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Abstract 

This thesis describes the experimental procedure and results of an investigation into the 

effect of electric and acoustic fields on dead end vacuum filtration. The test suspension 

used was low concentration titanium dioxide. Ultrasound energy was applied 

tangentially and electrical energy parallel to the filter medium. Varying electric field 

gradients were applied to the filter cell, either alone or together with the constant 

frequency acoustic field. The filter cell was based on a Nutsche filter, and allowed 

samples of cake to be taken at the end of the filtration experiment. Electric and acoustic 

field strengths, suspension characteristics and process parameters could all be varied 

independently. 

Results from the experimental programme demonstrate that the use of ultrasound across 

the cake surface results in different effects depending on the pH of the suspension. 

These effects can be attributed to the variation of zeta potential with pH. At all pHs, 

(when used in conjunction with a 50 V cm-1 electric field), the acoustic field appears to 

decrease specific cake resistance and increase filtration rates. This effect is more 

apparent close to the !so-electric point (ffiP), where the critical voltage required for 

electro-filtration is higher. This suggests that the acoustic field provides only a weak 

driving force in comparison to the electric field or the filtration pressure. Under lower, 

or zero electric field strengths, the acoustic field increases specific cake resistance, and 

decreases filtration rates. It has been shown that the acoustic field has little or no effect 

on the dewatering of suspensions of concentrations higher than 1% by volume. 

The forces present in a suspension subjected to an acoustic field were not within the 

--scope of the experimental study; but a theoretical analysis of these forces was carried 

out. It is shown that the experimental layout prevents detailed analysis of these forces. 

Indeed, due to the turbulent nature of the suspension under the influence of this type of 

field, it is not possible to estimate the magnitude of these forces quantitatively. -

Further experiments have been carried out to investigate the effect of the acoustic field 

on a suspension's conductivity, and explain the synergy seen to some extent in this 
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study, and more clearly by other authors in cross flow filtration. In static suspensions the 

conductivity is greatly increased by the application of ultrasound due to both ionic and 

colloid vibration potentials. However this is not seen during dead-end filtration, when 

the suspension is constantly in motion due to the vacuum driving force. This driving 

force and high concentrations present in the cake region hinder particle motion, and 

prevent the induction of vibration potentials. In other studies, the filtration orientation 

differs, and pressure driving forces are less. In these cases it is likely that changes in the 

conductivity induced by ultrasonic irradiation affects the suspension such that 

application of an electrical field is enhanced, giving an equivalent electric field strength 

higher than that applied. 
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NOTATION 

Symbols not shown in this table are defined locally. 

A Cross sectional area m2 

a Particle radius m 

c Sound velocity ms·1 

Cm Mass dry solids per volume of filtrate kgm-3 

d Particle separation distance m 

D Dielectric constant 

E Electrical field strength Vcm·1 

,:jEK Kinetic energy of 'particle' in acoustic J 
field 

Fdrag Drag force N 

F, Drag force in x direction N 

F,, Acoustic drag force acting in x direction N 

F, Transverse component ofPRF N 

F., Gravitational drag force N 

I Electrical current (Chapter 2), w 
Acoustic Intensity (Chapters 3 &4) Wm"2 

I, Equilibrium acoustic intensity Wm"2 

K Bed permeability m2 

k Particle wavenumber radm-1 

k' Specific conductance mbom-1 

K, Filtration parameter sm-1 

K, Filtration parameter sm·3 

M Specific acoustic impedance kgm-2s-l 

m, Mass of sphere kg 

p Acoustic pressure Pa 

-- --~-----~~--- ~---- ------. 
p Instantaneous pressure Pa 

P, Equilibrium pressure Pa 

p Pressure amplitude Pa 

P, Effective pressure amplitude Pa 

Q Volumetric flow rate mJs-l 

q Charge on a particle c 
Qceo Electrosmotic flowrate through filter cake m3/s 

QMe(> Electrosmotic flowrate through filter m3/s 
medium 

R Resistance to flow m·l 
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s Mass fraction of solids in slurry 

t Time s 

T Temperature K 

T, Equilibrium temperature K 

t, Time at beginning of cake electroosmosis s 

u Sphere velocity 
-1 ms 

Uo Equilibrium sphere velocity ms-1 

U, Electrophoretic mobility ms·1v-1 

Uw Electroosmotic mobility ms -1v-1 

u, Particle velocity ms·1 

V Fluid velocity ms·1 

V Cumulative volume filtered mJ 

v' Filtrate volume per unit area of filter m3m-2 

V' Cumulative volume due to applied electric mJ 

field and filtration 

V, Equilibrium fluid velocity ms-1 

Vw Electroosmotic velocity ms-1 

V, Stokes settling velocity ms-1 

w Total mass of dry cake per unit area kg 

X Horizontal co-ordinate m 

z Cake Thickness m 

z Vertical co-ordinate 

z, Ionic valency 

Greek letters: 

LIP Pressure drop Pa 

E Energy term, variants described locally J 

E Electric field strength vm-1 

.9 Condensation 
- -~-------~------------------

'Po Surface (wall) potential m V 

'Ps Stern potential m V 

a Specific resistance to flow mkg-1 

ao Specific resistance to flow at unit applied mkg-1kPa-n 

pressure drop 

fJ Compressibility ( solid or fluid, see m3Pa"1 

subscript) 

/j Stern layer thickness, (Chapter 2), m 

Viscous skin depth (Chapters 3 & 4) m 
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& Cake porosity 

o;,' Medium permittivity CV-1m-1 

1ft Solid volume fraction 

!), Ionic concentration molm-3 

r Ratio of specific heats 

I Acoustic attenuation coefficient 

K Debye-Huckel parameter m·l 

f.l Dynamic fluid viscosity Pa.s 

p Density kgrn·3 

Po Acoustic equilibrium density kgrn-3 

PEK Kinetic energy density Jm-3 

PEP Potential energy density Jm-3 

p. Volume charge density cm-3 

{JE Energy density Jm-3 

(j Ratio of solid and fluid densities 

'I: Relaxation time s 

(I) Angular acoustic frequency rads-1 

q Displacement m 

? Zeta potential m V 

The following subscripts have been used throughout the text: 

A Represents particle A 

a acoustic 

AV Average 

B Represents particle B 

c Across cake 

CR Critical 

eff Effective 

f Fluid 

---------·-~-------·- M Across Medium 

p Particle 

rms Root mean square 

s Solid 

x,y,z Cartesian 

z Across thickness, Z 
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1 Introduction 

Solid-liquid separation (SLS) as a unit operation can comprise a variety of processes 

including pre-treatment, concentration, separation and post-treatment. The importance 

of these techniques has increased over recent years as environmental pressures, energy 

costs and demand for higher purity products has intensified. A major method of 

industrial solid-liquid separation is filtration. The production of a low moisture content 

filter cake can lead to a more economical process when compared with the energy costs 

of thermal drying, and there are advantages if the batch time for cake formation can be 

shortened. Conversely, if the SLS process is being used as a means of liquor 

purification, a higher particulate removal efficiency will be beneficial to the process, 

with lower transportation and waste disposal costs. 

Build up of cake on a filter medium increases the resistance to flow through the filter, 

until eventually flow ceases. In a batch filter, this results in the need to clean the 

medium, which may involve dismantling the filter unit, and scraping the medium clean, 

or there may be a backflushing procedure to remove the solid matter from the medium. 

The aim of this project was to investigate whether, by the utilisation of additional fields 

applied to a batch dead end filter, it could be made to operate in a continuous manner, 

by keeping the path for fluid to flow through more open. If successful this process could 

reduce industrial downtime for filter cleaning, by acting as a slurry thickener rather than 

a cake filter. 

l.lField Assisted Filtration 

Improvements to the filtration process have been demonstrated by the exploitation of 

-----------phenomena such - as electrokinetic, acoustic, magnetic and centrifugal forces 

(Muralidhara, 1988). An applied fields approach enables limitations regarding the 

degree of separation, purity and yield imposed by conventional filtration to be 

overcome. Combinations of field may increase this effect further by increasing the 

driving force over and above that of conventional filtration. For example, 

electroacoustic dewatering (EAD) has been used on sludges as a means of producing 

higher solids contents than are attainable using either electric or acoustic fields 
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separately (Muralidhara et al, 1985). This technology was extended to crossflow 

filtration by Wakeman and Tarleton (1991). 

Although the phenomena of electrophoresis and electroosmosis was probably first 

demonstrated by Reuss in 1808, attempts to exploit the technology and apply it to 

modem industrial situations have been, until recently, limited. 1n 1963 Bier filed a 

patent for an apparatus suitable for continuous electrophoretic separation, purification 

and concentration of colloidal suspensions (Wakeman, 1982) The use of electric fields 

to improve separations was not studied in depth until recently, by for example, Moulik 

(1971), Yukawa et al (1976, 1978) and Wakeman (1986). The processes require 

continuous application of electric fields and are therefore energy intensive. 

Electrofiltration has not been widely exploited, but advances in electrode materials have 

enabled the technology to be used to improve filtrate flux in crossflow filters, and as an 

alternative to backwashing as a method of membrane cleaning. 

Ultrasonics has been shown by many authors to be a potentially economical method of 

removing water from products, (Kowalska, 1978) and to decrease fouling of crossflow 

filter membranes (Tarleton, 1992). Research suggests that ultrasonic energy is a 

potential aid to cake deliquoring rather than a filtration technique, but whichever it is, it 

is important to further understand how the mechanisms associated with ultrasound affect 

the suspension characteristics and behaviour. It may be that ultrasound can also provide 

an additional driving force, in a similar way to the electric field, during either cake 

formation or cake deliquoring operations. That is, ultrasound may facilitate a more open 

cake and thus improve mass transfer through the filter medium. 

The study has been carried out using a dead end vacuum filter, of approximately 2 litres 

volume, and suspensions of titanium dioxide. Electric and ultrasonic fields could be 

applied in normal and parallel orientations respectively to the fluid flow. These types of 

fields have been shown to successfully improve filtration previously in crossflow 

microfiltration (Tarleton, 1988) and so this work is a natural progression. It was 

envisaged that this method of filtration enhancement has an industrial relevance, in that 

a reduction of filter downtime has commercial benefits. The technology has been 

successfully used in the dewatering of biological sludges, however its use in higher 

value products has not been investigated. Titanium dioxide (rutile) was used, as it is a 

widely used white pigment. It is used to give whiteness, opacity and protection in a wide 
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range of consumer products including paints, plastics, paper, printing inks, ceramics, 

food, cosmetics and textiles. It is easily characterised, and its small particle size results 

in filtration difficulties. 

1.2 Scope of the Thesis 

Chapter 2 briefly reviews the literature describing both the experimental and theoretical 

studies relevant to assisted filtration. The research completed is covered in Chapter 3 

onwards. Chapter 3 introduces the experimental procedure used for the filtration tests 

carried out in this study, and presents the results of field assisted filtration experiments. 

The results are discussed within Chapter 3 to keep the different parts of the study 

together. In Chapter 4, the mechanisms of how acoustic fields may act within the 

suspension are investigated, and a theoretical analysis of the forces present in the 

acoustic filter is attempted. Chapter 5 returns to the experimental theme and the 

hypothesis that the acoustic field may increase a suspensions conductivity via the colloid 

vibration potential is tested experimentally and discussed. Chapter 6 gives a summary of 

the main findings of the work and suggests areas for further work. 
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2 Literature Survey 

Solid-liquid separation has always been an important part of the process industries. As 

environmental restrictions have become more stringent, and reductions in energy usage 

have become important commercial considerations, the efficient separation of a 

contaminant from a product has become a desirable goal. The separation can be 

achieved in a number of ways, including filtration, centrifugation, hydrocyclones, 

thickening and flocculation. · 

The behaviour of solid-liquid systems is 'history dependent', that is they are dependent 

on both time and previous treatments. Parameters such as settling rate, porosity and 

permeability vary according to the specific treatment the slurry has previously 

undergone. 

Solid-liquid separation is generally a combination of one or more of the following 

stages: 

1. Pre-treatment, by changing the chemical properties of the suspension, such as pH 

(zeta potential), the separation may be more easily achieved. For example a 

suspension at its iso-electric point will have maximum particle agglomeration and 

particles will settle more easily. 

2. Concentration of the solids content 

3. Separation of the solid-liquid mixture (by any of the above methods). 

4. Post treatment processes 

The settling rate of a suspension is generally a good guide to the method of separation, 

however the desired effect can often be achieved by any number of combinations of 

-equipment and. processing aids. Rapidly settling slurries can easily be separated using 

gravity filtration, whereas medium or slow settling materials may require vacuum or 

pressure filtration. Dilute materials (less than 0.1% v/v) which produce high resistance 

cakes are separated using deep bed filters and particles are captured within the filter 

media. 
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2.1 Filtration fundamentals 

Filtration is the separation of a fluid - solids mixture involving the passage of a majority 

of the fluid through a porous barrier that retains most of the solid particulates contained 

in the mixture. Only solid-liquid separation will be considered here. The barrier which 

retains the solids whilst allowing liquid to pass is known as the filter medium or septum, 

and may be a screen, cloth, paper or bed of solids. The liquid that has passed through is 

termed the filtrate. 

To obtain fluid flow there must be a driving force. This force is usually achieved by 

gravity, vacuum, pressure or centrifugal mechanisms. The driving force which induces 

filtrate to flow through the filter medium may be hydrostatic head, or the application of 

an upstream pressure, or a downstream vacuum. The required product of the filtration 

unit operation may be dry solids or the clarified liquid. In a filter, the medium has a 

relatively low initial pressure drop and particles of the same size as the pores, or larger, 

partially block the openings, creating smaller channels and capturing smaller particles. 

Thus a cake is built up. There will often be some penetration of small particles into the 

medium (blinding). These types of filters are typically used for higher concentrations 

(over 1% v/v) because lower concentrations tend to cause greater blinding of the media. 

Depth filters are used for dilute suspensions (concentrations less than 0.1% v/v) and the 

particles are captured within the filter media. The filter cake may be compressible or 

incompressible. 

The filtration method may vary depending on the product, with optimum solids recovery 

obtained by cake filtration and liquid clarification suited to either cake or depth 

filtration. The filter may be batch or continuous, and may function as constant pressure, 

constant rate or variable-pressure, variable-rate systems. 

--~---~-- Suspension characteristics such as concentration, zeta potential and cake formation rate 

must all be determined in order to obtain the required product, at the required 

specification, economically. The nature of the solid to be handled is also an important 

consideration, with compressibility and particle size distribution playing a large part in 

the choice of filter. Very small particles (<lf.!m) are colloidal in nature and are difficult 

to separate from their suspending fluid. Filter performance cannot easily be predicted 

from theory and small-scale tests are usually carried out before process equipment is 
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selected and sized. Tarleton and Willmer (1997) have carried out some work on filter 

scale up algorithms. 

2.2 Derivation of the filtration equations 

2.2.1 Mass balance 

A material balance based on a unit filtration area gives 

2-1 

where w is the total mass of dry-cake per unit area, v', the filtrate volume per unit area, 

and s, and se are the mass fraction of solids in the slurry and the cake. (se is an average 

mass fraction) and p1 is the suspending liquid density. 

Rearranging for w: 

p s 
w= 1 v'=c v' 

1- s/ m 

/se 

2-2 

Cm is a value which represents the mass of dry solids per volume of filtrate. Ifs is small 

compared to se, then equation 2-2 reduces to 

2-3 

which is valid for most dilute slurries (Tiller and Crump, 197 5). The mass of dry solids 

is related to the cake thickness by 

2-4 

where z represents the incremental cake thickness and &Av IS the cake porosity. 

~------·- Integration over the entire cake yields 

2-5 

where Z denotes the total cake thickness, p, the solid density and &Av the average cake 

porosity. The mass fraction of solids in the cake, se is related to the average porosity by 

2-6 
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Combinations of equations 2-1 & 2-5 allow a number of expressions to be calculated. 

For example the expression 

2-7 

allows the cake thickness to be calculated provided the filtrate volume is known. Here O" 

represents the ratio of solid and fluid densities, p/pp 

2.2.2 Pumping mechanisms 

To understand the filtration process further the different pumping mechanisms must be 

elucidated. There are 3 mechanisms: 

2.2.2.1 Constant pressure filtration 

Most attention has been focused in this field, and the system is well understood. 

For incompressible cakes, provided the pressure drop across the cake (&>c) 

remains constant, the solids mass fraction within the cake and its average porosity 

will also be constant. If L1P c varies, the linear relationship no longer holds and the 

cake porosity will also vary. It is this pumping mechanism which is considered in 

the remainder of this study. 

2.2.2.2 Constant flow rate filtration 

In this case the volumetric flow rate Q, is constant and it can be shown that the 

pressure drop L1P is directly proportional to the filtrate volume, V. 

2.2.2.3 Variable pressure, variable rate filtration 

This situation is achieved by the use of a centrifugal pump to deliver the pressure 
---------~··-~-- ------- -- - --

head. Calculations are complex because both filtration pressure and flow rate vary. 

The characteristic pump curve relating pressure and flow rate is used, and the 

relation between time and volume is obtained by the integral of the reciprocal flow 

rate with respect to V. 
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2.2.3 Constant Pressure Filtration 

Darcy's filtration equation can be used to relate the flow rate Q of a filtrate of viscosity 

p through a bed of thickness Z and face area A to the driving pressure L1Pz: 

where K is the permeability of the bed. This can be rewritten as: 

Q=AMz 
pR 

2-8 

2-9 

Where R is the resistance to flow and is equal to ZIK. Ruth (1946) modified Darcy's law 

to 

dMz =paQ 
dw 

2-10 

Where a is the specific resistance to flow. The specific cake resistance ac and porosity 

&Avare thus related by (using equations 2-5 and 2-10): 

1 
ac=----

p,(l-c)K 
2-11 

The specific cake resistance is constant for incompressible cakes, but will vary with 

pressure drop through the cake for compressible cakes. In this case as the pressure drop 

increases the cake becomes 'squashed', and its resistance to flow increases as the 

amount ofvoidage in the cake (porosity) decreases. 

At constant pressure drop the filtrate flow rate becomes a function of time, because the 

liquid is presented with two resistances in series. The medium resistance is assumed 

constant, but the cake resistance increases with time as the cake builds up. This 

~~~~-~--a~~urnpt~on_is ba_sedon !he!e being no penetration or blocking of the medium. The cake ~ 

resistance Re is directly proportional to the amount of cake deposited in the case of 

incompressible cakes, but becomes a more complex function of pressure for 

compressible cakes, with a varymg specific resistance ac. Accounting for cake 

resistance in equation 2-9: 

2-12 
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2.2.4 Compressible cakes 

The average cake resistance, ( ac;) AV changes with pressure drop across the cake, LJP c, 

and is defined as: 

1 -'-f<d(M'c) 
(M'c) a 

2-13 

If the cake resistance as a function of LJP c is known and thus ( ac;) Av can be calculated. 

An empirical expression often used over a limited pressure range is ( with n denoting a 

compressibility index): 

2-14 

In this case, 

2-15 

For an analytical solution for the filtration of compressible filter cakes the pressure 

drops across the medium and the cake must be taken separately: 

with 

and 

Substituting for (ac;)Av: 

M'. - a.,,uwQ 
c- A' 

2-16 

2-17 

2-18 

2-19 

··· --·~----- frorri which the basic equation allowing the special case for incompressible cakes to be 

derived is: 

,uwQ = (M'c)l-n 

A' (1-n)a. 
2-20 

2.2.5 Incompressible cakes 

In the special case of incompressible cakes, ac is constant throughout the cake and the 

'average' suffix can be dropped 
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2-21 

and equation 2-12 can be modified to 

Q=dV = AM 
dt ,u(wac + RM) 

2-22 

Assuming that there is a negligible amount of solids exiting with the filtrate then the 

mass of cake deposited, wA is given by: 

2-23 

where c is the mass concentration of solids in the suspension, and V is the cumulative 

filtrate volume. Substituting into equation 2-22 and rearranging gives: 

2-24 

allowing the derivation ofthe classic filtration equation for constant pressure filtration: 

2-25 

Most cakes are however, compressible to a certain degree, and equation 2-13 is a better 

starting point. Tiller (1977) notes that these expressions are approximations which lose 

accuracy for filtrations with short time cycles. 

2.3 Cake filters 

Cake filters accumulate an appreciable amount of solids on the filter medium. The feed 

slurry may have concentrations between 2-40%. The filter medium will be relatively 

open, with pore sizes greater than the minimum particle size. The cake is allowed to 

build up on the medium, sometimes with the initial filtrate being recirculated to the 

---------~ed, lffitilfiltrate clarity is achieved. These types of filter are used when the product is 

either solids or the liquor. If the filtrate is the product, the cake may be blown with air or 

gas to remove as much liquid as possible. To obtain solids purity the cake may be 

washed before the drying cycle, or mechanical expression may be used to reduce its 

moisture content. The cake must be easy to remove and handle; after expression it is 

usually quite dry and compacted. 
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2.4 Physical Effects of Electric Fields 

The principle of electroseparation is based on the electrokinetic properties associated 

with the particle surface. Electrokinetics is discussed extensively by Shaw (1992), 

Hunter (1982, 1993), Bratby (1980) and Gregory (1993) amongst others. Negatively 

charged particles in a suspension move to the anode by electrophoresis, where the 

surface charge is neutralised and they can agglomerate. Positively charged (fluid) 

particles move towards the cathode by electroosmosis. If the filter medium is near the 

cathode, then fluid will move from the pores in the cake towards the cathode, leaving a 

drier cake. The negative particles will move away from the medium, which decreases 

resistance to flow and membrane fouling. 

Other electrokinetically driven forces are streaming potential and sedimentation 

potential. The first is essentially the opposite of electroosmosis in so far as a field is 

produced when the fluid moves along a charged surface, and the second occurs when a 

field is created by the movement of charged particles relative to the fluid, the opposite to 

electrophoresis. The sedimentation potential can be used to measure the effective charge 

on the particles in a suspension. 

2.4.1 The origins of surface charge 

There are three ways in which charge can be induced on a particle surface. 

1. Chemical reactions at the surface. 

Solid surfaces contain readily ionisable functional groups such as -OH, -COOH, and 

-OP03H2• The charge of particles depends on the degree of ionisation within the 

suspension and thus the pH of the liquid. At low pH a positive surface charge 

prevails. 

-- ------~- 2; -Imperfections in the solid lattice. 

This occurs in materials such as clays and Si02, if one atom happens to be replaced 

by, for example, an aluminium atom, which has one less electron, a negative surface 

charge will be induced. 

3. Ion adsorption. 

London-van der Waals forces or hydrogen bonding induces the charge. 
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2.4.2 The Electric Double Layer 

A double layer is formed when the particle is in contact with a polar (aqueous) medium, 

and the particle obtains a surface charge. This charge may be created either by 

ionisation, ion adsorption or ion dissolution and determines the distribution of the 

nearby ions in the medium. This leads to the formation of a double layer. Stern proposed 

that the double layer is made up of two regions; an immobile inner layer of counter ions, 

directly on the particle surface, and a diffuse region. The diffuse region is affected by 

the influence of electrical forces and thermal motion. Particles will begin to experience 

repulsive forces when their diffuse layers overlap. Gouy and Chapman's model of the 

diffuse region of the double layer is considered by Shaw (1992) to be the simplest, and 

assumes that: 

1. The surface is flat, uniformly charged and infinite; 

2. Ions in the diffuse region are point charges distributed according to the 

Boltzman distribution; 

3. The solvent only influences the double layer by the dielectric constant, which 

is assumed constant throughout the double layer; and 

4. The electrolyte is symmetrical, with charge number z. 

The inner layer is made up of ions that are the opposite charge to those of the charged 

surface (counter ions). It may also contain specifically adsorbed ions, which are attached 

to the surface by electrostatic or V an der W aals forces. The Stern theory is a 

modification of the Gouy and Chapman model. The Stern plane separates the inner and 

outer layers, and is approximately one hydrated ion radius in size. Ions with centres 

outside the Stern layer are considered in the diffuse region (Figure 2-1) 
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Shear lane 
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Figure 2-1: Schematic of the double layer according to Stern's theory 

A radius of shear lies just outside the Stem layer, between the charged surface and the 

electrolyte solution. It is at this point that the zeta ( electrokinetic) potential, " can be 

measured. The electrokinetic potential at the Stem layer and at the radius of shear are 

assumed to be much the same, although they may differ depending on the system being 

considered. 

The electrical potential at the surface of the particles is given by lf/o (the surface or wall 

potential), and that at the Stern plane \l'o(the Stern potential). The potential at a point in 

an electric field, or in the diffuse layer is defined as the work done in moving a unit 

charge (of the same sign as the surface) from infinity to the point. Analysis of the exact 

solution is complex, but when the potential is low, the expression for the diffuse region 

becomes: 

2-26 

---------· --where- lf/~-is the potential a distance x from the surface, and lf/o is the potential at the 

surface. Kis known as the Debye-Huckel parameter, and is a measure ofthe range of the 

double layer. At low potentials, the potential decreases exponentially with distance from 

the Stern plane. Close to the charged surface, the potential is relatively high, and the 

approximation cannot be used, as the potential increases at a rate greater than 

exponential. 

---- ---------------
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The Stem layer thickness is approximately one hydrated ion radius thick. 1/ K denotes 

the diffuse layer, the distance in the diffuse region in which the potential decreases by an 

exponential factor, which is known as the double layer thickness. The diffuse layer can 

therefore be considered as a parallel plate condenser with separation distance 11 K. In 

reality however the double layer extends to infinity. The double layer thickness is 

strongly dependent on the electrolyte concentration in the system, and for an aqueous 

system at 25°C is determined by (see for example Gregory, 1993) 

2-27 

where rA is the ionic concentration (moll!) and z; is the ion valency. The zeta potential is 

the potential at the position that approximately relates to the start of the diffuse region of 

the double layer. It is determined by measuring the velocity of the particle due to an 

applied electric field. When the particle has an induced velocity due to the field, the part 

of the double layer that is strongly bound to it remains with it as it moves. This point is 

the plane of shear, and the zeta potential is measured here. 

2.4.3 Electrokinetic Theory 

The double layer around a particle is described by the term Ka. This is the ratio of the 

double layer radius of curvature, a, to the double layer thickness. For small Ka the 

particle can be treated as a point of charge, and if Ka is large like a flat surface. This 

allows different treatment according to the particle's behaviour. 

2.4.3.1 Electroosmotic effect 

This is defined as the movement of liquid relative to a stationary charged surface by an 

applied electric field. If particles are non-colloidal and are touching, then they will be 

unable to move when an electric field is applied. In this case the system acts as a porous 

medium and electroosmosis occurs. This happens on the filter medium as the cake 

builds up. 

The theory of the electroosmotic effect was first given by Smoluchowski for large 

values of Ka. The movement of a liquid adjacent to a large flat charged surface under an 

electric field applied parallel to the surface is considered. The electrical force on the 

liquid is opposed by a net frictional force: 
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dv 
Ep dx=-11-' dx 

v r dx' 2-28 

where E is the electrical field strength, p, the volwne's charge density, p the liquid 

viscosity, x the distance from the charged surface and v, the velocity of the liquid in a 

direction parallel to the wall. At the plane of shear, v, is zero, rising to a maximum, v,o a 

distance from the wall, where it remains constant (Shaw 1992), and the boundary 

conditions apply: 

If/= 0, v= v,0 atx = oo 

If/ = ;, v = 0 at x = 0, the surface of shear 

Integrating between a point in the bulk solution and a point in the double layer, equation 

2-28 becomes: 

v s ·; 
____!!.!!_ = U = - _P_ 
E •o f.J 

2-29 

The electroosmotic mobility, U00 is independent of a particle's size and shape provided 

the zeta potential is constant. The permittivity of the mediwn is given by t!. 

2.4.3.2 Electrophoretic effect 

Application of an electric field across a suspension causes particles to move towards an 

electrode with an opposite charge. The charged particles can be made to move away 

from the filter mediwn, and form an 'open' cake. This leads to an improved filtrate rate, 

as there is less resistance to flow. Under the influence of an electric field the charged 

surface moves in the appropriate direction, .with the diffuse region showing a net 

migration in the opposite direction, carrying the solvent with it. 

The co-ordinate system used for electroosmotic theory is reversed and the movement of 

---·--·--·-a solid relative toliquid considered. The solid moves with a velocity ue equal to and 

opposite from that of a liquid under electroosmotic effects. 

2-30 

If Ka <<I the electrical forces acting on the double layer are not transmitted to the 

particle, which has a charge q. The electrical forces are balanced by viscous drag: 

qE = 6trpv,a 2-31 
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so 

v, q 
u =-=--
' E 61rpa 

Using the following expression to define zeta potential, 

and neglecting KO. compared with unity, the Huckel equation is obtained; 

_ zss; 
u ---
' 3p, 

-31-

2-32 

2-33 

2-34 

This expression is unlikely to be applicable to particle electrophoresis in aqueous media, 

unless the electrolyte concentration is very low, resulting in a low value of Ka. The 

Henry equation takes into account particle shape and size to give an equation for the 

electrophoretic mobility of non- conducting particles (Shaw 1992, Hunter 1981 ): 

(
zs 's) u, = 

3
: f(Ka) 2-35 

The function f varies smoothly from I to 1.5 as KO. varies from 0 to oo. There is good 

agreement between zeta potentials calculated using the Huckel equation for small KO., 

the Smoluchowski equation for large K£1, and the Henry equation. For zeta potentials 

over 25mV, the solution of Henry's equation becomes complex, and is improved by a 

more general computer aided solution by Wiersema et al (1966) 

2.5 Physical effects of ultrasound 

Two kinds of waves can travel in an unbounded medium: longitudinal (compression) 

waves which propagate normal to the source, and shear (transverse) waves which travel 

parallel to the transducer face causing shear stresses. The wave vectors can be expressed 

by vector functions of the form: 

u = e'(kx-wt) 2-36 

where k is the particle wavenumber, and ro the angular acoustic frequency. The stresses 

and strains can be derived from these displacement functions. Small particles move in 

phase with the sound field, larger ones move more slowly. If the particles collide and 

those collisions result in coalescence, the particle size distribution of the suspension and 
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hence the amplitude and phase distributions of particle motion change. This continues 

until the aggregated particles become too large to be affected by the frequency applied, 

and move out of the processing region. The magnitude of displacement will eventually 

become zero, and the particles will become stationary in the sound field. This 

phenomenon is known as a standing wave. 

Standing waves can be set up in a Kundt's tube as striations. This phenomenon is the 

creation of alternate zones of high and low concentrations of particles, corresponding to 

the nodes and antinodes (or vice versa depending on the particle density). This has been 

modelled by Higashitani et al (1981 ). Expressions for the particle concentrations at the 

node and antinode are given, although it is noted that the results are difficult to 

reproduce using the theory proposed. The results compare well when the sources of 

errors are considered. Microscopic particles accumulate most readily and in the areas of 

high concentration there is more chance of collision. A great deal of work on separations 

using this phenomenon has been carried out by Benes et al (1993). Enderby (1951) 

considered the electrical effects due to sound waves in colloidal suspensions. He 

postulated the double layer of colloidal particles may have more effect on particle 

behaviour than the ions present in the bulk suspension in an acoustic field. The double 

layer is distorted by the fluid disturbance. This 'electro-acoustic effect' is discussed in 

more detail in Chapter 5. The propagation of ultrasound is further discussed in Chapter 

4. 

2.5.1 Mechanisms of agglomeration 

2.5.1.1 Orthokinetic flocculation 

Very small particles in an acoustic field move with the fluid as the elastic sound wave 

- -------·-- propagates. Particles in suspension will be affected by the energy according to the 

particle size distribution. In a polydisperse system smaller particles move with greater 

amplitudes enabling some particles to collide .. This phase impedance between the liquid 

and the solid can differ by a factor of between 3 and 8 (Gooberman, 1968). 

2.5.1.2 Bemoulli Attraction 

If particle displacement (due to the acoustic field) is much less than the fluid 

displacement, i.e. particle density is much greater than that of the fluid, then 
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hydrodynamic flow occurs. The particles cause a constriction in fluid flow past them, 

leading to increased flow velocity and a lower hydrostatic pressure. The Basset­

Boussinesq-Oseen equation can be used to calculate the fluid force on a particle 

enabling the entrainment factor to be calculated for liquid systems (Shaw, 1978). 

2.5.1.3 Stokes force 

The local density, sound velocity and viscosity change under adiabatic compression and 

shear. The viscosity is larger during compression (when the temperature rises) and 

smaller during dilation. The overall effect is a net positive Stokes force. 

2.5.1.4 Radiation Force 

Each particle in the suspension causes radiation scatter and thus creates an energy 

density gradient. This gradient causes fluid flow in the direction of radiation propagation 

and return by a path of lower intensity. This is known as acoustic streaming or drifting, 

and can cause a microstirring action (Scott Fogler, 1971). In travelling waves the effect 

in colloidal systems is similar to that of gravity because the suspended particles are 

smaller than the wavelength, and the radiation pressure is small. In standing waves 

particles are pushed towards the velocity antinodes, where orthokinetic and 

hydrodynamic forces become important. 

2.5.1.5 Oseen Force 

If the pressure amplitude is finite, the pressure distribution tends to a sawtooth shape. 

The pressure gradient eventually becomes infinite and a shockwave results. The 

distorted wave shows a higher absorption than the sine wave. 

The radiation force is small in colloidal systems compared to the Stokes and Oseen 

----------forces. The net sum of these forces is a directional force and will thus increase the 

chances of particle collisions. The particles approach under these forces, until they are 

close enough to be subject to other attractive forces, such as Van der Waals and surface 

tension. Cavitation will inhibit these agglomeration mechanisms. The amount of 

agglomeration achieved is not improved by an increased duration of insonation 

(Muralidhara 1987). 
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2.5.2 Sonic Dispersion 

Sollner (1950) provides a full description of the methods of dispersion due to cavitation 

caused by high intensity ultrasonic fields and of ultrasonic aggregation. The cavitation 

acts as a destructive force, as the cavities collapse a mechanical hammering action 

occurs, and weak spots in a material may be broken. Sollner notes that sonically 

produced dispersions have no differing characteristics than dispersions created by 

conventional methods. The treatment is expensive, but has the advantage of a potential 

for sealed, sterile conditions. 

2.6 Methods of improving the filtration process 

As filter cake forms during the filtration process, resistance to flow increases, and 

filtrate flowrate is reduced. A number of methods can be used to reduce the effect of 

particles blocking the filter medium: 

1. Cake removal by backflushing, or mechanical removal, 

2. Crossflow filtration, with bulk flow tangential to the filter surface, reduces solids 

accumulation at the filter surface, 

3. Reduction of cake resistance by chemical methods such as flocculation, 

4. Prevention of cake formation by vibration, or by the use of electric fields. 

Svarovsky (1981) gives a review of various methods for limiting cake growth such as 

those mentioned above, that includes chemical and mechanical methods. 

2.6.1 Assisted filtration - chemical methods 

Treatment of a colloidal suspension to induce agglomeration or flocculation may 

involve addition of chemical agents, or alteration of its pH. The enlarged particles are 

· --------- subsequently more easy to filter, as the degree of dispersion is reduced. 

Of particular relevance to this study is the use of a D.C. voltage applied between two 

electrodes, one either side of the filter medium, which can also improve filtration rates. 

The filtration rate of fine particles is affected by their surface charge and size and the 

field strength applied. The field strength is affected by separation distance between 

electrodes, voltage, and suspension conductivity. An increase in the magnitude of the 

zeta potential, and the electric field strength, increases the filtration rate. The upstream 
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electrode has a charge opposite to that of the particles. Cake formation is limited via 

electrophoresis, and electro-osmosis improves filtrate flow. 

2. 7 Effect of electric field on membrane processes 

The use of electric fields to improve separations is a well known technology. The 

processes require continuous application of electric fields and as such are energy 

intensive. Recent advances in electrode materials have enabled the technology to be 

used both to improve filtrate flux and as an alternative to backwashing as a method of 

membrane cleaning. Charges are neutralised causing agglomeration and acceleration of 

the dewatering rate. Also the particles will move away from the permeable electrode and 

cause rapid dewatering without clogging of the membrane. 

2.7.1 Separation Mechanisms 

The porosity of a filter cake should be increased in order to improve its dewatering rate. 

An electric field will allow a more open cake structure, because of the effects of 

electrophoresis. Wakeman (1982) studied the effects of pH and particle size on 

electrofiltration. An increase in the pH of the suspensions studied led to an increase in 

cake resistance as aggregation decreased. It was noted that the effects of pH on particle 

size and zeta potential need to be considered for each material. The formation of a 

fouling layer (in cross flow filtration) or a filter cake (in dead end filtration) reduces the 

filtrate volume obtained (Wakeman, 1986) as resistance to flow increases. The cross 

flow trajectories of particles in an electric field were considered and it was found that 

the electric field caused them to stay in suspension for a greater distance than when no 

field was applied. He suggests that only those particles fed close to the medium will 

contribute to fouling. Pulsing of the field improves flow through the membrane, which 

~---~-~ ~--niay be duet() sudden electroosmotic flow. 

Nadh Jagannadh and Muralidhara (1996) suggest the use of electric fields to prevent 

membrane. fouling, but point out that materials with low conductivities and zeta 

potentials may not be affected by the electric field. Other effects due to the field occur, 

such as electrolysis and Joule heating, but these can be minimised. The electrical 

conductivity of solid-liquid suspensions varies with solids concentration (Wakeman & 

Holdich 1982). Hydrophobic colloids can be separated from their suspensions by 
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coagulation. The charge on the surface of the particles is chemically minimised and 

agglomeration occurs. This method fails for hydrophilic colloids, which continue to be 

bound to the water. Electrophoresis, however, can be used to treat both types of colloid, 

as it is based only on the existing surface charge of the particles 

Solid-liquid separations using D.C. fields have been the most exploited. The particle 

surface charge in colloidal systems is utilised to make use of electrophoresis and/or 

electroosmosis. 

2. 7.2 The critical voltage 

Cake formation, as seen in conventional filtration can be modified by the application of 

an electric field. Depending on the polarity, particles will either be attracted towards the 

medium and filtrate flow hindered, or under opposite polarity a more open cake can 

form, or in the extreme case, particles remain suspended as the fluid drag is balanced by 

the electrophoretic force. A critical voltage gradient is widely accepted (Moulik, 1971, 

Yukawa et al, 1976, 1978, Lee et a/1980, Wakeman 1981) as the field strength at which 

this force balance occurs and particles migrate counterflow to, and with the same 

velocity as, the fluid flow allowing continuous suspension of particles. 

The forces acting on a particle in an electric field can be represented as in Figure 2-2, 

and described as follows. When E=O, (normal filtration), solid particles are carried to the 

filter surface forming a filter cake (a). If the applied voltage is increased, but is much 

below the critical value (b), electroosmosis occurs in the filter medium, and further 

increasing this causes electroosmosis in the filter cake (c). In both these cases some 

filter cake will form. When the applied field is equal to the critical voltage (d), the 

forces are completely balanced, and no filter cake is formed as the particles remain 

stationary. Above the critical voltage, (e), no filter cake forms and particles move 

---·---- countercurrent to the direction of filtrate flow. 
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Figure 2-2: Forces acting on colloid particles in electric fields (after Moulik, 1971) 

2.7.3 Modelling of electrofiltration 

Moulik, Cooper and Bier (1967) present a preliminary theory of filtration in a D.C. 

electric field. The Darcy equation for constant pressure filtration is modified to account 

for the effects on the membrane resistances as caused by the electric field. The problem 

of pore blocking is shown to be dramatically reduced by the application of the correct 

polarity (filter medium is cathode) and magnitude of D.C. electric field to the 

suspension. Application of the incorrect polarity can hinder or even cease filtration as 
- ·--~-~---·--- ------------ -- - -------- ---------- --

the particles are forced towards the filter medium by electrophoresis and block the 

pores. 

The physical phenomena suggested by Moulik (1971) to account for these changes are 

as follows: 
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2. 7.3 .1 Filter medium electroosmosis 

Electroosmosis occurs in the pores of filter media in the same direction as fluid flow. 

The double layer between the filter pore surface and suspension controls the movement. 

Smoluchowski related electroosmotic flow, Q.0 , to zeta potential by 

Q - Dt;I - ct7 
eo 4trjJk' k' 
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where, k' and I represent the specific conductance of the solution and the current flowing 

through it. The total volume flowrate under an applied voltage is: 

2-38 

Under the influence of filter medium electroosmosis, Moulik, Cooper and Bier (1967) 

state that the medium resistance is reduced according to: 

2-39 

remembering that Q represents dV!dt (the mother liquor flow rate through the filter 

medium at zero voltage). 

2.7.3.2 Filter cake electroosmosis 

This phenomenon is controlled by the potential of the double layer formed between the 

cake pore surface and the suspension. The cake must be a certain thickness before this 

occurs, and so occurs after the start of filtration. A resistance correction is not possible, 

and so a volume correction factor is suggested (Moulik, 1971): 

2-40 

2.7.3.3 Particle Electrophoresis 

If E < Ec• filtration flow is given by the sum of the 'normal' filtration rate and that of the 

electroosmotic flow through the cake and membrane. At this voltage, cake will form, 

because particles have net flow towards the filter. Under constant pressure filtration, the 

rate of cake formation is controlled by a balance between the applied pressure and the 

voltage applied. The extent of cake deposition is proportional to 
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(1-EIEc• ), with E!Ec• being the fraction of cake which does not deposit (due to the 

action of the electric field). The cake thickness can be calculated by: 

Z'=Z(1-...£J 
ECR 
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Moulik (1971) proposes modification of the filtration equation (2-24) to account for 

these electrokinetic phenomena on filtration. When E<Ec• the process can be described 

by: 

t t 
V= {v- (t -t,}Qc,J P;~~~" (~-: J!v -(< -•,)Q~)+ [" cq] 

CR !:J.PA 1+--
k'Q 
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At this point electroosmosis is present, however if the cake is thin, cake electroosmosis 

may become negligible, and (2-42) reduces to: 

At the critical voltage, E = E c• and further simplification yields: 

t = p.RM 

V !:JP A(l + Ct;JJ 
k'Q 

2-43 

2-44 

These equations were verified experimentally, by Moulik, by plotting t/V against V for a 

number of suspensions representing typical wastewaters. The decrease in intercept as the 

applied voltage is increased is evidence of the filter medium resistance reduction theory. 

The applied field is seen to have a large effect on the cake resistance, but not on RM. A 

- - --- ---- similar reduction in gradient for the same conditions is an indicator of decreased filter 

cake build up (decreased resistance). At the critical voltage: 

2-45 

where Ue is the electrophoretic mobility of the suspended particles. So for any given 

filtration rate, a precise knowledge of u., A and QMeo allows calculation of E c•· 

Further work has been carried out by Wakeman (1982), who has confirmed that D. C. 

fields are useful for preventing particle deposition at the filtering surface, and also 
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concluded that electrolyte pH has a great effect on slurry properties and the 

electrofiltration process is applicable to suspensions which form high resistance 

deposits. 

Yuk:awa et al (1976, 1978) modelled electroosmotic dewatering of sludge at constant 

electric current and at constant voltage. The model was based on electroosmotic flow 

through the particle packed bed. For the materials studied the dewatering flow rate and 

dewatered volume increased in proportion to the electric current density. The proposed 

model agreed well with the experimental results. Electroosmotic dewatering was very 

effective for materials which were difficult to separate by gravity, with the dewatered 

volume by electroosmosis being around 4 times that of vacuum dewatering. 

Dewatering of sludge at constant electric current showed both primary and secondary 

dewatering. The distinction was made at the point where the voltage rapidly increased, 

requiring a large power consumption. This was due to an increase in the electric 

resistance of the sludge bed, as the water content of the sludge changed. Secondary 

dewatering showed complex phenomena and was not found to occur during 

electroosmotic dewatering at constant voltage. 

Dewatering at constant voltage showed a terminal water content which was independent 

of the applied voltage for a given material. This was the sum of the volumes dewatered 

by electroosmosis and by gravity. Expressions for the dewatered volume by 

electroosmosis for conditions of constant voltage and for the power consumption were 

given. The electric resistance of the sludge bed increased until the dewatered volume 

reached a terminal value. 

2. 7.4 Electric fields in cross flow microfiltration 

Crossflow filtration systems use high velocity flow parallel to a semi-permeable 

membrane. Micro filtration allows separation in ranges over 0.1-10 microns, allowing 

greater filtrate flux over ultrafiltration. A filter cake does not form as in dead end 

filtration, however particles do accumulate at the membrane surface and a gel or cake 

may form. This, and 'particle polarisation' are widely accepted as major causes of the 

loss of performance of crossflow microfiltration and ultrafiltration systems. Techniques 

using electric fields to minimise this fouling have been widely researched, most notably 

by Wakeman and Tarleton, (1982, 1986, 1987), Tarleton and Wakeman (1988) and 
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Tarleton (1986), but also Lee et a! (1980),Moulik (1971) and Akay and Wakeman 

( 1996) amongst others. 

Wakeman and Tarleton (1986) calculated particle trajectories for particles introduced to 

a tubular filter close to and some distance from the filter septum. Those particles fed 

some distance from the septum showed no tendency to approach, and the conclusion 

was drawn that only particles fed close to the filter surface contribute to fouling in a 

crossflow microfilter. The application of a potential gradient enabled the particles to 

remain in suspension for a greater distance along the filter due to the induced 

electrophoretic velocity. An interesting phenomena was that under prolonged field 

application, particles which were deposited became re-entrained due to the 

hydrodynamic drag force holding particles together at the surface falling to such a level 

that it is smaller than the combined shear and electrophoretic effects. Pulsing of the field 

was seen to increase flux by inducing electroosmosis. The model presented was based 

on a combination of the boundary layer effect as described by Lee et al (1980) and the 

critical voltage hypothesis for dead end filtration postulated by Moulik (1971), Yukawa 

et a/ (1976) and Wakeman (1982). It is possible to calculate the field strength required 

to prevent a particle contacting the filter surface for any set of operating conditions by 

calculating the trajectory of a particle entering the annular space between electrodes. 

Electrophoretic separation of TiOz has also been studied by Majmudar et al (1994). 

Their separator operates by the insertion of an electrode array into an elongated furmel. 

The titania particles are attracted to the anode, and a thickened slurry is intermittently 

removed from the bottom of the vessel. Separation seemed to be excellent, although the 

feed particle concentrations were very low (I 00 ppm). Electrode separation was small, 

Smm, and voltages up to 50 V were applied. The suggested applied voltage is 15 V and 

a suspension flow rate of200 mlh'1• 

2.8 Acoustic and Electroacoustic membrane processes 

Ultrasonics has been shown to be a potentially economical means of removing water 

from products to relatively low levels and to decrease fouling of membranes. It is 

implied by Fairbanks (1967), that this is a dewatering rather than a filtration technique, 

and thus the mechanisms proposed focus on how ultrasound affects suspension 

characteristics. It may be that the ultrasonic energy provides an additional driving force, 
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in the same way that an electric field is considered to. That is ultrasound should be 

considered an aid to filtration and by facilitating a more open cake can improve mass 

transfer through the membrane. 

Conventional dewatering removes only bulk water, but ultrasonic dewatering can also 

affect pore (capillary bound), chemisorbed and hydrogen bonded water. Beard and 

Muralidhara (1985) suggested this was a result of cavitation occurring in crevices within 

the particles. Fairbanks et al (1986) noted an effect on bound water and suggested that 

cavitation scrubbed particulate crevices. It was further hypothesised that the water 'gel' 

layer around some hydrocarbon particles could be broken by surface tension effects, 

which normally separate particles on settling and that this is removed and replaced by a 

thinner water layer. Fairbanks (1973) stated that this led to a drier cake formation, and 

would allow filtration of high viscosity slurries. Fairbanks and Cheng (1969) studied 

liquid flow through porous media using acoustic energy and noted an increase in flow 

rate which can be governed by the intensity of the ultrasound applied. 

The advantages of ultrasonic fields in separation processes are a faster dewatering rate, 

lower process temperature and the maintenance of product integrity (Beard and 

Muralidhara, 1985). Dewatering is aided by the reduction of viscosity and surface 

tension of the suspension brought about by the use of ultrasound. Further work by 

Muralidhara et al (1987) suggested that particle agglomeration released both interstitial 

and surface water and increases the average particle size, which caused less blinding of 

the media. This reduction in media fouling may facilitate conventional separation 

methods in cases where they would be otherwise impracticable. At low ultrasonic 

intensities, coagulation was rapid as cavitation did not occur. 

The main mechanism proposed by many authors for improved filtration effects was 

---~--------particle agglomeration, followed by conventional dewatering mechanisms. Reviews of 

agglomeration mechanisms in suspensions are given by Gooberman (1968) and 

Muralidhara et al (1987). The principal mechanisms of particle agglomeration are 

thought to be orthokinetic and hydrodynamic interactions (See 2.5.1.1. & 2.5.1.2). It 

should be noted that the models proposed for this agglomeration by Shaw (1978) and 

Chou et al (1991) are based on models of acoustic agglomeration of aerosols and may 

not be applicable to liquid filtration. The models are based on an agglomeration volume 

in which each large particle acts as a collector and sweeps a certain volume in which it 

- - -- ---------
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may collect smaller particles moving with different amplitudes, as described previously. 

Scott Fogler (1971) suggests that it may be secondary mechanisms of ultrasound, such 

as acoustic streaming and cavitation, that are responsible for improvements in 

processing operations. 

Mason (1996) noted the increased particle agglomeration effect caused by sonication. 

The vibrational energy kept the particles suspended, leaving more channels for the 

solvent to pass through. The water content of various materials can be reduced by 

around 50% of its initial value by using a belt filter aided by ultrasound. Matsumoto et 

al. (1996) observed that in the crossflow filtration of bovine serum albumen, the flux 

can be made four to six times greater by the use of ultrasound. Acoustic fields seemed 

to be effective for removing the cake layer deposited on a membrane surface and 

prevented the plugging of membrane pores. They suggest that the ultrasonic waves have 

a washing effect on the membrane, however other authors (Scott Fogler, 1971, 

Fairbanks and Cheng, 1969) attributed the prevention of cake build up and an 

improvement in mass transfer as being due to the turbulent effect induced by ultrasound. 

Crossflow micro filtration can be enhanced by the combination of a D.C. electric field 

and an acoustic field as noted by Tarleton and Wakeman (1990). The enhanced 

separation effect has also been studied by Muralidhara et al (1985, 1986). 

A number of benefits are achieved by the use of electric, and acoustic fields; 

1) A higher degree of dewatering eliminates the need for extensive thermal drying of a 

solid product; 

2) Enhanced product recovery if the product is the supematant; 

3) Dewatering of solid wastes which may reduce disposal costs; 

~~~- __ ~---4) Faster_de\Vatering rates, which may allow smaller equipment; 

5) A technique which can be retrofitted to existing processes. 

A review of the principals involved in EAD is given by Chauhan et al. (1986). The 

electroacoustic process is intended to be used in addition to vacuum filtration, 

centrifuges and screw presses, but the majority of work has been carried out in the field 

of vacuum dewatering. EAD is more effective than mechanical dewatering and has a 

wide applicability in process industries such as food, biotechnology and paper. The 
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major cost is electricity, but this is an order of magnitude less than that for evaporative 

drying because of the preliminary liquid removal. 

The mechanisms of separation of EAD proposed by Muralidhara et al (1986) can be 

categorised as: 

1. Mechanical- Wave propagation, cavitation, inertial forces, heat transfer. These 

mechanisms are predominant in the solid/liquid separation process. The surface 

tension and bulk viscosity of the liquid medium are reduced by the radiation forces 

caused by acoustic energy. This reduction aids electroosmosis and vacuum filtration. 

The difference in inertial forces of two materials of differing densities will enhance 

vacuum filtration by reducing adhesion. 

2. Chemical- Cavitation leads to surface energy changes. 

3. Thermal - Ultrasonic energy is absorbed in the medium and converted to heat. 

2.9 Ultrasonic Transducers 

Ultrasonic transducers work either by fluid current interruption or as a piston device. 

These transducers can be mechanical and act as a low frequency source, or electrical to 

produce higher frequencies. 

High frequency ultrasound is produced by electromagnetic, piezoelectric or 

magnetostrictive transducers depending on the system being used. Performance criteria 

are available for the application of electroacoustic transducers. These are (Wilson 1988): 

Linearity- The output is a linear function of the input 

Passivity- All the output energy is obtained from the input energy 

Reversibility- The device is able to convert energy in either direction. 

·· ·· --·-··-- 2.9.1··· Piezoelectric Transducers 

The piezoelectric effect can be described as a redistribution of charge as a result of a 

deformation in the material, or, alternatively, as a deformation due to a redistribution of 

the charge. Figure 2-3 demonstrates how this redistribution of charge comes about on 

deformation. 

High frequency electric oscillations are transformed into mechanical oscillations. The 

ultrasound frequency corresponds to that of the electric field applied. The material will 



2 Literature Survey -45-

rupture at low frequencies, limiting the lower usable frequency. Blitz (1971) stated that 

an increased amplitude is achievable if the transducer is excited at its resonance 

frequency. Synthetic transducer materials have been developed for use in these 

transducers. A commonly used alternative material is barium titanate. This has the 

advantage of an ability to be shaped, and so the restrictions of the crystal shape are 

--------·-··· 

-------~~~-----

Figure 2-3: Re-distribution of charge in a piezo-electric material 

removed but it is less efficient than quartz crystals. Polycrystalline ceramics (e.g. lead­

zirconate-titanate mixtures) can be used at high temperatures and their piezoelectric 

properties are superior to those of barium titanate (Wilson, 1988). Large transducers 

made of several quartz plates have not been successful in colloid work as found by 

Sollner (1950). The main advantage of piezoelectric transducers over magnetostrictive is 

a wider efficient output range, and higher power outputs. 

A schematic of a typical piezoelectric transducer is shown in Figure 2-4. Application of 

a high frequency electric field across the piezoelectric disk causes changes in the disk's 

dimensions. These are absorbed on one side by a backing material, such that waves 

propagate in one direction only. The matching layer acts as a coupling medium between 

the disk and the wear plate and allows good propagation of the wave to the wear plate. 

This plate acts to protect the transducer from damage. 
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The main types of piezo transducers are immersion, contact , angle-beam, array and air 

borne. They can be categorised by the following characteristics: coupling, matching, 

damping, steering and focusing. The transducer which has the highest ratings in all these 

categories is the immersion transducer, which can, as its name suggests, be immersed in 

a water bath to allow good coupling between the sample and the transducer. These types 

are easy to steer and focus the wave exactly at the desired position and so are popular for 

uses such as non destructive testing. Contact transducers are placed directly onto the 

sample, but a coupling medium must be between the device and sample to allow waves 

to pass into it. 

Absorbent backing material 

Connector 

Electrical Lead Piezoelectric disk 

Figure 2-4: Typical Transducer Design 

2.9.2 Magnetostrictive Transducers 

The magnetostriction effect is utilised to create mechanical vibrations from a magnetic 

,,-,---~-field.- Resonance between the natural elastic period of the oscillator and the frequency of 

the field increases the amplitude of the mechanical vibrations and improves the energy 

transformation efficiency. The rod of ferromagnetic material decreases or increases in 

length depending on the material, its treatment and the applied field strength. The length 

change does not depend on the direction of the magnetic field. The material must be 

initially magnetised to ensure that the average movement is greater in one direction . 

This initial magnetisation is provided by the use of a coil or permanent magnet around 

the material. The amplitude of the length change can be made large under the correct 

--~ ---- -----------------
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conditions, by making the frequency of the oscillatory current the same as that of the 

natural frequency of the rod. 

Magnetostrictive transducers are highly suitable to industrial use because they possess 

many advantageous properties. These are (Brown & Goodman 1965): 

I. Rugged construction 

2. High power outputs 

3. Efficient operation in certain ranges (5-40kHz) 

4. Ability to drive high impedance loads, such as solids and liquids. 

5. Several transducers can be used together in large installations 

2.9.3 Electromagnetic Transducers 

These consist of a heavy steel membrane actuated by an electric field at the resonance 

frequency. At high frequencies energy losses occur because of eddies. These types of 

transducers require a constant application of a steady magnetic field, and as such have 

only been used in a few instances in liquid systems (Sollner, 1950). 

Hanel et a! (1996) have worked on the design and optimisation of high frequency 

piezoelectric transducers, by attempting to simulate the transducer characteristics prior 

to its construction. 
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3 Experimental Procedures & Analysis- Filtration 

Experiments were designed and carried out to investigate the effects of different 

combinations of electric and acoustic fields on dead end filtration of low concentration 

rutile suspensions. The suspension was fully characterised and initial tests carried out to 

establish suitable values of the variables being studied. These tests included study of the 

effect an acoustic field on suspensions of different concentrations, the effect of electric 

field strength alone on filtration and the effect of electric field strength when applied 

together with the acoustic field. 

A series of filtration experiments were then performed across a range of pHs, utilising a 

number of field combinations, as described in later sections. 

3.1 Zeta potential 

It is important to fully characterise for both zeta potential and particle size any 

suspension being studied because the effective charge on a particle (that which is 'seen' 

by other particles) will differ depending on the particles surface chemistry, the nature of 

the supporting medium and whether any surface active agents are present. Although 

titanium dioxide is well known and is well characterised in the literature, use of the 

surfactant MIP A to aid dispersion alters the characteristic zeta potential curve and shifts 

the iso-electric point to close to pH 4 (Figure 3-2.). 

The zeta potential was measured using a Malvern Zetasizer 3000. This machine uses 

microelectrophoresis; inducing a particle velocity by application of an electric field. The 

particle velocity is measured using a light scattering technique, which makes use of the 

Doppler effect. The velocity is measured at a point in the cell where the electro-osmotic 

velocity is zero and the measured velocity is the true electrophoretic velocity. Two laser 

beams cross at this stationary point and cause interference fringes which interact with 

particles within the volume to scatter light. The frequency of the scattered light depends 

on the speed of the particles and is correlated to calculate the velocity, electrophoretic 

mobility and finally the zeta potential. 

A dilute suspension of MIP A dispersed m tile was made up according to the same 

procedure used for the filtration experiments. Small samples were taken and the pH 

altered to cover the wide range of pHs used in this study. These samples were placed in 
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clean cuvettes and placed within the Zetasizer in the path of the laser beams. The 

equipment is computer controlled, allowing a number of readings to be taken from the 

same sample for accuracy. 

3.2 Particle size 

The particle size distributions of the rutile suspensions were measured using a Malvern 

MS20 Mastersizer. This allowed determination of surface charge effects on particle 

agglomeration. During the experimental programme particle size measurements were 

used to ensure adequate dispersion, as indicated in the experimental procedure. 

The equipment utilises a light scattering technique to determine particle siZe 

distributions. A laser is fired at the suspension and the particle size distribution is 

calculated from the light received at the sensor, the scattering characteristics of the 

material and the focal length of the lens. The parameters used in this study were a 

presentation factor of 2209 and a 45mm lens. The stirrer speed within the sample vessel 

was set at 80%, and the feed pump to 60 %. These have been used by other authors 

using the same material, (Marchant, 1998). 

3.3 Characterisation Background Study 

3.3.1 Electrical interactions 

Electrostatic interaction between two particles occurs when their diffuse double layers 

penetrate one another. Particles in aqueous suspensions carry surface charges, and the 

distribution of ions around a charged particle is determined by electrical interaction with 

the surface (along with random thermal motion). The electrical potential at the inner 

~~~-~------.boundary of the diffuse layer is of interest to study these interactions. This cannot be 

measured directly, but is believed to be closely related to the measurable zeta potential. 

As shown in Figure 3-1, the ionic strength has a marked effect on the thickness of the 

double layer. A large diffuse layer, as shown in Figure 3-l(a) results in repulsion when 

particles are separated by a greater distance than that given by a more compact diffuse 

layer (Figure 3-1 (b)). This means that, at higher ionic strengths (extremes of pH) 

particles can approach more closely before repulsion. 

-----------------~--
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(a) Low ionic strength (b) High ionic strength 

Figure 3-1: The effect of ionic strength on double layer thickness. 

Measurement of the zeta potential allows the electrical interaction energy per unit area 

to be derived. The general expression for this repulsive energy between particles A and 

B is complex (Bratby 1980), but can be expressed as: 

3-1 

Within the DLVO (Deryagin-Landau & Verwy-Overbeek) theory other interactions are 

neglected (Shaw, 1992). These include hydration effects (hydrated surfaces must 

become dehydrated if true contact is to occur), hydrophobic interaction (water confined 

in a gap between two hydrophobic surfaces will tend to migrate to the bulk water, to 

facilitate hydrogen bonding and become more structured), steric interaction (stability is 

caused by polymers which adsorb onto the particle, but parts of these extend into the 

aqueous phase, the overlap of which leads to particle repulsion (by dehydration)) and 

polymer bridging. This does not imply however that these other interactions are 

unimportant, indeed steric interaction is thought to play an important part in the stability 

of natural inorganic colloids (Gregory 1993), which often have adsorbed layers of 

natural organic material which act as a structural mechanical barrier allowing particles 

to approach only up to a certain distance. Expressions for this interaction have been 

~ ~---~--~--proposed, but the effect is complex and so is not considered here. Suffice to say that it 

acts as an extra repulsion energy, increasing the energy barrier which particles must 

overcome to agglomerate. 

In the DLVO theory electrical double layer repulsion and van der Waals interaction are 

assumed to be additive and are combined to give the total energy of interaction between 

particles in a colloidal suspension as a function of separation distance. The Deryagin 

approximation is used to enable the force of interaction to be written as a function if the 

interaction energy, both of which are functions of the particle's separation distance. The 
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assumption is that two interacting spherical bodies which are very close essentially act 

as two parallel plates. This only holds if the bodies are very close, so that most of the 

contribution to interaction comes from the region where the surfaces are parallel. For 

this to hold, both the range of interaction (double layer thickness) of the bodies and their 

separation distance, should be small compared with their radius of curvature. 

3.3.2 van der Waals interaction 

The attractive force that occurs between colloidal particles can be explained using the 

concept of dipoles. A temporary dipole induces another temporary dipole on a 

neighbouring molecule, which is always in the direction such that the molecules attract 

one another. Water molecules, with their permanent dipole moment, attract each other 

strongly because the dipoles align themselves so that molecules are attracted rather than 

repulsed; this lowers the free energy of the system and gives the water 'structure'. The 

van der W aals force can act over longer distances in colloidal particles than in 

molecules because all of the atoms of one molecule can interact with all the atoms of a 

second one. Thus in colloidal suspensions, the van der Waals force acts over several 

hundred nanometers (Gregory, 1993), and its range is comparable to that of the 

electrostatic force. The temporary nature of the dipoles provide a possibility that, if they 

meet in the correct orientation, attraction will occur, until the time that the dipole's 

nature changes. 

It is common to use the Hamaker (1937) approach to calculation of van der Waals 

interactions, which is based on the sununation of the bodies' molecular interactions. 

The interaction energy per unit area according to Hamaker is 

E =- Al2 
A 12mf2 

3-2 

A 12 denotes the Hamaker constant for interacting media 1 and 2. Convention dictates 

that this expression has a negative sign to indicate an attraction. The notation A 12 is used 

for Hamaker constants relating to two media in a ·vacuum, and a modification is 

necessary if a third medium is suspending the particles. For example for the interaction 

of media 1 and 2 through medium 3 we have 

3-3 
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Using a geometric mean assumption A12 ""~(A11 A22 ) and assuming that similar 

particles are interacting in the third medium, the Hamaker constant can be given by 

A -(Ay,- Ay,)2 

131"' 11 33 3-4 

Thus for similar materials, the Hamaker constant will always be positive and so the 

negative interaction energy dictating inter particle attraction will always occur. Hamaker 

constants are much lower for aqueous dispersions than in a vacuum, leading to smaller 

interaction energies and thus less attraction. This is shown in Table 3-1, where the 

Hamaker constants for two particles of the same material are clearly smaller when a 

further medium is present between them. It is interesting to note that Titanium dioxide, 

Ti02, has a Hamaker constant in water of a similar order to those given for substances in 

a vacuum, and orders of magnitude higher than other substances shown. This suggests 

that the van der Waals interaction between Ti02 particles in water is strongly attractive, 

in comparison to other substances. 

Material Harnaker constant in a vacuum Hamaker constant in water 

All X 10 20 J 0 20 Am x 1 J 

Water 3----6.4 -
Oxides 10----15 1.7----4.1 

Metals 7.5----45 0. 7----3.3 

Hydrocarbons 4.6----10 0.08----0.4 

Si02 8.6----50 0.3----0.94 

Ti02 11----31 2.5----10 

Table 3-1: Typical Hamaker constants (after Bernhardt, 1994) 

3.3.3 Colloidal stability 

The total interaction energy is calculated by the summation of van der Waals and 

electrostatic interactions, EH and E£ . The shape of the total interaction curve for a 

solution is very important when considering colloid stability. If EH>>E£ then the total 

energy, Er is totally negative and the particles attract one another. This causes an 

unstable suspension in which particles can adhere each time they collide. 

- ---------------------
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Provided that there are situations where the zeta potential of the particles and the ionic 

strength are such that repulsion outweighs attraction there will exist an energy barrier. lt 

is the height of this energy barrier that enables the stability of the suspension to be 

maintained. Any particle having enough energy to overcome it would lose that energy by 

the actual act of overcoming the frictional resistance of the solvent before it could 

surmount the barrier. However, the particles are undergoing Brownian motion and there 

is a small probability that two particles will be knocked close enough together to 

overcome the energy barrier. 

Once particles have agglomerated they are held in the deep primary minimum, from 

which it is difficult to escape, and they are unlikely to separate. 

3.3.4 Discussion of characterisation results 

Increasing the salt concentration of the Titania suspension used in this study (Figure 3-

2), both reduces the zeta potential and increases the ionic strength resulting in a 

reduction in the energy barrier (because this reduces the electrical attraction). This effect 

is shown by the particle size data of Figure 3-3; at extremes of pH, the magnitude of the 

zeta potential is reduced and the size data clearly shows an increase in the mean 

measured particle size. 

This particle agglomeration occurs as a result of a reduction in the total interaction 

energy and so contact of the particles can occur more readily, resulting in adhesion. As 

the energy barrier is lowered, the point at which the maximum just touches the abscissa 

is termed the critical coagulation concentration and it is at this point that rapid 

coagulation occurs. The greatest surface charge (approx. -50 m V) occurs at pH 9 and 

the iso-electric point (IEP) is approximately at pH 3.4. Between pH 6-10 the zeta 

-------------potential remains approximately constant, at -45m V, reducing in magnitude slightly as 

pHs over 10 are reached. Particle sizes associated with these pHs show that a stable, 

well dispersed suspension is formed in this region, with a mean particle size of around 

0.30J.tm (Figure 3-3). 
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Around the IEP, low or zero zeta potential implies that there are few interparticle 

repulsive forces, and van der Waals forces dominate, resulting in particle agglomeration. 

This is confirmed by the increase in particle size seen as the suspension pH is reduced 

and poorer dispersion is achieved, with a mean particle size of 2 J.!m. As the pH is 

reduced further the zeta potential becomes positive and increases in magnitude. There is 

no corresponding rapid increase in mean particle size, suggesting that particles have 

become trapped in the deep primary minimum and a large increase in potential energy 

would be required to overcome this and re- disperse the particles. 

Figure 3-3 follows a similar shape to that in Figure 3-2. Maximum particle sizes are 

seen between pHs 3-4 and minimum sizes are consistent between pHs 6-10. This 

suggests the zeta potential has a marked effect on particle agglomeration and can be 

explained by electrical interactions between particles. 

3.4 Acoustic Power Supply 

The ultrasonic generator used in this study is a Telsonic NSM 220 module supplied with 

an MG-300 -x-22 module. It is sold for use as a generator for ultrasonic baths, but has 

been modified for use with a transducer for the experimental programme. A summary of 

the acoustic properties of the generator is given in Table 3-2. 

Property Value 

Supply 220V, 50/60 Hz±lO% 

Current Consumption l.SA(max) 

Output Frequency 23kHz 

Output Power 300 W (rms), 600 W (peak) 

Transducer area 91.68 cm" 

Table 3-2: Acoustic generator properties (Telsonic Ltd, 1999) 

The generator converts mains frequency (50/60 Hz) into high frequency electrical 

signals. An ultrasonic converter converts the electrical energy into mechanical energy 

with the same frequency, as described in Section 1.9. The mechanical waves are then 

transmitted through the suspension, which is in contact with the converter. 

The output frequency is double half wave operation (pulsed at 100 Hz) and frequency 

modulated ±3 kHz. 
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3.4.1 Sound velocity 

An expression to derive the velocity of sound in liquids is given by Kinsler and Frey 

(1962) as 

c= (YE 
fP: 3-5 

where B is the isothermal bulk modulus, an elastic modulus which gives an indication of 

the compressibility of a liquid, and r the ratio of specific heats. All the quantities in 

equation 3-5 vary with pressure and temperature, however, and so it is necessary to 

measure the velocities or use empirical equations such as that given below for distilled 

water at one atmosphere: 

c = 1403 + 5T- 0.06T2 + 0.0003T3 3-6 

where T is the temperature of the water in o C (valid between 0-60 ° C) and c is the wave 

speed (ms'1). Pressure and the presence of salts increase sound velocities such that the 

speed of sound in sea water is taken to be approximately 1500 ms·1
. The sound speed 

used in this study is that found from equation (3-6) of 1481 ms·1
. 

3.4.2 Energy density 

The energy involved in the propagation of acoustic waves through a fluid medium 

consists of the kinetic energy of the moving particles and the potential energy inherent 

in a compressed fluid. The energy density is a measure of this energy caused by the 

sound field, and can be calculated by summing the kinetic and potential energies. A 

volume element of thickness dx, (see Figure 4-1), such that all particles within the 

element have the same velocity u, and have kinetic energy, LIEK given by: 

3-7 

As the fluid is compressed and expanded, the volume of the element, V., varies 

according to 

3-8 

where Adx is the volume of the element in the undisturbed fluid. The change in potential 

energy is given by 
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3-9 

Potential energy increases as work is done on the fluid when its volume is decreased by 

the action of a positive acoustic pressure p. Substituting equation 3-7 and differentiating 

the expression for V., and substituting into the integral expression for potential energy 

gives 

Adx r 1 p
2 

t.E P = --2 pdp = ---2 Adx 
p0 c 2 p0 c . 

3-10 

The total acoustic energy L1EAc is the sum of the kinetic and potential terms and the 

energy density, s is given by 

3-11 

This is simply twice the expression for kinetic energy density PEK, because p=pocu, as 

defined by the expression for wave speed, see Chapter 4. 

3.4.3 Acoustic Intensity 

The acoustic intensity of a sound wave is defined as the average rate of flow of energy 

through a unit area normal to the direction of wave propagation. The intensity of a wave 

travelling in the positive x direction can be defined as (Kinsler and Frey, 1962): 

p2 
l=-

2M 
3-12 

[ 0 is the specific acoustic impedance of the medium,. Impedance is a measure of how 

difficult it is to make the fluid move, and is defined as the ratio of acoustic pressure and 

associated particle velocity. It can be shown (Halll993) to be equal to the product of the 

medium density and the wave speed (pjC) in the case of a plane travelling wave. The 

impedance of water at 20 o C is 1.48 xl06 kg m-2 s-1
• The impedance of air is much lower 

than that of water, 415 kg m-2 s-1 at the same conditions, because both the density and 

particle speed are lower. The impedance is a property of both the media and the wave 

type and geometric position (Hall 1993). P, the pressure amplitude is often replaced by 

P, , the effective pressure amplitude or root mean square (rms) 
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3-13 

For example, the sound intensity can be defined using the effective pressure amplitude 

3-14 

The rms power output of the generator used in the study is known, along with the 

transducer area. Thus the effective intensity of the acoustic wave in the water is 

300 W ( 100 cm2 i.e. 3Wcm·2• Substitution into equations 3-13 and 3-14 gives a peak 

pressure amplitude of 3 x 105 Pa and an effective (rms) amplitude of 2.1 x 105 Pa. The 

energy consumption based on the available area of the transducer (91.68 cm2
) is 275 W. 

3.4.4 Sound intensity levels and acoustic parameters 

Knowledge of the frequency and power level of an ultrasonic source can allow 

calculation of any parameter required: 

The sound intensity level, SIL, is given by 

I 
SIL=101ogl0-

Iref 
3-15 

where I,<! is a mutually agreed reference intensity. The sound pressure level, SPL (more 

often used for liquids), can be defined in a similar form and is given by 

3-16 

For water P,,1 is 1 ~Pa, although older sources use 20 ~Pa or 0.1 Pa, (Hall 1993) so it is. 

important to specify which reference pressure is used. Now the rms density fluctuation 

p, is defined as 

the rms displacement ~e, 

p 
P "'-' ' 2 c 

3-17 

3-18 
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and therms velocity amplitude, ue 

3-19 

the average kinetic energy density, PEK 

3-20 

with the total energy density, PE 

3-21 

The acoustic parameters are summarised in Table 3-3. 

Acoustic Parameter Value 

Wave frequency 23kHz 

Angular frequency 144513 rads' 1 

Effective intensity 3 xl04 Wm'2 

Peak pressure amplitude, P 298295 Pa 

Effective Pressure amplitude, Pe 210927 Pa 

SPL, dB (Pret=lJ.tPa) 226.5 dB 

Pe 0.096 kgm'3 

Se 9.8 x 10·6 m 

Ye 1.42 ms-1 

i1EK 4.8 xlO _, J 

B 9.6 x 10 _, Jm·3 

Table 3-3: Acoustic parameters for ultrasonic source with power output of generator 

300 W, transducer area 100 cm2 

3.5 Electrical Power supply 

~--------A-siabilisedD:c. powersupply (Sorensen model DCR 150-12B) provided an electric 

field gradient. The D.C. power supply allowed application of a constant, stabilised 

voltage across the electrodes. The field gradient was varied from one experiment to the 

next by altering the separation distance between the electrodes or by applying a different 

voltage. Energy consumption was below SW in all the experiments carried out 

(Wakeman and Smythe, 2000). 
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3.6 Experimental Procedures 

The experimental programme consisted mainly of filtration experiments, using rutile as 

the test material. During each experiment, the conductivity was monitored using a WPA 

portable conductivity meter, together with an epoxy resin conductivity probe. 

3.6.1 Test Suspension 

The test suspension used was uncoated rutile, which was dispersed usmg 

monoisopropanolamine (MIPA) at a concentration of 0.15% by weight (based on the 

mass of Ti02). MIP A is a surfactant which has a number of effects. Initially, it reduces 

surface tension, allowing the liquid phase to penetrate the finer interstitial voids betwen 

particles, thus resulting in a better dispersed suspension. Once dispersed, it also enables 

the suspension to maintain its dispersed state. 

The dispersion method used was that developed by Marchant (1998) for the same type 

of MIP A dispersed Titania suspensions. To disperse particles down to approx 0.3 

microns, it is necessary to prepare a 50% vol. solids suspension, as this concentration 

has been shown to give the best dispersion. The close proximity of particles in the 

suspension aids dispersion. 

The suspension was homogenised using a Ultra Turrax T25 homogeniser. This high 

shear mixer was used for 8 minutes at 2000 rpm to homogenise up to 200 m! of 

feedstock at a time. The 50 % vol feedstock was placed in a plastic beaker, sized to 

cover the homogeniser's rotor, and following mixing was covered with clingfilm to 

minimise water loss through evaporation. Malvern MS20 Mastersizer was used to 

en§ure a mean particle size of 0.3 j.!m. The suspension is made up at 50% (w/w) of TiOz 

in ultrapure water, obtained from a Millipore MilliRX20 water purification system. This 

_______ is a method which simulates industrial conditions (Marchant 1998). 

When an experiment took place, the 50% feedstock was diluted using ultrapure water, 

and the procedure given in Figure 3-6 followed. 

3.6.2 Membranes 

The filtration experiments reported use Sartorious cellulose nitrate membranes, with a 

pore size rating of 0.2 j.!m. These membranes have been extensively characterised 

previously, (Tarleton & Wakeman 1994) and show a negative zeta potential in the pH 
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range 3-12. They have a measured mean pore size of 0.51 !J.m, and a thickness of 130 

!J.m. A new membrane was used for each filtration test. 

3.6.3 Experimental Rig 

An experimental rig was designed and built based on a conventional dead end vacuum 

filter (Figure 3-5). 
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Figure 3-4: Filter cell detail 

In these experiments the filter medium support acted as a cathode. A variable position 

anode was suspended parallel to the support, and the separation distance could be 

varied. The electric field was thus applied normal to the filter surface. The ultrasonic 

transducer was attached to one side of the filter cell and ultrasonic energy applied 

tangentially to the filter surface. The ultrasonic transducer position could not be altered 

and has the properties described in Table 3-2 and 3-3. The filter cell is shown in detail in 

Figure 3-4 below 
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The experimental apparatus (Figure 3-5) comprised a feed reservoir with recirculation 

pump to ensure the feed is completely mixed. The feed flowed into the filter cell and the 

pressure drop across the cell was monitored by pressure transducers. The system was 

controlled by a host computer which controlled the vacuum held in the filtrate tank in 

order to control the pressure difference across the filter. Experimental runs were carried 

out at constant vacuum. The pressure drop across the cell was recorded and the filtrate 

volume collected was measured at different filtration times. As the initial effects of the 

fields were most significant run lengths were between 30 and 60 minutes, greater than 

the cake formation time of most industrial filters. 

feed 
tank 

Figure 3-5: Experimental rig 

· --------3:6.4- ·Experimental Procedure 

vacuum 
pump 

Before commencing a filtration experiment a test suspension was made to a known 

concentration by dilution of the suspension described above with ultrapure water. The 

suspension was re-circulated around the flow circuit until a homogenous mixture was 

achieved. The pH of the resulting suspension was monitored, and if necessary altered to 

the desired value using dilute hydrochloric acid or sodium hydroxide. A sample of the 

suspension was then taken for particle size analysis. The initial conductivity and 
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temperature was noted. At commencement of the experiment, the feed cell valve was 

opened and the suspension allowed to fill the filter cell. At this point the fields required 

for the particular test were switched on, such that the suspension was under the 

influence of the fields for the entire duration of the experiment. This procedure is 

summarised in Figure 3-6. 

3.7 Field Effects on Filtration 

The first filtration experiments carried out attempt to 'characterise' the filtration 

process, such that the parameters chosen were within the limitations of the experimental 

rig. This was especially important in light of the great synergistic effect seen by other 

authors, for example, Muralidhara et al (1985), Wakeman and Tarleton (1991). 

Results are plotted in the form often used to report filtration data, either as filtrate 

collected with time or Ruth plots from which an effective specific cake resistance can be 

calculated. This calculation method however, has limitations, in that the derivation of 

the Ruth equation makes use of certain assumptions that may not hold in this case. For 

example the derivation of equation 2-25 assumes constant feed concentration and 

filtration pressure. The application of external fields may alter the effective feed 

concentration. Rushton et al (1978) have shown that specific cake resistance is altered 

by both the feed concentration and velocity. This suggests that cake resistances 

calculated under these conditions using the traditional method of analysis will not hold. 

For these reasons the following method of comparing experimental results has been 

used. 

Following the simplifications used by Yukawa et al (1976) to derive a relationship for 

electrofiltration, a similar equation can be formed to include the effects of ultrasound. 

-~~-----~~~The result of modifYing the classical filtration equation based on Darcy's law is simply 

expressed as equation 2-25: 

2-25 

In these experiments the electrical and/or acoustic forces change the effective 

concentration, cm, of the suspension that actually forms the filter cake so that it is 

different from that of the slurry feed. The pressure across the filter, &>', is given by the 

sum of the pressure differences across the cake and the medium; this includes 

~---- ·--------------------------------------------------------------------------
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contributions from the hydraulic (p,), electroosmotic (p,) and acoustic (p,) pressures, 

that is: 

3-22 

The electroosmotic pressure difference arises from electroosmotic flow of liquid 

through the filter medium and any cake or thickened suspension that is formed; 

assuming this and the acoustic pressure difference are small compared with the 

hydraulic pressure difference derived from the vacuum, Llp is constant to a first 

approximation and equation 2-25 can be integrated at constant pressure difference to 

give: 

3-23 

In the results that follow, K1 is often quoted as it not only represents the gradient of the 

Ruth plot, but also indicates the relative magnitude of the specific cake resistance, 

although this cannot be calculated explicitly as the pressure is not, strictly speaking, 

constant during acoustic filtration due to the cyclic nature of the wave. 

3. 7.1 Effect of concentration on acoustic filtration 

Suspensions of different concentrations were filtered, with and without the acoustic field 

activated. The suspensions ranged from 0.01% to 5% by volume of MIPA dispersed 

rutile. These concentrations are typical of those found in the dewatering of industrial 

suspensions, and can be considered at low enough concentration that, in the bulk 

suspension at least, the particles are separate enough that the assumptions used in 

DVLO theory hold. 

The result of no field filtration at different concentrations is shown in Figure 3-7, and of 

~··-~··---acoustic. filtration in Figure 3-8. The experiments were carried out at pH 8, with a .... -· . ·~ 

filtration pressure of 750 mBar vacuum. These values were chosen because the particle 

size distribution at this point is constant, at its minimum, and the suspension is at its 

most stable because of the high magnitude of the zeta potential (Figure 3-2). The 

pressure drop was chosen arbitrarily, under the assumption that the largest pressure drop 

would yield the largest volumes of filtrate. Study of Figures 3-7 and 3-8 initially seems 

to indicate that filtration is less successful or the same under the application of acoustic 

fields at all concentrations. At higher concentrations (<:: 1 %v/v ), filtration rates are 
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similar, regardless of whether or not the acoustic field is applied. The presence of large 

numbers of particles attenuates the acoustic field. At 5% v/v filtration appears to occur 

in the same manner as if the field was not present. This is in agreement with the multiple 

scattering theory proposed by Harker and Temple (1988) and discussed in Section 

3.7.1.4. At lower concentrations (0.5%v/v and below), the volumes collected under 

acoustic filtration are consistently lower than under conventional filtration. This 

suggests that, when used alone, the acoustic field has the opposite effect to that seen by 

other authors during cross flow microfiltration (W akeman and Tarleton, 1991 ). It is 

likely then that this may be due to the orientation of the acoustic field relative to the 

filter medium combined with flow normal to, rather than parallel with the medium. 

Tarleton (1988) saw similar results in his work on assisted filtration. In his work, the 

orientation of the sound field with the filter septum differed from the experiments 

carried out here, with the ultrasonic horn located parallel to the filter membrane. For 

china clay, a reduction in filtrate volume was always seen when the acoustic field was 

applied, and whilst gains were seen during the acoustic filtration of anatase, they were 

not large. It would seem then that the orientation of fluid flow normal to the medium 

may not be suitable for filtration enhancement by acoustic methods. 
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Figure 3-7a: Dead end filtration ofvarious concentration rutile suspensions 
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Figure 3-Bb: Dead end acoustic filtration of various concentration rutile suspensions 

In crossflow microfiltration however, such as that studied by Wakeman & Tarleton 

(1991 ), fluid flow is tangential to the medium, and the acoustic field appears to have a 

positive effect on filtration. 

Study of Figure 3-9 indicates a possible reason for the results seen in Figures 3-7 and 3-

8. A plot of K 1 vs. concentration yields some interesting results; whilst at low 

concentrations the function cmap. is similar irrespective of the type of filtration, it is 
M' 

reduced considerably for acoustic filtration over 0.1 %. It is not possible at this stage to 

hypothesise the mechanisms behind this change, suffice to say that, at higher 

..... _·-·-·--·-concentrations, the nature of the suspension is changed in some way by the acoustic 

field. This conflicts with the evidence in Figures 3-7 and 3-8 that suggest that it is more 

likely to be at low concentrations that the suspension properties are changed. Rushton et 

al (1978) have shown that for the inorganic materials they studied, the values of a in a 

constant pressure experiment go through a maximum with increasing concentration. 

This effect is seen quite clearly by plotting K1 against concentration in Figure 3-9; for 

the no fields situation, the maximum occurs at a concentration of approximately 

0.55 % v/v. At concentrations below the maximum low cake resistance is attributable to 
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high initial fluid velocities which are likely to produce open cake structures. Rushon et 

a! (1978) explain the low cake resistances seen at higher concentrations by short cake 

formation times. It is of interest to note that a similar effect is not seen under acoustic 

filtration conditions. In fact K1 continues to increase with increasing concentration 

suggesting that the cake resistance does not go through a turning point in these types of 

tests, at the concentrations studied. The ultrasound consolidates the cake as it forms, 

irrespective of the feed concentration. Thus at high concentrations, although the cake 

may be formed more rapidly, the consolidation effect prevents formation of a structure 

which differs from that formed at low concentrations. The slight increase in K1 can 

probably therefore be attributed to the increase in the concentration term within K1. 

At low concentrations values of K1 are similar whether or not the acoustic field is 

present. The increase in K1 for acoustic filtration appears to be less. This phenomena 

would suggest that the acoustic field facilitates a more open cake than conventional 

filtration, with a lower cake resistance, although the variables within K1 means that the 

effect could also be due to decreases in effective concentration, or increases in pressure. 

Table 3-1 shows the effective pressure amplitude of the acoustic wave to be 2.1 Bar, 
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Figure 3-9: Concentration effects on the slope of the conventional Ruth Plot 
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Figure 3-10: Concentration effects on filtrate volumes. 

0.9 

with a peak of 2.9 Bar. So acoustic pressure, although cyclical, is at times much larger 

that the applied vacuum, and no conclusion as to the true effect on specific cake 

resistance can be drawn. 

The volume of filtrate collected in a given time period allows direct comparison of the 

field effect on filter performance. Much higher volumes are collected at low 

concentrations, but there is no great difference between conventional and acoustic 

filtration, suggesting that the application of an acoustic field alone is unlikely to be a 

viable method of filtration enhancement. 

Following these experiments, a concentration of 0.1% v/v was chosen, as volumes 

------ -·---obtmll.ed ai tills concentration most easily facilitated experimentation, based on the rig 

design. 

3.7 .1.1 The absorption attenuation coefficient 

The majority of work into the absorption of sound in suspensions of one material in 

another has been carried out in the field of atmospheric aerosols. Initially Sewell (1910) 

considered small immobile particles in a sound field, and applied this to the propagation 

of sound in fogs and cloud. This assumption however is not valid at frequencies below 
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one Megahertz, or aqueous suspensions, because under these conditions the particles 

move with the fluid. Lamb (1945) extended the theory to rigid, incompressible particles 

which are free to move in the sound field. The work yields the well-known expression 

for the intensity absorption coefficient, z. 

I= 10 exp(-2v::) 3-24 

2z = (4/9 )k 4
a

4 
• JZU

2 + (4nli'l k') 3-25 

Where H' is the real part of a complex function of the particle and fluid densities p, and 

p1, the particle wavenumber, k, and the viscous skin depth, 0. The viscous skin depth is 

the characteristic thickness of the fluid layer around the sphere over which viscous 

coupling of the phases occurs, defined as 

3-26 

Urick extended this work, to account for a number of particles in a suspension, by 

treatment of a dilute suspension as a series of independent Rayleigh scatterers. The 

attenuation expression becomes: 

where 

s = 95 (1 + t5) 
4a a 

1 95 
r=-+-

2 4a 

3-27 

3-28 

3-29 

The first term in equation 3-27 is the scattering loss produced by the small rigid particles 

which are free to move in the sound field, and shows a redistribution of the sound 

energy. The second term is a frictional loss due to the viscosity of the suspending fluid, 

under the conditions limiting Sewell's result, this term accounts for nearly all the 

absorption (Urick , 1948). 
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Figure 3-11: Attenuation calculated for sub-micron particles of density 4260 kgm·3
, 

according to Urick's expression for attenuation coefficient (1948) 

At larger particle sizes, the effect of suspension concentration on the attenuation is 

greater, as shown in Figure 3-11. The work has been furthered and reviewed by many 

authors (Epstein and Carhart (1953), Chow (1964), Allegra & Hawley (1972)). 

Additionally Blue and McLeroy (1968), and Ahuja & Hendee (1978) have studied the 

effect of particle shape and orientation on the propagation of sound. Figure 3-12 and 

Figure 3-13 show how a particle's shape and orientation in the sound field may affect the 

attenuation and relative velocity. It is clear that the difference between particle and fluid 

velocity can be large for some shapes. However the discrepancy at low concentrations 

· ··-~~-~--such as those used in this study is small, and these effects can be neglected. 

3.7.1.2 Multiple Scattering 

Epstein and Carhart's (1953) work on the attenuation of sound in aerosols can be 

extended to dispersions (Allegra and Hawley,l972). There are several minor and one 

fundamental difference between these works; the stress-strain relation used by Allegra 

and Hawley is appropriate to isotropic elastic solids, rather than fluids. The equations of 

mass, (continuity), momentum (Navier Stokes), and energy conservation are used, 
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together with the elastic isotropic stress tensor and two thermodynamic equations of 

state. 
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Figure 3-12: Effect of particle shape on the relative velocity of solid and fluid, 
according to Ahuja, 1978. Each particle has a volume equal to the sphere of radius 

2.75 pm. 
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Figure 3-13: Effect of particle shape on the attenuation coefficient, according to 
Ahuja, 1978. Each particle has a volume equal to the sphere of radius 2. 75 pm. 
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Davis (1979) reproduces Allegra and Hawley's work, to obtain six general equations for 

a solid particle suspended in a fluid medium. If the particles in a suspension are 

regarded as spherical scatterers, as a suspension becomes more concentrated the 

scatterers become more closely spaced and may no longer be treated as independent. 

Interference between the scattered wave functions will no longer be negligible, and 

compressional wave coefficients can no longer be added linearly. An averaging 

technique is used to calculate the field in a suspending medium containing a number of 

scatterers. This multiple scattering field calculation yields a complex propagation 

constant K* in the function: 

(~J =[I+ 31/!(0)]2 -[31/f(7r)]2 
k 2 2k 2 a 3 2k 2a 3 

3-30 

where the scatterer amplitudesfi:O) and fin) are given by: 

J ro 

f(O) = -. L. (2n +!)A. 
zk n=O 

J ro 

/(7r)=-. L.(-!)"(2n+!)A. 
zk n=O 

The sound attenuation is then evaluated by obtaining the coefficients An. An represents 

various attenuation coefficients, with n denoting the order of the particular coefficient. 

The zero and first order coefficients, Ao and AI are given by Allegra and Hawley for 

solid particles. Ao is known as the coefficient of thermal attenuation (Epstein and 

Carhart, 1953); it has two components, the first is identified by Allegra as being simply 

the difference in attenuation between the case where the volume fraction ~ is occupied 

by scatterers and that when the particles are absent. The second component is the 

thermal conduction loss term, the magnitude of which can be determined by the thermal 

. ---···-- -· dilation; densitY and specific heats. 

Similarly AI is the coefficient of viscous attenuation and depends on the shear viscosity 

of the suspending fluid. The magnitude of the thermal and viscous parameters denotes 

which coefficient dominates the absorption. 

Comparison of expressions for single scattering (Davis, 1979) and multiple scattering 

(AIIegra and Hawley, 1972) show that a second order correction factor is present in the 
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multiple scattering expression. For this term to dominate (and multiple scattering to be 

important) the following conditions apply. 

• The suspension must be highly concentrated. 

• Ao and A1 must be of equal magnitude- this must hold if the expressiOn for 

attenuation is not to be reduced to the trivial case involving a single, dominating 

coefficient (thermal or viscous). 

Multiple scattering only becomes important if both of these statements are true. In 

general viscous losses will dominate all other effects unless the density of the 

suspending fluid is close to that ofthe particles and multiple scattering can be neglected. 

3. 7 .1.3 The effect of suspension concentration on the acoustic attenuation coefficient. 

An expression for calculating the velocity and attenuation of ultrasound in a suspension 

can be obtained by a number of methods, as reviewed in this thesis and by Hark er and 

Temple (1988). A simple quasi-phenomenological approach can be used, where the 

effective velocity is dependent on an effective suspension density and compressibility 

and the attenuation is given by the volume concentration multiplied by an average 

scattering factor. 

Another method is to treat the suspension as a fluid saturated porous medium (as 

described in 3.1.1.2), and consider the scattering effect of particles within this system. 

The form of a scattered wave for small particles (Ka<l) is given and it is suggested by 

these authors that multiple scattering effects dominate for solids volume fractions over 

0.35, and are significant for volume fractions above 0.1. At volume fractions less than 

0.15, for small particles (diameter below 50 f-Ill) scattering can be neglected at low 

-~--~---frequencies (less than 50 MHz). The conditions given in 3.7.1.2 also suggest that 

multiple scattering unlikely to have a large effect where the density difference is great, 

as is the case for solid-liquid suspensions, 

The small particles and low concentrations being used in this work are unlikely to be 

affected by scattering effects, and Harker and Temple's hydrodynamic approach to 

finding the velocity and attenuation can be used. 
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3. 7.1.4 Calculating the attenuation coefficient using Harker and Temple's approach 

A number of assumptions are made in order to simplify the problem. The vertical 

(gravitational) forces are assumed to be much smaller than any force due to the acoustic 

field and we can assume that the effect of the gravitational field is small. Thus any force 

variations are in the x direction only. 

The low volume concentrations (much less than I 0% v/v) and frequency (23 kHz) being 

considered allows us to neglect multiple scattering effects according to Harker and 

Temple's suggestions, and Davis' requirements for the correction term to dominate. 

Particle spacing is much less than the scale of x; particles are much closer together than 

the distance across the filter. The volume of fluid under consideration is far from any 

boundaries and the particles are sufficiently far apart not to have drag effects one 

another. That is, wall effects can be neglected. The boundary layer around each particle 

can be considered laminar. 

The major energy damping is due to the forces between the solid and fluid, rather than 

due to the fluid. Harker and Temple also assume that the compressibility of the 

suspension is equal to an average of the solid and the fluid. 

Momentum and continuity of the phases are balanced with the drag of one phase on the 

other, and Stokes expression for the force on a sphere oscillating steadily in a fluid is 

used to obtain expressions for the conservation of momentum for each phase. 

A further assumption is that the compressibility of the suspension is equal to the average 

of the solid fl, and the fluid flf This arises from the change in densities of the 

components due to the compression effect of the wave. The component densities are 

dependent on their compressibility and pressure. 

3-31 

P, = Pso + Psofl,p 3-32 

The equations are solved for a wave like solution of u, ,Uf, Pi, p, , p and r/J. An 

expression for each of the unknowns is written in a wave form, 

u1 = u1 exp[i(kx -wt)) 

u, = u, exp[i(kx- wt)) 

3-33 

3-34 
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p = pexp[i(kx -wt)] 3-35 

p 1 = P~ + p1 exp[i(kx-wt)] 3-36 

p, = p~ + p, exp[i(kx -wt)] 
3-37 

3-38 

The solution is derived in two ways by Harker and Temple (1988). Their non-trivial 

solution for the wavenumber is: 

Where 

and 

k2 =w2[(1-~)p +~P.VP![p,(I-~+~R)+p!R(l-~)]} 
f l P,(l-~)2 +pAR+~(l-~)] 

R= Q+is 

with s defined by equation 3-28. 

3-39 

3-40 

The attenuation, 1 is given by the imaginary part of k, and the effective wave velocity by 

the real part of ( rdk). These are denoted by ~(k) and ~(k) respectively. Hence 

3-41 

k 2 T 2 \(UW+VX)+i(VW+UX)) 
W +X 

3-42 

and 

_, (vw+ ux) 
'¥=tan 

(uw+ vx) 3-43 

T, U, v; Wand X are defined below. 



3 Ex{2_erimental Procedures & Anal)!sis- Filtration - 78-

T = @ 2 (/3 1 (I- rp) + rpjJ, 3-44 

U = p 1 (p,(I- rp+ 1/!Q) + p 1 Q(I- rp)) 3-45 

V= p 1 (p,rpR + p 1R(I- rp)) 3-46 

W=p,(l-rp)' +p,(Q+rp(l-rp)) 3-47 

X=p1R 3-48 

Attenuations are calculated up to the point where multiple scattering may begin to 

dominate (in this case 10% v/v). The wave propagation velocity, c, given by 9t(a>'k), 

can be calculated in a similar marmer using 

9t(k) = ,/ikl cos(~) 3-49 

Then 

3-50 

At the low concentrations where this theory is valid the following curve is obtained. 

The sound propagation velocities shown in Figure 3-15 are of a similar order to that 

calculated in 3.4.1 (1481 ms-1
). The velocities shown are slightly less than that, but this 

merely shows the effect of the particles present in more concentrated suspensions, as the 

empirical equation given was for distilled water. 

The results given by this analysis can be used to explain the decline in acoustic filtration 

performance as seen in Figure 3-7 and Figure 3-8. Whilst multiple scattering does not 

__________ dominate the_ attenuation in these low concentration suspensions, there is certainly an 

attenuation effect, and a reduction in wave velocity. As the concentration increases the 

energy damping between the solid and the fluid increases, and the acoustic field is less 

effective. 
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Figure 3-14: The effect of concentration on attenuation using Harker and Temple's 
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3. 7.2 Effect of applied voltage on field assisted filtration 

Typical filtrate volume versus filtration time curves measured for dead-end filtration of 

0.1 %v/v rutile suspensions at pH 8 under various applied field strengths are shown in 

Figure 3-17. Each experiment was carried out at constant voltage, although this was 

varied between experiments. The overall rate of filtration increases as the electric field 

gradient is increased. As the electric field strength is increased, the rate of decline in 

filtrate flux is reduced. 

This reduced decline in flux is a result of reduced cake formation due to electrophoresis, 

an effect that has previously been observed by Moulik et a! (1967, 1971) and Wakeman 

(1982). It has been shown that a critical voltage gradient exists at which point the 

induced electrophoretic velocity Ve is equal and opposite to the local fluid velocity, Vb, 

and suspended particles become stationary, assuming zero slip between the liquid and 

suspended solids. This critical voltage gradient EcR is given by 

3-51 

Where lb is the permittivity of a vacuum and D the dielectric constant of the suspending 

media. The initial filtrate velocity (based on the first 200 s of filtration) at pH 8 is 

130 J.!ms·1
• To avoid deposition altogether, a field of 56 Vcm·1 would need to be applied. 

This analysis based on the Henry equation assumes that all the particles are flowing 

normal to the membrane surface as the approach it, and that all particles in the 

suspension have identical surface properties. 

Although it is stated in the literature (Section 2.4.3) that solutions to the Henry equation 

are complex for zeta potentials over 25 m V the theory of electrofiltration and a critical 

-------field gradient is upheld by the results shown in Figure 3-16. Whilst an improvement in 

filtration rate is seen when a 20 V cm·1 field is applied, this is markedly greater as 

voltages close to the critical field gradient are applied. As the duration of the experiment 

increases, flux levels drop and the critical field strength to suspend particles is reduced, 

resulting in an almost constant velocity of 28 Jlm s·1
• 
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Figure 3-16: The effect of various applied voltages on assisted field filtration 
Suspension concentration 0.1 %vlv, pH 8. 
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(Notation: EL- electric field only; EL-A C, electric and acoustic fields applied) 

The application of an ultrasonic field to the electrofiltration appears to reduce the filtrate 

flux under most conditions. At higher field strengths, where the applied field is close to 

the critical field strength, the acoustic field may be forcing particles which would 

otherwise be suspended via the balance of electrophoresis and fluid flow, towards the 

filter medium and cake. It may also be causing particulate agglomeration, resulting in 

increased gravitational settling. Chapter 4 discusses acoustic forces and how they may 

affect suspension behaviour. The theory for EcR, based on the assumption that particles 

~·~·-·- 'approacnthe'iiiedii.im normally, no longer holds as the turbulent effect of the ultrasound 

may move them axially across the filter. The velocity imparted to the particles is likely 

to be large (see Chapter 4 and Wakeman & Bailey 1998), so the critical field gradient is 

greater and a lesser effect of the electric field is seen. 

Ultrasound is rapidly attenuated in suspensions of concentration greater than 0.1 %, so if 

electrothickening does proceed the ultrasonic effect is likely to become less apparent. 

This is shown by the electro- and electroacoustic curves following one another for the 
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initial part of the filtration (up to 300s). The improvement by application ofthe acoustic 

field at lower voltage gradients cannot be explained at this stage. 

3. 7.3 Effect of pressure on field assisted filtration 

The effect of pressure on filtration rate is shown in Figure 3-17. There is a small 

pressure effect, with volumes collected at 250 mBar vacuum being lowest in both cases. 

It does not appear that variation of filtration pressures in this range has a great effect on 

the filtration although in general increasing the pressure drop increases the filtrate 

volume collected over time slightly. It is interesting to note that the conventional 

filtration behaviour at 250 mBar is similar to the acoustic at 750 mBar, implying that the 

acoustic field may actually reduce the effective pressure drop. 

K sm·' No Fields Acoustic Field Electric Field, Electro- Acoustic 1, 

50Vcm·' Field, 50Vcm·' 

250 mBar (vac) 9.3 x to' 1.3 X t010 2.0 X 108 1.8 X 108 

500 mBar (vac) 5.44 x to' 6.5 X 109 2.5 x 108 1.8 X 108 

750 mBar (vac) 5.5 X 109 8.6 x to' 2.2 x to' 1.8xt08 

Table 3-4: Effect of pressure on K1 values for field assisted filtration 

Similarly there does not appear to be a great effect of pressure on electrofiltration 

(Figure 3-18). The pressure effect can be more clearly seen by considering K 1• Table 3-4 

clearly shows that at all pressures studied, the application of an acoustic field actually 

increases K1. For electrofiltration, K1 is reduced considerably, and the acoustic field 

used with electrofiltration results in K1 values being reduced further. There is no 

pressure effect for electroacoustic filtration. Tarleton (1986) carried out some similar 

work to study the effect of applied pressure gradient and electric field strength .. He 

__________ showedthat_th~ electrokinetic effects have a greater influence on the filtration process ________ _! 
when the applied field is lower. This effect is duplicated to a certain extent in this study, 

with the improvement shown at 250 mBar greater than that at 500 or 750 mBar. The 

application of the electric field resulted in similar filtrate volumes at all pressures, and 

this too is supported by Tarleton's work (1986), suggesting that the effect on the 

filtration rate that the electric field has is greater than the effect of an increase in 

pressure . In order to carry out a filtration more quickly then, electric fields may be a 

suitable method of reducing the required hydraulic pressure. 



3 Experimental Procedures & Analvsis- Filtration -83-

0.15 ,----,------------,-----,----,-----,-------,------,---, 

:~ 0.1 - ----------· -----------·- --------------------- -, -----------· 
. 
] 
'i 
• e 
~ 
~ 
• E ' . 

' ' 
' ' ' ' -----------------------------

.: 0.05 ------------·------------,---
~ 

0 200 400 600 800 1000 1200 1400 1600 1800 

Time,s 

I-+-NF250Jl1Bar _._NFSOOmBar _._NF750m8ar-+-- AC250mBar -e-ACSOOmBar -.!r- AC750mBar I 

Figure 3-17: Effect of applied vacuum on acoustic field assisted filtration, 
Suspension concentration 0.1% vlv,pH 8 

(Notation: NF- No fields; AC- Acoustic field applied) 

3. 7.4 Effect of pH on field assisted filtration 

2000 

Filtration experiments were carried out to investigate how assisted field filtration 

performed at different pHs. Table 3-5 shows that the suspension behaved differently as 

pH varied. A phenomena which should be mentioned here is that of electrode 

dissolution, reactions occur at the electrodes releasing gas and ions into the permeate or 

feed streams. The most likely cathode reactions are 

.. ----------------- -- -- ---- 2H20 + 2e- ~ H 2 + 20H- and 

where M represents a metal. The most likely anode reactions are 

where Ma represents the anode metal. Therefore during electrically assisted filtration 

gases will be evolved which may act to alter the formation of cake, by allowing a more 

porous cake to form, and reducing the specific cake resistance. The ions released will act 

to alter the pH in the region of the electrodes, which will also affect cake formation, by 
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changing the zeta zeta potential of the particles. For example at the anode, electrode 

dissolution will cause a more acidic environment, reducing zeta potentials and causing 

particle agglomeration. This in turn allows more open cake formation as the effective 

particle size is larger. Similar results were seen by Akay & Wakeman (1996), in which 

the porous electrode was the anode, and an increase in the pH of the permeate was 

observed upon application of an electric field. 

Volume No Fields Acoustic Electric Electro- Electric 
filtrate after Field Field Acoustic Field 

1800s, ml Field 
20Vcm·' 20Vcm·1 50 Vcm'1 

pH4 916 1126 1222 1098 1957 

pH6 702 883 1279 1346 1842 

pH8 554 425 912 1079 2109 

pH 10 453 506 1370 1413 2479 

Table 3-5: Filtrate volumes collected after 1800s of assisted field filtration 
Suspension concentration O.l%vlv, pressure drop 750mBar 

Electro-
Acoustic 

Field 
50 V cm·' 

2344 

2043 

2014 

2925 

The effect of pH is shown in Figure 3-19 as a percentage gain, with conventional 

filtration being taken as the zero point. 

At pH 4, (close to the IEP), where zeta potentials are small, the gain is close to zero for 

acoustic and electrofiltration when the applied voltage is low. Filtrate gains of over 50% 

are achieved by higher voltage application, as the higher induced electrophoretic 

velocity is able to prevent more of the particles from settling. This effect is more 

pronounced at the lower pHs, because the particles have a much wider particle size 

distribution and a larger mean particle size. The larger particles have higher Stokes 

--settling-velocities and·- require· higher electric field gradients in order to keep--in __ _ 

suspension. Figure 3-20 shows that there is little difference between conventional, 

acoustic and low voltage electrofiltration and similar gradients (K1) are obtained. It was 

noted during experimentation at pH 4 that a large amount of settling took place during 

residence in the filter cell, with aglommerates collecting on top of the anode, which 

acted as a primary sieve. Fewer particles reached the region of the filter medium, and so 

an effectively lower concentration suspension challenged the media. 
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Figure 3-18: Effect of applied vacuum on acoustic field assisted electrofiltration, 
Suspension concentration 0.1 %vlv, pH 8 

(Notation: EF-Electricfield, EA-Electro-Acousticfield applied) 
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Figure 3-19: Gains infiltrate volume as a result of pH changes of the test suspension 
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Figure 3-20: Field effects on filtration at pH 4 
Suspension concentration 0.1% vlv, Pressure drop 750mBar 

At pH 6, which represents the steep part of the zeta potential curve, the magnitude of 

zeta potential is greater and so lower electric field gradients are required. The higher 

magnitude field does not have as pronounced an effect as at pH 4. Application of the 

ultrasonic field alone reduces the filtrate volume, suggesting that the irradiation 

increases the specific cake resistance (shown by an increase in the gradient on Figure 3-

21). This is supported by Kowalska et a/ (1979) who studied the changes of properties 

of sonated s1udges, and found that ultrasound always increased the specific resistance of 

the sonated sludge, The mechanism suggested of the ultrasound further reducing particle 

size by breaking down floes could be applied here in considering that the ultrasonic 
------------------ -~-

-~----energy-mayilavebroken down some of the larger agglomerates to discrete particles. 

Higher pHs show the most pronounced effects of the applied fields. At pH 8 a 20 V cm-1 

applied electric field provides the same gain in filtrate as 50 Vcm·1 at pH 4. The highly 

negative zeta potential together with a smaller particle size reduces EcR and 

electrophoretic flow takes place directed away from the filter medium. The gain is 

higher at 50 V cm·1 because of the greater difference between the applied and critical 

voltages. However the acoustic field still appears to be having little effect on the 
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filtration performance. At pH 10 the gain doubles again to 200% at low voltages, but 

there is no difference between electro- and electroacoustic filtration. At higher voltages 

however the gain in filtrate volume is in the region of 500%. It is unclear why the 

acoustic field appears to benefit the filtration under these conditions. It could be that pH 

1 0 is the turning point on the zeta potential curve, and is thus the location where a 

minimum of agglomerates exist. Figure 3-23 would suggest that cake resistances were 

similar under both conditions. The ultrasound may work with the electric field, but the 

mechanism is not understood at this stage. 

Again, Tarleton's (1988) work on assisted filtration shows similar results. For anatase a 

slight gain in permeate volume is seen when the acoustic field is applied together with 

the electric field, however for china clay, the ultrasound again has a negative effect 

when compared with the electric field alone. This suggests that the effect of ultrasound 

on the filtration performance is dependant on the material being studied, and at this 

stage empirical results would have to be used to predict an assisted filter's performance. 
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Figure 3-21: Field effects on filtration at pH 6 
Suspension concentration 0.1% vlv, Pressure drop 750mBar 
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Figure 3-22: Field effects on filtration at pH 8 
Suspension concentration 0.1% vlv, Pressure drop 750mBar 
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Figure 3-23: Field effects on filtration at pH 10 
Suspension concentration 0.1% vlv, Pressure drop 750mBar 
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3.7.4.1 The variation of porosity due to the application of fields 

Cake samples were taken following every filtration, and the porosity measured by drying 

as described in Section 3.7.4.1.1 

3.7.4.1.1 Cake Sampling 

A technique was developed for the removal of samples of cake from the filter medium, 

in order that the moisture content of the cake could be calculated. It should be noted that 

this technique gives only an indication of the cake porosity, as the nature of the filter 

cell construction means that the cake will always be disturbed to a certain extent prior to 

a sample being taken. In addition, the low suspension concentrations resulted in only 

thin cakes being formed, increasing the difficulty of obtaining a representative sample. 

The method developed was as follows: 

1. Following the completion of a filtration experiment, close the valve between the 

filter cell and filtrate tank. 

2. Close the feed vessel valve to the filter tank and drain feed vessel. Begin to 

dismantle filter cell by removing the lid (which removes the anode and allows access 

to residual suspension in the cell). 

3. Syphon the remaining suspension form the cell. Care should be taken when carrying 

out this operation that the cake is not disturbed by the syphon pipe. Due to this, a 

small amount of fluid will remain in the bottom of the cell, just covering the filter 

cake. 

4. The body of the filter cell can now be removed, leaving the filter medium support 

with the membrane attached standing proud of the unit base. 

5. The cake sample can be carefully scraped from the membrane onto a dish of known 

· -------------mass; which is suitable for oven drying. 

6. The dish and sample are weighed, dried, and then weighed again, to calculate the 

moisture content of the sample. The cake concentration is calculated by the ratio of 

dry to wet volumes, and the volumetric porosity obtained. 

This method of cake sampling is far from ideal, and has numerous limitations due to the 

design of the filter cell. In any further work that is carried out, the location of the filter 

membrane and its ease of removal should be carefully considered, in order that more 
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representative sampling could be carried out. The porosity results given in this thesis 

give an indication of the field effects when backed up by the filtration results in the form 

ofK1. 

3.7 .4.1.2 Porosity results 

At all pHs except pH 4 the porosity obtained by conventional filtration was around 

0.6 . No conclusion can be drawn regarding whether this is due to the limtations of 

the sampling method, or due to the fields. However the method used was consistent 

throughout the tests and it is reasonable to assume thet the results discussed are due to 

the applied fields. Porosity was higher at pH 4 due to the presence of agglomerates· 

causing looser packing. In agreement with the filtration results, there is little difference 

in cake porosity at pH 4 suggesting that the cake structure was not changed considerably 

by the application of fields. However at other pHs the cake structure does appear to have 

changed, particularly at pH 6. 
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Figure 3-24: Field effects on sampled porosity of filter cake 
Suspension concentration 0.1% v!v, Pressure drop 750mBar 
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We have established that the ultrasound is likely to increase cake resistance (Kowalska 

et al, 1979), so these changes can be attributed to the electric fields applied. This is 
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supported by the porosity result for acoustic field alone, whilst it is not lower than 

conventional filtration it is certainly lower than other combinations of applied fields. 

At pH 8 the difference between the field strengths is clear. Electrophoretic flow results 

in a more open cake, particularly at high field strengths. 

At pH 10 the range of porosities becomes closer again. This is due to electrophoretic 

flow actually reducing the amount of cake formed, so that whilst the porosity remains 

similar, the mass of cake is less, and a thickening process occurs. 

3.7.5 Energy Consumption 

Energy consumption of the processes studied has been considered, in order to assess 

whether the processes under investigation are economically viable. Experiments were 

carried out under constant voltage, and typical values of current are given in Table 3-6 

pH Electric Field (50 V/cm) Electric Field (50 V/cm) 
+ 

Acoustic Field 23 kHz 
4 42.5 72 

6 74 -

8 47 33.4 

10 58 57.6 

. . Table 3-6: Typical value of current durmg filtratwn experiments 

The power consumptions corresponding to the experiments described in section 3. 7 are 

shown in Tables 3.7 and 3.8 below. Because of the differing filtrate flow rates obtained.---·· 

under different conditions, for comparative purposes it is most appropriate to look at 

specific energy consumption figures. These show that least energy is consumed by 

conventional filtration at all pH values; the addition of either field increases the energy 

consumed, with the greatest amount being taken by the ultrasonic field. 
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Total Power pH4 pH6 pH8 pH 10 

Consumption, W 

No fields 0.8 0.9 0.3 0.2 

Acoustic Field (23 kHz) 275.8 275.6 275.2 275.3 

Electric Field (50 V/cm) 4.5 6.3 4.4 5.3 

Electric Field (50 V /cm) 5.4 280 278.3 278.8 
+ 

Acoustic Field (23 kHz) 

Table 3-7: Power consumptiOn data for the experiments described m tlus Chapter. 

In making these comparisons, the increased filtrate rates need to be considered as this 

affects either the time to accomplish a given filtration, or the size of the equipment 

needed to achieve the separation. This is given in Table 3-5, for the full length of the 

experiments. The increased flux as a result of adding the fields is apparent, but the data 

also indicates that the electric field is more effective at increasing the filtration rate than 

the acoustic field. In some applications it may be acceptable to consider using the 

electric field as a way of shortening the filtration time, albeit with the penalty of an 

increased energy consumption. But for industrial use it is unlikely that ultrasound would 

be considered to increase filtration rates as the penalty. in energy consumption would 

always be too high. 

Specific Energy pH4 pH6 pH8 pH 10 

consumption, kWhm-3 

No fields 0.02 0.02 0.02 0.02 

Acoustic Field (23 kHz) 7.5 10 22.3 16.8 
~-- -- ---------- -------- ------ -- ---- -~-- .. - . ---------

Electric Field (50 V/cm) 0.08 0.13 0.08 0.09 

Electric Field (50 V/cm) 2.4 4.7 4.7 3.3 
+ 

Acoustic Field (23 kHz) 
0 Table 3-8: Specific energy consumptwn data for the experiments descr1bed m th1s 

Chapter. 
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3. 7.6 Experimental reproducibility 

The data given in this chapter is experimental, and therefore subject to errors. The 

following section attempts to quantify these, by looking at the scatter between repeated 

experiments. In the first stages of the research, the experimental technique was 

optimised, although this was always constrained by the design of the rig. 
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Figure 3-25: Examples of reproducibility of concentration tests (pH 8, 750 mBar) 

The data shown in Figure 3-25 and Figure 3-26 give an indication of the levels of 

reproducibility of the experimental technique. The data appears to be somewhat 

scattered, however, it is important to note that the parameter of interest in these tiV plots 

is the slope, which indicates K1. As previously discussed, consideration of K1 has 

enabled some indication of the field effects on specific cake resistance. In all repeated 

tests, examples of which are shown in the following figures, a plot of the reciprocal 

flowrate against volume has yielded lines with similar gradients for identical 

experiments. The figures for comparing the actual slopes are given in the data sheets in 

the appendix, but are not quoted here. The values of the slope are dependent on the 

method of analysis, and can be greatly altered by the data points between which the 
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gradient of the line is taken. These results were borne out through other sets of 

experiments. In summary then, whilst the experimental data reported here can indicate 

trends, further work is required to establish a more robust experimental design, enabling 

more accurate calculation of K1 and &. 
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4 Acoustic Force Analysis 

Following the experimental filtration programme, it became clear that more insight into 

the acoustic effects within the filter was necessary to fully understand the results. This 

chapter analyses the filter system theoretically, comprising a background study, 

followed by an analysis of the forces present during acoustic wave propagation through 

the suspension. Cavitation was also investigated, as it may provide an explanation for 

the effects seen. The frequency and power of the transducer are well within the ranges 

under which cavitation can occur. 

4.1 Background Study 

The propagation of an acoustic wave through a fluid results in various effects, the nature 

of which is dependent on, amongst other parameters, the fluid viscosity. Thus, as the 

acoustic effects discussed here are relevant to liquids, viscosity plays an important role. 

The presence of particulate matter also has quite a large effect on the fluids behaviour; 

there are more sites for acoustic scattering effects (increasing attenuation), a larger 

number of nucleation sites for cavitation and the particle associated double layer is also 

free to move due to the acoustic field. 

4.1.1 Acoustic wave propagation 

Acoustic waves in fluids are complex because they are able to propagate in three 

dimensions. They are longitudinal: the molecules transmit the wave move back and 

forth in the direction of its propagation, rather than crests and troughs as would be 

produced by transverse waves. The wave is propagated via a force created by 

compression of the fluid. The simplest type of wave motion is that of plane waves, 

which are characterised by properties such as acoustic pressures, 'particle' displacements 

and density changes. In a plane wave these properties have common phases and 

amplitudes at any point perpendicular to the direction of wave propagation. It should be 

noted that the term 'particle' used here represents a 'pocket' of fluid, a volume element 

large enough to be considered a continuous fluid, yet small enough that the pressure, 

density and velocity can be assumed to be constant throughout the pocket. A further 

point must be made to differentiate between c, the signal speed or velocity of 
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propagation of a wave (which is a function of the ratio of specific heats, the isothermal 

bulk modulus, and the equilibrium density) and up the velocity of a fluid 'particle', given 

by the differential of the 'particle' displacement. The fluid velocity o!ji't is always much 

less than the signal speed in ordinary sound waves (Hall, 1993). 

The simplest treatment of waves is for the special case of a monochromatic plane wave, 

because of the simple functions for the velocity potential which describe it, sin o;t and 

cos ox. A monochromatic wave is one in which the pressure, velocity etc. depend only 

on time through functions of the angular frequency, w. Monochromatic waves can be 

summed to describe waves that are more complex with a more general time dependency. 

In the analysis of plane waves given by Kinsler and Frey (1962), gravity forces are 

neglected, allowing the equilibrium values of density and pressure to be considered 

constant throughout the medium. The medium is also assumed to be homogeneous, 

isotropic and perfectly elastic such that there are no dissipative forces arising from 

viscosity or heat conduction. The derivation is limited by assuming waves of small 

amplitude in order that any changes in density are small compared to its equilibrium 

value Po· 
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Figure 4-1. Longitudinal displacements in a plane sound wave. 

Consider a cross sectional area. A, of fluid positioned between planes at positions x and 

(x + dx). On propagation of a sound wave the plane at xis displaced a distance ~ to the 
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right, and similarly the plane at (x + dx) is displaced to C, + (oc,lox)dx, as shown in 

Figure 4-1. 

A mass balance yields: 

pAdx(l + ;) = p,Adx 

The condensation at any point is defined as .9: 

.9= p- Po 
Po 

4-1 

4-2 

Density changes and molecular displacements are assumed small, such that the product 

of .9 and cl:,! ox can be neglected, and the equation of continuity is derived: 

oq 
.9 "'-­

& 
3 

To summarise, the planes are now separated by a distance dx (I +oq'ox) greater than 

their equilibrium separation, dx, the quantity 81:,/ox is positive, and the density of the 

fluid is reduced. 

4.1.1.1 Thermodynamic description 

As well as a relation between C, and x, a thermodynamic equation of state, relating the 

excess (or acoustic) pressure at any point, p, defined by 

p=P-P0 4-4 

where P and Po are the instantaneous and the (constant) equilibrium pressures 

respectively. The instantaneous density at any point, p, and temperature, T are also 

required for the thermodynamics calculations. The compressions can be assumed to be 
- --------~--------- ------- ------------------- " 

adiabatic (Hall, 1993). The compression of a fluid by the wave requires work, which is 

converted into heat energy. The propagation of acoustic waves causes temperature 

gradients between adjacent compressed and expanded volume elements, however these 

are relatively small and little heat is transferred from compressed elements before they 

begin to expand. Thus the process can be assumed nearly adiabatic, and is certainly 

adiabatic for frequencies below 500 MHz for air and 106 MHz for water. To produce a 
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general derivation (for all fluids) the adiabatic process IS represented by P=P(p). 

Differentiation of this equation gives: 

dP=(dP) dp 
dp 0 

4-5 

The incremental pressure change dP can be replaced by the acoustic pressure, p, and the 

incremental density change dp by pos. 

Defining c: 

c' =(dP) 
dp 0 

4-6 

we have: 

4-7 

4.1.1.2 The equation of motion. 

If a volume element is deformed as described previously, the pressures on each of the 

faces will be slightly different, producing a net force Fx, which will accelerate the 

element. The net force acting on the element is the sum of the pressure on each face, in 

the positive x direction. Forces caused by the equilibrium pressure P0 can be ignored 

since they cancel, with only the incremental pressure changes contributing to the net 

force: 

4-8 

The net force is equated with the product of the elements mass, poAdx and acceleration, 

&t,!8tz. 

_c7J_ o'c; 
t3x- Po a' 4-9 

Hence, the wave equation for one-dimensional motion can be derived, by combination 

of equations 4-7 and 4-9. 
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4-10 

Other forms of this equation can be obtained by simple manipulation of the previous 

equations. 

Hall (1993) gives a comprehensive derivation of the equations of motion in three 

dimensions. The unequal relative movement of the planes in the x direction is repeated 

in the y and z planes, although the displacements are not necessarily of the same 

magnitude. The simple wave equation (equation 4-1 0) is then of the form: 

4-11 

4.1.2 Cavitation 

The majority of literature regarding acoustically induced cavitation is found in the 

sonochemistry literature, where it is commonly accepted to be the major mechanism 

causing sonochemical effects (Suslick 1989). For example, Young (1989) states 

"The bubble collapse in liquids results in an enormous concentration of energy from the 

conversion of the kinetic energy of liquid motion into the heating of the contents of the 

bubble. The high local temperatures and pressures, combined with rapid cooling, 

provide a unique means for driving chemical reactions under extreme conditions". 

Cavitation is defined as the formation and activity of bubbles (or cavities) in a liquid. 

The word 'formation' refers to the creation of a new cavity or the expansion of an 

existing one. The bubbles may be trapped in the liquid, may be in cracks at the liquid's 

boundary surface, or in solid particles suspended in the liquid. These minute bubbles can 

be expanded by reducing the ambient pressure by static or dynamic means. They may 

_________ co_!l~in gas __ or vap~11r_ ()r a mixture of both. For a bubble containing gas, expansion 

could be due to diffusion of dissolved gases from the liquid into the bubble, or by 

reduction in pressure or a rise in temperature. If the bubbles contain mostly vapour, 

reducing the ambient pressure at constant temperature causes an 'explosive' 

vaporisation into the cavities, which is cavitation. This can be compared to raising the 

ambient temperature causing the vapour bubbles to grow, and causing boiling. Both 

cavitation and boiling have a threshold, below which they do not occur. 
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There are four types of cavitation, all of which have the same mechanism, but are 

caused in different ways. Hydrodynamic and acoustic cavitation are results of tensions 

in the liquid. Both types are brought about by pressure variations in the liquid, either due 

to the geometry of the system or by sound waves. Optic and particle cavitation are 

achieved by local deposition of energy, photons of light or other elementary particle 

rupturing a liquid. 

Of interest to this study is acoustic cavitation. Sound waves travelling through a liquid 

impose a sinusoidally varying pressure on the steady ambient pressure. If the amplitude 

of the pressure variation is great enough to bring the local pressure to below the vapour 

pressure of the liquid and produce zero, or even negative, pressures then tensions occur 

and bubble growth is increased. The sound field must overcome the attractive forces 

holding the liquid molecules together. For pure liquids with no impurities or dissolved 

gases the negative pressures required to do this are prohibitively high. However, most 

liquids contain some impurities which reduce the tensile strength, and it is gas within 

crevices on the surface of these contaminants which allows bubbles to form as a result 

of gaseous expansion as a sound wave passes. 

4.1.2.1 Stable and Transient motion 

Stable cavities are bubbles which oscillate (non-linearly) about some equilibrium size 

for many cycles of the sound field. They are relatively permanent and although they do 

not collapse violently (unless they become transient during their lifespan), they cause 

effects such as microstreaming and surface oscillations and the integrated effect of a 

number of stable cavities can be great. Stable cavities can evolve into transients by 

bubble growth due to either heat or mass transfer, or by coalescence of a number of 

bubbles. The pressure amplitude where these transfer processes commence is known as 

-~~ -~-~-the-tliieshold~forfeetified -diffusion, Pr. Stable cavitation can occur at pressures below 

Prifthere are suitable bubbles already existing in the solution. 

Transient cavities, which exist for less than one cycle (during which time they expand to 

at least double their original radius), collapse violently at a pressure known as the 

transient cavitation threshold. They often form a number of smaller bubbles, which may 

be stable or transient; thus, cavitation is a cyclical process. Cavitation is a non-linear 

process; the changes in bubble radius are not proportional to the sound pressure. A great 
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deal of potential energy is obtained from the sound waves when the bubbles expand, due 

to the high compressibility of the gas. This is converted to kinetic energy on bubble 

collapse. The energy is concentrated into very small volumes and produces the high 

temperatures and pressures responsible for sonochemical reactions, sonoluminesence 

and the erosion of surfaces. 

Either type of bubble may contain gas (usually air) or vapour. In transient cavities it is 

normal to assume that there is no time for mass diffusion into or out of the bubble, 

although condensation and evaporation of vapour can occur. A gas filled transient that 

collapses has a constant gas content over its lifetime, and this gas cushions the collapse. 

A vaporous transient contains vapour which varies in mass, but remains at or near to its 

saturation pressure, and the collapse can be very violent due to the absence of the 

residual gas cushion. The lifespan of stable cavities is longer, and both mass diffusion of 

gas and thermal diffusion causing condensation or evaporation can occur. 

At the moment cavitation commences, the medium's properties change; it has greater 

acoustic losses and is more compressible. An effective acoustic impedance, Ze, must be 

defined, because the assumption that the liquid motion is linear used in defining 

impedance is no longer valid. In general cavitation increases the acoustic impedance of 

the medium. The presence of stable cavities causes greater scattering because the 

absorption scattering cross section is much greater for a bubble than for a liquid or solid 

particle of equivalent size (Young, 1989). 

4.1.2.2 Bubble nucleation 

Once the sound pressure amplitude reaches a certain value, and the cavitation threshold 

is reached, cavitation can commence by nucleation in one of three ways: (i) in water, a 

··------···--large number of minute spherical gas bubbles exist; (ii) solid particles in the liquid maY--··-·---·-·· 

have gas trapped inside them; (iii) gas may be trapped in tiny crevices within the vessel 

walls, or on the filter surface. 

Any of these can be represented by Figure 4-2 (a). If the liquid pressure is reduced 

(Figure 4-2 (b)) the liquid gas interface retreats from the solid and a bubble can form. 
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Figure 4-2: Cavitation bubble nucleation 
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Once the bubbles are in the bulk liquid, they are inherently unstable and absorb energy 

from the sound field. 

4.1.2.3 Cavitation thresholds and bubble behaviour 

If a cavity is released from a crevice as shown in Figure 4-2 (b) it will grow in a sound 

field by rectified diffusion. A good review of this is given by Crurn (1984) and a brief 

explanation follows: 

During the positive pressure half cycle of the sound field, the bubble is compressed and 

gas diffuses outwards from the bubble to the liquid. During the negative pressure cycle, 

the opposite occurs and gas diffuses inwards. During this time, the bubble surface area 

is greater, and so the bubble gains gas over a complete cycle. 

When the bubble contracts, the shell of liquid surrounding it increases in thickness, and 

the gas concentration near to the outer bubble wall is reduced. Thus the concentration 

gradient between the gas in the bubble and gas in the shell is increased and the gas 

diffusion rate away from the bubble is greater than when the bubble is at its equilibrium 

radius. 

_ ~----~When the bubble expands, the shell thickness contracts, the concentration of gas near to_ 

the bubble is increased and the rate of gas diffusion towards the bubble is again greater 

than the equilibrium rate. The bubble surface area is now greater leading to a net gas 

inflow and bubble growth. 

The point at which rectified diffusion commences is called the threshold for rectified 

diffusion. The transient cavitation threshold is the threshold at which the cavity becomes 

transient and expands in an unstable way. 
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Figure 4-3: Cavitation and bubble thresholds 

At a given pressure amplitude and frequency a nucleus will only grow into a transient 

cavity provided its radius is greater than the threshold radius. Similarly at a given 

frequency a cavity of radius Ro will only become transient if the acoustic pressure is 

greater than the threshold for rectified diffusion. This is illustrated in Figure 4-3 

(Neppiras 1980). Zone 1 is below the threshold for rectified diffusion (AB), the bubbles 

carmot grow by rectified diffusion and either slowly dissolve away or become stable at a 

small radius. A cavity within zone 2 at position S in Figure 4-3 will grow by rectified 

diffusion and reach the transient threshold CD where it will immediately expand (zone 

3) and collapse. The small bubbles created either go into zone 1 or increase in size once 

more if they remain in zone 2. A cavity at position T in zone 2 will also grow by 

rectified diffusion, but it is unlikely to reach the transient threshold, and so will continue 

to grow until it becomes buoyant and leaves the system in this way. 

Once the cavity has experienced rapid expansion, it can no longer efficiently absorb 

energy from the sound waves. Without this energy input, the bubble carmot sustain itself 

and liquid rushes in causing implosion. The dynamics of the bubble collapse depend 

___________ upon_ the tyPe_<Jf"I1Ie~iul!1, as bubble dynamics near a solid surface are very different to 

that in a homogenous liquid. 

The majority of studies concerning bubble behaviour and cavitation focus on spherical 

bubble studies. Dassie & Reali (1996) present a physico-mathematical model for the 

dynamic behaviour of a spherical gas/vapour bubble under an acoustic field. The model 

is shown to be valid whenever flow velocities are much smaller than the instantaneous 

velocity of sound in the bubble. The model allows a large range of thermodynamic 

parameters to be considered. As Blake (1999) points out, this spherical bubble 
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assumption is likely to be an over-simplification, as the experimental studies by Oh! et 

al (1999) and Prosperetti (1997) have confirmed. Blake suggests that the interactions 

with the acoustic pressure field, hydrodynamic interactions with other bubbles and 

buoyancy forces leads to asymmetric behaviour, with consequences such as high speed 

jets forming within the bubbles on collapse, leading to higher pressures and strain rates, 

and better mixing. In particulate suspensions, the jet travels through the bubble from the 

side furthest from the solid particle, and strikes the other side of the bubble and the 

particle if it is close enough. It is this 'liquid hammer' that causes the erosion and pitting 

seen on the surface of solids in a cavitating acoustic field. High temperatures occur 

within the bubble due to adiabatic heating, providing yet another possible reactive 

environment to account for chemical changes- the 'hot spot' theory. 

The point at which the intensity of the ultrasound just causes cavitation to begin is 

known as the cavitation threshold. Whilst it is important in sonochemistry to be above 

this intensity, in medical uses of ultrasound, intensities lower than the cavitation 

threshold are required. It can be determined in a number of ways; the formation of 

cavitation bubbles is accompanied by a rapid increase in measured attenuation, weak 

light which can be detected (sonoluminescence) is emitted and chemical reactions can 

be initiated, for example Fe3+is oxidised to Fe2+. 

4.1.2.4 Predicting bubble behaviour 

A series of cavitation charts have been made by authors such as Neppiras (I 980). These 

charts show the various thresholds applicable to air bubbles in various sound 

frequencies and gas saturations. The diagrams can be interpreted in a similar way to 

Figure 4-3 above, as they show the thresholds for rectified diffusion and the lower 

~~~~-----~_'llls~e~t__t!rr~~h~ld~':'~ere an initially stable cavity becomes transient) and the transient I 

threshold as functions of bubble radius for fixed values of ambient pressure~· -~--~--~ 

and frequency. The tendency of a bubble to collapse is frequency dependent, and 

collapse is more likely to occur at lower frequencies where the length of the 

compression cycle is greater. 

4.1.2.5 Sonochemical effects of cavitation 

The chemical effects of ultrasound (Suslick (1989), Mason and Cordemans (1996)) have 

been widely discussed and a number of mechanisms proposed for the effects. The 
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chemical effects of ultrasound have been explained as the consequences of localised hot 

spots caused by cavitation since the 1950s. 

4.1.2.6 The Hot Spot theory 

The implosion of cavitation bubbles generates an intense, but short lived hot spot, as the 

low energy density sound is converted into high energy density of a collapsing bubble. 

If the collapse occurs in a homogenous liquid, the compression of the gas is almost 

adiabatic, because the compression is rapid. The localised hot spot can have 

temperatures in the region of 5200K in the gas phase and 1900K in the surrounding 

liquid phase. Pressures can reach hundreds of atmospheres. The presence of surfaces 

near to the cavities cause asymmetric bubble behaviour and a moving jet of liquid is 

directed at the surface, causing surface erosion as previously explained. For an aqueous 

solution the maximum temperature and pressure can be estimated using the following 

expressions (Neppiras, 1980): 

T =T. {P0 (r-1)} 
max 0 p 

V 

_ {Po(r -1))(~~) 
pmax -P, P 

V 

4-12 

4-13 

To is taken to be the ambient (experimental) temperature and Pv is the gas pressure 

---------inside the bubble at its maximu~ size, which is equivalent to the vapour pressure of the 

liquid at To. P0 here is the liquid pressure at the point of the bubbles transient collapse, 

equal to the ambient pressure, and y is the ratio of specific heats. Values for Tmax and 

P max can be calculated for pure water and for electrolytes. The addition of colloidal 

particles to an aqueous solution will not significantly alter its vapour pressure, and 

values for Tmax and Pmax will be of the same order as those of the solution. Addition of a 

solute however lowers the vapour pressure, which raises Tmax and P max· For water at 20 ° 

--------·-----· 
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C, with y taking a value of 1.33, at an ambient pressure of 1atm, Tmax is shown to be 

4135 K and Pmax 1000 atm. 

These expressions have been derived for transient cavities, which are produced by 

sources of intensity greater than IOWcm-2 (Mason and Lorimer, 1988). Stable cavities, 

as previously stated, are more likely to contain gas and have less violent implosions. The 

cavitation threshold and effects vary greatly depending on the conditions of acoustic 

irradiation. 

4.1.2.7 Factors affecting cavitation 

A number of environment and system conditions can affect the cavitation threshold, and 

its sonochemical effects, although much of the use of ultrasound in sonochemistry is not 

optimised, because the chemistry is difficult to control. 

Frequency 

As frequency increases the length of the rarefaction phase shortens, and the amplitude 

(power) must be increased to attain the same cavitational effects. Cavitation will occur 

at frequencies below 104 kHz if the intensities are greater than I Wcm-2
, but can begin 

at intensities as low as 0.3 Wcm-2 in water under ambient conditions. 

In the megahertz region, the rarefaction time is shorter than the time required for the 

liquid to be pulled apart sufficiently to create a bubble. Transducers that operate at high 

frequencies are mechanically unable to produce high power and thus cavitation. 

Solvent Viscosity 

Cavitation is more difficult to produce in viscous fluids where cohesive forces within 

the liquid are large. 

Solvent Surface Tension 

Addition of a surfactant facilitates cavitation 

Solvent Vapour Pressure 

More volatile solvents ease cavitation, but when more volatile solvents are used, more 

vapour enters the cavity, and the collapse is cushioned and hence less violent. 
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Temperature 

An increase in temperature raises the vapour pressure of a medium (see above). 

Approaching the boiling point of a solvent a large number of bubbles are produced, and 

these act as a barrier to sound transmission. 

Bubbled gas 

Dissolved gas acts as a provider of cavitation nuclei, and as the sites are used up, the 

cavitation rate decreases. Gas can be bubbled through the medium to maintain a 

constant amount of dissolved gas, and uniform cavitation. 

External pressure 

An increase in applied pressure will require an increase in power supplied, as more 

energy is required to induce cavitation. At higher pressures however, the intensity of 

collapse is greater and the sonochemical effect is greater. At any frequency there is an 

optimum pressure which facilitates a maximum sonochemical reaction. 

Intensity 

The energy input to a system cannot be increased indefinitely. This is for a number of 

reasons; limitations of the transducers, increasing dimensional changes will eventually 

cause fracture. Decoupling may occur, and contact is lost between the source and the 

liquid. An increasing number of cavitation bubbles will be produced, and will at a 

certain intensity begin to coalesce, dampening sound and removing small bubbles that 

would otherwise have collapsed. 

Attenuation 

The extent of attenuation in a system is inversely related to frequency, therefore a higher 

power would be required for a higher frequency source to prevent attenuation. 

A sununary of the effects of changes in conditions is given in Table 4-1 below. 
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An increase of causes a ......... in cavitation threshold 

dissolved gas saturation decrease 

hydrostatic pressure increase 

surface tension decrease 

temperature decrease 

solids concentration decrease 

particle size decrease 

dissolved ion concentration increase (at low concentrations) 

Table 4-1: Factors affecting cavitation threshold (Wakeman and Tarleton, 1991) 

4.1.3 Acoustic Forces 

A number of forces act on solids dispersed in a fluid. The presence of solid particles 

means the system is much more complex than in a pure medium, with a number of 

forces now acting on any volume element. Solid particles with a density higher than the 

liquid's are pushed in the direction of propagation by the radiation force. Bemoulli's 

force is caused by hydrodynamic flow around the particles. A Stokes force is caused by 

local variations in viscosity due to thermal gradients caused by localised adiabatic 

compressions. This is a steady net positive force. An Oseen force can be caused by the 

distortion of high amplitude waves if the suspended particles are much smaller than the 

wavelength. The major force acting on finely dispersed solids in solid-liquid 

suspensions is the orthokinetic force, which governs the relative velocity of particles and 

of the liquid. The magnitude of this force is dependent on the suspended materials 

density and size, the ultrasonic frequency and liquid viscosity. Bolt and Heuter (1955) 

give an expression for the magnitude of the relative displacement between the fluid and 

the particle as: 

~ [ [ 2)2]-y, ;; = 1+ 2p;; 4-14 

As particle size diminishes the magnitude of the ratio tends to unity. This implies that if 

the particle is small enough it will move with the fluid 'particles' analysed in the 

previous section. Figure 4-4 represents the test system being used in this study, titanium 

dioxide (rutile) in de-ionised water. It is clear that any particles below one micron in the 

suspension will essentially move with the fluid, and any expressions used for fluid 
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'particle' velocity in a liquid can be used to describe the motion of solid particles in the 

suspension under these conditions. In a monosize dispersion, if all particles move with 

the liquid then no collisions occur due to the ultrasonic wave. The particle size 

distribution causes some particles to move out of phase with the fluid, especially at 

extremes of pH when the double layer is small and particles tend to agglomerate leading 

to a wider size distribution. 
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(Calculated from equation 4-14 for the filtration experiments in this work: Acoustic field of23 kHz 

applied to a suspension containing particles of density 4260 kgm3
, and a fluid viscosity of w·' Nsm"2

). 

Figure 4-4: The magnitude of the ratio of relative particle displacement to fluid 

displacement, 

4.1.3.1 Hydrodynamics of a spherical particle oscillating in a viscous fluid. 

An expression for the total force exerted on an oscillating sphere in a fluid was first 

obtained by Stokes. The drag force acting on a sphere of radius a executing a simple 

harmonic oscillation along a straight line with angular frequency ro in an incompressible 

fluid is 

( a) 2 3 ( 98) dU F =-67m" 1+- U --1m p 1+- -
dmg r 8 3 1 2a dt 

4-15 

with 0, the viscous skin depth, defined by equation 3-26. 
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This derivation has a number of provisos and limitations, which are detailed below in a 

brief review of the derivation. These conditions impose limits on the force balance and 

it is important to understand under what circumstances this derivation is valid. 

Polar co-ordinates, r, B and ~are used in the derivation of this expression, with the line 

of oscillation being the polar axis ((} = 0). The velocity U of the sphere along this axis is 

a function of timet, and is of the form A cos (w(t-to)+a), where A is the amplitude of 

oscillation, to is the time origin and a is the phase angle. To ease calculation U is 

expressed as terms of exp (·iOJI) because 

eiM = cosmt +isinmt 

The real part of the expression corresponding to U can be written as 

U =Re( U oe -iM) 

4-16 

4-17 

Provided only linear operations are carried out on U, the Re symbol can be omitted and 

calculations can proceed as if U were a complex function, and the real part of the result 

taken. 

The velocity vector U is then 

U=Uoe-icot 

where Uo is a constant vector lying along the axis 0=0. 

4-18 

The governing equations for the pressure P and fluid velocity V in an incompressible 

viscous fluid are the continuity equation 

V'•V=O 

and the Navier- Stokes equation 

4-19 

4-20 

The term involving the sphere's velocity, U, arises from the choice of the sphere as the 

frame of reference for the system. The gravitational force is omitted from the Navier­

Stokes equation because it is assumed small compared with hydrodynamic forces. 

Assuming that the convective acceleration term ( V• V') V is small in comparison with the 
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rest of the terms in the Navier stokes equation and may be neglected equation 4-21 

becomes 

4-21 

This assumption is valid provided 

where 17=p/p , is the kinematic viscosity of the fluid, and the amplitude of the 

oscillation is much less than the particle radius. 

The boundary conditions that the velocity of the fluid and of the sphere are equal at the 

surface of the sphere (V=O at r= a) and the fluid is at rest at infinite distances from the 

sphere (V=-U at r=a:J are used to solve the equations, resulting in equation 4-22, the 

expression for the drag force on the sphere as derived by Stokes. 

( a) 2 3 ( 98) dU F =-6mm 1+- U--:n:a p 1+--
d"" ,.... 8 3 1 2a dt 

4-22 

This drag force consists of both velocity and acceleration terms arising from the 

sphere's motion, and this formula reduces to the inviscid result when 11=0. 

4-23 

By comparison of the viscous and inviscid results the effects of viscosity on the fluid 

motion are clear, one of them being to increase the added mass coefficient of dU/dt. As 

frequency increases the thickness of the oscillating viscous layer, 0, decreases and this 

increase in the added mass coefficient diminishes as 8 tends to zero. Another effect is 

the presence of the first term ·in 4-22, which is proportional to the size, and 

-----------instantaneous velocity of the sphere. In the low frequency limit, the equation reduces to ______ - __ i 

Stokes law for the drag on a sphere moving uniformly through a viscous fluid and at 

high frequencies when the viscous skin thickness is small the drag becomes 

4-24 

Thus even at high frequencies the fluid viscosity retains an effect on the drag 

proportional to the instantaneous velocity of the sphere. This result is only valid 
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however when the viscous layer is very thin, or Ka<<!, and so there will be an upper 

limit of 0/a at very high frequencies where this result is incorrect. 

This result was extended by Temkin (1981) who considered the opposite problem of a 

sphere set in motion by an oscillating fluid, as in the example of a sound wave travelling 

through the fluid. Provided the frequency is not too large the result given in 

4-24 can be adapted to this problem because the flow field close to the sphere is 

essentially incompressible. 

In equation 4-24 the value of U, representing the sphere velocity, must be replaced by 

( U- V), representing the relative velocity between the sphere and fluid. An additional 

force must be added to the expression to take into account the acceleration of the frame 

of reference (which is now the fluid). If we consider a situation where the sphere moves 

with the fluid, the expression for the force vanishes, since the fluid is accelerating with 

velocity V, a force must be acting on any volume of fluid according to Newton's second 

law. If we take the volume to be equivalent to that of a sphere, then the accelerating 

force is 4/3 (p.;ra3 (dV/dt)) and the total force acting on the sphere is: 

4 3 dU 4 3 dV ( a) 2 3 ( 98)d(U -V) 
3;ra Ps -d-t = 3;ra p1 -d-t - 61lllfl 1 + 8 U- V) - 3;ra p1 1 + -2-a .:.:.:.::_d_t .c....:.. 

Assuming that the fluid velocity V is of the form 

V=Voe-imt 

Defining ras the relaxation time for the sphere's motion, 

4-25 

4-26 

4-27 

and eTas the ratio of fluid and particle densities, PiPt· The substitution in 4-25 for U and 

V and their differentials with respect to time (from 4-18 and 4-26) allows the complex 

ratio of velocity amplitudes Uo/Vo to be obtained 
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Uo 

Vo 
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(r-1)- icor[;(~ + ~)] 
( a) [ 1 (1 9J)l I-S - im 1 + er 2 + 4a J 

4-28 

Clearly when UI/'Vo =! the sphere moves with the fluid, in other cases, the sphere 

oscillates with the same frequency as the fluid, but with a different amplitude and 

velocity phase. When the density of the sphere approaches that of the fluid UI/'Vo ~I 

and the sphere's motion is identical to the fluid's. By imposing limits on this expression, 

simple forms can be obtained. For example, for small spheres in a low density fluid, 

o<<l such that 

Uo 

Vo = 1+; -{con;) 4-29 

This makes use of the identity 

4-30 

Now if the sphere radius is small compared with the viscous skin depth, then a/S <<! 

and 

4-31 

Then if cor<<alothen Uo = Vo for all a/J, conversely if cor<<aiS 

4-32 

which is easily derived from Stokes law 

F = 61rpa(U- V) 4-33 

This derivation dictates the conditions under which this can be applied to a sphere in an 

acoustic wave. As compressibility effects were neglected in Stokes original derivation, 

ka<<!. The values of 1/cr and a/Jwere assumed small, with the relative magnitude of 
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these being given by a/o <<mr. As (a/of« a/Owhen alo<<l and (a/of =9mrl4a these 

restrictions can be written 

a!O<< mr<< aa/6 

A 0.3 micron sphere in a 23kHz sound wave in water at standard temperature and 

pressure yields the parameters detailed in Table 4-2 that are used to assess the validity of 

the derivation in this study. 

Condition Value in this study Valid in this study? 

ka<<l 1.46 xlO -s Yes 

lla«l 0.235 Yes 

alo «I 4.03 10 -l Yes 

OJT 3.os x w-3 -
alo<< ({)7: - No 

alo>> ({)7: - Yes 

aa/o 0.172 -
mr<< aa/8 - Yes 

Table 4-2:Confirmation of validity of derivation 

The calculation of parameters shows that, although the derivation is valid for the 

filtration system being considered, in fact a!O>> mr which dictates that the particles will 

indeed move with the fluid, as predicted by Bolt and Heuter (1955). 

4.1.3.2 The Basset Boussinesq Oseen Equation 

The velocity U of a sphere translating unsteadily in a viscous, incompressible fluid is 

described by 

4-34 

which is known as the BBO equation. The last term is a history term, and is dependant 

on the past history of the motion. For a constant wavelength (monochromatic time 

dependence), this equation can be solved to give the result of equation 4-25. 
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4.2 Analysis of the filtration system 

The trajectory of a particle of radius a across the filter can be calculated by considering 

the forces acting upon a particle suspended in a fluid. A frictional force due to the 

gravitational acceleration F, is given by Stokes law: 

4-35 

Derivation of Stokes law is subject to certain assumptions. Particle motion is assumed to 

be extremely slow; this is always true for colloidal particles in filter systems. The 

suspension is considered to be very dilute such that the liquid medium extends an 

infinite distance from the particle and the nearest particle is sufficiently far away to have 

no effect on the one being considered. The medium is also considered to be continuous 

when compared with dimensions of the particle. 

A further assumption is implied from the above. That is, separation distances between 

particles will be large and are thus unlikely to be close enough to cause interparticle 

forces. At low concentrations hydrodynamic and interparticle forces can be neglected. 

The system is defined in cartesian form, with x and z representing horizontal and vertical 

planes respectively. 

Suspension concentrations are lowest farther away from the filter cake surface. It is 

assumed that there is no slip at the particle surface and that the particle velocity is equal 

to the mean pore velocity of the fluid. The suspension thickens as it approaches the filter 

medium and here a differential velocity between the particle and the fluid develops. The 

no-slip assumption no longer holds. Considering a particle in the bulk suspension away 

from the cake surface. 

where vb is the bulk fluid velocity. 

dz 
v,=v,=dt 

The Reynolds number, Re, is given by 

2v,ap
1 Re = ----':__:__-'--

f.l 

4-36 

4-37 
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The downward fluid velocity in the cell is around 2 xl0-4 ms·1
• The maximum drag 

would occur when the fluid velocity is zero at the particle surface, when Re= 0.6 x I 0-4; 

in this case the Reynolds number is much less than 0.2, the limit for purely laminar 

flow, and the gravitational fluid dynamic drag force, Fzd, is given by Stokes' Law: 

4-38 

The Stokes settling velocity Vs can hence be calculated by equating drag and acceleration 

forces to give 

4-39 

If an acoustic field is applied to the suspension, the forces acting on the particle are as 

shown in Figure 4-5, where Fx and Fxd are the acoustic force and the drag acting on the 

particle as a result of the acoustically induced particle velocity respectively. 

1 
Figure 4-5: Forces acting on a particle in an acoustic field 

The forces acting horizontally on particles (in the x direction) are assumed to be much 

_________ gr_e_aterthanth(Jseacting vertically due to bulk fluid flow. Justification for this is given 

in Section 3.3. 

4.2.1 Estimation of the acoustic radiation force 

Gor'kov, 1962 showed that the acoustic potential energy of a single particle in a 

standing wave field is given by 

4-40 



4 Acoustic Force Analysis -117-

where (E P) and (E K } represent the time averaged potential and kinetic energies. 

Expressions for the incident primary field pressure and the first order incident fluid 

velocity vector can be used to derive the force on a particle in a standing wave. Since 

F=-V'E, the primary radiation force (PRF) can easily be derived. 

Expressions for the PRF are given by many authors including the theories proposed by 

Yoshioka and Kawashima (1955) for compressible spheres and King (1934) for 

incompressible spheres. (See also Hager and Benes, 1991). For a spherical particle in a 

standing wave the axial component of the radiation force Fx is given by: 

4-41 

where r is the particle radius, PE the average acoustic energy density, k represents the 

particle wavenumber and G a constant given by 

4-42 

G gives an indication of a particle's behaviour within the standing wave. If G>O, for 

example mammalian cells in culture liquid, the cells collect at the pressure nodes of the 

wave. If however G<O, for example bubbles, the pressure antinodes of the wave become 

the collection zones. 

The transverse component of the PRF, F yz on a single particle in a standing wave is 

given by Woodside et al (1997) 

F 
_ 4 3n (3(p,- Pr) 2(kx) 

>" - -1/lJ V PE cos 
3 2p, +pf 

flr - /3, sin 2 (kx )J 
flr 

4-43 

___________ It is this transverse force which causes particles which have been moved to a pressure 

node or antinode by the axial PRF to agglomerate at the local energy density maximum. 

The secondary radiation force (SRF), Fsec, acts on a particle due to the interaction 

between its own scattered field and the total scattered field arising from neighbouring 

particles. It is strongly dependent on the particle radius and separation distance 

F _ '[ 2 f(fJ,,flr) , f(p,,p1 )] 
sec -a p d' +V d4 4-44 
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In this case the dependence on the sixth power of the radius and utilising the assumption 

that particles are far from one another (Stokes law), along with the statement that 

multiple scattering is negligible (See Chapter 3) means that the SRF can be neglected. 

Pressure 

nodes 

Figure 4-6: Axial (F"') and transverse (Fy. F,) primary radiation forces 

Woodside et al (1997) have carried out velocity measurements of polystyrene spheres in 

such a standing wave, and by neglecting diffusion, the SRF, double-layer and 

hydrodynamic interactions obtain the following expressions for the axial and transverse 

PRF. The results are based on the assumption that observed particle velocities in a 

_________ standing wave field are proportional to the applied ultrasonic forces, and that a particle 

in an acoustic field is subjected to primary and secondary radiation forces as well as 

gravitational, fluid dynamic drag and interparticle forces. 

4-45 

Gravitational forces act parallel to the transverse force in Woodside's work, thus the 

gravity component is retained in the force balance. 
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Woodside et al (1997) apply a curve fitting procedure by calculating the axial forces 

using equation 4-45, and then obtain a nonlinear least squares fit ofthe form 

F, =Asin(2k(x-<D))+B 4-46 

This is based on equation 4-41 but has been modified to include both a phase shift and 

offset. The phase shift accounts for the arbitrary origin of data and the offset <D 

quantifies the magnitude of bulk fluid flows at the time of measurement. During the 

procedure, only data for which B was less than 10% of A was retained. 

Although these expressions are strictly only true for standing wave fields, they may go 

some way to allow the particle motion in the filter to be analysed. In a method similar to 

Woodside et al's, equation 4-46 is modified to include a phase shift and offset. To 

account for the resonant wave system and the altered geometry in the experimental set 

up equation 4-46 is modified to 

F, =Acos(2k(x-<D))+B 4-47 

with 

4-48 

The cosine function is present because in this case it is assumed that the maximum force 

will be at the transducer surface (x=O) 

A force balance in the x direction gives: 

Acos(2k(x-<D))+B-67rpavx =0 

4-49 

4-50 

The sonic force is equated to an acoustic drag force using the assumption that the flow 

around the particle is predominantly laminar (Particle Reynolds number, Re' <1 0). 
--·- .-- -~-------~~-~r--~-- --• 

Equation 4-50 becomes 

dx 
Acos(2k(x -<D))+ B- 61r,ua- = 0 

dt 

Rearranging Equation 4-51 

dx 
-=A *cos(2k(x- <D))+ B* 
dt 

4-51 

4-52 



4 Acoustic Force Analysis -120-

and 

4-53 

4-54 

4.3 Approximating an order for the acoustic force 

A method for obtaining the velocity of small particles in an acoustic field has also been 

developed by Bailey and Wakeman (1998). The method can be briefly described as 

follows. Dispersed particulate suspensions are placed in a graduated cylinder in front of 

a high speed camera. The cylinder is illuminaied using a high intensity light source. An 

ultrasonic probe is placed in the top of the cylinder, with its tip immersed in the 

suspension. On application of the acoustic force from the transducer, the movement of 

the particle away from the probe tip is recorded, and timed over a specified distance to 

give a particle velocity. 

Particles below 1 micron cannot be seen using the video technique used to measure the 

velocity; thus it was not possible to use a similar video technique to study the titania 

used in the filtration experiments described in Chapter 3. For this reason, data for the 

velocity of calcite particles in a similar acoustic field (Bailey and Wakeman 1998) has 

been used in an attempt to predict how rutile particles may behave under acoustic 

irradiation. Data for the velocity profile of 1, 4 and 8 J.tiD particles were used to plot the 

variation of particle velocity with particle size, for varying distances, x, from the 

transducer. 

____________ This data has been used in a curve fit procedure in order to elucidate the motion present 

in the filtration system investigated in this thesis. The form of equation 4-52 with A* 

and B* as defined in 4-53 and 4-54 was used. A commercial curve-fitting package 

(Jandel sigmaplot) was used in an attempt to fit the velocity data in Figure 4-7 to the 

equation. Bailey and Wakeman's data (1998) claims high particle velocities at the 

transducer surface. Initially the data given for the transducer surface was disregarded, as 

the apparently high velocities at this point gave an inappropriate bias to the results. The 
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acoustic wavenumber, k, was allowed to vary during the fitting procedure, as this varies 

the wavelength ofthe fitted curve. 

Now by inspection of 4-52 it is clear that, A* and B* must be of the same order as one 

another and as the measured Vx. The first term of 4-52 can vary only between ±A* 

because the cos function varies between ±I. B* serves purely to move the curve up or 

down the ordinate, and if it is much larger than A* will dominate the curve. 
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Figure 4-7: Particle velocity data given by Wakeman and Bailey (1998) for calcite 

particles in a 20kHz, 0.32Wcm-2 acoustic field. 

Conversely if B *<<A* then A* dominates and the curve oscillates with an amplitude of 

A*. The acoustic energy density and wavenumber defining A* can be calculated using 

the sound frequency and power, as given in Table 4-3. 
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Particle size, 11 A* B* k $ 
ms~1 mf1 radm-1 

Curve Calculated Curve Calculated 

fitted fitted 

I 2.17 8.04 x w·' 4.12 16.32 83.77 0 

4 2.16 0.129 2.43 18.70 83.77 0 

8 1.48 0.515 1.79 18.74 83.77 0 

Table 4-3:Curve fitted and calculated values for experimental data 

The fitting procedure was unsuccessful for a number of reasons. During all curve 

fittings, k was consistently a factor of 27t lower than expected from ale. The major 

problem however was the order of the velocity. As already mentioned, the velocities 

quoted by Bailey & Wakeman (1998) were high, and it would be expected, by 

inspection of equation 4-45, that particle velocities for rutile would be even higher. A* 

can be calculated by know ledge of the ultrasonic parameters being used (given in 

Chapter 3). The velocities quoted are an order larger than those expected from equation 

4-53 which yields a value for A* of the order of 10-1
• While the calculated values for A* 

increase with particle size, the opposite happens to the fitted values. B* carmot be 

calculated or estimated theoretically, as it is unknown, although it is likely to be a 

function of acoustic power, suspension viscosity and particle parameters. It is interesting 

to note that during their fitting procedure, Woodside et al (1997) discounted any results 

which gave B as greater than 10% of A as above this value the measured particle 

velocities are likely to have been distorted by excessive attenuation, caused by particle 

accumulation at the nodes. In the case in question here B * is always greater than A* 

which suggests that the bulk flow in the axial direction is much larger than in 

Woodside's experiments. 

The above expressions and results give an insight into the factors affecting the forces on 

small or neutrally buoyant particles in a standing wave. The forces in this study, and that 

of Wakeman and Bailey (1998), will arise from similar factors, but the extent to which 

these factors influence particle motion is different for various reasons. The standing 

wave assumption is invalid; motion in the filter cell is subject to recirculation currents, 

and wave reflection from the filter cell walls, which may slow or divert the particles. 

Particulates suspended, although very small, have densities significantly greater than the 
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liquid, a:>> I, and the momentum of particles which have been imparted a velocity will 

cause a relative motion between fluid and solids. 

By considering the forces transmitted to the particles more of an insight may be 

possible. Firstly, calculation of Stokes settling velocities and associated drag forces 

settling velocities shows that gravitational forces can be neglected in the remainder of 

the analysis. The velocities shown in Figure 4-7 are much greater than those given in 

Table 4-4, suggesting that the acoustic force will dominate the particle motion. In the 

experimental layout used in this thesis, gravitational forces act perpendicular to the 

direction of the acoustic force, thus there is no vertical component in the force balance. 

Particle diameter, Stokes settling velocity,ms·1 Stokes drag force, N 
microns 

0.3 9.47 xlO 8 2.68 X 10'16 

1 1.05 x w-6 9.91 x 10'15 

4 1.68 X 10'' 6.34 X 10'13 

8 6.73 X 10'' 5.08 x w·ll 
- . . . 

Table 4-4: Gravttatwnal settling veloctfles and drag forces for calcite parttcles of 

density 2930 kgm-3
• 

The velocities measured by Bailey and Wakeman (1998) acted in the same direction as 

gravity, but due to the small Stokes forces are assumed to be equivalent to those that 

would act horizontally. 

Considering only the horizontal acoustic forces, the expression for the acoustic drag 

force need only consider the measured velocity because as shown in Table 4-3 and 

previously in Section 4.1.3 and, there is very little or no relative displacement between 

- ----------the- particle- and- fluid,- The maximum particle Reynolds number at lcm from the 

transducer surface for 1, 4 and 8 micron particles is 7.1, 20 and 33.6 respectively, thus 

the flow around the particle can be considered predominantly laminar and the acoustic 

drag force is given by 

Fxd = -6;rpav x 4-55 

In the x direction, the rate of change of particle momentum is given by 



4 Acoustic Force Analysis -124-

4 '( PI) dv, - F F -n:a p +- -- + 3 '2dt xxd 
4-56 

Assuming that the ultrasonic force, Fx is constant and integrating with respect to t with 

the following boundary conditions 

t= 0, V= Vx 

t = t, V= V., 

we obtain 

4-57 

Thus, the time to 99% of the maximum velocity can be calculated as of the order 10'7 s. 

The time to reach maximum acoustic particle velocity is short, and dv' can be assumed 
dt 

to be zero. Substituting in equations 4-55 and 4-56 

4-58 

The acoustic force Fx of a 1 micron calcite particle is 1.12 x10'7 N at the transducer 

surface, and 1.6 x 10'8 N at a distance of 10 cm away. These forces are considerably 

larger than the gravitational forces previously calculated, and the assumption that those 

vertical forces are negligible holds. 

The use of Equation 4-58 allows the variation of acoustic radiation force with distance 

from the transducer to be plotted. 

Wakeman and Bailey (2000) have taken a slightly different approach to the curve fitting, 

-------l)yfiitin-!itwo curves, of the form of 4-59 and 4-60 to data calculated using expression 4-

58, yielding two sets of values for A, A1 and A2• A critical distance from the transducer 

surface, Xc denotes which equation is used. 
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Figure 4-8: Calculated force on particles positioned across the filter 

F =At cos(Btx) 

F = A2 cos(B2x) 

for x<xc 

for x >xc 
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4-59 

4-60 

These equations go some way to address the problems with the curve fitting procedure 

which have been highlighted in this study. However there are still some discrepancies, 

with A1 an A2 increasing with particle size, but not with frequency, as the authors 

expected by inspection of 4-59 and 4-60. In this case, A1 and A2 are of the orders 1 o-7 N 

and 10"8 N respectively, considerably larger than the 10-22 N calculated using the 

acoustic parameters. Although A1 and A2 are not expected to be comparable to A*, 

------ -- comparison may suggest whether this procedure has any validity. Differences of this -

order of magnitude suggest that although a first approximation has been made, a more 

rigorous model of particle motion in travelling waves is required, and until better 

understanding of the recirculation and reflection from the vessel is available only 

qualitative analysis is possible. 
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4.4 Conclusions 

Although primary radiation forces have been previously calculated by authors such as 

Woodside et al (1997) these are for stationary waves. The methods cannot be used to 

assess the forces present in this study due to the largely different waveforms being used. 

The large amounts of reflection and recirculation occurring in the filter cell cannot at 

this stage be quantified, to allow comparison between the waves present in this study 

and those used by Woodside et al and therefore the forces present. 

Analysis of waves of a more similar nature was carried out by Wakeman and Bailey 

(1997, 1998). A fitting procedure carried out on their data was found to be 

unsatisfactory as both A* and k were found to be far from the values expected by the 

direct calculation of these parameters. 
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5 Experimental Procedures & Analysis- Conductivity Effects 

In order to further investigate the effects described in Chapter 4 and the synergy seen by 

other authors, the physical effects of ultrasound on the suspension have been studied. 

The hypothesis that the synergistic effect could be explained by the ultrasound effecting 

an increase in a suspension's conductivity was investigated experimentally, even though 

this was only seen under certain conditions during this study. 

5.1 Background study 

Electric fields can be generated in a colloidal suspension by the application of an 

ultrasonic field. The fields arise from the electric charge on the colloidal particles. 

Sound waves passing through the suspension generate relative motion between the 

particles and the liquid. The magnitude of this motion depends on the particle and 

suspending liquid density differences, particle size and shape, and the sound wave 

frequency (Bolt and Heuter 1955). 

5.1.1 Vibrational effects of ultrasound 

As a result of the relative motion described above, the diffuse layer around the colloidal 

particle distorts, resulting in a displacement of the centre of charge away from that of the 

particle (in the same way as the electrophoretic relaxation effect). Each particle 

generates an alternating electric field, and an overall effect occurs in the form of a 

macroscopic electric field, alternating at the frequency of the soundwave. The field 

generated is dependant on the same suspension parameters as the magnitude of particle­

liquid displacement, and also the geometry and type of ultrasonic device. 

This idea of sound waves generating electric fields was first noted by Debye (1933). In 

1951 Enderby studied a dilute suspension of weakly charged spheres in an electrolyte, 

and presented a method for obtaining the potential difference when the ratio xa is small 

(double layer thickness small when compared to particle radius), which is valid for low 

zeta potentials. An exact expression is also given for large Ka. Enderby obtained the 

macroscopic field by summing the dipole field produced by individual particles. 

Calculations have been limited to the dilute case, or particular effects, until more 

recently. O'Brien (1988, 1990) has taken Booth and Enderby's (1952) work further, 
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correcting the assumptions, and allowing calculation of any electroacoustic effects in 

suspensions of arbitrary concentration, provided the particles are small compared to the 

sound wavelength. Equations describing microscopic variations in ion density, electric 

potential, velocity and pressure are used to produce a set of macroscopic equations 

which describe the electric field generated by a sound wave. Sound waves generated by 

an electric field, a phenomenon discovered by Cannon et al (1985), are also described. 

O'Brien and White (1978) give the initial detailed mathematical derivations, which are 

solved for a dilute suspension by O'Brien (1988), and for arbitrary concentrations at a 

later date (1990). The mathematical derivations provided by the authors are not within 

the scope of this study, however the phenomena involved may provide an explanation 

for the ultrasonic effects seen in the filter cell. 

Jossinet et al (1998) suggested that the conductivity changes of aqueous solutions were 

primarily due to changes in acoustic pressure inducing changes in the solvent viscosity, 

thermal effects due to the adiabatic compression-expansion cycle and the bulk 

compressibility of the medium. A decrease in the viscosity of a solution as it increases 

in temperature causes an increase in ionic mobility. It is pointed out by O'Brien (1990) 

that ionic mobilities of electrolytes and particles are typically of the same order, so the 

electrolyte contribution is only significant if the electrolyte mass is comparable to the 

mass of particles, thus in most cases the particles provide the dominant electroacoustic 

effect. 

5.1.2 The Ionic Vibration Potential (IVP) 

lVP's occur when ultrasonic waves are propagated through simple electrolyte solutions, 

generating relative motion between the ions and the liquid. The effect occurs because 

differences in the effective masses and frictional coefficients of the solvated anions and 

cations cause differences in their amplitudes and phases of displacement of the ions. 

Electrodes placed at positions A and B in Figure 5-1 will receive an A. C. signal with a 

frequency equal to that of the acoustic wave. Although this phenomenon was first 

suggested by Debye (1933), it was not until 1949 that the effect was shown 

experimentally (Zana and Yeager, 1982). A standing wave technique allowed the 

acoustically produced signal of the order of 1 o·6 V to be distinguished from the 

electromagnetically induced signals used to generate the ultrasonic wave. 
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----? ----? 
+~ +~ 

Figure 5-1: Schematic of IVP 

In aqueous solutions, the measured IVP is independent of electrolyte concentrations 

over the range 10·3 M to ro·I M. Below this range the IVP decreases with decreasing 

concentration. At these low concentrations care must be taken to avoid a 'false effect' 

resulting from the mounting of platinum electrodes (Zana and Yeager, 1982). This effect 

can even cause a signal to be measured in pure liquids, if the electrode mounting 

touches the test solution. The authors suggest that the easiest method of avoiding this 

effect is to position the probe at the centre of the cell, and by filling the cell to lmm 

below the probe seal, any false readings are avoided. Jossinet et al (1998) state that this 

phenomenon is still not understood, and it is unclear why the position of the probe 

would have such an effect. 

For salts containing large hydrophobic ions such as tetraalkylammonium, the IVP is 

dependent on concentration. The same occurs for other long chain salts such as alkyl 

carboxylates and amphiphiles in the concentration range where micelles form (Zana and 

-- -------Yeager, 1982). However for the small ions used here, these concentration effects should 

be less pronounced. Solvent viscosity also has little effect on IVP, which is shown by 

Zana and Yeager (1982) by comparing the IVP of a given salt in two solvents which 

have different viscosities, but in which the salt has similar ionic behaviour. For 

example, potassium iodide in water and ethylene glycol has similar ionic mobility 

values and transport numbers, even though the solvent viscosities are very different. The 

IVP values for the salt vary by only 0.1 f!V s cm·1 in the two solvents. 
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5.1.3 The Colloid Vibration Potential (CVP) 

Colloid vibration potentials are closely related to the IVP, but the potential generation 

involves displacement of the colloidal particles and their surrounding diffuse layers. 

These are generally larger than IVP's, of order magnitude 104 to 10·2 Vs cm-1
; although 

the CVP is smaller if the mobilities of the anion and cation in the supporting electrolyte 

are unequal (Zana & Y eager, 1982). The ionic mobilities of some solvated ions are 

given in Table 5-1 (Jossinet et a!, 1998). The mobilities quoted in Table 5-1 do indeed 

show that the CVP in the solutions used for these experiments could be lower than the 

respective IVP, because there is a large difference between the anion and cation 

mobilities of dissociated HCl and NaOH. 

Cation Ionic mobility, Anion Ionic mobility, 
x 10-8 m2s·Iv-I x 10·8 m2s"1V 1 

H30+ 36.3 ow 20.52 

Na+ 5.19 er 7.91 

Table 5-1: Ionic mobilities of solvated ions in water at 25°C 

5.2 Experimental Design and Characterisation 

An experiment to investigate the effect of ultrasonic irradiation on the conductivity of 

suspensions was carried out by Cataldo (1997, 1998). A conical flask containing the test 

suspension was immersed in an ultrasonic bath. A conductivity meter was placed in the 

flask and the conductivity measured during varying phases of ultrasonic activity. Based 

on this procedure, an experimental programme was devised to investigate the ultrasonic 

effect on dead end vacuum filtration. A number of experimental configurations were 

considered: 

1. A method similar to Cataldo's; the placing of the test suspension and conductivity 

·-~----·---- probe in a conical flask which is subsequently placed in an ultrasonic bath. 

2. The use of a sonic horn directly into the flask containing the test suspension and 

probe. The advantage here is that there is no attenuation caused by the glass flask, 

and control of the ultrasonic amplitude and power is possible. However the close 

proximity of the sonic horn to the conductivity probe was considered likely to 

damage the probe due to the large acoustic forces associated with this type of sound 
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generation. The sonic horn type of transducer is different to that used in the filtration 

experiments, and has much higher intensity and pressure amplitude. 

3. Use of the filtration cell as a vessel to conduct the experiments. The cell can be 

filled with any test suspension, simply by closing the filter cell drain valve. A known 

volume of suspension can be exposed to ultrasonic irradiation, and any changes in 

conductivity measured. 

The third method was chosen due to the similarity of the experimental set up with that 

of the filtration experiments. The test suspension could easily be monitored for 

temperature and conductivity changes. The coupling of the ultrasound with the 

suspension would be exactly the same as in the filtration experiments. The only 

disadvantage of this method is that the suspension is static, and so is subject to any 

heating effects the ultrasound may cause, and does not therefore fully represent the 

experimental set up. Conductivity measurements were taken in-situ during filtration 

experiments to address this. It is well known that conductivity is a function of 

temperature and so it was also investigated whether temperature effects could be the 

reason for conductivity changes, by monitoring the bulk fluid temperature throughout. 

In order to carry out the experiments two litres of test suspension were taken, and 

electrolyte added in the form of hydrochloric acid or sodium hydroxide. When the 

solution was at the required pH and/or conductivity, and well mixed, these values were 

noted and the vessel charged. A lid was fitted to the cell, which allowed positioning of 

the conductivity probe and thermometer in a known configuration relative to the 

ultrasonic transducer. The ultrasonic supply was turned on, and readings for the 

measured parameters were taken at 0, 5, 15, 30, 45 and 60 s and then every 30 s for 5 

minutes. The supply was then switched off and the repeat measurements taken for the 

~~~--~---~- same time period. The supplywas then re-started, and the cycle repeated 3 times. 

A series of experiments was carried out for test suspensions of de-ionised water and 

MIP A dispersed rutile, using hydrochloric acid and sodium hydroxide as electrolytes for 

altering the initial conductivities. 

5.3 Conductivity Measurement 

In aqueous solutions ions carry the electrical current. For low salt concentrations, the 

higher the concentration of dissolved salts the higher the conductivity. The conductivity 

·------ I 
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increases to a maximum when the solution becomes overcrowded and the ability of ions 

to move in the solution is reduced. At this point the conductivity can diminish as ionic 

mobility falls. Some species ionise more completely than others, and so each salt has its 

own characteristic curve of conductivity against salt concentration. It is well known that 

an increase in an electrolyte solution's temperature decreases the solution viscosity and 

increases ion mobility. Temperature effects are different for each ion, because they carry 

different amounts of water with them. A typical variation in conductivity is 1-3% per o C 

(WPA, 1999). Conductivity instruments measure the conductance of a suspension, and 

convert it to conductivity based on the properties of the probe. 

5.4 Experimental Results and Discussion 

Experiments were carried out as previously described, de-ionised water was used, and 

the pH (and thus conductivity) was altered using hydrochloric acid or sodium hydroxide. 

Characterisation of the electrolytic solution for changes in conductivity due to pH is 

shown in Figure 5-2. 
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Figure 5-2: Characterisation of electrolyte solutions for conductivity. 

" 

Clearly, within the pH ranges being studied here (pH 4-1 0), the conductivity is no higher 

than 100 f.lS on the acid side, and is in general between 10 f.lS at pH 6 and 30 f.lS at pH 

4. For the addition of base conductivities are higher, from a low of 10 f.I.S at pH 6 to 600 
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J.!S at pH 10. At extremes of pH (pH 3 and 1 0), the conductivities of the electrolyte 

solutions rise rapidly, because of high ionic concentrations in the suspension. The 

solution contains a large number of ions and electrons can easily move around. Figure 5-

3 shows similar results for rutile. suspensions, with the electrolyte solution results 

plotted for comparison. The curves are similar shapes, with a slightly higher pH required 

to achieve similar conductivities to the electrolyte. 

The filtration cell was then used as a vessel to examine the effect of the ultrasonic field 

on these suspensions. The measured conductivity was seen to rise, considerably in some 

cases, depending on the initial conductivity of the suspension. This increase in 

conductivity was always seen to various extents. 
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5.4.1 Ultrasonic irradiation of electrolyte suspensions: conductivity effects 

12 

Figures 5-4 and 5-5 clearly show that, for suspensions with low initial conductivities 

(below 30 JlS), ultrasonic irradiation markedly increases the conductivity of an 

electrolytic suspension. This increase may be attributed to the ultrasonic vibration 

effects, or is possibly due to cavitation in the solution causing high local temperatures 
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and pressures. The conductivity falls the moment the irradiation ceases, suggesting that 

the increase seen cannot be attributed to macroscopic effects such as bulk fluid heating. 

If these heating effects were the explanation for the changes seen, then there would be a 

relaxation time when irradiation ceased, rather than the almost instantaneous return to 

low levels when the source was switched off. Short relaxation times have also been 

observed by Cataldo (1997), in similar experiments, confirming that the large increases 

are not due solely to macroscopic heating. Changes in temperature of the bulk 

suspension were monitored throughout the experiments, at the end of each period of 

irradiation or relaxation. Over each 30 minute experiment the temperature increase was 

generally between 2-3 °C, with an average increase of 2.6 °C. The bulk temperature 

tended to remain constant during periods of relaxation. Use of the approximations given 

by WP A along with these temperature increases suggests the bulk solution increases in 

temperature by around 9%. Study of Figures 5-4 and 5-5 suggests that this is indeed the 

case. Although the conductivity that the suspension falls back to when irradiation ceases 

increases over the time of the experiment, it is always less than 110% of the original 

value by the end of the 30-minute experiment. 

The effect on conductivity seen at low ionic concentrations in this study is similar to that 

carried out by others (for example, Cataldo, 1997 & 1998,). Jossinet et al (1998) 

proposed that the primary cause of these effects was the phenomena resulting from the 

periodic pressure changes due to wave propagation. This increase in pressure results in a 

compression of the medium, and the resulting temperature increase then causes 

expansion. No heat transfer takes place during the pressure cycle, because the period of 

an acoustic wave is short compared with the time for heat exchange between a given 

element and the surrounding medium. So the variation in volume of an element can be 

calculated by summing an isothermal compression followed by a thermal expansion. 
------------~--~ ----
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Figure 5-4: Effect of periodic ultrasonic irradiation on solutions of hydrochloric acid 
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Figure 5-5: Effect of periodic ultrasonic irradiation on solutions of sodium hydroxide 

For water the pressure increase is around 1.4 x ro-s kPa-1
, suggesting a temperature 

increase of 10-3 K for the peak pressure amplitude of the acoustic source. This 

temperature change causes a change in the bulk compressibility. The compressibility 

coefficient (relative volume reduction per unit pressure) is given by p. 
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The number of ions per unit volume is inversely proportional to the volume of the 

element. Should a volume element of fluid be compressed, the ionic concentration of 

that element increases, increasing the electrical conductivity of the element. 

From Stokes law, the force on a sphere in a viscous medium is inversely proportional to 

the medium viscosity. With ionic mobility being directly related to fluid viscosity by the 

Henry equation (equation 2-33), an increase in viscosity due to the acoustic pressure 

wave will result in a direct increase of the fluid viscosity. This is not however a bulk 

fluid effect and only affects the compressed part of the fluid as the wave propagates. As 

the conductivity of a solution is dependent on the concentration and mobilites of the 

ions present in a solution, variations in these parameters affect the conductivity. Above 

4 °C, the viscosity of water decreases with pressure. Periodic temperature changes as the 

wave propagates result in periodic (viscosity) ionic mobility and thus conductivity 

changes in addition to the pressure effect. 

Temperature changes resulting from the adiabatic compression expansion cycle act as a 

secondary phenomenon. These periodic temperature changes result in periodic ionic 

mobility changes, and this is an additional effect to those directly caused by the periodic 

pressure variations. The apparent ionic concentration can also be altered by changes in 

the dissociation equilibrium constant of partially dissociated electrolytes, such as weak 

electrolytes or water. The influence of temperature and pressure on this coefficient can 

be determined by the Van't Hoff equation and by consideration of the Gibbs free energy 

respectively. As a result of these changes, the ionic mobility can vary due to viscosity 

changes in the solution caused by temperature and pressure changes. 

5.4.2 Ultrasonic irradiation of rntile suspensions: conductivity effects 

Figure 5-6 shows similar results for identical experiments, but using MIP A dispersed 

rutile as the test suspension. Although the increases in conductivity are still apparent 

during periods of ultrasonic irradiation, they are less striking than those shown in 

Figures 5-4 and 5-5. 
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Figure 5-6: Ultrasonic effects on the conductivity ofrutile suspensions. 

In this study the differences in ionic mobility does appear to have affected the 

magnitude of the CVP. This is shown in Figure 5-7, between pHs 5 and 7, the ratio of 

magnitudes of the conductivity measured with and without ultrasound is much larger in 

the absence of suspended particulates. 
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It is interesting to note that irrespective of the ions present, or whether particles are 

present, the ratio of magnitudes is generally the same for any specific initial conductivity 

(Figure 5-8) and if the conductivity is over 50 )lS, ultrasonic irradiation does not 

produce any change in the measured conductivity. At high conductivities, the double 

layer is compressed and the counter-ions are less able to move under the influence of the 

acoustic field. Thus there is less relative motion between fluid and double layer and the 

vibration potential is reduced. 
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Figure 5-8: Shows maximum initial conductivity to cause a change in conductivity. 

As can be seen in Figure 5-8 only those colloidal suspensions having an initial 

conductivity below 30 )lS show an effect which can be attributed to phenomena other 

than macroscopic bulk heating. At these low conductivities, the electrolyte 

-~-----concentration is also low, and the zeta potential is of large magnitude. In these 

circumstances, the diffuse cloud around the rutile particle is large, and a large amount of 

relative motion between the particle and cloud can be achieved, as illustrated by the 

schematic of the CVP, Figure 5-9. This diffuse layer motion can be compared to the 

electrokinetic streaming potential. At higher ionic concentrations, the double layer is 

compressed, and motion of the diffuse cloud is much closer to the particle. In these 
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cases, the suspensions conductivity is not affected by the ultrasonic irradiation in the 

way described above, but there may be an effect from the NP . 
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Figure 5-9: Colloid vibration potential. Tlte arrows represent tlte difference in ionic 

and colloidal displacements 

Filtration experiments were carried out using the procedure described in Chapter 2, with 

a conductivity probe fitted into the top of the filter cell. An example of the results 

achieved is shown in Figure 5-10. 
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Figure 5-10: Conductivity changes during filtration 
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The results for suspension conductivity changes during acoustic filtration are given in 

Table 5-2. The magnitude of the CVP is indicated by quoting the relative change in 

conductivity during the duration of an experiment. Study of the data shown in Figure 5-

10 shows that the percentage increases are similar under stationary conditions, and when 

the fluid is in motion. This supports the hypothesis that the conductivity effect is due to 

the application of the acoustic field, and not due to motion of the fluid through the filter 

causing distortion of the double layer. 

PH4 PH6 PHS PH 10 

NO FIELDS 91.7 198.6 177.8 97.0 

ACOUSTIC FIELD 113.0 148.9 151.2 116.0 

ELECTRIC & ACOUSTIC FIELDS (20VCM-1) 119.9 237.6 

ELECTRIC & ACOUSTIC FIELDS (SOVCM-1) 139.7 345.7 

Table 5-2: Increases in conductivity(%) during filtration ofrutile suspensions 

The CVP is much greater when a low voltage electric field gradient is applied in 

addition to the ultrasonic field, and greater still when a high voltage gradient is applied. 

It is well understood that the application of an electric field imparts a velocity to 

suspended particulates, and this motion causes the double layer to be more distorted 

than by motion due to the acoustic field alone, resulting in greater relative motion and a 

higher CVP. However this rise could also be due to increased heating of the bulk fluid. 

At pH 4, the conductivity increases from CVP are small. The compression of the double 

layer close to the IEP prevents relative motion between the particle and diffuse cloud. 

Where the diffuse layer is large, at pHs 6 and 8 the CVP is much more pronounced as 

the cloud is easily moved. This enhanced CVP may be responsible for the increased 

electroacoustic filtration rates seen under some conditions during this study. 

5.5 Conclusions 

The propagation of an acoustic wave in an aqueous solution produces periodic pressure 

and temperature changes and an electric signal is produced, due to local modifications 
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of the conductivity (Jossinet et al, 1998). These ultrasonic vibration potentials (UVP) 

are always produced where ultrasonic waves propagate through solutions containing 

ionic species, including proteins or polyions in solutions of polyelectroyte, and can be 

ionic (IVP) or colloidal (CVP). 

Dipoles occur as a consequence of the diffuse atmosphere being periodically distorted 

by the sound waves as the centre of charge moves away from that of the particle. The 

field generated is dependent on the same suspension parameters as the magnitude of 

particle-liquid displacement (equation 2-30); the magnitude of density differences, 

particle size and shape, sound wave frequency, and the geometry and type of ultrasonic 

device (Bolt and Heuter, 1955). The zeta potential, colloid concentration, apparent mass, 

nature and concentration of the supporting electrolyte also affect the CVP as they alter 

the diffuse layer surrounding the particle. The magnitude of the CVP is much greater at 

low ionic concentrations, particularly between pHs 6 and 8. 

The CVP can be used to explain the enhanced filtration seen when electric and acoustic 

fields were applied to the filter system. The increased conductivity allows the electric 

field to act as if the field strength were greater than that actually applied via the 

generator. In turn this reduces the specific cake resistance, (Figures 3-21 to 3-24) and 

thus allows increased flow through the filter cake. 
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6 Conclusions and further work 

This chapter briefly summarises the main findings of each of the areas researched. 

Conclusions are presented, and suggestions for further work are made. 

Research was carried out to investigate the effects of combinations of electric and 

acoustic fields on dead end filtration. The test suspension was low concentration rutile, a 

well characterised material, which is known to be difficult to filter. 

6.1 Summary of filtration experiments 

The majority of this work was carried out to establish the effects of applied field on low 

concentration rutile suspensions. Comparison of conventional and acoustic filtration 

showed that, at concentrations greater than 1% by volume the acoustic field was 

attenuated almost immediately. This was backed up by a review of attenuation 

mechanisms. At higher concentrations, although the volumes of filtrate were similar, the 

nature of the cake and suspension changed. No conclusions could be drawn regarding 

the effect of applied vacuum on field assisted filtration. 

The success of electric field application varied according to the pH of the suspension 

being filtered. At low pHs particulate agglomeration occurred and the critical field 

strength to suspend particles increased. This resulted in increased settling and faster 

filtration, overriding the electric field effect to produce a higher porosity cake. At high 

pHs, a well dispersed suspension was achieved, and improvements in the filtration 

process were seen as a result of electrophoresis. 

Gains in filtration rate were observed over conventional filtration in most cases where 

an electric field was applied. If the applied field was close to the critical field strength, 

.. -~---· _____ tile!l_tll()_~co1lstic[~ld acted to further increase filtrate volumes. At lower pHs, where 

the critical field strength was greater, addition of the acoustic field had little effect. 

Measurement of cake porosity yielded the interesting result that whilst application of 

any magnitude electric field increased the cake porosity, the addition of an acoustic field 

reduced the porosity increase slightly, suggesting a compressive effect of ultrasound on 

the electrophoretically generated cake. 
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6.2 Summary of Acoustic force analysis 

The effect of ultrasound on suspensions was reviewed, m order to establish what 

mechanisms might explain the experimental results. The filtration system was analysed 

to quantify the forces present on particles within the filtered suspension. It was shown 

that analysis based on standing waves can not describe the filter system adequately. It 

was beyond the scope of this thesis to study reflective wave analysis. 

6.3 Summary of conductivity effects 

The effect of the colloid vibration potential on rutile suspensions was investigated 

experimentally. Increases in the suspension's conductivity were seen, due to the CVP, 

when it was ultrasonically irradiated. These increases were shown to be due to 

mechanisms other than bulk heating of the fluid. By increasing the conductivity using 

CVP, similar effects to those seen by increasing ionic concentration were expected to 

occur. The CVP was not evident when filtration took place, due to particle motion as a 

result of fluid drag being greater than the CVP. 

6.4 Conclusions 

Additional fields can be used as a means of improving filtration rates, or changing the 

properties of the filter cake. Mechanisms such as cavitation and the colloid vibration 

potential acted to alter the characteristics of the suspension, although the synergy seen 

was much less than that by other authors. The power consumed by the electric field can 

offer sufficiently large improvements in filtration rates that in some cases it could be 

considered a technical improvement to filtration technology. However, the power 

consumed by the ultrasonic field is not sufficiently offset by increases in filter 

--··-· _ performance. The orientation of the sound field perpendicular to the filter medium 

resulted in compression of the filter cake. Fluid flow parallel to the transducer surface 

resulted in a reduction in the CVP induced by ultrasound. 

6.5 Further work 

As a result of the work described in this thesis, a number of areas could benefit from 

continued investigation. The following are suggestions to either improve the practical 

knowledge of field assisted filtration or to investigate the theory behind field assisted 
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filtration. They are based upon studying acoustic field assisted filtration, as 

electrofiltration is already well understood. 

• Re-consider filtration method 

The experimental results described 1n this thesis were severely limited by the 

limitations of the filter design. For example it was difficult to obtain a representative 

cake sample without disturbing the formed cake, and the method developed may 

have removed some moisture from otherwise open cakes. Similar dead end filters 

are likely to come across related problems as excess feed suspension will always 

have to be removed, however it may be possible to study the effects on dead end 

filtration using candle filters. The results seen agreed with other authors work, 

showing that acoustic field application does not appear to be terribly beneficial to 
' 

dead end filtration. For the above reasons it would seem to be of more practical use 

to extend the studies of field assisted crossflow filtration, which has previously 

shown some encouraging results. 

• Improve practical knowledge of acoustic effects on suspensions 

There is a large amount of scope for further experimental work into the parameters 

which govern suspension behaviour in acoustic and electroacoustic filtration. 

Parameters such as test material density and size could be varied; the rutile used in 

this study moved with the fluid, varying of material properties is likely to result in a 
range of particle behaviours. Similarly acoustic parameters such as intensity and 

frequency could be varied to show these effects on materials. The design of the 

experimental rig, which has a large bearing on how the field affects the suspension 

should take into account the requirement of parameter and orientaion changes, 

allowing the relationship between filter medium and acoustic field to be changed. 

-------------;- iiz iepth-studyof the forces present 

Collaboration with acoustic experts may give more insight into the field- fluid­

particle interactions present, resulting in better understanding and prediction of the 

filtration behaviour. 
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APPENDIX A 

EXPERIMENTAL RESULTS 

In the results that follow, although specific cake resistance, a, and medium resistance 

are quoted, they are meaningless in assisted filtration experiments due to the limitations 

of the calculation method. Comparable data is given by the slope of plot, K1 as it 

indicates the relative magnitude of the specific cake resistance, although this cannot be 

calculated explicitly as the pressure is not, strictly speaking, constant during acoustic 

filtration due to the cyclic nature of the wave. Similarly K2 gives an indication of the 

relative magnitude of the medium resistance. For further explanation see Section 3.7 
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NFPH4No1 
Filtrate Solid 

Weight 4995.0 21.3 g 

Density, p 1000 4260 kg m-3 

Volume 5.00E-03 5.00E-06 m 
Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone n 4.26 kg m -3 

- 0.10% v/v 
- OA2%w/w 

pH 4.00 
Applied field ov 

Separation 1.5cm 

Field Strength 0 Vcm -I 

Viscosity, J.! 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot l.llE+09 sm _,; 

Intercept 2.30E+04 sm -3 

R2 0.995 

a 1.508E+12 m kg-1 

Rm 1.071E+JO m-
1 

Volume @1800s 

Vol. per unit area 

Mass of wet cake 
Mass of dry cake 

Mass of liquid 

··-·~-·Volume of solid· 

Volume of liquid 

Cake cone" 

Cake cone n 

E: 

Moisture ratio, m 

Effective c 

Slurry c 

1241 ml 

0.199 m3m-2 

11.14 g 
7.34 g 
3.80 g 

1.72 cm 3 

3.80 cm 3 

65.89% (Mass) 

31.20% (Volume) 
0.688 

1.518 

4.27 kg m-3 

4.26 kg m -3 

3 
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Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 

NFPH4No2 
Filtrate Solid 

4995.0 21.3 g 
1000 4260 kg m-3 

5.00E-03 5.00E-06 m3 

5.02 kg 

5.00E-03 m 3 

4.26 kg m-3 

0.10% v/v 
0.42% w/w 

4.00 
OV 

LScm 
Applied field 

Separation 

Field Strength 
Viscosity, f.t 

Filter Area 
Pressure drop 

0 Vcm-1 

0.001 Pas 

6.22E-03 m 2 

0.75 bar 
75000 Pa 

Slope of plot 1.45E+09 sm-6 

Intercept 2.74E+04 sm-3 

R2 0.976 

a 1.976E+I2 m kg-1 

-I 
Rm 1.276E+JO m 

Volume @1800s 

Vol. per unit area 

Mass of wet cake 
Mass of dry c.ake 

Mass of liquid 

Volume of solid 

Volume of liquid 

Cake cone" 

Cake cone" 
8 

Moisture ratio, m 

Effective c 

Slurry c 

916 ml 

0.147294 m3m-2 

14.91 g 
8.10 g 
6.81 g 

1.90 cm3 

6.81 cm3 

54.33% (Mass) 

21.83% (Volume) 
0.782 
1:841 

4.28 kg m-3 

4.26 kg m-3 
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NF001PH4 

Filtrate Solid 

Weight 4942.7 2.1 g 

Density, p 1000 4260 kg m·3 

Volume 4.94E-03 4.93E-07 m3 

Total Mass 4.94 kg 

Total Volume 4.94E-03 m 3 

Solids cone " 0.42 kg m·3 

- 0.01% v/v 

- 0.04% w/w 
pH 3.60 

Applied field ov 
Separation 1.5cm 

Field Strength 0 Vcm·• 

Viscosity, 11 0.001 Pas 

Filter Area 6.22E-03 m 2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 1.53E+08 sm·6 

Intercept 1.66E+05 sm·3 

Rz 0.999 

a 2.087E+12 m kg·• 
-I 

Rm 7.727£+10 m 

Volume @1800s 2913 ml 

Vol. per unit area 4.68E-01 m3m"2 
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NFPH6N01 

Filtrate Solid 

Weight 4995.0 21.4 g 

Density, p 1000 4260 kg m·3 

Volume 5.00E-03 5.02E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone" 4.28 kg m·3 

- 0.10% v/v 
- 0.43% w/w 

pH 5.40 
Applied field ov 

Separation 1.5cm 

Field Strength 0 Vcm"1 

Viscosity, 1.1 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 9.76E+08 sm-6 

Intercept 1.51E+05 sm·3 

Rz 0.994 

a J.322E+I2 m kg-1 

Rm 7.044E+10 m-
1 

Volume @1800s 

Vol. per unit area 

Mass of wet cake 
Mass of dry cake 

Mass of liquid 

Volume of solid 

Volume of liquid 

Cake cone" 

Cake cone" 
c 

Moisture ratio, m 

Effective c 

Slurry c 

1298 ml 

· 0.209 m3m-2 

6.24 g 
4.70 g 
1.54 g 

1.10 cm3 

1.54 cm3 

75.32% (Mass) 

41.74% (Volume) 
0.583 
1.328 

4.29 kg m·3 

4.28 kg m·3 
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Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

NFPH6N02 
Filtrate Solid 

4995.0 21.1 g 

jooo 4260 kg m"3 

5.00E-03 4.95E-06 m
3 

5.02 kg 

5.00E-03 m3 

4.22 kg m·3 

0.10% v/v 
0.42% w/w 

5.96 
ov 

1.5 cm 

0 Vcm·• 
0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 3.45E+09 sm·6 

Intercept 2.56E+05 sm·3 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, ll 

Filter Area 
Pressure drop 

R2 0.996 

a. 4.738E+12 m kg·• 

Rm 1.197E+ll m·• 

Volume @1800s 702 ml 

Vol. per unit area 1.13E-il1 m3m"2 

Mass of wet cake 3.73 g 
Mass of dry cake 2.77 g 

Mass of liquid 0.96 g 

Volume of solid 0.65 cm3 

Volume of liquid 0.96 cm3 

Cake cone" 74.26% (Mass) 

Cake cone" 40.38% (Volume) 
li 0.596 

Moisture ratio, m 1..347 

Effective c 4.23 kg m·3 

Slurry c 4.22 kg m·3 
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Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids conc8 

Applied field 
Separation 

Field Strength 
Viscosity, J.l 

Filter Area 
Pressure drop 

Slope of plot 

Intercept 
R2 

NFOOINOl 
Filtrate Solid 

1999_1) ]_J g 

J()OO 4260 kg m~' 

2.00E-03 2.58E-07 m
3 

2.00 kg 

2.00E-03 m
3 

0.55 kg m·
3 

0.01% v/v 
0.05% w/w 

ov 
1.5cm 

0 Vcm·1 

0.001 Pas 

6.22E-03 m
2 

0.75 bar 
75000 Pa 

1.54E+08 sm·6 

1.33E+05 sm·3 

0.997 

a 1.629£+12 m kg-1 

-1 R... 6.193£+10 m 

Volume@ 885s 1966 ml 

Vol. per unit area 3.16E-Ol m
3
m'

2 
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Nl"OOlNo2 
Filtrate Solid 

Weight 4886.3 ' ' L,.;, g 

Density, p ]1)00 ./260 ku m 
"' 

Volume 4.89E-03 5. !6E-07 m 3 

Total Mass 4.89 kg 

Total Volume 4.89E-03 m 3 

Solids concn 0.45 kg m -3 

= 0.01% v/v 

= 0.05% w/w 

Applied field ov 
Separation l.Scm 

Field Strength 0 Vcm·1 

Viscosity, 1.1. 0.001 Pas 

Filter Area 6.22E-03 m 
2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot l.23E+08 sm -6 

Intercept l.07E+05 sm -3 

R2 0.995 

a 1.58E+12 m kg-1 

-1 
R, 4.991E+l0 m 

Volume @1800s 2270 ml 

Vol. per unit area 3.65E-Ol m 3m-2 
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Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids concn 

= 

Applied field 
Separation 

Field Strength 
Viscosity, 11 

Filter Area 
Pressure drop 

Slope of plot 

Intercept 
R2 

NFOOINo3 
Filtrate Solid 

1999.8 0. 9 g 

1000 ./260 kg m~1 

2.00£-03 2.00£-07 m
3 

2.00 kg 

2.00£-03 m
3 

0.43 kg m-3 

0.01% v/v 
0.04% w/w 

ov 
l.Scm 

0 Vcm·1 

0.001 Pas 

6.22£-03 m
2 

0.75 bar 
75000 Pa 

1.39E+08 sm -6 

1.78E+05 sm-3 

0.997 

ex 1.902£+12 m kg-1 

R,. 8.291£+10 m-
1 

Volume@ 870s 1938 ml 

Vol. per unit area 3.11E-Ol m
3
m'2 
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NFOSNot 
Solid 

Weight 

Density, p 

Volume 
Total Mass 

Filtrate 

-195. () 

JOOO 

10.7 g 
-1260 ku m-'1 

" 

Total Volume 

Solids concn 

Applied field 
Separation 

Field Strength 
Viscosity, 1.1. 

Filter Area 
Pressure drop 

Slope of plot 

Intercept 
R2 

4.95E-04 2.50E-06 m3 

0.51 kg 

4.98E-04 m
3 

21.52 kg m·3 

0.50% v/v 
2.11% w/w 

ov 
1.5cm 

0 Vcm·1 

0.001 Pas 

6.22E-03 m
2 

0.75 bar 
75000 Pa 

l.62E+ 11 sm -6 

2.47E+06 sm·3 

0.895 

a 4.369E+I3 m kg·1 

·1 R.n 1.152E+I2 m 

Volume @1800s 

Vol. per unit area 

100 ml 

1.61E-02 m3m .z 
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NFlNoJ 
Filtrate Solid 

Weight -195. {) 21.3 g 

Density, p IIJOO -1260 k" m 
"' 

Volume 4.95E-04 5.00E-06 m 
Total Mass 0.52 kg 

Total Volume 5.00E-04 m 
3 

Solids concn 43.03 kg m 
-3 

"' 1.00% v/v 

- 4.13% w/w 

Applied field ov 
Separation l.Scm 

Field Strength 0 Vcm·1 

Viscosity, ll 0.001 Pas 

Filter Area 6.22E-03 m 2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 1.03E+ll sm-6 

Intercept 8.75E+05 sm·3 

Rz 0.965 

a. 1.389£+13 m kg-1 

-I 
R,. 4.08IE+ll m 

Volume @1800s 

Vol. per unit area 

124 ml 

1.99E-02 m3m-2 

3 
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Appendix A-Experimental results 

NFlNo2 
Filtrate Solid 

Weight 990.0 4.3 g 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids concn 

IOOO 4260 kg m-;l 

Applied field 
Separation 

Field Strength 
Viscosity, Jl 

Filter Area 
Pressure drop 

9.90E-04 l.OOE-06 m
3 

0.99 kg 

9.91E-04 m
3 

4.30 kg m-3 

0.10% v/v 
0.43% w/w 

ov 
l.Scm 

0 Vcm·1 

0.001 Pas 

6.22E-03 m
2 

0.75 bar 
75000 Pa 

Slope of plot 6.07E+ 10 sm -6 

Intercept 1.07E+07 sm -J 

R2 0.769 

a 8.187E+13 m kg-1 

-1 
R,. 4.993E+l2 m 

Volume @1800s 107 ml 

Vol. per unit area 1.72E-02 m 3m-
2 

-156-



A endix A-Ex erimental results 

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

Applied field 
Separation 

Field Strength 
Viscosity, f.t 

Filter Area 
Pressure drop 

Slope of plot 

Intercept 
R2 

NF5Nol 
Filtrate Solid 

475.0 106.5 g 

1000 4260 kg m'3 

4.75E-04 2.50E-05 m3 

0.58 kg 

5.00E-04 m 3 

224.2 I kg m·3 

5.00% v/v 
18.31% w/w 

ov 
1.5 cm 

0 Vcm·• 

0.001 Pas 

6.22E-03 m 2 

0.75 bar 
75000 Pa 

sm'6 

sm·3 

a #VALUE! m kg'1 

Rm #VALUE! m·• 

Volume @1800s 5 ml 

Vol. per unit area 7.67E-04 m3m-2 
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A endix A-Ex erimental results 

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 
Applied field 

Separation 

NF250PH8 
Filtrate Solid 

4995.1 21.1 g 

1000 4260 kg m·3 

5.00E-03 4.96E-06 m3 

5.02 kg 

5.00E-03 m 3 

4.23 kg m·3 

0.10% v/v 
0.42% w/w 

8.02 
ov 

1.5cm 

0 Vcm·1 

0,001 Pas 

6.22E-03 m2 

0.25 bar 
25000 Pa 

Slope of plot 9.28E+09 sm-6 

Field Strength 
Viscosity, J.l 

Filter Area 
Pressure drop 

Intercept 
Rz 

5.56E+05 sm·3 

0.984 

a 4.248E+J2 m kg"1 

-I 
Rm 8.643E+l0 m 

Volume @1800s 

Vol. per unit area 

Mass of wet cake 
Mass of dry cake 

Mass of liq nid 

-- - Volume of solid 

Volume of liquid 

Cake cone" 

Cake cone" 
E: 

Moisture ratio, m 

Effective c 

Slurry c 

410 ml 

6.60E-02 m3m"2 

2.65 g 
1.57 g 

1.08 g 

0.37 cm3 

1.08 cm3 

59.25% (Mass) 
" 

25.44% (Volume) 
0.746 
1.688 

. . 3 
4.24 kg m· 

4.23 kg m·3 
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Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

= 

NF500PH8 

Filtrate Solid 

4995.2 21.2 g 

1000 4260 kg m"3 

5.00E-03 4.98E-06 m3 

5.02 kg 

5.00E-03 m3 

4.24 kg m-3 

0.10% v/v 
0.42% w/w 

8.00 
ov 

.1.5 cm 

0 Vcm-1 

0.001 Pas 

6.22E-03 m
2 

0.5 bar 
50000 Pa 

Slope of plot 5.43E+09 sm·6 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, J..l 

Filter Area 
Pressure drop 

Intercept 
R2 

-1.54E+05 sm·3 

0.996 

a 4.947E+12 m kg"1 

Rm -4.8E+JO m·
1 

Volume @1800s 

Vol. per nnit area 

Mass of wet cake 
Mass of dry cake 

Mass of liquid 

.. --·~---·---- . _ __ Volume of solid . 
Volume of liquid 

Cake cone" 

Cake cone" 
c 

Moisture ratio, m 

Effective c 

Slurry c 

582 ml 

9.36E-02 m3m·2 

3.29 g 
2.17 g 

1.12 g 

0.51 cm3 

1.12 crn3 

65;87% (Mass) 

31.18% (Volume) 
0.688 
1.518 

4.25 kg m"3 

4.24 kg m·3 
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endix A-Ex erimental results 
NF750J>H8 

Filtrate Solid 

Weight 4995.0 21.1 g 

Density, p 1000 4260 kg m'3 

Volume S.OOE-03 4.95E-06 m3 

Total Mass 5.02 kg 

Total Volume S.OOE-03 m3 

Solids cone" 4.22 kg m .J 

- 0.10% v/v 
- 0.42% w/w 

pH 8.00 
Applied field ov 

Separation l.Scm 

Field Strength 0 Vcm -1 

Viscosity, ll ()_.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 5.46E+09 sm -6 

Intercept 1.68E+05 sm·3 

R2 0.994 

a 7.5JE+l2 m kg'1 

-1 
Rm 7.86JE+IO m 

Volume @1800s 554 inl 

Vol. per unit area 8.90E-Oi m3m -l 

Mass of wet cake 3.03 g 
Mass of dry cake 2.27 g 

Mass of liquid .. 0.76 g 

Voiume of solid 0.53 cm 3 

Volume of liquid 0.76 cm3 

Cake cone" 74.92% (Mass) 

Cake cone" 41.22% (Volume) 
c 0.588 

Moisture ratio, m 1.335 

Effective c 4.23 kg m·3 

Slurry c 4.22 kg m·3 
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Appendix A-Experimental results 

NF750p82 
Filtrate Solid 

Weight 1926.5 8.2 g 

Density, p 1000 4260 kg m 

Volume 1.93E-03 1.92E-06 m3 

Total Mass 1.93 kg 

Total Volume 1.93E-03 m 3 

Solids concn 4.24 kg m 
.3 

= 0.10% v/v 

- 0.42% w/w 
pH 8 

Applied field ov 
Separation 1.5cm 

Field Strength 0 Vcm·1 

Viscosity, 1.1 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 6.60E+09 sm 
.,; 

Intercept 8.07E+05 sm-3 
R2 0.995 

a 9.047E+12 m kg-1 

R,. 3. 765E+ll m-
1 

Volume @1800s 463 ml 

Vol. per unit area 7.44E-02 m3m-2 
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Appendix A -Experimental results 

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids conc8 

NF750P83 
Filtrate Solid 

1998.5 8.5 g 

JIJOO -12 60 kg m~~ 

2.00E-03 2.00E-06 m
3 

2.01 kg 

2.00E-03 rn3 

4.25 kg m-3 

0.10% v/v 
0.42% w/w 

~ 
ov 

l.Scm 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, 1.1 

Filter Area 
Pressure drop 

0 Vcm'1 

0.001 .Pas 

6.22E-03 m
2 

0.75 bar 
75000 Pa 

Slope of plot 8.63E+09 sm -6 

Intercept 7.60E+05 sm·3 

R2 0.978 

a 1.179E+J3 m kg-1 

-1 R.n 3.544E+ll m 

Volume @1800s 410 ml 

Vol. per unit area 6.60E-02 m 3m-
2 
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- e Aveendix A Exe rimental results 

NFPHlON1 
Filtrate Solid 

Weight 4995.0 21.3 g 

Density, p 1000 4260 kg m-3 

Volume 5.00E-03 5.00E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone" 4.26 kg m·3 

= 0.10% v/v 
= 0.42% w/w 

pH 10.01 
Applied field ov 

Separation 1.5 cm 

Field Strength 0 V cm·' 

Viscosity, ~ 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 5.63E+09 sm-6 

Intercept 1.48E+06 sm'3 

Rz 0.965 

a. 7.669E+12 m kg-1 

Rm 6.927E+ll m 
-I 

Volume @1800s 

Vol. per unit area 

Mass of wet cake 
Mass of dry cake 

Mass of liquid 

Volume of solid 

Volume of liquid 

Cake couc" 

Cake cone" 
8 

Moisture ratio, m 

Effective c 

Slurry c 

453 ml 

7.29E-02 m3m·2 

3.03 g 
2.19 g 
0.84 g 

0.51 cm3 

0.84 cm3 

72.28% (Mass) 

37.97% (Volume) 
0.620 

1.384 

. 3 
4.27 kg m· 

4.26 kg m'3 
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A endix A-Ex erimental results 

-----------

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

NFPHION2 
Filtrate Solid 

4995.0 2/.3 g 

1000 4260 kg m-3 

S.OOE-03 S.OOE-06 m3 

5.02 kg 

S.OOE-03 m3 

4.26 kg m-3 

0.10% v/v 
0.42% w/w 

9.99 
OV 

1.5cm 

0 Vcm"1 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
7_5000 Pa 

Slope of plot 9.51E+09 sm-6 

Intercept -3.90E+05 sm-3 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, 1-1 

Filter Area 
Pressure drop 

R2 0.996 

a 1.294£+13 m kg"1 

Rm -I.82E+ll m-
1 

Volume@1800s 458 ml 

Vol. per unit area 7.36E-02 m3m"2 

Mass of wet cake 2.87 g 
Mass of dry cake 1.58 g 

Mass of liquid 1.29 g 

__ ~ Volume of solid 0.37 cm3 

Volume of liquid 1.29 cm3 

Cake cone" 55.05% (Mass) 

Cake cone" 22.33% (Volume) 
& 0.777 

Moisture ratio, m 1:.816 

Effective c '4.28 kg m-3 

Slurry c 4.26 kg m·3 
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Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

AC750PH4 
Filtrate Solid 

4995.0 21.2 g 

1000 4260 kg m·3 

5.00E-03 4.98E-06 m3 

5.02 kg 

5.00E-03 m3 

4.24 kg m"3 

0.10% vfv 
0.42% wfw 

4.07 
ov 

. 1.5 cm 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, j.l. 

Filter Area 
Pressure drop 

0 Vcm·1 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 1.40E+09 sm -6 

Intercept 1.05E+05 sm·3 

R2 0.995 
. 

a 1.909E+l2 m kg-1 

Rm 4.91JE+JO m·
1 

Volume @1800s 

Vol. per unit area 

Mass of wet cake 
Mass of dry cake 

Mass of liquid 

----·------- ----- ------Volume of solid 

Volume of liquid 

Cake cone" 

Cake cone" 
8 

Moisture ratio, m 

Effective c 

Slurry c 

1126 ml 

1.81E-01 m3m"2 

6.65 g 
4.34 g 
2.31 g 

1.02 cm3 

2.31 cm3 

65.26% (Mass) 

30.61% (Volume) 
0.694 
1.532 

4.25 kg m·3 

4.24 kg m"3 
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Appendix A-Experimental results 

AC01PH4 
Filtrate Solid 

Weight 499.5.0 21.1 g 

Density, p 

Volume 
Total Mass 

1000 4260 kg m-;• 

Total Volume 

Solids concn 

= 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, 1-1 

Filter Area 
Pressure drop 

Slope of plot 

Intercept 
Rz 

S.OOE-03 4.9SE-06 m3 

5.02 kg 

S.OOE-03 m3 

4.22 kg m·3 

0.10% v/v 
0.42% w/w 

4.07 
CV 

1.5cm 

0 Vcm·1 

0.001 Pas 

6.22E-03 m
2 

0.75 bar 
75000 Pa 

1.04E+09 sm·6 

5.65E+05 sm-3 

0.933 

a 1.431E+12 m kg-1 

-1 
R,.. 2.634E+ll m 

Volume @1800s 3386 ml 

Vol. per unit area 5.44E-Ol m3m-2 
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Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

AC750PH6 
Filtrate Solid 

4995.0 21.0 g 

/000 4260 kg m·3 

5.00E-03 4.93E-06 m3 

5.02 kg 

5.00E-03 m3 

4.20 kg m·3 

0.10% v/v 
0.42% w/w 

6.00 
DV 

. 1.5 cm 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, Jl 

Filter Area 
Pressure drop 

0 Vcm·1 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 2.09E+09 sm _. 

Intercept 
R2 

2.13E+05 sm·3 

0.997 

a 2.893£+12 m kg-1 

' -1 
Rm 9.936£+10 m 

Volume @1800s 883 m! 

Vol. per unit area 1.42E-01 m3m"2 

Mass of wet cake 4.80 g 

Mass of dry cake 3.50 g 
Mass of liquid 1.30 g 

Volume of solid 0.82 cm3 

Volume of liquid 1.30 cm3 

Cake cone" 72.92% (Mass) 

Cake cone" 38.73% (Volume) 
8 0.613 

Moisture ratio, m 1.371 

Effective c 4.2i kg m·3 

Slurry c 4.20 kg m·3 
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erimental results 
AC250PH8 

Filtrate Solid 

Weight 4995.7 21.1 g 

Density, p 1000 4260 kg m-3 

Volume 5.00E-03 4.95E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone" 4.22 kg m-3 

- 0.10% v/v 

- 0.42% w/w 
pH 8.00 

Applied field ov 
Separation 1.5cm 

Field Strength 0 Vcm-1 

Viscosity, ~ 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.25 bar 
25000 Pa 

Slope of plot 1.30E+10 sm-6 

Intercept 8.19E+05 sm-3 

R2 0.993 

a 5.936E+l2 m kg-1 

Rm 1.274E+ll m-1 

Volume @1800s 334 ml 

Vol. per unit area 5.37E-02 m3m-2 

Mass of wet cake 1.75 g 
Mass of dry cake 1.29 g 

Mass of liquid 0.46 g 

Volume of solid 0.30 cm3 

Volume of liquid 0.46 cm3 

Cakecouc n 73.71% (Mass) 

Cake cone n 39.70% (Volume) 
E 0.603 

Moisture ratio, m 1.357 

Effective c 4.23 kg m-3 

Slurry c 4.22 kg m-3 
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A endix A-Ex erimental results 

~ ______ , __ ------~-·---- --------

AC500PH8 
Filtrate Solid 

Weight 4995.6 21.2 g 

Density, p 1000 4260 kg m·3 

Volume S.OOE-03 4.98E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m 3 

Solids cone" 4.24 kg m·3 

- 0.10% v/v 
- 0.42% w/w 

pH 8.00 
Applied field OV 

Separation 1.5cm 

Field Strength 0 Vcm -I 

Viscosity, ll 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.5 bar 
50000 Pa 

Slope of plot 6.45E+09 sm -6 

Intercept 3.00E+05 sm'3 

R2 0.991 

a 5.878£+12 m kg'1 

Rm 9.325E+IO m·t 

Volume @1800s 506 mi 

Vol. per unit area 8.13E-02 m3m'2 

Mass of wet cake 3.14 g 
Mass of dry cake 2.08 g 

Mass of liquid 1.06 g 

Volume of solid 0.49 cm3 

Volume of liquid 1.06 cm3 

Cake cone" 66.24% (Mass) 

Cake cone" 31.54% (Volume) 
£ 0.685 

Moisture ratio, m 1.510 

Effective c 4.25 kg m·3 

Slurry c 4.24 kg m·3 
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Appendix A-Experimental results 

·-~---~·- ··-·-·-~-.-··---

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

AC750PH8 

Filtrate Solid 

4995.0 21.0 g 

1000 4260 kg m·3 

5.00E-03 4.93E-06 m3 

5.02 kg 

5.00E-03 m3 

4.20 kg m"3 

0.10% v/v 
0.42% w/w 

8.04 
ov 

.1.5 cm 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, fl. 

Filter Area 
Pressure drop 

0 Vcm·1 

0.001 Pas 

6.22E-03 in2 

0.75 bar 
75000 Pa 

Slope of plot 3.87E+09 sm-6 

Intercept -7.14E+04 sm·3 

R2 0.998 

a 5.35£+12 m kg-1 

Rm -3.33£+10 m"
1 

Volume @1800s 692 ml 

Vol. per unit area l.llE-01 m3m"2 

Mass of wet cake 3.55 g 
Mass of dry cake 2.54 g 

Mass of liquid 1.01 g 

Volume of solid 0.60 cm3 

Volume of liquid 1.01 cm3 

Cake cone" 71.55% (Mass) 

Cake cone" 37.12% (Volume) 
8 0.629 

Moisture ratio, m 1.398 

Effective c 
. 3 

4.21 kg m· 

Slurry c 4.20 kg m·3 
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Avvendix A-Exvenmental results 
AC750P82 

Filtrate Solid 

Weight 4995.1 21.3 g 

Density, p 1000 4260 kg m·3 

Volume 5.00E-03 S.OOE-06 m3 

Total Mass 5.02 kg 

Total Volume S.OOE-03 m3 

Solids cone" 4.26 kg m -3 

= 0.10% v/v 
E 0.42% w/w 

pH 8.00 
Applied field ov 

Separation 1.5 cm 

Field Strength 0 Vcm·1 

Viscosity, 1-l 0.001- Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 8.66E+09 sm -6 

Intercept 6.68E+OS sm -3 

Rz 0.989 

a 1.18£+13 m kg'1 

Rm 3.119£+11 m-l 

Volume @1800s 425 nil 

Vol. per unit area 6.83E-02 u?m'2 

' 

Mass of wet cake 1.33 g . 

Mass of dry cake 0.83 g 
_ ___ Mass ofliquid 0.50 g 

Volume of solid 0.19 cm3 

Volume of liquid 0.50 cm3 

Cake cone" 62.41% (Mass) 

Cake cone" 28.04% (Volume) 
e 0.720 

Moisture ratio, m 1.602 

Effective c 4.28 kg m·3 

Slurry c 4.26 kg m'3 
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Appendix A-Experimental results 

AC750 
Filtrate Solid 

Weight 1998.5 8.5 g 

Density, p WOO ./260 kg m·" 

--- ---

Volume 2.00E-03 2.00E-06 m 

Total Mass 2.01 kg 

Total Volume 2.00E-03 m 
3 

Solids concn 4.25 kg m 
.J 

"' 0.10% v/v 

"' 0.42% w/w 
pH % 

Applied field ov 
Separation l.Scm 

Field Strength 0 Vcm·1 

Viscosity, f.J 0.001 Pas 

Filter Area 6.22E-03 m 
2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 6.66E+09 sm-6 

Intercept 1.79E+06 sm..J 

Rz 0.948 

a. 9.091E+I1 m kg-1 

-1 
R,. 8.349E+ll m 

Volume @1800s 396 ml 

Vol. per unit area 6.37E-02 m
3
m·

2 

3 
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Appendix A-Experimental results 

AC750_2 
Filtrate 

Weight 1998.0 

Solid 

8.5 g 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids concn 

1000 .f260 ko m-:1 
"' 

= 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, Jl 

Filter Area 
Pressure drop 

Slope of plot 

Intercept 
R2 

2.00E-03 2.00E-06 m
3 

2.01 kg 

2.00E-03 m
3 

4.26 kg m·3 

0.10% v/v 
0.42% w/w 

~-

ov 
l.Scm 

0 Vcm·1 

0.001 Pas 
6.22E-03 m2 

0.75 bar 
75000 Pa 

I.OOE+lO sm·6 

6.93E+05 sm·3 

0.991 

a. 1.366E+l3 m kg-1 

R,. 3.232E+II m-
1 

Volume @1800s 391 ml 

Vol. per unit area 6.29E-02 m 3m-2 
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Avvendix A-Exverimental results 

AC750_3 
Filtrate Solid 

Weight 4999.1 22.3 g 

Density, p ]()00 4260 kg m~' 

Volume 
Total Mass 

Total Volume 

Solids concn 

pH 
Applied field 

Separation 

S.OOE-03 5.23E-06 m3 

5.02 kg 

S.OOE-03 m3 

4.46 kg m·3 

0.10% v/v 
0.44% w/w 

'l> 
ov 

l.5cm 

Field Strength 
Viscosity, J.l 

Filter Area 
Pressure drop 

0 Vcm·1 

0.001 Pas 
6.22E-03 m

2 

0.75 bar 
75000 Pa 

Slope of plot 4.27E+09 sm·6 

Intercept 
R2 

3.74E+05 sm..J 

0.996 

a. 5.563£+12 m kg"1 

R,. 1. 743E+ll m·l 

Volume @1800s 620 ml 

Vol. per unit area 9.97E-02 m
3
m-2 
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Appendix A-Experimental results 

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 
Solids concn 

= 

pH 
Applied field 

Separation 

AC750_4 
Filtrate Solid 

1982.9 7.4 g 

1000 4260 kg m""'1 

1.98E-03 1.74E-06 m3 

1.99 kg 

1.98E-03 m
3 

3.75 kg m-3 

0.09% v/v 
0.37% w/w 

~ 

ov 
l.Scm 

0 Vcm·1 

0.001 Pas 

6.22E-03 m
2 

0.75 bar 
75000 Pa 

Slope of plot 4. 78E+09 sm·6 

Intercept 2.43E+05 sm-3 

Field Strength 
Viscosity, 11 

Filter Area 
Pressure drop 

R2 0.995 

a. 7.413E+12 m kg-1 

R,. J.136E+ll m-
1 

Volume @1560s 577 ml 

Vol. per unit area 9.28E-02 m3m-2 

-175-



Avf2_endix A Exverimental results - -176 -

AC750_5 
Filtrate Solid 

Weight 4999.1 22.3 g 

Density, p 1000 -1260 kg m~' 

Volume S.OOE-03 5.23E-06 m3 

Total Mass 5.02 kg 

Total Volume S.OOE-03 m 3 

Solids concn 4.46 kg m-3 

= 0.10% v/v 

= 0.44% w/w 
pH t 

Applied field ov 
Separation 1.5cm 

Field Strength 0 Vcm·1 

Viscosity, J..1 0.001 Pas 

Filter Area 6.22E-03 m 
z 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot l.76E+09 sm-6 

Intercept 5.85E+05 sm -3 

Rz 0.738 

a. 2.299£+12 m kg-1 

R.n 2.73E+ll m 
-1 

Volume @1800s 1632 ml 

Vol. per unit area 2.62E-Ol m3m-2 



A endix A-Ex erimental results 
AC750P10 

Filtrate Solid 

Weight 4995.4 21.6 g 

Density, p 1000 4260 kg m-3 

Volume 5.00E-03 5.07E-06 m
3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone" 4.32 kg m·3 

0.10% v/v 
0.43% w/w 

9.99 
ov 

1.5 cm 

0 Vcm·• 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 6.37E+09 sm·6 

Intercept 3.30E+05 sm·3 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, fl 

Filter Area 
Pressure drop 

R2 0.996 · 

a 8.554£+12 m kg"1 

Rm 1.538£+11 m·l 

Volume @1800s 506 ml 

Vol. per unit area 8.13E-02 m3m"2 

Mass of wet cake 
Mass of dry cake 

· Mass of liquid 

Volume of solid 

Volume of liquid 

Cake cone" 

Cake cone" 
c 

Moisture ratio, m 

Effective c 

Slurry c 

1.90 g 

1.28 g 
0.62 g 

0.30 cm3 

0.62 cm3 

67.37% (Mass) 

32.64% (Volume) 
0.674 
1.484 

-. • 3 
4.33 kg m· 

4.32 kg m·3 
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Appendix A-Experimental results 

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids concn 

Applied field 
Separation 

ACOO.I 
Filtrate Solid 

4905.5 2. 2 g 
1000 4260 kg m""'1 

4.91E-03 5.16E-07 m3 

4.91 kg 

4.9lE-03 m
3 

0.45 kg m-3 

0.01% v/v 
0.04% w/w 

ov 
l.Scm 

0 Vcm·1 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 2.56E+08 sm -6 

Intercept 8.93E+04 sm -3 

Field Strength 
Viscosity, J.l 

Filter Area 
Pressure drop 

~ 0.977 

a. 3.32E+12 m kg-1 

-1 
R, 4.164E+IO m 

Volume @1800s 2655 ml 

Vol. per unit area 4.27E-01 m
3
m-2 

-178-



Appendix A-Experimental results 

ACOS 
Filtrate Solid 

Weight 495.0 10.7 g 

Density, p j()l)l) 4260 ko m-J 
"' 

Volume 4.95E-04 2.50E-06 m3 

Total Mass 0.51 kg 

Total Volume 4.98E-04 m3 

Solids cone" 21.52 kg m-3 

= 0.50% v/v 

= 2.11% w/w 

Applied field ov 
Separation l.Scm 

Field Strength 0 Vcnt"1 

Viscosity, J.t 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 3.62E+l0 sm 
-6 

Intercept 5.44E+05 sm 
-3 

R2 0.976 

a. 9. 768E+12 m kg-1 

-1 
R,. 2.539E+ll m 

Volume @1800s 224 ml 

Vol. per unit area 3.60E-02 m
3
m-

2 
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Appendix A -Experimental results 

AC05_2 
Filtrate Solid 

Weight 1990.0 42.6 g 

Density, p 1000 4260 kg m 

Volume 1.99E-03 I.OOE-05 m 
Total Mass 2.03 kg 

Total Volume 2.00E-03 m3 

Solids concn 21.41 kg m -3 

= 0.50% v/v 

- 2.10% w/w 

Applied field ov 
Separation I.Scm 

Field Strength 0 Vcm·1 

Viscosity, J.l 0.001 Pas 

Filter Area 6.22E-03 m 2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 1.81E+ll sm -6 

Intercept 1.24E+07 sm-3 
R2 0.929 

a. 4.912E+I3 m kg-1 

-1 R.n 5.797E+I2 m 

Volume @1800s 72 ml 

Vol. per unit area 1.15E-02 m3m·2 

3 
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Appendix A-Experimental results 

ACJ 
Filtrate Solid 

Weight 1980.0 85.2 g 

Density, p 1000 
., 

.J260 kg m-· 

Volume !.98E-03 Z.OOE-05 m 
Total Mass 2.07 kg 

Total Volume Z.OOE-03 m
3 

Solids concn 43.03 kg m 
.J 

= 1.00% v/v 

= 4.13% w/w 

Applied field ov 
Separation l.Scm 

Field Strength 0 Vcm·1 

Viscosity, J.1 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 4.9SE+l0 sm·6 

Intercept 1.37E+07 sm-3 

R2 0.841 

a 6.674E+12 m kg-1 

-1 
R,., 6.402E+12 m 

Volume @1800s 95 ml 

Vol. per unit area 1.53E-02 m3m-
2 

3 
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Appendix A-Experimental results 

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids concn 

= 

Applied field 
Separation 

Field Strength 
Viscosity, 11 

Filter Area 
Pressure drop 

Slope of plot 

Intercept 
R2 

AC5 

Filtrate 

1900. () 

1000 

Solid 

426.0 g 

4260 ko m"' 
"' 

1.90E-03 l.OOE-04 m
3 

2.33 kg 

2.00E-03 m3 

224.21 kg m-3 

5.00% v/v 
18.31% w/w 

ov 
1.5cm 

0 Vcm·1 

0.001 Pas 

6.22E-03 m
2 

0.75 bar 
75000 Pa 

sm"" 
-3 sm 

a. #VALUE! m kg-1 

R,., #VALUE! m-1 

Volume@ 900s 10 ml 

Vol. per unit area 1.53E-03 m 3m-
2 
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-- ----------- -----

ACSPOl_l 
Filtrate Solid 

Weight 2955.4 12.2 g 

Density, p 1000 4260 kg m·3 

Volume 2.96E-03 2.86E-06 m3 

Total Mass 2.97 kg 

Total Volume 2.96E-03 m3 

Solids cone" 4.13 kg m·3 

0.10% v/v 
0.41% w/w 

pH '3 
ov 

I.Scm 
Applied field 

Separation 

Field Strength 
Viscosity, ).l. 

Filter Area 
Pressure drop 

0 Vcm·' 
0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 5.68E+09 sm·6 

Intercept 
R2 

2.53E+05 sm·3 

0.984 

a 7.983E+l2 m kg-1 

Rm J.JSE+ll m·' 

Volume @1800s 554 ml 

Vol. per unit area 8.90E-02 m3m"2 

Mass of wet cake 6.60 g 
Mass of dry cake 4.57 g 

Mass of liquid 2.03 g 

Volume of solid 1.07 cm3 

Volume of liquid 2.03 cm3 

Cake cone" 69.24% (Mass) 

Cake cone" 34.57% (Volume) 
c 0.654 

Moisture ratio, m 1.444 . 

Effective c 4.14 kg m"3 

Slurry c 4.\3 kg m"3 

-183-



A endix A-Ex erimental results 

ACSPOl 2 
Filtrate Solid 

Weight 2957.7 12.7 g 

Density, p 1000 4260 kg m·3 

Volume 2.96E-03 2.98E-06 m3 

Total Mass 2.97 kg 

Total Volume 2.96E-03 m3 

Solids cone" 4.30 kg m·3 

- 0.10% v/v 

- 0.43% w/w 
pH '3 

Applied field ov 
Separation 1.5cm 

Field Strength 0 Vcm·1 

Viscosity, J-1 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 2.30E+09 sm-6 

Intercept 2.46E+OS sm·3 

R2 0.997 

a 3.113E+l2 m kg-1 

Rm 1.149E+ll m·l 

Volume @1800s 830 ml 

Vol. per unit area 1.33E-01 m3m-2 

Mass of wet cake 5.M g 
Mass of dry cake 3.50 g 

Mass of liquid 1.60 g 
---- -·--- --

3 Volume of solid 0.82 cm 

Volume of liquid 1.60 cm3 

Cake cone" 68.63% (Mass) 

Cake cone" 33.93% (Volume) 
E: 0.661 

Moisture ratio, m 1.457 

Effective c 4.31 kg m·3 

Slurry c 4.30 kg m·3 
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Appendix A-Experimental results 

-·--·-~--------

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, J.! 

Filter Area 
Pressure drop 

Slope of plot 

Intercept 
R2 

EFP4V20 

Filtrate Solid 

4994.9 20.6 g 

1000 4260 kg m-3 

4.99E-03 4.84E-06 m3 

5.02 kg 

S.OOE-03 m3 

4.13 kg m·3 

0.10% v/v 
0.41% w/w 

4.03 
30 V 
l.Scm 

20 Vcm·• 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

1.21E+09 sm-6 

8.19E+04 sm·3 

0.990 

a 1.697E+12 m kg"1 

Rm 3.82E+JO m·• 

Volume@l800s 1222 ml 

Vol. per unit area 1.96E-Ol m3m·2 

Mass of wet cake 14.86 g 
-------- Mass of dry cake 8.97 g 

Mass of liquid 5.89 g 

Volume of solid 2.!1 cm3 

Volume of liquid 5.89 cm3 

Cake cone" 60.36% (Mass) 

Cake cone" 26.33% (Volume) 
& 0.737 

Moisture ratio, m 1.657 

Effective c 4.14 kg m·3 

Slurry c 4.13 kg m·3 
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Appendix A -Experimental results 

EFP4V50 

Filtrate Solid 

Weight 4995.5 21.1 g 

Density, p 1000 4260 kg m·3 

Volume S.OOE-03 4.95E-06. m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone" 4.22 kg m -3 

"' 0.10% v/v 

- 0.42% w/w 

pH 4.07 
Applied field 75 V 

Separation 1.5cm 

Field Strength 50 Vcm-1 

Viscosity, J..1 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 3.57E+08 sm 
_,; 

Intercept 2.22E+05 sm'3 

~ 0.997 

a 4.909E+Jl m kg'1 

-I 
Rm 1.034E+Jl m 

Volume @1800s 1957 ml 

Vol. per unit area 3.15E-Ol m3m'2 

Mass of wet cake 
__ Mass_ofdry cake 

Mass of liquid 

Volume ofsolid 

Volume of liquid 

Cake cone" 

Cakeconc" 
li 

Moisture ratio, m 

Effective c 

Slurry c 

22.70 g 
12.57 g 
10.13 g 

2.95 cm3 

10.13 cm3 

55.37% (Mass) 

22.56% (Volume) 
0.774 
1.806 

4.24 kgm'3 

4.22 kgm'3 
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Appendix A-Experimental results 

---~··--~----------

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 
Applied field 

Separation 

EFP6V20 

Filtrate Solid 

4995.0 20.9 g 

1000 4260 kg m-3 

5.00E-03 4.90E-06 m3 

5.02 kg 

5.00E-03 m3 

4.18 kg m-3 

0.10% v/v 
0.42% w/w 

6.00 
30 V 
1.5cm 

Field Strength 
Viscosity, 1.1 

Filter Area 
Pressure drop 

20 Vcm-1 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 5.94E+08 sm-6 

Intercept 6.41E+05 sm-3 

R2 0.992 

a 8.259£+11 m kg-1 

. -1 
Rm 2.992£+11 m 

Volume @1800s 1279 ml 

Vol. per unit area 2.06E-Ol m 3m-2 

Mass of wet cake 13.78 g 
. Mass of dry cake 6.73 g 

Mass of liquid 7.05 g 

Volume of solid 1.58 cm 3 

Volume of liquid 7.05 cm3 

Cake cone 11 48.84% (Mass) 

Cake cone 11 18.31% (Volume) 
& 0.817 

Moisture ratio, m 2.Q48 

Effective c 4.20 kgm-3 

Slurry c 4.18 kg m-3 

-187-



Appendix A -Experimental results 

EFP6VSO 
Filtrate Solid 

Weight 4996.6 20.6 g 

Density, p 1000 4260 kg m 

Volume S.OOE-03 4.84E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m J 

Solids cone n 4.12 kg m·3 

- 0.10% v/v 
- 0.41% w/w 

pH 6.06 
Applied field 75 V 

Separation . 1.5cm 

Field Strength SO Vcm -I 

Viscosity, Jl 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 2.87E+08 sm -6 

Intercept 4.46E+OS sm·3 

R2 0.994 

a 4.044E+ll m kg"1 

Rm 2.079E+ll m-t 

Volume @1800s 1842 ml 

Vol. per unit area 2.96E-01 m3m"2 

Mass of wet cake 
Mass of dry cake 

-- ·--- ·----- ----·-·· - Mass of liquid 

Volume of solid 

Volume of liquid 

Cake cone" 

Cake cone" 
li 

Moisture ratio, m 

Effective c 

Slurry c 

18.42 g 
9.16 g 
9.26 g 

2.15 cm3 

9.26 cm3 

49.73% (Mass) 

18.84% (Volume) 
0.812 
2.011 

4.14 kg m-3 

4.12 kg m·3 
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Appendix A-Experimental results 

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, J.t 

Filter Area 
Pressure drop 

EFP8V20 
Filtrate Solid 

4995.2 21.0 g 

1000 4260 kg m·3 

S.OOE-03 4.92E-06 m3 

5.02 kg 

S.OOE-03 m3 

4.19 kgm'3 

0.10% v/v 
0.42% w/w 

8.03 
30 V 
1.5cm 

20 Vcm'1 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 1.67E+09 sm-6 

Intercept 6.01E+05 sm'3 

R2 0.956 

a. 2.313E+l2 m kg'1 

-I 
Rm 2.805E+ll m 

Volume @1800s 912 ml 

Vol. per unit area 1.47E-01 m3m'2 

Mass of wet cake 4.90 g 
Mass of dry cake 3.24 g 

Mass of liquid 1.66 g 

Volume of solid 0.76 cm3 

Volume of liquid 1.66 cm3 

Cake cone n 66.12% (Mass) 

Cake cone" 31.42% (Volume) 
& 0.686 

Moisture ratio, m 1.512 

Effective c 4.20 kg m·3 

Slurry c 4.19 kg m·3 
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EFP8V50 

Filtrate Solid 

Weight 4995.0 21.3 g 

Density, p 1000 4260 kg m 

Volume 5.00£-03 4.99£-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00£-03 m 3 

Solids cone" 4.26 kg m-3 

- 0.10% v/v 

- 0.42% w/w 

pH 8.00 
Applied field 75 V 

Separation 1.5cm 

Field Strength 50 Vcm -I 

Viscosity, J.1 0.001 Pas 

Filter Area 6.22£-03 m 2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 2.17E+08 sm-6 

Intercept 3.83E+05 sm'3 

R2 0.997 

a 2.964£+11 m kg-1 

-I 
Rm 1.785E+ll m 

Volume @1800s 2109 ml 

Vol. per unit area 3.39E-Ol m3m'
2 

Mass of wet cake 17.06 g 
Mass of dry cake 9.72 g 

Mass of liquid 7.34 g 

Volume of solid 2.28 cm3 

Volume of liquid 7.34 cm3 

Cake cone" 56.98% (Mass) 

Cake cone" 23.72% (Volume) 
& 0.763 

Moisture ratio, m 1.755 

Effective c 4.27 kg m -3 

Slurry c 4.26 kg m -J 
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Appendix A-Experimental results 

~- --- --~-~ ~- -- -

EFP10V20 

Filtrate Solid 

Weight 4994.9 20.6 g 

Density, p 1000 4260 kg m-3 

Volume 4.99E-03 4.84E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone" 4.13 kg m -3 

- 0.10% v/v 

- 0.41% w/w 
pH 10.00 

Applied field 30 V 
Separation 1.5 cm 

Field Strength 20Vcm -1 

Viscosity, ll 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 5.06E+08 sm-6 

Intercept 6.50E+05 sm-3 

R2 0.970 

a 7.116£+11 m kg-1 

Rm 3.034£+11 m·l 

Volume @1800s 1370 ml 

Vol. per unit area 2.20E-01 m 3m-2 

Mass of wet cake 7.08 g 
Mass of dry cake 4.75 g 

Mass of liquid 2.33 g 

Volume of solid LI2 cm3 

Volume of liquid 2.33 cm3 

Cake cone" 67.09% (Mass) 

Cake cone" 32.37% (Volume) 
& 0.676 

Moisture ratio, m 1.491 

Effective c 4.14 kg m-3 

Slurry c 4.13 kg m·3 
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Appendix A -Experimental results 

EFP10V50 
Filtrate Solid 

Weight 4995.0 21.2 g 

Density, p 1000 4260 kg m·3 

Volume 5.00E-03 4.97E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone n 4.24 kg m -3 

= 0.10% v/v 

- 0.42% w/w 
pH 10.00 

Applied field 75 V 
Separation 1.5cm 

Field Strength 50 Vcm -I 

Viscosity, ~ 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 9.40E+07 sm -6 

Intercept 4.94E+05 sm"3 

R2 0.994 

a 1.287£+11 m kg-' 

Rm 2.304£+11 m·l 

Volume @1800s 2479 ml 

Vol. per unit area 3.98E-Ol m3m"2 

Mass of wet cake 
------------- _________ Mass ofdry_c_aJie 

Mass of liquid 

Volume of solid 

Volume of liquid 

Cake cone" 

Cake cone" 
{; 

Moisture ratio, m 

Effective c 

Slurry c 

17.14g 
10.23 g 

6.91 g 

2.40 cm3 

6.91 cm3 

59.69% (Mass) 

25.79% (Volume) 
0.742 
1.675 

4.25 kg m"3 

4.24 kg m"3 
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Appendix A-Experimental results 

EF250PH8 
Filtrate Solid 

Weight 4995.3 21.1 g 

Density, p 1000 4260 kgm·3 

Volume 5.00E-03 4.95E-06 m 
Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone" 4.22 kg m·3 

- 0.10% v/v 

- 0.42% w/w 
pH 8.00 

Applied field 75 V 
Separation 1.5 cm 

Field Strength 50 Vcm"1 

Viscosity, J.l 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.25 bar 
25000 Pa 

Slope of plot 2.01E+08 sm·6 

Intercept 4.75E+05 sm·3 

R2 0.959 

a. 9.221E+JO m kg-1 

Rm 7.38E+JO m·
1 

Volume @1800s 1990 ml 

Vol. per unit area 3.20E-01 m3m"2 

Mass of wet cake 
Mass of dry cake 

-~--- -- - ---- ---- - Mass of liquid 

Volume of solid 

Volume of liquid 

Cake cone" 

Cake cone" 
c 

Moisture ratio, m 

Effective c 

Slurry c 

10.89 g 
5.75 g 
5.14 g 

1.35 cm3 

5.14 cm3 

52.80% (Mass) 

20.80% (Volume) 
0.792 
1.894 

4.24 kg m"3 

4.22 kg m·J 

3 
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Annendix A-Exnerimental results 

EF500PH8 
Filtrate Solid 

Weight 4995.2 21.2 g 

Density, p 1000 4260 kg m·3 

Volume 5.00E-03 4.98E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone" 4.24 kg m -J 

- 0.10% v/v 

= 0.42% w!w 
pH 8.03 

Applied field 75 V 
Separation !.5cm 

Field Strength 50Vcm -I 

Viscosity, 1-1 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.5 bar 
50000 Pa 

Slope of plot 2.52E+08 sm·6 

Intercept 3.90E+05 sm·3 

Rz 0.998 

a. 2.298E+ll m kg-1 

-I 
Rm 1.214E+ll m 

Volume @1800s 2014 ml 

Vol. per unit area 3.24E-01 m3m·2 

Mass of wet cake 11.68 g 
Mass of dry cake 6.42 g 

Mass of liquid 5.25 g 

Volume of solid 1.51 cm3 

Volume of liquid 5.25 cm3 

Cake cone" 54.99% (Mass) 

Cake cone" 22.29% (Volume) 
& 0.777 

Moisture ratio, m 1.818 

Effective c 4.26 kg m·3 

Slurry c 4.24 kg m·3 
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Appendix A-Experimental results 
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EF500850 
Filtrate Solid 

Weight 4995.2 21.2 g 

Density, p 1000 4260 kg m-3 

Volume 5.00E-03 4.98E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m J 

Solids cone n 4.24 kg m -3 

- 0.10% v/v 
- 0.42% w/w 

pH 8.03 
Applied field 75 V 

Separation 1.5cm 

Field Strength 50 Vcm -I 

Viscosity, 1-1 0.001 Pas 

Filter Area 6.22E-03 m 2 

Pressure drop 0.5 bar 
50000 Pa 

Slope of plot 2.50E+08 sm-6 

Intercept 3.93E+05 sm-3 

R2 0.997 

a 2.279£+11 m kg-1 

Rm 1.223£+11 m-l 

Volume @1800s 2014 m! 

Vol. per unit area 3.24E-01 m 3m-2 

Mass of wet cake 11.68 g 
Mass of dry cake 6.42 g 

Mass of liquid 5.25 g 

Volume of solid 
. 3 

1.51 cm 

Volume of liquid 5.25 cm3 

Cake cone n 54.99% (Mass) 

Cake cone n 22.29% (Volume) 
& 0.777 

Moisture ratio, m 1.818 

Effective c 4.26 kg m -3 

Slurry c 4.24 kg m-3 
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Avvendix A-Exvenmental results 

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

EF750V20 
Filtrate Solid 

4879.4 19.9 g 
1000 4260 kg m-3 

4.88E-03 4.67E-06 m3 

4.90 kg 

4.88E-03 m3 

4.08 kg m-3 

0.10% v/v 
0.41% w/w 

~ 
30 V 
l.Scm 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, J.L 

Filter Area 
Pressure drop 

20 Vcm·' 
0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 7.33E+08 sm-6 

Intercept 7.84E+05 sm"3 

R2 0.995 

a 1.044£+12 m kg-' 

Rm 3.658E+ll m·' 

Volume @1800s 1131 ml 

Vol. per unit area 1.82E-Ol m3m"2 
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A 

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 

EF750V20 2 
Filtrate Solid 

3996.0 17.0 g 

1000 4260 kg m·3 

4.00E-03 4.00E-06 m3 

4.01 kg 

4.00E-03 m3 

4.26 kg m-3 

0.10% v/v 
0.42% w/w 

'0 
30 V 
l.Scm 

20 Vcm·1 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 8.31E+08 sm·6 

Intercept 8.24E+05 sm·3 

Applied field 
Separation 

Field Strength 
Viscosity, f! 

Filter Area 
Pressure drop 

R2 0.986 

a. 1.131E+12 m kg-1 

Rm 3.846E+ll m'
1 

Volume @1800s 1060 ml 

Vol. per unit area 1.70E-01 m3m'2 
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Appendix A-Experimental results 

Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 
Applied field 

Separation 

Field Strength 
Viscosity, !! 

Filter Area 
Pressure drop 

Slope of plot 

Intercept 
R2 

EF750V30 
Filtrate Solid 

4882.8 25.6 g 

1000 4260 kg m·3 

4.888-03 6.018-06 m
3 

4.91 kg 

4.898-03 m3 

5.24 kg m·3 

0.12% v/v 
0.52% w/w 

'3 

45 V 
1.5 cm 

30 Vcm·• 
0.001 Pas 

6.228-03 m2 

0.75 bar 
75000 Pa 

6.06E+08 sm·6 

3.42E+05 sm·3 

0.986 

a 6. 711£+11 m kg·• 
-1 

Rm 1.595E+ll m 

Volume @1800s 1499 m! 

Vol. per unit area 2.41E-01 m3m·2 
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Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 

EF750V33 
Filtrate Solid 

2985.0 12.8 g 

1000 4260 kg m·3 

2.99E-03 3.00E-06 m3 

3.00 kg 

2.99E-03 m3 

4.28 kg m·3 

0.10% v/v 

0.43% w/w 
~ 
50 V 
1.5 cm 

Applied field 
Separation 

Field Strength 
Viscosity, f! 

Filter Area 
Pressure drop 

33.3 Vcm·' 
0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 6.39E+08 sm·6 

Intercept 4.80E+05 sm"3 

R2 0.988 

a 8.661£+11 m kg·' 

Rm 2.239E+ll m·' 

Volume @1800s 1375 ml 

Vol. per unit area 2.21E-01 m3m"2 
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EF750V46 
Filtrate Solid 

Weight 2987.4 12.4 g 

Density, p 1000 4260 kg m·3 

Volume 2.99E-03 2.92£-06 m3 

Total Mass 3.00 kg 

Total Volume 2.99E-03 m3 

Solids cone" 4.16 kgm-3 

= 0.10% v/v 

= 0.41% w/w 
pH 7.70 

Applied field 70 V 
Separation 1.5 cm 

Field Strength 46.7 Vcm'1 

Viscosity, J.l 0.001 Pas 

Filter Area 6.22E-03 m2 
. 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 2.97E+08 sm·6 

Intercept 3.25E+05 sm·3 

R2 0.978 

a 4.147£+11 m kg'1 

Rm 1.516E+ll m-
1 

Volume @1800s 2033 ml 

Vol. per unit area 3.27E-Ol m3m'2 
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EFP8V60 
Filtrate Solid 

Weight 4995.1 21.3 g 

Density, p 1000 4260 kgm-J 

Volume S.OOE-03 S.OOE-06 m3 

Total Mass 5.02 kg 

Total Volume S.OOE-03 m3 

Solids cone" 4.26 kg m·3 

= 0.10% v/v 

"' 0.42% w/w 
pH 8.02 

Applied field 90 V 
Separation !.5cm 

Field Strength 60 Vcm -I 

Viscosity, !! 0.001 Pas 

Filter Area 6.22E-03 m 2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 1.27E+08 sm-6 

Intercept 3. 77E+05 sm ·3 

R2 0.997 

a 1.733E+ll m kg-1 

-I 
Rm 1.757E+ll m 

Volume @1800s 2559 ml 

Vol. per unit area 4.11E-Ol m 3m-2 

Mass of wet cake 9.36 g 
Mass of dry cake 5.71 g 

Mass of liquid 3.65 g 

Volume of solid 1.34 cm3 

Volume of liquid 3.65 cm3 

Cake cone n 61.00% (Mass) 

Cake cone n 26.86% (Volume) 
& 0.731 

Moisture ratio, m 1.639 

Effective c 4.28 kg m·3 

Slurry c 4.26 kg m·3 
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EAPH3V20 
Filtrate Solid 

Weight 4996.0 21.3 g 

Density, p 1000 4260 kg m"3 

Volnme 5.00E-03 5.00E-06 m3 

Total Mass 5.02 kg 

Total Volume S.OOE-03 m3 

Solids cone" 4.26 kg m -3 

- 0.10% v/v 

- 0.42% w/w 
pH 3.10 

Applied field 30 V 
Separation 1.5 cm 

Field Strength 20 V cm·' 

Viscosity, p. 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 7.56E+08 sm·6 

Intercept 1.17E+OS sm·3 

R2 0.993 

a. J.029E+l2 m kg·' 

Rm 5.462E+10 m·' 

Volume @1800s 1470 ml 

Vol. per unit area 2.36E-01 m3m"2 

Mass of wet cake 3.47 g 
Mass of dry cake 2.67 g 

- Mass of liquid 0.80 g 

Volume of solid 0.63 cm3 

Volume of liquid 0.80 cm3 

Cake cone" 76.95% (Mass) 

Cake cone" 43.93% (Volume) 
E 0.561 

Moisture ratio, m 1.300 

Effective c 4.27 kg m-3 

Slurry c 4.26 kgm"3 
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Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 

EApH4V20 
Filtrate Solid 

5000.3 21.3 g 

1000 4260 kg m·3 

5.00E-03 5.00E-06 m3 

5.02 kg 

5.01E-03 m3 

4.26 kg m·3 

0.10% v/v 
0.42% w/w 

4.00 
30 V 

1.5cm 

20 Vcm·1 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 1.58E+09 sm -6 

Intercept -8.85E+03 sm·3 

Applied field 
Separation 

Field Strength 
Viscosity, 1-1 

Filter Area 
Pressure drop 

R2 0.995 

a. 2.16JE+l2 m kg-1 

Rm -4.13E+09 m·l 

Volume @1800s 

Vol. per unit area 

Mass of wet cake 
Mass of dry cake 

Mass of liquid 

Volume of solid 

Volume ofliquid 

Cake cone" 

Cake cone" 
& 

Moisture ratio, m 

Effective c 

Slurry c 

1098 ml 

1.76E-01 m3m·2 

11.80 g 

7.70 g 
4.10 g 

1.81 cm3 

4.10 cm3 

65.25% (Mass) 

30.60% (Volume) 
0.694 
1.532 

4.27 kg m'3 

4.26 kg m·3 
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EApH4VS0#2 
Filtrate Solid 

Weight 9989.9 42.2 g 

Density, p 1000 4260 kg m-3 

Volume 9.99E-03 9.91E-06 m3 

Total Mass 10.03 kg 

Total Volume 1.00E-02 m3 

Solids cone" 4.22 kg m-3 

- 0.10% v/v 

= 0.42% w/w 
pH 4.01 

Applied field 75 V 
Separation 1.5cm 

Field Strength SO Vcm-1 

Viscosity, J.1 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 2.23E+08 sm -6 

Intercept 2.39E+OS sm -3 

R2 0.998 

a 3.063E+ll m kg-1 

-I 
Rm l.ll3E+ll m 

Volume @1800s 2344 ml 

Vol. per unit area 3.77E-01 m3m-2 

Mass of wet cake 
Mass of dry cake 

Mass of liquid 

Volume of solid 

Volume of liquid 

Cake cone" 

Cake cone" 
& 

Moisture ratio, m 

Effective c 

Slurry c 

15.50 g 

9.89 g 
5.61 g 

2.32 cm3 

5.61 cm3 

63.81% (Mass) 

29.27% (Volume) 
0.707 

1.567 

4.23 kg m-3 

4.22 kgm-3 
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Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 

EApH6V20 
Filtrate Solid 

4995.0 21.2 g 

1000 4260 kg m-3 

4.99E-03 4.96E-06 m3 

5.02 kg 

5.00E-03 m3 

4.23 kg m-3 

0.10% v/v 
0.42% w/w 

5.99 
30 
!.5cm 

20 Vcm-1 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 4.60E+08 sm -6 

Applied field 
Separation 

Field Strength 
Viscosity, ll 

Filter Area 
Pressure drop 

Intercept 
R2 

7.25E+05 sm-3 

0.983 

a 6.3JJE+ll m kg-1 

-1 
Rm 3.38IE+ll m 

Volume @1800s 1346 ml 

Vol. per unit area 2.16E-01 m3m-2 

Mass of wet cake 14.30 g 
Mass of dry cake 7.86 g 

Mass of liquid 6.44 g 

Volume of solid 1.85 cm3 

Volume of liquid 6.44 cm3 

Cake cone" 54.97% (Mass) 

Cake cone" 22.27% (Volume) 
8 0.777 

Moisture ratio, m 1.819 

Effective c 4.25 kgm-3 

Slurry c 4.23 kg m-3 
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EApH6VSO 

Filtrate Solid 

Weight 4995.2 20.8 g 

Density, p 1000 4260 kg m-3 

Volume 5.00E-03 4.88E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m 3 

Solids cone" 4.16 kg m-3 

- 0.10% v/v 
- 0.41% w/w 

pH 6.00 
Applied field 75 V 

Separation 1.5cm 

Field Strength 50 Vcm-1 

Viscosity, ll 0.001 Pas 

Filter Area 6.22E-03 m 2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 2.57E+08 sm-6 

Intercept 3.34E+05 sm-3 

R2 0.942 

a. 3.593E+ll m kg-1 

Rm 1.559E+ll m 
-I 

Volume @1800s 2043 ml 

Vol. per unit area 3.28E-01 m3m-2 

Mass of wet cake 23.24 g 
Mass of dry cake 13.16 g 

--------· -------- - - --- -----------

Mass of liquid 10.08 g 
I 

Volume of solid 3.09 cm3 

Volume of liquid 10.08 cm3 

Cake cone" 56.63% (Mass) 

Cake cone" 23.46% (Volume) 
li 0.765 

Moisture ratio, m 1.766 

Effective c 4.17 kg m-3 

Slurry c 4.16 kg m-3 



Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 

EAP8V20 
Filtrate Solid 

4864.5 20.6 g 

1000 4260 kg m·3 

4.86E-03 4.84E-06 m3 

4.89 kg 

4.87E-03 m3 

4.23 kg m·3 

0.10% v/v 
0.42% w/w 

8.10 
30 V 
1.5cm 

Applied field 
Separation 

Field Strength 
Viscosity, J.! 

Filter Area 
Pressure drop 

20 Vcm·1 

0.001 Pas 

6.22E-03 m
2 

0.75 bar 
75000 Pa 

Slope of plot 6.24E+08 sm-6 

Intercept 
R2 

9.81E+05 sm·3 

0.987 

a 8.549E+ll m kg-1 

-I 
Rm 4.578E+ll m 

Volume @1800s 

Vol. per unit area 

Mass of wet cake 
Mass of dry cake 

________ -------- ______ 1\fl)SSOf liquid 
Volume of solid 

Volume ofliquid 

Cake cone" 

Cake cone" 
c 

Moisture ratio, m 

Effective c 

Slurry c 

1079 ml 

6.75E-02 m3m-2 

5.20 g 
3.74 g 
1.46 g 

.0.88 cm J 

1.46 cm3 

71.92% (Mass) 

37.55% (Volume) 
0.624 
1.390 . 

4.24 kg m·3 

4.23 kg m·3 
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EAPH8P250VSO 

Filtrate Solid 

Weight 4995.8 21.2 g 

Density, p 1000 4260 kgm·3 

Volume 5.00E-03 4.98E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone" 4.24 kg m·3 

- 0.10% v/v 
- 0.42% w/w 

pH 8.02 
Applied field 75 V 

Separation 1.5cm 

Field Strength 50 Vcm·1 

Viscosity, J! 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.25 bar 
25000 Pa 

Slope of plot 1.82E+08 sm-6 

Intercept 4.93E+OS sm·3 

R2 0.997 

a 8.294E+10 m kg-1 

Rm 7.674E+JO m·
1 

Volume @1800s 2086 ml 

Vol. per unit area 3.35E-01 m3m·2 

Mass of wet cake 12.64 g 
Mass of dry cake 6.41 g 

Mass of liquid 6.24 g 

· Volume of solid 1.50 cm3 

Volume ofliquid 6.24 cm3 

Cake cone" 50.67% (Mass) 

Cake cone n 19.43% (Volume) 
e o:so6 

Moisture ratio, m 1.973 

Effective c 4.26 kg m·3 

Slurry c 4.24 kg m'3 
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EApH8PSOOVSO 

Filtrate Solid 

Weight 4995.8 21.2 g 

Density, p 1000 4260 kg m-3 

Volume 5.00E-03 4.98E-06 m3 

Total Mass 5.02 kg 

Total Volume 5.00E-03 m3 

Solids cone" 4.24 kg m-3 

= 0.10% v/v 

"' 0.42% w/w 
pH 8.02 

Applied field 75 V 
Separation 1.5cm 

Field Strength 50 Vcm-1 

Viscosity, J.l 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.5 bar 
50000 Pa 

Slope of plot 1.83E+08 sm-6 

Intercept 4.66E+OS sm-3 

R2 0.996 

a J.67E+11 m kg-1 

-1 
R,. J.449E+11 m 

Volume @1800s 2112 ml 

Vol. per unit area 3.40E-01 m3m-2 

Mass of wet cake 
Mass of dry cake 

Mass of liquid 

Volume of solid 

Volume of liquid 

Cake cone" 

Cake cone" 
E 

Moisture ratio, m 

Effective c 

Slurry c 

{3.09 g 
6.51 g 
6.58 g 

3 .1.53 cm 

6.58 cm3 

49.77% (Mass) 

18.87% (Volume) 
0.811 
2.009 

4.26 kgm-3 

4.24 kg m-3 
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Weight 

Density, p 

Volume 
Total Mass 

Total Volume 

Solids cone" 

pH 

EApH8V50 
Filtrate Solid 

4995.0 21.3 g 

1000 4260 kg m·3 

5.00E-03 5.00E-06 m3 

5.02 kg 

5.00E-03 m3 

4.26 kg m·3 

0.10% v/v 
OA2% w/w 

7.99 

75 V 
1.5cm 

Applied field 
Separation 

Field Strength 
Viscosity, !l 

Filter Area 
Pressure drop 

50 Vcm'1 

0.001 Pas 

6.22E-03 m2 

0.75 bar 
75000 Pa 

Slope of plot 1.81E+08 sm-6 

Intercept 
R2 

5.23E+05 sm'3 

0.997 

a. 2.462E+Jl m kg'1 

-1 
Rm 2.442E+ll m 

Volume @1800s 2014 ml 

Vol. per unit area O.OOE+OO m3m·2 

Mass of wet cake 12.92 g 
Mass of dry cake 7.46 g 

Mass of liquid 5.45 g 

Volume of solid 1.75 cm3 

Volume of liquid 5.45 cm3 

Cake cone" 57.78% (Mass) 

Cake cone" 24.32% (Volume) 
8 0.757 

Moisture ratio, m 1.731 

Effective c 4.28 kgm'3 

Slurry c 4.26 kg m·3 
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EApH8V20#2 
Filtrate Solid 

Weight 4884.4 20.4 g 

Density, p 1000 4260 kg m -3 

Volume 4.88E-03 4.79E-06 m 3 

Total Mass 4.90 kg 

Total Volume 4.89E-03 m 3 

Solids cone" 4.18 kgm-3 

"' 0.10% v/v 

"' 0.42% w/w 
pH B 

Applied field 30 V 
Separation 1.5 cm 

Field Strength 20 Vcm-1 

Viscosity, J.l 0.001 Pas 

Filter Area 6.22E-03 m 2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 5.30E+08 sm-6 

Intercept 9.80E+OS sm-3 

R2 0.975 

a 7.369E+ll m kg-1 

R 
. -1 

m 4.574E+ll m 

Volume @1800s 1136 ml 

Vol. per unit area 1.83E-01 m 3m-2 



Appendix A-Experimental results 

EApH8V46 
Filtrate Solid 

Weight 4923.4 20.3 g 

Density, p 1000 4260 kg m·3 

Volume 4.92E-03 4.77E-06 m3 

Total Mass 4.94 kg 

Total Volume 4.93E-03 m3 

Solids cone" 4.12 kg m -3 

- 0.10% v/v 

- 0.41% w/w 

pH 7.90 
Applied field 70 V 

Separation 1.5 cm 

Field Strength 46.67 Vcm·1 

Viscosity, f.l 0.001 Pas 

Filter Area 6.22E-03 m 2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 2.68E+08 sm'6 

Intercept 5.25E+05 sm·3 

R2 0.975 

a 3.774E+ll m kg'1 

Rm 2.45E+ll m·l 

Volume @1800s 1804 m! 

Vol. per unit area 2.90E-01 m3m'2 
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fAflr-1101!10 
Filtrate Solid 

Weight 4995.3 21.1 g 

Density, p 1000 4260 kg m·3 

Volume S.OOE-03 4.96E-06 m3 

Total Mass 5.02 kg 

Total Volume S.OOE-03 m3 

Solids cone" 4.23 kg m·3 

= 0.10% v/v 

- 0.42% w/w 
pH 10.01 

Applied field 30 V 
Separation 1.5 cm 

Field Strength 20 Vcm·1 

Viscosity, fl 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 1.74E+08 sm·6 

Intercept 1.04E+06 sm·3 

Rz 0.946 

a 2.388E+ll m kg-1 

-I 
Rm 4.834E+ll m 

Volume @1800s 1413 ml 

Vol. per unit area 2.27E-01 m3m·2 

Mass of wet cake 4.90 g 
Mass of dry cake 3.5d g 

Mass of liquid 1.40 g 

Volume of solid 0.82 cm3 

Volume ofliquid 1.40 cm3 

Cake cone" 71.43% (Mass) 

Cake cone" 36.98% (Volume) 
c 0.630 

Moisture ratio, m 1.400 

Effective c 4.23 kgm·3 

Slurry c 4.23 kg m·3 
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EApH10V50#1 

Filtrate Solid 

Weight 3996.0 17.0 g 

Density, p 1000 4260 kgm-3 

Volume 4.00E-03 4.00E-06 m3 

Total Mass 4.01 kg 

Total Volume 4.00E-03 m3 

Solids cone" 4.26 kg m -3 

- 0.10% v/v 

- 0.42% w/w 
pH 10.10 

Applied field 100 V 
Separation 2 cm 

Field Strength 50 Vcm -1 

Viscosity, ).1 0.001 Pas . Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 1.07E+08 sm -6 

Intercept 2.94E+OS sm·3 

R2 0.976 

a 1.456E+ll m kg-1 

Rm 1.37JE+ll m·
1 

Volume @1800s 2925 ml 

Vol. per unit area 4.70E-01 m3m-2 

-214-



A endix A-Ex erimenta/ results 

~---.. -~--~----- --------- -

EApHlOV50#2 
Filtrate Solid 

Weight 4936.4 21.3 g 

Density, p 1000 4260 kgm·3 

Volume 4.94E-03 4.99E-06 m 
Total Mass 4.96 kg 

Total Volume 4.94E-03 m 3 

Solids cone" 4.31 kg m·3 

- 0.10% v/v 

- 0.43% w/w 
pH 10.00 

Applied field 100 V 
Separation 2cm 

Field Strength 50 Vcm-1 

Viscosity, !.1 0.001 Pas 

Filter Area 6.22E-03 m
2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 8.54E+07 sm.;; 

Intercept 3.15E+05 sm·3 

R2 0.989 

a. J.I5E+ll m kg-1 

Rm 1.47/E+ll rn"
1 

Volume @1800s 3113 ml 

Vol. per unit area S.OOE-01 m3m"2 

Mass of wet cake 10.02 g 
Mass of dry cake 6.91 g 

Mass of liquid 3.11 g 

Volume of solid 1.62 cm3 

Volume of liquid 3.11 cm3 

Cake cone" 68.96% (Mass) 

Cake cone" 34.28% (Volume) 
c 0.657 

Moisture ratio, m 1.450 

Effective c 4.32 kg m·3 

Slurry c 4.31 kgm·3 

3 
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EAPH10V50#3 

Filtrate Solid 

Weight 4917.0 21.9 g 

Density, p 1000 4260 kg m·3 

Volume 4.92E-03 5.13E-06 m3 

Total Mass 4.94 kg 

Total Volume 4.92E-03 m3 

Solids cone" 4.45 kg m·3 

- 0.10% v/v 
- 0.44% w/w 

pH 10.10 
Applied field 100 V 

Separation 2 cm 

Field Strength 50 Vcm·1 

Viscosity, J.t 0.001 Pas 

Filter Area 6.22E-03 m2 

Pressure drop 0.75 bar 
75000 Pa 

Slope of plot 1.48E+08 sm -6 

Intercept 4.34E+OS sm·3 

R2 0.991 

a. J.928E+ll m kg"1 

.) 

Rm 2.026E+ll m 
. 

Volume @1800s 2321 ml 

Vol. per unit area 3.73E-01 m3m·2 

Mass of wet cake 24.70 g 
Mass of dry cake 16.69 g 

Mass of liquid 8.01 g 

Volume of solid 3.92 cm3 

Volume of liquid 8.01 cm3 

Cake cone" 67.57% (Mass) 

Cake cone" 32.85% (Volume) 
& 0.672 

Moisture ratio, m 1.480 

Effective c 4.46 kg m·3 

Slurry c 4.45 kg m·3 

-216-



Appendix B-Publications - 217-

APPENDIXB 

PUBLICATIONS 

z. The use of acoustic fields as a filtration and 

dewatering aid, MC.Smythe & R.J Wakeman, 

Ultrasonics 38 (2000) 657-661 

ll. Clarifyingfiltration of fine particle suspensions aided 

by electrical and acoustic fields, R.J. Wakeman & 

M C. Smythe, Trans IchemE, Vol 78, Part A, Jan 2000, 

125-135 

iii. Experiments on electroacoustic vacuum filtration, 

M C.Smythe & R.J. Wakeman, IchemE Research event 

abstracts, 1998, 80-85 



Appendix B-Pub/ications -218-

Ultrasonics 38 (~000) 657-661 
www .e\sevier. nljloca tefult ras 

The use of acoustic fields as a filtration and dewatering aid 

M.C. Smythe, R.J. Wakeman * 
Department of Chemical Engineering, Lo11ghborough Unh•ersity, Loughboro11gh LE! I JTU. UK 

Abstract 

An experimental rig has been developed to study the effects of electric and acoustic field combinations on the filtration rate of 
titanium dioxide suspensions. Ultrasound energy is applied tangentially to the filter medium. Electric field strengths, suspension 
characteristics and process parameters can all be varied independently. Results from an experimentaJ programme demonstra1e 
that the use of ultrasound across the cake surface can decrease !he specific cake flow resistance and increase the filtration rates of 
low-concentration rutHe suspensions (0.1% vjv). Changes in the conductivity induced by ultrasonic irradiation affect the suspension 
such that the application of all electrical field is enhanced, giving an equivalent electric field strength higher than that 01pplied 
!02000 Elsevier Science B. V. All rights reserved. 

KeJ•nwds: Electricity; Electroacoustic; Filtration: Ultrasound 

1. Introduction 

The separation of liquids from fine particle suspen­
sions can be difficult and costly, yet they play an 
important role in commercial processing. Slurries are 
often deliquored by filtration methods, requiring a 
vacuum or pressure driving force. As filter cake forms, 
resistance to fluid flow increases, and filtrate flow rate 
is reduced. The effect of particles blocking the filter 
medium can be reduced by a number of methods, 
including mechanical removal of the cake, reduction of 
the cake resistance by chemical methods, or the preven-

~----~-~------ tion·- of cake formation. Assisted separations, using 
electrical, magnetic or sonic fields, have emerged as 
potential alternatives to conventional filtration. 
Magnetically enhanced filtration has been widely used 
in the mining industry, and the use of electric fields as 
an additional driving force has recently become more 
viable with advances in suitable electrode materials. 
Acoustic fields have been used to dewater sludges, coals 
and food dispersions. They are particularly useful in the 
removal of bound water which cannot be removed by 
conventional filtration, allowing closer packing of the 
particles and thus a drier cake, which may be more 
important than filtration time if a solid product is being 
made. In turn, this removes the need for prolonged 

• Corresponding author. Fax: + 44·1509-2239!31. 
E-mailmldress: r.j.wakeman@lboro.etc.uk (R. Wakcm;~,n) 

• 
thermal drying, attractive in both energy terms and for 
materials that are heat-sensitive. Combinations of fields 
have been investigated by Muralidhara et al. [ lJ and 
Wakeman and TarJeton [2], particularly the combination 
of electric and acoustic fields. 

2. FiltratiQn experiments 

Filtration experiments have been conducted using 
aqueous rutile suspensions as the test materiaL An 
experimental filter cell was designed and built, based on 
a conventional dead-end vacuum filter with the filter 
medium support acting as a cathode and a variable 
position anode suspended parallel to the support. An 
ultrasonic transducer was attached to one side of the 
filter cell and ultrasonic energy (provided by a Telsonic 
NSM 220 supply) applied tangentially to the filter 
surface, with a contact area of91.68 cm2• The ultrasonic 
transducer position was fixed, and the frequency was 
constant at 23kHz with a power output of 300 W. A 
stabilized d.c. power supply ( Sorensen model OCR 
150-l2D) allowed application of a constant voltage 
across the electrodes. A field gradient of 50 V cm- t was 
used for the results quoted in this paper, with an 
electrode separation distance of 1.5 cm. In the filtration 
experiments, Sartorious cellulose nitrate membranes 
with a pore size rating of 0.2 11m were used. These 
membranes had been characterized previously [3J. and 

0041-624Xf00/S - S« front matter 0 2000 Elsevicr Science D. V. All' rights re;crvcJ. 
PU: S004J·624X(99l00J47-X 
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Fig. I. Flow diagram or the experimental apparatus; the filter cell has 
a diumettr of 9.9 cm and a volume of 1.91. The effective liltration area 
is 62.2 cm2• 

show a negative zeta potential for 2 <pH< J 2. A new 
membrane was used for each filtration test. 

The experimental flow circuit (Fig. I) comprised a 
feed reservoir with recirculation pump to ensure that 
the feed remained completely mixed during the course 
of an experiment. The feed flowed into the filter cell, 
and pressure transducers monitored the pressure drop 
across the cell. A host cornputer controlled the pressure~ 
difference across the filter. Experiments were carried out 
at a constant vacuum. On commencement of a filtration 
experiment, the fields required were switched on; the 
suspension was under the influence of the fields for the 
duration of the experiment. The filtrate volume collected 
was measured at different filtration times. 

3. Measurement of ultrasonic effects on solution 
conductivity · 

The basic rig was also used as a vessel to carry out 
experiments on the effects of ultrasonic energy on the 

·" -- conductivjty of rutile- suspensions. The experimental 
method is based on earlier work by Cataldo [4]. To 
measure the effect on the suspension under the same 
conditions as the filtration experiments, the filter cell 
was fiJJed with test suspension and the initial pH and 
conductivity measured. The conductivity was measured 
as a function of time and the bulk temperature was 
monitored throughout the experiment. Investigations 
were carried out using deionized water, with HCI or 
NaOH added to alter the initial conductivity. Further 
tests using rutile suspensions were carried out to evaluate 
effects of the presence of suspended particles. 

4. I\1odification of the classical filtration equation 

The form of plot in Fig. 2 follows that often used to 
report conventional filtration data, from which an effec­
tive specific cake resistance can be calculated. Following 
the simplifications used by Yukawa et al. [5) to derive 
a relationship for electrofiltration, a similar equation 
was used to describe the effects of ultrasound. A convenM 
tional plot (reciprocal flow rate vs. cumulative volume 
of filtrate) of the data should yields a straight line with 
gradient K1 and intercept K2• Table l gives values of 
K 1 for the data from a range of filtration experiments; 
since K1 is directly proportional to the product of 
specific cake flow resistance and feed suspension concen­
tration, which may both vary with the applied fields. it 
provides an insight into how this parameter varies with 
the applied fields. The data in Table I show that whilst 
the application of fields to assist filtration does have an 
effect, the field combinations act differently at the pHs 
studied. 

5. Porosity effects 

The porosities of the filter cakes formed are listed in 
Table I. These have been calculated from gravimetric 
mesurements of wet and dried samples of the cakes, and 
give an indication of variations in cake structure. These 
data generally indicate that a cake formed jn an acoustic 
field from better dispersed (higher pH) suspensions is 
more porous than that formed without added fields, but 

o No fields 
o Electric field 
6 Acoustic field 
v Electric+ Acoustic field 

Suspension proper1ies 
Concenlration 0.1 vol% 

pH 10.0 

~~2::::::::::::·:":'o=•~Q'....,:"~V'w:':~~:-:=:-=~·j 
O.Oe-tO L 
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Fig. 2. Plots o( tfl-' vs. V showing lhe effects o( c!e-cltic and ncoustic 
fields and their combinations on the fillralion of pH 10 rutile suspen­
sions of concentration 0.1% v/v. (Electric fu~ld strength 50 V cm- 1

• 

acoustic frequency 23kHz.) 

- : ,i ·· ... ' . . ' ' . f .. ' ' ' •': 

. ·I I . 
•• ·.• j I • 
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Table I 

Effect or electric and acoustic fields on the rate of liltration, and porosity, of 0.1% vfv rutile suspensions at 6.p== 75 kPa 

Kl X 10-6 m6s-' Porosity 

pH4 pit 6 

Number of fields 13 10 
Acoustic field (23kHz) 14 20 
Electric field (50 V cm -I} 4 3 
Electric and acoustic fields (SO V cm- 1, 23 k Hz) 0.4 2 

as the pH moves closer to the iso-electric point (IEP), 
there is ·an effect of ultrasound on cake porosity. The 
electric field causes formation of a more open cake 
structure at all pH values, and combining the fields 
causes the cake to become less porous. At low'pH, with 
no added fields, a higher porosity is expected due to the 
particle aggregation; unlike in the work of Kowalska 
et al. [6,7], the porosity data here suggest that the 
ultrasound intensity used in the filter is not great enough 
to disperse all of the aggregates. 

6. Conductivit}' effects 

Results from irradiating solutions of various initial 
conductivities are shown in Figs. 3 and 4 and indicate 
that the electrolyte solution conductivity increases from 
the moment the solution is subjected to ultrasonic 
irradiation. Normalizing the data with the initial conduc­
tivity of the solution gives an indication of the magnitude 
of the conductivity change with the largest changes 
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Fig. 3. Eff~ct of periodic ultrasonic irradiu.tion on HCI solutions of 
differenl initial conductivity {and pH). Ultrasonic irradiation was 
during the periods 0-30,0 s, 600-900 s and 1200-1500 s. 

pH 8 pH 10 pH 4 pll 6 pH 8 pHIO 

51 56 0.68 0.58 0.59 0.62 
40 62 0.69 0.61 0.7J 0.67 

2 0.9 0.77 0.81 0.76 0.74 
2 0.8 0.69 0.76 0.75 0.66 
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Fig. 4. Effect of periodic ultrasonic irradiation on NaOH solutions of 
different initial eonductivity and pH. Ultrasonic irradiation periods as 
in Fig. 3. 

being shown for solutions with low initial conductivities 
(o-0 ), irrespective of whether the solution is acidic or 
basic. The temperature increase over the period of each 
experiment was 4°C. As an approximation, the increase 
in conductivity due to temperature is 2% per°C; thus, 
an increase of 8% is likely over the duration of the 
experiment. For u0 > 50 pS, the magnitude of the change 
is small (below IO% increase in a). At lower initial 
conductivities, the increase is much greater than 8% 
during ultrasonic exposure, but when irradiation is 
ceased. the conductivity f;,11ls back to levels close to u0 , 

and there is generally less than an 8% increase from the 
original value. Therefore, the conductivity increase is 
not, in this case. due solely to :.1n increase in tempenuure 
of the solution. 

Fig. 5 shows the results of the similar experiments 
using a 0.1% v/v rutile suspension dispersed by MIPA. 
The initial conductivity was altered in the same way as 
in the previous experiments. Increases in conductivity 
are around 40% for u0 between 15 and 20 JtS, which can 
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Fig. S. Effect of periodic ultra~unic irradiation on 0.1% yjv_ rutile sus­
pensions of different initial conductivity (and pH), pH altered with 
HCJ or NaOH. Ultrasonic irradiation as in Fig. 3. 

be compared with 50-70% for HCl solutions and 20-
30% for NaOH solutions. 

The variation of the conductivity increase with initial 
conductivity is shown on Fig. 6 for all suspensions 
investigated. At higher ionic strengths, the double layer 
is compressed, and the percentage increase in conductiv­
ity is smallest. Compression of the double layer restricts 
movement of the diffuse cloud, and the particle and 
diffuse layer oscillate together. At low conductivities, 
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fig. 6. Relationship between in ilia! conductivity of a suspension and 
the maximum conductivity incrcl!se shown by that suspension when it 
is irradiated using a 23kHz acou~tic field. 
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Fig. 7. Effect or electric and acoustic field combinations 011 the fi\tra· 
tion of pH 4 rutile suspensions of concentration 0.1% v/v. (Electric 
field strength 50 V cm~ 1 , acoustic frequency 23kHz.). 

ultrasound is seen to increase the apparent conductivity 
approximately the same amount as for electrolyte solu­
tions. This is because the diffuse layer is large and easily 
distorted, and there is relative motion between the 
particle and the layer. Cataldo [4] explained the increase 
in conductivity of electrolyte solutions by calculating 
the maximum temperatures and pressures inside bubbles 
at the point of collapse. This 'hot spot' theory based on 
the collapse of cavitation bubbles provides a possible 
explanation of the conductivity effects. 

The apparent synergy between electrical and acoustic 
fields to enhance filtration tends to appear at lower 
(Fig. 7) and, to a lesser extent, higher pH values. It 
seems likely that the synergism is due to two main 
factors. Closer to the IEP, ultrasound causes some of 
the aggregates to disperse, reducing the effective particle 
size and increasing the electrophoretic mobility of the 
particles in the electric field. Far from the IEP, the 
particles are well dispersed, the double layer is com­
pressed, the particles and diffuse layer oscillate together 
in the ultrasonic field, and the particles and diffuse layer 
migrate together in the electric field . 

7. Conclusion 

Assisting filtration by the application of electrical or 
acoustic fields leads to the production of 3: more open 
cake, with a higher porosity and lower specific cake 
resistance. The rate of filtration is reduced by sole 
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application of acoustic fields but is considerably 
increased when combined fields are used. Application 
of an acoustic field has been shown to significantly 
increase the measured conductivity of electrolytic and 
rutile suspensions. Ultrasound thus enhances the effect 
of an applied electric field close to the isoelectric point 
of the suspension by reducing the effective particle size 
and increasing electrophoretic velocities. 
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CLARIFYING FILTRATION OF FINE PARTICLE 
SUSPENSIONS AIDED BY ELECTRICAL AND 

ACOUSTIC FIELDS 
R. J. WAKEMAN {Ff.I.LOW) and M. C. SMYTHE (ASSOCIATE MEMBER) 

Deporlmelll of Chemical Engineering, Umghborough University. Loughborough, UX 

A n experimental rig has been developed to study the effects of electric and acoustic 
fields on constant pressure filtration. The fi1ter is designed with the medium support 
acting as a cathode, and with a variable height anode located in the feed suspension 

inducing an electric field normal to the filter medium. A flat plate ultrasonic transducer 
attached to the side of the filter applied ultrasonic energy tangentially to the medium. Electric 
and acoustic fields, suspension characteristics and process parameters can all be varied 
independently. 

Experimental results demonstrate that acoustic fields have little or no effect on the 
dewaterlng of suspensions of concentrations higher than I% by volume. Changes in 
the conductivity induced by ultrasonic irradiation are pH dependent and may affect the 
suspension such that application of an electrical field is enhanced. Electric fields enhance 
filtration rates but form filter cakes with higher porosities. The power consumed by the 
ultrasonic field is large; the power consumed by the electric field is much smaller and is 
more effective at improving filtration characteristics. 

Keywords: electroacoustic; ultrasound; electricity; filtration; dewatering; colloids 

INTRODUCTION 

Assisted separations have become more important in 
recent years as the demand for higher puriry products 
has increased. In terms of the filtration of finer particle 
suspensions., the production of a drier cake can lead to a 
more economical process when compared with the energy 
costs of thermal drying and there are advantages if the 
batch time for cake formation can be shortened. Improve­
ments to the filtration process have been demonstrated 
by the exploitation of phenomena such as electrokinetic, 
acoustic, magnetic and centrifugal forces (Muralidhara1

). A 
combined fields approach enables limitations to the degree 

----·--of_ separation, purity and yield imposed by conventional 
filtr.ttion to be overcome. Electroacoustic dewatering (EAD) 
has been used as a means of dewatering sludges, producing 
a higher solids content than attainable using electric. 
or acoustic fields separately (Muralidhara et al. 2). This 
technology has been extended to crossftow microfiltration 
(Wakeman and Tarleton3

). 

The use of electric fields to improve separations has 
been studied little in depth until recently by, for example. 
Moulik et a/. 4

, Moulikj, Yukawa et aJ.fo·1 and Wakeman11 • 

The processes require continuous application of electric 
fields and as such are energy intensive. SlectrotiJtration ha.'\ 
not been widely exploited, but receflt advances in elec­
trode materials have enabled the technology to be used to 
improve filtrate flux, and as an alternative to backwashing 
as a method of membrane cleaning. 

Ultrasonics has been shown by many authors to be a 

125 

potentially economical means of removing water from 
products to relatively low levels (Kowalska el al.'~·w), and 
to decrease fouling of membran~s (Tarleton 11 

). Research 
to date largely implies that ultrasound is a potential aid to 
cake deliquoring rather than a filtration technique, but 
whichever it may be it is important to understand how the 
mechanisms associated with ultrasound affect the suspen­
sion characteristics. However. it may be that the ultrasonic 
energy can provide an additional driving force, in a similar 
way to an electric field, during either cake formation or 
cake deliquoring operations. That is, ultrasound may act 
to aid filtration, and by facilitating a more open cake may 
improve mass transfer through the filter medium. 

Electric fields can be generated in an electrolytic sus­
pension by the application of an ultrasonic field. Ultrasonic 
vibration potentials are produced when ultrasonic waves 
are propagated through ionic media, and can be ionic or 
colloidal. Ionic vibration potentials (IVP) occur as a result 
of sound waves passing through an electrolytic solution 
generating relative motion between the ions and the liquid. 
The differences in amplitudes and phases of the displace­
ment of anions and cations result in a potential of the 
order of lOp. V (Yeager et al. 12

). The magnitude of lhil' 
motion depends on the particle and suspending liquid 
density differences, particJe ~ize and shape. and the sound 
wave frequency (Heuter and Bolt 13

). The colloidal vibration 
potential (CVP) is a similar effect with the fields arising 
from the diffuse layer around the colloidal particles. The 
potentials arising in this way are greater than for IVP. As 
a result of this relative motion of the panicles and the 
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diffuse layer, the ionic atmosphere around the colloidal 
particle diswrts, resulting in a displacement of the centre 
of charge away from that of the particle (in the same ~ay 
as the electrophoretic relaxation effect). Each parttcle 
generates an alternating electric field, and an overalJ effect 
occurs in the form of a macroscopic electric field, alter~ 
nating at the frequency of the sound wave (O'Brien 14

). 1}le 
field generated is dependent on the same suspensJOn 
parameters as the magnitude of the particle-liquid displace­
ment, and also the geometry and type of ultrasonic device. 

This idea of sound waves generating electric fields was 
first noted by Debye 15

• Calculation of these vibration poten­
tials has been limited to the dilute case (Enderby 16

; Booth 
and Enderby 17) until recently. Electroacoustic effects in 
suspensions of arbitrary concentration can be calculated, 
provided the particles are small compared with the sound 
wavelength (O'Brien 14

•18). Equations describing micro­
scopic variations in ion density, electrical potential, velocity 
and pressure are used as a starting point to produce a set 
of ma'croscopic equations linking the electrical field gene­
rated by a sound wave, and conversely the sound wa~es 
generated by an electric field. The effect of a~tematmg 
electric fields producing an ultrasonic wave was d1scovercd 
by Cannon et aJ. 19

• O'Brien and White20 and Sherwood21 

gave the initial detailed mathematical derivations. which 
are solved for a dilute suspension 14 and for arbitrary 
concentrations 18

• 

This paper describes the results from an experimental 
programme that was carried out to determine the effects 
of using electrical and ultrasonic force fields, either alone 
or in combination, on cake formation in deadend filters. 

EXPERIMENTAL PROCEDURES 

The experimental programme consisted mainly of filtra­
tion experiments, using aqueous rutile suspensions as the 
test material. The suspension was characterized by mea­
suring the particle size, zeta potential and conductivity 
variations with pH. The particle size was determined using 
a Malvern Mastersizer and the zeta potential using a 
Malvern Zetamaster. The conductivity was monitored using 
a WPA portable conductivity meter, together with an epoxy 
resin conductivity probe. 

The test suspension was prepared by dispersing rutite 
in a solution of 0.15% by weight (based on the mass of 
Ti02) monoisopropanolamine (MIPA) in deionized (DI) 
water. The suspension was homogenized with a high shear 
mixer for 8 minutes at 2000 rpm and a Malvern Master­
sizer was used to ensure a mean particle size of 0.3J,A.m. 

--The stock suspension was made up at 50% (w/w) of Ti02 
as this concentration was found to give the best and most 
reproducible dispersion. 

Filtration Experiments 

An experimental filter cell was designed and built, based 
on a conventional dead end vacuum filter (Figure I); the 
filter had a diameter of 89 mm and was located in a perspex, 
cylindrical housing. In these experiments the filter medium 
suppon acted as a cathode, and any cake that fo~ed 
did so on the medium but below the anode. A vanable 
position anode was suspended parall~l to the sup~rt, and 
the separation distance could be vaned. The electnc field 

Ultrasonic 
transducer 
plate 

Feed 

Filtrate 

Figure 1. Filter cell schematic. 

was thus applied normal to the filter surface. An ultrasonic 
transducer was attached to one side of the filter cell and 
ultrasonic energy applied tangentially to the filter surface. 
A stabilized d.c. power supply (Sorensen model DCR 
150-12B) provided an electric field gradient between the 
electrodes and the ultrasonic energy was provided by a 
Telsonic NSM 220 supply. The d.c. power supply allowed 
application of a constant, stabilized. voltage across th_e 
electrodes. The field gradient was vaned from one expen­
ment to the next by altering the separation distance between 
the electrodes or by applying a different vohage. The 
ultrasonic transducer position could not be altered and 
the frequency was fixed at 23 l<Hz (the power input to the 
transducers was 3 Wcm-2

). The transducer plate had a 
contact area with the suspension of 91.68cm2

• In the 
filtration experiments, Sartorious cellulose nitrate mem­
branes with a pore size rating of 0.2 p.m were used. These 
membranes have been extensively characterized pre­
viously (Tarleton and Wakeman22; Wakeman23), and show 
a negative zeta potential for 2<pH< 12 with a measured 
mean (flow) pore size of 0.51 p.m and a thickness of 
130 pm. A new membrane was used for each filtratio.n test. 

The experimental flow circuit (Figure 2) compnsed a 
feed reservoir with recirculation pump to ensure the feed 
remained completely mixed during the CQurse of an experi­
ment. The feed flowed into the filter cell, and the pressure 

recirculation 
pump 

,·. 

Figure 2, Flowsheet of the experimental apparatus. 

vacuum 
pump 
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drop across the cell was monitored by pressure transducers. 
A host computer controlled the vacuum held in the filtrate 
tank: in order to control the pressure difference across the 
filter. Experiments were carried out at constant vacuum. The 
pressure drop across the cell was recorded and the filtrate 
volume collected was measured at different filtration times. 

Before commencing a filtration experiment a test sus­
pension was made to a known concentration hy dilution of 
the stock suspension described above with double distilled 
water. The suspension was re-circulated around the flow 
circuit until a homogenous mixture was achieved. The pH 
of the resulting suspension was monitored, and if nece­
ssary altered to the desired value using dilute HCI or NaOH. 
A sample of the suspension was then taken for particle 
size analysis. The initial conductivity and temperature was 
noted. At commencement of the experiment, the feed cell 
valve was C'pened, and the suspension allowed to fill the 
filter cell. At this point the fields required for the particular 
test were switched on, such that lhe suspension w<!s under 
the influence of the fields for the entire duration of the 

experiment. 

Measurement of Ultrasonic Effects on 
Solution Conductivity 

The basic rig was also used as a vessel to carry out 
experiments on the effects of ultrasonic energy on the 
conductivity of rutile suspensions, to investigate the 
mechanisms that may explain the effects of the acoustic 
field. The experiment<ll method is based on eurlier works 
(Cataldo~4·~~) for measuring changes in the conduclivity 
of halide salts. To measure the effect on the suspension 
under the same conditions as the filtration experiments. 
the filter cell was filled with test suspension and the initial 
pH and conductivity measured. The conductivity was mea­
sured as a function of time with the ultmsonic field being 
turned on and off at 5 minute intervals. Measurements were 
taken at 15 second intervals for the first minute of each 
period, and every 30 seconds thereafter for each •on· or •off 
period. This cycle was repeated 3 times in each experiment. 
The bulk temperature was monitored to assess whether 
any changes in conductivity were due to the temperature 
increase due to energy input. Investigations were carried 
out using DJ water, with HCJ or NaOH added to alter the 
initial conductivity. Further tests using rutile suspensions 
were carried out to evaluate effects of the presence of 

··----·sUspended particles. 

RESULTS AND DISCUSSION 

Measurements of the zeta potential showed an iso­
electric point (IEP) in the vkinity of pH = 3.3. Around this 
pH the particles agglomerated and the mean particle size 
was larger than at higher pH value.'i (Figure 3). At pH >6 the 
suspension was well dispersed, and the mean particle size 
was 0.3 p.m. At the lEP the mean particle size was between 
2 and 3 p.m, and the suspension settled rapidly. The zeta 
potential of suspended particles has a Jarge effect on the 
success of electrotiltration (Wakeman2

f!); where the magni­
tude of zeta potential is large the particles have greater 
electrophoretic mobilities than those close to the IEP. and 
a greater response is obtained from the panicles when an 
electric field is superimposed across the suspension. 
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Fi,~tm• 3. Particle si1.e and zcta potential variations with pH for the ruti!e 
used in the experimental programme. 

Electrofiltration Experiments 

Typical filtrate volume versus filrr.ation time curves 
measured for deadend filtration of 0.1% v/v rutile suspen­
sions, pH 8, under various applied electric field ~rrength.'i 
are shown on Figure 4. It is clear that the overall rate of 
filtration increases us the electric field gradient is increased. 
lt can also be seen that as the electric field strength is 
increused the rate of decline in filtrate flux is reduced. This 
reduced decline in flux is a result of reduced cake formation 
due to electrophoresis, an effect that has been previously 
observed by Moulik et a/.4 and Wakeman2

fl. It has been 
shown6 that there exists a critical voltage gradient at which 
point the induced electrophoretic velocity. t',., is equal to the 
local fluid velocity, v, and suspended particles become 
stationary. assuming zero slip between the liquid and the 
su.spended solids. This critical voltage gradient, EcR. is 
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Figuu .J. The t:ffecl of increasing electric field snength on the filtration 
of 0.1% v/v rutile suspensions at pH 8. 
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given by: 

E _ 31'v 
CR- 2e

0
Dt (I) 

where J.l., D, e0 and r are the viscosity and dielectric 
constant of the fluid, pennittivity of a vacuum and the 
zeta potential, respectively. On Figure 4, the initial filtrate 
flux is of the order 0.004 ms- 1: to avoid deposition 
allogether, equation (I) suggests that a critical field of 
about 1.8 kV cm-' would need to be applied. As the applied 
fields are well below this value some cake formation or 
suspension thickening is to be expected and is responsible 
for the fall in filtrate flux. As the flux falls, so an equilibrium 
condition is approached where the cake or suspension 
thickness becomes constant-for the 60 V cm-1 data shown 
on Figure 4 this would occur when the filtrate flux had 
dropped to 0.00013ms-•. From similar data at pHs 4 and 
10 the corresponding initial fluxes are about 0.009 and 
0.003 ms- 1, indicating critical fields of 10 and 1.4 kV cm- 1 

respectively. 
Experimental results obtained by filtering suspensions 

of the same feed concentration but different pHs show 
that the applied field enhances the rate of filtration by an 
extent dependent on the zeta potential: at a higher zeta 
potential there is more enhancement of the rate of filtration, 
with larger volumes of filtrate being produced in any 
given time. Also, there is a smaller decline of filtrate flux 
when the zeta potential is greater. These phenomena have 
been observed is crossflow filtration studies (Wakeman and 
Tarleton27

; Wakeman and Sabri28
; Akay and Wakeman29

•
30

; 

Wakeman23) and are now well established effects of electric 
fields on filtration. 

Acoustic Effects on Filtration 

Woodside etlll. :u measured the magnitude and direction 
of the ultrasonic radiation forces acting on individual 
polystyrene latex particles in a standing wave field using 
a microscope based imaging system. They showed that the 
axial primary radiation force varied sinusoidally with axial 
position and the local acoustic energy density, and the 
magnitude of the transverse primary force was about lOO­
fold weaker than the axial force. Attenuation of sound in 
suspensions of particles has been well documented, together 
with the effect of concentration and the dependence of the 
attenuation coefficient on volume concentration (Harker 
and Temple32

). Wakeman and Tarleton3 showed that a 
23kHz sound field attenuated over increasingly shorter 
distances as the feed suspension concentration in a cross­
flow microfilter was increased and observed a total loss 

--of any- effect of ultrasound for concentration >4% v/v. 
In the experimental filter cell, the ultrasonic transducer 

was orientated so that the primary radiation force was 
tangential to the filtering surface. The transducer surface 
was arranged so that the sound field irradiated the volume 
of solid/liquid mixture (whether this be a filter cake or a 
suspension lying above the cake) up to about IOcm above 
the filter medium. Thus any particles depositing onto the 
surfaces of the medium or formed cake had experienced 
the sonic radiation force. Whilst the particle existed in the 
suspension it experienced a velocity parallel to the filtering 
surface induced by the sound field, but as the suspension 
thickened (during the cake formation process) the sound 

field had a decreasing effect on the motion of the 
particles. Wakeman and Bailey33 showed that the velocity 
of a 1 JLm particle in a low concentration suspension was 
about 12ms-1 at the surface of a 20kHz transducer and 
was about 2 ms- 1 at a distance of IOcm from the surface. 
The finer particles used in this work could be expected to 
have a similar or greater velocity close to the transducer 
when they were in the feed suspension. Their crossflow 
motion at the surface of the forming cake would act in 
similar way to the suspension flowing through a crossflow 
micro filter in so far as it will slow the rate of cake growth 
(Wakeman34

), but unlike a crossflow filter the cake thick­
ness will not be limited. The cake thickness will be 
determined by the balance between the drag and hydraulic 
forces acting on the particles. Whereas the trajectory of 
the particles is affected by the sound field, there is com­
paratively little direct effect of the radiation pressure on 
the direction of motion of the liquid. 

It has been shown that the primary radiation force, Fz, 
acting on a particle in the z direction can be represented 
by33: 

F, =A cos(Bz) (2) 

where A and B are dependent on the wave number, the 
particle size, the acoustic energy density and the acoustic 
contrast factor. In the case of neutrally buoyant or very 
small particles, A and B are known from radiation field 
theories that consider the acoustic energy density and the 
time-averaged potential and kinetic energy densities of the 
incident field (see for example, Yosioka and Kawasima34

, 

Woodside et a/. 31
). The extent of the influence of the sound 

field on particle motions in this work are quite different 
for four main reasons: 

(i) When the particles close to the transducer have a 
velocity imparted to them by displacement of the trans­
ducer, they move away from the transducer surface 
primarily in the axial direction. If the fluid were displaced 
axially by the tmnsducer as a •plug', then the particle 
velocity relative to the fluid would be zero. (During the 
reverse part of the cycle of the transducer displacement 
fluid is dragged into the zone immediately in front of the 
transducer surface, which imparts a retarding drag force on 
any particle still close to the surface.) However, in reality 
the fluid also has a transverse motion component across 
the transducer surface; this also creates a relative velocity 
between the fluid and particle in the axial direction, which 
leads to a retarding drag force acting on the particle. 
(~i) At distances farther from the transducer surface 

localized recirculation currents are set up that slow the 
particles. 
(iii) The particles have a density significantly greater 
than the liquid, so they will not accumulate close to the 
node points (if they exist within the filter) in the sound 
wave in the fluid. Once a particle has acquired its velocity, 
it will decelerate as it approaches the node but its momen­
tum will carry it through the node. 
(iv) The geometry of the filter cell confines the sus­
pension and the sound field, causing recirculation of the 
particles (and to some extent of the fluid displaced by 
the flowing particles) in the volume above the forming 
filter cake. 

Typical filtrate volume versus filtration time curves 
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Figure .5. The effect of feed concentration and of the application of a 13kHz. 
acoustic field on the filtration ofO.I% v/v Mile suspensions at pH 8. (The 
open symbols are data measured without <Ln acoustic field, and the filled 
symbols are when an acoustic field is applied.) 

measured for deadend filtration of pH 8 rutile suspensions 
of various volume concentrations under an applied acoustic 
field are shown on Figure 5, and compared with curves 
measured for filtration of the same suspensions in the 
absence of ultrasound. The sound field reduces the rate of 
filtration. The overall rate of filtration increases as the 
concentration decreases, with or without the sound field. 
The difference between the filtration curves (comparing 
those measured with sound to those without) also increases 
as the feed suspension concentration decreases, appa­
rently due to the increased attenuation of sound as the 
proportion of solids in the feed is increased. At 5% v/v 
solids the effect of the ultrasound has disappeared, which 
is in precise agreement with the results obtained in a 
crossHow microfilcer1• The underlying mechanism leading 
to this result is considered to be the sonically induced 
velocity imparted to the particles tangential to the filtering 
surface reducing their tendency to form a cake, but when 
they do so the particles pack to a higher density leading to 
a lower penneability cake (this is the mechanism observed 
previously in crossHow microfi1tration34

). This result is 
likely to be specific to the orientation of the sound field: 
if the field were normal to the filtering surface it is unlikely 
that a"ny effects of the ultrasound would be observable, 
unless the feed were flocculated. In the case of a poly­
electrolyte flocculated feed it has been shown that the 
specific resistance of the cake is increased and its the final 
moisture is reduced (Kowalska el al. 36

). However, in cases 
of polyelectrolyte flocculation the bulk volume of the filter 
cake is increased by Hoc fonnation, which is broken down 
by ultrasound. Such is not the case in the experiments in 
this work; although there is aggregation closer to the IEP, 
the size of the aggregates is rather smaller than would be 
expected if polyelectrolytes were used so little change in 
specific resistance caused by the sound field would be 
expected in the results reported here. 
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Electroacoustic Filtration 

The effect of the application of combinations of electrical 
and acoustic fields on the filtration of 0.1% v/v rutile 
suspensions at pH 4, 8 and 10 is shown on Figures 6, 7 and 8 
respectively. On Figures 6 and 7 the data are plotted as 
filtrate volume (V) versus filtration time (t), and on Figure 8 
as t/V versus V. Figures 6 and 7 both indicate that use of the 
acoustic field with conventional filtration actually reduces 
the filtration rate slightly, whilst use of an electric field 
increases the filtration rate. When the electrical and acous­
tic fields are applied simultaneously, at pH 4 a substantial 
increase in flux is observed above that obtained with the 
electric field alone, as though there is a synergy working 
between the two force fields. At pH 8. the flux increase 
using the combined acoustic and electrical fields is much 
smaller. The reasons for this observed phenomenon could 
be several and are further investigated and discussed in 
the next section of this paper. 

The form of plot on Figure 8 follows that often used 
to report conventionnl filtration data, from which an effec­
tive specific cnke resistance can be calculated. Following 
the simplifications used by Yukawa et a/.6 and Wakeman~6 

to derive a relationship for electrofiltration, a similar equa­
tion can be formed to include the effects of ultmsound. The 
result of modifying the classical filtration equation based 
on Darcy's law is simply expressed as: 

..'!:. = p.ac'V + p.R (J) 
dV A2Ap AAp 

where c• is the effective concentration of the feed sus­
pension. In these experiments, the electrical and/or acoustic 
forces change the effective concentration of the suspension 
that actually forms the filter cake so that it is different from 
that which obtains in the slurry feed (as do gravitational 
effects in a conventional filtration of coarser particles 
onto upwards or downwards facing filter media). The 
pressure across the filter. ll.p, is given by the sum of the 
pressure differences across the cake and the medium; this 
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figurt' 6. Effect of etectric ami acoustic lield combinations on the liltratiun 
or pH 4 rutile su~pensions or concemmti()n 0.1% v/v. (Eieclric lleld strength 
50Vcm-•. acoustic frequency 23kHz.) 
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Figure 7. Effect of electric and acoustic .field combinations on the filtration 
of pH 8 rutile suspensions of concentr.llion 0.1% vlv. (Electric field strength 
50Vcm-•, acoustic frequency 23kHz.) 

includes contributions from the hydraulic (p11). electro­
osmolic (pr) and acoustic (Pul pressures, that is: 

Ap = Ap, + Ap, + Ap, (4) 

The electroosmotic pressure difference arises from elcctro­
osmotic flow of liquid through the filter mcdi'um and any 
cake or thickened suspension that is formed; assuming this 
and the acoustic pressure difference are small compared 
with the hydraulic pressure difference derived from the 
vacuum. l:J.p is constant to a first approximation and equation 
(3) can be integrated at constant pressure difference to give: 

"• • 
ii 

I ' R _ = ac I' V+-.!:_= K V+ K, (5) 
V ZA'Ap AAp I -
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of concentration 0.1% vlv. (Electric field strength 50V<:m··•, acou.~tic 
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A conventional tN versus V plot of the data should there­
fore yield a straight line with gradient K1 and intercept K2. 
Table I gives values for the gradient, K1, of the data shown 
on Figures 6, 7 and 8; since Kt is directly proportional to the 
product (o:c"), which may both vary with the applied 
fields, it provides an insight into how this parameter varies 
with the applied fields. The data in Table I show that whilst 
the application of fields to assist filtration does have an 
effect, the field combinations act differently at the pHs 
studied . 

The porosity of the filter cakes formed is difficult to 
measure in situ and it is recognized that a porosity measured 
gravimetrically on the cake after formation may not be the 
same as that in the forming cake~ nonetheless, a porosity 
measured at the end of filtration does give an indication 
as to whether different cake structures are likely to have 
developed. The porosities of the filter cakes fonned are 
shown in Table 2. These data generally indicate that a cake 
fonned in an acoustic field from better dispersed (higher 
pH) suspensions is more porous that one formed without 
any added fields, but as the pH moves closer to the IEP there 
is effect of ultrasound on cake porosity. The electric field 
causes formation of a more open cake structure at alt pH 
values, and then combining the fields causes the cake to 
become less porous. At low pH, with no added fields, a 
higher porosity would be expected due to the particle 
aggregation; unlike in the work of Kowalska et a/.9.w.J6 

where polyelectrolyte flocculation was used. the porosity 
data here suggests that the ultrasound intensity used in 
the filter is not great enough to disperse the aggregates. 

Figure 6 shows that there is no practical change in the 
filtrate Oux when an acoustic field is applied, but that an 
electric field causes a considerable increase. A particularly 
curious result occurs when both electric and ultrasonic 
fields ure applied simultaneously, as there appear to be 
considerable synergy between the two fields leading to a 
marked increase in flux. Such a synergy has been reported 
previously in deliquoring2 and crossflow microfiltration3 

studies, but no explanation of the phenomenon was offered. 
Comparison of Figure 7 with 6 indicates little synergy 

between the two fields at higher pH values. Suspensions 
at pH 8 are well dispersed, particle aggregation and settling 
do not occur and the large magnitude of zeta potential 
coupled with a lower critical field strength (relative to the 
applied field) means that strong electrokinetic effects are 
expected to be observed in both Figures 6 and 7. This is 
also reflected by the lower Kt values in Table I when an 
electric field is applied. However, the same synergy is not 
observed between the two added fields on Figure 7. The data 
on Figure 8 at pH 10 also show little synergy between the 

TubfC' I. The effect of electric and acoustic fidds on the rate of filtration of 
11.1% vlv rutile suspensions at Ap = 75 kPa. 

No fields 
Acoustic field (23kHz) 
Electric field (:'iOVcm- 1

) 

Electric and acoustic fields 
(50 Vcm·•. 23 I.:Hz) 

pH4 

13 
14 
4 
0.4 

pH6 

10 
20 
3 
2 

pH8 pH 10 

51 56 
40 62 

2 0.9 
2 O.K 
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Table 2. The effect of electric and acoustic fields on the porosity of cake~; 
fonned by filtration of 0.1% v/v rutile suspensions at dp = 75 kPa. 

Cake porosity 

pH4 pH6 pH8 pH 10 

No fields 0.68 0.58 0.59 0.62 
Acoustic field (23kHz) 0.69 0.61 0.71 0.67 
Electric field (50 Vcm~ 1 1 0.77 0.81 0.76 0.74 
Electric and acoustic fields 0.69 0.75 0.66 
(50Vcm-1, 23kHz) 

simultaneously applied fields. At pH 6, there was more 
synergy than at pHs 8 and 10 but not as much as at pH 4. The 
respective values of K 1 in Table I are indicative of this 
trend. 

Taking into account previous work26 it is reasonable to 
a'i.-;ume from Table J rha:t the electric field reduced the 
specific resistance of the fi!ter, due to induced electropho­
retic velocities of the particles towards the anode together 
with electroosmotic How through the membrane and any 
filter cake that has been formed. At pH 4 the acoustic field 
further reduced the specific resistance. A further variable 
requiring investigation is the different conductivities of 
the feed suspensions; at pH 4, 6, 8 and 10 these were 40, 
15, 18 and 70~S respectively. The data on Table I from 
the filtration experiments suggest that combinations of 
electrical and acoustic fields have a greater effect where 
the suspension condw;:tiv~ty is highest; this is further 
investigated below. 

Energy Consumption 

Energy consumption in separation processes must 
always be considered when taking a practical viewpoint; 
the consumptions corresponding to the experiments repor~ 
ted in Table 1 are shown in Table 3. Because oft he diflCring 
filmue Oow rates obtained under different conditions, for 

comparative purposes it is most appropriate to look at 
specific energy consumption figures. These show that least 
energy is consumed by a conventional filtration (that is, 
by the pump) at all pH values; the addition of either field 
increases the energy consumed, with far and away the 
greatest amount taken by the ultrasonic field. 

In making these comparisons, the increased filtrate 
rates also need to be considered as this affects either the 
time to accomplish the filtration of a given volume of 
suspension or the size of equipment required to achieve 
the separation. The corresponding How rate data after 600 s 
of filtration are given in Table 4. The increased flux as a 
result of adding the fields is apparent, but also the data 
indicate that the electric field is more effective at increas~ 
ing the flux than is the acoustic field. In some applica­
tions it may be acceptable to consider using the electric 
field as a way of shortening the filtration time, albeit with 
the penalty of an increased energy consumption. But for 
industrial use it is unlikeJy that ullrasound would be con­
templated to increase filtration rates, with or without an 
electric field, as the penalty in higher energy consumption 
is likely to be always too high. 

THE ELECTRO-ACOUSTIC SYNERGISM 

The apparent synergy (see Table 4 and Figure 6, for 
example) between electrical and acoustic fields to enhance 
filtration requires explanaHon, particularly as it tends to 
show itself at lower, and to a lesser extent at higher, pH 
values. The literature indicates that conductivity changes 
of irradiated aqueOus solutions are primarily due to the 
acoustic pressure inducing changes in the solvent visco­
sity, thermal effects due to the adiabatic compression­
expansion cycle and the bulk compressibility of the medium 
(Jossinet et al. 37

). A decrease in the viscosity of a solution 
as it increases in temperature causes an increase in the 
ionic mobility. Ionic mobiHties of electrolytes and parti­
cles are typically of the same order. so the electrolyte 
contribution is only significant if the electrolyte mass is 

Table 3. Power consumption data for the experiments reported in TaOl~ I; to provide comp:~rable liguw,.; fhe liltrute mtes after 600s of fi)lration are used 
in data. 

No fields 
AcouMic field (23kHz) 
Electric field (50Vcm- 1 ) 

-- Electric and acoustic fields 
1,50Vcm·1 • 23\r:.Hr.) 

Nolields 
Acoustic lield (2J kH1.) 
Ekctric field (50Vcm- 1 ) 

Electric and acoustic fields 
(50Vcm·· 1, 23kHz) 

pH4 

0.8+0+0=0.8 
0.8 + 275 + 0 = 275.8 
1.3+0+3.2=4.5 
2.5 + 275 + 5.4 = 282.9 

Power consumption. W 

pH6 

0.9+0+0=0.9 
0.6 + 275 + 0 = 275.6 
0.8+0+5.5=6.3 
0.9 + 275 + 4.1 = 280 

pHS 

0.3+0+0=0.3 
0.2 + 275 + 0 = 275.2 
0.9 + 0 + 3.5 = 4.4 
0.8 + 275 + 2.5 l::. 278.3 

The data above show th~ contributions from ~ach source of power consumption a~: 
(Pump energy+ ultrasonic field+ electric field) 

pHIO 

0.2+0+0=0.2 
(1.3 + 275 + 0 = 275.3 
0.9 + 0 + 4.4 = 5.3 
1.3 + 275 + 2.5 = 27!Ut 

Power per unit volume of filtrate pet unit area of filter, W/(m-1 m·l) 
Specific energy consumption, kWh m--1 

0.8 
281 
2 .• 

89.5 

pH4 

0.02 
7 .. ~ 

0.08 
2.4 

pH6 

0.8 
372 
4.7 

177 

0.02 0.6 
10.0 834 
0.13 2.7 
4.7 t99 

pH8 pH 10 

0.02 0.6 0.02 
22.3 626 t6.K 
0.08 3.3 0.{)1,1 

4.7 125 3.3 
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Table 4. The filtrate flu:t averaged over the first 600s of filtration for 
the experiments in Table I. 

Average flux of filtrate up to 600s, 
m' m-2 h- 1 

pH4 pH6 pH8 pH 10 

No fields 5.88 6.72 2.94 1.98 
Acoustic field (23kHz) 5.88 4.44 1.98 2.64 
Electric field (50 V cm-•) 9.48 8.10 8.40 9.78 
Electric and acoustic fields 18.96 9.48 9.60 13.38 
(50Vcm-•, 23kHz) 

comparable to the particle mass, thus in most cases the 
particles provide the dominant electroacoustic effect 1

R. 

Results from irradiating solutions of various initial 
conductivities are shown in Figures 9 and 10 and indicate 
that the conductivity of electrolyte solutions increases the 
moment the solution is subjected to ultrasonic irradiation. 
The initial conductivity of the solution gives an indica­
tion of the magnitude of the conductivity change with the 
largest changes being shown for solutions with low initial 
conductivities (u0}, irrespective of whether the solution is 
acidic or basic. For u0 >50 JlS, the magnitude of the change 
is small (below 10% increase in a). The temperature 
increase over the period of each experiment was 4°C. As an 
approximation an increase in conductivity due to tempera­
ture causes a 2% increase per °C, thus an increase of 8% is 
likely over the duration of the experiment; this is shown 
in the figures by a broken line. While the solution is being 
irradiated the conductivity increase is much greater than 
8%. but when irradiation is ceased the conductivity falls 
back to levels close to a 0 and generally fotlows the tem­
perature base line plotted. So the conductivity increase is 
not due solely to an increase in temperature of the solution. 
Figures 9 and I 0 also show that the ionic species present 
affect the magnitude of the conductivity increase. 

Figure I I shows the results of the similar experiments 
using a 0.1% v/v suspension of rutile, dispersed using 

g 

~0~~~~~,-------.---~ 
lnilial conductivity a(ld pH 

260 

260 

87.S.,.S, pH3.8 
• 53.7,.s,pH4.1 

33.3,.Ls, pH4.2 
20.6,.s. pH4.4 

;- 240 

~ 
e 14.7,.s, pH 4.9 

••••• 
• 

'---='=·';:;"'::.· :.'"..:•:..·'~" • 
1:2.... 220 • • !i 
jj 

J 

200 F-· ••• • • 
160 

160 ~···· 
...... ...... 

r·· .... ........... .. ......... 
140 

120 .... .. .. .. ...... .. .. .. ..... ...... 

100 ~~~~-Ill filii at:! hI F::::!;. Ill 
0 200 400 600 800 1000 1200 1400 1600 1800 

Time,s 

Fixur(' IJ. Effect of periodic ullrasonic irnllliution on HCl solutions tlf 
different initial conductivity (and pH). 

g 

300~~~~~~--------~ 
Initial oonductlvlly and pH 

260 

260 

• 40.4j'S. pH 10.1 
26.0,.s. pH9.9 
18.6,.s, pH 8.5 
10.8,.s, pH 8.3 

• 7.2,.s,pH7.1 ... 240 

~ 220 ~ •••• 

• l'200 
...· .. 

• jj 

.~ 

! 
160 

160 

140 

... .. .. ........ .... ....... 
~ ... •• ~•••• I 

12oF~··· ••••• .. ••• 

100 ~· • ·? ''' r·· · -t1111 r·· it • tt 
0 200 400 600 800 1000 1200 1400 1600 1600 

Time,s 

1-'igure 10. Effect of periodic ultr-o~.sonic irradiation on NaOH solutions of 
different initial pH (and conductivity). 

MIPA. The initial conductivity was again altered with 
HCI or NaOH. The effect of ultrasound on the conductivity 
appears to be similar. Increases in conductivity here are 
around 40% for u0 between 15 and 20~tS, which can be 
comp<lred with 50 to 70% for HCl solutions and 20 to 30% 
for NaOH solutions. 

The variation of the conductivity increase with pH is 
shown on Figure 12 for rutile suspensions and NaOH 
and HCI solutions, and with initial conductivity on 
Figure 13. At higher ionic strengths the double layer is 
compressed. and the percentage increase in conductivity 
is smallest. Compression of the double layer restricts 
movement of the diffuse cloud~ and the particle arid diffuse 
layer oscillate together. At low conductivities however, 
ultrasound is seen to increase the apparent conductivity 
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Figure 12. Relationship between the pH of a suspension and the maximum 
conductivity increase shown by that suspension when it is irradiated using 
a 23kHz acoustic field. 

approximately the same amount as for electrolyte solutions. 
This is because the diffuse layer is large and easily distorted 
and there is relative motion between the particle and the 
layer. 

Cataldo24 explains the increase in conductivity of elecM 
trolyte solutions by calculating the maximum temperatures 
and pressures inside bubbles at the point of collapse. The 
temperatures and pressures calculated arc high, and the 
hot spot theory accounts for the high conductivities 
shown. The sonochemical effects of ultrasound have been 
well documented38

·
39

• The 'hot spot' theory based on the 
collapse of cavitation bubbles provides a possible expla­
nation of the conductivity effects seen. For an aqueous 
solution the maximum pressure and temperature inside the 
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the maximum conductivity increase shown by that suspension when it 
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collapsing bubble can be estimated using the following 
expressions40

: 

T = T. {P'(y- I)} 
m 0 P,, (6) 

- {P'(y- l)}(;"r) 
P.-P,. P. 

" 
(7) 

Values for Tm and P, can be calculated for pure water 
and for electrolytes. The addition of colloidal panicles to 
a solution will not significantly alter the vapour pressure, 
and values for T, and P, for an aqueous colloidal 
suspension will be similar to those for water. Addition of 
a solute, however, lowers the vapour pressure which raises 
Tm and Pm. 

Using equations (15) and (16) for the systems in 
this work suggest values of for T, and P, of 38 JOoC 
and 980 atm respectively at the point of bubble collapse. 
The equations used by Cataldo24 however are for transient 
cavitation (intensities greater than IOWcm-2

). For the 
lower intensity ultrasound used in this work stable cavi­
tation is likely to be dominant (and was observed during 
the experiments. Under these conditions, cavitation bubbles 
oscillate about an equilibrium size for a number of cycles 
and the time for which they exist is sufficiently long 
for diffusive processes to take place. If mass transfer rates 
across the gas-liquid vapour interface are unequal, the 
bubble will grow and rectified diffusion occurs. The bubble 
may grow until it becomes unstable and collapses, but 
the violence of the implosion is less as the internal gases 
act as a cushion. The maximum temperature which devel­
ops in the bubble is much lower than for transient cavita­
tion. The bubble may alternatively pass this point and 
grow until it becomes sufficiently buoyant to rise in the 
liquid, but this depends on the pressure amplitude of the 
acoustic wave. 

Figures 12 and 13 show the effect of ionic strengths 
on this conductivity change. The changes are least at high 
ionic concentrations (extremes of pH). The ultrasound 
provides energy at the low concentrations for the dissocia­
tion of water. At higher ionic concentrations, the energy 
pushes the dissociation equilibrium in the opposite direc­
tion and the conductivity remains close to its initial value. 
At low initial conductivities the observed increase in 
conductivity enhances the electrophoretic migration velo­
city of the particles in an electric field and hence increases 
effects of the electric field across the filter. 

The conductivity and the filtration characteristics mea­
sured in this work are properties of the bulk solution or 
suspension, but the preceding discussion is concerned with 
effects that arise as a result of phenomena taking place at 
or near the surface of the panicles, making it essential to 
develop a model that examines the current carried by the 
ions in the double layer. It seems likely that the synergism is 
due to two main factors. Closer to the IEP, ultrasound causes 
the aggregates to disperse, reducing the effective particle 
size and increasing the mobility of the particles in the 
electric field. The electric field by itself does not seem to 
cause break-up of the aggregates. Far from the IEP, the 
panicles are well dispersed and the double layer is com­
pressed. the particles and diffuse layer oscillate together 
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in the ultrasonic field and the particles and diffuse layer 
migrate together in the electric field. 

CONCLUSIONS 

Electrical and acoustic force fields can improve rates of 
filtration, but the extent of improvement is dependent on 
complex interactions between microscopic properties of the 
constituents of the suspension and the macroscopic forces 
applied. In some instances acoustic fields actually reduce 
filtration mtes. The experimental result.'i show: 

(j) Acoustic fields have little effect on filtration rates 
close to the suspension isoelcctric point, produce a minor 
improvement in fiilration rate at high pH, but have a 
deleterious effect at intermediate pHs. 

(ii) Electric fields enhance filtration rates, apparently 
by reducing the cake specific resistance; the extent of 
enhancement varies with the magnitude of the field applied. 
(iii) AbOve a critical voltage gradient a constant rate of 

filtr:uion can be achieved, although once the suspension has 
thickened too much immediately above the filter medium 
the rote decreases. 
(iv) Acoustic and electric fields applied simultaneously 

produce an increased rate of filtration; synergy exists 
between the two fields closer to the IEP .and at high pHs. 

(v) Both electric and acoustic fields tend to increase the 
porosity of the filter cakes formed. 
(vi) The power consumed by the ultrasonic field is not 

sufficiently offset by increased performance of the filter. 
making it unlikely that ultrasound would be a viable force 
field to use to improve cake formation rates. 
(vii) The power consumed by the electric field can offer 
sufficiently large improvements in fihration rates that in 
:.;ome cases it may be considered as a technical improvement 
to filtration technology. 

The conductivity of low conductivity solutions increases 
when irradiated by ultrasound, but other phenomena occur 
simultaneously. A pol>sible explanation is offered for the 
apparent synergy between electrical and ultrasonic field.<;., 
based on dispersion effects closer to the isoelectric point 
and compression of the double layer at pHs well away from 
the IEP. 

A 
8 

D 

" V 

NOMENCLATURE 
filtration area, m2, or a coefficient (in equation (2)) 
coefficient in equation {2) 

__ effective solids concentration in the feed suspension, kg m-.' 
dielectric constant of the liquid ph<lse 
critical electric field gr.H.Iient. vm- 1 

prim<~ry radiation force acting on a panide on !he ;~xis. fmm the 
transducer. N 
consCllrlt!l in equation (5) 
pressure difference over the filter, Pa 
pressure. Pa 
resistance of the filter medium. m- 1 

time. !I 
temperature. K 
eleccrophoretic velocity. ms- 1 

fihrate, volume, mJ 
ax:ial distarn:e from the at·ou.~ti<.· mm.~ducer .~urf;u:e, m 

Gredc letter.f 
a specific resistance of the filler cake, m kg- 1 

&0 permittivity of a vacuum.C2 J~ 1 m-• 

ratio of spet·ific heats 
vi.~os.iLy of the liquid, Pa ~ 
zeta potential. V 

REFERENCES 
J. Muralidhar.ll. H. S .. 1994. Enhance separations with electricity. 

Chemtech, 5: J6. 
.::!. ,\1uralidhara. H. S .. Parekh. B. and Sen.llpati, N .. 19K5, Solid liquid 

separation process for fine panicle suspensions by an electric and 
ul~r<t~onic tieltJ, VS Pmmi4.561,95J. 

3. Wakcm:m. R. J. and Tarlctnn. E. S., 1991. An experimental study of 
cleclmill.'l)U.\Ik cm'>-~llow micmtHtrnlion. Chem Enx Re.t De.t, 69(5J: 
JX6. 

.J. Moulik. S. P., Cooper. F. C, arnJ Bier, M., 1967. Forced.flow 
electrophoretic filtration of clay suspensions, J Colloid lmerface Sd. 
24(4): 427. 

5. Moulik, S. P .. 1971. Physical aspects of electrofiltration. Env Sci and 
TedwH, 5(9): 771-776. 

6. Yukawa. H .. Kobayashi, K., Tsukui. Y .• Yam.llho. S. and Jwata. M .. 
1976. An11./y11i~ of barch electmkin-etic tiltration, J C/uom Enx Jopan. 
9(5): 396. 

7. Yukaw.t. H .. 'r'oshida, H .. K<lhayushi. K. and H11knd11, M .• 1978. 
E!ectro-osmotic dew:uering nf sludge under condition of const:mt 
vollage. J Chem Eng Japau. 1 1(6); 475. 

K. Wakcman. R. J., 19~6. Electmflltmtion- microfiltration plus clectro· 
phuresis. The Chemi(·al Eflgitteer, 426; 65. 

9. Kowalska. E .• Bien, J. and Zielewicz. E., l978, The inl1uem:e of 
ultr.Jsound on lhc 1hickening nf lhe sludge fmm !;Ome municipal and 
industrial waste!l, Acu.tJica. 40: 99. 

10. Kowalska. E .• Chmur.t. K. and Bien. J., 1918, UltrasoniC!> in the 
dchydmtion process of sludge, Uftru.ftmic:s. 16(4): JIB. 

11. Tarleton, E. S., 19K8, How eleclric and ullra~;onic fielcls U!l.<>ist 
membrane liltr.ttion. f'iltrwion and S(!l'arwion, 25{6): 402. 

12. Yeager. E .. Bugosh, !.. Hovorka, F. and McMany, ]., 1949. The 
application of ultrasonic waves to the study or electrolytic solutions. J 
Clwm Phy.t. 17~ 411. 

I 3. llcutcr. T. f. :md 8(111. R. H .• 1955, Soni(·.f: Techniques /(1r the U.1·e 
nf Smmd ami Ultm.wmmf ill Engined11g tmd Science, (J WHey and 
Son!», New York). 

l.t. o·Brien, R. w .. \988. Electro-acoustic effects in a dilute 10uspension 
of spherical panicles. J Fluid Met·h. 190: 71. 

15. Dcbye. P .. 1933, A method for the determination tlf the mass of 
electrolyte ions. J Chem Plty.t. I: 13. 

\6. Enderby. J. A .. 1951, On electrical effects due to !><ltlnd waves in 
colloidal ~;uspensions. Pmc Royal Sot: A. 207: 329. 

17. Bouth. F. anJ Endcrhy, J. A., 1952. On electrical ciTccts due to suund 
waves in collnidal suspensions. Proc Plly.t &~eA. 65: 321. 

IK. O'Brien, R. W .• 1990. The electroacoustic equations for a colloidal 
suspen.'lion. J Fluid Mech. 212: 81. 

19. Cannon, D. W., Oj:t, T. and Petersen, G. L., 1985, A method for 
mea.<~uring the electrokinetic propenies of a solution. US Patent 
4497207. 

20. O'Brien, R. W, and White. L R .• 1978, The electrophoretic mobility 
of a spherical colloidal particle. J Chem Soc Famday Tran.t. 2 74: 
1607. 

21. Sherwood, J. D .. l9RO, The primary electroviscou~; effect in a 
suspension of spheres, J Fluid Mech, 101: 609. 

22. Tarleton. E. S. and Wakeman, R. J.. 1994, Understanding flux 
decline in cros.'lflow microfiltration: Part Ill-Effects of membrane 
morphulogy, Tran.dChem£, Part A. 72(A4): 521. 

23. Wakeman. R. J.. 199K. Electrically enhanced microfiltmtion of 
albumin suspensions, Tran.f /ChemE, Pttrl C. 76(C 1 ): 53. 

24. Cataldo. F., 1997, Effects of ultrasound on the electrolytic conductivity 
of simple halide salts, J Electromwl Chem, 43 I: 61. 

25. Cataldo. F .• 1998, Erratum to 'Effectll of ultrawund on the electrolytic 
conductivity of simple halide salts', J Electmonal Chem, 445: 225. 

26, Wakeman. R. J.. 19R2. Effects of solids concentration and pH on 
electrofiltration. Fiftrtllion ond Separmiml, 19(4): 316. 

27. Wakeman. R. J. and Tarleton, E. S., 1986. Membrane fouling 
prevention in tros.d\ow microfiltration by the use of electric fields, 
Chem Eng Sri. 42: 829. 

28. Wakeman. R. l and Sabri. M. N .. 1995, Utilizing pulsed electric 
fields in cros.o;ftow microfiltration of titania ~;uspenllions, Trans 
/Chem£, Part A.. 73(A4): 455. 

19. Akay, G. and Wakeman. R. J .• 1996. Electric field intensification of 

Trans IChemE, Vol 78, Part A, January 2000 



Appendix B-Publications -233-

FILTRATION OF FINE PARTICLE SUSPENSIONS AIDED BY ELECTRICAL AND ACOUSTIC FIELDS 135 

surfact .. nt mediated . ..eparation processes, Trctll.\' !CIIem£, Pari A, 
74(A}: 517. 

30. Akay, G. and Wakeman, R. J., 1997, Electric field enhanced crossflow 
microfiltration of hydrophobically modified water soluble polymers, 
JMemSci, 131:229. 

3 I. Woodside, S. M., Bowen, B. D. <tnd Piret, J. M., 1997, Measurement 
of ultr.tronic forces for panicle-liquid separ.ttions, A!ChEJ, 43: 1727. 

32. Harker, A. H. and Temple, J. A. G .. 1988. Velocity and attenuation 
ofultmsound in suspensions of panicle.\ in tluids, J Php D: Appl Phy.~. 
21: 1576. 

33. Wakeman, R. J. and Bailey, A. J. L' .. 1999, Sonothickening: Con­
tinuous in-line concentration! clarification of line panicle suspensions 
by power ultr-..wund. Trwu IChemE, (suhmiued). 

34. Wakeman, R. J., 1994, Visualisation of cake formation in crossnow 
microfiltmtion, frwu /Ciu:mE. Part A, 72(A4): 530. 

35. Yosioka, K. and Kawasima, Y .. 1955, Acoustic radiation pressure on 
a compressible sphere, Acu.ttic:CI, 5: 167. 

36. Kowalska, E .• Kowalski, W. and Bien, J .• 1979, Changes of some 
physical properties of sonateJ suspensions, Acu.~tka, 43: 260. 

37. Jossinet, J., Lavandier, B. and Cathignol, D .• 1998, The phenomen­
ology of acouslo-elec\ric imeraction !.ignals in aqueous solutions of 
electrolytes, Ultra.wnic.f, 36: 607. 

38. Suslick; K. S., 1981!, Ultm.w11nd: Its Chemical, Phy.vical and 
Biological t.]fec:l.r, (VCH, Weinheim). 

39. Mason, T. J.. 1993. Sonochemistry: A technology for !()morrow, Cltem 
& lnd. January, 47. 

Trans IChem~ Vol 78, Part A, January 2000 

40. Mason, T. J. and Lorimer, J. P., 198H, Smwchemisrry: Tht-ory, 
Applicmion.f and Use.f of U/rra.mund in Chemi.m-.;. (Ell is Horwood, 
Chichester). · 

41. Bailey. A. J. L'. and Wakeman, R. J., 1998. Measurement of 
ultrasonically induced panicle velocities in suspensions, Pmc 1998 
/Chem£ reuarch evem. Newca.ftle-upon-Tyne (The Institution of 
Chemical Engineers), CD Rom Rec No 9236, ISBN 0 85295 400X. 

ACKNOWLEDGEMENTS 
MCS wishes to acknowledge the award of a student.~hip hy the 

Engineering and Physical Sciences Research Council and an !Cl/Royal 
Academy of Engineering Scholarship. 

ADDRESS 
Correspondence concerning this paper should be aJdrcssed to 

Professor R. J. Wakeman, Department of Chemical Eogineering, 
Loughborough University, Loughborough. Leicestershire LE II :nu. UK. 
(E-mail: R.J.Wakeman@lboro.ac.uk.). 

The me~mucripl wa.f recei1•ed 2 June 1999 and acceptefl for puhlimtimr 
after re1•ision 29 St•plemher /99<). 



Appendix B-Publications -234-

EXPERIMENTS ON ELECTROACOUSTIC VACUUM FILTRATION 

M. C. Smythe and R.J. Wakeman 
Dept. of Chemical Engineering, Loughborough University, Loughborough, UK 

An experimental apparatus has been developed to study the effects of electric, 
acoustic and electroacoustic fields on filtration. The filter utilises an electrical force 
acting nonna) to the filtration surface, and an ultrasonic force acting tangentially. 

Initial experiments have demonstrated that both acoustic and electric fields, 
used separately or in combination, increase the rate of filtration of Ti02 
suspensions that are dose to their isoelectric point. 

Keywords: eJectroacoustic, ultrasonic, electrofiltration, filtration 

INTRODUCTION 
Assisted separations have become more important in recent years as the demand for higher 
purity products has increased. In terms of filtration, the production of a drier cake is cost 
effective when compared with the energy costs of thermal drying Improvements to the 
filtration process have been demonstrated by the exploitation of phenomena such as 
electrokinetic, acoustic, magnetic, and centrifugal forces'. A combined fields approach enables 
limitations to the degree of separation, purity, and yield imposed by conventional filtration to 
be overcome. Electroacoustic dewatering (EAD) has been used as a means of dewatering 
sludges, producing a higher solids content than attainable using electric, or acoustic fields 
separately2

• This technology has been extended to cross flow filtration'. The major cost of 
these technologies is electricity, but the cost is an order of magnitude less than evaporative 
drying, because preliminary liquid removal leads to smaller thermal energy requirements. 

The use of electric fields to improve separations is a well known technology. The 
processes require continuous application of electric fields and as such are energy intensive. 
Electrofiltration has not been exploited, but recent advances in electrode materials have 
enabled the technology to be used both to improve filtrate flux, and as an alternative to 
backwashing as a method of membrane cleaning. 

Ultrasonics has been shown by many authors to be a potentially economical means of 
removing water from products to relatively low levels, and to decrease fouling of membranes. 
It is implied however, that this is a dewatering, rather than a filtration technique, and thus the 
mechanisms proposed focus on how ultrasound affects suspension characteristics. It may be 
that the ultrasonic energy provides an additional driving force, in a similar way to an electric 
field. That is, ultrasound should be considered an aid to filtration, and by facilitating a more 
open cake may improve mass transfer through the filter medium. 

EXPERIMENTATION 
An -experhnental rig has been designed and built based on a conventional dead end vacuum 
filter (Figure I). The filter medium support acts as a cathode. A variable position anode is 
suspended parallel to the support, and the separation distance can be varied. The electric field 
is thus applied normal to the filter surface. An ultrasonic transducer is attached to one side of 
the filter cell, and ultrasonic energy is applied tangentially to the filter surface. The filter 
medium used is a Sartorious 0.2ftm cellulose nitrate membrane; this has a measured mean 
pore size of 0.51 ftm, a thickness of !30ftm and is reported to carry a zero or negative surface 
charge over the pH range 2-124

• The test suspension used was uncoated rutile, which was 
dispersed using monoisopropanolamine (MIPA) at a concentration ofO.IS% by weight on the 
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mass ofTiO,. The suspension was then homogenised for 8 minutes at 2000rpm and a Malvern 
Mastersizer was used to ensure a mean particle size of 0.3J.1m. 
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Figure 1: Filter cell schematic 
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The flow circuit (Figure 2) comprises a feed reservoir with recirculation pump to ensure 
the feed is completely mixed. The feed flows into the filter cell, and the pressure drop across 
the cell is monitored by pressure transducers. The system is controlled by a host computer 
which controls the vacuum held in the filtrate tank in order to control the pressure difference 
across the filter. Experimental runs were carried out at constant vacuum. The pressure drop 
across the cell was recorded and the filtrate volume collected is measured at different filtration 
times. Run lengths were between 30 and 60 minutes, as the initial effects of the fields are 
thought to be most significant. A typical filtered volume is approximately 2 litres. The DC 
power supply allows application of a constant, stabilised voltage across the electrodes. The 
field gradient can be changed from one experiment to the next by altering the separation 
distance between the electrodes, or by applying a different voltage. The ultrasonic transducer 
position cannot be altered, and the frequency is fixed at 23 kHz. 
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Figure 2: Experimental f!owsheet 

RESULTS AND DISCUSSION 
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The titanium dioxide suspension has been characterised for zeta potential variations with pH. 
The isoelectric point is clearly shown at a pH of around 7 which is similar to the 'natural' pH 
of the suspension. 
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Figure 3: Suspension characterisation 

A number of experiments have been carried out using electric and ultrasonic fields 
separately. To minimise the initial number of variables the pH of the suspension was kept at its 
natural value of 7 .1. The suspension concentration was varied to establish the effect of particle 
concentration on the filter performance. A series of tests using the ultrasonic field as a filtration 

--------------------------------------------------
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aid were carried out. These results are compared with dead end vacuum filtration in Figure 4. 
The acoustic field is only seen to have a positive effect on filtration at very low concentrations. 
A volume concentration higher than 1% (4.2% by mass) shows little effect due to ultrasound, 
and a 5% suspension shows no effect. The higher particle concentrations cause increased 
attenuation as scattering losses increase; the majority of sound absorption is however due to 
the frictional losses caused by the viscosity of the suspending fluid5

• The intensity of the sound 
wave is inversely related to the density of the medium it is travelling in. As the concentration is 
increased, either through a higher initial concentration or as the filtration progresses and the 
suspension thickens, the effect of the sound field diminishes, as seen in the figure below .. 
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Figure 4: The effect of concentration on ultrasonic filtration performance 

The principal concentration used for the remaining experiments is 0.1% by volume (0.42 % by 
mass). A series of electrically assisted filtrations have been carried out, varying the applied 
voltage and keeping the electrode separation distance constant at 1.5 cm. For the given 
concentration, the filter performance is improved by increasing the voltage across the 
electrodes. The OV case is equivalent to conventional filtration and provides a base against 
which comparisons can be made. When an electric field is applied, the flow rate is higher than 
for conventional filtration. Electrophoresis reduces the rate of cake formation, and 
electroosmosis increases the filtrate flowrate. The cake resistance under an applied electric 
field can be expressed as 6

•
7 

: 

-av -R (
EcR -E) V 

____ c ____ - o EcR A 
(1) 

Eco is the critical voltage where suspended particles become stationary because the 
electrophoretic velocity equals to the velocity of filtrate flow. As the voltage across the 
electrodes is increased, towards Eco the filtration resistance of the cake tends to zero. The 
specific cake resistance produced decreases with increasing voltage difference. This is shown in 
Table 1. 

- - - -----------------------------------------------------------------------
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Applied Voltn2e V Specific Cake Resistance mk2·1 
0 9.18x101

' 

30 1.05 x1012 

so 0.75xl012 

70 0.32 x1012 

.. 
Table 1: Variation m spectftc cake reststance wtth voltage 

The filtration rate is increased as shown in Figure 5. The increase in filtrate production rate is 
most encouraging as it is acheived with only a small potential on the surface of the particles 
(Figure 3). At a higher (or lower) pH greater filtrate rates could be expected at the voltages 
shown in figure 5. 
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Figure 5: The effect of voltage on electrofiltration performance 

Experiments have been carried out using a combination of electric and acoustic fields, and 
these show a slight improvement over the use of an electric field alone. A continued 
improvement is seen over the duration of the experiment. 

" .. 0.25 
1: 
~ = 0.2 .g 
~ G 0.15 

-------E o.t 
.. __.. 

~ 

~ 0.05 
.!! 
~ 
G o ~ 

~ 

time, s 0 500 1000 

-No fields ···w ... Acoustic field 
-Electric field -•- Elcctroacoustic field 

.......-::::::. 
~ ---

1500 2000 2500 

Suspension pH 7.1 
System pressure drop 750 mBar 

Figure 6: The effect of field combinations on filtration performance. 
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CONCLUSION 

An experimental vacuum filter has been developed which incorporates an electrical field 
acting in a direction normal to the filtering surface, and an acoustic field acting tangentially. 
The acoustic field appears to be effectively fully attenuated at a suspension concentration 
between 0.1 and 1%v/v, limiting its enhancement potential to the filtration of lower 
concentration fields. Nonetheless, this has practical significance because such lower 
concentration fields are often more difficult to filter due to their tendency to blind filter media. 

The electric field is demonstrated to enhance greatly the rate of filtration, but this is at the 
expense of putting additional energy into the filter. It remains to be assessed as to whether or 
not, and for what conditions this added rate represents a rise or fall in energy consumption per 

unit volume of filtrate produced. 
Evidence of synergy between the electric and acoustic fields has been found. However the 

experimental programme of variation of field combinations and suspension concentrations is to 
continue, with the programme being extended to encompass variation of other parameters such 

as system pressure drop, feed material and pH. 

NOMENCLATURE 

A 
E 
EcR 
Re 
V 
a 

"· 

Filtration Area 
Electric field strength 
Critical field strength 
Filter cake resistance 
Filtrate Volume 
Average specific filtration resistance 
Dry cake mass per unit volume of filtrate 

m2 

V cm·' 
V cm·' 
mkg"1 

m' 
mkg"1 

kgm"3 
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