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SUMMARY

The influence of concentrated inertias on the flutter
characteristics of a uniform cantilever wing were investigated
both by experimental and by theoretical methods.

The experimertal work consisted of wind tunnel tests
on a segmented wing model on which concentrated massés in
the shape of large pods could bé mounted at 4 humber of
spanwise and chordwise positions. The weight of these pods
was comparable to the weight of the bare wing, and their
pitching moment of inertia was varied to values upto ten
times the pitching moment of inertia of the bare wing.

The influence of the spanwise and chordwise position
of these pods on the flutter speed was investigated. In
order to assess the influence of the aerodynamic shape of
the pods, four different pods were tested, each having a
different aerodynamic shape. The effect of adding horizontal
fins to the trailing edge of the pods was also investigated
as a means of increasing the aerodynamic damping and hence
the flutter stability.

The flutter speeds and frequencies were also obtained
by theoretical methods. Assumed mode methods were used to
predict the flutter speeds of some of the wing~inertia
combinations tested and these gave good agreement with the
measured flutter speeds, In all these analyses, the
fundamental bending and torsion modes of the appropriate
wing~inertia combinations were used,

The main attention was devoted to the use of a

'Direct Matrix' method in which it is not necessary to



specify in advance the modes of the oscillating wing (as in

the case .of the assumed mode mefhod). This method makes use
of the inertial and aerodynamic properties of the wing-
inertia combination in terms of matrices of influence
coefficients, It can be used for both vibration and flutter
analyses, If desired, the in~yacuo vibration modes may also
be obtained. This method was applied to obtain the flutter
speeds of a iarge number of wing-inertia combinations to
assess the influence of some of the concentrated mass
parameters (such as the ineftia ratio, the spanwise and
chordwise positions of the centre of gravity, etc.) on the
flutter speed. It was also used to obtain the flutter
characteristiecs of some wing-inertia combinations examined
by other investigators. The results ohtained in all these
cases showed good agreement with the experimentally measured

vali=s.
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NOTATION
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Element of flexibility Matrix, in./lb

Aspect Ratio (¥q.3.13)

Element of the real part of AIC Matrix

Element of the imaginary part of the AIC Matrix

Generalized amplitude of rigid body modal series
in or rad.

Matrix of (inertia + serodynamic) forces, Eq. 4.55
Seni~chord of wing it
Reference semi-chord, £t
Matrix of e¢lastic forces, Eq. 4.55
Wing chord = 2%b, ft
Element of AIC Matrix
Theoderesen's Function
Diagonal Matrix of the eigénvalues, Eg, 5.113
2

Bending stiffness, 1lb.ft

Distance of the control stations from the
elastic axisz, ft

Aerodynanmic "stiffness” matrix, Eq. 4.68
Element of force matrix, 1b
Torsion mode shape, Eq,6.4

Bending mode shape, Bg. 6.4

Eq. 4.51

Torsional stiffness, lb.ft2

coefficient of "artificial structural damping®
Deflection, in

Control point deflection due to rigid body
motion, in

control point deflection, in

Element in rigid-body modal matrix, in or
dimension
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Pitching Inertia Ratio

Co-ordinate transformation Matrix, Eq. 5.20
Interpolation Matrix, Eq. 5.36

Eq. 5,77 =

Eq. 5.65

: 2
Pitching radius of gyration of concentrated mass, ft

Aerodynamic Derivatives, Eq. 3.10
Aerodynamic¢ Derivatives, Egq. 3.3
Mass Matrix, Ib
Mass Ratio
Aerodynamic Derivatives, Eq. 3.10
Aerodynamic Derivatives, Eq. 3,3
See Egqs, 5.72, 5.73, 5.79, 5.80
Number of degrees of freedom
variable in the Laplace Transform
Generalized co-ordinate
Criterion in the Aitken iﬂa procedure, Eq. 5.153
Body cross sectional area (Eq.5.56) ft2
Wing semispan, ft
Kinetic Energy
Strain Energy
Dynamic Matrix (= g+ u ) Eg. 5.102
Velocity, ft/sec
Flutter speed, ft/sec
Flutter speed ratio
Teil volume coefficient, Fig, 2.40
‘Weight of concentrated magss (Edq. 4.2), 1b

Weighting matrix, Eq. 5.4



(%)

orow

Local velocity, (Egq. 5.61), ft/sec

A 2 x 2 matrix with unit elements, nq, 5.45

Co~ordinate along body axis, Ig. 5,54

Eigenvectors Egq. 5,134

Distance of concentrated mass c.g. from wing
elastic axis, nondimensionalized with
respect to the wing chord, Positive for

c,g, aft of the elastic axis
spanwise co-ordinate
Cy vA5)f & Eq. 4.53
Angle of attack, rad
Error in series solution, Eq, 5,75

Non-dimensional span

& Angular displacement in pitch, rad,
A Wing sweepback angle, deg.
M concentrated.mass ratio in Fig. 2,37
YV Reduced Frequency { by V)' .
? Air density, slugs/:ft3
L Complex frequency parameter, Eq. 5,69
@) Frequency of oscillation, rad/sec
Subsgcripts
r Reference value
R Real Part
1 Imaginary Part
Superseripts

Represents differentiation with respect to time

Represents differehtiation with respect to y

Ropresents transpose of a matrix



Abbreviations

AlC Aerodynamic Influence Coefficient

cC.Z. centre of gravity

e.a. elastic axis

SIC _ Structural Influence Coefficient

Notes

1. : Other symbols are explained in the text.

2, Some of the above symbols heve been used in other

qontexts when there iz no scope for confusion,
These symbols are explained in the sections where
they appear.

3. The notation for the Appendices are explained

in the Appendices,



CHAPTER 1

INTRODUCTION

It is well known that the aeroelastic characteristics
.of a wing.éan be radically altered by the addition of concentrated
masses such as fuel tanks,weapons, podded engines, etc. This
problem could become more serious when the concantrgted inertia
assumes large values., For example, a Pesign Project Study

was made at the College of Aeronautics, Cranfield of a freighter
aircraft which was given VIOL capability by means of podded lift
engines attached to each wing (Ref. 1 ). This aircraft is

shown in Figure 1.1, The large 1ift eﬁgine pods (each containing
22 1ift ongines) were mounted at 85% semispan of the wing.

(The pod had a mass ratio M of 1.5 and an inertia ratio I of 10.0)
Assuming thé same stiffness distributions fbr both the
conventional and the VIOL designs, Momirsky (Ref. 2) calculated
the effect of the pods on the ﬁétural frequencies of the wing:-

MODE o FREQUENCY (CPS)

Conventional VEOL
Fundamental Bending 3.74 2,89
Fundamental Torsion 22.20 6.05

The effect of the pod on the calculated flutter
speed (Refs. 2, 3) is even‘more.reéealing. For the conventional
wing the flutter speed,waé 658 knots while the corresponding
flutter speed for the VIOL wing was only 164 knots.

This study shows the importance of a knowledge of
the effect of adding large concentfated inertias on the
flutter speeds of wings. For wings of conventiocnal design,
it is now possible to predict, with reasonable accuracy, the
wvalues of the flutter speed and frequency. It is also
possible to obtain fairly accurate estimates of the effects of

changing certain parameters (e.g. wing mass, moment of inertisa,
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chordwise position of the centre of gravity, etc,,) on the

wing flutter spoed. This is no ionger true for the case of

wings with added masses, in spite of the fact that this topic

has received a great deal of attention from various investigatore.:,
The problem of formulating a set of rules for the prediction of
flutter speeds of a wing with added masses is complicated by

the number and range of parameters which can be varied both

independently and simultaneously.

AIMS AND OBJECTIVES

It is the purpose of the present research programme:

(a) to obtain a better physical understanding of
the effect of added inertias on wing flutter,

(b) to observe the effect of varying each of the
added inertia pargmeters independently,

(c) to investigate methods of improving the
flutter characteristics of a given configuration
of wing and added mass,

(d) .to compare the effectiveness of the various
methods of analysis when applied to this
problem, |

Both theoretical and experimental investigations

were conducted with the above objectives in mind, In the
experimental investigations an aeroelastic model of a uniform
wing capable of having & large pod attached to it at various
points along the span was used. Several parameters of the
pod (mass, moment of inertia, position of the centre ot
gravity, aerodynamic shape, etc.) were varied independently.
The theoretical calculations consisted of flutter analyses of

this model wing under various conditions of added mass,
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Several different methods were used, but the main interest
was in the use of & "Direct Matrix Method"  which makes
use of the structural, inertial and aerodynemic data in

the form of matrices of the respective influence coefficients,



CHAPTER 3

A REVIEW OF PREVIOUS RELEVANT STUDIES OF THE PHYSICAL PROBLEM

The flutter of wings with concentrated inertias has
been studied by several investigators both by theoreticgl
and by experimental methods, Most of these are concerned
with fixed root wings and almost all the published results
are confined to incompressihble flow,

When a2 concentrated inertia is added to a wing,
there is a change in the flutter speed and ;he flutter
frequency., If one of the concentrated inertia parameters,
e;g. the mass, is increased from zero, there is in general,
e gradual change in the flutter speed for low values of the
parameter, Howéver, at a certain critical value of the
parameter there is an abrupt change in the flutter speed,

‘this change being due to the change in the modes participating

.. in the flutter,

mgg;ﬁg@@,(nef. 4 and 5) has.analysed some of the
published data with a view to identifying these modes and
has recommended a set of modes to be included in an energy-
type flutter analysis of a wing-inertia system.
In the following, & slightly different approach
ia used, The influence of each of the parameters of a
concentrated inertia on the flutter characteristics is
examined with a view to obtaining some trend in the
behaviour of the flutter speed with changes in the parameters.
The influence of the added concentrated inertia
on the flutter speed can be felt through the following parameters:
{a) The Mass Ratio {concentrated mass/bsre wing mass)
(b) The Inertia Ratio (concentrated mass inertia/
bare wing pitching inertia)
(c) The chordwise position of the centre of gravity

of the concentrated inertia,
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(d) The sp#hwise position of the concentrated
inertia
(e) The flexibility of the attachment of the
added concentrated ihertia to the wing
(£) 'The aerodynamic shape of the added concentrated
inertia-
(g} The effect of adding more than one inertia
at the same time to the wing |
(h) The influence of the root degrees of freedon
(both Symmetric and Anti-Symmetric)
(1) The influence of fuel sloshing
(i} The sweepback angle of the wing
(k) Tﬁe effect of compressibility and Reynolds
Number,
In experiemntal analyses, it is difficult to vary
each of these parameters separately without varying many
of the other parametsrs, In theoretical analyses, this -
type of independent variation is possible to a certain extent,
The published literature from which the data for the
comparisons are extracted contains a large amount of data,
Of these, only a limited amount has been extracted and
sometimes redrawn, in terms of non-dimensional graphs in
order to study the effect of varying a particular parameter,
In Appondix I, as much data as could be obtained
from the litgrature about the geometric, iﬁélﬁéiaa and
structural properties of the wing-inertia systems analysed
therein is given. It is unfortunate that for some wings,
not all the important information is presented. YFor example,
some of the authors do not include data about the frequencies

of vibration of the wings or details of the mass and moment

of inertia distributions,



2,1, TIE INFLUENCE OF MASS RATIO

Pigs, 2.1 to 2,6 illustrate the effect of
variation of the mass ratio on the flutter speed of the
wing~inertia gombination, In all these figures V denctes
the ratio of the flutter speed of the wing-inertia
combination to the bare wing flutter spéed. M denotes |
the ratio of the mass of the concentrated inertia to the
bare wing mass.

In examining these figures, it is instructive
to compare the bare wing behding and torsional frequencies
of the different wings examihed. Due to lack of data, it
has not been possible to obtain this information for all
the wings, and the following table gives the values of

these frequencies for some of the wings:

Frequencies

Fig. Ref, Wing Cg Wing ea | Fundamental Fundamental
aft of LE aft IE Bending cps  Torsion cps

2.1 6 0.40C 0,32C - -

2,2 7 0.43C 0.30C 3.9 15.3

2,3 8 0.43C 0.32C 20.1 66,1

2.4 9 0. 35C 0.25¢ 3.8 14.5

2.5 10 0.40C 0.40C - o

2.6 5 0.45C 0.25C 16.0 650.0

All the frequencies quoted above refer to the
bare wing. Ythen a concentrated inertia is added to the
wing, both the fundamental bending and fundamental
torsional frequencies decrease., For all these wings, the
bare wing flutter involved a coupling of the fundamental
bending and the fundamental torsion modes,

The influence of the mass ratio of the concentrated
inertia on the flutter speed seems to depend primarily on
the chordwise position of its centre of gravity with respect

to the elastic axis (at any given spanwise location).



2.1.1 When the centre of gravity is shead of the elastic axis,

the curve of V vs M displays a characteristic trend. At
most of the spanwise locations, the flutter speed ratio
increases at first as the mass ratio is increased from
very Ibw valueé; After a critical value of M is reached,
the value of V decreases. Further increases in M bring
about a decrease in i until an asymptotic value is reached.
In general, for all values of ﬁ, the flutter speeds of
the wing-inertia combination are higher than the bare wing
flutter speed. By a judicious placing of the concentrated
inertia, fairly large increases in the flutter speed can
be obtained, thus suggesting 2 method of eliminating any
flutter problems of the bare wing. |

For all the wings, the critical modes at the
flutter, for valﬁes of M less than the critical, are the
fundamental bending and fundamental torsional modes, For
values of M greater than the critical, the modes participating
in the flutter are the overtone bending mode and the
fundamental torsion mode.

Fig. (2,7) shows the value of M crit, (the
critical value of the mass ratic), plotted against the span
of the wing for the wings of Figs. (2,1) to (2.6).

As the concentrated inertia is moved outhoard
from the wing root, the value of I crit shows a gradual
decrease.

The ratio of the fundamental bending to the
fundamental torsion frequency is approximately of the
same order for the four wings for which this data is
available,

Fig. (2.4) also shows the effect of wing
sweepback on 3. For concentrated masses located at the
two-thirds span position, three values of the wing sweep,

o - : e T
15°, 30° and 45° were cénsidered, For all these conditions,
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the structufal and ipertial properties were not altered.
It:is seen that there is only a slight change in the
value of the maximum value of V,  The value of the
eritical mass ratio, M crit, increases with increase
in swéepback. (It should be noted that the bare wing
flutfer épeed is not the same for all these wings as

this ;ls approximately p'roi)ortional to Sec( f\'l\%) where N\
is tHe sweepback anglé;}

From a study of Figs. (2.1) to (2.7}, the |

following conclusions can be drawn:

'(a) For all values of the concentrated mass,
the flutter speed of the wing-inertia
combination is, in general, higher than
the bare wing flutter speed.

(b) At a given spanwise position, as the value
of the concentrated mass is increased from
zero, the flutter speed increases from
the Bare wing value to a maximum value at
a certain critical mass ratio., Any further
increases in the concentrated mass Brings

" about a decrease in the flutter speed until
an asymptotic value is reached for ?,

(¢) The actuel value of V depends on the
configuration.

(d) Keeping the structural and inertial
properties the same, if the wing is
sweptback, the maximum value of V is
not much affected, The value of M crit
increases with increasing sweepback angle,

(e) For wings with the same ratio of fundamental
bending to fundamental torsion frequency
(for the bare wing), the value of M crit

seems to have the same order of magnitude.
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2,1.2 When the concentrated mass is located on the elastic

axis the curve of v vs M does not seem to follow any
well defined pattern.

For the wings of Fef. (6) (Fig, 2.1) and of
Ref., (5) (Fig.2,6), the V - M curve is similar to the
curve obtained when a concentrated mass is %ocated ahead
of the elastic axis, For both thesé wings, the flutter
speed is higher than the bare wing flutter speed for
values of M < 2.0. This holds true for all the spanwise
positions.

The wing of Ref., (7) (Fig. 2.2) shows a
different pattern of behaviour and is influenced by the
spanwise location of the concentrated mass. For
position near the’root,there is no change in the flutter-
speed, this being equal to ihe bare wing flutter speed
for all values of the concentrated mass,

For masses placed at the mid span and the
three-quarter . position, the flutter speed decreases
with inereasing values of the concentrated mass, A mass
located at the tip shows a different behaviour. As the
concentrated mass value is increased, the flutter speed
falls rapidly at first and then increases to give vaelue
of V = 1.2 at M = 0,9

It may not be possible to compare the values
for the wing of Ref (é%) (Fig. 2.86), since these refer
to a wing with symmetric body freedon,

It is difficult to draw.any general conclusions
from the evidence avallable, The reasont for this
apparently inconsistent influence of the concentirated mass
may be due to the fact that a mass placed on the elastic
axis adoes not have any inertia coupling and each wing mass

combination has to be analysed individually,




@:l;g, Concentrated mass positions aft of the elastic

axls show a more consistent influence on the flutter speeds.
(Figs. 2.1, 2.3, 2.4, 2.5). For all thesc wings thore is
2. decrease in the fluttoer specd with incrotsces in the value
of the concontrotod nass, L

K b

2,1.4

In general, for concentrated mass positions
forward of the elastic axis the flutter speed of the
wing-mass combination is higher than the bare wing flutter
spead, For masses positioned aft of the elastic axis,
the flutter speed is lower than the bare wing flutter
speed.

For concentrated mass positions ahead of the
elastic axis, the modes perticipating in the fluiter
abruptly change (at a critical value of the mass ratio),
from the fundamental to one containing the overtone modes,
For masses located aft of the elastic axis, usually there

is no apparent change in the modes participating in the

flutter,




2.2 EPFFECT OF THE INERTIA RATIO

The influence of the value of the pitching
moment of inertia of the concentrated mass is shown in
Figs. (2.8) to (2.11), 1In each of these figures, the
effect on the flutter speed of an increase in the pitching
moment of inertia is shown, the following quantities being
held consfant. (a) the mass of the concentrated inertla
and (b) the position of its centre of gravity J(both gpan-~
wise and chordwise positions;) Due to the difficulties in
keeping all these quantities constant while varying only

inls ol on
the moment of inertia, not mucﬁ]égia_fg_a£ailable on the
effect gf the moment of inertia on the flutter speed.

As in the previous case, the effect of the
moment of inertia will be considered with reference to
the pesition of its centre of gravity.

The flutter speeds are again plotted as ratios
of the bare wing flutter speed., In all the figures I
represents the ratio of the pitching inertia of the
concentrated mass to the‘pitching moment of inertia qf the
bare wing, both values b;ing measured with respect to
a given reference axis. When the values of M and the pod
centre of gravity are fixed, variation in I can be

attributed to & corresponding variation in the pitching
radius of gyration of the concentrated mass,

Fig. (2.8) (Ref.9) shows the effect of varying
the inertia ratio on the flutter speed when the centre of
gravity of the concentrated mass is located O.1lc ahead
of the elastic axié. Four spanwise locations of the
inertia and three values of ﬁ are considered,

For values of M equal to 0,25 and 0.5, the
curves show a simi]ar behaviour in that for all the span-
wise positions, except at the tip, the flutter speed

generally decreases with increase in lnertia ratio,
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Yoz the a2ss located at ths tip, ~he flutter spzed at
first increases with small iucreasss in the inexrtis
raiio, but aiier reaching a maximuw value, Jdzcrezsss
with further increas=s in the inervic ratio,

For values of M = 1.0, the curves show a similar
behaviour for spanwisz lccations of two-thirds and § span
respectively. For masses located at the mid-span and at
the tip, the fluiter speed again shows a similar behaviour,
The flutter spead increasss first and then decresses, with
increases in the pitching moment of inertia,

For the same wing, Fig. (2.2) shows the effect
of I on V for different angle of sweepback (obtaine& by‘
a rotation about the root), For all these curves, the
mass was placed at the 2/3 span position and the centre
of gravity was 0,lc ahead of the elastic axis. Three
values of the mass fatio, M = 0.25, 0.5 and 1.0 are
considered. (It should be noted that for the bare wing,
the flutter speed varies with the angle of sweepback A,
appréximately as Sec ( f\*EE;QL Since all the curves
presented in this figure are normalised with respect to
the flutter speed of the swept wing, theﬁlhave not heen
normalised with respect to the same speed.

For M = 0.25, the curve of Vv against M
shows approximately the same trend as for the unswept
wing. For ﬁ = 0,3, the flutter speed shows a larger
decrease than for the unswept wing. For M = 1.0,
the flutter speed shows approximately the same trend as
for the bare wing only for sweepback angles of 15o and
300. For a sweepback angle of 450, the flutter speed
decreases first with increase in I and then increases
‘with tncreeses in I.

Fig. (2.10) refers to the wing of Ref (10). This

wing was allowed the root degree of freedom of body pitching.



The effect of I =3 considered for four spanwice stations

with the centre of gravity of the concentrated mass
lacated at three chordwise positions for each spanwise
location. Two sweepangles 2 = 0" and 45° are considered,

In Fig. (2.11) (Ref, 7) the concentrated mass
is located at the tip and at the midspan and three {chordwise)
centre of gravity locations and four sweepback angles
are considered.

For all the wings considered, the general trend
seems to be fof the flutter speed to decrease with increase
in the inertia ratio, The actual behaviour is influenced
mainly by the value of the mass ratio and the spanwise
location.of the concentrated mass,

At a given spanwise location and for a given
centre of gravity location of the concentrated mass, there
is no change in the modes involved in the flutter with
increases in the value of I,

(Note: 1In Figs., (2.8) to (2.11), the value of
v at 1 = 0 neced not be cqual te unity sineco the flutter speed
for this condition will be equél to that of a wing carrying

a point mass),

2.3 EFFECT QF THE CHORIWISE C.G. LOCATION

In general, the chordwise position of the centre
of gravity of the concentrated mass has the strongest
influence on the flutter Speed‘ot the wing-mass combination.
Mass positions shead of the elastic axis have a stabilising’
influence on the flutter speed while positions aft of the
elastic axis tend to have a destabilising effect.

Figs (2.12) to (2.19) show the influence of the
chordwise location of the concentrated mass centre of
gravity.

Fig, (2.12) refers to the wing of Ref. (9).

Four spanwise positions and two values of the inertia



oy
a ¥

ratin, E, are consiuered. FPFor all these. uhe mass ratio
wao kept constant at M = 0.5. All the curves (exnept for
=1,070d I = O) show a similar bebaviour., As the
location of the centre of gravity is moved forward from
a position aft of the elastic axis, the flutter speed
increases to a maximum value Jjust ahead of the aiastic
axis and then decreases as the centre of gravity is moved
further ahead of the elastic axis. This decrease is
associated with & change in the modes perticipating in
the flutter, when the flutter involves cne of the
overtone modes,

Fig (2.13) also refers to the wing of Ref (9).
For masses located at the two~thirds span location, two
values of I (O and 0,84) and three values of the
sweepback angle (150, 30° and 450) are considered. The
behaviour of the V vs %) curve is essentially the same
as for the unswept case. The values for the sweepback
angle of 450 follow a different trend, the flutter speed
showing 2 continuous increase as the mass centre of
gravity is moved progressively from a location aft of the
elastic axis to a location forward of the elastic axis.
The chordwise position at which the transition from
fundamental to overtone flutter occurs moves further
ahead of the elastic axis as the sweepback angle is
increased. (It should be noted that all the Chords are
measured in the streamwise directioen, So, with an
increase in the sweepback angle, the value of the
streamwise chord also increases).

The values in Figs, (2.14, 2.15, 2,16a and 2.16b)
refer to the wing of Ref, (10).. All these wings were
allowed the root symmetric degrees of freedom (plitch and
normal translation).

The flutter speed for all these wings is very



espécially for positions near the elastic axis, Agéin, |
in general, locations forward‘of the elastic axis tend to
have a stabilising influence on the flutter speed.
Fig. (2.18) also refers to a wing with the
symmetric degrees of root freedom (Ref. 8), For this
wing alsc, the flutter speed is very sensitive to
movements of the location of the centre of gravity in

the neighbourhood of the elastic axis,

Figs (2.17a and 2.17b) refer to the wing of
Ref. (16). In Fig.(2.17a) the variation of V with
respect to %)is shown for four different spanwise
locations of the concentrated mass, For most spanwise
locations, the flufter speed is not very sensitive to the
chordwise position of the centre of gravity, provided
that this is forward of the 2&1%‘2% axis. In Fig. (2.170)
the behaviour of the és- ipcurve is examined for (a) three
different sweepback angles while the value pf M is held
copstant and (b) for three values of M for a given value
of A ( = 130). The concentrated mass is located at the
wing tip. The behaviour of these curves is similar to
the corresponding curve in Fig. (2.17a). The flutter
speed has its maximum value for centre of gravity
locations in the neighbourhood of the elastic axis.

In Fig. (2.19), which refers to the wing of
Ref (6), the variation of V with ibis more gradual,
Three different spanwise locations tq = 0.1, 0,3 and 0.5)
and for each spanwise location, three different eﬁglgﬁiée
e Yios
docations are considered,

For all the wings considered here, the
general pattern seems to be for the flutter speed to

increase as the c¢.g. of the concentrated mass is

moved forward frcma location aft of the elastic axis,
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At & certain centre of gravity 1on§tion 1o Lhe ielighbourhood of

the elastic axis, a maximum valye for the flutier sPaed doo ab ioed,
and any furiher rovements of +the Cegfs Torwird of fhig location

tend to to decrease the flutter speed. This decresge in

™

genarally dut 1o wh cr being one of the overtione by be.

2.4 FFFECT OF THp SPANWISE LOCATTON

The behaviour of the curve of the flutter gpeeq wien
plotted againgt the span depends primarily on the chordwise
location of the Cefle of The cnmeentrated mogs and to a lesser
extent on the value of the paus ril o, (1),

Pigs.(2.20) 4o (2.26) show the el el of moving the

concentrated wagg along the span for a congtant pPosition of the
chordwise c.gz, location,

For most of +tle wings, two bagic Patlerns can be seen, which are
determined mainly by the chordwise loo:tion or bhe genlog op Sovedt
with respect to the elagtic axis, PFor locat ions forward of the elagtic
axig, Lhe Tlutrer Speeds aregenerally higher than the vare wing
Flutter specd at all the spanwige . locit iong, As the Sonnenh c b ad o
is moved outboard from th. ving roul, bhe flutterspeed increnves
at first, and reaches o maximum v lue ab a Peint  along the the
5pan, generally between the wids pan location and the tiﬁ. After
this, the flutter speed decreases i tlLe Conce Leabed g 4.
moved tovards the tip.

For the coucentrated Mess ceg, located afb of the elastic axig,
the flutter sieeds e, in general, lower tlin the bara wing anttMT.HPO*Qﬁ°

As the concert riinl 1ias s soved atboard from the POOL, Ghe fiidicp

To

gperd decrsaneg Eradunlly 8% bave 2 minimum valgye at areund the mid-

span position, ¢ tie concentrated mogs ig moved further cutboard the




flutter zp=:1 amain inercaness and a marimun value is
obtaiﬁed-at the tip. This meximum volue is generally
iower than the bare wing filutter speed.

As the figures show, the most critical
parameter in determining the behaviour of the V- tl
curve is the chordwise location of the centre of
gravity of the concentrated mass with respect to
the elastic ax¥is, For the éoncentrated mass c.g.
located on the elastic axis itself the behaviour of
this curve seems té depend on the valus of the mass
ratio and probably on the location of the elastic
axis with respect to the wing leading edge,

(e.g. Figs. 2,24, 2,25 and 2.26).

An examination of Figs. (2,20) to (2,28)
suggests that by properly locating a éoncentrated
mass (both in the spanwise and the chordwise
locations), it is possible to obtain large increases
in the flutter speed. This can be used as a cure
for the flutter of the basic wing i,e., to obtain

a mass balancing effect,

2.5 EFFECT OF FLEXIBILITY OF ATTACHMENT

The flutter characteristiés considered so
far have been concerned with the cases when the
concentrated mass is rigidly attached to the wing.
Considerable changes can occur in the flutter speed
when the concentrated mass is not rigidly attached
to the wing. This depends on the value of the natural
frequency of the mass system compared to the nﬁtural
Irequehcies of the basic wing.

YoungfgndRuhlin (Ref, 11) investigated
the effect of the pitching frequency of the
concentrated mass on its attachment on fhe flutter

speed (Fig. 2.27). For the concentrated mess cenire



of gravity located aft of the elastic axis, they

found that a large effect of the pitching frequency
was felt when the ratio of the pitch frequency to the
fundamental torsion frequency of the wing ( Loms/ggr )
was about 0.16. At the value, the flutter spéed
reached its lowest value and either a decrease

or an increase in the value of ( e/ 031 ) gave

a yelatively large increase in the flutter speed.

A similar, but opposite effect was observed when the
c.g. of the concentrated mass was moved to a location
very near the elastic axis, but still aft of it,
Around the valuerg#ng)Tn 0.16, a very large increase
of the flutter speed was obtained. They suggest that .
at this value of the ratio of the frequencies

the mass system acts as a vibration absorber and

that specially designed attachments could be used

as flutter suppressors.

Gaukroger (Ref 12) has made an extensive
study of the effects of allowing the attachment
flexibilities in pitch, roll, yaw and normal translation
on the flutter characteristics of a uniform wing.

‘The wing was & cantilever uniform wing and varying
sweepback angles, between 0o and-45° were considered,
All the masses were mounted on the elastic axis,

Fig, (2.28) shows the effect of the
pitching frequency on the flutter speed. Two
values of the mass ratics (M = 0.5 and 1.0)
and two values of the sweepback angle (In= 0 and 30°)
are considered, JFor both these the behaviour of
the V -“ﬁdh}T. curve is similar to that in Fig. (2.27).

When the pitching rigidity of the attachment is reduced

from an infinite value, two critical regimmns can be
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observed, where the flutter speed drops to a valué
of less then half the flutter gpeed with the rigidly
mounted mass., For the rigidly mounted mass, the
flutter was of the overtone type. As the rigidity
of the attachment is decreased, & transition to the
fundamental type of flutter was obtained, TFrom
his caldulations, Gaukroger found no simple rules
for determining the critical values of Wy except
that these values lie between the fund#mental
bending and torsion frequencies of the bare wing.

Fig. (2.29) shows the effect of the roll
flexibility on the flutter speed. TFor both values of
the mass ratio (ﬁ = 0.5 and 1,0) consi&ered, there is
no coupling hetween the wing tofsiOn and mass roll
modes, As the sweepback angle is increased, the
coupling between these two modes increases and
the coupling between the wing bending and mass roll
modes decreases, For the unswept wing, increases in
the mass roll frequency leads to a slight decrease
in the flutter speed which is associated with a
slight rise in the flutter frequency, For the sﬁept
wing, there is a pronounced drop in the flutter
speed at a critical value of the roll frequency,

- Gaukroger also investigated the effect of
varying the mass ratio in this case, He found that
the effect of roll flexibility with mass variation
was negligible for large vaiues of ﬁ, but that this
can be considerable for small values of M.

The effects of allowing yaw flexibility are
showm in Fig. (2.30). The effects are similar to
those of the roll flexibility case (Fig. 2.29),
except that the U-shaped branch (for In = 0) does

not appear in the roll flexibility case. For a mass




ouly ying

- 1-O
ratio, M = @75, the effects of allowing yaw

flexibility do not appear to be significant.

Fig, (2.31) shows the effect of allowing
the normal translation fléxibility in the attachment,
At a certain critical value of the frequency ratio
(NQ?MDT ) a minimum value of the flutter speed is
obtained. The flutter frequency of the second branch
(for values of Wni|y7 Egreater than the critical)
is lower than the flutter frequency for the first
branch.

For 2ll these figures (2,28 to gégg) the
concentrated mass was located at the tip, and.the
wing was cantilevered from the root.

Fig., (2.32) shows the effect of allowing
both the normal translation and pitching of mass for

a wing which also had root frequencies in pitch,

normal translation and yaw (Ref, 10). 'The symmetric

and anti-symmetric flutter speeds are shown separately

Two different spanwise locations were considered
(1‘!] = 0.5 and 1,0). For both these locations, the
results are very similar to Gaukroger's cantilever
wing results.

The above results indicate that flexibilities
in the attachment of the concentrated mass can lead
to very low flutter speeds under certain conditions, Yhan

any advantages gained by a Jjudicious placing of the

concentrated mass,

2.6 EFFECT OF THE AERODYNAMIC SHAPE OF THE CONCENTRATED

MASS

The effect of the aerodynamic shape of the
concentrated mass on the flutter speed of the wing
have been investigated by several authors (Refs, 7, 13,

14, 15 and 16),



All the flutter speeds investigated were

at subsonic Mach Numbers, Some of the results are
shown in Figs. (2,33, 2.34 and 2.358).

Sewall and Woolston (Ref., 16) studied the
effect of the aerodynamic shape of concentrated
weights rigidly attached to a cantilever wing.

Two types of weights were used, a streamlined body
resembling an external fuel tank and a blunt body.
Both were weighted to have similar inertial properties.

Fig, (2.33) shows the effect of the spanwise
position of the two mésses on the flutter speed. For
all the span positions the two flutter speeds are
very close and the flutter speéds for the non-
streamtined hody are slightly higher than those
for the streaﬁlined body. The difference is at
the most about 3% between the two speeds, For
both these weighfs the centres of gravity were
slightly aft of the elastic axis.

Two more sets of weights, one with the
centres of gravity on the leading edge and other wifh
the ¢ entres of gravity aft of the elastic axis were
also tested, For these weights also, the flutter
speeds were very close, the non-sireamlined body _
giving a slightly higher flutter speed,

A theoretical study of the effects of the
aerodyhamic loads due t¢ an external fuel tank on
the flutter of the Fokkier F.27 wing was made by
Yff (Ref, 13), He found that by taking the pod
aerodynamic loads into account a flutter speed
was obtained which was approximately 3% lower than the
flutter speed obtained by neglecting the pod

aerodynamic loads.
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Gaukroger (Ref. 7) tested the effect of
different asrodynamic shapes resembling aircraft

fuel tanks, Two spanwise locations for these

aerodynamic 32;3;; were chosen, Two types of tanks
were tested. Both had the same geometrical shpae,

but one of them was attached (at the mid span position)
so that about a third of its length was exposed in
front of the wing, For the second pod, only a fifth
of tﬁe length was exposed. At the tip location,

about a third and a half of the wing were exposed
respectively.

At both the spanwise locations and for both
the serodynamic shapes the flutter speeds were very
similar and differed very little compared to the
bare wing flutter speed, This influence was not
consistent when the centre of gravity of the store
was moved chordwise, one shape giving slightly
higher flutter speed at one position of the centre
of gravity and these results being reversed at
another chordwise position.

Fig. 2.34 shows the effect of the position
of the centre of gravity of a tip tank on the Mach
Number for symmetric flutter (Ref, 14). Two tip
tanks of the same inertial characteristics were
used, but one was smaller than the other. The
smaller tank was a scaled-down #odel of a 230 gallon
capacity and the larger tank corresponded to a tank
with a 700 gallon capacity.

The trends in the flutter curves are vel'y
similar for both the tanks. 1In the region covered
by the tests the larger tank causes & reduction in

the flutter speed of about 15%, All these tests

were made with the fins as in Fig, (2.34).
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in another interesting experiment, when fhe
centre of gravity of the tip tank was approximately
1 to 2 ina..aft of the elastic axis, removing the
fin was found to reduce the flutter speed of the small
tank by about 7%, while removing the fin on the large
tank had only a slight effect, "perhaps tending to
jnerease the flutter speed by a small amount”,

Two tip pods of different sizes, but having
approximately the same inertial characteristics and

"centre of gravity positions were tested (for the
anti-symmetric flutter of a model of the Northrop
¥.89 - Scorpion wing) by Gayman (Ref. 15). ‘'These
tests showed that the changes in the pod shape had .©
small effects on the flutter characteristics, the
largest differences being only slightly greater than
the limits of accuracy.

In an interesting approach, an attempt was
made to define an "aerodynamic equivalent” tip-pod.
This was defined as a rectangular extension of the
wing, which had a semi chord, span and quarter-chord

location relative to the wing elastic axis and which
gave the same aerodynamic effect under analysis (by
fhe asgumed mode method), as does the actual pod

under test conditions. The aerodynamic equivalent

was arrived at by a process of iteration: assuning &
number of different span extensions and calculating
the flutter speed by the assumed mode method., The
additonal "wing" which gave the closest agreement
with the test results was taken as the "aerodynamic
equivalent” of the tip pod.

Fig. (2.35) shows the results of one

such analysis in the form of a conventional V - g plot.

S
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All the results were obtained by assuming three
modes ~ roll, fundamental bending and fundamental
torsion., The line (la) represents the results of
a four degree of freedom analysis in which the
overtone torsion mode was also included in addition
to the above modes.

From a series of similar analyses, it was
concluded for this wing that an accurate tip pod
representation was more important than the number of
degrees of freedom included in the analysis. The
"agrodynamic equivalent” of the tip pods considered -
had smaller plan form areas compared to the plan form
areas of the pods.

Ffom these results it can be concluded that
at subsonic speeds, even radical changes in the
aerodynamic shape of the concentrated mass have very
little effect on the flutter speed. In geherzl, a
streamlining of the external (added) mass tends to
be destabilising, this resulting in a lower flutter
speed. The aerodynamic shape of the added mass may

become more important at supersonic speeds,

2,7 THE EFFECT OF ADDING MORE THAN ONE INERTIA AT
THE SAME TINE ) -

Lambourne and Weston (Ref 6) tested the
influence of adding more than one mass at the same’
time on the flutter speeds. TFigs. (2.36) and (2.37),"
show the results of their investigations for two cases.
In Fig. (2.36) the centres of gravity of both the
masses is on the wing elastic axis. The mass at
the midspan position was kept constant at a chosen
value and the variation of the flutter speed with

changes in the tip mass were observed, Three values

.
R
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for} ( O, 0.155 and 0.312 slugs)are shown. In Fig. (2.37)
the effect of varying two concentrated massces palced at
the span positions of-l‘: 0.3 and 0.5 is shown for two
locations of the chordwise c.g. Also shoﬁn is the effectr
of varying three masses located at 3 = 0,1, 0.38 and 0,3,
_These figures show a behaviour which is similar
to those of Fig, (2.1) which also refersto the same wing.
An important conclusion which can be deduced by
comparing the flutter speeds for the simultaneous loading
of the masses with the cases when they are individually
varied. The effect on the flutter speed of the masses are
not additive, The value of the flutfer speed due to a
simultaneous loading cannot, in general, be predicted from
2 knowledge of the flutter speeds due to an individusl loading

of the masses,

2.8 THE INFLUENCE OF THE ROOT DEGREES OF FREEDOM

The influence of body freedom on wing flutter has
been examined both theoretically (Refs, 8, 10, 13, 15 and 17)
end experimentally (Refs. 8, 14, 15, 18 and 19).

In examining the effects of the root degrees of
freedom, it is convenient to consider the symmetric (pitch
and normal translation) degrees of freedom and the anti-
symmetric (roll) degree of freedom separately since these
are uncoupled,

Figs, 2.38{a), 2.38(b), 2.38(c) are taken from
Ref, (10), The effects of a cohcentrated mass on the flutter
speeds (symretric and anti-symmetric) of four different

wings are shown in the form of contours of constant flutter
speed, From these figures, it can be seen that the overall
effects of a concentrated mass are very similar to the case
with a fixed root, though the actual values of the flutter

speeds may be different.
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Fig. (2.39) refers to tests carried out by means
of ground launched rocket vehicles (Ref, 8). This figure
illustrates the effects of the body centre of gravity on the
body freedom flutter speed for a uniform wing carrying tip
masses, Two different values of the tip mass and two
different values of the tip mass pitching inertia are
considered, For all these values, the position of the
body mass centroid has an appreciable influence on the flutter
speed, From sepearate tests it was shown that the body freedom
flutter speed was increased when the body mass was increased.
Fitting the vehicle with different sizes of horizontal tails
had practically no effect on the flutter speed. This may
be due to the fact that for this particular configuration, the
tail plane effectiveness was very low as it was fairly cloée
to the main wings.

When the symmetric root degrees of freedom are
allowed, in general, two different types of flutter cccur
under proper conditions: (a) Body Freedom Flutter in which
the prineipal modes participating in the flutter are the
regid body modes and the primary wing modes, and (b) Disturbed
Root Flutter which involves mainly the modes of fundamental
bending and fundamental torsion of the wing,

Both types ¢f flutter were encountered in the
investigations of Ref (8).

Gaukroger (Ref. 18) conducted tests on wings which

were allowed root freedoms in pitch and in roll separately.

For the symmetric degree of freedom he found that both

body freedom and disturbed root types of flutter may be
obtained., He also found that for the symmetric degree of
freedom, the effect of the body mass was small, Unlike

Ref (8) he found that (a) the effect of the centre of gravity

position of the body was small and {(b) the effect of adding a
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horizontal tail was to reduce the value of the fusdlage
pitching moment of inertia at which the change from body
freedom flutier to disturbed root flutter occurred,

Fig. (2.40) (Ref. 18) shows the effect of
increasing the fusalage moment of inertia on a wing with a
sweepback angle (of the zpax) of 90. Two values of Vr- the
horizontal tail volume coefficient are considered, The two
types of flutter - body freedom flutiter and disturbed root
filutter - can be distinguished. The body freedom flutter
involves the modes of fuselage pitching and wing bending and
has a lower flutter speed than the fixed root flutter speed.
Disturbed root flutter is similar to the fixed root flutter
and has comparable values for the flutter speed and frequency.

From his tests Gaukroger concluded that the most
important parameters affecting symmetric flutter were the
fuselage pitching ﬁoment of inertia and the horizontal tail
volume coefficient., The addition of the tailplane stabilises
body freedom Ilutter. From separate tests he found that sweep-
back of the wing also has a stabilising effect on the body
freedom type of flutter.

Molyneux (Ref. 5) has investigated theoretically
the effect of allowing root freedoms - symmetric and anti-
symmetric on wings carrying concentrated masses, His
results indicate the possibility that on & wing, initially
free from flutter involving body motions, addition of
concentrated masses may induce this type of flutter. Fig (2.41)
(Ref, 5) shows. the effect of allowing the root degrees of
freedom in pitch and normal translation on the flutter
speed,

When there is a central mass only (and no ocutboard
masses), (Fig. 2.41.a), the flutter speed with ne root
freedom in pitch is lower than the fixed root flutter speed

for low values of the central mass piltching inertia. The
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#odes involved in this Ilutter include a large pitching
oscillation of the central mass, After a certain value of
the central mass pitching inertia is reached, the flutter
resembles fixed root flutter and, the flutter speods axe
higher than the fixed root flutter speeds.

The effect of adding a concentrated mass at the tip
to the above configuration is shown in Figs. (2.41.b) and
(2.41.c) when the centre of gravity of the tip mass is on
the wing leading edge (Fig. 2.41l.b) the fixed root flutter
involves the modes of large motions in pitch and translation
of the tip mass for low values of ﬁf- (ﬂT = Tip mass/wing mass).
When the root freedoms.(pitch and normal translation) are
allowed three different types of flutter can occur., The first
brénch involves translation and pitch of the outboard mass
but no motion of the central mass. The second branch involves
translation and pitch of the outboard mass, but only pitch of
the central mass, For large values of the tip mass the
flutter inveolves gzero translation and seyg pitch of the tip
mass, When the tip méss centre of gravity is located on
the elastic axis, only the first two branches of the previous
curve were obtained (Fig. 2.41.c).

From Figs, (2‘414;) and (2,42,c¢) it can be seen
that under certain conditions, values of the flutter speed
fer less than the fixed root case can be obtained by allowing
root degrees of freedonm.

When the wing is allowed the anti-symmetric degree
of freedom (i.e, in roll) and when there are no outboard
masses, the flutter mode inifially involves large roll
motions of the central mass (Fig. 2.42.a), * The second
branch invoives very little roll motion of the mass, For

this branch, the flutter speeds are less than the fixed root

flutter speeds.
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For the case wihwu &n ouitboard mass 18 present at
the tip (Fig. 2.42.b, 2.42.c)mmobthe rall degree of
freedom does not seem to have an adverse effect as severe as
that :obtained when the symmetric degrees of freedom are
allowed, The results of Molyneux (Ref. 5) and Gaukroger
(Ref. 18) suggest that for a conventional aircraft, it is
unlikely that antisymmetric flutter would occur at speeds
appreciably less than the corresponding fixed root flutter,
- The above results show that the root degrees of
freedom can be important parameters in the flutter of wings
with concentrated masses, under certain circumstances, flutter

speeds which are considerably lower than the corresponding

fixed root flutter speeds can be obtained.

2,9 EFFECT OF FUEL SIOSHING

An important class of concentrated masses ~ the
fuel content in integral wing tanks or in external fuel
tanks - possesses some properties which can adversely
affect the flutter speeds. The. fuel can move inside the tank
and its quantity is variable.

Yif (Ref, 13) found that for a pylon tank without
internal baffles the attitude of the tank can have large
detrimental effects on the flutter speed. (Fig 2.43)., When
the fuel tank was in a nose-up aititude, flutter speeds
considerably lower than the bare wing flutter speedwere
obtained for partially filled tanks, It was also found
that for a given fuel tank content the flutter speed
decreased with increasing nose-up attitude, These results
would be somewhat modified if the contribution of the moving
fuel to the torsional damping is taken into account.

For an external fuel tank without internal baffles,
the fuel can mové freely inside the tank. One method of

taking this factor into account is to use the "frozen fuel”
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method. The fuel is treated as a rigid body for purposes

of taking the moment of inertia into account. Gayman (Ref. 15)
found from experiments on a model tank, that for a

partially filled tank the measured moment of inertia can be
very much lower than the values obtained by using a

‘frozen fuel' model.

Sewall (Ref. 20) made some analytical and
experimental studies on two dimensional fuel-loaded
wing models. The wing models had two degrees of freedom
only, these being controlled by two springs which
allowed only the rigid vertical transiation and rigid body
pitching respectively. 1In the apalytical studies, Sewall
used "effective” values for the mass and moment of inertia
of the fuel tank with fusel.

From his experiments on internal (baffled) fuel
tanks Sewall found that there was one particular sequence
of emptying the fuel tank which gave the optimum (i.e.
consi;tently the highest possible) flutter speeds.

Even from this limited survey it can be appreciated that
correct analytical representation of fuel in an externally
mounted tanks (or in integral wing tanks) can be

important.

2.10 EFFECT OF WING SWEEPBACK

For a bare cantilever wing, when the wing-
sweepback 1is increased from zero, the flutter speed falls
initially until, in general,asweephback angle of 100 and 15o
is reached. A further increase in the sweepback brings a
about an increase in the flutter speed. From a study of
experimental results, Molyneux (Ref. 21) suggested the -

following approximate relationship;

' { % - .



where (}f;),\ = Flutter speed of the swept-back wing

(\j\‘: )l\':-ﬂ
and AN

Flutter speed of the unswept wing

Sweepback angle of the span

Sanford et al (Ref. 22) tested wings of
different aspect ratics for the effect of sweepback. They
found that the variation of the flutter speed was close to
the variation of (Sec%l\) with variation in the sweepback
angle.

In the above tests the flutter was of the fixed
root type. Wilts (Ref. 10) obtained some interesting
results from his analogue computer analyses on the effect
of the sweepback angle in the presence of the root degrees of
freedom. TFig. (2.44) shows some of the results for four
different wings. For the range of sweepback angles
investigated, the increases.in flutter speed that would be
expected from Egn. (2.10.1) are not obtained. In general
for the bare wings, the symmetric fiuttter speed seems to
show a slight decrease as the sweepback angle is increased.

Fig. (2.45) shows the effect of sweepback on
a cantilever wing., On the same graph is plotted the
variation of the flulter speed with sweepback when the
symmetric degrees of freedom are allowed (Ref. 18). Both
the curves show that the flutter speed increases with
increasing sweepback angles, but the actual rates of increase
are different.

Addition of concentrated inertias also modifies
the.behaviour of the flutter speed to increases in the
sweepback angle. For example, Figs.(z.ll) and (2.13)
show that it is not possible to predict a regular trend
for the V - /N curve and that each wing has to be treated

separately.
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2.11 INFLUENCE OF COMPRESSIBILITY AND REYNOLDS NUMBER

Most of the experimental results surveyed so
far have been obtained from :;:Eitunnel tests on flexible
models. It is important to know how these results can be
used to predict the behaviour of the full-scale aeroplane.
In the wind tunnel models, it is possible to represent
the structural and inertial properties of the full--scale
aeroplane, but not the aerodynamic forces and moments
which act on the aeroplane. It is usual to test models
having a symmetrical cross section in order to avoid trimming
problems. No measurements seem to have been made to
ascertain the effects of aerodynamic scale effects on
flutter. Bisplinghoff et al (Ref. 33, p. 710} suggest
that provided the Reynolds Number in the wind tunnel is
above about 4 x105 the effects of changes in Reynolds Number
are small and the flutter speed and frequency are relatively
insensitive to changes in the Reynolds Number, Molyneux
(Ref. 24) suggests that wind tunnel models should be built

ith a mean chord of at least 8 ins for tests on main surface
flutter.

Martin and Sewall (Ref. 14) give an interesting
qualitative comparison between a flight flutter test result
and the flutter speeds predicted by wind tunnel tests
(Fig. 2.46).

The shaded areca Shows the flutter speeds expectied
from wind tpnnel tests and the flight flutter point is
shown as an elongated line because of uncertainties in
the amount of fuel present in the tanks at the time of
flutter, From this and from other resultis, they conclude
that the model flutter characteristics may be close to
those of the full scale aeroplane.

The effect of compressibility can be allowed for



in one of two ways. The model can be constructed so that

flutter occurs at the same speed as on the prototype
("True Speed"” model™). Use of a variable density tunnel
in which the working medium is a mixture of éir and
anocther gas, results in some simplification of the madel.
By varying the amount of the added gas, it is possible to
vary the mass ratio, Reynolds Number and the Mach Number
independently. A great deal of work has been carried out
to assess the effect of Mach Number on the flutter speed.
Fig. (2.47) from Ref. (22) is a typical illustration and
it refers to a wing with an aspect ratio of 9 end two
values of the sweep angle, 16o and 390, are considered.
The effect of the Mach Number is most critical at
the transonic speeds.

Very little is known about the effect of

Reynolds Number on the flutter speed at supersonic speeds.

2.12 SUMMARY OF THE REVIEW

A review of the available information on the
flutter of wings with concentrated inertias has shown
that there are a number of parameters which control the
flutter characteristics and that these can be varied
over a wide range. For cantilever wings of conventional
planforms (and having no discontinuities), it is possible
to derive criteria (e.g. Ref. 21) from which the effect
of varying a certain parameter on the fiutter speed can
be ascertained. In addition to the geometric, inertial
and structural properties (of an unswept cantilever wing)
the effects of sweepback and of compressibility can also
be taken into account as these confirm to fairly well
defined patterns. However, when a concentrated mass is_
added to the ﬁiﬁg, it is not possible to predict with
any degree of certainty, the changes in the flutter

speed. It is pqssible to isolate the concentrated mass
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parameters which have the most significant effect on the
flutter speed. Thege are (a) the mass, (b) the pitching
moment of inertia and (c) the centre of gravity location of
the mass (both chordwise and spanwise).

In general, locations of the centre of gravity
forward of the elastic axis give increases in the flutter
gpeed. These speeds are generally higher than the flutter
speed of the bare wing, For a given wing by a judicious
placing of the concentrated mass, it is possible to
obtain a large increase in the flutter speed (compared -te with
the bare wing flutter speed).

These remarks apply to wings with a fixed root.

pirch
When root degrees of freedom in putch and normal
translation are allowed, the flutter speed can be
adversely affected. Any flexibility in the aitachment
of the concentrated mass to the wing can also have &an
adverse effect on the flutter speed.

Thus, for a given wing mass system, it is
difficult to .obtain any criteria which would predict the
flutter speced and. frequency. The perticular system has
0 be analysed either by theoretical means or by experiments

in order to estimate the flutter speeds.




CHAPTER 3. -

A BRIYF REVIEW OF THE METHODS OF REPRESENTATION OF THE AERQDYNAMIC
LOADS '

3.1. REPRESENTATION OF THE AERODYNAMIC LOADS

The amount of time and effort involved in setting up
and solving the equations of motion of a fluttering wing is
- largely determined by the method used for representing the
aerodynamic loads. It is very difficult to take into account
the exact airloads acting on a wing which is oscillating in an
arbitrary mode. It is wusual to make a number of approximations
to obtain relatively simple expressions for the lift and
moment on an oscillating wing. These are:-
{i) The aerofoil is assumed to have vanishing but
finite thickness and very little camber,
(ii) Potential flow is assumed. (The éatisfaction of the
Kutta condition tacitly éssumes the existence of
viscosity).
(iii) The aerofoil is assumed to be ¢scillating
harmonically.
(iv) The oscillations are assumed tc have small
amplitudes (so that linearity.of the forces
and moments with the deflections is assumed.

3.1.1 Quasi - Steady Approximations

A simple, if very approximate estimate of the 1ift
and moment can be obtained by regarding the loads on the
oscillating wing as having the same values as in the case
of steady motion, but with the angle of attack being given by the
instantaneous inclination between the resultant velocity vector
and the wing chord line. If we assume that the downward
displacement of the elastic axis is given by h and the

instantaneous angle of attack is given by X {(Fig. 3.1),
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the 1ift snd momant per unit span are given by (Ref. 23, p.279)

3 2 . .
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In deriving Eq. (3.1) it has been assumed that the lift
curve slope is given by 27V per radian, and that the value
of Vis very small.

A more sophisticated approximation is the quasi~steady
approximation where only the effect of the wake vortices isg
neglected. This is equivalent of replacing the Theodoresen
function by its limiting value as 3} tends to zero. The lift

and moment are then given by:-
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one attraction of using the gquasi-steady approximatioﬁ is that
the expressions for the 1lift and the mc;ment are considerably
simpler than,'the complete expressions obtained from two
dimensional strip theory as theyrdo not contain any

transcendental functions of the reduced frequency. ).

3.1.2 Two Dimensional Strip Theory Derivatives

Instead of using the quasi-steady derivatives, a more
accurate approximation to the lift and moment is obtained if

we divide the wing into a number of spanwise strips and treat
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each strip as if it were part of a two dimensional wing. The
derivatives are functions of the reduced freqguency { Vo= tﬁff)
Y

and these as defined in the same sense as in differentinl calculus
and are the differential coefficients of a non-dimensional
aerodynamic force with respect to a non-dimensional amplitude
of motion.

There are two main notations in use for defining the
aerodynamic derivatives, For a two-dimensional wing, they

are defined in the British Notation as:-

L= ev%e | (-2 AT Laotn)he

*L-?aL&, +b§Lé{,“\'Qo¢} D(]
M o= R [ FImR A T g ey e
A (TN AT Mg +mu)0éj

(&3)

where L and M are the lift and moment per unit span and act
at the wing leading edge it should be noted that the reduced

e

frequency 3} is based on the wing chord and is given by

33 = q;a%; = &V (:5'<¥)

The values of the derivatives are given by (Eg. Ref. 25)

(a) Inertia Derivatives:

L D / L 1= +T
h A o = M, - - e = QW
& R 8. R 28
(b) Damping Derivatives: - (35)
~ + —
4( . 46/5)

Mp = - S M = T
[+ S PRy B+EF+ 4G/~ ..7,'5
(¢) Stiffness Sgrivatives: lﬁ(“ /I'J ( )

_ 4
Mp = -RBG My= 7 ( aF-3DG) 39
In Eqs. 3.6 and gﬁ%. ¥ and G are the real and

imaginary parts of the Theoderesen function,
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C») = F(B)I« i G(w)

The values of F and G are tabulated in, for example,

Refs. {27), (28).

the evaluation of F and G:

— —_= — 3
0.021573 + 0.2104 > + 0 512607 + 0,5005027°

FP)Y =

Van de Vooren (Ref., 26) gives approximate formulae for
—_— —_—
0.021508 + 0. 25123955 + 1- 035318 D 4.5

6( 3 y= ©, 001395 4 G 32124 D 4 0,12229% D w o cooiaESsS i
01 0BAZNE + ©: AR EID + 2 ABABI T 4+ DF 4 o ‘

These are valid for values of 1> between Dz .\ and V=30
and the percentage error in this region is less than 4 x 154

The derivatives in the Egqs. (3.5) to (3.7) refer to
the 1lift and momeﬁt acting at the wing leading edge. The |
derivatives with respect to any other axis can be obtained
by applying proper transformation formulae (Eg. Ref. 27). 1If
the reference axis is situated at a distance ec aft of the
leading edge and if the derivatives with respect to this

— —_

axis are denoted by @1;, Q&Oetc, we have
b= b Tt Ty

t& :L&“‘QLH et ‘

3l
5

My ~ € LR €te,

Mg = Mg —empgoly -—‘é?tg; etc,
Gy

In the American Notation, the inertia, damping and .

stiffness derivatives are combined into one unit and the 1ift

and moment per unit span are defined as: '
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If the reference axis is taken as the midchord line

of the wing, the derivatives are given by (¢.g.Ref. 28)
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For obtaining the 1ift and moment about a reference

axis situated at a distance (ba) aft of the midchord (Fig.3.1)

the following transformation formulae are used:-

My = Mh- (5 +a) Ly,
Mo = My- Grra)(LavMi) o) iy (32

Similar, appropriate derivatives can be defined when

the wing has control surfaces and tabs (Eg, Refs. 25, 28).

3.2,3 Empirical Values of the Derivatives

For wings of moderate to large aspect ratio, the use
of two dimensional strip theory derivatives in assumed mode
analyses gives values of the flutter speed which are generally
about 10 to 15% lower than the experimentally measured flutter
speeds (Ref. 30, 31),

When the derivatives are defined as in Eqn. (3.3)

| empirical and semi-~empirical corrections can be applied to the

derivatives in order to take into account the effect of the tip.

One method is to define equivalent constant strip derivatives,

These derivatives do not give the correct forces on each

strip of the wing but are defined in such a way that they are
independent of the spanwise position and after appropriate

| integration over the span, give the correct generalized forces

on the wing.
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Another method is to use overall strip derivatives, i.e.

derivatives related to the forces on the complete wing. For
a wing oscillating in a set of deformation modes, these
derivatives are related to the generalized forces and vary
with the mede shapes.

Reissner {Ref. 32) has developed a finite span theory
for wings of high aspect ratio, but its application to routine
flutter calculations is somewhat laborious. in this method
the finite span effect is obtained, for a given mode ig;;;,
by epplying corrections to the two dimensional values of the
derivatives. Reissner and Stevens (Ref. 30) have prepared
tables which simplify the calculations, They also discuss
‘the systematic modifications of the flutter calculations when
Reissner's Theory is used to modify a strip theory analysis.

The values of the Equivalent Constant S8trip derivatives
can be calculated by using an approximate three dimensional
theory. Guyett (Ref, 33) gives a comparison between the values
of the derivativés obtained from three different theories and
the values obtained from two dimensional theory (Fig. 3.2, 3.3,
3.4). These apply to rigid wings oscillating in the modes of
pitch and translation. It can be seen that significant finite
span effects can occur even for wings of large aspect ratio.

Molyneux and Hall {(Ref. 34) tested a number of rigid
wings which had freedoms in uniform pitch and linear flexure.
The wings had aspect ratios from 2 to 6 and sweepback angles
from zero to 600. 1t was found for these wings that the
calculated and the measured values of the derivatives agreed

fairly well if the two dimensional theoretical derjivatives

were modified in the following way:
{a) Multiply the damping derivatives ( ‘;_y“ [6‘ e 5\9 ‘/E(g)

(b) Multiply the stiffness derivatives (\-\-\)Lx ek¢) b3 (\‘_/f(m)z

. ©. 8
vhere g‘_{“) {‘H AR % 313)
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It is not posgible to obtain such simple corrections
for the derivatives defined as in Egn. (3.10} since each of
the derivatives contains the influence of the inertia,

damping and stiffness derivatives.
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CHAPTER _4

A REVIEW OF METHODS OF FLUTTER ANALYSIS APPROPRIATE TO
WINGS WITH LARGE CONCENTRATED INERTIAS

A humbér of analyticakumethods have heen used to
obtain the flutter speeds of wings with concentrated masses.
The methods differ from each other in three important
respects:

(2) The mathematical model used to represent the

wing and fhe method used to obtain the equations
of motion,

{b) The method used for describing the aerodynamic
loading on the wing,

(¢) The method employed to solve the equations of
motion to obtain the flutter speed and flutter
frequency.

The behaviour of the physical system can be expressed
in terms of one of the following: the basic differential
equations, the basic integral equation or by using an
energy approach.

In general, for an arbitrary wing, the inertia) and
structu;al properties are known at a set of points on the
wing and are not easily definable in terms of simple
mathematical functions. It will not therefore be possible to
obtain an exact solution ¥§-the flutter speed. However, there
exists a class of simple wings for which it is possible to
obtain exact solutions. These solutions can be regarded as
standards of comparison for estimating the accuracy of other
analytical methods,

It should be noted that these solutions are 'exact'
only in so far as the aerodynamic tprms used in the analysis

are ‘'exact'.
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4,1 'EXACT' SOLUTION - DIFFERENTIAL EQUATION AND CPERATIONAL
APPROACH

Subject to the above limitation, the first exact
solution was obtained by Goland (Ref. 35) who treated the
bending-torsion flutter of a bare, uniform cantilever wing
with uniformly distributed inertial and elastic properties.
Starting from the partial differential equations of motion
and using the boundary conditions at the root and at the tip
of the wing, he was able to obtain the solution of the
flutter problem by stralghtforward methods.

Goland and Luke (Ref. 36) used a differential equation
approach to solve the flutter problem of & uniform wing with
tip weights. They also included the fuselage degrees of
freedom (both symmetric and anti-symmetric) in the analysis
and the differential equations of motions were solved by an
operational method. The results from both Ref, (355 and from

Ref(36) showed good agreement with the results obtained by
energy methods,

An important extension to the method of Ref. (36) was made
by Runyan and Watkins (Ref. 37} to consider the flutter of a
uniform wing with an arbitrarily placed concentrated mass.

Consider a uniform cantilever wing, whose stiffnesses
EI, G and the guantities m (mass per unit length), 5.

(static unbalance per unit length) and fhé pitching moment of
inertia per unit length) are 2ll constant along the span
{Fig. 4.1) The differential equations of motion cen be

written as:
K S & g dh
Ny 2 4+ duj-!-\ Lc.\jlt)
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The appropriate boundary conditions are
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In Eqs.hi
L = Lift per unit span

M = Moment 'er unit span

W = Weight of concentrated mass

e, = Distance of the concentrated mass <.g. from the wing ‘

elastic axis
K. = Radius of gyration of the concentrated mass about the ‘

elastic axis
and the subscripts lT and 1T ropresent the values of the
derivatives as 1, is approached from the side \i<: L. and
from M L‘ respectively.

Runyan and Watkins solved Eqs. (4.1) by first taking |
the Laplace transform of the two equations and solving for I ‘
andof, the transforms of h. and ao¢ respectively, After
uging the boundary conditions at the root these can be written ‘
as: ‘
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and the 1ift and moment are defined by
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In general it is not possible to factorize O
and so obtain the inverse of W{p)and A {p). Runyan and
Watkins expanded the function .( ‘/A(p)) in the form of a

power series:

A V= T
= ) ! a4
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where the T, are functions of X, Q,‘o’ énd 5 . 'The series
converges rapidly and in calculations, only a few terms of
the series need be used.

After obtaining the mode shapes h(uj) and (Y } by
inverting Eq. (4.3}, the flutter determinant can be dérivé§

i

by using the boundary conditions at the tip as:
¥ " i
by huchy  hydy

ire

i bl W | =0 (45)
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where the terms in the flutter determinant are functions
of the inertia].a,'tm;tructural properties of the wing, the
aerod_;;namic loads and the concentrated mass parameters.

To obtain the flutter speed, flutter frequency and the
flutter mode shapes, a trial and error procedure has to be
followed., For a given wing-mass coriﬁguration, the coefficients
in Eq. (4.5) are functions of the flutter frequency ‘s and
the corresponding reduced frequency “LJ C-_—-bﬁ)/v) , and the

problem is one of finding values of () and)) which cause the

flutter determinant to vanish,
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Runyan and Watkins applied this method to obtain the
flutter speeds of a uniform cantilever wing carrying a large
concentrated mass placed ahead of the elastic axis (weight 7a
of Ref, 38). The flutter speeds obtained were within 7% of
the experimental values. On the other hand, & Rayleigh
type analysis for the same wing gave highly unconservative
values,

In this formulation the order of the flutter deter-
minant depends only upon the order of the system of differential
equations to be solved and not upon the number of modes
inv§1ved. It is not limited to the case of a uniform
cantilever wing with a single concentrated mass. Ry proper
attention to the boundary conditions the theory can be extended
to cover the case of a wing carrying a number of masses. One
of these could be the fuselage and both symmetric and anti-
symmetric types of flutter can be analysed. The same type
of analysis, with the air loads equated to =zero, can be used
to obtain the coupled modes and frequencies of the wing-mass

system,

4,2 EXACT SOLUTION - DIFFERENTIAL EQUATIONS AND LYAPUNOV'S
PIRECT METHOD

Lyapunov's second (or direct) method has been used
in control system analysis, but so far has found very little
application in aeroelasticity. The advantages of this
method =~ the ability to deal directly with the distributed
system in the form of partial differential equations or
integral equations without having to resort to approximations
and its ability to handle system non-linearities. seem to
be more than offset by the difficulties in choosing a proper
*functional® which is an essential part of the analysis.

In Ref. (39), Parks used Lyapunov's method tec obtain

the stability boundaries for the problem of fluttering panel.
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Wang (Ref. 40) obtained the stability boundaries of
a horizontal tail mounted on a flexible fuselage by using
this method,

In Ref 41, Wang discusses the formulation of stability
problems of both elastic and aeroelastic systems in the

_framework of the Lyapunov stability theory. Among other
problems, he considers the flutter problem of a cantilever
wing and that of a cantilever wing carrying two concentrated
masses at the tip, one of which is attached to the other by

means of a spring,

In using the second method of Lyapunov, we attempt to
obtain information on the stability of the equilibrium states
of the system without actually solving the system equétions
for the roofs. Thié method is based on a generalisation of
the idea that if a system has an asymptotically stable
equilibrium state, then the stored energy of.the system decays
with increasing time until it reaches its minimum value at
the equilibrium state. In the second method of Lyapunov, a

 fictitious 'energy' function or a Lyapunov function is determined
first,

The equations of motion of a cantileﬁer wing can be
written as:

2

mcq) s ‘%{la + Sl Y) Vl%?}_ﬁ_ 4 O Lendag P

3 ‘ fe]
'St

2%h
Secln) ¥ Sbt + Aoy V2 gim _BCG:T\CR)] ”go‘{_

= LT W (RN o2 * |
= E: . ( 3T )“*33§§ ) *‘ler(agzgé) \ 4.6

-

+Dh(h%\x L

where,
D

L+ Dy = Ky b ke ;"ab Ky, o + X ?roé

T NP vl 5




48

end “(3‘-5[5) is the non dimensional spanConsider the case
when two concentrated masses M and M are attached .to each
ot_:her by & non-linear spring and danmper.

Let the mass M be attached rigidly to the wing tip.
Let ’%.denote the displacement, normalized with respect to 8,
of M with respect to the (x, y) plane. The equation of

motion for M can be described by

\V\\i 2 d:} & Va2 ‘fa (Z24ha, e)) (dz dhin,e )

A€

+ ¢ K(i"-\-h(l,t}) =0 (<.8)
where time t is normalized with‘respect to ilv , and %d (ot K
are specified functicns, corresponding to the damping
coefficient and the spring force, respectively.

The boundary conditions at the root and at the tip |

are now given by:

Rookt h 3"‘ T o =mo

YValw
i 2 2
%cl(vn b{;‘, = Wy*s %—&‘1 +V 8 £024n0,0)
* 42 d\\
(d = )%?Ktz-\‘n(i{:)}
ET(yy o8 - 7 o« ek —(#9)

where I, is the moment of inertia of M and M about the wing
elastic axis.
To obtain sufficient conditions for the stability of

the system, Wang considers a functional of the form:
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To ensure the asymptotic stability of the system with respect

fo Ffour metrics Y” (f ?(md g the following conditions have to be
patisfieds
i) The symmetric matrix G, be positive dufinite for all § €L

The elements of Ql are given by:

o 2.2
U1 = rﬂ:%?l r() G2 = 9z = o () V'S

=m(q)vs dpy = 4y, = scx(f])vgs2

2]
2 .

4 = Y = 08 (VTS ayy =gy = °pt(1) v

= min GJ =i(7) vV .11
g ) s ) ()

ii) The symmetric malrix 9, be negative definite., The elements
of Q2 are given by:

= 2¢c S3Kh1 ~ min EI(“\ )

CI11 1 feco3

Gp = Gy = 57 (o) Kyp Ky, )

)y = 33 = 2 (c]_SKm"-i- Ky, )

Qg = dgy = 52 ( ey SKe, + Ky )

Gy, = 2 s ( eqm (4§ e Kg, S)

Gpy = G3p = 5 (0 + 5 Ku )

qyy = 2 c, ( 12Km‘. —qm:.g;gGJ(fl

Ayq = Gyq = 52 (c Ky, + K&m_)_

= 2 ( c2i(7\) v + SQK;&L ) ( 4.12)

and, 1ii) the following conditions also be matisfied:
£,(2 + n(t,1) )> 0

(£ + h(t,1) ) . K(Z+ R(%,1) )>0 for (B+n(t,1) ) £ o

(4.13)




The stability boundaries in a given parameter space.

vai be vutainea with the help of a digital computer.
No numerical results are givén by Wang. From the
short description given above it can be seen that the

_stability boundaries can be obtained without having to

There is no need to find ewt the roots of the equationsldf
motion. This type of formulation is very helpful in
studying the influence of the variation of certain
parameters on the flutter speeds., One disadvantage-qf
the method is thé£ no information about the frequencies
andlmodes'of the gystem can be'obtained.

Another difficulty ié in the correct representation
of the aerodynamic forces. The usual form of the aero-
dynamic forces and momentslobtained by assumipg simple

‘hamenic motion are applicable to divergent oscillations

‘ ﬁakg any assumptions about the behaviour of the system.
but not for convergent oscillations (Ref. 23, pp. 281 - 2).
4,3 INTEGRAL EQUATION APRPROACH

Van de Vooren {(Ref., 42) has given a procedure in

which the normal modes calculated by using a matrix=ﬁg¢cedure

are used in obtaining the flutter speed,‘frequendy andua150‘7 
the flutter mode. His procedure considers a system with a -
1arge number of degrees of freedom, and is applicable to

an aeroplane with concentrated masses,controls, ete, The'
fuselage degrees of freedom can be included in the analysis.

Consider an aeroplane carrying some concentrated

masses on the wings., For symmetric vibratiohs the
displacements in bending and torsion of the wing can be

represented by the equations

Z(y)~Z (o) j Ku 1y, ) F{rnc\rl w S

Py ~ ey = f K2afy,Y) M(l})df\ ¥ z i k'.u{‘ﬂ.'l\;?“])-‘
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wing deflection measured (at the elastic axia)

twist angle at y about <lastic axis

twist angle of the conc. mass concentrated at
i "..‘.\, Do e “
mass of (wing + conc. mass) at station‘] per

unit span

moment of inertia of wing + moment of inertia
of the concentrated mass (assumed as
céncentrated at the attachment ) A1l
moments of inertia are about the elastic

axi s/unit Zpsn

moment of inertia of the concentrated mass about

the attaqhment point at Y.
influence function of wing deflection
influence function of wing torsion

influence function of the torsion of the

concentrated mass

fuselage deflections

0 for Y %1). (Dirac delta)

The forces and moments are completely determined

by the mass distribution and by the vibration amplitudes
ZCY) Ply) and @ (8) ws.
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Substitutlng (4.14) in (4.13) we have the equation for the

displacements as
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To eliminate the fuselage motions
we equate the sum of all the vertical forces and the sum

of all the moments about the ea separately to zero, i.e.

>

j Fipndn =o a

>

et . SR

(71 mep v geq-1) §dy 2o )
Using these tég conditions we have

%ci = _312 g? ‘%é Wy
where

Q = t__s‘__ ﬂ"t*. 11"%

ok : *
K and B are both symmetrical Matrices and m represents
the mass matrix after the elimination of the fuselage
motions.

The frequencies ' and the modes tgi can bhe
obfained from Eqn 4.17 using the standard procedures of
Matrix iteration. It should be noted that though X and gf
D will tot, in Geneyad, e symmehical
are Symmetrical Matrices, B-nesd not—he-Symmetrieal,
The integral cquations (4.17) are also valid for
flutter, but now the elements of D will be defined as
D = K @+4) (4.18)
where éf is the matrix of aerodynamic coefficieﬁts.
The iteration procedures can be simplified it
we know the matrix D as the product of symmetric matrices
(as in equations 4.17). In the case of flutter, introduction
of the aerodynamic matrix éf removes this possibility since
the element of ﬁ* are in general complex and A* itself is
non-Hermitian,
To simplify the task of solving Equation (4.17)
with D expressed as in Eq. (4.18), Van de Vooren

introduces the normal co-ordinates, thereby effectiveiy

restricting the number of dogrees of freedom, The normal



co—~ordinates are given by: -

¢, =E 4 (1)

)

where F is a rectangular matrix whose p- columns aro
cigenvectors & b . . g (which are the cigenvectors of D

vy =R, -,__'-P .
in Egqn. (4.17) ).

Substituting (4.19) in (4.17) we got

F4 = 2 DF qy (@ zo)

This equation could be put into the standard characteristic
value problem format by premultiplying both sides by {37_
(The {» rows of GT are ?f Qf- A ér the eigenvectors of
- -.-l.' —2; k) [ _F
the transpose of I),ie?Q?). By invoking the condition of

orthogonalityﬁétf becomes a unit matrix and Eq. (4.20)

can be written as

q"':: 3;2- 9‘ _.D‘ E% (_L;.?_\)
This equation can be solved for the cigenvalues
and the eigenvectors ¢}, , the flutter speed and frequency are

obtained by the V-fj method.

4.4 INTEGRAL EQUATION - WIELANDT'S ITERATIVE TRANSFORMATION
PROCEDURE .

Gossard (Ref. 43) illustrated the use of Wielandt's
iterative transformation procedure for the vibration and
flutter problem of wings. He obtained the flutter speed,
frequency and mode shapes for a particular case of the wing
of Ref, (38)

For the solution of the equations of the vibrating
system Wielandt's procedure is similar in form to the standard
tteration procedure. The lower order eigenvalues and
eigenvectors are obtained firstAand these are swept out to

obtain the higher order eigenvalues and eigenvectors, In

the ‘standard iteration procedurs, sweeping is carried out
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by invoking the orthogonality relationship between the modes.
In thé Wielaﬁdt procedure, a forciné function is used which
greatly simplifies the numerical work. The true value of
the nth eigenvalue is found directly in the iterative
transformation procedure, but the true nth mode is computed
from quantities within the iteration c¢ycle after the transformed
nth mode has been found. This transformed nth mode is a
particular.combination of all the modes from the fundamental
to the nth mode.

Consider the prohlem of the coupled vibrations of a
wing mass system. The equation for the mode shape components

in bending and in torsion for a cantilever wing is:

34, b
b W L! ET Sl; Cphh ‘*”Puq'u) (dﬂ)q

e N |
s L &
& = oF S a3 S CQnh + Q) Cdy) b 2 2
& o -

These relations have been obtained by integration
of the basic differential equation using the propéf boundary
condiztions at the root and at the tip.

In Eqn (4.22) the expressions ( V. w + £, %) and
(G, n+&, %) are the intensities of applied force and torque
respectively. The P and Q coefficients are given by

8 =n

Mobe = Ry
My’ :

|
i
%
; (4.23)

O
R
n

It

and ™
be

br - radius of the gyration of tho wing about the elastic
axis
The inertia forces and torques due to a concentrated mass

mass/unit length

distance of the c.g. from the elastic axis

I

are: -
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In Eous (4.24)

——

\.)i' 4 = t\(\

——

T =~ lan . o %3
aﬁq - Mgty s
Each coupled mode is a solution of the simmnltanecus
relations given by (4.22)., Each mode contains both the
flexural and tor$ional components which always appear

together in a fixed relation to each other,.

In most cases the integéé%i&nsﬂﬁnst be performed
numerically and this is best done by dividing the wing into
a number of segments. The number and disposition of the
stations - + have a great influence on the amountof
labour involved and the accuracy of the results. 1In general,

a station must be placed at each discontinuity such as
concentrated masses, discontinuities in the structural
stiffness distribution, ete.

The flexural and torsional components of the first
mode are obtained by using the standard procedure for iteration:
(a) assuming a plausible mode shape, (b) performing the
integrations indicated in equations (4.22) (c) comparing
the derived and assumed mode sﬁape and (d) if necessary
repeating the process until reasonable.ﬁgreement is obhtained
between the assumed mode shape and the derived mode shape.
From the results of two successive iterations, the fundamental
coupled frequency can be obtained.

To obtain the sweeping function which would 'sweep out’
the fundamental mode from the integral relations (4.22), the
standard iteration procedures invoke the orthogonality
requirement between the first mode and the second mode,

In the iterative transformation procedure, the
immediate éim is to find a linear combination of the first

and second modes which is called the transformed second mode,




he 1lteration procegs can be illustrated diagramatically as

\fn Fig. (4.4).

amplitude). In Fig. 4.A(a), these assumed forms are
tespecky 43
QA

and torsional components.

o
N

Ci
and g, respectively.

second mode should have a nodal point in the component and

et the station where the first coupled mode has the greatest
) ] .

designated as k\qz and o repty for the bending

¢ ‘
and &fg) which are the results of carrying out the

The sweeping function can now be derived., This is

Fia. 4.A

‘\\

In the first step a plausible form for the transfdnped

{ second mode is assumed (for greatest accuracy, the transformed

The second step is to obtain intermediate derived modes

)
integrations indicated in Eq. (4.22) using the mode shapes huz

found such that it has the shape of the (previously determined)

first coupled mode, Its magnitude is found from the condition

that the sum of the intermediate derived mode and the sweeping

function equals zero at station A, i.e. at any given station:

@ (WY \ WY
P (),
]

4,26
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These_iralues of \;‘:'; and Q(e::f) are #aken as the |
starting poirt for the next iteration cycle, and the iterationé
; i PO R AL LI Yoi b il
are repeated until the values of the ratios |7d/ *at%““d ] Qz/dgfﬂ
are reaéonablf the same at ali stations, If the assumed
rmode shape is exactly equal to the transformed second mode
shepe, all these ratios are equal to each other aﬁd contain
the single unknown wf_ . The value of G.)iis that which
makes fhese ratios equal to unity,
A physical interpretation of the transformed
second mode is that the vibration in this mode is the response
of the‘beam to an oséillatory load having the shape of the
first-mode shape and a frequency equal to the secondrnaturai
| frequency, supcrimpoéed on the free vibration modeforn of the beam in
the second.natural mode, The procedure can be extended in
a similar manner to determine the higher order freqhencies.:
The free mode shapes can be derived from the transformed
mode shape. | | |
The equations pf a fluttering wing are similar to.
equations (4,22) except that the P and Q components are now
éomplex and depend on the value of the reduced frequenéy.ﬁl
The solution to the problem would include complex walues of
the frequency ()., 8ince the velocities should be real
quantities and flutter occurs for only real values of
it is necessary to introduce an artificial damping-factor E}
so that the complex eigenvalue is now given by (ﬁf%p+g3).
Gossard calls this transformed problem the psendo-flutter
problem., With this notation and neglecting structural damping

the equation of the fluttering cantilever wing can be
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Eqﬁations {4.28) can be solved in a way analoguous
to the solution of Eqns. (4.2ﬁi. The main differences in
the case of Eqn 32$?% are that (a) the coefficients P and Q
are complex and depend on the reduced frequency and (b) all
the calculations involve camplex numbers and the modes now
involve complex numbers, reflecting the phase difference in
each of the modgs along the span, |

The actual mechanics of solving Egns (4.28) involves
first of all the assumption of a value for the reduced
frequency parameter. From this the values of the P and @
coefficients are evaluated, For this system of equations
the iteration processes are applied énd thé values of the
frequency, velocity and the damping appropriate to each
mode are calculated. This procéss is repeated for‘several
values of the reduced frequency parameter. A plet on the Vg
plane gives +the flutter sbeed when g, the artificial
dampiﬁg coefficient is zero.

Gossard applied thé above procedure for a uniform
cantilever wing carrying a_igrge concentrated mass (weight
Ta of Ref.38), Using four spanwise stations he obtained values
for the flutter speed which gave closer agreement with the
experimental result than evenithe ‘exact' solution of ;

Runyan & Watkins. A Rayleigh ;nélysis using 4 modes (Ref. 445
predicted a filutter speed whicﬁwwas 22% higher than the
experimental value., This may béidue to the eight degrees of
freedom used in-the itera£ive trgnsformation procedure, Tﬁe

mode ‘éhape at flutter obtaiped by application of the

xterafive transformation method also showed agreement with
the ‘exact' mode shape obtgined by Runyan & Watkins (Ref. 37). |
0f the methods examined sd;far, the iterative

transfbrmatipﬁ ﬁeredure seems td be best syited to analyse

an arbitradty ﬁing. It is well su;fed for solving the flutter
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nrcoblem using a digital computer, eapecially if the computer

has the capability of handling arithmetic involving complex
numbers. Theoretizally any ameount of desired accuracy can

be achieved using repeated iterations. A number of discontinuities
can be taken into account and the flutter modes and frequencies

can also be obtained from the analysis.

4.5 ASSUMED MODE ANALYSES

A vibrating wing in an airstream can be considered
as an elastic structure supporting certain masses and subject
to cscillatory aerodynamic forces. For practical éomputations,
this system with an infinite number cof degrees of freedom
has to be replaced by an equivalent system which has as few
dgrees of freedom as is possible and which still retains all
the essential characteristics of the original wing. For
representing the elastic-inertia characteristics of the
wing, the free vibration modes in vacuocan be used., For all
but the simplest structures it is generally impossible to
obtaln exact solutions for the mode shapes and it is common
practice to prescribe arbitrary modes in the belief that
the true mode is a linear combination of these modes. The
wing is then termed 'semi-rigid' in the sense that it is
allowed only a limited number of degrees of freedom.

In deciding the number and types of modes to be
selected (or the degrees of freedom to be allowed), it is
necessary to approximate as closely as possible the true
mode shape of the wing in the flutter condition. Usually
it is only a few of the modes which participate in any one
type of flutter and all the other modes will be damped out.

It is thus possible to exclude many of the degrees of freedom

from the-calculations. For the 'classical' type of flutter,
at leart two degrees of freedom must be used,
The structural and inertial contributions can be

obtained by applying Lagrange's equations of motion,
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To obtain the contribution of the aerodynamic forces;
the forces are expressed in the form of derivatives which
are mainly based on the following assumptions:

(i) Thin aerofoil theory

(ii) Perfect fluid with two dimensional irrotational

flow
(iii) Harmonic motion of the surfaces

There are mainly two distinct methods of presenting
aerodynamic derivatives and in main these govern the form of
the equations of the fluttering wing. One is the Classical
British technique in which the aerodynamic derivatives are
presented as the amount of the particular force concefned
with a unit displacement, velocity or acceleration of the
particular motion concerned,the motion being relative to
the equilibrium position (Refs, 25, 29). 1In the Classical
American technique, the aerodynamic derivatives are presented
as the amount of the particular forces concerned with & unit
displacement of the particular motion from an equilibrium
position (eg. Refs. 23, 28). In the ﬁritish presentation,
the derivatives are 2ll real numbers while in the American
method they are, in general, complex numbers. Because of this
difference, the methods of accounting for the finite span
effects are aiso different in the two metﬁods.

In the treatment of the flutter problem =rlso, two
methods can be distinguished, These will be called the
'Classical British Method' and the 'Classical American Method’

respectively.

4,5,1 The Classical British Method

The derivation of the flutter determinant for a
uniform wing with a concentrated mass attached to it is
presented in Appendix V, Briefly, this consists in obtaining
the values of the kinetic energy, the strain energy and

the work done by the aerodynamic forces when the wing is
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oscillating in the prescribed modes, (Instead of determining

the siability boundaries of the system directly it is
assumed in advance that the system is osecillating harmonically
and then Lhe roots of the flutter determinent arc examined for
stability). Using the values of the kinetlic energy, strain
energy and the work done by the aerodynamic forces in Lagrange's
equations yield the equations of motion of tﬁe system in the
form:

‘:ffA+ﬁ)+h(@+Dj+CC*%{ﬂ-%=o “ K
where

A = matrix of inertia coefficients

A = ﬁatrix of aerbdynamié inertia coefficients

matrix of aerodypamit damping coefficients

W
1}

D = matrix of structurél daﬁping coefficients

€ = matrix of aerodynamic stiffness coefficients
E = matrix of structural stifiness coefficients
V = velocity

AN o= 2AD = L ¢4

Some methods of solving eq. (4.33) for the flutter

speed and flutter frequency are discussed in Section (4.5.3).

4,5.2 The Classical American Method

Due to the difference in reéepresenting the aserodyinamic
forces, the equations of motion of the fluttering system are

obtained in the form: \

where LAY P~ C%é) E:l c“' = 434

A = structural inertia matrix
P = sevodynamic matrix ({function of 1')
g = fictitious damping (2ssumed to be of the
structural damping type
0) = flutter frequency
» = bWy

o
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Tie deaivation of these equations is presented in

Appendix V.

4.5.3 Methods of Solution of the Flutter Determinant

There exist several methods of solving the flutter
deteminant. Only a few of these are discussed here, as
they are considered to be of greater practical utility,
especially for problems with a large number of degrees of

freedom,

4.5,3.1. Solutions to Equations of the type of Eq. (4,33)

The flutter determinant obtained by the c¢classical
British Method has the form:
D =i RCAR) +AR+D) +(C ¥ Fry2)l =0
b 35
The main object of the solution is to find the values
of the flutter speed \JF and the flutter frequency «>; which
make the above set of linear equations compatible.
The elements of the matrices A, B and C depend on
the frequency parameter , and the elements of the other.
matrices afe determined by the inertia and stiffness
distributions,
For a particular value of , a2ll the elements of
Eqn (4.35) are known gquantities and the equation c¢an be
axpanded into the characteristic polynomial equation:
LM = %? I 'r:. £ r_ . .
i o R L k=0 4. 26
In Eq (4,36} all the gfs have positive values, Since
the complex roots A can have values which are other than
the purely imaginary values )\u:(._), Eq. (4,36) represents
motions which are other than harmonic ;nd allows for the

existence of osecillating and non-oscillating convergent and

divergent motions.
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The methods of obtaining the flutter speed Vo
and the flutter frequency {.}: (thrcough the reduced frequency
2 U5 will nowbe discussed:

v

(a) The orthodox method of solution

(a.i) The Pirect Iterative Method,
1f we separate the real and imaginary parts of the
polynomial(4.36) we get twe real equations, one containing
the even powers of .' and the other containing only the odd
pwers of 2 , These can be writien as
%,()) =8
(0 =0 (4 31)
The result of eliminating A from these equations
yields

P ‘r

\ A 2 =] .
n- L ) =c (4.38)

where \,., is the pénultimate Routhian test function

(Ref, 45). Equation (4,38) is a polynomial for (‘/Vl) and
the reoots of this polynomial give the values of the flutter
speeds from this, the corresponding flﬁtter frequency and
the complex modal ratios can be found. This method is
systematic and yields all the desired information. Its
drawback is that it becomes very laborious when the
number of degrees of freedom is greater than three.

Templeton (Ref, 27) calls this the "direct iterative”

method, since (a) the flutter speed and frequency are calculated
directly and (b) since in principle, it involves iteration

in respect of the.value of the frequency parameter. In
practice, however, if the assumed value of the frequency
parameter agrees even reasonably well with the value obtained
from the solutions, no further iterations need be carried out,
This is particularly true for values of 2V  around 0.6

(since the aerodynamic coefficients are not very sensitive

to changes in 2% in the neighbourhood of this value).
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(2, i) The Indirect Noniterative Solution

In this method, the determinant (4.3%1} is expanded
as a function of (eii'.f V?‘) where the €4, are elements of
the structurai stiffness matrix, E. For a determinant
involving only two modes, this equation takes the form
(after making the substitution éu = ‘)3332)

CS.. 16,8, + 55”@32% &,¢,, =~o (4.39)

when the real and imaginary parts are equated to zero this

vields
A, ¢ O, @ v A3 Caa v OyQ, €22

e, [= e, & : 4.40
b\ * bz 2y, +b3 Qay ¥ b\t e, €: = ( )

—

On eliminating @, & quadratic equation in &,
is obtained from this, the values of €., and hence e,
can be obtained, 'I‘he‘ whole process is repsated for several
values of ) and a plot of.(_é*“;/ éiz‘) is made against, say, @13.
From this curve, the value of &, corresponding to the actual
wlue of (922/511) is obtained and hence the flutter speed.
Compared to the direct iterative method, this method
involves a greater amount of work and for binary systems

the former methed is much simpler to use.

(b} Frazer's Method

Instead of expanding the determinant O (eqn 4.34)
as a polynomial (4.6.31), Frazer ( Ref. 46) expands it in

the form of

A (),’) = -\2{1.3) TI‘Z{ ‘3‘11.3) (4.41)
where, X =) and  y=zifys (4.42)

%;‘133} and ¢(x,Y4) have the following forms (for an nth orcer

determinanty:
‘ h n-2
fixygy = ooy, L +Cy _y X +Caq
n-y -
Sﬁ.lr‘j-) = G X *Calh 3.,. RS C'},n-..‘



When the order, n, of the determinant is large 5

direct expansion of A into {-f"ihg) and 9CA,Yy) presents
a computational problem of considerable difficulty.
Frazer overcomes this difficulty by making use of the methods
of bivariateK interpolation. He shows that the full expression
for the function f and g can bz calculated directly from
expression in partial fraction form containing values of
Fa {A\,\y) corresponding to a special set of points (g"i ).
These are intersections of a standard set of straight lines
satisfying the conditons:
(a) no two are parallel, (b) no three are concurrent,
The conditions at flutter require that %61.3) = crwd
dluy)=0 with L ( ‘i—va) real and negative and Y real and
positive. Hence the possible critical pairs of values of

x and y are given by the ré&wt intersections of the curves

-iix,s) =0 and 9(X,4} =0 which lie in the second quadrant of

the(X,Yy) plane (i.e., X <o, 3)0}_

This method can be used to advantage when the number
of degrees of freedom is large, It has also the advantage
of being amenable to solution by means of digital computers
for the expansion and solution of differential equations
of the type whichoccur in the investigations of aeroplane

stability.

(¢) Method Using Matrices

Frazer, Duncan and Collar (Ref. 45, p. 148) suggest
a method whereby the determination of the foots of the
characteristic polynomial, /\ , is converted into one-.of
finding the eigenvalues of a certain niatrix.

The equation:

n 0 - :
k * Pv A oo e ‘)h“}\ +’Ph =y (4‘4‘.-1)

is the characteristic equation of the matrix Cul-EtIn=0-
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Hence, the roots of Eq. (4.45) are the same as those
of Eq. (4,44), There exist several methods of obtaining
the eigenvalues of an equation of the type of Eq. (4.45).
For lérge systems, a digital computer can be used with
advantage,

(d) Crisp's Method

In Ref (47), Crisp has cutlined a method of flutter
analysis which can lead to a simplification and reduction
of the numericalleffort for systems with up to say, four
degrees of freedom.

From an analysis of the behaviour of the roots of the
real and imaginary parts of the characteristic equation
on the Nyquist plot {Eg, Ref 48) he derives a criterion which
the roots must satisfy if stability should exist., He also
shows How a quantitative measure of the damping present in
thé modes at a given sir spéed can be obtained,

The application of this method to numerical calculations
can be summariged as follows:

(1) the.real and imaginary parts of the characteristic

polynomial are separated and written as

S ( %E 2r
Ay = _ - ()
‘ Y=o Pay (4,46)
. N A 2¥ -\
%2{"‘}) = : %‘P;\v—,* CAV)

(ii) for a given value of the velocity V, all the
coefficionts of two polynomials S‘()} and %z( n)
are evaluated. The polynomial %lC)J (the imaginary part)

. . _ 2 2
is equated to zero and its real positive roots )‘) Azd..ﬁ.€+c_




are found, For each of these roots, the vaities of the real
part §¥ CAY} are evaluated. The system is stable when
the signs of the different g;ﬂs , arranged in a sequence
corresponding to increasing magnitudes of the roots of
Q}(a} 'Ch?,hi,... ¢t ) are alternately positive and
negative.

(iii) This process is carried out for several choices
of the air speed V unti; instability is shown by this
criterion.

Consider a ternary system. The real and imaginary

parts of the characteristic polynomial aret

R e A L (REAT

(4.47)
Falh) o Cpm ot o)
The positive real roots of %1ﬂ”hﬁ are given by
'1)‘ = O
y2»re b T ‘ (4.48)
b, T4 LB V(B
2¥st %
in ascending order of magnitude,
Then stability exists if
fLovy =p 50
i )4o (4.49)

£y 7o
Four types of instability can be visualised."h <D

indicates a non-oscillatory divergence, O ther kinds of
instability exist when
1) f(wy ro
Fomy e
(ii) ,g‘(y;) > &
RCATA
(iii) S.‘ (v,}<0 . .g‘( », ) Lo

bB
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This type of sclution is well suited for solution on
hnalogue or digital computers, especially for higher order
systems, It is in fact necegaary only to find the roots of
the imaginary part of the characteristic polynomial and
to evaluate the values of the real part of the polynomial.
Many convenient methods exist for the evaluation of the
roots of a,polynpmial and the calculations are compardtively
easy since the coefficients of the polynomial are all
real numbers,

{e) Thecdoresen's Method

The characteristic polynomial is separated into two

polynomials - the real and imaginary parts, as:

qr {(dy=o0 , %L(A)""o | (4.51)

The coefficients of the two polynomials depend on the
frequency parameferl<g ;tyu[v. For different values of ),
the two polynomials are evaluated and the roots ') plotted
against Y. The intersections of these two curves give the
desired value ofJA . From this the flutter speed and

frequency can be obtained.

(f) Assessment of the different methods of solution(of .

equations of the type of Eqn, 4.33)

The starting point for most of the methods is the
expansion of the flutter determinant into the characteristic
pelynomial, For systems with a large number of degrees of
freedom, this can involve # great deal of labour, Frazer's
method overcomes this difficulty by making use of the
methods of bivariate interpolation, This method.can be of
considerable help when &8 system with a large number of degrees
of freedom is being investigated.

Another, possibly moré popular, approach is the use

of analogue computers. Analogue computers which can solve
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equations up to 12 degrees of freedom are in use, The wain
problem in using analogue computers is the setting up of

the equations of motiion in a proper form, so that they are not
'ill-conditioned'., Once this iz done the effect of any
changes in the system parameters can be easily investigated,

For binary and ternary systems, one of the methods
illustrated by Templeton can be used, Crisp's method also
finds application for these systems, especialiy if more
information is needed regarding the subcritical behaviour
of the system.

For larger systems a combination of Frazer's method of
expanding the flutter determinant and another methoq of
solving for the flutter speed and frequency eo.g. Crisp's
method could be used for advantage. Use could be made of
a digital computer both for expanding'the determinant and
for solving the characteristic equation.

4,5.3.2 Solutions of Equations .of the type of Eqn 4.34
(The classical American technique)

For non trivial solutions of the th (4.34) we must have

' A—:lf\-k?*(‘_"f—;?)E\——‘-o (4,52)

Lo

The coefficients of all thesé matrices depend on the
frequency parameter, M {:z%®.2/v) For a fixed value of D,
equation (4,52) can be solved for the complex eigenvalue(?%%?}

4
From this, the values of V, gaml wean bhe obtained. This
process is repeated for a number of values of ) until the
flutter condition is obtained as given by the vanishing of 3
for a particular mode,

In principle all tﬁa methods which are useful in
solving equations-of the type of Egn (4.33) are also useful

in solving Eqn. (4.34).




If we put

iy
(}\i

- = (\-ng)/w;_ _ <.

Equation (4.34) can be written in the form

LA3 A 2195 a3
which is a ty pical eigenvalue problem, In general the
elements of A are complex and A itself is non symmétric.
The eigenvalues 72 can be determined by the methods of
iteration applied to complex non Hermitian matrices.

4,.5,3 Selection of Modes

In setting up the flutter equations by using Lagrange's
equation, the number of generalized coordinates chosen and
the mode shapes corresponding to these play an important
part. This needs a balance between two factors, on the one
hand the number of modes to be chosen is governed by the
énount of time and the type of computing equipment available,
Increasing the number of modes increases the amount of labour
involved in setting up the equations and also in solving
the equations, On the other hand, selecting an insufficient
number of or of unrepresentative modes can give highly
unreliable estimates of the flutter speed, especially if
the wing is of'unconventional design or has concentrated
masses attached to it., This of course is a problem common
to all analyses of this type where estimates of the mode
shape have to be made in advance (e.g, Ref, 44 and Appendiz
VIII),

in vibration analyses by energy methods, since the

wing is constrained to vibrate in a certain numbér of
artificial modes which may not correspond to the exact modes.
the estimates of the natural irequencies will be higher than
the exact values, If the same argument is carried to the
flutter analysis, it may be argued that estimates of the

reduced frequency parameter V/pu3will be on the low side.
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Thus a conservative estimate of the flutter speed will be
obtained, This srgument seems to hold for simple wings
without any added masses. But when the wing carries
concentrated masses, this argument does not hold, and
sometimes estimates of the flutter speed can be cbteained
which are too high com?afgﬁtfqﬁﬁgg actual flutter speed.
(Ref. 44). o

Ideally, the modes chosen should be the actual modes
of the wing at flutter., Then, an analysis involving oniy
the critical modes would give the true flutter speed and
frequency.

However, this is not possible in practice, especially
if the wing is carrying added masses, Apart from the
difficulty of knowing the critical flutter modes in advance,
another difficulty comes in. Fig. (4.2) shows the bending
end torsion components of the flutter mode for a uniform
wing carryiné g concentrated mass at about the quarter span
point (from the root). (Ref, 37). There is a.considerable
phase difference between the bending oscillations at the
tip‘and for points near the rocot, Prescribing modes which
incorporate this phase difference (if the values are known
in advance) would make the snalysis more difficult.

From these.considerations,the best policy seems to
bhe to choose the mode shapes in such a way that a linear
combination of them will give a reasonable approximation to
the true flutter mode.

One such selectlion may prescribe the normal modes
- of the structure. These are an idealised concept since they
are the modes obtained when the structure is oscillating
in still air and in the absence of any damping forces.
These have the advantage that they are othogonal to each

other both in respect of the inertia distribution and the
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stiffness distritutions. 8Since these modes represent the
structural and inertial properties accurately}any
discontinuities in the structure are autoﬁatically taken
into account and the boundary conditions are also
satisfied. Since any modé ¢an be built up as a linear
combihatidn'ﬁf the normal modés, these are more likely

to represent the true flutter mode with fewer degrees

of freedom than an arbitrary cosbination of simple modes,

When normal modes are used, the evaluation of the
inertia and stiffness coefficients in the flutter equations
becomes simpler since the cross inertias are zero and the
stiffness terms can be obtained directly from the frequencies
of each of the modes. For solutions of the equations on
the analogue computer normal modes have the added attraction
that the equations are well-conditioned and the coefficients
do not have to be evaluated to great accuracy.

Since normal modes are an idealised concept, the
nearest approach is to use the resonance modes obtained by ground
resonance testing of the structure., These have the
disadvantage that they are not known until after the
aeroplane has been built and may not be truly orthogenal.
Hence one of the attractions of the normal modes is lost,

The ideal or normal modes can of course be calculated
theoretically. In this case the advantage that the elastic
coefficients in the flutter equation can be calculated is

lost, since these have got to be evaluated first in order

to obtain the normal modes. The use of normal modes also

makes tedious the investigation of the effectyon the
flutter spped, of changes in the structure or of added masses.
Any change in the structure or in the inertia distribution

will change the normal modes and these will have to be

evaluated all over again for each change.




Thus, in some cases, it is more advantageous to

select webitrary modes for inclusion in the flutter
analysis, These have the advantage that if simple algebraic
expressions are prescribed for the modes, the evaluation

of the coefficients of the structural, inertial and
aerodynamic terms by integration becomes a straightforward
task., It is not always possible to select modes which
satisfy the end conditions at both the root and tip of

the wing, The satisfactory representation of zero shear
zero torque at the tip is not very important, as the error
in strain energy due to this will be small, Use of Duncan
functions or of Rauscher's station functions eliminates
this discrepancy.

Flutter equations set up using normal modes can be used
directly for simulation on an analogue computer. 1f
arbitrary modes are used they may have to be transformed
into a proper Fform for avoiding problems arising from
ill conditioned equations.

For wings which have no structural discontinuities and
do not carry concentrated masses, it is well established that
the use of a few arbitrary modes gives acceptable approximations
to the flutter speed. -However, as has alroady been pointed .
out, this is no longer true when the wing is carrying
concéntrated misSsSes.

Woolston & Runyan analysed the flutter of a uni form
cantilever wing carrying concentrated masses  (Ref. 44),
uging the calculated valuesof the uncoupled normal modes,

For a mass located ahead of the elastic axis, they obtained
highly unconservative estimates for the flutter speed.

Molyneaux (Ref. 5) observed that for wings carrying

concentrated masses (on or ahead of the elastic axis) one
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feature was commcen., When the value of the concentrated mass
is gradually increased from zero, there is & more or less
abrupt change in the type of flutter that occurs, This
is associated with the change in the motion of the mass
Flutter involving large motions of the mass changes
abruptly to a type of flutter where the motion of the mass
is small. The initial motion may be a large translation
(or a large pitch) and this becomes a flutter which is
associated with a small translation (or small pitch) of
the mass, He approximates this by assuming that the
transition is from a large movenent of the mass to zero
movement of the mass, Using artificial conétraints to
represent this, he recommends that the following {(uncoupled)
modes be included in a flutter analysis to give good
approximations to the flutter speed.

(a) Bending with root fixed (of the bare wing)

(b) Bending with root and concentrated mass section fixed

(c) Torsion with root fixed (of the bare wing)

(d) Torsion of the inner wing with the root and the

mass section fixed,

(e) Torsion of the outer wing with the mass section

iiked.

Modes (a), (b), and (¢) are continuous over the wing
span. However for modes (d).and (e) there are two distinct
torsion modes at different frequencies for the inboard
and outboard parts of the wing.

Gaukroger and others have used these modes extensively
for analysing the flutter speeds of various wing mass
combinations (e.g. Refs, 4, 9, etc,) The trends for the
flutter speed (with variations in the different parameters}
obtained from these analyses show good agreement with the

experimentally established trenda.
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From the above, it can be seen that the success of
the flutter analysis depends very much on the proper
selection of the modes. For wings with concentrated
nasses the modes suggested by Molyneux seenm to_give the most
xeasbnable results for the flutter speed. However, hecause
of the number of the modes that must be included in the
analysis, the calculations have to be done either using a

digital or an analogue computer,

4,6 METHOD USING RESPONSE FUNCTIONS (Ref, 49)

The equations of motion of a fluttering wing can be

expressed jin the form:

o LAl .{qa_‘ — Wy [r] {y +‘f%§ (4,59
whereﬁe _afr‘s represents the matrix of the aerodynam1c -
W LAY
plus - inertia forces, (JDY is a reference frequency,

-ﬁ is the matrix of elastic forces and-&‘}, represents

the generalized forces.

Fquation (4,55) can be written in the form -

| Crtn A= (@v/Y, My = =93,
CAal{nt ~n [ry{«}= {NE | ,‘ (4.56)

When the external forces are absent, W, =0, and
we obtain a set of homogeneous equations. These can be
solved for- the vibration frequencies and the modes. With
each characteristié value }. , there are associated two
characteristic vectors., One is called the 'direct
characteristic mode' and the other is called the 'conjugate
characteristic mode', The direct characteristic mode is

the solution of the equations:

(4.57)

[ay 4 - ) [8) o




The conjugate characteristic mocde is the solution

of the set of equations:

[A]T{(a}v": ) EIVS'JT‘(%—D:_ o (4.58)

For a conservative s._vstem,”?é;s ~_"qsr and byq= by
and the two vectors (x’) and L\j") are identical( ;5 ?'A Nad
an o \Rmso‘na’; mModald wiokix),

Aerodynamic systems are in general, non conservative,

the difference between the vectors (”) and (3") ,when
the two vectors are made compatible by normalising on the
same component, is associated with the energy-absorbing
or energy-producing characteristic of the system,

The 'harmonic response function' is defined as the
deflection of the system under the action of harmonic
external forces represented by N.j N?_J . '\,Jn_

A physical interpretation of the conjugate characteristic
mode and the harmonic response function would be as follows.
The conjugate characteristic mode can be regarded as the

direct characteristic modg of a hypothetical system with
with coefficient matrices C\k‘s and b{vs which are the
adjoints of Q“(S and bt*s « The harmonic response function
can be regarded as the deflection of the aeroplane wing in
flight under the action of vibrators,.

In Ref. (49) Serbin and Castilow illustrate the
use of the harmonic-response-functipn and the conjugate
characteristic mode in the calculation of the change of
flutter characteristics of a wing due to the addition of
a concentrated mass.

It is assumed that a flutter analysis has been made
for the wing and that the following data are available °

3

The characteristic numbers }\,, , the direct modes ( X )

and the conjugate modes (3\3.).




72

If now @ concentrated, harmonic force = EXp(iet:
is applied at a point P, and if the displacement of P in
the direction of F is given by x, then we can write

L= BN +8 v . ;.{Bn X, (4.59)
where the @Jk represent suitable geometric constraints
and the '13 are the characteristic modes. |

The harmonic¢ response is given by

wo £ 3 IR k@it

—_ - o
W =, (hp— A) B(‘_f;:&?} Gy (4.60)
where, for example (\jv E% ] represents the inner product ‘

of the vectors ‘:jv and @

(\5»1 e) = %‘_ 31(% (4.61)

=y
and  BOY X = 5oy oy % (4.62)
: 17- T A
If there are no rigid body modes and if the mass is

rigidly attached to the wing, ‘

Xo=-F/mu? (4.63)
Subsrituting this an Eq. (4.60) - |
L2 e (g
2=y (A=A BOY2 Y

The right hand side of this equation are functions ]

(4.64) ‘

only of b(ﬂiv and of Wfwy -+ In principle, Eqn (4.64)

can be solved for the value of m and () for each value |
of hw/y. 1n practice, it appears desirable to use a
graphical technique, In the procedure given by Serbin

and Castilow, one regards the right hand side of Eqn (4.64),

for each value of bw/V, as a function of the real parameter
% : b2/F  The function is plotted in the complex

plane and the abscissa of the intersection of the resulting

plot on the real axis is equal to (_—\/m‘\ . for which

flutter will occur, The parameter ?\ defines the flutter

frequency and the corresponding value of mis the mass




required to maintain flutter., The flutter speed is obtained

from the assumed value of the parameter Q‘ﬁhofd),

4.7 MATRIX METHODS

The methods of matrix calculus have been used with
advantage both in the setting up of and in solving of the
flutter equations (eg. Ref, 45). Loring (Ref. 50, 51) shows
how the matrix notation simplifies and systematizes the
derivation and solving of the flutter equations by the assumed
mode method.

There have been some approaches in which an attempt
is made to avoid some of the disadvantages of the assumed

mode methods.

4,7.1 One of these approaches is outlined by Lancaster

(Ref. 52).

The deflections at a set of points on the wing can
be related to the corresponding forces by means of a matrix
of flexibility influence coefficients, consider a net of
'structural' colliocation points. The displacements ‘1 at
these points are related to the concentrated force F at the

collocation by means of a flexibility matrix £¢7 such that

Thit = iCal«es
thg = LAIAF; (4.65)
T

If LX1:La} represents the stiffness matrix, the

strain energy \J is given by

= LW KW
v Fa » (4.68)
where W denotes the transpose of *}.
The kinetic energy T is given by
o f ©
T = s hmh (4.67)

where ™\ is the diagonal matrix of lumped masses at the

collocation points.
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Assuming that it is possible to represent the
aerodynamic forces by a ''stiffness" influence coefficient.
matrix, by a suitable integration we can write the forces F

as;:

F = Eae N (4.68)

If the displacements *\L are chosen as the generalized

co-ordinates, then we can derive the equations of motion using

Lagranges equations as

Mh YKk = Eea h (4.69)

To obtain the aerodynamic matrix Eaclancaster uses
the Multhopp-Garner Theory. This gives the downwash at a
set of prescribed collocation stations in terms of the
aerodynamic loads, so that an inversion of a set of linear
equations given a relation of the form of Eg. (4,69)

In general, Eqo is & complex matrix and has the

form

Lae = —Cv2c+i.v(oa) (4.70)

where the matrices C and B are proportional to the air density.

Thus eqn, ( 4.68 ) becomes

F =~ -2°Ch - L&A (4.70)

and the flutter equation ( 4.69) becomes

MAh + yRh +('))2C +Eih =g (4.72)

In setting up the equations, it was not assumed that

the collocation points selected for the structural, inertial
and aerodynamic forces are the same., It is necessary that
these should be the same if Eqn. (4.72) is to be meaningful.
The location of the collocation points is usually decided by
the method used for defining the aerodynamic forces. In
the Multhopp theory the points tend to cluster towards the

wing. tip., If only two or three chordwise points are chosen
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2t may be difficult to represent all the inertial properties.
Lancaster points out iwo ways of cvercoming these difficulties,
One of these is to obtain the #erodynamic forces for a
set of collocation stations and then, by applying a co-ordinate
transformation to correct these to apply for the set of points
dictated by the inertial collocation.

The second method is to include additional mass
points in addition to those already used to define the external
(aercdynamic) forces. These mass points can be situated an&where
on the wing but they will have zero aerodynamic forceé associated
with them,

To solve the flutter equation {4.72) the flutter

determinant is written as:

VNP a's oA'o) y - (PatC- A'E)=o
(u-?;)
where L is the unit matrix,

If this equation is expanded for az specific value of e
a2 polynomial in A\ results., This polynomial can be solved
by using the Newton-Raphson method,

The method has the inherent advantage that no assumptions
are made zbout the mode 3%5@5% and i1s applicable to wings of
small aspect ratio and those carrying concentrated masses, etc,
The type of methed used to specify the aesrodynamic loading can bhe
flexible and the analysis can be simplified by using strip
theory aerodynamics,

The choice of the collocation points is determined
mainly by the method used to integrate the aerodyﬁamic loads
boih in the chordwise aﬁd the spanwise.directions. EThe
location of these boints depends on the method used and_}he scheme
recommended by Multh&pp is the one in common use. These ~

stations may not be the ideal ones for obtaining the structural
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cr inertial inyluence coefficients, For the chordwise

integration at least two points are necessary, A minimum of
three points is necessary however, to take into account the nress,
inertia and stati¢ unbalance of any particular spanwise strip.
Assuming that the structural influence coefficients can be
obtained for any given set of points on the wing it will be
neceséary to have a transformation matrix which will transform
the inertia influence coefficients worked out for a given set
of points to those corresponding to the wsarcdynamic(A,I.C. ) set,

In using lifting surface theory aerodynamics, the
task of working out the .A.1.C. sincreases rapidly with the
increase of number of points chosen for collocation, This
imposes a practical limitation on the number of points chosen
for collocation, |

The coefficients in the flutter determinant are, in
general, complex numbers, The method of solutions involves
the expansion of a complex determinanf and the solution of a
complex polynomial by a method such as the Newton -- Raphson
method, For most casés, this would involve the use of a
digital computer. Even when the computer has the capability
of handling complex arithmetic, the above prodecures involve
relatively long computer time and it may be of advantage ot

set up the flutter problem as a complex eigenvalue problem,

4.7.2 Another application of matrix methods to the solution
of the flutter problem was givgn by Hereshoff (Ref. 53). He
used steady state aerodynamic loads with the magnitude of the lift
curve slope corrected by the magnitude of the Theodoresen
log function,

If [a]] represents the flexibility matrix, [MT] the
diagonal mass matrix, and {:h} the column matrix of deflections

at the collocation points, by assuming simple harmonic motion



the eguation of the ilutfering wing can be written as

2 e Fat )l |
{hE N S R U\.}}«Lh’é (4.74)
where
[;in = the matrix of ‘aerodynamic influence’ coefficients
it q‘ = Fl)_:}.13<;m~‘<:. Presoure = Jig\‘l

Egqn ( <% 14 ) can be written as

LB {hy: o3 ing (4.75)
where L D)= (LT] - 9% IA:S)' =

This equation can be solved for assumed values of
For a number of value of C&. (i.e. the velocity) the eigenvalues
of Egn (4.75) which are the correspohding frequencies are
obtained, If these frequencies are plotted against the velocity
they tend to merge at the value of the flutter speed.

Herreshoff used this method to obtain the flutter
speed of the uniform wing analysed by Goland (Ref., 35) and

obtained very good agreement with Goland's results,

4.7.3 Mazelsky and O'Connell (Ref. 54) have given a

for the flutter analysis (of a straight cantilever wing)
where no assumptions are made on the mode shapes of the wing to
be included in the analysis, This formulation is suitable for
solution or digital computers,

According this method, the formulation of the bending
torsion flutter equations proceeds as follows:

Consider a cantilever wing as shown in Fig. 4.1,

Let the properties Eﬂ@&{position‘the elastic axis,
¢.g.,etec., be specified at a certain number of spanwise stations,
The relation between the torsional deflection o and the running

torque, ¥, can be written in integral form as

l
S = S é % df} (4.76)
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Tf M 4is the bending moment at a particular station,

the relation hetween the bending deflection h and M can be

written as:

dh 2 |
&;] =S i g—“\i d'l O (4.TD)

and therefore

1

2
\\‘:~'5 X
o

The accumulated torque T can be expressed in terms

\]
f ‘V\
g ,E_:.i_ dl] C\\'} {4.78)

of the running torque t as
Vo
T= s §kan (4.79)
Similarly the bending moment M can be expressed

in terms of the running load 1:
O

\;
A

where ‘10 is a dummy variable.

M= . C—'\o“"]}' £. d‘] (4,80)
Both the running lead 1 and the running torque t

contain contributions from the inertial and tha'aerodynamic

Assuming simple harmonic motion, 1 and t can

forces of the oscillating wing.
|
be expresses as follows:

= | L soevt
L Lnuw ." ioey bia . N (4.81)
e {Rbh e ol ppwp by pec 0X

i

t = toaws t tinawa

3 2
=k evic? LTth..;,:rqoo P Sh L 2 (4.82)
_+_f\{ (ee Yy o
Using equations (4.81) and (4.82) the values of T and M can

be evaluated from equations (4.79) and (4.80) by numerical
integration., Substituting these values in equations {4,76) and

(4.77) the relations for < and \» can be obtained as:

L] 1 Tra] CANG] (43
EL% CA E’*«Q CAnwd {%} (4.83)

S
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The squive motriccs F&delxhh, ete, are complex matrices

dus ©o the presence of the aserodynamic forces and moments.

Since these are functions of the reduced frequency paramester

&9, (4.83) has to be solved for several values of this parameter
to give values of;\ . These values will, in general be compleX.
The flutter speed is obtained by the usualV-¢ method.

The order of the characteristic matrix in (4.83) will
be twice the number of bays considered for analysis. If 5 bays
are gpecified for the analysis, the order of the matrix will
be 10 and this will have complex elements. To overcome the
difficulty involved in soiving these large mairices, Dernard
and Mazelsky point out that by assuming only two or three
arbitrary modes, the order of the characteristic matrix can
be drastically reduced (Cp Van de Vooren Ref, 42)

To include the effects of concentrated masses, etec,
special interpolating matrices would be needed which would
account for the discontinuities in the inertial distribution.

A similar formulation can be used to solve the flutter pfoblem
using an analogue computer,
4.7.4 A unified spproach to vibration and flutter analysis
viich makes use of the inertial, structural and aerodynamic
forces in the form of influence coefficlents was given by
Rodden in Ref. 55

Briefly, this consists in writing the deflection

integral equation of & cantilevered surface in the form
) -
{h%-;\ﬁa) P B (4.65)

where the h, a and F correspond to a chosen set of control
points, the column matrix of forces F includes both the
inertial and aerodynamic forces:

\Fk - {‘:H\NHQE * {Fomﬂ

= &™) iht + g@b’;‘g (G {hY (4.84)
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1t should be noted that the inertial, structural and
aerodrarmic influence coefficients are derived at a common
set of points.
Substituting eqn (4.84) in eqn. (4.65) we cobtain the equation

for flutter
EL;;‘- {n} = [&] (o x {br g ECH]){h} (4.85)

This equation can be solved for the eigenvalues LD,
and the corresponding eigenvectors i\yg. In general the
elgenvalues will be complex nﬁmberé since the characteristic
matrix will be complex due to the presence of the aerodynamic
terms, Flutter occurs only for real values of Cﬂ&ﬂ It is
necessary to assume a number of values for }}, the reduced
frequency and to solve the equation (4.85) to obtain the
frequencies (3, and hence the flutter speed for these values of
To interpret the complex values of (O it is customary to define

a fictitious eigenvalue

R I . A
N = “‘cf‘i = Madg | (4.86)

and to write equation (4.86) as

{ - 2
MBy = Cal{ CMl4P s o)k 4.8
From this, the frequency is obtained as 03=li The ratio of
N
the imaginary part to the real part of K‘gives a fictitious

"structural damping' necessary to maintain harmonic motion:

1= A (4.88)
3= Mg
The corresponding flutter speed is obtained from

the assumed value of " as
Ng = D ®/y (4.89)

This analysis can be modified to include the effects
of body freedom - both symmetric and anti.symmetric-and

control surfaces, etc.
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The mein uifference between Rodden's method and
the mathod proposed by Mazelsky and 0'Conaeil (Ref., 54) is in
the treatment of the deflections. Mazelsky and O'Connell treat
the bending and torsional deflections separately as for a
moderate to high aspect ratio wing. In Rodden's formulation
only a single wvaviable is used and the procedure is more
flexible and is applicable to most configurations including
low aspect ratio wings and novel configurations.

As in the case of Mazelsky and 0'Connell's procedure
the number oi degrees of freedom in the analysis can be

reduced by the introduction of assumed modes,

4.8 COMPARATIVE EVALUATION OF THE METHODS OF ANALYSIS

From the foregoing descriptions it can be seen that
the various methods of flutter analysis (for wings with added
masses) differ from each other mainly in the following respects:

(i) The method of handling the structural and

inertial properties.

(ii) 'The representation of the aercdynamic forces

acting on the oscillating wing,
(1i1) The method of taking into account of the energy
balance in the system,

{iv) The mathematical approach used in deriving the

charecteristic equation of the fluttering system.
and, {v) The mechanics of obtaining the fiutter speed
and frequency of the wing mass combination.

For uniform cantilever wings Goland and ILuke (Ref. 35)
and Runyan and Watkins (Ref. 37) obtained a solution for the
flutter speed using the differential equation approach. Since
the inertial and structural properitieswere constant along the
apan for these wings, the partial differential equations for the
bending and torsional oscillations had constant coefficients.

A strip theory aerodynamics was used so that the system behaviour



scuid be described, (after assuming harmonic motion), by a

pair of simulianecus ordinary differential equations with constant
coéfficients. The amount of labour involved in obtaining the
flutter speed of a uniform wing with an attached mass using

this methcd is very large, Though this method could be

modified to obtain the flutter speed of a non-uniform wing

with uniformly varying inertial and structural properties

the work invelved would be prohibitive and is not to.be.preferred
over some of the other methods.

Another class of ‘expet” solutions using an integral
formulatlion were given by {a) Mazelsky and 0'Connell (Ref. 54)

(b) by Herreshoff (Ref. 53) and (c) Van de Vooren (Ref. 42).
Mazelsky and O'Connell gave the analysis for a uniform cantilever
wing, though the effects of concentrated masses could be taken
into.account by means of special interpolation matrices,

Herreshoff's solution has not been used to obtain the
flutter speed of wings with concentrated masses and doubts
may exist about the use of steady state aerodynamics to
represent the oscillatory aerodynamic forces., However, he
has shown that the method gives good results when applied to
a2 uniform cantilever wing.

Of the three methods, Van de Vooren's method is the
only one which is of general applicability to wings having an
arbitrary plan form and carrying concentrated masses. I1f need
be, a large number of degrees of freedom can be included in the
analysis, Van de Vooren recommends the determination of the
normal modes of vibration of the wing as a first step, If
these modes are used in flutter analysis, a large :decrease
in & number of degrees of freedom can be sccomplished.

The use of Lyapunov's second method to obtain the
stability boundaries of a wing-mass system has not been so

far formalized, Wang (Ref. 41) has outlined how this method
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. could be used to obtain the flutter stability boundaries of

complex combinations of wing and concentrated masses, There
are, however, some reservations about the functional used by
Wang (See Parks Ref, 56). As there do not exist any numerical
results for flutter speeds predicted by this method, it is
difficult to assess its utility.
Gospard (Ref, 43) has shown how the flutter problem
of wings with concentrated masses could be soived by using
Wielandt's iterative transformation procedure, This procedure
can be applied to a‘non~uniform wing carrying concentrated masses.
One advantage of this method is that the normal modes
of the wing are obtained as part of the solution, The operations
can be performed on a desk calculator and,with degital cemputers,
solutions can be obtained in a short space of time.
Rayleigh-Ritz type solutions have been used widely
to obtain the flutter speeds of wings with concentrated masses,
Comparisons with measured values of flutter speeds have shown
that the assumed mode type of methods can give highly unconservative
results, (Ref. 44). This is especially so when the concentrated
masses are placed ashead of the elastic axis, The modes used in
Rel,44 were the uncoupled normal modes of the wing with the mass,
Using four of these modes gave values for the flutter Speed
which were too high when compared with the measured speeds.
But these showed the correct trend for the flutter speed when
the concentrated mass was moved outboard from the root.
Gaukroger has analysed various combinations of wings and
concentrated masses using the mode shapes suggested by
Molyneux. For example,in Ref. (5) he has 1nve§tigated the
effects of varying some of the concentrated mass parameters on
the flutter speed of uniform wings - hoth swept and unswept.
No experimental confirmation was obtained for this particular

wing, though the calculated values exhibited a trend similar to




tihose obtained in tests on a comparable wing.

In Refs. (55, 57, 58) Rodden et sl have applied the
clrect mairix method to obtain the flutter speed of the
"hypothetical jet transport wing example of Bisplinghoff,
Ashley and Halfman (Ref, 23). He obtained very good agreement
with the flutter speed obtained in Ref, 23 by a Rayleigh Ritz

procedure,
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CHAPTER 5

THE DIRECT MATRIX METHOD

In this formulation, the squations of the fluttering
system are set up using an integral equation approach. The
integral equations consist of two basic relationships: The
first is the relation between the structural deformation and the
loads (due to the inertial and aerodynamic forces), expressed
through the structural influence coefficients. The second is the

relation between aerodynamic disturbance (the downwash) and
the aerodynamic pressure, expressed through the aerodynamic.
influence coefficients.

To solve the integral equation, a collocation approach
is considered most feasible because of the ease of obtaining
the solution from the corresponding matrix form. The
deformation integral equation is written in matrix form by
requiring that the integral equation be satisfied at a
discrete set of control points.

A novelty of this method is that all the deformations
are reﬁresented by one type of co-ordinate viz, the deflection
h (Fig, 5.1) This resﬁlts-in simplifying the matrix equations
and has an added advantage that it is more wesningful on a
cambered vehicle. Alse, deflection influence coefficients
are usually more directly obtainable from a structural analysis

than slope. (or twist) influence coefficients.

5.1. DERIVATION OF EQUATIONS

Consider the wing shown in Fig. 5.1. If (a] represents
the matrix of structural influence coefficients (the flexibility
matrix), the relation between the control station deflections

and the applied forces F is given by
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hy - (he} =ray AF§ | (5.1)
wvhere

-{h(& = ¢olumn matrix representing the abosulute

deflections of the control points

%“o%z column matrix representing the deflections of the

-

control points due to rigid bedy motion of some

reference point,
and (&3 is the matrix of flexihility influence coeffiqients
for the wing cantilevered from (or otherwise restrained at)
the reference point.

The column matrix {F} of the forces consists of
contribution from.{a) the set of inertial forces integrated
throughout the region adjacent to the control ppint and (b)
‘0f the set of aerodynamic force components integrated over the

vehicle surface adjacent to each contreol point, i.e.

. : ] e
LFa= ART + 1Fa (5.2)
The inertial forces may be written in terms of a mass

matrix |_M1 and the control point accelerations as

l . - . \ »
SL.‘:*_.& = =L™mih (5.3)

i

If we express the aerodynamic control point forces in

terms of the control point deflections as:

(Fal= §uivlelwlTq{h} 5.

and use equations (5.3) and (5.4) in equation (5,2) we have

[PV = W (tm?+ gbeSEWILG] )N
' 2 oF LRI Y (5.5)
In equation (5.1) it is possible to include the
rigid boedy degrees of freedom, (These could take the form of

rigid body pitch, roll, yaw, etc.). This is done in the

following way:- Eatch componént of the control point deflections




is related linearly to the rigid body translations and
rotations, provided the rotations are small., We may therefore

define a rigid body modal matrix E]\QSas the transformation,

thel = Enab{agy 5.6

where Ugis the set of rigid body translations and
rotations of the reference point. If° we select Clgjo have
two elements: 2, the plunging displacement and © the pitching
angular displacemeht, thenfﬁ\g3will consist of two columns,

The first column will be a unit column corresponding to the
plunging mode and the second will consist of the x - co-ordinate
ofAeach control point, corresponding to the pitching mode,

The rigid body modal matrix proﬁides the basis for a
statement of the free-free bounéary conditions, As an example
consider the symmetric flutter analysis of an aircraft whose
wing, aft fuselage and tail are flexible but whose forward
fuselage may be assumed as rigid. If we choose the reference
point (the cantilever point) along the intersection of the wing
and fuselageﬁthen the wing 1s independent of the aft fuselage
t21il combination, but the tail and aft fuselage must be considered
together. The motion of the forward fuselage is determined by
the motion of the reference point., If it is assumed that there
is no dynamic coupling between the rigid and the flexible
components, the free-free boundary conditions for harmonic

motion may be written as:~

Ched CRY{bd +Camd{og) <o o

where Cﬂq\‘\-’gl is an incremental generalized mass matrix,
including aerodynamic effects and is not considered in the

formulation of the flexible component mass and aerodynamic matrices,
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Substituting equations (5.6) and (5.5) in (5.1) we

have
thik - Ll ogi= of cazCwml U“f{ |
_ G u {'hl): ' (5.8)
vhere fuls LAl (5.9)
Premultiplying equation (5.8) by L\\R"\T L ?"\7\3 and

subtracting it from equétion (5.7), permits solution for the

amplitudes of the rigid body motion:

{QRE IR het LT LUK 5.10)

where Ml LA™ [hr{f [@IL iy (5.11)

Substituting equation (5.10) in equation (5,8) yields the

equation for free-free flutter:

(e of (LT3 - UhOCRT chad’ 1))
K[U']{\\L}-

The solutions to the matrix equations yield values for

(5.12)

the frequencies@f_and the amplitudes {"\05 . Because of the
presence of the oscillatory aerodynamic forces the matrix L..Ul
is complex and hence the solutions for (02' are in general complex
numbers,

Since we have assumed simple harmonic motion, we have
stipulated that the values of (a)z be real. To interpret the
complex values for the roots, it is common to define the

—

elgenvalues )\ as

— = _
A = G/0aus) (5.13)
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and to write equation (5.12) in the canonical form as

Ml = (ET) -Thel LRT Lhel® 1@1) Wi (510

where

N= Mgx Adp = CHR3J /R (5.15)

The value O represents the amount of damping which
should be added to the structure in order to sustain the
assumed harmonic motionsJ(the’artificial structural dampiné).

For flutter to exist, the artificiallstructural damping
must be equal to the actual structural damping in the system,
Values of 9 higher than this indigate that the oscillations
are unstable since extra damping would have to be added to
attain neutral stability.

In equation (5.14) the characteristic matrix is usually
complex‘and non-Hermitian, From a solution of this equation
for the complex eigenvalues, we obtain the free-iree frequency

and the required structural damping &as:

-l 5,16
©= Vo S0 19

Since the formulation of the aerodynamic influence
coefficients requires the assumption of a reduced frequency

Wy (=-bl€9) the velocity is obtained as
= (J)bt/ 5.18
v /. Ce/Sec) (5.18)
From a series of solutions of equation (5.14) for various

values of Yy the flutter speed at a specific altitude can be

obtained by constructing the usual,v‘ﬂ diagram.

Equation (5.14) is seen to be completely general being

applicable from the cantilsever case (E-\\ﬂ‘:o)i to the case of

six rigid body degrees of freedom. The vibration charscteristics can
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also be obtained from equation (5.14) by deleting the
aerodynamic terms and the artificial structural damping.
The format of the various constituent matrices of

equation (5.14) will now be discussed.

5.2 THE MASS MAvrux

It is desirable to have a common set of control points
among the structural, inertial and aerodynamié'influende
coefficients., However, the choice of control point locations
is usually governed by aerodynamic considerations. (For example
specific spanwise spacing and chordwise locationg)_ The inertial
dataﬁg: usually given as the total weight, ¢ .g, moment .and producg
of inertia at a set of points in the structure, It is necessary
to transform these data into an equivalent system of lumped
masses, 'The six inertial properties in each region can be
matched by a system of three non-collinear masses having arbitrary
co-ordinates; however, since the choice of co-ordinates is
limited by aerodynamic considerations, a more useful representation
is by six concentrated masses having fixed co-ordinates. In
this case there are more lumped masses to be determined than
the inertial conditions available and a least squares condition
has to be imposed to obtain the lumped mass distribution.

Consider the wing of figure (5.1). Let

omntrol points be 1located along the quarter chord line, aileron hiﬁge
lince and the trailing odpge. For a spatnwiso location

such as at Section XX, the inertial properties can be

represented by lumped masses as shown in Figure 5.2, It is
necessary to find a dynamically equivalent system of concentrated

— —- —

masses Ml’ Mz, M3 corresponding to the lumped masses, Ml M6

In terms of the masses Ml csvesane MG and the deflectioné

Zy eceraeZy the kinetic energy is given by:

o= "'Z :iﬁziT C™3 {‘2‘75 (5.19)
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The deflections z can be expressed in terms of the
three control point deflections h by means of a transformation

matrix Im“as

{2 = U Lon) {hk | (5.20)

Substituting equation (5,20) ihto (5.19)
3 .37 -T - L .
Al =3 {‘f‘l [I\'ﬁ'r‘\,,l EMA [lmnlahi (5.21)

The inertial forces { ;\are obtained from Eq. (5.19) by

using Lagrange's equation .

{F] = -2 0217 ("] {ﬁil (5.22)

T ac lan i

Hence
— T 7 n
Y_ f"'\*l E L I‘\‘nﬂ] {\\/\ l {- L mn} (5.23)

If the above procedure had not been adopted, it would
have been necessary to consider a very large number of degrees
of freedom.

As an illustration, consider the wing shown in Fig.(5.3)
The wing is assumed to have six degrees of freedom,

The inertial properties of the wing both in the
Panwise and the chordwise directions have been approximated
by point masses at the control points and by a system of masses

connected together by rigid massless bars, Assuming thet linear
interpolation is valid for the displacements, the total kinetic

energy can bhe expressed as:

2
. 2 ol
T £ Ryt (gt s (R e (kg
aFt f B \
e (KBl e (R |
z 2/ B el (5.24)

The inertia force at the first control point is given by:

F=-4( ?_T‘}-.m (e s M) -Mak) (5.25)
<
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By proceeding in a similar manner, we obtain the mass

matrix as

My Me M o o]

re S . :

1'2"“2 ™Mo, Eﬁy'" i ]

N 4

IO Ma o My '1%3& Mas O
- & 4
o My M3 Muw D Mug
. 4 “

- = I‘”:_%_'E, < M;S W_\ig
L2 = P Mug “
- o M “466?

(5.26)
where
My o= oM M Mg
< “
Map = My Thz | Mgy,
. < e
My = My T30 M3g
A T
Muy = My v M3 Mg
a5
Mg = -M5 S M_}_B . me
“ <
pry

‘Y\\e C\\Anamc.m\\\{ Wedloy oty medrox Jg
Yymnabee,  Buk sk weeadaxly o diegoned.

5.3 THE STRUCTURAL INFLUENCE COEFFICIENT MATRIX

In most cases, the structural information is available
as a stiffness on flexibility matrix with.respect to a certain

set of points, If these do not coincide with the set of

control stations used for the aerodynamic influence coefticients,
a transformation matrix has to be found. Denoting by the
subscript 'a‘ the aerodynamic net and by *s' the structural

net, we are given a structural (flexibility) matrixi331§uch that

{hs} = Tai {Fa (5.28)
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We want to find an equivalent matrix L% \_such that

BIY
If we relate the column matrices iFa& and {.Fs?t‘; such

that the set of forces iFa{ produce the same deflection mode
%h;T as does the set {FSE we can define the structural equivalence

as

{hg% - \..C:Sm\wE {_FC&:; (5.30)

By Maxwell's law of reciprocity

X .y “ A 5 .
%hﬂl = LCSC\} ‘LFS: : (5.31)
From equations (5.28) and {5.30)
) - a3 -1 N
hal = UCsal [alg thsi (5.32)
and from equations (5,30) and (5.32) ]
TN Vgl renien |
\,haﬁ - LCSQ‘,'! L-G-‘s %_Cs‘q}i‘:qg (5.33)
By identifying equations (5,29) and (5.33) we find
IR - - - -
Laly = LCsal LQYg [Csal (5.34)

To determine [Cs;l we assume a deflection interpolation

mztrix:

Shat « U Tasl {hel (5.35)

By identifying equations (5.32) and (5.35) we find

I
L Tasl = [Csal Tall (5.36)

from which
T

. L . - .
\_ ng_\ e ?\9 L T— Sh.‘ (5.37)

Substituting equation (5.37) into (5.34) yields the

desired transformation:

S ~ - T
Laly = U Lag) Lal 1 Tagl (5.38)
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(The following derivation is cue to Dr, N.3impson)

The ‘erivetion of thela’| matrix con be simplifird by the
use of contravorisnt variables, In the following the stiffncooes

" and the deflections are token os contravariont variables,

‘ - . ’
Ege(5.23) glvess &\:"gg - [&]S‘ A%k . (B2
It 15 desired to find = nmatrix Ea]asuch that

- -\
L83, = Caly {hal (5.29)"
e now define a deflection interpolation matrix Y}Qg}such that
-\
'i\“sk = Lios‘k ‘{\"“g | (2) _

Then, by using the principle of contragradience, we §et,

fron (a), : ‘
' T
.(C’EQ = ( \__Tag\_\-\) “(\:}9 (v)

| . .
Substiztuting for(‘F}gi‘rom Eqe{5.28)", mnd for{hg} fron Bqe.{a),

we got : | |
e (R @ L)) I o
Comprring Bqe(5.20) with Eq.(c), we gob o

el = (¢ 51"} Lall Corad”
Henee [@G . [as) Cag CTasd T (5.33)

which 13 the requered t’xdnsgd\’md‘n'mmatrix.
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Thus the determination of the structurally equivalent

transformation is dependent on the determination of the

interpolation matrix.

squares interpolation.

Schmitt (Ref. 59) suggested a least

Rodden (Refs. 57 and 58) recommends the

use of interpolation-in~the-small, although its use requires

a considerable amount of judgement,

When the wing has an elastic axis, and the structural

information is given as separate sets of influence coefficients

for the bending and térsion components (and for the control

surfaces), the determination of the structurally equivalent

transformation is fairly straightforward.

As an illustration, consider the wing shown in figure {(5.4)

Let the bending flexibility coefficients be defined by

{23 = Lefliwg (5.99)

and the torsional flexibility coefficients DY

ok = [c\j HF«E (5.40)

Here 7 and of are the bending deflection and the twist

angle measured at the elastic axis.

\h! andlz{ is given by

The geometric equivalence between the system of deflections

th, U —g,
i_ha_ t ezlu
Dl

W

The deflections

the forces(Fias

e T i

1 )
! [N

bl

© . 1 gt

Y

'3

o

........ b eem
\ -8l i Ze | (5.41)

hoea] Loe)

and -». cah be expressed in terms of

T B
Cﬁi Cale '-E
—eC ok ).Fz.
o e |l
CQZ& Cﬂe [ i:"l- ;
oo eckd | p,)
l (5,42)




Subatituting equation (5.42) into equation (5.41) the

required flexibility matrix can be derived in the form:

{\\E = Lal ‘{‘:E (5.43)

where
. > . z
_ C&q A Cap X .. CaeX
@3 = ° 1
. 2 2
Can X Caph - o - CoeX
o =3
C:\(o\.x Ca_b X Cae X
e, e lo) .
A_ - X ‘r f
< x .
q
(o] o 24
— Qg cqm x Cebx C}ex
Q,_Q1 o
€q
° - 2o
(5.44)

In Eq. (5.44), X represents the (2 % 2) matrix

containing unit elements

X = |1 1
1 1 : (5.45)

It should be noted that in Egqs. (5.44) and (5.45) X
is defined in the sense of matrix algebra.
By a similar reasoning, the structural influence

coefficlent matrix for wingswith controls can also be obtained,

5.4 THE AERODYNAMIC INFLUENCE COEFFICIENT MATRIX FOR WINGS

The aerodynamic influence coefficient matrix relates the
aerodynamic force at any control point to the motion of all
_the contro} potnts, For use in the direct matrix method the

aerodynamic influence coefficient matrix is defined as:




(5.486)

Fo= gdbl s {0

The form of the aerodynamic influence coefficlent

matrix LCg\depends on the particular theory being employed,
This could be either (a) strip theory or (b) lifting surface
theory. The latter could further be divided according to the
method of solving the aerodynamic integral equation: (a)
~ assumed mode methods and (b) collocation methods.
The strip theory formulation of the aerodynamic
influence coefficients will be considered first as it is

applicable to a variety of wing planforms from large 2spect ratio

wings at subsgnic speeds to wings—e¥ all wirgsat high ;§§£§;§§%§2
speeds, The two dimensional oscillatory derivatives are
generally tabulated as the lift and moment coefficients

referred to the wing quarter chord (e.g. Tables of Ref. 25
Tables of Ref, 26, 28 and 29)

Fig. (5.5) shows the given system of deformations and
the forces acting at the guarter chord and also £he corresponding
equivalent configuration required in the matrix formulation.
Since the main surface lift and moment are given as derivatives
referred to the wing quarter chord, it is convenient to take
this point as the forward control point in the matrix formulation.
Similarly it is convenient to choose the gileron hinge 1lire
for the middle control point, The reer control point location
can still be arbitrary and in the present case, this is taken

to be on the wing TE,

In terms of tabulated quantities (e.g. Ref, 28) the

oscillatory aercdynamic lift and moments are given by}




where DY is the width of the strip.

The load equivalence between the forces F_, F_,F_ and the

1’ "2'73
forces L, M, T is given by
L —
£ \ e F
il d (dicq ) £y |
Y . Ca | {F¥.
T = * VR - (5.48)

[ A s [h\ 3
= %-b/d b/4 CEER hz%
Bla ~(oavbicy) Slaalba)

Using equations (5.47), (5.48) and (5.49) and identifying

(5.49)

with equation (5.46) yields the strip serodynamic influence

coefficient matrix

S (‘b"?-’_’ﬁ'.ﬁ; ‘— b~y /4 i[
bei k 2 bfg *('3/&+blcq;t «
y © o ,D! ca _‘j‘
bz L tel 4 o
M, My Mgl « i T LYY o
i

b4 - (bra+bic) Plea
- {5.50)

When there is no control surface, we need to consider only'
two chordwise control stations, ane at the quarter chord and
the other can be arbitrary, In this casge, the aerodynamic

influence coefficients for each strip take the form
2 ey Ty —baal L
e =7 (&y/anit al be b e
) Y ( s} o b/dj_ LMz Ml 7By "/d (5.51)
When assembled for the complete wing the aerodynamic

influence coefficients for the entire. wing take the form
£ 42
AW h .
~br} (5 )EC}.:} 2 o
Lb« )t

[

o

2
(%«:)(-%“-j—") 6], (5:52)

)
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In addition to the two dimensional subsonic theories
referred to earlier, scolutions are available for the other
Mach Number regimes,

The aerodynamic influence coefficients can also
be derived using one of the unsteady lifting surface
fheories. Rodden and Revell {(Ref 60) give a comprehensive
review for some of the theories and illustrate the deriwvation
of the serodynamic influence coefficient matrices using a
collocation epproach to the solution of the downwash
integral equation,

For wings of arbitrary planform oscillating in
subsonic flow, Rodden and Revell -show that the

influence coefficients can be represented by:-

Cnl = KV [ B T;_M‘m], f.:N,;J] (5.53)

F N -
where LBnml is a pressure integration matrix, [ Ay
is a matrix relating pressure loading coefficients to down

wash and[}dﬁj relates the down wash to the deflections of the

collocation points.

5.6, AERODYNAMIC INFLUENCE COEFFICIENTS FOR OSCILIATING BODIES

In most flutter analyses of wing-body combinations, it
has been the usual practice to neglect the gerodynamic forces
darizn

due to the oscillating hody. The limited experimentallavailable
seems to support this practice as the effect of the aerodynamic
forces seems to be relatively unimportant compared to the

inertial forces of the bodies, . (a3 was seon .in Section 2.6)

(This holds only for subsonic speeds. There is no data available at
supersonic spesds on the importance of the aerodynamic forces
" due to the body). Ancther reason for neglecting the body

aerodynamic forces could be that presently available

knowledge does not permit accurate theoretical calculations of




the forces without the imposition of rather severe restrictions,
There is very limited knowledge of wing-body interference
effects and this is confined to particular combinations.

A theoretical analysis of the wing-body interference
problem in unsteady flow presents formidable'problems which
have been overcome only in a few specialized cases (e.g. Ref.6l),

The forces acting on an isolated body of revolution in
unsteady flow can be obtained by one of the folléwing methods:

(a) Exact solution of the differential equation

satisfying all the boundary conditions. Lamb (Ref. 62) has
applied this method to arbitrary ellipsoids in incompressible
flow.

(b} Linearization of the problem, under the assumption
that the lateral dimensions are small compared to the length in
theiflightdirection, (Refs. 63, 64, 65 and 66).

(c¢) Using the momentum theory of Munk (Ref. 23, p.,414,
Ref, 60),

Bond and Packard (Ref, 66) show that for low values
of the reduced frequency and supersonic M Nos, application
of the momentum theory gives satisfactory results and that
there is no special advantage in using the linearized slender
body theory. Miles (Refs. 63, 64) has shown that so long as
the lateral flow velocities are small compared to the flight speed
the first order forces and moments are independent on the Mach
number in comprassihle flow.

(Thia holds when M D <<\, >ME << where

&= slenderness ratio y 2 = m\JV) M=V q)

The mementum theory seems to be most suitable for
obtaining the aerodynamic influence coefficients for slender bodies.
By analogy with steady flow practice it is reasonable to assume
that the shape of the cross section of the slender body does

not influence the 1ift and moment (e.g. Ref. 67).
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Consider the slender body shown in Tig, (5.%). For

small values of the local incidence, the z - velocity at

any cross section is

\}Bh Oh

If S is the local cross sectional area, the momentum
of the virtual mass per unit length is
dx 3 (5.55)
aw = §5Wa= 5 (v .oh)
The z-force acting per unit 1ength of the body is

the reaction to the substantive rate of charge of dI/d X

i.e..‘-
P . B dr S
ax = nbia"] V3098
' - 2 ah
"—"‘Q {PSC V'a‘::_ 5 ‘l (5.57)
v D
("s‘u * St

If we assume harmonic motion this equation can he

written as:-

gi{,: gV ‘3&%5(‘\[ %‘i*ﬁwk)g“*wfs("\f%%umh) (5.58)

N

To obtain the force on a specified length of the body,
it is necessary to integrate equation (5.58) over that
length, BRodden & Revell (Ref, 60) give expressions for the
aerodynamic influence coefficients of a slender body with
an arbitrary deformation of the centre line. In what follows
the body will be considered rigid, with a undeformed straight
centre line (Fig. 5.7)

If the body length I, is divided into N sections,

the force on the th section is given by

Xy
T s 2 F &
A= Id¥ o - - (5.59)
x A
AV
where
.1*_7 — 1,&.“ An

2
Liay = X 4N (5.60)
2




rrom (5.5%) and (5,58),

A
Fu=gvls (vloreh)] °
Ley-L
:xk*!_
- ,-N,,gl S(- \f“_“\ wxwh) d - (5.61)
)&-...

Since no deformations have been assumed for the body it is
reasonable to use linear interpolation for the evaluation of

the terms in Eq. (5.61):~
{
h = \"\;\‘ +\‘\ (.1--1‘&)

Where the quantities with the subscript C“"é) refer to the

)) (5.62)

forward end of the section and those with (.—x'_-»_*.'-i) to the
rear end of the section,

Using this, eqn. (5.61) can be expressed as

F. L 2yt . Ly . -
L= - RWh (S Sey) ey L sb.i{hﬁhf(xb%- L
- ‘5,‘_,_z - WO 2,)] J
L
, ' . L (5.63)
hwen L Sn—g xm;._ * Sm}i""n-ﬁ
Since linear interpolation has been used, there will

nonzex?
be twolflements in each row of the aerodynamic influence

coefficient matrix, Therefore,

Fﬁ. = P ( Ch

In equation (5.64) the terms in the brackets can be obtained

'}-A,Al'\' ) (5.64)

Atl -4

fromBg. (5.63) as
Cohy ooy b v b))

- 3 - / [ .
)’:‘_S} -(5A._~:;h _S‘i"'::r.h) + \L_hi.&vi."'ézfr(g

Vi |

e cS

b, 2 Mty AL
-+ Py - ‘ i Ay
br SM,\n. SAvQ"A-;_j“ MV )¢



The deflections &1 and\w _, can be obtained in terws
s

)

of ‘\; and \'\,;,_, . For A=\ and ™ , the deflections can be
obtained in terms of the deflections at i.t\,l and &= M- N,
respectively,

1f the body is attached to a wing, the forces due to
the body could beldirectly added on to the wing control
point forces. in this case, a more direct method would be
to obtain the total forces and moment acting on the body.

These are given by (eg. Ref, 23)

L= 8%y (Vs W) +-‘.‘gKM&~

. . . {5.65)
PYK, (Vo th) = Omh -~ K, =<
where ‘
K, = g S dxy
Cody
KM“ gSCx xm;\dl
Ky = ﬂwgs{x xR“) Ax
L= Cha-b)/ Cxa- X))

5,6 THE USE OF ASSUMED MODES IN THE DIRECT MATRIX METHOD

By specifying arbitrary modes, the number of degrees
of freedom included in the flutter analysis can be reduced
drastically. To include the arbitrary modes, it is
convenient to consider cantilever modes and free-free modes
separately.

{(a) Cantilever Modes

Let N be the number of modes to be included in the
analysis, F the number of control points at which the modes
are specified and R the number of rigid body degrees of
freedom,

After introducing the coefficient of artificial
structural damping, g, equation (5.8) can be written in the

form

(- (ol = C&i) Cozt i {h}

Vrag (5.66)
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For the purpose of seeking series soluticns of Eq., (5.66)
it is convenient to introduce the (cantilever) stiffness

mairix
.- ~\
Cwld = Can (5.67)

Using this definition, the fiutter equation can be

written as
AT (b ) = 12 MO { kG (5.68)
where Ju - {\a«kﬂ)/ o (5.69)

The series solution to BQ. (5.68) can be written in

terms of the assumed modes as
Ihds~{had = Tngd g“w} (5.70)

here E.h,_-]is the matrix of assumed modes and {Q«Fﬁ are the
modal amplitudes.

Introducing Egs. (5.6) and (5.70), (5.7) yields

—S&Q
the boundary conditions for free-flutter as

™ ¢ S e
CWeeliapt + {¥ire] { el = (5.71)
where
L F‘-RF} == ‘{:mRF] “‘.‘[QRFJ

!‘;:_h

i

1T T0a] Dyl + Ched T CATL Kl (5.72)

Bl

y F’\Rv..\. = \;mav;‘ i—-‘f_-_gmm"'j
:U“h &) Lw)e) + T amd)
(LR TIAI NG «La)
From En. (5.71)

. - — -t P .
§ Ag§ = - & ‘“{zﬂ L m\'er-] -5\ Q‘Fi ‘ (5.74)

(5.73)

The flutter equation, FEq. (5,68) now becomes

A TRER 10 g = CR)(Thed{ag vEnelag ) feh .7

where iég is the error in the series solution, Applying

N -
Galerkin's principle [ Chel 1€ = DIS yields




(5.76)

v o -
Feed = Lhel Ix1Cwg)

- (5.77)

T ;ﬁ\:.—J = L "‘""'r—*s:-} [ Qeed _
= Ehad Lerl Dhel «[hell CALEReY G078

[Mead - Cmea)tl Qedd = Tmesd -
ThhelT LAY Dhel

(5,79)

If wo eliminate the rigid body degrees of freedom
by substituting eq. (5,74) into eq (5.76) the flutter
equation becomes
S -~ _ S T — A - _
Txed {agy = =& (@] L e [¥ige) \MRQ){GFﬂ(s.am

or in the canonical form, with (5.81)

. . =1
S50t - PRIt -rd . 1T ' i (5.82
(gt = BRI UIR e ~C ] o R0 %
The flutter equation can be solved to yield the

elgenvalues JLJ=JLR+ijll,from which we find the frequency

LN -
@ me | (5.83)
the required structural damping

3= 3/ nq (5.84)

and form the assumed value of the reduced frequency 3jr
’

Ve Diw

(5.85)
Wy

(b) Free-Free Modes

When free-free vibration dats are available for
flutter analysis, it is necessary to write two serles
expressions that provide the basis for the modal solﬁtion;

LA TIR N U Y Q":ZS +Uhg {&31 (5.86)

104 = LGgel { 0-,';7} * {033‘ (5.87)
|

e




Ei)

where the prime denotes the free-free condition Eiljf‘
is the matrix of centroidal generalized co~vrdihates, end
is the rigid component modal matrix.

Substituting eqns. (5.87) and(5.86) into the

boundary conditiond, Ez. (3.7) yields

Chgd LR (W) faid « Tndiagt)

e i_/s\—ﬁ]( T_C\g,}iu'ri‘ +£a31) =0  (5.88)
From 5m.(5.88), . 1\*&33 is obtained aé
S L
{0315 = - ﬁ\-mg&} Lmaaia‘:g (5.89)
where
oo e - T P -~
L®ge) = the] (MK} +[of] { 0] (5.90)

In order to apply the Galerkin principle when free-
:free‘ modes are used in the series solution, it is necessary
to obtain the equation of motion of the rigid component.
This equation can be obtained by eliminating the flexible

system between Eqa, (5.7) and (5.68)

- (ha) (3 thi- Thot )= (am1fag

(5.91)

Substituting the series solutions, eq (5.86) and (5.87) the

above equation becomes:

AT KD (W] 5 65 = (@1 (10Rd (0L« {agl) +{6k (5.0

where -1(39_73 is the error in equation (5.91) due to the

series golution, and

{.\“F\ "‘\_\"'r] ~ [h;{_] [GRF:\ (5.93)




Substituting the series sclutions into the flexible

system equation of motion, equation (5.68) yields

RN (H{:] { Q‘Fgf = ‘r‘."#"*.:\ ( K.\.‘Fl '& G}§- h \}‘u\ Lft{?}i._\} t S\GF% (5.94)

where Ch {is the error in . (5.68) due to the series
A \icatvon O
solution, g Galerkin's principle
. - "T( . - 4 T ‘ . - ’
(i_nm_l (el v the) 7€ =0 ). yields the

4

generalized equation of motion:

VO T e V 8 U=t oo 5\
..h__{h;)! '\‘\lr’.(\: i L-L\Y:FF-]E(AF% ™ (“\T\Q.\ \l_(lﬁg} (5.95)

\\\;-1 fi \_\\ ] | (.96
1) + Q1)
RO 1 Load 1w (0)

(|
T( CARYS 1:&44%;5 B e cs.o

L |
AT
B O
i_,-—-
{

r___..
'y
T .
(A
It

H

[_iﬂ;R\ = H ‘_ U In e, [L\m] (5,98)

By substituting Eq. (5.89) into Eg. (5.95) the centroidal
degreesof freedom can be eliminated to give the free-free
modal equations:

=X

R ikt ( l‘\'\'}":% ) Yﬁ;;\ L mkﬂx \‘-1‘7‘:“\){%} (5.99)

or, in the canonical form:

sfdl- [Ktj‘ (U] - (W) L e T mkgl{a;z

5,100)

The flutter equation can be solved as before for
a4 number of values of the reduced frequency ! to obtain

the flutter speed and frequency by the ﬁ-f} method,
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5,7 METHODS OF SOLUTION OF THE CHARACTERISTIC MATRfX

The characteristic eguation of the fluttering

system has the form
ALt =TUTihE (5.101)

The matrix i) 1s an (N«ol) square matrix, where N
is the number of degrees of freedom allowed, For the
flutter problém the elements of U are in general complex
and the elements are real for vibration problems, It is

ey onvvan .
very rarely that Kj is symmetrieal,

Thus the problem is one of determining the
eigenvalues and eigenvectors.of a non-Hermitian matrix.

In most cases we are interested only in a few roots
starting from the eigenvalue with the largest modulus.

There are two basic approaches E% solving this
problem:(a) All-the methods applicable to similar real
matrices are also applicable to the case when elements are
complex or,(b) the computations can be confined to the domain
of realnumbers by adopting the following method., Let the

matrix 1) be written as:

Wl = Curls Ltund (5.102)

where \JR represents the real part and \JT the

imaginary part. Then the eigenvalues of \U are the same

as those of the real matrix

“UR -UL“\




(This can be proved as follows:

The equation E‘flihafaakﬁcan be written as
\L\) R+ Ly L} L\\}E = Alwly

Multiplying by (-+) gives (VT —AUR]Thi=-aA3hY

Now ..
fug ~utl i h ¢ (R +4ur1<hTT, 3 Th
‘LUL UP\}-. L-‘*\“g “{EUE-AUR]{W}A Ai—m‘nk

Thus, by definition, A 1is also an eigenvalue of the

modified system;.

By using this method the methods applicable to a roal
unsynmetric matrix can be used for obtaining the eigenvalues
of the matrix BJ}. One disadvantage of this method is
that it is wasteful of computer storage space.

Basically, the methods of solution can be classified
into three broad groups:-

(2) Methods in which the characteristic determinant

is expanded into a polynomisl equation involving A.

This equation i3 then solved for the eigenvalues A

(b) Methods in which the characteristic determinant

is transformed into a standard form (e.g tri-

diagonal form, the Hessenberg forms, etc), The
eigenvalues are obtained by making use of the
properties of these special matrices.

{¢) Iterative Methods,

5.7.1 Direct Methods

When the characteristic determinant is expanded into
2 polynomial in A , the methods discussed in Section (4.5.3)
can be used,

In addition to these methods, a modification by
Frazer et al to a method of Krylov (Ref, 45 )

can be used for small matrices, This method makes use of




the Cayley-Hamilton Theorem which states that the

characteristic equation of
In - 7\—‘_..\ = O
o ey -
Ciec.. N+ bir\k za)
? Azo

is also satisfied by the matrix A

™~ -t 14 ’
i.e. A I o At o (5.104)
L K T L
A=O
£ Y represents an arbitrary wvector, then operation

on it by Bgn (5.104) must satisfy the equation
AR (5.105)
A=
This amounts to N linear equations in the unknownsiai‘
(h=o; w-+), The method is to calculate, for any vector y, the

N iterates Ay .......AN& from the linear expressions
represented by Eqn (5,105) and to solve these equations by
a linear equation solving scheme,

For small matrices the gouriau-Frame Method (Ref., 68
p. 225) is very useful to obtain the coefficients of the
polynomial.

Another procedure would be to evaluate the determinant
B(N =\A-AL!  for a number of values of A. ‘These values
are plotted and the eigenvalues A are obtained as those
which cause the determinant &3 vanish. When only a few -
roots (of the lowest magnitude) ere required, this is a
very useful method even for larpe matrices, TFor & (21 x 21)
real, unsymmetric matrix this method gave very consistent
results (Ref, 69). This method would probably be
impractible for use with complex matrices. in view of the labour

involved,
5.7.2 Methods involving transformations

If the characteristic matrix is t}ansformed into
a standard form, the determination of the eigenvalues

and the eigenvectors becomes somewhat easier.



Lanczos (Ref. 70) gives a method which reduces the given
matrix :i.x;to a tridiagonal form. In this method, two bi-
orthogonal vectors X; (A-t..n)and y; Ca=y, .. )
are the first assumed. The vector X, is a column vector
and the vector \LL is a row vector and it is assumed that
\jf J.J' ‘-‘—O(Mg_j_}:;vhere \_-5: represents the complex conjugate

of \jL' the next two vectors are defined as follows:

Ly = A X - Qg A= by XKy,
Yiw, = Y K-aly, - Yo Yko (5.106)
where
O = B A T /\jf‘;\ "
Buoy = Yo A X { Yo, Xwod
and Yo =0

The recursion formulae for ~Y_ can be written as
AU&\ = IK'« Gy

Ay = X3 4 azxat iy

ASly = Dy QX Ty Xy Ly (5.107)

In matrix form, this can be writtien as

AS = S |y, - 1
Qg b L2
\ < % a3 by ‘;
o R AL E\‘s
; ”' ' Q|
i _ !
= 3T (5.108)

Equation (5.108) can a2lso be written as S,"AS:‘T and
shows that T is obtained from A by a similarity transformation.
Hence the eigenvalues of T are the same as those of A,

This method does not give accurate results for large
matrices due to the difficulties in maintaining the bi-
orthogonality condition with sufficient accuracy. However,

the method is aceurate for small matrices.
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Gregory (Ref. '71) has given a modification to the
Lanczos method, In this method, the metrix A is transformed
: w treanqular
into anm-— 3 form, He considers the recursive

relations to have the form
Ly = A K- Qe X - QK_"K*";(““__...,_QK‘BL,

T * %* x ‘ | %
\j\"‘n - \AV\A - Qew A~ O’k_\,K,"lv\-\“”' "qk;l\ (5,109)

where

It the vectors (x ... Xx)andly,, - Yy are

bi-orthoganal, the recursion relations can be written:

AS = S| % Qqy . q.\“"\
i. 1 ’Q'Z'Z P, c"\'l
‘1 & Vo Qa3 Sz i
Lo e 1 Qugd
- o1’ (5.110)

Gregory found that the terms above the first principal
diagonal were small compared to the other terms, and
considered ¥’ to be a triangular matrix. Even so, this
method gave improved accuracy over the Lanczos method,

In some cases, it is possible to apply the methods
available to solve the eigenvalue problem of symmetric
matrices to the solution of unsymmetric matrices, For
example, this is possible in vibration problems where the
equation can be written as

[ M = o

(5.111)

Yhere the stiffness matrix K and the mass matrix M are
both real and symmetric,
since { M{is symmetric, there exists an orthogonal

matrix such that R
N N R )
LR

r - -1
tUl - (D
ba TN CU]‘Y‘l -1 f 3 (5.112)
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Where 1) is a diagonal matrix containing the eigenvalues'

of M (which are all real and positive).

(5.113)

The matrix \J has for its elements the eigenfunctionsV

of [Fﬂl

tud = CONPE L)

(5.114)

From equation (5,112)

M) = [U‘\ o3 LLY

(5.115)

Since the diagonal elements of 1) are all positive, it is

possible to write:

‘bl = l.D] L'DJ (5.116)

Using the relations (5,115) and (5.116), Egqn, (5.111)

becomes

SR R S .
CXIEhY = % CUTERT? 3% [0y {w

(5.117)
Defining the two matrices
Y5 - Wy
£y - ['D]’*’-}‘jj (5.118)
Egn (5.117) can be yritten as
KDJ LI (0] h e ST (5.119)

or [cjixy- o {‘1}




odo %mm 3
(5.120)

Thus the original problem has been reduced to one of
finding the eigenvalues and vectors of two symmetric
matrices, The steps in the calculations will be:

(1) Solve the eigenvalue problem EM".’:{TS: }"{‘j_"ﬁ

(ii) Form the matrix ‘J- whose columns are the elgen-—
. R P
vectors of ™ and the diagonal matrix LO]
1 . i
whose elements are N?i where }ﬁ_ is the

elgenvalue of ™M\

. = Yo
(1i1) Form the matrix 1Ql1= U] 2 Lol (Ki{vited
(iv) The eigenvalues of the equation EC] {12':;" ,C\x;-l

are the eigenvalues of the original problem and

the eigenvector %‘LS is given by
R . - LR ..‘-‘f’z . 2%
g4 = Cul LD) i

Since. K is Symmekie, W= K, '
Wong, @ = DEUKUD R e
\
W
|
\
This method has been used to solve the vibration
frequencies and modes of beamg by Young and McCallum in
Ref, (72).
One major advantage of this method is that the
methods availablé for the reltatively simple problem of

finding the elgenvalues of a symmetric matrix can be used

directly.

5,7.3. lterative Methods

These are the most powerful methods for obtaining
the eigenvalues of arbitrary matrices. Most matrix

iterative methods are based on the Power Method of Von Mises.




5.7.2.1 '"The Basic Power Method

Misen

This is based cn a theorem of Von Misses (e.g. Ref ;&5)
which states that if xl ......xn are a linearly indep'end'ent.
set of eigenvectors of an N x N matrix [A] and if the
dominant eigenvalue A, is real, then tke mequence
converges to the eigenvector corresponding to )\‘.' where S;h\s
is an arbitrary vector not orthogonal to Xy This
result follows from the following argument:

Assuming that the eigenvalues of l';f-\]j A Ag, Ay
are different and that
RN IR P P A A

(5.121)
@omridar an arbitrary vectori_h._‘,ﬁlwith N components, This
can be cbnceived' as a linear combination of the N eigenvectors

X vessneee ¥  of CAY 1.e.

1

' = Sy, Gy, N4 - Cu L

£ 1ol R T A (5.122)

Applying the matrix [ A} to (5.122) we obtain

AWThY = A X, e e e Ag'X :
*{. ‘X 2 tadaw ™Ay A (5.123)

If this process is continued, say, m times we have

| )
(AT {he = N ~GAN e - 2 Cu A tn (5100

Assuming that all the roots are different and that }\'
. is the dominant eigenvalue, the first term on the right
12
ot {‘_\
hand side of Eq., (5.124) will dominate and A} 1 ci

will converge to < ?\.m:x-u
ie.,
™My "
Thal = TAY They =~ ahx, (5.125)




Applying the matrix !:A“_} once more to (5.123) we got

m-H

mﬁ YA.\ {h} X (5.126)

{

From (5.124) and (5.26) we obtain

‘I\l - hm,ﬂ’"‘\

m (5.127)

where \\mﬂe\‘\c\ \'\“ are corresponding components in the

vectors {,‘m\*& and {\‘m}

This method can also be used in the case of
multiple eigenvalues (Ref. 73, p. 247 or Ref, 74 p. 277),
consider the case when | }\‘\ y_\)\llg_ In this case the

. oo o
mth iteration will converge to { C, )\T‘ {1.73 +C2 51{12}),

Introducing the notation
ML
{XKS = C\'s ?\\\ 1 S 5 (5.128)

The mth iterate can be written as

{hm{ = {X8 +{ %
hmnd = Ml A}
Chmed = 2 (03 SR
(5.129)
neglecting terms of higher order,
The vectors Shm}’ {hmﬂ's and | s‘nuz}g are situated
in approximately the same plane.

Hence,

{hm+'z§ + Oy ( hm‘?i& + Go{hm.‘; :' o (5,130)




- 8ince thé vectors have at least two components, the

values of ©g 3~ A, can be determined from two simultancous

eqniations. Inserting (5.130) into (5.128) we obtain

S - 2 , ¢
Cara ") I« (kz* G\M*(}\g) gxli' =G (5.131)

Since X, and X, are linearly independent A o<l N

must satisfy the equation

%*Q‘)?Gu =0 " (5.132)

The corresponding eigenvectors {\'\1 are obtained from (5.129)

as

Pt = e = Al X!

T e a4t b e

)'\ "Aa_
. . 3 { ( ;
thel = YRon = Amd
M=da ‘ (5.133?

Basically, the power method consists of choosing
a vector {_1} from which {1& - E:Ai {1} is computed.
Usually {x,} is then normalized by dividing all
the elements by the element .with the largest modulus,
thus obtaining a new vector'},{ whose largest element has
a modulus of unity. The vectOrEfI-z}-z‘:A";-{\j,‘?is computed
and normalized as before t°§137_25 . Repeated application
of. this process leads to the computation of {IKE =1 Al {IK-IE‘
which is then normalized to i\jkg. If the vectors |
converge, then the vector to which they converge will be
the principal eigenvector. The maximum component of f_xkfg’
because of the normalization will converge to 7\\,‘
Usually, if the iteration does not converge afier a

specified number of iterations a pair of close magnitude

or equal roots is suspected and an alternative procedure



is adopted. Oance the dominant eigenvalue (or dominant

pair of eigenvalues) has been found, the matrix { A} is

reduced to one containing all the other undetermined
eigenvalues, but which does not contain the eigenvalues
already determined,

This method is very accurate since the successive
vectors i}ﬁwa% Cuh {}ﬁhg are always generated using the
original matrix (A} and the errors created in f\ghk
for some value of k tend to correct themselves in the

later steps,

There are some modifications to the basic¢ power

method which improve the method,

5.7.3.2, Wilkinson's Method

If the matrix{A} has N linearly independent

eigenvectors x_, X

17 Fg receeeees X, then any vector V can be

written as

Vo Xiypmae. o wxy (5.134)

where the x; have been suitably scaled. Similarly after K

iterations,

K K ‘ X
CA=PTI. YV = (=5 (A 2y
EN -*()an}K:&N

Thus, as in the basic power method, if lh;—?[ Z \ha-pt 2

(5.135)

--71\}\"-\3\’ then the term (A, - P)Kl. eventually
dominates, All the restrictions and limitations of the basic
power method remain, but the freedom to choose \3 gives scope
for improvement. By choosing & proper value for P, the
convergence of the iteration process can be speeded up. The

method also permits the calculation of the lowest eigenvalue




without having to calculate all the other values,

2.
5.7.3.3 Aitken's c‘) Acceleration

If the matrix has closely spaced eigenvalues the
convergence of the basic power method will be too slow, In
this case,; tha2 & process {e.g. Ref: 73, p. 243) can be
applied to speed-up the convergence,

Let {:3(;} converge to ol Such That

€,. ke IR (5.136)
where €, =X;-o and K is a constant. . This is called
‘geometric convergence' to distinguish it from linear convergence
which is

VY oy

q%o

C.Q:n-\\} 2[\(*6‘;‘)@& (5.137)

I1f we eliminate K between successive relations of

(5.138) and solve for

2
I-j\*_zx'k - 1/;#!

5,138
1A-&2__2::“A1|+:1L ( )

For a seguence which converges linearly rather than
geometrically the expression on the right hand side of (5.138)
does not yield the limit in one step, For this we define a

new sequence by

2 .
1L = ( :'I'L\-?,lk m‘k"\" )/ (1A+2_“2 l&*‘-\-l{} (5. 139)

This may also be written in the forms
=i Y |
Ziz XA *&_ 1)\"\\ “KA) /L 3&,\*2“214&*1*:(&)%
= 1*"‘" - {c 1‘_..*“‘&'\.\) Cl‘*t*h‘j /Clk+2”21A¥|“"14)3

> .
{

= X - C:'«a.-&'z"l -rh/(l -2 +
A { A A A L\]S (5.140)
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5.7.3.4. Bodewig's Method for Nearly Equal Roots

Bodowig's method (Ref, 73, p. 249) can be applied
in cases where the eigenﬁalues have nearly equal roots and
consequently the iteration by the power method is proceeding
slowly.

If the first two dominant eigenvalues are
rearly equal, then the cenvergence will reach a stage where
the first two terms will dominate and the iterates \Qg:.A“g
will be approximately equal to C X{‘ *, *,x;gz)

Considering the two previous steps of iteration, we

can write {(after proper scaling of the vectors x and xz),

1

K2 k-2
VDL KT = X

(%
'l 0 = h,:1u + ha X2

) 2
w( = A‘ 1\_*,%%:(””

(5.141)

From the first two equations:

%2 VA,

(.\-i\‘,)

<

k-2 {k-‘)_
Xp= VULV M

- (5,142)
{\.\ - A\f&l)
From the last two equations of (5,142)

o I RIS

™

b v -

Acla- aﬂﬁz)

[§ 23

NTTL Ny,

(5.143)

Az G- EZIAJ




1f we now equate the two expressions for x

1
(or xz) we obtain:
(R ) i. )

U LarR)

SautP I &)

* ?". "\2

This is a vector equation which is valid for every
element of the vectors. If VL and Vh represent two

different elements, we have

e -2}
\ L ) 14 R Ky

(K23
j— --L (K-\) (“'3
i )
Vm - ( N ) - 77."3\; w o=a (5.245)
From these two equations
L= RVES At I ¢ (-3
(;\"";\)_) ‘:..)LVL JV h)-\lk)\! }/l\
i ¢ (-2)  (v~1) (% ~y) “a)
ANy = l_VL M - N Vv / (AN
AT (v =) (x) {3 (\t-\)
& = VL VN\ - N V(n
(5.148)

This means that ', and'(), are roots of the quadratic equation

(R=\Y ) -4y ~
VL (K)— V(K (w1 f ( L)

Vaon “1 A
(w-2) (% (WY, (K-2)
SR R T P P II
] (%23
FANL NS Voo Viny =0 (5.147)

5.7.3.5 _Deflation
in all the iteration processes described abova,
efter one eigenvalue and its associated eigenvector have been
Pund, it is necessary to reduce the given matrix to one in
which the known value and its vector are no longer present,
Cln\h-Q dh a
This ismknewn-a 'sweeping' or 'deflation’.

For arbitrary matrices, the most popular method

seens to be Wielandt's method,




This is based on Wielandt's theorem that the

matrix

Te) = AV -, {0SLz) (5.148)

Where{‘xi% is a column eigenvector and.[zlj is an arbitrary
row vector with z, x, = 1, has the same eigenvalues as {Aj
except that 7\_= 0. Also the eigenvectors —SkNL‘lsof [B]

satisfy the relations

e Y S BN AR

A)
Xy oz W

‘ - (5.149)

Since '?\2.13 is arbitrary, it may chosen so as to
make one row of I:B] equal to zero, and thus [B] is effectively

reduced in rank to order (N - 1),

5.8 METHODS SUITABLE FOR THE FLUT'TER DETERMINANT

The characteristic matrix of the flutiering system
as complex elements and is nén—Hermitian. One method of
solving this matrix for its eigenvalues and the eigenvectors
would be to use the methods applicable to real matrices,
but using complex arithmetic, The ICL 1905 digital computer
has facilities for handling complex numbers in single
precision arithmetie., Since some of the eigenvalues of the

characteristic matrix can have close or equal magnitude roots,
the calculations have to be carried out in double-precision
arithmetic to determine these values accurately. The double
precision calculations can be carried out only with real .
numbers. Hence, in the two methods to be described, all

the calculations are confined to the realm of real numbers,
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‘but with proper regard to the rules of complex algebra,
The calculations are carried cut in dsuble-precision

arithmetic where necessary.

5.8.1 Method of Rodden et al (Ref, 58)

This method has been formulated so that the
eigenvalues and eigenvectors of a real or complex non-
Hermitian matrix can be obtained by the Power Method.
Convergence to the dominant eigenvalue is amccelerated by
using Aitken's \samethod. The convergence difficulties
due to a dominant pair of close or equal magniiude roots
i3 overcome by using Bodewig's Method. (This includes as
special cases complex conjugate roots and equal but opposite
roots)., The deflation method of Wielandt is used to permit
the iteration to converge to the next most dominant root.

5,8,11 Iteration and Acceleration

Consider the matrix (A} . The application of the

power method for the dominant root yields, after (n+l)

iterations
f\nH ihm.i = f*\:‘ l“\q'g {5.150)
where '-i\'\n.».-\lg angd ‘\\mg .are normalized on the

largest element &Va& A, is the normalizing factor and
the (n + 1) estimate for the eigenvalue the iteration may
be started either by essuming & unit vector or with any
erbitrary vector, convergence is obtained, in the real case,

when all the elements of ihg satisfy the condition

bl =
i ~nr\ - hn--u\ < C*-s (5.15)

where ©.is a small positive number (taken as O 5 x136 )

In the complex case, the condition is

%R@Chn"l\“-‘\}\‘r )Q\t"ﬂ\Chn"\\h“}{‘ < (‘*'&'\}e.

(5.152)




The cenvergence test is made as a difference

rather than as a ratio since all the vectors have been
normalized,

If the iteration process is converging, the
convergence is accelerated by using Aitken's ézrnvcess
(Section 5.7.3.3) vhich permits extrapolation to a better
gpproximation of each element of the vector. The extrapolation

is made only if all the elements satisfy the condition

ﬁ_}\.‘«‘.,fl",..‘l':‘,). o N« (5.153)
(\\r\..\' hn L - -~ .
(Real case)
or
C‘i‘f"k“")l <" <l | (5.154)

iy boea)]

(Complex case)

The value of M. must be less than, but not
too close to, unity. Rodden and Farkas (Ref. 103) noted that
when % = G.g optimum convergence was obtained,

The extrapolation formula for each element of the
(n + 1)th eigenvector is

by - Lhoo b

h
na (Npy -2 hi thnez) (5.155)

In the single precision calculations, the
extrapolation is attempted a&s often as possible, i,e, following
an extrapolation, the test is attempted every iteration past
the third iteration, In the double precision calculation,
the test is attempted every iteration past the fifth iteration

following an extrapolation.
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If convergence is not obtained in 40 iterations,
the presence of close or equal magnitude roots is suspected
and the calculation is continued in double precision,anticipating

onvergence to the guadratic form

" .
= O
Nxpheg (5.156)
whose roots are the two close eigenvalues
(A1) [ RN
DR N I N (5,157)
The coefficients p and q are found from
{ \ ) . N
B, = }“,." A Yo has "hr\\‘“h“°3) (5.158)
NEFNITN PN hn:}, ~ An-z hgn”.‘)
P
ﬂv\ - ‘}‘f'\-. ’\“"7—'( ;\‘"\hr‘\ \\ﬂ-a - aﬁ-‘ \"‘\'\ ~\ (5.159)

{ P\\\...‘hn-‘ "'\“_-3 - ;’\n-g_ \%n -z)

where A} denotes the i-th estimate of the eigenvalug and
representsa particular element from the i-th vector (usually
this is the normalized element, i.e. \y =\, Dbut more,general
expressions for |, ondf_ are necessary in the case that the

cexe element has not been normalized in successive iterations.)

The convergence conditions are:

‘{; V- "h—.\‘)/ﬂ?ﬁ‘\) t <&, (5.160)

| K \qf“/'q.n_‘n" W< 62 (5.161)

~7
where &, is a small positive number taken as (0.5 x 10 )

here. The two eigenvectors are found from

iy, . .
N = & Dot - Anthal (5.162)

T N R (5.16)




The following tests are also made in the

programme for testing the possibility of convergence to a
single root or to a pair of close roots,

Convergence to a single root has been observed
when

\ x?.)/ };n\ < \ ‘(\i?""/}\(i)\ (5.164)

and to a pair of close roots when

\ Xm/r\ml < if(s)/:’\cm\ | (5.165)

5.8.1.3 Deflation
When convergence to a dominant eigenvalue has
been obtained, its effect is swept out using Wielandt's method
so that the succeeding iterations will converge to the next
most dominant eigenvalue,
) R
Let |Ag’l denote a matrix in which r represents
the number of eigenvalues absent from (Aland S, denotes the
£ o
number - of the row ing: ._lwhlch corresponds to the row
containing the pormalized element in the vector. The iteration

vwill converge to the next dominant eigenvalue such that
. o] [ yLAN ayfd
At *’l i R [ = A {h } (5.166)

(K7} '
where i‘\ Vi denotes the vector number <wd(i-i) is

a modification number.
The true vector is recovered by successive

mpplications of the recurrence relation:

R L T M.Sct ol Y

Yaia -t | . (
Aej= A=j=y \LA*gsj"J {.x”}kj[

Cj=uva o, amt) (5.167)

S



In the caso of multiple repeated roots the

t:.oe‘-}.|‘?:t‘:tc::ier.'d:{‘,}‘\c;"“*]\J )\(‘M‘/ LA A-J ”J {h“)s

becomes indeterminate and is arb1trarily asglgned the value
1.0, whenever \ (}E"J 3’/ )\M})wl‘ <&, , COY \Rv_{'h‘.*ﬂ)r/ﬁ*})ﬂi
LRI OFF ) S < Gele
in the complex case}, since the vectors correpsonding to
repeated roois cannot be determined uniquely but only to
the extent that they are linearly independent.

The eigenvalue is then swept out of the matrix

by

Y - : (5.168)

5.8.2. Method of Gollmitz et al  (Ref. 77)

In this method an inttial estimate of the
eigenvalues is made by the power method and by sweeping the
known eigenvalues out of the matrix., Wielandt's reciprocal
iteration (Section 5,8,3.¢) is used to improve the accuracy

of the eigenvalues which have already been obtalned.

5.8.2.1 First Estimate of the Eigenvalues

As in the previous method, the application of
the power method leads to the first dominant eigenvalue.
In case of two equal or close valued roots, Bodewig's method
is used,

If we assume that the ™ roots A of the

equation
{ a-AT) =0 (5.169)

are such that

L RARY DA AT (5.170)



To determine the eigenvalue with the largest

modulus, ’\‘: we assume an arbitrary veector Z., with 1)
components., This may be considered as a linear comhination of
the Y\ eigenvectors hl’ h2 ceacns hn belonging to the
eigenvalues py, A - -, An.
Zo = Shicchyv s by (5.171)
where the i are constants,
After W\ applications for the matrix A to the

basic vector %, we have

u

y A R'T, = C.)ﬁ,“hpgz)\?\ﬁr G DG 5.172)

First we consider the case when | A Z AN 7\31‘..!\_
In this case the first term of equation (5,172) will dominate
and after a further application of the matrix A to the vector

'Zm’we can obtain the first dominant eigenvalue as

N o= B[y (5.173)

"

Considering now the case when \ A (= \A; |

we introduce a column vector X  given by

K= Cu i (5.174)

By Bodewigls method the two eigenvalues »,

and )\ , are obtained as solutions of the quadratic equation

?\2":'“)\ vz

{5.175)




The eigenvectors corresponding to A\,

are obtained ag

K, = \Z‘I‘E}ﬁ_‘lm ¥
>\\ ~ N '

and )l

-(5,176)

laving obtained the eigenvalue and the corresponding
—— ! :

eigenvector X,

the matrix

these values have to be eliminated from

A hefore proceeding with the iteration,

The determinental form of Eq. (5.169) is

det | A~ X1{ =0 (5.177)
we replace the first column of this determinant by
(A=A :L)X., yielding,
ML‘.:A\\ “"'R):I-\*\-Olztl‘i_-\- - +Q\m'-1m Q\--L Q‘f\‘
= LD
_-( 0“\'36.\'!-0“2_3.;, .. +@\nr{"?\)1m Aty c’\ﬂ'n
(5.178)
Further, we have
QT X =AM X snz N (5,179)
d 4, 47 .
Substituting Eq, (5,179) into Bqg (5,178) we have
Xa 4% gy,
' : L Qgy-) a
(Rt"A) : 2y )
1 %o ana . Q) (5.180)




We multiply the first row by ('1\4{1\)51:1:1

(5.182)

subtract it from thekth row (v =2,3 .. ﬂ) to
obtain
aQ,
1\ — jor 2 _ i - q““
/ L
\Ay- A _ R ST Qg
) =0
O | Opa-Xn a,. -A- Xn
! D% X Qo Lo ?\ % 0.“‘
. (5.181)
For '}\ = >\z, A?,, ce Rh-’ the hordered sub-determinant
becomes zero and hence the reduced matrix
Aoy~ X2 a : Qa Ay
: - 22
EY = CI"\
A, = |
QNQ_ - :.‘.;,ﬂq - ; .
Xy e qﬁl\-‘ .I{;"!‘q‘q
has the eigenvalues "7\7_, }3. .. ?\n- Using the power
method on Al we obtain the elgenvalue }‘2: The matrix
A is then reduced as above to determine the eigenvalue

1]

and so on to ;\f\.

5,8.2,2 Reciprocal iteration by Wielandt's Method

Let ?\'K represent the approximate values
(of the true eigenvalues A, ) determined by application

of the power method, i.e,

Then

€ = Ny~ A (5.184)

3 (5.183)



will be the eigenvalue with the smallest modulus of the

matrix

fey = i) - 01

(5.185)
To calculate & we introduce the basic vector
- ! f i
X :C\Q\*CZQ ¥ oo ..,C'“
o { 2 Q“, (5.186)
(& *0 Cy wo)
where the @i are the eigenvectors of the matrix { ¢ |
After M\ iterations we have
! .
(P‘"AKE) x\n-n = emﬂ Ry ) M=002,.. (5.187)
It is convenient to normalize the last
component of Xmﬂ ;
Ly (5.188)
'lr‘\ =10

If we exchange the last component on the right
hand side of Eq. (5.187) Wit g ¥raht bond Side, we
obtain a system of linear, non homogeneous equations,
whose unknowns are the remaining (n - 1) components

Ciiyy
of "X ; and the eigenvalues Gw‘ﬂ . Using the Gaussian
algorithm we transform this modified equation into &

triangular form:

v [RUE Y ' M _(M)
A, X ‘1"‘1\;—,’1(,\_ ‘l -Em“:)\' :‘-Q‘I'\.
1
' Cendt) ) ,
O Ay n, - SraXi = -Q5,
=im (5,189)

)
- Gm«\ R R = T
i

il represent the components

In eq. (5.189) a7

of the iteration vector after 11\ iteration tleps
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After a sufficiently large number of steps, the eigenvalus

is calculated as

€ R CGwmey T (5.190)

Hence the true eigenvalue is

' .
N = M + & (5.191)

If the matrix ﬁ posgsegees two close-valued eigenvalues

€., &, , the two root procedure described before is applied

to determine this as roots of the quadratic

Do E 4G € ai <o (5.192)
In the actual computations, after M = 26 steps of
iteration by the power method the two-root procedure is applied
to the two vector sets
(-ZM_IM,‘_\_ ZM'H.)

et { Tnaur, Lean, meg

From both sets the approximate eigenvalues A‘)‘)z_cuuiaﬂ &;
t

are calculated end compared with each other, If A, agrees
with N, and Ny with XL upto three figures, the matrix
is reduced by using the eigenvector Xl corresponding to k:
and the power method is applied to the reduced matrixc and so
on until all the roots have been obtained, 1I1f no agreement
has been obtained after 26 stops, ten further steps of the
power method are applied and the above procedure is repeated

with M = 36. If still no agreement has been obtained, ten

more steps are applied (M = 46) and so. on until the postulated




agrsement has been obtained.

After the approximate values of all the eigenvalues have
been found, Wielandt's inverse iteration is appilied to
obtsain more accurate estimates of the eigenvalue,

The flow chart and the computer programme are given

in Appendix VII.



CHAPTER 6

THECRETICAL ANALYSI3 OF THE FLUTTER OF THE MODEL WING WITH
LARGE CONCENTRATED INERTIAS

6,1 DESCRIPTION OF THE PROBLEHW

In order to assess their relative merits some of the
analytical methods discussed Chapters 4 and 5 were used to
predict the flutter speeds and frequencies of the model
ving used in the wind tunnel tests (Fig. 6.1) under various
c.ombinations of added inertias,

Three difierent sets of wings were used in éhe experimental
analyses, All the wings had similar geometric properties, but
had different values for the bending and the torsional
stiffnesses, The ;ﬁ%;ﬁfé of these wings are given in
Appendix }I; Briefly, the wings had a span of 24 ins., a
chord of 6 ins, and were cantilevered from the root. (The
wings were tested in a vertical position in the wind tunnel).
For all the wings, the elasticaxis was at the 35% chord
position and the inertia axis at the 45% chord position,

In all the theoretical calculations the structural
damping has been assumed to be zero, Also, except where
they have been specifically introduced into the calculations,
the aerodynamic loads due to the pods have been assumed to

be negligible in comparison to the other forces acting on
the wing-pod combination.

6.2. Vibration Analysis

As a starting point to the flutter analysis it was
necessary to have a knowledge of the frequencies and modes
of vibration of the model wing-pod combinations.

It was felt that the flutter mode could be considered as a
linear combination of the uncoupled bending and torsional

modes of a uniform wing carrying an added inertia,
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To obtain the frequencies and modes of a uniform
beam {or shaft) carrying a concentrated mass or moment
of inertia an operational method (Ref, 37) was used. By
using this method the frequencies and modeé of & uniform
beam (or shaft) with an arbitrarily placed concentrated
ﬁass (or moment of inertia) can beobtained. This method
permits exact, closed form solutions to be obtained for
the freguencies and modes of the system under consideration,
The analysis and some results obtained from it are given
in Appendix III,

For a given wing-pod configuration, the uncoupled
modes and frequencies in bending and in torsion can be
obtained using this method. To simpliify the numerical
calculations (in the flutter analysis), the mode shapes wWére
approximated by a polynomial function for the bending modes
and by a function containing the power of sines for the
‘torsion modes, The coefficients of the approximating
function were obtained by using a least squares technique,

A computer programme which enables a given function {eg
Y= @ forb £ YChoy« . )
to be fitted to & given curve was written and is given in

Appendix IV,

6.3. "Exact"SoIﬁtion by the Method of Ref, (3T}

Because of the lengthy calculations involved, only
two cases were analysed using this method, Two different
span positions of the pod were investigated, the details

of which are given on the following - page.



Wing A3z

Pod: M = 0,83; I= 10,0; x, = 0.1
Span Locations: fl = 0.5 and 0,75

The flutter speeds and frequencies were calculated by
the procedure described in Section 4.1._ Two dimensional airloads
were used in all the calculations,

Table 6.1 gives the values of the flutter specds and
frequncies obtained by using this method for the two span locations
considered, rIn the same table are alsb given the measured gpeeds
for Pod A,

It is gseen that the calculated speéds showgood agreement

with the measured flutter speeds. A similar trend was also noted in

Ref (37)

6.4 Solution of the Flutter Problem by the Assumed Mode Method:

6.4.1 Bare Wing (No pod)

Fof bare‘wings, the usé.of the assumed mode method
iz fairly well 1 established, the details being available in several
text-books and in an extensive report (Refs 27, 23). For a wing with
concentrated masges, the analysis 1is outlined in Appendix ¥V where
both the British and the American technigues are illustrated, For bare
wings,.the termg containing the concentrated masas parameters are
omitted.

For all the wings, the aerodynamic forces and

moments were calculated using the two-dimensional strip



theory derivatives, Since the elastic axis position was

the same for all the wings, it was found convenient to
tabulate the aerodynamic forces and moments (referred to

the elastic axis) as functions of the reduced Ffreguency

(l)zhaﬂ)_ These values are given in Table V,1 of Appendix
_V_I

British Method In applying the British Method only one

value of the reduced frequency,"ve=§§£= 0.24 was used,

All the integrals sppearing in the equétions were
evaluated by integrating the mndetshape functions,the masg,
static unbalance and moment of inertia being assumed to
be uniformly distributed along the span,

In evaluating the structural stiffness coefficients
a number of definitions are possible, each giving a slightly

different value for these coefficients,

(e) "Statie''Stiffnesses: Tﬁese are obtained by

meaéuring the deflections at the reference section due to
the appropriate loads applied at that section,
The direct flexural stiffness and the direct torsicnal
stiffness are defined by
2
le = N'78¢
My = ‘Y/QR _ (6.1)
Where)d and T are the load and moment respectively,

applied at the reference section. éh{ and Gaﬁ‘ ere the

resulting flexural and the torsional displacements respectively

L 1is the distance from the wing root to the reference
séction. {Usuvally 1 = 0.7 span).

For a uniform cantilever wing these become

&¢:r :SEI./(§
Mo + GI [
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{(b) The "Strain Energy’ Stiffnesses

It is felt by some investigators that since the
gssumed mode method is based on arbitrary modes, it is
more logical to use the strain energy of the wing deformed
in these modes in order to define the stiffnesses.

If W denotes the bending displacement and o

the torsional displacement, the strain energy is given by

v*-—fe ﬁ‘j‘; Joy - 5 @wf( <y
(6.3)

If the modes assumed for the bending and the torsional

displacements are:

W Loy §c;f])

6.4
A O F 6.4
the'strain energy'stiffnesses are given by
C - v \ i (]l
1 L 4@ \S)dl‘l
S-.(L 2z
Cy. . GF | ‘Y a
25 T i (F 7
(6.5)

The calculation of these stiffness coefficients is
made easier by defining artificial vibration frequencies Gy,

and & for these assumed modes:

E’fL

_‘Z._.-/""

2
C. w W\.S dq
C,,= N £2d

@ 3 X | (6.6)
Where Yy and T are the mass and moment of

inertia per unit length respectively. These frequencies

are the same as those which would be obtained by

artificially decoupling the modes.
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(c) "Dynamic' Stifinesses

1f the normal modes of vibration or the uncoupled
modes of vibration are used as the assued modes, the

definition of the stiffnesses hocomes simpler:

. 2 CWL
C‘\ = () \ 2
. ! :“SI N ‘g- df}
2
Coa = Oy ;LL LF o (6.7

where 03, and L); are the frequencies of free vibration,

The values of the stiffness coefficients cbtained
form the three definitions generally differ from each other.
These differences are due to the differences in-the mode
shapes involved in the three definitions. The 'Static’
stiffnesses (Eq. 6.2) are the easiest of the three to
determine, These have been used in deriving approximate
formulae for flutter and for flutter criteria,

The 'dynamic' stiffnesses can be obtained only
after the normal modes or the uncoupled modes have been obtained.
These are the values used in the calculations described in
Appendix V, 1In this way, these stiffnesses will be the same
as the 'straln energy' stiffnesses as defined in Eq. (6.5).

For all the wings without any added massss the

flutter speeds obtained from the assumed mode method are given

below:
. _Assumed Mode Method
WING British American Experimental
Ve wop Vi W ' e
Al © 81,0 12,35 80.0 13.2 80.0 1445
A2 140.0 21.5 145.0 22,0 - -
A3 153.0 23.6 152,5 21.2 - -
B4 172,0 26.2 167.0 19,5 - -
BS 225.0 34.4 227.0 ~ -

(\J‘: = gtfg%, wv‘h - ‘3’5 j

e



For the wing Al, it is seen that the Energy Method

using both the British and American techniques, give3
results wﬁich are in very good agreement with the
experimentally msasured value, The result obtained by
use of the approximate formula of Molyneaux (Ref. 39)

also shows good agreement with the other values. {In this
formula, the stiffness coefficients used are the ’static’
stiffnesses.) |

For the other wings, no experimental results are
availlable since for wings A2 and A3, the fluttef speed 1s
greater than the maximmm wing tunnel speed and wings B4
and BS are hypothetical wings.

These results demonstrate once again the adequacy
to the energy method to predict values of the flutter speed
and frequency for wings without concentrated masses,

In applying the energy method by the British
technique, the results could be refined by further iteration,
since oﬁly one value of the reduced frequency was used here,

6.4.2 Wings with Pod

For the wings with pods, the energy analyses were
kased on the U,S. techniéue. This method was used mainly
because comparisons could be made with the results from
the Direct Matrix Method,

Since the experimental results and some of the
Direct Matrix Method results indicated that for the
wings A2 and A3 (with pods), flutter always occurred
mainly as a result of coupling between the fundamental
bending and the fundamental torsion modes,it was decided
to use these two modes in the analyses, These were

prescribed as the (uncoupled) fundamental bending and



fundamental torsion modes for the relevant wing-pod

configuration.

6.4.2.1 Wing Al

Preliminary calculations for a pod M = 1.0,
1 = 10.0, xp = +0,1) showed that the flutter speeds
would be very low, Tests with this pod in the wind
tunnel confirmed that for some spanwise locations, the
flutter speed was below the minimum wind tunnel speed,

No further calculations were made for this wing with added

inertias.

6,4.2.2 Wings A2 and A3

For the Wing A2 the influence on the flutter speed

of the following pods waz investigated.

(a) M = 1.0 I = 10,0 ¥p = 0.0
(b) M = 1.0 I = 10,0 xp = +0.1
(c) M = 1.0 I = 8.5 xp = 0.0
() M = 1.0 I = 8.5 xp = +0.1

For all these cases, four spanwise positions,
7 =0.33, 0.5, 0,67 and 0.875 were investigated. The
results are shown in Table 6.2 and in Fig. 6. 2

For the Wing A3, the influence on the flutter
speed of the following pods was investigated:

(a) M = 0.83 I =10 x = 0

10 x = +0.1
P

In these cases also, four spanwise locations

(b)) M = 0.83 1

7 = 0.33, 0.5, 0.67 and 0,875 were used.

The results are given in Table 6,2 and in Fig.6.3.

6edel & comparison of thege results with the experi~

mentally measured valwes is given in Section 9.4.
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6.5 Direct Matrix Method

For the model wing, 211 the preoperties (geometric,
structural and inertial) are uniform along the span, This
brings about a number of simplifications in the calculations
of the various matrices involved in the direct matrix
method (Chapter 5).

The fact that the wing is cantilevered from the
root brings about considerable simplifications in the
flutter equations, The flutter equation (Bq, 5.14) now

becomes

)\{h;} = Lol L hJ; (6.8)

In the calculations, this equation is further
simplified by =perating the aerodynamic matrix into its
real and imaginary parts.

The matrix [4}} is given by Eqs, {5.9)and{5.5)

twl= ey pEeTWlCad) (6.9)

By defining the aerodynanic natrix as
A = [AR} +ACAT] (= $rgTWILG,l  <6.10

and o ' (6.11)
WY = (URj «+ Aozl

J

we have

WRY = Cal{ Loy + LaR]) (6.12)

Lux"j, = Ta) L az) (6.13)

For all the calculations, the wing was divided into
five segments, 50 that tnere are ten control points (Fig 6.4)
The forward contrel stations are located on the } chord

line and the rear control stations are on the § chord line,
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Since no chordwise deformations are allowed
the deflections of the intermediate control stations
(located on the mid chord line) can be expressed in terms
of the deflections of the forward and rearward control
point deflections, This limits the number of degrees of
freedom to ten.

The details of the matrices of the inertia,
structural and aerodynamic influence coefficients
are given in Appendix VI;

To check the accuracy of the siructural and

inertial matrices, the coupled frequencies were calculated

for the bare wings., These are compared with the
experimentally measured values and with the uncoupled
theoretical bending and torsional frequencies in the

following table,

WING DvM | | EXFERTMEIT
g Wi Sy W
-y e et ¢ or

Al 9.6 19.2 9.5 21,5

A2 2,06 34,24

A3 9.08 37.50

B4 5.80 36,37 - -

BS 5,80 48.97 - -

( ¢®, = Fundamental Bending Frequency

(¢ =  Fundamental Torsion Frequency)

From the above table, it can be seen that the
assumed ten dggfee of freedom system adequately répresents
the vibrational éharacteristics of the model wings.

In Table VI.1 the coupled frequencies of

'\)

fundamental bending and fundamental torsion are compared

with the uncoupled frequencies predicted by the method of
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Appendix II1. There is reasonable agreement between the
two frequencies,

The values of the two bending frequencies agree
reasonably well with each other. The torsional frequencies
calculated from the direét matrix method are generally

lower than the uncoupled values,

Flutter Speeds

6,5,1 Wing A.1

For this wing, the flutter speed and frequency
were calculated only for the bare wing condition. The
following table gives the results of the Direct Matprix

analysis and also the results obtained by two other

methods,

Method Fregquencies Flutter
' Speed

Experiment 8.5 21.5 80.0

Direct Matrix

Method 2.6 19,2 80,0

Molyneux's

Approximate

formula .

(Ref. 39) - - 81.0

Assumed Mode 81.0

Method and 80,0

It is seen that for fhe bare wing, all the methods
show very close agreement. The fundamental bending
frequency calculated by the direct matrix method is in
close agreement with the measured value, while the
fundamental torsion frequency is lower than the measured
value,

6.5.2, Wing A2

For this wing, the bare wing and & number of

wing-mass configurations were analysed, For all the



concentrated masses, the mass ratio, M was kept at unity.

Three values of inertia ratio, I = O, 5 and 10 were
considered,

For each inertia ratio, the chordwise position of the
concentrated mass c¢.g. was set successively at 0,25C, 0.3C,
0.35C, 0.45C, and 0.5C, measured from the wing leading edge.
For each of these combinations, the concentrated mass was
located successively at the five zpanwise positions of the
control stations, For each o# the resulting configurationg.
both vibration and flutter analyses were conducted, The

results are given in Table 6.3. In Figs (6. 9 to (6.19).

In obtaining the flutter speeds, the structural damping
was assumed to be zero and the aerodynamic loads due to the
pods . not considered. In most cases, the curve of the
atificial damping, g, against thg speed V gave a well
defined intersection with the g = 0 line, In certain cases
(Figs, 6.9, Fig. 6.10, Fig, 6.12 end Fig. 6Jl35 the intersection
was not so well defined, Fig. 6.20 shows two caégs. It is
seen that & value of g = 0,01 in the torsion mode increases
the flutter speed from 60 ft/sec to 66ft/sec in one case and
from 51,0 ft/sec to 61,0 ft/sec in the second. However, all
the flutter speeds quoted in Table gé% and Figs (6.5) to (6.19)

are for a value of g = O,

6.5.83 Wing A3

For this wing, the following values of the pod inertial

parameters were cnnsidered:

Mass Ratio M

"

0.833, 1.0

[

Inertia Ratio I -5.0, 10,0

c.g. Position x = 0.35C, 0.45C, and 0.5C aft of the

leading edge,
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The results are shown in Table 6.4 and Figs. 6, 21lto
6.25.

As in the case of Wing A2, in all the results quoted
here the structural damping has been neglected and pod
aerodynamic loads are not included, In some cases, the
intergection of the V -~ g curve with the g = 0 axis was not
well defined, as in some cases of the wing A2,

- 6,5,.5 Wings B4 and B5

For the wings A2 and A3, the modes involved in the
flufter, for all the wing-mass combinations investigated,
were the fundamental bending and the fﬁndamental torsion modes.
For all these combinations the maximum flutter speeds were
obtailned for z mass centre of gravity location forward of
the elastic axis and a mass located at the tip gave the
greatest increase in the flutter speed.

An inspection of the results of ﬁrevious investigations
{Chapter 2, Section 2.1.1 and Figs. 2.1 to 2.6) showed that
for most of these wings, the best spanwise location for maximum
fiutter speed was at a location between the midspan pesition
eand the wing tiﬁ.

It was felt that this was due to the relative values of
the fundamental bending and fundamental torsional frequencies
of these wings being of such a value that the likelihood of the
overtone bending mode coupling with the fundamental torsion mode
was nore favourable.

.Tb check this hypothesis, it was decided to investigate
the effects of varying the stiffnesses of wing A3 on the
flutfer speeds, |

First only the bending stiffness was changed, A value
of EI = 3000 1bh in2 was considered, all the other parameters
being the same as for wing A3. This hypothetical wing was

termed 'wing B4', The results of the Direct Matrix analysis




For thin wing sro given in Tahle 6,5 and in Pirebethe  Dince

for Lhie wing aloo the Llulber wag dua to a combinntion

of the fundamertal wmodes, it was decided to change the
value of the torsional stiffness to G = 3000 1b.in2.

All the other characteristics were the same as for wing B4.
This wing was investigated for flutler by the Direct
atrix Kethods The results are given in Table 6.6 and

in Fig.6.27. In this case, the flubter was of bhe
overtone type for some spanwise stations. For this case,

the inertial characteristics of the corcentrated mass were:

Mass ration N = 0.83
Inertia ratio I = 0.0
Location of xp = ~0,1

O.g-

For wing B5, the maximum flﬁtter srecd vas obtained
when the mass was located at about the midspan position,
thus sugeesting that by a suitable modification of BI and
GJ the optimum lccation of the concentraited mass cap be

altered,

6+5.6 Inclusion of the Pod Aerodynamic Loads.

Some- of the wing-pod combinations were aralysed by the
Direct Matrix lethed in order to investigate tie effect of
including the aecrcdynamic loads due to the pods in the analysis.
The pod aercdynamic loads were calculated by using the momentum
theory(Section 3.6) For all the cases irvestigated,the
difterence betwecr the flutter Bpeeds with and without
the inclusicn of the pod aerodynamics was smalle In general,
the inclusion of the meod aercdynamic loads in the aralysis
gave a value c¢f the flutter srecd which was lower thap
the flutter speed withput the pod acrodynamics. A typical
result is given in Table 6.7, '

Since ﬁhe wind tunnel results showed that large increases
ir the flutier &peed could be obhtained by adding horizcntal

fins to the pods, the eflect of including these loads in

52
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the analysis was also investigated, To obtain the
serodynamic loads of the finned—pod by the momentua theory
the length of pod containing the fin was replaced b& an
equivalent body of revolution, This had a radius of
SRy ?g;\jya where R is the radius of the pod and §
is the span of the fin, mecasured the pod centre line to the
tiﬁ of the fin,
Tab;e (6.8) shows the results for two spanwise positions,
q = 0.5 and 0.67. The inertial details of the pod are
M = 0.83, I = 10 and ip = +40.1. In the same .toble
are also given the measured values of the flutter speed.
For both the spanwise locations, the results of the Direct'

Matrix Method do not predict the correct increases in the

flutter speed as obtained in the tests,
A comparigon of these resulis with the flutter
clrracteriotice obtained from the wind tunnel tests is

given in Sece%eds




5.6 Eifeect of the Inclusion of *he Ailercy Dezwees oi Freenom

P

A prelipinery investigation was made to assess the
inTfluence of the aileron degrees of freedom on the flutter
of the wing-mass combinations.

The calculations were made by the assumed-mode method.
fmly one wing-mass combination was considered, The relevant

details are:

Wing Wing A3

Pod M = 0.83
I = 10.0
§p = + 0.1

fh = 0,67

The aileron was assumed to have a span of 0.67 ft.,
extending from the two-thirds span position to the wing-tip.
The aileron had a constant chord of 0.15 £+, The other
details of the aileron are:

Leading Ldge : 0.7¢ aft of wing leading edge

Hinge line : 0.8¢ aft of wing leading edge

Alleron c.g. : 0.1lc aft of the hinge line

Aileron mass : 0,01 slug ft.

Aileron Pitching radius of gyration: 0,33c

(wherg ¢ is the wing chord).

For this wing-aileron combination, the following
flutter speeds were obtained. In the case of a froe.
aileron, the flexure-aileron flutter speed was 66.9 ft/sec,
but the torsion-aileron flutter speed was 45,3 ft/sec, 1In
the case of an infinitely-rigid aileron, the flexure-eileron
flutter speed was 65.7 ft/sec and the torsion-aileron flutter
speed was 63.2 ft/sec.

These results indicate that the control surface degrees

of freedom can have an unfavourable influence on the flutter



speed under certain conditions. A similar trend was
noticed by Pisplinghoff et al (Ref, 23) for a wing
carrying a concentrated mass (with ajileron deg:ees of
freedom)., From this, it is expected that the model wing

will also show similar trends,

155
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CHAPTER 7

e ——

WIND TUNNEL TESTS ON THE FLUTTER OF WINGS WITH LARGE
CONCENTRATED INERTIAS '

7.1 Selection of the Geometric Inertial and Structural

" Properties of the Model

In designing the wind tunnel model, it was decided
to keep the wing as simple as possible, since the main
interest was in the influence of concenfrateg inertias on
the flutter of wings. With this in view, 2 uniform cantilever
wing with constant properties along the span and of segmented
constructién was chosen. The wing waé to be mounted in a
verfical position in the wind tunnel to avoid the large
stafic deflections which might accur when the concentrated
masses were attached to the wing, The geometric and
other properties were derived as follows:

(a) Geometric: A span of 2 £t was chosen for the
model since & preliminary survey of the wind tunnel
working section showed that this would be the optimum span
for a vertically mounted model. To keep the aspect ratio
as large as possible a wing chord of 6" was chosen., A
symmet¥ica1 profile, the WACA 0018, was chosen for the wing
cross section. It was decided to locate the ealstic axis
at the 0.35c position.

A comparison with the wing-pod configuration of tﬁe
VTOL.aircraft described in Ref, 1. showed that a pod
length of 20" and a pod span of 2" would be‘representative

of the pod of Ref. 1. In order to enable the pod to be

attached at a number of spanwise positions along the span,
the span of the wing sections was also fixed at 2", This
resulted in the wing having eleven segments of 2" each and

two segments (at the ol and at the tip) of 1" each,
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7hus the pod wmould be atitached at eleven points along the
span,
(b) Inertial:

For all the wings described in Appendix II, the
inertia axis was located at the 0.45 chord position.

The details of the mass, moment of inertis and static
unhzlance are given in Appendix IT,
{c) Structural:

It was first thoughtlthat & bare wing flutter speed of
80 ft/sec would allow the testing of the effect of fhe
pods, allowing any decreases or increases due to the pod
to be kept within the speed range of the wind tunnel.

Using the approximate formula for the flutter speed given
by Mdlyneux (Ref. 39) a value for the torsional stiffness
was obtained.

A single spar construction was chosen in order to keep
the wing design as simple as possible, A number of
different shapes of cross section.can be used to give a
desired value of the stiffnéss. 0f these, it was deéided

that the channel section offered the best possibility. The
dimensions of the channel sections are given in Appendix II.

Fig. 7.1 shows the general arrangement of the wings
tested in the wind tunnel. To test the influence of the
aerodynamic shape of the pods on the flutter speeds, four
different pods were tested. These are shown in Figs. 7.2,
7.3, 7.4, 7.5 and 7.6. Two of the pods had approximately
the same cross-sectional area distribution, but different
thapes of cross section - rectangular and circular resﬁectively.
The third pod was similar to the pod with the circular
cross section, but only in the portion ahead of the wing
leading edge. Aft of the wing trailing edge, the pod was

cat off and lead weights mounted on a 3" steel rod were
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used to obiain the recesvory inertial properiicse.  The
fourth ‘pod'was wnde of metal and had (liec same shape ac the |

, ‘
cther wing segoents.  Lead weights wounted on 1/6 in. dia.
rodas provided the receunnry inertial rrbportie:.

Tel Instrumentation

For wing Al, the frecuercies vere mengured by means
of strain-ganges mounted on the spar rear the wing fcot-
As tlese proved uvpsatisfactory, the frequvepcies of
vibration werc obtained for the wings A2 arnd A3 by means
of two riezo-electric accelerometers, orne of which vas
attached to the spar and was mairly sensitivg to the bLending
cseillations. The second was attached was atiached to the
7od as shown in Pige (%ig). This vas mainly sensiiive to the
torsional oscillaticre. wThe signals from the accelerometers
vere amrlified through two charge amplifiers. As the frequencies
of interest (for flutter testing)were mainly in the region

below about 30 c.pse, a filter was comstructed with a

cut—off frequency of about 30 ceres. The resuliing sigrals

were well defined and were recorded by means of a pen recorder.
T e
(Pic.78).

vince thke srar has uvniferm pr0“oztiesralcng the gpan, the
valucge of Bl and GJ arc also constant and cor be wmost conveniently
obtained by a'nlying a lond at cne slation and Leasuring the
deflection at arother station. -

(a) static Testing: To obtain the 'siatic' volues of 4T
and G simultanecusly, the loadins rig shown ir. Pig 749
woo vged. |

If SA;HM.BB rerregent the deflections ni 4 and B,

the torsicral displacemert at this secticn is given by

S = ( 5A-Ew5)/ti
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If the load is moved from x to (X+dX) the increase

in the torsional displacement is given by:

de,—.)‘l.'fé“ég\) - {d -3 "/
A Orly " (O &wa}f;d
Using this, we get the torsional rigidity as
GI=w L dx
&8

In practice is obtained from the graph of £ V& A

When the load is applied at the elastic axis.iqSA:éeé

the flexural stiffness is given bf
EL - WP/a6,

The value of EI and' Qf for the spars were also
obtained by obtaining the free vibration frequencies of
the cantilevered spar and also the frequencies when
either a concentrated mass or a moment of inertia was
attached at the tip. The values of the stiffnesses thus

obtained are given in Appendix II.

7.4 Description of the Wind Tunnel

The wind tunnel used in the tests was of the return

“eircuit type with an open working section, The speed

controllis by means of two biased switches.

By using the biased awitches an increase or a decrease
of within about 1 £t / sec can be obtained after some
practice,

The working section has a cross section of 23ft x
33ft. Due to the reectansular shore of the ontry section,
not uniform in some parts of the wind tunnel, It was
egtablished by a survey of the velocity distribution in

the cross-section that a model span of 2ft would be

optimum, In the early stages of the investigations a
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meximum speed of approximately 100 ft/sec could be obtained,
However, the turbulence-screen at one of the corners had o
be replaced and this reduced the maximum speed attainable

to about 96 ft/sec.

7.5 Test Technique

The model was mounted in a ¥ertical position in
1hé wind tunnel. The technique of testing was as foilows.
The wind tunnel speed was increased from rest by regular
incremeﬁts of about 1 ft/sec. 'At each stabilizéd speed,
the wing would be disturbed-anh the rate of decay of the
oscillations noted hoth visually and on the pen recorder.
The pen recorder traces provided a clue of the damping in
the sysﬁem, The flutter speed as recorded in these tests
‘is the speed at which the disturbed wing-continues to
oscillate at ﬁ constant amplitude.

After each test, the bending and torsional
frequencies of the wing were measured in order to assess £ vhetRer

the wing had been damaged by the flutter oscillations.

7.6 Results

7.6.1 Bare Wings a) Nivg A

For this wing, flutter could be obtained only for tﬁe
wiﬁg without pods, Two wings, which had the same characteristics
were built and were tested to destruction. The flutter was
due to a coupling of the fundamental bending and fundamental
torsion modes and was of an extremely violent nature. The
Fflutter occurred without any need for disturbing the wing.
The flutter frequencies were obtained by means of strain
gauges and also from analysis of high speed motion pictures
taken of the fluttering wing, The flutter speed for both

the wings was approximately 80 ft/sec.




(b) Wings A2 and A3

For thesze two wings, no flutter could be obtained
within the speed range of the wind tunnel (for the bare
wings)

7.6.2 Wing A2 with Pods

For tests with the wing A2, pods of two different
cross sections were used. One had a circular cross section
(Pod A) and the other a rectangular cross section (Pod B).
The geometric details of these pods are given in Appendix 1I.

By a proper adjustment of lead weights mounted inside

the pods, the following combinations of ﬁ, 1 and ip were

obtained:
M = 1.0
I = 8.5 and 10.0
%p = 0.0c and 0,10c aft of the elastic axis

The pods were fixed regidly to the spar at a number
of spanwise stations and the flutter - speed and freguency
were measured. The results are shown in Table 7.1 and Figs
(7.9) to (7.14) show the effect on the flutter speed of
gttaching a pod at different positions along the wing span,

For all the cases, the principal modes participating
in the flutter were the fundamental bending and the fundamental
torsion modes. For the pods located around the midspan
position, the flutter was of the "mild" type and the wing
pod configuration could be set to flutter for a number of
cycles at moderate amplitudes. For most of these cases,
divergent amplitudes built up only very slowly. For outboard
positions, the flutter was closer to the "explosive" type
of flutter large divergent amplitudes tending to build up

in a rapid fashion.

e



To check the repeatability of the results, the

fiutter speeds for both the pods were measured more than
once at some spanwise locations, It was found that all
the flutter speeds could be reproduced to within about
+ 2ft/sec and the flutter frequencies to within about
i_O.S ¢.p.s. The results presented here are the mean

values,

7.6.3. Wing A3 with Pods

For this wing, four different pods were tested.
These were - Pod A {circular cross section), Pod B
(rectangular cross section) Pod ¢ (Pod A with the section
aft of the wing trailing edge removed) and Pod D (Metallic
pod “having the same cross section as the wing itseif).

The flutter speeds and frequencies are presented as
variations with the spanwise locationof the pods in Table
7.2 and in Figures 7.15 to 71%. For these pods the values

of ﬁ, I and ;p were:

M = 0.83
1 = 10 and 8.5
xp = 0.0 and 0.1 aft of the elastic axis.

For all the cases shown in these figuresg, the
principal modes involved in the flutter were the fundamental
bending and the fundamental torsion modes.

For all the pods, some checks were made on the
repeatability of the results. These tests were conducted
at different times and the agreement in the flutter speeds
were poorer for the pods located between the mid span and
the two-thirds span region. For these locations, the maximum
variations in the flutter speed were about +5 ft/sec and
the flutter frequencies showed good agreement, the deviations

being about + 0.5 ¢.p.s. The agreement for the inboard and




putbeard regions were good, the flutter speeds varying

between + 2 £t /sec and the frequenéies showing variations
of about + 0.5 c.p.s. The values quoted are the average
wlues of the flutter speed.

For pod B, tests with the centre of gravity O.lc
ahead of the elastic axis indicated that flutter would
probably occur at speeds higher than -the maximum wind

tunnel speed (at all span positions).

7.6.4, Effect of attaching fins to the Pods

Some preliminary tests showed that by attaching fins
to the trailing edge of the pods, it was possible to incresase
the flutter speed.

The different fins tested on the pods are shown in
Fig. 7.5 .. The fins were constructed from 1/32 in sheet balsa
anrd were attached to tﬁe pods by balsa cement,

The influence of the pods on the flutter speed was

shown in Table 7.3. Fig. 7.20 shows the damping-velocity
curve for two fins on pod B. The values of the damping
coefficient were calculated from the pen recorder traces

investigated for both the Pods A and B. The results are
at different wind tunnel speeds.

7.7. Accuracy of the Results

As a guide to the accuracy of the results, the

experted errors in the measurement of the various parameters

involved are discussed in the‘following:

7.7.1 Mass In order to obtain the requifed mass characteristics
for each of the wing segments, the following procedure was
adopted: A 2in length of the spar section was attached 1o

each of the wing segments in the same manner as in the

completed wing. This, together with the required lead weights
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and the 22 gauge oluminium ggrip (used for attaching the
weights to the wing) was weighed in a chemical balance,
The weight of the lead was varied until the required value
for the total weight was obtained, All the masses were
obtained in grammes and the accuracy of these measurements
was + 0.005 gm, The wing segments were weighed again
with the weights attached to the wing by means of the
gluminium strip and this was used as the final value of

the wing weight.

7.7.2 Chordwise Position of the Centre of Gravity

Two methods were used to locate the position of
the centre of gravity of the wing segments and the pods.
In the first, an approximate idea of the centre of gravity
locaetion was obtained by balancing the wing section {complete
with the 2 in spar section and the lead weights) on a
knife edge. This was used for obfaining the approximate
locations of the lead weights to obtain the necessary
centre of gravity location. The weights would then be
secured to the wing section (or pod) by adhesive tape
and the pitching moment of inertia determined, Usually
it proved necessary to relocate the lead weights to obtain
the desired moment of inertia. This trial and error process
was repeated until the desired values of the centre of
gravity location and the pitching moment of inertia were
obtained.

After this, a more accurate method of dstermining
the centre of gravity location was used, fn this, the
wing section (or pod) was suspended succeséively from a

number of points. The positions of a weighted string




would be marked on a paper attached to the wing section

{or pod). The intersection of a numher of these lines
gave the location of the centre of gravity.

The positions of the centre of gravity were determined
by fhe intersection of at least three different lines,

and the maximum error tolerated was 0.05 in (210.0lc)

7.7.3 Moment of Inertia

Two methods were used to measure the momeni of
inertia of the wing secticns (or the pod). in the first,
the section was oscillated as a compound pendulum and the
moment of inertia deduced from the frequency of oscillation
and the distance of the support point to the centre of
gravity. <{(Ref. 76). The results from this method are
sensitive to the accuracy in measuring this distance. Also,
the accuracy decreases as this distance becomes large. This
method was used to obtain a preliminary §é¥§é§$§&of the
moment of inertia,

In the final stages of the trial-and-error process,
a2 more accurate method was used, In this method (Ref. 76)

a trifilar pendulum was used and the moment of inertia

calculated from the frequency of oscillations of the

pendulum with the section in it nnd from the charscteristics of
the pendulume. Tests with a number of bodies having regular

shapes and with moments of inertia having values comparable

to the pod moments of inertia showed that the errors in

the measurements could be upto 6% of the theoretical values,

7.7.4 Frequency

The frequencies of vibration were obtained from pen
recorder traces. The accuracy with which the frequencies
can be determined is a function of the speed at which the

paper used for the traces is made to move. A paper speed

| |



ol R0em/sec was used in most cases, At this speed, the

accuracy with which the frequencies could be determined was
about 0.25 ¢.p.5.

7.7.5 Speed

The speed of the air flow in the wind tunnel was
obtained from readings of a differential manometer which
registered the dynamic pressure in the wo;king section in
inches of water § everal calibrations were mwade to translate
this reading into the air speed in the test section,

The calibrations were made withont any model in the test
section and also with a rigid model of the wing in the
test section. The final calibration chart was obtained as
a mean curve through these points. The maximum deviation

in the calibrations was about + 5%.

7.7.6

By attaching wool tufts to the bare wing A3 it
was found that the flow remained attached throughout the
speed range, With the pods A and B attached toc the wing
A3, similar tests were made for some of the spanwise locations.
These showcdthat the flow remained attached to the pods when

the model was held rigidly.

7.7.7

In order to prevent variations in the weight of the
wing sections due to changes in the humidity of the atmosphere,
they were coated with varnish. By weilghing the éections
over a period of time, it was found that the weights of the
wing sections remained almost constant throughout all the
tests. Pod A was also coated with varnish and Pod B was.

coated with paint., These also showed very little variation




in their respective weights during the test progranmes,

7.7.3

At the end of each flutter test, the fundamental
bending and torsion fregquencies of the wing-pod combination
1are obtained in order to check if the spar had weakened
due to the flutter oscigllations, Within the accuracy of
measurement, the spar for all the tests showed very little

deterioration in strength, Even so, for the wing A3, two

spars were used (both with identical properties).

7.7.9

To determine whether the effect of attaching the
balsa wing sections had any appreciable effect on the
flexibilities of the spar, the following experiment was
conducted {(for the spar of wing Al). On an identical
spar, weights were attached to simulate the mass, moment
of inertia and chordwise centre of gravity position of the
wing AL, The weights were attached by means of %" wide
aluminium baras at appropriate spanwise stations, The
differences in the fundamental bending and fundamental
torsion frequencies of this system and the wing itself
agreed to within the experimental accuracy.

This showed thét the method by which the wing
segments were attached to the pod has very little influence
on the flexibilities of the spar {within the accuracy of
measurement) and that all the structural properties can

be considered to be contributed solely by the spar,



CHAPTER 8

APPLICATION OF THE DIRECT MATRIX METHOD TO WINGS OF
REF (33) and REF(D)

The flutter of the model wing {(Chapters 6 and 7}
was due to a combination of the fundamental modes of bending
and torsion for all the cases investigated. In
order to assess the accuracy of the results obtained by
using the Direct Matrix Method when applied to cases
when the flutter is due to & combination of one or more
overtone modes, the wings analysed in Ref. (38) and Ref (9)
were also analysed by this method.

8.1 Wing of Ref ©

Gaukroger (Ref, ¢ ) investigated the effects of
localised masses on the flutter speeds of a uniform cantilever
wing. Four values of fhe sweepback angle (00, 150, 30° and
450) were considered by him, but only the unswept case
is consgidered here.

Gaukroger solved the flutter equations on the R A E
flutter simulator. The equations were set up using two or
more of the following modes:

(a) Fundamental flexure of the bare wing.

(b) Fundamental torsion of the bare wing.

(¢) Flexure of the wing with a restraint to prevent

displacement at the localised mass position.

(d) Torsion of the wing between the root and the

localised mass section when restrained in
twist at the localised mass section.

(e} Torsion of the wing between the tip and the

localised mass section when retrained in
twist at the localised mass section,

The details of this wing are given in Appendix I,
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Gauvkroger has quoted the flutter speeds of the

various wing - mass configurations considered by him
as the ratios of these flutter speeds to the bare wing
flutter speed, But the actual flutter speed of the bare
wing itself is not given.. Hence it is necessary to
establish the flutter speed of the bare wing.

Using the values of the fundamental bending and
fundamental torsional frequéncies and the values of the
mass, inertia and the inertia axis position given by
Gaukroger, the values of the bending and torsional

stiffnesses were calculated as:

2
El = 56920 1b in )

g ) (8.1)
GI = 15,520 1b in )

{The frequencies given by Gaukroger were assumed
to be the uncoupled bending and torsion frequencies.)
The flutter speed of the bare wing were calculated

by three methods:

(a) Molyneux's Approximate formula: 143.0 £ps )
{Ref, 39) )
)

(b) Assumed mode method 140,0 fps X§.2}
)
(¢) Direct matrix method 132,0 fps )
(Ten control stations) ;

In the assumed mode method, the modes used were
the uncoupled bending and torsion modes of the bare wing.

In view of the above results (8.2), the flutter
speed of the bare wing was taken as 140.0 fps.

To check the accuracy of the inertial and

structural matrices used in the Direct Matrix Method, a
vibration analysis was made. The coupled fundamental
bending and torsional frequencies were obtained as

| 3.59 cps and 14.40 eps respectively. (The fundamental

bending and fundamental torsion frequencies given by
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Gaukroger for this wing are 3,6 cps and 14,50 cps

respectively.
Three sets of concentrated masses were investigated
by the Direct Matrix Method for their influence on the

flutter speed, These were:

M I xp
0.5 o] 0.15 )
)
0.5 3.0 0.15 ) (8.3)
)
1.0 0 0.15 )
)

Where ﬁ, I and §p represent the mass ratio, the inertia
ratio and the position of the centre of gravity of the
concentrated inertia aft of the elastic axis respectively.
The results are shown in Table 8.1 and Figure 8.1.
These results show very good agreement with the
values obtained by Gaukroger. The flutter conditions for
all the wing mass combinations involved mainly the modes

of fundamental bending and fundamental torsion.

8.2 Wing of Ref.38

The wing mass systems investigated in Ref 38 have
been the analysed by anumber of methods (Refs. 10,37,43
ond Z4), An estimate of the relative accuracy of the
Direct Matrix Method could be obtained by analysing these
wing-mass systems by this method,
The details of the bare wing are given in Appendix II.
Using ten collocation stations (as for the model

wing, Fig. 6.4) the matrices of the inertial, structural

and aerodynamic coefficients .. @ set up.
To check the accuracy of the inertial and structural

matrices, a vibration analysis was carried out. The results
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af this ave given helow:

Fundamental Bending _ 6,69 cps (6.44)

Fundamental Torsion 32,86 cps {39.2)

First overtone Bending 45,66 cps (47.44)

The values given in the brackets are the average
values of the coupled frequencies measured §;L the bare
wing.

Both the fundamental and first overtone bending
frequencies agree well with the measured values, but the
fundamental torsion frequency is under estimated by about
16% by the Direct Matrix Method,

The flutter speed and frequency calculated by the
Direct Matrix Method are compared with the values obtained

by other methods in the following Table:

Method Flutter Speed (f.p.s,)

1. Direct Matrix Method 332.0
2. Measured (Ret 30) : 334.0
3.  Analogue S~lution (Ref.10) 334,0
.4. - Exact Analysis (Ref. 37) 333.0

5. Assumed Mode Method (Refld)

{2) Two Modes 321.0

(b) 'Three Modes 340.0

6. Iterative Transformation'Procedure 334.0
(Ref. £3)

It is seen that for the uniform wing, the flutter
sposd obtained by the Direct Matrix Method is in very good
agreement with the measured speed, All the other methods,
except the assumed mode method (Ref, 44), show very good
agreement with the measured speed.
A particular wing-mass combination (Weight 7a)} tested
in Ref, 38" has received considerable attention as the

flutter speed is very sensitive to the spanwise location




of the concentrated mass (Fig. 8.2). The values of the

flutter speed for different spanwise locations of the mass
are shown in Table 8.2,

For positions of the concentrated mass between
about 36% of the span and 95% of the spaﬂ, the flutter
speed was higher than the divergence speed of the wing.
However, for these stations, the flutter speeds can be
obtained by theoretical methods,

Since the collocafion stations were located at the
0.25, 0.33, 0.5, 0.67 and 0,875 of the span positions,
the values from the Direct Matrix Method canﬁotgive a
direct comparison with the results of Table (8.2). These
can, however, be used to check the accuracy of the method,

The results from the Direct Matrixz method are also

shown in Fig. 8.2

For positions of the concentrated mass from the

wing root to the 1/3 span location, the results from the

Direct Matrix Method show very good agreement with the

measured flutter speeds. By comparison, the flutter speeds

predicted by the assumed mode methods are very much higher
than themeasured values, even when four modes are used.

But for positions of the mass outboard of the 1/3 span

position, the flutter speeds predicted by the Direct Matrix

Method are very much lower than the speeds predicted by
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the exact analysis (Ref.337) and the Analogue Solution (Ref.l10).

Two more wing-weight combinations were also investigated

by the Direct Matrix Method (using the same collocation
stations as above), These are weights 7c and 7 e.

The characteristics of these two wgights are given
below:

- - —

Pesipnation M 1 X\f

7¢ 0.96 2.04  -0.18
7 e 0.954 1.56  +0.034




The flutter speeds preducted by the Direct Matrix

Method for these two weights are shown in Fig. 8.3 ,

For weight 7 ¢, the flutter'speeds estimated by this method
are all lower than the measured values. For weight 7e,
-some values are lower than the measured values while the
flutter speed for the mid span position and the 2/3 span
poesition are higher than the measured speeds.

8.3

For both the wings (Ref. 9 and Ref, 38) the values
of the flutter speeds predicted by the Direct Matrix Method
for most wing-mass combinations are in good agreement with
the measured flutter speeds. In general, the flutter speeds
predicted by this method are lower than the measured

values, The agreement is not good for outboard locations

of weight 7 a of Ref. (5). Fig (8.2). It is possible that

better agreement would have been obtained if a larger
had bean

number of control stations were used in the analysis,

The three weights investigated here for the wing of
Ref,3B also illustrate the disadvantages of the assumed
mode methods, It used to be assumed that the flutter
speeds predicted by the assumed mode methods were always
on the congservative side - i,e.; gavc a lower estimate of the
flutter gpeed. For these wing-mass systems, the assumed
mode methods predict that flutter would occur at much
higher speeds than the actual flutter speed, Héwever, the
trends for the flutter speed with spanwise locations of
the mass are closely predicted by these methods,

These results show thaf the Direct Matrix Method
can be used with confidence to predict the flutter speeds
of similar wing - mass comibnations. The flutter speeds

will be generally on the conservative side, However, for




some weights, the estimates of the flutter speeds are much

lewer than the actual flutter speed. -
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9.1 Genorn) Tyondg

ihe results of bolh the lirect Fatrix and the expeiimental
apalyses are shown in Figs.(6.5) to (6.27) and in Figa.(7.9)
to (7.19). In all these graphs, the flutler speed and freguency
are presented as functions of the gpanwise positions of the
concentrqted inertia, with the individual curves rerresenting
different conditions of the concentrated masge parameters-

These results will be examined +o oﬁtain the influence
of the different parameters of the cencentrated mass on the
flﬁtter gpeed of the wing—mdss combinationse.
9.1.1 Effect of Spanwise Position

From Fige.(6.5) to (6.27) amd Figs.(7.9) to (7.19) the

eff'ect of the spanwise position of a given concentrated mass ch

the flutter speed can be obtained.

In general, for most concentrated masges, there is a
decrease in the flutter gspeed an the svanwise position ig
varied from root to tip. After reaching a minimum value
around the midspan position, the flutter speecd increases
again, to Teach a maximum value&aﬁ the tip location. This
trerd is shown both by experimental and the analytical results.

Concentrated masses with gero pitching moment of inertia
show a different trend vwhen the centre of gravity is ahead
of the elastic axis. (Pig., 6.5 and Fige6.14). In thesge
cases, the fluiter speed ghows a contirmous ircrease as
the concentrated mass is woved cuthoard from the roct.
Fig. (6. 11) shows the effect of a concentrated mass(mero ritching
morent of 1nert1a) placed on Lhe elastic axis. Ip this

crE® algo there is an increase in the flutter speed as



the concentrated mass is moved cutboards from the root,

In éeneral, for all the values of concentrated mass
perameters (M, I and ¥n) considered here, the gpanwise
location to obtain the maximum possihle fiutter speed is
at the tip or at locations ver& near the wing root. For
most concentrated masses, the locations near the midspan
region give low values of flutter speed (compared to
the bare wing flutter speed).

The hypothetical wing B4 also shows a similar trend.
However, the effect of the concentrated mass (with zero
pitching moment of inertia) is different on the hypothetical
wing B5. For this wing, the maximum value of the flutter
speed is obtained when the concentrated mass igs located

at about a spanwise position of 0.5 (Fig. 6.27).

9.12 Effect of Chordwise position

In Figs (9.1 a) to (9.1d) the results from the

Direct Matrix Analysis are plotted as follows: For given

values of the parameters M and I the flutter speed is plotted

%gainsﬁ the chordwise position of the centre of gravity

of the concentrated mass, with the spanwise location of

the mass as & parameter, TFor all the . values invesfigated'
here, the general trend is for the flutter speed to increase
as the centre of gravity of the concentrated mass is moved

shead of the elastic axis,

9,1.4 Effect of Mass Ratio

For the wings A2 and A3, the mass ratios (ﬁ) of
the pods were 1.0 and ©.833 respectively., These two results
are not directlf comparable since the wvalues of the
pitching moments of inertia of the basic wings were

different.



In Fig {2.2) an attempt is made to obtain the

effect of the mass ratio on the flutter speed. In this
figure, the flutter speed is plotted at each of the
spanwise stations as a ratio of the bare wing flutter
speed. (All the results presented are resulis from the
Direct Matrix analysis). In general, the flutter speed
ratios for the concentrated mass on wing A3 (ﬁ = 0.83) are
greater than the flutter speed ratios for the concentrated

1.0). This is true for both chord-

i

mass on wing A2 (M

i

wise positions (§ 0.1 ¢ and o ¢ aft of the elastic
axis), except for 2 ‘= 0,33 and 0.5 for the mass on the

elastic axis,

9.1,5 Effect of Inertia Ratio

In Figs (9.83.a) to (9.3.g) the flutter speed is
plotted against the pitching moment of inertia ratio (f)
of the concentrated mass., A detailed study was made only
for the concentrated mass on the wing A2, only two values
of the inertia ratio (I) being used for the wing A3,

For the curves of wing A2, the value of the mass ratio
(M) is unity, The graphs show the flutter speed plotted
against the inertia ratio (f) with the spanwise location
of the concentrated mass as parameter, For the wing A2
five different chordwise locationgof the cnncentrated
mass centre of gravity are considered,

For all these values of the centre of gravity(both
spanwise and chordwise locations) the flutter speed shows
a large decrease as the value of the irertia ratio ié
increased zero to 10,0,

The reductions are largest for the value of I =10.0
and when the chordwise position of the centre of gravity
of the concentrated mass is aft of the elastic axis,

For all the cases considered, the principal modes
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participating in the flutter were the fundamental bending

and the fundamental torsion modes.

9.2 Influence of Pod Aerodynamics and Fins

Figs (92.4.a) to (9.4.c) show the influence of the
gﬁi aerogynamic shépe on the flutter speed, In each of
these figures, the flutter speeds due to the pods with
the same inertial properties but with different aerodynamic
shpaes are compared at sach of the spanwise stations;

Fig., (9.4.a) refers to Wing A2. The relevant pod
inertial parameteré are: M =;l, I = 8.5 and Ep = + 0.1,
The flutter speeds due to two pods -~ pods A and B - are
presented. The flutte; speeds show similar trends with
changes in the spanwisé position of the pod, At each
of the span locations,;the flutter speeds do not show
exact agreement, but all locations, except near the mid -
span region, the differences are small. At the outboard
positions ( *} > 0.75), pod B gives a higher flutter
gpocd. Around ‘t = 0.5, pod Akgives a higher flutter
speed,

Fig (9.4.b) also refers to wing A2, For this case,
the inertial details of the pod are: M = 1.0, 1 =8.,5
and ;p = 0, Again, for both the pods, the flutter speesd
exhibits a similar trend with changes in the spanwise
position of the pod. In this case, the flutter speeds due
to the pods exhibit a larger difference than in the
corresponding cases in Fig (9.4.a).

In Fig, (9.4.c) four different pods are compared
for their influence on the flutter speed. In this figure,

which refers to wing A3, the inertial details of the pods

are: M = 0,83, I = 10, xp = +0.1. The flutter




speads due to the different pods show similar trends with

changes in the spanwise position of the pods, though they'
dn not have the same values at each of the spanwise stations,
Flutter was obtained at the spanwise location of Q.= 0,917
only for the pod A, and for the wings with the other pods
flutter was not obtained upto the maximum tunnel speed.

From the above results it appears that even drastic
changes in the eerodynamic shape of the pods has very

little influence on the flutter speed.

9.3 Influence of Ailerong

A preliminary sct of calculations was carried out
to examine the influence of the aileron degree of freedonm
on th flutter speed. These ghowed thal a combination
of the degrees of frecedom of wing twisting and (free)
aileron~rotation repulted in a flutier speed which was
lower *thabh in the casge of the wipg—pod combination
with rigid controlg.

Though the aileron had dimensions which weould be

congidered as being representative of the conditions

on a full scale aeroplare, the assumed inertial properties

may not be representative. Wowwt , it iIs felt that
the regult obtained could be considered as providing
a guide to the importance of incluvding the aileron
degree: of freedom iy a flutter analysis of a givep

wing-masg comcination.
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2.4 Comparison Between Theory and Experiment

9.4.1 Bare Wings

" For the bare wings, wind tunnel results are available
only for the wing Al(and for the wing of Ref, 38)

From the results shown in sections (6.4.1) and (8.2),
all the analytical methods considefed - assuﬁed mode metheod
the exact analysis of Ref (37), the iterative transformation
procedure of tRef.(43') and the Direct Matrix Method - gave
flutter speeds which are in ﬁery close agreement with the
neasured speeds, In the sssumed mode method, the use of
two modés ~ the fundamental bending and the fundamental
torsion modes of the bare wing - were used. These give
very good results for the flutter speed., Molyneux's
approximate formula (Ref. 39) also gives a good approximation
to the flutter speed,

In all the above analyses, two dimensional styip
theory serodynamic derivatives were used.

The excellent agreement between all these methods
can be attributed to the fact that .the wings had uniform
proyorties nlomg the spane

These results show that the Direct Matrix Method can
be used with confidence to obtain the flutter speeds of umt
uniform cantilever wings. (In the Direct Matrix Method,
ten control points were used.),

9.4.2 Wing A2 with Pods

Figs (9.5. a), (9.,5.h),(9.5.c) and(9.5.d) show the
flutter speed plotted as a function of the spanwise
position of the pod. Both the wind tunnel test results
and the analytical results are shown.

The results for Pod A are shown in Fig. (9.5.a),

and the relevant inertial parameters of the pod are: M= 1.0,



I =10.0 and xp = O, Also shown in the figure are the

fesults of & Direct Matrix Analysis and the results

obtained by the assumed mode method. In the assumed node
method, only two modes were used. These were the fundamental
bending and the fundamental torsion modes of the wing

with the appropriate concentrated Qass.

For the outboard locations (¥ = 0.67 and 1= 0.875),
the resulis of the Direct Matrix Method show good amgreement |
with the measured flutter speeds. The aéreement is not so
good for inboard locations of the pod, At the midspan
location, the flutter speed predicted by the Direct Matrix
Method is higher than the measured speed. For this case,
the results of the Direcf Ma%rix Method indicate & spurious
trend for the flutter speed as the pod is moved outbeard
from the root,

For all these cases, the important modes at flutter
were the fundamental bending and the fundamental torsion
modes,

In this figure the results of an assumed mode method
analysis are also given, For this wing pod configuration,
flutter speeds predicted by the assumed mode method (using
only two modes), show a much better sgreement with the
measured flutter speeds than the results from the Direct
Matrix Method,

rig. (9.5.b) is also for the wing A2. The relevant

-

pod parameters are: M = 1,0, I = 10.0 and :-;'p = ;0.1.

For this case, the Direct Matrix Method gives values for
the flutter speed which are always lower than the measurad
speeds. They also predict the correct trend for the
variation of the flutter speed due to changes in the

spanwise position of the pod.
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The flutter speeds predicted by the assumed mode

method show a better agreement with the measured flutter
speeds than the results from the Direct Matrix Method.
However, they predict an incorrect trend for the
behaviour of the flutter speed curve with variations in
the spanwise position of the pod.

In Fig (9.5.¢) the measured flutter speeds for the
pods A and B are compared with the flutter speeds
obtained bylusing the Direct Matrix Method and also by
using the assumed mode method., In this case, the pod
inertia parameters are: & = 1.0, f = 8,3 and ;p = 0,
As in Fig (9.5.a), the results of the Direct Matrix Method
show & spurious trend at Q = 0,5, For the outboard
positions of the pod, the values of the flutter speed
predicted by the Direct Matrix Method show good agreement
with the measured speeds.

For all the spanwise positions of the pod considered,
the assumed mode method gives good agreement'with the
measured flutter speeds., They also show the correct trend
for the flutter speed when the pod is moved spanwise,

Fig, (9.5.d) also refers to the Wing A2, In this
case the pod inertis parameters are: M = 1,0, I = 8,5
and ;p = 0,1. The values predicted by the Direct Matrix
Method are lower than the measured flutter speeds but they
predict the correct trend for the variation of the flutter
speed with the spanwise position of the pod,

For this wing—pod configuration also the assumed
mode method predicts values for the flutter speed which
show the correct trend, and are reasonably accurate,
especially around the midspan position. For both the
inboard and outhoard positions, the flutter speeds are

much lower than the measured speeds,
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D,4,3 Wing A3 with Pods

Fig., (9.5.2) refers to the wing A3, carrying a
pod whose inertial parameters are: M = 0,83, I = 10
x = 0. The measured flutter speeds for the pod B are
compared with the values predicted by using the Direct
Matrix Method and the agsumed mode method, The results
predicted by the Direct Matrix Method are much lower
than the measured speeds for inboard locations of the
pod ( ”ﬂ-( 0.5), TFor outhoard locations the difference in
the two flutter spéeeds is lower and the Direct Matrix
Method results show the correct trend for the flutter
speed,

In Fig (9.5.f) the pod has the following inertial
parameters: M = 0.83, I =10, X = + 0,1, The measured
flutter speeds for the pods A and B are compared with the
values predicted by using the Direct Matrix Method, the
assumed mode method and the exact_solution of Ref, (37).

For this pod the values of the flutter speed predicted
by the Direct Matrix Method show good agreement with the
measured flutter speeds, except at the span location of
I = 0.33 where the value is much lower than the measured
flutter speed.

For both these pods, the results of the assumed
mode analyses show good agreement with the measured speeds.
For the pod condition shown in Fig, (9.5.f) the assumed
mode results do not exhibit the correct trend for the
behaviour of the flutter speed with variations in the
spanwise position of the pod,

The results of the "exact"” analysis of Ref37
show very good egreement with the measured speeds at both

the spanwise locations considered. From (Fig 9.5.f) it
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can beocoer Lhal the speedo predicted by Lhe exact arndy:ain

are cloner Lo tho nennvaed coocde Ghan Lhe 1-._;»«:-du_P:r-l.sdji‘.in:li
by Lbha avovmed modo or Lhe Direcl Habtris melbhiodr,
The annlytical rewults indicate that the £lutler

speeds oblained by including the pod avrodynamic loads
in the aralysis are gemerally lower than the flutter
speeds obtaiped by an analysis which neglects these
loadse. Thoudgh there is no consistent trend, at most
6f the spanvise positions considercd the flutter speeds
due to the pod D are higher than the flutier speeds due
to the other pods (Fig.9.4.o). Since this rod had the
same shape as the wing cross section, the flutter specd
cap be comparcd with the theoretical resvlts in which
the pod aerodynamic loads have beern neglected. From
thisg limited evidence, it cab be argued that the theoretical
resulte about the efiects of the pod aercdyanimi loads
(npredicted by the momentum theory) as the flutter speeds
show approxirately the same trend as the exjerimental
resvlte. For DodslwiLhout fins, irvclusion of the ped
acrodynamic loads made very little dif¥erence in the
flutcer speeds and frewm the experivental resulis it
cen be secn that the rod aercdyramic loads de not geem
to have any narked effect on the flutier speed. Ip
the theoretical aralysis, the ineriial terms due to
the pod dominate the ecuntions of rotion, and the
inclusion of the aerodyramic loads duve to the pods
rales only o slight change in the cquaticns of ndbicne

The analytical resvits for the pods with fing give
the same trend a for the flutier specds (due 10 ap litssemee

in the fin size) as the errerivcertal results (Iig.6.6).




Q5

Fut the increases predicfed by the fesults of the Direct
Matrix analysis are much less than the measured increases
in the flutter speeds.
This may again be due.to the fact that the large

values of the pod inertia dominate theequations of motion
and the flutter speeds are not very sensitive to changes

in the aerodynamic terms of the pods. 1t is slso possible
tbat the momentum theory does not givé the correct aerodynamic
loads of the oscillating pod-fin combination. So, if

a more sophisticated aerodynamic theory, ﬁhich gives the
~correct aerodynsmic loads of the pod-fin combination and
which also takes into account the interference effect of
the wing-pod configuration, were used, the results may show
better agreement,

9.4.4, Wings of Ref (9) and Ref (38)

In Chapter 8, the Direct Matrix Method was used
to obtain the flutter speeds and frequencies for the wings
of Ref (9) and Ref (38), under different conditions of
concentrated mass. TFor the bare wings, the Direct Matrix
Method gave very good agreement with the measured speed
for the wing of Ref.3l..

When different concentrated masses were attached
to the wings, the Direct Matrix Method predicted values
for the flutter speed which were in good agreement with
the measured flutfer speeds (Ref.3a) énd with the values

predicted by the assumed mode method (Ref. ¢.).

2afied

In applying the Direct Matrix Method to the wings
referred to above, ten conirol stations were used (as in
Fig. 0.4 ). In all the cases,two dimensional strip theory

derivatives were used, It is probable that better agreement




could have been obtained if a larger number of econtrol

stations were used andif a more sophisticated aerodynamic
theory was used to predict the aerodynamic loads of the
oscillating wing.

9.5 Implications on Design Procedure

For wings of conventional planform, (without any
discontinuities or concentrated masses), it is possible
to obtain approximate formulae for the flutter speed in
terms of their geometiric, structural and inertial parameters.
However, as was seen in Chapter 2, this is no longer possible
when the wing carriss concentrated masses. In genersal, each
concentrated mass requires a separate anslysis to obtain
the corresponding flutter speed. From the results obtained
so far and from the results discussed in Chapter 2, it is,
however, possible to perceive some genersal trends,

{(a) For wings A2 and A3 {with concentrated masses),
an increase in the inertia ratiom (f) results in a decrease
in the flutter speed,

(b} Locations of the concentrated mass centre of
cravity sahead of the spar result in higher values of the
fiutter speed than when the centre of gravity is located
aft of the spar,

(¢} In general, for all chordwise locations of the
cohcentrated mass c,g.; the mid span position gives the
lowest valué for the flutter speed when the concentrated
mass has a finite pitching moment of inertia;,

(d) When the concentrated mass c.g. is ahead of
the spar, the best spanwise location (for the wings A 2
and A3) is at the tip, At these locations, the flutter
speed of the wing-mass combination is higher than the

bare wing flutter speed.
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(e} Trom the results for wings B4 and B3, it can be

seen that it is possible to obtain the maximum flutter
speed at a location other than at the tip by a suitable
modification of the relative values of the bending and
torsional stiffnesses.

(£f) By adding suitable fins to thepod, it is
possible to obtain large increases in the flutter speed.
These fins have a stabilising effect with regard to the
static stability of the pod.

From the above obsgervations, it can be geen that by
a proper location of the concentrated mass (both in the
spanwise and in the chordwise directions), large increases
in the flutter speed can be obtained (compared with the
bare wing flutter speed). This can be used as a cure for
the bare wing flutter.

1f the spanwise position of the pod has been fixed
by other considerations such £8 the location of the
control surfaces, it may still be possible to obtain useful
increases in the flutter speed by & proper location of the

chordwise position of the centre of gravity of the concentrated
magss, Positions of the cantre of gravity forward of the
spar give higher values for the flutter than aft positions.

By adding suitable fins to the pods, it is possible

to obtain increases in the fluiter speed. The increases

in flutter speed which can be obtained by this may be

limited by possible limitations on the size of the fins.
Another possible method of obtaining increases in
the flutter speed is by altering the relative values of
the bending and torsional stiffnesses so that an optimum
value is obtained for the flutter speed, which is governed

by the relative values of the bending and torsional frequencies.
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All the above reccommendations are applicable to straight

centilever wings, The increases in flutter speed obtained

by a proper pousitioning of the concentraied mass can be
nullified when the root degrees of freecdom are allowed.

Alsa, care should be ewxercised when other factors such as
flexibility in the attachment of the concentrated mass,
sweepback, movable fuel (in the case of fuel tanks), etc,

are introduced, Each of these conditions can bring about

large, detrimental effects on the flutter speed.
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CONCLUSIONS

10,1 Literature Survey

A survey of the previous studies of the physical
problem (both experimental and theoretical) showed that
the flutter of wings with concentr&ted masées is influenced
by a number of parameters which Ean be varied over a very

wide range.

At a given spanwise position, the influence of the
mass ratio (M) is governed by the chordwise position of
its centre of gravity with respect to the wing elastic
axis-¥hen the centre of gravity of the mass is ahead of
the elastic axis, the flutter speed increases at first
as the mass ratio is increased from low values, After
reaching a maximum value,{ét a critical value of the mass
ratio) the flutter speed decreases when the mass ratio
is increased, In general, for all values of ﬁ, the
flutter speed of the wing-mass combination ig higher
than the bare wing flutter speed (when the centre of
gravity of the concentrated mass is ahead of the elastic
axis).

When the concentrated mass is located on the
elastic axis, the flutter speed does not seem to show a
well defined trend with changes in the mass ratio,

When the centre of gravity of the concentrated
mass is aft of the elastic axis, the flutter speed of the
wing-mass combination decreases with increases in the mass-
ratio. For all values of the mass ratio (M), the flutter

speeds are generally lower than the bare wing flutter speed,




In general, when the inertia ratio (I) is

increased, there is a decrease in the flutter speed,
The actual behaviour of the curve of V wvs I is
influenced mainly by the value of the mass ratio (ﬁ)
and the spanwise location of the concentrated mass,

Thie chordwise position of the centre of gravity
of the concentrated mass seems to have the strongest
influence on the value of the flutter speed, For the
wing-mass combinationg reviewed in Chapter 2, the
general trend is for thHe Ilutier sﬁeeJ to increase as
the centre of gravity pesition of the concentrated mass
is moved forward from a location aft of the elastic axis.
At a certain centre of gravity location forward of the
elastic axis a maximum value is reached and any further
(forward) movements of the centre of gravity tend to
decrease the flutter speed.

The influence of the spanwise location of the
concentrated mass seems to be governed mainly by the
chordwise position of the concentrated mags centre of
gravity and to a lesser extent by the value of the mass
ratio M. When the centre of gravity of the concentrated
mass 1s ahead of the elastic axis, the flutter speed
increases as the concentrated mass is moved outboard from

the root,

After reaching a maximom value at a location between

the midspan and the tip, the flutter speed decreases as
the mass is moved further towards the tip.

For locations of the centre of gravity of the
concentrated mass aft of the elastic axis, the flutter

speed decreases initianlly and after reaching a minimum

value at around the midspen region, it increases again




as the concentrated mass is moved further outboards.

For a concentrated mass which is rigidly attached
to thé wing, it is possible to find an optimum position
for the location of its centre of gravity (botn spanwise
and chordwise), At this position, it is possible to obtain
large increases in the flutter speed (compared to the bare
wing flutter speed). This suggests a method of curing
the flutter problem of bare wings.

The conclusions drawn so far have been concerned
mainly with concentrated m&sses which are attached rigidly
to a cantilever wing (with rigid control surfaces). It
is possible thdt these wili have to be modified when some
or all of the following parameters are variéa:

(a) Flexibility of the wing-mass attachment

.(b) Root degrees of freedom

(c) Fuel sloshing

(d) Control surface flexibility

If the values of the parameters are in certain
eritical ranges, these can have large detrimental effects

on the flutter speed,

In general, introducing sweepback to a concentrated masg

gantilever wing combination seems to have a beneficial

effect on the flutter speed.
An examination of the available data on the influence
of the aerodynamic shape of the concentrated mass showed

that at subsonic speeds, the aerodynamic shape had very

little influence on the flutter speed,




10.2 Experimental Results

The experimental work was mainly concerned with
investigating the effects of ihe ingrtia ratio of the
concentrated mass at a number of spanwise and chordwise
positions, An investigation was alsc made of the
influence of the aerodynamic shape of the concentrated
mass on the flutter speed of the wing-mass combination.

Four pods having different aerodynamic shapes were
tested. These tests showed that for given values of the
paraLeters_ﬁ, E, §p and Q_ , the aerodynamic shape of
the concentrated mass has no significent or consistent
influence on the flutter speed.

This could be due to the fact that the eerodynamic
loads due to the oscillating pods were not sufficiently
large in comparison wlth the inertial parameters of‘the
wing-mass combhinations. |

By attaching horizontal:fins to the tfailing édge‘
of the pods, it was found that the flutter speeds could
be increased, The results showed a consistent trend in
that the flutter speed increased with increases in the
size of these fins.

The design of the wing and the pods allowed the
pods to be attached to the wing at 2 number of spanwise
locations, At all the spanwise locsations, it was found
that the flutter speeds of the wing-pod combinations were
much lower than the jtheoretically calculated) bare wing
flutter spéeds. When the other parameters (ﬁ, xp and )
were Iixed, it was found that increasing the inertia ratio
(f) resulted in & decrease in the flutter speed, For
the two chordwise locations of the pod centre of gravity
considered, it was found that regions near the wing tip or

the wing root gave higher flutter speeds than the midspan

o
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}ccaiions,

10,3 Theoretieal Resulis

10.,3.1 An in-vécuo vibration analysis has been developed which
sives closed=-form golutions for the vibration fr gquencies and
modes of uniform beams (or shafts) carrying a coﬁcentraied mags
(or moment of inertia)s In the assumed mode flutter caleculations,

the mode shapes obtained by this method were uceda

The Direot latrix Method was z2lso used to obteain the coupled
frequencies and mode chaped of the wing ~mass combinstions.
With ten éontrol stations in the Direct Matrix Hetho&,.the caloulated
frequencies (using measured stiffness distributions) showed

good agrec:ent with the measuved values

10.3.2 The flutier speeds of the different wing-inertis combi-
nationg were obtoined by three different methods,
The results of the 'exact'! anclysis of Ref.(37) gove very
zood esgbinctes of the flutter speeds One mejor digasdvontage
of thieg method is the lorge azount of mumerical work which is
necessary for caleulsting the flutter speeds.
10.3.3 In all the assumed moce analyses, only tvo modes were
used,s These were the uncoupled bending and torsion modes for
the verticuler wing-mass configuration and were obtrined N
by the method of Appendix IITI, 23 mentioned in Section 10.3.1.
The flutter gpeeds nredicted by this method showved good
agreenent with the measured volues. In general, the omsumed
mode enalyses gove volues for the flubtter specds whieh were

lowrer then the meaguied mpeeds,.




The preliminary investigations into the influence of

the control surface dgree of freedom or the flutter speeds of
a specific wing-mass couwbination showed that this may have

a detrimental influence on the flutter speed.

10.3.4 The Direct Matrix Method was used extensively to
obtain the flutter speeds and freguencies, Ten collocation
statinns were used in the analyses. This meant that the
influence of the concentrated masses on the flutter speed
could be assesced at only five spanwise stations, Strip
theory aerodynamic loads were used in all the cases for
obtaining the aerodynamic influence coefficient matrices.

The vibration frequencies predicted by the Direct Matrix
Method for the wing-mass combinations showed gqod agreement
with the measured frequencies. The flutter speeds predicted wWeve
by lower than both the measured flutter speeds and the
assumed mode resuits.

The Direct Matrix Method was also used to obtain the
flutter speeds and frequencies of some wing-mass combinations
treated in Refs, (9) and (38). In these cases the Direct
Metrix results showed good agreement with the measured
speeds of Ref (38) and the analogue solutions of Ref. (9)

For a certain wing-mass combination of Ref. (38), assumed-mode
methods predicted higher values for the flutter speed, even
when four modes were used in the analysis, The results of

the Direct Matrix Method showed better agreeﬁent with the
measured values of the flutter speed in this case.

It is possible that a better agreement could have been
obtained if a larger number of collocation stations wers used

in the Direct Matrix analysis,




A major attraction of using the Direct Mairix Method

is that it s not necessary to prescribe the mode shapes
of the vibrating structure in advance, On the other hand,

the mode shapes are obtained as part of the analysis.

10.3.5 When the aerodynamic loads due to the pods (as
obtained from the momentum theory) were included in the
Direct Matrix analyses, it was foﬁnd that the resulting
flutter speeds were slightly lower than the flutter speeds
predicted by this method when the aerodynamic lcads were
neglected.

Wher the aerodynamic loads due to the finned-pods were
also included in the analyses, the results showed the correct
trend for the flutter speed to increase with incresases in
the fin aize, However, it was again found that these values

were much lower than the measured fluiter speeds.

10,4 General

The results show that the Direct Matrix Method could be

used with confidence to obtain the flutter speeds of wing mass

combinations since there was a 'built-in' degree of coonservatism

in these results.

It is especially useful when the influence of varying a
large number of parameters is to be asseased.

The preliminary investigation into the influence of
the aileron degree of freedom on the flutter characteristics
of the wiﬁg—mass combination indicated that this could have
a significant influence on the flutter speed. This effect needs
further investigaﬁion.

It should he emphasized that the conclusions drawn here
apply to the specific wing, The influence of a concentrated
mass on the flutter appears to be dependent on the (torsion/

bending) frequency of the particular wing. However, the
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restilts serve as a guide to the inf luence of concentrated

maszes on the flutter speed,




CHAPTER II

SUGGESTIONS . FOR  FURTHER RESEARCH

1. The investigations undertaken in this report were all
concerned with uniform cantilever wings. Investigations of

the influence of the root flexibilities (in normal translation,
pitch and rol}l) should be nade, mainly with a view to checking
the accuracy of the results predicted by the Direct Matrix
Mathod,

2. The influence of the flexibilities (in normal translation,
pitch and roll) of the attachment of the concentrated masses

on the fiutter speed have not been investigated in this report.
At the large values of the pitching moments of inertia considered

here, these may have considerable influences on the flutter speed,

3. The effect of the chordwise flexibilities of the wing
have not been considered here. For thin wings with
concentrated masses, the influence of this factor may be

significant.

4, The influence of the aerodynamic shape of the concentrated
mrasses does not seem to he very significant. However, these
may become significant at high speeds. At low speeds, a

nathod of obtaining an estimate of the influence of the pod

' aerodynamic shape on the flutter speed may be to test pods

having negligible mass and moment of inertia., If a number of

different pods are tested, it may be possible to assess the
influence of the aerodynamic shape, independenily of changes
in mass distribution, etc.

4, Further work should be carried out on determining the
nature of the influence of finned pods, .Both experimental

and analytical work should be undertaken to determine the

roscillatory aerodynamic loads on finned pods, especially when

the pods have unorthodox cross sections,




5. I all the Direct Matrix resuvlts reported here, ten

collocation stations were used. Further work is needed to

assess the convergence of the resulis as the number of collocation

stations is increased,

6, For quickly assessing the changes in the flutter
characteristics due to changes in the concentrated mass
perameters, a sensitivity analysis can be envisaged, to be

used in conjunction with the Direct Matrix Method. Existing
analyses can only take into account the results of only

small changes in the parameters. Large changes in the
parameters will affect the character of the matrices. It may be
possible to develop some approximate formulae which would
evaluate the éhanges in the flutter characteristics even

for large changes in the parameters,

7. Further work is needed to asses the influence of

control surface degrees of freedom on the flutter characteristics
of wing-mass combinations.

8, The results obtained in this report indicate that the
Direct Matrix Method can be used with confidence to obtain the
flutter speeds of bare wings and of wing-mass combinations.

it would therefore be useful to extend the computer programme
used in these investigations., Subroutines which can

calculate the structural influence coefficient matrix in the
desired form by using sophisticated theories {such as plate
theory etc.) would make the programme more useful. Subroutines
to calculate the aerodynamic influence coefficients by using
sophisticated theories (such as 1ifting surface theories

for the various Mach Number regimes) can be incorporated in

the programme, These additions would make the computer
programme more useful in the vihration and flutter analysis

of practical configurations.
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APPENDIX I

GEOMEIRIC, INERTIAL AND STRUCTURAL DETAILS OF WINGS
REFERRED TO IN CHAPTER 2

1.1 Wing of Ref (6)
(a) Geometry:

b 6ft

It
i

span
‘c_= rooft chord = 2,7 ft
nh = tapér ratié = 0.524 (Tip.chofd/Root chord)
A.R= aspect ratio = 2,92
N = sweepback’ = o
Aerofoil: t/c = 0.3898 (1—%)5% ,symmetric
Elastic Axis = 0.32¢ aft of leading edge
(b) Inertia
Weight of wing = 127 1b
(Wing density = 0.5 1b/£t3)

Inertia Axis 0.4c aft of leading edge

Radius of gyration 0.28c about an axis 0,3c.

aft of leading edge.
(c) Structural
No data available

{d) Cbncentrated Mass

Spanwise locations = 0,1, 0.3, 0.5 and 1.0

Chordwise locations of e¢.g. x = -0.29¢, 0.30¢, -
0.69¢ aft of
leading edge

Range of Mass Ratios M = 0 to
All masses were considered to have negligible moment
of inertia'about_their own axis.

(e) Speed Range of Tests 0 to 160 f.p.s.

Max, Re, No. '= 2,14 x 106 {based on mesn
: chord)




Q?L

(f) General

Effect of flexibility of attachment was also
investigated. The flutter mode shapes were
measured for some cases and are presented in
the report.

The effect of adding more tﬁan one
mass at the same time to the wing was investigated,

1.2 Wing of Ref, 38

(a) Geometry

b = 4ft

c, = 2/3 ft

h= 1.0
AR= 6

A= o

Aerofoil sectinn NACA 16010
Elastic Axis 0,437c aft of LE
(b) Inertia

Weight of Wing = 3.48 1b

Inertia Axis 0.45¢ aft of LE

Radius of Gyration

0.258¢c about inertia axis

*{¢) Structural

EI = 00,1407 x 106 1b in2

GI = 0.0692 x 106 1b in2 )
(Bare wing) Fundamental Bending Frequency = 6,44 cps
(Bare wing) Fundamental Torsion Frequency =392 e¢ps

(Bare wing) First overtone bending frequency= /48.4 cps

(d) Concentrated Mass

Spanwise locations = 0,22 to 1,0

Chordwise locations of ¢,g. x - - 0.468c to
' | 0.34c aft of the

axis.




A%

Range of Mass Ratios M = 0,375 to 1.04
Range of Inertia Ratios I = 0.883 to 7.50
(e) Speed Range of tests M.Ne = 0 te 0.74
6
Re. No = 0.92 x 10G to 4,2 x 10

(£) General
The model was suspendod vertically from the
roof of the wind tunnel, A set of twelve different

weights were tested,

.3 Wing of Ref 16

(a) Geometry
b o= 3,33 £%,

2/3 £t

Q
i

M= 1.0

o
-
o
it

5.0
N= o0
Aerofoil section NACA 16 ~ 004
Elastic Axis 0.45c aft
{(b) Inertia

Weight of Wing 4,89 1b

" Inertia Axis = 0,475¢c aft of E,A.

Rad. of Gyration = 0,23c about inertia axis

(¢} Structural

El = 0.0608 x 106 1b in2

0.0944 x 106 1b in2

Gl =
wb} = 4094 cPps
W, = 58,3 cps

Wy, = 30.8 cps



(d) Concentrated Mass

Spanwise location =0 to 1,0

Chordwise locations -0,256¢c to +0.022¢c

aft of elastic axis,

0.0485 to 0.0755

Range of Mass Ratios M =
Range of Inertia Ratios I = 0,07 to 0.509
(e) Speed Range Up to 447 ips
Re NO = 1.42 x 106 to 1,68 x 106

(£) General
The object of these tests was to investigate
the effect of the aerodynamic shape of the
concentrated mass on the flutter speed and a

number of different shapes were tested,

1.4 Wing of Ref 75

(a) Geomstry
b = 4,025 ft

¢ = 0,433 ft
r

N= 0.454
A.R= 12-8

A = 34,5° on the 0,38 chord line

Aerofoil NACA 651 - 012 parallel to the
air stream

Elastic Axis = 0.38¢c aft of Leading Idge
(approximate)

(b) Inertia
Weight of wing = 3,79 1b
Inertia axis =  Variable: Average:~ 0.44lc

Radius of Gyration= 0.216c {average)



AS

{c) Structural

El = 2.89%10° 1buft® (Root) o 0.075x10° 1ot 2
- ip
GI = 2.18x10° 1b-£42 (pogt) to 0,075x10° Yooty
Pt
W, = 6.97 cps
Wy, = 30.9 cps
W, = 37,9 cps

{(d) Concentrated Mass

Spanwise location! = 0,33 and 0,75

Chordwise location: —_—

Mass Ratios: Inboard mass M = 0,784
Outboard mass M = 0.42

Inertia Ratios: —

{e) Bpeed range Upto 290 fps

6 . 6
Re NO : 5,19 x 10 to 5.77 x 10

(£) General
The object was to test the influence of
adding two concentrated masses simultaneously
to the wing two types of root restraints were
uéed: in the first, the root section was
clamped parallel to the air stream. In
the second, a triangular shaped area at the

root was restrained so that the wing behaved

structurally as an unswept cantilever beam.




1.5 Wing of Ref 15

(a) Geometiry
P = 2,94 £t

c = 0.88 ft
r
A = 0,51
AJR.= 4.43

>
B

00 at the 0.3 chord line
Aerafoil : NACA 0009 - 64

Elastic Axis : ©,3c aft of the leading edge

(b) Inertia

Weight of wing 10.682 1b

fl

Variable (average: 0.467c)
2
Moment of inertia of wing = 134.8 1b in

Inertia Axis

(¢) Structural

2
El = 0,96x10° 1b-in®(Root) to O.%%xl?51b—in
ip
@ = 0.58%10° 1b-in®(Root) to 0.08x10° lb—in®
" _ (tip)
b\ = =
(Qk\ - -
Wy, = =
(d) Concentrated Mass
Spanwise location : = 1.0
Chordwise location
Mass Ratios M = 0.0245 to 0.234
Inertia Ratios 1 = 0.0545 to 153,2

(e) Speed Range upto 250 fps

Re No = 12.7T x 106

{f) General
The wing was tested as a cantilever. The

-effect of a variable tip tank fuel content



1,8

were simulated. TFour different types of

pod were tested in order to asszss the effect
of tue pod asrcodynamic loads on the flutter

speei,

Wing of Ref, &

(a) Geometry

D= 4,0 £t

c = 1,0 ft

v

A= 1.0
LAR.= 4

A = o, 15°, 30°, 45
Aerofoil = —
Elastic Axis = 0.25¢ aft of leading edge
(b) Inertia

Weight of Wing 4.8 1b

LI}

Inertia Axis

1

0.35¢ aft of leading edge
Moment of inertia of wing = 0,258 1b ftz
(c) Structural

El = ¥

GI = =
'%\ = 3.6 cs
W, = 14.5 cpe
W= —

{4} Concentrated Mass

Range of spanwise locations : o, 0,5, 0.67,
0.75, 1.0
Range of Chordwise locations % = -0.3c to +0.lc
aft of elastic axis
Mass Ratios : M = 0 to 1.0
Inertia Ratios : The pitching radius of gyration

nf the concentrated mass was

AT



varied heitween O and D,7c ‘\8
(e) ®“peed Range =
Re Mo, =
(f) General .
The investigations were by the 'mssumed -~ mode'.

method.

1.7 Wing of Nef 8

(a) Ceometry

c_= 1,5 ft

-
L
-t
&)

AR,= 2.0
A= 0.0
Aerofoil = NACA 65 - Q12

Elastic Axis = 0,31%c aft of the leading edge

(b) Inértia
Weight of Wing = 13.27 1bsz.
Inertia Axis = 0.431lc aft of leading edge
Moment of inertia of wing =

{¢) Structural

EI = 1,534 x 10% 1b 12
G.3 = 1.274 x 10% 1 £t?
tob\= —
Oy = =

{(d) Concentrated Mass

Spanwise position : Wing Tip
Range of chord wise positions -0.533¢ to 0.267c

aft of the elastic

axis,

21
I

Mass Ratios 0.22, 0.44, 0,66

Ll
]

Inertia Ratios:



{e) Speed Range : Up to 25Q0 ft/sac
6

fle Ho 24 x 10

(f) General

The tests were carried by méans of ground
launched rockets, Thus both symmetric and
anti-symmetric degrees of freedom were allowed,
All the concentrated masses were completely

enclosed within the wing contour,

I.8 Wing of Ref(15)

(a) Geometry
bp= 3,75 £

Cr= 4,0ft

}q:‘. 1/16

AR.= 1,76

A= 450 on the leading edge

Acrofoil
Elastic Axis = 0,15 ¢ aft of wing leading
edge.
(b) Inertia
Weight of bare wing = 15,57 1b
Inertia Axis : overall wing c.g. between
0.4 and 0.5

2

MI of Wing 1916 to 2540 1b in~ =

{c}) Structural

E] r= QQ‘)

375 1b ft/rad measured at

G3*° My = 62 1bft /rad span position




(d) Concentrated Mass

Fo concentrated mass wes attached to the wing,
but the body mass and pitching inertia at
root were varied.

Body Mass Ratio

Body Pitch Inertia Ratio -1 to+ 2
Body ¢ g

{e} Speed Range of the tests Up to 175 Ips
Re No, = 2.4 x 106

(£) Coneral
The tests were conducted to assess the influence
of allowing the root degrees of freedom of pitch
and normal translation.on the flutter speed of

8 delta wing model,

1.2 Wing on Ref.7

(a) Geometry

.

3.0 ft

c 1.75 £t

r

A= 0.3

It

o [+

Sweepback Angles = 137, 237, 33°

and 43°
Aerofoil RAE 101
Elastic Axis 0.3¢c aft of wing leading edge
{b) Inertia
Weight of Wing = 3.81 1b

Inertia Axis = 0,43¢c aft of wing leading
edge

Moment of Inertia of Wing =



A

(c} Structgggk

L = -

G = =~
&Jbl = 3.9 cys
Wy = 15.3 GP§
bez = 11.4 cps

(d) Concentrated Mass

Spanwise locations = 0,25, 0,50, 0.75 and
1,0
Chordwise locations ~ 1.0c to 0.5¢c aft of the

Elastie rAxis;

Mass Ratios M = 0.13 to 1.3
Inertia Ratios 1 =
(e) Speed Range
Up to 120 fps
G

Re Jo = 0,86 x 10

(£) General
The tests were made on a wing which could be
set at four different sweepback angles. No
root degfees of freedom were allowed., The
influence of the aerdynamic shape of the
concentrated mass was also tested,

1.10 Wing of Ref,11

(2) Geomotry
b= 0,458 £t

0.252 ft

o]
il

r
A= 45° on the leading edge

Aerofoil  NACA 65A 004

Elastic Axis




A3

(2 Laexdtia

e .

Weight of wing = O.004875 slug =
Inertis axis= 0,538 ¢ aft of wing Leading Fdge

. . . — 5
Mement of ineriia of wing = 8.96 x 10 “slug™

ftz/ft =

{¢) Structural

EI = ~

63 = T
{bbl =45.4 ops
Pe1 <397 ope
'wbz =353 cps

(d) Concentrated Mass

Spanwise location = 0.755
Chordwise locations =~ 0,13¢ to 0,32 ¢ aft of
the ez
(In addition the position of the concentrated
mass centre of gravity vertically below the wing
was also varied between 0,09c and 0.13c¢c)

Mass Ratios M

0.0392 to 1,019

Inertia Ratios I

1.0 to 2.09

(e} Speed Range M = 0.8 to 1,3

Re NO —_—

(f) General
The experiments were concerned with the *
effect of the pitching flexibility of the
concentrgted mass on the flutter speed. The
value of the ratio (mass pitching frequency/
wing torsional frequency) was varied between
the values of 0,1 and 1,4,
In addition, the effect of varying the
aerodynamic shape of the mass was also

investigated.



1.11 Wings of Ref 10

In this report, four different wings were
imvestigated by using an analogue computer. The details
of the wings are given below:

N
I,11,1 "Basic Fighter A"

17.0 £t (exposed wing semi-span)

b o=
¢ = 8.2 ft
r

ﬁ = 0,54
AJdt=

A= 0 (40% chord line)
Acrofoil Assumed to be a flat plate
Elastic Axis 0.4c &aft of the elastic axis
(b) Inertia

2065 1b

il

Weight of wing

Inertia axis = 0.4c aft of wing leading edge

2

Moment of Inertia of wing = 2100 1b-in

(¢) Structural
lolb--in2

F1 = 1.25x10101bmin2(Root) to 01g§5x10

O.33x10101b~1n2(Root) to 0,019x]0

@ =
1b-1n"(Tip)
Wy, =~
w’tl = =
Wy =

(d) Concentrated Mass

Range of spanwise Positions | = 0,214 to 1,0
Range of chordwise positions

Mass Ratios M = O to 4.0

Inertia Ratios:  Ppitching Radius of Gyration
Veried from Gins. to 30 .

(e) Speed Range:




A5

3.11.,2 "Bagic Fighter B"

{a) Geometry
b= 19.38 £t (Expoéed wing span)

c
r

]

8.83 ft
A= 0.5
N= 300
Aerofoil : Assumed to be a flat plate

Elastic axis : O.4c aft of the wing leading

edge
(b) Inertia
Weight of wing = 2714 lbg.
Inertia axis = 0.,4c aft of wing leading edge
Moment of inertia of wing = 2633 1Bein?

{c) Structural

10, .
EI  =0.67x10"1b-in® Root) to 0.065x10 *1bein®

(Tip)
63 =0.27x10 %1535 (Root) o 0,075510™°
1b-in“(Tip):
Wp = —
Wi = —
Wy = —

(d) Concentrated Mass

Same as for the wing of I1.11.1

(e) Speed Range




1,131.3

"Basic Romher A"

{n) Geometry

b= 70,4 £t

cr = 16,67 ft

'>& = 0,4
AR, =

A= 0

Aerofoil : Flat Plate

Elastic Axis : O.4c aft of wing leading edge
(b) Inertia

Weight of wing = 7662 1b,

Inertia axis = O.4c aft of wing leading edge

Moment of inertia of wing = 36 220 lb—in?

(c) Structural

EI = 10x10'%1b-in(Root) 4o 0.109:;101(.’119—1112
¢ =3.3x10"%moot ) 4o O.OQxlOlolb-irEElI()‘%ip)

wbl = -

a0 = 7

Opp =

(d) Concentrated Mass
Range of spanwise positions = 0,154 to
1.0

Range oF Chordwise pogitions :
Mass Ratios M = 0 to 4.0

Inertia Ratios Pitching Radius of Gyration
= 35 in2

(e) Speed Range




I.21,.4 "Basic EBowher B

The datails of this wing are essentially similar
to those of (I.11,3) except that this wing had a sweepback
o
angle of 3Q
-For 211 the wings the root degrees of freedom
were allowed. The symmetric and anti-symmetric degrees

of freedom were allowed separately.

1.12 Wing of Ref 21

This wing is the sesme asg that of Ref 5 (I1.2)
only one of the weights tested there was investigated by

the "exact" analysis of this report,




APPENDIX I1I

DRETAILS OF THE UNIFORM CANTILEVER WINGS AND PODS USED IN

THE EXPERIMENTAL THEORETICAL ANALYSES

11.1 Wings

In the early experiments two wings, identical in all
details, were built. The first wing was tested in the bare
condition and this wing destroyed itself at the flutter
peed, When a pod was attached to fhe second wing, no
accurate flutter speed could be obtained as the flutter
speeds were too low to be measured inthe wind tunnel. In a
test on the bare wing, this wing also suffered destrucfion.
These two wings are dosignated as Wing Al, The details of

these wings are given below:

Designation: Wing Al
Yeight = 0.369 1b/ft
Pitching WMoment 2 .
of inertia = 0.0056 1bft"/ft (ahout the inertia
axis)

¢.g. location: 0.45¢c aft of the leading edge
Spar location: 0.35¢ aft of the leading edge
EX = _66.67 1bft2

2
GJ = 3.06 1bft
Aerofoil- NACA 0©0Q18

Fundamental bending frequency = 9.5 cps

Fundamental Torsion frequency = 21.3 cps

As a result of the experiments on wing Al, it was
decided to replace the wing spar with another spar of greater
torsional stiffness. This wing is designated as Wing A2
and the relevant details are given below-

Designation: Wing A2

Weight: 0.396 1b/ft

Pitching Moment 2
of Inertia 0.0066 1bft"/ft about the inertia =axis

c.g. location: 0. 35c¢




22

Spar loncation: 0.33¢c

| o = 51.4 1b ftz
\—\'\ 2
GJ = HB7=29 1b ft
Spar Detaiis: Channel Section

Dimensions 0O.75in., %z 0.292in x 0,125in

Fundamental bending frequency: ggéégcps

Fundémental torsion frequency 35.3 cps

After a series of experiments with Wing A2, it was
found that the attachment points on some of the wing sections -
were deteriorating and it was felt necessary to replace these
sections,

For the new sections, it was found difficult to obtain
the same inertial properties as for the sections of wing A2.
The weight and centre of grﬂﬁity locations of the wing
sections were maintained at the same value as in the case of
wing A2, but a pitching moment of inertia of 0.0055 1bft2/ft
was obtained. Details of this wing (Wing A3) are given below:

Designation: Wing A3

Weight: 0.396 1b/ft

Pitching ) 2

moment of ) 0.0055 1bft™ /ft about the inertia exis

inertia )

c.g. location: 0.45c aft of the wing leading edge

Spar location 0.35c

B 51.4 1bft2

ATy 2
GJ 524 1bft
Gpar same &3 for wing A2
Fundamental bending frequency 9.1 ops
Fundamental torsion freguency 38.9 cps

During the course of the theoretical calculations (by
the Direct Matrix Method) it was decided to investigate the
influence of the changes in the stiffnesses on the flutter

speed. {The other parameters were not altered).
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First, only the Bendiﬁg stiffness was changed. This
hypothetical wing was designated as Wing B4. This had the
samepréperties as wing A3, except that the value of EI
was 6,61 1b ft2 {(instead of 51.4 lbftz).

The second hypothetical wing, Wing BS is similar to

wing B4, except that the valus of GJ is set to §.61 lb:l.’t2
(instead of 5.24 1bft2).
11.2 Pods

Four pods each having a different zerodynamic shape
were used,

Pods A and B were designed so that they had approximately
the same cross sectional area distribution along the pod length,

" Figs. 7.1 and 7.2 are photographs of pod A and B, respectively,
and show these pods mounted on the model wing. Fig., 7.4

chows details of pod A and details of pod B are shown in Fig, 7.5.
. Pod C was similar to pod A, except that the portion of

the pod immediately aft of the wing trailing edge was removed,
Thus the pod had a length of only 13.9% ins., compared to 20 ins.
for pod A.

Pod D was constructed out of Wood's metal and a photograph
of this pod is shown in Fig. 7.3.

I1.3 Fins

Some preliminary tests showed that by attaching
horizontal fins to the trailing edge of pods A and B, the
flutter speeds could be increased.

A systematic study was made to obtain an estimate of
the influence of the fins on the flutter speed, For this,
five Qifferent fins were used. The details of the fins are

1.5 '
shown in Fig. F2%.
The fins were constructed out of sheet balsa and were

attached to the pods by balsa cement.




" modes of uniform beams and shafts with concentrated

APPENDIX T171

Vibration Analyrie of Winga wilh Goncenl=atod Tnerting,

The details of the operational method applied to the
solution of the vihration problem of uniform beams and
shafts with concentrated inertias is given in this
appendix. These regults were presenied as a paper at
20th Annual Mecting of the Aeronautical Society of India,

held in Bangalore,India (3-5 May, 1968).

In this analysis, the basic differential equations
of motion of uniform bheams and shafts are solved by an
operational approach. The details of this method and

some results obtained for the vibration frequencies and

inertias are presented in 4lLis appendix,




TUE INFLURNCE OF CONCENTHATEI INERTIAS ON THE PIGE VISRATIONS OF UNIo004

SEAMS AND SHAFTS TV

V, T, NAGARAj*

Loughborough University of Techrology, Loughborough, leics.

SUMMARY

In part A, an analytical method is devéloped for determining the natural
frequencies and modes of_vibration of uniform beams in bending vibrations with
a concentrated mass attached at any point along the span. The method.makes use
of the operational calcuius for solving the equations of motion an& for obtaining
the exact solutions for the natural frequencies and is applicable for uniform
beams with any type of end conditions., Numerical results are given for the case
of a cantilever beam for a wide range of.mass ratios (concentrated mass to beam
mass) and for a range of mass positions along the span of 1/4, 1/2, 2/3, 3/4 of
the beam span and at the tip. The modes of vibration are obtained for ane
specific case.

In part B, the method is extended to cover the case of torsional vibrations of
a uniform shaft with a discrete inertia at any point along the span, Numerical
results are given for a similar range of inertia ratios and locations along the
span as in part A,

The case when the mass has a rotary inertia is considered in the Appendix.
The frequency equations are derived for a) a uniform cantilever beam and
b) for a uniform beam wiih simply supported ends. For both these cases, the

arbitrarily placed mass has also a rotary inertia.

NGTATION

Pgrt A .

EI Bending Stiffness of beam, 1b-in?

L . Length of beam, in.

M Concentrated Mass, lb-secz/in.

mL Total Mass of beam, %b-secz/in.

¥ M/mL

RL Distance from one end of beam, of Concentrated Mass, in.
T Sce Eqn. 2.

Time, sac.

X,. X, Xy, X, See Eqn. 1Z.
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Y Co nivtl it e A sl agucng L g wiang (huy Hpdn, gy

y P bareq Al deet ey ap beosin, 1,
A(8)  Laplace transform of o
o+ 4 i
oL Frequency Parameter (Mw b’ /ey )
W Natural Frequency of the beam, rad/sec.

Part B
GJ  Torsional Stiffness of Shaft, lb*inz.
I Concentrated Moment of Inertia, 1b-gec? .

il Total Moment of Inertia.of Shaft about its Centroidal
Longitudinal axis, 1b-sec2.
I I/ilL .
gty 4
‘@]; Frequency Parameter (A /&3 )
=3 Torsional defiectiqn, about the longitudinal axis, rad,
See Eqn, 16. _
Avpendix Ig Rotary Inertia of concentrated mass lb-—in2

B (ujsjme) Non Dimensiona} Rotary Inertia.

INTRODUCT T ON
IHYRODUCT 1 ON

Lablace Transform technique which is briefiy described below. The graphical
resulis obtained for the frequencies of the beams (in bending) and shafts (in torsion)
are of coursé oquivalent to those bpresented carlier, €.£. Refs. 3 and 4, Howoever,
i1t is worth noting that the present technique enables a more precisé representation
of the general mode shapes for a given problem. Also, as Snown in tne Appendix,
the inclusion of the rotary - inertia of the concentrateq mass 18 g relatively casy
procedure with this technique.

Thls genefal probiem can be most'conveniently handlea Dy Lhe use of the

Laplace Transform (Ref. 8. Briefly, this Consists oy applying the Laniace




Ch

tronstorn to the sguutions of molion, using Ltho root conditions and curtati otaes
boundary Eondstlnns. The resulting system‘of equations are thon soived for tne

" dependent variabie and the inver51on'integral appiléd to the results.  The
remaining boundary conditions are then used to set up relations between fhe un=-
determined parameters and hence obtain the frequency eguation.

In this investigation, the non-~dimensional frequency parameter (otL) is
obtained as a function of the mass ratio (M) and the non-dimensional spanwise
position of the mass (R). The beam may be supported im any fashion at the ends
and the concenfrated mass may be located at any point along the span of the bDeam,
The problem solved in Part A is that-of a cantileﬁer carrying a concentrated mass
(Fig. 1). Numerical results have been obtained using the IEM 1620 computer, for
a range of mass ratios (M) with each mass located successively at R = 1/4, 1/2,
2/3, 3/4 and 1.0. Also, the first four modes of vibration have been obtained for
ail these spanwise positions for the mass ratios of M = 1.0 and 2.0 respectively.

In Part B, the method is extended to cover the case of a uniform cantilever
shaft carrying a concentrated inertia (Fig. 2). Numerical results for the
freguencies and modes have been obtained for a similar range of ilnertia ratios
and positions.

It may be of interest to mention the need for this study. The main problem
was the determination of the flutter speed and frequency of a uniform wing
carrying a pod of appreciable mass and of a very large mass moment of inertia
{in the pitch sense) compared to the values of the basic wing. The modes and
frequencies obtained in this study have been used to setrup the filutter
determinant. by the 'assumed mode' method.

Though the analysis is carried out only for the case of a unifoym cantilever
beam, the procedure is guite general and can be applied for uniform beams with

any type of end conditions.




Using Lhis, oquat ton (30) bucomos

. . 3 < o ot Lo .
1 U S"%¢s) - s’zm)-— g z‘cg) - % 2oy L x T

2 -
e { 2" ruy)- "t e Zey =

(5)
where the primes indicate differentiation with respect to y,
Let 2, .
oM Lo ey
(6)
Solving equation (5) for ;(s), ‘
17 "SRL M
[ 53, Z(o) 4 ga z'te) 4 § z"e) +2 (o) v @ {z’”fﬂL+)-2 (R‘L-)g
— . e ————
For a unifom cantilever carrying a point mass as in Fig. (1), the boundary
conditions are:
At y = 0 Zt)=o 2ty = o ' (8)
ey = 20y = 0
At Yy =1L 4 L) =0 2 (8&)
™M LSZ(RL)
¢ -z iRy %: - :
At y = gL ET {2"CR‘--—) 2"CRLy) (9)
In view of the boundary conditions at Y = 0 the first tWo terms on the right
hand side of equation (7) vanish., If we Row use the last condition (at Y = RL)
and apply the inverse transform, we have:
z z”( .m
(\j) - o) (QDQ\'\ Q(B - Cant o{tj).*,z <o) (S(\J\Q(S_gt'n@ig)
A X2 CRVS
_ (S z CRL }
+{ Steh oty -rL) - 3““"‘“‘3"?\‘*)3 { 3 X )
(1)
In equation (10) it shouig Pe remembered that the igst Lerm vanishes vor
¥y < RL.

r,
[91]



. 1.

The value for z at y = il can be obtainec from squation (19) ivsclir.

PP wo now use the sceong st ol boundury cond:t,ons ( Lor Y = L) we oboain wwo
"l‘,

T - 1~ J . :i‘ ) .
hemegronnous o uakbirons for L70nif, 4 and TO)) S . Tni: cond LaOn Lhat
; { LY o -

these should yield nontriviel solutions loads us to the frequency deteorminant:

X X
=0 (n)
X3 X
where : :
' ' vy R Cofh o R\ - Losa®
Sl » M (), (Sm}s N(L-QL}«»SM,N{L*RL)}(
X, = Gosh b « S 3 X

X S 2L 4 S L 4 B e § Sinh (LR A S s Ce-R Y (S aRu — S oRL)
- 1§ :
]

S | )
(VY " i&a’i‘n d(\.-RL) - QDS"((L'-RL).& (Q_o%n(RL—-CBSK L
KS T oeeeme s C&\' &RL = Sih R
. N, { o (L-mL) e Ry wh
~ Gty v T oAl
Y‘ = CD“\ o\ v 3

(12>

2 3 —
In equation (1@ the fact that (M&; /E1.&") = M. wL has been used.
As a check on equation (’11) the limiting cases will be considered. For
éither R = Q or —ﬁ =0, 1.0, for a bare cantilever, equation (11) becomes the

familiar equation:
1 + CoshalL. CosawL = O {13)

For R = 1,0, i.e. for & cantilever with the mass at the tip, equation (31)

becomes:

V4 Coshary, Colol .
M = XL Swal Cothal — Sk ol CogarL) ' (14)

which is the same as the one obtained by Pipes (Ref.2),

for a cantilever beam with the following combinations of R and ﬁ.
Ri==/4, 1/2, 2/3, 3/4 and 1.0 ana for each R, M was varied from O 1o 50.

These are presented in Table 1 and Fig. 3,

As an approximate check on the frequency parametors ©L) they wore compared

wWith values obtained from a Rayleigh analysis for a similar beam. As can pe

seen from Table 1, these values are in close agreement witn the exact VaLles,




PART B. o

ORSIONAL FREQUENCIES

Subject tg the usua} assumptions, the equation o

f motion of a wniform shgft
Such as the one in Fig. 2, is (Ret, 5).
2 %
A 'é_S; ) G‘I -:63)1 = e (18)
Dt J
where @ - p (y, t) (15a)
If we put B(y,t) = (y).T(t)

(16)
in Egn, (15), we obtain the two equations:
2. ?-"'" -—
3V ae ~ T 2o (17a)
o Q
d e/d Ty R o -0
% a*
(17p)
In Ean. (171), &% o (gy/4, (18)
Using the relation (4), andg applying the Laplace Transform to Eqn. (17b},
we obtain for g (s),

—
o

TR -~
5= = [y - S. B(o).\.e‘(g ! ' I€19)
O s) (SQ*PE ) L ) ¢ @ {6(?1.,'),6 CEL.)}J
where ?zq U:)Z sz (20)
2
a & v
N



The boundary conditions on the cantilever shaft oy Fig. (2) aro:

At Yy = () o [}
At y = L &' =0 .
3
At y = RL _GJ{B'(RL—) - 9'(RL+)3 = L w8 (rL) (21)

In view_of'the first and the last boundafy conditions, Egn. (19) becomes:

— H ‘&Q\' 'Y ‘
By = S e Yo o L) (22)
—:----—-------------,2 —— ey .
S SN ch a5
Applying the inverse transform:
t . T usd 7
S = 0 lo) sopy o IW ey s py-ay 23
e
It should be remembored that in Eqn. (23) the last term vanishes
for y < RL,
If we now substitute for & at y = RL, and use the Second boundary condition,
we obtain the frequency equation:;
T (et L)/
= , . ) e~
L ¢ § (&L Sth BRL C_c:P( m.)} (24)
In Eqn. (24), use is made of the fact that
2
Tus - I L
R - — (25)
G“BF iL
—r From Eqn. (24) one can easily derive the equations for the simpler cases,

For example, for R = 0, (or I = 0) i.e., for a uniform shaft, the frequency

eéquation is:

Co’ ?i~‘ﬂ-°
(26)
For a uniform shaft with an Inertia at the tip, i.e. for R =1,
(1/iL) = 1/ @L.Tan@L (27)

Solutions to equation (24) have been obtained for the following

combinations of R and T: R= 1/4, 1/3, 1/2, 2/3, 3/4, ana :,0, For each R,

I was varied from O to 50, These are presented in Table 2 and rigure 4,




R

The Troguencles wore alao choeOked by a Raylolygh mnaiyﬂxﬁ. Tresw oo &k
shown In Tablo 2 sabelEpuesesy and 1t can toe soen that linv agroement Soiwoon
the lwo sets of frequency parameters is quite ciose. The mode shape used for the

Rayleigh analysis was:

@ = [ W
2

PART C. MODE SHAPES

a) BENDING: Once the values of oL are obtained for a given beam, Eqn. (10Q)

‘provides a convenient means of obtaining the corresponding mode shape. While

evaluating the mode shape, it should be remembered that the last term should be
set to zero for values of y & RL. ' '

Fig. 5 shows the mode shapes for a uniform cantilever beam with ] =1.,0, and
for values of R ranging from O to 1,0. The first four natural modes are presented
for each case. Even for this value of ﬁ, the influence of the concentrated mass
bn the mode shape i3 quite considerable. _

b) TORSION: Eqn. {(23) is used for obtaining the torsional modes. Fig. 6
shows the mode shapes for values of R from O.to 1.0. For all these inertia
locations, T = 10.0. The first four modes are shown for each case. The
influence of the concentrated inertia is even more pronounced than in the
corresponding case for the beaﬁ vibratibns, mainly due to the high value of the
concentrated inertia. The mode shapes for R = 2/3 are of particular interest
from the flutter point of view. For a uniform shaft, this station is a node for
the first overtone mode, and the placing of a concentrated inertia here does not
influence the frequency parameter, The frequency parameter has its maximum value
when the inertia is placedhere. These considerations suggest that the best location
for a concentrated inertia is at 2/3rds., the span from the root in order to obtain
the most favourable influence on the flutter speed. |

(In the torsion mode shapes, soame of the overtone modes aralshown as having
zero applitudes, This is not strictly correct, but the amplitudes are so small

that they cannot be shown to scale in the graphs.)

o
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Tho mobthod prosontued ab@va Tar tho analysis of vidrations of unilors huaﬁa 13
moon Lo bo vorsatile and can be ﬁpplied to boams wilh any gonoral boundary
conditions, In the main text only the vibrations of a uniform cantilever beam
with & point mass and the vibrations of a uniform cantilever shaft with an arbitrary |

-placed inertia have been considered. in the appendix, the case when the
concentrated mass has a rotary inertia has been solved for a4 uniform cantilever
beamn ahd for a simply supported beam. In both these cases, the mass can be placed
arbitrarily at any point along the span. ' '

Some of the problems which can be solved by applying this method are: |

i) Beams with different boundary conditions (fixed-fixed, free-free, hinged-frec
flexibly supported ends etc.)

ii) Beams carrying more than one concentrated mass ( or concentrated mass

with rotary inertia)

iii) Beams carrying flexibly mounted masses

iv} Beams with uniformly varying cross sections
and v) Coupled vibrations of uniform wings carrying a mass (with rotary inertia)l.

The mass { or masses) could be at any Arbitrary position along the span
and its static unbalance can be arbitrary.

(In solving the last problem {coupled vibrations of wings) it will not, in
Qeneral, be possible fo obtain closed form solutions for the frequencies as the
inversion for the mode shape function has to be done by a series approximation.)

It is alsc worth noting that the mode shape of the beam with & given mass

can be obtained concisely as part of the calculation,
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arbitrarily along their spans,

a) UNIFORM CANTILEVER BEAM, ‘

The boundary conditions for this beam are CFig' A. ‘)

At y-o 26 = 2'(0) 2 o

e RL - ['Z.'”C‘R\.. —-Z'"CRLA- ~W\“§ Z.(RLJ

Y

: " " Y R « 1, L2 (R :
eT {2z _t-‘_zx.u) ~z" ® )1 g S | ) (4.2)

1f we now make use of the symbol_a

s B Rawd

M ML
(43)
‘the boundary conditions can be written ag:

Z1lo) = :z‘,(c»)‘ =0 g z" vy =« 2w (LW 20

17 ) - FROY B el ory
{ zu. (RL.) - z." C‘RLO} - @ °~"'* 3.2 Q"?\) (A1)
- Uedng the conditions at v =0 abd at Y =PRI in Egn, (A 1) and
a0 uyinr the inverse transform, we Ob‘bdln the mode shape as:
4 (\J) - 'Z”Cb)
R

] E"‘; &L, 2 CRuL) { Swh NQ‘B-;R-L).- Svn, N'W~RL)}

- 8 &AY 2Ry fCu.S\o(\g-R\.) - oS oz\sR*-)}

(omshay — casay) 4 T (Sih oy - Shay)

1
)

(A.5)
In Eqn.(A.5), it should pe rvemembered thut the last two
Terns vunish for V<4< RL,

The vulues of z(RL) and z'(RL) can be obbained from Egqn.(4,5)
itself. If we now use the boundury conéitions at the tip (y=1)

_ 3
we obtain two honogeneous equutions for (** w }md (2 (@ | zo{l. The

conuition that th@se uhould Yileld nontriviagl solutions leads %o

the fr eguency eyuation:
¥ Ké | | -
\ > >0 (A.6)
' \(q Xg ' ' .

Q2> -



Whetg o . ‘
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Ke = (Sohalttnat) s §oonf S LTIV I Y ki ~ S

- ¢ Q(L)!‘.. Y Wa\'\,.ﬂt(k'RL‘)*Cus #.C.L-EL)]'(‘-‘-u&\\NRL—.'CD‘iU'RL)
3 o _-

|
. ‘ ' - B (R
‘ ® ~ Ry R o (L-Re) ) (CothorRL R0
Y:l = L Sink ol - Satl) + *_g u\,[ Cosh of (L-RL) 4 ] \‘

| A - (Siwh xRua SRy
- | - Q,(Lﬁ [ Qi 2 CL-RY) — Sin CL-RO ] (S R
' ) ._3 . | ) 7 | ‘
_ . _ ' B ool [edtha (L-RY) 4 Gt wl-RL) 3 (Q\U\Q(RLASR.J

| \(8 = { et o % CeR L) *M_z 4

| \
: -~ X
_'E,Qx\-j? [ Sk o(cL-R‘-\,fg“" Ry (ComRi-cotay

(q. 1)

4s a check on Eqn.(A.6), when H.—:,ﬁ:- 0 i.e., & uniform ¢

ation

antie
lever beam, we get the famiijiay ey

\ 4 Cotn oo Ctot, =~ O
_ : , (4.8)
When ondiy B =0, we get Egn.(11) of the main. text, ' ‘

=1 l.ee, the mass is at tpe tip,
Cra™ g ociv)

When R ve pot:
t Coth ol croel (. “ B sl
WL, (et en Swho - Cosknocy gw.\‘qq
I QLT Y ST/ LTI Cothon Sty = &

A | (4.9)
This 1s the sume eduation us the one obtained by Durvasuls,

(fan,11 of Ref,7;,

b} UNIFCLM SIvPLY SUPPORTED BLAM

';'Z”(L) =D | ‘
{27 eru TTURLT s - MM 2Ry

N |
R 27(Ruy ~Z27 Ry Y s (3 oM Z'(RL) C o) ‘

\wy :
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coarbd )l ever boun, we oblbuadn L naay :3117 SR

Z‘!) 3 -:-:-;:';(b") (g ﬁ\\'\()bﬂ —\-S\hnl‘:j) " -2 tb) (Q-b\\\-\')ﬁ;,-ﬁwj Q(ﬂ)
L ozemy { Sk %1y m_) - s oty RS

Fobtlowdoy o procodwre aiwd o Lo biad out lioed for La

oo "—_’; o \g-RU) b
o\ -Ru
Coth o 197 ~Re) ~ O
R (a.11)
énd the freguency determinant as: |
_ o ) o
g \ A e \ 20 . | (A1)

t

Ky Xy2
Where. ,
fq (Su\\-,,“. "i'?s\na(\.)
- e Q’"-) [ c“’%"‘ (L-RL) -_C-t=$oe (v- RL)’) (Qu'\‘nd‘RL-\- Cof

2 M , otk L g\\dncx (\. R S n((\. RL)\S (Q\uqu?L »c&\:)\

§ f Sk a(tL RL) -~ A Gin oo RL)] (Q‘\ham_.;séaq.«
-

k\b CSH\h ol\. —%w.d\..) %
: [QD“‘ - RL) ~ Cos’ ‘*(\- QL)} (QD“\OIRL ba%o&\.)

2. O

I Y iy ol S - Qi oRLA Sua
X\\ s (Q\v.\r\o(\_-g\hdi_} a "..".:_ X [ Wy ve RU) W\N(LQL—)( \ o(m_)

| EL (ou.) [ ek, ot o RL)+ g oL m_)] ( Gsth oL RL4 tos alRL)

| X § wh - S
Ty > Sy ol 4 Ste)a ) al ngﬂwo(\um.) S d(L-?t)] \wh aRL Om:)

1

R " ] (eshagy - Ssta®L).

- ﬁzuug [ ot dQURL) 4 W5 & c;_.ag] s

As & check on Fun (A.12), when M= §=0, i.e.,, for a uaiform
| beali, We have ) 7 _ | ) | |
[Qidl = &
| (A.14)
When only 5,-;0, i.e.y when we have a concentrated (point }' ‘

mass with no rotary inertia, we have

>R
. gy - et TR e L
™M = D{L[ (S\, Ly RL) ﬁ\v;g.ﬁeq_) Q\k\an\- RL) ?w.ho(& (A‘]_5)
Sl

DBy QU\-
which is the same ecuation (but in a different notation) '
|
|
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Values of ﬁL for Torsiomal Vibration
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Table 2 Valumas ofﬁL for Torslon

b) FIRST cémr(m

R 0 0.25 0.33 0.50 0.67 0.75 1,00 |
TN\ | Fract | Eract "1 Exact | Bxact | Exact | Exact | Exact. |
RO NSt I st .
0.50 | A 13.3281 33862 | 39352 N a6 | 36436
L. SN DO 8. 8248 1 2.9685 1 3.6436 | 4. 3968 3.425 ;
2000 1 | G 2hE3 ¢ 26802 | 34286 | | {315 | 3.200 |
1500 ¢ 1 : 2,2333 2.4860 ! 3.2636 b, 2467 3,2035 | ‘
10,00 b-7124 _;_2.161;3__% __2,;‘1:'%?_7,-,,, 3.2039 (k712 | L .2194 34731
| 15.00 | 121383 | 23998 ! 3.1837 | 4209 ! 3.1628
20.00 | t24270 | 23882 ! 34731 | _ he2oh3 | 3157
25,00 ] 29204 | 2.3606 | 3.4668 | | | k2013 | 3.45%3 }
50. 00 N {2073 | 2368 | 38k | N 41958 | 3.1 |

e



C 22

— —
| FIG1 .

UNIFORM  CANTILEVER BEAM  wiTH
| CONCENTRATED Mass

— RL

— ﬁ
FiG 2 '

UNIFORM CANTILEVER SHAFT  wWiTH
CONCENTRATED

INERTIA




| 1000 - i T T 1 T T T 1
i | 0
| R= O R= 025 O3 10 O5 075 0-67
| 50 01 \ Om\ \ \. / .
| 0-50
| 067
075
10
10-0 X “ -
5-Qf ~
10t B
05 -
S 8
/ > 5 {
l R S L 1 '; L ) H 1 i ? }
O 05 10 15 20 30 4:0 L
Fundamertal First QOvertone ﬁ

FIG. 4. TORSIONAL FREQUENCIES ' - | "




T L] ¥ L{ /
S 4
o0 ]
- x il -
07 o
O <

First Qvertone

H
5
\
l
20

o3 10 OS5
AW
o 306
TORSIONAL FREQUENCIES

mOhm...J

15

i - |
. R 0
0
_ 0
0]
06
' 0-7
‘ . 1-0
N
$
RS T B
05 10
Fundamaentol
F1G 4




R=0
(Uniform oeam)

R=0-25 .

R=0-5

Fig.5.

FIRST FOUR NATURAL MODES OF
A UNIFORM BEAM, WITH M=1.0




RO
Wniform shatt)

 R:025

R=0.5

; A'.:.;h ‘\ﬁ‘/l-i-ﬁ IH‘




ATPENDIX IV

A LEAST SQUARES CURVE FITTING PROCEDVRE FOR THE MODE SHAPES
OF VIRRATION '

The probleni of fitting & given expréssion to & curve can
bé stated as follqws:
Let (xi, yi), (i = 1,2 n), define the curve on the
(x y) plane, 1f fi (), 1 =1, ..... m), be & set of
known functions of x, it is required to find a function ¥ suchl

that

B = C, .g\c"j.) 4 Co 3;_& CAY 4 -+ = Cm%mci)
AV ERT

where the ci's are, as yet, undetermined constants, so that
¥y represents the given curve with the least possible error,

Since we have n sets of points to define the curve, each

i’ Y3

of the values (x ) must satisfy Ecin (IV.1),
\.‘\\ = <y g\ Ci\) -+ Ca. gl C”lz) % .. o Qo Q“\C'l‘)
Wy, = G ) v G0y« 0 % O Rang)
Yo = & g\ My & Clgzc:[“) Ao * Cm g‘“(\}'\)

(1v.2)

S8ince it is not always possible to satisfy the above
equations let &4 (i =1, .....n) represent the residuals in

the above equations, i.e.

8\: C\ g\tl\)‘*clg;cl\)*\' -t . -%Cm‘gm('l\)-%

]
L

\

Sa = G g-\C’ih) + C‘Z&z.(’i;) + - Cmgm(x"\)"’gn

A=\

" |
oV 83 = = Giey) "3\3 o We Y



To minimise the errors, we choose the constants c:i

=2
such that the sum C 52, 53 ) is & minimum, i.e.
3=

E g 6:;2 = o Sjm ‘ﬁ:\jlr .. m (1Vv.4)

=1 3=
or
b DY |
Z é| . __‘.j _ 0 %GT \'{, -;\,"2’ . m (IV. 5)
;):4 15(;\ -
Nbﬁ

e = S )
(IV.8)

Substituting Eqn. (IV.3) and Egn. (IV.6) into Eqn. (I1V.5),
we have

D m
=] 2 sdoog -y oy <o

K-:.\)?, P 1A
This can be expressed as a system of m linear equations

for the Ci's.

%,{ Clj) ,gka\s) :;)Zz\kj,{ %K(X\j)

T ™Mo
')
£

& Ma

\ | (IV.8)
Koy, 2 - -
Let(};} represent the (n x m) matrix
% o0 Sa ) . S,mt:l\)
%\ (1:,) Ih.cl?_) v - g\'mcxz)
() -
gﬁin) %1C““) T %“‘an)
(1v.9)



NDefine two more matrices{C}and &E{g where -

3,

| < R
%%=l : ) %ﬁ: Y (1v.10)

Equation 1IV.8 can be written as
T T
FY [#34cY = 0= dyy
_ (Iv.11)
Where the “T" denotes the transposed matrix.the coefficients
-{Qﬁ& can be obtained by solving the system of linear
equations (IV.1l1),
The accompanying flow chart gives the general outline
of the method of the least squares curve fitting procedure,
The computer programme which follow;s this is in the
Fortran II language. The system of Equations (IV.11) is
solved by the Gaussian Elimination Technique.
(A standard library routine was used to solve this

system of eguations),
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JFETS CURVES WTO 25 POINTS

WPTIO 5 FUNCTIONS MAY BE USED
THLSE CAN BE INCREASED BY CHANGING THE DIMFNSION STATEMENTS

Ve TeNAGARAJ . TRANSPORT TECHNOLOGY
PROGRAMME FOR LEAST SQUARES CURVE FIT
N = NUMBER OF POLYNOMIALS M o=

. THE FUNCTICNS FULlLS) ETCe( SHOULD BE DEFINED

NUMBER OF POINTS IN DATA

05

 DAMENSION X425 aY(2519CU5) sA(5 95y F(5525)48(5)sYCALC(25)

FULES) = S
FU(S) = S*%2,
N =2

M = 21

DO 1.1 = JsM
1 READ 2pX(1)sY(E)
2 FORMAT (F5e¢ 29 F3ab )
DO 10 Jd=1 M
FlleJd) = FUL(X( JI)

10 Fi2y4) = FU2(X(J) )

‘DO 30 1 = 1N
DO 30 K = 1l
AlKyl) =04
DO 20 J = lsM

20 Al(Kel) = A(Ksl)+F(IsJ)*FEK:J)
30 ALLyK) = AlKsl)
' DO 40 K = 1sN

BIK}I = 0.

LO &40 J = l;M

40 ELKY = B{K) + Y(UI*F(KsJ)

0G 1000 I=1sN"
DO 1400 JUslshN

1000 PUNCH 1100sA(1sJ)sB(1)
1100 FORMAT (E1246+2XE124692XE1246)




401
400

405

410
500

301
300

710

700

800
200
901

9500
950
260

550
551

NM1l = N-1

DO 300 K= 1,NM)
kPL = K+

L=K . '
DO 400 1 = KP1,N

TFIABSFUALLY K) ) ~ABSF(ACL YKy} ) 400+400,401

L=1
CONTINUE :
IF ( L=K) 500500405
DO 410 U = KuN

TEMp = AlKs J}

AlKe J)z2A(LsJd)

AlLs JISTEMP

TEMP = B(K)
BUK) = B(L)
B{L) = TEMP

DO 300 1 = KP1sN

FACTOR = A(I'K)/A(KOK)

Ally Ki=0,.

DO 301 U = KP1lsN _
Allsydl = A(I,J)-FACTOR*A‘K'J)

Bil) = BUI)~FACTOR*B(K)
CINI=BIN ) ZAIN o N)

[ = M1

IPI = [+41}

SUM = 0, -

DO 700 U = 1PN
SUM = suM + Allsd)®C( )
C(l)=‘B(IJ'SUMJ/AIIDIl
I= [~1
IF (1) 800800710
DO 900 I = 1,N
PUNCH F01slsCH])
FORMAT (154512461
DG 950 U = 1,M
YCALC(J ) = g,
DO 9500 § = 1,N
YCALCtJ) = YCALC(J) + FUiIsdi®C(])
PUNCH €02 YCALC(J)
FORMAT (E1246)
LO 550 1 = 1,N
PUNCH SﬁlleXIJ)oYle’YCALCfJ)
FORMAT (l4s3(1x ElZ2e6))
END
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APPENDIX V

FLUTTER ANALYSIS OF WINGS WITH CONCENTRATED INERTIAS BY

THE ENERGY METHOD

In the following analysis, it is assumed that the pod
is rigidly attached to the wing so that its movement (both
translational and rotational) exactly corresponds to that
of the spar station to which it is attached, In the
general analysgis, the pod aerodynamic loeads are included.
For wings without pods, the pod inertial and aerodynamic
terms are set equal to zero,
It is assumed that &ll the modes included in the
analysis are uncoupled thaf there is no chordwise bending
of the wing. Hence the displacement of any point on the
wing ;an be expressed in terms of the bending displacement,
Zo, of the reference axis (the flexural axis) and the rotatién
=l ? ébout this axis, where both Z. and o are measured with
respect .to the equilibrium position,

V.1 The Classical British Technigue

et the motion of the wing be completely delfined by

a certain number, say r, of bending modes and by (n - r)
rsion modes. If we assume that all the modes are uncoupled
and that no chordwise wing distortion takes place, the
displacement of any point on the wing can be exﬁressed in
terms of Z, (the downwards displacement of the reference
axis) and ¢X, the rotation about the referende axis; Dboth

Z,and &4 are measured relative to the equilibrium position
(Fig. V.1).

In terms of the assumed modes,‘za and o become

{i
I\ﬁq
N
C

Zo

i ‘—H("U

1)
XL K @) (v.1)



where q -y /Oj .

5 = pemispan,

Zs. and XKy are the displacements of and
about the reference section (!’t = 1,0) in the ith and jth
modes, respectively,

e -

@, ¢ }) and ©, {7)are the displacement functions

which have unit value at the reference section,

We now define the generalized co-ordinates, q as:

Lot -
Ci’b = _.;::é- . A=, ¥
- . QL™ .
»J - b L‘J_ ' J - Y*i) L os )\-\\ (V.Z)

where L = 0‘.;75 S,
Substituting (V.2) in (V.1)

.
Zo = L = . b,
Ay ctjkc?'“(j)

=

1

L [
¢ = ?&ei“’()

T {v.3)

The displacement z of any point {x, y) is given by

z = Zoc"l)'-\"l-olc’l) (v.4)

The Kinetic energy of the fluttering wing is given by

.2 .2 '
- = S -‘~2'2_ gn\,-\-{_-:_NP"Z.P-&X}_IbOL;

WanE, (Vv.5)

where Z. = the displacement of the elemental maegm

of the wing

Mp = Mass of the pod

Ih"—' My \i;. = pi ching moment of inertia,
about the pod centroid of the pod



Mo

Bending displacement of pod

N
-
[

Torsional displacement of pod

5

The total strain energy of the vibrating wing can

be written as
=Y " 3 Y
d*z &3 S da
= = as
N 5 50 ( é:;*) 4 3 J (ds)dﬁ (V.6)

We now consider the generalized forces GQtdue to
the aerodynamic loads. The generalized force &, is
appropriate to the co-ordinate 1& and is defined as follows,

If, due to a small virtual displacement é((u«. the work

done by the merodynamic loads is &\\u_}

_ Swa
iz g

In this case, the aerodynamic forces are the lift

(v. 7)

and moment forces on the wing and pod.
In terms of the strip theory derivatives, the
aerodynamic 1ift and moment per unit span of ahe wing can

be written as (eg Ref. 23, 25, etc)

L - C.'- ‘)JQ-QN—Z‘_ + A Q\..ué “\-Qw—z_) -?_—-: + (-'2.31 de, X ... ) ol

QeN®

Pw L (Laf gy +L>>mw:z~rmw—ﬂ ey C~'>5‘Lmusg, A ) o
QeAN*

(v.8)
In terms of the generalized co-ordinates, (Egqn V.3),

these can be written as

RS
‘g_L.&J'Z = % [(""D?QN-'Z_ -~ L) QNZ""“Q’NZ)(.Z“CL‘\:CPLCYL))
< A=

-\-(«'])Q-Qw&*,__ )Cé\ %EBLC’UE

A=

ol

- n
> g e ) T e+ W w0 ) 2 ity
A=y

-Quc_;\rz N (V.9)  A=n4y



The body aerodynamic forces can be found from one

of the theories outlined in Sectinn 5.6, ‘The 1ift and

moment forces can be reduced to the form:

i S [ CnP, ot by, alp )2 > 5 40,01

i < T ey v bt £ Uiy (-8 'Q\’o'i”"').i%"g"‘?

MP p— z A 2 a

L - (ﬂ'}) "y R A 2 A .( ("‘D W LN L Z thgat'.( ‘

QeN® [ Fz )A‘_z.\CL q)" Wl[’) * bar )/(—;Tl-u 1P) |
: (V.10)

It should be notéd that the aerodynamic- derivatives
in (Eq. V.10) are not non-dimensional, but will have the
dimension of a length. This i3 because while the wvalues
of lu and M are the values per unit span of the wing’ l_p
andfﬂ? represent the total lift and moment on the pod.

The equations of motion can now.be derived using
Lagrange's Equation:

d (?ﬂ,} N

—_ y + — = = 0O Ty, 2, v e ™
Ak "dq“, (B%T ﬂ‘@r y =)

J
(v.11)

Using the values for T, V and Qr from the previous
equations, the eoquations of motion can be written in the

form:

S=1

n 2 n
8\1ng [:_ (E. Qg %s)‘b Y Sz Cre %
=\

L4
A 2 g G kv A Ces) %g = 0
Sz

(V.12)
Y'-‘—\,""-,r— AR

where

the local air density

A
#

[}1T§3 = matrix of the non-dimensional structural

L]

inertie coefficients,

matrix of the aerodynamic damping

coefficients |



(ces)
()
(e

For a binary analysis, we assume only two modes, so that

matrix of the aerodynamic stiffness

i

coefficients

matrix of the structural stiffness

coefficients

matrix of aerodynamic inertia coefficients

the bending and torsional deflections are specified by:
Zo= (.q,, &, o) _ |
- L C (v.13)
oL = < V> ©- Y
For the binary system the matrices arsg, brs .....ﬁgrs

are given by the equations

Yo, ‘{0'1 ‘—]
~ W o
Eu) = &) e ghaey *i? | e ‘:“1* o3 e
— Yoy - Yo
o0 Xy
R
° ?CH o
2 .2
» + Mp (T *E")ejc 3
(— ‘/o.‘l - fl CcH —
‘ ] j=3 s S ((\_a_'(E‘) d o
'2_ : x cdn?
{Q\fa o |Swieag )Ty v
° e 3 A
r Yor Vo1
\ ‘X (L 4Ly, )g % 4 (sz\’*‘-‘b&) § G?\eld']
s | - °
Yot o

- {m\v\)' *W\) ') \ Q\ezd'] - {mwd.*mp ) S @

o

[C'rg] L Fiwdoy  +o &"‘51 , @xcept ot R Aeyivakvd)
L“;') mméJLbi,.. ok, Ot veplated hy sz., ‘
w2, by, oL ok, | :

@T;S ; VDo lowe Yo E‘Drg}/ except  War  We :
| dovwakots G¥¢ Now Teploced By L"“'z’.) :
Bwy - o&XT
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In the flutter equiations, the coefficient matrices
Bfg ,Cn andyudepend on the value of the reduced frequency
(» = Cuﬂv) and for a given value of %) they can be
considered as known quantities. The matrix G%Scontains the
velocityr V.

For non-tyivial * solutions of the flutter eguation,
the determinant of the bracketed terms in Eqn. (V.12)

must vanish, If we assume a reference speed V} and define

5= \'/Vr (v.18)

The flutter determinant can be written as

n n
n n —
-3 2 (A rdes) v i E b v Z (g A5 2
ST‘-\ S= ST—‘

(=230 oo ) (v.19)

This system of equations can be solved for the.
values of » and ¥ by one of the methods described in
Chapter 4 Section 4.5.3.Possibly the easiest method
would be to expand the determinant into & polynomial in

™ = A. By separating the real and imaginary parts

of this polynomial and equating them to zero, the value
of N and ¥ can be obtained. The derived value of &
should be in reasonable agrecment with the assumed value
of DI, Considerable differences between the assumed and
Qerived values of can be tolerated sc long as both of
them are above about 0.6, 1In this range the solution is
comparitively insensitive‘to the value of ) in so far

as it affects the aerodynamic coefficients.

V.2 The Classical American Technique

The main departure from the classical Lritish Technique

are in the definitions of the aerodynamic 1ift and the




= |

definition of the reduced frequency. The reduced frequency,?y)

is defined based on the semi-chord:

The aercdynamic 1ift and moment per unit span of the wing
are defined by:
Ly = '\T\ngbiz ELWZ Z“E 4+ Lw, “3
My = NEB oS L Muz Ze & “um%}
b
(V.20%)

where the non-~dimensional detivatives are appropriate to a

given reference axis.
The 1lift and moment on the pod can be defined in

a similar way:

Ly = m b« Ty, 2o 4y o

Mp = REBTS Loty 2o 4 My o

(v.21)

Where again the derivatives Lhz qu;MhL and My,

are not non-dimensionsal.

The equations of motion, derived by using Lagrange's
equa‘ions of motion and the values of the Kinetic energy

and the aerodynamic¢ ferces, can be written in the form

[hve - (i8)E)q =6

(v.22)

Where is the coefficient of artificial damping.

For a binary analysis, the flutter determinant
becomes

Q\\ C\\’Z_

(v.23)



q"l - ‘“-‘iw Mb 1‘,

Ry e TEPL ) S ) - Lﬂ&\z
Q - - m=x W, S
™ ~ew dn T :95 ® W) &) -y,
A = m“"\n\ ™, 332 1-\( )
- Cowew 5, Ga) « ———L—““%‘* o3 “\p)‘r“« fa
Vatey, S, [meien, g, {oran, (&) sy
° (v.2dh

For a given value q:f thle‘ reduced frequency,
all the coefficients in Eq. V.23 are known, with Z
being the only unknown quantity. The flutter determinant
is expanded into a quadratic equation in Z which has
complex coefficients. When this equation is solved for
the two values of Z, the frequency > and the artificial
damping 5 are found as
“o, o = &bB/ﬁR , Y Z2lzg v.54)
Since a value was previously assumed for L2 the corresponding

velocity can be found as:

\I' ’ bb:’l\l (v.25)

For a number of assumed values of 7> the flutter
determinant is solved and the values of 9, andV are found.
The value of the flutter speed is found as 1he apeed

corresponding to the value where g = 0.

V.3 The Aercdynamic Derivatives

The strip theory derivatives Lu-;' Lwa, Yz and Yot
can be obtained in terms of the Theodoresen circulation

function ¢ ) = FluiAa G ag follows:(Eg Ref,Z})



T '_w(\:-\iﬁ)

. 2
L = o5-4i. X C\+2t:.;,'24@()4'2\1 CaiC
W — Al
D w3

N\W’L = 0.5

- o3 __i_y_. - -
Mwog 15 B

For the wings used in the experimez}ts? ‘f:l_;«_a
reference axis is at 0,35¢ aft of the LE. With respect

to this axis; the derivatives arecobtained as

\'NZ - (\-—k ?ﬁ) - A '?_._\-:
P P
LH‘,L = ('c-'$+\-6_§ *%5_:)__‘((.‘_ .6 F '26‘.)
v T » V5=
MW'Z. = (0'3—C>'H E.) +A O0aF
» By,
Moy = o285 o.226 -o-uF)
By, 5>

- j‘( L2 ong ¥
» * 3 " O sz) (v.27)

where Y = \3'«-0/ \

Using the approximate values for F and G from
Ref. 2(¢ (Egns. 3.8 _am=a, ), the values of the
derivatives have been tabulated for several values of

in Table V.1.
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ADDPENDIX VI

FLUTTER ANALYSIS OF THE MODEL WINGS BY THE DIRECT MATRIX
METHOD '

VI.1l Mathematical Model of the Wing

For the calculations, the model wings were approximated
by a ten degree of freedom Wing. (Fig 6.4). The inertial‘
structural and aesrodynamic forces acting on the wing
were lumped at 10 control stations located at 3", 8", 12",
16" and 21" from the root,

At each spanwise control section, two control
stations are located,the forward one at the } chord
point and the rear one at the § chord point, For
obtaining the mass matrix, the mass; moment of inertia
and the chordwise centre of gravity location of each
panei are replaced by three masses located at the é,

4 and § chord points respectively,

' Since the model wing was designed such that all
the‘étructural atiffnesses are contributed'by the spar
oniy, the structural influence coefficientrmatrix can be
constructed from a knowledge of the bending and torsional
stiffnesées of the spar.

The construction of the aerodynamic mairix
also simpiified since the wing has a constant‘chord along

the span.

Vi.2 The Mass Matrix

In deriving the mass matrix, the mass, pitching

moment of inertia and the chordwise -position of the c.g. of each.

strip of the wing (in Fig. 6.4) were replaced by a system

of three masses located at the control points, The rolling




A

moment of inertia was not considered in the massmatrixz ag
all the analyses were for cantilever wings, Thus the

nasses M13) M 4’ M ete, in Fig, 5.3 do not enter

24r M350 Myg
the mass matrix and the mass matrix has a tri-diagonal form.
As an illustration, the derivation of the mass
matrix for the uniform wing A2 will now be illustrated,
In Fig. 6.7 the values of the weight and moment of
inertia of each panel are,given, together with the
corresponding values of the equivalent control point

weights, TFrom the values of M M (i =1,3,5,7,8

R T R b
J=2,4,6,8,10) the elements of the mass matrix are
derived using (Eqn. 5. 27 ). The mass matrix is given
in Table VI,?. 8Since there are ten control points, the
mass matrix is of the tenth order and is a symmetric

matrix,

VI.3 The Structural Influence Coefficient Matrix

The model was designed and constructed so that
all the stiffnesses were contributed by the spar.

To obtain the SIC matrix, the bending and
torsion flexibility influence coefficients have to be
determined first,

For fhe cantilever wing, the flexibility influence
coefficients are obtained directly by the application
of the cantilever bending and torsion formulas, The bending

influence coefficients are given by (Eg. Ref 23, p.42)

c"tﬁ.‘ _F M yay o
R B S

e ('_\jq) . &1 € -2) (‘5“;")61 . \j")/f]

o &3 (V1i.2)

The torsion influence coefficients are given by
1] H
( - A3 LY
c 4] = Xo leg - B

1 a .
= § hmj ~ﬂzq
(vi.2)
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Q‘zf‘:\,\) and Ceﬂ-‘j,"]) represent the bending and torsion
influence coefficients, réspectively, and EI and Gj are
the corresponding stiffnesses.

The SIC matrix for the wing isg obtained by using the
scheme described in section 5.4. The SIC matrix for wing
A2 is given in Table VI.3. This is a tenth order
square, symetric matrix,
n

For all the wings ‘el s 0.&" and e,= 2 .

Any local changes in the stiffnesses affects the
influence coefficients of the other stations, Hence,
to take into account the effecis of local changes in stiffness

it may be necessary ito re-derive the entire SIC matrix,

Vi,4 Thse Aerodynamic Influence Coefficient Matrix

For the aerodynamic influence coefficient matrix,
two dimensional strip theory derivatives were used, These
are

2 b% a n
L REw 3(L\-,-§-\L°(o<)

M= ReS W Ay (MR h 4 Mocsd) (VI.3)

Wwhere the aerodynamic derivatives Lh,qu “h,"‘o( are given

by

bh= 1-nmid %m (‘?iia)

e 2 '
s ho A () (TR -2 (L ) (eaie)

| - 3 _ 4 (¥
‘. MOL”‘BA(b‘.o)

bud bheo . (v1,4)
oama C(_.U)_ F(T)*AGC\)—;‘D) IS tRe
Theodoresen ciréulation function.

From Eq (5.51 ) the individual aerodynamic influence



A j

end;

coefficients are given by:

whZ

E -5/4
e ®/d Mh MO« b»/.:\ bld

As an illustration, the éerodynamic influence

(Since b =)

) o 2
coefficients matrix is illustrated in Table VI.%, This
refers to wing A2 and the value of the reduced frequency
is 0.1

VI.5 The Flutter Eguation

The procedure for constructing the flutter equation
islas follows: |

The eléments of the mass and the SIC.matrices are
first derived, .The elements of the AIC matrix are then
obtained for a particular value of ) , From these three
the dynamic matrix U’ is found from Eq, (5. 14 ).-

The eigenvalues and eigenvectprs of U can now be
derived. To do this the iterative method of Gollmitz et al

was used, (Section 5.9 and Appendix VII).



APPENDIX VII

A COMPUTER PROGRAM  FOR VIBRATION AND FLUTTER . ANALYSIS
BY THE DIRECT MATRIX METHOD

VII.1

This appendix gives the details of the computer
programme which was used for the setting up of the
characteristic matrix ahd for the determination of the
flutter speeds and frequencies,

The programme can be divided into three major parts:

(2) The part which calculates the characteristic matrix

(b} The subroutine for the calculation of the

’ eigenvalues and eigenvectors of the characteristic
matrix
and (¢) The subroutine for calculating the flutter speeds,
frequencies etc., and for printing these results.

These steps are achieved in this programme by means of
the following:

(a) The Main Programme

(b) A subprogram, UTH4, for multiplying two matrices

(c) Sﬁbroutines Eigwrt, Doppel and Doplwz, for the

calculetion of the eigenvalues and eigenvectors_
of a complex matrix by Gollnitz's method,

and (d) Subroutine Shribe, which outputs the results.

VIIL.2

Even though the aserodynamic matrix and consequently the
characteristic matrix are complex, all the computations are
carried out with real numbers, (giving proper attention to
the rules of complex algebra).

As it stands, the programme can solve the flutter
problem by the direct matrix method, of systems with upto
ten degrees of freedom. It is possible to treat the case of

systems with a larger number of degrees of fréedom, by



making appropriate changes to the DIMENSICGN and DOUBLE

PRECISION statements in the main programme and in all

the subroutines, |
The different parts of the programme will now be

described, |

VII.3 Main Programme |

This programme reads the data and computes the
characteristic matrix. The data deck is set up as »
follows:

ist card- Title (Format 10 A 8) This reads in the

'description of the programme, It is not necessary |
to £ill in all the spaces in this card.
2nd card NABRO, VELCTY (Format I4, F 10.6): This card
reads in the control numbers for each pass, |
NAERO should be set equal to the number of
roots which are to be computed.

VEICTY is a control number:

V= B o the

For flutter anplysis, VELCTY v

frequency paremeter

For Vibration Analysis, VELCTY = O

If VEICTY is set equal to a negative value, this
indicates that the programme is.to be terminated and
no further sases will be considered.

If VELCTY 2 O, the analysis proceeds further. |
3rd card (Low(J) LHIGH (J), J = 1, 10) : FORMAT (20 I 4) |
Since the mass matrix and the AIC matrices are sparsely

po ulated, it was felt that it would be more convenient to
read in only the non zero elements, LOW (J) and LHIGH (J)
indicate the first and last columns in each row J, which contain

|
|
|
|
the nonzero elements, For example, consider the following
(4 x 4) matrix: |



"

Dy o Quy o
In this case, LOW (L) = 1, LHIGH (1) = 3
07 (2) = 2, LHIGH (2) = 3

LOW(3) = 3, ILHIGH (3) = 4

LOW (4)

il
[
-

LHIGH (4) = 3

\

\

\

l
In rows 1 and 4, the zeros in the second column must |
also be punched in the appropriate data card.
4th Set- SM: FORMAT (4 R 12,68)

This is the mass‘matrix. This matrix is input by
rows and in each row, only the nonzero :zlements are read in.

Any null elements in hetween the nonzero elements are also

read in, as described previously.

5th Set- S FORMAT (10 ¥ 8.6). This reads in the

flexibility matrix, again by rows. All the elements are

read in, though it is possible to simplify this by taking
account of the symmetric nature of this matrix,

It was felt that, to avoid working with very small
order numbers, the SIC matrix shéuld be multiplied by an
(arbitrary) factor of 104. This is not compulsory as it
was found by a number of examples that the accuracy did
not suffer by not introducing this factor.
6th Set: AR FORMAT (4 E 12.6). This is the real
part of the AIC matrix:

AR =9f%s (Real [Ch-l)
As in the case of the mass matrix, only the nonzero

elements are read-in,



G

th Set: Al  FORMAT (4 E 12.6). The imaginary part of

the AIC matrix is alsc read~in in thesame way as the AR
Matrix.
(Note a1 = P%'s ( Im [‘_c,g)

After all these data are read-in, the main programme
compqtes the real and imaginary pafts of the characteristic
matrix separately. The complete characteristic matrix is then
ouputed,

Thig is done as follows:

Real part UR = S % (SM + AR)

Imaginary part UX 5 %Al

The characteristic matrix U=x UR4+ AUL is now

set up by putting
U CI, 23-—\) = OR T, 1)

Wz, ?"3) UL C'I,:S_)

and J 1’ 2. 00esese 10
for II = 1’ 2 * b s d b b9 10 and J = 1’2 LI B N 10
VIiiI.4 UTH4 The multiplications indicated above are

performed by using a library routine which computes the

product © of two matrices A and B.

VIiI1.5 EIGWRT, DOPPEL, DOPLWZ : This set of subroutines
ig used for the calculation of the eigenvalues and eigenvectors
of complex matrices. This has also been used for the
calculation of the eigenvalues and eigenvectors of real
matrices {e.g. for vibration problems), though it might
have been more economical to use the specific routines
available for real matrices,
These three routines are based on the method of
Goll itz et al (Section 5.8.2.) and are set out in the

flow charts which follow.



VII.& The Outputs

1, The
the

2. The
3., The
4, The
5. The
6. The
7. The
(A11 the
B, The

Title card: The alphameric data input in

title card is printed first .
values of NAERO, VELCTY

Mass Matrix,

flexibility Matrix

real part of the AIC matrix
Imaginary part of the AIC matrix
characteristic matrix

matrices are output by rows).

values of the roots obtained by the power

method and from the two root procedure.

9., After these values have been output, the

following data is output for each root

(a) The value of the root obtained by the

Wielandt iteration and the associated eigenvector

(b) The values of the flutter frequency, damping

and flutter spoed.

(Note:

speed are controlled by the values of b and ) For each

the values of the flutter frequency and

&5

given wing planform the statements controlling these parameters

in the subroutine SWR\BE have to be changed),
The flow chart and the listing of the computer

programme are given in the following pages,
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Problem

In this‘appehdix, the fundamen!al frequencies of a square
plate syametrically supporteq at four poinls are obtained by a
Direct Natrlx method and also by using assumed mode methods.
"The results illustrate that the Direct Miric method Jives
wore satisfactory approximat ions to the fund: rnentul frequency.
The results from the assumed mode analysis show that it is
not posuible to auwume n mode vhich yields satisfactory results

for all pPogitiony of ‘the support points,
(In thie paper, the encryy wtdyes were conduct ed Ty
Prof DoJ.Johns and the finite difference analyses by the

present auihor) o ¢
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On The Fundamental Frequerncy Of A Square Plate

Symmetrically Supported At Four Polints

D. J. Johas V. T+ Nagaraj

University of Technology, Loughborough, Leics

SUMMARY

The title problem has been examined using {a) energy-type analyses
involving the assumption of modal forms and (b) an alternative finite
difference formulation of the governing differential equation of the problem.

Because of its simplicity in use and accuracy ~ the latter method
is advocated, Over the entire range of symmetric supports {viz. 4 corner
supports to 1 single central support) the finite difference method gives
satisfactory results agreeing well with experimental data,

1, Introduction

A square plate symmetrically supported at four-points has various
practical applications which require a study to be made of its vibration
characteristics, : '

Ref.l present such results fcr rectangular plates supperted at the four
corners using a finite differeince approach to the governing differential
equation. For the particular case of a square plate Ref.2 employs an energy
method and using a very simple assumad modal forms shows good agrecment with
Ref,1l,

Alteranative, more general modal forms are considered in Ref.3 whea
the four point supports lie at specified positions along the plate diagonals,
and an attempt is made to correlata the results with those of corresponding
experiments, Unfortunately, it is shown that none of the modal forms assumed
is satisfactory for all possible support positions.

It is the authors' view that the finite difference approach should
yvield the more satisfactory set of rcesults and the purpose of the present
paper is to discuss results obtaincd rccently for a sguare plate from both
the energy method and the finite differcnco method for all possible symmetric
support positioans, '

It should be remembered that energy methods always overestimate
the fundamcntal frequency, so with more reiined analyses the exact value can
be approached from above, Conversely the finite difference method, established
by Williams (ref. 4,5) undorestimates the ratural frequency and with
increasing refinement in the analysis the exact value can be approached
from below,

Thus it is heped that sufficiently close upper and lower bounds
can be obtained for the theorctical values of the natural frequency for
all support pesitions and that closer correlation can be ontained with the
available experimental data,




2, Plate Configuration

n3

The plate configuration is shown in Fig.l and the coordinatoes of

the four support points are defined

corresponds to corner supports and «/

support peint. It is clear that in

present study.

3. Encrgy Analyses

by the paramectecr « .

= ,9 corresponds to a single,

The case. of a/a,=

)

central

© goneral the fundamental mode for a platae
supported on diagonal point supports will have a nodal line crossing the plate
co-ordinate axes and that the nodal points on these axes will provide an
alternative sc¢t of four symmetrlc support points within the context of the

Using classical thin plate theory the straln energy expression for the

square plate is g1v9n by

a/ l .
U = % d l L\—-—l;:! +—-§-2-'1") 2\)——wz- -——-2— + 2(1-\:)" )
—f'_ ) - ~ 3 a' 3 3
a/2 J a/2 ax oy J X ¥ Wx
dxdy
and the kinetic cnergy is given by
a/2 a/
~ v
T = K—.ﬂ J 2 oW dxdy
2 J_ay -a/ ot
2 2

Where D plate stiffness
B Youngs'modulus

v Poissons Ratio

h Plate thickness
(i- Density

w Plate dofloctiey

By assuming that w = W
Y g (X:Y:t)

EnS/12 (1-v2)

sin wt

)

G,y

with the function W

consisting of appropriate assumed deflection modos which satisfy the support

constraints,
the application of the Rayleigh

it is possible to evaluate the frequency of vibration,

w
Ritz Method.

The following singlo deflection modes have beoen considered viz.
" derse
w = A <cos L + cos m)
o a a
x
n . m.- :
¥ = B (\2— 2"k 2 k“"‘zn) nz2
2l ah
2 2 2.
W = € (1- 4axx ) (1—4]:22)
2
a a
W = D (cos Wx cos ~ kmy )
a S -
w 4.2
= E (1-—16kXy2‘
4
a
W o= F (1—2”1{““) nz2
n
a

, by

2]
(1)

(2)

(3

(4)

(3)

(6)

1

(8)
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Whore k = af{a ~ 2«z) and A, B, C cte ;. arc gcheralised
co~-ordinatoes, N.D.That mode F is independeont of y. '
In enaes & ¥ the value a0 = 2 gavo tho lowest valuos of {

Thte corrasponding oxprosalons Top the non-dimensional froquency parameter

. 4 :
{ = mi; h o /D) are givoen below {for thoscem odal forms which gave ihe most
acceptabl® resuits The uther single modal forms gave results which wore

in general far too high except for Mode A with =/a < ,2.

- _ -1
Q 1440 (1+v) k4L45 - 30K° + 71:41 (9

B

a
F

il

it

. —- - =1 .
960 k*|_ 15 - 10 k% # 3 kﬂ ' 710)

Numerical values of ﬂé based on these expressions are shown in Fig,2
together with other results including various binary and terynary solutions
including those from Refs. 2,3.

The binaries A + C and B + C, (Rcf. 3)do not give completely satisfactory
results mainly duc to the fact that Modes A and C alone gave unsatisfactory
results, The binary A + D which gives a good result for =/ = (Q as shown
in Ref. 2 becomes increasingly unreliable as / increases a thus showing
the possible inadequacy of the cnergy method in gssuming a simple combination
of modes to cover all possible supp%{t points, The ternary A+B+C with n=2
(Ref,3) gives minimum results for shewn by the thick line in Fig.2.

4. Finite Difference

The governing differential cequation for small deflection behaviour of
g thin uniform plate loaded normally to its surface by a pressure q is
4 « 4
3 a
w 2 02w » . w Y (11)
Ay 3y

3t

and the finite difference fcrm of cgquation (11) can be written gencrally in
terms of the deflections, w_, at 13 stations in the neighbourhood of the

- n . . .
loaded point as shown for a typical element, 0, in Fig.3

Thus,
4 8 12 .
= 20w - 8 r W+ w (12)
r r
r=1 r=5 : r=9

Roﬂ.2

For stations on or adjacent to the freoc cdge of the plate the appropriate
frec edge boundary conditions arc inveoked to obtain expressions for those
stations, w_, off the plate in terms of those on the plate (Ref.4). This
resultsin a’less . general form of cquation (12) as will W seemr later.

It is cleoar that this mcthod bocames more accurate as the number of
stations on the plate is increcased and to this end the alternative mesh
configurations shown in Fig.4 have been studied in detail., Becausce of the
symmetry (assumced) of the fundamental mode about the diagonals and about the
co~ordinate axes only a triangular portion of the plate would apparcently neod
to be considered. It should be noted that cascs III and V have previously
been studied in Ref.l for corner supports only.
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The full Cetails o the derivatic: of hw rolovant finite ¢ivfere-ce equations
representing the oscillatory inertia foreé R on each station n arce not
presented here but a typical sct of cquations is given below for case IV,

The effects of the free edge boundary conditions on the general form of
oquation (12} is clearly seen.

2 , : . .
LB . WA - 251w - 462V +1.4W + 0L W . (13)
L A B C D
D e
%R W ' . f '
LRy oo My oL 031w +8.230. -5.4W._ -3.22W_ + 2.7W (14)
—= A B o D E
D 2 _ _
. 2n . ' '

. C = AW, = 1.4V, - 10.8 Wy + 20.ch + 3.4 Wy - 18, o+ 20 (15)
% W '
L Ry = My o o1 - 6,44V +3.4W_ + 6.53W_ - 5410 + W (16)

—_ B c D E F
D 2
2 .
= . - w, - 5. - ! '
2 Ry - AW 5.4 WB 16 JC 5 4_wD + 34 wE 8 UF (17)
D
= BW, +4W_ =-32W_+20W._ . | (15)
D
2 4 4
_ 2 how A D L
Where ) = ("-—-'l—)-—- . = .';4 _ : (19)

if the corner only is supportced then equation (13) is neglected and
W = 0 in the remaining equations (13) -~ (16). For alternative diagonal
support points e.g. C or F the correspondong equations (15) or (18) would be
neglected togother with WC or WF clsewhere.

It should be noted that if WA = WB = WD = 0 simultanecusly in the
above equations then simply supported edges are simulated and A the
eigenvalue is determined by the solution of equations (15), (17) and (18).

The results obtained may thus be compared with known exact solutions which has
becn done in Table I for cases I to 1V. These show the improvement in accuracy
obtained with decreasing mesh size . This problem has also been examined in
Rof. 5.

From such finite difference solutions it is possible by means of
Richardson's extrapolation formula (Ref.8) to predict a more exact solution.
This procodure was followed in Ref. 1 and based on the results for Case III and
Case V shown in Table 1 below en cstimate ofszé = 7.117 was obtained for
tho plate supported only at the corners whereas the energy method of Ref. 2
using the modes A + B + C with n= 2 gave 7.115. It may thereforc be
reasonably inferrcd that the exact value is 7,115,




, né
TABLE 1

Valuos of 's# by Finite Lifference Mothod

i B H N T
1 i ! !
Case 1 .o1r boam v o o'v W1 EXACT
S AR
| 11 1 1 1 |
Y 2 3 1 4 15 16 %b -
{ : ; ! !#
,' s
Simply _‘ f ; i ; , 5
supported | 16 18 © 18.76°) h9.0al106 | - 19.74%)
bPla.‘t:e ; ; . i ; i oo
H i
i
Corner i ! : _
Supported : : i .
«fa=o;wA=o 6.47 6.85. 6.98(1) 7.00 %.06(1)571092: 7,115(3)-
' A A

Tho numbers thus, (1) indicatc¢ the source reference if different
from this paper.

Tho above results show that ,for the plate with corner supports only,
CaseﬁVI %}vos consistent results eand one can assume that the mesh size chosen
wdzi]ém Ijis sufficiently small to yield accurate results for all diagonal
support points. Thesc results arc shown in Table 2 and Fig.2 together
with a fow additicnal results which indicate still further the increase
in accuracy gained with decreasing mesh size.

TABLE 2 _
Values of S? by Finitc Difference Method for Various “/a

o/a = 0O .1 .2 .3 4 .5

A
Case VI{ ¥

I

7.092 12.58 22.26 18.31 15.32 26.82

For Case VI Modified with Nodal Co-ordinate Axesl3.35

It is clear from Table 2 and Fig.2 that using the original finite
difference Mesh for Case I,III and VI that an appgrent anomaly has arisen.
Although with decreasing mesh size the value of has increasced the value for
Case VI (QOriginal) for =2 = .§ is rwuch greater than the corresponding
encergy sclutions and shows an entirely unexpected trend for 8% with ‘73.

It was concluded that for the case of a single central support point
for the plate the fundamental mode doos not necessarily correspond to a
situation in which the four quadrants of the plate vibrate in phase as was
assumcd in setting up the original finite difference equations. Instead a
possible vibration mode could be visualised in which adjacent quadrants vibrate
out~of-phase with nodal lines lying cither along the co-ordinate agxcs of the
plate or along the diagonals.

-R—
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The detailed resulis obtained, dssuming.that the nodal lines lie
aleng the coordinate axes are shown in Table 3, below and also in Fig.2
together with oxtrapolated results using corresponding pairs of individual

results. Thus, whilst Caso VI gives 2 =  13.35 the cxtrapolatced rosult
from Case III and VI is Q2 = 13:.56, This result gives much better
“agreoement with the encrgy solution for </a = .5 wviz 13.56 cf. 16.22

than did Case VI {original). Results obtained assuming that the nodal lines
.M.ealong the diagonals were higher than those shown in Tablo.S_

TABILE 3
Modified Results For <“/a = .5 o\ i
case 2 S £ 5 i vI
s —
2 i I i
e 19.48 ! 12.1731 : 13.35
i B :
B B 15 /
S% i ‘ 12.9 13.56—’/
[ D L Ma ey,
| cxtrapolated; 13.48
¥
I [
' |

L A

Clearly the anomaly referrcd to above would not have arisen ifno 'a priori'
.. assumption had been made about the form of the fundamental vibration mode,
and, instead, a general finite differonce formulation had been derived for
the entirc plate.

5. Experimental Data

The experimental data shown in Fig.2 for cases «/a < .5 were
presented in Ref.3. The result for oc/a = ,5 has been = cktained by the
present authers.

6. Discussicn of Results and Conclusions

Fig. 2 shows the various results obtained for the frequency parameter
92 for a square plate supported succcssively at various diagonal peihts: The
narrow band between the limiting results from both the encrgy and finite
difference analyses indicates the region in which the various exact solutions
.would lie. The narrowness of this band 4s a measure of the close agrcement
with the exact solutions which has been achieved and this is supported by the
correlation of the experimental results from Ref.3. with the band.

Since none of the energy methods was completely satisfactory over the
range of values for «/a and becausc the energy methods give values of
frequency which are higher than the exact solutions and are therefore
unconservative in design it is beilieved that the finite difference method
giving a ifirequency which is lower than the exact is to be preferred.

It is also worth noting that the amount of manual labour 1nv01ved was
far greator for the energy analyses.




7.

Physik und Ast Physik) who made available the
finito difference analyses and to Do D Williamg who mado
commonts in Lhy oarly stapos of thiyg study,

Yo

Acknowledgoments
— s uponent s

Acknowledgement is made to I Gollnitz (Max-Planck-Institut fup

computer programme used in the
Some usoful

Reforences
~Logrences

Cox,yH.L., Boxer, J., Vibration of Rectangular Plates:

Point-supported at .the corncers. Aero.Quart . 11 (1) . 41-50,
Februaryv, 19¢0. :

Kirk, C.L., A note on the lowest natural frequency of g square plate

point-supported at the corners. J.Roy . Aero,Soc, 66 (4) : 240 - 241
April, 1962,

Tso, W.X., On the fundamental frequency of a four point-supported
squarc.elastic plate. AILALA.  Jour. 4 (4) : 733 - 735 April, 1966,

Williams, p., A gencral meothod (depending on the aid of a digital
computer) for deriving the structural influcnce coefficients of
acreplane wings, ARC., RgmN No. 3048, 1959,

Williams, p., 4 new method of obtaining lowor limits for the

solutions of elgenvalue problems for beams ang plates, R.A.ER. Report
Structures 225, August, 1957,

Salvadori, M.G., Numerical computation of buckling loads by finite
diiferences, Trans. Amer. Soec. Civil. Engs. vol. 115 : 590 - 624 1951,



N\ SUPPORT
N POINT
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TABLE 6,1

7 Results of 'Exact® Analysis on bi_ing,‘_p‘:ia_ .

' . Plutter Flutter
' ’] ‘Speed Frequency.
- (fps) (eps)
0.5 68,5 (15.2) 9,62 (e.v)
05 78.0(sa5)  8.40 ( TB)

NOTE: : :
- a) Pod attached to Wing A3

" b) Pod Imertial Details:
W = 0.83
T = 10.0
= 0.1
P
ey Voluwes hxuv\g}—é T\.q‘t_p_r o W
'ubmw& naauike




 _TABIB 6.2

Results of the Assumed iiode Ansalysis. |

a) Wing A2
Details of the - Span wise Plutter Speed
GConcentrated l.ass. Location,") V, fi/sec
M= 1.0 0,33 Tho 5
I =10.0 0. 50 6h.2
X =0.0 0.67 67.5
P 0.875 ~ 75.8
= 1.0 0.3% . 65.0
T =10. ' 0. 50 58,2
X = +0.1 0. 67 _ 554
p - . Oo 875 . 61""5
= 1.0 0. 33 82,2
I = 805 Ou 50 ' 7305
X_ = 0.0 0.67 77.5
P 0.875 . 89.7
T=1.0 | 0.33 75,2
I= 8.5 0. 50 68,6
X = +0,1 0.67 - 62.h
P 0.875 72.7
b) Wing A3 |
‘ — 0.33 88.0
W= 0.83 0. 50 75.4
T =10 : . 0. 67 . R2,6
Tcp =0 0.875 .120.0
0.33 - 8h,5
i=10.83 - 0. 50 65.7
I = 1O. On 67 6200
XP = +0,1 0.875 77.8




TABLE 6.3

Results of the Direct Matrix Method Applied to
Wiing A2

Concentrated

mass details LA"Ib(,cps) Mt(cps) VF(f‘ps) (ABIF(cps)

Uniform r?
wing. 9.06 34, 2 146,0 22,0
_ 0.425 9.05 34,02 147.0 19.4
1. ®=1.0 0.33 8,59 30. 7 166.0 18,4
T=0 0.50 7.40 28.17 224. 0 17.6
X = «0.1 0.67 6,10 29,74 230.0 13,2
P 0.875  L4.66 29, 27 264..0 16.6
= 1.0 0.33 8,59 15.81 108.9 13.9
I=50 0. 50 7.40 12,91 127.0 11,2
X = -0.1% 0.67 6,10 11,47 168.0 10,0
P 0.875  4.66 10.16 250.0 8.0
3 0.125  9.05 18,88 118.0 16,4
i =1.0 0.33 8.57 14,71 £5.0 1.2
I =10.0 0. 50 7.22 9 b 108,0 9.2
X = =0.1 0. 67 6,04 8.37 115.0 7.8
P 0.875  L.65 6.75 122.0 5.8
he 0.125 9.0k 34,06 146.0 19.6
¥ =10 0.33 8,56 32,52 14.5.0 18,5
T=0 0. 50 7.38 33,24 161.0 16,1
T = +0.1 0.67 6.06 3h,11 164.0 10, 4
p 0.875  4.65 34,15 165.0 10, 3
5 0.125 2.04 24,72 134.0 18.0
T =1.0 0,33 8.56 16,09 93.0 1h, &y
T =50 0. 50 7.37 13.10 80.0 1.6
X = +0.1 0.67 6,05 11.77 85.2 10.0
P 0.875  L.65 10. 34 102,0 7.9
0.125 9,04 18.90 109.0 17.0
6. ¥ = 1.0 0.33 8.53 11.92 59. 25 1.3
I' - 10.0 0050 7-35 9'68 1[-800 902
X = +0.1 0.67 6,03 8,58 51.0 8.0
P 0.875  L.6h 7.49 62,0 6,9
0.125 9,04 3, 24 145.0 19.0
7. H=1.0 0.33 8.58 34,00 156, 0 18,0
T=0 0. 50 7.40 31,95 182,0 16,7
¥ =0 0,67 6,09 33,29 180,0 14.0
P 0.875 4,67 33,38 209.0 12,0




TABIE 6.3 - continued.

Concentrated _ X
mass details O W (eps) «w(ops)  Vp(fps) L (ops)

8, 0.125 9.0k 24,96 137.2

T&E = 1-0 0033 8057 16012}- 95-0

T =50 0. 50 739 13.09 96.0

T =0 0.67 6.09 11,66 96. 3

P 0,875  L4.67 10, 26 127.4
9, 0.125 9,0L 19,02 112, 3 1740
T = 1.0 0. 33 8. 56 11.90 66, & 11,1
_I = 10.0 0. 50 7:39 9. 64 80.0 8.8
X =0 0.67 6. OL,. 8,72 63.1 8.0
P 0.875  L4.67 7.43 80,0 6.8
10 _ 0.125  9.05 34.18 148,0 19.6
. u=1.0 0.33 8.59 32. 61 161.1 18,6
I=0 0. 50 7.40 30,09 191.5 18.0
X = -0,05 0.67 6,10 31.72 198.0 14,5
p 0.875  1.67 70,94 258,0 45,8
11 _ 0.125 9. 04 24,89 1344 18.4
* M=1,0 0. 33 8. 58 16.02 101.0 12,2
I =50 0. 50 7.40 13.02 104. 2 1.4
X = ~0.05 0.67 6.10 11, 57 94,0 10,6
P 0.875  4.67 10. 21 166.0 9,2

12,
B 0.125 9,02 19,7k 136.0 15.9
M=1.0 0. 33 7.92 12,50 71.2 11,6
T = 10.0 0. 50 6.0k 10. 14 78,4 9.0
X = -0.05 0.67 L.52 8.96 86.0 7.6
P 0.875 3,2 7,84 108, 5 6.5
13,

_ 0.125 9,04 33.81 155.0 18.3
=140 0,33 8.55 30. 62 144, 3 18.3
I = 0.0 0050 7036 53011 148.0 1609
X = +0.15 0.67 6. 04, 33,22 144.0 15,2
P 0.875 L. 6L 34,16 148.5 17.0
14 0,125  9.04 24,42 142, 4 17.L
m = 1.0 O;53 8053 15-92 1311-00 12.3
L =50 0.50 Te 3k 13,04 - 772 11,4
X = +0.15 0.67 6,02 11,80 88,0 9.6
P 0.875  L4.63 10, 37 90,0 8,2
15, _ 0.125 9,04 18.76 110,0 16.7
M=1,0 0. 33 8. 50 11,88 58,8 11.2
T =10.0 0. 50 7.3 9,69 47.8 9.1
X = +0.15 0,67 5,99 8.63 50,0 8,0
P 0.875  L.62 7.52 61.9 6.0




TABIE 6.4

Results of the Direct Walrix llethod Applied to

Uing A3
Concentrated _ .
Hass Details % 'ij(cps) th(CPS) VF(fps) {})F(cps)
Uniform
Wing - 9.06 37.50 152.5 20.2
I = 0.83 0.125  9.04 20.68 124.0 17.8
_I=10.0 0.33 8, 50 13,04 64 6 12.3
X = +0.1 0. 50 7.26 10,60 63.0 10, 2
P 0.67 5,91 9,40 72.0 8.4
0.875 Ly 54 8,21 87.0 7.8
W = 0.83 0,125  9.05 20,85 124.8 17.7
=10 0.33 8. 64 13,05 65, 2 1244
X =0 0. 50 .61 10, 58 60.0 10.0
P 0.67 6.39 9, 31 80.0 8.5
' 0.875 4. 98 8.15 13,7 7.2
= 0.83 0.125 9.0k 19,07 123,8 17.9
X = +0.15  0.50 7.55 10. 59 52,0 9.9
P 0.67 6.30 9.45 5he 5 8.8
0.875 L.93 8, 25 75.0 7.5
M = 0.83 0.125 2.05 27.08 129.0 20,0
T= E'O 0.33 8,63 17.62 100,0 15.2
X =401 0. 50 7.59 14, 35 84,9 12.4
P 0,67 6,36 12.91 107.5 10.0
0.875 4,98 11,35 121.0 8.9
¥ = 0.83 0.125 9,05 26,75 138.,0 19.5
T = ts.o 0.33 8,62 17.42 93,8 15,0
X = $0,15 0. 50 7.57 14, 26 80,0 12,6
P 0.67 6,20 12,93 96. 5 10.5

0.875 5.0 11.20 107.0 9.2




PABLE 6,5 .

Results of the Direct Matrix ifethod Applied to

Wing Bl

Corncentrated _

Mass Details. % U)b(cps) e _t(cps) VF(f‘ps) wF(cps)
Uniform .
wing. " 5,80 26.37 165.0 19.5

W =0.83 0.125  5.79 27,09 135.0 17.8
_I=50 0.33 5.53 17.48 117.0 15.0
X = 0,10 0,50 .88 14,63 104. 0 12.5
P 0.67 4.07 12.85 107.0 11,0

0.875  3.17 11. 36 . 126.8 8. 1
¥ = 0.83 0.125 5,79 36.01 165.0 20,0
I=o 0.33 5, 5 2L 5l 182,0 18,9
X = -0.1 0, 50 1. 90 23,96 209.5 16.8
p 0. 67 4.08 30.19 24,6,0 14,5

0,875 3.18 40.29 291.2 24,2




- _TABIE 6.6

Results of the Direct Matrix Method Applied to

Concentrated
Mass Details

Viing B5

9 Wpls) Lylems)  wlrpe)

Uniform

Wing 5, 80 37.06 227.0
T = 0,83 0.125 5,73 29,25 19k, 8

T = 0.0 0.33 5,52 2. 25 206, 0

X = -0.1 0. 50 4,90 2., 5l 275.0
P 0.67 4.08 33.76 2,6.8

0.875 3.18 31.73 216,2




TABLE 6,7

Effect of Inclusion of Pod Aercdynamics.

Flutter Speed {fps)

With Pod Without including
"I Aerodynamics Pod Aerodynemic
Loads.
0.125 124,90 124.0
0.33 63.5 6k, 6
0. 50 61.7 63,0
0.67 69, 6 72.0
0.875 85.0 87.0

(These calculations refer to Wing A3. The inertial
parameters of the pod are: M - 0,83, I = 10.0, X = +0,1
The pod aercdynamic loads were calculated for Pod AP)



TABLE 6,8

Influence OFf Modifications To The Pod

On The Flutter Speed

_ \ C?PS) Pod

MeThad ‘): 0.5 r‘: 0.67 Condd Ho N
D11 63.0 72,0 |

_ To Fin
Expt. 75.2 72.5
D, I3 B83.D 72,4 a = 2 ina.
Expt ' 70.0 78-0 h =1 111.
DM 11 64.2 73.8 a o~ 3 ins, |
Expt 78.0 ?600 b = 0.5 1nc
Notess a) The experimental results refer to Pod A

b) The dinensions o end b are as shown in |

the following sketch,




TABIE 7.1_

Results of Wind Tunnel Tests on the
Flutter of WING A2

Details of the

Pod Inertia ‘] L"}b(cps} O3 1:(cps) VF(fps) QJF(cps)
Pod A 0,33 8,75 144 50 92,0 14,00
_ 0,442 8. 20 11. 50 83,0 11,00

E = 1-0 0’5 7475 10-75 75o2 10.00

T =8.5 0.2 7.10 9. 50 66,1 9,25
X = +0.4 0,67 6. 50 8.80 72,5 8.75
P 0.75 6,00 8.75 81,2 8,25
0,83 5a 50 8.25 8.8 7,00

0.92 5,00 7.75 90, 2 7,00

0.33 . 8.60 . 16,40 - No Flutter -
Pod A 0.42 8,00 13,50 85,5 9.75
M= 1.0 0. 50 7. 90 12,00 82,0 10. 00
I =28.5 0. 58 7.00 . 10,75 66,2 8. 50
i = 0 0. 67 6- 50 99 80 77- 5 70 50

P 0,75 . 6.25 9,40 85,0 7,00
0.83 5,60 8. 25 92.5 7. 40

0.92 5.00 8,00 97.0 6,75

0.33 . 8.80 13, 20 . 14,25

0.2 8. 25 12.25 68,0 9.75
Pod_A 0.50 8.00 9.75 61, 9,25
M= 1.0 0.58 7.25 9, 50 - 8.00
T = 10.0 0.67 6, 30 8. 60 62,0 7.75

X =40.1 0.75 6.00 8.50 67, 7. 30

P 0.83 5,75 7.80 75,0  7.00
0.92 5,00 7.60 82,0 7.10

0.33 8.75 11, 50 77.0 10. 6

0.42 8,20 12,00 77.0 9.75

Pod A 0.50 7. 60 10, 50 8.40
T =1.0 0,58 7. 00 9,60 ' 8. 50

T = 10.0 0,67 6. 540 8.80 63.0 8.10

T =0 0.75 5.75 8.25 72. 7.00

P 0.83 5,00 8.00 78,0 7. 20
0.92 L. 70 . 750 8 7.10

0. 33 8. 50 16. 50 90.1 11.70

0.42 8. 00 13,20 85.0 40.00

Pod B 0. 50 8.00 11,70 71.2 9, 60
=1.0 0.58 7. 80 11. 20 £0.5 9.00
T=28.5 0.67 6. 50 10,00 67. 8.70
T = +0.1 0.75 6.10 8,80 82.4 8. 25
P 0.83 5, 60 8. 50 86,1 7,60
0.92 4. 80 7.75 92.0 7. 30




Details of the
Pod Inertia.

TABILE 7.1

1

continued,

0,3 [
(p8) 3 (ops)

VF(fps) tg)F(cps)

0.33 8,75 16. 20 - No Flutter -
0.42 8.10 12.75 91. 50 10, 60
Pod B 0.50  7.80 11,75 80.0 9,80
=1.,0 0.58 7.25 11.00 71.2 9.00
T = 8.5 0.67 6.60 9,80 B0 Y - 8,10
X = 0. 0-75 6- OO 8- 50 88-5 7. 60
P 0.83 5,75 8. 30 91.2 7.40
0.92 5.00 8.10 Ok, 6 7.00
Note:
) Non @imensional span { =y/s)
L , = Fundamental bending frequency
cgjt Fundamental torsional frequency
Vﬁ Flutter Speed.
(3 P Flutter frequency
KP Distance of pod c.g. from elastic axis,

non dimensionalized with respect to the

wing chord.

Positive aft of the elastic axis,



PABLE 7.2

Results of Wind Tunnel Tests on the
_TFlutter of Wing A3,

Detalls of the

Pod Inertia. Wyleps) =3 (eps)  Vp(fps) “(cps)

-t

0.33 8,80 15, 20 83.0 12. 50
0.42 8.25 12,75 73.7 10, 60
Pod A 0. 50 7.90 11.20 75,2 10,10
ii = 0.83 0,58 7.20 10.00 66.1 9,25
_I=10.0 0. 67 6,75 9.60 72.5 8, 30
X = +0.1 0.75 6,25 8.90 82.5 7,80
P 0.83 5. 50 8,50 92,5 8.00
0.92 5,20 8.25 98.0 7.50
0. 33 8.75 13,20 76.5 12,20
0,42 8, 20 12, 50 82,0 11,40
Pod B 0. 50 7.75 11,50 74, 50 10, 50
E = 0.83 0.58 7.20 10.25 68.00 9.40
I = 10.0 0.67 6. 60 g.go 77.00 9.25
X = +0.1 0.75 6.20 .25 79.2 8,75
P 0.83 5, 50 8. 60 93,0 8.00
0.92 L8O 8.50 ~ Mo Flutter -
0.33 9.00 14,50 92,0 135,25
Pod B 0.4.2 7.90 12,75 9%, 0 11, 20
M=0.8% 0.5 7.80 11.50 82.9 10.10
_ 0. 58 7.25 10.00 83.2 9.25
T =10,0 0.67 6.80 9, 20 91.2 8,75
¥ =0 0.75 . 6,20 9,00 - No Flutter -
P 0.83 5, 50 8.75 - No Flutter -
0.92 5. 00 8.30 - No Flutter -~
0.33 8. 50 15.25 88.0 11.60
Pod C 0.42 8, 20 12,60 81,2 11,20
i=0.83 0.5 7.75 11.75 71.7 10.75
_I=140.0 0.58 7.20 10,10 72.5 9. 60
X = +0.1 0,67 6. 50 9,40 | 74,5 8.75
P 0.75 6.25 8.75 86. 5 8,40
0.83 5. 60 8. 50 95, 5 7.60
0.92 5,00 8.20 ~ No Flutter -
0. 33 8.60 15,50 85.0 12,50
0.42 8,00 12,70 78,00 11.75
Pod D 0, 50 7,60 11,50 76.5 10, 20
M =0,83 0.58 7.25 10, 30 78,0 9,80
_I=10.0 0.67 6. 50 9.0 80, 0 8.75
X = +0.1 0.75 6.00 8.60 86,0 7. 60
P 0.83 5.50 8,40 95,0 7.80
0.92 5.00 8.10 - No Flutter ~

- e



TABLE 7.3

INFLUENCE OF MODIFICATIONS TO THE POD (Expeimental Results)

upto the maximum wind tunnel

b) All Flutter Spe ds in ft/sec.

speed

Pin Wumber BT 3 4 5.
in Details § a(ins) 0.0 1.0 1.0 2,0 2.0 3.0
1 [b(ns) | 0.0 | 0.5 | 1.0 | 1.0 | 0.5 0.3
0.33 83.0 83.0 ' 84.0 ; 85.8 84.5 ; 86.0:
0.42 37 | 730 0 145 0 150 13.5 ; 76.0
0,50 boD 2 L 752 76.0 755 | 160 T5.5 | 7840
0,67 72.5 § 7345 f 74.0 ; 78.0 74.0 i 76.0
0.75 | 82.5 i 82.5 % 84.0 | 91.7 ' 85.0 | 92.2
0.83 D2 | %50 | %5 L % x| o
— RS P 5 L
0.33 76.5 E 76,0 | 77.5 g 78,0 i 78.0 | 80,0
0.42 POD B 83.0 | 84.0 84.5 91.7 § 85.0 | 92.2
0.50 | 1445 § 75.0 | 745 | 765 | 76.5 | 78.0
0.67 | 6830'% 1 65.5 67.5 ? 69.5 | 68.5 | 70.0
0.75 E T7.0 f 78.0 .[ 80.0 | 80.0 ! 82,0 82.0
0.83 L 93,0 ] 95.0 | 91.0 E 98.0 | 97.5 *
NOTE: a) * Denotes ihpt no Fiutter oould be obtained



TABLE 8,2

Influence of Conccm‘brated I.'faissea' ol

~ the’ Flutter Speed of the Wing of Refs(38)

~——

v

Experiment

Bxact

2. YModesn

B 3 Modea

1,0
0,97
1,13
0625 S

. 0,935 *
1,065
0.965 

1.0
0.985
1,22
1.575
1.20
1,10
0.90

¢1,o
1,105

1.0

2,01

4 MQdQﬂ

1.0

1.49

Noteas ' a) These refer to Welght 7a.

b) * indlcates Divergence,

£




TABLE 8,1

Flutter Speeds For the Wing of Ref.(9)

0.0
0,33
0,50
0.67
0,875

0.125

X, = 0,156

& -

IS

|
Lo

M = 1,0,I =0

. Ref.(9) wm
w0 | no
1.1 1,02
. 1.2 1.17
f 1.38 1,25
| 2.60 2,50
1,58 1.78

Ref.(9) | WM
BTN R
1.05 1.0
1.12 1,17
1,20 1,12
2450 2, 37
1.50 1,00

U SR

S—

Ref. (9) | Dt

1.0 | 1.0
1,02 | 1.0
1,10 1,00 §
1.11 1,57
2,65 1,75
2,08 1.42°

NOTE, V = (Flutter Speed of Wing with Mags) / (Bare Wing Flutter

Speed )




(1)

ey

TABLE VI.I

Vibratioen Frequencles of Wing 5 A2 and A3

( Comparison of the Dircect A-L,trix Yethod

end the m;act Solution)

WING A2

) #iad II =2 1.0 I = 5.0 3{\})'-73 0.5

4'?"

Exnet ¥ = 1,0 I = 5.0 (lhcou'alcd)
_ D ‘ ; _mxAct
| 0) we (o) | W (o9 ] b%fcb:) W cws)
| 00 1 9.06 | 3224 | .00 | .12
0,125 9,06 | 24,96 = 8.94 26,60
0,33 8,57 | 16,14 | B.60 | 16,45
0,50 | 7,39 | 15,09 | 7.50 | 18.62
0467 6,09 | 11.66 E 6,01 | 11,95 f |
0,875 | 467 10,2 | 472 | 10,48 %_'
WING A2 DT W = 1.0 I = 1040 1b = 0
| Ezoct 1 = 1,0 I = 10,0 (Uncoupled)
(“”m""_ g:aw “f'kxaélmm”m_—— '
| “\ el G Loyt |
{ 0 9,06 | 34024 | 9.04 | 56,12
0,125 9.04 19,02 8.94 | 21,62
0e33 | 8,56 | 11.90 | 8.60 | 12,10
0,50 | 7439 9,64 7.50 | 9,95
| 0467 §6.04 8,72 & 6401 8.66
0875 4,67 7.2 7.68




TABLE VI.I (Continued)

- 5.0

0.83 I = 19709 x = 0,1

|
|
\
|
|
b .
5 0
= 0.83 =550 (Uncoupled) o
|
|
|
|
|
|

i

(i1i) WING A3 BT W
| "

Exact

T

| I 'D-M-'f“ , ,__‘f:_“é_._.cfm___éw.
1 Wy, (opsy ,(UE (b - wy, () J-“E(c-i’f)

b
i i

1

; e g
! |
1

0.0 . 9.06 37,50 : 9,04

0,125 9.05 27,08 8.9 | 29,10
0585 | B.63 | 17,62 B.62 18,00 ‘
0,60 | 759 14,85 7,70 . 14391 o

0467 6436 12,91 6.45 . 13,10 | 1

00875 498 1135 5.05 11,47 |

39,50

(iv)  WING A3 IMM = 0.83 = 10.0- X, = 0.1

™ I
Exact M = 0.83 T = 10:0 (Uncoupled )

|
!1 7 dDwm M [ kxacy ; : i
T ey tan oGy | oyt | osilepn \
[ ,.gﬁ,_ﬂ e ?..“_.. } . . j oo T

0,0 | 9.06 | 37,50 9404 l 39,50

i { i
! ;

0.125) 9.04 | 20.68 8.96 « 23,45
0,33 | 8,50 = 13,04 | B8.62 | 13,22

0,50 | 7.26
5.9¢ -
591

10,60 | 7.70 | 10490
0.67 | 9,40 | 6.45 | 9.60 |
0.875] 451 | B,21 | 5.05 8,40
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