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Abstract

The object under consideration is an admissible Riemannian polyhedron M with a
piece-wise smooth boundary @M. This is a finite n-dimensional simplicial complex
equipped with a family of Riemannian metrics smooth inside each simplex. We in-
troduce an anisotropic Dirichlet Laplace operator in a weak sense for the admissible
Riemannian polyhedron and define a set of boundary spectral data T, {Xx, duwilr}f2,
on a open part I' C 3M, where A, are the eigenvalues on I' and 8,pi(r are the traces
of normal derivatives of eigenfunctions of the Laplacian. The main result of the work
is: if two admissible Riemannian polyhedra M and M have open diffeororphic parts
of the boundaries T C M and T' < M such that the set of boundary spectral data
on I' coincides with the set of boundary spectral data on f‘, then there is one-to-one
correspondence between M and M as simplicial complexes and they are also isomet-
ric as metric spaces. A new technique was developed to tackle the problem. That
technique incorporated two methods: BC-method generalized and adjusted for the
admissible Riemannian polyhedra and the technigue of Gaussian beams extended for

anisotropic piecewise smooth media.
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Chapter

Introduction

1.1 Inverse problems

The general nature of an inverse problem is to deduce a cause from an eflect. Consider
a physical system, depending on a collection of parameters, in which one can speak
of inputs to the system and outputs from the system. If all of the parameters were
known perfectly then for a given input we could predict the output. It may happen,
however, that some of the parameters characterizing the system are not known, being
inaccessible to direct measurement. If it is important to know what these parameters
are, in order that the system be understood as completely as possible, we might try
to infer them by observing the outputs from the system corresponding to special
inputs. Thus we seek the cause (the system parameters) given the effect (the output
of the systemn for a given input). An important example is the inverse problem of
geophysics, in which we seek to investigate the structure of the interior of the earth.
Elastic waves may propagate through the earth in a manner which depends on the
material properties of the earth. A concentrated source of energy at the earth surface

causes waves to penetrate into the earth which are then partially reflected back to
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the surface. If the material properties of the earth’s interior were known completely
then we could predict the nature of the reflected wave from knowledge of the source.
Since in fact we cannot measure these properties directly we seek to infer them by

observing the reflected waves in response to a collection of known sources.

In formulating such problems mathematically, we typically find that the problem
amounts to that of determining one or more coefficients in a differential equation, or
system of differential equations, given partial knowledge of certain special solutions
of the equation{s}). In the seismology problem just discussed, the propagation of
waves in the earth is governed by the equations of elasticity, a system of partial
differential equations in which the material properties of the earth manifest themselves
as coefficient functions in the equations. The measurements we can make amount to
the knowledge of special solutions of the equations at special points, e.g. points on

the surface of the earth in this example.

Inverse problems for differential equations have this general character. One has a cer-
tain definite kind of differential equation {or system of equations) containing one or
more unknown (or partially known) coefficient functions. From some limited knowl-
edge about certain special solutions of the equations we seek to determine the un-
known coefficient functions. Problems of this type arise in a variety of important
applications areas, such as geophysics, optics, quantum mechanics, astronomy, medi-

cal imaging and materials testing.

It is natural to consider problems with piece-wise smooth or even non-smooth co-
efficients (for instance the function of density has a jump), because the material is
non-homogeneous. For example if we solve medical inverse problem, we consider
bones, muscles, malesious tissue. If it is a geological problem, the earth is non-
homogeneous too: rocks, oils and so on. Mathematically we can consider the inverse
problem with piece-wise smooth coeflicients, i.e. functions with jumps. This goes out

of the boundaries of the operators with smooth coefficients. The subject of this the-
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sis is an admissible anisotropic Riemannian polyhedron. This naturally arises from
physics and real world structure - the muiti-component body, each part (component)
of which has its own geometrical and physical anisotropic properties. Mathematically
these properties can be considered as an anisotropic metric structure and one can
think about some differential operator given by this piece-wise smooth bounded met-
ric. The problem is to determine the polyhedron structure, metric and the operator
from given boundary spectral data. The problem formulated is of a great mathemati-
cal interest as it increases dramatically the class of functions for the inverse problems.
This inverse problem has a great number of applications areas to be interested to as
there are plenty of materials (for which we can measure only some boundary data)

which have an anisotropic and multi-component structure.

Problems of this type may arise in a variety of important applications areas, such as
geophysics, optics, quantum mechanics, astronomy, medical imaging and materials
testing as anisotropy is widespread. An important example of such applications is
the inverse problem of geophysics, in which one seeks to investigate the structure of
the interior of the earth. The waves may propagate through the earth in a manner
which depends on the material parameters of the earth. Consider other important
examples of anisotropy applications: deformation, e.g. permittivity is anisotropic
in a strained medium, and compressed soil can be anisotropic; crystalline or liquid
crystal structure. Thus LC displays, biological thin films, colloids perhaps are the
examples of considered structures together with fibrous or layered structures with
anisotropic properties in the homogenization limit, layers of rock (thus the importance
for geophysics), muscle (thus the importance for medicine), composite materials like
fiberglass. Layers in the different density: air in the atmosphere, or water in the
ocean. Alignment of particles in a flow, e.g. red blood cells of platelets of china clay

in suspension are also such an example. The alignment of the particles gives rise to

anisotropy in the homogenization limit.
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1.2 Background

Inverse spectral problem wasg firstly tackled by I. Geifand, V. Marchenko, M. Krein,
and B. Levitan in 1950’s for the inverse problem of & string oscillations equation in
a series of well-known publications (see e.g. [31}, [44]). The method was based on

reducing the problem to solving integral equation (see also [15}).

The method for reconstructing the density of non-homogeneous string in the multi-
dimensional case appeared as boundary control method in the paper by M. Belishev
[10}. M. Belishev considered both spectral and dynamical formulations of the problem.
The possibility to control the system gives us an ability to obtain information about its
structure due to the correspondence ” control-respond”. Thé boundary control method
gives a procedure of density reconstruction for the bounded domain with a boundary.
By its nature the boundary control method is a synthetical one. It uses asymptotical
methods (discontinuities propagation, geometrical optics formulae), control theory,
some elements of operator theory. As some inverse problems under consideration are
over-determined one should assume that given data belong to some functional class,

thus boundary control method uses the latest achievements of functional analysis.

Later the analytical ideas of boundary control method were combined with geomet-
rical approach by M. Belishev, Ya. Kurylev [13], Ya. Kurylev [45]. The main idea
of this approach was that any general elliptic second-order differential operator gives

rise to a Riemannian metric in the corresponding domain, see also (9], {10], [12].

Some fundamental work on the inverse boundary spectral problem for a Riemannian
manifold was obtained by A. Kachalov, Ya. Kurylev, M. Lassas (KKL)} in 2001, see
[38]. They produced a dynamical approach based on consideration of corresponding
wave equations using various techniques to study an initial-boundary value problem

for the anisotropic wave equation.
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The boundary control method developed by M. Belishev, A. Kachalov, Ya. Kurylev,
M. Lassas for the case of a second-order differential operator in [38] works well for
smooth coefficients. But when we try to consider the operator with non-smooth, or
ptece-wise smooth coefficients the method does not apply immediately. Geometrically
piece-wise smooth manifolds can be described in terms of n dimensional Riemannian
polyhedrons. These polyhedrons can be joined by (n — 1)-dimensional sub-manifolds,
for instance wages, conic points. The anisotropic inverse problem has not been solved
vet in the general case and it is very interesting and important to tackle it. Alsoin the
case of multi-component body direct using of the boundary control method seems not
to be possible, because of the complex geodesics behavior. For instance, if we have
a cylinder, which consists of four regions with different velocity of wave propagation.
These regions are formed by two lines. Assume that the velocity is similar and equal
to one in two regions, corresponding to the vertical angles, formed by the lines. Let
the velocity in the rest two regions is low, comparing to one. So, geodesics would try
to go from the region with higher velocity to the other region with the same velocity
without going through the low-velocity regions. So some geodesics will cohere in the
vicinity of the intersection of the lines point. The function R(M) (it ascribe to each
point on M the set of distances to the points of the boundary 8M) which is the main
tool of boundary control method (see [38]) fails to be homeomorphic. To overcome
these mathematical difficulties, the boundary control method should be essentially

extended. Our idea here is to use boundary control method locally.

The complete solution to the unique continuation problem for the wave equation with
time-analytic coefficients that involve a number of important new ideas was given by

D. Tataru (see [56], [57], [58]).

The natural generalization of inverse boundary spectral problem to a multi-component
body appeared in my investigations jointly with Ya. Kurylev. This work covers the

proof of the uniqueness result for the pure (without potential) Laplace-Beltrami oper-
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ator of an admissible Riemannian polyhedra (the metric tensor is piece-wise smooth).
The admissibility means that we have some restrictions on the type of simplicial com-
plex, which is in the base of the admissible Riemannian polyhedron and that we have
some restrictions on the smoothness class of the metric tensor corresponding to the
polyhedron. This complicated object was investigated geometrically by J. Eells, B.
Fuglede in 2001, see [25]). They introduced length space on it, they showed that there
exists a shortest curve connecting two points on an admissible Riemannian polyhe-
dron, such that it has no intersection with wedges and goes through the interfaces

transversally.

I should also mention some investigations for the discontinuities of medium properties
for the isotropic case. L. Piivérinta and K. Astala [4] reconstructed the conductivity
operator when the conductivity is from L*. Some smoother cases were done by V.
Isakov, G. Alessandrini, L. Péivérinta and A. Kirsch, see e.g. {2], [35], [42]. There
are also some works on anisotropic conductivity, say paper by K. Astala, M. Lassas, |

L. Paivérinta [4].
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1.3 Qutline of the thesis

The purpose of this thesis is to prove the uniqueness theorem for the admissible Rie-
mannian polyhedron determined by its boundary spectral data (BSD). Chapter 2
contains the definitions of the ma;in subject, which is admissible Riemannian poly-
hedron. We refer to the book of J. Eells and B. Fuglede [25], (see also [29] and
[30], H. Federer, [28]) to introduce all necessary information about its geometrical
structure such as procedure of forming the length space. These procedures require
accuracy as we cannot consider the admissible Riemannian polyhedron as a differen-
tiable manifold, see the paper by M. Kervaire, [40]. In this Chapter we will sometimes
use notations from papers of W. Ballman, [8]. This chapter also contains an impor-
tant lemma, from the paper by Ya. Kurylev, [45], stating that any two points on an
admissible Riemannian polyhedron can be joined by a shortest curve which passes
transversally the interfaces of the polyhedron in finite number of points and does
not touch any other singular points of the polyhedron. We also refer to the books
on differential geometry such as books by D. Burago, S. Burago, S. Ivanov, [17]; D.
Burago, V. Zalgaller, [18]; A. Connel, [23].

The second part of Chapter 2 contains the information about the Laplace-Beltrami
operator which can be introduced on the admissible Riemannian polyhedron in a weak
sense, see the book of O. Ladyzhenskaya, {46], L. Evans, [27]. Chapter 3 contains the
development of the Gaussian beams methods (see V. Babich, V. Ulin [6], V. Babich,
V. Buldyrev, I. Molotkov, [7], A. Kachalov, [36], [37], M. Popov, [47], J. Ralston, [48])
to the case of the multidimensional anisotropic domain with an interface. The chapter
contains all required definitions and the description of techniques used to tackle the
problem. The necessary and sufficient for the next uniqueness problem asymptotics
are found for the reflected from the interface field. It is shown that all approximate
solutions are in the proper smoothness class and that for any small parameter £ there

exists an approximate solution to the wave equation which does not differ from the
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exact solution by more than some prescribed value. The results of Chapter 3 are

published in [41].

Chapter 4 is totally descriptive. It contains a formulation of the smooth inverse
problem for a smooth Riemannian manifold and brief description of the boundary
control method taken from the book by A. Kachalov, Ya. Kurylev, M. Lassas, [38].
This Chapter covers the reconstruction procedure of the smooth Riemannian manifold
M and a Laplace-Beltrami operator corresponding to it, i.e. reconstruction of the
metric g from a set of boundary spectral data (BSD) given on an open part of the
boundary I' C 8M. This Chapter also includes the required uniqueness theorems of
Tataru’s type (Local unique continuation result, Tataru’s Theorem, the uniqueness
Holmgren-John Theorem), see I1. Koch, D. Tataruy, [43], D. Tataru, [56], A. Kachalov,
Ya. Kurylev, M. Lassas, [38], [5], Ya. Kurylev, {45].

The main part of this thesis is Chapter 5. This chapter contains the formulation
and the proof of the inverse uniqueness theorem, which is the new and most valuable
result of the thesis. Together with the main result Chapter 5 contains the proof of

Holmgren-John uniqueness theorem for the piece-wise smooth structure, see [45].



Chapter 2

Definitions and Geometric Description of

the Problem

2.1 Basic notations

This section contains all basic definitions that will allow us to define the admissible
polyhedron. We basically used the ideas of the book by J. Eells and B. Fuglede [25]
and the well-known book on polyhedra by H. Seifert and W. Threlfall [51] to introduce
this subject.

Definition 2.1 (Length)

Let (Y, dy) be a metric space and n: I = [a,b] = Y a path. Its length is

L(n) = Sgp{zdy(n(ti_x), n(t:)}, (2.1)

where the supremum is taken over all partitions m:a =1ty < ... <t =b of I. Say

that 7 is rectifiable if L{n) < oo.
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Definition 2.2 (Length space)
A length space is a metric space (Y, dy) such that for any pair of points yo,y, € Y,

dy(yo, 1) = inf{L{n} : nis o rectifiable path joining yo to 1 }. (2.2)

Such a melric is said fo be intrinsic {or inner).

Every length space (Y, dy) is locally connected. Indeed, every open ball U = {y €
Y : dy(a,y) < r} is connected (even path connected). There is in fact a rectifiable
path 7 joining a and y € U such that L(n) < r, and so n has range in U because, for
any z € 1,

dy(a,y) < dy(a, 2) + dy(2,) < Lin) <. (2.3)

Definition 2.3 {Geodesic space)
A geodesic space is a length space (Y, dy)} for which any yo, 11 € Y can be joined by
a rectifiable path n with dy (yo,11) = L(n).
Definition 2.4 (Globally Lipschitz map)
For metric spaces (X,dx) and (Y,dy), class Lip(X,Y) denotes the class of all glob-
ally Lipschitz maps X — Y, i.e., maps f for which there is a Lipschitz constant ¢ > 0
such that

dy(f(z), f(z)) < edx(z,z), =z, €X. (2.4)
Definition 2.5 (Lipschitz continuous)
Map f is said to be Lip continuous if it is locally Lipschitz. Lipy,.(X,Y) denotes the
class of all Lipschitz continuous, i.e., locally Lipschitz, maps f : X — Y. Thus every

point of X shall have a neighborhood U such that f|y € Lip (U, Y).

Definition 2.6 (Lip homeomorphism)
[ is said to be a Lip homeomorphism if f is bijective and if f and f~1 are both Lip
continuous. Similarly, [ is said to be Holder continuous if f satisfies a local Holder

condition.
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Remark 2.1.1 Every metric space (X, dx) is paracompact. This result can be found
in [25].
Definition 2.7 (Geodesic segment, Geodesic)

A (minimizing) geodesic segment of (Y, dy), parameterized by path length, is a recti-
fiable path n: I — 'Y for which dy(n{s),n{t)) = s —t| for all s,t € I.

A geodesic of (Y, dy) 1s a path 71 J — Y whose restriction to every sufficiently small
compact subinterval I of J = [0,a] is a geodesic segment. In other words, for any x

on n there exists I such thatx €1, andn: JNI =Y is a geodesic segment.

Statement 2.1.0.1 (Hopf-Rinow Theorem) For locally compact length space ¥

the following conditions are equivalent:

1. Fvery half~open minimizing geodesic from a given point eztends to a closed

interval,
2. Every half-open geodesic extends to o closed interval,
3. Closed bounded subsets of Y are compact,

4. (Y, dy) is complete.
Any of these implies that (Y,dy} is a geodesic space.

This theorem 2.1.0.1 is due to Cohn-Vossen, see e.g. [28].
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2.1.1 Admissible polyhedron

Consider a finite simplicial complex K of dimension n see for example, [51], or, [25].
We recall that K consists of a finite set {v} of vertices, and a set {3} of finite non-void
subsets of vertices, called simplexes; ¢-simplex is a simplex with exactly g+ 1 vertices.

Also

e any set consisting of exactly one vertex is a simplex.

e Any non-void subset of a simplex is a simplex.
Definition 2.8 (lin K)
A linear space of all formal finite linear combinations of vertices of K is denoted by
lin K.
~ Definition 2.9 (Closed simplicial complex)
We call complex K closed (i.e. connected, homogeneous, finite} if the following two

conditions hold:

o Every (n—k)—simplez of K is contained in at least one n-simplex (dimensional

homogeneity), k =1,2,...,n.

e Fvery (n—1)-simplezx of K is adjacent to two n-simplices (in this case it is called

interface boundary ) or to one n—simplex and is then a part of the boundary OK.

Notation 2.1 (¢-skeleton of K} The ¢-skeleton K? of K is the complex consisting
of all its simplexes of dimension < ¢q. We denote by S9(K} the collection of all
g-simplexes of K; and S(K) = | JSW(K).

q

Definition 2.10 (The space |K| of K; Barycentric coordinates)
The space |K| of K is the set of all finite linear combinations

a= Za(v)’u (2.5)

veEK
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of vertices of K such that 0 € a <1, Y alv) =1, and {v: alv) > 0} is a simplex
veK
of K, a{v) are barycentric coordinates of a € |K]|.

Then | K| is made into a metric space with barycentric distance d(o, ) between two
points @ = > afv)v and B =3 B(v)v of |K| given by the finite sum
dfe, )" = 3 (o) — B(v))". (2.6)
veK

Then K being finite, | K| is separable and compact.

Remark 2.1.2 The space |s| of a simplex s of K is convex as a subset of lin K.

We will from now on follow the notation from the work ”Harmonic maps between
Riemannian Polyhedra” by B. Fuglede and J. Eells [25], and partially the notations
of W. Ballmann [8].

Notation 2.2 (Polyhedron) We shall use the term polyhedron to mean a connected
compact separable Hausdorff space X for which there exists a closed simplicial com-
plex K and a homeomorphism # of |K| onto X.

Definition 2.11 (Lip Polyhedron)

X 15 called a {Lip) polyhedron when it is a connected compact separable Hausdorff
space such that there exists o simplicial compler K and a Lip homeomorphism 8 of
|K| onto X, i.e. if a metric space X is the image of metric space |K| of some complez
K under a Lip homeomorphism 6 : |K| — X.

Definition 2.12 (Triangulation)

Any pair T = (K, 8} is called a Lip triangulation of K.

We consider K to be closed, X to be compact, path connected and local contractible,
the dimension of X is equal to the dimension of K (the dimension is independent
on triangulation). The Lip Polyhedron X has a metric corresponding via # to the

barycentric metric d on |X]|.
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Notation 2.3 (Vertices and Simplices of X} When X is a polyhedron with a
specified triangulation T' = (K, #), we shall speak of vertices of simplices of (X, T) as
the images under ¢ of vertices of simplices |s| {we can simply write s} of X. Thus our
"new” simplices become compact subsets of X. The interior of k~simplex s of (X, T)
(i.e. the points of s not in any (k — 1)—simplex of s) is denoted by 3. A O—simplex

. . . o
is called a vertex, in this case s = s.

Notation 2.4 (Set of all Wedge Points) Denote by WPH(X) = WPHX,T) the

~ collection of k—simplices of (X,T); by WP(X) = WP(X,T) the collection of all

simplices of (X, T); by W(X) = W(X,T) the collection of all n-simplices.

Notation 2.5 (Subpolyhedron) A subpolyhedron of a polyhedron X with a spe-
cific triangulation T = (K, 8) is a polyhedron X' < X having as a triangulation
T = (K’,B]‘KJ[) where X’ is a subcomplex of K.

Definition 2.13 (k-skeleton)

For 0 € k < dimX the k—skeleton X* of X (the union of all simplices |s| of dimen-
sion < k) is a sub-polyhedron of X, independent of the triangulation of X and closed
in X.

Definition 2.14 {Admissible Polyhedron)

Polyhedron X is called admissible if in some (hence in any, see [25], see also Figure

2.1} triangulation

1. Polyhedron X 14s dimensionally homogeneous, i.e. every (n — k)}—simplex is
contained tn at least one n—simplex, see the left hand side of Figure 2.1, k =

1,2,...,n, nis a dimension of X. The n—simplices are called chambers.

2. The boundary 8X is a union of all (n—k)}—simplices, k = 1,2, ...,n contained
in only one chamber, X is a closed subset of X and a subpolyhedron of (X, T},
independent of the triangulation of X.
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(% @

Figure 2.1: Admissibility restrictions

DRSS,

Figure 2.2: Two types of panels: interfaces and parts of the boundary

3. Every (n—1)—simplex of X is called panel and is adjacent to either two cham-
bers (and is called interface boundary in this case) or adjacent to only one

chamber and then is a part of the boundary 0X (see Figure 2.2).

4. Polyhedron X is (n — 1)—chainable, i.e. any two chambers can be joined by a

chain of continuous panels and chambers, see the right hand side of Figure 2.1.

Definition 2.15 (Star of X, Carrier of a point)
The (open) star of an open simplez s of X = (X, T) is defined as

st(8) = stx(8) = | J{t : t e WP(X) witht > s}.

The star st(a} of a point a € X is defined as a star of its carrier, the unique open
simplez § containing a. Every star is a path connected open subset of X and contains

the star of its points.
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Definition 2.16 (Singular Set)
Denote by & = (X)) the singular set of X, i.e. the complement of the set of all
points of X having a neighbourhood which is a topological n—manifold possibly with

boundary.

We should notice that X is a closed triangulable subspace of X of codim > 2 and
X\X is a topological n—manifold with boundary dense in X.

Definition 2.17 (Normal Circuit (from [24]))
An admissible polyhedron X is called a normal circuit if its singular set £(X) does
not locally separate X at any point, i.e. each point of & has a base of neighborhoods

U, such that U\Z is (necessarily path) connected.

The admissible polyhedron defined in 2.14 is a normal circuit, see (25] for details.

Definition 2.18 (Null set)

Bya nﬁll set on a Lip polyhedron X we understand a set Z C X such that Z meets
every chamber Q (relative to some, and hence any triagulation T = (K,0) of X} in a
set whose. pre-image under § has n—dimensional Lebesgue measure. Denote by Z the

collection of all null-sets Z C X.

Cur admissible polyhedron X is a normal circuit, it is connected as a topological

space, see [25).
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2.2 Admissible Riemannian polyhedron

Consider once again the structures introduced by B. Fuglede and J. Eells, [25]:

Notation 2.6 {(Riemannian polyhedron) The Lip polyhedron X becomes a Rie-
mannian polyhedron (M, g) when endowed with a covariant bounded measurable
Riemannian tensor gq, defined on each chamber  of X, satisfying the ellipticity

condition (see below).

Following (29}, the admissible polyhedron X (M) becomes an admissible Riemannian
polyhedron (M, g) when endowed with a piece(simplex)-wise smooth Riemannian

metric g.

2.2.1 Metric structure

Let T = (K, #) be a specific (Lip) triangulation of a Lip polyhedron X. We shall view
|K| as embedded in a Euclidean space V' via an affine Lip homeomorphism (we refer

- to the Lemma 4.1 from [25], one can find the proof there):

Lemma 2.1 Let K be a countable finite simplicial complex of finite dimension n, and
V a Euclidean space of dimension 2n+ 1. There exists an affine Lip homeomorphism

[ of |K| onto a closed subset of V.

Suppose that X is admissible of dimension n. Choose a measurable Riemannian metric
[]
go on the open Euclidean interior of the chamber 871(Q2) of |K| C V, i.e. in terms
Q
of Euclidean coordinates z!,..,z" of points x = 6~1(p) € 871(Q), gqo thus assigns to

Q o
almost every point p € Q or to z € 671(Q), an n x n symmetric positive matrix

ga(x) = (6;}(2))ij=1,..n (2.7)
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with measurable real entries; and there is a constant Ag > 1 such that
1 igf . i
T2 (E) S gf0EE < ARY (€)Y (2.8)
2 =1 i=1

for ae. z € 9‘1(62) and every € = (£1,..,£") € R™

Notation 2.7 (Uniform ellipticity) The condition (2.8} is independent on the
choice of triangulation (see [25], to this end we have to define, for any'other Lip
triangulation 7° = (K, 0 of X, the Riemannian metric g a.e. on 9"‘1(5 ) for each
chamber £ of T" by covariance). Condition 2.8 is independent on the choice of Eu-
clidean frame on 6"1(502). The second inequality in (2.8) amounts to the components
of go being bounded. Relative to a fixed triangulation T {choose such a triangulation

T) of a Riemannian polyhedron X,
A=sup{Aq: Qe WX, T)} < co. (2.9)

This is a condition of uniform ellipticity and uniform boundedness. The smallest
constant A in (2.9) will be called ellipticity constant of X = (X, T, g).

Definition 2.19 (Admissible Riemannian Polyhedron)

A Lip admissible polyhedron X (see Definition 2.14) endowed with a C™—smooth
covariant measurable Riemannian metric tensor ¢; = g({;) on each chamber Q; sat-
isfying the ellipticity condition (2.8) is called an Admissible Riemannian polyhedron
M= (M,g). We also assume that

gkl(Qi)]zefy # gkI(Qj)’wE'r: i # (2-10)

for each point x € vy, where 7y is & common interface boundary between ; and (5.
Definition 2.20 (Polyhedral Metric) '
The above covariantly defined map

g: 8 gq

on the set W(X,T) of all chambers Q of T, is called the Riemannian (polyhedral)

structure, or metric, on X.
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Remark 2.2.1 Not every admissible Riemannian polyhedron (M, g) can be isomet-
rically embedded in a Euclidean space. G. De Cecco and G. Palmieri in 1993 (see
[22]) constructed triangulable Riemannian Lipschitz manifold (which is an admissible

Riemannian polyhedron) that does not admit any differentiale structure.

Remark 2.2.2 (Kervaire’s example) The problem is that we can not consider
the whole polyhedron M as a Riemannian manifold because of the M. Kervaire’s
results of 1960 (see his paper [40]). An example of a triangulable closed manifold
of dimension 10 was constructed. That manifold does not admit any differentiable

structure, actually, it does not have the homotopy type of any differentiable manifold.

Every connected open subset U of a Riemannian polyhedron M can be considered
as an interior of a Riemannian polyhedron with piece-wise smooth boundary and the

induced Riemannian structure.

Notation 2.8 We consider closed, compact admissible Riemannian polyhedron M,
with piece-wise € -smooth metric g on it, its boundary M = YTy, i = 1,..., Ny,
where T; are (n — 1)-simplices that belong just to one chamber Q,,, m = 1,..., M. We
denote interface boundaries by ¥, or 7. Denote the set of all interface boundaries of
the manifold M by

Ny

IBM) =]y =WP"\oM, N, <co.

j=1
We call the union of all k-simplices WP*, k = 0,..n — 2, as well we can call them
wedge points of M. We call chambers (n-simplices of M) Q;, 7 = 1, M, the interior
of chambers will be denoted by 302, or, equivalently, Q™. We call the W PP the union
of all conical points of M, as before, W = UQ1

Notation 2.9 (Chambers} We need some special notations for chambers. In the
case when we need just two of them (when we consider, for instance, the vicinity of
any interface 7y} we would name them Q_ and 2,. The corresponding metrics are

g* = ¢{Q), see Figure 2.3.
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Figure 2.3: Various notations of chambers

In the present work we assume that all interfaces of the admissible Riemannian poly-

hedron satisfy to (2.10).

Definition 2.21 (Artificial interfaces)
When condition £2.10 is not valid not for all points on the interface v, this is not the
case we consider in the present thesis. We call the interface artificial interface for

the smoothly glued metric tensors.

There exists another important case is the case when metric tensors of adjacent
chambers are glued continuously on the interface. This is the case of gluing by
isometry when we assume that metric is continuous but its normal derivatives have
jumps. Considerations of that kind of interfaces are beyond the scope of the present

work.,
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2.2.2 Coordinates

We need to introduce several types of local coordinates on M, let us start with
Notation 2.10 (Inner coordinates) Any regular (inner) local coordinates
(!, ..,a") = {2z} =%, i =1,..,n,

which are smooth inside some chamber Q% (in some chart on M). From now on we

will mostly use Latin indices to count coordinates with respect to full dimension 7.

Notation 2.11 (Semi-geodesic Coordinates) The second type of coordinates are
boundary normal, or semi-geodesic coordinates, (see [6], [7], [37]), i.e. corresponding
to the interface boundaries y (see the rigth hand side of Figure 2.3), such that {q, ) =
(q,0%) = (g%, ...,q" 1, 0) = {¢%, o}uzi, where q are some smooth coordinates on the

interface v, and o¥ is the distance to y with respect to the metric g%, i.e.

a¥(z) >0, z € Qy,
o= o(z)=0, z €,
-0~ (z) <0, =zeQ._.

We will use Greek letters v, 3,9, ... to count (n — 1) interface coordinates {¢*} =
{q}, .., ¢"'}. We choose the origin M; of semi-geodesic coordinates to belong to 7, so

we choose point M; to have coordinates o = 0, g* = 0.

We can choose these coordinates in the vicinity of v by the following procedure.
Choose local coordinate system (map) (¢',...,¢"1) on v containing point M;. We
introduce local coordinates (z1, ..., z") on Q_ such that 2*(P) = o5_(P) is the distance
from the point P € €2_ to «y in metric g™, corresponding to £2_ and the rest of point P
coordinates are the same as the coordinates of the closest to P point on «y. Stmilarly,
the distance in £, from P to - is equal to —o_(P), and the rest coordinates are the

same as before. Together these coordinates give coordinates smooth on Q_ and Q.
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separately in a small vicinity of ¥ on X, consequently they give smooth structure on

X where 2_ and ., appear to be smooth sub-manifolds.

As o is orthogonal to all ¢® the matrix of metric tensor has the following form in
semi-geodesic coordinates:
+
+ 9as 0
{gij} = “ ;
0 1

where
dx dx
+ _
Jop = (dqo‘ H dqﬁ)gi

is {n — 1) x (n — 1)—smooth matrix of tangent components of metric.

Notation 2.12 (Boundary normal coordinates) We will use various notations
for the semi-geodesic coordinates depending on the basic hyper-surfaces. In the case
when tHe their tangential part lives on some interface v we will denote them as above,
g € v and o the normal coordinate. In the case when their tangential part lives in
the part of the polyhedron boundary I' C OM, or in the boundary of some smooth
subset D of M, we will denote them by z € T ({z*}72] = (z%,...,2"Y) € T), and
{or s) the normal coordinate, pointing inside the manifold. In the latter case we call

these coordinates the boundary normal coordinates.
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2.3 Distance structure on (M, g)

This subchapter contains a description of methods of introducing a distance structure
on an admissible Riemannian polyhedra from [25]. Then, adapting the construction
of G. De Cecco and G. Palmieri {(see [19]-[22]) an intrinsic distance dx (Caratheodori
distance) is defined on X, which thereby becomes a length space, and hence a geodesic

space (see Statement 2.1.0.1).

Remark 2.3.1 We present most of the results in assumption that our metric tensor
is non-smooth being only measurable. All proofs presented are for the case of locally
finite polyhedra as the results can be used for the case of Admissible Riemannian

polyhedron as well.

2.3.1 Intrinsic distance dx

Notation 2.13 (Euclidean Riemannian metric ¢¢) Inaddition to the piece-wise
smooth metric tensor g on M, we shall always consider the Euclidean Riemannian
metric g% on a Lip polyhedron X (corresponding to M} with a specified triangulation
T = (K,8). For each 2 € W(X,T), 6§ is defined in terms of a Euclidean frame on

- 071{¥™) by the unit matrix &;. Thus ¢¢ is by no means covariantly defined and

should be regarded as a mere reference metric on (X, T).

Remark 2.3.2 The ellipticity constant A of M = (X, T, ¢) from (2.9} equals to the
bi-Lip constant in the identity map (X, T, g) — (X, T, ¢®) in terms of the associated

intrinsic distance dag = d3, and its analogue d%, both of which are determined below.

Relative to a given (Lip) triangulation T = (X, ) of an n-dimensional admissible
Riemannian polyhedron (M, g), we have on M the distance function e induced by

the Euclidean distance on a Euclidean space V' in which | K| is affinely Lip embedded,
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cf. Lemma 2.1. This distance e on M is not intrinsic and will play an auxiliary role in
defining an equivalent intrinsic distance d%, = da as follows, by a slight adaptation
of the procedure used by G. De Cecco and G. Palmieri [19] for the case of Riemannian

Lipschitz manifold.

Consider Z defined above, see Definition 2.18. For a given triangulation T = (X, 6)

consider in particular the set Zr € Z obtained from M by removing from each
1]

chamber 2 in M those points of €2 which are Lebesgue points of g% (that is, for every

component g;-?- measurable, see Remark 2.3.1).

Notation 2.14 (Family of paths Lip?(z,y; M)) We denote by Lip?(z,y; M) the
family of all Lip continuous paths 7 : [a,b] — (M, e) with n{e} = z, n(b) =y which
are transversal to Z in the sense that 77(Z) is a null subset of [a,8] for any two

points z,y € M and any Z € Z such that Z O Zp.

The length Lr(n) of such a path 7 is well defined by

)= Y [ JufesToniy <o, (2.11)
QeW(M ,T),.',— 1(qint)

where (n!,...,7") = 07 o 57 in terms of Euclidean coordinates on the open Euclidean

simplex 4-1(2%), and the dot means differentiation.

Write
pz(z,y) = nf{Lr(n) : n € Lip” (2,5, M)} (2.12)

Here pz depends also on T. Clearly, Z; D Zo(D Zz) implies pz, (z,y) > pz.(z, v).
Finally set
dmlz,y) = s%p{pz(w,y) :Z€Z, Z D Zr}. (2.13)

The Euclidean segment [z, 3} C Q can be slightly deformed to a path

n= [m,z] U[z?y] CQ,
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such that n~*(Z) is null. Clearly, pz satisfies the triangle inequality, and so therefore

does d .

For the Euclidean Riemannian metric ¢* on M (induced by the Euclidean distance
e on V) we have similar notions L&(n), p%(z,v), d5(z,v)- In view of (2.9), each of

guotients
Lr(n) pz(r,y) dm(z,y)
Le(m)" p5(z,y)" diy(z,y)
lie between A~! and A. Then

e(z,y) < dx(z,y), forz,y € X. (2.14)

Here the sign of equality holds if z and y are in the same simplex s. This can be

shown by deforming [z,y] into 5 = [z, 2] [z, v] with n71(Z) null and

L% (n) < e(z,y) +¢,

whereby pz(z,y) and hence d%,(z,y) are < e(z,y) +¢.

Since M {X) is connected it follows that d%(z,y) < oo and hence da(z,y) < oo for
any pair z,y € M. By (2.14), d5%(z,y) > 0 and hence da(z,y) > 0 when z # y.
Altogether, das and d5 are equivalent metrics on M, depending on a priori triangu-
lation 7. They are locally equivalent to the given metric on M as a Lip polyhedron

according to Lemma 2.2 below, applied to the star of any point of A,

Remark 2.3.3 (Intrinsic distance) In view of Lemma 2.3 below, dy is called the
intrinsic distance on (M, g).

Proposition 2.3.1

Distance d% is continuous and hence bounded as a function on X x X due to com-

pactness, see [25].

Proof of Proposition 2.3.1. Indeed, for given xg, 10 € X and for any = € s#{xg), y €
st{yo), we have d% (x,z0) = e(z,z0), d%(¥,%0) = e(y, o), as noted after (2.14); and
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50

|d% (2, ) ~ d5{(zo, v} < e(z,70) + ey, 40} — O {2.15)

as (z,y) — (To, ¥} in X x X. O

Lemma 2.2 Let X be a finite Lip polyhedron, affinely and Lip homeomorphically
embedded in a Euclidean space V. The induced Fuclidean distance ¢ on X is then
equivalent to the distance d% associated with the Fuclidean Riemannian structure
g° on X, hence also equivalent {o the inirinsic distance du associated with a given

Riemannian metric g on M.

Proof of Lemma 2.2. We have dpq and d5 are equivalent distances, see also Propo-
sition 2.3.1. In view of (2.14) it remains to show that d%,/e remains bounded on
X x X. Suppose there are sequences (z;), (y;) C X such that
S @50) 00 és J — o0, (2.16)
e(Z;5, ;)
Since d% is bounded on X x X, e(z;,y;) — (0 as j — co. Passing subsequences may
assume that there exists a € X such that z; — a, y; — a. Let wp denote the carrier
of a, i.e., the lowest dimensional simplex of (X, T") containing a (necessary as an inner
point). Let s, resp. ¢, denote the lowest dirnensional simplex, containing wy and also
infinitely many z;, resp. y;; we may assume that x; € s, y; € ¢ for all j. Using a as
an origin, consider in the Euclidean space V' the linear subspaces V., Vi, V; spanned
by wg, s, t respectively. Denoting by «' the orthogonal projection of the point z € V
on V,,, we may further assume that 2}, i} € wy. If s # t we finally arrange that V;
and V; are perpendicular to one another in the sense that for every x € V,, y € W,
the vectors z — z’ and y — ¢ are orthogonal; for if this is not already the case, it can
be achieved by applying a linear, hence bi-Lip, bijection of V' onto itself. In terms of

the Euclidean norm |- | on V we then have

a5z, i) < fzy — 25 + |2 — il 4+ 15 — ol < 3lzy — vyl = Belzy, 14),
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nothing that the vectors z; — :a:_’,, eV,oV,, :z:jT — y} € V., and ny,- —y; € V, 0V, are
mutually orthogonal with the sum z; — y;. The contradiction with (2.16) completes

the proof, the remaining case s = ¢ being trivial, again see text following (2.14). O

Notation 2.15 (Lip(M)) The class Lip (M) is the class of Lip continuous functions
u: M — R (using any of local distances on M considered above). The gradient |Vu}
is the Riemannian gradient, defined a.e. in M (that is a.e. in each @ € W(M,T)),
for a given triangulation (K, #) of M, by Rademacher’s theorem for Lip functions on

Euclidean domains, applied to u expressed in FEuclidean coordinates in the interior of

0-1(9).

Notation 2.16 {Lip(z,y; M)}) Also Lip (z,y; M) denotes the family of all Lip paths
7 [a,b] — (M, daq) joining z to y.

Lemma 2.3 (Distance function on M) 1. The distance function dp = d5; on
an admissible Riemannian polyhedron (M, g) is intrinsic, in particular indepen-

dent of the chosen triangulation.
2. (M. g) is a length space (hence a geodesic space, if complete).

3. da equals Caratheodory distance

dpmz,y) = max {[u{z) —u(y)} : v € Lip(M), |Vu| < La.e. inM}.

Proof of Lemma 2.3 (see {25]). First note that for given z,y € M, there exists a
null set Z7 € Z with Z; O Zr and large enough so that

pz;(x,y) = dmlz, v)- (2.17)

(It suffices to choose an increasing sequence (Z;) € Z with Z; D Zr so that

pz;(z,y) — dm(z,y), and to take Z1 = |J Z;, noting that Z3 D Zr and pz: (z,y) >
J

pz;(:y).)
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(1) Fix z,y € M, and consider any triangulation 77 = (K, #"). For any chamber
Qo € W(M,T) and any chamber Q) € W{M,T") such that U := Qaﬂﬁb # ) we

have the Lip homeomorphism
g1 09]9‘1([;) : G_I(U) — 9’—1(U)

between the open subsets §-1(U) and 6""1(U) of the Euclidean simplexes §~1(Q2)
and 6'~1(Q™). This Lip homeomorphism is differentiable off some Lebesgue null set

Zop C 071(U), mapped by @ onto a null set 8(Z,5) < U. Writing

Zo = Z7 U Zp U\ 8(Zag) (€ 2),
a3

we have for any Z € Z with Z D Z, and any path 5 € Lip®(z, y; M)

Lr(n) = L (n)

because this holds by covariance for the contributions from 771 (Q, N Q) to Le{n)
and to Ly(n). .

For any Z € Z with Z D Zp we have the quantities p%(z,y) and d,(z,y) corre-
sponding to pz(z,y) and da(z,y), respectively, but relative to T in place of T For
any path n € Lip?“%(z, y; M) we obtain

pz(:Y) < Pruzy(z:y) < Lro(n) = Lr(n).

By varying n € LipZY% (z,y; M) (C Lip?(x,y; M)) we conclude that

Pz(2,y) < pzuze(, ¥) < dulz, ),

and finally dy,(z,y) < dmlz, ), similarly das(z, ¥) < dy(z, ).

(2) With the intrinsic distance we associate in the standard way the intrinsic length
L{n) of a Lip path 7 : {a, b] — (M, da4) (or equivalently 7 : [a,b] — (X, €), by Lemma
2.2, which is applicable because only finitely many chambers of M meet the compact
image 7([a, b])): .

L{n) = S‘ipZdM(xe‘—l: i), (2.18)

i=1
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where 7 ranges over all subdivisions of [a, 8] :

O=ITg < T < .. <Ep_1 <Tp=0

Returning to the null set Z3 from (2.17) (for given x,y € M and a given triangulation
T of M) we may clearly choose Z = Z} € Z so as to satisfy (2.17) for all pairs of
points z,y from a countable dense subset AM* of M. With that set Z we show that

L(n) < Lr(n) (2.19)

for any Lip path n : [a,b] — (M, e) such that 57(Z) is null. Via a subdivision
of [a, 8] this in fact reduces to dm(z,y) < Lr(n). For given € > 0 choose z*,y* €
M* so that dm(z, %), dm(y,y*) < e. By the definition of pz(z,y), it is less than
dai(z, 7)), and there are paths o € Lipz.(w*, z; M) and 8 € Lip?{y*,y; M) such that
Ly{a), Ly(8) < €. The path n* = a UnU S belongs to Lip?(z*,y*; M), and by the

choice of Z above,
dmlz,y) € dm(a®,y") + 22 = pz(z",y") + 26 < Lr(n") -+ 26 < Lr(n) + 4e.

This shows that dam{z,y) < Lr(n), thus establishing (2.19).

We are now prepared to show that (M, du) is a length space because
dm(z,y) = inf {L{n) : n € Lip(z, y; M)} (2.20)

for every z,y € M. Choosing Z = Z} € Z conforming with {2.17) we then have
from (2.19) when 7 ranges over Lip?(z,y; M)

infL(n) < infLr(n) = pz(z,y) = dum(z,y).
A fortiori, the inequality sign > holds in (2.20). The opposite inequality in (2.20) is

obvious.

(3) Let &z, y) denote the supremum of |u(x) — u{y)| for the stated functions u. For

any such function u take for Z the union of Zr and the null set of points = of M\ Zr
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at which u is not differentiable {as a function on ™ 3 z, ) € W(M,T)) with
|Vu| < 1. For any n € Lipz(x, y; M) we then have

d }
M@ -u= 1% [ Swems S [ vwennl<fw
QGW(M,T)W_ 1(Crint) QEW(MfT),,T- 1(gpint)
by Cauchy-Schwarz, < -,- > and |-| denoting the Riemannian metric and the norm on

(the tangent bundle of} {2 for each £ € W(M, T}. It follows that |u(z) — u(y)} <
pz(z,y) < dumlz,y)-

In the opposite direction, note that the Lip function u : da(z, ) on M completes in
the definition of 5(x,y) because |Vu| € 1 a.e. in each Q™ @ € W(M,T), by the
triangle inequality, noting also that dum(z,y) equals the usual Riemannian distance
between two points 2,y € Q™. (This is because the usual geodesic segment [z, y] can
be slightly modified to a path, e.g., [z, z]Ulz, y] of class Lip?(x, y; M) and the length
only slightly bigger than that of [z, y], by the usual Fubini argument, assuming y near
x.) This ends the proof. U

Also the following Lemma has been proved.

Lemma 2.4 Thus for any triangulable admissible Riemannian polyhedron (M, g) the
intrinsic distance dp(z,y) introduced above in (2.20) equals the usual Riemannian
(Lip) distance between x andy. Also, (M, g) is a geodesic space due to the Statement
2.1.0.1, thus any fwe poinis on M can be joined by a Lip continuous rectifiable path
n, such that L{n} (2.18) is a distance between these points, and v has a Lesbegue

measure zero intersection with all null sets (2.18) of X.
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2.4 Laplace-Beltrami operator

On an admissible Riemannian polyhedron M the Sobolev space WZ(M), defined as a
completion of a suitable space of Lipschitz continuous functions in the Sobolev norm,

is a Dirichlet space. We remember that dq is an intrinsic distance on (M, g).

Notation 2.17 ( Lip**(M)) We denote by Liph?(M) the linear space of all Lip
continuous functions u : (M, da) — R for which the Sobolev ([50]) (1,2)—norm [Jul]
defined by

Julf? = [+ [9up) (221)
M
is finite for M compact, here Vu the Riemannian length of the Riemannian gradient

on each ;. Here the integration is taken with respect to the Riemannian volume
measure on M, i.e. on each Q, € WP"(M). By Randemacher’s theorem Vu exists
a.e. in each Q, (hence a.e in M), see [28], [27], [54], [55], [61], [52].

As metrics g; on each chamber §2; are smooth up to the boundary, we introduce a
map which is H!(Q) smooth, then we consider our polyhedron M as a collection of
chambers and obtain functional class H'(M) as a closure of all Lipschitz functions
on M. We introduce a Dirichlet integral, i.e. a quadratic form in Ly(M) by the

following

= > [+ [VeP), wlon, =l (2.22)

QeW P (M7,
where we considered u as a finite set of H'-smooth functions on each chamber,
W P*{M) denoting the collection of all chambers Q, of M (relative to a given tri-
angulation). The Dirichlet integral Q¥ introduced by (2.22) is positively definite in
Ly(M), semi-bounded from below, then there exists a self-adjoint Euler-Lagrange

operator corresponding to it, which is locally a Laplace-Beltrami operator,

Au = Dgu = g 3 8(g" (g7 0u), (2.23)
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Hu
ami ¥

where 9; = i =1,.,mn and g := det{g;), and (9¥) = (g;)~". Consider now
admissible Riemannian polyhedron (M, g}, where metric g is determined above. In
general, there is no selected coordinate system on M but one can still define the
Laplace operator locally iﬁ any chart x inside each Qn, by using (2.23), where g;} is
now the Riemannian metric tensor on €, (which as we saw above determines the
length by (2.18)) and locally on <y for ¢ = 0. Definition (2.23) is covariant, that is,
in any other chart this operator will have the same form. We should consider what’s
happening on the interfaces. Now we consider the Laplace-Beltrami operator Ay
locally on each side of v (see Notation 2.9), which in local semi-geodesic coordinates

has the form

1 ..
Ay = Ay = ﬁ(aagﬂﬁ\/gaﬂ +0,/90,), g=detgy, i,5=1,.,n, (2.24)

where d, := 52—&, Op =0, := 8—65 and

gt, o>0 g*, (q,ot) ey
g= , Or g =
g, o0<0 g7, {q,07) € Q_.

We define H}(M) to be the closure of C§°(M) in WZ(M).
Definition 2.22 (Weak solution to the Laplace-Beltrami equation)

We define a weak solution to the following Problem
Au = f, 'u|3M = 0, (2.25)

as a function u € HY (M) that satisfies the equation Au = [ in the sense of distribu-

tions. This is equivalent to the integral inequality
—[Vu-Vv :ffv, Vv € Hy(M),
.9

u is then from the domain of Dirichlet Laplace-Beltrami operator.

Let us determine the domain of the Dirichlet Laplace-Beltrami operator for the weak

solutions on admissible Riemannian polyhedra. Consider for simplicity the integration



24. LAPLACE-BELTRAMI OPERATOR 33

over M = 2_ U €., as there are finite number of interfaces we can generalize the

result for all of them afterwards.
I == f(Au)vﬁdx = j—l—ai(géjﬁc’?ju)u\/f;dx.
Q Q Ve

Now we substitute the form of the Laplace-Beltrami operator (2.24) near the interface

and separate the integral two integrals over {_ ans £);, thus

L= j (Bag®® /T 05u)0(q, 0)dgdo + ] (0ug? /T 0gu)ola, 0)dado
Q.- LS

+ [ (8, (V9= su) u{g, 0)dgdo + f (95(\/g0,u) (g, o)dgdo.
(98 Q4

The first two integrals in the latter formula do not contain any problems as all tan-
gential coordinates and parts of metric are smooth, so we will‘ not deal with them,
we restrict ourselves only on counsiderations of the last two integrals which contain
normal to v derivatives, that have jumps. By integration by parts, we obtain spe-
cial conditions for the function u to be a weak solution of A on M, assuming that

boundary terms on dM vanish due to the Dirichlet boundary conditions.

L= [ (89 8.u)v(q,0)dgde = ulAv dqdo,
/ /

Ct_

here Cif) is a notation for the closure of 1, i.e. we consider the chamber with its

included piece-wise srooth boundary. Let us show that the latter is valid:

I, = f\/g"é‘aula:gvdq — /u@avl%\/g"dq
e ¥

+//u(8ﬂ/§:@av)dqda

We gave the same formulae for the domain ., thus for the boundary terms to vanish,
we have to require some special interface boundary conditions to be satisfied for all

function from the domain of our Laplacian.
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Notation 2.18 (Interface Continuity Conditions) We call the following condi-
tions [47] the interface y continuity conditions when they are valid on the inter-

face «y

[f]['v = [\/E—faof]l’r =0. (2-26)

Notation 2.19 (Function jump) Here [f] is a special notation of a function

jump on a smooth interface v between two smooth compact areas Q0_ and ., i.e.

=5k =

Thus we have shown, that the Laplace-Beltrami operator introduced above is self-
adjoint when it is determined in the following domain, its closure is called the Dirichlet

Laplace-Beltrami operator and will be denoted by A,.:

Notation 2.20 (Domain of the Laplacian) We denote the domain of the Dirich-
let Laplace-Beltrami operator (2.24) on the admissible Riemannian polyhedron M
by

D(A(M)) = {f € H'( Q)+ [f, =0, flr, =0, fl, € HV*()}, (2.27)

or, equ_ivalently, for M=Q_UQ,, yCQ_UQ, : we have
D(2y(M)) = D(A) = (2.28)

{2 = 100 171, = o VI gk = VT g £ =0}

Notation 2.21 (Wave operator) We have one more useful notation:

32

TG

— Ay, which is a D’Alembert wave operator. (2.29)
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2.5 Spectral problem

We state a spectral Dirichlet problem, supplying the operator with continuity condi-
tions on the interface and with boundary conditions such that this problem will have

a unique solution (see [46]). Thus, for M

—Agpr(x) = Mpr(x), @ € D(4y), x € M,

(2.30)
Sak(x)lf‘ s =0,
for the problem near the interface we consider M = Q_ U1, then
4
—Asiop(X) = Axepr(x),
@klropy = 0 is the Dirichlet type boundary conditions, (231)
L .

continuity conditions of the function and its normal derivative

 on the interface, i.e. interface continuity conditions-y,

+ +
P » (qv o ) € Q-i- H
where @i(-,-) = ¢ are the global eigenfunctions of the oper-

Py (@07} €0,
ator considered on M = Q_[J, and Ay are the corresponding eigenvalues. As

above, for the uniqueness of the solution of this problem we supplied this equation
with additional interface (continuity of the normal derivative, continuity)

conditions.

Remark 2.5.1 Without a loss of generality, we assume that we have chosen starting

open part of the boundary I’ such that it does not intersect any singular point M,

or, say, .

The standard technique of the spectral theory of elliptic operators ([3], [14], [16], [26],
[27], [53]) implies that there exists an orthogonal basis {3 }52, in L#(M) s.t. each

@k is a weak eigenfunction of A in M with an eigenvalue A, = At (M), and

k—oo
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Consider the properties of the eigenfunctions of our problem (2.30), or (2.31). Our
metric tensor is C* smooth up to the boundary inside each Q™ it satisfies the elliptic
regularity property as well, see (2.8). We want to use the fact, that the eigenfunctions

wr(x) specify points on M, i.e. that if
or{z1) = @r(z2), for, k=1,2,..., then z; = x5,

and then ;, form a basis in Ly(AM). These results can be found in the following books,
[46]; [59], [60]. The ruff idea is to use the fact that H' can be compactly embedded

into L2.

The following result is proved by O. Ladyzhenskaya, see [46].

Lemma 2.5 If domain M has a piece-wise smooth boundary OM, then a bounded
set from HY(M) is compact in Ly(OM).

Consider u(z) € D{A(M)) and consider «y is a subset of some interface surface.
Consider v such that q* € ¥ are some smooth coordinates, ¢ = 0 for . Consider a
cylinder

Qs=Qs(N={x:0<0<4,q*cy}ec M.
For u(x) € D{A(M)) we can construct a sequence of smooth functions {u{™(x)} such
that it converges in L3{@s} to u(x) and such that u™ converges to Uy, 10 La(Qs).

Consider .
o o Sulg®, T
) ol 0 = [P4LTar
0

for u € D(A(Qs)), then integrating over v and taking squares of both parts, we have

o 2 o
lug®,0) —ula® Ol = [ | [rar | dm<af [Grras
7 \O 0 v

and also (see {46]) we have the following estimate:

/uz(qaao)dqa < ; f u?(z)dz + & / uld.

e Qs(v) Qs(7)
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Lemma 2.6 {Traces of functions on the interfaces) The consequences of the lat-

ter estimates are (see [{6]):
(i) functions w™(z) converge in La(v);

(ii) the function which is defined ony as a limit of u™ () in Ly(7y) is naturally called

the trace of u(x) on v;

(i) the traces of u(g*, o) ony are elements of La(7y) and depend continuously on the

parameter o € [0, 9];

(iv) the traces of the element u(x) € HY M), determined on vy as an element of Ly(7),

does not depend on the choice of the sequences of smooth functions {u™(z)}.

Remark 2.5.2 (Extra Information) (see [25], [59]) For any interface ¥ C M, the
continuous trace map u — ul, : Lip!?(M) — Lo(7y) and that map extends uniquely
to a continuous map W2 = HY (M) — Ly(7), likewise called trace map, the trace

map extends continuously to a a map T : H(2) — HY2(~).

Remark 2.5.3 (Cauchy sequences) There exists function u‘™(x) € C*=*(M), con-
verging to u(x) in H{(M™), |Tu(™ — Tu®| 1, (0M) < Cllul™ — w1 pginsy, sO

that {Tu(™}2_, is a Cauchy sequence in Ly(9M). Define Tu := lim Tu(™), the limit
= OO

taken in Ly(8M), according to considerations from [46], [27] (the boundary OM can

be considered as a finite union of I'; and «y;) this definition does not depend on the

particular choice of smooth functions approximation .




Chapter 3

Gaussian Beams near the Interface

Consider two anisotropic media £2_ and £, with a comm'oﬁ part which we call the
common interface . Assume that the dimension of €2 is n, and the interface v is a
hypersurface. Consider £2.. to be C*°— smooth up to the boundary 9€2. Riemannian
manifolds. Denote Riemannian metric tensor on {1 by g%, ie. g% = g(fl). We
suppose that

9 b # g%y (3.1)
Without a loss of generality we assume that the solution during time o > 0 won’t leave
the domain of regularity of semi-geodesic coordinates and won’t reach the manifold
boundary 80, | dQ_. The present Chapter contains the description of basic Gaussian
beams techniques (6], [38], [36], {48]) and results from paper [41] for the anisotropic

media with an interface.

3.1 Gaussian beams - " quasiphotons”. Definitions

We seek the solution to the wave equation in the form of a Gaussian beam reviewing

the well-known procedure from papers of Babich V., Ulin V., [6], Kachalov A., [36],

38
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Figure 3.1: Incident Gaussian beam and the interface

Ralston J., [48] and others. Gaussian beam is a complex-valued asymptotic solution

to the wave equation such that

v’ starting moving from the point on the boundary in some direction, the Gaussian
beam is then concentrated at time ¢ near the point u(t) on the geodesic deter-
mined by the same starting point and same direction. In other words, Gaussian

beam decays fast on increasing the distance from that point,

v it propagates with unit velocity along the geodesic u(t) (see Figure 3.1).

Such a solution can be obtained as a unique solution of the initial-boundary value

problem for the wave equation, assuming that the source f°(g;t,2), z € T is located
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on the boundary [y in the vicinity of the initial point My(zy, 7o) at time —ip <
0, zg € [y, where (z,7) are semi-geodesic coordinates corresponding to T'g, ie. [y ==

{x]7(x) = 0} and {z* are some smooth coordinates on I'g}. Denote by

U*(t,z,7), >0
Ult,z,7) =
U=(t,z,7), <0

the solution of the following problem

QU — AU =0,U=0, in Mx[—to, T}
Ult=—to = 0Ut=—t, = 0, (3.2)
Ulry = (g3t 2),

where T > t3. Here
e t,2) = MO, z) exp{ic™10°(t,2)} VO(z) (3.3)

is a functional class on I'y x R, x° is 2 smooth characteristic function in the vicinity
of point (—to,2o), where M, := (we)~1, V“(z) is a given smooth function, ¢ is a
small parameter, 0 < £ < 1. The amplitude function can be presented by a sum of
smooth homogeneous polynomials on the distances (z — zp) and (t +tp) with complex

coefficients, the phase function has the following form
1 :
60(t,2) = —(t +0) + 5 (H'(z - 20), (2 — 20)) + (¢ + to)", (3.4)

where (-,-) is a euclidian inner product, (H°) = H?, SH? > 0. We follow papers of
A. Kachalov, [37], [36], and A. Kachalov, Ya. Kurylev, M. Lassas, [38] to introduce
the following definitions:

Definition 3.1 (a Finite Gaussian beam of order N)

A Finite Gaussian beam (Finite Gaussian beam) of order N is a function

Un(e;t, q,0) of the following form:

Un(e;t, q,0) <" M. exp{—(ie) "On(t, ,9)})_u(t, g, 0)(ie)’, (3.5)
=0
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where phase function On(t, q,0) satisfies conditions:

SON(t u(t)) =0, uft) is a geodesic, {(3.6)
SO (t, g,0) > Co(t)dist?(u, p(t)), dist(w, u(t)) # 0, (3.7)

here Cp is a continuous positive function. We have the following inequality valid for
the beam:

|B,Un(est, q,0)] < C{(2t) M.V, (3.8)

where C(2tg) does not depend on ¢,

s=(q ) = "(”), Y = ult), (39)
o o(t)

where 0 < 1 < 1/6. The phase and amplitude function Taylors have the form:

K(N) K(N)

ow= Y 00 = Y 2u- ey, k=2, @ao)
z1 1g=1
L(N) L(N)
w= 3wt = > 2y, Lo =22 gy
I>1 [8]>1 .

at that dist{u, u(t)) = dist((q, o), (g(t),o(t))) is the distance in Q.
Notation 3.1 (Imaginary part) We denote by 38 the imaginary part of 6.

Remark 3.1.1 Lemma 2.49 from [38] allows us to restrict ourselves on construction

of a finite number of terms in phase and amplitude expansions, see (3.10), (3.11).

Remark 3.1.2 The finite Gaussian beam Upn{e;t,q, o) introduced above is concen-
trated near u(t), i.e. ||Un(e;t, )|, llz2 = O(1). Finite Gaussian beam decays expo-
nentially

1Un(Est, )0 Unang, || = OP),

for any p > 0 outside of the ball B,(u{t)) of radius p > 0, p ~ €2~ (i.e. on the
distances more than O(g'/27), 0 < 5 < 1/6 from the geodesic p(t)).
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Notation 3.2 (Formal series equality) We write =<* when there the equality of
formal series up to the order k over all powers ¢,t,4%,..,¢" 1,0 and their combi-
nations takes place {we do not care about the convergence here); we denote a for-
mal asymptotic (algebraic) expansion by x*, ie. we write f(¢,Y(?)) =* 0 when
8% F(t, Y (¢))|v(5)=0 = 0, where |8} < k is a multi-index. If index k is absent then the
expansion is true for any k.

Definition 3.2 {An impulse, a quadratic form)

The first terms of the phase expansion Oy of the Gaussian beam have special (poly-

nomial) notations

01(¢, % 0) = pa(t) Y™ + pa(t) Y™, (3.12)

where p(t) := (pa(t),p.(t)) is an impulse of the Gaussian beam and
o 1 : I 2
6a(t,q%,0) = 5 Hop(t) Y™ Y 4+ Hon() YO Y™ + s Han(B)(Y™), (3.13)

where
Hop(t) Houl(t)

Heg(t)  Hun(2)

is called the quadratic form which contains the divergence of rays end a form of the

H(t) ==

bearn. Consegquently 0;(t,q%,0) are homogeneous polynomials of order I with respect

to Y. We introduce notation for higher order terms of the expansion:
1
93 = ‘l—!(Qal...a; Yo V™M CelQa1...ag_1n Yo YM- YR 4 .-),

where CF are Bernoulli coefficients, The terms terms of order | > 2 are additional
(correctional) and are of minor imporiance comparing to the impulse and quadratic
form.

Definition 3.3 (Formal Gaussian beam)

We introduce a Formal Gaussian beam (Formal Gaussian beam) by formal ez-
pansion in g:

Uleit, 0,0) = M exp{~(ie) 'O(t, .00} S (ie)ult, o),  (3.14)

=0
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where

ot q.0)= S-0t) = 3 50 - ey (3.15

1>1 151>1

Definition 3.4 (Gaussian beam of order N)

Gaussian beam Uy of order N is a solution to the following problem

OZUN — AUy = Oy =0, (t,q,0) € [—to, to] X M,
) UN(_th q, J) = UN(E; _tO: q, O'),

atuN(_tD, q, J) = 8tUN(€; —tO) q, G):

(3.16)

| Un(t, ,0) It = Un(eit, 4, 0)Ir,

We should mention that
18005 (U (6,0, 0) — x(t,0,0)Uw(es,0,0)) | < CMLeN-0% i >0, (317)

here  is a multi-index, &5 denotes partial derivative over n spacial coordinates x =
{q*,c}, x is a characteristic function (smooth mollifier on M x R) equal to one in

the vicinity of & = p(t) and equal to zero outside of this vicinity.

3.1.1 Solution form

For the wave equation to have unique solution we should supply it with interface
continuity conditions on the smooth interface v between 2_ and €2, see (2.26) (see

e.g. M. Popov, [47}):
_ r—-@b[‘ ,...._3@(
Uu |’)’ =u+|'¥! 80' | = ao_ I (318)

where U* is the field value in _, and Q. We seek a solution in the form of in-
cident and reflected waves in the “first” medium Q_ and transmitted wave
in the “second” medium €. Denote these waves by U™, U™f U' correspondingly

(see Figure 3.2). Recalling the representation of formal Gaussian beam (3.14) and
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Q_I_, g+ ﬂtr

o+ y7540)

Figure 3.2: Incidence, reflection, transmission Gaussian beams

assuming that it incidents the interface at the origin of semi-geodesic coordinates M;

at time £ = 0, we write conditions:
Um(e; ta q, 0) + U'rEf(g; t: qa, 0) = Utr(e; t) qQ, 0)! (319)

oyn ouref autr
- 2 (e . — + I
Vg (@,0) [z =(Et0,0) + 5= (1,0, 0)] < /g*(q,0) 5o Eha,0). (3.20)

Thus, we write solution in the form:
U+(E; t,q, J) = UtT(E; t,q, J)a U~ (6; t,q, l'J.) = Um(sr t,q, J) + Uref(E; t,q, G)'
\
\
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3.1.2 Main resuits

We will construct three formal series U(g, -), U™/ (g, ), U' (¢, -) and assume that all
three can be smoothly continued into another domain Q_1}2;. We truncate these
series at order N and construct finite series UiP(e, ), Un’ (e, -}, Ut(e, ") in Q- and
2. We will show that these solutions are close to the required solutions to the wave
equation (Gaussian beams) in the H!-norm. Let U™ propagate in £_ along the
geodesic (£™(t) 1= (¢%(¢), ¢ (t)) and reaches the point My = (¢%,5) = (0,0) on the

interface -y at time £ = 0.

Theorem 3.1 (The main Gaussian beams Theorem) Let the formal Gaussian
beam U™ (8.14) start movement at time —ty < 0 at the point My = (2,70} € I'o and

reach the interface  transversally at point My € y at time t = 0. Assume that
0< gplpf < 1. (3.21)

Then

1. Fort > 0 the solution to the wave equation can be presented by a sum of two
formal Gaussian beams U™ and U'; the wave U reflects from the interface
and propagates then inside Q_ and U™ refracts from the interface into (1,
Both beams U™ and U can be constructed if the incident beam U™ is knoum.
Constructed by that procedure formal Gaussian beam has all properties to be

considered as asymptotic approzimation to the required ezact solutions U™l U™,

2. There are anisotropic analogues of Frenel’s and Snell’s geometric optics laws for
the incident, reflected and transmitted beams. The reflection and transmission

angles can be represented in terms of the incidence angle.

3. For any N one can construct the exact solution is e Gaussian beam. This

solution U™ satisfies equation D,U™ = 0 and differs from constructed formal
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Gaussian beam U + U};ff in Q_ ond UY in Q4 by function which is small
enough with sufficient number of its derivatives. In other words, for any N
there exist constants p(N) and Cn such that the difference between the ezact

solution Un to the wave equation and formal Gaussian beam is

[ty — XU lloow (g tolpiagy) < Cwe™™.

The first and the second statements of the theorem will be proved constructively in

sections 3.2, 3.4, the third statement will be proved in section 3.5.

Remark 3.1.3 As g7,(q,0) # g75(q, 0), the order of transmitted wave coincides with
the order of incident wave. In the case of continuous metric tensor has discontinuous
derivative(s), the order of the transmitied field is weaker, but this investigation is

beyond the scope of this paper.

Remark 3.1.4 In the case when the condition (3.21) fails we have total internal
reflection. The boundary case g5° pirply = 1 corresponds to the tangential to the
interface direction of the transmitted wave U propagation, we exclude this case
from our considerations because the ray expansions fail to be valid as the interface

becomes characteristic.

3.1.3 Formal series

We follow procedures introduced in papers by V. Babich, V. Ulin, {6}, A. Kachalov,
[36]. Consider the wave operator 0, (2.29) applied to finite Gaussian beam Un(e; -).
For the series to satisfy wave equation asymptotically the phase @y and u; should be
the solutions of Hamilton-Jacobi equations and transport equations correspondingly.
We omit captions ”in, ref, tr” as the following is valid for all three waves. We write
out Hamilton-Jacobi equations for the terms of amplitude expansion:

0On 2 00N OOy 0Oy

(%)~ 5 o~ 7] =0, (3.22)
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thus, when they are formally satisfied for Oy, we write out equations for the amplitude

functions. The operator Lo, is called the transport operator:
B@N 3’11. 89N Ju 3@1\{ 8u
L g 9 4 (O - . .
5 o e g Y as oo T (CON) U (3.23)
The first approximation to the amplitude functions follows from
[(891\:)2 _ 390N 8ON _ (89N
ot ' Y o o Voo

Equations for the next amplitude approximations, = 1, ..., N take forms of transport

E@N’LL =2

) uglt, q,0) = 0. (3.24)

equations:

Loyu = Oguiy, 1=0,.,N, us(t,q,0) =u_y(t,q,0) =0. (3.25)

3.2 Phase functions

We construct O3 (t,q, o), O%(%, q, ), assuming that they have form (3.10) and that
Gaussian beam satisfy wave equation and equate to zero the coefficients corresponding
to the same powers of & (starting from £72). We substitute the ansatz (3.14) into the
wave equation. Firstly, we will study phase function of the incident field ©3(¢,q, 7).
Secondly, we will show how one can obtain finite Gaussian beam 6% (t,-), ©%(t, ) as
a series of finite homogeneous polynomials in the terms of the incident field. We will

investigate the differential equations, that are satisfied by the terms of those series.

3.2.1 Main equations

Consider finite Gaussian beam U¥(t,q, o), propagating non-tangetially to the inter-
face v along the geodesic g™(2) := (¢2(t), 0:n(t)). Following the procedure introduced
in, for instance, see [38], consider O, U (¢, q, ). We have already seen that the phase
function must satisfy Hamilton-Jacobi equation (3.22). By construction, the waves

must propagate with unit velocity, hence the etkonal eguation for ©F :

o6 go'r o6
af N N N2
e 5t () =1 (3.26)
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Introduce new notation and rewrite {3.10} (or (3.15)):

(t,q,0) = (P™(0)!, Y™(2) + % (HOY™(0),Y"®) +..,  (327)
inn — (m pa(t)
P (t) (P1 (t) pn—l(t) ( ) ) ( Pi,,n(t) ) ’ (3-28)
q" — Gin(t)
. - . . @ g2 (1)
Y = 5"" _ m(t) _ _ q Gin , 329)
W=y ¢ - g2 ) ( 7 — oinl?) ) (
g — G'in(t)

H5 () Hon ()

where p(t) was introduced in (3.9). Continue standard procedure of Gaussian beams

Hi”(t) o= ( Hm (t) n(t) ) , (3.30)

construction (see, for instance, [6], (36]), the eikonal equation (3.26) implies the equa-
tion for all terms in expansion (3.10), including Hamilton-Jacobi system of equations
(3.34) for impulses (3.33) and Riccati equation (3.35) for the quadratic forms. Denote
the hamiltonian of the system by h:

hn(q,050) = (P, P)Y2 = /e B (OpR () + (i () = 1, (3.31)
) a®in Bein a@in ] 8@in
in\2 __ ab = oe.@ in, in N2 2
(h' ) =g- aqa aq,g +( 60’ ) g- ap[i +(p'n,) _( 6t ) ’ (332)

then the impulse equation is

g pi () + )’ = (3.33)

Hamilton equations (canonical equations) are:

4

qul(t) = %’;: hmga.@pm (t)

O’m(t) = %’;1: == hmpm(t)

jin n in in ag2?
B (t) = _%hT = — P ()P (t)FqT,

pin(t) = %2 = — oL pin ()i (1)

(3.34)
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The solution of this system is a bi-characteristic (¢%,(t), i (t); p2(t), ¥'*(t)). The third

equation which is satisfied by the quadratic form of the Gaussian beam is the Riccati

equation:

d
dt

where the coeflicients (B™) =

_Hin + D?Ln 4+ (Bin Hin + H'in (B'm)t) + H’in Cz‘n Hin — O,

(3.35)

Bz‘n*’ (Cin)t = (inr C, (Din)t — D"t — D are

n x n matrices of second derivatives of hamiltonian, taken at point {q,o;p) =

(s (2), 0in(t); P™(2)) on the bi-characteristic:

pin  pin 9%hin  grpin
Din — af an Bq°HgP B 0a (3 36)
in  pin hin  Rpin ’
ng nn dobgP do2
B,@m Bn’,—jn H2pin S hin o
Bin — o o — | 9°9ps  9¢°Opn (3.37)
BB‘in Bnin 92him S Rin '
n n 888p,  Bodpn ‘
Caﬁin Ccmiﬂ H2pin H2pin
Cm — — Opalps  Opalpn ( 33 8)
Cn‘gin C‘n’nin H2pin o2pin
6]9.,18}9‘5 6;01?1

Our next step is to obtain equations for the higher order terms. Note that all con-
structed equations are recurrent because each time the higher order terms of the
phase vanish along bi-characteristics. The homogeneous term 6{* of the order [ in
the Tailor’s expansion (3.22) depends on 67, where m < I+ 1. Recall that terms
containing 6%, equal zero along bi-characteristics. Finally the obtained differential

equations for the homogeneous polynomials 6{®, I > 3 are linear (see [38]),

ag;’n (én)i 395“ inyj _ in _
N a(Yi“)i(Y ¥ =R, 1=34,. m<Ll (3.39)
The components N}”y’ form n x n matrix:
21 in 27 in
.“””’tzah oh H" =[B! H. T 4
.N; ( ) 3.7;":3}')3' + 3‘pi5’pk kj [Bm + CmHm]J: (3' 0)

where matrices B*", C** were determined above in (3.37)-(3.38).
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Remark 3.2.1 The obtained equations (3.39) can be reduced to the linear ODE
with respect to ¢ for 6;*(t). They require initial data to be given for the uniqueness of
their solutions. Note once again that those equations obtained for the incident field
can be written formally for the reflected and for the transmitted fields, as we used
only general properties of Gaussian beams on obtaining them, as we equal coefficients

of the homogeneous polynomials considered.

3.2.2 Required preparations

Consider phase function expansion as a series (3.27) and re-expand it in the vicinity
of t =0, i.e. we expand it into Tailor’s series P™(t) (3.28), H™(t) (3.30) and Y™ (¢)
(3.29) and construct new forms, now with respect to n + 1 variables ¢, q, 0. Denote
these néw forms by ?m, 7] n_j.e. tilde above the notation means it is a coefficient of

the new form, obtained as a result of the expansion:

g* — 65, (0)t — 35 (0)% + ...

Y®(t) =
0 — Gin{0)t — 25, (0)2 + ...

. _ . . 1.
N(t,a,0) < fot + Bilq” + Do + 5 Hogt? (3.41)

1~ 1~ ~. ~, -~
+5Hope®e + S Ho® + Hogtg™ + Hyto + Hong®o

t t t
i l”in
= (@) o Prs@E| e | e D
o o a
where
Hy Hy By, A -1
ar=| Ay Ay An | Ph=| @ |=| s |0 GO

o Hiy Hip 4 #(0)
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(17755 = 52 (0 (0) — H7(0)500(0) — JEE OV 0) + P (0)51a(0)

LR (0)(in(0))? -+ FH(0)42,(0)65,(0) + Hin(0)45%(0)6in (0),

Hi = Hin(0),

\ i = H0), - (343)
Hir = §i(0) — Hiz(0)45,(0) — HE (0)5:n(0),

Hiz = pin(0) — Hin(0)3in(0) — HZ(0)g3(0),

| #in, = Hin(0)
The obtained expansion coefficients will be helpful in finding the initial data for the
quadratic form. Note that similar expansions can be presented also for the reflected

and transmitted fields.

©3.2.3 Impulses p¢/, p'” construction

The goal of this section is to construct the first linear terms in expansion of the
reflected and transmitted phase functions @R‘,’f and ©%, ie. to construct impulses
Pref(t), P(t) (similar to (3.28)). We will find impulses by given initial point and

unit velocity in metric.

Consider expansion (3.12) with respect to ¢,q,o (we omit similar expansion §i"(t) as

it has similar form}):
67 (t,q,9) = i (0)¢™ + P/ (0)0 — P (0)dre (0)t — pif (O)eres (O)E. (3.44)
We want to find initial data using interface data (3.19) to this end, the first continuity
condition implies equality
67 (t,9,0) = 67/ (t, @, 0) = 67 (¢, 4, 0), (3.45)

hence it is clear that tangential components of impulses {corresponding to ) are

equal to
p(E) = pief (1) = p(E), = pi(0) = P (0) = pl (0). (3.46)
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Then assuming that the value of the incident field of the Gaussian beam is given at
t =0, i.e. assuming that we know P™(0) and recalling that the velocity is unit, i.e.
[P (), = 1, [P (t)ly_ = 1 (impulse satisfies eikonal equation (3.26) for any t,

thus for ¢ = 0), we write

|[PY(0)] = h(0,0; P"(0)) = +1/93°(0, 0)pin (0)pi5 (0) + (¢ (0))? = 1,

[P/ (O) = h(0,0; P™/(0)) = /9% (0,0)p (0)z(0) + (¥ (0))2 = 1.

Then both pt7(0) and p}¢f(0) can be determined up to sign of the square root. As
the transmitted Gaussian beam propagates inside {2, we should take %ﬁ:— >0, ie.

pir(0) > 0, the reflected beam propagates inside Q_, thus p?*(0) = —pr#/(0), i.e.

plr(0) = /1 - ¢°(0,0)pi2(0)pif(0) > 0, (3.47)

0) = /1~ 220,08 085 0) =~ (0) > 0 (348

Remark 3.2.2 Condition |p™] < 1 guarantees that we do not have total internal

reflection case.

We found initial values P¢f(0) (and P¥(0)). The initial point (q,.(0), ¢:-(0)) =
(Qres(0), Fres (0))= (0,0} of the corresponding bi-characteristics (q,.(t), 0w (t); Pir(2))
and (Q,.¢(t), Ores(t); Pres(t)) is known, thus we can solve Hamilton system of equa-

tions (3.34). The corresponding hamiltonians are respectively,
(WY = ¢57(a, 0)pl (B)pf () + (pir (1))°

(h™)? = g2 (q, )P (1) () + (07 (1) =
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3.2.4 Quadratic forms

The goal of this section is to construct the second (quadratic) terms of the phase
function expansion (3.27), namely, H™/(t,-), H(t,-) in assumption that H*(0) is
given and that we have already constructed impulses. To this end we have to solve

Riccati equation (3.35) after calculation initial data H™ (¢ = 0) and H™f(¢ = 0).
Initial data 6;(0,q,0), 65(0,q,0).

The goal of this subsection is to construct initial data with required properties using
interface boundary data (given on ), i.e. given ﬁg;g, N;%, I?gg, and assuming that we
have already constructed impulses and found geddesics we ha\fe to express H;;f Mt =
0), HieH (¢ = 0), HISH (¢ = 0) in terms of known values. This time we also use
continuity conditions (3.19) recalling that ©™|, = O, = @], see, for instance,

(6]. The latter we rewrite as

Hin = fY = Hity = H2(0) = B (0) = HIH(0). (3.49)

o,

Then we get on the interface ¢ =0 (3.41)
!
2

1 rrr 1 I a T
= —t+pg+ §H0§ft2 + §Ha‘g’q ¢+ HE g + .

. ~. 1~ ~
—t g™ + SHE + -z-Hg’gg“g + HZtg™ + ...

Consequently,
i = By = A
0 o (3.50)
i = B3/ = AL,
Now we substitute coefficients (3.43) and similar expression for H"¢/ and H* into the
second equation (3.50). Thus we get the representations for H2&/*"(0) in terms of the

given incident field and known derivatives of the geodesics:

HE 0y = —H2(0). (3.51)
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We will not present here formulae for reflected and transmitted quadratic forms at
time zero as they are massive, we present only expression of their imaginary parts as

we will need them later. We obtain following for the reflected field
SH (0 (0) = ~SH (0)5:n(0) — SHB(0){g5(0) — ¢ (0)], (3.52)
here we should recall, that S is a notation for the imaginary part. Similarly H7e (¢ =

0):
S(H (0) (677 (0))%) = S(HE(0)(:n(0))?), (3.53)

S(HE(0)(4r(0)2) = =23 (Hi (045 (0)54r (0) + Hin(0)i(0)5n(0)  (3:54)
+5 (HE0)(0n(0)) + H33(0) [42(0)d61(0) — d2(0)d5a(0)] )

Thus, we found initial data for the reflected and transmitted quadratic forms, using

only given incident field and recently constructed impulses.
Initial boundary-value problem,

As we have already constructed initial data H™/(0), H'"(0), we can start solving
Riccati equation (3.35). If we succeed to show that initial quadratic form H(0) = Ho
satisfies next lemma conditions, then the solution to the Riccati equation is required
quadratic form of Gaussian beam. The next lemma is Lemma 2.56 from [38] (see also

V. Babich, V. Ulin, [6}, or V. Babich, V. Buldyrev, I. Molotkov, [7], A. Kachalov,
136]):

Lemma 3.1 (Lemma 2.56 from [38]) Let Hy be nxn complez-valued matriz such

that

Hy = Hj, (3.55)
SHp > 0. (3.56)

Then:
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(i) the initial boundary-velue problem for the Riccati equation (5.35) with initial values
Hlomo = Ho (3.57)
has a unique solution H(t), t € R. The derivatives are calculated at the point
(@,0;p) = (q(t), o (t); P(2)),

i.e. on the bi-characteristic, which is a solution to the Hamilton equation (3.34).
(ii) The solution H(t), t € R is symmetric H(t) = H(t)*, and SH(t) > 0.

(iii) Besides that for any Yy, Zo such that Hy = ZoYy, matriz H(t) can be represented
in the form H(t) = Z(t)Y (t)~'. The pair of matrices (Z(1),Y(t)} is a solution to the
initial boundary-value problem,

%Y(t) —B'Y+C-Z Yleo=Ys (3.58)

%Z(t) =-D-Y—B-Z, Zlo= 2o, (3.59)

where matriz Y (t) is non-degenerate for anyt € R, det Y (¢) # 0.

Lemma 3.2 The determinant det (SH(t)) - |det Y (£))? is constant for any Gaussian

beam.

Both lemmas are proved in [38].

To use Lemma 2.56 results we need to show that obtained H™¢ (0), H* (0) satisfy its

requirements (they should be symmetric and positive-definite).

Statement 3.2.4.1 Let us assume that we know that S0(¢, q,0) > 0. Let 83(t, q,0)

be symmetric. Then SO3(0, g,0) > 0 and 950, g, 0) are also symmetric,

Proof We start the proof of the statement with showing the symmetry of H7¢/7(0). In

fact, we cannot state that homogeneous polynomials 55/'7(0, q, o) are determined by
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symmetric matrices H*7(0) and H™/(0), but we can always choose unique symmetric
tensor which gives birth to the required polynomial 875+ (0,q,5). Let us prove the
second part of the statement. Assume we know that imaginary part SHH(2) > 0,

(3.30) for any t i.e.

SH(0) SHZ(0) 7 ¢’ 0
, > 0.
SHI,  SHI(0) o o

Necessary and sufficient condition of positive definiteness by classical Silvester criteria

(see, say, [62] for details) is positiveness of all main co-factors.

Note that all main co-factors of matrices SH™(0), SH™(0), SH(0) excluding de-
terminant are equal. Thus in order to show that SH™/(0), SH(0) is positive-definite
one have to investigate the positiveness of their determinants only. Consider firstly

the reflected quadratic form

SHZ(0) SHLE(0) SHZ0) —SH(0)

det = det _ _
SHE(0) SH(0) ~SHR(0) SHE(0)

As we see the determinants are equal, and thus we proved that SH™/(0) > 0.
Consider now $HT(0). Obviously, multiplying firstly the last column and secondly
the last row by constant Gin(0), 64+(0) in matrices SH™(0), IH*(0) correspondingly

({3.52), (3.54)), the sign of determinant does not change. We work with matrix

SH(0)  SHL(0)6:(0)

SH5(0)6m(0)  SH7(0)67,(0)
its determinant does not change, it is positive. Next we use linear transformations
(they do not change the determinant) and get matrix SH“(0) with components
((3.49), {3.52), (3.54)), this will prove its positive-definiteness. The noted above
transformation are: we add the linear combination of all right rows with a factor
—-[éﬁ,(O) - qﬁ(O)] to the last column, then the right column of the obtained matrix has
components —SH™ 54, (0)— [¢2,(0) — 42 (0)]SH (0}, which coincides with (3.52). The
last component is SH (0)d:,(0) — SH}'L%(O)@R(O)[@&(O) — 2(0)]. Now we add linear
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combination of all upper rows with factor —[G2,(0) — 42 (0)] to the lowest row. The first
(n — 1) components of the lowest row coincide now with (3.52), the last component

coincides with {3.54), this proves positive definiteness of matrix SH*(0) > 0.0

We proved the statement and now we can construct solutions to the Riccati equation
with required properties
Hel(t) = 27 () (Y™ (1),
) (3.60)
Hr(t) = 2" () (Y (1)~
Now formal Gaussian beam (3.14) is concentrated in the vicinity of the point and
propagates along the geodesic (p'7(2); ¢ (), o (1)) (07 (£); ¢ (t), o7*F (t)))with unit

velocity on the manifold.

Next we continue this procedure and obtain higher order terts of the reflected and
transmitted phase functions. We omit here these massive technical calculations and

obtained formulae, one can find them in {41].

3.2.5 Phase functions 9§f(t,q,cr), et (t,q,0)

We presented the procedure of construction of any finite number of terms in the
phase function expansion 077 (), 05557 (1), ..., 05l (1). Let us write out Lemma
2.61 conclusions form [38]. Suppose that O is given. Then we can construct Q5"

such that constructed functions can be presented by series

N-1 N-1
Te T Te i Te T ]- re
el q,0) =N O30 (t,q,0) = > g T(t) = Z;BL D YHE), (3.61)
i=1 =1
and such that
e'ii'ef{tr) - (Pref(tr)(t), Y(t)), IP'ref(tr)(t)l =1

are real (P"f0n)(1) are determined by (3.28), and Y(t) are determined by (3.29),

TE T 1
ol Jitr) _ E(erf(“")(t)Y(t),Y(t)), SH(t) > 0,
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H? (t) and H"¢/(t) was constructed above. Moreover, the constructed phase functions

satisfy conditions {3.6), (3.7} and estimates
((Be) — 998:0,)0%""| < CulY(R)I, (3.62)

that means that all requirements form these functions to be Gaussian beam phase

functions are satisfied.

3.3 Reflection and transmission laws

Consider cotangent space Ty, ¢, (2. UQ,) (see Figure 3.3) and coplane 7*(M;) in it
such that the point M; = (0,0) is a point where the beam reaches the interface. The
coplane 7{M,) is a 2 dimensional coplane spanned by covector

Po(0) = 0" (4) = (G Sl

and normal covector do_ = (0, ...,0, —1) at the point M, at time t = 0.

Definition 3.5 (Incidence angle)

We define an incidence angle ¢ at the point My between covectors P(0) =

do™|,(t = 0) = 58‘?;", ., 3‘2’")|¢+0 and do_ in the coplane 7*".

Let Ut start from « inside Q.. with a transmission angle ¢ between the cov-

ector P'(0) = dO¥|,(t = 0) = (‘ﬁr,. " gﬁ:, a‘ij)lgwg and normal covector doy, =

0,...,0,1), 7' € Ty, (824 ), where the 2D coplane 7™ is spanned by covectors doy
and P (0). The transmission angle ¢™ determine geodesic p™ (t).
Definition 3.6 (Reflection angle)

Similarly we define a reflection angle ™ at the point My between covectors

Pref(0) = do™f |, (t = 0) = (agff, 20|, o and do_ in the coplane 77/

Proposition 3.3.1
Coplanes mi*x™/ ¥ coincide in Ty o, (- U Q). If the value ¢™ of the angle is

known then we can find the transmission angle ¢*" and the reflection angle ¢"f.
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Figure 3.3: Incidence, reflection, transmission coplanes and angles near the interface
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Proof Recalling continuity conditions and differentiating the first one (3.19) with
respect to g% (we can not differentiate with respect to o as this condition is valid only
on -y} we obtain from equation the coefficients:

a@in _ ae)ref a@tr

aqu [’)‘_ aqa !‘Yz an "T‘

Eikonal equation (3.26) and coordinates normalization at the point M; imply

POR (My) = cosg™ = pin(0) < 0 00} (My) = e/ (0) = —pi(0) > 0
Eyy 1 n " B 1 n n )
and .
) a(_,)m. a@in . .
. in _ of — B in 0 <
sin g = 0 = (My) = g% pg (0)pg'(0) < 1.

Consider two covectors P™(0), do_ the coplane mn(M,) is spanned by. Consider
two covectors P7¢/(0) and do_ that the coplane 7™ (M;) is spanned by. We have
got the value P"*/(0) above. One can sce that all its tangential components coincide
with P™(0). Formula (3.47) implies that they have only the last component pi¢/ is
different. The covector P™¢f(0) can be presented by linear combination P™(0) and
do_, hence they belong to the same 2D coplane. The coplane n7f (M) coincides with
the coplane 7" (M;).

Similarly, we consider covectors P(0) and P'™(0), they also differ in the last coor-
dinate, as one can see that from (3.48). Compare now dos_ and do_. Both covectors
belong to the same straight line, we present P(0) in a form of linear combination of

P™0)} and do... Thus coplanes 7%*(M;) and 7" (M,) coincide.

Introduce two covectors
b € (M) [ Tinerns bs € 7" (M1) () Tanervs

such that
(do_,b_)g~ =0, |b_|;~ = sinyp™,

(doy,by)gr =0, bylg+ =sing'.
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Then in equal coplanes 77¢/ (M;) and 7¢"{M;) the following is true:

(46", o) = g° (Ml)ae bs = sin ™ g% (My)baby = sin ™ g (M1 )bubs
ref
= (40 da_) = (Ml)agq bs.

Thus sin ¢ = sin™f, and eikonal equation gives us a reflected cosine cos ™ =
- cos @™, The latter corresponds to the anisotropic analogue of Frenel’s law of geo-

metrical optics, i.e.
sing®! = 2P BT B2 (My) = g2 (M)piF (O (0) = sin ™,

____ (3.63)
cosp™ = —-\/1 ~ (gfﬁ%@%%—%‘;(Mﬂ) = — cos ™.

——~———a®ml = sin L 8_61‘1[ = sin bs
S = I T T B S

The latter implies the formula for the cosine of the transmitted wave cos ¢ expressed

in terms of given function of the incident wave. For the Gaussian beam UY to

propagate inside §2; we should take the positive sign in the square root
cos ' = \/; — sin c,o“‘"g—Zﬂf%‘i >0

. . : o Bhob
sin ¥ = smgoﬂ/g—iﬁ-;i-

We found the values of the reflected and transmitted angles, determined by their

cosines (3.63) and {(3.64) in terms of the incident field. [

(3.64)

Formuia (3.64) rewritten in the form of sinuses ratio corresponds to the Snell’s law.
One can sce that in the case of ¢ = I, the angle '™ becomes critical, the transmit-
ted wave propagates in a tangential direction to the interface. In this case the ray

expansions could not be used, but such a kind of propagation is beyond the scope of

~ this work.
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3.4 Awmplitudes

3.4.1 Amplitude values on the interface

We rewrite interface conditions such that we are able to express boundary data of the
reflected and transmitted waves in terms of incident field, as we did it for the phase

function.

Lemma 3.3 Let vl (t, q,0) be known trace of the incident amplitude function on the
interface. We can find traces of the reflected and transmitted amplitudes uy ref(t, ¢,0)
and u(t, g,0) on the interface for any N > 0.

Proof We will prove this by giviﬁg the construction procedure.

Consider continuity conditions {3.19} on the interface and substitute the formal Gaus-
sian beam series into it. The condition of continuity of the Gaussian beam gives us
the following equations

ein(x, t)|7 = @Tef(x,t)h = O (x, )y (3.65)

U (%, )]y + w5, )|y = uff (%, 8)ly, VA

The continuity condition for normal derivatives of the Gaussian beam implies equa-

tions

e (s s v (S 201, e

:—]l-jiozs (Strulr |7+\/gt}:(w)‘( )l%

where we used some useful notations:

m ref

ginred . (\/_,— o (t:¢:0)), §7 = (\/g+(q,0)%(j—tf-(t,q,0))-
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Equating coefficients of similar orders of (i€), assuming that

u;‘)ﬂ,ref,t'r _#1_ 01 uiﬂ,ref,tr = 0, vk < 0,

we get the system of equations for k = ~1,0,1,...:
ui" . {t,q,0
P f:( 7.0) k:+1(t 7,0) + Ry,
U118 ¢, 0)
where
St'r _,_Sref S'in Riu
P .= Q= , R, = (te) : (3.67)
-1 1 -1 -1
duin a o
Rlw) = =/ 9-(3, 05>+ 5-(t,9,0) + (t,6,0)) + v g+(g,0 t g,0). (3.68)

We denote the determinant of the obtalned system by
= (=S"+ 5N £0. (3.69)

The cbtained system for the polynomials on v (3.67) has a unique solution for any
RHS, as the determinant (3.69) is Dy # 0 for any k£ > 0. We tackle the system of

equations and obtain

uti" t, ’0
f;ﬁf( 9 PlQuils(t,g,0) + PRy (3.70)
uk«}-l(t: q, 0)
where
1 Sref
S . (3.71)
D 1 Str

Thus we have found the recurrent formulae for any finite number of boundary values
on 7 for the reflected and transmitted amplitudes in terms of known incident field.

Hence Lemma 3.3 is proved.O

Remark 3.4.1 (First amplitude terms) We present the main terms uy (¢, g, 0)
and u (¢, q,0) as following:

whEO N pagurtg0 = L )@t @7
up!(t,,0) R
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Notation 3.3 (Reflection and Transmission Coefficients) Coefficients R and
T in (3.72) are reflection and transmission coefficients correspondingly, such that

1+R=T.

Similarly,

u"(t, ¢,0)

_ Ty .
=P7'Qui*(t,q,0)+P'Ro = wi™(t, q,0)+P ' Ry. (3.73)
ui(t, q,0) R

3.4.2 Amplitude equations

We write out ODE for the amplitude functions u™/(t, ¢, o) and u*'(t, ¢, o). To solve
them uniquely we have to supply them with initial data. These initial data will be
obtained later. The investigation of transport equations (3.25) on geodesic uft) is
based on Tailor’s expansion. For any ! the expansion is

ult, q,0) =< Y _tiimy(t, g~ qlt), o0 — o(t) < D _duem({,£), (3.79)

m=0 mz0

here (), fym) are homogeneous polynomials of order m, m = 0,1,... with respect
to t,q,0 and £, are £ =, § = Y~}(t)Y(t). Operator Lg, is the linear differential
operator of the first order, it depends only on such coefficients @) that m <{+1in
equation (3.25). Those terms that are contained in w4y are equal to zero along the
bi-characteristics because of Hamilton system (3.34). Similarly, Gm) as a function of
time ¢ has values in the space of homogeneous polynomials of order m with respect

to é . Then ODE for () has a form

d . R -
Em(m)(t) + r(E) ey (t) = Fimy(t), 1 =0,1,..., (3.75)

Fimy(t) are homogeneous polynomials of order m that depend on fypm(t) and Onp

only asp <m -2, s <l As

1d
ddt

r(t) = —%tr(Bt +CH) + 2L g, HE) = Z0)Y (),
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i.e,
1d

r(t) = :?-—-ln[d et Y(t)] + - Ld — ln g{¢),

4dt

then we can solve these equations once supplied them with initial data:
t

Um(£) = o) (2ma(0) + f o M) Fma(t)dt',) (3.76)
]

_ [detY(0) , g(0)
=\ vm\ o (3.77)

Note that det Y "1(t) corresponds to the geometric divergence of ray field. In this

section we used well-known procedure from, say, [6], see also [38].

3.4.3 [Initial values

Consider now obtained above amplitude representations {we omit captions reftr, as

the following is valid for both amplitudes):

-

N
u(t,q,0) =¥ Zu;(is)*, see (3.11},

J wlt,q,0) = w) + .- + vy, LN) = —If*%;ﬂ, (3.78)

WP (t,¢,0) are found , see (3.70),

""ef (0,q,0) are the goals of this subsection 3.4.3.

Again as before we will use Tailor’s expansions. Rewrite (3.11) similarly to the
way we rewrote the phase expansions (3.27). Simultaneously we introduce some
special notations for the homogeneous polynomials in series (3.11) in order to reduce
the number of indices. We construct just several first terms, the rest terms can be
obtained similarly. We omit here all calculations, one can find them in [41]. The
initial data for the reflected and transmitted amplitude functions can be obtained in

terms of the given incident field. For instance, one can show that
“Et(gg ()= Q(t)R%(oJ 0),

uo(o)(f) = Q(t)TU‘O(O) (0).
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3.5 Exact and Approximate Solutions Estimates

We have constructed all terms of finite Gaussian beam. Now we will show that
for any N there exists an exact solution - Gaussian beam, corresponding to this
finite Gaussian beam of order V. So, we have constructed formal Gaussian beam
Ule;t,q,0), formal Gaussian beam Un(g;t, ¢, ), corresponding to Ul(e;t,q,0) and

the required exact solution Un(t, ¢,c) to the following problem

Ouldy =0 in (2-UQ4) x [—to, %0},
Ul = U (:79)
VI~ 3= Uxly = VaF Uy

As we know only the approximation Uy to the required solution Uy, we consider an

approximation xUp (here x is a smooth cut-off function in ¢ and all spacial variables)

to the solution of the problem (3.79):

,

Dy—X(UR? ch) in{l_,

O,. (XURK) = R§ inQy,

X(U}.\? ref)]'y xUF |y + Ry,

V& 2= x (Ul + Uy = VaT 2 xUR |y + Ra.

One can show that

(3.80)

Ry < C5 (2to)e" M., R < CF(to)eV M., Ry < CreV*'M,, Ry < CoeVM..

Notation 3.4 (Polynomially small function) We say that function 9 is poly-

nomially small of order k, if ||¥{lc < €5

The last formula implies now that Ry, Ry are polynomially small of order N — %,

Ry, Ry are polynomially small of order N 4+ 1 — . The inhomogeneous interface
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conditions on v are to be replaced by the homogeneous ones by introducing a new

function F in 2_[J ;. Thus we get a new problem for F

OpF=s in g,
Fl, =Ry, (3.81)
ViR Fly = Re

Note that F is polynomially small of order N4+1—% in Q_J€4. The RHS of (3.81),
or s, is also polynomially small of order N 4+ 1. We can choose function F' to be the

following

. R -
F = Ry(t,9)%(0) + __; looX(0)0.
+

T

where ¥ is a cut-off function. Next we introduce new function
| Wy = x(Ui +Ug’) in Q_,
Wy =
Thus we get a problem for Wy and the corresponding interface continuity conditions

on v are satisfied:
{

E™, in Q.
Dﬂ:WN =& = )
£+ inQ, |
< (3.82)
WIG"Y = WI-\‘;"}'J
VI EWily = VaFEWL,.

Here £- < Cy (2t0)eW—9), £+ < CF(tp)e™W=%), i.e. € and £ are polynomially
small of order N — %. The solution Wy to the problem (3.82) satisfies exactly the
interface continuity conditions (3.18). Recall that & € C*W)(t; L*(Q_|JQy)), ie.
there is a big number of time derivatives of £ with values from L? in the whole region.

Compare now Wy with the exact formally written solution Uy, as DUy is determined
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in a sense of the Dirichlet form existence (it contains the interface conditions)

r[:':t?/i'N =0, rD:tWN =¢,

Uyly = uf_\Hvr Wily = me

j g—affju;'lv = 9+a—f,’:?/f;¢lv ’ g—ﬁ_‘wfﬂv = \@T%WR’_I’)’
Unl-to = UR|—tos Wivl-te = XUt -t0,

| 9|ty = BV | Wi |0 = AUt

It is clear that O {U{y — Wy} = —£. Let us a give a notation to the difference of
solutions, say —€ = O.V. The initial data coincide (in the domain of the Laplace-

Beltrami operator D{{A )9}, ¢ > 2). Our problem is linear thus we consider solution:

DOy Vy = Ou(Un — Wi) = —€,
VN = MN - WN i VNl—tg = aﬁle—-to — 0’ . (383)
VN](@Q— UaQ+)x[—to,£0] = O

Here we assumed that at time £y > 0 the beam has not yet reached the boundary
aQ_{J 0.

3.5.1 Convergence

This follows from the construction procedure that the RHS £ of (3.83) is small on
the time interval [—tg,%p] with values from L?. All time derivatives (there is a large

number) are algo from L? and are small.

The main idea is to estimate the difference Viy between the exact solution and the
constructed finite Gaussian beam corresponding to it. We write out Fourier series of

Vx and £ with respect to their eigenfunctions Ay, = Agpyr

Virlt, %) = > _ui(t)or(x), vi(—to) = b(—to) =0, (3.84)

k=1
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Etx) = 3 en(t)on(x). (3.85)
Then
OVt %) = S [560) + M (Opil0) = 3 exltpi(),

where as ex(¢) are small and all its time derivatives are polynomially small, we has

S Esen(t)|? < Cplto)e” < oo, where p < L = (N — p— §)?, then
U (2) + Asvr(t) = er(t),

and then

welt) = f Sm\/;(_i t) ex(t)dt. (3.86)

-0
We integrate the latter by parts, hence

t

I = ;—1 cos /Al — t)ex(t), + f-;— cos v/ At — t)e) ()dt,
' k - b

—co

where e,(—oc) = 0, then

t
1
Il = —)-}—Ek(t)[t_w + )\—/ COs8 y/ )\k(t - t')e;(t')dt’
k k

Consider firstly the second summand, i.e. the integral by introducing new notation

for the integrand:
1 L]
I = —f cos v/ At — e (t)dt = “/r(t, t)dt
)\k /\k
—20 —o0

We estimate a new function

S re(t)er(x) = r(t),

using Parseval inequality: ||rx(8)[]* = >_Irx(t)|?, and then the Cauchy-Shwartz in-
equality we get

(o < [ o Ve = 1) / ek(£) Pt < (t = to) j e, (#) 2t

—io —tg
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The latter implies

I o= IeP) < 1) [ 3l

-1

As 3" ler(t))? is positive thus we change sign, the result is an L?—norm on £, we have

t to
= to) [ IE@)Ie < 2% j NE(t)adt! = E,

—ig —to
where [[€(')[[12 is polynomially small of order (¥ — 2). Let us estimate the first
summand, as 5 ex(t) is from H' (Y D(A), then for any ¢

> M =Yl + E < 0. (3.87)

We showed that vi(t) is small in the H'-norm. Consider 04(t) :

¢ t -
1
D = / cos /At — e ()dt = ——A—/ sin v/ A (t — e, (t)dt, (3.88)
k

—00
— ! t.f Zdtf
Z [oe () = C(2) f Ie—k%—)'— < 0. (3.89)
k
Inequality (3.87) says that AVy € L?, and that Viy € D(A) correspondingly. Func-
tion £ can be time differentiated; similarly to inequality (3.89) one can estimate

time derivatives of Viy. In particular, (3.89) implies that V' € L2, The result can be

rewritten as:
Vi € CP™([~to, tol, D(A)), p > 1. (3.90)

We proved the statement (3) of Theorem 3.1.
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3.6 Conclusion

We constructed phase and amplitude functions of Gaussian beams of ”quasiphoton”
type for the incident, reflected and transmitted wave fields near the interface v in

sections (3.2}, (3.4).

We assumed the incident field to be given {f°, V0, [y, 00 My, —ty),) see (3.2), (3.4).
We used its trace on the interface, continuity conditions and Hamilton-Jacobi equa-
tions for construction of the reflected and transmitted fields as a formal expansions,
checking that all homogeneous polynomials in these expansion satisfy condition for
these series to be formal Gaussian beam. We truncated these formal series on order
N and showed that for any N there exists an exact solution to the wave equation,

which is asymptotically close to constructed finite Gaussian beam.

One can write out the analogue of theorem 3.19 {form [38]}’s result for ” quasiphotons”
propagating from the interface along geodesics which are not normal to y. The

corresponding geodesics p"¢/*"(t) are such that the directing cosine at M is

CQOS (P-ref,t?‘lt=0 = d'rcf,tr(o) = 07

N
Phase function ©7*" and amplitude function > u;*/*" satisfy (3.65) on +. Each term

i=1
of these functions as an homogeneous polynomial is a solution to the ODE (3.22},

(3.25) with respect to time taking into account constructed initial data.

In more details these results can be found in [41].



Chapter |

IBSP for a Smooth Riemannian Manifold

4.1 Reconstruction from BSD given on the boundary

This section is a brief description of the boundary control method taken from [38].
Here we consider M to be a smooth Riemannian manifold of dimension n with smooth

boundary dM.

4.1.1 Formulation of the smooth problem

We consider Laplace-Beltrami operator A in L2{(M, dV) on M with boundary Dirich-

let boundary condition.

Au= Agu = —g8;(g" g™ Bu), (4.1)
D(A) = HA(M) N Hy(M), (4.2)
dV =V, = ¢*%dz' A ... A dz™, (4.3)

here H*, H3 are Sobolev spaces, g is a metric tensor of the manifold M is a real-valued
smooth function on M. Denoting the eigenvalues and the orthonormal eigenfunctions

of A by A\; and ¢;, j = 1,2, ..., correspondingly, we have the following definition.

72
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Definition 4.1 (Boundary spectral data (BSD))
The collection

{F C 8M,)\_,-,3,,<,oj|3M,j = 1, 2} (44)

is the set of boundary spectral data of (M, A), BSD (A, T') where 8,¢|r = ¥ 0;¢|r
are the traces of normal derivatives of eigenfunctions, v = {17} is a unit inward

normal to OM.

Problem 4.1 Let {0M,};,0,¢0;lam,7 = 1,2...} be the given BSD(A, M) of a
Laplace-Beltrami operator —A,. Do this data determine uniquely the Riemannian
manifold (M, g)7 '

Statement 4.1.1.1 Assume (M, A) and (H, A) are 2 pairs of smooth compact Rie-
mannian manifolds and Laplace-Beltrami operators. Assume there are open sets I’ G
laM"_and T edM: BSD (I'y= BSD (’FU) namely I’ = f‘,' Ay = Xk, Bupklr = 0.0kF,

then operators A and A are equal, manifolds M and M are isometric.

This statement is proved in [38], the brief description of the proof scheme is given in

the following sections.

4.1.2 Reconstruction of the Fourier coefficients of the

waves

We consider the following problem (see [46], [1], [32] [38], [27])

Opu=0u—Au=0 in QF=Mx[0,T],
ulgr = f(t, ), T = aM % [0,T], (4.5)

U|t=0 = atu|t=0 =0,

so we can find the smoothness classes for the solution of (4.5) as follows depending

on the smoothness of the boundary source f:
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.uecmaTLHmMan%meL%MnwmmfeH%Sﬁ and  fl—0 =10
o u € C({0,T]; L3(M)) when f € L*(ZT).

Notation 4.1 (Wave produced by boundary source) We denote by u/(t) the

solution to problem (4.5) with boundary source function f(t).

We can represent our function as a sum of its Fourier coefficients ui (t) over our

"eigenfunctional” basis ¢y :
(1) =Y ulen. (46)
k=1
f

The Fourier coefficients u;,(t) are smooth functions:

e uf(t) €CYO.TY i f e H(ZT) and  fleo=0,

. ﬁ{(t) e C([0, 7)) if f € L*(ZT).

Assuming that f € C®(Z7T) and & flimo = 0, for all p = 0,1, ..., and differentiating
ul(t) twice over ¢ we have:

d2

Egui (t) = /;\4 B’ (x, ) on(x)dV. (4.7)

Integrating (4.7) by parts, taking into account that all the derivatives of our solu-
tion, we obtain the following problem (ODE and initial conditions) for the Fourier

coefficients wuf (£):

Lol (t) + Meuf(t) = — for J(X 0)000(x)dS,,  f € LAET)

ul (0) = Byuf(0) = 0.

(4.8)

Solving this ordinary differential equation together with boundary conditions we ob-

tain for smooth f’s the following representations:

uﬂﬂ=/' (2, )si(t — £ B0 (2)dS, (2)dE (4.9)
0 JomM
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MSir:/-rkkt, M > 0,

se(t) = < t, M =0, (4.10)
sinh /| Azt '
,—lAk , A< 0,

where dS, is the volume elements of M which is induced by the metric g. Using
ul(t) € C([0,T]) if f € L*(ET) and as even C(ET) is dense L?(ET), representation
(4.9) is valid for any f € L*(Z7).

Result 4.1.2.1 Given the BSD(OM) the Laplace-Beltrami operator and dS, it is

possible to find Fourier coefficients of any uf(t).

Let uf(t) and u"(t) be the solutions of (4.5) with f,h € L*(E7T), then for any 0 <

t,s < T the inner products of the waves may be found by formula:

{u? Zuk ul(s), (4.11)

where the Fourier coefficients can be found by formula (4.9).

Result 4.1.2.2 (Inner product of two waves) We can find the inner products of
any two waves only via the boundary spectral data on (8M), for n € C®(dM),n >
0,du(z) = n(z)dS; is some positive boundary measure, z € IM:

< u™(t),u™(s) >= Zu f(t)u (s), (4.12)

u(t) = / [ 1 t)se - 1asoauat. (4.13)
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4.1.3 Domains of influence. Complete system of functions.
Tataru’s theorems. Wave basis.

Orthogonal projectors

Let T’ C 3M be non-empty open set,
LXTx[0,T)) = {f € L*ZT) :supp f T x [0,T}},

L2U) = {f € L*(M) : supp f C U}.

Definition 4.2 (The domain of influence)
' Let '
M(y,m)={zec M:d(z,y) <7}

be called the domain of influence of point y € OM of time 7, where d(x, y) is the
distance between x,y in (M, g). Let

M(T 7} ={ze M : d(z,T) < 1}

be called the domain of influence of subset I" C M.

The following result is obtained in [38].
Result 4.1.3.1 Let v/ (¢) be the solution of (4.5), let f € L*(I" x [0,T]), then
supp (uf (1)) € M(T, 7).

Then
uf (1) € LX{M(T, 7)),

here
PP ={felXM):f=0 in M\Q, QcCM}L
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Consider the space of the waves u/(¢), f € L¥I" x [0,T]). Tt is a linear subspace of

L3HM(T, 7)). The following results are important for the construction procedure.

Let
w€ H' (M x [-T,T), u=u(x,t)

be a weak solution of the hyperbolic equation
Ou+qu=0, in Mx[-T,T]. (4.14)
Assume that the Cauchy data of u vanish on I’ x [T, T,
ulex-r =0, and ek =0, (4.15)

where I' C M is an open set.

Definition 4.3 (double cone of influence)

Let K € M x [-T,T] be the double cone of influence of I x [T, T,

K= KF,T = {(3!1, t) e Mx [—T, T] : d(ﬂb‘, P) <T-— ]t]} (416)

The first Theorem 4.1 is a famous result of D. Tataru, [56], the proof can be found
in [38] (see also [57], [58), [34], [33], [49]).

Theorem 4.1 (Tataru’s theorem) Assume that coefficients of the d’Alambert op-
erator O, are from C*(B;) and {g™*(z)] is a real, symmetric, positive definite matriz,
B; is a ball of radius & in local coordinates chart U ", Assume, in addition, that the
surface T' € Bj is non-characteristic. Then if v € HY(Bs) is a solution of the wave
equation

(Og+Qu=0, in U x[-4,3d, (4.17)
which is equal to O on one side of T, i.e. y=(z,t) = (v, y°) € R*™; ¢! = (¢, .., v"),
supp(u) C {y:¥(y) <0}, T'={y: y(y) =0},

then supp(u) (I = 2.
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Theorem 4.2 (Global Holmgren-John Uniqueness theorem) Let u = u(z,t)
such that u € HY(M x [T, T]), be a weak solution of the hyperbolic equation (4.14)
with (4.15). Then u vanish in double cone Krr.

Theorem 4.3 (Local unique continnation result) Let
u € C([0,27]; H* (M) N CY([0, 27]; LH(M))
be a solution in Q" of the wave equation Ogu = 0, such that for an open set I' C OM

ull"x{O,Z‘r] =0,

(4.18)

3uulrx[o,2r) = 0.
Then, at time t = 7 the function u and its derivative Syu vanish in the domain of
influence of [,

u(x,7) =0, Ou(z,7)=0 for x € M(T,7). (4.19)

Theorem 4.4 For any T > 0 the linear subspace {v/(t) € L2 (M(T,71)): f €
LT, 1)} is dense in LHM(T, 7))).

Lemma 4.1 Let 7 > 0. Given the BSD it is possible to construct boundary sources

fi € LXT x [0, 7)) such that
v; = u"fi(*r), i=12 ..,

form an orthonormal basis of L*(M(T, 7)).

The proof of the latter lemma and theorem 4.2 can be found in section 3.4 of [38],
the proof of theorem 4.3 follows from that proof. Seo, as a result of Lemma 4.1 and
Theorem 4.4, we have {u"(7) € L3{M(T,7)): f e L¥T x [0,7])} is also dense in
L?(M(T,7)). Thus we can choose a complete set of functions f; € C°(I'x[0,T)), j =

1,2..., such that {u"(7)}52, form an orthonormal basis in space L*(M(T, 7)).
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Remark 4.1.1 (Gramm-Schmidt orthogonalization) Let us choose a complete

set of functions {h;}52, in L*(I" x [0, 7). Then

i—1
05 = hj — Y _{w™(7),u"*(7)) fp. (4.20)
k=1

Then we obtain the required for the wave basis functions:

_ 05
fi= {(unei (1), unei (T)y1/2’ (421)

We have got the orthonormalized wave basis.

Notation 4.2 (Orthogonal Projector) Let Pr. : LZ(M(I", 7)) be the orthogo-
. nal projector in LH(M) onto L*(M(T, 7)), then {Frra)(X) = xar.{X)a(x), where
xmr)(x) is the characteristic function such that:

I, xeMI,7)

XM, (x) = (4.22)

0, xeM(T,7)
Then P, , is the orthogonal projector onto L*(M(y, 7)).

Result 4.1.3.2 Given two boundary source functions, say, f,h € L3(Z7), and given
T € OM is an open subset of the Boundary, y € OM is the boundary point, then
from the boundary spectral data for any 0 < t,s,7 we can obtain :
(P @) = [ w01, (4.23)
M(T,7)
(Py ™ (t),u™(s)) = / o™ (x, t)um (x, s)dV,

My.r)
o0

(Prripr, W (1)) = D (on, w () {u™ (1), w1 (1))

i=1
Due to (4.23) and Result 4.1.2.2, we can get all these inner products of the waves
given just the boundary spectral data and manifold boundary M. But we don’t

know yet the boundary measure p = n dS,.
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4.1.4 On the role of Gaussian beams and boundary distance func-

tions

Definition 4.4 {(Geodesic)
We call the path p(la,b]) = M a geodesic if for any a1,b € [a, b} with sufficiently
small {by—a1} the path p([a, bi]) is a shortest path between its endpoints, i.e. arclength

|e([aa, ba))| = d(pfar), p(Ba))-

Denote a geodesic path g by v and parameterize v with its arclength s from a point
y = u(a), so that {dy,/ds|, = 1. Let x(s) = (z'(s),...,z™(s)) be the representation

of v in local coordinates, then x(s) satisfies the second-order differential equations

dzj;fs) _ _r;;(x(s))d%f@;—isl, (4.24)
where
T%(x) = %g’“?(%iff + giij.’ - gi*’;j) (4.25)
are the Christoffel symbols. Equations (4.24) supplemented with the initial condi-
tions: _
z(0) =y€M,d3;—(sm:W€TyM,|w|g= 1 (4.26)

determine the unique geodesic -y that starts at the point y in the direction w.

From now on in this section let y € M be the boundary point, and v be the unit
inward normal from the boundary point y € M.

Definition 4.5 (A Critical Value)

There is a critical value 7(2) = Tam(2) of the geodesic 7,,(t), such that forf <
Toml2), the geodesic v,,([0,t]) is the unique shortest geodesic -y, (t) to M and, for
t > Tam(2), it is no more the shortest one. By l(z) we denote the maximal arclength

of the normal geodesic, which starts at point zy € OM until it hits the boundary.

Clearly, I(zo) > Tom(2o)-
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Gaussian beams can be used to find the distance between any point on a normal
geodesic and any boundary point. For any zg,y € M and s € [0,1(zo)] we can
have the following results. Let the geodesic starts at zg and be outward normal to
the boundary. Denote UY{¢;z,t) Gaussian beam corresponding to that geodesic the

solution of the following system (see (3.2)):

82U — AU =0
Ulteo = U |40 = 0 (4.27)
Ulam = f(&; 2, 1)

where f(e;2,t) = (ne)~ % x(z,t)exp{ie~10(z, 1)}V (a), see (3.3). Let zg,y € OM,

ty > 0, z be the local coordinate system on dM. Let U[{ olto) = V(2o), and then
9(20,0)

g(ZU)t - tO)

Let Uf(e;t) be the Gaussian beam propagating along the normal geodesic, and so

Ulo(8) = det (¥ (1))} [ ] "V (z0). (4.28)

does the wave U™ (e; ) corresponding to the boundary source 7f(e;-). We have the

following result:
Lemma 4.2 For any T’ C OM, to <t < ty-+1{z) and 1 >0,

alz), if z(t} € M™(T, ),

lim < PrirUe(,8), Ul ) >= (4.29)
) 0, if a(t) € MAM(T,n),
where
_ V()Ple(z, 00 [V(=0)*lg(z0, 0)]2
olz) = Vdet(SH(E)|det(Y(t))]  /det(SH(0))|det(Y(0))| >0 (4.50)
Then as V(2) = p(z) for the Gaussian beam U™ (g;t) we have for s < I(z):
i | P, U (e 5+ 1) = In(20)1*(9(20,0))2hy (), d(Vz0w(s) y) < T, (431)

0, Az (5), y) > 7,

where by = [det(SH())] 7 |det(Y ()| 1. As 17(20)|2(g(20,0))2 hy (¢) is strictly posi-
tive, we can find d(Vz vy Y)-
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Thus the boundary spectral data uniquely determines d{7,,,.(s),y), where v(s) is a
normal to the boundary at point zg € OM, v is the geodesic, going from zg in the

direction of the normal v.

Result 4.1.4.1 (Distance to the boundary) Minimizing {y — d{4,,.(s),¥)} we
can find d(vg. (), 0M). So, we know the distance from v, to the boundary and
nearest points on OM to v, (s).

By increasing s we can find the arclength {(z), when the geodesic 7z, (s) hits the

boundary for the first time. Let us denote by

Tam (ZO) = ig%)) {3 | d(7zo,v(5)a ZO) = d(’ng,u(S), 8M)}

This is the maximal time for which you can go from the boundary point z in the

direction v and this point zq will be still the nearest point from the boundary.

Notation 4.3 (Boundary distance functions) The boundary distance function is
determined as the distance from an arbitrary fixed point x € M to any point of the
boundary r : OM — Ry as ri(y) = d(x,y), ¥y € OM. Wewillcal R : M —
L*(0M), x — ry the function which assigns to any point x € M the corresponding
boundary distance function, i.e. ro(y) = d(x,y},y € OM.

Notation 4.4 (The set of boundary distance functions) Let
R(M) = {ry € L®(OM) : x € M}
be the set of boundary distance functions.
The norm of L®(M)} is || r flze= sup |r(z)]. We know d(v,,(s),y) for every s €
ZEOM
[0, 7514(2)] thus we can find

Tas = A(V20(3),¥),y € OM, le. rp, =1y for x = 7,,.(s)
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Result 4.1.4.2 The boundary spectral data {OM, X, 8p5lam.7 = 1,2,..} deter-
mine the set R(M) = {r,s € L®(0OM) :2 € OM, s € [0, Tam(z)]}.

Remark 4.1.2 (Manifold reconstruction) In order to reconstruct differentiable
manifold (M, g}, we can determine (R{M), g}, so that R becomes an isometry. Just
the knowledge of R(M) C L*(@M) is sufficient to find the differentiable and Rie-
mannian structures on M. The mapping R : M — R{M) is a homeomorphism.
As this fails completely for a Riemannian polyhedron we omit this part of the recon-
struction in this thesis. In {38] it is shown that supplying the R(M) by the structure

of differentiable manifold is enough to make it diffeomorphic to M.

Result 4.1.4.3 (Boundary measure) Using the boundary spectral data, and ap-
plying results of part two of the (4.23), we can determine uniquely || %,(-,t) || - Then

| R o
b 1 e ) =~ S ety @) (4:52)

using (4.31). Now as metric g is known (see Remark 4.1.2), recalling that Hj is in our

we can evaluate

disposal, then we can find SH(t), Y(t) (see Lemma 3.1). Then we can find n(zo) > 0.
Thus we found dy = ndS,.
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4.2 1P with data given on a part of the boundary

In this section we describe briefly the method used in [38] to prove Statement 4.1.1.1
for the boundary spectral data given on a part I' C M. We will describe a procedure

of constructing an isometric copy of (M, g).

Remark 4.2.1 The construction of M will be given by iterating local constructions.

4.2.1 First submanifold reconstruction

First, we construct the manifold M near the givenset I' C OM. Let z € T and v, be

- the normal geodesic starting at z. The analogue of the function o4, is the following

upper semicontinuous function:
(2} = {sups > 0: d(v,.(s),T) = s}. | (4.33)

Let
Qr={(z,s) €T xRy : s <71(z}} (4.34)

be the largest open set that lies under the graph of mp. Clearly, I' x (0, irellﬁfaM) C $p.
The mapping |
EXPart - QP — M,

is a diffeomorphism between (O and Mr,

Let § = (expyaq )+ g be the metric on Qr, so that expy,, is an isometry between (2, §)

and (M, g). In the following we denote the first step of iteration
M = Mr.

QOur first aim is to construct (Qr, 7). Consider the inverse boundary value problem

(4.5). As before, we will use an arbitrary positive smooth measure dp on I'. Then
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there exists a function n € C°(0M), n > 0, such that du = ndS,. Using results of
subsection 4.1.2.2 we can compute the inner product
/u”f(t)u’?"(s)d%, (4.36)

M
from the boundary spectral data on I for any f,h € C3°(I' x (0, 00}) and £, s > 0. At

this stage function % is still unknown. We obtain results similar to Theorem 4.2 and

(4.23):

e Let T'y C T be an open set and 7 > 0. Given the boundary spectral data on ',
it is possible to construct boundary sources f; € C§(I" x (0,00)), 7 = 1,2,...
such that

vy = u"i(r)

form an orthonormal basis of L2(M(T'}, 7)).

o Let f,h € C3P(I'x(0,00)) and I'y C T be an open set. Then, given the boundary

spectral data on T, it is possible to find the inner product

< Prysu™(8),u™(s) >= f u™ (x, t)unh(x, s)dV, (4.37)
M(Ty,7)

for any ¢,s,7 > 0.

Now we need to construct the function 7r. To this end, we observe that, for T’y C
T, s,t > 0 we have M(Ty,s) C M(T,1) if and only if || P u™ (s)|| = ||u™ (s)|| for all
f € C2(T1 % (0, 8)). This is the effect of Lemma 4.4. On the other hand, s < (2o} if
and only if, for any ¢ < s and neighborhood T'y C T of 2y, we have M(T'y,s) & M(T, ).
Hence, the boundary spectral data on {I') determine 1+ and, therefore, {Ir. Using local
coordinates z = (2%, .., 2(* 1) on I, we obtain local coordinates (2!, .., 2*~Y, s) on

Qp. To construct the metric g on Qr, we use the technique of Gaussian beams.

As we have shown in the previous section, we see that if z,y € " and (y, s) € {r,

then boundary spectral data on I" determine d{vyy . (s), 2).
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Thus we are able to construct the analogs of the evaluation functions E(z), i.e., the

functions

EY: Or - R, (4.38)

Ey(y,8) = d{z,1y,(5)), (4.39)
where z € I'. Evaluating differentials dy (F, at a point (¥, s0) € Qr and using the
same considerations as in section 4.1, with r replaced by (¥, ), we can find the metric

tensor gi; (Yo, So)- As (Qr,7) is isometric to {(Mr, g}, we obtain the following results:

Result 4.2.1.1 (Subset M reconstruction} Let the boundary spectral data on

T be given, then it is possible to construct the Riemannian manifold (M, g).

Result 4.2.1.2 (Inner products) As the metric tensor g on Mr (and, therefore,
dS,) are already found, we can find the function » (see Result 4.1.2 for the procedure).
Thus for any f, h € C§(I'x (0, 00)) and any t, s 2 0, we can evaluate the inner product

/ w! (tyub(s)dV,. (4.40)
M

The boundary spectral data of (A, ') determine uniquely the restrictions on Mp of

eigenfunctions ¢;, j =1,2,....

4.2.2 Recalculation of the boundary spectral data of (Ap,dD)

To continue the construction, let P C Mr be an open domain with smooth boundary
dD. Consider sub-manifold M\D with boundary d(M\D) = M |JID. Let Ap be
the Dirichlet Laplace-Beltrami operator —A,, on M\D. We are going to find the
boundary spectral data of (Ap, &D).

Lemma 4.3 (Data recalculation) Assume that we are given an open part I' C
AM and the boundary spectral data of (A,T"). Assume, in addition, that we know the
Riemannian manifold (Mr, g) and the restrictions of the eigenfunctions @jjme, 7 =

1,2,.... Then these data determine the boundary spectral data of (Ap,0D).
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The complete proof of this lemma can be found in [38], or [5} and we omit it here.

4.2.3 Reconstruction of M?

In this subsection we complete the proof of Statement 4.1.1.1. Consider again M\D
and a Laplace-Beltrami operator Ap on it. Then, the boundary spectral data of
(Ap,dD) are given on a part 0D, of the boundary d(M\D) of M\D. Using the
same constrictions, as in subsection 4.1.1, with T’ replaced by D and M replaced
by M\D, we find a manifold Map C M\D and the restrictions of metric g and all
eigenfunctions (p}’ on Map. Now (pfk can be considered in two ways: on one hand,
they are the Fourier coefficients of the zero-continuations of the eigenfunctions cij
with respect to the basis ¢i|am of L2(M); on the other hand, they are the Fourier

coefficients of Yl am\p, Le.
op(x) = Zgofkgo?(x), x € M\D.
=1

As we know ¢P(x), x € Mgp, we can find @i (x) in x € Mpp. So far, for any D C M,
we have constructed a manifold Map C M\D, and the eigenfunctions ¢y, (p}), and

metric tensor g on it.

Let D and D" be subsets of M. In the manifolds Map and My, we identify the
points x € Map and X € My, such that p;(x) = ¢;(x') for all j = 1,2,... In
this case, the points x and x” correspond to the same point on M. Analogously, we
identify points on x € Mgp and Mr = M! that correspond to the same point on
M. Using these identifications, we can construct the manifold M2 C M,

M= | ) Mop UM (4.41)

DM
It also follows from the previous considerations that we have constructed the restric-

tions of the metric ¢ and the eigenfunctions on these manifolds. Next we show that,

for sufficiently large m,

M™ = M, (4.42)
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Figure 4.1: We can reach any point on the manifold by path, which does not go into

the collar neighborhood of the boundary.
4.2.4 lterating procedure; M™ = M

To show (4.42), consider a compact manifold A" without boundary, such that M C N.
By compactness of A, there is § > 0 such that

§ <min{min rom(z), min 7(y,w)}, (4.43)

here Toa4(2z) and 7(y, w) are the critical values of the functions that correspond to the
boundary exponential map on M and the exponential map on N, SN = {(y,w} €
TN :|wl, =1} 7(0) =y e N, d"éso =w € T,N, v is a normal geodesic, see (4.4),
(4.26), Figure 4.1. Next, we consider the set

MM = {z € M : d{z,0M) > §}.

Due to definition (4.43) of §, M\M? is a manifold with smooth boundary that is
homotopic to M and, therefore, connected. Thus there is a constant 71 > 0, such that
any X € M can be connected with T by & smooth path p C M of length L, L <Tr.
Moreover, if p is parameterized with its arclength, then the following conditions are

satisfied.

D) pO)=z€el, ul) =x,
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ii) 1[0, 6] coincides with the normal geodesic to z,

iii) If d(x, M) < §, then plL — (§ — d(x,0M)), L] coincides with the continuation

of the normal geodesic from the boundary to the point x,

iv) When § < s < L — (§ — d(x,0M)), then pu(s) € M\M?.

Let
L
Xk = fi(ké), k= ]., ...,K, K= [g],X;ﬂ_l = X.

By previous constructions, x; € M?. Assume that x; € M* k < K. Then, for
sufficiently small p > 0 and D = B,(xx), we have D C ME. It follows from definition
(4.43) of §, that

zlé%%fap(z) >4 —p
Thus, Bs(xx) C M**! and, in particular, x,,; € M**1. By induction, we see that

X = Xp41 C MFFL) which proves the assertion, that M™ = M, for m sufficiently

large. Thus we have proved statement 4.1.1.1.



Chapter 5

Uniqueness Problem for the Polyhedron

5.1 Formulation of the uniqueness problem

Consider two compact n-dimensional (n > 1) admissible Riemannian polyhedra (see
definition (2.19)) M, M with boundaries M and dM correspondingly. We as-
sume, that the Dirichlet Laplace-Beltrami operators Ay, Aj are defined on them (see
Chapter 2). We denote by A, Xk the eigenvalues, @y, @ the orthonormalized eigen-
functions of A,, Az correspondingly. Thus we can determine the boundary spectral
data (A,,T), I' C M is an open part of the boundary, and the boundary spectral
data (Az, f), here I' C OM is an open part of the boundary. Thus we can formulate

main result of this thesis for them:

Theorem 5.1 (Uniqueness Theorem 1) : Let the sets of boundary spectral data
of two polyhedra be equal, i.e.

BSD(A,,0M) = BSD(A;,0M),

90
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or, more precisely,
OM = OM
Ae = Ak, (5.1)
Ouprlos = O5xl 54

Then polyhedron M is isometric to M.

Or, in more general case,

Theorem 5.2 (Uniqueness Theorem 2) : Let the sets of boundary spectral data
(Ag, T C OM) be isometric to the set of boundary spectral data (Ag,f C 8.7\/7), or,

maore precisely,
r=r
X = M, (5.2)
8U(Pk|3M = 83@'3}“4’,

Then polyhedron M is isomelric fo M.

Theorem 5.2 is a piece-wise smooth analog of the statement 4.1.1.1. As Theorem 5.2

is more general than Theorem 5.1, we will concentrate on its proof.

Notation 5.1 As we consider the set of boundary spectral data (A,,T' C M),
and the set of boundary pectral data (Ag T C 8M), we denote them BSD(T") and
BSD(T) respectively.

Remark 5.1.1 (Restrictions on I') Without any loss of generality we assume that
eachof Pand T belongs strictly to one chamber, say §2; and ﬁ: and does not contain

any wedge points.
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5.2 The Holmgren-John uniqueness theorem

Consider M to be an admissible Riemannian polyhedron. Let I’ € dM, I # 0, be

an open set,
2T =T % (0,2t), Q7 = M x (0,27).

Definition 5.1 (Weak solution}

We call function u € Lx(Q*T) a weak solution to the Cauchy problem for the wave

equation
Du=0, QF, | (5.3)
with initial data
ulger = Opu[ger =0, (5.4)
if |
/u - Dythdzdt =0 (5.5)
o

for all ¢y € COBe(Q?T, T2T), where
o4 (Q 37Ty = {4 : ¢ € CP((0,2T), D{A,)) N CP2((0, 2T, Lo(M)),

supp ¥ N{OQ*\E™) = 0},
D(A,) = {€ € H (M) : At € Lry(M)}.

The cone of influence is
K7() = {(x,t) € Q¥ : |T —t| < T — dpmu(x, 1)},
where
dpm (Xv F) = inf dM(x: Y): (56)
yel
(see Chapter 2), where the infinum is taken over all curves that pass through the

interfaces transversally finite number of times such that they do not transverse wedge

points WP, j <n -2
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Theorem 5.3 (Holmgren-John uniqueness theorem for M = Q) Let function
u € Ly(Q%T) be a weak solution to problem (5.3}, (5.4), where @*T = Q0 x (0,27,
and ) is a chamber, the u = 0 in KZT([).

This is Theorem 1 from [45], the exact proof of this theorem can be found there. The
proof is based on the fact that do(x,y) is continuous for any x, y € €. It is shown,
that for any point x € J€) such that do(z,I'} < T, and for any € > 0 there exists a
vicinity U > x, such that

u 0, with {(z,8) : 2 €U, [T —t] < T~ da(x,T) — e}.

Due to the results of Chapter 2, there exists a curve 2(s), 0 < s < 59, 2(0) =y €

T, z(sp) = x, which is transversal to 90 at the point y, such that

50 < da(@, D)+ 2.

Assume that I' C T',, for some r, where 88t = UT;. Let U, 9 be the vicinity of the point

y € I and the coordinate mapping such that ¥(y) =0 and H(U) = {z € W : f(z) >

0}, f € CYW), and without loss of generality, 8f,/9¢*(0) = 0, = 1,..,n — 1,

z = (g% o). As gy € CP(%(U)), there exists an open vicinity V, such that 0 € V. C W

such that gy € CP(V). Continue u(z,t) by zero onto {V\(U)] x (0,27 and consider
' = V5 x (0,27T), where

Vi={zeV:02> -6}

Thus taking V' small enough the continued function u € Ly(Q?7) is a weak solution
of the wave equation
Ogu =0, in Q37
satisfying
ulgsr = Bygr =0,
where 27 = s x (0,27), Ts = {2z € V : ¢ = —§}. Consider now curve £(s),

consisting of z(s) and a part of a line, connecting points z = (0, ...,0,—4) € I's and
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z =0, then §; < 5o+ C1d, C1 > 0. Due to the compactness of {2, this curve Z(s) can

be covered by a finite number of coordinate vicinities U?,...,U¥ | x € UK, such that

lgallczrey < Co,  ga(2)E€ = Call?,

where Z € ¥*(U*) and C3 > 0, k = 2, ..., K and constants Cj, Cs are constant for all
vicinities. Thus the problem can be localized, i.e. we can assume that Z(s) belongs

to some D € R™, u € Lo(D x (0,2T)) and
Oyu=0in D x (0,27},

ulrex(0,21) = Fotilrox2m) = 0;

bere dpqu = 2% 03Ty C {(g,0) : 0 =0}, (¢ = 0,0 = 0) = (0,0). Thus the proof is
based on the continuation of initial data by zero along this curve from the point y to

x. Consider now admissible Riemannian polyhedron M.

Theorem 5.4 (Uniqueness theorem) Let u € Lo(Q%T), Q% = M x (0,2T), be
a weak solution to (5.8),(5.4), then u =0 a.e. in K**(T).

Proof Let us prove Theorem 5.4 in several steps:

: . Mo
(A) Let us fix x € M™; M™ = glﬂ,‘,ﬁt, and € > 0. Due to (5.6) and the fact that T’
is open, there exists y € ', dm(x,y) < da(x, T} + §, moreover, y € I' N 7y,, where 7.
is some interface, such that v, C 982,, then due to results of Chapter 2, there exists

a C} curve z(s) of length s :
€
89 S dM(x!F) + 5:

éonnecting x and y : 2(0} = y, 2(sp) = x, such that the following conditions are

satisfied:

(i) if z(s) is a wedge point of the curve, i.e. #(s —0) # (s + 0), then z(s) € Q7 for

some m;
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(i) curve z(s), 0 < s < sp is transversal to all WP/, j <n-—1;

(iii) if x belongs to some interface or part of the boundary, then z(s} is transversal
to this interface and part of the boundary (the same is true for y)(see also Lemma
2.4; see [25), [45}). Then the interval {0, so] can be divided into a finite number of

intervals [0, s1], [$1. $2], .- {3k, So], 0 < $1 < ... < 8¢, such that
2(s) € Qintyy (5.7)
with k =0,1,..., K, sgy1 = so,

z(8k) = Ye(ey K =10,1,.., K.

(B)'Consider the second step of the proof:

Proposition 5.2.1

Consider the part of the curve z(s) € Q) with s € [0,s;]. The restriction of
the solution w of the problem (5.3),(5.4), onto Q@) x (0,2T) is a weak solution
in Ly(,(0y *x (0,277)) to the Cauchy problem

D = 0 in Q) % (0,27) (5.8)

u|rex(0.27) = Outt|rox(o2ry =0,
where Ty == I' N0y C 0oy, {(we take the only part of I' that intersect with the
only chamber, say, {2,1)), ¥ € To.

Proof of the proposition. Indeed, if ¥ € C§°(Quey % (0,27)), To x (0,2T), then

continuing % by zero onto Q2T one can get function ¥ € C®2(Q*T, £2T). Thus
u - Ovpdrdt = f - D?dedt == 0
Ry x(0,27) Q2T % (0,27)

for any ¥ € C§° () x (0,2T),Tp x (0,2T)), and thus u is a weak solution of (5.8)
by the definition. O
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(C) Using the result of Theorem 5.3 we have
u=20a.e. in {(Z,t) 1Z € Qm(o); |T — t| _<_ T-— dgm(o)(z, Fo)}, (59)

here dg,, , (21,22) is a geodesic distance in metrics gm). Due to (5.7) with k = 0
51 2 dg, ., (¥,2(s1)), thus (5.9) implies that for any 6 > 0 there exists a vicinity
U1 2 z(s1) such that

u=0ae in{(z,t):2€U1NQyp); [T —t| <T -5 — 8} {5.10)

(D) Consider the second part of the curve z(s) for s € [s1, 52] belonging to Q). We
need to show that (5.10) implies that u, restricted onto 2,1y x (51 + 6, 2T — 51 — §)

is a solution to the Cauchy problem

Ou=0 in Qua x(51+62T -5 —5);

(5.11)
U = Oy x(s14627-s1-5) = 0,
for some open set I'y C 0Qmq)
ycuin Yim(1))) Z(Sl) S Pl.
(E) Denote now €1_ = Qnyq), 4 1= (1), and consider another notations. Consider

M = Q_ U, to be our manifold, v is a common interface between {11 as we

considered them for Gaussian beams. We use the following notations:
ToCOMNOQ_, Ty #9D,
is an open subset of the boundary,
¥ =Ty x (0,27),

is a boundary lane,

QT = M x (0,2T),
the cone of influence is
K?T(To) = {(x,t) € @ : |T —t| < T ~ dq(x,To)},

where da(x,Tg) = léllf dm{x,y)-
Y&io



5.2. THE HOLMGREN-JOHN UNIQUENESS THEOREM 97

Notation 5.2 Here we used the following notations:
CP(R,B) = {f € C®(R) : supp f N(OR\B) =0},

CO’AQ(W x (13, 72)) = C((TI:TZ)aD(Ag)) n Cz((Tl,Tz), Ly(W)),

D(A,) = {€ € HYW): A € Ly(W)}.

Lemma 5.1 (Lemma 2 from [45]) Consider yNTo =0, yNWFP =0, j <n-2.
Then if ¥ € C§(Q_ x (11, 72), ¥ X (11,T2)), (m1,72) C (0,2T), there exists a function
& € CO%9(QT, 2T such that

?Fﬁu|n_x(¢1,1-2) =1). (5.12)
Moreover, if v € U , where U is some neighborhood; then {5 can be chosen such that
supp (J— ¥) CU % (11, ). (5.13)
Proof of Lemma 5.1. We consider v C £2_ U2, such that v € U, where U is a
coordinate neighborhood such that (U} = W is a domain in R", where
HUNQ)y=W_, p(UNQ) = W,, ¢(y) € Wy, (5.14)
where
Wi={aeW:¢"=c20}, Wo={ac€W:q"=0=0},0eW, ¢y) =0,

W_={qeW:q¢"=0<0}.

Besides that we can assume that ¢ € C§°(Q2~ x {71, 7)) is such that

suppty C {UNQ_} x (1, 72).

In coordinates (5.14) we have

Y € C§(W_ x (71, 72)), Qi C CQ—I(W:E), ,i=1,...,n.
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Consider function ¥ on W x (71, 72) of the following form
Y_(q,t) :=v(q,t), 0 <0,
Pla,t) = 9,(q,t), 0 >0, (5.15)
¢—|a=0 = 71b+lcr=01 \/Q?aaw—lazﬂ = \/5F3a¢+|a=0,
where

¥(g®, -0, 1) = [k1(q®) ¥(q®, 0, 1) + K2(q%) ¥(q*, 20, 1)] x(0), (5.16)

where ¢* = (¢*,..,¢""), and  is a cut-off function such that x(0) = 1, and x'(0) = 0,

and the interface contimiity conditions imply that

k1(a%) + k2(q”) = 1;

V4
Y|~ 1= ra(q®).

V-
Thus

Supp{ﬁv €W x (n,m) and{b— € CS’A"’(W x (11, 72)).
If U ¢ U is some neighborhood of #(7v), then using a special choice of x one can have
supp (7;5—1[)) cUx (11, 72).

Finally, continuing 1,7; by zero outside U x (71, 72), we get the function (we still denote
it by ¢) ¢ such that ¢ € C%2¢(Q*7, 52T) ;

¢(Q_X(1‘1,TQ) = ¢’
Thus we have proven the lemma. U
{F) We can show that lemma implies the following result:

Lemma 5.2 (Corollary) If u is a weak solution to (5.3),(5.4), such thatu =0 a.e.
in {(7' NQ_} x {n, ), where U is some neighborhood of y, such that

yevynU,
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then there exists an open set o C 7, such that function u, restricted onto Q4 X (11, 72)

s a weak solution to the problem

O,u =0, my x{(1n,m),
! v (m) (5.17)

u[’mx(ﬁ,fz) = aVU'ITuX(ThTz) = 0.

Proof We should notice, that without a loss of generality, we can assume that « C
Q_ U, Let v C v be an open set, such that y € 7 € U; the existence of 7 is
guaranteed by the choice of y. If W€ C&°(Q4 x (11, 72)), then due to Lemma 5.1,

there exists its continuation ’IZ € C%*(Q*T, ¥2T) such that

supp (% —¥) C U x (1, 7).

As u is the weak solution to (5.3),(5.4), and v = 0 a.e. in {UNQ_} x (1, 72), then

fu . Difg’[)udwdt = / - Oytpdrdt =0

T 1 x{71,72)

for all ¥ € CZ (4 x (11, 73), Y0 X (11, 72))-

Next, we return to our considerations of the curve z(s), considering again Q,,(;) to be

a smooth manifold with piece-wise smooth boundary and assuming that
s2 = 51 2 dn,,, (2(51), 2(s2)),
we get that there exists a vicinity U; 3 2z(sq) such that
u=0ae in{(z,t): 2€ Uy NQpy; [T —t] <T — 8 — 26} (5.18)
{G) We continue the process K + 1 times and show that there exists a vicinity U, 2 x
such that

u=0ae as{(z,t):2€Up; [T —t| <T — 30~ (k-+1)d}, (65.19)
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where we assume that x € M™. Then taking § = [2(K + 1)]7¢ one gets
u=0ae as{(z,t):2€ U |T—t| <T —dm(x,T) — €} (5.20)
(H) As da(x,y} is Lip continuous with respect to (x,y), then last relation in Theorem

(5.4) follows from (5.20) as € > 0 is arbitrarily chosen and as (¢ = Q. Thus we have

proven Theorem 5.4. O

That was a generalization of Theorem 4.2.
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t‘

Figure 5.1: Two admissible Riemannian polyhedra with equal BSD

5.3 Uniqueness inverse problem

Now we are ready to show that boundary spectral data given on an open part of
polyhedron boundary I" determine the polyhedron uniquely. To this end consider two

admissible Riemannian polyhedra M and M , such that
BSD(T, A,) = BSD(T c M, A;),

where I' C 0M, and T C OM are open subsets. In other words, see (5.2), I' is

diffeomorphic to T,
Ak‘ = Xkr
rlr = Brlp-
We assume that M is given and we use M to show that it is isometric to M. We
start from the open subset I which is assumed (without a loss of generality) to have

nonzero intersection with the only chamber boundary, say, 8¢}, see Figure 5.1. We

find the same picture on M as well.

There exist 7p, 7 (critical value function with respect to points of T, T, see (4.33}},

corresponding to T, [ on each polyhedra. We can find them, as both polyhedra
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M

Figure 5.2: First subset identical on both polyhedra

are at our disposal. Consider some smooth coordinates {z®} € I, as I is isometric
to I', we can choose equal smooth coordinates {z®} € I'. Then there exist regular
boundary normal coordinates (z,s) and (z,§), see Notation 2.12, starting from T’

(and [ correspondingly) at least for s < 7. Here
7 = min (77, 7,

is the minimal value between two.

Consider the first subset M! = Mr C M, see (4.35), see Figure 5.2. We are in the
situation described for the smooth manifold in [38], (see also Chapter 4, subsections
4.2.1 and 4.2.2). We continue eigenfunctions ¢y, @4 inside Mr, ﬂ/fvlz, where 7 < 79,
using Results 4.2.1.1 and 4.2.1.2. Thus M & should be identical to Mp. Thus, M!is

isometric to M1,

We remove T, T now, and consider Mp\I' and H[‘\f, the open subsets (domains)
inside chambers €2, and S~21. Next we choose any two subsets with smooth boundaries
D C Mpand D C X/ﬂ:, see Figure 5.3. There exists ¢ for both polyhedra (not
necessarily small) such that Dy C €©; and D; C Q; and, besides that, the boundary
normal coordinates (2.12), based on 9D (8’5), are regular. Using procedures from

38] (and also their descriptions in Chapter 4.2.3, Subsection 4.2.1, replacing I" by 9D
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Figure 5.3: First chamber on both manifolds. We choose open domains inside first

chambers.

for M and by aD for M and applying Lemma 4.3), we can obtain results, similar
to Results 4.2.1.1 and 4.2.1.2, we reconstruct eigenfunctions @i|p, = 9‘5k|f;6 (o, @k

inside Ds, '5{;,) as 0Ds C My, and 8755 (o ./T/fﬁ. Then Dj is isometric to '5,5.

Moreover, the subset Mrp U Dj is isometric to Mgy U Dy, as @i mpup,; are equal to

corresponding | M.ub,s Lhe procedure of eigenfunctions continuation from Mr to
r

Dy is described section 4.4 of [38] (also in the Section 4.2.3). As we are now in dealing

with smooth parts of our polyhedra, we can apply this procedure of previous chapter.

Consider Mp U D; as a union of intersecting sets, then we "glue” by the procedure,

introduced in [38] and described in Subsection 4.2.3.

We identify points x € Mp and X € D; such that ¢ (x) = @i(X), for any k& =
1,2, ..., see Chapter 2 for details. In this case points x and X correspond to the same
point on M. We can choose another subsets D and ?5:5 and repeat the procedure on
their reconstruction. Thus we also identify points x € Ds with points of similarly

constructed x" € D', and with X € My if the eigenfunctions of these points coincide.
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M

Figure 5.4: Increasing subsets identical on both polyhedra

We apply the same procedure on M and as the eigenfunctions ¢, and @ are equal
on Dy and ’)55; D's and D's; Mr and Mf‘ we form the isometric subsets M? and M?
as a maximal union of equal points obtained for all 7 C My and i L Mg, such that

the eigenfunctions are equal on 2 and D.

As we used the procedure described in Section 4.2.3, which allows to recalculate
eigenfunctions uniquely on each step, and as we identified all equal points, thus M?,

constructed subset of 3 C M as isometric to HE, subset of £~21 cM , see Figure 5.4.

We continue increasing our subsets step by step. Let us denote by Qf the maximal

subset inside €; and €9 to be the maximal ;, such that QY is isometric to ﬁ‘f
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M

Figure 5.5: We assumed that the maximal subset is "less” than the first chamber.

5.4 Meeting the interface

In this section we prove, that the first chambers €2; and §2; are isometric, i.e. that

maximal subsets 2 and €2 coincide with Q; and €.

Assume that ,\QY # (. Consider points
y € Ql\ﬂ?

and x € QY. Let also x be the point corresponding to x in ﬁ? (we can find it as we

have already shown, that ) is isometric to Q7.)

Choose now some curve 7 in €2y joining points y and x. Let z be the first point of
n from x which is outside ). Then support of the part of the curve n(x,z) should
belong to €2, (otherwise, z is not the first point outside), see Figure 5.5. Then the

corresponding to it part of the curve 7j(X, z) belongs to ﬁﬂ' Then necessarily

7€ 08,
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Figure 5.6: Interface point on the second polyhedron.

Indeed, otherwise, Qf and ﬁ(]’ are not maximal, we are able to add two ball B, B with

centers at z and z, and continue procedures of the previous subsection.

Next we construct a ball with center in x (we can choose x to be close to z, if we
need) see Figure 5.6. With some radius r, such that » < d(x,z), the ball in M will
touch 8, for the first time. Let us call that point w € M. We should mention,
that for r < d(x,z), the constructed ball in M belongs to V. Consider the cases of

W e 8()1 position.

1. Let w be the point of the interface boundary, i.e. @ € 7, see Figure 5.6. Then
the interface 4 touches the ball at w. The Gaussian beam, normal to the ball
B of radius 5 reflects with close to 7 angle on M ( see reflection angle formula
(3.63)). But that would not be the case for ball B ¢ M (Consider formulae
(3.72), or (3.73), we compare the reflection and transmission coefficients 3.3 for
the case with interface and without interface. One can see, that in our case,
when the Gaussian beam starting from the ball B, it does not meet the interface
in time 7, thus the reflection coefficient R = 0. Oppositely, the Gaussian beam
on M , starting from B, will reflect to B with non-zero R, compare Parts (C),
(B) with (A) on Figure 5.8.) Comparing ¢ and @ (that are found from the

information obtained from Gaussian beams, see Subsection 4.2.1 for details), we

will understand, that there is a reflection in one case and there is no reflection
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Figure 5.7: Wedge point on the second polyhedron.

in the second case. But we have previously shown that ¢, and @ are equal on

Q9 and Sm??

2. Point w € WP, j <n — 2, can not be a wedge point, because we do not have
an atrificial interfaces on M, see Definition 2.21. Picture of the type like Figure

5.7 can not appear on an admissible Riemannian polyhedron.

3. Let w € OM , be a point on the global boundary of the polyhedron. This case
is similar to the first one, the only difference is that the reflection coefficient
R =1and T = 0 on M, see schematic pictures (A), (B), (C) and (D) on Figure
5.8.

Thus we came to the contradiction with assumption that y € Q,\2) and thus Q; is

isometric to €y in the inner metric.
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Figure 5.8: Various types of Gaussian beams reflections.
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5.5 Crossing the interface

We want to choose the equal parts the interfaces boundaries of €2y, Q1 say v and 7.
As we have obtained above, chamber € is isometric to 0 1, metric tensors are equal,
and eigenfunctions yy|q, are equal to @JQI. We also know, that inside each chamber
the eigenfunctions identify points, see [59], also see Lemma 2.6. We choose Cauchy

sequences of "equal” points.

Notation 5.3 (Equal points) We call two points x € M and x € M equal if the
set of eigenfunctions values at these points are equal, i.e. pi(x) = gp(x), k=1,2,....
In the case when such points belong to the same polyhedron, we identify these points

and say, that this is one point.

Define by ¢ € d€2; the limit point of a Cauchy sequence {z;} € Q7" such that these
sequence does not have a limit in Q7. The Cauchy sequence {Z;} of equal points has
a limit point g € 90;. We can consider the distance between the points of two Cauchy
sequences on the same polyhedron. Let {x;} and {z!} be two Cauchy sequences, then

) = 0, then these two sequences are equivalent, and they have the

‘m

if lim dgint(Tm, 2,
m—0 "1

same limit point ¢ € €.

Thus now we consider the Cauchy sequences on M, such that they have their limit
points on the open part v of 9€;. We can also consider "equal” Cauchy sequences
on M. These sequences are also Cauchy sequences which define 5 isometric to 7.
(Measuring distances between points of these Cauchy sequences, we can see that the
limit points will belong to some open part 7 C Q 1, isometric to 7.) Each point ¢ will

be equal to ¢, (see Remark 2.5.3).

The parts of the interface boundaries v and ¥ equal for both polyhedra.
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Figure 5.9: Crossing the interface on both polyhedra.

Consider now equal parts of the interfaces v and 7 obtained above. Let us construct
two open subsets D C £, and D C Q with smooth boundaries 8D and dD. We can
choose them to be close to v and 7 correspondingly. Let us choose the "upper” parts

of their boundaries I' and T', that are parallel and close to v and 7, see Figure 5.9.

Then there exists some 79 = min{7r, 7} (see (4.33)), such that the beam of extremal
rays gives us regular coordinates z* € T', 2* € T and s = {s7,5s%}, § = {57,5} in
the part Mp and Mf of the "upper” chamber €, (and ﬁg) as well, see Notation
2.12. Let us reconstruct the eigenfunctions into that part of s (and Q,), thus My
is isometric to Mz as eigenfunctions are equal in them and eigenfunctions determine

metrics.

Now we are ready to continue the procedure of the Section 5.3, replacing I' and I by

new equal parts of 92, and 8@2 interfaces.
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5.6 Polyhedra isometry

Step by step comparing two admissible Riemannian polyhedra M and M, we came to
the conclusion that all chambers’ interiors are idettical and the interfaces are identical

too, thus we can show that M and M are equivalent as simplicial complexes.

What is the guarantee that we have not missed any chamber or interface? Assume
that we have missed some chamber on one of the polyhedra, say we have an extra
chamber ﬁ; on J’\Z . "Extra” means that there is no isometric chamber on M to it
after all our procedures. We should mention here, that as a simplicial complexes,
our polyhedra are n — 1 chainable, thus any chamber can be reached from any point
through interfaces. Also, we recall, that there are just a finite number of chambers
on the polyhedron. Cousider any interface 3, that belongs to €, this interface should
have another common chamber, say, i 1. If this Q,_l has an isometric copy on M s
thus we can use 7 for our constructions and see, that ﬁ,q should be isometrical to some
chamber on M. If there is no isometrical chamber for ﬁ.;_ 1 as well, we can consider
the next interface and continue the procedure we will conclude, that there are no
isometrical chambers on M for all chambers on M (as there are just finite number

of them).

Assume now, that we have missed an interface, say on J,,; C M such that there is no
isometrical interface on M. By the definition of admissible Riemannian polyhedra,
there are always chambers, that are adjacent to that interface, say Q. and . As we
have shown, that all chambers on M and M are isometric, thus there are chambers
)., and €, isometric to ﬁm and ﬁ; on M. Thus the interface 7,, should be isometric

to some interface, common for €, and €.
Thus we have proved that M and M are equivalent as simplicial complexes.

On each step we have chosen the interface to cross arbitrarily as each chamber’s
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Figure 5.10: Two different paths.

boundary could consist of a finite number of interfaces. Thus we have to show now,
that the choice of the path on our polyhedron would not affect on the identification of
points and chambers. Consider any two possible paths /; and 5 starting from x € 2,
and finishing in, say y € €, see Figure 5.10. How can we understand that they
came to the same chamber? We can see that once we reached some chamber, that
the eigenfunctions depend uniquely on the given boundary data. The eigenfunctions
identify points on polyhedra. We compare eigenfunction values for points inside
chamber and conclude, whether we are inside the same chamber (if there are the

same eigenfunction values, thus identical points) or not.

We identify points on the polyhedra by the following procedure: We know that the
eigenfunctions . of our problem distinguish points on polyhedron, i.e. if pr(x;) =
wr(x2), £ =1,2,... then x; = x3. We also know that all eigenfunctions are identical
for both admissible Riemannian polyhedra M and ]\Z by our procedure. We use

these properties to compare points on them.

We compare points on both polyhedra by the following rule (see subsection 4.2.3, or
(38]). Let N and N be subsets of M. In the manifolds M axr and M, 7 We say, that

the points are equal if X € M, and X € M, ., such that @i(X) = @;(x') for all

j=1,2,... In this case, the points X and X' correspond to the same point on M. As
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we have shown, there is a point x on M such that ¢;(x) = ¢;(X), analogously, we

identify points these points.

There is a one-to-one correspondence between the chambers and interfaces and por-
tions of the boundary with their inner metrics. Thus (M, g) is isometric to (./T/Iv .9),
with equal distances as an approximations of minimizing curve (see (2.20)). Thus
we have shown, that two polyhedra with equal BSD given on isometric parts of the

boundaries are necessarily isometric.



Chapter

Conclusions and Outlook

The following results were obtained in the thesis:

| e Following Fuglede B. and Eells J., [25], we described the geometric structure
of a class of admissible Riemannian polyhedra (ARP) and introduced a length
and a geodesic spaces on it. We introduced a Laplace operator and considered

its spectral properties on the admissible Riemannian polyhedron.

e Generalizing procedures by Babich V., Ulin V., [6] and Katchalov A., [36],
we developed a theory of non-stationary Gaussian beams on the admissible
Riemannian polyhedron. The main novelty is the description of the behavior
of Gaussian beam which hits the interface. We proved anisotropic analogues of
Snell’s and Frenel’s laws for the reflected and transmitted beams. These results

were published in [41].

e We gave a solution to the inverse boundary spectral problem, namely we proved
the uniqueness for this problem. We considered inverse boundary spectral prob-
lem for a Riemannian polyhedron under some mild geometric and analytical

assumptions. We have proven that two Riemannian polyhedra having equal

114
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boundary spectral data on open parts of the boundary are isometric. This sig-
nificantly generalizes results obtained earlier for the smooth inverse boundary

spectral problem.

Let us define important open questions.

e Generalize the obtained result for the piece-wise smooth anisotropic Schrodinger
operator, corresponding to the admissible Riemannian polvhedron. Next, ob-
tain uniqueness theorem for the general elliptic second-order differential opera-

tor.

e Consider some more general structure of the Riemannian polyhedron without
analytical and geometric restrictions, namely, allow the presence of artificial

interfaces, allow the metric to be continuous having jumps in its derivatives.

e Obtain the reconstruction procedure for an admissible Riemannian polyhedron
M, for the potential of the Schrodinger operator ¢, and metric tensor ¢ from

given boundary spectral problem on the open part of the boundary I' C M.

e Counsider the dynamical formulation of the problem.
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