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Abstract

In this doctoral thesis, first we prove the continuous semimartingale local time L, is of
bounded p-varaition in the space variable in the classical sense for any p > 2 as., and
based on this fact we define the integral of local time in the sense of Young integral, and
in the sense of Lyons’ rough path integral, so that we obtain the new extensions to Tanaka-
Meyer's formula for more classes of f. We also give new conditions to two-parameter Young
integral and extend Elworthy-Truman-Zhao’s formula. In the final part we define a new
integral, i.e. stochastic Lebesgue-Stieltjes integral and extend Tanaka-Meyer’s formula, to

two dimensions.

Key Words: Young integral, two-parameter p, g-variation path integtal, local time,
p-variation of local time, generalized Itd’s formula, stochastic Lebesgue-Stieltjes integral,
rough path.
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Chapter 1
One Parameter Integral of Local Time

§1.1 Introduction

The classical Itd’s formula for twice differentiable functions has played a central role
in stochastic analysis and almost all aspects of its applications and connection with anal-

ysis, PDEs, geometry, dynamical systems, finance and physics. It reads as follows.

(1t5(1944), Kunita & Watanabe(1967)) Let f : R — R be a function of class C?
and let X = {X;, F; : 0 <t < o0} be a continuous semimartingale. Then

f(Xe) = f(Xo) + /ﬂ t f(Xs)dXs + % fo t F(X)d< X > (1.1.1)

But the restriction of It6’s formula to functions with twice differentiability often encounter
difficulties in applications. Extensions to less smooth functions are useful in studying many
problems such as partial differential equations with some singularities and mathematics
of finance. Generally speaking, for any absolutely continuous function f and a continuous
semi-martingale X, there exists A; such that

£06) = 1K) + [ X)X+ A (1.12)

To find A; in both cases especially a pathwise formula becomes key to establish a useful
extension to Itd’s formula. In fact investigations already began in Tanaka [46] with a
beautiful use of local times introduced in Lévy [29].

{Tanaka (1963)) For any real number a, there exists an increasing continuous process
L% called the local time of X in @ such that,

t
I1X; — o = |Xo —a| + jo sgn(X, — a)dX, + 2L
t
(Xe= ) = (o= )" + [ LpcoadX + It
-t
(Xt —a)” =(Xp~a)” — fo 1(x,<a}dXs + Lf

The generalized It6’s formula in one-dimension for time-independent convex functions was

developed in Meyer [36].

(Tanaka-Meyer(1976)) Let f : R — R be a convex function (or difference of two convex

1
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functions) and y its second derivative measure defined as p({a, b)) == V™ f(b) — V™ f(a),
—oo < a <b< oo, Then

F(Xe) = f(Xo) + jot V™ (X)X, + [_o; Li(z)u(dr) a.s., (1.1.3)

where V™ f(z) is of bounded variation and [ _ Li(z)u(dz) is a Lebesgue-Stieltjes integral
associated with the measure p(dz). Lf is the local time of semimartingale X; at =.

An integral [V~ f(z)d,L¢(z) was introduced in [4] through the existence of the
expression f(X(t)) — F(X(0)) — [ & F(X(s))dX (s) in L2(F, P), where L(z) is the local
time of the semi-martingale X;. Generally speaking, one expects stronger conditions for
the pathwise existence of the integrals of local times. However, in the framework of
Lebesgue integrals, locally bounded variation in z for fixed ¢ is the minimal condition
on V™ f(z) to generate a measure, so it seems impossible to go beyond Tanaka-Meyer’s
formula. We remark that the striking fact that L;(z) is of bounded quadratic variation in
z in the sense of Revuz and Yor [41] did not play a significant role in the proof of (1.1.3).
It is therefore reasonable to conjecture that the conditions of defining the integrals of local
times pathwise can be weakened, Inevitably, we have to go beyond Lebesgue integral.
Here we use Young and Lyons’ idea of integration (Lyons [30], [31], Lyons and Qian [32],
Young [50], [51]) to define the integral of local time to go beyond the bounded variation
condition.

We would like to remark that the quadratic variation in the sense of Revuz and Yor
is not enough to define Young’s integral for local times. So in Section 1.2, we prove local
time L(2) is of bounded p-variation in & for any ¢ > 0, for any p > 2 almost surely. The
main difficulty is overcome by using the idea of controlling the p-variation of continuous
paths via the variations through dyadic partitions. This idea was originated by Lévy and
used in (3], [18], [28] to prove the Brownian path is of bounded p-variation for p > 2.

In Section 1.3, using Young’s integration of one parameter p-variation, we can imrmedi-
ately define f°0_ V= f(z)d.Ls(x) as a Young’s integral if V™ f(z) is of bounded g¢-variation
(1 £ ¢ < 2). Then a new extension of Tanaka-Meyer’s formula to f where V™ f(z) is of
bounded g-variation (1 < ¢ < 2) follows immediately. And I also give an example to use
our new extension of Tanaka-Meyer’s formula.

§1.2 The p-variation of Local Time

First we recall the definition of p-variation path and its integration theory (see e.g.
Young [50], Lyons and Qian [32]).
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Definition 1.2.1 We say a function f: [2',2"] — R is of bounded p-variation if
m
supY_1f(@:) = f(mim1)lP < oo, (1.2.1)
i=1

where E := {2’ = 2o < 21 < -+ < @y = 2"} is an arbitrary partition of [z',z"]. Here
p =1 is a fired real number.
" m
From Young (50], the integral % f(z)dg(z) = (l}Er)n . S f(&) (g(zi) —g(zi—1)) is well
) m(E}—04=]
defined if f is of bounded p-variation, g is of bounded q-v:ariation, and f and g have no
common discontinuities. Here &; € [zi—1, 3], p, ¢ > 1, %+% > 1, m(E)= sup (z;—zi-1).
i<ism

And we also have:

(Theorem on term by term integration): Let {f,} be a Wy-sequence {{fs} is of
bounded p-variation independent of n) converging densely to an f of W, and converging
uniformly to f at each point of a set A. Let {g,} be a Wy-sequence converging densely
to a g of Wy, and converging uniformly at each point of a set B. Suppose further that
mq >0, % + % > 1, and that A includes the discontinuities of ¢, B those of f, A B all
points of (z’, 2"}, Then

2 ﬂ’."

wn’ T
[ Fndlgn — f fdg.
iy z

Consider a continuous semimartingale X; on a probability space (2, F, P) with the

decomposition
Xi=M 4V, (1.2.2)

where M; is a local martingale, V} is an adapted process of bounded variation. Then there
exists semimartingale local time L of X; as a nonnegative random fleld L = {L§ : (¢,z) €
[0,00) x R,w € §2} and

1
2(t,0) = lim - fo Yoot (X(5))d <M>, a.s. (1.2.3)

for each t and a € B. Then it is well known for each fixed a € R, L(t,a,w) is continuous,
and nondecreasing in ¢ and right continuous with left limit {(cadlag) with respect to a ([25],
[41}). Therefore we can define a Lebesgue-Stieltjes integral [° ¢(s)dL(s, a,w) for each a
for any Borel-measurable function ¢. In particular

/0 " Ly (X(6)dL(s, 2,0) = 0 a.s. (1.2.4)

3
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Furthermore if ¢ is differentiable, then we have the following integration by parts formula

fot #(s)dL(s,a,w) = ¢(t)L(t,a,w) — /Ot ¢'(8)L(s,a,w)ds a.s.. (1.2.5)

Moreover, if g(s,z,w) is measurable and bounded on [0,#] x R x ©, by the occupation
times formula (e.g. see [25], [41]),

4 o0 t
fo g(s, X(s))d <M>,=2 f_ ) /0 9(s,8)dL(s, 0, w)da a...

If g(+, ) is absolutely continuous for each z, E%g(s, ) is locally bounded and measurable
in [0,] X R, then using the integration by parts formula, we have

/ﬁ " 95, X(5))d <M>,
2 [ / * 9(5,@)dL(s, 0,)da (1.2.6)

o0 fea} £ o

2 / 9(t,a)L(t,a,w)da —2 f f =—9(s,a)L{s,a,w)dsda a.s..
—00 -0 J 0 33

On the other hand, by Tanaka formula

1

L(t? a‘) = (X(t) - a)+ - (X(O) - a)+ - M(t’ a’) - V(ti a'):

where Z(, a) = f,;’ Lix(s)>a}9Z(8), Z = M,V,X. By a standard localizing argument, we
may assume without loss of generality that there is a constant N for which

sup [X(s)| < N, <M>(< N, VarV <N,
0<s<i

where Var:V is the total variation of V on [0,#]. From the property of local time (see
Chapter 3 in [25]), for any vy > 1,

~ ~ t
E']M(t,a) — M, b)lz'f = E]/(; 1{a<X,§b}d <M>, |7 < (b - a)?, a<b

where the constant C depends on v and on the bound N. From Kolmogorov’s tightness
criterion (see [27]), we know that the sequence Y,,(a) := 151t a), n = 1,2, -+, is tight.
Moreover for any aq,az,---,ag,

P(sup |21 (t,a2)] < 1)
a; N

1. 1~ 1.
= P('HM(t:a’l)i < ],,I—?;M(t, 0'2)] < 1?"')|EM(t?a’k)’ < 1')

v

k
1.
1- ZP(I;M(% a;)| > 1)
i=1

v

1 & .
1-— ; ZIE[Mz(t, G;i)]
t= }

k
1-—0W),

v
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so by the weak convergence theorem of random fields (see Theorem 1.4.5 in [27]), we have
iz, Plsup [M(t,0)| < m) = 1.
Furthermore it is easy to see that
- 1
;];—V(t, a) & ;;VartV(t, a) — 0, when n — oo,
so it follows that,
A Plsup |L(t,a)| < m) =1.

Therefore in our localization argument, we can also assume L{t,a) is bounded uniformly

in a.

Note there is a different definition of variation established in Revuz and Yor [41] (see
also Marcus and Rosen [34]) and the following result is known (Chapter VI, Theorem 1.21,
[41]): Let (A,) be a sequence of subdivisions of [a,b] such that [Ay| — 0 as n — oo, for
any nonnegative and finite random variable S,

. b
lim S(L4* — [3)? = 4 / Lidr+ Y (L3 —L3)? < o0, (1.2.7)
T . a a<z<b

in probability. However this variation is not enough to enable us to apply Young’s con-
struction of integrals. We need the following new result to establish integrations of local

times.
Lemma 1.2.1 Continuous semimartingale local time L} is of bounded p-variation in z
for any ¢ > 0, for any p > 2, almost surely.

Proof: By the usual localization argument, we may first assume that there is a constant
K for which sup [X,, fJIdVSI, < M,M >;< K. By Tanaka’s formula
GLast

Lf = (X — )t — (Xo — 2)* — M7 - V2, (1.2.8)
where,
- t —~ t
Mg =f0 Hx,>z)dMs, V¥ = fo {X,>2}dVs.

First note the function () := (X; ~ z)* — (X; — 2)* is Lipschitz continuous in  with
Lipschitz constant 2, which implies for any p> 2 and a; < 6441

lpr(ait1) — @e(as)|” < 2P(aiqy — a)P. (1.2.9)

5
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Secondly, by Holder’s inequality, as V is of bounded variation, so
e~ 7o
¢
< Ij(; 1{a5<XaSﬂi+1}ld’V9”p
t
< C‘[O l{ai<Xa_<_ﬂ:i+1}1dV3|1 (1219)

where ¢ is a generic constant. 'To treat Hg, we use the method in the proof of Lemma
3.7.5 in Karatzas and Shreve (25] or Theorem 6.1.7 in Revuz and Yor [41],
BT ~ Tpp

t
= EI/; Los<X,<a;y,}AM[P
e

11 H
< cE (-/(; 1{a5<Xaga;+1}d <M M >3)

a5
= B/ f " [2d)}
a

i

elaiys — ai)gE(—l—— [ i Ledzr)s
e

Ai41 ~
1 Q41
/ (I} de
Qi1 — G5 Jay;
< fasyy — o) sup B(LF)E,
T

A

c(a,-+1 - a,-)‘:gE'

Here we used Burkholder-Davis-Gundy inequality, the occupation times formula, Jensen

inequality and Fubini theorem. Now from (1.2.8) and using Burkholder-Davis-Gundy
inequality again, we have

BIDY < el - Xob+ ([ laviDi+ < 20 5]
< CE<M,M>} +cE‘(f0t[st[)§ +¢B < M,M >} < cy(K,p).
Therefore it follows that
BIMP —MPP < elapr —ag)h. 1.211)
Here ¢ is a constant depending on K,p. Now we use Proposition 4.1.1 in [32) (i = 1,7 >

p~ 1), for any partition {a} of [a, b]

o0 2" " n
supz |M;HY — MPEP < e(p,v) Z nY Z \MJ* ~ M, *-1pP,
L =1 k=1
The crucial thing is that the right hand side does not depend on partition D, where
k
ay =a+-2—5(b—a), k=0,1,--.,2"

6
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We take expectation
E E nY Z ' "‘ak 1 |p
= Z nY Z E' Aak 1IP

n—l

cZn”’(

IA

)2 <coasp>2

Therefore

Zn”Zl |P<ooas

n=1 k=1

It turns out that for any interval [a,b] C R

sup STIMPM - MOP < o0 as..
1

But we know L.(a) has a compact support [-K,K] in a. So for the partition D :==
D gx={-K=a<a<- <a = K}, we obtain

sup STIME - MEP < 0 as.. (1.2.12)
i
On the other hand, it is easy to see from (1.2.9) that
Z loe(aisa) — pe(as)P < 2° Z(aiﬂ —a;)?
3 < 2P{é(ai+1 —a))]P = 2°(b - a)?, (1.2.13)
i
and from (1.2.10) and bounded variation of V that
> P P < o fo Lpcx,n Vil < fo "1V < oo. (12.14)
Then from (1.2.8), (1.2.12), (1.2.13), (1.2.14), we know that
s%pZ]Lg"“ -LEP <00 a.s.
i

Finally we can use the usual localization procedure to remove the assumption that sup | X,

fo |dV|, < M, M >:;< K. For this, define a stopping time for an integer K > 0: TK =
inf{s : min{|X,|, [§ |[dV;|, < M, M >,} > K} if there exists s such that min{}X,|, [y |dV;l, <

7
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M,M >,} > K and 7 = +co otherwise. ‘Then the above result shows that there exists
1 C Q with P(2;) = 1 such that for each w € Q; and each given integer K > 0,

sup YIS - L8, P < oo
)

Since sup [X,|(w), [ 1dVi|(w) and < M, M >; (w) are finite almost surely so there exists
0<s<t

Q2 C O with P(§2;) = 1 such that for each w € 23, there exists an integer K(w) > 0 such

that sup |X,|(w), fF|dVi|(w), < M, M >, (w) < K. This leads to 7x(w) > t. So for each
0<g<t

w € 1N,

sup ) | |L{ - LEP < oo,
D
The result follows as P(Q; N Q) = 1. o

Recall the well-known result (see Revuz and Yor [41), P220) that for each #, the
random function & — L¥ is a cadldg function hence only admits at most countably many
discontinuous points. Denote L¥ = L7 — L{™. Then

—~ t
I = f Ly (Xo)dVi, (1.2.15)
0
and for any a < b,
—~ 1
> IEg =_/ V| < co. (1.2.16)
a<w<h 0

By Tanaka’s formula
If = (X-2)* - (Xo-a)t - MZ-Tp
(Xi — 2)* — (Xo — 2)F - /: Lo, >aydMs — fot Lix,>2)dV5,
= (Xi— o) - (Xo - 2)* - fot UxuoapdMs - fotdv; + f: Lix,<aydVi

. t
= L¥+ Z./o l{z’:}(Xs)dV.;

zy<a
= IF+ Y I, (1.2.17)
<
where
. ¢
EF = (X0 — 2)* — (Xo — )+ — /0 (x50} dM; — (Vi — Vp) (1.2.18)
is continuous in z, and {z}} are the discontinuous points of LY. Denote
ht,z) == 3 L7, (1.2.19)
<z
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Lemma 1.2.2 Above defined h(t, ) is of bounded variation in « for each t and of bounded
varigtion in (¢, z} for almost every w € Q.

Proof: Let [N, N] be the support of L,(z). To sce that h(t,z) is of locally bounded
variation in gz, consider any partition D = {(-N=zy<a; <. < Tm-1 < Tm = N},
then from (1.2.16)

L Ihtha) ~hhz)l = S Y I

i wy<ebEmig

< > ¥ 5

i oz <efEwipy

= 3 |Z <.
~N<x<N

To see it is of bounded variation in (£, z), consider any partition D' x D, where D’ = {0 =
o<t < o <ty <ty =T}, D={-N=2<21 < - <2y < Zm = N},

X Rti1, 2ig1) = hltyer, ) — h(ts, Zit1) + h(ts, z;)|

2
=X X (@ -

i #<ziSeit1
ozt =T
} : kT
= Z lLtj+1 Ltj [
i om<zl<ri

= N;w L%, - LE |- (1.2.20)
- Fe

Now applying (5.3.3) leads to,

~ ~ L1
2 Mha-Igl= X 1 [T g
¢

~N<z<N ~N<zEN

ti+1
[ temmaia (1:2.21)
J

IA

From (1.2.20), (1.2.21) and the bounded variation assumption of V, we have
222 k1, 3ier) — by, @0) — h(ty, mi4n) + h(t, i)
i

t
< fo L-n(X,)|dVy] < oo. (1.2.22)
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§1.3 One Parameter Integral of Local Time in the Sense of Young
Integral

Due to the decomposition (1.2.17) of local time, the following integral is therefore
defined by

f_o; fl2)d LY = /:: f(@)d LT + /:: F(@)duh(t, z).

The last integral is a Lebesgue-Stieltjes integral, it doesn’t matter whether or not fis
continuous as long as it is measurable. If f is of finite p-variation (1 < p < 2), we know
the integral [°0) f(2)d,L¥ is well defined by Young’s integration theory.

Remark 1.3.1 If f belongs to C', we have
o0 oo
[ @itz = [7 Ligp(o) (1.3.1)
—00 —00

This is because L, has a compact support Jor each t, so one can always odd some points
in the partition to make L% =0 and L =0. So

[ @z
= lim Z fler—a)(Lf* — LT*)

m{D)— 0

- S e S s

- —m(lg? OE(J’(%) flzr—-1))Li*

- _ [_ _Lidf(@)

Assume g(z) is a left continuous function and locally bounded, we use the standard
regularizing mollifiers to smoothrize g (e.g. see [25]). Define

T
plz) = { OV 2 € (0,2), (1.3.2)
0, otherwise.

Here c is chosen such that f02 plx)dz = 1. Take p,(z) = np(nz) as mollifiers. Define

+00
gnlz) = ]: " Pz ~)9(y)dy, n>1

10
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Then g,(z) is smooth and

gn(7) = /0 2 p()g(z — %)dz, n>1 (1.3.3)

Using Lebesgue’s dominated convergence theorem, one can prove that as n — 00, gn(z) —

g().
Theorem 1.3.1 Let g(x) be a left continuous function with finite p-varietion in x, 1 <
P <2, gu(x) be defined in (1.8.8). Then
[+%] - 00 -
f gn(@)do L] —rf g(x)dzLf, as n — oo. (1.3.4)
o] -0

Proof: Let § > 0 satisfy 5%3 -l—% > 1. From Lemma 1.2.1, IZ is of bounded (24 9)-
variation in . From [51], g(z) being of bounded p-variation, 1 < p < 2, is equivalent to
that for any partition D:=D_yy ={-N=2q <z < -+ < 2p = N} defined as before,
there is an increasing function w such that

l9(@11) ~ ()| < (w(zier) — w(m))?, Vap, 2141 € D,

where w(z} is the total p-variation of f in the interval [-N ~ 2,z]. Using Hélder’s in-
equality, we get

r
sup »  lga(21) — gnlzioy)?
D =1

T D
= sup

[ eladister = 2) - ofars - Ey

L 2 z z
< M Sy N AN |
< 1SBPI§=1 ( fo lg(x: n) glz1 n)l dZ)
2 T z Z\p
< M =5y gl — 2
< 1]0 SEPZ lg(z n) g(211 n)l dz

=1
< M jz(w(N - E) ~ w(—-N - i))d’
= 1 o n 7 2y
where My is a constant. As
z z
—_—) - N — <
w(N n) w(—-N n) < w(N),

50
T

5up > 19n() ~ ga(e1-1)P < M) < o, (135)
i=1

which means that g,,(x) is of bounded p-variation in # uniformly in n. Then (1.3.4) follows
from Young’s ([50] or [51]) convergence theorem we can get the result directly. o

11
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Remark 1.3.2 From the Lebesgue’s dominated convergence theorem, for g in the above

theorem, we know

f°° gn(z)d:h(t,2) — /00 g{z)d h(t,z), as n — oo.

With Theorem 1.3.1, it follows that .
00 =
[ gnlz)d Lf — f g(z)d:LE, asn — oo. (1.3.6)
—00 -0
Using the above theorem, we can get an extension of It6’s Formula.,

Theorem 1.3.2 Let X = (Xt)i>o be a continuous semimartingale and f : R — R be an
absolutely continuous function and have lefi derivative V™ f(z) being left continuous and
locally bounded. Assume V™ f(z) is of bounded q-variation, where 1 < g < 2. Then we
have the following change-of-varicble formulo

t o0
1) = $X0)+ [V HXAXe - [ Vsl (137
—co
where L is the local time of X at .

Proof: The integral {*o, V™ f(z)d, Lf is defined pathwise as a combination of rough path
integral and Lebesgue-Stieltjes integral. We may quote the proof in [25] and define

+00
@ = [ oo =)Wy, n21

The convergence of all terms except the second order derivative term are the same as
in the proof in [25]). By occupation times formula and Remark 1.3.1, the second order

derivative term is

1 t lo'e}
5 fo Af(X)d <M >, = /_ _Afy(@)Ifde

[ Exavsuo)
~ [ Via(o)sLz.

I

It follows from (1.3.6) that,

1 st co
5 f Afp{X)d < M >4~ — f V™ f(z)de L¥,
20 oo
when n — oo, Our claim is asserted. o

Needless to say, there are many cases that Theorem 1.3.2 works, but other extensions
of Itd’s formula do not apply immediately. The following is an obvious example:

12
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Example 1.3.1 Consider a function f(x) = z%cosl for x # 0 and f(0) = 0. This
function is C! and its derivative is f'(z) = 322 cos;nl- + wsin-i— for z # 0 and f'(0) = 0.
It is easy to see that f' is not of bounded variation, but of p-variation for any p > 1 (see
Ezample 3.9.1 for a proof in a more complicated case). So Theorem 1.8.2 can be used,
while Tanaka-Meyer’s formula cannot apply to this situation.
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Chapter 2
Local Time as a Rough Path

§2.1 Introduction

In Chapter 1, Lemma 1.2.1 says that the semimartingale local time Lf is of bounded
p-variation in z for any ¢ > 0, p > 2 a.s.. S0 in Theorem 1.3.2, we gave a new condition for
Tanaka-Meyer’s formula and the integral [°0 V~ f(z)d;L{ is defined as Young integral,
when V™ f(z) is of bounded g-variation (1 < ¢ < 2). But how is about if g > 2? Can we
still define such an integral [0 V™ f(x)d,L§ pathwisé? If we can, we will get Tanaka-
Meyer’s formula for wider class of functions. But Young’s integration theory does not
work here as the crucial condition £ +{ > 1 is no longer valid. So in this Chapter, we use
rough path theory to extend ¢ to any 2 < ¢ < 3.

§2.2  Brief Introduction to Lyons’ Rough Path Theory

In this section, we introduce some basics of rough path theory, mainly from Lyons
and Qian [32].
In Chapter 3 of their book, Lyons and Qian gave the main development of rough

path. Here, I only list some which will be used in the next section.

For each n € N, define the following (truncated)} tensor algebra
n
O V) =Y @V®:, V=P,
k=0

where V' is a finite dimensional space (though it is also correct for Banach space). Its
multiplication (also called tensor product) is the usual multiplication as polynomials, ex-
cept that the higher-order (than degree n) terms are omitted. In other words, if £ =
(€0,€L, .-, &™), n = (9% nt,---,5") are two vectors in T (V), then ¢ = £ @ g € T™(V),

where its kth component is
k - -
Ck = Zéj ®7?k_3, kE=0,1,---,n.

§=0

The norm | | on T¢HV) is defined by
n N
I‘EI = Z |€‘l, tf = (&-0,61, . 'aEn)‘
i=0

14
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We use A or Ar to denote the simplex {{s,) : 0< s <t < T}. A control w is a continuous
super-additive function on A with values in [0, c0) such that w{t, ) = 0. Therefore

w(s,t) +w(t,u) < wis,u), for any (s,t),(t,u) € A,

(Definition 3.1.1) A continuous map X from the simplex A into a truncated tensor
algebra TV}, and written as

Xop =(1, X}, X2, with Xk, e VO, for any (s,t) € A,

is called a multiplicative functional of degreen (ne N, n > 1) if X%, =1 and

8, —
Xa,t ® Xt.u = Xsu, JSorany {S?t)) {t,u) € A, (2-2‘1)

where the tensor product @ is taken in 7™ (V). Equality (2.2.1) is called the Chen identity.

Example 2.2.1 Letz: [0,T] — V = R? be a continuous path. Then its increment process
X : A — TO(V) defined by Xy = (1,X§,t), Xsl,t = Ty — ;5 18 o multiplicative functional of
degree 1. In this case, Chen’s identity is equivalent to the additive property of increments
over different intervals. If, in addition, « is a Lipschitz path, we may build a sequence of
tterated peth integrals

X;f,,zf dzy, ® - ® day,.
gy ot <t

Let’s see the second iterated integral Xf,t. Let e1,---,eq be the basis of V = R?, which
implies thot 2y = iijl eixt, t € [0,T]. Define Jocti <tyect 8Tty @ dzy, as an element of VRV
by

d

/ dxy, ®dzy, = e;®ey f d:c;ldwg2.
8<ty <ta <t ig=1 <t <ta<t

It’s easy to see for 0 < s <u <t < T,

f dry @ dzy, = f dzy, ® dzy, + / dzs, ® dae,
s< i1 <fa <t sty <ta<Cu u<ty <t <t
@y — 24) ® (@4 ~ 20),

i.e.

X.?,: = st,‘u + Xtit + X.:.t ® Xt}.,t

sotisfying Chen’s identity.
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(Definition 3.1.2) Let p > 1 be a constant. We say that a map X : A — TV

possesses finite p-variation if
|X3,] < wls, )7, foranyi=1,-,n, (st} €A, (2.2.2)

for some control w.

Theorem 3.1.2 in [32] shows that the higher (than [p]) order terms X* (k > [p]) are
determined uniquely by X* (i < [p]) among all possible extensions to a multiplicé;tive
functional which possess finite p-variations. Therefore we may give the following defini-
tion of rough path.

(Definition 3.1.3) A multiplicative functional with finite p-variation in TUFD(V) is called
a rough path (of roughness p). We say that a rough path (of roughness p) is controlled by
w if

IX.Z,tl < w(s! t)i/pa fW any i= 1: Tty [p]$ (31 t) EA. (22.3)

‘The set of all rough paths with roughness p in 7(¥D (V) will be denoted by §2,(V).
Next, let’s see a method of constructing rough path.

(Definition 3.2.1) Let p > 1 be a constant, A function X : A — T{IF(V) is called
an almost rough path {of roughness p} if it is of finite p-variation, th =1, and for some

control w and some constant 4 > 1,
I(Xs.t ® Xt,‘u)i - X;,u! < 'I‘JU(S, ,u)ﬂ,

for all (s,t),(t,u) e Aandi=1,---,[p].

(Theorem 3.2} If X : A — TGPD(V) is an almost rough path of roughness p, then
there is a unique rough path X (with roughness p) in T(PD (V) such that

| X, — X34 < Kaw(s,£)?, forany1<i<pl, (s,t) €A,

for some control w, some constants K; and € > 1.
Actually, X can be constructed like

" r k s - &
K81 =t 3 (Mt SR, 0%, forany (e, (224
- =1 i=1

16
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where D is a partition of [s, #].

In the following, I will also cite some results about spaces of rough paths. Let
Co(A, T)(V)) denote the set of all continuous functions from simplex A into the trun-
cated tensor algebra 7(")(V), with an appropriate norm, and X

st'—

(Definition 8.3.1) A function X € Co(A, TI™(V)) is said to have finite total p-variation
if

S%p Z lel—bf-i lp/i <00, i=1,,n, (2.2.5)
{

where supp runs over all finite divisions of [0, 7).

It is clear that if X € Co(A,T(M(V)) is of finite p-variation, then X has finite total
p-variation. Conversely we have the following proposition.

(Proposition 3.3.2) Let p > 1 be a constant, and let X & Co(A, T(™)(V)) satisfy Chen’s
identity. If X has finite total p-variation, then

n
w(s,t) = Zgup SAXi_ P forany (s,t) € A (2.2.6)
t=1“[s:t] ]

is a control function, and

IX;,tI < w(s,t)i/p, for enyt=1,---n, (31 t) € A.

Let Cop(A, T (V) denote the subspace of all X € C, (A, T (V) with finite total
p-variation. The p-variation metric d,, on Cyp(A, TED(V)) is defined by

i/p
B(X,Y) = max sup (Z X1t Yii,l,a,l"/‘) : (2.2.7)

(Lemma 3.3.3) (Q,(V), d,) is a complete metric space.

However, the distance function dy is difficult to use in practice. Therefore we need the

following definition.
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(Definition 3.3.2) (i) We say a sequence {X(n)} of Cop(A, TW)(V)) converges to
X € Cop(A, TN)(V)) in p-variation topology if there is a control w such that

IX(n)i,f.]: |X;,tl < 'LU(S, t)i/pg i= 1--- ,N, fO'n‘" any (S, t) € A! (228)
foranyn=1,2-.-, and
1X(n)h, — Xi) S aln)w(s, )P, i=1,---\N, for any (s,t) € A, (22.9)

for some function a(n) {which may depend on the sequence X(n}, X, and the control w)
such that lim,_, a(n) = 0.

(ii) Let p, ¢ > 1 be two constants. Wesay amap F : Cop(A, TW(V)) — Cy (A, TN (W)
is continuous in. (p, g)-variation topology if, for any control w, there is a control wy
and a function o : RY — R¥ satisfying the condition limgjga(e) = 0, such that, if
X,Y € Cop(A, T™N(V)) and

IX:,tL IY;,tI < w(s1 t)i/p: = lv t 'sN: fo'r any (5? t) € A’
1XE, ~ Vi <ew(s,t)P, i=1,--,N, for any (s,t) € A,

then

{F(X)'g,t - F(Y)Js,tt < a(s)wl(s, t)j/q1 .T = 1'.\' ' ,N’, fO‘J" any (3& t) € A.

(Definition 3.3.3) A rough path X € Q,(V) is called a smooth rough path if t — X; =
X3, is a continuous path with finite variation and X i1 is the ith iterated path integral of
the path Xy over the interval [s,#] (for i = 1,---,[p]), that is

Xiy =f dXy, ® - ®@dXy, forany (s,t) € A. (2.2.10)
L4 IR AT 4 714 ]

A rough path X € ©,(V) is a geometric rough path if there is a sequence X(n) of smooth
rough paths in Q,(V) such that

dp(X(n),X) =0, asn— oo,

In Chapter 4 [32], Lyons and Qian showed us how to construct a Brownian rough
path. First they gave a key estimation. Let {S,T] be any finite interval. Consider its
dyadic decompositions {S =§ < {}--- < 5. =T} of [S,T), where

k
t?=.2—n'(T'—S)+S: k=0,---,2"% neN.

18
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In this chapter they let [S, 7] = [0, 1), though the results can be applied to any bounded
intercal, so ¢f = k/2™(k =0,-..,27).

(Proposition 4.1.1) Let X € Co(A, TN)N(V)) ( with a fixed running time interval, say
[0,1]) be a multiplicative functional. Then for any 1 < § < N , p satisfying p/i > 1, and
any -y > p/i — 1, there exists a constant Ci(p,~) depending only on p, «, and i, such that

00 A . ]
S%p; IX;;_l,tg Iph S Ci(p? 7) Z:l n‘\f kz Z; ]ng_l,t:]ph# (2211)
n= =1 j=

Second, let’s see how they construct a Brownian rough path. Let W be a continuous path
in V and let Xsl,t = Wi — W,. For m € N, we define a continuous and piecewise-linear
path W(m) by

W(m)e = Win | + 2™ — tR)ATW, of 4, <t <™, (2.2.12)

for I = 1,...,2™ where n € N, tg = k/2" (k = 0,1,---,2") are dyadic points, and
ARW = Wi —~ Wiz, . The corresponding smooth rough path (of degree k) is denoted by

X (m) which is built by taking its iterated path integrals. That is,
X(m)l, = [ | dW(m)y, ® -+ @ dW (m)y,. (2.2.13)
8ty Loty <E
(Definition 4.4.1) We say a real-valued, continuous stochastic process (Witepp,1) on a
completed probability space (Q, F,P) has (h, p)-long-time memory for some h € (0,1},
p > 1, such that Ap > 1, if there exists a constant O such that (W) satisfies the P Holder
condition,

E\W,— WP < Clt - 5",  for any [s,1) € 0,1}, (2.2.14)

and, forall 1 > ¢ > 5 >0, 7 > 0 such that (¢ — 5)/7 < 1, we have

t—3s)?

[E(Wy — W) (Wegr — Woys)| < Cr2h (2.2.15)

A d-dimensional Brownian motion B, satisfies
E|B; — By[F = Cp 4lt — s|P/?,

and therefore the Holder condition is satisfied for p > 0 when h = % However, the condi-
tion that hp > 1 forces p > 2,

(Theorem 4.4.1) Let W; = (wf,---,w{) be d independent stochastic processes with
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(h, p)-long-time memory for some 0 < h < % such that ph > 1. Then there is a unique
function X* on A which takes values in (R%)® (i = 1,2) such that

2

N ifp
. . p/’1
Zsup (Z [X(m);t-l,ta - X;tq,tz‘ ) =90,
=1 D\
both almost surely and in L}(Q, F, P), as m — co.

The theory of rough paths provides a pathwise theory of integration, but pathwise
with respect to X, not to stochastic process . Chapter 5 mainly gives us how to construct
path integration along rough paths. The aim of this chapter is to define path integral of
the type: fa(X)dX for a rough path X in T(PD(V), where & : V — L(V, W). A special
case is where o = df is the Fréchet differential of a W-valued smooth function f on V.
We call such a function o a (W-valued) one-form on V.,

From Chaper VI in [45), if f : R* - R™, for 0 < v < 1, Lip(t, R%) will be defined
like

Lip(v,R%) i= {f : |f(@)| < M, |f(2) — (&) S Mlz - y|", @,y € R

But if 7 > 1, Lip(y, R%) consists constant only. So how is to define Lip(y, R?) for any
¥ > 07

Definition 2.2.1 Let k > 0 be an integer, v € (k,k + 1] be a real number, f : R — R™,
We say the coliection (f = f©, f0),..., f®)) is an element of Lip(v, R?) if

) k=7 p(j+D)
O =5 @)= i ﬁ#(m - v)' + Rj(zy) (2.2.16)
=0 )

and
|FD@) < M, |Ri(z,y)| < Miz~y["™ ,0<j <k, forany o,y € R%

Remark 2.2.1 The above definition means f is continuous, bounded and has continuous
bounded derivatives of order not greater than k, end f® ¢ Lip(y — k,R™). In fact,
F®) = d5f and (2.2.16) is Taylor’s expansion.

(Definition 5.1.1) Let p> land p< v < [p| + 1. Let @ : V — L(V, W), where V and
W are two finite dimensional spaces, and let V&2, ..., VOUl and W82, ... WOk pe their
tensor spaces up to degree [p]. We say that the system (o, V®, W® : 1< j < [p]) is

20
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admissible if

(i) a is a Lip(y) one-form (with respect to p) in the sense that, for j = 1,---, Ip], there
exist functions o/ : V — L(V®, W) and By : VX V — L(V®, W) such that o? = @, and,
for any Lipschitz path X in V, we have

[p]—3
o (Xe) = 3 o(X)(XE ) + Ry(Xs, X, (2.2.17)
i=0
f : oHX)(dXL) = I (X)) — oI (X,), (2.2.18)
for all £ > s, and
e () < MQA+ D, (o <M, ForanyEeV, (2:2.19)
[B;(&m| < MiE —n["4,  forany é,neV, (2.2.20)

for j=1,-+-,[4].
P
(ii) For all § = (j1,--,Jx) (integers j; > 0) such that [§| = 3 4; < [p], the lincar operator
i=1
(£} ® -+ ® o¥*(¢) from VeI to WOl is bounded (with bound M), where

()8 ® P (g) (va‘@---@mf")
= @O & (@ E)EH),

for all vt € V&I,

Remark 2.2.2 Actually, o/*t! = dex and (2.2.17) is Taylor’s expansion. It’s easy to see
that if @ : V — L(V, W) possesses all bounded continuous derivatives up to degree [p] +1,
then a is a Lip(7y) one-form (w.r.t p such that p <~ < [pl+1).

(Condition 5.2.1) Assume that (o, V&I, W ; j = 1,2) is admissible with respect to
P <7 < [p] + 1, where p and  are fixed constants such that [p] = 2.

(Definition 5.2.1) (Under Condition 5.2.1) Let X € $25(V). Then the integral of the
one-form « against the rough path X, denoted by Ja{X)dX, is the unique rough path
with roughness p in T®(W) associated with the almost rough path Y € Co(A, TR (W)),
where

Y= (X)X ) + 0*(X,) (X2,

Ysz,t =a'(X,) ® al(Xs)(Xf’t),
for all (s,t) € A. The integration operator J @ is defined to be the map from ©2,(V) into
Qp(W) which sends a rough path X into [ a(X)dX.
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Remark 2.2.3 The almost rough path Yoi= (1,Y.',1,t,1@2,t) can be found by using Taylor’s
ezpansion. On the other hand, let Z,; := f: o X )d Xy, and according to (2.2.4), we can
get

:
B o s ~m(%m§ [o! ) K)o ) (X0

1
) m(lg)n_,olz [ tity T Z st @ Zfz-h“]
r

. 1 1
=m(l.‘IDI)n_'0§[ (th 1)@0! (Xfl— )(th 1,t1) +f X)dX ®

o
o
I

a(X)Xm] ,
ti—y

Jor any (s,1) € A, where D= {s =ty <ty <--- < t, =1t} is a partition of [s,1].

(Theorem 5.2.2) (Under Condition 5.2.1) The integration operator f o is a continuous
map from 2,(V) to Q,(W) in p-variation topology.

§2.3 Local Time as a Rough Path

In this section, we will prove the main results of this chapter. Let’s first try to
define the integral [% g(z)d,L¥ pathwise for a continuous g(z) with bounded g-variation
(2 < ¢ <3). And we also take 2 < p < 3. We still decompose local time

LIF=I+ > L*, where L7 :=LF ~ Li. (2.3.1)
Tz
Here ﬁ;’f is continuous in #, and z},k = 1,2--- are the countable discontinuous points of

Lf. From Lemma 1.2.2, we know A{t,z) := ¥ Ef’: is of bounded variation in « for each
:r;a<m

t. So the key point is to define [*°_ g(z)d,L? pathwise for g{x) with bounded g-variation
(2 £ ¢ < 3). For this, we will use Lyons rough path theory.
In fact, we will prove that g(z) and L? can be regarded as rough paths. From [32],
generally, we cannot expect to have an integration theory for defining integrals such as
20, 9(z)d, LF. But using the method in Chapter 6 in {32], we can treat Z, := (L7, g(z))
together as a rough path and define f(z,y)(v, w) := (v,7v), so the integral will be the
second element of [° f(2)dzt. 1s easy to know that Z is of bounded §-variation in ,
where § = ¢, if ¢ > 2, and § > 2 can be taken as any number when ¢ = 2. Most of the
analysis in this section works for 2 < ¢ < 4, especially we will establish the convergence
of smooth rough path in f-variation topology for any 6 € (g,4) so to obtain Z lb and
Z? b 10 particular, when 2 < ¢ < 3, we obtain the existence of the geometric rough path
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X =(1,X1, X?) associated with Z. In the following we consider 2 < ¢ < 4 otherwise we
will explicitly say so.

Let [z, 2] be any interval in B. From the proof of Lemma 1.2.1, for any p > 2, we
know there exists a constant ¢ > 0 such that

E|Ly(b) — Li(@)P < c(b - a)? (2.3.2)

i.e. Ly(z) satisfies Holder condition (2.2.14) with exponent . Denote by w the control of
g(z), Le.

lg(b) — g(a)|? < w(a,b),

for any (a,b) € A := {(a,b) : &’ < a < b < z"}. It is obvious that wy(a, ) := w(a,b) +
(b—a) is also a control of g. Set h = 2 € (3, 3], it is trivial to see for any 6 > g ie. 8> 1
we have,

l9(b) = 9(a)|® < wi(a,b)", for any (a,b) € A. (2.3.3)

Considering (2.3.2), we can get Z satisfies, for such h = 1, and any 0 > g ie. b6 > 1

there exists a constant ¢ such that
E\|Zs — Z,|® < cun(a,b)*, for any (a,b) € A. (2.3.4)

For any m € N, define a continuous and bounded variation path Z{(m) by

wi(z) —wiefy)
wy(z*) — wn (:c}’il)A‘ 2, (2.3.5)

Z(m)g = Zyp +

ifz', <z <af fori=1,---,2" and AP*Z = Zam — Zym . Here Dy, := {z/ =23 <
o < .- < 2% = 2"} is a partition of [/, 2] such that wi(z]*)—w1 (&) = smwi(z’, 2”),
where w1(z) := w1 (', z). It is obvious that 2J* — 2" ; < F-w(z',2"). The corresponding
smooth rough path X'(m) is built by taking its iterated path integrals, i.e.

X(m)l, = / dZ{m)z, ® - ® dZ(m)a;. (2.3.6)

a<rﬂ1<---<mj<b

In the following, we will prove {X(m)}men converges to a geometric rough path X in
@-variation topology (2.2.7). We call X the canonical geometric rough path associated
with Z.

Let’s first look at the first level path X(m)] ;. The method and results are similar
$0 Chapter 4 in [32]. Similar to Proposition 4.2.1 in [32], we can prove
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Proposition 2.3.1 Let (Zs) be a continuous path, § > 1, X(m) defined as above. Then

forallne N,mw— E [X(m)ls 12,}:[ is increasing. Therefore

SUPZnTEIX(m :::jc lm“la hm En’YZ!X(m ’31; 11mk

n=1 k=1 n-.l

Proof: By definition, X (m)zp = Zyzp for any n < m and therefore

X(m):]ég_l,mg =Z a k=1, 2", for anyn <m.

Tr_1%)
Hence,
o 2"
21X (miyapl” = 3 18R

If n > m, then we may find a unique integer 0 < ! < 2™ such that zply) <xp_y <af <2,
so that
w(a}) — w(z],)

w(z) — w(z,)

X(m)ay = Zopn_ + Al'Z, j=k k-1

Therefore,
X (m)ﬂl'ci‘_p%‘ =2"""AT'Z, for any n > m.

Since for each ! from 1 to 2™, there are 2~ elements of {zf, 28, -, 25} in 2%, 2"),

2n 2m

1.4 -
- 1X(m)ly | al® = () e Y jar 2l
k=1

i=1
Observe that A*Z = AT1Z 4 A;’l‘f}Z, S0

2m
(Zm)g_IZ’A;nZ]H — (2m+1 a— 12( )9 1|Am+IZ+A;?f1ZfB

=1
< (2m+1)6 IZ(|Am+IZ|6 + |Ag;_-l_-llzlﬂ)
=1
2m+1
(2m+1)6-1 z |A;n+12rl9
=1
This ends the proof. ¢
Let X1, = Z, — Z,. Inequality (2.3.4) implies E\X b["’ < cwr(a, ). In particular,

E) "‘2-1,”2!9 < c( =) (2', 2")"8. Therefore for any 7y > 61, there is a constant C(#, c)
such that

oC
1 po
E Z n?Y Z ]Xén ,mn|9 < C(8,¢) Z:lnv(ﬁ'ﬁ)ha L (2, 2")P8.
=

n=1
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For such points {23}, k = 1,---,2%, n=1,2,- -, defined above we still have the inequality
(2.2.11), for any v > @ — 1, there exists a constant C1(8,,¢) > 0 such that

Esupzl E 7 1,:!:! -<- 0(63 7)E Z n‘r Z l :Dk 1,3}216
n=1
< CiB,70) Z ﬂ'r('é;)ha_lwl(ml,mﬂ)he- (23.7)
n=1

Since hf — 1 > 0, the series on the right-hand side of (2.3.7) is convergent, so that
supp 33 |X3,_, z,|% < oo almost surely. This shows that X? has finite f-variation almost
surely. Furthermore, by Proposition 2.3.1,

IA

0(6! 7)Esup Z n’ Z IX(m a:" :!:"(6

k—1*
n=1 k=]

17)E Z n’ Z ]le:_l,a:;:’a

n=1

C1{0,7v,¢) Zn”( =y (o, 2"V < 0.

n=1

1 ¢
Es:ip sgp ; IX(m)x:_l,Ei f

IA

IA

So
supsup§:]X(-m)il_bwlt9 <00, a.s.,

which means X(m), , have finite f-variation uniformly in m.

Next we want to show that under (2.3.4), X (m)}, converges to X1 ap in O-variation

distance. Note that if n <m, X (m)mn el = Xék eps and
if n > m, then I X(m)gn_ on - X xnie < 28~ 1(l)i’(vr'.rz)mn $n]9 +1X2 l’mn‘a)-
Therefore,

E Z n? Z I-X(m)m;: e :ck l,m"l

n=1 k=1

- B z n”Z[X(m),,k ot~ Xap_ ol

n-—m+1 k=1

IA

C Z n"'( )ha Ly (2, 2™

ns=m--1

[ 1, k-1
< 0(5;,; DR

n=m-+1
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where C' depends on 6, &, w1(2/,2"), and ¢ in (2.3.4). By inequality (2.2.11),

ES%Fle(m):lcg_l,mg Xmlz 1,"1!!]0

21’!
< C@,7) EZ n7 Z !X(m)mk vER 3k 1"*"1:'9
n=1 k=1
< ( koo

By Hélder’s inequality,

1 1
ESIII)I) (Z Ix(m):}:;_l,m; - le;_l,.m |6) f < (E S}i'l)p Z IX(m):}:I_l,mg Xa%;_l,mgl ) ‘
1 !

hence,
oo
EY sup( PBLLOLIES ") <c Z(—)—r‘ < o0, (2:3.8)
m=1 m=1

for k8 > 1, where C depends on 6, k, wi(z’, 2"}, and c in (2.3.4). So we obtain

Theorem 2.3.1 For a continuous path Z, with (2. 8.4), we have

E sup (Z [X(m)z,_, 2~ X; w:la)% < 00 a.5.. (2.3.9)

In particular, (X (m)} ;) converges to (X, o 3) in B-variation distance a.s. for any (a,b) € A.

We next consider the second level path X (m)i,b- From [32], we know if n > m,
X(m)zn  on = 220U AP ZYO2 iy < o,
1 1 P
X% o =5MZ@MZ 45 Y (APZ@APZ- APZeArZ)
rel=2m=n(k=1)+1
S0

X(m + 1)22_1’32 - X(m)zn n

Tg_19T
T
=5 ) (ARHZeAPT'Z-ATtZeARtlz),  (23.10)
=2m—n(p_1)+1

k=1,-.-,2" Similar to the proof of Proposition 4.3.3 in [32], we have

Proposition 2.3.2 Suppose Z, is continuous in ¢ and satisfies (2.8.4). Then forn > m,

21’1

8 1 e
D BlX(m+1)7 o~ X(m)Za_ oal? < Clmrm) 7 (2.3.11)
k=1

where C depends on 8, h, wi(2',2"), and ¢ in (2.9.4).
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Proof: If n > m, X (m)gz_ = 22m-n)-1(Am 7382 and since for each ! from 1 to 27+1,

1*

there are 27"~ clements of {zf,2%,--+, 25} in [+, "), we have

-3
S EX(m 41, p - X(my ol
k=1
i1

- Z on— m-—lE[22(m-—n)+1 (Am+IZ) ® (Am-HZ) 22(m—ﬂ)-1(AmZ) (AE”’Z)I%
I=1
2m+1

< C( )9 Z Qn-m-l(zm) ewl(xf, .?:”)ho
< C(___)Hzn-m—l 2m+1(2}n)h9
— C( )9 hﬂ( )hG—

< C(_)hﬂ 1

1 ae-a

SCGm) 7

where C depends on 8, h, wy(z/,2"), and ¢ in (2.3.4). o

Proposition 2.3.3 Assume 2 <0 <4 and g <8 < 4. Then form > n, we have

1.6, 1 1

2 g Lho-1o
BIX(m+ iy ap = Xy opl? < Ol EGmH + () H o) P-4 23.12)
where C' is a generic constant and alse depends on 8, h{= E)’ w1z, 2"}, and c in (2.9.4 }

Proof: For m > n, we have

E|X(m+ 1)5;;_ & — X(m)3
gm—ng
- 4lE] Y @pHzesptz-Aptizeaptiz)f
l—2’"-"(k-—1)+1
gm-ng,
- = Z E Z (A;?i'IZ'Am+1 F Ag}+lziA;?j-llzj)
-5:11 Lr=am—n{k—1)+1

2
30 z"i
=1k

(A;':ltll ZiAg:.+1 Zi _ Am+lzlAm+l Zg)
g(m=—n)p
- 1 Z Z [E(A‘rz?i-lZQAM+lze)E(Am+lszm+lzj)
= ;é—l Lr=2m-n(k—1)+1
+E(ATT Z AR Z) B(ATHL ZI AL 7 )]
2 . 2m-ny

- Z ¥ [E(Am“Z'A’”“ ZHYE(AZH Zi AT+ 71y
i.f#'}ilr_2""'ﬂ(k 1)+1
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+E(AGH AT 2B 2 A 2)]

r—1
Y [Bagt iz apt i agtg@)Aptg()
Ir

W] =

+E(ATH AT IE) (AR g(@) AL ()
1 e ] §
~1 2 [BAR L ARH ) ARt o) AR g (o)
ir
HAGHEEAZ L)AL g(2)ATH o(0))]
1 . )
+7 2 [(ARH @ AR g(@) BAR L ARt )
e
HAG 9(@) AT g B(AGH L AR Ip)]
-1 2 (A5 e@ARt @) BT LE AR EF)
Ir
HAGH 9@AR () AT LIARHE9)]. (2.3.13)
Let Xt = M; + V;, where M; is a continuous local martingale, V4 is a continuous process
with finite variation. So from [25] and [41], it’s easy to know that
~ 14
B o= (-~ (Xo-o)* - [1gxondtt,~ (V- )
t
= ¢(z)~ _/O Nx>apdMs — (Vi — Vo),
and using some estimate in the proof of Lemma 1.2.1, we have 7
E[A;';ﬂﬁmg;ﬂig]
= B|(Euert)) - L) (Eaegt) - Eulagtd))]
t
= B [(¢($glﬂ) — d(a5ts) - /0 l{xg;i_-;g Xs<$§’,‘iﬁ}dM3)

t
($lagily) — olagy?]) - ]0- Lt <x, <optiydMs)|

Elg(z551) — ¢lz5th)] - [o(z5t]) — p(airtd)]

t
FEIBERED) ~ 6| [ g x, comim b

IA

t
EIBGE) = 6D | [ Ly, caprnyddi

4
+E| /0 Laptt cx,captiy Lapticx, comttyd < M >4 |

r—2-° 2r—1 2H=2=

A

or—1 ~ Top_o) Ty~

2
+(mm+1 m+1)(mm+1 m+1 l]

1 1 1 1 1
O[5S ~ SRR @R - o) + (et — o) @] — 2t

2r—1 — Tor_3)?

2t-1 — Poi-2
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t
+E| / Lottt <oty {z;':’fésx,@z}*i}d <M > |

IA

1 3
G[ 2m+1) wl(m 'T”)z * 2(2m+1 )2,'_”1(93!, x”)z]

+E|/ 1{a:m+1<X,<:z:’“+1 1{93;: <X;<1’;n+1}d < M >3l

2r-1

{c(gm)z, if r £1,

02—,,}—.,_-1—, ifr=1

IA

(2.3.14)

Here C is a generic constant and also depends on wy(2/,2"). So

gm=n
> B L ARH LD E(AT g() AT g(z))
I,r=2m—“(k-1)+1

[ 7 2m+1 ) Tt 22(m—n)( 2+2h]'

The other terms in (2.3.13) can be treated similarly, therefore

E|\X(m+ 1% o — X2 < c[zm-ﬂ( Jren y ga(m—ny L _ 2k,

om+1 om+1 sk

Hence, for 2 < ¢ < 4, by Jensen’s inequality,

8
ElX(m+ 1) oo~ X(m)in ool

[

(BIX(m+ 0 ap = X () pl?)*

A

1A

O[qun(2m+1 )1+2h 22(m—n)(2m+1 )2 ]

—n}Z +1 3641
< 0[2(m n)4(2m+ ) h9+2(m "2(2m+1 s+2h3]

Ol G + () ) ¥0-¥9),

IA

where C is a generic constant and also depends on 8, h, w; (2/, z"), and c. o

Theorem 2.3.2 Assume 2 < g < 4. Let g < 0 < 4 and h € (0,1) satisfy h6 > 1. Then
there exists o unique X2 such that (1, X', X?) is a rough path and there exist o sequence
{X (m)}me=1 of smooth rough path such that

i

A%
Zsup(Z|X(m Tj—1,2y X;:‘a 1#1' ) _’0’
i==1

both almost surely and in L1(Q, F,P) as m — co. In particular, when 2 < q < 3, X is
the canonical geometric rough path associated to Z .
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Proof: The convergence of X (m)! to X! is Theorem 2.3.1. In the following we will prove
(m)? b converges in @-variation distance. By Proposition 4.1.2 in {32],

]
Esgp Z FX(m + 1)2‘;_1,1‘1 - X(m)gg_l,z; ’2
i

< C(ea 7)E (Z n? Z ]X(m + 1)3'" 19E X(m)mk 1,:1;",6’) E

n=1 k=1

(115

(i n’)‘ E (IX m + 1)"’3!: 1,.1:"10 + lX(m)a:k m"‘l ))

n=1 k 1

ko g
(8,7 Ezln‘Y’CZ[X(m"I'l) ,x}c‘_X(m)ig_l,xL‘ii

n= =1

= A4 B.

We will estimate part A, B respectively, First from (2.3.8), we know

Wl

A4 < o(BEmS Xma vy - xY il + Xy = Xy o)

n=1 =1

2 L
(2% S XOnt Dl )yl

n=]
hG 1 2 l M-»l
< gm znﬂ’( *

Secondly from Proposition 2.3.2 and Proposition 2.3.3, we know

B < cngnn%zm +0[ > itk SRS
< Ol " + " + (1)

as g <0< 4,and h8 > 1. So

) 1 o=y’ 1 .pe_p
Esupz IX(m + 1).?,';_1,.1.‘[ X(m)?:[._]_,z'g j 2 S C[(E’l_’l’;) 4 + (-2.7_;3') 2 8]‘
Similar to the proof of Theorem 2.3.1, we can easily deduce that (X (m)®)men is a Cauchy
sequence in §-variation distance. So when m — 00, it has a limit, denote it by X2, and
from completeness under @-variation distance (Lemma 3.3.3 in {32]), X2 is also of finite

O-variation. The theorem is asserted. &

Remark 2.8.1 We would like to point out that the above method does not seem to work
for two arbitrary functions f of p-variation and 9 of g-variation (2 < p,q < 3) to define o
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rough path Zy = (f(x),9(z)). However the special property (2.8.14) of local times makes
our analysis work. A similar method was used in [92] for fractional Brownian motion with
the help of long-time memory. Here (2.8.14) serves a similar role of the long-time memory
as in [32].

In the following, we will only consider the case that 2 < ¢ < 3 and take ¢ < 0 < 3.

As local time Lf has a compact support in = for each w and ¢, so we can define
integral of local time directly in R. For this, we take [z’,2"] covering the support of Lf.
For 2 < 8 < 3, recall the definition of the one form f : R? — L{R?, R?),

F(2)E = (v, yv),

where z = (z,) and £ = (v,w). So for &1 = (vy,w1), & = (v2, w2),we have

F@UE © &) = df (2N &)er = ( 0 ) )
vz
Define

Y = F(Za) 2Ly + F2(2.) 22,
Y2 = (f(Z.) ® f(Z) 22,

TFrom Chapter 5 in (32}, we know that ¥ = (1, ¥}, ¥} is an almost multiplicative func-
tional of degree 2 and therefore one can use the almost rough path to construct the unique
rough path [*°_ f(Z)dZ with roughness § in T{?(R?). In particular,

10:0 f(Z)dZI = m(lblgl—ooz': [f(zxi—l)(zii-l,xi) + F(Zﬁi—l)(zgi-l,m()]’

where the limit exists so the integral is well-defined. Note
F2@)(2y) + P22 = (I - L2, gla) (T - ID)) + (0,(224)21),

where (ZZ)2,1 means the lower-left element of 2x 2 matrix ZZ;. Note in our case formally

f_ Z f(z)dz" = ( f_ °:o diz, f_ Z g(cc)dﬁf) :

the rough path

In particular,

[ ey~ lim [ Selei)EE - ) + (2 )]

m{D)—0 :
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The limit exists. Note it is clear to us that the Riemann sum E 9(@im1) (LT — L7 itself

does not have a limit as m(D) — 0. This is the very reason we need to use Lyons' rough
path integration theory. Here we still denote the integral by 2, g(z)dL?,

Note from Theorem 5.2.2 in (32], { £ is a continuous map from Qg(R2) to 25(R2 }in 6-
variation topology. Let Z,(z) := (L2, ga(x)), Z{z) := (L2, 9(z)), where g,(-) is of bounded
g-variation uniformly in n, 2 < ¢ < 3, and when n — o0, g,(z)} — g{z) for all z € R.
What we should prove is that rough path Z,(-) = Z(-) in 8-variation distance. Repeating
the above argument, we can find the canonical geometric rough path associated with Zn
Is Xn = (1, X}, X7), the smooth rough path is Xp(m) = (1, Xn(m)Y, X, (m)?). Actually,
in {32], it shows that (X))}, = (£} — 12, gu(b) — gn(a)), Xl = (L% — L8, g(b) — g(a)),
50 (Xn)iy — X!, in the sense of uniform topology, and also in the sense of G-variation
topology. As for (X,)2,, we can easily see that

()2, - X24) < WX 2y — (Xn(m))2,] + (Xn(m))2, — X(m)Z,l + [X(m)2, - X2,).

From Theorem 2.3.2, we know that the first and the third term on the righthand side is
smaller than ewy(a, b)%, for any small &€ > 0. The second term can be easily dealt with
from the definition of (Xn(m))2, and X (m)2,. It is convergent in the f-variation topol-
ogy waiformly in m. So f f(Z,)dZ, — [ f(Z)dZ in 6-variation distance a.s.. Therefore

JF(2.)dZ} — [ f(2)dZ! as., ie. [ % In(B)dLE — [ g(z)dIZ a.s., when n — oo, As
for the jump part, from Lebesgue’s dominated convergence theorem, (% gn(z)dh(t,z) —
S2oc 9(2)dh(t,x), when n — oco. So we can get o0 9n(@)LE — [ g(z)dL¥ when
n —~ oo. If g(x) has discontinuities, we can use the method in [49] to deal with. Finally,
we deduce an extension of Tanaka-Meyer’s formula. A similar smoothing procedure with
{11} can be used and the above convergence is enough to make our proof work.

Theorem 2.3.3 Let X = (Xy)i>0 be a continuous semimartingale and f:R— R bean
absolutely continuous function and have left derivative V= f(z) being left continuous and
locally bounded. Assume V= f(2) is of bounded g-variation, where 1 <g <3, then

i =)
f(Xe) = f(Xo) + f V™ f(Xs)dXs - ] V= f{x)d, LS. (2.3.15)

Here the mtegml oV f(2)dzL¥ is a Lebesque~Sticltjes integral when q = 1, ¢ Young
integral when 1 < g <2 and @ Lyons’ rough path integral when 2 < g < 3 respectively.

Proof: Similar to the proof of Theorem 1.3.2.

Remark 2.3.2 This chapter is included in paper {13].
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Example 2.3.1 Consider a function f(z) = z3 cosi for x # 0 and f(0) = 0. This
function is C* and its derivative is f'(z) = %m% cos% + \/Esin% for z #0 and f'(0) = 0.
It is easy to see that f' is not of quadratic variation, but of p-variation for any p > 2. So

Theorem 2.5.8 can be used, while either Tanaka-Meyer formula or Theorem 1.8.2 cannot
apply to this situation.
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Chapter 3
Two-parameter p, g-variation Path Integrals

§3.1 Introduction

LS

In this chapter, we will consider how to define the integral of two-parameters, i.e.
m’i” f;ﬂ F(z, y)dy Gz, y) just like Young integral without any measure. Young (1938)
[51] considered this problem, but his conditions are strong and difficult to check. It seems
to us that the theory of two-parameter @1, ¥;-variation (p, g-variation as a special case)
integration has not been investigated and developed well in the literature. Inspired by the
work of Young [51] and Lyons and Qian [32)], in Section 3.4, I give a new condition for
the existence of two-parameter Young’s integral (Theorem 3.4.1). In Section 3.2, I give
some notations and introduce Young’s two-parameter integral. In Section 3.3, I give an

example of p, 1-variation (p > 1) function.

§3.2 Doefinition of Two Parameter p, g-variation Path and Young’s
Theorem

In this chapter, the following notation is used: ®, ¥, ®,, ¥y denote continuous real
valued convex functions on [0,00) increasing and vanishing at 0; @, ¥, (1, 11 denote the
inverse functiong of ®, ¥, ®;, ¥y, respectively; w, x are continuous increasing functions
of one variable.

Before we proceed, we need the following definition.

Definition 3.2.1 We say F(z,y) is of bounded ®- and B-bivariation, if

N

sup  sup Z ‘I‘(IF(ﬂTk,’Y) - F(wk—l’”f) - F(mk: 6) + F(xk—h J)I) <00,
E ’T:GEiyrly"] k=1

NI
sup sup > U(IF(a, ) — Floyy-1) — F(B,m) + F(B,-1)]) < co,
B opels a1
where supp runs over all finite partitions of [x',z"], supp runs over all finite partitions
of /,3"], namely E ={¢' =zo<mi<---<zy=2"}, B ={¢y =< <<
yn =y"}
We say G(x,y) is of bounded 1, ¥;-variation in (z,y), if

N’ N
sug 211‘1 (Z (I’l(lA,;AjGI)) < 00, (3.2.1)
ExE

i=1 i=1
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where
BiliG = G(@i, 1) — C@i-1,%5) — C(@i, ¥5-1) + C(®i1, Yj—1),

and supgy g Tuns over all finite partitions of [z, z") x fy/, y").

If 1 (u) = u, we call G{z,y) is of bounded B1-variation in (z,y). If $1(u) = u?, ¥y (u) =
u?, p,g 2 1, we call G(z,y) is of bounded p, g-variation in (1), Ip=g=1, G(z,y) s
of bounded variation in (z,y).

We quote the theorem of two-parameter integral of Young (1938) ([51)) here.

(6.3 Theorem): Suppose given a convex & and a convex U with the inverse ¢, %
{all continuous and strictly increasing as usual); monotone increasing ¢ and o subject
to g(u)o(u) = u; monotone increasing A, y such that

Y dlelt/mIN1/m) <00 and Y oRH(L/mu(1/n) < oo @.22)

and monotone increasing w and y given (monotone increasing). Then given & > 0, we can
determine finite sets £ and £’ of values of z and y on [z, ="} and {y, 4] respectively so
that for every function F'(z,y) whose total ®- and U-bivariationsin z and  repectively,
are less than fixed constants P and @, and for every function G(z,y) which satisfies the

condition
[A8:4;G| < AAwu(Asx), (3.2.3)
we have
[ [ e - st i Gl <,

as soon as Z and Z’ include respectively the points of E and of E among their points
of division. Here Aw = w(zi) — w(zi-1), Ajx = x{yy) — x{yi-1), Fz z:(z,y) is the step
function of F on Z, Z'.

Remark 8.2.1 Young's condition is very strong and the class of functions that satisfy
Young’s condition is restricted. In particular, Young’s condition does not seem to include
the class of functions of bounded variation and many important examples. We give a new
and weaker condition for the integration in Section $.4. We will use Lyons’ idea of control
Junctions to simplify our proof. One can see our condition is a natural extension of locally
bounded multi-dimensional L-S measure.
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§3.3 An Example

In the following, we will give an example of p, 1-variation (p > 1) function..It seems

difficult, if not impossible, to check Young’s condition (3.2.3) for this example.

Example 3.3.1 Consider

f(%y) =:cysm(§ + 5): 0<z,y<], f(O,y) =f($,0) =f(0?0) =0.

This is a continuous function of unbounded variation but of bounded p, 1-variation {p > 1).

oy n - . g _ 1 1
To see it is of unbounded variation, we take the partition EyxFEy = {0 < FATIT <= <
<L <1L,0<1},

Z |AzA;f| = Z f:c:szn(;cl—l +1) - a:,‘_lsz'n(wl—ll- + 1)

] i i-

1 L T L
= zi:|m—_i_-—%—_—lsm(zfr-[— E)— lsm(m)l
- Z‘“‘“‘l_—

—ir+ 5 -1
= OQ_

To see it is of bounded p, l-variation for any p > 1, consider any partition E x E'

> olAiA P
43
1 1 1
ziyisin(— + —) — zyyysin(—- + —
iZJ: i (-'L'i yj) i—1Y (-’Bi—l -)
. .1 1 1 P
—Tili_15I0 + —) + 2 1Yi-18in + —
i (55 yj—l) =151 (mi—l yj—l)
. ) 1
%; i [mism(; + —') wm,_lsm(wi_l + )]
1 1 I P
—Yin msm—-+— —m_1sm—-—-~+—
-1 [misin( yj_) i-tsin( 4 )]
1
5 |pste: — meonsin + = )+ygmz_1[sm(— —)—sm(;m+—)]
4 i-1
i1z — = )szn( + - )
Yi—1\Ti — Li-1 i ¥i1
L .1 1 P
—Yi-1Fi-1]| 80 + —)— sin + —
101 [sn( - “) (xung]

(2 — 2i-1 [y,sm( +—) Y- 1sm(—+—)]

36




Loughborough University Doctoral Dissertation

+Zi [yj((sz'n(-—l—. + —1—) - sin(w—l— + -}—))

-—yr1(3m('— + ;I;—) - sm(-—-——- + ——-)}] ‘P

Ti-1  ¥i-1
= Tl aenlog-wgsin( + )
+yj_1(sz'n(~£_1: + 5}7) - sin(;l—i + 53—1:))]
i1 [(’!Jj - yj-l)(sfﬂ(;.l; + yij) B Sén(}f: * yi:'))
+yj,1(3in(&“ + 51;) - sin(;}: + -3;1;)

~sin(- + é:T") sin(=—+ El_))]l

cp{ Z l(a:; = Zi3)(yy - %‘—l)sm(;; + a;)’

+§:]y3-1(:c, ~e)(sin( 4 ) = sin( + )
4

+ 3 Jooma s — - 1><sm<—-— _-sm(-—~+~>)|
i

+y, 'wi.-w;-l(sfﬂ(; + ‘T) - Siﬂ(—_— + ‘T)
i 4=
._.5‘2?’3(—: + ;———) + sm(—-: + :-U-_?_—_1))l }
= (I + IT + IIT +1V),

where ¢, 18 o constant. It’s easy to see that

I<d (mi— i)y —y-1)P S L.
iy

For I1, as |sinz| < z, so

11 11
Ir <ot (i — mq Pisin{— + —) — sin{— + ——
R caPJsin( + =) = sinl + )|

21,1 1 _ 1
~1 Ti 12 Yi=2 . Vi Yi-1
=99 ny_l(mg-—mg-l)p-lkos ’2 12 gin 3 l
21”*123;”_1(31—%-1)? _"""'il‘
i1 W
1
- Dy D (7 - ).
Yi—v Yy
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It is obvious that

Z(as,: - .’Bi_l)p < CC.

H

And also because

nyi(“l—"l—) < Zyp— e

¥i-1 Y yg -1
= Zyﬁ-ﬁ (5 = yi-1)
3

1 1
< P2y = ——, 3.3.3
< [vta= = (33.3)

So we get IT < oo. Similar to the discussion of II, we can also prove thet III < oo.
About IV,

IV
1.1 .2 1

> te—=+ = : _
= E ly"_ ,2003 L “’*2"1 Vi gimy B Biz

14 1 4.2 1__1

Ti Tl W=l B Bi B
2 2 ,

1 1 2 1 1 2

£ + i1 + Y ppgZi. iz + #5-1 |P

2 2

—~2¢cos

1 _ 1
- i Td Fi—1
= 2*”2 xf_ly;’_llsm 3
5]

b4

feos

1

1 _ 1
- 2pzxf_1yf_1]sin-_—“ k= l”
Li

I - 2szn —3sin

72 Yal otz ) 3G~ )

= 9%-2 P (— - = > (.
;ﬁ_l(wi_l xi);y;’.l(yj_l yj)

22p—2

(p-1?2’

IA

<

following from a similar ergument as in (3.9.3). So the function f(z,y) = mysin(;]; + %),
0 <zy <1, f(0,4) = f(z,0) = £(0,0) =0, is of bounded p, 1-variation for any p > 1.
Moreover, from the above proof, we can see for this function f(z,y) on (z,y) € [0,8] %
[0, 82], its p, 1-variation tends to O when either 6, or &y decreases to 0. <
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§3.4 Two-parameter p,q-variation Path Integrals

We say a function f(z,y) has a jump at (z1,91) if there exists an & > 0 such that for
any 4 > 0, there exists (z2,y2) satisfying max{|z; — 22|, |1 — y2|} < 8 and |f(z2,v2) ~
flzn ) — flza, ) + flz,n)] > e For a function G(z,y) of bounded @, ¥y-variation,
for any given &€ > 0, it is easy to see that there exists a d(g) > 0 and a finite number of
jump points {(z1,41),*» (Tng, Ymo)} such that |G(z, y} — Gz, §) — G(&,9) + G(&,§)| <
wheneves s[5l 731} < 500 5,61 {1+ e} = a5 [7.410{st ) =
0. Dencte Ho x H} = {Z1,-*,Zng} X {41, **,¥ms}. In the following, we assume the
following finite large jump condition: for any £ > 0, there exists at most finite many points
{21, ,an }, {¥1,- " ¥m,} and a constant §(¢) > 0 such that the total &, ¥;-variation
of G on [z,2 + 8] % [y, 4] is smaller than ¢ if {z,z + 8] N {21, -, Zn, } = B, and the total
$1, U;-variation of G on [#', 2] x {y, y+4] is smaller than £ if {y, y+ )N {y1, "+, Ymy } = 0.
Denote H x H' := {z1, - ,&p, } X {$1,"**,Ym, }- It is obviously that H x H' > Hy x H}.
There are many examples of bounded ®,, ¥;-variation functions that satisfy the finite
large jump condition. But it is not clear whether or not the bounded ®,, ¥;-variation
condition implies automatically the finite large jump condition in the two parameter case
although this is true in the one parameter case.

For the partition E x E', denote by m(E x E') the mesh of the partition.

We need the following simple inequalities: Let f be a nonnegative and nondecreasing

function, then

;_%2”'?(2,9) <ﬂ;f( <§02f’f (3.4.1)
and for any v > 1,
Z2p'1f( 7)< Z f( ) < Z 2 f(= zp (3.4.2)
p=v m=2v-141 p=v-1

if the series Y oo—q f ( =) is convergent. These inequalities were also used in the proof of
Young’s main results. We listed them here only for the purpose to make the proof of the
following theorem easier to understand. The proof is elementary and omitted.

First, if F(z,y) is a simple function, say

M M

F(ar:,y) = ZZ F(-Ti-ly yj——l)1{m¢-1<x$m¢,yj_1<y$yj}’
i=1j=1

as normal we can see that the integral of the simple function can be defined as
2 yn
f , f | F2,y)dzyGlz,y)
o Jy
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N N

30N F(wio1, y5-1) (G, 45) — G(#io1,95) — G(@i, yj-1) + Gl@i-1,¥5-1)) -
i=1 =1

Theorem 3.4.1 Let F(z,y) be a continuous function for which there erist continuous

increasing functions w(z), x(y) and such that for any z1,22 € [z, 2"}, 1,2 € [, "],

|F(z1, 1) — Fw2, ¥2)| < @lw(zz) — wz1)) + ¥(x(¥2) — x{y1)). (3.4.3)

Let G(x,y) be of bounded 01, ¥;-variation in (x,y) and satisfy the finite large jump condi-
tion, where ¥y, ®) are as ot the beginning of Section 3.2. If there exist increasing concave

functions p and o subject to p(u)o(u) = u such that
1 1 1 1
S eIl < o (349
then the integral

-'E” y”
/, j, F(a:,y)dm,yG(:r:, y)
& ¥
N N

= m(ExE’)—»OZ;JZIF(wz lsyg—l)A A G (34.5)

is well defined using the partitions E x E' of [z',z"] x [t/, 4] which include the finite sets
H x H' defined above, i.e. for any given € > 0, we can determine finite sets H and H' of
variables © and y respectively such that

[ j Plo,0)dayGlm,3) ~ 52 37 Flaiot, 150G < 6

i=1j=1
Proof: For any partition Ex B i={¢' =zo<m1 <--<zay=z"¢¥Y =<y < <
yne ="}, consider '

N N’

2 (@1, ¥i-1) (s <a<oigs—s <y<u; b
i=1 j=1

Fgp(x,y):
then

xﬂ
SBE) = Sp(BE) = [ [ Fopl@)iayGlay)

N N
33 Fmi, yi-1)A:4,G.
i=] j=1
From the assumption of F,
IF(!Bk,y) - F(mk—l: y)l < Sp(w(-’ﬂk) - w(mk—l))) k= 1,2, 3N5
|F(zy ) ~ Fmy-1)| < ¥(x(w) ~ x(yi-1)), L =1,2,--+, N
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Obviously, if yj_y Sy <yj j=1,---, N,

[Fe,e(2k,y) — Fgp (Th-1, )}
= [Flzg,yj-1) — F(@r-1, yj-1)|
< (P(w(wk) *w(wk—l))i k= 1a21"'1N}

and ifz; 1 <z<x2i=1,---,N,

\Fe. 5 (2, %) — Fe.p{z, y-1)i
= |F(@i-1,21) — F(2iz1,81-1)]
< Plx(w) - x(m-1)) 1=1,2,---,N".

Let P := w(z"), @ := x(y"). Because w and x are both continuous increasing functions,
we can define a sequence of finite sets B, := {2’ = zo < 21 < +++ < z» = 2"} such that
w(ziy1) — wlz;)) = 27PP, i =0,---, 27, E;:={y =yo <y < <y =y"} such that
Xy} — x(y;) = 279Q, j=0,---,2% It’s easy to see B, C Epyy, E, C Efyy. We will
prove our theorem in four steps.

Step 1: Note

S(Ep+1y Egq1) — S(Ep Byyq) — S(Bpi1, By} + S(Ey, E,)
= > > [F(ari—hyj—ﬂAiAjG
§=1,3,52PH1 1 §=1,35 2911
+F(@i-1,45)A483401G + F(24,3;) Ai+18 411G + F(zi, yj-1) A1 A5G

—F(2i-1,7j-1) (G(wm,yj) ~ G(zi-1,%j)

—G{@ip1,¥5~1) + G(Cﬂi-lsyj—l))
—F(wi1,y;) (G(xiu, Yi+1) — G(Zit1,5)

—G(2i—1, ¥541) + G(wi—x,w))
—F(z;_y, yj-l)(G(mt':yJ’+1) — G(zi-1, Y1)

-G (x5, Yj-1) + G(xi-1, ’9’;‘—1))
—F(zi,95-1) (G(ﬂiiﬂ,wﬂ) = G(i+1,¥j-1) = Glzi, Yj41) + G2, %'-1))
+F(zi-1,7-1) (G($i+11 Yit1) — G(@iq1, Y1)

~G(zi-1,Y541) + G(mi-hyj-l))]
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= > > (AiAJ'F ) (Ai+1Aj+1G)- (3.4.6)
i=1,3,5.-,2011 -1 j=13 5...29+1 -]
Because
QA F| < [Fzi,93) — F@ieny)l + [Pz yi-1) — F(iey,yi-1)]
< 2p(2~®HIP) <2Cp(277P),
and also
lAAGF| < [F(zi,y5) — Fzo yi-1) + [Flzic1, o) — Flzic1, y5-1)]

< 2(27Q) < 209(279Q),
it is easy to see
|8:8sF| < 20[(277P)lo[(27Q)] (3.4.7)

for any increasing concave functions p, o satisfying g(u)o(u) = u.
For the function G, let M be its total &, U;-variation, then

S (}2: @l(mmjai))

i=1 i=1

A

M.
It is trivial to see that,

2—q§:g‘~,1 (iq)l(]AiAjGD) < 279ML (3.4.8)

=1 i=1

As ¥ is convex, so

29 2r 29 99
270y Iy (Z‘i’l(IAiAle)) > 0 (2‘QZZ¢>1(IAiAjGD)- (3.49)
i=1 i=1

i=li=1

It turns out from (3.4.8) and (3.4.9) that

22 2
¥, (2-422@10;&@@[)) < 27IM. (3.4.10)
Jj=l4i=1
This leads to
99 9P

270) 3 Bi(lAAG]) £ 9u(277M). (3.4.11)
j=li=1
This is equivalent to

29 2P
27P279% "N E(lAAG) £ 2Py (279M). (3.4.12)
j=14=1
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But, by the convexity of ®,, we have

29 or 99 9P
2772713 S "8 (|AiAGl) > ¥y (2'?2-422|Aiaja|). (3.4.13)

j=li=1 j=li=1

So it follows from (3.4.12) and (3.4.13) that

og¢ 2P
P (2—P2‘QZZ|AiAjG1) < 277y (27IM). (3.4.14)
j=1i=1
Therefore,
2¢ op
2772793 "N IANG] € (2P (27IM)). (3.4.15)
F=1li=1
So
2¢ 9p
DS TIAAG] < 2P (2P (27M)). (3.4.16)
j=1i=1

By the same method, one can see that

> Y. 1AinAnG| < 2PV (2 Py (27UM)). (3.4.17)
J=1,3,5,2041-1 (=135, 20+ -1

"Therefore, it follows from (3.4.6), (3.4.7) and (3.4.17) that there exists X > 0 such that

IS(EP+11 Ej41) — S(Epr1, Ey) — S(Eyp, Eyy)
< K2PY90, (2P (279M) el P2 7)o [ (Q279).

Step 2: Let’s prove that
p’Li_n'lw S(E + Ep, E' + Ey) — S(Ey, E) = 0. (3.4.18)

Denoting by i, I = 0,1,---,L (3, » = 0,1,---,L’) the distinct points of E, (Ep) in
increasing order, and by Zr-14, 1 =0,1,---, M (yn-l,.?" J=0,1,--- 1M;z) those of B + By
(E' + Ejy) lying in the interval z;_y <2 < 2 (Yn-1 ¥ < yn) With 710 = 241, -1, =

2y (Yn—1,0 = Yn—1+Yn-1,441, = Yn), We have

S(E + Ey, E' + E.) - S(E,, E})

(S(E+ By, B + By) - S(B + By, Ep)) + (S(E + By, B}) — S(Ey, Ey)
L M, L' M,

ZZZZ{[F@-‘M: 1 Yn-1,4-1) = F(@i-1,i-1, Yn—1)]

=1 i=1n=1j=1

i

il
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+[F(ml—-1,i—11 Yn—-1} — Flz-1, yn-l)}}{G(mt-—l,i, ?Jn—l,j)

~G(T1-1,i-11Un-1;) — G{&1-1,4, Yn—14-1) + G(mz—l,i—l,yn—l,j—l)}
< ANN:[$(279Q) + (2P P)) - max |G|

— 0, asp, ¢ — co.

Here Ny, N> denote the number of points of E + Ey, E' + Ey, respectively.
Step 3: Let F(z,y) vanish for £ = 2’ identically in y, and for y = ¢/ identically in

T, S0

FEoEl'(m y) F(m,y) 0 FEE’($1y) ( ,yf) =0,
Fry,pr(z,y) = F(',3) = C.

If this is so, note that S(E, B') = SFp p (E + Ep, E' + E}), then from Step 2, Step 1 and
(3.4.1),

|S(B, E')|
|S(E, E') — S(Eo, B') - S(E, E}) + S(Ey, Eb)|

= P};iinoo [SFE,E’ (B + Ep, E + Eé) - SFE,Ef (EP’ E’) + SFE & (E E’

=720 (B0, By) = Sy, 5, (Byy o) + Sy . (Bo, BB
= | lm [SFE,E,(EP,E;)—SFE'E,(EO,E;)—-SFE,E,(EP,E{))

Pg—0
+5F 5 (Eo, Ef))] ’
e}

= ’ > [SFE,E, (Ep+1, Bgs1) = Srp g/ (Epr1, Ey)
7,9=0

—SFE,E’ (Ep, E&+1) -+ SFE,E’ (Ep’ E;)] ‘

3 KPP )o@~ (2P (2-020))
0,g=0

< 4K Z el (= )]0[¢( )1901( 1I)1(---1Vl')) (3.4.19)
mn=1
Let For y(2,y) := F(z,y) - F(2',y) ~ F(2,y') + F(z', /) and replace F(z,y) by Fy ,(z,7)
for 2’ <z < 2",y <y <y’ This alteration doesn’t affect double difference of F.
Therefore we may suppose that F(z,y) vanishes identically on the lines z = 2’ and y=1¢
as above,

Step 4: We determine a set of finite points H, x Hy={zd'=zp<a1 < - <21 =
gy =yo <y < <yp =y"}, where L < 2-2%, I < 2.2¥ such that in the rectangle
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[z1—148, 21— 8] % [yk—1+6, Y — 8], |AiD;G| < e(w, ') for any 0 < 6 < %min{rninlgSL{ml—-
x1 ), mim<r<r {31 —yi-1} ). Moreover, in the interval [/, 2"} x [yr—1+6, yr — 8], x(ve—&)—
x{yp_1+8) < Q-27V, the total ®;, ¥; — variation of G is at most M -2~V in the interval
(#1146, 7 — 8 x /', ¢"], w(z1~ ) —w(xi—1 +8) < P-27Y and the total $1-variation of G in
« for the given partition of Hy, of [/, 5] is at most 27L’4f; (4 M). Here, the first and the
third statements are obvious, and the second statement follows from the finite large jump
condition. The last one can be seen by observing that EJ L (Zi_l @l(lAiAle)) <M
is equivalent to 23_1 YE #1(AA; GG < Ly (& 77M). More generally, for any partition
E = {z},2},--,z}y}, we have T, TF; ®,(|AJA;G|) < L'y (FM). Here ALA;G is the
double increment of G on (2j_;, ;) X (1j-1,7;). We can make E include H, among their
points of divisions and let Ej—; = {#-1,,%i-1,2,"* -, %i-1,5,_, } denote all the points in F
falling into the interval (zy—1,x;) {{ = 1,2,--., L). We can certainly make

N 1t
> Y o E(IAlAG) < 2‘”L’¢1(—— (3.4.20)

i=1 j=1

where Aj_; ;A;G is the double increment of G on (2{_y; 1,%]_14) X (¥i-1,%). In fact
E;_1 can be any partition of [2;_1 + 6, z; — 6] for any sufficiently small é > 0.
We need to prove that for any ¢ > 0,

|S(D, D'y - 8(D,D')| <&, (3.4.21)
as long as D x I, and D x D’ include H, x H,. Observe that

|S(D, D') — (D, D')|
|3(D, D) — 8(D, D" + 18(D, D) - (D, D)

"
l Ll '/,yr (FD'ﬁr - Fﬁ,D')danG(m: y)l

3'.” yﬂ‘
+ [ fy (Fp,pr = Fp,0' )y G(2, )| (3.4.22)

A

IA

First, since Fy, N

(3.4.1), (3.4.2), and the concavity of g, o, ¢, ¥, ¢1 and 3, we obtain for any sufficiently
small § > 0,

— Fp p vanishes identically in , when y = y—1, from Step 3 and

|S(1") ﬁf) S(D,D")

Ye—3
= ; — Fs f d G z,
- k-—l '/ /yk 1+6 DD DD) G ()
< Sk 3 de s Dpnibnctevan
B k=1 mn=1 m ¥ n t m
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1A

Z 4K Z Z Q[‘P(i )|2% [¢(2_(”'+q)Q)]qo1[-:;¢1 (2~ @+ ppy]

n=1 q_G

- L’4Kz z elo( 2 oy QN[ S (2000

10665 % el ol Dl u

=l megv'-14

S BKEVH@VIIMVDY. > de(hleDlalie )
A=l panv'-11

< gy, (3423)

IA

where g,y — (), as ' — oo.

Second, since Fp p = Fp,pr vanishes identically in y, when 2 = Zi~1. From the
discussion above and (3.4.20), we know for any partition E, = {z1,22,--+, 220} of [27_1 +
6,71 ~ &), and any partition Eyf = {y1,ys,- -, yae} of [¢/, 3], (3.4.11) bacomes

29 2v¢

270 3B (|AAG]) < 27y (27IM). (3.4.24)

j=li=1

So from Step 3 and (3.4.1), (3.4.2),

'_; j By — Fo.pr My Glar)
< 4Km;_19[so(——)la[¢( PACRNESYS
< 4K n;lq;]qu[w(z 4+ PYjofy(2 eal2” <”+q>w1(-M)]
= 4K2™Y Zl§2qg[¢(2‘qP)]a[¢( Ner[2” "¢1(-—M)]
< sk 3 P> NI )

And also from the concavity of g, o, ¢, ¥, 1 and 41, it turns out that
1$(D,D') - S(D, D")|

=8 py”
f (Fp pr — Fp,p )Yz y Gz, y)
zy_1+8 Jy !

IA

=1
00

< 685 5 oo EewEatutin)

m=1n=pv-141
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o3 o0

< BEEV@VMVD Y. > delDlolColleliti()

m=1n=2v-141
< &y, (3.4.25)

where g, — 0, as v — oo.

Thus we can get (3.4.21) from (3.4.22), (3.4.23) and (3.4.25), as v,v' — oo, which
means §(D, D) is a Cauchy sequence, so m(Dlizg 10 S(D, D') exists. In the following, we
show the limit is unique. For this, let D x Df, D2 x D} be two arbitrary partitions of
[2,2"] x [/, ¥"] including H x H’. From the above we know,

|S{Dy U Dz, D} UD}) — 8(Dy, D{)] — 0, as m(D;y x D}) -0,
|S(D1 U D2, D} U D3) — 8(D3, D})| — 0, as m{(D2 x D) — 0.
Therefore,
: D 4 = 11 !
m(Dlli%;)—.o Sy, D) m(D2 xnﬁé)_*OS(Dz, 2)

= i Dy UD,y, D u D,
m(D1><Di)mﬁ1szD;)...oS( 1L, M 2);

that is tosay, lim  S§(D,D’) is unique, and we define it as
m(Dx D}—0
x”

M f;"," F(z,y)dz4G(z,y). So we proved our theorem. o
In the following when we say an integral is well defined if it is in the sense of Theorem
3.4.1. The following convergence theorem plays an important role in establishing Itd's

formula.:

Theorem 3.4.2 Assume Fy(z,y) and F(z,y) are continuous functions and satisfy (3.4.3)
and for Fy uniformly in k; G(z,y) and Gi(z,y) are of bounded ®,, \Iy—variation in
(x,y) uniformly in k and satisfy the finite large jump condition, where ®,, U, are convex
Sunctions. If there exist increasing concave functions g; and o; subject to py(u)oi(u) = u,
i=1,2, and o positive number § > 0 such that

1

3 ale(E oW Ol ()

+ 3 el () Hoalb (= Nl ta( )] < oo, (34.26)

> arle( ot eI ()

n

+ el ()Tl ()] < oo (3.4.27)
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and let Fy(z,y) — F(z,9), Gi(z,v) — G(z,y) as k — oo uniformly in (z,y). Then we

have

tH

2 yl.l 3:” y”

L [ aevdcen— [ [ rend,oe), (3.4.28)
xl yl :ﬂ’ yl’

when k — oo.

Proof: First note that from Theorem 3.4.1 under the above assumptmns the integral
fx, Iy v Fy(x, y)dg 3 Grlz, v) and f y Flz,y)dy ,Glz, y) are all well defined. It's easy

to see that
l .Z'" yﬂ xh’ ylf
s\ [ [ Revdsen- [ [ Fepi,oey)
z:f ,y.n’ ml yl

f: f; Fk(xay)dm,y%(Gk(w, y) = Gz, y))
+_/;c ]: %(Fk(m: y) - F(.Z', y))da:,yG(-’E, y)

We study % of the integral only for convenience in what follows. First consider the integral
f:'" f;” Filz, y)dsy(Grlz,y) — G(z,y)). Note there exist constant Py, Q;, My, Mz > 0,
which are independent of £ such that for any partition E x E'defined before

Nt N

>0 (Z @l(mii\jakl)) <My, (3.4.29)
j=1 =1

NI

PR (E 21(|As4; Gl)) < M. (3.4.30)
j=1 i=1

For the small 6 > 0 given in condition (3.4.26), from the convexity of &, and ¥ and
Gr — G when k& — 00, we have

Z ¥y (Z ‘1’1(IA3A32 (Gr — G))1+6))

3:1 i=1
= ;\pl (,Z 21 () Az (G - O - 1D (G;c ~ G)l))

< :VZ;‘I’I (;{AA (Gk~G)|“<1>1(!A Ajs (Gk—G)I))

< Ng;mpl (maxiA,Ajz(G‘k - G)['5§1:<I’1 (|A A“,z(G:c - G)i))

< imﬂlﬁ D5 L - oy, (2@1( |AAGi| + = iAA G’i))

j=1 i=1
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N’ N
1 1
< Hifj.x IA,‘,Aj(Gk - G’)!‘s Z \I-f]_ (Z (5@1 (IA;‘AijI) + §@1(|A,AJGI)))
) j=1 i=1
< El(k)Ms

where e1(k) — 0 as k — oo, and M is a constant independent of k. If we define
N N
(B, B) =33 Fi(mi-1, y5-1){8:4(Gk - B)),
i=1 j=1
and similar to (3.4.19), let P := w(z"), Q; := x(y"), by dominated convergence theorem

to the infinite series,

1 251(k)

152, 2 < 453 anoDlon N [on (X0 -0, a6 oo

as the series w; o1le(2)o (& )](pl [241()] < co. This implies as k — oo,

ﬁ Fie(@,9)dey(Gr(@,9) — Gz, y)) = 0. (3.4.31)

k-—mo

For the second integral [ f;} (Fx(z,y)— F(z,y))dz,G(z, y), we can use a similar method
to prove

Jim f f (Bu(2,9) — F(2,9))ds4Gl2,y) = 0. (3.4.32)
For this, we note from the assumption there is a § > 0 such that,
1 1
144 i = . .
S (I5(Fe = F)@i ) — 5(Fi ~ F)(@i-1,3))
1 1
max & (|(Fi — F)(@o,) = 5(Fi = F)@i-1,)]) -

2(31P(e09) ~ Bu(ois, )] + 21 ) ~ Flaios, o))
e2(k)w(@i) — w(@i-1))
S 52(k)P1,

IA

IA

where e3(k) — 0, as k — oo, and P, is a constant independent of k. So under the
assumption ¥ gg[99((%)-1%5)]02[1/)(#1—)“01[%1!)1(%)] < 0, we can prove (3.4.32) using the
same argum?ﬂg in proving (3.4.31). Therefore under assumption (3.4.26), we prove the
desired result. The proof is similar under the assumption (3.4.27). o

Remark 3.4.1 From the proof we can easily see that under the condition that there exist
two functions ¢ and o subject to p{u)o(u) = u and a small number § > 0 such that

> eI (L) < oo (3.4.33)

m,n
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Then as k — oo,

m‘f yf’ mf’ y-"
f / F(2,9)dy y Gz, y) — / f P(z,4)ds 4 C(@, ). (3.4.34)
m’ yf mf y'

Similarly, under the condition that there exist two Junctions ¢ and o subject to p(u)o(u) =
w and a small number § > 0 such that

> eI (1) < o, (.435)
or
1 1. 1 1
> el (™) [>9a( )] < oo (3.4.36)
Then as k — oo,
x Y & y

It is easy to see that in the definition of f;,” f;ﬂn F(z,y)dzyG(z,y), one can take
F(z,y;) instead of F(z;-1,_1) in (3.4.5). One can also prove the convergence of (3.4.5)
in this case and denote the integral by ;," f;’}” F(z,y)d; ,G(2,7), the backward integral.
In general, this should be different from m""}" ﬁ{” F(z,y)ds5G(z,y). But under slightly
stronger conditions than those in Theorem 3.4.1, as in the one-parameter case, these two
integrals equal. This result is proved in the following proposition.

Proposition 3.4.1 Assume Fi(z, y) and F(z,y) are continuous functions and satisfy
(3.4.8) and for Fy, uniformly in k; G(z,y) and Gi(z,y) are of bounded 1, ¥y —variation
in (z,y) uniformly in k and satisfy the finite large jump condition, where ®,, ¥, are
conver functions as above. If there exist increasing concave functions p and ¢ subject fo

o(u)o(u) = v and a positive § > O such that one of the following two conditions is satisfied
(i) F(z,y) is continuous in  and

> el ol ()] < oo,

m,n

(i) F(z,y) is continuous in y and
1 1, s 1 1
%9[@(;)]0[‘#((5)m)]‘ﬂl[;?ﬁl(a)] < .

Then

U

I

y-’l z-” y’f
, F(.‘L", y)dz,yG(:B, y) =L’ f’ F(:B, y)d;,yG(m’y)'
¥
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Proof: We only prove the result when condition (i) is satisfied. Write

N N
S(E, E’) = ZZF(xi—l’yj—l)AiAjG:
=1 j=1
N N
SNE,E'Y =YY Flzi,45) 004G
i=1 j=1

Here E and E’ are the same as before. Denote
F‘51’52(cc, y)=Flz+ 6,y + 8%y — F(z,y).

Set dz,_, = & — Ti-1, Jyj—l =yj — ¥j-1- Then

N N

1
S™(E, E’) S(E, EI) = 222 2 5"1-1’511;;—1 (m’_l’yJ 1A 084G
i=1j=1

Note from the assumptions, there is a § > 0 such that

@14‘6(' [Fdz‘,é-yj l(muyj 1) 54;‘ 1,6%__ (.7.7' 1L,Yi—1 )}l)

s (5l 1P e 1) = Pl 150 - [Pl ) — e, 50

IA

L)

‘I’(’%{F(-”:Hls y5) — Fl@i ys)] - %[F(‘Bi' Yi-1) = F(T’""l’yf‘l)]!)

max iy (%“F(miﬂ,y_f) = F(zs,95)] — [Flzi, yj-1) — F(mi—l,yj—l)]l)

IA

‘I’(%IF(wiH,yj) — Fazg,yi)l + ';-|F(93i, Yi-1) = F(xi1, ’yj—1)l)
e(E, B} (w(zit1) — wizi1))
< e(E, E')P,

IA

where £(E, E') — 0, when m(E, E’) — 0 and P := w(2") is a constant. Therefore following
(3.4.19), we see that

15*(E, E') - S(E, E')|

N N’
= IZZ Sy 1By 1($" 1, Yj— I)AA Gl
i= 1_1—1
< 8K 5 alp(EEEE )k oiy Ly L 2oy
myn=1

— 0, ase(E,E') — 0,
where @ := x(y"). Therefore
S*(E,E')~ 8(E,E') — 0 as (B, E') - 0.
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That is to say,

Jr H Jr I

fx m f,, F(z,y)dzyG(z,y) = f , fy | F(z,y)d;,G(z,y).

z

From Theorem 3.4.1 we can easily generalize it to the multi-parameter integral.

Definition 3.4.1 Let By X -- x By = {a3 = 29 < 2} < -+ < et = by,an =
a3 <zl <o <l =b,) be an arbitrary partition of [ay, b1] % - [an,ba). We call
G(x1,- -+, %) is of bounded Wy, - - -, U, -variation in (z1,-+-,20), if

Na N
e kﬂzzjl T+ (hzzjl Ci(Bgtet oo+ A1 Gl -+ ) <oo.  (3.4.38)

We say a function f(z1,- -+, %p) has a jump at (9, - -, 29) if there exists an £ > 0 such
that for any & > 0, there exists (1, - -, z}) satisfying max{jzd—al,- -, |28 —z!|} < § and
|Az0 21,0+ Ax?,x% f| > e. For a function G(ay,---,%,) of bounded Uy, -+, ¥p-variation,
for any given € > 0, it is easy to see that there exists a § (€) > 0 and a finite number of jump
points {(z],---,28),--, (@™, +,2™)} such that |Az , ,---, Az, 3,G| < & whenever
max{|F1 — 21],- -+, [&n — Tal} < &(e), [E, 2] N {2d, -+, 2™} = P for all i = 1,2,+++,m.
Denote Hip X «++ X Hpp := {zl,--- 2T} x ... x {z},-+ .z}, In the following, we
assume the following finite large jump condition: for any € > 0, there exists at most finite
many points {z{, - ,ng b, {2l ,m?;‘} and a constant §(¢) > 0 such that for each
i=1,2,---,n, the total ¥y, .-, Wy-variation of G on [z, z}] x-- - (24 @i +8] x -0 % [z, 7
is smaller than e if [z;, z; +8) N {x}, - - -,x?z} = 0. Denote Hy x---x Hy, := {z},.. -,:c’lni} X
e x {w}, -, @™}, It is obvious that Hy X --- X Hy > Hio X -+ x Hyg,

Similarly we can define m(E) x Eyx - - - X Ey,) as in Theorem 3.4.1 and get the theorem
for multi-parameter integral,

Theorem 3.4.3 Let F(z1,-++,%n) be a continuous function and there exists continuous
functions wi(x) such that,

Bi(lA -1 1 F) < wiah) — w(zlY), (3.4.39)
Here A is the difference operator (see [1]) as follows,

ke
Amfi—l,x{‘iF = F(xls"'1xi—1azi’,wi+1:'":mﬂ,)
i

k=1
—F(ml,"',xi_]_,mi‘ !mi+ls"')xn)'
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Let G(z1, -+, 2n) be of bounded Uy, - -+, Up-variation in (21, --,Tn) and satisfy the finite
large jump condition, where ¥y,---, U, are convex functions, If there exist monotone

increasing concave functions g1, -, 0n subject to g1(u} -+ on(u) = u such that

> - Zm[«n( R onlonl- )szm (i)---u@o, (3.4.40)

kn=1 k=1

then the integral
bn
f F(-’L‘l, ' ‘)w‘l’l)dm]_,m,ﬂ:na(ml) e :mn)

ﬂ
-1 kn—1
m(E1>< XE”)—‘OkZI kzl F(.’L‘ ! TRRRRY i )(Amﬁn—l’mﬁn "'Am;cx—llr;q G)
= l—

is well defined, as long as By x E; x -+ x E,, include Hy x Hy x---x Hp,.
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Chapter 4 |
Two-parameter Integrals of Local Times

§4.1 Introduction

In Chapter 1 and 2, I gave the extension of Tanaka-Meyer’s formula, which is a time-
independent case. So how is about the time dependent case? Elworthy, Truman and Zhao
[7] proved if f(¢,2) = fa(t, z) + fult, 2), where A~ fy(t, z) and V™ f(t, z) exist and are left
continuous, and V™ fy(t, z) is of locally bounded variation in « for a fixed ¢ and of locally
bounded variation in (£,2), then

1(6:X(0) - 10,X(0)
= [ et X+ [ Vs, X(s)ax,

-}% _/Ot A7 fr(s, X(s))d <X>, +]_Z Li(z)d2 V™ fu(t, )

Joo gt
- f_ fo Ly(2)deaV™ fu(5,2) a.s. (4.1.1)

where [+ R Ls(2)ds 2V~ (s, ) is a space-time Lebesgue-Sticltjes integral and needless
to say, defined pathwise. Elworthy-Truman-Zhao's formula was given in a very general
form. It includes as special cases classical Ttd’s formula, Tanaka's formuls, Meyer’s formula,
Azéma-Jeulin-Knight-Yor’s formula [2). A special and earlier version of Elworthy-Truman-
Zhao’s formula was obtained by Peskir [38] independently.

On the other hand, there are some works which define 20 Jo V= f(s, 2)dy s Le(2)
for a time dependent function f(s,z) using forward and backward integrals for Brownian
motion in [9] and for semi-martingales other than Brownian motion in [10]. This integral
was also defined in [42] as a stochastic integral with excursion fields, and in [?] through
It6’s formula without assuming the reversibility of the semi-martingale which was required
in [9]. Generally speaking, one expects stronger conditions for the pathwise existence of the
integrals of local times. However, in the framework of Lebesgue integrals, locally bounded
variation in z for fixed ¢ and locally bounded variation in (t,z) are minimal conditions on
V= f(t,z) to generate a measure, so it seems impossible to go beyond Elworthy-Truman-
Zhao’s formula. Chapter 3 gives a new condition on integral of two-parameters, in this
chapter, I will define the integral [°_ f§ V™ f(s,2)ds zLs(%) and then give an extension of
Elworthy-Truman-Zhao’s formula. We also give an example to use this formula.
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§4.2 Two-parameter Integral of Local Times

Assume that B = (Bt)i>p is 2 one-dimensional standard Brownian Motion, L¥ is the
local time of B; at z. From [235] (Section 3.6, Page 208}, the local time of Brownian Motion
Lf has the property of locally Hélder continuous: for any exponent v € (0,1), T > 0,
K > 0, there exists a P%-as. positive random variable h{w) and a constant § > 0 such
that

PO lueq; sup 1Z4(a,w) = Ly(b, w) <5 =1 (4.2.1)
O<lt—sl+la—bl<hiu) [t—s[Y+|a — |7
0<s,t<T — K <ab< K

Therefore immediately we can apply Theorem 3.4.1 to Brownian local time,
In the following we can prove the continuous part of continuous semimartingale local
time satisfies condition (3.4.3) in Theorem 3.4.1.

Lemma 4.2.1 Let X; = M, + V; be a continuous semimartingale, where M, is a local
martingale and Vi is a process of locally bounded vartation; LY be the local time of X;
at z and Ly(z) be the continuous part (i.e. in (1.2.18)) of L¥. Then for any exponent
7€(0,2), T >0, N >0 and almost all w € 2, there exist positive random variable h{w)
and a constant § > 0 such that

I3 @) = Ly(@) < 6 ([(<M>e +Varog (V) = (<M>, +Varg gV + 1z - y"),(42.2)

forO <z —yl+| <M> — <M>, | < h(w), 0 < 8,t KT, -N < z,y < N. Here
Varey (V) means the total variation of V. in [0, ¢.

Proof: First we recall (1.2.18),
N ¢
I = -2y =Xo-2)" - [1g05mam, - (V- )
= ¢t 2) + I(z) - (V; - Va).

From the proof of Lemma 3.7.5 in [25] (Page 221), we may choose a Brownian motion B
for which we have the equations

t <My
Iiz) := fo lix,>z)dM, = .[o 1{¥,>z1dBy

4 T(s)
Hy(z) := /{: Livusz}dBy = fo Lix,>218My,

where T(s) := inf{t > 0; <M>;> s} is given in Theorem 3.4.6 (time-change for martin-
-gales) in [25], Y, := Xr(s), for 0 < s <<M>,,. We know that for an arbitrary constant k,
there exists contant C such that,

ElHy, (%) — Hoy (W)[** < Cflsz — 1% + |2 - y¥).
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So H,(z) is jointly Holder continuous in (s,z) with exponent + for any +y € (0, ), te. for
almost all w € €2, there exist positive random variable h(w) and a constant § > 0 such
that

|Hoa(2) — Hoy (0)] < 6(]s2 ~ 1|7 + = — y|"),

for 0 < |sp — 81| + |z = y| < h{w). It’s easy to see L(x) = Hap,(z), which leads to that
for almost all w € 0,

[Isz(a") - 181 (y)] < d(l <M>82 - <‘M>81 I‘Y + lw - yl'Y)’

for 0 < | <M>,, — <M>,, | + |z — ] < h(w). Moreover,
[pls2,8) ~ (51,8} < 2(I(May + Vi) ~ (M, + Vay)| + [z — )

< 2({M32 - Mall + 'Vég - V-Eu[ + ISC _yD

< (| <M>g, — <M>,, |7+ [Verg,s,V — Varj,s, VT + |z = yl7),
and

Vi, — Vo | £ IVGT[O,SZ]V - Var[ﬂmlvl < 5EVGT[0.321V - Var[o,sI]VI"’.

Here Varyg )V means the total variation of V" on [0, s]. Therefore we proved the desired

result. o

In this section we will define [*° fg 9(s, z)ds 5 LE. First we can use Theorem 3.4.1 to
define the integral [ [f Lzd, zg(s z) directly, for in fact in condition (3.4.3), w(s) = & "f(
<M>; +Varg V) and x(z) = &7 are both i increasing functions.

Theorem 4.2, 1 Assume g : [0,¢] X R — R is of bounded ®;, U;-variation in (s, z}, t.e.
sup E Ty ( E @1(18;A0)) < oo for the partition we defined as before and satisfies

ExE i=0
the finite large Jump condition. Then if there ezist increasing concave functions o and o

subject to p(u)o(u) = u such that for y € (0, 1)

S ol () < oo (423)

4] t .
/ f Lfd,,,$g(s, "5)
-1lm—

m(ExEr)_' EO Z L(Sji ‘Ti) (g(s_’f+1$ wi-}-l) - g(sj+1 ) CCi)

the integral

=9(s5,241) + (55, 1)) (4.2.4)
is well defined for almost all w € Q in the sense of Theorem $.4.1.
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Proposmon 4.2.1 Assume g:[0,t] x R — R is of bounded p, g-variation, i.e.

ExE i=0 \_j=0
jump condition, then the integral

00 t
.[ f L:ds,:vg(sy "’T")

= ‘m(E')(E') OZL(SJ’:E‘)( SJ+1,wi+1)_g(Sj+1,$i)

sup 2 ( > |A;AgP | < oo, where p,g 2 1, 2¢ +2 > 3pg and satisfies the finite large

—g(s5, wis1) + 98, 33)) (42.5)

is well defined in the sense of Theorem 3.4.1.
Proof: For any p,q > 1 satisfying 2¢ + 2 > 3pg, we have 2(1 — -1-) < -2— - L Therefore
there exists a number o such that 2(1 — l) <o< 2 _ 1. This 1mp11es that 3 + >1

and 3¢+ .1 > 1. So there exists 0 < v < 1 such that ay+3>1and (1 - a)7+pq > 1.
Take g(u) = 4% and o(u) = u'~%, then it is easy to see that

zg{( ~ylol(= m( %( )i < oo. (4.2.6)

Therefore the integral (4.2.5) is well defined. o

After defining the integral [° fot fls(m)ds,mg(s, 2), let’s study the integral
ffooo fgg(S, x)ds,mig- Note

i-1m-1
Z z 985, %) [-f’sj+1(mi+1) - Esg (Ti41) — f’-9;‘+1 {s) + flsj (271)]
i=0 j=0
I m. i m—1
= ZZQ $j—1,%i= I)Ls_., (z:) ~ Z Z g Sg,xz—l)Ls,(-Ts)
i=1j=1 i=1 j=0
-1 m {~1m-1
3N alsi-r, m) oz + 3 > 9(sy, w:) L, (24)
=0 j=1 =0 j=0
I m
= 3 ¥ L) (9055, 20) — g(s5,2i1) — 9(85-1,%:) + g(s5-1,2i-1)]
i=1j=1
! ~
=3~ [0(0,2i-1) Lo(e:) - gt mi-1) Eu(i)]
i=1

3

- Z [Q’(Sj—la "N)f‘sj(_N) — g(s5-1, N)f’sj(N)]

-

m—1
+ X [9(s5, = N) Loy (=) = gls5, N) L4, (V)]
§=0
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-1
+Z [9(0 i) Lo(z:) - g(t, m,}Lt(.'s,):[
i=0
! m
= > Z Lo, (2i) [g(s5 2:) — 985 @i1) = 9(55-1,21) + 9(8j-1, 1))
i=1j
- E Ly(:)(gt, 1) — 9(t, 2i-1)). (4.2.7)
i=1

Under the conditions of Theorem 4.2.1 and Proposition 3.4.1 and noticing that Li(z) is
continuous in ¢, we know that the first term of (4.2.7) converges to [ [ L,(2)d, »9(s, ),
and from rough path integration of one parameter, we know that the second term converges

' Li(2)dzg(t, 7) if further 9(s, ) is of bounded §—variation (1 < 8 < 3) in 2. So the
sum

i

3

1m—-1

g(s, i) [is,-+1(ﬂfz'+1) — Loy(@ir1) — Loy, (23) + Lo, (ms)]

If
=3

i=0 j=0

converges. We denote its limit by

00 £ -
| [ otaatz
—o0 40

{-1m-1

= m(EE%l') 0320 ;;-Zo 9(85,2i) [Ls,+1 (@ig1) — Ls, (Tit1)

—Lujpulms) + Lo, (m,;)], (4.2.8)

and

f:o joz 9(8,2)ds o L = j_ ‘: .[3 ’ L2y 0g(s,7) - L : Li(z)dzg(t, z). (4.2.9)

Now recall the decomposition (1.2.17) and (1.2.19) and Lemma 1.2.2. Asin Elworthy,

Truman and Zhao [7], the integral [ [ g(s, 2)d,; zh(s, ) is defined as a two-parameter
Lebesgue-Stieltjes integral. Therefore we can define

jot [:g(s,x)ds,mL(s,m)= /: f_o:og(s,m)ds,zi(s,x)+ /0* f_: 9(s,2)ds o b (s, ).

Remark 4.2.1 It is worth mentioning here that Young’s theorem does not apply to define

the integral [ fn 9(5,2)ds L%, To see this, first from the Hélder continuity of L, for
v € (0, 5), there exists a constant C such that

IA;AjEl < C(tj+1 - tj)7ﬁ($g+1 - 1',')7(1"6), a.s.,
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for any B € (0,1). So in Young's theorem, X(z) = 278, u(z) = 271-8), And if we define
®(z) = 2P, U(x) = 29, o(z) = 2%, ofz) = z'7%, a € (0,1), then according to Young’s
condition, we should require the series

l.2.1 1.,1-2,1
2ye(=yr8 = —yr(1-8)
En (n)P(n) < oo and Em(m) P (m) < 00,
i.e.

2 ra(l-8)> 1.

%+’yﬁ>1 and 1-

We deduce from above that

a l—a 3
-t — >
p q 2

This is impossible sincep > 1 and q¢ > 1.
Remark 4.2.2 If g(s,z) is C! in x, we have

_/;0:0 [otg(s, T)ds o LG = — f_D:o /Ot Vg(s, z)dsLe(x)dz

This can be seen from the following. As one can always add some points in the partition
to make L3} =0 and ﬂfj“ =0 foralj=12,--,m, as L has a compact support in x,

therefore
3 Py
m(ExEr)_.g 12;32: g(s.?’ z;) {Lagﬂ (Tip1) — s;“ (.’1.‘.5)]
-1 m
= 8 x L 7+l T P L b1 -
m(E'xE')—»o ;;9( 3, 2i) Ly (Tit1) — ;;9‘ 5y Tip1) Ll (i)

- _m(E‘xE’)—mZZ [g (85, @i41) = 9(33’&"1)}sz+ (Zis1)

- Z Z [[ Vy(sj,Ti + (i1 — m,))dh] Lg:“(wzﬂ Hirr ~ 2;)

i=1 j=1

= — 2] Vg(S,sz,-i)dsL (wz+1)(mi+1 .’B,)

m{E! - NNl)_’D

- 5 [ 7atoreu+ hauss ~20) ~ Voo, st duLa(os1) i — )

m(E_y N])_’O

- - f_ ) jo Vy(s, 2)ds Ly(z)dz

m(Efo)—.o
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Theorem 4.2.2 Let f : [0,t] x R — R be of bounded §-variation in z and of bounded
p,g-variation in (s,x) end satisfy the finite large Jump condition, where 1 < @ < 3 and
p,g21,29+2> 3pg, and

fuls,2) = /ﬂ ’ /0 o)) (5 — Lo=Z)rdz, n21, (4.2.10)

where p is the mollifier defined in (1.5.2). Then

o] t o0 t
j f fal(s,2)ds LT — / [ f(s,z)ds 2 LE, as n — oo.
—-o0J0 —oo 40

Proof: First we can easily verify that f,, are also of bounded D, g-variation. We extend

f to s < 0 by defining f(s,z) = 0, for s < 0, and denote an arbitrary partition of
[0,%] x [-N —2,N] by

ExE’i:={0=30<s1<---<sm=t,—-N—2=a:0<x1<---<mpzN}.

Because [~V — 2, N] also covers the compact support of local time, we have
sup Z Z [A;A f]p =
EXE] i=1
and
sup Supz 1£(s,:) ~ F(s,2i-1)) =
s€l0t] By 4o
where M and M’ are constants. So by Hélder’s inequality,

i=1 \j=l
4

m o 2 . ,

= ; (22;1 l~[0 /0 P(?‘)P(Z)AJ—A,-f(' - ;, . — ;)drdz
> (

i=1

B/fZ(

j=1

B fo : fo sup- Z (Z[A A; f]?) drdz
M.

IA

A

IA

ExEy =1 \j=1

<
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where A, B and M, (independent of n} are constants. Also from the above estimate, the
finite large jump condition for f, when n is sufficiently large follows from the finite large

jump assumption of f. Similarly,
i
Y fnls,2) — fals,zi-1)l°
i=1

! 2
= 21 [ oot (s60- L= D= 0= Foica = ) arasl

2 2 4

< 0 [ Xt~ pm= D= slo pomen = Dl
2 2 v

< o[ ["sup Y- 1£(s,20) = £(s,m11) Pdrdz
o Jo B

< M,

where C and M, (independent of n) are constants. So the integral [, ff fu(s, z)dsz L2
is well defined, by argument we discussed before,

I [ sutes)teats
= f_o; [: f,:ds,mfn(s, z)— [j: L:tcdmfn(t: z)
+ [ [ talorm)dehs,2). (4:2.11)

For such p, ¢ satisfying p,¢ > 1, and 2g + 2 > 3pq, there exist a small positive number
8 > 0 such that 2g +2 > 3(p+ d)g, so

> (ol 1) ()7 < oo

still holds for p(u) = u*, o(u) = u'~?, where 2(1 — ;}3) <a< TPT?(TE — 1. By Theorem
3.4.2 and Proposition 3.4.1, we can pass the limit to get

. {r] t [+4] t .
him f Lgda,mfn(sam) = f f Lidsz f(s, ).
0 —oco VY0

n—0o f_ o

Using & similar method as in the proof of Theorem 1.3.1, we can prove that
oo L QL
lia f Bed,fultz) = f E2d, £, 2).
R0 J o -0

The convergence of the last term [ fot Jn(8,2)ds 2 h(s, ) in (4.2.11) follows from Lebesgue’s
dominated convergence theorem. So we proved the desired result. o
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Theorem 4.2.3 Let X = (X;)s0 be a continuous semimartingale and assume f : [0, 00) x
R — R satisfy

(i) F is absolutely continuous in t,  respectively,

(i) the left derivatives %} f and V™ f exist at all points of (0,00) X R and [0,00) x R
respectively,

(iii) %% f and V™= f are lefi continuous and locally bounded,

(iv) V~f{t,x) is of bounded @-variation in = and of bounded p, g-varistion in (t,x)
and satisfies the finite large jump condition, where 1 < 8 < 3, andp,q = 1, 2¢+ 2 > 3pg.

Then we have:
t 5 ¢t
XD = $0.X0)+ [ FofeXds+ [ V75, X)X,
t proo
- f f V™ £(5,2)ds o L7, (4.2.12)
0 J—oo
where LY is the local time of Xy at x, the last integral is defined in ({.2.8).

Proof: Similar to the proof in (7], we can use smoothing procedure and take the limit
to prove our result., The main different key point is the following : by Remark 4.2.2 and
Theorem 4.2.2,

¢
3 [ Afals, xJa< x>,
oo t
- f f Afa(s, 2)dLEdz
—00 JO
00 ]
—o0 JO
o'+ t
- / ] V- £(5,2)ds L7,
—00 J0
when 1 — 00. ©

Example 4.2.1 Consider a function f(t,z) = z33cos(L + 1) for t,z # 0 and f(2,0) =
F(0,z) = f(0,0) = 0. This function is CY! and its derivative about z is £ f(t,z) =
31322 cos(} + 1) +zt3sin(2 + 1) for t,z # 0 and Zf(t,0) = £5(0,2) = £ £(0,0)=0. It
is easy to see that & f(t,z) is of unbounded variation in x and in (t,z), but of 0-variation
in z for any 0 > 1, p,1-variation in (L,x) for any p > 1(similar to Ezample 3.1). So
Theorem .2.3 can be used.

Remark 4.2.3 Chaper 1,84 are included in paper [11] which is published in Potential
Analysis. '
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Chapter 5
Stochastic Lebesgue-Stieltjes Integrals

and A Generalized It6’s Formula in Two-
Dimensions

§5.1 Introduction

Extensions of the classical Itd's formula for twice differentiable functions to less
smooth functions have been made mainly in one-dimension beginning with Tanaka's pio-
neering work [46] for | X;} to which the local time was beautifully linked. Further extensions
were made to a time independent convex function f(z) in [36] and [48] as the following

Tanaka-Meyer formula:

$O@) = 5 )+ [ £XeaxE+ [ ne@drt@), 61

where the left derivative f/ exists and is increasing due to the convex assumption. This
can be generalized easily to include the case when f’ is of bounded variation where the
integral [0, Li(z)d(f.(x)) is a Lebesgue-Sticltjes integral. The extension to the time
dependent case was given in [7].

The purpose of this chapter is to extend formula (5.1.1) to two dimensions. This is
a nontrivial extension as the local time in two-dimensions does not exist. But we observe
for a smooth function f, formally by the occupation times formula and the property that
5o 1r\ie} X1(s,w)ds L1 (s,w) = 0 a.s., "formal integration by parts formula”,

5/ * Af(Xa(s), Xa(s))d <Xi>
-/ :" | * AF(X1(5), Xa(5))do L (5, a)da
[ [ agta,Xa(s))auEas, o (512)

+o0 +oo  pt
_ f L6, )41 (@, Xa(t) - f N fo La(s,0)ds o1/ (3, X2(5))-

Il

Here the last equality needs to be justified, and the integral [+ [f L1(s, a)ds 4 V1f(a, X2(s))
needs to be properly defined. It is worth noting that the right hand side does not in-
clude any second order derivative of f explicitly. Here Vif(a, Xa(s)) is a semimartin-
gale for any fixed a, following Tanaka-Meyer formula. For this, we study this kind of
the integral [ ff g(s, @)ds 4h(s,a) in Section 5.2. Here h(s,z) is a continuous martin-
gale with cross variation < h(,a), h{-,b) >; of locally bounded variation in {s,a,b), and
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E [ IS fr2lgls, a)g(s, D)l|dap,s < B(-,a), A(,B) >, s] < 0o. The integral is different from the
Lebesgue-Stieltjes integral and Itd’s stochastic integral. But it is a natural extension to
the two-parameter stochastic case and therefore called a stochastic Lebesgue-Stieltjes inte~
gral. According to our knowledge, this integral is new. It’s different from integration with
Brownian sheet defined by Walsh ({47]) and integration w.r.t. Poisson random measure
(see {19]). A generalized Itd’s formula in two dimensions is proved in Section 5.3. It is
noted that Peskir recently gave a generalized It6’s formula in multi-dimensions using local
times on surfaces where the first order derivative might be discontinuous under the condi-
tion their second derivative has limit from both sides of the surfaces in [39]. We will give
an example to demonstrate that Peskir's formula ¢an not be used while our formula can.
Our formula does not need conditions on the existence of limits of second order derivatives
when ¢ goes to the surface. There are numerous examples that classical It6’s formula and
Peskir’s formula may not work immediately, but our formula can be used (see Example
5.3.1 and 5.3.2).

Other kinds of relevant results include the work for absolutely continuous function
with their first derivative being locally bounded in [41}; for Wé’: functions of a Brownian
motion for one dimension in [15] and [16] for multi-dimensions. It was proved in {15]
that f(Bs) = f(Bo) + Jg f'(Bs)dBs + A[f(B), Bl:, where [f(B), B]: is the covariation of
the processes f(B) and B and is equal to fg F(Bs)d*Bs ~ [§ f(B,)dB; as a difference of
backward and forward integrals. See [44] for the case of contimous semi-martingale. The
multi-dimensional case was considered by [16], [44] and [37]. But our results here are new.

§5.2 The Definition of Stochastic Lebesgue-Stieltjes Integrals and the
Integration by Parts Formula

For a filtered probability space (€, F, {F: }1»0, P), denote by My the Hilbert space of
all processes X = (X Jost<r such that (X;)o<i<r 18 a (Filogecr right continuous square
integrable martingale with inner product (X,Y) = B(X1¥r). A three-variable function
f(s,2,y) is called left continuous iff it is left countinuous in all three variables together i.e.
for any sequence (s1,%1,¥1) < (82,%2,%2) & - ++ < (ks Tk, Y1) < (5,2, 9) and (sp, T, Yk} —
(s,z,7), 88 k — oo, we have f(sg, zg,4x) — f(s,2,9) as k — oo. Here (s1,71,) <
{(s2, 22,22) means 51 < 52, 3 < @2 and ¢ < Y. Define

V= {h : o [0,8] x (00,00} x @ — R s.t. (s,z,w) = h(5,2,w)
is B([0, s] x R} x Fy—measurable, and h(s,x) is

Fy—adapted for any z € R},
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V= {h : h €V is a continuous {in 8) Mz — martingale for each z,
and the crossvariation < h(-,z), (-, y) >, is left continuous

and of locally bounded variation in (s, z, y)}

In the following, we will always denote < h{:, z), h{-,y) > by < h(z), h(y) >,.
We now recall some classical results (see [1] and [35]). A three-variable function
f(s,z,y) is called monotonically increasing if whenever (s2,zs,%2) = (s1,21,1), then

F(s2,22,y2) — f(s2, 21, 42) — f(52, 22,11} + f(s52,21,31)
~f(s1,%2,%2) + f(51,21,12) + f(s1,22,71) — f(s1,21,%1) = 0.

For a left-continuous and monotonically increasing function f(s,z,y), one can define a

Lebesgue-Stieltjes measure by setting

v([s1,82) x {r1,22) X [31,12))
= f(sa,x2,y2) ~ f(s2,21,12) — f(s2, 22, 91) + f(s2,21,71)
—f(s1,22,92) + f(s1, 21, 42) + f(51,%2,01) — f(s1,21, 1)

For h € Vs, define
h(z), h{y) >:f:=< h{z), h(y) >t — < hiz), h(y) >, t2 2 11,

Note as < h(z), h{y) >, is left continuous and of locally bounded variation in (s,z,¥),
so it can be decomposed to the difference of two increasing and left continuous functions
fi(s,z,y) and fz(s,z,y) (see McShane [35] or Proposition 2.2 in Elworthy, Truman and
Zhao [7} which also holds for multi-parameter functions). Note each of f and f, generates
a measure, so for any measurable function ¢(s,z, y), we can define

/ ./a / 9(8,2, ¥)dzy,e < R(z), B(y) >s
f: f: f:n 9(8,2,9)da s fi(s,2,9)
A RO

In particular, a signed product measure in the space [0,T] x R? can be defined as follows:
for any [t1,t2) x [1,22) X [y1,%2) C [0, T] x R?

te rr2 Y2
L L] due < bt ) >,
Tl

/-tzf "4 ,y,sfl(s,w,y)—/tjz f; ff dgy,5f2(5,7, 1)
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< I{wo), hy2) > — < hi{m2), h(yr) >
— < h{z1) h(ya) >¢ + < h(@1), h(yy) >8
< h(zs) — h(z1), h{y2) — h{n) >f‘j ) {5.2.1)

ft

il

Define
Ida:,y,a < h{x), h(y) >, | = dsy,ef1 (s,x,y) + dm,y,sz(S,may)- (5.2.2)
Moreover, for h € Vs, define:

Va(h) == {g 1 g €W, and there exists N such that (—N,N) covers
the compact support of g(s,-,w) for a.a. w, and s € [0,T] and

¢
B[ [ 166026, 0)ldza < 1), @) >, 1] < oo}.
Va(h) := {g 1 g €V, has a compact support in z for a.a. w, and

o B ([ [ 106210l < ba) ) >, ] < o0},

Consider now a simple function in V3, and always assume for any s > 0, g(s,—N) =

9(s, N) =10,
n—1 o n—1
g(s,z,w) = Z eo,il{o}(s)l(,;hxml(x) + Z z ej.il(tj,tj+1] (3)1(Ei,mi+1f(x) (5.2.3)
i=0 F=0i=0

where {t,}50_, with £ == 0 and n-}i-IPootm =00, -N=xpp<z1<22< -+ <Zp =N, ¢4
are Jy,~measurable. For h € V,, define an integral as:

o) = [ [ ols,2M0sh(s,2)
oo n-1

= Z Z €54 [h(tj+1 At Tip1) — h{t; At mig1)
3=0i=0

~hlts1 AL, 2:) + Aty A t,2)- (5.2.4)

"This integral is called the stochastic Lebesgue-Stieltjes integral of the simple function g.
It’s easy to see for simple functions gy, g2 € Va(h),

Li(ag + B92) = adyg) + 8Ly (g2), (5.2.5)

for any o, 8 € R. The following lemma plays a key role in extending the integral of simple
functions to functions in Vi(h). It is equivalent to the It6’s isometry formula in the case

of the stochastic integral.
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Lemma 5.2.1 Ifh € Va, g € Va(h) is simple, then Ii(g) is a continuous martingale with

respect to (Filoci<T and

E( fo ! f_ : 9(s,2)ds oh{s, x)) 2

- B[ [ 006N < DB >, (529

Proof. From the definition of ff [ (s, z)dgzh(s, ), it is easy to see that I; is a continu-
ous martingale with respect to (Ft)o<i<r. As h(s,2,w) is a continuous martingale in My,

using a standard conditional expectation argument to remove the cross product parts, we

get:

E [(_/: j_o;g(s, z)ds zh(s, m))z]

w fn—1
= B) ( T [h(tj+1 Aty zip1) — h(t; At i)
§=0 \ i=0
2

—h{tis1 At z) + h{t; At a:,)])

n—ln—

= EY. (Z S ejaeik -
Jj=

i=0 k=0
[h,(tJ+l AL, Zig1) — hity At 2ir1) — B(ti+1 AL z3) + h(t; AL, :c.,)]

[h(tj+1 At Zpy1) — bt Aty zigr) — bt At 2p) +A(E AL, wk)])
n—ln—
= E‘ { Z €jiCik *
=0 \ 4=0 k=0
[(htpe1 At iss) = By AL, 20410 (Bl g41 At agn) — Rt At 2541))
—(hlt1 Aty zig1) — bt Aty 2i41)) (R(Bj1 AL, p) — R(Es Aty zp))
—(h(tj+1 At Gﬂi) - h(tj At, .’B,;))(h(t:;.;.;_ At a:k+1) — h(tj Al .’L‘k.|_1))

+(htip1 At ze) — bt At @) (Rtier At k) — h(t; AL, xk))] }

+n—1n—1
= E f 30 gls,zig1)als, wk+1)[ds < h(Ziv1), A(Zry1) >s —ds < h(zig1), h(zk) >a
i=0 k=0
—ds < h{zi), M{@rt1) > +ds < h(2i), h{zx) >, ]
iy tip1AL ti41At
= E) ) >, ej.iej,k[ < h(@it1), h(zi1) >n — < hizi), hz) >k
320 i=0 k=0

~ < Moo, hlawen) >R + < hei), haw) >R ]
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B[ [ o(6:2)9(5,9)0as0 < el bi3) o]

So we proved the desired result. o

The idea is to use (5.2.6) to extend the definition of the integrals of simple functions
to integrals of functions in V3(h) and finally in V4(h), for any h € V5. We achieve this goal

in several steps:

Lemma 5.2.2 Let h € Va, f € V3(h) be bounded uniformly in w, f(-,-,w) be continuous
for each w on its compact support. Then there exist a sequence of bounded simple functions
Pmn € Va(h) such that

t
B [ [ 10 = 0mn)6,2)(F =t )69 | den < 1@ bly) e =0,
as m,n,m/,n’ — co.

Proof Let 0=t <ty <+ <ty =t and ~N =29 <27 <+ < 7, = N be a partition

of [0, £} x [~N, N]. Assume when n,m — 00, max (t;,.,.l*-tj)—ro max (m,+1—m,)—-+

0<j<m 0<ign
0. Define
n-1 m—-1n—1
Pmn(s,T) = Z F(0:z:) 1oy (s) Lzs,2044) (@) + Z Z £, w‘)l(tj'*3+11(3)1(w.,mi+1](m) (5.2.7)
i=0 F=0 i=0

Then @m n(s, x) are simple and ¢m (s, 2) — f(s,2) a.s. as m, n — co. The result follows
from applying Lebesgue’s dominated convergence theorem. o

Lemma 5.2.3 Let h € V, and k € V3(h) be bounded uniformly in w. Then there exist

functions fn, € Va(h) such that fp(,-,w) are continuous for all w and n, and
B[ [ 10 )o,2)05 = fu)(5,0)] | o < ha), @) >0 1 =0,
as n, ' — 0o.
Proof Define
fuls,z) = n? ji; j;l k(r,y)drdy.

Then fu(s,z) is continuous in s,z, and when n — oo, fa(s,z) — k(s,z) a.s.. So for
sufficiently large n, fn(s,z) also has compact support in (—N, N) for all s € [0,T]. The
desired convergence follows from applying Lebesgue’s dominated convergence theocrem. ¢
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Lemma 5.2.4 Let h € V, and g € Va(h). Then there exist functions ky, € V3(h), bounded
uniformly in w for each n, and

Efot /I:tz | (Q‘ - kn)(s, 3:)(9 - kﬂ’)(s,y)l i dm,y,s < h(ﬂ:), h(y) > | — 0,

as n,m — co.

Proof: Define
-n i glt,x,w) < ~n
ka(t,zyw) = { g(t,z,w) if —n<g(t,z,w)<n (5.2.8)
n if g(t,z,w) > n.

Then as n — 00, kn(t, z,w) — g{t,z,w) for each (t,z,w). Note |k, (¢, z,w)| < |g(¢,z,w)|
and k, € V3(h). So applying Lebesgue’s dominated convergence theorem, we obtain the

desired result. o

Lemma 5.2.5 Let h € V, and g € Va(h). Then there exist functions gy € Vi(h) such
that

E/: fm | (g = gn)(s:2)(9 — g )8, 9] | dayye < B(2) P(y) >4 | 0, (5:2.9)
as N, N' — co.
Proof: Define
g (s, @ w) = 9(8, @, W)l -n11,N-1)(2). (5.2.10)

Then |gn| < |g] and gy — g 8.5, as N — oo. So applying Lebesgue’s dominated conver-

gence theorem, we obtain the desired result. o

From Lemmas 5.2.4, 5.2.3, 5.2.2, for each & € Vs, g € V3(h), we can construct a
sequence of simple functions {@mn} in V3(h) such that,

E/: Aa 1 (g~ Qom,n)(srm)(g - ‘Pm’,n’)(ss y)l i dfﬂ,y,s < h(ﬂ:), h(y) > I - G,

a8 myn,m’,n’ — oo, For ¢, and @pyn, we can define stochastic Lebesgue-Stieltjes

integrals Jy(¢mn) and fi{@m: n}. From Lemma 5.2.1 and (5.2.5), it is easy to see that
E [Ir(¢mn) — IT(@m’,n’)]z
= B [Ir(pmn — pm)]’
T
E-[o ./1;2 (Pmm = Omt ) (5 ) Prmn = Pt )(8, ) g, < (), A(Y) >4
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= B[ [ [omn =0~ e — 9l(5,2):
[(omn — g) ~ (Pt = 9)](8, y)dm,y,s < h(z), h(y) >s
T
= B[ [ (tmn=9)69)0ma — 9)(5,0)dage < (), 1) >,

T

'—E/(; ]1;2 ((vaﬂ - g)(s, a:)(‘rom’,n’ - g) (Sy y)d:r:,y,s < h(m),h(y) >a
T

—E fo _/1;2((‘07"',"' — 9)(8, %) (Pmn — 9)(S,¥)dzys < h(x), h{y) >,

T
+E '[0 fR ) (Pmtmr — 98, THPme 1 = 9)(8, Y)dz g6 < M), A(Y) >5

IA

B f ' d h

A fm | (Pmm — 9)(8, 2} (Pmn — 9)(5,9) || doy.s < B{z), h{y) >
T

+E fo fR | (Pmin = 95,0 (@i = 9)(8, 1) 1] oo < h(2), By) >
T

+E fo fR | @ = 9)(8,2)(mn — 9)(5:9) || daye < B(2) Bly) >

T
+Ef0 _/1;2 | (Pmnr — g)(8, )Pt s — 9)(8, 1) I dy s < BEE), R(Y) >
0,

as m,n,m/,n' — oo. Therefore {I.(Yma)}5% 1 is & Cauchy sequence in Mz whose norm
is denoted by || - f|. So there exists a process I(g) = {I;(g),0 <t < T} in My, defined
modulo indistinguishability, such that

| I{(omn) — I(g) lI—= 0, as m,n — oo.

By the same argument as for the stochastic integral, one can easily prove that I{g) is
well-defined (independent of the choice of the simple functions), and (5.2.6) is true for
I(g). We now can have the following definition.

Definition 5.2.1 Let h € Va, g € Va(h).Then the integral of g with respect to h can be
defined in Ma as:

i poo ] t poo
'[) j_ " 9(s,z)ds zh(s, z) =m,111‘r_1:1)00 /0 ./; - (s 2)ds o h(s, ).
Here {¢mn} is a sequence of simple functions in V3(h), s.t.

ELtL2 | {g— ‘Pm,n)(-‘:‘,-’!?)(g — (Pm',n’)(s,y)l | dzye < h(z), h{y) >5 | = 0,

as m,n,m',n’ — 00. Note @ may be constructed by combining the three approzimation
procedures in Lemmas 5.2.4, 5.2.8, 5.2.2. For g € V4(h), we can then define the integral
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in Moy as:

t roo 2 oo‘
L[ stemisttsin) = gim [ [ oo, 01w mon@eshs, )

It is a continuous martingale with respect to (Fi)o<t<T and for each 0 <t < T,

E([ot f_o; Q(sﬁw)ds,xh(sa -'3))2

= E./Ut ./};2 9(5,2)9(5,¥)dzy,s < h(z), h(y) >, - (5.2.11)

The following integration by parts formula will be useful in the proof of our main

theorem in the next section.

Proposition 5.2.1 If h € V;, g € Vy(h), and g(t,z) is C? in z, Ag(t,z) is bounded
uniformly in ¢, then a.s.

—f+ooftv (s,z)d h(sm)dm=ftj+m (s,2)ds zh{s, ) (5.2.12)
_0009381 O—oog, 8,215, T ) R

Moreover, for any g € V4(h), h € V2 and C inx, Vh € Ma,

/ ;m Ji " (5,)d, Vh(s, 3)da = / t / :° o(s,2)dezh(s, 7). (5.2.13)

Proof: If g is a simple function in V3(h) as given in (5.2.3), and note that e;o = €;,, =0,

we have

fot _/;Zg(s’ z)ds,zh(s, )

n-1 o0

= D> e [h(tj+1 At zip1) — Bt At zig1)
i=0 j=0
—~h(tjt1 At zy) + h(tj At a:;)]
n—1 oo
= =3 > ejiin [h(tj+1 At zip1) — h(tj At, $¢+1)]
i=0 7=0
n—1 oo
+> > e [h(fj+1 At ziq1) ~ h(t; At, ms‘+1)]
=0 j=0
n-1 oo
= -3y [ej,i+1 - 6,',;.] [h(tjn At zi1) = bty AL, ~’ﬂ='+1)]-
=0 =0

If g(t,z) is C? in z, let

n—1 m-1n—1
(Pm,n(s’ -'E) = Z 9(07 x‘i)l{l)} (S) 1(:::,-,m,-+1] (w) + Z Z g(tJ! xi)l(tj,tj+1] (S)l(mg,mi+1](m)’
i=0 j=0 i=0
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then
Cmn(s,z) — g{s,z) a.s. as m,n — oo.

Moreover, by the intermediate value theorem,

f_:o _g 9(s, T)ds zh{s, 2)

n—-1 oo

= lim o 22 22 [otts Atyien) —ofty Aty )

=0 =0
[h(tj+1_ At zig1) — h(t; At :IJH.l)] (limit in Ms)

i

n—1 oo

= -& i 3>, f Vy(t; A,z + o(zipy — a:,))da] [ (L1 At i) — R(E5 AL, m,.,.l)] :
y0—H i=0 §=0
(iy1 ~ 1)
n—1
= - 5115302[ f Vo(s,zi + alziq — m,))da]d h(s, ziy1)(@ip1 — z)  (Limit in My)

= _alimoz /0 Vg(s, zi41)dsh(s, zipa1)(zip1 — 23)
= =0

n=l . 1
- 61111102 jo [ /[; (Va(s,zi + alziy1 —2:)) — Vy(s, $s+1))d04] dsh(s, zi11) (@ie1 — Te)
=7 i=0

+oo gt
= - / / Vs, z)dsh(s, x)dzx. (limit in M)
—-oa SO

Here &: = I%asxmltj“ — |, 6z = 1%%: |2i+1 — xi}. To prove the last equality, first notice
that

i 0 fVQ'(S,$z+1)dsh(3,we.+1)($;+1—ws)

= f_ 100 /0 Vg(s, z)dsh(s, z)dz.

Second, by the intermediate value theorem again, and from the assumption that Ag{s, x)
is bounded uniformly in s, the second term can be estimated as:

n-—1

¢l \
E [;]0 [fo (Va(s, z¢ + alxip1 — z4)) - Vg(s, :ri+1))da]d3h(s,x,.H)(m,.H _ m‘.)]

n-1n—1

t 1
= E) 3 [fo [fo (Vg(s,zi + almisr — i) — VQ(S:$i+1))da’]dsh(3:$i+1)(«";‘i+1 — &)

i=0 k=0

L1 (90,214 atorss = a1) - Voo, zrsalduhls, ) mwss — 20)]
] 0
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n—1n-1

= LB [ [ [ (Vatormi+olews — a) - Vo(s,zosn))da] -

=0 k=0

[ (Vats,mn + alonss — 24)) ~ T, ks))de]
ds < h(zit1), M(zr1) >s (@irr — 2 (@rg1 — 24)
Blswp sup |Ag(smll((1 - @)(zin — i)}
' NE(zi®iv1)

sup  sup [Ag(s, (1 — e){wrsr — 2&))| -
ne(2r,Trp1)

n—1n-1
| < h{zir1) >e< h(Tp1) >t 1%] . (Z D (@ig1 ~ T} (T — wk))
i=0 k=0

IA

— 0, as b — 0,

So (5.2.12) is proved.
For (5.2.18), first consider g € V3(h) and sufficiently smooth jointly in (s,z), by
{6.2.12) and integration by parts formula,

‘/: f_-:og(s,m)da‘mh(s,m)
- -_f+m]th(s,m)dsh(s,a:)dw
_ f_+ V(s 2)h(e, 2)ida + f f ( Vg(s,m)) h(s, z)dsdz. (5.2.14)

But by integration by parts formula and Fubini theorem,

[ [ (9o, s, yasaa
fof_m (Vas'(s,w)) h{s,z)dzds

= _./: f+°° %g(s,z)Vh(s,m)dmds
oo gt B
= —[_w fo gg(s,m)Vh(s,w)dsd:c
+00 +oo gt
—f lg(s,z)Vh(s, m)]ﬁdx-{-f_ fo g(s,2)dsVh{s,z)dz.  (5.2.15)

I

I

By (5.2.14), (5.2.15) and integration by parts formula, it follows that for g being sufficiently
smooth

fot /_ :o 9(s, x)dszh(s, z) = f_ -:o fo ' g(s, x)dsVh(s, z)dz.

But any bounded function ¢ € V3(h) can be approximated by a sequence of smooth
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functions g, € Vs(h), the desired result for g € V3(h) follows from (5.2.11) and

E| f_ J:’ fﬂ *(onls, ) — g(5, 5))ds VA5, 2)daf?
< 2Nf_+o°E| j:(gn(s,m)—g(s, ), Vh(s, z)|*dz

+oo t
= 2N EL lgn(s, ) — g(s,2)|%ds < VA(z) >; dz
—o0

— 0,

when n — ¢o0. From Lemma 5.2.4, 5.2.5, we can get (5.2.12) and (5.2.13) also hold for
ge V4(h). ]

§5.3 A Generalized It5’s Formula in Two-dimensional Space

Let X(s) = (X1(s),X2(s)) be a two-dimensional continuous semi-martingale with
Xi{s) = X;(0) + M;(s) + Vi(s)(3 = 1,2) on a probability space (2, F, P). Here M;(s) is a
continuous local martingale and Vi(s) is an adapted continuous process of locally bounded
variation (in s). Let L;(t, a) be the local time of X;(t) (i=1,2). From localization argument
in Section 1.2, we can assume L;{t,a) and La(t,a) are bounded uniformly in a.

In the following we agsume some conditionson f: R X R — R:

Condition (i) the function f(-,-) : R x R — R is jointly continuous and absolutely

continuous in &, zg respectively;

Condition (i) the left derivative V] f(x1, z2) is locally bounded, jointly left contin-
uous, and of locally bounded variation in x; (2 = 1,2);

Condition (i) the left derivaties Vi f{z1,z2) is absolutely continuous in 9, and
V3 f(z1,29) is absolutely continuous in @1;
_ Condition (i) the derivatives V7 V7 f(z1,22) (4,5 = 1,2, i # j) are jointly left
continuous, and of locally bounded variation in 24, x3 respectively and also in (3, 22)-

From the assumption of Vi f, we can use Tanaka-Meyer formula to have,
Vifla, X2(t)) — Vifla, X2(0)) = /0 t V2 V1 f(a, X2(s))dXa(s)
+ f_o:o La(t, £2)de, V5 VT fla, 22) a.s.. (5.3.1)
Therefore V{ f(a, X2(t)) is a continuons semimartingale, and can be decomposed as
Vi fla, Xa(t)) = V1 fla, X2(0)) + k{t,a) + v(2, 2), (5.3.2)
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where h is a continuous local martingale and v is a continuous process of locally bounded
variation (in t). In fact h(t,a) = f§ V5 V7 F(a, Xa(8))dMj(s). Define
Fi(a,b) = < ha),h(b) >; = < V[ f(a),V]f(b) >s
g
= [ Vi Vife Xalr )V VL £, Xalr))d <Ma>r,
Fla,b)s* = < h(a),h(d) >t = < Vi f(a), Vi f(b) >a*?
Sk41
= [ VIS X))V V5 56, X)) <M,
k
We need to prove h € V. To see this, as V, V] f(z1,22) is of locally bounded variation
in 2y, so for any compact set [—N, N], V3 V[ f(z1,%2) is of bounded variation in z; for
z1 € [N, N]. Let P be the partition on [-N, NJ2 x [0,¢], P; be a partition on [-N, N]
(i = 1,2), P3 be a partition on [0,t] such that P = P; x P x P3. Then we have:
Varg ,5(Fs(a, b))
= SUP Z Z z: ‘F(az-l-l, j+1 8k+1 F(aﬂ-l) 8k+1 F(a“ bj+1)8k+1

+F (s, by)ek |

k+1

- supZZZ| L EVE fera, Xar) V5 Vi £, Kalr))d <M
-[ o V3 Vi fassn, Xo(r)V3 V5 £ (b, Xa(r))d <Mp>r
= [ V5V £ Xalr))V Vi F e, Xalr))d <Ma>r

8k

+ f b v.;v; f(as, Xo(r)) V5 VT £ (b, Xa(r))d <Ma>,

(v;vl-f(a,:+1,xz(r)) - v;vrf(af,xz(r)))

(vgvl—f(bm,xz(rn = V3T F(b5, Xalr) )4 <M,

< j: 5;1}) Z%: [V;Vl'f(aiu,Xz(’f')) - VEfo(a;,Xz(r))l

up 3 [ V2 V7 f(bg42, Xalr)) = V3 Vi £bs, Xa(r)|d <Mo>,
2

- fos (Va.ra(V‘z"Vi‘f(a,Xz(r)))) 2d <May>,< 00.

Therefore under the localization assumption, [ fg Li(s,a)ds oh(s,a) can be defined by
Definition 5.2.1, i.e. it is a stochastic Lebesgue-Stieltjes integral. On the other hand,
under the localization assumption and condition (iii) and (iv), let’s prove that

v(o,0) = [ V7V fla XaloDdVlr) + [ La(s,22)dz, V3 Vi F(2) 1= 0(5,0) + ve(s,0)
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is of bounded variation in (s, a) for s € {0,¢], @ € [~N, N]. In fact,

Varsav(s,a) = pSUI;) 33 lor(skt1s ai1) — v1(Sk, ais1) — v1(Skt1,05) + v1(5k, i)l
1XF3 b 4

S
|

sup 3301 [ [VZ T f(@ie, Xalr)) — V5 Vi flas, Xar))]dVa(r)]

PixPs E i Bkt1

< jo t SEFZIVEV;f(am,Xz(T)) — Vg V1 f(as; X2(r))||dVa(r)]

< o0,

as Vo VI flz1,xae) is locally bounded and of bounded variation in ;. Moreover, in the

case when Vi V3 f(zy,z2) is increasing in (z1, 22),

Varsava(s,a) = Sup, D) va(Skt1s @iy 1) = a(Sk, it} — v2(Sha1, i) + vo(sk, @i}l
1 3 k i
o0
= sup f Lo(sg+1, 2) ~ La(sk, x2
'P;xav.g;zi: —oo( ( +h ) ( ! ))

da (V5 VT f(ai41,22) = V5 V7 flas, 22)
Z /_ o:o Lo(t, x2)de, (VE Vi Flaipr, x2) ~ V7 V71 flas, 352))
n;az.ng(t, £2)(V5 Vi f(N,N) = V7 V[ F(N,—N)

V3 Vi (=N, N)+ V3 VT f(-N,~N})

IA

IA

< 00,

In the general case when V5 V1 f(z1,z2) is of bounded variation in (21, %3), we can assert
that va(s,a) is also of bounded variation in (s,a) by applying the above result to the
difference of two increasing functions. So f{ %% L1(s, a)ds,qv(s, @) is a Lebesgue-Stieltjes
integral. Hence, [§ [ Li(s,a)ds V7 f(a, X2(s)) can be well defined. A localization
argument implies it is a semimartingale. Now we recall that the local time L,(s,a) can
be decomposed

Li(s,a) = L1(s,a) + Z Li(s,z}) := La{s,a) + L1(s,a),

»
rp<a

where L(s,a) is jointly continuous in s, a, and {z}} are the discontinuous points of
Li1(s,a). From [41],

El (t, :’L‘) = Ll(t, .’D) - I (t,a:—) = j: 1{2}(X8)dV9. (53.3)

Again we use the localization argument and assume the support of the local time is included
in (~N, N). Let g1(s,0) := V7 f(a, X2(s)), by a computation in (4:2.7) in Section 4.2, for
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any partition {0 =ty <t <+ <tp=t,-N=ap< a1 <ag < -+ < a; = N},

-1m-1
¥ 3 a1ltian, aist) [Eaian, ains) = Inlt, aina) — Ialtnn, 00) + Laty, 00)]
i=0 j=0
iI-1m-1

= 33" Li(tj,0) [91(tj+1, it1) = 91(ts; ait1) — g1(tip1, a6} + o1sy, ai)]
=0 j=0

-1
- > I, ai)[gl(t, ai+1) — g1t ai)]- (5.3.4)
i=0
Note the first Riemann sum of the right hand side has a limit that is fé le Lq(s, a)ds og1(s, @),
the second Riemann sum of the right hand side has a limit that is | N N Lyi(s,a)dagi(s, a),
when d; = max(t;41 — ¢;) — 0 and §; = max(z;41 — 2;) — 0. Therefore the left hand side
J H

converges as well when é; — 0, §; — 0, denote the limit by fg fivN g1(s,a)ds s L1(3,a) on
{w: Li1(t,a) has support which is included in (—N, N)}. Taking the limit as N — oo we
can define f§ [ g1(s,a)ds4L1(s, a) for almost all w € © and it is easy to see that

fot /_":o Vi f(a, X2(8))dsaln(s,0) = fot f_"; L1(s,0)ds,o V5 f(a, Xa(s))

- [ Lt odVife @) (539

From Lemma 1.2.2, we know that Ly (t,a) is of bounded variation in (£, &) for almost every
w € Q. So J§ [ V1 fla, Xo(s))ds o L1(s, a) is a Lebesgue-Stieltjes integral. Therefore the
integral

fot jj:Vi’f(a,Xz(s))ds,ah(s,a) - jnt j;o;Vl‘f(a,X2(3))ds,aE1(S,a)

t poo i
+/[.) f_ V1 fla, Xa2(s))ds,a Li(s, @)
can be well defined.

We will prove the following generalized Itd’s formula in two-dimensional space.

Theorem 5.3.1 Under conditions (i)-(iv), for any continuous two-dimensional semi-
martingale X(t) = (X1(t), X2(t)), we have almost surely

FX(@) - F(X(0))

i (¢o]
= ;/Ot vi_f(X(S))dXi(S)_f_; f:Vi’f(a,Xz(s))ds,aLl(s,a) (5.3.6)
+oo  pf _ 1 2 . .
_Lm -[0 Vz f(Xl(S):a)ds,aL‘z(Sp G.) =+ 5‘21) Vi Vj f(X(s))d <,]"|A'1,j\{[;.-£>.9 ,
i
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Proof. By a standard localization argument, we can assume X1(f), Xo(t), their quadratic
variations <Xy>;, <Xo>¢, <X, Xo>; and the local times Ly, Lo are bounded processes
and f, Vi f, Vary, Vi f (i = 1,2), V; VS f, Varg, V V7 £, Varg, wyVi Vi f (i, 5,k =
1,2,% # j) are bounded.

We divide the proof into several steps:

(A) Define

1
plz) = { cele--t, if 2 €(0,2), (5.3.7)

0, otherwise.

Here ¢ is chosen such that f02 p(z)dz = 1. Take pn(x) = np(nz) as mollifiers. Define

+oo pdo0
fulz1,22) = [_ o /_ - pal(z1 — Y)pn(z2 — 2)f(y, 2)dydz. n > 1,

Then fn(z1,22) are smooth and

2 02
fafznan) = [ /0 P (@1 - Lz - Z)dydz, mz 1. (5.3.8)

Because of the absolute continuity assumption, we can differentiate under the integral
(5.3.8) to see f, V,-f,,,, Varwiv,rf,,, (2 = 1,2), V;‘ijn, Varm,cV,-V,-fn, Va'f"(m,mﬂviv_jfn
(4,75, = 1,2,1 # j) are bounded. Furthermore using Lebesgue’s dominated convergence

theorem, one can prove that as n — oo,

felzr,22) = flzr,22), (5.3.9)
Vifalzr,z2) — Vi fz,22), (5.3.10)
Vafaler,z2) — V3 f(z1,%2), (5.3.11)

ViVifalz1,22) ~ VIV7f(z1,%2), 4,5 =1,2, i #j, (5.3.12)

and each (zq,22) € R2.

(B) It turns out for any g(t, ) being continuous in ¢ and C! in 2; and having a compact
support, using the integration by parts formula and Lebesgue’s dominated convergence

theorem, we see that

+00
lim g{t, z1)dz, V1 a1, Xa(t))
o0

n—+o00 J
= '—ﬂli’l'iloo oo Vg(t, .'B1)V1fn(.’£1,X2(t))d$1
o0
= - f Volt, 20)V f(21, Xa(t))dzy a... (5.3.13)
—00
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Note V7 f(z1,x2) is of locally bounded variation in x; and g(t, z1) has a compact support

in z; and Riemann-Stieltjes integrable with respect to V™ f, so

400 o0
- [ Vot o) Vi S, Xa(Ddm = [ glt, 210, V3 flon, Xalt).

Thus

00

lim ':c’g(t,wl)dmlvlfn(ml,Xz(t))= / oog(t,mI)dzIfo(ml,Xz(t)). (5.3.14)

n—+o0 J_ —_

(C) If g(s,x1) is C? in 21, Ag(s, z1) is bounded uniformly in s, ;%Vg(s, 21) is continuous in
s and has a compact support in 2y, and E [ & Ira l9(s, 2)9(5, 9)||day,s < h(z), h(y) >5 |] <
o0, where h € Vs, then applying Lebesgue’s dominated convergence theorem and Propo-
sition 5.2.1 and the integration by parts formula,

Joo it
lim Loo fog(S,wl)da,mVlfn(ml,X2(5))

o o]

t
- _ lim fo Vg(3,21)ds Vi fnlz1, X2(5))dz:

n—+o00 J_nn

- un-lir-l{loo (ﬁz Vg(s’wl)vlfn(mhXz(S))’;da:l
t ptoc §
L Lo, 209t Xatoerds)

= — _[_: Vg(saxl)v;f(ﬂ:l,Xz(,s))l:)dml

t ptoo

+‘/0 f_m %vg(s’wl)vl_f(xl,XZI(S))dwlds

+oo gt

= = [ [ ete,00491 f(or, Xa(s))dos

t prtoo
- ./r;/-oo g(s,21)d 2, V7 f21, X2(8)) a.s.,

ie.
+oo gt
ﬂ‘_1_1)];-1}_10‘a N fo 9(8, T1)ds 2, V1 fa(z1, X2(8))
f ptoo
= Lf g(s,1‘1)d3,mlvl_f(wlax2(s)) a.8.. (5.3.15)
-0

(D) In the following we will prove that (5.3.14) also holds for any continuous function
g(t,z1) with a compact support in x;. Moreover, if g € V3 and continuous, (5.3.15) also
holds.

To see (5.3.14), first note any continuous function with a compact support can be

approximated by smooth functions with a compact support uniformly by the following
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standard smoothing procedure

oo 2 z
Im(t,21) = f em(y — z1)g(t, y)dy = / p(2)g(t, z1 + —)dz.
—oo 0 m
Note that there is a compact set G C R such that
max ’gma}xl)_'g(t’xl)l —0 as m—i-l-OO,
z1€G
gm(t, 21) = g(t,z1) =0 for 1 ¢ G.

Note

+oo +os
f_oo gt 21)dz, Vaifulz1, Xo(t)) = f_ Im (t, 21)dz, V1 frlz1, Xa(t)) (5.3.16)

oo+oo
+-/;c>o (g(t,xl) _gm(t1x1))d21v1fn(mlaX2(t))-

It is easy to see from (5.3.14) and Lebesgue’s dominated convergence theorem, that

400
lim lim Q'm(t, xl)dr,V1fn(31,X2(t))
{v o]

m—con—oo J

= Jim [ gn(t, 2040 V7 51, Xa(0)
= [ gta0)te, Vi flo1, Xa(®) as. (5.3.17)
Moreover,
+0o0 ]
[ (ott,2) = gmlt,0)) oy Vi fnlas, Xa(O)
< (maxlolt, o) — gmt 20)l) VaraeVisnlon Xa(8).  (5:3.18)
But,

mh;lflmﬁ,rﬂ,solép (:1611125 lg(¢, x1) — gm(t, wl)l)Varmlerlfn(a:l,Xg(t)) =0 a.s..

So inequality (5.3.18) leads to

+o0
lim limsup| f_ (9(t21) — gm(t,21)) ey Va2, o)) = O a5 (5.3.19)

M0 pesoo

Now we use (5.3.16), (5.3.17) and (5.3.19)

+o0
ljmsupf g(t, 21)de, Vi fn(e1, Xa(t))
nN=—o0 —00
- . +w
im limsup gm(t, 21)de, V1 fr (21, Xo(t))

1
mM—X0 pano —c0

+00
+n}i__r'nmlirrﬁ’s°%p[_w (g(t,an) —ym(t,ﬂ?l))dmvlfn(ﬂ?hX2(t))

= /_: g(t, x1)dz, V1 f(z1, X2(1)) a.s..
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Similarly we also have

lim inf +wg(t,w1)dxlvlfn(m1,Xg(t)) = foo g(t, £1)dz, VT f(21, X2(t)) a.s.. (5.3.20)

0 Joo -

So (5.3.14) holds for a continuous function g with a compact support in .
Now we prove that {5.3.15) also holds for a continuous function g € V3. Define

oG =]
Im(s,71) = f f P (Y — 21)pm (T — 8)g9(T, y)drdy.
—0o J =0
Then there is a compact G C R such that

022X o |gm(s,21) — g(s,21)] > 0 as m — +oo,

gm(8,21) = g(8,21) =0 for ;¢ G,
Then it is trivial to see
t oo
fj 9(s, 21)ds,2, V1 fulz1, X2(3))
0 J—oo
t oo
= [ [ gnls,e)dun Vasalor, Xas)
t oo
+j0 ] (g(s,21) — gm{s, 21))ds 2 V1fnlz1, Xo(5)).
—00

But from (5.3.15), we can see that

M—00 N—=00

t ptoo
Hm limfoj gm (s, 21)ds 2, V1 Fa{2z1, X2(8))
-0

t o0
o /o j:. gm($, 2152, VT f(21, X2(5)) a.s.

M=o

/: jfoo 9(s,71)ds 0, V1 f(z1, X2(s)).  (limit in My) (5.3.21)

The last limit holds because of the following:
B[ [ (gm(e,22) = 905,200 V5 s, (s
= B[ [ am—9)(5,0)(om — )(s:D)dans < VEF(@), VT 10) >0
= B[ [ on~)s.0)om - 9)s,b)
dop V7 V3 £(@ Xa(s))V1 V7 £(b, Xa(5))|d <Ma>,

= B fot [ f Jm(gm - 9)(s a)dav;V5f(a,X2(s))] %d <My>,

-0
— 0, as m — oco.

81




Loughborough University Doctoral Dissertation

On the other hand, in My

t pdoo
lim lim fo f_ - {g(s, 1) — gm (8, £1))ds 2, V1 fnlz1, Xo(s)) = 0. (5.3.22)

M—ro0 N—oo

In fact,
E[fotf_j:‘o(g(saml) _gm(s’-'rl))ds,mvlfn(xl,Xz(g))]z

= B f: [ [ :0(9 — 9m)(5,2)d, V1 Va2 fula, Xz(s))]zd <My>, .

Noting that V1Vafn(a, Xo(s)) is of bounded variation in a, we can use an argument similar
to the one in the proof of (5.3.19) and (5.3.20) to prove (5.3.22).

(E) Now we use the multi-dimensional Itd’s formula to the function f,(X(s)), then a.s.
F(X(B) — fulX(0)
2 L o
= ;fo Vi fo(X(8))dX(s) + 5[) A fr(X (8))d <My>,

+§ ft Dofn(X(s))d <Ma> + /"‘vlvz Fu(X(s))d <M1, Mp>, . (5.3.23)
0 0

As n — o0, it is easy to see from Lebesgue’s dominated convergence theorem and (5.3.9},
(5.3.10), (5.3.11), (5.3.12) that, (i = 1,2)

F(X() = (X)) — FX®) - FX(O) a5,
t t
[ vituxonanes) - [ Vi fxananis) as,
j: Viijn(X(S))d <M, My>; - -/: V:V;f(X(s))d <My, Ma>, a.s. (i,j =1,2,i# j)
and
B [ (Vufu(XK () d <M= B [ (V5 FX ()P0 <Mi>s
o 0
Therefore in Ma,
fo t Vifa(X(5))dMi(s) — [) t Vi F(X(8))dMi(s), (i = 1,2).

To see the convergence of % fg Ay foX(8))d <My>, first from integration by parts formula
and (5.2.13), we have

%/OtA1fn(X(S))d<M'1>s — /+ooAtAlfn(a,Xz(s))daLl(s,a,)da

—C0

- f_ T Lt 6)daVafala, Xa(t))

[e0]

oo gt
_ f_ - /0 L1(5,8)ds,a V1 fa(a, Xa(s)).
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But local time Ly (s,a) can be decomposed as

Li(s,a) = La(s,a) + ¥ Li(s,2}) := Li(s, @) + L1(s, a), (5.3.24)

*
T<a

where Li(s,a) is jointly continuous in s, a, and {z}} are the discontinuous points of
Li(s,a). From (D) and (5.3.5), we have as n — oo,

+oo

/;+m El(t, a)davlfn(a: X2(t)) - j;m Lt f‘l(sa a‘)ds,avlfn(a’ Xz(s))

o? - +oa pt
- L Lt @)daVi S (@ Xalt) - f_ N /0 F1(5,0)ds, 0V f(a, Xa(s)) (limit in Ms)
= - f_ > j[; tv;f(a,Xz(s))ds,aL(s,ab). (5.3.25)

On the other hand, from Lemma 1.2.2, we know that Ly(s,a) is of bounded vari-
ation in @ for each s and of bounded variation in (s,a) for almost every w € Q. And
also because V1 f,(a, X2(s)) is continuous in (s,a), fF [ Vifa(a, X2(s))dsqL1(s, ) is
Riemann-Stieltjes integral. Hence in (5.3.4), replacing L1(s,a) by Li(s,a), g1(s,a) by

Vifale, Xa(s)}, we still can obtain an integration by parts formula as follows
f poo _
]0 [ Ly(s, a)ds,avlfn(a: X2(s))
t roc — o _
= [ [ it Xa(Ddeala(s,0) + [ it 0)aVanla Xa(0)
—o0 -00

Note here the integral f§ [, L1(s,a)ds 4 V1fn(a, X2(s)) is also a Riemann-Stieltjes inte-
gral though it is stochastic. Therefore

00 _ topoo _
/ Ll(tu G)da.vlfn(aa X2(t)) _fo f Ly(s, a)ds,a.vlfn(as X2(3))
—o0 —co
i poo =
= = [ [ 1tala Xale))dualn(s,)
0 J—eo
¢t poo =
- - /0 / V1 f(a, X2(s))dsaa (s, a) (5.3.26)
—00
as m — 00 by Lebesgue’s dominated convergence theorem. So by (5.3.25) and (5.3.26),
1 rt o t _
s ](; Afa(X(e)d <Mi>e- - [ fo Vi (21, Xa(t))da g In (s, 21),
-0
as n — co. The term % fot Az fn(s,X(8))d <Msz>, can be treated similarly. So we proved
the desired formula. <
The following theorem gives the new representation of f(X;), which leads to integra-

tion by parts formula for integrations of local times.
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Theorem 5.3.2 Under conditions (i)-(iv), for any continuous two-dimensional semi-
martingale X (t} = (X1(t), X2(1)), we have almost surely

2
W) = JXO)+ 3 [ Vi FX©)ixi(o)

i=1

+ L : Ly(t,a)d, V7 f(a, X2 (1)) — /_ :m /0 t Li(s,a)ds 0 V7 f(a, Xa(s))
oG +o¢  pt
+/;m La(t,a)d, V5 f(Xa1(t),a) — /_m /0 L2(s,0)d,,aV5 f(Xi(s), a)

2 o
133 [ VIvr SN <M, Mo, (5327)
ij=1

i#d
In particular, from (5.8.5), (5.3.6), we have the integration by parts formulae

oo +oo i
| st a)davis@ Xy~ [ [ ols,0)deavi fa Xa(s)

B +oo  rt
= = [ [ it Xa(sDsaslo, o),
—oo JO
for g(s, a) = L1(s,a), L1(s, a), L1(s, a) respectively.

Proof: For (5.3.27), we only need to prove the convergence in (5.3.25) holds for L1(s, z).

First let’s prove, when n — oo, in My,
+oo gt _ oo gt
[ [ Bats,o)daaVasufa, o) » [ [ La(5,0)dua¥7 (0, Xals):
—00 —00

From the assumption of Vi f and the definition of fn, recall (5.3.2) and from Itd’s
formula we have V; f(a, Xa(t)) = V7 f(a, X2(0)) + At a) + v(t,a), Vifale, X2(t)) =
Vi fo(a, X2(0)) + hp(t,a) + vu(t, a), where hy,, h are continuous local martingales and vy,
v are continuous processes with locally bounded variation (in t). From previous computa-
tions, we know that i, h € Vo, i.e. < (hn — A)(a), (hn — A){b) >, is of bounded variation
in (s,a,b) and vn(s,a), v(s,a) are of bounded variation in (s,a). So

+oo0 gt _ +co pt _ 2
B [ s aduam(s,a) - [ [ Lisa)dsah(s,a)
-0 J0O —oa JO
t - —_—
= B /0 fR En(5,0)E1(5,0)dass < (@) = (@), hn(B) ~ B{B) >, .
Let (—N, N) covers the compact support of local time L(t,-), N is fixed for each w, and

G(s,a,b) := Li(s,a)L1(s,b)
Gla, b)srt* = Ly(sp41,8)L1(8ks1,0) — D18k, a) L1 (sg, b)
Ho(s,0,8) =< ha(a) — A(a), hn(8) — R(3) > .
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We can show that G(s, a, b) is of bounded variation in (s, a,b). In fact, let P be a partition
on [N, N]2 x [0,t], where P; is a partition on {[—N, N} (i = 1,2), Ps is a partition on [0, £]
such that P = P; x Py x Ps, then
Var, 43G(s,a,b)
= S“PZ Z Z !G'(C%+1abj+1)3'°+1 Glairs, b)apt™ — Glai, bje1)ok™ + Glas, by e?Hl|

= sup Zk: Z Z ILI k410 @it 1) D1(Sk41, b41) — L8k, @ia) L1{sk, bi1)
i

—L1(sk+1, @) L1 (8k41,6531) + La(sk, ai) L1 (sk, bj41)
—Ly(sk+1, air1) D1 (8k41,b5) + L1(5k, aiv1) Ln(sx, by)
+Ly(8g+1, ai) La(skt1,b5) — L1 (g, ai)Ll(sksbj)l
= sup D I(fn (sk415@i41) = La(ska1, ai))(Laskr1, bj1) ~ Liskea, by))
AR
—(Ln{sks @i+1) = L1(sk, ai))(La(sk, bys1) — Ln(se, bj))'
= sup D55 |[(E1(Sk+1, ai+1) — L1(sxe1, @) — (D1(sky aiv1) — La(sg, a:))]
PR
(L1(sk+1, b341) — L1(8g+1,85))

+(E1(3k’ a,,;+1) - El(sks a;))
A Za(sks1r 541} — L(sk41,85)) — (El(sksbﬂl) = Li(ss, b~))]’

< SUPZZZ[V Z f‘”“'l 1{m*m}(Xs)st)] [ fl{:vm}(Xs)st]

i §  ey<el<oigq YOk b <y, <b,+1
+supZZZ b j 1on 3 (Xs )dV > f 1{x.}(X,_,)dV)]
i ei<ah<oit1 b<m + Shiys ¥k

— 2(&N<z‘ o [ Las (X2)aVa)’

< 2 [Ot1(_1~:,M(X.g)lcﬂf‘gl)2

< o0o.

Define

Gi(s,a,b) := V&([0, 8] x [N, a] x [-N,b]) + G(s,a,b),
Ga(s, a,b) i= V5([0, 8] x [~N,a] x [-N, ) - G(s,a,b),
where V{0, s] % [N, a] x [N, b]) denotes the total varia,tidn of G on [0, 8] x [-N,a] x

[-N,b]. Then it's easy to see that G(s,a,b) = %[C:‘](s,a,, b) — Ga(s,a,b)], and G, Ga
are nondecreasing in (s,a,b). Moreover, by additivity of variation, one can see that for
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52 > 51,

Gi(s2, a,b) — G1(s1,a,b)
= VG([SI: 32] X {—N$ CB] bat {—'N: y]) + G(S2, a, b) - G(Sl,a‘a b) - G(325 a, —N)
+G(s1,0,—N} — G(s2,—N,b) + G(s1,a,~N) — G(s2, —N, —N) + G(s1,—N, —N)
> 0.

That is to say, G4(s,a,b) is increasing in s for each @ and b. Also for any as < ay,

él('s:a‘%b) - él(saalab)

= VG([O’ S] X [0)1,0;2] X [“N! y]) + G(S, a2, b) - G(S: alyb) - G(Osa% b) + G(O:alyb)
~G(s, a9, ~N) + G(s,a1, —N) + G(0, a3, —~N) — G(0, a1, —N)

> 0.

So G1(s,a,b) is nondecreasing in a for each s and b. In the same way, Gi(s,a,b) is
nondecreasing in b for each s and a. Therefore é’l(s, a,b) is nondecreasing in s, a, b

respectively. Similarly, Ga(s, e, b) is also nondecreasing in s, a, b respectively. Define

GI(S, a, b) = él (3’1 a'Fa b’)

Lm
#lsala b b
Ga(s,a,b) = olo ilrlfé bib Ga(s',d, ¥).

So G and G are right continuous in (s, o, b), and nondecreasing in s, a, b separately, and
G{s,a,b) = %[Gl(s, a,b) — Ga(s,a,b)]. Now we claim for any ¢ > 0,

A= {(s,a,b): G1(s,a,b) < c}

is an open set. To see this, for any (s,a,b) € 4, take ¢ = 4(c — G1(s,a,b)) > 0. First as
G(s,a,b) is right continuous in (s, @, b), so there exists § > 0 such that

[Gi(s,d,b') ~ Gi(s,a,b)| < ¢,

when s < s’ <s+d,a<a' <a+d,b<¥ <b+4. That is to say, [s,s+0) x [a,a + 8) x
[b,b+8) C A. But for any ' < 5,0’ < a, b <,

G1(d,d,V) < Gi(s,d, V) < Gi(s,a,b) < Gy(s,0,b) <c.

Therefore, (—00, $ + &) X (—00,a + 8} x (—00,b + &) € A. This implies that A is an open
set. Thus for any ¢ > 0,
{(s,a,b) : G1(s,a,b) = ¢}
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is a closed set.

From the assumption, we know Hy(s,a,b) is of bounded variation in (s,a,b) and
when n — o0, Hp — 0. We only consider the increasing part of Hy, still denote it by H,.
Hp(s,@,b) is left continuous and increasing, so it generates Lebesgue-Stieltjes measure,
denote it by p,. It'’s easy to see that (81, 82) X [a1,a2) x [b1,b2)) — 0, as n — oo, for
any [, 52) X |a1,a2) x [b1,52) C [0,¢] x [~N,NJ2. So ptn —+ 0, as n — co. Let P be a
probability measure on [0,t] X [N, N]? and

(P + pr)([s1, 52) % [a1, a2} x [by, b2}))

Fallons o0} lon,02) X B b)) = (B (0, 0% =N, N < -, N’

Then P, — P. Therefore, by the equivalent condition of weak convergence (cf. Propo-
sition 1.2.4 in [19]), for any closed set E, hmsup P,(E) £ P(E). Now without losing
generality, we assume 0 < Gi{s,q,b) < 1. Usmg the method of Proposition 1.2.4 in [19],

we have for either @ = F, or P,
k.

ZE-E—IQ{(s,a,b) : z___—k_l < Gis,a,b) < %}

i=1

]ot jj;r j:_ I;:, G1(s, a, b)Q{dsdadb)

IA

IA

k. . .
i i—1 i
-_ b — -
i§=1 kQ{(S’a’ b) < Gi{s,a,b) < k}’

and
k

S felean: G <G <

Z lQ{(s,a b) : Ga(s, a,b) > }.

:-0
But E; = {{s,a,b) : G1(s,a,b) > ;c-} is closed, so

limsup P,(E;) < P(E;), i=0,1,---,k—1.
00

Thus,
t oN pN
lim sup f / f G1(s,a,b)Pn(dsdadb)
n—oo -N
k=1g
< hmsupz P {(s,a,b): Gi(s,a,b) 2 }
k— 1

[Fa

Z P{(s,ab Gl 3,0‘1 ) }

-+ / f f G1(s, a, b) P(dsdadb).
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As k is arbitrary, so

t N N .
1im sup f f f G4 (5, 2, b) Py (dsdadb)
0 J-NJ=-N

n—00
£ PN N

< f f ] Gy(s, 0, ) P(dsdadb).
0 J-NJ-N

Applying above to 1 — G1(s, a, b), we can prove

t pN pN
lim inf / f ] C1(s, 0, b) Pa(dsdadb)
0 J-NJ-N

n—o0

t N N
> / f ] Gy(s, a, b)P(dsdadb).
0 J=-NJ=N

Therefore,
im [ " i a,b)Pudsd
i ,a,b) P, (dsdadb
Jm [ [ Gils,a,b)Pa(dsdadt)
t fN N
- f f / G1(s, a, b)P(dsdadb).
0 J-NJ=N
So,

t N N
nango./o /—N/;N Gi(s, a, b)un(dsdadh) = 0,

We can do the same thing to Gz(s, a,b), and get

t N pN
lim / f f Ga(s, @, b)pn(dsdadh) = 0,
0 J-NJ-N

n—oo

Thus,

t fN N
lim f f ] (s, 0, b)n(dsdads) = 0.
0 J-NJ-N

n=—o0

But when Hy,(s,a,b) is of bounded variation in (s,a,b), it can be decomposed to two

increasing functions. Therefore, we have

it oN N
fim f f f G(s,a,5)dupsHals,,8) = 0.
0 J-NJ=-N

=00

Hence, when n — oo, in My

+oo pt _ +oo pt
[ [ hGeadbea = [ [ Iie0duabisa)
—oco JO ~c0 Y0
We can also easily prove that
+oo pt o +oo gt _
/ / Ll(sia)ds,a'vﬂ(s) a) —+ f / Ll (Saa)ds,av('g& a)s
—oc JO —-oe JO
+oo _ +00 _
f Ll(t’ a)davlfn(a: X2(t)) = f Ll(tr a)davl—f(a'7 Xz(t))
—o0 —o0

88




Loughborough University Doctoral Dissertation

Similarly we can deal with the terms with La(s,a). So (5.3.27) is proved and the integra-

tion by parts formulae follow easily. o

The smoothing procedure in Theorem 5.3.1 can be used to prove that if f : RxR — R
is absolutely continuous in 2y, x> respectively and locally bounded, C! in z; and x5, and
the left derivatives B%—;j flz1,z2), (3,5 = 1,2) exist and are locally bounded and left

continuous, then

F(X @) - F(X(0))
i

2t 1 2. gt
= ; fo Vz’f(X(S))dXi(s)‘FEi;l /D m-x—jf(x(s))d <Xi, Xj>s . (5.3.28)

This can be seen from the convergence in the proof of Theorem 5.3.1 and the fact that
3-;3;;; falz1,22) — a%fa_m—,- f(z1,x2) under the stronger condition on a%fa_—m; I

The next theorem is an easy consequence of the methods of the proofs of Theorem
5.3.1 and (5.3.28).

Theorem 5.3.3 Let f : R x R — R satisfy conditions (i) and f(21,22) = fa(z1,72) +
fol1,22). Assume i is Cl in x1, 20 and the left derivatives g-ggm—jfh(ml,mg)(z‘, i=1,2)
exist and are left continuous and locally bounded; f, satisfies conditions (it)-(iv). Then

FX () — F(X(0))
2 ¢ B 1 2 t _
= 3 [ Vi f(x(e)axis) + D | A7 (X (s <xi>

i=1

—f+wftV'f(aX(3))d L(sa)—f-mftV‘f(X(s)a)d La(s,0)
__ooolvsz 8,a-M1\Fy —ooozvl’s'az’

2t
3 > [ Orvr i <, M,
ié;?jl

20t 12t
-5 i SXNXi(s) +5 3 | Az pxena <xe,

[ LV fla %) - [ [ Ialo,0)dea¥i Al Xa(s)
‘:’o -:ooo t
+[_mLz(t?a)dGVEfv(Xl(t)1a)_[_m [) Lz(saa)ds,av‘;fv(xl(s)sa)
2
52 [ VeV7 X (60 <My, >y s (5.3.29)
i
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Example 5.3.1 Consider
flz1,22) = (z123) ™.
It’s easy to see that
VIif(@1n32) = Z2lizz>01l{z50) + Z21{z12,<0} 1 {zs<0}
= Z2l{z1>0 la2>0} + Z21(z1 0} a0}
= 231z, 50} ~ 27 Lizy <o},
so A7 f(0,z2) = co, which means that the classical Itd's formula doesn’t work. But
Vi Vi f(21,22) = Liz1>03 {2550} + L{zy<0} L {zs<0}-
This suggests our generalized Itd's formula can be used.
Example 5.3.2 Consider
H +
Hzy,z2) = 23 (ma22) ™

It's easy to see that

1 1
Vif(zn,ze) = 2325150 — 2575 1z <0}
2

Vs flz1,22) = §w;§(x1x2)+ +x§mi"l{m2>o} - 3‘2%371—1{@250}
= orbafef +orap)
A flzr,2) = —gd"f; g(xi'-l{zz>0} - 27 L{z,<0})
+§$;%($1+1{z2>o} — 27 L{z,<0})s
V,.“Vj_f(m,xz) = %1.'22%1{&1390} + §w§ 1{z=0}{zs<0}s (1,7 =1,2,% # ).

So A f(x1,0) = —oco when z; < 0, and zlin% AS f(x1,22) = —oo when & < 0,
2—+0~—

lir%_l_ A7 f(z1,22) = co when x1 > 0. These calculations suggest that neither the classical
Ty = .
Itd's formula, nor the formula in [39] can be applied immediately. But our generalized

Itt's formula can be used here.

Remark 5.3.1 This Chapter is in the paper [12], which is submitted to Stochastic Pro-
cesses and Their Applications. Applications e.g. in the study of the asymptotics of the
solutions of heal equations with caoustics in two dimensions, will be considered in future

publications.
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