is 

important, because different types of problems encourage different types of solution 

procedures, depending on how abstract or concrete the problem may be. For example, 

children may verbally count-all (i.e. use CA) beginning with the larger number but 

without necessarily understanding commutativity. Moreover, they may count all from 

the larger number on some problems but not others. Carpenter and Moser (1984) 

found little support for computer models that placed counting-on from first (COF) as 

a strategy preceding counting-on from larger. Their results suggested that these 

computer models did not adequately describe children's addition performance in 

practice. They found most children were using both of these procedures, with no 

strong order of which procedure was used first. 

As far as the children in my own sample were concerned (Chapter 5), for a given 

(a+b) type, there were no apparent solution time differences between the larger 

number first case versus the smaller number first case. Results did not suggest that it 

took children longer to solve single-digit problems, where the larger number came 

first and vice versa. This reordering issue will be studied in this chapter in greater 

depth. It seemed that these children were at the stage where they were reordering 

(COL). This will be the assumption for single-digit problems in the following study. 

The fact that the "min" strategy was available to them when doing single-digit sums, 

suggested that it could be carried forward into a decade context - given the use of 

decomposition. 

The second research issue relating to counting concerns execution of the counting 

sequence itself. That is, progressing through an appropriate sequence of numbers, 

incrementing from some start point (see discussion above) and progressing to some 

conclusion number (see discussion to follow). Evidently, doing this effectively 

depends upon children being confident with the numeral names on the number line. 
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Otherwise, the significant determinant of progress will be the pace at which children 

are able to execute that sequence. This, in turn, will be a matter of different times 

needed to vocalise the relevant words. In relation to the present interest in decade 

counting, it can be anticipated that counting words required to count sequences within 

the decades (e.g. forty-one, forty-two and so on) must take longer than simple unit 

counting (one, two etc). This matter of differential counting speed will be an issue 

developed later in this chapter. 

The third issue relating to counting concerns how the child decides where to stop the 

sequence of number words. When counting for addition, children need to keep track 

of where they are at on the (mental) number-line as wen as where to stop when they 

have finished counting. To do this successfully, they would norma11y rely on some 

visible marker of number-counted (most typicalJy, their fingers). The point is that, 

compared to counting from zero, having to count on from any other number requires 

careful monitoring: since it requires keeping track of both the number to be added 

(determining the stop value) and the current number in an increasing sequence of 

counting. It is possible that, for small addends, children could use a kind of auditory 

subitized counting as "aids" or "props" (such as imposing rhythm on their counting 

process) to make it easier. While counting by subitizing is welJ explored for the visual 

domain (Gelman & Gallistel, 1978; Gallistel & Gelman, 1992; Starkey, Spelke, and 

Gelman, 1983; Starkey, 1992 & Wynn, 1992), it is possible that smalJ numerosities 

are also directly perceived in the auditory modality. Cowan's (2001) review suggests 

this might apply to numbers around 4. In which case short count sequences might be 

executed such as to stop on a subitized perceptual cue, rather than from the visual 

monitoring of fingers (or similar external markers). 

Evidently, the management of counting is not straightforward. Here, I am mainly 

concerned with how far this is the preferred procedure when the decade addition sums 

are tackled. Of the issues discussed above, the most relevant are the COL start 

procedure (to be returned to as a species of addition strategy) and the differential pace 

of counting associated with different number words (used here as a basis for 

determining whether decomposition is likely to have occurred). 
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6. 1. 2. 2 Addition based upon number-fact knowledge 

Another basic computational resource available to children is memory, i.e. 

remembering specific addition number-bonds. Certain number-facts have been found 

to appear early in arithmetic development. To a great extent, the results for single

digit sums reported in Chapter 5 supported existing findings in this area. However, the 

results in 5.2 suggest that, contrary to existing findings (Aiken and Williams, 1973; 

Krueger and Hallford, 1984), sum-to-10 problems (with the exception of 5+5 and 

9 + 1) did not seem to be particularly salient for these children. Yet the findings 

reported in 5.2 showed that some number-fact problems did take less time to solve 

than others, in particular, tie-sums (e.g. 6+6, 7+7, 8+8, and 9+9) took less time to 

solve than other similar sized sums. 

But what would happen to this use of number-fact knowledge if the numbers being 

added became larger than single-digits? The results from the decade sums in 5.2 

showed that when a tie-sum appeared in a decade context (e.g. 24 + 4) it also had a 

shorter RT regardless of whether it appeared in a larger decade such as 80+n or 50+n. 

This seemed to indicate that children were recognising tie number facts and making 

use of this knowledge in decade context. This also implied that they were making use 

of decomposition, because they were recognising that the problem could be broken 

down or decomposed into 20+4+4. The aim in 5.2 was to start by looking at children's 

existing number-fact knowledge, i.e. the 45 single-digit addition number facts as well 

as an exploratory selection of decade sums. In 5.2, the initial data had suggested that 

some number facts such as ties were more salient than others. But because the decade 

sums that involved tie-sums only looked at smaller tie-sums (those with an answer 

.. less than 10), it was uncertain whether this would still be the case if the decade 

involved a larger tie sum (with an answer greater than 10), e.g. 26+6. Would they still 

make use of their existing number fact knowledge and use a strategy that would also 

involve decomposition i.e. do 20+6+6? Or would they resort to an incremental COL 

strategy? 
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It must be noted that even when counting occurs, it can be taken over by other 

procedures such as recall of number facts because solution procedures are likely to 

vary with the particular numbers in a problem. Since smaller number facts are learnt 

before larger number facts, a recalled fact solution is more likely on problems 

containing small numbers (Fuson, 1992). So, a child who is likely to use counting 

procedures on most larger sums would still rely on number-fact knowledge on smaller 

sums, and then fall back to counting on other larger sums. In addition, some 

researchers have suggested that knowledge of a particular number triad (e.g. 7, 5, 12) 

might allow children to solve a more difficult problem type than they can solve 

without this knowledge of the number triad (Carpenter and Moser, 1984). Although 

this highlights the occasionally arbitrary nature of number fact knowledge, it also 

means that such knowledge can be a potentially powerful tool when doing larger 

problems. For example, a number triad (such as 7, 5, 12) can be embedded into other 

addition (and subtraction) problems. It would mean that whenever this factual 

knowledge (or other similar knowledge) appeared, it would be recognised and 

exploited. It can also appear embedded in more complex (decade) problems such as 

37 + 5 if the child recognises that this also involves a 7 + 5 problem, and can therefore 

allow the child to do other sums derived from this factual knowledge. But this will 

only be beneficial if strategies such as decomposition are being used to solve a 

problem. 

It seems unlikely that ax +n problems would benefit from number-fact knowledge 

directly. That is, it seems unlikely that such a large number of potential bonds would 

lead to many pairings that were directly recalled in this sense. If number-fact 

knowledge enters into such decade problems then it will surely be in relation to the 

single-digit pairings that might arise from an initial step of decomposing ax +n. That 

is, the concern of the empirical work reported below. 

6. 1. 2. 3 Addition involving "strategic" solution procedures 

Most smaller single-digit sums can be solved without too much difficulty by even 

somewhat inefficient counting strategies. Even those such as COF and CA. Perhaps 
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having to solve more difficult sums forces children into being more strategic. When 

children have to do sums with larger numbers, the useful counting and derived-fact 

strategies described above will only come into effect if children are using 

decomposition. When doing decade sums, knowing that 7+7 = 14 is only helpful if 

you first recognise that 27 + 7 is the same as 20 + 7 + 7. 

A more strategic use of this when solving unknown combinations of numbers is 

referred to as using "derived facts" which means using a known number fact to solve 

a problem via a transformation. It is a way of being "strategic" with existing number 

knowledge in order to do difficult sums on which we cannot reliably use retrieval. 

This can include a strategic combination of counting and number fact retrieval or a 

type of "smart counting". Use of derived-facts relies on solution processes that 

depend on retrieval from memory of a known number-fact. For example, using the 

known tie-sum 7 + 7 = 14 to solve 7 +6. This works because it combines number-fact 

knowledge (7+7) with number-line knowledge (7+6 is one less than 14). This is an 

example of children being strategic in order to make sums more manageable. It 

illustrates what can occur between purely counting-based solutions and the use of 

number fact retrieval. 

This is an area that seems to have been largely neglected by existing research. Fuson 

(1992) pointed out that at some stage children stop direct modelling (of the above 

mentioned counting strategies) and use "abbreviated counting strategies" flexibly. An 

example of abbreviated sequence procedures is that involving derived fact procedures 

in which the numbers in a problem are redistributed to become numbers whose sum or 

difference is already known. 

Children also use derived fact strategies in which one addend and the sum are added 

to (or even subtracted from) in order to change those numbers into a known fact or 

sum, e.g. the sum 8+6 is 6+6 ( +2) = 12+2 = 14 (using the known doubles fact 6+6 = 

12). This is an example of children deploying their number knowledge in an elaborate 

way thus illustrating that even seemingly basic number-fact knowledge can be made 

richer and more creative. Relatively little research has been done on the conceptual 
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structures required by different derived facts, or on the developmental relationships 

between sequence counting strategies and derived facts. 

Counting and using number-fact knowledge are two of the procedures that are 

available to children when doing mental addition. Within these, children can be 

strategic as is demonstrated by reordering and using derived facts. But, in addition, 

there is another way of creatively exploiting both counting and retrieval that is more 

flexible than either counting or derived-facts alone, especially when solving more 

complex problems. Decomposition is a strategic procedure that affords both counting 

and retrieval but it is also one that requires greater knowledge and recognition of 

arithmetical principles. But before going on to look at decomposition in more detail, 

we need to consider what it means to be "strategic". 

The process of drawing loose boundaries between "strategies" is not a straightforward 

one. How do we define what constitutes a "strategy" or "strategic behaviour"? Using 

derived-facts, or reordering numbers are more obvious examples of being strategic. 

For example, reordering 4 + 7 into 7 +4 is a transformation that is strategic. Although 

this type of sum may eventually be solved by counting, the process of reordering the 

numbers to begin with the larger number first is an example of being strategic to make 

sums more manageable. 

Therefore, single-digit mental addition problems can be solved by children by 1) 

counting 2) recalling number-facts, and 3) using transformation strategies. These 

transformations involve either exploiting number-fact knowledge and transforming a 

large addition problem into more manageable smaller ones, or on transformations 

based upon the principles of arithmetic (e.g. commutativity). In brief, this means that 

knowledge of number-bonds/ facts and knowledge of arithmetical principles can be 

strategically deployed to create transformations of difficult problems. These are 

"strategic" moves because they reduce difficult problems to short sequences of easy 

problems where "easy" entails the option of then applying counting and/ or number

fact knowledge directly. 
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So while counting and retrieval can be seen as fairly simple solutions, children could 

also have the ability to be strategic when dealing with difficult sums. The results in 

reported in Section 5.1 suggested that the transformational strategies that some 

children seemed to be using were a type of method which involved the use of both 

number-fact knowledge and counting i.e. a method involving active manipulation! 

transformation of the sum. Of these solution procedures, the identified counting 

strategies (finger or mental) would be the most easily transferable to decade sums. But 

although the nature of single-digit addition meant that children doing such sums could 

rely on retrieval from memory as a solution procedure, this direct retrieval (of either 

number-facts or using the derived-facts strategy) is unlikely to be an option available 

for children when doing larger decade sums such as ab +c, unless they use 

decomposition. That is because in decade sums retrieval from memory only appears 

as a solution in relation to single-digit sums like 7 +4 or 6+6 but only if the children 

were using more strategic procedures like decomposition, procedures which require 

breaking down complex problems into more simple ones. All of the strategic solution 

processes described can be used to help solve decade sums, but only when used in 

conjunction with decomposition. 

Thus counting and even number-fact knowledge can be easy to transfer to decade 

sums, but to be truly effective i.e. "strategic" they require that the child be able to use 

decomposition. The sums chosen for the study below were designed to look at all 

three of the solution processes described above, i.e. to what extent would children be 

appropriating their single-digit solutions into solving complex decade problems? 

Solution processes such as counting and derived-facts can be used together, while 

using the more flexible procedure of decomposition that is so inherent to using that 

existing knowledge. Decomposition allows more strategic manipulation of numbers 

and makes larger sums such as decade problems easier to solve than if only counting 

or retrieval-based procedures were used. But to what extent do children make use of 

this potentially powerful solution procedure? Children's use of decomposition is 

examined more thoroughly in the next section. 
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6. 1. 3 Development of decomposition strategies 

Addition problems in a decade context can be solved more efficiently by using 

strategies that involve recognising properties of addition such as commutativity and 

decomposition. To what extent, if at all, do children make creative use of such 

addition principles? First, we need to consider the relevant properties of number and 

the principles of addition. 

One principle of addition is additive composition. Addition of natural numbers has the 

property of closure because the sum of any set of natural numbers is a natural number 

i.e. any natural number (except for one) is the sum of other natural numbers (Cowan, 

1999). According to Resnick (1983, 1986), children have intuitive knowledge of this 

additive composition. Decomposition strategies for solving addition problems require 

knowledge or awareness of additive decomposition e.g. 28 + 15 =20 + 8 + 10 + 5. When 

solving a problem such as 37+5, if children do not decompose it into 30+7 +5 then 

they will have to resort to counting, even though such a problem might be best solved 

through decomposition. Evidence suggests that children have knowledge of 

decomposition strategies. Putnam, deBettencourt, and Leinhardt (1990) found that 

children could give adequate explanations of derived-fact strategies for addition. 

However, research suggests use of decomposition is uncommon. For example, Renton 

(1992) interviewed 6-10 year old children after they had done some sums to find out 

what strategies they could use and found that most children were able to show how to 

use counting strategies on the sums on which they said they used retrieval. Many also 

showed they could have used retrieval on problems on which they used counting 

strategies. However, very few of the children, even among the older ones, revealed 

that they could use decomposition to solve a problem. 

According to Cowan (1999), this may not necessarily be due to ignorance of additive 

composition, because children are capable, in principle, of using and distinguishing a 

variety of strategies. Rather, this may be due to reluctance to make use of them, i.e. 

possessing knowledge about something is not a guarantee that it will be used. 
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Children can recognise the commutative property of addition fairly early on. Cowan 

and Renton (1996) demonstrated the relation between children's knowledge of 

commutativity (i.e. that order of addend does not affect the results of addition) and 

their use of counting strategies in addition. They found that children's methods of 

solving addition problems progressed towards optimal strategies (such as "min") that 

reverse the order of addends so that they have to do less counting. Most children 

between 6 and 10 years predicted that order of the addends would not change added 

quantity. They also tended to use strategies that reversed addend order. Renton and 

Cowan also found that 5 year olds were more likely to know commutativity than to 

actually use a strategy that reversed addend order to answer sums correctly. They 

concluded that children expect addition to be commutative before they actually start 

using strategies that disregard addend order, i.e. knowing commutativity precedes 

using strategies that presuppose it and does not derive from doing sums. Thus, while 

children can show awareness of principles of addition, putting this knowledge into 

practice may be a more difficult task. 

Why should this be the case? For some children, whether or not the knowledge will 

get used might have something to do with attitude rather than just finding it difficult 

to put into practice. So even knowing about efficient strategies may not predispose 

some children to make use of them, because of their belief than this knowledge will 

not guarantee an accurate answer. That is, some children are unwilling to risk an 

inaccurate answer. Siegler (1988) found a group of children who showed good 

arithmetic knowledge but who resorted to counting rather than relying on more 

efficient strategies. Siegler referred to these children as "perfectionists" and suggested 

that they had to be extremely confident to rely on their strategic knowledge. While 

most children might know the principles of addition, they could be reluctant to 

actually use them. They were more likely to use reliable strategies that would give 

them accurate results than risk using newer ones that may lead to errors. This could be 

a possible explanation of children's cautious attitude in relation to decomposition 

strategies. 
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So, because children's use of decomposition cannot be taken for granted, we need 

more information on what situations prompt its use. In this study, I looked at how the 

strategies children used in a simple addition context would get used when they had to 

solve sums in more complex decade contexts. However, this could only be done 

effectively if the children were prepared to use decomposition-based strategies and it 

seemed uncertain that they would. The earlier sections of this chapter looked at 

children's development of basic procedures such as counting and number-fact 

knowledge and later sections moved towards children's use of increasingly advanced 

strategic solutions such decomposition. However, these sections were based upon 

children being strategic when solving single-digit sums. The next section will look at 

how the strategies discussed in these sections might get recruited into solving more 

complex decade sums. 

6. 1. 4 Decade addition 

Much of the research on children's mental addition has been concerned with simple 

single-digit problems. What occurs when children start adding decade sums? 

Investigating this would involve taking some of the solution possibilities described 

earlier and exploring them in a decade context. So, I used the following set of 

problems: Problem Type A in order to look at the relevance of counting following 

decomposition, Problem Type B to look at the relevance of number1act knowledge, 

and Problem Type C to look at the issue of addend reordering (a strategic 

transformation) following decomposition. For every type of sum there might be two 

solution possibilities. These processes would involve either 1) counting or 2) a 

strategic solution process arising from decomposition. Problem Type A would be 

looking at decomposition and incremental counting, Problem Type B would be 

looking at decomposition and tie-sum number-facts and Problem C would be looking 

at decomposition and the addend reordering strategy. The basic counting-on strategy 

would be the other solution possibility on all the different types of sums. 

157 



- --------------------------------------------------

In Sections 6.1.2. and 6.1.3 I looked at some of the basic solution procedures children 

have available to them when doing mental addition, from the use of counting-based 

procedures to more strategic transformational procedures such as the use of derived

fact knowledge. The challenge in this study was to discover whether children will 

exploit solution procedures via decomposition, in order to utilise their existing 

achievements. So, for example, when doing decade addition, they could use a 

combination of decomposition and strategic transformations e.g. 37 +4 transformed 

from 34+7. First, I will review some of the existing research on decade addition. 

6. 1. 4. 1 Existing research on decade addition problems 

When research on mental addition problems has involved the addition of larger 

number problems, this bas usually been in the context of working memory research 

(Hitch, 1978; Logie et al, 1994; Gathercole and Pickering, 2000). Such research has 

looked mainly at the role of the central executive and visuo-spatial components of 

working memory in performing the calculations required for mental addition. For 

example, Hitch (1978) used mental arithmetic to look at the relationship between 

operations and storage. He found that errors increased as the number of operands that 

had to be held in working memory increased (as opposed to having them written on 

paper). He also found that errors increased when subjects were required to write their 

answers in reverse order (hundreds, tens and units) because this would impose a delay 

on the reporting of some of the digits. In addition, response times and errors also 

increased as the number of embedded carry operations increased. These findings were 

used to indicate how working memory capacity was utilised: by having to hold more 

information in the working memory system, holding that information for a longer 

time and having to execute more steps or operations within working memory. 

Similarly Logie et al (1994) looked at the working memory components responsible 

for holding arithmetical operations. In their experiment, subjects had to do sums in 

which they were required to keep a running total of the sum in their mind while doing 

various distracter tasks. So, while researchers have used arithmetic processing to look 

more closely at working memory processes, they have not looked at the nature of the 

strategic processes spontaneously selected to execute such mental arithmetic. 
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Other chronometric research that is more relevant to our present interest and which 

looks at the mental addition of larger numbers has been carried out on adults by 

Widaman, Geary, Cormier and Little (1989) using a true/false verification paradigm. 

Widaman et al (1989) carried out a chronometric analysis of their general model of 

addition processing to validate the argument that processes involved in more complex 

forms of addition (such as the time taken to carry from the units to the tens column) 

were not adequately represented by models for sitnple arithmetic processing. They 

identified the need for models of mental processing that were richer than ones 

designed to account for the processing of sitnple single-digit number facts. They 

looked at four types of addition problems: sums involving two single-digit addends 

(e.g. 4+5 = 9), sums involving three-single-digit addends (e.g. 3+7+2 = 12), sums 

involving one single-digit and one double-digit addend (e.g. 34+7 = 41) and those 

involving two double-digit addends (e.g. 86+43 = 129). They found a substantial 

temporal overhead associated with doing problems involving a "carry" operation 

(referred to in the current research as "crossing the decade boundary") and they 

claimed that these findings revealed the extra demand added by each component of 

the problem. 

Widaman et a! (1992) studied children from the second, fourth and sixth grade as well 

as college students doing a selection of sitnple single-digit (e.g. 4 + 5 = 9) problems 

and a selection of complex double-digit problems (e.g. 86+43 = 129). They then fitted 

their componential models to the RT data from each individual and classified 

individuals according to whether they used a computational strategy or a retrieval 

strategy. Their results suggested that individuals seemed to be using the same 

strategies for the complex addition problems as they were for the simple addition 

·· · problems. However, they do stress that this does not suggest that students at any grade 

were a homogenous group regarding strategy use. Because Widaman et al did not 

look at strategy use information for each problem, some individuals may have used 

retrieval as a solution to most problems and then used slower "back-up" counting 

processes for some problems when retrieval failed to produce the right answer. 
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Widaman' s study is significant because it shows the straightforward relationship 

between arithmetical complexity (the "steps" or components" involved in larger sums) 

and the solution times. While Widaman et al concentrate on how longer sums take 

extra time because they have more "components" and therefore require some kind of 

"extra" processing, they do not consider just why having to do sums with more steps 

should take longer. So Widaman's study is useful because it shows that adding steps 

to a problem increases complexity; this, in turn, increases solution time which is 

probably due to the strategy being used. 

6. 1. 4. 2 The mental demand of adding a "decade" component 

The results reported in section 5.2 showed that, although doing decade addition sums 

was a manageable task for most children, doing such sums did take considerably 

longer. There was an overhead involved in doing decade sums; i.e. a sum like 87 +5 

becomes extremely difficult very rapidly. Solving such a problem without resorting to 

counting would require not only decomposing it but recomposing it as well, and that 

in turn would require a confidence in one's own numerical ability that may be beyond 

many children. Perhaps it is not surprising that some of them resort to counting, which 

in their experience is the most reliable method for producing an accurate answer. 

Strategies such as commutativity and reordering that require applying, as well as 

recognising addition principles, take up mental computational resources that children 

may be unwilling to invest. Adding extra steps to a problem can make it potentially 

easier to solve because it means breaking the problem down into simpler components 

that are quicker to deal with, with the results being brought together at the end. 

However, it may be that this very aspect of decomposition makes it harder for 

children to use. Perhaps because the more powerful solutions offered by 

decomposition are not taken up, such sums (e.g. 87+5) are seen as daunting and 

children fall back to reliable yet less efficient counting strategies. If children perceive 

a problem as being difficult enough because it involves a large number (for them 

more steps even if counting) then the prospect of decomposition (adding yet more 

steps) becomes even more unappealing for some children. 

160 



As my previous RT results suggested, adding a decade component may place 

considerable demand on children's mental arithmetic capabilities. The type of decade 

problems that will be discussed in this chapter will be those where a single digit is 

added to a double digit e.g. 24 + 5 as opposed to two double digit addends e.g. 24 + 

23, since the latter are likely to require different types of processing and solution 

methods. Wolters, Beishuizen, Broers, and Knoppert (1990) presented 8-9 year olds 

children with (addition and subtraction) problems with sums > 20 and < 100. They 

studied children divided into groups depending on which of two solution procedures 

(as distinguished by Beishuizen, 1985) that they used most consistently. One was the 

"10-10" procedure (decomposition) and the "N-10" procedure. In the "1 0-10" 

procedure, both addends are spilt into tens and units which are added separately, and 

then combined again (e.g. 47+22: 40+20 = 60, 7+2 = 9, 60+9 = 69). In the "N-10" 

procedure, only the second addend is split up and the tens and units are added-on to 

the unsplit first addend (e.g. 47 +22: 47 +20 = 67, 67 +2 = 69). Since the 10-10 method 

requires at least one more solution step than the N-10 method, use of this method 

should result in longer solution times. In addition, they also predicted that if the 10-10 

method requires more procedures, and the problem difficulty increases (e.g. on 

problems such as 48+26 as compared to problems like 34+5), then the difference in 

the number of sub-problems required by the solution method also increases. Thus, 

they predicted that the increases in solution time with increasingly difficult problems 

will be smaller for children using the N -10 procedure than for those using the 10-10 

procedure. 

They argued that such difficult problems are calculated by using procedures in which 

the problem is broken down into subproblems for which solutions are retrieved from a 

declarative knowledge base. Their research was based on the view that most 

arithmetic procedures (e.g. for adding multiplying or dividing large numbers) consist 

of algorithms in which the problem is broken down into a series of subproblems at the 

declarative level with these subproblems being processed and solved serially. 

Likewise mental calculation arithmetic procedures and problem variations requiring 

more solution steps will result in a larger memory load which will result in longer 
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solution times. Therefore, increases in solution time will occur because each serially 

performed step takes time and because the temporary storage of data in working 

memory may lead to interference and confusion; correction of this also takes time. 

Thus, procedures requiring a greater number of subproblems will result in longer 

solution times, and procedures requiring less subproblems lead to faster solution 

times. Wolters et al's (1990) results were based on the assumption that performance in 

mental arithmetic is determined by characteristics of working memory (Baddeley and 

Hitch, 1974 and see section 4. 1). That is, because each operation takes time, 

arithmetic procedures and problems that require more sub-problems take longer to 

solve. In addition, with larger problems result in an increasing load on storage 

capacity and as a result there is a greater chance of interference and forgetting which 

lead to errors and additional time to correct them. They concluded that the increasing 

difference between solution procedures with increasing problem complexity is mainly 

due to the different number of subproblems and consequent differences in memory 

load. 

Therefore, decomposing a problem into yet more steps may be something children, 

especially younger ones, find more daunting than simply counting, because it involves 

more solution steps. Where children are concerned, decomposition requires more 

intellectual effort than counting and so may be something to be avoided. If children 

are approaching these problems in a relatively mechanical way, then decomposition 

may not seem like an easier option. For many children, the idea of increasing the 

number of solution steps may seem too much effort, compared to counting. This is 

relevant to the research in the current study, because decomposition is the central 

issue of this chapter. A reluctance to use or attempt to use decomposition on decade 

sums would mean that children perceive decomposition as being more difficult or less 

efficient than counting. Perhaps because, for children, decomposition involves 

breaking the sum down into too many steps where counting does not. 

To conclude, there is a lack of research that reveals precisely what computations may 

occur when children do addition involving larger numbers, especially addition of 

important ab+c type sums. Therefore, the focus in the following study will be on how 
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the solution procedures children use for single-digit sums might get used for decade 

sums. For example a single-digit sum like 4 + 7 can be solved by retrieval or counting 

whereas a sum like 34 + 7 can solved by counting alone or, more efficiently, by 

decomposition plus reordering i.e. [(7 +4) + 30] and this would be reflected in the RT. 

6. 1. 5 Concerns of the present study 

6. 1. 5. 1 Central aim 

The patterns that emerged from the results discussed in the previous chapter helped 

decide the problems that were chosen for the present study. In the study described in 

this chapter, children were presented with more specialised decade problems. These 

problems were designed to investigate when children start using their strategic 

knowledge of decomposition and decomposition-based counting/retrieval strategies to 

solve decade sums. Since my earlier results had shown a similarity between the 

performance of children from Years 5 and 6, I decided to limit my sample to children 

only from year 5 as the older age group. 

In brief, earlier results from children doing decade sums showed that there was a 

significant overhead associated with simple addition in higher decades. The extent of 

this overhead was exaggerated for problems that crossed the decade boundaries. 

Problems that crossed the decade boundaries were more difficult for children across 

all year groups. Sums which crossed the decade boundary were most difficult when 

they appeared in a larger decade problem (such as 50s or 80s problems). However, 

one of the constraints of this study was that actual digits within each type of decade 

problem had been randomly selected and so the children may have been solving 

different problems e.g. for a sum whose answer crossed the decade boundary one 

child could have received 89+ 2 and another child could have received 89+8. Because 

the choice of problems in the earlier study was not systematic, it did not allow 

conclusions about actual computational procedures. However, these results had been 
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useful in identifying the possible patterns and I now needed to look at more focused 

decade problems. 

The problems in the research described in this chapter were chosen in order to enable 

a more confident claim to be made about children's strategies for decade problems. 

Problems would be of the type a+ b (units or single-digit sums) or of the type xa + b 

(decade sum) and the analysis would always look at the RT "overhead", i.e. with any 

increase in RT being associated with "xa" as opposed to "a". This would reveal any 

step-like processes underlying the solution of decade problems, as inferred from the 

time taken to solve these problems. A longer time taken to solve a given problem 

would suggest that it is being solved through a less efficient (counting) strategy than a 

type of decomposition strategy or retrieval strategy which should have faster RTs. 

This meant presenting the children with a carefully chosen set of decade problems. As 

in 5.1, what would be analysed here was the extra load involved in doing certain 

decade problems because RTs on such problems should tease out any emerging 

computational patterns that would show whether or not children can use existing 

single-digit number knowledge to their advantage. This "cognitive load" or 

"temporal overhead" would be the extra time taken to do a decade sum as compared 

to its single-digit counterpart, i. e the RT for 37 +4 minus the RT for 7 +4. By doing 

this, I would be comparing the decade solution time with the baseline single-digit 

solution time, and the same would be done for tie-sums e.g. the RT for 26+6 minus 

the RT for 6+6. 

The results would enable me to discover where the uptake of decomposition occurred, 

since the problems would be presented in a way that should facilitate the emergence 

of newer more efficient strategies. For example, would children solve a decade sum 

incorporating a tie number-fact through decomposition? If they were to use 

decomposition, then they could use their number-fact knowledge and this would be 

reflected in their RTs. Likewise, if a sum had smaller addends would they use 

decomposition or a counting-on strategy? If a sum was chosen so that it was more 

easily solved by using a decomposition-based strategy, would they use decomposition 

or would they resort to counting-on? 
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The aim in this study was to look at children importing strategic solution processes 

from single-digit sums into decade problems of the sort ab+c. This involved looking 

at how children would use the following: 

1) Counting (incremental counting-on procedures) on problems with smaller 

addends. 

2) Number fact knowledge (based on number-fact retrieval) such as knowledge of 

tie-sums whereby the only way that these solution processes can be imported 

successfully into a decade context is if they make use of decomposition. 

3) Decomposition and addend reordering. 

In light of this, three types of decade problems were chosen: 

1) Problem type A designed to look at solution strategies on sums with smaller 

addends chosen to facilitate decomposition plus counting. 

2) Problem type B designed to look at decomposition and the use of number-facts 

such as tie-sums. 

3) Problem type C designed to look at the possible use of decomposition and 

reordering strategies. 

Within each of the three sets of problems, children would receive a decade sum and 

its corresponding units/single-digit sum. 

The particular problems (described in Table 6.2) were chosen after the results of the 

data in section 5.1 was analysed and revealed certain patterns. These problems would 

help pinpoint exactly where the difficulties lay; which combinations of numbers 

seemed to take the longest, and for which age groups. This allowed me to follow on 

and clarify the nature of the computational overhead associated with simple decade 

addition. 

Type A problems were chosen to provide children with baseline sums that were 

simple enough to solve by counting or decomposition plus counting and would be 

helpful in discovering how children would solve such sums. 
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In problems of the sort in Type B, would children transfer their number fact 

knowledge (see 5.1) to decades as in recognising that the sums 26+6 or 23+3 involve 

tie-sums? Would this be seen so that this problem becomes relatively easy for them 

(faster to solve) or would they persist in counting up from 26 (longer solution time)? 

If both 23+3 and 26+6 are solved using decomposition then the RT overhead for both 

sums should be similar. 

In Problem Type B, it meant looking at the specific issue of how crossing the decade 

boundary would affect the RT when the sums involved include a tie-sum (one which 

had been found to be a salient number fact), providing everything else remained 

constant. Given a sum like 26+6 and 6+6 and a sum like 23+3 and 3+3, the children 

would either be doing 1) some type of mechanical counting or 2) doing 

decomposition on the decade then adding on the single-digit sum (which may or may 

not have been counted). 

If children were using a sophisticated decomposition strategy, e.g. transforming the 

decade problem 26+6 into [20+(6+6)] then in decade problems involving both a large 

and a small tie-sum (23 +3 and 26 +6) the computational overhead for the 

decomposition would be constant. That means that the RT for 26+6 would be greater 

than 6 +6 and the RT for 23 + 3 would be greater than 3 + 3 but that the RT difference 

between the two types of sum should be constant. For example, if the RT for 3 + 3 was 

3 seconds and the RT for 23+3 was 6 seconds and the RT for 6+6 was 4 seconds then 

the RT for 26+6 should be around 7 seconds. This would suggest that the two types of 

sums were being solved in a similar way, i.e. that the single-digit method (whatever it 

was) was being imported into the decade case. Would this be the case here? How far 

would these emerging strategies be used when children had to do decade addition 

problems that were specifically designed to encourage flexible strategy use? 

When presented with another set of problems (Type C) that were complex enough to 

make counting possible but not necessarily as the optimal solution strategy, would 

children use decomposition to solve an addition problem such as 34 + 7 breaking it 

down into 30+(4+7) or even more optimally into 30+(7+4)? Or would they resort to 
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mental or finger counting using the min or COL strategy? If they are using 

decomposition for a problem such as the one mentioned above, and the strategy of 

adding the larger number first is imported from the single-digit sums (7 +4 instead of 

4 + 7), then the problem 37 +4 should not have a significantly longer overhead than 

34 + 7. On the other hand, if they were relying primarily on counting then 34 + 7 would 

have a significantly longer overhead than 37 +4 because the minimum addend 

counting model specifies that the RT increases in proportion to the size of the smaller 

addend. 

6. 1. 5. 2 Role of presentation format 

Presentation format, i.e. the visual format in which the participants received the actual 

sums (columns versus rows) was another issue that needed to be explored. Although 

this was not something their own research had investigated, Widaman and Little 

(1992) identified presentation format as a possible influence on mental arithmetic (in 

most of their own research they presented addition problems in a columnar form). 

According to Widaman and Little (1992), it would be interesting to discover whether 

there are detectable effects of presentation format on RT data for a given operation 

such as addition as well as finding out the effects of presentation format on other 

operations such as multiplication, subtraction and division. 

The previous studies (in sections 5.1 and 5.2) had used a row format (e.g. 23 + 4 = 

27). However, a columnar format could have had an influence on RTs since this is 

likely to be the one that children are most familiar with. A columnar presentation 

might encourage children to be more strategic than a row format. For example, seeing 

problems in a columnar format might invite a decomposition strategy more readily 

than seeing problems in a row, i.e. seeing the numbers visually lined up may 

encourage doing the single digit component first and then adding on the decade. For 

example, for 45+2 doing 5+2 first and then adding on 40. This may or may not 

involve some recognition of the principle of decomposition. 
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Therefore, presentation format was also manipulated in this study. Alternatively, it 

was possible that seeing larger decade problems in a horizontal/row format could lead 

to even the older children abandoning any emerging strategic behaviour and reverting 

to counting. This might be because such problems may be seen as problems in a more 

unfamiliar context and they would use a more reliable counting strategy. 

In summary, the central aim of this study was to make strategic comparisons between 

a decade problem and its corresponding units problem and to investigate whether the 

computational overhead was or was not found to be constant. This would enable me 

to find out just what specific types of problems trigger decomposition. 

6. 2Method 

6. 2. 1 Participants 

A total of 89 participants were recruited from two schools (for more detail see Section 

4. 4. 1 and 4. 4. 4). 

Table 6. 1 

Year Number Male Female 

3 34 17 17 

4 21 10 11 

5 34 14 20 

Total no. of 89 41 48 

participants 

All the children were familiar with using a mouse and graphical computer interface. 

These are the numbers of children who took part in the study and completed all the 

sums. However, there were cases where a child's data for a particular sum or number 

combination was lost as a result of a computer error and would not therefore be 

available for analysis. In these cases the child's data for the rest of the sums he/she 

completed would still be included in the analysis. 
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6. 2. 2 Tasks 

The participants were presented with decade problems as well as the corresponding 

single-digit problems. The program (as described in 4. 4. 3) was configured to deliver 

the following sorts of problems: 

Table 6. 2 

Problem Description Decade Problem Single-unit problem 

type 

A Designed to look 45 + 1 5 + 1 

at solution 45 + 2 5+2 

procedures that 45 + 3 5+3 

typically involve 45 + 4 5+4 

counting 

B (tie-sum Designed to look 23+3 3+3 

number at decomposition 26+6 6+6 

facts) and the use of 

number-fact 

knowledge (tie-

sums) 

C:l Designed to look 34 + 7 4+7 

(answer at decomposition 37 + 4 7+4 

crosses the and the min 

decade strategy 

boundary) 

C:2 Designed to look 33 + 6 3 + 6 

(answer does at decomposition 36 + 3 6+3 

not cross and the min 

decade strategy 

boundary) 
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It was planned that each participant receive a total of 22 problems. However, due to a 

computer error each participant received 21 problems because the single-unit problem 

(6+5) from a further Problem type C (derived number facts) was not presented 

although children still received the corresponding decade sum 26+5. These Type C 

(derived number-fact) problems had been chosen as an example of a problem which 

included an adjacent -to-tie sum but this was not included in the analysis because the 

corresponding single-digit sum was not included in the task. 

The decade values themselves were varied because using the same decade 

continuously throughout the task would give an "unnatural" or "artificial" feel to the 

series. Children might recognise this and, as a result, might end up using the same 

strategy across all the problems. Using a variety of decades (e.g. 20s, 30s and 40s) 

would provide a more diverse and interesting range of sums than just using one 

decade alone. 

For all types of problems, it was assumed that children would use one of two solution 

processes. One would be counting. The other would be decomposition plus "another 

process" which for Problems Type B would be decomposition plus use of tie-sum 

number-fact knowledge, and for Problem type C would be decomposition plus 

reordering. 

Problems in Type A (45 +n, and 5 +n) were chosen to investigate the strategies 

children would use when counting would be expected, i.e. would they use incremental 

decade counting, or a combination of decomposition and unit counting. An 

incremental increase in RT as the smaller addend became larger would suggest that a 

counting strategy was being used. If the RT difference (overhead) was not constant, 

then decomposition plus unit counting was being used, i.e. the children were 

recognising 5 +n and adding on 40. Indeed, for all the problems a constant overhead 

would suggest decomposition was being used, i.e. the comparison for all sums was 

about looking for a constant difference in RT. 

170 



Type B (tie-sum, number-fact) problems were chosen to explore whether children 

would use decomposition and knowledge of number-facts. The assumption here was 

that if the children were using decomposition then both 23+3 and 26+6 would have 

similar overheads if both the 6 + 6 and 3 + 3 tie-sums were recognised. 

Type C problems were chosen to find out whether children would use a counting 

solution or whether they would import their knowledge of the min strategy into a 

decade context and use a decomposition strategy. Group Cl problems were chosen to 

look at the min strategy in sums which crossed the decade boundary (e.g. 34 + 7 = 

41). Would they break 34+7 into 30+4+7 and 37+4 into 30+7+4 or 30+11, regardless 

of whether the smaller or larger number appears first. Or would they simply resort to a 

mental or finger counting strategy, in which case it should take them longer to do 

sums where the smaller unit (34/33) appears first? There should be no difference 

between overheads for 34 + 7 and 37 +4 except for the constant overhead. If a 

difference was found, then this would be due to children not using decomposition but 

relying on counting. The problems in Group C2 were chosen to look at the min 

strategy in sums which did not cross the decade boundary (e.g. 33 + 6 = 39). There 

should be no significant difference between the overheads for 33+6 and 36+3 i. e the 

overhead should be constant unless counting was occurring. In each case, the digit 

order was reversed so that children received problems where the larger digit came 

first and problems where the larger digit came second. For both Group Cl and Group 

C2 problems, a similar overhead would suggest these decade sums were being solved 

in a similar way to the single-digit sums. 

All of the problems were chosen not to make them too difficult or demanding for any 

child while making certain they were challenging enough to prevent children from 

getting bored. To minimise "unnecessary" demand on their abilities the problems 

chosen were in the low 30s and 40s range especially because the research in 5.1 had 

found that decade sums in the higher decades such as 80s were quite difficult for 

younger children. The results in 5 .1. had also shown that there was not a big 

difference between 20s and 50s decades. The method for dealing with errors was as 

identified in 5 .1. 
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Half of the participants in each year group received all the problems written 

horizontally in a row on the screen i.e. 45 + 1 and the other half received problems 

written in vertically in columns in the following format: 

45 

+ 1 

Whether each participant saw a horizontally (columnar) or a vertically (row) 

presented problem was determined randomly by the software. Fifty children received 

problems in a horizontal format and thirty-nine children received problems in a 

vertical format. In Year 3, 20 children received the horizontal format of the problems 

and 14 received the vertical format. In Year 4, 12 children received the horizontal 

format of the problems and 9 received the vertical format. In Year 5, 18 children 

received the horizontal format of the problems and 16 received the vertical format. 

6. 2. 3 Procedure 

The procedure was similar to that in 5.2 and 5.3 and followed the general pattern 

described in 4. 2. 

The computers on which the children were tested were usually kept in a corner of the 

classroom. The task required each child to come over to the computer and do the 

arithmetic problems for about 15-20 minutes. All participants were supervised while 

doing the task. 

The participant would see his/her name as a button on the screen and clicked on it. 

He/she was then presented with the set of problems generated in a random order. The 

problem appeared on the screen along with a "got it" button. The participant was 

instructed to click on "got it" when he/she had come up with the answer. The 

participant then saw a screen with a small number pad (numbered 0-9), an "OK" 
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button and a "reset" button. The original problem disappeared from the screen but it 

would be brought back by clicking on "reset" if it was forgotten, "reset" could also be 

used if the answer entered was incorrect. 

The participant selected the answer from the number pad by clicking on the number 

buttons and, when satisfied with the answer, clicked on "OK". The time taken to solve 

the problem would then flash on the screen e.g. "correct answer in 4 seconds" or if the 

answer was incorrect the word "oops! ". This was incorporated into the program to 

provide the child with instant feedback on progress plus added incentive to do better. 

Errors were dealt with as described in Section 5.1.2.3. That is, the program recorded 

errors and presented that sum a second time at a random point within the remaining 

sequence. The time recorded for that case would be the sum of the two response times 

thus giving a longer time. Errors were thus incorporated in the analysis of the results. 

For this reason i. e. to deal with the outlying RTs, the logarithms of the RTs were 

calculated for each sum and these were analysed. Error rates for all sums can be found 

in Appendix 2: Table 3. 

6. 3 Results 

The following results all involve graphs describing either absolute solution times, or 

the difference in RT between a decade problem and its corresponding single-digit 

problem. This latter will be referred to as the solution overhead. All graphs plot the 

median RT or median RT overhead. The issue of sum format was included as a 

variable in all the analyses, but it did not have a significant effect on response times 

for any sums in this study. The means and standard deviations can be found in 

Appendix 3. Where post hoc tests are described, the results are based on the Tukey 

HSD post hoc analysis. 
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6. 3. 1 Results for sums in Problem Type A (computing a small addend) 

Figure 6.1 is a summary of the results for the single-digit sums 5 +n. 

Single-digit sums (S+n) 

800 
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~ 
300 h, 

200 ""'"':~ yr 5 .. 100 
a 0 

5+1 5+2 5+3 5+4 

sum 

Figure 6.1 Solution times for the single-digit addition problems 5 +n. 

6. 3. 1. 1 Analysis (5 + n) 

An AN OVA on these results showed that there was a significant overall effect of 

year, F (2, 83) = 19.72, p < 0.05. There was no effect of format, F (1, 83) = 0.09, and 

there was no interaction between year and format, F (2, 83) = 2.60. As the graph 

illustrates, the younger children are taking significantly more time when doing even 

simple sums and this shows a developmental trend that would be expected. There was 

a significant main effect of addend size, F (3,81) = 23.24, p < 0.05. This confirms that 

as the addend is getting bigger the RT is increasing. This suggests that children are 

using some form of incremental counting process for these sums. There was no 

significant interaction between addend size and year, F (6, 164) = 2.06. The results for 

these single-digit sums suggest that the pace of counting increases with age. There 

was no interaction between addend size and format, F (3, 81) = 0.17. There was no 

significant interaction between addend size, year and format, F (6, 164) = 0.85. 
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Post hoc tests carried out on the results found that there was a significant difference 

between the RTs for year 3 and year 4, p < 0.05. There was a significant difference 

between the RTs for year 3 and year 5, p < 0.05. There was also a significant 

difference between the RTs for year 4 and year 5, p < 0.05. 

Figure 6.2 is a summary of the results for the decade sums 45 +n. 

Decade sums (45+n) 
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Figure 6.2 Solution times for the decade addition problems 45+n. 

6. 3. 1. 2 Analysis (45+n) 

An AN OVA on the results showed that there was a significant overall effect of year, F 

(2, 83) = 13.34, p < 0.05. There was no significant effect of format, F (1, 83) = 0.18, 

and there was no interaction between year and format, F (2, 83) = 0.01. It is taking the 

younger children significantly longer to solve these sums. The incremental increase in 

RT suggests that children are primarily using some form of counting (see Figure 6.2 

above). There was a significant main effect of addend size, F (3, 81) = 20.41, p < 
0.05. There was a significant interaction between addend size and year, F (6, 164) = 

2.38, p < 0.05. Once again, this suggests that the mode of solution varies with age. 

There was no interaction between addend size and format, F (3, 81) = 0.61. There was 

no interaction between addend size, year and format, F (6, 164) = 0.57. 
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Post hoc tests carried out on the results found that there was a significant difference 

between the RTs for year 3 and year 4, p < 0.05 and between the RTs for year 3 and 

year 5, p < 0.05. There was no significant difference between the RTs for year 4 and 

year 5. 

In order to judge whether decomposition plus counting is occurring, it is necessary to 

examine the overhead associated with the decade additions. If it is constant then 

decomposition might be assumed. This is better illustrated by the following set of 

results. 

Figure 6.3 is a summary of results for the RT difference between 45 +nand 5 +n. 

Decade addition 
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Figure 6.3 Solution overhead associated with the decade sums versus corresponding 

single-digit sums. 

6. 3. 1. 3 Analysis (RT 45+n- RT S+n) 

For each participant, the results analysed were the differences in RT i.e. the RT for the 

single-digit sum in Figure 6.1 was subtracted from the RT for the decade sum in 

Figure 6.2 to give the "extra-time" or "decade overhead" as shown below in Figure 
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6.3. The AN OVA on the results found no significant overall effect of year, F (2, 83) = 

0.68. There was no significant effect of presentation fonnat, F (1,83) = 0.05, p = 

0.812. There was a significant interaction between year and fonnat, F (2, 83) = 3.12, p 

< 0.05. There was no significant effect of sum, F (3, 81) = 0.64 and there was no 

significant interaction between sum and year, F (6, 164) = 0.70. There was no 

significant interaction between sum and fonnat, F (3, 81) = 0.17. There was no 

interaction between sum, year and fonnat, F (6, 164) = 0.44. 

These results show a slight cognitive load (about 30 csec) that is the effect of doing a 

decade problem and that this is constant (see Figure 6.3). The results suggest that 

decomposition and unit counting may be occurring. So, with simple decade sums the 

decade factor adds a constant computational overhead, i.e. it slows down RTs. Since 

this is small and constant the decade context does not contribute too much of an extra 

burden on mental computation. 

Post hoc tests carried out on the results found that there was no significant difference 

between the mean RTs for the three year groups. 

One of the aims of this study was to investigate what sorts of decade problems trigger 

decomposition and what sorts of decade problems trigger counting. The reason for not 

finding a constant overhead would be that counting on the 45 +n sums must have a 

steeper RT function because of the slower counting pace in the decades. Figure 6.4 is 

a graph showing a prediction of what might be expected when the extra time to 

vocalise "40" is assumed to be a constant of one second, Figures 6.5, 6.6 and 6.7 show 

the actual results for the children in each year group. 
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Figure 6.4 illustrates a theoretical predicted comparison for the effect of adding a 

constant. 

RT (adding a constant) 

-+-45+n 

--s+n 

(+1) (+2) (+3) (+4) 

sum 

Figure 6.4 Predicted effect of adding a constant. 

This is further illustrated by the graphs below showing the actual results. If children 

were using the counting-on strategy then the RT would be expected to increase as the 

sums became larger. The difference between the single-digit and the decade sum 

would be expected to become larger as the numbers being added became larger 

because of the time involved in each word being counted and this seems best 

illustrated by the actual data in Figure 6.5. The results shown in Figure 6.5 are the 

most similar to the theoretical comparison, suggesting that younger children, at least, 

may still be counting out the number words. However if children were using 

decomposition-based strategies then the RT for the decade sum and the single-digit 

sum should appear more constant as actually illustrated by Figure 6.6 and Figure 6.7. 

In the results from children in years 4 and 5, the RTs are fairly flat. 
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Figure 6.5 illustrates the effect of adding a constant for children in Year 3. 
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Figure 6.5 The effect of adding a constant for children in Year 3. 

Figure 6.6 illustrates the effect of adding a constant for the children in Year 4. 

RT for Yr4 

800 
700 
600 

'U' 500 
"' r::::::: I -+--45+n 
~ 400 
~ 

300 ::::=== --5+n 
~ 200 

lOO 
0 

(+1) (+2) (+3) (+4) 

swn 

Figure 6.6 The effect of adding a constant for children in Year 4. 
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Figure 6.7 illustrates the effect of adding a constant for the children in Year 5. 

RT forYr5 

800 
700 
600 

]' 500 --45+n 
~ 400 ~ 
~ 

300 a: --s+n 
200 
100 

0 
(+1) (+2) (+3) (+4) 

sum 

Figure 6. 7 The effect of adding a constant for children in Year 5. 

Figures 6.5, 6.6 and 6.7 illustrate that if children are using decomposition-based 

strategies then they are more likely to be children in the older age groups. Figures 6.5 

and 6.6 show that the difference between the decade and the single-digit sum is 

relatively constant and this suggests that perhaps decomposition is only available to 

the older children. It also explains why there was no significant difference between 

the overhead for the decade sums. 

These results suggest that it may be that decade sums with smaller addends are more 

likely to be solved through the use of decomposition (plus counting) as opposed to 

just decade counting. This could be because, with smaller addends, children across all 

year groups would be more confident of getting an accurate answer and, as pointed 

out earlier, accuracy is important to them. So, adding a small addend in a decade 

context might prompt decomposition whereas a large addend in a decade sum would 

make the problem seem too complex, in which case having to take the extra step 

required for decomposition would only make the problem more difficult. Thus, size of 

the addends might prompt decomposition. What other sums would also encourage 

decomposition? Would decade sums involving a tie-sum also encourage 
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decomposition strategies? The following section looked at the results for decade sums 

(Problem Type B) that included a tie-sum number-fact. 

6. 3. 2 Results for Problem Type B (decade sums incorporating a tie-sum) 

Figure 6.8 is a summary of the results comparing RTs for decade sums incorporating 

a tie-sum with RTs for single-digit tie-sums. 

Decades involving tie-sums 
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Figure 6.8 Solution times for decade problems with a tie-sum. 

These results imply that children do seem to be decomposing and using tie-sum 

number-fact knowledge. The results illustrate that doing a decade sum that includes a 

tie-sum is fairly easy for most children when the answer does not cross the decade 

boundary. The difference between the decade sum and its single-digit counterpart is 

. constant for all but the youngest children. Although the effect of doing the decade 

sum takes a little longer for the youngest children this difference is not great. 

However, when the decade sum has an answer that crosses the decade boundary this 

time difference increases and it takes children across all age groups significantly 

longer to solve. The results below show that there is a significantly larger overhead 

for decade tie-sums that cross the decade boundary. 
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Figure 6.9 is a summary of results for decade tie-sums. 

Effect of tie-sums 
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Figure 6.9 Solution overheads for tie-sum problems in a decade context. 

These results suggested that there was a difference between the extra time taken to do 

a tie-sum that stays within the 20s decade boundary and one that crosses the decade 

boundary. Children are not therefore importing their single-digit tie-sum solutions 

wholesale into the decade context. 

6. 3. 2. 1 Analysis (RT difference for decades with tie-sums) 

An ANOV A carried out on the results in Figure 6.9 showed that there was no overall 

effect of year, F (2,83) = 2.94. There was no effect of format, F (1,83) = 2.94. There 

was no interaction between format and year, F (2,83) = 1.18. There was no interaction 

between problem type and format, F (1, 83) = 0.002, and there was no interaction 

between problem type, format and year, F (2, 83) = 2.54. There was a significant main 

effect of problem, F (1,83) = 52.83, p < 0.05. There was no interaction between 

problem type and year, F (2,83) = 0.632. The results show that, for all year groups, 

the overhead is significantly greater for 26+6 problems compared to 23+3 problems. 

These results suggest that when solving a tie-sum that crosses the decade boundary, 

children of all ages recognise the number fact 6 + 6 and attempt to use this tie

knowledge. Once they have done the tie-sum (6+6), they have problems when having 
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to do the next stage of the problem (20+ 12) which leads them into the next decade 

(32). It is this recomposing aspect that they then find difficult as earlier results 

showed (5.2) crossing the decade boundary leads to significantly longer RTs for 

children of ail age groups. If it was just crossing the boundary that was difficult then 

other sum that crossed the decade boundary (e.g. 34+7 and 37 +4) should result in 

similarly long RTs but this was not the case (as illustrated in Figure 6.10 below). 

Post hoc tests carried out on the results found that there was no significant difference 

between the mean RTs for the three year groups. 

Figure 6.10 compares the RTs for decade tie-sum and sums that cross the decade 

boundary. 

Effect of tie-sums 
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Figure 6.10 Solution times for decades involving tie-sums compared to decades that 

cross the decade boundary but do not involve a number-fact. 

Figure 6.10 above suggests that 26+6 is being done differently to other sums that 

cross the decade boundary. One of the reasons that 26+6 had a significantly larger 

overhead than 23+3 could have been that it's answer crossing the decade boundary 

and thus was not being seen as a problem involving a tie-sum but as a +6 problem 

instead. However, the results shown above suggest that crossing the decade boundary 
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was not the issue. The results illustrated above suggest that while children seem to be 

counting for the 34+7 and 37+4 problems, they are doing 26+6 differently. 

This suggests that it is taking children across all year groups much longer to do 26 + 6 

compared to 34+7 or 37 +4, both of which cross the decade boundary and are therefore 

relatively difficult sums. There is no particular reason for this unless the children are 

using similar decomposition and/or counting strategy for 34 + 7 and 37 +4 (as my other 

results suggest they are). However, although they are recognising the tie in 26+6 and 

trying to use it and are finding the next stage of recomposing the sum (adding 20) 

more difficult. For the younger children there seems to be more of a disadvantage in 

doing this since most of the children in the younger year groups may not yet know 

6+6 as a fact. These results seem to suggest that although some of them may not yet 

actually know 6 + 6 they are still trying to use it. But it would seem that in decade 

sums involving a tie-sum that also cross the decade boundary i.e. involve a carry 

function, the cost of doing decomposition is having to do the recomposing and this is 

reflected in their RTs. Therefore, it would seem that decomposition, when it is first 

attempted, makes things more difficult for children i. e being strategic can have its 

price. 
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Figure 6.11 compares the RTs for decade sums with similar sums that cross the 

decade boundary. 
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Figure 6.11 Solution times for decade sums involving a tie-sum compared with 

decade sums involving an adjacent to tie-sum. 

Although the data for the single-digit problem 5 + 6 was not available in order to 

calculate the extra time, the RT for 25 +6 compared to 26+6 suggests that for the older 

children 26+6 does seem to take less time than 25+6. This might suggest that children 

may be recognising 26+6 as incorporating a number fact, but then having to deal with 

the decade factor may make the problem more difficult compared to simply using 

counting for 25+6. For the younger children, though, the presence of a tie-sum may 

make this problem easier than 25 +6 but then their overall RTs are higher for all sums 

suggesting that they are likely to be relying on counting for all sums. 

In summary, the results in Figure 6.9 showed that the overhead difference was not 

constant for the decade tie-sums that crossed the decade boundary. If both 23 + 3 and 

26+6 were being solved by decomposition then the RT overhead for both these sums 

would have been constant. But because this did not appear to be the case here, it could 

be suggested that children were not decomposing on these sums. However, the results 
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in Figure 6.11 suggest that children did not seem to be counting either, so perhaps this 

reflects the transitional nature of the tie number-fact i.e. that it is being recognised as 

a potentially salient number fact but one that has not yet become an actual number

fact. 

6. 3. 3 Results for Problem Type C (sums in Groups 1 & 2) 

Figure 6.12 is a summary of results for the RTs for single-digit sums in Problem Type 

c. 
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Figure 6.12 Solution times for the single-digit sums only for each year group. 

6. 3. 3. 1 Analysis (singlecdigit sums in Problem Type C) 

An AN OVA on the results for 7 +4 and 4+ 7 found there was an overall effect of year 

· on RT, F (2, 83) = 7.64, p < 0.05, illustrating that younger children take longer to do 

these single-digit sums. There was no effect of format, F (1, 83) = 0.02. There was no 

interaction between year and format, F (2, 83) = 0.25. There was no significant 

difference between the RT for 7+4 and 4+7, F (1, 83) = 2.81. There was no interaction 

between sum and year, F (2, 83) = 0.25, suggesting that year did not have a significant 

effect on RT for 7+4 and 4+7. There was no interaction between sum and format, F 
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(1, 83) == 0.29. There was no interaction between sum, year and format, F (2, 83) == 

0.50. Post hoc tests on results found that there was no significant difference between 

the RTs for year 3 and year 4. There was a significant difference between solution 

times for year 3 and year 5, p < 0.05. There was no significant difference between 

RTs for year 4 and year 5. 

An AN OVA on the results for 6 + 3 and 3 +6 found that there was an overall effect of 

year on RT, F (2, 83) = 12.43, p < 0.05, illustrating that younger children take longer 

to do these single-digit sums. There was no effect offormat, F (1, 83) == 0.27. There 

was no interaction between year and format, F (2, 83) == 0.44. There was no 

significant difference between the RT for 6+3 and 3+6, F (1, 83) = 3.46. There was no 

interaction between sum and year, F (2, 83) = 0.61, suggesting that year did not have 

a significant effect on RT for 6 + 3 and 3 +6. There was no interaction between sum and 

format, F (1, 83) = 0.83. There was no interaction between sum, year and format, F (2, 

83) == 0.81. Post hoc tests on the results found that there was a significant difference 

between RTs for year 3 and year 4, p < 0.05 and there was also a significant 

difference between the RTs for year 3 and year 5, p < 0.05. There was no significant 

difference between the RT for year 4 and year 5. 

These results showed that there was no significant difference between the RT for the 

7 +4 and 4+7 and 6+3 and 3+6, suggesting that children across all year groups were 

recognising the commutative property of addition. 
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Figure 6.13 is a summary of results for RTs for decade sums in Problem Type C. 
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Figure 6.13 Solution times for the decade sums only for each year group. 

6. 3. 3. 2 Analysis (decade sums in Problem Type C) 

An AN OVA on the results for the sums 34+ 7 and 37 +4 found that there was an 

overall effect of year, F(2, 83) = 16.19, p < 0.05, suggesting that younger children 

take longer to do these decade sums. There was no effect of format, F (1, 83) = 1.25). 

There was no interaction between year and format, F (2, 83) = 0.52. There was a 

significant difference between the RT for 34+7 and 37+4, F (1, 83) = 20.87, p < 0.05, 

suggesting that it is taking children across all years longer to do 34 + 7. There was no 

interaction between sum and year, F (2, 83) = 0.47. There was no interaction between 

sum and format, F (1, 83) = 1.14. There was no interaction between sum, year and 

format, F (2, 83) = 0.60. Post hoc tests on the results found that there was a significant 

difference between the RTs for year 3 and year 4, p < 0.05 and between the RTs for 

·· year 3 and year 5, p < 0.05. There was no significant difference between the RTs for 

year 4 and year 5. 

An ANOVA on the results for the sums 33+6 and 36+3 found that there was an 

overall effect of year, F (2, 83) = 8.5, p < 0.05. There was no effect of format, F (1, 

83) = 0.001. There was no interaction between year and format, F (2, 83) = 0.68 There 
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was a significant difference between the RT for 33+6 and 36+3, F (1, 83) = 20.29, p < 
0.05. This suggests that children across all years are taking longer to do 33+6. There 

was no interaction between sum and year, F (2, 83) = 0.28. There was no interaction 

between sum and format, F (1, 83) = 1.7. There was no interaction between sum, year 

and format, F (2, 83) = 0.87. Post hoc tests on the results found that there was a 

significant difference between the RTs for year 3 and year 4, p < 0.05 and between the 

RTs for year 3 and year 5, p < 0.05. There was no significant difference between the 

RTs for year 4 and year 5. 

The results for the decade sums suggest that it is taking these children 

disproportionately longer to do decade sums where the smaller number comes first. 

This implies that when they see these sums in a decade context, the commutative 

property of addition is less visible to them and they resort to counting. The results for 

the 45 +n problems illustrated in Figure 6.3 suggested that children might be using 

decomposition on decade sums involving a relatively small addend such as "+4". The 

results shown in Figure 6.4 do seem to suggest that adding the smaller number (3 or 

4) takes less time than adding a larger number. Sums where the answer crosses the 

decade (34+7 and 37+4) seem to be more difficult for the younger children suggesting 

that they are most likely to be using fairly mechanical incremental counting for both 

types of decade sum since their RT increases according to the size of the addend. The 

reason for the increase in RT for the older children when doing the sums with the 

larger addend may be due to them still relying on counting for the single-digit units 

sum (3 + 6 and 4 + 7) and then adding on the decade. 

The following results look at RT overhead, i. e. the difference between the decade 

. sums and the corresponding single-digit sum. 

189 



Figure 6.14 is a summary of results looking at the effect of sums with answers 

crossing the decade boundary. 
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Figure 6.14 Solution overheads for the sums in Group1 where the answer crosses the 

decade boundary. 

6. 3. 3. 3 Analysis (decade sums in Group 1) 

An ANOVA on the results shown in Figure 6.14 found that there was no overall effect 

of year on the RT overhead, F (2, 83) = 1.81, suggesting that children across all year 

groups had similar RT overheads. There was no effect of format F (1, 83) = 0.94. 

There was no interaction between year and format, F (2, 83) = 0.01. There was no 

significant difference between the RT overheads for these two types of sums, F (1, 83) 

= 2.61, suggesting that the size of the second addend did not have a significant effect 

on the RT overhead. There was no interaction between sum and year, F (2, 83) = 0.69. 

There was no interaction between sum and format, F (1, 83) = 1.23. There was no 

interaction between sum, year and format, F (2, 83) = 0.31. Post hoc tests on the 

results found that there was no significant difference between the RTs for any of the 

three year groups. 
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The graph above (Figure 6.14) shows that it's taking longer for children (the overhead 

is greater) across all age groups to do sums where the smaller number appears first, 

when the addition problems cross the decade boundary. It could be that this is the case 

because children are counting incrementally for both types of sums in which case the 

size of the addend is what would affect RT. But it could also be that they are doing 

decomposition when the addend is smaller ( +4) because that is just about manageable 

but for the larger addend ( +7) it's seen as too complicated. So when doing + 7 most 

children would just be counting on from 34 but when doing +4 they might attempt to 

use a more sophisticated strategy. It is taking the youngest year group much longer to 

do both types of sums suggesting that most of the younger children probably are using 

a counting strategy for both types of problems and even if they were attempting 

decomposition they could be struggling with it. But because both older age groups 

seem to have similar times for the sums with the smaller addend, it might mean that 

decomposition is a solution procedure that is only available to them when they are 

faced with a sum where it is not seen as somehow "adding" to the mental effort 

required to do the sum. 

Figure 6.15 is a summary of results looking at the effect of sums with answers that do 

not cross the decade boundary. 
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Figure 6.15 Solution overheads for the sums in Group 2 where the answer does not 

cross the decade boundary. 
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6. 3. 3. 4 Analysis (decade sums in Group 2) 

An AN OVA on the results shown in Figure 6.15 found that there was no overall effect 

of year on the RT overhead, F (2, 83) = 0.61, suggesting that the overhead was similar 

for children from all year groups. There was no effect of format, F (1, 83) = 0.61. 

There was no interaction between year and format, F (2, 83) = 0.42. There was a 

significant difference between the RT overheads for these two types of sums, F (1, 83) 

= 4.41, p < 0.05, suggesting that the overhead was greater for sums with the larger 

addends (6) and that sums with a smaller addend (3) had a smaller overhead. There 

was no interaction between sum and year, F (2, 83) = 0.53. There was no interaction 

between sum and format, F (1, 83) = 0.14. There was no interaction between sum, 

year and format, F (2, 83) = 0.14. Post hoc tests on the results found that there was no 

significant difference between the RTs for the three year groups. 

At first glance these results also suggest that children across all year groups are using 

counting strategies because it is taking them longer to do decade sums (where the 

answer does not cross the decade boundary) with the smaller addend. However, the 

RT difference is similar across all age groups for decade sums with a smaller addend 

( + 3). It is taking children across all ages less extra time to do sums with a smaller 

addend compared to sums with a larger addend ( +6). Thus suggesting that when doing 

33 +6 most children are likely to count on from 33 whereas when doing 36 + 3 they 

might use decomposition because it (6+3) involves adding a much smaller number 

( + 3). Because the answer for these decade sums does not cross the decade boundary 

(unlike 34+7 and 37 +4), this makes the sum easier for even the youngest children as 

illustrated by the smaller RT difference for 36 + 3 compared to the RT difference for 

34+7. 

This suggests that in both types of sums, those that cross the decade boundary(> 10) 

and those that do no cross the decade boundary ( < 10) what seems to affect RT is the 

digit order or the size of the addend. One way of looking at this was to collapse the 

two types of sums to look at digit order (addend size) only. This would enable a 
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comparison between sums with a large addend ( + 7 and +6) and sums with a smaller 

addend ( +4 and +3). 

Figure 6.16 illustrates the effect of sum-type on RT overhead. 
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Figure 6.16 Solution overheads illustrating the effect of sum type. 

Figure 6.17 illustrates the effect of addend size on RT overhead. 
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Figure 6.17 Solution overheads illustrating the effect of addend size (digit order). 
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6. 3. 3. 5 Analysis (decade sums in Groups 1 and 2) 

An ANOV A on the results (illustrated in Figure 6.16) showed that there was no 

overall effect of year, F (2, 83) = 1.13. There was no effect of presentation format, F 

(1, 83) = 0.03. There was no interaction between year and format, F (2, 83) = 0.12. 

There was a significant main effect of addend size as illustrated by Figure 6.17, F (1, 

83) = 18.70, p < 0.05. This suggests that the size of the addend did make a difference 

to the RT overhead. Decade sums with the smaller addend of 3 and 4 took 

significantly less extra time than decade sums with larger addends like 7 and 6 

suggesting that the single-digit solution procedure (min) is not being imported 

wholesale to the decade case. 

There was no interaction between addend size and year, F (2, 83) = 0.00. There was 

no interaction between addend size and format, F (1, 83) = 0.00. There was no 

interaction between addend size, year and format, F (2, 83) = 0.00. 

These results, along with the findings from the results in the 45 +n (Problem Type A) 

sums, suggest that perhaps it is smaller addends in decade sums are more likely to 

trigger decomposition. There was no significant effect of sum type as illustrated by 

Figure 6.16, F (1, 83) = 0.14. This would suggest that crossing the decade boundary 

did not have a significant effect on RT. However, there was a significant interaction 

between addend and sum type, F (1, 83) = 8.11, p < 0.05. This suggests that when 

doing decade sums, the RT will be affected whether or not the answer crosses the 

decade boundary depending on the size of the addends. This would make sense 

because if a child has to do a sum that crosses the decade boundary (has a carry 

function), then that is a difficult sum and addend size will have a important role in 

how that sum is solved, i.e. through the use of an efficient or inefficient strategy (see 

Figure 6.14). Furthermore, if a decade sum does not cross the decade boundary then it 

might be seen as an easy sum, but only if the addend is not too large (see Figure 6.15). 

There was no interaction between sum type and format, F (1, 83) = 0.44. There was 

no interaction between sum type and year, F (2, 83) = 0.16. There was no interaction 
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between sum type, year and format, F (2, 83) = 0.24. There was no interaction 

between addend size, sum type and year, F (2, 83) = 0.62. There was no interaction 

between addend size, sum type and format, F (1, 83) = 1.54. There was no interaction 

between addend size, sum type, year and format, F (2, 83) = 0.37. 

Post hoc tests carried out on the results found that there was no significant difference 

between the mean RTs for the three year groups. 

The findings so far seem to indicate that when doing decade sums, addition strategies 

can be prompted on sums with smaller addends and sums involving tie-sum number

facts. 

To conclude this section, it would seem that when doing decade sums, sums involving 

number-facts such as tie-sums, along with smaller sums and sums with smaller 

addends are more likely to prompt decomposition. While decomposition-based 

strategy did not seem to be available to all the children, it did seem that it was perhaps 

being used, or at least attempted, for smaller sums and sums involving a visible 

number-fact such as a tie-sum. 

6. 4 Discussion 

The decade sums chosen in this study were designed to look at how children might be 

importing the strategies they used when doing simple single-digit sums (such as 

counting, and using derived number-fact retrieval) into doing more complex decade 

sums. The only way that such existing strategies might be optimally used when doing 

such decade sums would be if the children were to recognise and use decomposition 

based strategies. In order to do this I needed to consider what kinds of sums might 

encourage children to use more efficient strategies such as decomposition. 

Three types of decade sums, along with their single-digit counterparts, were chosen, 

(see Table 6.2): 
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1) Problems designed to look at solution procedures for simpler decade problems 

with smaller addends such as 45+n (Problem type A). 

2) Problems designed to look at decomposition and the use of number-fact 

knowledge such as tie-sums (Problem Type B). 

3) Problems designed to look at decomposition and the min counting strategy 

(Problem type C) where Group 1 problems (34+7 and 37+4) had answers that 

crossed the decade boundary and Group 2 problems (33+6 and 36+3) had answers 

that remained in the same decade i.e. sums with both large and small addends. 

The results illustrated by Figure 6.1, 6.2 and 6.3 showed that although the decade 

added a constant overhead, doing a decade sum itself was not problematic. These 

results showed a problem-size effect i.e. the RT increased as the size of the smaller 

digit increased and this was greater for the younger children. The results show an 

expected developmental effect for both single-digit and 45 + n decade addition 

problems (Figure 6.1 and 6.2). This problem size effect suggested that most children 

across all year groups are using counting strategies for these sums. However, the RT 

overhead later suggested that perhaps for the sum 45 +4 older children were using a 

decomposition strategy because the extra time taken for this sum was not as high as 

expected. It may have been that a sum like 45 +4 is just about small enough for 

children to solve through decomposition, i.e. 5 +4 = 9+40 = 49. Figure 6.3 shows that 

adding the decade shows a slight overall increase in the RT overhead which would be 

expected when children do larger decade sums. However, this is not significant, 

suggesting that simply doing a decade sum does not make decade sums much harder, 

i.e. doing smaller decade sums does not place too much demand on mental 

computational resources. It is when the problems become slightly more complex that 

this changes. 

The findings from the sums in Problem type B showed that children were making an 

attempt at being strategic by trying to use their existing number-fact knowledge of tie

sums. Where the tie-sum involved was small (such as 3+3) the RT overhead was 

fairly short suggesting that, for even the youngest children, this number-fact 

knowledge was being used and they were using decomposition, i.e. recognising that 
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23+3 was 20+6. The larger tie-sum 6+6 which crossed the decade boundary posed 

more of a problem because it took significantly more extra time to solve compared to 

23 + 3. Not only that, but it also took much longer to solve than the other sums that 

crossed the decade boundary (34+7 and 37+4). This suggested that perhaps for this 

sum the presence of the tie-sum did encourage decomposition but having done the tie

sum most children then had difficulty with adding 20 because this involved a carry 

function. A greater overhead for 26+6 compared to 34+7 and 37 +4 suggests that this 

is being solved differently. They seemed to be recognising tie-sums such as 6+6 long 

before they actually become "facts", i.e. were retrieved swiftly from memory. Thus, it 

seemed that children were trying to take advantage of tie-sums but this was not 

always successful since this could lead to problems with recomposing the sum. 

For the decade sums in Problem type C, the findings (as shown in Figure 6.12) 

demonstrated that the size of the addend does not have an effect on single-digit sums. 

It took children across all age groups about the same time to do 6+3 as 3+6 and 7 +4 

and 4 + 7. This suggested that these children were recognising the commutative 

property of addition. Although some children, especially those in Year 3, still seemed 

to be counting, these results suggested that these single-digit sums were not taking 

them too long to solve. From this it would follow that when they saw such sums in a 

decade context the addend order would not have a significant difference on RT, if 

children were using decomposition strategies. However, the results for the decade 

sums (Figure 6.13) showed that it was taking children longer to do those decade sums 

where the smaller digit appears first (or where the smaller addend was larger). For 

children in the youngest year group, this difference occurred for both types of decade 

problems where the answer crosses the decade boundary into the next decade (34 + 7 

and 37 +4) and where it stays in the same decade (33 +6 and 36+ 3). When the results 

were analysed, the extra time taken to do sums where the addend involved a larger 

number (such as 6 or 7) was significantly different from extra time taken to do sums 

where addend was smaller (such as 4 or 3) suggesting that perhaps some children are 

making use of their knowledge of decomposition. 
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The significant effect of the addend size seemed to suggest that most children were 

using counting strategies. This was because a counting strategy would mean that it 

takes longer to count on 7 or 6 digits compared to 3 or 4 and this is what the results 

showed (Figure 6.13). However, it may also mean that some children were using 

decomposition on sums with smaller addends such as 3 or 4. This suggests that in 

both types of decade problem when a larger addend is involved most children resort to 

using counting strategies, rather than slightly more sophisticated decomposition 

strategies which would involve breaking down the problem and recognising concepts 

additive composition and commutativity and manipulating this knowledge efficiently 

to their advantage. 

Therefore, the types of decade sums that would be most likely to prompt sophisticated 

decomposition strategies, or at least partial decomposition, would be less complex 

decade sums with smaller answers, decade sums with smaller addends and decade 

sums that included visible number-facts such as tie-sums. Further research would be 

needed to ascertain whether it is just the presence of a smaller addend that makes 

decomposition a viable strategy maybe because a smaller addend means more 

confidence in addition skill and more confidence in getting an accurate result. 

Certainly, children would have to be fairly confident in their ability to use 

decomposition before they would go to use it with larger sums where they would see 

themselves as more likely to make a mistake and thus resorting to reliable counting 

strategies which may not be efficient in the longer term. The problems in this study 

only considered two types of sums that involved a carry function where the answer 

crossed the decade boundary. Would crossing the decade boundary really be such an 

important factor (as it seemed to have been in this study) in determining whether or 

not decomposition would get used or at least attempted? 

These results do seem to support findings of existing research that actual use of 

decomposition is uncommon (Renton, 1992, Cowan, 1999; and Cowan and Renton, 

1996). It is likely that children may recognise concepts of additive composition, 

associativity and commutativity but not make effective use of them. When faced with 

difficult problems (in this case those involving decades), most children resort to 
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counting strategies which they know from prior experience will give them an accurate 

answer. This would apply not only to those children who have good arithmetic 

knowledge and those in older age groups but also to those who are "perfectionists" 

and will rely on reliable counting strategies than novel ones that may lead to errors 

(Siegler, 1988). So, although children were relying on counting strategies, they may 

have been doing so because counting strategies were more likely than others to give 

them an accurate answer and casual observation suggested that this seemed quite 

important to many children including those with good mental arithmetic knowledge. 

The results of this experiment show that the development in mental addition does 

depend on a blend of counting strategies and number fact knowledge, with most 

children relying primarily on counting strategies to solve addition problems that are 

slightly more complex than single-digit addition. For example, Figure 6.11 shows that 

doing a decade sum which involves a tie-sum (26+6) takes longer than sums such as 

34+ 7 or 37 +4 even though the latter are of a greater magnitude and appear to require 

slightly more complex processing. As Wolters et a! (1990) suggested, arithmetic 

problems, and procedures that require more solution steps will result in a larger 

memory load which will result in longer solution times because each serially 

performed step takes time. So, although problems such as 37 +4 and 34+ 7 are more 

complex, these results suggest that these are being solved through fairly mechanical 

counting strategies unless they involve smaller addends possibly because smaller 

addends are more easily solved by mental counting. 

However, it is possible that when the children are faced with a problem such as 26 + 6 

they recognise that this involves a tie-sum. Since results have shown that tie-sums 

have shorter RTs than other sums of a similar magnitude and are thus more salient as 

number facts they then attempt to use this knowledge. But once having done the tie

sum 6+6 they are then faced with having to add the decade 20 and this is when the 

sum crosses into the next decade 32 and becomes more difficult. Earlier results 

described in 5.2 showed that crossing the decade boundary made sums more difficult 

for children across all ages but particularly more so for the youngest age groups. For 

younger children, matters are complicated by the additional problem that, for many of 
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them, 6+6, despite being recognised as something they "must" or "should" know 

"because it is easier", may not have yet become a number fact that is easily retrieved. 

So, attempting to be strategic may actually be slowing some of them down because in 

trying to be efficient they might actually end up increasing the number of steps in an 

addition sum and this puts too much demand on their mental computational resources. 

As pointed out by Widaman and Little (1992), in the two proposed models of the 

development of strategy choices (Ashcraft, 1983; Baroody, 1983) choices are based 

upon computational or procedural strategies and memory retrieval or declarative 

strategies. In Ashcraft's model, strategy choice in mental addition development 

evolved from the use of slow, procedural strategies such as counting to a more 

efficient strategy such as memory network retrieval, which was the preferred and 

dominant strategy from the middle elementary school years onwards. In Baroody's 

(1983) model, however, strategy choice in mental addition development is a move 

from slower procedural processes such as "min" to much faster and more principled 

procedural processes. While Baroody admitted that some addition facts (e.g. ties) may 

be stored in long-term memory, he believed that individuals manipulate rules (such 

the identity element, n+O = n), principles (such as commutativity, ties, and + 1), and 

heuristics (such as reorganisation, recasting n +9 as {[n + 10]-1}) in solving simple 

addition problems throughout development. According to Widaman and Little (1992), 

the underlying issue between both models is the degree to which procedural and/or 

declarative strategies underlie the changes occurring during the development of 

mental arithmetic skills. Whether mental addition development is characterised by a 

procedural or a declarative model at different ages, levels of schooling or transitional 

phases are an important empirical concern. 

Although Widaman and Little (1992) had suggested that presentation format might 

have an influence on RT on mental arithmetic, format did not have an effect on RT on 

any of the addition problems in this study. However, this may not necessarily mean 

that format will not have any effect on RT on decade addition in other contexts. 
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6. 5 Conclusion 

Overall, the results suggested that counting strategies were prevalent across all age 

groups when doing decade sums. It seemed that much performance at mental addition 

sums was based upon mental or finger counting across all age groups. However, the 

results also suggested that children might use decomposition strategies for certain 

types of decade problems, e.g. sums with smaller addends or problems that involved 

tie-sums. For simple decade problems, the decade problems were not much more 

difficult than the corresponding single-digit ones suggesting that these easier sums 

might be more likely to be solved through decomposition. However, when faced with 

more complex decade problems, children took longer to solve problems with larger 

addends. Therefore, children were not always strategically decomposing larger decade 

problems but were resorting to counting instead. Results also suggested that when 

faced with a decade problem involving a tie-sum that crossed the decade boundary, 

children of all ages seemed to recognise the tie number fact. However, this tended to 

slow them down. So, although children were trying to be strategic this seemed to be 

more of a hindrance than helpful. For some types of decade problems, children were 

being creative rather than mechanical in processing basic procedural knowledge. For 

some decade problems, it seemed that they were attempting to make use of 

decomposition-based strategies. For other types of decades, they were choosing to use 

strategies that they were familiar with, i.e. counting. 
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Chapter 7 

7. Selection Strategies on Three-digit Serial Addition 

7. 1 Introduction 

Chapter 6 looked at how children would use their existing knowledge of 

decomposition dependent strategies to solve certain types of decade sums. These were 

sums that were more complex than the commonly studied simple single-digit (a+b) 

type integer addition. In particular, I considered sums that involved a decade in the 

ab+c format. Although children in this study seemed to be relying extensively on 

mental or finger counting, the results suggested that children were able to use 

decomposition strategies for certain kinds of decade problems. These included sums 

with smaller addends or problems that involved tie-sums. These results showed that 

while children may be generally reluctant to carry forward their existing knowledge, 

certain ~onditions do encourage them to be strategic. One of the reasons for looking at 

solution strategies for decade sums was the everyday authenticity of these problems. 

When adding strings or sequences of single-integer digits, the working totals soon get 

larger and more complex. 

The aim in this chapter was to look at serial addition itself as a further variety of 

addition complexity. Although this would involve considering serial addition sums of 

a manageable length (involving 3 digits); that is, before they started adding up to 

higher numbers and while the sequence to navigate remained short. In this chapter, 

the introduction will begin by considering how patterns that emerged from my earlier 

research led to the questions raised in the present chapter, as well as resulting in the 

particular research design used for the current study. I will then go on to discuss the 

... results from this study. 
') 

This chapter gives special consideration to the selection strategies children might use 

when they were required to do serial addition, and explores whether they would they 

still exploit their existing strategic knowledge of mental addition. That is, my previous 

research suggested that children had some capability for recruiting their existing 
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knowledge of number-facts (such as tie-sums) and, to a much lesser extent, their 

knowledge of counting strategies (such as the min strategy) into a decade context. 

Would they be capable of using their number-fact knowledge and the min strategy in 

a serial addition context? There is a distinct lack of research in this area of serial 

addition (i. e. addition involving more than two pairs of numbers). Some research was 

done by Widaman et a! (1989) in a preliminary attempt to theorise what occurs while 

solving three-digit sums. However, this research was carried out on an adult sample, 

and would not, therefore, be adequate for explaining children's strategies for such 

sums. The aim of this chapter is to look specifically at whether or not children would 

select strategically, in a certain order, combinations of addends when required to do 

three-digit serial addition. To achieve this would involve me utilising a serial addition 

task in which children were willing to reorder the addends to take advantage of this 

possibility. Would young children be prepared to do this? 

Existing research has suggested that some number facts are easier (have faster 

solution times and more accurate responses) than other problems with numbers of a 

similar magnitude. These include number facts such as sum to 10 (Aiken and 

Williams, 1973; Ashcraft, 1982; Krueger and Hallford, 1984), although this was not 

replicated in my own findings - and problems with a repeated number i. e. tie-sums 

such as 3+3 or multiplication ties such as 8x8 (Campbe!l and Graham, 1985; Miller et 

a!, 1984). Campbell and Oliphant (1992) reported that they had found 10 to be a 

relatively low-frequency error response in single-digit addition. The research reported 

earlier in 5. 1 supported the claim that tie-sums are more salient for becoming 

number-facts than other number combinations. This was further supported by the 

findings in Chapter 6 which suggested that tie-sums remain potent number facts even 

- in a decade context and even if attempting to make use of the tie-sum slows down the 

solution process. 

This raises the question of what would happen to children's existing number-fact 

knowledge when they were required to add more than two digits: could it be 

strategically mobilised? The results in my previous studies around decade problems 

had demonstrated that children were capable of being strategic, albeit to a rather more 
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limited extent. What would they do if they were required to do sums that involved 

adding more than two single-digit numbers (i. e. the simplest type of serial addition 

involving three digits)? Would they transform these sums to take best advantage of 

their existing addition expertise? 

Preliminary research in Section 5. 2 showed that three-digit mental addition added a 

considerable memory load and was quite challenging for children especially those in 

the younger age groups. This was reflected in much longer RTs on these types of 

sums. So, solving such problems strategically could make them much speedier to 

complete and this would be in the children's best interest. Three-digit mental addition 

would be an ideal format to examine this, because it was difficult enough to pose a 

challenge and simple enough to be solved mentally without being too stressful. To 

contextualise the present study, I will review these earlier findings in a little more 

detail. 

7. 1. 1 Background Research 

The research reported in Section 5. 2 was an early attempt to investigate children's 

strategic use of number-fact and reordering knowledge when doing three-digit mental 

addition. In that study children received three digit addition problems which 

incorporated number-facts such as tie-sums (e. g. 4+4) and sum to ten number-facts 

(e. g. 7 + 3). They also received sums that were designed to look at the position of the 

largest addend (9+a+b). The aim of that study was to find out whether or not there 

would be a shorter solution time for the sums in which the number-fact (or the 

position of the largest addend in the 9+a+b sums) was made more prominent. That is, 

a sum like 4+4+n should have a shorter RT than a sum like 4+n+4. Similarly a sum 

like 7+3+n and 9+1 +n should also have shorter RTs than sums like 7+n+3 and 9+n+ 1. 

For the larger number reordering problems, sums where the larger addend appeared 

first such as 9+a+b should have similar solution times for a+b+9 and a+9+b. This 

would suggest that children were reordering the addends and were solving it 

strategically using min. If sums such as 9 +a+ b have significantly different solution 
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times this would suggest children were rather slavishly counting on from the first 

addend without reordering to use the min counting strategy. 

The results for the 9+a+b type sums (designed to look at the effect of reordering the 

largest addend first) showed that this type of sum generated comparable solution 

times, regardless of digit order. This suggested that children did not seem to be 

making use of their knowledge of the min counting strategy and reordering the 

numbers to put the largest number first. The min counting strategy implies that 

problems where the smaller addend is added to the larger addend should have lower 

RTs than problems where the larger addend is added to the smaller addend. 

Results also demonstrated that the three digit sums that included a prominent tie-sum 

number-fact (4+4+n) did have significantly shorter RTs than the three digit sums in 

which the tie-sum was less prominent (4+n+4) and this was across all age groups 

(Figures 5.17 and 5.18). This reinforced the salience of the tie-sum number facts. 

Sums with a prominent 9+ 1 number fact (9+ 1 +n) were also solved significantly faster 

than 9+n+1 (Figure 5.20). However, the problems in which the sum to 10 fact "7+3" 

was prominent did not have significantly shorter RTs than 7+n+3, although there did 

appear to be a trend towards shorter RTs for the 7 +3+n sums (Figure 5.19). 

Unfortunately, this case is hard to interpret definitively, as the similar RTs might 

mean a reordering of the "3" or it might reflect a "passive" counting in which the 

lO+n offers no advantage of an immediate non-counted solution. However, my 

previous findings in Sections 5 .1 and 5.1 suggest that reordering to use sum to 10 

number facts would be unlikely. 

This raises the question of why sum to 10 number-facts have failed to emerge as 

salient in my own research, especially since they are potentially more powerful than 

tie-sum number facts. Yet the latter seem to be more easily recognised and exploited. 

Tie-sums seem to emerge as number-facts in decade contexts as well as three-digit 

contexts and are also used by children to solve other related sums such as sums 

adjacent to tie-sums (Section 5. 2). Although the research reported in Section 5. 1 

suggested that children did not seem to respect sum to 10 as a known number-fact, the 
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three-digit serial addition used in Section 5. 2 was intended to have provided children 

with a suitably demanding context in which they would benefit from using this fact. If 

their reason for not taking advantage of the sum to 10 fact was due to a general 

reluctance to be strategic, then the serial addition scenario should have enticed them 

into doing so. Since research has shown that children are reluctant to make efficient 

use of their strategic knowledge unless they are confident enough to use it with ease, 

perhaps a serial addition context would have encouraged them to exploit their 

strategic knowledge. But children still seemed slow to use sum to 10 number-facts in 

a three-digit context. However, the RT based analysis is not straightforward -

although suggestive. These preliminary observations needed to be pursued further in 

order to obtain a more confident picture of what was actually happening. 

This was partly because of the possibility that the linear format in which the children 

were given the three digit sums was preventing them from being strategic. The pattern 

of results suggested that they were attempting to be strategic (i. e. they had slightly 

faster solution times for sums in which the "number-fact" was made obvious). Yet the 

findings from my previous study also suggested that it was difficult to look at 

strategic behaviour on three-digit mental addition without looking at the order in 

which the numbers were being added. Inferring strategy from RT may not be adequate 

- although it forms a useful part of any emerging picture about strategy development. 

Thus, the aim of this study was, first, to take into consideration the linear presentation 

of sums and the bias this may create towards not reordering and then to give children 

the freedom to impose their own order in selecting their addends. Secondly, my 

purpose was to find a way to explicitly observe their selection order, rather than 

simply infer it from the RT results. 

7. 1. 2 Aim of Present Research 

The study carried out in 5. 2 involved presenting children with problems written in a 

traditional horizontal format e. g. 7 +3+n, and analysing the solution times. However, 

it was possible that seeing problems presented in this way might actually have 
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discouraged some children from being strategic by exploiting the possibility of 

reordering moves. Instead of solving the problems in this way, some children could 

have added the numbers, slavishly respecting the order in which they appeared on the 

screen; particularly since existing research, as well as the research reported in Chapter 

6, suggests that children can be rather slow at using their strategic knowledge. Even 

when presented with an opportunity to be strategic, most children are likely to rely on 

less efficient methods (such as mental or finger counting) that they know will work in 

the sense of providing them with an accurate answer. Seeing the problems in a linear 

format would further inhibit their strategic responses because the order of the addends 

was more or less being imposed upon them. What was needed was a methodology 

that would undermine traditional ordering of the addends and measure the effects of 

allowing children control over which addends to select first, thus allowing them the 

strong opportunity to exploit any strategic knowledge they might possess. In the 

following study, children were presented with numbers arranged randomly on the 

screen without any " +" or " =" symbols. They were then asked to click on the numbers 

in the order in which they were adding them. This would enable me to find out the 

order in which the numbers were being added. 

Specifically, I would be able to fmd out which pairs of numbers they chose to add 

first i. e. which combinations of addends they perceived to be the easiest. Of course, 

they may make random choices or merely go for the closest addends to the mouse 

pointer. However, they could also be more strategic. They could choose the largest 

addend first, the largest pair of addends first, the addends that summed to 10 or tie

sum addends. If they were given control over which numbers to add, would they be 

systematic about the order in which they added those numbers? Would they be 

... strategic about the numbers they would select or would they select the addends in no 

specific order? For older children, more competent younger children, and adults the 

most efficient method of dealing with a task like this might be to select the numbers 

according to their proximity to each other on the screen, because if you are fairly 

competent at arithmetic then 6+7+5, for example, will not be sufficiently different 

from 7 +7+4 or even 7 +3+5 even when randomly positioned on the screen. So the 

order in which the numbers were added would not matter too much and would have 
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only a minimal effect on RT and accuracy. But this would not be the case for younger 

children who may be competent at some number-facts and resort to mental or finger 

counting on others. In the case of the linear, left to right arithmetic format (as used in 

5. 2) it would be done this way by children because they were being mechanically 

procedural while by adults because they were highly competent. So extrapolating 

from the physical proximity of the addends might be a factor affecting both very 

skilled. (adult) and very unskilled (younger children) individuals. 

In summary, the aim of this study was to discover the selection strategies used by the 

children when doing three digit mental addition. My previous research had shown that 

children were capable of using strategically their number fact knowledge (such as tie

sums) and their knowledge of the min reordering strategy. They were also able to 

make some use of their existing knowledge in a decade context. So, would they be 

able to make use of this knowledge in a serial addition context in which they could 

control which numbers to add first, and would this be evident from their selection of 

strategic number combinations? 

As the results from my earlier study in Section 5. 2 suggested, three-digit sums were 

quite difficult for the children i. e. their average time on a three-digit sum was 

substantially higher, so any strategy that they can use must be helpful to them. 

Three sorts of problems were chosen for the current study: problems inviting use of 

sum to 10 number facts such as 6+4 and 7 +3 (Group 1), problems involving tie-sum 

number-facts such as 7 + 7 and 3 + 3 (Group 2), problems involving a visible large 

number (Group 3). The problems in Group 1 and Group 2 were designed to look at 

children's selection strategies and would reflect their use of sum to 10 and tie-sum 

number-fact knowledge and the problems in Group 3 were designed to look at their 

use of the min reordering strategy. 
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7. 2 Method 

7. 2. 1 Participants 

A total of 135 participants were recruited from two schools (for more detail see 

Section 4. 4. 1 and 4. 4. 4). All the children were familiar with using a mouse and 

graphical computer interface. These are the numbers of children who took part in the 

study and completed all the sums. However, there were cases where a child's data for 

a particular sum or number combination was lost as a result of a computer error and 

would not therefore be available for analysis. In these cases the child's data for the 

rest of the sums he/she completed would still be included in the analysis for sets of 

sums he/ she completed. For certain sums the participant would be excluded from the 

analysis as a result of missing data for that particular set of sums. This explains the 

occasional inconsistency between this table of participants and those in the results 

section (7 .4.1). 

Table 7.1 

Year Number Male Femal e 

3 46 24 22 

4 49 30 19 

6 40 19 21 

Total 135 73 62 

7. 3. 2 Tasks 

The participants received combinations of numbers that fell into three categories and 

within each there were subsets of sums (Table 7. 2). In Group 1, two types of sum to 

10 (6+4, and 7+3) combinations were chosen because these were sum to 10 pairs in 

which the addends were relatively similar in magnitude (unlike 8 + 2) i. e. the small 

addend was large enough and was not a tie. This excluded 5 + 5 (tie-sum), 9 + 1 (adding 

"1 ") and 8+2. Children who selected the sum to 10 pairs first (e. g. 7 +3 +nor 3 +7 +n) 

would be seen as being strategic whereas those who chose the numbers in other orders 

(e. g. 7+n+3 or 3+n+7) would be seen as being less efficient with those who chose the 

209 



smallest number first and the largest number last would be using the least efficient 

strategy (3+n+7). The "n" values were chosen to be both smaller than the smallest 

sum-to-10 addend, and larger than the largest addend. 

In Group 2, two tie-sum combinations were chosen, one involving a large tie-sum 

(7+7) and one that involved a small tie sum (3+3). These sums were designed to 

investigate whether children would make use of their existing number-fact knowledge 

of tie-sums and sum to 10s. In these number combinations, children would be 

strategic if they chose the tie-sum first (e.g. 7 + 7 +n), less so if they chose the tie-sum 

last (n + 7 + 7) because this showed some recognition of the tie number-fact, and 

unstrategic if they were to select 7 + n + 7. Selecting the tie-sum first would suggest that 

they were recognising this as a number-fact and using this knowledge, while selecting 

the tie-sum addends last would suggest that although they were recognising the tie-

sum the were not being particularly strategic. 

The number combinations in Group 3 A involved adding an obviously large number 

(9) to two smaller ones, and were chosen to find out whether children would make use 

of their knowledge of the min strategy by reordering to choose the largest number 

first, followed by the two smaller ones. The number combinations in Group 3 B were 

chosen to look at children's selection strategies when there was a larger number (7) 

and "1" was being added, because this would shed light on the special "add one" case, 

i. e. would this "n + 1" case encourage children to select this first. Children would be 

classified as being strategic in their selection of numbers if they chose the largest 

number first followed by "1 ". 

The program was configured to deliver the following combination of numbers and the 

numbers within each problem were presented in a random order: 
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Table 7.2 Addend combinations as used in the program (sums in Group lA). 

Problem Descrip. of Problem Number Number of 

Type sum combns. possible 

solutions 

Group 1 A 7+3+n 7+3+n (n<3) 7+3 (+2) 7+3+2 

Sum to 10 3+7+2 

2+7+3 

2+3+7 

7+2+3 

3+2+7 

7+3+n (n>3) 7+3 (+4) 7+3+4 

3+7+4 

4+7+3 

4+3+7 

7+4+3 

3+4+7 

7+3+n (n>7) 7+3(+8) 7+3+8 

3+7+8 

8+7+3 

8+3+7 

7+8+3 

3+8+7 
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Table 7.3 Addend combinations as used in the program (sums in Group lB). 

Problem Descrip. Problem Number Number of 

Type Of sum combns possible 

solutions 

Group 1 B 6+4+n 6+4+n (n<4) 6+4 (+3) 6+4+3 

Sum to 10 4+6+3 

3+6+4 

3+4+6 

6+3+4 

4+3+6 

6+4+n (n>4) 6+4 (+5) 6+4+5 

4+6+5 

5+6+4 

5+4+6 

6+5+4 

4+5+6 

6+4+n (n>6) 6+4 (+7) 6+4+7 

4+6+7 

7+6+4 

7+4+6 

6+7+4 

4+7+6 
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Table 7.4 Addend combinations as used in the program (sums in Group 2). 

Problem Descrip. Problem Number Number of 

Type Of sum combns. possible 

solutions 

Group 2 A 3+3+n 3+3+n (n<3) 3+3 (+2) 3+3+2 

Tie-sum 3+2+3 

(small 2+3+3 

number 

tie) 3+3+n (n>3) 3+3 (+4) 3+3+4 

3+4+3 

4+3+3 

Group2 B 7+7+n 7+7+n (n<7) 7+7 (+6) 7+7+6 

Tie-sum 7+6+7 

(large 6+7+7 

number 

tie) 7+7+n (n>7) 7+7(+8) 7+7+8 

7+8+7 

8+7+7 
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Table 7.5 Addend combinations as used in the program (sums in Group 3). 

Problem Descrip. Problem Number Number of 

Type Of sum combns possible 

solutions 

Group3 A x+y+z 9+x+y 9+2+3 9+2+3 

Sum (x<9, y<9) 9+3+2 

involving a 2+9+3 

larger 3+9+2 

number 2+3+9 

3+2+9 

Group 3 B x+y+1 7+y+1 7+4+1 7+4+1 

Sum 4+7+1 

involving a 7+1+4 

larger 4+1+7 

number+ 1+4+7 

1+7+4 

Within these three groups the participants received the following six types of sums. 

1) three types of sum involving a sum to 10 (7 +3) 

2) three types of sum involving a sum to 10 (6+4) 

3) two types of sum involving a large tie-sum (7 + 7) 

4) two types of sum involving a small tie-sum (3+3) 

5) sums which involved adding a 1 and a larger number 

6) sums which involved adding a large number but did not involve adding "1" 

The participants, therefore, received a total of 12 problems that could be solved in a 

variety of ways. For each number combination there were six possible solution 

choices e. g. in Group 1 A, for the number combination 7 +3 ( +2) the actual solution 
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would be one out of 6 possible solutions. There were 3 categories of sums, and within 

each there were subsets of problems. Problems in Group! A (6+4) and Group 1 B 

(7 + 3) were problems that included a sum to 10 that was not a tie (5 + 5) or a " + 1" 

(9+ 1) and not a relatively easy sum tolO such as 8+2. Problems in Group 2 A 

involved a small-number tie-sum (3 + 3) and problems in Group 2 B involved a larger

number tie (7 + 7). Problems in Group 3 A were chosen to look at the use of the mm

strategy in a serial addition context where all the numbers were different, there were 

no sum to 10s, and the problem included a large number. The problems in Group 3 B 

had been chosen to look at the effect of including a " + 1" in a sum that involved a 

large number, where all the numbers were different, and there were no sum to 10s. 

7. 3. 3 Procedure 

The basic procedure followed the general pattern described in 4. 2. 

The computers on which the children were tested were usually kept in a corner of the 

classroom. The task required each child to come over to the computer and do the 

arithmetic problems for about 15-20 minutes. All participants were supervised while 

doing the task. 

The participant would see his/ her name as a button on the screen and clicked on it. 

He/ she was then presented with the set of problems generated in a random order. The 

problems would then appear on the screen in the form of randomly arranged numbers. 

The screen was ordered on an invisible 5x5 grid of number cells, providing the chance 

to see whether first choices were influenced by the distance from the starting mouse 

pointer position. No number had another number adjacent to it i. e. each number had a 

certain number of empty cells around it and it was this (i. e. the position of the 

number within the matrix) that was generated randomly. The position of the mouse 

would always be on a start/ finish bar at the bottom of the screen. There were no " +" 

or " = " signs on the screen. The participants were asked to add the numbers in any way 

they wanted using the method they found the easiest including finger counting. They 
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were asked to click on each number as they added it, or (if they did this very fast) in 

the order in which they added it. The participant was also asked to say the answer out 

loud once he/ she had finished adding each number. Once they had done this they 

would click on the start/ finish bar at the bottom of the screen that would take them to 

the next sum. Each participant was given a demonstration (followed by a practice trial 

of2+1+2 type sum) of the task that was required of them, to make certain that they 

knew what was expected of them. 

The aim was to have the children click on each new number as soon as they were able 

to say the total it made when added e. g. if children were doing 7 +4 + 3 they would say 

out "seven", "eleven", and "fourteen" as they successively clicked off the three 

numbers. The program recorded the order in which the children selected the numbers. 

For example, if a child clicked first on "7" then "3" then "4" then this would be the 

addend order that was recorded. The mouse returned to a random point on the 

baseline. The program also recorded the time taken to click on the numbers and the 

distance of the mouse pointer starting position from each target number. The program 

did not record the answers. Although the solution times were recorded, these would 

only provide a somewhat crude measure of performance only because the procedure 

did not give feedback of the RT to the children and their performance would not be 

well motivated for RT measuring. It must be stressed that although the solution times 

are represented in Figures 7.5, 7.6, 7.7, 7.12, 7.13 and 7.14, these are only presented 

here purely as an indication of the length of time (in this case total time spent on a 

sum from the time it appeared on screen until the final click on the answer bar) that 

was spent on a sum in which the less optimal combination of addends was selected. 

The RT data was not analysed and is used only to illustrate how long it may have 

taken to solve sums where certain combination of addends were selected. 

7. 4 Results 

For the ANOVA used in this section, the results were scored according to how 

strategically the addend combinations were selected. For example, if a child selected 

the addends 7+7 +n then he/ she would be given a score of 3, if he/ she chose 7 +n+7 
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then he/ she would be given a score of 1 and if he/ she selected n + 7 + 7 then he/ she 

would be given a score of 2. Similarly participants who selected a sum-to-10 

combination of 6 +4+n or 7 + 3 +n would be given a score of 6 and those who selected 

4+n+6 or 3+n+7 would be given a score of 1. 

7. 4. 1 Results for sums in Group 1 (sums involving a sum to 10 number-fact) 

The results in this section looked at sums in Group 1 involving a sum to 10 number

fact. 

For the analyses, sums in Group 1 were grouped into three types: 

1) Type 1 grouped together sums in which the sum to 10 addends were selected first 

(such as 7+3+n and 3+7+n in Group 1 A, and 6+4+n and 4+6+n in Group 1 B). 

2) Type 2 grouped together sums in which the sum to 10 addends were selected last 

(such as n+7+3 and n+3+7 in Group 1 A, and n+6+4 and n+4+6 in Group 1 B). 

3) Type 3 grouped together sums in which the sum to 10 addends were not selected 

consecutively (such as 7+n+3 and 3+n+7 in Group 1 A, and 6+n+4 and 4+n+6 in 

Group 1 B). 
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------------------------------------------------------------------------

7. 4. 1. 1 Results for sums in Group 1 A (7+3+n) 

Figure 7.1 illustrates the results from sums in Group 1 A which involved the sum to 

10 7+3(+n) and where n was less than 3. 
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The results shown in Figure 7.1 above suggest that most of the oldest children are 

likely to select the sum to 10 7 + 3 + 2 first when doing sums involving 7 + 3 and where 

the addend n was less than 3, and none of the oldest children selected 3 + 2 + 7 which 

would be the least efficient combination of addends. Younger children are almost as 

likely to select 3 + 2 + 7 suggesting that they are not being strategic about the order in 

which select the addends, perhaps because the addend (2) is not particularly large. 
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7. 4. 1. 1. 1 Analysis for sums in Group 1 A involving the sum to 10 [7+3 (+2)] 

Table 7.6 Sum-type by year group cross tabulation for the sum 7 +3 ( +2). 

Sum type • year group Crosstabulation 

vear grouo 

3 4 6 Total 
oum I count 15 16 Ll '" type Expected Count 19.5 21.2 17.3 58.0 

2 Count 14 16 8 38 

Expected Count 12.8 13.9 11.3 38.0 

3 Count 16 17 5 38 
Expected Count 12.8 13.9 11.3 38.0 

Total Count 45 49 40 134 

Expected Count 45.0 49.0 40.0 134.0 

A chi-square carried out on the results illustrated in Figure 7.1, chi-square (df = 4) = 

14.215, p = 0.007, suggesting that children across all ages were more likely to select 

certain combinations of addends i. e most children were likely to select the larger 

addends first. However, the results in Figure 7.1 suggest that older children were more 

likely than the younger ones to select the sum to 10 or the larger digits first. 
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Figure 7.2 shows the pattern of results for sums in Group 1 A which involved the sum 

to 10 7+3(+n) and where n was greater than 3. 
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The results pictured above in Figure 7.2 show that when doing a 7 + 3 sum to 10 where 

the addend n was greater than 3, most of the older children would select the sum to 10 

first. However, they were also more likely to select the largest number 7 first 

suggesting that they could alternatively be taking advantage of the min strategy and 

reordering the addends optimally. They were least likely to select 3+4+7. However, 

the younger children do not appear to be selecting their addends in the most efficient 

order. 
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7. 4. 1. 1. 2 Analysis for sums in Group 1 A involving the sum to 10 [7+3 (+4)] 

Table 7.7 Sum-type by year group cross tabulation for the sum 7 +3 ( +4). 

sum~type • year group Crosstabulation 

year group 

3 4 6 Total 
sum-type 1 <,;ount 12 lfi 17 45 

Expected Count 15.4 16.1 13.4 45.0 

2 <.:ount 16 11 7 34 
Expected Count 11.7 12.2 10.1 34.0 

3 Count 18 21 16 55 
Expected Count 18.9 19.7 16.4 55.0 

Total Count 46 48 40 134 
Expected Count 46.0 48.0 40.0 134.0 

A chi-square carried out on the results illustrated in Figure 7. 2, chi-square (df = 4) = 
4.551, p = 0.336, found that children across all year groups did not seem to be 

strategic about their addend selection. 

Figure 7.3 illustrates the pattern of results from sums in Group 1 A involving the sum 

to 10 7 + 3( +n) where n was greater than 7. 
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- -------------------------------------------------------------------------

The results in Figure 7.3 seemed to suggest that when doing a sum involving the sum 

to 10 7 + 3 where the addend n was greater than 7 most of the oldest children were 

more likely to select the largest addends first. This suggested that they were more 

likely to be relying on the min reordering strategy. The youngest children were as 

likely to select the largest addend last and were the least likely to select 7 + 3 + 8. The 

older children were more likely than the younger children to select both sum to 10 

combinations (7+3+8 and 3+7+8) first. 

7. 4. 1. 1. 3 Analysis for sums in Group 1 A involving the sum to 10 [7+3 (+8)] 

Table 7.8 Sum-type by year group cross tabulation for the sum 7 + 3 ( + 8). 

sum type "' year group Crosstabulation 

vear •rouo 
3 4 6 Total 

sum L Count IS 14 J:t 41 

type Expected Count 14.2 14.8 12.0 41.0 

2 Count 18 19 19 56 
Expected Count 19.4 20.2 16.4 56.0 

3 Count 13 15 8 36 

Expected Count 12.5 13.0 10.6 36.0 

Total Count 46 48 39 133 

Expected Count 46.0 48.0 39.0 133.0 

A chi-square carried out on the results illustrated in Figure 7.1, chi-square (df = 4) = 

1.618, p = 0.806, suggested that children across all year groups were not being 

strategic about their addend selection. 
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Figure 7.4 shows a summary of the effect of year on sum order on sums involving the 

sum to 10 7+3 (+ n). 
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The summary of results in Figure 7.4 show that when children are required to do sums 

involving the sum to 10 7+3+n, most children do not select the smn to 10 first. 

However, children in the oldest age groups are the most likely to select the sum to 10 

first and they are the least likely to select the least efficient combination of addends 

(3 +n + 7) compared to younger children. Most of the children do not seem to be 

selecting the sum to 10 7 + 3 first suggesting that either 7 + 3 is not a salient number fact 

or that they may have this knowledge but are not taking advantage of it. 

An ANOV A carried out on the results for all the sums in Group lA found a 

significant overall effect of year, F (2, 130) = 3.74, p < 0.05. There was a significant 

main effect of the size of the third addend n, F (1, 129) = 30.06, p < 0.05, suggesting 

that size of the third addend did have an effect on the selection strategy. There was s 

significant interaction between the third addend size and year, F (4, 260) = 15.75, p < 

0.05. This suggested that older children were significantly more likely to be 

influenced by the size of the third addend i. e. whether or not they selected the smn

to-1 0 first or the largest addend first depended on the size of the third addend n. There 

was a significant effect of sum order, F (5, 126) = 24.31, p < 0.05, suggesting that 
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children across all ages were more likely to select certain combinations of addends i. e 

most children were likely to select the larger addends first. There was a significant 

interaction between sum order and year F (10, 254) = 2.63, p < 0.05. This meant that 

older children were more likely than the younger ones to select the sum-to 10 or the 

largest digits first (as illustrated by Figure 7 .4). There was a significant interaction 

between the third addend size and the sum order, F (10, 121) = 14.53, p < 0.05, 

suggesting that children's selection of addend order was influenced by the size of the 

third addend n i. e. children were more likely to select the larger addends first if the 

third addend n (8) was larger than 7. There was a significant interaction between third 

addend size, sum order and year, F (20, 244) = 4.33, p < 0.05. This suggested that 

older children's sum selection was more likely to be influenced by the size of the third 

addend compared to the younger children's. 

It seemed that most of the children were not being particularly strategic about 

selecting their addends to make use of sum-to-10 number-facts .. Most of them did not 

seem to be making use of sum to 10 number-facts. It could be argued that perhaps 

most children were competent enough at mental addition that it did not matter what 

order they used for selecting their addends. Alternatively, because they were most 

likely using counting strategies, how they chose their addends did not make much 

difference. Would this be reflected in their overall solution times for these sums? That 

is, children who seemed to be making inefficient choices about addend selection 

might also have long solution times for these sums suggesting that their addend 

selection was actually holding them back and resulting in long solution times. Figures 

7.5, 7.6 and 7.7 illustrate children's total solution times for the sum to 10 problems in 

Group 1 A (7+3). 

224 



Figure 7.5 is a summary of the solution times for the sum to 10 7+3 ( +2). 

3500 
3000 
2500 
2000 
1500 
1000 

500 
0 

RT 7+3 (+2) 

sum 

Byr3 

llyr 4 

Oyr6 

Figure 7.5 Solution times for sum to 10 7 + 3 ( + 2) 

The solution times summarised in Figure 7.5 do suggest that children who were 

selecting the smallest addend first had the longest solution times, and the youngest 

children especially seem to be having the most difficulty. Children who were 

selecting the largest digit or the sum to 10 first had the shortest solution times. 

Figure 7.6 is a summary of solution times for the sum to 10 7 + 3 ( +4). 
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Figure 7.6 Solution times for sum to 10 7+3 ( +4) 
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The solution times summarised in Figure 7.6 show that, as the addends become larger, 

the children's solution times also show an overall increase. Again, this has the greatest 

effect on the youngest children's solution times. Children who are selecting the 

smallest addends first have the longest solution times and the youngest children are 

the ones most likely to be doing so. Older children who select the smallest digits first 

are also the ones who have long RTs. Because the third addend "4" and "2" are not 

too large, it seems that some older children are not finding these sums too difficult. 

However, when the third addend (8) becomes much larger even the older children lose 

this advantage. 

Figure 7.7 is a summary of solution times for the sum to 10 7 +3 ( +8). 
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Figure 7. 7 Solution times for sum to 10 7 + 3 ( + 8) 

The solution times illustrated in Figure 7. 7, show that when the size of the third 

addend increases solution times increase for children across all age groups. 

Interestingly, the children with the fastest solution times are those who select the sum 

to 10 (7 +3) first, and this is the case for children across all ages. It seems that children 

who seem to be careless of addend order are also the ones paying the price of much 

longer solution times. Figures 7.5, 7.6 and 7.7 all indicate that there seems to be a pay 
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off, accidental perhaps, for those children who are selecting the sum to 10 first even 

when the third addend n is the largest addend. 

The sums in Group 1 A looked at children selection strategies when adding numbers 

that involved the sum to 10 7 + 3. The results showed that children were less likely to 

use sum to 10 knowledge and tended to rely on the min reordering strategy by 

selecting the largest addends first. The following section looks at their selection 

strategies when doing sums in Group 1 B involving the sum to 10 6+4. 

7. 4. 1. 3 Results for sums in Group 1 B (6+4+n) 

Figure 7.8 illustrates the pattern of results from sums in Group 1 B involving the sum 

to 10 6+4( +n) where n was less than 4. 
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The results in Figure 7. 8 looked at children's selection strategies when doing sums 

involving the sum to 10 6+4 where the third addend n (3) was less than 4. These 

results suggest that most children do not seem to be taking advantage of the 6+4 

number fact. Younger children were more likely to select the largest addend first 

suggesting that some of them seem to be reodering and using the min strategy. 
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However, just as many children seem to be selecting the addends in no particular 

order such as 3+4+6. The older children in years 4 and 6 did seem to be more likely to 

select 6+4 first suggesting that they may be adding the digits strategically. 

Alternatively they may still be selecting this combination because they are reordering 

and selecting the largest addend first. 

7. 4. 1. 3. 1 Analysis for sums in Group 1 B involving the sum to 10 [6+4 (+3)] 

Table 7.9 Sum-type by year group cross tabulation for the sum 6+4 ( +3). 

sum type "' year group Crosstabulation 

vear £roup 
3 4 6 Total 

sum 1 c.ount y 22 11 •• 
type Expected Count 16.1 17.6 14.3 48.0 

2 Count 20 12 12 44 
Expected Count 14.8 16.1 13.1 44.0 

3 Count 16 15 11 42 
Expected Count 14.1 15.4 12.5 42.0 

Total Count 45 49 40 134 
Expected Count 45.0 49.0 40.0 134.0 

A chi-square test was carried out on the results illustrated in Figure 7. 8, chi-square 

(df = 4) = 8.205, p = 0.084. This suggests that the children across all year groups are 

not being strategic about selecting their addends. 
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Figure 7. 9 illustrates the pattern of results from sums in Group 1 B involving the sum 

to 10 6+4( +n) where n was greater than 4. 
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The results shown above in Figure 7. 9 suggest that when doing sums that involved a 

sum to 10 6+4 where the third addend n (5) was greater than 4, children in the oldest 

age group seemed to select the largest addend first. Most children did not seem to be 

taking advantage of the sum to 10 6+4. The oldest children were the most likely to 

select the sum to 10 first suggesting that they are being strategic and using their sum 

to 10 knowledge. However, they were more likely to select the largest addend first 

and this suggests that they wre more likely to be relying on the min strategy of 

reordering and adding the smaller addends to the larger ones. 
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7. 4. 1. 3. 2 Analysis for sums in Group 1 B involving the sum to 10 [6+4 (+5)] 

Table 7. 10 Sum-type by year group cross tabulation for the sum 6+4 ( +5). 

sum type "' year group Crosstabulation 

3 
sum ount 
type Expected Count 10.5 11.4 9.1 31.0 

2 Count 16 15 8 39 
Expected Count 13.2 14.4 11.4 39.0 

3 Count 19 25 19 63 
Expected Count 21.3 23.2 18.5 63.0 

Total Count 45 49 39 133 
Expected Count 45.0 49.0 39.0 133.0 

A chi-square test was carried out on the results illustrated in Figure 7. 9, chi-square 

(df = 4) = 3.528, p = 0.474. This suggested that children across all year groups were 

not being strategic about their addend selection. 

Figure 7.10 illustrates the pattern of results from sums in Group 1 B involving the 

sum to 10 6+4( +n) where n was greater than 6. 
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The results shown above in Figure 7.10 also suggest that children in the oldest year 

group are more likely to be using the reodering strategy than use the sum to 10 

number fact when doing sums where the third addend n (7) was greater than 6. The 

largest addend seems to be more visible to them than the sum to 10. The selection 

choices of the youngest children suggest that most of them do not seem to be selecting 

their addends in any particular order and this suggests that most of them are not being 

strategic about the order in which they are adding the digits. 

7. 4. 1. 3. 3 Analysis for sums in Group 1 B involving the sum to 10 [6+4 (+7)] 

Table 7.11 Sum-type by year group cross tabulation for the sum 6+4 (+7). 

sum type "' year group Crosstabulation 

year group_ 
3 4 6 Total 

sum 1 \..OUnt .a 10 11 JU 
type Expected Count 16.7 18.2 15.2 50.0 

2 Count 14 17 18 49 
Expected Count 16.3 17.8 14.8 49.0 

3 Count 9 13 11 33 
Expected Count 11.0 12.0 10.0 33.0 

Total Count 44 48 40 132 
Expected Count 44.0 48.0 40.0 132.0 

A chi-square test was carried out on the results illustrated in Figure 7. 10, chi-square 

(df = 4) = 3.853, p = 0.426. This suggests that children across all year groups are not 

being strategic about their addend selection. 
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Figure 7.11 shows a summary of the effect of year on sum order on sums involving 

the sum to 10 6+4 { +n). 
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The summary of results in Figure 7.11 suggests that although older children are more 

likely than the younger ones to select the sum to 10 first, most of the younger children 

seem to be selecting their addends in no particular order. 

An ANOV A on the results for all the sums in Group 1B found no overall effect of 

year, F (2, 128) = 0.459. There was a significant effect of addend size n, F (2, 127) = 

76.18, p < 0.05, suggesting that the size of the third addend did affect solution 

strategy. There was a significant interaction between the third addend size and year, F 

(4, 256) = 13.65, p < 0.05. This suggested that older children were significantly more 

likely to be influenced by the size of the third addend i. e. whether or not they selected 

the sum-to-10 first or the largest addend first depended on the size of the third addend 

n. There was a significant effect of sum order, F (5, 124) = 31.41, p < 0.05. This 

suggested that children across all ages were more likely to select certain combinations 

of addends first. There was a significant interaction between the sum order and year, F 

(10, 250) = 1.84, p < 0.05, suggesting that older children were more likely than 

younger ones to select the sum-to-10 first or the largest addend first (as illustrated by 

Figure 7.8). There was a significant interaction between addend size and the sum 
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order, F (10, 119) = 17.52, p < 0.05, suggesting that children's selection of addend 

order was influenced by the size of the third addend n. Children, therefore, were more 

likely to select the larger addends first if the addend n was larger than 6. There was a 

significant interaction between addend size, sum order and year, F (20, 240) = 5.14, p 

< 0.05. This suggested that older children's sum selection was more likely to be 

influenced by the size of the third addend compared to the younger children's. 

The results for the sums in Group 1 suggested that, for the larger part, children were 

more likely to be using the min reordering strategy when selecting the order in which 

to add the digits and were selecting the largest addend first. Most children did not 

seem to be taking advantage of the sum to 10 number facts. It seemed that children 

were being strategic but their addend selection indicated that this was in favour of 

selecting addends that would enable them to count more efficiently as opposed to use 

their number-fact knowledge more efficiently. 

As was the case with the 7+3 sum to 10 problems, children seemed reluctant to make 

use of the 6+4 sum to 10. When they did seem to be strategic, they favoured strategies 

that would make counting easier. Would this be reflected in their solution times for 

these problems? Would children who were using inefficient strategies also have 

longer solution times as shown by the results in Figures 7.5, 7.6 and 7.7? The 

following graphs are summaries for children total RTs for the sums in Group 1 B 

involving the sum to 10 (6+4). 
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Figure 7.12 is a summary of the solution times for the sum to 10 6+4 (+3). 
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Figure 7.12 Solution times for sum to 10 6+4 ( +3) 

The results illustrated in Figure 7.12 suggest that selecting the smaller addends first 

results in longer solution times. This is more evident in the youngest children. It also 

suggests that children who do select the smaller addends first are probably most likely 

to be using an inefficient counting strategy. 

Figure 7.13 is a summary of the solution times for the sum to 10 6+4 ( +5). 
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Figure 7.13 Solution times for sum to 10 6+4( +5) 
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As with the results shown in Figure 7 .12, the solution times shown above suggest that 

children who select the smallest addends first seem to have long solution times. The 

younger children are more likely to do this. The solution times for the oldest children 

suggest that most of them are using similar strategies. 

Figure 7.14 is a summary of the solution times for the sum to 10 6+4 ( +7). 
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Figure 7.14 Solution times for sum to 10 6+4 ( +7) 

The solution times for the sums in Group 1 B all suggest that children across all ages 

find these sums quite difficult. Children who do not select the addends strategically 

seem to have the longest times and this is especially so for the youngest children. The 

solution times for the oldest children suggest that they are using the most consistent 

strategies. Older children who select the largest addend first have the longest times 

suggesting that they are resorting to counting. As with the solution time for the 7 + 3 

sum to 10, there seems to be benefit in the form of shorter solution times for those 

children who do select the sum to 10 addends first. 

The results in the next section looked at their selection strategies when doing sums in 

Group 2 which involved tie-sum number facts. The results from sums in Group 1 

suggested that most children did not seem to rely on sum to 10 number-fact 
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knowledge. The results in Group 2 looked at whether or not they would use their tie 

number fact knowledge. 

7. 4. 2 Results for sums in Group 2 (sums involving a tie-sum number-fact) 

The results in this section looked at addend selection for sums in Group 2 that 

involved tie-sum number facts. 

7. 4. 2. 1 Results from sums in Group 2 A (small number tie-sum 3+3) 

Figure 7.15 illustrates the pattern of results for sums in Group 2 A involving the tie

sum (3+3)+n where n was less than the tie-sum addends. 
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The results in Figure 7.15 suggested that when doing a sum that involved the tie-sum 

3 + 3 ( +n) where n (2) is less than the tie-sum addends most children will do the sum 

first. Children in the older age groups were most likely to select the tie-sum first. 

While the youngest chlidren were less likely than older children to do the tie-sum 

first, the results seemed to suggets that they are recognising the tie-sum because they 

are also more likely to select the tie-sum last ie. do 2+3+3. Children across all year 
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groups were least likely to do 3 + 2 + 3 suggesting that they were making use of their 

tie-sum knowledge. 

Figure 7.16 illustrates the pattern of results for sums in Group 2 A involving the tie

sum (3+3)+n where n was greater than the tie-sum addends. 
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Figure 7.16 Tie-sum 3+3 (+4) 
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The results in Figure 7.16 suggested that when children had to do a sum involving the 

tie-sum 3+3 ( +n) where n (4) was larger than the tie-sum addend children across all 

year groups were most likely to select the tie-sum first. Children in the youngest year 

group were more likely to do 3 +4 + 3 than children in the older groups. Children were 

also more likely to do 4+3+3 than 3+4+3 suggesting that they are showing 

recognition of the tie-sum. For most of the children 3 + 3 has become a number fact 

and these results suggested they were taking advantage of this knowledge. 
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Figure 7.17 shows the summary of results for sums involving the tie sum 3 + 3( + n). 

3+3 (+n) 

3+3+n 3+n+3 n+3+3 

sum 

Figure 7.17 Tie-sum 3+3 (+n) 
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The results shown in Figure 7.17 suggested that children across all age groups were 

more likely to select the tie-sum first. This was more evident in older children where 

nearly 70% of the children in years 4 and 6 were likely to take advantage of their tie 

sum knowledge. Even children in the youngest age group were showing recognition 

of the tie-sum because they were selecting the tie-sum last. 

Figure 7.18 shows a summary of the results for children across all years doing the tie

sum 3+3. 
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Figure 7.18 Tie-sum (3 + 3 +n) across all year groups. 
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Figure 7.18 further illustrates that most children across all year groups were likely to 

select 3+3+n, followed by n+3+3 and were least likely to select 3+n+3. 

7. 4. 2. 2 Analysis (sums in Group 2 A involving the small number tie-sum 3+3) 

An ANOV A carried out on the results for sums involving the tie-sum 3 + 3 showed 

than there was no overall effect of year, F (2, 128) = 2.83. There was no effect of the 

size of the third addend (n), F (1, 128) = 0.113. This suggested that it did not make a 

significant difference whether the third addend n was greater than (n = 4) or less than 

(n = 2) the tie-sum addends and this is illustrated by the results shown in Figures 7.17 

and 7.18. There was no interaction between the size of the third addend nand year, F 

(2, 128) = 2.77. There was a significant main effect of sum order, F (2, 127) = 265.45, 

p < 0.05. This suggested that significantly more children across all year groups were 

likely to select 3+3+n (as shown in Figure 7.17). There was no significant interaction 

between sum order and year group, F (4, 256) = 1.52. This suggested that children 

across all year groups were likely to select the tie-sum first (as shown by Figure 7.18). 

There was no interaction between the size of addend n and sum order, F (2, 127) = 

0.158. This suggested that whether n was greater than or less than the tie-sum addends 

· did not have a significant effect on the likelihood of children doing the tie-sum first. 

There was a significant interaction between the size of addend n, sum order and year 

group F (4, 256) = 10.147, p < 0.05. This suggested that the size of the addend n was 

more likely to affect the sum selection for children in younger year groups (as 

illustrated by Figure 7 .17). Younger children were significantly more likely to do 

3+3+n if the size of the addend n (4) was greater than the tie-sum addends. 

These results suggested than the tie-sum 3 + 3 was a salient number-fact and most 

children across all age groups were willing to take advantage of their tie-sum number 

knowledge. However, the 3+3 tie-sum involves fairly small addends and the answers 

to the sums in Group 2 A were not greater than 10 and so could easily be solved 

through both number-fact knowledge or counting. Would the results for sums in 

Group 2 B involving the larger tie-sum 7 + 7 have similar patterns? 
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The results shown in the next section looked at the findings from sums in Group 2 B 

involving the tie-sum 7 + 7. 

7. 4. 2. 3 Results from sums in Group 2 B (large number tie-sum 7+7) 

Figure 7.19 illustrates the pattern of results from sums in Group 2 B involving the tie

sum 7 + 7( +n) where n was less than the tie-sum addends. 
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Figure 7.19 Tie-sum 7+7 ( +6) 

The results in Figure 7.19 suggested that when doing a sum that involved the tie-sum 

7 + 7 ( +n) where n (6) is less than the tie-sum addends most children will do the tie

sum first. Children in the older age groups were most likely to select the tie-sum first. 

Younger children seemed to be more likely to select the tie-sum last suggesting that 

although they seemed to be recognising the tie-sum 7 + 7 it was unlikely that this had 

become a number-fact. While the youngest chlidren were less likely than older 

. children to do the tie-sum first, the results seemed to suggets that they are recognising 

the tie-sum because they are also more likely to select the tie-sum last ie. do 6+7+7. 

Children across all year groups were least likely to do 7 +6+ 7, suggesting that they 

were being strategic and making use of their tie-sum knowledge. 
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Figure 7.20 illustrates the pattern of results from sums in Group 2 B involving the tie

sum 7 +7( +n) where n was greater than the tie-sum addends. 
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Figure 7.20 Tie-sum 7+7 (+8) 

The results in Figure 7.20 suggested that when doing sums involving the tie-sum 7 + 7 

( +n) where n was greater than the tie-sum addends, most children across all year 

groups were likely to do the tie-sum first. The oldest children were least likely to do 

7+8+7. However, the older children were more likely to select the largest addend first 

suggesting that they are using the min reordering strategy instead of relying on tie-

sum knowledge and this suggests that a large number of the older children as well as 

some of the younger ones are being quite strategic in their selection of addends. 
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Figure 7.21 shows a summary of the results from sums involving the tie-sum 7 + 7( +n). 
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Figure 7.21 Tie-sum 7 + 7 ( + n) 

The summary of results in Figure 7.21 suggested that children across all age groups 

were more likely to select the tie-sum 7+7 first, followed by n+7+7 and 7 +n+7. Most 

children seemed to be taking advantage of their tie-sum knowledge. 

Figure 7.22 is a summary of the results for children across all years doing sums 

involving the tie-sum 7 + 7. 

7+7+n 

7+7+n 7+n+7 n+7+7 

sum 

Figure 7.22 Tie-sum 7 +7+n across all year groups. 
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Figure 7.22 further illustrates that most children across all year groups were likely to 

select 7+7+n, followed by n+7+7 and were least likely to select 7+n+7. 

7. 4. 2. 4 Analysis (sums in Group 2 B involving the larger number tie 7+7) 

An ANOV A carried out on the results for sums involving the tie-sum 7 + 7 showed 

that there was no overall effect of year, F (2, 127) = 1.80. The size of the third addend 

had a significant main effect on selection order, F (1, 127) = 10.20, p < 0.05. This 

suggested that whether n was greater than the tie-sum addends (n = 8) or was less than 

the tie-sum addends (n = 6) did have significant effect on the order in which the 

addends were selected i. e.· as illustrated by Figure 7.19 more children across all age 

groups were likely to select the tie-sum (7 + 7) first when the third addend (8) was 

greater than the tie-sum addends. There was no significant interaction between addend 

size and year, F (2, 127) = 0.905. There was a significant effect of the sum order F (2, 

126) = 255.63, p < 0.05. This suggested that significantly more children across all 

ages were likely to select the tie-sum first (as illustrated by Figure 7.22). There was 

no significant interaction between sum selection order and year, F (4, 254) = 0.940 (as 

illustrated by Figure 7.21). There was a significant interaction between the size of the 

third addend and the sum selection, F (2, 126) = 5.70, p < 0.05. This suggested that 

the size of the third addend did have a significant effect on the order in which the 

addends were selected. There was a significant interaction between the size of the 

third addend, the sum order and year group, F (4, 254) = 4.75, p < 0.05. This 

suggested that older children's sum selections were significantly more likely to be 

influenced by the size of the third addend. 

These results suggested that the tie-sum 7 + 7 was a salient number fact for most 

children and that most children did seem to take advantage of their tie-sum number

fact knowledge. Children were willing to use their tie-sum knowledge for both 

smaller tie-sums such as 3 + 3 as well as larger tie-sums such as 7 + 7. However, it 

seemed that some of the older children were more likely to select the largest number 

first when the third addend n (8) was greater than the tie-sum addends. 
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The above sections looked at results from sums in Group 2, which investigated 

children's, selection strategies for sums involving tie-sums. The following section 

looks at the results for sums in Group 3 designed to investigate children's selection 

strategies when doing sums with a visibly large addend. 

7. 4. 3 Results for sums in Group 3 (reordering of the largest addend) 

The results in this section looked at addend selection for sums in Groups 3 and 4 

designed to investigate reordering of the largest addend. 

7. 4. 3. 1 Results for sums in Group 3 A (sums involving a larger number) 

Figure 7.23 illustrates the pattern of results for sums in Group 3 A which looked at 

reordering of the addends in which the largest addend was 9. 
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Figure 7.23 Large addend reordering (9+x+y) 

The results in Figure 7.23 illustrate that when given a selection of numbers where the 

largest number was 9 and they could have done the sum in three ways: by selecting 

the largest addend first (9+x+y), the largest addend second (x+9+y) or the largest 
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addend last (x+y+9), most children across all age groups seemed to select the largest 

addend first. However, quite a few of the children across all age groups were still not 

selecting the largest addend first. This is more pronounced for the children in the 

younger age groups. These results seemed to suggest that a large number of children 

may choose not to reliably take advantage of their knowledge of the min addend 

reordering strategy. 

7. 4. 3. 2 Results for sums in Group 3 B (sums involving a larger number and 

"+1") 

Figure 7.24 illustrates the pattern of results for sums in Group 4 which looked at 

reordering of the addends in which the largest addend was 7 and there was the 

possibly special case of "+ 1" involved. 
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Figure 7.24 Large addend reordering (7 +n + 1) 

These results in Figure 7.24 also seemed to suggest that most children in the older age 

groups will select the larger number first where the largest addend they see is 7 and a 

" + 1" is involved. This was most evident with the older children because a larger 

percentage of the older children seemed to go for the largest addend first and this 

seemed to suggest that they are reordering and making use of the min strategy. 

However, most of the youngest children are not doing this, and are still selecting 
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1 +n+7 i. e the least efficient combination of numbers. The results are very similar to 

the pattern reported in Figure 7.23 in which "n" was larger than one. 

7. 4. 3. 3 Analysis (sums in Group 3) 

An ANOV A carried out on the results for sums in Group 3 looking at reordering of 

the largest addend found no overall effect of year, F (2, 130) = 1.39. This is illustrated 

in Figures 7.23 and 7.24 suggesting that year did not make much difference to 

children's selection strategies for these sums. There was no effect of sum type, F (1, 

130) = 1.07, and this suggested that it did not make a significant difference whether 

the sums were from Group 3 A (involved a large addend 9+x+y) or from Group 3 B 

(involved a large addend 7+n+1) as illustrated by Figures 7.23 and 7.24 the pattern of 

results for Groups 3 A and 3 B seem to be quite similar. There was no significant 

interaction between sum type and year, F (2, 130) = 0.671. There was a significant 

effect of addend order, F (2, 129) = 33.90, p < 0.05, suggesting (as shown in Figures 

7.23 and 7. 24) that significantly more children across all age groups were likely to 

select the largest addend first for sums in both Group 3 A and 3 B. There was no 

interaction between addend order and year, F (4, 260) = 1.72, p = 0.147 and this 

suggested the age groups did not affect the order in which the addends were chosen. 

There was no interaction between sum type and addend order, F (2, 187) = 0.187, as 

illustrated above in Figure 7.23 and 7.24. Children across all year groups were not 

particularly affected by whether the sum was 9+x+y or was 7 +n+l. There were no 

significant interactions between sum type, addend order and year, F (4, 260) = 1.13, p 

= 0.343. These results seemed to indicate that most children across ages were being 

strategic and using reordering to put the largest addend first i.e. were more likely to 

go for 9+x+y and 7+n+l. 

It seemed that children were not always being strategic about the selection of their 

addends, unless the addends included a tie-sum. This suggested that perhaps another 

factor could be guiding their choices instead of the addends themselves and that was 

the proximity of the addends to the starting point or to each other. As pointed out 

earlier no addends were directly adjacent to each other. However, children who were 
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not being strategic about their addend choices may have just been relying on this 

relative proximity to guide them. 

7. 4. 4 Analysis (Spatial domain) 

If the children were doing something other than making order selections based on the 

addends, then they might have been relying on the spatial domain i. e. the position of 

the numbers on the screen. Three sets of spatial measure were used to define the 

distance between the addends on the screen and this was on the basis of their position 

on a 5x5 grid. These were as follows: 1) the distance of each addend from the start/ 

finish bar (i. e position of the mouse at the bottom of the screen), 2) the position of the 

addends on the horizontal (x) axis of the grid (horizontal position), and 3) the position 

of the addends on the vertical axis on the grid (vertical position). 

An ANOV A was carried out on the data from the first measure, distance of the 

addend from the start bar. The results found no overall effect of year, F(2, 124) = 

0.45. The distance from the start bar for the first addend was significantly lower than 

the distance for the other two addends, F(2, 123) = 13.47, p < 0.05, suggesting that 

there is a non-numerical influence arising from selecting the "nearest digit" i. e. to 

some extent, the children are simply going for the nearest addend. The trend suggests 

that this increase is gradual, implying a gradual movement towards the last digit 

which seems to be the furthest from the start. There was no interaction between 

starting distance and year, F(4, 248) = 1.04. 

An AN OVA on the data from the second measure, the position of the addends on the 

horizontal axis of the grid. The results found no overall effect of year, F(2, 124) = 

0.03. There was a significant effect of the position of the addend on the horizontal 

axis, F(2, 123) = 5.15, p < 0.05. This seems to suggest that most children are biased to 

go from left to right, and some of them, if not selecting sums on the basis of the 

addends, are probably going to the leftmost part of the grid. There was no interaction 

between the horizontal position of the addend and year, F(4, 248) = 0.75. 
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An ANOV A on the data from the third measure, the position of the addends on the 

vertical axis of the grid. There results found no overall effect of year, F(2, 124) = 

0.17. There was a significant effect of the position of the addend on the vertical axis 

(screen height), F(2, 123) = 9.10, suggesting that children were likely to be drawn 

towards the first addends up on the screen. There was no interaction between the 

vertical position of the addend and year, F(4, 248) = 0.86. 

To conclude this section, it would seem that when doing three digit serial addition 

most children are unlikely to exploit the sum to 10 number facts 6 +4 and 7 + 3. Instead 

they are more likely to take advantage of the min strategy and reorder the addends by 

selecting the larger ones first. Most children were, however, willing to make use of 

their tie-sum number knowledge of 3 + 3 and 7 + 7 and were likely to select the tie-sum 

addends first. When doing sums which involved a visibly large number they were also 

likely to reorder the addends in order to select the largest ones first, suggesting that 

they are making use of the min strategy in most cases. The results also implied that 

some children seemed to be relying on the spatial position of the addends suggesting 

that this can override their ability to be strategic. 

7. 5 Discussion 

The sum combinations chosen in this study were designed to look at children's 

selection strategies when doing three digit serial addition. The research reported in 

Section 5.2 and Chapter 6 had suggested that children were capable of being strategic 

with their knowledge of number fact knowledge of tie-sums and that they were 

capable of using their min reordering knowledge. They were also capable of applying 

this knowledge to solve complex decade sums and also, to a limited extent, to solve 

three-digit serial addition. But unlike my previous studies, the design of this study 

allowed children to select the order in they added the digits. This would enable a more 

confident claim to be made about whether children's use of their existing knowledge 

would be reflected in the order in which they selected their addend. 
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The children were presented with three types of number combinations which would 

appear randomly on a screen with no "+" or "=" signs (see Table 7. 2): 

1) Problems designed to look at children's use of the sum to 10 number facts (Group 

1 A and Group 1 B). 
~, 

2) Problems designed to look at children's use of tie-sum number facts (Group 2 A 

and Group 2 B). 

3) Problems designed to look at children's ability to use the min reordering strategy 

(Group 3 A and Group 3 B). 

The findings for the sums in Group 1 suggested that when faced with the serial 

addition of three addends most children did not make use of the sum to 10 number 

fact. The sum to 10 number fact did not appear to be a salient number fact for most 

children, it was more likely to be used by older children and even then it was most 

likely to be selected if the larger sum to 10 addend was selected first. The results from 

both Group 1 A and 1 B (as illustrated by Figures 7.4 and 7 .11) suggested that either 

sum to 10 had not yet become a "number-fact" for most children or that it was a fact 

but its potential was not being recognised. This was particularly evident when the 

third addend was a number largest than larger sum to 10 addend (e. g. 6 +4 + 7 or 

7 + 3 + 8) in which case most of the children, but especially the older ones, were likely 

to go for the largest addend first. Certainly if most of the children were relying 

primarily on counting strategies then the taking advantage of the sum to 10 

knowledge would not be a priority i. e. if a child is using a relatively inefficient 

"counting-on" strategy then it would not matter which addends were selected first. 

For many of the younger children this did seem to be the case. 

Alternatively, it may be that many of the older or more competent children were the 

most likely to select the addends in a fairly random order because they were 

competent enough at addition that the addend order did not make much difference to 

how they selected their addends. However, it seemed unlikely that this was the case. 

While some of the oldest children or the more able younger children could have been 

doing this, the older children were the most likely to be strategic about the order in 
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which they selected their addends. They were more likely to select the largest addend 

first suggesting that they were using the min reordering strategy and this was more 

easily recognisable to them than the sum to 10 number fact. So they were being 

strategic in selecting the largest addend first in order, but perhaps not strategic 

enough. Selecting the largest addend first in order to use the min strategy does make 

counting more efficient but using the sum to 10 number-fact, even if it has not yet 

become a "fact", would make counting even more efficient especially in a three digit 

serial addition case where they would then be adding a digit onto 10. By selecting, for 

example, an addend combination like 8+7 +3 or even 7 +8+3 where the largest addends 

were selected first, the children would then have to count up to 15 and then add 3, 

which does make counting somewhat easier but is still a fairly difficult sum than 

adding the sum to 10 addends first. 

The results from Group 1 supported the previous findings reported in Section 5. 2 

which suggested that children were reluctant to use the sum to 10 number fact when 

doing serial addition. These results also supported the findings in section 5. 1 which 

suggested that sum to 10 number facts, with the exception of9+1 and 5+5, were 

unlikely to be salient number facts for most children. Children across all ages seemed 

to be relying primarily on the min counting strategy. This was further illustrated by 

children's solution times for the problems in Group 1 which suggested that most 

children who seemed to be selecting less efficient combinations of addends also had 

the longest solution times. As the third addend became larger their solution times 

became longer, suggesting that most of the children were relying primarily on 

counting strategies. However, children who seemed to be selecting the sum to 10 

combination first seemed to have the shortest solution times, and these were likely to 

be children in the oldest age group. 

The findings for the sums in Group 2, however, suggested that while most children 

were unable or unwilling to make use of the sum to 10 number facts, they were 

willing to take advantage of their tie-sum knowledge. As illustrated in Figure 7.17 and 

Figure 7.21, most children were willing to exploit their tie-sum knowledge of 3+3 and 

7 + 7. Children were more likely to select addend combinations such as n + 7 + 7 and 
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n+3+3 then combinations such as 7+n+7 or 3+n+3 suggesting that they were showing 

recognition of the tie-sums. This seems to support the findings in Chapter 6 that 

suggested than children showed recognition of the tie-sum and attempted to use it 

even if it had not quite become a "number-fact". Figures 7.18 and 7.22 suggested that 

children across all age groups were likely to be making use of their tie-sum 

knowledge although in both Group 2 A and 2 B the older children were most likely to 

be doing this. However, for sums in Group 2 B involving the tie-sum 7 + 7 and where 

the third addend (8) was larger than the tie-sum addends, it was the older children that 

were more likely than the younger ones who were likely to select the largest first. 

These results from Group 2 support the previous findings in Sections 5. 1 and 5. 2 and 

Chapter 6 that tie-sums emerge as very salient number facts that prompt children to be 

strategic about their addend selection. Interesting enough, although tie-sums do 

emerge as highly salient number facts for children they are not particularly powerful 

number facts for children to use. They can make addition faster for the tie-sum but not 

much easier when adding more digits. That is, doing 7+7 might be quick and easy but 

then doing 14+8 is not a particularly easy sum, especially if relying on counting. 

However, at a higher, more advanced level recognising tie-sums makes addition 

easier i. e. recognising a string of identical digits means that they can be grouped 

together to either be added separately or even be multiplied. 

The sums in Group 3 had been chosen specifically to investigate children's use of the 

min reordering strategy when doing sums that involved a visibly large addend (9) and 

a sums involving a large addend (7) " + 1". The results from Group 3 A and 3 B did 

suggest that children from all age groups were more likely to select the largest addend 

first i.e. select 9+x+y. This indicated that children were being strategic about 

selecting their addends. Most of the older children did seem to be doing this. 

However, a large number of children did not seem to be doing this, and seemed nearly 

as likely to select 1 +n + 7 or x +y+9 which would be the least efficient combination of 

addends especially if counting was being used. As illustrated by Figure 7.23 and 7 .24, 

quite a few children across all age groups did not seem to be selecting their addends in 

any particular order. The youngest children especially did not seem to be strategic 
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about their selecting the most efficient combination of addends, suggesting that they 

were likely to be using the less efficient "counting-on" strategy as opposed to the min 

reordering strategy. 

The results showed that children did seem to be strategic about their selection 

strategies when doing three-digit serial addition. Most children were willing to take 

advantage of their number-fact knowledge of tie-sum such as 3 + 3 and 7 + 7. By 

comparison, they seemed reluctant to take similar advantage of the sum to 10 number 

facts (6+4 and 7+3). This does not mean that they were not being strategic when 

doing sums that involved a sum to 10 number-fact because they were still being 

strategic about their addend selection. But instead of recognising and using sum to 10 

knowledge they were more likely to use the min reordering strategy and select the 

largest addends first, and this was more likely to be the case with the older children. 

When the sums were designed to look specifically at the reordering of the largest 

addend, most of the older children were able to select the largest addend first. The 

younger children, however, were not always doing this. With the exception of the tie

sums, the youngest children did not seem to be strategic about their addend selection 

suggesting that they were likely to be relying on less efficient counting strategies. In 

addition, they seemed to be guided more by the position of the addends on the screen 

than by the addends themselves. 

7. 6 Conclusion 

Overall, the results indicated that while children are capable of recognising and 

exploiting some type of number-fact knowledge (such as tie-sums), they are unlikely 

to take advantage of potentially powerful sum to 10 number-facts. Most children 

seemed to be relying primarily on counting strategies as illustrated by their preference 

for selecting the largest addends first. The older children's selection strategies mostly 

reflected their use of the min reordering strategy, while the younger children seemed 

to be doing this but to a lesser extent. This supports my previous findings in Chapters 

5 and 6 which suggested that while children can be strategic about using their existing 
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knowledge effectively, they are likely to rely on methods that are most likely to 

provide them with a fast and accurate answer. Perhaps most children, especially the 

younger ones find it a more demanding task to try out new or unfamiliar strategies 

unless prompted by certain conditions. When given control over the choice of which 

digits to add first, most children chose the most familiar and reliable strategy that was 

available to them i.e. the min strategy, and were likely to use the number-fact 

knowledge (of tie-sums) that they felt most confident with. 
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Chapter 8 

8. Conclusions 

8. 1 Overview 

The aim of this chapter is to bring together some of the issues arising from the 

research reported in this thesis. In Chapter 1, I began by examining the social and 

political background of research in the area of mental arithmetic: from popular 

opinion on mental arithmetic and preoccupation with numeracy standards, to the 

debate about teaching practice, how it is embedded in the educational policies and 

therefore likely to reflect the dominant attitudes of that particular historical period. In 

Chapter 2, I provided a review of the development of research in mental arithmetic 

and examined relevant psychological concerns. This included a brief historical 

perspective of arithmetic in psychology. I went on to look at the research traditions 

within which arithmetic research has been studied, from its roots in behaviourism to 

the current traditions of cognitive science as well as cultural research in this area. In 

Chapter 3, I concentrated on one of these research traditions, cognitive research in 

mental arithmetic. Chapter· 3 was a deeper review of the existing research available in 

the area of mental arithmetic, in which I examined the current theories of simple 

arithmetic processing from evidence supporting the prevalent fact-retrieval theories to 

the schema-theory within which my own research is located. In Chapter 4, I went on 

to consider the methodology available for researching mental arithmetic that has been 

used in existing research, as well as outlining the methodology that would be 

developed and utilised in my own studies. 

In Chapter 5, I reported the results from my two foundation studies designed to look 

at the strategies that would emerge from children doing single-digit sums, decade 

sums and a selection of three-digit serial addition sums. These studies formed the 

benchmark for my future research in Chapters 6 and 7. The findings from the study 

reported in Section 5.1 of Chapter 5 led to the problems I investigated in Chapter 6, 

looking at whether children would export the strategies they used on single-digit sums 
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into decade sums. The findings from the study reported in Section 5.1 also led to the 

design of the study reported in Chapter 7. The research I reported in chapter 5, 

therefore, formed the platform for my later projects. 

In Chapter 5, I investigated the three general types of mental addition problems that 

formed the basis of my later studies. The fust of these problems was the single-digit 

case. While this has been a well-researched issue in this area, it clarified the baseline 

performance and solution processes on single-digit sums and helped identify some 

ground rules for the children in my sample. Decade sums and serial-addition sums are 

neglected areas in mental arithmetic research. The results from the decade and serial 

addition sums illustrated the complex nature of these problems. They were difficult 

for children, as indicated by their long solution times. Children took, on average, 

twice as long on these sums than on their single-digit counterparts. One of the reasons 

that decade sums might have been so demanding for children was the format in which 

they were presented to the children. That is, in my study the sums were presented in a 

linear (left to right) format which children are probably less familiar with compared to 

the columnar format more commonly used in school. This was one of the issues I 

rectified in the following chapter (6) that dealt with decade sums in greater depth. 

The results from the serial addition sums in Chapter 5 suggested that children seemed 

to be exploiting certain number-facts such as tie-sums when doing three-digit 

problems, whereas they seemed to be reluctant to use other potential number-facts 

such as sum to 10. Yet it was not enough to consider only solution times when 

investigating such problems because the linear presentation format in which these 

sums were presented could have been preventing children from using their strategic 

knowledge. Thus, in Chapter 7, children received sums in the format of numbers on a 

screen for which they were given control over the order in which they selected their 

addends. This enabled me to identify more precisely whether or not they were 

selecting their addends efficiently. 

The single-digit and the decade addition problems used in my first study (reported in 

Section 5.1 and 5 .2) were chosen in order to find out which combinations of numbers 
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children would find easiest and which combinations they would fmd difficult. The 

single-digit sums enabled me to discover which pairs of numbers were "number-facts" 

for my particular sample. In accordance with the existing research in the area, would 

tie-sum and sum-to-10 number facts be salient (be recalled from memory as opposed 

to counting) for these children? If these sums were becoming salient facts for the 

children, would their RTs for these sums suggest that they were being strategic with 

their knowledge? Similarly, the decade sums in this study were chosen to find out if 

any patterns emerged that would indicate whether children were relying on counting, 

use of number-facts or strategies such as decomposition. The findings from these 

studies would help in identitying what needed closer examination and whether the 

solution processes being used in these cases would be similar to processes used on 

sums involving a greater level of complexity. The three-digit serial addition sums 

chosen in Section 5. 2 were also chosen to see whether or not children were being 

strategic about their number knowledge. 

Some clear patterns emerged from the findings in Chapter 5. Firstly, tie-sums 

emerged as salient number facts fairly early on. Perhaps this is because they are 

visually distinctive as well as being emphasised in school textbooks as "doubles". 

These emerged as number-facts that children were willing to exploit when solving 

more complex sums. Secondly, somewhat inconsistently with previous published 

findings, sum to 10 number facts did not emerge as salient number-facts, except for 

the special cases of 9+ 1 (adding "1") and 5+5 (tie-sum). This is a cause for concern, 

because sum to 10 is a potentially more powerful number-fact than ties. Thirdly, 

being strategic with number knowledge is essentially about transformations, from the 

early emergence of the "min" reordering strategy to make counting easier, to using 

existing number-fact knowledge such as derived facts. As indicated by my findings, 

for the older children at least, the sums "adjacent to tie-sums" (e. g. 9+8) also had 

faster RTs compared to similar sums such as 9+7. Using a strategy is about making 

such transformations, i. e. transforming one difficult sum into two easier ones and 

then bringing them back together. Children tend to rely primarily on counting 

procedures, while also using non-counting procedures and part counting procedures. 

The results in Chapter 5 confirmed the three types of solution processes that are 
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employed by children and adults when doing mental addition. Some of these 

processes (such as the min strategy and transformation procedures) are strategic, 

while others (such as number-fact retrieval) are not. 

The results from both studies in Chapter 5 suggested that these children did have the 

ability to be strategic, i. e. go beyond basic counting. My aim was then was to 

investigate this in greater detail. As found by existing research in this area, children 

were only likely to use or try to use newer or different strategies when the sums 

became too complex to solve through simple counting-on strategies. My aim was to 

find out whether or not certain complex sums could encourage children to be strategic 

and whether this could be inferred by their solution times for those sums. If children 

were able to approach some types of decade sums and serial addition sums 

strategically, then what other types of decade sums and three-digit sums would they 

be more likely to solve strategically? That is, could certain types of sums encourage 

children into being strategic? 

Therefore, the decade sums I investigated in Chapter 6 were designed to look at some 

of the strategies identified in Section 5.1 and whether these would get recruited into 

solving decade sums where solution processes such as using number-fact knowledge 

and the min strategy could only be used effectively if the children were using 

decomposition. The results suggested that decomposition was being done some of the 

time on some of the sums, namely on decade sums with smaller addends and tie-sums. 

However, decomposition was not being exploited anything like as much as was 

possible. 

Similarly, the three-digit serial addition sums chosen in Chapter 7 were designed to 

look at the selection strategies children would use when required to do such sums. 

The sums in Chapter 7 were chosen to investigate in greater depth some of the 

findings that emerged from Section 5.2 in Chapter 5. Certainly, there was some sign 

of strategic reordering but this was limited to addend combinations involving tie

sums, once again reinforcing the saliency of tie number-facts. Some strategic 

reordering seemed to be in favour of selecting the largest addends first, implying that 
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most children seemed to be relying quite heavily on counting strategies. The sum to 

10 number facts were not being exploited even though, bearing in mind how difficult 

they were for most children, they would have benefited from any strategy that would 

have aided them in doing these sums. Their solution times for these sums certainly 

suggested that not being strategic about their addend selection hinders their 

performance, i. e. results in quite long solution times, and children who are strategic 

take less time to solve them. So, while there were signs that some children were being 

strategic about their addend selection, most were not. There seemed to be a degree of 

inertia on the part of children, with the exception of tie-sum cases, most children were 

being relatively careless about addend selection and relying on spatial cues i. e. 

position of the addends on the screen to select their addends. 

One of the aims of this thesis was to look at the relationship between procedural and 

number fact knowledge as suggested by schema-theory. My aim was to investigate 

whether or not I could use solution times to infer children's use of procedural 

knowledge. The results in Section 5.1 suggested this to be the case. My results 

showed that tie-sums had short RTs and this was consistent with existing research. 

However, the results for the adjacent to tie sums such as 6+7, 7 +8, and 9+8 suggested 

that these were being solved through a combination of number-fact and procedural 

knowledge at least by some of the older children. The results in Chapter 6 also 

suggested that it was possible to infer children's strategic use of both number fact and 

procedural knowledge from their solution methods. 

To conclude, the dominant finding of my research is that children are strikingly slow 

to adopt simple mental addition achievements into the context of more demanding 

tasks. Children in this research were chosen to represent a good sample of the junior 

school years. They came from two schools serving a wide catchment area and all the 

children from all relevant classes were included. There are thus grounds for 

confidence in the research outcomes. Yet, while these children were becoming fluent 

with tie-sums and although they did know about reordering possibilities (the min 

strategy), they were failing to internalise sum-to-10 number facts and they were by no 

means universal in their appropriation of simple number knowledge into complex 
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cases. Decomposition (and the advantages that follow) was not comprehensively 

adopted, even among the older children. Reordering strategies in serial addition were 

present but far from universally so. I shall comment further on the implications of 

these observations, following a brief reflection on methodology. 

8. 2 Reflections on methodology 

One of the central aims of this thesis was to design and evaluate a method that would 

allow me to carry out chronometric research in a naturalistic classroom environment. 

Earlier (chronometric) research had often involved researchers using methods that 

were inflexible and awkward to use in natural settings because they involved setting 

up complex equipment that often relied on voice-activated timer relays (Carnpbell and 

Graharn (1985) or setting up video-recording equipment to monitor children's 

strategies (Siegler and Jenkins, 1989). When inbuilt timers were used to record 

solution times these tended to be on verification (true/false) type tasks that do not 

reveal much information on just how long it takes individuals to solve sums as 

opposed to verify the answers. Such tasks would also be difficult to implement in 

developmental research. 

My intention was to devise a production task (one that requires the participant to 

generate an answer) that were relatively simple to integrate into normal classroom 

activities, were easy for the children to use, and could provide a reliable measure of 

RT for a range of addition problems. My research showed that this method did allow 

me to carry out my research tasks in an efficient and flexible manner. It was relatively 

straightforward to set up in a busy school environment since it required only a 

computer that could run the relevant software. What the method did not allow me to 

do was to look at exactly how the children were doing mental addition the way verbal 

reports/ interviews would. Strategy, as always in chronometric research, was inferred 

from the patterns in children's solution times. 
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8. 2. 1 Ease of use for the researcher 

The software made it very easy to take several measures of RTs as well as recording 

the addend selection for any combination of sums. It was simple to manipulate the 

task by entering the relevant program codes. The design of the classroom i. e. having 

the computer in a corner of the class meant that, after the first few visits, I was able to 

carry out my research with minimum disruption to the classroom activities. Doing the 

task became almost a routine experience for the children. 

This method allowed me to carry out research in an unobtrusive manner that was 

comfortable for both the children, their teachers and myself. The software would be 

ideal for gathering large amounts of data for individual children e. g. for gathering 

longitudinal data looking at practice effects for the same sums. Although this was not 

something that was part of my research, this feature made it a good tool for doing 

microgenetic research into where the transitional processes lie i. e how and when new 

strategies would be recruited by individual children as inferred by their RTs/ selection 

strategies for various sums. Such research is sensitive to a wider range of changes and 

greater use of it results in improvement in quality of developmental theorising as it 

allows us to look at changes as they occur. 

Development of mental arithmetic is about changing competency, from an initial 

reliance on laborious (finger) counting strategies to retrieval of number facts from 

memory and the use of conceptual (i. e. transformational) strategies such as 

decomposition and using derived facts. Mental arithmetic practice would benefit 

greatly from such research. As advocated by Kuhn (1995) and Siegler and Crowley 

(1991), the microgenetic method is a promising tool in the study of change. The goal 

of microgenetic research is to accelerate the change process by providing an 

individual frequent opportunities over a period of weeks or months to use the 

cognitive strategies being researched. Because mental arithmetic in children is 

developing continuously, it makes an ideal area for microgenetic analysis. Certainly, 

in mental arithmetic development the change process is not a simple transition from 

one mode of operation to another. Developing competence at mental arithmetic is all 
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about multiple strategies being used and applied to a single-problem over the course 

of repeated presentations. Siegler (1985, 1989) pointed out the benefits of using 

micro genetic methods for studying tbe strategy construction process because they 

reveal characteristics of the processes that would be difficult to discover through the 

use of alternative methods. The microgenetic approach helps to reveal where the 

transitions occur and this important in areas such as mental arithmetic where 

transitional processes are central to development. 

8. 2. 2 Ease of use for the participant 

The easy-to-use interface meant that the children were quite capable of going through 

the task unsupervised although this did not occur. Even fairly young children would 

not have found it too demanding to use. This would make the task ideal for use in 

classroom arithmetic practice. The software was set up to record the name and age of 

each child and once they began using it would create a file for each individual. Right

clicking on each name would bring up this file and it would show the performance of 

that child i.e how many sums they answered correctly as well as how long it took 

them. Some of the teachers of the children in my study seemed quite interested in this 

function, because it allowed them to find out at a glance just how well their students 

were doing. They were interested in its potential as a classroom teaching tool, 

especially because the children were willing to use it. 

The nature of the task also proved relatively popular with the children in my sample. 

In part, this was due to the RT for each sum flashing on the screen as soon as it was 

completed. This added a competitive element to the task that seemed to make it more 

interesting for the children. Most children treated it like a game and saw it as a 

welcome break from their normal classroom routine so it provided enough motivation 

for them to genuinely make an effort to do their best. I also found that accuracy 

seemed very important to most of the children. They were keen on making sure they 

had an accurate answer (whether or not they got the correct answer would also flash 

on the screen). Even if getting this correct answer meant getting a long RT as a result 
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of using a laborious counting method, they were willing to make this effort. This 

observation would explain why some of the sums resulted in fairly long solution 

times. While most of the sums were quite difficult for children, children's desire for 

"getting the right answer" might have resulted in them being solved even more 

carefully, with some children counting out the answers. Such laborious (often finger

based) counting methods do, however, imply that this dependence on counting can 

have a detrimental affect on mental arithmetic especially in "timed test" case 

scenarios. 

Another casual observation was that it did seem that the children who got the fastest 

times were not always the ones who relied on retrieval from memory, quite a few of 

them seemed to be relying on very fast counting. Interesting enough, some of the 

more competent/ older children also seemed to be the ones who tended to rely on 

counting strategies, because they were also the ones who were interested in getting 

accurate answers. Thus supporting Siegler's (1988) findings in which he identified 

"good students, not-so-good students and perfectionists". Perfectionists were students 

who, despite having greater speed and accuracy than other groups, were less likely to 

use retrieval of number-facts, relying instead on "back-up" strategies such as counting 

or derived facts. 

8. 3 Implications 

8. 3. 1 Practical Implications 

The research in my thesis suggests that children do have the capacity to carry forward 

their simple strategies into more complex addition environments. This means that 

perhaps, in addition to teaching children about number-facts such as tie-sums 

(doubles), more attention needs to be given to more powerful number facts such as 

sum to 10, and to decomposition-based strategies. Nor is it enough just to have 

number fact knowledge, if this is to be stored in a passive sense. Knowledge of 

arithmetic facts alone does not help with more conceptual aspects of mathematical 
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thinking and problem solving. Children need to know what to do with it, how to make 

use of it creatively and innovatively. For most children, counting is adequate enough 

when it comes to simple sums. From their point of view, why should they invest more 

effort? Perhaps schools should focus less on computational drill and more on getting 

children to understand why arithmetic procedures work for promoting long-term 

computational achievement. 

According to Resnick (1989), children's invented arithmetic procedures show that 

they are able to construct basic principles of maths such as commutativity, 

complementarity of addition and subtraction, and associativity in intuitive forms well 

before such ideas are learnt in school. But school arithmetic does not build effectively 

on the base of children's informal knowledge. Resnick (1989) argues that children are 

taught to focus on the syntax of mathematics rather than its semantics where the 

sequence in which written numbers and calculations is the primary concern, in 

addition to emphasis on practice in memorising arithmetic combinations and rules for 

applying these in longer multidigit computations. 

As pointed out by Siegler and Jenkins (1989), pretest knowledge of addition and 

related skills was not a good predictor of children's order of discovery of the rnin 

strategy. Children with the best knowledge of number-facts are not necessarily the 

first to discover new strategies. It is not always the child with the most advanced 

knowledge who first discovers a new strategy, but one who is willing to consider 

diverse strategies and to continue using them even when they do not always seem to 

be working. It is this willingness to try to use diverse strategies that must be 

encouraged. Some of the children in my sample seemed to be willing to do this. The 

results in Chapter 6, for example, suggested that they were willing to attempt to use a 

tie-sum when it appeared in a decade context even though doing so increased their 

solution times and made the sum seem harder. 

This would suggest that while it is important for children to learn number-facts 

through practice, it is just as important for them to have conceptual understanding of 

principles such as decomposition for development of their addition skills, as pointed 

263 



out by Isaacs and Carron (1999). Conceptual understanding of one type of problem 

would enable children to solve other problems of a similar structure. The overall 

conclusion from my results was that while practice at number fact knowledge is 

crucial, the importance of conceptual knowledge must also be stressed. As Baroody 

(1994) argued, conceptual understanding both guides and constrains children's 

problem solving and as such must not be pushed aside in a bid to improve number

fact knowledge. With experience, children become faster and more accurate at solving 

addition problems and begin to use more sophisticated strategic solution processes 

such as commutitivity, decomposition and retrieval. 

My own research leads me to concur with this view. Older children were the most 

likely to show recognition and use of more sophisticated strategic solution methods, 

and this seemed to be the case with most of the children in the oldest age groups. But 

even these older children were not being overly strategic. They still seemed to be 

relying mostly on counting, and were not always reordering addends optimally, 

considering that some of them were at the end of primary school i. e. have gone 

through six years of taught arithmetic. Perhaps strategies should be taught before drill 

and practice in number fact recall. However, evidence also suggests that the 

development of "invented" or creative strategies can be enhanced by practice. 

The underlying reason for focus on number facts in school is the idea that it promotes 

the transition to "adult-like" patterns of retrieval. As Resnick (1989) notes, a 

dependence on counting directs children's attention away from the additive 

composition properties of numbers. My findings suggested that this does indeed seem 

to be the case. As illustrated by the results in chapter 6, children seem to rely on 

. counting and counting-based strategies like min. When they are strategic, they seem 

to favour number facts such as tie-sums over sum to 10 number fact as demonstrated 

in Chapter 7. This is worrying because children who have difficulty learning 

mathematics are likely to rely on counting methods for a long time, and because 

counting methods do get the task done i. e. result in an accurate answer children's 

reliance on counting tends to go unnoticed. 
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However, this is not intended to paint a totally bleak landscape, but to point out just 

how slowly these children are making the steps into more advanced forms of addition 

computation. They do not seem to be using sum to 10 number-facts. They do not 

seem too eager to use decomposition, and they are not vigorous about reordering 

addends to optimise addition problems. They seem to manage well enough, but they 

are doing this through simple, rather than innovative and strategic methods. Addition 

strategies seem to remain at the primitive (but reliable) stage of mental or finger 

counting. This relative inertia regarding strategic solution methods is forgivable 

because such processes involve "hidden" processing. Classroom practice needs to take 

this into account and perhaps incorporate tasks that encourage children to be more 

strategic. Teachers can implement classroom tasks and activities that actively 

encourage children to use more flexible strategies based on conceptual knowledge of 

arithmetical strategies. 

The methodology I used in my study can be used as a teaching practice aid to 

encourage children to use skills such as decomposition strategies and using number

fact knowledge in addition to tie-sum knowledge. Teachers were struck by the 

simplicity and design of the program I used in my task. Such a task could easily be 

modified and adapted to allow teachers to cultivate strategic moves that may initially 

seem like "long-cuts" but which may become short-cuts with even modest amounts of 

rehearsal. A task such as this one could allow the teacher to easily monitor their 

student's progress and to set up a range of tasks according to children's individual 

capabilities. 

8. 3. 2 Research Implications 

Due to time constraints, I was unable to investigate serial addition for sums with more 

than three-digits. This remains an area that would benefit from future research. What 

would happen to children's strategic knowledge when required to add sequences of 

perhaps four or more digits? Would they still be relying on counting strategies or 
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would such sums provide enough of a challenge to encourage them to use more 

effective solutions processes? 

The design of the task I used in my research would be ideal for looking at practice 

effects and individual differences in children's arithmetic performance. This is why 

the ease with which this task lends itself to microgenetic methods of studying change 

is so useful. According to Kuhn (1995) the purpose of the microgenetic method is to 

accelerate a natural change process by increasing the density of exercise above its 

normal level. This use of the microgenetic method has shown itself to be informative 

regarding the development of the skills examined and suggests the versatility of the 

method. This is precisely what developmental mental arithmetic research aims to look 

at. Development of competence at mental arithmetic is all about looking at change. 

Once the problem areas in arithmetic development are identified then something can 

be done to remedy them. More research of this sort means research that has 

significant ramifications for both arithmetic research in general and would also be 

extremely valuable in serving the interests of a future generation of children who, as a 

result of living in an increasingly hi-tech world, will have high basic numeracy 

requirements. 
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Appendix 1 

Diagram 1: Schematic diagram of screen appearance 

D 
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Appendix 2: Error Rates 

All error frequencies include the number of times each participant selected an 

incorrect answer for a given sum. This means that they include the number of times 

each child would give an incorrect or a correct response. Because each child received 

two trials at a problem if they made a mistake the first time, this would mean that an 

error frequency of 3 for the sum 1 +2, for example, could include the number of times 

an incorrect response was entered for that sum by the same child. 

2. 1 Error rates for sums in Chapter 5 

2. 1. 1 Sums in 5. 1 Experiment 1 

2. 1. 1. 1 Error frequencies for single digit-sums 

Table 1 Error frequencies for the 45 single-digit sums. 

Sum Response Percent Percent Percent Percent 
Year 3 Year4 YearS Year 6 

1+1 wrong 
right 100 100 100 100 

1+2 wrong 3.3 2.2 
right 96.7 97.8 100 100 

1+3 wrong 8.5 3.3 5.1 
right 100 91.5 96.7 94.9 

1+4 wrong 2.3 3.2 
right 100 97.9 96.8 100 

1+5 wrong 1.7 2.2 2.6 
right 98.3 97.8 100 97.4 

1+6 wrong 2.2 2.6 
right 100 97.8 100 97.4 

1+7 wrong 1.6 
right 98.4 100 100 100 

1+8 wrong 4.8 4.3 
right 95.2 95.7 100 100 

1+9 wrong 1.6 2.3 
right 98.4 97.7 100 100 

2+2 wrong 
right 100 100 100 100 

2+3 wrong 3.3 3.2 2.7 
right 96.7 100 96.8 97.3 

2+4 wrong 1.7 4.3 
right 98.3 95.7 100 100 
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Sum Response Percent Percent Percent Percent 
Year3 Year 4 Year 5 Year 6 

2+5 wrong 1.7 2.2 2.6 
right 98.3 97.8 100 97.4 

2+6 wrong 1.6 4.3 
right 98.4 95.7 100 100 

2+7 wrong 4.3 3.3 
right 100 95.7 96.7 100 

2+8 wrong 
right 100 100 100 100 

2+9 wrong 2.3 6.3 2.6 
right 100 97.7 93.8 97.4 

3+3 wrong 4.8 6.3 2.6 
right 95.2 100 93.8 97.4 

3+4 wrong 12.5 11.8 2.6 
right 87.5 100 88.2 97.4 

3+5 wrong 6.4 3.2 
right 100 93.6 96.8 100 

3+6 wrong 9.2 4.3 12.1 5.1 
right 90.8 95.7 87.9 94.9 

3+7 wrong 4.8 2.2 3.2 5.1 
right 95.2 97.8 96.8 94.9 

3+8 wrong 7.8 4.3 7.5 
right 92.2 95.7 100 92.5 

3+9 wrong 5 2.2 9.1 
right 95 97.8 90.9 100 

4+4 wrong 1.7 
right 98.3 100 100 100 

4+5 wrong 6.2 4.3 2.6 
right 93.8 95.7 100 97.4 

4+6 wrong 7.9 4.3 6.3 5.1 
right 92.1 95.7 93.8 94.9 

4+7 wrong 3.3 6.4 6.7 7.5 
right 96.7 93.6 93.3 92.5 

4+8 wrong 4.9 10.4 9.8 
right 95.1 89.6 100 90.2 

4+9 wrong 7.8 10.2 11.8 5.1 
right 92.2 89.8 88.2 94.9 

5+5 wrong 3.3 
right 100 100 96.7 100 

5+6 wrong 10.6 6.4 6.1 2.6 
right 89.4 93.6 93.9 97.4 

5+7 wrong 10.8 12 6.3 14 
right 89.2 88 93.8 86 

5+8 wrong 12.1 6.3 2.6 
right 87.9 100 93.8 97.4 
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Sum Response Percent Percent Percent Percent 
Year3 Year4 Year 5 Year6 

5+9 wrong 6.3 4.4 9.7 14.3 
right 93.8 95.6 90.3 85.7 

6+6 wrong 3.4 3.6 
right 96.6 100 96.4 100 

6+7 wrong 11.8 12 3.3 7.1 
right 88.2 88 96.7 92.9 

6+8 wrong 9.1 10.2 14.3 18.6 
right 90.9 89.8 85.7 81.4 

6+9 wrong 9.2 10.2 9.1 
right 90.8 89.8 90.9 100 

7+7 wrong 11.8 10.4 6.3 
right 88.2 89.6 93.8 100 

7+8 wrong 12.3 15.4 12.5 15.9 
right 87.7 84.6 87.5 84.1 

7+9 wrong 10.4 13.7 14.3 18.2 
right 89.6 86.3 85.7 81.8 

8+8 wrong 6.3 8.3 3.3 14.3 
right 93.7 91.7 96.7 85.7 

8+9 wrong 11.9 17 3.2 5.3 
right 88.1 83 96.8 94.7 

9+9 wrong 13 17.3 6.3 5.1 
right 87 82.7 93.8 94.9 
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2. 1. 1. 2 Error frequencies for decade sums 

The sums for these decade problems correspond to the three types of decade sums as 

described in Section 5 .1.2.2. The sum type given here is just an example of the type of 

sum the participants would have received as opposed to the exact sum which was 

randomised as described in Section 5.1.2.2. 

Table 2 Error frequencies for decade sums. 

Sum Response Percent Percent Percent Percent 
Type Year 3 Year4 Year 5 Year 6 
A) 23+n ( < 10) wrong 11.5 9.3 6.2 5.1 

right 88.5 90.7 93.8 94.9 
A) 26+n (> 10) wrong 15.9 25 19.4 9.8 

right 84.1 75 80.6 90.2 
B)53+n(<10) wrong 14.9 15.7 7.7 1.3 

right 85.1 84.3 92.3 98.7 
B)56+n(>l0) wrong 24.7 26.3 16.7 29.4 

right 75.3 73.7 83.3 70.6 
C) 83+n ( < 10) wrong 19.4 2.2 3.2 3.9 

right 80.6 97.8 96.8 96.1 
C) 86+n (> 10) wrong 26.3 23.2 11.8 20 

right 73.7 76.8 88.2 80 

2. 1. 2 Sums in 5. 2 Experiment 2 

2. 1. 2. 1 Error frequencies for three-digit sums 

Table 3 Error frequencies for three-digit sums. 

Sum Response Percent Percent Percent Percent 
Year3 Year 4 Year 5 Year 6 

4+4+1 wrong 4.3 2.3 
right 100 95.7 97.7 100 

4+1+4 wrong 7 2.3 2.7 
right 93 100 97.7 97.3 

4+4+3 wrong 5.4 2.2 8.5 2.7 
right 94.6 97.8 91.5 97.3 

4+3+4 wrong 3.6 2.3 4.4 5.3 
right 96.4 97.7 95.6 94.7 
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Sum Response Percent Percent Percent Percent 
Year 3 Year 4 Year 5 Year 6 

3+4+4 wrong 21.2 2.2 8.5 2.7 
right 78.8 97.8 91.5 97.3 

7+3+n wrong 5.4 13.7 14.3 
right 94.6 86.3 85.7 100 

7+n+3 wrong 9.8 10.2 6.7 10 
right 90.2 89.8 93.3 90 

9+1+n wrong 6.9 6.4 2.3 
right 93.1 93.6 97.7 100 

9+n+1 wrong 16.9 8.2 10.4 16.3 
right 83.1 91.8 89.6 83.7 

9+a+b wrong 10.3 14 21.6 16.3 
right 89.7 86 78.4 83.7 

a+9+b wrong 11.7 13.7 12.5 10.3 
right 88.3 86.3 87.5 89.7 

a+b+9 wrong 8.8 12.2 8.9 18.2 
right 91.2 87.8 91.1 81.8 

5+4+3 wrong 12.9 4.3 2.3 12.2 
right 87.1 95.7 97.7 87.8 

4+5+3 wrong 5.2 8.2 14.3 12.2 
right 94.8 91.8 85.7 87.8 
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2. 2 Error rates for sums in Chapter 6 

2. 2. 1 Error frequencies for single-digit and decade sums 

Table 4 Error frequencies for single-digit and decade sums. 

Sum Response Percent Percent Percent 
Year3 Year4 Year 5 

5+1 right 100 100 100 
wrong 

5+2 right 100 100 100 
wrong 

5+3 right 97 100 97 
wrong 3 3 

5+4 right 97 91 100 
wrong 3 9 

45+1 right 100 91 94 
wrong 9 6 . 

45+2 right 97 100 94 
wrong 3 6 

45+3 right 100 91 92 
wrong 9 8 

45+4 right 92 100 97 
wrong 8 3 

3+3 right 100 100 100 
wrong 

23+3 right 92 84 100 
wrong 8 16 

6+6 right 90 100 97 
wrong 10 3 

26+6 right 87 88 90 
wrong 13 13 10 

4+7 right 97 100 97 
wrong 3 3 

7+4 right 97 100 97 
wrong 3 3 

34+7 right 83 96 90 
wrong 17 4 10 

37+4 right 87 95 92 
wrong 13 5 8 

3+6 right 97 100 100 
wrong 3 

6+3 right 97 100 100 
wrong 3 
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Sum Response Percent Percent Percent 
Year3 Year 4 Year 5 

33+6 right 90 80 92 
wrong 10 20 8 

36+3 right 100 91 92 
wrong 8.7 8 

25+6 right 87 87 92 
wrong 13 13 8 
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Appendix 3: Means and Standard Deviation 

3. 1 Means and Standard Deviations for sums in Chapter 5 

3. 1. 1 Sums in 5.1 Experiment 1 

3. 1. 1. 1 Means and standard deviation for single-digit sums 

Table 1 Means and standard deviation for single-digit sums 

Sum Year Mean Std Deviation 
1+1 3 592.2414 684.6012 

4 410.2955 177.1728 
5 356.9310 176.9939 
6 280.1892 117.1525 

1+2 3 692.2241 609.9116 
4 540.3636 413.2893 
5 410.7000 275.4538 
6 428.3243 316.4413 

1+3 3 687.7458 881.0685 
4 528.8409 573.2186 
5 415.8000 269.7065 
6 343.8919 145.2429 

1+4 3 574.8103 392.4266 
4 443.5581 286.4745 
5 369.1000 227.3778 
6 331.6216 129.9507 

1+5 3 728.8571 628.7098 
4 544.2273 376.1820 
5 419.4333 277.0977 
6 460.6486 406.3771 

1+6 3 812.3898 841.1910 
4 584.5227 550.3007 
5 405.2667 192.5556 
6 419.5676 210.6965 

1+7 3 681.8644 510.9836 
4 449.6818 195.0721 
5 380.9355 184.4005 
6 405.1892 274.8387 

1+8 3 750.6724 774.6498 
4 565.4773 366.5130 
5 417.3333 299.9761 
6 369.1111 181.5330 
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Sum Year Mean Std Deviation 
1+9 3 809.9825 922.3863 

4 473.3864 354.7879 
5 357.0333 168.9110 
6 303.8378 133.3297 

2+2 3 556.3966 361.1634 
4 407.8409 221.4971 
5 343.9667 174.3464 
6 367.2703 280.1428 

2+3 3 798.5088 673.5920 
4 674.5682 560.2176 
5 450.7000 586.6694 
6 370.5833 188.4803 

2+4 3 997.3793 1057.8786 
4 739.9545 621.0831 
5 418.7667 255.9322 
6 424.4595 196.1813 

2+5 3 983.0862 997.6494 
4 544.1136 206.2381 
5 481.2333 189.4596 
6 452.1316 195.2591 

2+6 3 1254.2281 2475.9787 
4 621.2273 417.3275 
5 427.7000 182.3498 
6 398.1351 186.3723 

2+7 3 888.4483 749.5560 
4 728.3409 528.4200 
5 534.0345 408.1940 
6 464.6216 278.6041 

2+8 3 816.1071 945.7119 
4 690.0000 823.4540 
5 429.0333 312.9802 
6 435.5946 295.8627 

2+9 3 837.4655 794.7153 
4 566.3256 483.6399 
5 506.9032 521.9203 
6 445.9730 554.4522 

3+3 3 876.6034 1813.0162 
.. 4 590.1163 483.1747 

5 484.1000 314.1290 
6 324.9189 103.4994 

3+4 3 1070.3750 779.5840 
4 798.0909 618.2604 
5 671.4000 734.3298 
6 604.6579 382.8358 
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Sum Year Mean Std Deviation 
3+5 3 1026.1379 1289.4498 

4 784.3864 576.6824 
5 551.7667 337.8678 
6 524.7297 295.6233 

3+6 3 1216.6140 1683.0742 
4 924.2500 1080.8200 
5 615.5333 598.6354 
6 494.8378 271.3865 

3+7 3 1319.4237 1431.4877 
4 791.2727 647.3685 
5 495.9667 279.0350 
6 597.4865 541.6360 

3+8 3 1516.4737 2291.8813 
4 870.2273 904.7848 
5 486.4828 338.7236 
6 577.2973 384.1062 

3+9 3 1231.6842 1616.6746 
4 766.8182 597.9106 
5 661.5000 787.3411 
6 503.8378 352.1401 

4+4 3 727.1034 664.1872 
4 556.9545 474.2614 
5 418.2000 332.0709 
6 348.8056 184.4499 

4+5 3 1150.1207 1655.9828 
4 855.0682 646.2929 
5 482.0000 251.8137 
6 493.3784 422.8036 

4+6 3 1491.1207 2065.7187 
4 952.1364 1074.2075 
5 728.6667 561.7257 
6 604.0270 460.3160 

4+7 3 1147.0862 1004.0280 
4 879.1818 774.3612 
5 658.0345 595.5788 
6 638.5405 395.8269 

4+8 3 1295.0847 1231.0344 
4 1035.2727 892.3349 
5 560.5484 401.3894 
6 589.4865 375.4473 

4+9 3 1143.5789 937.2989 
4 1093.7273 1396.1696 
5 851.3333 742.6445 
6 567.6757 377.4724 
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Sum Year Mean Std Deviation 
5+5 3 659.5862 749.8480 

4 408.0000 270.5069 
5 428.9310 360.9453 
6 321.3784 194.6877 

5+6 3 1297.8772 1664.7375 
4 867.5455 643.4213 
5 726.3548 761.7916 
6 489.1622 216.7971 

5+7 3 1462.0508 934.4234 
4 1286.9773 1770.2728 
5 673.3000 375.2891 
6 867.6216 839.5008 

5+8 3 1374.6491 1441.4553 
4 1112.0000 861.1699 
5 1036.9677 1192.9532 
6 707.9730 456.7837 

5+9 3 1802.0678 2211.2677 
4 1028.2791 895.5417 
5 703.7931 616.5635 
6 665.4595 414.0096 

6+6 3 883.3750 918.8196 
4 551.7955 367.7749 
5 469.8889 365.4987 
6 365.0541 230.5995 

6+7 3 1618.1034 1367.9015 
4 1264.1364 1106.4875 
5 907.0714 761.9101 
6 721.4211 507.9416 

6+8 3 1623.2105 1359.5563 
4 1617.7273 1664.4062 
5 1230.5000 2342.8736 
6 968.1351 725.1315 

6+9 3 1586.2414 1465.2170 
4 1370.6364 1503.0501 
5 920.5000 1052.7570 
6 866.6842 999.5224 

7+7 3 1492.5789 1396.8509 
4 955.8864 1054.1886 
5 599.0345 612.3386 
6 509.9459 344.7374 

7+8 3 1550.6316 1198.4044 
4 1531.2045 1442.6559 
5 1150.9655 1548.4297 
6 870.8919 800.5472 

. 
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Sum Year Mean Std Deviation 
7+9 3 1675.9138 1418.5412 

4 1232.8636 1052.7568 
5 1249.9333 1681.9455 
6 951.3243 786.1504 

8+8 3 1858.5345 2503.3577 
4 1216.5909 1667.1507 
5 605.4483 539.1807 
6 847.2973 1138.8311 

8+9 3 1805.9138 1449.3664 
4 1470.4318 1325.5224 
5 824.6667 690.4705 
6 770.0278 701.6555 

9+9 3 1642.2931 1459.1441 
4 1257.1364 1802.9604 
5 707.2333 891.7002 
6 604.0541 549.4494 

3. 1. 1. 2 Means and standard deviation for decade sums 

The single-digit and decade sums here are examples of the types of decade sums used 

in the task instead of actual sums. 

Table 2 Means and standard deviation for 20s single-digit and decade sums. 

Means and standard deviation for 20s single-digit and decade sums 

rt for 20s rt for 20s rt for 20s rt for 20s rt for 20s rt for 20s 
<10 sum <10 sum tie sum tie sum >10 sum > 10 sum 

year (I +2) (21+2) (2+2) (22+2) (6+9) (26+9) 
lj.W N jO j0 j0 jO j0 jO 

Mean 983.2632 1203.1579 980.7105 905.5526 1502.1579 2182.5789 
Std. Dev 817.3971 901.0995 2151.8532 789.1600 1673.5637 2024.4576 

l"·w N 44 44 44 44 44 44 
Mean 675.6364 1092.4318 451.5682 786.4545 1068.4091 1631.4318 
Std. Dev 433.1686 1833.3418 217.4094 818.1737 933.5884 1420.7706 

l'·w N 30 30 30 30 29 30 
Mean 416.0333 1038.1667 390.2333 730.1333 949.6897 1248.7333 
Std. Dev 213.!010 1772.7341 220.3041 696.3391 933.5305 1292.0483 

I o.w N 37 37 37 37 37 37 
Mean 436.0270 624.3784 323.5946 546.8649 835.4324 1129.2162 
Std. Dev 267.8175 554.8194 164.7015 275.5438 903.7425 959.4675 

1 Total N 149 149 149 149 148 149 
Mean 642.3221 993.5168 542.3893 745.9933 1098.2703 1570.2282 
Std. Dev 546.8912 1385.2290 1120.6703 693.2901 1179.0321 1526.1350 
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Table 3 Means and standard deviation for 50s single-digit and decade sums. 

Means and standard deviation for 50s single-digit and decade sums 

rt for 50s rt for 50s rt for 50s rt for 50s rt for 50s rt for 50s 
<10 sum < 10 sum tie sum tie sum > 10 sum >10 sum 

year (4+5) (54+5) (4+4) (54+4) (4+7) (54+7) 
.>.W N j0 JO jO JO JO :;~ 

Mean 921.7105 1762.3684 567.5526 1026.0789 1205.6053 3037.2368 
Std. Dev 1797.6957 1951.5521 403.2160 759.6762 1028.5202 4050.7619 

I'>.W N 44 44 44 44 44 44 
Mean 697.4091 1265.2727 477.2273 929.1364 921.8409 1936.4318 

Std. Dev 567.4074 1258.8020 254.1326 919.6593 703.8143 1474.1935 

I'·W N 30 30 30 30 30 30 

Mean 413.0000 922.6667 427.3000 692.7000 747.4667 1369.8000 
Std. Dev 273.0518 1307.2359 246.3893 958.6223 613.9032 1239.2011 

o.W N 37 37 37 37 37 37 

Mean 400.6486 676.7568 366.2162 479.7838 783.9459 1630.7838 
Std. Dev 182.5888 610.2215 276.1258 459.9997 553.0761 1932.1393 

TOtal N 149 149 149 149 149 149 
Mean 623.6577 1176.9262 462.6443 794.6711 924.8591 2027.1879 
Std. Dev 984.9064 1415.5970 308.7367 817.0467 766.9555 2516.7091 

Table 4 Means and standard deviation for 80s single-digit and decade sums. 

Means and standard deviation for 80s single-digit and decade sums 

rt for 80s rt for 80s rt for 80s rt for 80s rt for 80s rt for 80s 
<10 sum <10 sum tie sum tie sum > 10 sum > 10 sum 

year (2+3) (82+3) (3+3) (83+3) (5+6) (85+6) 
ij.W N :;~ j0 :;o j0 :;o j0 

Mean 681.8684 1791.5789 926.0526 1272.3947 1462.9737 3262.5526 
Std. Dev 425.9102 1535.2885 2047.0641 1499.3531 1679.8702 3460.5958 

14.W N 44 44 44 44 44 44 

Mean 645.8636 1204.7955 520.6364 860.0455 1057.4091 2043.1364 
Std. Dev 401.7123 1717.8912 323.6255 581.5732 724.7016 1660.6331 

i>.W N 30 30 30 30 30 30 
Mean 455.2667 943.9333 433.2667 686.2667 961.9667 1384.9000 
Std. Dev 228.0851 1218.9206 357.1248 660.8000 1029.3319 1111.5091 

IO.W N 37 37 37 37 37 37 
Mean 484.5405 731.9459 346.6757 506.9189 707.2703 1267.6486 
Std. Dev 324.0089 638.1291 154.4839 413.9722 597.2514 1003.3734 

!Oiai N 149 149 149 149 149 149 
Mean 576.6107 1184.5034 563.2416 842.5302 1054.6779 2029.0268 
Std. Dev 370.5933 1412.2919 1076.2571 931.7586 1107.7804 2214.0204 
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---------------------------------------------------------------

Table 5 Means and standard deviation for 20s decade overhead RT difference. 

Means and standard deviation for 20s decade overhea< 
difference 

20s 20s 
(answer 20s (answer 

year < 10) (tie-sum) > 10) 
I j,UU 1'1 38 38 38 

Mean 219.895 -75.1579 680.421 

Std. Dev 1000.42 2139.32 1713.89 

1
4.UU N 44 44 44 

Mean 416.795 334.886 563.023 

Std. Dev 1660.22 804.457 1350.14 

15.00 N 30 30 29 

Mean 622.133 339.900 297.069 

Std. Dev 1757.39 584.855 1483.69 

6.00 N 37 37 37 

Mean 188.351 223.270 293.784 

Std. Dev 531.152 320.050 661.787 

Total N 149 149 148 

Mean 351.195 203.604 473.743 

Std. Dev 1323.65 1205.43 1351.62 
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Table 6 Means and standard deviation for 50s decade overhead RT difference. 

Means and standard deviation for 50s decade overhea< 
difference 

50s 50s 
(answer 50s (answer 

year < 10) (tie-sum) > 10) 
fT.UU N 38 ~8 ~ 

Mean 840.658 458.526 1831.63 

Std. Dev 1974.00 608.854 3739.33 

14.00 N 44 44 44 

Mean 567.864 451.909 1014.59 

Std. Dev 1278.12 890.938 1393.81 

5.00 N 30 30 30 

Mean 509.667 265.400 622.333 

Std. Dev 1106.74 841.468 1073.82 

6.00 N 37 37 37 

Mean 276.108 113.568 846.838 

Std. Dev 537.812 465.518 1789.85 

Total N 149 149 149 

Mean 553.268 332.027 1102.33 

Std. Dev .· 1341.65 732.097 2295.02 
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Table 7 Means and standard deviation for 80s decade overhead RT difference. 

Means and standard deviation for 80s decade overhea< 
difference 

80s 80s 
(answer 80s (answer 

year < 10) (tie-sum) > 10) 
j.UU 1'1 ~ 38 ~ 

Mean 1109.71 346.342 1799.58 
Std. Dev 1455.82 2082.19 2423.99 

4.UU N 44 44 44 
Mean 558.932 339.409 985.727 
Std. Dev 1693.82 494.235 1423.70 

5.UU N 30 30 30 
Mean 488.667 253.000 422.933 
Std. Dev 1155.57 630.982 808.640 

6.00 N 37 37 37 
Mean 247.405 160.243 560.378 
Std. Dev 645.724 354.303 1091.79 

Total N 149 149 149 
Mean 607.893 279.289 974.349 
Std. Dev 1351.75 1126.63 1659.90 
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3. 1. 2 Sums in 5.2 Experiment 2 

3. 1. 2. 1 Means and standard deviation for three-digit sums 

Table 8 Means and standard deviation for Problem Type A 

Means and standard deviation for sums in Problem Type A (tie sums) 

year 4+1+4 4+4+1 4+4+3 4+3+4 3+4+4 
I .1.UU lVlean 1U/4.L:l ISU • .1UIS ULIS.L~ UISL.UIS 1L;)U.!>4 

:Std. 
1274.43 674.797 1704.11 1298.24 1243.82 Deviation 

14.UU Mean 910.273 699.953 810.136 951.381 925.767 
Sto. 

944.375 556.745 666.170 762.773 861.554 Deviation 
I 5.UU Mean 647.465 552.860 699.744 775.698 853.535 

:std. 
463.864 408.709 571.840 584.717 1197.47 Deviation 

!>.UU Mean 534.200 456.200 526.543 622.714 574.886 
:sto. 

265.784 300.931 272.792 320.600 331.998 Deviation 
Total Mean 818.684 648.150 880.()61 970.791 936.293 

:sto. 
901.120 536.733 1074.90 912.407 1036.07 Deviation 
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Table 9 Means and standard deviation for sums in Problem Type B 

Means and standard deviation for sums in Problem Type B 
(sum-to-10) 

year 7+3+n 7+n+3 9+1+n 9+n+1 
,,uu !Vlean 11Ull . .5l l6lll.4/ l4b:>. :l:> l :>:;\1, U:l 

:sta. 
1751.04 1328.04 1489.73 1692.09 

Deviation 

14.VV Mean 1537.65 1814.14 1190.02 1417.37 
Std. 

1673.49 2649.83 2290.28 1719.43 Deviation 
.5.UU Mean 1004.14 1100.24 643.286 971.762 

Std. 
858.306 1054.17 476.319 1189.15 Deviation 

b.UU Mean 850.514 907.514 606.486 780.257 
:Std. 

624.445 646.784 286.303 499.358 Deviation 
Total Mean 1319.63 1399.85 1020.98 1213.80 

:sta. 
1408.69 1658.34 1469.13 1434.86 Deviation 

Table 10 Means and standard deviation for sums in Problem Type C 

eans and standard deviation for sums in Problem TyJ 
C (9+a+b) 

year 9+b+c a+9+c a+b+9 
,,uu Mean 2Ulb.l3 l9:l5.Y2 HS4,5,:;;> 

Std. 
2473.64 2049.92 1835.56 Deviation 

4.UU Mean 1401.30 1534.75 2058.28 
Std. 

1677.64 1769.56 3648.54 Deviation 
.5.UU Mean 1051.52 1038.72 935.000 

Std. 
1529.84 1003.60 680.605 Deviation 

6.UU Mean 998.714 993.029 1001.11 
Std. 

476.195 1199.54 751.437 Deviation 
Total Mean 1419.85 1422.99 1502.50 

Std. 
1816.67 1645.55 2179.25 Deviation 
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Table 11 Means and standard deviation for sums in Problem TypeD (filler sums) 

Means and Standard Deviation for sums in 
Group D (filler sums) 

year 5+4+3 4+5+3 
I j.VV Mean looJ.n Tf74.68 

Stet. 
2072.00 1111.31 

Deviation 
HJO Nlean 1296.50 1160.70 

l)f<[ 
1617.52 822.362 

Deviation 
15.00 1 Mean 890.256 1071.28 

Std. 
970.968 1118.56 

Deviation 
1 o.oo 1 Mean 748.257 796.057 

Std. 
372.180 456.271 

Deviation 
Total ~ean 1198.31 1130.61 

--sto. 
1522.14 959.510 

Deviation 
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3. 2 Means and standard deviation for sums in Chapter 6 

3. 2. 1 Means and standard deviation for sums in Problem Type A 

Table 12 Means and standard deviation for 5 +n sums in Problem Type A. 

eans and standard deviation for single-digit sums in Problem Type 

year 5+1 5+2 5+3 5+4 
j.UU Mean 41/.L~4 /4U.4/l /~l.(J/() 04~.4/1 

:stet. 
183.590 606.926 997.007 467.462 

Deviation 

4.UU Mean 328.238 411.048 478.619 530.667 
:stet. 

111.085 155.814 240.433 291.094 
Deviation 

5.UU Mean 287.882 342.559 372.029 394.118 
:stet. 

140.717 165.296 225.803 263.373 Deviation 

Total Mean 346.843 510.730 553.674 523.506 
Met. 

161.904 433.116 662.718 373.804 
Deviation 
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Table 13 Means and standard deviation for 45+n sums in Problem Type A. 

Means and standard deviation for decade sums in Problem Type l 

year 45+1 45+2 45+3 45+4 
! -'.VU Mean 46~UU4 YY:>.:>~~ ~Y4.:>~~ YU:>.U:lY 

Std. 
200.516 910.525 570.086 846.426 

Deviation 

~ 4.UU Mean 389.333 468.143 509.429 513.857 
Std. 

173.345 208.508 173.402 238.150 Deviation 
:>.UU Mean 342.088 394.118 663.559 524.824 

:sta. 
183.178 209.706 643.004 607.998 

Deviation 
TOtal Mean 401.416 641.360 715.449 667.483 

Std. 
193.928 645.388 554.365 674.888 

Deviation 

Table 14 Means and standard deviation for RT 45 +n- RT 5 +n. 

eans and standard deviation for RT difference for sums in Problem Type , 

rt45+ 1-rt5 rt45+2-rt5 rt45+3-rt5 rt45+4-rt5 
year +1 +2 +3 +4 
j.UU Mean :>U.Yll~ :255.11'/() ll:l.Yll~ 25().55~~ 

.Std. 
216.0086 1033.8699 1049.4034 814.6381 Deviation 

14.00 Mean 61.0952 57.0952 30.8095 -16.8095 
Std. 

156.3777 236.4827 199.7480 316.8786 
Deviation 

i:l.UU Mean 54.2059 51.5588 291.5294 130.7059 
Std. 

192.2610 207.5829 602.7125 440.6371 
Deviation 

Total Mean 54.5730 130.6292 161.7753 143.9775 
Std. 

192.1773 662.8689 754.8375 596.3463 Deviation 
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3. 2. 2 Means and standard deviation for sums in Problem Type B 

Table 15 Means and standard deviation for sums in Problem Type B. 

eans and standard deviation for single-digit and decade sums in Problem Typ( 

year 23+3 3+3 26+6 6+6 26+5 
j,UU Mean l$()l.lSL4 ):J().lll$ 1L4:J.()j 4Y:l.l$24 1245.1$) 

.Std. 
963.814 583.606 887.215 346.327 683.151 

Deviation 

4.UU Mean 722.714 411.048 1003.76 323.238 871.905 
.Std. 

852.434 290.096 687.199 140.319 799.203 
Deviation 

:l.UU Mean 371.382 296.618 694.471 324.853 601.294 
Std. 

236.842 151.409 472.780 280.940 308.710 Deviation 

Total Mean 641.640 422.753 978.011 388.640 911.382 
Std. 

763.579 410.486 738.393 292.980 660.802 Deviation 
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Table 16 Means and standard deviation for RT difference for sums in Problem Type 
B. 

eans and standard deviation for RT difference fl 
sums in Problem Type B 

rt23+3-rt3 rt26+6-rt6 
year +3 +6 
j,VV Mean 305./U:l~ 752.8235 

Std. 
755.9690 736.9436 

Deviation 

4.00 Mean 311.6667 680.5238 

Std. 
795.0351 701.1425 

Deviation 

).00 Mean 74.7647 369.6176 

Std. 
208.0514 432.6877 

Deviation 

Total Mean 218.8876 589.3708 

Std. 
622.2434 645.4107 

Deviation 
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3. 2. 3. Means and standard deviation for sums in Problem Type C 

Table 17 Means and standard deviation for single-digit sums in Problem Type C. 

eans and standard deviation for single-digit sums in Problem Type 

year 4+7 7+4 3+6 6+3 
.5.UU Mean ':.1/U.:ljj If(J.:l':J4 lS/l.':.l'/1 /(JJ.U:l':.l 

.Stet. 
940.431 614.234 1438.80 729.918 Deviation 

4.00 Mean 612.667 539.857 481.143 389.238 
.St<l. 

381.172 332.692 261.718 140.438 Deviation. 
5.00 Mean 699.441 472.441 400.000 337.735 

.St<l. 
1402.81 449.604 318.919 175.540 Deviation 

Total Mean 782.416 604.427 599.449 512.360 
Mu. 

1061.04 511.448 936.707 505.477 Deviation 

Table 18 Means and standard deviation for decade sums in Problem Type C. 

Means and standard deviation for decade sums in Problem Type C 

year 34+7 37+4 33+6 36+3 
-'.VV Mean 15/U.:\Y ll55.4l l345.:ll) ~!1.471 

:sta. 
864.250 929.822 1516.03 608.660 Deviation 

14.UU Mean 734.429 563.000 837.143 587.000 
Std. 

336.786 265.624 597.920 337.271 Deviation 

15.00 Mean 762.529 503.088 707.618 549.176 
:std. 

509.623 228.279 445.948 342.163 Deviation 

Total Mean 988.191 766.427 981.888 696.506 
Std. 

703.426 674.477 1050.18 487.630 Deviation 
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Table 19 Means and standard deviation for RT difference for sums in Problem Type 
c. 

eans and standard deviation for RT difference for sums in Problem Type 

rt34+7-rt4 rt37+4-rt7 rt33+6-rt3 rt36+3-rt6 
year +7 +4 +6 +3 
.;.vu Mean 4UU . .i'L~ j/Y.ll/0 4/j.,ML 141S.441L 

Std. 
1016.4478 812.4650 1786.4710 792.8394 Deviation 

4.UU Mean 121.7619 23.1429 356.0000 1!17.7619 
Std. 

367.1783 366.5693 570.2159 314.6341 Deviation 

:J.UU Mean 63.0882 30.6471 307.6176 211.4412 
Std. 

1424.7104 421.6894 491.2128 276.0603 Deviation 

TOtal Mean 205.7753 162.0000 382.4382 184.1461 
sta. 

1097.0103 611.7519 1169.0701 536.3066 Deviation 
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