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CHAPTER 1

INTRODUCTION TO PARALLELISM




1,1 GENERAL DESCRIPTION

The elapsed time taken to execute a given set of programs, or

; the speed of throughput on a particular computer, will be dependent
on three factors. One is the hardware of the computer (or as it is
often called, the machine) being considered, this will depend on such
things as switching times and distances between the components (Stone,
1975} and there are physicél limitations on these. The other two are
the organisation of the machine's iogic and the organisation of the
programs under consideration. These two areas are where improved
épeed of throughput must be sought, given the physicai constraints on
'speeding-up' the hardware.

For serial computers (i.e. ones with only one main processing
unit) there has been a great deal of work carried out coqcerning the
compilation of ‘programs (e.g. Hopgood, 1969) so as to decrease ther
elapsed time taken for the execution of a program. If however,
machines are available which logically have more than one processor,
then by sharing parts of a set of programs between these processors
it may be possible to further decrease the elapsed time taken for the
execution of these programs.

The term 'parallel processing'.will be used to indicate the
execution of several 'tasks' at the same time on different processors
or processing units, see Figure 1.1. A 'task' is some part of a
program ranging from within a micro-instruction to whole programs.
Depending upon the type of processors available, the part of program
to be considered will vary. For example, a program may be best
divided such that parts of each arithmetic statement may be assigned

to separate arithmetic processors.



Task 1 ' Task 1
|
Task 2 - 1 Task 2 Task 3
Task 3 .. Task 4
'\
Task 4
Figure 1.1

SEQUENTIAL AND PARALLEL EXECUTION OF TWO TASKS T2 AND T
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1.2 ARCHITECTURE

Stone (1975) describes in detail the four classes that Flynn (1966)
defined computer systems will fall into, These are:-
(1} 'Single Instruction Stream-Single Data Stream' (SISD) computer.
(ii) 'Single Instruction Stream-Multiple Data Stream' (SIMD) computer.
(iii) '"Multiple Instruction Stream-Single Data Stream' (MISD) computer.
(iv) 'Multiple Instruction Stream—Multible Data Stream' (MIMD} computer.
The SISD computer is the serial computer mentioned above, where |
there is at the most only one instruction in execution, at any one time,
and this affects at the most one item of data, see Figure 1.,2. Most
existing software is written to run on this type of computer,
The SIMD computer is one where each instruction can operate on a
data vector which is supplied by means of a multiple data stream, see
Figure 1.3. This type of computer (which is also known as a vector
processor) is very useful when problems using a large proportion of
array operations are computed such as are found in weather forecasting
and numerical analysis (e.g. Roberts, 1977).
The MISD computer is a machine for which each item of data is
operated on simultanecusly by several different instructions, see
Figure 1.4, At the present time there does not appear to be a viable
worthwhile compﬁter of this type, an artifical example of this may be
a line printer where a line of inf@rmation is considered to be a piece
~ of data, and each print a separate operation,
The MIMD computer can be viewed as several interconnected
individual computers, as each processor, at any one time, may be
carrying out different instructions on different items of data, see
Figuré 1.5. Thus each procéssor may be working on a separate part of

program.
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An architecture technique that can be applied to all types of
computer systems is pipelining (Chen, 1975). Essentially a new task
can be initiated before the previous task has completed and the speed.'.
of throughput will depend on the rate at which tasks can be initiéted_
rather than on the time for individual operations. Figure 1.6 shows
how M tasks (where M is a positive integer) may pass through a four
segment pipeline, the four ope;ations may be 'Fetch', ‘Decode’, 'Execute’
and 'Store'; for this example each operation is considered fo be
;distinct and this, in genefal, is the case for pipeline machines.
Indeed, each process or operation is performed by a specially designed
unit, which is where the pipeline computér differs from the basic
computer systems defined by Flynn (1966).

A computer system with a pipeline will take the same amount of
elapsed time to execute a task as a similar system without the pipeline.
However, for M tasks the time taken for the pipeline system will, at
best, approach the time taken by the other system divided by the number
of operations (in the above example that would be four). If an operation
involving a jump is executed, the other tasks in the pipeline will not
be required and the tasks at the point jumped to will need to be
calculated. In the worst case when every task involves a jump, the
élapsed time taken by both systems will be the same,

Pipelines‘aré used at the present time with computers that fit
the SISD describtion. The result is a high performance machine such
as the CDC 7600 (Chen, 1975). The technique may also be applied to
SIMD, MISD and MIMD éomputers wifhout affecting the Flynn (1966)
definitions of any of these systems.

The SIMD and MIMD computers are generally known as parallel

processors or parallel computers. Sometimes pipeline computers are




élso called parallel computers but that terminology is not used here.
The MIMD computer can always work in the same manner as the SIMD
computer, However there may be extra ovefheads involved in having )
to have a copy of thé instruction for each frocessor. Conversely; the
SIMD has only one instruction and cannot always work in the same
manner as the MIMD computer. Throughout this thesis the type of
computer ﬁeing considered, unless stated otherwise, will be an MIMD

computer without a pipeline,
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M TASKS PASSING THROUGH A FOUR SEGMENT PIPELINE



‘1.3 LEVELS OF PARALLELISM

Al}l possible tasks in é parallel processing environment may be
considered as being at one of four levels:- |

(i) Machine Level

e.g. (a) within micro-instructions,
{b} between micro—instructions.

(ii) Instruction Level |

e.g. {3a) within expressions,

(b) between individual statements.
(iii) Block Level

e.g. (a} between groups of statements,

(b) between and within program constructs (such
as loops).

{iv) Program Level

e.g. (a) between individual programs,
(b) between groups of programs.

Obvioﬁsly the boundaries between these levels are not always
clearly defined. In poorly defined cases a particular construct may
be considered to belong at the most suitabie level, _

The first level is very machine ofiented (Freeman, 1975) and to
keep thié work applicable to a general MIMD computer, machine level
parallelisﬁ will not be further considered. The program level is aiso
known as inter-program parallelism, or, more commonly, multiprocessing
and has been discussed in detail in Enslow (1977). This thesis will
discuss inter-program parallelism occurring in the second and third

levels.
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1.4 EXPLICIT AND IMPLICIT PARALLELISM

Methods have been fofmulated and implemented by which a programmer
may indicate, by means of spécial statements, where parts of his prégram
may be executed by.different'processors at the.same time (i.e. in
parallel). This is called explicit parallelism,

Anderson (1965) introduces statements for parallel processing to
be used in Algol 60. These include FORK which initiates parallel tasks,
JOIN which waits for parallel tasks to finish (this is the complement
of FORK)} and statements for synchronising parallel tasks. Figﬁre 1.7
shows an example of a program written using Anderson's FORK and JOIN.
The synchronising mechanism allows one of a number of parallel processes
to have exclusive use of a particular set of variables during part of
its execution. This can be used, for example, to prevent two processes
simultaneously trying to change a location.

Gosden (1966) gives the premise that there is a large potential
for parallel activity in loops. A good example of such a loop is the
Algol 60 FOR statement. A parallel loop construct, PARALLEL FOR, is
introduced where each iteration of a loop may be executed in paraliel.
An example of a matrix sum, an inherently parallel process is given
in Figure 1.8,

Variations on these constyucts exist for instance in Algel 68
(van Wijngaarden, 1976) a parallel clause, PAR, is defined such that
PAR (task 2, task 3) would mean that task 2 could be executed at the
same time as task 3. This can be used in conjunction with semaphores
of mode SEMA, to provide any necessary synchronisation between task 2
and task 3. |

The converse of explicit parallelism is implicit parallelism

where the possibilities of parallel processing are automatically detected.



11

For instance, a sequential program (i.e. one written to run on a serial
computer) may be divided as part of its éompilatiOn process into ﬁarts
of code, Detection of the relétionships between these parts allows.
the progrém-to be run on a parallel computer.

There are both édfantages and disadvantages in the use of explicit
and implicit parallelism. The main advantages of explicit parallelism
are, firstly that the programmer is not bound to translate an inherently
parallel problem into serial form for computation; and secondly, should
a particular algorithm not be suitable for parallel processing it may
be changed for another method. On the other hand, implicit parallelism
removes the onus from the progfammer to detect and express all possible
parallelism in his program. Another advantage of implicit parallelism
is that a sequential program need not be rewritten to run efficiently
on a parallel computer.

In this thesis methods of detecting implicit parallelism within
computer programs will be proposed. Techniques for handling ?rOgrams

in which the parallelism is explicitly declared, will also be described:

and discussed.
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c+64
.FORK task2,task3;
task2: BEGIN
x<af2;
y<b/2;
z+c/2;
GOTO continue
END;
task3: BEGIN
uea*2;
v<b*2;
wec*2;
GOTO continue
END;
continue: JOIN task2,task3;
r+u*x;

Task 2

12

Task 3

Figure 1,7

SAMPLE PROGRAM USING ANDERSON'S FORK AND JOIN
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FOR i<1 STEP 1 UNTIL 60 DO
FOR j«l1 STEP 1 UNTIL 50 DO
m{i,jlemi[i,j]+m2[i,j];

Algol instructions for the addition of two matrices

PARALLEL FOR i+l STEP 1 UNTIL 60 DO
PARALLEL FOR j<1 STEP 1 UNTIL 50 DO
m[i,jlemi[i,jl+m2{i,j];

Figure 1.8

PARALLEL VERSION OF THE ADDITION OF TWO MATRICES
' USING GOSDEN'S NOTATION
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CHAPTER 2

SOFTWARE CONCEPTS AMENABLE TO PARALLEL PROCESSING
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2.1 SYSTEMS SOFTWARE

The term 'systems software' is used to describe the interface
between the hardware of a computer and a program being run on it.
In a parallel processing environment there will be a need to alter
some of the systems software from that used with a serial computer.

The collection of programs that has responsibility for all
resources is called the operating system. When more than one processor

is available the operating system will have the ultimate responsibility

for allocating work to each of the processors. Operating systems for
parallel processing computers are discussed in Enslow (1977}.

A compiler can be considered to be a computer program., The
compiler takes as data the program to be compiled and produces for
its results computer-oriented code, that can be run on a particular
set of computers. In a parallel processing environment the computer-
oriented code produced should indicate possible parallel paths.
Compilers and compiling techniques are discussed in more detail in the
following two sections.

The programming language used as a media for transmitting problems
to a computer may also be considered as part of the systems software.
Indeed careful choice of programming language can facilitate the

programming of a problem (Barron, 1977). In this thesis parallelism

in Algol-type programming languages are primarily considered.
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2.2 COMPILATION PROCESSES

A compiler is used to produce computer-oriented code from a
program, There are many types'of compilers to allow for differént
languages, machines and aims of the'implementors. Hdpgood (1969),

Lee (1974), Rohl (1975) and Wulf et al (1975) along wi;h many other
authors discuss types of cdmpilers and compiling techniques.

The time taken to compile a given program on a pérticular machine
“depends to a large extent on the number of times the program (as source
text) or a version of it has to be scanned (this is called a pass) and

so two types of compilers can be considered:-

(1} One-Pass Compiler

The program is only scanned once (i.e._after a statement
has been scanned it may not be returned to). This type of
compiler is fast but tends to produce inefficient code.

(ii) Multi-Pass Compiler

The program is scanned in several stages (for example
see Figure 2.1) after each stage a code is produced to be
passed on to the next stage until the final compute:—‘
oriented code is produced. Although this is slower than
the one-pass compiler, generally more efficient code is
produced.

Thus one-pass compilers are useful for short jobs which are only
run once. Whereas multi-pass éompilers are more beneficial for long
jobs that may be run frequently and stored in a compiled state between
runs. Since parallel processing is being used primarily to increase
the overall speed of throughput efficient code will be preferential
to a short compile time. Thus, in general, multi-pass compilers will

be considered to be used in a parallel processing environment.
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Aho and Ullman (1977) give details of what may happen at possible
stages of a multi-pass compiler. For the example compiler in Figure 2.1 ‘
four passes are given plus two stages that are available throughout
compilation. The Lexical and Syntax Analyses will be used to identify
the names and uses of identifiers,to parse expressions (section 2;3)
and to find simple errors (may be such things as simple typographical

mistakes). The Table Management section is used to keep track of

jidentifiers, usage of variables and links. Whilst the Error Handling
routines after the capabilities of recovering from some errors,
depending oh the language and type of compiler; and in other cases
causes the compilation to abort. The Intermediate Code Generation
produces, from the information provided by the Lexical and Syntax
Analyses, a coded copy of the program which the Code Optimisation
stage can optimise, from which stage the final code can be obtained
via the Code Generation stége.

A compiler used with programs where the parallelism is explicit
will.only need to handle the extra language constructs used for
expressing parallelismrand to test parallel paths.for legality and
ambiguities; and perhaps carry out some special optimisations. Whereas
with implicit parallelism it will be necessary to analyse the program
to see how it can be divided into tasks. The compiler could then
detect parallel relationships between tasks as well as carrying out

the normal compiling work for a program to be run on a serial computer.
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2.3 PARSING AN EXPRESSION

The usual order of execution of an arithmetic expression, written
in a programming language, is dictated by the rules of mathematics.
Thus an ekpression is calculated by performing operations in desceﬁding
order of precedence. As in mathematics brackets have the highest
precedence and addition the lowest precedence.

A process called 'parsing' is used to translate an expression into
a form from which the order of execution is obtainable (Hopgood, 1969).
Parsing usually is part of the Syntax Analysis stage of a multi-pass

compiler,

2.3.1 Reverse Polish Notation

Reverse Polish is the name given to a technique of parsing
expressions, and is used extensively in compilers for serial computers.
This method provides an unambiguous means of representing an expression .
{usually arithmetic) without the use of brackets (parentheses). The
process can be viewed as the translation of an input string to an
output string via a stack. A stack is a means of storing data such
that the last item stdred on a stack will be the first item removed;
similarly, the first item stored on the stack will be the last item
removed (Barrom, 1968). The translation takes place by passing
operands‘directly from the front of the input string to the rear of

" the output string. Operators at the front of the input string cause
operators on the stack to be moved to the rear of the output string,
until the top item on the stack is one with lower precedence number
(see Table 2.1) than the one at the front éf the input striﬁg. The
operator at the front of the input string is then moved to the top of the

stack. Matching brackets are an exception as they are discarded when
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"they occupy the top two positions of the stack,ArFigure 2.2 éives an
example of parsing using re&érse Polish-techniqszgménd illustrates the
discarding‘of matching brackets.

Having obtained a reverse Polish form of an expression it is
necessary to produce some type of machine instructions to ensure that
the correct pairs of operands are manipulated by the appropriate
operator. The reverse Polish stfing obtained by parsing becomes to
a new stage, in which it is analysed from right to left. A recursive
procedure CALC (Figure 2.3) can be used to obtain triples indicating

the operator and two operands. Here the oper;nds may be temporary

results representing triples.

2.3.2 Tree Representations

A tree structure may be drawn to représent many relationships
(Knuth, 1968;1973) including those of arithmetic and Boolean expressions.
A tree structure may be considered to represent a 'branching' relation-
ship between 'nodes', in a similar way to the nodes of trees in nature
have bfanches connecting them. Figure 2.4 gives an example of how a
tree may be drawn, and the names given to its constituent parts.
Continuing with the use of popular terms, the point from which the
whole tree originates is called the root node. Similarly any node
from which no branch emanates is called a leaf. Ali nodes horizontally
adjacent are said to be at the same level.

Relationships between nodes of a tree may be considered similar
to those in a family tree, containing only male relatives. In Figure
2.4, for example, the following relationships can be considered to
exist;'node D is the son of node B, nodes D,E and F are brothers and

node A is the great-grandfather of node G. A subtree can be considered
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“to be a node and all its direct descendants. It is the convention to

draw trees 'upside-down' so the root node appears at the top of the
tree, and all father nodes above their respective sons; .Trees for
which each node has at the most two sons are called binary trees..
When a node has two sons the} are usually referred to as the left and
right hand sons. Throughout this thesis the trees referred to will be
binary trees.

Binary trees are used to represent expressions such that each of
the leaves represent either a variable or a constant. All other nodes
represent operations to be carried out on their son if there is only
one, or between their sons. Figure 2.5 shows two examples of how a tree
may be drawn to represent an expression.

A reverse Polish expression may be converted in to a binary tree
structure by using a procedure similar to CALC which was defined in
Figure 2.3. The reverse Polish form of the expression is scanned from
right to left. A recursive procedure TREE, Figure 2.6, is called when
the first operator is detected. The final result will be returned to

the calling routine as a binary tree
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Symbol or Operator Precedence Number
) . 1
2
+ - 6
* / 7
+ 8
Table 2.1

PRIORITIES OF OPERATORS

Input String Stack Output String
{(A+BY*C empty enpty
A+B}*C ( empty

+B)*C ( A
B)*C +( A
}Y*C +( AB
}*C ( AB+
*C empty AB+
¢ * AB+
empty * | AB+C
empty © empty AB+C*
Figure 2.2

THE DERIVATION OF THE ﬁEVERSE POLISH FORM OF AN EXPRESSION
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' 2.4 ALGOL-TYPE PROGRAMMING LANGUAGES -

Higman (1977) defines an Algol-like programming language to be
one that has the following properties:
"a) Use of CBNF to define syntgk, with semantics in English.

b} Acceptance‘of as much of current mathematical notation as
could be proved workable, with elimination of all arbitrary
restrictions whose origins lie in Compiler Design.

¢} A clear distinctioq in symbolism between the imperative
(assignment) equals and the predicative (relational) equals.

d) Use of English words in a distinct font (e.g. black type or
underlined)} to supply such new symbols as it requires.

e) Page lay-out completely at the service of legibility to

human readers."

Here rather simpler and looser conditions will ber given for a

language to be considered Algol-type.

Definition 2.1

An Algol-fype programming language is one which has a block-
structure and whose design is based on Algol 60.

A block-structured language being one which uses blocks as
defined below.

Definition 2.2

A block is a segment of program delimited by a bracketing
structure (e.g. BEGIN and END). Names may be declared to be known
only inside a block (i.e. local.names) and blocks may be nested

inside other blocks.
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Some languages which conform to Definition 2.1 would not be
classified as Algol-like by Higman's ideals. Eiamples of languages
that may be considered to be Algol-type according to Definition 2.2

are giveﬂ in Table 2.2, along with references to published specifications,

ALGOL 60 Naur (1962)

ALGOL 68 . van Wijngaarden (1976)
ALGOL 68-R Woodward and Bond (1972)
CORAL 66 | Woodward et al (1970)
PASCAL " Jensen and Wirth (1976)
RTL/2 Barnes (1976) -

\

\

\

\

\

\

\

\

Table 2.2 ' | \
EXAMPLES OF ALGOL-TYPE LANGUAGES
\

\

\

|
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2.5 USAGE OF LANGUAGE CONSTRUCTS

Programs have been analysed for the use of various programming
constructs in Eoth static and dynamic program stdtes. Knuth (1971)
and Robinson and Torsun (1976a) have carried out empirical studies
on Fortran programs, Wichmann (1970;1973) and Robinson and Torsun (1976b}

have carried out studies of Algol programs. In all of these studies,

both Fortran and Algol assignment was the most frequently'used
‘programming construcf; loop, conditional and call to routine were also
seen to be frequently used. In Robinson and Torsun (1976b) samples over
85% of the static construct used were accounted for by: assignment h
statements, 'FOR-loops', 'IF-conditicnals' and procedure calls.
Unconditional jumps (GOTO's) were used more frequently in the Fortran
samples than in Algdl samples (less than S%) and with the increase in
using 'structured programming techniques' (Kernighan and Plauger, 1976
and Barron, 1977) unconditional jumps should only account for less than
1% of program constructs used for programs written in the future.

When a program is being run it may occupy the majority of its time
executing.only a few statements. For e*ample‘Knuth (1971) mentions a
140 liné program that spends more than half of its time executing 5
lines which create a loop. This point is also observed by Bingham and
Reigel (1968) who state that "the major part'of the execution time on
single processor machines is spent within loops“;

An 'IF-conditional! can be considered in three parts:-

(i) A condition that is tested.
(ii) Code that is executed if the condition is true.
(iii)} Code that is executed if the condition is false.
Only one of (ii) and (iii) will be executed for a given pass of the

'IF-conditional', whereas (i) will be executed everytime. These facts
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" will need to be taken into account wﬁen detecting parallelism!
Similarly, when a procedure call is made more code is executed than
aﬁpears in the static form of the program and this too must be
accounted for when detecting parallelism. ' .

For the analysis pf either explicit or implicit parallelism the
division of a program into tasks will be considerably easier in a
structured programming environment. Ong of the underlying criteria
of structured programming is that programs are written in modules
(Kernighaﬁ and Plauger, 1976) and these modules may be equated to

tasks in a parallel processing environment.



CHAPTER 3

DETECTION OF POTENTIAL PARALLELISM

AT THE INSTRUCTION LEVEL
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3.1 TREE REPRESENTATIONS OF EXPRESSIONS

In this chapter the parsing of expressions té’bé.executed on a
parallel computer with a number of arithmetic;units Or Processors,
will be studied. .Expressions that are used in Algol-type programming
1angﬁages indicate the type of operations (e.g. addition) to be carried
out on a set of operands. The order in which these operations should
be executed is also inferred. As mentiomed in the previous chapter this
js dictated by the usual rules of mathematics. Because of the similarities
between arithmetic and Boolean expressions both may be handled using the
same techniques. So here attention will be focused upon arithmetic
expressions.

A machine with a number (N) of arithmetic units or processors will
be considered. Where each arithmetic unit or processor can perform aﬁy
arithmetic operation in unit time. The time taken for an arithmetic
expression to be calculated on a parallel computer can be estimated to
be proportional to the number of levels in the free representation of
the expression., Suppose N (the number of arithmetic_units) is sufficiently
large to perform all possible operations at a given level. If there are M
operations to be performed at:a:given level, the time-taken to execute that
level will be proportional to ﬁ/ﬁ].:(NB‘rM/N] is the integer that
satisfies MJN{M/ﬁ}(M/N)+1). For a seriél computer the time taken to
calculate an expression can be estimated to be proportional to the
number of operations needed to be performed.

Provided that there are sufficient arithmetic units or processors
available the following definition applies:

DPefinition 3.1

Any operations that appear at the same level, in a tree represent-

ation of an expression, may be executed in parallel on separate

pProcessors.
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Throughout this work it will be assumed there are sufficient
arithmetic units or processors available to perfofm ény given set of
operafions, unless otherwise stated.

From Figure 3.1{a) it can be~séen that it will take 7 units of
time to calculate the expressioﬂ

A+B+C+D+E+F+G+H,
Whereas in Figure 3.1(b} the same calculation only takes 3 units of
time. The tree representations of the expression having seven and
three levels fespectively. In the latter case, however, four processors
are required at level 1, two at level 2 and one at level 3. Whereas in
the former case only one pfocessor is required throughout.

The tree representation of the expression given in Figure 3.1(b)
shows there is more potential parallelism than in the representation
given in Figure 3.1(a). In general, in a parallel processing
environment the amount of potential parallelism for the execution of
an expression is inversely proportional to the number of levels (or
height) of the tree represehtation of the e&pression. Thus, when the
tree representation of an expreséion is being formed it will be
beneficial to form a tree of the least possible number of levels.

The class of operations that will form such trees are called 'balancing'
operations. Balancing will usually take place as part of the parsiﬁg
operation. The execution of an expression from a balanced tree
representation should produce identical results to those of from any

other tree representation of that expression.
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3.2 A SURVEY OF TECHNIQUES FOR RECOGNISING EXPRESSION PARALLELISM

Various methods have previously been proposed for recognising
parallélism at the expression level.

These methods determine which pérts of the expressions or
statements are most suitable for execution in parallel. Descriptions
of such algorithms are given in the following sub-sections. Two simple
arithmetic expressiﬁns wili be used, where neéessary to illustrate the
working of these algorithms. The expressiohs are:

A+ B.+ C+D+E+F+G+H

and A+B*C+D*E*F*(G+H+1I,.

3.2.1 Squire's Algorithm

The algorithm proposed by Squire {1563) is based on information
relating to operands, operafors and the height (or level) on a tree
representation at which an operation may be performed, Such information
is held in quintuples of the form:-

(operand A, operator, operand B, sfart height, end height).
All variables are considered to be at the bottom level (i.e, level.
zero) of a tree and so their end heights will be zero,

The algorithm involves using both right to left scans and left to
right scans thus becoming very involved. Here a brief description will
be given as to how the method analyses an expression. Figure 3.2.gives

an example of Squire's algorithm as applied to an expression of the

form
A+B*C+D*E*F*G+H+1TI.

. An expression is analysed by scanning it from right to left,
stacking all the operands and operators on a type of stack called LIST.
The stacking procedure is halted when the precedence of an operator

scanned is less than that of the last one placed on LIST (Table 3.1
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contains a list of the precedences of operators). The precedence of

the last operator placed on LIST can be represented by the symbol K.

A left to fight,scan of LIST is then performed (i.e. the stack is

scanned from the top downwards). The scan finishes when an operator

with a priority different to K is detected. During this scan the two

operands (say, A and B) with the lowest height are chosen. A quintuple

is then formed consisting of the following information:-

(a)
(b)
(c)
(d)

(e)

The operand A.

The operator immediately to the left of B.
The operand f.

The maximum end heights of A énd B.

The end height of this quintuple (i.e. (d) plus 1}.

This quintuple then replaces the operand A in LIST, whilst the operand

B and the operator are removed from LIST. Then, the left to right scan

is repeated from the left most end of LIST until the precedence of the

first operator in LIST is different to K. The right to left scan is

then continued from the point where it was halted. When the right to

left scan has placed all operands and operators on LIST the left to

right scan is reinitiated until only one quintuple remains. This

quintuple will correspond to the calculation to be executed at the root

node of the tree.

Figures 3.3(a) and (b) show the tree representations that would be

obtained for the expressions

A+B+C+D+E+F+G+H andA+B*C+D*E*F*G + H+ I.

It is sugpested that subtraction and division may be handled by using

the inverse operations and that function calls may have a special

quintuple, Similarly, bracketed expressions may be treated as a

special case by giving opening and closing brackets a precedence of 1.



Original Expression
(parsed right to left)
LIST (Parsed left to right)
D*E*F*G+H+T-
QL*F*G+H+1-
QL * Q2+ H+ 14

Q3 +H+ 1
B*C+Q3+H+1I -

Q4 + Q3+ H+ I 4
A+ Q4 +Q3+H+T -]

Qs + Q4 + Q3+ 1 -
Q6 + Q4 + Q3 -|
7+ Q34

T

- Figure 3.2
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FA+B*C+D*E*F* G+H+T-

Quintuples Formed

Q1=D,*,E,0,1
Q2zF,*,6,0,1

Q52Q1,%Q2,1,2
Q42B,*,C,0,1

Q52A,+,H,0,1
Q6Q5,+,1,1,2
Q7Q6,+,04,2,3

Q8=Q7,+,Q3,3,4

THE PARSING OF AN EXPRESSION BY SQUIRE'S

ALGORITHM



Operator or Symbol Precedence
L -] {start and end) 0
+ - : 3
* / 4
Table 3.1

PRIORITIES ASSIGNED TO OPERATORS (by Squire)
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Figure 3.3

TREE REPRESENTATIONS OBTAINED BY SQUIRE'S ALGORITHM

1.
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3.2.2 Hellerman's Algorithm

Hellerman (1966) proposed a strategy in which ﬂé considers the
optimum way in which an arithmetic éxpression, presented in reverse
Polish form, may be computed on a parallel processing'machine. This
algorithm does not involve any balancing operations,

The reverse Polish form of an expression can be found by the
method described in section 2,3.1. Hellerman points out that by
studying the tree form of the reverse Polish expression it caﬁ be seen
there are one or more critical paths (Mitchell, 1972) from leaves to
the root node. On non-critical paths it may be possible to adjust the
level at which a temporary result is formed, thus optimising the number
of processors used. |

Figure 3.4 shows the binary tree representations that would be
formed using Hellerman's algorithm. It can be seen that the shorter
ekpression (a) takes one more level to compute than (b). This is
because (a) only uses one processor throughout its calculation whereas
as (b) uses two processors at levels 2 and 3 and one processor at the

remaining levels..

3.2.3 Stone's Algorithm

The aim of the algorithm proposed by Stone (1967) is to génerate,
in one pass of an arithmetic expression, a type of reverse Polish.
expression. The tree representation of the expression will have the
maximum number of operations at a givemn level.

A grammar is defined in B.N.F. (for an explanation of B.N.F. see
Barron, 1968) and gives a detailed set of Algol 60 highly recursive
procedures which will produce a reverse Polish type of string.

~

Basically the algorithm attemptswhere possible to join two subtrees of
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the same number of levels, say i, to form a new subtree ofilevel i+l.
Figure 3.5 shows how the expression

A+B+C+D+E+F+G+H

is translated in to a 3 level treé, represeh;ed by the reverse Polish

type expression
AB + CD ++ EF + GH +++ .

The standard reverse Polish form of this expression is
AB+C+D+E+F+G+H+ .,

Figure 3.6(2) and (b) show the binary tree representations of the
expressions

lA+B+C+D+‘E+F+G+HandA+B*C+D*E*F*_G+H+I
obtained by using Stone's algorithm.

Subtréction and division are handled by using inversions, although
unary minus itself is not catered for. Exponentiation, because it is
not associative, has to be treated separately, as are bracketed
expressions.

Using this method it is possible to produce a full binary tree
of i levels when there are Zi variables linked by one type of associative

operator. The tree given in Figure 3.5(a) is an example of this.

3.2.4 Baer and Bovet's Algorithm

The algorithm proposed by Baer and Bovet (1968] wag designed to
satisfy specific aims. These .aims are as follows:-
"(a) To obtain a minimum number of levels in the syntactic tree.
(b) To use a leff to Tight scan so that the same symbol is not
scannéd more than once during a gifen pass.
(¢) To produce a simple intermediate language with temporary

results already sorted by levels'.
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Temporary results are stored as triples of the form:-
(operand, operator, operand) .
Such triples are given a means of identification so they can be refe:red
to as operands during subsequéﬁt passes. Eéch pass perfofmed by the
algorithm corresponds to a level in the tree representation. Each triple
formed in a particular pass may be calculated at the.corresponding level
in the tree.

The algorithm uées two stack§ for storage, one for operands and the
other for operators. At a given stage in a séan three parts of an
expression are under consideration, An operand, ITEM, the operators to
the left and right of ITEM, LSCOP and SCOP respectively. Usually LSCOP
will have the initial value of "plus". Depending on the relative
precedences of LSCOP and SCOP (see Table 3.2) various actioﬂs are taken.
Basically these are:- 7 |

(1) If the precedence of SCOP is greater than that of LSCOP; or

the stacks are empty, then ITEM and SCOP are put on top of
the respective stacks.
(2) If the precedence of SCOP is not greater than that of LSCOP
then two subcases are éonsidered: |
{(a) The operator at the top of the operator stack is
of precedeﬁce equal to that of LSCOP. If this is
‘the case then a triple, TK’ is formed consisting of:- 3
(top of operand stack, top of operator stack, ITEM).“
Ty and SCOP are then added to the output sfring. |
{(b) 1In the other case only ITEM and SCOP are added to thé
| cutput string, |

A scan will end after the terminator (a semi-colon) has been

processed as the operator SCOP. The overall process is repeated until

the output string contains only one item, which will be the triple
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reﬁresenting the calculation at the root node of the tree representation.
Figure 3.7 shows how the expression |
A+ B *.C +D*E % F*G+H+ I¢
is parsed in the.manner descfibed above.

Figure 3.8(a) and {b) show the binary tree representations of the

expressions
A+ B +-C +D+E+F+G+Hand A+ B *C+D* Er? F*G+H+I
obtained by Baer and Bovet's algorithm,

Extra stages are necessary to handle subtraction and division which
are dealt with in conjunction with addition and multiplication respectively.
For exampie consider the expression

A/B/C/D.
The first scan using Baer and Eovet‘s'algorithm will give two temporary

results

T1 = A/ B and T2

The next pass will give the temporary result

=C*D

TS 2T, / T, -
Thus the expression has effectively been converted into a more convenient

form of ‘
A/B/ (C*D).

Unary minus is dealt with by means of a switch. Sometimes it is
possible to avoid generation of a unary minus by changing the sign of
an operator, However, if a unary minus must be éenerated it is left
until the last pbssible level,

Brackets have the same precedence as the terminator {see Table 3.2)
and so bracketed expressions are calculated as independent enfities.
When in the output string, an opening bracket and a closing bracket are
detected to be only separated by a single operand then the two brackets

are deleted,
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Input String Stack : Output String

A+B+C+D+E+F+G+H empty empty
+B+C+D+E+F+G+H empty A
B+C+D¥E+F+G+H + A
+C+D+E+F+G+H + AB:
+C+D+E+F+G+H empty AB+
C+D+E+F+G+H +  AB+
+D+E+F+G+H + AB+C
D+E+F+G+H ++ AB+C
+E+F+G+H ++ AB+CD
+E+F+G+H + AB+CD+ -
+E+F+G+H empty AB+CD++
E+F+G+H + AB+CD++
+F+G+H + AB+CD++E
F+G+H ++ AB+CD++E
+G+H ++ AB+CD++EF
+G+H + AB+CD++EF+
G+H ++ AB+CD++EF+
+H ++ AB+CD++EF+G
H ++t AB+CD++EF+G
empty 4 AB+CD++EF+GH
empty enpty AB+CD++EF+GH+++
Figure 3.5

THE DERIVATION OF A REVERSE POLISH TYPE OF EXPRESSION
' USING STONE'S TECHNIQUES

43
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A+B+C+D+E+F+G+H A+B*C+D*E*F*G+H+1I
(a) S (b .
Figure 3.6

TREE REPRESENTATIONS OBTAINED FROM STONE'S ALGORITHM
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Precedence
0

(]
1
2
3

PRIORITIES ASSIGNED TO GPERATORS BY BAER AND BOVET



C+D*E*F*G+H+ I

A+ B.*
'I‘1 =B *(C
T, =D *E
T, =A+H
T, +T, *F*G+ T, +1;
T4 = T2 * F
Tg 2Ty + T
Ty * G+ Te + 1;
Tg =Ty * 6
T7 = T5 f I
T6 + T7,
T8 = T6 + T7
Tg
Figure 3.7
THE PARSING OF AN EXPRESSION USING

BAER AND BOVET'S ALGORITHM
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Figure 3.8

TREE REPRESENTATIONS OBTAINED FROM BAER AND BOVET'S ALGORITHM
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3.2.5 Other Methods For Recognising Parallelism Within Expressions

In the previous four sub-sections methods haﬁe-ﬁeen described for
the recognition of parallelism within expressions. Possible extensions
and variations of these algorithms have been studied by various aﬁthors.

Ramamoorthy and Gonzalez (1969) and Ramamoorthy et al (1973) haﬁe
proposed two similar approaches that involve weighting reverse Polish
expressions. Parts of such exfressions may be swapped around, according
to their weights, creating a new expression. The new expression will be
equivalent to the original, except that the tree repfesentation has a
minimum number of levels. These methods work readily for short
expressions but become unwieldly for long ones.

Kuck et al (1972) and Kuck (1977) examine the usage of re-
distribution over expressions such that a tree representation is of
minimum height. This may involve performing extra operations such as
shown in Figure 3.9. The distributed form (b) requires five operations
whereas in the normal form (a) only four operations are performed.
However (b) is completed in three levels whilst (a) takes foﬁr levels.
Associativity an& commutativity are handled in a similar m;nner to that
describe& in Baer and Bovet (1968). Expressions for which an optimal
form is obtainable by just using associativity and commutativity are
not distributed. The removal of brackets may cause problemé with
certain classes of numeric problems,

Ward (1974) proposed a method of creéting a tree representation
of several assignment statements. The approach is based on the work
of Baer and Bovet (1968). The algorithm can be explained by
considering M assignment statements that‘appear adjacently. If none

of the M statements use the same variablg then all the individual tree

structures for each statement may be executed in parallel. However, if
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one statement fetches a variable that has been previously assigned to,
it must be ensured that the new value is fetched. Similarly, if a
stateﬁent fetches_a_variabie_that_will be sﬁbsequently assigned'to,

it must be'ensufed that the'dld.ﬁalﬁe is féfched.' 1f each statement

is consideréd separately, a tree structure similar to the one'sthn

in Figure 3.10(a) will be obtained, where one statement is cbmpleted
before the nexf-is commenced. Ward's algorithm allows a variable delay
to be associated with a variable that is assigned tb,'ahduéubseéuently
fetched. Figure S.Ib(b)'shows how thisxtécﬂnique may decrease the

number of levels in a tree Tepresentation of two statements.
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level
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(a) (b)

Figure 3.9

'POSSSIBLE TREE REPRESENTATIONS OF

A*(B*C*D+E)
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Figure 3.10

POSSIBLE TREE REPRESENTATIONS OF

A<«B+C+D;
E«F*D+A+G+H
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3.3 FORMATION OF A BALANCED BINARY TREE

Evans and Smith (1977) consider how a binarfﬁziée of minimum
nunber of levels (a balanced binary tree or'd'balanced tree) is

*

systematically constructed from single elemehﬁ components (sée.Figure
3.11). - Assume that the firét.element is attachéé to the null node.

A second element can be added ﬁy forming a new node whose left hand
son is the original element and whose right.ﬁénd son is the new
element. This called 'inserting one place above' because the join.
(i.e. the position of insertion)‘is immediately Above the new position
of the previous element inserted. In the casé of adding a second
element this is the first insertion and the. previous element is the
original ﬁpde. Similarly, a third element can be added by inserting
the new element two blaces above the last element inserted (i.e. the
join is two 1evéls above the new position of the previous element
inserted). A foﬁrth element can be added by inserting a new node one
place above the tﬁird element (i.e. the last one inserted). Whilst a
fifth element can be added by inserting a new node three places above
the fourth element. . .

The tree construction process given‘can be enumerated by using a
numeric code, which can be generated-in the following manner. At any
point in the tree the number 1 is used to indicate that the next
element should be inserted one place above the previous entry in fhe
tree. The number 2 is used to represent the fact that the next insertion
should be two places above the previous entry in the tree. In general,
the number K (where K 'is a positive integer) -will indicate that the
next insertion should be K positions above the last element inserted.

So the four insertions shown in Figure 3.11 can be represented by the

code 1,2,1,3.
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The process can be extended by recognising the symmetry‘of binary
trees. The three insertions following those given iﬁiﬁigure 3.11 will
be in thé same. manner ss the first three (i.g.rl;Z,l). The eighth
insertion (that is 23t)) will be iﬁ#erting thewﬁihth element at the
fourth (3+1th) level above all other nodes, Genefalising, the 2ith
insertion will be at the i+1th level above all other nodes. The insertion
of the (2i+1)th to (2i+1-1)th elements will be in the same manner as the
insertion of the first (21-1) elements. |

The process descriﬁed above allows single elements to be added into
a binary tree structure. In some cases it will be necessafy to add
subtrees to existing tree structures. Using the following criteria

subtrees may be added into binary trees without unnecessarily increasing

the height of the tree, whilst retaining the structure of the subtree.

Criteria for Inserting Subtrees

(1) Any increase in the overall height of the tree caused by the
insertion process should be kept td an absolute minimum. This
is so that the number of levels in the tree will continue to
be minimised. |

{2) An insertion at the.tcp of the trée is preferabletto extgnding
the tree below the lowest existing level. This provides for
possible future extensions to the tree. If the-tfee is ex@ended

below the lowest existing level then the next insertion must

also extend the height of the tree, Whereas, if the tree is extended

above-all existing 1eVeis, the next insertion may not extend the

overall height of the tree.

(3) A SUbtree should be placed in-the first available position in the tree,

provided the previous conditions are met. This, again, is done to

‘allow further extensions to the tree, so that the maximum number of

vacant nodes are available for successive insertions,
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Figure 3.12 gives examples of how subtrees may be added into trees.
When a single element had been added to the fréé-iﬁe next available
position in the tree, for gn.insertion, was defihed by that element.
However, when a subtree has been inserted acco?ding fd the aboye criteria,
the next available position in the tree will not be immediately obvious.
A dummy pointer can be used to indicate the next position in the tree

where a single element may be inserted. The value of the dﬁmmy pointer

will depend both on the subtree and the tree into which it is being
inserted. If the subtree is shorter than the tree into which it is
being inserted, then it is assumed that the maximum number of elements
that could be held in a subtree of that size has been added. The dumﬁy
pointeris obtained from the last itém theoretically added_iq that subtree.
A different approach is necessary when the subtree's heigﬁé is greater
than or equal t6 that of the tree into whicﬁ it, the subtree, is being
inserted. The next insertion (after the subtree) will need to be above
the join of the tree and subtree (criteria 2). The dummy pointer will
then be obtained from the last element theoretically inserted in a full
tree of one level gréater than the subtree actually inserted.

After several subtrees have been inserted into a tree, the tree may
no longer be of optimal form. This is because insertions a;e always at
the next available position in thé tree. Any suitable positions available
earlier in the tree are mot accessible. However, this situation is in
line with the tree being formed syétematically from components.

An algorithm that will create balanced binary trees is given in

Appendix 1 as an Algol 68-R program.
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SYSTEMATIC CONSTRUCTION OF A BALANCED BINARY TREE
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3.4 A NEW ALGORITHM

In this section a new technique for producing a‘Binary tree
representation of an arithmetic expression will be introduced. The method
will usé the technique for forming a balanced binary tree described in
section 3.3. The following constraints will be applied to the algorithm:

(1) The priority éf brackets will be observed.

(2} Expressions are not to be reordered.

(3) The tree representation should be of minimum possible height.
The first two constraints should ensure that résults from sensitive
numeric equations are not effected by this technique. This is particularly
~ important as one of the main areas in which parallel processing will be
useful is the solving of large numeric equations. The precedence of
operators are arbitrarily assigned the values given in Table 3.3.

The balancing technique described in the previous section is used
to form balanced binary tree representations of expressions and statements.
The leaves of the tree will correspond to variables and constants, whilst
all other nodes will represent operators. As long as operands connected
by operators of the same precedence are being considered (other than
exponentiation) the formation of a balanced binary tree is carried out
as explained. For the operation exponentiation the nekt item must be
inserted at the top of the tree because exponentiation is not associative.
The balahcing technique will also provide information about the level at
which an insertion is performed. This information may be stored as part
of a tree structure. The whole of this process is referred to as the

Balancing Method.

3.4.1 The Basic Algorithm

Two stacks will be used during the execution of this algorithm for

storing symbols already scanned. Operators are stored on OPSTACK, operands
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and any‘temporary resﬁlts in the form of subtrees are stored‘in RANDSTACK.
The first item on OPSTACK will be a fictitious opefézai‘with precedence -1.
The‘symbols of an expression are scanned one at a time, from left to
right. Depending on what the symbols are variéus actions are taken.
These beihg:
(a) Operand.
When a symbol is recognised as not being an operator it is
treated as an operand and stacked on RANDSTACK.
(b) Operator;
If the operator is a minus (or divide) the corresponding operand
is marked to be negated (or reciprocafed] and the operator becomes a

plus (or multiply). Two possible cases are then considered:

(1) When the precedence of the opefator just scégned is greater
than or equal to the operator at the top of the stack. The

new operator is stacked on top of OPSTACK and the next symbol

scanned.

(2) Otherwise the precedence of the operator just scanned is less
than that of the operator ét the top of OPSTACK. Then the

two operands from the top of RANDSTACK are jbined into a subtree

by the operator from the top OPSTACK using the technique

described eérlier as the Balancing Method. The two operands

and the operator are then removed from the top of the respective

stacks. There are then three possible situations:

(i) The precedence of the operator now at the top of OPSTACK
is the same as the one just removed. In which_ﬁase the
operand from the top of RANDSTACK is joined into the sub-
tree being formed using the Balancing Method. The top

items from each stack are removed, and the three possibilities

are reconsidered,
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(ii) The precedence of the operator now at the top of OPSTACK
is greater than that of the operator Just stacked but
less than that of the operator just removed from the top
of OPSTACK. In which case the 6perand frdm the.top of
RANDSTACK is joined in to the subtree being formed at the
top. The three possibilities are then reconsidered.

(iii) The precedence of the operator now at the top of OPSTACK

is less than or equal to that of the operator just scanned.

Then the subtree being formed is stored at the top of
RANDSTACK and the operator just scanned is put on the top
of OPSTACK. The next symbol is then scanned.
{c) Blanks.
Blank characters are ignored,
(d) Brackets.

When an dpening bracket is encountered it is placed on the top
of OPSTACK and the scanning continues in the ordinary manner, until
the matching closing bracket is scanned. Then for all the operators
on OPSTACK, frﬁm the top one untii the one above the opening bracket,
and the corresponding operands on RANDSTACK a subtree is formed. The
formation of thé subtree is done in the manner described in (b). The
resulting subtree is placed on top of RANDSTACK and the brackets are
discarded.

(e) Semicolon.

A semicolon is used to indicate the end of an expression has

been reached. So the final' tree must be formed, this is done by

considering the remaining items on the two stacks as described in (b).

Figure 3.13 shows how an expression is parsed using the new algorithm.

The tree is effectively built backwards, as it is always a left hand son
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that is added, Figure 3.14(a) and (b) show the tree representations

obtained by the new algorithm for the two expressiohéfu\

A+B+C+D+E+F+G+H and A+ B *,§f+ D*E*F*G+H+1T.

3.4.2 Extension to the Basic Algorithm

In the previous section a new algorithm'was describéd that would
-deal with the fundamental arithmetic operations. Here, extenﬁidns to the
algorifhm will be'described, which will iﬁcrease the potency of the
aljgorithm.

It is possible to handle unary minus by using additional techniques
when the expression is scanned. A unary minus‘is recognised when two
operators are read in succession and the second is a minus or when an
operator followed by an opening bracket is followed by a minus;' In either
case instead of stacking a minus sign a non-standard sign, say '’ is
stacked, On unstacking when a unary minus is detectéd the corresponding
operand is marked to be negated. The unary minus is then removed from
the operator stack and the process continued.

Simple assignment statements caﬁ bé catered for by defining each
statement to consist of a variable name, followed by an assignment
symbol, then an arithmetic expression. Thus when the first operand is
detected by (a) in the previous section it'is set aside and stored in
LHS. The next operator scanned must then be an“a$Sigﬁment,wﬁich is then
discarded. The remainder of the expression is then.scanned in the
normal manner, assume that this gives a tree if i levels. A node is
then inserted'at the (i+1}th level with an operator assignment, LHS as
its ieft hand son and ﬁhe expression as its right hand son. Thus; it
nay be said that LHS took (i+1) levels to compute or LHS is available

at level (i+1) assuming there are sufficient processors.
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‘When several assignment statements, which are executed one after
another, are being considered, it is possible that one statement may
use a?va¥iab1e ihat is assigned to by another statement, This is
~similar to the problem described in seétionb3.2.5. Usiﬁg‘the information
obtéined from forming a trée for a singlé assignment statement it is
possible to.séy at what level (i+l) a variable will be available. So
when this variable is inserted in a tree represéntétion of a subsequent
expression thé variable will be known not to be available to level itl.
The insertion in to the tree will thus be the same as for inserting a
subtree of level (i+1). Figure 3.15 shows how the algorithm forms trees
for a set of assignment statements, - .

Another possible extension to the algorithm would be to allow for
various operations to have different execution time. Multiplication may
be considered to take four times as long as addition. Thus when a sub-
tree consisting of j levels, with all operations being multiplication,

is being inserted in to & tree formed from additions the subtree would

be treated as though it has 4%*j 1evels.



62

_Operator _  Precedence
e ) o
space ' 0 '
- C "1

) 2
+ - 6
7 !
+ 8
Table 3.3 : |

PRIORITIES ASSIGNED TO OPERATORS BY THE NEW ALGORITHM
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‘Input String RANDSTACK OPSTACK - -
A+B*c+D*E*F*G¥H+I; eﬁpty émpty o
FB*C+DYE*F*GHHAI; A enpty
¢ B*C+D*E*F*G+H+1; A +
*C+D*E*F*G+H+1; BA +
C+D*E*F*G+H+1; BA : g
+D*E*F*G+H+I;  CBA *y
 +D*E*F*GaH+I;  {B*ClA +
D*E*F*G+H+I; {B*C}A ++
*E*F*G+H+1; D{B*C}A ++
E*F*G+H+I; D{B*C}A *ih
*F*G+H+I;  ED{B*CJA x4+
F*G+H+1; ED{B*C}A *hyy
*G+H+1; FED{B*C}A *¥43
G+H+I; FED{B*C}A *kkyy
+H+1; GFED{B*C}A Tkd oy
+H+T;  {F*GIED{B*CIA *xpy
+H+1; {E*{F*G}ID{B*C}A L2
+H+I; {{D*E}*{F*G}HB*ClA ++
He1;  {{D*E}*{F*G}}{B*Cl}A o
+1;  H{{D*E}*{F*G}HB*C}A B
I;  H{{D*E}*{F*G}}{B*C}A o+t
3 IH{{D*E}*{F*G}}{B*ClA bt
5 {H+1}{D*E}*{F*G}}{B*C]A it
i H{D*E}*{F*G}}+{H+I}}{B*C}A 4+

{{B*C}H{{{D*E}*{F*G}}+{H+I}}}A
{{A+{B*C}I+{{{D*E}*{F*G} }+{H+I}}} empty

-

L we

Figure 3.13

DERIVATION OF AN EXPRESSION BY THE NEW ALGORITHM

N.B. Curly brackets are used to enclose a subtree.
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level

T

B C E G ) E F
"A+B+C+D+E+F+G+H A+B*C+D*E*F*G+H+1
{a) (b)

Figure 3.14

TREE REPRESENTATIONS OBTAINED FROM THE NEW ALGORITHM



T+A*B*(C42;
. U+D1-E;

V<T+U;

WeT-U;

[an

T
T erl

Figure 3.15

TREE . REPRESENTATIONS OF ASSIGNMENT STATEMENTS
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3.5 ‘A COMPARISON OF ALGORITHMS FOR RECOGNISING EXPRESSION PARALLELISM

All the algorithms described will handle addition, multiplication

and some other operations as described for each algorithm. The methods

proposed by Squére (1963), Hellerman (1966); Stone (1967}, Baer and
Bovet (1968)'and.the'new algorithm propounded in the previous section
will be compared. The algorithms of.Kuck et al (1972), Kuck (1977) and
Ward (1972) are éxcludeq as they can be considered to havg the same
properties as Baer and:Bovet‘s (1968) algbrithm. The mefhbds'suggested
by Ramamoorthy and Gonzalez (1969) and Ramamoorthj et al (1973) are also
excluded, because of the complexities that arise when they are used

(see section 3.2.5).

The algorithms produce the results of parsing an expression in
various formats. The algorithms of Stone and Hellerman present their
results in a reversé Polish'typé of notation. Whereas the methods éf
Squire and Baer and Bovet present their results in the form of
'temporaries' which are linkéd together by a final temporary result,
The new‘algorithm's results are available in the form of a tree
structure. Where the results of a pérse are only available in a reverse
Polish type of notation extra work will be necessary to determine at
what level operations méy be performed.

In all the methods considered, except Baer and Bovet's, minus
and divide are handled by negating and reciprocating. Baer aﬁd Bovet
handié sﬁbtraction and division by ;;ing their assocative properties.
Thus, hopefully avoiding their generation or, at least, not performing
these operations until the latest possible level. Theré are potential
problemslwith this, for instance if a diffefent pair of numbers are .
divided to those initially intendéd, then oﬁerflow or underflow
problems may occur. Unary minus is not handied in the algorithm

proposed by Stone. Hellerman's algorithm handle's unary minus in the
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standard reverse Polish manner. A special quintiple is formed when
Squire's method is used. Whereas Baer and Boﬁet;inﬁroduce a éwitch
that is used to indica;e unéry minus, but asvwith subtraction the
forming of such fé;ﬁlts is.avoiﬂed\whefé:bbésible. .The'new éigorithm
negates the correspbnding.operéﬁd 6r_$ubtféé.ﬁheﬁ a:unary minus is
detected. |

All these methods treat brackete& eipre$sions as entities. This
avoids the need to'introduce 'speciéi inviolable pérenfﬁesésf, - (Kuck
et al, 1972) to protect delicate numerical calculatiéns.

Actual run-time comparisions of the.algorithms are difficult to
make., The physical time taken to parse aﬁ expreésion is short for each
algorithm. Because of the different ways expressions are handled by
each method, a given algorithm ‘cannot be expected to parse every
expression in a time proprotionai to that takeﬁ by another algorithm.
Three tests were carried out on a siﬁgle version of eéch algorithm,
written in Algol 68-R (Woodward et al, 1974). The tests involved were: -

| {1) Calculating the theoretical fimes for the operations
executed in the program versions of eabh algorithm |
(Wichmann, 1973).

(ii) Running the algoiithms within a program loop on the ICL

1904A at Loughborough University.

(iii) Running the algdrithﬁs within a program loop on the ICL

| 1906A at Nottingham University.

Table 3.4 gives an example of typical figures. The units of
‘measurement are only significant down the columns, .All the élgorithms,
except Hellerman's, produce from the expression:

A+ é +C+D+E+ F_% G +IH
a representation of the trée‘given in Figure 3.1fb). Hellerman's

algorithm, which performs no balancing produces a representation of
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the tree given in Figure 3.1(a). It must also be noted that extra
calculations are necessary to decide at which level operations may be
executed, when the results are prgsented in a reverse Polish notation.

The other éxpression considered,

A+B*C+D*E*F*G+H+ i .

created five different trees for each of the five algorithms (see Figures
3.3(b), 3.4(b), 3.6(b), 3.8(b) and 3.14(b))". Table 3.5 shows the number
of levels in each of the tree representations. Both of the trees formed-
by Squiré and Baer and Bovet have used commutativity such that 'A' and
'H' are added together. Stone's algorithm fails to detect that 'I' need
not be at the top of the tree. Hellerman's algorithm produces the
tallest tree, but stiil offers some scope for parallelism. The new
algorithm has not moved Any parfs‘of the e}pression around, but
nevertheless fof the expression considered forms a tree of minimum height.

Of all the methods suggested; Hellerﬁan's or Stone's will probably
provide the fastest means oftfinding some parallelism within an
expressipn. The algorithm suggested by Baer and Bovet'pfovides a
thorougﬁ analysis of an expression. Howevgr, this algorithm and the‘
one suggested by Squire may create problems with sensitive expressions
that would not occur otherwise. The new algorithm presents its results
in a form suitable for determining the maximum amount of parallelism’

without unnecessarily affecting sensitive numeric equations.




) __TesT | THEORETICAL 1904A 1906A

ALGORITHM : ' .

Squire 7786 9 8
Hellerman 4576 10 4
Stone \.SI62 6 6
Baer.apd B&vet 13048 12 10
New Algorithm 7391 11 7

Table 3.4

TIMES TAKEN TO ANALYSE
A+B+C+D+FE+F+06+H

Minimum No, of Levels

Algorithm Neo. of Levels
Squire 4
Hellerman 6
Stone | 5
Baer and Bovet 4
New Algo:ithm 4

- 1

Tabie 3.5

NUMBER OF LEVELS IN_THE TREE REPRESENTATION
A+B*C+D*E*F*GCa+H+ I
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CHAPTER 4

ANALYSIS OF GROUPS OF STANZAS

WITH A VIEW T0 DETECTING PARALLELISM
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4,1 INTERDEPENDENCIES BETWEEN PARTS OF PROGRAM

Consider a parallel processing system where égéh'processor is
capable of executjng sgverai oberatioﬁs”without_independent action having
fo_bé takén. Indepéndent pérts:of-é'programKSEing'ekecuted'may;‘in_that
case, be allocated to separate processors. If however interdépendént
parts of a program are ass1gned to d1fferent processors, anomolies may
occur. For 1nstance, after the parallel execution of Process 1 and 2
(see.F1gure 4.1) the variable 'x' may be equal to 'vl' or'v2' or some
undefinédrvalhe. The undefined value would arise if both processes
simﬁlt#ﬁeouslykéssign t0'tﬁéivariéb1e 'x'. Brinch Hansen (1973)
discusses the possibilities of what may happen in such situations.

’Given a program deéigned to run on a serial computéf, control is
assumed to pass from one statement to the one immediately beneath,
except'wﬁere a jump {e.g. a loop) dictates othérwise-(i.e. the Von
Neumann concept). However eéch'statement, or group of statements,
are not necessérily dependent on their predecessors. By finding parts
of a pfogram which are independent it will be possible to advantageously
qée a parallel processing system'of‘the type mentioned above. Thus,
any approach fo determine parallelism, at this level, will have to study
dependenéies beﬁweeg one Or mOre program areas. In this context six
main areas may be considered, these being:- |

{i} Individual statements. |

(ii) Groups of assignﬁent statements,

(ii) Blocks of Algol-type code.

(iv) Iterations of a loop.

(v) Conditidnal statements,

(vi)_.Exedﬁfioﬁ of prdéedufes (or similar) after calls.

A suitable term for referring to these areas'wdﬁld be 'block' but

because of the poésibie_ambiguities when considering Algol-type
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programming languages another term should be used. So 2 new term
*stanza' will be introduced to represent any of these six categories.
A stanza can be defihed as follows: S

LI

: Definition 4.1

A stanza is either a single program statement or a group of
statements appearing adjacently in a computer program and intended to

be executed one after the other,

The existing approachés to determining parallelism.bétﬁeen stanzas
may be divided into two classes. The first arggth,mgthods'which uée
graph theory as part of theif &eteétion process ;nd the second are ali
other methods. Since both methods detect independencieg‘there will be

isome overlap in the techniques used in both approaches.

Process 1 Process 2
a<b+cy d<e+f;
xevl; i+§25
g<hai; jekat;

Figure 4.1

TWO PARALLEL PROCESSES
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4.2 USAGE OF PRIVATE AND SHARED MEMORIES

Wilkes (1965) intrqduced the idea of using a slave memory of fast
coré fo save on the time spent fetching data items from méin membry.
‘Although such time delays are now of less siénificaﬂce it is possible
to apply this concept to a parallel processing environment.

Within a parallel processing enviromment all processors_should be _
permifted'to access ﬁ main memory so thatlmore than oﬁe prééeséor.hay
work on a set of inter-related stanzas. Thus the main memofy can be
considered .to be 'shared' by all processors. In additioﬁ it is possible
to allow each processor to have a private memory that can Ee used in |
the same manner as a slave mémory. Thus all variables once used in a
stanza would be stored in the processor's private memory until the
stanza has been complefed, when they may be‘transferred to the ﬁain
{or shared) memory.

Thus, there.are two types of memory structures that can reasonably
be used in a parallel processing environment. Either all processors
just use the main meinory or each processor has attached to it a private
memory in which information that is éurréntly being processed can be
temporarily stored. Figure 4.2(a) illustrates the former éése wﬁére
only shared memory is available while the latter memory structure is
shown in Figure 4;2£b). |

The difference between the two memory structures can be emphasised. -
by considering two processors P1 and P2 operating in parallel. Both
use a set of locations L which P1 altérs and P2 fetches. Then, if.Pl
aﬁd P2 have private memories then P2 will fetch the original values of
L. Whereas if Pl and:PZ_only havé access tp a Shé:gd_main ﬁemory tﬁep -
tﬁere ﬁre'tﬁree poésible values of L that P2 may,'fh;oretically, fetch.
The'values of-L may‘bé.the original_vaiues, the valués assigned in Pl
or some undefjngd vélués whiéh would:ihdicate P2 was fetching L during

the time P1 was changing it.
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‘Bernstein (1966; see also the following section) shows that the
conditions necessary to execute two stanzas in péfﬁllel are much weaker
when ﬁrocesgprs with private_memqry afe_aya?igblg;.‘This is mainly dﬁe‘
to the avoidéncé of probleﬁs'ﬁimiiaf;té ihéﬁgﬁé‘&egcribed abové?whér;.
the values that will bélfetchéd were not défined; since both prdcessors
were using the same memory. Hdogéndodrn_(ig?sj ﬁgs suggested ﬁow the
'mechanics' of providing each pfﬁéeésprZWifh a ﬁfivate membry may be
implemented. It is bossible that contrqi gén be exercised over the
order in which briVate memory réstore§ tdlméin'meméry. This facility
will be considered to be available throughout thi$ work whenever

machines with private memories are discussed.



MAIN
MEMORY

Pl's P2ts
Private Privatd
Memory Memory

PROCESSOR PROCESSOR PROCESSOR PROCESSOR
P1 P2 Pl P2
Shared Memory Private Memory
(a) )
Figure 4.2

- MEMORY STRUCTURES FOR PARALLEL PROCESSORS.
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4.3 'EXISTING TECHNIQUES FOR RECOGNISING PARALLELISM BETWEEN STANZAS

The methods already in existence for deterﬁ{ﬁgﬁg parallelism at
the ééatement levél can be‘coﬁsideped in;two cateéories. Those that ‘
usé a great deal 6f‘§:éﬁh;fﬁeofy'iﬁ fhéir.détérminatioh Bf;parallelism
and all other methods,  The other methods are usually based on aspects

of the structure of the program. -

4,3,1 Graph Based Methods

Kuck (1975} credits Estfiﬁ and his sfudents at U.C.L.A. of being
the first to study'program graphsf‘in an attémpt to lbcéte parallelism
(e.g. Martin and Estrin, 1967 and Baer and Russell, 1970). Kuck and
his co-workers (é.g. Kuck et al, 1972; Kuck, 1975 and Towle, 1976)
have continﬁed thisrwork, using data depéndence graﬁhs. Ramamoorthy
and hié co-workers (e.g. Ramaﬁoorthy_and Gonialez, 1969; Gonzalez and
Rémamoorthy, 1970 and 1971 and Ward, 1974) have taken a more formal
approach based on a connectivity matrix of a gfaph representation of
a program.

The work of Kugk‘is.based on Fortran-like_brogramming languages.
Basically each statément is_considered and its dependency on other
statements is calculated. Lbops formed by the 'DO’ statemeht may be
divided such that tﬁe dependencies between successive iterations can
be found. The problems.of‘using'arrAYS indexeg by a bontfol variable
of a loop are examined. Similarlf, conditionals formed by the 'IF'

-statement afe examined for iﬁdeterminism which may exist at execﬁfiqn
time as well as compile,fime. Varibus ty?es of conditionals are
described which may.be,cbnsidefed.to bg in t&o §la§s¢s. Those for
which the path that will be taken can be predicted and others. |

Combinations bf'loéfs and conditionals are alé; examined, ‘Figufe-4.3

shows a part of a Fortran progfam and the dependence graph Kuck {1977)
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formed for the program. It can be seen, or found by partitioning,
that S, and S; are completely independent of S4'aﬁd'S5. Hence S, and

: SS may be executgd in para}lel with S4 and 55. It is also possibie_tq_
determine that different instaﬁceé of fﬁelaffays 'A' and 'H"are:  .
referred to in one iteration of the outer loop. Leasure (1976) gives
a description of a compiler that will detect parallelism in serial
programs in the ménner.described. | |

The work of Ramamoorthy is also based on the Fortran programming
-language. A program graph is deri§ed which identifiesrthe order in
which tasks must be performed in a program written to be executed on
a serial computer.. In their work, tasks are treated as a single
program statement and hence are a subset of the stanza.defined'in
Definition 4.1. The program graph of N tasks is translated into an
NXN comnectivity matrix. In the matrix a one will be used in position
i,j to represent a directed edge between nodes i and j. Where i and j
are intégers in the range i to N. A zero will be inserted where there
is not such connection between i and j. 'All tﬁsks that‘create a
strongly conneeted subgraph are treated as one task (or a stania). So
a reduced graph can be formed, for which fhere are no.stréngly connec;ed”

subgraphs. A sufficiency condition is defined as‘given bglow.

Definition 4.2

Two tasks can be executed in parallel if the input set of one

task does not depend on the output set of the other and vice versa.

This condition along with scheduiing information is used to

decide which tasks (stahzas) may be execﬁted in parallel.



DO S_ I=1,N

‘s :’A(;)is(r)*((r)
DO S, J=1,N
S,: D(J)=A(I-3)}+E(J-1)
S: E(3)=D(J-1)+F
DO 5, K=1,N
S,: G{K)=H(I-5)+1
S¢: H(I)=SQRT(A(I-2))

amtac e
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Figure 4.3
FORTRAN PROGRAM AND DEPENDENCE GRAPH
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4.3.2 Methods Based on the Structure of the Program

-v-
bl 3

In 1966 the Burroughs Corporation initiated research 1nto the
des1rab111ty and fea51b111ty of automatlcally recognising parallellsm
within computer programs. -The results of thts_work were_dlseussed in  i
a series of reports and papers (e.g. Bingham et al, 1967;.Bingham and
Reigel, 1968 and Reigel, 1970). Bernstein (1966) presented -a_ different
method based on set theet&. More.tecently Fireetone (1971)rqut1ined ;
method of locating parallelism based on data flow.ane1y$is.' |

The Burroughs work wes based on e subset efrtheii BSSOO Ettehded'
Algol programﬁing lenguage. An algorithm wasadeveieﬁed thet could
detect implicit parallelism between various program structures such as
loops and conditicnals (but not blocks). Slmulatlons of the workings of
the algorithm have been written and are descrlbed in Blngham et al (1969).
Bingham and Relgel (1969) stressed that they con51dered exp11c1t
exposure of parallelism (see Chapter 1) is necessary to detect
parallelism between groups of statements. |

Bernstein's work is based on the four ways in which a memory
location may bebused by a set of instructions or Sub—ptogram {or stanza)
Pi._ These are:- | |

(1) The 1ocat;on is only fetehed during the execution ofhPf.

(2) The locetioh is only stored during‘the_execution of Pf;

(3} The first operation involving thié;location is:a_fetch.

One of the succeeding oheratione of P{-stores in this.lecatioﬁ.

(4) The first operation involvihg this loeetiph is;e store. |

One of the succeeding operatings of Ri*fetches frem'this
locations. 7 | o
The set of all variables in P;;that fall intoithese categories are
called Wi,Xi,Yi and Zi'respectively.y For thyetahzas Pl and Pz to be

capable of being executed in para11e1; the followihg three conditions

must hold:-
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(1) The inputs of P1 must not coincide with the outputs of PZ’

i.e. UrUzljn(x 22y} = 0.

(2) The inputs of P, must not c01nc1de with the outputs of P
. (VY Yz )N(H ) Uy M2y =0, |

and P2 must be reset before

(3) Any location changed in both P1

being réused,
| €, | (x4 Uy UZI)Q(XZUYQQZZ)O(W:;UYB) = Q. |
Where (WlJYS)lis the set of all variables sﬁbsequently fetched
without being reset.
Table 4.1 gives the meénings.of.the‘notation used in set theofy.
If each processor is allowed private memory three weaker conditions
replace the above. These are:-
(la) (WUYINLMYMZ) = 9.
(22) (XUYUz))NWWY,) = 8.
(32)  (X(UYUZ INEUY U2 )NMUY ) = ¢,
The weaker conditions apply because temporary results being formed by

P, can no longer be effected by P

1 and vice versa.

2

Fifestone'[197l) developed.a method of detééting implicit
parallelism baséd on dependency. He uses the data flow analysis
teéhniqﬁes of Kennédy (1971) to find independent parts of a program.
Code that takes a 'long' time to execute.is examined more thoroughly

than code which has only a 'short! execution time. This method most

-closely resembles those based on graph theory. So Firestone's method

could have been described in the previous subsection,
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Symbol . - e "f" =‘.ﬁéénin8 -
v 0 bmien
n o | Intersection
A . Meseta |
AB | ‘ fhe setréf éli elements in A and B‘
AMB | -.The.Set,of all elements in both A -
| . _aﬁd-B ' |
g . .3 . The_ﬁuil or'emfty set.

Table 4.1

SYMBOLS USED IN SET THEORY -




81

4.4 - 'CLASSIFICATION OF RELATIONSHIPS BETWEEN STANZAS

When using a parallel processing machine it is usually assumed
that a stanza may be either executed sequentially after andther\étan;a‘__ 
or:simultaneousiy_;(Rémaméorthy and Gonzalef, 1969). Befnsfeiﬁ {1966)
has suggested that tﬁo stanzas may be commutative. That ié although
they may not be executed in parallel éifher-may be executed first.

Towle (1976) sﬁated that there are ihter-reiationships betwéeh data

dependencies and control dependencies.

Here all possible relationships that may exist between stanzas
are defined. -

Initially only two stanzas will be studied but this will later be
generalised to any number of stanzas. Consider two stanzas that would
be executed one aftér the other in a serial progr%m. The stanza that
wo#ld have béen executed first isICalled Si and the other is Si+1’ for
i such that 15i€N; where N is the totallnumber of stanzas in the program.

The five possible relationships that may exist between two sucﬁ

édjacent stanzas are now named and the conditions that must exist are

defined:

befinition 4.3: Contemporary - CT(Si,Si+1)

~Stanzas Si and Si+ can be executed at the same time and the

1

locations used in any order.

Definition 4.4: Commutative - CM(S,,S. . ,)
. 1?7i+1

Stanza Si may be executed before or after Si+1 but not at the

same time.

Definition 4.5: Prerequisite - PR(Si,Si+1)

Stanza Si must fetch what it requires before Si+i stores its
results.

Definition 4.6: Conservative — CV(S.,S..,)
i*7i+l

Stanza Si must store its results before Si+1 does .
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Definition 4.7: Consecutive - CC(5.,S. . ,)
i’7i+l

Stanza Si must store its results before Si+1 fetches what it

requires.

For completeness two more relationships will be defined, which

cannot sensibly exist within a serial program,

Definition 4.8;_Synchrpnous - SN(Si,Si+1)

Stanzas Si and Si+1 must both have the same inputs, i.e. Si cannot

store its results until S:., has fetched its input and vice versa.
Definition 4. 9 Ihcluszve - IN(S 51+1)
Stanza Si+1 must store its results after Si has fetched what it

requires but before Si stores its results.

It is possible to extend the relationships already defined for two

stanzas to cover M stanzas {s SZ""’S 1. Where-Sk would be executed

in the serial program 1mmed1ate1y before S for all k such that

k+1?

1zk<M. The new definitions are:-

Definition 4.10: Contempqrary - CT(SI,Sé,...,SM)

Stanzas {Slgsz;...,SM} can be executed at the same time, the
ordering of fetching and Stering being of no coneequence.

Sy

Definition 4.11: Commtative - C(S, 5,5+ -+ »5y
The set of stanzas {S..,S. ,...,S5. } may be executed in any possible
11" %2 M

order of the set'{il,i .,iM} which is any permutation of the set

A

{1,2,...,M}, Providing Si is'completed before'Si commences, for all
: ' Tk k+1 '

k such that 1gk<M. :

Definition 4 12: Prerequisite - PR(Sl, I ..,S )

' Stanza Sk must fetch what it requlres before Sk 1 stores its

results, for all k such that 1gk<M.
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Definition 4.13: Conservative - CV(S]’SZ""’SM}

l;does, for all k

Stanza Sk must store its results before Sk+

such that 1gk<M,

¥

Definition 4.14: Consecutive - CC(Sl,SZ,.,.,SM) '

Stanza Sk must be completed before S commences, for all k suEh

k+1
that 1ck<M.

Again, for cdmpleteness two more relationships will be defined,
which, however, cannot sensibly exist in a serial program.

Definition 4.15: Synehronous - SN(SI?SZ""’SM)

Stanzas 51,82,...,SM must all receive the same input sets.

Definition 4.16: Ineclusive - IN(Sl’SZ""’SM)'

Stanza Sk+1 must store its results after S ,has fetched what it

5]
requires but before Sk has stored its results, for all k such that

1gk<M.
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4.5 FORMATION OF A STANZA

Using the terminology of Bernstein (1966) it is possible to define
four sets for a given stanza 5;:-

) 'Wi.

‘répresents the set of all locations that are only fetched
‘during the execution of 5, -
{2) Xi‘- represents the_set of all locations that are only stored

during the execution of S -

(3) Yi - represents the set of all locatibns for which the first
opération is a fetch and one of the succeeding operations
of Si is a store. |

(4) Zi - represents the set of all locations for which the first

operation is a store and one of the succeeding operations

'of Si is a fetch,

In Appendix 2 an Algol 68-R program Analyser is given that will
divide a given sefial Algol-type program into stanzas.- Some of the
wdrk perfbrméd by Analeer (e.g. recognition of Statementsj 15 alreédy
performed by compilers and so could be removed from Analyser when it
is integféted into a comﬁiler. Analyser arbitrarily limits a stanza
to be a specific pfogram construct (e.g. a loop) or a collection of
statements not ﬁsing more than fifteen different variables. The
variables used.within a stanza Silare dlassified.as belonging to the
sets Wi,xi,ii and Zi depending on their usagé.' Figure 4.4 illustrates
.how these sets are formed for a sfanza consisting of three assignment
statements.

A new.set, Vi; is now introduced to represent all locations that
may be.fefbﬂed withoup_béipg reset after the execution of the stanza S..
The calpUlation of a particular V will, in general, be a non-trivial

matter, in which case the V may be considered to be the set of all



variables used in the program.
Thus the input set of a stanza S, is Kl
wuly,
, ii.
whereas the set of all variables fetched by Si is
wuy. Uz, |
i 1 1 . .
The output set of S; is the same as the set of all variables stored
in S, and is
1 .
XUy Uz, .
i i1

The set of all variables that on a serial machine wiil be fetched

without being reset after the execution of S, are represénted.by v, .

Stanza Si o _ Wi 1Ki :Yi Zi

al<b1*b2; bI,b2 .al - -

aZeal*bl; © b1,b2 a2 - al

cl«al+cl; ‘ ‘ b1,b2 - a2 1 al
Figure 4.4

FORMATION OF THE W,X,Y AND Z SETS




CHAPTER 5

DETECTION OF PARALLELISM BETWEEN STANZAS
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5.1 TESTS TO EXPOSE THE RELATIONSHIPS BETWEEN TWO STANZAS

A

"u_-

Two stanzas S and S 1 whlch would have been executed one after

the other in a ser1a1 program will be con51dered The sets of usage
of varlables descrlbed in Sect1on 4 5 W111 ﬁé used to form tests to .
determine Wthh.Of the relatlonshlps defined in Sectlon 4.4 exist
between two stanzas.

The differences between'paraiiol maohinos Wifh privdte memories-
and those without have been mentioned proViously. ‘To allow for these,

separate tests will be developed for both machines and these will be

detailed in the following subsections.

5.1.1. Private Memories Available

The tests for the five p0551b1e.relat10ns deflned in Def1n1t10ns
4.3 to 4.7 will be developed 1nd1v1dua11y The fact that each stanza's
temporary results will be stored in private memory will be taken into
account where necessary when.a:rélationship is considered.

)

This relationship implies that stanzas Si and Si+l

simultaneously. Thus, there must not be any dependencies between the

(1) Contemporary - CT{S S1+1

may be executed

locations fetched by Si and those changed by Si;l-and'vice versa. As

private memories are available any temporary.results formed by one
stanza cannot be altered by the -other. Thus théro must not-be ény
dependencies between the inputs and outpufs of S, and Sie1° In terms
of sets that is: '
WY (X, , LY ¢ | (5.1)

={ .' : : (5.2) 

Uz
i+l 1+1)
and [X Y, UZ )n(W 41 1+1)

Locations that are modified by both stanzas Si and Si+1_must not be -
used elsewhere without being reset first, since the values of such

locations are undefined. That is:
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U N U @) =
XyHVZON, Y Y2, = 0 (5.3)

Thus the conditions for two stanzas Si and Si+l to be considered

contemporary are (5.1), (5.2) and (5.3).

(2) Commutative - CM(Si,Si+l)
Stanza Si may be executed before or after stanza Si+1' Thus
none of the inputs of Si (or Si+1) nust not coincide with any of

the outputs of Si+1‘(or Si). ‘That is:

(w. Y-) (X- 1 Y. 1 Z. l) Q (5. )

Locations that are modified by both Si and Si+1 must not be used
elsewhere without first being reset. Since the value of such
locations are undefined, That is: _ 1

Y2000 Y0723 Vi = 0 (5.6)
Thus the conditions for two stanzas to be considered commtative
are (5.4), (5.5) and (5.6). It can be seen that by using private

memory that the condition for two stanzas to be commutative are

identical to those for them to be contemporary.

(3) Prerequistie - PR(Si,Si+1)

Stanza Si must fetch what it requires before Si+1 stores its

results. This implies that at least one of Si's inputs corresponds

to an output of S, ,, that is:
i+l
vy, N U U .
WUY N, VY, VZ. ) £ 8. (5.7)
Stanza Si+1 must not require information computed in Si’ since Si

will not necessarily be completed, that is:
Uy Uz N Uy, = . .8}
(Y Vzanmw, Ly, ) =4 (5.8}
Locations that areée modified in both Si and Si+1 must not be used

elsewhere without being reset first, since the values of such

locations are undefined, that is:
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(XY VZ NG VY V25 0V, = 9 6.9

Thus, {(5.8) and-(S‘Q) are the conditions'to be safi;fied for Si

and Si+1 to be prerequisite. If (5.7) is also true then it can

LIS

be seen that the relationship is neither contemporary or commitative.

(4) Conservative - CV(S;,5, ;) | )
Stanza Si mist store its results beforeisi+1’does.- This implies

that at least one location is changed by both Si and Si+1 and

subsequently fetched without being reset, that is:

XYVZON Y2500V =0 (5.10.
Stanza Si+1 must not require information computed in Si’ since Si
will not necessarily be completed, that is:
UYVz N VY. Yy =@ . . 1
(Xi Yi Zi) (W1+fJY1+1) 4] _3 (5.11)

This is the only condition necessary to be satisfied for S.1 and Si+1

to be conservative. If (5.10) is also sétisfied it can be seen that

the relationship is not prerequisite.

{5) Consecutive -~ CC(Si,Si+1)

Stanza Si must store its results before Si+1 fetches what it
requires. This implies that at least one location changed by Si is

fetched by Si that is

+1?

(xiuviuzi)n(wiﬂwiﬂ} £o. (5.12)

Thus any two stanzas Si and Si+ may be considered to be eonsecutive.

1
If (5.12) is satisfied it can be seen that the relationship is not

conservative.

5.1.2 Only Shared Memory Available

The tests for the five possible relationships defined in
Definition 4.3 to 4.7 will be developed individually. The effects

of a stanza's temporary results being available to the other stanza
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will'be taken in_to'account where necessary.

(1) Contemporary - CT(S.,Si+1)
Stanzas S ~and S +1 can be executed at the same time. Thus, there -
must be no dependenc1es between the set of locatlons that are fetched

during the ekecution of S; and those that are stored during the execution

of S. , and vice:versa, that is:
. i+1 e : R _ _
U Uz, ) =
(W.UY. z.)n(x. lwi-rl zi-t-l) @ (5.13)
o U Uy, Uz = .
and (X‘JY Z. )rKW Y1+1 1+1) o . (5.14)
Locations that are modified by both Si and Si+1 must not be used

elsewhere without beiﬁg reset first, that is:

XY V2N Y Y)WV T 0 (5.15)

Thus the conditions for two stanzas to be considered to be contemporary,

when only shared memory is available, are (5.13), (5.14) and (5.15).

(2) Commutative - CM(S;,S;,,)

i41° Thus

none of the inputs of Si (or Si+1) must not coincide with any of the

Stanza S; may be executed before or after stanza S,

outputs of Si+1 (or Si), that is:
1+1 1+1) =@ (5.16)

) =¢9 . (5.17)

MUY OINX,
and (xS Uy Yz, )n(w Y501

Locations that are modified by both S and . S. must not be used

i+l
elsewhere without first being feset, since the value of such
locations are undefihed, that is:
Uy Uz JN(x. Uy, U L=
{XfJYi Zi) [Xi+1 Yl+1 zi+1)rw1+1 g . (5.18)
Thus the conditions for two stanzas to be considered commutative

are (5.16), (5.17) and (5.18). It can be seen that these conditions

are weaker than those for S.1 and Si+1 to the contemporary stanzas.
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"(3) Prerequisite - PR(Si,Si+1]

Stanza S. must fetch what it requires beforeﬁ§: 41 Stores its-

results. As both stanzas ‘are using the same’ ‘memory it will be necessary:

to consider that there w111 be fetches and stores using main memory
throughout the execution of both the stanzas. The very last fetch of

S nust be completed before the flrst store of S thus the relatlon_

1’

ship can be considered to degenerate into a consecutzve one,

)

Stanza Si must store its results before Si+1 does. As both stanzas.

are using the same memory it will be necessary to consider that stores

(4) Conservative - CV(S.,S1+1

using main memory are occurring throughout the execution of both stanzas.
The very last store of Si must be completed before the first store of

S

141° thus the relationship can be considered to degenerate into a

eonsecutive one.

(5) Consecutive - CC(Si’Si+1)

Stanza Si must store its results before S fetches what it

i+l
requires. This implies that:
Uy Uz N U
(Xi Yi Zi) (Wi+1 Yi+1) F0. ' (5.19)
Thus any two stanzas S and S1+1 may be considered to be consecutive.
For a machine for wh1ch cnly shared memory is available, any two

stanzas Si and Si+1 for which (5.16), (5.17) and {5.18) are not true

must be executed in a consecutive manner.

Table 5.1 is a summary of the conditions necessary for a given
relatlonshlp to exist between two stanzas S and S o1 which would
be executed one after the other in a serial program. The conditions

for a particular relationship to exist between two stanzas are 'weaker’

for those at the bottom of the table. The 'strongest'! conditions being
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thosé for two stanzas to be contemporary in a shared memory
environment.

It is possible to simplify some of the tests given. For example,
consider the cbﬁtém§0rary'ralationships CT(S;,8;,4), in # private
memory environment. From equations (5.1} and (5.2) it is possible to
simplify (5.3) to:

(VZINX, Nz IV =9 (5. 3a)

However, this detracts from the clarity of the method and so is not

used here,

]



Relationship Conditions
Private Memories Shared Memory
; Uy, N = Uy U U U '
Contemporary (WY N, PY5 Y2540 B (YN, 7Y5,0Y2549) =0
U ] = Uy U U U s
CT(S;844) (X uY UZ )n(W1+1 1+1) Py Yiuzi)n(wiﬂ Yier 2300) @
U U U U
(xl Yl zl) [X1+ 1+1 1+1)ﬁv =0 (xi Yi zi)n(xi+1 Yi+1 zi+1)rvi+1 =0
. Uy N U =
Commutative (W Y.) (X5, Y1+fJ 1+1) = Q
U U =
CM(S +; +1) as Contemporary . (xl Yl Z1)ﬂ(w1+ 1+1) * 9
Uy Uz N ‘
(xi Yi zi) (Xi+ 1+1 l)rv =9
a4 ¥y Uy U M U l = & - ) P
Prevequistte (X520, ) Y1+1L)J ? as Comsecutive
PR(S;,8;,1) (XY V20X VY 0Y250) Ve = 2 |
A U n == )
Congervative (Xi dezi) (wi+fJYi+l) ‘ @ | as Consecutive
CV(S;,8,,) _
Congecutive No conditions necessary as this implies
U =
CC(S;,8;,,) (xrz, )n(wl+1 i41) = 8

Table 5.1

CONDITIONS NECESSARY FOR A GIVEN RELATIONSHIP TO EXIST BETWEEN TWO STANZAS

6
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5,2 'TESTS TO EXPOSE A SINGLE RELATIONSHIP BETWEEN A NUMBER OF STANZAS
A number, M, of stanzas {Sl, g2 Syl Which:WOuld have been
executed one after the other in a ser1a1 program will be con51dered
The sets of usage of varlables descrlbed in Sectlon 4.5.w111_be used
to determine if a single relationship as defined in Section 4.4 gxists
between these M.stanzas. It is possible that more than one reiatipn-
éhip may exist withih'a'group of stanzas in which case the teats will

reveal the relationship which exists between all of the stanzas.

Alternatively the group may be subdivided such that only one relation-
ship exists within each of the new groups.

The difference between parallel machines with private memories
and those without have been discussed previously. To allow for these,
separate tests will be developed for both typés of machine and will be

detailed in the following subsections.

5.2.1 Private Memories Available

The tests for the five possible relationships defined in
Definitions 4.10 to 4.14 will be developed individually. Within this
subsection it is assumed that any processor used has its own private

memory.

(1) Contemporary - CT(S.,S ,...,SM)

This relationship implies that all of the stanzas {Sl, 2,...SM}
may be executed simultaneously. As private memories are available
any temporary results formed by one stanza cannot be altered by any
other stanza. Thus there must not be any dependencies between the
inputs of one stanza and the outputs of all other stanzas. In terms

of set theory that is:

(VY )NUY Uz ) = ¢ |
for a11 k such that 1<kgM and (5.20)
for all & such that 1<2<M and %#k,
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rLocafions that are modified by more than one stanza must not be fetched
elsewhere without belng reset flrst, 51nce the value of such locatlons
are undefined That is;

(X, Uy, Uzk)rl((xk 1UYk 1UZk 1)0...0(XMUY P2 Ny (5,21) |

for all k such that 1gk<M,
Thus the condltlons for M stanzas {Sl’ 2,...S } to be considered

contemporary are (S 20) and (5 21)

(2) Commtamve - CM(S .S

1’ 2,"‘! M)

The set of stanzas {S ;S } may be executed in any

1, 2""!
possible order, prov1d1ng that only one stanza is being executed at
a given time. Thus the inputs of any one stanza must not coincide

with any of the outputs of all other stanzas. That is:

(W. UYk)ﬂ(XUYUzB =
for all k such that 1gksM and . (5.22)
for all 2 such that 1g<2<M and %#k .

Locations that are'modified by more than one stanza must not be

fetched without first being reset, since the ﬁalue of such locations

are undefined. That is: .
OURYZ N0, 1U?k+1uzk+13n; - NP2 = .25
for all k such that 1gk<M,

Thus the conditions for M stanzas'{Sl,Sz,..,SM} to be considered as

commutative are (5.52) and (5.23). ‘It can be seen that by using

private memories the conditions for a given number of stanzas to be

commutative are identical to those for them to be contemporary.

(3) Prerequisite - PR(Sl, PIE ..,SM)
. Stanza Sk must fetch what it requires before Sk+1 stores its
results, for all values of k such that 1gk<M. This implies for all

values of k at least one input of Sk corresponds to an output of S1e1”

That is:




A }
YN PV G # 9
for all k such that Igk<M .

Stanzas'{sk+l,.f.,SM} must not require information computed in S

k
since Sk will not necessariiy be completed.jvThat is: |

Uy Uz, )N -
(Xk Yk Zk) ((Wk+fJYk+1)ﬂ...FMWﬁJYM] )]
for all k such that 1gk<M.

Locations that are modified by wmore than one stanza must not be
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(5.24)

(5.25}

fetched without being reset first, since the value of such locations

are undefined. That is:

U A U -
INYZAIN K Y Vo ) - PPN IZ Y, = @
for all k such that 1gk<M .

(5.26)

Thus (5.25) and (5.26) are the conditions that must be satisfied for

M stanzas'{Sl,S SM} to be prerequisite. -

22"
(4) Conservative - CV(SI’SZ""’SM) |

Stanza Sk must store its results before S does, for ail k

k+1
such that 1gk<M. This implies for all values of k (from 1 to M-1)

K and Sk+1 which is

subsequently fetched without first being reset. That is:
A .
O N U AL WA DL VR
for all k such that igk<M .

at least one location is changed by both S

Stanzas'{Sk+1,...,SM} must not require information computed in Sy

since Sk will not necessarily be completed. That is:

XN DY 0 NPT Y)Y = 2

for all k such that 1ck<M .
The conditions given in (5.28) are the only ones necessary for M

stanzas {51,82,...,SM} to be considered comservative.

(5) Consecutive - CC(Sl,Sz,...,SM)

Stanza Sk must store its results before S fetches what it

kel

(5.27)

(5.28)

requires. This implies that for all values of k (between 1 and M-1)
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. at least one location is changed by Sk and fetched by S

(1), Contemporary - CT(Sy,5,,-+-,5,)

~ may be executed simultaneously. There must be no dependencies between
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k¢l*

U RS T
N2 N ) # 9 , | (5.29)
for all k such that 1gk<M .

That is:

Thus any M stanias'{SI,SZ,...,SM} may be considered to be consecutive.

5.2.2 Oply Shared Memory Availéble

The tests"féf the five p@ssiblé relationships defined in
Definitions 4.10 to 4.14 will be developed individually. The effects .
ofih”staﬁza's temporary results possibly being available to all other

." .‘& N
stanzas willbe taken into account where necessary.

This relationship implies that all the stanzas'{sl,sz,...,SM}

the set of locations that are fetched during the execution of any
stanza and those that are stored during the execution of all the -other

stanzas. That is:

U U = !
WINUZINXMIYIZ)) = ¢
for all k such that 1gkgM and (5.30}

for all % such that lgg2gM and 27k .
Locations that are modified by more than one stanza must not be
fetched elsewhere without first being reset, since the value of such
locations are undefined. That is:

U ' -
XY IZ I Y V200 - OGP VTN, = 8 (5.31)
for all k such that lgk<M.

Thus the conditions for M stanzas to be considered contemporary

are (5.30) and (5.31).

(2) Commitative - CM(S,,S,,...,5,)

M

The set of stanias'{Sl,S SM} may be executed in any

g3

possible order, without more than one stanza being in execution at
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a giﬁen time. Thus the inputs of any one stanza must notlcoincide

with any of the outputs of all other stanzas. That is:
WOYNXUYYZ) =8 S
for all %k such that 1gk<M and o _-' s ‘(5.32)'
for all £ such that 1g8<M and 2#k. o

Locations that are modified by more than one stanza must not be

fetched elsewhere without first being reset, since the values of

such locations are undefined. That is:

k 'k "k k+1 "k+1 Tk+l

Uy Uz N V) U n,..Nxuy U =
XOYLVZINCX, VY Lz, 0L NPz 0
for all kf?uch that 1£k<M, '

(5.33)
' Thus the conditions for M stanzas {81’52”"’SM} to be considered

commitative are (5.32) and (5.33).

(3) Prerequz?zte - PR(Sl’SZ"'°’SM)

Stanza Sk must fetch what it requires before S stores its

k+1
'résults, for all values of k between 1 and M-1. As all stanzas are
using the same memory it will be necessary to consider that there
will be fetches and stores using the main memory throughout the
execution of all stanzas. Thus the very last fetch of Sk must be
completed before the first store of Sk+1 so the relationship can

be considered to degenerate into a econsecutive one.

(4) Conservative - CV(S. .S

l’ 2! M)

Stanza S, must store its results before S
k k+1

of k between 1 and M-1. As all stanzas are using the same memory, it

does, for all values

will be necessary to consider that stores using the main memory are
occurring throughout the execution of all the stanzas. Thus, the
very last store of Sk must occur before the first store of Sk+1' So,

again, the relationship can be considered to degenerate into a

consecutive one.
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(5) Consecutive - CC(SI'SZ""’SM]

Stanza Sk must store its results before Sk

requiree. This 1mp11es that for all values of k (between 1 and M- 1)

fetches what it

and fetched by S . That is:

at least one locatlon is changed by S kel

k

XUNUZON UYL 0 (5.34)

for all k such that 1gk<M .

Thus any M stanzas {Sl, 2,...,S } may be considered to be consecutive.

Table 5,2 is a summary of the conditions necessary for a given
reletionship to exist betweeh'M stanzas, which Would be executed one
after the other in a serial program. Again, the 'weaker' conditions
for a particular felationship to exist are at the bottom of the table.
The 'strongest! cOnditione being those for M stanzas to be contemporary
. in a shared memory environment.

Again; simplifications are not applied to any of the conditions

to maintain the clarity of the method.
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} Relationship Conditions

|

Private Memories Shared Memory

| Contemporary }ﬁ[X UY Uz 2) = ¢1' (W vy UZ )n(x vy UZ ) .‘ = (ﬂ*
CT(Sl, 2,...,SM) (X'JY UZk)n((Xk+1 kel Zk+1)U... . (XlJY|JZk]ﬁ((Xk+1 k+1 k+l}J .o N

e U(XMUYMUZM))WM = ¢ U(XMUYB}JZMJ vy, =@
Commutative | WYY N UYUZ ) =g
as Contemporary ey

CM(SI, 2,...,SM) . (X UYlJZk)n((Xk+1 k+fJZk+1yJ"’ .

L (xPrpz )0, = 9

Prerequisite X UY k}ﬁ( (W k IJU. o MW UYM)) = Q _
U U U 1

PR(Sl,SZ,...,SM) (Xk Y Zkﬂ ((Xk+ Yo Uzk+1)U e * as Congecutive

- LB

! Uy U ﬁ
Conservative (X Y Zk) ((Xk+1 k ? k+1)U .i A 25 Comseoutive -

wi‘:l

Consecutive No condltions necessary as this 1mp11es !
CC(S135550 44,5 oy vz N Uy, L3 A ot

i"ﬁw‘t. all k such that 1gkxM and for all L such that 1gl<M and !.#k
50}:. all k such that 1gkeM

TABLE 5.2

CONDi"I'IONS NECESSARY FOR A SINGLE GIVEN RELATIONSHIP TO EXIST BETWEEN M STANZAS

66
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5.3 - ASSIGNMENT STANZAS

A stanza which only contains assignment staféﬁéhts can be called
an Assignment stanza or an As-stanza. The relationships that“exigé o
- between As~stan£as can bé readily found by festing the conditions |
given in Table 5.1 or 5.2. An example of how these tests are carried
out will now be given,

Figures 5.1(a) énd {(b) give two examples of assignment staﬁzas

Si and Si+ The sets of ﬁsﬁge of variables, described in Section 4.5,

1.
are given for each stanza in Figures 5.2(a) and (b} respectively.

Assume that in the original program Si was written to be executed

immediately before Si+ As nothing is known about any subsequent

1’
statements used in the program Vi+1 will be considered to be the full

set, The conditions given in Table 5.1 will be used to derive the

relationship that can exist between Si and Si+ Figures 5.3 and 5.4

1°
show how the tests are carried out for machines with and without

private memories. It can be seen from these that if private memories

are available the relationship between Si and Si+ may be considered

1

to be prerequisite. Otherwise the relationship must be considered to

be eonsecutive.



BEGIN o
" al+bl+cl;
aZ<al*bl;
cl<bl+bZ -
END :

(a) Stanza'Si

Figure 5.1

~ BEGIN

101

"a3<bl+b2;
b2+bl/dl;
d2+a3-dl

END

(b) Stanza Si+1

TWO ASSIGNMENT STANZAS

W bl,b2
X az’
Y cl

Z al

bl,d1
dz
b2
a3

i+l
i+l

i+l

e

i+]

(b)

‘Figure 5.2

SETS OF USAGE OF VARIABLES

FOR STANZAS Si AND Si+1
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Uz, )N '
(XPYPZINW; YL ) o
(aMelVal)N((b1,d1Mb2) -+ % - = @
.". The relationship is at leéSt Conservative
XYM 0, Y0925V
(aMellal)N(db2a3) - - g

.". The relationship is at least Prerequisite

WUy INgx, vy, Uz, )
S 141 "i+1 Ti+l
((b1,b2Mci)N(dMb2Ua3) =b2#¢

.*. The relationship is not Contemporary

Figure 5.3

RELATIONSHIPS BETWEEN Si AND Si+1 USING PRIVATE MEMORIES

U M ¥ U
(Y N0 VY5 0 YE541)

((b1,b2NMcl1)N(dXp2a3) =b2 £ ¢

L n 9]
(XY LUZI0M, YY)

(aMeial1)N((bl,d1)Ub2) =p

(XUYDZN0G Y5 Y2400
(aMclVal)N(d b a3) =0

.". The relationship is not Commutative
Figure 5.4

RELATIONSHIPS BETWEEN Si AND Si+1 WITHOUT PRIVATE MEMORIES
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5.4 PARALLELISM WITHIN LOOPS

5.4.1 Simple Loops

I# this section a stanza that f@rms the body.of.a loop (i.é. a
Do—stanza)'will-be éonsidefed. 'Tﬁis_étanza will be executed a number
of times (the exact number depending.bn various control mechanisms
such as the valﬁe_of a control variable). A separate stanza may be
formed‘for'éach ﬁoséiﬁle iterafibn.of a loop. Then by formingwthé
sets described in Section 4.5 the relationships that exist between
iterafioﬁs may be found. Here a limited sub-set of loops will be
considered and methods will be proposed to readily determine the
relationships between iterations of a loop.

- Initially onlylloéps that obey the following constraints will be
considered: |

(i) Only one variable (the control variable) is used ;o

limit the pumber of iterationsra loop performed. |

{ii) The amount by which the control variable is altered for

| each iteration (i.e. the Step size) should be constant.

(iii) The loop may not be exited on a condition.

(iv) Each iteration only varies in locations accessed via the

control variable plus or minus a constant.

() Any location accessed via the control variable is not

capable of being accessed in any other manner,

Some theoretical assertions about loops will now be made, which

will be shown to be correct for the subset of loops being considered.

Theorem 5.1: Total Independence
When all assignments within a loop are to be members of arrays
indexed via the control variable and any element of such an array,

other than the one assigned to, is not used elsewhere in the Do-stanza,
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then each iteration of the loop is completely independent of all

-,
B P

-others.
Proof
Consider a loop to be iterated N times_ahd an iteration of the -
loop to be represénted by S, where 1sksN. Then the conditions of the _.-:
theorem give;
U Uz 0 U =

O IXINIZINRPY T =6 3

for all k such that 1gk<N and {5.35)

for all ¢ such that 1g2gN and 24k . '

The conditions for a group of stanzas to be coniemporary are
given in (5.20) and (5:21) when private memories are available and
{5.30) and (5.31) otherwise. From (5.35) the following three'equations
can be derived: |
N ‘ =

(WQJYk) (XEJYéJZR) () . _

for all k such that 1gkgN and (5.36)

for all 2 such that 1<2<N and 27k.

- JUY UZ YWY UY U =
WY PIZ XY ) = 9

for all k such that igkgN and {5.37) .
for all % such that 1<2gN and R#k. ' S

(UY,UZ)INXUYVUZ ) = @ .
for all k such that 1gkgN and : (5.38)
for 211 % such that 1g2<N and 2#k. ' |

It can be seen that (5.20) is the same as (5.36), (5.30) is the
same as (S.37);and (5.21) and (5.31) are the same as (5.38) when

V is taken to.be the full set (the strongest condition)}. Hence all
iterations of the loop may be executed simultaneously. Thus the

theorem is proved,

Theorem 5.2: Repeated Relationships
The relationship between the jth iteration of a loop and the
(_]<+j)th is the same as that between the i?h iteration and the (k+i)th.

where (k+i) and (k+j) are less than or equal to the number of iterations

(N} in the loop.
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Proof

St

The sets of usage of;ygriﬂblgs.uSQd'in’Si"(i:e.:Wi,Xi;Yi and Zi) may

be divided into two subsets i.e,, those that are accessed via the
control variable and all others that are independent of it. That is:
cvwi’cvxi’cvyi and cvzi reprpsented by cvSi and

OW1 soXs oYlland Z : represented by 0Si . B

Owing to the constraints given at the beginning of this subsection,

that is:

Uyu U =
( le xk Y Zk) (cv 2 cvxz cv 2 cv £) @

for all k such that 1gkgN and
for all & such that I<ogN .

The tests for a givén‘relationship (see Sections 5.1 and 5.2) may be
:ﬁohsidered in two parts. .
| The sets of on will be identical to those of oSi for all values
of i and j such that 15i,j<N. Hence the relationship (,R) between

0Sj and S will be the same as those between S and S (for

0 k+j
c(k+i)sN).
| Within the const?aints given all members of cvS are indexed by
the control variable plus or minus a constant value. So all variables
in cvsi will be off-set in their respective.arrays by the same amount
- from those‘in cvSj for all values of 1 and j such that 1gi,jgN. Hence
the relationship‘(cvR) between cvsj and cvsk+j will be the same as

tbose between cvsi and cvsk+i'

The overall relationship between Sj and Sk+j will be the weaker
of the two relationships ok and VR, Similarly the overall relationship
between Si and Sk+i will be_thg weaker of 0R and cvR. Hence the

relationship between Sj and Sk+j will be the same as that between Si

and S and so the theorem is proved. ’

k+i
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Corollary 5.1

e,
R

The relationship between the first iteration of a loop and the
(_k+1)i:h is the same as that between the ith iter;tion'and the (k+i)th .
where (k+i) is léssrthanror equal to th;“ﬁuﬁﬂer 6f itéféfiqns_in thél
loop. | |

Corollary 5.2: Pattern Recurrence

Within the constraints given earlier all the xelationships between
the m iterations starting at the jth iteration are the same as those

between the m iterations starting at the ith

iteration where (j+m) and
{j+i) are both less than or equal to the nuﬁbérloflitératibns'in the'Ioop.

Corollary 5.3

The maximum number of relationships that need to be tested to

¥

establish all felationships within a loop is N-1, where N is the number
of iterations performed for that loop.

Corollary 5.4: Total Dependence

If the relationship between the first and second iterations of a
loop is consecutive then all iterations of that loop must be executed

sequentially,

Now for a loop that complies with the constraints given earlier

- it can be readily found whether each iteration of the loop may be
executed simultaneously or must be execﬁted sequentiallyr It will only
be necessary to determine the relationship_betﬁéen the first iteration
and some other iterations as this will provide information about all

other relationships; by applying the above theorems and corollaries.

5.4.2 Nested Loops

Nested loops will now be considered. A nested loop is a Do-stanza

which is enclosed by more than one loop. The tests given previously
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for ; single loop, can be expanded to aliow for nested loofs. ‘One
more constrainf will be introduced to those giveﬁJgg‘fhe beginning of
subsection_5.4.2:
| {(vi} Any afréy tﬁat is indexed by a coﬁfrol variable plus or
minus arcﬁnstant value is not to be used elsewhere in the
: Do;gtanza indexed By the same control variable plus or;.

minus a constant value in a different subscript position.

Consider % nested loops to be represented by {LI’LZ""’LQ} where L,
is the inner-most loop and L1 is the outer-most loop. The extensions

to the tests will now be derived for these £ nested loops.

1. Total Independence

Consider all assignments within a Do-stanza are to be arrays
: '.inéexed\py”all the contrql variables of the loops {LI’LZ""’LE} and
none of these arrays are used anywhere else in the Do-stanza. Then
each iteration of every loop may be exequted_simultaneously.
Otherwise fqrxegcb~1oop {Ll;Lz?-';Qin}’.fpr which_thg total independence
test holds, every iteratidn may be éxecuted simultaneously.
At this pﬁint it may be remarked that an N dimension array may
be considered to consist of a number of independent N-1 dimensibn
arrays. For example a three dimensional arra& A[1:x,1:y,1:2] can be
considered to consist of x independent two dimensional arrays

{A[1,1:y,1:2], A[2,1:y,1:2],...,A[x,1zy,1:2]}.

2. Total Dependence

For each loop'{Ll,Lz,...,Lz} for which the total dependence test
holds all iterations must be executed sequentially. If total dependence
holds for all loops then all iterations of every loop must be executed

sequentially,
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3. Repeated Relationships

Repeated relationships need only be considered” for those loops
which are not totally ingependgnt or tqtally_dependént.- Each loop is

" then handled in the same manner as.With'sinéie loops.

Figure 5.5 shows a nested loop, where %=3, that satisfies the
constraints given_previousl&i The tests described above will now be
applied to this neéted loop.

(1) Form the sets of usage of variables, ignoring any subscripts

W d
a[, ,]’c.{”]

X N o o !
Y b[:’] '
z 9 '
The whole of the nested loop cannot be totally independent as one
array (b) is fetched and subsequently stored.
- _ _
The loops {L1,L2,L3} will now be considered individually starting
with the inner-most loop.
(2) Form the sets of usage of variables for L3 including all the subscripts
W d,b[i1+3,i2,i3+3],b[i1,i2,i3+2)]
X a[il,i2,i3],c[i1,i2,i3],b[i1,i2,i3]
Y ¢ '
Z 9
Since the array b[il,iz,ﬁ]fapbearS'in both W and X the loop L3 is
not totally independent. The repeated relationships are now
examined
Iteration 1 of L3 - i3«l

W,  d,b[i1+3,i2,4],b[i1,i2,3]

1
X, alil,i2,1];b[i1,i2,1],¢[il,i2,1]
Y, #
z, ¢

Tteration 2 of L3 - 13«2

d,b[i1+3,i2,5],b[i1,i2,4]

W,

X, al[il,i2,2],b[i1,12,2],c[il,i2,2]
Yy, ¢

Z, @



(3)

(4)
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‘Carrying out the tests described in Section 5.1 reveals that these
two iterations are contemporary. S
Iteration 3 of L3 ~ i3«3

d,b[11+3,32,6],b[i1,i2,5]

W
Vs
X, alil,i2,3],b[i1,i2,3],c[i1,i2,3]
Y, ¢
z ¢

Again, carrying out the relationship tesfs shows that the firét an&

third iterations are consecutive. |

So for the whole of the loop L3 the iterations can be carried out

in pairs that are contemporary and éach se£ of pairs must be conéécutive;

Thus an execution order may be:
CC(CT(LSI,LBZ},CT(LSS,L34),...,CT(LSQ,L310)) R

where LSN is the Nth iteration of L3,

- Form the sets of usage of variables for L2, including all subscripts

except for those used in inner loops (i.e. i3)

W d,b{il+3,i2]

X afil,i2},c[il,i2]

Y  bl[il,12]

Z ¢
Since all arrays in the X,Y and Z sets are indexed by 12 and each
array only appears once the loop LZ is totally independent (N.B.
blil,,] is a different array to b[il+3,,]).
Thus the execution order may be:

CT(L2L2,,...,L2,).

Form the sets of usage of variables for L1, excluding all subscripts

used in inner loops, (i.e, 12 and i3)

W d,b[i+3]

X alil],cfil]
Y  bfil]

z 9

Since the array b{ ] appears in W and Y,L1 is not totally independent.




The repeated relationships are now examined. .

Iteration 1 of L1 - il<l

..wi- _4,p14) -
%, ahiheny %
Y, bl1]
Zy 9

] .
Iteration 2'qf L1 - i1+2

W, d,b[s]
X, al2l,c(2]
Y, bf2]

z, @

Carrying out the relationship tests as before shows that these two
iterations are contemporary.

Iteration 3 of L1 ~ 11«3

W d,bIS]
)(3 a[3],cl3]
Yy b[3)

Z, #

The relationship between the first and third iteration can also
be found to be contemporary.

Iteration 4 of L1 - il<4

W, d,b[6]
X, a[4],cl4]
Y, bl4]

z, P

The relationship between the first and fourth iterations is
consecutive. Thus an execution order of L1 may be:
CC(CT(Llrle,LIB],CT{L14,L15,L16),CT(L17,L18,L1§LL110)
So assuming the availability of 60 processing units the 1000
iterations can be executed in the time taken to execute 20

iterations of the loop sequentially (see Figure 5.6}.

110
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.If_an array within a nested loop is indexed by a given control
variable in one subscript position and is later indéxed by the same
variable in a different position, it becomes difficult to predi@t.thé

P

usage of a particular_eiemgnt'ofkan array. Tﬁis_is vwhy cﬂnétraint{‘_
{vi) was introduced for nested loops. Howevér for certain loops it

is possible to detect some type of 'Qéve front}_relationship bétween':'
iterations of the loops (sée Kuck, 1975). Consider.the simpléiﬁested i
loop in Figure 5.7. It can be.seen'that sometimes the value §f a[i,j]
will be set to a value previously set in the loop and othefwise the
value will be one set outside the loop. Figufe‘S.S'indicateé which
iterations of Figure 5.7 depend on the old value OQ) of an element
being available, which depend on a new valuer(N) being available and
which it does not matter for (X). It can be seen that fof all values
of il and j1 such that jl<il the il,jlth iteration must be executed
before the jl,ilth iteration and the il,ilth iteration may be done at

any time. Similar solutions may be obtained for more complex Do-stanzas

as explained in Kuck (1975).




FOR 11«1 STEP 1 UNTIL 10 DD
FOR i2«<1 STEP 1 UNTIL 10 DO
FOR i3«1 STEP 1 UNTIL 10 DO
BEGIN
afil,i2,i3}+b[11,i12,i3+2);
b[il,i2,i3]«d; ; |
c[il,i2,13]«b[i1+3,1i2,13+3]
END - | / |

Figure 5.5

A NESTED LOOP

L2

Ll1.

112



Processor
Time

1
-2
5
6
0
1

-

e
. Oh [ 42 Y

5]
O s

1

(1,1,1)

(1,1,3)

(1,1,9)
(4,1,1)

(4,1,9)
(7,1,1)

(7,1,9)
(10,1,1)

(10,1,9)

2 3

(1,1,2) (1,2,1)
(1,1,4} (1,2,3}

(1,1,10) (1,2,9)
(4,1,2)  (4,2,1)

' (4,1,10)  (4,2,9)
(7,1,2)  (7,2,1)

(7,1,10) (7,2,9)
(10,1,2) (10,2,1)

(10,1,10) (10,2,9)

where (i,j,k) represents the i
the jth iteration of 1.2 and the k"

20 21 . 59 60

- ,10,2)  (2,1,1) (3,10,1)  (3,10,2)
(1,10,4) (2,1,3) (3,10,3) (3,10,4)
(1,10,10) (2,1,9) (3,10,9)  (3,10,10)
(4;10,2) (5,1,1) (6,10,1) {6,10,2)
(4,10,10) (5,1,9)  (6,10,1)  (6,10,2)
(7,10,2)  (8,1,1) (9,10,1)  (9,10,2)
(7,10,10) (8,1,9) (9,10,9)  (9,10,10)
(10,10,2)

' : not used
(10,10,10)

th fw ]

h

Figure 5.6

iteration of L1,
iteration of L3.

POSSIBLE EXECUTION ORDER OF A NESTED LOOP
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FOR i+l STEP 1 UNTIL 10 DO
FOR j«1 STEP 1 UNTIL 10 DO

BEGIN - .

ali,jlalj,i]

END

Figure 5.7

NESTED LOOPS
Nl 2 3 4 s 6 7 8 9 10
1|lx o o o o o o o0 o 0
2|y X o 0 o o0 o0 o0 O 0
3lN N X 0 o O ©0 0 o 0
4N N N X © 0 -0 O0- 0 0
5N N N N X ©0 0 0 © 0
‘6NN N N N X 0O 0 O 0
7l N N N N N, X 0 o0 0
8|l[N N N N N N N X O 0
9N N N N N NN N X 0
I|N N N N N N N N N X

where 0=01d value; NENéw value and X=don't care

Figure 5.8

h ITERATION

VALUE OF THE ELEMENTS FETCHED BY THE i,jt
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$.5 CONDITIONAL STANZAS

Here a simple Algol type IF statement w111 be “considered which will
be called an Iffstanza. The If-stanza S may be con51dered in three
parts:.

()  The condition - Ss-
(ii). The statements executed 1f the condltlon is true - ,S.. .

T1

(1ii) The statements executed 1f the condition is false - Fsi'

For each of these three it is possible to form the sets of usage of
variables (see Section 4.5). These will be represented by:
M - The variables tested in the condition (For a simple

If-stanza, assignments will not be carried out in cSi).

k'
i
™
y. ( The variables used when the condition was true.
T'i - .
Z.
. T 7
: FW
Fxl +  The variables used when the condition was false,
FY1 : . !
le / ‘ |
Since both of . S. and _S. cannot be executed for any value S. the
T 1 F1i ci
variables used in S will be given by
U
W1 Twl Txl Ti T i
U xu
or MR R

Tests will be developed that will determine the relationship
between an If-stanza (Sl) and those stanzas executed immediately before
it (A). Then further tests will show the relationship between the If-

. stanza (Si) and those stanzas executed immediately after it (P).
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5.5.1 Relationships Between A and s

For clarity A may be considered as one stanza with the following

sets of usage of variables:

N g
MapaIss S

By testing the relationship between A and cSi it is possible to
readily detect if A and Si must be executed as comsecutive stanzas,
This is done by testing the intersection of the output sets of A and
the input sets of cSi' That is:

AU UZNI, = p . (5.39)

A
If the intersection is not empty A and Si must be executed as
consecutive stanzas, Otherwise further tests will need to be carried
out to establish the relaticnships between A and Si' These subsequent
tests can be considered in two classes:
{1) A and TSi:

The relationship (TRi) between A and TSi is established using the
tests given in Sections 5.1 or 5.2,

(2} A and Si:

F
The relationship (FRij between A and FSi is established using the

tests given in Sections 5.1 or 5.2,

It can now be stated that when CSi is true the relationship
between A and Si is TRi and otherwise it is FRi' Figure 5.8 gives an
example of an As-stanza followed by an If-stanza. The sets of usage of
variables for both these stanzas are given in Figure 5.9. The tests

described will not be carried out in the prescribed manner, for a

machine with private memories available.
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A ané csl _ ’ |
| X2 My S ' " -
((a,bMec)Vg,h) = @’ ‘ |
+« A and S1 cannot be considéred'consecutive.
A and .S, - . IR
(XY 2N Y )
{((a,be)N{j,k) = @
. A and.TS1 are at least conservative.
) M L U
(XY I I X DY U 2,00y
({a,bMe)N(E) = 9
7. A and S, are at least preréduisiie.
U Ny x U
WY INCX LY Y2
((g:h:j:d.re:f})c}n(i) =@
.. A and TS1 are contemporary.
A and FS]. 3

(XAUYAUZA)H(FWIUFYIJ

((2,bMeIN({2,mM3) = ¢

.. Aand pSq are at least conservative.
(KX WZ N XY ¥ Pp2 Wy

((a,bMe)N(G) = ¢

.. A and g5y are at least prerequisite.

(Y IMEX P Y Pp2y)

((g,h,3,d,e,EMe)N(G) £ 9

.'. A and _S. are not commutative or comtemporary.

F1

Thus it can be seen that TRl is contemporary and Ry is prerequisite.

F




BEGIN
a<g/h;
bej+c;
cedtre/f

END;

IF g=h THEN S
i<j+k

ELSE
jej+lem; S

w3 O
g

Figure 5.8

WA g,h,j,d,e,f
XA a,b

YA C

ZA @

cwl gh
M Ik
Xy 2

1 P g
Tzl @

le k,m

P 9

piy 3

le ‘ﬂ

Figure 5.9

W,X,Y AND Z SETS FOR A AND Sl

AN AS-STANZA FOLLOWED BY AN IF-STANZA
i
i
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5.5.2 Relationship Between Si and P

For clarity P may be considered as one stanza with the following

sets of usage of variables:

=
v

s B
o g

P

No test is available to readily detect a specific relationship
between Si and P. So it will be necessary, again, to estéblish
relationships depending on possible values of a condition. Since

¢ nothing is known about the relationship between'cSi and P it will be
necessary to include the variables of CSi with those of TSi and FSi
as necessary. The twd classes of tests that will be carried out are:~
(1) Tsi and P

The relationship ( R. ) between TS and P is established as

descrlbed in Sections 5.1 or 5.2. except W is included in all the

input sets and sets of variables fetched for 5;+ That is:
: U
(cwl e TY } replaces CTW. Y.)
and | (chJTWfJTYJJTZi) replaces ( W T i T Z,) .
(ii) Fsi and P
The relationship (FRi) betwesn FSi and P is established as

described in Sections 5.1 or 5.2, except that cWi is included in all
the input sets and the sets of variables fetched for Fsi' That is:
U_iWU (WU
(cwi Fwi FYi) Treplaces (le FYi)
U wu vy L
and (cwi Fwi FY.l in) replaces (Fwi FyiJin)
It can now be stated that when csi is true the relationship
between Si and P is TRi and otherwise it is FRi'
The tests described in subsections 5.5.1 and 5.5.2 may be

extended to allow for more complicated Algol-type IF statements, where
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assignments may take place in the condition csi' It will be necessary

Lo

to form new sets of usage of variables:

l‘
™ ) : o A .
Xt o _ ‘ L =
TY} | The variables vsed in the condition and those
‘used when the condition is true.

v |
K

|
|

'3 I E :

in The variables used in the condition and those
" :

FYi used when the condition is false.

' .
in J

These will combine all the variables used in Si’ and reflect that cSi

is always executed before Si or Fsi' For example a variable that

T

appeared in both cxi and TYi.would be placed in Zi. The tests could

T
then be carried out in the manmer described previously.

When two adjacent If-stanzas are considered there are at the most
four possible relationships between them (see Figure 5.10). However
only one path will be taken through these stanzas, for a particular
pass through this section of code. In general, the path to be taken
will not be known until the stanzas are executed.

.Since the nﬁmber of paths through n adjacent If-stanzas is 2n,
then for practical purposes it will be necessary to limit the number

of adjacent If-stanzas considered at one time. However, for two

adjacent If.stanzas the work is not onerous and the gains should be

worthwhile.
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FSI
¥
FSZ

Figure 5.10

TWO ADJACENT IF-STANZAS
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5.6 .STANZAS CONTAINING LOOPS AND CONDITIONALS

ot

va

A loop (SL) may be contained within an If—stanza (Si), it may

_ appear in S 5. or, in the more complex If—stanzas, cSi‘ The_

i B
relationships between 1terat10ns of the loop (S ) may be calculated
in the normal manner. Similarly, the relatlonshlps between the If-

‘stanza and the surrounding program can be establlshed in the manner

described previously.

However, when an If-stanza (Si) appears in a loop‘(SL).there are
three situations to be considered:

(1) For any execution of S the same path will be taken throﬁgh Si' I

L

(2) For any execution of 8, one path will be taken through Si up to

L
a certain point after which the other path is taken through Si'

(3) For any execution of S  the path taken through Si will alter more

L
tﬁan ) Once.

How these situations can be detected and any potential for parallelism

exploited will now be detailed.

(1) The same path will always be taken through Si when none of the
variables set in SL are fetched in cSi. For certain trivial cases
{such a5 testing if 1=2} only one_path will ever be taken through
S and s0 the relationships between 1terat10ns of the loop can be
determined accordingly. However in general it will not be known
which path will be taken until the program is executed; So it
will be necessary to establish the relationships between iteratibns
of SL for both cases.

{2} A 'switch-over!' of this type will occur when the test is such that
when one of TSi or Fsi ié taken it will always be taken. This may
be because:

either (i) The control variable is tested for being smaller, or

larger than a value [(C) which is constant within SL'




(3)

It can be seen that the variable tested in cSi is set elsewhere in S
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or (ii) A variable’(V) which is only set within SL in one.of TSi

‘or ©S. is tested for being smaller or larger than a value

Fri

[C) wh1ch is constant W1th1n SL

Again, except 1n tr1v1al cases there w111 be 1nsuff1c1ent

1nformat10n unt11 executlon to determlne which path or paths will
be taken. However at executlon some potentlal parallellsm may
be retained. Assume that the condltlonal S has the value B on
the first 1terat10n of the 1oop S (where B is either true or false).
Then while S. is equal to B the results of an iteration must be
stored before those of the next iteratioﬁ (i.e. the conservative or
consecutive reiétibnship). Then when the condition changes (i.e.
S is no longer equal to B) any iterations performed and not stored
w111 be discarded. The remainder of the iterations can then be
calculated; possibly in parallel depending upon the relationships
between iterations when_csi is not equal to B._ Thus it will be.
necessary to calculate the relationships between iterations of the
loop for when cSi is true and when it is false.
An approaéh simiiar_to the one described in {2) can be'used here,

where S, uses variables set in § However since there is no way

L.
of determining which path will be taken in advance such loops will

be iterated sequentially.

An example of an If-stanza within a loop is given in Figure 5.11.

L

and thus this'is not the situation (1) discussed previously. However

the variable ('x') tested in §; is only set within S, in _S; which is

the second situation discussed above. Hence for any execution of S

L Fi

L

the path FSi will be taken through Si until the variable ('x') is

greater than 5 then the path TSi will be taken. Using the tests
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described previously for loops it can be established that when'cSi

N,
Sy

is true iterations of SL are contemporary whereas when cSi is false

the iterations are conservative (when private memories are available}. -

Aésﬁming that )

£=3 .and j=1
then the first three iterations of the loop will be executed in a
conservati?e order and the remaining seven will be executed iﬁla. '
contemporary Qrder; | |
A loop which stops on a condition may be called a While-loop and.

the stanza {Sw)'that reﬁresenté it may be considgied in twé.parts:

() cSw - the condition.

(1) 45, - the body of the loop.
Again except in trivial circumstances, it will not be possible to decide
in‘advance for which iteratibn of the;léop cSw will become false.

\ _

However if a machine with private memories is available some potential
parallelism may be retained. The eongervative relationship and a
technique similar to pipelining (see Chapter 1) will be used. Whatever
other conditions exists the results of the (i+1)th iteration will not
be stored until those of the ith iteration have been stored (where i is
less than thé total maximum.number of iterations of the loop). Suppose
during the ith iteration the condition cSW becomes félse. Then any

calculations made for subsequent iterations may be discarded as the loop

is now complete.



FOR k<1 STEP 1 'UN’I_'IL 10 DO

BEGIN
IF x>5 THEN S5
N afk]ec o 8. ‘
' BLSE | i 5
T x€2%j4k s,
END F3

Figure 5.11

AN IF-STANZA WITHIN A DO-—STANZA
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5.7 PROCEDURE CALLS .

A procedure is used in Algol-type programming languages to
describe a commonly used process, which will be executed when a"céll'
is ﬁade to the appropriate procedure and any necessary parameters
supplied for the passing of its inputs and outputs. The description
of a process to be performed on cevtain parameters will be known as the
procedure definition. The 'body' of a procedure is the codé executed
each time the procedure is called. |

Within the body of a procedure three types of variables can be
considered to be used:

(i) Local variables

- (ii} Global variables

(iii) Parameters

The effects these types of variables will have on poténtial parallelism

between a call of a procedure and the surrouding stanzas will vary. Thus:

(i) The local variables will have no affect on parallelism since by
definition they cannot be used elsewhere.

(ii) The global variables may be affected by the external environment
and so must be included in the sets of usage of variables for the
stanza that represents a call to this procedure.

{iii) The actual variables passed as parameters may vary from call to
call of a procedure. However from the procedure's definition
the method in which a parameter is used will be known. For
example in Algol-60 a parameter may be called by 'name! or *value',
In the former case a parameter may be considered to be used in

the manner Y described in Chapter 4 whereas in the latter case it

would be W,
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Continuing with the Algol-60 example there will be six sets of
usage of var1ab1e5 to be considered for the call of a procedure as
'_stanza S.. Thesg six sets are:

BW , Bxl, BY and | Z rthe global varlables used in -

_the procedure s body

and - Pwi’PYi _ ‘the parameters passed to the

procedure. -

The first fbuf'sefs may Be fofmulated when the procedure is defined.
The remaining two must, however, be formed for each call of the
procedure. These sets will be joined together to give the setslof
usage of variables for Si' When a‘global variable uséd in S1 is also
passed as a parameter care must be taken to ensure it is placed in
the correct set (e.g. a variable appearing in both Bxi and pwi must
be considered to be used in the manner f). The four se;s of usage of
variables for Si will be:

| Wl Xl Yl and Z . |
Figure 5,12 shows an example of a proceduré definition and its call.

There is only one global variable used in the body of the procedure,

thus the sets of usage of variables ares

BWi ¢

BX e

B @

Bz g

and '

. Pwi e,f
h

PYi g 2

The combined sets for the call of the procedure are:

wi £
Xi g
Yi e,g,h
z, @

Having formed the sets wi’xi’Yi and Z; the relationships between a
call of a procedure and the surrounding stanzas may be established by

using the appropriate method described in the previous sections.



PROCEDURE example - (a,b,c,d);

INTEGER a,b,c,d;

VALUE a,b;

BEGIN
INTEGER m; ] ‘
IF a=b THEN m<l ELSE m<2;
c(a-b*2) *m; -
d<(b-a*2)*m;
eccid

END;

example (e,f,g,h);

Figure 5.12

A PROCEDURE CALL
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5.8 ADDITIONAL CONSIDERATIONS

The most frequently used programming constructs (see Chapter 2}

~ have now been.discussed.: In this section possible methods of handling

‘other programming constructs will be outlined.

-

5.8.1 Unconditional Jumps

Uncoﬁditional jumps are represented by the use of a GOTO Stétement

and a label which indicates the position to be 'gone to'. Such situations

may be recognised when the stanzas are being formed. Each time 2 label

is recognised a new stanza will be started and when a GOTO is recbgniséd'
the current stanza is closed. An example of such a stanza is given in
Figure 5.13. The relationship between stanzas that could be executed

one after the other can then be found in the manner described previously.

-5.8.2 Input and Output

The only potential for parallelism between two or more input
operations will be when they are from different channels. Similarly
the only potential for parallelism between two or more output operations
will be when they are to different channels, In all cther circumstances
it may be considered that an.input operation is storing to the variables

input and the output operation is fetching the variables it will output.

5.8.3 Declarations

In the samples given in Robinson and Torsun (1976b)} declarations
accounted for 71% of program statements. Whether any potential
parallelism between declarations can be used advantageously will depend

on a particular machine's main memory's architecture.
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o aed-b; . . o

label 1: bed+c; - S B

o odecf2; ':]'A Stanza -
GOTO 1label 2; 4

e<f*2;

Figure 5.13

A STANZA DELIMITED BY A LABEL AND A GOTO
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5.9 'IMPLEMENTATION OF AN IMPLICIT PARALLELISM DETECTOR

"‘».‘

At the end of the previous chapter an Analyser was mentloned that

would.d1v1dg a simple program into stanzas. Another program Detector,; "

T .

is giVen-in ApPehdix 3 wﬁicﬁ willltéke the'stahzas'aﬁd'caicuiéfé theriJ
relatlonshlps between palrs of stanzas and between 1terat1ons of 51mp1e
loops. Appendlx 4 shows a simple part of an Algol type program, the
stanzas formed from it and the relationships found to” exist between_
them,

As with the Analyser some of the work done in the Detector will :
norﬁally be carried out by the usual compiler routinesf Figuré 5.14
shows where the routines of Analyser and Detector may be inserted in

a multipass compiler.
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INTERMEDIATE

v

&
Cd

ANALYSER | -

L
¢

. CODE "
GENERATION

TABLE
MANAGEMENT

CODE
OPTIMISATION

CODE
GENERATION

g

—* DETECTOR

4
v

‘ERROR
HANDLING

PARALLEL COMPUTER
ORIENTED CODE

Figure 5.14

POSSIBLE PHASES OF A PARALLELISM DETECTOR AND MULTI-PASS COMPILER
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OPTIMISATION OF PARALLEL PROGRAMS
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6.1 OPTIMISATION TECHNIQUES

L
L

A compiler Whlch contalns some means of produclng an extremely
eff1c1ent obJect code 15 called an '0pt1m151ng Comp11er' (Rustln, 1972
and Wulf et al 1975) Most opt1m151ng compilers achieve such
efficient code by the eliminatibn of inStructions andrvafiablés that
are repetitious or.redﬁndaﬁt;‘ Howéver,'for,a.proéram thét is to be
run in a.parallel'processing environment,:optiﬁiSAtidn wiil'be used to
produce effiéient object code which contains an 'optimum' amount of
potential parallelism. Where it is reasonable existing parallelism
should not be removed from a program by the optimising process and,
indeed, more parallelism may be introduced. Thus, one of the éims of
optimising a parallel program will be to reduce dependencies within
the code, even at the expense of using instructions and variables that
are repetitious or redundaﬁt.

In this chapter optimisation techniques will be discussed for
parallel programs which have been formed in either an implicit or
explicit manner., Many types bf optimising transformations have been
considered for serial programs, Allen and Cocke (1972) give a catalogue
of such techniques. Here it will be considered how some of the
techniques they describe will effect the optimisation of parallel
programs. It ﬁill be seen that some optimising techniques are equally
well suited to both serial aﬂd paréllel programs (e.g. constant folding
and peephole transformations), vhereas other techniques‘used for serial
programs may in fact detract from potential parallelism of a parallel
program (e.g. strength reduction and linear function test replacement).
Some of the Zoqp transformation optimising techniqués are suitable for
both serial and parallel programs whereés others are not and may even

detract from parallelism within a program.
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Many of the optimising techniques mentioned hfre can be app11ed
‘at the 'Code Opt1m1sat10n‘ stage of a multl-pass.complier, as descrlbed‘ .
in Chapter 2 However, some optlmlsatxon may be carrled out at '
different stages. For example peephole transfbrmattons may be carrled
out after the rest of the compilation is completed. The pOS;t1on in a.:
multi-pass compiler where a particular optimisatibn is cafrie@L##t'ﬁili.

be the same for both serial and parallei prdgrams,_
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6 2 OPTIMISATION TECHNIQUES READILY AMENABLE TO PARALLEL PROCESSING

o v

In thls sect1on optlmlsatlon technlques that may be app11ed to.

both serlal and parallel computer programs W111 be dlscussed Full
) definltlons of all the types of optlmlsat1on mentloned here fbr serlal o

programs are glven in Allen and chke_(1972).

6 2. 1 - Procedure Ihtegratmon |

Procedure integration is essentlally the replacing of a.procedure *
cail by what is to be executed at that point. For both s¢r1al "and
parallel_programs, the methods by which parameters are passed will
. effect the possibilities of being able to integrate a large procedure.
Similarly it is more complicated fo integraie.a large procedure than
a small oné.'_However, the advanfages of the contents 6f a procedure
being knéwn at the point of call will be useful 'in the execution of
both serial and parailel programs; Indeed, in the previous chapter
procedure integration was used to determine implicit parallelism, in
Algol-type programminé languages, between a call to a procedure and

the surrounding code.

6.2.2 (Constant Folding and Dead Code Elimination

Sometimes a variable name is used to represent a constant value
thrbughout.a prograﬁ {e.g. as a dimension of 2z set of arrays). When
such a case ié recognised the uses of that variéble may be replaced
by its constant value (i.e. comstant folding). The use of constant folding
ﬁill not have any detrimental effect on the parallelism within a
computer program,

Code may become 'dead' because of constant folding ancf' sometimes

by other means, Code may be considered dead if it is in part of the
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ﬁrogram that can never be reached. Figure 6, 1 glves an example of a

.\m‘
il

part of a program to Whlch dead code elzmznatzon is applled _ Slnce f:;;;;{'“

a

__dead code will never be executed 1t may be removed from‘both ser1al

“and para11e1 programs,“;

6.2.3 P@ephole f%ansfbrmations L

The f1na1 code produced from a compllatlon of.a-serlal‘program
can often be improved upon by carrying out a_local‘sean on a sequence.‘
of imstructions. Sgeh optiﬁisetion hay:feadily be applied:to a'stanze
of a parallel program {whether explicit or implicit) such that the

stanza itself may run optimally on one processor.
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t8;

IF t#8 THEN

BEGIN
asb+c;
dve/f;

END

ELSE

BEGIN
atb-¢;
dee*f

END

after dead code elimination becomes:-
t<8;

a+b-c;
dve*f

Figure 6.1

DEAD CODE ELTMINATION
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¥

6 3 OPTIMISATION TECHNIQUES THAT DETRACT FROM POTENTIAL PARALLELISM

-wA-,' T .!

Some of the technlques used to Optlmlse ser1a1 programs may have‘
'_'adverse effects on the paralle11sm 1n programs.‘ However 1f a part1¢g}#r
.part of a parallel program 15 dlctated to be ruﬁ sequentlally then any
'serlal opt1m1sat10n technlques may be applzed to that part of the ,1:

_ program. In this sectlon 1t w111 be shown why, in general, some sérlal -

optimisation techniques are not su1tab1e to bg applled to parallel

'programs.

6.3.1 Cormon Subexpression'Elimination

Common subexpresszon el@mmnatzon is used, in the optlmlsatlon of
serial programs, to avoid recalculatlng a value that is already aVallable '
This is effected_by storing the value of a subexpression in some
‘ temporary location that.can be fetched when ﬂecessary. However, in a
parallel pfogram this may cause dependencies between stanzas or 5ranches
of 2 binary tree. Thus, elimination of common subexpressions may
detract from the potential parallelism of either an explicit or implicit

parallel program and so shonld be useh wikn covvion.

6.3.2 Strength Reduction and Linear Function Test Replacement

The strength reduction bﬁtﬂmﬁsation.is‘used to replace certain
computations using recursively defined variablés by recursively
defined computations. A common example of fhis is in a loop replacing
a calculation using the control variable by a variable incremented
within the loop (see Figure 6.2). However, this wili frequently
increasé dependencies within the program under consideration and so
detract from potential parallelism.- Thus strengfh reductfbn will

not, in general, be applied to parallel programs,
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Ltnear functton test replacement is often applled after strength

.‘.A\‘

_reductzon and occa51ona11y in other cxrcumstances in the compllatlon

o of serlal programs.: Brlefly, a test on one varlable (e g._the control ~j“jji

varlable) 15 replaced by a test on another recurs1vely deflned
.var1able {e. g. a varlable a551gned to in the loop) As before th1s .
may 1ncrease the dependenc1es within a program and 50 detract from
'potent1al parallellsm and thus, will not be usually ‘used in the ,.;

'compilation_of parallel programs.
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'_FOR:H—ISTEPIUNTILlOODO'"_ LT T e
CBEGIN . | R A L
a[1*5]+b+c{1] ' S
.- END

‘maywbecome4aftef;Stfengtth@&hction

- INTEGER t<5;

- FOR i<«1 STEP 1 UNTIL 100 DO
BEGIN - a

aft]«b+[i];

~ tet4h '

END

_Figure 6.2

STRENGTH REDUCTION TRANSFORMATION .
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6.4 LOOP TRANSFORMATIONS

Ty

Several transformations can be used to bptimise the loops of a .
of loops will be considered. In the_folldwing'SubSections it Qi11‘Bé3
indicated how such optimising-tranSfbrmations can be applied to a. '

parallel program to attract parallelism b?tﬁéen itéfatiﬁns'bf“1¢6ps. :.4

6.4.1 Loop Unrolling

A loop may be unrolled_suéh that statements that would have been
executed in different iterations may éppear sedﬁéntially. _Figure 6.3
shows two examples of how a loop maylﬁe unrolled. Loop unrolling may
be used in the compilation of paralle1 progfams to ensure the amount
of code in each iteration of the. loop is sufficient to juStify any

overheads of allocating independent iterations to separate processors.

6.4.2 Loop Unfolding

A loop can be unfolded such that.stateﬁénts that would have been
executed in a loop are split between two -or more loops. This may be
used to remove dependencies between‘iteratipns of a loop as can be
seen in Figure 6.4. The original loop, given in Figure 6.4, must be
executed in a consecutive manner; after the transformation loops L1
and L2 are‘consecutive but bofh sets of iterations are contemporary.
In cases where dependencies are not removed decreasing the amount of
code in a loop will be unnecessary and may indeed increase the

overheads of parallelism.

serial'program.l Here §he three éféas ﬁnfollﬁhﬁ; ﬁnfﬁldiﬁé“and fgidihg;;{ %;7ﬁiia
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6.4.3 Lbop Folding

b

Loop fblding is somet1mes referred to as 3amm1ng or fusion of loops.

- :' i,

:ff'Brlefly it is the JOlnlng tOgether of two or more loops such that they
are expressed by-one loop‘(see F}gure 6.5). Thls will have the-same
advantages as Zoo? unrolling However, it will be more difficuit to
1mp1ement as all Toops w1th1n a program do not usually have the same -

step size and 11m1t5.

6.4.4 Combinations of Loop Transformations

It may be possible to combine the techniques, given in the previous
three subsections, to create new loops in which there is more potential .
parallelism than in the original loops. Obviously if all iterations of
a loop are already of a suitablelsize and the relationship between them
all is coﬁtemporary there will be no need to apply any loop trans-
formations. However; ;f thef are not by judiciously unrolling, unfolding,
and folding more potential parallelism may be iﬁtroduced, assuming that
folding does.not recreate a loop just unfolded and vice versa. Flgure 6.6
. gives an example of using both the unfolding and unrolllng techniques
follqwed by more unrolling and folding to increase the amount of potential

parallelism.
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FOR i«1 STEP 1 UNTIL 100 DO

BEGIN .
a[i]«a[i+50]+b[i]

END .

may be unrolled to give

FOR i«1 STEP 4 UNTIL 100 DO
BEGIN
a[i]«a[i+50]+b{i];
afi+l1}+ali+51])+b[i*1]);
aJi+2)<«a[i+52])+b[i+2];
a[i+3]«a{i+53)}+b[i+3]
END

or

FOR i<l STEP 1 UNTIL 50 DO

BEGIN :
a{i]«a[i+50]+b[i];
a[i+50]«a[i+100]+b[i+30]

END . :

Figure 6.3

LOOP UNRGLLING




FOR i«1 STEP 1 UNTIL 100 DO

BEGIN :
aJi+1}<h[iJ+c[irl];
clilea[i]+b]i]

END .

may be unfolded to give

FOR i+«1 STEP 1 UNTIL 1CO DO

BEGIN :
afi+l]«b[i]+c[i+l]

END;

FOR i+l STEP 1 UNTIL 100 DO

BEGIN
_clilea[i]+b[i]
.END

Figure 6.4

LOOP UNFOLDING

FOR i+l STEP 1 UNTIL 100 DO
BEGIN
afil«ali]+b[i]
END;
FOR i<l STEP 1 UNTIL 100 DO
BEGIN
c[i]«d[i]-e[i]
END

may be folded to give

FOR i<}l STEP 1 UNTIL 100 DO
BEGIN
a[il«a[i}+b[i);
cl[i]«d[i]-e[i]
END

Figure 6.5

LOOP FOLDING
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e,

FOR i+l STEP 1 UNTIL 100 DO

BEGIN -
a[i]«a[i+50]+b[i];
x[i]«y[i]-z{i]

END .

may be dnfolded and uﬁrolled_td give

FOR i<1 STEP 1 UNTIL 50 DG
BEGIN o ‘
a[il«a[i+50]+b[i];
a[i+50]«a[i+100]+b[i+50]
END; '
FOR i<+l STEP 1 UNTIL 100 DO
BEGIN
x[i]+y[i}-z[i]"
END

may be unrolled and folded to give

FOR i<l STEP 1 UNTIL 50 DO
BEGIN
afi]«a[i+30]+b[i];
a[i+50]+a[i+100]+b[i+50];
x{i)«y[i]~z[i];
x[i+50]«y[1+50]-z[i+50]
END o

Figure 6.6

LOOP UNROLLING, UNFOLDING AND FOLDING
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CHAPTER 7

CORRECTNESS OF PARALLEL PROGRAMS




146

7.1 INTRODUCTION TO PROGRAM CORRECTNESS

D

The conditions expected to be true on entry to a progeam, or part
_of program,are called 1ts‘hntecedents' Those expected to be true when
the program, or part of program, ex1ts ‘are’ called 1ts 'consequents1
Using this termlnology the conditions for a program, or part of a
program, to be con51dered correct can be defined,

Definition 7.1

A program or part of a program is correct if the truth of its

antecedents ensures the truth of its consequents.

Elsewhere this is sometimes called 'partial correctness' since
there is no guarantee that the program will terminate. However, here
J‘the termination of programs will not be considered.

Approaches to detefﬁining the correctness of parallel programs
have been described in.OWicki (1975}, Gries (1977} and Fion and
Suzuki (1977). Here the correctness of a parallel program written
explicitly using the seven relationships defined in Definitions 4.3
to 4.9 end 4,10 to 4.16 will be considered. Figure 7.1 indicates how
two stanzas may be eeplicitly shown to be prerequisite. The techniques

of syﬁbolic execution (Hantler and King, 1976) will be extended to

indicate how the correctness of programs using these new relationships

may be proved.




PR

BEGIN

BEGIN
az«cl;
al«bl+cl;
bl<b2;
az«al

END,

BEGIN
bledl+cl;
b2<dl;
aZ2<bl+cl;
el<al

END

END

TWO EXPLICIT Prerequisite Stanzas

Figure 7.1

Stanza S1

Stanza S2
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mean, in general, that a large or infinite number of inputs will have
to be considered. This can be favoided by making statements about the
properties of all inputs {antecedents) and outputs (consequents) of a

program.- This is achieve&_by a standard matheﬁétical techniqué,'using-

Greek symbolé to represent arbitrary program inputs. If it can be

proved that the output conditions will be met, using these symbols and
any special properties they are deemed to have, then the program may be
said to be correct. The process of proving a program using symbols to

represent its inputs is called symbolic execution.

Here, three terms will be introduced to express conditions within

the symbolic execution of a program:

1. Undefined Values

A variable is said to be undefined, at a particular point, if its
value is not calculable in terms of program inputs and constants.

Symbolically the undefined state will be represented by omega (w).

2. indefiniteness‘of Variables

The genefal property of a set of variables beingundefined is

called indefiniteness.

3. Propagation of Values

When in a program, a variable (V) is assigned a value which is
a function of a set of variaﬁles (SV), any of the values of SV may
be said to propagate through to V. 1In éarticular, when one of SV is
undefined V will also be undefined after the assignment. This will

be called the Propagation of Indefiniteness.
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7.2 'SYMBOLIC EXECUTION OF PROGRAMS : . .
- To prove that a program is correct for all nggible inputs will
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T
A -

In the following three subsections methods of performing symbolic

execution on different parts of p:ogrhms will be examined.

7.2.1 Symbolic Execution of Sequential Program Statements

When a part of a program (e.g. a stanza Sl) that is executed -
sequentially is considered, it can be seen that the consequents of ' 2

the ith statement is the antecedent of the (i+1)th statemeﬁt of Sl'

Figure 7.2 contains a sample stanza with its antecedents and consequents,
it can be seen that the stanza is correct since the outputs assumed

for the stanza (the consequents of Sl) agree with those derived.

A simplification of the symbolic execution of S is- given in Figure 7.3.

1

An example of special properties that may be associated with an

input is that 'bl' and 'c¢l' {given in Figure 7.3) of S, must both be

1

positive. It can then be proved in the consequent of S, that 'al',

1

'a2' and 'cl’ are all positive,.

7.2.2 Symbolic Execution of a Conditional

A conditional is used to indicate that there is a choice of which
piece of code will be executed next. A common t&pe of conditional ﬁsed
in Algol-type languages takes the form:

IF bool THEN stanzal ELSE stanza2
where stanzal is executed when bool is true and stanza2is executed when
it is false. The symbolic execution of such an expression will begin
by replacing all the variables in the boolean (bool) by their symbolic
values. This will give rise to three possible values of the resulting
boolean expression:
(i) true.

(ii) false.
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(iii) some boolean expression that is-true for at least
one program input and false for at least one other.
_ For both (i) and (ii) only one path will ever be taken and this can be
“treated as exeéuting code without any branches. However, with (iii)
‘both the cases of execution of stanzal and stanzal must be examined,

and this may be done by means of a symbblic”executibn‘tree.; An exémple'

of a conditional is given in Figure 7.4 and ihe symbolic ekecution tree
for it is given in Figure 7.5.

Looping structures may be considered to be a special form of
branching for which some condition must be true for a specific set of
statements to be repeated. So a symbolic_execution tree may be used

to reﬁresent a loop. Hantler and King (1976) give a detailed account

-

of the symbolic execution of various conditionals including loops.

7.2.3 Parallel Symbolic Execution

When two or more stanzas are being executed in parallel it is
possible that some of them may accegs the same variable simultaneously.
This may lead to indefiniteness, for instance, if one stanza fetcﬁes
the.c0py of a variable that another stanza is in the process of
changing, then the value fetched'is undefined {see section 4.2).

When conditionals were considered, a symbolic execution tree was

“introduced, Here a symbolic execution nétwork will be introduced to
allow for variables being accessed by more than one stanza simultaneously.
The exact manner the network is constructed will depend on the relation-
ship deemed to exist between the stanzasand the type of memory. available.
Figure 7.6 gives an example of how a symbolic execution network may be
drawn for two stanzas that are e#ecuted simultaneously. Further examples

of usages of symbolic execution networks can be found in section 7.4.
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Here, parallel symbolic execution will only be con51dered for

two stanzas S1 and S2 All seven relatxonshlps 1n Deflnltlons 4 3 to _-

4.9 w111 be conszdered in both prlvate ‘and shared memo:y env1ronments
t :

where appr0pr1ate. The fb110w1ng four deflnztlons descrlbe what may

happen to varlables that are used in both stanzas S1 and S

Definition 7. 2

If S, may access a variable (V) thét'Sé’may or may not have ﬁhaﬂgéd"ivzi-"

or be in the.process of changing, then théré;are two possibilitiesu
depending on fhe type of memory available: o
(i) lOnly shared memofy available |
Throughout S1 the variable (V) must be considered to
be undefined each time it-is f?tched.
(ii) Private memories available
The variable (V) will be considered to be undefined

in S, until such time it is assigned to in §

1 1

Definition 7.3

When S and 52 are both able to Change the ‘same variable (V) such

that S changes it before or after S, or both changes are made

2
simultaneously then there are two possibilities dependlng on the type
of memory available:
‘(i) Only shared memory évailable
Throughout Si and 5, the variable (V} must be
considered to be undefined.
{(ii) Private memories available
In S1 the variable (V) will be cdnsidered to be

undefined until it is assigned to in Sl’ similarly in S,e




Definition 7.4

When it is dictated that S1 must store its results before 82,

does, then variables assigned to in both will have, on completion of

S, and 52’ the value assigned to them in S

1 P

Definition 7.5

When S, and 82 may store their results in either order (i.e. S

1
first and then 82 or S

1

P first and then 51] or both may store their

results simultaneously then variables assigned to, in both, will be

and S..

considered undefined upon completion of S1 2
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. Antecedents of S1

al:a, aZ2:8, bl:y, b2:4, cl:e

BEGIN

aZ<cl; @) |Consequents of (D and Antecedents of (2
al:a, a2:e, bl:y, b2:§, clie .

al<bl+cl; (@) |Consequents of (2) and Antecedents of (3
al:y+e, a2:e, bl:y, b2:§, cl:e .

bl«b2; C) Consequents of (3 and Antecedents of ®
al:y+e, a2:e, bl:§, b2:6, cl:e

aZ«al (@ | Consequents of @
al:y+e, a2:y+e, bl:§, b2:§, clie .

END -

Consequents of S1

al:y+e, aZiy+e, bl:s, b2:6, cl:e

Figure 7.2

"~ ANTECEDENTS AND CONSEQUENTS OF A STANZA S

1
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al:a, a2:8, bl:y,
b2:8, cl:e

G) a2:e

G% al:y+e
| (3? bl:6
@ al:y+e

al:y+e, aZ:y+e, bl:§,
b2:6, cl:e

Figure 7.3

SYMBOLIC EXECUTION OF THE STANZA Sl
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IF bool THEN
BEGIN -~
U apecls
*al<blicl;
b1+b2;
aZeal
END
ELSE .
BEGIN =
bledl+cl;
b2<«dl;
aZ«bl+cl;
- el«a2
END

Stanza 51

COD

Stanza S2

S®

. -

Figure 7.4

AN ALGOL-TYPE CONDITIONAL STATEMENT




f=true

az:e

al:y+e

bl:§&

aZ:y+e

al:y+e, alZ:e, bl:d,
b2:8, cl:e, dl:L,

el:n, bool:B=true

156

al:a, a2:8, bl:y, b2:6,
cl:e, dl:z, el:n, bool:8

B=false

éa bl:T+e

©® - b2:

CB aZ:ig+2%e

@§ ' el:p +2*e
al:a, a2:+2%, bl:g+e,
b2:¢, clie, dl:z,
el:r+2*e, bool:0=false

cl:e, dl:z, bool:8,

and

al:y+e, a2:g, bl:8, b2:68, el:n,

or

al:a, a2:7+2%e, bl:g+re, b2:L, el:g+2*c

Figure 7.5

THE SYMBOLIC EXECUTION TREE OF A CONDITIONAL STATEMENT




Antecedents of S1 and 82

2
0 c
6
3 :
Consequents of S1 and 82

Figure 7.6

A SYMBOLIC EXECUTION NETWORK
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7.3 TESTS TO DETERMINE THE CONSEQUENTS OF PARALLEL PROGRAMS

In this sectlon the two stanzas S1 and S2 ment1oned 1n subsectlon
. 7.2.3 Wlll contlnue to be cons1dered Rules w111 be estab11shed to
determlne the consequents of S1 and S from thelr antecedents. The

four sets of usage of variables (W,X,Y3and ) described in section 4.5

will be used in establishing these ﬁules.

7.3.1 Contemporary - CT(SI,SZ)

1
used may be accessed in any order.

Stanzas S, and 82 can be executed at the same time and the locations

Bearing in mind the definition of contemporary, repeated above, and

- the differences between parallel machines with private memories and those

without the following rules can be derived:

Rule 7.1(a): CT(Sl’SZ) with Private Memories

1. Any variable only fetched in S and stored 1n S (1 e. a member of
the set (Wln(X£JY 2))) is undeflned in SI and iipon complet1on of
CT(Sl,Sz) will have the last value set-in 52'
-Any‘variable only fetched in 52 and stored in S (i -e. a member of
the set ((XlJY 1)"lwz)) is undeflned in 82 and upon completlon of
1
Any.variable changed in both S1 and 82 {(i.e. a member of the set

CT(SI’SZ) will have the last value in set S

((lelezl)ﬁ(leY 2))) will be undefined upon completion of

CT(SI’SZ) and will be undefined in S1 {or 52) until it is set in

S1 (or 82).

In all other instances the consequents will be the same as if both
: S1 and SZ (including any indefiniteness introgduced above) had been

executed sequentially both with the same antecedents.
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Rule 7.1(b): CT(SI,Sz) with Shared Memory

.

Rule 7.1{h) only varies from Rule 7.1¢a) in the third case,rwhich
'115 adapted to glve°'?' _  " A
3. Any var1ab1e changed in both S and S (i.e. a member of the éet _
Uy U :
((foYszlerXZ Y, 22))) will be updefined thrqughout Sl_and 5,

~ and remain so upon completion of'CT(Si;Sé).

‘7.3.2 Commutative - CM(SI,SZ] |

| Stanza Sy may be executed before or after S, is executed but not

at the same time. |

From the definition of conmutative, repeated above, there are two

possible ways CM(SI,SZ) may be executed; these being S1 then S, or S,

then Sl' The availability of private memories will have no effect on

'thé commutative relationship.

Rule 7.2:_CM(SI,SZ)

1. Any variable only fetched in S1 and changed in 52 (i.e. a member

of the set (W N(XMYLZ)))) will have in S,:

either (i) the value in the antecedent ~ if S1 is executed
before 3,.

or tii) the final value stored to it in 52 - if S1 is
executed after 52‘

2. Any variable only fetched in 32 and changed in 81 (i.e. a member

of the set ((XlJYlJZ y\wz)) will have in 82

either (i} the final value stored to it in S - if S1 is
executed before 52'

or (ii) the value in the antecedent - if Sl'is executed

.after SZ'
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3. Any variable changed in both_S1 and 5, (i. e.~a Member of the set

((x UY UZ )n(XUY UZZ)D w111 have in the consequents. RN
'e1ther-" (1) the f1na1 value set 1n 52-— if 5, is. executed .-
_ befhre Sz. | | |
or (ii) the final_velue'setuin Sl'- if Sl'is executed
after S2 ff' T y. L :*ﬁ

In all other 1nstances the consequents will be the same as 1f both

S, and S had been executed sequentlally both with the same antecedents.

1

7.3.3 Prerequisite - PR(51,82]
| Stanza S1 must fetch what it requires before S2
As mentioned in section 5.2 the-breréquisite relationship degenerates

stores its results.

into a consecutive one when pfivate memories are not available, so here
the rule will assume private memories are available,
Rule 7.3: PR(SI’Sz)

1. Any variable only fetched in S and‘changed in S1 {(i.e. 2 member of

2

the set ((XUYUZ,)W,)) is undefined in S, and upon completion of

2
PR(SI’SZ) will have the last value set in Slf

Any variable changed in both S, and S .(i.e. a member of the set

1
((XlJYlle)ﬂ(leY ])) will be undefined upon completion of

PR(S 52) and will be undeflned in 52 until such time as it is set.

In all other instances the consequents will be the same as if both

S1 and 82 {including any indefiniteness introduced above) had been

executed sequentially both with the same antecedents.

7.3.4 C(Conservative -'CV(sl,sz)

Stanza S1 must store its results before 82 does,

As with prerequisite the conservative relétionship, repeated above,



1t w111 be assumed that private memories are available.

-.‘»._,

Rule 7.4: CV(SI,SZ)
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1. Any variable only fetched in S, and stored in 54 (i.e. a member of‘{

the set ((leYlJZ yWW )) is undefined in 8§, and upon completlon of

2
CV{SI’SZ) will have the last value set in Sl'
2. Any variable changed in both S1 and 5, (i.e. a member of the set

Uy U NYUy U i i i ‘
((Xl Y1 Zl) (X2 Y2 22))) will be undefined in 52

as_it is set in 82, and upon completion of CV(SI’SZ) will have the

, until such time

last value set in SZ'
3. In all other instances the consequents will be the same as if both
S1 and 52 (including any indefiniteness introduced above) had been

executed sequentially both with the same antecedents.

7.3.5 Consecutive - CC(SI,SZ)

Stanza S, must store its results before S fetches what it requires.

1

The consecutive relationship between two stanzas indicates that they

are to be executed sequentially. Hence such stanzas are handled in the

manner described for sequential program statements in section 7.2.

7.3.6 Synchronous - SN(S, ,S,)

Stanzas S, and S, must both have the same inputs.

1 2 _
The synchronous relationship can only sensibly exist for execution
on a machine with private memories, So here the rule will assume that
private memories are available.

Rule 7.5: SN(Sl,SZ)

1. Any variable changed in both S1 and S, (i.e. a member of the set

((xluyluzl)n(xgyzuzz))) will be undefined upon completion of SN(S

1352) -



2, 1In all other insfances the conseQueﬁts will hg;ghe same as if both
: Sl-apd SZ

had heen executed sequentially both with the same
antecédenfs{‘ | |
7.3.7 Inclusive ~ IN.(Sl,SZ)
Stanza Szlmust store its results after Sl‘hashfetChEd what it
requires.but before 5, stores its results. |

As with the synchronous relationship the inclusive relationship
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can only sensibly exist for execution on a machine with private memories.

So here the rule will assume that private memories are available.
Rule 7.6: IN(SI,SZJ
1. Any variable changed in both S1 and 52 (i.e. a member of the set
Uy U Uy, U i11’ i
((x1 Y Zl)ﬂ(xz ?2 Zz)}) w1}1 be defined throughout S1 and S, and
upon completion of IN{SI,SZJ will have the last value set in Sl'
2. In all other instances the consequents will be the same as if both

S1 and S2 had been executed sequentially with the same antecedents.

Table 7.1 contains a'éummary of the values a variable may take
when two stanzas access it. When a symbolic execution of two parallel
stanzas takes place it is possible, by using the table, to determine
which ﬁariables will be undefined in one stanza because of a use in
the other. Such variables will be given the symbolic value 'w' such
‘that indefiniteness, along with the other values may be propagated
through a stanza. The table may also be used to determine the value
of a variable on completion of the stanzas. If the consequents thus
obtained for the'stanzas;are the same as those expected to.be true
on their completion then those stanzas are said to be correct for the

parallel relationship being considered,
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/,

Synehronous

Relationship between Contemporary |Contemporary |Commtative |Prerequisite | Conversative/Consecutive Inclustve
Operations S, and 52 CT(Sl,Sz) CT(SI,SZJ CM(Sl’SZ) PR(Sl,S CV(SI,SZ) CC(Si,Sz) SN(Si’SZ) ‘IN(Sl,Sz)
Performed Value Bt~ Shared Private | Shared/ Private Private’ Shared/ Private Private

a given poin Memory Memories Private Memories Memories | Private: Memories | "Memories
. Original A
S1 only fetches |yalue in Sl Undefined Undefined value or . Original Original Original Original Original
a variable that Valugzset in  value value value value value
S, changes Value after S, | y ; ; -
(Hlﬁ(xéJyéng)) and 52 Last value 'set ;?82 H i
S, changes a _ Value set in _ Value set ' |
variable that S, (Value in S, Undefined Undefined,_‘si;p? : Undefined | Undefined | in§, | Origimal } Original
only fetches : o I S 5231 | _ 1 ‘value value
leY'Uz W Value after S ‘ - ; ‘ ) ;
(( 171 1) 2) and 52 1 Last Zb alue set .351 : ¥ y
i . o o "} g
Value before : o : Original .. .
; being set in S Undefined - - | Undefined value or Original Original Original Original | Original
B ~value set value - value value value. value
|8, and S, both | in S,
| . [Value after . X * > - :
change the same WE P Set®in 5. |Undefined Previous value t in Slﬁf‘ A 4
| {variable v : — X : { e
Value before \ " alue set 1m _ e e .
| being set in g, |Undefined Undefined i%'oynal Undefined | Undefined gilge set origizzlf ?'Origizzl
. . 1g1 . :
((xVruz,)n o SRR bt +¢11 - (01 gl T
\ Value after ' . s ' : " I 5 B
[xéJYéJZZJ) being set in 5, |Undefined Prev ifp us value t in SZ“@ H I
¢ Value set .
Value after ‘ ' in §, or . Value set | Value set L Value set
51 and 52 Undefined | Undefined value set Undefined | -in 82 “in 52' ; Undefined| in S1
in 8 '
1
Table 7.1t VALUES OF A VARIABLE ACCESSED BY TWO STANZAS

€o1
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7.4 EXAMPLES.OF PROVING CORRECTNESS BETWEEN‘TWO STANZAS

In this section the two stanzasisi and S, g?ggﬂ_in Figure 7.7,
will b; #onsiﬁé;ed,ﬁ_TheuSymﬁoiic'aﬁtecedenfsfof these will be
arbitfa:ilf_assigﬁédiééf% | o B |

' al:a,'dzgé, bl:Y,”bZQG, cl:e, dl:z, ei:ﬁ
Twé-sefs pfﬁgénggdpgqts, in tﬁrn,fwiiiiﬁé;ébnsideiéﬁjié_ﬁg}gfqeanmckifiﬂg

from 8, and 8,

. _The consequents,_considered will be:

Assumption 1

al:y+é, a2: +2%c, bl:g+e, bZ:E, c1:s,_dlf§, el:r+2%e,
and

Assumption 2

al:y+e, b2:7, cl:e, dl:z:,

and 5, will

where in Assumption 2 some of the values calculated in S1 2

not be required later.

For the twe stanzas S, and S2 the sets of usage of variables are:

1
b2,c1

- aZ
b1

al

I A ]

bd et et e

and el,dl

b2,el
0]
az,bl .

=3
=4 MNS

N NN

Using these sets‘it is poséible to apply the rules given in the previous
section to determine indefiniteness and the values propagated through to
the exit of the stanza (i.e. the consequentsj. 1If the values of these
consequents agree with Assumption 1, the execution of these two stanzas
can be said to belcorrectrfor Assumption 1, similarly the correctness’

of Assumption 2 can be tested.
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7.4.1 - Contemporary - CT(S 82) -

As this relatlonshlp varies dependlng whether prxvate memorles are
"avallable or not the two W111 be con51dered separately..?

Private Memorles Avallable

Fzrst it is necessary to find which varlables are used 1n both S1 '
and S and the effect they may have, by u51ng Rule 7. l(a)
1. W n(X Uy U.Zz)
i.e. (bz,cl)ﬂ((bz,el}lgau(az,bn) =b2 -
By Condition 1 the ﬁariable 'b2' will be undefined in'S1 and upon
7 completion will have the value set in S2'
2. (XIUYIUZI)GWZ
i.e. (aZLbILh1)ch1,d1) =@
No variables are affected by the second condition.
3. XMy Vz )n(x Uy Uzz3
i.e. (aZJbFJal)n[(bZ elTJﬁU(aZ bl)) = (32 bl)
By the third condition the variables 'a2! ‘and ‘Blirwill be undefined
upon completion of CTtSl,SZ) and will be undefined in Sl(or 52)

until they are set in S1 (or'SZ).

The symbolic execution network for CT[SI’SZ) with private memories

is given in Figure 7.8.  The consequents of its execution are;
al:w, a2;w, bl:w, b2:7, cl:e, dl:2, el:T+2%c.

Thus it can be seen that CT(SJ,Sz) with privaté memories is neither

correct for Assumption 1 or Assumption 2 (becﬁuse, for example, the

value of 'al' is not 'y+e' but undefined).

Only Shared Memory Available

Again, it will be necessary to find which variables are used in
both §; and S2 and the effects they may have, this time by using

Rule 7.1(b).
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The fzrst and second condltlons are the same as those for Rule

m—‘" A

7.1(a) and so gzve the same results.
(x uy vz, )n(x uy’uzz} | .

i, e. (aZJbﬂJal)fK[bZ el)UWU(aZ bl}) (a2,b1)

By the th1rd condltlon the varlables 'a2' and b1' will be undeflned

'throughout S1 and 82 and upon completlon of CT(Sl,Sz).

The symbolic e;ecgtiqp network for CT(SI,SZ){with_iny sparedlmemory

‘available is giveh in Figure 7.9. The consequents of its exeéution aré:
al:w, aZ:w, bliw, b2, cl:e, dl:é;felzw

Thus it can be seen that CT(Si’SZ) without private memories is neither

correct for Assumption 1 or Assumption 2; It is. also of interest to

note that when pfivate memories are available thejvalﬁe of 'el! is

defined, whereas without them it is undefined.

7.4.2 Commutative - CM(Sl,Sz)'

The commutative relationship may be treated as though it was a
conditional where if a fictitious condition‘ fis true, S1 is executed
before S, and if it is false, S2 is executed_before Sl' as described

2
 in Rule 7.2. Hence a symbolic execution tree can be used to represent
CM(SI,Szj, such a tree is given in Figure 7.10. -The consequents of
its execution are: |
a2:c+2%e, b2:c, clie, dl:r, elm+2*e

and al:y+e, bl:z+e or al:g+2*e, bl:r’
It can be seen that when S1 is executed first, the code is correct for
both Assumption 1 and Assumption 2, However neither are correcﬁ when
S2 is executed first and since it is impossible to predict which will

be executed first CM(Sl’SZ) cannot be assumed to be correct for either

Assumption 1 or Assumption 2.
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7.4.3 Prevequisite - PR(S, ,S,)

"‘“a..- Y

. For the prerequzsmte relat10nsh1p it is aSSumed that prlvate
memories are ava1lab1e.‘” | - |

It will be necessary'to'fiﬁd'hhiéh ﬁf ;hé‘vafiabies:ffbﬁféﬁéﬂ}‘
stanza may affect the other stanza and the consequents of PR(SI’SZ)’

by using Rule 7.3: . ' : 'f, g ]:,,

1. (XMPYUZ )W, _ |
i.e. (a2h1ValiNgel,dl) = ¢
No variables are'affected ﬁy the first conditibn.-
NXUYU o
2. (xPyYpznYyYzy)
i.e. (a2bllal)N((b2,el1)V(a2,b1)) = (a2,bl)
By the second condition the variables 'a2' and 'bl' will be
undefined upon completion of PR(SI,Sé) and will be undefined in s,

" until-such time as they are set.

The symbolic execution network for PR(SI,SZ}'is.giVen in Figure 7.11.
The consequenfsrof its execution are:

al:y+e, a2:e, bl:w, b2:%, cl:e;}dl:t, el:ifz*s .
It can be seen that PR[SI,Sz),is not correct-fpr Assuﬁﬁtion.l. However,
the values of:'all, '2', 'cl' and 'dl' correspond to those proposed in

Assumption 2 and s0 PR(Sl’Szl is correct for Assumption 2.

7.4.4 Conservative - cV(sl,s 2)

For the comservative relationship it is assumed thai private memories
are available. It will be necessary to find which of the variables
used in one stanza may affect the other stanza and the consequents of
CV(SI’SZJ by applying Rule 7.4.
1. (xlUYIUzl)nwz'
e. (a2tbh1thl)MN(cl,dl) = @

No variables are affected by the first condition.




2, (x Uy UZ )n(x Uy U22)
i.e. (aZLbIUhl)n[(b2,e1ﬂJﬁU(a2 bl)) = (a2 bl) .
By the second condltxon the var1ab1es 'a2' and. 'bl' w111 be

: undef1ned in S2 unt11 such time they are set and upon completion

of CV(SI,SZJ will have the last value a551gned.to them in Sz'

The symbollc execution network for CV(Sl,SZJ is glven in Figure 7, 12
The consequents of its execution are:

al:y+s, a2:§f2*e, bl:g+e, b2:g, clze; di:T, el:f+2*e
It can be seen tbatﬁthese valﬁes correspond to those proposed in both
Assumption 1 and Assumption 2. Thus it can be said tﬁat CV(Sl’Sz) is

correct for both Assumption 1 and Assumption 2,

7.4.5 Cbnsecutige - CC(SI’SZ)

As mentioned in the previous section the consecutive relationships
indicates that Sl and 52 are executed sequentially and so the availability
of private memories will not effect this relationship. The éymbolic
execution of CC(S}’SZ) is given in Figure 7.13. The consequents of its
execution are:

alzy+e, a2:z+2%e, bl:iz+e, b2:z, cl:e, dl:L, el:i+2*¢, |
These are the same as the consequents for CV(Sl,SZ) and, hence, CC(SI’SZ)

is correct for both Assumption 1 and Assumption 2.

7.4;6 Synchronous - SN(SI,SZJ

For the synchronous relationship it is assumed that private
memories are avaiiable. Firstly it will be necessary to find which
variables are changgd in botﬁ stanzas and will affect the consequents

of SN(Sl,Sz), by using Rule 7.5.
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1. (x Uy Uz, )Ny Uzz) |
i.e. (aZLbthl)ﬂ((bZ elJLMLKaZ bl)} = (32 gij?%

The varlables 'a2’ and 'bl' will be undeflned upon completlon of

-

SN{Sl’SZ) R
The symbolic executlon network for SN(SI’SZ) is glven in Figure 7.14,
The consequents of 1ts executlon are' _

al:y+e, a2:u, b1 w, b2 ;, cl: €, dl:E,'e1;§+2*s;
It can be seen-that SN(SI’SZ) is not correct forrAssumbtion 1. .Howeve:,.
the values of 'al',’bl', 'cl' and 'dl' cofrespond fo those proposed in

- Assumption 2 and so SN(S,,S,) is correct for Assumption 2.

7.4.7 Inclusive - IN(SI;SZ)

Again, for the inclusive relationship it is assumed that private
meﬁories are available.. It will be necessary to apply the first
condition of Rule 7.6.

L (X0, VZ)NXPY Uz,

i.e. (aZUbthl)ﬂ((b2,e1)L¢kKa2,b1)) = {a2,bl)

Upon completion of IN(SI,SZ)‘the variableg *a2' and 'bl' will have

the last value set in SI’

The symeiic execution network for IN(Sl,Sz} is given in Figure 7.15.
The consequen;s of its execution are: |

al:y+e, a2:y+e, bl:§, b2:¢, cl:e, dlir, el:r+2%e ,
It can be seen that {N(Sl,szj is not correct for Assumption 1.

However, the values of 'al', 'b2', 'cl' and 'dl' correspond to those

proposed in Assumption 2 and so IN(SI’SZ) is correct for Assumption 2.
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a2«cl;
al<bl+cl;
bl+b2;
aZ+al

VRO

Stanza S1

bl«dl+cl;
b2<dl;
aZe<bl+cl;
el«a2

0so®

Stanza 52

TWO STANZAS S1 AND 82

)
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al:a,a2:B,bl:y,b2:6,clxdlg,elin

¢ »
.

st B | s2

al:w,a2:w,bl:w,b2:2,cl:e,dl:L,el: L+2%e

(b2:w, aZ:w, bl:w} o _" : i (a2:u, bl:w) ‘
| 3 io- \
al:e R () : : bl:g+e
" | _ +57
!
. o ) \
aliw @ ! N | b2:t |
y > } . . ‘
! o i \
bl:w Gb i v @ a2:L+2%e
1 ]
: |
i t .
a2:w - @ : : ® el:C+2%e
1 ' .
S| —
(al:w, 32w, bl:w) ' ' (a2;z+2%g,bl:g+e,b2:, l
elst+2%e)
|
\

“Figure 7.8

SYMBOLIC EXECUTION NETWORK OF CT(SI’SZ) WITH PRIVATE MEMORIES




_ s1°
(b2:w, aZ2:w, bl:w)

az:e
al:w
bl:iw
aZ:w

(al:w, a2:w, bl:w)
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T

et}

a1:u,a2:8,51:y,b2;6;dlze,dl;c,el:ﬁ iJ;'?ft

82
taz:w, bl:iw)

G? - bl:t+e
® b2:¢ |
7D aZ:w

® el:w

(a2:0,b1:w,b2:z,el:w)

Figure 7.9

al:w,a2:w,bl:w,b2:z,clie,dl:g,el:w

SYMBOLIC EXECUTION NETWORK OF CT(Sl,Sz) WITH ONLY SHARED MEMORY
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a1:u,az:B,b'_l_:I,bz:6,c1:e‘:,d1:c,el:n '

.'aé:; o Cl) i R @ .:‘.b1::C+e

’ ai:Y+e @) | 6 | bZ:g
bl:§ 3 o Z a2:g+2%
aZiyre 4 ® o elim2re
bl:z+e CS) 7 aZ:e
bz:;- C® . al:c+2’;e
a2:c+2‘*e | C’/’) ' @ bl:zg
el:g+2%¢ @) | | @) aZig+2%e

aZ:g+2*e,b2:g,cl:e,dl:g,eli+2*%¢
and al:y+e, bl:z+e
or al:r+2%, bl:

Figure 7.10

SYMBOLIC EXECUTION TREE QF CM(SI,SZJ
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al:x,a2:B,bl:v,b2:48,cl:e, dl:Z,el:n

51 52
{a2:w, bl:w)

aZ:e @J : GD bl:g+e
!
!
'
al:y+e ) / b2:g
Y
{
bl:é& 3 d 7z aZ:g+2%¢
f .
]
1
a2:iy+e ! @P el:g+2%¢
' .
'
1
(al:y+e,a2:y+e,bl:4) - (a2:z+2%¢,bl:Z+e,
o b2:5, el:g+2*e)

al:y+g,a2:4,bl:w,b2:7,c1:e,d1:z,
el:z+2*e

Figure 7.11

SYMBOLIC EXECUTION NETWORK OF PR[SI,SZ)
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al:a,a2:8,bl:vy,b2:6,cl:e,d1l:7, el:n

51 52
- (a2:w, bl:w)
/
!
al:e Q / @P bl:Z+e
!
f
. al:y+e )] ’ @D b2:z
f
A
'
bl:8 ) -, D azige2re
/
!
aZ:y+e @D / ég el:g+2*e
/
/ "
(al:y+e,a2:¢, bl:6) I (a2:z+2%e,bl:Z+e,b2:Z,
'  clie,dl:g,el:g+2%c)
:
al:y+e,a2:g+2%g,bl:g+e,b2:5,cl:e,
dl:r, el:g+2*¢
Figure 7.12

SYMBOLIC EXECUTION NETWORK OF CV(Sl,SZ)
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Figure 7,13
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al:o,a2:g,bl:y,b2:8,cl:e,dl:g,el:n

al2:e

al:y+e

bl:§

aZiy+e

bl:z+e

b2:g

a2$;+2*e

el:ig+2%e

al:y+e,a2:5+2%e,blig+e,b2:g,cl:e,
dl:z, el:g+2%e

SYMBOLIC EXECUTION OF CC(Sl,SZ)
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al:q,aZ:B,bl:y,bZ:G,cl:e,dl:g,el:n

aZ:e Q ©  bi:zee

al:y+e (2 © b2z

bl:6 @9 @  azizszve
| a2:yre @? ©  elig+2+e

al:y+e,a2:w,bl:w,b2:5,cl:e,dl:7,e1:5+2%

Figure 7.14

SYMBOLIC EXECUTION OF SN(SI’SZ)




a2:e
al:y+e
bi:é
aliy+e

(al:y+g,aZ:y+g,bl:8)
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. al:a,a2:8,bl:y,b2:6,cl:e,di:g,el:n |

6? bl:z+e
6 b2:¢
Z a2:g+2%e

@D elig+2¥e

(a2:g+2%e,bl:ip+e;b2:L
el:p+2%g)

Figure 7.15

al:y+e,a2:y+e,bl:8,b2:5,cl:e,dl:,
el:z+2%e

SYMBOLIC EXECUTION NETWORK OF IN(Sl’SZJ
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7.5 PROVING CORRECTNESS BETWEEN A NUMBER OF PARALLEL STANZAS -

So far in this chapter techniques have been proposed that may be
used to prove correctness between two stanzas that are to be executed
in parallel. It is possible to adapt the Definitions 7.2 to 7.5 to
describe indefiniteness and propagation of values for a number of
stanzas thét are to be executed in parallel, Thus the tests for
correctness given in section 7.3 may be extended to find the consequents

of a number of stanzas being executed in parallel.




CHAPTER 8

.  CONCLUSIONS




8.1 SUMMARY o
S
When computer programs are to be TUun on parallel machlnes, there
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are ba51ca11y two approaches to determ1n1ng wh1ch parts of a program ;;‘ ”";‘

(i.e. stanzas) may bé run on different processors. Such stanzas may be .

explicitly indicated by the programmer'usihg spacial operatdfs'or'the |
program may be 1mp11c1t1y d1v1ded into stanzas as part of the compllatlon
procedure. In this thesis, both exp11c1t and 1mp11c1t parailellsm have
been considered. |

As a consequence a number of relatlonshlps have been 1ntroduced
‘that can be said to be the explicit relatlonshlps between stanzas. A.
.subset of these relationships have been used to determine which parts
of a serial program can be executed in parallel. The different effects
on these relationships when using processors with their own private
memories and those.with only access to a shared memory ﬁere considered.

Methods by_whiah both explicit and implicit parallel prbgrams_may
or may not be optimised using standard.serial techniques have been

examined. It has been shown that some methods are readily amenable to

parallel processing whereas others may detract from potential parallelism.

Similarly, methods by ﬁhich programs may be checked for correctness have
been introduced, based upon the serial techniques of symbolic execution.
Within expressions it was assumed that the task of determining
which operations could be executed in parallel would be too tedious to

be done explicitly, However, the algorithm proposed for finding
parallelism within expressions respects the ordering imposed on an

expression by the programmer.
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8.2 DETECTION OF IMPLICIT PARALLELISM AND CORRECTNESS OF PARALLEL PROGRAMS

It.can be seen that the tests for detecting which relationships
exist between the stanzas of a sequeﬁtial program {see Chapter 5) and
those for testing the correctness of a parallel program (see Chapter 7)
have similarities. These are due to the fact that both techniques need
to determine which variables may be undefined in particular circumstances.

When a sequential program is being transformed to a parallel program
then at each stage in the testing of which relationship exists between
stanzas it is necessary to determine if any variables used will be
undefined, When one stanza is able to fetch a value of a variable that
may or may not have been changed or, indeed, may be in the process of
being changed by another stanza, then in the first stanza that variable
is said to be undefined. Similarly, a variable is considered to be
undefiﬁed if more than one stanza changes it, unless the order in which
the stanzas store their results is specified. Such indefiniteness will
be inconsequential if that variable is always reset before being
subsequently fetched.

When a parallel program is being checked for correctness it is
necessary to determine any indefiniteness and to propagate through all
values, especially those that are undefined. When one stanza is able to
fetch a value of a variable that may or may not have been changed or,
indeed, may be in the process of beinglchanged by another stanza then
in the first stanza that variable is said to be undefined., Similarly,
if more than one stanza changes a variable and the order in which the
changes take place is not specified by the relationship then the
variable must be considered undefined, after the parallel execution of
these stanzas until it is redefined.

The similarities between the two techniques can be illustrated

by reconsidering the two stanzas S, and 82 given in Figure 7.7, when

1
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they.are to be executed on a machine with private memories. If S1 and
S2 appear adjacently in a sequential program their tests to detect a
parallel relationship between them would be as follows:
Uy Uz 3NV

(Y -2 )00 5)

(a2Uplbal)N((cl,d1)Vg) = 9 . (8.1)
The relationship is therefore at least comservative.

(XYY Uz )NXPY Yz N,

(a2UblVal)N((b2,e1)YU(b1, a2)) = (a2,bl) (8.2}
taking g;l.

The relationship is therefore not prerequisite.

Thus, if all variables set in both S1 and S, may be fetched without

2
being reset then the relationship between S1 and 32 is conservative.
In subsection 7.4.4 it was shown that CV(Sl,Sz) was correct for

Assumption 1 which required all outputs to be set. The indefiniteness

of CV(Sl’SZ) was found by testing the same sets as those given above

in equations (8.1) and (8.2).
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8.3 -OTHER APPLICATIONS OF PARALLEL PROCESSING

Within this thesis parallelism has been studied in Algol-type
programs which are usually taken to be scientific programs. It would
also be useful to exploit parallelism within other environments such
as commercial programs and systems software.

Within a commercial environment many of the tasks that computers
perform are inherently parallel. ¥For instance a payroli program may
be considered as many parallel processes, as one employeek pay is not
dependent upon another's. Therefore, means of expressing explicit
parallelism could be introduced into a commercial programming language
such as COBOL. In addition the techniques described for finding
implicit parallelism at the expression and stanza level should be
adapted to handle commercial programs,

Baer aHd Ellis (1977) have suggested that the techniques of implicit
detection of parallelism in programs cannot readily be applied to
compilers. Obviously there will be some scope to apply techniques
similar to those described here for determining implicit parallelism
both at the expression and stanza levels. However, in most cases it
would appear to be beneficial to rewrite parts of the compiler. This
will mean that it is possible to have a compiler that operates in

parallel and detects implicit parallelism in serial programs.
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8.4 ‘AREAS FOR FURTHER RESEARCH

Within this thesis a number of aspects of parallel processing have
been considered.. From these a number of areas where further research
may be fruitful have become obvious. In the following subsections such

areas are outlined and possible approaches to the problems suggested.

8.4.1 Automatic Stanza Formation

The stanzas considered in this thesis have been afbitrarily formed.
In some cases the stanzas thus formed may not allow a large proportion
of potential parallelism to be detected. If it were possible to have
some inter-communication between the process that forms stanzas and
the one that detects a particular relationship then it may be possible
to 'optimise’ the parallelism in a program. Such inter-communication
may be possible if the compiler itself executes in parallel (as described
in the previous section)., However, the method by which the optimum éize

of a stanza may be determined will require further examination.

8.4.2 Detection of Parallelism Between Stanzas

In section 5.8 a number of program constructs were mentioned
that still need to be examined and possible approaches suggested. It
should be possible to develop methods by which all program constructs
may be studied for parallelism. However, care would have to be
exercised to ensure that the effort of finding parallelism in certain
circumstances did not outweigh any parallelism that may be found.

It may be possible to develop new optimising techniques (as
opposed to those based on serial programs) to optimise parallel programs.
It should be realised that the techniques used for detecting implicit
parallelism may be applied to explicit parallel programs to detect more

parallelism and hence optimise them,
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8.4.3 Expression Parallelism

In subsection 3.4.2 a number of possible extensions to the
algorithm for forming a balanced binary tree from an expression were
suggested. Most of these extensions are readily implemented. However,
for some expressions a tree of minimum height may not be found as
explained in section 3,3, It may be possible to develop a method by

which the final binary tree representation of an expression may be

"rebalanced' to minimise the height of the tree without affecting the

ordering of the expression.

8.4.4 Termination of a Correct Parallel Program

It should be possible to develop a technique that could be capable
of indicating whether a correct parallel program terminates or not. The
technique would, probably, be similar to that used in serial programs.
Hoﬁéﬁgr, allowances would have to be made for any indefiniteness
introduced and the necessity, in many instances, for all parallel paths

to terminate.

8.4.5 Explicit Parallelism

Within this thesis a number of relationships have been introduced
that may be used to express either implicit or explicit parallelism,
In the prévions chapter a ﬁethod was suggested of how a particular
relationship may be explicitly represented (see Figure 7.1). Further
investigation may reveal alternative methods of representing explicit
parallelism in line with existing constructs, some of which were
described in section 1.4.

The methods of forming stanzas described in Chapter 4 and the

tests outlined in the following chapter may be adapted to give guidelines
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to be used when writing parallel programs. The explicit formation of
stanzas will probably correspond to the formation of modules in a
structured programming enviornment (Kernighan and Plauger, 1976).
The tests may require some simplification so that they can be readily

applied by a programmer,
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C*****************************************************************************

<make balanced tree> adds an item or a sub-tree to an existing tree,
at the most suitable point for an entry of its size
_****************************************************************************C
PROC make balanced tree=(REF INT next,randtop,optop,
INT last REF [] TREE this,
REF REF TREE orig, [] REF TREE randstack,
[1 CHAR operators)
VOID:

next indicates the next free position in the array of trees<this>,
originally O
randtop indicates the top item of<randstack>

optop indicates the number of entries in<operators>

last indicates where in<this>references to the current set of sub-trees
begins, initially 1

this a stack of trees used to hold all subtrees formed

orig contains the current sub-tree

randstack a stack containing sub-trees and operands

operators a stack of operators, which correspond to the operands
this procedure will form a balanced tree of operands and operators,
as long as the operator remains the same

(INT temp;
INT count,prev,pcount;
CHAR oper<operators[optop];
pcount<0;
INT nooflevels+12;
[1:2tnooflevels-1] INT predefined;
INT value+l;
predefined[1]+«1; :
FOR i FROM 2 TO nooflevels DO
(value TIMES 2;predefinedfvalue]<«i;
predefined[value+l:2*value-1]+predefined[1:value-1]);
OP '>*=(TREE expra,exprb) INT:
(INT lev<«(level OF expra>level OF exprb!level OF expra!
level OF exprb)+1l;lev);
C******************************************************************************
<pa>adjusts<point>so that instead of pointing to a node it points to
to its father
‘*****************************************************************************C
PROC pa=(REF INT point) VOID:
(INT temp<+point;
FOR il FROM last TO next WHILE temp=point DO

WHILE this[il] IS father OF this[point] DO point<il};

next PLUS 1

level OF this{next]<«level OF randstack[randtop];
left OF this[next]<randstack[randtop];

operator OF this[next]<"@";

orig«left OF this[next};

randtop MINUS 1;

prevenext;

count<2+(level OF this[next]-1)};



the loop that builds up the tree

WHILE {optop>= LWB operators AND randtop®=LWB randstack!

oper=operators [optop] ! FALSE) DO

(optop MINUS 1;

next PLUS 1;

temp<0;

IF level OF randstack[randtop]>=level OF orig THEN
count+2t(level OF orig-1)

ELSE WHILE level OF randstack[randtop] >predefined[count] DO
count PLUS 1

FI;

left OF this[next]+randstack[randtop];

operator OF this{next]<oper;

IF predefined{count]}=1
OR pcount=0

THEN

father OF this[next]+this[prev];
right OF this[next]+left OF this[prev];
left OF this[prev]-<this[next]

ELSE

temp <predefined [count]-level OF this[prev];

FOR 1 TO temp WHILE operator OF (father OF this[prev])#r@r
DO pa(prev) ;

father OF this[next]«father OF this[prev];

IF operator OF (father OF this [prev )=”é“ THEN

operator OF (father OF this [next])<«"@"
ELSF this [prev] IS right OF (father OF this [prev]) THEN
- right OF (father OF this [prev])+«this[next]
ELSE left OF (father OF this [prev])}<this[next]
FI;
father OF this [prev]<«this[next],
right OF this[next}<«this[prev]

if a sub-tree of level greater than one has been added update count
to allow for this

IF level OF randstack[randtop]=1 THEN prev<next
ELSF level OF randstack{randtop]s>=level OF orig THEN
prev<next;
count<24(level OF randstack{randtop])-1I
ELSE count PLUS 2t(level OF randstack[randtop]-1)-1;
FOR il FROM last TO next-1 DO
IF this[il) IS left OF this[next] THEN
preveil;
father OF this{prev]«this[next];
GOTO 1z
FI;
lz: SKIP

FI;
IF operator OF (father OF this[next])="@" OR pcount=0 THEN
origethis[next]; pcount«l




FI;

count PLUS 1:
randtop MINUS 1:
tempenext:

ey e 0 e T T L M e WA e A W e S e e Sy e W e e = ey T T  fn = e U A o= e = v A S -

IF operator OF this[temp]= "@" THEN
level OF this[templ+left OF this[temp]>right OF this[temp)
ELSE : :
WHILE operator OF this[templ#"@' DO
(level OF this {temp]«left OF this[temp]'>*
right OF this{temp];pa(temp))
F1)); |

i e e o L AN ) e e o ) M T e R e e 4R e e e = e e = . EE W R e R M o
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'BEhIN‘

LEHARPUTS OUTPUT DPENCCOUTPUTILINE PRINTER 1)
VEHARPUTINONTTOR: OPENC(MONITOR, LINE RRINTER,2)
VINTYLENGTH OF LINE®RY: 1¢t CARDS
EVEHT'OFA0UTPUTC (T INTYI) VINT !,
LREGIN'

(1=kM1{NEXTLINE COUTPUT)IO0L=1)
1FND':
QUT'OF ' QUTPUTH("INT Ty INT
AREGIN'

tTFYRHARNUMBER (OUTPUT)ZLENGTH OF LINE 'TAND'L#=337THEN!

NEXTLINECOUTPUT)

YFIY S

STANPARD OUT(D)
YEND Y

EVENTCOFtNONITORC(YINTII)YINT
PREGIN
*I1FITE=14 P THEN! NEXTLINECMONTYORS ;O TELSE' =4 'FI7
{erl-
OUT ' OF "MONITORE( INTYI)TINT )
EREGIN'
*JFALHARNUMBER(MONITOR)®LENGTH or LINE 'ANDY I#&33UTHENT
NEXTLINE(MONITOR)
I BPR
s TANPARD OUT(I)
LEND

VINT LeY2,Mer 2, Net Yy

'CTHERE ONLY 12 STANZAS HANDLED
CINTITITA SNt -

Te?

L

- 661



31
32

lc-’.

33 ‘¢t

I4
35
56
37
38

4
41
4e
[;3
L
45
bo
L7
48
L9
S0
51
52
53
54
35
56
57
58
59

o

1cl

SH IS THE LCURRENT STANZA NO, AND 7 + Y1 ARE ALWAYS TEMPORARIES
CINT?Y LCUUNT«0,8C0UNTe«0sMAXCOUNT«15
MAXCOUNT I5 THE UPPER LIMIT OF VARIABLES TO BE USED IN ASTANZA
[A20: T sMiTINY CHARYWNAME XNAME , yNAMETZNAME
ELEARWNAME;
LELEAR XNANE,
'CLEAR'YNANE
VELDARY ZNAME
TY:M,1iNY ' CHAR'WTFEHP
VELLARYWTEMP
LSTRINGTLRS;
ISTRINGTEHP)
TBOUL'YTYPE&'FALSE!;
CSTRING'SPCHARE  ¢sme/agmt ()"}

L
e

YCHAR'LT;
{HODE ' SPRUCTEISTRUCTI (! CHARTTYPE) *STRING'NAME, ' INT' SNO, t INTTNO, ' INT1POS,
VINTYLC)

T1:101'SPRUCYPROCS]

CINTYPRUCPOINT €0}

CMODE 'SPARAMYE'STRUET' () CHAR'TYDE ' STRING ' NAME) §

T1:201 " 5PARAMYPARAMS |

E1320, 16T ' CHAR'PROCNAME'CLEAR' PROCNAME
PROCEDURE HAMES LIMITED TO & CHARS AT THE MOMENT te

YINTYNAMEPOINT«0:
YENTPARAMPOINT #Y:
NeR. ALL ERRQRS SHOULp BE RECOGNISED BY OTHER PARYS Of THE COMPILER
'PROCTERROR=(YINT'N)Y1VOID
IREGIN!
PRINTC("ERROR TypE ",N))}

LA

1074
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e
63
64
-5
6b
67
&8
-9
70
71
7e
73
Th
75
76
77
TH
79

A1
Be
84
A5
A6
R7
ad
Ay
it

l{‘-l

FhbE
TAUNDY

VERYTHING FLSE
phM rULL + MOVES E trt
SRR LY RtH“VKS-EHF PR, TH, TTEM F e
: T

P?ggvf:ﬁ?FEéiE|pFF'r.J!CHAR'RGLL;'TNT'POS)'VﬂID !

PR 2 : . -

TPLGITLUR'J'Fnurfpusth'M-1-Do'RwLL[JJ*ROLL[J*WJ’

TULEARYROLLLIM)
YENDY

'.Cl
_ ITEM UK TO THE END OF rOLL 'y : -
ﬁ??;xc?gggTulgtl'CHARr{TEM.'REF'[,J'CHAR'ROLL>'VOID
TREGTT 0
UINT'F+ : u “'DO'T"J'
CEoR DUHTLETROLLLY YD . - MIFD?
P THEN T ERBOR (10T ELSETROLLETST 3 1 URG T LTENT €I TEN F
regder s

PR TSKIPSPACES=(TREFPCHARICHY Y YNID " S

'REGI:;+" oy PUNILE ' CHeY CINGT(READCCHYIPUT(MONTITOR,CHY)
VENDY

PRROCT VOTL'SETAS:

ARARDCEYOT0DYRLOCK;

rengn P YNIDYRECRPER,

10¢



S

LPROCC'REFYVINT', 'REF'INT")'VOIOD'TIDY

"' MATCH RETURNS TRUE IF ¢ IS A MEMBER OF 5
IPROCYMATEH2 (' CHAR'C, {1 'CHARIS)"ROOLY)
YREGIN'
rgooL’ B*'TRUF"
FOR'JYTOYTUPB G WHILEYB DO (CrSTJ] BT FALSET);
A
YEND '

"ot OMATCH KEY RETURNS A NUMBER = TO THE POSITION OF WORD IN WORDLEST , OR O
LF THERE 18 NO MATCH
LPROCTMATCHKEY®=C[I'CHAR'WORD) PINT! |
LREGIN'
(1:10+,115]'CHARYWYORDLIST!
"CLEAR'WORDLIST)
WOKDUISTIYI+"FOR ";WORDLISTYTZ2)&"IF "y
MORDLISTE314"STER "IWORDLISTEAI"UNTIL";
WORDLIST{5]«"DO ":UORDLISTt63+“THEN "1
WORDLISTI7I¢"ELSE "JWORDLISTtR)«"BEGIN"]
WORDLISTIGI+"END " IWORDLISTEAOT«"PROC ¥
'L EXPAND UN YHIS AS NECESSARY TO HANDLE OTHER CDNSTRUCTS
VINT'140;
'FOR'J‘TU"UPB‘NORDLIST‘NHILE‘IT“U‘DO'
"IF'WORD=WORDLIST(JI'THEN T14JrFL "}

11

YEND Y,

"Gt MATYCHNAME RETURNS THE POSITION OF NAME IN NAMELIST OR QO IF NOT THERE
YPROC'MATOHNAMER (L, 1Y CHAR'NAMELISTY[J'CHAR'NAME) PINT L

e

ter

1¢4

Le!

Ao



"2
h2¢
23
124
125
26
hnev
128
29
130
131
132
33

135
A36
137
38
139
160
a1
142
143
hh4
Té5
40
X4

ANLE

A a9
150

REGIN'

tINTTVY 6D

PEORTI1ITO P UPBINAMELIST WHILE'HAMELYSTLIN 114" THAND! 120700’

CIETHAMELISTII1 1 =NAMEL) 12 " UpBYNAMELTISTITTHENY
el
*FIAY
J1
YEND '

LPRUCTGETHNAMER(]'CHAR
$REGIN!

[Y:NT'CHAR'NAME,

"CLEARYNAME;

'CHAR'C"“ “;

PINT Te%

TEQRTU'TOIN'WHILE'MATCHLC,SPERARY'DO?
(SKIPSPACES(C) INAME[T]&CITIPLUS' Y]
(Cﬂ"["t‘FOR'J1‘FROM'J+1{TO'N'UHnglc#uTn|Doy

(SKIPSPACES(C) INAMELTI«C T PLUSTY]N) I
NAME[T=1)&r "}

NAME
YENDY
LPRAOC'BACK='YOID! ., 'C' BACKSPACES
VREGIYH' READ(BACKSPACE)IBACKSPACE(MONITOR)Y 'END'M
LPRUC'REABC'REF'LITCHAR'C)'VOID ', 1C' READR
ABEGIN'

READTCY I PUT(MONTITOR, L)
AEND S

ter

€0z



[« . -
?1;‘12 CAPRACTREATE(IREFT P INYIK)'VOID' "' READS AN INYEGER

|
|
| 153 COVREGINY
| 154 'SERTNG‘Kﬁ#GETNAMEI
| " 5 }/4‘
| {26 VFORTKIN'TO''UPR YK YWHILEYKATRINI#" "1pO!
1 157 VBEGIN!
| 158 PINT'K2+¢'ARSPKAIKINDY
1 159 L TEYK250  THEN' PRINT(*NUMBER 7 ")§ERROR(200)TFIN}
| 160 ' rﬁ*x*10+k2
; 161 VEND '
‘ 462 BACK
} 163 CEND T
64
} iés ter COPIES STANZA POS INTH STANZA PES
| 166 LPROC'COPYS('INT!POS, ' INTPES)TVOID'
| 167 LAEGIN |
1 168 WNAMBLPES) €WNAMELPOSY )
} 169 XNAMELPES) €XNAMELPOS)!
| 170 YNAMBLRESJCYNAMELPOS )
| 471 INAMPLPES]€ZNAMELPOS)
| 172 LEND
| Y73
| 1746 1 HANDLES CALLS TO PROCEDURES
| h7s LPRNCTPROGCALLECTINTIPOS, 'REF' P INTILE)'VOIDY,
| "76 AREGIN'
| 177 C1iNT'CHAR'TEMP
| 178 Lhser "y
| 579 COPYLPOS,SN)
} 180 TIELINOTOF'PROCSIPOSII=0  THENY

e

re!

1es

0T



S o

181 PTEY(SKIPSPACES(CTI)1CY =" ("] ' THEN'

f8e PRINT("SHOULD BE NO PARAMETERS ") FERRQR(300)

783 "ELSE'ERROR(302) -

"B ' "FIY

185 "ELSFE' (BACK;SKIPSPACES(CA)icI#"{") "THEN!
186 PRINT("SHOULD BE SOME PARAMS "YJERROR{301)

"87 TELSE!

188 PRINT ((BACKSPACE,™ "))
189 'F0R711'UH1LE'(aACK:REA(C1):C1#">“)'DOY

190 "BEGIN? |
194 'CHARrT1+TYPE'0F'pARAMst(pos'OF'PRocsru051)¢11.11:

noe TEMPeGFTNAME?

193 '1F'T1u"N"'THEN'AnDTO{TEMP.YNAME[SN])

“04 TELSF'TI1E"V" ' THEN T ADDTOCTEMP (WNAMELSN])

195 YELSE'ERROR(305)

LT "FI1t
197 'END!

fo8 tFIY:

199 LC'PUUS'(LC'OF'pROCStPOSJ):

200 REORNER] ,

201 CKIPYPACESC(CI) ;P IF'CAI# 1" ' THEN'ERROR(306) 'F1!

202 LOEND

¢03

204 "' MANDLLES SIMPLE ASSIGNMENT STATEMENTS e '

205 APRNC'ASSTONMENT=YINT ! ,

206 AREGIN' . o .

207 PINT VT € /

208 CINYTPOS o

209 PINT'LCE

210 LHS«GETNAME;

S0¢



e

211 VIELIPOS«MATCHNAME (PROCNAME , LHST 1 POSHO) TTHEN!

212 PIF)UBACK; SKIPSPACESCCI)iCI#Y e "] THEN!

213 . LC'MINUS '

214 TIDY(SN,LCYsPRINTC(™ PROC CALL PYIPROCCALLIPOS,LC);

215 TIDYUSN, LY

PAY *ELSE'PRINT("PROC NOT ALLOWED ON LHS ")IERROR(ZOUJ

217 *FIY

218 VELSFE'(BACK:SKIPSPACES(CI)ICI#"&") ' THEN'

219 PRINTC((MEWLINE,"THIS SHOULD BE AN ASSIGNMENT ”,NEuﬁINE))

220 '"ELSE’

271 'CHAR'C2¢&" "1

222 BACK;

223 "FORYY'TO'MIWHILE' (SKIpEPALES(C2)1C2# A0

224 _ | "BEGIN'

225 , VINTYTEMPY

226 WTEMPIJTJeGETNAME

227 VIFY (TEMPeMATCHNAME (PROCNAME , WTEMBLUY 1Y I TEMPIXO THEN'

228 ' CLEAR'WTEMP[UY )

229 J4TMINUS'1;PROCCALLCTEMP,LC)

230 YF1 Y o

231 VIFYLHSEWTEMPTJY ) ' THEN'YTYPE®ITRUE!

232 YELSENJYIeJI+T1LCPLUSY

233 YE1 Yy

234 BACK

235 "END!

236 PN
237 L.C "1
238 ABND "}

239

240 'C' THIS HANDLES ALL MULTIPLE USES AND ASSIGNS TO THE CORRECT NAME e

30¢
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REORpER«YU0IDY

2h
2472
c43
2h6
245
246
¥ A
2438
249
250
254
252
253
254
255
256
257
£58
259
260
261
262
263
2b4
265
nhé
267
268
269
270

JREGIN'

Ted
TTOTHUUHILE Y WTEMPLT, 13ar "ipQ?
(*BOQL'Re'TRUE" )
COVFORYITVTO MIWHILE Y {YNAMELSN,J1,4 14" “1AND'B) 1DO
(uTEMP[TJ=YNAME[SNoJ11]SHUFFLE(NTEMP,T)ISCOUNT'MINUS'1t
Be'FALSE'YB)YITYPLUS 1)) :
Tety ‘
"TO'MOWHILEYWTEMP LT, 118" »rpD?
(YBOOL'B+'TRUEY,
(CHFORTUIPTO MYWHILET {ZNAMETSN, J1,114"™ *1aND1AYIDO"
(uTEMP(TJ=ZNAMEISNrJ1]ISHUFFLE(WTEMP,T)SSCOUNT’MINUS'1L
Be ' FALSEAYJEYITIPLUSY ) )¢
TedrrYe; :
"TOYMYWHILEVWTEMPLT 1)t "2pO!
('RO0LtB&)TRYE}
Tret ,
"TOTMYWHILEYXNAMELSN,Y1,13H" "vANBB’ DO
((NTEMP[T]IXNAMEISN-T1]IADDTOCNTEMPETIaZNAMEISN])l
SHUFFLECWTENP T ISHUFFLE (XNAMELSNI, Y1) !
SCOUNT'MINUS' T :ne?FALSEY)
(BITHIPLUST YY)y
(RsTrpiUSHEY) )
"TO'M'WHILE'WTEMPLT,1]4" ~I1pQ?
('B00L'BetTRUE!]
(('FOR'J1’TO'M'NHlLE'(wNAME£SN;J1.1]#" "IAND!RY'DOQ!
CWTEMP LY J=WNAMETSN 1T ISHUFFLECWTEMP,4) 1SCOUNTIMINYS V14,
B*'FALSE'i:B)iADDTO(wTEHP[1I;NNAME!SN!J!
SHUFFLE(NTEMP, 1)) ) 0

L0e
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271
272
273
274
275
276
er?
278
279
280
€81
282
283
284
285
286
287
288
289
290
291
29¢
293
294
295
296
297
298
299
300

lc.

YEND!

'IF'('BOOL'B*'FALSE'I'FUH'J'TU'H'UHILE?UNAMH[SN'J¢?]#" "LAND!
INOT!BY D!

(LnsuuuAMEISNiJ]ia+l7nuE';SHUFFLEguNAMEESNJ;Ji:
ADDTOCLHSIYNAMELSNI) ISCOUNTEIMINUS!1}B)
"THEN''SKTp!
YELSE!

('BOOLYR«"FALSE ' J FOR'" ' TO'M ' WHILEYXNAMELSNGJ, 114" "tAND!
. 'NOT'B'DD!
(LHwaNAME{SN?JJIB*'TﬁUE':SHUFFLngNAME[SNJaJII
ADDTOCLHSTZNAMELSNI) ;SCAUNTIMINUS!1)B)
"THEN''SKIp?
"ELSF'('BOOL"B'FALSE  ;*FOR V' TO "M WHILE 'YNAMELSN,$,104" "1 AND!
"NOTIR'DOL
(LHS=2yNAME[SNGJ)IRet TRUE ySCOUNT MINUSIT) )
"THEN'1SK]p
"ELSF'('BOOL'B# FALSE ; "FOR V' TO'M'WHILE 'ZNAMELSN, ¥,1)4" "LAND?
' 'NOTYRTDO!
(LHS=aNAME(SNyJI IR TRUE" ; SCOUNT MINUSTT) 1B}
"THEN''SKIp?
"ELSF'YTYPEYTHEN'ADDTO (LHS,YNAMELSNY)
"ELSE'ADDTO(LHS (XNAMELSNY)
"FIY

TIOY 1S USED TO COMPLEYE A STANZA ' tes
TIOY«C'REF'"INT'NUM, sREF'TINT'SCY'VOLD":

FREGIN'

PIFARCHOYTHEN!
TINTTPRESPOS=CHARNUMBER(MONITOR)
NEWLYNE(MONITORY

80¢
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201
302
303
304
S05
306
307
308
309
310
311
s1e
393
314
313
316
317
318
319
320
324
322
323
324
325
326
327
328
329
330

PUT(BUNITUR, ("=~#w~ STANZA ",NUM=PROCPOINT))F
NEWLINE(MONITORY ; ,

NEWLINE(MONITORY ¢

'TOAPRESPOS~1'00*SPACE(MONITOR)

PRINTC(NEWLINE,NEWLINE, "STANZA "yNUM,NEWLINE)) !

NEWLINECOUTPUT)

PUT(OUTPUT "W ")

PUT{ODUTPUT 1 WNAMELNUM,1]) !

VFORTVYFROM' 2 'WHILETWNAME(NUMES 114" "'pO!

(PUTCOUTPUT, ("1 " ) WNAMEINUM JII) T (I (U Ar9)#0 (NEWLINECOQUTPUTI )}
PUT{OUTPUT"1")

NEWLINE(OUTPUT )

PUTC{OUTPUT "X "Y1

PUTL{OVUTPUT  XNAMEENUM,13)
PFOR"JYEROM'2'WHILE'XNAME[NUMEJ 118" "'DO!

(PUTCOUTPUT, ("3 "y XNAMECNUM, J D)1 CJ=CJ A9 #9 INEWLINECOUTPUTI))?
PUT(OUTPUT" 1"} '
NEWLINECOUTPUT) 1
PUT(OUTPUT"Y ")

PUT(OUTPUT/YNAMEINUM, 11D
"FOR'V'FROMN'2'WHILE'YNAMELNUMyJ 114" "'pO!

(PUTCOUTPUT.(".“-YNAME[NUM.JJ))l(J'(J'?'OJ*OlNEULINE(OUTPUT)))3
PUTL{OUTPUT, " ")

NEWLENE(OUTPUT) 4

puUT(OUTPUTI"Z "))

PUTCOUTPUT ZNAMELNUM,11)
VFOR'YFROM'2'WHILE'ZNAME[NYUMTJ 114" " DO!
(PUT(OUTPUT, (", " ZNAME[NUM, J1)) 1 CJ=CI P I %O INEWLINECOUTPUY)) !
PUTLOVUTRUT "1")
NEWLINE(OUTPUT)

602
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339 NUMARLUS YA

332 R

333 : sC*0

334 FEND

335 :

336 ver THES WILL FIND THE Type OF KEY WOpD AND ROUTE JT TO IT S HANDEING PROC e
337 QPHOC'KEYMURD='INT':

338 $BEGIN'

339 T1:57'CHAR'WORD,

340 CINTI K '

sS4 "CHAR A

342 '"CLEAR'WORD!

JL3 REA TA))

344 'EORTJ'TO''UPB'WORD+1'WHILE' (REA CAYJAR ") ¥DO!
45 WORD{JI¢A?

346 (A#f'"lREAD(HACKSPACE)):

47 KT«MATCHRKEY(WORDY !

JLB &

349 telb

350

351 '¢' CONDIT CONSTRUCTS THE ENVIROMENT FOR AN IF STATEMENT e
. 352 !PRUU'CONDITn'VOID'l

353 {DEGIN'

354 PCHAR' C2e” "

355 "INT'KY)

356 TIDY!SN,SCOUUNT) 1

357 HEWLINE(OUTPUT) tPUTCOUTPUT,"s "}

358 WNAMBLISN, 1 J«GETNAME !

359 'FOR?J'FROH'E‘TO'M'NHILE'{BACK!REA(C2>:Czﬂ"T“>'Dn'
360 TBEGIN?

01e



5619
362
363
564
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
366
387
IR8
389
390

'C]

tc;

WNAME SN, JY«GETNAME
VEND '
pACK™
KT +KBYWORD
(KTH#61ERROR(106)) !
SLOUNT 143
TIDYUSN,SCOUNT)
REA{CT)YBACK:
BLOCK;
TIDYUEN,SCOUNT)
SKIPBPACES(CY)
"TFYG IR ¥ " T THENY
YEEGIN!
BACK}
K1+«KEYWORD
"TFrKT 7 THENTREA (L)
BACK?
BLOCK:
TINY{(gN,sSCOUNT)
"F1Y
MAY BE NSCESSARY TO READ BACKWARDS OVER KEYWORD IF NOT ELSE
'*ELSEYREAD(BACKSPACE)
YFI) S
CEND NEWLINEL(OUTPUT) pPUT(OUTPUT "8 "JINEWLINE(QUTPUY)
TENRY; |

LOOP CONSTRULTS A nO (00P ENVIROMENT
tPROC' LODRRYVOID s
REGIN'

|

vp4

e

11¢



Je1 ISTRINGICVS

392 . *CHAR'C)

I93 VINT KA, K2

304 TIOYUSN,SCOUNT)

395 HEWLINECOUTPUTY 1 PUTLOUTPUT  "KFD ")

306 PVGRTNAME

507 (HATCHNAME(PROCNAME.CV)#OIPplNT("PROC NOT ALLOWED CV »}JERROR(200) )
398 DACKSREA(C) ; (CHne" LERRORCI02)]

399 REATLKY) JPUTCOUTRUT, ("  ")K1D D)

600 KEeKEYWORD?

(01 (K2HZ1ERRORCI0INY!

402 REATLKT) PPUTCOUTYPUT, (™ /K1) )

A Ke+KEYWORD!?

404 (K2#h IERROR(104) )}

4L05 REATCK1)IPUTCOUTRUT, (" "rK1)Y

LO6 veexRYWORD !

ho7 (KZHSI1ERROR(105Y)?

408 QUTFLOUTPUT, $10XTLS,CYVI

409 pnEA (€131

£10 ' RACKY

AR nLOCK?

h4e TIDYUSN,SCOUNT)

13 PUT{OUTPUT "#0") INEWLINE(OUTPUT)

IANA AEND Y

415 | :

hhé tgr ROUTINE HANDLES PROCEDURE PEFINITIONS et
447 $PROC' ROUTINE='VOID 'y

448 SREGIN'

LAy FCHAR'Te"R" 1e' FQR TIME REING ALL PROCS REAL ree

420 TIDYISN,SCQUNT)

1z



?. HR“Ngfsc-GETNAME: ' '

ho? g MAY CHECK YO SEE IF THIS PROC ALL READY EXISTS re!
623 PROCSLPROCPOINTIPLUSY 11 &(Tr S/ SN Ot PARAMPOINTTLCOUNTY
XA CFORTIFITO  "UPBYS'WHILE'11<4r2'UPB ' PROCNAME 'O
£25 PROCNAMECPROCPOINT S 11381113
L£26 : PEADUBACKSPACE) 1READ(T)
ha? "IFYTS") "I THENY 1SKIp? "' NO PARAMETERS e
428 _ YELSA'YR" ("' THEN?
f2S YBEGINTY
h30 CINT'COUNT &0
“31 "TO'TUPR'PARAMS'WHILE ' TAYYIDO!
L32 "BEGIN'
L33 (NO'OptPROCSIPROCPDINTI) TPLUSYY S
h34 PARAMSLPARAMPOINTI®("NY 1 (GETNAME) )}
| 435 "6' MAY CHECK TF PARAMETER IS ITSELF A PRQCEDURE 1et
| L36 READ(RACKSPACE) JREAD(T)!
| 437 ‘ PARAMPOINT'PLUS' T EOUNT'PLUS"
| #38 "END!
| 439 "END'
440 'ELSE’ .
| _ hi PRINT(" PARAM 72 ")IERRQR(231)
| 642 PFIAS
| A SKIPNPACES(T)Y?
| hit SKIPSPACESSC1):pACK]
‘ Lhs BLOCK:
NN *C' CHECK PARAMS « SET UP REST OF INFORMATION 1ee
| 447 (LCLOF'PROCSIPROCPOINTIITPLUSHY S vCY 777 'e!
| 648 "FOR!'JTYFROM'PARAMPOINTANO'OFtPROCSIPROCPOINTIY TN PARAMPOINT Y 1pO!
| INA "BEGEN' _
450 : "INT!TY:

(A8
—
w




S S R

59
W52
453
654
55
hS6
HL57
58
h59
L60
6
(62
h63
hoh
465
L66
Lo7
1*68
469
470
71
h72
h73
W74
75
h76
L77
W78
479
480

'E'

CIEV(TYeMATCHNAME CUNAMEESNY ,NAMEOF ' PARAMSTI1)) ) HOTTHEN?
SHUFFLE(WNAMELSN], T1)
"ELSF'(TT1#MATCHNAME(XNAMELSN] /NAME'OF'PARAMSET1])) A0 THEN!
SHUFFLEC(XNAMETSN],TY)
VELSF'(T1¢MATCHNAME CYNAMBISNI /NAMEYOF'RARAMSTIY 1Y) HO'THEN?
SHUFFLEC(YNAMETSNI,TY)
YELSE' (T1«MATCHNAME CZNAMECSNI (NAMEVOF'PARAMBIT|))IHO Y THEN?
SHUFELEC(ZNAMETSN], Y1)y
YELSE'PRINT("PARAMETER DECLARED AND NOT USED "))ERROR(209)
"F1Y
TEND TS
SHIPLUS'4 SSCOUNT#0
YEND Y

SETAS GLOBALLY DECIDEg WHAT A STANZA IS
SETAG&'VOID Yy
AREGIN'
YINTYTKY)
'IFf-n'l#"'".THEN'
YTYphR*®tFALSEY S
LCOURTEASSIGNMENT)
VIFVLCOUNT*SCOUNTOMAXCOUNT  THENTTIDY(SN,SCOUNTIIRT Y,
SCOUNT'PLUSTLEQUNTY -
REORNER]
'"CLEAR'WTEMP ' CLEARYLHS
VELSE'K1«KEYWORND -
"IFYK1E1 ' THEN' LOOP
"ELSF'KAIS2yTHENI'CONDIT
"ELSF'K1=81 THEN'BLOCK
TELSF'K1210 ' THEN'ROQUTINE

1c!

pie




. -
R —— "ELSEYERROR(111)

W81

LRZ
L83
484
485
L86
487
H8EB
“RY
420
491

Lhoe
L93
494
485
L6
Le?
498
099
700
501

b2
bo3
504
505
hoé
507

308

509
510

"Fi
YEI
LEND Y

'CY BLOCK IS CALLED RECURSIVELY== EACH TIME A BLOCK 18 ENTERED

BLOCK«TVGID "
PRLEGIN'
PINT K

SKIpSPACES(CY);
PLFYCAIE e P T HENYRACK T SETAS

rELsE!
nACK ™

K1eKEYWORD
"IFYKIe10 ' THEN'ROUTINE

tELSE’

*IFLKIHBY THENY ERROR(I08) YFI 1}

SKIPEPAGCES(CA) 1naCK?

CUTASS
tWHILE!

(SKIPSPACES(C1)!

"TFYCTI#" " "1 YHEN'BACK]

'TRUEY

"ELSF'(BACK K1 ¢KEYWORD ;R4 =D) "THEN!

‘FALSE!

"ELSE'RACK)
"TO'6 v WHILEY(BACK:REALCT) ! BACK

"FL )

"TrRUED

(Cl1e™ P P ALSEY YT TRUE ) 'DOTISKEIPY

e




511
542
513
514
515
G116
547
518
619
520
521
hRe
523

'DOLGETAS

REA (€1

"1

rEIY
YEND Y ;

VUHILE (S’QIPSPACES(C1)’C1”"‘")'DO' (BACK:pR’NT(NEQLINE"BLBCK"

pACK;

TTOY(SN.SOOUNTY] .

NEWLINE (OUTPUT) JPUTLOUTPUT  "hanary NEWLINECOUTPUT?}
"END'
"RINISH'

*

91¢



APPENDIX 3

DETECTOR




T

1 'BEGIN! _
2 VCHARPUTIINPUTJOPENC(INPUT,CARDREADER 1)}
3 1 ALL RELATIONSHIPS ASSUME PRIVATE MEMORY 1S AVAILABLE Ve
b VINTILeN2/Me12,N e 2g 'CY ONLY 12 STANZAS + 1ST 12 CHARS SIGNIFICANT ‘(!
3 TMODE' ' L1STS'®'STRUCT  ([1sMI'REF'[J'CHAR'NAME);
6 (1 LI LISTS Y MaXsYrZ WY, XY2)
7 (AL TIMP T INITCHARY WV, XV, YV, 2V
8 [1¢1)7CHARTSPE" ")
9 LFOR'I'TOYMIDOYYFORY J'TOINI DO
10 1REGINY
1 (NAME'OF'WLIIy[JIeL11UPRTSPYTCHAR ¢5Sp;
12 (NAMEYOF ' XLIJ)(J)el12 UPBISPIICHARY S}
13 (NAME'OF'Y[I))[J)«l11'UPRTSP)ICHRAR ¢Sp;
14 (NAMEYOF' 2Ty LJdet 1t UpB?gp)TCHARY €SP
15 tEND'
16 YCLEARYWV I YCLEAR' XV ' CLEARYYV'CLEAR' LV
17 IMODE s CONTROLVARIABLE ' 2t STRUCT Y (1 INTYINIT, ' INTISTEP, *INT!LIM,tSTRING'CV)
18 [11L)'CONTROLYARIAALE LOOPSTACKS
19 VINT'LOQPPOINT#(:
20 TCHARYCHYI €™ v
21 1BOOLYCOND&FALSE?,
22
23 '¢Y N,B, ALL ERRORS SHOyLD n& RECOGNISED 8Y OTHER PARTS OF THE COMPILER e
24 'PROCYERROR=( INT'N)'VOID':
25 IBEGIN? : 7
26 PRINT({C("ERROR TYPE "i/N));
27 FREE
28 YENDY)
29 '
30 'PROCISKIPIPACES=(YREFIICHARICH)'VOID",

LIZ



ll.l..l...l.................l.IIlIIIIlIIlIlIII-------.---.————__________________________________*44

31 'BEGIN'

32 CHe™ " TWHILENCH=" "IpOTGET CINPUT,CH)

33 VEND'S

34 :

35 tCYOPERATOR £ RETURNS TRUE 1f LISTS A 1S EMpTY e
36 '"PRIORITY'E=9

37 1op1E=(ILISTS A)'BOOL!

ig 'TREGIN?

39 'BOOLTBC ' EFALSEY;

40 CTRY(NAME'QF'AY(1)egP Y THEN B« TRUE!'F11]

41 B

42 YEnp'!

43

b rCYOPERATOR g RETURNS TRUR IF ANY MEMBER OF LIST A IS5 ALS0 A MEMBER OF B ey
45 'PRICRITY =31

46 1OP1A=(ILISTS'A,B)1BOOL Y,

L7 tReGIN?

48 'BOOL'MATCH®'FALSE!}

49 "EQRYI'TOYMIWHILET CNOTIMATCHIDOY *FORYJITOI'MIWHILEY ' NOTIMATCHY DO

50 VIEY(CNAMETORVA) [1)a(NAMEYOF1BY {ad) tAND! CANAMEYOFtAI[TI#SPYI THENS
51 MATCH®'TRUE!

52 rF1;

53 MATCH

54 YEnD '

55

56 't QPERATOR %X JQINS LISTS Ao AND B TO FORM A NEW LIST r e
57 "PRIORITY'%=3:

58 1OPIXT(ILISTS A, BV 1SYST

59 'BEGIN'

60 TLISTS'ABR]

812



T S

VINT'TEMP Q!

TFOR'IVTO'M'WHILEYTEMPRQ ' DO

tgEGIN'
(NAMEVYOFYAR)[IJ*®(NAME'OFYA) (1)
VIFY(NAMETOE'AY[1)=SP Y THEN'TEMP«IF I

YEND')

(TEMPaO I TEMPeM+4 s PRINT("ARRAY FULL") )

'"BOR'IVFROM'TEMPYTOIM!IDO!

(NAMETOFTAR)Y (11 e{NAME'OF'B) [(T=TEMP41 ]

AB '

YEND'

re'PRINT QUT THE RELATIQNSHIP BETWEEN TYWO STANZAS
YPROC'PRINTREL®(YINTY],y.K)'VOID'}
1REGINY
OUTF(STANDOUTrgL"STANZASC2> s "AND 2> "ARE ", C("CONSECUTIVE™,

rey

"CONSERVATIVE® ,"PREREQUISITE","CONTEMPORARY")$)(1+J¢K))IPRINT(NEWLINE)

'END'!

'¢' RELATIONSHIP BETWEEN TWO AS~STANZAS

YPROCIASSTANZAs (VINTYIXIVOIDY,

'BEGINY
Xyz{1ex(rixyerixzitl;
WYLTleWw(11XY(1T
XyzLTeddex I+l xyri+13X20141)
WYLI*11eW[I+1 %Y 1+1])
PIEIXYZELIRUYT T4 )Y YHENPRINTRELCT, 144,1)
VELSFIXYZ[11aXYZLY+Y 1 THENYPRINTRELCL, 1+1+2)
PELSFIWYLIIAXYZLT+1) ' THEN'PRINTREL(I,147,3)
YELSEVYPRINTREL(I 141 ¢4)

ot

612
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91 138

2 PEND':

93 : :

94 vet RELATIONSHIP BETWEEN AN 1F=STANZA AND ANOTHER STANZA Ve
25 1PROCYPIFSTANZAR(TINT'I4,'800L'0T)'VOID!;

96 YBEGINY

97 PINT'Iel;

98 VINT'Kele1;

99 PRINT ((NEWLINE, "PIF STANZA"/NEWLINE))
100 (OTII'MINUSY T TYMINUSI2)

101 WY L1+ Tewlp+13%v 141

102 xyzCietdex{leqluyrlstinzilen);

103 WYTI+2)lewig+23xvl142)]

104 XYZLT2 X [1+21%Y142)XZ(1+2)

105 tIEYYNOT'OTYTHEN?

106 WYET+3leyl1+33XY[1+3];

107 XYZLI#3)eX(Io32AY[1431X201+3)

108 DAY
109 PRINT((NEWLINE,"RELAT{ONSHIP 1F THE CONDITION IS TRUE" NEWLINE))}!

110 VIEtXyZLI41IRUY LK THENYPRINTRELCI#1,K, 1)

11 PELSFIXYZLI+1IBXY2ZIKI P THENPRINTREL(I+1/K,2)
112 TeLSEY (MITINWYL 1+t ))AXYZIKI ' THEN PRINTRELCI*T,Ks3)
113 TELSEYPRINTREL(T 1, XK1 d)

114 el

115 TTEY'NOT'OTFTHEN?
116 PIFYXYZ[1+2)RWYLKIPTHEN'PRINTREL(1*2,Ks1) o
117 VELSFIXYZOy+210XYZIXI ' THEN'PRINTREL(I#2%K,2) ,
118 TELSEr(W{TIXWY[1+21)OXYZLKI ' THENIPRINTREL(LI#2/K¢3)

119 PELSEYPRINTREL(I+2,Keh)

120 'FLY

0ze



W%

| 121 Ypy!
122 TEND'?
‘ 123
| 126 'C' RELATIONSHIP BETWEEN A STANzZA AND AN IF-STANZA e
125 PPROCYATFSTANZA=(T INY 11,2000 0T)vOIDY
| 126 'BEGIN!
‘ 127 PINTY 1@l
128 PRINT{(NEWLINE,"AIF STANZA")NEWLINE));
‘ 129 (OTIITMINUS'2 1 1 ITMINUSES)
130 WYrIJew(Id2Y i3y
| 131 XYZEIIeXTTI%YLI1%z2¢01)s
132 WY[I+2)¢W[TI+27%Y(142])3
\ 133 XYZL1e21eXTI+2)%Y 0 ¢21%2{142)
\ 134 PTF'YNOTFOT! THEN®
135 XYZLI#3deX{I+33XYL1+30K2(01+3)
\ 136 WYTI+316WITI+3)%y(1+3)
‘ 137 Fr'e
138 YIE'XY2II)AWI T4 THEN!
\ 139 PRINTC(NEWLINE,"STANZA “,1," MUST BE COMPLETED BEFORE THE A IF ",
140 "STANZA 15 STARTED" NEWLINE))
\ 144 'ELSE?
‘ 142 V' ESTABLISK THE RELATIONSHIP FOR THE TRUE AND FALSE PARTS tee
143 PRINT((NEWLINE,"RELATIONSHIP IF THE CONDITION IS TRUE":NEHLINE))I
\ 144 PIFYXYZ{I1WYL1+2)t THEN'PRINTREL (I 11%2,:1)
145 !ELSF'XYZ[IJQXYZ[I+ZJ'THEN'PRINTREL(I'I+2r2)
\ 1466 PELSFIWYI9aXYZI1423 " THEN'PRINTREL(I ,142,3)
147 YELSEYPRINTREL(I,142,4)
‘ 148 1FIYg
‘ 149 YIFY'NOTYOTYTHENY
150 PRINT((NEWLINE,"RELATIONSHIPS FOR THE PATH TAKEN 1F THE ",

12¢




e

151

152
153
154
155
156
4157
158
159
160
161

Y62
143
164
165
166
167
168
169
170
71
172
173
174
175
176
177
A78
179
180

“CONPITION IS FALSE",NEWLINE)D]
VIFYXYZITIWYLI+3IPTHENYPRINTREL(II43,1)
CELGEIXYZIIIRAXYZLIASI ' THENPRINTREL(T 1 143,2)
YELSE'WYETIRXYZII+31 ' THEN'PRINTREL(T,143,3)
YELSETPRINTREL(II43,4)
YF1Y
YEIY
IFIl
VEND'Y

ret RELATIONSHIP BETWEEN TWO ADJACENT 1P=STANZAS )
YPROCYADJIFSTANZARB( S INTH]1T,'ROOLYOT,*BOOL'LOT)IVOID
1BEGINY
PINT!I®1Y,K1 /K2
PRINTC(NEWLINE,"TWO ADJACENT IF STANZAS™/NEWLINE))?
CLOTUTTMINUSY AL TIMINUS 2y
(OTIITMINUS' 211 *MINUS3)Y;
WYLT+1)eWIT+1a%y i+t
A I TSR IR C IR LA RS EA D FARERDE!
TTRILOT'THEN'K1¢14?2
YELSE!
K1¢1+37
WYLI#2)ew(t+2)XY(142]8 _
XYZU1+2) ex(1e23Xyl1421X2(142)
‘F1Y)
WY LK1 +1 eIk 4114y IR+ )
XYZIKI+1 T XK #1IXYIRI+1IXYLk1+1)X20KI+1D .
VIRYQTITHENTK2¢K1 1 : -
YELSE!
k2K 121

7z



O

181 , WY[KI+2)eWK14+21%Y K142

182 XYZEK #2)eXCK1+2)1%XY[K1+27%2[K1+2)

183 YFIYY

184 ' PIETXYZEI11RWIKTI) Y THEN!

185 PRINT((NEWLINE,"SECOND IF STANZA 1S DEPENDENT ON THE TRUE PART =,
186 "OF THE FIRST I1F STANZA",NEWLINE))

187 'ELSE!

188 PRINT((NEWLINE,;"RELATIONSHIP FOR THE TRUE PART OF THE FIRST IF "y
189 "STAN2A & THE TRUE PART OF THE SECOND IF STANZA",NEWLINE))}

190 FIF'XYZIT4130WYIKT#1) " THEN'PRINTREL(T#1/K1+1,1)

1914 VELSFYXYZLI+11QXYZIKI+1 I THENYPRINTRELCTI#1/K14+1,2)

192 TELSE (WL TIXWYLI#T11)AXYZIKI*1 I THEN PRINTREL (141 ,K141,3)

193 VELSE'YPRINTREL(I#Y,K1+154)

194 'ELY} '

195 YIFYENOTIOTITHENY

196 PRINT((NEWLINE/"RELATIONSHIP FOR THE TRUg PaART "y

197 wOF THE FIRST IF STANZA & THE FALSE PART OF THE",

198 * GECOND IF STANZA™,NEWLINE));

199 PIFYXYZII+1IOWYIKI+2) " THEN'PRINTRELCI*Y,K1+2/41)

200 PELSE'XYZLI+1)0XYZ LKA +2) ' THEN'PRINTREL(I41/K1%2,2)

201 VELSEY CWETIXWYLI411)aXYZIKI+21 ' THENTPRINTREL(I+1,K192)3)

202 tELSE'PRINTREL(TI*1VKI+2,4)

203 ' tFD

204 rEIY

205 Pl

206 VIP''NOT'LOT! THEN

20?7 PIF'XYZ[142)3WIKY ) THEN! , )
208 PRINT((NEWLINE,"SECOND IF STANZA 1S DEPENDENT ON THE FALSE™,
209 " pART OF THE FIRSTY IF STANZA"NEWLINE))

290 1ELSE?

£z



211
212
213
244
215
216
217
218
219
| 220
| 221
‘ 222

223
| 224
\ 225
‘ 226
‘ 227
| 228
| 229
\ 230
‘ £31

232
\ 233
234
235
236
237
238
239
240

o

PRINTC(NEWLINE,"RELATIONSHIP FOR THE FALSE PART O0f THE ",
"FIRST IF STANZA & THE TRUE PART Op THE SECOND IF ",
"STANZA",NEWLINE))!

TIFTXYZOTI+2)1RWYIKI*1 ) THEN'PRINTREL(I+2,K14%,1)

"ELSF!XYZIT+21aXYZIKI+T I THEN' PRINTREL(1#2,K144,2)

VELSFY(WITIgWY[T42))8XYZIKI41 I THEN ' PRINTRELCT142,K141,3)

TELSETPRINTRELCI*27K1+1,4)

PFIY: '

TIFVYNQTIOT ' THEN' ]
PRINT((NEWLINE,"RELATIONSHIP FOR THE FALSE PARY OF »,

"YHE FIRST IF STANZA 8 THE FALSE PART OF THE ",
"SECOND IR STANZA" NEWLINE)):
"1RtXYZE1+2)BUYIKI42] Y THENPRINTREL(I*2,K142,1)
PELSF'XYZU142)1QXYZLK1+21 ' THEN"PRINTREL(T#2,X1%2,2)
PELSF'(WIIIXWY[142))8XYZIKA+2) ' THEN'PRINTREL([*2/K142,3
: )
TELSE'PRINTREL(I#®2,K1#2,4)
' '
. F1
tF1?
YEp!
VEND':

t¢r READS IN THE OUTPUT #ROM THE ANALYSER e
'PROCYLREAD=('REF" ILISTS'YA,'REF'(VI'CHAR'AVY'VOID',
1BEGIN'
YCHARYCH®® "1 aXIPSPACES (CH)!
PIFtCHY " s n ' THENSBACKSPACE (INPUT)Y;
YEOR'JYTO'M'WHILE'CHE " "' 00Q?
YBEGINT

vie



o o
. Lak W

\
|
‘ 241 VINTVTEMPet , TEMP1 €0} . ‘
‘ 242 SKIPSPACES(CH) JBACKSPACE(INPUT) S
| 243 ' (NAME'YOFPAYLJJ®C FOR'K' TO'N"WHILE " CGETCINPUT,AVIJ,K))ICH®AV[J, K]
‘ 264 (CHa™["1TEMPI XD}
245 CHE® "YAND'CHAE" S "2 IDQTTEMPEK I (11 TEMPIICHARY)
| 246 v¢t 1F THIS IS AN ARRAY ELEMENT PUT THE INDEX AT THE FRONT OF NAME 'Ct ‘
| 247 «('TFITEMPI>1 I THEN
‘ 248 LA TEMPA~Y It CHARYTEMeAVI 1 TEMPI=1]; |
249 AVIJ 11 TEMP=TEMPI*11eAVIJ  TEMPYITEMP] !
250 AVCJ TEMP=TEMPI#2 1 TEMPY & TEM
251 AR ‘
252 _ AVEJd, tTEMPI) s "FORY JI'FROMITEMPAI 1 TOI NI DO AVLY,J 160 # ‘
253 YEND!
254 ret! ‘
255 VEND'! |
256 |
257 ter PRINTS STANZAS 1
5es PROC'LPRINTR(ILISTSIA)Y'VOID ",
259 'BEGIN' ‘
260 PRINT{NEWLINE) : |
264 PEORYJETOIMIDOYPRINTCCCNAME OF YA LI "))
262 PRINT(NEWLINE)
263 TEND' 1
264 . |
265 ter FORMS W, X YeZ SETS ' . ey o
266 'PROCYAREADE('INTITI)IVOID': ) ‘
267 IBEGIN® ‘
268 CoRT* W T LREAD(WLT), Wy l1))ISKIPSPACES(CHT))? ‘
269 (CH =" X" L LREADIXTY) ) AVETY) $SKIPSPACES(CH)Y )
270 CCHTB*Y™ | LREADCYELI, YVET1) 1SKIPSPACES (CH)) I
|
|

~a
Ny
o




et

272

273

274
275
276
27
278
279
280
281

282
283
284
285
286
287
288
289
290
91

292
293
294
295
296
297
298
299
300

(cHY1="Z" LLREADCZT1Y,2ZvI13)ISKIPSPACES(CHAY)!
OUTF(STANDOUT.SL"STANZA"<2>L“H"Sr!)3LPR1NT(H[I])l
PR]NT(”X”JILPHINT(XCI]JxPRINT(”Y")ILPRINT<Y{IJ)J
PRINT{"Z")ILPRINT (Z(1))

YEND'?

FeYTHIS RETURNS NUMBER e TO THE POSITION OF ¢V AS AN INDEX To AV
'PROC'POSITIONSC[ITCHARYAV, [I'CHARICVITINTY,
1BEGINY
CINT'NO®Y
VINT'Te2?
YINTIUPBD#'UPACV),
' 1B¢! TRUE?Y
'gg?b!aHIIE!B';ND|7<NlDor
YIFYAVIT T+UPBD=1)4CV  THEN!
PTOINIWHILEY CAVITIH N " ANDYAVITIA"I")IDOYTETAY
PIFIAVIT I "V THENING'PLUS ' 1 TeTH
'ELSE'Be'FALSE’
1F1
TELSEYB®YFALSE!
YEIY)
NO

1cr tHIs leés THE CONSYANT ASSOCIATED WITH THE NO,TH SUB=SCRIPY OF AV
YPROCYGIVECONR([ I CHARVAVIVINTINO)YVINT Yy
'BEGIN
TINTINY*2y
VINTYCONST#0, 7,71
'TOVNOP1'DD"MQILE'AV[N11#“:"'DO'N1*N1+1;

¢t

9c¢



504

3p2
303
304
305
306
307
308
509
310
3414
312
513
314
315
316
317
348
319
320
324
522
323
324
325
326
327
328
3129
330

CAVINIIS " " INTeNT+1)

VEOR'JIYFROM!NA Y TO'N ' WHILEY (1 CHARYC®AV(JA Y CH "+ "VANDICA ="TAND'CH",
PAND'CH®™I") DO T4

PIEYTEN  THEFTAVIT#1)H" "o ANDYAVIT+1 14" )" ' THEN?

TEORVJT'FROMINT#+T1 ' TO N WHILET AV J1T# "I " AND av{Jt#"," 100" T &y

1FORMJ1IVEROMIT421TOTY!IDO!
(TCHARYCe AV 1T
tINTIT2¢'ABS (g ‘
PIFYT2<A 0 THENTCONSTECONSTHA0*T2
YELSEVERROR({TY)

VETY)Y
YEIY)
(TENICAVIT#1 ) m™u™ 1= CONSTICONSTYIO)
TEND': ,

rcY COMPARE NM WwITH THE NAME ofF Ay
YPROC'COMPARE®( LIV CHAR'NMr LICHARYAVTREF! I INTIOFTIINTICONYy LINTIPOSY)
'voIbY s
TREGIN: .
CINTICAONZ , T T
VIETC P FORVSTTTOINYWHILEYAVI B D0 TS,
VRORYJIVIOINIWHILEVAVIJYIIA™ "1DO1 TV ¢d%
TETHY )
(TENINMB (L1 1TI=T I CHARY€AVITH1 1 T1]) [PFALSE"))
VTHENICON2eGIVECONCAY,POST)IDFe?ABS (CONT=CON2)
tppt
YEND'

rer NOINDEX RETURNS TRUE 1F cv DOES NOT APPEAR IN AV
FPROC'NOINDEX=([+JICHAR'AV,[J"CHARICV,1REF11BOQL'BY) 'BOOL! Y

tg

teH



3314
332
333
334
535
336
537
338
339
340
341
3462
343
364
3465
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

‘BEGINY
TRQOLYBE  YRUEy
VINTIUPBR&YURRYEY)
PINTYY
B1e!TRUE")
tEQR! JvFRoMl'LwavAVtTa'-UPB!AV'NHILE'B'DO'
PEFPAVLS 1 ym " P THENY
Te2;
YWHILE'T+UPRDEN' DO

PIFYAVIS, T1T+ypBO«1 JaCy i THEN'Be Y FA GEY 1B 1 FALSE! ST &N

PELSE'TeT#+ ‘
1E1Y
FYELSETAVIY, 1;UPBD]=CV'AND'AV[J Upa°+1ln” "YTHEN'Be! FALSE!
telyy
8
YEND'

PCrINDEX RETURNS TRUE TF ALL MEMBERS OF A ARE INDEXED BY THE CONTROL VAR
OR A CONSYANY DIFFERENCE OF IT
PRAOCY INDEX (P LISTS A [ I CHARYAV LI CHARICV)'B00LY,
tapgIny
YROOLTA+TFALSE")
PAQOLtBI€ TRUEY
PFORITJCFROMY L WRTAVITOr rUPBAYY HHILE'AV[J,1]#" "UANDYB VDO
PIFYAVIY 11" " THEN! !
YINTYUPBDe'UPBYCY)
VINTYUY®2y
IWHILE'T+UPBDN!DOY
PIEVAVIV T THUPRO~4 J=CVITHENIBe Y TRUE! j TeN
YELSE'TeTst
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364
342
363
364
565
366
367
3468
369
370
371
372
373
374
373
376
377
378
379
380
381
382
383
384
385
386
387
388
589
390

'FIY;
R ¢
'ELSE?
BletFALSE!
VFiYy
B1
YEND ']

ter RETURNS TRUE IF W AND X DO NOT BOTH USE THE SAME ARRAY
PPROCTWANDYX= (' LISTS M1, Lo CHARY XV, L+ 1'CHAR'WYVT,CI'CHARICYIBOOLY
VREGIN?
YROOLIBHINDEX(XT+XVIIC)}
TTE'BYTHEN!
YFORV YT ' YOO MIWHILE ' WVILU1,124" "vaANDIRIDO!
1FORVJOPYOIMEWHILEYXVILJO 104" "1ANDIBIDOY
VBEGIN'
TSTRINGYISY ¢
(VINT'T TS
TEORYJ2YTO'N'WHILEYWVILJT 12341 p0"' Tey2?
TEORVJZ2'TO'NTWRILETWVA LIl , 0208 "100' T ed2)
PIRYYOPRTIVTHENY[114) 'CHAR Y e @
PELSET LT eTA~T«4 ) CHAR «wVILJgiT*2171])
YEI'Y )
YIFrgaun »
TTHEF?
('STRING'S52¢
CVINT'T 7Y
TFORYJ2VYOIN'WHILEIXVI[JO,J214"1" 100 Ted2
"FOR'J2'TO'N'WHILE'XVAI{JO,y2)" "1D0'T16421
(11T =T 41 CHAR XV LU0, T+21T4 )31

te
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391 : 51e52)

392 1 THENYB&YFALGE!
393 tEI
394 ' YENDY
395 rppty
3196 B : 1
397 PEND'I
398 :
| 399 1¢1FOR EVERY NAME EsYALIgH DIFFERENCE IN USAGE TIME" 'O
| 600 'PRO c CONTRASTo ¢ INTI L, INTIPOSY L v JVYCHARYWU, [+ 7)Y CRARIXU s Les I CHARIYU,
| 401 LosJ'CHAR"ZUY 'VOLD L
| 402 'BEGIN'
‘ 403 VINT'UP*'UPB!pOS!
404 (1 UPYIINTIST L IM,INIT, 5D, C0NST,DF;
LoS YEQRIJITOYUPY DO
406 TREGING
47 ' STLJI«STEPIOF I LOOPSTACKILOOPPOINT# =y ]}
408 LIMIJISLIMIOPY LOOPSTACKILQQPPOINT+YI=4]
409 INLTLJI4INITYOFT LOOPSTACKILOOPPOINT 1=y}
4190 SDLJI€=110F ()&~
411 YENDY)
hy2 ISTRING'COMPY
443 1BOOLINOTYCONS'TRUE;
494 PINTIDIF¢m1 ,DIFF4aty
415 -
416 1cr THESE 2 PROCS ARE USED LOCALLY WITH 6LOmAL REFS ey,
“17 'PROCISETI('INT'LLLvEc:J!CHAR!AV)|V01D$, 4
418 tREGIN?
449 PEQR!'JT'FROM! LLL'TO!M'UHILEvNOTCON'AND'AVII SEFERELARAN: 1L
420 VBEGIN?

0ge
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621
622
623
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
G4
642
b4
G4k
445
YA
b7
b8
449
450

VEQRYJ2ITQtUPI !
FRBEGINY
COMPARE (COMP(AV[1,J1),DIF,CONSTJd21,POSLIDRYY}
PYFIDIF=aaqy1OQRIDIFa ' THENYISKIp
YELSFY(DIFY/'gT{Jd2))%8T[J2]mDIF
YANDIDIFCLIMIU2)INTITLJd2)THEN?
SD(J2)1eDIF'/s5TLU2])
‘el
JOIFent
YEND!
YENp?
YENDY

PPROCYGIVECOMPR(L o JYCHARYAV, VINT UYL IVCHARY, :

'BEGIN?
VINY!T, T4
rFOR!JO!TO'UP!DD'CONST[JOJ«GIVECON(AVEI,JJ-POS[JQJ):
VEORIVETPTOYN WHILEYAVIT ,Jd pJ1 343" 0V T+d1
CFORYSAVYTOYNYWHILETAVY, 423118 1001 T16d1
[1eT1=T=1]'CHARYE€AVT,y,T*21TY)

YENDY)

PRORYYYTOIMTUHILEY XULT /104" “TANDINQTCON'DO?
TREGIN'

COMP&GIVECOMP (XU d )}

SET(J e+, XU ;

SET(Y YU

SETCT,2U))

SET{Y, W)
FENDY)

1€z



451
452
453
454
455
456
437
458
459
460
461
462
463
L6
465
466
67
468
469
470
471
472
473
L74
475
, 476
477
L78
479
480

PEORYGITOMOYWHILE'YULT /108" "'AND'NOTLON'DO?
YREGIN'
COMPeGIVECOMP (YU, J)}
SET(1,2U))
SET(1,WU)
FEND!}
FROROJITOIMOGHILEY UL, 0,104 “*ANDINOTCON'DO!
tREGINY
COMPeGIVELOMPC(ZU, )}
SET(J+1,2U]
SET(1,WU)
PENDYJPRINT(NEWLINE)!
YIFYINOTINOTCONY THEN? PRINTC("EACH ITERATION MUST pE DONE *,
"SEQUENTIALLY"))
tELSE?
PRINT(("ADJACENT *"/NEWLINE))Y;
PEORIJYTOIVPYDOY (SpLUdm=1I1PRINTI™ALL ") IPRINT(SalJI))
PFIYJPRINT(NEWLINE)
tenn's

rct RANK RETURNS TRUE If THE pOSITION of CV 15 THE SAHE FOR ALL 0F X +» Y & 2
AND SETS POS TO THAT NUMBER
IPROCTRANKs (Lo JPCHARIXVY (o JICHARIYVY, tr]'CﬂARiZV1.|RE!i1]NT'POS,
[IVCHARYEVY ' BRODL Y
TBEGIN?
tROOLIB*'FALSEY,
YIEYXVALY 108" nVYTHEN'POSEPOSTITION(XVILT1],CV)
PELSEIYVICY 1 H ntTHEN ! pOSepOSITION(YYVIL{12,C0V)
VELSEYPOSePOSTITION(ZVI[1],CV)
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481 B

4g2 PEOR'J1TFROMI2UTO M WHILE' XVITS1, 104" “PAND''NOT'a'DO?
483 (POSHPOSTTION(XVI[J13,CvY1IBeTRUEY)?
684 VEORYJTYTOIYMIWHILEYYVI[JY 24" "TANDY tNOTIBIDO!
485 ' (POSHPOSITIONC(YVITUT1Y,CVY|BerTRUE)
486 TEORYJV'TOYMYWHILE'ZVIEJ1 134" "TAND I NOTIBYDO!
L87 : (POSAPOSITIONCZVIL 1) CVYIBEY TRUE )
488 B
489 YEND ')
490 _
491 'CY'REMOyE FpOM w ANYTYHING NOY INDEXED B8Y CV e
49?2 PPROC! FROMWRE (" LISTSWA,YREF [, 'CHAR'WR, [J'CHARYCV)YVOIDY
493 "REGINY
494 "EOR'TSUTO'M ' WHILE WBLY, 134" "1pO°
495 VIEVINDEX (WA, WwBLJ),CV)TTHEN?
| Los PEORVUAIYEROMI ym19RY =1 TO' Y "WHILE'WB(J171)=" "1DO!?
| 497 TBEGIN' '
| 498 WBLJ1)euwBEJY1+1)?
| 499 WBLJ1e1,138 @
| 500 . TEND!
| 501 TELSE!
| 502 o WBfd,t)en m
‘ 503 tF1
| 504 YEND')
| 505
| 506 16 NETECTS A CONDITIONAL tel
| 507 YPROCYCONDITIONALR(IREF YV INT I, "INTYJ TREFI!BOOLTONLYTHEN, :
| 508 'REF!'BOOL'LASTOT)'VQLID'!
\ 509 YAEGINY
510 SKIPSPACES(CH1)IBREAD(I)!?

£ee



594
312
513
514
545
516
517
518
519
520
521
522
52%
524
32%
526
527
528
529
530
534
532
5133
534
535
5364
537
538
5739
540

CEXCTYYANDYEY L IITANDYRZLI)I'SKIPY\ERROR(AL))
'TTO'2VWHILE'CHI# S DO
(BREADCIVPLUS'M ) JONLYTHENE'NOT'ONLYTHEN) Y
(CHIHS"LERROR (3)ISKIPSPACES(CH1) )
PIFVIODDY(J=Ty ' THEN!
(COND='TRUE' 1 ADJIFSTANZACI sONLYTHEN,LASTOT)
JCOND*«'FALSE!
1ATFSTANZA(] ,ONLYTHENY)
'TELSE!
T'PLUSTY T COND«!TRUE J LASTOTCONLYTHEN
Yl
lEND':

tgt MOVES May BE USED TO CHECK ON MOVEMENT OF A CV AS AN INDEYX
*PROCYMOVESE('INT'NOY'VOIDY
TBEGINY
INTYDUMY
ERROR(ND)
YEND'?

'¢! SINGLE LOOPS
YPROCYONCEm('REFITINT IY'VOID Yy

1BEGIN
(YT 1LsTtMpTENIYCHARY WX
VINTIPOS e YCYrTHIS WILL EVENTUALLY BE SET IN AN ELSF TEST

¢t TEST FOR TOTAL INDEPENDENCEIC)
YYFYEY(LIYANDYEZLY) A
PANDTWANDX (XTI e XVELT yWYLI)rV'OF'LOOPSTACKLLOOPPOINTY))
YIHEN'PRINTC(NEWLINE,"TOTALLY INDEPENDENT" ' NEWLINE)Y)

tey

et
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541
542
543
544
545
546
547
548
549
550
554
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

'CYTEST FOR TOTAL DEPENDENDENCE te!
PELSFYINOT!
PBEGIN!
'BOQL'B&'TRUE!;
TFOR'11'TO'3'WHILE'B='TRUEt DO
Be'CASETIIVINY
INDEXCXLI) XVIIJ vV IOF'LOOPSTACKLLOOPPOINTY )Y ¢
INDEXCYLIY, YVII)eV'OFTLOOPSTACKLLOOPPOINT))
INDEXCZE1Y ZVIT1) oV 'OF LOOPSTACKLILOOPPOINTYY
CYESAC'
B

TEND?

YYHEN?

PRINT((NgWLINE,"TOTALLY pDEPENDENT" /NEWLINE))
VELSFYRANKCXVEIY  YVII1»2VEI1)POS+CVOR ' LOOPSTACKILOOPPOINTY)
ITHENYMOVES(2M)

TELSE! :

WXT{I)eWVrTY;

FROMWCWE Y], WXLT],CVIOFI LOOPSTACKELOOPPOINTY)

CONTRAST (I POS /WX XVIYV2ZV)

tel!
.END'I
'C' NESTED LOOPS,,...,ONLY 2 DEEP HERE : 1o
'PRACYTWICERCTREFYYVINTYINIVOID ) }
'"BEGIN? .
VINTIPOSTI 1 ,POSOY ) y

'BOOL'IIL&YFALSE";
100l ILID®'FALSEY;
VIEVEY[IJYANDYEZLTIYAND!

Sez
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571 WANDX (XDTI, XVITI,WVL1Y,cV*OFLOOPSTACK{LOOPPOINT]) *AND!

572 . WANDX ¢(XCIY,Xvrld,wylll,Cy'OFtLOOPSTACKILOOPPOINTSY])

573 "THENTPRINT((NEWLINE/"BOTH LOOPS ARE TOTALLY INDEPENDENY",NEWLINE))
574 YELSE!

575 - VTEYINOT!

576 VBEGIN! |

577 tBOOL'8¢1YRUE") |
578 PFORYIT'TO'3'WHILEYB'DO!

579 Be'CASEYITVINY

580 INDEXCXUTY o XVETTCVIOFILOOPSTACKILOOPPOINTY),
584 INDEXCY LT eYV{T)/CVIOF1LOOPSTACKILOOPPOINTY ),
582 | , INDEXCZLT1r2ZVLIYrCVIOFILOOPSTACKLLOOPPOINTY)
583 YESACY )

S84 : B

385 TEND!

586 VTHENTPRINT((NEWLINE/"THE INNER LOOP 1S DEPENDENT",NEWLINE))}
587 ILiD«*TRUE!

588 © TELSEYRANK(XVIY,YVII) 2ZVITI)}POSI,CVIOF'LOOPSTACKLILOOPPOINTY)
589 "THEN'MOVES(21)

590 tELSEYII L& TRYE?

591 YE1ty

592 PIEYILIDYTHENY LOOPPOINTIMINUSI|SONCECT)}LOOPPOINTIPLUS Y

593 'ELSE!

594 YIEVINOT!

595 ' "REGIN!

596 1800LYBe YRUE )

597 VFOR'I17TO"3rwHILE RB'DOY

508 BelCASQEYI1TINY

599 INDEXCX{I) XV sCVIOF1 L OOPSTACK[LOOPPOINT=1),
600 INGEXCYLTIYVII)+CVIOFYLOOPSTACK{LOOPPOINT=1]),

98¢
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601
602
603
604
605
606
607
608
609
610
611
692
613
614
615
516
617
618
619
620
621
622
623
624
625
626
627
628
629
630

INDEXCZIIY,2VILY ) CVIOFILUOPSTACKLLOOPPOINT=1])
YESAC'}

B
YEND!

"THENYT CIILIONCECT) )

PRINT ((NEWLINE,;"THE QUTER LOOP IS DEPENDENT",NEWLINEY)
YELSEYRANK(XVIII,YVIIT,ZVII)7P0OS0, eV Op ' LOOPSTACKILOOPPOINT=1 )
"THEN'MOVES(22)

'ELSE! ‘
FROMM(WITII, WYLI),CV'OFYLOOPSTACKELOOPPOINT11y¢
CONTRAST(I,(POSI POSO) /WVIXV,iYVr2Yy)

lp]!

L B L
tFpe
TEND '}

t¢' SPOTS xey SYMBOLS FROM ANALYSER e
et ¥ = pO=STANZA $ = IFwSTANZA ‘¢!
TPROC'KEYR('REFTTINT IN'VOID
1BEGIN?
SKIPSPACES¢CHY ) -
YIFYCHIB O THEN? 'CYEND OF LOGP 1 (?

SKIPSPACES (CH1) !

(LOOPPOINTSOILOOPPOINTIMINUSYY 111 ERROR(T))
"ELSFICHIA"D"tTHENVERROR(2) - .
VELSE'GETCINPUT, CCINIT'OFTLOOPSTACKILOOPPOINTIAPLUSH{]), &

(STEP'OF'LOOPSTAcK{LOOPPOINTJ),LIMIOF'LOOPSTACKILOOPPOINTJ)):

CV'OP'LOQPSTACKLOOPPOINT)

TREGIN!

[TINITCHARTARSTINTIYEMP D) " CHARIVCHISKIPSPACES(CH) )

FAY4
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631 , TEORVK'TOINIWHILEY CHA™ "' DO! .
632 (TEMP'pLUS' M FAR{ TEMPI*CHIGET(INPUT,CH) ) '

633 ' {1 LTEMPY' CHART ARV 1 TEMP]

634 YEND?Y)

615 PRINY((NEWLINE,"CY ", eytOFY LOOPSTACKLLOOPPOINT) INIT OF1LOOPSTACKILOOPPOINT]Y,

636 STept OFt LOOPSTACK{LOOPPOINTY (LIMIOR' LOOPSTACKILOOPPOINT) /NEWLINE))}

637 SKIPSPACES(CHY)?

638 CIETCRIP*A™ Y THENIKEY (D)

639 TELSE'CHYmngnITHEN? |
640 VBEGIN® |
o es YBOOL'ONLYTHENE! FALSE! (LASTOT@IFALSEY ] 1
642 ' ta00L'BetFALSEY) |
643 1800LTR1Y |
YA tINTIDY;

645 COND®'FALSE']

646 CONDITIONALCI V1, ONLYTHEN LASTOT) |
647 FIR1ONLYTHENTTHEN' I elL 2 ELSET 11 ®T3tFIYg |
648 BeNOINDEX(WVI143,CVIOFtLO0PSTACKILOOPPOINTY BY))

649 FIE'R'THEN'PRINT((PFOR ANY GIVEN LOOP TRE SAME "¢ . |
650 | "PATH IS ALWAYS TAKEN ")) |
651 11¢ ' LOOPPOINTRIYTHEN

652 ONCE(IT'PLUSTT) (' NOT!'ONLYTHENIONCE(I1'PLUSTY))

65% YELSE'LOOPPOINTS2 THEN?

654 | CTWICECITtRLUSIY)j (YNOTTONLYTHENITWICE(IIPLUSTIA))

655 _ PELSE'PRINTCC ONLY DOUBLE LOOPS™ /NEWLINE)) |
656 SR ‘ o
657 _ PELSFYBY'THEN'PRINT(" PATH DECIDABLE “) : |
638 1e) §PECTIAL ROUTINES NEEDED TO SPOT SWITCH=OVER ‘ 1e

659 1IEr LOOPROINTaY FTHEN!

6460 ONCE(I1'PLUSY4)  CINOTIONLYTHEN(ONCE(IY tRLUSHEYY)

gee



661
662
663
664
665
644
667

668

669
670
671
67¢
673
674
675
676
6?7
678
679
680
681
682
683
&84
685
686
687
688
689
690

! ' =2 "THEN?
ELSFT&??E??%¢ILUS!?):c'Nor'ouLvTHEutruzc5<I1'pLu3!1>)
TELSE'YPRINTC(("ONLY DOURLE LOOPS" ) NEWLINE))
tEy,
PELSEYPRINTC("PATH NOT XNOWN™)
PETYIPRINT(NEWLINE)
VENDY
FELSEYBREADC(I) )
PIEYLOOPPOINT=t Y THENONCEC(T)
YELSETLOOPPOINTR2YTHEN!TWICE(ID)
f
Pg%agltwswLxﬂei"ONLY pOUBLE LOOPSHINEWLINE))
tert
!r.l'
'FI'
TEND'!

SKiIpSPACESCtCHY)
TepgINY
TINT V140
VYO L YWHILE'CHIE e IO
TREGIN!
IrpLUSY
VIF'EHIBrgn PYRENYKEY(])
TELSE!Y ' cr
tBUOOL'ONLYTHENS FALSE , LASTOTeFALSEY ]
PTRORYY'TO 2 WHILE ' CHIM wn YANDICHI#"# "V ANDICH I 481 DO
1BEGIN'
VIFTCHIERS " Y THEN?
CONDITIONALCI ,JsONLYTHEN,LASTOT)

67



o

691 TELSE!

4692 tREGIN! . :
693 , BREAD (1) \ L
694 FIF10DDY (JeT1)' THEN? S
695 : PIFYCOND='FALSE'"THENYASSTANZA{I=Y)

694 'ELSE'PIFSTANZA(I=1,ONLYTHEN)!

697 COND4'FALSE"

698 1F1

699 tELSE!

700 ‘ 1'PLUS Y

701 YET

702 TEND?

703 tF1!

704 tEND?

705 tFLY

706 YEND!

707 YEND'!BACKSPACECINPUT)

708 'END? :

709 YEINISHY

710 T2 3]

18] 24



APPENDIX 4

SAMPLE PrRoOGRAM




Stanza I

" Stanza 2

Stanzas 3,4 and 5
Stanza 6

Stanzas 7,8 and 9
Stanza 10

Stanza 11

N =

ol o

I R S S S 4
~ N

o
¢/
ct
£y
3n
57
3';

‘Hf(:]f\"

lpRUC'((r'l‘|,r1?):

'PEGLIN!
€119

€ iy

TWNelL174072;
C17euNFa(tP)

LA

VEORVKEPPSTERIZVURTTIL" 1L nOY

‘FXF“TN‘

ATk 1« F+TH

TN

TP ACERCCIRHER T Iy T SE EReR ]

Lo, B

-
’

VIR ONE AL IREN Y TROCALZY " FISE /2] €TWn;

PG eRNFEE
VENT YLy

lrhi\1:

4+

PNTIRY2VONTT)I Y14 'DOYE[ Y iepT o4 )
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Stanza

Stanza

Stanza

Stanza

Stanza

Stanza

Stanza

Stanza

Stanza

Stanza

Stanza

I

P * I+ B N e SR VB RV V)

3]
o

f

JE Y 3
&~ e

— 15

[ R N G %
Rl B e

20

NN
A -

{

~N
ko

— 25

LA ST
Do o~ O

|

[aY ]
~G

I

A W W W N NN
- v DO

|

r— 38

~l]
=N
Wy = O ¢

r
L NP L
o WV~

i
= o
TR~

50

Jos
o

(LR RV RV RV RV RV ]
~N O Ve

wn
o <

—
]

B N+ e K- S« SR R 0 e Y

™~ O N = T O

W B{T+4]

W ONE LTWO .THREE H
X Alx]) ALK+ :

N <
oo

¢ LE1 JK LK H
B1 .41 . K1
A . DA

-

-

M€ X

AC BC

N2 W

JK
EF.

N < X E

wa % ws w4

KJd
EF

A R - S =

g we mg wa

W

ONE

Ya wm

T™WO AT .B14

-

L A 3 )

b2
(o]

ONE

NG X T o8

e g NE ®

AL2]
THO

N > E

- wg me ww

VO
AL2]

™ K

e Ty we ww
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B1 LEF
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N E

e gy wam

+
-
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Stanza 1

Stanzas 2,3 and 4

Stanza 5

Stanza 6

Stanzas 7,8 and 9

Stanza 10

Stanza 11

243

Do-stanza

Each iteration is totally independent (i.e;

‘they are all contemporary)

If-stanza

As-stanza

If stanza 2 is true or false then the If-stanza

and the As-stanza are contemporary)
Procedure Call

If-stanza

If stanza 7 is true then the Procedure Call and
If-stanza are conservative, otherwise the Procedure

Call and If-stanza are consecutive,

As-stanza

There is nothing available to compare with the

stanza,

Deo-stanza

Every two iterations are adjacents (i.e. pairs of
iterations are contemporary but each pair must be

executed in a comnsecutive manmer)






