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Abstract 

The object under consideration is an admissible Riemannian polyhedron M with a 

piece-wise smooth boundary aM. This is a finite n-dimensional simplicial complex 

equipped with a family of Riemannian metrics smooth inside each simplex. We in­

troduce an anisotropic Dirichlet Laplace operator in a weak sense for the admissible 

Riemannian polyhedron and define a set of boundary spectral data r, {Ak, Ov'Pk Ir }~1 
on a open part reaM, where Ak are the eigenvalues on rand ov'Pklr are the traces 

of normal derivatives of eigenfunctions of the Laplacian. The main result of the work 

is: if two admissible Riemannian polyhedra M and M have open diffeomorphic parts 

of the boundaries reM and t C M such that the set of boundary spectral data 

on r coincides with the set of boundary spectral data on t, then there is one-to-one 

correspondence between M and M as simplicial complexes and they are also isomet­

ric as metric spaces. A new technique was developed to tackle the problem. That 

technique incorporated two methods: BC-method generalized and adjusted for the 

admissible Riemannian polyhedra and the technique of Gaussian beams extended for 

anisotropic piecewise smooth media. 
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b::l 
Introduction 

1.1 Inverse problems 

The general nature of an inverse problem is to deduce a cause from an effect. Consider 

a physical system, depending on a collection of parameters, in which one can speak 

of inputs to the system and outputs from the system. If all of the parameters were 

known perfectly then for a given input we could predict the output. It may happen, 

however, that some of the parameters characterizing the system are not known, being 

inaccessible to direct measurement. If it is important to know what these parameters 

are, in order that the system be understood as completely as possible, we might try 

to infer them by observing the outputs from the system corresponding to special 

inputs. Thus we seek the cause (the system parameters) given the effect (the output 

of the system for a given input). An important example is the inverse problem of 

geophysics, in which we seek to investigate the structure of the interior of the earth. 

Elastic waves may propagate through the earth in a manner which depends on the 

material properties of the earth. A concentrated source of energy at the earth surface 

causes waves to penetrate into the earth which are then partially reflected back to 

1 



1.1. INVERSE PROBLEMS 2 

the surface. If the material properties of the earth's interior were known completely 

then we could predict the nature of the reflected wave from knowledge of the source. 

Since in fact we cannot measure these properties directly we seek to infer them by 

observing the reflected waves in response to a collection of known sources. 

In formulating such problems mathematically, we typically find that the problem 

amounts to that of determining one or more coefficients in a differential equation, or 

system of differential equations, given partial knowledge of certain special solutions 

of the equation(s). In the seismology problem just discussed, the propagation of 

waves in the earth is governed by the equations of elasticity, a system of partial 

differential equations in which the material properties of the earth manifest themselves 

as coefficient functions in the equations. The measurements we can make amount to 

the knowledge of special solutions of the equations at special points, e.g. points on 

the surface of the earth in this example. 

Inverse problems for differential equations have this general character. One has a cer­

tain definite kind of differential equation (or system of equations) containing one or 

more unknown (or partially known) coefficient functions. From some limited knowl­

edge about certain special solutions of the equations we seek to determine the un­

known coefficient functions. Problems of this type arise in a variety of important 

applications areas, such as geophysics, optics, quantum mechanics, astronomy, medi­

cal imaging and materials testing. 

It is natural to consider problems with piece-wise smooth or even non-smooth co­

efficients (for instance the function of density has a jump), because the material is 

non-homogeneous. For example if we solve medical inverse problem, we consider 

bones, muscles, malesious tissue. If it is a geological problem, the earth is non­

homogeneous too: rocks, oils and so on. Mathematically we can consider the inverse 

problem with piece-wise smooth coefficients, i.e. functions with jumps. This goes out 

of the boundaries of the operators with smooth coefficients. The subject of this the-

------------------- ----
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sis is an admissible anisotropic Riemannian polyhedron. This naturally arises from 

physics and real world structure - the multi-component body, each part (component) 

of which has its own geometrical and physical anisotropic properties. Mathematically 

these properties can be considered as an anisotropic metric structure and one can 

think about some differential operator given by this piece-wise smooth bounded met­

ric. The problem is to determine the polyhedron structure, metric and the operator 

from given boundary spectral data. The problem formulated is of a great mathemati­

cal interest as it increases dramatically the class of functions for the inverse problems. 

This inverse problem has a great number of applications areas to be interested to as 

there are plenty of materials (for which we can measure only some boundary data) 

which have an anisotropic and multi-component structure. 

Problems of this type may arise in a variety of important applications areas, such as 

geophysics, optics, quantum mechanics, astronomy, medical imaging and materials 

testing as anisotropy is widespread. An important example of such applications is 

the inverse problem of geophysics, in which one seeks to investigate the structure of 

the interior of the earth. The waves may propagate through the earth in a manner 

which depends on the material parameters of the earth. Consider other important 

examples of anisotropy applications: deformation, e.g. permittivity is anisotropic 

in a strained medium, and compressed soil can be anisotropic; crystalline or liquid 

crystal structure. Thus LC displays, biological thin films, colloids perhaps are the 

examples of considered structures together with fibrous or layered structures with 

anisotropic properties in the homogenization limit, layers of rock (thus the importance 

for geophysics), muscle (thUS the importance for medicine), composite materials like 

fiberglass. Layers in the different density: air in the atmosphere, or water in the 

ocean. Alignment of particles in a flow, e.g. red blood cells of platelets of china clay 

in suspension are also such an example. The alignment of the particles gives rise to 

anisotropy in the homogenization limit. 
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1.2 Background 

Inverse spectral problem was firstly tackled by 1. Gelfand, V. Marchenko, M. Krein, 

and B. Levitan in 1950's for the inverse problem of a string oscillations equation in 

a series of well-known publications (see e.g. [31], [44]). The method was based on 

reducing the problem to solving integral equation (see also [15]). 

The method for reconstructing the density of non-homogeneous string in the multi­

dimensional case appeared as boundary control method in the paper by M. Belishev 

[lOJ. M. Belishev considered both spectral and dynamical formulations of the problem. 

The possibility to control the system gives us an ability to obtain information about its 

structure due to the correspondence" control-respond". The boundary control method 

gives a procedure of density reconstruction for the bounded domain with a boundary. 

By its nature the boundary control method is a synthetical one. It uses asymptotical 

methods (discontinuities propagation, geometrical optics formulae), control theory, 

some elements of operator theory. As some inverse problems under consideration are 

over-determined one should assume that given data belong to some functional class, 

thus boundary control method uses the latest achievements of functional analysis. 

Later the analytical ideas of boundary control method were combined with geomet­

rical approach by M. Belishev, Ya. Kurylev [13], Ya. Kurylev [45J. The main idea 

of this approach was that any general elliptic second-order differential operat.or gives 

rise to a Riemannian met.ric in the corresponding domain, see also (9], (10], (12J. 

Some fundamental work on the inverse boundary spectral problem for a Riemannian 

manifold was obt.ained by A. Kachalov, Ya. Kurylev, M. Lassas (KKL) in 2001, see 

(38J. They produced a dynamical approach based on consideration of corresponding 

wave equat.ions using various t.echniques to study an initial-boundary value problem 

for the anisot.ropic wave equation. 
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The boundary control method developed by M. Belishev, A. Kachalov, Ya. Kurylev, 

M. Lassas for the case of a second-order differential operator in [38J works well for 

smooth coefficients. But when we try to consider the operator with non-smooth, or 

piece-wise smooth coefficients the method does not apply immediately. Geometrically 

piece-wise smooth manifolds can be described in terms of n dimensional Riemannian 

polyhedrons. These polyhedrons can be joined by (n -l)-dimensional sub-manifolds, 

for instance wages, conic points. The anisotropic inverse problem has not been solved 

yet in the general case and it is very interesting and important to tackle it. Also in the 

case of multi-component body direct using of the boundary control method seems not 

to be possible, because of the complex geodesics behavior. For instance, if we have 

a cylinder, which consists of four regions with different velocity of wave propagation. 

These regions are formed by two lines. Assume that the velocity is similar and equal 

to one in two regions, corresponding to the vertical angles, formed by the lines. Let 

the velocity in the rest two regions is low, comparing to one. So, geodesics would try 

to go from the region with higher velocity to the other region with the same velocity 

without going through the low-velocity regions. So some geodesics will cohere in the 

vicinity of the intersection of the lines point. The function R(M) (it ascribe to each 

point on M the set of distances to the points of the boundary aM) which is the main 

tool of boundary control method (see [38]) fails to be homeomorphic. To overcome 

these mathematical difficulties, the boundary control method should be essentially 

extended. Our idea here is to use boundary control method locally. 

The complete solution to the unique continuation problem for the wave equation with 

time-analytic coefficients that involve a number of important new ideas was given by 

D. Tataru (see [56], [57], [58]). 

The natural generalization of inverse boundary spectral problem to a multi-component 

body appeared in my investigations jointly with Ya. Kurylev. This work covers the 

proof of the uniqueness result for the pure (without potential) Laplace-Beltrami oper-



1.2. BACKGROUND 6 

ator of an admissible Riemannian polyhedra (the metric tensor is piece-wise smooth). 

The admissibility means that we have some restrictions on the type of simplicial com­

plex, which is in the base of the admissible Riemannian polyhedron and that we have 

some restrictions on the smoothness class of the metric tensor corresponding to the 

polyhedron. This complicated object was investigated geometrically by J. Eells, B. 

Fuglede in 2001, see [25]. They introduced length space on it, they showed that there 

exists a shortest curve connecting two points on an admissible Riemannian poly he­

dron, such that it has no intersection with wedges and goes through the interfaces 

transversally. 

I should also mention some investigations for the discontinuities of medium properties 

for the isotropic case. L. Piiiviirinta and K. Astala [4] reconstructed the conductivity 

operator when the conductivity is from Loo. Some smoother cases were done by V. 

lsakov, G. Alessandrini, L. Piiiviirinta and A. Kirsch, see e.g. [2], [35], [42]. There 

are also some works on anisotropic conductivity, say paper by K. Astala, M. Lassas, 

1. Piiiviirinta [4]. 
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1.3 Outline of the thesis 

The purpose of this thesis is to prove the uniqueness theorem for the admissible Rie­

mannian polyhedron determined by its boundary spectral data (BSD). Chapter 2 

contains the definitions of the main subject, which is admissible Riemannian poly­

hedron. We refer to the book of J. Eells and B. Fuglede [25], (see also [29) and 

[30], H. Federer, [2S]) to introduce all necessary information about its geometrical 

structure such as procedure of forming the length space. These procedures require 

accuracy as we cannot consider the admissible Riemannian polyhedron as a differen­

tiable manifold, see the paper by M. Kervaire, [40J. In this Chapter we will sometimes 

use notations from papers of W. Ballman, [S). This chapter also contains an impor­

tant lemma from the paper by Ya. Kurylev, [45], stating that any two points on an 

admissible Riemannian polyhedron can be joined by a shortest curve which passes 

transversally the interfaces of the polyhedron in finite number of points and does 

not touch any other singular points of the polyhedron. We also refer to the books 

on differential geometry such as books by D. Burago, S. Burago, S. Ivanov, [17J; D. 

Burago, V. Zalgaller, [ISJ; A. Connel, [23J. 

The second part of Chapter 2 contains the information about the Laplace-Beltrami 

operator which can be introduced on the admissible Riemannian polyhedron in a weak 

sense, see the book of O. Ladyzhenskaya, [46], L. Evans, [27J. Chapter 3 contains the 

development of the Gaussian beams methods (see V. Babich, V. Ulin [6], V. Babich, 

V. Buldyrev, 1. Molotkov, [7], A. Kachalov, [36], [37], M. Popov, [47J, J. Ralston, [4S]) 

to the case of the multidimensional anisotropic domain with an interface. The chapter 

contains all required definitions and the description of techniques used to tackle the 

problem. The necessary and sufficient for the next uniqueness problem asymptotics 

are found for the reflected from the interface field. It is shown that all approximate 

solutions are in the proper smoothness class and that for any small parameter c there 

exists an approximate solution to the wave equation which does not differ from the 
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exact solution by more than some prescribed value. The results of Chapter 3 are 

published in [41J. 

Chapter 4 is totally descriptive. It contains a formulation of t.he smooth inverse 

problem for a smooth Riemannian manifold and brief description of the boundary 

control method taken from the book by A. Kachalov, Ya. Kurylev, M. Lassas, [38J. 

This Chapter covers the reconstruction procedure of the smooth Riemannian manifold 

M and a Laplace-Beltrami operator corresponding to it, i.e. reconstruction of the 

metric 9 from a set of boundary spectral data (BSD) given on an open part of the 

boundary reaM. This Chapter also includes the required uniqueness theorems of 

Tataru's type (Local unique continuation result, Tataru's Theorem, the uniqueness 

Holmgren-John Theorem), see H. Koch, D. Tataru, [43], D. Tataru, [56], A. Kachalov, 

Ya. Kurylev, M. Lassas, [38J, [5], Ya. Kurylev, [45J. 

The main part of this thesis is Chapter 5. This chapter contains the formulation 

and the proof of the inverse uniqueness theorem, which is the new and most valuable 

result of the thesis. Together with the main result Chapter 5 contains the proof of 

Holmgren-John uniqueness theorem for the piece-wise smooth structure, see [45J. 



~~--------------------------------------~ 

Definitions and Geometric Description of 

the Problem 

2.1 Basic notations 

This section contains all basic definitions that will allow us to define the admissible 

polyhedron. We basically used the ideas of the book by J. Eells and B. Fuglede [25J 

and the well-known book on polyhedra by H. Seifert and W. Threlfall [51] to introduce 

this subject. 

Definition 2.1 (Length) 

Let (Y, dy ) be a metric space and ry : I = [a, b] -+ Y a path. Its length is 

r 

L(ry) = sup{Ldy(ry(ti-l), ry(ti»}' 
71' i=l 

(2.1) 

where the supremum is taken over all partitions 1r : a = to < ... < tr = b of I. Say 

that ry is rectifiable if L(ry) < 00. 

9 
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Definition 2.2 (Length space) 

A length space is a metric space (Y, dy ) such that for any pair of points Yo, YI E Y, 

dy(yo, yJ) = inf{ L(1) : 1) is a rectifiable path joining Yo to yd. (2.2) 

Such a metric is said to be intrinsic ( or inner). 

Every length space (Y, dy ) is locally connected. Indeed, every open ball U = {y E 

Y : dy(a,y) < r} is connected (even path connected). There is in fact a rectifiable 

path 1) joining a and y E U such that L(1) < r, and so 1) has range in U because, for 

any z E 1), 

dy(a, y) 5 dy(a, z) + dy(z, y) 5 L(1) < r. (2.3) 

Definition 2.3 ( Geodesic space) 

A geodesic space is a length space (Y, dy ) for which any Yo, YI E Y can be joined by 

a rectifiable path 1) with dy(yo, yJ) = L(1). 

Definition 2.4 (Globally Lipschitz map) 

For metric spaces (X, dx ) and (Y, dy ), class Lip (X, Y) denotes the class of all glob­

ally Lipschitz maps X --> Y, i.e., maps f for which there is a Lipschitz constant c > 0 

such that 

dy(J(x),J(x')) 5 cdx(x, x'}, 
, 

x,x EX. (2.4) 

Definition 2.5 (Lipschitz continuous) 

Map f is said to be Lip continuous if it is locally Lipschitz. Liploc(X, Y) denotes the 

class of all Lipschitz continuous, i.e., locally Lipschitz, maps f : X --> Y. Thus every 

point of X shall have a neighborhood U such that flu E Lip (U, Y). 

Definition 2.6 (Lip homeomorphism) 

f is said to be a Lip homeomorphism if f is bijective and if f and f- I are both Lip 

continuous. Similar·ly, f is said to be Holder continuous if f satisfies a local HOlder 

condition. 
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Remark 2.1.1 Every metric space (X, dx ) is paracompaci. This result can be found 

in [25). 

Definition 2.7 (Geodesic segment, Geodesic) 

A (minimizing) geodesic segment of (Y, dy), parameterized by path length, is a recti­

fiable path 1]: I -> Y for which dy(1](s), '7(t» = Is - tl for all s, t E I. 

A geodesic of (Y, dy ) is a path 1] : J -> Y whose restriction to every sufficiently small 

compact subinterval I of J = [0, a] is a geodesic segment. In other words, for any x 

on '7 there exists I such that x E I, and 1]: J n I -> Y is a geodesic segment. 

Statement 2.1.0.1 (Hopf-Rinow Theorem) For locally compact length space Y 

the following conditions are equivalent: 

1. Every half-open minimizing geodesic from a given point extends to a closed 

interval, 

2. Every half-open geodesic extends to a closed interval, 

3. Closed bounded subsets of Y are compact, 

4. (Y, dy ) is complete. 

Any of these implies that (Y, dy ) is a geodesic space. 

This theorem 2.1.0.1 is due to Cohn-Vossen, see e.g. [28). 
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2.1.1 Admissible polyhedron 

Consider a finite simplicial complex K of dimension n see for example, [51], or, [25J. 

We recall that K consists of a finite set {v} of vertices, and a set {s} of finite non-void 

subsets of vertices, called simplexes; q-simplex is a simplex with exactly q+ 1 vertices. 

Also 

• any set consisting of exactly one vertex is a simplex. 

• Any non-void subset of a simplex is a simplex. 

Definition 2.8 (lin Kl 
A linear space of all formal finite linear combinations of vertices of K is denoted by 

lin K. 

Definition 2.9 (Closed simplicial complex) 

We call complex K closed (i.e. connected, homogeneous, finite) if the following two 

conditions hold: 

• Every (n-k)-simplex of K is contained in at least one n-simplex (dimensional 

homogeneity), k = 1,2, ... , n. 

• Every (n -1) -simplex of K is adjacent to two n-simplices (in this case it is called 

interface boundary) or to one n-simplex and is then a part of the boundary oK. 

Notation 2.1 (q-skeleton of K) The q-skeleton Kq of K is the complex consisting 

of all its simplexes of dimension::; q. We denote by S(q)(K) the collection of all 

q-simplexes of K; and S(K) := US(q)(K). 
q 

Definition 2.10 (The space IKI of K; Barycentric coordinates) 

The space IKI of K is the set of all finite linear combinations 

Q = La(v)v 
vEK 

(2.5) 
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of vertices of K such that 0 ::; a ::; 1, I: a(v) = 1, and {v : a(v) > O} is a simplex 
vEK 

of K, a( v) are barycentric coordinates of a E IKI. 

Then IKI is made into a metric space with barycentric distance d(a,{3) between two 

points a = I:a(v)v and (3 = I:{3(v)v of IKI given by the finite sum 

d(a,{3)2 = 2:)a(v) - {3(v}? (2.6) 
vEK 

Then K being finite, IKI is separable and compact. 

Remark 2.1.2 The space Isl of a simplex s of K is convex as a subset of linK. 

We will from now on follow the notation from the work "Harmonic maps between 

Riemannian Polyhedra" by B. Fuglede and J. Eells [25], and partially the notations 

of W. Ballmann [8J. 

Notation 2.2 (Polyhedron) We shall use the term polyhedron to mean a connected 

compact separable Hausdorff space X for which there exists a closed simplicial com­

plex K and a homeomorphism e of IKI onto X. 

Definition 2.11 (Lip Polyhedron) 

X is called a (Lip) polyhedron when it is a connected compact separable Hausdorff 

space such that there exists a simplicial complex K and a Lip homeomorphism e of 

IKI onto X, i.e. if a metric space X is the image of metric space IKI of some complex 

K under a Lip homeomorphism e : IKI ---> X. 

Definition 2.12 (Triangulation) 

Any pair T = (K, e) is called a Lip triangulation of K. 

We consider K to be closed, X to be compact, path connected and local contractible, 

the dimension of X is equal to the dimension of K (the dimension is independent 

on triangulation). The Lip Polyhedron X has a metric corresponding via e to the 

barycentric metric d on I K I. 
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Notation 2.3 (Vertices and Simplices of X) When X is a polyhedron with a 

specified triangulation T = (K, e), we shall speak of vertices of simplices of (X, T) as 

the images under iJ of vertices of simplices Isl (we can simply write 8) of K. Thus our 

"new" simplices become compact subsets of X. The interior of k-simplex s of (X, T) 

(Le. the points of s not in any (k - I)-simplex of s) is denoted by ~. A O-simplex 

is called a vertex, in this case s = s. 

Notation 2.4 (Set of all Wedge Points) Denote by Wpk(X) = WPk(X, T) the 

collection of k-simplices of (X, T); by W P(X) = W P(X, T) the collection of all 

simplices of (X, T); by W(X) = W(X, T) the collection of all n-simplices. 

Notation 2.5 (Subpolyhedron) A subpolyhedron of a polyhedron X with a spe­

cific triangulation T = (K, iJ) is a polyhedron X' c X having as a triangulation 

T' = (K',iJI1K'1) whereK' is a sub complex of K. 

Definition 2.13 (k-skeleton) 

For 0 :s; k :s; dimX the k-skeleton Xk of X (the union of all simplices Isl of dimen­

sion s: k) is a sub-polyhedron of X, independent of the triangulation of X and closed 

inX. 

Definition 2.14 (Admissible Polyhedron) 

Polyhedron X is called admissible if in some (hence in any, see [25/, see also Figure 

2.1) triangulation 

1. Polyhedron X is dimensionally homogeneous, i.e. every (n - k)-simplex is 

contained in at least one n-simplex, see the left hand side of Figure 2.1, k = 

1,2, .... , n, n is a dimension of X. The n-simplices are called chambers. 

2. The boundary oX is a union of all (n- k)-simplices, k = 1,2, ... , n contained 

in only one chamber, oX is a closed subset of X and a subpolyhedron of (X, T), 

independent of the triangulation of X. 
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Figure 2.1: Admissibility restrictions 

Figure 2.2: Two types of panels: interfaces and parts of the boundary 

3. Every (n-1)-simplex of X is called panel and is adjacent to either two cham­

bers (and is called interface boundary in this case) or adjacent to only one 

chamber and then is a part of the boundary oX (see Figure 2.2). 

4. Polyhedron X is (n - l)-chainable, i. e. any two chambers can be joined by a 

chain of continuous panels and chambers, see the right hand side of Figure 2.1. 

Definition 2.15 (Star of X, Carrier of a point) 

The (open) star of an open simplex ~ of X = (X, T) is defined as 

o 0 U 0 st(s) = stx(s) = {t: t E WP(X) with t:::J s}. 

The star steal of a point a E X is defined as a star of its carrier, the unique open 

simplex ~ containing a. Every star is a path connected open subset of X and contains 

the star of its points. 
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Definition 2.16 (Singular Set) 

Denote by 2:: = E(X) the singular set of X, i.e. the complement of the set of all 

points of X having a neighbourhood which is a topological n-manifold possibly with 

boundary. 

We should notice that E is a closed triangulable subspace of X of codim ~ 2 and 

X\E is a topological n-manifold with boundary dense in X. 

Definition 2.17 (Normal Circuit (from [24])) 

An admissible polyhedron X is called a normal circuit if its singular set 2::(X) does 

not locally separate X at any point, i. e. each point of E has a base of neighborhoods 

U, such that U\E is (necessarily path) connected. 

The admissible polyhedron defined in 2.14 is a normal circuit, see [25J for details. 

Definition 2.18 (Null set) 

By a null set on a Lip polyhedron X we understand a set Z C X such that Z meets 

every chamber [l {relative to some, and hence any triagulation T = (K, B) of X) in a 

set whose pre-image under B has n- dimensional Lebesgue measure. Denote by Z the 

collection of all null-sets Z C x. 

Our admissible polyhedron X is a normal circuit, it is connected as a topological 

space, see [25J. 
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2.2 Admissible Riemannian polyhedron 

Consider once again the structures introduced by B. Fuglede and J. Eells, [25]: 

Notation 2.6 (Riemannian polyhedron) The Lip polyhedron X becomes a Rie­

mannian polyhedron (M, g) when endowed with a covariant bounded measurable 

Riemannian tensor gn, defined on each chamber n of X, satisfying the ellipticity 

condition (see below). 

Following [29], the admissible polyhedron X (M) becomes an admissible Riemannian 

polyhedron (M, g) when endowed with a piece(simplex)-wise smooth Riemannian 

metric g. 

2.2.1 Metric structure 

Let T = (K, e) be a specific (Lip) triangulation of a Lip polyhedron X. We shall view 

IKI as embedded in a Euclidean space V via an affine Lip homeomorphism (we refer 

to the Lemma 4.1 from [25], one can find the proof there): 

Lemma 2.1 Let K be a countable finite simplicial complex of finite dimension n, and 

V a Euclidean space of dimension 2n + 1. There exists an affine Lip homeomorphism 

f of IKI onto a closed subset of v. 

Suppose that X is admissible of dimension n. Choose a measurable Riemannian metric 
o 

gn on the open Euclidean interior of the chamber e-1(n) of IKI c V, i.e. in terms 
o 

of Euclidean coordinates xl, .. , xn of points x = e-1(p) E e-1(n), gn thus assigns to 
o 0 

almost every point pEn or to x E e-1(n), an n x n symmetric positive matrix 

(2.7) 
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with measurable real entries; and there is a constant An 2: 1 such that 

(2.8) 

o 

for a.e. x E e-1(rI) and every ~ = (El, .. ,En) E JRn. 

Notation 2.7 (Uniform ellipticity) The condition (2.8) is independent on the 

choice of triangulation (see [25], to this end we have to define, for any other Lip , 
o 

triangulation T' = (K',e' of X, the Riemannian metric gn' a.e. on e'-l(rI) for each 

chamber ri' of T' by covariance). Condition 2.8 is independent on the choice of Eu-
o 

clidean frame on e-1(rI). The second inequality in (2.8) amounts to the components 

of gn being bounded. Relative to a fixed triangulation T (choose such a triangulation 

T) of a Riemannian polyhedron X, 

A := sup {An: rI E W(X, T)} < 00. (2.9) 

This is a condition of uniform ellipticity and uniform boundedness. The smallest 

constant A in (2.9) will be called ellipticity constant of X = (X, T, g). 

Definition 2.19 (Admissible Riemannian Polyhedron) 

A Lip admissible polyhedron X (see Definition 2.14) endowed with a COO-smooth 

covariant measurable Riemannian metric tensor gi = g(rli) on each chamber rli sat­

isfying the ellipticity condition {2.8} is called an Admissible Riemannian polyhedron 

M = (M, g). We also assume that 

(2.10) 

for each point x E '"Y, where '"Y is a common interface boundary between rli and rlj . 

Definition 2.20 (Polyhedral Metric) 

The above covariantly defined map 

on the set W(X, T) of all chambers rI of T, is called the Riemannian (polyhedral) 

structure, or metric, on X. 
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Remark 2.2.1 Not every admissible Riemannian polyhedron (M,g) can be isomet­

rically embedded in a Euclidean space. G. De Cecco and G. Palmieri in 1993 (see 

[22]) constructed triangulable Riemannian Lipschitz manifold (which is an admissible 

Riemannian polyhedron) that does not admit any differentiale structure. 

Remark 2.2.2 (Kervaire's example) The problem is that we can not consider 

the whole polyhedron M as a Riemannian manifold because of the M. Kervaire's 

results of 1960 (see his paper [40]). An example of a triangulable closed manifold 

of dimension 10 was constructed. That manifold does not admit any differentiable 

structure, actually, it does uot have the homotopy type of any differentiable manifold. 

Every connected open subset U of a Riemannian polyhedron M can be considered 

as an interior of a Riemannian polyhedron with piece-wise smooth boundary 3Jld the 

induced Riemannian structure. 

Notation 2.8 We consider closed, compact admissible Riemannian polyhedron M, 

with piece-wise Coo -smooth metric g on it, its boundary aM = Ufi , i = 1, ... ,N!, 

where fi are (n -l)-simplices that belong just to one chamber nm , m = 1, ... , M. We 

denote interface boundaries by 'Yi, or 'Y. Denote the set of all interface boundaries of 

the manifold M by 
N2 

IB(M):= U'Yj = Wpn
-

1\8M, Nz < 00. 

j=l 

We call the union of all k-simplices W pk, k = 0, ... n - 2, as well we can call them 

wedge points of M. We call chambers (n-simplices of M) nj , j = 1, M, the interior 
o 

of ch3JUbers will be denoted by n, or, equivalently, nint. We call the W po the union 

of all conical points of M, as before, W = U ni . 

Notation 2.9 (Chambers) We need some special notations for chambers. In the 

case when we need just two of them (when we consider, for instance, the vicinity of 

any interface 'Y) we would name them n_ and n+. The corresponding metrics are 

g± = g(n±), see Figure 2.3. 
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\ \ \ 
1 QZ,g2 0 3,g3 Q"g 

~ 
0"g' 0 5,g5 0 4,9' 

Figure 2.3: Various notations of chambers 

In the present work we assume that all interfaces of the admissible Riemannian poly­

hedron satisfy to (2.10). 

Definition 2.21 (Artificial interfaces) 

When condition 2.10 is not valid not for all points on the interface 7, this is not the 

case we consider in the present thesis. We call the interface artificial interface for 

the smoothly glued metric tensors. 

There exists another important case is the case when metric tensors of adjacent 

chambers are glued continuously on the interface. This is the case of gluing by 

isometry when we assume that metric is continuous but its normal derivatives have 

jumps. Considerations of that kind of interfaces are beyond the scope of the present 

work. 
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2.2.2 Coordinates 

We need to introduce several types of local coordinates on M, let us start with 

Notation 2.10 (Inner coordinates) Any regular (inner) local coordinates 

which are smooth inside some chamber oint (in some chart on M). From now on we 

will mostly use Latin indices to count coordinates with respect to full dimension n. 

Notation 2.11 (Semi-geodesic Coordinates) The second type of coordinates are 

boundary normal, or semi-geodesic coordinates, (see [6], [7], [37]), i.e. corresponding 

to the interface boundaries "I (see the rigth hand side of Figure 2.3), such that (q, (7) = 

(q,(7±) = (q\ ... ,qn-\(J) = {q",(J}~;;;' where q are some smooth coordinates on the 

interface "I, and a± is the distance to "I with respect to the metric g±, i.e. 

a+(x) > 0, 

a = a(x) = 0, 

-a-(x) <: 0, 

x E "I, 

We will use Greek letters et, (3, 5, ... to count (n - 1) interface coordinates {q"} = 

{q\ .. , qn-l}. We choose the origin Ml of semi-geodesic coordinates to belong to "I, so 

we choose point Ml to have coordinates a = 0, q" = 0. 

We can choose these coordinates in the vicinity of "I by the following procedure. 

Choose local coordinate system (map) (ql, ... , qn-l) on "I containing point M 1 . We 

introduce local coordinates (xl, ... , xn) on fL such that xn(P) = a_(P) is the distance 

from the point P E 0_ to "I in metric g-, corresponding to 0_ and the rest of point P 

coordinates are the same as the coordinates of the closest to P point on "I. Similarly, 

the distance in [/+ from P to 7 is equal to -(J _ (P), and the rest coordinates are the 

same as before. Together these coordinates give coordinates smooth on [/_ and [/+ 
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separately in a small vicinity of'Y on X, consequently they give smooth structure on 

X where ~L and 0+ appear to be smooth sub-manifolds. 

As (j is orthogonal to all qQ the matrix of metric tensor has the following form in 

semi-geodesic coordinates: 

where 
± dx dx 

9Q(J = (dqQ ' dqf3 )g± 

is (n - 1) x (n - l)-smooth matrix of tangent components of metric. 

Notation 2.12 (Boundary normal coordinates) We will use various notations 

for the semi-geodesic coordinates depending on the basic hyper-surfaces. In the case 

when the their tangential part lives on some interface 'Y we will denote them as above, 

q E 'Y and (j the normal coordinate. In the case when their tangential part lives in 

the part of the polyhedron boundary r c oM, or in the boundary of some smooth 

subset 1) of M, we will denote them by z E r ({ z"}~;;;i = (zl, ... , zn-l) Er), and r 

(or s) the normal coordinate, pointing inside the manifold. In the latter case we call 

these coordinates the boundary normal coordinates. 
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2.3 Distance structure on (M, g) 

This subchapter contains a description of methods of introducing a distance structure 

on an admissible Riemannian polyhedra from [25]. Then, adapting the construction 

of C. De Cecco and C. Palmieri (see [19]-[22]) an intrinsic distance dx (Camtheodori 

distance) is defined on X, which thereby becomes a length space, and hence a geodesic 

space (see Statement 2.1.0.1). 

Remark 2.3.1 We present most of the results in assumption that our metric tensor 

is non-smooth being only measurable. All proofs presented are for the case of locally 

finite polyhedra as the results can be used for the case of Admissible Riemannian 

polyhedron as well. 

2.3.1 Intrinsic distance dx 

Notation 2.13 (Euclidean Riemannian metric gel In addition to the piece-wise 

smooth metric tensor g on M, we shall always consider the Euclidean Riemannian 

metric ge on a Lip polyhedron X (corresponding to M) with a specified triangulation 

T = (K, e). For each 0 E W(X, T), go. is defined in terms of a Euclidean frame on 

. e-1(Oint) by the unit matrix oij. Thus ge is by no means covariantly defined and 

should be regarded as a mere reference metric on (X, T). 

Remark 2.3.2 The ellipticity constant A of M = (X, T,g) from (2.9) equals to the 

bi-Lip constant in the identity map (X, T, g) -> (X, T, gel in terms of the associated 

intrinsic distance dM = d~ and its analogue d"x, both of which are determined below. 

Relative to a given (Lip) triangulation T = (K, e) of an n-dimensional admissible 

Riemannian polyhedron (M, g), we have on M the distance function e induced by 

the Euclidean distance on a Euclidean space V in which JKJ is affinely Lip embedded, 
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cf. Lemma 2.1. This distance e on M is not intrinsic and will play an auxiliary role in 

defining an equivalent intrinsic distance d'1 = dM as follows, by a slight adaptation 

of the procedure used by G. De Cecco and G. Palmieri [19] for the case of lliemannian 

Lipschitz manifold. 

Consider Z defined above, see Definition 2.18. For a given triangulation T = (K,O) 

consider in particular the set ZT E Z obtained from M by removing from each 
o 

chamber n in M those points of n which are Lebesgue points of gO (that is, for every 

component g~ measurable, see Remark 2.3.1). 

Notation 2.14 (Family of paths LipZ(x, y; M» We denote by LipZ(x, y; M) the 

family of all Lip continuous paths ry: [a, b] ---> (M, e) with ry(a) = x, r/(b) = y which 

are transversal to Z in the sense that ry-1(Z) is a null subset of [a, bj for any two 

points x, y E M and any Z E Z such that Z :::> ZT. 

The length LT(ry) of such a path ry is well defined by 

(2.11) 

where (ryl, ... , ryn) = 0-1 0 ry in terms of EucIidean coordinates on the open EucIidean 

simplex 0-1 (f2int) , and the dot means differentiation. 

Write 

PZ(x,y) = inf{LT(ry): ry E LipZ(x,y;M)}. 

" 
(2.12) 

Here PZ depends also on T. Clearly, ZI :::> Z2(:::> ZT) implies PZ,(X,y) ~ pz,(x,y). 

Finally set 

dM(x,y) = sup{pz(x,y): Z E Z, Z::> ZT}. (2.13) 
Z 

The EucIidean segment [x, y] c n can be slightly deformed to a path 

ry = [x, z] Uz, yj c n, 
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such that ry-l(Z) is null. Clearly, pz satisfies the triangle inequality, and so therefore 

does dM . 

For the Euclidean Riemannian metric ye on M (induced by the Euclidean distance 

e on V) we have similar notions LHry), p'i(x, y), divt(x, y). In view of (2.9), each of 

quotients 
Lr(ry) pz(x, y) dM(x, y) 
LHry)' p'j,(x, y)' divt(x, y) 

lie between 1\-1 and A. Then 

e(x,y)::; dX(x,y), forx,y E X. (2.14) 

Here the sign of equality holds if x and y are in the same simplex s. This can be 

shown by deforming [x, y] into ry = [x, z] U[z, yJ with r,-I(Z) null and 

LT(TJ) ::; e(x, y) +c, 

whereby pz(x, y) and hence divt(x, y) are::; e(x, y) + c. 

Since M (X) is connected it follows that d'X(x, y) < 00 and hence dM(x, y) < 00 for 

any pair x, y E M. By (2.14), d'X(x, y) > 0 and hence dM(x, y) > 0 when x i y. 

Altogether, dM and d'Jc are equivalent metrics on M, depending on a priori triangu­

lation T. They are locally equivalent to the given metric on M as a Lip polyhedron 

according to Lemma 2.2 below, applied to the star of any point of M. 

Remark 2.3.3 (Intrinsic distance) In view of Lemma 2.3 below, dM is called the 

intrinsic distance on (M, g). 

Proposition 2.3.1 

Distance d'X is continuous and hence bounded as a function on X x X due to com­

pactness, see [25J. 

Proof of Proposition 2.3.1. Indeed, for given Xo, Yo E X and for any x E st(xo), yE 

st(yo), we have d'X(x, xo) = e(x, xo), d'X(y, Yo) = e(y, Yo), as noted after (2.14); and 
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so 

Idx(x, y) - dX(XO,YD)1 ~ e(x,xol + e(y,yo) ...... 0 (2.15) 

as (x,y) ...... (xo,Yo) in X xX. 0 

Lemma 2.2 Let X be a finite Lip polyhedron, affinely and Lip homeomorphically 

embedded in a Euclidean space V. The induced Euclidean distance e on X is then 

equivalent to the distance cr;¥ associated with the Euclidean Riemannian structure 

ge on X, hence also equivalent to the intrinsic distance dM associated with a given 

Riemannian metric 9 on M. 

Proof of Lemma 2.2. We have dM and d'X are equivalent distances, see also Propo­

sition 2.3.1. In view of (2.14) it remains to show that d'X/ e remains bounded on 

X x X. Suppose there are sequences (Xj), (Yj) C X such that 

d'k(xj, y;) . 
( ) 

...... 00 as J ...... 00. 
e Xj, Yj 

(2.16) 

Since d'X is bounded on X x X, e(xj, Yj) ...... 0 as j ...... 00. Passing subsequences may 

assume that there exists a E X such that Xj ...... a, Yj ...... a. Let Wo denote the carrier 

of a, i.e., the lowest dimensional simplex of (X, T) containing a (necessary as an inner 

point). Let s, resp. t, denote the lowest dimensional simplex, containing Wo and also 

infinitely many Xj, resp. Yj; we may assume that Xj E S, Yj E t for all j. Using a as 

an origin, consider in the Euclidean space V the linear subspaces VWo ' Vs, Vi spanned 

by Wo, s, t respectively. Denoting by x' the orthogonal projection of the point x E V 

on VWo ' we may further assume that xj, yj E Wo. If soft we finally arrange that Vs 

and Vi are perpendicular to one another in the sense that for every x E Vs, y E V;, 

the vectors x - x' and Y - y' are orthogonal; for if this is not already the case, it can 

be achieved by applying a linear, hence bi-Lip, bijection of V onto itself. In terms of 

the Euclidean norm I . I on V we then have 
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nothing that the vectors Xj - xj E V, e Vwo , xj - yj E Vwo and yj - Yj E Vi e Vwo , are 

mutually orthogonal with the sum Xj - Yj. The contradiction with (2.16) completes 

the proof, the remaining case s = t being trivial, again see text following (2.14). 0 

Notation 2.15 (Lip (M» The class Lip (M) is the class of Lip continuous functions 

u: M -+ lR. (using any oflocal distances on M considered above). The gradient lV'ul 
is the Riemannian gradient, defined a.e. in M (that is a.e. in each r! E W(M, T)), 

for a given triangulation (K, e) of M, by Rademacher's theorem for Lip functions on 

Euclidean domains, applied to u expressed in Euclidean coordinates in the interior of 

Notation 2.16 (Lip (x, Y; M» Also Lip (x, Y; M) denotes the family of all Lip paths 

'I : [a, b] -+ (M, dM ) joining x to y. 

Lemma 2.3 (Distance function on M) 1. The distance function dM = d'1t on 

an admissible Riemannian polyhedron (M, g) is intrinsic, in particular indepen­

dent of the chosen triangulation. 

2. (M, g) is a length space (hence a geodesic space, if complete). 

3. dM equals Camtheodory distance 

dM(x, y) = max {Iu(x) - u(y)1 : u E Lip(M), lV'ul ::; 1 a.e. inM}. 

Proof of Lemma 2.3 (see [25]). First note that for given x, y E M, there exists a 

null set ZT E Z with ZT :l ZT and large enough so that 

pZy(x, y) = dM(x, y). (2.17) 

(It suffices to choose an increasing sequence (Zj) C Z with Zj :l ZT so that 

pzj(x,y) -+ dM(x,y), and to take ZT = UZj, noting that ZT:l ZT and pzy(x,y) :::: 
j 

pzj(x, y).) 
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(1) Fix x,y E M, and consider any triangulation T' = (K,B'). For any chamber 
o 

Oa E W(M,T) and any chamber O~ E W(M,T') such that U:= OanO~ # 0 we 

have the Lip homeomorphism 

between the open subsets B-l(U) and B,-l(U) of the Euclidean simplexes B-l(o~nt) 

and B,-l(Ot'). This Lip homeomorphism is differentiable off some Lebesgue null set 

Zaj3 C B-l(U), mapped by B onto a null set B(Zaj3) C U. Writing 

Zo = ZT U ZT' U U B(Zaj3) (E Z), 
a,p 

we have for any Z E Z with Z ::> Zo and any path 1) E LipZo(x, y; M) 

because this holds by covariance for the contributions from 1)-l(fl", n fl~) to LT (1)) 

and to LT'(1). 

For any Z E Z with Z ::> ZT' we have the quantities p'z(x, y) and dM(x, y) corre­

sponding to pz(x, y) and dM(x, y), respectively, but relative to T' in place of T. For 

any path 1) E LipZUZo(x, y; M) we obtain 

By varying 1) E LipZUZO(x,y;M) (c LipZO(x,y;M» we conclude that 

p'z(x, y) "Pzuzo(x, y) " dM(x, y), 

and finally dM(x, y) " dM(X, y), similarly dM(x, y) "dM(x, y). 

(2) With the intrinsic distance we associate in the standard way the intrinsic length 

L(1) of a Lip path'l) : [a, b]---+ (M, dM) (or equivalently 1) : [a, b]---+ (X, e), by Lemma 

2.2, which is applicable because only finitely many chambers of M meet the compact 

image 1)([a, b])): 
k 

L(1) = sup 2:dM(Xi-l, Xi), 
1l" i=l 

(2.18) 
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where 1\' ranges over all subdivisions of la, bj : 

a = Xo < Xl < ... < Xk-l < Xk = b. 

Returning to the null set Zf from (2.17) (for given x, yE M and a given triangulation 

T of M) we may clearly choose Z = Zf E Z so as to satisfy (2.17) for all pairs of 

points x, y from a countable dense subset M* of M. With that set Z we show that 

L(1')::; LT(1') (2.19) 

for any Lip path 1') : la, b] -> (M, e) such that 1')-I(Z) is null. Via a subdivision 

of [a,b] this in fact reduces to dM(x,y)::; LT(1')). For given c > 0 choose x*,y* E 

M* so that dM(x, x*), dM(y, y*) < c. By the definition of pz(x, y), it is less than 

dM(x,y)), and there are paths a E LipZ(x*,x;M) and (3 E LipZ(y*,y;M) such that 

LT(a), LT«(3) < c. The path 1')* = aU1')U(3 belongs to LipZ(x*,y*;M), and by the 

choice of Z above, 

This shows that dM(x, y) ::; LT(1')), thus establishing (2.19). 

We are now prepared to show that (M, dM) is a length space because 

dM(x, y) = inf {L(1')) : 1') E Lip(x, y; M)} (2.20) 

for every x, y E M. Choosing Z = Zf E Z conforming with (2.17) we then have 

from (2.19) when 1') ranges over LipZ(x, y; M) 

infL(1')) ::; infLT (1)) = pz(x, y) = dM(x, y). 
~ ~ 

A fortiori, the inequality sign 2: holds in (2.20). The opposite inequality in (2.20) is 

obvious. 

(3) Let Sex, y) denote the supremum of lu(x) - u(y)1 for the stated functions u. For 

any such function u take for Z the union of ZT and the null set of points X of M \ ZT 
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at which u is not differentiable (as a function on flint", X, fl E W(M, T)) with 

l'Vul :<:; l. For any ry E Lipz(x, y; M) we then have 

by Cauchy-Schwarz, < .,. > and 1·1 denoting the Riemannian metric and the norm on 

(the tangent bundle of) flint for each fl E W(M, T). It follows that lu(x) - u(y)1 :::: 

Pz(x,y):::: dM(X,y). 

In the opposite direction, note that the Lip function u : dM(x,·) on M completes in 

the definition of o(x, y) because l'Vul :::: 1 a.e. in each flint, fl E W(M, T), by the 

triangle inequality, noting also that dM(X, y) equals the usual Riemannian distance 

between two points x, y E flint. (This is because the usual geodesic segment [x, y] can 

be slightly modified to a path, e.g., [x, z] U [z, y] of class LipZ(x, y; M) and the length 

only slightly bigger than that of [x, yj, by the usual Fubini argument, assuming y near 

x.) This ends the proof. 0 

Also the following Lemma has been proved. 

Lemma 2.4 Thus for any triangulable admissible Riemannian polyhedron (M, g) the 

intrinsic distance dM(x, y) introduced above in (2.20) equals the usual Riemannian 

{Lip} distance between x and y. Also, (M, g) is a geodesic space due to the Statement 

2.1.0.1, thus any two points on M can be joined by a Lip continuous r·ectifiable path 

ry, such that L(ry) {2.18} is a distance between these points, and ry has a Lesbegue 

measure zero intersection with all null sets {2.18} of X. 
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2.4 Laplace-Beltrami operator 

On an admissible Riemannian polyhedron M the Sobolev space Wf(M), defined as a 

completion of a suitable space of Lipschitz continuous functions in the Sobolev norm, 

is a Dirichlet space. We remember that dM is an intrinsic distance on (M, g). 

Notation 2.17 ( LipI,2(M)) We denote by LipI,2(M) the linear space of all Lip 

continuous functions u : (M, dM ) ---+ 1R for which the Sobolev ([50]) (1, 2)-norm lIull 
defined by 

IIull2 = j(u2 + lV'uIZ
) 

M 

(2.21 ) 

is finite for M compact, here V'u the Riemannian length of the Riemannian gradient 

on each Os. Here the integration is taken with respect to the Riemannian volume 

measure on M, i.e. on each 0, E W pn(M). By Randemacher's theorem V'u exists 

a.e. in each Os (hence a.e in M), see [28], [27], [54], [55], [61], [52]. 

As metrics gi on each chamber Oi are smooth up to the boundary, we introduce a 

map which is HI(O) smooth, then we consider our polyhedron M as a collection of 

chambers and obtain functional class HI (M) as a closure of all Lipschitz functions 

on M. We introduce a Dirichlet integral, i.e. a quadratic form in L2(M) by the 

following 

QD[U] := L j(UZ + lV'uIZ
), ulao. = ulan.n 

O.EW pn(M) 0. 

(2.22) 

where we considered u as a finite set of HI-smooth functions on each chamber, 

W pn(M) denoting the collection of all chambers Os of M (relative to a given tri­

angulation). The Dirichlet integral QD introduced by (2.22) is positively definite in 

Lz(M), semi-bounded from below, then there exists a self-adjoint Euler-Lagrange 

operator corresponding to it, which is locally a Laplace-Beltrami operator, 

(2.23) 
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where ai = g;, i = 1, ... , n, and g := det (%), and (gij) = (gij)-l. Consider now 

admissible lliemannian polyhedron (M, g), where metric g is determined above. In 

general, there is no selected coordinate system on M but one can still define the 

Laplace operator locally in any chart x inside each Om by using (2.23), where gi] is 

now the lliemannian metric tensor on Om (which as we saw above determines the 

length by (2.18)) and locally on 'Y for (J = O. Definition (2.23) is covariant, that is, 

in any other chart this operator will have the same form. We should consider what's 

happening on the interfaces. Now we consider the Laplace-Beltrami operator L'l.± 

locally on each side of'Y (see Notation 2.9), which in local semi-geodesic coordinates 

has the form 

where a" := &~"' an := aa := g" and 

We define HJ(M) to be the closure of CO"(M) in Wf(M). 

Definition 2.22 (Weak solution to the Laplace-Beltrami equation) 

We define a weak solution to the following Problem 

!!.u = f, UI&M = 0, 

(2.24) 

(2.25) 

as a function u E HJ(M) that satisfies the equation!!.u = I in the sense of distribu­

tions. This is equivalent to the integral inequality 

-J Vu· Vv = J Iv, "Iv E HJ(M), 
n 

u is then from the domain of Dirichlet Laplace-Beltrami operator. 

Let us determine the domain of the Dirichlet Laplace-Beltrami operator for the weak 

solutions on admissible Riemannian polyhedra. Consider for simplicity the integration 
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over M '" [L U n+, as there are finite number of interfaces we can generalize the 

result for all of them afterwards. 

j j 1 .. 
h:= (6.u)vvgdx '" ,,;g8i (g'J vg8j u)vvgdx. 

° 0 

Now we substitute the form of the Laplace-Beltrami operator (2.24) near the interface 

and separate the integral two integrals over fL ans fl+, thus 

I1 '" j(8"9~yg-8f3u)v(q,lJ)dqda + j(8"g't#8{Ju)v(q,lJ)dQdlJ 
D_ D+ 

+ j (8a( yg-8au))v(q, lJ)dqdlJ + J (8a{ #oau))v(q, lJ)dqdf7 . 

.fL D+ 

The first two integrals in the latter formula do not contain any problems as all tan­

gential coordinates and parts of metric are smooth, so we will not deal with them, 

we restrict ourselves only on considerations of the last two integrals which contain 

normal to "I derivatives, that have jumps. By integration by parts, we obtain spe­

cial conditions for the function u to be a weak solution of 6. on M, assuming that 

boundary terms on oM vanish due to the Dirichlet boundary conditions. 

I2 := j(8a(yg-8au))v(q,f7)dqdlJ = j u6.vdqdlJ, 
0_ CIO_ 

here Cl n is a notation for the closure of fl, i.e. we consider the chamber with its 

included piece-wise smooth boundary. Let us show that the latter is valid: 

We gave the same formulae for the domain n+, thus for the boundary terms to vanish, 

we have to require some special interface boundary conditions to be satisfied for all 

function from the domain of our Laplacian. 
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Notation 2.18 (Interface Continuity Conditions) We call the following condi­

tions [47] the interface 'Y continuity conditions when they are valid on the inter­

face 'Y 

(2.26) 

Notation 2.19 (Function jump) Here [f] is a special notation of a function 

jump on a smooth interface 'Y between two smooth compact areas [L and n+, i.e. 

Thus we have shown, that the Laplace-Beltrami operator introduced above is self­

adjoint when it is determined in the following domain, its closure is called the Dirichlet 

Laplace-Beltrami operator and will be denoted by 6.g .: 

Notation 2.20 (Domain of the Laplacian) We denote the domain of the Dirich­

let Laplace-Beltrami operator (2.24) on the admissible Riemannian polyhedron M 

by 

or, equivalently, for M = n_ u n+, 'Y c n_ u n+ : we have 

(2.28) 

Notation 2.21 (Wave operator) We have one more useful notation: 

Dg = ::2 -6.g , which is a D'Alembert wave operator. (2.29) 
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2.5 Spectral problem 

We state a spectral Dirichlet problem, supplying the operator with continuity condi­

tions on the interface and with boundary conditions such that this problem will have 

a unique solution (see [46]). Thus, for M 

f -~9'Pk(X) = Ak'Pk(X), 'Pk E 'D(~9)' 
1 'Pk(x)lro = 0, 

XEM, 

for the problem near the interface we consider M = fL U 0+, then 

'Pk1(ro)\-y = 0 is the Dirichlet type boundary conditions, 

continuity conditions of the function and its normal derivative 

on the interface, i.e. interface continuity conditions'Y, 

(2.30) 

(2.31 ) 

where 'Pk("') = 
(

'Pt, (q, (J+) E 0+, 
are the global eigenfunctions of the oper-

'PI;, (q, (J-) E 0_, 

ator considered on M = 0_ U 0+, and Ak are the corresponding eigenval ues. As 

above, for the uniqueness of the solution of this problem we supplied this equation 

with additional interface (continuity of the normal derivative, continuity) 

conditions. 

Remark 2.5.1 Without a loss of generality, we assume that we have chosen starting 

open part of the boundary r 0 such that it does not intersect any singular point M, 

or, say, 'Y. 

The standard technique of the spectral theory of elliptic operators ([3], [14], [16], [26], 

[27], [53]) implies that there exists an orthogonal basis {'Pk}~l in L2(M) s.t. each 

'Pk is a weak eigenfunction of ~ in M with an eigenvalue Ak = Ak(M), and 
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Consider the properties of the eigenfunctions of our problem (2.30), or (2.31). Our 

metric tensor is Coo smooth up to the boundary inside each nint, it satisfies the elliptic 

regularity property as well, see (2.8). We want to use the fact, that the eigenfunctions 

'Pk(X) specify points on M, i.e. that if 

and then 'Pk form a basis in Lz(M). These results can be found in the following books, 

[46J; [59], [60J. The ruff idea is to use the fact that HI can be compactly embedded 

into L2. 

The foHowing result is proved by O. Ladyzhenskaya, see [46J. 

Lemma 2.5 If domain M has a piece-wise smooth boundary oM, then a bounded 

set from HI(M) is compact in L2(oM). 

Consider u(x) E D(6(M)) and consider "I is a subset of some interface surface. 

Consider "I such that q" E "I are some smooth coordinates, Cl = 0 for "1. Consider a 

cylinder 

Q6 := Q6('Y) = {x: 0 < Cl < 8, q" E "I} EM. 

For u(x) E D(6(M)) we can construct a sequence of smooth functions {u(m)(x)} such 

that it converges in L2(Q6) to u(x) and such that u~':') converges to ux , in L2(Qo). 

Consider 
<7 

j
ou(q",r) 

u(q", Cl) - u(q", 0) = or dr, 
o 

for u E 1)(6(Qo)), then integrating over "I and taking squares of both parts, we have 

I/u(q", Cl) - u(q", 0)111,,~ = J (J ~~ dr) 2 dq" ~ Cl J J (~~)2dX 
~ 0 0 ~ 

and also (see [46]) we have the foHowing estimate: 

ju2(qa,O)dqa ~ ~ J u2(x)dx+8 J u;dx. 

~ ~N ~N 
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Lemma 2.6 (Traces of functions on the interfaces) The consequences of the lat­

ter estimates are (see [46/): 

(i) functions u(m)(x) converge in L2(,); 

(ii) the function which is defined on "I as a limit of u(m) (x) in L2( "I) is naturally called 

the trace of u( x) on "I; 

(iii) the traces of u( if', (J) on "I are elements of L2( "I) and depend continuously on the 

parameter (J E [0,0]; 

(iv) the traces of the elementu(x) E Hl(M), determined on "I as an element of L2(,)' 

does not depend on the choice of the sequences of smooth functions {u(m) (x)}. 

Remark 2.5.2 (Extra Information) (see [25], [59]) For any interface "I C M, the 

continuous trace map u ...... u1 7 : Lipl,2(M)-> L2b) and that map extends uniquely 

to a continuous map W 1,2 = Hl(M) -> L2(,)' likewise called trace map, the trace 

map extends continuously to a a map T: Hl(fJ) -> Hl/2(,). 

Remark 2.5.3 (Cauchy sequences) There exists function u(m) (x) E COO(M), con­

verging to u(x) in Hl(Mint), IITu(m) - Tu(l)IIL,(aM) ~ Cllu(m) - u(l)IIH1(M'"')' so 

that {Tu(m)};;;'=l is a Cauchy sequence in L2(aM). Define Tu:= lim Tu(m), the limit 
m-co 

taken in L 2(aM), according to considerations from [46], [27] (the boundary aM can 

be considered as a finite union of fi and 'Yj) this definition does not depend on the 

particular choice of smooth functions approximation u. 
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Gaussian Beams near the Interface 

Consider two anisotropic media [L and n+ with a common part which we call the 

common interface "I. Assume that the dimension of n± is n, and the interface "I is a 

hypersurface. Consider n± to be Coo_ smooth up to the boundary 8n± Riemannian 

manifolds. Denote Riemannian metric tensor on n± by g±, i.e. g± = g(n±). We 

suppose that 

(3.1) 

Without a loss of generality we assume that the solution during time to > 0 won't leave 

the domain of regularity of semi-geodesic coordinates and won't reach the manifold 

boundary 8n+ U 8n_. The present Chapter contains the description of basic Gaussian 

beams techniques ([6], [38], [36], [48]) and results from paper [41] for the anisotropic 

media with an interface. 

3.1 Gaussian beams - "quasiphotons". Definitions 

We seek the solution to the wave equation in the form of a Gaussian beam reviewing 

the well-known procedure from papers of Babich V., UIin V., [6], Kachalov A., [36], 

38 
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()-

Figure 3.1: Incident Gaussian beam and the interface 

Ralston J., [48] and others. Gaussian beam is a complex-valued asymptotic solution 

to the wave equation such that 

./ starting moving from the point on the boundary in some direction, the Gaussian 

beam is then concentrated at time t near the point /1(t) on the geodesic deter­

mined by the same starting point and same direction. In other words, Gaussian 

beam decays fast on increasing the distance from that point, 

./ it propagates with unit velocity along the geodesic J.l(t) (see Figure 3.1). 

Such a solution can be obtained as a unique solution of the initial-boundary value 

problem for the wave equation, assuming that the source fO(e; t, z), zEro is located 
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on the boundary fo in the vicinity of the initial point Mo(zo, ro) at time -to < 

0, Zo E f o, where (z, r) are semi-geodesic coordinates corresponding to fa, i.e. fa :== 

{xl r(x) == O} and {z" are some smooth coordinates on fo}. Denote by 

_ {U+(t, z, r), 
U(t,z,r) -

U-(t, z, r), 

the solution of the following problem 

er>O 

er<O 

8;U - f:,gU == DgU == 0, in M x [-to, T] 

Ult~-to = 8tUlt~-to = 0, (3.2) 

Ulro = fO(e:; t, z), 

where T > to. Here 

(3.3) 

is a functional class on fox JR, XO is a smooth characteristic function in the vicinity 

of point (-to, zo), where Me :== (7fe:)-%, VO(z) is a given smooth function, e: is a 

small parameter, 0 < e: < 1. The amplitude function can be presented by a sum of 

smooth homogeneous polynomials on the distances (z- zo) and (t + to) with complex 

coefficients, the phase function has the following form 

e°(t, z) == -et + to) + ~(HO(z - zo), (z - zo)) + ~(t + to?, (3.4) 

where (.,.) is a euclidian inner product, (HO)t == HO, '0!Ho > O. We follow papers of 

A. Kachalov, [37], [36], and A. Kachalov, Ya. Kurylev, M. Lassas, [38] to introduce 

the following definitions: 

Definition 3.1 (a Finite Gaussian beam of order N) 

A Finite Gaussian beam (Finite Gaussian beam) of order N tS a function 

UN(e:; t, q, er) of the following form: 

N 

UN(e:; t, q, er) ~N Me exp{ _(ie:)-leN(t, q, er)} I:>l(t, q, er)(ie:)l, (3.5) 
1~0 
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where phase function eN(t, q, (j) satisfies conditions: 

'SeN(t, ,,(t)) = 0, ,,(t) is a geodesic, (3.6) 

'SeN(t, q, (j) 2: Co(t)dist2(1",I"{t)), dist{I",I"{t)) f- 0, (3.7) 

here Co is a continuous positive function. We have the following inequality valid for 

the beam: 

(3.8) 

where C(2to) does not depend on 0, 

( 
q) ( q(t) ) ~ = , ,,(t) = , y = ~ - ,,(t), 
(j (j(t) 

(3.9) 

where 0 < TJ < 1/6. The phase and amplitude function Taylors have the form: 

K(N) K(N) 

e N ;,( I: (l1(t) = L (I,o\t) (" -,,(t))', K(N) = 2(~ ~ ~ -I), (3.10) 
12:1 1'12:1 TJ 

L(N) L(N) 

up = I: Up.l(t) = L Unt!(t) (I" - I"(t))', L(N) = 2(~ ~ ~ - p), (3.11) 
12:1 1'12:1 TJ 

at that dist(I",,,(t)) = dist((q,(j), (q(t),(j(t))) is the distance in ll±. 

Notation 3.1 (Imaginary part) We denote by 'S(I the imaginary part of (I. 

Remark 3.1.1 Lemma 2.49 from [38] allows us to restrict ourselves on construction 

of a finite number of terms in phase and amplitude expansions, see (3.10), (3.11). 

Remark 3.1.2 The finite Gaussian beam UNto; t, q, (j) introduced above is concen­

trated near ,,(t), i.e. IIUN(o; t, ')IBpllL' = 0(1). Finite Gaussian beam decays expo­

nentially 

for any p > 0 outside of the ball Bp(,,(t)) of radius p > 0, p ~ d-~ (i.e. on the 

distances more than 0(01/2-~), 0 < 'I < 1/6 from the geodesic I"(t)). 
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Notation 3.2 (Formal series equality) We write :=:.k when there the equality of 

formal series up to the order k over all powers c, t, q\ '" qn-\ a and their combi­

nations takes place (we do not care about the convergence here); we denote a for­

mal asymptotic (algebraic) expansion by :=:.k, i.e. we write f(t, yet)) :=:.k 0 when 

a~f(t, Y(t))IY(t)=o = 0, where 101 :s; k is a multi-index. If index k is absent then the 

expansion is true for any k. 

Definition 3.2 (An impulse, a quadratic form) 

The first terms of the phase expansion eN of the Gaussian beam have special (poly­

nomial) notations 

(h(t, q"', a) = p",(t)}'" + Pn(t) yn, (3.12) 

where pet) ;= (p,,(t),Pn(t)) is an impulse of the Gaussian beam and 

(3.13) 

where 

is called the quadratic form which contains the divergence of rays and a form of the 

beam. Consequently el(t,q"',a) are homogeneous polynomials of order I with respect 

to Y We introduce notation for higher order terms of the expansion: 

el = rr(Qa, ... ", }"" ... }"" + C!Q", ... ",_,n Y"'". }""-, yn + ,,), 

where qk are Bernoulli coefficients. The terms terms of order I > 2 are additional 

(correctional) and are of minor importance comparing to the impulse and quadratic 

form. 

Definition 3.3 (Formal Gaussian beam) 

We introduce a Formal Gaussian beam (Formal Gaussian beam) by formal ex-

pansion in c: 

00 

U(E; t, q, a) :=:. Me exp{ -( iE)-18(t, q, a)} 2) iE)lUI(t, q, a), 
1=0 

(3.14) 
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where 

8(t, q, 0') ~ L),(t) = L e·O~t) (/1- /1(t)t 
'~1 1.1~1 

Definition 3.4 (Gaussian beam of order N) 

Gaussian beam UN of order N is a solution to the following problem 

8;UN - t:,gUN = OgUN = 0, (t, q,O') E [-to, to] x M, 

UN( -to, q,O') = UN(c; -to, q,O'), 

We should mention that 

43 

(3.15) 

(3.16) 

(3.17) 

here K, is a multi-index, 8~ denotes partial derivative over n spacial coordinates x = 

{q" , 0' }, X is a characteristic function (smooth mollifier on M x R) equal to one in 

the vicinity of /1 = /1(t) and equal to zero outside of this vicinity. 

3.1.1 Solution form 

For the wave equation to have unique solution we should supply it with interface 

continuity conditions on the smooth interface 'Y between rL and 0+, see (2.26) (see 

e.g. M. Popov, [47]): 

(3.18) 

where U± is the field value in 0_, and 0+. We seek a solution in the form of in­

cident and reflected waves in the "first" medium 0_ and transmitted wave 

in the "second" medium 0+. Denote these waves by Uin, uref , U tr correspondingly 

(see Figure 3.2). Recalling the representation of formal Gaussian beam (3.14) and 
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0-+ 

Il ref(t) 

Figure 3.2: Incidence, reflection, transmission Gaussian beams 

assuming that it incidents the interface at the origin of semi-geodesic coordinates MJ 

at time t = 0, we write conditions: 

Uin(c; t, q, 0) + we! (c; t, q, 0) ::<: Utr(c; t, q, 0), (3.19) 

Thus, we write solution in the form: 

U+(c;t,q,o-) = Utr(c;t,q,lT), U-(c;t,q,lT) = Uin(c;t,q,lT) +U"!(c;t,q,lT). 
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3.1.2 Main results 

We will construct three formal series Uin(c:, .), uref(c:, .), Utr(c:,.) and assume that all 

three can be smoothly continued into another domain [L U Sl+. We truncate these 

series at order N and construct finite series UjJ'(c:, .), U;;f (c:, .), UfJ(c:,·) in Sl_ and 

n+. We will show that these solutions are close to the required solutions to the wave 

equation (Gaussian beams) in the HI-norm. Let uin propagate in n_ along the 

geodesic f.1.in(t) := (qJ:,(t), O'in(t)) and reaches the point MI = (q",O') = (0,0) on the 

interface 'Y at time t = O. 

Theorem 3.1 (The main Gaussian beams Theorem) Let the formal Gaussian 

beam Uin (3.14) start movement at time -to < 0 atthe point Mo = (Zo,1'0) E fo and 

reach the interface 'Y transversally at point Ml E 'Y at time t = O. Assume that 

(3.21) 

Then 

1. For t > 0 the solution to the wave equation can be presented by a sum of two 

formal Gaussian beams uref and Utr ; the wave uref reflects from the interface 

and propagates then inside n_ and Utr refracts from the interface into n+. 
Both beams uref and Utr can be constructed if the incident beam uin is known. 

Constructed by that procedure formal Gaussian beam has all properties to be 

considered as asymptotic approximation to the required exact solutions uref, Utr . 

2. There are anisotropic analogues of Frenel's and Snell's geometric optics laws for 

the incident, reflected and transmitted beams. The reflection and transmission 

angles can be represented in terms of the incidence angle. 

3. For any N one can construct the exact solution is a Gaussian beam. This 

solution Uin satisfies equation 0 9 u
in = 0 and differs from constructed formal 
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Gaussian beam UJV + U;:! in fL and UJV in Il+ by function which is small 

enough with sufficient number of its derivatives. In other words, for any N 

there exist constants p(N) and CN such that the difference between the exact 

solution UN to the wave equation and formal Gaussian beam is 

The first and the second statements of the theorem will be proved constructively in 

sections 3.2, 3.4, the third statement will be proved in section 3.5. 

Remark 3.1.3 As 9;;(3(Q, 0) of 9~(3(Q, 0), the order of transmitted wave coincides with 

the order of incident wave. In the case of continuous metric tensor has discontinuous 

derivative(s), the order of the transmitted field is weaker, but this investigation is 

beyond the scope of this paper. 

Remark 3.1.4 In the case when the condition (3.21) fails we have total internal 

reflection. The boundary case g~ p~np;r = 1 corresponds to the tangential to the 

interface direction of the transmitted wave ut" propagation, we exclude this case 

from our considerations because the ray expansions fail to be valid as the interface 

becomes characteristic. 

3.1.3 Formal series 

We follow procedures introduced in papers by V. Babich, V. Ulin, [6], A. Kachalov, 

[36]. Consider the wave operator Og (2.29) applied to finite Gaussian beam UN(e; .). 

For the series to satisfy wave equation asymptotically the phase eN and u/ should be 

the solutions of Hamilton-J acobi equations and transport equations correspondingly. 

We omit captions "in, ref, tr" as the following is valid for all three waves. We write 

out Hamilton-Jacobi equations for the terms of amplitude expansion: 

(3.22) 
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thus, when they are formally satisfied for 8 N, we write out equations for the amplitude 

functions. The operator [eN is called the transport operator: 

[e u=208NOll_2gc<f308NOll _208NOll+(08N)·1l. 
N ot ot ogc< oqfJ oa oa 

The first approximation to the amplitude functions follows from 

[( o8N )2 _ o<fJ08N08N _ (o8N )2] (t ) - 0 
8t 9 oqc< oqf3 oa 1l0, q, a ~ . 

(3.23) 

(3.24) 

Equations for the next amplitude approximations, I = 1, ... , N take forms of transport 

equations: 

(3.25) 

3.2 Phase functions 

We construct 8;:;! (t, q, a), 8lZ;(t, q, a), assuming that they have form (3.10) and that 

Gaussian beam satisfy wave equation and equate to zero the coefficients corresponding 

to the same powers of c (starting from c 2
). We substitute the ansatz (3.14) into the 

wave equation. Firstly, we will study phase function of the incident field 8j?J(t, q, a). 

Secondly, we will show how one can obtain finite Gaussian beam 8';/ (t, .), 8lZ;(t,.) as 

a series of finite homogeneous polynomials in the terms of the incident field. We will 

investigate the differential equations, that are satisfied by the terms of those series. 

3.2.1 Main equations 

Consider finite Gaussian beam UN'(t, q, a), propagating non-tangetially to the inter­

face'Y along the geodesic {lin(t) := (q::,(t), ain(t». Following the procedure introduced 

in, for instance, see [38], consider OgUjJ-(t, q, a). We have already seen that the phase 

function must satisfy Hamilton-Jacobi equation (3.22). By construction, the waves 

must propagate with unit velocity, hence the eikonal equation for 8 N : 
c<fJ o8j?J o8j?J (08j?J)2 _ 1 

g- oqc< oqf3 + oa- ~. (3.26) 
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Introduce new notation and rewrite (3.10) (or (3.15)): 

= ( q" - qi:,(t) ) , 
(J - (Jin(t) 

H~':.(t) ) , 

H~':.(t) 
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(3.27) 

(3.28) 

(3.29) 

(3.30) 

where p.(t) was introduced in (3.9). Continue standard procedure of Gaussian beams 

construction (see, for instance, [6], [36]), the eikonal equation (3.26) implies the equa­

tion for all terms in expansion (3.10), including Hamilton-Jacobi system of equations 

(3.34) for impulses (3.33) and Riccati equation (3.35) for the quadratic forms. Denote 

the hamiltonian of the system by h: 

(hin)2 = ,,(308
in 

o8
in 

(o8
in

)2 = ,,(3 in in (in)2 = (o8
in

)2 
g- oq" oql3 + o(J g- p" P(3 + Pn ot' 

then the impulse equation is 

Hamilton equations (canonical equations) are: 

. (t) 8h'n 1 in() 
ain ::= Opn = hinPn t , 

'in( ahin _ 1 in in( ) ag~{3 
P~ t) = - 8qO - - 2h'nP" (t)P(3 t ElqO' 

P·in(t) = _oh'n = __ 1_. pin(t)pin(t)Elg~' 
n 0(1 2hm a: (3 0(1' 

(3.32) 

(3.33) 

(3.34) 
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The solution of this system is a bi-characteristic (q;:' (t), O"in(t); p~n(t), P::'( t)). The third 

equation which is satisfied by the quadratic form of the Gaussian beam is the Riccati 

equation: 

where the coefficients (Bin)' = Bin., (Gin)' = Gin< = G, (Din)' = Din< = Dare 

n x n matrices of second derivatives of hamiltonian, taken at point (q, 0"; p) = 

(qin(t), O"in(t); pin(t)) on the bi-characteristic: 

(3.36) 

(3.37) 

( 

Ga.(3in Ga.nin) (~~) 
cin =. = [)PoO,P(3 0Pa{)Pn . 

Cn{3zn cnnin EPhm 82 h;n 
fJPn{)Pf3 8Pn 

(3.38) 

Our next step is to obtain equations for the higher order terms. Note that all con-

structed equations are recurrent because each time the higher order terms of the 

phase vanish along bi-characteristics. The homogeneous term et of the order 1 in 

the Tailor's expansion (3.22) depends on e:;;, where m :,; 1 + 1. Recall that terms 

containing el~, equal zero along bi-characteristics. Finally the obtained differential 

equations for the homogeneous polynomials eln, 12':3 are linear (see [38]), 

eBln + N(in)i eeln 
(yin)j = :fi (e in ) 1 at J a(ym)i I m' = 3,4, .. , m < I. 

The components Ni'r)i form n x n matrix: 

N (in)i( ) e2
h

in a2
h

in 
Hin _ [B' G H ]i 

j t = " ." +"" kj - in + in in J.' 
UX'UPj UPiUPk 

where matrices Bin, Gin were determined above in (3.37)-(3.38). 

(3.39) 

(3.40) 

-.~ 



3.2. PHASE FUNCTIONS 50 

Remark 3.2.1 The obtained equations (3.39) can be reduced to the linear ODE 

with respect to t for Bln(t). They require initial data to be given for the uniqueness of 

their solutions. Note once again that those equations obtained for the incident field 

can be written formally for the reflected and for the transmitted fields, as we used 

only general properties of Gaussian beams on obtaining them, as we equal coefficients 

of the homogeneous polynomials considered. 

3.2.2 Required preparations 

Consider phase function expansion as a series (3.27) and re-expand it in the vicinity 

of t = 0, Le. we expand it into Tailor's series pin(t) (3.28), Hin(t) (3.30) and yin(t) 

(3.29) and construct new forms, now with respect to n + 1 variables t, q, (J. Denote 

these new forms by pin, jjin, Le. tilde above the notation means it is a coefficient of 

the new form, obtained as a result of the expansion: 

where 

Si:; (t, q, (J) ;::.2 Pot + P'aV' + p;,n (J + ~ jj&;t2 

+~ jjin q"q{J + ~ jjin (J2 + jjin tq" + jjint(J + jjin q"(J 2 0:(3 2 nn OCt' On cm 

"liP'")', ( : }+;IH" ( : H : } 
( ~~ jjin 

W') ("") (P;I~) ). O{J 

~~~ ,pin = ~n iiin = Hln Hin = ,,0 ,,{J 

j{in Hin H1,n 'jlin p~n(o) nO n{J nn n 

(3.41) 

(3.42) 
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V{~R = -p~n(D)q~(D) - p~n(D)irin(O) - ~(p~n(O)ij~(O) + p~n(O)(jin(D)) 

+~H~':,(0)(&in(D))2 + !H~/J(O)q~(D)qfn(O) + H~~(a)q~(D)&in(D), 

jjin = Hin (0) 
cx(3 a(3' 

jjin = Hin (0) 
nn nn' 

jjb';. = p~n(a) - H~/J(a)qfn(D) - H~';,.(D)&in(D), 

jj~~ = p~n(a) - H~':,(D)&in(O) - H~';,.(O)q~(a), 

jjin = Hin (0) 
an an 

51 

(3.43) 

The obtained expansion coefficients will be helpful in finding the initiaI.data for the 

quadratic form. Note that similar expansions can be presented also for the reflected 

and transmitted fields. 

3.2.3 Impulses pTe!, ptT construction 

The goal of this section is to construct the first linear terms in expansion of the 

reflected and transmitted phase functions e;:;t and elY, i.e. to construct impulses 

pre! (t), ptr(t) (similar to (3.28)). We will find impulses by given initial point and 

unit velocity in metric. 

Consider expansion (3.12) with respect to t,q,O" (we omit similar expansion Bret) as 

it has similar form): 

(3.44) 

We want to find initial data using interface data (3.19) to this end, the first continuity 

condition implies equality 

Bin(t, q, 0) = B~e! (t, q, 0) = B:r(t, q, 0), (3.45) 

hence it is clear that tangential components of impulses (corresponding to "I) are 

equal to 

(3.46) 
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Then assuming that the value of the incident field of the Gaussian beam is given at 

t = 0, i.e. assuming that we know pin(o) and recalling that the velocity is unit, i.e. 

IPtr(t)lg+ = 1, JPre!(t)lg_ = 1 (impulse satisfies eikonal equation (3.26) for any t, 

thus for t = 0), we write 

Iptr(O)1 = h(O, 0; ptr(O)) = ± g~"(O, O)p~n(O)p~n(o) + (pi[(0))2 = 1, 

IVe! (0)1 = h(O, 0; pre! (0)) = ± g~ (0, O)p~n(O)p~n(o) + (p~e! (0))2 = 1. 

Then both p~(O) and p~e! (0) can be determined up to sign of the square root. As 

the transmitted Gaussian beam propagates inside Q+ we should take g:: > 0, i.e. 

p~(O) > 0, the reflected beam propagates inside Q_, thus p~n(o) = _p~e!(o), i.e. 

(3.47) 

(3.48) 

Remark 3.2.2 Condition Iptrl < 1 guarantees that we do not have total internal 

reflection case. 

We found initial values pre!(o) (and ptr(o)). The initial point (qtr(O), O'tr(O)) = 

(qre!(O), O're!(O))= (0,0) of the corresponding bi-characteristics (qtr(t), O'tr(t); Ptr(t)) 

and (qre!(t), O're/,(t); Pre!(t)) is known, thus we can solve Hamilton system of equa­

tions (3.34). The corresponding hamiltonians are respectively, 
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3.2.4 Quadratic forms 

The goal of this section is to construct the second (quadratic) terms of the phase 

function expansion (3.27), namely, Hre!(t, .), Htr(t,.) in assumption that Hin(o) is 

given and that we have already constructed impulses. To this end we have to solve 

Riccati equation (3.35) after calculation initial data Htr(t = 0) and Hre] (t = 0). 

Initial data e;e](O,q,a), e~(O,q,a). 

The goal of this subsection is to construct initial data with required properties using 

interface boundary data (given on /,), i.e. given Ht~, H~/J' Hoo, and assuming that we 

have already constructed impulses and found geodesics we have to express H:i/"r (t = 

0) Hre!,tr(t = 0) Hre!,tr(t = 0) in terms of known values This time we also use , an , nn . 

continuity conditions (3.19) recalling that einl.., = etrl.., = ere!I.." see, for instance, 

[6]. The latter we rewrite as 

Hin = Hre! = Htr = Hin (0) = Hre! (0) = Htr (0) uf3 aj3 a!3 af3 o.{3 a{3' 

Then we get on the interface a = 0 (3.41) 

Consequently, 

{H

-in _ H-reJ _ H-tr 
00- 00- 00 

Hin _ Hre! _ Htr 
Oa - 00: - Oa" 

(3.49) 

(3.50) 

Now we substitute coefficients (3.43) and similar expression for Hre! and Htr into the 

second equation (3.50). Thus we get the representations for H~,:!,tr(o) in terms of the 

given incident field and known derivatives of the geodesics: 

Hre!(o) = _ Hin (0) 
an an' (3.51) 
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We will not present here formulae for reflected and transmitted quadratic forms at 

time zero as they are massive, we present only expression of their imaginary parts as 

we will need them later. We obtain following for the reflected field 

(3.52) 

here we should recall, that ~ is a notation for the imaginary part. Similarly H~;!(t = 

0): 

~(H~,(O)(o-tr(O)?) = -2~ (H~,,(O)q~(O)o-tr(O) + H~':,(O)ql:,(O)o-in(O») 

+~ (H~':,(0)(o-in(0»2 + H~(J(O) [q~(O)qfr(O) - ql:,(O)qfn(O)]) . 

(3.53) 

(3.54) 

Thus, we found initial data for the reflected and transmitted quadratic forms, using 

only given incident field and recently constructed impulses. 

Initial boundary-value problem. 

As we have already constructed initial data Href(o), Htr(o), we can start solving 

Riccati equation (3.35). If we succeed to show that initial quadratic form H(O) = Ho 

satisfies next lemma conditions, then the solution to the Riccati equation is required 

quadratic form of Gaussian beam. The next lemma is Lemma 2.56 from [38} (see also 

V. Babich, V. Ulin, [6], or V. Babich, V. Buldyrev, 1. Molotkov, [7], A. Kachalov, 

[36]): 

Lemma 3.1 (Lemma 2.56 from [38]) Let Ho be n x n complex-valued matrix such 

that 

~Ho > O. 

Then: 

(3.55) 

(3.56) 
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(i) the initial boundary-value problem for the Riccati equation (3.35) with initial values 

Hlt~o = Ho (3.57) 

has a unique solution H(t), t E R. The derivatives are calculated at the point 

(q, 0"; p) = (q(t),O"(t);p(t», 

i.e. on the bi-characteristic, which is a solution to the Hamilton equation (3.34)· 

(ii) The solution H(t), t E R is symmetric H(t) = H(t)t, and '<5H(t) > o. 

(iii) Besides that for any Yo, Zo such that Ho = ZoYQ-1
, matrix H(t) can be represented 

in the form H(t) = Z(t)Y(t)-l. The pair of matrices (Z(t), Y(t)) is a solution to the 

initial boundary-value problem, 

d t 
dt Y(t) = B . Y + C . Z, Ylt~o = Yo, 

:tZ(t) = -D· Y - B· Z, Zlt~o = Zo, 

where matrix Y(t) is non-degenerate for any t ER, det Y(t) 1= O. 

(3.58) 

(3.59) 

Lemma 3.2 The determinant det ('<5H (t» ·1 det Y (t) 12 is constant for any Gaussian 

beam. 

Both lemmas are proved in [38]. 

To use Lemma 2.56 results we need to show that obtained Hre!(o), Htr(o) satisfy its 

requirements (they should be symmetric and positive-definite). 

Statement 3.2.4.1 Let us assume that we know that CSe1n(t, q, 0) > O. Let ()~n(t, q,O) 

be symmetric. Then ':Se;e!,tr (0, q, 0") > 0 and e;ef,tr (0, q, 0") are also symmetric. 

Proof We start the proof of the statement with showing the symmetry of Hre/,tr(o). In 

fact, we cannot state that homogeneous polynomials e;ef,tr(O, q, 0") are determined by 

-



3.2. PHASE FUNCTIONS 56 

symmetric matrices Htr(o) and HreJ(O), but we can always choose unique symmetric 

tensor which gives birth to the required polynomial greJ,tr(o, g, C/). Let us prove the 

second part of the statement. Assume we know that imaginary part 'SHreJ,tr(t) > 0, 

(3.30) for any t i.e. 

( ( 
'SH~/J(O) 'SH~':-.(O») (ga ) , ( gf3 )) > D. 

'SH~/J 'SH~':-.(O) C/ C/ 

Necessary and sufficient condition of positive definiteness by classical Silvester criteria 

(see, say, [62] for details) is positiveness of all main co-factors. 

Note that all main co-factors of matrices ':J'Hin(D), ':J'HreJ(D), ':J'Htr(D) excluding de­

terminant are equal. Thus in order to show that 'SHreJ (D), 'SHtr(D) is positive-definite 

one have to investigate the positiveness of their determinants only. Consider firstly 

the reflected quadratic form 

det af3 an = det afi 
( 

':J'HreJ(D) ':J'HreJ(D») ( ':J'Hin (D) 

':J'H~1 (D) ':J'H~;! (D) -':J'H~/J(O) 

As we see the determinants are equal, and thus we proved that ':J'HreJ (D) > D. 

Consider now ':J'Htr(D). Obviously, multiplying firstly the last column and secondly 

the last row by constant o-in(D), o-tr(O) in matrices 'SHin(o), ':J'Htr(o) correspondingly 

«3.52), (3.54», the sign of determinant does not change. We work with matrix 

its determinant does not change, it is positive. Next we use linear transformations 

(they do not change the determinant) and get matrix 'SHtr(o) with components 

«3.49), (3.52), (3.54», this will prove its positive-definiteness. The noted above 

transformation are: we add the linear combination of all right rows with a factor 

-[In(D) - qt(D») to the last column, then the right column of the obtained matrix has 

components -':J'H~';,c7in(D) - [qfn(D) -q~(D)]'SH~/J(D), which coincides with (3.52). The 

last component is ':J'H~':-.(D)c7in(D) - 'SH~/J(D)o-in(D)[qfn(D) - q~(D)]. Now we add linear 
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combination of all upper rows with factor -[<il:.(O)-t;it;:(O)J to the lowest row. The first 

(n - 1) components of the lowest row coincide now with (3.52), the last component 

coincides with (3,54), this proves positive definiteness of matrix \sHtr(o) > 0,0 

We proved the statement and now we can construct solutions to the Riccati equation 

with required properties 

{

wef(t) = zref(t)(yre!(tWI, 

Htr(t) = ztr(t)(ytr(t)-I. 
(3,60) 

Now formal Gaussian beam (3,14) is concentrated in the vicinity of the point and 

propagates along the geodesic (ptr(t); q'r (t), (Jtr( t» «pre! (t); qref (t), aref (t) »with unit 

velocity on the manifold. 

Next we continue this procedure and obtain higher order terms of the reflected and 

transmitted phase functions. We omit here these massive technical calculations and 

obtained formulae, one can find them in [41]. 

3.2.5 Phase functions 8';Jf (t, q, 0'), 8lV(t, q, 0') 

We presented the procedure of construction of any finite number of terms in the 

phase function expansion e~ef,tr (t), e;e/,tr (t), "" e,;/,tr (t), Let us write out Lemma 

2.61 conclusions form [38J, Suppose that e'N is given, Then we can construct e~ef(tr) 

such that constructed functions can be presented by series 

and such that 

e~ef(tr) = (pref(tr) (t), yet)), Ipref(tr)(t)1 = 1 

are real (pref(tr)(t) are determined by (3,28), and yet) are determined by (3,29), 

e;ef(tr) = ~(wef(tr)(t)Y(t), Yet)), \sH(t) ::0: 0, 
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H'C (t) and H"! (t) was constructed above. Moreover, the constructed phase functions 

satisfy conditions (3.6), (3.7) and estimates 

(3.62) 

that means that all requirements form these functions to be Gaussian beam phase 

functions are satisfied. 

3.3 Reflection and transmission laws 

Consider cotangent space TM1Ery(fL U 0+) (see Figure 3.3) and coplane rrin(Ml) in it 

such that the point Ml = (0,0) is a point where the beam reaches the interface. The 

coplane rrin (Md is a 2 dimensional coplane spanned by covector 

. . 88in 88in 
pm(o) = d8ml,(M1 ) = (~, ... , ~ )IMl 

vq vO"_ 

and normal covector dO"_ = (0, ... ,0, -1) at the point Ml at time t = O. 

Definition 3.5 (Incidence angle) 

We define an incidence angle 'Pin at the point Ml between covectors pin(o) 

d8in l,(t = 0) = (a~:n, ... , ~~~)I,~o and dO"_ in the coplane rrin. 

Let u'r start from "f inside D+ with a transmission angle 'P'r between the cov-

t P'r (0) d8'r I (t 0) (a8" a8" a8") I dId ec or = - , = = 8ql) ... , oqn-l, 00'+ t=O an norma covector G'+ = 

(0, ... , 0,1), rr'r E TM,E,(O+), where the 2D coplane rr'r is spanned by covectors dO"+ 

and ptr(O). The transmission angle 'Ptr determine geodesic fltr(t). 

Definition 3.6 (Reflection angle) 

Similarly we define a reflection angle epre! at the point Ml between covectors 

pre!(o) = d8re!k(t = 0) = (a8a-';', ... , aa8,e')I,~o and dO"_ in the coplane rr"!. 
q "-

Proposition 3.3.1 

Coplanes rrin,rrce!,rr,r coincide in TM1E,(D- U 0+). If the value 'Pin of the angle is 

known then we can find the transmission angle 'P'c and the reflection angle epce!. 
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Figure 3.3: Incidence, reflection, transmission coplanes and angles near the interface 
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Proof Recalling continuity conditions and differentiating the first one (3.19) with 

respect to g" (we can not differentiate with respect to 0' as this condition is valid only 

on 'Y) we obtain from equation the coefficients: 

Bein Bere! Be'r 
Bq" 17 = Bq" 17 = Bq" 17' 

Eikonal equation (3.26) and coordinates normalization at the point Ml imply 

and 

Consider two covectors pintO), dO'_ the coplane 1fin(M1) is spanned by. Consider 

two covectors pre!(o) and dO'_ that the coplane 1fref (M1) is spanned by. We have 

got the value pre! (0) above. One can see that all its tangential components coincide 

with pintO). Formula (3.47) implies that they have only the last component p~e! is 

different. The covector prei(o) can be presented by linear combination pin (0) and 

dO'_, hence they belong to the same 2D coplane. The coplane 1fre!(M1) coincides with 

the coplane 1fin (Md. 

Similarly, we consider covectors pintO) and p'r(o), they also differ in the last coor­

dinate, as one can see that from (3.48). Compare now dO'_ and dO'+. Both covectors 

belong to the same straight line, we present p'r(o) in a form of linear combination of 

pintO) and dO'_. Thus coplanes 1fin(M1 ) and 1ftr(MJ ) coincide. 

Introduce two covectors 

such that 

(dO'_,b_)g- = 0, Ib-Ig- = sin <pin, 

(dO'+,b+)g+ = 0, Ib+lg+ = sin <p'r. 
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Then in equal coplanes 1Tre!(M1 ) and 1T
in(M1) the following is true: 

. oei". 
(de"', deL) = g,::l3(MJ) oq" biJ = sinrpmg~(MJ)b"bi3 = sinrpref g'::.iJ(M1)b"biJ 

oere! 
= (dere!, da_) = g'::.i3(MIl oq" b(3. 

Thus sin rpin = sin rpre!, and eikonal equation gives us a reflected cosine cos rpre! = 

- cos rpi". The latter corresponds to the anisotropic analogue of Frene!'s law of geo­

metrical optics, i.e. 

f sinrpre! = g'::.i3~~(Ml) =g~i3(Ml)p~n(O)p~n(o) = sinrpin, 

1 cos rpre! = - 1 - (g~ a:.~n 8a~;n (MJ» = - cos rpin. 

Bein I . _ b_ (Jetr I . + b+ 
oqa 7 = smrp Ib_lg- = Bq" 7 = Slnrp Ib+lg+ 

(3.63) 

The latter implies the formula for the cosine of the transmitted wave cos rptr expressed 

in terms of given function of the incident wave. For the Gaussian beam ut" to 

propagate inside 0+ we should take the positive sign in the square root 

(3.64) 

We found the values of the reflected and transmitted angles, determined by their 

cosines (3.63) and (3.64) in terms of the incident field. 0 

Formula (3.64) rewritten in the form of sinuses ratio corresponds to the Snell's law. 

One can see that in the case of rptr = ~, the angle rpin becomes critical, the transmit­

ted wave propagates in a tangential direction to the interface. In this case the ray 

expansions could not be used, but such a kind of propagation is beyond the scope of 

this work. 
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3.4 Amplitudes 

3.4.1 Amplitude values on the interface 

We rewrite interface conditions such that we are able to express boundary data of the 

reflected and transmitted waves in terms of incident field, as we did it for the phase 

function. 

Lemma 3.3 Let u';J(t, q, 0) be known trace of the incident amplitude function on the 

interface. We can find traces of the reflected and transmitted amplitudes u'J! (t, q,O) 

and u'N(t, q,O) on the interface for any N > O. 

Proof We will prove this by giving the construction procedure. 

Consider continuity conditions (3.19) on the interface and substitute the formal Gaus­

sian beam series into it. The condition of continuity of the Gaussian beam gives us 

the following equations 

{ ein(x,t)I~;::: ere!(x,t)I~;::: e'r(x,t)I~, 
uln(x, t) I~ + u~ef (x, t)l~ = ui;(x, t) I~, Ilk. 

(3.65) 

The continuity condition for normal derivatives of the Gaussian beam implies equa­

tions 

(3.66) 

where we used some useful notations: 

Bein,re! Be'r 
Sin,re! '- (V ( ) - N ( 0)) str._ (V ( 0) - N ( )) .- 9 q,O B t,q" .- g+ q, -B t,q,O. 

(7- 0'+ 
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Equating coefficients of similar orders of (is), assuming that 

utn,rej,tr 1= 0, u~n,ref,tr:= 0, Vk < 0, 

we get the system of equations for k = -1,0,1, ... : 

p k+l' q, = Q in (t 0) + R 
(

ut" (t 0») .. 
f Uk+1 ,q, k, 

U%~l(t,q, 0) 

where 

._ (str _sre!) ._ ( Sin) ._ ( R.(Uk) ) p .- , Q .- , Rk .- , 
-1 1 -1 -1 

(3.67) 

r-,----c:- auin 8ure! aut" 
R.(uk):=-V9-(q,0)( 8; (t,q,O) + a~ (t,q,0))+V9+(q,0) a; (t,q,O). (3.68) 

We denote the determinant of the obtained system by 

(3.69) 

The obtained system for the polynomials on I (3.67) has a unique solution for any 

RHS, as the determinant (3.69) is 1)k # 0 for any k > O. We tackle the system of 

equations and obtain 

k+l , q, _ p-1Q in (t 0) + P-1R 
(

ut" (t 0») 
f - Uk+l' q, k 

U%~l (t, g, 0) 
(3.70) 

where 

p-l := ~ (1 sre!). 
1) 1 str 

(3.71) 

Thus we have found the recurrent formulae for any finite number of boundary values 

on I for the reflected and transmitted amplitudes in terms of known incident field. 

Hence Lemma 3.3 is proved.D 

Remark 3.4.1 (First amplitude terms) We present the main terms u~e! (t, q, 0) 

and ui)(t, q, 0) as following: 

( 
ui)(t, q, 0) ) = p-1Q in(t 0) = ( T) in(t 0) f UD ,q, Uo ,q, , 
u~e (t, q, 0) R. 

(3.72) 
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Notation 3.3 (Reflection and Transmission Coefficients) Coefficients Rand 

T in (3.72) are reflection and transmission coefficients correspondingly, such that 

l+R=T. 

Similarly, 

3.4.2 Amplitude equations 

We write out ODE for the amplitude functions uref(t,q,(J) and utr(t,q,(J). To solve 

them uniquely we have to supply them with initial data. These initial data will be 

obtained later. The investigation of transport equations (3.25) on geodesic p(t) is 

based on Tailor's expansion. For any I the expansion is 

(3.74) 
m;:::O m:2:0 

here Ul(m), Ul(m) are homogeneous polynomials of order m, m = 0,1, ... with respect 

to t, q, (J and t, tare t = t, if = y-l(t)Y(t). Operator £eN is the linear differential 

operator of the first order, it depends only on such coefficients Ul(m) that m ~ 1+1 in 

equation (3.25). Those terms that are contained in Ul(m+l) are equal to zero along the 

bi-characteristics because of Hamilton system (3.34). Similarly, Ul(m) as a function of 

time t has values in the space of homogeneous polynomials of order m with respect 

to { Then ODE for Ul(m) has a form 

d -
dt Ul(m)(t) + r(t)Ul(m)(t) = J'i(m)(t), 1= 0, 1, ... , (3.75) 

ii(m)(t) are homogeneous polynomials of order m that depend on U8 (p)(t) and BN,p 

only as p ~ m + 2, s < I. As 

lId 
r(t) = -2tr (B t + CH) + 4: dt lng(t), H(t) = Z(t)y-l(t), 
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i.e. 
1 dId 

r(t) = '2 dt In[det yet)] + 4: dt Ing(t), 

then we can solve these equations once supplied them with initial data: 
t 

um,l(i) = g(t) (Um,I(O) + J g-l(t')Fm,t{t')dt',) 
o 

get) = 
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(3.76) 

(3.77) 

Note that det Y-l(t) corresponds to the geometric divergence of ray field. In this 

section we used well-known procedure from, say, [6], see also [38]. 

3.4.3 Initial values 

Consider now obtained above amplitude representations (we omit captions ref,tr, as 

the following is valid for both amplitudes): 
N 

u(t,q,a) """N LU1(ic)l, see (3.11), 
1=0 

Ul(t, q, a) = Ul(O) + ", + UI(L(N)), L(N) = 2(~~~;;l), 
(3.78) 

U;ej,tT(t,q,O) are found, see (3.70), 

u;ej,tr (0, q, a) are the goals of this subsection 3.4.3. 

Again as before we will use Tailor's expansions. Rewrite (3.11) similarly to the 

way we rewrote the phase expansions (3.27). Simultaneously we introduce some 

special notations for the homogeneous polynomials in series (3.11) in order to reduce 

the number of indices. We construct just several first terms, the rest terms can be 

obtained similarly. We omit here all calculations, one can find them in [41J. The 

initial data for the reflected and transmitted amplitude functions can be obtained in 

terms of the given incident field. For instance, one can show that 

f u~(t)(t) = g(t)'Rub'(o) (0), 

1 U~O)(t) = e(t)Tub,(o)(O). 
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3.5 Exact and Approximate Solutions Estimates 

We have constructed all terms of finite Gaussian beam. Now we will show that 

for any N there exists an exact solution: Gaussian beam, corresponding to this 

finite Gaussian beam of order N. So, we have constructed formal Gaussian beam 

U(c; t, q, 0"), formal Gaussian beam UN(c; t, q, a), corresponding to U(c; t, q, a) and 

the required exact solution UN(t, q, a) to the following problem 

O±UN=O in (fLUfI+)x[-to,toJ, 

UN I.., =U;;;I.." 

vg-: a;_ UN I.., = ..;g+ a;+ uti..,· 

(3.79) 

As we know only the approximation UN to the required solution UN, we consider an 

approximation XUN (here X is a smooth cut-off function in t and all spacial variables) 

to the solution of the problem (3.79): 

Og_x(Uj; + U;;') = Ro infl_, 

0g+(xUf¥) = Rt infl+, 

x(Uj; + U;;;')I.., = xUiJ"I.., + RI, 

r::=:g-...LX(Uin + Ur")1 = r;::+g+...LxUtrl + R v y 0(7_ N N; V Y . 00'+ N I 2· 

One can show that 

(3.80) 

Notation 3.4 (Polynomially small function) We say that function 7/J is poly­

nomially small of order k, if 1i1j;llck ::; ok. 

The last formula implies now that Ro, Rt are polynomially small of order N - ~, 

RI, R2 are polynomially small of order N + 1 - ~. The inhomogeneous interface 
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conditions on 'Y are to be replaced by the homogeneous ones by introducing a new 

function F in fL U !1+. Thus we get a new problem for F 

FI-, = RI, (3.81) 

Note that F is polynomially small of order N + 1- ~ in !1_ U !1+. The RHS of (3.81), 

or s, is also polynomially small of order N + 1. We can choose function F to be the 

following 

F = RI(t,q)x(a) + ~1,,~oX(a)a. 
yg+ 

where X is a cut-off function. Next we introduce new function 

{ 

W - (Uin Uref)· n N = X N + N III H_, 
WN = 

wt = F + xUfV in !1+. 

Thus we get a problem for WN and the corresponding interface continuity conditions 

on 'Y are satisfied: 

(3.82) 

Will1 = Wt11' 

yg= t"wilk = # t"wtk· 
Here £- < Co(2to)c(N-%), £+ < C[j(to)c(N-%), i.e. £- and £+ are polynomially 

small of order N - ~. The solution W N to the problem (3.82) satisfies exactly the 

interface continuity conditions (3.18). Recall that £ E CQ(N)(t; L2(!1_ U!1+)), i.e. 

there is a big number of time derivatives of £ with values from L2 in the whole region. 

Compare now W N with the exact formally written solution UN, as DUN is determined 
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in a sense of the Dirichlet form existence (it contains the interface conditions) 

UiVl, == U~I" 

~8~_UiV" == .;g+8~+U~I, 

UNI-to == UVI-to, 

OtUNI-to == OtUNI-to, 

Vl'iVl, == VI'~I" 

~8~_ Vl'iVl, == .;g+8~+ VI'~I, 

Vl'NI-to == xUVI-to, 
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It is clear that D±(UN - Vl'N) == -c. Let us a give a notation to the difference of 

solutions, say -[ == D± V. The initial data coincide (in the domain of the Laplace­

Beltrami operator D«6.g )Q), q > 2). Our problem is linear thus we consider solution: 

D±VN == D±(UN - Vl'N) == -[, 

VNI-to == at VNI-to == 0, (3.83) 

Here we assumed that at time to > ° the beam has not yet reached the boundary 

3.5.1 Convergence 

This follows from the construction procedure that the RHS [ of (3.83) is small on 

the time interval [-to, to] with values from L2, All time derivatives (there is a large 

number) are also from L2 and are small. 

The main idea is to estimate the difference VN between the exact solution and the 

constructed finite Gaussian beam corresponding to it. We write out Fourier series of 

VN and [ with respect to their eigenfunctions /::,.g'Pk == Ak'Pk : 

00 

VN(t, x) == I)k(t)'Pk(x), Vk( -to) == Vk( -to) == 0, (3.84) 
k=l 
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(3.85) 

Then 

where as ek(t) are small and all its time derivatives are polynomially small, we has 

L IZ;pek(t)12 < Cp(to)£L < 00, where p::; L = (N - p - ~)2, then 

and then 
t . , () J sm~(t - t) (')d' 

Vk t = f\ ek t t. 
yAk 

(3.86) 

-00 

We integrate the latter by parts, hence 

t 

h := ~~ cos ';>:;(t - t')ek(t')I~ + J L cos';>:;(t - t')eW')dt', 
-00 

where ek( -(0) = 0, then 

t 

h = :k ek(t)I'-oo + :k J cos ';>:;(t - t')e~(t')dt'. 
-00 

Consider firstly the second summand, i.e. the integral by introducing new notation 

for the integrand: 

t t 

12 := L J cos V>:;Jt - t')eW')dt' = :k J r(t, t')dt', 
-00 -00 

We estimate a new function 

using Parseval inequality: Ih(t)112 = L !rk(t)lZ, and then the Cauchy-Shwartz in­

equality we get 

t t t 

!rk(tW::; J cos2 ';>:;(t - t') Jle~(t')12dt' < (t - to) Jle~(t')12dt" 
-to -to -to 
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The latter implies 

t 

h := IhWII ::; (t + to) j L le~(t')12dt'. 
-to 

As 2:= le~(t'W is positive thus we change sign, the result is an L2-norm on £, we have 
t _ 

h = (t+to) jll£(t')lI'dt'::; 2to jll£(t')1I12dt':= E, 
-to -to 

where 1I£(t')II£2 is polynomially small of order (N - ~). Let us estimate the first 

summand, as ~~ek(t) is from HI nV(.6.), then for any t 

(3.87) 

We showed that Vk(t) is small in the HI-norm. Consider Vk(t) : 

t t 

Vk = j cos ';>:;;(t - t')ek(t')dt' = - :k j sin ';>:;;(t - t')e~(t')dt', (3.88) 
-00 -00 

(3.89) 

Inequality (3.87) says that .6. VN E L2, and that VN E V(.6.) correspondingly. Func­

tion £ can be time differentiated; similarly to inequality (3.89) one can estimate 

time derivatives of VN . In particular, (3.89) implies that 11,' E L2. The result can be 

rewritten as: 

(3.90) 

We proved the statement (3) of Theorem 3.1. 
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3.6 Conclusion 

We constructed phase and amplitude functions of Gaussian beams of" quasiphoton" 

type for the incident, reflected and transmitted wave fields near the interface 1 in 

sections (3.2), (3.4). 

We assumed the incident field to be given (f0, V O
, fo, 8°, Mo, -to),) see (3.2), (3.4). 

We used its trace on the interface, continuity conditions and Hamilton-Jacobi equa­

tions for construction of the reflected and transmitted fields as a formal expansions, 

checking that all homogeneous polynomials in these expansion satisfy condition for 

these series to be formal Gaussian beam. We truncated these formal series on order 

N and showed that for any N there exists an exact solution to the wave equation, 

which is asymptotically close to constructed finite Gaussian beam. 

One can write out the analogue of theorem 3.19 (form [38])'s result for "quasiphotons" 

propagating from the interface along geodesics which are not normal to I' The 

corresponding geodesics f.Lref,tr(t) are such that the directing cosine at Mo is 

N 
Phase function 8~f,tr and amplitude function L:u~ef,tr satisfy (3.65) on ,. Each term 

1~1 

of these functions as an homogeneous polynomial is a solution to the ODE (3.22), 

(3.25) with respect to time taking into account constructed initial data. 

In more details these results can be found in [41]. 



~ ~--------------------------------------~ 

IBSP for a Smooth Riemannian Manifold 

4.1 Reconstruction from BSD given on the boundary 

This section is a brief description of the boundary control method taken from [38J. 

Here we consider M to be a smooth Riemannian manifold of dimension n with smooth 

boundary oM. 

4.1.1 Formulation of the smooth problem 

We consider Laplace-Beltrami operator to in L2 (M, dV) on M with boundary Dirich­

let boundary condition. 

tou = togu = _g-I/20j(gl/2gikokU), 

V(A) = H2(M) n HJ(M), 

(4.1) 

(4.2) 

(4.3) 

here H2, HJ are Sobolev spaces, g is a metric tensor of the manifold M is a real-valued 

smooth function on M. Denoting the eigenvalues and the orthonormal eigenfunctions 

of to by Aj and rpj, j = 1,2, ... , correspondingly, we have the following definition. 

72 
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Definition 4.1 (Boundary spectral data (BSD» 

The collection 

(4.4) 

is the set of boundary spectral data of (M, 6), BSD (6, r) where ov'Plr = vioi'Plr 

are the traces of normal derivatives of eigenfunctions, v = {vi} is a unit inward 

normal to oM. 

Problem 4.1 Let {oM,Ai,ov'PiI8M,j = 1,2 ... } be the given BSD(6, oM) of a 

Laplace-Beltrami operator -69 . Do this data determine uniquely the Riemannian 

manifold (M,g)? 

Statement 4.1.1.1 Assume (M, 6) and (M,2\.) are 2 pairs of smooth compact Rie­

mannian manifolds and Laplace-Beltrami operator·s. Assume there are open sets r E 

o/vland rE oM : BSD (T') = BSD er) namely r = r, Ak = :xk , ov'Pklr = ov0klf, 
- ~ 

then operators 6 and 6 are equal, manifolds M and M are isometric. 

This statement is proved in [38], the brief description of the proof scheme is given in 

the following sections. 

4.1.2 Reconstruction of the Fourier coefficients of the 

waves 

We consider the following problem (see [46], [1], [32] [38], [27]) 

UIET = f(t,x), L;T = oM x [0, T], (4.5) 

so we can find the smoothness classes for the solution of (4.5) as follows depending 

on the smoothness of the boundary source f: 
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Notation 4.1 (Wave produced by boundary source) We denote by uf(t) the 

solution to problem (4.5) with boundary source function f(t). 

We can represent our function as a sum of its Fourier coefficients u{ (t) over our 

"eigenfunctional" basis 'Pk : 
00 

(4.6) 
k~l 

The Fourier coefficients ut (t) are smooth functions: 

Assuming that f E coo(L;T) and 8l' flt~O = 0, for all p = 0,1, ... , and differentiating 

u{ (t) twice over t we have: 

(4.7) 

Integrating (4.7) by parts, taking into account that all the derivatives of our solu­

tion, we obtain the following problem (ODE and initial conditions) for the Fourier 

coefficients u{(t): 

f :t',u{(t) + AkU{(t) = - JaM f(x, t)8v 'Pk(X)dSg , 

1 u{(O) = 8tu{(0) = o. 
( 4.8) 

Solving this ordinary differential equation together with boundary conditions we ob­

tain for smooth f's the following representations: 

(4.9) 
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sin~ Ak > 0, y;::;; , 

Sk(t) = t, Ak = 0, (4.10) 

sin h .Jj:\Jt 
Ak < 0, foJ 

, 

where dSg is the volume elements of aM which is induced by the metric g. Using 

u£(t) E C([O, T]) if lE L2('2'7) and as even CO(I;T) is dense L2(I;T), representation 

(4.9) is valid for any I E L2(I;T). 

Result 4.1.2.1 Given the BSD(oM) the Laplace-Beltrami operator and dSg it is 

possible to find Fourier coefficients of any uf (t). 

Let uf(t) and uh(t) be the solutions of (4.5) with I,h E L2(I;T), then for any 0 ::; 

t, S ::; T the inner products of the waves may be found by formula: 

00 

(uf(t), uh(s) = ~ u~(t)uZ(s) (4.11) 
k~l 

where the Fourier coefficients can be found by formula (4.9). 

Result 4.1.2.2 (Inner product of two waves) We can find the inner products of 

any two waves only via the boundary spectral data on (aM), for 1] E Coo(oM), 1] > 

0, dp.(z) = 1](z)dSg is some positive boundary measure, z E aM: 

00 

< u"f(t),U"h(s) >= ~uZf(t)ut(s), (4.12) 
k~l 

uZf (t) = r' r f(z, t')Sk(t - t')Ov'Pk(z))dp.dt'. Jo JaM 
(4.13) 
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4.1.3 Domains of influence. Complete system of functions. 

Tataru's theorems. Wave basis. 

Orthogonal projectors 

Let r c BM be non-empty open set, 

Definition 4.2 (The domain of influence) 

Let 

M(y,T) = {xE M: d(x,y):( T} 

be called the domain of influence of point y E BM of time T, where d(x, y) is the 

distance between x, y in (M, g). Let 

M(r,T) = {xE M: d(x,r):( T} 

be called the domain of influence of subset r c BM. 

The following result is obtained in [38]. 

Result 4.1.3.1 Let uf(t) be the solution of (4.5), let f E L2(r x [0, TD, then 

supp (Uf(T)) C M(r, T). 

Then 

here 
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Consider the space of the waves uf(t), f E L2(f x [0, T]). It is a linear subspace of 

L2(M(f, T)). The following results are important for the construction procedure. 

Let 

u E HI(M x [-T, T]), u = u(x, t) 

be a weak solution of the hyperbolic equation 

ogu+qu=O, in M x [-T,T]. (4.14) 

Assume that the Cauchy data of u vanish on f x [-T, T], 

ulrxl-T,T} = 0, and ovulrxl-T,T} = 0, (4.15) 

where f C aM is an open set. 

Definition 4.3 (double cone of influence) 

Let K C M x [-T, T] be the double cone of influence of f x [-T, T], 

K = Kr,T = {(x, t) E M x [-T, TJ : d(x, r) .::; T -Itl}. (4.16) 

The first Theorem 4.1 is a famous result of D. Tataru, [56], the proof can be found 

in [38] (see also [57], [58], [34], [33], [49]). 

Theorem 4.1 (Tataru's theorem) Assume that coefficients of the d'Alambert op­

erator og are from CCO(E~) and [gjk(X)] is a real, symmetric, positive definite matrix, 

B~ is a ball of radius 0 in local coordinates chart U'. Assume, in addition, that the 

surface r E E. is non-characteristic. Then if u E HI(E.) is a solution of the wave 

equation 

(og + q)u = 0, in U' x [-6,0], (4.17) 

which is equal to 0 on one side off, i.e. y = (x, t) = (yl, yO) E JRn+!; yl = (yl, .. , yn), 

supp(u) C {y: 1jJ(y) .::; O}, f = {y: 1jJ(y) = O}, 

then supp(u) n f = 0. 
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Theorem 4.2 (Global Holmgren-John Uniqueness theorem) Let u = u(x, t) 

such that u E Hl(M x [-T, T]), be a weak solution of the hypeTbolic equation (4.14) 

with (4.15). Then u vanish in double cone Kr,T' 

Theorem 4.3 (Local unique continuation result) Let 

be a solution in Q2r of the wave equation Dgu = 0, such that fOT an open set f c oM 

f Uirx[O,2rj = 0, 

lovuirx[o,2r) = 0. 

(4.18) 

Then, at time t = r the function u and its derivative OtU vanish in the domain of 

influence of f, 

u(x, r) = 0, Otu(x, r) = ° for x E M(f, r). (4.19) 

Theorem 4.4 For any r > ° the linear subspace {uf(t) E L2(M(f,r)) f E 

L2(f, r)} is dense in L2(M(f, r))). 

Lemma 4.1 Let r > 0. Given the BSD it is possible to construct boundary sources 

/j E L2(f x [0, r]) such that 

Vj = Ull f;(T), j = 1,2, ... , 

form an orthonormal basis of U(M(f, r)). 

The proof of the latter lemma and theorem 4.2 can be found in section 3.4 of [38], 

the proof of theorem 4.3 follows from that proof. So, as a result of Lemma 4.1 and 

Theorem 4.4, we have {u~f(r) E L2(M(f,r)): f E L2(f x [O,r])} is also dense in 

L2(M(f,r)). ThuswecanchooseacompletesetoHunctionsfj E CO'(fx[O,T]), j = 

1,2 ... , such that {u~fj(r)}~l form an orthonormal basis in space L2(M(f,r)). 
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Remark 4.1.1 (Gramm-Schmidt orthogonalization) Let us choose a complete 

set of functions {hj}i=o in £2(f x [0, TD. Then 

j-I 

I2j = hj - IJU~hj(T),u~fk(T» fk. (4.20) 
k=! 

Then we obtain the required for the wave basis functions: 

( 4.21) 

We have got the orthonormalized wave basis. 

Notation 4.2 (Orthogonal Projector) Let Pr,T : £2(M(f, T)) be the orthogo­

nal projector in £2(M) onto L2(M(f, T», then (Pr,Ta)(x) = XM(r,T)(x)a(x), where 

XM(r,T)(X) is the characteristic function such that: 

{

I, 
XM(r,T) (x) = 

0, 

x E M(f,T) 

xEM(f,T) 

Then Py,T is the orthogonal projector onto £2(M(y, T». 

(4.22) 

Result 4.1.3.2 Given two boundary source functions, say, J, hE £2(2:7), and given 

f c aM is an open subset of the boundary, y E aM is the boundary point, then 

from the boundary spectral data for any 0 :;:; t, 5, T we can obtain: 

(Pr,Tu~f(t),U~h(S» = 1 u~f(X,t)U~h(X,s)dv" 
M(r,T) 

(pY'Tu~f(t),U"h(S» = 1 u~f(x,t)u~h(x,s)dVg 
M(y,T) 

00 

(Py,T'Pk,U~f(t» = L('Pk,U~fj(T)) (U"f(T),u~fj(t». 
j=l 

( 4.23) 

Due to (4.23) and Result 4.1.2.2, we can get all these inner products of the waves 

given just the boundary spectral data and manifold boundary aM. But we don't 

know yet the boundary measure f.L = T} dSg • 
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4.1.4 On the role of Gaussian beams and boundary distance func-

tions 

Definition 4.4 (Geodesic) 

We call the path IL([a, bD -> M a geodesic if for any aI, bl E [a, bj with sufficiently 

smalllbl -ad the path IL([al, bID is a shortest path between its endpoints, i.e. arclength 

IIL([aJ,bd)1 = d(IL(ad,IL(bl». 

Denote a geodesic path IL by 'Y and parameterize 'Y with its arclength s from a point 

y = IL(a), so that Id'Y/dsl g = 1. Let x(s) = (xl(s), ... ,xm(s)) be the representation 

of'Y in local coordinates, then x( s) satisfies the second-order differential equations 

( 4.24) 

where 

rk(x) = ~ kP(Ogjp + Ogip _ Ogij ) (4.25) 
" 2 g OX' OX' oxp 

are the Christoffel symbols. Equations (4.24) supplemented with the initial condi-

tions: 
dx(O) 

x(O) = Y E M, ~ = w E TyM, Iwlg = 1 (4.26) 

determine the unique geodesic 'Yy,w that starts at the point y in the direction w. 

From now on in this section let y E aM be the boundary point, and v be the unit 

inward normal from the boundary point y E aM. 

Definition 4.5 (A Critical Value) 

There is a critical value T(Z) = T8M(Z) of the geodesic 'Yz,v(t), such that for t < 

T8M(Z), the geodesic 'Yz,v([O, tD is the unique shortest geodesic 'Yz,v(t) to aM and, for 

t > T8M(Z), it is no more the shortest one. By I(Zo) we denote the maximal arclength 

of the nor-mal geodesic, which starts at point Zo E aM until it hits the boundary. 

Clearly, l(zo) > T8M(ZO)' 
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Gaussian beams can be used to find the distance between any point on a normal 

geodesic and any boundary point. For any Zo, Y E aM and s E [O,l(zo)] we can 

have the following results. Let the geodesic starts at Zo and be outward normal to 

the boundary. Denote Uf (c; z, t) Gaussian beam corresponding to that geodesic the 

solution of the following system (see (3.2»: 

aiU - t::..gU= 0 

Ult~o = atUlt~o = 0 

UlaM = f(c; z, t) 

(4.27) 

where f(c;z,t) = (1fc)-~x(z,t)exp{icle(z,t)}V(z), see (3.3). Let zo,y E aM, 

to > 0, z be the local coordinate system on aM. Let Ut,o(to) = V(zo), and then 
, 

ut o(t) = det (Y(t»~ [ tzo,O) )] 4 V(zo). 
, 9 Zo, t - to . 

(4.28) 

Let Uf (c; t) be the Gaussian beam propagating along the normal geodesic, and so 

does the wave U~f(c; t) corresponding to the boundary source Tlf(c; .). We have the 

following result: 

Lemma 4.2 For any reaM, to < t < to + I(Zo) and TI > 0, 

(4.29) 

if x(t) E M \ M(r, TI)' 

where 

W(Zo)1 2 [g(Zo, O)]~ W(Zo)1 2 [g(Zo, O)]~ > o. 
Cl(Zo) = yfdet('JH(t»ldet(Y(t)1 = yfdet('JH(O»ldet(Y(O»1 

( 4.30) 

Then as V(z) = p(z) for the Gaussian beam U"f(c; t) we have for s < I(Zo): 

I
. 11 U"f(. ) 11_ {ITI(ZoW(g(Zo'O»~hy(t), d(-y""v(s),y) <T, 
Im PYT c,s+to-

e_O ' 
0, d(-y""v(s), y) > T, 

(4.31) 

where hy = [det('JH(t»)r"ldet(Y(t»I-I. As ITI(ZoW(g(Zo,O))~hy(t) is strictly posi-

tive, we can find d(-y""v, y). 
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Thus the boundary spectral data uniquely determines d(-yzo,v(s),y), where lI(S) is a 

normal to the boundary at point Zo E BM, 'Y is the geodesic, going from Zo in the 

direction of the normal lI. 

Result 4.1.4.1 (Distance to the boundary) Minimizing {y -> d('Yzo,v(s),y)} we 

can find d(-yzo,v(s), BM). So, we know the distance from 'Yzo,v to the boundary and 

nearest points on BM to 'Yzo,v(s). 

By increasing S we can find the arclength l(zo), when the geodesic 'Yzo,v(s) hits the 

boundary for the first time. Let us denote by 

T&M(ZO) = sup {s 1 d(-yzo,v(s), zo) = d(-yzo,v(s), 8M)}. 
8;:::0 

This is the maximal time for which you can go from the boundary point Zo in the 

direction II and this point zo will be still the nearest point from the boundary. 

Notation 4.3 (Boundary distance functions) The boundary distance function is 

determined as the distance from an arbitrary fixed point x E M to any point of the 

boundary Tx : BM -> R+ as Tx(Y) = d(x,y), Y E BM. We will call R : M -> 

LOO(BM), x -+ Tx the function which assigns to any point x E M the corresponding 

boundary distance function, i.e. Tx(Y) = d(x,y),y E 8M. 

Notation 4.4 (The set of boundary distance functions) Let 

R(M) = {Tx E LOO(BM) : x E M} 

be the set of boundary distance functions. 

The norm of LOO (M) is 11 T IIL== sup IT(z)l. We know d(-yz,v(s), y) for every S E 
zE8M 

[0, T&M(Z)] thus we can find 

Tz,s = d(-yz,v(s),y),y E BM, i.e. Tz,s = Tx for x = 'Yz,v(s) 
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Result 4.1.4.2 The boundary spectral data {oM,Aj,ov'PjI8M,j = 1,2, .. } deter­

mine the set R(M) = {rz,s E L"'(oM) : Z E oM, sE [0, 78M(Z)]}, 

Remark 4.1.2 (Manifold reconstruction) In order to reconstruct differentiable 

manifold (M, g), we can determine (R(M), g), so that R becomes an isometry. Just 

the knowledge of R(M) c LOO(oM) is sufficient to find the differentiable and Rie­

mannian structures on M. The mapping R : M -> R(M) is a homeomorphism. 

As this fails completely for a Riemannian polyhedron we omit this part of the recon­

struction in this thesis. In [38] it is shown that supplying the R(M) by the structure 

of differentiable manifold is enough to make it diffeomorphic to M. 

Result 4.1.4.3 (Boundary measure) Using the boundary spectral data, and ap­

plying results of part two of the (4.23), we can determine uniquely 11 u£,p(', t) 11 . Then 

we can evaluate 
r t 2 11)(zo)J2vg(zo,O) . 
£~ 11 u£,~() 11 = vdet(~H(t))ldet(Y(t))I' ( 4.32) 

using (4.31). Now as metric g is known (see Remark 4.1.2), recalling that Ho is in our 

disposal, then we can find ~H(t), yet) (see Lemma 3.1). Then we can find 1)(zo) > O. 

Thus we found dJi- = 1) dSg • 
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4.2 JP with data given on a part of the boundary 

In this section we describe briefly the method used in [38] to prove Statement 4.1.1.1 

for the boundary spectral data given on a part reaM. We will describe a procedure 

of constructing an isometric copy of (M, g). 

Remark 4.2.1 The construction of M will be given by iterating local constructions. 

4.2.1 First submanifold reconstruction 

First, we construct the manifold M near the given set reaM. Let z E rand 'Yz,v be 

the normal geodesic starting at z. The analogue of the function 'ToM, is the following 

upper semicontinuous funct.ion: 

'Tr(z) == {sups> 0: d(-rz,v(s),r) = s}. ( 4.33) 

Let 

(4.34) 

be the largest open set that lies under t.he graph of 'Tr· Clearly, r x (0, infroM) CDr. 
zEl' 

The mapping 

eXPoM : Dr -> M, 

is a diffeomorphism between Dr and M r , 

(4.35) 

Let 9 = (exPoM)' 9 be the metric on Dr , so that eXPoM is an isometry between (Dr, 9) 

and (Mr,g). In the following we denote the first step of iteration 

Our first aim is to construct (Dr,9). Consider the inverse boundary value problem 

(4.5). As before, we will use an arbitrary positive smooth measure d", on r. Then 
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there exists a function 1) E COO(aM), 1) > 0, such that dJ.1. = 1)dSg • Using results of 

subsection 4.1.2.2 we can compute the inner product 

J u~f(t)u"h(s)dVg, (4.36) 

M 

from the boundary spectral data on f for any J, hE CO'(f x (0, (0» and t, s ~ O. At 

this stage function 1) is still unknown. We obtain results similar to Theorem 4.2 and 

(4.23): 

• Let fl C f be an open set and r > O. Given the boundary spectral data on f, 

it is possible to construct boundary sources Jj E CO'(f x (0,00», j = 1,2, ... 

such that 

Vj = u~fj(r) 

form an orthonormal basis of L2(M(fl, r)) . 

• Let J, hE CO'(fx (0, (0» and fl c f be an open set. Then, given the boundary 

spectral data on f, it is possible to find the inner product 

< Prl,7U~f(t),u~h(s) >= J u"f(x,t)U"h(X,s)dVg, 

M(r,,7) 

for any t, s, r > O. 

(4.37) 

Now we need to construct the function rr. To this end, we observe that, for fie 

f, s,t > 0 we have M(fl's) C M(f,t) if and only if IIPr,7u~f(s)11 = Ilu~f(s)11 for all 

f E CO'(fl X (0, s». This is the effect of Lemma 4.4. On the other hand, s < rr(zo) if 

and only if, for anyt < sand neighborhood fl C f ofzo, we have M(fl , s) ~ M(f, t). 

Hence, the boundary spectral data on (r) determine rr and, therefore, !1r · Using local 

coordinates z = (z\ .. , z(n-I» on f, we obtain local coordinates (z\ .. , z(n-I), s) on 

llr. To construct the metric 9 on !1r , we use the technique of Gaussian beams. 

As we have shown in the previous section, we see that if z,y E f and (y, s) E !1r , 

then boundary spectral data on f determine d(-yy,v(s), z). 
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Thus we are able to construct the analogs of the evaluation functions E(z), Le., the 

functions 

E~: Or --+ JR, 

E;(y, s) = d(z, l'y,v(s», 

(4.38) 

(4.39) 

where z E r. Evaluating differentials dy,sE~ at a point (Yo, so) E fir and using the 

same considerations as in section 4.1, with r replaced by (y, s), we can find the metric 

tensor gij(YO, so). As (fir, 9) is isometric to (Mr , g), we obtain the following results: 

Result 4.2.1.1 (Subset Mr reconstruction) Let the boundary spectral data on 

r be given, then it is possible to construct the Riemannian manifold (Mr, g). 

Result 4.2.1.2 (Inner products) As the metric tensor 9 on Mr (and, therefore, 

dSg ) are already found, we can find the function 17 (see Result 4.1.2 for the procedure). 

Thus for any f, h E Co(rx (0, 00» and any t, s ? 0, we can evaluate the inner product 

J uf(t)uh(s)dVg. 

M 

(4.40) 

The boundary spectral data of (ll, r) determine uniquely the restrictions on Mr of 

eigenfunctions 'Pj, j = 1,2, .... 

4.2.2 Recalculation of the boundary spectral data of (Llv,8V) 

To continue the construction, let D C Mr be an open domain with smooth boundary 

8D. Consider sub-manifold M\D with boundary 8(M\D) = 8M U 8D. Let llv be 

the Dirichlet Laplace-Beltrami operator -llg, on M\D. We are going to find the 

boundary spectral data of (ll-v, 8D). 

Lemma 4.3 (Data recalculation) Assume that we are given an open par·t r c 

8M and the boundary spectral data of (ll-, r). Assume, in addition, that we know the 

Riemannian manifold (Mr, g) and the r'estrictions of the eigenfunctions 'Pj!Mr, j = 

1,2, .... Then these data determine the boundary spectral data of (llv, 8D). 
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The complete proof of this lemma can be found in [38J, or [5J and we omit it here. 

4.2.3 Reconstruction of M2 

In this subsection we complete the proof of Statement 4.1.1.1. Consider again M\V 

and a Laplace-Beltrami operator /;;.'0 on it. Then, the boundary spectral data of 

(/;;.D,aV) are given on a part av, of the boundary a(M\V) of M\D. Using the 

same constrictions, as in subsection 4.1.1, with r replaced by aD and M replaced 

by M\D, we find a manifold MaD C M\D and the restrictions of metric 9 and all 

eigenfunctions 'Pf on MaD. Now 'Pf,k can be considered in two ways: on one hand, 

they are the Fourier coefficients of the zero-continuations of the eigenfunctions 'Pf 

with respect to the basis 'PklM of L2(M); on the other hand, they are the Fourier 

coefficients of 'PkIM\D, i.e. 
00 

'Pk(X) = 2>fk'PY(X), x E M\D. 
j=l 

As we know 'Pf(x), x E MaD, we can find 'Pk(X) in x E MaD. So far, for any Dc M, 

we have constructed a manifold MaD C M\D, and the eigenfunctions 'Pk, 'Pf, and 

metric tensor 9 on it. 

Let D and D' be subsets of M. In the manifolds MaD and MaD' we identify the 

points x E MaD and x' E MaD', such that 'Pj(x) = 'Pj(x') for all j = 1,2, ... In 

this case, the points x and x' correspond to the same point on M. Analogously, we 

identify points on x E MaD and Mr = Ml that correspond to the same point on 

M. Using these identifications, we can construct the manifold M2 C M, 

( 4.41) 
1)cM 

It also follows from the previous considerations that we have constructed the restric-

tions of the metric 9 and the eigenfunctions on these manifolds. Next we show that, 

for sufficiently large m, 

(4.42) 
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zr 

Figure 4.1: We can reach any point on the manifold by path, which does not go into 

the collar neighborhood of the boundary. 

4.2.4 Iterating procedure; Mm = Mint 

To show (4.42), consider a compact manifoldN without boundary, such that MeN. 

By compactness of N, there is 6 > 0 such that 

6 < min{ min T8M(Z), min T(Y, w)}, 
zE8M y,wESN 

(4.43) 

here T8M(Z) and T(Y, w) are the critical values of the functions that correspond to the 

boundary exponential map on M and the exponential map on N, SN = {(y,w) E 

TN: Iwlg = I}; 1(0) = YEN, d~~O) = w E TyN, 1 is a normal geodesic, see (4.4), 

(4.26), Figure 4.1. Next, we consider the set 

M\MO = {x EM: d(x,8M) ~ 6}. 

Due to definition (4.43) of 6, M\MO is a manifold with smooth boundary that is 

homotopic to M and, therefore, connected. Thus there is a constant Tr > 0, such that 

any x E M can be connected with r by a smooth path I-' C M of length L, L ::; Tr · 

Moreover, if I-' is parameterized with its arciength, then the following conditions are 

satisfied. 

i) 1-'(0) = z E r, I-'(L) = x, 
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ii) J.L[O, J] coincides with the normal geodesic to z, 

iii) If d(x, oM) :::: J, then J.L[L - (8 - d(x, oM», L] coincides with the continuation 

of the normal geodesic from the boundary to the point x, 

iv) When 8 < s < L - (8 - d(x, oM», then J.L(s) E M\M8 

Let 
L 

Xk = J.L(k8), k = 1, ... ,K, K = ["5],XK+1 = x. 

By previous constructions, Xl E Ml. Assume that Xk E Mk, k < K. Then, for 

sufficiently small p > 0 and D = Bp(Xk), we have D C Mk. It follows from definition 

(4.43) of 8, that 

inf T81J(Z) > 8 - p. 
zE8V 

Thus, B8(Xk) c Mk+l and, in particular, Xk+l E Mk+l By induction, we see that 

X = Xk+1 C Mk+l, which proves the assertion, that Mm = Mint, for m sufficiently 

large. Thus we have proved statement 4.1.1.1. 
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Uniqueness Problem for the Polyhedron 

5.1 Formulation of the uniqueness problem 

Consider two compact n-dimensional (n ~ 1) admissible Riemannian polyhedra (see 

definition (2.19» M, M with boundaries aM and aM correspondingly. We as­

sume, that the Dirichlet Laplace-Beltrami operators !'!,.g, !'!,.g are defined on them (see 

Chapter 2). We denote by Ak, >:k the eigenvalues, 'Pk, ipk the orthonormalized eigen­

functions of !'!,.g, !'!,.g correspondingly. Thus we can determine the boundary spectral 

data (!'!,.9' n, reaM is an open part of the boundary, and the boundary spectral 

data (!'!,.g, r), here reaM is an open part of the boundary. Thus we can formulate 

main result of this thesis for them: 

Theorem 5.1 (Uniqueness Theorem 1) : Let the sets of boundary spectral data 

of two polyhedra be equal, i. e. 

BSD(!'!,.g, aM) = BSD(!'!,.g, aM), 

90 
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or, more precisely, 

aM=aM 

(5.1) 

Then polyhedron M is isometric to M. 

Or, in more general case, 

Theorem 5.2 (Uniqueness Theorem 2) : Let the sets of boundary spectral data 

(f:.g , reaM) be isometric to the set of boundary spectral data (f:.g, f c aM), or, 

more precisely, 

(5.2) 

Then polyhedron M is isometric to M. 

Theorem 5.2 is a piece-wise smooth analog of the statement 4.1.1.1. As Theorem 5.2 

is more general than Theorem 5.1, we will concentrate on its proof. 

Notation 5.1 As we consider the set of boundary spectral data (f:.g , reaM), 

and the set of boundary pectral data (f:.g, f c aM), we denote them BSD(r) and 

BSD(f) respectively. 

Remark 5.1.1 (Restrictions on r) Without any loss of generality we assume that 

each of rand r belongs strictly to one chamber, say 0 1 and 0 1 and does not contain 

any wedge points. 
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5.2 The Holmgren-John uniqueness theorem 

Consider M to be an admissible Riemannian polyhedron. Let r c 8M, r of 0, be 

an open set, 

I;2T = r x (0,2t), Q2T = M x (0,2T). 

Definition 5.1 (Weak solution) 

We call function u E L2(Q2T) a weak solution to the Cauchy problem for the wave 

equation 

with initial data 

if 

J u·og'IjJdxdt=O 
Q2T 

for all 'IjJ E CO.l!.g(Q2T, I;5T), where 

CO.b.g(Q2T, I;2T) = {'IjJ : 'IjJ E CP«O, 2T), D(c"g)) n Cp+2«0, 2T), L2(M)), 

supp 'IjJ n (8Q2T\,£2T) = 0}, 

D(c"g) = {~ E Hl(M) : c"g~ E L2(M)}. 

The cone of influence is 

where 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(see Chapter 2), where the infinum is taken over all curves that pass through the 

interfaces transversally finite number of times such that they do not transverse wedge 

points wpj, j:O; n - 2. 
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Theorem 5.3 (Holmgren-John uniqueness theorem for M = [l) Letfunction 

u E L2(QZT) be a weak solution to problem (5.3), (5.4), where Q2T = [l X (0,2T), 

and [l is a chamber, the u ~ 0 in K2T (r). 

This is Theorem 1 from [45], the exact proof of this theorem can be found there. The 

proof is based on the fact that dn(x,y) is continuous for any x, y E [l. It is shown, 

that for any point x E o[l such that dn(x, r) < T, and for any c > 0 there exists a 

vicinity U :3 x, such that 

U a~ 0, with {(z, t) : Z E U, IT - tl :::; T - dn(x, r) - cl. 

Due to the results of Chapter 2, there exists a curve z(s), 0 :::; S :::; So, z(O) = Y E 

r, z(so) = x, which is transversal to o[l at the point y, such that 

Assume that re rr, for some r, where o[l = uri . Let U, 1jJ be the vicinity of the point 

yE r and the coordinate mapping such that 1jJ(y) = 0 and 1jJ(U) = {z E W: fez) :::: 

O}, f E Cl(W), and without loss of generality, of /oq"(O) = 0, Cl' = 1, .. , n - 1, 

z = (q", a). As 9il E CP(1jJ(U», there exists an open vicinity V, such that 0 EVe W 

such that gi! E CP(V). Continue u(z, t) by zero onto [V"-1jJ(U)] x (0, 2T) and consider 

Qr = Vo x (0,2T), where 

Vo = {z E V : a :::: -o}. 

Thus taking V small enough the continued function u E L2(Q~T) is a weak solution 

of the wave equation 

satisfying 

where E~T = f, x (0,2T), r, = {z E V : a = -0}. Consider now curve ';;(s), 

consisting of z(s) and a part of a line, connecting points z = (0, ... ,0, -0) E r, and 
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z = 0, then So :::; So + Clii, Cl> O. Due to the compactness of n, this curve z(s) can 

be covered by a finite number of coordinate vicinities U2, ... , UK , X E UK , such that 

where z E 'ljJk(Uk) and C3 > 0, k = 2, ... , K and constants C2, C3 are constant for all 

vicinities. Thus the problem can be localized, i.e. we can assume that z(s) belongs 

to some V E !Rn, U E L2 ('O X (0,2T)) and 

Dgu = 0 in V x (0,2T), 

UlroX(0,2T) = oaUlrox(0,2T) = 0; 

here On+1U = g~, 0 3 ro C {(g, a) : a = O}, (g = 0, a = 0) = (0,0). Thus the proof is 

based on the continuation of initial data by zero along this curve from the point y to 

x. Consider now admissible Riemannian polyhedron M. 

Theorem 5.4 (Uniqueness theorem) Let u E L2(Q2T), Q2T := M x (0,2T), be 

a weak solution to (5.3),{5.4), then u = 0 a.e. in K2T(r). 

Proof Let us prove Theorem 5.4 in several steps: 

. . M. 
(A) Let us fix x E Mm'; Mm' = un:;:', and E: > O. Due to (5.6) and the fact that r 

m=l 

is open, there exists y E r, dM(x,y) :::; dM(x, r) +~, moreover, y Ern 'Yro where 'Yr 

is some interface, such that 'Yr C anr , then due to results of Chapter 2, there exists 

a C~ curve z(s) of length So : 

connecting x and y : z(O) = y, z(so) = x, such that the following conditions are 

satisfied: 

(i) if z(s) is a wedge point of the curve, i.e. z(s - 0) # z(s + 0), then z(s) En:;:' for 

some m; 

--
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(ii) curve z(s), 0 < S < So is transversal to all WP;, j:S; n -1; 

(iii) if x belongs to some interface or part of the boundary, then z( s) is transversal 

to this interface and part of the boundary (the same is true for y) (see also Lemma 

2.4; see [25], [45]). Then the interval [0, sol can be divided into a finite number of 

intervals [0, SI], [SI, S2], .. [Sk, so], 0 < SI < ... < So, such that 

(5.7) 

with k = 0, 1, ... , K, SK+1 = So, 

Z(Sk) = "l'r(k), k = 0, 1, ... , K. 

(B) Consider the second step of the proof: 

Proposition 5.2.1 

Consider the part of the curve z( s) E nm(O) with S E [0, s11. The restriction of 

the solution u of the problem (5.3),(5.4), onto nm(O) X (0,2T) is a weak solution 

in L 2(nm (0) X (0,2T)) to the Cauchy problem 

{

Du = 0 in nm(O) X (0,2T) 

Ulrox(0,2T) = ovUlrox(0,2T) = 0, 
(5.8) 

where r ° = r n "l'r(O) C Onm(O), (we take the only part of r that intersect with the 

only chamber, say, nr(O»), yE r o. 

Proof of the proposition. Indeed, if 1jJ E cQ'(nm(O) x (0, 2T)), ro x (0,2T), then 

continuing 1jJ by zero onto Q2T one can get function ;S E COA (Q2T, Z:;2T). Thus 

J u . D1jJdxdt = J u . D1jJdxdt = 0 

l1m (O) x (0,2T) Q2T x (0,2T) 

for any 1jJ E cQ'(nm(O) x (0, 2T), r o x (0, 2T)), and thus u is a weak solution of (5.8) 

by the definition. D 
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(C) Using the result of Theorem 5.3 we have 

u = 0 a.e. in{(z,t): z E rlm(O); IT - tl::; T - dnm(O)(z,ro)}, (5.9) 

here dnm(O) (Zl, Z2) is a geodesic distance in metrics gm(O). Due to (5.7) with k = 0 

51 :2: dn
m

(O)(y,Z(51)), thus (5.9) implies that for any 5 > 0 there exists a vicinity 

UI :3 Z(Sl) such that 

u = 0 a.e. in {( z, t) : z E UI n rlm(O); IT - tl ::; T - SI - 5}. (5.10) 

(D) Consider the second part of the curve z(s) for S E [51,52] belonging to rlm(I). We 

need to show that (5.10) implies that u, restricted onto rlm(l) x (SI + 5, 2T - SI - 5) 

is a solution to the Cauchy problem 

{ D~=O in rlm(I)X(5~+5,2T-51-5); 
U - OVU!rlX(Sl+0,2T-s1-o) - 0, 

for some open set r I C 8r1m(l) : 

(5.11) 

(E) Denote now rI_ := rlm(O), rI+ := rlm(I), and consider another notations. Consider 

M = rI_ U rI+ to be our manifold, 'Y is a common interface between rI± as we 

considered them for Gaussian beams. We use the following notations: 

is an open subset of the boundary, 

B6T = ro x (0, 2T), 

is a boundary lane, 

Q2T = M x (0,2T), 

the cone of influence is 

K2T(ro) = {(x, t) E Q2T: IT - tl ::; T - dn(x, ro)}, 
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Notation 5.2 Here we used the following notations: 

Cf{'(R, E) = {J E COO(R) : supp f n (i:JR\E) = 0}, 

CO,lI.g(W X (Tb T2)) = C«TI, T2), V(l1g)) n C2«TI, T2)' L2(W)), 

V(l1g) = {.; E HI(W) : l1g'; E L2(W)}. 
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Lemma 5.1 (Lemma 2 from [45]) Consider 'Y n r ° = 0, 'Y n W pj = 0, j :::: n - 2. 

Then if'ljJ E Cf{'(fL x (rJ, T2), 'Y x (Tb T2)), (rJ, T2) c (0,2T), there exists a function 

J; E cg,lI.g (Q2T, ~~T) such that 

(5.12) 

Moreover, if 'Y ~ fJ, where fJ is some neighbor-hood, then :;j can be chosen such that 

supp (:;j - 'ljJ) c fJ X (TI, T2)' (5.13) 

Proof of Lemma 5.1. We consider 'Y C fL U r!+, such that 'Y ~ U, where U is a 

coordinate neighborhood such that ,p(U) = W is a domain in JR.n, where 

(5.14) 

where 

W+ = {q E W: qn = a ~ O}, Wo = {q E W: qn = a = O}, 0 E W, ,pry) = 0, 

Besides that we can assume that 'ljJ E Cf{'(r!- x (rJ,T2)) is such that 

In coordinates (5.14) we have 
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Consider function 1f on W x (TJ, T2) of the following form 

where 

1f-(q, t) := 1f(q, t), (J::; 0, 

.;J(q, t) = 1f+(q, t), (J 2: 0, 

1f-lu=o = 1f+lu=o, ffou1f-lu=o = ffou1f+lu=o, 

98 

(5.15) 

where g'" = (g\ '" gn-1), and X is a cut-off function such that X(O) = 1, and X' (0) = 0, 

and the interface continuity conditions imply that 

Thus 
- - DC. 

supp1f IS W x (TI,T2)and1f E Co' '(W X (TJ,T2))' 

If fJ c U is some neighborhood of r/J(,), then using a special choice of X one can have 

Finally, continuing 1f by zero outside U x (T1, T2), we get the function (we still denote 

it by .;J) .;J such that .;J E CO,c., (Q2T, 2:5T) : 

Thus we have proven the lemma. 0 

(F) We can show that lemma implies the following result: 

Lemma 5.2 (Corollary) ffu is a weak solution to (5.3},(5.4), such that u = 0 a.e. 

in {fJ n rL} x (TJ, T2)' wher'e fJ is some neighborhood of y, such that 
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then there exists an open set 10 cl, such that function u, restricted onto 0+ X (7\, 72) 

is a weak solution to the problem 

{

D9U = 0, inO+ x (7\,72), 

UI1'OX(7t,72) = Ollull'OX(Tl,TZ) = O. 

(5.17) 

Proof We should notice, that without a loss of generality, we can assume that u C 

fL u 0+. Let 10 C I be an open set, such that y E 10 tS U; the existence of 10 is 

guaranteed by the choice of y. If ~ E C8"(O+ x h,72)), then due to Lemma 5.1, 

there exists its continuation ~ E Co.t>.g (Q2T, I:6T) such that 

As u is the weak solution to (5.3),(5.4), and u = 0 a.e. in {U n O_} x (7\,72), then 

J u· D±~dxdt = J u· D±'ljJdxdt = 0 

Q2T n+X(n,7'2) 

Next, we return to our considerations of the curve z(s), considering again Om(\) to be 

a smooth manifold with piece-wise smooth boundary and assuming that 

we get that there exists a vicinity U2 " Z(S2) such that 

u = 0 a.e. in{(z,t): z E u2 nom (\); IT-tl:O; T- S2 -2o}. (5.18) 

(G) We continue the process K + 1 times and show that there exists a vicinity Ux " x 

such that 

u = 0 a.e. as {(z, t) : z E Ux ; IT - tl :0; T - So - (k + l)o}, (5.19) 
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where we assume that x E Mint. Then taking 0 = [2(K + 1)t1c one gets 

u = 0 a.e. as {(z, t) : z E Ux ; IT - tl ::; T - dM (x, r) - c}. (5.20) 

(H) As dn(x,y) is Lip continuous with respect to (x,y), then last relation in Theorem 

(5.4) follows from (5.20) as c: > 0 is arbitrarily chosen and as flint = fl. Thus we have 

proven Theorem 5.4. 0 

That was a generalization of Theorem 4.2. 
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Figure 5.1: Two admissible Riemannian polyhedra with equal BSD 

5.3 Uniqueness inverse problem 

Now we are ready to show that boundary spectral data given on an open part of 

polyhedron boundary r determine the polyhedron uniquely. To this end consider two 

admissible Riemannian polyhedra M and M, such that 

BSD(r,2.9 ) = BSD(r caM, .3.9), 

where reaM, and reaM are open subsets. In other words, see (5.2), r is 

diffeomorphic to r, 

We assume that M is given and we use M to show that it is isometric to M. We 

start from the open subset r which is assumed (without a loss of generality) to have 

nonzero intersection with the only chamber boundary, say, anI> see Figure 5.1. We 

find the same picture on M as well. 

There exist Tr, 7'1' (critical value function with respect to points of r, r, see (4.33)), 

corresponding to r, r on each polyhedra. We can find them, as both polyhedra 
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M M 

Figure 5.2: First subset identical on both polyhedra 

are at our disposal. Consider some smooth coordinates {z" } E r , as r is isometric 

to f , we can choose equal smooth coord inates riiQ} E f. Then there ex.ist regular 

boundary normal coordinates (z , s) and (z,s), see Notation 2.12, start ing from r 

(and f correspondingly) at least for s < TO · Here 

is the minimal value between two. 

Consider the first subset M l = M r C M , see (4.35) , see Figure 5.2. We are in the 

situation described for the smooth manifold in [38], (see also Chapter 4, subsections 

4.2.1 and 4.2.2) . We continue eigenfunctions 'Pk, ij5k inside M r , M r , where T < TO, 

using Results 4.2.1.1 and 4.2.1.2. Thus M r should be identical to Mr. Thus, Ml is 

isometric to M 1 . 

We remove r , f now, and consider M r\r and M r\f , the open subsets (domains) 

inside chambers III and Ill · Next we choose any two subsets wi th smooth boundaries 

D C Mr and D C M r, see Figure 5.3. There exists 0 for both polyhedra (not 
- -

necessarily small ) such that Do C III and Do C III and , besides that, the houndary 

normal coordinates (2. 12), based on BD (BD), are regular. Using procedures from 

[381 (and also their descript ions in Chapter 4.2.3, Subsection 4.2.1, replacing r hy BD 
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Q , 

r r 

Figure 5.3: First chamber on both manifolds. 'vVe choose open domains inside first 

challlbers. 

for M and by aD for M and applying Lemma 11.3 ), we can obtain resul ts, similar 

to Resu lts 4.2. 1.1 and 4.2.1.2 , we reconstruct eigenfunctions 'Pklv, = >Pklv, ('Pk , i{!k 

inside Do, D.,) as aD. C M r , and aDo C M r. Then D. is isometric to Do 

Moreover , the subset M r U D . is isometric to M r U 15" as 'PkIMrUV, are equal to 

correspondillg 'Pk I;Cifuv, · The procedure of eigenfunctions continuation from M r to 

D, is described section 4.4 of [38] (also in the Sect ion 4.2.3). As we are now in dealing 

with srnooth parts of our polyhedra, we can apply this procedure of previous chapter. 

Consider Mr U D, as a union of intersecting sets, then we "glue" by the procedure, 

in troduced in [38] and descri bed in Subsection '1.2.3 

We identi fy points x E M 1, and x E Do such that 'Pk(X) = 'Pdx) , for any k = 

1,2, .. . , see Chapter 2 for details. In this case points x and x correspond to the same 

point on M . We can choose another subsets DJ and DJ and repeat the procedure on 

their reconstruction . Thus we also identify points x E D, with points of simila rly 

constructed x' E D'" and with x E Mr if the eigenfunctions of these poin ts coincide. 
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M 

Figure 5.4: Increasing subsets identical on both polyhedra 

We apply the same procedure on !VI and as the eigenfunctions 'Pk and 'Pk are equal 

on V ii and DIi; Viii and V'ii; Mr and M t , we form the isometric subsets M 2 and M2 

as a maximal union of equal points obtained for all V C Mr and 15 C M r , such that 

the eigenfunctions are equal on V and V. 

As we used the procedure described in Section 4.2.3, which allows to recalculate 

eigenfunctions uniquely on each step, and as we identified all equal points, thus M2 , 

constructed subset of 0 1 C M as isometric to M 2, subset of Dl C M, see Figure 5.4. 

We continue increasing our subsets step by step. Let us denote by [l~ the ma .. "imal 

subset inside 0, and fi~ to be the maximal fi 1 , such that 01 is isometric to fi? 
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Fi gl.lre 5.5: We assullled that the maxi mal sllbsct is " less" than the first challJber. 

5.4 Meeting the interface 

In this section we prove, that the fi rst chambers III and III are isometric, i.e. that 

maximal subsets 117 and fl7 coincide with 0 1 and fl l. 

Assume that III \07 i' 0. Consider points 

and x EO? Let also x be the point corresponding to x in fl? (we can find it as we 

have already shown , that 07 is isometric to fln 

Choose now some curve ry in IlJ joining points y and x. Let z be the first point of 

TI from x which is outside 1l7. Then support of the part of the curve rl(x, z) should 

belong to O?, (otherwise, z is not the first point outside), see Figure 5.5. Then the 

corresponding to it part of the curve Tf(x , i ) belongs to fl? Then necessarily 

i E 81l,. 
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Figure 5.6: Interface point on the second polyhedron. 

Indeed , otherwise, 07 and?i7 are not maximal, we are able to add two ball B, B with 

centers at z and Z, and continue procedures of the previous subsection. 

Next IV0 const ruct a ball with center in x (we can choose x to be close to z , if we 

need) see Figure 5.6. Wi th some rad ius .,., such that.,. :<::; d(x , z) , the ball in JV! will 

touch 80 I for the first time. Let us call that point 'w E M. vVe should mention, 

that for ',. :<::; d(x, z), the constructed ball in ;VI belongs to n 7. Consider the cases of 

-tu E 8n l position. 

1. Let 'W be the point of the interface boundary, i. e. w E "I, see Figure 5.6. Then 

tbe interface "I touches the ball at tu. The Gaussian beam, normal to the ball 

B of radius ~ reflects with close to ~ angle on JV! (see refl ectioll angle formula 

(3.63)). But that would not be the case fo r ball B C ;VI (Consider formulae 

(3.72), or (3.73), we compare the reflection and transmission coefficients 3.3 for 

tbe case with interface and withou t interface. One can see, that in our case, 

when the Caussian beam starting from tbe ball B , it does not meet the interface 

in time ~, thus the reflection coefficient R = O. Oppositely, the Gaussian beam 

on ;VI , starting from B, will reflect to B with 110n-zero R , compare Parts (C), 

(B) with (A) on Figure 5.8.) Comparillg 'Pk and CPk (that are found from the 

information obtained from Gaussian beams, see Subsection 4.2.1 for details), we 

will understand , that there is a refl ection in one case and there is no reflection 
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Figure 5.7: Wedge point on the second polyhedron. 

in the second case. But we have previously shown that 'Pk and 'Pk are equal on 

n? and O? 

2. Poin t ·w E I,V p j , j :::: n - 2, can not be a wedge poin t, because we do not ha\'Q 

an atrifi cial interfaces on M , see Definj t ion 2.21. Picture of the ty pe like Figure 

5.7 can not appear on an admissible Riern anniall polyhedron. 

3. Let 'w E aM , be a point on the global boundary of the polyhedron. This case 

is similar to the first one, the only difference is tha t the reflection coefficient 

n = 1 and T = 0 on M , see schematic pictures (A), (B), (C) and (D) on Figure 

5.8. 

Thus we came to the contradiction with assumption that y E !1\ \ !1? and thus !1, is 

isometric to 0\ in the inner met ric. 
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Figure 5.8: Various types of Gaussian beams refl ections. 
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5.5 Crossing the interface 

We want to choose the equal parts the interfaces boundaries of 0 1, 0 1 , say, and i · 

As we have obta ined above, chanlber DI is isometric to 0 1, metric tenso rs are equal, 

and eigenfunctions 'Pkin, are equal to tPkln,. We also know, that inside each chamber 

the eigenfunctions identify points, see [59], also see Lellllna 2.6. We choose Cauchy 

sequences of "equal" points. 

Notat ion 5 .3 (Equal points) We call two points x E M and x E M equal if the 

set of eigenfunctiol1s val ues at these points are equal, i.e. 'Pk(X) = tPk(X), /,; = 1, 2, ... 

[n the cnse when sl1ch points belong to the same polyhedron, we identify these points 

and say. that this is one point. 

Define by q E oD I tile limi t point of a Cauchy sequence { x.,} E Dr', such that these 

sequence does not have a limit in Oi"1 . The Cauchy sequence {Xi } of equal points has 

a limit point q E Dn l. We can consider the distance between the points of two Cauchy 

sequences on the same polyhedron. Let {'c . .} and {x; } be two Cauchy seq uences, then 

if lim dn,,,,.(xm, x;,,) = 0, then these two sequences arc equiva lent, and they have the 
m-O 1 

same limit point q E oD I · 

Thus now we consider the Cauchy sequences on M, such that they have their limit 

points on the open part "Y of oD1• We can also consider "equal" Cauchy sequences 

on M. These sequences are also Cauchy sequences which define i isometric to f. 

(Measuring distances between points of these Cauchy sequences, we can see that the 

limi t points will belong to some open part i C 01, isometric to ,.) Each point q will 

be equal to q, (see Remark 2.5.3). 

The parts of the interface boundaries "Y and i equal [or both polyhedra. 
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Figure 5.9: Crossing the interface on both polyhedra. 

Consider now equal parts of the interfaces I and "t obtained above. Let us construct 

two open subsets V C Dj and 15 C 11, with smooth bounclaries OD and aD. We can 

choose them to be close to I ancl "t correspondingly. Let us choose the " upper" parts 

of their boundaries r and r , that are parallel and close to I and "t, see Figure 5.9. 

Then there exists some ro = min{rr , rr} (see (4.33)) , such that the beam of extremal 

rays gi ves uS regular coordinates z" E r , z" E t and s = {s- , s+ }, 5 = {S- , s+ } in 

the part Mr and tVIr of the " upper" chamber O2 (and 112 ) as well, see Notation 

2.12. Let us reconstruct the eigenfullctions into that part of O2 (amI 112), thus Mr 

is isometri c to liilr as eigenfuIlctions are equal in them and eigenfunctions determine 

metrics . 

Now we are ready to continue the procedure of the Sect ion 5.3, replacing rand t by 

new equal parts of 002 and 002 interfaces. 
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5.6 Polyhedra isometry 

Step by step com paring two admissible Riemannian polyhedra M and M, we came to 

the conclusion that all chambers ' in teriors a re identical and the interfaces are identical 

too, thus we can show that M and )\1( are equi valent as simplicial complexes. 

What is the guarantee that we have not Inissed any chamber or interface? Assume 

that we have missed sOlne chamber on one of the polyhedra, say we have an extra 
- -chamber 11, on M . "Extra" means that there is no isometric chamber on M to it 

after all our pl"Ocedures. We should mention here, that as a si rnplicial complexes, 

our polyhedra are n - 1 chai nable, thus any chamber can be reached fl"O tn any point 

through in terfaces. Also, we recall , that there a re just a finite mnnber of chambers 

on the polyhedron . COlls ider any in ter face 'f, that belongs to Ill, th is interface should 

have another common chamber, say, n,- I. If this n,_, has an isometric copy on M , 

thus we can use 'f for our constructions and see, that 11, should be isometrical to some 

chamber on M . If there is no isometrical chamber for 11,- 1 as well , we can consider 

the next interface and continue the procedure we will cOHc1ude, that there are no 

isometrical chambers on M for all chambers on M (as there are just finite number 

of them). 

Assume HOW, that we have missed an interface, say on 'Yml C M such t hat there is no 

isometrical interface on M. By the defini tion of admissible Riemannian polyhedra, 

there are always chambers, that are adjacent to that in terface, say Dm and D,. As we 

have shown , that all chambers on M and M are isometri c, thus there are chambers 

Ilm and Il, isometric to n", and 0, on M. Thus the interface 'fm' should be isometric 

to some interface, common for Ilm and 11,. 

Thus we have proved that M and M are equi valeHt as simplicial complexes. 

On each step we have chosen the interface to cross arbitrar il y as each chamber 's 
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Figure 5.10: Two different paths. 

boundary could consist of a fini te number of interfaces. Thus we have to show now, 

that the choice of the path on our polyhedron wOldd not affect a ll the identification of 

points and chambers. Consider allY t\Vo poss iule pMl,s I, and 12 starting from x E ll , 

and fini shing in , say y E n i , see figure 5.10. How can we understand that they 

came to the same chamber? 'We call see that once we reached some chamber, that 

the eigenfunctiolls depend uniquely on the given boundary data. The eigenfunctions 

identify points on polyhedra. We compare eigenfunction values for points inside 

chamber and conclude, whether we me inside the same chamber (if there are the 

same eigenful1ction values, thus identical paints) or not. 

We identify points on the polyhedra by the following procedure: We know that the 

eigenful1ctions 'Pk of our problem d istinguish points on polyhedron , i.e. if IPk (X, ) = 

'Pk(X2), k = 1, 2, ... then Xl = X 2· We also know that all eigenfunctions are identical 

for both admissible Riemannian polyhedra Ai and M , by our procedure. We use 

these properties to compare points on them. 

We corn pare points 011 both polyhedra by the following rule (see subsection 4.2.3, or 

[38]). Let N and Ft be subsets of M. In the manifolds M aN and M ail' we say, that 

the points are equal if x E M aN and x' E M o;;;" such that 'Pj(x ) = 'Pj(;2 ) for all 

j = 1, 2, ... In this case, the points x and x ' correspond to the same point on M. As 
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we have shown, there is a point x on A1 such that <pj(x ) = 'Pj(x), analogously, we 

identify points these points. 

There is a one- to-one correspondence between the chambers and interfaces and por­

tions of the boulldary with their inner metrics. Thus (M ,g) is isometric to (M ,g) , 

with equal distances as an approximations of minimizing curve (see (2.20)). Thus 

we have shown, that two polyhedra with equal BSD given on isometric parts of the 

boundaries are necessarily isometric. 



C 6 ___________________ --' 

Conclusions and Outlook 

The following results were obtained in the thesis: 

• Following Fuglede B. and Eells J., [25], we described the geometric structure 

of a class of admissible Riemannian polyhedra (ARP) and int roduced a length 

and a geodesic spaces Oil it. We introduced a Laplace operator and considered 

its spectra l properties on the admissible Riemannian polyhedron. 

• Genera lizing procedures by Babich V., Ulin V. , [6] and Katchalov A., [36], 

we developed a theory of non-stationary Gaussian beams on the admissible 

Riemannian polyhedron. The main novelty is the description of the behavior 

of Gaussian beam which hits the interface. We proved aniso tropic analogues of 

Snell 's and Ft'enel 's laws for the reflected and transmitted beams. These results 

were published in [41]. 

• vVe gave a solution to the inverse boundary spectral problem, namely we proved 

the uniqueness for this problem. We considered inverse boundary spectral prob­

lem for a Riemannian polyhedron under some mild geometric and analytical 

assu mptions. We have proven that two Riemanllian polyhed ra having equal 

114 
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boundary spectra l data on open parts of the boundary are isometric. This sig­

nificantly genera lizes results obtained earlier for the smooth inverse boundary 

spectral problem. 

Let us define important open questions. 

• Generalize the obtained resu lt for the piece-wise smooth anisotropic Schrodinger 

operator, corresponding to the admissible Riemannian polyhedron. Next, ob­

tain uniqueness theorem for the general elliptic second-order differential opera­

tor. 

• Consider some more general st ructure of the Riemannian polyhedron wi thout 

analytical and geometric restri ctions, namely, allow the presence of a rt iti cial 

interfaces , allow the metric to be continuous having jumps in its deri vatives. 

• Obtain the reconstruction procedure for an admissible Riemannian polyhedron 

M , for the potential of the Schrodinger operator q, and metric tensor 9 from 

given boundary spectral problem on the open part of the boundary r c 8;1,1 . 

• Consider the dynamical formulation of the problem. 



Bibliography 

[1] NI. Agranovich , Ell'ipl,ic vonndmy pr-ovle",s, Encyclopedia Math. Sci. , 79, Partial 

DifIerent ia.l Equations. IX, 1-144, Springer , Berlin, 1997. 

[2] G. Alessandrini , V. Isakov, Analicity and uniqueness for the inverse conductivity 

problem, RencLIstit. iVlat .Uni v. Trieste 28 (1997), no.1-2 , 351-369. 

[3] N. Akhiezer , 1. Glazman, Theory of Linear- OperntoTs in HilbeTI Space. Dove'" 

Puulico.t·ions, Inc. New York , 1993. 

[4] I<. Astala, NI. Lassas, L. Piiivarinta, Calderon 's inverse problem for anisotropic 

conductivit.y in the plane, Communications in Partial Differential Equations 

30(2005) , no. 1-3, 207-224. 

[5] M. Anderson, A.Katsuda, Ya. l\:urylev, M. Lassas, M. Taylor, Boundary Reg­

ularity for the Riccati equation , Geometry Convergence and Gelfand 's Inverse 

Boundary P roblem, Inventiolles Mathematicae 158(2004), 261-321. 

[6] V. Babich, V. Uli n, T llC complex space-time ray method and "quasiphotons", 

(Russian) Zap. Nauchn. Sem. LOMI, 117(1981) , 5-12. 

[7] V. Babich, V. Bu ldyrev, 1. Molotkov, The space- time Ray Method, Linear' and 

Nonl-inear' waves, (Russian) , Leningrad Univ. , Leningrad , 1985. 

116 



BIBLIOGRAPHY 117 

[8] vV. Ba.llman, A volume estimate for piecewise smooth metrics on simplicial com­

plexes, Rendiconti Sem. Mat. Fis. Milano 66 (1996) , 323-331. 

[9] M. Belishev, An approach to mult idimensional inverse problems for t he wave 

equation, (Russian ) DoH Akad. Nauk SSSR 297(1987) , no.3 , 52<1-527; trans­

lated in Soviet Math DoH 36(1988) ,no.3 481-484 

[10] IvI. Belishcv , Wave ba.s is in multidimensional inverse problems, (Russia,n) Mat.Sb. 

180( 1989) , 584-602 

[11] NI. Belishev, A. Blagoveschenski, Dynamical in'Uer'se TJ7'oblems of wave theory, 

Izcl-vo S.-P et. Universiteta. 1999. 

[12] IvI. Belishev , A. Katchalov , A boundary control and quas iphotons in a problem 

of t he reconstruction of a Riemauuian manifold from ciy uaJnic data, (Russian ) 

Zap.Nauchn. Sem. PO!vU 203 (1992), 21-50; translated in J .Math.Sci. 79 (1996), 

noA, 1172-1190. 

[13] M. Belishev, Ya. Kurylev , To t he construction of a Riernannian manifold via its 

spec tral data (BC-method), Communications in Partial Di fferential Equations 

17(1992), no.5-6, 591-59<1. 

[14] M. Birman , M. SololTlyak , Spectml theory of self-ad joint operatoTs in HilbeTt 

space, D.Reidel Publishing, Dordrec!lt, 1987. 

[15] A. Blagoveschenski , A one-dimensional inverse boundary value problem for a 

second order hyperbolic equation , (Russian) Zap. Nauchn . sem. LOMI, 15(1971 ), 

85-90. 

[16] A. Bogoljubov, V. Kravtsov , Pmblems on Mathematical Phisics, (RussiaJl) , 

Izdatelstvo rVloskovskogo Uni versiteta, 1998. 

[17] D. Btu'ago, Yu. Burago , S. Ivanov S, A CO'1£TSe of Metric Geometry, AMS, Grad­

uate Studies in Ivlathematics, Volume 33, 1998. 



BiBLIOGRAPHY us 

[l SJ Yu. Burago, V. Zalgaller, Geometry III Theo,..,) of S,,'rjaces Se'ries: Encyclopaedia 

of Mathematical Sciences, 48(1992). 

[19J G. De Cecco, G. Palmeri , On the reqularity of eigenfunctions of the La place 

operator on a Lipschitz manifold , Journal of Math. PUles Appl. , (9), 68 (1989), 

no. l , 121-134. 

[20J G. De Cecco, G. Pa lmeri, Harmonic forms on compact Lipschitz man ifolds, 

BoII. Un.Mat.Ital. A(7), 2(19S8), no.1, 101-lOS. 

[2 1J G. De Cecco, G. Palmeri , Length of cur ves on Lip manifolds, Atti Ac­

cad Naz. Lincci Cl. Sci.Fis.Mat.NatuI.Rend.Licei (9) Mat.Appl , 1(1990), no.3, 

215-22l. 

[22J G. De Cecco, G. Palmeri , Intrinsic dist i1,nce 0 11 a Lipschitz Riemannian manifold , 

rend . Sem.Mat.Univ.Politcc.Torino, 46(1988) , no. 2, 157-l70; Distanza intri nseca 

su una varieta Riel11anniana di Lipschitz, Rend.scl11 .?vlat .Univ.Torino, 46(1988), 

157-170. 

[23J A. Connel, Modem Di.jJemntio.l Geomet7y JOT Physicists, Mac.Application of Ten­

sor Analysis, (in Russian), Gos. Izd-vo fi z- l11at literatury, 1963. 

[24) A. Edmonds, R. Fintushel, Singular circle fiberings, MaCh. Z 151(1976) , 89-99. 

[25J J. Eells, B. Fuglede, Har-monic maps between Riemannian polyhedra. With a 

preface of Gromov lvI. , Cambridge Tracts in Mathematics, 142, Cambridge Uni­

versity Press, Cambridge, 2001. 

[26J Y. Egorov, V. Kondratiev, On Spectmt Theory of Elliptic OpemtoTs, Birkhauser 

Verlag, 1996. 

[27J L. Evans, PaTtiat Diff e1'ential Equations, AMS, Graduate Studies in Mathemat­

ics, Volume 19, 1998. 



BIBLIOGRAPHY 119 

[28] I-/. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, Heidelberg, New 

York , 1996. 

[29] B. Fuglede, Fini te energy maps from Riemannian polyhedra to metric spaces, 

Ann.AcacI.Sci .Fenn.Math., 28(2003), no.2, 433-458. 

[3~] B. Fuglede, Holder cont inui ty of harmonic maps from Riemannian polyhedra to 

spaces of upper bounded curvature, Cal. Var. , 2002. 

[31] 1. Gelfand , B. Levitan, On the determination of a differenti al equation from its 

spectral function, Iz.Akad.Nauk SSSR, Ser.Mat. 15(1951), 309-360. 

[32] L. Hiirmander , The analysis of linea.,- part'ial D'ijJeTential Opemtors, Vo!. I-IV. 

Sprillger- Verlag, Berlin, 1985. 

[33J L. Hiirmander , Linear partial differential operators , Die Crundlehren der math­

ematischen Wissenscli aften , 116 , Springer- Verlag, Berlin-Cottingen-Heidelberg, 

1963. 

[3'lJ L. Hormander, A uniqueness theorem for second order llyperbolic differential 

equatiolls, Comm. Part. Dill. Equations 17(1992) , no. 5-6, 699-714. 

[35J V. Isakov, On uniqueness of recovery of a discontinuous conductivity coeffi cient, 

Comm.Pure App!.Math. , 41 (1988) , no.7, 865-877. 

[36] A. Kachalov, Gaussian beams, Hamilton-Jacobi equations and Finsler geometry, 

Zapiski Nauchn. Semin.POMI, 297(2003) , 66-92, 

[37J A. Kachalov, A system of coordinates for describing the quasiphoton", Zap. 

Nauchn. Sem LOMI, 140(1984), 73-76. 

[38] A. Kachalov, Ya. l<urylev, M. Lassas, Inverse Bo'undary Spectml Pr'o blerns, 

Chapman Hall / CRC 123, 2001. 



BIBLIOGRAPHY 120 

[39] Katchalov A. , Kurylev Ya., Lassas M., Jvlandache N., Equ'ivalence oJ lime-domain 

inv.pm b. and bound.spectml pmblem, lnv.prob. 20(2004) , 419-436. 

[40] M. Kervaire, A ma nifold which does not admi t any differentiable structure, New 

York (USA) , Commentarii mathematici Helvetici , 34(1960), 257-270. 

[41] A. Kirpichnikova, Propagation of a Gaussian beam near an illte rface In an 

anisotropic medium, Zapiski Nauchn. Sem. POlvII, 324(34) (2005), 77-109. 

[42] A. Kirsch , L. P iiiviirinta, On recovering obstacles inside inhomogeneities, 

lvIat h.lvIeth.AppI. Sci. , 21 (1998), 619-651. 

[43] H. Koch, D. Tatar u, Carleman estimates and urtique continuatio n for t he second 

order ellipt ic equations with nOnslllooth coeffi cients, 2000. 

[4'lJ M. Krein , Solution of lhe inverse Stunn-Liouville problelll , Doklady Akad.Nauk 

SSSR, 76 (195 1), 21-24 . 

['15J Ya, Kurylev, all the Holrngrell-Johll U lliq uelless tlLeOl'erll 1 

Zap.Naudm.Sem.LOlvII , 203(1992). 

[461 O. Ladyzhenskaja, The Boundar,,!! Pm blerns oJ Mathenwtical Physics, (in Rus­

sian), Izel. Nauka, Glavnaja redakcija Fiz- mat litera tury, lvloskva, 1973. Also: 

Appl. lvIath. Sciences 49 , 1985, Springer- Verlag. 

[47J JvI. Popov , Ray TheM,,!! and Gaussian Beam Method Jor Geophysicists, Edufba, 

Salvator-Bahia, 2002. 

[48J J. Ralston , Gaussian beams and p'f'Op(tgation oJ singularities, Studies in PDE, 

lvIAA Studies in Mathematics, 23, Waiter Li ttman ed , 1983. 

{49J 1. Robbiano , C. Zhuily, Uniqueness in the Callchy problem for operators with 

part ially holornorpl lic coeffi cients, Invent. Math. , 131(1998), 110.3, '193-539. 



BIBLIOGRAPHY 121 

[50] S. Sobolev, Eq'u. ations of Mathematical Physics, (in Russian), Moskva, Izcl-vo 

Nauka, Glavnaja reclakcija fiz-mat literatury, 1966. 

[51] H. Seifert , W. Threlfall, Lehr'b-uch der- Topologie, Chelsea Publishing Co., New 

York , 1945. 

[52] E. Stein, Topics in hannonic analysis r'elated to the Littlewood-Raley theory, 

Princeton Ul1iv. P ress, Princeton , N.Y. , 1970 

[53] K. Sturm, On the V-spectrum of un iformly elliptic operators 011 Riemannian 

manifolds, J.Func.Anal. , 118(1993), 110.2, 442-453. 

[54] K. Sturm, Metric spaces of lower bOllllded curvature. Exposition iVIath. , 

17(1999), no. l, 35-47 

[55] re Stunn, T he geometric aspects of Oirichlet forms, New directions in Oirichlet 

[on ns, AMS/ IP Srud.Adv.Math , 8(1998), Amer. Math .Soc., Providence, RI, 233-

277. 

[56] O. Tatam , Unique cont inuation for solutions to POE: between Hormander's the­

orem and Holmgren 's theorem, Coml11. POE, 20(1995), 855-884. 

[57] O. Tataru , Boundary observability and controll ability for evolutions governed by 

higher order POE, J . Math. Anal. AppL, 193(1995), no. 2, 632-658. 

[58] O. Tatam, Uniq ue continuation for operators with partially analytic coefficients , 

J Math. Pures Appl. (9) , 78(1999), n05, 505-52l. 

[59] lVL Taylor, Tools for- PDE, AMS , Providence, R.I , 2000. 

[60] M. Taylor, Partial Differ-ential Equations, Vols. 1-3 , Springer-Verlag, New York, 

1996 

[61] H. 1hebel, Fanction Spaces, Birkhauser , Boston , 1983. 

[62] V. Zorich, Mathematiwl Analysis J, If, Series: Universitext, Springer, 200'1. 




