
:Sound by
llAD}UNTON PRESS
m_, .1' ~".oo+Q,...>hOR~~A.

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TiTlE

'WII..\..\AMS S . . ___ - ____ - ____ - ---- ----1- -- - --- - - - -- -- - --- -- --

----- - ----_._--_ .. -_._-------- - -- -- --- ---- - - - -- - - - ---
ACCESSION/COPY NO' l ~ 20 .-, (}f >, ,. ,

.., U' 0\

----------------- ---- --- --- ---- --------- -- - - -- - - --
VOL. NO. CLASS MARK

· 1

I

APPROACHES TO THE DETERMINATION OF PARALLELISr"

IN COMPUTER PROGRAMS

by

Shirley Ann Williams (n~e Smith)

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy

of the Loughborough University of Technology

Augus t, 1978.

Supervisor: Professor D.Jo Evans, Ph.D.,D.Sc.

Department of Computer Studies.

©by Shirley Ann Williams, 1978.

LlJl1ghborough Unlv.rSlty
. of T e<hnology Library

O&te O~·ii
Ctus

.

Ace. 152Uol)/01
No.

ACKNOWLEDGEMENTS

The author would like to express her appreciation and

thanks to Professor D.J. Evans for providing motivation and

assistance throughout her academic training; to Dr. D.J. Cooke

for his help in understanding the problems of correctness; to

Miss J.M. Briers for her dexterous typing and preparation of

diagrams for this thesis; and to the Science Research Council

for the provision of a Research Studentship.

Finally, many thanks must go to Roy, the author's

husband, and her parents for their help and support during

the 'ups and downs' of this work.

DECLARATION

I declare that the following thesis is a record of

research work carried out by me, and that the thesis is

of my own composition. I also certify that neither this

thesis nor the original work contained therein has been

submitted to this or any other institution for a degree.

S.A. WILLIAMS.

CONTENTS

PAGE

CHAPTER 1: INTRODUCTION TO PARALLELISM

CHAPTER 2:

1.1 General Description

1.2 Architecture

1.3 Levels of Parallelism ..
1.4 Explicit and Implicit Parallelism

SOFTWARE CONCEPTS AMENABLE TO PARALLEL PROCESSING

2.1 Systems Software

2.2 Compilation Processes

2.3 Parsing an Expression

2.3.1 Reverse Polish Notation

2.3.2 Tree Representation
2.4 Algol-Type Programming Languages

2.5 Usage of Language Constructs

1

3

9

10

14

15

18

18

19

26

28

CHAPTER 3: DETECTION OF POTENTIAL PARALLELISM AT THE
INSTRUCTION LEVEL

3.1 Tree Representations of Expressions 30

3.2 A Survey of Techniques for Recognising
Expression Parallelism 33

3.2.1 Squire's Algorithm 33

3.2.2 Hellerman's Algorithm 38

3.2.3 Stone's Algorithm 38

3.2.4 Baer and Bovet' s Al gorithm 39

3.2.5 Other Methods for Recognising
Parallelism Wi thin Expressions 48

3.3 Formation of a Balanced Binary Tree

3.4 A New Algorithm

52

57

3.4.1 The Basic Algorithm 57

3.4.2 Extensions to the Basic Algorithm 60

3.5 A Comparison of Algorithms for
Recognising Expression Parallelism 66

CHAPTER 4: ANALYSIS OF GROUPS OF STANZAS WITH A VIEW TO
DETECTING PARALLELISM

4.1 Interdependencies Between Parts of

PAGE

Program •. •. •. .. 70

4.2 Usage of Private and Shared Memories 72

4.3 Existing Techniques for Recognising
Parallelism Between Stanzas 75

4.3.1 Graph Based Methods •. •. .. 75

4.3.2 Methods Based on the Structure
of the Program ...•. . 78

4.4 Classification of Relationships
Between Stanzas

4.5 Formation of a Stanza

CHAPTER 5: DETECTION OF PARALLELISM BETWEEN STANZAS

5.1 Tests to Expose the Relationships
Between Two Stanzas

5.1.1 Private Memories Available

5.1.2 Only Shared Memory Available

5.2 Tests to Expose a Single Relationship
Between a Number of Stanzas

5.2.1 Private Memories Available

5.2.2 Only Shared Memory Available

5.3 Assignment Stanzas •.•...

5.4 Parallelism Within Loops

5.4.1 Simple Loops

5.4.2 Nested Loops

5.5 Conditional Stanzas

5.5.1

5.5.2

Relationships Between A and S.
1

Relationships Between S. and P
1

5.6 Stanzas Containing Loops and
Conditionals

5.7 Procedure Calls

5.8 Additional Considerations

5.8.1 Unconditional Jumps

5.8.2 Input and Output

5.8.3 Declarations

I' •

5.9 Implementation of an Implicit Parallelism

81

84

86

86

88

93

93

96

100

103

103

106

115

116

119

122

126

129

129

129

129

Detector •• •. .. •• 131

CHAPTER 6: OPTIMISATION OF PARALLEL PROGRAMS

6.1 Optimisation Techniques

6.2 Optimisation Techniques Readily
Amenable to Parallel Processing

PAGE

133

135

6.2.1 Procedure Integration 135

6.2.2 Constant Folding and Dead Code
Elimination " 135

6.2.3 Peephole Transformations 136

6.3 Optimisation Techniques That Detract
from Potential Parallelism 138

6.3.1 Common Subexpression Elimination 138

6.3.2 Strength Reduction and Linear
Function Test Replacement 138

6.4 Loop Transformations

6.4.1 Loop Unrolling

6.4.2 Loop Unfolding

6.4.3 Loop Folding ..

6.4.4 Combinations of Loop
Transformations

CHAPTER 7: CORRECTNESS OF PARALLEL PROGRAMS

141

141

141

142

142

7.1 Introduction to Program Correctness 146

7.2 Symbolic Execution of Programs 148

7.2.1 Symbolic Execution of Sequential
Progrq,m Statements 149

7.2.2 Symbolic Execution of a
Conditional.. .. 149

7.2.3 Parallel Symbolic Execution 150

7.3 Tests to Determine the Consequents of
Parallel Programs 158

7.3.1 Contemporary ..

7.3.2 Commutative ..
7.3.3 Prerequi si te ..

7.3.4 Conservative ..

7.3.5 Consecutive

7.3.6 Synchronous

7.3.7 Inclusive ..

. .
158

159

160

160

161

161

162

PAGE

7.4 Example of Proving Correctness
Between Two Stanzas 164

7.4.1 Contemporary 165

7.4.2 Commuta ti ve .. 166

7.4.3 Prerequisite 167

7.4.4 Conservative 167

7.4.5 Consecutive 168

7.4.6 Synchronous .. 168

7.4.7 Inclusive 169

7.5 Proving Correctness Between a Number
of Stanzas 179

CHAPTER 8: CONCLUSIONS

REFERENCES

8.1 Summary .. .,, 180

8.2 Detection of Implicit Parallelism and
Correctness of Parallel Programs 181

8.3 Other Applications of Parallel
Processing 183

8.4 Areas for Further Research.. .. 184

8.4.1 Automatic Stanza Formation 184

8.4.2 Detection of Parallelism Between
Stanzas .. 184

8.4.3 Expression Parallelism •....... 185

8.4.4 Termination of a Correct Parallel
Program •. .. ., 185

8.4.5 Explicit Parallelism 185

187

APPENDIX 1: Algorithm for Constructing a Balanced Binary Tree 196

APPENDIX 2: Analyser 199

. APPENDIX 3: Detector 217

APPENDIX 4: Sample Program 241

CHAPTER 1

INTRODUCTION TO PARALLELISM

1

1.1 GENERAL DESCRIPTION

The elapsed time taken to execute a given set of programs, or

the speed of throughput on a particular computer, will be dependent

on three factors. One is the hardware of the computer (or as it is

often called, the machine) being considered, this will depend on such

things as switching times and distances between the components (Stone,

1975) and there are physical limitations on these. The other two are

the organisation of the machine'S logic and the organisation of the

programs under consideration. These two areas are where improved

speed of throughput must be sought, given the physical constraints on

'speeding-up' the hardware.

For serial computers (i.e. ones with only one main processing

unit) there has been a great deal of work carried out co~cerning the

compilation of 'programs (e.g. Hopgood, 1969) so as to decrease the

elapsed time taken for the execution of a program. If however,

machines are available which logically have more than one processor,

then by sharing parts of a set of programs between these processors

it may be possible to further decrease the elapsed time taken for the

execution of these programs.

The term 'parallel processing' will be used to indicate the

execution of several 'tasks' at the same time on different processors

or processing units, see Figure 1.1. A 'task' is some part of a

program ranging from within a micro-instruction to whole programs.

Depending upon the type of processors available, the part of program

to be considered will vary. For example, a program may be best

divided such that parts of each arithmetic statement may be assigned

to separate arithmetic processors.

2

I
Task 1 Task 1

-

Task 2 Task 2 Task 3

Task 3 Task 4

I

Task 4

I

Figure 1.1

SEQUENTIAL AND PARALLEL EXECUTION OF TWO TASKS T2 AND T3

•

3

1.2 ARCHITECTURE

Stone (1975) describes in detail the four classes that F1ynn (1966)

defined computer systems will fall into. These are:-

(i) 'Single Instruction Stream-Single Data Stream' (SISD) computer.

(ii) 'Single Instruction Stream-Multiple Data Stream' (SIMD) computer.

(iii) 'Multiple Instruction Stream-Single Data Stream' (MISD) computer.

(iv) 'Multiple Instruction Stream-Multiple Data Stream' (MIMD) computer.

The SISD computer is the serial computer mentioned above, where

there is at the most only one instruction in execution, at anyone time,

and this affects at the most one item of data, see Figure 1.2. Most

existing software is written to run on this type of computer.

The SIMD computer is one where each instruction can operate on a

data vector which is supplied by means of a multiple data stream, see

Figure 1.3. This type of computer (which is also known as a vector

processor) is very useful when problems using a large proportion of

array operations are computed such as are found in weather forecasting

and numerical analysis (e.g. Roberts, 1977).

The MISD computer is a machine for which each item of data is

operated on simultaneously by several different instructions, see

Figure 1.4. At the present time there does not appear to be a viable

worthwhile computer of this type, an artifical example of this may be

a line printer where a line of information is considered to be a piece

of data, and each print a separate operation.

The MIMD computer can be viewed as several interconnected

individual computers, as each processor, at anyone time, may be

carrying out different instructions on different items of data, see

Figure 1.5. Thus each processor may be working on a separate part of

program.

4

Controller Instruction Stream
Processor Data Stream

Figure 1.2

MODEL OF A SERIAL OR SISD COMPUTER

Processor 1 ~ata Stream 1

Data Stream 2
Processor 2

I

Instruction Stream, I

Controller I
I
I

I

I ,
I

I
I

Processor N Data Stream N

Figure 1.3

MODEL OF A VECTOR OR SIMD COMPUTER

5

Controller Instruction Stream 1 .

11- --. Processor . "--, .,

1 I

Controller Instruction Stream 2 Processor
2

I(.-

2
--------- - -------- -• - ------ ------

• ,
I •
I ,

Data , , , , , Stream , ,
I ,
I

,

Controller Instruction Stream N Processor r.-N N

Figure 1.4

MODEL OF A MISD COMPUTER

Controller Instruction Stream 1 Processor Data
1 1 Stream 1

Controller Instruction Stream 2 Processor Data
2 2 Stream 2
I I

I .
Controller Instruction Stream N Processor Data

N N :>tream-N

Figure 1.5

MODEL OF A MIMD COMPUTER

6

An architecture technique that can be applied to all types of

computer systems is pipe lining (Chen, 1975). Essentially a new task

can be initiated before the previous task has completed and the speed

of throughput will depend on the rate at which tasks can be initiated

rather than on the time for individual operations. Figure 1.6 shows

how M tasks (where M is a positive integer) may pass through a four

segment pipeline, the four operations may be 'Fetch', 'Oecode~ 'Execute'

and 'Store'; for this example each operation is considered to be

"distinct and this, in general, is the case for pipeline machines.

Indeed, each process or operation is performed by a specially designed

unit, which is where the pipeline computer differs from the basic

computer systems defined by Flynn (1966).

A computer system with a pipeline will take the same amount of

elapsed time to execute a task as a similar system without the pipeline.

However, for M tasks the time taken for the pipeline system will, at

best, approach the time taken by the other system divided by the number

of operations (in the above example that would be four). If an operation

involving a jump is executed, the other tasks in the pipeline will not

be required and the tasks at the point jumped to will need to be

calculated.· In the worst case when every task involves a jump, the

elapsed time taken by both systems will be the same.

Pipelines are used at the present time with computers that fit

the SISO description. The result is a high performance machine such

as the COC 7600 (Chen, 1975). The technique may also be applied to

SIMD, MISD and MIMD computers without affecting the Flynn (1966)

definitions of any of these systems.

The SIMD and MIMD computers are generally known as parallel

processors or parallel computers. Sometimes pipeline computers are

7

also called parallel computers but that terminology is not used here.

The MIMD computer can always work in the same manner as the SIMD

computer. However there may be extra overheads involved in having

to have a copy of the instruction for each processor. Conversely, the

SIMD has only one instruction and cannot always work in the same

manner as the MIMD computer. Throughout this thesis the type of

computer being considered, unless stated otherwise, will be an MIMD

computer without a pipeline.

8

1Il 1Il '" Q) Q) Q)

1Il 1Il ;..> ;..> ... 1Il
Q) Q) '" '" '" '"
'" '" ~ ~

p.; '" s
~ ~ 0 0 0 ~ u u u
0 0 0
u u '" N U

I I I
..... N e-::E f-,::E ::E JE Operations e- e- H

,

-
T4 T4

1 2
4 4 4 T4 T
M

_
3

T
M

_
2

T
M

_
1 M

T3 T3 T3
1 2 3

3 3 T3 T
M

_
2

T
M

_
1 M

- -
T2 T2 T2 T2

1 2 3 4
2 T2 T
M

_
1 M

- -
Tl

1
Tl

2
Tl

3
Tl

4
Tl

5
Tl

M
-

III III '" III '" 1Il ... ;..>
1-0 1-0 1-0 1-0 1-0 1-0
Cl! oS oS Cl! oS Cl! ;..> ;..> ...
III '" '" III '" III

..... N '" " LIl ::E
e- e- e- e- e- e-

Figure 1.6

M TASKS PASSING THROUGH A FOUR SEGMENT PIPELINE

1.3 LEVELS OF PARALLELISM

All possible tasks in a parallel processing environment may be

considered as being at one of four levels:-

(i) Machine Level

e.g. (a) within micro-instructions,

(b) between micro-instructions.

(ii) Instruction Level

e.g. (a) within expressions,

(b) between individual statements.

(iii) Block Level

e.g. (a)

(b)

(iv) Program Level

between groups of statements,

between and within program constructs (such

as loops).

e.g. (a) between individual programs,

(b) between groups of programs.

Obviously the boundaries between these levels are not always

clearly defined. In poorly defined cases a particular construct may

be considered to belong at the most suitable level. _

9

The first level is very machine oriented (Freeman, 1975) and to

keep this work applicable to a general MIMD computer, machine level

parallelism will not be further considered.· The program level is also

known as inter-program parallelism, or, more commonly, multiprocessing

and has been discussed in detail in Enslow (1977). ThBthesis will

discuss inter-program parallelism occurring in the second and third

levels.

10

1.4 EXPLICIT AND IMPLICIT PARALLELISM

Methods have been formulated and implemented by which a programmer

may indicate, by means of special statements, where parts of his program

may be executed by different processors at the same time (i.e. in

parallel). This is called explicit parallelism.

Anderson (1965) introduces statements for parallel processing to

be used in Algol 60. These include FORK which initiates parallel tasks,

JOIN which waits for parallel tasks to finish (this is the complement

of FORK) and statements for synchronising parallel tasks. Figure 1.7

shows an example of a program written using Anderson's FORK and JOIN.

The synchronising mechanism allows one of a number of parallel processes

to have exclusive use of a particular set of variables during part of

its execution. This can be used, for example, to prevent two processes

simultaneously trying to change a location.

Gosden (1966) gives the premise that there is a large potential

for parallel activity in loops. A good example of such a loop is the

Algol 60 FOR statement. A parallel loop construct, PARALLEL FOR, is

introduced where each iteration of a loop may be executed in parallel.

An example of a matrix sum, an inherently parallel process is given

in Figure 1.8.

Variations on these constructs exist for instance in Algol 68

(van Wijngaarden, 1976) a parallel clause, PAR, is defined such that

PAR (task 2, task 3) would mean that task 2 could be executed at the

same time as task 3. This can be used in conjunction with semaphores

of mode SEMA, to provide any necessary synchronisation between task 2

and task 3.

The converse of explicit parallelism is implicit parallelism

where the possibilities of parallel processing are automatically detected.

11

For instance, a sequential program (i.e. one written to run on a serial

computer) may be divided as part of its compilation process into parts

of code. Detection of the relationships between these parts allows

the program to be run on a parallel computer.

There are both advantages and disadvantages in the use of explicit

and implicit parallelism. The main advantages of explicit parallelism

are, firstly that the programmer is not bound to translate an inherently

parallel problem into serial form for computation; and secondly, should

a particular algorithm not be suitable for parallel processing it may

be changed for another method. On the other hand, implicit parallelism

removes the onus from the programmer to detect and express all possible

_parallelism-in his program. Another advantage of implicit parallelism

is that a sequential program need not be rewritten to run efficiently

on a parallel computer.

In this thesis methods of detecting implicit parallelism within

computer programs will be proposed. Techniques for handling programs

in which the parallelism is explicitly declared, will also be described

and discussed.

c+64;
FORK task2,task3;

task2: BEGIN
x+a/2;
y+b/2;
z+c/2;
GOTO continue

END;
task3: BEGIN

u+a*2;
v+b*2;
w+c*2;
GOTO continue

END;
continue: JOIN task2,task3;

r+u*x;

Task 1

Task 2

Task 4

Figure 1. 7

SAMPLE PROGRAM USING ANDERSON'S FORK AND JOIN

12

Task 3

FOR i~l STEP 1 UNTIL 60 DO
FOR j~l STEP 1 UNTIL 50 DO

m[i,j]~m1[i,j]+m2[i,j];

Algol instructions for the addition of two matrices

PARALLEL FOR i~l STEP 1 UNTIL 60 DO
PARALLEL FOR j~l STEP 1 UNTIL SO DO

m[i,j]~m1[i,j]+m2[i,j];

Figure 1.B

PARALLEL VERSION OF THE ADDITION OF TWO MATRICES
USING GOSDEN'S NOTATION

13

CHAPTER 2

SOFTWARE CONCEPTS AMENABLE TO PARALLEL PROCESSING

2.1 SYSTEMS SOFTWARE

The term 'systems software' is used to describe the interface

between the hardware of a computer and a program being run on it.

In a parallel processing environment there will be a need to alter

some of the systems software from that used with a serial computer.

14

The collection of programs that has responsibility for all

resources is called the operating system. When more than one processor

is available the operating system will have the ultimate responsibility

for allocating work to each of the processors. Operating systems for

parallel processing computers are discussed in Enslow (1977).

A compiler can be considered to be a computer program. The

compiler takes as data the program to be compiled and produces for

its results computer-oriented code, that can be run on a particular

set of computers. In a parallel processing environment the computer

oriented code produced should indicate possible parallel paths.

Compilers and compiling techniques are discussed in more detail in the

following two sections.

The programming language used as a media for transmitting problems

to a computer may also be considered as part of the systems software.

Indeed careful choice of programming language can facilitate the

programming of a problem (Barron, 1977). In this thesis parallelism

in Algol-type programming languages are primarily considered.

15

'2.2 COMPILATION PROCESSES

A compiler is used to produce computer-oriented code from a

program. There are many types of compilers to allow for different

languages, machines and alms of the implementors. Hopgood (1969),

Lee (1974), Rohl (1975) and Wulf et al (1975) along with many other

authors discuss types of compilers and compiling techniques.

The time taken to compile a given program on a particular machine

depends to a large extent on the number of times the program (as source

text) or a version of it has to be scanned (this is called a pass) and

so two types of compilers can be considered:-

(i) One-Pass Compiler

The program is only scanned once (i.e. after a statement

has been scanned it may not be returned to). This type of

compiler is fast but tends to produce inefficient code.

(ii) Multi-Pass Compiler

The program is scanned in several stages (for example

see Figure 2;1) after each stage a code is produced to be

passed on to the next stage until the final computer

oriented code is produced. Although this is slower than

the one-pass compiler, generally more efficient code is

produced.

Thus one-pass compilers are useful for short jobs which are only

run once. Whereas mUlti-pass compilers are more beneficial for long

jobs that may be run frequently and stored in a compiled state between

runs. Since parallel processing is being used primarily to increase

the overall speed of throughput efficient code will be preferential

to a short compile time. Thus, in general, mUlti-pass compilers will

be considered to be used in a parallel processing environment.

16

Aho and Ullman (1977) give details of what may happen at possible

stages of a mUlti-pass compiler. For the example compiler in Figure 2.1

four passes are given plus two stages that are available throughout

compilation. The Lexical and Syntax Analyses will be used to identify

the names and uses of identifiers,to parse expressions (section 2.3)

and to find simple errors (may be such things as simple typographical

mistakes). The Table Management section is used to keep track of

identifiers, usage of variables and links. Whilst the Error Handling

routines after the capabilities of recovering· from some errors,

depending on the language and type of compiler; and in other cases

causes the compilation to abort. The Intermediate Code Generation

produces, from the information provided by the Lexical and Syntax

Analyses, a coded copy of the program which the Code Optimisation

stage can optimise, from which stage the final code can be obtained

via the Code Generation stage.

A compiler used with programs where the parallelism is explicit

will only need to handle the extra language constructs used for

expressing parallelism and to test parallel paths for legality and

ambiguities; and perhaps carry out some special optimisations. Whereas

with implicit parallelism it will be necessary to analyse the program

to see how it can be divided into tasks. The compiler could then

detect parallel relationships between tasks as well as carrying out

the normal compiling work for a program to be run on a serial computer.

TABLE
MANAGEMENT

SOURCE PROGRAM

LEXICAL and
SYNTAX ANALYSES

INTERMEDIATE
CODE GENERATION

CODE
OPTIMISATION

CODE
GENERATION

ERROR
HANDLING

t COMP"," O'IENTEO CODE

Figure 2.1

POSSIBLE PHASES OF A MULTI-PASS COMPILER

17

18

2.3 PARSING AN EXPRESSION

The usual order of execution of an arithmetic expression, written

in a programming language, is dictated by the rules of mathematics.

Thus an expression is calculated by performing operations in descending

order of precedence. As in mathematics brackets have the highest

precedence and addition the lowest precedence.

A process called 'parsing' is used to translate an expression into

a form from which the order of execution is obtainable (Hop good , 1969).

Parsing usually is part of the Syntax Analysis stage of a multi-pass

compiler.

2.3.1 Reverse Polish Notation

Reverse Polish is the name given to a technique of parsing

expressions, and is used extensively in compilers for serial computers.

This method provides an unambiguous means of representing an expression

(usually arithmetic) without the use of brackets (parentheses). The

process can be viewed as the translation of an input string to an

output string via a stack. A stack is a means of storing data such

that the last item stored on a stack will be the first item removed;

similarly, the first item stored on the stack will be the last item

removed (Barron, 1968). The translation takes place by passing

operands directly from the front of the input string to the rear of

the output string. Operators at the front of the input string cause

operators on the stack to be moved to the rear of the output string,

until the top item on the stack is one with lower precedence number

(see Table 2.1) than the one at the front of the input string. The

operator at the front of the input string is then moved to the top of the

stack. Matching brackets are an exception as they are discarded when

19

they occupy the top two positions of the stack, Figure 2.2 gives an
......... :.. , ,

example of parsing using reverse Polish techniques and illustrates the

discarding of matching brackets.

Having obtained a reverse Polish form of an expression it is

necessary to produce some type of machine instructions to ensure that

the correct pairs of operands are manipulated by the appropriate

operator. The reverse Polish string obtained by parsing becomes to

a new stage, in which it is analysed from right to left. A recursive

procedure CALe (Figure 2.3) can be used to obtain triples indicating

"
the operator and two operands. Here the operands may be temporary

results representing triples.

2.3.2 Tree Representations

A tree structure may be drawn to represent many relationships

(Knuth, 1968;1973) including those of arithmetic and Boolean expressions.

A tree structure may be considered to represent a 'branching' relation-

ship between 'nodes', in a similar way to the nodes of trees in nature

have branches connecting them. Figure 2.4 gives an example of how a

tree may be drawn, and the names given to its constituent parts.

Continuing with the use of. popular terms, the point from which the

whole tree originates is called the root node. Similarly any node

from which no branch emanates is called a leaf. All nodeshorizontally

adjacent are said to be at the same level.

Relationships between nodes of a tree may be considered similar

to those in a family tree, containing only male relatives. In Figure

2.4, for example, the following relationships can be considered to

exist,node D is the son of node B, nodes D,E and F are brothers and

node A is the great-grandfather of node G. A subtree can be considered

20

"to be a node and all its direct descendants. It is the convention to

draw trees 'upside-down' so the root node appears at the top of the

tree, and all father nodes above their respective sons. Trees for

which each node has at the most two sons are called binary trees.

When a node has two sons they are usually referred to as the left and

right hand sons. Throughout this thesis the trees referred to will be

binary trees.

Binary trees are used to represent expressions such that each of

the leaves represent either a variable or a constant. All other nodes

represent operations to be carried out on their so~ if there is only

on~ or between their sons. Figure 2.5 shows two examples of how a tree

may be drawn to represent an expression.

A reverse Polish expression may be converted in to a binary tree

structure by using a procedure similar to CALC which was defined in

Figure 2.3. The reverse Polish form of the expression is scanned from

right to left. A recursive procedure TREE, Figure 2.6, is called when

the first operator is detected. The final result will be returned to

the calling routine as a binary tree

21

Symbol or Operator Precedence Number

) 1

(2

+ 6

* / 7

+ 8

Table 2.1

PRIORITIES OF OPERATORS

Input String Stack Output String

(A+B) *C empty empty
A+B)*C (empty

+B)*C (A
B)*C +(A

)*C +(AB
)*C (AB+

*C empty AB+
C * AB+

empty * AB+C
empty empty AB+C*

Figure 2.2

,
THE DERIVATION OF THE REVERSE POLISH FORM OF AN EXPRESSION

CALC

next item is an
operator. set up
triple TKwith
operator as first
item, 02 and 03 as
the uther two

call CALC to
obtain 02

call CALC to
obtain 03

RETURN TK

Yes

Figure 2.3

set variable
equivalent to TK

RECURSIVE PROCEDURE CALC

22

a level--ll

, ,
~

a leaf,--_"'Jl

a subtree

------ -

\

\

- - ~ --
\
\

\

\

\ I
\ I
J

- I

, - - -
I

~--- a node

!.-__ root node

Figure 2.4

A TREE STRUCTURE

I

I
I

/

,
I

I
I

23

24

A B

A+B.C (A+B) *C

Figure 2.5

TREE REPRESENTATIONS OF A BOOLEAN AND ARITHMETIC EXPRESSION

TREE

No

ext item is an op
rator. set up a s
ree TS with the 0

the root,
2 and 03 as the

and left hand

call TREE to
obtain 02

call TREE to
obtain 03

RETURN TS

Figure 2.6

Yes

RECURSIVE PROCEDURE TREE

set variable
equivalent to
a leaf node TS

25

2.4 ALGOL-TYPE PROGRAMMING LANGUAGES·

Higman (1977) defines an Algol-like progranuning language to be , .

one that has the following properties:

"a) Use of CBNF to define syntax, with semantics in English.

b) Acceptance of as much of current mathematical notation as

could be proved workable, with elimination of all arbitrary

restrictions whose origins lie in Compiler Design.

c) A clear distinction in symbolism between the imperative

(assignment) equals and the predicative (relational) equals.

d) Use of English words in a distinct font (e.g. black type or

underlined) to supply such new symbols as it requires.

e) Page lay-out completely at the service of legibility to

human readers."

Here rather simpler and looser conditions will b~ given for a

language to be considered Algol-type.

De£ini tion 2.1

An Algol-type programming language is one which has a block-

structure and whose design is based on Algol 60.

A block-structured language being one which uses blocks as

defined below.

Definition 2.2

A block is a segment of program delimited by a bracketing

structure (e.g. BEGIN and END). Names may be declared to be known

only inside a block (i.e. local names) and blocks may be nested

inside other blocks.

26

Some languages which conform to Definition 2.1 would not be

classified as Algol-like by Higman • s ideals. Examples of languages

that may be considered to be Algol-type according to Definition 2.2

27

are given in Table 2.2, along with references to published specifications.

ALGOL 60

ALGOL 68

ALGOL 68-R

CORAL 66

PASCAL

RTL/2

Naur (1962)

van Wijngaarden (1976)

Woodward and Bond (1972)

Woodward et al (1970)

Jensen and Wirth (1976)

Bames (1976)

Table 2.2

EXAMPLES OF ALGOL-TYPE LANGUAGES

2;5 USAGE OF LANGUAGE CONSTRUCTS

Programs have been analysed for the use of various programming

constructs in both static and dynamic program states. Knuth (1971)

and Robinson and Torsun (1976a) have carried out empirical studies

28

on Fortran programs, Wichmann (1970;1973) and Robinson and Torsun (1976b)

have carried out studies of Algol programs. In all of these studies,

both Fortran and Algol assignment was the most frequently used

·programming construct; loop, conditional and call to routine were also

seen to be frequently used. In Robinson and Torsun (1976b) samples over

85% of the static construct used were accounted for by: assignment

statements, 'FOR-loops', 'IF-conditionals' and procedure calls.

Unconditional jumps (GOTO's) were used more frequently in the Fortran

samples than in Algol samples (less than 5%) and with the increase in

using 'structured programming techniques' (Kernighan and Plauger, 1976

and Barron, 1977) unconditional jumps should only account for less than

1% of program constructs used for programs written in the future.

When a program is being run it may occupy the majority of its time

executing only a few statements. For example Knuth (1971) mentions a

140 line program that spends more than half of its time executing 5

lines which create a loop. This point is also observed by Bingham and

Reigel (1968) who state that "the major part of the execution time on

single processor machines is spent within loops".

An 'IF-conditional' can be considered in three parts:

(i) A condition that is tested.

(ii) Code that is executed if the condition is true.

(iii) Code that is executed if the condition is false.

Only one of (ii) and (iii) will be executed for a given pass of the

'IF-conditional', whereas (i) will be executed every time. These facts

will need to be taken into account when detecting paral1elism~

Similarly, when a procedure call is made more code is executed than

appears in the static form of the program and this too must be

accounted for when detecting parallelism.

For the analysis of either explicit or implicit parallelism the

division of a program into tasks will be considerably easier in a

structured programming environment. One of the underlying criteria

of structured programming is that programs are written in modules

CKernigharr and P1auger, 1976) and these modules may be equated to

tasks in a parallel processing environment.

29

"

CHAPTER 3

DETECTION OF POTENTIAL PARALLELISM

AT THE INSTRUCTION LEVEL

"'

3.1 TREE REPRESENTATIONS OF EXPRESSIONS

In this chapter the parsing of expressions to be executed on a

parallel computer with a number of arithmetic 'units or processors,

will be studied. Expressions that are used in Algol-type programming

30

languages indicate the type of operations (e.g. addition) to be carried

out on a set of operands. The order in which these operations should

be executed is also inferred. As mentioned in the previous chapter this

is dictated by the usual rules of mathematics. Because of the similarities

between arithmetic and Boolean expressions both may be handled using the

same techniques. So here attention will be focused upon arithmetic

expressions.

A machine with a number (N) of arithmetic units or processors will

be considered. Where each arithmetic unit or processor can perform any

arithmetic operation in unit time. The time taken for an arithmetic

expression to be calculated on a parallel computer can be estimated to

be proportional to the number of levels in the tree representation of

the expression. Suppose N (the number of arithmetic units) is sufficiently

large to perform all possible operations at a given level. If there are M

operations. to be performed at a, given level, the time'taken to execute that - - '.- -, -, --, .. '- -- .- ---

level will be proportional to j:i/Nl. (NB rM/Nl is the integer that

satisfies M/NfM/NliM/N)+I). For a serial computer the time taken to

calculate an expression can be estimated to be proportional to the

number of operations needed to be performed.

Provided that there are sufficient arithmetic units or processors

available the following definition applies:

Definition 3.1

Any operations that appear at the same level, in a tree represent-

ation of an expression, may be executed in parallel on separate

processors.

Throughout this work it will be assumed there are sufficient

arithmetic units or processors available to perform any given set of

operations. unless otherwise stated.

From Figure 3.1(a) it can be seen that it will take 7 units of

time to calculate the expression

A + B + C + 0 + E + F + G + H •

Whereas in Figure 3.l(b) the same calculation only takes 3 units of

time. The tree representations of the expression having seven and

31

three levels respectively. In the latter case, however, four processors

are required at level 1, two at level 2 and one at level 3. Whereas in

the former case only one processor is required throughout.

The tree representation of the expression given in Figure 3.1(b)

shows there is more potential parallelism than in the representation

given in Figure 3.1(a). In general, in a parallel processing

environment the amount of potential parallelism for the execution of

an expression is inversely proportional to the number of levels (or

height) of the tree representation of the expression. Thus, when the

tree representation of an expression is being formed it will be

beneficial to form a tree of the least possible number of levels.

The class of operations that will form such trees are called 'ba1ancing'

operations. Balancing will usually take place as part of the parsing

operation. The execution of an expression from a balanced tree

representation should produce identical results to those of from any

other tree representation of that expression.

32

level 7

level 6 .

level 5

level 4

level 3

A B

Ca) Cb)

Figure 3.1

POSSIBLE BINARY TREE REPRESENTATIONS OF

A + B + C + D + E + F + G + H

,

3.2 A SURVEY OF TECHNIQUES FOR RECOGNISING EXPRESSION PARALLELISM

Various methods have previously been proposed for recognising

parallelism at the expression level.

33

These methods determine which parts of the expressions or

statements are most suitable for execution in parallel. Descriptions

of such algorithms are given in the following sub-sections. Two simple

arithmetic expressions will be used, where necessary to illustrate the

working of these algorithms. The expressions are:

A + B + C + D + E + F + G + H

and A + B * C + D * E * F * G + H + I .

3.2.1 Squire's Algorithm

The algorithm proposed by Squire {1963) is based on information

relating to operands, operators and the height (or level) on a tree

representation at which an operation may be performed. Such information

is held in quintuples of the form:-

(operand A, operator, operand B, start height, end height).

All variables are considered to be at the bottom level (i.e. level.

zero) of a tree and so their end heights will be zero.

The algorithm involves using both right to left scans and left to

right scans thus becoming very involved. Here a brief description will

be given as to how the method analyses an expression. Figure 3.2.gives

an example of Squire's algorithm as applied to an expression of the

form
A + B * C + D * E * F * G + H + I •

An expression is analysed by scanning it from right to left,

stacking all the operands and operators on a type of stack called LIST.

The stacking procedure is halted when the precedence of an operator

scanned is less than that of the last one placed on LIST (Table 3.1

contains a list of the precedences of operators). The precedence of

the last operator placed on LIST can be represented by the symbol K.

34

A left to right scan of LIST is then performed (i.e. the stack is

scanned from the top downwards). The scan finishes when an operator

with a priority different to K is detected. During this scan the two

operands (say, A and B) with the lowest height are chosen. A quintuple

is then formed consisting of the following information:-

(a) The operand A.

(b) The operator immediately to the left of B.

(c) The operand B.

(d) The maximum end heights of A and B.

(e) The end height of this quintuple (i.e. (d) plus 1).

This quintuple then replaces the operand A in LIST, whilst the operand

B and the operator are removed from LIST. 'Then, the left to right scan

is repeated from the left most end of LIST until the precedence of the

first operator in LIST is different to K. The right to left scan is

then continued from the point where it was halted. When the right to

left scan has placed all operands and operators on LIST the left to

right scan is reinitiated until only one quintuple remains. This

quintuple ,will correspond to the calculation to be executed at the root

node of the tree.

Figures 3.3(a) and (b) show the tree representations that would be

obtained for the expressions

A + B + C + D + E + F + G + H and A + B * C + D * E * F * G + H + I.

It is suggested that ~ubtraction 'and division may be handled by using

the inverse operations and that function calls may have a special

quintuple. Similarly, bracketed expressions may be treated as a

special case by giving opening and closing brackets a precedence of 1.

35

Original Expression
(parsed right to left)

~ A + B * C + D * E * F * G + H + I 1

LIST (Parsed left to right)

D * E * F * G + H + I ~

Ql * F * G + H + I 1
Ql * Q2 + H + I 1
Q3 + H + I -I
B ~ C + Q3 + H + I 1
Q4 + Q3 + H + I -I
A + Q4 + Q3 + H + I -I
Q5 + Q4 ... Q3 + I -I
Q6 + Q4 ... Q3 -I
Q7 + Q3 -I

0.8 -I
1- Q8 -I

Quintuples Formed

Ql=D,*,E,O,l

Q2=F,*,G,O,1

Q3=Ql,*Q2,1,2

Q4=B,*,C,O,1

QS=A.+ ,H,O,l

Q6=QS,+,I,l,2

Q7=Q6,+,Q4,2,3

Q8=Q7,+,Q3,3,4

Figure 3.2

THE PARSING OF AN EXPRESSION BY SQUIRE'S

ALGORITHM

Operator or Symbol

~ -I (start and end)

+

* /

Table 3.1

Precedence

o

3

4

PRIORITIES ASSIGNED TO OPERATORS (by Squire)

36

37

level

A B C D E F G H A H

A + B + C + D + E + F + G + H .A ~ B * C + D * E * F * G + H + I

(a) (b)

Figure 3.3

TREE REPRESENTATIONS OBTAINED BY SQUIRE'S ALGORITHM

...

38

3.'2.2 Hellennan's Algorithm

Hellerman (1966) proposed a strategy in which he considers the

optimum way in which an arithmetic expression, presented in reverse

Polish form, may be computed on a parallel processing machine. This

algorithm does not involve any balancing operations.

The reverse Polish form of an expression can be found by the

method described in section 2.3.1. Hellerman points out that by

studying the tree form of the reverse Polish expression it can be seen

there are one or more critical paths (Mitche11, 1972) from leaves to

the root node. On non-critical paths it may be possible to adjust the

level at which a temporary result is formed, thus optimising the number

of processors used.

Figure 3.4 shows the binary tree representations that would be

formed using Hel1erman's algorithm. It can be seen that the shorter

expression (a) takes one more level to compute than (b). This is

because (a) only uses one processor throughout its calculation whereas

as (b) uses two processors at levels 2 and 3 and one processor at the

remaining levels •.

3.2.3 Stone's Algorithm

The aim of the algorithm proposed by Stone (1967) is to generate,

in one pass of an arithmetic expression, a type of reverse Polish

expression. The tree representation of the expression will have the

maximum number of operations at a given level.

A grammar is defined in B.N.F. (for an explanation of B.N.F. see

Barron, 1968) and gives a detailed set of Algol 60 highly recursive

procedures which will produce a reverse Polish type of string.

Basically the algorithm attempts where possible to join two subtrees of

,
I
L

1-

I

...

39

the same number of levels, say i, to form a new subtree of level i+l.

Figure 3.5 shows how the expression

A + B + C + D + E + F + G + H

is translated in to a 3 level tree, represented by the reverse Polish

type expression

AB + CD ++ EF + GH +++ •

The standard reverse Polish form of this expression is

AB + C + D + E + F + G + H + •

Figure 3.6(a) and (b) show the binary tree representations of the

expressions

A + B + C + D + E + F + G + H and A + B * C + D * E * F * G + H + I

obtained by using Stone's algorithm.

Subtraction and division are handled by using inversions, although

unary minus itself is not catered for. Exponentiation, because it is

not associative, has to be treated separately, as are bracketed

expressions.

Using this method it is possible to produce a full binary tree

of i levels when there are Zi variables linked by one type of associative

operator. The tree given in Figure 3.5(a) is an example of this.

3.2.4 Baer and Bovet's Algorithm

The algorithm proposed by Baer and Bovet (1968) was designed to

satisfy specific aims. These aims are as follows:-

"Ca) To obtain a minimum number of levels in the syntactic tree.

Cb) To use a left to right scan so that the same symbol is not

scanned more than once during a given pass.

Cc) To produce a simple intermediate language with temporary

resul ts al ready sorted by levels" •

40

Temporary results are stored as triples of the form:-

(operand, operator, operand)

Such triples are given a means of identification so they can be referred

to as operands during subsequent passes. Each pass performed by the

algorithm corresponds to a level in the tree representation. Each triple

formed in a particular pass may be calculated at the corresponding level

in the tree.

The algorithm uses two stacks for storage, one for operands and the

other for operators. At a given stage in a scan three parts of an

expression are under consideration. An operand, ITEM, the operators to

the left and right of ITEM, LSCOP and SCOP respectively. Usually LSCOP

will have the inl tial value of '.'plus". Depending on the relative

precedences of LSCOP and SCOP (see Table 3.2) various actions are taken.

Basically these are:-

(1) If the precedence of SCOP is greater than that of LSCOP, or

the stacks are empty, then ITEM and SCOP are put on top of

the respective stacks.

(2) If the precedence of SCOP is not greater than that of LSCOP

then two subcases are considered:

(a) The operator at the top of the operator stack is

of precedence equal to that of LSCOP. If this is

the case then a triple, TK, is formed consisting of:

(top of operand stack, top of operator stack, ITEM).

TK and SCOP are then added to the output string.

(b) In the other case only ITEM and SCOP are added to the

output string.

A scan will end after the terminator (a semi-colon) has been

processed as the operator SCOP. The overall process is repeated until

the output string contains only one item, which will be the triple

41

representing the calculation at the root node of the tree representation.

Figure 3.7 shows how the expression

A .. B "·C + D * E * F '" G + H + l'

is parsed in the manner described above.

Figure 3.8(a) and (b) show the binary tree representations of the

expressions

A + B + C + D + E + F + G + H and A + B * C + D * E " F * G + H + I

obtained by Baer and Bovet's algorithm.

Extra stages are necessary to handle subtraction and division which

are dealt with in conjunction with addition and multiplication respectively.

For example consider the expression

A/B/C/D.

The first scan using Baer and Bovet's algorithm will give two temporary

results

and

The next pass will give the temporary result

T3 '" Tl / T3

Thus the expression has effectively been converted into a more convenient

form of
A / B / (C * D) •

Unary minus is dealt with by means of a switch. Sometimes it is

possible to avoid generation of a unary minus by changing the sign of

an operator. However, if a unary minus must be generated it is left

until the last possible level.

Brackets have the same precedence as the terminator (see Table 3.2)

and so bracketed expressions are calculated as independent entities.

When in the output string, an opening bracket and a closing bracket are

detected to be only separated by a single operand then the two brackets

are deleted.

42

level

7

6

5

4

3

2

I

A B D E

A + B + C + D + E + G + H A + B * C + D * E * F * G + H + I

(a) (b)

Figure 3.4

TREE REPRESENTATIONS OBTAINED USING·HELLERMAN'S ALGORITHM

...

Input String Stack Output String

A+B+C+D+E+F+G+H empty empty

+B+C+D+E+F+G+H empty A

B+C+D+E+F+G+H + A

+C+D+E+F+G+H + AB

+C+D+E+F+G+H empty AB+

C+D+E+F+G+H + AB+

+D+E+F+G+H + AB+C

D+E+F+G+H ++ AB+C

+E+F+G+H ++ AB+CD

+E+F+G+H + AB+CD+

+E+F+G+H empty AB+CD++

E+F+G+H + AB+CD++

+F+G+H + AB+CD++E

F+G+H ++ AB+CD++E

+G+H ++ AB+CD++EF

+G+H + AB+CD++EF+

G+H ++ AB+CD++EF+

+H ++ AB+CD++EF+G

H +++ AB+CD++EF+G

empty +++ AB+CD++EF+GH

empty empty AB+CD++EF+GH+++

Figure 3.5

THE DERIVATION OF A REVERSE POLISH TYPE OF EXPRESSION

USING STONE'S TECHNIQUES

43

44

level

5

I +1
4 I I

I

3

I +, r+'l j+l
2 1+] 11 A 'l f*l H

1 r*l i*l
A B C D E F G H D E F G

A + B + C + D + E + F + G + H A + B * C + D * E * F * G + H + I

Ca) Cb)

Figure 3.6

TREE REPRESENTATIONS OBTAINED FROM STONE'S ALGORITHM

45

Operator Precedence

() 0

; (terminator) 0

+ - 1

* / 2

t 3

Table· 3.2

PRIORITIES ASSIGNED TO OPERATORS BY BAER AND BOVET

46

A + B.* C + D * E * F * G + H + I;

Tl :; B * C

T2 :; D * E

T3 :; A + H

Tl + T2 * F * G + T3 + I' •

T4 :; T2 * F

TS :; TI + T3

T4 * G ... TS + I' •

T6 :; T4 * G

T7 :; TS + I

T6 + T7;

TS :; T6 + T7

TS

Figure 3.7

THE PARSING OF AN EXPRESSION USING

BAER AND BOVET'S ALGORITHM

...

47

level

4

3

2

1

A + B + C + D + E + F + G + H A + B * C + D * E * F * G + H + I

Ca) (b)

Figure 3.B

TREE REPRESENTATIONS OBTAINED FROM BAER AND BOVET'S ALGORITHM

,--

48

3.2.5 Other Methods For Recognising Parallelism Within Expressions

In the previous four sub-sections methods have been described for

the recognition.of parallelism within expressions. Possible extensions

and variations of these algorithms have been studied by various authors.

Ramamoorthy and Gonzalez (1969) and Ramamoorthy et al (1973) have

proposed two similar approaches that involve weighting reverse Polish

expres·sions. Parts of such expressions may be swapped around, according

to their weights, creating a new expression. The new expression will be

equivalent to the original, except that the tree representation has a

minimum number of levels. These methods work readily for short

expressions but become unwie1d1Y for long ones.

Kuck et al (1972) and Kuck (1977) examine the usage of re

distribution over expressions such that a tree representation is of

minimum height. This may involve performing extra operations such as

shown in Figure 3.9. The distributed form (b) requires five operations

whereas in the normal form (a) only four operations are performed.

However (b) is completed in three levels whilst (a) takes four levels.

Associativity and commutativity are handled in a similar manner to that

described in Baer and Bovet (1968). Expressions for which an optimal

form is obtainable by just using associativity and commutativity are

not distributed. The removal of brackets may cause problems with

certain classes of numeric problems.

Ward (1974) proposed a method of creating a tree representation

of several assignment statements. The approach is based on the work

of Baer and Bovet (1968). The algorithm can be explained by

considering M assignment statements that appear adjacently. If none

of the M statements use the same variable then all the individual tree

structures for each statement may be executed in parallel. However, if

one statement fetches a variable that has been previously 'assigned to,

it must be ensured that the new value is fetched. Similarly, if a

statement fetches a variable that will be subsequently assigned to,

it must be ensured that the old value is fetched. If each statement

is considered separately, a tree structure similar to the one 'shown

49

in Figure 3.10(a) will be obtained. where one statement is completed

before the next is commenced. Ward's algorithm allows a variable delay

to be associated with a variable that is assigned to, and subsequently

fetched. Figure 3.l0(b) shows how this ·technique may decrease the

number of levels in a tree representation of two statements.

50

level

4 *\
3 in
2 i*l E

1 r*l D

B C A B C D

Ca) Cb)

Figure 3.9

POSSSIBLE TREE REPRESENTATIONS OF

A * C B * C * D + E)

51

level

5
r-+~ H

1+1 4 ,+l,+l
+

F D ~ G
E j ~ I

• • 3 ,+l I

r~l I
I
I
I

2

~ l rl A j+l c

1 lD ,*li+l Il D

B C F D G H B C

Ca) Cb)

Figure 3.10

POSSIBLE TREE REPRESENTATIONS OF

A -+- B + C + D;

E -+- F * D + A + G + H

'"

3.3 FORMATION OF A BALANCED BINARY TREE

Evans and Smith (1977) consider how a binarY' tree of minimum

number of levels Ca bala;ced binary tree or;}. balanced tree) is

systematically constructed from single element components (see Figure

3.11). Assume that the first element is attached to the null node.

A second element can be added by forming a new node whose left hand

son is the original element and whose right hand son is the new

element. This called 'inserting one place above' because the join

(i.e. the position of insertion) is immediately above the new position

of the previous element inserted. In the case of adding a second

element this is the first insertion and the_previous element is the

original node. Similarly, a third element can be added by inserting

the new element two places above the last element inserted (i.e. the

join is two levels above the new position of the previous element

inserted). A fourth element can be added by inserting a new node one

place above the third element (i.e. the last one inserted). Whilst a

fifth element can be added by inserting a new node three places above

the fourth element.

The tree construction process given can be enumerated by using a

numeric code, which can be generated in the following manner. At any

point in the tree the number I is used to indicate that the next

52

element should be inserted one place above the previous entry in the

tree. The number 2 is used to represent the fact that the next insertion

should be two places above the previous entry in the tree. In general,

the number K (where Kis a positive integer)-wil1 indicate that the

next insertion should be K positions above the last element inserted.

So the four insertions shown in Figure 3.11 can be represented by the

code 1,2,1,3.

53

. The process can be extended by recognising the symmetry of binary
-.. -

trees. The three insertions following those given in Figure 3.11 will

be in the same manner as the first three (i.e. 1,2,1). The e~ghth
p

insertion (that is 2 .) will be inserting the ninth element at the
~ .~

fourth (3+1) level above all other nodes. Generalising, the 21

insertion will be at the i+lth level above all other nodes. The insertion

of the (2i +1)th to (Zi+1_1)th elements will be in the same manner as the

insertion of the first (2i _l) elements.

The process described above allows single elements to be added into

a binary tree structure. In some cases it will be necessary to add

subtrees to existing tree structures. Using the following criteria

sub trees may be added into binary trees without unnecessarily increasing

the height of the tree, whilst retaining the structure of the subtree.

Criteria for Inserting Subtrees

(1) Any increase in the overall height of the tree caused by the

insertion process should be kept to an absolute minimum. This

is so that the number of levels in the tree will continue to

be minimised.

(2) An insertion at the top of the tree is preferable to extending

the tree below the lowest existing level. This provides for

possible future extensions to the tree. If the tree is extended

below the lowest existing level then the next insertion must

also extend the height of the tree. Whereas, if the tree is extended

above"all existing levels, the next insertion may not extend the

overall height of the tree.

(3) A subtree should be placed in"the first available position in the tree,

provided the previous conditions are met. This, again, is done to

allow further extensions to the tree, so that the maximum number of

vacant nodes are available for successive insertions.

,

Figure 3.12 gives examples of how subtrees may be added into trees.

When a single element had been added to the tree the next available

position in the tree, for an insertion, was defined by that element.

54

However, when a subtree has been inserted according to the above criteria,

the next available position in the tree will not be immediately obvious.

A dummy pointer can be used to indicate the next position in the tree

where a single element may be inserted. The value of the dummy pointer

will depend both on the subtree and the tree into which it is being

inserted. If the subtree is shorter than the tree into which it is

being inserted, then it is assumed that the maximum number of elements

that could be held in a subtree of that size has been added. The dummy

pointer is obtained from the last item theoretically added i~ that subtree.

A different approach is necessary when the subtree's height is greater

than or equal to that of the tree into which it, the subtree, is being

inserted. The next insertion (after the subtree) will need to be above

the join of the tree and subtree (criteria 2). The dummy pointer will

then be obtained from the last element theoretically inserted in a full

tree of one level greater than the subtree actually inserted.

After several subtrees have been inserted into a tree, the tree may

no longer be of optimal form. This is because insertions are always at

the next available position in the tree. Any suitable positions available

earlier in the tree are not accessible. However, this situation is in

line with the tree being formed systematically from components.

An algorithm that will create balanced binary trees is given in

Appendix 1 as an Algol 68-R program.

I ,.-_-l ____ j

I
I
I
I •

one element addition of a 2nd
element

----I

• •

.----'--- -I
I
I
l"

addition of a 3rd
element

-,
I
I

!

addition of a 4th
element

addition of a 5th
element

Figure 3.11

SYSTEMATIC CONSTRUCTION OF A BALANCED BINARY TREE

ss

...

+

Figure 3.12

ADDITION OF SUBTREES TO TREES

S6

..

57

S.4 A NEW ALGORITHM

In this section a new technique for producing a binary tree

representation of an arithmetic expression will be introduced. The method

will use the technique for forming a balanced binary tree described in

section S.S. The following constraints will be applied to the algorithm:

(1) The priority of brackets will be observed.

(2) Expressions are not to be reordered.

(S) The tree representation should be of minimum possible height.

The first two constraints should ensure that results from sensitive

numeric equations are not effected by this technique. This is particularly

important as one of the main areas in which parallel processing will be

useful is the solving of large numeric equations. The precedence of

operators are arbitrarily assigned the values given in Table S.S.

The balancing technique described in the previous section is used

to form balanced binary tree representations of expressions and statements.

The leaves of the tree will correspond to variab1ffiand constants, whilst

all other nodes will represent operators. As long as operands connected

by operators of the same precedence are being considered (other than

exponentiation) the formation of a balanced binary tree is carried out

as explained. For the operation exponentiation the next item must be

inserted at the top of the tree because exponentiation is not associative.

The balancing technique will also provide information about the level at

which an insertion is performed. This information may be stored as part

of a tree structure. The whole of this process is referred to as the

Balancing Method.

S.4.1 The Basic Algorithm

Two stacks will be used during the execution of this algorithm for

storing symbols already scanned. Operators are stored on OPSTACK, operands

- --------

,

58

and any temporary results in the form of subtrees are stored in RANDSTACK.

The first item on OPSTACK will be a fictitious operator with precedence -1.

The symbols of an expression are scanned one at a.time, from· left to

right. Depending on what the symbols are various actions are taken.

These being:

(a) Operand.

When a symbol is recognised as not being an operator it is

treated as an operand and stacked on RANDSTACK.

(b) Operator.

If the operator ·is a minus (or divide) the corresponding operand

is marked to be negated (or reciprocated) and the operator becomes a

plus (or multiply). Two possible cases are then considered:
, \ ~~

iJ
(1) When the precedence of the operator just scanned is greater

than or equal to the operator at the top of the stack. The

new operator is stacked on top of OPSTACK and the next symbol

scanned.

(2) Otherwise the precedence of the operator just scanned is less

than that of the operator at the top of OPSTACK. Then the

two operands from the top of RANDSTACK are joined into a subtree

by the operator from the top OPSTACK using the technique

described earlier as the Balancing Method. The two operands

and the operator are then removed from the top of the respective

stacks. There are then three possible situations:

(i) The precedence of the operator now at the top of OPSTACK

is the same as the one just removed. In which case the

operand from the top of RANDSTACK is joined into the sub-

tree being formed using the Balancing Method. The top

items from each stack are removed, and the three possibilities

are reconsidered.

...

(H) The precedence of the operator now at the top of OPSTACK

is greater than that of the operator just stacked but

less than that of the operator just removed from the top

of OPSTACK. In which case the operand from the top of

RANDSTACK is joined in to the subtree being formed at the

top. The three possibilities are then reconsidered.

59

(iii) The precedence of the operator now at the top of OPSTACK

is less than or equal to that of the operator just scanned.

Then the subtree being formed is stored at the top of

RANDSTACK and the operator just scanned is put on the top

of OPSTACK. The next symbol is then scanned.

(c) Blanks.

Blank characters are ignored.

(d) Brackets.

When an opening bracket is encountered it is placed on the top

of OPSTACK and the scanning continues in the ordinary manner, until

the matching closing bracket is scanned. Then for all the operators

on OPSTACK, from the top one until the one above the opening bracket,

and the corresponding operands on RANDSTACK a subtree is formed. The

formation of the subtree is done in the manner described in (b). The

resulting subtree is placed on top of RANDSTACK and the brackets are

discarded.

(e) Semicolon.

A semicolon is used to indicate the end of an expression has

been reached. So the final"" tree must be formed, this is done by

considering the remaining items on the two stacks as described in (b).

Figure 3.13 shows how an expression is parsed using the new algorithm.

The tree is effectively built backwards, as it is always a left hand son

" I

60

that is added. Figure 3.l4(a) and (b) show the tree representations

obtained by the new algorithm for the two expressions:

A + B + C + D +.E +F + G + H and A +' B * C + D* E * F * G + H + I •
", .

3.4.2 Extension to the Basic Algorithm

In the previous section a new algorithm was described that would

. deal with the fundamental arithmetic operations. Here, extensions to the

algorithm will be described, which will increase the potency of the

algorithm.

It is possible to handle unary minus by using additional techniques

when the expression is scanned. A unary minus is recognised when two

operators are read in succession and the second is a minus or when an

operator followed by an opening bracket is followed by a minus. In either

case instead of stacking a minus sign a non-standard sign, say '1' is

stacked. On unstacking when a unary minus is detected the corresponding

operand is marked to be negated. The unary minus is then removed from

the operator stack and the process continued.

Simple assignment statements can be catered for by defining each

statement to consist of a variable name, followed by an assignment

symbol, then an arithmetic expression. Thus when the first operand is

detected by Ca) in the previous section it is set aside and stored in

illS. The next operator scanned must then be an assignment,which is then

discarded. The remainder of the expression is then scanned in the

normal manner, assume that this gives a tree if i levels. A node is

then inserted at the (i+l)th level with an operator assignment, illS as

its left hand son and the expression as its right hand son. Thus, it

may be said that illS took (i+1) levels to compute or illS is available

at level (i+l) assuming there are sufficient processors.

When several assignment statements, which are executed one after

another, are being considered, it is possible that "one statement may

use a variable that is assigned to by another statement. This is

61

similar to the problem described in section 3.2.5. Using the information

obtained from forming a tree for a single assignment statement it is

possible to say at what level (i+l) a variable will be available. So

when this variable is inserted in a tree representation of a subsequent

expression the variable will be known not to be available to level i+l.

The insertion in to the tree will thus be the same as for inserting a

subtree of level (i+l). Figure 3.15 shows how the algorithm forms trees

for a set of assignment statements.

Another possible extension to the algorithm would be to allow for

various operations to have different execution time. Multiplication may

be considered to take four times as long as addition. Thus when a sub

tree consisting of j levels, with all operations being multiplication,

is being inserted in to a tree formed from additions the subtree would

be treated as though it has 4*j levels.

62

Operator Precedence

.. , 0 ,
space 0

('1

) 2

+ - 6

* / 7

t 8

Table 3.3

PRIORITIES ASSIGNED TO OPERATORS BY THE NEW ALGORITHM

...

63

Input String RANDSTACK OPSTACK

A+B*C+D*E*F*G+H+I; empty empty

+B*C+D*E*F*G+H+I ;. A empty

B*C+D*E*F*G+H+I; A +

*C+D*E*F*G+H+I; BA +

C+D*E*F*G+H+I; BA *+
I

+D*E*F*G+H+I; CBA *+

+O*E*F*G+H+ I; {B*c}A +

D*E*F*G+H+I; {B*clA ++

*E*F*G+H+I; D{B*clA ++

E*F*G+H+I; o{B*C1A *++

*F*G+H+I; EO{B*clA *++

F*G+H+I; ED{B*clA *.*++

*G+H+I; FEO{B*clA **++

G+H+I; FED{B*clA ***++

+H+I; GFEO{B*C}A ***++

+H+I; {F*G1ED{B*clA **++

+H+I; {E*{F*GllD{B*clA *++

+H+I; {{O*E}*{F*Gll{B*clA ++

H+I; {{D*El*{F*Gll{B*clA +++

+1; H{{D*El*{F*Gl}{B*clA +++

I' , H{{D*E}*{F*Gl}{B*clA +++

; IH{{O*El*{F*G}l{B*clA ++++

{H+Il{{O*El*{F*G}1{B*C1A +++

; {{{D*El*{F*G}}+{H+I}l{B*clA ++

. {{B*C}+{ {{O*E}*{F*G} l+{H+I}}}A +

; . ffA+fB*C}}+fffo*E}*fF*G}}+{H+I}}} empty

Figure 3.13

DERIVATION OF AN EXPRESSION BY THE NEW ALGORITHM

N.B. CUrZy brackets are used to encZose a subtree.

,

64

level

4

I +
I

3

+~ ,+1, I+~
2 n i+l All 1*1 rl
1 r+l r+l i+l r+l B

c f*l rl H I

A B C D E F G H D E F G

A + B + C + D + E + F + G + H A + B * C + D * E * F * G + H + I

(a) (b)

Figure 3.14

TREE REPRESENTATIONS OBTAINED FROM THE NEW ALGORITHM

,

5

4

3

2

1

T+A*B*Ct2;
U+Dl-E;
V+T+U;
W+T-U;

r+-I
Till

A B C 2 D -lIE

Figure 3.15

''>'' -

'.'

TREE REPRESENTATIONS OF ASSIGNMENT STATEMENTS

65

66

3.5 ·A COMPARISON OF ALGORITHMS FOR RECOGNISING EXPRESSION PARALLELISM

All the algorithms described will handle addition, multiplication

and some other operations as described for each algorithm. The methods

proposed by Square (1963), Hellerman (1966); Stone (1967), Baer and

Bovet (1968) and the new algorithm propounded in the previous section

will be compared. The algorithms of Kuck et al (1972), Kuck (1977) and

Ward (1972) are eXCluded as they can be considered to have the same

properties as Baer and Bovet's (1968) algorithm. The methods suggested

by Ramamoorthy and Gonzalez (1969) and Ramamoorthy et al (1973) are also

eXCluded, because of the complexities that arise when they are used

(see section 3.2.5).

The algorithms produce the results of parsing an expression in

various formats. The algorithms of Stone and Hellerman present their

results in a reverse Polish type of notation. Whereas the methods of

Squire and Baer and Bovet present their results in the form of

'temporaries' which are linked together by a final temporary result.

The new algorithm's results are available in the. form of a tree

structure. Where the results of a parse are only available in a reverse

Polish type of notation extra work will be necessary to determine at

what level operations may be performed.

In all the methods considered, except Baer and Bovet's, minus

and divide are handled by negating and reciprocating. Baer and Bovet

handle subtraction and division by using their assocative properties.

Thus, hopefully avoiding their generation or, at least, not performing

these operations until the latest possible level. There are potential

problems with this, for instance if a different pair of .numbers are .

divided to those ini~ially intended, then overflow or underflow

problems may occur. Unary minus is not handled in the algorithm

proposed by Stone. Hellerman's algorithm handle's unary minus in the

standard reverse Polish manner. A special quintiple is formed when

Squire's method is used. Whereas Baer and Bovetin.troduce a switch

that is used to indicate unary minus, but as with subtraction the

forming of such results is avoided where possible. The new algorithm

negates the corresponding operand or subtree when a unary minus is

detected.

All these methods treat bracketed expressions as'entities.

avoids the need to introduce 'special inviolable parentheses',

et aI, 1972) to protect delicate numerical calculations.

This

(Kuck

Actual run-time comparisions of the algorithms are difficult to

67

make. The physical time taken to parse an expression is short for each

algorithm. Because of the different ways expressions are handled by

each method, a given algorithm 'cannot be expected to parse every

expression in a time proprotional to that taken by another algorithm.

Three tests were carried out on a single version of each algorithm,

written in Algol 68-R (Woodward et aI, 1974). The tests involved were:-

(i) Calculating the theoretical times for the operations

executed in the program versions of each algorithm

(Wichmann, 1973).

(ii) Running the algorithms within a program loop on the ICL

1904A at Loughborough University.

(iii) Running the algorithms within a program loop on the ICL

1906A at Nottingham University.

Table 3.4 gives an example of typical figures. The units of

measurement are only significant down the columns. All the algorithms,

except Hellerman's, produce from the expression:

A + B + C + D + E + F + G + H

a representation of the tree given in Figure 3.l(b). Hellerman's

algorithm, which performs no balancing produces a representation of

...

68

the tree given in Figure 3.I(a). It must also be noted that extra

calculations are necessary to decide at which level··operations may be

executed, when the results are presented in a reverse Polish notation.

The other expression considered,

A + B * C + D * E * F * G + H + I ,

created five different trees for each of the five algorithms (see Figures

3.3(b), 3.4(b), 3.6(b), 3.8(b) and 3.14(b)). Table 3.5 shows the number

of levels in each of the tree representations. Both of the trees formed

by Squire and Baer and Bovet have used commutativity such that 'A' and

'H' are added together. Stone's algorithm fails to detect that 'I' need

not be at the top of the tree. Hellerman's algorithm produces the

tallest tree, but still offers some scope for parallelism. The new

algorithm has not moved any parts. of the e*pression around, but

nevertheless for the expression considered forms a tree of minimum height.

Of all the methods suggested, Hellerman's or Stone's will probably

provide the fastest means of·finding some parallelism within an

expression. The algorithm suggested by Baer and Bovet provides a
",)

thorough analysis of an expression. However, this algorithm and the

one suggested by Squire may create problems with sensitive expressions

that would not occur otherwise. The new algorithm presents its results

in a form suitable for determining the maximum amount of parallelism

without unnecessarily affecting sensitive numeric equations •

...

~ THEORETICAL TEST 1904A 1906A
ALGORITIlM .
Squire 7786 . 9 8

Hellerman 4576 10 4

Stone 5r62 6 6

Baer and Bovet 13048 12 10

New Algorithm 7391 11 7

Table 3.4

TIMES TAKEN TO ANALYSE

A + B + C + D +·E + F + G + H

Algorithm No. of Levels

Squire 4

Hellerman 6

Stone 5

Baer and Bovet 4

New Algorithm 4

Minimum No. of Levels 4

.

Table 3.5

NUMBER OF LEVELS IN THE TREE REPRESENTATION

A + B ·"C +D * E * F * G + H + r

69

CHAPTER 4

ANALYSIS OF GROUPS OF STANZAS

WITH A VIEW TO DETECTING PARALLELISM

...

70

4.1 INTERDEPENDENCIES BETWEEN PARTS OF PROGRAM

Consider a parallel processing system where each' processor is

capable of executing several operations without independent action having . "
to be taken. Independent parts of a program being executed may, in that

case, be allocated to separate processors. If however interdependent

parts of a program are assigned to different processors, anomolies may

occur. For instance, after the parallel execution of Process 1 and 2

(see Figure 4.1) the variable 'x' may be equal to 'vI' or'v2' or some

undefined value. The undefined value would arise if both processes

simultaneously assign to the variable 'x'. Brinch Hansen (1973)

discusses the possibilities of what may happen in such situations.

Given a program designed to run on a serial computer, control is

assumed to pass from one statement to the one immediately beneath,

except where a jump (e.g. a loop) dictates otherwise (i.e. the Von

Neumann concept). However each" statement, or group of statements,

are not necessarily dependent on their predecessors. By finding parts

of a program which are independent it will be possible to advantageously

use a parallel processing system of the type mentioned above. Thus,

any approach to determine parallelism, at this level, will have to study

dependencies between one or more program areas. In this context six

main areas may be considered, these being:-

(i) Individual statements.

(H) Groups of assignment statements.

(Hi) Blocks of Algol-type code.

(iv) Iterations of a loop.

(v) Conditional statements.

(vi) Execution of procedures (or similar) after calls.

A suitable term for referring to these areas would be 'block' but

because of the possible ambiguities when considering Algol-type

programming languages another term should be used. So a new term

'stanza' will be introduced to represent any of these six categories.

A stanza can be defined as follows:

Definition 4.1
., .

A stanza is either a single program statement or a group of

statements appearing adjacently in a computer program and intended to

be executed one after the other.

71

The existing approaches to determining parallelism between stanzas

may be divided into two classes. The first are;themethods which use

graph theory as part of their detection process and the second are all

other methods. Since both methods detect independencies there will be

}some overlap in the techniques used in both approaches.

Process I Process 2

a+-b+c; d+e+f:

x+vl: ic+v2;

g+h.i; j+k.R.:

Figure 4.1

TWO PARALLEL PROCESSES

I ,

..

72

4.2 USAGE OF PRIVATE AND SHARED MEMORIES

Wilkes (1965) introduced the idea of using a ~lave memory of fast

core to save on the time spent fetching data items from main memory •
•

Although such time delays are now of less significance it is possible

to apply this concept to a parallel processing environment.

Within a parallel processing environment all processors should be

permitted to access a main memory so that more than one processor may

work on a set of inter-related stanzas. Thus the main memory can be

:considered to be 'shared.' by all processors. In addition it is possible

to allow each processor to have a private memory that can be used in

the same manner as a slave memory. Thus all variables once used in a

stanza would be stored in the processor's private memory until the

stanza has been completed, when they may be transferred to the main

(or shared) memory.

Thus. there are two types of memory structures that can reasonably

be used in a parallel processing environment. Either all processors

just use the main memory or each processor has attached to it a private

memory in which information that is currently being processed can be

temporarily stored. Figure 4.2(a) illustrates the former case where

only shared memory is available while the latter memory structure is

shown in Figure 4.2(b).

The difference between the two memory structures can be emphasised

by considering two processors PI and P2 operating in parallel. Both

use a set of locations L which PI alters and P2 fetches. Then, if PI

and P2 have private memories then P2 will fetch the original values of

L. Whereas if PI and P2 only have access to a shared main memory then

there are three possible values of L that P2 may, theoretically, fetch.

The values of L may be the original values, the values assigned in PI

or some undefined values which would indicate P2 was fetching L during

the time PI was changing it •

73

Bernstein (.1966; see also the following section) shows that the

conditi~ns necessary to execute two stanzas in p~rallel are much weaker

when processors with private memory are available. This is mainly due
, ,

to the avoidance of problems similar,to the one described above where

the values that will be fetched were not defined, since both processors

were using the same memory. Hoogendoorn (1975) has suggested how the

'mechanics' of providing each processor with a private memory may be

implemented. It is possible that control can be exercised over the

order in which private memory restores to main memory. This facility

will be considered'to be available throughout this work whenever

machines with private memories are discussed.

,

PROCESSOR
PI

MAIN
MEMORY

PROCESSOR
P2

/
PI's

PrivatE
Memory

1
PROCESSOR

PI

..

MAIN
MEMORY

" P2's
PrivatE
Memory

PROCESSOR
P2

Shared Memory Private Memory

(a) (b)

Figure 4.2

MEMORY STRUCTURES FOR PARALLEL PROCESSORS

74

4.3 EXISTING TECHNIQUES FOR RECOGNISING PARALLELISM BETWEEN STANZAS
: ,.

The methods already in existence for determining parallelism at

the statement level can be considered in two categories. Those that
.,

use a great deal of graph theory in their determination of parallelism

and all other methods. The other methods are usually based on aspects

of the structure of the program.

4.3.1 Graph Based Methods

Kuck (1975) credits Estrin and his students at U.C.L.A. of being

the first to study program graphs> in an attempt to locate parallelism

(e.g. Martin and Estrin, 1967 and Baer and Russe11, 1970). Kuck and

his co-workers (e.g. Kuck et aI, 1972; Kuck, 1975 and Towle, 1976)

have continued this work, using data dependence graphs. Ramamoorthy

and his co-workers (e.g. Ramamoorthy and Gonzalez, 1969; Gonzalez and

Ramamoorthy, 1970 and 1971 and Ward, 1974) have taken a more formal

approach based on a connectivity matrix of a graph representation of

a program.

The work of Kuck is based on Fortran-like programming languages.

Basically each statement is considered and its dependency on other

statements is calculated. LOops formed by the 'DO' statement may be

divided such that the dependencies between successive ,iterations can

be found. The problems of usingarrays indexed by a control variable

of a loop are examined. Similarly, conditionals formed by the 'IF'

statement are examined for indeterminism which may exist at execution

time as well as compile,time. Various types of conditionals are

described which may be, considered to be in two classes. Those for

which the path that will be taken can be predicted and others.

Combinations of loops and conditionals are also examined. Figure 4.3

shows a part of a Fortran program and the dependence graph Kuck (1977)

75

..

.formed for the program. It can be seen, or found by partitio~ing,

that S2 and S3 are completely independent of S4 and· SS. Hence S2 and

S3 may be executed in parallel with S4 and SS. It is also possible to
, .

determine that different instances of the arrays 'A' and 'H' are

referred to in one iteration of the outer loop. Leasure (1976) gives

a description of a compiler that will detect parallelism in· serial

programs in the manner described.

The work of Ramamoorthy is also based on the Fortran programming

. language. A program graph is derived which identifies the order in

which tasks must be performed in a program written to be executed on

a serial computer •. In their work, tasks are treated as a single

program statement and hence are a subset of the stanza.defined in

Definition 4.1. The program graph of N tasks is translated into an

NXN connectivity matrix. In the matrix a one will be used in position

i,j to represent a directed edge between nodes i and j. Where i and j

are integers in the range 1 to N. A zero will be inserted where there

is not such connection between i and j •. All tasks that create a

strongly connected subgraph are treated as one task (or a stanza). So

76

a reduced graph can be formed, for which there are no strongly connected

subgraphs. A sufficiency condition is defined as given below.

Definition 4.2

Two tasks can be executed in parallel if the input set of one

task does not depend on the output set of the other and vice versa.

This condition along with scheduling information is used to

decide which tasks (stanzas) may be executed in parallel •

DO Ss I=l~N
SI: A(I)=B(I)*((I)

DO S3 J=l,N

S2: D(J)=A(I-3)+E(J-l)

S3: E(J)=D(J-l)+F

DO S4 K=l,N

S4: G(K)=H(I-S)+l

SS: H(I)=SQRT(A(I-2»

-[

Figure 4.3

FORTRAN PROGRAM AND DEPENDENCE GRAPH

!
J

77

"

78

4.3.2 Methods Based on the Structure of the Program
'.~''''' ..

In 1966 the Burroughs Corporation initiated research into the

desirability and feasibility of automatically recognising parallelism
" .

within computer programs. The results of this work were discussed in

a series of reports and papers (e.g. Bingham et aI, 1967; Bingham and

Reigel, 1968 and Reigel, 1970). Bernstein (1966) prese'nted a different

method based on set theory. More recently Firestone (1971) outlined a

method of locating parallelism based on data flow analysis.

The Burroughs work was based on a subset of their B5500 Extended

Algol programming language. An algorithm was developed that could

detect implicit parallelism between various program structures such as

loops and conditionals (but not blocks). Simulations of the workings of

the algorithm have been written and are described in Bingham et al (1969).

Bingham and Reigel (1969) stressed that they considered explicit

exposure of parallelism (see Chapter 1) is necessary to detect

parallelism between groups of statements.

Bernstein ',s work is based on the four ways in which a memory

location may be used bya set of instructions or sub-program (or stanza)

Pi. These are:-

(1) The location is only fetched during the execution of pi'.

(2) The location is only stored during the execution of ~{.

(3) The first operation involving this: location is a fetch.

One of the succeeding operations of pi stores in this location.

(4) The first operation involving this location is a store.

One of the succeeding operatings of pi' fetches from this

locations.

The set of all variables in Pi that fall into these categories are
.'. . .

called W.,X.,Y. and Z. respectively. For two stanzas PI and P2 to be
1 l. 1 1 '

capable of being executed in parallel; the following three conditions

must hold:-

Cl) The inputs of PI must not coincide with the outputs of P2'

i.e. CWIUYlUZl!1CX2Uy2UZ2) = ~.
(2) The inputs of P 2 must notcoincidewi th the outputs of PI'

i.e. eXIuy~uZl)nCW2UY2UZ2) = ~.

(3) Any location changed in both PI and P2 must be reset before

being reused,

_ i.e. eXIUyluZl)nCX2UY2UZ2)ncw3Uy3) = ~.

79

Where eW3UY3) is the set of all variables subsequently fetched

without being reset.

Table 4.1 gives the meanings of the notation used in set theory.

If each processor is allowed private memory three weaker conditions

replace the above. These are:-

(la) eWlUyl)neX2U¥2UZ2) = ~.
(2a) (XlUyluzl)nCW2U¥2) = ~.

(3a) eXlUyluZl)nex2Uy2uZ2)neW3U¥3) = ~.

The weaker conditions apply because temporary results being formed by

PI can no longer be effected by P2 and vice versa.

Firestone e197l) developed a method of detecting implicit

parallelism based on dependency. He uses the data flow analysis

techniques of Kennedy C197l) to find independent parts of a program.

Code that takes a 'long' time to execute is examined more thoroughly

than code which has only a 'short' execution time. This method most

-closely resembles those based on graph theory. So Firestone's method

could have been described in the previous subsection.

..

Symbol

()

A

~B

Ar"l3

Table 4.1

80

Meaning
"

Union

Intersection

The set A

The set of ali elements in A and B

The set of all elements in both A .

and·B

The null or empty set.

SYMBOLS USED IN SET THEORY

4.4 . 'CLASSIFlCATION OF RELATIONSHIPS BETWEEN STANZAS

When using a parallel processing machine it fS"usually assumed

that a stanza may be either executed sequentially after another stanza

or simultaneously (Ramamoorthy and Gonzale;, 1969). Bernstein (1966)

has suggested that two stanzas may be commutative. That is although

they may not be executed in parallel either may be executed first.

Tow1e (1976) stated that there are inter-relationships between data

dependencies and control dependencies.

Here all possible relationships that may exist between stanzas

are defined.

Initially only two stanzas will be studied but this will later be

generalised to any number of stanzas. Consider two stanzas that would

be executed one after the other in a serial program. The stanza that

would have been executed first is called Si and the other is Si+l' for

81

i such that 1~<N, where N is the total number of stanzas in the program.

The five possible relationships that may exist between two such

adjacent stanzas are now named and the conditions that must exist are

defined: -

Definition 4.3: Contemporary - CT{Si,Si+1)

Stanzas Si and Si+l can be executed at the same time and the

locations used in any order.

Definition 4.4: Commutative - CM(S.,S. 1) 1. 1.+

Stanza Si may be executed before or after Si+l but not at the

same time.

Definition 4.5: FTerequisite - PR(Si,Si+l)

Stanza S. must fetch what it requires before S. 1 stores its 1. 1.+

results.

Definition 4.6: Conservative - eves. ,So 1) 1. 1.+

Stanza Si must store its results before Si+l does.

,

Definition 4.7: Consecutive - cces.,S. 1)
1 ~+

Stanza S. must store its results before S. 1 fetches what it
~ 1+

requires.

For completeness two more relationships will be defined, which

cannot sensibly exist within a serial program.

Definition 4.8: Synchronous - SN(S.,S. 1)
1 1+

82

Stanzas S. and S. 1 must both have the same inputs, i.e. S. cannot 1 1+ 1

store its results until S. 1 has fetched its input and vice versa. 1+

Definition 4.9: Inclusive - IN(S.,S. 1) 1 1+

Stanza S. 1 must store its results after S. has fetched what it 1+ 1

requires but before S. stores its results.
1

It is possible to extend the relationships already defined for two

stanzas to cover M stanzas· {Sl,S2"",SM}' Where .Sk would be executed

in the serial program immediately before Sk+l' for all k such that

l~k<M. The new definitions are:-

Definition 4.10: Contemporary - CT(Sl,S2"",SM)

Stanzas {Sl;S2"",SM} can be executed at the same time, the

ordering of fetching and storing being of no consequence.

The set of stanzas {So 0,5. , ••• ,S. } may be executed· in any possible
11 12 1M

order of the set {il ,i2, ••. ,iM} which is any permutation of the set

{1,2, ••• ,M}, providing S. is completed before S. commences, for all
1k 1k+l

k such that 1~k<M.

Definition 4.12: Prerequisite - PR(Sl ,52"" ,SM)

Stanza Sk must fetch what it requires before Sk+l stores its

results, for all k such that 1~k<M.

Definition 4.13: Conservative - CV(SI.S2 ••••• SM)

Stanza Sk must store its results before Sk+l "does. for all k

such that l~k<M.

Definition 4.14:Conseautive - CC(Sl.S2 ;SM)

83

Stanza Sk must be completed before Sk+l commences. for all k such

that l~k<M.

Again. for completeness two more relationships will be defined.

which. however. cannot sensibly exist in a serial program.

Definition 4.15: Synahronous - SN(SI.S2 ••••• SM)

Stanzas SI.S2 ••••• SM must all receive the same input sets.

Definition 4.16: Inalusive - IN(SI.SZ ••••• SM)

Stanza Sk+l must store its results after Skjhas fetched what it

requires but before Sk has stored its results. for all k such that

l;::k<M.

,

84

4.5 FORMATION OF A STANZA

Using the terminology of Bernstein (1966) it"is' possible to define

four sets for a given stanza S.:-
, 1

(1)

(2)

(3)

(4)

w.
1

X.
1

Y.
1

- represents the set of all locations that are only fetched

during the execution of S .•
1

• represents the set of all locations that are only stored

during the execution of S .•
1

- represents the set of all locations for which the first

operation is a fetch and one of the succeeding operations

of S. is a store.
1

Z. - represents the set of all locations for which the first
1

operation is a store and one of the succeeding operations

of Si is a fetch.

In Appendix 2 an Algol 68-R program Analyser is given that will

divide a given serial Algol-type program into stanzas. Some of the

work performed by Analyser (e.g. recognition of statements) is already

performed by compilers and so could be removed from Analyser when it

is integrated into a compiler. Analyser arbitrarily limits a stanza

to be a specific program construct (e.g. a loop) or a collection of

statements not using more than fifteen different variables. The

variables used within a stanza S. are classified as belonging to the
1

sets W.,X.,Y. and Z. depending on their usage. Figure 4.4 illustrates
1 1 1 1

. how these sets are formed for a stanza consisting of three assignment

statements.

A new set, V., is now introduced to represent all locations that
1

may be fetched without being reset after the execution of the stanza Si.

The calculation of a particular V will, in general, be a non-trivial

matter, in which case the V.may be considered to be the set of all

"

..

variables used in the program.

Thus the input set of a stanza S. is
1

w.W.
1, 1, , .

whereas the set of all variables fetched by S~ is
, 1

w.UY.UZ .•
1 1 1

The output set of S. is the same as the set of all variables stored
1

in S. and is
1

x.uy.Uz .•
l. l. l.

The set of all variables that on a serial machine will be fetched

without being reset after the execution of Si are represented by Vi'

lj

Stanza S. w. x. Y. Z.
l. l. l. l. l.

al-<-bl*b2; bl,b2 ,al

a2-<-al*bl; bl,b2 a2 al

cl-<-al+cl; bl.b2 a2 cl al

Figure 4.4

FORMATION OF THE W,X,Y AND Z SETS

85

CHAPTER 5

DETECTION OF PARALLELISM BETWEEN STANZAS

,

86

5.1 TESTS TO EXPOSE THE RELATIONSHIPS BETWEEN TWO STANZAS
, c,

-' ~'~'''- .
Two stan~as Si and Si+l which would have been executed one after

the other in a serial program will be considered. The sets of usage . -
of variables described in Section 4.5 will be used to form tests to

determine which of the relationships defined in Section 4.4 exist

between two stanzas.

The differences between parallel machines with private memories

and those without have been mentioned previously. To allow for these,

separate tests will be developed for both machines and these will be

detailed in the following subsections.

5.1.1. Private Memories Availabl~

The tests for the five possible relations defined in Definitions

4.3 to 4.7 will be developed individually. The fact that each stanza's

temporary results will be stored in private memory will be taken into

account where necessary when a relationship is considered.

(1) Contemporary - CT(S.,S. 1) 1 1+

This relationship implies that stanzas S. and S. 1 may be executed "1 1+ "

simultaneously. Thus, there must not be any dependencies between the

locations fetched by S. and those changed by S. 1 and vice versa. As
1 1+"

private memories are available any temporary results formed by one

stanza cannot be altered by the other. Thus there must" not-be any

dependencies between the inputs and outputs of S. and S. l' In terms
1 1+

of sets that is:

(w.llY.)n(x. lUY, lUZ, 1) = 0
1 1 1+ 1+ 1+

and (x.uy.uz.)n(w. lllY· 1) = 0
1 1 1 1+ 1+

Locations that are modified by both stanzas Si and Si+lmust not be

used elsewhere without being reset first, since the values of such

locations are undefined. That is:

(5.1)

(5.2)

Thus the conditions for two stanzas S. and S. 1 to be considered
1 1+

contemporary are (5.1), (5.2) and (5.3).

(2) Commutative - CM(S.,S. 1)
1 1+

Stanza s. may be executed before or after stanza S. l' Thus
1 1+

none of the inputs of Si (or Si+l) must not coincide with any of

the outputs of S. 1 (or S.). That is:
1+ , l.

(WiUY i)n(Xi + lUY i + lUZi + 1) = \1

and (XiUY iUZi)()(Wi + lUY i+ 1) = \1

Locations that are modified by both Si and Si+l must not be used

elsewhere without first being reset. Since the value of such

locations are undefined. That is:

(XiUYiuZi)n(Xi+lUYi+lUZi+l~Vi+l = \1

Thus the conditions for two stanzas to be considered commutative

are (5.4), (5.5) and (5.6). It can be seen that by using private

memory that the condition for two stanzas to be commutative are

identical to those for them to be contemporary.

(3) Prerequisite - PR(Si,Si+l)

Stanza Si must fetch what it requires before Si+l stores its

results. This implies that at least one of S. 's inputs corresponds
1

to an output of Si+l' that is:

(W.uy.)n(X. lUY, lUZ, 1) ;. \1 •
1. 1 1+ 1+ 1+

Stanza Si+l must not require information computed in Si' since Si

will not necessarily be completed, that is:

Locations that are modified in both Si and Si+l must not be used

elsewhere without being reset first, since the values of such

locations are undefined, that is:

,

87

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

-- ------------------

88

(5.9)
- >-~ ~. ~

Thus. (5.8) and (5.9) are the conditions to be satisfied for S.
~

and S. I to be prerequisite. If (5.7) is also true then it can
~+ ,

" .
be seen that the relationship is neither aontemporary or commutative.

(4) Conservative - CV(S.,S. 1)
~ ~+

Stanza Si must store its results before Si+l does. This implies

that at least one location is changed by both S. and S. 1 and
~ ~+

subsequently fetched without being reset, that is:

(x.uy.uz.)n(x. IUY' IUz . l)flJ. 1 = 0
~ 1]. 1+ 1+ 1+ 1+

Stanza Si+l must not require information computed in Si' since Si

will not necessarily be completed, that is:

(x.uy .Uz.)n(w .. IU¥, 1) = 0
]. 1 1 1+ 1+ I ,

(5.10)

(5.11)

This is the only condition necessary to be satisfied for Si and Si+l

to be aonservative. If (5.10) is also satisfied it can be seen that

the relationship is not prerequisite •

. (5) Conseautive - CC(Si,Si+l)

Stanza S. must store its results before S. 1 fetches what it
~ ~+

requires. This implies that at least one location changed by S. is
~

fetched by S. l' that is
~+

(X.U¥ .UZ.)n(w. IU¥, 1) f. 0 .
'1 1 J. 1+ 1+

(5.12)

Thus any two stanzas S. and S. 1 may be considered to be aonseautive.
~ ~+

If (5.12) is satisfied it can be seen that the relationship is not

aonservative.

5.1.2 Only Shared Memory Available

The tests for the five possible relationships defined in

Definition 4.3 to 4.7 will be developed individually. The effects

of a stanza's temporary results being available to the other stanza

I

I

...

89

will be taken in to account where necessary.

(1) Contemporary - CT(S.,S.+l)
, 1 1 ,

Stanzas Si_and Si+I can be executed at the same time. Thus, there
,,-,

must be no dependencies between the set of locations that are fetched

during the execution of S. and those that are stored during the execution
1

of Si+l and vice versa, that is:

(W.Uy.uz.)n(x. IVy· IUZ . 1) = ~
1 1 1 1+ 1+ 1+

and (X.Vy.UZ.)n(w. IUY. IUZ. I J = 0
1 1 1 1+ 1+ 1+

Locations that are modified by both Si and Si+I must not be used

elsewhere without being reset first, that is:

(5.13)

(5.14)

(5.15)

Thus the conditions for two stanzas to be considered to be contemporary,

when only shared memory is available, are (5.13), (5.14) and (5.15).

(2) Commutative - CM(Si,Si+l)

Stanza S. may be executed before or after stanza S. 1. Thus
1 1+

none of the inputs of S. (or S. 1) must not coincide with any of the 1 1+

outputs of S. 1 (orS.), that is: 1+ 1

(WiUYi)n(Xi+IUYi+IUZi+I) = ~

and (X.Uy.UZ.)n(w. IUY . 1) = ~
1 1 1 1+ 1+

Locations that are modified by both Si and Si+I must not be used

elsewhere without first being reset, since the value of such

locations are undefined, that is:

Thus the conditions for two stanzas to be considered commutative

(5.16)

(5.17)

(5.18)

are (5.16), (5.17) and (5.18). It can be seen that these conditions

are weaker than those for S. and S. 1 to the contemporary stanzas.
1 1+

...

90

"(3) Prerequisite - PRCSi,Si+l)

Stanza S. must fetch what it requires before "5-: 1 stores its
1 1+

results. As both stanzas are using the same"memory it will be necessary

to consider that there will be fetches and stores "using main memory

throughout the execution of both the stanzas. The very last fetch of

S. must be completed before the first store of S. l' thus the relation-
1 1+

ship can be considered to degenerate into a consecutive one.

(4) Conservative - CV(S.,S. 1)
1 1+

Stanza Si must store its results before Si+l does. As both stanzas

are using the same memory it will be necessary to consider that stores

using main memory are occurring throughout the execution of both stanzas.

The very last store of S. must be completed before the first store of
1

S. l' thus the relationship can be considered to degenerate into a
1+

consecutive one.

CS) Consecutive - CC(Si,Si+l)

Stanza S; must store its results before S. 1 fetches what it
.... 1+ .

requires. This implies that:

(x.UY .Uz.)n(w. lUY. 1) "I 0
1 1. 1. 1+ 1+

CS .19)

Thus any two stanzas Si and Si+l may be considered to be consecutive.

For a machine for which only shared memory is available, any two

stanzas S. and S. 1 for which (5.16), C5.l7) and (5.18) are not true
1 1+

must be executed in a consecutive manner.

Table 5.1 is a summary of the conditions necessary for a given

relationship to exist between two stanzas S. and S. l' which would
1 1+

be executed one after the other in a serial program. The conditions

for a particular relationship to exist between two stanzas are 'weaker'

for those at the bottom of the table. The 'strongest' conditions being

91

those for two stanzas to be aontemporary in a shared memory

environment.

It is possible. to simplify some of the tests given. For example.

consider the aontemporary relationships er(s.,s. 1)' in a private
. . 1 1+

memory environment. From equations (5.1) and (5.2) it is possible to

simplify (5.3) to:

(XiuZi)n(Xi+luZi+1)nvi+l = 0 (5.3a)

However. this detracts from the clarity of the method and so is not

used here.

I" ,

Relationship Conditions

Private Memories Shared Memory

Contemporary Cw.uy.)nCx·-I-1UY '+1UZ , 1) 1 1 1 1 1+ = (il CWiUY iUZi)nC\+luy h1UZ i-l-l) " 9)
CT(Si,Si-l-1) CX.uY.UZ.)n(W. FY. -1-1) 1 1 1 1-1- 1 = (il CX.uy.uz.)nCw. 1UY ' lUZ, 1) 1 1 1 1-1- 1+ 1+ .. 0

CX.Uy.uz.)nCx·-I-1UY ·-I-FZ. 1)nv'-I-1 1 1 1. 1 1 1+ 1 = (il CX.Uy.uz.)nCx. 1UY . 1UZ . 1)(\1· 1 .. 0
1. 1 1 1+ 1+ 1+ 1+

.

Commutativ@ (W .UY.)nCx. +lUY ' 1Uz . 1) .. 0 1 1 1 1+ 1+
CMCS. ,S. 1) l. 1+ as ContemporaPY . (x.Uy.uz.)nCw. 1UY . 1) 1 1 1 l.+ 1-1- = 0

(x.Uy.uz.)n(x. 1UY . FZ. 1)(\1· 1 l. l. 1 l.+ 1+ 1-1- 1-1- = 0

Prer@quisite CXiUYiuzi)nCwi+lUYi-l-l) = 0 as Conseautiv@
PRCS. ,S. 1) 1 l.+ CXiUYiUZi)nCXi -l-1

UYi +lUZi +1)(\Ii+1 = 0 ,
.

Conservative (X.uy .UZ.)n(w. +lUY '+1) =0 as Conseautiv@ 11l. 1 1
CV(S, ,S. 1) 1 l.+

Cons@lJutiv@ No conditions necessary as this implies

CCCSi ,Si+1) CX.UY .UZ.)n(w. 1UY , 1) 1 1 1 1+ 1+ = 9)

Table 5.1

CONDITIONS NECESSARY FOR A GIVEN RELATIONSHIP TO EXIST BETWEEN TWO STANZAS

i
i

\0

'"

..

93

5.2 'TESTS TO EXPOSE A SINGLE RELATIONSHIP BETWEEN A NUMBER OF STANZAS

A number, M, of stanzas {SI ,52' ••• ,SM} which' would have been

executed one after the other in a serial program will be considered.

The sets of usage of variables described in "Section 4.5 will be used

to determine if a single relationship as defined in Section 4.4 exists

between these M stanzas. It is possible that more than one relation-

ship may exist within a group of stanzas in which case the tests will

reveal the relationship which exists between all of the stanzas.

Alternatively the group may be subdivided such that only one relation-

ship exists within each of the new groups.

The difference between parallel machines with private memories

and those without have been discussed previously. To allow for these,

separate tests will be developed for both types of machine and will be

detailed in the following subsections.

5.2.1 Private Memories Available

The tests for the five possible relationships defined in

Definitions 4.10 to 4.14 will be developed individually. Within this

subsection it is assumed that any processor used has its own private

memory.

(1) Contemporary - CT(Si,S2, ••• ,5M)

This relationship implies that all of the stanzas {Sl,S2, ••• SM}

may be executed simultaneously. As private memories are available

any temporary results formed by one stanza cannot be altered by any

other stanza. Thus there must not be any dependencies between the

inputs of one stanza and the outputs of all other stanzas. In terms

of set theory that is:

(WkU¥k)neXtUYtUZt) = 0
for all k such that l~kfM and (5.20)

for all t such that l~tfM and t#k •

"

94

'Locations that are modified by more than one stanza must not be fetched

elsewhere without being reset first. since the val~e of such locations

are undefined. ,That is:

(XkUYkUZk)nceXk+IUYk+luzk+l}n ••• n(\JUYMUZM))'"lVM = 13
for all k such that l~k<M.

Thus the conditions for M stanzas {51,S2""SM} to be considered

aontemporary are (5.20) and (5.21).

(2) Commutative - CM(Sl ,52"" ,SM)

The set of starizas' {SI'S2' •.•• SM} may be executed in any

possible order, providing that only one stanza is being executed at

a given time. Thus the inputs of any one stanza 'must not coincide

with any of the outputs of all other stanzas. That is:

(wkuyk)n(x}lY}lzi = 0'

(5.21)

for all k such that l~k~M and (5.22)

for all t such that l~t~M and tfk •

Locations that are modified by more than one stanza must not be

fetched without first being reset, since the value of such locations

are undefined. That is:

(XkUYkUZk)ntl:\+lUYk+luzk+l)n ••• n(~UYMUZMJ)fIVM = 13

for all k such that l~k<M.

Thus the conditions for M stanzas' {Sl,S2""SM} to be considered as

aommutative are (5.22) and (5.23). It can be seen that by using

private memories the conditions for a given number of stanzas to be

aommutative are identical to those for them to be aontemporary.

(3) Prerequisite - PR(Sl,S2"",SM)

Stanza Sk must fetch what it requires before Sk+l stores its

results, for all values of k such that l~k<M. This implies for all

(5.23)

values of k at least one input of 5k corresponds to, an output of Sk+l'

That is:

(WkUYk)n(~+IU\+IUZk+l) 'f 0
for all k such that l~k<M •

....

Stanzas {Sk+I ••••• SM} must not require information computed in Sk

since Sk will not necessarily be completed. That is:

(\UYkUZk)n((Wk+IUYk+l)n ... n(wMuyM) " ~
for all k such that l~k<M.

Locations that are modified by more than one stanza must not be

95

(5.24)

(5.25)

fetched without being reset first. since the value of such locations

are undefined. That is:

(~UYkUZk)n«\+lUYk+luzk+l)n .•• n(~UyMuZM})nVM " 0
for all k such that l~k<M •

C5.26)

Thus (5.25) and (5.26) are the conditions that must be satisfied for

(4) Conservative - CV(SI,S2"",SMJ

Stanza Sk must store its results before Sk+l does. for all k

such that l~k<M. This implies for all values of k (from I to M-I)

at least one location is changed by both Sk and Sk+l which is

subsequently fetched without first being reset. That is:

(XkUykuZk)n(\+IUyk+IUZk+l)nvM f ~ (5.27)
for all k such that l~k<M •

Stanzas {Sk+l"",SM} must not require information computed in Sk

since Sk will not necessarily be completed. That is:

(XkUYkUZk)(l«Wk+lU\+I)(l· .• n(wMuyM)) " 0
for all k such that l~k<M •

The conditions given in (5.28) are the only ones necessary for M

stanzas {SI,S2"",SM} to be considered conservative.

(5) Consecutive - CC(Sl,S2"",SM)

(5.28)

Stanza Sk must store its results before Sk+l fetches what it

requires. This implies that for all values of k (between 1 and M-I)

96

,at least one location is changed by Sk and fetched by Sk+ l' That is:

(~U\UZk)n(Wk+lUYk+l) r. 0 (5.29)
for all k such that l:;k<M •

Thus any M stanzas {Sl'S2' •••• SM} may be considered to be consecutive.

5.2.2 Only Shared Memory Available

The tests for the five possible relationships defined in

Definitions 4.10 to 4.14 will be developed individually. The effects

of' 'a" stanza I s temporary results possibly being available to all other
. 1, '.

stanzas will~be taken into account where necessary.

(1) Cont,emporary - CT(SI,SZ"",SM)

This relationship implies that all the stanzas {Sl'S2"",SM}

may be exe~uted simultaneously. There must be no dependencies between

~, the set of locations that are fetched during the execution of any

stanza and those that are stored during the execution of all the ,other

stanzas. That is:

(WkUykuzk)n(xR,UYR,uzR,) = 0
for all k such that l~k~M and (5.30)

for all R, such that l~t~M and R,tk •

Locations that are modified by more than one stanza must not be

fetched elsewhere without first being reset, since the value of such

locations are undefined. That is:

(~UYkUZk)n«Xk+lUYk+luzk+l)n .•• n(~UyMuZM))nvM = 0
for all k such that l~k<M.

Thus the conditions for M stanzas to be considered contemporary

are (5.30) and (5.31).

(2) Commutative - CM(Sl,SZ"",SM)

The set of stanzas {Sl,SZ"",SM} may be executed in any

possible order, without more than one stanza being in execution at

(5.31)

,

97

a given time. Thus the inputs of anyone stanza must not coincide

with any of the outputs of all other stanzas.
'~'" "

That is:

(WkUYk)()(X,tUY,tUZ,) = 0
for allk such that l~k<M and (5.32)

for all t such that l~t<M and ttk.

Locations that are modified by more than one stanza must not be

fetched elsewhere without first being reset, since the values of

such locations are undefined. That is:

(XkUY kUZk)n((Xk+ IUYk+ IUZk+ I)n ••• n(~UYMUZM))f'\TM = 0
for all k;such that IH<M • . ,

Thus the conditions for M stanzas {SI,S2, ••• ,SM} to be considered

commutative are (5.32) and (5.33).

(3)· Prerequisite - PR(SI ,S2'··· ,SM)

Stanza Sk must fetch what it requires before Sk+l stores its

results, for all values of k between I and M-I. As all stanzas are

using the same memory it will be necessary to consider that. there

will be fetches and stores using the main memory throughout the

execution of all stanzas. Thus the very last fetch of Sk must be

completed before the first store of Sk+l so the relationship can

be considered to degenerate into a consecutive one.

(4) Conservative - GV(SI,S2, •.• ,SM)

(5.33)

Stanza Sk must store its results before Sk+l does, for all values

of k between I and M-I. As all stanzas are using the same memory, it

will be necessary to consider that stores using the main memory are

occurring throughout the execution of all the stanzas. Thus, the

very last store of Sk must occur before the first store of Sk+l. So,

again, the relationship can be considered to degenerate into a

consecutive one.

t5) Consecutive - CC(SI'S2.··· ,SM)

~tanza Sk must store its results before Sk+l fetches what it

requires. This. implies that for all values of k (between I and M-I)

at least one location is changed by Sk and fetched by Sk+l' That is:

98

(XkUYkUZk)ncwk+lUYk+l) 1·0 (5.34)

for all k such that l~k<M

Thus any M stanzas {SI.S2 •••.• SM} may be considered to be consecutive.

Table 5,2 is a summary of the conditions necessary for a given

relationship to exist between M stanzas, which would be executed one

after the other in a serial program. Again, the 'weaker' conditions

for a particular relationship to exist are at the bottom of the table.

The 'strongest' conditions being those for M stanzas to be contemporary

~ in a shared memory environment.
'- ... -

Again, simplifications are not applied to any of the conditions

to maintain the clarity of the method.

~
I

I

I

I

I

Relationship Conditions

\. Private Memories Shared Memory

Contemporary , (WkUYk)n(x~uyR.UZR.) " {.It (WkUYkUZk)n(X~UYi UZ!) " (.It

CT(Sl,S2"",SM) (XkUY kUZk)necxk+ IUY k+ IUZk+ I)U' •• (XkUYkUZk)n((Xk+1U\+lUZk+I}J···
, . Ue~UYMUZM))rvM " l' U(~UYt.fIZM))nVM " {.l*

. .

Commutative (wkuyk)neX uy uz) " (.It

CM(Sl,S2"",SM)
as Contemporary

eXkuYkuZk)n ((Xk+IUYk+lUZk+I)U, • • *
U(~UYMUZM)Y'VM " 0

Prerequisite (XkUYkUZk)n((Wk+lU\+l)U" .U(WMuYM)) " 0
$

PR(Sl,S2"",SM) (XkUYkUZkY' ((Xk+IUYk+IUZk+l)U", . '$ as Consecutive

UC\jJY MUZM))nv M = 0

Conservative (XkUY kUZk)n ((Xk.j.luY k+ J"lZk+ l)U •••

CV(SI,S2,;",SM) U(~UYMUZM))nVM = 0$
as Conseautive- .

. i
Conseautive No conditions necessary as this implies r ,

cces
1 ,S2"" ,SM) eXkUYkUZk)n(Wk+lUYk+l) ~ 0

$

t 6M all k .6uc.h :that l~k!;M a.nd OM all .e -6uch :tha.t l~.e.:;M Md .e.~k
$ 6011. all k .6uch :that l~k<M

TABLE 5.2

CONDITIONS NECESSARY FOR A SINGLE GIVEN RELATIONSHIP TO EXIST BETWEEN M STANZAS

"

100

"5.3 "ASSIGNMENT STANZAS

A stanza which only contains assignment stat~ments can be called

an Assignment stanza or an As-stanza. The relationships that ,exist

between As-stan£as can be readily found by testing the conditions

given in Table 5.1 or 5.2. An example of how these tests are carried

out will now be given.

Figures S.l(a) and (b) give two examples of assignment stanzas

S. and S. 1. The sets of us'age of variables, described in Section 4.5,
1 1+

are given for each stanza in Figures S.Z(a) and (b) respectively.

Assume that in the original program S. was written to be executed
1

immediately before S. 1. As nothing is known about any subsequent
1+

statements used in the program V. I will be considered to be the full
1+

set. The conditions given in Table 5.1 will be used to derive the

relationship that can exist between Si and Si+l. Figures 5.3 and 5.4

show how the tests are carried out for machines with and without

private memories. It can be seen from these that if private memories

are available the relationship between S. and S. 1 may be considered
1 1+

to be prerequisite. Otherwise the relationship must be considered to

be eonseeutive.

101

BEGIN BEGIN ...
al-<-bl+cl; a3+bl+b2;
aZ-<-al *bl; b2-<-bl/dl;
cl-<-bl+b2 d2-<-a3-dl

END END

(a) Stanza S.
1

(b) Stanza S. I
1+

Figure 5.1

TWO ASSIGNMENT STANZAS

W. bl,b2
1 Wi+l bl,dl

X. a2 Xi+l d2
1

Y. cl Yi+l b2
1

Z. al Zi+l a3
1

(a) (b)

Figure 5.2

SETS OF USAGE OF VARIABLES FOR STANZAS Si AND Si+l

...

102

-."...-
(X~y.uz.)n(w. IUY. 1)

1 1 1 1+ 1+

(a2JcIUa1)n((bl ,d1]Jb2), = '"

• '. The relationship is at least Consel'Vative

(XiUYiUZi)n(xi+IUYi+1UZi+l)nvi+1

(aZUclUaI)n(d:Yb2Ua3) = '"

• .• The relationship is at least Prerequisite

(w.uy.)n(x. lUY. lUZ. 1)
1 1 1+ 1+ 1+

((bl, b2)Ucl)n(d2Jb2Ua3) = b2 " '"
The relationship is not Contemporary

Figure 5.3

RELATIONSHIPS BETWEEN S. AND S. 1 USING PRIVATE MEMORIES
1 1+

(w.uy.)n(x. lUY. lUZ. 1)
1 1 1.+ 1+ 1+

((bl,b2)l1cl)n(d:Yb2Ua3) = b2 " 0

(x.Uy.uz.)n(w. lUY. 1)
1 1 1 1+ 1+

(a2.JclUal)n((bl ,dl)Ub2)
= '"

(x.vY.uz.)n(x. IUY. IUZ. l)nv. 1
1. 1. 1 1+ 1+ 1+ 1.+

(a2.JclUal)n(d2Jb2Ua3) = 0

The relationship is not Commutative

Figure 5.4

RELATIONSHIPS BETWEEN S. AND S .. 1 WITIlOUT PRIVATE MEMORIES
1 1+

,

5.4 PARALLELISM WITHIN LOOPS

5.4.1 Simple Loops

In this section a stanza that forms the body of a loop (i.e. a

Do-stanza) will be considered. This stanza will be executed a number

of times (the exact number depending on various control mechanisms

such as the value. of a control variable). A separate stanza may be

formed for each possible iteration of a loop. Then by forming the

sets described in Section 4.5 the relationships that exist between

iterations may be found. Here a limited sub-set of loops will be

considered and methods will be proposed to readily determine the

relationships between iterations of a loop.

Initially only loops that obey the following constraints will be

considered:

(i) Only one variable (the control variable) is used to

limit the number of iterations a loop performed.

(ii) The amount by which the control variable is altered for

each iteration (i.e. the step size) should be constant.

(iii) The.loop may not be exited on a condition.

(iv) Each iteration only varies in locations accessed via the

control variable plus or minus a constant.

(v) Any location accessed via the control variable is not

capable of being accessed in any other manner.

Some theoretical assertions about loops will now be made, which

will be shown to be correct for the subset of loops being considered.

Theorem 5.1: Total Independence

When all assignments within a loop are to be members of arrays

indexed via the control variable and any element of such an array,

other than the one assigned to, is not used elsewhere in the Do-stanza,

103

--- -

then each iteration of the loop is completely independent of all

-others.
,

Proof

Consider a loop to be iterated N times and an iteration of the

loop to be represented by Sk where l~k~N. Then the conditions of the

theorem give:

104

(Wku~Uykuzk)n(x£ly~zt) = ~

for all k such that l~k~N and (5.35)

for all ~ such that l~~~N and ilk •

The conditions for a group of stanzas to be contemporary are

given in (5.20) and (5.21) when private memories are available and

(5.30) and (5.31) otherwise. From (5.35) the following three equations

can be derived:

(wkUyk)n(x~uytUZt) = ~
for all k such that l~k~N and (5.36)

for all ~ such that l~~~N and ~Ik.

(WkUykuzk)n(x~uy ~Z~) = ~

for all k such that l~k~N and (5.37)

for all ~ such that l~t~N and ilk.

(\Uykuzk)n(x~uy~Zt) = ~

for all k such that l~k~N and (5.38)

for all ~ such that l~t~N and tlk.

It can be seen that (5.20) is the same as (5.36), (5.30) is the

same as (5.37); and (5.21) and (5.31) are the same as (5.38) when

V is taken to be the full set (the strongest condition). Hence all

iterations of the loop may be executed simultaneously. Thus the

theorem is proved.

Theorem 5.2: Repeated Relationships

The relationship bet\ieen the j th iteration of a loop and the

(k+j)th is the same as that between the ith iteration and the (k+i)th.

where (k+i) and (k+j) are less than or equal to the number of iterations

eN) in the loop.

i

I

I

...

105

Proof

The sets of usage of ' variables used inS. (i:e'.' W;,X. ;Y. and Z.) may
..... ' 1_ ... 1" 1.1, '.],

be divided into two subsets Le •• those that 'are accessed via the

control variable and all others that are independent of it. That is:

W., X., Y. and Z. represented by S. and cv 1 cv 1 cv 1 cv 1, cv 1

W .• X., Y. and Z. represented by S. • 010101 01 01

Owing to the constraints given at the beginning of this subsection,

that is:
(oWkUo~UoYkUoZk)n(cvWtUcvXtUcvYtUcvZt) = 0
for all k such that l~k~N and

for all t such that l~t~N

The tests for a given relationship (see Sections 5.1 and 5.2) may be

considered in two parts.

The sets of S. will be identical to those of S. for all values o) 0 1

of'i and j such that l~i,j~N.

S. and Sk . will be the same o) 0 +)

(k+i)~N).

Hence the relationship (R) between o

as those between S. and Sk. (for
, 0 1 0 +1

Within the constraints given all members of S are indexed by cv

the control variable plus or minus a constant value. So all variables

in S. will be off-set in their respective arrays by the same amount cv 1

from those in S. for all values of i and j such that l~i,j~N. Hence
cv J

the relationship (cvR) between cvSj and cvSk+j will be the same as

those between S. and Sk·' cv 1 cv +1

The overall relationship between S. and Sk . will be the weaker
) +J

of the two relationships oR and cvR. Similarly the overall relationship

between Si and Sk+i will be the weaker of oR and cvR. Hence the

relationship between Sj and Sk+j will be the same as that between Si

and Sk+i and so the theorem is proved. '

"

Corollary 5.1
.: , , ..

The relationship between the first iteration of' a loop and the

(k+l)th is the same as that between the ith iteration and the (k+i)th

where (k+i) is less than or equal to the" number of iterations in the

loop.

Corollary 5.2: Pattern Recurrence

Within the constraints given earlier all the relationships between

the m iterations starting at the jth iteration are the same as those

between the m iterations starting at the ith iteration where (j+m) and

106

(j+i) are both less than or equal to the number of iterations in the" loop.

Corollary 5.3

The maximum number of relationships that need to be tested to

establish all relationships within a loop is N-I, where N is the number

of iterations performed for that loop.

Corollary 5.4: Total Dependence

If the relationship between the first and second iterations of a

loop is consecutive then all iterations of that loop must be executed

sequentially.

Now for a loop that complies with the constraints given earlier

it can be readily found whether each iteration of the loop may be

executed simultaneously or must be executed sequentially. It will only

be necessary to determine the relationship between the first iteration

and some other iterations as this will provide information about all

other relationships, by applying the above theorems and corollaries.

5.4.2 Nested Loops

Nes"ted loops will now be considered. A nested loop is a Do-stanza

which is enclosed by more than one loop. The tests given previously

,

for a single loop. can be expanded to allow for nested loops. 'One
- ,

more constraint will be introduced to those given at the beginning of

subsection 5.4.2:

(vi) Any array that is indexed by a control variable plus or

minus a constant value is not to be used elsewhere in the

Do-stanza indexed by the same control variable plus or ,

minus a constant value in a different subscript position.

Consider t nested loops to be represented by {LI .L2 ••••• Lt } where Lt

is the inner-most loop and LI is the outer-most loop. The extensions

to the tests will now be derived for these t nested loops.

1. Total Independence

Consider all assignments within a Do-stanza are to be arrays

indexed,by'all the control variables of the loops {LI,Lz, •••• Lt } and

none of these arrays are used anywhere else in the Do-stanza. Then

each iteration of every loop may be executed ,simultaneously.

107

Otherwise for each loop {LI,L2'''''~}' for which the total independence

test holds, every iteration may be executed simultaneously.

At this point it may be remarked that an N dimension array may

be considered to consist of a number of independent N-I dimension

arrays. For example a three dimensional array A[I:x,l:y,l:zJ can be

considered to consist of x independent two dimensional arrays

{A[I,I:y.l:zJ. A[2.I:y.l:zJ ••••• A[x,l:y.l:z]}.

2. Total Dependence

For each loop {L
I

.L2 •••.• Lt } for which the total dependence test

holds all iterations must be executed sequentially. If total dependence

holds for all loops then all iterations of every loop must be executed

sequentially.

3. Repeated Relationships

Repeated relationships need only be considerea-for those loops

which· are not totally independent or totally <1ependent. Each loop is

then handled in the same manner as with single loops.

Figure 5.5 shows a nested loop. where ~=3. that satisfies the

constraints given previously. The tests described above will now be

applied to this nested loop.

(1) Form the sets of usage of variables. ignoring any subscripts

W d
X a[,.].c[,,]
Y b[••]
Z III

The whole of the nested loop cannot be totally independent as one

array (b) is fetched and subsequently stored.

The loops {Ll.L2,L3} will now be considered individually starting

with the inner-most loop.

108

(2) Form the sets of usage 6f variables for L3 including all the subscripts

W d,b[il+3,i2,i3+3],b[il,i2,i3+2]
X a[il,i2,i3],c[il,i2,i3],b[il,i2,i3]
Y III
Z III

Since the array b[il,i2, "] appears in both.W and X the loop L3 -is

not totally independent. The repeated relationships are now

examined

Iteration 1 of L3 - i3+l

Wl d,b[il+3,i2,4],b[il,i2,3]

Xl a[il,i2,l];b[il,i2,l],c[il,i2,l]

Y 1 III
21 9l

Iteration 2 of L3 - i3+2

W2 d,b[il+3,i2,5],b[il,i2,4]

X2 a[il,i2,2],b[il,i2,21,c[il,i2,2]

Y2 III

Z2 III

109

Carrying out the tests described in Section 5.1 reveals that these

two iterations are contemporary.

Iteration 3 of L3 - i~3

Ws d,b[i1+3,i2,6] ,b[U,i2,S}

X3 a[il,i2,3],b[il,i2,3],c[il,i2,3]

Y
3

!1l

Zs 0

Again, carrying out the relationship tests shows that the first and

third iterations are consecutive.

So for the whole of the loop L3 the iterations can be carried out

in pairs that are contemporary and each set of pairs must be consecutive.

Thus an execution order may be:

CC(CT(L31,L32),CT(L33,L34),···,CT(L39,L310)) ,

where L3N is the Nth iteration of L3.

(3) . Form the sets of usage of variables for L2, including all subscripts

except for those used in inner loops (i.e. i3)

W d,b[il+3,i2]
X a[il,i2],c[il,i2)
Y b [il ,i2)
Z !1l

Since all arrays in the X,Y and Z sets are indexed by i2 and each

array only appears once the loop L2 is totally independent (N.B.

b[il,,] 'is a different array to b[i1"3,~)).

Thus the execution order may be:

(4) Form the sets of usage of variables for Ll, excluding all subscripts

used in inner loops, (i.e. i2 and i3)

W d,b[i+3]
X a[il],c[il]
Y brill
Z !1l

Since the array b[J appears in Wand Y,Ll is not totally independent.

110

The repeated relationships are now examined.

"
Iteration 1 of Ll - U+l

WI d,b[4]

Xl a[l] ,c[l]
, ,

Y1 bel]

Zl 0
.}

Iteration Z of Ll - il+Z

Wz d,b[5]

Xz a[2],c [2]

Y 2 b[2]

Z2 0

Carrying out the relationship tests as before shows that these two

iterations are contemporary.

Iteration 3 of Ll - il+3

W3 d,b'[S]

X3 a[3) ,c[3)

Yi b[3]

23 0

The relationship between the first and third iteration can also

be found to be contemporary.

Iteration 4 of Ll - il+4

W4 d,b[6]

X
4

a[4] ,c[4]

Y
4

b[4]

24 ~

The relationship between the first and fourth iterations is

consecutive. Thus an execution order of Ll may be:

So assuming the availability of 60 processing units the 1000

iterations can be executed in the time taken to execute 20

iterations of the loop sequentially (see Figure 5.6).

If an array within a nested loop is indexed by a given control

variable in one subscript position and is later i~dexed by the same

variable in a different position, it becomes difficult t~ predict the ..
usage of a particular element of an array. This is why constraint

(vi) was introduced for nested loops. However for certain loops it

is possible to detect some type of 'wave front' relationship between

iterations of the loops (see Kuck. 1975). Consider the simple. nested

loop in Figure 5.7. It can be seen that sometimes the value of a[i,j]

will be set to a value previously set in the loop and otherwise the

value will be one set outside the lOop. Figure 5.8 indicates which

iterations of Figure 5.7 depend on the old value (0) of an element

being available, which depend on a new value eN) being available and

which it does not matter for (X). It can be seen that for all values

of i1 and jl such that jl<il the il,jlth iteration must be executed

before the jl,ilth iteration and the il,ilth iteration may be done at

any time. Similar solutions may be obtained for more complex Do~stanzas

as explained in Kuck (1975).

111

,

FOR il+l STEP 1 UNTIL 10 DO
FOR i2+1 STEP 1 UNTIL 10 DO

FOR i3+1 STEP 1 UNTIL 10 DO
BEGIN

a[il,i2,i3]+b[il,i2,i3+2];
b[il,i2,i3]+d;
c(il,i2,i3]+b(il+3,i2,i3+3]

END

Figure 5.5

A NESTED LOOP

112

L2 LI ..

L3

.............. ------------------------------
i~

I

1

1 (1,1,1)

2 (1,1,3)

5 (1,1,9)

6 (4,1,1)

10 (4,1,9)

11 (7,1,1)

15 (7,1,9)

16 (10,1,1)

20 (10,1,9)

2 3 20 21 ... 59

(1,1,2) (1,2,1) (1,10,2) (2,1,1) (3,10,1)

(1,1,4) (1,2,3) 0,10,4) (2,1,3) (3,10,3)

(1,1,10) (1,2,9) (l,lO i 10) (2,1,9) (3, lO, 9)

(4,1,2) (4,2,1) (4;10,2) (5,1,1) (6,lO,l)

(4,l,lO) (4,2,9) (4 ,lO ,ID) (5,1,9) (6,10,1)

(7,1,2) (7,2,1) (7,lO,2) (8,1,1) (9,10,1)

(7,1,10) (7,2,9) (7,10,10) (8,1,9) (9,10,9)

(10,1,2) (10,2,1) (10 ,10,2)
not used

(10,1,10) (10,2,9) (lO,10,1O)

where (i,5,k) represents the ith iteration of Ll,

the j th iteration of L2 and the k th iteration of L3.

Figure 5.6

POSSIBLE EXECUTION ORDER OF A NESTED LOOP

60

(3,10,2)

(3,10,4)

(3,10,10)

(6,10,2)

(6,10,2)

(9,10,2)

(9,lO,lO)

:.,<
;
I ,

....

,

i

1

2

3

4

5

6

7

8

9

10

.FOR i+l STEP 1 UNTIL 10 DO
FOR j+1 STEP 1 UNTIL 10 DO
BEGIN .

a[i,j]+a[j ,i]
END

Figure 5.7

NESTED LOOPS

1 2 3 4 5 6 7

X 0 0 0 0 0 0

N X 0 0 0 0 0

N N X 0 0 0 0

N N N X 0 0 0

N N N N X 0 0

N N N N N X 0

N N N N N N. X

N N N N N N N

N N N N N N N

N N N N N N N

8 9 10

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

X 0 0

N X 0

N N X

where O=Old value; N=New value and X=don't care

Figure 5.8

VALUE OF THE ELEMENTS FETCHED BY THE i,jth ITERATION

114

115

S.S CONDITIONAL STANZAS

Here a simple Algol-type IP statement will bb-considered which will

be called an If-stanza. The If~stanza Si may be considered·in three

parts:

(i) The condition - S .• c ~

(H) The statements executed if the condition is true - TSi'

(Hi) The statements executed if the condition is false -

For each of these three it is possible to f~rm the sets of usage of

variables (see Section 4.5). These will be represented by:

W. The variables tested in the condition (For a simple
c ~

FSi'

If-stanza, assignments will not be carried out in cSi)'

FWi

p\
FYi

FZi

The variables used when the condition was true.

The variables used when the condition was false.

Since both of TSi and FSi cannot be executed for any value cSi the

variables used

or

Tests will be developed that will determine the relationship

between an If-stanza (SI) and those stanzas executed immediately before

it (A). Then further tests will show the relationship between the If-

stanza (5.) and those stanzas executed· immediately after it (P).
1

5.5.1 Relationships Between A and S.
].

For clarity A may be considered as one stanza with the following

sets of usage of variables:

WA
XA
YA
ZA

By testing the relationship between A and S. it is possible to
c 1

readily detect if A and S. must be executed as aonseautive stanzas.
].

This is done by testing the intersection of the output sets of A and

the input sets of S.. That is: c J.

116

(5.39)

If the intersection is not empty A and S. must be executed as
J.

aonseautive stanzas. Otherwise further tests will need to be carried

out to establish the relationships between A and Si' These sUbsequent

tests can be considered in two classes:

(1) A and TSi:

The relationship (TRi) between A and TSi is established using the

tests given in Sections 5.1 or 5.2.

(2) A and FSi:

The relationship (FRi) between A and FSi is established using the

tests given in Sections 5.1 or 5.2.

It can now be stated that when S. is true the relationship
c J.

between A and Si is TRi and otherwise it is FRi' Figure 5.8 gives an

example of an As-stanza followed by an If-stanza. The sets of usage of

variables for both these stanzas are given in Figure 5.9. The tests

described will not be carried out in the prescribed manner, for a

machine with private memories available.

(XAI.JiAUZAY'lcWl

((a,b)Uc)n(g,h) = 0··

~'. A and SI cannot be considered consecutive.
of,'.

(XAUYAUZA)n(rWlUTYI)

((a,b)Uc)O(j,k) = 0

.', A and TSI are at least conservative,

CXAU¥AUZA)nCrXlUrYIUrZl)OVl

((a,b)Uc)n(i) = 0

, " A and TSl are at least prerequisite,

(WAUYA)n(TXlUTYIUrZl)

(Cg,h,j,d,e,f)Uc)n(i) = 0

, " A and rS 1 are aonte111pora:ry,

(XAUYAUZA)nCpWIUpYl)

((a,b]Jc)n((Jl-,m)Uj) = 0

,'. A and pSI are at least aonservative,

(XAUYAUZA)nCpx[1pYlUpZl)nvl

((a,b]Jc)n(j) = 0

. '. A and pSI are at least prerequisite,

(WAUY A)nCpX[1 pY IUpZl)

((g,h,j,d,e,f)Uc)nO) F 0

• '. A and pSI are not aommutative or aonte111pora:ry.

Thus it can be seen that TRI is aonte111pora:ry and pRI is prerequisite.

117

118

BEGIN] a g/h;
b+j+c; A
c+d+e/f

END;
IP g=h THEN S

] i+j+k cSl
SI ELSE

T 1

j+j+l+m; pSI

Pigure 5.8

AN AS-STANZA POLLOWED BY AN lP-STANZA

WA
g,h,j,d,e,f

XA
a,b

YA
c

ZA ~

cW} g,h

TWl j,k

TXl i

TYl ~

TZl ~

PWl t,m

PXl ~

pY} j

FZl ~

Figure 5.9

W,X,Y AND Z SETS POR A AND SI

5.5.2 Relationship Between S. and P
1

119

Por clarity P may be considered as one stanza with the following

sets of usage of variables:

Wp

Xp

Yp

Zp

No test is available to readily detect a specific relationship

between S. and P. So it will be necessary, again, to establish
1

relationships depending on possible values of a condition. Since

• nothing is known about the relationship between S. and P it will be
c J.

necessary to include the variables of cSi with those of TSi and pSi

as necessary. The two classes of tests that will be carried out are:-

(i) TSi and P

The relationship (TRi) between TSi and P is established as

described in Sections 5.1 or 5.2. except cWi is included in all the

input sets and sets of variables fetched for TSi' That is:

(cWiUTWiUTYi) replaces (TWiUTYi)

and

(ii) FSi and P

The relationship (FRi) between pSi and P is established as

described in Sections 5.1 or 5.2, except that W. is included in all c].

the input sets and the sets of variables fetched for FSi' That is:

(cWiUpWiUpYi) replaces (FWiUpYi)

and (cWFFWiUFYFFZi) replaces (FWiUFYiUpZi)

It can now be stated that when S. is true the relationship c J.

between Si and P is TRi and otherwise it is FRi'

The tests described in subsections 5.5.1 and 5.5.2 may be

extended to allow for more complicated Algol-type IF statements, where

120

assignments may take place in the condition cSi' It will be necessary

to form new sets of usage of variables:

The variables used in the condition and those

used when the condition is true.

The variables used in the condition and those

used when the condition is false.

These will combine all the variables used in S., and reflect that S.
1 c 1

is always executed before rSi or pSi' Por example a variable that

appeared in both X. and rY' would be placed in rZ!, The tests could c 1 1 1

then be carried out in the manner described previously.

When two adjacent If-stanzas are considered there are at the most

four·possible relationships between them (see Figure 5.10). However

only one path will be taken through these stanzas, for a particular

pass through this section of code. In general, the path to be taken

will not be known until the stanzas are executed •

. Since the number of paths through n adjacent If-stanzas is 2n ,

then for practical purposes it will be necessary to limit the number

of adjacent If-stanzas considered at one time. However, for two

adjacent If-stanzas the work is not onerous and the gains should be

worthwhile.

121

Figure S.1O

TWO ADJACENT IF-STANZAS

5.6 STANZAS CONTAINING LOOPS AND CONDITIONALS

~ loop (SL) may be contained within an If-stanza (Si)' it may

appear in TS"'FS, or, in the more complex If-stanzas, S .• The
~ 1 ,c ~

relationships between iterations of the loop (SL) may be calculated

in the normal manner. Similarly, the relationships between the If-

stanza and the surrounding program can be established in the manner

described previously.

However, when an If-stanza (Si) appears in a loop (SL),there are

three situations to be considered:

(1) For any execution of SL the same path will be taken through Si'

(2) For any execution of SL one path will be taken through Si up to

a certain point after which the other path is taken through S .•
l.

(3) For any execution of SL the path taken through Si will alter more

than once.

How these situations can be detected and any potential 'for parallelism

exploited will now be detailed.

(1) The same path will always be taken through S. when none of the
1

variables set in SL are fetched in S .• For certain trivial cases c 1

(such as testing if 1=2) only one path will ever be taken through

S. and so the relationships between iterations of the loop can be
1

determined accordingly. However in general it will not be known

which path will be taken until the program is executed. So it

122

will be necessary to establish the relationships between iterations

of SL for both cases.

(2) A 'switch-over' of this type will occur when the test is such that

when one of ~i or FSi is taken it will always be taken. This may

be because:

either (i) The control variable is tested for being smaller, or

larger than a value (C) which is constant within SL'

or (ii) A variable (V) which is only set within SL in one.of TSi

or ;;Si is tested for being smaller or "larger than a value

(C) which is constant within SL"

.' Again, except in trivial cases there will be insufficient

information until execution to determine which path or paths will

be taken~ However, at execution some potential parallelism may

be retained. Assume that the conditional S. has the value B on c 1

123

the first iteration of the loop SL (where B is either true or false).

Then while ·S. is equal to B the results of an iteration must be
C.1

stored before those of the next iteration (i.e. the aonservative or

aonseeutive relationship). Then when the condition changes (i.e.

cSi is no longer equal to B) any iterations performed and not stored

will be discarded. The remainder of the iterations can then be

calculated, possibly in parallel depending upon the relationships

between iterations when S. is not equal to B. Thus it will be. c 1

necessary to calculate the relationships between iterations of the

loop for when S. is true and when it is false. c 1

(3) An approach similar to the one described in (2) can be used here,

where S. iIses variables set in SL' However since there is no way o 1

of determining which path will be taken in advance such loops will

be iterated sequentially.

An example of an If-stanza within a loop is given in Figure 5.11.

It can be seen that the variable tested in S. is set elsewhere in SL c 1

and thus this'is not the situation (1) discussed previously. However

the variable ('x') tested in S. is only set within SL in FS, which is c ~ 1

the second situation discussed above. Hence for any execution of SL

the path FS, will be taken through S. until the variable ('x') is
1 1

greater than 5 then the path TSi will be taken. Using the tests

'"

described previously for loops it can be established that when'S.
c 1

• -":,"~- "0

is true iterations of SL are contemporary whereas when S. is false c 1

the iterations are conservative (when private'memories are available).

Assuming that
x=3 and j=l

then the first three iterations of the loop will be executed in a

conservative order and the remaining seven will be executed in a

contemporary order.

A loop which stops on a condition may be called a While-loop and

the stanza (Sw) that represents it may be considered in two parts:

(i) cSw - the condition.

(ii) BSW - the body of the loop.

124

Again except in trivial circumstances, it will not be possible to decide

in advance for which iteration of the. loop cSW will become false.

However if a machine with private memories is available some potential

parallelism may be retained. The conservative relationship and a
technique similar to pipelining (see Chapter 1) will be used. Whatever

other conditions exists the results of the (i+l)th iteration will not

be stored until those of the ith iteration have been stored (where i is

less than the total maximum number of iterations of the loop). Suppose

during the ith iteration the condition cSW becomes false. Then any

calculations made for subsequent iterations may be discarded as tbe loop

is now complete.

FOR k+l STEP 1 UNTIL 10 DO
BEGIN

END

IF x>5 WEN
a[k]+c

ELSE
x+2*j+k

Figure 5.11

AN IF-STANZA WIWIN A DO-STANZA

125

""-'.

126

5.7 PROCEDURE CALLS

A procedure is used in Algol-type programming languages to

describe a commonly used process, which will be executed when a 'call'

is made to the appropriate procedure and any necessary parameters

supplied for the passing of its inputs and outputs. The description

of a process to be performed on certain parameters will be known as the

procedure definition. The 'body' of a procedure is the code executed

each time the procedure is called.

Within the body of a procedure three types of variables can be

considered to be used:

(i) Local variables

(ii) Global variables

(iii) Parameters

The effects these types of variables will have on potential parallelism

between a call of a procedure and the surrouding stanzas will vary. Thus:

(i) The local variables will have no affect on parallelism since by

definition they cannot be used elsewhere.

(ii) The global variables.may be affected by the external environment

and so must be included in the sets of usage of variables for the

stanza that represents a call to this procedure.

(Ui) The actual variables passed as parameters may vary from call to

call of a procedure. However from the procedure's definition

the method in which a parameter is used will be known. For

example in Algol-60 a parameter may be called by 'name' or 'value'.

In the former case a parameter may be considered to be used in

the manner Y described in Chapter 4 whereas in the latter case it

would be W.

127

Continuing with the Algol-60 example there will be six sets of

usage of variables to be considered for the call of·~ procedure as

stanza Si" These six sets are:

and

BWi' BXi' BYi and BZithe glob~l variables used in
the procedure's body

the parameters passed to the

procedure.

The first four sets may be formulated when the procedure is defined.

The remaining two must, however, be formed for each call of the

procedure. These sets will be joined together. to give the sets of

usage of variables for Si' When a global variable used in 51 is also

passed as a parameter care must be taken to ensure it is placed in

the correct set (e.g. a variable appearing in both BXi and PWi must

be considered to be used in the manner Y). The four sets of usage of

variables for Si will be:

Wi,Xi'Yi and Zi •

Figure 5.12 shows an example of a procedure definition and its call.

There is only one global variable used in the body of the procedure,

thus the sets of usage of variables are:

BWi 0

B\ e

B\ 0

BZi 0

and p\ e,f

pYi g,h

The combined sets for the call of the procedure are:

W
i

f

\ 0
\ e,g,h

Zi 0
Having formed the sets Wi,Xi'Yi and Zi the relationships between a

call of a procedure and the surrounding stanzas may be established by

using the appropriate method described in the previous sections.

PROCEDURE example "(a,b,c,d)i
INTEGER a,b,c,d;
VALUE a,b;
BEGIN

INTEGER m;
IF a=b THEN ~l ELSE ~2;
c+(a-b*2) *m;
d+(b-a*2)*m;
e+c+d

END;

example (e,£,g,h);

Figure 5.12

A PROCEDURE CALL

128

, "

procedure body

] S.
1

129

5.8 ADDITIONAL CONSIDERATIONS

The most frequently used programming constructs' '(see Chapter 2)
.

have now been discussed. In this section possible methods of handling

'other programming constructs will be outlined:

5.8.1 Unconditional Jumps

Unconditional jumps are represented by the use of a GOTO statement

and a label which indicates the position to be 'gone to'. Such situations

may be recognised when the stanzas are being formed. Each time a label

is recognised a new stanza will be started and when a GOTO is recognised

the current stanza is closed. An example of such a stanza is given in

Figure 5.13. The relationship between stanzas that could be executed

one after the other can then be found in ~he manner described previously.

'5.8.2 Input and Output

The only potential for parallelism between two or more input

operations will be when they are from different channels. Similarly

the only potential for parallelism between two or more output operations

will be when they are to different channels. In all other circumstances

it may be considered that an input operation is storing to the variables

input and the output operation is fetching the variables it will output.

5.8.3 Declarations

In the samples given in Robinson and Torsun (1976b) declarations

accounted for 7}% of program statements. Whether any potential

parallelism between declarations can be used· advantageously will depend

on a particular machine'S main memory's architecture.

•

a+d-b;
label. 1: b+d+c;

d+c/2;
GOTO label 2;
e+f*2' •

Figure 5.13

'.

J. A Stanza

A STANZA DELIMITED BY A LABEL AND A GOTO

130

131

·5.9 IMPLEMENTATION OF AN IMPLICIT PARALLELISM DETECTOR
,: .. , ... :...."

At the end of the previous chapter an Analyser was mentioned that

would divide a simple program into stanzas. Another program Detector
, .

is given in Appendix 3 which will take the stanzas and calcul~te the

relationships between pairs of stanzas and between iterations of simple

loops. Appendix 4 shows a simple part of an Algol-type program, the

stanzas formed from it and the relationships found to' exist between

them.

As with the Analyser some of the work done in the Detector will

normally be carried out by the usual compiler routines. Figure 5.14

shows where the routines of Analyser and Detector may be inserted in

a multipass compiler.

TABLE
MANAGEMENT

SOURCE PROGRAM'

:'i.EiICAL~ !
-ancniOOAX
, ANALYSES

INTERMEDIATE
CODE

GENERATION

CODE
OPTIMISATION

CODE
GENERATION

.-,"''-''

~-~-..... ANALYSER

DETECTOR

PARALLEL COMPUTER
ORIENTED CODE

Figure 5.14

ERROR
HANDLING

POSSIBLE PHASES OF A PARALLELISM DETECTOR AND MULTI-PASS COMPILER

132

I

CHAPTER 6

OPTIMISATION OF PARALLEL PROGRAMS

! :'

133

6.1 OPTIMISATION TECHNIQUES

~ compiler which contains some means of producing an extremely

efficient object code is called an 'Optiniising Compiler' (Rustin, 1972

and Wulf et aI, 1975). Most optifuising compilers achieve such

efficient code by the elimination of instructions and variables that

are repetitious or redundant. However, fora program that is to be

run in a parallel processing environment, optimisation will be used to

produce efficient object code which contains an 'optimum' amount of

potential parallelism. Where it is reasonable existing parallelism

should not be removed from a program by the optimising process and,

indeed, more parallelism may be introduced. Thus, one of the aims of

optimising a parallel program will be to reduce dependencies within

the code, even at the expense of using instructions and variables that

are repetitious or redundant.

In this chapter optimisation techniques will be discussed for

parallel programs which have been formed in either an implicit or

explicit manner. Many types of optimising transformations have been

considered for serial programs, AlIen and Cocke (1972) give a catalogue

of such techniques. Here it will be considered how some of the

techniques they describe will effect the optimisation of parallel

programs. It will be seen that some optimising techniques are equally

well suited to both serial and parallel programs (e.g. constant foZding

and peephoZe transformations), whereas other techniques used for serial

programs may in fact detract from potential parallelism of a parallel

program (e.g. strength reduction and Zinear function test repZacement).

Some of the Zoop transformation optimising techniques are suitable for

both serial and parallel programs whereas others are not and may even

detract from parallelism within a program.

,

134

Many of the optimising techniques mentioned here can be applied
;:.'i~"- ..

at th: 'Code Optimisation' stage of a multi-pass compiler. as described

in Chapter 2. However. some optimisation may be carried out at

different stages. For example peephole transformations. may be carried

out after the rest of the compilation is completed. The position in a

multi-pass compiler where a particular optimisation is carried out will

be the same for both serial and parallel programs.

...

6.2 OPTIMISATION TECHNIQUES READILY AMENABLE TO PARALLEL PROCESSING
... ;/ ----.

Ip. this section optimisation techniques that may be applied to·

both serial and parallel comPuter programs will be discussed. Full
" .' - .

135

definitions of all the types of optimisation mentioned here for serial

programs are given in AlIen and Cocke (1972).

6.2.1 Procedure Integration

Procedure integration is essentially the replacing of a procedure

call by what is to be executed at that point. For both serial and

parallel programs, the methods by which parameters are passed will

effect the. possibilities of being able to integrate a large procedure.

Similarly it is more complicated to integrate a large procedure than

a small one. However, the advantages of the contents of a procedure

being known at the pOint of. call will be useful ·in the execution of

both serial and parallel programs. Indeed, in the previous chapter

procedure integration was used to determine implicit parallelism, in

Algol-type programming languages, between a call to a procedure and

the surrounding code.

6.2.2 Constant FoZding and Dead Code EZimination

Sometimes a variable name is used to represent a constant value

throughout a program (e.g. as a dimension of a set of arrays). When

such a case is recognised the uses of that variable may be replaced

by its constant value (i.e. constant !oZding). The use of constant !oZding

will not have any detrimental effect on the parallelism within a

computer program.

Code may become 'dead' because of constant foZding anif'sometimes

by other means. Code maybe considered dead if it is in part of the

I

program that can never be reached. Figure 6.l'gives an example of a
, ~":"""'- t .

part ~f a program to which dead code elimination is applied. Since

dead code will never be executed it may. be removed from both serial
. .' . ~ ,', -'.'

and parallel programs.

6.2.3 peephoZe Transformations

The final code produced from a compilation of a serial program

can often be improved upon by carrying out a local scan on a sequence

136

of instructions. Such optimisation may readily be applied to a stanza

of a parallel program (whether explicit or implicit) such that the

stanza itself may run optimally on one processor.

t<-8 ;
IF t#8 THEN
BEGIN

a+b+c;
d+e/f;

END
ELSE
BEGIN

a+b-c;
d+e*f

END

after dead code erimination becornes:-

t-<-8;
a+b-c;
d+e*f

Figure 6.1

DEAD CODE ELIMINATION

137

•

138

6.3 OPTIMISATION TECHNIQUES WAT DETRACT FROM POTENTIAL PARALLELISM·
"-'/ '- ~

Some of the techniques,used to optimise serial programs may have

adverse' effects cinthe parallelism in progr~s. However. if a Jlarticular ..

part of a parallel program is dictated to be run sequentially then any

serial optimisation techniques may be applied to that part of the
. . - . .'

program. In this section it will be shown why, in general, some serial

optimisation techniques are not suitable to be applied to parallel

programs.

6.3.1 Common Subexpression Elimination

Common subexpression elimination is used, in the optimisation of

serial programs, to avoid .recalculating a value that is already available

This is effected by storing the value of a subexpression in some

temporary location that can be fetched when necessary. However, in a

parallel program this may cause dependencies between stanzas or branches

of a binary tree. Thus, elimination-of common subexpressions may

detract from the potential parallelism of either an explicit or implicit

parallel program and so should· b" us.~ ~ c.o.u~'o": .

6.3.2 Strength Reduation and Linear Function Test Replacement

The strength reductiOn optimisation is used to replace certain

computations using recursively defined variables by recursively

defined computations. A common example of this is in a loop replacing

a calculation using the control variable by a variable incremented

within ·the loop (see Figure 6.2). However, this will frequently

increase dependencies within the program under consideration and so

detract from potential parallelism. Thus strength reduction will

not, in general. be applied to parallel programs.

139

Linear function test l'ep1.aaement is often applied after 8'trength
. /~~ ~

l'eduatiOn and occasion~lly in other circumstances in the compilation

of serial progranls;' Briefly. a test on one ,variable (e;g.· the control

variable) is replaced by a test on another recursivelydefined

variable (e.g. a variable assigned to in the loop). As before this

may increase the dependencies within a program and so detract from

potential parallelism and thus, will not be usually used in the ,

compilation of parallel programs.

may become after strengthreduation

INTEGER t+5;
FOR i+1 STEP 1 UNTIL 100 DO
BEGIN '

END

a[tJ+b+ [iJ;
t+t+5

Figure 6.2

, ,

STRENGTH REDUCTION TRANSFORMATION

140

,

141

6.4 LOOP TRANSFORMATIONS

Several transformations can be used to optimise the loops of a

serial program •. Here the three areas unroll~!lg, tmfi>ldingand folding

of loops will be considered. In the following subsections it will be'

indicated how such optimising transformations can be applied to a

parallel program to attract parallelism between iterations' of loops.

6.4.1 Loop UnroZZing

A loop may be unrolled ,such that statements that would have been

executed in different iterations may appear sequentially. Figure 6.3

shows two examples of how a loop may be unrolled. Loop unroZZing may

be used in the compilation of parallel programs to ensure the amount

of code in each iteration of the loop is sufficient to justify any

overheads of allocating independent iterations to separate processors.

6.4.2 Loop UnfoZding

A loop can be unfolded such that statements that would have been

executed in a loop are split between two·or more loops. This may be

used to remove dependencies between iterations of a loop as can be

seen in Figure 6.4. The original loop, given in Figure 6.4, must be

executed. in a consecutive manner; after the transformation loops LI

and L2 are consecutive but both sets of iterations are contemporary.

In cases where dependencies are not removed decreasing the amount of

code in a loop will be unnecessary and may indeed increase the

overheads of parallelism.

142

6.4.3 Loop FoZding

Loop foUing is sometimes referred to as jamming or fusion of loops.

Briefly it is t~e joining together of two or. more -loops such that they

are expressed by one loop (see Figure 6.5). This will have the same

advantages a~ loop unrolling. However, it will be more difficult to

implement as all loops within a program do not usually have the same

step size and limits~

6.4.4 Combinations of Loop Transformations

It may be possible to combine the techniques, given in the previous

three subsections, to create new loops in which there is more potential

parallelism than in the original loops. Obviously if all iterations of

a loop are already of a suitable size and the relationship between them

all is contemporary there will be no need to apply any loop trans

formations. However, if they are not by judiciously unrolling, unfolding,

and folding more potential parallelism may be introduced, assuming that

folding does not recreate a loop just unfolded and vice versa. Figure 6.6

gives an example of using both the unfolding and unrolling techniques

followed by more unrolling and folding to increase the amount of potential

parallelism.

FOR i+l STEP 1 UNTIL 100 00
BEGIN

a[i]+a[i+50]+b[i]
END

may be unrolled to give

or

FOR i+1 STEP 4 UNTIL 100 DO
BEGIN

END

a[i]+a[i+50]+b[i];
a[i+1]+a[i+S1]+b[i+1];
a[i+2]+a[i+52]+b[i+2];
a[i+3]+a[i+53]+b[i+3]

FOR i+1 STEP 1 UNTIL 50 DO
BEGIN

a[i]+a[i+SO]+b[i];
a[i+50]+a[i+l00]+b[i+50]

END

Figure 6.3

LOOP UNROLLING

143

..

FOR i+1 STEI' 1 UNTIL 100 DO
BEGIN

a{i+1J+bliJ+cli+l] ;
cliJ+a[iJ .. b[i]

END

may be unfolded to give

FOR i+1 STEP 1 UNTIL 100 DO
BEGIN

a[i+1]+b[i]+c[i+1]
END;
FOR i+1 STEP 1 UNTIL 100 DO
BEGIN

c[i]+a[i]+b [i]
. END

Figure 6.4

LOOP UNFOLDING

FOR i+1 STEP 1 UNTIL 100 DO
BEGIN

a[i]+a[i]+b[i]
END;
FOR i+1 STEP 1 UNTIL 100 DO
BEGIN

c[i]+d[i]-e[i]
END

may be folded to give

FORi+1 STEP 1 UNTIL 100 DO
BEGIN

END

a[i]+a[i]+b[i] ;
c[i]+d[i]-e[i]

Figure 6.S

LOOP FOLDING

144

•

FOR i+l STEV 1 UNTIL 100" DO
BEGIN

a[i]+a[i+50]+b[i];
x(i]+y[i]-z[i]

END

may be unfolded and unrolled to give

FOR i+l STEP 1 UNTIL 50 DO
BEGIN

a[i)+a[i+50)+b[i);"
a[i+50)+a[i+100)+bli+50)

END;
FOR i+1 STEP 1 UNTIL 100 DO
BEGIN

x[i)+y[i)-z [i) "
END

may be unrolled and folded to give

FOR i+l STEP 1 UNTIL SO DO
BEGIN

END

a[i]+a(i+50]+b[i];
a[i+50I+a[i+l00]+b[i+50];
x(i]+y(i]-z[i] ;
x[i+50]+y[i+50]-z[i+50]

Figure 6.6

LOOP UNROLLING, UNFOLDING AND FOLDING

145

CHAPTER 7

CORRECTNESS OF PARALLEL PROGRAMS

146

7.1 INTRODUCTION TO PROGRAM CORRECTNESS

~e conditions expected to be true on entry toa program, or part

of progr~,are called its 'antecedents!. Those expected to be true when
. I \.', _., __ . . _ _ ____ '_ __ .

the program, or part of program, exits_are called. itsfconsequentst ,.
,.'-d,r- ---". -,- ',--',_-,""- '-- .' . -.

Using this terminology the conditions for a program, or part of a

program, to be considered correct can be defined.

Defini tion 7.1

A program or part of a program, is correct if the truth of its

antecedents ensures the truth of its consequents •.

Elsewhere this is sometimes called 'partial correctness' since

there is no guarantee that the program will terminate. However, here

the termination of programs will not be considered.

Approaches to determining the correctness of parallel programs

have been described in Owicki (1975), Gries (1977) and Fion and

Suzuki (1977). Here the correctness ofa parallel program written

explicitly using the seven relationships defined in Definitions 4.3

to 4.9 and 4.10 to 4.16 will be considered. Figure 7.1 indicates how

two stanzas may be explicitly shown to be prerequisite. The techniques

of symbolic execution (Hantler and King, 1976) will be extended to

indicate how the correctness of programs using these new relationships

may be proved.

PR
BEGIN
BEGIN

a2+cl ;
a1+b1 +c1;
b1+b2;
a2+a1

"END,
BEGIN

b1+d1+c1;
b2+d1;
a2+b1 +c1;
e1+a2

END
END

Figure 7.1

TWO EXPLICIT Frepequisite Stanzas

147

Stanza SI

Stanza S2

148

7.2 SYMBOLIC EXECUTION OF PROGRAMS

To prove that a program is correct for all p;ssfble inputs will

mean, in general, . that a large or infinite nUmber of inputs will have

to be considered. This can be .·~oided by making statements about the

properties of all inputs (antecedents) and outputs (consequents) of a

program. This is achieved by a standard mathematical technique, using

Greek symbols to represent arbitrary program inputs. If it can be

proved that the output conditions will be met, using these symbols and

any special properties they are deemed to have, then the program may be

said to be correct. The process of proving a program using symbols to

represent its inputs is called symbolic execution.

Here, three terms will be introduced to express conditions within

the symbolic execution of a program:

1. Undefined Values

A variable is said to be undefined, at a particular point, if its

value is not calculable in terms of program inputs and constants.

Symbolically the undefined state will be represented by omega (w).

2. Indefiniteness of Variables

The general property of a set of variables being undefined is

called indefiniteness.

3. Propagation of Values

When in a program, a variable (V) is assigned a value which is

a function of a set of variables (SV), any of the values of SV may

be said to propagate through to V. In particular, when one of SV is

undefined V will also be undefined after the assignment. This will

be called the Propagation of Indefiniteness.

149

:~.

In the following three subsections methods of performing symbolic

execution on different parts of programs will be examined.
.. ~ .

7.2.1 Symbolic Execution of Sequential Program Statements

When a part of a program (e.g. a stanza SI) that is executed

sequentially is considered, it can be seen that the consequents of
tl ~ •

the i statement is the antecedent of the (i+l) statement of SI'

Figure 7.2 contains a sample stanza with its antecedents and consequents,

it can be seen that the stanza is correct since the outputs assumed

for the stanza (the consequents of 51) agree with those derived.

A simplification of the symbolic execution of 51 is.given in Figure 7.3.

An example of special properties that may be associated with an

input is that 'bl' and 'cl' (given in Figure 7.3) of SI must both be

positive. It can then be proved in the consequent of 51 that 'aI',

'a2' and 'cl' are all positive.

7.2.2 Symbolic Execution of a Conditional

A conditional is used to indicate that there is a choice of which

piece of code will be executed next. A common type of conditional used

in Algol-type languages takes the form:

IF booZ THEN stanzal ELSE stanza2

where stanzal is executed when booZ is true and stanza2is executed when

it is false. The symbolic execution of such an expression will begin

by replacing all the variables in the boolean (booZ) by their symbolic

values. This will give rise to three possible values of the resulting

boolean expression:

Ci) true.

Cii) false.

150

(iii) some boolean expression that is"true for at least

one program input and false for at least one other.

, ,

For both (i) and(ii) only one path will ever be taken and this can be

'treated as executing code without any branches. However, with (iii)

both the cases of execution of stanzal and stanza2 must be examined,

and this may be done by means of a srmbolic execution tree. An example

of a conditional is given in Figure 7.4 and the symbolic execution tree

for it is given in Figure 7.5.

Looping structures may be considered to be a special form of

branching for which some condition must be true for a specific set of

statements to be repeated. So a symbolic execution tree may be used

to represent a lOop. Hantler and King (1976) give a detailed account

of the symbolic execution of various conditionals including lOops.

7.2.3 Parallel Symbolic Execution

When two or more stanzas are being executed in parallel it is

possible that some of them may access the same variable simultaneously.

This may lead to indefiniteness, for instance, if one stanza fetches

the copy of a variable that another stanza is in the process of

changing, then the value fetched'is undefined (see section 4.2).

When conditionals were considered, a symbolic execution tree was

introduced. Here a symbolic execution network will be introduced to

allow for variables being accessed by more than one stanza simultaneously.

The exact manner the network is constructed will depend on the relation-

ship deemed to exist between the stanzas and the type of memory available.

Figure 7.6 gives an example of how a symbolic execution network may be

drawn for two stanzas that are executed simultaneously. Further examples

of usages of symbolic execution networks can be found in section 7.4.

- - --------

151

Here, parallel symbolic execution will only be considered for

two stanzas SI and 52' All' seven relationships in Definitions 4.3 to

4.9 will be considered in both private and shared memory environments .. ' ..
where appropriate. The following four definitions describe what may

happen to variables that are used in both stanzas SI and 52'

Defini tion 7.2

If SI may access a variable (V) that 52 .may or may not have changed

or be in the process of changing, then there.are two possibilities

depending on the type of memory available:

(i) Only shared memory available

Throughout SI the variable (V) must be considered to

be undefined each time it·is fetched.

(ii) Private memories available

The variable (V) will be considered to be undefined

in SI until such time it is assigned to in SI'

Definition 7.3

When SI and 52 are both able to change the same variable (V) such

that SI changes it before or after 52 or both changes are made

simultaneously then there are two possibilities depending on the type

of memory available:

(i) Only shared memory available

Throughout SI and S2 the variable (V) must be

considered to be undefined,

(ii) Private memories available

In ~l th~ variable CV) will be considered to be

undefined until it is assigned to in SI' similarly in 52'

- I

I

I

I

I

I

I

Definition 7.4

When it is dictated that 51 must store its results before 52'

does, then variables assigned to in both will have, on completion of

SI and 52' the value assigned to them in 52'

Definition 7.5

When SI and 52 may store their results in either order (i.e. 51

first and then 52 or 52 first and then SI) or both may store their

results simultaneously then variables assigned to, in both, will be

considered undefined upon completion of 51 and 52'

152

153

Antecedents of SI

al:a, a2:B, bl:y, b2:o, cl:£

BEGIN
a2+cl;

al+bl+cl;

bl+b2 ;

a2+al

END

Consequents of SI

Consequents of Q) and Antecedents of ®
al:a, a2:e, bl:y, b2:6, cl:£ .

Consequents of ® and Antecedents of ®
al:y+£, a2:e, bl:y, b2:o, cl:E •

Consequents of ® and Antecedents of @
al:y+e, a2:e, bl:6, b2:o, cl:e

Consequents of @
al:y+e, a2:y+e, bl:6, b2:6, cl:e

al:y+£, a2:y+E, bl:6, b2:6, cl:e

Figure 7.2

ANTECEDENTS AND CONSEQUENTS OF A STANZA 51

al:a. a2:B. bl:y.

b2:cS. cl:e:

a2:e:

al :y+e:

bl:o

a2:y+e:

al:y+e:. a2:y+e:, bl:o,

b2:o, cl:e:

Figure 7.3

SYMBOLIC EXECUTION OF THE STANZA SI

154

155

"":'0.-.- •

IF bool THEN
BEGIN

a2+cl.

~] al+hl+cl.; Stanza SI bl+h2; (J)
a2+a1 ®

END
ELSE
BEGIN

bl+dl+cl;

I] b2+dl: Stanza S2 a2+bl+cl;
el+a2

END

Figure 7.4

AN ALGOL-TYPE CONDITIONAL STATEMENT

6=true

a2:c

al:y+e:

bl:1i

a2:y+e:

al:Y+E, a2:E, bl:li,

b2:o, cl:e:, dl:(,

el:n, bool:6=true

al:a, a2:B, bl:y, b2:1i,

cl:e:, dl:~, el:n, bool:6

7

~

6=false

bl :~ +e:

b2:~

a2:~ +2*e:

el:~ +2*e:

al:a, a2:(+2*E, bl:(+E,

b2:~, cl:E, dl:(,

el:~+2*E, bool:6=false

Cl:E, dl:~, bool:6,

and

al:y+e:, a2:E, bl:o, b2:o, el:n,

or

156

al:a, a2:~+2*E, bl:(+E, b2:(, el:(+2*E

Figure 7.5

THE SYMBOLIC EXECUTION TREE OF A CONDITIONAL STATEMENT

157

Antecedents of SI and

0 ,~

0 6

3 7

~ 8

I--

Consequents of SI and

Figure 7.6

A SYMBOLIC EXECUTION NETWORK

; .~';"''- '"
In this section the two stanzas 51 and 52 mentioned in subsection

7.2.3 will continue to be considered. Rules will be established to

determine the consequents of SI and 52 from their antecedents. The

four sets of usage of variables (W,X,Y and Z)described in section 4.5

will be used in establishing these rules.

7.3.1 Conteppo~ - CT(5l ,52)

158

5tanzas 51 and 52 can be executed at the same time and the locations

used may be accessed in any order.

Bearing in mind the definition of aontempor~. repeated above, and

the differences between parallel machines with private memories and those

without the following rules can be derived:

Rule 7.l(a): CT(5l ,5 2) with Private Memories

1. Any variable only fetched in 51 and stor~d in,52 (i.e. a member of

the set (Wln(X2UY2UZ2)))is undefined in 5~ and upon completion of

CT(5l ,52) will have the last value set 'in 52.

2. Any variable only fetched in 52 and stored in 51 (Le. a member of

the set ((XIUYFZI)nw2)) is undefined in 52 'anci upon'comjlletion of

CT(51 ,52) will have the last value in set 51.

3. Any variable changed in both 51 and 52 (i.e. a member of the set

((XlUYlUZ1)n(XZUY2UZ2))) will be undefined upon completion of

CT(51,52) and will be undefined in 51 (or 52) until it is set in

51 (or 52)·

4. In all other instances the consequents will be the same as if both

SI and 52 (including any indefiniteness intro~uced above) had been

executed sequentially both with the same antecedents.

Rule 7.1Cb): CTC51'52) with 5hared Memory

Rule 7.1{b) only varies from Rule 7.1 Ca) in the third case, which

is adapted to give>:

3. Any variable changed in both 51 and 52 (i.e. a member of the set

((XlUy~Zl)n(X2UY2UZ2))) will be undefined throughout 51. and 52

and remain so upon completion of CT(51 ,52)·

Stanza 51 may be executed before or after 52 is executed but not

at the same time.

From the definition of aommutative, repeated above, there are two

possible ways CM(5
1

,5
2
) may be executed; these being 51 then 52 or 52

then 51' The availability of private memories will have no effect on

the commutative relationship.

Rule 7.2:. CM(5 l ,52)

1. Any variable only fetched in 51 and changed in 52 (i.e. a member

of the set (Wln(X2Uy2uZ2))) will have in 51:

either (i) the value in the antecedent - if 51 is executed

before 52'

or (ii) the final value stored to it in 52 - if 51 is

executed after 52'

2. Any variable only fetched in 52 and changed in SI (i.e. a member

of the set ((Xj.!Y lUZl Y'W2)) will have in 52:

either (i) the final value stored to it in 51 - if 51 is

executed before 52'

or (H) the value in the antecedent if 51 . is executed

after 52'

159

160

3. Any variable changed in both" SI and S2 (Le.: a,lI!ember of the set

((XfJYfJZIY'l(X~Y2UZ2))) will have in the consequents: \

either (i) the" final value set in S2 - if SI is executed

before 52'

or (H) the final value set in SI - if 51 is executed

after S2'

4. In all other instances the consequents will be the same as if both

51 and 52 had been executed sequential1y both with the same antecedents.

7.3.3 ~erequisite - PR(51,S2)

5tanza 51 must fetch what it requires before 52 stores its results.

As mentioned in section-S.2 the-prerequisite relationship degenerates

into a consecutive one when private memories are not available, so here

the rule will assume private memories are available.

Rule 7.3: PR(51,52)

1. Any variable only fetched in 52 and ,changed in 51 (i.e. a member of

the set ((X1UYIUZl)nw2)) is undefined in 52 and upon completion of

PR(SI,52) will have the last value set in 51'

2. Any variable changed in both 51 and 52 (i.e. a member of the set

((XF\UZ1)n(X2UY2UZ2))) will be undefined upon completion of

PR(Sl,S2) and will be undefined in 52 until such time as it is set.

3. In all other instances the consequents will be the same as if both

SI and S2 (including any indefiniteness introduced above) had been

executed sequentially both with the same antecedents.

7.3.4 Conservative - CV(5l ,52J

5tanza SI must store its results before S2 does.

As with prerequisite the conservative relationship, repeated above,

it will be assumed that private memories are available.
: ,:,",.~- ,

Rule 7.4: CV(SI,S2)

1. Any variable only fetched in 52 and stored in 51 (i.e. a member of

the set ((X1UYlUZlY'W2)) is undefined in 52 and upon completion of

CV(51,52) will have the last value set in 51'

2. Any variable changed in both 51 and S2 (i.e. a member of the set

((XlUYlUZl)n(xtJY2UZ2))) will be undefined in 52' until such time

as it is set in S2' and upon completion of CV(5l~52) will have the

last value set in S2'

3. In all other instances the consequents will be.the same as if both

SI and S2 (including any indefiniteness introduced above) had been

executed sequentially both with the same antecedents.

7.3.5 Consecutive - CC(SI,52)

161

Stanza SI must store its results before 52 fetches what it requires.

The consecutive relationship between two stanzas indicates that they

are to be executed sequentially. Hence such stanzas are handled in the

manner described for sequential program statements in section 7.2.

Stanzas SI and 52 must both have the same inputs.

The synchronous relationship can only sensibly exist for execution

on a machine with private memories. So here the rule will assume that

private memories are available.

Rule 7.5: SN(Sl,S2)

1. Any variable changed in both SI and S2 (i.e. a member of the set

((XlUYlUZl)n(X~YFZ2))) will be undefined upon completion of SN(5 l ,S2)'

I

162

2. In all other instances the consequents will be~the same as if both
",' -.,

SI' and 52 had been executed sequentially both with the same

antecedents."

7.3.7 IncZusive - IN(5l ,52)

Stanza 52 must store its results after SI has fetched what it

requires but before SI stores its results.

As with the synchronous relationship the inoZusive relationship ,

can only sensibly exist for execution on a machine with private memories.

So here the rule will assume that private memories are available.

Rule 7.6: IN(Sl,S2)

1. Any variable changed in both 51 and 52 (i.e. a member of the set

((XlUYIUZl)neX2UY2UZ2))) will 'be defined throughout SI and 52 and

upon completion of IN(SI,52) will have the last value set in 51'

2. In all other instances the consequents will be the same as if both

SI and 52 had been executed sequentially with the same antecedents.

Table 7.1 contains a summary of the values a variable may take

when two stanzas access it. When a symbolic execution of two parallel

stanzas takes place it is possible, by using the table, to determine

which variables will be undefined in one stanza because of a use in

the other. Such variables will be given the symbolic value 'w' such

,that indefiniteness, along with the other values may be propagated

through a stanza. The table may also be used to determine the value

of a variable on completion of the stanzas. If the consequents thus

obtained for the stanzas are the same as those expected to be true

on their completion then those stanzas are said to be correct for the

parallel relationship being considered.

~

~
~ontemporary Contemporary C0117l1TUtative Prerequisite Conversatim Consecutive Synchronous InaZusive

Operations 5 and 52 ~T(51,52) CT(5 1,5 2) CM(Sl,S2) PR(Sl,5 2) CV(5 1,52)
.

CC (Sl,S2) SN (5i. ,S2) , IN(Sl,52)

Performed ~a~~~e~ poin
5hared Private 5hared/ Private Private 5hared/ Private Private
Memory Memories Private Memories Memories Private Memories 'Memories

Original
51 only fetches Value in SI Undefined Undefined value or Original Original Original Original Original

ValUS set in value value value value value
a variable that 2
52 changes Value after 51 , , , ,

: ~, ,',
(~n(X2uy 2UZ2)) and 52 L a s t v a 1 u e set i n ,52 :

;.,
: ! . ,

51 changes a Value set in Value set
variable that 82 Value in 82 Undefined Undefined ,St or Undefined Undefined in SI

Original Original
, 0 i~inal ' value value

only fetches lva ue
i

((XlUY lUZl)nw2) Value after 51 Iralue L a s t ,'s e t i n ; 51 ' ' i
; i

I) and 52 ; ,.
i

! ,
Value before Original

being set in 51 Undefined' Undefined value or Original Original Original Original Original
,

value set value value value value value
51 and 52 both in 5,_ ,

i yalue after ' 'J I ,
"1 change the same Undefined Pr e v i

' ,

v a"l i n 51
, , l ,

peing set in 51 o u s u e s e t ' ,

I

, I
variable Value set iTl ,

~alue before Undefined Undefined 5 or' Undefined Undefined Value set Original,?; Original

I

[being set in S 2 ohjinal inSI value; value
((XlUY luzl)n ."-, -. ' -.-' '" V lue ., '

, I, " . , " " ' ,

Walue after ,~. :,< "
,

(X2
UY zUZ2)) /Jeing set in S2 Undefined P rev 1.0 u s va 1 u e s e ,t 1. n 5 il, I i

I '~, ' , 2,.\ ,

Value set
Value after in 52 or Value set Value set Value set

51 and 52 Undefined Undefined value set Undefined in S2 in S2 Undefined in SI ,

in 51

... .
'" Table 7.1: VALUES OF A VARIABLE ACCB8SED BY TWO STANZAS w

1

164

7.4 EXAMPLES.OF PROVING CORRECTNESS BETWEEN TWO STANZAS

In this section the
.' .. , ~ "-

two stanzas SI and S2' g~ven in Figure 7.7,

will be considered. The symbolic antecedents' of these will be

arbitrarily assigned as:

aI:a, a2:a, b1:y, b2:o, cl:e, dl:t, el:n

Two sets of ~~ns.eque~ts, in turn.wii1be.conside~edto .be.~i'ueonexi!ing

frOIllSi and 1'2: The .. gciiisequentiwnsidered will be:

Assumption 1

a1:y+&, a2:t+2*&, bl:~+c, b2:~, cl:e, dl:s, el:s+2*c.

and

Assumption 2

al:y+e:, bZ:'~, c1:&, dl:t, ,

where in Assumption 2 some of the values calculated in SI and Sz will

not be required' later.

For the two stanzas SI and S2 the sets of usage of variables are:

Wl b2,cl

Xl aZ

Yl bI

Zl aI

and W2 cl,dI

Xz b2,el

YZ 9l

Zz aZ,bl

Using these sets it is possible to apply the rules given in the previous

section to determine indefiniteness and the values propagated through to

the exit of the stanza (i.e. the consequents). If the values of these

consequents agree with Assumption 1, the execution of these two stanzas

can be said to be correct for Assumption 1, similarly the correctness

of Assumption Z can be tested.

",i.,;,.
"', ---..

As this relationship varies depending whether private memories are

available or not the two will be considered separately.

Private Memories Available

First it is necessary to find which variables are used in both SI

and Sz and the effect they may have, by using Rule 7.1(a).

1. wln(xFYzUZz)

i.e. (bZ,cl)n((bZ,el)ll0U(a2,bl)) = b2

By Condition 1 the variable 'b2' will be undefined in SI and upon

completion will have the value set in S2.

2. (XlUyluZl)nW2

i.e. (a2UblUal)n(cl,dl) = ~

No variables are affected by the second condition.

3. (XIUYlUZl)neX2UV2UZ2)

Le. (a2JblUal)n((bZ,el)U0U{a2,bl)) = (aZ,bl)

By the third condition the variables 'aZ' and 'bl' will be undefined

upon completion of CT(5l ,5Z) and will be" undefined in Sl(or S2)

until they are set in SI (or 52).

The symbolic execution network for CT(Sl'SZ) with private memories

is given in Figure 7.8. The consequents of its execution are:

al:w, aZ:w, bl:w, b2:~, cl:E, dl:t, el:t+2*E.

Thus it can be seen that CT(Sl,S2) with. private memories is neither

correct for Assumption 1 or Assumption Z (because, for example, the

value of 'aI' is not 'Y+E' but undefined).

Only Shared Memory Available

Again, it will be necessary to find which variables are used in

both 51 and Sz and the effects they may have, this time by using

Rule 7.l(b).

165

166

The first and second conditions are the same as those for Rule

7 .l(a~ and 51> give the same results.

3. (XlUYlUZi}f"lex¥yi"zz) , -

Le. (a1UblUal)f"l((b2,el)Uj6J(a2,bl)) - (a2,bl)

By the third condition the variables 'a2' and bl' will be undefined

throughout SI and S2 and upon completion of CT(5
1

,5
2
).

The symbolic e~ecution network for CT(Sl,52)_ With_only shared memory

available is given in Figure 7.9. The consequents of its execution are:

al:w,- a2:w, bIlW, b2:~, -Cl:e:, dI:!;,: el:w

Thus it can be seen that CT(SI,S2) without private memories is neither

correct for Assumption 1 or Assumption 2. It is_ also of interest to

note that when private memories are available the value of 'el' is

defined, whereas without them it is undefined.

7.4.2 Commutative - CM(51,52) -

The aommutative relationship may be treated as though it was a

conditional where if a fictitious condition- :is true, SI is executed

before 52' and if it is false, S2 is executed before 51' as described

in Rule 7.2. Hence a symbolic execution tree can be used to represent

CM(5l ,52), such a tree is given in Figure 7.10. The consequents of

its execution are:

a2:!;+2*e:, b2:-2, cl:e:, dl:~-, el:1;+2*e:

and al:y+e:, bl:Z:;+E or al:I;+2*e, bl:Z:;

It can be seen that when SI is executed first, the code is correct for

both Assumption 1 and Assumption 2. However neither are correct when

S2 is executed first and since it is impossible to predict which will

be executed first CM(Sl,S2) cannot be assumed to be correct for either

Assumption 1 or Assumption 2.

::""\~w- ..
For the prerequisite relationship it is assumed that private

memories are available. .". ' ..

It will be necessary to find which of the variables from one

stanza may affect the other stanza and the consequents of PR(Sl,S2),

by using Rule ?3:

1. (XlUY lUZ1)llW2

i.e. (a2Ublual)n(cl,dl) = ~

No variables are affected by the first condition.

2. (X}lY lUZI)n(X~Y2UZ2)

i.e. (a2Ublual)n((b2,el)U~(a2,bl)) = (a2,bl)

By the secpnd condition the variables 'a2' and 'hI' will be

undefined upon completion of PR(Sl,S2) and will he undefined in S2

until·.silch time as they are set.

The symbolic execution network for PR(SI,S2) ·is given in Figure 7.11.

The consequents of its execution are:
1· ..

al:y+e:, a2:"" bl:"" b2:1;, cl:e:"dl:1;, el·:1;+2*e:

It can be seen that PR(Sl,S2) is not correct for Assumption 1. However,

the values of 'aI', 'b2', 'cl' and 'dl' correspond to those proposed in

Assumption 2 and so PR(Sl,S2) is correct for Assumption 2.

7.4.4 Conservative - CV(Sl,S2)

167

For the conservative relationship it is assumed that private memories

are available. It will be necessary to find which of the variables

used in one stanza may affect the other stanza and the consequents of

CV(Sl,S2) by applying Rule 7.4.

1. (X1UYlUZl)rliI2

i.e. (a2Ublual)n(cl,dl) = ~

No variables are affected by the first condition.

...

i.e. (a24>lUal}n((b2,el)U~(a2,bl)) = (a2,bl) .•

By the second condition the variables 'a~' and: 'bl' will be

undefined in S2 until such time they are set and upon completion

of CV{Sl,S2) will have the last value assigned to them in S2'

The symbolic execution network for CV(Sl,S2) is given in Figure 7.12.

The consequents of its execution are:

al:y+e:, a2:2+2*e:, bl:~+e:, b2:~, cl:e:, dl:~-, el:~'+2*e:

It can be seen that these values correspond to those proposed in both

Assumption 1 and Assumption 2. Thus it can be said that CV(SI,S2) is

correct for both Assumption I and Assumption 2.

As mentioned in the previous section the consecutive relationships

168

indicates that SI and S2 are executed sequentially and so the availability

of private memories will not effect this relationship. The symbolic

execution of CC(Sl,S2) is given in Figure 7.13. The consequents of its

execution are:

al':y+e:, a2:~+2*e:, bl:~+e:, b2:~, cl:e:, dl:~, el:~+2*£.

These are the same as the consequents for CV{SI,S2J and, hence, CC(Sl,S2)

is correct for both Assumption 1 and Assumption 2.

7.4.6 Synchronous - SN(Sl,S2)

For the synchronous relationship it is assumed that private

memories are available. Firstly it will be necessary to find which

variables are changed in both stanzas and will affect the consequents

of SN(Sl,S2J, by using Rule 7.5 •

...

-.. : -.""'
Le. (a:zL.blUal)(l((bZ,elJ4'U(aZ,bl)) = (aZ,bI) .

The variables 'a2' and 'bI' will be undefined upon completion of
.1 .••

The symbolic execution network for SN(SI'SZ) is given in Figure 7.14.

The consequents of its execution are:

al:Y+E, aZ:w, bl:w, bZ:~, cl:E, dl:~, el:~+Z*E.

It can be seen that SN(Sl'SZ) is not correct for Assumption 1. However,

the values of 'al','bl', 'cl' and 'dl' correspond to those proposed in

Assumption Z and so SN(Sl'SZ) is correct for Assumption Z.

7.4.7 Inc~usive - IN(Sl~SZ)

Again, for the ina~usive relationship it is assumed that private

memories are available. It will be necessary to apply the first

condition of Rule 7.6.

1. (XIllY lUZ1)()(XFY ZUZ Z)

i.e. (a:zL.blUal)n((bZ,el)4'U(a2,bl)) = (aZ,bl)

Upon completion of IN(SI,S2) the variables 'aZ' and 'bl' will have

the last value set in SI.

The symbolic execution network for IN(Sl,S2) is given in Figure 7.15.

The consequents of its execution are:

al:Y+E, a2:Y+E, bl:o, b2:~, cl:E, dl:~, el:~+2*E: •

It can be seen that ~N(SI,S2) is not correct for Assumption 1.

However, the values of 'aI', 'b2', 'cl' and 'dl' correspond to those

proposed in Assumption 2 and so IN(Sl'SZ) is correct for Assumption 2 •

169

170

a2+cl; <V
al+bl+cl; rJ)
bl+b2; $ a2+al

Stanza SI

bl+dl+cl ; ®
b2+dl; . ~
a2+bl+cl; (j)
el+a2 ®

Stanza S2

Figure 7.7

TWO STANZAS SI AND S2

...

,

51

(b2:w, a2:w, b~:w)

-j

aZ:e: I
I
I
I

al:w

bl:w

aZ:w

(al:w, aZ:w, bl:w)

,
(

al:a,a2:a,bl:y,b2:6,cl~dl:~,el:"

S2

(aZ:w, bl :w)

bl: I;+E: .

bZ:~

aZ: 1;+2*e:

(aZ:I;+Z*e:,bl:~+e:,b2:I;,

el: ~+2*e:)

171

al.:.w, a2:w, bl:w, b2: 1;, cl: e: ,dl: I; ,el: I;+Z*e:

Figure 7;8

SYMBOLIC EXECUTION NETWORK OF CT(Sl'SZ) WITH PRIVATE MEMORIES

..

SI

(b2:w, a2:oo, bl :01)

I-

a2:e: 1)

al:w 2

bl:w 3

a2:w 4)
I-

(al:w, a2:w, bl:w)

Figure 7.9

al:n

r-

Cs

~ID

7)

(8

-

al:w,

172

,a2:e,bl:y,b2:6,cl:£,dl:t,el:n ..

52

(a2:w, bl :(0)

bl:~+£

b2:~

a2:w

el:w

(a2:w,bl:w,b2:~,el:w)

a2:w,bl:w,b2:t,cl:£,dl:~,el:w

SYMBOLIC EXECUTION NETWORK OF CT(SI,S2) WITH ONLY SHARED MEMORY

a2:e:

'al:y+e:

bl:o

a2:y+e:

bl:I;+e:

b2:1;

a2: 1;+2*e:

el:z;+2*e:

173

al :a,a2: fl, bl.:J!b2:1> ,cl: e ,dl: Z;,el:n

Figure 7.10

bl:Z;+e:

b2:Z;

a2; Z;+2*e:

el:z;+2*e:

a2:e:

al: Z;+2*e:

bl:1;

a2: 1;+2*e:

a2: 1;+ 2*e:, b2: Z;, cl: e: ,dl: Z;, el:1; +2* e:

and al :y+&, bl: I;+e:

or al :Z;+2*&, bl:Z;

SYMBOLIC EXECUTION TREE OF CM(Sl,S2)

,

SI

a2:E:

al:Y+E:

bl:o

a2:y+£

(al:y+£,a2:y+£,bl:o)

/

I

,
/

al:a,a2:S,bl:y,b2:o,cl:£, dl:~,el:n

/
(

A<

I

I

/
/

S2

(a2;w, bl;w)

bl; ~+£

b2:~

a2;~+2*£

el:~+2*£

(a2:~+2*E:,bl:(+£,

b2:~, el:~+2*£)

al;y+£,a2;w,bl:w,b2:~,cl:£,dl:~,

el:~+2*£

Figure 7.11

SYMBOLIC EXECUTION NETWORK OF PR(SI,S2J

174

51

a2:e::

al:y+e::

bl:o

a2:y+e::

(al:y+e::,a2:e::, bl:o)

I

I

I

I

I

I

I

I

"" I

175

al:a,a2:S,bl:y,b2;o,cl;e::,dl;~, el;n

I

f

I

f
I

I
I

7

I
®

52

(a2;w, bl:w)

bl; ~+E

b2;~

la2; ~+2*e::

el;~+2*e::

(a2:~+2*e::,bl:~+e::,b2;~,

cl;e::,dl;~,el;,+2*E)

al;y+E,a2;,+2*e::,bl;,+e::,b2;~,cl;E,

dl;~, el;~+2*E

Figure 7.12

SYMBOLIC EXECUTION NETWORK OF CV(SI,S2)

,".'1
/

Figure 7.13

al:a,a2:8,b1:y,b2:o,c1:e,dl:~,el:n

a2:e

al:y+e

bl:/l

a2:y+e

bl: ~+e

b2:~

a2:~+2*e

el:~+2*e

al:y+e,a2:~+2*e,bl:~+e,b2:~,cl:e,

dl:~, el:~+2*e

SYMBOLIC EXECUTION OF CC(SI,52)

176

177

al:a,a2:e,bl:y,b2:o,cl:£,dl:~,el:n

a2:E bl:~+£

al:y+£ b2:~

bl:o a2:~+Z*E

a2:y+E el:~+2*£

a1:y+£,aZ:w,bl:w,bZ:~,cl:£,dl:c,el:c+2*£

Figure 7.14

SYMBOLIC EXECUTION OF SN(SI'SZ)

•

a2:E

al :Y+E

bl:6

a2:Y+E

(al:Y+E,a2:Y+E,bl:o)

a1:a,a2:S,bl:y,b2:6,cl:E,dl:~,el:n

b1:~+E

b2:~

a2:1;+2*E

(a2:,+2*8,bl:1;+E,b2:1;

el: ~+2*E)

a1:Y+E,a2:Y+E,bl:o,b2:~,c1:£,d1:~,

e 1: 1;+2*8

Figure 7.15

SYMBOLIC EXECUTION NETWORK OF IN(Sl,S2)

178

7.5 PROVING CORRECTNESS BETWEEN A NUMBER OF PARALLEL STANZAS

So far in this chapter techniques have been proposed that may be

used to prove correctness between two stanzas that are to be executed

in parallel. It is possible to adapt the Definitions 7.2 to 7.5 to

describe indefiniteness and propagation of values for a number of

stanzas that are to be executed in parallel. Thus the tests for

correctness given in section 7.3 may be extended to find the consequents

of a number of stanzas being executed in parallel.

179

CHAPTER 8

CONCLUSIONS

,

"8.1 SUMMARY

::..-~ ...
When computer programs are to be run on parallel machines, there

are basically two approaches to determining which parts of a program

(i.e. stanzas) may be run on different processors. Such stanzas may be

explicitly indicated by the programmer using special operators or the

program may be implicitly divided into stanzas as part of the compilation

procedure. In this thesis, both explicit and implicit parallelism have

been considered.

As.a consequence a number of relationships have been introduced

that can be said to be the explicit relationships between stanzas. A

subset of these relationships have been used to determine which parts

of a serial program can be executed in parallel. The different effects

on these relationships when using processors with their own private

memories and those with only access to a shared memory were considered.

Methods by which both explicit and implicit parallel programs may

or may not be optimised using standard serial techniques have been

examined. It has been shown that some methods are readily amenable to

180

parallel processing whereas others may detract from potential parallelism •.

Similarly, methods by which programs may be checked for correctness have

been introduced, based upon the serial techniques of symbolic execution.

Within expressions it was assumed that the task of determining

which operations could be executed in parallel would be too tedious to

be done explicitly. However, the algorithm proposed for finding

parallelism within expressions respects the ordering imposed on an

expression by the programmer.

,

181

8.2 DETECTION OF IMPLICIT PARALLELISM AND CORRECTNESS OF PARALLEL PROGRAMS

It can be seen that the tests for detecting which relationships

exist between the stanzas of a sequential program (see Chapter 5) and

those for testing the correctness of a parallel program (see Chapter 7)

have similarities. These are due to the fact that both techniques need

to determine which variables may be undefined in particular circumstances.

When a sequential program is being transformed to a parallel program

then at each stage in the testing of which relationship exists between

stanzas it is necessary to determine if any variables used will be

undefined. When one stanza is able to fetch a value of a variable that

mayor may not have been changed or, indeed, may be in the process of

being changed by another stanza, then in the first stanza that variable

is said to be undefined. Similarly, a variable is considered to be

undefined if more than one stanza changes it, unless the order in which

the stanzas store their res.ults is specified. Such indefiniteness will

be inconsequential if that variable is always reset before being

subsequently fetched.

When a parallel program is being checked for correctness it is

necessary to determine any indefiniteness and to propagate through all

values, especially those that are undefined. When one stanza is able to

fetch a value of a variable that mayor may not have been changed or,

indeed, may be in the process of being changed by another stanza then

in the first stanza that variable is said to be undefined. Similarly,

if more than one stanza changes a variable and the order in which the

changes take place is not specified by the relationship then the

variable must be considered undefined, after the parallel execution of

these stanzas until it is redefined.

The similarities between the two techniques can be illustrated

by reconsidering the two stanzas SI and S2 given in Figure 7.7, when

they are to be executed on a machine with private memories. If 51 and

5Z appear adjacently in a sequential program their tests to detect a

parallel relationship between them would be as follows:

(XlUY lUZ l)()(W2
UY 2)

(aZlJblUal)()((cl, dl)U0) = 0

The relationship is therefore at least conservative.

(XlUY luz l)n(X2UY ?ZZ)1V 2

(aZUblUa1)n((bZ,el)~U(b1, aZ)) = (aZ,bl)

The relationship is therefore not prerequisite.

(8.1)

(8.2)
taking '2'1.

Thus, if all variables set in both 51 and 5Z may be fetched without

being reset then the relationship between 51 and 52 is conservative.

In sUbse"ction 7.4.4 it was shown that CV(5 l ,5 2) was correct for

Assumption 1 which required all outputs to be set. The indefiniteness

of CV(Sl,S2) was found by testing the same sets as those given above

in equations (8.1) and (8.2).

182

•

8.3 OTHER APPLICATIONS OF PARALLEL PROCESSING

Within this thesis parallelism has been studied in Algol-type

programs which are usually taken to be scientific programs. It would

also be useful to exploit parallelism within other environments such

as commercial programs and systems software.

Within a commercial environment many of the tasks that computers

perform are inherently parallel. For instance a payroll program may

be considered as many parallel processes, as one emp1oyee~ pay is not

dependent upon another's. Therefore, means of expressing explicit

parallelism could be introduced into a commercial programming language

such as COBOL. In addition the techniques described for finding

implicit parallelism at the expression and stanza level should be

adapted to handle commercial programs.

Baer and E11is (1977) have suggested that the techniques of implicit

detection of parallelism in programs cannot readily be applied to

compilers. Obviously there will be some scope to apply techniques

similar to those described here for determining implicit parallelism

both at the expression and stanza levels. However, in most cases it

would appear to be beneficial to rewrite parts of the compiler. This

will mean that it is possible to have a compiler that operates in

parallel and detects implicit parallelism in serial programs.

183

8.4 AREAS FOR FURTIiER RESEARCH

Within this thesis a number of aspects of parallel processing have

been considered.. From these a number of areas where further research

may be fruitful have become obvious. In the following subsections such

areas are outlined and possible approaches to the problems suggested.

8.4.1 Automatic Stanza Formation

184

The stanzas considered in this thesis have been arbitrarily formed.

In some cases the stanzas thus formed may not allow a large proportion

of potential parallelism to be detected. If it were possible to have

some inter-communication between the process that forms stanzas and

the one that detects a particular relationship then it may be possible

to 'ojtimise ' the parallelism in a program. Such inter-communication

may be possible if the compiler itself executes in parallel (as described

in the previous section). However, the method by which the optimum size

of a stanza may be determined will require further examination.

8.4.2 Detection of Parallelism Between Stanzas

In section 5.8 a number of program constructs were mentioned

that still need to be examined and possible approaches suggested. It

should be possible to develop methods by which all program constructs

may be studied for parallelism. However, care would have to be

exercised to ensure that the effort of finding parallelism in certain

circumstances did not outweigh any parallelism that may be found.

It may be possible to develop new optimising techniques (as

opposed to those based on serial programs) to optimise parallel programs.

It should be realised that the techniques used for detecting implicit

parallelism may be applied to explicit parallel programs to detect more

parallelism and hence optimise them.

8.4.3 Expression Parallelism

In subsection 3.4.2 a number of possible extensions to the

algorithm for forming a balanced binary tree from an expression were

suggested. Most of these extensions are readily implemented. However,

for some expressions a tree of minimum height may not be found as

explained in section 3.3. It may be possible to develop a method by

which the final binary tree representation of an expression may be

'reba1anced' to minimise the height of the tree without affecting the

ordering of the'expression.

8.4.4 Termination of a Correct Parallel Program

It should be possible to develop a technique that could be capable

of indicating whether a correct parallel program terminates or not. The

technique would, probably, be similar to that used in serial programs.

Ho~~~er, allowances would have to be made for any indefiniteness

introduced and the necessity, in many instances, for all parallel paths

to terminate.

8.4.5 Explicit Parallelism

Within this thesis a number of relationships have been introduced

that may be used to express either implicit or explicit parallelism.

In the previous chapter a method was suggested of how a particular

relationship may be explicitly represented (see Figure 7.1). Further

investigation may reveal alternative methods of representing explicit

parallelism in line with existing constructs, some of which were

described in section 1.4.

The methods of forming stanzas described in Chapter 4 and the

tests outlined in the following chapter may be adapted to give guidelines

185

to be used when writing parallel programs. The explicit formation of

stanzas will probably correspond to the formation of modules in a

structured programming enviornment (Kernighan and P1auger, 1976).

The tests may require some simplification so that they can be readily

applied by a programmer.

186

REFERENCES

AHO A.V. and ULLMAN J.D., 1977: 'Principtes of Compiter Design',

Pub. Addison-Wes1ey.

187

ALLEN F.E. and COCKE J., 1972: 'A Catatogue of Optimizing Transformations',

in 'Design and Optimization of Compilers', Rustin R.(Ed.l, Pub.

Prentice-Ha11 Inc.

ANDERSON A., 1965: 'Program Structures for Parattet Processing',

C.A.C.M., Vo1.8, pp.786-788.

BAER J.L. and BOVET D.P., 1968: 'Compitation of Arithmetic Expressions

for Parattet Computation',

I.F.I.P. Congress Proc., Vo1.1, pp.340-346.

BAER J.L. and ELLIS C.S., 1977: 'Model,Design and Evatuation of a

Compiter for a Parattet Processing Environment',

I.E.E.E. Trans. on Software Engineering, Vo1.SE-3, pp.394-405.

BAER J.L. and RUSSELL E.C., 1970: 'Preparation and Evaluation of

Computer Programs for Parattet Processing Systems',

in 'Parallel Processor Systems, Technologies and Applications',

L.C. Hobbs (Ed.l, Pub. Spartan Books, pp.375-415.

BARNES J.G.P., 1976: 'RTL/2 Design and Phitosophy',

Pub. Heyden.

BARRON D.W., 1960: 'Recursive Techniques in Programming',

Pub. MacDonald/Elsevier.

BARRON D.W., 1977: 'An Introduction to the Study of Programming

Languages',

Pub. Cambridge University Press.

BERNSTEIN A.J., 1966: 'Analysis of Programs for ParalZel Processing',

I.E.E.E. Trans. on Electronic Computers, Vol. EC-lS, pp.7S7-763.

BINGHAM H.W., FISHER D.A. and REIGEL E.W., 1967: 'Automatic Detection

of ParalleZism in Computer Programs',

Burroughs Corporation, AD662 274.

BINGHAM H.W. and REIGEL E.W., 1968: 'Parallelism in Computer Programs

and in Machines',

Burroughs Corporation, AD667 907.

BING~I H.W. and REIGEL E.W., 1969: 'Parallelism Exposure and

Exploitation in Digital Computing Systems'.

Burroughs Corporation, AD853 523.

BRINCH HANSEN P., 1973: 'Concurrent Programming Concepts',

Computing Surveys, Vol.5, pp.223-245.

CHEN T.C., 1975: 'Overlap and Pipeline Processing'.

in 'Introduction to Computer Architecture', Stone H.S. (Ed.)

Pub. Science Research Associates, pp.375-43l.

ENSLOW P.H. Jr., 1977: 'Multiprocessing Organisations - A Survey',

Computing Surveys, Vo1.9, pp.l03-129.

188

EVANS D.J. and SMITIl S.A., 1977: 'On the Con8truation of BaUrn'aed

/!inary Tree8 for PamZZeZ Proae8sinfl'.

Algorithm 99, Computer Journal, Vol.20,pp.378-379.
. . ~ -

FlON L. and SUZUKI N., 1977: ' Non-determinism and the .Co:rreatne8s of

PamZZeZ PrOgram8'.

189

Dept. of Computer Science, Carnegie-Mellon University, Pittsburgh,

Pennsylvania, U.S.A.

FIRESTONE R.M., 1971: 'Parallel Programming: OperationaZ ModeZ and

Deteation of PamZZeZi8m'.

Ph.D. Thesis, New York University.

FLYNN M.J., 1966: 'Very High Speed Computing SY8tem8'.

Proceedings of the I.E.E.E., Vo1.54, pp;1901-l909.

FREEMAN P., 1975: 'Software SY8tem8 Pl'inaiples'.

Pub. Science Research Associates.

GONZALEZ M.J. and RAMAMOORTIlY C.V., 1970: 'Reaognition and Repre8entation

of ParaZZeZ Proae88able Stream8 in Computer Program8'.

in 'Parallel Processor Systems Techno1ogies·and Applications',

L.C. Hobbs (Ed.), Pub. Spartan Books, pp.335-373.

GONZALEZ M.J. and RAMAMOORTIlY C.V., 1971: 'Program Suitably for

Pamllel Proae88ing'.

I.E.E.E. Trans. on Computers, Vol. C-20, pp.647-654.

GOSDEN J.A., 1966: 'Explicit Parallel Proaessing Desaription and

Control in Programs for MuUi- and Uni-Proaessor Computers'.

Fall Joint Computer Conference 29, pp.651-666.

GRIES D., 1977: 'An Exeraise in Proving Parallel Programs Correat'.

C.A.C.M., Vol.20, pp.921-930.

HANTLER S.L. and KING J.C., 1976: 'An Introduation to Proving the

Corr>eatness of Programs'.

A.C.M. C?mputing Surveys, Vol.8, pp.331-3S3.

HELLERMAN H., 1966: 'Parallel Processing of Algebraic Expressions'.

I.E.E.E. Trans. on Electronic Computers, Vol. EC-15, pp.82-91.

HIGMAN B., 1977: 'A Comparative Study of Programning Languages',

Pub. MacDonald and Jane's.

190

HOOGENDOORN C.H., 1975: 'Memory Acaess Problems in Multiproaessor Systems'.

Ph.D. Thesis, University of Cambridge.

HOPGOOD F.R.A., 1969: 'Compiling Techniques',

Pub. MacDonald/American Elsevier.

JENSEN K. and IHRTH N., 1976: 'PASCAL - User Manual. and Report'.

Pub. Springer-Verlag.

KENNEDY K., 1971: 'A Global Flow Analysis Algorithm'.

International Journal of Computer Mathematics (Section Al, Vol.3,

pp.S-lS.

KERNIGHAN B.W. and PLAUGER P.J., 1976: 'Software TooZs',

Pub. Addison-Wesley.

KNUTH D.E., 1968: 'The Art of Computer Programming',

Vol. 1, Fundamental Algorithms, Pub. Addison Wesley.

KNUTH D.E., 1971: 'An EmpiriaaZ Study of FORTRAN Programs'.

Software Practice and Experience, Vol.l, pp.105-133.

KNUTH D.E., 1973: 'The Art of Computer Programming'.

Vol.3, Sorting and Searching, Pub. Addison Wesley.

KUCK D.J., 1975: 'ParaZZeZ Processing of Ordinary Programs',

Dept. of Computer Science, University of Illinois at Urbana

Champaign, Report. No. UIUCD CS-R-7S-767.

KUCK D.J., 1977: 'A Survey of Parallel Machine Organization and

Programming',

Computing Surveys, Vol.9, pp.29-S9.

191

KUCK D.J., MURAOKA Y. and CHEN S.C., 1972: 'On the Number of Operations

Simultaneously Executable in Fortran-like Programs and Their

ReSUlting Speed Up',

I.E.E.E. Trans. on Computers, Vol.C-2l, pp.1293-l3l0.

LEASURE B.R., 1976: 'Compiling SeriaZ Languages for Parallel Machines',

Dept. of Computer Science, University of Illinois at Urbana-Champaign,

Report No. UIUCD CS-R-76-80S.

192

LEE J.A.N., 1974: 'The Anatomy of a Compiler',

Second Edition. Pub. Van Norstrand Reinhold Company.

MARTIN D.E. and ESTRIN G., 1967: 'Models of Computations and Systems'.

I.E.E.E. Trans. on Electronic Computers, Vol. EC-16, pp.59-69.

MITCHELL G.H., 1972: 'Operational Research: Techniques and Exumples',

Pub. English University Press Ltd.

NAUR P.(Ed.), 1962: 'Revised Report on the Algorithmic Language ALGOL 60'.

Computer Journal, Vol. 5, pp.349-369.

OWICKI S., 1975: 'Axiomatic Proof Techniques for Parallel Programs'.

Ph.D. Thesis, Dept. of Computer Science, Cornell University,

lthaca, N.Y.

RAMAMOORTHY C.V. and GONZALEZ M.J., 1969: 'A Survey of Techniques for

Recognizing Parallel Processable Streams in Computer Programs'.

F.J.C.C., A.F.I.P.S. Conference Procs., Vol.3S, pp.l-lS.

RAMAMOORTHY C.V., PARK J.H. and LI H.F., 1973: 'Compilation Techniques

for Recognition of Parallel Processable Tasks in Arithmetic

Expressions',

I.E.E.E. Trans. on Computers, Vol. C-22, pp.986-998.

REIGEL E.W., 1970: 'PanzZlelism Exposure and Exploitation'.

in 'Parallel Processors Systems, Technologies, and Applications',

L.C. Hobb (Ed.), Pub. Spartan Books, pp.417-438.

ROBERTS J.D., 1977: 'A Fast Discrete Fourier Transform Algorithm

Suitable for a Pipeline Vector Processor',

R.C.S. 87,Department of Computer Science, UniVersity of Reading.

193

ROBINSON S.K. and TORSUN 1.S., 1976a: 'An Empirical Analysis of FORTRAN

Programs "

computer Journal, Vol.19, pp.56-62.

ROBINSON S.K. and TORSUN I.S., 1976b: 'Simplicity: An Empirical Analysis

of Algol and Cobol',

Private Communication.

ROHL J.S., 1975: 'An Introduction to CompUer Writing',

Pub. MacDonald and Jane's/American Elsevier.

RUST IN R. (Ed.), 1972: 'Design and Optimization of Compilers',

Pub. Prentice-Hall Inc.

SQUIRE J .S" 1963: 'A Translation Algorithm for a Multi-Processor Computer',

Draft Paper, Information System Laboratory, Department of Electrical

Engineering, The University of Michigan.

N.B. A finalised version of this appears in the unpublished Proc.

18th A.C.M. National Conference, 1963.

STONE H.S., 1967: 'One-Pass Compilation of Arithmetic Expressions for

a Parallel Processor',

C.A.C.M., Vol.10, pp.220-223.

I

STONE H.S., 1975: 'Pa~llel Computers',

in 'Introduction to Computer Architecture', Stone H.S. (Ed.),

Pub. Science Research Associates, pp.3l8-374.

194

TOWLE R.A., 1976: 'Control and Data Dependenae for Program Transformations',

Dept. of Computer Science, University of Illinois at Urbana-Champaign,

Report No. UIUCD CS-R-76-788.

WARD R.G., 1974: 'A Variable Delay Method for Improving Reaognition of

Parallel Proaessable Code in Computer Programs',

Computer Journal, Vol.17, pp.157-164.

WICHMANN B.A., 1970: 'Some Statistias from ALGOL Programs'.

N. P. L., CCU 11.

WICHMANN B.A., 1973: 'ALGOL 60 Compilation and Assessment'.

Pub. Academic Press.

van WIJGAARDEN A. (Ed.), 1976: 'Revised Report on the Algorithmia

Language ALGOL 68',

Pub. Springer-Ver1ag.

WILKES M.V., 1965: 'Slave Memories and Dynamia Storage Alloaation',

I.E.E.E. Trans. on Electronic Computers, Vol. EC-14, pp.270-271.

WOODWARD P .M, and BOND S .G., 1972: 'AlgoZ 68-R User's Guide',

Pub. H.M.S.O. London.

WOODWARD P,M., WETHERALL P.R. and GORMAN B., 19701 'Offiaiat Definition

of CORAL 66'.

Pub. H.M.S.O" London.

WULF W •• JOHNSSONR.K., WEINSTOCK C.B .• HOBBS S.O. and GESCHKE C.M.,1975:

'The Design of an Optimizing CompiZe~'.

Pub. American E1sevier.

195

APPENDIX 1

ALGORITHM FOR CONSTRUCTING A BALANCED BINARY TREE

196

C***

<make balanced tree> adds an item or a sub-tree to an eXisting tree,
at the most suitable point for an entry of its size

_*** **************~********C

PROC make balanced tree=(REF INT next,randtop,optOjl,
INT last REF [] TREE this,
REF REF TREE orig,[] REF TREE randstack,
[] CHAR operators)
VOID:

C---
next

rand top
optop
last

indicates the next free position in the array of trees<this>,
originally 0

indicates the top item of <rand stack>
indicates the number of entries in<operators>
indicates where in<this>references to the current set of sub-trees

begins, initially 1
this a stack of trees used to hold all subtrees formed
orig contains the current sub-tree
randstack a stack containing sub-trees and operands
operators a stack of operators, which correspond to the operands

this procedure will form a balanced tree of operands and operators,
as long as the operator remains the same __ -----------------------C

(INT temp;
INT count,prev,pcount;
CHAR oper+operators[optop];
pcount«l ;
INT nooflevels+12;
[1:2tnooflevels-l] INT predefined;
INT value+l;
predefined[l]+l;
FOR i FROM 2 TO nooflevels DO

(value TIMES 2;predefined[value]+i;
predefined[value+l:2*value-l]+predefined[1:value-l]);

OP '>'=(TREE expra,exprb) INT:
(INT lev+(level OF expra>level OF exprb!level OF expra!

level OF exprb)+l;lev);
C**

<pa>adjusts<point>so that instead of pointing to a node it points to
to its father

_***C

PROC pa=(REF INT point) VOID:
(INT temp+point;
FOR il FROM last TO next WHILE temp=point DO

WHILE this[il] IS father OF this[point] DO point+il);
C--

attach first element or sub-tree to null node __ C

next PLUS 1;
level OF this[next]+level OF randstack[randtop];
left OF this[next]+randstack[randtop];
operator OF this[next]+"@";
orig+left OF this[next];
randtop MINUS l;
prev+-next;
count+2t(level OF this[next]-l);

C--

197

the loop that builds up the tree
--C

WHILE (optop>; LWB operators AND randtop>;LWB randstack!
oper;operators [optop] ! FALSE) DO
(optop MINUS 1;
next PLUS 1;
temp+{);
IF level OF randstack[randtop»;level OF orig THEN

count+2+(level OF orig-l)
ELSE WHILE level OF randstack[randtop]>predefined[count) DO

count PLUS 1
FI;
left OF this[next)+randstack[randtop];
operator OF this(next)+oper;
IF predefined[count);l

OR pcount;O
THEN C-------------- ___ _

place one place above the previous entry
--C

ELSE

father OF this[next)+this[prev);
right OF this[next]+left OF this[prevJ;
left OF this[prevJ+this[nextJ

C-------------------- ___ _
place <temp >+ 1 places above the previous entry

--c

FI;

temp'Predefined[countJ-level OF this [prevJ;
FOR i TO temp WHILE operator OF (father OF this[prevJ)#"@"

DO pa (prev) ;
father OF this[next]+father OF this [prevl ,
IF operator OF (father OF this [prev j) ;,,@i. THEN

operator OF (father OF this [next))+"@"
EL51i this [prey] IS right OF (father OF this [prey)) THEN

right OF (father OF this [prevJ)+this[next)
ELSE left OF (father OF this [prev])+this[nextJ
FI;
father OF this [prev]+this[next];
right OF this[next]+this[prev]

C--- -------------------------
if a sub-tree of level greater than one has been added update count
to allow for this

--C

J z :

IF level OF randstack[randtop];l THEN prev+next
ELSI' level OF randstack[randtopJ>=level OF orig THEN

prev+next;
count+2t(leve1 OF randstack[randtop])-1

ELSE count PLUS 2t(leve1 OF randstack[randtop]-l)-l;
FOR i1 FROM last TO next-l DO

SKIP
FI;

IF this[ilJ IS left OF this[nextJ THEN
prev+il;

FI;

father OF this[prev]+this[next];
GOTO I.

IF operator OF (father OF this [nextJ);"@" OR pcount=O THEN
orig+this[next]; pcount+l

FI;
count PLUS 1:
rand top MINUS 1:

198

temp+next: I

C-- I
update levels of all trees affected by this insertion I

-- --------------------------C !

IF operator OF this[temp]= "@" THEN
level OF this[temp]+left OF this[temp]')!right OF this[temp]
ELSE
WIllLE operator OF this[temp)#"@" DO
(level OF this [temp)+left OF this [temp]' >'

right OF this[temp);pa(temp))
FI)) ;

- - !

APPENDIX 2

ANALYSER

.................... --------------------------------------
,
2
3
4
5
t,
7
8
9

'0
, 1
, 2
, 3

'4
1 5
H
17
1 B
, 9
20
21
22
23
24
25
26
27
28
29
30

, 11 E GIN •
'rllf,RPUi'OUTPUiiOPcNCCOUTPUT'iLINE PRINTER,') r
~, C 1\ Ii R r UT ;(IU NIT U R ; 0 P E Ne CM 0 NIT OR , L 1 NE R R 1 N TE R , 2) ;
',INi' LlNGTH b~ LINE+-S1: 'Cl CARPS
EVE(IT'OF·QUTPUT·C'INT'I)'INT':
IRt:G!/j'

(1="1t1INrXTLINE(CUTPUT)IOI~1 I
~ r N D' :
o lJ T ' 0 r ' 0 U '1' PUT. C ' I N T ' !) , I N T' I

!HG!N'
'IF,r.HARNUMOFRCOUTPUT)CLENGTH or LINE 'ANO't#~33fTHEN'

NExnINE(OUTPUn
·Fj.t~

5TAN~ARP OUT(I)
! FIIO' :

EVENT'UF",ONITOR.C'INT'll'INT'1
'(\EGIN'

'lFlt=-" 'THEN'NfXTLINE(MONITORl:O 'ELSE' -t 'FI'
!Ft'l\'l';
OUT' or' MOll I TOR.('! NT' I)' I NT' I
~~"GIIJ'

'lFICHARNUMaER(MONITOR)-LENGTH or LINE 'AND' 1.~33tTHEN'
NEXTLINF.(MONITOR)

'FJlf.
sTANPARD OUT(I)

~FND':

q N T , l ., 2 , H .. H , N." :
nN:\'T,T' ,SN'" I

'C'HERE ONLY 12 STANZAS HANOUED

-, "

I, C •

31
32
33
34
35
30
37
38
39
1.0
41
42
1,3
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
S9
60

'C' SN IS THE CURRENT ~TANIA NO. AND T • "'1 ARE ALWAYS TEMPORARIES
!INT'LGUUNT.O.SCOUNT.O,MAXCOUNT·151

, C '

, C '

• C '

I G '

MAXCOUNT IG THE UPPER LIMIT OF VARIABLES TO BE USED IN ASTANZA
{f, : ? 0 , 1 : ~1 • , 1Nl' CH A R , W N A ME, X N A ME, Y N A ME'; Z N A ME;
~rL~Ap.'wN~ME;

'e Lr:fdl' XNM1E 1
~ C U:AR' YNf,tIE:
'CLf.AR'ZNAME/
'[1; n" ; N)' CHAR' IJTFMP r
~, t I. CAll ' \.iT(M P I
~ S T ~ I N G ' L H S I
~STRJNu'TI:rrpl

'BOOL'YTYPt·'FALSF':
'5TPING'srCHAR~· •• ··"Z·'()'·;
~CHAR'~1;

'e'

~ r, 0 ~ E ' ' 5 P ~ u C ' .. 'ST P U eT' (I CH A R ' T Y PE', , S'" R I N G ' N A HE, , r N T ' S NO, , I N T fN 0 , , I N T , pO S I
'INT'LClI

t~ :'0) 'spP,OC'PROCSl
"NT,pRucrUINT.O;
'l'OPE"5PARAM'~'STRUCT'('CHAN'TypE1'STRJNG'NA"E)~
'1 1 : ~ 0 J ' SPA R MP PAR" M S I
[1 ;20,1 :6,T'CHAR'PROCNAME, 'CLEAR'pROCNAMEz

PRnC~DuNE NAMES LIMITED TO 6 CHARS AT THE MOMENT 'C'
~TNT' NAMEPOINT"O;
~ on' rARAl-IPOI NT.':

N.n, ALL E~RORS SHOULD BE RECOGNiSED ~Y OTHER P~R'S OF THE COMPILER ~C'
~PROC'~RROR.('tNT'NI 'VOIO'1 •
~ r, E Gill'

pNINT("ERROR TYPE ·,N»;

N g

.................. ------------------------------------
('1
(,2
63
{, (~

(,5
60
6'(
1\8
(,9
70
71
72
73
74
75
76
77
7(;

i9
PO
/11
il2
:13
(\4

85
ilp

1\7
RIJ
[{"I
'?v

r }. I E
, r In' , ;

'I.' SIJIIHLI HUII.'V!:; THr PI),.T~. ITEM FPOI~ ROLL" navEs EVEr,VTH!NG FlSE

III'IJII (] N C P LAC E
'rHllc'SltlJffLEeC'RFF'r,J'CHAR'ROLI,I!NT'pOS)'VnIDTt
I r Vi! I' '

, f- (Ill' J ' F H' f' , r Cl, ' TO' M -, , DO' RI' L L (J J .. R 0 L L (J ~,) f
'ClE~I<'ROLL(nl

, r IJ r, I ;

'C' ~r)~TII 1.1)\)5 ITEM ON iO THE END OF ROLL
• r R () C ' A I) DiU" ((I I C H A r< I I T EM, ' R E F ' [, 1 ' CH A R I R 0 L L) I V 0 I D I :

I r l C, J 11 '
'INT'r .. o;
, I' 0 H • J I TO I 1' I ,'H I L F ' R 0 L L 1 J , ,) If· .. , DO' T .. J ;
, I r I - = I~ , THE N I (R Q 0 R (1 n 1 J ' EL Sr' R 0 L L r T ... ' " : ' Cl r B I I T E I~ J "1 T E ~11 F I I

, r (J I.) I :

, r k 11 C ' SKI r SPA C [, S = (I q F. r ' I CH A R ' CH) I V n 1 D' :
I p [f; III '

rll +-" '.;' W H I L r I C H = " .. , 00 I (R E ~ 0 (CH) ; P \I T (M 0 1.Ji TOR, CHI)
, (: r4 f\' :

, pr: {I r. ' 'V n 1 D ' n t ('l k r £; q ,

, c '

I C I

........................... ---------------------------------
91
92

, 93
"

94
95
'l6
97
98
99

'00
'101
~ 02
103
'104
'105
IT 06
~ 07
~08
'109
~ '0
'111
~ 1 2
, ,3
1H
1 1 5
H6
'I 1 7
~18
1, 1 9
~, 20

!PROC' I'REF"INT','R~F"INT')'VOIOITIOy;

'C' MATCIJ RLTURNS TRUE IF C Is A MEMBER OF 5 le'
~ r RP C ' M ATe H to (I CH A ~ , c , (1 ' CH A R ' S) , [\ 0 0 L , I
~ n E G Itl '

'BOOL'B"'TRUF' ;
, FOR' J I TO' , UP B ' S 1 W H ll. E 1 B I DO't e It S [J 1 I B .. I FA LSE 1) ;
A

~FND':

'C' MATCtl KEY RETURNS A NUMBER • TO THE POSITION OF WORD IN WORDL1ST , OR 0
LP THERE IS NO MATCH 'C'
~ PR ne' ~I/IT C fl KEY" ([J ' CH A R ' wo R D) , I N T ' I
~nEGIN'

C1:10,1t51'CHAR'WO ROLISTI
'GLEflR'WORDLIST,
WOHOelSTc,l""FOR ":WORDLISTt2J .. "IF ",
WORDllSTC31""STEP ":WOROLISTt4]~·UNTIL·;
wORDLISTCS1."DO "IWOROLISrt6J."THEN"1
WOROLISTC71 .. "eLS~ ·'WOROLISTt81~"BEGIN"1
WORDLIST[91."END "IWOROLISTt'O~ .. "PROC"1

'C' EXPAND ON THIS AS NECESSARY TO HANDLE OTHER CONSTRUCTS tc'
'INT'11"0;
'FOR'~ITO"UPB'WORDLIST'WH1LE'tf=U'DO'

'IF'WORD~WO~OLIST[Jl'THeN'I'''Jrft'l

'C' MATCHNAME ~ETUPNS THE POSITION OF NAME IN NAMELIS1 OR 0 IF NOT THERE \Cl
,PRPC'MATCHNAMEB([,1'C HA R'NAMELIST1CJ'CHAR'NAMEl'INTII

N o
IV

..................... -------------------------------------
~ 21
',22
~23
,\24
1.25
rt26
n.27
~. 28
~ 29
DO
131
,32
~33
~I, 34
~3S
'36
,37
,138
139
~40
~ 41
~42
143
144
HS
'146
H7
, t.8
H9
150

!nElfIN'
, I N T ~ J 1 "0 I
, fOR' 11 ' TO' , tI P B , N A M EL 1ST' W H ! Le' tl A M EllS Tt I 1 , 1]If" f'" N D I J 1 • 0 ' DO '
, 1 F'N 1\ M EllS Tt 11 1 .. N A M e [1 I 2 ' Up 1\ I N A M EL 1ST) I THE N I

'F H ~
J 1

HNf)';

J 1 +11

\PRUC'GETAAME-e]'CHAR'1
~ II g G HI'

[1 :N~'CHAR'NAMEI
, C LEflR' NAME;
'CHAR'C"" ";
'INT'T"'I
'FOR'J'TD'N'WHILE'MATCH(C,sptHARl'OO'

<SKIPSPACES(C)INAMEtTJ .. CITIPLU5'1:
<C~"t·I'FOR'J1'FROM'J+1~TO'N'WHILE'C#·!·'DO'

(SKIPsPACES(ClINAMECTJ+CIT'PLUS'1l)"
NAMEtT-,l .. " "I

NAt1E
HNO' :

!.PROC' BflCK=' VDI O'! 'C' BACK~PACES
~~eijltl' RRAD(BACKSPACE)JBACKSPACECMONITORl 'END'n

IPRUC'REA~(IREF'tl'CHAR'Cl'VOIO'1
!OE~IN'

RlAotClIPUT(MONITOR,Cl
~r:NP' :

'C' READ!: \ C I

N o
""

..................... --
~ 51
1 52
153
154
I 55
156
'57
158
~ 59
1('0
1 61
162
163
~(,4

~65
'.66
167
'68
~ 69
HO
171
H2
H3
P4
n75
176
H7
~78
179
180

PR (l C ' k E AI" (, R EF ' , I N T ' K) • V 0 lP' I

R~f,iIN'
'STR'NGIK'l-GETN~MEI

'c' REAO~ AN INTEGER

K"'O :
'rOR'K!N'TOttUP~'K1.WHILEtK1fKlNJII" "'DO'
, 8 EG! N '

'INT'K2~tA~S'K'[KINII
'IF'KZ>9'TH~N'PRINT("NUMBe~ 1 ")IERROR(200)1FIII
Kl-K.,O+K2

'END';
RACK

'C' COPIEs STANZA pos INTO STANZA PES
\PHPC'COp?~('INT'POS.'INT'PES)IVOlD'1
~~EGIN'

WNAHOlPES)·WNAMEEPOSl'
xNAMSLPES)·XNAMErpOSll
Y~AHelPES)l-YNAMF.[POSI'
ZNAMP.(PES1·ZNAM~rpOSl

~r:ND' :

'c' HANDLES CAL~S TO PROCEDURES
!.PRDC'PROCCHLI:PINTlpOS,'REF" IN'I"LC) 'VOID'I
~~E\iIN'

C1 :N~'CHAR'iEMP'
lHS!-~ ",
COPYIPOS,SN):
'IF~INOIOF'PRocsrpOSl)·O'THEN'

~ C'

N o
'"

................ ------------------------------------
~ 111
~ 82
183
~I 114
~85
186
~ 117
'88
~ 89
~90
~. 9 ~
'92
~93
'194
195
196
~97
~98

'99
200
201
202
203
204
205
7.06
207
208
209
Z10

'IF'(SKIPS~ACES(C1):C'=·("l'THEN'
PRINTC"SHOULD BE NO pARAMETERS ")~ERROQ(300)

'HSE' ERROR (302)
, F I '

'ELSP' (BACK;SKIP~PACES(C'):C1#"(·)'THEN'
PRINT("SHOUlD BE SOME pARAMS "'rERROR(301)

, E LS t '
PRINT«BACKSPACE,· H»~:
, FOR' 11 ' \J H I Le' (B A C K : REA (e 1) : C 1 Ii") ") , 00'
'BEGIN'

'END'

'CHAR'T'~TYPE'OF'pARAHS[(POS'OF'PROCSf~OSl)+11.1l:
TEMP~GETNAME :
'IF'T1."N"'THEN'ADDTO(TEMP,YNAME[SN1)
'ELSF'T1 m"V"'THEN'ADDTO(TEMP,WNAME[SN])
'ELSE' FRROR (305)
, F I '

I F 1 "! ~
LC'P~US'(LC'OF'PROCSCPOSl)1
R~ORPER: .
SKI P ~ P ACE S (C 1) I ' IF' C, 1/" I .. , THEN' 6 R Ra R (306) , Ft'

\ G N D ' :

'C' HANDLlS SIMPLE ASSIGN~ENT STATEMENTS
lPRPC'ASSt GNMENT='INT'1
~nEGINI

'INT'JH11
'INT'POS;
'1NT'LC"'r
LHS .. ~ETNAI~E ;

I. C'

/ .<
I

...................... --------------------------------~----
~ 11
212
213
214
21 5
216
217
218
219
220
221
222
223
224
225
226
227
2(8
229
Z30
231
232
233
234
235
236
237
238
239
240

'IF~tPOS+MATCHNAME(PROCNAME,LHS':POS#O)'THEN'
, IF~I~ACK;SKIPSPACES(C1)IC1#~+·,'THEN'

LC'MINUS'1 I
TI~Y(SN,LC"PRINT(" PROC CALL ")/PROCCALL(pnS,LCll

TlDVtSN,LC)
'ELS!'PRINTC·PRQC NOT ALLOWED ON LH5 ")IERRORC200)
oF 1',
'ELSF'CBACK:SKIPSPACES<C1)IC1#"i f)'THEN'

PRINT(CNEWLINE,"THIS SHOULD BE AN ASSIGNMENT "/NEWtINE»
'ELS6'

'FI~r;
Le

HNP' :

'CHAR'C2+" "I
\lACK;
, FOR' J ' TO' M , W H I LE' (S Kip sP ACE S C C 2) I C 211 " ~") , DO'
'BEGIN'

, E N 0 I

'!NT'TFMPI
WTEMPIJ1J+GETNAME:
'IF'(T~MP+MATCHNAMe(PROCNAME,WTEM~[a11l:TEMP»)O'THEN'

'CLEAR'WTEMP[U1lf.
J1'MINUS'1,PROCCALL(TEMP/LC)

, FT' r
'IF'LHsaWTEMPtJ1J'THEN'YTVPE+'TRUE'
'ELSE'J1+J1+1ILC'PLUS'1
, F J ' ,
BAr.K

'C' THIS HANDL~S ALL MULTIPLE USES AND ASSIGNS TO THE CORRECT NAME

" .)

'" o
""

........... ----------------------------------2/.,
2 t. 2
243
244
2/ .. 5
246
2 t, 7
248
21.9
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

REOHOER .. q'OlOl:
!.nEGltJ'

r..1 ,
'TO'~'~HILE'~TEMP[T,'J#r "'DO'
('BOO~IB~'TRUEI,

hl I

((, FOR' J 1 ' TO' M ' W H 1 LE' (y N Ar1 £ cs N , J 1 , 1 J If" ., AND I B) I DOl
IWTEMPCT J e YNAMErSN,J11ISHUFFLE(WTEMP,T)/SCOUNT'MINUSI,l

B" ' F AL 5 E ') : a) I TIp L US' 1 , l ,

'TD'H'WHIL~'WTEMP[T"),, "'DO'
(, aOOl' B'" TflUE '/

((I FOR' J 1 I TO' M ' W H I L ~ I (Z N Af~ E [S N , J 1 , , J 11 " ., ~ N 0 I B) , 0 0 '
(WTeMPCTJ=ZNAME[SN,J1lISHUFF~E(WTrMP,T)/SCOUNT'MINUSI' L

8+'FALSE":B) IT'PLUS'1')f
hI, n .. "
'TOI"'WHIL~'WTEMPtT,1J#r ·'00'

(IsoOL'ef"TRUE'/
T 1 .. 1 I
'TO'M'~HILE'XNAME[SN,T1,']If· ·'ANO'B'OO'

(IWTEMPCTJ-XNAMEISN,T1JIADDTO(WTE MP rTl,ZNAMEfSN])/
SHUFFLEIWTEMP,T)ISHUFFLEeXNAMECSNJ"1)/
SCOUNT'MINUS'1:n+ ' FALSE')1

IIIIT1 'PI.US'1»)/
(BIT'PLUS'1»1

'TO'M'WHILF,'WTEMP(1,1J,· "(DO'
(' eoo~' S .. I TRue' I

((, FOil I J 1 ' TO ' M I W H I Le I (WN A MEt S N , J 1 • 1 J 11" • , AN 0 , B, , 00 '
(WTEMP[1JaWNAMECSN,J1)ISHUFFL£(WT~MP,1)ISCOUNT'MINUsl,l

e+'FALSE'1:B)IAOOTO(WTEMPC11,WNAMECSN])I
SHU'FL6(WTEMP,1»'~

_ ---
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

I G '

'IF'('BOOL'A.'FALSE"'FDR'J'TO'M'WHILE'WNAMS[SN,J,tl'" "'AND'
'NOT'B'DO'

C L H S NW N A M E [S N '; J J I R .. , T ~ IJ E ' : S HUFF LE (W N A M e Cs N 1 , J I :
AOOTOCLHS?YNAME[SN1)ISCQUNTtMINUSl11IB)

'THEN' '5KIP'
'ELSF'

C'BOOL'A.'FALSE"'FOR'J'TO'M'WHILe1XNAMe[SN~J,tl#"

CLHS.XNAME[~N1JJln.'T~UE':SHUFFLE'XNAMErSNl,JII
ADOTOCLHS1ZNAME[SNJ)ISCOUNT!MINUSl11IB)

'THEN"SKl~'

·'AND'
'NOT'8'DO'

'ELSF'C'BOOL'84-'FALSE': "O~'J'TO'M'WHl~E'YNAME[SN,~,1J#" -'AND'
'NOT'B'DO'

(LHS.VNAME[SN1JJIR.'T~UE'ISCOUNT'MINUS'1)IB)
'THEN"SKlp'
'ELSF'C'BOOL'B"'FALSE'I'FOR'J'TO'M'WHI~E'ZN.ME[SN,M,1JN" "'AND'

'NOT'9'00'
C L H S "l N A M E [S N '; J J I A .. ' T RUe' : seD U N T ' M I NUS' 1) I B)

'THF.N' 'SKI~'
'ELSF'YTYPE'THEN'ADOTOILHS,YNAME[SN1)
'ELSE'AODTO(LHS,XNAME[SN1)
I F I '

TI~V IS us~o TO COMPLETE A STANZA
:r ! 0 Y .. (, R E ~ , , I N T ' NUM, , RE F , , I N T ' se) , \I 010 ' :
!AeGIN'

'I H5C>O' THEN'
IINi'PRESPOS=CHARNUMBER(MON1'OR)J
N~WLtNECMONITOR)I

'" o
'"

..................... --
301
302
303
304
305
306
307
308
309
310
:; 1 1
312
3'3
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
:330

rUT (!\UNI TUR, ("~**- STANZA", NUH.:pROCPOINT» ~
NEWLINE(MONITOR)I
N~WLTNE(MUNITOR)I
'TO.I!'RESPOS-,' DO' SPACE (MON ITOR) f
PRINT«NEWLINE,NEWLINE,"STANZA 'iNUH,NEWLIN~»1
IJEWLl'NE (OUTPUT) I
PUT(OUTPUT,"W")I
PUT(OUTPUT,WNAMF.CNUM,'J)I
'FOR'J'FROM'2'WHILE'WNAMECNUM'J;,l#" "'DO'

(PUT(OUTPUT.("I",WNAMECNUM;JI»leJ.(J','9)*9INEWLINeCOUTPUT»)/
PUT(OUTPUT,"I")I
rJl,WUNE (OUTPUT) I
pUT(OUTPUT,"X ")1
PUT(OUTPUT,XNAMF.[NUM,11)1
, FOR' J ' FRO'I ' 2 ' 101 H I LE' X N A M E C NUM'~ J , 1 lII" '" 0 0 '

(PUT(OUTPUT'("I",XNAME[N~M,JJ»/eJ.(J'A'9)*9INEWLINe(OUTPUT»)I
PUT(OUTPUT,"I")I
NEWLl NE (OUTPUT) I
PUT(OUTPUT'"Y")I
PUT(OUTPUT,VNAM~rNUM,11)1
'FO~!J'FROr"2'WHtLE'VNAMECNUMrJ,1l#· "'DO'

(PUT(OUTPUT.e",",YNAME[NUM,JI»/eJ-eJ','9)*9INEWLINECOUTPUT»)/
PUT(OUTPUT,":")I
NEWUNE (OUTPuT> I
'PUT(OUTPUT,"Z ")1
PUT(OUTPUT,ZNAMetNUM,1l)1
'FOA'J'FROM'2'WHILE'ZNAMECNUMtJ"J#" "'DO'

(PUT(OUTPUT,(".",ZNAMECNUM,Jl»ICJ~(J"'9).9INEWLINECOUTPUT»)/
PurtOUTPUT," I n) I
NEWL!NE(OUTPLJT) I

'.

N o
<Cl

............. ---
33'
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
31.8
349
350
35,
352
353
354
355
356
357
358
359
360

IIUIHPLUS'1
'F11~~

S r,;- 0
HHIl':

'C' rHJS wlL\, rIND THE TYP~ Or KEY WORD AND ROuTE TT TO IT S HANDtlNG PROC
,PKOC' KEYMURDo:' 1 NT' I
, t\I: Gill •

[i :S~'CHAR'WORD'
'INT'K1,
'CHAR'AI
'CLEAK'WORD:
REA (Al I
'fOR'J'TO"UPll'WORD+1'WHILE'(REA (A)/AII"''')100'

WORDtJl"A/
(A 11" • " I READ (fI A C K S PA C E » I
K''"fl''TCHKEYCWORD) I

K'
~[;I~P':

• C '. COil D I T CON S T RUC T S THE EN VIR 0 MEN T r 0 RAN I r S TAT E M Ii N T
~PRUC'CONDITs'VOln'l
lOEGIN'

'CtlAR'C2"" ":
'lNT'K"
TlDytSN,SCOUNTlr
NEWLtNE(OUTPUTlrpUT(OUTPUT,"S "',
WNAM8tSN,1l .. GETNAME/
, F OR ' J , F R OM I 2 ' TO' M ' W H 1 I. E ' (B A C K , Ft e ACe 2) I C 211 " T " 1 ' D I'J '
'SEG!·NI

1 C '

....................... -------------------------------------
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
3117
3B8
389
390

WNAME[SN,J1.GETNAME
'END';
nACK~'
K1·KHIoJORDI
(K1#6IERROR(106)1
r,COUNT+1 J
T 1 D Y (S N , S CO U~! T) ,
R~A(C1) ,BACKI
nLOCKi
Tl OytSN ,SCOUNT),
SKIP!lPACESCC1) I
, !F~C1""''''THEN'
'flEG!N'

6ACKI
K1.KEVIoJORO,
'!FlK1"7'THEN'REA (C,,:

, Fl '

DACI<I
BLOCK,
TlnY(!!N,SCQUNTl

'c' MA' RE NECESSARY TO READ 9AC~WARDS OVER KEywORD l~ NOT ELSE
'cND'
'tLSE'REAO(BACKSPACE)
'FI.',~
NEWLtNECQUTPUT),PUTCOUTPUT,"S "lINEIoJLINECOU~PUTl

HNP' ;

'c' LOOP CONSTRUCTS A ~o LOOP ENVIROME~T
~ PROe' LOOP'" VOI Cl' I

!~EGIN'

391
392
393
394
395
396
397
398
399
(.00
(. () ,
402
r.03
1.04
405
(.06
1,07
408
409
r.10
r.11
(.12
(.13
414
415
1.16
4H
418
419
420

, C '

':;TRTI~G'CVI
'Lf1AR'CI
'INi'K1,KZ:
Tl DV t SN, SCOUNTl r
II~WL!NE(OUiPUi) rpU"(OU'TPUi,"~D ");
CV"Gn1NAMe:
IMAiCHNAME(PROCNAME,CV)#OIPPINT("PROC NOT ALLOWen CV "lr ER RO R(200»,
BACK~RE.(C):(C#"."\E~ROR('02)1:
nEAICK11/PUTIOUTPUT,C" ",K1)':
K~"KnIJORD;
(KZU3IERROR(103l11
REt.IIK11/PUTCOUTPUT,C" ",K1n/
K'''Kr:VWORDI
(K2#~IERROR(104»/
Rtt.ltK11/PUTCOUTPUT,C" ",K1)':
K'''KP.YIJORO:
(K2#SIERROR(105»1
OUTF~UUTPUT,$10XTL$,CV)1
nEA (C1)1
RACK1·
nLOCK:
TIDV!SN,SCOUNT)/
PUT(OUTPUT,"#O")rNEIJLINEIOUTPUT)

HN\)I:

ROUTINE HANDLES PROCEouRE DEflNlilONS 'e'
1PRQC' ROU'INE.'VOIO' I

HI E GIll' 'CHA~'i."R": 'c' ~OR TIME BEING ALL P~OCS REAL rc'
rIDV(SN,SCOUNT) I

N
N

1IIII II:.~k.i ~:~§~;~R~'~N~G~,~S~."G~E~T~N~A~M~E~, ---
1.22 ' C' I' A v CH r C K Y 0 SEE 1FT HIS PRO C ALL REA 0 V E X 1ST S r. C I
423 PROCSLPROCPOINTIPLUS'11.(T,S,SN,O,PARAHPOINT7LCOUNT)/
424 'FOR' 11 'TO"lJP!\I~'WHtLEII1<"2'URB'PROCNAHe'~O'
425 PROCNAMEtPROCPOINT'!13 .. SU1'l1
426 p~AbtaACKSPACE)IREAD(T)j
(.27 'IF,','I'''''/'''THOJl'SKIP' 'C' NO PARAMETERS ',C'
428 'ELsP'T."("'THEN'
429 'BEGIN'
1.30 'I NT' COUNr..n I
(,,31 'TO"UPB'PARAMS'WHILE'TII")"'DO'
432 'BEGIN'
433 (NO'OF'PROCStPROCPOIN')I)) 'PLUS" I
434 PARAHSCPARAHPOINT]J("N~,(GETNAME»I
f.35 'C' flAY CHEcr; tF PARAMETER IS ITSELF A PROCEDURE I,C'
436 READ (flACKSPACE) / READO) I
437 PARAMPOINT'PLUS'1:tOUNT'PLUS"
438 'END'
439 'END'
440 'ELSE'
441 PRINTC" I'APAM ? "):ERROR(Z01)
442
1.43
444
1.45
(,46
447
1,48
449
450

'FI P
"KI P~PACES (Tl:
SKJP~PACES(C1):~ACK:
BLOC¥,;

'c' CHCCK PARAn5 + SET UP REST OF INFORMATION 'e'
(LC~Of'PRocsrpROCPOINTI)'PLUS". 'C' ??~? 'c'
'FOR'j"FROM'PARAMPOINT~NO'OFIP~OCSCPROCPOINTl'Tn'PARAMPOINT·1 '00'
'BEG,f.N'

'INT'T1r

- 1.51
1.52
1.53
454
455
1.56
457
1,58
1.59
1.60
1.61
(.62
{.63
464
465
466
467
1,68
{.69
1.70
1.71
472
i.73
474
1.75
476
477
1.7 B
479
4BO

'C'

'IF'(T1.MATCHNAMECWNAME{SNJ,NAHE'OF'PARAMS!t1l»NOTTMEN'
SHUFFLF(WNAME[SNI,T1)

'ELSF'(T1.MATCHNAME(XNAMECSNI,NAME'OF'RARAMSCI1l»#O'THEN'
SHUFFLECXNAMEtSNI,T1)

'ELSF'CT1.MATCHNAMECVNAMe[SNJ,NAME'OF'~ARAMSCI'l')#O'THEN'
SHUFFLECYNAMEtSNI,T1)

'ELSF'CT1.MATCHNAMECZNAME[SNI,NAME'OF'RARAMS[11l»#O'TMEN'
SHUFFLECZNAMEtSNI,T1)

'ELSE'PRINT("PARAMETER DECLARED AND NO~ USeD ")lERRORCZ09)
'Ft '

'END';
sn'PLUS'1,SCOUNT.O
\r,ND';

SErAS GLOBALLV DECIDES WHAT A STANZA IS
snAs.'volD'1
, 0 Er; ltJ '

'lNT'K11
'IHr.1#'""'THEN'
VTVPr,·" FALSE';
LCOUNT •• SSIGNMENTI
'IF1CCOUNT.SCOUNT>MAXCOUNT'THeN1TIDV(SN,SCOUNT)'~I'1
S~UUNT'PLUS'LCOUNTI
RcUR~~RI
'CLEn~'wTEMP:'CLeAR'LHS
'ELSE'K1.KEywORnl

'I F' K1 "1' TH~N' LOOP
'ELSF'K1=2 1 1HEN'CONOIT
'ELSF'K1=a'THEN'BLOCK
'ELSF'K1·10'THEN'ROUTINE

~ c '

F 1.81
I.R2
I.R3
484
485
1,8b
f.f:,?
I.R8
1.f19
4'10
491
1.92
1,93
494
1,95
4 0 6
497
498
1.99
!Jno
() 0'
502
(in3
504
505
506
50?
508
509
510

, E L ~ E ' ER RO R (111)
, F I '

,c,' BLOCK [S CnLLEn RErURS!VELY·- EACH TIME A BLOCK IS ENTERED
B\,OCK\-'VQjr>' ;

'!{\~GIN'
'lNT'K1/
SKI P~PACES (Cl> /
'IF'C1#"'·'THEN'AACKISETAS
'tLSfl'
fJACK:'
KhKE¥WORDI
'!FlK1 e 10'THEN'ROUTINE
't:LSr.'
'IF~K'#8'THEN'eRROR('08)'FI'1
SKI P~PACES (C1) I!lACK:
~<:TA~;

'WHILE'
(SKIPSPACE5(C1)1
'IF'C'#"'·'THEN'BACKI

'TRUE'
'ELSF'(BACKIK1~KEYWORD:k'e9)'THEN'

'FALSl' '
'ELSE'8ACK/

'TO'6'WHILE'(BACK:REAtC1>leACK:
(C'e·'·I'FALSE'I'TRUE')'DO"SKIPI~

'TRUE'
, F I')

< ,

................. --------------------------------------
[;11
512
513
514
51 5
(116
517
518
(;19
520
521
~?2
523

'DOI.5E1'AS:
REA \'1)
, ~ 1 '.

'. W HI L I' ' \ S I: I PS Pile B (C 1) le, • • .. ") , DO' (U C K : PR I N T C N E Q L I NE I I B L 0 C I(I:
O~CK;
n QV (SN, srOUNT):
NEWLIN~(OUTPUT)IPUT(OUTPUTI· •••• ·)I NEWLINECOUTPUT)

,

'ENO'
'F.lNISH'
*00:""

APPENDIX 3

DETECTOR

1
2
3
4
5
6
7
11
9

1 0
1 1
1 2
13
1 4
1 5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

'BEGIN'
'CHARPUT'INPUTrO PE NC(INPUT,CAROREAOeR,1);

'C' ALL RELATIONSHIPS ASSUME PRIVATE MEMORY IS AVAILABLE 'c'
t!NT'L+12,M+'2,N+'2: 'C' ONLY 12 STANZAS + 1ST 12 CHARS SIGNIFICANT 'C'
, MOO E ' , Ll S T S ' • , S T RUC T ' ([1 I M J ' RE F ' [] , CH A R ' N A Me) r
[1 I L], LI S T S , w, X , Y , 7. , \.IY , X Y Z r
C1 IL" IM,' INl'CHAR'WV,XV,Yv,zvr
[1s1J1CHAR'SP+" "I
'FOR'r'TO'M'OO"FOR'J'TO'N'DO'

, R E G rN'
(NAME'OF'W[Il)(Jl"C1I'UPB'SP1'CHAR'+SP/
(NAME'OF'X(ll)CJl .. C1I'UPB'SPJ'CHAR'+SP:
(NAME'OF'YCIl,CJl+C11'UPB'SPl'CHAR'+SP/
(NAME'oF'ze l l)CJ]+C11'UPB'SP1'CHAR'+SP

'ENO':
'CLEAR'WV:'CLEAR'XVr'CLEAR'YVI 'CLEAR'ZV,
'MOOE"cONTROLVARIABLE,.,STRUCT'('INT'INIT,'INT'STEP"INT'LIM,'STRING'CV'/
e, I Ll 'CONTROLVARIAeLe' LOOPSTACKI
'INT'LOOPPOINT+O:
ICHAR'CM'''' ",
IBOOL'COND+' FALSE' I

'C' N,B. ALL eRRORS SHOULO aE RECOGNISEO 8Y OTHeR PARTS OF THE COMPILER 'C,
'PROC'ERROR-(I INT'N) 'VOIO' I
I 8 E GIN ,

PRINT«"ERROR TYPE ",N)'/
FREE

'ENO'I

.................. ---
31
32
33
34
35
36
37
38
39
40
41
42
43
1,4

45
46
47
48
49
50
51
S2
53
S4
55
56
57
58
59
60

'BEGIN'
CHfo" ",'WHILE'CH-- ·'OO'GET<INPUT,CH)

, END' ;

'C'OpERATOR E RETURNS TRUE IF LISTS A IS EMPTY
'PRIORITY'£=9;
'Op,Ec(' L1STS'Al 'GOOl',
, BEG IN'

'SOOL'Sfo' FALSI'"
, IF' (N A ME' 0 F ' ~) C 1 l " s p , THE N ' S fo , T RUe' , F I ' ,
B

, EN 0' ,

'C'OPERATOR Q ReTURNS TRUe IF ANY MEMBER OF LIST A IS ALSO A MEMBER OF 8 'Cl
'PRIORITY'Slc3,
'OP,@:('lISTS'A,Bl'BOOL',
, BEG IN'

'1l00L'MATCHfo' FALSE';
'FOR'I'TO'M'WHILE"NOT'MPCH'OO"FOR'J'TO'M'WHtLE"NOT'MATCH'OO'

'IF' «NAME'OF'Al[IJs(NAME'OF'S'[Jl)'ANO' «NAME'OF'A)[Il~SP)'THEN'
MATCHf.'TRUE'

, F I ' ;
MATCH

, eN 0 ' :

'c' OPERATOR X JOINS LISTS A AND l! TO FORM A NEW LIST
'PRIORITY'X=3;
'OP'X=('LISTS'A,B)'LISTS"
'BEGIN'

'L1STS'AB,

. , C ,

N
00

.................. --
6'
62
63
64
65
66
6'"
68
69
70
.."
72
73
74
75
76
n
78
79
80
81
82
83
84
85
86
87
88
89
90

'INT'TEMP"O:
'FOR'I'TO'M'WHILE'HMPaO'DO'
'BEGIN'

(NAME'OF'AB)[ll"(NAME'OF'A)(ll;
'IF' (NAME'OF'A)Ctl=SP'THEN'TEMP .. t'FI'

, END' I
(TEMPaOITEMP+M+1IPRINT("ARRAY FULL"»:
'FOR'I'FROM'TEMP'TO'M'DO'
(NAME'OF'AB)(ll"(NAME'OF'B)CI-TEMP+1ll
AB

'END';

'C'PRINT OUT THE RELATiONSHIP BETWEEN TWO STANZAS 'C'
'PROC'PRINTRHa('INT'I,J,K)'VOIO'1
'BEGIN'
OUTFCSTANOOUT'SL"STANZAS"<2>,"AND"<2>"ARE "ICC"CONSECUTIVE",

"CONSERVATIVe","PREREQUISITE","CONTEMPORARY·)$,CI,J,K))IPRINT(NeWL1NE)
, eND' I

'C' RELATIONSHIP BETWeEN TWO AS-STANZAS
'PROC'ASSiANZAaC'INT'I"VOID',
'BeGIN'

XYl Ul +X (I ay [! llCz [I 11
loin I) +101 (IU vc III
X V Z C I + 1 1 "X C I + 1 ay [I + 1 1 "Z[I .. , 1 I
WV [I + 1 lOo 101 [I'" j" Y [I .. , 1 I
, IF' X Y Z (llli) 101 vc I +1 1 • THEN ' PR I N TR EL(l , I +, ")
'ELSF'XVZel,IilXYZet+,,'THEN'PRINTREL(I,I+',2)
'ELSF 1 WYCI)@Xyztl+,"THEN'PRINTRELCI,I+1,3)
'ELSE'PRINTREL(I,I+',4)

'e'

91 ' F I '
92 !END'!
93
94 'C' ReLATIONSHI~ BETWEEN AN IF-STANZA AND ANOTHER ST~NZA 'C'
95 ' PRO C , PI F S TA N Z A It (, I N T ' t1 , , BOO L ' 0 T) , V 0 ID' I
96 'BEGIN'
97 'INT'I~11:
98 'INT'K~I+1:
99 PRINT(NEWLlNF.,"PIF STANZA",NEWLlNE»/

100 (OTIJlMINUS'11I'MINUS'Z)!
101 WY[I+n"W[I+11Y,Y[I+1l1
102 XYZ[i+1 J~X(l+11Y,y[I+1lXz[l+111
103 WY[I+21~W[I+21~Y[I+2J!
104 XYZ[I+21~X[I+21~Y[1·21~Z[1+211
HS 'IF"NOT'OT'THEN'
106 Wy[1+31+W[I+31XY[I+31,
107 XYZ[I+3J~X[I+3JXY[I+31~Z[I+31
108 'FI'!
109 PRINT«NEWLINE,"RF.LATIONSHIP IF THE CONDITION IS TRUe",NEWLINE»/
1 1 0 ' IF' X Y Z (i +' llil WY t K 1 ' THE N ' PR I N T R e L Cl +' , K , 1)
111 'ELSF'XYZ[I+11QXYZ[Kl 'THEN'PRINTREL(I+, ,K,2)
112 'ELSF' (W[I)XWY[1+1 l)OIXYZ(K]'THEN'PRINTRELCI+' ,K,3)
113 'ELSE'PRINTREL(I+1,K,4)
114 'FI'I
115 'IF"NOT'OT'THEN'
1 , 6 ' IF' X Y Z (1+2] Ii1 W Y [Kl ' THE N , PR I N T R E L (I + 2 , I(")

'17 'ELSF'XYZ[I+2 H1X Yz[KJ'THEN'PRINTREL(I+2'/K,2)
1 1 8 ' E L 5 F ' (WC I]X w VC I .. 21) la X Y Z [K) , THEN , pR I N T R EL (1+2 , I(,:5)
1,9 'ELSE'PRINTREL(I+2,K,4)
120 'FI'

, . :.: ~,

N
N
o

121 'FI'
122 'END"
123
124 'C' RHATlONSHlP BETWEEN A STANZA AND AN IF.STANZA 'C'
125 'PROC'AtFSTANZAs('INT'11,'sOOL'OT)'VOID'1
126 'BEGIN'
127 '1NT,,+11 r
128 PRINT«NEWLINe,"AIF STANZA",NEWLINE»,
129 (OTII'MINUS'211 'MINUS'3),
130 WY[rJ+W{ll%Y[rJ,
131 XVZCll+X[IlXV[Il"z(llr
132 WVrl+21+wCr+21XVrl+2Jr
133 XYZCI+2J+X[I+21"YCI+21"Z[I+2)r
134 'rF"NO'r'OT'THEN'
135 XYZC!+3J+XCI+31"VCI+3)%ZCI+311
136 WV[I+31+W[I+31"YCI+3l
137 'FI'I
138 'IF'XYZCI1QW[J+11'THEN'
139 PRINT«NEWLINE."STANZ" ",I," MUST BE COMPLETED BEFORE THE ~ IF ~,
140 "STANZA IS STARTED",NEWlINE»)
141 'ELSE'
142 'C'ESTASLISH THE RELATIONSHIP FOR THE TRUE AND FALSE PARTS 'c'
143 PRINT«NeWLINE,"RELATIONSHIP IF THE CONDITION IS TRUe",NEWLINE»1
144 'IF'XVZ[Jl@WVCJ+21'THEN'PRINTREL(!,!+2,1)
1 45 , e l SF' X Y Z C I H) X Y Z [1+2 J IT HeN' PR I N T Re L (I , 1+2, 2)
146 'ELSF,WV[Il@XVZ[I+21'THEN'PRJNTREL(I,1+2.3)
147 'ELSE'PRJNTREL(I,l+2,4)
148 'FI',
149 'IF"NOT'OT'THEN,
150 PRJNT«NEWLJNE,"ReLATIONSHIPS FOR THE PATH TAKEN IF THE ",

N
N
~

1 51
1 52
153
154
, 55
156
157
158
159
160
161
H2
H3
164
165
'66
167
168
169
170
171
172
'73
174
175
'76
177
H8
179
180

, F I '
'END';

'F1 '

"CONOITION IS FALSE",NEWLINE»;
'IF'XYZ[ll@WY(I+3l'THEN'PRINTREL(I,I+3,1)
'ELSf'XYZ(I)QXYZ(I+3J'THEN'PRINrREL(I,l+3,2)
'ELSf'WY(ll@XYZ[I+31'THEN'PRINTRELCI,I+3,3)
'ELSE'PRINTRELCI,I+3,4)
I Fl ,

'C' RELATIONSHIP aETWEEN TWO ADJACENT IF~STANZAS
'PROC'ADJlFSTANZA-(I PIT'!1, 'BOOl'OT, 'BOOl' LOT> 'VOID' I

!BEGIN'
'INT'I+I' ,K1 'K21
PRINT«NEWLINe,"TWO AoJACENT IF STANZAS',NEWlINE»1
CLOTll 'MINUS'11 I 'MINUS' 2):
(OTIIIMINU5'Zll'MINUS'3)1
WY [! + 1 J +W [1+']); Y [1+1 J 1
XYZ[!+11+X[I+11XY[I+1)XZ[I+1)1
'IF'LOT'THEN'K1+1+2
'e LSE I

, Ft' 1

1(14-1+31
wYCI+2J+W(I+21XY(I+2ll
XYZ[I+2l+X[!+2l Xy[!+ZlXZ[I+2l

WV (K' +, l+W [K1., av [11:1 +']1
X Y Z [K 1 ., J + X [K 1 ... 1 llC Y [I(1 ... , 1 X Y [K 1 + 1 1)(ZC K 1 .1 1 1
, IF'OT'THEN'K2+K1+1
'ELSE'

K2+\(1 +21

,I , ,

N
N
N

....................... --------------------------------------
1 81
182
183
'84
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

UY[K1.21~W[K1+2J~Y[K1.211
XYZ(K1·21~X[K1+21XV[K1.21~Z[K1·21

, F X ' I
'IF'XYZ[I.1lO11J[K1]'THEN'

PRINTCCNEULINE,"SECOND IF STANZA IS DEPENDENT ON THE TRUE PART ",
"OF THE FIRST IF STANZA",NEWLINE»

'ELSE'
PRINTCCNEWLINE,"RELATIONSHIP FOR THE TRUE PART OF THE FIRST IF "

.STANZA & THE TRUE PART OF THE SECOND IF STANZA",NEWLINE»I
, IF' X Y Z [I + I] ~ U Y[K 1 + 1] , THE N ' PR X N T Re L (I + 1 i K 1 .1 I 1)
, e l. SF ' X V Z [I .,] 61 X Y Z [K' ., 1 ' THE N ' PR I N T R e LC I.' I K 1 + 1 I 2)
, E L SF' C W [I] "101 Y [I +' 1) 61 X Y Z [K 1 + 1 1 ' THE N ' PR I N T R e l. C 1.1 I K 1 + 1 , 3)
, E l. SE' PR I N T R EL (I ... 1 I K 1 • I 'i 4)
, Ft ' I
'IF"NOT'OT'THEN'

PRINT(CNeloll.INEI"RELATIONSHIP FOR THE TRUe PART .,

,Ft '
, Ft I I

.OF THE FIRST IF STANZA & THE FALSE PART OF TH!",
• SECOND IF STANZAn,NEWLINE»1

'IF'XYZ[I+1161UY[K1.2J'THEN'PRINTRELCX·1 , K1+2 , 1)
, El. SF' X V Z [I .1 161 X Y Z [K I + 2 J ' T H F. N ' PR I N T R EL C 1+1 I K 1 + 2 I Z)
, E l. SF' C w Cl H: W v [I + 1]) &l X V Z[K 1 ... 2) , THE N , PR I N T R EL(l ... 1 , K 1 .2 ,3)
IEl.SEIPRINTREl.CI+1'iK1·2,4)
, F I ,

'IF' 'NOT' LOT'THEN'
'IF'XYZ[I+21@w[K11'THENI

PRINTC(NEWl.INE,"SECOND IF STANZA IS DEPENDENT ON THE FALSE",
" PART OF THE FIRST IF STANZA",NEWLINE»

N
N

'"

Z 11
212
213
214
21 5
216
217
218
219
220
221
222
223
224
225
226
221
228
229
230
231
232
233
234
235
236
237
238
239
240

, F I '
'ENO':

, Ft '

PRI~T«NEWL,NE,"RELATIONSHIP FOR THE FALSE PART OF THE ",
"FIRST IF STANZA' THE TRUe PART OF THE SECOND IF ~,
"STANZA",NEWLINE»I

, IF' X V Z (I" 2) fl W vc K 1 .. 1 J ' THE N , PR 1 N T R E L (1 .. 2 , I(1 .. , ")
, E L 5 F ' X Y Z r I .. 2 J @XV Z (1(' +' 1 ' THE N ' PR I N T R EL (I +2 , K 1 +1 , 2)
'ELSF'(W(llXWV(I"ZJ)@XVZ[K1+1J'THENIPRINTREL(I+2,X'.1.3)
'ELSE'P~INT~EL(I"2/1(1+1,4)
, F 1'1
'1F"NOT'OT'THEN' .

PRINT(CNewLINE,"RELATIONSHIP FOR THE FALSE PART OF "I

"THE FIRST IF STANZA & THE FALSE PART OF THE ~,
"~ECOND IF STANZAo,NEWLINE»;

'IF'X VZ[I .. 2JflWY[K1+ZJ'THEN'PRINTREL(I+2,K1.2,1)
'ELSF'XYZ(I+2J@XYZ(K1+2J'THEN'PRINTREL(I+2,X1·2,2)
, E L SF' (W [I ne WV [I .. 2 J) iil X Y Z [I(1 .2 J , THE N , PR 1 N T RE L (t. i! , 1(, • 2 , 3

, F I ,

'ELse'PRINTREL(I+2,K'+2,4)
I F I '

)

~eAOS IN THE OUTPUT FROM THE ANALYSER
'PROC'LREAoa('REF' 'LISTS'A,'REF'Cll'CHAR'AV)'VOID't
'BEGIN'

-, C ,

'CHAR'CH+" "ZSKIPSPACES(CH)t
'IFICHn":"'THEN'BACKSPACE(INPUT)1
'FOR'J'TO'M'WHILE'CH#"I"'OO'
'BEGIN'

,
/,

N
N ..,.

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

, I NT' TEI'lp+,. TEMP' +0;
SKIPSPACeS(CH)IBACKSPACE(INPUT)1
(N A ME' 0 F , A) [J l + (• FOR' K • TO' N ' IJ H I LE' (G E T (I N PUT. A V [J , Kl) 1 CH" A V C J , I(] 1

(CH.~[·'TEMp'+K)1
CH # •• " , AN 0' CHIt·f I ") , DO' Te M P +K J [1 I TE M P J ' CH A R ')

'C' IF THIS IS AN ARRAY ELEMENT PUT THE INDEX AT THE FRONT OF NAME 'Cl

, EN!)'

'Ft '
, END' I

+('IF'TEMP1>1'THEN'
[i I re M p 1 .,) , CH A R ' re M + AV [J " I H MP, -1 11
AV [J " I Tt M p. T E M 1'1" 1 1 +AV (J ,TE M P1 I H MP 31
AV[J,TEMP-TEMP1+2rTe MP]+TEM

'Ft 'I
AV[J,1ITEMPl)I'FOR'J"FROM'TEMP+"TO'N'DO'AV[J,J11"~ "

'c' pRINTS STANZAS
'PROC'LPRINT·('LISTS'A)'VOID':
'BEGIN'

PR I NT (NEWLI NE, I
'FOR'J'TOtM'DO'PRINTCI(NAME'OF'A)[JJ,· "»1
PRINTINEWLINE)

'END'I

'C' FORMS w,x,V+Z seTS
'PROC'RREAO·('INT'r)'VOIO',
IB!GIN'

(CH'··W~ILReADIW[I),IJVCI1)ISKIPSPACES(CH'»1
ICH1.·X"ILAEADIX[11,XV[tl)ISKIP$PACES(C H1»1
(CH1·~Y·'L~eAO(V[ll,VVCll)/SK!PSPACES(CH1)1

t C ,

t c' '

N
N
~

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

(CH'·~Z"ILREAOCZ[I),ZV[ll)ISKIPSPAceSCCH'»1
OUTFCSTANDOUT,SL"STANZA"C2>L"W"S,I)ILPRINTCW[ll)I
PRINT("X·)'~PRINT(X[ll)'PRINT(·V·)'LPRINT(Y[Il)I
PRINTC"Z"),LPAINT(ltIl)

'E NO' ,

'elTHIS RETURNS NUMBER. TO THE POSITION OF CV AS AN. INDEX TO AV
'PROC'POSITION·([llCHAR'AV,[l'CHARICV)IINTII
IBEGIN'

'INT'N04o"
'INT'T402,
'INT'UP9D4o'UPA'CV,
'aOOLIB4o'TRUeIJ
ITOINlwHILe'BIANO'TCN'OO'

NO
I END' ,

IIF'AV[TIT+UPBO-11nCV'THEN'
'TO'N'WHILE'(AVrTl#",·'AN~'AV(Tl#·l·)IDO'T+T+11
, I F I A V [Tl ,. " , " , THE N , NO' P L US' , ,T + T + 1
I E LSE I B4o' FALSE'
, F I ,

'HSE'B+IFHSE'
I F I ' ,

'c' THIS GIVES THE CONSTANT ASSOCIATED WITH THE NO,TH SUB~SCRIPT OF AV
IPROC'GIVECON·Ctl'CHAR'AV"INT'NOl'INTII
lBEGIN'

'lNT'N1+Z,
'INTICONST+O,T,T',
, TO I NO'" , DO' I W H 1 LE' A V [N 1]N « , " I 00' N 1 + N 1 +' ,

, c ,

301
302
303
304
305
306
307
308
309
510
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

(AV [N1)." ."1 N1 foN1 +1) ;
, FOR' J 1 ' FRO M , N 1 ' T Cl ' N ' W H I LE' C ' CH A R ' C· AV [J 1 1 : C 1/ "+ " , AND' C 1/'. " , AND' C 1/ •• •

'ANO'CI/"J")'OO'TfoJ1/
, ! F ' T < N ' THE F ' AV C T +' 11/" I " , AND , AV (T + 1]1/" 1 " , THEN'

, FOR' J 1 ' F R OM ' N 1 + 1 ' TO' N ' W H I LE' AV (J 1 J 11 " 1 " , "N 0 ' AV C J 1]11' , " , DO' 11 "J' I
'FOR'J1 'FROM'T+ZorO'T1 'DO'

('CHAR'e .. AVeJ1JI
, INT'T2+'A BS'C;
'IF'T2<10'THEN'CONSTfoCONST*10+TZ'
'ELSE' ERROR (11)
, F 11)

IF 1"
(T<N 1 (AV[T.' J,,"-" I-CONST 1 CONSTlI 0)

'END':

'c' COMpARE NM WITH THE NAME OF AV 'C'
'PROC'COMPARE.C[l'CHAR'NM'Cl'CHAR',!,V.'REF"INT'OFi'INT'CON1,IINTIPOS,)

'vOID'1
'8£GIN'

'INT'CON2,T.T1,
, IF' (, F OR I J 1 I TO I N I W H I LE I AV [J 1)# "l. , DO IT" J 1 I

,FORIJ1'TO'N'WHltE'AV[J1ll/" "'DO'T1+J1:
T+T+' I
(T < N I N M" C [1 I T 1 .. T 1 ' CH A R ' foA V [T + 1 I T 1 1) I ' FA LSe I))

'THENICON2+GIVECONCAV,POS1"DF+'A&S'(CON1-CON2)
, PI '

, END' I

'C' NOINOEX RETURNS TRUe IF CV oOes NOr APPEAR IN AV
, ~ ROe' NO I N D EX" (C • 1 , CH A R ' ,., V • [1 ' CH A R , CV, , RE F , , BOO I. ' 81) I BOO I. I I

,
"

331
332
333
334
335
336
337
338
HQ
340
341
342
343
344
345
346
347
348
349
350
3S1
352
353
354
355
356
357
358
359
360

, B ~ GIN '
'BOOL'B*"'TRUe, ,
'INT'UPBOf-'UPe'Cv,
, INT'T,
B1*"'TRUE'1
'FOR'J'FROM"LWe'AV,TO"Upe'AV'WHILE'8'PO'

B
IENO',

'IF'AVcJ,11·"["'THEN'
T*"2,
'WHILE'T+UPBD<N'OO'

'IF'AV[J,TIT+UPBO-1l·CV'THEN'B*"iFALSE"a1*"'FALS el lTfoN
, ELSE' T*"T+'
, F I ,

'e LSF'AV[J."UPSD).CV'ANO'AV[J.UP90+1Ja" ·'THeN'B.-'FALSEI
, F 1 , I

'C'INDEX RETURNS TRUE IF ALL MEMBERS OF A ARE INDEXED BY THE CONTROL VAR
OR A CONSTANT DIFFERENCE OF IT 'Cl

'PRoe'INDEX.('LISTS'A,[,,'CHARIAVi[l'CHAR'CV)'BOOLII
'BEGIN'

'!lOOL'B*"'FALSE"
'BOOL'B1f-'TRUE'1
'FOR'J'FROM"LWS'AV,TO"UPB'AV'WHILE'AV[J,1l#" ·'ANO'S1'DO'

IIF'AV[J,ll."C"'THEN' ,
, 1 N T , UP Il Of- ' UP B I CV,
IlNT'Tf-l,
IWHILE'T+UPaD<N'DO'

'IF'AV[J.T,T+ UP 80-1J·CVITHENIB+ITRUEI,T.N
I E LSE' T *"1 +'

361
362
363
364
365
366
367
368
369
370
371
312
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

81
lEND"

IELSE'

, Ft ' ,
!\ 1 +8

a1 +, FALSe I

, FI' 1

'C' RETURNS TRUE IF WAND)(DO NOT BOTH UsE THE sAMe ARRAY
IPROC'WA ND XB C'LISTS'X1,[,l'CHAR'XV1,(,l'CHAR'WV',Cl'CHAR'C"BOOlt,
!BEGIN'

'800L' 8+1 NoEX (X1, XV1 , C) I
'IF'BfTHEN'

'FOR'J1 'TO'M'IIHILE'WV, CJ1 ,1 lll" "'ANDIB'DO'
'FORIJO'TO'M'WHILE')(V1 [JO,1 lll" "'ANOIB'DOI
'BEGIN'

'ST~ING'S1+
('INT'T,T11
'FOR'J2'TO'N'IIHIl.E'WV1 [J1 ,J2)II"l"'oO'T+J21
'FOR'J2'TO'N'WHILE'WV' [J' ,J211l" "'DOIT'+J21
"F'T>"T1 'iHENI[1r1]'CHAR'+" •
, EL SE' C1 I T 1 - T"; l , CH A R ' +11" 1 [J 1 'I T + 2 I T 1 1
'FI')I

, I F I S 1 11 " •
I THH'

('STRING I S2+
('INT'T,T1'
'FOR'JZITO'N'IIHILe'XV1[JO,J211l"l"'OO'T+J2,
'FOR'J2'TO'NIWHILe'XV1[JO,J211l" "'OO'T1+J2/
(1 I T 1 - T -1 1 ' CH A R ' +)(V1 [J 0 ,1+2 I T 1 1) ,

I C I

N
N
<D

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
41'
412
413
414
41S
416
417
4'8
419
420

, ~ I' r
B

I EN 0 I I

lEND'

S1-S2)
'TH~N'8+'FAlSE'
, F I ,

'e'FOR EVERV NAME ESTALlsH DIFFERENCE I~ US~Ge TIMe' 'Cl
'PROC'CONTRAST.('INTII.[3 ' 1NT'POS'["]'CKAR·WU.[.7]'CHARIXU'Cf'l'CHA~IYU,

[, •] I CH A" ' l U) , VO 10' I
'BEGIN'

'INT'UP"'UPB'POSI
[1I UP ,'INT,ST,LIM.INIT,SD.C ONST,DF,
'POR'JITO'UP'oo'
'BEGINf

STCJ)+STePfOF'I,OOPSTACK[LOOPPOINT.'-J11
LIM[J]+LIM'OF'LOOPSTACK[LOOPPOINT+1-J]I
INIT[JJ+IN\T'OF'LOOPSTACK[I,OOPPOINT+'-J11
sotJl+·"OFCJ)+·'

'END"
!STRING'COMP,
IBOOtfNOTCON"'TRUE'1

'INT'OlF+.1,DIFF+·1,

'C' THEse 2
,-

PROCS ARE USED LOCALLY WITH GLOBAL REFS
'PROC'SET·('INT'LLL,["l'CHA~'AV)'VOID'1
'8EGIN'

, PO R I J 1 ' FROM' L L I. ' TO' M' W H 1 LE , NOT CON ' AND I A V Cl , J ,,1 1 N ~ , " , DO f
'BEGIN'

, c' '
I'
l-'

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

'ENn'
'END'r

'FOR' J2' TO' UP' 00'
'BEGIN,

COMPARE(COMP,AVtl,J1],OIF,CONSTtJ2],POS[J2J"
'IF,OIF=.1 'OR'OIF.O'THEN"SKlp'
'ELSF'(OIF'I'ST(J2J)*ST[J2l a OIF

, eND '

'ANO'OIF<LIM[J2l-INIT[J2]'THEN'
SOeJ2]+OIF'/'ST[JZ]

'n'
IOIF+-1

'PROC'GIVECOMpa«("l'CHAR'AV,'INT'J)[]'CHAR11
'BEGIN'

'END"

'INT·T,T1;
'FOR·JO'TO'UP'DO'CONST(JOl+GIVECON(AV[I,Jl,POS[JOJ),
'FOR'J"TO'N'WHILE'AV[I,J,J1l#"l"'DO'T+J',
'FOR.J"TO'N'WHILe'AV[I,J,J1J#" ·'OO'T •• J1,
(1 I 11 • T -1 1 ' CH A R ' +AV (I , J , T + 2 I T 1 l

'FORIJ'TO'M'WHILf'XU(I,J,'l." ·'AND'NOTCON'DO'
·SEGIN'

COMP+GIVECOMP(XU,J)I
SET(J+1,XU):
SET(1,VU)1
SET(1,ZUlI
SET(1,WU)

IEND'I

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
47'
472
473
474
475
476
477
478
479
480

, C '

'Ell!)"

, FOR' J ' TO' "1' \J H I Le' Y U (I , J , , J#. ., AN 0 ' NOT CON I 00 '
'eeGIN'

COMP+GIVECOMPtYU,J)I
SET(J+',YU)'
SET(1.ZU)I
SET(1.WU)

,eNO'1
• FOR' J' TO' M' W H I L ~ , 2 U [I • J • ,]11" • , "NO' NOT CON I DO'
!eEGINI

COMP+GIVECOMP(ZU,J)I
SET(J+,.ZU)I
SETn,WU)

'EN~'IPRINTtNEWLINE)'
!1f"NOT'NOTCON'THEN'PRINT«"EACH ITERATION MUST BE DONE "I

"SEQUeNTIALLY"»
'ELSE'

PRINT(C"AOJACENT "/NEWLINE»,
, ~ 0 R , J ' TO' Up' 00' (So [J l.:" 1 I PR J N Tt -ALL

IFI'IPRINT(NEWLINE)
")IPRINT(SOCJJ»

RANK RETURNS TRue IF THE POSITiON OF cv IS THE SAMe FOR ALL O~ X , V & z
AND SETS POS TO THAT NUMBER
IPROC'RANK.(t,]'CHAR'XV"(']'CHAR'YV1,[,]'CHAR1ZV1,IRe"'INT'POS,

tl'CHAR'CV)'800L"
'BEGIN'

'1l00l'B+' FALSe' I
'I F'XV1 [1,1]11- "'THEN' POS"POSITlONCXV1 (13 ,CV)
'ELSF'yV1(1"lll" ·'THeN'pOs+pOsITIONtYV1t11,Cv)
, E l se' PO 5 .. P 0 S IT ION (ZV 1 t 1 l , CV)

,
, c ,

N
W
N

481
482
483
484
485
486
487
488
489
490
491
492
49 :5
494
495
496
497
4911
499
500
501
502
503
504
505
506
507
508
509
510

-
, Ft ' I
'FOR'J"FROM'2'TO'M'WHILE'xv1tJ1,1JII" ·'AND"NOT'S'DO'

(PO S # pO SI 'T ION (X V 1 [J 1 1 , CV) I a.. , T RUE') :
'FOR'J1'TO'M'IJHILf'YV1tJ1,1JII" ·'AND"NOT'B'DO'

(PO SNP 0 SIT ION (VV 1 [J 1) , CV) I a.. , T RUe') r
'POR'J1'TO'M'IJHILE'ZV1CJ1,1l#" "'AND"NOT'8'OO'

(PO SliP 0 SIT ION (Z V 1 C J 1) , CV) I B fo' T RUE') I
B

'END'I

'C'REMOVE FROM w ANYTHING NOT INDEXED BY Cv
'PROC'F~OMW.('LISTS'IJA,'REF'['l'CHAR'WA,tJ'CHAR'CV)'VOID',
'BEGIN'

'FOR'J'TO'M'WHILE'wa(J,1JII" "'DO'
'IF'INDEX(WA,WBCJ1,CV)'THEN'

'FOR'J1'FROM'J-1'BY'·"TO"'WHILE'WstJ1'111-· "'DO'
'BEGIN'

W8tJ11foWBCJ1+1lr
W8[J1+',13 fo " "

, EN D'
'H5e'

, Ft '
'END"

w8(J.'1"· •

'Cl DETECTS" CONDITIONAL
'PROC'CONOITIONAL.C'REF"INT'I,'INT'J"REF,'BOOL'ONLYTHEN.

'ReF' 'ROOL' LASTOT) 'VOID"
'BEGIN'

SKIPSPACES(CH1,/SREAD(I)/

, C ,

..

N
W
W

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
~33
534
535
536
537
538
539
540

Cf.X[I)'~ND'£V[Il'AND'£Z(I11 'SKIP' IERROR(4»/
'TO'2'W HILE'CH111"S"'OO'

(BREAO(I'PLUS'1),ONLVTHEN.'NOT'ONLYTHEN)/
CCH'II~$"IERROR(3)ISKIPSPACES(CH1»'
'IF"OOO'CJ-1)'THEN'

(C 0 N D. ' T ~ U E' I ~ D J IFS TA NZ A (I ,ON L YT HEN, LA 5 TO Tl
,CONO·'FALSE'

I Al F5TANZA (I.ONLYTHEN»
'ELSE'

y'PL US'1,COND.,TRUE"LASTOT.ONLVTHEN
, F I '

lEND',

'C' MOVES MAV SE USED TO CHECK ON MOVEMENT OF A CV AS AN INDEX
'PROC'MOVEsa('INT'NO)'VOID'1
IB~GINI

'!NT'DUM,
ERROR(NO)

lEND"

'c' SINGLE LOOPS
'PRoe'ONCEaC'REF"INT'I)'VOID',
I BEG ! N ,

C1, L,1,M,1,Nl'CHAR'WX,
'INT'POS.1, 'C'THIS WILL EVENTUALLY 8E SET IN AN ELSF TEST

'C' TEST FOR TOTAL INDEpENDENCE'C'
'IF'£VCI1'AND'£ZCIl

'ANO'WANOX(X[ll,XV[Il,WV[ll'CV'OF'LOOPSTACKCLOOPPOINTJ)
'THEN'PRINT(CNEWLINE,"TOTALLV INOEPENOENT",NeWLINE»

, C I

, C I
!

541
542
543
544
545
546
547
548
549
550
551
552
553
!oS4
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

'C'TEST FOR TOTAL DEPENOENDENCE
'ELSF"NOT'

'BEGIN'
'BOOL' e .. ' TRUE':
, FOR' 11 ' TO ' 3 ' W H I LE ' B" IT RUE' , DO ,

B
, END ,
'THEN'

s"'CASE'IPIN'
I N D E X (X (I 1 , X V [I 1 , CV' 0 F ' LOO P S T A C K [LOO P PO 1 N T]) ,

I NO E X (Y (I 1 , Y V (Il , C V I 0 F ' LOO P S TA C K C LOO P P 0 1 N T J) I
INDEX(ZCIJ,ZVCI),CV'OF'LOOPSTACKCLOOPPOINT)

'ESAC"

PRINT«NF.IoILINE,"TOTALLY DEPENOENT",NEWLINE»
'ELSF'RANK(XVCll,YV[ll,ZV(111pOS,CV'OF'LOOPSTACK{LOOPPOINT)
'THEN'MOVES(2()
'EL SE'

, FI'
, END' I

IJX C Il .. IJV (III
FRO M W (W C 1 1 , W X { 1 1 , CV' 0 F , LOO P S T A C K (LOO P P 0 I N Tl) ,
CONTRAST(I,POS,WX,XV,YV1lV)

rc' NESTED LOOpS •••••• ONLY 2 DEEP HERE
'PROC'TWlce·('REF"INT'I)'VOID'r
'BEGI",

'INT'POSI"1,POSO"1,
'BOOLIIIL"'FALSE'I
'BOOLIILlo.,IFALSE',
, IF 1 £V Cl 1 'AN 0, £ Z C I 1 'A NO'

, C ,

1 C ,

/ , .

571
572
573
574
575
576
577
578
579
5B()
581
582
583
584
S85
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

WANDX(X[T),XV[I),WV[I),eV'OF'LOOPSTACK[LOOPPOINT)'AND'
WANDX(X[I),XV[ll,WV[I),Cv'OF'LOOPSTACK[LOOPPOINT .. 11)

'THEN,PRINT«NEWLINF.,"BOTH LOOPS ARE TOTALLY INDEPENDENT",N!WLINE»
'ELSEI
, IF' , NOT'
'BeGIN'

'SOOL'S·'UUE' J
'FOR' 11 'TO'3'IoIHILE'B'OO'

B
, END ,

B4-'CASEI!1'IN'
IN~EX(X[I),XVCI1,CV'OF'LOOPSTACK[LOOPPOINT1),
INDEX(Y[Il,YV(I),CV'OF'lOOPSTACKCLOOPPOINT1),
INOEX(Z[I),ZVCll,CV'OF'LOOPSTACK[LOOPPOIHTl)

'ESAC fJ

'THEN,PRINT«NEWLINE,"THE INNER LOOP IS OEPENDENT",NEWLINE»J
ILlD.'TRUE'

'ElSF'RANK(XV[I],YV[I],ZVCllIPOSI,CV'OF'lOOPSTACK[LOOPPOINT])·
'THENIMOVES(21)
'E LSE I ilL.ITRuE'
, Ft I I
'IF ' ILID'THEN'LOOPPOINT'MINUS'11 0 NCE(I)ILOOPPOINTIPLUS"
, E lS El
'IF"NOT'
, BEG IN'

I eOOl' e4-' TRUE' J
IFORII1'TO'3'IoIHiLE'B'OOl

B."CASE' 11' 1Nl
INDEX(X(I),XV[ll.CVIOF'LOOPSTACK[LOOPPOINT·1l),
INDEX(YIll,YV(Il,CV10F'LOOPSTACK(LOOPPOINT"']),

, ,

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
610

'e'
, C '

B
'EN D'

INDEX(Z[IJ,ZV[IJ,CV'OF'LUOPSTACK[LOOPPOINT-1])
'ESAC'I

, THE N , (IlL ION C E (I)) I
PRINT«NeWLINE,"THE OUTeR LOOP Is OEPENOENT",NEWLINE»

, EL SF' RAN K (X V [I 1 , Y v [I J , Z v [I J I I' 0 SO, CV' 0 F ' LOO P ST A C K CL 0 0 P P 01 N Too 1 l)
'THEN'MOVES(ZZ)
'ELSE'

, F I'
I F I '

, F I ,
'END',

~ R 0 MW (W (I J , WV [I J , CV' 0 F , LOO I' S TA C I([LOO I' P 01 N T -1 J) I
CONTRAST(I,(POSI,POSO),WV,XV,YV,ZV)

SPOTS KEY SYMBOLS FROM ~NALySER
N = DO-STANZA $. IF-STANZA
'P~OC't(EY·(IREF" lNT' I)'VOID' I

'HGIN'

, c ,
'e'

SKIPSPACES(CH,) ,
'I F' CH'" ·0"' THEN'

Sl(lPSPACeS (CH') I
'C'ENO OF LOOP

(LOOPPOINT>OI LOOPPOINTIMINUSI, I lfol-1IERROFU1»
'ELSF I CH1N"O"' THEN' ERROR (2)
'ELSE'GET(INPUT,«INIT'OF'LOOPSTACK[LOOPPOINTIPLUS'1]),

(STeP10F'LOOPSTACK[LOOPPOINTl),LIM10FILOOPSTACI([LOOPPO INTJ»I
CV'OF'LOOPST~Ct«(LOOPPOINTJ+
I BeG IN'

r1 IN]ICHAR'ARI'INT'TEMP+OI'CHARICHISKIPSPACeS(CH)I

i , ,

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
65()
651
652
653
654
655
656
6S7
658
659
660

'FOR'K'TOIN'WHIlE'CH#" ·'00'
(TEMP'PLUS'1IARCTEMPJ+CHlGET(INPUT.CH»/

[1 ITEMP1'CHAFP+ARnITEMPl
tENDtl

PRINT«NEWLINE."CV ·,CVtOF'LOOPSTACK[LOOPPOINTl.INIT'OFtLOOPSTACK[LOOPPOINT),
STEP' OF' LOOPSTACI((LOOPPOINTl, Lli'll OF' LOOPSTACK[LOOPPOINT), NeWUNE» /

SKIPSPACES(CH1) I
, IF' CH 1 • »/1» , THe N , KEY (I)
tELS"CH'."S"'THF.N'

'SEGIN'
,aOOt'ONLYTHEN+'FALSEt,LASTOT+.FALSE'1
'SOOL' 8+' FALSe t I
'BOOL'S1:
IINT'I'1
COND+' FALSe' I
CONDtTtONAL(Il"ONLVTHEN,LASTOTll
'IF'ONLYTHEN'THEN'I,+I_2'ELSE'I,+1_3'Fl'l
R+NOINOEX(WVCl,),CV,OF'LOOPSTACK[lOOPPOINTl,B',/
,IF'8'THEN'PRINT(C"FOR ANY GIVEN LOOP THE SAME ~,

"PATH IS ALWAYS TAKEN "»/
'IF'LOOPPOINT-,ITHEN'

ONCE(11'PLUS1,):(INOT'ONLVTHENIONCE(!1 t PLUSl1»
'ELSF'LOOPPOINT-Z1THENI

TWICE(!"PLUSI1)1(INOT'ONLYTHENITWICE(I"P~USI'»
'ELSE'PRINT«~ONLV DOUBLE LOOPS·,NEWLINe»

• FT • ,eLSF'B"THEN'PRINTC" PATH DeCID4BLE ")1
'C' SPECIAL ROUTINES NEeDeD TO sPOT SWITCH-OVER 'C,

'1~'LOOPPOINToa1'THENl
ONCE(11'PLUS11)1(INOT'ONlVTHENIONCE(I,'PLUSt1»

,
,',

,

N
'-" co

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

'n'
'END',

, END '

'F.LS,' LOOPPOI NT=2' THEN'
TWICE(I"PLUSI1)/('NOT'ONLYTHENITWICE(I"PLUS t ,»

'ELSE'PRINT«"ONLY DOUBLE LOOPS",NEWLINE»
, F I '
'ELSE'PRINTC·pATH NOT KNOWN")
'FI'rPRINT(NEWLINE)

'ELSE'BREAI)(I)/
'IF'LOOPPOINTs1'THEN'ONCe(l)
'ELSF'LOOPPOINT=2'THEN'TWICE(I)
'ELSE'

, fl '

PRINT«NeWLINe,·ONLY DOUBLE LOOPS",NEWLINE»
, F If

SKIPSPAce S (CH1)/
'BeGIN'

'INT'l+O,
'TO'L'WHILE'CH111·."'OO'
'SEGHJ'
l'PlUS'1:

'IF'CH1··N"'THEN'KEY(I)
'El.SE'
'SOOl' ONlVTHEN+' FALSe' I LASTOr+' FALSe' /
'FOR'J'TO'2'WHILE'CH'.·*·'ANDlCH1.·.·'ANDlCH1N·Q·'DO'
'BEGIN'
'tF'CH'··S"'THEN'
CON~ITIONAL(!,J/ONLVTHEN,lASTOT)

691
692
693
694
695
696
697
6911
699
700
701
702
703
704
705
706
707
708
709
710

I eND I

,eLSE'
'BEGIN'

B ReA D (I l I
'IF' 'ODO' (J .. , l 'THENI

IIFICOND~'FALSe"THEN'ASSTANZA(1·1)
'ELSe'PIFSTANZA(I-"ONLyTHENll

CON04-' F Al:Se'
, F I •

'ELSE'
"PLUS'1

• Fl' 'END'
'. F I '
, END'
, Fl'

IEND'IBACKSPACE(INPUT)
I ! N D ,
'FINISH!

, ,

/
/~

N

'" o

APPENDIX 4

SAMPLE PROGRAM

'HH,P"
/ • PR (, (I ((r " 1 , ['1 ?) ;

'PfGJN '
I. e1"il,If';
~ 1\J(1,C"I+C12;
f, Cl;><uNr,Cl?:

I r 1\1 !" I ;

Stanza 1 [
';

~ "
1 ,

1 t
1 .-

, fOR' K' ? ' 0 T f f' , 2 I U" 1 r 1 ' 1 I. • I, (l •

'PFf'l~1

A [¥ 1 ~ () I: r + T '",) ;
'<,(r+',l"HP,f l

I r ~ !; , ;

1 ,

Stanza 2 [
1 ,

1 ~,

1 ./

1 ~

Stanzas 3,4 and 5

1-<.1 '-/'.1 +(1
A1(-i1-D1:

r'1~F1*('

,I "/ of ,J ~ ;

r 1 f- I, .1 ;

t Jr' 11 (:= r; r: ' 'J ;: t 1\ I f' t ~ J r : I t I ~ f I F ~ t- ~ ,J ;

Stanza 6 ? .",
/4

({l,Bl):

Stanzas 7,8 and 9 7, , 1 f • 0 ~ I ~ A v ' 1 H I ~ , 1 , i, <- A 1 (1 : ' F 1 ~ F ' I [2) <-1 W t") ;

Stanza 10

Stanza 11

76
?I
? i'

? "

f;'t t-!;1 +f' F ~

, f ill' , 1 <-, , " TIP' ! ' LI' I 1 I 'i, I n 0 ' P. l I i • H r 1 + 4 1 ;

'S " \ f t~ 1\ ,

3; .++.

241

, I/D +2 +2 ... I 4 "-
- -

2 242

[
3 11 ONE ,TWO .THREE · •
4 X At K J .A[K+']

Stanza 1 5 Y · •
6 Z
7 I/o
tI [,: \I C1 .El • J K • K J

Stanza 2 X 8' , J 1 • K1
,
•

1 1 Y A1 • P 1
1 2 1 • •
13
14 S

[" 11 AC , BC

Stanza 3 16 X
17 y

18 Z
19

['" W JK • •
Stanza 4 21 X eF

22 y ,
•

23 Z
24

[" W KJ

Stanza 5 26 X EF
Zl y
28 Z
29
30 $

31
- 32 W ONE

Stanza 6 33 X
, ·

34 Y TIIO , A 1 , B 1
3S Z
36
31 $

["
\,' ONE ,AC

Stanza 7 39 X
40 Y
41 Z
42

[" \I A[Z]

Stanza 8 44 X TWO
45 Y

,
•

46 Z
41

[48
W TWO

Stanza 9 49 X A[2]
50 y
51 Z
52
53 $

54

",m,lO[55 W B1 , E F .
•

5b X Al
57 y · •
58 l
59
61, 110 +1 +2 + 11 c; 'W 8 [f+4]

Stanza 11 63 X B [I J
64 Y
65 Z
66 #0
61
68 •• **

Stanza I

Stanzas 2,3 and 4

Stanza 5

Stanza 6

Stanzas 7,8 and 9

Stanza 10

Stanza 11

Do-stanza

Each iteration is totally independent (i.e.

they are all contemporary)

If-stanza

As-stanza

If stanza 2 is true or false then the If-stanza

and the As-stanza are contemporary)

Procedure Call

If-stanza

243

If stanza 7 is true then the Procedure Call and

If-stanza are conservative, otherwise the Procedure

Call and If-stanza are consecutive.

As-stanza

There is nothing available to compare with the

stanza,

Do-stanza

Every two iterations are adjacents (i.e. pairs of

iterations are contemporary but each pair must be

executed in a consecutive manner)

