
LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

i AUTHOR/FILING TITLE I
! '
i __ __ - ---- l=_I:H-K~ "1-11 -;- __ ":' ___________________ __/

I
~- -Acc-Es-sJoNitoPv--t..lo~---------- ---- -------- ------

:-------- _________ ---~ ~"1 !_o_1jo_t___ ______________ _
I VOL. NO. CLASS MARK :

!

FOR REFERENCE ONLY

ASPECTS OF COMMAND LANGUAGE PORTABILITY

INCORPORATING A MACHINE-INDEPENDENT

FILESTORE CONCEPT

by

N.S. FITZHUGH, M.Sc., A.F.I.M.A.

A Doctoral Thesis submitted in partial fulfilment of

the requirements for the award of Doctor of Philosophy

of the Loughborough University of Technology.

May 1977.

Supervisor: Dr. I.A. Newman
Department of c'omputer Studies •

. ',-.
----~-------------

f) by N. S. Fi tzhugh"-1977.-

•

.~ ...

Loughborough University
of Technology library

Date Q~.i1
Class I Ace. \<f\ IO'"t [o I No.

•

•

- ·- -- ---------------------

ABSTRACT

A brief summary of job control language development

precedes a general discussion of possible improvements

in command language practice. The user requirements of

a command language are considered with special reference

to a machine independent basis. "Primitive" functions

are defined from this viewpoint.

To meet the proposed objective of portability it is

suggested that an appreciation of the user interaction

with the computer operating system is necessary. This

provides the definition of the user profile model based

on the user requirements of a command language. A second

model is then developed to represent the structure of' the

operating system.

These two models are coupled by an intermediate

abstract level which is independent of both the user

and operating system, yet allows items of one model to

be mapped onto the other model. It is this abstract

level that later provides the primitive functions for the

portable command language.

It is postulated'"Ii:lat':th·;;·file ·is a common feature
• ·:. ,\.t

of the user profile, tne.'iii-Ee.rmedia.te abstract level,

and the operating system.· .. The mea'A.ing and properties
r ""'I

'·i.

of files are expounded as abstractions to provide a

clearer understanding of their use.

The principles of a machine independent filestore

are developed. It is postulated that such a filestore

would be based on an arbitrary collection of physical

devices and be linked to an indefinite number of

processors. The concept is, therefore, applicable

to any multiprocessor environment, including a networl<.

The method of obtaining the primitives and their

properties is explained. The primitives required for

filestore operations are syntactically and semantically

defined.

These definitions are shown to be viable by a

demonstration system which employed the principles

elucidated for both the filestore and the intermediate

abstract level.

Finally, suggestions of how the work could be used

and indications where extensions would be feasible are

made.

Keywords:

Computers

Job Control

Command Language

Machine Independence

Portability.

ACKNOWLEDGEMENTS.

I should like to express my appreciation and

thanks to those from whom I have received assistance.

I am particularly grateful to my supervisor,

Dr. I.A. Newman, for his interest throughout the

period of my research and the astute and thoughtful

guidance that he has supplied during the preparation

of this thesis. I also wish to thank Professor D.J.

Evans who has provided continual encouragement and

advice.

I am grateful toMs. A.J. Cook for reading the

original manuscript and her support, Mr. M.T.R.

Blackwell for proofreading the typescript; both of

whom found much to criticise. Any mistakes which remain

are my own.

It is a pleasure to acknowledge Mrs. J. Godber's

patience and diligence in typing the thesis.

Finally, I am indebted to Nottingham University

Mathematics Department for permitting me to be their

._guest for two years; Cripps Computing Centre, Nottingham

University for the use of computer facilities; and

S.R.C. for the award of a maintenance grant.

I hereby declare that the work contained in this

thesis is my own unless otherwise stated.

N.S. Fitzhugh.

------~----------------~---~--------------~

CHAPTER I

1.

2.

5·

6.

CHAPTER II

CONTENTS

INTRODUCTION

Introduction

The Requirement for Operating
Systems

Job Control Development

The Development of the Computer
User

Object of Thesis

Framework of Thesis

ADVANCES IN COMMAND LANGUAGES: A REVIEW

1.

2.

3·

Introduction

Separate Languages for Job Control

2.1 Manufacturers' Command
Languages

2.2 Modified Systems and
Languages

Job Control Coomands within
Programming Languages

Formal Definition of Command--
Languages

Command Language Committees

Page

1

2

3

4

4

6

7

8

8

19

J2

CHAPTER Ill

BUILDING CLARITY AND PORTABILITY INTO COMMAND LANGUAGE.

l.

2.

3·

4.

CHAPTER IV

l.

2.

3·

CHAPTER V

Introduction

User Requirements of a Command
Language

Evaluation of Previous Studies

Re-appraisal of the Problem

COMMAND LANGUAGE MODELS.

Introduction

The User Orientated Model

Considerations for developing the
Operating System Structure Model

The Intermediate Abstract Machine

Implementation of the Abstract
Machine

THE MACHINE INDEPENDENT FILESTORE.

l.

2.

3·

4.

Introduction

The Logical Filespace and its
Application

The Attributes of a File

Practicalities of Implementation

47

49

52

61

68

69

83

89

106

110

114

123

137

CHAPTER VI

THE FORMAL DESCRIPTION OF THE FILESTORE SUBSYSTEM

1.

2.

3·

4.

5·

6.

7·

CHAPTER VII

Introduction

Application of the Abstract Machine
Concept

The Formal Definition Method

Formal Description of the Filestore
Subsystem

Independence, Completeness and
Consistency

The Non-filestore Primitives

Practical Considerations

IMPLEMENTATION OF THE FILESTORE SUBSYSTEM

1.

2~

3-

CHAPTER VIII

1.

2.

3·

4.

5·

6.

CONCLUSIONS

REFERENCES

Introduction

Implementation of the Filestore
in Principle

Implementation of Prototype System

APPLICATIONS

Introduction

Database Security

Database Integrity

Checkpointing

Networks of Computers

Command Language for a Network of
Computers

144

149

172

178

182

186

188

201

212

213

215

218

220

223

227

230

- 1 -

CHAPTER I

INTRODUCTION.

§1. Introduction.

It is estimated that 1.45 billion dollars are

wasted per annum due to command language errors [lh].

It is also estimated that in the year 1985 only 2% of

the total programmer population will possess computer

science degrees [/ b] •

Although many existing command language errors

can be attributed to mispunching and miskeying [2~],

a large proportion must be caused by the user unwittingly

misusing the command language. However, currently as

operating systems and command languages increase in

flexibility and sophistication, the user needs to

become increasingly experienced to use them [3).

Therefore, unless the user interface to the computer

is significantly improved it can be reasonably assumed

that the number of command language errors will increase

as the user population becomes less computer orientated.

Inevitably, therefore1 there is an increasing interest in

the previously neglected topic of command languages.

This has manifested itself in the proliferation of

standardisation groups, working parties and individual

research in this area in recent years.

Most of these workers have. starte.d from the

existing command languages produced by the manufacturers

for the mainframe machines since these are_invariably

used in practice. However, every manufacturer has

issued at least one operating system for each range of

machine that they produce and every one presents a

different command language interface to the user.

Furthermore, the command languages are described in

voluminous reference documents which are difficult to read,

often misleading and sometimes incorrect.

Other literature in this field has, until recently,

been scarce. Barron (2] has given an overview of the

main manufacturers' operating systems with descriptions

- 2 -

o:f specific :features. Barron and Jackson [5] and

EnsJ.ow [17] have given historic accounts o:f the evoJ.ution

o:f job control. J.anguages, and Cox [12] has compared a

representative sampJ.e o:f command J.anguages. A review o:f

existing control. J.anguages and possibJ.e :future deveJ.opments

were the topics discussed at a B.c.s. symposium [52] and

a conference speci:ficaJ.J.y on command J.anguages organised

by IFIP [53] aJ.J.owed individual. researchers to express

their ideas. Several. committees are working in the :fieJ.d

(CODASYL OSCL Task Group, Dutch Job Control. Language

Committee and B.c.s. Group 5 Working Party) but these

have as yet onJ.y produced interim reports.

The evoJ.utionary process that has given rise to

the current activity has been taking place over the past

:fifteen years. It is there:fo·re, instructive to examine

briefly the sequence o:f developments that have produced

the existing job control J.anguages.

§2. The Requirement :for Operating Systems.

The very early computer systems were no more than

the hardware components. Each programmer, by necessity,

was a proficient machine operator capable o:f running and

debugging his own programs. As the procedure :for using the

machine standardised it became :feasibJ.e to employ a

permanent operator. His job was to supervise the machine,

look after the peripherals and organise the program runs.
' Delays in setting up programs :for execution were not

significant because the machine was not particularly :fast.

However, as the machines became larger and :faster, efficient

use o:f the system became a progressively more important

objective :for economic and management considerations.

Initially this resulted in the operator and a

rudimentary system monitor sharing control o:f the machine

and J.ater to control :for most :functions being transferred

to the system, the operator being reduced to peripheral

management and responding to requests :from the operating

system. Parallel with these developments the number o:f

:facilities included in the system was inceasing. These

- 3 -

were intended to save programmer time, make better use

of the hardware and produce a more attractive system

for the purchaser.

Present day operating systems have grown into

complex monoliths of code often costing more to produce

than the computer hardware. The system assumes ever

more responsibility for the organisation of the

installation and provides yet more facilities.

thus

and

The computer needs an operating system because:

l) a large machine provides more resources than

a single user can hope to use,

2) they must be shared amongst several users,

J) multiuser environments have to be controlled

to prevent interference between users,

4) the computer is so fast and complex that

decisions are required to be made more rapidly

than the human operator is capable of responding

for efficient use to be made of expensive

resources.

§;. Job Control Development.

\vhen the operator or programmer was in control of

the machine the requirements of a program, or a complete

user interaction involving several programs, could be

-expressed as a verbal or a written sequence_of instructions.

As operating systems developed it became necessary for

the programmer to provide two sets of information before

his programs could be executed. The first set was for

the operator informing him of the expected resources

required enabling him to schedule the run, set up the

job - order of the paper tape reels or card decks, find

the required magnetic tapes etc. The second set was

either a paper tape or card deck of instructions for the

operating system specifying the machine resources and

software requirements of the job. The information for

the system had to be written in a language decipherable

- q -

by the system itself. Job control languages were

developed to fulfil this function.

§q. The Development of the Computer User.

Although the majority of the population do not

become directly involved, the computer indirectly

effects a large number of people as it is now normal

practice to computerise payrolls, bank statements,

electricity bills etc. This implies that not only

are more people becoming familiar with the advantages

(and disadvantages) associated with computers, but

more people are actually accessing computers.

Consequently it is of the utmost importance that

computing expertise should cease to be the domain

of the relatively small number of "professionals".

The user profile is now wider than ever before, and this

trend of embracing further new groups of user is

likely to continue. Currently bank clerks and doctors

are just two such groups who are beginning to use

computer technology. These users are nottrained

programmers and the computing they do is incidental

to the main theme of their work.

The work represented in this thesis was motivated

by the need to help these and other tYPes of user by

making the power of the computer more accessible which,

in turn, should reduce the number of errors made and

inc~ease_the_effectiveness of the system.

§5. Object of Thesis.

Use of computer systems can be less restricted

provided that it is possible to present the same user

job at any one of several installations and still get

the job processed. This can be achieved by job portability

which can take the form of:

- 5 -

1) Transference of machine operating systems.

The work involved in re-writing several existing

operating systems to permit their use on other

host machines renders this approach impractical.

2) Transference of job interfaces. There are

alternative approaches which aim to translate

either any job control into any other, or into

an intermediate form.

It is clear that if a common command language were

available in most machines this would be a first step in

achieving "usable" systems. A portable command language

would provide users with the benefit of:

1) the command language being machine independent

relieves them from the tedium of learning and

understanding the particular idiosyncrasies of

each machine, its operating system and its

operational environment,

2) only a single language, or a dialect of this

language need be learnt,

and J) savings in time if several computer systems are

used.

This thesis postulates that a significant degree of

machine independence can be attained if the user interface

(i.e. the command language) is built upon a framework of

operations and objects which do not reflect any particular

machine characteristics. Equally, this frame-work must

be independent of any particular user profile.

The··semantics of the primitive functions-obtained

are eXpressed in a formal definition because it is

necessary to have a precise description. However, the

approach adopted is intended to be pragmatic and is

considered to present a solution to the problem in a form

which can be applied. As Anscombe has remarked "what

is important is that we realise what the problem is, and

solve that problem as well as we can, instead of inventing

a substitute problem that can be solved exactly but is

irrelevant" [I].

- 6 -

§6. Framework of Thesis.

Chapter II is a general survey of the current

status of command languages and recent research work.

In Chapter III this review is discussed and user

requirements of a command language are formulated.

The concepts of a 11user profile" model and an "operating

system interface" model are introduced. This leads

into Chapter IV in which these two models are developed

and combined to give an "abstract machine" model

independent of user and system idiosyncrasies.

Chapter V develops the theme that a file is the

object which the abstract machine will manipulate and

examinesthe concept of a machine independent filestore.

Chapter VI uses the tools developed in the

preceding three chapters to define the semantics of

abstract machine operations: these are the filestore

primitive functions. The filestore directory contents

are extended showing that the need for non-filestore

primitives largely disappears. The completeness and

consistency of the filestore primitives are also

demonstrated. In Chapter VII a prototype implementation

of the filestore and its primitive operations is

described.

Finally Chapter VIII concludes with remarks on

the applications of this work, incidental results, and

indicates where extensions would be feasible.

- 7 -

CHAPTER II

ADVANCES IN COMMAND LANGUAGES A REVIEW

§1. Introduction.

This chapter seeks to record the major advances

in command language practice and theory. In Chapter

III these advances are discussed with special emphasis

on their relation to the work contained in this thesis.

There are currently two methods of providing job

control. The first of these and the most widely practised.

is to provide a separate language which only handles

commands. This approach is found in all the main

manufacturers' computer systems and most of the

independent modifications of existing systems. A more

recent approach is the integration of programs and

job control into a single language. On the theoretical

side techniques have been devised which seek to improve

the understanding of languages by formally defining the

syntax and semantics. Lastly, committees have been

established to obtain general agreement upon the

definition of job control operations and to examine

- tne possibility of standardisation.

This review i.s .structured in four .sections

categorised under the topics identified above •

•

- 8 -

§2. Separate Languages for Job Control.

2.1. Manufacturers' Command Languages.

The languages chosen for discussion in this section

are IBM's OS/360 JCL, ICL's GEORGE III, Burrough's

Work Flow Language and ICL•s SCL. These not only

represent the languages used by most computer users but

are also considered to be indicative of the trends in

command language practice. This is because they have

been produced by three independent manufacturers and

from the earliest IBM OS/)60 JCL, to the latest SCL,

span twelve years of third generation technology.

2.1.1. OS/)60 JCL.

General Discussion.

The antiquity of OS/J60 JCL has resulted in

frequent discussions and descriptions. The following

review is largely based on an article by Barren and

Jackson ['5] augmented by IBM reference manuals

(principally [l2]) and Nicholls [~5].

The antecedents of JCL are IBSYS and Fortran

Monitor System; both card based batch systems for the

IBM second generation machines.

It appears difficult to justify the word "language"

when applied to JCL; its format and structure are

comparable to assembly programming code, the·· syntax is

symbolic incorporating commas, brackets, asterisks,

~ 9 ~

amphasands and stroke as integral components of the

language. Even including or omitting a space character

can be significant!

JCL has not changed since its inception in 196q,

although it has been augmented by Time Sharing Option

which is the on-line counterpart of JCL. TSO and JCL

are incompatible, which means they cannot be used in

parallel for job development, . however there has been a

proposal that TSO will be usable offline in later

versions of VS.

The parameters qualifying a JCL command are

either positional, each value appears in a predefined

position within the parameter list, or keyword in which

case the order is unimportant.

Every job is composed of one or more job steps,

each job step is introduced by an EXEC statement which can

be labelled permitting inter job step communication.

The programs in a job step operate on 11data sets"

introduced by Data Definition statements. Data sets

correspond to physical medium permitting programs to

run unchanged regardless of the actual storage medium.

Job Control Routines.

The catalogued procedure of JCL is similar to the

macro facility of assembly programming languages. The

procedures save the user from the tedium of coding

standard functions and permit him to run jobs without

having to discover the details of the job control involved.

- 10 -

Normally the user provides parameters for a call

on a procedure. Only keyword parameters are used and

these can be in any order. Those parameters that are

omitted are given default values by the system.

The body of a procedure can be modified by replacing

statements as specified by the user in his job control.

Conditional Execution.

Each job step produces a return code in the range

0-4095 after its execution. By convention the lower

the value of the code the greater the success of the job

step execution.

A maximum of eight tests can be made prior to the

execution of any job step which is obeyed only if the tests

are satisfied. These tests can only be used on subsequent

steps of the job control sequence and are limited to

prohibiting one step from execution. There are not any

looping or recursive execution facilities in JCL.

_Input/Output and Data Handling.

The major new facility offered by JCL was

permitting internal names for files to be related to

specific external data sets or devices.

A detailed description of all data sets used in

the job is necessary indirectly, however, thereafter the

set can be referenced by the internal name. This facility

allows intermediate results, in the form of data sets, to

be passed from one job step to any of the subsequent steps

- 11 -

in the same job without the programmer needing to

respecify the details of the file.

Data and programs can be stored on discfor user

convenience and libraries, compilers and link/loaders

are an integral part of the operating system.

2.1.2. George III.

General Discussion.

GEORGE III has previously been described in reference

documentation, for example [37], the article by Barron and

Jackson [5"] and Newel!' s presentation [30]. These form

the basis for the following review.

Much of the underlying philosophy of GEORGE III

can be found in earlier Atlas systems; the filestore is

one such example. Unlike JCL, GEORGE III is designed

to encompass on-line, interactive, off-line and remote

access. Similarly, the language is intended to be

suitable for all types of user (although the context

of the access can prohibit use of some commands in some

_circum_stan~e~, for example, commands which are reserved

for the operators).

The most striking difference between JCL and

GEORGE III is the presentation. of the language. The

number of special symbols is vastly reduced and the job

control operations are written as a program-like

description.

- 12 -

Job Control Routines

The macros in GEORGE III may be system or user

defined. The parameter list in the call of the macro

body is similar to program language subroutine calls

although brackets are not used to enclose the list.

In the macro body the formal parameters are denoted by the

symbols %A, %B up to %X. <%Y and %Z are reserved for

the user and job identifiers). The formal parameters

in the macro body are replaced by the variable values

specified in the actual parameter list when the macro

is called. Keywords may be used in addition to the

more usual positional parameters. The occurence of the

formal parameter of the form %<<string>) in the macro

body causes the actual parameter list to be searched

for the first occurence of the associated string. (It

th is also possible to search for the n occurence of

the string by using %n(<string>) as the formal parameter).

The parameter value from the actual parameters is

substituted into the macro b~dy.

Conditional Execution.

During the execution of a program a number of

distinct events may occur. Without the GEORGE III

operating system messages corresponding to these events

would be relayed to the operators' console. The event

messages are divided into categories and an area of store

associated with each category contains the current event

message. Under the GEORGE III regime the messages

--- -- -- ---

- lJ -

are intercepted and used as part of the conditional

execution mechanism.

The string which forms part of the conditional

is compared with the current event message for the

specified event category. If the two strings match

then the command associated With the conditional

(which may be a forward or backward jump) is obeyed.

Another powerful facility is the WHENEVER command.

This permits command syntax errors to be trapped and

the action associated with the command may be used

to circumvent the error. Alternatively the user can

specify that ce.rtain actions are to be performed

whenever a given runtime event occurs.

Input/Output and Data Handli]l&•

GEORGE III is built upon a central filestore

containing both system and user files. Programs merely

refer to logical devices and the input/output components

of the job control specify files that are to simulate

the action of the peripherals. This allows data to be

independent of devices (although the file needs to be

compatible to the device type 1 e.g. only a text file

may be sent to the line printer). Since space on

device media is automatically allocated by the GEORGE

III system the user no longer needs to provide explicit

addressing information. This naturally imposes an

overhead not found in OS/J60 JCL. However the additional

user and machine time required to get jobs expressed in

-- !

- 1ft -

OS/J60 JCL to compile and run correctly must be

considered to offset the seemingly superior efficiency

of OS/360 JCL • GEORG.E III is

obviously more acceptable to the user.

2.1.3. Work Flow Language.

General Discussion.

WFL [11] is a compilable block structured,

high level Algol style language which was designed

to meet the main objective of improving the efficiency

of the machine by reducing the need for operator

intervention.

The basic unit of user interaction is defined to

be the job, each job consisting of one or more tasks.

A task is an item of work and is not necessarily

synonymous with the OS/J60 JCL job step or the GEORGE

III command but is more akin to the catalogued procedure

or macro performing actions such as compilatio~ for

example.

The variables in WFL are not of predefined type,

-the-correct type is determined by the context ~

which a variable is used. The WFL variables can be

used in arithmetic and boolean expressions and may be

passed between the job control and programs.

Job Control Routines.

A crude subroutine facility is available for

commands which are to be repeated or which form a

- 15 -

standard series of commands. Unfortunately it is not

possible to pass parameters to or from subroutines

which rather detracts from the value of this facility.

Conditional Execution.

The block-structure of WFL allows the Algol 60

"If-than-else" conditional to be used and is similar

to the programming language implementation.

The outcome of the execution of any task can be

determined by using a task variable, which is uniquely

associated with the chosen task, in conjunction with

the conditional statement. The variable can be

compared with the task attributes "COMPLETED", "ABORTED"

etc. to produce a boolean result.

A job can be suspended by the WAIT directive.

This may be associated with a task value, or be

conditional upon a given event such as the presence of

a particular file or an operator message.

A FAULT directive, similar to the GEORGE III

WHENEVER command, may be used to check for run-time

errors. If a fault occurs, the command associated with

the-FAULT· directive is obeyed, provided thE!fauTt_i_s ___ _

within the scope of the directive.

Input/Output and Data Handling.

WFL has access to a library which is an improvement

on the JCL library but is not as general as the GEORGE

III filestore. Commands are available to manipulate the

------------ -- -- -----

- 16 -

files in the library or use them within a job.

File attributes can be changed by job control

commands permitting re-titling etc. The attributes

that have not been specifically changed remain unaltered.

Output from a job is obtained by using a file

with the attribute KIND set to printer. Input,

specifically card input, can be external to the job

(c.f. GEORGE Ill INPUT command) or part of the job

itself. The card decks can be read in one of three

codes (Burroughs common language, EBCDIC or binary) which

appears as one of the file attributes immediately prior

to the data forming the card deck.

2.1.4. ~

General Discussion.

SCL, the job control language for the ICL 2900

series, has been reviewed by Barron [1,<] and the

following comments are a precis of that article.

SCL and GEORGE III show some similarities, the

new appears to be a development of the old rather than

SCL being an original venture. The language has an

-Algol- 68- appearance and unlike GEORGE III is-block-- -

structured, a block corresponds to a task to be

performed in the user's job. The resources required

to execute any task are allocated by the operating

system prior to entry into the corresponding block,

on exit from the block the resources are automatically

relinquished. Each user's SCL job is given an initial

set of resources by the system, and these can be fixed

- ·-------------

- 17 -

by the individual installation manager. These resources

are automatically returned to the system when the job

terminates. Unlike GEORGE III, SCL has true variables,

these have type similar to Algol variables and can be

used in "rows", to give arrays. With these facilities

the user could write simple programs in SCL rather than

an accepted programming language. The usual arithmetic

operators are available for handling these variables.

Powerful string handling facilities are an integral

part of the language to facilitate manipulation of

file names etc.

Two features that are not in SCL which Barron sees

as desirable are compound statements in conditionals and

a simple repetition mechanism.

Job Control Routines.

SCL statements are calls on system procedures

(c.f. MU5 philosophy) of which there are over two

hundred. Most parameters are keyword, the value being

equated to the name by an = symbol, the whole parameter

list enclosed by brackets. Parameter names not assigned

valuesby_the user are given system default-values---

The user's own procedures can be specified either by

pr.edefinition as an independent job for subsequent use

or by incorporation of procedure code bodies within the

SCL code.

Conditional Execution.

Like Algol 68-R the IF and the FI in SCL act

- 18 -

as a pair of brackets so it is possible to nest

conditional tests without ambiguity. A predefined

variable of type "string" allows the user to test the

result of an SCL action by comparing the current

system message, which is stored in this predefined

variable, with a particular string in the SCL text.

(This is a refinement of the GEORGE Ill system message

mechanism.)

Yet another GEORGE Ill feature can be found

in the WHENEVER command, which has been extended to

trap return codes placed in a variable in the outer

SCL block independently of any user intervention.

Because SCL has the arithmetic capabilities and

conditional statements previously only associated

with high level programming languages it is possible

to incorporate tests within the job control allowing,

for example, repetition of a program with several sets

of data.

Input/Output and Data Handling.

The filestore concept of GEORGE Ill also forms

an integral part of SCL. As in GEORGE Ill the name of

the file is sufficient information for the system to

locate the contents and attributes using a directory.

Files are input to the filestore by providing the file

contents prefixed by the file name and a user identifier.

The other attributes of the file, space, disposition etc.,

are automatically provided by the system. If the user

- 19 -

wishes, he can preset or change attributes, thus

modifying access privileges or requesting a

specific storage medium. Files are output using

the appropriate SCL procedure with the filename

as a parameter.

The SCL file operations are more extensive

than those of GEORGE III. Barron gives an example

showing a filename as an indexed variable which has

a literal string appended to form a composite filename.

The contents of this file are then assigned to a further

string representing a work file. Two work files are

merged to produce an updated file. The total job

control necessary is expressed in just a few SCL commands.

2.2. Modified Systems and Languages.

The independent command languages considered are

notable for possessing similar origins each having been

produced by a university or research centre. Generally,

the main objective in each case has been the simplification

of an existing manufactureFssystem by reducing the number

of commands and removal of the idiosyncrasies exhibited

by particular machines.

2.2.1. Reduced Control Language.

General Discussion.

The first modified system considered, Reduced Control

Language (RCL) [50] is hosted by IBM's OS/360 JCL.

- 20 -

RCL specifically aims to simplify the interface for the

non-professional who merely wishes to use the computer

to aid his other work. The scheme is intended to allow

95% of the jobs run at the installation in question to

have all the job control necessary expressed in RCL,

Like the host language RCL has parameters which

are either positional or keyword. OS/J60 statements

can be embedded in RCL code thus providing access to

non-RCL facilities. Two different types of default are

available; the first automatically supplies a default

value for a parameter if the user has not specified a value

in his RCL code, the second uses a single RCL parameter

to represent several OS/J60 JCL parameters and this, by

implication, will provide all the necessary default

values. As an example of the second type of RCL, default

HY means hyper-density and specifies a seven track

magnetic tape, 800 bpi packing density and the appropriate

volume number.

RCL has the advantages of:

1) reducing the physical preparation because

fewer job control statements are required,

2)-simplifying the average user's job control-··

by a default system,

and J) minimising the user re-learning by making

RCL similar to the command language previously

used by this particular installation.

A disadvantage is that the OS/J60 operating system

messages are not decompiled. However, it appears that

RCL has successfully achieved its objectives of simplifying

- 21 -

job control and easingtransition to the new computer.

As RCL is a simplified version of an existing

host system the comments on job control routines,

conditional execution and input/output and data

handling in the review of OS/360 JCL also apply to

RCL.

2.2.2. MAXIMOP and CAFE

General Discussion.

The second development considered is the Queen

Mary College twin system MAXIMOP and CAFE [SI] based

partly on existing ICL software. The philosophy of

this project has been to provide easy access to the

computer for the unsophisticated user by releasing

him from almost all job control yet, at the same time,

allowing the experienced user full access to the

available facilities. This dichotomy in user profile

has resulted in a system of two distinct components.

The on-line, interactive component, MAXIMOP, is

primarily intended for the experienced user. The system

is a development of MINIMOP which is the standard

on-line-package marketed by ICL for the smaller-1900-

computers. Both systems run under the control of

the ICL Executive program. The user is intentionally

presented with a system which is similar to MINIMOP

enabling existing users to transfer to the new system

easily. The MAXIMOP parentage is apparent in terms of

language, program environment, filestore access and

command format. Macro facilities and text substitution

- 22 -

for parameters (as in GEORGE III) are two additional

features provided in MAXIMOP which are not in MINIMOP.

The second component CAFE, is a batch system

having a very restricted set of facilities. Input and

output are limited to card decks and line printer

listings respectively. The job control statements form

part of the job header card which also acts as a job

separator. This safeguards subsequent jobs in the

batch against the effects of an omitted terminator.

Job time and storage requirements are automatically

allocated but may be respecified by additional control

statements provided by the user.

Job Control Routines.

CAFE has no subroutine facility. The MAXIMOP

macro facility is similar to the macro in an assembly

programming language. Parameter values are placed in

the macro body by text substitution except when a

special symbol has been typed, in which case a system

default value is used for the parameter. Macros may

use other macros, there being no restriction on the

depth of nesting other than the practical one of space.

Each macro is expanded into its constituent MAXIMOP

commands prior to execution enabling user errors to be

found and increase the speed of execution. Users may

create their own macros which are similar to the

system macros.

-- -

- 23 -

Input/Output and Data Handling.

Specific MAXIMOP commands (INPUT, PUNCH, READ, LIST)

input and output files between the filestore and

standard devices.

Files are either serial containing program texts,

data, etc., or random, containing unformatted data. If

the user wishes to retain files for use in subsequent

interactions he must store them in "userfiles". These

can be stored on-line or alternatively off-lined to disc

cartridges if infrequently used. 1900 Executive files,

i.e. 11 exofiles", can be used to hold program libraries, work

space data and input/output. These files are accessible

to batch programs allowing interchange of work between

batch and multiaccess.

UNIQUE.

General Discussion.

UNIQUE ~t~G is an operational system developed at

Nottingham University. The objective is to provide an

environment where the machine specific functions are not

apparent at the job control level yet at the same time

satisfies the needs of the majority of users. -with---

UNIQUE the average user can specify his job control in

a small number of machine independent statements.

The principal criteria used for the design of the

language were :

1) short, meaningful names,

- 24 -

2) simple structure,

J) small number of commands for simple tasks,

4) a full set of sensible defaults,

5l.'suitability for on-line, off-line and renwte

interaction,

and 6) auser f:ilestore.

In the design an attempt was made to identify likely

user requirements and express them in user_parlanc·e.

This policy is based on the premise that if there is a

user need then most existing systems will provide a
•

corresponding facility in some form. Consequently the

language is not restricted to a common subset of all

the available control languages.

The UNIQUE commands fall into four categories,

system enquiries, program execution, filestore

manipulation and interactive computing. An extensive

default option allows the experienced user to specify

his job control with simple statements yet by changing the

default values the experienced user can access the full

range of system facilities, The defaults are automatic;

i:f -the--user does not specify a value for a parameter-then

the default value is assumed by the system.

The messages of the host operating system are

decompiled by the UNIQUE system providing the user with

meaningful replies to his commands.

UNIQUE has been demonstrated to fulfil its

portability criterion as the system is available on

- 25 -

ICL 1906A, IBM 360/67, CDC 6600 and PDP 11 computers.

UNIQUE does not have a subroutine facility although

files consisting of job control in the host system

language can be accessed. However, it is not possible

to pass parameters between the two levels.

Conditional Execution.

A UNIQUE job is composed of one or more

"activities" which in turn contain 11phases 11 , each

phase performs a complete logical section of its

encompassing activity. The philosophy of the UNIQUE

phase is similar to that of the block in structured

programming languages. Consequently it is only

possible to jump to the beginning of a phase, not into

the commands within the phase. Control transfers are

effected by the ACTION command which operates on the

value contained in a flag; the possible actions are

to ABORT, CONTINUE or transfer control to a specified

LABEL elsewhere in the job control. The flag

controlling the ACTION can be set by executing programs.

Repetition of phases is achieved by appending the

REPEAT-parameter to the appropriate phase comlnand.

The phase is repeated with the text strings qualifying

the REPEAT parameter substituted in place of each

occurence of a special symbol within the phase. The

loop occurs once for each text string.

- 26 -

Activities can be sequenced before or after other

activities or alternatively after a specified time has

elapsed.

Input/Output and Data Handling.

Basic input and output is controlled by commands

that transfer files to or from real devices. The

devices are identified by standard names preceded by a

special symbol. Input and output to programs is achieved

by associating files or devices with channel numbers used

in the program code. This is similar to the GEORGE III

system.

A simple file structure is assumed whereby every

file has three attributes, owner, name and tYPe• There

are two tYPes of :file, text and binary. Text files can

only be accessed serially with the possibility of

restarting :from the beginning. Binary files have an

arbitrary format and can be accessed either sequentially

or randomly.

2~_2_. _4 ·--... ~
General Discussion

ABLE, a research language designed and developed

at Bristol University, has previously been described

by Parsons [3~] and reviewed by Rayner [~o].

The main objective o:f' the experiment was to

produce a high level portable job control language

suitable for all tYPeS o:f' user and uses.

- 27 -

The language is block structured, a new block

denoted by a BEGIN symbol and terminated by an END

symbol. The permitted variable types are numeric,

boolean, string, list or procedure. These must be

declared at the head of a block and are subject to the

usual scoping rules although system procedures are

built-in and freely available to users. The ABLE

commands are calls on procedures which perform standard

job control functions for the user. The procedure

parameters are usually called by value and generally

positional. If a parameter is omitted a default value

is substituted.

Syntax errors in the ABLE code are detected by

the translator. Code generated by the translator is

passed to an interpreter which interfaces to the target

system. Messages from the· host operating system are

not decompiled. Translators have been written to convert

ABLE into Multijob for a System 4, GEORGE Ill for a 1906A

and Scope 2 for a CDC 7600.

Job Control Routines.

--ABLE is based on an Algo160 type language_so,_ __

as expected, procedures can be defined and used in

accordance to the usual block structure rules. The

commands of ABLE are themselves built-in procedure calls.

Conditional Execution.

The implied sequence of job control execution is

sequential but this can be altered using IF-THEN-ELSE

conditional clauses and the Algol 68 feature of CASE

- 28 -

statements.

In addition WHILE and FOR loops may be utilised.

The RUN command, a built-in procedure for executing

programs, returns a termination code to the job control

1eve1. This is available to the user to check the

execution of the program initiated by the RUN command.

It is also possible to execute programs in para11e1

using this procedure.

Input/Output and Data Handling.

Input and output is achieved by using standard

procedures which transfer the specified fi1e(s) to or

from the device implied by the procedure name. For

examp1e,the procedure PRINT implies output to the line

printer.

No assumptions are made about the form of a file

or the file handling system.

Files are referenced by names which are enclosed

by quote symbols, and I/O streams and devices are

referenced by a name or an integer. These identifiers

are variables and can be used as parametric data for

procedures.

General Control Language (GCL).

The final system considered in this section

GCL [~}~ is designed primarily to operate in a satellite

environment. The GCL code is translated into the target

job control within the satellite system prior to its

- 29 -

transmission to the host main frame. The objective

of GCL is to remove the idiosyncracies possessed

by particular job control languages.

At the GCL level machine independence is achieved

by expressing the language operations in terms of the

user environme~t. These operations are mapped onto the

target system, which is generally hidden from the user

although it is possible to 11drop-through11 to the target

job control language within the GCL code. This facility

allows access to features which are·_ part of the target

system but are not implemented in GCL.

Portability of the job control expressed in GCL

has been achieved by building the system upon a set of

primitive functions which form an intermediate level

independent of both user and target job control. The set

is not closed so new primitives may be added if the

designer's objectives cannot be realised by using only

the existing set.

At the user level, that is the GCL code, many

features of high level languages have been provided.

GCL_permits_ variables which can be either integers,

strings, lists or primitives. Parameters are either

positional or keyword. Positional parameters are

mandatory and must be given values by the user whereas

keyword parameters are optional and if omitted are given

default values by the GCL translator.

Error messages from the target system are not

decompiled although this feature is intended to be

- 30 -

to be incorporated at a subsequent stage in the language

development.

Job Control Routines.

Job control routines, known in GCL terminology as

£unctions, can be specified by the user. A £unction is

formed by one or more GCL statements enclosed by special

symbolic delimitors. The parameters in tbe function body

are represented by fixed identifiers which are replaced

by the actual parameters when the £unction is called.

Conditional Execution.

At the primitive level IF and LOOP £unctions permit

optional execution o£ statements and repetition of

sections of job control respectively. As there is no

jump command the GCL statements are executed in sequence

although commands may be omitted i£ a conditional transfers

control to a subsequent statement in the job.

Input/Output and Data Handling.

In GCL a single conceptual framework embraces all

tYPes __ o:f_input/output whereby a connection exists-hetween

an information source or sink, in GCL termed a device,

and program sockets. GCL devices correspond to the

physical devices such as card readers or line printers on

either the target system, tbe local satellite system, or

files in the target machine :filing system. (The target

machine file system is conceptually regarded as simulating

GCL devices on a small number o£ direct access devices).

- Jl -

In addition to specifying connections between devices

and sockets, other input and output operations such as

listings can be achieved.

Physical devices are represented in GCL by suitable

identifiers, thus PRINTER refers to the usual line

printer. Text and file devices are defined by the

user when he invokes a suitable function. Once defined,

the device can be assigned to a user chosen identifier

for future reference.

- 32 -

§J. Job Control Commands within Programming Languages.

J.l. An Outline for Unification-Wada 1 s Approach.

Wada [~7J believes that programming and command

languages can be combined into a general multipurpose

language. He argues that unification would:

1) improve efficiency by increasing modularisation

of system programs,

2) ease language assimulation by the users

and J) clarify the concepts concerning command

languages.

His view is that unification is best approached

by incorporating the commands into a programming

language. This view is reasoned to be justified

because standardised programming languages already

exist whereas the user is accustomed to changes in his

job control interface.

Wada states that at present languages can only

be demonstrated as unifiable after implementation and

that he' intends to remedy this by producing a scheme to

simplify the unification process. This is thought to

involve-the-identification of common features-and

characteristics which have enabled languages to be

unified. As an initial step, existing simularities

are identified. As an example, rewinding a magnetic

tape is said to be a function common to both program

and command regimes.

- 33 -

Wada does not overlook impediments to unification.

One of the major problems is the abundance of programming

languages. Thus, the unified language could be based on

a single programming language helping only the users of

this chosen language or alternatively, the commands

could be incorporated into several languages resulting

in numerous independent unified languages.

A further impediment is created by the association

of a command language with a particular computer system.

Consequently the commands exhibit machine dependent

characteristics. Thus, if a unified language is

produced then ~ programs and job control could be

restricted to a single system. At present programs are

more than notionally machine independent.

A third difficulty is the inherent difference

between programming and command languages; the former

is for expressing solutions to problems while the latter

is for defining the computer resources required and the

control necessary to produce a solution.

Finally Wada sketches an approach for obtaining a

unified language. He suggests that the operating system

should- be-controlled by a_ set_of_p,roc:_f>dUrf!S _which

correspond to job control functions. The algorithmic

parts of user jobs are compiled prior to execution.

At run-time the job control is handled by an interpreter

which decodes the commands into calls on the operating

system procedures.

Wada's paper must be regarded as only a scenario

for unification as the technique has not been proved in

practice.

- 34 -

J.2. Eradication of Command Languages.

A similar approach to that described by Wada has

been adopted by Jensen and Lauesen [2¥] but their system

has been implemented.

They propose that command languages are unnecessary

as job control can be incorporated into a programming

language. They have chosen Algol 60 as the host

language and extended it to include control functions.

The object of the scheme is to produce a simplified

user interface by incorporating both problem solution

and job control into a single language. The scheme

has been implemented for a batch system.

The commands necessary to control a user job are

expressed as an Algol 60 program which may also contain

a coded algorithm. In either case the program code

contains calls on procedures which interface with the

operating system. These job control procedures permit

file handling, resource allocation and program execution.

The parametric data can be input streams, output streams,

file names and program names. Integer variables can

also be used to check the result produced by a procedure

-cal1-.-As- each job begins execution the system_automatically

provides a minimal initial set of facilities. These are:

a primary fnput stream, a primary output stream and an

initial program for controlling the job stream entering

from the primary input source.

Jensen and Lausesen have linked input and output

files to the user program by a driver controlled by the

operating system. This driver transfers physical blocks

of the file contents to and from the program buffers.

- 35 -

It is concluded that the need for a separate

command language has been removed by extending the

Algol 60 programming language. Users of this language

do not have to learn any other language and can utilise

the full power of Algol 60 for expressing their job

control.

3·3· Job Control on MU5.

Both Morris C29] and Frank [~] have described

MU5 job control which they assert has been influenced

by the structure of the MU5 operating system.

The operating system is described as a small

kernel which performs the tasks of mapping the users

virtual machine onto the real machine and driving the

input and output devices. Each user job is controlled

by its own job supervisor acting as a job initialisation

mechanism. The job supervisor's task is to create

a virtual machine environment for the user job. Other

job control functions termed processes, are accessed

through the set of library procedures available to all

user virtual machines. Each process created by the

job-supervisor is given a priority which depends-on-

the resources the process is expected to consume. The

user job is unaffected by errors in processes initiated

by other jobs because each job is executed within the

isolation of its own virtual machine. This would not

necessarily be the case in a system which consisted of

a single supervisor controlling all the jobs. Any

number of MU5 job supervisors can co-exist without

interference.

- 36 -

Inputs to user jobs are passed from the kernel

to the job via input device controllers and similarly,

job outputs are passed to the kernel through output

device controllers. Input and output take the form of

11documents 11 which are similar to GEORGE III files.

The job control functions performed by procedures in

the system library are:

1) ~inking input and output to the job,

2) sequencing subtasks,

and J) error handling.

Thus, there are procedures for initialising each

facility of the virtual machine and performing tasks

such as compilations. Errors in job control procedures

are indicated by a global "status return" variable whose

value corresponds to the result of the procedure.

Serious errors cause an interrupt which forces the

return into a trap procedure. If the user has not

specified a procedure then the system provides its own

by default.

Within the context of thisstructure, job control

is only required to guide the job through a series of

--library_ procedures. Frank considers that a high level

programming language is the natural method of fulfilling

this function. The procedure parameters are necessarily

language dependent and have to interpreted into the

logical entities they represent by the individual

compilers. The user is able to incorporate his job

control into any programming language provided by the

MU5 system because the library is available to all the

compilers. However, most jobs that are run on the

- 37 -

system require a minimum of job control and for these

an independent,simple command language has been provided.

This was required because providing access to the full

facilities of a programming language for simple jobs

proved to be inconvenient for the user and imposed

an unnecessary system overhead.

The aspect of job control which cannot be

accommodated within the structure of the virtual

machine is job scheduling. This is dealt with by an

initialisation command which the user must supply at

the head of the appropriate input document. The user

must provide his identifier, a job name and password and

also has the option of specifying a job time limit, size

limit and priority.

The MU5 system is intended to be able to accept

jobs written in other existing command languages. The

systems designers believe that the additional software

required to permit this facility would be a supervisor

for each command language and the necessary library

procedures. The plausibility of this is currently

being investigated.

The MU5 system incorporates on-line andoff-line __

usage and has been operational on the Manchester University's

Computer Science Department computer complex for some time.

- 38 -

§4. Formal Definition of Command Languages.

The three methods described in this section are

considered to be fully representative of the work on the

formal definition of command languages. There have been

proposals that BNF and axiomatic methods could be

extended but it would appear that these techniques

are unsuited for this type of application.

4.1. Application of VDL.

The well known formal description technique VDL

[2b] forms the basis for Niggemann's work on the

definition of command languages [3b].

Niggemann sees the objectives of a formal definition

as:

1) explaining the working of the system,

2) proving the correct working of the system,

3) proving the correctness of fundamental properties,

and 4) analysing the system.

The view is expressed that formal definitions may

result in the development of languages based on the

probl~ms to be expressed, rather than the operating system.

Niggemann also intends that the description should help

explain the command language to the user.

The formal description is based on the premise that

the system can be defined by the commands, the system

tables, the changes in the system tables and the replies

to the commands. The effect of a command on a system

table can be described by four components: the set of

commands applicable to that table, the algorithm for

- 39 -

checking and altering the table, the set of replies

to the commands and, the set of issued commands and

received replies.

Each job is processed by its own abstract machine

operating on the commands entered for the job.

Conceptually, a supervisory abstract machine is in

overall control of the job processing abstract machines

and is not part of the formal definition. This machine

monitors system resource requirements of the user jobs.

Each command is processed by its own interpreter.

If a command is not recognised by the system then it is

invalid. The system replies to the commands are

interpreted so that the subsequent action, which is

dependent on the reply, can be determined.

These concepts of the system structure provide

Niggemann with a basis for command language definition.

The formal description consists of a set of algorithms

for manipulating the system tables.

Using the VDL notation Niggemann applies his

formal method to a hypothetical batch command language.

In this context the abstract syntax is given and a

diagramatic representation of the structure of the file
·-------

in the abstract language is shown. This is followed by

the definition of a 11 Rewind 11 operation for a magnetic

tape file.

Niggeman sees the remaining problems as obtaining

definitions of the file characteristics and the

operations which are valid for a file. He observes that

general agreement has yet to be reached on the effect of

operations such as opening and closing files.

- 1fO -

As the next stage in the development of his

method, Niggemann intends to apply VDL to a subset of

an existing command language.

4.2. Semantic Description using Predicates.

Weller [~q] has devised a method which is

specifically for the semantic description of command

languages.

A semantic description of command languages is

said to be needed for:

1) proving the properties of the language,

2) investigating how the language works,

J) providing a definition for implementation,

and 4) providing reference documentation for the user.

The objectives of Weller's study are:

1) to find the properties required of a semantic

description by users,

2) to. •ompare existing methods with these desired

properties,

and J) to develop a new method when the comparison shows

existing methods to be unsatisfactory.

- --- --Weller_limi ts _the_ra~g~~_:f'__lti s study to defining

a system just for application programmers.In this context

he believes that the command language can be divided

into two parts. One part controls the solution to the

user problem; the other provides information to the

operating system. Weller introduces the concept of a

Programmer's Abstract Processor (PAP) which is operated

upon by the part of the command language associated

- 41 -

with the solution to the user's problem. Thus,

the PAP constitutes the user's interface to the system

and the user necessarily understands its operation.

Other processorsexist but as these do not form part of

the problem solving environment the user need not be

aware of them. However, Weller concedes that knowledge

of other processors may be required when the user

misunderstands the operation of the PAP or when he

needs functions outside the scope of the PAP. The

method presupposes that the user is aware of the effect

of his commands on the PAP state as this affects

subsequent processing. The processing of a command

depends on the values of the objects involved in the

intermediate stages. However, Weller believes that the

user is only interested in the final result of any

command and not in the intermediate processes of the PAP.

Weller proposes a formal description of the PAP

consisting of a finite set of truth functional predicates.

Each user command is composed from one or more of these

predicates. The truth value of the command is found

by evaluating the conjunction of its composite predicates.

This evaluation process can also be expressed as a

decis:Lo'iCtree; the route taken is dependent-on-the

initial values of the objects involved. A final

assertion can be constructed for any initial set of

conditions and consists of logically connected predicates.

Weller shows how commands can be represented by a

command table and outlines the PAP output to the user.

- 42 -

q.J. Graphical Representation.

The method described by Bredt (7] is concerned

with the processing aspect of command languages and

the presentation of the operations involved to the users.

Bredt draws attention to some of the inadequacies

of BNF, VDL and axiomatic presentation techniques when

used to describe command languages. As an alternative

he proposes syntax directed graphs to represent the

command processing by the operating system. This

'
technique, he believes, would improve the specification

of the semantic operations and provide a method of

estimating the response and throughput of a system

prior to its implementation.

The graphs define the syntax of the commands.

The semantics are in textual form accompanying the

graphical representation of the command. The method is

demonstrated using a hypothetical computer system.

- 43 -

§s. Command Language Committees.

The professional institutions and computing

organisations involved with standardisation have indicated

an interest in this topic by independently forming

committees to investigate various aspects of job control.

The terms of reference and, where possible, indications

of preliminary achievements for the three most active

committees are reported below.

5.1. CODASYL OSCL Task Group [y3].

This group has been meeting since August, 1973;

its objective is to investigate the possibilities fo~ and

definitions of, a standard command language.

As a first stage many of the major operating system

command languages have been studied and summaries of their

similarities and differences produced. The categories of

user to be served by the standard language have also been

examined.

A model is currently being developed to determine

the operating system functions necessary to define a

standard-command language interface. Four major~---

functional levels are considered. These are Source,

Link, Load and Execution. The model is intended to

express the relationships between the functions and is

seen primarily as a design and teaching aid.

A second model is also being developed and this

indicates the hierarchy of execution and control. The

structures considered can range from those consisting of a

single level to those involving several operating systems

- 44 -

controlled by a "Super Operating System".

From this work the committee is in the process

of studying the topics outlined below:

1) A continuing evaluation of other efforts.

2) Expansion of the hierarchic model to cover

other operating system functions.

J) Examination of the role of defaults.

4) Refinement of the command language model by:

a) validation on existing systems,

b) projection to theoretical models.

5) Development of a model of users.

6) Development of a working command language using

either:

a) existing systems,

or b) a simulated system.

5.2. Dutch Command Language Committee [lj.~J.

This committee first met in September 1971, its

objective being the development of a language containing

the basic job control functions required by the user.

Nine existing systems have been categorised into

a function~ matrix to verify existing ideas concerning the

functions currently used. From this initial survey the

notion of binding classes has been proposed. Three

binding classes are identified, job structure, job

resource, and job interface. The job control functions

previously identified have been divided into these classes

and are being considered by separate groups within the

committee.

The structure binding group has produced an

--~~-------------------------------

- 45 -

interim report. Firstly, the group de£ines the terms

describing the basic objects such as £iles. This is

£ollowed by a description of the language semantics

composed o£ the following statement types:

l) job start - speci£ies job parameters and starts

job,

2) selection - chooses the next statement of the

job to be processed,

J) synchronisation - allows parts of a job to be

run be£ore or a£ter other parts,

and 4) assignment - provides a value for a variable.

Work is also proceeding on resource allocation and

inter£ace binding but is still at an early stage.

5·3· BCS Group 5 (advanced programming) [47].

The BCS group have assessed other work in the field

and are formulating ideas for the definition of a machine

independent job control language. The first stage has been

the construction o£ a £ramework for determing the user

requirements. Six types of user have been identified along

~~~~-with_five types of usage of' the computer system. The user 

requirements have three aspects: the objects that are 

manipulated in a particular job control context, the 

operations that are required and a semantic framework 

for these objects and operations. 

Following from this study, the committee intend to 

produce language formats which satisfy the user requirements. 

These are data types, structures, facilities and formal 

syntax. 



Fina11y, the various requirements are intended to 

be integrated and a study initiated to try to determine 

if a sing1e 1anguage can be deve1oped satisfying a11 

the specified criteria. 



- 47 -

CHAPTER III 

BUILDING CLARITY AND PORTABILITY INTO COMMAND LANGUAGES. 

§1. Introduction. 

Recently, as is apparent £ram Chapter II, computer 

command language research has attracted increasing 

interest. The paramount reason is evident when "ln 

order to understand how to use a powerful, flexible 

operating system, even to run small simple jobs, one 

has to be a powerful, flexible programmer" [/o] and 

[ '3 ] • 

Many users limit their job control statements to 

those previously acquired whilst developing other jobs. 

New jobs are tailored to suit the existing job control 

in preference to writing specific job control for each 

problem. 

Users who are slightly more proficient only 

utilise a well-known subset o£ the possible commands 

and still encounter job control errors. Even the 11 expert 11 

acquires his knowledge over a period of years, and this 

expertise is liable to become valueless when the computer 

system is replaced. A further indictment of present day 

systems-is~~apparent when many potential users_are_deterred 

by the involved logistics of accessing the computer. 

The inadequacies of existing job control languages 

have been commented upon by Barron [ 3 ] and Shearing [IJ.2]. 

Barron observes that in the utopian situation the 

operating system is the result of the implementation of 

the chosen command language. From this notion, it is not 

unreasonable to believe the command language should be 

a realisation of how the user wishes to interact with 



- ltB -

the computer. It would seem that the current 

situation could be improved if the user requirements of 

a command languages formed some part of the design 

criteria. The user requirements have been expressed 

independently by a number of authors (Newman [31], 

Dakin [13], Rayner [~],Shearing ['t-Z] and Sibley [$<:)]). 

The salient points are outlined in §2. 

The previous studies which were described in 

Chapter II are evaluated in §3. This exercise is intended 

to identify the trends present in command language 

practice and determine which methods are likely to be 

of future use. This section also highlights the 

problems which remain unsolved. The final section 

discusses one of these outstanding problems; the 

realisation of a usable portable command interface. 

Achieving a solution to this problem forms the 

remainder of this thesis. 



§2. User Requirements of a Command Language. 

The user needs to communicate with the computer 

system expressing his requirements and, in turn, the 

system must inform the user of the events that have 

occurred relating to his requests. Thus, a dialogue 

takes place between the user and operating system in 

which the command language and system messages act 

as intermediaries. 

From the evidence of published work there appears 

to be general agreement concerning the defficiencies 

of existing command languages and, in the majority of 

cases, features that are considered necessary. No 

one advocates that a command language should be difficult 

to use, yet few, if any, of the existing languages can 

be considered to be simple and easily understood. From 

this observation it can be inferred that while the 

requirements are readily defined, achieving them is no 

simple matter. It is also believed that different 

uses of the system should define different requirements 

at the interface level although the overall general 

requirements are the same for each type of user. 

As ster~otypes the users considered are engineers, 

technicians, scientists, system programmer~s--~and--~-

application programmers, these groups containing between 

them members whose adroitness covers the whole spectrum 

of computing ability. Other types of user do exist 

(system managers, operators etc.) whose requirements have 

not explicitly been considered in this analysis, although 

of course, many of their requirements will be similar 

to those of the groups that have been examined. 



- 50 -

The main requirements are: 

Simplicity 

Most users are running simple jobs most of the time, 

thus it might be assumed that the job control should be 

simple too. Simplicity in this context implies ease of 

usage, understanding, and readability. In the past 

languages have contained a host of special symbols which 

have no counterpart in natural language and only serve 

to confuse the user. System messages are often 

incomprehensible and bear little, or no, relation to the 

commands issued by the user. Both of these practices seem 

undesirable, ideally the semantics of both the language 

and system messages should be tailored for the users. 

Extensibility. 

If the straightforward _ job should be simple to run, 

then it is reasonable to suppose that a slightly more 

complex job should only be marginally more difficult. 

Extensibility should allow the full facilities of the 

operating system, or any subset of them, to be available 

to the user by building upon his current knowledge. He 

should not be forced to discard previously acquired 

knowledge-just because he wishes to access a--new-(to-him) 

facility. 

Machine Independence. 

It is evident that the user does not wish to be 

aware of the particular computer used to solve his 

problem. It is extremely undesirable for him to learn 

a different command language (and to interpret different 

system messages) for each computer with which he comes 

into contact. 



- 51 -

These three requirements form the main 

considerations for structuring the user interface. 

Two further requirements are necessary for practical 

application: 

1) The command language should not be inherently 

inefficient. Time spent processing job control 

commands is time wasted! 

2) The system must be able to determine the 

computer resources required by the user job 

either through explicit commands forming part 

of the job control or as implied by the 

tasks within the job. 

These two requirements are discussed in Chapter IV. 



- 52 -

§3. Evaluation of Previous Studies. 

A discussion of the studies considered in 

Chapter II appears to divide naturally into the 

following three subheadings: 

1) the practical implementations of a command 

interface, 

2) the formal definition methods, 

and J) the committee approach. 

These are discussed below. 

Implementation of a Command Interface. 

It would appear that the practical implementations 

can be judged by how closely they resemble the ideal 

command language but unfortunately this cannot be defined. 

However, it is reasonable to suppose that the languages 

may be compared provided there exists a common standard 

which can be applied as a benchmark. Consequently it is 

taken as axiomatic that the user requirements expressed 

in §2 form part of the evaluation. These requirements 

have been subdivided into features and other, non-user 

specific categories added which are considered to define 

further desirable properties. 

The language is considered to be simple to use 

provided it is easily learnt with a small number of 

basic commands which have a flexible syntax. The commands 

should also permit the user to express his requirements 

in terms that he understands. The messages received by 

the user should relate to objects which are familiar to 

him. To permit simple jobs to be expressed without 

voluminous job control an extensive default system is 



- 53 -

obviously advantageous. However, as the user 

becomes more experienced he should not be restricted 

by limitations of the language. Consequently the 

user should be able to employ commands that he has 

not previously used without discarding those that 

are already known to him. Similarly the language 

should incorporate all tYPes of computer usage and 

ideally the commands should apply to all contexts 

where this is feasible. Also all tYPes of user should 

be permitted access to the system although this does 

not imply that the command interface is necessarily 

always the same. 

By providing a high level interface the users 

have available powerful facilities which permit him to 

construct job control using programming language 

techniques. 

An inefficient system would be undesirable whether 

it be for the user or machine. In the past user efficiency 

appears to have been sacrificed for the benefit of 

machine efficiency. 

A language which is restricted to a single computer 

system-al-so imposes a limitation on the user~----If-the

language is machine independent then the user is not 

forced to know individual machine idiosyncrasies. In 

addition if the system is portable then jobs can be 

executed on one of several machines. 

A formal definition does not directly aid the user 

but permits consistency between implementations which 

means that the user commands always produce the same 



- 54 -

resu1t in the same situation. 

The comparison of the imp1emented systems is 

shown in Tab1e J.1, each entry has been scored out 

of a maximum mark of four. The composition of 

the tab1e wi11 be seen to be simi1ar to one devised 

by Rayner [~0] when comparing UNIQUE, GCL and ABLE. 

Many of the features in the two tab1es are the same 

a1though Rayner a1so considers detai1s of 1anguage 

design. 

In any exercise of this nature it is inevitab1e 

that the scores given are to a degree subjective and 

a1though the range of va1ues is sma11 there remains 

the possibi1ity of disagreement. However, it is not 

the intention that the scores shou1d be viewed as 

abso1ute va1ues but rather as a re1ative measure for 

comparison on1y. 

Where more than one 1anguage is potentia11y 

invo1ved, for examp1e the host programming 1anguage 

on MU5, a compromise score has been used and the 

symbo1 11C11 has been inserted in the tab1e to denote 

this. 



Category Feature o0ro ~EORqJ?c CAI=E/ AUiOLbO !I MU5 
:rcL m: RCL HFtXIHO£ :rct. ~NI QUE JCL 

Simple Easy to learn 0 1 2 2C 1 3 1 
to Good diagnostics 0 1 0 2C 1 3 l 

use User orientated 0 2 1 2C 2 4 2 
Default system l 1 2 2C 1 4 1 

Extensible No relearning 0 l 2 0 2 4 2C 
Complete for users 1 2 l 0 2 4 3C 
Complete for uses 0 3 2 0 1 4 3C 

Language High level 0 2 l lC 3 4 3C 
Style Procedures/subroutines l 2 l lC 3 0 3 

Structured 0 0 0 0 3 0 3C 
Repeated Execution 0 l 0 0 3 3 3 
Conditionals l 2 l lC 3 3 3 
Variables 0 l 0 0 3 0 3 

Efficient For user 0 2 1 l 2 3 2 
For machine 3 2 2 2 2 4 3~ 

• 
Machine independent language 0 ·0 0 l 3 3 3 
System demonstrated as Portable 0 0 0 0 0 3 2 

Formally Syntax I I 0 0 2 I 2C 
Defined Semantics 0 0 0 0 0 0 0 

.• 

TABLE 3.1: Comparison of Practical Implementations 

Notes: l) Low scores indicate poor performance. 

GCL* ABLFJk WFL 

3 3 2 
0 3 2 
2 4 2 
4 3 1 

4 4 1 
4 4 2 
4 4 2 

4 3 2 
4 4 l 
0 3 2 
3 3 0 
3 4 3 
4 4 l 

3 2 2 
,4 2 2 

4 4 2 
2 2 0 

0 4 . I 
0 0 0 

2r-Ratings for languages marked * taken from Rayner [~o], where applicable. 

3) C indicates a compromise score. 

SCL 

2 
2 
3 
3 

2 
3 
3 

4 
4 
3 
2 
3 
4 

2 
2 

0 
0 

I 
0 

Vl 
Vl 



- 56 -

From the table, which has placed the languages in 

chronological order, most recent on the right, the 

following observations can be made: 

1) The languages have become more usable. If 

table J.l is examined the two categories, 

11Simple to Use" and "Extensibility" show a 

progressive increase in the values given for 

the more recent languages. The amount of job 

control necessary for the novice to run a 

simple jobisgenerally small and easier to 

understand. The messages generated by the 

system are not as clear as they might be. 

The use of defaults permits the user to employ 

computer facilities without the need to know 

the details and he can progressively extend 

his knowledge as and when required because the 

languages are structured to avoid relearning. 

2) The language style is becoming similar to 

high level programming languages. 

OS/J60 JCL is comparable to a mnemonic assembly 

programming language, whereas ABLE, WFL and 

J ens en and Lausen 1 s command language a_y_e ---~ 

similar to Algol 60. SCL the most recent 

language has features previously found only in 

Algol 68. 

J) There is a trend away from machine dependent 

components in command languages. 

OS/)60 JCL is totally machine dependent and 

RCL and GEORGE III are very closely linked 

to their respective machines. The Jensen and 



- 57 -

Lausen's proposal and SCL give a semblance 

of machine independence coupled with a high 

level interface but portability is by no means 

illustrated for either.UNIQUE, GCL and ABLE 

have been specifically designed to be machine 

independent. GCL and ABLE are translated into 

the job control for one of the potential host 

systems whereas the UNIQUE system itself can 

be parted to other machines. 

4) Existing command languages have not been 

formally defined. Clearly informal definitions 

of the syntax exist by virtue of the compiler 

or interpreter validating the command structure. 

Similarly, the semantics are defined by the 

code of the appropriate system programs. Formal 

Definitions are available for some programming 

languages which have been used to host job 

control. The additions have been in the form 

of procedure calls which, while conforming to 

the syntactic rules of the languages, do not 

provide the semantics of the commands other than 

·-·----as program algorithms._ It_would_be_ad'l/'a.ntageous 

to obtain a semantic description independent 

from any particular programming language.~ 

This would provide a universal definition which 

would not be dependent on limitations of any 

programming language or the idiosyncrasies of 

a particular implementation. 

From the above it would appear that at present 

existing command languages are unlikely candidates for 



- 58 -

satisfying the user requirements and ad hoc imp1ementations 

merely simp1ify the user interface at a particu1ar 

install.ation. 

J.2. The Formal. Definition Methods. 

It is convenient, al.though not essential., to be 

able to express the definition of a command l.anguage in 

a cl.ear and unambiguous manner so each separate 

impl.ementation is consistent and th~ use~ is abl.e 

understand the action o£ each command. 

Three definition methods were discussed in 

Chapter II. VDL may be unambiguous and perhaps cl.ear 

to the initiated, but the average user can hardl.y be 

expected to decipher such a formal. definition. The 

syntax directed graphs avoid these drawbacks but 

separate the semantics from the syntax which coul.d l.ead 

to misinterpretation. \l'el.l.er' s approach using system 

tabl.es and truth functional. descriptions of the commands 

is both readable,fand intel.l.igibl.e while at the same 

time succinctly presenting an abstract semantic 

description method. 

From the methods.consider~d it appears that a major 

disadvantage of applying a formal definition technique 

to command languages is that the description is 

invariably incomplete. BNF, for example, is suitable for 

defining the syntax of a programming language but the 

semantics have to be described separately. This is not 

a significant disadvantage when applied to programming 

languages as the problem description is essentially 

self-contained. However, because command languages 



- 59 -

interact with the machine operating system the semantic 

descriptions of the commands must also involve 

descriptions of the operating system actions required 

although the syntax of the language is independent 

of the machine. 

Thus, one of the main deficiencies of VDL, BNF 

and the syntax directed graphs is their concentration 

on the syntactical definition of the command language. 

Weller in his method is primarily concerned with the 

semantic definition but this has yet to be applied to 

either real or hYPothetical operating systems. 

There are further disadvantages to the methods 

proposed by Niggemann and Weller. The objects 

manipulated by the VDL description are often machine 

or installation dependent while \feller, who deals 

specifically with user objects, does not demonstrate 

that they are transferable to real systems. 

However, it appears that the most practical approach 

for obtaining a formal semantic description of command 

languages lies in the extension of the method devised. 

by \feller. This view has led to a truth functional 

representation in tabular form which is the semantic 

description as described and applied in Chapter VI. 

The Committee Approach. 

The committees are partially concerned with the 

evaluation of existing systems which, while providing a 

basis for further work is arguably too closely allied with 

current practice. It also appears that there is a 

tendency to become involved with the details prior to 



- 60 -

the acceptance of overall concepts. However, the 

committee view, while invariably being a compromise, 

is more likely to be accepted as a standard than the isolated 

opinions of an individual. However, the individual 

proposals can be expected to influence the decisions of 

the committee. 



- 61 -

§4. Re-appraisal of the Problem. 

4.1. Discussion. 

It is the fundamental proposition of this thesis 

that a viable realisation of a usable, portable command 

language is possible. To achieve this objective it is 

necessary to consider, in parallel: 

1) the computer user, 

2) the machine operating system, 

and 3) the interaction between the user and the system 

as work is performed. 

Different users will make different demands of a command 

language. Consequently, it would be a mistake to define 

a user interface consisting of the commands used by the 

user in the job control. This approach has been attempted 

by ICL in GEORGE III, for instance, and results in a 

general command language which, while sufficient for all 

users, satisfies no particular group. It appears 

reasonable to suppose that the user interface (that is 

the commands for expressing the user requests) is to a 

large extent a function of the usage made of the computer 

by a particular user. Hence it would seem to be of small 

value to define a standard command language-as-this-

would merely perpetuate the faults inherent in existing 

languages. A similar view has been expressed by 

Morris [2')] who states 11Not only am I against it (standardisation), 

I am afraid of it. Instinctively I feel that standardisation 

on any current system would have the same constraining 

influence on system architecture that Fortran has had on 

CPU design, and systems are not yet well structured". 



- 62 -

Thus it seems most likely that individuals will be 

best satisfied by using 11 dialects 11 of a more general 

language. Consequently each installation must provide 

commands which suit their own users. These user orientated 

commands can be macros or procedures constructed from the 

basic commands that are intended to form the portable 

framework. The user command functions ~11 depend upon 

the individual installations; a card based system would 

necessarily provide different commands (or the commands 

would operate in a different context) to a paper tape 

based system. 

If it is conceded that the user commands defy 

standard definition it seems reasonable to attempt 

p 0 rtability at a conceptually lower level than the user. 

The lowest possible level is the machine hardware. 

This is unsatisfactory both in terms of machine 

independence and usability. Therefore, it is necessary to 

seek a basis which is conceptually between the machine and 

the user. 

The machine operating system forms a software link 

to the hardware, and as such is inevitably machine 

dependent. For practical reasons of time and-expense 

it is inconveivable that the myriad of existing operating 

systems could be replaced by a single machine independent 

system which potentially could be interfaced to any machine. 

Consequently, any portable command language would have to 

function with existing operating sy9tems. This does not 

exclude the possibility that the portable basis could be 

interfaced directly to the machine, in fact, this may 

even be the ultimate solution for new systems. This 



- 63 -

requirement imposes the condition that the portable 

basis must map onto existing operating systems yet not 

exhibit machine dependent characteristics. Similarly, 

it has to map onto the user yet not exhibit user dependent 

characteristics, that is, it must not be dependent on 

the particular usage of any single type of user. 

These arguments lead to the suposition that the 

usable, portable basis forms an intermediate level 

between the user and the operating system. Therefore, 

the intermediate level can be defined when the user 

requirements and the functions of the operating system 

have been analysed. 

Tailoring the User Inferface. 

Realisation of Clarity and Portability. 

The twin objectives of Clarity and Portability can 

be achieved by the definition of an intermediate abstract 

machine conceptually connecting the user to the real 

machine operating system. 

From table J.l it is apparent that none of the 

command languages discussed are clear to use. It is 

believed that this is caused by the practice-of-providing 

a user interface which is machine dependent and designed 

to function with an existing operating system. 

To obtain clarity it seems that the user interface 

to the machine must suit the individual user. With the 

present day approach to operating system and command 

language design this is not a practical proposition. 

However, if the operating system could be mapped onto an 



- 64 -

intermediate level then individual user interfaces 

which map onto the intermediate level can be readily designed. 

Two main methods of providing portability have been 

proposed. Translation between job control~nguagues 

(e.g. Krayl, Unger and Weller [25]) appears to have 

three difficulties. These are: 

1) incompatibiltiy of data structures and 

programming languages between systems, 

2) incomplete mappings between job control 

languages, 

and 3) the difficulty of incorporating new commands. 

The other main method which has been proposed aims to 

incorporate job control into programming languages. 

This approach also has difficulties which are: 

1) Interfacing to existing systems requires 

compilers, loaders etc. to be modified. 

2) The command language is not totally user 

orientated. In MU5, for example, the high 

level approach has been shown to be deficient 

in practice since it did not provide a suitable 

interface for the inexperienced user. As a 

result an explicit command language is now 
--

provided for the MU5 system. 

3) New programming languages have to be incorporated 

into the system. 

The intermediate abstract machine provides a 

means of achieving portability which either circumvents 

these difficulties or permits a solution to be more 

readily implemented. The definition of the abstract 

machine is discussed in Chapter IV. 



- 65 -

Tailoring the System Interface. 

Job as an Independent Unit. 

The computer performs work presented by the user 

in the form of jobs. These are composed of job steps 

which, in turn, consist of programs and control 

statements. Each job may be considered to be independent 

from other jobs, interacting only with the operating 

system. (Jobs which do in practice communicate with 

other jobs can be considered as part of a 11 superjob 11 , 

each superjob being the amalgam of the dependent jobs). 

Within this structure the user interaction is a 

self-contained unit, thus removing the need to make 

restrictions that would otherwise be required if side 

effects caused by other jobs were possible. However, the 

analysis remains applicable to the full class of user 

jobs considered. 

State of the Operating System. 

It is reasonable to suppose that since the job 

interacts with the operating system then changes occur in the 

system __ as_the job is processed. In fact, both_Weller [jtl] 

and Niggemann [3~] have proposed that the operating 

system can be modelled by a finite number of states 

which can be described, in essence, by system tables, 

the commands operative in the system and system messages. 

The effect of any command can be defined in terms of the 

initial state of the system when the command is issued, 

and the final state of the system after the command has 

been processed. 



- 66 -

All jobs are independent, as defined in §q.J.l. 

so it is possible to isolate the interactions of each 

job with the system. Thus, the result of any command 

can be defined independently of any other jobs forming 

part of the system when the command is executed. The 

failure to apply this constraint of formally describing 

the semantics of commands is a deficiency in current command 

languages with the result that even the manufacturers 

cannot be certain what the effect of a particular 

command should be! 

Processing of the Job. 

Under the conditions specified in the preceding 

two subsections, a job is int~t while no change of 

state has occurred. Conversely, if a change is 

detected some event must have taken place. This implies 

that the job is dependent on the operating system because 

any change of state in the job is caused by actions of 

the operating system. Consequently the job is a series 

of interactions with the operating system. Each 

interaction is completed when control returns to the 

user-command stream. Until then the job is unable_~to 

proceed any further along the series of interactions 

(other series are possible in a parallel processing 

environment but this would be equivalent to a collection 

of dependent jobs). 

In the next chapter these observations are extended 

and lead to the development of two models. The first 

represents the user profile based on the user requirements, 



- 67 -

the second represents the structure of the operating 

system. It is from these models that the independent 

abstract level is produced. 



- 68 -

CHAPTER IV 

COMMAND LANGUAGE MODELS 

§1. Introduction. 

In Chapter III the basic ideas underlying the 

development of the user orientated model and the 

operating system structure model were introduced. 

In this chapter these two models are studied 

in more detail and used to develop a third. It is 

this model that is specified to form a common 

intermediate level conceptually lying between the 

other two. Later in Chapter VI this third model 

is used to construct the primitive functions necessary 

for the machine independent filestore. 



- 69 -

§2. The User Orientated Model. 

This section is concerned with the development 

of a model which is intended to reflect the user 

requirements stated in Chapter III. The conventional 

command language structure is shown to be unsuitable 

to meet these requirements and is rejected. As an 

alternative a hierarchical model is proposed, which 

takes the user as the pivot around which the remaining 

components are constructed. The precondition of 

extensibility is imposed; consequently the default 

system structure forms an integral part of the model. 

The user interaction with the machine is a 

dialogue. Thus the operating system replies are also 

part of the user orientated model. Also the model 

would be incomplete if it did not take account of the 

relationship between user jobs and their processing by 

the operating system. 

2.1. The Conventional Command Language Structure. 

The previous chapter introduced the notion that 

the discrepancies between satisfying the user requirements 

and existing command languages can be reconciled by a 

simple, extensible, machine independent user interface. 

If existing command languages are examined none 

satisfy all, and in extreme instances any, of these 

properties. It would appear that these conditions have 

seldom, if ever, been considered when any of the present 



- 70 -

command languages were originally produced. 

When a new computer system has appeared in the 

past it has seemed that the first component designed 

has been the hardware. This is driven by the next 

development, the suite of programs forming the 

operating system. Once the operating system is 

established it is a relatively easy task to define a 

set of commands that correspond to the operations of 

the system. Further commands can be added for 

scheduling and control of jobs. The commands are 

described in reference manuals, the product of technical 

writers and are generally a voluminous set of tomes. 

Sometimes a more manageable user guide is also produced. 

A conceptual view of existing command languages 

is shown in figure 4.1. The absence of structure is 

apparent when the operating system forms the centre of 

the diagram with the system facilities as the next 

conceptual level. The user commands are interfaced 

at this level and the, seemingly, least important 

component is the user himself. Thus, the system 

possesses a "bottom-up" structure whereas the main 

view required by the user is "top-down". Usage-of--~ 

the commands can be made easier if the user's computer 

centre provides macros, or procedures, for frequently 

used sets of commands. 



~------------------------------- --- -------

- 71 -

Operating System 

"'""Jf---1----- User Commands 
(unstructured) 

Users 

FIGURE q.l Existing Command/Operating System Structure. 

This structure is obviously unsatisfactory when 

the objective of any system is helping users solve 

problems. If the actual user profile is examined an 

alternative view becomes apparent. 

No matter what the user background, academic, 

- --~ndustrial, or commercial, he invariably begins his 

computing career with what can be termed simple-jobs. 

These consist of card decks (or paper tapes), program 

or package call, with appropriate data. He becomes 

aware of the facilities he can use through observing 

what the computer does to his simple job, conversing 

with other users, through formal courses, and by the 

demands of his work. He may require additional 

facilities to help him solve his problem, in which case 



- 72 -

he is motivated (or forced) to seek them out. As 

a consequence the user may develop his expertise from 

the simple job through definite phases to become a 

proficient user. However, not all users by any means 

attain this pinnacle. In fact, a large number never 

progress past the simple job stage, and those who do, 

still frequently run simple jobs. 

The user population profile can be built upon 

this basic premise. Thus as the facilities become 

more complex and esoteric fewer people try, or need, 

to make use of them. In fact, it is possible to place 

the facilities in a loose order with natural 

extensions - the deeper the level, the fewer the users. 

This model is not a definitive solution due to 

continuing developments, but it can reflect the current 

situation. 

From these considerations it is suggested that 

a hierarchical structure would be the most effective 

method of satisfying the specified criteria. 

2. 2. -The Hierarchical Command Lane;uage Structure. __ 

An alternative view to that of figure 4.1 is 

the hierarchical structure shown in figure 4.2 which 

presents a "top down" approach for providing a command 

language interface to existing computer systems. The 

approach commences with a small subset of commands 

at an inner-most (least complex use) level. 



FIGURE 4.2 

I 
I 

I 
I 
I 
I 
... 

/' , 

- 73 -

Real System 

---~ '"'-..~ Facilities 

' \ 

) User orientated 
Model of Operating 
System 

Simple Job 
Command Interface 

The Hierarchical Command Language Model. 

The subset is then continously and coherently extended 

to encompass more complex facilities. Each level in 

the model encompasses all inner levels (i.e. is a 

superset of inner levels), conversely each inner level 

is a true subset of the preceeding level. The outer-most 

level_of_the model is thus the complete representation 

of a user ori.entated operating system. This must in 

turn be interfaced to real systems which is indicated 

in figure 4.2 by an extra broken ring (broken since any 

real system may have some restrictions in terms of the 

facilities which can be implemented). 

This method satisfactorily solves the problem 

that no language can ever be designed to encompass all 



- 74 -

possible uses now and in the future, however 

it is the outer-most (most rarely programmed) 

facilities which normally need to be added to the 

model, while the subset presented at the inner-most 

level changes very rarely. Thus it is believed that 

the user can receive all the benefits of the computer 

system without needing to know details of the 

complex facilities. 

The model implies a high-level user orientated 

command language such that a user with a simple job 

only requires to know a very small subset of the 

possible commands (and command uses). Both the number 

of commands and the scope of a given command can be 

extended as the usage requirements become more 

complicated. 

As computing stands at present it is necessary 

for the developed command language to be mapped on to 

existing JC~s. This is not the most convenient method 

as the commands have to be either interpreted or else 

translated into the target JCL. Both methods demand 

the converse activity when decompiling system messages 

--which-are-in terms of the target JCL. As a consE~quence 

the high level command language is probably less 

efficient than well written host JCL. If well designed, 

however, the performance of the machine and users 

should not noticeably be impaired. Because of the 

transparency of the language, the user should be able 

to employ his computer time more profitably than before, 

_probably even saving overall machine time. 



----------------------------------------------------------------------------------- -

- 75 -

It is implied in the preceeding paragraphs 

that the high level approach will incorporate an 

interface which is minimal for simple tasks but is 

capable of piecewise expansion to cope with more 

complex jobs. Current systems do not provide a 

simple extensible interface although there are no 

impedim'!nts in principle which would render such an 

interface impossible. The combination of simplicity 

and power is achieved by using a new conceptual 

approach to defaults and default handling described 

in the next sub-section. 

Creating the User Environment. 

In conventional systems the user environment 

is produced from the defaults, and the associated 

parameter values, specified in the job control file. 

If a facility is required the user has the option of 

using the default values provided by the system or he 

may overwrite some or all, with his own values. The 

macro and catalogued procedure systems are unstructured 

so both the simple and the complex jobs use the same 

procedures. Thus the simple-minded user needs to be 

aware of the default values that exist for the general 

and more complex cases. Consequently the user 

environment is a hotch-potch of macros or catalogue 

procedures calls with some, or all, o£ the default 

parameter values replaced by user specified values. 



- 76 -

The hierarchical user orientated model shown in 

figure 4.2 can be employed to create the user environment 

by mapping it onto a tree structure as shown in figure 

4.J. As the user moves up the structure more system 

variables which can be manipulated are apparently 

exposed to him. 

He need not be aware of the variables unless 

the facilities used demand knowledge of this level of the 

user model. If he employs a facility at level "n" 

say, then he 11 sees 11 only a box at this level. Levels 

11n+l 11 etc. will have the variables pre-set according 

to the current system default.values and these will be 

masked from the user. Should he wish to modify a 

default value at level 11n+1 11 then he, figuratively, is 

allowed to look inside the box at level "n" and thus 

is made aware of the parameters representing the facilty 

at level 11n+l 11 • In fact to be aware of level "n+l", 

the user must also be aware of a path through the 

preceeding 11n 11 levels of the structure • As Beech [ b ] 

has remarked "If you cannot understand the top level 

without referring to the lower levels then you have 

not structured the description properly." 



- 77 -

I -- - --- ----, 
I ------ ---, 

LEVEL 6 11 
I 11 

LEVEL 5 I :I 
I LEVEL q 'I I I 

LEVEL 3 I 
I I 
11 

I ----- _ _j 

LEVEL 2 I 
B 

LEVEL 1 L-- ---------- _j 

A 
USER 

FIGURE 4.3 The User Environment. 

In figure 4.3 the small square boxes represent the 

terminal leaves of the structure. These can be thought 

of as being the possible values for variables provided 

by the system. The user at LEVEL 1 (the node A) is 

aware of three facilities one of which is indicated by 

the largest dotted rectangle. If he uses the facility 

at B~then-he sees the next level which again consists-of 

three facilities each of which possess default values. 

At point C he sees three further default values, and so 

on. (Figure q.J should not be taken as implying that 

any actual model would consist of six levels.) 

The establishment of a user environment which 

can vary with the user and his different uses, is the 

fundamental prerequisite of an "intelligent" user 



- 78 -

orientated command 1anguage. Idea11y the system 

cou1d keep a history o~ the interaction o~ each user 

and anticipate his 1ike1y needs. More pragmatica11y 

a number o~ 1ike1y scenarios can be estab1ished, 

either by the system or by the user, and the user 

can choose one o~ these at the start o~ an interaction. 

The defau1ts so estab1ished, must be modified in the 

1ight of the actua1 commands issued by the user to 

supp1ement and rep1ace the de~au1t stream. 

So far on1y the user-system part of the dia1ogue 

has been considered. However, it is a1so necessary 

to examine the system responses to the user requests. 

The System Inter~ace to the User. 

A much neg1ected area o~ command 1anguage rese~rch 

has been the treatment of "errors" or system messages. 

The term "system message" is used here to describe 

any message generated by the system in response to 

a request. Error messages are a subset o~ the system 

messages and in addition to not being readi1y identified, 

~or examp1e, a fai1ed compi1ation need not necessari1y 

be an error for some users, require no specia1_ana1ysis 

as the message mere1y denotes termination o~ that 

particu1ar stage o~ the dia1ogue. The user action 

may depend upon the message, but the ana1ysis is 

per~ormed by the user and is not part o~ the operating 

system. The operating system shou1d be capab1e of 

preventing subsequent inva1id requests, for examp1e, 



- 79 -

an attempt to execute a program which failed to 

compile, so the results of the previous exchanges in 

the current dialogue should be available for inspection. 

Most existing computer systems merely return the 

messages generated by the operating system directly 

to the user. Consequently the user is assailed by 

cryptic and often incomprehensible messages (UNIQUE [3,y_] 

and ABLE [~~] are the only systems known to decompile 

messages into a form relating to the users commands). 

It has already been stated that the commands, through 

default structures, can be simple, extensible, and 

machine independent. Little will be gained by 

designing a new user-machine interface if the messages 

still remain system orientated. If the interface is 

intended to suit the user, then the messages should 

exhibit the same characteristics as the commands, 

Newman [3~] has discussed the feasibility of 

"user friendly" messages in the database environment. 

This concept should be equally valid for the command 

language interface. The class of user that would 

derive most benefit from such a scheme would be the 

non-specialist, yet all users should find the system 

easier to understand. 

The system message chosen to be returned to 

the user is ideally within the scope of his understanding 

of the machine function. The messages received by the 

job which only uses simple commands may be different 

to those received by the job which deals explicitly 

with sophisticated facilities. Consequently the 



- 80 -

messages should correspond to the level o£ de£ault 

setting used by the user. In £act, the system 

messages have a hierarchical structure similar to 

the user environment, and both are characterised 

by the default settings. (In an advanced system 

the user scenario could be used to determine the 

level o£ the system messages). 

The User Job and its relation to the User 

Orientated Model. 

Each user job, regardless o£ its complexity, 

can be considered as a series o£ steps, every job 

step is either a user program or a system £unction 

and is regarded by the user as an indivisible unit. 

The processing o£ a job step has two phases. There 

is the upper level consisting o£ commands, command 

parameters and their values and system messages. 

The lower level is £ormed by the actual evaluation 

or execution o£ the job step. At the upper level it 

is necessary to provide a complete speci£ication o£ 

the requirements o£ the lower level and a£ter the 

execution_has terminated,determine the result_o£_the __ 

job step (. i..e •. , compilation £ailure, £ile not 

available etc.). Thus,inputs and outputs exist on 

two levels. The job step itsel£ has the resources 

required: hardware-CPU time, main memory, peripheral 

devices, and so£tware -system utili ties, compilers, 

user programs. These can be implicitly or explicitly 

de£ined and to a certain extent are machine independent. 



--------------------------------------------------------------------------------- --

- 81 -

At the lower level the inputs and outputs are generally 

file contents and interactions with the operating 

system , both machine dependent. The structure 

is shown in figure 4.4. 

JOB CONTROL 
LEVEL 

inputs
file names, 
resources 

JOB STEP 

COMMANDS 

------------------
PROCESSING 

LEVEL 

inputs-
file content! 

PROCESS 

MACHINE 
INDEPENDENT 

outputs
system 
message 

------------
MACHINE 

DEPENDENT 
outputs
interactions 
with O.S. 

outputs-
file contents 

FIGURE 4.4 Structure of the Job Step. 

It is seen from figure 4.4 that the structure __ .. 

begins with machine independent definitions but as the 

user-orientated model is progressively applied machine 

specific items soon appear because file contents are 

dependent upon device and storage media. The inputs 

and outputs at the processing level are each a series 

of information transfers, each series can be regarded 

as a self-contained unit, that is, a compute file. 



- 82 -

The properties and use of files are discussed in 

the next chapter. 

An expanded conceptual view of the job step 

structure can be seen if figure q.J is referenced. 

The user awareness of the true extent of the structure 

depends on the defaults used. The system completes 

the structure for the user by combining the user 

scenario with the existing default set. The defaults 

are filled in at the job control level prior to 

execution of the job step j which obviously cannot be 

started until all the parameter values are known. 



- 83 -

§3. Considerations for developing the Operating 

System Structure Model. 

In this section it is shown that the user 

orientated model alone is insufficient to provide a 

complete description of the total system. The main 

deficiencies can be obviated by coercing the operating 

system into a suitable structure. 

Inadequacies of the User Orientated Model. 

The user orientated model has inherent inadequacies 

which prevents it from being applied directly as a basis 

for a general command language development. Two problems 

arise when an attempt is made to devise a structure 

containing user objects by recursively applying the full 

"top down" analysis presented in §2. The model produced 

is found to become machine dependent at different levels 

depending on the path followed. Furthermore some paths 

fail to map onto real machine facilities on any machine. 

Also the user profile chosen at the initial level 

significantly influences subsequent levels so that the 

machine hardware required could be dependent on the user. 

Although this would be possible in principle it seems 

unlikely to be realised in practice. 

The user orientated model cannot be considered 

a complete representation of a real machine because 

it makes no provision for the real machine functions, 

for example, job scheduling is essential for obtaining 

an acceptable level of resource utilisation. Nor does 

the model contain any provision for expressing the user 



- 84 -

criteria of the job results being returned within 

the time and cost requested. 

These faults are believed to be inevitable if 

a 11 top down 11 only approach is adopted. However, this 

approach was favoured because the 11bottom up 11 method 

described in §2.1 has been shown to produce an 

unstructed machine dependent user interface. It seems, 

therefore, that neither the existing approach starting 

with the machine hardware nor the user orientated 

approach are in themselves the complete answer. Thus 

some combination appears to be required but before it 

can be formulated it is necessary to determine the 

essential components of, and a suitable structure for 

the operating system. 

The Operating System Structure Model. 

The operating system serves two fUnctions. It 

must satisfy the individual user requirements as expressed 

in the jobs submitted and maximise the amount of useful 

work performed by the computer. The second of these 

functions is outside the scope of this thesis, although 

any conclusions drawn from this work would be invalidated 

by gross inefficiency. 

The principle task of the operating system, as far 

as the user is concerned, is the execution o£ jobs, or more 

generally superjobs as defined in Chapter III, §4.3.1. 

At present, it is necessary £or the user to be conversant 

with the methods o£ expressing the machine resources 

required by his jobs both for scheduling by the operating 



- 85 -

system and for limiting his own use of the system in 

terms of turnround and cost so as to be commensurate 

to the resources available to him. Scheduling is 

independent of job processing but the job requirements 

must be available to the other components of the 

operating system prior to execution. Thus, it may 

be concluded that the user job has two distinct 

types of interaction with the operating system; the 

actual processing of the job involving doing 11useful 11 

work, and the preparation of the operating system for 

some part of the processing of the job. Weller [~~] 

draws a distinction between the commands which have 

a direct bearing on obtaining a solution to the users 

problem. and the commands required by the operating 

system for planning, administration and accounting etc. 

which are independent of the problem solution. Weller 

believes that each command type is processed by the 

appropriate command interpreter. As an alternative it 

is proposed that all the commands within a job interact 

with the operating system and these commands are all 

part of the user image. Thus, a job can be said to have 

two contexts: the command context over which the user 

has control, and the operating system context over 

which the user has no influence. 

Although the operating system in reality may be 

a monolithic whole, conceptually this need not be the 

case. Trivially different commands produce different 

effects on the operating system. (If this were not so 

then all commands would be identical.) Consequently it 



- 86 -

can reasonably be surmised that the operating system 

can be conceptually viewed as a collection o~ disjoint 

modules similar to the actual construction o~ MU5 [/~) 

and 056 [~~). It is not unreasonable to suppose that 

it is possible to separate each module o~ the operating 

system into a unit containing pure program code 

and a table containing all the variables re~erenced 

by the coded program. Consequently, the operating 

system consists o~ a set o~ programs and a system 

table which is the amalgam o~ the module tables. 

When a module is used the values o~ some variables 

in the system table may change, and this corresponds 

to a change o~ state o~ the system as explained in 

Chapter III. Thus any change in the operating system 

is a change in one or more values o~ the system table 

relating to the set o~ system modules. 



- 87 -

The structures or the user-system and 

system-user interactions are shown below. 

USER 
CONTEXT 

SUPERJOB 

~ 
JOB 

~ 
JOB STEP 

~ 
COMMANDS(USER PROGRAMS & SYSTEM FACILITIES) 

---------i----------~--------
SYSTEM 
CONTEXT 

SYSTEM 
CONTEXT 

OPERATING SYSTEM 

~ 
MODULE 

~ 
SYSTEM TABLE 

MODULE MESSAGE 

! 
OPERATING SYSTEM MESSAGE 

-------- - ----------- --------------
USER 

CONTEXT 
COMMAND MESSAGE 

FIGURE 4.5 User-System Interaction. 



- 88 -

In existing systems the module message is 

often returned directly to the user, bypassing the 

intermediate levels. By using the structure shown 

in figure 4.5 it is possible to represent an actual 

operating system as a collection of modules, a table 

of values and a table of messages (c.f. Niggemann [3b]). 

In fact, MU5 is arguably a demonstration of the module 

·structure concept as it is an operating system 

consisting of procedures whose parameters effect changes 

in the system state, thereby processing work. 



- 89 -

§4. The Intermediate Abstract Machine. 

The abstract machine is defined to be an intermediate 

level between the user orientated model and the operating 

system structure model. The objects in the user 

orientated model can be mapped on to the abstract machine 

while the abstract machine possesses a structure and 

contains objects that correspond to a real machine 

operating system. 

Integration of the User Orientated and the 

Operating System Structure Models. 

If the user orientated model and the operating 

system structure model were independent then it would 

be impossible to link them. However, it is believed 

that two equivalences exist between the two models. 

1) The possible values taken for each user 

variable at the lowest level of figure 4.3 

are equivalent to the entire system table 

in the operating system structure (the defaults 

correspond to an additional set of tables) 

2) The commands forming the user profile map onto 

the modules of the operating system. --(The-

mapping functions may be non-trivialJ 

These are both reasonable assumptions to make since 

operating systems do in fact provide a user service 

however incompletel 



- 90 -

4.2. Composition of the Abstract Machine. 

A convenient preliminary view of the abstract 

machine can be obtained if the elementary ideas 

concerning finite automata are considered. 

A finite automaton is a device with a finite 

number of inputs and outputs, each of which is capable 

of two physical states which may be regarded as 

corresponding to the truth values True and False. 

The automaton is itself capable of assuming at a given 

time any one of a finite number of physical states and 

the state of each output is determined solely by the 

states of the input, and the internalstate of the 

automaton. (AutomatQ with an external infinite 

memory are Turing machines[~] but for practical 

purposes this work restricts itself to finite machines). 

The automaton can be defined by a machine table 

which shows the resultant state arising from each 

value of the inputs on any current state. This leads 

to the supposition that the abstract machine is itself 

defined by: 

1) The possible states of the. abstract machine._ 

2) The set of "Activities" acceptable as inputs to 

the abstract machine for each of the possible 

states. 

3) The current state of the abstract machine. 

4) The change in the values of the variables 

representing the state of the abstract machine 

caused by each activity on each state. 

An activity is defined as an operation on the abstract 



- 91 -

machine which potentially causes a state change. 

The number of variables representing the state 

of the machine and the number of activities acceptable 

as input to the machine must be finite as the automaton 

is itself finite. The variables forming the state table 

can be denoted by v1 , v2 , v
3 
••• vn (O < n <m), and the 

activities, denoted by A1 , A2 , A
3 
••• Am (0 <m< m). 

It is implied that both the set of variables and the 

set of activities so defined are distinct. This 

provides a static description of the abstract machine 

M viz: 

1,2, ••• ,n) + {A.Ii"' 1,2, ••• ,m}. 
~ 

Each variable Vi in the abstract machine can take a 

finite number of values and these will be denoted by 

v. 1 , v. 2 , ••• v.k (0 < ki <m). Each state of the 
~ ~ ~ i 

machine is represented by the variables V. taking a 
J. 

particular assignment of possible values. The total 

number of assignments "T", of values to the variables 

is 

T = 

This must be regarded as the maximum number of 

assignments as some assignments may not be possible 

due to correlation between the variables. However, 

the number of valid assignments correspond to the 



- 92 -

number of states that the abstract machine can attain. 

These assignments can be ordered and denoted by 

When a va1id initia1 state is operated upon by an 

activity,the resu1ting state must, by definition,be 

one of the va1id states. Thus, under the operators 

A. (i = 1 9 2 9 J, ••• m) the set of states is c1osed. Hence 
1 

A.(S.) ~ Sn 
1 J .<. 

iE {1,2 9 J, ••• m} 

j,tE {1,2,J, ••• t} 
• 

The dynamic definition of the abstract machine 

can be represented by a machine table as follows: 

Initial State 
I 

Activity 51 52 53 . . . . . . . . . . . . . 
Al 5

11 512 5
13 

. . . . . . . . . . . . . 
A2 5

21 
5

22 5
23 ............. 

A3 5
31 

5
32 

5
33 

............. 
• • • • 
• • • • 
A s 

ml s m2 s 
m3 

....... . ..... m 

st 

5
lt 

52t 

5
3t 

• 

• 

s mt 



- 93 -

The final state of the operation of activity 

A. on initial stateS. yields the final stateS ..• 
1 J 1J 

For convenience the activities have been defined 

to be parameterless operations. However, the analysis 

can be generalised to include operations which do have 

parameters• As there are only a finite number of 

machine states, there can only be a finite number of 

values for each parameter of the operat~on. An 

ordering can be imposed without loss of generality, 

such that each set of parameter values corresponds to 

a particular assignment of values for the operation. 

If this ordering is mapped onto the activity space 

there will be a one-to-one correspondence between 

a subset of the activities and the possible operation 

calls. This yields a subset of parameterless activities 

which correspond to the operation. 

From the above table it is clear that provided 

the activities and the states can be defined, the 

abstract machine will also be defined. However, this 

would be~a non-productive exercise unless it-·canbe--

shown that the abstract machine forms an intermediate 

level between the user orientated model and the 

operating system structure model. The next two 

subsections show the relationship between the three 

models. 



- 94 -

Relation of the Abstr-act Machine to the User and 

Real Machine. 

4.3.1. The Activities and the unit of user interaction. 

The only input to the abstract machine is the 

activity. At least some of the variables in the state 

table are known to represent user objects and, as such, 

form part of the user interface. These objects can be 

operated upon by the activities as they form part of 

the state table. The user, however, in his interaction 

with the abstract machine issues requests which are 

generally part of a conceptually higher level. The 

highest user level of all is the job, which itself is 

composed of commands. The commands are the smallest 

unit of user interaction but are still beyond the scope 

of the abstract machine. 

The commands are assumed to form a stream which 

is not necessarily serial although the general practice 

is for each command to be executed in sequence. The 

commands enter the system through an interpreter or 

compiler which produces as its output a list of activities. 

Commands which are -syntactically incorrect do not produce 

any corresponding output although messages from this 

stage are returned to the user. Each command which is 

accepted by the preprocessor is divided into a 

corresponding series of activities, there generally being 

several activities for each user command. As each 

activity operates on the abstract machine changes occur 

in the values of the state table. The changes which take 



- 95 -

p1ace are defined by the initia1 state and the 

activity. The sequence of activities executed for a given 

user command wi11 vary depending on the initia1 state of 

the abstract machine. 

For the user, it is reasonab1e to suppose that the 

outcome of a command either produces the resu1t expected 

or the system is una1tered by the command. However, 

because the command has been decomposed into its 

constituent activities, some changes to the system 

tab1e may have occured before the command 11fai1ed 11 • 

To preserve a consistent view of the system for the user 

the system must revert to the state which existed prior to 

the execution of the command. 

Commands which do 11fai1 11 produce an 11 error 11 

message at the user interface 1eve1. The user who is 

connected directly to the computer system can react to 

the message when it occurs (even if this reaction is 

mere1y to terminate the session). However, the user 

in batch mode is unable to adopt this technique and he must 

anticipat;e the occurence of errors if he Wishes his job 

to continue processing. Furthermore, the user, whatever 

his mode of access, needs to be safeguarded against his 

own reactions to rep1ies which may have been indirectly 

caused by previous commands. Therefore the system 

should ensure that messages are consistent with 

11 failures 11 previously generated within the interaction. 

This protection cannot be guaranteed by the abstract 

machine alone as the state tab1e does not contain a 



- 96 -

representation of the user interaction. However, 

if an interface between the user commands and the 

abstract machine is incorporated then a complete 

description of the user job can be retained at this 

level. Thus, the series of events generated by the 

job as it is processed can form an integral part of this 

additional level which provides the necessary 11memory 11 

of the previous user commands and system messages. 

The intermediate level is deciduous, its lifetime 

limited by the duration of each user job. 

Because the individual commands become a series 

of activities which may be bound together as a 

non-trivial sequence, decisions must be made concerning 

the subsequent activity required. The processing of 

commands is controlled by "Activity Handlers". 

4.J.2. The Activity Handlers. 

It has been shown that the abstract machine has 

static and dynamic definitions. Equally, any definable 

user command can be statically described by the subset 

of activities used to express the command in terms of 

the abstract machine components, and dynamically by the 

actual sequence of these activities used to operate 

on the abstract machine. Invoking an activity does 

not automatically imply that the system table will be 

altered because the changes requested may be invalid. 

Thus the validity of each activity must be determined 

prior to its operation on the abstract machine. If 

the activity request is valid the system table is 



- 97 -

changed accordingly. However, the activities which 

form the abstract machine equivalent to a user 

command do not necessarily operate on the abstract 

machine in the order in which they are generated by 

the interpreter. Similarly, some may be omitted. This 

is because the interpreter has to generate code which 

can deal with all the possible states of the abstract 

machine. The sequence of activities actually performed 

will be dependent upon: 

1) The variable values in the system table as 

this is a complete definition of the abstract 

machine. 

and 2) The previous events which have occured within 

the current user interaction. These form the 

job table. 

Thus, a logical structure is necessary which is 

independent of the activities yet determines the sequence 

required for the evaluation of the user command in any 

given circumstances. This function is performed by 

the Activity Handler which: 

1) Contains conditionals involving system and 

job table variables, 

2) Contains calls upon activities which operate on 

the abstract machine, 

3) Updates the job table as the user commands are 

processed, 

and 4) Formulates a message for the user. 



- 98 -

It seems clear that the activity handler is 

the ideal level for the generation of user messages. 

The success of the user command ultimately depends 

on the state table of the abstract machine. Messages 

generated directly from the abstract machine would 

generally be unintelligible to the user, and some 

messages would be reporting machine faults which 

are of no interest to the user who merely wishes to 

know why his job was unsuccessful. 

The relation of the activity handler to the user 

and the abstract machine is shown in figures·4.6 and 

USER 
REQUEST 

USER 
REQUEST ~ 

INTERPRETER 

ACTIVITY 
HANDLER 

FIGURE 4.6: Preparation of user request for execution. 



- 99 ,.. 

ACTIVITIES 

ACTIVITY 
HANDLER 

JOB FOR USER SYSTEM 
TABLE COMMAND TABLE 

memory conditionals current 

of' using job variable 

previous table and values 

events of' system table of' 

user variables abstract 

machine interaction calls on 

activities 

update job 

table 

message to 

user 

FIGURE 4.7: Execution of' User Request. 



- 100 -

4-3·3· Practicalities Influencing the System Structure. 

To be a realistic model the abstract machine must 

function in a multiuser environment. The possibility 

of interaction between several input streams of 

activities, each stream under the control of independent 

activity handle~cannot be disregarded. In the 

generalised abstract machine it is assumed that any 

finite number of simultaneous activity streams can be 

processed. However, the activities streams must not be 

permitted to operate independently, neither must activity 

processing within one activity handler be affected by 

the processing of other streams. Activity handle~whose 

activities use disjoint subsets of the system table can 

co-exist without interference, however, to prevent more 

than one activity handler using the same part of the 

system table a supervisory activity is necessary. This 

examines the resources required by each activity handler 

and suspends, execution until the system table components 

needed are free of other activity handlers. This 

solution implies that the resources required by each 

activity can be determined prior to execution. This is 

not unreasonable as the operation of each activity is 

known and the variables associated with the activity 

indirectly specify the values in the system table that 

may be altered. Furthermore, it would be unrealistic to 

expect the software of the operating system to be fault 

free or the hardware never to malfunction. In either 

eventuality an infinite loop could be caused in the 

execution of an activity. liowever, it is necessary 

in any practical realisation of the abstract machine 



- 101 -

principles that each activity , regardless of the 

initial state values, always terminates within a 

finite time. To ensure this a convenient solution is 

to structure the system so the activities are subservient 

to a further, controlling activity which allocates 

processing time to other activities. 

Each activity handler can be given an allocation 

of time from the controlling activity. If this time is 

exceeded the activity chain can be aborted. 

4.J.4. The Activities and the System Modules. 

It will be shown that OS6 and MU5 conform to the 

modular structure which was suggested would lead to a 

more usable system. Both systems consist of a set of 

procedures. Calls on these procedures form the user 

interface, and the operating system is composed of the 

procedure bodies. This structure clearly rationalises 

the design of operating systems, however, it can be 

shown that this structure also provides the link between 

the real computer and the abstract machine developed 

herein. 

In OS6 the procedures form the sole level of 

the operating system, the structure is represented 

by figure 4.8. 



USER 
LEVEL 

OPERATING 
SYSTEM 
LEVEL 

HARDWARE 
LEVEL 

- 102 -

PROCEDURES 

FIGURE 4.8: The Simple Procedural Operating System. 

The simplicity of the structure is a consequence of 

the small number of machine facilities provided and the 

single user environment. For larger systems, typified 

by MU5, the structure is somewhat complicated by the 

need for non-user procedures to control job scheduling, 

job accounting, prevention of user interaction, data 

management etc. The more complex structure required 

is represented by figure 4.9. 

SYSTEM 
PROCEDURES 

- - - ------- - - -
USER 
PROCEDURES 

-----------

FIGURE 4.9: The Complex Procedural Operating System. 



- 103 -

From the diagram it can be seen that each system and 

user procedure has access to the Executive which controls 

the hardware devices and provides the link between the 

processor(s) and the procedures (c.f. Executive of 

GEORGE Ill on 1900's and Kernel on MU5). It is also 

implied that the connection between the system and user 

procedures is very general, any user procedure being 

capable of accessing any system procedure. There are 

two levels of procedure neither of which links to the 

computer directly as a further level is required -

the executive. For the structure of the operating 

system it is convenient to view the system procedures 

as being at a conceptually higher level than the user 

procedures. This is because the system procedures deal 

with objects encompassing a wider field than the user 

procedures. Thus the system procedures are concerned 

with the utilisation of machine resources, interactions 

between jobs etc. 

In both the structures shown in figures 4.8 and 

4.9 it is apparent that there exists a parallel between 

the activities of the abstract machine and the Pl'o_c~edure 

module of the real machine. Each user request involves 

the use of one or more procedures which are processed 

under the control of the executive of the real machine. 

Procedures are similar to the activities of the abstract 

machine but the activity performs the same change of state, 

if valid, each time it is executed, whereas the procedure 

is perturbed by a list of parameter values which affects 

the execution. However, each procedure will have a finite 



number of distinct sets of parameter values which may 

be used. Hence it is possible to define a one-to-one 

correspondence between these and a subset of activities 

of the abstract machine. The controlling activity and 

the executive both serve the same function in their 

respective systems. Thus it can be seen that the 

abstract machine is an intermediate level which can 

be mapped onto the real machine operating system. 



- 106 -

§5. Implementation of the Abstract Machine. 

5.1. The Operating System as Independent Sub-systems. 

Weller [~~] and Niggemann [3b] independently 

advocate that the operating system can be considered as 

a set of isolat~bl~ sub-systems. This proposition forms 

the basis for the ensuing discussion. 

For the purpose of this work a subsystem is defined 

to be a set of variables taken from the system table 

with an associated set of activities which operate on 

these variables. 

The possible definable subsystem sets range from 

the monolithic subsystem which is much in evidence today, 

to the machine code instructions of the system programs. 

It is conjectured that there exist compromises 

between these two extremes such that the subsystems 

can be defined to have the folloWing properties: 

1) machine independence, 

2) each subsystem is orthogonal to every other, 

no subsystem being a combination of the other 

subsystems, 

3) the totality of the subsystems constitutes a 

sufficient representation of real machine 

operating systems, 

4) within each subsystem the actions performed 

are small in number to allow precise semantic 

definitions, 

5) each subsystem reflects some clear, separate 

portion of the system as seen by the user. 

Several sets of subsystems could exist which satisfy 

these properties and the operations on such subsystem 

sets would be suitable to form part of the intermediate 



- 107 -

abstract machine definition. If the subsystems 

are truely orthogonal then only the activities which 

belong to a subsystem will cause a change of state in 

the subsystem variables. The concatenation of the 

subsystem tables represents the state table of the total 

system. 

A subsystem can be defined by its corresponding 

state table. The "value" of a subsystem cart be 

obtained by examining the variable values in the table. 

A change of state of the machine will only occur 

when a value is changed in one or more of the subsystem 

state tables. 

The Subsystems and the Primitive Functions. 

The previous subsection advocated the view that 

the abstract machine could be considered as independent 

subsystems. The tables corresponding to the subsystems 

are therefore disjoint containing no common variables 

but the concatination of these tables is the whole 

system table. 

The-activities are known to be operators on_the __ 

system table of the abstract machine, but as a consequence 

of the independence of the subsystems the domain and 

range of each activity will be limited to just one 

subsystem table. There may be several activities which 

operate on any one subsystem table. 

The foregoing discussion leads to the belief that 

the activities of the abstract machine form a suitable 

basis for the definition of the primitive functions 



- 108 -

which are to form the intermediate portable level. 

To be able to define the primitive set it is necessary 

to identify the subsystems of the abstract machine and 

the objects contained in the subsystem tables. For 

each subsystem the subset of primitive functions 

operating on that subsystem table must be developed 

such that the conditions of orthogonality and 

completeness are satisfied. Clearly the division of 

the total system into smaller units permits this task 

to be more readay accomplished. 

Selection of the Subsystem for Definition. 

It is necessary to consider the subsystems as 

isolated units in order to obtain a formal definition 

of the abstract ~achine which is manageable. One 

subsystem which appears to have an obvious separate 

existence is the filestore since the existence and 

management of files is largely independent of the 

other activities of job control. It also appears 

that the file is an entity which is part of both the 

user image and the system, and consequently its 

existence in the abstract machine seems very desiral:iTe~ ~ 

Also, an examination of the existing job control 

language operations reveals that most commands involve 

manipulation of files so that the definition of the 

filestore would form a significant part of the whole 

system. 

This thesis proceeds by examining the concepts 

which underlie filestores in order to determine the 



- 109 -

composition and the operations required.f'or a 

notionally machine independent f'ilestore. This 

yields a definition of' the subsystem table which 

represents the f'ilestore. 



- 110 -

CHAPTER V 

THE MACHINE INDEPENDENT FILESTORE. 

§1. Introduction. 

Over the years two groups of computer user have 

emerged, each group having evolved its own techniques 

for data "handling. This dichotomy owes much to the 

different working environments of the two groups. 

The commercial user deals with data that concerns 

' 
the day to day organisation of his company. The 

volume of data is"generally large, and production 

programs require execution at specific times controlled 

by external constraints,for example weekly payroll 

program suite. Because of these considerations data 

and programs were, and often still are, stored .. on 

magnetic tapes, each tape file capable of regeneration 

from a cycle of previous updates. The management of 

data and programs is necessarily a significant 

proportion of programming effort and a major concern 

of every programmer. 

Scientists, engineers and non-commercial users 

have usually worked as individuals, each maintaining 

his own" programs and data files, and being respons-ibl"e 

for his own data security. 

In either case the user has to: 

1) deal directly with the data storage media, 

2) have a precise knowledge of the data storage 

method, 

and J) handle the physical devices directly in his 

programs. 

The third generation of computers, with specifically 



- 111 -

large main memory, random access devices and device 

management through enhanced system software have 

provided an element of data independence from storage 

media. In IBM OS/J60 JCL [22] the user is expected to 

know the physical location of his data at the job 

control level for efficiency (although this is no 

longer required in his programs) but only limited file 

management facilities are provided. Alternatively, in 

GEORGE III [37] the user can be unaware of the media on which 

his file is stored. 

In GEORGE Ill the space required for a file is 

automatically allocated on a suitable storage medium and 

information concerning the file is kept in a file 

directory. Access to the file contents is obtained 

merely by using the file name; the filestore system can 

find the file contents from addressing information 

stored in the file directory. Incremental dumping of 

the file contents helps to safeguard against system 

failures. This also permits the filestore to be 

larger than the on-line storage capacity as the contents 

of files which are accessed infrequently can be removed 

from the on-line media since they will be contained 

on dump tapes. Previous copies of a file contents can 

be saved by individual users as a further precautionary 

measure. However, even with an existing advanced 

filestore system such as that provided with GEORGE Ill 

there remain inconsistencies or areas that require 

clarification. 

The problems that remain are: 



- 112 -

1) The plethora of file types, each pertaining 

to original input/o~tput or storage media. 

2) The multiplicity of accessing and addressing 

methods which are available. These are often 

confused with the type of fil~ since available 

access methods are usually dependent on the 

storage medium involved. (The two are 

not synonymous since the most suitable method 

depends on how the data is used). 

3) The definition of meaningful and useful 

operations which can be performed on files 

(different filestore systems currently provide 

very different facilities). 

4) The difficulty of achieving filestores which 

are common to several machines. Hitherto 

filestores have tended to be limited to a 

single machine and even then only if it is 

running a particular operating system. (Often 

a filestore has been restricted to a specific 

physical storage medium e.g. disc packs or 

magnetic tapes). 

5) The preservation of the integrity of files 

without involving unnecessary expenditure of 

system resources or of programmer time. 

Automatic preservation is wasteful for those 

files which are not used again, whereas placing 

the requirement on the user to copy files for 

protection explicitly is unsatisfactory from 

his point of view. 



- 113 -

These difficulties arise largely because of the 

ad hoc development of practical filestores with their 

attendQnt requirement of satisfying the needs of 

programmers who had handled devices and files directly. 

Existing systems do not seem to be a sound basis for 

the development of a machine independent filestore. 

The alternative approach is to obtain a more formal 

description of the file, the filestore and the program 

environment. As an initial definition the term 

11filestore" will be taken as embracing all collections 

of files. Thus, one type of the more general filestore 

is the database. This has the additional property of 

interrelations between the contents of distinct files. 

In this chapter an abstract representation of a 

filestore is developed which enables most of the 

difficulties outlined to be resolved, while retaining 

the possibility of practical, efficient implementation. 

It is shown that a parallel exists between the 

mathematical set and the computer file Which enables a 

formal description of the file to be obtained. The 

constituents of the file are discussed with emphasis 

on describing the addressing of file contents and the 

attributes possessed by files. Two further requirements 

needed for practical realisation of the machine 

independent filestore,the system integrity and a user 

structure,are also developed. 



- 114 -

§2 •. The Logical Fileapace and its Application. 

2.1. Discussion. 

The logical filespace is analogous to a mathematical 

setS which is itself the union of sets s.(i = 1,2 ••• n). 
1 

Each set si represents a file, the elements of si 

representing the 11records 11 of the file. 

Thus S = { s1 , sa , ••• s } • 
n Each set si contains elements 

eij such that 

and 

(1 5. i < n, 0 < m. 
1 

(0 5. j < mi' 1 5. i 5. n) 

< <D) 

The elements of a set that is part of the logical 

filespace have at least one common property. Trivially 

the elements belong to the set, by definition. Alternatively 

complex relations may be necessary to express the 

properties shared by the elements of a set. A set may 

also be composed of elements that are themselves sets, 

or an element may be contained in several sets. 

The relations r that are satisfied by the 

elements of si can be used to define the elements giving 

The set s. can be defined by 
1 

(l<k<ro) 



- 115 -

(1 ~ k < m) (1) 

Standard set notation(see Green [~o] for examp1e} can 

be used to express the interre1ationships between sets, which 

are essentia11y interre1ationships between elements. 

Consider, for examp1e, the set S which contains 

e1ements which satisfy relations rt and 1'2 , or the 

re1ation :1:) , but not the re1ation r., • 

Then 

s = s ':s n (St u 5:! ) 

where St = { e I rt,l'l } , 

52 = {eji)}, 

and S} = feln. }. 

With the operators U, nand complement (denoted by') 

a11 possible relations can be expressed. 

It is clear from (1) that if the relations binding 

the elements of a set are known then a complete 

definition of the set and the elements can be obtained. 

The importance of this wi11 be explained in the application 

of the logical filespace to computer filestores. 

2.2. Uniqueness and use of Set Identifiers. 

As an abstraction a set consists of the name 

(set identifier), the list of re1ations satisfied by the 

elements, and the elements themselves. 

For consistency, each identifier must on1y relate to 



- 116 -

a single list o~ elements. I~ two distinct sets o~ 

relationships are associated with a single identi~ier 

then the elements obtained satis~y: 

either 1) the ~irst set o~ relations only, 

or 2) the second set o~ relations only, 

or J) both sets o~ relations. 

Clearly, i~ more than on·e o~ these interpretations is 

possible then the elements obtained could di~~er with 

each access. Alternatively, i~ only one o~ the above 

interpretations ever occurs then this is equivalent 

to there being only one set o~ elements associated with 

the identi~er. Consequently use o~ this set would 

be consistent. Thus, the identi~ier must be unique. 

The interrelationships between the set elements could 

be used to identi~y the set although this would be 

unwieldy. It is convenient, there~ore, to use a name 

as a notional set identi~ier. However, once an 

identi~ier has been associated with a list o~ relations 

the name itsel~ may be considered a complete de~inition 

representing the list o~ relations. The identifier and 

the list o~ relations are therefore synonymous and 

de~ine the elements required. 

Thus, the complete definition o~ a set is 

{e lr1 tr'2 ••• r } 
m (l ~ m < eo). 

If this is associated with the name si then 

(l~m<co) 



- 117 -

and the elements o£ s. are such that 
l. 

(1 ~m < eo) 

The next subsection shows how the set concepts can be 

applied to computer files and the significance o£ the 

set relations in a computer £ilestore is explained. 

Relating Computer Files to the Set Concepts. 

It is proposed that, similar to the set, the 

computer file has an identifier, elements or contents, and 

attributes which correspond to the set relations. Thus, 

the file will be completely de£in~d by its name which 

provides a link tofue file attributes. 

The file identifier must be unique. This can be 

shown by a similar argument used previously to prove 

the uniqueness o£ set identifiers. I£ the file contents 

are not changed then every access to the file must always 

produce the same contents. This will only be possible 

provided only a single set of contents are associ_ated _ 

with each identifier. 

In set theory it is possible to take an arbitrary 

element and determine if it belongs to a particular set 

by verifying that it satisfies the relations possessed 

by members of the set. To per£orm.this process in a 

computer filestore is impractical in terms of efficiency 

and usability. However, the analysis will be applicable 

if the relations can be used to identify the elements 



- 118 -

more directly. Thus, if some relations are used as 

generators the contents can be readily determined. 

The next subsection discusses the composition of 

the file and indicates the method of accessing the file 

contents. 

The Conceptual Spaces of the Filestore. 

The file may be regarded as consisting of four 

conceptual components. These are the filename, the 

file attributes, the logical record identifiers, 

and the record contents. The relation between these 

spaces is shown in figure 5.1. 

~lena~ > attribute 

list 

of 
logical 

records 

Physical media 

FIGURE 5.1. Relation between the Filespaces. 

For each file there exists an ordered set which 

forms the attributes, some or all of these have values 

for any given file. If the file is empty then the 

logical record space is void and no access to the 

contents space is possible. For the non-empty file the 

contents are stored on physical media and are 

addressable through the logical records. In contrast 

to the set notation, the logical record space concept 

must impose an ordering on the contents of the file. 



- 119 -

The specification of the contents in the attribute 

list allows the records to be accessed in the implied 

serial order of the logical records and/or in an 

indexed order (see §3.3.1.) 

Users and the Logical System. 

Users are basically interested in the contents 

of files and will wish to manipulate the file records. 

The filestore system on the other hand has no interest 

in the file contents themselves, it merely stores them 

as the file is its minimQI manipulative entity. Thus 

the contents are only altered when a user runs a program. 

In contrast the file attributes are only of interest 

to the programmer as information - he does not ·care 

about the form in which they are stored although he 

may wish to know their value and occasionally may change 

some attributes. The filestore system can and must 

supply the data structure to store the attributes and 

the code to manipulate them. These details should not 

be the concern of the user. 

The consistency of the system is thus only at risk 

from the user when he actually runs programs which 

change file contents. Ac.cessing the attributes is 

always under the control of the system code. 

The concept of an execution environment is 

introduced to simplify the protection of the system 

integrity. 



- 120 -

2.6. The Execution Environment. 

It is the contention of this thesis that an 

executing program and the files used by the program 

have an independent existence from the remainder of 

the filestore system. The advantages of this concept 

are twofold, firstly it allows programs to be treated 

the same as other files when they are executing, and 

secondly, the execution "envelope" thus formed can 

protect the filestore from programs which fail during 

execution. 

The access to files from an executing prqgram 

must be consistent to other forms of access, yet it is 

not directly connected to other system requirements. In 

existing systems program access to files is through 

direct access to the file contents allowing the user 

program to read and write records directly to the files. 

As an alternative, the execution envelope can be 

considered to contain a complete definition of the 

program requirements for execution independent of the 

files in the filestore. This permits access to file 

images from within the envelope through PUT and GET 

commands issued by the program. If the program 

fails the original file contents remain unaltered, 

otherwise the new file contents from the execution 

envelope are transferred to the filestore by the 

operating system. 

For database applications this approach greatly 

simplifies the rete~tion of consistency. As the 



------------------------------------- --

- 121 -

Database Management System cannot in general recognise a 

consistent state of the database, it is usual for the 

application program to indicate the start and end of a 

consistent sequence of changes. If, for any reason, a 

sequence of changes cannot be completed the database must be 

returned to the last consistent state. By executing 

application programs in a self-contained environment 

the management required is reduced to copying the new 

records from the execution envelope to the filestore 

provided the program is 11 successful 11 • 

It 1dll be seen in Chapter VI that the commands 

PUT and GET are consistent with the primitive 

operations designed to operate on file contents. 

Storing and Addressing the File Contents. 

The file contents may be stored on any of the 

computer accessible media; main store, disc, magnetic 

tape, cards, paper tape etc. The difference between the 

media li~s in the cost of storage and the speed of access 

to the information in the file. Some of these media, 

specifically those that are magnetic, permit records to 

be directly addressable by the system. Conversely, 

if a file is stored as a card deck, for example, then it 

is not directly addressable. However, reference can be 

made to the file contents regardless of the storage 

media provided the filename and device are known to the 

filestore. Files which are not directly addressable 

can be considered as possessing a logical record space 

which addresses the appropriate device for the media. 



- 122 -

In practice this results in a request to the operators 

to load the file contents into the device. This is 

comparable to loading an off-line disc pack when a 

request has been made to access a file whose records 

are on this particular pack. 

Clearly, until a file has been given a name it can 

have no existence in the filespace. Contents for 

files have to be explicitly provided from a source 

e.g. another file, on-line terminal, card reader etc. 

If the contents are supplied from another file (a copy 

operation within the filestore) then either the 

logical record identifiers can be replicated involving 

no·physical transfer of the.logical records or the 

record contents can be copied. Alternatively, if the 

contents are entered via an external source then the 

device through which they are supplied must be regarded 

as a source of new logical records presented in a fixed 

order. The logical records can then be copied from the 

input device to one of the filestore media and 

appropriate logical record identifiers constructed for 

the file directory. Output of information from-the~··· 

filestore is the reverse process, copies of logical 

records are transferred to an output device but once dealt 

with are lost to the filestore system. 



- 123 -

§3. The Attributes of a File. 

The main difference between the mathematical set 

used earlier as a description for the logical file and 

the computer file is that the latter is concerned with 

objects requiring more than an abstract representation. 

Consequently it is only to be expected that the file 

directory contains information which would not normally 

be associated with the relations defining a mathematical 

set. 

The information contained in the file directory 
• 

forms the file attributes and can be regarded as falling 

into two categories. Ideally, in a tru~ user 

orientated system all the information required would 

be for the benefit of the user. However, it must be 

conceded that some of the file attributes are of little 

or no interest to the normal user, but .are 

necessary to provide a functional system in an imperfect 

world. 

Whatever attributes are chosen, it is necessary that 

the value of each attribute in the file directory is one 

of the permissible values for that attribute. -x1so, the 

total set of attribute values forming the file directory 

must be self-consistent. While these observations do 

not form preconditions on the choice of attribute 

types, those that are chosen must each be given a 

list of acceptable values. Similarly, the combinations 

of values in a file directory which ,give rise to 

inconsistent states must also be specified. 



- 12~ -

Analysis has shol~ that the file attributes describe 

and define: 

1) How the file can be, is being and has been, used. 

2) The location and construction of' the file contents. 

and J) The characteristics possessed by the file. 

These are described in subsections J.l, 

respectively. 

Usage of' the File. 

3.2 and J.J 

In a multiuser environment usually found with 

f'ilestore systems, the security·and integrity of the 

files must be preserved. However, the protection 

provided must not be over restrictive or the system 

may be difficult to use and inefficient. It is 

essential that each user of the system is positively identified 

before any interaction can be permitted. Thereaf'~e~ 

usage of files is limited to those whose attributes contain 

the user's identifier for the mode of' access requested. 

Even if' the user is permitted to use a file his request 

must be consistent with other current usage of' the f'ile. 

This problem of' file integrity has been discussed by 

Tozer [~] who also outlines possible solutions. 

Having determined which users have access to a file 

and how users. are permitted to access a file concurrently, 

it still remains to check that the system is performing 

these requirements correctly. Monitoring of file usage 

can perform this function. 



- 125 -

User Access to File Record Contents. 

File record contents can form part of a computer 

process in three ways: 

1) forming the algorithm, 

2) constituting input to an algorithm, 

and J) constituting output from an algorithm. 

It is a trivial exercise to coerce all computer processes 

into this basic format. If the records of a file are 

used as an algorithm or as an input to an algorithm 

process then it is implied that the ~riginal file 

records in the filestore contents space are unaltered. 

This philosophy does not prohibit the images of these 

records undergoing changes as the execution of the 

process proceeds. (The file images form part of 

the execution envelope concept). 

When a file record constitutes part of the 

output from a process it is implied that the logical 

record space of the file is altered. The alterations 

can take two distinct forms. Either the mapping. of 

the logical records to physical media is changed, or 

additional logical records (and their corresponding--·· 

mapping functions) are added to the logical record space. 

The former of these is comparable to changing the record 

space, while the latter is comparable to enlarging the 

record space by concatination. 

There is no necessity for updating records in situ. 

Excluding this simplifies the task of preserving the 

integrity of the filestore but may have consequences 

in the design of the space allocation and garbage collection 



- 126 -

algorithm in a practical system. 

From this discussion four types of access to the 

fil.e records have been identified: 

J.) Input, 

2) Execution, 

J) Output of new record contents to existing records, 

and 4) Output of new record contents with new records. 

(By isolating the process it wil.l be seen in §J.J,4, which 

describes the execution envelope, that input and output 

are different forms of copying the file contents). 

Access to Attribute Space, 

It is reasonable to suppose that since some of the 

fil.e attributes are for the benefit of the user, he 

shoul.d have some influence over their val.ues. Typical.J.y, 

he should be abl.e to determine which, if any, of the 

other users have access to execute his fiJ.e, However, 

other attributes, for example, the physical. mapping of 

the logical. records,shoul.d only be changed by the system 

when the contents of records are altered. 

A fif·th type of access is identified. 

5) A user may be permitted to change attribute 

val.ues. 

This coul.d conceivably produce a situation not unl.ike a 

Gilbert and Sull.ivan opera [~I] whereby an infinite series 

of J.ists are required, each l.ist containing the users 

who are permitted to access the preceding J.ist. For a 

practical. solution it is believed that a singl.e list for 

each attribute woul.d be sufficient. 



- 127 -

3-l.J. Access to Filename Space. 

To have existence in the filestore, a file must have 

an entry in the filename space. It seems unnecessarily 

severe,in general,to impose restrictions on the entry 

of filenames other than those of uniqueness and conformity 

with practical considerations of size. However, it is 

undesirable that users could, without due regard, remove, 

any filename whether or not it "belongs" to them. 

Similarly, to have no mechanism for removing unwanted 

files_is equally abhorent. Consequently, users may be 

permitted to delete an existing file from the filestore. 

File History. 

The file history, while not essential, is an 

attribute serving a practical function providing the 

user and filestore system with diagnostic information. 

The history is intended to be a full account of the 

transactions performed on the file namely, the type; 

time and date of the transaction, with the job or user 

identifier. For practical purposes the history may be 

limited to either the most recent or a particular __ _ 

category of transactions. 

The historical information retained can provide 

an insight into the characteristics of file usage which 

is particularly helpful in a database. The user can interrogate 

this attribute to check security of his files and to aid 

the detection of the program responsible for any existing 

file corruption. Retaining this information may become 

a statutory requirement if proposed legislation on 



- 128 -

privacy of computerised information is ever passed. 

If the past transactions are linked with the mapping 

of fi1e records discussed in the next subsection then 

a complete history of a file, including all previous 

versions can be maintained. 

Location and Construction of File Contents. 

To the user the contents generally form the raison 

d'etre for the file. Independently of the computer 

system the user must construct the data so it possesses 

at least a simple structure which wi11 depend on the 

data and how it is to be used. This process is required 

even if the user is not intending to store the data in a 

computer file. Thus, the user imposes a naming 

convention on the records which constitute his data. 

Trivia11y, this implies that records are sequential 

although complex naming is feasible. Having supplied 

his data to the computer system in some structure, the 

user naturally expects to be able to access the records 

in the same structure subsequently. Thus, when-he--

retrieves a record, the contents obtained should 

correspond to the record name used. 

Consequently the system must preserve the user's 

naming convention, no matter how it chooses to store 

the information or how often the data is moved. An 

attribute of the non-empty file is thus the mapping 

information which allows records to be located in the 

filestore when they are named by the user. 



- 129 -

Mapping Logical Records to Physical Media. 

For a non-empty file the filestore system has to 

locate the file records by establishing a mapping between 

the physical storage media and the file records with an 

ordering conforming to the external data structure 

required by the user. It is an elementary requirement 

that the mapping is complete and consistent. Each 

entry in the contents space must have a corresponding 

logical record permitting the contents to be accessed. 

Similarly any single record must address the same physical 

contents while the contents remain unchanged (system 

housekeeping may change the mapping but not the 

correspondence of record to contents). 

The amount of information required to form a 

complete mapping will depend upon the storage media. 

For discs, the disc, tracksand blocks will have to be 

identified whereas files in the form of card decks can 

only be mapped by media description. These external 

files require human intervention for their use which is 

obtained by a request passed to the operators from the 

filestore system. It is the task of the operating--

system to transfer files from one medium to another 

through suitable devices. Transfer of cards to discs 

implies reading via the card reader into a buffer (main 

store) then transfer to a suitable disc under the control 

of the operating system. The mapping of the records 

on disc produced by the operating system is available 

to the filestore system which contains two .files with the same 



- 130 -

physical contents but stored on different medium. 

The user may legitimately wish to reconstruct the 

state of his file as it existed at some time in the 

past. Thus it could be a requirement to record not 

merely the present mapping between logical records and 

their physical representation but also the mapping of 

all previous versions of the record together with their 

period of existence. This would need to include all 

records which had ever existed even if there was no 

corresponding current record. Obviously this facility 

would be very expensive on storage space if the file 

contents were volatile and would not be required for 

most files. However, it is a possible requirement and 

one that could be implemented. 

Similarly, there may be a need to have more than 

one mapping of the current logical record onto physical 

storage. This aspect of security is discussed in more 

detail in section §4.1. 

File Characteristics. 

Some of the characteristics required are predetermined 

by the user in the form of constraints imposed on the file 

contents, these are structure and storage profile. The 

system also needs information to-: 

1) choose appropriate storage media, 

2) validate interfile operations, 

and 3) complete and validate execution environments. 

There is some overlap between the requirements of the user 



- 131 -

and system. The characteristics are described below. 

File Structure. 

Non-empty files have contents which are accessed 

through the list of logical record mappings. There 

appears to be two methods of using the list. 

I) The records can be accessed in list order, 

beginning at the first logical record (i.e. 

the one which provides the link between the 

attribute space and the record space), 

continuing one record per access urttil the 

last record is obtained. There are variants 

which permit restarting at the first record or 

accessing previous records, but basically records 

are used serially. 

2) The records can be accessed through an index which 

indicates the record required. 

3.3.2. Storage Profile. 

It must be possible to identify how the file contents 

are stored- in order to validate transfers and operations. 

Contents can be retained in either internal or external 

form. Thus, a file can be binary (which is machine 

dependent) or a common internal text code, or one of 

the numerous external text codes. Retaining this 

information prevents binary output to the line printer, 

execution of text etc. 



- 132 -

J.J.J. Record Template. 

The size of file records is required for transferring 

files from the filestore to output devices, chasing 

suitable storage media and for providing executing 

programs with a suitable buffering mechanism. 

J.J.q. Execution Characteristics. 

An attribute previously specified was the list of 

users who were permitted to "execute" the file. If 

this list is empty then the file is non-executable by 

definition (this may be a temporary state) otherwise, 

the file is executable by the named users. In addition, 

it is a necessary condition that the file is self-consistent 

with the requirements for execution. 

All executable files, that is programs, need 

at least one input and one output to be meaningful when 

executing; the minimQI input is the program itselfj 

the minimal form of output is a system message. If a 

program were permitted to have neither input nor output 

then its execution would be a null event whose effect 

on the system would be,by definition, non-existent. 

Prior to execution it is necessary to create an 

environment compatable with the requirements of the 

program as determined by the programmer when he coded 

the problem. This environment is defined by the input 

and output file definitions and the description of the 

processor requirements. These are not necessarily 

permanently associated with the file as they may be, 



- 133 -

and usually are, changed with each execution. Furthermore, 

the environment must be fully specified before the 

program can be executed either explicitly by the user 

or by system default values. The description of the 

program/programmer requirements have not been retained 

in existing systems, but it is the contention of this 

work that they should be stored. Checking can then 

be performed at job control load time, not at program 

execution time. 

The description in the directory specifies the 

requirements for each file that has to be connected. 

Before execution the operating system must check the 

completeness and validity of these connections. 

A tYPical execute environment requirement could 

be as follows: 

FILE1, 

FILE2, 

FILE3, 

STACK 

INPUT, SERIAL, TEXT 

INPUT, OUTPUT, INDEXED, BINARY 

OUTPUT, SERIAL, TEXT, LIMIT 2000 LINES 

PROCESSOR, MAXIMUM TIME 5 MINS 

Before the execution request can be complied with 

filenames have to be associated with the file definitions 

although system defaults may be implied. The processor 

description defines the processing requirements of the 

program but need not be an explicit machine name (e.g. 

BASIC, !CL1900). 

If the list of execute users contains more than 

one entry, for example a compiler is generally accessible 

to all users, then connecting the filenames must be 

independent of the directory of the executable file 

unless an arbitrary constraint is imposed on the number 



- 134 -

of concurrent users. 

An actual CPU can only execute instructions if 

they are 1oaded in a specified set of media which are 

termed main storage and at present have the property 

that the information stored in it is transient and 

only (sensibly) used for executing programs. Main 

storage is different in this respect from the other 

filestore media which are used for long term storage 

of information. Hence, for execution, the executable 

file must be transferred to the main store associated 

with the processor selected to execute this particular 

program. Thus execution implies a copy of the binary 

file from permanent storage into main storage or virtual 

main store. (This conceptually occurs only once but 

may in reality occur many times in a multiprogramming 

environment with swqpping under the control of the 

operating system. It is only the concept of transferring 

the file that is important here,) Also, each user who 

is executing a given file is apparently given his own 

copy of the file and this is independent from any other 

copies (again, this is not necessarily true if the code 

is re-entrant but the concept of independence always 

holds). Thus each user has his own copy of the file in 

main store. 

Despite differences it is convenient to regard main 

storage as part of the filestore and the executing 

program is a file stored on this medium. Transfer of a 

file to this medium implies execution. Since the transfer 

to main storage involves adding extra characteristics 



- 135 -

to the original file it is convenient to regard the 

process of 11 loading11 a file as equivalent to creating 

a new copy of the file with a new name. Each new 

copy of the file needs a directory entry to define the 

file. 

The execute request at the user level can take 

several acceptable forms. It is possible that the user 

will need to define explicitly the file connections 

before execution and disconnect when execution is 

finished. This has the advantage that the system can 

determine if the file connections are incomplete before 

execution takes place. Alternatively the user may be given 

a default system. Howeve~ either the user or system 

must link the files to the program. Thus a user request 

to execute a file generates a new file directory entry 

which contains the input/output links and processor 

characteristics. In this way the filestore concepts 

allow for executing programs. 

There is an interesting and important consequence 

of dealing with executable programs in this way which is 

outlined_as an application of the machine independent

filestore in Chapter VIII. 

The above are considered to be a description of the 

contents of the file directory which constitutes a full 

definition of the file. The contents and structure of 

the directory are shown in figure 5.2. 



I 

FIGURE· 5. 2. 

* Related to a complete media 
specification. 

t Completed by operating system. 

tt Required for each file used. 

The File Directory Structure and its Contents. 



- 137 -

§q. Practicalities of Implementation. 

Two topics relating to practical fi1estores have 

not been dealt with in the user view of files. These 

are: 

1) System preservation of the integrity of files 

and 2) User structure in relation to the filestore structure. 

System Preservation of Integrity. 

Some security measures have been previously discussed. 

The history enables the file contents to be reconstituted 

while a duplicate of the contents can be accessible from 

the logical record space. This facility could be used 

for vital system files and important user files with 

updates automatically operating on all the copies. If 

the file is subsequently lost or some records are 

corrupted the copy can be accessed, without user 

intervention, to make good the file contents. Similarly, 

only permitting transactions through the execution envelope 

greatly enhances the security of the fi1estore by 

preventing malfunctioning user programs from changing 

file records. There ar~ tw~~spects of integri~y_which 

the filestore system should manage, preservation of 

consistency and prevention of access to corrupt records. 

q.1.1. Preservation of Consistency. 

When a file is used in a mu1tiuser environment it is 

vital that interactions between the concurrent users of the 

file are strictly controlled. The first requirement is 

that of producing consistent retrieval. On each occasion 



- 138 -

that a.particular record is examined the contents 

should be the same. This imposes the restriction 

that until the user interaction is complete the 

records of the files retrieved cannot have their 

contents altered. Clearly this permits any number 

of concurrent users to retrieve any particular 

record. When a user interaction involves updating 

records, an essential condition for consistency is 

that no one record can be updated concurrently by two 

or more processes. (For this work it is assumed that 

the logical record is the smallest unit which the user 

can specify for access through the filestore system. 

Records may, and generally are, subdivided into smaller 

units which can be accessed by user programs and some 

system facilities such as editing routines.) Consequently, 

when a record is used in an interaction which has update 

access, it must be excluded from use by any other 

interaction. 

It appears to be reasonable to expect the resources, 

in this instance the files (or file records) required 

for a user interaction to be known prior to the 

execution of the interaction. If alternatively user 

interactions were permitted to utilise an unspecified 

amount of the filestore then it is conceivable that the 

11deadly embrace" would occur. In these circumstances 

recovery is possible by abandoning one of the user 

interactions which automatically releases all the records 

used by that job· 



- 139 -

Whichever techique is employed the management system 

needs to identify the type of access given to each file 

and/or record and the user job involved. By coercing 

this information into the directory space the 

management is much simplified. If the interaction 

proceeds in a self-contained envelope (see execution 

environment) then repeated usage of records does not 

involve any management and interactions which 11fail 11 

automatically leave the filestore unaltered because 

the envelope is independent of the filestore. 

4.1.2. Data Corruption. 

It must be accepted that hardware devices malfunction 

and users inadvertently (or otherwise) destroy file 

record contents. Corruption occurs at the record contents 

level produced by erroneous updating (e.g. incorrect 

format) or by parts of physical store being rendered 

inoperative. The user is only concerned with the 

record contents of files so only needs to be aware of 

which~records are affected by hardware faults• 

Prevention of user corruption cannot be entirely 

stopped by the filestore system, although it is to be 

expected that an attempt to update a text file with 

binary records,say would be a recognisable abuse. 

Records which do fail the system prechecks should 

not be used (it may be necessary for some users to 

disregard data corruption in certain instances), and it 



- 140 -

is convenient to mark the relevant records as being 

corrupted. This has the advantages that the user can 

still access the uncorrupted records and may be able to 

replace, or reconstruct, the records that are corrupt. 

The obvious disadvantage is the additional space 

required to store this information in the file directory 

space. 

The User Structure. 

It is postulated that unlike the principal 

characters of Orlrell 's "Animal Farm" [38], users are 

not all equal. It is desirable, for the benefit of all, 

that some users will have limited access to filestore 

facilities. 

It appears reasonable to suppose that each user 

has a set of file attributes that he can influence. Each 

such attribute has a set of possible values and a 

default value. 

If a user creates a file then he can only set values 

for those attributes of which he is aware and the values 

given must be from the subset permitted. If no value is 

specified the default is provided by the system. 

The set of attributes of a user includes a List of 

the permitted operations. Thus he may only be allowed to 

create working space for executing programs. Permission 

to create a permanent file would not automatically imply 

that the user could remove the file from the system. 

Hence delete access may be permitted at both the user 

level and for individual files. 



For practical reasons of speed of access and 

organisation it is envisaged that the file directories 

will be ordered with a subsection associated with each 

user. Files can be located by searching the rexevant 

section of the file directory space. 

Having specified the file directory and the values 

that can be taken by the file attributes, a position is 

reached whereby the operations which can be performed 

upon the filestore can be defined. As will be seen in 

the following chapter the validity of a primitive function 

operating on the filestore is dependent on the values 

of the attributes in the directories of the files 

involved. Thus the set of file directories'is the 

subsystem table for the filestore operations. 



- 142 -

CHAPTER VI 

THE FORMAL DESCRIPTION OF THE FILESTORE SUBSYSTEM. 

§1. Introduction. 

It has been proposed in earlier chapters that 

portable command languages may be obtained by defining 

a set of primitive functions which are orthogonal and 

complete. The primitive functions form an intermediate, 

self-contained level between the user and the operating 

system which: 

1) allows any user request to be precisely 

defined by the semantics of the primitive 

functions used in the request regardless of 

the particular implementation, 

2) permits the command language to be independent 

of the host operating system, 

and J) allows the command language built using the 

primitive functions to be designed to suit 

the particular user environment required. 

The primitive functions are synonymous with the 

activities of the abstract machine but can be related to 

objects of the real world. It has been necessary, 

however, to incorporate parameters with the primitive 

functions for simplicity and brevity of definition. 

As the primitive functions are derived from the 

activities of the abstract machine they are capable of 

producing a change of state in the operating system. 

It will be seen later in this chapter that it would be 

reasonable to permit the user to issue requests which 

are not composed from primitive functions, but are 



- 143 -

conditio~als formed from sub-primitive objects. 

This chapter employs the abstract machine 

concept to produce a formal definition method. This 

is then applied to the filestore subsystem developed 

in chapter V. The primitive functions obtained are 

shown to be independent and complete. It is also 

shown that the requirement for non-filestore primitive 

functions largely disappears if the file attribute 

space is extended. 



- 14ft -

§2. Application of the Abstract Machine Concept. 

The use of the term "primitive function" in 

command language development is not new. However, 

as will be seen from the following summary no attempts 

have been made in the previous work to impose conditions 

on the primitives chosen nor have they been expressed 

in a formal structure. 

2.1. A Note of Previous Work with Primitives. 

GCL developed by Dakin [I~] permits access to 

a variety of operating systems through satellite links 

to mainf'rames. GCL is based on a set of primitive 

functions which can be extended as required. 

The language is composed of procedures that form 

a hierarchical structure based upon the primitive 

functions at the lowest level. Thus, the user image 

is represented by a set of GCL function which are at 

a higher level than the primitives. The primitive 

functions can be used to determine the type of an 

identifier, manipulate lists, test conditionals, loop, 

globally assign values, and return values from 

subroutines. Rayner [i<c>J comments that the design--is 

"implementation-driven, meaning that good ideas 

are thought of, implemented, and then rules formulated 

to cope with side effects with other parts of the 

language implementation". Two examples of this fault 

are that global assignment is only global back to the 

last local assignment within whose scope it is made, 

and parameterless functions must be provided with an 



- 145 -

empty parameter list. 

New facilities may require new primitive functions 

that are inconsistent with the existing set or render 

some redundant. 

It is clear that the primitive functions are 

chosen arbitarily; no rules concerning completeness, 

consistency or redundancy.are imposed. Thus the GCL 

primitives do not possess the properties which were 

specified in Chapter IV as being desirable. 

A second system OS6, described by Stoy and 

Strachey [~9], is primarily based on input and output 

primitive functions. OS6 is restricted to those 

machines which have an BCPL compiler and only rieeds to 

provide a single user environment. The primitives are 

operators implemented as procedure calls whose 

parameters can be program names, data stream names or 

variables and form a user interface to 

the system. The procedures are often linked to particular 

devices such as a flexowriter or Olivetti terminal. 

The primitives Next[S] and Out[S,x] are used to input 

and output respectively to stream s. Next_causes_the 

next character of the stream S to be read while Out 

transfers the object named by its second parameter to 

the stream s. 

Primitives for error recovery, testing end of a 

stream and closing streams are also available. 

The filing system has primitive functions for 

creating and deleting files, creating a file stream, 

transferring blocks of files and indexing blocks of files. 



- 146 -

The 056 primitves show a remarkable similarity 

to the GCL primitives if the functions alone are 

considered, although GCL primarily operates on strings 

whereas 056 deals with streams. 

The comments concerning the GCL primitives and 

their performance in view of the criteria of Chapter IV 

also apply to the 056 primitives. The user interface 

is the 056 primitive set and forms part of the BCPL 

language so that no separate job control is necessary. 

The primitives are a realisation of the operating 

system at the BCPL level and, as such,- are similar to 

procedures of MU5. 

Newell [?;o] states that the GEORGE III commands 

are themselves primitives. 

A major design criterion of GEORGE III was to 

identify each primitive operation and subsequently 

transform it into a command. Thus, each command is 

supposed to perform one basic function. However no 

further conditions appear to have been imposed. 

Consequently, GEORGE III has a large number of commands 

which are not orthogonal (e.g. listfile can perform 

many of the edit functions) or machine independeiit-.--

It is apparent from the above that no clear 

consensus of opinion exists for deciding upon the 

function of primitives,nor on a method for obtaining 

them. Of the examples cited, only GCL can be considered 

as portable, GEORGE III and 056 both link the user 

interface directly to the machine operating system. 

None of the primitive sets have been constructed with 



- 1~7 -

orthogonality as a precondition, and only GCL can 

be considered as having usability as part of the 

design criteria. 

The next subsection indicates how a set of 

primitive functions can be obtained satisfying the 

criteria stated earlier. This is considered to 

produce primitives which are an improvement on 

existing sets. 

2.2. Application of the Abstract Machine for Primitive 

Function Definitions. 

In Chapter IV the concept of the abstract machine 

was developed and the conditions that the primitive 

functions should satisfy have been stated. To continue 

with the analysis for obtaining primitive function 

definitions it is necessary to have a framework 

providing a structural basis to allow the primitives 

to be linked to a model of the actual computer system. 

The abstract machine model has been specifically 

developed for this purpose. The activities of the 

abstract machine can be regarded as synonymous with the 

primitive functions but have the advantage of-constituting 

part of a system which has its complete structure defined. 

This enables the structure of the primitives to be 

obtained. 

Clearly, a specification of the primitives alone 

would be incomplete, for it is also necessary to define 

the subsystem tables and the changes of value that may 

occur in the table. A primitive will only change the 



state of the machine if the action is valid. 

_Consequently, not only must the action of each 

primitive be defined, but also the conditions which 

must be satisfied before any change can occur. This 

latter (passive) constituent of the primitives is 

discussed in the next section as is the semantic 

definition of the primitive functions. 

---------



- 149 -

§3. The Formal Definition Method. 

3.1. The Primitive Substructure. 

For the ensuing analysis it is assumed that 

hardware and software malfunctions are dealt with 

independently of the execution of the primitive 

functions. If a user request can be compiled or 

interpreted, then the request is valid and can be 

executed py the system. However, the result of 

the execution may not meet the user's expectation! 

It is a basic requirement that each user request 

can be expressed in terms of primitive functions 

which are bound together by handlers as described in 

Chapter IV. If the user request is obeyed then a 

change in the system table occurs corresponding to 

some combination of the primitive actions comprising 

the user request. Each primitive function which is 

obeyed has the potential to alter the system table but 

these changes do not occur automatically whenever a 

primitive is obeyed. The system table will only be 

altered when the primitive action is found consistent 

with the-current state. -Consequently it is-necessary 

to define the circumstances under which changes will 

occur. This can be achieved by defining a set of 

prechecks associated with each primitive which operate 

on the system table. It is the result of these checks 

which determines whether the primitive action is to be 

performed. The prechecks are the substructure of the 

primitive and are: 



- 150 -

1) finite in number, 

2) definable by the action implied by the primitive, 

and 3) dependent on the initial state of the system. 

Thus given any initial state of the system the 

particular set of checks necessary to determine the 

consistency of the action to be performed by a 

primitive can be specified. All such sets of prechecks 

can be combined to form a flow diagram consisting of 

logical tests yielding the truth value True if the 

primitive action can be performed, otherwise False. 

This division of the primitive into a component 

·for checking the primitive action and a component for 

performing the change to the system table permits the 

definition to be in two parts corresponding to these 

components. Tog.ether, these form a complete definition 

of the abstract machine. 

Formal Description of the Primitive Substructure. 

If it is accepted that a primitive P is dependent on 

a finite number of checks c1 .~ ••• ,c which are-truth 
m 

functional then it is possible to obtain a formalisation 

for the primitive P. 

It is an elementary result that given a formula 

Q(R1 .~ , ••• ,R) containing exactly then propositional 
n 

variables denoted by the syntactical variables R1 .~ , ••• ,R, 
n 

then the truth value of Q(R1 .~ , ••• R) can be determined 
n 

when the truth values of R1 , Re , ••• R are known. Since 
n 



- 1.51. -

there are exactl.y 2n ways of assigning truth values to 

n these n variables there are exactly 2 such determinations. 

The results of these 2n determinations may be set out as 

a sequence in any of (2n)! ways (Rose [~1]}, 

In the previous section it has been stated that a 

primitive consists of checks and possibly, depending 

on the result of these checks, some change of state of 

the system table. If the change of state is to occur, 

then the primitive P is designated the truth value True, 

otherwise False. 

It is possible to represent the evaluation of P by 

a truth table mntaining the 2m assignments of truth 

values to the C1 'C;! ' ••• 'c m as shown in Table 6.1. 

.3 q m 2m 1 2 . . . . . . . . . 2 -1 

C1 T F F F F 

<>.! T T F F F 

C} T T T F F 

• • • • F 
• • • • 
• • • • 
• • • 
c T T T T F m 

p v1 Vz v3 V V 
2m-l 2m 

TABLE 6.1. 

The V1 , Vz , ••• V represent the truth value T or F 
2m 

taken by P under the assignments of truth values to 

C1 t C2 9 • • • c • 
m 



- 152 -

Again, it is an elementary result that a logical 

formalisation can be produced which is a representation 

of any truth table (Rose [~1]). 

Hence it is possible to express P as a logical 

expression which contains the propositional variables 

c1 , c2 , ••• , c connected by logical functors. Given 
m 

any assignment of truth values to the propositional 

variables c1 , c2 , ••• , cm' the logical expression yields 

the truth value of P. It may be possible to simplify 

the logical expression as some assignments would not 

affect the truth value of P. However the principle of 

obtaining a logical equivalent for P is sufficient for 

this work. 

The logical expression obtained may involve all 

the non-trivial unary and binary logical functors. 

However, the functors NOT and AND are functionally 

complete and thus it is possible to represent P by a logical 

expression containing the propositional variables 

c1 , c2 9c5 , ••• , c , connected by NOT and AND only. 
m 

The~Primitive Evaluation and the Associated~-

Environment. 

It has been suggested that the operating system 

is represented by the system table, the commands that 

can manipulate the system table,and the replies [3b]. 

The commands that manipulate the system table in this 

analysis are the primitives. The replies are the 

verbal equivalents of the checks performed within the 

primitives and are not necessarily the messages of the 



- 153 -

user profile. In §3.2 it was shown that the validity 

of a primitive action can be determined prior to its 

execution. The checks required are based on the values 

of the sub-system table constituting the initial state of 

the machine. If the primitive action is performed the 

change of state must be definable. Thus the final state 

of the system table can be shown to be different in 

some aspect from the initial state. The change itself 

is implicitly defined by the primitive action. The 

actual change of state effected by each primitive 

cannot be determined until the contents of the subsystem 

table have been specified. However, it is possible 

at this rlage to devise a description method which will 

be used later. Thus, if a primitive P operates on a 

subsystem table defined by S and a change of state of 

* * the subsystem to S occurs then P(S} ~ S • To define 

Pit will be sufficient to specify how s* differs from 

s. The relevant initial state will be defined by the 

prechecks made upon the table, and the changes will be 

dependent upon this state. 



------------------------------

- 154 -

§4. Formal Description of the Filestore Subsystem. 

The file directory has been defined to contain all 

the information concerning the file for both the user 

and the filestore system. Therefore, if the filestore 

primitives operate on the file identifier, the directory 

and the logical records only, then the filestore 

subsystem is clearly independent of the rest of the 

system provided no other primitives exist which operate 

on files. 

It is postulated that if the filestore system is one 

which does not include the creation of users (i.e. the 

manipulation of a user structure comprises an 

independent subsystem) then "user" becomes a property of the 

file. Analysis has shown that in these circumstances 

seven primitive function types form a necessary and 

sufficient set for the definition of the filestore 

subsystem. Of these seven, there are three pairs, each 

consisting of an operation and its converse, while the 

seventh operates on the execution envelope. The first 

pair of primitives operate on the file name space, the 

second pair on the attribute space, while the final 
·----. - ---------

pair operate upon the logical record space. 

The primitive functions and their semantics are 

described in the following subsections. 

Notation. 

File identifiers will be denoted by f, f1, f 2 • 

The state of the system consists of the file identifiers, 

the file directories and file contents and is denoted 

by s. The user context of the execution of a primitive 



---------------------------------------------------------------------- -

- 155 -

is denoted by u. 

User identifiers are denoted u1 , ~ • 

a. denotes the ith attribute. 
~ 

V is new value attribute a .• 
~ 

A primitive is denoted by P. 

The operation of primitive P on an initial state S 

with a user context u, dependent on files f1 .~ , ••• f 
n 

and with a final resultant state of s* is denoted by 

p { u j f 1 • f2 ••••• f ( s) } ~ s * 
n 

Other symbols 1, E, ;, +, -have their usual. set 

conotations. 

The primitive preconditions are represented by a truth 

table and the state change by denoting the changes in S 

* to produce S • 

? in the truth table denotes that either T(true) or 

F(false) can be inserted without affecting the final 

truth value. 

Filename Primitives. 

The most basic state of the system which must be 

defined is the empty filestore. In this ~ate no file 

identifiers, directories or logical records are present. 



- 156 -

Clearly it must be possible to generate a £ile when 

the £ilestore is empty. Equally, it must be possible 

to remove existing files to produce the empty state. 

It would be nonsensical to permit files to be 

randomly introduced or removed from the filestore 

so it. is reasonable to suppose that the primitives 

involved should be selective, operating on the 

smallest practical unit (the file) within the context 

of a given user identifier. 

Similarly, because the conceptual spaces of the 

filestore are linked in a unidirectional chain 

(V §2.. fr ) a filename must exist before a file can 

possess attributes or records. 

The first primitive function is thus identified 

to be the removal of a filename from the filename space. 

If the name does not exist then the state of the filestore 

will be unchanged, viz: 

P{ujf(Sjf£5)} ~ S 

I£ the filename does exist it is conceivabletliat 

the request will not be compatible with the file 

attributes. An examination of the specification of 

the file directory defined in Chapter V shows that 

for a user to delete a filename he must have the 

correct access and the file must be free from other 

users before the request can be obeyed. 



- 157 -

Hence 

P{ujf(SjfES, uE(delete filename list), (file free)} 

~ S- f 

This can be written as a truth functional, denoting 

the primitive by the symbol DELETE as shown below 

DELETE =T -(file exists)v((file exists)&(UE(delete 

file name access)l&(file free)) 

where =T indicates truth value equality. 

Thus, if this equation takes the truth value True, then 

the filename is deleted from the filename space which is 

equivalent to deleting the file from the filestore. 

Deleting a non-existent file is regarded as valid in 

this context. A truth value of False for the truth 

functional equation indicates that the primitive 

function cannot be performed and a suitable message 

can be produced. Any of the following messages could 

be suitable. 

"User does not have delete access to (filename)", 

"File (filename) is being used", 

or 11File (filename) is not in the filestore". 

Deleting a filename will not alter the contents space 

although the directory entry for the file can no longer 

be accessed. 



- 158 -

The truth table equivalent of the DELETE primitive 

is shown below. (It is clearly only necessary to define 

the relevant part of the subsystem table which directly 

affects the truth value of the primitive function). 

1 2 3 4 5 

file f exists F T T T T 

user has delete 
access to file f ? F T T ? 

file f free ? ? F T F 

DELETE(f) T F F T F 

Resultant State s s 5 

where 

S* is S with the filename f deleted from the 

filename space. 

The second primitive is the converse of DELETE 

and introduces a filename into the filename space. 

If a file~-exists which has the same name as the fiYe--~~ 

to be created the operation is invalid as the 

uniqueness of filenames condition would be violated 

(V §4.~ ). Otherwise, the filename is added to the 

filename space. No attributes are associated with 

a newly created file. 

The specification is as follows: 



- 159 -

P{u;f(SjfitS)} ._;, S + f 1 

where f' denotes an entry in the filename space with 

a pointer to a null attribute entry. 

P{u;f(SjfES} ._;, S 

Writing this as a truth functional equation and denoting 

the primitive by the symbol CREATE gives 

CREATE =T -(file exists) 

This produces the simple truth table 

1 2 

file f exists F T 

CREATE(f) T F 

Resultant State S* s 

S* is S with the addition of the filename f 

4.2. The Attribute Space Primitives. 

As each attribute has a name it would be possible 

to introduce primitive functions which operated on 

specific attributes only. However, the majority of 

the prechecks required for each primitive function 

would be identical and as a consequence only two 

primitives are needed for the attribute space provided 

the attribute identifier is included as one of the 



• 

- 160 -

parameters. 

The primitive functions are to add or remove 

values from the attribute space of a specific file. 

From the file directory advocated in Chapter V it can 

be seen that the attributes are either lists of values, 

e.g. users with delete filename access, or a single 

value, e.g. storage mode. For attributes which are 

lists the new value can be added or an existing value 

deleted provided the operation is valid. Attributes 

which consist of a single value can be treated in 

different ways depending upon the interpretation of the 

primitives. For instance, when deleted the attribute 

could be undefined (c.f. variables yet to be assigned 

values in a programming language). Similarly, introducing 

an attribute value could overwrite the previous value 

(c.f.:= of Algol 60). Alternatively an additional 

primitive could be used which changed the existing 

value. This primitive would only operate on single 

value attributes. 

However, in this analysis for consistency, the 

primitive functions introduce and remove values for all 

attributes. This will not confuse the user nor produce 

undefined file directory values because the changes will 

be part of a user request. Thus, the primitives 

generated will be such that single value attributes are 

altered by a delete value operation followed by a create 

value operation. Attempts by the user to add values to 

this type of attribute will be trapped before primitive 

functions are generated. 



- 161 -

The primitive functions can be expressed using 

the notation of assertions showing the change produced. 

However, for the sake of brevity, only the truth table 

definitions will be given which are shown below. 

1 2 3 'l 
fil.e exists F ? ? ? 

user create access to 
? F ? ? attribute 

new value val.id ? ? F ? 

change consistent ? ? ? F 

CREATE ATTRIBUTE VALUE F F F F 

IResul.tant State s s s s 

S* = S + f(ai+v) if ai is a list, otherwise 

S* = S+f{a. = v) 
~ 

-

The truth functional equation is; 

5 

T 

T 

T 

T 

F 

S* 

CREATE ATTRIBUTE VALUE =T(file exists)&(user access to 

attribute)&(new value val.id)&(change consistent) 

I 



- 162 -

l 2 J 

:file exists F ? ? 

user delete access to ? F ? attribute 

change consistent ? ? F 

DELETE ATTRIBUTE VALUE F F F 

!Resultant state s s s 

S* = S + :f(ai-v) i:f ai is a list, otherwise S* 

The truth :functional equation is: 

4 

T 

T 

T 

T 

S* 

= S+:f(a. 
~ 

= void) 

DELETE ATTRIBUTE VALUE =T(:file exists)&(user delete access to 

attribute)&(change consistent). 

It is necessary that any change produced must be 

consistent with the remaining attributes within the file 

directory, thus interrelationships between attributes 

must be identified. For example, the attributes relating 

to user permission can become inconsistent :for-the---

following reasons: 

1) Remove user identifier from 11 copy from" access when user 

"copying :from" 

2) Remove user identi:fier from "copy to" access when user 

"copying to" 

3) Remove user identifier from "empty" access when user 

"emptying" 

-------------------------------------------------



- 163 -

4} Remove user identifier from "execute" access when 

user "executing" 

5) Remove user identifier from "attribute" access when 

user "changing attribute" 

This type of change must be prohibited as cl.earl.y the 

system woul.d no l.onger be consistent. However, other 

changes may occur at the primitive l.evel which do 

create inconsistent states, but these are temporary, 

their duration lasting until. the host user request 

has been completed. Thus at the user level the 

system will remain consistent. 

Simil.arl.y some attributes, such as the media 

specification, will be machine dependent while others 

will. apply to some machines onl.y ( a machine without 

magnetic tapes cannot have files whose directories state 

that the contents are stored on this medium}. To prevent 

this type of inconsistency each attribute can be 

associated with a list of valid values. It is suggested 

that the val.ues wil.l. depend upon the machine and the 

user contexts. 

4.3. Logical Record Space Primitives. 

The pair of primitives operating on the fil.e l.ogical. 

record space have to some extent been anticipated by the 

file directory contents specified in ChapterV. It is 

expected that the fil.e contents will. be changed when user 

programs or system util.ities, such as Editers, operate on 

the fil.e. As stated in Chapter V these changes take 



- 164 -

place within an execution envelope on facsimiles of the 

actual file contents. Once the execution process has 

terminated the operating system can either replace the 

contents in the filestore by the new contents from the 

execution envelope or leave the filestore unchanged 

depending upon the "success" of the execution process. 

Altering the file contents in the filestore can 

take the form of either 

1) Changing the contents and/or the order of 

existing records. 

or 2) Adding new records to the existing records. 

At the job control level these two types of change are 

sufficient as the differing types of detailed 

alterations take place within the execution envelope and 

are outside the job control function. 

It is convenient, for the sake of simplicity, to 

have a single primitive which appends the contents of 

one file onto another. This adequately deals with 2) 

above but also, with the aid of the sixth primitive, 

permits changes of type 1). This primitive empties a 

file by clearing tlielogical record space of the-file. 

The attribute space is unchanged except for the history 

which is updated accordingly. This permits file 

updating by applying the sixth primitive followed by 

the fifth which empties the file, then appending the 

updated file {which may be in the filestore or part of 

an execution envelope) onto the empty file. 

In order to preserve consistency the two files 



- 165 -

involved in the COPY APPEND must be marked as "copied 

from" and "copied to" as appropriate before the 

primitive function can be performed. The histories 

of' the two files must be updated after the operation is 

completed. The COPY APPEND does not itself' alter the 

attributes. A copy can only be performed if' the 

attributes of' both files are mutually consistent but 

an empty file can accept any input provided the user 

has the correct access to the file. 

The fifth primitive changes the logical record 

space of' a file taking the general form of' 

COPY APPEND (file 1) ONTO (file 2} 

The truth table for this primitive is shown below. 



- 166 -

1 2 3 4 5 6 7 8 

File 1 exists F ? ? ? ? ? ? T 

File 2 exists ? F ? ? ? ? ? T 

Copy From access file 1 ? ? F ? ? ? ? T 

Copy to access file 2 ? ? ? F ? ? ? T 

File 1 free for Copy From ? ? ? ? F ? ? T 

File 2 free for Copy To ? ? ? ? ? F ? T 

File characteristics ? ? ? ? ? ? F T compatible 

COPY APPEND F F F F F F F T 

!Resultant State I s I s I s l s I s I s I s I s1 

where S* differs from S by 

contents f 2 = contents (~ +f1 ) 



- 167 -

The assertion 11File characteristics compatible" 

is produced from the following table. 

1 2 3 

Data type compatible F ? T 

Storage mode compo.tible ? F T 

File characteristics compClHble F F T 

This table is the product of two further tables 

1 2 3 11 5 6 7 8 9 10 11 12 13 l!J 15 

File 1 binary T F T T T F T T F F T F F F T 

File 2 Empty T T F T T F F T T T F F T F F 

loser access to 
change attribute T T T F T T F F T F T F F T F 
contents type of 
File 2 

iF He 2 binary T T T T F T T F F T F T F F F 

Data type---- -- - ---- - - - . 

compatible T T T T T F T F T F F F T T F 

The truth functional equation corresponding to this table is: 

(Data type compatible)=T((file 1 binary)&(file 2 binary)) 

v(~(file 1 binary)&~(file 2 binary)) 

v((file 2 empty)&(User access to change 

attribute contents type of file 2)). 

1( 

F 

F 

F 

-

F 

T 



- 168 -

In the above, it has been assumed that data is either 

binary or text, however, there are many different text 

codes and this could result in incompc~lbilities when 

files are appended. To overcome this difficulty the 

analysis could beatended to prevent files which have 

different text codes from being appended. Alternatively, 

the operating system could automatically recode the file 

as it is copied making it compatible with the text code 

of the other file contents. This would result in new 

actual contents being produced. Ideally all files would 

be stored using a single internal code form. The table 

for "Storage mode compatible" is the same as that for 

11Data type compatible" except the assertions "File 1 

binary", 11File 2 binary" are replaced by 11File 1 serial", 

11 User access to change storage mode of File 2 11 and 

"File 2 serial" respectively. A truth functional equation 

can be generated corresponding to the resulting truth 

table. 

The truth functional equation of COPY APPEND is: 

COPY APPEND =;(:f.i.ie-l.exists)&(file 2 exists)& 
--------

(copy from access file l)&(copy to access file 2)& 

(file 1 free for copy from)&(file 2 free for copy to)& 

(file characteristics compatible). 

A truth functional equivalent for (file characteristics 

compatible) can also be produced, 



- 169 -

Emptying file contents is synonymous to deleting 

a file name or a file attribute as it takes the form 

of deleting the file logical record space. The actual 

contents space is unaltered. The primitive takes the 

form 

EMPTY(filename) 

and is defined by the following truth table. 

1 2 3 11 

File exists F ? ? T 

user has empty access ? F ? T 

file free ? ? F T 

EMPTY F F F T 

FLe_su_l_t_~ a_n_t_. _s_t_a_t_e ___ JI.::.~~--s_L_s_JL_s_j __ s_*=::::=.JI u 

where S* = S- contents (:f). (the attributes 

must be altered by attribute space primitives 

so as to be consistent with an empty file.) 

The truth functional equation is 

EMPTY =T(file exists)&(user access to empty)&(file free) 



- 170 -

Execution Envelope Primitive. 

The final filestore primitive also deals with the 

contents of a file, but only passively as the contents 

are not changed directly by the primitive, although 

changes may occur as a consequence of the primitive 

having been invoked. The primitive action links a 

file contents to the machine processor(s) enabling 

user programs to be executed. The truth functional 

definition is as follows: 

1 2 3 4 5 

Wile exists F ? ? ? ? 

Wile free to execute ? F ? ? ? 

!File Binary ? ? F ? ? 

File stored on execute medium ? ? ? F ? 

Execute environment complete ? ? ? ? F 

User access to execute ? ? ? ? ? 

EXECUTE (f) F F F F F 

tesultant State s s 

where S* differs from S by the file f being marked as 

"executing" which is a transient change only;the system 

reverting back to the initial state when the execution 

terminates. 

6 7 

? T 

? T 

? T 

? T 

? T 

F T 

F T 



- 171 -

In the above table it is assumed that the EXECUTE 

primitve can only operate on binary files stored on 

suitable media, This implies that prior to execution 

a primitive must be obeyed to copy the file contents 

from their normal storage medium to an appropriate 

medium accessible to the processor. The input and 

output files used by the executing program must be 

linked explicitly by the user, or implicitly by the 

system to form the execution envelope. Unless the 

envelope is complete the execution will not proceed. 



- 172 -

§5. Independence, Completeness and Consistency. 

It is possible to categorise the filestore 

primitives that have been developed in the preceding 

section. It can be seen that there are four types of 

primitive, three of these types corresponding to the 

parts of the file identified in Chapter V. Thus 

primitives exist to:-

1) manipulate the file identifier, 

2) manipulate the contents of the file directory, 

J) manipulate the file logical records, 

4) execute file contents. 

This is shown in figure 6.1. 

Area Manipulated 

file identifier } 
Primitive functions 

CREATE 
DELETE 

-----------------------------
file attributes } CREATE,ATTRIBUTE VALUE 

DELETE ATTRIBUTE VALUE 

-----------------------------
file records } COPY APPEND 

EMPTY 

-----------------------------
file contents in 
Execution Envelope } EXECUTE 

Figure 6.1. Relation of Primitives to the file components. 

If the operation of the primitive functions was 

strictly confined to the areas as shown in figure 6.1 

then it would only be necessary to show that the 

primitive functions in each area were independent since 

the areas have been shown to be logically distinct. 



- 173 -

File identifiers can only be manipulated by 

CREATE and DELETE and logical records are only altered 

by COPY APPEND and EMPTY. COPY APPEND and EMPTY do 

not themselves alter the attribute space although 

attribute space alterations must be performed in each 

case as a consequence of these operations if the 

filestore is to remain consistent. CREATE at first 

sight does appear to change the attribute space since 

it must provide a pointer to a null entry in that 

space. However, this does not involve any changes 

in the attribute space. In fact, all four of these 

primitives require CREATE ATTRIBUTE VALUE and 

DELETE ATTRIBUTE VALUE operations to be performed 

indivisibly with them in order to provide consistent 

updating. 

5-l. Independence of the Pairs of Primitive Functions. 

For each pair of primitive functions, one generates 

entries in the particular area manipulated while the other 

deletes entries. It is self-evident that no possible 

combination of deletions can ever produce the effect of 

a creation. Thus the members of each pair are mutually 

independent. • 

Independence of EXECUTE Primitive Function. 

The file identifier and attribute spaces form the 

directory which is logically independent of the record 

space. EXECUTE only operates on the contents of logical 



records thusi~cannot alter the directory space 

and is therefore independent of CREATE, DELETE, CREATE 

ATRRIBUTE VALUE and DELETE ATTRIBUTE VALUE. 

Similarly the execution envelope is distinct from 

the logical record space. EXECUTE can only change 

contents of records within the execution envelope thus 

it cannot alter the logical record space. Therefore 

EXECUTE cannot perform the functions of COPY APPEND 

or EMPTY. 

The transfer of a file from logical record space 

to the execution envelope using COPY APPEND is 

identical to the output of a file contents i.e. 

the contents are transferred to a device and no 

record is retained of the contents in the filestore. 

Similarly, the transfer of file contents from the 

execution envelope after execution is equivalent to 

inputing files from outside the filestore. In both 

cases all operations on the directory and logical 

record spaces are performed by the appropriate 

combinations of primitive functions other than 

EXECUTE. 

5·3· Completeness of the Primitive Functions. 

CREATE and DELETE clearly allow any number of 

file identifier entries to be generated. Similarly, 

EMPTY and COPY APPEND permit any acceptable combination 

of existing complete files to be formed. Unlike 

logical records, attribute values have the same 



- 175 -

property as files themselves in that every attribute 

has a name. Therefore CREATE ATTRIBUTE VALUE and 

DELETE ATTRIBUTE VALUE form a complete set operating 

on the attribute space. Thus, from the above, any 

consistent change can be made to the file identifier, 

attribute and record spaces. 

It is clear that without EXECUTE the resulting set 

of primitive functions is deficient as the execution 

envelope would always return to the filestore unaltered 

which is equivalent to a 11failed 11 execution. Thus 

without EXECUTE the contents of records are unchanged 

and no useful work can be performed. 

Consistency. 

It is imperative both for the user and the system 

that information in the filestore is self-consistent. 

Changes only occur by the operation of primitive 

functions. Assuming that every user request operates 

on an initially self-consistent state then this property 

will be-retained provided user requests can only 

generate sequences of primitives which produce 

self-consistent changes. 

It was noted in Chapter IV that the sequence of 

primitives generated as a result of the translation 

of a user request must be such that if the operation 

has to abort, then other primitive functions must be 

obeyed to return the system to the state existing when 

the user request was made. This is illustrated in 



- 176 -

figure 6.2. 

User Request 

fail ;> Return to 
User 

success 

P.! 
fail ;> * !-> Return to P, User 

success 

~ 
fail > * 1-> to Pz return 

User 

ccess 

Return to 
User 

Figure 6.2. Retention of Self-consistency. 

In the above the user request generates the stream 

of primitives P1 1 P.! and I'} (for this example a simple 

serial execution is assumed). If P1 is "successful 11 , 

Pz is obeyed and similarly I'} is obeyed if P.! is 

11 successful 11 • If P1 
11fai.ls 11.' no change will have----

occurred in the state table so the request can be 

abandoned. However, if P1 is "successful" but Pz 
11fails 11 then the state table will have been changed by P1 • 

* Consequently the primitive stream P1 is obeyed reversing 

* these changes. Similarly if 13 11 fails 11 '' the stream P.! 

will reverse the changes produced by P1 and P.! • 



- 177 -

Hardware malfunctions which create inconsistencies 

are regarded as outside the scope of the filestore 

system as described in this thesis. 



- 178 -

§6. The Non-filestore Primitives. 

The primitives obtained can be regarded as 

equivalent to the abstract machine function, producing 

changes in the state tables. It would appear that 

other primitives are requned to define the resources 

of the abstract machine necessary for the set of 

primitive function described so far. The abstract 

machine could have infinite resources but this is 

an unrealistic model of the actual system. Thus, 

access to the abstract machine (jobs), can be 

visualised as a finite number of independent inputs 

each consisting of a finite length stream of primitive 

functions. For any of these streams a resource profile 

can be constructed and modified as the stream is 

processed. The profile is determined either by the 

implicit requests of the primitives or explicit 

requirements of the decoded user request. 

It seems apparent that for primitives other than 

EXECUTE specific, fixed, predefinable resources are 

required, whereas, for EXECUTE each program will have 

differing_needs. Many of these are implicitly-defined 

by the files forming part of the execution environment. 

The input channels of the program are attached to files 

and information about them is available in the directory. 

The processor time and main storage required for 

execution, must also be supplied. However, in Chapter 

V it was deduced that main store is one of the filespace 

media and therefore can be attached to the execution 

environment as any other file. Consequently the user 



- 179 -

can assign data space to a process by setting the 

desired value(s) in the execution environment for 

the main store file(s). (The space required for 

the process will be known to the system from the 

file directory). 

Limits on the amount of information to be output 

to a serial file can be incorporated as an attribute 

"maximum file size" when the file is created, while 

access rates for direct access files would be 

required as an attribute both to enable scheduling 

when an execution takes place and to ensure that the 

logical records are stored on a suitable medium. 

These attributes would normally be set by default, 

however, if on a particular run the user anticipates 

a higher level of output he must be able to overwrite 

the default value for the limit prior to execution. 

Setting of defaults is considered as part of the 

next section. 

The execution environment can also be used to 

contain information concerning the processor requirements 

for the execution and a time limit for the process. This 

has the advantage that all the information concerning the 

process is held together simplifying the function of the 

operating system. 

Using the above concepts the execute environment has 

been extended to encompass specification of machine 

resources. The information is available to the 

operating system during execution and to the scheduler 

prior to execution from the directories of the files 



- 180 -

involved. 

A further part of the abstract system that has 

previously been mentioned in Chapter IV is the Activity 

Handler consisting of the logic binding user requests 

into calls on the primitive functions. 

The logic has been shown to take the form 

I£ X then Y 

where X is a condition 

and Y is either a sequence of primitive functions 

or a further conditional. 

(Infinite sequences are not possible as the input stream 

is of finite length). 

This implies that the condition X is a test which 

may take the form of checks on system table values 

(e.g. existence o£ a file identifier). A discussion 

o£ the full range of available tests and their 

implementation is beyond the scope of this thesis, 

however, it seems reasonable to suppose that the 

primitive function prechecks would formpart of the 

test environment. 

The "If-then" construction essentially provides 

a forward jump. At the user request level a method o£ 

looping and unconditional jumps are also desirable. 

However, these facilities are not considered part of 

the abstract machine although the job stream interpreter 

would need to cater for these operations. Any 

construction which does not lead to an infinite loop 

can clearly be expressed although recursion and loops 



- 181 -

of unknown duration are not so readily managed. 

However, the job stream interpreter may be considered 

as a further automaton which either feeds commands 

to the abstract machine or obeys a job stream command. 

The job stream may be visualised as a finite length 

tape containing instructions which are the commands 

of the user interface. Some commands will generate 

primitive operations, some will be scheduling criteria 

while others will specify job stream manipulations 

such as jumps or repetition of commands. It is this 

last type that are obeyed by the job stream automaton 

which conceptually re-positions the tape at the 

appropriate command. 



- 182 -

§7. Practical Considerations. 

The analysis has concentrated on the definition of 

the primitive functions in terms of user requests made 

to the operating system. For the system to be user 

orientated the operating system must communicate with 

the user to inform him of either the changes which have 

taken place as a consequence of the requests, or the 

reasons why changes have not occurred. In Chapter III 

it was stated that the user interface to the operating 

system and the interface from the operating system to 

the user are both hie~~hical. Consequently the 

information from the system at the user level may 

bear little resemblance to the actual events in cases 

of hardware malfunction.-However, primitives in a user 

request will not be executed for specific reasons and these 

form a sub-class of system message. These messages 

relate to the truth tables of the abstract machine but 

may be decoded to provide user understandable messages. 

At the Activity Handler level conditions are inserted 

by the user request interpreter to bypass some 

primitives in the stream. These conditionals are used 

to determine the success (at the user level) of program 

compilation,for instance. The results of these tests 

will give rise to another sub-class of system message. 

The tests can be either string matching (as in GEORGE III) 

or numerical because, in general, the primitive stream will 

not be part of the user interface. 

As the user requests are interpreted, default values 

will have to be included in the output stream of 



-183-

primitivesfor values omitted by the user. This 

includes ~ile names representing compilers, editers 

and other system utilities in addition to the more 

mundane items such as time, listing and storage 

limits. The default values must be chosen by the 

system manager to suit the machine and user environments. 

Thus a paper tape based machine running mainly Fortran 

jobs has defaults that reflect this machine and job 

profile. As the user interface is hierarchical the 

default set will also conform to this structure as stated 

in Chapter IV. The use of a default system implies 

the existence of the system utilities such as compilers 

and device drivers. 

Many of the files which form a job within the 

computer system have temporary existence for the 

duration of the job and are not part of the user level. 

These must not only be removed by the system when the 

job terminates, but must be linked to the correct job 

as it is processed. It is reasonable to expect that 

each job will have a unique identifier supplied by 

user or system. As defaults for naming semi-compiled 

programs, binary programs, data etc. will be required, it 

appears to be practical to use the job identifier as 

part of the name for the components generated by the 

job in conjunction with further distinguishing codes. 

The scheduling and sequencing of a job or job step 

is again either explicitly requested by the user or 

implicitly set by the system. The job scheduling must 



- 184 -

be determined by variables preset or defaulted at the 

user level, but available to the operating system as 

a total description of the job requirements prior to 

job execution. This enables the scheduler to build a 

profile of the job so that the processing meets the 

user requirement·s without conflicting with the other 

scheduling criteria. The low level scheduling is 

independent of the job control and hence need not be 

considered. 

Sequencing jobs or job steps, or parallel processing 

is generally at the request of the user and provision 

for this facility can be built into the job control 

langu·age and the interpreter can generate the necessary 

code as part of the primitive output stream. 

When a job step begins execution it is conceptually 

placed in a self-contained envelope as the EXECUTE 

primitive is obeyed. This requires the input and output 

files to be connected to the executing process. After 

the execution has terminated the envelope can be used 

to update the actual file contents provided the process 

has been- 11 successful 11 .---

These considerations lead to an overview of the 

system as shown in figure 6.3 which indicates the 

constituent parts of the user interaction and the 

relevant parts of the system used at each stage. The 

scheme is valid in either on-line or batch mode the 

difference being that the replies/messages are returned 

to the user in on-line interactions whereas in batch 



jobs they are returned to the command interpreter 

which can decide the subsequent action, that is 

repeat a loop, jump, or process the next command 

in sequence. 

High Lev~~ 
Scheduler 

Command ~J Low Level 
Interprete Scheduler 

~Machine 
1
1 

Processor(s) 

~ ' ~ ~ ~ 
User 1-

Job or r- Commands H 
Primitive HExecution 

Job-Step Stream Envelope 

batch -~~:~~~:r[ 
route 

Replies/ l 
on-line 

oute Messages 
r 

Figure 6.3. System Structure Overview. 

In this chapter it has been shown that the primitive 

functions can be defined by a truth functional 

representation. It has also been demonstrated that the 

filestore forms a separate self-contained subsystem and 

that primitives can be chosen which are orthogonal and 

complete as discussed in earlier chapters. Furthermore 

it has been shown that the filestore primitives provide 

for a very significant part of the user requirement for 

doing useful work. 

The next chapter describes how these primitives and 

the notions of the machine independent filestore have been 

used to implement a prototype system. 



----------------------------------------------------------------------------------- -

-186-

CHAPTER VII 

IMPLEMENTATION OF THE FILESTORE SUBSYSTEM. 

§1. Introduction. 

In Chapter VI the primitive functions forming a 

sufficient set to define filestore operations were 

specified. To demonstrate that the theoretical 

development of these primitives was both sound and 

practical a prototype system has been implemented. 

1.1. Objectives o:f the Demonstration System. 

Notwithstanding the apparent :feasibility of the 

theory, practical viability is the sole criterion by 
~ . 

which such a theory should be judged. The aim of any 

demonstration must be that of-showing the theory to 

be applicable even if this is limited to proving only 

the underlying principles. However, any restrictions 

imposed must not result in a system that is so artificial 

that it bears little resemblance to the theoretical ideas. 

This chapter explains how the concepts developed in 

Chapter V for a machine independent filestore can be 

translated into a form suitable for implementation. 

Also the filestore primitives of Chapter VI are 

rewritten in an algorithmic form suitable for program 

coding. Extension of the practical ideas to a full 

implementation are also discussed. 

The demonstration is intended to show: 

I) That such a system can be implemented. 

2) The completeness o:f the file directory and the 

primitive functions. 



and J) The system can be virtually free of machine 

idiosyncrasies. 

It is obviously advantageous to minimise any 

limitations but those that have been found necessary 

appear to fall into two categories. Restrictions are 

required due to: 

1) theoretical considerations,discussed in the 

next subsection, 

and 2) limited time and manpower1 discussed in §2.6. 

1.2. Limitations of the System due to Theoretical 

Prerequisites. 

The theory demands that the hardware of the host 

system can support a filestore. This not only implies 

that random access devices are available but also that 

the storage capacity is sufficiently large to permit 

a reasonable number of files to be on-line. Additionally 

there is the need for auxiliary storage on magnetic 

tapes, etc. for storing infrequently accessed files and 

security copies. The mainstore-supports-the-peripheral 

devices by providing transfer and working space for file 

manipulations, again implying minimum requirements. 

It is also to be expected that the system software 

of the host system is capable of handling requests 

associated with a filestore. 



-188-

Implementation of the Filestore System in Principle. 

2.1. Structure of System. 

The composition of the system is shown in figure 

Command I 
I Language N Interface 

I Primitives~ File store Operating -System 

I System 
Programming Data -:,jDevicesl 

I Space Device Language 
and 

~ Interface 
Semantics Controller! 

I of I 
I 

Operations 

User System I Messages Messages 

User Interfacj I Host System 

\ Portable System I 
'------~---y---------~ 

Implemented System. 

Figure 7.1. Structure of Implementation in Principle. 

The three components of the portable system_a:r"e: 

1) the stream of primitive operations which have been 

compiled or interpreted from the user request stream, 

2) the messages returned to the user, 

and J) the filestore system which consists of the data 

space for the files and the semantic definition of 

the filestore operations. 



It is known from Chapter V that the files in the 

filestore consist of the file name, the file directory, 

and an optional set of logical records. In the 

implementation it is necessary to link the three 

conceptual spaces and the actual data in the file by 

indexes. Thus the file name has an associated physical 

address which is the position of the appropriate file 

directory in the file directory space. Similarly if 

the file is not empty the file directory contains the 

address of the list of logical records which, in turn, 

reference the actual file contents. 

For practical purposes the filename space is a single 

entity held either in main store or, if too large, on 

fast random access devices. Efficiency requires that the 

number of transfers and search time are minimised, 

consequently the location of a name in the filename 

space should be determined from the information 

contained in the name. Typically, a hashing technique 

is considered suitable. 

It-may be that-a-more_generalised access method is 

permitted whereby a subset of the required file's 

attributes can be specified as a substitute for the 

file name. In this case the user must expect the 

initial access to be slower because additional work is 

involved. Also there may be an added complication as 

several files may satisfy the attribute values specified. 

The individual file directories could be stored with 

the corresponding filename in the filename space but this 



- 190--

1~ould be unnecessarily large and difficult to manage. 

Thus it is envisaged that the directory space is separate 

from the filename space each stored in a file 

belonging to the operating system. It is conceivable 

that the logical record identifers could be incorporated 

into the directory space in some instances, but the 

contents space is formed by physically diverse media 1~hich 

are generally divorced from the directory space. 

The organisation of the four filestore spaces is 

sho~ in figure 7·2· 

Ordered list 
of filenames 

I 

list of Directories I list of logical 
I record mappings 

I 

I Contents 
1 Physical 
I media 

I I I c---., 

I -
I I 

I I I I I -
I ~ 

.____ 

on 

J K 
I I I 
I " 

I I 
I 

0 
I I -c 

i ---- I I -- -- --- -- ------

I 

FIGURE 7·1· Organisation of Filestore Space. 

-------------------------------------------



- 191 -

2.2. Directory Structure. 

Figure 5.2,which showed the file attributes and their 

structure, forms the basis for constructing a directory space. 

Some attributes will always require the same amount of 

directory space, whereas others will vary in size 

according to the file and its usage. TYPically, the 

attribute denoting the "storage mode" can be accommodated 

by a single binary digit, but the list of 11 copy access" 

users, for example could be any subset of the users in the 

system. Consequently an external structure for the 

directory is necessary linking each attribute to the 

attribute value(s). This is shown in figure 7.3. The 

variable length attributes are: 

List of users with execute access, 

copy to contents access, 

delete file access, 

copy from contents access, 

change attribute access, 

Execution environment, 

History. 



attribute 
1 

attribute 
2 

- 192 -

directory structure 

address 

length of list 

address V length of list 

-
FIGURE 7.3. Directory Structure. 

file directory 

L/ 

The attributes of fixed size can be represented by 

integers or bit patterns for the range of values. Media 

specifications can be represented by integers which are 

the addresses of the records containing full descriptions. 

This mechanism reduces the filestore space overhead and 

permits the operating system to alter the descriptions 

independently of the filestore system. The media 

descriptions can be used in user requests to specify 

the media required. Thus 

PRINT(filename) ON LINEPRINTER WITH UPPER AND 

. LOWER CASE CHARACTERS,_l60_PRINT_ 

POSITIONS, AT NOTTINGHAM UNIVERSITY. 

can be interpreted into the simple primitive function 

COPY APPEND(filename)ONTO 9 

where 9 is linked to the appropriate device media 

within the system. The file(s) of the filestore 

representing this device have the integer 9 as the media 



- 193 -

description in their directories. If this device 

should be rendered unusable then the integer can be 

changed (by the operators) to the integer value 

representing another suitable device. 

2.J. Logical Record Mapping. 

The form of the contents addresses in the logical 

record space are largely dependent upon the storage 

media, thus a disc, drum or magnetic tape can be 

referenced by the block identifiers, whereas a deck of 

cards can only sensibly be referenced as an entity. 

The addressing information in the logical record space 

of the filestore must be a complete definition of the 

physical location of the record contents. However, 

it would often be foolish to duplicate information 

common to all records so a file whose entire contents 

are stored on a single disc pack, for instance, can be 

identified by the track and block location for each 

record with the pack identifier stored just once for 

the whole file. 

Implementation of Semantic Definitions of 

Primitives. 

The primitive semantics as specified in Chapter VI 

are suitable for an abstract definition but are not in 

a programmable form. The truth value of the truth 

functional equation can be determined if the truth 

values of the items required for the evaluation are known. 



- 19IJ, -

If the resultant value is True then the actions 

associated with the primitive are performed. These 

actions occur internally resulting in changes to the 

filename space, directory space, the logical record 

space or externally resulting in the operating system 

device controllers transferring file contents. 

For each table of Chapter VI it is possible to 

take each column in turn and transcribe the propositions 

into a series of logical tests which can be coded in any 

programming language. This results in a series of tests 

equal in number to the columns in the truth table. The 

evaluation could proceed column by column until one 

series yields the truth value "True" or all the series 

have been evaluated without producing this truth value. 

This process is clearly inefficient but Rose[~/] shows 

that it is possible to simplify truth functional equations 

by re-ordering and reducing the number of evaluations 

required. Following these procedures the algorithms are 

simplified and the resulting programs are more efficient. 

When the evaluation process produces a truth value of 

11False11 for a conjunct of the truth functional expression, 

a suitable message can be returned and the evaluation 

terminated. Although further tests may still remain, 

the truth value of the expression will be unaltered 

once a subexpression connected by AND takes the truth 

value 11 False 11 • 



- 195 -

2.5 Input/Output for the Filestore. 

In a functional system the filestore and operating 

systems co-exist; the operating system driving devices 

etc. while the filestore system manipulates files in, 

response to users job control. Some commands will be 

requests to input or output £iles through the real 

devices controlled by the operating system. Files 

designated for input/output £orm links between 

hardware and software. A user request_ to transfer a 

file to another medium is effected by appending the 

file record addresses to the logical record space of 

the system file associated by the filestore system with 

a device that copies to the specified medium. The 

filestore system, independently of the request, examines 

files of this type (known as system input/output files) 

and performs the transput as part of its normal operation. 

Similarly, files are input either explicitly by 

requests forming part of a user job or implcitly by 

the input being presented at a physical device. In 

either case the input file is copied by _-th-e-operating 

system (not the filestore system) into the system file 

associated with the device and/or medium. This system 

file is accessible to the filestore system. 

The effect of this technique is equivalent to 

streaming input/output. However, it is believed that 

the concepts have been clarified and are consistent with 

the requirements of the machine independent filestore. 



- 196 -

All manipulations of file contents are from one 

storage medium to another performed by the operating 

system in response to requests from the filestore 

system. For input streams the contents are 

conceptually transferred to the appropriate file 

within the filestore by transferring the logical 

record mappings from the system file to the record 

space of the user file. For output streams the 

contents are actually transferred to real devices via 

the buffers of the operating system. 

2.6. Limitations of the Prototype System. 

Figure 7.1 showed a suitable structure for the 

filestore system and the related semantics of the 

filestore primitives. Due to restricted resources 

the actual system implemented is a curtailed version 

whose structure is shown in figure 7·~· 

Command 1Primitives 
Language 

Decompile 
essages-

User 
Interface 

essages 

Pseudo 
Device 
Controllers 

p era tingL .. r-----i 
ystem Devices and 

Filestore 
Semantics I 
--------1-

Host System 

1 

l 
Prototype System 

FIGURE 7•f• Structure and Extent of PrototYpe System. 



- 197 -

It will be observed that the prototype system 

does not interface directly to the device control 

routines of the host operating system because an 

intermediate level has been introduced. This level 

of pseudo device controllers has been found necessary 

for two reasons. In the limited time available it 

was considered impractical to attempt to prove the 

viability of the system using techniques which would 

involve interfacing directly to the internal routines 

of the host operating system. Also it is obviously 

impractical to integrate a demonstration system into 

an existing operating system on any machine providing 

a user service. Since the machine used for hosting 

the prototype system was a main University service 

machine the demonstration had to be implemented and 

run as a normal user program. However, this had the 

advantage that the user facilities provided by the 

service machine were available for testing the programs. 

If figures 7.1 and 7•f are again compared it will 

be seen-that-the-implemented-system-incorporates-the 

user interface whereas the prototype system does not 

extend beyond the primitives and system messages. 

Time constraints have not permitted: 

either l) the primitives to be interfaced to an 

existing command language, 

or 2) a new command language to be designed and 

implemented, 

with J) the design and implementation of a system 



- 198 -

message handler. 

Since it is known from the results of Chapter VI that 

the primitives form a complete definition of the filestore 

operations it is sufficient to indicate the feasibility 

of the prototype system as shown in figure 7·~· From 

this it can be seen that there is no requirement to 

provide a tailored user interface as part of the 

demonstration system. 

It is again an obvious consequence of the results 

of Chapter VI that when a primitive operates on its 

subsystem table the resulting state tables may become 

inconsistent. Several changes in the sub-system table 

may occur corresponding to the operation of the 

primitive. These are implied to take place simultaneously 

because each primitive is an indivisible unit, yet in 

practice it is sufficient that changes are completed 

before the next primitive in the input stream operates 

on the system table. It is not possible_to~demonstrate ~~~ 

user request consistency using the prototype system 

because the highest level of user interaction is only 

the primitive stream. For the development of the theory 

it was not necessary to consider either the size of the 

file directory or the space required by the individual 

attributes. Any fixed size is invariably arbitrary 

and ideally the attribute fields '~ould be unlimited. 

(User abuse of this facility can be prevented by 



- 199 -

Charging for the file space used). The constraints 

imposed on the prototype require that the space usffi 

by the demonstration system for representing the 

filestore on the host machine is limited, thus the 

numbers of the file identifiers, directories and 

logical records are bounded. Each directory has been 

limitea to a maximum of 128 24 bit words although 

individual field lengths within each directory are 

permitted to vary in length provided the upper bound 

of the directory is not exceeded. Similarly each 

logical record has been limited to a maximum of 128 

24 bit words. 

The file names are limited to a maximum of any 

combination of twelve characters, excluding spaces. 

The name must be different from any other currently 

in the system, this being checked before the name 

is accepted. As the prototype system is small, any 

algorithmic procedure for locating file names is 

considered to be of little value and so names are 

located by a serial search. 

The user identifiers are limited to a maximum 

of eight characters excluding spaces which, again, are 

prohibited. For convenience a special user identifier 

SYSTEM has been created having automatic access to all 

files and attributes. This greatly facilitated recovery 

from inconsistent states while program testing but would 

not necessarily form part of an actual implementation. 

The historic information is generally generated by 

the user request interpreter which inserts the necessary 



- 200 -

primitive functions into its output stream as the 

commands are decoded. Thus, because the history does not 

relate directly to the user it has not been incorporated 

into the prototype system. 

In earlier chapters it was suggested that the 

contents of a file could be used by more than one 

user. This is possible if each logical record can be 

marked with its used status and users access the file 

at the logical record level. For the prototype system 

access to files is at the file name level only permitting 

a single user access to the file regardless of the mode 

of access. 

One of the most desirable features which cannot 

be included in the prototype is a multiuser environment. 

Provision has been made in the program code for the 

checks necessary to permit several users but these are 

superfluous in the prototype. The main difficulty in, 

achieving this type of environment is the protection 

mechanism of the host system GEORGE III which only 

allows one job to have access to any file. 

Although the theoretical system permits selective 
------------------- ------ ----

access to each attribute of a file, the prototype 

allows access to all of the attributes to users whose 

identifiers are in the attribute access list as this is 

far easier to implement. 

Details of the prototype system as implemented are 

described in the following section. 



- 201 -

Implementation o~ Prototxpe System. 

System Files. 

In the prototype system the ~ilespace is represented 

by a number of 11 data ~iles". (To avoid con~usion with 

the ~iles in the filestore the' term "data ~iles" will 

apply to the files forming the prototype system.) 

A serial data file's records are each ~ormed by a 

filename and an associated integer. These records are 

unordered, but each integer indicates the record number 

of a second data file which contains the corresponding 

file directory. The records o~ the directory data 

file are restricted to a maximum of 128 24-bit words 

although the internal fields can vary in size provided 

the maximum length o~ the total directory is not 

exceeded. Files which possess records also have entries 

in a third data file representing the filestore contents 

space. The logical records are linked to the contents 

data file by integers in the directory data file which 

are the indexes corresponding to the location of the 

records in the contents data file. These records are 

also limited to a maximum length of 128 24-bit words. 

To utilise fully the space in the directory data file 

real device descriptions, where appropriate, are 

represented by integers. These integers are indexes of a 

further data file containing textual descriptions of 

the devices. 

Subsidiary data files are necessary for the 

primitive command stream, file records awaiting transfer 

to the filestore, and file records,awaiting output to 



--------------------------------------------------------------------------- I 

- 202 -

physical devices. 

J.2. The Programs and their Functions. 

Portability demands that the programs are written 

in a standard high level programming language. The 

routines for the filestore semantics and the pseudo 

device controllers are written in Fortran IV because 

the language is readily available and possesses a 

reasonable degree of machine independence. It is 

envisaged that no great difficulty should be experienced 

in transporting these routines to other computer systems. 

The main routine analyses the primitive input stream, 

placing the parameters into global variables for ease 

of manipulation. For each primitive there is. a 

corresponding subroutine which performs the necessary 

checks to ensure the request is valid and if so, 

changes the data files accordingly. If changes are 

required in the structure of a file directory a further 

routine is used for these manipulations. 

The checks in the routines which represent the 

primitiy~s_Eave been arranged so as to be intuitively 

efficient without aiming for an optimal strategy. The 

first check encountered which invalidates the primitive 

request terminates the routine and the next, if any 

primitive is then processed. A suitable system message 

is produced reporting the reason why the request could 

not be performed. (A certain amount of forward 

checking for further faults is feasible and the degree 

of help provided by the system can perhaps be determined 

I 

I 

-- - - - - - - - ------------------------------------



- 203 -

by the user scenario. This facility was not considered 

for the prototype system.) 

The command stream is translated into a standard 

format for input to the portable component of the 

system by an Algol 68 program. Normally the input to 

this program would be user requests but for the 

prototype system the user interface is the primitive 

functions. 

As the command translator is not part of the 

portable system the language most suited to the task 

has been chosen. As the program has to deal with 

text strings to check the syntax of the commands, 

comprehensive string handling facilities are desirable 

which precluded Fortran IV. 

The input/output of the prototype system are dealt 

with by two further Fortran routines described in the 

next subsection. 

File Input/Output in the Prototype System. 

In the prototype system the operating system function 

is mimiced by initialisation and close-down phases. 

In addition to storing the current states of the 

file directories into disc files which form the re-start 

data for the next run, the close-down routine also checks 

the output file streams. Any output file that is not 

empty is copied to the appropriate pseudo device 

(pseudo because in reality the operating system would 

copy directly to the device). For the demonstration 

system the operating system in the guise of the close-



- 20q -

down routine, copies the file contents, as denoted 

by the record identifiers in the streams to a single 

file to be printed later by the host system (GEORGE III). 

Each stream is headed by a file media/device description and 

several files may be in any single stream. 

The close-down routine also clears the output and 

input file streams so the next run of the demonstration 

begins with no outstanding output and different input 

files. The input of files from file streams does not 

occur until the relevant primitive is obeyed. The 

appropriate file stream is searched for the required 

file name. If the name is present and the user identifier 

in the request and file stream are the same the file 

records are transferred to the file contents space of 

the filestore. If the name is absent from the stream 

an external request must be made (to the operators) to 

load the file into the appropriate device. If the file 

does not exist the filestore aborts the request. In the 

prototype system only files in the input stream can be 

transferred to the filespace. 

Input of User Requests. 

The user requests have to be input as primitive 

functions because the prototype system does not 

incorporate a command interface. Each interaction 

commences with a user identifier (necessary to check access 

to files) and terminates with either another user 

identifier, or the symbol END signifying no further 

primitives are in the stream. Each request is terminated 



- 205 -

by a semi-colon which is superfluous while the 

primitives are syntactically correct. However, if the 

primitive currently being processed has syntactic 

errors the input stream is searched for the next 

semi-colon which defines the point at which the 

analysis restarts. 

The user requests are input to the Algol 68 

validation program which checks the syntax and some 

semantics. It is not possible to verify existence 

of files or user access to files because at this 

stage the requests are only partially decoded. Neither 

does the translator have access to the data files of the 

files tore. 

The output from the translator is a list of numeric 

codes, each primitive function denoted by a unique number, 

followed by the parameters for each primitive in a 

predefined format. 

Garbage Collection of the System Disc Files. 

When a file is deleted from the filestore its name 

is removed by compacting the list of filenames. The 

directory entry remains in the disc file aithougli the 

filename which did previously index it is no longer 

in the system. However, the list of directory 

indexes is modified by clearing the index number which 

was associated with the filename. This indicates 

that a current directory entry is no longer stored 

in the disc record. When a subsequent file is created 

the list of used indexes is searched and the first one 



- 206 -

that is free (denoted by a clear location) is used to 

store the new file directory. 

The file contents space is treated somewhat 

differently. liben a new set of records have to be 

stored in the filespace, the index for the contents 

space is scanned for empty cells. These denote unused 

record locations and each may be used to store a new 

record. If a file is deleted no change occurs in the 

index or the filespace because other files may index 

the records of the deleted file. However, when the 

index becomes full, more space is generated by 

checking each index against the current file records 

in the filestore. If a record is not in any file the 

index can be used for a new record. This procedure 

is only used when space is required for new records 

although in an actual implementation it could be a 

garbage collection routine used at regular intervals • 
• 



- 207 -' 

3.6. Example of Protogype System 

A typical sequence of primitive functions constituting 

a user interaction is shmm below. {The line numbers 

in brackets are merely for the convenience of the 

reader to relate later items}. 



- 208 -

The corresponding messages ret~rned to the users from 

.the Algol 68 program interpreting these commands are 

as follows: 

( 
.. - ..... -···----~-- __________ ._ 

........ sEQ\JefiC:fil<f·~erlRO!t..;usr:~i:otor:~-tTtiiEil.:ReQuiileo 1·· , ..... > ... · ·· 

c. :=-;g-;~~·~"·=~s¥"~·oj;t~~~~~~~ir~~~~~~~3~~b~~~~~·- _.. ~ - ~~~-CJ_l~h:::--=-~==:~ •. -~~:::~ 

The interpreted commands are stored in an intermediate 

:f·ile which contains the :following information: 

-.•.:t''c'~f~:::ccc:c:~~~~~iil3 . .. ·-=~c..i) :~----~· ~~~~~~ 
( ' · 2 0 - - -· . I• \ · ········-····-·····-···-····----·~ •: F ! t:if:.-::::.;.:=:~~~~"· ~·· :·· ,2.J · c:·~.-..:~:::"·='~::;.c:~'C-::o:.:: :::·=:~-<~•=-=j 

c 

c -··· 

( 

( 

( 

( 

( 

( 

..• : ~ ~§r..:~~.o~;EE0ff2'. ~-.·(!;.) 
··· ··. : S L:c~·.:· ·.c7".::.·:::c:: · ···-··--··· · ·· -·······-·-

:. ····.' :·.-."· 2 .~~.O:CC.::·.:cc. · ••(5) .::c•::.::::::..-:-C::~::::'i_~c=~==~=;::::::C:':~'i 

·USER 3 c:::c:.·•:.-:•::··.··:··· 
F r ~ e 2 =·=·"· •c 

· .. n·n:~:::I}:E·~]: ·.· u.) 
-.- _ ·VS ~ R 3 :·.-::~-_~:=.:_::~-::.-:.·~:·:.:~;-

• · ··• '·'·' · · "· 'F ·I ~ e 2 ~==•:c=·"''"' 
!j., .............. . 

. . 3 

USE~~<:=·::·:·:::>. 
F I ~ E 2 .·: . .- .. :·"'· .. -.•.. 

··-- .... _____ ,, ---·-· ·--- ··-·· ________ ______. 
_; ~~-:~ -:~-~-:-~~L::~~~: ~:~L~~~;~;~;~-:~::::~=-~~ 

4 0 ... --·:.·:·--~· ·.:·~· . . ............ . 
.........'~-'--..C..cA-:Ro;.READE!l ·· -. e)~=.c:~.~-~~=-==.: 

·FILE:>.···· 
·'1 0 ·: .. ·.~:. .. :c:::.: . 

USE!! 
30 . 

n~;.:.;~ i'.:: .. c..•.-1 2 0. " 

fiLO. Hl. . .. 

SVS'f~M ,·.-

.. (!c) 

. (li) 

_:: LbE;t;,;_.~"TlfE ;:_}IJ~) . 

·:::··f.~ ; e3 c.::·::::::::.:c·.:c.:.'. . .... 
·-·' ---· -- --.-~--

... > 



- 209 '-

--------,,--------·. ----- -···· ----------- . 

~ '''=';-!~~E~Ecci'0;;-:?=0~~====.~:::: ;;=-~~2):_,==ic~~ ' •-- -- ---=-"=· = 
( ='-"'"'"':'~j 1~';:::;~;-:',-:;;l~M.• ~=:0:7.':'::~. : -::~f'~~~~';';".·~~'C'~"-•:.==::.=~===oc-:::-:··co 

o==:::::::=-[~~:c::=.::::c,,,:~.::u~t'~I'~~:c=:~ _.==·=_cQ~)2x~~~·~= - ., --- =•-,, -=·.: 

( §'_2:_c_:'=:CL:~~~&'~ ~ _},,'t?~-:=_:-=:;=: :-,:= :0~:'.":"": =c:~~~~-•-:c:.cc~-== == ,:,:_ ::c:-4 

; =:::t~:;:~= :;~~:::~-:j 
5 i! . _. 

( ,. (!'1) 
~ --C~~~~;::}•:-C'c:":'::~ s,. ~ -~-32c ------ --- ,_,::c::~7'::"~i-:c=c:~ =::::L,-c'.:__:::~==-===--:c_~-=>1 -" bt'"' --~-- ---- ··------- ------------------ _____ ...... ___ _, 

lC ~~=~:;'.:,::;c:tES_••-•· =~.t~&~ 't'~j::.•:==~'::'c_4c- -•-~: -~ ~-~~-:'lLL~:.>•:-c .... =~=~~="'-''==§ 

==--:::~}~2-·~l':I~t~~"';~ -:·~1==-=-=-==c.-~- -'"Eti·,r~~""::~2c: ;-"==-~"-"-- ~;--=:=~ 
( FltDJ . ( :::~~-~~~~=-:--:~-~.:~-~~~~-;::~:~:- _-_==(iy==;~:.:;;~:::~-~~~:~;~ 
c - ·- N ~ ~~ ~'R=r-Nt~ ~" • ~L'-:>.): :':TIE/~-~·zsc:c·:cc=0-c:] 

6 0 c:cc:oc: •. "::c:-:'?:'?"-7' - : :.Q..t,.) · ··:· ~ . .-:~.c··:c:':C':,•:c::::.c::::::- c::7 c:::: i 

The numeric codes correspond to the commands and 

the parameters appear in a predetermined order following 

the command identifier. Only one item is placed on each 

line of the file to facili t·ate ease of input to the 

Fortran program. 

Assuming the filestore consists of the three system 

stream files CARD-READER, TAPE-PRINTER and LINE-PRINTER 

only, the following messages are produced as the commands 

are obeyed. 



( 

( 

- 210 -

·Fi~E2;::,::c;::- '.::C'C-REATI'!D ~-~- 0>' 
~'USE R3 ''-'"~-''.ADD!= 0 '1'0 Ai'l'R! BIJTE ,. 2 Op,,F l LE z, ='c:.::: (5) 

- .:·,: __ :USE 1;3"=A [) OEO 'ro· .Ai'TR t BIJ'I'E'' .4 OF-F f L'F.z··':'c'~'-' (1,)' 
: · ,,-: : USER 3 -.• ;:,,,~A 0 0 E P-c'l' 0: • AT T RI ~ U'!' ~ :· 3 () F ··F% LE 2o'::C:C:::::.~J1) •: 

-- -cARtl.,REAPEif--STREM1--COPTEO.TO FtlEZ-- --------[9)-
. ::.USER2~:.::c:;:D()f.iS·:NOl flAVE Pe~£;IEA!iCE~S:'!'O~~~lbE2{11)· 

. - f! LE r---- --- CREATE 0. - - ·- - - ·--- --·-··----·····-· - . (!2) 

usER2 ,."':~Aoo~o ·ro·Al'Trll!ltJTE 2 PJO- F[LF.3. .. VY.) 
1 USER2 --- AOOED TO A'l'TRIBIJ.'l'E 3 OF Fll.E3 - (!5) 
\ -__ ..::.:.::.::.. USE ~3 _=_.--.:AD 0 E D '1'0 ___ >\ '!'TR 1 BUTE 4 OF: F l Le3· - ;.: _ _ {I~ 

--·-··-··-' ·uSER2 ------AOOED -.. o--A'l''I'RIBUTE 4 01' -ql:E3 ________ (17-

( · =-====''=: -- ----:·--:·1'APE,REAOER- STREMI ·cOP{ED •1'0 Fl LEL•-=.::::.:.:: ___ (!9 · 
-- --·-usE~ z--·-·rH~,nv eo· -F Rali A T'f~t n ur e-ror--·nt E 3 _ I.! 'I) 

( ~~~~, -==~?:r.~-~-!:;~~~:~~~~,g~!f_~~~~:~~-~i~~-~!~!~R=~::!!!~~~~: 
To demonstrate the resultant state of the fi.lestore 

it will be assumed that the Card Reader stream contains 

three records viz 

THIS IS 

THE 

CARD INPUT 

and the Tape reader stream contains two records viz 

TAPE INPUT 

STREAN 

Also attributes 2, . 3 and 1.! are assumed to be change 

attr"ibute, copy from and copy to access respectively. 

The printout of the filestore at the end of the 

command processing would be as follows: 

.. •_: 



- 211 -

( 
--··· ----~--. -.- •...... ·- ::-.-::::.-:-:-:·.-·:::·· ::::::-..: :;;;;-::;-.--::::::--_:·:·::._~:··--~~ .::··.: 

!lF FiLESi'onE=-'ccc::o:-,, .. ,,,,-,, _,, 

( ----- --- :: ~. :::-:::Jcl ~ E !'! A1·tE:~~ i L E2_:.-_::-:: =~:-.-.-.-. - -·~.-·=:o:=:c_=,~::::c:'c~::='~='==-':occ:c:c:c~~;: 
===~: .. .--: '·.-·.-c.-.-~.' ·'Ace~ S s=p ElH~ 1 TS""'~ RE"' As. FtT[lOw's -~----.. ---

( ·.:~~:i.3.'L~. ~ ~ ~ ~ ~l~~~ ~ ~-~~~~~-~-~ ~ -~-~-;~L::·zg,,:;;=-~z=''====='~" -~"c::T~c.' t~ 
:..::::-=:~:;,.. ..:~~:;;;~~ .. g ~-~ ¥4~ .. ~1;:5 ~ ~~·~3 ,~::::::.~;'~E:::s-'~=f1f~~~~.-.;-=-·=='.:o:c;:.c_l~;-':"'2 
~l'~)]J;~; D:Y:£::~~: ~~T'~_.gt!_~~-~ ~-~; 

11 
~ ~;:;Ys_ER ~'';":l~:':~'::C.ocC.· .. · ... -=::Ci~~c::~:-:c.:.:= 

{ =.::=~: ;..: L .. H .. F~':~::t ~ ; ~ ~g ~0 ~ ~ ~ ~·~ A ~ ~ ~ }5~T .. __ ~!! D- :._.~~_.I! .. I f;. t;;::..:=:~ct~"?-~~;,~:c~cc~ 
( =--=~'~:::~~:;~;.c;~"""'fa~~;~f~~~~i)~":c';'.:~;_,~::-~~:=:z~:, c;:~~::~_.=ce:-,._,oc,_, ___ ~-=~ ·-=~: ~~~ 

... ,;:::::.::":-~~;_;:~i.:~·~ l~HJ ?'~:c~:':LI E:~••·•·••·;~:2I ::~-sL "'~~-::::;_J;.c::.:.-c.::.::.o:..-tci o=lJ{.I~· 

( ~=-== ;..I;:l_/I.:~;~~~ ' •;T~ :.-.;=- ~-c !_.~...':' !N -~ U_t2I.J,~c:CSETF:~:~ .. ·"~.> ':'~.:C:'''•-='J:.."I::::""= c.: ..:Cc:~ 
_____ , __________ . ------- ·-----· ---·-- .J 
~-·- ·"'-:C.':c .. , .. :: :.:~=''(x•'t ~ NAT!{''frl.ti;,:cc::c;c•: :.::.o:::.' ··cc:C .. :::~:: •. c -..L-::-:=::·~:::.'.:~:.= eo• :Cc::•:: __ ,~ 

( --==•,":C'~'fS:.'2'Z:~t':C.:~~~ ~ ~ ~'2~ .. f~-~!~~~!g iri ~ ~~;_F_!J~J.£~§1= -,,,. -·-· •. ':: - -~ 
( 

... ·. ..::·::::t;ll Ml(i E: ,, TU! !l U'l' ES.,•:U S ER ii!: ·······: 
. .-.·.-..···coPY FROII;; USrR2 .. _._ .... _ - . .. .... , 

-•=-:.--~~=='C''.:C''-'C:•:.::.c:C Q P.. V : t.O '-""~tt$"1: R3-:::-i-::c:::.~:c:~'f.::•::·~~':=.::·•oc•-- .c:;: ~~~===.:~ 
- . - . ' · -EI"PT'r-coNTE'lTS.,..-NO USERS . --·, 

( '7.::~:.--::·.:::,::o: .··.-~=-·,.-·:: f. X E ~ \J]' E~~NO:c M S_E RS : .: .... ::'·= .. ~...: ...... -::···::'"·~: ....... ~:::=.:..::~==:..·:::c.::c::: :;! 
..-..:="'~-'='~"''=-•=n l.t tONTfNT ;--A~ E'"Tf:X'i'-AilO-S i:R fA L ---. --·--- -; 

l £E :~22:·· 'L _L;~- -~~f ~R ~.::_._,~~..M...E_~ll~ j"l3.~~LL=..~c.:: E:• · ,-:;.. :c.. . .-..:2·-=-:-=.::c:.::• •'!.~ c:_.-.=ce.e::· .. 'J 
CONT!!NTS ARE I 

{ 

{ 

TAPE ! MPUT 

.... : ,. ,. . s~i-~i'~;::=-:-:-:c•.:c;.]:o.'-'i• ''=_:.=• •• -~·: ...... -;_.. ...... ~.c=::;'::~-if:..t:i~i~-'::':~£:• 

... -.... ..~~~if=1~·;;;F=~:=·- .... . .. .·:~-Js::.:=.EE~:¥'~E.::~ " 

The line printer output produced is as follows: 

~p<E.,PRtf~TriR OUTP\JT STR!;Mln~llJ!lB~R Of FILES~ 1 

TAP!:: tUP'JT 
STREAM . 
T~!S IS 
r~•u 
CAqp IIJPUT. 



- 212 -

CHAPTER VIII 

APPLICATIONS 

§1. Introduction. 

The main objective of this thesis has been the 

development of a portable basis for command languages. 

This has been realised through the definition of 

primitive functions which satisfy the preconditions 

specified in the early chapters of this thesis. 

In conjunction with the primitives it was found 

necessary to formulate concepts concerning the machine 

independence of the operands associated with the 

primitive functions. This led to the development of 

a machine independent filestore. 

It has been possible to identify applications 

of these developments which are outlined in the 

following sections. 

--------- ~--~--~-



- 213 -

§2. Database Security. 

Data security can be maintained by various physical, 

hardware and authorisation procedures. The physical 

checks are not a matter of data management controls 

but the others could form part of the computer 

system. 

Hardware protection can take the form of locks 

on main and auxilary stores by assigning protection 

keys to each block, and similar keys to each program. 

The operating system will only perform transfers if 

the program and data keys agree. 

Files can be treated in a similar manner with 

keys in the job control which must match the keys 

stored as part of the file. 

A further method which can be employed is to 

supply each user with a password, and the system can 

associate each password with a predefined limited 

access to files, programs, or data entry points. It 

is also necessary to prevent a user self declaring 

his authority to access any given file. 

File security, specifically in a database 

environment, can be maintained more readily if the 

concepts of the logical filespace are applied. Each 

non-empty file in the filespace contains information 

stored on physical media. Users can access a file if 

they are included in the appropriate permission list of 

the file attributes. The actual information can only 

be accessed through system routines which use the 

logical record mapping retained in the directory. 

Thus a user can be provided access to a particular 



- 21~ -

subset of the database by giving him permission to 

access the appropriate files. Any subset can be 

constructed from the given data set without need to 

replicate the information as the logical record space 

provides the necessary mapping. The database manager 

must construct the file profiles with the appropriate 

access permission for each user. Clearly more file 

directories will be required but it is believed that the 

housekeeping necessary is reduced. 



- 215 -

§3. Database Integrity. 

Ideally any system should provide the user with 

protection against corruption of the data stored on 

his behalf caused by hardware error or interaction 

with other users. The only method of safeguarding 

against hardware error is to provide sufficient 

redundancy ensuring that the original contents can be 

restored in the event of a particular failure. Since 

keeping extra information increases the cost of 

storage and furthermore no system can provide a 100~ 

guarantee of information integrity the actual protection 

provided usually represents a compromise. As was noted 

in Chapter V protection of all files represents a waste 

of resources in many cases while if the user has to 

copy files explicitly this is a waste of user time. 

The filestore concepts described herein permit the 

degree of protection provided to be determined by 

the user at the file level and then implemented 

automatically by the system. This minimises cost by 

allowing the appropriate users to be charged directly 

for this facility. 

A single logical file can be mapped into several 

identical physical copies which can be stored on 

different media to reduce cost or increase security. 

This corresponds to the dumping concept in GEORGE III 

and also to the user copy in systems with no automatic 

protection. (The various protection techniques 

practised have been described by Davenport [IS]). 



- 216 -

Automatic switching between copies can occur if 

a particular copy is found to be corrupt or missing 

from the system (e.g. sum check failure or loss of 

disc pack). 

Protection against inconsistencies arising from 

two or more users updating information simultaneously 

is provided by the execution envelope which ensures that 

all the files required are available for use before 

processing starts. This also prevents deadly embrace. 

A further advantage of the execution envelope is 

that all operations during processing are performed 

on a logical copy of the file and not on the filestore 

copy. This is only changed after the execution is 

successfully completed and thus ensures against loss 

of integrity arising from programs terminating part-

way through a file update. It does, however, require 

that the filestore copies which will be written to 

at the end of the process are locked while execution 

proceeds. In most cases different applications will use 

different subsets of the data, thus different files 

(and contents). Therefore locking a file will not 

necessarily impede other applications. 

Finally, the system also provides for protection 

against user error since it is possible for the file 

contents to be associated with the history of the file. 

As has already been stated in Chapter V, the update 

of a record is actually the creation of a new record and 

the deletion of the old one. A history of the file can 

therefore be maintained if the old records are not 

deleted but each logical record has times and dates 



- 217 -

of its validity. Thus the file contents at any time 

and date can be reconstructed and since the protection 

is at the file level the physical protection of 

multiple copies etc. can still be applied. 



- 218 -

§4. Checkpointing. 

The problem of effective and efficient checkpointing 

has been the subject of some discussion (e.g. [3 ]) 

without any clear solution being reached. 

If the execution envelope as a whole is retained 

in the file directory then a simple extension to the 

filestore system described provides a complete 

solution. It has been stated that a file is defined 

by its name, which in turn acts as a pointer to the 

file directory containing the file attributes. The 

directory of an executable file which is currently 

being executed is no exception. Thus the directory 

contains all the information known about the file while 

it is executing. Hence it is only necessary to record 

the contents of the file directory to obtain a 

checkpoint mechanism. This will contain: 

1) The attached filenames (including the location 

descriptor of each such file), 

2) The current positions in each of the attached 

files (conceptually to a copy of the file in 

logical file space), 

and J) The current address within the execution (which 

is a special case of 2)). 

If a program has to be restarted the checkpoint record can be 

used to regenerate the execution at which ever checkpoint 

is chosen. 

This principle may be used recursively. The ultimate 



- 219 -

stage is to have the whole system defined by a single 

checkpoint record which could be used to restart the 

machine when the system has malfunctioned. A special 

purpose boot-strap program would operate on this first 

checkpoint record and the system could be progressively 

rebuilt from other checkpoint directories. 



- 220 -

§5. Networks of Computers. 

The logical filestore is particularly applicable 

to a loosely coupled network of machines all of which 

can operate independently if the network is severed. 

The network should appear to each user as if it is 

a single system, being indistinguishable from a 

self-consistent extension of facilities on each of the 

stand alone computers. The user may require facilities 

which are only available at a particular site which ,is 

not his own, but information about the site would 

normally be deduced by the system from a study of 

the facilities requested rather than by requiring 

the machine to be specified explicitly. 

The conventional approach to networks only allows 

on-line files to be accessible to each user. Each file 

that is required, but not available in the filestore 

associated with the users local machine has to be 

explicitly fetched. This creates problems of renaming 

to meet the uniqueness criterion, ensuring the security 

of duplicate copies, and the integrity of thefiles 

when updated. This is because the files are explicitly 

manipulated across system boundaries. 

If the boundaries are removed then the conceptual 

problems of the user largely disappear and the task 

of the system implementor can be greatly reduced. 

The logical filestore approach permits the user to 

see the concatenation of the individual filestores 



- 221 -

with no explicit boundaries. The user accesses the 

file he requires 11 directly 11 (the implementor provides 

different mapping functions to connect the user request 

to the physical instance of the file). For the simple 

minded user he will only 11 see 11 the filestore of the 

machine which he uses. 

The files are accessed through a directory which 

provides the unique filename composed of user 

identifier and user filename. This points to a 

conceptual file, which in turn, through the mapping 

function provides the physical location, or locations, 

of the file which could be on any machine. The 

filename provides the link between the directory and 

the logical filespace. For each directory entry there 

is one, and only one, entry in the logical filespace. 

The mapping function links the filename to the 

physical media. There may be none, one, or several 

entries in the physical filespace depending on the 

file being a name only, a single copy, or many copies 

(for security or because it is being used on several 

machine). 
~----------------------------------

The name of the user automatically links the search 

to the relevant part of the file directory. This may 

mean that the search is performed on the physical media 

attached to the local machine or may require a request 

to the machine associated with the user name. 

Files stored on the physical media of a remote 

machine can be accessed from any other machine in the 

network by specifying the file name. This provides 



- 222 -

the file contents currently held on the remote 

machine's segment of the filestore. Consequently the' 

user always obtains the latest version of the file 

because the updated contents are available to the 

network automatically. However, if the user does 

not wish to access updated versions, for example he may 

not want to use a partially tested program, then he 

must explicitly copy the file to his own machine's 

segment of the filestore. It is this copy that will 

then be used regardless of changes to the original 

file contents. 

The principles of the logical filespace are 

currently being used in connection with the SRC contract 

B:RG:7010 awarded to the Computer Studies department 

of Loughborough University. The grant has been awarded 

for an investigation into the effective use of 

multiprocessor configurations as described by Evans 

and Newman [IS]. 

• 



- 22) -

§6. Command Language for a Network of Computers. 

Proposed network command languages take several 

forms. Chupin [q J believes that each machine can 

have a different command language but the network 

operations are performed by a network command language 

common to all the machines. LE/1, the SOC network 

language described by du Masle [2&] is rather like 

IBM~ OS/)60 JCL and requires the user to have explicit 

information of the network structure. 

Many of the difficulties associated with the 

networks disappear if the machines involved have 

command languages that are based upon the same set 

of primitive functions (although the individual 

command languages can be different). 

This permits each machine to accept jobs and 

decode the requests into a series of primitive 

activities. (This would be the usual process and is 

independentof the network environment). The resources 

required by the activities are determined by the 

operating system resource and scheduling routines 

and a decision is made either to: 

1) perform all of the job locally, 

or 2) direct some of the job steps to other machines 

in the network, 

or ;l direct the whole job to the network. 

It is a simple matter for the job (or job step) to be 

transferred around the network in the form of a series 

of primitive actions. These can be interpreted (without 



- 224 -

any additional software requirement) by all the 

machines just as though the job had been submitted 

locally. This removes the need to have machine to 

machine interpreters or a separate network command 

language. For the user, the main advantage is 

that he can access the network facilities without 

knowing that he is doing so • N.ai ther does he need 

to learn any additional information. 

It is possible to design a command language 

model for the network applications. The model must 

reflect all the points made earlier in this thesis. 

The structure is shown below. As the user 

progresses down the levels the facilities become 

increasingly detailed. Of the four levels shown 

below,the top-most level (O) does not involve the 

user in any knowledge of the network at all and 

corresponds to the inner-most ring(s) of figure 4.2. 

(By hypothesis this satisfies most of the user-uses 

of the system.) Although the user does not know about 

the network this does not imply that he will not be 

using it. If a user reque-sTsa-p-articular piuokage 

and it is not available on the machine at which his 

job was input, then the job will be transmitted to 

a machine which does run the package and the results 

will be returned to the user's local machine. The 

network may also help him if the machine he is 

connected to is overloaded and cannot handle his job 

within the timescale he has specified. (Provided 



- 225 -

he gets his output back in time it is immaterial 

to him which machine processed his job•) 

The three levels of network usage, working 

progressively down, can be thought of as: 

1) the user exercising a choice between facilities, 

2) user knowledge of the existence of subsystems, 

and J) user knowledge of the detailed structure of the 

network. 

Hence the model is as shown in figure 8.1 

NETWORK 
LEVEL 0 

NETWORK 
LEVEL 1 

NETWORK 
LEVEL 2 

NETWORK 
LEVEL 3 

Resources at 
many sites 

Single Processor 

Files linked to 
machines 

Network topology 

Definable Processor 
Characteristics 

Resources at 
particular machines 

Physical details of 
processor and devices 

FIGURE 8.1. LEVELS OF NETWORK USAGE. 

The parallel structure at each level indicates components 

to be independent yet requiring approximately the same 

degree of expertise. The serial structure, on the other 

hand, implies that knowledge of any level is more 



- 226 -

complex than preceeding levels, and knowledge of the 

upper levels is generally a necessary condition for 

use of a lower level. 

The ideas expressed above have been expanded to 

provide suggestions as to a possible user command 

interface for a network in a paper presented at 

Online 75 [33]. 



- 227 -

CONCLUSIONS 

Design of Operating Systems. 

In the early pages of this thesis Barron was 

quoted as saying that ideally the operating system 

should be the implementation of the command language[3]. 

This thesis has derived primitives which are user 

and machine independent but are intended to be 

interfaced to existing operating systems. This is 

necessary at present due to the time and cost 

involved in interfacing the primitives directly to 

the computer hardware. Consequently, the primitives 

are mapped onto existing command languages and a 

suitable user interface maps onto the primitives, 

this being a method of achieving portability. 

However, if in the future a new computer is 

developed, it is believed that the primitives would 

form a suitable abstract description for the operating 

system provided the machine independent filestore 

is also used. 

The advantages are twofold: 

1) The structure of the operating system designed 

--from the primitives is expected to be __ clearer, 

as it would be hierarchical, reflecting the 

default structure progressively until the 

hardware is precisely defined. Systems so 

designed would be efficient as the user requests 

are mapped into an operating system which is 

structured from the primitive functions. 



- 228 -

2) The user interface can be built upon the 

primitives independently of the machine; 

the system designed has the potential to 

give an interface to suit the individual user 

types. 

Thus, this thesis represents the first stage of a 

clearly defined schedule. The next two stages are 

identified to be: 

1) Linking existing command languages to the 

portable basis, 

and 2) Designing new user interfaces using the 

portable basis. 

Linking Existing Command Languages to the Primitives. 

At present command languages are constructed to 

function with a particular machine operating system 

and are consequently machine dependent and unstructured. 

To obtain portability the user requests in the jobs 

must be expressed in machine independent terms. This 

is possible if the requests can be mapped onto 

primitive functions which are themselve13_mapped onto 

the existing command language. Chapter VII has 

indicated that this is a feasible proposition when 

GEORGE III is the host language. For portability to 

become a reality it is necessary to show that the 

primitive functions with the machine independent 

filestore can be mapped into other existing command 

languages. It seems that this is a feasible proposition 

since it has been proved possible for both UNIQUE and GCL. 



- 229 -

Design of New Command Languages. 

Having shown that the primitive functions can 

represent the real machine (either through mapping 

onto an existing command language or to a new system 

based on the primitives) the next logical stage is 

to build new command languages onto the primitive set. 

These languages would necessarily exibit the criteria 

specified in Chapters Ill and IV. 

There would be no need to limit the number of 

languages as each user group could require different 

facilities. However, it is thought that generally each 

language will be a recognisable dialect of a general 

purpose language. 

Provided the languages mapped into the primitive set 

portability would be retained and the design of the 

languages, limited by the preconditions, should ensure 

their usability. 

An important part of a new language would be 

the definition of a suitable default structure. Clearly 

the default values would differ between machines as 

individual installations would have their own limitations 

on job times, printer output etc. It would seem 

sensible to associate the default values with the 

system utilities provided at each site where this is 

possible. 



- 230 -

REFERENCES 

1. Anscombe, F.J. Rectifying Inspection of a Continuous 
Output. J. Amer. Statist. Ass. 1958. 

2. Barren, D.W. Computer Operating Systems. Chapman 
and Hall, 1971. 

3· Barren, D.W. Job Control Languages and Job Control 
Programs. Computer Journal, Vol. 17 No. 3 
August, 1974. 

4. Barron, D.W. Job Control on the ICL 2900 Series. 
Computer Bulletin. Series 2 No. 7 March 1976. 

5· Barren, D.W. and Jackson, I.R. The Evolution of 
Job Control Languages. Software - Practice and 
Experience. Vol. 2, 1972. 

6. Beech, D. Command Languages edited Unger c. 
North-Holland 1975· 

7• Bredt, Thomas H. Command Language Processing in 
Formally Described Operating Systems. Command 
Languages edited Unger C. North-Holland 1975· 

8. Chapin, N. Programming Computers for Business 
Applications. McGraw-Hill, 1961. 

9. Chupin, J.C. Command Languages and Heterogeneous 
Networks. Command Languages edited Unger c. 
North-Holland, 1975• 

10. Cheetham, C.J. and Wickham, R. Cafeteria Systems. 
IUCC Newsletter Vol. 2, No. 1. 

11. Cowan, Richard M. Burroughs B6700/B7700 Work Flow 
Language. Command Languages edited Unger C. 
North-Holland, 1975• 

12. Cox, D.W.J. Job Control Language - the way forward. 
Computer Bulletin. Series 2, No. 3, March, 1975• 

13. Dakin, R.J. A General Control Interface for 
Satellite Systems. Command Languages edited 
Unger c. North-Holland, 1975• 

14. Dakin, R.J. Preliminary GCL User Manual. Culham 
Laboratory, 1974. 

15. Davenport, R.A. Database Integrity. Computer Journal. 
Vol. 19, No. 2, May, 1976. 

16. Enslow, P.H. Summary of the Working Conference. 
Command Languages edited Unger C. North-Holland 
1975· 

17. Enslow, P.H. Operating System Command Languages, 
A Brief History of their Study. Command Languages 
edited Unger c. North-Holland, 1975· 



18. 

- 231 -

Evans, D.J. and Newman, I.A. Usage 
in Multiple Processor Systems. 
Software 197q. 

Considerations 
Proceedings 

19. Frank, G.R. Job Control in the MU5 Operating 
System. Computer Journal Vol. 19 No. 2 
May, 1976. 

20. Green, J.A. Sets and Groups. Library of 
Mathematics Series. Routledge and Kegan 
Paul Ltd. 

21. Gilbert, w.s. The Mikado. Chappell and Co. Ltd. 

22. IBM System/360 Operating System: Job Control 
Language. IBM Manual L28-6539-7· 

23. James, S.K. and Newman I.A. The Incidence of 
Compiler Detected Errors in Algol and 
Fortran on a 1906A.Department of Computer 
Studies Report, University of Technology, 
Loughborough. 

2q. Jensen, J~rn and Lauesen S~ren. Programming 
Language Extensions which render Job 
Control Languages Superfluous. Command 
Languages edited Unger c. North-Holland 1975· 

25. Krayl, H. Unger c. and Weller T. Portability of 
JCL Programs. Command Languages edited 
Unger C. North-Holland 1975· 

26. Lucas1 P. and Walk1 K. On the Formal Description of 
PL/1. Annual Review in Automatic Programming 
Vol. 6 Part 3, 1969. 

27. Machine Independent Command Language. Computer 
Bulletin. Series 2 No. q 9 June 1975· 

28. Masle,J. du. An Evaluation of the LE/1 Network 
Command Language Designed for the SOC 

·Network. Command Languages edited_Unger c. 
North-Holland 1975• 

29. Morris, D. Job Control on the ATLAS and MU5. 
Job Control Languages edited Simpson, D. 
NCC 197q. 

30. Newell, G.B. The Family of Operating Systems 
called GEORGE. Job Control Languages edited 
Simpson, D. NCC 197q. 

31. Newman, I.A. Machine Specific Facilities in a 
Machine Independent Command Language. 
Command Languages edited Unger, C. 
North-Holland, 1975· 



- 232 -

32. Newman, I.A. User Oriented Message Handl.ing, 
a new approach to error message presentation. 
Database Technology. Onl.ine 1976. 

33• Newman, I.A. and Fitzhugh, N,S, Command Language 
Design for Networks of Processors. 
Communications Networks. Online 75· 

34. Newman, I.A. and McConachie, M.A. The UNIQUE 
Machine Independent Command Language. Job 
Control Languages edited Simpson, D, 
NCC.l974• 

35· Nicholls, J,E. Job Control in IBM System/360 
and 370. Job Control Languages edited 
Simpson, D, NCC 1974. 

36. Niggemann, N. A Method for the Semantic 

37· 

Description of Command Languages. Command 
Languages edited Unger C, North-Hol.J.and 1975• 

Operating Systems GEORGE III and IV. !CL 
manual 4345 (1.76). 

38. Orwel.J., G, Animal Farm. Penguin Books. 

Parsons, I.T. 
Software 
1975. 

A High-Level Job Control Language, 
- Practice and Experience Vol. 5 

40. Rayner, D. Recent Developments in Machine 
Independent Job Control Languages. Software -
Practice and Experience Vol. 5 1975· 

41. Rose, A, Computer Logic. Wiley, 1971. 

42. Shearing, B.H. Job Control Languages - As they 
are and -as-they_might_be. Job Control. 
Languages edited Simpson D~ NCC 1974. 

43. Sibley, E.H. The Operating Systems Command 
Language Task Group. Technical Report. 
Command Languages edited Unger C, North
Holland, 1975. 

44. Stoy, J. and Strachey, C. OS6: An operating 
system for a small computer. Computer 
Journal Vol. 1.5 1972. 

Tozer, E.E. Preservation of 
CODASYL-type Databases. 
Onl.ine 1976. 

Consistency of 
Database Technol.ogy. 

46. Turing, A.M. On Computabl.e Numbers. Proc. Lond. 
Math. Soc. II, 42, 1936. 



- 233 -

47. \vada 1 Eii ti. On the Possibi1i ty o:f the 
Unification o:f Command and Programming 
Languages. Command Languages edited 
Unger C. North-Ho11and 1975· 

48. Weegenaar, H.J. and Wie1enga, D.K. Towards a 
Genera1ised Command Lanaguage :for Job 
Contro1. Command Languages edited Unger c. 
North-Ho11and 1975• 

49. We11er, T. On the User Oriented Semantics o:f 
Command Languages. Command Languages edited 
Unger c. North-Ho11and, 1975· 

50. Appe1, K. Reduced Contro1 Language :for 

51· 

52· 

non-pro:fessiona1 users. Command Languages 
edited Unger C. North-Ho11and 1975· 

Brandon, J.P. 
and CAFE. 

Job Contro1 Languages MAXIMOP 
Job Contro1 Languages edited 

Simpson, D. N.C.C. 

Simpson, D. 
N.c.c. 

editor, Job Contro1 Languages, 
1974. 

53· Unger, C. editor. Command Languages. 
North-Ho11and 1975· 



-. 

I 

I 


