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Abstract 

Two dimensional crystals, for which the shape is described by two linear sizes are common in fine 

chemical and pharmaceutical industries. Since the crystal size and shape are directly related to the 

performance of active pharmaceutical ingredients (API), the simultaneous size and shape 
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distribution control is of paramount importance in pharmaceutical crystallization engineering. To 

efficiently achieve simultaneous size and shape control often requires model based control 

strategies, however the increased computational cost of the process simulation and the substantial 

differences between the simulated and measurable quantities make the implementation of model 

based control approaches challenging. This paper addresses the important problem of the real-time 

simulation of the most likely measurable chord length distribution (CLD) and aspect ratio 

distribution (ARD) as well as the concentration variations during the crystallization of 2D needle-

shape crystals. This enables the application of focused beam reflectance measurement (FBRM) 

and particle vision and microscopy (PVM), two routinely applied probes, as quantitative direct 

feedback control tools. Artificial neural network (ANN) based FBRM and PVM soft-sensors are 

developed, which enable the direct and fast transformation of 2D crystal size distribution (CSD) 

to CLD and ARD on arbitrary 2D grids. The training data for the ANN is generated by a first 

principle, geometrical model based simulation of FBRM and PVM for high aspect ratio crystals. 

Although, the ANN approach is applicable for any simulated or experimental training datasets. It 

is also demonstrated that the in-situ imaging based shape measurement underestimates the real 

aspect ratio (AR) of crystals, for which a simple correction is proposed. From the model-equation 

solution perspective, the soft-sensors require full PB solution. The 2D high resolution finite 

volume method (HR-FVM) is applied to simulate the full 2D CSD, which is an accurate, stable, 

but computationally expensive technique. The real time applicability is achieved through various 

implementation improvements including grid optimization and data-type optimized hybrid CPU-

GPU calculations. 

Introduction 
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The crystal size distribution (CSD) of particulate materials has a major impact on downstream 

operations (filtration, drying, granulation, milling, storage) and it can be crucial in the 

pharmaceutical industry as it influences many properties of the active pharmaceutical ingredients 

(APIs), including dissolution rate and bioavailability. It has been shown that the vast majority of 

APIs have a crystal length-to-width ratio, also called aspect ratio (AR), larger than one, having 

elongated or often needle-like crystal shape.1,2 The crystallization behavior of these high AR 

crystals were profoundly investigated3–5 motivated by the fact that crystal shape has been 

correlated with numerous API properties from sticking propensity6 through compressing and 

densification mechanisms7 to bioavailability.8 

The aforementioned observations have led to the need of simultaneous crystal size and shape 

control during the crystallization process.9 Numerous techniques have been presented, mainly for 

analyzing10 but also for controlling the AR, through supersaturation control (SSC).11 It has been  

demonstrated that varying the supersaturation alone has some, but limited impact on the achievable 

crystal shape. Contrary, growth rate modifiers are able to generate significant shape variations.12,13 

Numerous growth rate inhibition mechanisms have been proposed based on empirical 

observations. Recently molecular dynamic simulations have also been employed for deeper 

understanding of the underlying mechanisms.14 As an alternative of additives, the effects of ultra-

sound on crystallization process and shape evolution have also been studied.15–17 

A major barrier to simultaneous size-shape distribution control implementation is the difficulty 

of in-situ and real time multidimensional CSD (nD CSD) measurement. Stereoscopic imaging 

setups were proposed to gather high accuracy nD CSD information.18,19 These setups are still in 

research and development stage, and are not always able to provide real-time information. Focused 

beam reflectance measurement (FBRM) and particle vision and microscopy (PVM) data are 
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routinely collected during crystallization, which provide size and shape related information, but 

the deconvolution of nD CSD from these signals is rarely possible.  

The deconvolution techniques and their applicability of predicting the CSD from measured 

chord length distribution (CLD) and AR are still intensively investigated.20–24 These studies have 

demonstrated that the back-transformation of CSD from CLD leads to ill-posed optimization 

problems. The idea of forward-transformation of CLD from CSD was also analyzed: geometrical 

models, which considered the shape of crystal only, or also included optical models were 

developed.25,26 The general conclusion of these studies is that the forward transformation cannot 

be generalized reliably for accurate off-line system analysis. However, it is known that even 

approximate models, in combination with state estimators, can be successfully applied in nonlinear 

model predictive control (NMPC).27 Consequently, there is still need for an approximate, fast 

transformation, which may not be appropriate for detailed measurement-based system analysis, 

but given the feedback-based error estimation and correction, it can provide satisfactory 

information for a model based control system.28 

Numerous studies deal with crystal shape simulation,29–31 which most often involve moments 

based PBE solution methods. Even though moment based solutions are computationally very 

efficient, they have the common limitation of not being able to provide the full CSD, only its 

moments. Full PBE solution is required to enable the use of distributional information provided 

by the FBRM CLD and aspect ratio distribution (ARD) from image analysis. An accurate but 

computationally expensive technique, often used for the solution of PBEs is the high resolution 

finite volume method (HR-FVM).32 Advanced implementations of HR-FVM, including 

parallelization on CPU clusters,33 coordinate system transformation34 and hybrid parallel CPU-
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GPU programming have enabled remarkable speedup, and brought the real-time solution of PBEs 

in the realm of possibility.35  

The objective of this work is the development of a process model for crystallization of 2D rod-

like crystals, which also includes sensor models for FBRM and PVM, using a novel fast ANN 

based 2D CSD to CLD and ARD transformation. The application is designed for real-time control 

applications, hence, the simulation time reduction is in the focus of model development. The 

existence of an offset between the real and in-situ imaging based AR is also demonstrated and a 

shape-dependent correction is proposed. 

 

Crystallization process modeling and simulation 

The 2D population balance model 

This work considers high aspect-ratio crystals, for which the shape is described by two linear 

size variables: the length (𝐿𝐿1) is considerably longer than the width and height, which are 

considered to be equal and referred to as width (𝐿𝐿2). Thus, each crystal is described by the (𝐿𝐿1, 𝐿𝐿2) 

pair. For the sake of simplicity and better readability the (𝐿𝐿1, 𝐿𝐿2) → 𝐋𝐋 vector notations will be used 

wherever is possible. The crystals population is characterized by the bivariate density function 

𝑛𝑛(𝐋𝐋, 𝑡𝑡)𝑑𝑑𝐋𝐋, which gives the number of crystals within the (𝐿𝐿1, 𝐿𝐿1 + 𝑑𝑑𝐿𝐿1) × (𝐿𝐿2, 𝐿𝐿2 + 𝑑𝑑𝐿𝐿2) size 

domain at t time moment in unit volume of suspension. Considering perfect mixing and 

homogeneous temperature field, and assuming secondary nucleation and crystal growth 

mechanisms, the PBE governing 2D CSD dynamics takes the form:  

𝜕𝜕𝑛𝑛(𝐋𝐋, 𝑡𝑡)
𝜕𝜕𝑡𝑡

+
𝜕𝜕[𝐺𝐺1𝑛𝑛(𝐋𝐋, 𝑡𝑡)]

𝜕𝜕𝐿𝐿1
+
𝜕𝜕[𝐺𝐺2𝑛𝑛(𝐋𝐋, 𝑡𝑡)]

𝜕𝜕𝐿𝐿2
= 𝐵𝐵𝐵𝐵(𝐋𝐋 − 𝐋𝐋𝒏𝒏) (1) 

with the boundary and initial conditions: 
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lim
𝐋𝐋→∞

𝑛𝑛(𝐋𝐋, 𝑡𝑡) = 0 
(2) 

𝑛𝑛(𝐋𝐋, 𝑡𝑡 = 0) = 𝑛𝑛0(𝐋𝐋) 

In the PB Eq.(1) the first term is the temporal evolution of the bivariate size density function, 

whereas the second and third terms take into account the growth along the length and width axes. 

The right hand side is for the nucleation, where 𝐋𝐋𝒏𝒏 denotes the nucleus size. 

Secondary nucleation mechanism is considered, described by the power-law formula: 

𝐵𝐵 = 𝑘𝑘𝑏𝑏𝜎𝜎𝑏𝑏𝑉𝑉𝑐𝑐 (3) 

where 𝑉𝑉𝑐𝑐 stands for the crystals volume fraction, 𝑘𝑘𝑏𝑏 and 𝑏𝑏 are material and system specific 

constants and 𝜎𝜎 is the relative supersaturation: 

𝜎𝜎 =
𝑐𝑐 − 𝑐𝑐𝑠𝑠
𝑐𝑐𝑠𝑠

=
𝑐𝑐
𝑐𝑐𝑠𝑠
− 1 (4) 

where 𝑐𝑐 denotes the solute concentration and 𝑐𝑐𝑠𝑠 is the solubility. The temperature dependency 

of solubility, expressed in mass fraction, is described by the power law equation: 

𝑐𝑐𝑠𝑠 = 𝑎𝑎0 + 𝑎𝑎1𝑇𝑇 + 𝑎𝑎2𝑇𝑇2 (5) 

In the PB Eq. (1) 𝐺𝐺1 and 𝐺𝐺2 are the growth rates along the length and width axes, respectively, 

which are calculated using the power-law rate equations: 

𝐺𝐺𝑖𝑖 = 𝑘𝑘𝑔𝑔,𝑖𝑖𝜎𝜎𝑔𝑔𝑖𝑖, 𝑖𝑖 = {1,2} (6) 

The symbols 𝑘𝑘𝑔𝑔,𝑖𝑖 and 𝑔𝑔𝑖𝑖 are system and material specific constants.  

Assuming rod-like crystals, the component balance for the crystallizing material is written as: 

𝑑𝑑𝑐𝑐
𝑑𝑑𝑡𝑡

= −
𝑘𝑘𝑉𝑉𝜌𝜌𝑐𝑐

1 − 𝑉𝑉𝑐𝑐
�� 𝐺𝐺1𝐿𝐿22𝑛𝑛(𝐋𝐋, 𝑡𝑡)𝑑𝑑𝐋𝐋
∞

0

+ 2� 𝐺𝐺2𝐿𝐿1𝐿𝐿2𝑛𝑛(𝐋𝐋, 𝑡𝑡)𝑑𝑑𝐋𝐋
∞

0

+ 𝐿𝐿𝑛𝑛3 𝐵𝐵� (7) 

where 𝜌𝜌𝑐𝑐 is the crystal density and 𝑘𝑘𝑉𝑉 is the volumetric shape factor, a transformation constant 

between the size and volume of a single crystal (𝑣𝑣𝑐𝑐):  
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𝑣𝑣𝑐𝑐 = 𝑘𝑘𝑉𝑉𝐿𝐿1𝐿𝐿22  (8) 

The temperature is considered a programmed variable, thus energy balance is not needed in the 

model. The set of partial and ordinary differential Eqs. (1)-(8) constitutes the mathematical model 

of the cooling batch crystallization of high AR crystals with secondary nucleation and crystal 

growth. Analytical solution for this equation system does not exist. The difficulty in numerical 

solution is that the two dimensional PB Eq.(1) is coupled with the mass balance Eq.(7) and the 

PBE is a hyperbolic partial differential equation (PDE). The HR-FVM is a generic method for the 

solution of hyperbolic PDEs, which was also successfully applied for the higher dimensional 

population balances.32 As model system potassium dihydrogen phosphate in water is used, for 

which the material properties are listed in Table 1, adapted from the literature.36 

 

Table 1. Material and kinetic related model parameters 

Name Meaning Value UM 

𝜌𝜌𝑐𝑐 crystal density 2388 kg/m3 

𝑘𝑘𝑉𝑉 shape factor 1 - 

𝑎𝑎0 zero order solubility constant 0.2088 - 

𝑎𝑎1 first order solubility constant -9.76·10-5 oC-1 

𝑎𝑎2 second order solubility constant 9.30·10-5 oC-2 

𝑘𝑘𝑏𝑏 nucleation rate constant 7.49·1018 #/m3s 

𝑏𝑏 nucleation supersaturation exponent  2.04 - 

𝑘𝑘𝑔𝑔,1 length growth rate constant 100.75 µm/s 

𝑔𝑔1 length growth supersaturation exponent  1.74 - 

𝑘𝑘𝑔𝑔,2 width growth rate constant 12.1 µm/s 
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𝑔𝑔2 width growth supersaturation exponent 1.48 - 

 

In this work the CrySiV Matlab based function was used to solve the model equations.35 

Process simulation and simulation time improvement 

In the simulations a seeded crystallization process is considered, where the seed CSD is given 

by the un-correlated bivariate log-normal probability density function: 

𝑛𝑛0(𝐿𝐿1,𝐿𝐿2) =
1

√2𝜋𝜋𝐿𝐿1𝐿𝐿2𝜎𝜎1𝜎𝜎2
𝑒𝑒𝑒𝑒𝑒𝑒 �−�

(ln(𝐿𝐿𝑖𝑖) − 𝜇𝜇𝑖𝑖)2

2𝜎𝜎𝑖𝑖

2

𝑖𝑖=1

� (9) 

where: 

𝜇𝜇𝑖𝑖 = 𝑙𝑙𝑛𝑛

⎝

⎛ 𝑚𝑚𝑖𝑖

�1 + 𝑣𝑣𝑖𝑖
𝑚𝑚𝑖𝑖
2⎠

⎞ 

𝜎𝜎𝑖𝑖 = �𝑙𝑙𝑛𝑛 �1 +
𝑣𝑣𝑖𝑖
𝑚𝑚𝑖𝑖
2� 

(10) 

where 𝑚𝑚 denotes the mean, whereas 𝑣𝑣 stands for the variance of the distribution. The seed and 

process related data are listed in Table 2. 

 

Table 2. Seed and process related data used in the simulations. 

Name Meaning Value UM 

𝑚𝑚1 mean length of seeds 200 µm 

𝑣𝑣1 dispersion around 𝑚𝑚1 250 µm 

𝑚𝑚2 mean width of seeds 100 µm 

𝑣𝑣2 dispersion around 𝑚𝑚2 150 µm 
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𝑉𝑉𝑠𝑠 seed volume fraction 0.01 - 

𝑇𝑇𝑖𝑖𝑛𝑛 initial temperature 60 oC 

𝑇𝑇𝑓𝑓 final temperature  20 oC 

𝑡𝑡𝑏𝑏 batch time 7200 s 

 

The discretization of the 2D PBM using the 2D HR-FVM results in a large number of equations 

for which the solution requires high computation cost. Thus, the simulation time needs to be 

improved to meet the ambitious objective of real-time model based control. In this work a series 

of numerical optimizations are carried out to achieve a computationally highly efficient real-time 

2D HR-FVM implementation, including: (i) use of fast programming language (e.g. C, Fortran), 

(ii) parallelization on graphical processing unit (GPU), (iii) grid optimization, and (iv) data type 

optimization. 

The crystallization process model is solved by the HR-FVM as a compiled C .mex file by the 

serial CrySiV solver. The 1000×1000 µm grid, based on the kinetic equations, covers the attainable 

crystal size domain and the h = 1 µm cell size keeps the solution accurate. Figure 1 presents the 

simulation results. The run time of this simulation is considered the “base case”.  
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a) 

  

  

b) 
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Figure 1. a) The applied temperature profile with the corresponding solubility and simulated 

concentrations; b) crystal size distribution in four representative time moments. 

 

The simulation of 7200 s process time took 132.2 s (see the machine specifications in Appendix 

1), which is within real time, but is not feasible for real-time optimization. Moreover, the sampling 

time, which translates to available calculation time, is evidently shorter than the full process time.  

The 2D 1000×1000 µm grid generates 106 equations, which are solved in every time step. Due 

to their massively parallel hardware architecture (see Figure 2), GPUs have been used for the 

acceleration of various scientific calculations. In this case for optimal CPU-GPU utilization, a 

hybrid HR-FVM implementation is proposed, according to which the serial operations i.e. 

calculation of nucleation and growth rates, temperature, mass balance and time stepping are 

executed in the CPU, whereas the parallelizable HR-FVM and integral calculations are passed to 

the GPU.  

 

Figure 2. Schematic comparison of CPU and GPU architecture and the assignment of 

calculations in the hybrid CPU-GPU based 2D HR-FVM implementation. 
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The hybrid CPU-GPU solution is carried out using the GPU accelerated CrySiV Matlab function, 

resulting in a solution time of 11.43 s. Comparing this to the 132.20 s pure serial solution time it 

can be seen that the CPU alone cannot over perform the hybrid CPU-GPU performance. Even in 

the theoretically optimal case, when the four cores would reduce the calculation time to its quarter, 

the best CPU time would be around ~33.05 s, which is still larger than the computational time 

achieved with the hybrid CPU-GPU implementation.  

Both implementations operated on the 1000×1000 µm grid, however, according to  Figure 1, in 

this case the crystallization occurs within the 600×300 µm domain. This opens room for grid 

optimization. The optimized grid involves 450×225 elements in the 600×300 µm size domain. 

Based on the grid dimensions, the mean grid size is h = 1.33 µm, which is coarser than the base 

case grid. This is expected to generate inaccuracies, especially in the small size domain where the 

particle number is high due to the nucleation. To keep the small size range accurate, a non-uniform 

grid is applied with linearly increasing cell size, in which the size of first cell is the half of the last 

cell. To compare the accuracy with the base case, the standard method of moments (SMOM) is 

applied for the calculation of moments of the distribution:37  

𝜇𝜇𝑘𝑘,𝑙𝑙 = � 𝐿𝐿1𝑘𝑘𝐿𝐿𝑚𝑚𝑙𝑙 𝑛𝑛(𝐋𝐋, 𝑡𝑡)𝑑𝑑𝐋𝐋
∞

0

 (11) 

Since the SMOM does not involve approximations it provides the quasi-accurate evolution of 

the moments. Hence, the accuracy of the HR-FVM can be estimated by comparing its moments to 

the SMOM. This error verification is a built-in feature of both serial and parallel CrySiV functions. 

According to Table 3, the reduced non-uniform grid produces slightly less accurate solution, 

however, the maximum and mean percentage errors are in both cases well under 0.1 % except of 

the 𝜇𝜇0,1  moment for which it is between 0.1 and 0.15 %. Taking into the consideration that the 
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grid optimization provided almost one order of magnitude speedup (from 11.43 to 1.79 s), in 

overall, it has positive impact in the context of process control.  

 

Table 3. Comparison of percentage error in the leading moments of the distribution and solution 

time of simulations. 

Quantity 
1000×1000 µm uniform grid 600×300 µm non-uniform grid 

Mean error [%] Max. error [%] Mean error [%] Max. error [%] 

𝜇𝜇0,0 1.87·10-2 4.27·10-2 2.91·10-2 6.35·10-2 

𝜇𝜇1,0 5.40·10-2 8.51·10-2 5.99·10-2 9.19·10-2 

𝜇𝜇0,1 1.11·10-1 1.45·10-1 1.14·10-1 1.47·10-1 

𝜇𝜇1,2 3.06·10-2 1.02·10-1 2.93·10-2 1.05·10-1 

Calculation time 11.43 s 1.79 s 

 

It is known that the GPUs have better single than double precision performance for two reasons:  

• executing single precision calculations is a less expensive operation than its double 

precision counterpart, 

• depending on GPU manufacturing architecture, limited number of cores are capable to 

execute double precision operations.  

In this simulation the type casting from double to single precision delivered simulation time 

reduction from 1.79 to 1.27 s. However, this leads to inherent accuracy degradation: the type-

casting error in the crystal number simulation was 1.08 10-5 %. This can be considered negligible 

for the purpose of the work.  
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Table 4. Actions taken to improve the simulation time of the 2D HR-FVM and their impact on 

the run time. See Appendix 1 for machine specifications. 

No. Action taken 
Simulation 

time [s] 

Speedup [-] 

Partial Total 

1 Base case: serial C implementation 132.20 - - 

2 Hybrid CPU-GPU implementation 11.43 11.57 11.57 

3 Grid optimization, variable grid 1.79 6.39 73.8 

4 Type cast to single precision  1.27 1.41 104.1 

 

According to Table 4, two orders of magnitude speedup was achieved from the base case to the 

final, optimized solution, which involves variable grid, single precision floating-point operations 

and hybrid CPU-GPU implementation. The most significant speedup comes from the use of GPU 

but the grid optimization was also highly beneficial, which is process-dependent. The improved 

simulation time enables the use of accurate, full 2D PBE simulations for real time control 

applications.  

Soft-sensor development for PVM and FBRM 

The measured data have a key role in the design of any feedback control system. For NMPC 

applications the measured data need to be comparable with the calculated quantities. This raises 

difficulties for the model based shape control, because the simulated 2D CSD currently cannot be 

measured with in-situ real-time tools. FBRM and PVM are the most commonly used PAT tools 

for crystallization monitoring, which provide the CLD and ARD, quantities, which however differ 

substantially from the 2D CSD.  
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Figure 3. Schematic representation of the model structure, which enables the direct comparison 

of simulated data with the in-situ available measurements. 

 

For the development of the sensor models two mathematical functions/models need to be derived 

with forms: 

𝐶𝐶𝐿𝐿𝐷𝐷𝐋𝐋 =  𝑓𝑓(𝐋𝐋) 

𝐴𝐴𝐴𝐴𝐷𝐷𝐋𝐋 =  𝑔𝑔(𝐋𝐋) 
(12) 

In Eq. (12) 𝐶𝐶𝐿𝐿𝐷𝐷𝐋𝐋 and 𝐴𝐴𝐴𝐴𝐷𝐷𝐋𝐋 denotes the CLD and ARD vectors of crystals of size L. It would be 

difficult to regress some analytical functions of 𝑓𝑓(𝐋𝐋) and 𝑔𝑔(𝐋𝐋).  Instead, in this work ANNs are 

employed. ANNs are computational systems, inspired by the biological neural networks, which 

found most use in applications that are difficult to express mathematically. The building block of 

ANN is the artificial neuron (AN), which has two interior poles (see Figure 4a). The left hand side 

of AN computes the weighted sum of inputs (𝑒𝑒𝑖𝑖), where an input can be an external input or the 

output of another neuron. The weighting factor (𝑤𝑤𝑖𝑖) adjusts the relative importance of inputs. There 

is a bias (𝑏𝑏), which provides an offset to the weighted sum. The right hand side of the AN calculates 

the output for the weighted sum, based on the activation function. In the ANN the ANs are 
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connected to each other, typically in unidirectional topology: each neuron receives the inputs from 

a left hand side layer and are connected to a right hand side layer, as Figure 4b illustrates. The 

layers of neurons between the inputs and outputs are the hidden layers.38  

 

a) 

 

b) 

Figure 4. a) Structural representation of an artificial neuron with three inputs and sigmoid 

transfer function; b) Illustration of the topology of a feed-forward neural network with two inputs 

and two outputs. 

 

There are still debates on topology optimization of ANNs i.e. how many layers and neurons in 

each layer should be used for specific problems. For non-linear, i.e. sigmoidal neurons adding 

more layers increases the network’s abstraction level. These are often referred to as deep NN 

(DNN).39 The training of NNs consists of the optimization of weights and biases so the calculated 

outputs match the output set of the training data.  
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The ANN can be trained based on any other type of training data, including experimentally 

measured CLDs and ARDs or any model available in the literature, including different 

geometrical40 or optical25 models. In this work, for the illustration of ANN training and 

performance, an improved geometrical model is applied.28 Although ANNs were applied to 

correlate the CLD to product properties41, this is the first application to simulate directly the output 

of the PAT tools. 

FBRM and PVM models 

The FBRM and PVM models presented here are not aimed to provide an accurate static 

conversion between CSD and CLD/ARD. These models are approximate, but also rely on the auto-

corrective feature provided by the dynamic feedback and the adaptive design of the controller. The 

transformation has two steps: 

• Since the probes detect the 2d projections (let “d” denote the space dimensions, which 

should not be confused with the “D” crystal dimension) of the crystals in the first step we 

also take a particle with size L and map the possible 2d projections. For these projections 

an ARD can be constructed, which reflects the measurable ARD of the corresponding 

homogeneous crystal population. For the approximation of CLD, all “cuts” of all 2d 

projections are mapped. The CL is associated with the cut length, thus approximate CLD 

can be constructed for the crystal of size L. It must be noted that this step assumes random 

spatial orientation of particles in the slurry. For highly non-isotropic crystals, such as high 

aspect ratio particles, this assumption might not hold since the crystals might follow, for 

certain degree, the flow-field. This phenomenon is expected to depend on the properties of 

crystallization process (liquid and solid density), operating conditions (stirring energy, 
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turbulence conditions) and crystal size and shape. The detailed modelling of these effects 

is far beyond the scope of the current work hence these were neglected.  

• In the second step, the CLD and ARD of the crystal population given by the 2D CSD are 

approximated as the number weighted sum of the CLDs and ARDs of individual crystals. 

This step can be carried out in real time in lack of the ANN system28, using the 2D CSD 

calculated by the PBM simulation. 

Figure 5 illustrates the working principle of the geometrical model based soft-sensor design: 

position (1) represents a random crystal orientation in the crystallizer. Position (2) is the two 

dimensional projection of position (1), detectable by the sensor, which depends on the crystal 

orientation, therefore, every crystal orientation leads to different silhouette. Position (3) is the 

rectangular approximation of the silhouette (Position 2), which eases considerably the automatic 

calculation of the CLs, and so the CLD construction. For the same random orientation, the AR 

(𝐿𝐿1,𝑜𝑜𝑏𝑏𝑠𝑠/𝐿𝐿2,𝑜𝑜𝑏𝑏𝑠𝑠), which would be detected by the PVM, can also be easily calculated. 

 

Figure 5. Working principle of CLD and ARD generation of individual high aspect-ratio 

crystals based on geometrical modeling by mapping all possible 2d projections of the 3d crystal 

body. 
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The method has already been validated for spherical particles in the literature.28  

 

CLDs and ARDs of individual crystals are pre-calculated for 1000×1000 µm grid in h = 1 µm 

discrete size increments, thus the direct transformation would be applicable on this grid only. This 

106 data sets will serve as training data for the ANN. 

Figure 6 presents the upper view of the product CSD from Figure 1 as well as the corresponding 

simulated CLD and ARD. It is known that the high AR crystals tend to form bimodal CLD,42 

which can be recognized in the simulation results. Additionally, the CLD peaks correlate well with 

the approximate size pair of the grown seed crystals. The third peak in the fine CL domain reflects 

the fines. In the ARD plot it seems that the AR maximum is lower than the expected mean AR of 

the population. This effect is explained with the random spatial orientation of crystals and it will 

be discussed in detail later in this article.  
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Figure 6. Simulated CLD and ARD of a typical seeded batch crystallization product with the 

relations between the 2D CSD and CLD and ARD. 

 

Figure 7 depicts the temporal evolution of simulated CLD and ARD, corresponding to the 2D 

CSD variations. There is a continuous increase of CLs, due to the crystal growth, whereas the 

crystal shape changes only at the beginning of the process. In this simulation the CLD is 

normalized at t = 0 time moment and, in order to simulate the impact of nucleation on the count, 

in the upcoming moments the normalized CLD is multiplied by the relative crystal number 

increase.  

  

Figure 7. Simulated temporal evolution of CLD and ARD during a batch cooling crystallization. 

 

There are seven CLD and ARD represented in Figure 7, which were generated on the full 

1000×1000 2D CSD grid in 6.00 seconds. Thus, one 2D CSD to CLD and ARD transformation 

takes 0.86 seconds. From the perspective of information technology, the operation of weighted 

summing is fundamentally different from the PBE solution, which involves more expensive 

calculations, such as power - and exponential functions, making the program more CPU intensive. 



 21 

The weighted summing is less CPU intensive, however implies more memory (RAM) access. For 

this reason, the programming strategies that successfully accelerated the PBM solution failed to 

improve the weighted sum calculation: 

• The GPU implementation of CLD and ARD calculation takes ~ 50 % longer than the CPU. 

The explanation is that the secondary operations, such as memory allocations (GPU, RAM) 

and data copy from RAM to GPU, takes longer than the benefits of parallel calculations.  

• The single precision serial code gave roughly the same running time as the double precision 

counterpart. 

• Parallelizing the weighted sum calculation on the CPU leads to ~10 % computational time 

increase. This reflects that the program is optimized from the memory utilization point of 

view. Accessing the cache is considerably faster than the RAM. By one RAM access a sub 

vector is loaded into the cache. In serial mode all elements of the sub vector are processed, 

then a new set of sub-vector is loaded in to the cache. Therefore, the serial execution 

minimizes the slower RAM access.  

A critical disadvantage of the described transformation is that it operates only on the pre-

calculated (1000×1000) 2D CSD grid. For custom grids the new 2D CSD must be interpolated to 

the default 2D CSD, for which the individual CLDs and ARDs are available. Both the interpolation 

and calculations on an oversized grid introduce unnecessary calculations, however both of these 

can be avoided by using ANNs. 

Artificial neural network design for CLD and ARD simulation of individual crystals 

The inputs of the ANN for the prediction of CLD and ARD of arbitrary sized crystals are the 

crystal length and width, whereas the output is the CLD and ARD vector. For training and testing 

the pre-computed data on the 1000×1000 grid is used, summing up to 106 data sets. Two separate 
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networks were trained for CLD and ARD. The ANN was trained in Matlab environment using the 

Neural Network Toolbox. During the early development stage, it has been observed that a single 

or two layer ANN cannot achieve reasonable performance even with high number of neurons (up 

to 5000), however increasing the number of layers with considerably less neurons led to better 

performance. The best performance was achieved with a pyramidal topology, in which the number 

of neurons gradually increased from the input to the output layer. It was also observed that 

decreasing further the layers or the number of neurons the performance also decreased. This 

indicates that for this problem DNNs are required. It is worth noting that the quantity of training 

data points (9.1·107, as each set represents a CLD/ARD vector with 91 elements) enables the 

reliable optimization of the 28395 weights. The applied training function is known to provide an 

increased performance for networks with large number of weights. The hyperbolic tangent sigmoid 

function gave the fastest convergence and best performance. 

 

Table 5. ANN training and topology related data. 

Property Value 

Network type Feed-forward network 

Transfer function Hyperbolic tangent sigmoid  

Training method Scaled conjugate gradient backpropagation 

Number of hidden layers 9 

Number of neurons  in each layer {4,8,10,12,16,25,40,67,150} 

Total number of weights 28395 

Number of {training, validation, 

test} datasets  

{800000,100000,100000} 
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Figure 8 presents the ANN performance in test run for CLD and ARD prediction. There are a 

few outliers but their relative number is low, which is also supported by the R2 > 0.997 in both 

case. 

  

Figure 8. ANN test run performance for the prediction of the CLD and ARD. 

The trained ANN is able to reproduce the CLD and ARD of arbitrary sized 2D crystals, which 

enables the application of 2D CSD to CLD and ARD transformation on custom 2D CSD grids.  

  

Figure 9. ANN supported simulation of CLD and ARD evolution.  
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The CLD and ARD evolutions represented by the surfaces on Figure 9 were generated in 0.967 

s by direct conversion on the 600×300 grid based on the data provided by the ANN. Except of the 

apparent noise in low size domain of the CLD surface no visible difference exists from the surfaces 

in Figure 6. The maximum difference between the ANN based CLD and pre-computation based 

CLD graph is 1.76·10-3, whereas the mean difference is 1.63·10-4. The same deviations for the 

ANN based ARD calculation are 2.21·10-3 and 2.21·10-4, respectively. The mean deviation is with 

an order of magnitude lower than the maximum deviation and with two order of magnitude lower 

than the maximum CLD/ARD values. This indicates that the improved calculation time of the 

ANN soft sensors makes them suitable for control application.  

Based on the ARD graph in Figure 9 the ARDs are pre-calculated for the 1-1000 AR domain, 

however, the ARs are generally lower, in this case under ~3.5. To estimate the upper bound of AR 

calculation domain based on the 2D CSD, the mean ideal AR is calculated in terms of moments 

as: 

𝐴𝐴𝐴𝐴𝑟𝑟 =  
𝜇𝜇10
𝜇𝜇01

 (13) 

According to preliminary analyses the upper AR bound can be set to 1.5𝐴𝐴𝐴𝐴𝑟𝑟. With this reduction 

the transformation time is reduced to 0.679 s. Table 6 summarizes the strategies and their effects 

on the forward transformation run time. 

 

Table 6. Summary of the actions taken and their effects on the 2D CSD to CLD and ARD 

transformation time. 

No. Action taken 
Simulation 

time [s] 

Speedup [-] 

Partial Total 
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1 Base case: 1000×1000 2D CSD grid 6.001 - - 

2 Variable grid (using ANN data) 0.967 6.21 6.21 

3 Reduced AR calculation domain 0.679 1.42 8.84 

 

Finally, the 2D CSD to CLD and ARD transformation was speeded up by a factor of 8.84, as the 

ANN enabled the direct transformation on the optimized non-uniform 2D CSD grid and the AR 

domain of transformation was delimited. The core advantage of the ANN based simulation is that 

it is able to keep the timing presented in Table 6 but it can be trained flexibly based on other FBRM 

and/or PVM models or on experimental data.  

By the application of advanced computing infrastructures and ANNs, the simulation time of the 

7200 s batch crystallization process has been reduced from 138.201 (132.2+6.001) s to 1.949 

(1.27+0.679) s. This represents approximately two orders of magnitude speedup, which makes the 

method promising for model based control applications.  

In-situ imaging based aspect ratio measurement: interaction with spatial orientations 

It was already demonstrated that in-situ imaging coupled with real-time image analysis are 

suitable measurement tools for feedback control systems.43 Moreover, these are the exclusive 

instruments that provide real-time shape information. The disadvantage of these systems is that 

the crystals are captured in random orientation (Figure 4). Therefore, it is unlikely that the real 

shape is measured, which is often a controlled variable. As a consequence, a correction is needed, 

which takes into account the offset between the real and measured AR. Let the real mean AR be 

defined as: 

𝐴𝐴𝐴𝐴𝑖𝑖 =
𝐿𝐿1
𝐿𝐿2

 (14) 

Although, the observed AR of a random projection (Figure 4) can be written as: 
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𝐴𝐴𝐴𝐴𝑜𝑜𝑏𝑏𝑠𝑠 =
𝐿𝐿1,𝑜𝑜𝑏𝑏𝑠𝑠

𝐿𝐿2,𝑜𝑜𝑏𝑏𝑠𝑠
 (15) 

Assuming rectangular silhouette of the 2D projection, the observed sizes are expressed in the 

function of 𝛼𝛼 and 𝛽𝛽 angles as: 

𝐿𝐿1,𝑜𝑜𝑏𝑏𝑠𝑠 = 𝐿𝐿1𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼) + 𝐿𝐿2𝑐𝑐𝑖𝑖𝑛𝑛(𝛼𝛼) 

𝐿𝐿2,𝑜𝑜𝑏𝑏𝑠𝑠 = 𝐿𝐿2𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽) + 𝐿𝐿2𝑐𝑐𝑖𝑖𝑛𝑛(𝛽𝛽) 
(16) 

Considering random crystal orientation, as in the case of the geometrical model development, 

e.g. α and β angles are uniformly distributed random variables within the [0, π/2] interval that 

covers all possible orientations of the 2D crystal, the mean observed sizes are expressed by the 

integrals: 

𝐿𝐿�1,𝑜𝑜𝑏𝑏𝑠𝑠 =
𝐿𝐿1
π/2

� 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼)𝑑𝑑𝛼𝛼

π/2

0

+
𝐿𝐿2
π/2

� 𝑐𝑐𝑖𝑖𝑛𝑛(𝛼𝛼)𝑑𝑑𝛼𝛼

π/2

0

 

𝐿𝐿�2,𝑜𝑜𝑏𝑏𝑠𝑠 =
𝐿𝐿2
π/2

�� 𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽)𝑑𝑑𝛽𝛽

π/2

0

+ � 𝑐𝑐𝑖𝑖𝑛𝑛(𝛽𝛽)𝑑𝑑𝛽𝛽

π/2

0

� 

(17) 

By combining Eq.(15) and Eq.(17) the most probable captured mean AR for 𝐋𝐋 crystal, take the 

form: 

𝐴𝐴𝐴𝐴𝑜𝑜𝑏𝑏𝑠𝑠 =
𝐿𝐿�1,𝑜𝑜𝑏𝑏𝑠𝑠

𝐿𝐿�2,𝑜𝑜𝑏𝑏𝑠𝑠
=
𝐿𝐿1 + 𝐿𝐿2

2𝐿𝐿2
= 0.5 +

𝐴𝐴𝐴𝐴𝑖𝑖
2

 (18) 

Eq.(18), in fact, is the correction between the real crystal shape and the in-situ observable crystal 

shape. The same principle is applicable for the approximation of the mean AR in the function of 

mean crystal sizes: 

〈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝐴𝐴𝐴𝐴〉 =
〈𝐿𝐿1〉 + 〈𝐿𝐿2〉

2〈𝐿𝐿2〉
= 0.5 +

〈𝐴𝐴𝐴𝐴����𝑖𝑖〉
2

 (19) 
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〈𝐿𝐿1〉 =
𝜇𝜇1,0

𝜇𝜇0,0
 

〈𝐿𝐿2〉 =
𝜇𝜇0,1

𝜇𝜇0,0
 

Figure 10 compares the mean AR evolutions calculated by the soft-sensor (𝐴𝐴𝐴𝐴𝑆𝑆𝑜𝑜𝑓𝑓𝐴𝐴𝑆𝑆𝐴𝐴𝑛𝑛𝑠𝑠𝑜𝑜𝑟𝑟), the 

ideal mean AR (𝐴𝐴𝐴𝐴𝑚𝑚𝑜𝑜𝑚𝑚𝐴𝐴𝑛𝑛𝐴𝐴 𝑏𝑏𝑏𝑏𝑠𝑠𝐴𝐴𝐴𝐴 - ratio of mean length and width, that can be calculated from the 

moments of the distribution) and the approximate, pseudo-measured mean AR (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝐴𝐴𝐴𝐴𝐴𝐴) of the 

base case simulation (Figure 1). It is evident that the in-situ AR measurement significantly 

underestimates the real AR. By the correction Eq. (19) the 𝐴𝐴𝐴𝐴𝑆𝑆𝑜𝑜𝑓𝑓𝐴𝐴𝑆𝑆𝐴𝐴𝑛𝑛𝑠𝑠𝑜𝑜𝑟𝑟 is approximated well, both 

in terms of absolute values and trends (increase/decline).  

 

Figure 10. Random crystal orientation explains the emergence of AR underestimation in in-situ 

imaging based AR measurement with the proposed correction factor being able to compensate for 

this. 
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Conclusions 

In the paper a real-time applicable simulation of ARD and approximate CLD of high AR crystals 

during the crystallization process was presented and discussed. The HR-FVM based numerical 

solution of multidimensional PBEs is computationally intensive, however, in this work two order 

of magnitude speedup was achieved compared to the serial compiled C code through multiple 

improvements, including GPU acceleration, grid optimization and type casting to single precision 

floating points. These improvements enabled the real-time control application of full 2D PBEs. 

An ANN based FBRM and PVM soft sensor was also developed to simulate the CLD and ARD 

of arbitrary sized 2D crystals. Although, the ANN can be trained based on experimental or 

simulated CLD and ARD data already existing in the literature, in this work an improved 

geometrical model was applied to calculate the most likely measurable CLD and ARD of 

individual 2D crystals, which was used as training and validation data for the ANN. Then, the 

CLD and ARD corresponding to a 2D CSD is approximated as the number-weighted sum of 

individual crystal CLDs and ARDs. The ANN based simulation was faster with a factor of 6 on 

the optimal 2D CSD grid than the direct conversion, while the accuracy degradation was not 

significant. 

In-situ imaging, coupled with real-time image analysis is widely used for crystallization 

monitoring. In this work it has been showed mathematically and through simulation that this 

method underestimates the real AR. For this phenomena a simple but effective correction was 

introduced, by which the in-situ imaging based shape information can be correlated with the real 

AR of crystals, enabling the direct, real shape quantitation.  
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Synopsis 

A real time applicable approximate simulation of CLD and ARD is presented for rod-like crystals 

crystallization. To meet real time applicability, the HR-FVM solution of the 2D PBM equation 
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with nucleation and growth is accelerated by grid optimization and GPU acceleration, whereas a 

fast, approximate ANN based transformation is developed for the 2D CSD to CLD and ARD 

transformation. 

 

Appendix 

A1. Details on solution timing 

All timings presented in this work is the average of 5 runs. The machine specifications are listed 

in Table A1.  

Table A1. The exact specifications of the machine used in timing simulations. 

Property Value 

Machine model Dell Alienware 13 R3 

CPU type Intel Core i7-7700HQ, 4 cores 

CPU frequency (turbo) 2.8 (3.4) GHz 

Main memory 16 GB DDR4 2667 MHz 

GPU nVidia GeForce GTX 1060m 

Number of CUDA cores  1280 

CUDA core frequency (turbo) 1404 (1670) MHz 

GPU memory (Speed) 6 GB (8 Gbps) 

Storage 512 GB SSD 

Operating system Windows 10 professional, 64 bit 

C compiler  Visual studio 2012 professional 

CUDA compiler CUDA Toolkit 8 
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