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Abstract 

This paper explains how spectral theory characterises an operator, act­

ing on a Banach or Hilbert space, and so helps to solve an equation of 

that operator, or characterise its solution. Sobolev spaces are discussed, 

and then Spectral theory is applied to a Laplace operator with Dirich­

let boundary conditions, and the eigenvalues characterised. An adapted 

version of the Rayleigh-Ritz Approximation technique is then used to 

estimate the eigenvalues. 
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1 Introduction 

We show here how spectral theory characterises an operator, acting on a 

Banach or Hilbert space, and so helps to solve an equation of that oper­

ator, or at least characterise its solution. We then apply spectral theory 

to a particular partial differential operator, namely the Laplace operator 

with Dirichlet boundary conditions, and so characterise its eigenvalues, 

and we then use numerical techniques to actually estimate those eigen­

values in an instance of a very general case. 

Spectral theory is well-documented in works on functional analysis [Kol­

mogorov and Fomin] [Kreyszig] [Kirsch] [Meise and Vogt]. There is some 

difference in the definitions here, though this is only for the Banach space 

cases. We will detail these definitions and provide examples, and also in­

troduce Sobolev spaces [Adams and Fournier] [Egorov and Kondratiev], 

which will be needed for our case study. 

For our Laplace operator, we will show that, although it is unbounded, 

its inverse is compact and self-adjoint. Therefore spectral theory can be 

applied to it, and we can completely characterise its eigenvalues. 

Solutions of partial differential equations, both analytic and numeric, are 

also well documented [Williams], as is the estimation of eigenvalues by 

trial functions [Kirsch] [Mitchell and Griffiths]. What we will do here 

is to show how to actually construct trial functions for a very general 

domain, for our operator, and then estimate the eigenvalues using the 

Mathematica package from Wolfram research [Pao]. 
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Conventions and notations 

"When I use a word, it means exactly what I want it to mean." 

- Humpty Dumpty (Alice Through the Looking-Glass). 

1) Inclusions are strict, so that A c B follows the same sense as a < b, 

i.e., A is a strict subset of B, so that B\A # 0. If we are allowing 

A = B, then we will specifically write A c:;; B [Enderton]. 

2) Unless otherwise stated, spaces are assumed to be separable, as 

non-separable spaces are rather esoteric, needing the axiom of 

choice [Enderton] to deal with them, in the form of Zorn's lemma. 

3) Unless otherwise stated, the underlying field of any Hilbert space is 

assumed to be <C. 

4) We will usually write 6, rather than the equivalent '\72 • 

5) When referring to eigenvalues, v (nu) refers to their multiplicity. 

6) Unless otherwise stated, integrals are assumed to be Lebesgue in­

tegrals [Weir]. For convenience then, when looking at L1, L2 etc, we 

normally consider these to be 'partitioned' into equivalence classes, {1 "'} 

say, so that f, gEl", iff f = 9 a.e., so we don't need to actually write 

'a.e.' on every line. Or, we can say it is taken as read that f = 9 means 

a.e., and we then regard f and 9 as identical. 

7) When discussing the Sobolev spaces Wm,p(D) [Adams and Fournier]' 

we may sometimes write, if D is clearly known, just Wm,p (and W;',P). 
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8) We use the standard analysis definitions for functions or operators, 

in that when we write: 

J:X>-+Y 

X is then referred to as the domain, and Y as the co-domain. The image 

of J is defined by {y E Y I Y = J(x), x E X}, and is denoted by [m(J). 

We do not require that J be defined on all of X; it need only be defined 

on a domain oJ definition, which we write as '1J(J), so that whenever we 

write J : X >-+ Y, we implicitly mean J : '1J(J) >-+ Y. 

9) The adjoint of an operator A will be written as A·, and the null 

space (kernel) of an operator A as 'Jt(A). 

10) We write [S] to mean closure of the set S. 

11) The inner-product of two elements u, v of an inner-product space 

will be written (u,v). In the product-space Z = W x W x W x ... x 

W(n times), an inner-product for ;£ (= (Xl, X2, ... , Xn) ), 

'!!. (= (Yl, Y2, ... , Yn) ) E Z can be defined by:-

n 

(;£, '!!.) = ~)Xi' Yi)W 
i==l 

and this shall always be the meaning of (;£, '!!.) in such a space. 
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2 Preliminaries 

Spectral analysis is a method of finding the properties of an operator, 

which we here assume to be acting on a Banach or Hilbert space. It can 

be applied to many classes of operator: compact, bounded or unbounded, 

self-adjoint or non-self-adjoint [Kreyszig]. We will always assume here 

that the operator is linear. The spectrum of an operator can actually 

determine the form of the solution of an operator equation, but even if it 

cannot do that, it can provide information on the nature of the solution 

to the equation. In the former case, for example, suppose an operator A 

is actually compact and self-adjoint, acting on a Hilbert space H. Then 

spectral theory tells us that H has an orthogonal basis {en}, consisting 

of eigenvectors of A. So, for any x E H, we can write x = 2: xnen 

[Kreyszig]. If we then wish to solve the operator equation:-

Ax=J 

then, as 

x = Lxnen 

=> Ax - L xnAnen, 

An being the corresponding eigenvalues. If we now write 

then 
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------------------------------------------------------------------------

Now suppose A has a trivial kernel. Then by Hilbert space theory 

[Kreyszig] :-

and hence 

and the equation is solved. 

2.1 Spectral theory - definitions and examples 

The definitions for an operator's spectrum are different for Banach and 

Hilbert spaces. Firstly, for Hilbert space, let 

T:H,...."H 

be a linear operator. We define 

T>. = T - AI, A E C. 

We define the resolvent set p(T) to be that subset of C S.t. T;:l (= 

RA) exists, by which we mean R>. is a bounded operator, mapping H to 

H. The point spectrum (Jp(T) consists of the eigenvalues, i.e. 

O"p(T) = {A Eel Tx = AX, 0 f- x E Hr. 
The continuous spectrum (Jc(T) is defined as A where we can define 

RA (:D(R>.) = Im(T>.)) as the inverse of T>., but R>. is not bounded 

as a mapping from H ,...." H \2 SJt(T - A1)3. Thus (Jc(T) may coincide 

1 We allow zero eigenvalues, though some authors do not. 
2This "\" means the orthogonal complement in H. 
3By definition, this is the eigenspace of A: for A not an eigenvalue, the eigenspace 

is thus 0. 
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with ap(T), as we shall see shortly. Finally, if, after looking for ap(T) 

and ac(T), there are ,\ ~ ap(T) Uac(T) s.t. Im(T>.) of. H, then such ,\ are 

in the residual spectrum, ar(T). Illustrative examples are shown below. 

2.1.1 Other definitions 

The essential spectrum is the continuous spectrum, plus all eigenvalues of 

infinite multiplicity. Some authors refer to the discrete spectrum synony­

mously with the point spectrum, but we define the discrete spectrum as 

only those eigenvalues for which v < 00 [Egorov and Kondratiev, p.141J. 

2.1.2 Banach space 

As with Hilbert space, for a Banach space B, let 

T:Br+B 

be a linear operator, and we define 

Here though, as there is no concept of orthogonal complement, the defini­

tions are slightly different. The definitions for resolvent set and eigenval­

ues (point spectrum) are the same; for the rest there are, unfortunately, 

various definitions. We will write one here, followed by an illustration. 

So then, we define ac(T), the continuous spectrum, as'\ E IC s.t. ,\ is not 

an eigenvalue, and R>. exists as a map from B to B (:D(R>.) = Im(T>.)), 

but is not bounded. Then, just as in Hilbert space, after looking at 
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whether A is in <7p(T) or (Jc(T), if we then find that there are A rf. <7p(T) U 

(Jc(T) s.t. RA exists, but Im(TA) is not the whole of the co-domain, then 

A is in the residual spectrum, <7r (T). 

2.1.3 Illustrations of spectral definitions 

First consider T : £2[0,IJ >-+ £2[0,IJ, defined by Tx = j.t(t)x(t), j.t(t) 

being some bounded function on [O,IJ. Let's say j.t has the shape shown 

in Figure 1. 

Figure 1: j.t(t) 

We define RAy(t) as t)(t) , except where the denominator is zero, 
j.tt-A 

then we define it as zero, where y(t) = Tx(t) - AX(t). This returns us 

to the same x(t), except possibly at points where the denominator above 

was zero. First of all then, if A rf. Im(j.t), then, as j.t(t)l_ A is bounded, 

=} A E p(T). Now looking for eigenvalues - these are points in Im(j.t) 

9 



where J-l(t) is realised over a set of non-zero measure in [0,1]. 

The value A2 in Figure 1, being held over t2 to t3, is clearly such a value; 

an example of an eigenfunction is shown in Figure 2. 

I~'\ / , \ 

o 1 

Figure 2: Example eigenfunction 

Now suppose we are looking at the value A = Al in Figure 1 (or any 

non-eigenvalue point in Im(J-l)). Then RA, maps y(t) to x(t), where 

x(t) can differ from x(t) only at the point t l . Consider a sequence of 

functions Yn, which are equivalent to 1, except at intervals centred on t l , 

the length of these intervals tending to zero from above. Each Yn is zero 

on the finite interval, and so IiYnllL2 < 1. As the interval round tl is not 

zero, Yn E Im(TA')' but IIRA,YnllL2 -+ 00, so RA, is not bounded, hence 

Al E ac(T). For Az, the same is true: if we remove the eigenspace (see 

Figure 2), we are left in the same situation as Al, because the asymptotic 
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behaviour is still there, so ),2 is in <7p (T) and <7c (T). In summary then:-

p(T) 

<7p (T) 

<7c(T) 

<7r (T) 

- C\Im(f1.). 

- {A E Im(f1.) and constant on a set of non-zero measure}. 

- Im(fl)· 

== it. VJ· 

Now suppose f1. has a different form, as shown in Figure 3. f1. is now 

discontinuous; in particular, it is only near ),2 when it is ),2. 

Figure 3: f1.(t) with discontinuities 

So now, fl(t) -f+ ),2 at t2 from the left, and f1.(t) -f+ ),2 at t3 from the 

right. In this case, RA can be defined as a bounded operator on H to 

H\>Jl(T - ),21) (::D(R),) = Im(T - ),21), as there is now no asymptote 

at ),2, hence ),2 ~ <7c(T). The rest of the spectrum is the same. 

For Banach space, we take the same operator and definitions as above, 
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- -- ----------------------------------------------------------------

except that we now map C[O, 1 J to C[O,1], and therefore fJ, must be con­

tinuous. p(T) and ap(T) are the same as in the Hilbert case. ac(T) is 

slightly different, but it turns out this is only because we have excluded 

eigenvalues from it by definition. Referring to Figure 1, A2 is still an 

eigenvalue, but by our definition, it is not in the continuous spectrum. 

For A\, or indeed any A E Im(fJ,)\{A2}, R). is unbounded, as it was in the 

Hilbert case, and we can prove this using almost the same construction:-

Consider the point tl (see Figure 1) and consider a sequence of func­

tions Yn, which are equivalent to 1, except at intervals centred on tt, 

the length of these intervals tending to zero from above. Each Yn is 

zero on the middle third of this finite interval, and in the first third, 

slopes linearly to zero, whilst on the last third, slopes linearly back to 1. 

Thus each Yn is a continuous function, and by our definition of inverse 

(same as in the Hilbert case), R~lYn exists. However, IIYnIiC[O,I) = 1, 

but 1iR;\,YnIIC[O,I) -+ 00, because of the asymptote at t l , so R)., is not 

bounded, hence Al E ac(T). In summary then:-

p(T) - C\Im(fJ,). 

ap(T) - {A E Im(fJ,) and constant on a set of non-zero measure}. 

ac(T) - Im(fJ,)\ap(T). 

ar(T) - 0. 
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2.2 Sobolev spaces 

Note: In all the remaining sections of this paper, we assume D to be 

a bounded domain in lRn
, having a piecewise smooth boundary with no 

cusps. 

We define the Sobolev ("Weak" space) Wm,P(D) for mE Z+, 1 S p < 00 

and some region D in lRn as [Adams and Fournier] [Weir]:-

Wm,P(D) = {u E £P(D) : a"u E V(D) : 0 S lal S m} 

where a"u is the distributional ("weak") derivative of u. The norm on u 

is defined by:-

Ilullwm,p = ( L Ila"uIIP) t>. 
°SiniSm 

In addition, we define WO,P(D) to be £p(D). 

The Sobolev space Wom,P(D) is defined as the closure of CO'(D) under 

Wm,p norm - and having the same norm as that of Wm,P(D). 

The trace of a function u in a Sobolev space, for a bounded domain D, 

can be thought of as the limit of u approaching the boundary [Egorov 

and Kondratiev] where this limit exists, but can also be defined in terms 

of projections and transformations to map aD to a co-ordinate surface 

[Renardy and Rogers]. In the sections that follow, u I will refer to 
aD 

this trace. If m ~ 1 and p = 2, with our conditions on D, the traces of 

functions in Wm,p (D) exist and form a space in their own right, namely 

W m
-

1,P(8D). Furthermore, there is a trace mapping mapping functions 

in Wm,P(D) to their traces [Adams and Fournier] [Renardy and Rogers]. 
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As a simple example of a Sobolev space, if we look at the mod (u = Ixl) 

function on (-1,1]:-

o 

Figure 4: mod (x) 

then, clearly u' does not exist in the classical (C) sense, and yet we can 

say u' does exist as an integrable function. So, in this case, we can say 

u E W 1,1((-I,I]). The Sobolev space definition arose from considering 

what space u belongs to in the PDE -6.u = f when f E YID). If f 

is in £2(D) for example, which is equivalent to WO,2(D), the definition 

above leads us to u being in W 2,2(D), hence we see the value of m in 

Wm,P(D) reduced by the order of the differential operator. 

W 2
,2 is one of two special Sobolev spaces we will use in the numeric work 

to follow. The second is the space W~,2, which we defined as the closure 

of CO' under the norm of Wl,2 (and having that norm). (CO', or rather, 

CO' (D), is the set of functions in Coo that are zero near the boundary of 

D.) We can write that definition as W~,2 = [CO']W,,2. 
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Both these spaces are actually Hilbert spaces. In fact, for any m, Wm ,2 

is a Hilbert space, with the inner-product:-

(f,g) = L Wf,8"'g). 
1"'I:Sm 

There are two theorems of Sobolev spaces that we will use in the sequel:-

1) The Sobolev imbedding theorem [Adams and Fournier] states that 

for integers j ::0:: 0, m ::0:: 0, n ::0:: 1 and for any numbers p, q, s such that 

o < s < 00, 1 S; q S; 00, 1 S; P < 00, if s < m and m-I - j S; nip < s S; 

m- j, then the Besov space B,;p,q(D) is imbedded [Adams and Fournier] 

[Renardy and Rogers] in the generalised Holder space Cj,l',q(D) where 

J1 = s - nip and D is a domain in JRn satisfying the strong Lipschitz con­

dition (which our domain trivially does). Note that with these conditions, 

the Sobolev space Wm,P(D) is imbedded in the Besov space BS;P,OO(D). 

Furthermore, let q = 00, and then the generalised Holder space Cj,,,,q(D) 

is the standard Holder space Cj,I'(D). We can combine these last two 

statements to produce a more tractable version of the theorem for our 

purposes, namely that Wm,P(D) is imbedded in Qi,I'(D) where s < m 

and m-I - j S; nip < s S; m - j, with the same conditions as above. 

This theorem is illustrated in the following examples, where we are look­

ing for the 'best possible' indices, typically the highest order of differen­

tiability [Adams and Fournier] :-

i) m = 2,p = 2,n = 1. So s < 2 and 1- j S; 1/2 < s S; 2 - j, so then 

the best possible indices are j = 1, s = 1 => J1 = 1/2, hence W 2,2(D) is 

imbedded in Cl'~(D), and therefore, if u is in W 2,2(D), D <;::: JR, we can 
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say U is continuously differentiable, and its derivative satisfies the Holder 

condition for f.t = ~. 

ii) m = 2,p = 2, n = 2. So 1 - j ::; 1 < s ::; 2 - j. Hence j must be 

zero. But we need s < m = 2, so s = m - "I, for any "I in (0,1) and 

then f.t = 1-"1, hence W2,2(D) is imbedded in CO''Y(D) "1"1 E (0,1) where 

D <; ]R2. 

2) The trace imbedding theorem [Adams and Foumier] [Renardy and 

Rogers] states that the trace mapping Wm,P(D) f-t W m- 1,P(8D) (as de­

fined above) is linear and continuous. An important corollary of this is 

that by our definition of u I ' if Un --+ U in W 2,2(D), then:-
aD 

Un I --+ U I and 'Vun I --+ 'Vu I . aD aD aD aD 

16 



3 Case study - theory 

The operator we will analyse and estimate eigenvalues for is the one 

acting on u to produce this PDE ;-

(1) 

Where U E W 2,2(D)nwi,2(D), and D is some simply-connected bounded 

region [Apostol] in ]R2 ;-

/"\'-- ---:;-..... 

/', '\ \ .... "'-.. 
'\ , ' '\ 
\. \ '. \., 

y 

x 

Figure 5; Example regions in ]R2 

The value of u on the boundary refers to the trace of u, as defined in 

Section 2.2. And as we noted in that section, as -I'-,. is a second or­

der differential operator, f is in WO,2(D), i.e., L2(D). We have chosen 

W 2,2(D) n Wi,2(D) because of the comments above in Section 2.2, and 

also since, for the left-hand side, W 2,2 is a Hilbert space, making it easier 

to work with, and, for the right-hand side, if we used Wg,2 (meaning 

closure of CO" under W2,2 norm), then we would actually over-specify 
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the problem. In fact, by the trace imbedding theorem in Section 2.2, if 

U E Wg,2(D), 

then U = lim Un in W2
,2 norm, where Un E CO'(D), 

n .... oo 

SO Un is zero near aD, hence \7un I = 0, 
8D 

and so U I = 0, and \7u I = 0, but we have not specified this latter 
8D 8D 

condition. 

We refer to this operator (-.6 acting on u) and its boundary conditions 

as A, and we write the domain of A as :D(A) = W 2,2(D) n Wl,2(D). We 

assume aD to be piecewise smooth (COO) with no cusps. 

Let us now define :D(A) more precisely. We would normally use the 

norm of W2,2 for the space W2,2 n W0
1,2. However, we actually regard 

:D(A) as being the domain of definition of an operator acting on £2 as 

discussed in the Introduction (Conventions), so we actually use the norm 

and inner-product of the space £2(D). Hence, the inner-product and 

norm are defined by:-

(u,v) = l uvdx (2) 

(3) 

The image of u, f, is implicitly in £2, and has the same norm as (3). It's 

clear from the above definitions that the meaning of (1) is also not that 

of the conventional equation. In fact, we can say, and we can say only 

that -.6u = f is in the £2 sense, Le. ;-

(4) 
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and consequently:-

-6u = f a.e. (5) 

Note though, that even if we regard U as a function well-defined point­

wise, -6u may exist only as a distribution. In fact, as we are working 

in ]R2, the Sobolev imbedding theorem (see Section 2.2) actually shows 

us that u is continuous in D. 

Continuing the analysis, we see -6 is not bounded, by considering the 

sequence un(x, y) = e-n(x
2
+y2 )q'>(x, y), where q'> is a 'cut-off mollifier' func­

tion, used to give us Un I = 0 (these are discussed further in Section 
aD 

3.2.1). For then 11i~:II" --+ 00 as n --+ 00. At first sight then, this 

appears to limit the theorems we can apply to A. We will, however, 

now show that A is closed and an operator with compact resolvent so 

therefore we can apply quite a substantial amount of spectral theory to 

it. We first prove it is closed:-

Theorem 3.1 Let Un -+ U and AUn -+ v in L2 norm, where Un E :D(A), 

as defined above. Then U E :D(A) and Au = v. 

Proof As A is linear and always maps real-valued functions to real­

valued functions, we need only prove this for such functions. First note 

that for f and 9 in :D(A), Appendix 1 implies:-

(-6/,9) = (I, -69)· (6) 

Now as AUn -+ v, and the inner-product preserves continuity, for any 

q'> E Cif(D):-

(7) 
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Similarly, we can say:-

(8) 

But from equation (6):-

(9) 

So combining equations (7), (8) and (9), we have, for any ifJ E CO'(D):-

(v,ifJ) = (u, -l;ifJ). (10) 

In the distribution sense [Kolmogorov and Fomin] [Kreyszig], the right­

hand side of equation (10) actually defines -l;u, so in the distribution 

sense:-

(v,ifJ) = (-l;u,ifJ) (11) 

and again in that sense:-

v = -l;u. (12) 

By the elliptic regularity theorem [Folland] [Gilbarg and Trudinger], this 

implies u E W 2,2(D). Next then, we need to prove that u E W~,2(D). 

As, by definition, Un -+ u in L2 norm, it remains to prove 'Vun -+ 'Vu in 

L2 norm. From the definition in Section 2.2, this is equivalent to proving 

that 'if1:. E CO'(D) x CO'(D):-

('Vun ,1:.) -+ ('Vu, 1:.), (13) 

or equivalently, by definition of'Vu:-

('Vun,1:.) -+ (u, -div1:.). (14) 
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Consider (-.6un, un). From Appendix 1:-

(15) 

But (-.6un, un) -+ (v, u), hence V'un is a bounded (vector) sequence 

in £2 x £2. But £2 X £2 is weakly compact [Kreyszig], so V'un has a 

weakly convergent sub-sequence, i.e., there is a!!.. E £2 X £2 and some 

sub-sequence u~ of Un such that:-

(16) 

for all w E £2 X £2 as k -+ 00, this!!.. depending only on Un, and in 

particular, for any w = 1:.. E CO'(D) x CO'(D). As Un E [CO' (D)] and 

1:.. E CO'(D) x CO'(D):-

(V'U~,1:..) = (u~, -div1:..), (17) 

so as (V'u~, 1:..) -+ (~, 1!..):-

(18) 

By continuity of the inner-product:-

(U~, -div1!..) -+ (u, -div1:..), (19) 

so combining (18) and (19):-

(20) 

\;/1:.. E CO'(D) xCO'(D), so by definition,!!.. = V'u. Looking at the complete 

sequence again:-
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- ----------------------------------------------------------------

hence 'Vu = fJ.. and 'Vun --t 'Vu, as required. • 

Now we consider the resolvent at zero, i.e., :-

u=Ro/ (22) 

where we also regard Ro as mapping L2 to L2 with the domain of def­

inition being Im(A). We need to first show that this is well-defined. 

Suppose then, for u, v E ~(A), that 

-!::"u = J and -!::"v = f. 

So, putting w=u-v, (23) gives us:-

-!::"w = 0 and w I = O. 
aD 

(23) 

(24) 

By a variation of the uniqueness principle (see Appendix 1), applied to 

~(A), we see w = 0, i.e., there is no zero eigenvalue and u = RoJ is 

well-defined. Furthermore, if -!::"u = J and -!::"v = g, if we then write:-

w = Ro(J + g) 

then 

-!::"w - J + 9 

- -!::"u -!::"v, 

-!::"w = -!::"(u + v). (25) 

So from the zero eigenvalue property above, (25) * 
w=u+v. 

Hence Ro(J + g) = RoJ + Rog, so Ro is linear. We will now also show 

Ro is bounded, self-adjoint and compact. 
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3.1 Boundedness of Ra 

As u E W0
1

,2, we can use Poincan?s inequality [Renardy and RogersJ, 

that IIull ::; CD 11 V'ull, the norms being in L2, as earlier indicated4• CD 

is some positive constant, depending only on the domain D. 

Now, 11 V'u 11 
2 Iv lV'ul

2
dx 

Iv V'u.V'udx 

from Green's first theorem (see Appendix 1) on u, since u I = 0:­
aD 

11 V'u 112 - - Iv u!::"udx 

- Iv ufdx '* 
11 V'u 112 S Ilfll IIull· 

Now, for any 2 real numbers a, b and any € > 0, we can write:­

b2 

ab ::; €2a2 + 4€2' 

Applying this to (26) :-

IIV'ull2 ::; €211uW + 1~€~2. 
Writing Poincan?s inequality again:-

IIull ::; CDIIV'ull· 

Now combining (27) and (28) :-

IIuW ::; cbllV'uW 

< Cb(€211uW + 1~~2) 

_______ '* __ "u Il2 (1 - Cb€2) ::; ~~ IIfW. 
4we define IIVull as (ID IVuI2dx)~. 
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We choose £ so 1 - Cb£2 > 0, so then:-

and hence:-

hence Ho is bounded. 

3.2 Self-adjointness of Ra 

Self-adjointness is normally defined for a bounded operator 0 mapping 

all of a Hilbert space H to itself. For an unbounded operator, we can 

extend the definition [Meise and Vogt, p.211] to the case where we have 

only 1l(0) C H, but for this to be valid, we require that 1l(0) is actually 

dense in H, and the operator 0 is then said to be densely-defined. In our 

case, as 1l(Ro) = Im(A), we will prove the equivalent that [Im(A)] = 

£2(D). We will do this by actually considering the adjoint properties of 

A. First then, we need to show :D(A) is dense in £2(D). 
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3.2.1 Density of A 

We use here a mollifier function cl> [Adams and Fournier, p.36]:-

-1 

{
e( (lxl'-ln) if Ixl < 1 

rjJ(x) = 
o otherwise. 

o 

Figure 6: mollifier function 

1 

cI>' s characteristic is that it has compact support, but is infinitely smooth 

everywhere, even at the 'cut-off' points. The function is shown above in 

its IR form. We now take X(x) = ~cI>(x), so that 

r X(x)dx = 1 ill!.2 
and then Xk(X) = PX(kx) (k > 0), so that we also have 

r Xk(x)dx = 1, ill!.2 
but the support of Xk(X) is now reduced to a ball of diameter t;. We will 

use the mollifier function to construct, by a convolution, an fk E Xl (A) 

that is arbitrarily close to any f E L2 (D). So, let f E U(D) and E > O. 

Since CO'(D) c W~,2(D) and CO'(D) c W2,2(D), we need only find an 

i. such that IIf - i.IIL2 < E, where !k E ColD). In fact, we will actually 
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approximate an fh which is itself arbitrarily close to f. We define a new 

domain D-;; which is D except all points a distance h or less from aD, h 

chosen to be small enough for this to be a clear definition. (See Figure 

7.) Now define fh to be equal to fin D-;; and zero elsewhere. Now choose 

a smaller h, if necessary, so that Ilf - fhllL2 < ~. This is possible, simply 

by the Lebesgue definition of L2. 

1 1 

k k 

h 

Figure 7:- D less an "outer strip" 

It is then only necessary to find an fk such that Ilfh - !kIlL' < ~. So, for 

our fh E L2, define:-

!k(x) = r fh(Y)Xk(X - y)dy. 
JJlI.2 

This is in C OO (IR.2) [Weir, p.1l8]. Now consider how close we can get fk 

to fh :-

IIA - M2 = r Ifh(x) - fk(XWdx 
JJlI.2 

but since r Xk(X - y)dy = 1 
JJlI.2 

we can writeA(x) = fh(X) r Xk(X - y)dy 
JJlI.2 

= r fh(X)xk(X - y)dy 
JJlI.2 
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and so (29) becomes:-

IIfh - AII2 == r 1 r fh(X)Xk(X - y)dy - r fh(y)xk(X _ y)dy 12 dx 
jJf{2 iR2 iR2 

- L,I L,uh(X) - fh(Y))xk(X - y)dy 12 dx. (30) 

Now however, consider where (!h(x) - fh(y))Xk(X - y) can (possibly) be 

non-zero. Xk(Z) is only non-zero for IIkzll ::; 1, or equivalently, IlzlI < t, 
so writing z == y - x, and noting that n(z) is even, (30) becomes:-

IIA - fkW == r 1 r (Jh(X) - A(x + Z))xk(z)dz 12 dx. (31) 
JII.2 J"zll<! 

But for any f E £1 and any E > O,:la == a(J, E) > 0 such that if IIvll < 

a, then II! - fvll£1 < E, where fv(x) == f(x - v) (this can be derived 

from Lebesgue's theorem [Egorov and Kondratiev].) In effect, we can 

'shift' f by v, and if v is vanishingly small, then so is IIf - fvll£1. In 

particular, if IlzlI < a, then Ilfh(X) - fh(X + z)II£1 < E. We can apply 

this to (31) after some manipulation. Firstly, as Xk > 0, we can write 

Xk(Z) == Xk(Z)!Xk(Z)!, and so by the Schwarz inequality:-

1 r (!h(x) - !h(x + Z))xk(Z) dz 12 ::; 
JllzlI<t 

r I!h(X) - fh(X + ZWXk(Z) dz r Xk(z)dz. (32) 
luzll<t JllzlI<t 

Using the fact that 111.2 Xk(z)dz = 1, we can combine (31) and (32) to 

give:-

IIA - !k112::; r r Ifh(X + z) - fh(XWXk(Z)dzdx. 
JII.2 JllzlI<t 

By Fubini's theorem [Weir], the order of integration on the right-hand 

side can be reversed, so the above becomes:-
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Now referring to the comments above on Lebesgue's theorem, we take 

suitably large k so that:-

Ilfh - fkl12 < ~ 1 Xk(z)dz, 
IIzll<k 

but we also take k large enough, if necessary, in order that k < ~ so that 

fk is kept within D and is zero near aD, and hence fk E CO'(D). (See 

Figure 7.) Now, since III2 Xk(z)dz = 1, we have:-

f 
Ilfh-M < 2" 

and the proof is complete. Now we can consider the adjoint properties 

of A. 

3.2.2 Self-adjointness of A 

For a densely-defined closed operator on L2, in our case A, the adjoint 

A * is defined as follows [Meise and Vogt] :-

11 (A *) = {v E L2; u -+ (Au, v) is a continuous function on l1(A) }(33) 

where A is the closure of the graph of A, and consequent to the above 

definition, that 3 a unique A * v E L2 such that:-

(Au, v) = (u, A* v) Vu E l1(A). (34) 

It is also a consequence of the above that A * is linear, and that 11 (A *) 

is a linear subspace of L2. Note that the mapping u -+ (Au, v) in (33) 

is a bounded functional on l1(A) with respect to the U norm and can 

therefore be continued as a bounded functional on all of L2, by the Hahn­

Banach theorem [Kreyszig], even though we know A is not bounded. 
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As :B(A) is dense in L2 and closed, we can quote the first Hilbert theorem 

(see Appendix 1):-

L2 = [Im(A)] EB 91(A *). (35) 

So, if we can show 91(A *) = {O}, then Im(A) is dense in L2, and hence 

Ro will also be densely-defined, and we can then speak of its adjoint. 

So we will now prove 91(A*) = {O}. We do this by actually showing 

A is self-adjoint. For then A * u = 0 * Au = O. Now if u E :B(A), 

then -.6u I = 0 and u I = 0, but from our uniqueness principle (see 
D aD 

Appendix 1), u = O. If u E :B(A)\:B(A), a limiting argument gives the 

same result, as 'Vu will be vanishingly small. First then, we show A is 

symmetric. Let u, v E :D(A), then:-

(Au, v) = - Iv .6u'ifdx = - Iv 'if.6udx. 

Applying Green's first theorem (see Appendix 1) to 'if and u :-

(Au, v) = - r 'if
8
8u

dS+ r'V'if.'Vudx, 
laD n lD 

but as v E :B(A), v I = 0 * 'if I = 0, hence aD aD 

(Au, v) = Iv'VV.'VUdX. 

Similarly, 

(u,Av) = lv'VU.'V'ifdx 

and so combining (36) and (37):-

(Au,v) = (u,Av). 
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so A is symmetric, and continuity of the inner-product also proves this 

for A, therefore ::lJ(A) ~ ::lJ(A*) follows immediately from the definition 

of adjoint in (33) and (34). So, to prove self-adjointness, it remains to 

prove ::lJ(A") ~ ::lJ(A):-

Let v E ::lJ(A *). Then, by definition, v E L2(D) and (Au, v) is a con­

tinuous function on ::lJ (A) and 3 a unique w = A' v E L2 (D), such that 

(Au, v) = (u, w) Vu E ::lJ(A). But as ::lJ(A) ~ ::lJ(A), then we can also 

say v E L2(D) and (Au, v) is a continuous function on ::lJ(A) and 3 a 

unique w = A"v E L2(D), such that (Au,v) = (u,w)Vu E ::lJ(A). Let's 

look more closely at w:-

-In 6.uvdx = In uwdx Vu E ::lJ(A). 

But that is also true then, for any 1 E C8"(D):-

-In 6.1vdx = In 1wdx '11 E C8"(D). 

So in the distribution sense, w = -6.v and therefore w = -6.v, and so 

6.v exists as an L2 function. By the elliptic regularity theorem [FollandJ 

[Gilbarg and Trudinger], this actually implies v E W 2,2(D). If we can 

now show v is zero on oD, we are done, for then v E Wt,2(D) (as 

Wl,2(D) C W 2,2(D)), hence v E ::lJ(A) =} v E ::lJ(A). Now from the 

definition, (Au, v) = (u, w)Vu E ::lJ(A), 

but (Au, v) = In -6.uvdx 

and as w = -6.v =} w E W 2,2(D), we can apply Green's first theorem 

(see Appendix 1), 

= - r v~u dB + 1 "ilv."iludx 
laD un D 

(38) 
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and similarly, 

(u,w) = In uwdx = - In ut::.vdx 

and as both v, wE W2,2(D), applying Green's first theorem again:-

= - r ua
Ov 

dB + r 'i7u.'ilvdx. 
laD n lD 

So combining (38) and (39):-

but u I = 0, 
aD 

u- -v- dB = 0 1 ( Ov au) 
aD an an 

1 au 
=} -a vdB = 0 Vu E 1l(A). 

aD n 

(39) 

Now, if we can show {anu(= ~~) jU E 1l(A)} is dense in L2(aD), then 

that implies v I = 0 (and hence v I = 0) as required. As COO (aD) 
aD aD 

is dense in L2(aD), it is enough to show that {onUj u E 1l(A)} is dense 

in COO (aD) with L2 norm. We show the proof of this here. We assumed 

earlier that aD was piecewise smooth with no cusps and bounded in ]R2. 

Without loss of generality, we look at one section of aD that is almost 

straight and parallel to the y-axis. 
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To illustrate the construction, consider a section that is actually straight 

and coincides with the y-axis.(See Figure (8).) 

ao y 

-Ox X 

-----
Figure 8: Straight section of aD 

So, for some f E COO(oD), we want to find a u E W2,2(D)nW~,2(D) such 

that Ilonu - fllcO(8D) < E (as Co '* £2 norm), for any given E > O. On 

the straight section, f is actually just f(y). We can approximate f on 

this section by taking u = xf(y)x(x), where x(x) is a" cut-off" mollifier 

function, as defined above, but at some small distance from x = 0, we 

simply set x(x) = 1. Hence u is certainly W 2,2(D) and W l ,2(D), and it 

is zero on the boundary, so u E :l) (A). 

The normal derivative at the point (Xl, yd(Xl = 0) is 

-(0 - (8xf(y)))/8x = f(y), 

as required, i.e., Ilonu - fllco(8D) < E. 
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- - -- ---------------------------------------------------------

Now returning to the more general case, consider a section only slightly 

curved, so it is almost parallel to the y-axis, let us say it deviates by no 

more than a small angle a. (Drawn in exaggerated form in Figure (9).) 

x 

Figure 9: Curved section of aD 

Now looking at the point (X2, YI) on the boundary, if we backward-project 

the normal at this point, we cross the y-axis at a point yz. The derivative 

at this point (in infinitesmal sense) is thus I(Yz) cos a. By choosing 

a suitably small section of aD, we can make I (Y2) close to I (YI) and 

cos Cl< close to 1, as I E COO(aD), so we achieve any desired closeness to 

I(YI) on a small enough section of aD. This can be done on a complete 

set of "small sections" of aD, and then a partition of unity [Spivak] 

pieces all these functions together to form one U E ~(A) such that 

[[Onu - fllcO(aD) < E. Now, 'rolling back' to where we started - we 

have just shown {anu} is dense in LZ(aD) for u E ~(A), and therefore 

v I = 0, hence v E ~(A) and hence A is self-adjoint. That however 
aD 

implies v = 0 and so 91(A*) = {o}. Then the first Hilbert theorem (see 

Appendix 1) gives us that Im(A) is dense in L2. • 

Hence Im(A) is dense in L2, and hence Ro is also densely-defined, and 
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so we may speak of its adjoint. The definitions are the same as for A 

above in equations (33) and (34), as Ro is also densely-defined in L2. 

The definition of self-adjoint [Meise and Vogt] is that the closure Ro of 

Ro is self-adjoint, this closure being the closure of the graph of Ho. But 

as Ro is bounded and densely-defined, Ro is simply the extension of Ro 

to the whole of L2. Now referring to equation (33), u -+ (Rou,v) is 

clearly continuous for any v E L2 as Ro is bounded, so :D(Ro *) = £2 = 

:D(Ro). As the inner-product preserves continuity, it just remains to show 

symmetry for Ho:-

For I, 9 E Im(A), using the definitions above, I = -l'.u, 9 = -l'.v, 

(Ho I, g) - (u, -l'.v) 

- in u( -(l'.v)dx. 

Applying Green's first theorem (see Appendix 1) to u and -v :-

j - lav j-- ul'.vdx = - u-a dB + 'ilu.'ilvdx. 
D aD n D 

By definition, u I = 0, so (40) becomes:-
aD 

Similarly, 

(RoI, g) = in'ilU.'ilVdX. 

(J,Rog) = (-l'.u,v) = - in l'.uvdx 

- - in vl'.udx 

1 au j-- V-a dB + 'ilv.'iludx =} 
aD n D 

(40) 

(41) 

(J, Rog) in 'ilv.'iludx. (42) 
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Combining (41) and (42):-

(Rof, g) = (j, Rog) 

so Ro is self-adjoint. 

Since Ro is bounded and self-adjoint, there is some spectral theory that 

can be applied to it. In particular, we can say all its eigenvalues are real, 

and there is a representation of Rv in the form lM J1,dEI" J1, being the 
m-O 

spectrum of Ro [Kreyszig]. However, we need compactness to prove that 

the spectrum of Ro consists only of eigenvalues. 

3.3 Compactness of Ra 

- -
We prove this by expressing Ro as JRo, where Ro is bounded and J is 

compact, so it then follows that Ro is compact. Combining (27) and (28) 

agam:-

< (2c111V'uI12 + 1~(lr 
IIfl12 
4(2 . 

We already chose ( so 1 - C1(2 > 0, so then:-

as well as 

lIV'ull2 :5 CDllfl1 Vu E :D(A) 

Ilull :5 CDllfl1 Vu E :D(A). 

Now, Ilull~,,2 - Ilull~2 + 11 ~~ 1I~2 + 11 ~~ 1I~2 
- lIull~2 + IIV'ull~2. 
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_ .. _._-------------------------------

Hence we can write lIull~!1'2 :":: CDII/II£', and so we define Ro as mapping 

1 to U, as Ro does, but the co-domain is changed to W 1,2. The equation 

above proves Ro is bounded. We now quote the Rellich-Kondrachov 

theorem [Adams and Fournier], which says that for a bounded domain 

D with sufficiently smooth boundary, the imbedding J : Wm,P(D) -+ 

W m- 1,P(D) is compact. Hence, the imbedding J taking U in W1,2(D) to 

U in W O,2(D) = £2(D) is compact, and the compactness of Ro is proved, 

3.4 Characterising the eigenvalues 

We now know that A is an operator with compact resolvent, and we quote 

the result, as discussed above, that A also has only a point spectrum, and 

that non-zero eigenvalues have only a finite multiplicity. Now let's relate 

the spectrum of Ro to A, As Ro is compact, its eigenvalues are bounded, 

and if they proliferate, it is only towards the origin [Kolmogorov and 

Fomin]. Now, we proved above that there is no zero eigenvalue of A, 

We can also prove this for Ro, for if 31 # ° s.t. -6u = 1 and u = 0, 

then 1 = 0, which is a contradiction. We also saw the eigenvalues are 

all real, and as there are no zero eigenvalues, the eigenvalues An of A 
1 

relate quite simply to the eigenvalues f.Ln of Ro by An = -. As f.Ln are 
f.Ln 

bounded and can only proliferate at zero, that means there is a definite 

lowest eigenvalue A1 (with possible duplicates), though there may not 

be an upper limit. Now counting the values of An according to their 

multiplicity, we can order these as a set of real numbers:-
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Now, if Un is an eigenvector, and we write Un = V + iw, where v and w 

are real-valued, then from the definition oLD (A) we can see v and ware 

also in W 2,2 and W~,2. As Un is an eigenvector, v and ware not both 

zero. Without loss of generality, we take v to be non-zero, and we can 

then see v is an eigenvector in its own right. Then, as v I = 0, from 
aD 

the uniqueness principle (see Appendix 1), 

and hence An > O. Thus the spectrum of A is completely defined as a 

set of real numbers:-
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4 Case study - numerical analysis 

We will estimate the first 2 or more eigenvalues of equation (1) for a 

suitable domain, using a numerical technique which is a variant of the 

Rayleigh-Ritz Approximation (RRA) technique [Jeffreys and Jeffreysj. 

This is itself a special case of a Galerkin method to solve elliptic equa­

tions using sets of trial ("test") functions [Kirschj [Mitchell and Griffithsj, 

which we now define:-

Trial functions Ii, i = 1,2,3 ... are functions in a subset of our defined 

domain ::orA), in that they are actually Coo functions, or we can use any 

set of functions, provided their span is dense in ::orA) under W 1,2 norm. 

In our Dirichlet case, we also stipulate :-

Ii I = O. oD (43) 

For a finite set 1> of trial functions {I;}, i = 1,2,3 ... n we define:-

ajk = ("'VIj, 'VA), j = 1,2,3 .. . n, k = 1,2,3 ... n (44) 

and 

bjk = (jj,Ik), j = 1,2,3 .. . n, k = 1,2,3 . .. n. ( 45) 

As these are finite sets, we can denote {ajk} by the matrix A<\> and {bjk } 

by the matrix B<\>. RRA is actually a practical way of using Courant's 

Minimax Principle [Egorov, Komech and Shubin], which states that if 

.\1 is the first eigenvalue, then:-

lE COO (D) IQ I = 0 oD 
(46) 
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over all non-zero trial functions {J,,}. Furthermore, if!J is the minimiser 

of (46), then !J is the first eigenfunction. Now, for a set i[> of trial 

functions Ud, as discussed above, define:-

f # 0 j f = ~Ckfk' over all scalarsCk}, 

then the minimax principle is that, if An is the nth. eigenvalue, then:-

An = minA~(i[». 
q, 

(47) 

Hence An is the minimum of a set of maxima. The RRA method finds the 

maximum A~(i[» by solving the general eigenvalue problem for Aq"Bq, 

[MaronJ :-

(48) 

with Aq" Bq, as defined in equations (44) and (45) above, and then finding 

the highest of these roots. At this point, we refer to the arguments at 

the end of Section 3 proving the eigenvalues to be real. It is clear from 

that argument that we need consider henceforth only real-valued trial 

functions and likewise real-valued scalars. 

Care is needed in adding more and more trial functions, as the eigenvalues 

may tend to infinity. We apply the RRA method then, as follows:-

Pick trial functions, and find the lowest two roots of (48) (or just the 

one root if we start with one trial function). Add another trial function, 

and keep adding until we see a 'convergence', in that Al and A2 are not 
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- - - ----------------------------------------------------------

getting significantly lower. Then these two values of ). are our estimates. 

Note the advantage of using a Hilbert space (Sobolev space) rather than 

Banach - the latter has no inner-product. 

4.1 Classes of trial functions 

We shall choose these to match what we expect of the character of our 

solution. In particular, in our Dirichlet case, we have a specific require­

ment of zero on the boundary. Apart from that, if we expect u to be 

smooth, for example, then our trial functions should be smooth. 

4.2 Domain enlargement 

If the domain of the Laplace operator with Dirichlet conditions is en­

larged, each eigenvalue is decreased [Egorov, Komech and Shubin]. En­

largement is in terms of sets, so if D' is an enlargement of D, then as sets 

in ]R2, DC D'. So if we surround our domain by a 'minimal surround' 

box, that gives us a useful lower bound. 

4.3 Domains and trial functions: specifics 

We want our domain to be computation ally practical, but without a 

known analytic solution. We restrict ourselves then, to D C ]R2 such 

that aD is a finite curve in ]R2 which can be parameterised as polar co­

ordinates (s(II), 11), where s(lI) is a strictly positive function in the range 

0::; 11 ::; 21r (s(O) = s(21r)), s(lI) being at least a CO,l function on [0,21r] 

(see Section 2.2 for discussion of Holder spaces Cj,,"), and such that any 
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radial definitely touches oD, but only touches it once. We take oD to 

be always inside (including equal to) a bounding box of side 6, centred 

on the origin:-

y 
3 

s(e) 

-3 

r -------
/~aD 

si " / \ 
I./<e ) 

3 
0 

J! 
/--

"- j 
--

-3 

Figure 10: 8(11) 

This bounding box actually has a solution, i.e., the eigenfunctions are:-

. m7r . n7r 
slllT(X +3)Slll"6(Y+ 3), m = 1,2, ... , n = 1,2, ... 

so that the eigenvalues are ;~ (m2 + n2
), m = 1,2, ... , n = 1,2, ... 

= ;: (2, 5(repeated), 8, 10, ... ) 

= 0.2742(2, 5,5,8,10, ... 
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= 0.5484, 1.371 (twice) , 2.1936, 2.742 ... 

and so these eigenvalues form our lower bounds, in light of section 4.2 

above. 

Now, for this Dirichlet problem, actually constructing a suitable Coo 

function that is zero on a given oD can be quite tricky, but what we 

will do instead is to describe a set of CO,l(D) functions to use as trial 

functions, and then we will prove below that these can be used instead 

of Coo functions. For a given s(O) then, we first define this modifier 

function:-

T1 (T, 0) - 1 if T = 0 else 

- 1 - s(O) if T::; s(B) else 

o if r > s. 

Essentially, T1 is a cone, tapering to a point at the origin, where its value 

is 1. If s( 0) is a square, then T1 is a pyramid, and if s( B) is a circle, T1 is 

a cone. Apart from potentially inheriting a CO,l(D) status from s (think 

of, for example, the pyramid edges), we can see T1 is itself continuous, 

but will always have a discontinuous (though bounded) derivative at the 

origin, thus T1 is always a CO,l (D) function. We now use this modifier 

function to multiply by sines to give OUT required set of trial functions -

these will definitely be zero on oD. Now the minimax (RRA) methods 

rely on the fact that W~,2 is the closure of Cl), but as our trial functions 

are clearly not Coo, we must now show that they do have a span that 

is dense in W~,2. (See definition of minimax under equation (46).) We 
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define then:-

. m1f . n1f 
Xm,n = TI(x, y) sm S(x + 4) sm S(y + 4), 

m = 1,2, ... , n = 1,2, ... , 

and we then let X = sP{Xm,n}' We claim X is dense in W~,2(D). It 

suffices to prove that X is dense in Co(D), as that is dense in W~'\D). 

We prove this here:-

Theorem 4.3.1 Let X, TI and D be as defined above. Then X is dense 

in Co(D). 

Proof Let U E Co(D) and let V = ;1 ifTI is not zero, else V is zero. As 

U is zero near aD and as it's a Coo function, V is well-defined, and in fact, 

we can see V is a CO,I(D) function, as TI is only zero on aD. Now extend 

V by zero to an 8 x 8 zero-centred square, so it is now a CO,I function on 

this square, and zero on its boundary. Let's call that cg,l(square). But 

cg,l(square) C W~,2(square), so V has a Fourier expansion of the form:-

(limits above and norms below are in the W I ,2 sense). So, for a given 

E> 0, IIV - 11./1 < € 

N, 

where V. = L 'Ymn sin ~1f (x + 4) sin n; (y + 4). 
m,n=l 

so looking at the form ofTI , it is clearly bounded as an operator on W I ,2, 

so we can write:-
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By suitable choice of N" we can arrive at:-

and Tl V. is clearly in X. • 

Note that we chose the 8 x 8 square to ensure we are not using trial 

functions that are close to zero on oD (as we are allowing aD to actually 

coincide with the 6 x 6 square). This could cause poor convergence due 

to over-specification of the problem, as discussed in Section 3. 

TI(x, y) --+ Tdr, (1) conversion 

(From herein, we take" z = 0" to mean, in computing terms, Izl < 

1.0 x 10-6
, or whatever lower limit is required.) 

r _ VX2 +y2 

if r - 0 then e = 0 

else e _ ArcTan(x,y) 5 

s - sce) 

if r > s then Tl = 0 

else Tl -
r 

1- -. 
8 

5If this software function returns a value in the range -Jr to Jr, then we add any 

-ve values to 2Jr to get our range. 
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Sample sce) 

(1) Square of side 3:-

(In this case, the eigenvalues are the lower bounds above.) 

y 
3 

-3 

/' 

B /" 

~ 1£ (J 

0 

-3 

Figure 11: s(O) for square 

Referring to Figure (11), in A :-

=}s 

Similarly, in B :-
3 

s=--
sine' 

45 

3 
cos O' 
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A similar logic applies in the 'mirror' segments, forcing a positive 8, so 

we get:-

if 

then 

else 

(2) General form:-

7f 
0< B < - or - 4 

3 
8 = .,.----;:; 

I cosBI 
3 

S = ,---,---,.,-
I sinBI· 

37f B 57f 77f - < < - or - <B 4 - 4 4 - , 

8(B) = 2 + L:~(ak sin kB + (3k cos kB) (ak' (3k < 1 or ~ 1). 

The 2 is there so that 8 is always positive, and now we see the reason to 

have a square of side 3 in the introductory text above. k = 2 is probably 

high enough to get a suitable shape, but we will set (31 = 0, so we don't 

just get an ellipse. 

RRA algorithm 

1. Define 8( B) and specify limits, i.e. x ± 3, Y ± 3. 

2. Now define T1(x,y). 

3. Define trial functions of the form:-

where m and n increase symmetrically, so our functions are dimen­

sionally unbiased. 

4. We calculate ajk and bjk , as defined in equations (44) and (45) 

above. 
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-- -------------------------------------------------------------------

5. Now find solutions {A} of the general eigenvalue problem [Maron] 

for A4>, B4> (A4>x = >.Bq;x), where 

q, = Ud· 

Repeat for i[> = {h, f2}, and so on, until we see a 'convergence' in 

the lowest two or more values of >. - these will be our eigenvalue 

estimates. 

4.4 Constructing the computational elements 

The RRA algorithm was implemented using the software package Math­

ematica developed by Wolfram Research [Pao]. We describe here how 

this algorithm was built up, and the mathematical problems that the 

package itself presented (see Appendix 2 for the "notebook"). 

Firstly, the ArcTan function did operate as suggested in Section 4.3 and 

returned values in the range -7r to 7r, so if a negative value was returned, 

we brought it into our system by adding 27r to it. On a general point 

here, although functions can be defined in Mathematica using an " if­

then-else" structure, they can then be difficult to actually utilise; in 

particular, graph plots and integration can fail. It is best therefore to 

define functions in terms of other known functions wherever possible. In 

this first case, Mathematica has a built-in function " Sign" which returns 

-1,0, 1 depending on whether its argument is negative, zero or positive. 

We can thus define our [-7r,7r] --+ [0,27r] conversion by:-

T02pi(r!» = r!> + 7rSign(r!»(Sign(r!» -1). (49) 
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A similar treatment was needed to define s( e) for the square. Rather than 

an "if-then-else" structure, it can be realised as a sum of step functions 

on [0, ~), [~, 3;), ... mUltiplied by IC;'BI' l'i~BI ... 

Notice the intervals are open on the right, so they don't overlap, or we 

would get twice the required value at the crossover points. We needed 

then, a step function that is 1 on [a, b) and zero elsewhere. The 'UnitStep' 

function that Mathematica provides is 0 for x < 0 and 1 for x 2': o. So 

UnitStep(z - a) gives us a function that is 0 for z < a and 1 for z 2': a. 

We will always have b > a in our definitions, so we then just need a 

'modifier' that will set UnitStep(z - a) to zero if z 2': b. Let x = z - b, 

then:-

x<O,*z<b 

x 2': 0 '* z 2': b. 

So the required modifier is l-UnitStep(z - b). Thus our required step 

function is:-

Step(z, a, b) = UnitStep(z - a)(l - UnitStep(z - b)). 

Since we are now not using "if-then-else" statements, but are using these 

step functions, we cannot guarantee to not divide by zero. For example, 

when evaluating:-
1[ 3 

Step( e, 0, 4") ! cos e! 

at e = ~, Mathematica actually evaluates both parts, and then multiplies 

them, resulting in an error. We avoided this by using a 'Notzero' function, 

which raises any zero values to a tiny non-zero amount, so making little 
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difference numerically:-

Notzero(() = (+ 2 X 10-24 Step(C _10-2\ 10-24 ). 

It should be noted here that all of these functions were tested out in Math­

ematica itself by supplying a range of values, and checking the answer. 

In addition to this, for some functions, we drew plots in Mathematica 

for additional validation and also visualisation. The plot of 'Notzero' is 

shown below. 

3xlO·24 

2xlO-24 

1 10-24 

-3X10'}2X10'-':1x 0,24 1X10"2X10":lx10'24 
_ 10.24 

_2xl0-24 

_3xlO·24 

Figure 12: 'Notzero' function 

Now even using known functions, Mathematica still failed to integrate 

some of our defined functions. Extensive analysis and trials of M athe­

matica showed its built-in routines cannot always integrate functions that 

are not classically differentiable. We therefore devised our own integra­

tion routines, using a simple quadrature method to expediate matters 

[Jacques and Judd]. Specifically, the integral of a function f E ]R2 over 

the range {Xl -+ X2, YI -+ Y2} can be approximated by:-

n-l n-l 

Rintegrate2d(f, Xl, X2, yl, Y2, n) = 5x5YL Lf(xl + i5x, Yl + j5y) (50) 
i=O j=O 
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where lix = (x,-X!) and liy = (Y'-Yl), n being the number of sub-divisions 
n n 

of our x and Y r'ange, We have used the same n as we expect X2 - Xl 

to be in the order of Y2 - YI. With just n = 100, tests in Mathematica 

showed this function was accurate to the true value to 4 significant digits. 

Another test involving our TI function will be shown in section 4.5 below. 

For the factors ajk defined in Equation (44) above, we have to go further 

and approximate \7, as at certain points it does not exist in the classical 

sense, and Mathematica is unable to evaluate it. In fact, it is simpler 

to approximate the whole term. So, for two trial functions u, v over the 

range {Xl -+ X2, YI -+ Y2}:-

(\7u, \7V) = lY' r' \7u.\7v dxdy 
Yl J Xl 

_ lY' t' (uxvx + UyVy)dxdy 
Yl i X1 

n-I n-l 

"'" LL ((UXVX)i,j + (UYVY)i,j)lixliy (51) 
i=O j=:.O 

where (UxVx)i,j = (U(XI + (i + l)lix, YI + jliy) - U(XI + ilix, YI + jliy) ) /lix 

x (V(XI + (i + l)lix, YI + jliy) - V(XI + ilix, YI + JOY)) /lix, 

(UyVY)i,j = (U(XI +iOX,YI + (j+ l)oy) -U(XI +ilix,YI + jliy))/liy 

x (V(XI +ilix,YI + (j + l)liy) -V(XI +ilix,YI +j6y))/liy 

and lix = x,-x, liy = 1ll=1!1.. 
n' n 

n has the same definition as in our first approximation in (50), and we 

make a further simplification for our cases: as we will always be integrat­

ing over the 6 x 6 box shown in Figure (10), then Xl = Yb X2 = Y2, hence 
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Ox = oy and so equation (51) simplifies to:-

('Vu, 'Vv) ~ ~ ~ ( (U(Xl + (i + l)ox, Yl + jOy) -

U(Xl + iOx, Yl + JOY)) 

x (V(Xl + (i + l)ox, Yl + jOy) -

V(Xl + iOx, Yl + JOY)) 

+ (U(Xl + iOx, Yl + (j + l)oy)­

U(Xl + iOx, Yl + JOY)) 

x (V(Xl + iOx, Yl + (j + l)Oy) -

V(Xl + iOx, Yl + JOY)) ). (52) 

The above equation therefore defines our 

approximation function Dsum2D(u, v, Xl, X2, n). 
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- --------------------------------

This was tested out over the range {-3 -+ 3, -3 -+ 3} as follows:-

'* ('Vu, 'Vv) 

_ (yeXY) (_ye- XY ) 
xeXY . -xe-XY 

__ x2 _ y2 

_ -I: I: (x2 + y2)dxdy 

--I: [~3 + xy2 [3 dy 

--I: (18 + 6y2)dy 

- - [18y + 2y3l~3 

- -(6.18 + 2.2.27) 

- -(6.2.9 + 4.3.9) 

- -(12 + 12).9 

- -24.9 

- -216. 

With n = 100, Mathematica returned a value of -216.394, hence accurate 

to 3 significant digits. At n = 1000, the value was -216.004, clearly much 

better, but at this stage timing trials were done, and the n = 1000 case 

was prohibitive in timing terms. Further trials showed n = 100 was the 

best compromise. 

4.5 Proving the algorithm 

The algorithm was tested on the bounding box itself, as defined in Section 

4.3, which is also referred to there as the first sample 8(0). Thus we know 
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exactly what the eigenvalues are for this case, i.e., 

0.5484, 1.371 (twice), 2.1936, 2.742 ... 

A first test was done for the square with Tl set to 1, so that we are 

actually using the known eigenfunctions. This was done to prove the 

RRA method itself. This first test estimated the eigenvalues to three 

significant digits. See Appendix 2 for the Mathematica notebook for the 

main test. 8(0) is defined as in Section 4.3 ('Mod' is Modulus, added here 

to be certain that 8 is only ever defined on the range 0 :s: 0 :s: 211" and that 

8(0) = 8(211")). We then plotted it to ensure it hadn't gone negative. We 

then drew the 'parametric' plot, which effectively means we were drawing 

aD. As Appendix 2 shows, both these results were satisfactory. Note also 

though, that as in the previous section, all these constructed functions 

were tested out successfully with a range of arguments, especially at the 

, crossover' points. 

The Tl function was defined next. This follows the logic in Section 4.3. 

We have implemented Tl being 1 at the origin by actually making it 1 

near the origin, i.e., where 8(0) < 1 X 10-24 , hence the construction shown. 

This gives a better-defined value near the origin, because otherwise we 

would be using arctan with two zero, or very small values, and its result 

is not then reliable. The second step function ensures Tl is zero outside 

aD. The plot shows the expected pyramid shape. We have done a further 

integration test on Tl here, though it could be said it also tests out our 

integration function. As the area of the base of the pyramid is 36, and 

its height is 1, the volume is 3: = 12, so integrating Tl over D should 
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give this value. As Appendix 2 shows, we actually get a value of 11.9988, 

which is sufficiently close for our calculations. 

Next we defined the trial functions, and calculated the ajk terms as de­

fined in equation (44), and from these calculated the eigenvalues. As 

stated in Section 4.3, our generic function is:-

Tl(X, y) sin ~7r (x + 4) sin n8
7r 

(y + 4) 

and we want to let m, n increase symmetrically. Computer resources 

limited us to 20 trial functions, hence (m, n) were set to:-

(1,1), (2, 1), (1,2), (2,2), (3,1), (1,3), (3,2), (2, 3), (4, 1), (1,4), 

(3,3), (2,4), (4,2), (3,4), (4,3), (1,5), (5, 1), (2,5), (5, 2), (4,4). 

Note we also want our sequence of trial functions to reflect increasing 

eigenvalues, so for example, for the 9th. trial function, (4, 1) is preferred 

over (3,3) as42+12= 17< 18=32 +32. 

Appendix 2 shows the defined trial functions and calculation of the ajk 

terms. 

The "(* ... *)" expression in the notebook has the same meaning as 

" ... ", and is there for brevity. The" g" terms are there because 

if, for example, !I(x,y) * !I(x,y) is input directly to the Rintegrate2D 

function, Mathematica sometimes attempts an algrebraic expansion of 

Rintegrate2D, i.e., it doesn't recognise !I(x,y) * !I(x,y) as a function of 

x and y. Only the first two eigenvalues calculated are shown here, but 

this notebook was used to calculate all twenty, and the results are shown 

in the table below. 
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~ Al A2 A3 A4 

1 0.703266 

2 0.703266 1.54616 

3 0.703266 1.54616 1.54616 

4 0.703266 1.54616 1.54616 2.45332 

5 0.673223 1.54616 1.54616 2.45332 

6 0.653316 1.54616 1.54616 2.45332 

7 0.653316 1.546 1.54616 2.45332 

8 0.653316 1.546 1.546 2.45332 

9 0.653316 1.49926 1.546 2.45332 

10 0.653316 1.49926 1.49926 2.45332 

11 0.605768 1.49926 1.49926 2.45332 

12 0.605768 1.49926 1.49926 2.45315 

13 0.605768 1.49926 1.49926 2.45305 

14 0.605768 1.44616 1.49926 2.45305 

15 0.605768 1.44616 1.44616 2.45305 

16 0.594974 1.44616 1.44616 2.45305 

17 0.584985 1.44616 1.44616 2.45305 

18 0.584985 1.42922 1.44616 2.45305 

19 0.584985 1.42922 1.42922 2.45305 

20 0.584985 1.42922 1.42922 2.33937 

The results appear to show a slow convergence, and after our twenty trial 

functions, we have estimated the values for the first two eigenvalues to 

within 6.7%. 
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4.6 The general case 

See Appendix 3 for the Mathematica notebook (the computational ele­

ments described in Section 4.4 have been omitted for brevity). As with 

the previous notebook, we define 8(11) and plot it, to ensure it hasn't 

gone negative, and then do a parametric plot so we see what aD actually 

looks like. We have chosen 8(11) as:-

8( (1) = 2 + 0.5 cos( (1) + 0.2 cos(211) + 0.6 sin(211). 

We also plotted it with the square, to ensure it is contained within it, 

which the plot shows it to be. 

As with the square, Tl was then defined and plotted. Then we estimated 

the eigenvalues in exactly the same manner as we did in the notebook for 

the square (proving the algorithm). The results are shown in the table 

below. 
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~ Al A2 A3 A4 

1 1.82487 

2 1.68987 3.57986 

3 1.68987 3.04364 5.37704 

4 1.67996 3.01403 4.89026 6.3531 

5 1.62727 2.96241 4.8725 5.25733 

6 1.59345 2.95739 4.78505 5.23078 

7 1.58879 2.9535 4.74822 5.13835 

8 1.58845 2.95074 4.73096 5.13457 

9 1.58818 2.91826 4.7309 4.9784 

10 1.58811 2.9142 4.73071 4.9784 

11 1.58796 2.9135 4.73071 4.97674 

12 1.58653 2.91348 4.7305 4.97671 

13 1.58651 2.91336 4.72432 4.96338 

14 1.5865 2.91133 4.72426 4.9627 

15 1.58474 2.91021 4.72418 4.96187 

16 1.58183 2.90859 4.72407 4.95951 

17 1.57987 2.90747 4.71825 4.94918 

18 1.57827 2.90368 4.71681 4.94884 

19 1.57822 2.90367 4.71629 4.94811 

20 1.5782 2.90332 4.71429 4.94736 

Again, we can see a slow convergence in the first two eigenvalues, but we 

would need to see a lot more trial functions to give a confident estimate. 
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4.7 Conclusion 

We have shown how the Rayleigh-Ritz Approximation method can be 

adapted to estimate eigenvalues for the Laplace operator with Dirichlet 

boundary conditions on an arbitrary finite domain in ]R2 with smooth 

boundary. The estimate for the first two eigenvalues was within 6.7% 

for the known case. For the general case, the method appears to be 

converging, but many more trial functions would be needed to give a 

confident estimate. In addition, the adaptation involving the Tl function 

would probably be improved if Tl was made smoother, perhaps having a 

polynomial form, rather than just linear. 
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Appendix 1: Green's first theorem, 

the uniqueness principle and 

the first Hilbert theorem 

1) For I/> E Cl(D), 'Ij! E C2(D), D being a bounded region with smooth 

boundary in lRn, Green's first theorem [Jeffreys and Jeffreys] states that 

if I/> and a'lj! / an both exist on the boundary of D, then they satisfy this 

identity:-

This can be extended to Sobolev spaces. As any function in the Sobolev 

space Wm,P(D) can be realised as a limit of CCO(D) functions [Adams 

and Fournier], by applying Green's first theorem to such functions, and 

passing to the limit [Gel'fand and Shilov]' we can get the same identity 

as above for u E W 1,2(D) and v E W 2,2(D):_ 

r u!c:,vdx = r u
a
av 

dS - r V'u.V'vdx, iD hD n iD 
where u I is the trace of u, and av/an is derived from the trace of V'v, 

{JD 

as defined in Section 2.2. 

2) Uniqueness principle. Following on from above, if u E W 2,2(D) and 

u I = 0, and we put u = v :-
{JD 
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and hence, if 6u I D = 0, then V'u I D = 0, so u is constant, but u is zero 

on the boundary of D, hence u I D = O. 

3) If M is a closed subspace of a Hilbert space H, then H = M Ell ML 

[Kreyszig]. If A is a densely-defined operator on L2, then 91(A*) = 

Im(A)L [Meise and Vogt]. Combining these two, if A is closed, we get 

the first Hilbert theorem for a closed, densely-defined operator A on L2;_ 

L2 = [Im(A)] Ell91(A *). 
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Appendix 2: Mathematica notebook - prov­

ing the method 

To2pi[4>_] := 4> + 7r * Sign[4>] * (Sign[4>]- 1) 

Step[z_, a_, b_] := UnitStep[z - a](l - UnitStep[z - b]) 

Notzero[C] := (+ 2 * 10" - 24 * Step[(, -1 * 10" - 24, 1 * 10" - 24] 

Rintegrate2D[J_, xL, x2_, yL, y2_, n_] := {dx = (x2 - x1)/n; dy = (y2-

y1)/n; Rvalue = 0; Do[Rvalue = Rvalue+ j[x1+i*dx, y1+j*dy], {i, 0, n­

I}, {j, 0, n - I}]; N[dx * dy * Rvalue]}[[l]] 

Dsum2D[u_,v_,xL,x2_,n_]:= {dx = (x2 - x1)/n;dy = dx;yl = xl; 

Dxxx = 0; Do[Dxxx = N[Dxxx+ (u[x1 + (i+ 1) *dx, y1 + j *dy]-u[x1 + 

i*dx, y1+j*dy])*(v[x1+(i+1)*dx, y1+j*dy]-v[x1+i*dx, y1+j*dy])+ 
(u[x1+i*dx, y1 +(j+ 1)*dy]-u[x1 +i*dx, y1 +j*dy]) (v[x1 +i*dx, y1 +(j+ 

1) *dy]-v[x1+i*dx, y1+ j *dy])], {i, 0, n-1}, {j, 0, n-1 }]; N[Dxxx]} [[1]] 

(* Define s (B) for the square:- *) 

s[B_] := 3/ Abs[Notzero[cos 

[Mod[B, 27r]lll * (Step[Mod[B, 27r], 0, 7r /4] + Step[Mod[B, 27r], 37r /4, 57r 

/4] + Step[Mod[B, 27r], 77r /4, 27r]) + 3/ Abs[Notzero[sin[Mod[B, 27rlll] * 
(Step[Mod[B, 27r], 7r /4, 37r /4] + Step[Mod[B, 27r], 57r /4, 77r /4]) 
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(* First, plot as a line function, so we can be sure it hasn't gone negative:­

*) 

Plot[s[O]' {O, 0, 27r}] 

4.2 

4 

3.8 

3.6 

3.4 

3.2 

1 2 

(* Now the 'Parametric' plot:- *) 

ParametricPlot[ {s[O] cos[O], s[O] sin[O]}, {O, 0, 27r}] 

2 

1 

-3 -2 -1 1 2 

-1 

-2 
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(* Define and plot T1:- *) 

T1[x_, y_] := Step[Sqrt[x*x+y*y], 0, 1. * 1011 - 24]+ (1- Sqrt[x*x+y*y]/ 

s[To2pi[arctan[Notzero[x], Notzero[y]llI) 

Step[Sqrt[x * x + y * V], 1. * 1011 - 24, s[To2pi[arctan[Notzero[x], 

N otzero[y lll]]; 

Plot3D[T1[x, V], {x, -4, 4}, {V, -4, 4}, PlotPoints --+ 40, Mesh --+ False] 

(* Integration test *) 

Rintegrate2D[Tl, -3, 3, -3, 3,100] 

11.9988 

(* By calculus, (V=1/3A=36/3) this is correct. *) 

(* Define the functions, and derived ones to stop symbol expansion *) 

f1[x_, y_] := T1[x, y] sin[(x /8) * (x + 4)] sin[(x /8) * (y + 4)] 

gU[x_, y_] := f1[x, y] * f1[x, y] 
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f2[x_, y_] := T1[x, y] sin[ (7r /4) * (x + 4)] sin[( 7r /8) * (y + 4)] 

g12[x_, y_] := f1[x, y] * f2[x, yJ 

g22[x_, y-J := f2[x, y] * f2[x, y] 

(* ... *) 

n = 100 

all = Dsum2D[J1, f1, -3,3, n] 

3.01018 

a12 = Dsum2D[J1, f2, -3, 3, n]; a21 = a12 

-1.91714 x 10-16 

a22 = Dsum2D[J2, f2, -3,3, n] 

3.1415 

(* ... *) 

bll = Rintegrate2D[gll, -3, 3, -3, 3, nJ 

4.28029 

b12 = Rintegrate2D[g12, -3, 3, -3, 3, n]; b21 = b12 

-7.71714 x 10-16 

b22 = Rintegrate2D[g22, -3,3, -3, 3, nJ 
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2.0318 

(* ... *) 

(* Now find eigenvalues *) 

all/bll 

0.703266 

A2 = {{all, a12}, {a21, a22}}; 

B2 = {{bll, b12}, {b21, b22}}; 

Eigenvalues[{ A2, B2}] 

{1.54616, 0.703266} 

(* ... *) 
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Appendix 3: Mathematica notebook - gen­

eral case 

(* Define s(B) for the general case:- *) 

s[B_] := 2 + 0.5 cos[B] + 0.2 cos[2B] + 0.6 sin[2B] 

(* First, plot as a line function, so we can be sure it hasn't gone negative:­

*) 

Plot[s[B], {B, 0, 21f}] 

3 

2.5 

2 

1.5 

1 3 4 5 6 
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-- - - -----------------------------

(* Now the actual (,Parametric') plot:- *) 

ParametricPlot[{ s[e] cos[e], s[e] sin[e]}, {e, 0, 2?T}] 

2 

1 

-1 1 2 

-1 

-2 

(* Also plot it with the -3 x 3 square, to ensure it is within it (t( e) is 

square again) :- *) 

t[e_] := 3/ Abs[Notzero[cos 

[Mod[e,2?Tlll] * (Step[Mod[O, 21f], O,?T / 4] + Step[Mod[O, 2?T], 3?T / 4, 5?T 

/4] + Step[Mod[e, 2?T], 7?T /4, 2?TJ) + 3/ Abs[Notzero[sin[Mod[e, 2?Tlll] * 
(Step [Mod[e, 2?T],?T / 4, 31f / 4] + Step[Mod[O, 2?TJ, 5?T / 4, 7?T / 4]) 

ParametricPlot[{ {s[O] cos[e], 

s[e] sin[e]}, {t[e] cos[e], 

t[e] sin[O]}}, {O, 0, 2?T}] 
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2 

1 

-3 -1 1 2 

-1 

(* Define and plot T1:- *) 

T1[x_, y_] := Step[Sqrt[x*x+y*y], 0, 1. * 101\ - 24] + (l-Sqrt[x*x+y*y]/ 

s[To2pi[arctan[Notzero[x]' Notzero[yll]]) 

Step[Sqrt[x * x + Y * y], 1. * 101\ - 24, s[To2pi[arctan[Notzero[x], 

Notzero[ylll]]; 

Plot3D[Tl[x, y], {x, -3, 3}, {y, -3, 3}, Mesh -t False] 

(* Define the functions, and derived ones to stop symbol expansion *) 

fl[x_, y_] := Tl[x, y] sin[(7r /8) * (x + 4)] sin[(7r /8) * (y + 4)] 
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gl1[x_, Y-J := JI[x, yJ * JI[x, yJ 

J2[x_, y-J := TI[x, yJ sin[( 7f / 4) * (x + 4) J sin[( 7f /8) * (y + 4) J 

g12[x_, y-J := JI[x, yJ * J2[x, yJ 

g22[x_, y-J := J2[x, yJ * J2[x, y] 

(* ... *) 

n = 100 

all = Dsum2D[jI, J1, -3,3, nJ 

3.50643 

al2 = Dsum2D[jI, J2, -3, 3, nJ; a21 = al2 

-0.179116 

a22 = Dsum2D[j2, J2, -3,3, nJ 

1.75644 

(* ... *) 

b11 = Rintegrate2D[g11, -3, 3, -3, 3, n] 

1.92147 

b12 = Rintegrate2D[gI2, -3,3, -3, 3, n]; b21 = bl2 

-0.366582 
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- - -- - ----------------------------

b22 = Rintegrate2D[g22, -3, 3, -3, 3, n 1 

0.597019 

(* ... *) 

(* Now find eigenvalues *) 

all/bll 

1.82487 

A2 = {{all, a12}, {a21, a22}}; 

B2 = {{bll, b12}, {b21, b22}}; 

Eigenvalues[{A2, B2}] 

{3.57986,1.68987} 

(* ... *) 
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