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a b s t r a c t

A vibration energy harvester is proposed for rotating systems based on transverse vibra-
tions of an assembly of thin beams and electromagnetic interaction of a carried magnet
with a coil of wire. The harvester is designed in a way such that centrifugal forces are
utilized to tune the system's natural frequency to the expected frequency of torsional vi-
brations. In fact, a novel combination of a tuning mass positioned at the beam's support
and an applied preload are introduced to establish a tuning mechanism that is capable of
maintaining resonance along a wide frequency range. The device's tuning can cover
relatively high rotor speeds, overcoming previous limitations on the size and the physics of
tuning via axial loads. Moreover, exact expressions of the beams' mode shapes are taken
into account to improve the accuracy of the proposed tuning mechanism. Numerical
simulations of the device's response are carried out for case studies corresponding to
different frequency orders. It is shown that the system can maintain a flat power output
across a wide range of operating speeds, effectively leading to purely broadband energy
harvesting.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Vibration energy harvesting is a growing technological field that concerns scavenging energy from ambient mechanical
vibrations and converting it to useful electricity [1] for the purpose of powering small electronic devices, such as sensors and
wireless transmitters [2]. Usually, vibration energy harvesters are considered for applications where typical power mains are
difficult to access such as structural health monitoring [3], tyre pressure monitoring systems [4,5], etc. Harvesting vibration
energy allows remote powering of such distributed electronics.

The literature with proposed concepts and techniques for vibration energy harvesting is vast. Typically, a mechanical
oscillator is coupled with an electroactive element, such as piezoelectric patches attached to a vibrating beam [6], or a coil of
inductivewire in the proximity of a magnetic vibrating mass [7]. The oscillator is designed to resonate due to the vibrations of
the host system, from which energy is to be harvested. However, the conditions for resonance are difficult to be met in a
durablemanner since ambient vibrations arising from environmental ormechanical loads are commonly subject to variations
of their dominant frequency. This issue is particularly noteworthy when rotor machines with variable speed are considered
for the host system, such as power transmission shafts. Variations of the rotor speed typically lead to corresponding variation
ras), S.Theodossiades@lboro.ac.uk (S. Theodossiades).
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Nomenclature

A Area of the beams' cross-section (m2)
Ai;Bi;Ci;Di Coefficients of the general mode shape formulation for the i-th beam segment (m)
Br Remnant magnetic field strength (T)
Di Inner diameter of the coil (m)
Do Outer diameter of the coil (m)
E Young's modulus for each of the beams (Pa)
Es Young's modulus for the two beams together (Pa)
FðtÞ External excitation force (N)
I Current (A)
Is Second moment of area of the beams' cross-section (m4)
L Total length of each beam (m)
L1 Position of the vibrating magnet (m)
L2 Distance of the vibrating magnet from the far-end support (m)
LH Inductance (H)
M1;nm Non-magnetic portion of M1 (kg)
M1 Mass of the vibrating magnet (kg)
M2 Tuning mass positioned at the beams' far-end support (kg)
Mt Total lumped mass carried by the beams (kg)
Nc Number of turns of the coil
PMi

Centrifugal force acting on Mi (N)
PL;av Average electrical power delivered to the load (W)
PL Electrical power delivered to the load (W)
Pi Axial force acting on the beams at xi (N)
Ppre Axial pre-load (N)
RC Electrical resistance of the coil (U)
RL Load resistance (U)
Vc Voltage induced to the coil (V)
bs Width of the beams (m)
c Mechanical damping coefficient (Ns/m)
cb Generalised damping coefficient (Ns/m)
e0ðxi; tÞ Strain due to axial deformation
ebðxi; tÞ Strain due to bending
fb Generalised external excitation force (N)
hc Length of the coil (m)
k Preload spring stiffness coefficient (N/m)
m Mass per unit length of each beam (kg/m)
ms Mass per unit length of the two beams together (kg/m)
ns Speed of the rotor housing the harvester (rpm)
q Temporal generalised coordinate
r eccentric radius (m)
sa;i; sb;i Shape parameters of the beams' first mode shape for the i-th beam segment (m�1)
ts Thickness of the beams (m)
u0 Axial displacement of the far-end support of the beams (x2 ¼ 0) (m)
uiðxi; tÞ Axial displacement of the beams at xi (m)buiðxi; tÞ Axial displacement of the beams at xi, with the same positive direction (m)
wiðxi; tÞ Lateral displacement of the beams at xi (m)
xi Distance of a point of the i-th beam segment (m)
Q Electromagnetic coupling factor (Vs/m)
U Angular velocity of the rotor housing the harvester (rad/s)
b Generalised nonlinear stiffness coefficient (N/m3)
€g Base excitation (acceleration) of the housing rotor (rad/s2)
dð$Þ Variational operator
dDð$Þ Dirac-delta function
εiðxi; tÞ Strain of the beams at xi
r Density of the beams (kg/m3)
sb;iðxi; tÞ Bending stress at point xi (Pa)
4iðxiÞ First mode shape of the beams at point xi (m)
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u Frequency of torsional vibrations (rad/s)
un;c First modal frequency of a cantilevered counterpart harvester (rad/s)
un First modal frequency of the harvester (rad/s)
A Area of the beams' cross-section (m2)
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of the dominant frequency of the host vibrations (torsional or translational). Therefore, vibration energy harvesters with set
natural frequency (e.g. linear harvesters) are resonating only for a small fraction of the host's operating spectrum, leading the
harvester to work off-tune with severe underperformance in terms of its power output.

This drawback is referred to as the bandwidth problem and it has concerned many recent research works. Among these,
significant interest has been drawn by the proposed introduction of nonlinearity to the stiffness of the harvester [7], which
results in a wider frequency range over which the oscillator vibrates with large amplitudes due to hardening/softening
behaviour or due to other nonlinear phenomena, such as parametric resonance [8], bi-stability and multiple resonances [9].
The technique significantly relaxes the requirement for precise tuning of the harvester; however, large-scale frequency
variations, as those typically observed in variable speed rotors, cannot be adequately answered since the response widening
can only realistically cover a relatively narrow region around the linearised natural frequency. Even if essential nonlinearity is
introduced, damping and restrictions imposed by the basin of attraction limit the efficient frequency range.

Instead, self-tuning tuning mechanisms have been proposed for such applications, which largely invoke the modification
effect that an axial load has on the lateral frequency of a vibrating beam [10e12]. Tension or compression of a thin beam in its
longitudinal direction is known to introduce a corresponding increase or decrease on the beam's modal frequencies
respectively in the pre-buckling regime [13,14]. This property is particularly important for rotating systems with radially
extending beam elements (rotor blades for instance), where inertial forces are always present. Bhat [15] calculated the modal
frequencies of a rotating cantilever beam with a tip mass for increasing rotor speed and Naguleswaran [16] studied various
combinations for the types of support of the beam's ends. Both works rigorously show the stiffening effect that increasing
rotor speeds have on the lateral vibrations of a beam. Moreover, in the latter work, the selection of the axially restricted end
was shown to have a distinct effect in the lateral frequency. In general, boundary conditions play an important role in
determining the modal frequencies. Li [17] obtained analytical solutions for the transverse beam motion under generalised
support forcing including axial loads. Further to that, Lenci and Rega [18] and Lenci et al. [19] considered the lateral dynamics
with elastic support. They used an asymptotic approach to analyse a thin beam supported by a mechanical spring in the axial
direction, showing that the spring stiffnessmay have a hardening or softening contribution to the beam overall stiffness, apart
from frequency shifting due to preloads. These adjusting capabilities have been exploited by researchers for establishing self-
tuning oscillations. Leland and Wright [11] proposed the use of axial load to appropriately adjust the resonant frequency of a
piezoelectric bimorph harvester, largely introducing the technique for translational energy harvesting. Niri and Salamone [10]
used a sliding mass connected to oblique springs with the resultant axial load tuning the frequency of a beam energy
harvester, whereas Cheng et al. [12] used a piezoelectric actuator at one end of the beam in closed circuit with the vibrating
parts, to passively control the axial load applied to the beam.

In rotor applications, centrifugal forces are utilized to establish self-tuning mechanisms for vibrating beams, due to their
favourable dependence on the rotor speed. Gu and Livermore [20] first proposed exploiting this dependence to tune a radially
extending cantilever with a tip mass and piezoelectric patches to the host rotational speed and they experimentally inves-
tigated the tuning effect. The stiffening effect was coupled with the frequency modification inherent in vibro-impact systems
by the same authors [21], in an attempt to overcome the necessity for large root radius of the mounting support of the
cantilever. Several modifications of this master design have been proposed in the literature primarily intended for spinning
wheels [22e25] due to the relatively low rotational speeds of vehicle wheels. Elhadidi et al. [22] analysed a cantilever with
magnetic tip coupled with an axially repulsive magnet that led to bi-stable potential energy. Wang et al. [23] introduced a
tensile preload to a trapezoidal cantilever's clamped support and Li et al. [24] introduced magnetoelectric transducers to
effectively tune the harvester in low speeds further to the centrifugal stiffening effect. Hsu et al. [25] used a finite element
approach to facilitate the master design of the cantilever harvester. The therein comprehensive analysis and experimental
works demonstrated the self-tuning capabilities of a cantilever harvester alongside the concept's limitations. In particular,
even if the tuning target is equal to the rotor speed (1� ns), a large root radius is required to allow the harvester to be tuned to
the slope of the rotating speed. From a physical point of view, the limitation is imposed by the lateral component of the
centrifugal force that arises as soon as the cantilever tip starts vibrating. This component effectively acts as a negative virtual
spring, as the analysis by Elhadidi et al. [22] clearly shows. A direct consequence is that the design becomes relatively
insensitive to design modifications (e.g. tip mass weight) as the speed increases, practically disrupting the self-tuning
concept. In other works, inverted cantilevered beams [26] have been considered, with additional magnetic coupling in
pairs [27]. More advanced dynamics have also been investigated for vibration energy harvesting from rotational motion,
including stochastic resonance that combines bi-stable dynamics with randomly fluctuating excitation profiles [28,29] and
even chaotic responses [30]. However, they are similarly subject to the limitations of the master cantilever concept.

In this paper, a novel self-tuned rotational vibration energy harvester is proposed consisting of an assembly of thin beams
carrying a magnetic mass at an intermediate point and a tuning mass at their outer end. Such a layout has not been hitherto
reported in the literature, offering the main advantage of a self-tuning mechanism which is insusceptible to the limitations
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pertinent to previous cantilevered designs. Vibration energy is converted to electrical via electromagnetic induction to a coil
of wire. Section 2 introduces the proposed concept and the governing equations are extracted. The system's modal fre-
quencies are obtained and the effect of the tensile tuning force on the beams' mode shapes is considered. The self-tuning
mechanism is demonstrated in Section 3 using selected case studies of vibrations of up to 2� ns, which are further show-
cased in Section 4 (time history domain). The paper ends with a discussion of the main conclusions of this work.
2. The proposed energy harvester

The electromechanical system shown in Fig. 1 is considered. Two identical thin beams support a magnet of mass M1. The
beams are assumed to be made from a high strength material, such as blue tempered steel springs, and they have a uniform
cross-section along their length L. The material's Young's modulus is denoted by E; r is its density, m is the mass per unit
length and Is is the secondmoment of area of the cross-section. The rectangular cross-section has thickness denoted by ts and
width given by bS, whereas it is assumed that is undergoes negligible shear deformations and thus it abides by the Euler-
Bernoulli beam theory. The beams are clamped on one end to a rigid support rotating with angular velocity U ¼ 2pns=60,
so that thewhole assembly is free to rotate. The other end of the beams is clamped to amassless, undeformable rod that is free
to slide along the beams' axial direction (or radial direction with respect to the rotating frame of reference). This rod also
carries aweightM2 at its midspan and it is connected to a linear spring with stiffness k, acting in the axial direction. Moreover,
the two beams are connected by amassless, undeformable rod that spans perpendicularly to the beams' main axes, positioned
at a distance L1 from the clamped ends. A magnet of mass M1 is attached on this rod, interacting with a coil of thin wire
wrapped around the rod's longitudinal axis. The magnet's centre of mass is equally spaced between the two beams and the
coil is positioned in such a way that the electromagnetic coupling is maximised, as it will be discussed later. The connecting
rod also separates the beams into two segments, each point of which is at a distance xi from its adjacent support for i ¼ 1; 2, as
shown in Fig. 1. Note that x1 and x2 are related by x2 ¼ L� x1, leading to the definition L2 ¼ L� L1. Opposite positive di-
rections for x1 and x2 are chosen to ease the subsequent analysis following [31]. The distances L1 and L2 denote the same point
on the beams with respect to the two beam segments, fulfilling continuity constraints.
Fig. 1. Sketch of the proposed electromagnetic rotational energy harvester.
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2.1. Operating principle and main assumptions

The beams' assembly is allowed to vibrate in its transverse direction, as Fig. 1 shows. The relative motion between the
magnetM1 and the rigidly mounted coil induces voltage to the latter that can be harvested to power the electrical load RL via
the current flow of the closed circuit. The electromagnetic coupling is derived from solving the magnetic field and employing
Faraday's law for a point magnet and then using a correction factor for ring magnets. In fact, following Owens and Mann [32]
and referring to Fig. 2, the voltage Vc induced to the coil is given by:

Vc ¼ Qðw1ðL1ÞÞ _w1ðL1Þ (1)

where Qðw1ðL1ÞÞ is the electromechanical coupling factor given by:

Qðw1ðL1ÞÞ ¼
NcBrrsM1x

2Аc

X2
i;j¼1

ð�1Þiþj

"
ln
�
ri þ Zij

�� ri
Zij

#
(2)

with Z2ij ¼ r2i þ ½zj �w1ðL1Þ�2 and Аc ¼ ðr2 � r1Þðz2 � z1Þ (with dimensions shown in Fig. 2); Nc is the number of coil turns, Br is
the remnant magnetic field intensity, rs is the magnet density and x is the coil fill factor, which is a ratio of the conductive
material's volume over the total coil volume including the wire coating. Hence, the current flowing in the closed circuit is
derived through Kirchoff's second law and is coupled to the mechanical response of the beam assembly via QðzÞ and _w1ðL1Þ.

Since the beams are identical and symmetrically placed, the undeformable connecting rod allows the assumption that the
beams vibrate with equal lateral displacements and velocities, i.e. wiðxi; tÞ ¼ w*

i ðxi; tÞ and uiðxi; tÞ ¼ u*i ðxi; tÞ for i ¼ 1; 2. In
what follows, the asterisk is omitted from the notation for simplicity, as well as the functional arguments except when it is
required otherwise (e.g. for x1 ¼ L1). Moreover, the axial rigidity of the thin beams, EA, is much larger than their flexural
rigidity, EI. The rotary displacement of the magnetM1 with respect to each of the beams is supressed by the axial stiffness of
the symmetrically positioned beams and therefore, the rotary inertia of themagnet can be ignored as far as bendingmotion is
considered. If the connecting rod was deformable, this would hold true only for L1 ¼ L=2. However, the rigidity of the
connecting rod leads to negligible inertia for any L12ð0;LÞ. Moreover, we can assume that the connecting rod is clamped onto
the beams at L1. Therefore, the geometry of the assembly constrains the beams to have zero slopes at the points attached to
the connecting rod, i.e. w

0
1ðL1; tÞ ¼ w

0
2ðL2; tÞ ¼ 0. This assumption will be useful for simplifying the system's boundary con-

ditions and the mathematical derivations relevant to the natural frequency equations.
The beams considered in this paper are thin, i.e. ts ≪ L, and consequently the local strain ε of a beam element follows the

linear Euler-Bernoulli beam theory (where�denotes derivative with respect to spatial coordinate):

εi ¼
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1þ bu0

i
�2 þw02

i

r
� 1þ z

�
1þ bu0

i
�
w

00
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�2 þw02
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i3=2 (3)
where buiðxi; tÞ ¼ ð�1Þi�1uiðxi; tÞ to account for the change of positive direction of the axial displacement in the two i seg-
ments. The first two terms of the RHS correspond to strain due to axial deformation, denoted by e0, whereas the last term
corresponds to strain from bending, eb, with z denoting the distance of a point in the cross-section from the beam midplane
axis along the ts thin dimension. Considering that one end of each beam is free to move along the axial direction and that
EA[EI and EA[kL, we may impose the inextensionality condition that leads to:
Fig. 2. Sketch of a magnet moving along the axis of a coil of wire.
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e0 ¼ 00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ bu0

i
�2 þw02

i

r
� 1 ¼ 0 (4)
Essentially, Eq. (4) means that any axial displacement bui is induced only by the transverse motion wi. If this condition is
relaxed, the beams can undergo stretching, which is known to incur strong nonlinearities in the dynamics of problem [13].
However, this phenomenon would require fixed ends to unfold, or at least a resistive support stiffness comparable to the
beam's axial one. Herein, by assuming that EA[kL, stretching can be shown to be of very small magnitude. We may thereby
solve Eq. (4) for the axial slope to arrive at:

bu0
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�w02

i

q
� 1 (5)

where the boundary conditions of the undeformed beam have been taken into account. Expanding to a Taylor series up to 4-

th order we get:

bu0
i ¼ �1

2

�
w02

i þ 1
4
w04

i

�
(6)
Upon integration of Eq. (6), each segment's end displacement can be obtained and the total end shortening of the whole
assembly of the beams is derived as:

bu1ðLÞ ¼ bu2ð0Þ ¼ �
X2
i¼1

1
2

Z Li

0

�
w02

i þ 1
4
w04

i

�
dxi (7)
Furthermore, the beams’ strain is solely dependent on the bending strain, which upon expansion up to 4-th order
becomes:

εi ¼ z
�
w

00
i þ
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w

00
i w

02
i

�
(8)
Eqs. (3)e(8) will be recalled in the next section for the derivation of the governing equations.
The harvester assembly is attached to a rotating inertial frame that exerts centrifugal forces on the beam and the lumped

masses. Coriolis forces are also acting in the radial direction due to the beams’ transverse vibrations; yet, their magnitude can
be considered small enough to be neglected, especially for relatively high rotational speeds when the centrifugal force can be
orders of magnitude bigger than the Coriolis force due to its dependence on U2 instead of U. In what follows, we shall only
consider the effect of the rotational inertial framework due to the lumped masses, assuming that Mi[2mL, i ¼ 1; 2.

The beam assembly carries two lumped masses: one at an arbitrary point xi ¼ Li and another at the moveable end x2 ¼ 0.
The centrifugal forces acting on theses masses apply tension to the beam proportional to U2 and subject to the mass weight
and location. The axial forces applied on a beam in transverse vibration mode are known to provide a frequency altering
effect, either stiffening (tensile load) or softening (compressive load) that can even lead to buckling [13]. This allows the
possibility to design a beam assembly, where the natural frequencies are knowingly changing with variations of the rotational
speed. In most rotational engineering applications, themain frequency of torsional vibrations of shafts and other components
is typically a multiple of the rotational speed (e.g. automotive, marine, aerospace applications). Careful manipulation of the
design such that the natural frequency variation corresponds to the main (fluctuating) vibration frequency, could lead the
system to operate in resonance as long as this relation holds. The assembly design is also complemented with an axial
compressive force due to the elastic support k, which is included to allow farther flexibility in the design. Potentially, a passive
tuning design strategy is established with favourable results for vibration energy harvesting. The advantage of the proposed
concept is due to the positioning radius of the harvester. Previous literature regarded devices that needed a considerable
offset radius to achieve tuning of the beam-based harvesters. Effectively, this drawback limited the range of the potential
applications to rotors working at relatively low speeds. The herein proposed concept offers the possibility of tuning at high
working speeds, taking into account more accurate expressions of the system's mode shapes that may influence the practical
implementation of the designed tuning.

2.2. Governing equations

We shall employ Hamilton's extended principle to extract the governing equations, which requires the extraction of the
system Lagrangian L ¼ T � U, where T is the kinetic energy and U is the potential energy, complemented by the work done
by non-conservative forces Wnc. The kinetic energy of the system is given by:



P. Alevras, S. Theodossiades / Journal of Sound and Vibration 444 (2019) 176e196182
T ¼ 1
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where the last two terms correspond to the kinetic energy of the masses M1 and M2 in transverse and axial directions.

Recalling that the beams are identical, Eq. (9) becomes:

T ¼ 1
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X2
i¼1
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Z Li

0
ms _w2

i dxi

9=;þ 1
2
M1

h
_w2
1ðL1Þ

i
(10)

wherems ¼ 2m. In this paper, nonlinear inertia is not considered since it does not contribute to the sought tuningmechanism

and so, the axial velocities _bui are neglected from the expression of the kinetic energy. Then, recalling that the beams are
identical, the potential energy reads:

U ¼ 1
2

X2
i¼1

264Z Vi

0
2sb;iεb;idVi �

Z buiðLiÞbuið0Þ
Pidbui
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w2
1ðx1Þdx1 (11)

where u0 is an initial compression of the spring k responsible for pre-loading the system and dDð$Þ is the Dirac delta function.

The axial load P is defined across the span of the beams and it is given by:

P ¼
�
P1 ¼ PM1 þ PM2

; 0< x1 < L1
P2 ¼ PM2

; 0< x2 < L2
(12)

where PM1
¼ M1U

2L1 and PM2
¼ M2U

2L are the centrifugal forces acting on the lumped masses and tensile loads are taken

positive. The material has been assumed to obey the linear stress-strain relationship, sb;i ¼ Eεb;i. Substituting this equation
for the stress, the strain expression from Eq. (8), defining Es ¼ 2E, substituting dbui using Eqs. (6) and (7) and recalling thatbu2 ¼ � u2, Eq. (11) up to 4-th order becomes:
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The work of non-conservative forces comprises external and damping forces:

Wnc
i ¼

X2
i¼1

Z Li
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FðtÞ widxi �

X2
i¼1

Z Li

0
c _wi widxi (14)
FðtÞ is an externally applied force and c is the structural viscous damping coefficient. We may hereby apply the extended
Hamilton's principle:

H ¼
Z t2

t1
dΤ � dU þ dWnc ¼ 0 (15)

where dð,Þ is the variational operator. This leads to the following equation of motion for the ieth beam segment:
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and the corresponding boundary conditions (coupled via continuity constraints at x1 ¼ L1):
x1 ¼ 0 : w1ð0Þ ¼ w0
1ð0Þ ¼ 0 (17)

x1 ¼ L1 and x2 ¼ L2 : w0
1ðL1Þ ¼ w0

2ðL2Þ ¼ 0
w1ðL1Þ ¼ w2ðL2Þ
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M1
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2ð0Þ ¼ 0
Eqs. (16) and (17) describe the spatiotemporal response of the harvester for open circuit. For a closed circuit the system of
equations is complemented by Kirchoff's 2nd law and the additional electromagnetic dissipation of the mechanical response:
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LH _I þ ðRc þ RLÞI þQ½w1ðL1Þ� _w1ðL1Þ ¼ 0 (18)
Note that the electromagnetic damping applies only to the i ¼ 1 segment and the Dirac-delta function concentrates its
action at the position of the vibrating magnet, x1 ¼ L1.

2.3. Modal frequencies and mode shapes

The performance of the proposed design relies on the effective tuning of its natural frequency to the expected frequency
range of the host vibrations. It is therefore paramount to quantify the variation of the first modal frequency of the assembly
and the corresponding mode shape with rotational speed variation. The harvester is divided into two segments, coupled by
continuity constraints at x ¼ L1. Eqs. (17) and (18) are linearised and solved separately to acquire the frequency equations.
Superimposing the boundary conditions and the continuity constraint leads to a single frequency equation, which is solved
numerically. Linearising Eq. (18) and neglecting non-conservative work leads to:
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We shall consider only the first mode of the beam and thus wiðxi; tÞ ¼ fiðxiÞqðtÞ may be assumed, whereas q ¼ �unq (see
Ref. [14] for instance). Then, Eq. (19) becomes:

EsIs4
00 00
i � ðPi � ku0Þ4

00
i �msu

2
n4i ¼ 0; i ¼ 1;2 (20)
The above differential equation accepts solutions of the following form:

4iðxiÞ ¼ Ai cos sa;ixi þ Bi cosh sb;ixi þ Ci sin sa;ixi þ Di sinh sb;ixi; i ¼ 1;2 (21)

where sa;i and sb;i are parameters given by:
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Utilizing the boundary conditions at x1 ¼ 0 and x2 ¼ 0, Eq. (21) becomes:

4iðxiÞ ¼ Ai
�
cos sa;ixi � cosh sb;ixi

�þ Ci
�
sin sa;ixi � sinh sb;ixi

�
; i ¼ 1;2 (23)

and the continuity constraint: w0
1ðL1Þ ¼ w0

2ðL2Þ ¼ 0, further simplifies this expression with:
Ci ¼
Ai
�
sa;i sin sa;iLi þ sb;i sinh sa;iLi

�
sa;i
�
cos sa;iLi � cosh sa;iLi

� ; i ¼ 1;2 (24)
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Using the first mode generalised response, the remaining boundary condition that regards forces in the transverse di-
rection becomes:

M1u
2
n41ðL1Þ þ EsIs

h
4

000
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000
2ðL2Þ

i
þ PM1

L1
41ðL1Þ ¼ 0 (25)
Substituting Eqs. (22)e(24) into Eq. (25) and into the continuity constraint for the deflection at x1 ¼ L1: 41ðL1Þ ¼ 42ðL2Þ,
leads to a 2� 2 linearmatrix equationwith respect to Ai; i ¼ 1; 2. Thematrix equation has non-trivial solutions only when the
2� 2 coefficient matrix has a non-zero determinant, which is the final equation with respect to un that is numerically solved
to compute the first modal frequency. Afterwards, the unknown coefficients Ai are computed by imposing the normalisation
condition on top of the deflection continuity constraint at x1 ¼ L1: 41ðL1Þ ¼ 42ðL2Þ.Z L1
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The analysis so far has allowed an accurate estimation of the influence of the different axial loads that the two segments of
the beams are exposed to. Moreover, the vibrating magnet can be positioned at an arbitrary point x1, which additionally
influences the mode shapes of the assembly. Previous literature has hitherto disregarded the effect of the changing mode
shapes, which can potentially lead to significant errors when the rotational speeds are relatively high. Fast rotations lead to
parabolically increasing axial forces that determine the mode shapes to a great extent and consequently, the modal fre-
quencies. A case study is considered to show the mode shape variation with respect to the rotational speed of the assembly.
The assumed parameters are listed in Table 1.

Fig. 3 shows the first mode shape for static conditions and three rotational speeds: 1800, 3600 and 6000 rpm. Clearly, there
is a distinguished variation of themode shapewhen the rotational speed is increasing. The effect of this variation is evenmore
substantial when calculating the modal frequency (with participation of the first and second spatial partial derivatives of the
mode shape):
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Neglecting the dependence of mode shapes on the rotational speed can lead to miscalculation of the modal frequency
when fast rotations are considered. Past literature has largely neglected the effect of varying mode shapes onto potential
tuning mechanisms. Usually, a trial function [22,27] or a constant mode shape [20,21,25] was chosen to represent the mode
shape of a thin beam for all rotational speeds. Therefore, the magnified influence of the axially acting centrifugal forces on a
fast rotating beam, have been misrepresented in previous models. To highlight the importance of accurately including the
expressions for themode shapes, the herein described procedure for computing the system's modes is applied to the previous
case study and the resultant modal frequency is compared against the result of a simplified approach. The simplified approach
assumes that the mode shape of the beam is fixed for all rotational speeds (equal to the static mode shape of zero rotational
velocity). Thus, the frequency is computed by changing the magnitude of the axial force only.

Fig. 4 shows that when the host rotor runs at relatively high speeds the variation of the mode shapes should be accounted
for. Even though the error does not exceed 10%, one should consider that self-tuned harvesters normally operate based on
maintaining linear resonance over the tunable range. Overestimation of the harvester's natural frequency by the observed
error may lead to substantial frequency mismatch and to severe reduction of the extractable electrical power when linear
resonance is sought. Therefore, it is shown that accurate expressions for the mode shapes should be used for high rotational
speeds.
Table 1
Parameters considered in the numerical case study.

Parameter Value

Es 400 GPa
bs 0.02m
ts 203 106m
r 7810 kg/m3

L 0.075m
L1 0.04m
M1 0.108 kg
M2 0.0243 kg
k 8.942 103 N/m
u0 0.00313m



Fig. 3. Mode shapes of the beams for different rotational speeds. Case study computed for the parameter values listed in Table 1.

Fig. 4. Comparison of computing the harvester's first modal frequency using the herein described approach (eeeeeee) and assuming a fixed mode shape (e e

e e), for the parameters of Table 1.
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3. Self-tuning

The harvester is self-tuned such that the first modal frequency follows the expected vibration frequency along a range of
rotational speeds. Normally, the frequency of torsional vibrations in rotating systems is proportional to the rotational speed.
For example, 4-cylinder IC engines generate (predominantly) 2nd order torsional oscillations on the vehicle's powertrain. In
this scenario, one would aim at designing the harvester such that its modal frequency is twice the rotational speed.

The modal characteristics of the herein proposed harvester depend on typical parameters for Euler-Bernoulli beams, such
as the geometry (bs; ts; L) and material properties (r; Es; Is). Additionally, the axial forces that tune the assembly's frequency
depend on the position and weight of the vibrating magnet, L1; M1, that of the far-end mass, L; M2, and on the preload, Ppre ¼
ku0. In given applications, the total lumped mass, Mt ¼ M1 þ M2, and the assembly size are usually dictated by collateral
constraints. Hence, the analysis would be more interesting with respect to non-dimensional parameters. In this section,
parametric studies are conducted on the distribution of mass,M1=Mt , on the relative positioning of the magnet, L1=L, and on
the magnitude of the preload, Ppre, to show the variation of the tuning mechanism and the consequent design options.

The above parameters are varied independently from each other in Figs. 5e7, and the resulting variation of the modal
frequency is plotted. The presented graphs are generated for the parameters of Table 1, except for the independently varied
parameter on each graph. Fig. 5 depicts the variation of the modal frequency with changing the distribution of mass. At
relatively low speeds, frequencies undergo a minor adjustment; however, at higher speeds where the axial centrifugal forces
are stronger, the curve is substantially varied in an almost linear fashion. Concentratingmass at the far end of the beams leads
to a higher slope of the frequency curve. This is due to the higher intensity of the centrifugal force that acts onM2, as opposed
to M1. Comparing the variation of the slope in Fig. 5 with that in Figs. 6 and 7, we note that the distribution of mass is much



Fig. 5. Variation of the harvester's first modal frequency un with increasing rotational speed ns for a different distribution of mass M1=Mt , and the parameters of
Table 1.

Fig. 6. Variation of the harvester's first modal frequency un with increasing rotational speed ns for a different positioning of the vibrating magnet L1=L, and the
parameters of Table 1.

Fig. 7. Variation of the harvester's first modal frequency un with increasing rotational speed ns for different preloads Ppre , and the parameters of Table 1.
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more effective than the position ofM1 or the preload in adjusting the slope of the frequency curve. Therefore, the first step in
tuning the harvester to the identified order of vibrations (1�, 2� the rotational speed) is to adjust the distribution of mass
such that the slope of the modal frequency curve approaches the slope of the torsional vibrations frequency. On the other
hand, changing the position of the magnet, shown in Fig. 6, leaves the slope unaffected. Nevertheless, L1=L introduces an
almost uniform offset of the curve along the vertical axis. This attribute can be used to move the curve to the desired fre-
quency values without mistuning the slope of the curve.

Finally, the influence of applying a compressive preload at the far-end of the beams (x2 ¼ 0) is considered in Fig. 7. Note
that when the harvester is not rotating (ns ¼ 0) the applied load may lead to buckling of the beams, if the preload is greater
than the critical buckling load. As a matter of fact, the last case in Fig. 7 (Ppre ¼ 80 N) corresponds to a buckled harvester. This
is why the depicted frequency curve has its origin just after 800 rpm. Of course, buckled beams can be also subject to
oscillatory response, but the slope of the curve in the buckled range would be negative and, as such, of no use for the herein
considerations. Besides, several rotor applications operate over a minimum speed (e.g. internal combustion engines work
above the idling speed). The preload is more prominent in the lower speed range, where the mass distribution could not have
a strong influence. At the same time, both the curve slope and the modal frequency values at the higher speed range are
almost unaffected by the preload. Therefore, the applied preload can be used as the third step in tuning the harvester at lower
speeds, where the previously examined parameters were unable of doing so.
3.1. Case studies

The above presented procedure for designing the harvester such that its modal frequency is passively tuned to the fre-
quency of vibrations is demonstrated. In rotor applications, torsional vibrations are typically manifested at multiples of the
main rotor speed. In this section, three case studies are considered for the dominant order of the vibrations using the pa-
rameters of Table 2; namely, 1� , 1:5� and 2� the rotational speed (ns). The first modal frequency is computed across a wide
range of operating speeds (0e6000 rpm) and it is compared against the frequency of the vibrations. Ideally, the two curves
shown in each of Figs. 8e10 should coincide to achieve perfect self-tuning. Even though not strictly necessary, the total mass
of the tuning elements (Mt) is kept constant for all three case studies. This is to demonstrate the flexibility of the design to
target different orders of vibration frequencies via minor configuration adjustments of the mass distribution, the vibrating
magnet position and the applied preload. A comprehensive parameter optimisation process might well lead to successful self-
tuning.

Fig. 8 shows the results for the first case study that considers 1� ns rotational vibrations. The slope of the vibrations
frequency with increasing ns is relatively gentle and so, following the parametric analysis in Fig. 5, most of the mass is kept
with the vibrating magnet (M1=Mt ¼ 81:86%). Furthermore, the magnet is positioned exactly at the midspan of the beams to
offset the self-tuned modal frequency to the lowest possible range. Last, a considerable preload is applied, yet lower than the
critical buckling load, to adjust the lower speed range. Note that the slopes of the two curves in Fig. 8 are almost equal, which
is the envisaged target. Since themodal frequency increases with a rate similar to the excitation frequency, the same response
amplitude can be maintained across the examined frequency range. Therefore, resonant or near-resonance response can be
sustained for any operational speed within the considered limits, leading to broadband energy harvesting.

A similar procedure can be applied for 1:5� ns and 2� ns vibrations, as shown in Figs. 9 and 10. The computed frequencies
in Fig. 9 have simia lar pattern with the previous results in Fig. 8. The slope of the vibrations frequency is steeper and
therefore, the mass is distributed more evenly (M1=Mt ¼ 65:93%), but the position of the magnet is the same as before,
whereas the preload has slightly been increased to 62 N. Fig. 10, however, exhibits a qualitatively different picture. A steeper
Table 2
Parameters considered in the numerical case studies
shown in Figs. 8e10.

Parameter Value

Es 400 GPa
bs 0.02m
ts 203 106 mm
r 7810 kg/m̂3
L 0.058m
Mt 0.182 kg
k 8.942 103 N/m
Br 1.31 T
LH 75.6 10�3 H
Rc 93 Ohms
RL 100 Ohms
hc 0.015m
Do 0.045m
Di 0.036m
Nc 1300 turns
M1;nm 0.029 kg



Fig. 8. Modal frequency of the self-tuned harvester for the first case study (1� ns) using the parameters of Table 2 and : M1 ¼ 0:149 kg, Mt ¼ 0:182 kg, L1 ¼
0:5L, Ppre ¼ 60 N.

Fig. 9. Modal frequency of the self-tuned harvester for the second case study (1:5� ns) using the parameters of Table 2 and : M1 ¼ 0:12 kg, Mt ¼ 0:182 kg, L1 ¼
0:5L, Ppre ¼ 62 N.

Fig. 10. Modal frequency of the self-tuned harvester for the third case study (2� ns) using the parameters of Table 2 and : M1 ¼ 0:095 kg, Mt ¼ 0:182 kg, L1 ¼
0:5L, Ppre ¼ 85 N.
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slope (2� ns) requires more inertia placed at the far-end of the beams (M1=Mt ¼ 52:19%), and the preload has been increased
to 85 N, which is higher than the critical buckling load. Therefore, at low speeds including the static case the beams are
buckled. As the rotational speed increases, higher centrifugal loads are exerted onto the system and consequently, the beams
return to a pre-buckling shape above 900 rpm.We note that the achieved self-tuning in Fig.10 is almost ideal, since themodal
frequency almost coincides with the excitation frequency for the examined speed range.

4. Numerical case studies

The time history of the system's mechanical response and electrical output can be computed by solving the equation of
motion (18). Assuming that the response is dominated by the first mode,wi ¼ 4iðxiÞqðtÞ, multiplying by 4iðxiÞ and integrating
over each segment's domain, the differential equation for each segment becomes:Z Li
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Applying integration by parts where applicable leads to:Z Li
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Adding the equations for the two segments, i ¼ 1; 2 and utilizing the normalisation condition (26) and the frequency Eq.
(27), the equation of motion in generalised coordinates becomes:
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Note that the response of the harvester will also be subject to the effect of the nonlinear stiffness coefficient, b. It is
assumed that the harvester is to be used as an attachment to a larger host structure. Therefore, the type of forcing that the
harvester will be subject to can reasonably be assumed as a base excitation (€z is the input vibrations of the mounting shaft):
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The case studies of the previous section for the vibrations of the three different speed orders are extended with
computation of the response time history, via Runge-Kutta numerical integration of Eqs. (30)e(32). The analysis is focused on
themagnet's transverse velocity and on the voltage generated. Moreover, the corresponding time history of the power output
is shown, as well as the axial displacement of the far-end support to confirm its negligible magnitude. The parameters used in
the simulations for the beams, the masses and the coil are shown in Table 2, whereas the tuning parameters are varying as in
Section 3. It is assumed that M1 is not fully magnetic, but rather an assembly of magnets with non-magnetic mounting parts
with mass M1;nm.

The time histories presented in Figs. 11e13 verify the expected broadband character of the harvester's output. In all case
studies, the magnet's velocity retains almost constant amplitudes for all the examined speeds. This is also consistent with the
Fig. 11. Time history of the harvester response to 1� ns vibrations by numerically integrating Eqs. (30) e (32), using the parameters listed in Table 2 and M1 ¼
0:149 kg, Mt ¼ 0:182 kg, L1 ¼ 0:5L, Ppre ¼ 60 N; (a) deflection of the vibrating magnet M1; (b) velocity of the vibrating magnet M1; (c) Voltage induced to the
coil; (d) axial displacement of the beams' far-end support; (e) power delivered to the external electrical load RL .



Fig. 12. Time history of the harvester response to 1:5� ns vibrations by numerically integrating Eqs. (30) e (32), using the parameters listed in Table 2 and M1 ¼
0:120 kg, Mt ¼ 0:182 kg, L1 ¼ 0:5L, Ppre ¼ 62 N; (a) deflection of the vibrating magnet M1; (b) velocity of the vibrating magnet M1; (c) Voltage induced to the
coil; (d) axial displacement of the beams' far-end support; (e) power delivered to the external electrical load RL .
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voltage induced at the closed circuit ends of the coil, which also demonstrates a relative insensitivity to the rotor speed. It is
also noted that the axial displacement of the harvester remains at considerably low values (below 0.6mm for all cases), which
validates the initial assumption of negligible nonlinear inertia. The results of Fig. 13 also show that when themodal frequency
curves from Section 3 (Figs. 8e10) cross the examined vibrations frequency curve, an increase of the output is observed that
corresponds to perfect resonance. This is observed in all the time histories in Fig. 13 at about 1800 rpm. Cross-correlating with
Fig. 10, it is verified that this resonance occurs due to the perfect match of the tuned frequency to the instantaneous vibration
frequency. Nevertheless, in this case as well, the amplitudes of the voltage output and the corresponding power delivered to
the load are retained within a considerable range. For example, the voltage output in Fig. 13(b) is above 2.5 V for every speed
above 1500 rpm. This corresponds to significantly broad response spectrum of about 75 Hz. Effectively the proposed harvester
can operate without the known bandwidth limitations that linear and, to some extent, nonlinear energy harvesters suffer
from. The numerical results have demonstrated the capability of establishing nearly purely broadband output.



Fig. 13. Time history of the harvester response to 2� ns vibrations by numerically integrating Eqs. (30) e (32), using the parameters listed in Table 2 and M1 ¼
0:095 kg, Mt ¼ 0:182 kg, L1 ¼ 0:5L, Ppre ¼ 85 N; (a) deflection of the vibrating magnet M1; (b) velocity of the vibrating magnet M1; (c) Voltage induced to the
coil; (d) axial displacement of the beams' far-end support; (e) power delivered to the external electrical load RL .
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4.1. Comparison against a cantilever beam harvester

The proposed concept for harvesting energy from torsional vibrations was shown to offer a substantial degree of flexibility
for self-tuning to the dominant frequency of oscillations. More importantly, the concept promises effective tuning for a wide
speed range of the housing rotor, including relatively high speeds. This is a noteworthy step forward for rotational vibration
energy harvesting. In particular, the majority of existing self-tuned harvesters have been following the generic layout of a
cantilever beam with a tip mass, utilizing axial gyroscopic forces acting on the tip mass to introduce self-tuning. Here, the
performance of the proposed harvester for the case of 1� ns vibrations will be compared against a variety of cantilever beam
designs to demonstrate its potential to improve the performance of existing self-tuned harvesters.

The cantilever beam counterpart follows similar dynamics with the proposed harvester, with a few e yet crucial e dif-
ferences. It is modelled using clamped-free boundary conditions instead of the hybrid boundary conditions shown in Fig. 1.
Moreover, the mass is concentrated at the tip of the harvester. The self-tuning mechanism of the cantilever harvester can be
adjusted by varying the tip mass weight and the cantilever length, both intended to alter the magnitude of centrifugal forces
in order to induce an appropriate slope to the modal frequency curve. The axial force can also be adjusted by offsetting the



Fig. 14. Comparison of un against un;c for selected cantilever beam cases of M1 ¼ 0:182 kg and varying L1, with the remaining parameters drawn from Table 2.

Fig. 15. Comparison of un against un;c for selected cantilever beam cases of L1 ¼ 18 mm and varying M1, with the remaining parameters drawn from Table 2.

P. Alevras, S. Theodossiades / Journal of Sound and Vibration 444 (2019) 176e196 193
root of the beam to a radius r, even though this may have an adverse impact on the size of the device and the required
installation space. Therefore, a similar analysis can be applied using only the i ¼ 1 segment of the beams and modifying the
boundary conditions in Eq. (17) accordingly, leading to a modified version of Eq. (27), where k is omitted and mode shape 41
corresponds to that of a cantilever beam:
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For the purpose of comparing the tuning capability of the two concepts the total size of the examined case studies is kept
equal, L ¼ 0:058 m. When the cantilever length L1 is varied, the difference with respect to L is introduced as offset, r ¼ L� L1.
Figs. 14 and 15 show the frequency curve of the proposed harvester as taken from Fig. 8, along with the considered frequency
of oscillations at 1� ns. These curves are compared against un;c for selected variations of the cantilever beam harvester. In
particular, the cases shown in Fig. 14 correspond toM1 ¼ 0:182 kg and varying L1, whereas the curves of Fig. 15 are calculated
for L1 ¼ 0.018m and varyingM1. It is evident from both figures that the cantilever beam harvester is limited on the slope that
its modal frequency can followwith increasing speed, which results to reduced capability in adjusting themodal frequency of
the harvester to the frequency of oscillations. On the other hand, the proposed concept can tune itself almost to an ideal
frequency match regardless of the magnitude of the rotational speed, subject to the necessary optimisation.

The restrictions in the performance of the cantilever beam harvester are fundamentally related to Eq. (33) and specifically
to the second term of its right-hand-side. The first term in the integrand controls the constant part of the cantilever's modal
frequency and the passive tuning is achieved by the combination of the second term that results from the tensile centrifugal
force, PM1, and the last term in Eq. (33). Intuitively, in order to increase the slope of un;c with increasing ns, onewould attempt
to increase the axial centrifugal forces through M1 and L1. Apart from the uniform reduction that higher inertia and length
will cause to themodal frequency, the effect of the tensile load in the integral in Eq. (33) is counteracted by the last term in this
equation that behaves as a negative virtual spring. This term corresponds to the transverse load acting on the tip mass due to
the changing direction of the centrifugal force, as the cantilever tip mass vibrates. These opposing terms are both dependent
on the centrifugal force (specifically on the productM1U

2), and as a result, an increasing rotational speedwould affect them in
the same way. Especially for larger rotational speeds where the magnitude of the integral is dominated by U2 , there is only a
narrow potential for self-tuning. Note that this is valid both for “small” and “large” vibrations of the magnets. Therefore, the



Fig. 16. Velocity and voltage time histories for the proposed concept and the cantilever beam counterpart for 1� ns. Results for the proposed concept are re-
plotted from Fig. 11 for comparison purposes whereas the cantilever beam results correspond to L1 ¼ 18 mm in Fig. 14.
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cantilever beam harvester is subject to a relatively low limit for the achievable slope, especially when high rotational speeds
are considered.

In contrast, the concept proposed in Fig.1 can overcome this limitation due to the presence of a non-vibrating tuningmass,
without requiring increased inertia or space, and without needing structural elements to be replaced (e.g. beam thickness,
width, material, etc.). By cross-examination of Eq. (33) with the proposed harvester's modal frequency in Eq. (27), one could
notice that the terms responsible for tuning are augmented by the centrifugal force of the tuningmass,M2, inherent to both P1
and P2. Since the tuning mass is not vibrating in the transverse direction, there is no tangential component of the centrifugal
force, which disrupts the tuning in the cantilever example. Even though the last term in Eq. (33) is still present in Eq. (27), its
negative action is overcome by the terms that depend only on M2, entering the formula through both P1 and P2. Hence, the
tuning mechanism attains a much higher potential for self-tuning.

To complete this analysis, time histories of the magnet's velocity and voltage are shown in Fig. 16 for the two juxtaposed
concepts. For the cantilever beam counterpart, the case shown in Fig. 14 for L1 ¼ 18 mm is selected. The numerically
computed time histories show that the cantilever beam concept exhibits a nearly regular resonance, whereas the proposed
concept demonstrates an almost purely broadband output. Even though the resonant response of the cantilever beam leads to
higher peak voltage output due to the whole mass participating in electromagnetic interactions, this only occurs for a narrow
frequency window, which in real-life applications with variable rotor speeds would be insufficient.
5. Conclusions

A novel concept for harvesting energy from torsional vibrations in rotor applications has been proposed. The dominant
frequencies of typical torsional oscillations are proportional to themain rotor speed. The proposed concept utilizes centrifugal
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forces acting radially on a novel layout of thin beams to adjust the modal frequency of the harvester to the frequency of
oscillations. The novelty lies in the distribution of harvester's inertia and in the introduction of a preload to overcome re-
strictions of existing harvester concepts. In particular, the presented concept uses a tuning mass at the outer support of the
beams, which adjusts the self-tuning mechanism without affecting the vibrating inertia, and consequently avoiding adverse
effects on the modal frequency. The preload has been shown to be useful for tuning the harvester to the lower speed range.
The adopted self-tuning mechanism can offer high flexibility in adjusting a master design to a specific application (where
torsional vibrations may follow different speed orders) without structural alterations (e.g. geometry and material of the
beams). Numerical case studies for 1 �, 1.5 � and 2 � rotational speed orders were conducted. The studies showed the
effectiveness of the self-tuned harvester to adjust its frequency to the expected order, whereas numerically computed time
histories demonstrated its advantages in terms of the nearly purely broadband voltage and power output observed in a
considerably wide frequency range. The proposed concept was also juxtaposed to a widely employed self-tuned harvester,
based on a cantilever beam with a tip mass. The latter is limited mainly by the lateral components of the centrifugal forces,
which effectively oppose the stiffening outcome of the tension imparted on the beams, leaving only the option of structural
alterations to tune the cantilever harvester. However, the necessary corresponding downsizing of the beam thickness is
incompatible with high rotor speeds from a material strength viewpoint. This limitation has been shown to be overcome by
the proposed concept. Introduction of two independent parameters: the weight of the tuning mass and the magnitude of the
preload allow greater flexibility in the design, leading to nearly constant voltage output within typical speeds of variable
speed rotors.
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