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SUMMARY 

A study has been made of the suitability for steelworks chemical 

analysis of two instruments recently introduced by the Princeton Applied 

Research Corporation, by developing some new analytical applications of 

these instruments. 

Two procedures have been developed for the determination of silicon 

by differential pulse polarography using a PAR 174 Polarographic Analyzer. 

Both procedures are based on the reduction of j3-l2-molYbdosilicate. The 

heteropoly acid is formed in the presence of methyl ethyl ketone and 

excess of molybdate is masked with citrate~' Methyl ethyl ketone also 

stabilises the ~-12-molybdosilicate and prevents its transformation to 

~-12-molybdosilicate. The first method was developed for determining 

-1 
silicon at levels above 0.02pg.ml • The fo~mation of j.3-12-molybdosilicate 

at this level takes about 15 to 20 minutes. The second method was 

developed for determining nanogram amounts of silicon. In this latter 

-5 
method, a low concentration of molybdate (approximately 5xlO M) is used 

in order to enSure that low blanks are obtained and at these very low 

levels of molybdate and silicate, formation of i>-12-molybdosilicate is 

complete only after 18 hours. Each procedure is characterised by high 

precision and for nanogram amounts of silicon, the coefficient of varia-

tion is about 3%. A hundred-fold molar excess of arsenate or phosphate 

does not interfere. Application of the 'first method to the determination 

of silicon in steel, after the removal of iron and other interfering 

elements by mercury cathode electrolysis, yielded accurate results with 

mean coefficient of variation of 2%. Both procedures together provide a 

very sensitive and precise pulse polarographic method for the determina-

tioD of silicon in steel. 

I 



Three procedures have been developed for the determination of iron 

in iron ore by controlled-potential coulometry at a mercury pool electrode. 

All coulometric measurements are made on a PAR 173/179 digital coulometer. 

All three procedures are based on the reduction ·of iron(III) to iron(II) 

in a supporting electrolyte of IM oxalate buffer solu tion a t pH 4.5. The 

first procedure involves the direct determination of iron in the sample 

after its dissolution, at an applied potential of -0.75V vs SCE. The 

second procedure involves the use of thallium(I) as internal standard with 

the reduction of Fe(III) to Fe(II) taking place at -0;45V and that of 

Tl(I) to Tl(Hg) at -0.90V vs SCE. The third method involves the separation 

of iron from the sample matrix by solvent extraction with tri-n-butyl 

phosphate, followed by the reduction of iron(III) to iron(II) at -l.OOv 

vs SCE. Solutions containing l-5mg of iron can be analysed by the first 

• 

and third procedures with coefficients of variation of 0.3% and 0.2% res­

pectively. Analysis of sample solutions by the second procedure gives 

an average coefficient of variation of 0.5%. No systematic interference 

studies have been made but the third procedure was developed in order to 

separate iron from interfering elements. Details are given of a cDulometric 

cell which useS an ion exchange membrane to separate the main compartment 

from the auxiliary and reference electrode compartments . 

A colorimetric method for the determination of boron in aqueous 

solution has also been developed. The method is based on the conversion 

of boron to BF
4

, which is then extracted as the tetraphenylphosphonium­

fluoroborate ion association complex into chloroform. This is followed by 

the replacement of the BF4 ion by orange IV dye anion and the measurements 

of the absorbance of the tetraphenylphosphonium-orange IV complex which is 

formed. Application of the method to the determination of boron in steel 

was unsuccessful. 

2 
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GENERAL INTRODUCTION 

The work described in this thesis is the third in the series of 

studies on the analysis of steel under a British Iron and Steel Research 

Association (BISRA) bursary awarded to the Chemistry Department of 

Loughborough Uni versi ty of Technology. 

The first study by D.R.Marriott (Ph.D. thesis 1970) was concerned 

with the spectrophotometric determination of tungsten and arsenic. The 

procedure recommended for the determination of tungsten involved the 

solvent extraction of tetraphenylarsonium thiocyanatotungstate (V) into 

chloroform followed by measurement of the absorbance of the extract at 

3 

402 nm. Methods of eliminating interferenDe by molybdenum and vanadium 

were also investigated. The procedure recommended for arsenic involved 

solvent extraction of arsenic (HI) iodide into chloroform followed by 

colorimetric determination of the arsenic using a molybdenum blue procedure. 

The second study was by A.Ashton (Ph.D. thesis 1973) and was 

concerned with the spectrophotometric determination of tin and zirconium. 

The procedure recommended for tin involved the extraction of tin (IV) 

iodide into toluene, back extraction of the tin into sodium hydroxide solution 

followed by colorimetric determination with catechol violet and cetyl­

trimethylammonium bromide. The procedure reco~mended for zirconium is 

based on a pressure digestion technique followed by colorimetric 

determination with arsenazo III. 

The present work concerns the differential pulse polarographic 

determination of silicon, controlled-potential coulometric determination 

of iron and colorimetric determination of boron in iron and steel. The 

growing complexity of steel making has generated the need for analytical 

techniques capable of quantitatively measuring ultratrace amounts of 



elements in steel. Such analytical techniques should be very sensitive 

and accurate, and should be superior to most other physical or physico­

chemical techniques available. New electroanalytical instrumentation 

has recently been introduced which allows macro- and microanalytical 

methods to be used very conveniently and at a considerably lower capital 

·cost than before. The object of the present study was to evaluate the 

new instrumentation for the purposes of steel analysis and if possible 

to develop sensitive analytical procedures for the determination of SOme 

selected elements in steel. 

The Princeton Applied Research (PAR) 174 Polarographic Analyzer 

is one of these new instruments and was used to develOp differential 

pulse polarographic procedures for the determination of silicon in 

steel. Silicon is added to steel to produce various beneficial qualities 

in the steel. l It is almost universally present in magnetic sheet in 

which in combination with low carbon compositions, it aids in the 

production of desired crystal orientations and raises electrical 

resistivity. It contributes to the oxidation resistance in several 

heat-resisting steels. It also enhances the corrosion resistance of 

4 

steel by formation of a protective surface film under oxidising conditions 

such as exposure to oxidising acids. It moderately increases hardenability 

• in steels carrying other non-graphi tizing elements. It increases ferrite 

strength in quenched and tempered steels and also pearlitic steels 

especially when plasticity is not sought. It is a general-purpose 

deoxidizer. However, silicon is not always a beneficial alloying element. 

Carbon steels, for example, are badly attacked at elevated temperatures 

in the presence of hydrogen, resulting in embrittlement. High-silicon 

irons have poor mechanical properties and particularly low thermal and 

mechanical shock resistance. They are difficult to cast and are virtually 

• 
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unmachinable. In view of the different effects produced, the amount of 

silicon in steel needs to be monitored carefully and controlled. The 

percentage of silicon in iron and steel samples varies and is as high 

as 75% in ferro-silicon alloys. Parts of the steel industry have in 

recent times shown considerable interest in the determination of low 

levels of silicon. The current British Standards Institution methods
2 

for determining silicon in steel are gravimetric and photometric 

methods based on acid dehydration of silica and on the chemical reduction 

of molybdosilicic acid respectively. At high levels of silicon, both 

methods are suitable. At very low levels of silicon (0.002%), a highly 

skilled operator is required to produce reproducible results by the 

photometric method: the use of the gravimetric method is impracticable 

at this level. Pulse polarography, on the other hand, is sufficiently 

sensitive and should be more accurate at this level. 

Another instrument recently introduced is the PAR 173/179 digital 

coulometer and this was used to develop a controlled-potential coulometric 

procedure for the determination of iron in steel and iron ore. Iron is the 

base ·metal of all steels. The present British Standards' Insti tution 

method (BS 4158: Part 1: 1967) for determining iron involves volumetric 

titrimetry. Frequently the iron content of steels is obtained by 

difference when the other metals present have been determined. As an 

analytical technique, coulometry has several unique characteristics 

which it was thought could be advantageous in steel works analysis. It 

is an accurate and very precise analytical technique which, once routines 

are established, does not require any speCial skills of ·the operator. 

The accuracy and high precision of the technique are retained even in 

routine analysis. Compared with classical titrimetry and gravimetry, 

coulometry requires only about 1-10 mg of material per determination to 

5 
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attain its optimal performance. 

The two instruments mentioned above are extremely versatile since 

they allow several techniques to be used with the same instrument. 

Boron is used in steel for One purpose onl~ - to increase 

hardenability. The percentage of boron in iron and steel samples 

'varies and is as high as 15% in ferro-boron alloys. Boron intensifies 

the hardenability characteristics of other elements present in steel. 

It is particularly effective when used with low carbon steels. The 

colorimetric determination of boron in steel remains difficult. One 

of the current British Standards Institution methods for determining 

. 12 boron ~n stee involves a tedious photometric procedure which includes 

a distillation step. The other is a volumetric method and is limited in 

use to ferro-boron steels. In view of the difficulties associated with 

the current colorimetric methods for the determination of boron in 

steel, it was considered advantageous to examine SOme solvent extraction 

procedures in which fluoride is coupled with a better chromogenic stage. 

A colorimetric procedure which avoids distillation and does not suffer 

from the high blanks of the present British Standards Institution and 

other direct methods would be advantageous. 

The aim of the present work was to develop methods of analysis which 

will complement or replace the present British Standards Institution methods 

for the determination of these selected elements in steel. 
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1. REVIEW OF METHODS FOR THE DE'rERMINATION OF SILICON IN S'rEEL 

(a) INTRODUCTION 

1he propert.ies of silicon-cont.aining het.eropoly acids, fluorosilicic 

acid, soluble silicates and silicic acid have all been utilised in t.he 

det.erminat.ion of silicon in various materials, including iron and st.eel. 

A survey of t.he lit.erat.ure shows a vast number of papers on met.hods for 

t.he determinat.ion of silicon and a few of t.hese have been proposed for 

applicat.ion in iron and st.eel analysis. The methods recommended for 

det.ermining silicon in iron and st.eel include: 

1. gravimet.ric det.erminat.ion aft.er acid dehydrat.ion2,4 

2. t.i t.rimet.ric det.ermination including the use of electrochemical 

. 18-24 endpOlnts. 

8 

3. colorimetric determination as yellow or blue mOlybdosilicate. 2 ,4,33-61 • 

4. atomic absorption spect.rophot.ometry.62-72 

Other methods include neutron activation, X-ray fluorescence, 

emission spectroscopy and determinations involving utilisation of 

thermoelectricity and resistivity. Most of these' methods involve 

preliminary decomposition of the silicon-containing sample; but some 

methods such as emission spectroscopic methods do not. 

(b) GRAVIMETRIC METHODS 

Gravimetry is the oldest analytical technique for the determination 

of silicon and has been adopted by a number of Standards Organisations. 2 ,4 

It is normally used for samples containing more than 0.1% of silicon, 

at which level the results are both accurate and reproducible. 1he 

method involves' separation of silicon as polymerized silicic acid from 

other elements in the sample and its subsequent acid dehydration, drying, 

ignition and weighing as anhydrous silica, (Si0
2

). 

In practice, the silicic acid obtained when the precipitate is 



ignited often contains considerable amounts of accompanying salts 

ei ther absorbed or chemically bound. Tri- and tetra-valent metal 

oxides and acidic oxides tend to co-precipitate with the silicic acid 

even in strongly acidic solutions. The most frequently encountered 

contaminants are: Fe
2

0
3

, A1
2
0
3

, cr
2

0
3

, Sn0
2

, Sb
2

0
3

, Ti0
2

, W0
3

, P
2
0

5
, 

zr02 , zrP20
7

, Ti2P20
7

, Ta(Nb)205' BaS04 , SrS04 , CaS04 and PbS04 • 

Thus, in order to determine the silicon content of a sample 

accurately,the residue obtained after ignition is usually treated 

with hydrofluoric acid. Silicon dioxide forms gaseous silicon tetra-

fluoride (SiF4 ) with hydrogen fluoride, and therefore the loss in 

weight of the residue is equivalent to ~he silicon dioxide content of 

the sample: 

Si02 + 4HF ==== SiF
4 

+ 2H20 ....................... (1) 

The reaction is only complete in the prese~ce of dehydrating agents. 

The decrease in weight after treatment with hydrogen fluoride, accurately 

corresponds to the silicon dioxide content of the sample only if the 

composition of the accompanying substances is the same before and after 

the treatment, and if the residue does not contain any other material 

which is volatilized with hydrogen fluoride. 

The basic operations of the variants of the gravimetric technique 

are the same although the sequences might differ. Ini tially, the 

sample is decomposed and in the process silicon is oxidised and converted 

to silicic acid. Decomposition is usually effected with nitric or 

hydrochloric acids but for acid-resisting high silicon iron, a mixture 

of ammonium chloride, bromine and h~drobromic acid has been used.
2 

Oxidation of alicon to silica may be incomplete if much carbon or 

iron is present in the sample. In such cases, it is always necessary 

to fuse the ignited residue of silica and un-oxidis.ed silicon with 

9 
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sodium carbonate or sodium hydrogen sulphate. 
a~ 

Dehydration, which is in !--acid medium renders the silicic acid 

insoluble so that it could be filtered off, dried, ignited, and treated 

wi th hydrof'luoric acid. A single fuming of the sample solution with the 

dehydrating agents is usually sufficient to recover all the silica in 

the sample solution. However, for samples containing less' than 5 mg 

of silicon, further fuming of the filtrate is necessary if all the 

silica is to be recovered. Hydrochloric, sulphuric, perchloric and 

less frequently nitric and acetic acids have been used as dehydrating 

agents. The effects of these acids are in general, similar, though 

each has its own merit. Lundell and Hoffman5 have discussed the factors 

involved in dehydration by fuming with mineral acids. 

Dehydration with hydrochloric acid is safe and requires no special 

skills. Some complications arise with the use of sulphuric acid for 

dehydration: lead and barium, if present in the sample solution, are 

always precipitated as the sulphates. The anhydrous sulphates of nickel, 

aluminium, cobalt and iron (111) formed when the sample solution is 

dehydrated with sulphuric acid dissolve very slowly, and hence the 

sample solution must be heated to accelerate their dissolution. In 

consequence, some of the silicic acid is also dissolved. Antimony, 

." tin and germanium compounds, if present" may be co-precipitated. 

Dehydration with perchloric acid is often recommended because dehydration 

is rapid, bumping during evaporation is reduced, perchlorates are 

readily SOluble in water, the rate of dissolution is rapid and the 

, 6 
precipitation of silicon dioxide is almost complete. But frequently, 

perchloric acid is used with either nitric or hydrochloric acid. The 

silicic acid is dehydrated first with either nitric or hydrochloric acid 



and then with perchloric acid. It is always necessary to wash out most 

of the perchloric acid from the precipitate to prevent possible explosion 

during the ignition process. Objections to the use of perchloric acid, 

are on safety grounds. It requires strict adherence to safety rules 

and hence has to be used mainly by skilled workers. Co-precipi ta tion of 

some metallic compounds have also been reported when perchloric acid is 

used for dehydration. 7 

Dehydration with nitric acid, acetic acid, mixtures of acids, and 

acetyl chloride have been suggested but their disadvantages far outweigh 
8 w~~ 

any advantages they may have. High-molecularAorganic compounds such 

as gelatin9 have 'also been used for dehydration. Silicic acid liberated 

with hydrochloric acid is a negatively charged colloid and therefore can 

easily be precipitated with a colloidal gelatin solution ;vhich is 

positively charged. The advantage of the gelatin method is that the 

solution need not be evaporated, and when the concentrations of acid 

11 

and salt are suitable, the precipitation of silicic acid is almost quantitative. 

Special problems are encountered in the gravimetric determination of 

, silicon compounds containing fluorine, boron or phosphorus. Large losses 

of silicon due to its volatilization as silicon tetrafluoride is the 

main problem. 1011 Berzelius was the first to recognise this problem. ' 

~ Studies aimed at counteracting this loss have been made and these have 

led to the modification of the original Berzelius method and introd-

uction of new ones. Publications dealing with these new methods are 

numerous. Determination of silicon in the presence of boron often 

leads to high results. The precipitate of silicic acid is invariably 

contaminated by boron and boron tetrafluoride is volatilized along with 

silicon tetra fluoride during the final treatment of the silica with 

hydrofluoric acid. Elimination of boron as the methyl borate12 has been 

• 
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proposed but sometimes, the determination has been done without first 

. b 13,14 
separat~ng oron. 

Other gravimetric methods which have been used for the determination 

of silicon in steel involve the precipitation of 12-molybdosilicic acid 

<by organic bases, such as quinoline.15,16 All gravimetric methods 

have their disadvantages and systematic errors, and the gravimetric 

determination of silicon is no exception. These errors will be 

discussed later. However, the need to minimise these errors makes 

the use of samples containing large amounts of silicon almost 

obligatory and hence gravimetric methods are rarely employed for 

the determination of small amounts of silicon. 



(c) TITRlMETRIC AND EIECTROCHEMICAL METHODS 

Titrimetric methods have been used in the determination of silicon 

in cast iron and steel. These methods are based on the properties of 

molybdosilicic and fluorosilicic acids rather than silicic acid since 

the latter cannot be titrated with either potassium or sodium hydroxide 

solution. Molybdosilicic acid is easily reduced to molybdenum blue by 

reducing agents. The amount of reducing agent consumed in the prOcess 

being directly proportional to the amount of silicon used initially in 

the formation of the molybdosilicic acid. The titration of molybdosilicic 

acid with reducing agents can be followed with the aid of indicators or 

by electrochemical methods, such as amperometry, potentiometry and 

conductometry. However, the suitability of the process of neutralization 

of molybdosilicic acid in aqueous solutions for the determination of 

silicon is limited, because of the simultaneously proceeding hydrolytic 

splitting of the heteropoly anion during its neutralization. Titration 

in non-aqueous solvents prevents the hydrolysis of molybdosilicic acid. 

Shakhova et al~7 have studied the potentiometrio titration of molybdo-

silicic acid in non-aqueous solvents. 

Procedures based on the titration of potassium fluorosilicate 

(K
2
SiF

6
) with sodium hydroxide appear to be more popular and have been 

J 16-20 
reported to be rapid enough for process control.' The' procedures 

involve the precipitation of JSSiF
6 

from a hot acid solution in the 

presence of excess of F- and K+ ions. The precipitate is then dissolved 

and hydrolysed with boiling water and titrated with sodium hydroxide in 

the presence of phenolphthalein. 21 Prumbaum has studied the conditions 

necessary for accurate determination of silicon by this method. 

The use of antipyrine dyes22 and their derivatives23 ,24 as titrants 

13 

I 

I 

I 
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for the titrimetric determination of silicon in steel have also 

been reported. Silicon was converted to molybdosilicate and then 

titrated with an acid solution of the dye e.g. antipyrinylbis( 4-dimethyl­

aminoPhenyl)methanol in lM hydrochloric acid.
22 

(d) COLORIMETRIC METHODS 

Colorimetric methods for the determination of silicon have been 

very important because until recently, they have been the easiest methods 

for determining small amounts of silicon. The colorimetric method 

usually used is that based on the reaction of monomeric silicic acid 

with molybdate in acid solution to form yellow molybdosilicate. 

Molybdosilicate has an absorption maximum'at 352 nm but the absorption 

has been measured between 345 and 410 nm. 25 The literature on the 

calorimetric determination of Silicon as molybdosilicate is voluminous. 

26 King et al. gave a detailed bibliography' on the subject. A number of 

reviews27- 30 on the calorimetric determination of silicon as molybdo-

silicate, which include its application to silicon determination in 

steels have also been published. Colorimetric procedures based on the 

formation of yellow molybdosilicate are not very sensitive. Interferences 

due to phosphorus, arsenic, vanadium and germanium which also form 

heteropoly acids with molybdate have been reported, although phosphorus 

and arsenic, up to at least 0.1 and 0.2% respectively in steel and at 

least 0.5% of iron, manganese or tin, are all said to be without effect. 4 

Various methods have been proposed for the elimination of interferences 

due to phosPhorus, arsenic and germanium and these will be discussed 

in Chapter rv. 

Molybdosilicate is a strong oxidizing agent and is therefore 

easily reduced, even by weak reducing agents. An intense blue product, 
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due to the reduction of molybdenum, is obtained when reducing agents 

. act On molybdosilicate. This blue product (Molybdenum blue) has an 

absorption maximum at 820 nm, and although copper and certain other 

ions absorb at this wavelength, their effect can be compensated for 

by measuring the absorbance of the sample solution against a second 

. aliquot of the sample s9lution, in which the formation of molybdenum blue is 

prevented by citric acid. Other interferences could be removed by 

preliminary diffusion separation of silicon as silicon tetrafluoride.3l ,32 

The reduced molybdosilicate (molybdenum-blue) procedure has sometimes 

been preferred to the yellO\'l molybdosilicate in the determination of 

silicon in steel because it is about five times more sensi ti ve • It could 

be applied to the determination of silicon over the range 0.002 to 0.2%. 

Apart from being more sensitive than the yellow molybdosilicate procedure, 

the conditions for its formation and use are less critical. At 50oe, 

the intensity of its colour reaches a maximum wi thin five minutes and· 

it is stable for several hours. 

Various reducing agents have been suggested for the reduction of 

molybdosilicic acid, although most of them are of limited interest. 

Reducing agents that have been recommended for the determination of 

silicon in steel include tin (11) chloride, although it suffers from 

a number of disadvantages ,33,34 tin (11) oxalate,35-37 iron (11) 

sulphate ,3/j ,35,37 ascorbic acid,38-/j0 and a mixture of ammonium 

iron (11) sulphate and oxalic acid.2 l-Amino-2-naphthol-4-sulphonic 

acid and a mixture of l-amino-2-naphthol-4-sulphonic acid, sodium 

sulphite and sodium metabisulphite are excellent reducing agents but 

have so far not been used in the determination of silicon in steel. 
. 41 

Vietsman reported the use of potassium iodide as a reducing agent. 

Hydrazine has. also been mentioned. 39 Potassium permanganate in slight 



excess has been used successfully to eliminate the interference 

caused by certain reducing agents including iron (11). For instance, 

to determine silicon in slag while it is still in the furnace, it is 

essential to prevent the premature reduction of molybdosilicate by 

iron (11) and such reduced ions as sulphide. Braicovich and Landi
42 

have outlined precautions necessary for the use of the molybdenum-blue 

procedure in the determination of silicon in steel. 

Since' tl,e introduction of the yellow molybdosilicate and moly-

bdenum-blue procedures, for determining silicon, there have been 

several modifications including automation43 of both procedures. 

A few of these modifications have included solvent extraction of 

1 bd '1' 44-47 mo y os~ ~cate with a view of improving the precision of the 

procedures. Several modifications have also been made in order to 

adapt the procedures to the determination of silicon in low alloy 

steels 

ores56 

45-54 and iron, 

and Slags. 57 

cast iron,55 iron oxide inclusions, iron 

Ordinarily, both procedures have found wide 

application in the determination of acid-soluble silicon in steels.
58

-
61 

• 
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(e) ATOMIC ABSORPl'ION SFECTROPHOTOMETRY 

Silicon is one of the less sensitive elements that can be 

determined by atomic absorption spectrophotometry but since the 

introduction of the nitrous oxide-acetylene flame, there has been 

an increase in the number of reports on the determination of silicon 

in steel by this method. The method has been successfully used for 

determinir,g' silicon above 0.1%. It is hOwever doubtful whether lower 

concentrations of silicon can be determined with acceptable accuracy 

especially since ideal experimental conditions are very difficult to 

establish. A survey 9f the literature sh9wS that different pre-

treatment techniques have been adopted "for the determination of silicon 

in steel by 'atomic absorption spectrophotometry. These techniques 

include precipitation of silica, alkaline fusion and decomposition with 

hydrofluoric acid. 

McAuliffe 62 appears to be the first to apply atomic absorption 

spectrophotometry successfully to the determination of silicon in steel, 

but even then difficulties in obtaining optimum operating conditions were 

reported. It was'noted that with the preparation procedure adopted, the 

sample sOluUons were only stable for 1 or 2 hours. Furthermore, rap:i,d 

build-up around the burner slot often changed the 'operating conditions, 

• thus making it necessary to clean the burner after two or three runs. 

The results obtained were, however, reported to have a relative error 

of between 0.5 and 2.0%. 

Musil and Halirova 63 studied the application of atomic absorption 

spectrophotometry in metallurgical analysis and determined silicon by a 

method which involved the dissolution of the sample with nitric acid 

and the fusion of the residue, obtained with sodium potassium carbonate 

or a mixture of potassium and sodium carbonates. Gomez Coedo and 
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Jiminez 8ec064 determined silicon in iron ores by a method which 

involved the extraction of the sample with hydrochloric acid after 

fusion with a mixture of sodium carbonate and borax. Interfering 

elements were masked with a masking mixture containing EDTA, strontium 

nitrate, lanthanium trioxide, perchloric and hydrochloric acids. 

Price and Roos, 65 in probably one· of the best atomic absorption 

methods for the determination of silicon have emphasized the need for 

proper and complete dissolution of samples. They reported a direct 

method for determining silicon which avoided the need either for the 

precipitation of.the silica Or for an alkaline fusion technique. The 

method involved the dissolution of steel samples with hydrochloric acid 

and hydrogen peroxide. Interferences were investigated and the enhance-

ment of the silicon absorption by elements such as aluminium, calcium, sodium, 

iron and vanadium was explained in terms of the suppression of the ionisation 

of silicon in the nitrous oxide flame by the interfering element. However, 

no satisfactory explanation for the suppression of silicon absorption by 

phosphate was given. At 0.5% level of silicon, preCise results were 

obtained. The precisions of the results \;ere reported to be even better 

at higher levels of silicon. 

The use of hydrofluoric acid for the dissolution of steel samples 

with high Percentages of silicon, was also recommended by Price and 

Roos.65 Nakahara et al?6 in their study of the determination of silicon 

in some metallurgical materials recommended the treatment of steel 

samples with hydrofluoric acid before nebulising into a nitrous oxide-

acetylene flame. Interferences by other elements were thoroughly 

investigated as well as the effects of various acids Nith concentration 

. "-" 
up to 2 Normal. Addition of water-miscible organic solvents toA.aqueous 

• 
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solution containing silicon was reported to enhance the sensitivity of 

the method. Hydrofluoric acid at,tack and the subsequent determination 

of silicon by atomic absorption spectrophotometry was compared vlith the 

method which involves the formation of molybdosilicate followed by 

extraction with methyl isobutyl ketone. Brivot and COhort67 have also 

made a comparative study of the determination of silicon by atomic 

absorption spectrophotometry and spectrophotometric method in certain 

steels. For the atomic absorption spectrophotometric study, the samples 

Were dissolved in a mixture containing water, hydrochloric and nitric 

acids. 
68 Rooney and Pratt dissolved the sample in a mixture containing 

hydrochloric, nitric and hydrofluoric acids and then added sodium chloride 

(2.5%) to ensure t~at sufficient alkali metal was present to enhance fully 

the silicon absorption. They determined silicon in the presence of large 

amounts of iron, nickel, cobalt and molybdenum. A very fuel-rich nitrous 

oxide-acetylene flame was used. 

An atomic absorption method has been discussed by Feldman et al?9 

for samples containing more than 5% of silicon. Langmyhr and Paus 70 

studied the analysis of inorganic siliceous materials including slags, 

iron ores and ferrosilicon by atomic absorption spectrophotometry and 

the hydrofluoric acid decomposition technique. They obtained results for 

J silicon which were in good agreement with the British Chemical Standards 

certificate values of silicon in these materials. 

The use of nitrogen-separated nitrous oxide-acetylene flame for the 

determination of silicon in low-alloy steel by atomic fluorescence spectro­

scopy has been reported by Kirkbright et al. 71 They noted that the 

detection limit obtained was better than that obtained by atomic absorption 

spectrophotometry, although the, fluorescence was dependent on the hydro-

fluoric acid concentration. 

---~-----
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A suggestion has been made that with the use of laser sources in 

·atomic absorption spectrophotometry, it would be possible to determine 

even lower levels of silicon. Krivchikova and Demin72 demonstrated 

the possibility of atomic absorption spectrophotometry with laser sources 

and by using this method analysed 0.1 to 1% of silicon in steel. 

(f) OTHER METHODS 

Other,methods of determining silicon in iron and steel have been 

widely reported in the literature. Non-destructive neutron activation 

analysis has been applied in the determination of silicon in steel. 

Pierce and Haines73 determined silicon using a low-output neutron 

generator. Van Grieken et al.,74 reported a 14-MeV neutron activation 

analysis for silicon with 5
6

Mn formed from the iron matrix as internal. 

standard. They also reported a method for the simultaneous determination 
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of. silicon, phosphorus, oxygen and copper but the method was only suitable 

for the simultaneous determination of silicon and phosphorus in steels 

with high phosphorus content. 75 D'arglemont de TaSSigny76 also studied 

the determination of alumin;uiYl phosphorus and silicon in steel by activation. 

with 14-MeV neutrons. In addition, he discussed the chemical separation 

of these elements. However, all procedures for the determination of silicon 

by neutron activation analysis are limited by aluminium interferences and 

a high detection limit • 

Pierce· et a177 have also deterrnined silicon by measuring the 1.77 

MeV o-line emitted by an inelastic proton scattering reaction, using 

the 0.84 MeV ((-line from the iron matrix as an'internal standard. 

A method fpr the determination of silicon and phosphorus in iron 

ores 
. . . ~ 

by infra-red spoctroscopy was reported by Lebedeva and Ptushkina. 

The method involved the formation of molybdosilic:lc acid followed by 

its extraction with a 4:1 mixture of aceiPphenone and chloroform from a 

1.8-2.0M hydrochloric acid solution. The extinction of the extract was 
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-1 
then measured at 906 cm. 

BarYShanSkaya79 reported a method for the spectral analysis of 

alloyed steel in the near ultra-violet region using a double spark as 

a light source. Several other emission spectroscopic methods for the 

determination of silicon in iron and steel have also been Published.
80

-
82 

A quantitative spectrochemical emission method of analysis of steel 

by the rotating-disc electrode method has been reported by MaeKawa et al. 83 

The samples were dissolved in aqua regia and the analyses of the 

resulting solutions completed by excitation, in a 150 a.c. spark 

between a rotating disc of paraffin wax impregnated carbon rod and a 

tungsten counter electrode. 

Gabrovski 
84 

et al. determined silicon by an indirect flame photo-

metric method. They precipitated silicon as K2SiF6 and then determined 

the potassium component (and hence Silicon) photometrically in a propane 

or butane flame. A method in which silicon is converted to silicon 

tetrachloride during the direct chlorination of iron and steel, and then 

determined by gas chromatography was reported by Sie et al. 85 X-ray 

spectrometry has also been used for the determination of silicon in 

86 
steel. 

Sajo87 reported a differential thermal analysis procedure in which 

he made use of the difference in the variation of temperature between a 

standard and the sample when both were treated with hydrofluoric acid. 

Ujvary88 described a rapid thermometric determination of silicon in 

ferrosilicon based on the measurement of the heat of formation of 

A method which has been reported to be very rapid for control analysis 

is the thermoelectric procedure. It is based on the variation in the 

value of the thermoelectric e.m.f. produced when a sample is placed between 

two standard electrOdes and ·heated together with one of the electrodes • 

• 
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The thermoelectric e .m. f. is a function of the perce'ntage composition of 

the constituent species or their compounds, the temperature difference 

between the cold and hot junctions, and thermal or mechanical treatment 

of the sample. If all other factors are kept constant, the thermoelectric 

e.m.f. could be used to determine the percentage composition of a steel 

sample. Thermoelectric procedures have been used for the determination of 

. 89-94 silicon 1n steels, cast iron,95-98 and ferrochromium. 99 

The resistivity of iron depends on its content of additional elements. 

Studies on the variation of the resistivity of iron as a function of the 

content of silicon in silicon steels containing different concentrations 

of carbon, manganese, phosphorus and sulphur showed that the resistivity 

was mainly affected by the dissolved carbon. The effect of carbon was 

found to be greater than that of any other element in steel. However, in 

many steels in which the carbon content was negligible, the resistivity 

was mainly affected by silicon. The effect of silicon on the resistivity 

of iron has been used for example, in its determination in transformer 

100 
steels. 
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II. CHEMISTRY OF MOLYBDOSILICIC ACID 

. (a) FORMATION: 

Molybdosilicic acid has long been used for the colorimetric and 

spectrophotometric determination of silicon but the literature on the 

conditions of its formation and determination is at times confusing and 

contradictory. The fact that silicate and molybdate species combine to 

form molybdosilicic acid has long been recognised and since the X-ray 

k f 
. 101 wor 0 Keggln, 

has been generally accepted. This composition has been verified and 

. 102-105 confirmed by other workers. Molybdosilicic acid with a 1:12 mole 

ratio of silicon to molybdenum has generally been regarded .as the only 

compound formed when silicate and molybdate species react (see equation 
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2), although SOme workers have reported the formation of a Si: 8Mo compound. 

2- 2- +. 4-
Si0

3 
+ 12Mo04 + 22H = [Sl(Mo

3
010 )4] + llH20 ................ (2) 

This contradiction could be explained by the existence of different isomers 

of molybdosilicic acid. .106-107 Ferrarl appears to be the first to report 

the existence of different forms of molybdosilicic acid. He found that 

the intensity of yellow molybdosilicic acid decreased to a constant 

value after several hours and noted that at that point, it appeared an 

equilibrium was established between a yellow and a colourless form of 

molybdosilicic acid. Increase in temperature accelerated the transformation 

of the yellow to the colourless form. Once equilibrium had been established 

between the two forms, molybdosilicic acid was found to show great , 
resistance to the action of destructive agents such as sulphuric acid. 

Strickland,108 . in a series of papers, also showed that there were two 

possible forms of molybdosilicic acid but both forms had the same empirical 

formula. He called the forms a- and ~-silicomolybdic acid. He noted 

that the critical factor that determined the form prOduced was the ratio 

of the concentrations of acid and molybdate used. The a-form was produced 
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in solutions containing 1.45-1.50 equivalents of HCl par gram ion of 

2-
Mo0

4 
and the ~-form in solutions containing more than 2 equivalents. 

He also reported that the ~-form was unstable and was slOWly transformed 

spontaneously into the more stable a-form. In the presence of excess 

molybdate, however, the transformation was inhibited and the half-life 

of the reaction was about 25 hours. Strickland suggested that in 

acidified molybdate solution, three spacies which he called a-, ~-, and 
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¥-molybdate also existed. The reaction of a- and ~-molybdate'with silicic 

acid produced a- and ~-silicomolybdic acid respactively, whereas 

~-molybdate was inert. He failed to define the a-spacies but assumed 

that ~-molybdate. was tetramolybdate and the 't-form was molybdenyl ion. 

Ch 1 d S · l' 109,110 a me rs an lnc aJ.r also studied the st.ructure of a- and 

~-silicomolybdic acids and On the basis of Keggins work explained the 

difference between the two isomers. They reported that the a-compound 

was derived from octamolybdate and the ~-compound from deca- or 

dodecamolybdat.e. Armand and Bertoux,lll while confirming Strickland's 

acid to molybdate mole ratio concept reported that. a-silicomolybdic acid 

was only formed when the acid to molybdate rat.io was lower than 1.5 and 

the ~, if the ratio was greater than 3. 

1 d R 1 1 · 112 Kemu a an oso OVIS U, on the other hand, suggested that a 

~-form of molybdosilicic acid existed and could be obtained at pH 

0-4.6, if the a- and ~-forms were boiled for 30 min~tes. They noted 

that the transformation of a or ~ to the ~-form was quantitative. 

The 't-form VIas reported to be more stable than both the a- and ~-forms 

and had a formula H4[Si(M03010)41.H20. They also suggested that the 

silicon to molybdenum ratio of a- and ~- was 1:8 whereas o'-silicomolybdic 

acid has a ratio of 1:12. Sanyal et al~13 in t.heir spactrophotometric 

and conductometric study also reported the existence of a complex between 

silicic and molybdic acids having a 1:8 Si to Mo combination ratio • 

• 
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The conductometric study was,however, not conclusive. The variations 

of the conductance of the mixtures for the Job plot were reported to be 

linear up to 1:3 ratio and then non-linear above this ratio due to the 

contribution to the conductance from free molybdate. 

Since the work of Strickland, which firmly established the existence 

of two forms of molybdosilicic acid, many analytical procedures for the 

determination of silicon based on the formation of a- and ~-silicomolybdic 

acid at controlled acid to molybdate mole ratio have been reported. 

:Before then it had been commonly supposed that the essential factor in 

molybdosilicic acid formation was pH. Various values of optimum pH were 

reported but thip was generally agreed to be between pH 1 and 2. Most 

workersl14, 115 appeared to have agreed with the acid to molybdate mole 

ratio concept and in some casesl15 had emphasized its importance. But 

142 143 others, such as Grasshoff and Hahn' in addition, proposed that 

hydrolytic equilibrium was also involved in the formation of mo1ybdosilicio 

i 

I 

I 

acid. 

The assumption that the formation of the· a- and j3-forms were fundamental1) 

dependent on the acid to molybdate mole ratio has gone unchallenged 

until recently. Truesda1eand Smith
116 

have rejected the above condition 

and instead have proposed a mechanism that involves only pI1 and molybdate 

concentration as the primary factors that determine l1hich form of 

molybdosi1icic acid is produced when molybdate and ~ilicate species react. 

Their investigation showed that solutions of constant acid to molybdate 

ratio could span a wide range 01 pH values. Thus, either form of 

molybdosilicic acid or a mixture of both forms could be formed in 

solutions with the same acid to molybdate ratio. They concluded that 

the form produced does not depend on the acid to molybdate ratio but 

on the pH and on the concentration of molybdate. 



(b) EF1<"ECT of pH. 

While pH control has always been recognised as an important factor 

in the formation of molybdosilicic mid and has generally been agreed 

that for ~-silicomolybdic acid formation, the pH should be between 1 and 

2, .various "optimum" values have been reported. Miltonl17 indicated 

that .~-silicomolybdic acid could be formed in a pH range of 1 to 5, but 

. 118 
Trudell and Boltz reported an optimu~ pH of about 1·4. Hurford and 

BOltzl19 used an optimum pH of 1.3, Jakubiec and Boltz
120 

confirmed 

this but specified a waiting period of 10 minutes to allow complete 

formation of the molybdosilicic acid. Truesdale and Smithl16 reported 

that a-silicomolybdic acid is formed at·p~ between 3.8 and 4.8 (possibly 

slightly higher) and the ~-acid at pH between 1.0 and 1.8. At extreme 

pH values, the rate of formation of both forms of molybdosilic acid 

was reported to be very slow and complete formation took a long time. 

(c) EFFECT OF MOLYBDA'lE CONCENTRATION 

The effects of molybdate concentration have been studied by several 

workers .121 - 123 A relatively high molar excess of molybdate (> 100%) 

ha5 . always been recommended to ensure complete formation of the acid. 

DeSesa and Rogers124 while supporting the acid to molybdate mole ratio 

concept emphasized the importance of excess molybdate. However, too 

• large an excess of molybdate should be avoided as it. increases the 

blank on the techniques (based on the formation of ~olybdosilicate) 

for the determination of silicon. 

(d) EFFECT OF 'lEMFERATURE 

Studies have shown that an increase in temperature accelerates the 

transformation of ~- to a-silicomolybdic acid 'but at the same time, it 

has been shown that once either form has been produced and if the pH. 
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and molybdate concentratiomare maintained at constant values, temperature 

changes have little effect on the measurable parameters (e .g. absorbanc<3) 

of molydosilicic acid or reduced molybdosilicic aCid.125 ,126 



(e ) MISCELLANEOUS EFFECTS 

1 
. 109 

Water-miscible organic SO vents such as ethanol and acetone 

have been reported to enhance the stability of P-silicomolybdic acid 

presumably because the organic solvent displaces water from the 

surface of the heteropoly anion and so inhibits any reorganisation 

of the structure of the anion. TI1e organic solvents, especially 
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acetone also intensify the colour of p-silicomolybdic acid. 127 Sulpholane 

has been reported to give better colour enhancement and stabilizing 

effect than acetone. It also has lower volatility. Tartaric, citric 

and oxalic acids which decompose arseno- and phosphomolybdic acids do 

not attack silicomolybdic acid to an·a:Ppreciable extent. Thus, the 

use of these complexing agents makes it· possible to form and hence 

determine molybdosilicic acid in the presencc of either arsenic or 

phosphorus. However, the order in which~he reagents are mixed may 

make the determination of molybdosilicic acid without separation from 

arsenic and phosphorus difficult.
l10 

It has been suggested that the order in which reagents are mixed 

also determines which form of molybdosilicic acid is produced. A 

careful examination of the literature on this subject ShovlS, however, 

that this condition is only important in the case· of p-acid where a 

, pH less than 2 has to be maintained to ensure its formation. Workers 

who obtained different forms of the acid depending on the order of 

mixing silicate with molybdate appear. to have forgotten that pH is a 

primary factor in the formation of molybdosilicic acid. The pH of 

their mixture is bound to change whichever order the reagents are 

mixed. Thus the p-acid would only be produced if the final pH of their 

mixture is between 1 and 2, or remains wi thin this pI! range during the 

mixing. A final pH greater than this range would lead to the formation 

of the a- or a mixture of a- and p-acids. 
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ill. POLAROGRAPHIC DETERMINATION OF SIUCON (REVIEW) 

Silicate ions are not reduced at a dropping mercury electrode (DfIIE). 

The polarographic determination of silicon is therefore based on the 

reduction of molybdosilicic acid. The reduction of molybdosilicic acid 

consists of several stages, depending on the supporting electrolyte in 

the system. 
128 

There are a number of papers and reviews on the 

polarogre,phic reduction of molybdosilicic acid but opinions differ as. 

to the number and nature of reduction stages, pH of reduction and 

the pH of formation of molybdosilicic acid. This is hardly surprising 

since differing experimental conditions have been employed for the 

preparation and subsequent reduction Of ,molybdosilicic acid. However, 

the most widely held opinion is that molybdosilicic acid is reduced 

in two stages: the first involves the reduction of fIIo(VI) to fIIo(V) 

and this corresponds to the first half-wl.ve potential, the second 

involves the reduction of fIIo(V) to fIIo(III) and corresponds to the 

second half-wave potential. 

Boltz et al.,129 in a brief report, appear to have been the first 

to study the polarographic behaviour of molybdosilicic acid. In a 

supporting electrolyte containing potassium chloride, hydrochloric 

acid, sodium acetate and acetic acid in varying proportions, with 

the pH at 3.5, they detected a wave with a ha1.f-wave potential at 

-0.55V vs SCE. The height of the wave was propor~ional to the con­

centration of the molybdosilicic acid. 

128 
Jean had noted that when molybdosilicic acid was polaro-

graphically reduced in a buffer containing ammonium acetate, acetic 

acid and potassium chloride at pH 3.5, two waves whose heights were 

proportional to the concentration of molybdosilicic acid were obtained 

at -0.35\1 and -0.85\1 vs SCE respectively. At pH }.J-.55, one ill-defined 



wave was obtained. In addition, a 10-4M solution of crystalline molybdo-

silicic acid dissolved in a supporting electrolyte consisting of O.lM 

potassium sulphate solution at pH 3.5, gave only one wave at -0.25V vS 

SCE whereas ~-silicomolybdic acid had no characteristic wave under the 

. same condition. 

Lyalikov and Aronina130 studied the polarographic behaviour of 

molybdosilicic acid in a supporting electrolyte consisting of ammonium 

. nitrate and nitric acid at pH 1.1. They obtained one wave with the 

-1 silicon concentration less than 10 ~g ml, but as the silicon concen-

-1 
tration was increased ( > 10 fAg ml ), which was equivalent to the 

absence of free molybdenum, three waves were obtained. The peak heights 

of the first and third waves were independent of silicon concentration 

whereas the peak height of the second was proportional to it over the 

-1 
range 10 to 15 ,Mg. ml. These same three waves were obtained when 

aCid 
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solid molybdosilicic,(was polarographed under the same condition. Lyalikov 

and Aronina therefore concluded that the difference which they observed 

in the polarographic behaviour of solid molybdosilicic acid dissolved 

in the supporting electrolyte and that of the molybdosiiicic acid 

prepared directly in a solution with excess of free molybdate was due 

to the difference in the nature of the polarographic reduction .of a- and 

~-silicomolybdic acids. 131 Massart reported that it was possible to 

differentiate a- and ~-silicomolybdic acids by using a rotating platinum 

electrode instead of a dropping mercury electrode. 

Most workers seem to agree on the existence of different isomers of 

molybdosilicic acid but there has been disagreement on which of these 

isomers is suitable for the polarographic determination of silicon. 

While some workers prefer to reduce either a- or ~-silicomolybdic acid, 

depending on their choice of optimum experimental conditions, others 
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have proposed that the i-isomer is most suitable. Kemula and 

RosOlowski132-134 reported that a-.and ~-silicomolybdic acid were inert 

in the presence of a buffer containing hydrochloric acid, sodium formate 

and butanol, whereas I(-silicomolybdic acid gave a reproducible kinetic 

wave under the same condition. The kinetic wave appeared between the 

two waves of uncombined excess molybdate. It had a half-wave potential 

which depended linearly on pH and varied. from 0.33 to 0.45V vs SCE in the 

pH range 1.3 to 3.8; best results being obtained at pH 1.9 to 2.6. 

Ripan and CaJu 135,136 noted that six characteristic waves were 

produced in the reduction of a-silicomolybdic acid but only the first 

two waves appeared to be proportional ·t.() the silicon concentration. 
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The waves were, however, not reproducible at lower concentration of silicon. 

This, they attributed to a variation in the internal structure of molybdo-

silicic acid anion which occurred l1hen the concentration of the solution 

was decreased. 

Sen and ChatterJee137 noted that chemically reduced molybdosilicic 

acid could be further reduced· polarographically in four reversible steps. 

The first three waves were reported to be proportional to the concentration 

of the reduced molybdosilicic acid complex alone, whereas the height of 

the fourth ·wave depended on the complex as well as on the concentration 

of molybdate in the solution. The half-wave potentials of the waves 

varied linearly with pH. They reduced the molybdosilicic acid with 

variOuS reducing agents including hydrazine hydrate and polarographed 

the reduced species in an ammonia-ammonium chloride buffer at pH 9.5. 

Polotebnova and Furtune138 investigated the polarographic behaviour of 

molybdosilicic acid and of the products of its chemical reduction in 

both aqueous and alcoholic solutions with 0.5M sulphuric acid as 

supporting electrolyte. The reduction products (molybdenum blue) were 



• 

produced by reduction with ascorbic acid, tin (II) chloride .or sodium 

sulphite. The polarograms of molybdosilicic acid and molybdenum blue 

in aqueous solution showed three waves with half-wave potentials at 

-0.19V, -O.33V and -0.42V vs SCE respectively. The peak heights of 

the waves varied linearly with the concentration of molybdosilicic acid. 

In a water-alcohol mixture, the polarogram showed two waves, the first 

of the three waves observed in aqueous solution having been effectively 

suppressed in the presence of alcohol. An increase in the proportion of 

alcohol in solution1noreased the peak height of the second wave and 

suppressed that of the third wave. In absolute alcohol solutions, only 

one wave was observed with half-wave potential at -O.35V vs SCE. 

EI-Shamy et al~39, 140 studied the polarograPhic reduction of 

molybdosilicic acid in a variety of supporting electrolytes to show the 

effects of hydrogen ion concentration and of the presence of complexing 

ions on the wave forms. In O.lM-KCl solution, two waves at -0.48v and 

at -1.2V vs SCE respectively, were obtained. The peak heights of the 

waves were directly proportional to the concentration of molybdosilicic 

acid in the range 0.2 to 1.0 mM. In oxalic, tartaric or citric acid 

solution, they obtained two waves at -0.3V and at -0.55V vS SCE respec-

tively but with increasing concentration of molybdosilicic aCid, the 

waves were ill-defined. In sulphuric acid, two waves whose peak 

sharpness decreased with increase in acid concentration were obtained. 

They obtained similar results in the presence of phosphoric, nitric and 
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hydrochloric acids. EI-Shamy et al. also studied the reduction of molybdo­

silicic acid in acetate and phosphate-citrate mixtures of varying pH 

but obtained ill-defined waves which were dependent on pH and on the 

concentration of the reducible species. At pH 1.1, four ill-defined 

waves were obtained, but only one wave at pH 4.9 • 

• 
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By using rotating platinum electrodes, l1assart and Souchay were 

able to obtain a three-step reduction of a- and ~-silicomolybdic acids. 

This reduction corresponds to two, four and six electrons respectively. 

The first two reductions were reported to be reversible. 

142 143 Grasshoff and Hahn' obtained three waves in their study of 

the polarographic reduction of molybdosilicic acid in a citrate buffer at 

pH 2.5. The first and third waves were due to the reduction of molybdic 

acid (SOdium molybdate) whereas the second was characteristic of molybdo-

silicic acid. Determination of the free molybdic and molybdosilicic acids 

in solution indicated that molybdosilicic acid is 50% decomposed 

according to the following equation: 

This applies only to ~-silicomolybdic acid. Thus the three waves were 

given by ~-silicomolybdic acid and by molYQdic acid formed by the 

decomposi tion of the molybdosilicic a)id. In the presence of methyl 

ethyl ketone, the first wave was effectively suppressed but the second 

and third waves were not. Methyl ethyl ketone also improved the shape 

of the second wave (i .e·. the ~-silicomolybdic acid wave). Increase in 

temperature led to a decrease in the height and sharpness of the ~-silico-

molybdic acid wave. The half-wave potential of ~-silicomolybdic acid 

• which occurred between -0.35V and -0.40V vS SCE was found to vary with 

pH. a-Silicomolybdic acid was reported to have a half-wave 

of -0.47V vs SCE, i.e. 90 mV more electronegative than that 

silicic acid. 

potential 
!>­

of{molybdo-

144 Asaoka described a modifica.tion of the methods of Grasshoff and 

Hahn and of Kemula and RosolO\~ski. It involved the solvent extraction of 

molybdosilicic acid into iso-butanol, fOllowed by polarographic reduction 

in a supporting electrolyte solution containing aqueous alCOhol. The 

32 



total height of the two-step reduction wave (at -O.3V and -O.5V vs the 

SCE respectively) was reported to be proportional to the amOQ~t of 

silicon present in the extract, although germanium showed the same 

behaviour under the same condition. The method appears to be the 

only polarographic method reported in the literature to have been 

applied fop the determination of silicon in steel. The values obtained 

agreed well with the certificated values of the standal'd steel samples 

investigated. It was noted that no intel'ference was obtained from COmmon 

constituents of iron and steel. Another method involving the measurement 

of the maximum wave produced in a perchloric acid-hydrogen peroxide-

isobutanol mixtul'e was also investigated for possible use for determining 

minute amounts of silicon and germanium (less than 6 jJg of silicon 

per ml). 

A number of papers have appeared on 

molybdosilicic acid in organic solvents. 

the polarographic 

145 Kollar et al 

reduction of 

reported the 

polarographic reduction of molybdosilicate ions in 1,2-dichloroethane 

at several working electrodes (platinum, mercury and carbon). Pottkamp 

146 
and Umland described a method for the polarographic determination of 

traces of silicon and phosphorus using a mixture of water, butyl acetate 

• and ethanclic lithium chloride solution as supporting electrolyte. A 

method for the simultaneous determination of both a- and ~-silico-

molybdates in ethanolic lithium chloride by a.c.-rapid polarography was 

147 reported by Umland et al. They also evaluated the rates and energies 

of transformation of ~- to a-silicomolybdic acid. They reported that the 

polarographic reduction of either a- or ~-silicomolybdic acid, which was 

pH dependent, took place in three steps but ~-silicomolybdic acid was 

reducedat a more negative potential than a-silicomolybdic acid. 
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Reduction of the dioctylammonium ion associates of a- and ~-silicomolybdic 

acid in a two phase system consisting of chloroform and IMhydrochloric 

acid gave different products: the a-molybdenum blue remained in the 

organic layer while the ~-molybdenum blue pes sed into the aqueous phase 

thus a quantitative distinction of both isomers can be made. They also 

reported that ~-silicomolybdic acid, hitherto only produced in solution, 

can be isolated in the solid form as the dioctylammonium salt. 

148 Souchay et al., in addition to describing the polarographic 

behaviour of 12-tungstosilicic and molybdosilicic acids at dropping 

mercury and platinum electrodes have also discussed the influence of the 

central atom on the electrochemical behaviour and properties of the 

isomers of molybdosilicic acid. 

121, 
DeSesa and Rogers compered the polarographic reduction of 

molybdosilicic acid with a UV spectrophotometric method based on the 

measurement of the absorbance of yellow molybdosilicic acid, in an 

attempt to corroborate the accuracy of the results obtained by the latter 

method. In a supporting electrolyte of ammonium nitrate and nitric acid, 

a steeply sloped wave with a half-wave potential at +O.I5V vs SCE was 

obtained. At more negative potentials, the wave was essentially that 

of molybdate alone. 

• Instead of measuring the limiting diffusion current in the usual 

manner, DeSesa and Rogers measured the limiting diffusion current of 

molybdosilicic acid from a point on the polarogram where the limiting 

diffusion current of the blank was zero. 
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IV. 

0.02 

(a) 

DEVELOPMENT OF A PROCEDURE FOR DE1ERJViINING lEVELS OF SILICON ABOVE 

-1 yg ml. IN AQUEOUS SOLUTION 

INTRODUCTION 

The literature survey given in chapter 11 shows that for analytical 

purposes, it is necessary that one of the two forms (a and 'P) of 12-

108 
molybdosilicic acid as postulated by Strickland should be formed 

exclusively, if any meaningful results are to be obtained. The formation 

and subsequent use of ~-12-molybdosilicic acid appears to be the more 

attractive alternative because it is quicker to fOFm and use, provided a 

means is found to stabilise and prevent its spontaneous transformation 

into the a-form. Chalmers and Sinclairl09, 110 developed a colorimetric 

procedure for the determination of silicate based on the formation of 

~-12-molybdosilicate. The ~-12-molybdosilicate was stabilised and 

prevented from being transformed into the a-form by the addition of 

acetone. The addition of acetone was also claimed to accelerate the 

rate of formation, and to intensify the colour of the 12-molybdosilicate. 

As it was the ultimate aim of the present work to develop a method for 

determining very low levels of silicon, ,an analytical technique other 

than colorimetric determination was utilised. Differential pulse polaro-

graphy which is obviously more sensitive than colorimetry was considered 

to be a better alternative • 

Grasshoff and Hahn142 ,143 had determined silicon by a procedure 

based on the polarographic reduction of ~-molybdosilicic acid. They 
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showed that the addition of methyl ethyl ketone' improved the polarographic 

wave of ~-molyqdosilicic acid. In a sodium citrate-hydrochloric acid 

buffer at pH 2.5" in which no methyl ethyl ketone was, added, they obtained 

three waves. The first and third waves were attributed to molybdate 

whereas the second was attributed to the reduction 'of~-molybdosilicate. 
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The addition of methyl ethyl ketone effectively suppressed the first 

wave but not the second and third waves. It also improved the shape 

of the second (~-molybdosilicate) wave. The half-wave potential of 

the ~-ll!0lybdosi1icate wave varIed between -0.35 and -0.40V vS SCE 

depending on the pH of the solution. Grasshoff and Hahn gave a 

calibration graph for _ silicon in the range 0.3-1.8 f-l g of silicon per 

ml using conventional DC polarography, and also extended the method 

to the determination of silicon in aluminium and aluminium alloys 

using cathode ray polarography. 

Sen and chatterjee137 studied the polarographic reduction of 

chemically reduced molybdosilicic acid at pH 9.5. At pH values above 
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7, molybdosilicic acid would normally decompose but reduced molybdosilicic 

acid is stable at these pH values. In an ammonia-ammonium chloride 

buffer at pH 9.5, they obtained four waves with half-wave potentials 

at -0.670, -0.8)+5, -0.910 and -1.07OV vs SCE respectively. For the 

determination of high concentrations of silicon (more than 22 ppm of 

silica), they recommended that the first wave should be used because 

the catalytic wave of MO(V) would not interfere. For trace quantities 

of silicon, the large diffusion constant of the fourth wave or the sum 

of the diffusion currents of all the four waves could be used with 

advantage. 

It is of interest to note that the Grasshoff and Hahn, and Sen and 

Chatterjee methods represent the determination of silicon at two 

extremes of the pH spectrum. It was- decided to make a preliminary 

study of both methods with a view of finding a suitable method for 

determining silicon in steel. 
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(b) OPI'IMISATION OF EXillRIMENTAL CONDITIONS 

Chalmers and Sinclairl09 , 110 prepared ~-molybdosilicate by adding 

aliquots of silicate solution to a 50 ml volumetric flask containing 

between 5 and 7.5 ml of acetone and a l:1 mixture of 8% ammonium molybdate 

solution and lM sulphuric acid. After diluting the solution to 50 ml with 

water, it was left to stand for 15 minutes to allow the ~-molybdosilicic 

. acid to form. The absorbance of the solution was then measured within 30 

minutes. Aqueous sample solutions, prepared according to the procedure of 

Chalmers and Sinclair, were polarographed but ill-defined waves were 

obtained (see fig.l). In addition, a blue zone was observed around the 

dropping mercury electrode even when the ,blank solution was polarographed. 

A decrease of the concentration of the molybdate used, neither improved 

the wave form nor was the blue ZOne completely eliminated. It was obvious 

that a reduction other than that of molybdosilicic acid was taking place. 

One possibility is that excess molybdate was being reduced instead of 

molybdosilicic acid. 

Attempts to polarograph molybdosilicic acid pre-reduced with hydrazini~ 

sulphate according .to Sen and Chatterjee' s137 procedure, proved 

unsuccessful. Ill-defined waves, which could not be of any analytical 

use, were obtained (see fig. 2). In addition, the molybdenum blue solution 

which was polarographed, changed colour continually from blue to green and' 

finally brown during the run. This change was more pronounced with the 

blank solution where even a brown precipitate was Obtained. The reducing 

action of hydrazinium sulphate on molybdate which is the cause of the 

colour changes, showed that any method based on this procedure would not 

be reliable. Optimum concentrations of reduciag agent and molybdate 

would have to be found to make the method applicable to the analysis of 

even the least complex material. 
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Differential pulse polarogram of molybdosilicate prepared 
accordIng to Chalmers and Sine lair I 8J09 ,110 procedure. 
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Modulation amplitude 25 mY, scan rate 2mV. Sec 
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In Grasshoff and Hahn ' s142 procedure for the polarographic reduction 

of molybdosilicic acid, an aliquot of silicate solution is adjusted to 

pH L5, molybdate is added and the pH readjusted to 1.6. This solution 
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is then allowed to stand for 24'hOurs before adjusting the volume to 100 ml. 

An aliquot of this solution is diluted with a citrate buffer containing 

methyl ethyi ketone and then polarographed. Good results were obtained 

with solutions containing at least 0.02 ~g of silicon per ml but at levels 

of silicon lower than this, the blanks became very significant. Typical 

polarograms at these levels showed no difference between the 

wave forms Of the blanks and those of solutions containing 0.005 J-Ig of 

silicon per ml. 

Various unsuccessful attempts were made to reduce the blank. These 

included using very low concentrations of molybdate and varying the com­

position of the working solution (citrate buffer containing methyl ethyl 

ketone j so that it contained different percentages of methyl ethyl ketone. 

Omitting methyl ethyl ketone from the working solution and increasing the 

concentration of the citrate in steps up to about 4M, did improve the 

blanks but at the same time the ~-12-molybdosilicate wave was suppressed. 

This decrease in wave height might have been due to the increased viscosity 

of the solution. Substituting tartaric or oxalic acid for citric aCid in 

• the working solution did not improve the blanks either. When acetone was 

substi tuted for methyl ethyl ke'tone in the working solution, the polaro­

grams ,of the blanks were the same as those of sample solutions containing 

0.005 pg of silicon per m1. Attempts to improve the blanks under this 

condition, by reducing the concentration of molybdate used resulted in 

~-12-molybdosilicate not being formed. Varying. the percentage of 

acetone used between 2.5 and 15% also failed to imprOve the blank. The 

loss of acetone during deoxygenation in spite of the inclusion in the 
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deoxygenation train of a bottle containing the same percentage of acetone 

as in the polarog~aphed solution, posed a serious problem and detracted 

from the method. 

Further investigational work aimed at reducing the time required for 

the formation of ~-l2-molybdosilicate from 24 hours (as suggested by 

Grasshoff and Hahn) to a much shorter time, showed that the solution 

conditions suggested .by Chalmers and Sinclair
l09 

could be used in 

modifying Grasshoff and Hahn's procedure. By adopting Chalmers and 

Sinclair1s procedure, it was possible to dispense with the 24 hours 

waiting period. The procedure finally developed is as described 

on the next page. 
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(c) RECO~1MENDED PROCEDURE FOR THE DE'lERMINATION OF SILICON IN AQUEOUS 

SOWTION 

42 

The procedure is based on the formation, at pH 1.6, of ~-12-molybdo­

silicate which is subsequently stabilised with methyl ethyl ketone. The 

excess molybdate is masked with citrate at pH 2.5 and the ~-12-molybdosilicate 

polarographed. 

APPARATUS 

A Radiometer FIlM 64 Research pH meter was used. The polarography was 

carried out using a Prince ton Applied Research (PAR) 174 Polarographic Analyzer 

to which an Advance HR 2000 recorder was connected. Three electrode operation 

was employed using a dropping mercury electrode and a platinum electrode as 

working electrodes and a remote saturated calomel electrode as reference 

electr.ode. The polarographic cell shown in fig. ), was made of a 50 ml 

double walled glass vessel with a perspex plastic top. The top had an 

O-ring on it to ensure that it fits tightly onto the cell. Four holes on 

the cell top enabled the three electrodes and the deoxygenation train to 

re connected to the solution in the cell. Water at any desired temperature 

could be pumped retween the walls of the cell in order to regulate the 

temperature of the solution in the cell. The nitrogen used for deoxy­

genation was supplied from a cylinder and scrubbed free of oxygen by 

• passing the stream of nitrogen through a heated silica tube containing 

copper wires heated to 5600 c, and then through a bottle containing 40% 

methyl ethyl ketone in citrate buffer. The end of the deoxygenation 

train attached to the polarographic cell consisted of a two-way tap 

such that a blanket of nitrogen is kept over the solution throughout 

the duration of the polarographic analysis. 

Double distilled water was used throughout the study. 
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REAGENTS 

concentrated standard silicate solution 100 ).ig of Si per ml. 
• 

Mix 0.1000 g of silicon powder (99.99%, Koch-Light Laboratories Ltd.) 

with 2 g of analytical reagent grade anhydrous sodium carbonate contained 

in a platinum crucible. Wet the mixture with a few drops of water and 

fuse it by heating for about two hours. The crucible lid should be on 

during the fusion to exclude carbon dioxide. Dissolve the melt in water, 

dilute the resulting solution to 1 litre with water and store in a poly-

ethylene bottle. 

Dilute standard silicate solution, 1 Ug of Si per ml. 
• 

Dilute 10 ml,6f the concentrated standard silicate solution to 1 

litre with water in a standard volumetric flask, mix and then transfer 

the solution to a polyethylene bottle. This solution should be prepared 

fresh whenever it is used. 

Ammonium molybdate solution, 10%. 

Dissolve 10 g of analytical reagent grade ammonium molybdate 

[(NH4)6M070244H20] in water, dilute to 100 ml with water and store in· 

a polyethylene bottle. 

Ammonium molybdate solution, 1%. 

Dissolve 1.0 g of analytical reagent grade ammonium molybdate in 

,water, dilute to 100 ml with water and store in a polY,ethylene bottle. 

Ci tra te buffer. 

Dissolve 21 g of analytical reagent grade citric acid monohydrate 

in 200 ml of IM sodium hydroxide solution and dilute to 1 litre with water. 

Transfer the solution to a polyethylene beaker and adjust the pH to 2.5 

wi th IM hydrochloric acid solution. Store. the buffer solution in a 

polyethylene bottle. 
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Triton X-lOO solution, 0.2%. 

Dilute 0.2 ml of Triton X-lOO to 100 ml with water. 

Methyl ethyl ketone analytical reagent grade. 

Hydrochloric acid, IM. 

Dilute, 86 ml of analytical reagent grade concentrated hydrochloric 

acid (specific gravity 1.18) to 1 litre with water. 

Hydrochloric acid, O.lM. 

Dilute, 8.6 ml of analytical reagent grade concentrated hydrochloric 

acid (specific gravity 1.18) to 1 litre with water. 

Sodium hydroxide, IM. 

Dissolve 40.g of analytical reagent grade sodium hydroxide in 

water, dilute to 1 litre with water and store the solution in a 

polyethylene bottle. 

PROCEDURE 

By pipette, introduce 5 ml of 10% ammonium molybdate solution into 

a polyethylene beaker (Note 1). Add an aliquot of the standard silicate 

solution. Dilute the solution to about 30 ml with water. Insert a 

combined calomel-glass electrode into the solution and adjust the pH 

carefully to 1.6 by dropwise addition of IM hydrochloric acid while 

stirring with a magnetic stirrer. Allow thc solution to stand for 20 

minutes at room temperature while the stirring is continued. Transfer 

the solution to a 100 ml volumetric flask, wash the electrode and the 

beaker with O.lM hydrochloric acid solution and add the washing solution 

in the flask. Dilute the solution. to 100 ml with O.lM hydrochloric acid 

(Note 2). Pipette 10 ml of the solution into a 50 ml volumetric flask. 

Add 2 ml of lM'hydrochloric acid and 10 ml of analytical reagent grade 

methyl ethyl ketone. Dilute the solution to 50 ml with water. Shake to 
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mix the content of the flask thoroughly. Pipette 5 ml of this solution into 
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a 25 ml volumetric flask and make up to mark with the citrate buffer. 

Shake to mix the solution thoroughly (Note 3). Transfer the solution 

to a polarographic cell and add about 0.3 ml of 0.2% Triton X-lOO 

solution. Deoxygenate the solution by bubbling oxygen-free nitrogen 

through it for 15 minutes (Note 4) and then record the polarogram 

between -0.2V and -0.7V. 

Run a blank solution following the same procedure but omitting 

aliquots of silicate solution. The instrument settings on the PAR 174 

polarographic Analyzer and on the recorder should not be altered for 

the blank run. 

NOClES 

1. 5 ml of 1% ammonium molybdate solution is used when aliquots 
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of the dilute standard silicate solution are to be polarographed. 

2. Addition of O.lM hydrochloric acid solution is necessary to 

maintain the pH of the sample solution as near to 1.6 as 

possible and hence ensure that only ~-12-molybdosilicate is 

formed. 

3. Efficient mixing of the solution is necessary at this stage 

in order to mask any excess molybdate with the citrate. 

4. The deoxygenation train should incl~de a bottle containing 

40% methyl ethyl ketone in the supporting e+ectrolyte. This 

solution should be renewed frequently and should be deoxygenated 

for 10 minutes before attaching the polarographic cell for 

deoxygenation. 



(d) IN'IERFERENCES 

The effect of other elements that form heteropoly acids with molybdate. 

A study was made of the effect of phosphorus and arsenic on the 

polarographic reduction of ~-molybdosilicate. The effect of germanium, 
a. . 

another element that formsLheteropoly acid with molybdate, was not 

investigated because it is rarely found in steel samples. Various 

procedures have been suggested for eliminating interferences due to 

these elements. The suggestions have included the use of strongly acidic 

sample srlution,39, 40 sOlvent extracti~n,44-47 the use of organic 

complexing agents and variation in the sequence of adding reagents when 

110 
the heteropoly acids are formed. 

It is generally known that in the presence of organic complexing 

agents such as tartaric, oxalic and Citric acids, molybdophosphate, 

and molybdoarsenate are decomposed whereas molybdosilicate is usually 

unaffected. In the present study, in spite of the use of citric acid 

as a buffer, it was decided to investigate the effects of phosphate and 

arsenate on the polarograms of ~-12-molybdosilicate because the organic 

complexing agents themselves have been shown to be. not totally selective 

in their destruction of heteropoly acids. 

REAGENTS 

Phosphate, 50 mg of P per ml. 

Dissolve 10.9758 g of analytical reagent grade potassium dihydrogen 

Phosphate (KH2 P04 ) in water and dilute to 50 ml with water. 

Arsenate, 30 mg of As per ml. 

Dissolve 6.4478 g of analytical reagent grade di-sodium hydrogen 

arsenate (Na
2
HAs0

4
) in water and dilute to 50 ml with water. 

PROCEDURE 

The procedure as outlined previously for sificate was used except 

that blanks containing phosphate and arsenate were ·also run in addition 

to the normal blank (i.e. molybdate solution containing no Silicate). 
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(e) RESULTS AND DISCUSSION 

Figures 1+ and 5 show typical polarograms obtained when ~-12-molybdo-

silicate was reduced polarographically. The polarograms show two well-

defined peaks at potentials of -0.37 and -0.4SV vs SCE respectively. The 

nature of the waves obtained confirms the observation by Grasshoff and 

Hahn142 , 143 that two waves are obtained when ~-12-molybdosilicate is 

reduced polarographically in the presence of methyl ethyl ketone and 

ci trate. The polarograms are reproducibl~, but only the peak height of 

the wave at -0.37V was found to be proportional to the concentration of 
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silicon. This peak height was used in subsequent de terminations of silicon 

in steel. Typical calibration curves are shown in fig.6 . and 7. 

The relationship between the peak height of the second wave, at 

-0.47V, with concentration of silicon suggests that this wave could be a 

catalytic wave. It has been suggested by Grasshoff and Hahn that the 

second wave is due to reduction of molybdate formed as a result of the 

decomposition of ~-12-molybdosilicate. It is also known that the 

reduction of 12-molybdosilicate at a dropping mercury electrode goes 

J in accordance with the regular reduction mechanism of simple molybdenum 

ions. Thus the first wave is usually attributed to the reduction of 

Mo(VI) to MO(V) and the second wave is attri,buted to the reduction of 

Mo(V) to MO(III). Taking into consideration the shape of the calibration 

graph based on the second wave as shqwn on fig. 8, one is inclined to 

suggest that the second wave is due to the catalytic reduction of MO(V) 

regenerated by the reaction between MO(III) and some oxidising species 

in the solution. The scope of the present study was such that it was 



not possible to conduct further investigations aimed at identifying 

the catalytic species responsible for this wave or fully elucidating 

the mechanism of the oxidation-reduction process. 

The usual criteria of polarographic irreversibility normally determined 

by conventional D.C. polarography, namcly, the plot of log (id-i)id 

against working electrode potential, the numerical value of E3-E, and 
'4 4" 

determination of the temperature coefficient of the half-wave potential, 

were not applied in this study but evidence from the numerous publications 

dealing with the polarographic reduction of ~-l2-molybdosilicate shows 

conclusively the irreversible character of the reduction process. 

The polarographic reduction of ~-12-molybdosilicate was carried out 
, 

at pH 2.5 because the plUl..K c potential was found to vary with pH. 

There was a shift of ~ j::>GLQK potential towards more negative potentials 

with increasing pH as shown in Table 1. This suggests that hydrogen ions 

are taking part in the whole polarographic process. 

TABIE I 

VARIATION OF THE HALF-WAVE POTENTIAL OF B-12-MOLYBDOSILICATE WITH pH. 

---
pH Ep vs SCE 

-

1.0 -0.10 

1.5 -0.27 

2.5 -0.37 

4.0 -0.48 
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Modulation amplitude 50 mV' 
-1 Scan rate 2 mV.sec 

Drop time 2 sec 

-O:~2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 

POTENTIAL [VOLTS vs SCE J 

Fig. 4. Differential pulse polarograms of ~-12-mo1ybdosilicate 
in citrate buffer at pH 2.5. 

-1 -1 Concentration of silicon: (A) 0.12J-1g ml (B) 0.08~g.ml 
-1 -1 -1 (C) 0.06 flg.ml.ml (D) 0.04)ig .ml(E) 0.02 t g •m1 

(F) BLANK 
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D 

-0.2 -0.3 -0.4 -0·5 -0.6 

POlliNTIAL [VOLTS vS sm 1 

Fig.5 Differential pulse polarograms of p-12-molybdosilicate 
in citrate buffer at pH 2.5 

Concentration of silicon (A) 0.8 fig ml-l (B) 0. 11 fl g ml-
l 

. -1 
(C) 0.2flg ml (D) zero 

Modulation amplitude 5b mV, scan rate 2mV. see-
l 

drop time 2 se e. 
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Effect of Interfering elements. Figures 9 and 10 show clearly that no 

interference was observed from phosphate and arsenate. The ratios of 

phosphate and arsenate to silicate are shown on Table 2. The non­

interference of phosphate and arsenate means that citrat~ can be used 

successfully in the destruction of their respective heteropolyacids, 

thus making the selective determination of silicate in the presence of 

phosphate and arsenate possible. The reactions between citrate and 

molybdophosphate and molybdoarsenate appear to take place according to 

the following scheme: 

molybdoarsenate + citrate ~ citratomolybdate + arsenate 

molybdophosphate + citrate ~ citratomolybdate + phosphate 

TABlE 2 

EFl'ECT OF IN1ERFERING EIE~'lENTS 

(a) Molar Ratio of Silicate to Phosphate (cfFig. 9) 

(i) 1:1700 

(ii) 1:700 

(11i)1:350 

(b) Molar Ratio of Silicate to Arsenate (cf Fig. 10) 

(i) 1:500 

, 
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Modulation amplitude 50mV. 
-1 

Scan rate 2mV.sec 

Drop time 2 sec. 

B 

c 

-d;6 

:b'ig.9 Effect Phosphate 
~101ar mti.o S:L:P (A) 1:1700 (J3) 1:700 (C) 1:3')0 
(D) Blank. 
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PO'lENTIAL [VOLTS vS SCE] 

Fig .10 E ffeyt of Arsenate 
Molar ratio of Si:As (A) 1:500 (B) Blank. 

. -1 
Modulation amplitude 50 mY, scan rate 2mY. ·sec 
Drop time 2 se c. 
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Y.' APPLICATION OF THE METHOD DEVELOIED TO THE DE'lERMINATION OF SILICON 

IN S'lEEL 

Initial experiments were carried out with samples of steel and the 

results obtained were unsatisfactory due to interference from other 
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elements present in steel. The ~-12-molybdosilicate wave was completely 

suppressed in sample solutions containing less than 0.1% of silicon (see figs. 

• 

11' and 12), and only appeared as a small peak in solutions containing 

more than 0.1% silicon (see fig. 13). However, all the polarograms 

showed a well-defined peak at -0.41V vS SCE but the peak heights were 

not proportional to the percentage concentration of silicon in the samples. 

A procedure in which iron and other interfering elements were first removed 

by mercury cathode electrolysis gave satisfactory results. 

PRINCIPlE 

The method consists of the oxidation of a solution of the steel in 

dilute sulphuric acid with potassium permanganate, destruction of the 

eXCesS permanganate, and dilution to a definite volume. The diluted 

solution is electrolysed on a mercury cathode to remove iron and other 

interfering metals. The silicon IS converted to ~-12-molybdosilicate 

which is reduced polarographically. 

APPARATUS FOR MERCURY CATHODE ELECTROLYSIS 

The apparatus, the main features of which are shown on fig. 14, 

was made of a double-walled pyrex vessel capable of holding up to 100 ml 

of solution. 5-10 ml of tri-distilled mercury was placed in the vessel 

• and a copper wire, enclosed in a glass tube, with a piece of platinum 

foil at the end, was dipped into the mercury to maintain electrical 

contact. The anode consisted of a platinum gauze suspended in the 

solution. Efficient stirring of the solution was provided by a 

magnetic stirrer. TO prevent the temperature ~f the solution, rising 
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Modulation amplitude 50 mY. 
-1 

Scan rate 2mV.sec 

Drop time 2 sec. 

0.040% 

----=- 0.020% 
.L 

<" - 0.012% 

0.004% 

• 

I I 
-0.8 -0.9 

Differential pulse polarograms of ~-12-molybdosilieate 
in the presence of Iron (Ill). Percentages of silicon 
are as sho\iIfn On the polarogra,lYl,s. 
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Modulation amplitude 50 mV. 
-1 

Scan rate 2mV.sec 

Drop time 2 se c • 

0.10% 
8 
Z 

~ 008% 
:J 
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0·06% 

0.04% 

.02% 

BLANK 

-0.2 -0.3 -o,h -0.5 -0.6 -0,7 -0.8 -0.9 -1.0 

POTENTIAL [VOLTS vs SCE) 

Fig.12 Differential pulse polarogranls of ~-12-molybdosilicate 
in the presence of Iron (Ill). Percentages of silicon 
are as shown on the polarograms. 
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0.1% 
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PO'JENTIAL [VOLTS vs' SCE 1 

Fig .13 Differential pulse polarograms of ~-12-molybdosilica te 
in the presence of Iron (Ill). Percelltag~s of silicon are 
as shown on the polarograms. Mod ula tion ampli tude 50 mV, 
scan rate 2mV.sec.-l , Drop time 2-sec. 
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above 400 c during electrolysis, cold water from the tap was passed 

between the walls of the cell. Current for the electrolysis was 

provided by a power unit capable of delivering up to 10 amperes of 

dire ct current. 

REAGENTS 

Sulphuric acid solution, 10%. 

Carefully add 10 ml of analytical reagent grade concentrated sulphuric 

acid (specific g~avity 1.84) to water in a beaker and mix. Transfer 

the solution to a 100 ml volumetric flask and dilute to 100 ml with 

water. 

Potassium permanganate solution, 2%. 

63 

Dissolve 2 g of analytical reagent· grade potassium permanganate [KMn04 ] 

in 100 ml of water in a polyethylene flask and store the solution in a 

polyethylene bottle. 

Hydrogen peroxide "100 volume" analytical reagent grade. 

Ammonium molybdate solution, 1%. 

Dissolve 1 g of analytical reagent grade ammonium molybdate 

[(NH4)6M070244H20] in 100 ml of water in a polyethylene flask and store 

the solution in a polyethylene bottle. 

Sodium hydroxide solution, 2M. 

Dissolve 40 g of analytical reagent grade sodium hydroxide in 

water in a beaker. Transfer the solution to a 500 ml polyethylene flask 

and make up to mark with water. Store the solution in a polyethylene 

bottle. 

Hydrochloric acid solution, IM. 

Dilute 86 ml of analytical reagent grade hydrochloric acid (specific 

gravity i.18) to 1 litre with water • 

.. 
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Methyl ethyl ketone: analytical reagent grade. 

Citrate buffer. 

Dissolve 21 g of analytical reagent grade citric acid in 200 ml of 

1M sodium hydroxide solution and dilute to 1 litre with water. Transfer 

the solution to a polyethylene beaker and adjust the pH to 2.5 withlM 

hydrochloric acid solution. Store the buffer solution in a polyethylene 

bottle. 

Triton X-lOO solution. 

Dilute 0.2 ml of Triton X-lOO to 100 ml with water. 

concentrated standard silicate solution, 100 Hg of Si per ml. 

FUse 0.1000 g of silicon powder (99.99% Koch-Light Laboratories Ltd.) 
.' ". ~ -

with 2 g of analytical reagent grade .anhydrous sodium carbonate contained 

in a platinum crucible. Dissolve the melt in water, dilute the resulting 

solution to 1 litre with water and store in. a polyethylene bottle. 

Dilute standard silicate solution 1 Pg of Si per ml. 
) 

Dilute 10 ml of the concentrated standard silicate solution to 

1 litre with water in a standard volumetric flask, mix and then transfer 

the solution to a polyethylene bottle. This solution should be 

prepared fresh whenever it is used. 

PREPARATION OF A CALIBRATION GRAPH 

By pipette, introduce 5 ml of 1% ammonium molybdate solution into 

a polyethylene beaker. Add an aliquot of the dilute standard silicate 

solution. Dilute the solution to about 30 ml with water. Adjust the 

pH of the solution to 1.6 with IM hydrochloric acid solution while 

stirring with a magnetic stirrer. Allow the solution to stand for 20 

minutes at room temperature while the stirring .is continued. Transfer 

the solution to a 100 ml volumetric flask, wash the combined calomel-

glass electrOde used in measuring the pH, and the beaker with O.lM 

hydrochloric acid solution and add the washing to the solution in the 



flask.' Dilute the solution to 100 ml with O.lM hydrochloric acid 

solution. Pipette 10 ml of the solution into a 50 ml volumetric flask. 

Add 2 ml of IM hydrochloric acid solution and 10 ml of methyl ethyl ketone. 

Dilute the solution to 50 ml with water. Shake to mix the content of the 

flask thoroughly. Pipette 5 ml of this solution into a 25 ml volumetric 

flask and make up to mark with the citrate buffer. Shake to mix the 

solution thoroughly. ·Transfer the solution to a polarographic cell, 

add about 0.3 ml of 0.2% Triton X-lOO solution, deoxygenate for 15 

minutes and then record the polarogram between -0.2 and -0.7V. Draw 

a calibration graph of peak height of the wave obtained against the 

concentration of silicate solution used. _ 

PROCEDURE. 

Add 40 ml of 10% sulphuric acid solution to 0.5 g of the steel sample 

(Note 1) in a ~flon beaker and heat gently.until the sample is dissolved. 

Oxidize the hot solution by dropwise addition of 2% potassium permanganate 

solution until a permanent brown precipitate of manganese dioxide is 

just obtained. Add drops (2 or 3) of "lOO volume" hydrogen peroxide 

solution until the precipitate of manganese dioxide is just discharged. 

Boil the solution to expel excess hydrogen peroxide. Cool, (filter if 

necessary), dilute the solution to 50 ml with double-distilled water and 

• mix thoroughly. Transfer the solution to an electrolysis cell and 

electrolyse for about 1 hour using a mercury pool cathode and platinum 

anode. The current density should be 0.2 amp. cm.-2 Cold water from 

the tap is passed through the outer jacket of the electrolysis cell to 

maintain the temperature of the solution below 40°C. Continue the 

electrolysis until a spot test (Note 2) shows no iron is present. 

Continue the electrolysis while removing the solution from the cell 

wi th a pipette. Pipette 25 ml of the electrolysed solution into a 
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polyethylene be.aker. Adjust the pH of the solution to L6 with 2M sodium 

hydroxide solution •. Add 5 ml of 1% ammonium molybdate solution and stir 

the solution with a magnetic stirrer. Allow the solution to stand at 

room temperature for 20 minutes while the stirring is continued. 

Transfer the solution to a 100 ml volumetric flask and make up to mark 

with water. Pipette 10 ml of the solution into a 50 ml volumetric flask, 

add 2 ml of,lM hydrochloric acid solution, 10 ml of methyl ethyl ketone 

and then make up to mark with water. Shake to mix the solution thoroughly. 

Pipette 5 ml of this solution into a 25 ml vOlumetric flask and make up to 

mark with the citrate buffer. Shake to mix thoroughly. Transfer the 

solution to a polarographic cell, add 0.3 ml of 0.2% Triton X-lOO 

solution, deoxygenate for 15 minutes and then record the polarogram 

between -0.2'1 and -O.IV. Compare the peak height of the polarogram at 

potential -0.3IV with those obtained with the standard silicate solution 

and hence determine the percentage of silicon in the steel sample. 

NOmS. 

1. FOr samples containing less than 0.01% of silicon, use 1 g of sample. 

2. Spot tests with potassium hexocyanoferrate 11 are adequate but if a 

very·sensitive spot test is desired, 1,2-dihydro xybenzene-3,5-

disulphonic acid can be used. 
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RESULTS AND DISCUSSION. 

The calibration graphs are shown in Figs. 15 and 16. Figs 17-23 

show typical polarograms for the differential pulse polarographic. 

determination of silicon in steel. The results obtained are given on 

Table 3. The coefficients of variation for the different levels of 

silicon are also shown on Table 3. The results show that differential 

pulse polarography is sufficiently sensitive and accurate for determining 

low levels of silicon. Colorimetry, atomic absorption and neutron 

activation which are of comparable sensitivity and acouraoy have· been 

recommended for determining low levels of silicon in steel. Colorimetry 

(i.e. the molybdenum blue procedure) is recommended by the British 

Standards Institution2 for determining silicon over the range 0.002 to 

67· 

0.05%. The reproducibility of the col"orimetric method for steel samples 

containing 0.01% of silicon has been quoted at ~0.002% and that for samples 

containing 0.05% of silicon as ~0.005%. The reproducibility of the 

colorimetric method for steel samples containing less than 0.01% of 

silicon· was not quoted. 

Atomic absorption methods have so far been used for determining 

silicon in steel over the range 0.1 to 1% and the coefficients of 

variation of results in this range vary from 1.5 to 2.4%.62-68 The 

limit of detection by atomic absorption methods has been reported to 

be about 0.03% silicon with a coefficient of variation of 10%.65 In 

fact, it has been suggested that for steels containing less than 0.1% 

of silicon, alternative analytical methods will give betterresults.68 

Neutron activation analysis has reportedly been employed to 

determine silicon in steel over the range 0.1 to 1%. At the 0.1% level 

of silicon, the coefficient of variation of the method is reported to 
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TABIE 3 

RESUL'[S FOR THE ANALYSES OF BRITISH CHEMICAL STANDARDS STEEL SAMPIES 

Steel % Silicon Mean Coefficient of Standardised Actual value 
Found value Variation Value (%) given by indiv-

idual analyst. 

BCS 149/3 0.0020 0.0019 3.2 0.002 0.001; 0.002 
High Purity 0.0021 0.002; 0.002 
Iron 0.0017 0.001; 0.002 

0.00165 0.002; 0.002 

BCS 204/4 0.2233 0.2231 4.9 0.22 0.22; 0.22; 0.20 
Ferro-chrom- 0.2367 0.24,; 0.24; 0.22 
ium 0.2100 0.23; 0.30 
(High Carbon) 0.2225 

BCS 232/1 0.0735 0.0734 3.2 (0.07 ) 0.07 
0.1% Sulphur 0.0710 
Carbon steel 0.0757 

" , 

BCS 237/1 0.1090 0.1124 2.1 0.11
5 

0.105; 0.11
5 

0.1% Carbon 0.1130 0.110 ; 0.115 
steel 0.1130 0.11

5
; 0.105 , 

0.1147 0.12
5

; 0.12
0 

BCS 240/2 0.2450 0.2424 2.0 (0.25) 0.25; 0.25 
I 

0.4% Carbon 0.2460 0.25 I 

Steel 0.2364 
0.2423 I . 

BCS 251 0.01135 0.0112 1.8 0.013 0.0l7;0.012;0.Or 
Low alloy 0.01095 0. 015;0.016;0.010 
steel 0.01113 0.014;0.010;0.01' 

0.01128 0.010;0.016;0.01~ 

BgS 258/1 0.9633 0.9683 1.6 0.96 0.96; 0.95' 
Low alloy 0.9500 0.97; 0.97 
steel 0.9867 0.96; 0.97 

0.9733 0.97;0.96;0.95 

BCS 260/4 . 0.00308 0.00303 2.2 0.003 0.003; 0.003 
High-purity 0.00293 0.002; 0.002 
Iron 0.00303 0.003; 0.004 

0.00300 0.002 
0.00310 
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be 7% and for steel samples containing more than 1% of silicon, the 

coefficient of variation is said to be 3%.74 ,75 

These comparisons show that the current methods for determining low 

levels of silicon in steel are not as precise as the differential pulse 

polarographic method. The colorimetric determination of silicon in high 

purity irons which contain 0.002 and 0.003% of silicon respectively, 

appears to have been done at the very limit of the sensitivity of this 

technique. As can be seen in Fig. 17, easily measured and well-defined 

polarographic waves were obtained with solutions of high purity iron. 

The precision data are as shown on Table 3. It is possible to obtain 

still more easily measured analytical signals if the procedure for the 

determination of low levels of silicon which is described in the next 

section is applied to the analysis of high purity irons. 

Perhaps a disadvantage of the differential pulse polarographic 

procedure described here is the increase in analysis time caused by 

the need to electrolyse the sample solution in order to remove inter-
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fering elements. The basis of any polarographic technique involving a 

dropping mercury electrode is the reduction of some species in solution, 

thus it is only rational to remove other reducible species in the ·sample 

solution if these would interfere with the determination of the required 

element. In dilute sulphuric acid solution, mercury cathode electrolysis 

is a very effective means of removing large amounts of arsenic, chromium, 

copper,· iron, molybdenum, antimony and many more metals in steel. The 

alternative,methods of removing interferences such as the use of 

masking agents and solvent extraction would not be suitable. Masking 

agents are not highly selective and for a matrix such as that of steel, 

the use of masking agents would only complicate the method. Solvent 

extraction methods would involve extracting either molybdosilicate from 
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the interfering elements or vice versa. Separation of molybdosilicate 

.from other matrix-elements would not be difficult and a procedure based 

. . 1"' 144 on this technlque has already been pub lshed. The alternative, that 

is the extraction of the other matrix-elements, may be very difficult 

because it would mean finding suitable solvents and extractable 

complexes for iron, copper, chromium, arsenic and some other elements 

found in steel. 

The use of potassium permanganate as oxidising agent ensures 

complete oxidation of the steel samples. Nitric acid was not used 

for oxidising the samples because nitrate ion was considered a potential 

source of interference with subsequent po~arographic determinations. 



Modula tion amplitude 50 mV. 
-1 

Scan rate 2 mV.sec 
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Drop time 2 sec. 
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0.08I-lg. m1 

N.ANK 
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PO'lENTIAL [VOLTS vs SCE 1 
Fig.15 Differential pulse polarograms of ~-12-molybdosilicate in 

citrate buffer at pH 2.~1 after the removal of Iron (Ill) 
from the solutions by mercury cathode electrolysis. 
Concentrations of silicon arc as sholw on the Dob.cograms. 
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72 

.. , 



-0.2 -0.3 -0.4 -0.5 -0.6 -O.T . ~0.2. -0.3 -0.4 -0.5 -0.6 -0·7 

PO'IENTIAL [VOLTS VS SCE 1 
Fig.17 Typical differential pulse po1arograms obtained for the 

determination of silicon in BCS 149/3 '(High-pu:::ity iron). 
~lodu1ation arnp1itude 50 mV, soan rate 2 mV.sec . 
Drop tlme 2 see. 

73 



74 

0.5 )JA 

.~' 

-0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.2 -0.3 -0.4 -0.5 -0.6 -0·7 -0.8 

Fig.lS 

POTENTIAL [VOLTS vS SCE 1 
T'Jpical differential [Oulse [Oolarograms obtained for the 
determination of silicon in BCS 204/4 (High-carbon 
fcrro-chromiurn steel). Modulation.amplitude 50 mv, 
scan rate 2 mV.sec-1 , Drop tirr:e 2 sec:. 
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PO'lENTIAL [VOLTS vs SCE 1 

Fig.19 Typical differential pulse polarograrr.s obtained for the 
determination of silicon in BCS 232/1 (0.1% sulphur carbon 
steel). Modulation amplitude 50 mV, scan rate 2 mV.sec-l 
Drop tirr.e ~ sec. 
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P01EN'rIAL [VOLTS vs SCE 1 

Fig.20 Typical diffcrenUal pulse polarograms obtained for the 
determination of silicon in DeS 237/1 (0.1% c~lbon steel). 
Modulation amplitude 50 mV, scan rate 2 mV. sec . 
Drop U.me 2 see. 
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Typioal differential pulse polarograms obtained for the 
deter'mination of silicon in BCS 251 (low alloy. steel). 
Modulatl.on amplitude 50 mV, scan rate 2 mV. sec-1 , 
Drop time 2 sec. 
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Fig.22 
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POTENTIAL [VOLTG vs SCE 1 

Typical differential pulse polarograms obtained for the determlnation 
of silicon in BCS 258/1 (low alloy steel). Modulation ampli tude 
50 mY, scan rate 2 mY. sec-I, Drop time 2 sec. 
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Fig.23 

POTENTIAL [VOLTS vs SCE 1 

Typioal di f'ferential pulse pOlarograrr:,s obtaj.ned for the 
determina tion of silicon in BCS 260/i f (High-purity iron). 
Modulation amplitude 50 mV, scan rate 2 mV. sec",l 
Drop time 2 se c. 



VI • DEVELOPriIENT OF A PROCEDURE FOR DE'fERMINING NANOGRAM AMOUNTS OF 

SILICON IN AQUEOUS SOLUTION. 

(a) INTRODUCTION. 

I Attempts to determine nanogram amounts of silicon by the procedure 
I' 
I I described in Chapter IV failed because of the high blanks obtained. The 

procedure was therefore modified in order to determine low levels of 

silicon. The ~~12-molybdosilicate was formed in the presence of methyl 

ethyl ketone and excess of molybdate was masked with citrate, but a low 

concentration of molybdate (approximately 5 x 10-5M) was used in order 

to ensure that low blanks were obtained. The experimental conditions 

were optimised with respect to the various factors which affected them; 
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factors, such as the concentrations of molybda.te and of the citrate buffer 

used. At these low levels of silicate and molybdate, it was found that 

the formation of ~-12-molybdosilicate was complete only after 18 hours. 

The quantity of the maximum suppressor used was also found to affect the 

shape of the polarograms. After solution conditions had been optimised, 

it became possible to develOp the following procedure in which the 

solution to be polarographed was prepared directly in one vessel, thus 

giving maximum sensitivity. 

(b) EXffiRIMENTAL 

APPARATUS 

In addition to the apparatus described in Chapter IV, sample tubes 

of capacity 20 ml fitted with plastic caps were found to be very suitable 

for the preparation and storage of solutions fo~ the required time period. 

A combined calomel-glass electrode was used in making pH adjustments. 

The solution was stirred with a magnetic stirrer. 
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RBAGEN'IB 

concentrated standard silicate solution, 100 h!gof Si per ml. , 

Fuse 0.1000 g.of silicon powder (99.99%, Koch-light Laboratories Ltd.) 

with 2 g of analytical rea@8nt -grade anhydrous sodium carbonate contained 

in a platinum crucible. Dissolve the melt in water, dilute the resulting 

splution to 1 litre with water and store in a polyethylene bottle. 

Dilute standard silicate solution, 9 ng of Si per ml. 

Dilute 30 ml of the concentrated standard silicate solution to 

1 litre with water and mix. Dilute 3 ml of this solution to 1 litre with 

water and mix thoroughly.This solution was prepared fresh daily from _ the 

concentrated standard silicate solution. 

Ammonium molybdate solution, 0.1%. 

Dissolve 0.1 g of analytical reagent grade ammonium molybdate 

[(NH4)6M07024.4H20] in 100 ml of O.lM hydrochloric acid solution and 

store in a polyethylene bottle. 

Ci tra te buffe r • 

Dissolve 42 g of analytical reagent grade citri~ acid monohydrate 

in 200 ml of IM sodium hydroxide solution and dilute to 1 litre with 

water. Transfer the solution to a polyethylene beaker and adjust the 

pH to 2.5 with IM hydrochloric acid solution. Store the buffer solution 

• in a polyethylene bottle. 

Triton X-lOO solution, 0.2%. 

Dilute 0.2 ml of Triton X-lOO to 100 ml. with water. 

PROCEDURE. 

Pipette an aliquot of the dilute standard silicate solution or 

sample solution at pH 1.9, containing less than 40 ng of silicon into 

a 20 ml sample tube. Add 1 ml of' 0.1% ammonium molybdate solution and 

dilute to 5 ml with water. Insert a combined calomel-glass electrode 

• 



• 

into the solution, stir the solution with a magnetic stirrer and 

adjust the pH to 1.6 with IM hydrochloric acid solution. Add 0.6 ml 

of methyl ethyl ke~one, mix the solution, and allow it to stand for 

18 hours. Add 10 ml of citrate buffer and 0.3 ml of 0.2% Triton X-lOO 

solution. Mix the solution thoroughly and transfer it to a polarographic 

cell. Deoxygenate the solution for 15 minutes (Note 1), and then record 

the polarogram between -0.2 and -0.7 Volts. 

Compare the polarogram obtained with that obtained with a blank 

determination containing no silicate under the same polarcgraphic 

conditions and without altering the position of zero current on the 

recorder. 

N01ES. 

1. It is essential to include in the nitrogen train immediately 

before the polarographic cell, a 'solution with the composition 

of the blank to ensure that the percentage of methyl ethyl 

ketone in the sample solution remains the same during analysis. 

This solution should be renewed frequently and should be 

deoxygenated for 10 minutes before attaching 'the polarographic 

cell for deoxygenation. Variation in the percentage of methyl 

ethyl ketone in the sample solution was found to give 

irreproducible results • 
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( c ) IN'lERFERENCES 

The effects of a one-hundredfold and a one-thousandfold ratio of 

phosphate and arsenate on the determination of silicon were studied. 

The procedure described above was utilised. 

REAGENTS 

Phosphate 22.5 Hg of P per ml • 
• 

Dissolve 0.0220 g of analytical reagent grade potassium dihydrogen 

phosphate [KH
2

P0
4

] in 100 ml of water. Dilute 45 ml of this solution 

to 100 ml with water. 

Phosphate solution 2.25 Ug of P per ml. 

Dilute 10 ml of the 22.5 pg P per ml-'solution to 100 ml with water. 

Arsenate solution 22.5 Hg of As per rill. 

Dissolve 0.0129 g of analytical reagent grade di-sodium hydrogen 

arsenate [Na
2

HAs04] in 100 ml of water. Dilute 75 ml of this solution 

to 100 ml with water. 

Arsenate solution 2.25 Ug of As per ml. 
I 

Dilute 10 ml of the 22.5 I-'g As per ml solution to 100 ml with 

water. 

(d) RESULTS AND DISCUSSION 

Typical polarograms obtained for the preparation of a calibration 

• graph are shown in Fig. 24. Both waves shown in each· polarogram are 

reproducible, the coefficient of variation on ten determinations made 

at the 5 x 10-8M silicon level (1.5 ng ml-l ). was 3%. Similar to the 

observations made at high levels of silicon, calibration graphs based 

on the first wave are rectilinear but· not those based on the second wave. 

The polarograms shown in Figs. 25 and 26 indicate olearly that no 

interference is observed from one-hundredfold ratio of phosphate or 

arsenate. At the one-thousandfold ratio, distinct interference from 
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both ions is observed as shown in Figs. 27 and 2S. 

The procedure described above for the determination of nanogram 

amounts of silicon-provides a highly sensitive technique for the 

determination of silicon using low~cost instrumentation. Even at the 

I x 10-SM level (0.3 ng rnl-l ) of silicate, an easily measured analytical 

signal is obtained, as is shown in Fig. 24. This can be compared with 

the related molybdenum blue procedure for the determination of silicon 

for which an absorbance of about 0.1 is obtained for a 4 x 10-6M 

solution of silicate. The sensitivity for the atomic absorptiomatric 

determination of silicon using the acetylene~nitrous oxide flame is 

-1 
O.S flg ml. 
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Fig.24a Differential pulse polarograms of ~-12-molybdosilica to 
in citrate buffer at pH 2.5. 

Concentt'ation of silicon (A) 5 x 10-B ~j (B) 3 x la-BM 
(c) 2 x 10-~ (D) 1 x-IO-8M (E) zero. 

-1 
Modulation amplitude 50 mV; scan rate 2 mV, sec ,Drop 
tim0 2 f,;;' o • 
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Fig. 25 Effect of phosphate. 
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Modulation amplitude 50 

Scan rate 2 mV. 
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Drop time 2 sec. 

Concentration of silicon 

(A) 5 x 10-8M 

(B) zero 

Concentration of arsenate 
-6 

5 x 10 M 
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POClENTIAL [VOLTS vs SCE] 

Fig.26 'Effect of arsenate 
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Modulation amplitude 50 mV. 
Scan rate 2 mV. 8OC-
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Drop time 2 se c. 
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PO'lliNTIAL [VOL'lS vs SCE 1 
Fig.27 Effect of phosphate on B-12-molybdosilicate and on 

Blank. 

Concentration of silicon (A) 5 x lo-BM (B) zero 

Concentration of phosphate (A) 4.9 x 10-5M (B) 11.9 x 10-5M 
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-0.6 
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Modulation amplitude'50 mY. 
-1 

Scan rate 2 mV. sec 

Drop time 2 see. 

-0.8 

Fig. 28 Effect of arsenate on p':12-molybdosilicate and 
on Blank. 

-8 
Concentra~lon of silicon (A) 5 x 10 M 

Con:· .... ,~.l:ra Lion of arscna tc (A) :; x 10-5;-'1 

(B) zero 
-~; 

(B) 5 x 10 - ['\ 
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VII. CONCLUSION 

The two procedures recommended in this study for the differential 

pulse polarographic determination of silicon can be used to supplement 

the current methods for determining silicon in steel. If very low levels 

of silicon are to be determined, the results of the present studY' show 

tpat the differential pulse polarographic method is better than the 

current methods. The procedures recommended here are simple and can 

easily be adapted for routine laboratory use. The procedures represent 

a considerable improvement in the sensitivity, accuracy and precision for 

the determination of silicon using low-cost instrumentation. The PAR 174 

Polarographic Analyzer is relatively chea~, easy to use and extremely 

versatile. Several polarographic and voltammetric techniques can be 

used with the instrument. General application of the procedures 

recommended in this study is feasible, for 'the determination of silicon 

in boiler water and ferrous and non-ferrous metals • 
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THE DETERMINATION OF IRON IN IRON ORES 

BY CONTROLLED-POTENTIAL COULOMETRY AT 

A MERCURY POOL ELECTRODE 
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I. INTRODUCTION 

The term coulometry was first used by Szebelledy and Somogyi
l 

who 

applied the method as an alternative to classical volumetric analysis. 

Their pione~ring work along with subsequent researches by other workers 

led to the development and establishment of the technique. In coulometric 

analysis, the species being determined is electrolysed and the quantity 

calculated from the quantity of electricity consumed by using a form of 

Faraday's law! 

Weight of substance electrolyzed = M fotidt 
nF J 

1 

where M is the gram-molecular weight of the species, n is the number of 

electrons involved in the reaction, F is the Faraday. (The present 

2 
value of the Faraday is 96,484.6 coulombs per mole based on the assigned, 

relative atomic mass of 12C as 12), i is the electrolysis current and t 

is the time of electrolysis. In order to measure the quantity of 

electricity consumed, the electrolysis current is integrated over the 

time of electrolysis. Classical chemical coulometers, electromechanical 

integrators (disk-and-ball or motor type) and electronic integrators, 

all have been used for measuring the quantity of electricity consumed 

during electrolysis. 

Two types of coulometric analysis may be distinguished dependent on 

whether the substance being determined is oxidised/reduced directly at 

the working electrode or indirectly by products of electrode reaction; 

good precision being aChieved if the desired reactions proceed with 

100% current efficiency. In coulometry it is theoreticall~ possible to 
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vary both the current and voltage but in practice, the current is kept 

constant and the applied potential varied or vice versa. 

Constant current (galvanostatic) coulometry which was first 

su~gested by Szebelledy and Somogyi
l 

and put on a practical basis by 

Swift et al.,3 appears to be more versatile and convenient in use. With 

the exception of a few cases, the reagents used in galvanostatic 

coulometry are normally generated coulometrically and then used to 

oxidise/reduce the substance being determined. Many substances can be 

generated as coulometric intermediates at suitable working electrodes. 

However, the total reaction does not always proceed through the electro-

generated intermediate. In some cases, the total reaction may proceed 

partly through the intermediate and partly at the working electrode. 

Coulometric titration (galvanostatic coulometry) is similar in many ways 

to classical volumetric analysis and the end point of any coulometric 

titration can be detected by any of the methods used in classical 

volumetric analysis. Colorimetry, potentiometry, bipotentiometry, 

amperometry, biamperometry and conductometry etc. have all been used to 

detect endpoints in coulometric titrations. 

Controlled-potential (potentiostatic) coulometry was originally 

devised by Hickling. 4 In this technique, the potential of the working 

102 

electrode is kept constant with respect to a standard reference electrode 

and the element to be determined is allowed to undergo a stoichiometrically 

exact reaction so that its quantity can be calculated by Faraday's laws. 

As the reaction proceeds, the current decreases exponentially from a 

relatively large value to a finite value, known as the residual current. 

The potential of the working electrode is kept constant or controlled 

so that only the species of interest undergoes an electrochemical 



reaction. Thus one disadvantage of the technique is that optimal 

conditions have to be selected carefully for each substance that has to 

be determined. 

The main advantage of controlled-potential coulometry over all 

other electroanalytical methods is its specificity and accuracy combined 

with great sensitivity. 

Since the pioneering work of Szebel1edy and somogyi,l there'have 

been many publications on coulometry. Recent treatment of the subject 

include books by Abresch and Claasen,5 Milner and Phillips,6 ReChnitz
7 

8 9 , '10 11 12. 
and chapters in books by Bard, ' Meltes and Shults.' Several 

, 13-38 reVIews have also appeared on the subject. Current advances in 

cou10metry can be followed through en tries in the corresponding sections 

of E1ectroana1ytical Abstracts
39 

and through the biennial review issues 

, 40-47 
of Analytical Chemlstry. 

APPLICATIONS 

103 

The number of publications dealing with the application of cou1ometry 

is,so vast that only its application in the steel industry will be 

discussed herein. Coulometry was developed for use in the steel industry 

'in the 1950's mainly by Milner. He applied coulometry in the analysis 

of metals in copper-based alloys,48 binary alloys49 and minerals
50 

and 

also gave details of the construction of suitable apparatus for controlled-

potential coulometry. 

Most of the applications of coulometric analysis in the steel 

industry which have been reported, are for the determination of gases 

and non -me tals . 
51 

Abresch and Lemm reported the coulometric determination 

of oxygen in steel by a fusion extraction process in a stream of argon . 

• 



Tsugane et al?2 studied the determination of oxygen in special steels 

and nickel-based super alloys by argon carrier-coulometry with the 

addition of a small amount of tin metal as flux. Geiger1
53 

determined 

hydrogen also by a carrier gas method. He degassed the sample at 650
0

C 

- in argon and oxidised the hydrogen evolved- over copper oxide; He then 

• 

determined the hydrogen after a process of reduction and separation. 

Sulphur54 - 57 was determined as sulphur dioxide by coulometric titration 

with iodine solution produced by the electrolysis of acidified potassium 

iodide solution. 
58 Boron was determined-by pyrohydrolysis and constant 

- , 

t 1 t C b 59-66 h . t - d h curren cou erne ry. ar on as recelv~d exhaus lve study an as 

mainly been determined by constant current coulometry. 

There have been few reported examples of the application of 

coulometry for the determination of metals in steel. Kostromin et al~7 

studied the use of generated titanium(III) and tin(II) ions as 

coulometric titrants for the determination of trace amounts of vanadium 

in steel, iron in zinc metal, iron and copper in cadmium, and iron(III), 

copper(II), VO; and V0
2

+ in model solutions. This study was extended 

to the determination of metaL'c ions in alloys such as Dural 287 and 

Magnico. 68 They also reported the differential coulometric titration 

of a mixture of iron(II), manganese(II), vanadium(IV) and cerium(III) 

ions with electrogenerated dichromate in phosphoric acid as a means of 

determining vanadium and manganese in steel. 69 Basov et al:O determined 

vanadium and chromium using electrogenerated tin(II) as titrant. Mitev 

and Mladenovich71 proposed a coulometric titration method for the 

simultaneous determination of dichromate and iron(I II) whic h they said 

was applicable to the analysis of iron- and chromium-containing alloys 

and ores and also steel. They also studied the determination of both 
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dichromate and cerium(IV) in steel and other alloys using electrogenerated 

iron(II) . t f . .. t 72 as tltran and errOIn.as Indlca or. 
73 

Agasyan titrated 

mOlybdenum(VI) in alloy steel with electro-generated tin(II) with the 

endpoint being measured biamperometrically. Sicha
74 

appears to be the 

only one, so far, to report the use of automated coulometry in , 

metallurgical analytical procedures. He described the principle and 

various arrangements for cQulometric determination of various metals with 

electrogenerated reagents. 

Ibrahim and ~air75 developed a method for the determination of 

chromium and molybdenum in steel by controlled-potential coulometry,. 

using a rapidly stirred mercury pool cathode and a silver chloride anode. 

76 LUdering Hans reported the determination of small amounts of iron and 

chromium in chromium steel using controlled-potential coulometry. 

77 
Tanaka reported a method for the determination of copper, nickel and 

zinc in high-purity copper alloys such as brass. Rigdon and Harrar
78 

determined milligram amounts of vanadium at a platinum working electrode 

by controlled-potential coulometry. 
79 Altman analysed slag for copper, 

total iron, iron(II) and iron(III) by titration, controlled-potential 

., coulometry and electrodeposition. 
.80-86 

Alfons1 made a detailed study 

of the determination of copper, lead, tin, antimony, nickel, zinc and 

aluminium in different alloys using controlled-potential coulometry. 

INSTRUMENTATION 

One of the main reasons for the apparent lack of application of 

coulometric analytical techniques in the steel industry has been the 

lack of suitable commercial instruments especially for routine analysis. 

Since the development of electronic 

• 

87 88 instruments by Booman ' and 



89 Kelley et al. there has been a proliferation of commercial instruments 

for coulometric analysis. However, most of the instruments are either 

of the galvanostatic or potentiostatic type. Universal coulometric 

in~truments capable of dealing with all types of coulometric measurements 

have not been available commercially until quite recently. In 1971. 

90 ' 
Damokos reported the introduction of the Radelkis universal coulometric 

analysis apparatus type OH-404 which incorporated a potentiostat-galvano­

stat unit. Other instruments in the same category inCludet~rinceton 
Applied Research (PAR) 173/179 digital coulometer and Beckman 

Instruments' coulometer. A detailed summary of instruments currently 

9 
commercially available has been given by Harrar. 
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II. METHODS FOR THE DETERMINATION OF IRON IN IRON ORES AND STEEL (REVIEW) 

Several methods including gravimetry, spectrophotometry, complexo-' 

metry, neutron activation, x-ray spectrography and iodimetric determination 

by solvent extraction of iodine in a sulphuric acid medium
91 

have been 

suggested for the determination of iron in iron ores and steel, but 

titrimetry which is recommended by both the British Standards Institution
92 

and the American Society for Testing Materials ,93 appears to be a more 

reliable method of determining iron in these materials. 

Titrimetric methods for the determination of iron consists of three 

steps: dissolution of the sample, reduction of the iron to the divalent 

state and titration of the iron(II) with a standard oxidant. 

Many ores are completely decomposed in concentrated hydrochloric 

aCid; the decomposition being enhanced if tin(II) chloride is present. 

Hydrochloric acid is a much more efficient solvent for the dissolution 

of iron ore than either nitric or sulphuric acid because of the tendency 

of iron(III) to form soluble chloride complexes. In order to recover 

all the iron in the ~re, it is necessary to treat with hydrofluoric acid, 

any residue (mainly silica) left after decomposition of the ore with an 

acid. Treatment of the residue with hydrofluoric acid effectively 

separates silica from any iron in the residue by volatilisation as 

silicon tetrafluoride. 

Tin(II) chloride has been used for the reduction of iron to the 

divalent state but it is always necessary to oxidise excess of the tin(II) 

chloride used with mercury(II) chloride. Mercury(II) chloride is 

toxic, hence the reduction of iron with tin(II) chloride is not suitable 

for routine use. 
94 

In order to avoid using mercury, Hata et al. have 

• 



sugg'estect using aluminium as reductant. 
95 

Saeki et al proposed a method 

that involved reduction of iron(III) to iron(II) partly by 

titanium(III) chloride and partly by tin(II) chloride. Endo et al
96 

suggested reduction of the iron(III) with a tin(II) chloride solution 

in excess and then titrating the unconsumed tin(II) chloride with 

potassium iodate, thus avoiding the use of mercury(II) chloride. 

A reductant which has been widely used is hydrogen sulphide. In 

addition to re~ucing iron to the divalent state, hydrogen sulphide also 

removes interfering elements. It has been reported that in de terminations 

of iron in iron ore using tin(II) chloride as reductant, vanadium, 

molybdenum and copper interfere if they are present in amounts greater 

than 0.10%, whereas in determinations using hydrogen sulphide, none of 

the elements normally found in iron ore including vanadium, molybdenum 

- 93 
and copper, interferes. 

The most widely_ used oxidant for the titration of iron( II) has 
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been potassium dichromate with sodium diphenylamine sulphonate as indicator. 

Potassium permanganate has been mentioned but it has not found wide 

application because, in their lower oxidation state some metals usually 

associated with iron react with permanganate and this leads to high 

results. 

Biamperometric titrations of iron in iron ore with tin(II) 

chloride and with ascorbic acid using two carbon-rod electrodes have 

been suggested by Budilovskii et al. 97 ,98 They have also proposed a 

biamperometric titration method for the determination of -total iron and 

iron(III) with sodium thiosulphate and potassium dichromate, using two 

platinum indicator-electrodes.
99 



An alternative to classical titrimetric determination of iron in 

I. iron ore is coulometry. There have been very few reports of the deter­

mination of iron in iron ore and steel by constant-current coulometry. 

• 

Ho~ever, a method for the simultaneous determination of dichromate and 

iron(III) in ores and steel using electrogenerated reagents has been 

M·t d . 71 suggested by 1 ev an Mladenovlch. 

In 1952, McNevin and Baker
lOO 

pointed out the potentialities of 

controlled-potential coulometry in the determination of iron. They 

determined iron(II) by oxidising it in an acid solution at a platinum 

electrode. The relative accuracy of the determination was reported to 

be about 2%. The number of coulombs consumed in the oxidation process 

was measured with a hydrogen-oxygen coulometer. The determination of 

mixtures of iron and cerium by controlled-potential coulometry with a 

platinum electrode has also been reported by Davis.
lOl 

In the procedure, 

iron and cerium were oxidised simultaneously at +1.5v vs SCE. The 

cerium was then reduced at +0.80v and the iron at +0.20v vs SCE; the 

error in the determination of milligram amounts of iron was reported' to 

be less than 0.5%. Jones at al
l02 

built an instrument specifically for 

the controlled-potential cQulmnetric determination of small amounts of 

materials at a mercury or platinum electrode and described a method for 

the determination of milli- and microgram quantities of iron and uranium 

using this instrument. The method involved the coulometric reduction of 

iron(III) at +0.295v vs SCE followed by oxidation of the iron(II) 

produced, at +O.655v vs SCE. The precision and accuracy of the method 

were reported to be excellent and the relative standard deviation for a 

single observation was said to be 0.1%. Since the work of McNevin and 

100 103-106 Baker there have been some papers dealing with the determination 
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of iron generally and only a few have been on the determination of iron 

in ferrous metallurgical materials. 
49 

However, Milner and Edward have 

carried out an investigation on the suitability of controlled-potential 

coulometry for problems in metallurgical analysis . 

110 



III. A CONTROLLED-POTENTIAL COULOMETRIC METIJOD FOR THE DETERMINATION OF 

IRON IN IRON ORES 

Several factors are essential for the successful development of a 

procedure for controlled-potential coulometric determination of any 

element. Firstly, the potential which has to be applied to the working 

electrode to bring about the desired reaction must be known. In addition, 

the quantitative effect of interfering reactions on the desired reaction 

has to be known and ways to minimise or eliminate these interferences 

have to be found. Finally, there is the problem of the corrections for 

blanks and other b'ackground effects which have to be applied. 

WORKING ELECTRODE POTENTIALS 

• 

With a stirred mercury electrode, polarographic half-wave potential 

data can often be used to estimate the applied potentials to give 

quantitative reactions in coulometry. However, nothing stops one from 

determining these potentials experimentally with the COl4'lometer ~ as is 

always the case when platinum electrodes are used. The potential of a 

working electrode is represented by the Nernst equation as follows: 

E _. E 
o 

+ RT 
nF 

which becomes 

E = 

In a ox ,,­
Red 

In~_ 
(Red) 

........................ 

........................ 

, 2 

3 

if activities are replaced by more easily calculable concentrations. 

El is an empirical value which is not strictly constant but depends on 
o 

the ionic, strength of the solution and the junction potentials in the 

cell. 
1 Values of E represent the potential of the \'forking electrode 
o 

measured against some standard reference electrode, when (OX) = (Red) . 

• 
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Re-writing equatian 3 using lagarithms to. base 10 

E 
. 1 

= E + 2.303 RT lag (Ox) 
o nF (Red) 

4 

At T = 29So#((25 0 C) and substituting for values of Rand F, the equation 

becomes: 

E = E~ + 0.059 log (Ox) 
n (Red) 

5 

This equation remains true in terms of the species being determined and 

is unaltered by the presence of a supporting electralyte. Thus the 

potential, E is determined mainly by the ratio (Ox)/(Red). Equation 5 

shows also that E decreases with a decrease in the value of the ratio of 

(Ox)/(Red). Thus, when a mercury working electrode is set at a potential 

1 
E = E - 1 x 0.059/n, equilibrium will be reached when 90% of the 

o 

electroactive species is reduced and only 10% is oxidised. At E = 

El _ 2 x 0.059/n, the concentration of the reduced species is 99% 
o 

and at E = El - 3 x 0.059/n, it is 99.9% and so on. 
o 

1 . Eo values can be readily obtained with a (~qometer by examining· 

experimentally determined cQulograms. In principle, it involves trans-

ferring a suitable aliquot of a solution of the element being determined, 

to a coulometric cell and then electrolysing the element with the working 

electrode at such a potential that reduction (or oxidatian) takes place. 

To begin with, the coulameter is adjusted to zero. and the potential of 

the working electrode is altered to. cause reduction (or oxidation) to 

take place. When equilibrium is reached at this potential El' the 

coulameter read,,,,] Q
l 

is noted. The po.tential is then changed to E2 , 

E3 and so on, and the corresponding coulometer readings Q2' Q3 etc. are 

recorded. A graph is then constructed by platt ing the valu·es for Q 

• 
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against the potentials of the working electrode. Fig. 29 shows a typical 

coulogram at a mercury electrode for iron in oxalate buffer at pH 4.5. 

Each value of Q should be corrected for blank and residual currents, if 

extreme accuracy is required. These corrections are however usually 

small and need only by applied if the amount of the element being deter-

mined is very low, for example, below 2mg. 

The values for Q are proportional to the concentra tions of the 

reduced (or oxidised) form of the electroactive species an·d Qt (see 

fig. 29) to the total concentration of the reduced form, thus values for 
-' 

log (Red)/(Ox) at each potential can be calculated from log QI/(Qt - QI)' 

These can be plotted to give a linear graph with a slope of 0.059/n. 

El is the potential at which log (Red)/(Ox) is zero. 
o 

INTERFERING ELEMENTS 

Equation 4 expresses adequately the potential generated for any 

concentration of oxidised and reduced species in solution but a close 

examination of the equation shows that coulometric determinations can 

never be absolutely complete. However, the equation does show that any 

fraction of the element being determined can be oxidised or reduced by 

'proper selection of working electrode potentials. Theoretically, it is 

essential for accurate deterrninations, especially in a complex solution, 

that there should be a large span between operating potentials but in 

1 practice, essentially complete reduction takes place at E - 0.2V and 
o 

1 
complete oxidation at E + 0.2V. For a single electron change, more 

o 

than 99.9% of the element being determined can be reduced or oxidised 

under these conditions. 
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The problem of interference does not, however, end with proper 

selection of working electrode potentials because in some cases, this 

approach does not work. For instance, in the coulornetric reduction of 

iron(III), it is impossible to obtain complete reduction of irmn(III) 

to iron(II) without some reduction of copper(II) ions taking place. 

The behaviour of interfering elements in the determination of a 

particular element can be studied by plotting a coulogram. It is possible 

to calculate the ratio of the concentration of the element being determined 

and that of the interfering element from a coulogram and hence evaluate 

the effect of one element on the determination of another. The contribu-

tioD made by an interfering element to the coulometric determination of 

another element can also be calculated through the Nernst equation, 

provided the content of the interfering element in the sample had been 

previously determined from a separate independent analysis. 

An approach which does not appear to have been, used previously to 

eliminate interferences in coulometry is prior solvent extraction. In 

the present work, iron(III) was extracted in order to separate it from' 

interfering elements. 

J 

BACKGROUND CORRECTIONS 

It is often the case in determinations by controlled-potential 

coulometry that the quantity of electricity consumed in the reduction or 

oxidation of a particular element is different from the theoretical 

amount. This difference which is referred to as the background has to 

be corrected for in all controlled-potential coulometric determinations 

except when it is insignificant. The background current arises mainly 

from the blank (due to the oxidation or reduction of electroactive 



impurities).and the residual current. Two other identifiable sources of 

the background current are due to what may be labelled "kinetic" and 

"induced" currents but both arise only in the presence of the substance 

being determined. Kinetic currents which are usually dependent on 

potential, result from the cyclic oxidation/reduction of the supporting 

electrolyte or solvent by some product(s) of the main electrolysis 

process. Induced currents result from some extraneous oxidation/reduc­

tion process at the electrodes in the presence of the main electrolysis 

• 

process. 

In theory, the current passing through the electrolysis cell should 

decay exponentially and approach zero as equilibrium is reached. In 

practice J however J this never occurs and ins.tead the current approaches 

a finite limit which is the residual current. The residual current is, 

with few exceptions, usually small and constant. 

The problem posed by the background can be eliminated or minimised 

by using pure reagents, by carrying out blank determinations and by 

correcting for residual currents. 

In the present study, analytical grade reagents were used, blank 

determinations were made and on the Prince ton Applied Research(PAR) 

173/179 digital coulometer, automatic subtraction of any background 

current can be made by means of a Background Current adjustment. 
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EXPERIMENTAL 

The main objective of the present work was to develop a simple, 

rapid and accurate coulometric method Which would be applicable for the 

routine determination of iron in iron ore and in steel. In order to 

keep the method as simple as possible a mercury pool working electrode 

was used thus avoiding the need for working electrode pretreatment which 

is often necessary when platinum and other solid working electrodes are 

used. Careful surface pretreatment of platinum working electrodes is 

. 9 100-102 
essential in order to obtain reproduclble results. ' In 

coulometry, elee tr,ode surface conditions are major factors in determining 

the background current leve Is and the rates and mechanism of the prinCipal 

electrode reaction. A further advantage of mercury as a working electrode 

is its relatively cheaper price compared to platinum. 

With a stirred mercury electrode, polarographic half-wave potential 

data can be used to obtain the applied potential to give quantitative 

reactions in coulometry. Since the principal elcctrode reaction 

envisaged in the present work was the reduction of iron(III) to iron(II) 

at a mercury pool electrode, it was considered desirabill to select a 

supporting electrolyte system in which the DC polarographic wave of 
,c 

iron(III) was well-defined even at very low concentrations of iron(III).· 

A survey of the polarographic data on the reduction of iron(III) to 

iron(II) showed that oxalate buffer at pH 4.5 is probably the best 

supporting electrolyte for the reduction of iron(III) to iron(II) at a 

mercury electrode polarographicall~ and hence coulometrically. The DC 

polarographic wave of iran(III) in oxalate buffer at pH 4.5 was not only 

well-defined but the plateau region (limiting current) on which depended 

the 'choice of applied potential required to obtain a quantitative 

reactien in ceulometry, was flat ard steady over a wide potential range. 



One of the factors which are essential for a successful development 

of a procedure for controlled-potential determination of any element is 

117 

the corrections which have to be applied for blanks and background effectS. 

In the present work, preliminary experiments were carried out with the aim 

of optimising experimental conditions especially with respect to the blanks 

and general manipulative procedures such as,pipetting small volumes of 

sample solution. 

Initially. difficulties were encountered with the blanks in that the 

values obtained were very high in spite of prolonged deoxygenation of the 

oxalate buffer solution. The problem was solved when plastic tubes used 

in connecting the deoxygenation train to the coulometric cell were 

replaced by copper tubes. Though the evidence was not conclusive, it 

appeared that sufficient oxygen permeated through the walls of the plastic 

tubes into the main'stream of nitrogen used for deoxygenation. The 

reduction of this oxygen might have led subsequently to high blanks being 

obtained. It must however. be emphasized that an efficient oxygen­

excluding system is essential for accurate analysis. 

Two procedures were developed to eliminate the effect of the back­

ground current (i.e. blanks) and both procedures were satisfactory. In 

the first procedure. 5 ml of the oxalate buffer solution were electrolysed 

until the least significant digit on the coulometer did not change during 

a one-minute period. The accumulated charge as read on the coulometer 

was then noted and subtracted from the total coulomb obtained in each 

subsequent electrolysis of the iron sample solution. In,the second 

procedure. 5 ml of the oxalate buffer solution were electrolysed for 10 to 

15 minutes and the Background Compensation controls on the PAR 179 were 

then used to "zero" the integrator and thus eliminate the accumulated 



charge. The resultant total coulomb reading obtained with aliquots of 

the iron sample solution required no further correction for background 

current. 

PIPETTING 

Since it was the aim of the present work to develop a rapid, 

accurate and simple coulometric method for the determination of iron in 

iron ore and steel, it was considered that by using small aliquots of 

the sample solution, many analyses could be carried out within a short 

time. Accurate transfer of the sample solution into the coulometric 

cell was accomplished with a calibrated microsyringe obtained from 

Scientific Glass Engineering Ltd. To calibrate the microsyringe, water 

at 240 C (room temperature) was drawn into.it and then discharged into a 

weighing bottle·. The needle of the microsyringe was then used to touch 

the side of the bottle and held there for about 30 seconds to allow all 

the water in the syringe to drain into the bottle. The cap of the 

weighing bottle was then replaced and the weight of water discharged into 

the bottle recorded. A Stanton Instruments Ltd. (Model MC8) six-place 

balance was used for weighing wa1er discharged from the microsyringe 

during the calibration. The coefficient of variation on eight determina­

tions for the calibration test was 0.08%. 
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MAIN EXPERIMENTAL PROCEDURES 

Three different experimental procedures were examined for the 

determination of iron in the iron ore samples which were analysed: 

Method A: This method involved pipetting aliquots of an aqueous 

solution of the iron sample directly into the coulometric cell; 

Method B: This method involved the use of an internal standard. This 

procedure was included with the aim of improving the precision 

of method A. 

Method C: Possible interference in the .coulometric determination of iron 

119 

was anticipated from minor constituents of iron ore, such as 

titanium, vanadium and chromium, thus it was considered desirable 

to develop, in addition to the other two procedures, a method 

which involved the prior separation of iron from the sample 

matrix by solvent extraction. The principle of the procedure 

was to extract iron(III) with an organic solvent from an 

aqueous iron ore sample solution and then to back extract it 

into an oxalate buffer solution in the coulometric cell, 

followed by coulometric reduction of the iron(III) oxalate 

formed in the buffer. Since the iron was to be extracted 

from an 8M hydrochloric acid solution, its back extraction 

from the organic solvent into the oxalate buffer would be 

easy because of the changed solution conditions. 

Before any coulometric determinations were carried Dut,the cQulometric 

cell had to be prepared and details of this preparation are given below. 

In addition, coulograms had to be obtained for each of the three 

procedures in order to check the potentials used in each procedure. It 
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is also essential to prepare a cQulogram in order to check the potential 

for each new cell system. The potentials applied to a working electrode 

system in order to obtain quantitative. reactions in coulometry not only 

9 107 
depend on the supporting electrolytes but also on the cell system used. ' 

In order to obtain experimental conditions similar to those expected 

during actual analysis of iron ore samples, coulograms were prepared 

with aliquots of iron ore sample solutions and then compared with those 

obtained with standard iron(III) solutions. The method used in preparing 

the coulograms is described below. The method used in dissolving the 

iron ore sample was essentially that recommended by the British 

Standards Institution.
92 

APPARATUS 

Coulometer: A Princeton Applied Research (PAR) 173/179 digital coulometric 

system was used. This consists of a Model 179 digital coulometer which 

is designed for use with' the Model 173 Galvanostat/Potentiostat. 

Together they form a system for making coulometric measurements at either 

a controlled potential or current. A four-digit (including polarity and 

exponent) digital display indicates continuously the accumulated coulombs. 

Automatic subtraction of any background current is provided by means of 

a Background Current adjustment. 

pH meter: Radiometer pHM64 Research pH meter. 

Coulometric Cell: A special cell which is shown in Fig. 30 was constructed 

for this work. The cell is similar to that deSigned by Milner and 

49 
Edwards. The cell can hold 50ml of solution and the important features 

are as follows: 

Main compartment: The main compartment is made of Perspex and it is 3cm 

in diameter (internal) and 6cm high. The upper section of the cell is 



threaded so that the top can be screwed on tightly. The cell top has a 

7mm diameter hole through which the tube from the deoxygenation train 

can be inserted into the cell. A very small orifice for letting out 

excesS nitrogen and displaced oxygen is also bored in the cell top. Two 

flat areas are cut out on opposite sides near the bottom of the cell. A 

hole (7mm in diameter) is bored in each flat area at a position 1.5em 

from the bottom of the cell. 

Side compartments: There are two compartments. One compartment (A) has 

three segments. The first segment is made from a 2cm long perspex tube 

joined to a 3cm Perspex disc. This segment can be attached to the main 

compartment by three screWS through the 3cm Perspex disc. The second 

segment is made from a Pyrex glass tube with a right angled bend to give 

arms each 2cm in length. . The third segment consists of a short piece of 

plastic tube through which saturated calomel electrode is connected to 

the cell. The second side compartmen t (B) consists of two segments only. 

The first segment is similar to that of compartment A, and the second 

segment consists of a Pyrex tube (1.5cm in diameter) to which the 

auxiliary electrode can be screwed on. A small hole is bored (near the 

top of the Pyrex tube) to let out any gases formed in compartment B 

during electrolysis. 

Ion-exchange membranes: These are discs of 7mm in diameter which one 

can eas ily cut from sheets of Anion Exchange Membrane l'ermaplex A20 with 

a suitable cork borer. 

Electrodes: The working electrode is a pool of tri-distilled mercury 

(5ml). Efficient stirring is provided by a magnetic stirrer. A Zcm, 

20 gauge platinum wire is cemented with "Araldite" cement, to the main 

compartment to permit electrical contact. 
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Platinum wire 
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Reference Electrode (S,C,E,) 

inlet 

Sample port 

Perspex disc 

Stirrer Motor 

Auxiliary 
Electrode 
(Platinum gauze) 

Anion Exchange Membranes 
(Permaplex A20) 

pool 

Fig, 30: . Mercury-pool electrolysis cell for controlled-potential coulometry 
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The auxiliary electrode is a platinum gauze which is shaped to fit 

into side compartment B. 

The reference electrode is the fibre type saturated calomel electrode 

(reference number 09100) supplied by Electronic Industries Ltd. (ElL). 

Deoxygenation Train: The nitrogen supplied from a cylinder was scrubbed 
< 

free of oxygen by passing it through a heated silica tube containing 

short pieces of copper wires heated to 560
0

C, and then through a bottle 

containing distilled water~ The short pieces of copper wires are' renewed 

periodically. 

REAGENTS 

Analytical grade reagents were used throughout. All reagent solutions 

were made with double distilled water. 
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Sulphuric acid solution, IM: Cautiously add 54ml of concentrated sulphuric 

acid (specific gravity 1.84) ·to 400ml of water in a beaker. Mix and then 

allow the solution to cool. Transfer the solution to a litre volumetric 

flask and dilute to the mark with water. 

v 
Sulphuric acid solution 50% Iv: Cautiously add 50ml of concentrated 

sulphuric acid (sp. gr. 1.84) to 40ml of water. Mix and allow to cool 

and then dilute to lOOml with water. 

Oxalate-oxalic acid buffer solution, pH 4.5: Dissolve l8.4g of potassium 

oxalate {(COOK)2.H20] in water anddilute to lOOml with water. Adjust the 

pH of the solution to 4.5 with IM SUlphuric acid solution. 

-1 
Thallium(I) solution, 22.5mg.ml 

Dissolve ?6947g.of analytical reagent grade thallium(I) sulphate 

. [T1
2

S0
4

) in hot water and dilute to 25ml with water . 
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Tri-n-butyl phosphate, (TBP) 

Laboratory reagent grade TBP usually contains small amounts of other 

organic compounds including butyl alcohol, dibutyl phosphoric acid and 

pyrophosphate esters. A laboratory reagent grade TBP which was obtained 

from Fisons Scientific Apparatus Ltd., was used as an extractant after 

1 
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purification according to the method of Peppard et a • 250ml of the 

TBP was stirred with 250 ml of 6M hydrochloric acid solution at 60
0

C for 

12-1B hours to hydrolyse any pyrophosphate components. (This treatment 

also results in increasing the amounts of dibutyl phosphoric acid and 

monobutyl phosphoric acid, and presumably results in the formation of 

some butyl alcohOl and phosphoric acid). The separated TBP layer was 

cooled to room temperature and then shaken with two-250ml portions of 

water in a separating funnel to remove most of the mineral acid. The 

TBP layer was further shaken with three-250ml portions of 5% aqueous 

sodium carbonate solution to remove the mono- and di-esters. The resultant 

TBP layer was finally treated with three-250ml portions of water and 

o 
then slowly heated to about 30 C under reduced pressure (water pump) to 

remove butyl alcohol and water. 

PREPARATION OF THE COULOMETRIC CELL: 

Fill the three compartments with water and allow the cell to stand 

for 8-10 hours. This allows the membrane discs to be properly soaked. 

At the end of the period, empty the compartments, place 5ml of mercury 

in the main compartment and add 5ml of oxalate buffer solution. Fill the 

side compartments with oxalate buffer solution and carry out blank 

determinations at -O.lv and then at -1.Ov vs SCE. Complete several blank 

runs until a constant low figure is obtained at both potentials. These· 

"de terminations are done in order to remove any electoactive impurities 

that may be present in the ion exchange membrane. 
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DISSOLUTION OF THE IRON SAMPLE 

". 0 
Dry a weighing bottle in an oven at 110 C for about one hour. Place 

the bottle in a dessicator and allow it to cool to rOOm temperature. Put 

o 
about 1.5g of iron ore sample (previously dried in an oven at 110 C for 

2 hours) into the weighing bottle and weigh. Transfer the sample to a 

500ml tall-form beaker and reweigh the weighing bottle to obtain the 

amount of sample in the beaker. Add 35ml of concentrated hydrochloric 

acid (sp. gr. 1.lS) to the sample in the beaker. Cover the beaker and 

heat it gently until solvent action ceases. Add 5-6ml of concentrated 

nitric acid (sp. gr. 1.42), digest the solution for about 15 minutes and 

then add 10ml of sulphuric acid (50%). Heat the solution gently until no 

more reddish-brown fumes of nitrogen dioxide are given off. Allow the 

solution to cool and then wash the side of the beaker with hot water. 

Filter the solution through a Whatman No. 541 filter paper into a 250ml 

tall-form beaker. Wash the residue with hot water until the yellow colour 

of iron(III) chloride is no longer observed. Reserve the filtrate and 

washing. Transfer the residue and the filter paper to a platinum crucible 

(Note 1). Dry the residue andftlter paper over a low temperature Meker 

burner. Still at this low temperature, char the filter paper without 

allowing it to burn freely. Ignite the residue at about 900
0

C until all 

carbonaceous matter is removed. Allow the platinum crucible to cool and 

then moisten the residue with water, add a few drops of sulphuric acid 

solution (50%) and then 5rnl of hydrofluoric acid solution, 40% (CARE:). 

Heat the mixture in the platinum crucible gently in a well-ventilated 

fume cupboard, to remove silica and sulphuric acid (Note 2). Heat the 

o 
residue at about 900 C for 30 minutes to ensure the complete removal of 

any hydrofluoric acid left in the platinum crucible. Allow the. residue 

to cool and then fuse it with sufficient potassium hydrogen sulphate 

• 
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(about 19) by heating strongly for about an hour (Note 3). Allow the 

platinum crucible to cool and then place it in a 250ml beaker. Dissolve 

the melt with water (Note 4). Add the solution of the melt to the 

reserved filtrate. Evaporate the solution on a steam bath (or with a 

low heat) to l5-20ml. 

Notes 

1. If the residue is perfectly white and small in amount, the filtration 

and treatment of the residue may be omitted without causing 

significant error. 

2. Alternatively, in order to remove silica and sulphuric acid, place 

the platinum crucible under an infra-red lamp and evaporate the 

mixture to dryness in a well-ventilated fume cupboard. 

3, The residue may be fused with about 3g of sodium pyrosulphate 

(Na
2
S

2
0

7
) instead of potassium hydrogen sulphate. 

4. It may be necessary to heat the beaker gently and add 273ml of 

concentrated hydrochloric acid solution (sp. gr. 1.18) to ensure 

complete and quick dissolution of the melt . 

• 
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~!ETHOD A: Direct determination of iron in the sample 

Transfer the iron sample solution prepared as described above to a 

25ml volumetric flask and dilute the solution to 25ml with water. 

Prepare a coulogram as described below before determining the iron content 

of the sample. 

Preparation of a coulogram: 

Pipette 2.0ml of a standard iron(III) solution into a 25ml volumetric 

flask and dilute the solution to 25ml with the oxalate buffer solution. 

Shake tb. mix the solution thoroughly. Transfer 5ml of this solution to 

the coulometric cell containing 5ml of mercury. Fill the side compartments 

of the cell with oxalate buffer solution which had been previously 

deoxygenated for about 10-15 minutes. Deoxygenate the solution in the 

cell by passing nitrogen over it while stirr~ng vigorously (Note 1). 

Continue this process of deoxygenation and stirring during the run. Set 

the working electrode potential at O.DV vs SCE. Electrolyse the solution 

until the cell current attains a low constant value (that is, until the 

least significant digit on the coulometer does not change during a one-

minute period). Record the number of coulombs on the coulometer. Set the 

working electrode potential at -D.IV vs SCE (E2 ) and- electrolyse the 

solution again until the cell current attains a constant value. Record 

the number of coulombs on the coulometer, Q2' Repeat this procedure 

several times by changing the potential -of the working electrode in steps 

of 0.1, until making the working electrode potential more negative 

causes no more or very little increase in the value of Q. Plot the values 

of Q against E and determine the practical standard potential (El) for the 
o 

system. 
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Determination of the iron content of the sample 

Wash the cell thoroughly with water. Then put 5ml of mercury into 

the cell. Add 5ml of oxalate buffer solution and fill the side compartments 

with deoxygenated oxalate buffer solution. Deoxygenate the solution for 

10 minutes by passing nitrogen over it while stirring vigorously (Note 1). 

At the same time deoxygenate the iron sample solution in the 25ml volumetric 

flask by bubbling nitrogen through it. Electrolyse the oxalate buffer 

solution at -0.75V vs SCE for 10-15 minutes. Adjust the background current 

compensation of the instrument so that there is no accumulated charge read 

on the coulometer. Reset the integrator to eliminate any charge accumulated 

during the background current compensation adjustment step. Open the 

integrator and pipette O.lml aliquot of the iron sample solution into the 

cell. Electrolyse the solution. Electrolysis is completed when the least 

significant digit on the coulometer does not change indicating the complete 

reduction of iron(III) - to iron(II) oxalate. Record the number of coulombs 

shown on the coulometer. Repeat the experiment by pipetting O.lml aliquots. 

of the iron sample solution into the cell and noting the number of coulombs 

recorded for each aliquot. 

Calculate the quantity of iron(III) - reduced to iron(II) oxalate 

and hence the percentage of total iron in the sample (see Appendix I). 

Notes 

1. In order to avoid splashing the solution onto the sides of the cell 

during deoxygenation, nitrogen is passed over the solution in the 

cell causing an indentation in the surface of the liquid, while it 

is stirred vigorously but not vigorously enough to splash the 

solution about. The traditional technique of deoxygenation in which 

nitrogen is bubbled through the solution is not recommended here 

because this leads to spray losses . 

• 



129 

METHOD B: Determination of iron in the sample using an internal standard 

Transfer the iron sample solution prepared as described previously to 

a 25ml volumetric flask, add an aliquot of the thallium(I) solution and 

dilute the mixture to 25ml with water. Dilute 2ml of this solution to 

25ml with the oxalate buffer solution and use 5ml of the resulting solution 

to prepare a coulogram as described in Method ·A. 

Determination of the iron content of the sample 

Empty the cell including the side compartments and wash the cell with 

water thoroughly after preparing the coulogram. Put 5ml of mercury into 

the cell and add 5ml of oxalate buffer solution. Fill the side compartments 

wi th deoxygenated oxalate buffer solution.. Deoxygenate the buffer SOlution 

in the cell for 10 minutes by passing nitrogen over it while stirring 

vigorously. At the same time deoxygenate the solution containing iron and 

the internal standard. Electrolyse the deoxygenated oxalate buffer 

solution at -O.45V vs SCE for 5 minutes and then at -0.90V vS SCE until 

the accumulated charge on the coulometer remains fairly constant. Adjust 

the background current compensation of the instrument so that there is no 

accumulated charge read on the coulometer. Reset the integrator to 

eliminate any charge accumulated during the eletrolysis of the oxalate 

buffer solution. Set the applied potential back to -0.45V vs SCE. Open 

the integrator and pipette O.lml of the deoxygenated solution containing 

iron(rII) and thallium(I) into the cell. Electrolyse the solution until 

the reading on the coulometer remains constant (3-5 minutes) indicating 

the complete reduction of iron(III) - to iron(II) oxalate. Record the 

coulometer reading and then set the applied potential to -O.90V vs SCE. 

Electrolyse the solution until the reading on the coulometer remains 

constant (5-7 minutes) indicating the complete reduction of the thallium(!) 

oxalate to thallium. Record the coulometer reading and subtract the 
'. 



previous reading from this to. obtain the charge accumulated during the 

reduction of thallium(I) oxalate.,. Calculate the amount of iron(III) 

oxalate reduced to iron(II) oxalate and hence the percentage of total 

iron in the sample (see Appendix 1). 

As thallium metal deposited in the mercury pool is reoxidised at 

the lower potential, the cell cannot be used for sequential determination. 

In order to obtain the next experimental readings, it is therefore 

necessary to empty the cell, wash it thoroughly with water and then use 

a fresh supply of mercury. The mercury in the cell can be re-used 

after it had been shaken several times with wroer in a separating funnel 

to remove thallium. 
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METHOD C: Determination of iron after its separation from the sample 
matrix by solvent extraction 

Transfer the iron sample solution prepared as described previously, 

to a 50ml volumetric flask. Add 34.4ml of concentrated hydrochloric 

acid (sp. gr. 1.18) and then dilute the solution to 50ml with water. 

This is a solution of iron(III) in 8M hydrochloric acid solution. 

Pipette 25ml of this solution into a separating funnel and extract the 

iron(III) chloride with 7-8ml of tri-n-butyl phosphate by shaking for 

3-4 minutes. Transfer the extract to a lOml vOlumetric flask and dilute 

to lOml with tri-n-butyl phosphate. Pipette Iml of the extract into a 

25ml volumetric flask and dilute the extract to 25ml with oxalate buffer 
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solution. Shake the flask vigorously for about 3 minutes to strip iron(III) 

from the organic layer. Use 5ml of the aqueous layer to prepare a coulo-

gram following the procedure described in Method A. 

Determination of the iron content of the sample 

Wash the cell with water thoroughly after preparing the coulogram. 

Put 5ml of mercury into the cell and add 7ml of oxalate buffer solution. 

Deoxygenate the buffer solution for 10 minutes by passing.nitrogen over 

it while stirring vigorously. Electrolyse the deoxygenated buffer solution 

at -1.00V vs SCE for 10-15 minutes. Adjust the background current compen-

sation on the instrument so that there is nu accumulated charge read on 

the coulometer. Reset the integrator to eliminate any charge accumulated 

during the electrolysis of the oxalate buffer solution. Pipette O.lml of 

the extract, previously deoxygenated for 15-20 minutes, into the cell. 

Electrolyse the solution until the reading on the coulometer remains 

constant (10-12 minutes) indicating the complete reduction of iron(III) -

to iron( 1I) oxalate. Record the coulometer reading and calculate the 

. quantity of iron(III) oxalate reduced to iron(II) oxalate and hence the 

• I 



percentage of iron in the sample. Repeat the experiment by pipetting 

C.lml aliquots of the extract into the cell and electrolysing until the 

coulometer reading remains constant. 

/ 

• 
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RESULTS AND DISCUSSION 

Fig. 29 shows the coulogram obtained for the reduction of iron(III) 

oxalate by method A and Table 4 shows the results obtained for the analyses 

of some iron ore samples by the same method. In order to check the 

precision of the results shown in Table 4, a solution of high-purity iron 

(BCS 149/3) was analysed by the same method and the results obtained are 

given on Table 5. 

Table 4 

Results obtained for the direct determination of iron in iron 
ore samples by Method A 

Iron Ore *Iron Found % Mean' ·V",lue % 
Coeff. of 

- Variation % 

BCS 175/2 67.7508, 67.7839 
(Nimba Iron Ore) 67.9498, 68.1820 67.9166 0.29 

67.7176, 68.1157 

BCS 303 36.9431, 37.0456 
(Iron ore sinter) 36.8661, 36.7453 36.9007 0.28 

36.9201, 36.8837 

BCS 378 62.0196, 62.2791 
(Iron ore sinter) 62.4512, 62.1278 62.2499 0.26 

62.3850, 62.2365 

*Each value is the mean of five determinations 

Table 5 

Results obtained by the direct determination of. iron in 
high-purity iron (BCS 149/3) 

Weight of iron taken = 4mg 

Cou10meter Reading Weight of Iron I Percentage of I 
(Coulombs) Found (mg) Iron in sample 1 

6.930 4.01132 100.28 
6.918 4.00438 100.11 
6.902 3.99512 99.88 
6.900 3.99396 99.85 
6.900 3.99396 99.85 
6.910 3.99975 99.99 
6.930 4.01132 100.28 
6.907 3.99804 99.95 
6.906 3.99776 99.94 
6.908 3.99840 99.96 

Mean 6.911 4.00032 100.00 

Mean Percentage of iron found in BCS 149/3 = 100.00% 
Coefficient of variation = 0.16% 

Standardised 
value % 

66.10 

36.0-

61.8-
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f'ig. 29: Coulogram for Iron in Oxalate buffer at pH 4.5 
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Fig. 31 shows the coulogram obtained for the reduction of iron(III) oxalate 

with thallium(I) oxalate as internal standard (Method E). Table 6 shows 

the results obtained for the analysis of two iron ore samples by method B. 

Table 6 

Results obtained for the determination of iron in iron ore samples 
with thallium(I) as internal standard (Method E) 

Iron Ore 

BCS 303 
(Iron Ore Sinter) 

BCS 378 
(Iron Ore Sinter) 

* Iron Found % 

36.5 550, 36.4988 
36.5 269, 36.5493 
36.5 774, 36.0324 

62.8 288, 62.9508 
62.8 873, 63.2121 
62.8 405, . 62.7999 

Coeff. of 
Mean value % 

variation % 

36.4566 0.57 

62.9199 0.24 

*Each value is the mean of five de terminations 

Standardised 
value % 

36.0-

61.8-

Compared with the standardised values of total iron in the iron ore 
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samples analysed, the results obtained by methods A and B were high although 

the precisions were good. It appeared that other electroactive species in 

solution were being co-redlced with iron(III). However, the results obtained 

by method A for the determination of iron in high-purity iron were not only 

very precise, they also showed that interferences from other constituents 

of the sample were minimal. It is interesting to note that titanium was 

not present in the high-purity iron sample analysed and the percentage of 

each of the o.ther potential interfering .elements such as chromium, copper, 

molybdenum, vanadium and tin was less than 0.001%. 

An attempt was made to use Indium(III) as internal standard but the 

total electrolysis time was between 30 and 45 minutes and the results 

were not reproducible. From the resul ts of the method involving the use 

of thallium(I) as an internal standard, it does not appear that any 

advantage was gained by using an internal standard. The coefficients of 

variation obtained were higher than those obtained by method A. The 

. 
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relatively high values of the coefficient of variation could not be due 

possibly to the pipetting technique used in this procedure because it has 

been shown by the calibration test described earlier that the microsyringe 

is very precise. It might possibly be due to the reaction mechanism 

involved in the reduction of iron(III) to iron(II) and of thallium(I) to 

Tl(Hg). Both reactions are reversible both p~larographically and in terms 

of their controlled-potential electrolysis behaviour. In addition the 

coulogram shown on Fig. 31 reveals that it is difficult to define precisely 

a suitable applied potential for the complete reduction of iron(III) to 

iron(II). -O.45V vS SCE was selected because it was considered to be the 

most suitable potential likely to result in the reduction of iron(III) to 

iron(II), although an inspection of the coulogram shown in Fig. 29 

(obtained by :'lethod A) reveals that complete reduction of iron(III) to 

iron(II) would not be possible at a potential of -O.45V vs SCE. It is 

interesting to note that the solution conditions in both methods A and B 

are similar. 

Because the main aim of the present work was to establish optimum 

conditions for the coulometric determination of iron in a IM oxalate 

buffer solution at pH 4.5, a complete investigation of the electrochemistry 

of iron in oxalate solutions was not carried out. However, an examination 

of the polarographic half-wave potential of some elements in oxalate solu­

tion showed that several elements such as Bi(III), Ce(IV), Cu(II), Cr(VI), 

Pb(lI), Mo(VI), Re(VII), Sn(IV), Ti(IV), U(VI), V and W(VI) would interfere 

with the coulometric determination. The half-wave potentials of these 

elements including iron(III) in oxalate solutions OCCur within the range 

o to -O.70V vs SCE. Though the values of the half-wave potential have 

been reported to vary with pH and concentration of oxalate solution, the 

variations are in most cases insignificant. Perhaps, titanium constitutes 

• 
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the ·greatest source of interference because it is often present in appreciable 

quantity in iron ore samples. It was considered desirable to .include a 

procedure which involved the prior separation of iron from the sample 

matrix in order to avoid possible interference from these elements. 

It was not possible to correct for these elements (after their co­

reduction with iron(III» by re-oxidation of their reduced forms because 

most of them except perhaps molybdenum and uranium are easily re-oxidised. 

Precipitation of some of these elements followed by their separation from 

iron by filtration, before coulometric determination Was not considered 

because iron may be c07precipitated. Masking of the interfering elements 

with masking agents was also not considered because most masking agents 

are not highly selective. Agents that would mask copper, for instance, 

can also be used to mask iron. Standard-addition method which is often 

used to compensate for sample matrix effects was not emplmyed here because 

this might have solved the problem of titanium interference only without 

compensating for the effects of the other interfering elements. 

Since it was not possible to utilise the methods of dealing with 

interferences mentioned above, it was decided to extract iron from the 

sample matrix with an OrganiC solvent and then determine the iron in the 

extract coulometrically. The basis of the procedure Was to extract 

iron(III) from an aqueous iron ore sample solution with an organic solvent 

and then back extract the iron into an oxalate buffer solution in the 

coulometric cell. The iron(III) oxalate formed in the buffer was then to 

be reduced coulometrically to iron(II) oxalate at a suitable applied 

potential. 

A number of organic solvents which have been used previously to 

extract iron from aqueous solutions were considered. The criteria for 

chOOSing an organic solvent Were high percentage extract.1on of iron and 
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non-intefference in the coulometric reduction. Methyl isobutyl ketone 

was found to be unsuitable because it gave a polarographic wave with half­

wave potential at -0.08V vS SCE and would therefore interfere. Di-isopropyl 

ether gave no interfering wave but the extraction of iron(III) in a 6M 

hydrochloric acid solution with an equal volume of di-isopropyl ether gave 

.consistently low results. Tri-n-butyl phosphate gave no interfering wave 

and was selected because it gave a higher percentage of extraction. 

However, it was found that at -0.75V vs SCE, the time required for complete 

electrolysis of O.lml aliquots of the extract was between 45 to 60 minutes. 

An applied potential of -0.75V vS SCE was selected initially on the basis 

of the resul ts shown on the coulogram (see -Fig. 32). It appeared that in 

spite of the small amount of organic solvent present in the sa~ple pipetted 

into the coulometric cell, the rate of transfer of iron(III) from the 

organiC solvent to the oxalate buffer waS very slow. Unsuccessful attempts 

were made to accelerate the rate of transfer by diluting the tributyl 

phosphate extract, before pipetting it into the coulometric cell, with 

hydrophilic solvents including alcohol, dimethylformamide, polyethylene 

glycol 6000 and triethylene glycol. Surface active agents such as Triton 

X-lOO and gelatin were also tried without success. 

When the solution was electrolysed at -l.OOV vs SCE, the electrolysis. 

time was not only reduced to 10-15 minutes but satisfactory results were 

also obtained. A possible explanation for the shorter electrolysis time 

observed at -l.OOV as against the 45-60 minutes observed at -0.75V might 

be that uncompensated iR losses in the solution caused the actual electrode 

potential to be considerably less than the instrumental control voltage. 

Thus by increasing the applied potential beyond that dictated by the 

coulogram, the actual electrode potential required for complete and rapid 

reduction of the iron(III) oxalate was attained and perhaps these iR 

losses were compensated for. 



Table 7 shows the results obtained for some iron ore samples by 

Method C. The results show that the coulometric method involving the 

extraction of aliquots of iron(III) in 8M hydrochloric acid solution with 

. 7-8ml of tri-n-butyl phosphate is capable of yielding precise and accurate 

resul ts. 

Table 7 

Results obtained for the determination of iron in iron ore samples 
after separation of iron from the sample matrix by extraction 

with tri-n-butyl phosphate (Method C) 

Iron Ore *Iron Found % 
Mean Coeff. of Standardised 

Value % variation % value % 
-

BCS 175/2 66.0979, 65.9758 
(Nimba Iron Ore) 66.0556, 66.0151 65.9725 0.29 66.1 

66.0954, 65.5953 
0 

BCS 302/1 33.2617, 33.3456 
(Northamptonshire 33.3036, 33.2235 33.2594 0.19 33.3 
Iron ore) 33.1621, 33.2599 

0 

BCS 378 61.7065, 61.9824 
(Iron ore sinter) 61.7842, 61.5662 61.7466 0.22 61.8-

61.7162, 61.7243 

BCS 303 35.8787, 35.9163 35.8975 - 36.0-
(Iron ore sinter) 

*Each value is the mean of five determinations 
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Fig. 32: Coulogram for iron after its extraction from IlM HCl solution 

with TBP 

Supporting· electrolyte: Oxalate buffer:. pH 4.5 
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. Table 8 summarises the results for total iron found in the iron ore 

samples which were analysed by the methods described here compared with 

the standardised values which were obtained by titrimetry with standard 

potassium dichromate solution (Standard Method BS 1121:1955 or BS 4158:Part 1: 

1967) . 

Table 8 

Comparison between the present coulometric methods with the 
ti trimetric method .,for determ~n~z:g i~?n in iron ore samples 

PERCENTAGE OF IRON FOUND 
VALUES OBTAINED BY 

IRON ORE 
METHOD A METHOD B METHOD C INDIVIDUAL ANALYST 

AS SHOIVN ON THE 

MEAN 
COEFF. 

MEAN 
COEFF. 

MEAN 
COEFF. CERTIFICATE 

OF VAR. OF VAR. OF VAR. 

61.86, 61.99 
BCS 378 62.25 0.26 62.92 0.24 61.75 0.22 61.8- , 61.95 
(Iron ore sinter) 61.80; 

61.81, 
61.70, 

35.9-, 35.7
5 

BCS 303 35.9
0

, 36.05 (Iron ore sinter) 36.90 0.28 36.46 0.57 35.90 - 36.1
5

, 36.0
5 

36.1
0

, 35.9-
35.8-, 35.7

5 

BCS 175/2 
66.1

0
, 66.1

0 
66.0

5
, 66.10 

(Nimba Iron Ore) 67.92 0.29 - - 65.97 0.29 66.1
5

, 66.15 
66.2

0
, 

66.05 , 
0 

33.28, 33.40 
BCS 302/1 33.39, 33.33 
(Northamptonshire - - - ~3.26 0.19 33.25, 33.3-

Iron ore) 33.30, 

Table 8 shows that the solvent extraction - coulometric method compares 

favourably with the·titrimetric method. In addition,. the use of very small 

volumes of the sample solution for analYSis, makes it unnecessary to dis-

mantle the ce1l.in between runs. Many analyses can therefore be carried 
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out using the same supporting electrolyte. Using this technique, it is 

possible to analyse 20-25 samples within 3 hours. One other advantage 

of the technique described here over classical titrimetric method of 

analysis is that it is totally unnecessary to standardise the reagents 

used. Whereas classical titrimetry has been recommended mainly as a 

"referee" method for the determination of iron in iron ores, the technique 

described here can be utilised for routine analysis without any losS in 

precision and accuracy. 

The use of triply-distilled mercury avoids the need for working 

electrode pretreatment which is often necessary when platinum working 

electrodes are used. Careful surface pretreatment of platinum working 

. 9 100-102 
electrodes is essential in order to obtain reproducIble results. ' 

Electrode surface conditions are not only a major factor in determining 

the background current levels, they also influence the rates and mechanism 

of the principal electrode reaction. 

The solvent extraction-coulometric method described here could be 

adapted for the determination of iron in various other materials 

including allOYS, cement, slags and ceramic materials. 



APPENDIX 1 

CALCULATION OF THE PERCENTAGE OF IRON IN IRON ORE 

The iron content of the iron ore is calculated from the coulometer 

reading using the following formula: 

% Fe in iron ore 

where: 

= 
Cx55.85 x V x 100% 

96,484.6 x v x W 

C = PAR 179 Coulometer reading 

55.85 = gram-molecular weight of iron 

v = volume of iron ore stock solution in IDl 

96,484.6 = Faraday's constant 

v = volume of aliquot used for analysis (in ml) 

w = weight of iron ore sample taken for dissolution (in gram) 

Sample calculation 

1.5265g of iron ore is weighed out, dissolved and the solution is then 

diluted to 25ml with water. , 
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A 100,..L aliquot of the iron ore solution yields 7.147 coulombs (corrected 

for blank) 

% Iron in iron ore = 

• 

7.147 x 55.85 x 25 x 100 
96484.6 x 0.1 x 1.5265 = 67.75% 
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In order to calculate the iron content of the iron ore from results 

obtained with the Organic Extraction Method, the following formula is used:. 

%Fe in iron ore = 
C x 55.85 x V x 10 x 100% 

96,484.6 x v x 25 x W 

where C, v, V and Ware as explained previously. 

1.5786g of iron ore is weighed out, dissolved and the solution made up to 

50ml with 8M hydrochloric acid solution. .25ml of this solution is extracted 

into lOml of tri-n-butyl phosphate. 

A 100 /JL aliquot of the extract yeilds 9.013 couloinbs (corrected for 

blank) .. 

% Iron in iron ore = 

%'Iron in iron ore = 

9.013 x 55.85 x 50 x 10 x 100% 
96,484.6 x 0.1 x 25 x 1.5786 

66.098%. 
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I. INTRODUCTION 

Calorimetric determination of boron in various materials including 

steels and alloys has always been difficult. The different procedures 

recommended for the determination of boron in' steel including those 

adopted by the British Standards Institution l and the American Society 

for Testing Materials
2 

appear to suffer from several disadvantages which 

limit their usefulness considerably. Many of the methods are prone to 

interferences, have poor sensitivity and are tedious. Their application 

to routine steel analysis is not therefore completely satisfactory. 

Some of the methods for the determination of boron in steel are 

based on the reaction of boric acid with hydroxy - or aminoanthraquinones 

and their derivatives. The reactions are usually performed in concen­

trated sulphuric acid, which makes the analysis more difficult. In recent 

years new procedures which are based on the reaction of tetrafluoroborate 

with basic dyestuffs have been developed. 37- 57 The ion-pair complexes 

formed between the dyes and tetrafluoroborate anion are usually extracted 

with organic solvents and the boron is determined by measurement of the 

absorbance of the extract. Solvent extraction of the ion-pair complexes 

separates boron from interferences, but in spite of this, most of the 

methods still suffer from high blanks. The extraction of dye-tetrafluoro­

borate complexes by organic solvents is seldom: ,complete. It is usually 

less than 100%, although this has been said to have no effect on the 

accuracy of the determinations, provided that calibration curves are 

plotted and the determinations are carried out under identical conditions . 

. In addition to fluoride ion, phenolcarboxylic acids such as salicylic acid, 

have been suggested as suitable complexing agents. 58 

• 
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Attempts to improve the accuracy and precision of the solvent 

extraction method have led to the introduction of new procedures in 

which boron is converted into tetrafluoroborate ion and an "onium" salt 

of the tetrafluoroborate is isolated by extraction with chloroform or 

other suitable organic solvents. The determination of boron is then 

completed with a dye. 
3 

Coursier et al. reported a procedure in which 

tetraphenylar sonium-fluorobora te complex was extrac ted with chloroform 

and the determination of boron carried out with curcumin. 

In the present study, similar reactions as described above have 

been utilised. The boron-containing sample was dissolved in dilute 

sulphuric acid by heating under reflux, and boron converted to tetra-

fluoroborate by the addition of hydrofluoric acid or its salt. A solu-

tien of "onium" compound was added and the onium ion-fluoborate complex 

which was formed was extracted with chloroform. The analysis was com-

pleted by replacing the fluoroborate ion with an anionic dye and the 

abSorbance of the dye-onium ion complex formed was measured. This 

indirect determination of boron is based on the fact that tetrafluoro-

borate forms a 1: 1 complex with "on·lum" ions such as tetraphenylphosphonium 

ion. 

• 
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Il. REVIEW OF CaLORIMETRIC METHODS FOR THE DETERMINATION OF BORON IN 
STEEL 

Colorimetric methods for the determination of boron have been 

widely applied. In the past 25 years, a large number of coloured organic 

reagents have been discovered. As a result of the large number of 

calorimetric procedures based on the use of organic reagents, it is, 

perhaps, convenient to categorize the procedures ~n the basis of the 

characteristic nature of the organic reagents. A selection of these 

reagen ts are discussed below. Most of the determina tions of boron in 

steel have to be preceded by some form of separation procedure because 

of the strong interfering influence of other elements. A wide range of 

separation procedures have been recommended. They include distillation, 

electrolysis and the uSe of ion exchangers. 

QUINALIZARIN 

HO 0 OH 

Q ~ 
OH 

~ 

HO 0 

In 1945 Weinberg et al.
4 

published a paper on the determination of 

boron in steel using quinalizarin. Since then numerous procedures based 

on the reaction of boric acid with quinalizarin'have been developed for 

5-10 
the determination of boron in steel. The method is suitable for 

. analysing steels containing 0.001 to 0.004% of boron, although it has 

been used for analysing titanium - and vanadium-free steel samples 



11 
containing up to 0.2% of boron. The colour of the boron-quinalizarin 

complex depends strongly on the concentration of sulphuric acid as does 

the quinalizarin solution itself. A major disadvantage of quinalizarin 

is the considerable overlapping of the absorption spectra of the solutions 

of the reagent and that of its. complex with boron. 
12 

Gupta and Boltz, 

however, showed that this overlapping is eliminated by using quinalizarin 

in sulphuric acid - acetic acid medium. Acetic acid acetylates quinali-

zarin forming acetylquinalizarin which has a dark pink colour instead of 

the blue-violet colour produced by quinalizarin. Divak
13 

reported the 

determination of boron in steel and cast iron down to 0.001% of boron, 

using a tetra-acetylquinalizar.in procedure descr ibed by Budanova and 

G 
. h 14 

ureV1C . In the presence of interfering elements, a preliminary 

separation of boron by distillation, electrolysis or ion exchange is 

necessary but a method for the determination of boron in low melting 

. 15 
alloys without preliminary separation has been proposed by Jones. 

CARMINE AND CARMINIC ACID 

H3C 0 OH H~C 

~ ~ COOH ~ 

HO '- ~ OH HO' 
HOOC HOOC 

r: 
Carmine (I), which is also called carmine red is suitable for deter-
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mining up to 0.02% of boron in steel. Carmine is formed by the saponifica-

tion of carminic acid (11). In concentrated sulphuric acid, carmine and 



carminic acid both react with boron and undergo a colour change from red 

to blue. Studies have shown that the development of the colour, the 

sensitivity of the reaction, and- the optimum concentration of sulphuric 

acid depend on the quality of the sample of c~rminic aCid.
IS 

In con-

trast to quinalizarin, carmine and carminic acid react at a considerably 

slow rate with boron but Willis
17 

has reported that because the method is 

easily automated, the analysis time can be considerably reduced. In 

spite of their disadvantages when compared with qUinalizarin, carmine and 

carminic acid suffer less from interferences. However, titanium inter-

feres strongly, and chromium and molybdenun cause high blanks.
17 

Different attempts have been made to improve the overall sens~tivity of 

th h d K H·· 18 d t h d' h' h . t f f e met o. azuo l1ro reporte a me 0 1n W 10 1n er erences rom 

metal ions were avoided by using EDTA as masking agent. 
19 

Svarcs et al. 

used a solvent extraction procedure to eliminate interferences. Shigeo 

20 Wakamatsu used a method involving quantitative distillation of methyl 
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borate from a concentrated sulphuric-phosphoric acid solution in a current 

of air, the sample having been previously decomposed with an acid. He 

noted that all mineral acids except hydrofluoric acid could be used to 

decompose the sample. The distillate was absorbed in sodium hydroxide 

solution and the boron determined colorirnetrically with carmine. The 

carmine method has been widely utilised for determining boron in steel 

without preliminary separation because it suffers less from interference 

than some of the hydroxyanthraquinones such as quinalizarin. 21 

• 



CURCUMIN 

,H 
" "\ d 0 

11 I 
c C 

HO~ ) CH=CI "cl 'cH . CH 

Hfo. I 

, 22-25 
Curcumin has been widely used for determining boron ln steel 

containing 0.0005 to 0.1% of boron and it is the colorimetric method 

recommended by the British Standards Institution for the determination 

1 of boron in steel. . The boron-curcumin reaction is highly sensitive and 

this sensitivity is improved greatly if the reaction takes place in 

t ' 1 h' 'd d' 26 ace ~c-su p urlC aCl me lum. In contrast to hydroxyquinones such as 

quinalizarin, the boron-curcumin reaction does not require concentrated 

sulphuric acid. However the sensitivity of the curcumin method and the 

reproducibility of the results obtained often depends on the quality of 

the curcumin sample and on rigorous observance of the reaction conditions 

such as temperature, time, reagent quantities and solvents. In addition, 

many elements interfere with the determination o~ boron with curcumin. 

It is therefore necessary to separate boron as methyl borate by distilla-

t
' 1,2,26 
lon. All these mal,e the curcumin method tedious and unsui table 

for large-scale determination of boron. 
27 

Hideshiro Goto et al. employed 
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a solvent extraction prodedure in which interfering elements were 

removed with methyl isobutyl ketone. 
. 28 29 

Monn~er, and Tolk et al. have 

reported methods for determining boron without preliminary separation. 

The procedure reported by Talk et al.
29 

is however limited by the fact 

that no oxidising agent was used, an omission which leaves uncertain the 

effect of the carbides etc. inherent in iron and steel. Curcumin with 

the structural formula (I) has been reported to be the form which reacts 

30 
directly with boron to form a complex, but some workers have suggested 

the latter.(II). 

1,1' - DIANTHRIMIDE 

0 0 

:/ ~ 
H 

~ ~ N 
r 

~ ~ ~ h 

0 0 

In 1943, Rudolph and Flickinger3l made use of l,l'-dianthrimide to 

determine boron. Since then l,l'-dianthrimide has become one of the most 

widely used calorimetric reagent for the determination of boron in steel. 

It is a reliable method for determining micro amounts of boron, although 

the boron-dianthiimide colour reaction is less sensitive than that of 

curcumin. The BISRA Methods of Analysis Committee
32 

made a critical 

evaluation of the calorimetric determination of boron ,with quinalizarin, 

curcumin and dianthrimide, and recommended a method using dia~tprimide 

159 
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after preliminary separation of interfering elements by a cation exchange 

procedure! 1,1'-dianthrimide was recommended because of its good repro-

ducibility and sensitivity. 
. 33 34 

Danlelsson, ' .in a detailed study of the 

boron-dianthrimide reaction, reported a procedure of determining boron in 

iron and low-alloy steels down to 0.001% without a preliminary separation 

step. A disadvantage of the boron-dianthrimide method is the need to 

heat in 93-95% sulphuric acid for 1-1.5 hours at 100
0 

or 4-5 hours at 

800 C. Prolonged heating of l,l'-dianthrimide at high temperatures grad-

ually oxidises it to yet unidentified broWn'coloured products. Most of 

the procedures based on the boron-dianthrimide reaction still involve· 

preliminary separation of boron from interfering elements because this 

ensures more reliable and accurate results .. 

OTHER ANTHRAQUINONE DERIVATIVES 

Many other anthraquinone derivatives have been used in the calorimetric 

determination of boron. Methods have been described for the deter-

mination of boron in steels and alloys with I-hydroxy-4-p-toluidinoanthra­

quinone (C.l. Solvent violet 13)35 and tetrabromochrysazin.
36 

Most of 

the reagents in this group have not found wide application because they 

are difficult to obtain commercially. 

COLORlMETRIC DETERMINATION OF BORON AS TETRAFLUOROBORATES 
USING BASIC DYES 

Recently, a new colorimetric method for the determination of boron 

has been developed based on the reaction of tetrafluoroborate ion with 

basic dyes. A range of basic dyes have been utilised in the determina-

tien of boron in various materials including iron and ste~l. A number 
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. 37 38 
of reV1ewS ' have been published dealing with the determination of 

boron as tetrafluoroborates using basic dyes. Basic dyes-are highly 

sensitive and are reasonably selective. In steel samples, the dye-

fluoroborate reaction has been used to determine boron in the range from 

0.0005 to 0.12%. The principle of the method is quite simple and involves 

the conversion of boron in solution to tetrafluoroborate by the addition 

of hydrofluoric acid Or its salt. A solution of the basic dye is then 

added and the complex formed by the tetrafluoroborate ion and basic dye 

is extracted with a suitable inert orga~ic solvent. The boron is deter-

mined by measuring the absorbance of the extract. The dye-flnoroborate 

complex has the formula (BF
4

)R where R is the monovalent cation of the 

basic dye. Tetrafluoroborate is easily hydrolysed and to prevent this, 

a relatively large exCess of hydrofluoric acid is usually employed to 

suppress hydrolysis. But since at high hydrogen ion concentrations, 

many of the dyes exist as divalent cations, which form inextractable 

complexes with fluoroborate ion, the solution after the formation of the 

fluoroborate ion, is usually adjusted to a pH at which the dye is present 

as a monovalent cation. Thus preliminary investigations to. establish 

optimum pH values for each of the basic dyes have to be carried out when-

ever this method is utilised. Excessive dilution of the sample solution, 

once the dye-fluoroborate complex has been formed is necessary in order 

to decrease the concentration of excess fluoride ions which otherwise would 

interfere with the determination. Large amounts of fluoride ions form 

extractable complexes with basic dyes. The presence of fluoride ions 

and other extractable anion-dye complexes gives rise to high blanks. 

This is one of the major disadvantages of the method . 

• 
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Various basic dyes, most of them belonging to the xanthene, tri-

phenylmethane or oxazine group, have been recommended for the determina-

tion of boron in iron and steel. 
39-50 

They include methylene blue, 

51 . 52 53 
brilliant green, methyl v~olet and Nile blue A(C.I. Basic blue 12) . 

• 
54 55 . Pasztor et al. J studled the use of thionine derivatives in the extrac-

tion and direct colorimetric determination of boron and reported that 

n-methylthionine (Azure C) was superior ,to methylene blue. 
56 

Busev et al. 

described a method that involved the precipitation and extraction of 

tetrafluoroborate 'with antipyrine dyes and noted that the sensitivity of 

the extraction determination of boron by means of antipyrine dyes was 

higher than that of' the hydroxyanthraquinones. They also studied 

phenazone dyes a"nd arrived at the same conclusion on their sensitivity 

with respect to hydroxyanthraqUinones.
57 

The choice of a suitable organic solvent for the extraction of the 

dye-fluoroborate complex is influenced by several factors, some of which 

are the need to reduce the blanks and to aChieve a high percentage of 

recovery. At present, benzene is used for the extraction of the brilliant 

green - fluoroborate complex and dichloroethane for the extraction of 

the methylene blue-fluoroborate complex. 

In order to improve the precision of the method, several procedures 

have been suggested for the removal of interfering elements. Norii 

F ' Y h' K k' 43 d' b t t· 1 ukushl and ac lyO a lta remove lron y ex rac lon with rnethy 

isobutyl ketone 
42 

and Eremin and Romanov removed tungsten by precipitating 

it as tungs ten oxide. 

In an attempt to improve the sensitivity of the determination of 

58 
boron with basic dyes, Vasilevskaya and Lenskaya exploited the capacity 

• 
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of boric acid to form complexes with s.alicylic acid and developed a procedure 

for determining boron in natural materials. The procedure is based 

on the formation of compounds of the type (BL )A where L is salicylic 
n 

acid and A is a basic dye. They investigated the suitability of basic 

dyes of the triphenylmethane series as well as thionine derivatives. 

They found that complexes formed between boron, salicylic acid and dyes 

of the triphenylmethane series were best extracted by benzene and carbon 

tetrachloride, while complexes formed with dyes of the thionine derivatives 

group were best extracted by chloroform. Crystal violet (triphenylmethane 

dye) was recommended as the most suitable dye because it gave the highest 

experimental molar absorptivity. Almost all cations were found to inter-

fere and preliminary separation of boron by distillation as methyl borate 

~r by ion exchange was recommended. This detracts from the method's 

routine application. 

More attempts aimed at simplifying and improving the sensitivity of 

the colorimetric method for the determination of boron have led to the 

search for better complexing agents for tetrafluoroborate ion. In recent 

years, the use of !tonium" compounds as complexing agents for tetrafluoro-

borate has been receiving more attention. The method Is based on the 

extraction of the tetrafluoroborate of an onium compound with chloroform 

followed by the replacement in the extract of the onium cation by a basic 

dye. The extraction of the tetrafluoroborate of the onium compound 

effectively separates boron from interfering elements which otherwise 

~ould complex with the basic dye used. In aqueous solution at pH 3, 

+ -
tetraphenylarsonium ion, AS(C

6
H
5

)4 reacts with BF4 anion to form an ion-

association compound AS(C61I5)4BF4 which is readily soluble in chloroform. 

Coursier et al.3 employed this procedure to separate trace of boron and 
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then determined boron colorimetrically with curcumin. Vichlabsky59 

reported a method in which an anionic boron-catechol complex was extracted 

quantitatively into dichloromethane in the presence of tetraphenylphosphon­

ium bromide. The determination of boron was then carried out with quin­

alizarin dissolved in a mixture of acetic and sulphuric acids. 



II I. COMPARATIVE EXPERIMENTAL STliDY OF SELECTED CHROMOGENIC REAGENTS 

Perhaps the biggest problems associated with the co1orimetric 

de termina tion of boron have been the high blanks obtained, incomplete 

extraction, the strong influence of interfering elements and the fact 
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that the popular methods are tedious. The influence of interfering elements 

could be minimised or eliminated more conveniently ?y solvent 

extraction rather than by a time-consuming distillation procedure. As 

a means of separating boron from interfering elements, the extraction o! 

the tetrafluoroborate of onium compounds appears to be complete and more 

convenient to use. 

A critical examination of the calorimetric procedure for the deter­

mination of boron involving solvent extraction of the tetrafluoroborate 

of onium compounds followed by a colorimetric finish with a dye was 

carried out with dyes which hitherto have not been reportedly used for 

this method. A whole range of dyes were tested with the aim of selecting 

a suitable one for the determination of boron in steel. 

In carrying out the experiments, special attention was paid to the 

spectral characteristics of the dye-fluoroborate complex in the extracts, 

apparent molar absorptivities, the values of the blanks, adherence to 

Beer's law and the reproducibility of results. The spectral character­

istics of each dye-f1uoroborate complex in the extract were compared with 

those of the dye itself, with a view of detecting any overlapping of the 

spectra. This comparison of the spectra in conjunction with the values 

obtained for the blanks was used in arriving at some conclusions about 

the suitability of each dye for the determination of boron. Beer's law 

plots were constructed over a chosen range and the mean apparent molar 



absorptivity was calculated on thebasi. of the results of the Beer's 

law plot. 
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The procedure involved in each case was simple. To an aliquot of 

standard sodium tetrafluoroborate solution in a 100mlpolyethylene separating 

funnel was added an - aliquot of tetraphenylarsonium chloride solution 

of comparable concentration. Silver acetate solution was added to precipi­

tate chloride ions because excess tetraphenylarsonium chloride is extracted 

by chloroform if chloride ions were not removed. The tetraphenylarsonium­

fluoroborate complex formed was then extrac-ted with chloroform. The 

extracted complex was transferred to another polyethylene separating 

funnel containing 5-10ml of water and the dye or coloured compound. The 

mixture was shaken in order to replace the tetraphenylarsonium ion component 

of the 

complex 

complex in the extract, with the dye ion. The dye-fluoroborate 

formed was filtered into a 10 or 25ml. volumetric flask and 

diluted to the appropriate volume with the organic solvent. Some quantity 

of the solution was transferred to a lcm cell and the absorbance measured. 

It was found that a change in the chromogenic reagent used affected not 

only the colour of the complexes formed but also their solubilities in 

organic solvents, thus whenever extraction with chloroform gave unacceptable 

resul ts , other organic solvents were tried. Extraction of the dye-

fluoroborate complexes was also carried Qut at different pH values. 

Blanks were determined for each of the selected experimental conditions. 

All measurements were carried out-on a Unicam SP8000 recording 

spectrophotometer or a Unicam SP600 spectrophotometer whichever was appropriate 

for the data required. Double distilled water was used throughout. 

Polyethylene vessels were employed. No attempt at purification of the 

dyes was made, the dyes were used as supplied by the makers. 



------------------------------- ---- -----

RESULTS 

BRILLIANT GREEN (BASIC GREEN 1) C.l. 42040 

As shown on Table 9. intolerably high blanks were obtained with all 

the solvents tested except benzene. 
51 . 

Babko and Marchenko had stud led the 

extraction of brilliant green-fluoroborate complex with benzene and 

noted that the extraction was only 60% complete. With this in mind, 

it was felt that any procedure involving the extraction of brilliant 

green-fluoroborate complex with benzene would not only give incomplete 

extraction (less than 100%) but would also not be entirely new. 

pH 

Table 9 

0.05% Brilliant green solution in ethanol was used 
and the sample contained 10fg of boron as BF4 

~max 640nm 

of Organic 
Absorbance 

Net aqueous 
phase Solvent 

Sample Blank 
Absorbance 

Carbon tetra-
2-4.5 chloride 0.045 0.045 -
2-4.5 Chlorobenzene >2 72 -
2-4.5 Chloroform >2 >2 -
2-5.0 lsoamylalcohol )2 >2 -
2-4.5 Cyclopentanone >2 ;;>2 -
2-4.0 Quinoline >2 >2 
2-5.0 Toluene 0.57 0.13 0.34 
3.5 Benzene 1. 70 0.03 1.67 

2-4.5 Cyclohexane 0.06 0.06 -
2-4.5 Diethyl ether 0.165 0.160 0.005 
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ETHYL VIOLET (BASIC VIOLET 4) C.I. 42600 

Results obtained are shown on TablelQ High blanks were obtained with 

the different solVents tried, in spite of the wide variation in pH. 

pH 

Table 10 

0.1% Ethyl violet solution in water was used and the 
sample solution contained 20~g of boron as BF4 

Amax = 600nm 

of aqueous Organic 
'Absorbance 

Net 
phase Solvent 

Sample Blank 
Absorbance 

1.66 Benzene 0.145 0.030 0.115 
, 3.64 " 0.23 0.10 0.13 
6.41 " 0.48 0.55 -0.07 
3.60 Chlorobenzene 0.00 1.5 -1.5 
3.60 Chloroform 0.00 >2 
3.60 Toluene 0.08 0.04 0.04 
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SOLOCHROME BLACK PV200 (Mordant Black 9) C.l. 16500 

H 

N=N 

HO 

~ 

OH 

The absorption spectrum of the tetra phenyl arsonium - solochrome 

black complex showed three well defined peaks at 380nm, 482nm and 518nm 

respectively, but as the results in Table 11 show, high blanks were 

obtained at each of these wavelengths of maximum absorbance. 

An 

Amax (nm) 

380 

482 

518 

Table 11 

The Complex w~~ extracted with chloroform 
aliquot of 10 M solochrome black solution in 
water vias used. pH of aqueous phase 4.0 

Absorbance 
Concentration of 

* TPA+ dye - TPA complex Blank 

2 x 10-5M 0.340 

4 1O-5M 0.450 
0.100 

x 

, 

2 x 1O-5M 0.245 

4 10-5M 0.290 
0.130 

x 

2 x 1O-5M 0.240 

4 x 1O-5M 0.280 
0.145 

* TPA+ = tetraphenylarsonium ion 

Net 
Absorbance 

0.240 

0.350 

0.115 

0.160 

0.095 

0.135 
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SEVRON RED'L (Basic Red 17) 

The structure of Sevron Red LJ which is a monoazo dye has not been 

released by the manufacturers, (E.I. Du Pont de Nemours & Co., 

Wilmington, Delaware, U.S.A.). 

Very low absorbance values were obtained as shown in Table 12. The 

results showed that the complex was not very soluble in the organic sol-

vents tested. In other words, the extraction of the complex was far from 

being complete. 

pH 

Table 12 

0.05% Sevron Red L solution in water was used and 
the sample contained 20pg of Boron as BF4 

Amax = 475nm 

Absorbance I 
of aqueous Organic Net 

phase Solvent Sample Blank 
Absorbance 

1.5 Chloroform 0.115 0.070 0.045 
3.5 .. 0.145 0.058 0.087 
3.5 Benzene 0.030 0.030 ' Nil 
3.5 Chlorobenzene 0.090 0.040 0.050 
4.0 Toluene 0.020 0.020 Nil 

• 
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RHODAMINE B (Basic Violet·lO) C.1. 45170 

With Rhodamine B. very low absorbance '(a lues were also obtained and 

these are shown in Table 13. It appeared that the dye-fluoroborate com-

plex was not extracted completely into the organic solvents tested, in 

spite of the variation in pH. 

Table 13 

0.1% of Rhodamine B solution in water was used and 
the sample solution contained l~g of boron as BF4 

555nm 

Absorbance Net 
pH of aqueouS Organic 

phase Solvent Absorbance 
Sample Blank 

1.40-1.47 Benzene 0.195 0.060 0.135 

4.0 Toluene 0.070 0.050 0.020 

1.4 
.. 0.030 .020 O.OlO 

3.3 Chloroform >2 >2 
4.5 

.. 1. 70 0.98 0.72 

• 
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SOLOCHROME V IDLET (Mordant violet 5) C. r. 15670 

OH OH 

Preliminary experiments with chloro~orm, dichlorobenzene, benzene, 

toluene, ethyl acetate and nitrobenzene showed that only chloroform was 

suitable for the extraction of the solochrome violet-tetraphenylarsonium 

ion complex and even then low absorbance values were obtained as shown 

in Table14. In the presence of fluoroborate ion, still lower absorbance 

values were obtained. In addition, the absorbance of the solochrome 

violet-tetraphenylarsonium complex was found to increase with time but 

became steady after 30 minutes (see Table 15). The blanl< did not exhibit 

any change in absorbance with time. It appears from the observed 

phenomenon that the rate of formation of the solochrome violet-tetra­

phenyl arsonium complex was slow. This was a disadvantage which made the 

procedure based on the use of solochrome violet inferior to some of the 

existing calorimetric methods for the determination of boron . 

• 

1.72 



Table 14 

Aliquots of 10-2M Solochrome violet solution in water was used 
and the complex was extracted with chloroform. 

pH of aqueous phase 3.5 

}.max = 480nm 

Cone en tra t ion 
Absorbance 

Net 
Apparent Molar 

of TPA+ Dye Absorbance 
Absorptivi t 1, E. 

Sample Blank (l.mol-lcm- ) 

1 x 1O-5M 0.175 0.035 0.140 14,000 

2 x 1O-5M 0.350 0.035 0.315 15,700 

4 x 1O-5M 0.670 0.035 0.635 15,900 

* TPA+ = tetraphenylarsonium ion 

Time (mins) 

5 

20 

30 

Table 15 

Amax = 480nm 

Concentration of 
Absorbance 

+ TPA Dye complex 
Sample Blank 

1 x 
-5 

10 M 0.065 

2 x 10-51.1 0.160 
0.044 

I x IQ-5M 0.078 , 

2 x 10-51.1 0.330 
0.045 

1 x IQ-5M 0.100 

2 x IQ-5M 0.420 
0.045 

• 

Net 
Apparent Molar 

Absorbance 
Absorptivity, I:. 
(l.mol- l cm-I) 

0.021 2,100 

0.116 5,800 

0.033 3,300 

0.285 14,250 

0.055 5,500 

0.375 19,000 
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POTASS ruM THIOCYANATE 

An unsuccessful attempt was made to utilise the anion formed between 

potassium thiocyanate and iron (Ill) chloride as a chomogenic reagent. 

In the attempt, two procedures were adopted: A direct method inqolving 

the extraction of iron· (Ill) thiocyanate-tetrafluoroborate complex with 

dichlorobenzene gave rise to very high blanks. The second method which 

involved the extraction of tetraphenylarsonium-tetrafluoroborate complex 

with dichlorobenzene followed by the replacement of the tetraphenylarsonium 

ion by the divalent iron (Ill) thiocyanate ion also gave rise to high 

blanks (see Table lA). In addition, the absorbances of the blanks and 

sample solutions increased with time and became steady at the same value 

after about 25 minutes. Moreove';, the colou~ of the iron (Ill) thiocyan-

ate-tetrafluoroborate extract faded after standing for 1 hour. Obviously, 

some reaction which interferes greatly with the procedure was taking place. 

Table 16 

Absorbances of tetraphenylarsonium-fluoroborate complex 
,Arnax = 5l0nm. Each sa!!Iple solution contained the 

amount of boron as BF4 shown on the table. 

Time in minutes Blank ~g fl'}-lE; 8fg 

0 0.06 0.13 0.16 0.205 
5 0.12 0.27 0.285 0.40 

10 0.20 0.34 0.:335 0.42 
15 0.32 0.345 0.40 0.43 
20 0.40 0.360 0.42 0.43 
25 0.43 I 0.43 0.45 0.43 I . 



BROMOPYROGALLOL RED (Dibromopyrogallol sulphonphthalein) 

HO 
OH 

~ r 

OH 

Br~ o 

Bromopyrogallol red in the presence of ammonium acetate and EDTA was 

tested and found to be unsuitable. Ammonium acetate solution (20%) was 

used as a buffer and EDTA solution was incorporated into the solution as 

a masking agent for cations which will interfere by react ing with bromo-

pyrogallol red, especially if the method was to be applied to the analysis 

of steel. While a slight excess of bromopyrogallol red gave reasonable 

results, a fortyfold excess gave rise to a red precipitate which left the 

organic solvent completely devoid of any colour. However, in cases where 

otherwise satisfactory results were obtained, the extraction was found to 

be between 54 and 62% complete. When the procedure was applied to some 

steel samples, a violet precipitate was obtained. Measurement of the 

absorbance of what was left in the extracts showed that the extraction 

was only about 34% complete. The formation of a precipitate in the 

presence of excess of bromopyrogallol red tends to suggest that the colour 

of the extract iS,dependent on the formation of a precipitate which is 

not very soluble in the organic solvents used. But it is difficult to 

say without further investigation whether the precipitation is due to the 

.adsorption of excesS bromopyrogallol red ions on the tetraphenylarsonium-
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bromopyrogallol red complex or vice versa. On the other hand, precipitation 



may be a straight forward case of insolubility of the bromopyrogallol 

red itself. 

ORANGE IV 

Experiments with Orange IV proved successful and details of the 

investigations carried out are described in the next section. 
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IV. DEVELOPMENT OF A PROCEDURE FOR THE DETERMINATION OF BORON WITH 
ORANGE IV. 

ORANGE IV (TROPAEOLIN 00) C.I. 13080 

N=N 

Preliminary investigations were conducted with some "oniumtt com-

pounds with a view of selecting the onium ion - orange IV ion association 

'complex capable of satisfying most of the conditions required for a 

successful development of the procedure. For instance, the formation 

constant.of the onium ion - orange IV complex should be greater than that 

of the onium ion - fluoroborate complex. In addition the complex should 

be stable and it should be highly soluble in chloroform. 

177 

-4 
3ml each of 10 M tetraphenylarsonium chloride, tetraphenylphosphonium 

chloride, tetrabutylphosphonium chloride and (methyl)-triphenylphosphonium 

bromide solutions were pipetted into different separating funnels containing 

5ml of 
-4 

5 x 10 M orange IV solution. Each onium ion - orange IV complex 

was extrac ted with IOmI of chloroform. The extracts were filtered 

into standard volumetric flasks and diluted to definite volumes with 

chloroform. The absorbance of each extract was measured with chloroform 

as reference and the apparent molar absorptivities calculated. Blanks 

. (i.e. solutions containing no onium compound) were also determined. The 

resul ts are shown on Table 17.· 

• 
I 

I 
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Table 17 

Absorbances of onium ion - orange IV complexes 

.\max 
Absorbance Net 

Apparent molar 
Onium Compound (nm) Absorbance absorptivity i C 

Sample * Blank (l mol- l cm- ) 

Tetraphenylarson- 405 
0.960; 0.955 

0.015 
0.945; 0.940 31,500; 31,300 

ium chloride 0.960 0.945 31,500 
. 

Tetraphenylphosph 408 
0.665; 0.670 

0.001 
0.664; 0.669 55,200; 55,700 

onium chloride 0.665 0.664 55,200 

Tetrabutylphosph-
408 

0.585; 0.590 
0.001 

0.584; 0.589 48,750; 49,000 
onium chloride 0.590 0.589 49,000 

(methyl)-Triphenyl- 0.300; 0.305 0.300; 0.305 10,000; 10,000 
phosphonium bro-1408 0.000 , 
mide 

0.305 
1
0 . 305 10,000 

*Average of three readings 

The usual methods for determining formation constants through the 

application of the law of mass action were not used here. It is doubtful 

if the simple mass-action equation will adequately describe the reactions 

taking place in the water-chloroform interface. With the exception of a 

few cases, the state of solutes in organic solvents rarely satisfy the 

requirements of ideal behaviour under which the law of mass action is 

usually applied. However, on the basis of the values of the molar absorp-

tives, tetrabutylphosphonium chloride and tetraphenylphosphonium chloride 

were considered to be reagents likely to give good results. In order to 

confirm this, the,experirnents were repeated. Separate mixtures of equi-

molar solutions of tetrafluoroborate and the onium compounds were extracted 

with chloroform. The extracts were transferred to different separating 

. funnels containing the same amount of orange IV solution as before. 

These mixtures were shaken in order to replace the tetrafluoroborate ion 



with the orange IV anion. The absorbances of the onium ion - orange IV 

complexes were then measured as before. The results obtained are shown 

on Table 18. Tetraphenylarsonium ion showed a slight decrease in the 

apparent molar absorptivity but on the basis of sensitivity, tetraphenyl-

phosphonium ion was chosen as the most suitable onium ion. 

I 

Table 18 

Results of the extraction of onium ion-tetrafluoroborate complex 
followed by replacement of the tetrafluoroborate ion 

by orange IV anion 

Amax Absorbance 
Net 

Apparent Molar 
Onium Compound (nm) Absorbance Absorptivity ie. 

Sample *Blank (l.mol- l cm- ) 

Tetraphenylarson-
405 

0.385; 0.385 
0.004 

0.381; 0.381 25,300; 25,300 
ium chloride 0.390 0.386 26,000 

Tetraphenylphosph-
408 

0.880; 0.905 
0.002 0.878: 0.903 29,300: 30,000 

onium chloride 0.915 0.913 30,500 

Tetrabutylphosph-
408 

0.750: 0.740 
0.003 

0.747: 0.737 25,000: 24,600 
onium chloride 0.750 0.747 25,000 

I (Methyl)-Triphenyl 
0.285: 0.285: 

phosphonium bro- 408 
0.290 

0.000 
0. 29O i 9 ,500; 9,700 

mide 1°·285 0.285 /9,500 

*Average of three readings 

OPTIMISATION OF EXPERlhffiNTAL CONDITIONS 

-

After tetraphenylphosphonium chloride had been chosen, attempts were 

made to improve the overall sensitivity of the method. The results in 

Table 18 show a dramatic fall in the value of the apparent molar absorp-

tivity of the tetraphenylphosphonium - orange IV complex. There are two 

possible explanations for this decrease: the first is that the high 

absorbance and hence high apparent molar absorptivity of the onium ion -
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orange IV complexes, in the absence of tetrafluoroborate ion, might be 

due to the presence of excess onium compound in the chloroform extract~ 

60 . 61 
Bock and Beilstein, and Bock and Jalnz, in detailed studies of the 

solubilities of tetraphenylarsonium and tetraphenylphosphonium ions, 

respectively, in chloroform, showed that up to 15% tetraphenyiarsonium -

and tetraphenylphosponium chlorides were easily extracted into chloroform. 

It is therefore possible that 15% of the tetraphenylphosphonium ion that 

complexed with orange IV in the absence of tetrafluoroborate ion, passed 

into the organic phase as chloride. Attempts to remove chloride ions by 

adding silver acetate solution were unsuccessful. Instead of increasing, 

the absorbances of the solutions decreased further. A possible explana-

tion for this is that silver ions formed soluble complexes with chloride 

, 
ions, thereby re-introducing chloride ions and possibly other negatively 

charged complex ions into solution. 

The second possible explanation for the decrease in absorbance, 

observed in the presence of tetrafluoroborate ion, may be hydrolysis of 

tetrafluoroborate ion. Hydrolysis of tetrafluoroborate would reduce the 

amount of tetrafluoroborate ions available for complexation with tetra-

phenylphosphonium ions and result in only a small amount of the tetraphenyl-

phosphonium-fluoroborate complex being formed and extracted. Consequently, 

the amount of tetraphenylphosphonium ions available for complexation with 

orange IV anion would be small. Two alternative attempts were made to 

remedy the situation. The first attempt involved decreasing the pH of 

the solution containing tetra phenyl phosphonium and tetrafluoroborate ions 

prior to extraction, by the addition of IM sulphuric acid solution. This 

was done in order to minimise or stop the hydrolysis of tetrafluoroborate 



and thus ensure that all the tetrafluoroborate ions in solutbn were 

available for complexation with tetraphenylphosphonium ions. The alter-

native attempt was to accelerate the hydrolysis of tetrafluoroborate 

after it had been extracted as the tetraphenylphosphonium-fluoroborate 

complex, thus releasing all tetraphenylphosphonium ions for complexation 

with orange IV anions. This was done by adding IM sodium hydroxide 

solution to the extract and neutralising it with IM sulphuric acid at 

the end of a period of time (5 minutes to 2 hours). In both attempts, 

blue precipitates were obtained and the absorbances of the extracts were 

about half what they should be. 

Having failed to establish any link between the low absorbances of 

the onium ion - orange IV complexes (in the presence of tetrafluoroborate 

ions), the hydrolysis of tetrafluoroborate and the presence of chloride 

ions in the mixtures, attention was turned to checking the repeatability 

of the extraction of the tetraphenylphosphonium-fluoroborate complex with 

chloroform. 

REPEATABILITY OF THE EXTRACTION OF TETRAPHENYLPHOSPHONJUM -
FLUOROBORATE COMPLEX WITH CHLOROFORM 

A uV spectrophotometric method was utilised to determine the 

repeatability of the extraction of tetraphenylphosphonium-fluoroborate 
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complex with chloroform. 
-3 I •. 

10ml each of 10 M tetraphenylphos phnn-".w, j2,o,A..U..\.L"'" 

were pipetted into ten different separating funnels containing 5ml of 

2 x lO-4M tetrafl'uoroborate solution and 5rnl of water. The tetraphenyl-

phosphonium-fluoroborate complex formed was extracted with 10ml of 

chloroform and the extracts filtered into different 25ml volumetric 

flasks. The extracts Were diluted to 25ml with chloroform. The UV 

spectra of one of the solutions was recorded using a Unicam SP8000 



------------------------------------------- -

recording spectrophotometer and well-defined peaks were obtained at 269 

and 276nm. The UV absorbances of the ten solutions were then measured 

at 269 and 276nm. The coefficients of variation of the results at 269nm 

was 1.9% and that at 276nm was 2.4%. Compare~ with published data,62 

the molar absorptivities obtained represent the fact that 100% of the 

tetraphenylphosphonium-fluoroborate complex was extracted into ch1oro-

form. 

PROCEDURE FOR THE DETERMINATICN OF BORON WITH ORANGE IV 

APPARATUS: Unicam SP8000 and SP600 spectrophotometers with lcm silica 

cells. Polyethylene measuring cylinders, separating funnels, pipettes 

and beakers. Radiometer PHM64 Research pH meter. 

REAGENTS: Use double distilled water throughout and analytical grade 

reagents. Prepare all reagent solutions in plastic or polyethylene 

vessels and transfer immediately to polyethylene bottles or other poly-

ethylene containers with screw closures. 

Boron stock solution; 
-1 

1 35,lJg . ml 
• 

Dissolve 0.7723g of boric acid in 

water and dilute to 1 litre in a volumetric flask. 

Hydrofluoric acid solution 5%. Carefully add 12.5ml of 40% hydrofluoric 

acid solution to 70ml of water in a polyethylene beaker, transfer the 

solution to a polyethylene volumetric flask and dilute to lOOml with 

water. 

Concentrated Standard tetrafluoroborate solution 2.5 x lO-4M, Pipette 

5ml of the boron stock solution into a polyethylene bottle, add 20ml of 

water and 8ml of 5% hydrofluoric acid solution. Mix and let stand for 

24 hours. Transfer the solution to a volumetric flask and dilute to 

250ml with water. Store in a polyethylene bottle. 
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Dilute Standard tetraf1uoroborate solution 2.5 x 10-5M. Pipette 10m1 of 

the concentrated tetraf1uoroborate solution into a 100ml polyethylene 

volumetric flask. Add Iml of 5% hydrofluoric acid solution and dilute 

the mixt~re to 100ml with water. Prepare this solution fresh whenever 

needed. 

Tetraphenylphosphonium solution 5 x 10-4M. Dissolve 0.1874g of tetra-

phenylphosphonium chloride in water and dilute to 1 litre with water. 

Store in a polyethylene bottle. 

-4 
Orange IV solution 5 x 10 M. Dissolve 0.0939g of orange IV powder 

(Tropaeolin 00) in lOOml of water. Filter through a glass filter and 

dilute to 500ml with water. Store in a polyethylene bottle. 

Chloroform, analytical reagent grade. 

Procedul'e. Pipette an aliquot (1-5ml) of the concentrated standard 

tetrafluoroborate solution (Note 1) into a polyethylene separating funnel 

-4 
containing 5ml of 5'x 10 M tetraphenylphosphonium chloride solution. 

Dilute the mixture to 10ml with water (if necessary). Extract the tetra-

phenylphosphonium-fluoroborate complex by shaking the mixture with 10ml 

of chloroform for 1-2 minutes. Allow the phases to separate and transfer 
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the organic layer to another polyethylene separating funnel, containing 

-4 
10ml of water and 5ml of 5 x 10 M Orange IV solution. Repeat the extrac-

tion of the tetraphenylphosphonium-fluoroborate complex with a further 

10ml of chloroform and transfer the extract to the second separating 

funnel. Shake this second separating funnel for 2 minutes. Allow the 

phases to separate. Filter the organic layer through a Whatman 41 filter 

paper, into a 25m1 volumetric flask. Dilute to 25ml with chloroform 

(Note 2), mix and measure the absorbance of the extract at 40Snm using a 



blue:"'sensitivG photocell with chlorofo'rm as reference, in a lam cell. 

Treat the blank (containing no aliquots of the tetrafluoroborate 

solution) in a similar manner. Obtain the net absorbance by subtracting 

the blank. To construct a calibration graph, plot absorbance against 

concentration of boron. 

Notes 

1. Use the dilute standard tetrafluoroborate solution for lower 

-1 
ranges of boron (less than O.3pg.ml . ). 

2. In the lower range of boron (i.e. when dilute standard 

tetrafluoroborate solution is used), nO dilution is needed 

but the volume of chloroform used for extraction must be 

measured accurately with a pipette. Filter the coloured 

extract into a lcm cell directly. 
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RESULTS AND DISCUSSION 

Fig. 33 shows the spectrum of the tetraphenylphosphonium tetrafluoro-

- . 
borate ion-association complex after the replacement of the BF4 component 

with orange IV anion. For maximum sensitivity of the procedure, the 

absorbances of the extracts were measured at 408nm. A typical calibration 

graph is shown in Fig. 34. The slope of the graph showS that the apparent 

-1 -1 
molar absorptivity is 30,0001.mol. cm . Table 19 shows the results 

-5 obtained at the 10 M level of boron in aqueous solution. The coefficient 

of variation for ten determinations at the lXlO-5M BF4 level was found to 

be 1.3%. 

Table 19 

Results obtained for the determination of boron at the 10-5M level. 

Final Concentration Absorbance 
of BF4 at /.= 408nm 

0 0.001, 0.003, 0.002 

1 x 1O-5M 0.305, 0.300, 0.365 

2 x 1O-5M 0.580, 0.600, 0.610 

3 x 1O-5M 0.880, 0.905, 0.880 

4 x 10-5M 1.210, 1.220, 1.205 

5 x 10-5M 1.500, 1.510, 1.490 

-3 Investigations carried out with 5 x 10 M Orange IV solution showed 

no increase in the blank neither were the results Significantly different 

-4 
from those obtained with 5 x 10 M Orange IV solution. Higher concentra-

tions of.Orange IV solution were not used because such amounts of Orange 

. 0 
IV were not completely soluble in water at room temperature (22 C). 
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V. APPLICATION OF THE METHOD DEVELOPED TO Tlm DETERMINATION OF BORON IN 
STEEL 

Most of the current cOlorimetric methods for the determination of 

boron in steel involve preliminary separation of boron from the sample 

matrix because of the strong influence of interfering elements. In 

attempts to eliminate the effects of interferences, tedious and time-

consuming separation techniques such as distillation and ion-exchange 

chromotography have been employed, thus making the methods unsuitable 

for routine application. It was the aim of the present study to develop 

a colorimetric method for the determination of boron in steel which did 

not require any preliminary separation step-and thus would be suitable 

for routine application. It was considered that the isolation of the 

onium salt of tetrafluoroborate by extraction with a suitable organic 

solvent would not only simplify the method but also eliminate the 

effects of interfering elements. In addition, it would improve the 

accuracy and precision of the method. Preliminary investigations 

described in the last chapter have shown that complete extraction of 

tetraphenylphosphonium tetrafluoroborate ion-association complex is 

achieved easily. The calorimetric method for the determination of boron 

with Orange IV which was described in the last chapter was applied 

directly to some steel samples. The aim was to determine acid-soluble 

boron in steel and the dissolution of the steel samples was carried out 

using essentially the method given in the British Standard. 

PRINCIPLE 

The steel sample is dissolved in dilute sulphuric acid by heating 

under reflux. Hydrogen peroxide is added and any insoluble residue is 

removed by filtration. An aliquot of the filtrate is treated with 



ammonium hydrogen dif1uoride solution. The tetrafluoroborate ion (BF
4

) 

which is formed is extracted into chloroform as an ion-association 

complex in which the cation is tetraphenylphosphonium (TPP+). The BF4 

in the extract is then replaced by Orange IV anion and the determination 

is completed colorimetrically. 

APPARATUS 

1. Boron free glassware should be used for the solution of the sample. 

2. Reflux Air Condenser: A 76cm x 3mm internal diameter glass tube 

with rubber bung to fit a 100ml conical flask. 

3. Polyethylene bottles, 100ml capacity, fitted with polyethylene 

stoppers, and polyethylene beakers, measuring cylinders, 

standard flasks and pipettes. 

4. A Unicam SP600 spectrophotometer was used together with lcm silica 

cells. 

REAGENTS 

Sulphuric acid solution (20% v/v) 

To 500ml of water add, cautiously, 200ml of analytical reagent 

grade sulphuric acid (sp.gr. 1.84). Mix, cool, dilute to 1 litre with 

water and mix thoroughly. 

Hydrogen peroxide "100 volume" analytical reagent grade. 

Ammonium hydrogen difluoride, 2M 

Dissolve 57.04g of analytical reagent grade ammonium hydrogen 

difluoride (NH
4

F,'HF) in water and dilute to 500ml with water. Store in 

a polyethylene bottle. 
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Transfer the extract to another polyethylene separating 

funnel containing 5ml of 5 x lO-4M Orange IV solution and 

lOml of water. Shake the mixture for about two minutes to 

replace the BFZ component of the tetraphenylphosphonium 

tetrafluoroborate ion-association complex with Orange IV anion. 
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Tetraphenylphosphonium solution, 1 x 10-3M 

Dissolve 0.3749g of tetraphenylphosphonium chloride ~C61l5)4PCl] 
in water and dilute to 1 litre with water. Store in a polyethylene bottle. 

Chloroform. analytical reagent grade. 

Orange IV solution, 5 x 10-4M 

Dissolve 0.0939g of Orange IV powder '(Tropaeolin 00) in 100ml of 

water. Filter through a glass filter and dilute to 500ml with water. 

Store in a polyethylene bottle. 

PROCEDURE 
, 

Weigh 0.5 - 1.Og of sample and transfer to a 100ml conical flask. 

v ' 
Add 25ml of sulphuric acid solution (20% /v), insert the reflux condenser 

and digest just below boiling point until solvent action ceases. Add 2ml 

of hydrogen peroxide (100 vol.) to oxidise carbides etc. Heat gently for 

about 30 minutes to expel excess hydrogen peroxide. Cool, disconnect and 

rinse the condenser with 2-3ml of wat er. Filter the solution through a 

Whatman No. 540 filter paper into a 50ml standard polyethylene flask and 

wash the residue with the minimum amount of sulphuric acid (20% v/v). 

Dilute the filtrate to 50ml with water. Pipette 5ml of the steel solution 

into a polyethylene beaker and add 2ml of 2M a~onium hydrogen difluoride 

solution. Allow the solution to stand for 30 minutes 'to enable the 

tetrafluoroborate ion to form. Transfer the solution to a polyethylene 

separating funnel. Rinse the beaker wit'h 3ml of water and add the 

washing to the solution in the separating funnel. Add 5ml of the 

tetraphenylphosphonium chloride solution into the separating funnel. 

Extract the tetraphenylphosphonium tetrafluoroborate ion-association 

complex with two 10ml portions of chloroform by shaking for two minutes. 

) 
Allow the layers to separate and then filter the organic layer into a 
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25ml standard flask. Dilute the filtrate to 25ml with chloroform and 

then measure the absorbance of the solution at 408nm using a lem cell. 

RESULTS AND DISCUSSION 

Table 20 shows the results obtained for two steel samples analysed 

by the method described. The percentagesof boron found were obtained 

with reference to the calibration graph on Fig. 34. Compared with the 

standardised values, the values obtained are about three to four times 

greater. Obviously. the influence of interfering elements is quite pro-

nounced and this detracts from the main objective of the study which was 

to develop a direct method for the determination of boron in steel without 

preliminary separation. 

Table 20 

Results obtained for the determination of boron in British 
chemical standards steel samples. 

Absorbance at Amax = 408nm Boron Found Standardised 
Steel value 

Sample *Blank (%) (%) 

BCS 326 0.420 0.0028 
0.530 0.002 0.0040 0.001 
0.490 0.0033 

BCS 329 0.910 0.024 
0.925 0.002 0.025 0.008 
0.900 0.024 

*Average of three readings. 

It appears that the extraction of tetraphenylphosphonium tetrafluoro-

borate with chloroform failed to separate boron completely from other 

elements in the sample matrix, The high results obtained may be 

attributed to two reasons. 

which were formed during the dissolution of the steel samples were 
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co-extracted with BF4 as ion-association complexes with tetraphenylphosphonium 

as the cation. These anions were,subsequently replaced also by Orange IV 

anion in the final stage of the procedure. The second reason may be that 

Cr(III), Mn(III), Ta(V), Fe(III) etc. which form strong anionic fluoro 

complexes in the presence of excess hydrofluoric acid or fluoride might 

hav~ been extracted into chloroform as their ion-association complexes 

with tetraphenylphosphonium ion. Thus in the subsequent replacement of 

the BF4 component of the tetraphenylphosphonium tetrafluoroborate ion­

association complex, these anionic fluoro components were also replaced. 

There was no evidence to support any of these assumptions. It would 

therefore be desir'able to carry out a systematic investigation of the 

effects of interfering elements. 

• 

I 

I 
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VI. CONCLUSION 

The results of this study show that boron could be determined in 

aqueous solution using orange IV as a calorimetric reagent. The 

precision of the determination is good and the reagent is sensitive 

enough for accurate determination of boron in aqueous solution. Though, 

in its present form, it is not applicable to the analysis of steel 

samples, it is considered that other areas of application would be 

feasible. For instance, it may be applicable for the determination of 

boron in water, plants and soil. 

I 
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GENERAL DISCUSSION 

The object of the present study was to evaluate two new electroanalytical 

instrumentation, the PAR 174 Polarographic Analyzer and PAR 173/179 digital 

coulometer for the purposes of steel works chemical analysis and if possible 

to develop sensitive analytical procedures for the determination of some 

selected elements in steel. These objectives have, in the main? been 

achieved. Two sensitive electroanalytical methods were developed for the 

determination of silicon and iron in steel and iron ore samples respectively, 

and although the colorimetric method which was developed for the determina-

tion of boron was ,unsuccessful when applied to steel analysis. 

Two pulse polarographic procedures were developed for the determination 

of silicon: 
-1 

one for levels of silicon above O.02pg.ml and the other for 

nanogram amounts of silicon. The two procedures together provide a sensi-

tive, precise and accurate method for the determination of silicon in 

steel. The method has a number of advantages particularly for the deter-

mination of very low levels of silicon in steel. With the growing complexity 

of steel making, it might soon be necessary to determine silicon at levels 

much lower than the detection limits of the current colorimetric methods 

for the determination of silicon in steel. The pulse polarographic method 

developed in this study would allow, if required, low levels of silicon in 

steel to be determined with high precision and accuracy. It would be of 

particular value for the determination of trace amounts of silicon in 

high-purity iron, mild steel, cast iron and low alloy steels. 

Perhaps, a disadvantage of the method developed in the present 

study, is the need to remove iron and other interfering elements by mercury 

cathode electrolysis. The reason(s) why iron interferes is not known but 

it has been shown that the reduction of iron(III) produces a large 

polarographic wave which tends to swamp waves due to other elements. In 

• 
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the, present study no polarographic wave waS observed for the reduction of 

iron(III) but the presence of iron(III) in the solution to be polarographed 

resulted in the fo-12-mOlybdosilicate wave being suppressed completely. 

However, the removal of interfering elements by mercury cathode 

electrolysis is not entirely new in steel analysis. It is used for 

separating major amounts of interfering elements before aluminium in steel 

is determined by titrimetry or colorimetry. 
1 

Besides, mercury cathode 

electrolysis is a very efficient separation technique for removing large 

amounts of interfering elements. 

Despite the need for prior removal of interfering elements from 

sampie solutions before the polarographic determination of silicon, it is 

hoped that the pulse polarographic method developed in the present study 

will prove very useful for determining silicon in steel because of its 

sensitivity, accuracy and precision. In addition, the PAR 174 Polarographic 

Analyzer may prove useful in steelworks laboratories for the examination 

of diverse types of materials because of its versatility, relatively low 

cost and the fact that it can be used for the determination of trace 

amounts of elements, as the results of the present study show. 

A few examples of controlled-potential coulometric determination of 

iron at a mercury pool electrode have been reported in the literature.
2 

It does not appear, however, that any method for the determination of 

iron in iron ores by controlled-potential coulometry which involves prior 

separation of iron by solvent extraction has been reported. The results 

obtained in the present study clearly establish the value of the solvent 

extraction - cQuiometric procedure as a precise analytical method. 

Using a commercially available low cost instrumentation such as the PAR 

173/179 digital cQulometer, the coefficient of variation for the 

coulometric determination of ~ron in iron ores in oxalate buffer was 
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about 0.3%. The p~osent coulometric method can also be utilised for 

routine analysis without any loss ,in precision and accuracy. It therefore 

has a number of advantages which would be of practical value to any large 

steelworks laboratory. In addition, the procedure can be automated, thus 

speeding up the entire process of analysis of iron ores in metallurgical 

laboratories. 

Although the procedure which involved pipetting aliquots of iron ore 

sample solution directly into the coulometric cell was equally precise, 

the question of the effect of interfering elements still needs to be 

solved. It may be advisable to carry out a systematic study of the 

effects of interfering elements with the aim of identifying precisely 

these interfering elements and if possible, to establish their tolerance 

levels. 

Though the results obtained by the procedure involving the use of 

thallium(I) as internal standard indicated that the procedure was not as 

precise as the other two, th.€ fact that some meaningful results were 

obtained suggest that high precision may be obtained if only a suitable 

internal standard can be found. An element whose reduction potential, 

in oxalate solution, at a mercury electrode is much more negative than 

thallium, for example, and whose reduction is not coulometrically 

reversible, may be suitable as an internal standard. This is because it 

would make it easier for the reduction potential of iron(III) to be 

selected accurately. In the present study, one of the difficulties 

encountered was in selecting a suitable applied potential for the 

reduction of iron(III) in the presence of thallium(I). 

On the whole, the controlled-potential coulometric method developed 

in the present study has some advantages over the current classical 

titrimetric method for the determination of iron in iron ores because it 

• 
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is simple, accurate and precise, and could be used for routine analysis. 

A procedure was also develop;'d in the present study for the determina-

tion of boron in aqueous solution using orange IV. The results obtained 

by the method showed that the method was sensitive and may prove advantageous 

for, the determination of boron in aqueous solution. Unfortunately, the 

method could not be applied directly to the a~alysis of steel samples 

because of interference from other constituents of steel. It is-..:.- therefore 

be necessary to carry out a thorough investigation of the effects of 

interfering elements on the method. Bock and Jainz3 in a detailed study 

of the extraction of some ions from aqueous solution with tetraphenylphos-

phonium ion had reported that chloride,' dichromate, permanganate, nitrate 

and to some extent, arsenate and phosphate were readily extracted into 

chloroform. The high results obtained with steel samples by the colorimetric 

- - - 3'-
method developed here, tends to suggest that Cl , N0

3
, Cr

2
0

7
, Mn0

4
, As04 

3-
and P04 might have been co-extracted,with BF

4
. Thus the subsequent 

replacement of BF4 by Orange IV anion could have also involved the 

replacement of the co-extracted anions (with orange IV). 

During the course of the development of the colorimetric method for 

the determination of boron, the repeatability of the extraction of BF4 

with tetraphenylphosphonium ion was tested by UV measurement of the 

tetraphenylphosphonium-fluoroborate complex extracted into chloroform. 

The test showed that BF4 was completely extracted by tetraphenylphosphonium 

ion into Chloroform. An idea which appears worthy of further investigation 

is the UV spectrophotometric determination of boron after its extraction 

as BF4 by tetraphenylphosphonium ion into chloroform. 

However, it is considered that the unsuccessful application of the 

, method described here to the determination of boron in steel does not 

'detract from its overall usefulness as a sensitive method for determining 

boron in aqueous solution . 

• 
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