
University Library

III Lo~gh~orough
.Umverslty

Author/Filing Title f.t.LJ;;~ .. ~., ... A.:

-r Class Mark .. .

Please note that fines are charged on ALL
overdue items.

0403819237

11111111111111111111111111111111111111" 11111 •

Algorithms for the k-error linear complexity of

cryptographic sequences over finite fields

by

Alexandra Alecu

A Doctoral Thesis

Submitted in partial fulfilment

of the requirements for the award of

Doctor of Philosophy

of

Loughborough University

19th December 2008

. Copyright 2008 Alexandra Alecu

Qr1 Loughhonmgh
;.,-/".~:'~'~ Univcnity :"":.>"

Pilkir:f'~n"" Lihrary
,.- ~

Date 12:>/t2f0 1
-Class I

~~~ CXGO"3<6/ er??.7 



i 

Linearity may be the curse of the cryptographer, but it is also his best guide to 

perfect secrecy. 

James L. Massey, Cryptography and System Theory, 1986 



Contents 

List of Tables v 

List of Figures vii 

Notation 1 

Abbreviations 2 

1 Introduction 3 

1.1 Motivation . 3 

1.2 State of the art 4 

1.3 Contribution. . 4 

1.4 Thesis structure . 5 

2 Background 6 

2.1 General Background 6 

2.2 Mathematical Background 12 

2.2.1 Linear recurrences 13 

2.2.2 Characteristic polynomial 13 

2.2.3 Periodic sequences .... 14 
2.2.4 Linear Feedback Shift Registers 16 

2.2.5 Linear complexity . . . . . . . 17 

2.2.6 Berlekamp-Massey Algorithm 21 

2.2.7 k-error linear complexity . 25 

3 k-error linear complexity problem 29 

3.1 NaIve Exhaustive Search Algorithm 31 
3.2 Efficient Exhaustive Search Algorithm 34 

3.3 Algorithm analysis 44 

3.4 Conclusion. . . . . . . . . . . . . . . . 48 

ii 



CONTENTS 

4 Modified BerIekamp-Massey Algorithm 

4.1 Introduction .............. . 

4.2 Modified BerIekamp-Massey Algorithm 

4.3 Algorithm analysis . . . 

4.4 Tests and results .. . . . . . . . . . . 

4.5 

4.4.1 

4.4.2 

4.4.3 

4.4.4 

4.4.5 

4.4.6 

Binary sequences . . . . . . . . 

L-constrained k-error linear complexity problem 

Significance of the heuristic selection 

Sequences of different lengths . . . . . . . 

Sequences of higher length . . . . . . . . . 

Sequences over finite fields of higher order 

Conclusion. . . . . . . . . . . . . . . . 

5 Evolutionary Computation Techniques 

5.1 Genetic Algorithm .. 

5.1.1 Background .... . 

5.1.2 kGA Algorithm .. . 

5.1.2.1 Individuals 

5.1.2.2 The fitness function 

5.1.2.3 Selection 

5.1.2.4 Crossover 

5.1.2.5 Mutation 

5.1.2.6 Summary 

5.1.3 Experiments and results 

5.1.4 Conclusion ....... . 

5.2 Simulated Annealing Algorithm 

5.2.1 Background ...... . 

5.2.2 kSA Algorithm . . . . . 

5.2.3 Experiments and results 

5.2.4 Conclusion. 

5.3 Conclusions . . . . . . . . 

6 Discrete Fourier Transform 

6.1 Background . . . . . . . . 

6.2 k-error linear complexity computation using DFT 

6.2.1 Extension field k-error linear complexity . 

6.2.2 Problem transformation ......... . 

6.2.3 Approximation algorithm for the extension field k-error lin-

iii 

49 

49 
52 

61 

64 

65 

69 
72 

73 

81 
83 

83 

93 

93 

93 

95 

96 

97 

99 
.104 

.107 

.109 

.109 

· 122 

· 122 

· 123 

· 124 

· 130 

· 134 

· 134 

138 

· 139 

· 142 

· 142 

· 143 

ear complexity ......................... 144 



CONTENTS 

6.3 An improved approximation algorithm 

6.4 Experimental results 

6.5 Conclusion. 

7 Conclusions 

7.1 Concluding remarks. 

7.2 Suggestions for future work 

References 

A Rings, Ideals and Finite Fields 

iv 

· 148 
.158 

· 161 

163 

· 163 

· 164 

165 

172 



List of Tables 

4.1 Intermediate results for the Berlekamp-Massey Algorithm applied 

to the sequence s = 0110111101110101 .. . . . . . . . . . . . . . . 51 

4.2 The average accuracy of the results of the MBM Algorithm. .... 65 

4.3 The running time in seconds for MBM and EES Algorithms for 

k-error linear complexity profile problem (different values for pa­

rameter ko). . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . 68 

4.4 The running time improvement of the MBM Algorithm when com-

pared with EES Algorithm for k-error linear complexity profile 

problem (different values for parameter ko). •............ 68 

4.5 The number of error patterns visited by the MBM and EES Algo­

rithms for k-error linear complexity profile problem (different values 

for parameter ko). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

4.6 The number of error patterns visited by the MBM Algorithm com­

pared to EES Algorithm for k-error linear complexity profile prob-

lem (different values for parameter ko). . . . . . . . . . . . . . . . . 69 

4.7 The running time in seconds for MBM and EES Algorithms for the 

L-constrained k-error linear complexity problem. . . . . . . . . . .. 70 

4.8 The running time improvement of the MBM Algorithm when com­

pared with EES Algorithm for the L-constrained k-error linear com-

plexity problem (different values for parameters ko and Lo).. . .. 70 

4.9 The number of error patterns visited by the MBM and EES Algo­

rithms (different values for parameters ko and Lo). . . . . . . . . .. 71 

4.10 The number of error patterns visited by the MBM Algorithm com­

pared to EES Algorithm for L-constrained k-error linear complexity 

problem (different values for parameters ko and Lo). . . . . . . . . . 71 

4.11 The runtime and number of error patterns for MBM Algorithm 

applied to sequences over different finite fields. . . . . . . . . . . . . 83 

5.1 Example of Elitist Selection oflevel25% on sequence s = 1011110011010110 

and ko = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 

v 



LIST OF TABLES vi 

5.2 Example of Roulette Wheel Selection on sequence s = 1011110011010110 

and ko = 5 (part 1) ........................... 103 

5.3 Example of Roulette Wheel Selection on sequence s = 1011110011010110 

and ko = 5 (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

5.4 Example of Tournament Selection on sequence s = 1011110011010110 

and ko = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 

5.5 The accuracy of the results of kGA(32, 5, s, PS, NOGEN, ST, XT, 

MT, 0.6, 0.05) - Top 10 best configurations .............. 111 

5.6 The accuracy of the results of kGA(32, 5, s, PS, NOGEN, ST, XT, 

MT, 0.6, 0.05) - Top 10 worst configurations ............. 111 

5.7 The accuracy of the results of kGA(64, 9, s, PS, NOGEN, ST, XT, 

MT, 0.6, 0.05) - Top 10 best configurations .............. 116 

5.8 The accuracy of the results of kGA(64, 9, s, PS, NOGEN, ST, XT, 

MT, 0.6, 0.05) - Top 10 worst configurations ............. 117 

5.9 The 5-error linear complexity results of kGA(32, 5, s(i), 1100, 10, 

ELSEL(25%), TPX, SRM, 0.6,0.05) compared to the exact values 121 

5.10 The 9-error linear complexity results of kGA(64, 9, SCi), 4000, io, 
. ELSEL(25%), TPX, SRM, 0.6, 0.05) compared to the exact value 

of L9(s) = 14 .............................. 122 

5.11 The accuracy for the k-Error Simulated Annealing Algorithm ap-

plied to 5 binary sequences of length 32 and ko = 5. . . . . . . . . . 131 

5.12 The accuracy for the k-Error Simulated Annealing Algorithm ap-

plied to a binary sequence of length 64 and ko = 9. ......... 134 

5.13 The accuracy of the different heuristic algorithms on binary se-

quences of length 32 and when ko = 5. ................ 136 

5.14 The accuracy of the different heuristic algorithms on binary se-

quences of length 64 and when ko = 9. . 137 

6.1 The splitting of the sequence S 

6.2 kDFT-Approximation-Shift .. 

6.3 Experimental results . . . . . . 

6.4 Experimental results (continued) 

6.5 Experimental results (continued) 

.147 

.156 

· 159 

· 160 

· 161 



List of Figures 

2.1 Cryptography .............. . 

2.2 A symmetric cryptosystem ....... . 

2.3 Stream cipher system based on addition. 

2.4 A general L-stage Linear Feedback Shift Register. 

6 

7 

9 

10 

2.5 A LFSR for a ultimately periodic sequence. 15 

3.1 The execution tree of the efficient exhaustive search algorithm. 39 

4.1 Example of the Modified Berlekamp-Massey Algorithm tree of error 

and no-error recursive calls for the sequence s = 0110111101110101 52 

4.2 Solution tree generated with the Modified Berlekamp-Massey Algo­

rithm for the sequence s = 1011011010111010 . . . . . . . . . . . . 56 

4.3 Solution tree generated with the optimised Modified Berlekamp­

Massey Algorithm for the sequence s = 1011011010111010 . . . . . 58 

4.4 The k-error linear complexity profile for the sequence s = 1011011010111010 59 

4.5 The accuracy of the Modified Berlekamp-Massey Algorithm for bi-

nary sequences of length 64 (ko = WH(S) - 1) . . . . . . . . . . .. 66 

4.6 The accuracy of the Modified Berlekamp-Massey Algorithm for bi-

nary sequences of length 64 (ko = 15%t) ............... 67 

4.7 The difference between the approximation of the Modified Berlekamp­

Massey Algorithm and the exact result for binary sequences of 

length 64 when Lo = 33%t . . . . . . . . . . . . . . . . . . . . . . . 70 

4.8 The difference between the approximation of the Modified Berlekamp­

Massey Algorithm and the exact result for binary sequences of 

length 64 when ko = 15%t and Lo = 33%t ............. . 71 

4.9 The accuracy of the KRandom for sequences of length 64. ..... 73 

4.10 The accuracy of the KRandom for sequences of length 64 (zoom for 

0:::; k :::; 10). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 74 

4.11 The relation between the average running time improvement on 

logarithmic scale and the length of the sequences. . . . . . . . .. 75 

vii 



LIST OF FIGURES viii 

4.12 The relation between the number of error patterns on logarithmic 

scale and the length of the sequences. . . . . . . . . . . . . . . . . . 76 

4.13 The average runtime of MBM Algorithm on a logarithmic scale in 

relation to the length of the sequence. ................ 77 

4.14 The average number of error patterns processed by MBM Algorithm 

on a logarithmic scale in relation to the length of the sequence. 78 

4.15 The average accuracy of the k-error linear complexity found by the 

MBM Algorithm for different values of k and for different lengths. . 79 

4.16 The average accuracy of the k-error linear complexity found by 

KRandom Algorithm for different values of k and for different lengths 

(compared with MBM accuracy) . . . . . . . . . . . . . . . . . . .. 80 

4.17 The accuracy of the results found by MBM Algorithm on 100 se­

quences of length 100, when the sequences were artificially modified 

with errors sequences of weight: (a) k ::; 15% of the length; (b) 

k = 10% of the length; (c) k = 5% of the length; ......... 82 

4.18 The accuracy of the results found by MBM Algorithm on 21 se­

quences of length 128, when the sequences were artificially modified 

with errors sequences of weight: (a) k ::; 15% of the length; (b) 

k = 10% of the length; (c) k = 5% of the length; ......... 84 

4.19 The accuracy of the results found by the MBM Algorithm on a 

sample of 50 random sequences of length 32 with terms in GF(2). . 85 

4.20 The accuracy of the results found by the MBM Algorithm on a 

sample of 50 random sequences of length 32 with terms in GF(3). . 86 

4.21 The accuracy of the results found by the MBM Algorithm on a 

sample of 50 random sequences of length 32 with terms in GF(5). . 87 

4.22 The accuracy of the results found by the MBM Algorithm on a 

sample of 50 random sequences of length 32 with terms in GF(2), 

GF(3), GF(5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

4.23 Comparison between the accuracy of the results found by the MBM 

Algorithm and KRandom Algorithm on a sample of 50 random 

sequences of length 32 with terms in GF(2). . . . . . . . . . . . . . 89 

4.24 Comparison between the accuracy of the results found by the MBM 

Algorithm and KRandom Algorithm on a sample of 50 random 

sequences of length 32 with terms in GF(3). . . . . . . . . . . . . . 90 

4.25 Comparison between the accuracy of the results found by the MBM 

Algorithm and KRandom Algorithm on a sample of 50 random 

sequences of length 32 with terms in GF(5). .. 91 

5.1 Schematic view of a Simple Genetic Algorithm. 94 



LIST OF FIGURES ix 

5.2 The relation between the growth of population size and search space 

size with the length of the input sequence when ko is 15%t. . . . . . 98 

5.3 Distribution of linear complexities of s = 0110111101110101 when 

combined with all poosible error sequences over GF(2)16 ...... 100 

5.4 The accuracy of the results found by the Genetic Algorithm on a 

sample of 5 random binary sequences of length 32 with different 

parameters - Top 10 best configurations. . . . . . . . . . . . . . . . 112 

5.5 The accuracy of the results found by the Genetic Algorithm on a 

sample of 5 random binary sequences of length 32 with different 

parameters - Top 10 worst configurations . . . . . . . . . . . . . . . 112 

5.6 The average accuracy of the results of the Genetic Algorithm on 

a sample of 5 random binary sequences of length 32 for different 

population size / number of generations combinations . . . . . . . . 114 

5.7 The average accuracy of the results of the Genetic Algorithm on 

a sample of 5 random binary sequences of length 32 for different 

selection types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 

5.8 The average accuracy of the results of the Genetic Algorithm on 

a sample of 5 random binary sequences of length 32 for different 

crossover type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

5.9 The average accuracy of the results of the Genetic Algorithm on 

a sample of 5 random binary sequences of length 32 for different 

mutation types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

5.10 The accuracy of the results found by the Genetic Algorithm on a 

binary sequences of length 64 with different parameters - Top 10 

worst configurations .......................... 117 

5.11 The accuracy of the results found by the Genetic Algorithm on a 

binary sequences of length 64 with different parameters - Top 10 

worst configurations .......................... 118 

5.12 The average accuracy of the results of the Genetic Algorithm on a 

binary sequences of length 64 for different population size / number 

of generations combinations . . . . . . . . . . . . . . . . . . . . . . 119 

5.13 The average accuracy of the results of the Genetic Algorithm on a 

binary sequences of length 64 for different selection types . . . . . . 119 

5.14 The average accuracy of the results of the Genetic Algorithm on a 

binary sequences of length 64 for different crossover type . . . . . . 120 

5.15 The average accuracy of the results of the Genetic Algorithm on a 

binary sequences of length 64 for different mutation types. . . . . . 120 



LIST OF FIGURES x 

5.16 The relation between the number of elements in the search space 

and the number of elements processed by the Simulated Annealing 

Algorithm for different values of alpha. . . . . . . . . . . . . . . . . 127 

5.17 The accuracy of the results found by the Simulated Annealing Al­

gorithm on a sample of 5 random binary sequences of length 32 

with different parameters . . . . . . . . . . . . . . . . . . . . . . . . 132 

5.18 The average accuracy of the results of the Simulated Annealing 

Algorithm on a sample of 5 random binary sequences of length 32 

for different mutation types ...................... 133 

5.19 The average accuracy of the results of the Simulated Annealing 

Algorithm on a sample of 5 random binary sequences of length 32 

for different cooling coefficients .................... 133 

5.20 The accuracy of the results found by the Simulated Annealing Al­

gorithm on a binary sequence of length 64 with different parameters 135 

5.21 The average accuracy of the results of the Simulated Annealing 

Algorithm on a binary sequence of length 64 for different mutation 

types ................................... 135 

5.22 The average accuracy of the results of the Simulated Annealing 

Algorithm on a binary sequence of length 32 for different cooling 

coefficients . . . . . . . . . . . . . . . . . 136 

6.1 The kDFT-Approximation Algorithm. . 150 

6.2 The kDFT-Approximation Algorithm where the input sequence is 

firstly cyclically shifted to the right ................... 151 

6.3 The kDFT-Approximation Algorithm where the input sequence is 

firstly cyclically shifted to the right (L(8) = L(8')). . ........ 151 

6.4 The kDFT-Approximation Algorithm where the input sequence is 

firstly cyclically shifted to the right (L(8 + e) = L(8' + e')) . ..... 152 

6.5 The Relation between the error sequences found for the Discrete 

Fourier Transform of two different shifts of the initial sequence. . 153 

6.6 The kDFT-Approximation-Shift Algorithm where the input se­

quence is cyclically shifted to the right. . . . . . . . . . . . . . . . . 154 



& 

Abstract 

Some cryptographical applications use pseudorandom sequences and require that 

the sequences are secure in the sense that they cannot be recovered by only know­

ing a small amount of consecutive terms. The security of the sequences is trans­

lated into several measurable characteristics. For example they should have a large 

linear complexity and also a large k-error linear complexity. 

This thesis focuses on the k-error linear complexity of sequences. Currently, 

efficient algorithms for computing the k-error linear complexity of a sequence 

only exist for special classes of sequences, e.g. of period equal to a power of the 

characteristic of the field. It is therefore useful to find a general and efficient 

algorithm to compute a good approximation of the k-error linear complexity. 

Firstly we present a general heuristic algorithm which approximates the k-error 

linear complexity of sequences by taking advantage of the incremental nature of 

the Berlekamp-Massey Algorithm. Secondly, we investigate the application of 

evolutionary techniques for the approximation of the k-error linear complexity. 

While the complexity of these heuristic algorithms is still exponential, they are 

consistently more efficient than the exhaustive search and they are working on 

general sequences over arbitrary finite fields. The accuracy of the results of the 

algorithms is experimentally analysed. 

Finally, we investigate using the Discrete Fourier Transform and Blahut's The­

orem for calculating the k-error linear complexity of sequences. We present a new 

concept, a natural extension of the k-error linear complexity, denoted the extension 

field k-error linear complexity and devise algorithms to compute it. 

While the problem of computing the k-error linear complexity remains open, 

a collection of algorithms to use in different situations is provided and the ap­

proximate results obtained can be useful in the design stage of the cryptographic 

sequences in order to quickly eliminate the insecure ones. 



Notation 

These are some of the most important notations used throughout this thesis. 

S = SOSI ... St-I ... 

S = (SOSI'" sN-Il 

S = SOSI ... St-I 

t 
k 

N 

WH(S) 
C(X) 

GF(pm) 

K 

F 

L(8) 

Lk(s) 
L(n) (s) 

an infinite sequence of size t 

an infinite periodic sequence 

finite sequence 

the size of the finite sequence S 

the number of errors 

the period of the infinite periodic sequence S 

Hamming weight of a sequence s 

the characteristic polynomial 

a finite field of characteristic p and order pm, where p is 

prime and m ;::: 1 

the base finite field 

the extension field of K which contains an N-th root of 

unity, where N is the period of the sequence s 

the linear complexity of s 

the k-error linear complexity of s 

the linear complexity of the initial segment of size n for 

the sequence 8 

the k-error linear complexity of the initial segment of 

size n for the sequence s 
the extension field k-error linear complexity of the infi­

nite periodic sequence s of period N 



Abbreviations 

BMA Berlekamp-Massey Algorithm 

OFT Discrete Fourier Transform 

EESA Efficient Exhaustive Search Algorithm 

FFT Fast Fourier Transform 

FSM Finite State Machine 

GAP Groups, Algebra and Programming 

kGA k-Error Genetic Algorithm 

kSAA k-Error Simulated Annealing Algorithm 

lFSR Linear Feedback Shift Register 

MBMA Modified Berlekamp-Massey Algorithm 

NESA Naive Exhaustive Search Algorithm 

PRNG Pseudo-Random Number Generator 



Chapter 1 

Introduction 

1.1 Motivation 

In this thesis we study the k-error linear complexity of sequences over finite fields. 

The k-error linear complexity is a generalisation of the notion of linear complexity. 

While the linear complexity of a sequence is defined as the length of the smallest 

linear recurrence relation which generates that sequence, the k-error linear com­

plexity is the length of the smallest linear recurrence relation that generates a 

sequence which differs from the original in at most k positions. Formal definitions 

of these concepts are included in section 2.2. 

Our aim is to investigate theoretical results and algorithms for computing 

and/or approximating the k-error linear complexity of sequences (see the definition 

of the problem in section 3). 

We motivate this study by considering the following application from crypto­

graphic sequence design and cryptanalysis. 

When designing a stream cipher, the keystream sequence has to have a large 

linear complexity. The reason is that using the Berlekamp-Massey Algorithm 

(Berlekamp [4], Massey [42]), a sequence can be efficiently recovered by knowing a 

number of consecutive terms equal to twice its linear complexity. Sequences with 

low linear complexity would therefore be vulnerable to known plaintext attacks. 

Similarly, sequences with low k-error linear complexity for small values of k could 

also be vulnerable if the corresponding linear recurrence relation was found. 

From a design point of view it is also useful to predetermine the level of security 

of the keystream sequence which is used in a cipher in order to prevent successful 

cryptographic attacks. 

It is therefore important to have tools to evaluate the k-error linear complexity 

for cryptographic sequences. 

3 



CHAPTER 1. INTRODUCTION 4 

1.2 State of the art 

Efficient exact algorithms to compute the k-error linear complexity exist for certain 

classes of sequences, e.g. periodic sequences over a finite field GF(pm) and with 

period of a certain form, namely equal to a power of the characteristic of the field 

p, p being prime and m :::: 1 (see Stamp and Martin [79], Lauder and Paterson 

[38] for p = 2 and Kaida, Uehara and Imamura [31] for an arbitrary p). These 

results are based on the algorithms of Games and Chan [17] and Ding, Xiao, Shan 

[12] for computing the linear complexity of such sequences. 

These algorithms have as input a full period of the sequence, i.e. the whole 

sequence should be known apriori, they are therefore useful mostly in the design 

stage for cryptographic sequences and not so much in crypt analysis applications. 

1.3 Contribution 

We firstly show some heuristic methods for approximating the k-error linear com­

plexity for finite sequences over finite fields. The advantage of these algorithms is 

that they work on arbitrary sequences and even if they only approximate the exact 

result, the approximation is accurate and the computational time complexity is 

at a manageable level. Therefore these algorithms can be a useful tool to quickly 

eliminate unsecure cryptographic sequences. We implemented a few heuristic al­

gorithms. The first uses a recursive version of the Berlekamp-Massey Algorithm 

(Chapter 4). Further we present and analyse two which are using genetic algo­

rithms and simulated annealing techniques, respectively (sections 5.1 and 5.2). 

We investigate and estimate the efficiency and accuracy of these methods and we 

compare these techniques showing advantages and disadvantages. The accuracy of 

the approximation is compared to the exact result returned by an efficient version 

of the exhaustive search algorithm, which we present in Chapter 3. 

Secondly, we show how to use Blahut's Theorem (Rueppel [70]) which relates 

the Discrete Fourier Transform of periodic sequences to their linear complexity, 

for approximating the k-error linear complexity. This work has led us to a new 

concept, the extension field k-error linear complexity, which is useful from a crypt­

analysis point of view. We motivate the definition and the applications of this 

concept and we create an algorithm to approximate its value (Chapter 6). 

Parts of the research findings in this thesis are joint work with Ana S8.lagean 

and have been (or will be) published by Springer-Verlag in Lecture Notes in Com­

puter Science (LNCS) series [2] and by IEEE Computer Society Press, [1] and [3]. 

The content of [2] forms the basis of chapter 4 and the content of [1] is extended 

in chapter 5. In addition, the notion and algorithm presented in [3] are extended 



CHAPTER 1. INTRODUCTION 5 

in chapter 6. 

1.4 Thesis structure 

This thesis details our research outcomes on Algorithms for the k-error linear 

complexity of cryptographic sequences over finite fields. 

We start with a brief introduction, a motivation of our research and highlight 

the main contributions of the thesis (Chapter 1). 

Chapter 2 sets out the general and mathematical background for the problem. 

Also, for each of the concepts introduced it includes a short review of the current 

known results which are relevant to this thesis. 

In chapter 3 we clearly define the problems that we are interested in, when 

designing the algorithms presented in this thesis. The chapter includes a detailed 

description and analysis of an exact and general method of calculating the k-error 

linear complexity of sequences over finite fields, the exhaustive search. We intro­

duce and analyse a more efficient version of the exhaustive search (the Efficient 

Exhaustive Search Algorithm), the exact results produced by this algorithm being 

used throughout the thesis as a reference for the efficiency and accuracy of the 

results of the proposed heuristic algorithms. 

In chapter 4, we propose adapting the Berlekamp-Massey Algorithm (see Berlekamp [4], 

Massey [42]) which computes the linear complexity, in order to approximate the 

k-error linear complexity profile for a finite sequence over an arbitrary finite field. 

The main idea in a heuristic algorithm is to explore only some of all the possible 

error sequences. The choice of the positions of the errors in this case is guided by 

the steps of the Berlekamp-Massey Algorithm in which the complexity increases. 

Chapter 5 presents two evolutionary techniques applied to the problem of com­

puting the k-error linear complexity of sequences, genetic algorithms (Chapter 5.1) 

and simulated annealing (Chapter 5.2). We are focusing on finding best choices 

for the parameters involved in each technique (e.g. population size, number of 

generations, technique of selection, crossover or mutation for genetic algorithms 

or cooling schedule and evaluation function for simulated annealing) such that the 

resulting approximation is accurate and the computational time stays polynomial. 

Chapter 6 of the thesis includes techniques for infinite periodic sequences and 

shows how to use the Discrete Fourier Transform and Blahut's Theorem to cal­

culate the k-error linear complexity. A new concept is introduced, the extension 

field k-error linear complexity, ELk,N(S) , and algorithms to approximate it are 

presented and experimentally analysed. 

We conclude and suggest some possible developments of our work in Chap­

ter 7. 



Chapter 2 

Background 

2.1 General Background 

The wide area of cryptology includes two main branches: cryptography on one 

side, e.g. methods for securing the communication over an insecure channel, be­

tween a sender (usually named Alice) and a receiver (Bob) (see figure 2.1), and 

cryptanalysis on the other side, e.g. methods for secretly eavesdropping or inter­

fering in a transmission between a sender and a receiver. 

The message before encryption is called plaintext and the encrypted message 

is called ciphertext. 

A system designed for the secure communication between a sender and a re­

ceiver can be formally described by the notion of cryptosystem (cryptographic 

system) or cipher. The encryption/decryption is the controlled modification of 

the plaintext / ciphertext using one or more characters, called key. Cryptosystems 

are usually classified in secret-key (symmetric) cryptosystems (see figure 2.2) or 

public-key (asymmetric) cryptosystems. 

The public-key cipher allows the sender to use publicly known information in 

order to encrypt and send a message to the receiver, such that only the latter 

can decrypt it. On the other hand, the secret-key ciphers require the secure 

transmission of a secret key in advance, which is only known by the sender and 

receiver (see figure 2.2). A sequence of values used as key is called a key stream. 

This thesis only deals with symmetric cryptosystems, therefore in the following 

Alice plalntext ~I encryptlon I- clPhe~t ~ decryptlon 

Eve 

Figure 2.1: Cryptography 

6 

plalntext 
I---+~ Bob 



CHAPTER 2. BACKGROUND 

secure 

key 
1,0 

key 
1,0 

~,~~~m 1 r •.••••.•.••••.••• : .•.•••.••••••••.•.•••••.• : ••.•• ~~~~.:~~;1 
~ 

i! 0,0,0,1 I i Allce • encrypti- - - - -- - -- - - - --. - - - - .... idecrypt 
plain text i cipher text 1 

1,0,1,1 ! ! c=kxorp! i 
I Eve~ ! unsecure I 
: .............................................................. : 

Figure 2.2: A symmetric cryptosystem 

...,..-:---+. Bob 2 
plain text it 

1,0,1,1 

we will refer to secret-key cryptosystems simply as cryptosystems. 

7 

The crypt analysis of a cryptosystem usually relies on the nature of the en­

cryption/decryption algorithm and some knowledge of the nature of the plaintext. 

Depending on the level of involvement of the intruder in the encryption system, 

the attacks can be passive or active attacks. 

The starting point for any type of cryptanalysis is the encryption algorithm 

and a portion of intercepted ciphertext. Depending on the amount of additional 

information known by the cryptanalyst, there are five types of attacks: ciphertext 

only, known plaintext, chosen plaintext, chosen ciphertext and chosen text. They 

all assume that at least the encryption algorithm and the ciphertext to decode are 

known. Generally, a cipher is considered secure if it is designed to resist a known 

plaintext attack. However, there are other types of security, for example (Menezes 

et al. [52]): 

• A cipher is unconditionally secure if the ciphertext generated using that 

cipher is completely independent from the corresponding plaintext, Le. it is 

equally probable for any plaintext to be encrypted to obtain that ciphertext . 

• A cipher is computationally secure if the computational cost of breaking the 

cipher exceeds the importance of the encrypted information and if the time 

required to break the cipher exceeds the useful lifetime of the information. 

Definition 2.1. (Stinson [80]) A symmetric cryptosystem is a 5-tuple (P, C, /C, e, D) 

where the following conditions are met: 



CHAPTER 2. BACKGROUND 8 

• P is a finite set of plaintert messages (text before encryption), 

P = {pip = P1P2·· ·Pm, m 2: l,pi E A, i = 1,2, ... , m}, where A is a finite 

alphabet for the plaintert messages. 

• C is a finite set of ciphertext messages (encrypted text), 

C = {clc = C1C2 ... Cn,n 2: 1,c; E B,i = 1,2, ... ,n}, where B is a finite 

alphabet for the ciphertert messages. 

• /C is a finite set of keys over a finite alphabet K. 

• (V)k E /C, (3) an encryption function ek E E, ek : P .....; C and a corre­

sponding decryption function dk E 1), dk : C -> P such that dk(ek(p)) = p, 

(V)p E P. 

Symmetric cryptosystems can be classified further in block ciphers and stream 

ciphers. Essentially, the difference between the two is that first processes blocks 

of characters from the plaintext at a time whereas the second processes one char­

acter at a time. Here we are only interested in stream ciphers which are devices 

with internal memory, encrypting one character at a time by combining it with 

a character from the secret key stream. The jth character of the plaintext, Pj, is 

enciphered into the lh character of the ciphertext, Cj. Due to the fact that in a 

known-plaintext attack scenario, the stream cipher is fully characterised by the 

key stream employed, a stream cipher is considered to be secure if knowledge of a 

small number of subsequent bits of the key stream is not sufficient to recover the 

entire key stream (e.g. Rueppel [70], Robshaw [67]). 

An effort to standardise the stream ciphers has been undertaken by a recent 

eCRYPT project called eSTREAM [13]. The project has resulted into a port­

folio of stream ciphers which are advisable to use: HC-128, Rabbit, Salsa20/12, 

SOSEMANUK, Grain vI, Mickey v2 and Trivium. 

Stream ciphers are widely used, especially when it is necessary to encrypt large 

amounts of data very quickly. The main advantages of stream ciphers are that 

they are fast, easy to implement in hardware and appropriate for limited buffering 

conditions. They allow limited error propagation, detection of active attacks and 

a good diffusion of plaintext statistics. Also their definition is straightforward and 

well fundamented from a mathematical point of view. 

One of the most famous stream ciphers is the one-time pad. The one-time pad 

cipher was derived from the Vernam cipher devised in 1926 (Vernam [82]) and, 

as proved mathematically by Shannon [75] using information theory methods, 

providing the key is truly random, never reused and kept secret, it constitutes 

the only unconditionally secure cipher. However, the one time pad has a low 

practical value since it is very expensive to implement, firstly because it needs 



CHAPTER 2. BACKGROUND 

Alice Eve Bob 

key ~ secure channel ~ key 

key stream 
generator 

, 
,-

key stream 
generator 

Figure 2.3: Stream cipher system based on addition. 

9 

the generation of a truly random key stream at least as long as the plaintext and 

secondly, because it requires that this long key stream to be transmitted securely 

to the receiver. 

It is expensive and unsecure to exchange large key streams between the sender 

and the receiver. This is why a key stream generator is usually employed which 

expands a short, truly random key k into a long pseudo-random sequence. Pseudo­

random sequences have statistical randomness properties while being generated 

by an entirely deterministic causal process. Apart from allowing for better anal­

ysis, the determinism is particularly useful in cryptographic applications since it 

allows the sender and the receiver to (re)generate the same key to use for encryp­

tion/ decryption. 

Usually, in stream ciphers the plain text bits are encrypted one at a time by 

adding (XOR in binary terminology) them with a bit from the secret key stream. 

The simplest and most widely used stream cipher is the binary cipher based on 

addition (see figure 2.3). The encryption consists of adding (XOR) the key value 

to the plaintext character (Cj = kj El) Pj) and the decryption consists of adding 

(XOR) the key to the ciphertext character (Pj = kj El) Cj). 

One way to describe a key stream generator is to use a Finite State Machine 

(FSM) with output (Ding, Xiao, Shan [12]). However a widely used mechanism 

of generating a key stream is the Linear Feedback Shift Register (LFSR), which 

is a special case of an FSM. It provides a simple way of generating an infinite 

(eventually periodic) sequence of terms over a field, the sequence having a non­

trivial structure. 

A LFSR can be implemented in software or hardware and it can generate 

sequences with 'good' statistical properties, therefore it is commonly used as a 



CHAPTER 2. BACKGROUND 10 

SI 

Figure 2.4: A general £..stage Linear Feedback Shift Register. 

Pseudo-Random Number Generator (PRNG). 

A general LFSR of length L consists of a cascade of L unit delaysl or stages, 

linked (using constant adders2, constant multipliers 3 and wires) so that they allow 

the computation of a linear combination of cell contents whose value then serves as 

the input back to the first stage (see figure 2.4). The output of the LFSR is taken 

from the rightmost unit. The initial content So, SI, .•. , SL-I of the L unit cells is 

called the seed, initial load or key and it coincides with the first L output digits 

(Lidl and Niederreiter [39]). The remaining output digits are uniquely determined 

by the following linear recurrence relation: 

L-I 

Sj = - L: C;SHj-L, for all j = L, L + 1, ... 
i=O 

(2.1) 

The output terms and the feedback coefficients Co, Cl, ... , CL-I lie in the same 

field as the initial terms and the generated sequence. The sequence generated by a 

LFSR or by a linear recurrence (2.1) is called linear recurrent. If the initial values 

are over a finite field K of order q, then the sequence is periodic with period of 

at most qL - 1, where L is the number of stages in the LFSR (see property 2.5 

in section 2.2 for more details). A sequence generated by a Linear Feedback Shift 

Register of size L and with terms in a finite field of order q is called a maximum 

length(ML) sequence if its smallest period takes the maximum value qL - l. 

The function defined by the recurrence relation is called the feedback function 

1 An unit delay is an electronic device which has one input, one output and is regulated by 
an external clock so that its input as a particular time appears as its output one time unit later. 

2 A constant adder is a special kind of electronic switching circuit which has two inputs and 
one output, the output being the sum (over the appropriate field) ofthe two inputs. 

3 A constant multiplier is an electronic device with an internal value, an input and an output, 
the output being the product of the input value and the internal value (over the appropriate 
field). 



CHAPTER 2. BACKGROUND 11 

of the LFSR. 

L-I 

f(sj-L, Sj-L-b···, Sj-I) = - I:: CiSi+j-L, for all j = L, L + 1,... (2.2) 
i=O 

The stages which participate in the feedback are called taps and the list of 

taps is known as the tap sequence. 

Often the key stream is generated using a certain combination of Linear Feed­

back Shift Registers (LFSRs) which expands a short key shared by the sender and 

receiver into a longer pseudo-random sequence. However, any recurrent sequence 

over a finite field is linearly recurrent and can therefore be generated by one single 

(usually much larger) LFSR. 

The effort of building secure stream ciphers equates to generating a secure 

key stream. The following is a list of the main properties mentioned in the 

literature which support and characterise the psuedo-randomness of a sequence 

(see Golomb [22), Rueppel [77), Ding, Xiao and Shan [12), Menezes et al. [52], 

Stallings [78), Stinson [80]). 

1. The sequence needs to be balanced. For a sequence over an arbitrary finite 

field GF(q) this translates to the fact that the probability of a term of the 

sequence to be equal to any value a E GF(q) is constant (not depending on 

a). In particular, for binary sequences balanced means that the number of 

ones equals the number of zeros in the sequence. (Golomb [22], Stallings [78]) 

2. The key stream must have a 'large' period, since one full period defines 

the whole sequence. A linear recurrence for a sequence with period n is 

simply Si+n = Si, (\I)i = 0,1, ... , so if n is small it is easy to recover the 

whole sequence by only intercepting n terms. (Ding et al. [12], Rueppel [77], 

Stallings [78], Menezes et al. [52]) 

3. The key stream terms need to appear as being drawn from an uniform dis­

tribution; the key stream should have uniform statistics, Le., an equal dis­

tribution of single bits, of pairs, triplets of bits, etc. (Golomb [22], Ding et 

al. [12], Rueppel [77], Menezes et al. [52]) 

4. For binary sequences, the sequence needs to have a two levelled auto-correlation 

function. The auto-correlation function of a binary sequence S is defined as 

1 N 
C(8) = lim N '" SnSn+O, N_oo L..; 

n=l 

where the binary sequence is considered as a string of Is and -Is, rather then 



CHAPTER 2. BACKGROUND 12 

Is and Os and () is an integer called the phase shift. For random sequences 

C(O) is very close to 0 for 0 # 0 and a constant, high value for 0 = O. 

(Golomb [22, Chapter 3]) 

5. The linear complexity of the sequence (Le. the size of the shortest LFSR 

which generates that sequence) needs to be large. The reason is that there is 

an efficient algorithm (Berlekamp-Massey Algorithm) for finding the shortest 

LFSR corresponding to a sequence of linear complexity L, having as input 

only 2L consecutive terms of the sequence. (Ding et al. [12], Rueppel [77], 

Menezes et al. [52]) 

6. The k-error linear complexity of the sequence (Le. the size of the shortest 

LFSR which generates the sequence in which at most k bits are changed in 

each period) needs to be large enough for all relatively small k. (Ding et 

al. [12], Stamp and Martin [79]) 

7. The sequence needs to meet the principle of confusion, every key stream bit 

must be a complex transformation of all or most of the key bits. (Ruep­

pel [77]) 

8. The sequence needs to meet the principle of diffusion, Le. redundancies 

in segments of the sequence must be dissipated on the whole length of the 

sequence. For example, if the sequence is generated using a combination 

of LFSRs, it is better to interleave characters produced by different LFSRs 

than to concatenate the keystreams generated by each LFSR. (Rueppel [77]) 

9. For sequences generated by a non-linear filtered shift register, the boolean 

function used to filter the output of the shift register needs to be 'highly' 

nonlinear, taking into account properties like the mth-order correlation im­

munity (Siegenthaler [76]), the distance to linear functions, the avalanche 

criterion etc. (Rueppel [77], Ding et al. [12]) 

2.2 Mathematical Background 

In the following we include the definitions and some properties of the main concepts 

used throughout the thesis. We will consider infinite or finite sequences usually 

denoted as s. The sequence terms lie in a finite field GF(q), q = pm, where p 

is a prime number and m ;::: 1. Some of the basic algebraic concepts are briefly 

summarised in Appendix A. 

More details about linear recurrent sequences and terminology can be found 

for example in Lidl and Niederreiter [39]. 



CHAPTER 2. BACKGROUND 13 

2.2.1 Linear recurrences 

Definition 2.2. Given an infinite sequence 8 = 80,8),... (or a finite sequence 

s = 80,8), ... ,8t-l) with elements in a field K, we say that s is a linear recurrent 

sequence if it satisfies a relation of the form 

(2.3) 

for all j = L, L + 1, ... (or for all j = L, L + 1, ... t - 1, respectively), where 

Co, Cl, ... , CL-l E K are constants. 

The equation (2.3) is called a homogeneous linear recurrence relation of order 

L. A recurrence relation of minimal order is called a minimal recurrence relation. 

If a finite or infinite sequence 8 satisfies one linear recurrence relation then it 

satisfies an infinite number of linear recurrence relations. However, for an infinite 

sequence the minimal recurrence relation is unique, whereas for finite sequences, 

a minimal recurrence relation has a fixed order, but it is not necessarily unique. 

Knowledge of a recurrence relation of order L for a sequence 8 and any L 

successive terms of that sequence is enough for generating all the terms of the 

sequence. Therefore, a finite or infinite linear recurrent sequence is fully specified 

by its characteristic recurrence relation of size L and by the L initial terms. 

The mathematical foundations of linear recurrent sequences have been firstly 

set by Golomb [22]. Besides the characteristic polynomial (section 2.2.2) some 

other methods of formalising the linear recurrent sequences are proposed: the 

generating function and the matrix method (Lidl and Niederreiter [39]). 

2.2.2 Characteristic polynomial 

To any linear recurrence relation of a sequence, we can associate a polynomial 

whose coefficients are the feedback coefficients c; for all i = 0,1, ... , L - 1. This 

polynomial is called a characteristic polynomial for that sequence and it can be 

defined in one of several ways. Two options are commonly used in literature: 

C(X) = XL + COX
L

-
l + Cl X

L
-

2 + ... + CL_2X + CL-l (2.5) 

We denote the characteristic polynomial associated to the minimal linear re­

currence relation, the minimal characteristic polynomial. 

We chose in this thesis the first definition (2.4) for mathematical reasons. Using 

this definition, it is well known that the minimal characteristic polynomial of a 



CHAPTER 2. BACKGROUND 14 

sequence s is unique and that any other characteristic polynomial of that sequence 

is a multiple of the minimal characteristic polynomial. 

Definition 2.3. Given an infinite sequence s = So, SI, . .. (or a finite sequence 

s = so, SI, ... , St-I) with elements in a field K and a polynomial 

with L :::: 0 we say that C (X) is a characteristic polynomial of s if the associated 

linear recurrence is satisfied by the sequence s 

(2.6) 

for all j = L, L + 1, ... (or for all j = L, L + 1, ... t - 1, respectively), where 

co, Cl, ... , CL-I E K are constants. 

If the linear recurrence is the minimal recurrence for the sequence, then the 

characteristic polynomial is called the minimal characteristic polynomial. In these 

conditions, we say that the polynomial C(X) generates the sequence s. 

A characteristic polynomial is also called in literature a connection polynomial 

(Ding, Xiao and Shan [12]) or a generator polynomial (Massey [42]). 

For an infinite sequence the minimal characteristic polynomial is unique, whereas 

for finite sequences, the minimal characteristic polynomial has a fixed degree, but 

it is not necessarily unique. 

Golomb [22] proves that the minimal characteristic polynomial of a maximum 

length (ML) sequence is primitive and therefore, the search for pseudo-random 

sequences can be reduced to finding primitive characteristic polynomials. 

2.2.3 Periodic sequences 

Definition 2.4. A sequence s = So, Sb ... over a finite field is called ultimately 

periodic if there exists the integers N > 0 and no :::: 0 such that Sn+N = Sn, for 

all n :::: no. The number N is called a period of the sequence and the smallest N 

with the previous property is called the minimal period of the sequence. 

Property 2.5. For infinite sequences over finite fields the following three proper­

ties are equivalent: 

(i) ultimately periodic; 

(ii) recurrent; 

(iii) linear recurrent. 



CHAPTER 2. BACKGROUND 15 

... -1 So ~ 

Figure 2.5: A LFSR for a ultimately periodic sequence. 

Proof. (i) =? (ii), (iii) Suppose S is an ultimately periodic sequence. Therefore 

there is a linear recurrence relation of order N + no for the sequence (see defini­

tion 2.4): 

Sj = Sj-N, for all j = no + N, no + N + 1, ... , where N > 0, no ~ O. 

The corresponding characteristic polynomial is C(X) = XN+no - Xno and the 

corresponding LFSR is as shown in figure 2.5. Therefore, the sequence is also 

recurrent and linear recurrent. 

A linear recurrent sequence is obviously recurrent, therefore (iii) =? (ii) is also 

easily proved. 

(ii) =? (i) Suppose the sequence S is recurrent. Therefore there is a value L so 

that Sj = f(sj-L,Sj-L+1," .,Sj_I), for allj =' L,L+1, ... , wheref: (GF(q))L-t 

GF(q) is an arbitrary function. There are qL possible combinations of L terms 

from the considered finite field (where q is the order of the field). 

The sequence is infinite and the field is finite, therefore there must be a segment 

of L values which repeats in the sequence at least once, after at most qL steps (all 

possible combinations of L values from the finite field of order q). When a segment 

of size L repeats, it means that using the function f, the same sequence of terms 

will be generated. It follows that the sequence is ultimately periodic. 

A similar justification, with the single change that the feedback function needs 

to be linear is valid for the implication (iii) =? (i). 0 

Proposition 2.6. The minimal characteristic polynomial of any periodic infinite 

linear recurrent sequence over a finite field has a constant term. Moreover, the 

characteristic polynomial of a sequence with period N divides X N - 1. 

Proof. Suppose S is an infinite periodic linear recurrent sequence and that the 

minimal period of the sequence is N. It follows that a linear recurrence relation 

for the sequence would be SHN = Si, for all i ~ 0 which implies a characteristic 

polynomial of s would be C(X) = X N - 1. 

All characteristic polynomials of the sequence s are multiples of the minimal 



CHAPTER 2. BACKGROUND 16 

characteristic polynomial. Therefore, if we denote D(X) the minimal characteris­

tic polynomial of 8, C(X) = XN -1 = D(X)h(X), for some h(X) E GF(q)[X], it 
follows that the minimal characteristic polynomial of 8 has a constant term and 

that it divides X N - 1. 0 

Note that if the minimal characteristic polynomial does not have a constant 

term, it means that by taking a power of X as factor (suppose the maximal fac­

tor is xno), a reduced characteristical polynomial can be found for the periodic 

part of the sequence. This defines the recurrence which generates the sequence 

starting with 8 no and ignoring the first no terms, 80,81, ... ,8no-1 not participat­

ing in the recurrence (see the corresponding LFSR in figure 2.5 for a graphical 

representation) . 

Therefore, if the sequence is ultimately periodic, by removing the initial seg­

ment which does not participate into the recurrence, a characteristic polynomial 

with a constant term can be obtained for the periodic part of the sequence. This 

is an important remark showing that in applications the initial non periodic part 

of sequences can be ignored. 

This is why in most cryptographic applications the key streams can be con­

sidered periodic; even more so for cryptanalysis since the attacks do not usually 

involve intercepting the first few terms of the key stream. Saliigean [74] presents 

an algorithm which finds the minimal characteristic polynomial with a non zero 

constant term for a sequence. 

The interpretation of proposition 2.6 is that finding the linear recurrence which 

generates the periodical part ofthe sequence would be enough to break the cipher, 

therefore, the sequences should be designed to have both a characteristic polyno­

mial of large degree and with a constant term; only one of these conditions is not 

sufficient. 

2.2.4 Linear Feedback Shift Registers 

To any linear recurrence relation we can assign a Linear Feedback Shift Register 

(see figure 2.4 in section 2.1). 

We say that a LFSR generates a finite sequence 80,81, ... ,8t-1 if the sequence 

coincides with the first t output digits of the LFSR for some initial loading of the 

LFSR. A sequence generated by a LFSR can be defined by a linear recurrence 

relation or, equivalently, by a characteristic polynomial. If the size of a LFSR 

is L with L 2: t, then the LFSR can always generate the sequence by including 

the sequence terms in the initial loading. If L < t, then the LFSR generates a 

sequence s if and only if the linear recurrence relation corresponding to the LFSR 

is a recurrence relation for the given sequence (see relation (2.3)). 



CHAPTER 2. BACKGROUND 17 

The feedback coefficients of a linear recurrence relation can be zero. If the ones 

corresponding to the unit cells next to the output of the corresponding LFSR 

are zero then the values included in these unit cells do not get included in the 

recurrence and the first terms of the generated sequence do not participate in the 

generation of the following terms of the sequence. Further, note that a LFSR 

with £ stages and all feedback coefficients equal to zero generates the sequence: 

So, 81,"" SL-I, 0, 0, .... 
By convention, the all-zero sequence is generated by a LFSR with length £ = 

O. The linear recurrence relation corresponding to the LFSR of length £ = 0 

o . 8j = 0, for all j = 0,1, ... and the characteristic polynomial is C(X) = 1. 

We will assume in the following that at least one of the feedback coefficients is 

non zero. 

2.2.5 Linear complexity 

Definition 2.7. Given an infinite 8equence 8 = 80,81, ... (or a finite 8equence 

8 = 80,81, ... ,8t-l) with elements in a field K, the linear complexity of 8, denoted 

£(8) can be equivalently defined as: 

(i) the order of the minimal linear recurrence of 8 

(ii) the degree of the minimal characteristic polynomial of 8 

(iii) the size of the smallest Linear Feedback Shift Register which generates 8. 

The linear complexity of a finite or infinite sequence is unique. Note that 

L(8) = 0 if and only if the terms of the sequence are all zero. 

If a sequence has linear complexity L, the minimal linear recurrence relation, 

the minimal characteristic polynomial or the Linear Feedback Shift Register that 

generates that sequence can be determined knowing only 2£ consecutive terms. 

Determining the linear complexity and the minimal characteristic polynomial 

of a finite sequence can be done by solving the system of linear equations obtained 

by writing the recurrence relation (2.3) for all j = L, £+ 1, ... ,2£-1. Commonly 

though, the efficient and intuitive method for computing the linear complexity of 

a sequence is by using the Berlekamp-Massey Algorithm (see section 2.2.6). 

Property 2.8. For an infinite sequence 8 = 80,81, . . , (or a finite 8equence 8 = 
80,810'" ,St-l) andfortl,t2 with 0 ::; t l ::; t2 < n, L(80,81, ... ,8t,-1)::; L(80,81.'" ,St,-l), 

i.e. £(8) i8 increa8ing with the number of terms for a fixed s. 

Property 2.9. For an infinite 8equence 8 = so, 81, .. , (or a finite sequence 8 = 
80,81, ... ,8t-l) L(80, 810"" 8t-l) ::; t, for all t 2: 0 (or for all t = 0,1, ... , t - 1, 

respectively) . 



CHAPTER 2. BACKGROUND 18 

Definition 2.10. Suppose s is an infinite sequence s = so, SI,." (or a finite 

sequence S = So, SI"", St-l). The set {L(so, s), ... , St-l)[ for all t :::: O} (or 

{L( so, Bb ... , Bn-l) [for all 1 ::; n ::; t}, respectively) is called the linear com­

plexity profile of the sequence s. 

The first paper which outlines the notion of linear complexity of a sequence 

is Massey [42] which defines it as the size of the shortest Linear Feedback Shift 

Register which generates the sequence. 

The notions of linear complexity and linear complexity profile were closely 

analysed by Rueppel [70, 69]. In an effort to see the relation between the value 

of the linear complexity and the randomness of a sequence, Rueppel shows that 

for random binary sequences which are independent and uniformly distributed the 

expected value of the linear complexity is approximately ~ for a sequence of size 

t, where the linear complexity is seen as a random variable. The variance of the 

linear complexity is very close to a constant which depends on the length of the 

sequence. 

Rueppel claims that a good random sequence generator should have linear 

complexity close to the period length, and also the linear complexity profile should 

follow closely but irregularly the * line exhibiting therefore average step lengths 

and heights of 4 and 2, respectively. Following this observation, a sequence with 

a perfect linear complexity profile is defined by Rueppel as follows. 

Definition 2.11. A sequence S of length n is said to have a perfect linear complex­

ity profile if L( So, SI, ... , Sm) = l mtl J, for all m = 1,2, . .. ,n, where l x J denotes 

the largest integer not greater than x. 

While giving this general rule, Rueppel conjectures that there are sequences 

of length t which are highly non random and do however have a linear complexity 

profile which follows closely~. For example the sequence given by (2.7) meets 

this description. The conjecture was proven and it was shown that the sequence 

of size n defined by (2.7) has linear complexity l(n+ 1)/2J (Dai [11]) as well as a 

perfect linear complexity profile as defined by Rueppel. Even with a high linear 

complexity and with a good linear complexity profile, the sequence is very sparse 

and not random. 

Si = {I, when i has the form i = 2t - 1, and t = 0, 1, 2,... (2.7) 
0, otherwise. 

A full characterisation of the sequences with a perfect linear complexity profile 

can be obtained using Berlekamp-Massey Algorithm (Wang and Massey [83]). It 



CHAPTER 2. BACKGROUND 19 

can be shown that all the sequences with a perfect linear complexity profile can 

be obtained by solving a system of linear equations, see (2.8). 

So = 1 

S2 = SI + So 

(2.8) 

S2(n-l) = S2(n-I)-1 + Sn-2 

Niederreiter (55] establishes the connection between the linear complexity of a 

sequence and the continued fraction expansion of the generating function corre­

sponding to that sequence. 

Taking into account the full characterisation of the sequences with a perfect 

linear complexity profile (see system (2.8), Wang and Massey (83]), Niederreiter 

argues that this condition is too restrictive to be useful in building pseudo-random 

sequences and that the linear complexity should have larger deviations from the 

expected value, i.e. from ~. This is why he introduces the notion of an 'almost 

perfect linear complexity profile' using a remark made by Rueppel (70] concerning 

the variance of the linear complexity, namely the fact that the linear complexity 

needs to follow closely but irregularly ~. Also, Niederreiter [55] suggests a way of 

building sequences with a prescribed linear complexity profile. 

Extending the results from [55], Niederreiter [56] develops a probabilistic the­

ory of the linear complexity and the linear complexity profile for sequences over 

arbitrary finite fields, by using techniques from the probability theory and the 

theory of dynamical systems. He suggests a new type of randomness tests for 

sequences, the continued fraction tests. The main result of the paper is that the 

following relation holds for almost all random sequences S over a finite field. 

(2.9) 

Interpreting (2.9), Niederreiter [57) defines a sequence to have a 'good linear com­

plexity profile' if there exists a constant value C(s), which depends only on the 

sequence, such that 

t 
1£(s)-2:1 ::::;C(s)max{logt,1}, forallt=0,1,2, .... (2.10) 

Following a comment made by Piper [61], that a pseudo-random sequence 

should have an acceptable linear complexity profile for every starting point, Nieder­

reiter defines the 'uniformly good linear complexity profile' as the property of a 



CHAPTER 2. BACKGROUND 20 

sequence to have a good linear complexity profile for all its shifted versions. He 

also proves that almost none of the random sequences meet this requirement and 

leaves the open problem of finding sequences which have this property. 

Massey [41] shows that the linear complexity is a system-theoretic concept, 

closely related to the Discrete Fourier Transform. Although it was firstly used 

by Blahut [7, 6] for error control codes, the explicit form of the link between 

the linear complexity and the Discrete Fourier Transform is clearly presented by 

Massey in [41]. 

A way of obtaining sequences with high linear complexity is by combining a 

number of LFSRs (combination) or by applying a non-linear filter function to 

a single LFSR (filtering). The linear complexity of a sequence produced by a 

combination of LFSRs can never exceed the product of the sizes of the LFSRs 

included in the combination. 

Groth [23] and Key [32] present some theoretical methods of combining LFSRs 

with known characteristics in order to obtain generators of binary sequences with 

controllable linear complexity. 

Herlestam [25] presents an overview of the results on the linear complexity of 

sequences obtained using filtering functions applied to sequences generated by an 

Linear Feedback Shift Register. By studying the linear complexity of the sum, 

the product with a constant, the Hadamard product and the Hadamard power4 

applied to linear shift register sequences, exact formulas and lower bounds on the 

linear complexity of sequences generated using a general function applied to a 

finite set of linear recurrent sequences are obtained. 

Using the arithmetic properties of the period of the sequences, Rueppel and 

Staffelbach [71] obtain a set of conditions which guarantee that a product of lin­

ear recurrent sequences attain maximum linear complexity. Precisely, they show 

that for a finite number of maximum length sequences over a finite field GF(q), 
if the degrees of the corresponding minimal polynomials are distinct and greater 

than two, then their product has maximum linear complexity. The result can be 

generalised for arbitrary linear combinations of sequences (Golic [21]). 

There are efficient algorithms presented by Games and Chan [17], Ding, Xiao, 

Shan [12] for computing the linear complexity of sequences of period a power of 

the characteristic of the field. 

The modulo p linear complexity is the linear complexity of a binary sequence 

when it is considered over a prime finite field of higher characteristic p, where p is 

4Note that for two finite sequences x = Xo, Xl> ••. , Xt-l and Y = Yo, Yl, .•• , Yt-l over a field K, 
the Hadamard product xy is xy = XOYO,XIYl,." ,Xt-lYt-I' For a sequence x = Xc, Xl, ... ,Xt-l 
over a field K and a constant integer a ~ 0 the Hadamard power xa is xa = xg, x1, ... ,X~_l' 



CHAPTER 2. BACKGROUND 21 

prime. Klapper [34] shows that some binary sequences of high linear complexity 

could have low modulo p linear complexity and for a certain class of sequences, 

geometric sequences, he shows how to choose the value of p. An algorithm for 

computing the modulo p linear complexity of sequences is presented by Boztas [8]. 

Robshaw [68] presents an algorithm for binary sequences of period a power of 

two which is very efficient on sequences with high linear complexity, involving on 

average the computation of only two parity checks in such a case. 

Generalising both the Discrete Fourier Transform and the Games-Chan Al­

gorithm [17], Blackburn [5] presents an algorithm which calculates the minimal 

characteristic polynomial of an arbitrary periodic sequence. The computational 

complexity of the algorithm is asymptotically equal to the complexity of the 

Berlekamp-Massey Algorithm [42], however the Blackburn Algorithm can perform 

faster on sequences with a large complexity. 

Fleischmann [16] modifies the Berlekamp-Massey Algorithm [42] to work in 

both directions by creating an algorithm suitable for real time applications where 

the sequence provided as input is not fully known apriori, for example ... , 8-1' 80, 81, .... 

2.2.6 Berlekamp-Massey Algorithm 

The Berlekamp-Massey Algorithm (Berlekamp [4], Massey [42]) computes the 

characteristic polynomial and the linear complexity of a sequence over a field. 

Besides being general in that it applies to a sequence over an arbitrary field, the 

Berlekamp-Massey Algorithm has another advantage: if the linear complexity of 

the sequence is L, the algorithm will determine the characteristic polynomial and 

the linear complexity after processing 2L terms of the sequence. The algorithm 

runs in quadratic time, 0(L2), where L is the linear complexity of the input 

sequence (for more details on computational complexity see Gustavson [24]). 

The algorithm takes iteratively each term of a finite sequence 80,81, ... ,8t-1 

and processes it one by one, adjusting the characteristic polynomial if necessary. 

At each step of the algorithm the current characteristic polynomial c(n) (X) can 

generate the n sequence terms 80, 8), ... , 8 n -1 processed so far. After all terms are 

processed, a minimal characteristic polynomial of the input sequence is obtained. 

The linear complexity is the degree of the resulting characteristic polynomial. 

At each step n, in addition to the current characteristic polynomial c(n)(x), 

the last characteristic polynomial c(m)(x) of degree strictly smaller than the 

degree of c(n) (X) is also stored. We denote L(i) = deg(C(i)(X)) and c(n)(x) = 

XL(n) + c~~)_1XL(n)-1 + ... + c~n). The discrepancy d(n) is calculated using the 



CHAPTER 2. BACKGROUND 22 

following formula: 

(2.11) 

This discrepancy represents the difference between the term 8n which is cur­

rently processed and the term which would be expected using the current polyno­

mial (- Lt~~)-1 cin
) 8i+n_L(n)). Depending on the value of the discrepancy, three 

possible cases are identified: 

1. If d(n) # 0 then 8n cannot be generated using c(n) (X). Further: 

a) If 2L(n) > n then the new characteristic polynomial is computed as 
c(n+1)(X) <-- c(n)(x) - ~~x(m-L(=))-(n-L(n))c(m)(x) and it has the 

same degree as the previous one, L(n+1) = L(n); 

b) If 2L(n) ::; n then the new characteristic polynomial is computed as 
c(n+1)(X) <-- x(n-L(n))-(m-L(=))c(n) (X)- ~(<:::j c(m) (X) and it has higher 

degree than the previous one, namely L(n+1) = n+ 1-L(n); m is updated 

to n. 

2. If d(n) = 0 then 8n can be generated using c(n)(x), so the characteristic 

polynomial stays unchanged c(n+1) (X) = c(n)(x). 

For initialisation, the first non-zero term in the sequence, say 8j is detected, the 

characteristic polynomials are set to C(i)(X) <-- 1 for i = 0, ... ,j, C(j+1)(X) <-­

Xi+\ and m <-- j. At the end of the algorithm, L(t) is the linear complexity of 

the sequence and C(t)(X) is a minimal characteristic polynomial (which is unique 

if 2L(t) ::; t, otherwise it may not be unique). 

We present the classic iterative version of the algorithm in Algorithm 1. The 

algorithm has as input a finite sequence 8 = 80,810 ... , 8t-1 over a field and it 

returns C*(X), the characteristic polynomial and L*, the linear complexity of the 

sequence. 

A recursive version of the Berlekamp-Massey Algorithm is presented in Al­

gorithm 2 (using the recursive procedure in Algorithm 3). The most impor­

tant element of the recursive implementation is the recursive procedure bmR(m, 

D(X), dm, C(X), n) with the following parameters: m, the position in the se­

quence where the last degree change has occurred, D(X), the characteristic poly­

nomial at the last change, dm, the discrepancy value at the last change, C(X), 

the characteristic polynomial corresponding to the current position and n, the 

currently processed position in the sequence. 



CHAPTER 2. BACKGROUND 23 

Algorithm 1 Berlekamp-Massey Algorithm 
1: Input: A finite sequence 8 - 80, 8b ... ,8t-1 

2: Output: Linear complexity, L* and characteristic polynomial, C*(X) of 8. 

3: n <- 0 
4: while 8n = 0 and n < t do 
5: n +- n+ 1 
6: end while 
7: if n = t then 
8: C*(X) +- 1 
9: L* +- 0 

10: return C*(X), L* 
11: else 
12: m+- n 
13: D(X) <- 1 
14: dm +- 8n 
15: n <- n + 1 
16: C(X) +- xn 
17: Ln <- n 
18: if n ::; t - 1 then 
19: repeat 
20: dn +- 8n + 2:~;;1 C;8Hn-Ln 

21: if dn <> 0 then 
22: if 2Ln > n then t> (la) degree and complexity does not change 
23: C(X) +- C(X) - t;x(m-Lml-(n-Lnl D(X) 
24: else t> (lb) degree and complexity do change 
25: T(X) +- C(X) 
26: C(X) +- x(n-Lnl-(m-LmlC(X) - t;D(X) 
27: D(X) +- T(X) 
28: dm +- dn 

29: m+- n 
30: Ln +- n + 1 - Ln 
31: end if 
32: else t> (2) current characteristic polynomial does not change 
33: n +- n + 1 
34: end if 
35: until n = t 
36: end if 
37: C*(X) +- C(X) 
38: L* +- Ln 
39: return C*(X), L* 
40: end if 



CHAPTER 2. BACKGROUND 24 

Algorithm 2 Recursive Berlekamp-Massey Algorithm 
Input: A finite sequence 8 = So, 81, ... ,8t-l 

Output: Linear complexity, L* and characteristic polynomial, C*(X) of s. 
n<--O 
while 8n = 0 and n < t do 

n<--n+1 
end while 
if n = t then 

C*(X) <-- 1 
L* <-- 0 
return C*(X), L* 

else 
m <-- n 
D(X) <-- 1 
dm <-- 8n 

n<--n+1 
C(X) <-- xn 
C*(X) <-- C(X) 
L* <-- n 
if n ~ t - 1 then 

bmR(m, D(X), dm, C(X), n) 
end if 
return C'(X), L' 

end if 

Algorithm 3 The bmR(m, D(X), dm, C(X), n) procedure 
procedure BMR(m, D(X), dm , C(X), 71) 

if n = t then 
L* <-- deg(C(X)) 
C*(X) <-- C(X) 

else 
Ln <-- degC(X) 
dn +- Sn + 2:7:0-1 

CiSi+n-Ln 

if dn 01 0 then 
if 2Ln > n then 

C(X) <-- C(X) - !hx(m-Lm)-(n-Ln ) D(X) 
dm 

bmR(m, D(X), dm, C(X), n + 1) 
else 

T(X) <-- C(X) 
C(X) <-- x(n-Ln)-(m-Lm)C(X) - !hD(X) 

dm 

bmR(n, T(X), dn, C(X), 71 + 1) 
end if 

else 
bmR(m, D(X), dm, C(X), n + 1) 

end if 
end if 

end procedure 

~ (la) 

~ (lb) 

~ (2) 

L ____________________________________________________________ ___ 



CHAPTER 2. BACKGROUND 25 

2.2.7 k-error linear complexity 

The concept of linear complexity of a sequence can be generalised to k-error linear 

complexity, which is the minimal linear complexity of that sequence in which the 

values on at most k positions are changed. The concept was firstly outlined by 

Ding, Xiao, Shan [12] under the name of k-sphere complexity in the context of the 

stability of stream ciphers, and defined under the name of k-error linear complexity 

by Stamp and Martin [79]. Note that the O-error linear complexity coincides with 

the linear complexity. 

Definition 2.12. For a given finite sequence s of size t (or an infinite sequence 

so/period N) we denote WH(S) = #{i[i = O,l, ... ,t -l,s; oF O} (orwH(s) = 
#{i[i = 0,1, ... , N - 1, Si oF O}, respectively) the Hamming weight of s i.e. the 

number of non-zero terms of s (or the number of non-zero terms in a period of 

s). For periodic sequences the notations WH(S) and WH((SO, S1, ... , SN-1)) are 

equivalent. For a given finite set A, we denote by #A the number of elements in 

the set A. 

In definition 2.13, S + e is the sum between two sequences. We consider the 

term by term addition, namely: if a = (ao, ... , at-1) and b = (bo, ... , bt-1) then 

the sum sequence a + b = (ao + bo, ... , at-1 + bt-d where the addition is in the 

field which includes the terms of a and b. 

Definition 2.13. For a finite sequence 8 = So, 81, ... ,St-I with elements in a field 

K and for a fixed integer k, 0::; k ::; WH(S), the k-error linear complexity of the 

sequence s is defined as 

(2.12) 

For an infinite sequence s = so, Sl, ... of period N, with elements in a field K 

and for a fixed integer k, 0 ::; k ::; WH((SO, ... , SN-I)), the k-error linear complexity 

of the sequence S is defined as 

Lk(S) = min{L(s+e)[ e sequence of period N over K, wH((eO, el, ... , eN_1)) ::; k} 

(2.13) 

The sequences e are called error sequences or error patterns. 

The k-error linear complexity profile 0/ the sequence is defined as being the set 

of pairs (k, Lk(s)), for all k with 0::; k::; WH(S), 

The following property shows that the k-error linear complexity decreases with 

k for a fixed sequence s. 



CHAPTER 2. BACKGROUND 26 

Property 2.14. Given a (finite or infinite periodic) sequence s with elements in 

a finite field K, we have Li(S) 2': Lj(s), for all i < j. 

Proof The proof is immediate using the definition of k-error linear complexity 

and the property that for any two sets 8 1 and 82 of sequences such that 81 S;; S2, 

it is true that min{L(s)ls E SI} > min{L(s)ls E S2}. 0 

Property 2.15. Given a (finite or infinite periodic) sequence s with elements in 

a finite field K, we have Lk(s) = 0, for all k 2': WH(S). 

Proof We choose e such that 

ei = { 0, for all i E 0,1, ... , t - 1 with Si = 0, 

-Si, otherwise. 
(2.14) 

Therefore wH(e) = WH(S) and s+e = (0,0, ... ,0), so LWH(s) = O. It follows using 

property 2.14 that Lk(S) = 0, for all k 2': WH(S). 0 

If the k-error linear complexity of a sequence is very low for small values of k 
(e.g. k less than 5% of the length of the sequence), then that sequence is likely 

to be easily recovered when only knowing a short segment of the sequence. The 

k-error linear complexity is therefore an important parameter when analysing the 

security of cryptographic sequences. 

Sequences with a high linear complexity and good linear complexity profile 

can have a very low k-error linear complexity for small values of k, making them 

unsecure in cryptographical applications. Consider a binary sequence of N zeros 

followed by a 1, s = (0, ... ,0,1). This sequence has a linear complexity of N + 1, 
'--v---' 
N times 

but a I-error linear complexity of o. Nontrivial examples of sequences with high 

linear complexity and low k-error linear complexity can be obtained using the 

results presented by Safavi-Naini and Seberry [72J. 

Fell's paper [14] reflects on the k-error linear complexity by considering bi­

jections on the set of sequences of a certain length and by studying the average 

difference in the linear complexity of a sequence and its image using one of these 

bijections. These results are applied to the computation of an average k-error 

linear complexity of a sequence. The sequences considered are binary and the 

methods are probabilistic. Fell's paper provides an upper bound of the average 

change in linear complexity for sequences where at most k errors are forced. Fell 

concludes that for large values of t there are many sequences of size t which are 

far, in terms of Hamming distance, from low linear complexity sequences. It is 

therefore not straightforward to find a direct algorithm which produces for most 

sequences the nearby sequences of low linear complexity. Fell calls two sequences 



CHAPTER 2. BACKGROUND 27 

k-close, if one can be obtained from the other by changing k terms. It is suggested 

to search for sequences k-close to sequences of low complexity in order to exclude 

them from being used in stream ciphers as key streams. 

By extending the Games-Chan Algorithm (Games and Chan [17]), which com­

putes the linear complexity of a periodic binary sequence with period a power 

of two, Stamp and Martin (Stamp and Martin [79]) have devised an algorithm 

to efficiently (in linear time and space) compute the k-error linear complexity of 

a periodic binary sequence with the period a power of two. The Stamp-Martin 

Algorithm was further extended to compute the whole k-error linear complexity 

profile by Lauder and Paterson [38]. Algorithms for computing the linear complex­

ity and the k-error linear complexity of a sequence, for periodic sequences which 

have as period a power of the characteristic of the field have been given by Ding, 

Xiao, Shan [12], Kaida, Uehara, Imamura [30, 31] and Kaida [29]. An efficient 

algorithm for computing the k-error linear complexity of periodic sequences over 

a finite field GF(q) when the period is of the form 2pn, with p prime and n > 0 is 

presented in [84] (the special case treated is where p and q are odd primes, and q 

is a primitive root modulo p2). All these algorithms, unlike the Berlekamp-Massey 

Algorithm, need a whole period as input, Le. the whole sequence is known, which 

would not be the case in crypt analysis applications. However from a design point 

of view it is useful to predetermine the level of security of the sequences which are 

used in a cipher in order to prevent successful cryptographic attacks. 

Efficient techniques to compute the I-error linear complexity of periodic binary 

sequences are available (Kolokotronis et al. [35]). 

Some research has been invested in trying to find periodic sequences with 

high linear complexity and high k-error linear complexity for small values of k as 

well as bounds for the two measurements. A unified derivation of the bounds of 

the k-error linear complexity is available for N-periodic sequences s, with tight 

bounds when L(s) < !:f (Jiang et al. [28]). It was conjectured by Ding et al. [12] 

that there may be a tradeoff between the linear complexity and the k-error linear 

complexity. However, Niederreiter proves the existence of periodic sequences which 

simultaneously achieve maximum value for the linear complexity and k-error linear 

complexity (Niederreiter [59]). Moreover, a lower bound on the number of N­

periodic sequences with maximum linear complexity (Le. N) and k-error linear 

complexity at least a fixed value N -c, with c > 0, is given to show that a consistent 

number of such sequences exist (Meidl and Niederreiter [51]). A constructive proof 

is yet to be found, however using such a constructive technique for a real cipher 

would not improve the security, on the contrary it would restrict the search of a 

cryptanalyst to a well specified set of sequences. 

A survey of recent work on the linear complexity, linear complexity profile and 



CHAPTER 2. BACKGROUND 28 

the k-error linear complexity of periodic sequences is included in Niederreiter [58]. 

The study focuses mostly on the recent results regarding the statistical theory of 

complexity measurements, namely the expected value of the linear complexity and 

k-error linear complexity, as well as lower and upper bounds for the number of 

sequences with a designated linear complexity or k-error linear complexity. 

Meidl [47] obtains for sequences of period of a certain form, the relation be­

tween the linear complexity and the minimum value k, for which the k-error linear 

complexity is strictly less than the linear complexity. This is useful as it gives a 

way of finding how many bits need to be changed to decrease the linear complexity 

of a sequence. Further statistical results are published by Meidl [48] and exact 

formulas for the expected value of the linear complexity and for the l-error linear 

complexity are given for sequences of period a power of two. For k 2: 2 lower and 

upper bounds of the expected value of the k-error linear complexity are given. 

Kurosawa et al. [36] present results regarding the relation between the linear 

complexity and the minimum value k for which the k-error linear complexity is 

strictly less than the linear complexity. 

Sl118.gean [73] presents theoretical results showing how to apply Games-Chan 

and Stamp-Martin Algorithms to an infinite sequence with the period a power of 

two, when a whole period is not known apriori. 

There is no general algorithm to compute the k-error linear complexity profile 

of an arbitrary sequence over an arbitrary finite field, other than the exhaustive 

search. See Chapter 3 for a description of the exhaustive techniques available. 



Chapter 3 

k-error linear complexity problem 

In this chapter we define and analyse the problems that we are interested in 

with respect to the k-error linear complexity. We also describe and analyse the 

exhaustive search techniques that can be used for solving these problems in order 

to obtain an exact result. We show the way that the exhaustive search method 

can be optimised without losing the accuracy of the result. 

First, let us clearly define the problems we will be investigating. 

k-error linear complexity problem 

Input: A finite sequence S = So, SI, ... , St-l of size t > 0 with terms over a 

finite field GF(q), q a prime power; an integer value ko, with 0 < ko :S WH(S) -1. 

Output: The ko-error linear complexity of s, Lko; the error pattern cor­

responding to this linear complexity, eho ; a minimal characteristic polynomial 

0;;0 (X) corresponding to the sequence S + eko . 

While the k-error linear complexity problem is interesting in its own right 

we will implement whenever possible a solution for the following problem which 

determines the whole k-error linear complexity profile for a certain sequence S 

and limit of errors ko. Note that any algorithm which solves the k-error linear 

complexity profile problem is also an algorithm for the previous problem, the 

k-error linear complexity problem. 

k-error linear complexity profile problem 

Input: A finite sequence S = so, SI, . .. , St-l of size t > 0 with terms over a 

finite field GF(q), where q is a prime power; an integer value ko, with 0 < ko :S 
WH(S) - 1. 

Output: The ko-error linear complexity profile of S containing for each i, 

i = 0,1, ... , ko: Li, the i-error linear complexity; et, the error pattern producing 

the linear complexity Lt on S; C;(X) a minimal characteristic polynomial corre­

sponding to the sequence S + er. 
29 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 30 

Note that we exclude from the previous problems the marginal cases when 

ko = 0 or when ko ~ WH( 8), since for these values the k-error linear complexity can 

be immediately evaluated in polynomial time, Lo(8) = L(s) or in constant time, 

Lk(S) = 0, for all k ~ WH(S) (see property 2.15 in section 2.2.7), respectively. 

We impose these restrictions in order to concentrate on the interesting part of the 

problem and separate any special cases with an immediate solution. 

Also, note that in these problems, we are not interested only in the value of 

the k-error linear complexity for a specific k but also the error pattern e which 

produces that complexity and the characteristic polynomial of the sequence 8 + e. 

In general, for an integer i with 0 < i :S WH(S) -1, we denote in the output, Li as 

the i-error linear complexity, et, an error pattern which achieves this complexity, 

Le. L(s+et) = Lt and C:(X), a minimal characteristic polynomial of the sequence 

s +ei. 
For the all zero sequence 0 = (0,0, ... ,0), the k-error linear complexity and 

the k-error linear complexity profile can be immediately obtained, since Lk(O) = 0 

for any integer k. Moreover for this very reason, since in the problems above we 

constrain the values of ko to be such that 0 < ko :S WH(8) - 1 then the all zero 

sequence is not a valid input (WH(O) = 0). This is deliberate and we consider 

this a special case which can be excluded from the input as its solution is trivial, 

Lk (0) = 0 and the corresponding minimal characteristic polynomial and error 

pattern are Ck(X) = 1 and ek = (0,0, ... ,0), respectively, for any integer k > o. 
In this thesis, we will consider that an approximation algorithm for the k­

error linear complexity profile problem is correct if the profile returned by that 

algorithm is composed of correct linear complexities and minimal characteristic 

polynomials corresponding to the input sequence and each of the error patterns. 

Definition 3.1. An approximation algorithm for the k-error linear complexity 

profile problem is correct if for all i = 0, 1, ... ,ko, the value returned by the algo­

rithm Li is equal to L( s + en and Ct( X) is the minimal characteristic polynomial 

of the sequence s + e;. 

It is difficult to set a correctness check for the accuracy of the result as this 

would naturally focus more on the 'goodness' rather than the correctness of the so­

lution. However it is safe to assume that for each k = 0,1, ... ,ko the k-error linear 

complexity returned by the approximation algorithm, Li, is lower bounded by the 

exact value of the k-error linear complexity, Lk(S) and it is upper bounded by the 

linear complexity ofthe input sequence, L(8). Formally that means that a solution 

of an approximation algorithm for the k-error linear complexity profile problem 

satisfies the following condition: for each i = 0,1, ... , ko, Li(S) :S Lt :S L(s), 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 31 

where Li(8) and L(8) is the exact i-error linear complexity and the exact linear 

complexity of the input sequence, respectively. 

A special, reversed problem can be formulated with respect to the k-error 

linear complexity, in the context of the application of the design of cryptographic 

sequences. This problem assumes a practical application where a sequence is 

tested, to check if its k-error linear complexity does not fall under a specified 

threshold Lo when a certain number of errors k are allowed. Therefore, if this 

happens for small values of k and Lo, the sequence is unsafe to be used as it is 

easy to break. 

The problem is: what is the minimum number of errors k that need to be 

applied on the terms of a sequence 8 such that the linear complexity decreases 

below a specified value Lo (SaJagean [73]). Namely, what is the minimum k such 

that there is an error pattern e of weight k with L( 8 + e) :::; Lo. 

We denote this problem the L-constrained k-error linear complexity problem. 

L-constrained k-error linear complexity problem 

Input: A finite sequence 8 = 80,81, ... ,8t_1 of size t > 0 with terms over a 

finite field GF(q), where q is a prime power; an integer value ko, with 0 < ko :::; 

WH(8) - 1; an integer value Lo, with 0 :::; Lo :::; t. 
Output: The minimal number of errors k*, such that k* :::; ko, necessary to 

lower the linear complexity of 8 below Lo, Le. Li; (8) :::; Lo; the k* -error linear 

complexity, L*; e* the error pattern producing the linear complexity L'k; C*(X) a 

minimal characteristic polynomial corresponding to the sequence 8 + e*. If there 

is no such k* then an error value, e.g. -1, is returned. 

Note that the L-constrained k-error linear complexity problem might not have 

a solution when ko errors are not enough to lower the complexity of the input 

sequence below the given Lo. In such a case, an error code is expected, e.g. -1. 

3.1 NaIve Exhaustive Search Algorithm 

Determining the k-error linear complexity of a finite sequence of length t over a 

finite field of order q using an exhaustive search approach would mean investigating 

all the 2:7=0(q - l)i(:) possible error patterns of up to k errors, computing the 

linear complexity of each of the sequences obtained by adding these error patterns 

to the original sequence and, finally, the error pattern which corresponds to the 

minimum linear complexity would be the solution. 

The NaIve Exhaustive Search Algorithm for the k-error linear complexity pro­

file problem is presented in listing 4. 



CHAPTER 3. K -ERROR LINEAR COMPLEXITY PROBLEM 32 

Algorithm 4 Naive Exhaustive Search Algorithm for the k-error linear complexity 
profile problem 

1: Input: A finite sequence S = So, SI,"" St-I over GF(q); an integer ko, with 
0< ko ::; WH(S) - 1. 

2: Output: Li, Ci(X) and ei, for all i = 0,1, ... ,ko 
3: for i = 0, 1, ... , ko do 
4: Li f- L(s) 
5: Ci(X) f- C(X), a minimal characteristic polynomial 
6: eif-(~ 

t times 
7: end for 
8: for all {ele E GF(q/ with wH(e) ::; ko} do 
9: Calculate L(s + e) and C(X) corresponding to s + e 

10: k f- WH(e) 
11: if Lk > L(s + e) then 
12: Lk f- L(s + e) 
13: CZ(X) f- C(X) 
14: 

15: 

e* f- e k 
end if 

16: end for 
17: return Li, C;(X) and ei, for all i = 0,1, ... , ko 

Since the k-error linear complexity is calculated as a minimum value (from 

the definition), the profile is initialised with the maximum possible value that 

LHs) = L(s), Ct(X) = C(X) and ei = (0,0, ... ,0), for all i = 0, 1, ... , ko, where 
'--v--' 

t times 
C(X) is a minimal characteristic polynomial of s. 

All possible error patterns e E G F( q/ of weight less than or equal to ko 

are processed. The linear complexity and the characteristic polynomial of these 

s + e are calculated using the Beriekamp-Massey Algorithm and the error patterns 

corresponding to the minimum value L( s + e) for each number of errors are saved 

in the ko-error linear complexity profile. 

From the above considerations it is immediate to obtain the following theorem. 

Theorem 3.2. The Naive Exhaustive Search Algorithm for k-error linear com­

plexity profile problem (listing 4) is correct. 

Proof. The Naive Exhaustive Search Algorithm is a direct implementation of the 

definition of the k-error linear complexity (see definition 2.13). All the error 

patterns of weight less than ko are selected, added to the input sequence and 

the linear complexity of the resulting sequence is calculated. The minimum for 

each weight is saved. Therefore it follows immediately that the Naive Exhaustive 

Search Algorithm for the k-error linear complexity profile problem is correct. D 

The NaIve Exhaustive Search Algorithm for the L-constrained k-error linear 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 33 

complexity problem can be easily obtained with a similar exhaustive approach. 

We present it in listing 5 and its correctness is immediate. 

Theorem 3.3. The Naive Exhaustive Search Algorithm for the L-constrained k­

error linear complexity problem (listing 5) is correct. 

Proof. The Naive Exhaustive Search Algorithm for the L-constrained k-error lin­

ear complexity problem is a direct implementation of 

k* = min {klO ::; k ::; ko so there is an e E GF(q)t, wH(e) = k and L(s + e) ::; La}. 

All the error patterns of weight less than ko are selected, added to the input 

sequence and the linear complexity of the resulting sequence is calculated. We 

save the minimum value of k for which an error pattern e of weight k and with 

L(s + e) ::; La is found. Therefore it is immediate that the NaIve Exhaustive 

Search Algorithm for the L-constrained k-error linear complexity is correct. If 

no such k is found then the value of k* will remain WH(S) and an error code is 

returned. D 

Algorithm 5 NaIve Exhaustive Search Algorithm for the L-constrained k-error 
linear complexity problem 

1: Input: A finite sequence S = So, SI,' .. , St-l over GF(q); an integer ko, with 
0< ko ::; WH(S) - 1; an integer La, with 0 ::; La ::; t. 

2: Output: kO, L*, e* and C*(X). 
3: k* f- WH(S) 
4: L* <- 0 
5: C*(X) <- 1 
6: e* f- (-so, -SI, ... , -St-l) 

7: for all {ele E GF(q)t with wH(e) ::; ko} do 
8: Calculate L(s + e) and C(X) corresponding to S + e 
9: k f- wH(e) 

10: if k < k* and L(s + e) ::; La then 
11: k* <- k 
12: L* f- L(s + e) 
13: C*(X) +- C(X) 
14: e* f- e 
15: end if 
16: end for 
17: if k* < WH(S) then 
18: return k*,L*, C*(X) and e* 
19: else 
20: return -1 

21: end if 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 34 

3.2 Efficient Exhaustive Search Algorithm 

Some computational savings can be made in an exhaustive search approach by 

taking advantage of the incremental nature of the Berlekamp-Massey Algorithm 

which is used for computing the linear complexity and the characteristic polyno­

mial of each sequence 8 + e. Namely, for error patterns which coincide on the first 

say i positions, we can reuse the computations made on the first i terms of the 

sequence 8 + e. 

This more efficient version of an exhaustive search can be implemented for 

example by extending the recursive version of the Berlekamp-Massey Algorithm 

(algorithm 2 in section 2.2.6). We describe this alternative method for the k-error 

linear complexity problem below (see listings 6 and 7). This method follows closely 

the Berlekamp-Massey Algorithm. 

Similarly to the initialisation step in the naive version the ko-error linear com­

plexity profile is initialised with the maximum possible value that Li(8) = L(8), 

Ci(X) = C(X) and ei = (~, for all i = 0,1, ... , ko, where L(8) is the 
t times 

linear complexity of 8 and C(X) is a minimal characteristic polynomial of 8 (note 

that deg (C(X)) = L(8). 
The position of the first non zero element of 8 is found. If it would coincide 

with the size of the sequence then it would mean that the input sequence is all 

zero, a special case which we have treated and excluded in the definition of the 

problem. 

Once the position of the first non zero term is found the initialisation step needs 

to be performed. Since the exhaustive algorithm for the k-error linear complexity 

calculates the linear complexity for sequences ofthe form 8+e where 8 is the input 

sequence and e E GF(q)t is an error pattern of weight at most ko, the position of 

the first non zero element in 8 + e varies depending on the error pattern e. 

The recursive procedure exhef R(m, D(X), dm , C(X), n, e, init) covers all the 

error patterns e of weight at most ko, calculating the linear complexities of s + e 

with the Berlekamp-Massey Algorithm and saving the minimum values for each 

weight, building this way the ko-error linear complexity profile of s. 

The initial value of the error pattern e is all zero. Subsequently, the terms 

of the error patterns take all the possible values from G F( q)*. In order to select 

iteratively all or a subset of values from GF(q) (e.g. line 24 in procedure exhefR 

from listing 7), we need to consider an arbitrary but fixed total ordering, which 

we denote -<, of the finite field GF(q) = {fa = 0, fI, ... , f q-l}, i.e. fa = 0 -< fl -< 
... -< f q-l. 

At each step of the recursion, as the current error pattern e is built and the 

corresponding sequence 8 + e is processed, the parameters m, D(X), dm , C(X) 



CHAPTER 3. K -ERROR LINEAR COMPLEXITY PROBLEM 35 

Algorithm 6 Efficient Exhaustive Search Algorithm for the k-error linear com­
plexity profile problem 

1: Input: A finite sequence S = So, Sb •.. , St-I over GF(q); an integer ko, with 
0< ko :::; WH(S) - 1 

2: Output: Lt, Ct (X) and et, for all i = 0, 1, ... , ko 
3: for i = 0, 1, ... ,ko do 
4: Lt <- L(s) 
5: C;'(X) <-C(X), the characteristic polynomial of S 

6: et<-~ 
t times 

7: end for 
8: e<-(~ 

t times 
9: m <- 0 

10: D(X) <-1 
11: dm <- 1 
12: n <- 0 
13: C(X) <- 1 
14: init <- false 
15: call exhef R(m, D(X), dm , C(X) , n, e, init) 
16: return Lt, C;'(X) and et, for all i = 0,1, ... , ko 

are updated. These parameters have the same meaning as in the Berlekamp­

Massey Algorithm (section 2.2.6), namely m is the last change index, D(X) is 

the characteristic polynomial at the last change, dm is the discrepancy at the last 

change and C(X) is the current characteristic polynomial. 

The parameter init has a boolean value which reflects if the initialisation step 

has been performed (init = true) or not (init = false). 

At each step n, if the initialisation has not been done yet (init = false) we 

can either consider an error of magnitude -Sn which will delay the initialisation 

to a later step, since Sn + en = 0 (lines 12-13 in algorithm 7) or apply any other 

value from GF(q) \ {-sn} (Sn +en =1= 0), perform the initialisation and proceed to 

the next element (lines 14-21 in algorithm 7). 

If the initialisation has been done (init = true), similarly with the Berlekamp­

Massey Algorithm, the procedure firstly calculates the current discrepancy tin, 
where Cn are the coeffcients of the current characteristic polynomial C(X) = X Ln + 
CLn_IXLn-

1 + ... + cIX + Co and Ln is the linear complexity of the sequence S + e 

up to element n, Ln = L(so+eo, SI +el, ... , Sn-I +en-I). Secondly the new values 

of the intermediary parameters m, D(X), n, C(X) are calculated. 

For each element Sn, all possible error values are considered on that position, 

thus calculating the linear complexity of the sequence s+e where e is each possible 

error pattern (lines 23-39 in algorithm 7). 

The statement E <- (k = ko) ? {fo} : GF(q) in line 23 (listing 7) has the usual 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 36 

Algorithm 7 The exhef R(m, D(X), dm, C(X), n, e, init) procedure 

1: procedure EXHEFR(m, D(X), dm, C(X), n, e, init) 
2: k <- WH(e) 
3: Ln <- deg(C(x» 
4: Lm <- deg(D(x)) 
5: if (n = t) or (k > ko) or (Lk :::; Ln) then t> Stop cond 
6: if ((n = t) and (k :::; ko) and (Lk > Ln» then 
7: (L'i:,G;(X),ek) <- (Ln,C(X),e) 
8: call adjustProfile(Ln, C(X), e, k) 
9: end if 

10: 
11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

31: 

32: 

33: 

34: 

35: 
36: 

37: 

38: 

39: 

40: 

41: 

else 
if init = false then t> Not initialised yet 

en +- -Sn 

call exhefR(m, D(X), dm, C(X), n + 1, e,false) 
for all 9 E GF(q)\{ -sn} in increasing order relative to -< do 

en <- 9 
m<-n 
D(X) <-1 
dm <-- (s+e)m 
C(X) <- xn+l 
call exhef R(m, D(X), dm, C(X), n + 1, e, true) 

end for 
else t> Already initialised 

E <-- (k = ko) ? {fo} : GF(q) 
for all gEE in increasing order relative to -< do 

en <-- 9 
dn <-- (s + e)n + L:[,::;l c,,(s + e)i+n-Ln 
if dn i= 0 then 

if 2L > n then 
C(X) <- C(X) - ~x(m-Lml-(n-Lnl D(X) 
call exhefR(m, Drx), dm, C(X),n + 1, e, true) 

else 
T(X) <- C(X) 
C(X) <- x(n-Lnl-(m-Lmlc(X) - !b:...D(X) 

dm 
call exhefR(n, T(X), dn,C(X),n + 1, e, true) 

end if 
else 

call exhefR(m,D(X),dm,C(X),n+ 1,e,true) 
end if 

end for 
end if 

end if 
42: end procedure 



CHAPTER 3. K -ERROR LINEAR COMPLEXITY PROBLEM 37 

CIC++ meaning of the ternary conditional operator? :, namely, if k = ko then 

E <- {fo}, otherwise E <- GF(q). This way only error patterns of weight at most 

ko are considered. 

The stopping condition of the recursive call is a disjunction of subconditions. 

Firstly, if either the end of the sequence is reached, or if the current error 

pattern has a weight higher than ko, the processing of that recursive path needs 

to stop in order to save the result, in the former case, or to discard the current 

error pattern since the limit of errors was reached, in the latter. Concerning the 

latter condition, note that due to the ascending property of the linear complexity 

(see property 2.8) and since any error pattern on the current recursion path would 

have the initial segment equal to the current error pattern e, this means that if the 

recursion would not stop then it would either progress to an error pattern with a 

higher weight than allowed, or the complexity of 8 + e would become higher than 

the current best for ko-error linear complexity. 

Additionally, when the linear complexity of the errored sequence 8 + e up to 

term n (in the algorithm denoted Ln) is higher or equal to the current best for 

k = wH(e) errors, i.e. Li, :::; Ln , then in this case the calculations on that path 

can stop since it is impossible to improve the current solution using an error with 

the initial segment e. This is based on the fact that the linear complexity of a 

fixed sequence increases with the index of the processed term (property 2.8 in 

section 2.2.5) and that the k-error linear complexity decreases with the value of 

k (property 2.14). If a certain error pattern e of weight k up to term n gives a 

linear complexity Ln = L(80 + eo, ... , 8n-l + en-tl such that Ln :::: Li" then any 

error pattern e' coinciding with e on the first n terms would not contribute to the 

solution profile since L(8 + e') ::::prop 2.8 L(8 + e) :::: Li, ::::prop 2.14 L:H(e') since 

wH(e') :::: k. 

In order to make this latter condition more efficient (Li, :::; Ln), the currently 

stored ko-error linear complexity profile can be maintained whenever a new so­

lution is found, using the property of the k-error linear complexity of decreasing 

with the number of errors k (property 2.14 in section 2.2.7). Whenever a new 

solution is found, some of the k-error linear complexities stored in the profile can 

be checked to see if there are any possible adjustments (see implementation in 

listing 8). This ensures that the current profile solution is a valid one (decreasing 

with k) and also as close to the exact value as possible, so the comparison of the 

currently found k-error linear complexity (Ln) with the current solution for errors 

up to k (Lk) is as fruitful as possible. 

The adjustment of the solution k-error linear complexity profile contains one 

loop which implements the following logic. When an error pattern e of weight k 

which improves the current solution is found, then execute: 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 38 

• For all i = k + 1, ... ,WH(S) -1, if the currently stored i-error linear com­

plexity is more than the newly found k-error linear complexity (Le. Lt( s) > 
L( s+e)) then make the i-error solution equal to the k-error solution (copy the 

i-error linear complexity, the characteristic polynomial and error sequence), 

as L;(s) ::; Lk(s). 

Note that for all i = 0,1, ... ,k-1, the currently stored i-error linear complexity 

is larger then the newly found k-error linear complexity (Le. Lt(s) 2:: L(s + e)) in 

compliance with property 2.14 in section 2.2.7. 

Algorithm 8 The maintenance of the k-error linear complexity profile 
procedure ADJUSTPROFILE(L*, C*(X), eO, k) 

for i = k + 1, ... , ko do 
if Lt > Lk then 

Lt <-- Lk 
Cj(X) <-- Ck(X) 
et f- et: 

end if 
end for 

end procedure 

Figure 3.1 is a graphical representation of an execution tree of recursive calls 

within the Efficient Exhaustive Search Algorithm (EESA), in the exhelR pro­

cedure. The root represents the initial state of the algorithm and each node 

represents a recursive transition from one index n to the next one, n + 1, for all 

° ::; n < t - 1. Each arc between two nodes say on levels nand n + 1 is labeled 

with a value from GF(q) = {fo = 0, h = 1, ... , Iq-I}, for all ° ::; n < t - 1, the 

value being the one attributed to en in the algorithm when processing the next 

term (s + e )n' The leaves correspond to the end of an error pattern, Le. reaching 

one of the stopping conditions in the recursive procedure, for example n = t. 
Any path from the root to a leaf will contain at most ko arcs labeled with non 

zero values, e.g. values from the set GF(q)'. The paths of length t from the root 

to a leaf correspond to error patterns which are processed in full by the algorithm. 

The error e = (0,0, ... ,0) will always be considered regardless of the value of ko 
"-v--' 

t times 
(0 < ko ::; W H (s) -1), and this error pattern corresponds to the leftmost path. The 

depth I of the tree is therefore t. Also, note that the right most path corresponds 

to the error sequences of weight ko, e = (Iq-I, Iq-I>"" Iq-I, 0, ... , ° ). , , '"-.r-' 
ko ti~es t-ko times 

'The depth of a tree is the number of edges in the path from the root node to its furthest 
leaf. 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 39 

1 s, 

~ s, 

~ ',., 

Figure 3.1: The execution tree of the efficient exhaustive search algorithm. 

The Efficient Exhaustive Search Algorithm for the k-error linear complexity 

profile problem calculates the linear complexity of the input sequence s to which we 

add every relevant error pattern e E GF(q)t with WH(S) ~ ko. The error pattern 

which produces the minimum complexity for each number of errors i = 0, 1, ... ,ko 

is saved. Therefore the algorithm correctly returns the ko-error linear complex­

ity profile of the sequence along with the corresponding minimal characteristic 

polynomials and error patterns. 

Theorem 3.4. The Efficient Exhaustive Search Algorithm for the k-error linear 

complexity profile problem (listings 6 and 7) is correct. 

Proof. Note that the stop condition in procedure exhef R ensures that all the error 

patterns e E GF(q)l processed by the algorithm are such that wH(e) ~ ko. 
We can prove by induction on n, where n = 0,1, ... ,t - 1, that for each error 

sequence e = eo, el, ... ,en with W H (e) ~ ko processed by the algorithm, the values 

of the intermediary parameters rn, D(X), dm , C(X) and init calculated by the 

recursive procedure are correct for the sequence 

(s + e)(n) = (so + eo, SI + el, ... , Sn + en). Specifically, m is the last change index, 

i.e. the maximum value such that m < nand L((s + e)(m-I)) < L((s + e)(m) = 
L((s +e)(n-I)); D(X) and dm are a characteristic polynomial and the discrepancy 

corresponding to the last change term m; C(X) is a minimal characteristic poly­

nomial for (s+e)(n); init reflects ifthe sequence (s+e)(n) is all zero (init = false) 

or not (init = true). 

For n = ° and for an eo E GF(q), the values of rn, D(X), dm , C(X) and init 

at the end of the procedure can be easily verified to be correct for (s + e)(O). 

We discuss the correctness of these values for an n > ° and any error pattern 

eo, el, ... ,en of weight at most ko, provided that they are correct at the end of 

the recursion for n - 1 and error pattern eo, el, ... ,en-I of weight at most ko. 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 40 

Assuming the values of rn, D(X), dm, C(X) and init are correct for (s + e)(n-l), 

we prove that their values at the end of the next recursion are correct for (s+e)(n). 

If WH(eO, .. " en-I) > ko then the recursion stops as the current error pattern 

is not eligible for calculating the ko-error linear complexity profile. 

If deg(C(X)) ~ Li. then the algorithm stops since any error pattern having as 

initial segment (eo, ... , en-I) does not contribute to the result and can therefore 

be discarded. 

If none of the stop criteria are met and the initialisation is not yet performed 

(init = false) it means that the current (s+e)(n-I) = (0,0, ... ,0). There are two 
'--v--' 
n-I times 

different situations in this case: 

1. en +- -Sn, therefore Sn + en = 0 and the initialisation is delayed to one of 

the next steps, no change is needed on any of rn, D(X), dm , C(X) and init 

remains false. 

2. en +- 9 for all 9 E GF(q)\{ -sn} so that Sn + en i' 0 and therefore the 

initialisation is performed. The values of the parameters can be immediately 

verified to be correct for (s + e)(n) 

.m~n 

• D(X) +- 1 

• dm <-- (s+e)m 

• C(X) <-- X n
+1 

• init +-- true 

If the initialisation has been performed (init = true) then each possible value 

for en from GF(q) is treated similarly, whether it means no error (en = 0) or error 

(en E GF(q)*). The discrepancy corresponding to term Sn + en is calculated and 

the values of rn, D(X), dm , C(X) are updated accordingly. 

The correctness of the new values of rn, D(X), dm , C(X) is implied by the 

correctness of Berlekamp-Massey Algorithm and of the initial values corresponding 

to (s+e)(n-l). 

The previous considerations imply that the values rn, D(X), dm , C(X) are cor­

rect for (s + e)(t-I) and since the minimum value is saved for each k less than 

or equal to ko, each time a solution is obtained, the correctness of the resulting 

profile for the input sequence sand ko is immediate. 0 

We are now interested in an Efficient Exhaustive Search Algorithm for the 

L-constrained k-error linear complexity problem. Note that the L-constrained k­

error linear complexity problem can be solved by checking for each integer k with 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 41 

k ::; ko, if there is any error pattern of weight at most k which produces a linear 

complexity less than or equal to Lo on the input sequence and then taking the 

minimum such k. See listing 9 for the implementation of such an algorithm. With 

no changes, the exhef R procedure could be used in algorithm 9 however some 

improvements can be made and we will show these in a new procedure, denoted 

exhef RL (see listing 10). 

Algorithm 9 Efficient Exhaustive Search Algorithm for the L-constrained k-error 
linear complexity problem 

1: Input: A finite sequence s = So, S1, ... , St-1 over GF(q); an integer ko, with 
0< ko ::; WH(S) -1; an integer Lo, with 0::; Lo ::; t. 

2: Output: k*, L*, e* and C*(X). 
3: for i = 0, 1, ... , ko do 
4: Li <-- L(s) 
5: C;(X) <--C(X), the characteristic polynomial of s 
6: ei <-- (0,0, ... ,0) 

"-v--' 
t times 

7: end for 
8: e<--(~ 

t times 
9: m <-- 0 

10: D(X) <-- 1 
11: dm <-- 1 
12: n <-- 0 
13: C(X) <-- 1 
14: init <-- false 
15: call exhef RL(m, D(X), dm , C(X), n, e, init) 
16: k* <-- min{kILi;(s) ::; Lo, 0::; k::; ko} 
17: if k* > 0 then 
18: return k* ,Li;, C.~(X) and ei: 
19: else 
20: return -1 

21: end if 

We can define an Lo-truncated k-error linear complexity profile as being the 

. {L(S), when Li(S) > Lo 
set {(2, Lj(s»1 for all 0 ::; i ::; ko}, where Lj(s) = . 

Li (s), otherw1se. 
and Li(s) is the i-error linear complexity of the sequence s. In an Lo-truncated 

k-error linear complexity we mean to ignore all the k-error linear complexities 

greater than Lo and use a certain maximum value instead for these values of k, 

here we choose the maximum value to be L(s). Having such a truncated profile, 

the minimal number of errors k* for which the k-error linear complexity is less 

than or equal to Lo can still be found by taking k* = min {iILj(s) ::; Lo}. 

Example 3.5. Suppose s is a binary sequence s = 0110111101110101 of length 

16. The linear complexity of s is 8 and the characteristic polynomial C(X) = 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 42 

X 8 + X6 + X 5 + X 4 + X + 1. 

The exact k-error linear complexity profile of s is: 

{(O, 8), (1, 7), (2,6), (3,4), (4, 2), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (lO, 1), (11, On. 

The 4-truncated k-error linear complexity profile of s is the following, and 

even if the values of the I-error or 2-error linear complexity are unknown we can 

conclude that 3 errors are necessary to lower the linear complexity of s to 4: 

{(0,8), (1,8), (2,8), (3,4), (4,2), (5, 1), (6, 1),(7,1),(8, 1),(9,1), (10,1),(11,0)}. 

The Efficient Exhaustive Search Algorithm needs minimal changes (some re­

cursive calls are unnecessary) in order to calculate an Lo-truncated k-error linear 

complexity profile as defined above and therefore solve the L-constrained k-error 

linear complexity profile. 

Two stop conditions need to be added to the recursive procedure exhef RL so 

that a truncated profile is returned (see listing 10). 
The first condition (Ln > Lo) is necessary since once the linear complexity of 

s + e reaches a value greater than Lo, there is no need to carry on with that error 

pattern e which will not contribute to the resulted Lo-truncated ko-error linear 

complexity profile. 

Secondly, when the found solution for a certain number of errors k is already 

smaller than the given threshold Lo (Lt, < Lo) the investigations on error patterns 

of weight greater than or equal to k should stop since it would not help with finding 

the minimum value k* that we are interested in. For this reason, the algorithm 

should concentrate on error patterns of weight lower than the current k* so if 

k* < k then the current error sequence should be abandoned. 

See listings 9 and lO where the changes are highlighted in bold. 

Given the above remarks, the following correctness theorem is immediate. 

Theorem 3.6. The Efficient Exhaustive Search Algorithm for the L-constrained 

k-error linear complexity problem (listings 9 and 10) is correct. 

Proof. The correctness of the linear complexities calculated by the Efficient Ex­

haustive Search Algorithm has already been proven in theorem 3.4 for the k-error 

linear complexity profile problem. The new version of the procedure exhef RL 

for the L-constrained k-error linear complexity problem (listing lO) has additional 

stop conditions which are included for efficiency purposes and which do not affect 

the correctness of the result. o 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 43 

Algorithm 10 The exhef RL(m, D(X), dm, C(X), n, e, init) procedure 
1: procedure EXHEFRL(m, D(X), dm, C(X), n, e, init) 
2: k t-- WH(e) 
3: Ln t-- deg(C(X)) 
4: Lm t-- deg(D(X)) 
5: if (n = t) or (k > ko) or (Li, ~ L",) or (Ln > Lo) or (Lit < Lo) or (k* < k) 

then I> Stop cond 
6: if ((n = t) and (k ~ ko) and (Li, > Ln)) then 
7: (Li" C;;(X), en t-- (Ln, C(X), e) 
8: k* t-- min{iILj(s) ~ Lo} 
9: call adju8tProfile(Ln, C(X), e, k) 

lO: end if 
11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

31: 

32: 

33: 

34: 

35: 

36: 

37: 

38: 

39: 

40: 

41: 

42: 

else 
if init = false then I> Not initialised yet 

en t- -Sn 

call exhefRL(m, D(X), dm , C(X), n + 1, e, false) 
for all g E GF(q)\{ -sn} in increasing order relative to -« do 

en t-- g 
mt--n 
D(X) t-- 1 
dm t-- (s + elm 
C(X) t-- xn+l 
call exhefRL(m,D(X),dm,C(X),n+ 1,e,true) 

end for 
else I> Already initialised 

Et-- (k = ko)?{fo} : GF(q) 
for all gEE in increasing order relative to -« do 

en t-- g 
dn t-- (8 + e)n + L~;Ol Cn(s + e)i+n-Ln 
if dn i= 0 then 

if 2L > n then 
C(X) t-- C(X) - .b..x(m-Lm)-(n-Ln) D(X) 

dm 
call exhefRL(m, D(X), dm, C(X), n + 1, e, true) 

else 
T(X) t-- C(X) 
C(X) t-- x(n-Ln)-(m-Lm)C(X) - E.n.D(X) 

dm 
call exhefRL(n, T(X), dn, C(X), n + 1, e, true) 

end if 
else 

call exhef RL(m, D(X), dm, C(X), n + 1, e, true) 
end if 

end for 
end if 

end if 
43: end procedure 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 44 

3.3 Algorithm analysis 

In this section we formally analyse the computational complexity of the algorithms 

presented in sections 3.1 and 3.2. 

For both problems considered, the NaIve Exhaustive Search Algorithm takes 

each ofthe different error patterns e of weight at most ko (there are 2:~~o( q _l)i G) 
possibilities) and computes the linear complexity values of the sequences s+e using 

Berlekamp-Massey Algorithm which has computational complexity O(t2
), where t 

is the size of the input sequence. Therefore the order of the number of operations 

performed by NaIve Exhaustive Search Algorithm is t2 2::~o(q - l)i(;). 
We can broadly approximate: 

There is no closed form for sums of the form 2:~=o (7), so we will use bounds: 

Lemma 3.7 (Alecu, SaHl,gean [2]). The following bound stands 

~ (n) < { 2G), £0' i - (k-lntIJ+2)(~), 
if k S. l nt1 J , 
if l nt l J < k S. l n21 J 

Proof. The first case follows by induction on k, using the fact that (~) = (k~l) n-~+l 
for all integers nand k, k # O. Also n-~+l ~ 2 if k S. L(n+ 1)/3J. The remain­

ing inequalities follow from the first using elementary properties of the binomial 

coefficients. 0 

We can approximate binomial coefficients by using Stirling's approximation 

(see for example [15, Section 2.9]) which specifies that for n ~ 3 the following 

estimation stands 

(3.1) 

where en is such that 12~+1 < en < l~n' 
Since we need to estimate a binomial coefficient (~) = G;,) where n ~ 3 and 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 45 

An is an integer then 

c:) = 
n! 

(An)!(n(l - A))! 

V21r An (>'en ) >.n ee>." y'21r(1 _ A)n ((I e>.)n) (I 
>')n 

1 1 
_ __ eCn-C>.n-C(l->')n 

..j2if ,,;n(1 - A)n(H)+h>.n+! 

It follows that 

(3.2) 

2 1 
where n :::: 3, 0 < k < n, A = kIn and c is a constant such that, e-3j' :'S c:'S eiB. 

When assessing exponential time complexities of algorithms we will also use 

the following property (see for example Garey and Johnson [19]). 

Property 3.8. For any a > 1 and i > 0 the function fen) = nian E O((a + c:)n) 
where c: > 0 is an arbitrarily small constant. 

We are now ready to estimate the complexity of the algorithms presented. 

Theorem 3.9. The worst case time complexity of the Naive Exhaustive Search 

Algorithm for sequences over GF(q) of length t and number of errors at most 

ko = vt with 0 < v < 1/3 is O(t"ftN) where A = v.lr;l:-v. This can also be 

expressed as 0 (( A + c:) t) with c: > 0 an arbitrarily small constant. For a typical 

value ofv = 0.1 (i.e. errors in at most 10% of the positions) on a binary sequence 

of length t (i.e. q = 2) the time complexity is O(t"ft1.384145t ). 

Proof. For a sequence of length t over GF(q) and for a number of errors ko, the 

Naive Exhaustive Search Algorithm computes the linear complexity (using the 

Berlekamp-Massey Algorithm) for Z~::'o(q -1)iG) sequences obtained by adding 

different error patterns to s. The Berlekamp-Massey Algorithm involves at most 

t 2 operations so the order of the number of operations is t 2 Z~::'o(q - l)i(:) (see 

algorithm 4 in section 3.1). Therefore, using lemma 3.7 the number of operations 

is at most 2t2(q -l)kOUo";I)' 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 46 

Using relation (3.2) we obtain the following approximation: 

D 

For analysing the computational complexity of the Efficient Exhaustive Search 

Algorithm we will use the trees described earlier in figure 3.1. From the algorithm 

one can notice that these trees have the property that any path from the root to 

a leaf has at most ko branches labelled with a value f E GF(q)*. 

Note that in terms of the Efficient Exhaustive Search Algorithm the label 

on each arc between level nand n + 1 represents en in a certain error pattern 

considered by the algorithm. 

We estimate their number of nodes using the following Lemma (the case q = 2 

was treated in Alecu and SaIagean [2]). 

Lemma 3.10. Consider a tree of depth t where any node has at most q children 

and the edges to these children are labeled with values from a finite field G F( q) = 

{fo = O,!J, ... , f q-l} like in figure 3.1. If on any path from a root to a leaf the 

number of non zero labels is at most ko then the tree has at most L:~:;o(q-l)iG!i) 
nodes. 

Proof. We associate to each node a description of the path from the root to that 

node using the labels of the edges, Le. each node on level n is characterised by 

a sequence of length n over the alphabet {fo = 0, fl"'" f q-l}. Also we denote 

the levels in the tree from 0 to t, 0 being the root level and t being the maximum 

level. 

With these notations, let us compute the maximum number of nodes on each 

of the levels of the tree. 

There are two situations depending on the value of the level n. 



CHAPTER 3. K-ERROR LINEAR COMPLEXITY PROBLEM 47 

Firstly, if 1 ::; n ::; ko, then the number of nodes on the level n is equal to qn. 

Because the level is less or equal to ko, any path from root to the nodes on the 

level n would have at most ko edges with non zero labels. Therefore the tree is 

actually a complete tree up to level n. 

Secondly, if ko + 1 ::; n ::; t then the number of nodes on the level n is equal 

to the number of sequences of length n with at most ko non zero terms, i.e. from 

the set GF(q)* = {/J, 12, ... , f q-l}' Therefore it can be represented as: 

We note that even in the first situation when 1 ::; n ::; ko, since the convention 

is that (~) = 0, we can express the number of nodes as: 

Therefore we can unify the two formulas for all levels n, where n = 1,2, ... , k 

to obtain the total number of nodes in the tree, except the root: 

Since the number of edges in a tree is equal to the number of nodes minus the 

root, it means that the number of vertices in the tree is equal to: 

D 

Theorem 3.11. The worst case time complexity of the Efficient Exhaustive Search 

Algorithm for sequences over GF(q) of length t and number of errors at most 

ko = vt with 0 < v < 1/3 is O( 0>,t) where.>. = vvi;-~~;-v. This can also be 

expressed as 0(('>' + c)t) with .0 > 0 an arbitrarily small constant. For a typical 

value ofv = 0.1 (i.e. errors in at most 10% of the positions) on a binary sequence 

of length t (i.e. q = 2) the time complexity is O( 01.384145 t ). 

Proof. A run of the Efficient Exhaustive Search Algorithm can be represented as 

a tree of depth t and at most ko branches labelled with non zero values on any 

path from the root to a leaf. Using Lemma 3.10, this tree will have at most 

I::!o( q - l)i G!D nodes. So the number of nodes is bounded by 2( q - 1 )ko (:0":1)' 



CHAPTER 3. K -ERROR LINEAR COMPLEXITY PROBLEM 48 

from Lemma 3.7. For any node, the algorithm computes a discrepancy and possi­

bly adjusts the characteristic polynomial, so there are ott) computational steps. 

Therefore the complexity is O(t(q _l)ko(:~l))' 
Using ( 3.2) we obtain the following approximation: 

2(q_l)kOt (t+l) = 
ko+ 1 

2(q _ l)ko t(t+ 1) (t) 
ko+l ko 

2( _1)vt t(t+l)(t) 
- q vt+ 1 vt 

cv'2(q - l)vt t(t + 1) 1 

"" ft vt + 1 0(1 _ Vj!(l-V)+%vvt+% 

cv'2 0 (q - l)vt 
"" ft vvv(1 - v) (1- v)(1 v)tvvt "" 

"" cv'2 Vi ( (q _l)V )t 
ftvvv(l - v) (1 - V)(l-V)vv 

o 

The Efficient Exhaustive Algorithm is used throughout this thesis as a reference 

for the accuracy of the algorithms that we design. 

3.4 Conclusion 

We have clearly defined the problems that are trying to solve in this thesis: the 

k-error linear complexity problem, the k-error linear complexity profile problem 

and the L-constrained k-error linear complexity problem. 

We present and analyze two exhaustive search techniques for computing the k­

error linear complexity of sequences over finite fields. Both the Naive Exhaustive 

Search Algorithm and Efficient Exhaustive Search Algorithm are general and exact 

algorithms. The computational complexity is exponential for both algorithms, 

however important time improvements with no accuracy costs are registered in 

Efficient Exhaustive Search Algorithm. 

Efficient Exhaustive Search Algorithm will be used throughout this thesis to 

compute the exact values of the k-error linear complexity when evaluating the 

heurstic algorithms presented in chapters 4 and 5. 



Chapter 4 

Modified Berlekamp-Massey 

Algorithm 

In this chapter, we present heuristic algorithms which approximate the solution of 

the k-error linear complexity profile problem and the L-constrained k-error linear 

complexity problem for general finite sequences over a finite field by adapting the 

Berlekamp-Massey Algorithm (Berlekamp [4], Massey [42]). The method explores 

only some of all the possible error sequences, the choice of the positions of the 

errors being guided by the steps of the Berlekamp-Massey Algorithm in which the 

complexity is increased. 

4.1 Introduction 

In chapter 3 we described the exhaustive techniques for solving the k-error lin­

ear complexity profile and the L-constrained k-error linear complexity problems. 

These techniques process all the possible error patterns in order to obtain an exact 

result. 

A heuristic approach would only explore a subset of all the possible error 

patterns. We investigate a method of choosing these selected few error patterns 

in such way to maximise the accuracy of the result. The heuristic in this chapter 

uses the Berlekamp-Massey Algorithm to choose these patterns. Namely, during 

the algorithm (see section 2.2.6), only the case when the discrepancy is not zero 

d(n) oF 0 and when the current linear complexity is less than or equal to half the 

length of the sequence, 2L(n) :::; n (case (1b)) yields an increase in the current 

complexity of the sequence. It therefore seems natural to concentrate on what 

would happen if the current term of the sequence, which creates this increase 

in complexity, would be changed in such a way as to make the discrepancy d(n) 

zero, and therefore make an increase in complexity unnecessary. If we introduce 

49 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 50 

these changes to the sequence early in the algorithm, we would soon run out of 

the ko allowed errors, and we would not be able to explore the effect of errors on 

later terms of the sequence. Whenever case (lb) occurs in the algorithm we do 

therefore consider both possibilities: changing the current term of the sequence, 

or not changing it, and we continue exploring both branches. This approach will 

therefore still have an exponential complexity, but will substantially decrease the 

number of error patterns investigated, with the savings becoming larger for fields 

of larger cardinality. 

In the case of fields of larger cardinality, this approach has the advantage that 

even if the field has more than two elements, there are still only two choices that 

are investigated: introducing no error, or introducing an error of magnitude _d(n), 

where d(n) is the discrepancy. An exhaustive search approach (for example Efficient 

Exhaustive Search Algorithm described in section 3.2) would have to investigate 

all the possible error magnitudes along with the zero value for each error position, 

i.e. q possibilities for a field of q elements. The computational complexity of the 

heuristic method is further discussed in Section 4.3. 

Our approach is not guaranteed to give the exact result of each k-error lin­

ear complexity, as the error pattern that decreases the complexity the most may 

well not have the errors in those positions suggested by the Berlekamp-Massey 

Algorithm. Since we investigate only some of all the possible error patterns and 

the k-error linear complexity is defined as a minimum over the set of all error 

patterns (see definition 2.13), our results are always larger than or equal to the 

exact ones. Unfortunately we were unable to prove a bound on the approxima­

tion quality. Therefore, we investigate experimentally in Section 4.4 how close 

the approximation is to the exact values composing the k-error linear complexity 

profile. 

We firstly illustrate our algorithm with an example: 

Example 4.1. Suppose we take a binary sequence s = 0110111101110101 of length 

16. Table 4.1 shows the intermediate results of the Berlekamp-Massey Algorithm 

for this sequence. The resulting linear complexity is 8 and the characteristic poly­

nomial C(X) = X 8 + X6 + X5 + X 4 + X + 1. 

Figure 4.1 shows the tree of recursive calls which would be considered as sug­

gested by the Berlekamp-Massey Algorithm, calls which correspond to the situa­

tions when the current linear complexity needs to be increased. The internal nodes 

and the root in figure 4.1 show the current position in the sequence and the current 

linear complexity at the moment when a raise in the linear complexity is needed. 

The left child of each internal node corresponds to not forcing an error and the 

right child corresponds to introducing the error _d(n) such that the discrepancy 

becomes zero. The leaves in the tree show the final result on each path in the tree: 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 51 

Table 4.1: Intermediate results for the Berlekamp-Massey Algorithm applied to 
the sequence s = 0110111101110101 

n Sn-l dn Ln dm m Lm Cm(X) Cn(X) 

1 0 0 1 
2 1 2 1 1 0 1 X2 

3 1 1 2 1 1 0 1 X2+X 
4 0 0 2 1 1 0 1 X2+X+1 
5 1 0 2 1 1 0 1 X2+X+1 
6 1 1 2 1 1 0 1 X2 +X +1 
7 1 0 5 1 6 2 X2+X+1 X5 +X4+X3 +1 
8 1 0 5 1 6 2 X2+X +1 X5+X4+X3 +1 
9 0 1 5 1 6 2 X2+X+1 X5 +X4+X3 +1 
10 1 0 5 1 6 2 X2+X+1 X5 + X 4 + X3 + X 2 + X 
11 1 0 5 1 6 2 X2+X +1 X 5 + X 4 + X3 + X 2 + X 
12 1 1 5 1 6 2 X2+X +1 X5 +X4+X3 +X2 +X 
13 0 1 8 1 12 5 X5 +X4+X3 +X2 +X XB+X7 +X6+X5+X4+ 

X2+X+1 
14 1 1 8 1 12 5 X5 +X' +X3 +X2 +X XB + X3 + X2 + X + 1 
15 0 0 8 1 12 5 X5 +X4+X3 +X2 +X XB+X6+X5+X4+X +1 
16 1 0 8 1 12 5 X5 +X4 +X3 +X2 +X XB+X6+X5+X4+X +1 

the number of errors which were introduced and the corresponding k-error linear 

complexity for that error pattern. In Table 4.1 we can see that the first change of 

complexity happens when the term 86 = 1 is processed. At this moment two paths 

need to be taken, either an error is introduced and the linear complexity and char­

acteristic polynomial remain unchanged (corresponding to the right sub tree), or no 

error is introduced and the algorithm carries on just as in the classic B erlekamp­

Massey Algorithm (left subtree). Having the path of subsequent decisions to get 

to a certain solution (represented by a leaf in the tree), the error sequence can be 

built using a bottom-up technique. For example, if we need to rebuild the error se­

quence corresponding to the found 3-error linear complexity (L3 (8) = 5), this one 

will contain 1 's in the positions 14,13 and 12, corresponding to the error sequence 

0000000000001110. Note that there is a second solution contributing to the 3-error 

linear complexity (£3(8) = 13), corresponding to an error sequence with 1 's in the 

positions 14, 9 and 8 but this is not the optimum value. 

By taking the minimum value of the linear complexity for each number of er­

rors, the results in the tree in Figure 4.1 give an incomplete k-error linear complex­

ity profile {(O, 8), (1,9), (2,7), (3, 5), (5, 2)}. Applying the monotony property of the 

k-error linear complexity (property 2.14) and the fact that LWH(s)(s) = 0 for any 

sequence s (property 2.15) an approximation of the full k-error linear complexity 

profile can be found: 

{(O, 8), (1,8), (2,7), (3,5), (4,5), (5, 2), (6,2), (7, 2), (8, 2), (9, 2), (10, 2), (11, O)}. 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 52 

Figure 4.1: Example of the Modified Berlekamp-Massey Algorithm tree of error 
and no-error recursive calls for the sequence s = 0110111101110101 

The exact k-error linear complexity profile for the sequence s is: 

{(0,8), (1, 7),(2,6),(3,4), (4,2), (5,1),(6,1), (7, 1),(8, 1), (9, 1), (10,1), (11,0)}. 

One can notice that the approximation is very close to the exact values even though 

the difference in the number of error patterns processed is significant (10 error 

patterns for the proposed approach and Li~o Ci6) = 33215 for the Naive Exhaustive 

Search Algorithm). 

4.2 Modified Berlekamp-Massey Algorithm 

Based on the considerations in section 4.1 we will describe an implementation, 

denoted Modified Berlekamp-Massey Algorithm, which outputs an approximation 

of the k-error linear complexity profile problem and which is based on the recursive 

version of the Berlekamp-Massey Algorithm (see listing 2 and 3 in section 2.2.6). 

For a sequence s and an integer ko with 0 < ko :S WH(S), the approximate 

ko-error linear complexity profile of s returned by the Modified Berlekamp-Massey 

Algorithm contains for each i = 0,1, ... , ko: Lj, the approximate i-error linear 

complexity; et, the error pattern producing the linear complexity Lt on S; C;(X) 
a minimal characteristic polynomial corresponding to the sequence s + et. 

The algorithm initially locates the position of the first non zero term. This 

cannot coincide with the end of the sequence since the all zero sequence is not a 

valid input sequence. 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 53 

Since the k-error linear complexities in the profile are minimum values, the 

k-error linear complexity profile is initialised with the maximum possible value, 

namely L7 = L(8), Ci(X) = C(X) and e = (0,0, ... ,0), for all i = 0,1, ... , ko, 
'--v--' 

t times 
where L(8) is the linear complexity of 8 and C(X) is a minimal characteristic 

polynomial of the input sequence s, i.e. deg (C(X)) = L(s). 

The significant changes from the Berlekarnp-Massey Algorithm are in the re­

cursive procedure, denoted now mbmR (listing 12). See listing 3 in section 1 for 

procedure bmR. The parameters of the procedure mbmR are: 

• e, the current error sequence of weight k (wH(e) = k). 

• n, the current position in the sequence. 

• C(X), the current characteristic polynomial (Ln = deg (C(X))). 

• D(X), the characteristic polynomial at the last change in degree (Lm 

deg (D(X))). 

• m, the position where the last change in degree occurred (m < n, Lm < Lm+l 

and Lm+1 = Ln). 

• dm, the discrepancy value at the time of the last change in degree. 

The procedure works in a similar way with the recursive version of the Berlekamp­

Massey Algorithm, processing the sequence s + e, where s is the input sequence 

and e is an error pattern. The error pattern is built by considering at every po­

sition n where 2Ln :::; nand dn =F 0, two alternatives for the current en value, 

en = 0, corresponding to introducing no error, and en = -dn, the reverse of the 

discrepancy value, corresponding to introducing an error. 

In (line 21 in algorithm 12) is the unit vector of size n having all terms zero 

except for the position n where the term is 1 (In = (0,0, ... ,1, ... ,0)). Therefore 

e - dn1n = (eo, er, ... , en-l, en - dn, en+b ... , et-I)' 

The stop condition is a disjunction of conditions. If the end of the sequence 

has been reached (n = t) then it means an error pattern e of weight k at most 

ko has been processed and if L( s + e) is smaller than the currently stored Li;, the 

new solution needs to be saved. 

If the current error pattern has a weight larger than ko (k > ko) then that path 

needs to be discarded since it does not contribute to the ko-error linear complexity 

profile. 

Additionally, some of the paths taken by the recursion calls might get to an 

error pattern e such that L( s + e) is greater than or equal to the currently stored 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 54 

Algorithm 11 Modified Berlekamp-Massey Algorithm for the k-error linear com­
plexity profile problem 

1: Input: A finite sequence S = So, SI"", St-1; an integer ko with 0 < ko :<::: 

WH(S) - 1; 
2: Output: The approximate k-error linear complexity profile, Li, C;'(X) and 

ei, for all i = 0, 1, ... , ko. 
3: nz <- 0 
4: while sn, = 0 and nz < t do c> go over the initial zeros 
5: nz <- nz + 1 
6: end while 
7: for i = 0, 1, ... ,ko do 
8: Li <- L(s) 
9: C;*(X) <- C(X), a minimal characteristic polynomial 

10: ei<-(~ 

11: end for 
12: k +-- 0 

t times 

13: e=(~ 
t times 

14: m+-- nz 

15: D(X) <-1 
16: dm <- sn, 
17: nz <- nz + 1 
18: C(X) <- xn, 
19: if nz :<::: t - 1 then 
20: call mbmR(m, D(X), dm, C(X), nz, e) 
21: end if 

c> otherwise ko = WH(S) - 1 = 0 

22: return Li, C*(X)i and ei, for all i = 0,1, ... , ko 

solution for that number of errors k (LiJ. Continuing the investigation on that 

recursion path is of no use as it will not give a better solution. The condition 

(Li; :<::: Ln) can therefore be added to avoid these unnecessary recursive calls. 

Finally, we apply an adjustment after each update of the current approximation 

of the k-error linear complexity profile, in order to maintain its monotony property. 

See procedure adjustProfile and the associated discussion in section 3.2, listing 8. 

Additionally, we can combine iteration and recursion in order to minimise the 

stack size. Since the recursive calls are useful only when there is a decision to force 

or not an error, a level of iteration can be introduced for the other cases (lines 

12-32 in Algorithm 13). A boolean flag is used to indicate when to reiterate and 

when there is need for a recursive call (lines 11, 19 and 30 in Algorithm 13). This 

last remark is implemented in procedure mbmROpt from listing 13. 

As opposed to the Efficient Exhaustive Search Algorithm, the algorithm pre­

sented in this section only considers a subset of all the possible error patterns 

e E GP(q)t. These error patterns e = (eo, e1, ... , et-I) are such that for each 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 55 

Algorithm 12 The mbmR procedure 
1: procedure MBMR(m,D(X),dm,Cn(X),n,e) 
2: k f- WH(e) 
3: Lm f- deg(D(X)) 
4: Ln f- deg(C(X)) 
5: if (n = t) or (k > ko) or (Lk ::; Ln) then 
6: if ((n = t) and (k ::; ko) and (Lk > L,,)) then 
7: (Lk, Ck(X), ek) f- (Ln, C(X), e) 
8: call adjustPro/ile(Ln , C(X), e, k) 
9: end if 

10: else 
11: dn f- (s + e)n + l:f:o-1 Ci(S + e)i+n-Ln 
12: if dn # 0 then 
13: if 2Ln > n then I> (la) the complexity does not change 
14: C(X) <- C(X) - t;x(m-Lml-(n-Lnl D(X) 
15: call mbmR(m, D(X), dm, C(X), n + 1, e) 
16: else I> (1 b) the complexity does change 
17: T(X) <- C(X) 
18: C(X) <- x(n-Lnl-(m-L=lc(X) - t;D(X) 
19: call mbmR(n, T(X), dn, C(X), n + 1, e) 
20: if k < ko then 
21: call mbmR(m, D(X), dm, C(X), n + 1, (e - dnIn)) 
22: end if 
23: end if 
24: else I> (2) the current characteristic polynomial does not change 
25: call mbmR(m, D(X), dm, C(X), n + 1, e) 
26: end if 
27: end if 
28: end procedure 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 56 

Figure 4.2: Solution tree generated with the Modified Berlekamp-Massey Algo­
rithm for the sequence s = 1011011010111010 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 57 

Algorithm 13 The mbmROpt procedure - Optimised version 
1: procedure MBMRoPT(m,D(X),dm,C(X),n,e) 
2: k <- WH(e) 
3: Lm <- deg(D(X)) 
4: Ln <- deg(C(X)) 
5: if (n = t) or (k > ko) or (Lt, ::; Ln) then 
6: if «(n = t) and (k ::; ko) and (L;; > Ln)) then 
7: (L;;, C;;(X), en <- (Ln, C(X), e) 
8: call adjustProfile(Ln, C(X), e, k) 
9: end if 

10: else 
11: loopFlag <- true 
12: repeat 
13: dn <- (s + e)n + L:~:,;-l Ci(S + e)i+n-Ln 

14: if dn f. 0 then 
15: if 2Ln > n then I> (la) 
16: C(X) <- C(X) - t;x(m-Lm)-(n-Ln ) D(X) 
17: n<-n+1 
18: else I> (lb) 
19: loopFlag <- false 
20: T(X) <- C(X) 
21: C(X) <- x(n-Ln)-(m-Lm)C(X) - t;D(X) 
22: call mbmROpt(n, T(X), dn, C(X), n + 1, e) 
23: if k < ko then 
24: call mbmROpt(m, D(X),dm,C(X),n + 1, (e - dn1n)) 
25: end if 
26: end if 
27: else I> (2) 
28: n <- n+ 1 
29: end if 
30: untilloopFlag = false or n = t 
31: end if 
32: if «(n = t) and (k ::; ko) and (Lt, > Ln)) then 
33: (L;;, C;;(X), e;;) <- (Ln, C(X), e) 
34: call adjustProfile(Ln, C(X), e, k) 
35: end if 
36: end procedure 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 58 

2.1 

Figure 4.3: Solution tree generated with the optimised Modified Berlekamp­
Massey Algorithm for the sequence 8 = 1011011010111010 

i = 0, 1, ... , t - 1, either ei = 0 or ei = -di where di is the discrepancy when 

processing term i for the sequence (8 + e) (i) = (80 + eo, 81 + el, ... , 8i + e;). 

As already shown, the set of error patterns processed by the Modified Berlekamp­

Massey Algorithm can be represented hierarchically as a binary tree. In this tree 

each internal node (n, Ln) represents a moment in the algorithm when case (1b) 

from Berlekamp-Massey Algorithm is encountered (2Ln :::: nand dn 01 0) (see 

section 2.2.6), where the discrepancy, dn is calculated for the sequence 8 + e. Each 

of the two branches of a non-final node will correspond to one of the values which 

can be considered for ei, namely 0 or -di . Some of the indices do not appear 

in the tree and that means that the error term on those positions is zero for the 

corresponding error pattern considered by the algorithm. 

This tree representation is useful not only for visualisation purposes but also 

since it enables us to describe and estimate the number of error patterns considered 

by the algorithm. The number of error patterns considered is the number of leaves 

in the tree (see section 4.3 for the estimation). 

For instance, the tree in Example 4.1 in section 4.1 shows that 10 error patterns 

have been considered and that these are: 0000000000000000, 0000000000001000, 

0000000000001100, 0000000000001110, 0000001000000000, 0000001010000000, 

0000001000000001,0000001011000000,0000001011000010 and 0000001011000011. 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 59 

The k-error linear complexity profile for the sequence I=REMBAML I 
s= 1011011010111010 .~. 

9r---------------------~====~ 
j~ 
Po 
§6 
°5 
~ 4 ~......................... "., .................................................................................................................................................................................................................... . 

::3 o 

~~ 
... _-« ............... . 

O+-~~~~--r-~,-~~~--r-~,-~~~ 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Number of errors 

Figure 4.4: The k-error linear complexity profile for the sequence s -
1011011010111010 

In order to justify the optimisations we have made to the algorithm, namely the 

stop condition (L'k ::; Ln), the procedure adjustProfile and the mix of recursion 

and iteration, we include the following example. 

Example 4.2. Consider the binary sequence s = 1011011010111010 of length 16. 

For the sequence s and no limitations on the number of errors (ko = WH(S)) or the 

complexity (Lo = t), the number of nodes in the tree of recursive calls decreases 

from 61 nodes to 37 nodes for the optimised version with no loss in accuracy (see 

figures 4.2 and 4.3 for a graphic representation of the trees). 

Figure 4.4 shows the difference between the approximation found by the Modi­

fied Berlekamp-Massey Algorithm and the exact values of the k-error linear com­

plexity for the same sequence. 

In theorem 4.3 we prove that the approximation algorithm Modified Berlekamp­

Massey Algorithm is correct according to definition 3.1. 

Theorem 4.3. The Modified Berlekamp-Massey Algorithm (listings 11 and 13) is 

correct. 

Proof. We can prove by induction on n, where n = nz, nz + 1, ... , t - 1 (nz is 

the position of the first non zero term in sequence s) that for each error sequence 

e = eo, eJ, ... ,en with wH(e) ::; ko processed by the algorithm, the values of m, 

D(X), dm, C(X) calculated by the recursive procedure mbmROpt are correct for 

the sequence (s+e)<n) = (so+eo, ... , Sn +en ). Namely, m is the last change index, 

i.e. the maximum value such that m < nand L((s + e)(m-l)) < L((s + e)(m) = 

L((8 + e)(n-l); D(X) and dm are the characteristic polynomial and the discrep­

ancy corresponding to the last change term m; C (X) is a minimal characteristic 

polynomial for (s + e )(n). 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 60 

For n = nz and for e = (0, ... ,0) the initial values given to m = n., D(X) = 1, 
'-v--' 
n, times 

dm = 8n" C(X) = xn,+1 are correct for (8 + e)(n,) = (0, ... ,0, 8n,). 

Suppose that for a certain error pattern e = eo, el, ... ,en-1 the values m, 

D(X), dm , C(X) are correct for (8 + e)(n-1). We show that the values m, D(X), 

dm , C(X) remain correct after a run of the procedure mbmROpt. 

If n = t, wH(e) > ko or deg(C(X)) :::>: Lie then the recursion stops so the values 

remain unchanged. 

If none of the conditions above are met then the discrepancy dn is calculated. 

If dn # 0 two cases are considered: 

• If 2Ln > n then the last change polynomial D(X), the last change index, m 

and discrepancy dm remain the same. The current characteristic polynomial 

changes but its degree is the same, see line 14 in algorithm 12. 

• If 2Ln :::>: n then two further situations are considered: 

- Do not introduce an error, en <- 0, the last change polynomial becomes 

the current polynomial D(X) <- C(X), the last change index, m <- n 
and the corresponding discrepancy dm <- dn . The current characteristic 

polynomial and its degree change, see line 15 in algorithm 13. In this 

case, Ln <- deg(C(X)) = n - Ln + 1. 

- Do introduce an error, en <- -dn, on the term 8n then the discrepancy 

of the sequence 8 + e at position n becomes 0 so there is no need for a 

change. All parameters D(X), m, dm , C(X) remain unchanged. 

Finally if dn = 0 then there is no need for a change so all the values of the 

parameters D(X), m, dm , C(X) remain unchanged. 

It follows that the values of C(X) are minimal characteristic polynomials cor­

responding to (8+e)(t-1) for all the error patterns e of different weights processed 

by the algorithm. Since the best values are saved for each k less than or equal to 

ko the correctness of the resulting profile is immediate. 0 

A version of the Modified Berlekamp-Massey Algorithm for the L-constrained 

k-error linear complexity problem can be immediately obtained (listings 14 and 15) 

by outputting k* = min{klLie ::; Lo} with the corresponding error pattern, char­

acteristic polynomial and linear complexity, instead of outputting the full k-error 

linear complexity. 

Additionally, for optimisation reasons we can add a set of stop conditions to 

the recursion such that some of the recursive calls which are unnecessary to solving 

this problem are avoided. See section 3.2 in Efficient Exhaustive Search Algorithm 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 61 

Algorithm 14 Modified Berlekarnp-Massey Algorithm for the 1-constrained k­
error linear complexity problem 

1: Input: A finite sequence 8 = 80,81, ... , 8t-l; an integer ko with ° < ko S 
WH(S) - 1; an integer La with ° S La ~ t 

2: Output: The approximate value k* with corresponding L*, C*(X) and e* 
such that k* is minimum with Lk, (8) ~ Lo. 

3: nz <- ° 
4: while 8 nz = ° and nz < t do [> go over the initial zeros 
5: nz <- nz + 1 
6: end while 
7: for i = 0,1, ... , ko do 
8: Li<-L(8) 
9: Ci(X) <- C(X), a minimal characteristic polynomial 

10: ei <- (0,0, ... ,0) 
~ 

11: end for 
12: k <- ° 

t times 

13: e = (0,0, ... ,0) 
~ 

t times 
14: m <- nz 
15: D(X) <- 1 

16: dm <- 8nz 

17: nz <- nz + 1 
18: C(X) <- xnz 

19: if nz ~ t - 1 then [> otherwise ko = WH(8) -1 = ° 
20: call mhmRL(m,D(X),dm,C(X),nz>e) 
21: end if 
22: k* <- min{kILi,(s) S Lo, ° ~ k ~ ko} 
23: if k* > ° then 
24: return k*,Li" C;;(X) and €i, 
25: else 
26: return -1 
27: end if 

for 1-constrained k-error linear complexity problem, for the explanation of these 

additional stop conditions. 

4.3 Algorithm analysis 

In this section we formally analyse the computational complexity of the Modified 

Berlekamp-Massey Algorithm. 

For analysing the complexity of the Modified Berlekamp-Massey Algorithm we 

will use the recursion trees as described in section 4.2 and estimate their number 

of nodes using lemmas 3.7 and 3.10 from chapter 3. 

For the Modified Berlekarnp Massey Algorithm it is harder to estimate the 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 62 

Algorithm 15 The mbmRL procedure 
1: procedure MBMRL(m,D(X),dm,C(X),n,e) 
2: k +- wHeel 
3: Lm +- deg(D(X)) 
4: L" +- deg(C(X)) 
5: if (n = t) or (k > ko) or (Lk ::; Ln) or (Ln > Lo) or (L;; < Lo) or (k* < k) 

6: 
7: 

8: 
9: 

then 
if «n = t) and (k ::; ko) and (L;; > Ln)) then 

(Lk' C;(X), en +- (Ln, C(X), e) 
k* +- min{ k\L;; ::; Lo} 
call adjustProfile(Ln , C(X), e, k) 

end if 
else 

loopFlag +- true 
repeat 

dn +- (s + e)n + 2:f:;-1 Ci(S + e)i+n-Ln 

if d" of 0 then 
if 2Ln > n then 

C(X) +- C(X) - b..x(m-L=)-(n-Ln) D(X) 
dm 

n+-n+l 

[> (la) 

10: 
11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

else [> (lb) 
loopFlag +- false 
T(X) +- C(X) 
C(X) +- x(n-LnHm-Lm)C(X) - tD(X) 
call mbmRL(n, T(X), dn , C(X), n + 1, e) 
if k < ko then 

call mbmRL(m, D(X), dm, C(X), n + 1, (e - dnln)) 
end if 

end if 
else 

29: n +- n + 1 
30: end if 
31: untilloopFlag = false or n = t 
32: end if 
33: if «n = t) and (k::; ko) and (Lk > Ln)) then 
34: (Lk, Ci:.(X), ei,) +- (Ln, C(X), e) 
35: k* +- min{k\Li, ::; Lo} 
36: call adjustProfile(L", C(X), e, k) 
37: end if 
38: end procedure 

[> (2) 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 63 

depth of the recursion tree, as the number of terms processed in between two de­

cision points will vary depending on each particular sequence (we call a decision 

point a moment in algorithm where dn 01 0 and 2Ln 2': n such that the recursion 

branches into two paths corresponding to introducing an error of magnitude -dn 

or not introducing an error on position n). We will assume that an average of u 
terms are processed between two decision points, i.e. between two points where 

the Berlekamp-Massey Algorithm would prescribe an increase in the current com­

plexity of the sequence. In Rueppel [70, Chapter 4] it is shown that for random 

binary sequences the average number of bits that have to be processed between 

two changes in complexity is 4 and the change in complexity has an average of 2. 

While the sequences used in the cryptographic applications are not truly random, 

using a value of u = 4 for the average number of terms between two changes of 

complexity seems a reasonable choice. The following theorem has been proven by 

SiHagean in our paper [2]. 

Theorem 4.4. (Alecu, Siiliigean [2}) The average case time complexity of the 

Modified Berlekamp Massey Algorithm for sequences of length t, an average of u 

terms of the sequence processed between two changes in complexity, and a number 

of errors at most ko = vt with 0 < v < ~ is 

{ 

O(vtAi) if v < 3~ 

O(tvtAi) if 31u ::; V < 2~ 

O(tAt) If -'. < v < 1 2 2u--u 

where Al = I 1 , 
uVV{l_uv)u- V 

where Al = I 1 , 
uVV(l_uv)u-V 

where A2 = {i2. 

In all cases the complexity can also be written as O((Ai + c)t) where c > 0 is 

an arbitrarily small constant. For a typical value of v = 0.1 (i. e. errors in at most 

10% of positions) and u = 4 the complexity is 0(tvtl.lS920St). 

Proof Since u is the number of terms between two decision points and t is the 

total number of terms, the depth of the tree will be tlu. We bound the number of 

vertices in the tree by (q _I)ko ~~~o (r:ll), using lemma 3.10. When the number 

of right branches on any path, ko, is at most half the depth of the tree, by applying 

the first or the second bound in lemma 3.7 (depending on whether ko is smaller or 

greater than a third of tlu), followed by the estimation (3.2), we obtain the first 

two computational complexities 0 of the theorem in a similar way as in the proof 

of theorem 3.11. 

When the number of right branches allowed in the tree approaches the depth 

of the tree, i.e. ko approaches tlu, we will bound the number of nodes by 2t+l-l 

(the number of nodes in a complete binary tree of depth tlu). Combining this 

with O(t) operations in each node gives the third 0 of the theorem. D 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 64 

The proposed algorithm has the advantage that even when the field has more 

than two elements, there are still only two choices that are investigated: introduc­

ing no error, or introducing an error of magnitude -dn , where dn is the discrep­

ancy; an exhaustive search approach would have to investigate all the possible 

error magnitudes for each error position, Le. 2:~=o G) (q - l)i possibilities for a 

field of q elements. 

Both the computational complexities of Efficient Exhaustive Search Algorithm 

(theorem 3.11) and of Modified Berlekamp-Massey Algorithm (theorem 4.4) will 

increase by a factor of (log q)2 to account for the more costly operations in a 

field of q elements. However, the exponential part in the 0 estimate will remain 

unchanged in Theorem 4.4 (Modified Berlekamp-Massey Algorithm), whereas in 

Theorem 3.11 (Efficient Exhaustive Search Algorithm), At is replaced by (A(q-

In· 
For a typical value of v = 0.1 (Le. errors in at most 10% of the positions) and 

an alphabet of q = 16 elements, the worst case time complexity is O( v't'l.826t
) 

for Efficient Exhaustive Search Algorithm compared to O(tv'h.189208t ) for the 

proposed Modified Berlekamp-Massey Algorithm (u = 4). 

Note that since similar considerations were used for the approximations in the 

computational complexity estimations for the two algorithms (Efficient Exhaustive 

Search Algorithm and Modified Berlekamp-Massey Algorithm) the comparision is 

fair. 

4.4 Tests and results 

Several tests are performed in order to estimate the efficiency and the accuracy of 

the proposed algorithm. We mainly do a comparison between the optimised Mod­

ified Berlekamp-Massey Algorithm (MBM) and the Efficient Exhaustive Search 

Algorithm (EES), but also a few other experiments are presented in order to bet­

ter characterise the behaviour of the algorithm proposed in this chapter. 

To measure how close to the exact result we get using the Modified Berlekamp­

Massey Algorithm, we define the accuracy ACCMBM,k(s) as the ratio between 

LMBM,k(S), the approximate value of the k-error linear complexity obtained us­

ing the Modified Berlekamp-Massey Algorithm and LEES,k(S), the exact value 

obtained using the Efficient Exhaustive Search Algorithm: 

_ LMBM,k(S) 
ACCMBM,k(S) - L ( ) . 

EES,k S 

The running time improvement of the Modified Berlekamp-Massey Algorithm 

is computed as the ratio between the time taken by the Efficient Exhaustive Search 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 65 

Algorithm and the time taken by the Modified Berlekamp-Massey Algorithm on 

the same processor: 
. timeEES 
zmprovement = --=:.... 

timeMBM 

In order to better understand the efficiency gain, the Modified Berlekamp­

Massey Algorithm registers how many different error patterns it investigates and 

returns for each run their number (it includes in the count all the error patterns 

processed, not only the ones for which it reaches the last term et-I, which corre­

spond to the stop condition n = t). Having the number of error patterns inves­

tigated by Modified Berlekamp-Massey Algorithm, let us denote it patternSMBM, 

we can investigate if a random search through a randomly generated set of the 

same number of error patterns over the current finite field would give a better 

approximation andlor would take less running time (section 4.4.3). 

4.4.1 Binary sequences 

The first test involves running both algorithms (Modified Berlekamp-Massey Algorithm 

and Efficient Exhaustive Search Algorithm) on a number of 60 randomly chosen 

binary sequences of length 64 (each bit is generated with the C rand 0 linear 

congruential generator function). 

Table 4.2: The average accuracy of the results of the MBM Algorithm. 
Number of errors k 1 2 3 4 5 6 7 8 9 

Average ACCk 1.04 1.08 LlD 1.13 1.18 1.21 1.24 1.27 1.30 
Best ACCk 1 1 1 1 1 1 1 1 1 
Worst ACCk 1.22 1.26 1.31 1.35 1.35 1.47 1.5 1.57 1.62 
Median 1.03 1.07 1.08 1.13 1.19 1.21 1.23 1.28 1.31 
Frequency percentage of 33.3% 20% 10% 5% 1.6% 3.3% 1.6% 1.6% 5% 
best accuracy 

Figure 4.5 presents the median, average, best and worst value of accuracy 

(ACCk ) over the 60 sequences tested for the case when the parameter ko = 

WH(S) -1. These results are given in Table 4.2 for 1 :s: k :s: 9. For small values of k 

we notice that on average the k-error linear complexity obtained by the Modified 

Berlekamp-Massey Algorithm is pretty close to the actual value, being higher by 

only 4.49% for 1 error, increasing to 21.93% for 6 errors (Le. errors in about 10% 

of the terms) and to 30.43% for 9 errors (i.e. about 15% of the terms). Addition­

ally, the table 4.2 shows the frequency with which the proposed approximation 

algorithm has found the exact value for each number of errors (the total number 

of sequence is 60). The fact that the median (the 50% quartile!) is smaller or very 

1 The median is a certain value from a population which is separates the higher half of the 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 66 

The accuracy of the results found by the Modified 8erlekamp-Massey Algorithm 
on a sample of 60 random binary sequences 01 length 64 

8~"""""""""'+""""""""""+""""'" .............. \ ........................ " ................... + ......... . 

7~··················+··················· + ..................... ; ....................... !! ••••••• ··········r-t 

6~·····················+······················+······· .............. .; ...................... " ............... ··il 

i 5 ~ ...................... + .................. + .................. I·················· :·······/··/·'''1\·.,1 

8 4 ~ ................ + ...................... ; ........................... ; ....................... ·i·_·t'··· 
« 

3~ .... ··················; .. ·· .... ·············+··· .. ······ ........ + ............ ,q 
... " 

.. ,/ ", 
2 ~· .. · .. · .. ·· ........ ·+· .... · .. ··· ........ ·il ............. , .• 

/ I- - / 
~. ;;J; .. T·;f·T .. ±:L·~··rB·T::fT±±:l-jjjttm 
• ." " .. .L. .. L.LJ... .. ". .L..._." .. L._ . ," 

Average accuracy -­
Median -------

Worst ....... . 
.. B~st ....... _ ..... . 

\1 

i 1 O'------~----~----~----~~----~----~-----k----~ 
o 5 10 15 20 25 30 35 40 

Number of errors 

Figure 4.5: The accuracy of the Modified Berlekamp-Massey Algorithm for binary 
sequences of length 64 (ko = W H (s) - 1) 

close to the average for most of the numbers of errors (represented on the x axis 

in figure 4.5) shows that most times the algorithm approximates well the k-error 

linear complexity. 

In many cases the Modified Berlekamp-Massey Algorithm determines the exact 

value of the k-error linear complexity. On the sequences on which the Modified 

Berlekamp-Massey Algorithm performs worst, it gets a k-error linear complexity 

up to 1.62 times the exact value, for k :::: 9. 

As k increases, the quality of the results obtained by the Modified Berlekamp­

Massey Algorithm deteriorates. Note however that the small values of k are the 

ones of practical interest. 

Figure 4.6 shows the accuracy obtained when the input parameter given to the 

Modified Berlekamp-Massey Algorithm, ko, is 15% of the length of the sequence, 

t. 
The average running time improvement when calculating the full ko-error linear 

complexity profile (ko = WH(S) -1) is 18,806 times, Le. the Modified Berlekamp­

Massey Algorithm was nearly 19,000 times faster than the Efficient Exhaustive 

sample from the lower half. 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 67 

The accuracy of the results found by the Moditied Serlekamp-Massey Algorithm 
on a sample of 60 random binary sequences of length 64 (kO = 15% t) 

3r-------,-------,--------r-------,-------.,------, 
Average accuracy -­

Median -------
Worst --_ .... . 

Best ....... '"._ .. . 
2.5 ~ ............................... + .......................... l························ +.......................... i·····:.············· ..• ·· ... :: .... : .. : .. :.:............ -1 

."" ..... 

.... ,/ 

~ ....... . 
::J 1.5 c·······························;,···················· .............. j ................................. ! .... :"·':·T·~"'···'·'·-··-· 

~ - .~~:: ... :! ... :~~- ~·:::·I~~~:~~~:~--_ 

2 

..... _ .. __ . 

0.5 f- ........................... :,. .............................. +......................... j......................... +.......................... I························· -1 

oL-______ ~ ______ ~ ______ -L ______ ~ ______ ~ ______ ~ 

o 2 4 6 
Number of errors 

8 10 12 

Figure 4.6: The accuracy of the Modified Berlekamp-Massey Algorithm for binary 
sequences of length 64 (ko = 15%t) 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 68 

Table 4.3: The running time in seconds for MBM and EES Algorithms for k-error 
linear complexity profile problem (different values for parameter ko). 

11 
ko 1 timeMBM 1 timeEES max 1 

min avg max min avg 

11 
WH(S) -1 1 
0.15t 

o 4.11 
o 3.80 

15122,715 50,532.79 
9 17,685 40,683.62 

91,835 1 
lO3,869 

Table 4.4: The running time improvement of the MBM Algorithm when compared 
with EES Algorithm for k-error linear complexity profile problem (different values 
for parameter ko). 

min 

timesBs 
timeMBM 

avg 

11 

WH(S) -1 1 4,881.13 18,805.85 91,835 1 
0.15t 3,889.67 13,401.59 46,270 

Search Algorithm. A similar time improvement is obtained when imposing a 

smaller limit on the number of errors (ko). For example, when ko is 15% of the 

length of the sequence t, the time improvement is 13,402 times. See table 4.4 for 

details regarding the average running time improvement in each of the two cases 

considered. The time is expressed in seconds and the duration is rounded to the 

closest number of milliseconds. 

A similar if not more accurate measure of the improvement is to look at the 

number of error patterns visited by each algorithm for the same sequence (see 

tables 4.5 and 4.6). 

For the binary sequences of length 64 and when the input parameter ko = 
WH(S) - 1, on average, the Modified Berlekamp-Massey Algorithm took approx­

imately 4.11 seconds and processed 18,593 different error patterns while the Ef­

ficient Exhaustive Search Algorithm took approx. 50,532 seconds and processed 

360,604,284 error patterns. 

See tables 4.3, 4.4, 4.5, 4.6 showing full details regarding the running time and 

the number of error patterns visited by each algorithm. 

Table 4.5: The number of error patterns visited by the MBM and EES Algorithms 
for k-error linear complexity profile problem (different values for parameter ko). 

11 
ko 1 patterns M BM 1 patterns EES 1 

min avg max min avg rnax 

11 

WH(S) -1 1 902 18,593.36 58,5721220,854,390 360,604,284.lO 592,530,235 1 
0.15t 830 14,137.85 36,592 129,365,933 238,001,242.45 411,466,082 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 69 

Table 4.6: The number of error patterns visited by the MBM Algorithm compared 
to EES Algorithm for k-error linear complexity profile problem (different values 
for parameter ko). 

min 

patternSEES 
patternsM BM 

avg 

11 

WH(S) -1 1 7,289.52 32,979.08 269,634.70 1 

0.15t 5,879.20 26,553.13 239,322.82 

4.4.2 L-constrained k-error linear complexity problem 

For the case when the Modified Berlekamp-Massey Algorithm solves the L-constrained 

k-error linear complexity problem the focus of the problem is actually the value 

k* representing the minimum number of errors to force on the sequence so that 

its linear complexity would drop below Lo. Since the Modified Berlekamp-Massey 

Algorithm returns an approximation, the value kMBM will always be equal to or 

more than the exact value returned by the Efficient Exhaustive Search Algorithm, 

let us denote this exact value kEES. Therefore in this case, for accuracy, it would 

be useful to compare the difference between these two values scaled by the length 

of the sequence: (kMBM - kEES)/t. 

We ran the Modified Berlekamp-Massey Algorithm and Efficient Exhaustive 

Search Algorithm for the L-constrained k-error linear complexity problem on the 

same set of 60 binary sequences of length 64 as in section 4.4.1, choosing Lo to be 

33% of the length of the sequence and for ko two different values, ko = W H (s) - 1 

or ko = 15%t. 

Figures 4.7 and 4.8 include the distribution of the accuracy (kMBM - kEES)/t 

when ko = WH(S) - 1 or ko = 15%t, respectively. Note that the approximation 

kMBM is close to the exact value, in most cases, for both values of ko, the difference 

between kMBM and kEES being between 1 and 2 (corresponding to the 0.02 and 

0.03 in the two figures). In the worst cases, the approximate value is larger by 5 

than the exact value. 

In terms of efficiency, the runtime improvement from the Efficient Exhaustive 

Search Algorithm is consistent. For the 60 binary sequences of length 64, when 

the input parameter ko = WH(S) - 1 and Lo = 33%t, on average, the Modified 

Berlekamp-Massey Algorithm took approx. 3.58 seconds and processed 17,547 dif­

ferent error patterns while the Efficient Exhaustive Search Algorithm took approx. 

43,826 seconds and processed 347,452,754 error patterns. 

See tables 4.7, 4.8, 4.9 and 4.10 which show full details regarding the running 

time and the number of error patterns visited by each algorithm. 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 70 

40 

35 

30 

0 25 
0 
E 
~ 

'5 20 
~ 
.0 
E 
" z 15 

10 

5 

The difference between the approximation returned by MBM Algorithm and the exact result over t 
when a maximum linear complexity is specified (LO = 33% t) 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
Difference 

Figure 4.7: The difference between the approximation of the Modified Berlekamp­
Massey Algorithm and the exact result for binary sequences of length 64 when 
La = 33%t 

Table 4.7: The running time in seconds for MBM and EES Algorithms for the 
L-constrained k-error linear complexity problem. 

Lo 1 . timeMBM 1 
mm avg max min 

11 

wH(s)-1 
0.15t t 1 

o 3.58 151 23,400 
o 1.98 5.19 14,288 

timeEES 
avg 

43,825.97 79,291 1 
26,501.24 45,441 

Table 4.8: The running time improvement of the MBM Algorithm when compared 
with EES Algorithm for the L-constrained k-error linear complexity problem (dif­
ferent values for parameters ko and La). 

11 

wH(s)-1 
0.15t 

timem",s 
timeMBM 

min avg 

t 1 2,588.60 28,838.55 659,611.11 1 
" 4,762.67 19,416.39 258,236.25 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 71 

40 

35 

30 

0 25 
m 
E ., 
'0 20 ii 
E 
~ z 15 

10 

5 

The difference between the approximation retumed by MBM Algorithm and the exact result over t 
when a maximum linear complexity is specified (kO = 15% t and La = 33% t) 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
Difference 

Figure 4.8: The difference between the approximation of the Modified Berlekamp­
Massey Algorithm and the exact result for binary sequences of length 64 when 
ko = 15%t and Lo = 33%t 

Table 4.9: The number of error patterns visited by the MBM and EES Algorithms 
(different values for parameters ko and Lo). 

11 

wH(s)-1 
0.15t 

Lo 1 . patternsMBM 1 
mm avg max min 

t 1 490 17,546.85 58,5721220,006,957 
3 386 11,210.80 30,839 128,234,300 

patternsEES 
avg 

347,452,753.84 590,428,4461 
238,965,677.38 410,103,809 

Table 4.10: The number of error patterns visited by the MBM Algorithm compared 
to EES Algorithm for L-constrained k-error linear complexity problem (different 
values for parameters ko and Lo). 

11 

WH(S) - 1 
0.15t 

min 

t 1 5,634.26 42,427.07 748,075.28 1 
3 7,616.67 39,902.56 474,145.50 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 72 

4.4.3 Significance of the heuristic selection 

A purely random heuristic approach for the k-error linear complexity profile prob­

lem would be to generate randomly a certain number Npatterns of error patterns e 

of weight k with 0 5 k 5 ko and save the minimum L(s + e) for each k. We will 

call this method K Random Algorithm, see listing 16 for the implementation. 

Algorithm 16 KRandom Algorithm 
1: Input: A finite sequence s = So, SI, ... , St-1 over GF(q); an integer ko with 

0< ko 5 WH(S) -1; an integer Npatterns > 0 
2: Output: Dj, q(X) and ei, for all i = 0,1, ... , ko 
3: for i = 0,1, ... , ko do 
4: Lt <- L(s) 
5: C;(X) <- C(X), a minimal characteristic polynomial 
6: er <- (0,0, ... ,0) 

'-v--' 
t times 

7: end for 
8: counter <- 0 
9: while (counter < Npatterns) do 

10: Generate randomly an error pattern e E GF(q)t with wH(e) 5 ko 
11: Calculate L(s + e) and C(X) corresponding to s + e 
12: if Lk > L(s + e) then 
13: Lk<-L(s+e) 
14: CZ(X) <- C(X) 
15: 

16: 

e* f- e k 
end if 

17: counter <- counter + 1 
18: end while 
19: return Lt, C;(X) and el, for all i = 0,1, ... , ko 

We ran the K Random Algorithm on the same set of 60 binary sequences of 

length 64 as in section 4.4.1 with the two values of ko, WH(S) - 1 and 15%t, and 

for each giving as input for Npatterns the number of error patterns processed by the 

corresponding Modified Berlekamp-Massey Algorithm. We want to check that the 

method that we used in constructing the error patterns in Modified Berlekamp­

Massey Algorithm is significant in that it does give consistently better results than 

if the same number of error patterns would be chosen randomly. For these tests, 

the random error patterns are generated using the C rand 0 linear congruential 

generator function. 

Figure 4.9 shows the average accuracy of the K Random algorithm and of the 

Modified Berlekamp-Massey Algorithm on the considered set of sequences. The 

accuracy of the approximation of the k-error linear complexity is good for a very 

low number of errors k = 1 or k = 2, however as the number of errors grows 

the KRandom Algorithm becomes unreliable and inaccurate, see figure 4.10 for a 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 73 

35 

The accuracy of the results found by the KRandom Algorithm 
on a sample at 60 random binary sequences at length 64 (compare with MBM accuracy) 

Average accuracy -­
Median ------­

Worst ------." 
30 Best ................ .. 

Average a~curacy (MB~) ..... , ... .. 

25 
) .......... "', ::rrrh· •. ~ 

~.. ....... , ...................... < ................... ! ..................... ,....... ···1···· ............. ····r r:tTJ:'W 
e- 20 
~ , 
u 
u 
< 15 

···········~,/···l·········L. 
~ .................... , ......................... ; ..................... , .................. "' .......... ;.\ ..... )... . ............. ., .... . 

10 

v-::: .... ./ 
...... V./ ........... /j .. .. ( 

·············i·· 

5 

0 
0 5 10 15 20 25 30 35 40 

Number of errors 

Figure 4.9: The accuracy of the KRandom for sequences of length 64. 

zoom on the graph when 0 :S k :S 10. 

This gives us the indication that the approach used by Modified Berlekamp­

Massey Algorithm in building and choosing the error sequences has a significant 

impact on the accuracy of the result. 

4.4.4 Sequences of different lengths 

In order to check how the accuracy of the results of the algorithm scales with 

the length of the input sequence, a second experiment involved running Modified 

Berlekamp-Massey Algorithm for binary sequences of different lengths. We used 

20 random sequences of each even length between 8 and 64 and ran both Modified 

Berlekamp-Massey Algorithm and Efficient Exhaustive Search Algorithm for k­

error linear complexity profile problem with ko = WH(S) - l. 

The time improvement of the Modified Berlekamp-Massey Algorithm shows 

an exponential increase with the length of the sequence. Figure 4.11 contains 

the results concerning the running time improvement, timeEEs/timeMBM, and 

figure 4.12 shows the improvement in number of error patterns processed, 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 74 

3 

2 

The accuracy of the results found by the KRandom Algorithm 
on a sample of 60 random binary sequences of length 64 (zoom in and compare with the MBM accuracy) 

o 

. • i 

T 

Average accuracy -­
Median -------

Worst ....... . 
Best .... .. 

Averag~ accuracy (MBM) .-'-'''''' 

................... i ....... . .............. ~:/ .... 

,/'/ 

.--~~" •... :~~~~:-;.:±-~~~; ..... . 
2 4 6 

Number of errors 
8 10 

Figure 4.10: The accuracy of the KRandom for sequences of length 64 (zoom for 
o ~ k ~ 10). 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 75 

The relation between the average running time improvement 
and the length of the sequence (y axis uses logarithmic scale) 

100000 r----.----,---.-----:--r--,--T"-:---r,--~___, 
, Average running time improvement /--+-

10000 

1000 

100 

10 

, 
, 

............. .J.. .. 

, 
··············i···· , 

i 

J 

i Minimum:' -------
, Maxi~ur;n' •......• 
i i ! . , 
! ; : J:' 

................ ~.... . ............. ...!.... . .................. l ......... );".~;~;.'.! .. 

I ...... ,1,1.... l .. / .. , ... )-", .. 
............... .1.... . ........... ~,: ...... ; . .,~,,/~ ..................... . 

, ' : i / 

................. 

1"",'. ] ,/ /f' ~ 
,ye""';:::'/' 'J 
i ,/; / .................... 1,.'..... . ....... i,.' ........ . -~i~;? 

.' ; / 
" i;' 1 L-__ -+~_+~~~~~~----L-----~-----L----~ 

o 10 20 30 40 50 60 70 
Length 

Figure 4.11: The relation between the average running time improvement on log­
arithmic scale and the length of the sequences. 

patternSEEs/patternsMBM (figures 4.11 and 4.12 use a logarithmic scale on the y 

axis). The improvement, both in terms of running time and in terms of number 

of error patterns, is approximately exponential in relation to the length of the 

sequence. Figures 4.13 and 4,14 show the relation between the length of the 

input sequence and the running time or the number of patterns of the Modified 

Berlekamp-Massey Algorithm, respectively, 

The quality of the approximation was measured for each sequence at dif­

ferent levels of number of errors: 5%, 10% and 15% of the length of the se­

quence. Namely for k = 5%, 10% and 15% we compared the values returned 

by the two algorithms for the k-error linear complexity, evaluating the accuracy 

ACCk = LMBM,k(s)/LEEs,k(s). The results are summarised in figure 4.15. We 

note that the approximate value of the k-error linear complexity found by the 

Modified Berlekamp-Massey Algorithm is consistently good on all lengths tested 

and it deteriorates only slightly as k increases as a percentage of the length of the 

sequence. This can be connected to the fact that the search space size increases 

with the value of k for 0 ::; k ::; ~ (G) is increasing with k when 0 ::; k ::; ~). 

The accuracy follows a similar trend as the results obtained for the previous 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 

The relation between the average number of error patterns improvement 
and the length of the sequence (y axis uses logarithmic scale) 

10+06 r-------~------,-------,-------_.------_r------_.------_, 

100000 

10000 

1000 

100 

10 

o 

o 

o 

............... J .... 
o 

o 

\ 

o 
............... ~ ... 

Average number of error patterns improvement ---+­
Minimum ------­
Maximum -~ .... -. 

,: i! ,/ 
··· .. ·1···· ......... .J.... . ....... j... • .•..• ,... . •• , ............. . 

.............. :....... . ......... 1 ...... I ............. , .... ,:::J,.: ........ //···i .... ! 
i l········ i /~--. 
i } :' ! ; -------y 
i:'\ , ..... : i/'~""'/!, 

................ ,.... . '.. ' ...... .L/.\./ .. _ >' ···1··· i ·········.·.·.·)/"·····\.7"·\".,·1 /~~.>r---::: ..... > .... 

i , 

...... i •• , ,/-_ ..... - : : 
............ ...1 ,..If. I"' ...... L. : 

.-., ... :~.::.;:.'. .:~ ,.--_/.:::.~.; : .... \/ : : 

- loo " " 

O

• • __ ----t/ I ... ! J 
- i 

••.••••.••. .j. ..••.•...•.• ,( •.•..••..•. , ....................... +... . ...... +.. . .... + 
........ j"-----' 

I .. + ... 

1 L-____ -L ____ ~~ ____ ~ ____ ~ ______ ~ ____ _L ____ ~ 

o 10 20 30 40 50 60 70 
Length 

76 

Figure 4.12: The relation between the number of error patterns on logarithmic 
scale and the length of the sequences. 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 

• E 
~ 

C> 
C 
'c 
c 
2 
• 
~ 

The average running time of MBM Algorithm 
in relation with the length of the sequence (y axis uses logarithmic scale) 

10r------r------.------r------.-~~_.------._----_, 
MBM Average runni~Q time ~ 

MInimum :------­
Maxir1)ul1): ----_ •.. 

ill ,.--_ .... -j-'" 

................... ,1-.--.----.----.1 .. · .. ___ . __ . __ ._jA······/ : ................ ····[·· .. T--· 
i, : I : ': i 1 

I 11 I1 
...........•.......••• 1.·. i 1 

_ ....... __ -+-....... -<-__ -+-..... ( ..... '-1 .. ·····························1···· 0.1 

i 
! 0.01 L-____ -1. ______ -L ______ .l.-____ -.l ______ -1. ______ ...Ll-__ ---l 

o 10 20 30 40 50 60 70 
Length 

77 

Figure 4.13: The average runtime of MBM Algorithm on a logarithmic scale in 
relation to the length of the sequence. 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 78 

The average number of error patterns processed by MBM Algorithm 
in relation with the length of the sequence (y axis uses logarithmic scale) 

100000 r------,r-----,-----r----,----.... ---..,------, 

10000 

1000 

100 

10 

10 20 30 40 50 70 
Length 

Figure 4.14: The average number of error patterns processed by MBM Algorithm 
on a logarithmic scale in relation to the length of the sequence. 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 79 

~ 
~ 
Q) 1.5 
c> 1.4 
~ 1.3 
~ 1.2 

1.1 
1 

o 

The average accuracy of the k-error linear complexity found by MBM Algorithm 
for different values of k and for different lengths 

.................... ; .... 

20 40 

Length 

Average accuracy for k::: 5% t --+­
Average accuracy for k = 10% t ---)(---
';overage accuracy for, k = 15% t ....... . 

60 

· · ········f· ... 
· ......... + .... 

· .. ·······f···· 

80 100 

Figure 4.15: The average accuracy of the k-error linear complexity found by the 
MBM Algorithm for different values of k and for different lengths. 

experiment including sequences of length 64 (see table 4.2). For 5% errors (i.e. k is 

5% of the length), the k-error linear complexity found by the Modified Berlekamp­

Massey Algorithm is on average not more than 10% higher than the actual value, 

for 10% errors it is at most 20% higher and for 15% it is at most 30% higher. This 

behaviour supports the assumption that the accuracy of the Modified Berlekamp­

Massey Algorithm is approximately constant for binary sequences of any length 

when the k-error linear complexity is calculated for a k which is a certain fixed 

percentage of the length. 

When running the KRandom Algorithm using the same number of error pat­

terns as Modified Berlekamp-Massey Algorithm, we notice the significance of the 

method used in MBM (see figure 4.16). For a relatively low number of errors (5%) 

the approximation returned by KRandom Algorithm is only slightly worse than 

the approximation of the Modified Berlekamp-Massey Algorithm but for 10% or 

15% the difference is noticeable. 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 

The average accuracy of the k·error linear complexity found by KRandom Algorithm 
for different values of k and for different lengths (compared with MBM accuracy) 

. MBM Average accuracy for k = 5% t -t--
1 MBM Average accuracy for k = 10% t ----*"-
'»,>,; MBM Average accuracy for k = 15% t -..-
! KRANDOM Average accuracy for k = 5% t --.g..-­

KRANDOM Average accuracy for k = 10% t --... --­
KRANDOM ~verage accuracy for, k = 15% t ---e-.-

2 ! , 'J 

r l:!J:\~;.j,~,.>~ .. ~>, .. ~'\,=j.~~~~:'~~t:~=~:. 
~ ~:~ --- -- _ .. __ ----- ·:::::~Z~~·~~:::~~~;~~~~:::::~: ......... ~ ... . e 1.3 .' ...................... ; ............... . 
~ 1.2 ........... .:. ...................................... ~ .............................. . 

1.1 ..... + .................... . 
1 > »»»»»!»>>>> »»»»>,»»» 

o 20 40 60 80 
Length 

80 

100 

Figure 4.16: The average accuracy ofthe k-error linear complexity found by KRan­
dom Algorithm for different values of k and for different lengths (compared with 
MBM accuracy) 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 81 

4.4.5 Sequences of higher length 

For evaluating the accuracy of the MBM algorithm for sequences of higher length, 

the exact k-error linear complexity profile can no longer be computed using ex­

haustive search due to time limitations. Instead, we carried out a controlled 

experiment. 

The controlled experiment is based on the following set up. Suppose a sequence 

8 of length t is generated using a randomly chosen recurrence of size L such that 

L < ~. Note that the linear complexity of the sequence can be smaller than the 

size of the recurrence used to generate it, namely L( 8) < L. We artificially apply 

an error sequence e of weight k such that the linear complexity of 8' = 8 + e is 
higher than L( 8). Obviously the k-error linear complexity of 8' is equal or less 

than the initial linear complexity, Lk(8') ::; L(8), so even though we do not know 

the exact k-error linear complexity of 8', we do have a good upper bound. So if we 

apply the Modified Berlekamp-Massey Algorithm to 8' and compute the fraction 

LM~(;i(S') we aim for this value to be close to 1. Note that this time the accuracy 

ratio can be less than 1 because L( 8) is only an upper bound rather than the exact 

value of the k-error linear complexity of s', Lk(s'). 
To illustrate, the tests include 100 binary sequences 8 of length 100, gener­

ated by a randomly chosen recurrence of size 33 (33% of the length). The linear 

complexity L(8) of each sequence 8 is computed (this can be lower than 33). We 

artificially applied an error sequence e of weight k, such that the linear com­

plexity of s' = 8 + e is higher than L(8). Obviously, Lk (8') ::; L(8). We then 

applied the Modified Berlekamp-Massey Algorithm to 8' and computed the ratio 

LMBM,k(8')/ L(8). 

Figure 4.17 presents the distribution of the values of this ratio in each interval 

of length 0.1. The three graphs considered correspond to limiting the view to 

the cases when the value of k takes random values up to 5%, 10% or 15% of the 

length of the sequence, respectively. Out of the 100 random values generated for 

k such that they are less than 15% of the length (figure 4.17(a)), 61 are less than 

10% (figure 4.17(b)) and 24 are are less than 5% of the length (figure 4.17(c)). 

We notice that a high proportion of the ratios are below 1.3, i.e. the value found 

by the MBM algorithm is close, or even lower than the original complexity, L(8). 
The results are better when k represents a higher proportion of the length of the 

sequence. 

The results of a similar experiment applied to 26 sequences of length 128 are 

displayed in figure 4.18. Out of the 26 random values less than 15% of the length 

generated for k (figure 4.18(a)), 17 are less than 10% (figure 4.18(b)) and 4 are 

less than 5% of the length (figure 4.18(c)). 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 82 

The _"98 accuracy oIl:hecontrolledtestoo 100 oequeoceaollength 100 (k< 1&% t) 

" f···----··----·-----·----·----·---------·+--+ 

0.9 1 1.1 1.2 1.3 1.4 1.6 1.6 1.7 

""""" 

The 'vetl108 &ccuracyofth&<:OnlrolledtealOO 100 8eqollenglh 100 (k < 10% t) 

I I I 
I I I 

" f-- ---.-- .. -.-.-.-------.-.-.-.- --I --f- -!--f 
I 

j "f-----·-·-·-·--·-·-·--···-··---··-··------·i ... _+1_+.1._+ 

I I 

" C· --·-··----·---···---··------·----·-·-·-·-+--+--1--+-+-+-j -+ +---.- .. ----~ 

I 
1; 

• "f·- ----------- -----·-·-····+-1---1--+-+-+--1-
i 

Figure 4.17: The accuracy of the results found by MBM Algorithm on 100 se­
quences of length 100, when the sequences were artificially modified with errors 
sequences of weight: (a) k S 15% of the length; (b) k = 10% of the length; (c) 
k = 5% of the length; 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 83 

Table 4.11: The runtime and number of error patterns for MBM Algorithm applied 
to sequences over different finite fields. 

Field I MBM I EXHEF I 
avg runtime avg patterns avg runtime avg patterns 

GF(2) 
GF(3) 
GF(5) 

0.01 210.82 6.7 33,739.38 
0.08 693.10 120.28 2,351,946.12 
0.14 1,442.2 14,556.74 226,925,269.80 

4.4.6 Sequences over finite fields of higher order 

In order to see how the accuracy and efficiency of the Modified Berlekamp-Massey 

Algorithm scales when the finite field of the elements varies, we experimented 

with sequences from GF(3) and GF(5). The results concerning the accuracy and 

running time of the algorithm when run over 50 sequences of length t = 32 with 

elements in GF(2), GF(3) and GF(5), with ko 15% of the length of the sequence 

t are graphically presented in this section. 

The accuracy of the Modified Berlekamp-Massey Algorithm approximation is 

constantly good for all three fields. See figures 4.19, 4.20 and 4.21 for the each of 

the fields and figure 4.22 for a unified view on the average accuracies for the three 

cases. 

In order to validate the Modified Berlekamp-Massey Algorithm's heuristic 

method, the KRandom Algorithm has been applied to the same sequences us­

ing the same number of error patterns as used by Modified Berlekamp-Massey 

Algorithm. Figures 4.23, 4.24 and 4.25 show how the accuracy of Modified Berlekamp­

Massey Algorithm is better than the accuracy of the purely random KRandom 

algorithm for each of the fields considered and the 50 sequences processed. 

4.5 Conclusion 

We propose a heuristic algorithm for approximating the k-error linear complexity, 

based on modifying the Berlekamp-Massey Algorithm. The modification consists 

in that, when choosing the error patterns, it considers introducing an error when­

ever there is an increase in the linear complexity of the sequence processed so 

far. 

We implemented, tested and analysed this algorithm and the results are en­

couraging. The k-error linear complexity is closely approximated: on average it is 

only 16% higher than the exact value, for up to 6 errors on our test set of 60 ran-



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 84 

I ,".-... ...................................... + .. , .!. 
, 
! 
~ ,~ .. ·············································1····1···.) ... 

The average acc ... acy 01 \he oontroled teal on 26 IlK! of length 128 (k < 5% t) 

... 
) 3~·····················································1···I···l···\····I·······f· 
, 
! 
~ ,f································································+·+···I··!-·+··+ 

I 

0.9 1 1.1 1.2 1-3 1.4 1.5 1.6 1.7 

-", 

Figure 4.18: The accuracy of the results found by MBM Algorithm on 21 sequences 
of length 128, when the sequences were artificially modified with errors sequences 
of weight: (a) k::; 15% of the length; (b) k = 10% of the length; (c) k = 5% of 
the length; 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 85 

The accuracy of the results found by the MBM Algorithm 
on a sample of 50 random sequences of length 32 with terms in GF(2) 

3r------,-------r------,-------r-~---,------, 
Average accuracy --­

Median -------
Worst ....... . 

Best .. 
2.5 f... ........................ + ............................... -; ................................ , ............................ + ................................ , ................................. -j 

0.5 1- ........................... + .......................... ! ................................ -;-........................... ·f·······························;-···················· ... -j 

o~------~------~------~------~------~------~ o 2 3 4 5 6 
Number of errors 

Figure 4.19: The accuracy of the results found by the MBM Algorithm on a sample 
of 50 random sequences of length 32 with terms in GF(2). 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 86 

The accuracy of the results found by the MBM Algorithm 
on a sample of 50 random sequences of length 32 with terms in GF{3) 

3r-------,-------,--------.-------,-------.------~ 
Average accuracy -­

Median ----­
Worst .------­

Best .... 
2.5 [- .......................... + .......................... +.......................... +.......................... + ................................... , .... c.::.:.:............ -1 

2"······························;····················· ........ ; ........................... ; ............................. ; .......................... ~ 

.... 
..... . ' 

f ./ 
~ 1.5 j- .......................... j ........................ ::::;:i;:::.,.".,." .•.. " .•. .,,, ••. -j-...... " ............. ,.,.::.::i'C. 
~ .. ' 

... ~-......... . 

.. ' .. ' '-.-: .. - -. . .. -. ... . ... - . --!-.... 

0.5 [- ........................... ) .......................... + .......................... + ......................... +......................... i························· -1 

Q~ ___ L-___ ~ __ ~~ __ ~ ___ ~ ___ ~. 

02345 6 
Number of errors 

Figure 4.20: The accuracy of the results found by the MBM Algorithm on a sample 
of 50 random sequences of length 32 with terms in GF(3). 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 87 

The accuracy of the results found by the MBM Algorithm 
on a sample of 50 random sequences of length 32 with terms in GF(5) 

3r------.-------,------~------._~---.------, 
Average accuracy --­

Median -------
Worst -...... . 

Best .. 
2.5 f- .. ·· .. ···· .. · .. ·· .... ··· .. i· .............................. ;· .. · .... · ...... ··· ...... · ......... ; ................................ , ................................ , ................................ ~ 

2~························;········· ................ j ......................... ; .......................... , ........•.•........... j ...................... ······1 

1.5 ~ .......................... + .......................... + ......................... ;......................... + ............................ ::J......................... 1 

..... r-............... -r .. · .. ·· ........ --...... · .. · .. ·· .. +~~::~·:::::·:::-

0.5 f- ........................... j...........................; ............................... ;- ........................... , ................................ , .......................... ~ 

oL-____ ~ ______ -L ______ ~ ______ L-____ ~ ______ ~ 

o 2 3 
Number of errors 

4 5 6 

Figure 4.21: The accuracy of the results found by the MBM Algorithm on a sample 
of 50 random sequences of length 32 with terms in GF(5). 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 88 

>. 

~ 
~ 

8 « 

3 

2.5 

2 

1.5 

0.5 

Comparison between the accuracy of the results found by the MBM Algorithm 
on samples of 50 random sequences of length 32 with terms In G~(2), GF(3) and GF(5) 

i , 

..................... ~.". ................ \. ..... . 

-,-f -
..................... l.... . ............... j ...... . 

i 
, 

i 
····················i···· 

, 
j 

i , , 
p •••••••••• , ••••• 

i 

........... ~ .... 

Average accuracy iGF(2)j-­
Average accuracy GF(3) -------
Av~rage accuracy ~F(5) ....... . 

l . ..... .,. .... , 

J 
j 

l , 
i , ...... , .... 

, 
..................... ,.... . ........... -

. ........ j ....•••.... 

oL-______ ~ ______ ~ ________ ~ ______ -L ________ ~ ______ ~ 

o 2 3 
Number of errors 

4 5 6 

Figure 4.22: The accuracy of the results found by the MBM Algorithm on a sample 
of 50 random sequences of length 32 with terms in GF(2), GF(3), GF(5). 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 89 

- ~ 
~ 

~ 

3 

2.5 

2 

1.5 

Comparison between the accuracy of the results found by the MBM Algorithm and KRandom 
on a sample of 50 random sequences of length 32 with terms in GF(2) 

Average accuracy -­
Median -------

Worst ....... . 
Best ........... . 

A~erage accuracy (MBM) _._._.-, 

e····················· + ......... w .. ww+ ............................. + ........ ··············7~ 
, .. ' 

................• 1 

0.5 e···························,··························· ., ................................. + ............................. ; ................................. ; ............................ " 

oL-______ L-______ J-______ ~ ______ ~ ______ ~ ______ ~ 

o 2 3 

Number of errors 
4 5 6 

Figure 4.23: Comparison between the accuracy of the results found by the MBM 
Algorithm and KRandom Algorithm on a sample of 50 random sequences of length 
32 with terms in GF(2). 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 90 

,., 
~ 
~ 

8 
"" 

3 

2.5 

2 

1.5 

Comparison between the accuracy of the results found by the MBM Algorithm and KRandom 
on a sample at 50 random sequences at length 32 with terms in GF(3) 

i i 

J .i 
i Average accuracy --
' .. ',' Median ------­

Worst ---.-.-. 
Best ............... . 

· ... i A,,:,erage accuracy (MBM) _._._.- -
, '~'-

L I......................! / .. / 

--=:,:-""::=::~=:;~~,~==::~. : 
0.5 ~ .............................. + .......................... , ......................... ; ............................ + ........................ ···········i·························~ 

oL-___ ~ ___ ~ ______ -L ______ ~ ________ L-____ ~ 

o 2 3 4 5 6 
Number of errors 

Figure 4.24: Comparison between the accuracy of the results found by the MBM 
Algorithm and KRandom Algorithm on a sample of 50 random sequences of length 
32 with terms in GF(3). 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 91 

3 

2.5 

2 

" 0 

~ 1.5 ~ 

~ 

1 

0.5 

0 
0 

Comparison between the accuracy of the results found by the MBM Algorithm and KRandom 
on a sample of 50 random sequences of length 32 with terms in GF(S) 

! 
! 
.. 

! 
i 

Average accuracy -­
Median -------

i Worst ....... . 
.. 

···· .. ····t···· ... 
, i 

··········i· ... ········f .. ·· . 
Sest 

A,-:,erage accuracy (MBM) _._._.-
:: :: 

: i i i 
........... ,.'.... .. 1 i: .. : .. . ........ ~....: 

: ·············1···; .............. : .. ~: 
··· .. ·····t·· .. '"' ......... +... . ........ -!-... . .... , ...... j-" 

__ :_~ .• ,~,~.".:.:~:- C" ................. - r-·;.~.=:::::::o.:_. ~ ~ 

2 3 
Number of errors 

4 5 

...................... -

s 

Figure 4.25: Comparison between the accuracy of the results found by the MBM 
Algorithm and KRandom Algorithm on a sample of 50 random sequences of length 
32 with terms in GF(5). 



CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 92 

dom sequences of length 64. The accuracy and the running time of the algorithm 

scales well with the size of the search space e.g. when considering long sequences 

or those over finite fields of higher order. 

While the time complexity of the proposed algorithm is still exponential, it 

is considerably faster than an exhaustive search (on average about 19000 times 

faster for the set of 60 sequences of length 64). Even higher efficiency gains appear 

in the non-binary case and that has been experimentally validated. 

In some special cases, the Modified Berlekamp-Massey Algorithm does not give 

a good approximation of the k-error linear complexity profile. For example, for 

sequences with many leading zeroes, it only processes a very small amount of error 

patterns. Future work would investigate the possibility of further improving the 

efficiency and accuracy of the algorithm by processing some more error patterns 

which are likely to reduce the linear complexity of the considered sequence. 



Chapter 5 

Evolutionary Computation 

Techniques 

This chapter presents two evolutionary methods applied to solving the k-error 

linear complexity profile problem, as well as their implementations and their per­

formance in the context of the heuristic approach. 

5.1 Genetic Algorithm 

This section presents a genetic algorithm to approximate the k-error linear com­

plexity of a sequence over a finite field. 

The algorithm follows the implementation of a classic Simple Genetic Algo­

rithm (Goldberg [20]) and the focus is on finding the best choice of values for the 

different parameters involved, e.g. population size, number of generations, tech­

nique of selection, crossover or mutation, mutation probability, crossover proba­

bility. Some of the parameters need to scale with the size of the search space, e.g. 

the size of the input sequence and the number of errors. In addition, the choice of 

the evaluation function plays an important role in the design of the algorithm. 

5.1.1 Background 

Evolutionary computing techniques are inspired by the natural evolution observ­

able in species and the process which allows them to survive by continuously 

adapting to the changes in their environment. The main principles implemented 

by evolutionary computing are natural selection, or 'survival of the fittest', and 

inheritance (Goldberg [20]). 

Genetic algorithms have proven to be useful in solving (or give reasonable 

solutions to) a big variety of problems. They have been successfully applied on 

93 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 94 

Initial Selection 
Population of the fittest 

(P individuals) 

Selected 
Population 

(P individuals) 

00000000 
xxxxxxxx 

'iyyyyyyy 

Recombination New 
Population 

(P individuals) 

00000000 
oooooxxx 

i'YZYYZyy 

N times or until good enough solution found 

Figure 5.1: Schematic view of a Simple Genetic Algorithm 

famous NP-complete problems like Travelling Salesman Problem, Knapsack Prob­

lem, Prisoner's Dilemma etc. 

A genetic algorithm is a probabilistic algorithm which maintains a population 

of potential solutions for the problem at hand, by evolving it throughout a num­

ber of generations using genetic operators like selection and combination. At each 

iteration, the quality of each possible solution is measured using a fitness func­

tion and then a new population is created by selecting the fittest individuals on 

that basis (the same individual can be duplicated in a population, the order of 

duplication being usually directly proportional to its fitness). Some members of 

the new population undergo transformations in order to create new solutions. The 

transformations can be unary (mutation), which create new individuals by slightly 

changing single solutions, or of higher order (crossover), which combine a number 

of solutions to create a new individual. After a number of generations the algo­

rithm converges and it is hoped that the best individual found so far represents a 

reasonable solution, reasonable having different definitions for different problems 

(Michalewicz [54]). See figure 5.1 for a schematic view of a genetic algorithm and 

listing 17 for the pseudocode of a Simple Genetic Algorithm (SGA). 

It is challenging and much experimental research is invested into finding the 

optimum values for the parameters involved (population size, number of genera­

tions, selection and crossover technique, probability of crossover, mutation tech­

nique, probability of mutation) so that the algorithm is efficient (Le. fast) and 

accurate (Le. finds a good approximation of the exact solution). 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 95 

Algorithm 17 Simple Genetic Algorithm 
Choose initial population of possible solutions (e.g. random sampling) 
Evaluate all individuals' fitness and determine the population's fitness 
while not reached target fitness or maximum number of generations do 

Select best ranking individuals from the current population 
Apply crossover with a certain probability 
Apply mutation with a certain probability 
Evaluate individuals' fitness and determine the new population's fitness 

end while 
return best solution so far 

5.1.2 kGA Algorithm 

We first argue why a genetic algorithm technique is suitable for the k-error linear 

complexity profile problem. Computing the k-error linear complexity of a sequence 

s with terms in a finite field K is an optimisation problem with a well defined search 

space, namely for a sequence of length t and a value ko, the search space includes all 

the sequences of length t and Hamming weight at most k, { ele E Kt, wH(e) ::; ko}. 
The elements of the search space, the error patterns, can very naturally be seen 

as string encoded chromosomes. 

We remind that the problem which we will approximate, the k-error linear 

complexity profile problem, has as input a finite sequence s = So, 81,"" 8t-l of 

size t > 0 with terms over a finite field GF(q), where q is a prime power and an 

integer value ko, with 0 < ko ::; WH(8) -1. The expected output is an approximate 

ko-error linear complexity profile of 8 containing for each i = 0,1, ... ,ko, Li, the 

approximate i-error linear complexity; ej, the error pattern producing the linear 

complexity Lt on S; C;(X) a minimal characteristic polynomial corresponding to 

the sequence 8 + ei. 
The algorithm starts with an initial population of PS possible solutions from 

the search space (denote the initial set POPo), PS being an integer much smaller 

than the size of the search space. These initial individuals of the population are 

typically randomly generated. Each individual in the population is evaluated using 

a certain fitness function denoted f. 
After the initialisation step, the following set of steps is repeated a fixed number 

of times called generations, let us denote NOGEN the number of generations, 

or until the best found solution is 'good enough'. The fitter individuals from 

the current population are selected, crossover is applied to some of the selected 

individuals with a probability of crossover, Px and mutation is applied to some 

of the selected individuals with the probability of mutation PM. Finally some 

statistics regarding the current generation are gathered and the new population is 

evaluated using the fitness function; the iteration steps are repeated. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 96 

In the following, we will expand the different elements of the algorithm and 

their implementation. See listings 18 for a schematic view of the proposed algo­

rithm. 

Algorithm 18 Genetic Algorithm for computing the k-error linear complexity -
A Schematic View 

Input: A finite sequence S = So, SI, . .• , St-l of size t > 0 with terms over a 
finite field GF(q), where q is a prime power; an integer value ko, with 0 < ko ::; 
WH(S) - 1. 
Output: The approximate ko-error linear complexity profile, Li, Ci(X) and 
et, for all i = 0, 1, . .. ,ko. 
Initialise the global solution 
Initialise population PO Po of size PS 
Evaluate individuals in POPo 
gen <- 0 
while gen < NOGEN do 

Select new POPgen+1 from POPgen 

Crossover individuals in POPgen+1 with probability Px 
Mutate individuals in POPgen+1 with probability PM 

Evaluate individuals in PO Pgen+1 

Report statistics for current generation and update global solution 
gen <- gen+ 1 

end while 
return global solution 

The algorithm holds a global solution which is updated whenever necessary (Le. 

when an individual improves the current global solution). Since the k-error linear 

complexity is calculated as a minimum value (from the definition), the profile is 

initialised with the maximum possible value, Li(s) = L(s), C;(X) = C(X) and 

er = ~, for all i = 0,1, ... ,ko, where C(X) is a minimal characteristic 
t times 

polynomial of s. 

The algorithm processes a subset of the search space, therefore the returned 

value for the approximate k-error linear complexity will always be larger than or 

equal to the exact value. We will present the various components of the algorithm 

and then in section 5.1.3 we experimentally evaluate how close the approximation 

is to the exact value. 

5.1.2.1 Individuals 

Since the algorithm deals with finite sequences over finite fields, it is natural to 

use a string encoding for the individuals. We define a valid chromosome to be 

any error pattern e E GF(q)t, e = (eo, eI, ... , et-d of weight at most ko (Le. 

wH(e) ::; ko). 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 97 

The good chromosomes are the error patterns e which inflict smaller linear 

complexity on the input sequence s, e.g. L(s+e) is smaller than L(s). The search 

space size depends on the size of the sequence t, the order of the finite field q and 

the number of errors, ko. We denote Ek the set of sequences over the field GF(q), 
with length t and Hamming weight at most k 

therefore the search space size for the algorithm, SS, is given by the formula 

(5.1) 

The initial population is randomly generated. The random number generator 

used is the C rand 0 linear congruential generator function. Algorithm 19 de­

scribes the method used in generating the individuals, error patterns of size t with 

elements in GF(q) and weight less than ko. 

We denote the size of the population with PS. It is important to choose the 

right value for the population size but usually this is a value much smaller than 

the size of the search space. Some papers show that a moderate population size 

leads to fitter populations faster (e.g. Reeves [66]) however it is usually a case of 

experimental investigation. 

It is desirable to scale the population size and number of generations with 

the size of the search space. Since the search space size depends on the input 

parameters t and ko and on the size of the field q, a formula can be devised to 

take into account these parameters as follows, where the coefficient c is such that 

c> O. 

PS=ckofIn(l)l =ckortlnql (5.2) 

The coefficient c is introduced to allow more tuning and we will experimentally 

check what value should c take in section 5.2.3. See figure 5.2 for a representation 

of the growth of the population size in relation to the growth of the space size, when 

working on the binary field (q = 2), taking ko = P5%tl and the coefficient c = 1, 

for sequences of length 8, 16, 32, 64 or 128. The population size grows steadily 

12, 33, 110, 440 and 1780, respectively, for the lengths considered, whereas the 

full search space size quickly becomes very large. 

5.1.2.2 The fitness function 

The quality of each individual is evaluated using a fitness function. The fitness 

function should reflect how good each solution is for the problem and provide a 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 98 

The relation between the growth of population size and space size 
with the length of the input sequence when kO Is 15%1 

Search Size • 
population s~: ........... ~/' 

1e+20 ~ ....... ; ....•. , ..................... , ..................•.......................... ; .......................... / ....... , ... / ...... / ...... / ...... / .......... /j~.<: .. ················H 

1e+15 ~ ...... + .. + .................... , .............................................. ; ................... ;;-, .. , ........................................................... ·······+1 

// /,.,.,.,/ 

1e+10 ~; ......... + ............ +~/ .... / .......... / ........ / .... ;/ .......... I ........................... . 

1 00000 ~+ .. +> ...... / ....... / .... :'.1' 

.... -' 
8 16 32 64 

length 
128 

Figure 5.2: The relation between the growth of population size and search space 
size with the length of the input sequence when ko is 15%t. 

good way of comparing two solutions. The goal of the k-error linear complexity 

problem is to find elements e in the set Ek which minimise the linear complexity 

of the sequence 8 + €. From this point of view, all possible error patterns, €, of 

Hamming weight up to k are comparable using the linear complexity of 8 + €, so 

this would be a natural choice for the fitness function. 

In order to reflect the quality of each solution, the fitness of any error pattern 

e should therefore be proportional with the linear complexity of the sequence 

s + e. Since traditionally genetic algorithms are maximising and not minimising 

the fitness function, our choice for the fitness function of a valid error pattern e is 

the reverse of the linear complexity of the sequence onto which that error pattern 

has been applied, s + e, f(e) = -L(8 + e). 
Formally, the definition of the fitness function for the kGA algorithm, f is 

f : Eko -> Z, where f(e) = -L(8 + e) 

The fitness function for each element of the population can be computed using 

the Berlekamp-Massey Algorithm (section 2.2.6). The computational complexity 

of the evaluation step for one generation is therefore polynomial O(PS· t 2) = 
O(ckortlnqW)::::J O(t4 ) (where we consider the following bound for ko, ko < t). 

Our experiments show that using this fitness function, the search space is 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 99 

Algorithm 19 Generate a random sequence e of size t, wH(e) < ko 
for i = 0, 1, ... , t - 1 do 

ei +- 0 
end for 
k' +- a random number less than or equal to ko 
for i = 0, 1, ... , k' - 1 do 

pas +- a random position between 0 and t - 1 
val +- a random value in GF(q) 
epo. +-- val 

end for 

fragmented and there are many local minima and maxima. This fact can be 

a challenge for the genetic algorithm. Due to the discrete nature of the linear 

complexity of the sequence when summed with different error patterns from the 

search space we are not able to directly isolate the elements or set of elements from 

the domain Eko of function f which correspond to the minimum or the maximum 

values. 

Example 5.1. Figure 5.3 shows the shape of the distribution of linear complexities 

for a given binary sequence s = 1011110011010110 of size 16 when applying to it 

all the possible error patterns in the full search space GF(2)16. The x and y axes 

correspond to each possible Hamming weight from 0 to 16 and each possible linear 

complexity from 0 to 16, respectively. The third coordinate, z, in each point (x, y, z) 

represents the number of error patterns e of weight x such that L( s + e) = y. The 

figure presents a scaled version of the real distribution. We are interested in the 

error patterns corresponding to low x and low y coordinates. 

5.1.2.3 Selection 

There are various possible schemes for the selection of best individuals for recom­

bination. The general idea is that each chromosome will be copied zero, one or 

more times according to its fitness (more times if it is fitter) making sure that 

the population remains varied. The aim is to keep a good balance between the 

population diversity and the selective pressure. 

Three alternative schemes of selection have been chosen for our experiments. 

Elitist selection (ELSEL) 

Elitist selection involves keeping only a certain top percentage of the popula­

tion at each step, in decreasing order of the fitness values, and replacing the rest 

with completely new individuals. The higher the level of elitism (the percentage 

selected) the lower the efficiency of the algorithm as this will have to deal repeat­

edly with individuals which were previously processed. Further, since intuitively 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 100 

Numberof sequences 

1600 

,400 

1200 

,000 

800 

eoo 
400 

Full space conrlguallon for a binary sequence of size 16 

Figure 5.3: Distribution of linear complexities of s = 0110111101110101 when 
combined with all poosible error sequences over GF(2)16 

Table 5.1: Example of Elitist Selection of level 25% on sequence s -
1011110011010110 and ko = 5 
No Chromosomes Fitness Chromosomes Fitness 

before selection after selection 

0 0000100000101000 -8 0000000000000100 -7 
1 0000000000000000 -8 0000000000000000 -8 
2 0000100011001000 -8 0100001000100100 -7 
3 0010010001010000 -11 0000001000000101 -9 
4 0000000000100001 -9 0001100000101000 -8 
5 0000001000000000 -9 0000000010010000 -9 
6 0000000000000000 -8 0000010000010001 -9 
7 0000100010000100 -8 1000000000000000 -7 
8 0000000000000100 -7 0000010000000000 -6 
9 0000000100010000 -8 0000010000100010 -8 

the algorithm does not benefit from the overduplication of fit individuals, but 

more from the population diversity, the percentage kept is 25%; the rest of the 

individuals in the population are randomly generated using the same generation 

method as for the initial population (see listing 19). The computational complex­

ity of this approach is polynomial, i.e. O(PS . In (PS) + PS· t 2 ) ~ O(t4 ) since it is 

necessary to order the individuals in the population by their fitness value and to 

evaluate the three quarters of population which are newly generated individuals. 

See table 5.1 for an example of Elitist Selection of level 25% for a sequence of size 

16, ko = 5 when the population size is 10. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 101 

Roulette wheel with slots sized according to fitness (RWSEL) 

The Roulette wheel selection technique allows a fair redistribution of the in­

dividuals based on their fitness. One disadvantage is that the population does 

not gain any new individuals during selection losing diversity, however this can 

be counteracted by a higher rate of crossover and mutation to compensate. This 

method duplicates the fitter individuals. 

In the following, we summarise the classical roulette wheel method. 

Denote the individuals in the population, e(i), with their fitness value f(e(i») 

for all i = 0,1, ... , PS - 1. The total fitness of the population, denoted TF, 

represents the sum of the fitness values of all individuals: 

PS-l 

TF = I: f(e(i») 
i=O 

The relative and the cumulative probability of each individual, denoted rprob and 

cprob respectively, are defined for each i, 0 :::: i < PS, as: 

i 

cprob(e(i») = I: rprob(e(j») 
j=O 

Note that the cumulative probabilities are increasing values between 0 and 1. 

A rotation of the roulette wheel consists of generating a random value r between 

o and 1. The element e(i) is chosen, such that i is minimal with the property that 

r :::: cprob(e(i». This step is repeated PS times to select all the individuals in the 

new population. 

We will use a modified roulette wheel technique, one which emphasizes more 

the differences between the individuals in the population, based on their quality. 

In order to give more strength to the error patterns e with low L( 8 + e) for low 

Hamming weight WHeel we apply an appropriate scaling to the slots of the wheel. 

In the context of the k-error linear complexity problem we need it to be more 

likely to choose error patterns with lower Hamming weight (w H ( e) low) and which 

inflict a low linear complexity on the input sequence (L(8 + e) low). Therefore 

we want the size of the roulette wheel slots to be inversely proportional to the 

Hamming weight and to the absolute value of the fitness. 

The total fitness scaled by Hamming weight, denoted T F', is defined as: 

PS-l 

TF'= ~ 1 f:o (wH(e(i» + 1)(lf(e(i»)1-1) 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 102 

Adding 1 to the weight (wH(e) :::: 0, for all e E Kt) and subtracting 1 from the 

fitness function (f(e) ::; 0 for all e E Kt) is necessary in order to avoid division by 

zero in the special cases when the weight or when the fitness function is O. The 

relative and cumulative probabilities of each individual in this case, rprob' and 

cprob' respectively, are defined for each i, 0 ::; i < PS as: 

i 

cprob'(e(i)) = l: rprob'(e(j)). 
j=O 

The selection process consists of spinning the roulette wheel PS times and each 

time selecting an existing individual, using the probabilities calculated above. This 

way, the fitter the individual, more likely it is for it to be selected. 

Formally, the following two steps are repeated PS times: 

1. Generate a random value r, rE [0, 1J. 

2. If r < cprob'(e(O)) then select e(O), otherwise find j such that cprob'(eU- 1)) < 
r ::; cprob( eU)) and select e(j). 

Algorithm 20 Roulette wheel with slots sized according to fitness (RWSEL) 
for i = 0,1, ... , PS - 1 do 

r <- a random value in [0, 1J 
if r < cprob( e(O) then 

Select e(O) 
else 

Find j such that cprob(e(j-l)) < r ::; cprob(e(j)) and select eU) 
end if 

end for 

Tables 5.2 and 5.3 contain an example on how the Roulette Wheel works on 

a population of 10 individuals when calculating the k-error linear complexity for 

a sequence of size 16 and when ko = 5. In table 5.3 it can be seen that even 

though both individuals 6 and 7 give the same fitness value, individual 6 has a 

greater probability since its weight is zero, while the weight of individual 7 is 3, 

therefore there are greater expectations from it in reducing the linear complexity 

of the input sequence. The table 5.3 shows the way the selection is made on the 

basis of the random values r generated. We notice that the best individual is kept 

and the ones with high fitness are duplicated. 

For each element of the population (PS elements) a random value is generated 

and a search for the right slot is performed (at most PS slots). Therefore, the 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 103 

Table 5.2: Example of Roulette Wheel Selection on sequence s -
1011110011010110 and ko = 5 (part 1) 

No Chromosomes Fitness relative cumulative 
before selection prob. prob. 

0 0000000000000000 -8 0.190627 0.190627 
1 0000000000000000 -8 0.190627 0.381255 
2 0000100011001000 -8 0.0381255 0.41938 
3 0010010001010000 -11 0.0285941 0.447975 
4 0000000000100001 -9 0.0571882 0.505163 
5 0000001000000000 -9 0.0857824 0.590945 
6 0000000000000000 -8 0.190627 0.781573 
7 0000100010000100 -8 0.0476569 0.82923 
8 0000000000000100 -7 0.107228 0.936458 
9 0000000100010000 -8 0.0635425 1 

Table 5.3: Example of Roulette Wheel Selection on sequence s -
1011110011010110 and ko = 5 (part 2) 

Random val. Source Chromosomes Fitness 
E (0,1) after selection 

0.449 4 0000000000100001 -9 
0.786 7 0000100010000100 -8 
0.734 6 0000000000000000 -8 
0.897 8 0000000000000100 -7 
0.189 1 0000000000000000 -8 
0.913 8 0000000000000100 -8 
0.335 1 0000000000000000 -8 
0.109 0 0000000000000000 -8 
0.518 5 0000001000000000 -9 
0.954 9 0000000100010000 -9 

computational complexity is polynomial, O(ck5ltlnqPl ~ O(t4). 

Tournament Selection (TRSEL) 

In a two order tournament selection model, random pairs of individuals from 

the current population are picked and the best one out of the two is selected to 

survive in the next population. Intuitively, this method would be particularly suit­

able as the fitness values for this problem are very close which makes the Roulette 

Wheel selection (even when using the scaled formulas) to give close probabilities 

of selection to most of the individuals. However, we notice that using this method 

the diversity of the population decreases very quickly after each generation. 

Formally, the following two steps are repeated PS times: 

1. Generate two random values POSl and POS2, such that 0 ::; POSl < POS2 ::; 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 104 

Table 5.4: Example of Tournament Selection on sequence s = 1011110011010110 
andko =5 

No Chromosomes Fitness Tournament Chromosomes Fitness 
before selection between after selection 

0 0000000000000000 -8 9 and 6 0000000100010000 -8 
1 0000000000000000 -8 4 and 7 0000100010000100 -8 
2 0000100011001000 -8 9 and 3 0000000100010000 -8 
3 0010010001010000 -11 5 and 9 0000000100010000 -8 
4 0000000000100001 -9 8 and 4 0000000000000100 -7 
5 0000001000000000 -9 4 and 7 0000100010000100 -8 
6 0000000000000000 -8 8 and 2 0000000000000100 -7 
7 0000100010000100 -8 4 and 9 0000000100010000 -8 
8 0000000000000100 -7 4 and 5 0000000000100001 -9 
9 0000000100010000 -8 9 and 7 0000000100010000 -8 

PS-I. 

2. If !(e(POSl)) < !(e(pOS2)) then select e(POS2), otherwise select e(pOSl). 

See table 5.4 for an example of tournament selection applied to a population 

of 10 sequences of size 16 when ko = 5. 

The computational complexity of this selection method is linear, O(t). 

5.1.2.4 Crossover 

The crossover involves choosing two parents, with the probability of crossover 

denoted Px, Px E [0,1] and combining these parents to obtain new (possibly 

better) solutions. The following is the general crossover algorithm. 

1. i = O. 

2. If i ~ PS then STOP. 

3. Generate a random value r, rE [0,1]. 

4. If r < Px and no parent yet selected then choose first parent p(1) <- p(i). Go 

to Step 4. 

5. If r < px and first parent pr!) has been selected, then choose the second 

parent p(2) <- pU) such that p(i) f pU), combine parents p(i) and pU) to 

obtain one or two children and reset parents to be the best two out of the 

set of parents and children. 

6. i <- i + 1. Go to Step 2. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 105 

In the following, we will denote the parent chromosomes p(1) and p(2). Hav­

ing the two parents p(1) and p(2) , the following standard crossover schemes are 

considered (Goldberg [20], Michalewicz [54]). 

• Single point crossover (SPX). Generate a random natural number pas, with 

pas E {O, 1, ... ,t - 2}. 
(1) _ (1) (1) (1) (1) (1) ) 

P - Po ,PI ,···,Ppos-l,Ppos,···,Pt-l 
, f 

• 
(2) _ (2) (2) (2) (2) (2) ) 

P - Po ,PI , .. ·,Ppos-l,PPOS, .. ·,Pt-l 

The resulting offspring are: 

(1) _ (p(I) (1) (1) (2) (2) ) 
c - 0 ,PI ,o·"Ppos-l,PPOS,··"Pt-l 

" , 

This strategy provides some diversity without disrupting building blocks1 . 

• Two point crossover (TPX). Generate two random natural numbers POS1 

and POS2, such that 0 ::; POSl < POS2 ::; t - 2. 

(1) _ ( (1) (1) (1) (1) ) 
p - Po ,··"Pp081,··o,PpOS2,··"Pt-l , , 

(2) _ ( (2) (2) (2) (2) ) 
P - Po , ... , Ppos!> ... , Ppos" ... , Pt-1 

The resulting offspring are: 

(1) _ (VII).. . . (2) (2) (1) ) c - ~,PPOSl, ... ,PPOS2'~ 

(2) _ ( (2) (1) (1) (2) ) 
c - Po ,··"PpOSl,··o,Pp082,··"Pt-l , ~ 

• Uniform random crossover (URX). Using this crossover technique, only one 

child, c, is obtained from each pair of two parents p(!) and p(2). 

P
(I) = (p(l) p(l) p(l) ) o , 1 , ... , t-I 

P
(2) = (p(2) p(2) p(2) ) 

O'l,···,t-l 

The method involves generating t random real numbers, Ti E [0,1]' i = 

0, 1, ... , t - 1 where t is the length of the input sequence. For each i, if 

Ti < 0.5 then Ci +- p;I), otherwise C;. +- p;2) (Sywerda [81]). 

We can devise crossover schemes which use some knowledge of the problem at 

hand, Le. the problem of calculating the k-error linear complexity. 

In order to achieve this, for each chromosome e, when calculating the linear 

complexity of s + e (with the Berlekamp-Massey Algorithm) all the intermediary 

1 Building blocks are short sequences of good genes which appear within the chromosomes (in 
terms of our problem short subsequences of small linear complexity in s+e). It is desirable not 
to disrupt them if possible in order to promote them to the following generations. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 106 

linear complexities, i.e. the full linear complexity profile can be stored. That is, 

for each e(i), i = 0,1, ... , PS - 1, the linear complexity profile lCp(i) is known, 

where lcp(i) = (lcp~i), ... , Icp~~I)' a vector of size t such that lcpji) represents the 

linear complexity of the sequence S + e(i) up to term j, i.e. linear complexity of 

th ( i) (i) (i)) Th . t d' d' . e sequence So + eo , SI + el , ... , Sj + ej . e III erme lary IscrepanCles 

can be also stored in an array dis(i), where disji) is the intermediary discrepancy 

at term j for sequence s + e(i), i.e. the difference between the element Sj + eji) 

and the /h element generated by the characteristic polynomial of the sequence 
(i) (i) (i) (so+eo ,SI+el , ... ,Sj_l+ej_I)· 

When processing term j of sequence s+e(i), only the case when the discrepancy 

dis)i) f 0 and 2lCPY) :S n (case (lb) in Section 2.2.6) yields an increase in the 

current complexity of the sequence. We are interested in minimising the linear 

complexity of s + e, i.e. the fitness function of e. It is therefore natural to change 

the current term part of the crossover in such a way to make the discrepancy zero 

and therefore make an increase in complexity unnecessary at position j. 

The following two crossover techniques use the previous remark and the infor­

mation given by the linear complexity profile as well as the intermediary discrep­

ancies held against each chromosome. 

We will denote the parent chromosomes p(l) and p(2) with the corresponding 

linear complexity profiles, lcp(l) and lcp(2) and the intermediary discrepancies dis(l) 

and dis(2) . 

• One point crossover using the linear complexity profile (LCPSPX). Generate 

a random natural number pos, pos E {O, 1, ... , t -I}. Find in parent p(1) the 

first position after pos, i, such that the linear complexity for the sequence 

s + p(1) up to term i increases when processing term i + 1 and such that 

pl~1 and pl~1 differ. In other words, find first position i in the first parent 

p(l) such that pos < i, lCp;l) < lcp;~1 and P;~I f P;~I' That means that by 

applying the following recombination it is possible for the linear complexity 

corresponding to the first child L(s + c(1)) to be reduced. 

(I) (I) (I) (I) (I) (I) (I) ) 
P = Po ,PI ,···,ppos,···,Pi ,Pi+I,···,Pt-1 .. ' 

(2) _ (2) (2) (2) (2) (2) (2) ) 
P - Po ,PI"" ,ppos, ... ,Pi ,Pi+!"" ,Pt-I 

The resulting offspring are: 

(I) _ (I) (I) (I) (I) (2) (2) ) 
C - Po ,PI ,···,Ppos,···,Pi ,Pi+I,···,Pt-1 

.. I v 

(2) _ (2) (2) (2) (2) (I) (I) ) 
c - Po ,PI,··· ,ppos, ... ,Pi ,Pi+l1'" ,Pt-l .. , 

v 

This strategy provides good diversity without disrupting long building blocks. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 107 

• Two point crossover using the linear complexity profile (LCPTPX). One 

thing which can be extended from the LCPSPX crossover presented above, 

is to use the linear complexity information from the second parent as well. 

Generate two random natural numbers pas I and POS2, such that 0 ::::: POSI < 
POS2 ::::: t - 2. Find the first position i in the first parent pill such that 

. l (I) l (I) d (I) -J. (2) Al fi d th fi t 't' .. th POSI < 2, CPi < CPi+! an Pi+l r PHI' so n e rs POSl IOn J III e 

second parent p(2) such that POS2 < j, lcp?) < lCPj~1 and pj~1 -=? Pj~l' 

That means that by applying the following recombination it is possible that 

in some of the cases the linear complexity corresponding to one or both 

children reduces, and therefore their fitness improves. Note that in the above 

it is assumed that i < j. This is not a restriction as if it does not happen 

p(!) and p(2), and also i and j can be interchanged to fulfill this requirement. 

pIll = (Pb
l
), ... ,p;I),p;21"""""""" ,P;~I) 

.. # 

00_(00 00 00 00) 
P - Po """"""""'Pj ,Pj+I,···,Pt-1 

The resulting offspring are: 

C(!) = (Pb
l
), ... ,p;!)'P;~I"""""""" ,P;~l) 

'--v--' 

C(2) = (Pb2
), ... , ... , ... , ... ,p?),pj~I'''' ,P;~I) 

.. # v 

This strategy provides a higher diversity than LCPSPX. It is likely for dis­

ruption of long building blocks towards the end of sequences but the ones at 

the beginning of the sequence remain untouched. 

If any of the previous schemes does not succeed in finding the right positions 

of crossover i or j with the required properties, then that crossover can be simply 

ignored. 

The computational complexity of any of these crossover schemes is polynomial, 

i.e. O(t4). For a certain percentage px of the population, approximately Px . PS 

individuals, one or two children are generated and these need to be evaluated using 

BerlekanIp-Massey Algorithm of computational complexity O(t2). 

5.1.2.5 Mutation 

While selection and crossover are the evolutionary operators which are imple­

menting the need to promote good patterns from one generation to the next one, 

mutation is an operator which introduces variety and implements the need to 

throw the individuals away from any potential local optimum that they would be 

converging to. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 108 

We consider two types of mutation, the standard random mutation and one 

which uses the linear complexity information similarly with the crossover schemes 

LCPSPX and LCPTPX presented in section 5.1.2.4. We define a parameter called 

the probability of mutation, PM E [O,IJ . 

• Simple random mutation (SRM). This type of mutation iterates through all 

PS individuals in the population and for each of them, for all t terms, it 

generates a random value r, r E [0, IJ and if r < PM then it perturbates the 

current term with a random value from the field. 

Formally, for each i, i = 0, 1, ... , PS - 1 and for each j, j = 0,1, ... , t - 1, 

generate a random value r, r E [O,lJ. If r < PM then generate random value 

val, val E G F( q) and ey) = eji) + val . 

• Random mutation using the linear complexity profile (LCPRM). This mu­

tation process tries to obtain individuals with a higher fitness by using 

the linear complexity profile similarly with the crossover types LCPSPX 

and LCPTPX. Aditionally, it uses the discrepancy information for a better 

chance to enhance the fitness of the new individual. 

Formally, for each i, i = 0,1, ... , PS - 1 and each j = 0, ... , t - 1 generate 

a random value rj, rj E [O,lJ. If rj < PM then generate a random position 

pas E {O, 1, ... ,t -I} and find the first position m in e(i) such that pas < m 

and lcp~ < lcp;;;+l' Make e;;;+l <-- e;;;+l - dis;;;+l' We remind that dis;;;+l 

represents the discrepancy at step m + 1 in the sequence s + e(i), namely 

the difference between term Sm+! + e;;;+! and the (m + 1 )th term generated 

using the characteristic polynomial of the sequence (so + eg) , ... , Sm + e~). 
We choose this particular mutation since this subtraction will make the 

discrepancy of s + e(i) at position m + 1 to be zero, making it likely for the 

linear complexity of s + e(i) to be lower (certainly at index m + 1 the linear 

complexity will be lower) and therefore the fitness value of the error pattern 

e(i) to be larger. 

The fitness value of the mutated individual is evaluated and the global solution 

is updated if necessary. For the sake of di versity, the initial individual is discarded 

and the mutated one is kept for the next population regardless of the value of its 

fitness. 

The computational complexity of the mutation step is polynomial, i.e. O(t4 ). A 

certain percentage PM of the population PSis mutated and at most PS elements 

are evaluated using Berlekamp-Massey Algorithm of computational complexity 

O(t2
). 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 109 

5.1.2.6 Summary 

For both crossover and mutation, additional post processing is needed in order to 

check if the resulting offspring have a higher weight than the input value ko and 

if so, randomly switch some of the non zero terms to 0 until the weight is at most 

ko. Whenever fitness values of individuals are evaluated, the global solution is 

updated if necessary. 

Since the genetic algorithm depends on the input parameters as well as on a 

choice of a set of parameters, in the following we will refer to the genetic algorithm 

as: kGA(t, k, s, PS, NOGEN, ST,XT, MT,Px,PM) where t, k and s are the input 

values and 

• PSis an integer representing the population size, 

• NOGEN is an integer representing the number of generations, 

• ST is the selection scheme used, it can be ELSEL, RWSEL, TRSEL (see 

section 5.1.2.3), 

• XT is the crossover scheme used, it can be SPX, LCPSPX, TPX, LCPTPX, 

URX (see section 5.1.2.4), 

• MT is the mutation scheme used, which can be SRM or LCPRM (see 

section 5.1.2.5), 

• Px is a value in the range [0,1] representing the probability of crossover, 

• PM is a value in the range [0,1] representing the probability of mutation. 

Adding all the computational complexities of the different components and 

multiplying by the number of generations NOGEN which is a constant it follows 

that the algorithm has polynomial complexity, namely O(t4). 

5.1.3 Experiments and results 

In order to assess the accuracy of the algorithm and to establish which is the best 

combination of parameters to choose for the k-Error Genetic Algorithm we have 

set up a series of tests. 

In the first experiment we consider 5 randomly chosen binary sequences of 

length 32 and ko = 5, Le. approx. 15% of the length of the sequences (each 

bit of the sequences is generated with the C rand 0 linear congruential generator 

function). The search space size in this case is SS = L:f=o ei2) = 204469 (see equa­

tion (5.1)). The population size according to relation (5.2) is PS = cko it In q 1- For 

ko = 5, t = 32 and q = 2, the value is PS = noc. We try three different values for 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 110 

the coefficient c, c = 0.1, c = 1 and c = 10 corresponding to small, medium and 

large sized populations, respectively. In order to have comparable running times 

and comparable results, we choose the number of generations, NOGEN such that 

the product PS· NOGEN (which is a broad approximation for the number of 

patterns that the algorithm evaluates) is constant. Note though that the exact 

number of error patterns processed by the algorithm depends on the number of 

new individuals appearing from one generation to another. The following combi­

nations for the pair (PS, NOGEN) will be considered: (11,1000), (llO,100) and 

(llOO,lO). 

Each possible combination of selection (Elitist Selection with level 25% - ELSEL, 

Roulette Wheel- RWSEL, Tournament - TRSEL), crossover (Single Point Crossover 

- SPX, Two Point Crossover - TPX, Uniform Random Crossover - URX, Single 

Point Crossover using Linear Complexity Profile - LCPSPX, Two Point Crossover 

using Linear Complexity Profile - LCPTPX ) and mutation (Simple Random Mu­

tation - SRM, Random Mutation using Linear Complexity Profile - LCPRM) is 

considered with the different values for population size and numbers of genera­

tions as described above. The algorithm is run 5 times for each sequence and each 

combination of parameters with a different random seed. 

In total, having 3 combinations of population size, 3 selection types, 5 crossover 

types, 2 mutation techniques and 5 repeated tests, we obtain 450 different runs 

for each sequence and store the approximate ko-error linear complexity returned 

by each configuration and seed. 

The probability of crossover is Px = 0.6 and the probability of mutation is 

PM = 0.05. 

In the following, the evaluation of the algorithm is done by calculating the ratio 

between the approximate ko-error linear complexity profile obtained by the k-Error 

Genetic Algorithm and the exact ko-linear complexity profile (calculated using the 

Efficient Exhaustive Search Algorithm). We call this indicator the accuracy of the 

k-Error Genetic Algorithm. The accuracy of the results of the algorithm for each 

set of parameters (PS, NOGEN, Selection, Crossover, Mutation) is averaged over 

the 5 runs. 

Table 5.5 contains the top 10 configurations of parameters which returned 

the best accuracy over the 5 input sequences. The results are summarised in 

figure 5.4. We omit the accuracy of the O-error linear complexity in the tables 

as this is trivially the linear complexity of the input sequence and it will always 

be correctly calculated by the k-Error Genetic Algorithm by simply applying the 

Berlekamp-Massey Algorithm. 

We notice that there is not a big difference in accuracy for the different con­

figurations which give the best results. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES III 

Table 5.5: The accuracy of the results of kGA(32, 5, s, PS, NOGEN, ST, XT, 
MT, 0.6, 0.05) - Top 10 best configurations 

No. Pop. No. Selection Crossover Mutation Accuracy Acc, Acc2 Acc3 Acc4 Acc5 
Size gen. Type Type Type 

1 1100 10 ELSEL LCPTPX LCPRM 1.072 1.00 1.00 1.01 1.08 1.27 
2 11 1000 ELSEL LCPTPX SRM 1.074 1.00 1.00 1.01 1.08 1.28 
3 1100 10 ELSEL LCPSPX LCPRM 1.074 1.00 1.00 1.01 1.09 1.27 
4 110 100 ELSEL SPX LCPRM 1.076 1.00 1.00 1.02 1.09 1.27 
5 1100 10 ELSEL TPX LCPRM 1.078 1.00 1.00 1.00 1.09 1.30 
6 1100 10 ELSEL URX LCPRM 1.078 1.00 1.00 1.03 1.08 1.28 
7 11 1000 ELSEL LCPSPX LCPRM 1.08 1.00 1.00 1.03 1.08 1.29 
8 110 100 ELSEL SPX SRM 1.082 1.00 1.00 1.04 1.11 1.26 
9 11 1000 ELSEL TPX LCPRM 1.082 1.00 1.00 1.02 1.09 1.30 
10 1100 10 ELSEL URX SRM 1.084 1.00 1.00 1.01 LlO 1.31 

Table 5.6: The accuracy of the results of kGA(32, 5, s, PS, NOGEN, ST, XT, 
MT, 0.6, 0.05) - Top 10 worst configurations 

No. Pop. No. Selection Crossover Mutation Accuracy Acc, Acc2 Acc3 Acc4 Acc5 
Size gen. Type Type Type 

44111 1000 TRSEL URX SRM 1.214 1.08 1.16 1.27 1.23 1.33 
44211 1000 RWSEL SPX LCPRM 1.220 1.06 1.10 1.22 1.30 1.42 
44311 1000 RWSEL LCPTPX LCPRM 1.222 1.05 1.13 1.25 1.30 1.38 
44411 1000 RWSEL LCPSPX LCPRM 1.228 1.06 1.12 1.25 1.30 1.41 
44511 1000 RWSEL URX LCPRM 1.230 1.08 1.13 1.27 1.30 1.37 
44611 1000 TRSEL TPX LCPRM 1.260 1.07 1.14 1.30 1.33 1.46 
44711 1000 TRSEL LCPTPX LCPRM 1.270 1.07 1.17 1.30 1.34 1.47 
44811 1000 TRSEL URX LCPRM 1.276 1.09 1.17 1.35 1.33 1.44 
44911 1000 TRSEL LCPSPX LCPRM 1.286 1.07 1.20 1.37 1.34 1.45 
45011 1000 TRSEL SPX LCPRM 1.304 1.09 1.17 1.35 1.40 1.51 

For the top 10 worst configurations see table 5.6 and figure 5.5. Between the 

results of the worst configurations there are not big differences in accuracy either. 

We try therefore to identify what differentiates good configurations from bad ones. 

The accuracies for different values of k, ACCk are defined as ACCk = L kZ:{:?), 
where LkGA,k(S) is the approximate k-error linear complexity returned by the k-

Error Genetic Algorithm. The accuracy column in the two tables represents the 

average accuracy over the 5 values of the k-error linear complexities calculated for 
k-12345 N I A _Ll,Acc; - "". amey, ccuracy- 5 . 

Looking at the table of top 10 best configurations, it is difficult to say which 

choice is better for each of the parameters as the configurations which give simi­

larly accurate results can be quite different. For example, in table 5.5 the larger 

population size / small number of generations configuration is better since it gives 

top results five times out of ten, whereas the other configurations give top results 

in two or three out of ten cases, for medium population size/medium number of 

generations and for small population size / large number of generations, respec-



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 112 

~ e 
~ 

1.6 

1.5 

1.' 

1.3 

1.2 

1.1 

0.5 

The accuracy of the results IOllCld by the Genetic A\Qot\tlm'l 
on a sample of 5 random binary sequences of len~lh 32 with different parameters 

Top 10 best configurations 

c································,···················· .............. , ................................. ; ................................. , .............................. , ....... t-::::::: 

o~----~------~----~~----~------~----~ o 2 3 4 5 6 
Number of errors 

Figure 5.4: The accuracy of the results found by the Genetic Algorithm on a 
sample of 5 random binary sequences of length 32 with different parameters - Top 
10 best configurations 

~ 
~ 

1.6 

1.5 

1.' 

1.3 

1.2 

1.1 

0.5 

The accuracy of the results found bV the Genelfc Algorithm 
on a sample of 5 random binary seq.IJences of length 32 with different parameters 

Top 10 worst configurations 

-~~~!~I~ 
· .. ·················i······· ..... +... . ............... ~ .... ·········· ............... ··f··.. . ........... ! ... 4.?Q .. :.:.:.: .. ·.: .. · .. . 

i 

...... 1 .... \ 
...... , .... ·· .. ················ .. ·····1···· t 

o~ ____ ~ ______ -L ______ ~ ______ ~ ______ ~ ____ ~ 

o 2 3 4 5 6 
Number of errors 

Figure 5.5: The accuracy of the results found by the Genetic Algorithm on a 
sample of 5 random binary sequences of length 32 with different parameters - Top 
10 worst configurations 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 113 

tively. Tables 5.5 and 5.6 show that the ELSEL selection leads to the best results. 

It is difficult though to choose the best crossover or mutation scheme. 

This is the reason to analyse further the accuracy results when they are grouped 

by each of the parameters. We summarise these results in the following graphs. 

• Figure 5.6 shows the results grouped by population size / number of gener­

ations. We notice that the best combination over the sequences included in 

this experiment is large population size / small number of generations. This 

choice matches the results in the top 10 best configurations table 5.5. 

• Figure 5.7 shows the results grouped by selection scheme. It is very well 

delimited that the best selection scheme for this experiment is the elitist 

selection of level 25% and this matches the results shown in the top 10 best 

and worst configurations tables 5.5 and 5.6. 

• Figure 5.8 shows the results grouped by crossover scheme. For the crossover 

schemes, it looks like in this experiment any scheme is as good as the other 

with the exception of the uniform random crossover (URX). 

• Figure 5.9 shows the results grouped by mutation scheme. When grouping 

by mutation technique the simple random mutation (SRM) seems to give the 

best results. This is not reflected clearly by the top 10 best configurations 

table 5.5 but it is supported by the results summarised in the top 10 worst 

configurations table 5.6. 

There are a few conclusions which we could draw out of the previous experi­

mental analysis. A large population size / low number of generations, the ELSEL 

selection type, any type of crossover with the exception of the uniform random 

crossover (URX) and the simple random mutation (SRM) are the parameters 

which lead to the best results. 

This shows that, even if we devised operators which use some knowledge of the 

problem in hand (like LCPSPX, LCPTPX or LCPRM), the benefit of using those 

operators is minimal. Moreover, the clear advantage of using the elitist selection 

scheme of order 25% (ELSEL) suggests that there is a higher benefit in refreshing 

the current population with new individuals which are randomly generated (keep 

the diversity of the population high), than keeping in the population the fittest 

individuals (keep the selective pressure high). 

In order to have more confidence in the conclusions above we investigate how 

the algorithm scales with the length of the input sequence and if the choices in 

this case remain similar to the previous experiment. We take a binary sequence 

of length 64 and ko = 9 which is approximative 15% of the length of the sequence. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 114 

I 

1.' 

1.5 

1.4 

1.3 

1.2 

1.1 

0.5 

The average accuracy of the results of the Genelic Algorithm 
on a sample of 5 random binary sequences of length 32 

for different populalfon size I number of generation combinations 

............... +... ····i ................................ y.... . ~~~~~cir~8g~N=d~~g == 
i ...................... p._~ .. ~.1J.9.9..!.N.9G.~N .. :::.J.9 ... :.:.::.:.::.: .. .. 

················I························· .. "::J···· ........................ 1. ~#~ 

::::::::::::::::::::::::::::::::1 ... L. .............................. 1.... . i ____ <;;.;.;::~;:.~.'. , ... . 
········::l:=;~:~;~;;~;;.;~:,:.:,,:.'.,:::~:=t';:::;:=~;:~~:L'" •..•..••••.• J •••• 

............... , ................................. , ............................... t .............................. 1 ... . 

oL-----~------~------~------~------~--__ ~ o 2 3 
Number 01 errors 

4 5 6 

Figure 5.6: The average accuracy of the results of the Genetic Algorithm on a 
sample of 5 random binary sequences of length 32 for different population size / 
number of generations combinations 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

1 

~ • , 
~ 

0.5 

o 
o 

The average accuracy of the resufis of the Genetic Algorithm 
on a sample of 5 random binary sequences of length 32 

for different selection types 

2 3 
Number of errors 

.-
.",.",'" ,/" 

......... 

4 

~!!t ........ 

5 6 

Figure 5.7: The average accuracy of the results of the Genetic Algorithm on a 
sample of 5 random binary sequences of length 32 for different selection types 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 115 

~ 
§ 
< 

1.6 

1.5 

1.4 

1.3 

1.2 

1.1 

0.5 

The average accuracy of the results of the Genetic Algorithm 
on a sample of 5 random binary sequences of length 32 

for dIfferent crossover types 

.;~~ == 
I ................. , ....................... mj........................ ;...........................; ............................ , 0.', T~P~;~ ....... . 
~ ..................................... !. ................................ , ........................... , .................................. ; ......... ~ ............. "~..!!'" ~~~ :::~~ 

oL-______ L-______ L-______ ~ ______ ~ ______ ~ ______ ~ 

o 2 3 
Number of errors 

4 5 • 

Figure 5.8: The average accuracy of the results of the Genetic Algorithm on a 
sample of 5 random binary sequences of length 32 for different crossover type 

1 .• 

1.5 

1.4 

1.3 

1.2 

1.1 

1 

~ 
§ 
< 

0.5 

o 
o 

The average accuracy of the results of the Genetic Algorithm 
on a sample of 5 random binary sequences of length 32 

for different mutation types 

.. 

2 3 
Number of errors 

---..... ~ 

4 

'SRM-
--.----

S • 

Figure 5.9: The average accuracy of the results of the Genetic Algorithm on a 
sample of 5 random binary sequences of length 32 for different mutation types 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 116 

Table 5.7: The accuracy of the results of kGA(64, 9, s, PS, NOGEN, ST, XT, 
MT, 0.6, 0.05) - Top 10 best configurations 

No. Pop. No. Selection Crossover Mutation Accuracy Ace, Ace2 Ace3 Ace4 Aces 
Size gen. Type Type Type 

1 4000 10 ELSEL LCPTPX SRM 1.205 1.00 1.00 1.02 1.14 1.16 
2 4000 10 ELSEL TPX SRM 1.207 1.00 1.00 1.02 1.12 1.14 
3 400 100 ELSEL TPX LCPRM 1.211 1.00 1.00 1.02 1.12 1.15 
4 40 1000 ELSEL TPX LCPRM 1.214 1.00 1.00 1.04 1.14 1.19 
5 400 100 ELSEL LCPSPX SRM 1.222 1.00 1.00 1.04 1.15 1.16 
6 4000 10 ELSEL TPX LCPRM 1.228 1.00 1.00 1.02 1.13 1.16 
7 40 1000 ELSEL LCPTPX LCPRM 1.229 1.00 1.00 1.04 1.15 1.19 
8 40 1000 ELSEL LCPSPX SRM 1.229 1.00 1.00 1.04 1.16 1.20 
9 400 100 ELSEL LCPSPX LCPRM 1.232 1.00 1.00 1.03 1.16 1.20 
10 4000 10 RWSEL SPX LCPRM 1.233 1.00 1.00 1.07 1.18 1.16 

The full search space size for a sequence of length 64 and for ko = 9 is SS = 

2:i=o (6i4) = 2.430 * 1010 (see equation (5.1)). Therefore, applying the formula for 

the population size (relation (5.2)) we obtain PS = ckoftlnql ~ 400c. We try 

three different values for the coefficient c, c = 0.1, c = 1 and c = 10 corresponding 

to a small, medium and large population size, respectively. Similarly with the 

previous experiment, in order to have comparable running times we choose the 

number of generations NOGEN such that the product of the population size 

and number of generations is constant. The following pairs (PS, NOGEN) are 

considered (40, 1000), (400, 100) and (4000, 10). Each possible combination of 

selection, crossover and mutation is considered and, for each, the algorithm is run 

5 times with different random seeds. In total, having 3 combinations of population 

size / number of generations, 3 selection schemes, 5 crossover types and 2 mutation 

types, we obtain 90 different runs. The probabilities of crossover and of mutation 

have the same values as in the first experiment, Px = 0.6 and PM = 0.05. 

The tables 5.7 and 5.8 contain the top 10 best and worst configurations ob­

tained respectively, and the figures 5.10 and 5.11 summarise the same results in a 

graphical representation. The accuracy in the tables is the average accuracy over 

the 9 non zero values of k in the approximate k-error linear complexity profile. 

The difference of accuracy between the top best and worst configurations is 

smaller in this experiment, however the distribution of the results supports the 

conclusions drawn in the first experiment. A large population size / small number 

of generations, elitist selection type, any crossover type with the exception of the 

uniform random crossover are the configurations giving the best results (table 5.7). 

A small population size / large number of generations, tournament or roulette 

wheel selection and the uniform random selection all appear often at the bottom 

of the list as worst configurations, which confirms the conclusions of the first 

experiment (table 5.6 and 5.8). 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 117 

The accuracy of the results found by the Genetic Algorithm 
on a binary sequence of length 64 with different parameters 

Top 10 best configurations 
2r------,-------,-------.-------,-------,--~ 

~:! f-..................... ..:................................ .j.............................. + .............................. +............................ r-::.::~-::.: 

1.7 f-........................... ; ...................................... ; .................................. + ............................. .. ; ............. ,z,;i ......... . 
1.6 iF·········· •.•..... 

g j:~ l222b~~~~~~~~~-·~j~ .iP ..•.•.•.•.••••••...•.••• ·.· .• ·••••••.• ...... j:;f:~·~~:~:·~::::~\:j -
J 1 

0.5 f-_ .............................. ;............................j............................. ,.............................. , ............................. + .......... -~ 

oL-____ ~ ______ -L ______ ~ ____ ~L-____ ~ __ ~ 
o 2 4 6 8 10 

Number of errors 

Figure 5.10: The accuracy of the results found by the Genetic Algorithm on a 
binary sequences of length 64 with different parameters - Top 10 worst configura­
tions 

Table 5.8: The accuracy of the results of kGA(64, 9, s, PS, NOGEN, ST, XT, 
MT, 0.6, 0.05) - Top 10 worst configurations 

No. Pop. No. Selection Crossover Mutation Accuracy Acc, Accz Acc3 Acc4 Accs 
Size gen. Type Type Type 

81 400 100 TRSEL LCPSPX LCPRM 1.325 1.00 1.05 1.13 1.25 1.30 
82 40 1000 TRSEL LCPSPX LCPRM 1.325 1.04 LlO 1.13 1.27 1.31 
83 40 1000 RWSEL LCPSPX LCPRM 1.327 1.02 1.08 1.16 1.29 1.30 
84 400 100 RWSEL URX LCPRM 1.329 1.01 1.07 1.11 1.25 1.30 
85 400 100 TRSEL URX SRM 1.333 1.01 1.06 1.14 1.29 1.34 
86 40 1000 TRSEL TPX LCPRM 1.339 1.01 1.10 1.16 1.30 1.31 
87 40 1000 RWSEL URX LCPRM 1.352 1.03 1.10 1.18 1.34 1.37 
88 40 1000 RWSEL URX SRM 1.368 1.06 1.11 1.19 1.34 1.38 
89 40 1000 TRSEL URX SRM 1.371 1.00 1.06 1.13 1.19 1.34 
90 40 1000 TRSEL URX LCPRM 1.372 1.00 1.06 1.12 1.21 1.35 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 118 

[ 
~ 

2 
1.9 
1 .• 
1.7 
1 .• 
1.5 

1.' 
1.3 
1.2 
1.1 

1 

0.5 

The accuracy of the results found by the Genetic Algorithm 
on a binary sequence of length 64 with different parameters 

Top 10 worst configurations 

O~----~------~------~ ______ ~ ______ -L __ ~ 

o 2 4 6 8 10 
Number of errors 

Figure 5.11: The accuracy of the results found by the Genetic Algorithm on a 
binary sequences of length 64 with different parameters - Top 10 worst configura­
tions 

The same conclusions are supported when the accuracy results are grouped by 

each of the different parameters. 

• Figure 5.12 shows the results grouped by population size / number of gen­

erations. 

• Figure 5.13 shows the results grouped by selection scheme. 

• Figure 5.14 shows the results grouped by crossover scheme. 

• Figure 5.15 shows the results grouped by mutation scheme. 

We noticed a strong correlation between the number of different error patterns 

evaluated throughout a run of the k-Error Genetic Algorithm and the accuracy 

of the results. This is a natural remark since the processing of a bigger set of 

individuals will always return a better approximation of the solution. 

We estimate the number of individuals e which are evaluated throughout the 

algorithm, by evaluation meaning that the algorithm calculates the linear com­

plexity of s + e in order to find its fitness value. This number of such individuals 

is PS + NOGEN(ns + nx + nM) as the algorithm first evaluates the initial pop­

ulation and then for each generation it evaluates a certain number of individuals 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 119 

2 
1.9 
1.B 
1.7 
1.0 
1.5 
1.4 
1.3 
1.2 

~ 1.1 
, 
~ 

0.5 

o 
o 

The average accuracy of the results of the Genetic AlgOrithm 
on a binary sequences of length 64 

for different population size I number of generation combinations 

2 4 o 
Number of errors 

B 

40/1000 --
400/100 -------
4000/10 ........ 

/ 

10 

Figure 5.12: The average accuracy of the results of the Genetic Algorithm on a 
binary sequences of length 64 for different population size / number of generations 
combinations 

2 
1.9 
1.B 
1.7 
1.0 
1.5 
1.4 
1.3 
1.2 

f 1.1 

0.5 

o 
o 2 

The average accuracy of the results of the Genetic Algorithm 
on a binary sequence of length 64 

for different selection types 

. ."., 

4 

.... ~ 

o 
Number of errors 

/ 
.,r 

// 

• 

;f~!it·-........ 

10 

Figure 5.13: The average accuracy of the results of the Genetic Algorithm on a 
binary sequences of length 64 for different selection types 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 120 

i 
~ 

2 
1.9 
1 .• 
1.7 
1.6 
1.5 
1.' 
1.3 
1.2 
1.1 

1 

0.5 

The a'lerage accuracy of the results of the Genetic Algorithm 
on a binary sequence of length 64 

for different crossover types 

.~~~-
~........................ , ............................. , ............................. + ............................ + .......... ~.c~.:.~~~ :::.:::: 

, UAX •. _._.-

oL-____ ~ ______ -L ______ ~ ____ ~ ______ -L __ ~ 

o 2 4 6 8 10 
Number of errors 

Figure 5.14: The average accuracy of the results of the Genetic Algorithm on a 
binary sequences of length 64 for different crossover type 

2 
1.9 
1 .• 
1.7 
1.6 
1.5 
1.' 
1.3 
1.2 

~ 1.1 

~ 
1 

0.5 

o 
o 2 

The average accuracy of the results of the Genetic Algorithm 
or\ a binary sequence of Isr\gth 64 

/' 

• 

for different mutation types 

6 
Number of errors 

/ 
/ 

1/ 

• 

SAM-
L~eAM -------

, 

10 

Figure 5.15: The average accuracy of the results of the Genetic Algorithm on a 
binary sequences of length 64 for different mutation types 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 121 

Table 5.9: The 5-error linear complexity results of kGA(32, 5, S(i) , 1100, 10, 
ELSEL(25%), TPX, SRM, 0.6, 0.05) compared to the exact values 
s 8(0) 8(1) 8(2) 8(3) 8(4) 

Exact value 10 9 9 
GA Value 10 11 11 
Generation 10 3 1 

8 
9 
3 

10 
10 
7 

depending on the chosen selection, crossover and mutation scheme, where we de­

note the number of individuals evaluated during selection, crossover and mutation, 

with ns, nx and nM respectively. 

For the roulette wheel and tournament selection no individuals are evaluated, 

as the selection works only on the existing population so ns = 0 in this case. 

For the elitist scheme of level 25%, 75% of the population is replaced with new 

individuals which need to be evaluated. It is easy to estimate nx = 2·px· PS and 

nM = t· PM· PS. These two values are not varying when changing the crossover 

or mutation type. Therefore the only element which makes up the amount of 

new individuals to vary is the selection scheme. We think that this is the reason 

why the elitist selection scheme has shown the most significant improvement in 

accuracy when compared to the other methods. 

In order to check if there is any convergence pattern for the k-Error Genetic 

Algorithm, namely if after a certain number of generations the solution stabilises 

and converges slower to the optimum, we do the following additional analysis on 

the previous two experiments. 

Table 5.9 shows the approximate values of the 5-error linear complexity found 

by the k-Error Genetic Algorithm applied to each of the test sequences 8(i) (with 

o ::; i < 5) of length 32, when population size is 1100, number of generations 

is 10, selection scheme is elitist selection of level 25%, crossover is the two point 

crossover with probability of crossover 60% and mutation is the simple random 

mutation with probability of mutation 5%. This table displays the exact values of 

the 5-error linear complexity and the generation number when the k-Error Genetic 

Algorithm has found the solution. 

Table 5.10 shows the approximate value found by each of the runs for the 

best combination of parameters: population size 4000, number of generations 

10, selection scheme elitist of level 25%, two point crossover with probability of 

crossover 60% and the simple random mutation with probability of mutation 5%. 

The table displays the approximate values of the 9-error linear complexity and the 

generation number when the algorithm kGA has found the solution. 

With these results it is difficult to say if continuing the algorithm for a few 

more generations or stopping the algorithm a few generations before would have 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 122 

Table 5.10: The 9-error linear complexity results of kGA(64, 9, 8(i), 4000, 10, 
ELSEL(25%), TPX, SRM, 0.6, 0.05) compared to the exact value of L9(8) = 14 

Runs 12345 

GA Value 25 24 24 25 25 
Generation 2 9 4 3 8 

made any improvements. 

5.1.4 Conclusion 

We propose a genetic algorithm for approximating the k-error linear complexity 

of a sequence over a finite field. We implement and analyse various techniques for 

each of the evolutionary operators and investigate the best choice of parameters 

for the algorithm. The genetic algorithm approach seems suitable to the problem 

especially for inputs which generate a large search space but it is difficult to 

control in terms of accuracy. A good scheme would use a large sized population, 

an elitist type of selection with a level of 25%, two point random crossover with 

a probability of 0.6 and a standard random mutation with a probability of 0.05. 

With these choices, the algorithm outputs an approximate value of the k-error 

linear complexity which is on average only 7.2% higher than the exact value for 

sequences of length 32 when 1 ::; ko ::; 5 and 20.5% higher for sequences of length 

64 when 1 ::; ko ::; 9. 

Even though the advantage of this technique is that it is simple, quick and 

allows for different levels of accuracy, the algorithm can turn out to be unreliable 

and not scalable with the size of the search space. 

5.2 Simulated Annealing Algorithm 

This section presents an alternative evolutionary heuristic technique called sim­

ulated annealing, applied to the k-error linear complexity profile problem for se­

quences over finite fields. We design an algorithm using the simulated annealing 

technique and evaluate its behaviour. The algorithm proves to be efficient and 

has good accuracy. It outputs an approximate value of k-error linear complexity 

on average 12.4% higher for sequences of length 32 and 38% higher for sequences 

of length 64. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 123 

5.2.1 Background 

Independently presented by Kirkpatrick et al. [33] and Cerny [9], the simulated 

annealing (SA) technique is a generic probabilistic meta-algorithm used for global 

optimisation of problems. The method is inspired from the metallurgic technique 

of annealing, where materials are heated and then slowly cooled (according to a 

cooling schedule) to increase the size and the order of its crystals. These principles 

were first incorporated into numerical calculations by Metropolis et al. [53]. 

Similarly to the physical process, the simulated annealing algorithm is iter­

atively 'cooling' or mutating an initial random solution e to a randomly close 

solution e'. This new solution e' replaces e with a probability that depends on 

the difference between the quality of the two solutions and on a global parameter 

T called temperature. If the new solution is better (judging by a fixed objective 

function or a so called energy) then it is chosen for the next step. If the new 

solution is worse then it can still be chosen for the next step with a probability 

P( e, e', T) which depends on how much variance of energy the current temperature 

T of the system allows between the two solutions e and e'. In order to implement 

the above there is need to define the distance between two solutions and an objec­

tive function which reflects the quality of each possible solution. The temperature 

schedule allows the system to evolve initially at a high temperature and then at 

progressively lower temperatures until the system 'freezes' in a near optimum state 

when no further mutations occur (Kirkpatrick [33]). The cooling schedule is gov­

erned by a decreasing function Cs> at each step the current temperature T being 

replaced by Cs (T). 

The fact that at high temperatures, the algorithm allows the solution to mutate 

to elements which do not improve the objective function is one of the advantages of 

this method. This prevents the algorithm from getting stuck into a local minimum, 

one of the risks when using 'greedier' methods like the steepest descent method 

heuristic (Goldberg [20]). 

Simulated annealing is typically suited to optimisation problems of large scale, 

especially where the target global optimum is hidden among many local optima, 

and where the space of solutions is discrete and very large therefore cannot be 

explored exhaustively. Furthermore, since the set is discrete, there is no notion 

of 'continuing downhill in a favourable direction', as the concept of direction may 

not have any meaning in the search space (Press et al. [64]). 

This technique has been successful in a range of real life disciplines from physics 

to neural networks, image processing and finance, as well as classical NP-Complete 

problems like the Travelling Salesman Problem (Ingber [26]). Listing 21 shows a 

classical Simulated Annealing Algorithm. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 124 

Algorithm 21 Simulated Annealing Algorithm 
e <- random initial solution 
T <-To 
while (T 2: Tlreeze and termination condition not met) do 

for 1, ... , number of steps at constant temperature do 
e' <- random solution in the neighbourhood of e 
if fo(e) < fo(e') then 

e of- e' 
else 

e <- e' with probability P( e, e', T) 
end if 

end for 
T <- cs(T) 

end while 
return e 

5.2.2 kSA Algorithm 

In this section we describe the k-Error Simulated Annealing Algorithm for approx­

imating the k-error linear complexity of sequences with elements in a finite field 

GF(q), with q a prime power. 

Similar to the k-Error Genetic Algorithm the input is a finite sequence 8 = 
80,81, ... ,8t-1 of size t > 0 with terms over a finite field GF(q), where q is a 

prime power and an integer value ko, with 0 < ko ::; WH(8) - 1. The expected 

output is an approximate ko-error linear complexity profile of 8 containing for 

each i = 0,1, ... ,ko, Lt, the approximate i-error linear complexity; er, the error 

pattern producing the linear complexity Lt on 8; Ct (X) a minimal characteristic 

polynomial corresponding to the sequence 8 + et. 
See listing 22 for a schematic view of the algorithm. 

The elements which characterise the k-Error Simulated Annealing Algorithm 

are: 

• the population of possible solutions, 

• the objective function, 

• the cooling schedule, 

• the mutation technique, 

• the probability of acceptance. 

We will describe our implementation for each of these elements in the following. 

The population of possible solutions is the set of all error sequences e of weight 

at most ko, Eko = {e E GF(q)tlwH(e) ::; ko}. Therefore the size of the search 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 125 

space is SS = L~!o G)(q-1) (see definition 2.13 in section 2.2, subsection 2.2.7), 

where t is the size of the input sequence, q is the order of the finite field and ko is 

the input value of the algorithm. 

The objective function is the function which needs to be minimised by the 

algorithm. In our case, given the definition of the k-error linear complexity, we 

can choose as objective function the function which maps each error pattern in 

the search space to the linear complexity of the sum sequence s + e, L(s + e). We 

denote the objective function fa. 

fa : GF(q)t -> N, defined as fa (e) = L(s + e). 

The cooling schedule is characterised by the number of cooling steps (denoted 

noCoolingSteps), the number of iterations at the each temperature (denoted 

noConstTSteps) and the cooling function (cs). 
Just as with any heuristic search technique we aim to find a way to only process 

a small, representative subset of all possible solutions. Due to the high variance 

of the search space size when t, ko and q vary, we need to tune the number of 

elements processed depending on these values. 

The choice of the cooling schedule is very important. The cooling speed, similar 

to the physical phenomenon of metalurgic annealing, directly affects the efficiency 

of the algorithm. There are a few celebrated cooling schedule procedures, e.g. 

logarithmic, exponential or adaptive schedules (Ingber [27]). We will use a classical 

exponential cooling schedule which needs a cooling parameter a E (0,1) and the 

decreasing function Cs is defined by c8 (T, a) = aT. Therefore, assuming that the 

initial temperature is To, at any step i, the temperature 1; = aiTO' 

The number of elements processed by the algorithm is the product of the num­

ber of cooling steps, denoted noCoolingSteps (in how many steps the temperature 

drops from the initial temperature to a freezing temperature) and the number of 

steps spent by the algorithm at each temperature, denoted noConstTSteps. 

The initial temperature needs to allow very erratic movements within the 

search space, any mutation of the current element, whether it improves the objec­

tive function or not, should be accepted. Therefore we choose the initial tempera­

ture to be To = t which is a loose upper bound for the possible difference between 

the values of the objective function applied to any two different error sequences 

from the search space. Since the objective function has a discrete codomain we 

can choose the freezing temperature to be Tireeze = 1. 

By fixing the initial temperature and the freezing temperature we can estimate 

the number of cooling steps using the cooling function Cs. The algorithm stops 

as soon as the current temperature becomes less than the freezing temperature 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 126 

Tjreeze = 1. The temperature at step i is 1'; = (iTo' Therefore we can write the 

following chain of relations: 

'T' < T noCoolingStepsT, < 1 
.1 noCoolingSteps _ freeze {::} Q:' 0 _ {:} 

noCoolingSteps + log" To ::; 0 {o} noCoolingSteps ::; -log" To 

We can therefore take 

noCoolingSteps = l - log" t J 

When choosing the number of iterations at each temperature, there are two 

aspects which we find important to take into account. Firstly, we need to spend 

less time at each temperature if the cooling schedule is slow and more time if the 

cooling schedule is fast. Secondly, the total number of mutations in the algorithm 

needs to scale accordingly with the search space size. 

With these two requirements in mind, we use the following formula: 

l
rqkot

J noConstTSteps = -- , 
Cl< 

where the coefficient r > 0 is an additional parameter which allows for more tuning 

if necessary. This way the number of steps at constant temperature is inversely 

proportional to the cooling schedule coefficient Cl< (first requirement). Also the 

number of steps at constant temperature is directly proportional with the size of 

the field q, the number of allowed errors ko and with the size of the input sequence 

t (second requirement). 

The parameter noFailSteps indicates how many consecutive mutations to­

wards solutions of lower fitness are allowed before cancelling the current tempera­

ture and cooling to the next one in the schedule. We choose the following formula 
for noFailSteps = nocons;TSteps. 

Figure 5.16 shows how the number of elements in the search space for a partic­

ular instance of the problem and the maximum number of error patterns processed 

by the algorithm varies with the length of the input sequence t, where 8 ::; t ::; 128, 

q = 2 and ko = 15%t. The number of error patterns processed by the k-Error 

Simulated Annealing Algorithm is 

. lrqkot
J noCoohngSteps· noConstTSteps = L -log" tJ· -­

Cl< 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 127 

The relation between the number of elements in the search space and 
the number of elements processed br the Simulated Annealing Algorithm 

for different values 0 alpha and kO=15%t 

1e+25 ....... .:. ....... + .................... ,; ...................... · .. ······i···········.. Search Size )( 
: , alpha=O.5 • 
i i alpha = 0.65 Co 

I! i a~~~~ o~~ ._; ... ~ 
16+20 ...... ~ ........ + .. , ···············f····· ....... L.. ······jii.III··············~ 

10+15 ... litt ................~~......j 
: : ! JE"--" : 

1L......l i •• r" ( 
10+10 [ i [/": i 

! i i,...· ! ! 
i i.i...w. ! .... _"'eeaeeooeeoee&0eeGE!~~! 

100000 ·······r··········i················8~;GG<i;Ui;a;ru=;m .............. - .... ~ , .ae";;:;....... 1 1 
;;.=t= i i i 
~ i I· . 
8 16 32 64 128 

length of sequence 

Figure 5.16: The relation between the number of elements in the search space 
and the number of elements processed by the Simulated Annealing Algorithm for 
different values of alpha. 

Four values for the cooling parameter Cl< are included in the graph, namely Cl< = 

0.5,0.65,0.8,0.95. While the search space size grows exponentially, the number 

of elements processed by the k-Error Simulated Annealing Algorithm grows at a 

much slower speed following a function upper bounded by O(t2 log t). 
The probability of acceptance for a solution e', denoted P(e, e', T), is usually 

following a Boltzmann-like distribution (Kirkpatrick et al. [33], Ingber [27], Press 

et al. [64]), i.e. 

P(e, e', T) = exp [ fo(e); fo(ell 

The initial element e is randomly generated such that it has weight exactly ko. 

That is done by generating ko random positions between 0 and t - 1 (each bit is 

generated using C randO linear congruential generator function) and assigning 

to the terms in these positions, random values from the current field, G F( q). 

Formally, for each i = 0, ... , ko - 1, generate a position paSi E {O, 1, ... , t - 1} 

and a random value vali E GF(q) and attribute ep08, f- vali. 

We consider two different implementations for the mutation procedure, denoted 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 128 

Algorithm 22 Simulated Annealing Algorithm for the k-error linear complexity 
profile problem - A Schematic View 

Input: A finite sequence s = So, SI! ... ,St-l of size t > ° with terms over a 
finite field GF(q), where q is a prime power; an integer value ko, with ° < ko ::; 
WH(S) - 1. 
Output: The approximate ko-error linear complexity profile, L;:, Ct(X) and 
et, for all i = 0, 1, ... ,ko. 
for i = 0, 1, ... , ko do 

Li +- L(s) 
C;(X) +- C(X), a minimal characteristic polynomial 
ei +- (0,0, ... ,0) 

"---v--' 
t times 

end for 
noCoolingSteps <- L -log", t j 
noConstT Steps <- l rq~ot j 
noFailSteps <- noccms:TSteps 

T +- t 
i+-O 
e +- a random sequence over GF(q) with wH(e) ::; ko 
while i < noCoolingSteps do 

noFS <- ° 
j<-O 
while j < noCanstTSteps and naFS < noFailSteps do 

e' <- mutate( e) 
if fo(e') < fo(e) then 

e f- et 

naFS <- ° 
else 

U +- a random variable E (0,1) 
if U < P(e, e', T) then 

e +- e' 

noFS <- ° 
else 

noFS <- noFS + 1 
end if 

end if 
j+-j+l 

end while 
if L~H(e) > L( s + e) then 

update the global solution, Li, ct(X) and e;: for i = 0,1, ... , ko 
end if 
T <- cs(T,a) 
i<-i+1 

end while 
return Li, C;(X) and ei for i = 0, 1, ... , ko 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 129 

mutate(e). 

One of the implementations uses extra information provided by the linear com­

plexity profile of each sum sequence s + e, in a similar way to the mutation scheme 

used for the k-Error Genetic Algorithm. For each error pattern e, when calculating 

the linear complexity of s + e with the Berlekamp-Massey Algorithm we hold all 

the intermediary linear complexities, obtaining therefore the full linear complexity 

profile, lcp (see definition 2.2). We denote lcpj, for j = 0,1, ... ,t - 1, the linear 

complexity of the sequence s + e up to term j. We denote dis j the intermediary 

discrepancy at term j for the sequence s + e, i.e. the difference between the term 

Sj + ej and the j-th term generated using the characteristic polynomial of the 

sequence (s + e)o, ... , (s + e)j-1. 

Algorithm 23 Simple Random Mutation - mutate(e) 
m i--- random value in {O, 1, ... ,2ko} 
for i = 0, 1, ... , m-I do 

pas; i--- random value in {O, 1, ... ,t - I} 
val; i--- random value in GF(q) 
epOSi +-- epoSi + vali 

end for 
return e 

We consider the following mutation types: 

• Simple random mutation (SRM). When moving from one element e E 

GF(q)t to another e' E GF(q)t, the Hamming weight needs to stay less than 

ko. We modify some of the terms of the sequence such that there are high 

chances for the Hamming weight of the mutated sequence to be still under 

ko. We first generate a random integer value m, m E {O, 1, ... ,2ko} and then 

generate m positions pos;, i = 0, 1, ... ,m - 1. We add randomly generated 

values, val; E GF(q), on the generated positions so that epos, <- epos, + val; 

for each i = 0,1, ... ,m - 1. See listing 23 for this implementation . 

• Random mutation using the linear complexity profile (LCPRM). This mu­

tation procedure attempts to mutate the current error sequence e to good 

elements by using the linear complexity profile and the discrepancy informa­

tion for a better chance to minimise the objective function ofthe new element 

e', L( s + e'). Formally, generate a random position u E {O, 1, ... , t - I} and 

find the first position m in e such that u < m and lCPm < lcpm+1. Once m is 

found, make e:"+l = emH - dism+b where dismH is the discrepancy at step 

m + 1 in the sequence s + e. Note that, if no suitable m ::; t - 1 is found 

then the last term is mutated randomly e;_l = e;_l - dist_ 1. See listing 24 

for this implementation. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 130 

Algorithm 24 Random Mutation using the linear complexity profile - mutate(e) 
u <- random value in {O, 1, ... ,t - I} 
m<-u 
while m ::; t - 1 and lcpm = ICPm+1 do 

m<-m+1 
end while 
em+l <- em+l - dism+l 
return e 

In both cases, if the resulting sequence e' has the Hamming weight more than 

ko then we randomly switch to zero some of the non zero terms until the weight 

becomes less then ko. 
The computational complexity of the algorithm is determined by the number 

of the error patterns processed, as for each error pattern e the Berlekamp-Massey 

Algorithm is used to calculate the linear complexity of s + e for the objective 

function, 10(e) = L(s + e). 
Therefore the computational complexity is: 

noCoolingSteps . noConstTSteps . t2 = l-log" t J . lrq!ot Jt2 

< l-!£z.! rqO.15t' t 2J ~ O(t4 log t) 
- logo 0: 

5.2.3 Experiments and results 

We set several experiments in order to assess the accuracy and efficiency of the 

algorithm. The parameters considered in our tests are summarised below: 

To = t, 
a E (0,1), 

cs(T) = aT, 
rE(O,l), 

noCoolingSteps = l-log" tJ 
noC onstT Steps = l rq!ot J 
noFailedSteps = l noCcms;rSteps J 
mutationType E {SRM,RMLCP} 

In order to compare with the exact result (obtained using the Efficient Exhaus­

tive Search Algorithm) and also to compare with the results of the k-Error Genetic 

Algorithm (section 5.1), we consider the same set of 5 random binary sequences 

of length 32 and ko = 5 (each bit generated using the C randO linear congru­

ential generator function). The full search space size for an exhaustive search 

is 2:~=0 ei2) = 204469. This is quite a small search space to justify a heuristic 

method, but it allows us to compare with the exhaustive search and to assess the 

efficiency and accuracy of the proposed algorithm. 

We try four different values for the cooling coefficient a = 0.5,0.65,0.8,0.95, 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 131 

Table 5.11: The accuracy for the k-Error Simulated Annealing Algorithm applied 
to 5 binary sequences of length 32 and ko = 5. 

Mutation 0: Accuracy Acc! Acc2 ACC3 ACC4 ACC5 Error 
type patterns 

LCPRM 0.95 1.124 1.12 1.11 1.14 1.12 1.13 19036 
LCPRM 0.8 1.164 1.12 1.15 1.23 1.12 1.20 5360 

SRM 0.95 1.208 1.12 1.18 1.26 1.21 1.27 19976 
LCPRM 0.65 1.222 1.12 1.17 1.28 1.23 1.31 3692 
LCPRM 0.5 1.224 1.12 1.19 1.27 1.23 1.31 2713 

SRM 0.8 1.262 1.11 1.20 1.31 1.32 1.37 5670 
SRM 0.65 1.278 1.12 1.21 1.35 1.35 1.36 3970 
SRM 0.5 1.296 1.12 1.22 1.36 1.35 1.43 2882 

corresponding to very fast, fast, slow and very slow cooling schedules, respectively, 

and inherently to less or more error patterns processed by the algorithm, respec­

tively. We ran the algorithm with each of these values for the cooling coefficient 

0: and each mutation type, SRM and LCPRM. The algorithm is run 5 times for 

each input sequence and each combination of parameters with a different random 

seed. 

Having 4 values for the cooling coefficient, 2 mutation types and 5 repeated 

tests we obtain 40 different runs for each input sequence and store the ko-error lin­

ear complexity returned by each run. The accuracy of the results of the algorithm 

for each combination of parameters is averaged over the 5 runs. 

Table 5.11 shows the average accuracy for each of the runs with different combi­

nations of 0: and mutation types in increasing order of the accuracy. The accuracy 

of the result is the ratio between the approximate ko-error linear complexity value 

obtained by the k-Error Simulated Annealing Algorithm, LkSA,k(S) and the ex­

act value of the ko-error linear complexity, calculated by the Efficient Exhaustive 

Search Algorithm, Lk(s), We omit the accuracy for the O-error linear complexity 

as this is trivially the linear complexity of the input sequence, and therefore the 

algorithm will calculate it in polynomial time. The accuracies for the different 

values of k, ACCk are defined as ACCk = L't:i:?)' The column accuracy in the 

table shows the average accuracy of the k-error linear complexity for all values of 

k, 1 :::; k :::; 5, namely Accuracy = 2:1 b Ace;. Figure 5.17 shows these results in a 

graph. 

The difference in accuracy between the eight configurations is not very sig­

nificant. It is easy though to notice that the best configuration uses the slowest 

cooling schedule (0: = 0.95) and the mutation type which uses knowledge about 

the linear complexity of the solutions (LCPRM) , giving an average result only 

12.4% higher than the exact value. 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 132 

The accuracy of the results found by the Simulated Annealing Algorithm 
on a sample of 5 random binary sequences of length 32 with different parameters 

Top configurations 

1.6 ,---,-----.---.,----.-----,---:-==::----, 
1.5 ···························i····· .................. j ...•.•...•..•....•..•..•..• j ........................... + .......................... ~ ...... lE~~~~~~ ______ _ 

~.:L~;~;.jl~4~t~~~~~;~LE!l~i ~~~::i 
,·,,~:::::::? .... i. . .......................... J .......................... J ......................... ! .. ~·············'················ .. ·········i .. ····· .. ····· .. ···········i····· 

i i I , I 
0.5 ........................... ; ........................... j ........................... j ........................... + .......................... 1 ........................... f····· 

oL-____ L-____ L-____ ~ ____ ~ ____ ~ ____ -L ____ ~ 

023 4 5 6 7 
Number of errors 

Figure 5.17: The accuracy of the results found by the Simulated Annealing Al­
gorithm on a sample of 5 random binary sequences of length 32 with different 
parameters 

The number of elements processed varies with the value of the cooling coeffi­

cient, fr. On average, for the five sequences considered, the algorithm processes 

approximatively 19506, 5515, 3831, 2797 elements, corresponding to the different 

values of the cooling coefficient Cl = 0.95,0.8,0.65,0.5. The runs corresponding 

to a slower cooling schedule (large Cl) process more of the solutions in the search 

space. This gives them a better chance to find a more accurate approximation but 

makes them less efficient for large search space problems. 

Figures 5.18 and 5.19 show the average accuracy of the results for the k-Error 

Simulated Annealing Algorithm when grouping by mutation type or by the dif­

ferent values of the cooling coefficient fr, respectively. It is noticeable that the 

best results are given by the mutation scheme which uses the extra information 

about the linear complexity profile (figure 5.18). Also, we can conclude that the 

accuracy improves when the cooling coefficient increases, a fact which can be in­

tuitively inferred since the number of error patterns processed by the algorithm 

increases too. 

We are interested to check if the results of the algorithm are scaling with the 

size of the search space, therefore we tested it on sequences of higher length. The 

results of the algorithm on a sequence of length 64 are shown in figure 5.20. When 

grouping by mutation type or Cl respectively, similar conclusions to the ones above 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 133 

1;-
e , 
~ 

1.6 

I.S 

I.' 

1.3 

12 

1.1 .~. 

O.S 

The average accuracy m the results 01 the Simulated Annealing Algorithm 
on a sample of 5 random binary sequences of length 32 

for different mutation types 

iRM 
L' n", ••••••• 

.•.•. 

O~----~----~~----~----~----__ J-____ ~ ______ ~ 
o 2 3 • 5 6 7 

Number of errors 

Figure 5.18: The average accuracy of the results of the Simulated Annealing Algo­
rithm on a sample of 5 random binary sequences of length 32 for different mutation 
types 

I 

The average accuracy of the results of the Simulated Annealing AlgOrithm 
on a sample of 5 random binary sequences of length 32 

fOr different cooling coefficients 
1.6 ,-----,------,------..,-----,------.., ,-----.------, 

, alpha. 0.5 ---

'

, ..• 5 rm .................. + .................. mm! ........................... I··· .. ··········· t···························" alpha=O.65 ______ • 
! al~ha = 0.8 ....... . 

:: ~c=t~I~1~:-~j~-
0.5 ... .1.. .. ··· ..... ·i···· ··· .. ·············t···· ..................... .1 ... . 

O~ ____ L-__ ~~ __ ~ ____ ~ ____ ~ ____ -L ____ ~ 

023 4 5 6 7 
Number of arrOrl> 

Figure 5.19: The average accuracy ofthe results of the Simulated Annealing Algo­
rithm on a sample of 5 random binary sequences of length 32 for different cooling 
coefficients 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 134 

Table 5.12: The accuracy for the k-Error Simulated Annealing Algorithm applied 
to a binary sequence of length 64 and ko = 9. 

Mutation '" Accuracy Acel Ace, Ace, Ace4 Aces Ac,", Acc7 Acc, Acc, Error 
type patterns 

LCPRM 0.95 1.380 1.10 1.19 1.28 1.45 1.45 1.46 1.40 1.38 1.71 92039 
LCPRM 0.8 1.405 1.10 1.19 1.28 1.45 1.49 1.56 1.49 1.40 1.69 25566 

SRM 0.95 1.407 1.10 1.19 1.28 1.45 1.45 1.52 1.54 1.43 1.71 89239 
LCPRM 0.5 1.430 1.10 1.19 1.28 1.45 1.50 1.62 1.56 1.41 1.76 13043 
LCPRM 0.65 1.430 1.10 1.19 1.28 1.45 1.50 1.61 1.50 1.43 1.81 16720 

SRM 0.8 1.445 1.10 1.19 1.28 1.45 1.50 1.59 1.59 1.51 1.80 25249 
SRM 0.5 1.454 1.10 1.19 1.28 1.45 1.48 1.58 1.62 1.58 1.81 13077 
SRM 0.65 1.463 1.10 1.19 1.28 1.45 1.52 1.62 1.62 1.56 1.83 16736 

can be drawn from the results, see figures 5.21 and 5.22. 

5.2.4 Conclusion 

We propose a new algorithm for approximating the k-error linear complexity of 

sequences over finite fields. The algorithm uses simulated annealing techniques 

and we assess it experimentally by comparing its result to the exact value for 

accuracy and with the previous proposed heuristic algorithms for both accuracy 

and efficiency. The algorithm proves to be robust and like the k-Error Genetic 

Algorithm allows fine tuning of the parameters depending on the size of the input 

sequence and the number of errors k, so that the result is close to the exact value 

while still running in reasonable time. The algorithm outputs an approximate 

value of the k-error linear complexity which is on average only 12.4% higher than 

the exact value for sequences of length 32 when 1 ::; ko ::; 5 and 38% higher for 

sequences of length 64 when 1 ::; ko ::; 9. 

5.3 Conclusions 

This chapter includes two types of algorithms which implement evolutionary com­

putation techniques, genetic algorithm and simulated annealing. 

The results of these algorithms have a good accuracy however the number of 

the error patterns processed is much higher than the Modified Berlekamp-Massey 

Algorithm presented in chapter 4. 

While k-Error Simulated Annealing Algorithm gives an average accuracy of 

1.124 for sequences of length 32, the k-Error Genetic Algorithm presented in sec­

tion 5.1 has the best average accuracy of 1.072 on the same set of sequences 

when 1 ::; ko ::; 5. It is interesting to look at the heuristics presented so far and 

compare the accuracies and the average number of error patterns processed by 

each to see which one is the most powerful. Table 5.13 summarizes the heuristic 

algorithms presented so far and the difference between accuracy and efficiency 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 135 

~ 
~ 

2 
1.0 

1.8 
1.7 
1.6 
1.S 
1.4 

1.3 
1.2 
1.1 

0.5 

The accura~ of the results found by the Simulated Annealing Algorithm 
on a binary sequence of length 64 with different parameters 

........................ 1..... . ......... j. . ..........•. .L.. .......... LCPRMIO.95 --

.. ···················.·.1···· .......... L.. i 1 ~ s~~~~ ~------

I· ········1 .••• · •• ·• ·~~~ .•.. ~~:i~~t~~L~~i .. ;.:.; ... ~.~r.;.~.~.:.~.~.~.;.:.} 
.. ·····················1···· ., . 

. . ................... L,.... .. .. .).... i 
.......... _- ·············r··········· .................... ~....... . 
........................... +....... . .......................... \ ......................... . 

......... ).... ······i···· ... ···············t···· 
" ...................... !.... .. ........ j.... . ........•.......... j........ . •.... ~.... ·················1···· 

! 

...................... + .... .................. .1 ...... . 
, 

...... + .... 
i . .............. + .... . 

o~------~------~------~------~------~------~ o 2 4 6 8 10 12 
Number of errors 

Figure 5.20: The accuracy of the results found by the Simulated Annealing Algo­
rithm on a binary sequence of length 64 with different parameters 

2 

1." 
1.8 
1.7 
1.6 
1.5 
1.4 
1.3 
1.2 

~ 1.1 

§ 
Z 

" 

O.S 

o 
o 

The average accuracy of the results of the Simulated Annealing Algorithm 
on a binary sequence of length 64 

for different mutation types 

/" ----

2 

-

4 6 
Number of errors 

SRM-
CPRM _ •• __ •• 

/; 
// 
/ ..•• -. 

8 10 12 

Figure 5.21: The average accuracy of the results of the Simulated Annealing Al­
gorithm on a binary sequence of length 64 for different mutation types 



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 136 

2 
1.. 
1.8 
1.7 
1.6 
1.5 

I.' 
1.3 
1.2 

I 1.1 
1 ----

0.5 

o 
o 

The average accuracy of the results of the Simulated Annealing A1gorilhm 
on a binary sequences of length 64 

for different cooling coefficients 

/' 

----

2 4 6 
Number of errors 

"ph'=0.5-
.~~~; ="06~ ......• • =, ........ 

.-1:. "ph. = 0 .• 5 _ ... _ ...• 
hI" 

'£07 

8 10 12 

Figure 5.22: The average accuracy of the results of the Simulated Annealing Al­
gorithm on a binary sequence of length 32 for different cooling coefficients 

Table 5.13: The accuracy of the different heuristic algorithms on binary sequences 
of length 32 and when ko = 5. 

Algorithm Accuracy Acq Acc, Acca ACC4 Accs Error 
patterns 

kSA(LCPRM, 0.95) 1.124 1.12 1.11 1.14 1.12 1.13 19036 
MBM 1.26 1.11 1.19 1.27 1.35 1.38 210 
GA(llOO, 10, ELSEL, 1.072 1.00 1.00 1.01 1.08 1.27 26661 
LCPTCP, LCPRM) 

(number of error patterns visited) for the same set of sequences of length 32. We 

believe that the best compromise accuracy/efficiency is obtained by the Modified 

Berlekamp-Massey Algorithm (chapter 4) which has a consistently good accuracy 

for all values of k and for a very low number of error patterns visited. For the 

same set of sequences the Efficient Exhaustive Search Algorithm (see chapter 3) 

processes on average 35327 error patterns and the Modified Berlekamp-Massey 

Algorithm (see chapter 4) processes on average only 2lO error patterns. The best 

configuration of the k-Error Genetic Algorithm processes on average 26661 error 

patterns and produces an accuracy of 1.072. The Modified Berlekamp-Massey 

Algorithm produces an average accuracy of 1.26 for sequences of length 32. Ta­

ble 5.13 summarises these results. See table 5.14 for a similar comparison of the 

three heuristic algorithms on the sequences of length 64. 

One advantage of the evolutionary algorithms is that they can easily be par-



CHAPTER 5. EVOLUTIONARY COMPUTATION TECHNIQUES 137 

Table 5.14: The accuracy of the different heuristic algorithms on binary sequences 
of length 64 and when ko = 9. 

Algorithm Accuracy Acc! Acc, ACC3 ACC4 Accs ACC6 ACC1 Aces Accg 

kSA(LCPRM, 0.95) 1.380 1.10 1.19 1.28 1.45 1.45 1.46 1.40 1.38 1.71 
MBM 1.14 1.01 1.04 1.07 1.10 1.14 1.18 1.21 1.24 1.27 
GA( 4000, 10, ELSEL, 1.205 1.00 1.00 1.02 1.14 1.16 1.27 1.30 1.30 1.66 
LCPTCP, SRM) 

alleJised, in such a scenario the accuracy could be improved by using more than 

one processors with no additional time costs. Also they allow for fine tuning of 

the parameters in order to cover more or less of the search space and therefore 

get more or less accurate approximation of the exact result. The running time 

of such algorithms is also easy to tune so they can constitute an easy, quick way 

of identifying sequences of low k-error linear complexity with a certain degree of 

confidence. On the other hand the compromise accuracy/efficiency is worse than 

the one for the Modified Berlekamp-Massey Algorithm. 

One disadvantage of the algorithms defined in this section is that the size of 

the chromosomes increases at a one to one rate with the size of the input sequence. 

This makes the algorithm difficult to scale and the memory used increases greatly 

with the size of the input sequence. In trying to address this problem, we think 

it would be interesting as future work to investigate the possibility of devising an 

evolutionary algorithm for which the individuals are recurrences or characteristic 

polynomials. The fitness of each individual would reflect how well they generate 

the input sequence. For example, the fitness of each recurrence or polynomial 

could be the Hamming weight of the difference between the input sequence and 

the sequence generated using that individual. A challenge in this design is how to 

create efficient recombination techniques which would combine two recurrences or 

polynomials such that the child is fitter. We leave this as future work. 

These algorithms can be used as an alternative to the existing algorithms for 

an approximate value of the k-error linear complexity of sequences. 

Error 
patterns 

92039 
36592 
105763 



Chapter 6 

Discrete Fourier Transform 

In this chapter we consider the k-error linear complexity of infinite periodic se­

quences of period N over a field K. 

The existing exact algorithms to compute the k-error linear complexity apply 

to periodic sequences over finite fields where period is a power of the characteristic 

of the field (see Stamp and Martin [79), Lauder and Paterson [38] for p = 2 and 

Kaida, Uehara and Imamura [31], Kaida [29] for arbitrary p). These algorithms 

assume a full period of the sequence known a priori, i.e. the whole sequence is 

known. Such algorithms are useful in the design phase of the cypher, in order 

to identify vulnerable sequences with low k-error linear complexity. We attempt 

in this chapter to find algorithms for computing the k-error linear complexity 

of periodic sequences where the period is not restricted to being a power of the 

characteristic of the field. 

We introduce a generalisation of the notion of k-error linear complexity, which 

we call the extension field k-error linear complexity, defined as being the k-error 

linear complexity of s when working in the smallest extension field of K which 

contains an N-th root of unity, assuming N is not divisible by the characteristic 

of K (published in Alecu and SKlKgean [3]). 
Blahut's theorem shows that the linear complexity of a periodic sequence is 

equal to the weight of the Discrete Fourier Transform of that sequence. We show 

that using Blahut's theorem, the optimisation problem of finding the extension 

field k-error linear complexity can be firstly transformed into an optimisation 

problem in the DFT domain. Namely, in the transform domain we have to find an 

error pattern E which has linear complexity at most k and minimises the weight 

of DFT(s) + E. 

While we do not know of an efficient exact algorithm for this problem, we 

propose an approximation algorithm which searches among error patterns in the 

DFT domain which have period up to k (and therefore complexity up to k). 

The approximation algorithm has quadratic complexity, O(N2 ) operations in the 

138 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 139 

extension field. 

The algorithms presented in this chapter were implemented using GAP (Groups, 

Algebra and Programming) [18J and the results on a series of sequences are dis­

cussed in section 6.4. 

The results included in this chapter extend the work presented in Alecu and 

SKIKgean [3J. 

6.1 Background 

The discrete Fourier transform (DFT) is a transform for Fourier analysis of finite­

domain discrete-time signals (Rueppel [70, 77]). We recall the definition of the 

Discrete Fourier Transform. Note that the basic algebraic concepts necessary to 

the understanding of this section are included in Appendix A. 

We identify an infinite periodic sequence s by one period (so, SI, ... , SN-I), 

where N is the period of the sequence. 

Definition 6.1. Let F be a field containing a primitive N-th root of the unity, 

denoted a, and let S be a sequence of period N over F. The discrete Fourier 

transform (DFT) of S is the periodic sequence S = (So, Sb"" SN-tl over F, 

where 
N-I 

Si = L:: sjaij
, for all i = 0,1, ... ,N - 1. 

j=O 

Reciprocally, the inverse discrete Fourier transform of S is the sequence S defined 

by 
N-l 

Sj = N- I L:: Sia-ij , for all j = 0, 1, ... , N - 1. 
i=O 

Note that in order to compute the DFT of a periodic sequence S of period 

N over a finite field of characteristic p, usually the following constraint is im­

posed, gcd(N,p) = 1. However there are generalisations of the Discrete Fourier 

Transform (see Massey and Serconek [45)) which allow applying the Discrete 

Fourier Transform technique to sequences of arbitrary period. This case is not 

considered in our current work, and can be a topic of future research. 

It is well known that the Discrete Fourier Transform is linear: 

Property 6.2. Let N be a positive integer and F be an arbitmry field which 

contains a primitive N -th root of unity. The Discrete Fourier Transform and the 

inverse Discrete Fourier Transform are linear opemtors on the vector space pN. 

We also present the shifting property (Property 6.3) of the Discrete Fourier 

Transform. 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 140 

Property 6.3. Let N be a positive integer and F be an arbitrary field which 

contains a primitive N-th root of unity, a. Let s' = (s~,s~, ... ,S~_l) be the 

periodic infinite sequence over F obtained by cyclically shifting all periods of s = 
(so, SI,· .. , SN-1) to the left by h positions, i.e. 

s; = Si+h, for all 0 :::: i < N 

where indices are taken modulo N. Then if S' = (Sh, S;, ... ,Sl-,'-!) is the Dis­

crete Fourier Transform of s' and S = (So, SI, ... , SN-d is the Discrete Fourier 

Transform of s, the following relation stands 

S; = a-hiSi, for all 0:::: i < N. 

Remark 6.4. With the notations in property 6.3, let s" = (s~, sr, ... , S'lv_1) be 

the periodic infinite sequence over F obtained by cyclically shifting all periods of 

s = (so, Sb ... , SN-1) to the right with h positions, i.e. 

s~ = Si-h, for all 0 :::: i < N 

where indices are taken modulo N. Then if S" = (S~, Sr, ... , S'!v_1) is the Dis­

crete Fourier Transform of s" and S = (So, SI, ... , SN-1) is the Discrete Fourier 

Transform of s, the following relation stands 

S;' = ahiSi' for all 0:::: i < N. 

Note that this follows immediately from property 6.3 concerning the cyclical 

left shift, since for any periodic sequence of period N, a cyclical right shift with 

h positions is equivalent to a cyclical left shift of N - h positions. Therefore, all 

properties corresponding to cyclical right shifts of a sequence can be written in 

terms of cyclical left shifts and reciprocally. 

For computing the DFT of a sequence of period N, a straightforward approach 

takes O(N2) operations in the field F. Faster computation approaches, usually 

called fast Fourier transform (FFT), are available and they can give a complex­

ity of O(N log N) operations in the field F. See Pollard [62] or Preparata and 

Sarwate [63] for the computational complexity of computing the Discrete Fourier 

'Transform of sequences over finite fields or for more general considerations related 

to the fast Fourier transform see Cormen et al [10]. 

There is a close connection between the linear complexity and the Discrete 

Fourier 'Transform of a sequence. In 1979, Blahut [7] used the link between the 

linear complexity of a periodic sequence and its discrete Fourier transform, setting 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 141 

this way the fundaments of the spectral theory of error correcting codes. The 

theorem was established in an explicit form by Massey [41J and given the name of 

Blahut's theorem in Massey and Schaub [44J. The theorem gives a simple way of 

computing the linear complexity of a periodic sequence when the whole period is 

known. 

Theorem 6.5 (Blahut's theorem (Simmons [77])). The linear complexity of a pe­

riodic sequence s = (so, SI,"" SN-I) of period N equals the Hamming weight 

of DFT(s). Reciprocally, the linear complexity of the periodic sequence S = 

(So, SI, ... , SN-I) equals the Hamming weight of DFT-I(S). 

It has been proven that Blahut's theorem also holds over commutative rings 

(Massey [43]) but we will only use it for sequences over finite fields. 

Paterson shows that the well established method of root counting for calcu­

lating linear complexity of sequences is equivalent to using the Discrete Fourier 

Transform and applies this technique to the theory of filtering m-sequences (Pa­

terson [60]). 

Using the generalised Discrete Fourier Transform defined by Massey and Ser­

conek [45], Meidl and Niederreiter [49, 50] build a statistical theory for the linear 

complexity and k-error linear complexity, determining the number of periodic se­

quences with a certain given period and linear complexity, as well as the expected 

value of the linear complexity of periodic sequences. For some values of k, a for­

mula for the number of periodic sequences with given period and given k-error 

linear complexity is obtained. Formulas are given for the expected value of the 

I-error linear complexity as well as lower and upper bounds for the expected value 

of the k-error linear complexity when k ::::: 2 (Meidl [48]). The statistical theory 

of linear complexity and k-error linear complexity is extended by the authors in 

Niederreiter [59], Meidl and Niederreiter [51], Meidl [47, 48J. 

Blackburn [5] generalises both Games-Chan Algorithm (Games and Chan [17]) 

(the case when gcd(p, N) "" 1) and the Discrete Fourier Transform (the case when 

gcd(p, N) = 1) for computing the k-error linear complexity of periodic sequences 

over finite fields. 

For more details about the Discrete Fourier Transform applied to linear recur­

rent sequences see also Ding, Xiao, Shan [12, Section 5.7J. A concise reference for 

the use of the Discrete Fourier Transform in coding and cryptography is included 

in Massey [43J along with the generalisation of Blahut's theorem from finite fields 

to commutative rings. 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 142 

6.2 k-error linear complexity computation using 

DFT 

The generalisation of the definition of k-error linear complexity and problem trans­

formation proofs have been stated in our paper [3] and will be described in the 

following two sections. 

6.2.1 Extension field k-error linear complexity 

Note that the k-error linear complexity of a periodic sequence s over a field K 

could decrease if we consider the same sequence to be over some extension field 

F of K (and therefore allow the error sequence to be over F). A natural choice 

of the extension field F would be the smallest extension field of K which contains 

an N-th root of unity, where N is the period of s. This extension field F is the 

splitting field of the polynomial xN - 1. Note that since s has period N, the 

minimal characteristic polynomial of s is a factor of xN - 1. 

Definition 6.6 (Extension field k-error linear complexity). Let s be a sequence of 

period N over a field K, such that N is not divisible by the characteristic of K. 

Let F be the smallest extension field of K which contains an N -th root of unity. 

Let k ::; N. The extension field k-error linear complexity of s, denoted ELk,N(S) 

is defined as the k-error linear complexity of s when s is viewed as a sequence over 

the extension field F: 

Note that since the extension field F includes the original field K the relation 

Lk,N(S) 2: ELk,N(S) is immediate. 

Also, note that E Lk,N (s) shares the properties of Lk (s), namely it is decreasing 

when k increases (see property 2.14) and also ELwH(s),N(S) = 0 (property 2.15). 

Let us examine the cryptanalytic significance of this notion. Assume a crypt­

analyst knows a few terms of the sequence S over K and is able to either find a 

sequence Si over K which coincides with s in all but up to k positions (the scenario 

considered in k-error linear complexity), or is able to find a sequence S" over an 

extension field F which coincides with S in all but up to k positions (the scenario 

considered in the extension field k-error linear complexity). Finding S" will be 

at least as useful to the cryptanalyst as finding Si, and likely more useful, as the 

positions of S" which are from F \ K can be immediately identified as not being 

from the original sequence s, whereas given Si it may not be known which of the 

positions do not coincide with s. 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 143 

6.2.2 Problem transformation 

The extension field k-error linear complexity problem can be expressed as an 

optimisation problem: given integers Nand k with k ::; N and a sequence s of 

period N over a field K, find e, a sequence of period N over the extension field 

F such that wHeel ::; k and L(s + e) is minimal (F is the smallest extension field 

of K containing an N-th root of unity). This problem can be transformed into an 

optimisation problem in the DFT domain. Since the DFT and the inverse DFT are 

linear transforms (Property 6.2), in order to find error patterns e of weight at most 

k which minimise the linear complexity of s + e, we can search for sequences E of 

linear complexity at most k and which minimise the weight of DFT(s) + E. The 

resulting sequence E is then transformed back using the inverse DFT, obtaining 

an optimal error pattern e, e = DFT-1(E). Note that this error pattern can be 

in the extension field used for computing the DFT, F, rather than in the original 

field over which s was defined, K. 

Theorem 6.7. Let s, e be sequences over a field K such that s has period N, N 

is not divisible by the characteristic of K. Let F be the smallest extension field of 

K which contains an N-th root of unity. Let S = DFT(s), E = DFT(e) and let 

k ::; N. The following equivalence stands: 

e is such that wHeel ::; k and L(s + e) is minimal 

if and only if 

E is such that L(E) ::; k and WH(S + E) is minimal 

Proof. Theorem 6.5 implies that wHeel = L(E) and therefore wHeel ::; k iff 

L(E) ::; k. The linearity ofthe DFT (property 6.2) implies that S+E = DFT(s)+ 

DFT(e) = DFT(s + e) and using Theorem 6.5 again, we obtain WH(S + E) = 
wH(DFT(s + e» = L(s + e). 0 

Corollary 6.8. With the notations in theorem 6.7, the extension field k-error 

linear complexity of a periodic sequence s can be expressed as 

ELk,N(S) = min{wH(DFT(s) + E)IE E FN, L(E) ::; k} 

An algorithm for computing the k-error linear complexity of a sequence follows 

immediately based on Theorem 6.7 and Corollary 6.8. The algorithm is formu­

lated for finite fields (with the usual notation GF(pm) for the Galois field with pm 

elements) but it can easily be formulated for any field in which algorithms exist 

for the required operations. 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 144 

ALGORITHM kDFT 

INPUT: p prime, m 2': 1, N a positive integer not divisible by p, s a sequence of 

period N over GF(pm), k ~ N. 

OUTPUT: ELk,N(s) and a sequence e of period N over GF(pr) (where GF(pr) 

is the smallest extension of GF(pm) containing an N-th root of unity) such that 

wH(e) ~ k and L(s + e) is minimal. 

STEP 1. Determine r, a such that GF(pr) is the smallest extension of GF(pm) 

which contains a primitive N-th root of unity, a. 

STEP 2. Calculate the sequence S = DFT(s) of period N over GF(pr). 

STEP 3. Find E a sequence over GF(pr) of period N and linear complexity 

L(E) ::; k such that WH(S + E) is minimal. 

STEP 4. Return ELk,N(S) = wH(S+E) and e = DFT-1(E) as the error pattern. 

The Algorithm kD FT is of theoretical interest only, because we do not know 

of an efficient algorithm for STEP 3 other than exhaustive search (for finite fields). 

In the next section we therefore suggest an approximation algorithm. 

6.2.3 Approximation algorithm for the extension field k­

error linear complexity 

An approximation algorithm has been devised for the extension field k-error linear 

complexity of a sequence by finding an approximate solution to the optimisation 

problem in STEP 3 of algorithm kDFT described in the previous section. Namely, 

we aim to find a sequence E of linear complexity at most k such that wH(S+E) ::; 

WH(S), but wH(S+E) is not necessarily minimal. To this end, the search is limited 

to sequences E which have minimal period at most k besides having period N. 

Since k ~ N, the period must therefore be a divisor of N. Obviously any sequence 

of period at most k will also have linear complexity at most k. In order to decrease 

WH(S + E) as much as possible we choose the elements of E so that they cancel 

out as many elements of S as possible. 

Theorem 6.9. Let S be a sequence of period N over a field F. Suppose N is not 

prime and d is a proper divisor of N. For each i = 0,1, ... ,d - 1 denote bY!3i the 

element which occurs most frequently among Si, Sd+i,"" S(';f-l)d+i' Let E be the 

sequence of period d defined as E = (-(30, -!3b"" -!3d-l)' Then E achieves the 

minimal value of WH(S + E) (where E is viewed as a sequence of period N for the 

purpose of computing this weight) among all sequences E over F of period d. 

Proof. Let G = (Go, Gb" . ,Gd- 1) be an arbitrary sequence over F of period d. 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 145 

We split S in NI d parts of size d as follows: 

and we consider each column i consisting of Si, Sd+i,"" S<iJ-1)d+i' Let us denote 

by (i the number of zero values on column i and by Vi the number of elements 

equal to Gi on column i. The weight WH(S + G) = WH(S) - L:t~~(Vi - (i) is 

minimised by maximising the values of all the Vi, Le. by choosing G i such that a 

maximum number of elements of S in column i are equal to Gi • 0 

In theorem 6.9, in order to get uniqueness in the choice of the sequence E 

which lowers the Hamming weight of S, if there is more than one element among 

Si, Sd+i,"" S<iJ-1)d+i which have the same maximum occurrence then choose zero 

if any of those elements are zero, or the element of smallest index otherwise (zero 

is the identity element with respect to addition). Note that this assumption does 

not restrict the generality of the theorem or of the corresponding algorithm. 

The following routine for finding a candidate sequence E (corresponding to 

STEP 3 in kDFT Algorithm from previous section) can be based on theorem 6.9. 

We call the routine GetError(S, N, d). The input of the procedure includes a pe­

riodic sequence S, an integer not prime N representing the period of the sequence 

S and a proper divisor of N, d < N. The sequence E returned by the procedure 

achieves the minimal value of WH(S + E) among all sequences over F of period d 

(where E is viewed as a sequence of period N for the purpose of computing this 

weight). Note that in the worst case, the procedure GetError returns a sequence 

E such that WH(S + E) = WH(S), in which case E = (0,0, ... ,0). 
'--v--' 
N times 

ALGORITHM GetError(S, N, d) 

INPUT: p prime, m <:: 1, N a positive integer, not prime and not divisible by p, 

S a sequence of period N over GF(pm), d < N a proper divisor of N. 

OUTPUT. A sequence E of period d such that E achieves the minimal value of 

wH(S+E). 

STEP 1. For each i = 0, 1, ... , d - 1 determine {3i as the most frequent value that 

appears among Si, Sd+',··' S<iJ-1)d+i' and set Ei+jd = -{3, for j = 0,1, ... ,!if - 1. 

If there is more than one value with the same maximum occurrence then choose 

zero value (Le. identity element with respect to addition) if it is one of them or 

choose the one with smallest index otherwise. 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 146 

STEP 2. Return E. 

Based on theorem 6.9, we propose the following approximation algorithm for 

the extension field k-error linear complexity of a sequence s over a finite field. 

ALGORITHM kDFT-Approximation 

INPUT: p prime, m :::: 1, N a positive integer, not prime and not divisible by p, s 

a sequence of period N over GF(pffi), k ::; N. 

OUTPUT: a sequence e of period N over GF(pr) (where GF(pr) is the small­

est extension of GF(pffi) containing a primitive N-th root of unity) such that 

wHeel ::; k and L(s + e) is minimal among all sequences e for which DFT(e) has 

period smaller than or equal to k; the second output is L( s + e). 
STEP 1. Determine r,o< such that GF(pr) is the smallest extension of GF(pm) 

which contains a primitive N-th root of unity, 0<. 

STEP 2. Calculate the sequence S = DFT(s) over GF(pr). Set Llrest = WH(S) 

and set Ebest to the all-zero sequence. 

STEP 3. For all d ::; k with d a proper divisor of N, execute steps 4-5. 

STEP 4. Set E = GetError(S, N, d). 

STEP 5. If WH(S + E) < Llrest then set Ebe,t = E and Lbe,t = WH(S + E). 

STEP 6. Return DFT-I(Ebe,t) and Lbest . 

Example 6.10. Let p = 5, N = 15. Let s = (0,0,1,0,1,1,0,0,1,1,1,0,0,0,1) be 

a sequence over GF(2) of period 15. Let 0< be a primitive element of the Calois 

field GF(24) defined by the equation 0<4 + 0< + 1 = O. 

The DFT transform of s in GF(24) is: 

S (1 0 0 14 0 1 13 5 0 7 1 10 11 5 10) = ",0: , , ,0: ,0:, ,a, ,0:' ,0: ,0: ,0: . 

The linear complexity of s, L(s) = WH(S) = 11. The two proper divisors of 15 

are 3 and 5 so two ways of splitting of the sequence are considered, as shown in 

table 6.1. 

For d = 3 (table 6.1{A)), choosing one of the most frequent entries in each 

column gives us {30 = 1, {31 = 0 and {32 = 0 (other choices are possible but these 

follow our uniqueness requirement). We can therefore put 

E= (1,0,0,1,0,0,1,0,0,1,0,0,1,0,0) 

and 

e = DFT-I(E) = (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0). 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 

Table 6.1: The splitting of the sequence S 
(A) IN 5 PARTS OF LENGTH 3 

1 0 0 
a14 0 1 
a 13 a5 0 
aT 1 a lO 

all a5 a lO 

(B) IN 3 PARTS OF LENGTH 5. 

1 0 o 

This error pattern e of weight 3 decreases the linear complexity of s to 10. 

147 

Table 6.1{B) shows that when splitting s into 3 parts of 5 elements we can 

choose E = (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0). 

We compute e = DFT-1(E) = (1,0,0,1,0,0,1,0,0,1,0,0,1,0,0). The se­

quence E applied onto S reduces its weight from 11 to 8, therefore L( s + e) = 8. 

Since wH(e) = 5, it follows that the extension field 5-error linear complexity 

EL5,15(S) ::; 8. 

Theorem 6.11. The algorithm kDFT-Approximation has a computational com­

plexity of O(N2 ) operations in GF(p'). This can be improved to O(N1.5 10g N) 

when a Fast Fourier Transform approach is used. 

Proof. Steps 2 and 6, corresponding to the computation of the DFT and in­

verse DFT of the sequences sand E, respectively, need O(N2) operations (or 

O(N log N) if a fast Fourier transform approach is applied). 

Steps 4-5 are executed for each of the proper divisors of N. There are several 

upper bounds for the number of divisors. We will use the rather coarse upper 

bound of 2VN, see Ramanujan [65]. 
For each proper divisor d, determining the most frequent element on each 

of the d columns takes at most 0 ( if log if) operations (this can be achieved by 

expressing all non-zero elements as powers of a primitive element of G F(p') and 

sorting each column according to the exponents), so GetError(S, N, d) procedure 

from STEP 4 takes a total of O(Nlog ~) operations. This is executed for each 

of the proper divisors of N, i.e. at most 2VN times, giving a total computational 

complexity of the for loop in GetError of O(N1.51og N). 

Therefore, the computational complexity ofthe algorithm kDFT-Approximation 

is O(N2 + Nl.5 log N) = O(N2). If a Fast Fourier Transform is used, this can be 

improved to O(Nlog N + Nl.5log N) = O(N1.51og N). 0 

It would be interesting to obtain bounds on the quality of the approximation, 

i.e. on the ratio between the maximum decrease in complexity and the decrease 

in complexity achieved by the kDFT-Approximation algorithm, 

(L(s) - ELk,N(s))/(L(s) - L(s + e)), 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 148 

where e is the error sequence produced by the algorithm kDFT-Approximation. 

It is likely though that such a ratio does not always make sense, as there would 

probably be sequences for which the approximation algorithm will not find any 

non-zero error sequence e with L(s + e) < L(s) although ELk,N(S) < L(s). 

6.3 An improved approximation algorithm 

An improved approximation algorithm which relies on using the shifting property 

of the Discrete Fourier Transform can be devised. Namely, firstly the input se­

quence s is cyclically shifted to the right by a number of positions h > 0, the 

Discrete Fourier Transform is applied to the shifted version s' and then the same 

procedure as in kDFT-Approximation Algorithm, GetError, is carried out in the 

transform domain in order to find a sequence E' of period at most k and which 

minimises the value of WH(S' + E') where S' = DFT(s'). Finally, by transforming 

the sequence E' back to the initial domain and applying a cyclical shift to the 

left by h positions, we aim to find an additional error sequence candidate which 

would lower the linear complexity of the input sequence s. 

The following theorem shows that if a sequence of period N has a smaller period 

d, 1 < d < N (note that d is a proper divisor of N) then the Discrete Fourier 

Transform of that sequence when considered of period N will have a certain form, 

namely it will be zero except for the terms on the positions 0, !if, ... , (d-d)N. 

Theorem 6.12. Let e be a sequence of period N and of smaller period 1 < d < N 

over a field F. 

Let e = (eo, et, ... , ed-}, eo, el, ... , ed-b"" eo, et, ... , ed-l)' 
, V' " ... .I , V' # 

d times d times d times , , 
y 

If times 
If the periodic sequence E = D FT( e) of period N denotes the Discrete Fourier 

Transform of e then E is periodic with smallest period at least !if and it has 

the following form: E = (Eo, 0, ... ,0 , EE, 0, ... ,0 , ... E(d-l)N, 0, ... ,0 ). 
'--v--' d '--v--' d----...---

N t' N t' N t' .-1 zmes .-1 zmes .-1 zmes 
Moreover, for all 0 ::; i < N, the terms of the transform sequence are 

f . ...J. 0 N (d-l)N 
Z 1, r 'd'O'" d ' 

otherwise. 
(6.1) 

Proof. Note that since E has period Nand d, and since 1 < d < N, then d is a 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 

proper divisor of N. For each i = 0,1, ... , N - 1 

N-1 
E; - Lejaj; = 

j=O 

_ eoaOi + e1ali + ... + ed_1a (d-1)i + 
eoadi + e1 a(d+1)i + ... + ed-1 a(2d-1)i + 
... + 
eoa(~-l)di + e1a((~-1)d+1)i + ... + ed_1a(~d-1)i = 

_ eo(1 + adi + ... + a(~-l)di) + 
e1ai(1 + a di + ... + a(~-l)di) + 
... + 
ed_1a (d-1)i(1 + c,di + ... + (i~-l)di) 

149 

When i is such that a di -=I 1 the sum 1 + a di + ... + a(~-l)d; represents a 

geometric series of if terms with initial value 1 and common ratio a di . It follows 
(adi ) -'if -1 _ a Ni_1 _ f 11' -I- N 2N (d-1)N that the sum equals ad'-l - "a'-l - 0 or a z T 0, d' d , ... , d . 

Wh .. h h t di - l' . - 0 N 2N (d-1)N th 1 di en Z IS SUC t a a - , 1.e. Z - , d' d"'" -d-' e sum + a + 
... + a(~-l)di = ,1 + 1 + ... + 1, = if. Relation (6.1) follows immediately. 0 

y 

~ times 

A similar result can be proved for the inverse Discrete Fourier Transform. We 

just state it in theorem 6.13. 

Theorem 6.13. Let E be a sequence of period N and smaller period 1 < d < N 

over a field F. 

Let E = (!lo, El"", Ed- 1)!lo, Eh"" Ed- 1) ... ,!lo, Eh"" Ed_1). 
v v v 

d times d times d times 
v 

~ times 
If the periodic sequence e = DFT-1(E) of period N denotes the inverse Dis-

crete Fourier Transform of E then it follows that e is periodic with smallest period 

at least if and has the following form: 

e= (eo, 0, ... ,0 ,e!:!., 0, ... ,0 , ... e(d-l)N, 0, ... ,0). 
'-..".-.' d '-..".-.' d '-..".-.' 

N t' N t' N t' .-1 zmes .-1 zmes .-1 zmes 

Moreover, for all 0 ::; i < N, the terms of the transform sequence are 

f . -I- 0 N (d-1)N 
Z 1, r 'd"'" d ' 

otherwise. 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 150 

S 
DFT 

) S 

1 
GetError(S,N,d): 
Find sequence E 

such that wH(S+ E)<WH(S) 
andE of period d, 

DFT" E 
where d is a divisor of N 

e « 

Figure 6.1: The kDFT-Approximation Algorithm 

Figure 6.1 briefly describes the way the kDFT-Approximation Algorithm pre­

sented in section 6.2.2 works. For an input sequence s of period N, the Discrete 

Fourier Transform of that sequence, S, is calculated and then for each proper divi­

sor d of N it tries to find an error sequence E of period d such that the Hamming 

weight of S + E is less than the Hamming weight of S, i.e. WH(S + E) < WH(S), If 

such sequence is found then the inverse Discrete Fourier Transform of E, denoted 

e, is a good error pattern for s, i.e. one which lowers the linear complexity of s 

while also having the Hamming weight at most d. 

Since the error patterns found by the kDFT-Approximation Algorithm pre­

sented in the previous section are inverse Discrete Fourier Transform of sequences 

of period 1 < d < N, where d is a proper divisor of N, it follows from theorem 6.13 

that the aforementioned approximation algorithm can only 'catch' error patterns 

from the initial domain, with the non zero terms only at several specific indices, 

I 't' 0 N (d-I)N name y POSI IOns 'd"'" d . 

We want to extend the approximation algorithm in order to find alternative 

good error patterns without a significant increase in the computational complexity. 

In the following we will investigate the scenario introduced at the beginning of the 

section and presented in figure 6.2, by applying the Discrete Fourier Transform 

to shifted versions of the input sequence. We will treat the two additional trans­

formations which appear in this variation of the algorithm (Lemma 6.14 for the 

cyclical right shift of the input sequence s and Lemma 6.15 for the cyclical left 

shift of the error pattern ef) and identify if the error sequence e produced in such 

a scenario can contribute to the calculation of the extended field k-error linear 

complexity problem. 

Lemma 6.14 shows that the linear complexity of a sequence is invariant under 

the operation of cyclically shifting it to the left or right (figure 6.3). 

Lemma 6.14. Let s and Sf be two sequences of period N over a field F. Suppose 

that Sf = (s~, si, ... , S;"'_I) is obtained by cyclically shifting all periods of sequence 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 151 

S 
riaht shift • S' DFT • S' by h POSitiOns 1 Gereno,(S',N,d): 

Find sequence E' 
sucb that wn(S'+EJ<wn(SJ 

andE'ofperiodd, 

e- left ,bift 
e' -

DFT'] E ' where d is a divisor of N 
by h positions 

Figure 6.2: The kDFT-Approximation Algorithm where the input sequence is 
firstly cyclically shifted to the right. 

~yrit;:::::! ~\\S\'4......:D~F.!.T_ .. 
:1'>:, " ';,,,-,', ",;<;-', 

S' 
1 GetError(S',N.d) 

e .,j.""",,-,l!i"eft~'~hi*ft_ e ".,j._-,D~FT:.!..:..·I __ E ' 
by h positions 

Figure 6.3: The kDFT-Approximation Algorithm where the input sequence is 
firstly cyclically shifted to the right (L(s) = L(s')). 

s to the left (or right) by h positions, i.e. 

s; = Si+h,O ~ i < N(or s; = Si-h,O ~ i < N) 

where subscripts are taken modulo N. Then L( s) = L( s'). 

Proof. When s' is a cyclical left shift of s, Property 6.3 implies that if S' -

DFT(s), S = DFT(s) and a is an N-th root of unity in F then S; = a-hi Si' 

Therefore WH(S) = WH(S'). Since L(s) = WH(S) and L(s') = WH(S'), it follows 

that L(8) = L(s'). Since a cyclical right shift of s by h positions is equivalent with 

a cyclical left shift of s by N - h positions (remark 6.4), the property concerning 

the right shift follows immediately from the above considerations. 0 

Lemma 6.15 deals with the other proposed transformation (see figure 6.4) and 

it shows that the error sequence e' which lowers the linear complexity of the right 

cyclically shifted input sequence s' can be used to obtain an error sequence e for 

the input sequence s itself. Moreover, the error sequence e obtained in such a 

manner will lower the linear complexity of the input sequence 8 with the same 

amount as e' lowers the linear complexity of s'. 

Lemma 6.15, Let sand s' be two sequences of period N over a field F. Suppose 

that s' = (s~, si, ... , S~_l) is obtained by cyclically shifting all periods of sequence 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 152 

S 
ri~t shift • S' DFT 

) S' by h pos1t\ons 1 GetError(S·.N.d) 

(.e lE 
left shift ~'~j DFl" E' by h positions 

Figure 6.4: The kDFT-Approximation Algorithm where the input sequence is 
firstly cyclically shifted to the right (L(s + e) = L(s' + e')). 

s = (so, SI, ... , SN-l) to the right by h positions, i.e. 

where subscripts are taken modulo N. If e' = (eb, e~, . .. ,eN_I) is an error pattern 

which reduces the linear complexity of s' then e = (eo, el, ... , eN-I) obtained by 

cyclically shifting all periods of sequence e' to the left by h positions is an error 

pattern of the same Hamming weight which reduces the linear complexity of s by 

the same amount as e', i.e. L(s' + e') = L(s + e) < L(s). 

Proof. Since s' is obtained by cyclically shifting s, Lemma 6.14 implies L(8) 

L(s'). Therefore we need to prove that L(s+e) = L(s' +e'). Assume S = DFT(s), 

S' = DFT(s'), E = DFT(e') and E' = DFT(e). Using the linearity and the shift 

property of the Discrete Fourier Transform (DFT), it follows that 

DFT(s' + e') = DFT(s') + DFT(e') = S' + E' = (a-ij(Si + Ei))07S,i<N. 

Note that saying that e is obtained from e' by cyclically shifting all periods of 

sequence e to the left is equivalent to saying that e' is obtained from e by cyclically 

shifting all periods of e' to the right. Therefore E' = (a-ij Ei)o<i<N. 

Therefore L(s' +e') = WH(S' +E') = wH((a-ij(Si+Ei))07S,i<N) = wH(S+E) = 
L( s + e). The result can be obtained similarly when s and e are shifted to the left 

and right, respectively, to obtain s' and e'. D 

Since the error patterns e' (see figure 6.4) are inverse Discrete Fourier Transform 

of sequences of period d < N, with d a proper divisor of N, from theorem 6.13 it 

follows that they have non zero values only on terms 0, Jt, ... , (d-;)N. It follows 

that taking such a sequence e' and cyclically shifting it to the left by h positions, 

for all h such that 0 :S h < Jt, produces a set of Jt distinct sequences denoted e. 

Along with the previous comment, lemmas 6.14 and 6.15 imply that finding a 

good error pattern using routine GetError for the Discrete Fourier Transform of 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 153 

OFT .. S' GetErl'Or(S·.N.d~, E,'i 

S ':..' _-,D::!;FT.!...._ 

Figure 6.5: The Relation between the error sequences found for the Discrete 
Fourier Transform of two different shifts of the initial sequence. 

a cyclically shifted version of an infinite periodic sequence means finding a good 

error pattern for the sequence itself, one which is different from the one produced 

by kDFT-Approximation and therefore could improve the accuracy result. 

Lemma 6.16 clarifies the relation between the sequences E found using the 

Get Error procedure for the Discrete Fourier Transform of two different cyclical 

shifts of the input sequence s (see figure 6.5). 

Lemma 6.16. Let s be a sequence of period N over a field F which contains an 

N-th root of unity, denoted a. Suppose N is not prime and d is a proper divisor 

ofN. 

Suppose that Si = (s~, si, ... , S~_l) and s" = (s~, sr, ... , S'N_l) are obtained by 

cyclically shifting all periods of sequence s = (so, Sb"" SN-l) to the right by h 

and by h + t positions, respectively i. e. 

s: = Si-h,O ~ i < N and s~ = Si-h-t,O ~ i < N 

where subscripts are taken modulo Nand t > O. 

Denote S = DFT(s) and S' = DFT(s'). For each i = 0,1, ... , d - 1 denote 

/3; and /3;' the elements which occur most frequently among S;, S~+i>"" S(~_l)d+i 

and among S;', S~+i"'" S'(!(;_l)dW respectively. If there is more than one value 

with the same maximum occurrence then choose zero (i. e. the identity element with 

respect to addition in F) if zero is one of them or choose the one with the lowest 

index otherwise. 

Under these conditions, /3;' = ati /3;. 

Proof. Using the shift property 6.3 of the DFT we obtain that 

{S' S' S' } - {hiS· h(d+i)S· h((~-l)d+i)S } 
i, d+i"'" ((!(;-l)d+i) - a "a d+,,"" a ((!(;-l)d+i) 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 154 

8 "!l:1 shift, 8(0) ...m::r..... s (0) GerEmu-(S"",N.~ E (0) ~e' (0) left !hHl: I e (0) 
by po-"ltuml by il p<!51twn1 

~ '1) --""'--- S"}I ~tE17W"(S<IJ,N,J~ E'l) ~e'(I) leflshift) (1) 
byJposition SI' -----,.- h' I, bY/p£lSllIOIl e 

rigbuhifl 
byN.IJlOSilion 

Figure 6.6: The kDFT-Approximation-Shift Algorithm where the input sequence 
is cyclically shifted to the right. 

and that 

{8" 8" 8" } i, d+i"'" «~-l)d+i) = 
_ {a(h+t)i S. a(h+t)(d+i) 8· a(Mt)« ~-l)d+i) S N } " d+" ... , « ,,-l)d+i) 

= ~ti{~hiS. ~h(d+i)8. ~h«~-1)d+i)8 N . } 
~ ~ ,,~ d+,,···, ~ «,,-l)d+.) . 

The relation between the two most occurrent elements (3: and (3I' is now im-

mediate. D 

Lemmas 6.17 and 6.18 give the characterisation of the error sequences e result­

ing from different initial shifts (see figure 6.6). We prove that these error patterns 

e(i) are repeating every It shifts. 

Lemma 6.17. Suppose N is not prime and d is a proper divisor of N. Let F be 

a field which contains an N -th root of unity, denoted a. 

Let E' = (Eb,E;, ... ,E~_l) and E" = (E~,E~, ... ,E~_l) be two sequences 

of period d over F such that E;' = ati E; for all 0 ::; i < d, where t > O. If 

e' = DFT-1(E') and e" = DFT-1(E") (where E' and E" are considered of period 

N for the purpose of calculating the DFT) then 

t is a multiple of ~ => e; = e~+t for all 0 ::; i < N. 

Proof. Note that since d is a proper divisor of N, the sequences E' and E" have 

period N. We express e' = DFT-l(E') and e" = DFT-1(E") using the formulas 

in theorem 6.13. 

e;= { 0, 

~(Eb + E;a-i + ... + E~_la-(d-l)i), 
if i '" 0, ~, ... , !if(d - 1), 
otherwise. 

e;' = { ~'(E~ + E?a-i + ... + ELa-(d-l)i), 
if i '" O,!if, ... , !if(d - 1), 
otherwise. 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 155 

ifi oF O,~, ... , ~(d-l), 
otherwise. 

Therefore, if t is a multiple of ~ from the expressions defining e; and e;' it 

follows that e~ = e7+t for all 0 ::; i < N. 0 

The following lemma follows immediately from the previous one, lemma 6.17. 

Lemma 6.18. Suppose N is not prime and d is a proper divisor of N. Let F be 

a field which contains an N -th root of unity, denoted a. 

Let E = (Eo, El, ... , Ed- I ) be a sequence of period d over F and for all h = 

0,1, ... N - I, denote with E(h) the sequences of period d such that E?) = ahj Ej 
for all 0 ::; j ::; d. 

For all h = 0,1, ... , N - 1, let e(h) be the sequence obtained from e,(h) = 

DFT-1(E(h) by cyclically shifting all terms in each period of size d to the left 

by h positions (E(h) is considered of period N for the purpose of calculating the 

DFT). Under these conditions, the following two sets are equal 
{ e(O) , e(!) , ... , erN -I)} = {e(O), e(!) , ... , e( 'if-I)}. 

Proof. Lemma 6.17 implies that for all h ~ 0, and any i > 0, the periodic sequences 
e,(h) = DFT-I(E(h) and e'(h+i'if) = DFT-I(E(h+i'if) are such that e'(h) is equal 

to the sequence obtained by cyclically shifting e/(h+i'if) to the left by i ~ positions. 

It follows that e(h) and e(h+i'if) obtained from cyclically shifting e'(h) and e'(h+i'if) 

by hand h + i ~ positions to the left, respectively, are equal for all h ~ 0, and any 

i > O. This leads to the conclusion stated in the lemma. 0 

We are now ready to present the following improved approximation algorithm 

for computing the extension field k-error linear complexity of a sequence s of pe­

riod N, ELk,N(S), 

ALGO RITHM kD FT -Approximation-Shift 

INPUT: p prime, m ~ 1, N a positive integer, not prime and not divisible by p, s 

a sequence of period N over GF(pm), k ::; N. 

OUTPUT: a sequence e of period N over GF(pT) (where GF(pT) is the smallest ex­

tension of GF(pm) containing a primitive N-th root of unity) such that wH(e) ::; k 

and L(s+e) is minimal among all sequences e for which there exists a sequence e' 

which is a circular shift of e such that D FT( e') has period smaller than or equal 

to k; the second output is L(s + e). 

STEP 1. Determine r, a such that GF(pr) is the smallest extension of GF(pm) 

which contains a primitive N-th root of unity, a. 
STEP 2. Calculate the sequence S = DFT(s) over GF(pT). Set hbest = 0, 

Lbes! = W H (S) and set Ebe,! to the all-zero sequence. 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 

Table 6.2: kDFT-Approximation-Shift 
d h e(h) L(s + e(h») 

3 0 (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0) 10 

3 1 (0,0,0,0,1,0,0,0,0,1,0,0,0,0,1) 10 

3 2 (0,0,0, alO, 0, 0, 0, 0, alO, 0, 0, 0, 0, aID, 0) 9 

3 3 (0,0,1,0,0,0,0,1,0,0,0,0,1,0,0) 9 

3 4 (0,1,0,0,0,0,1,0,0,0,0,1,0,0,0) 10 

5 0 (a3, 0, 0, alO, 0, 0, a 12 , 0, 0, a 8, 0, 0, a 2, 0, 0) 8 

5 1 (0,0, a 2, 0, 0, a 3, 0, 0, aID, 0, 0, a 12 , 0, 0, ( 8) 10 

5 2 (0, a 12 , 0, 0, a 8 , 0, 0, a 2, 0, 0, a3, 0, 0, aID, 0) 10 

STEP 3. For all d S k with d a proper divisor of N, execute steps 4-7. 

STEP 4. For all h = 0, 1, ... ,~ -1 execute steps 5-7. 

156 

STEP 5. Let s' be the sequence obtained from s by cyclically shifting the terms 

of each period to the right by h positions. Calculate S' = DFT(s'). 

STEP 6. E' = GetError(S',N,d). 

STEP 7. If WH(S' +E') < Lbest then Ebest = E', h6est = hand Lbest = WH(S' +E'). 
STEP 8. Return e, the sequence obtained from e' = DFT-1(Ebest) by cyclically 

shifting all terms of each period to the left by hbest positions. Also, return Lbe,t. 

Example 6.19. Let N = 15. Let s = (0,0,1,0,1,1,0,0,1,1,1,0,0,0,1) be a 

sequence over GF(2) of period 15, as in the previous example 6.10 in section 6.2.3. 

Let a be a primitive element of the Calois Field GF(24 ) defined by the equation 

a 4 +a+ 1 = o. 
Table 6.2 contains the error patterns obtained from the different shifts corre­

sponding to the two proper divisors of 15, 3, and 5. 

Note that the addition of this shifting technique has improved the accuracy 

of the approximation for this example sequence. For divisor 3 and shift 2 the 

resulting error pattern lowers the linear complexity of the initial sequence s also 

giving indications on where the errors are, i. e. terms 3, 7 and 11. 

Theorem 6.20. The algorithm kDFT - Approximation - Shift is correct. 

Proof. Let p be a prime, m a positive integer such that m :::: 1, N a positive integer, 

not prime and not divisible by p, s a sequence of period N over K = GF(pm) and 

ksN. 

We prove that the kDFT - Approximation - Shift algorithm returns a se­

quence e of period N over F = GF(pT) (F is the smallest extension of GF(pm) 

containing a primitive N-th root of unity), such that wH(e) :::; k and L(s + e) 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 157 

is minimal among all sequences e for which there exists a sequence e' which is a 

circular shift of e and such that D FT( e') has period smaller than or equal to k. 

For all h, where 0 :::; h < N and for any d proper divisor of N we make the 

following notations: 

• let s(h) be the sequence obtained from s by cyclically shifting all terms of 

each period to the right by h positions (Step 4). 

• denote S(h) = DFT(s(h») and E(h,d) the sequence chosen to reduce the weight 

of S(h) of period N using the proper divisor d as described in theorem 6.9, 

Le. E(h,d) = GetError(S(h) , N, d) (Step 6). 

• let e(h,d) be the sequence obtained by shifting all terms of DFT-1(E(h,d») to 

the left by h positions. 

Lemma 6.18 implies that for a fixed value of d the following two sets are equal 
{e(O,d),e(l,d), ... ,e(N-l,d)} and {e(O,d),e(1,d), ... ,e(~-l,d)}. This justifies the range 

of the loop in step 3. 

Theorem 6.9 and corollary 6.8 justify the choice of the sequences E(h,d) in 

Step 6 for all values h = 0, ... , ~ - 1 and all proper divisors of N, d, i.e. by 

using the procedure GetError(s(n), N, d). Moreover, it follows that E(h,d) achieves 

minimum WH(S(h) + E(h,d») among all sequences E over F of period d, for each 

value of hand d. 

With the above notations, the error pattern e returned by the algorithm is the 

sequence from the following set 

{e(h,d) 10 :::; h < ~, d proper divisor of N} 

such that L( s + e) is minimal. It follows that L( s + e) is minimal among all 

sequences for which there exists a sequence e' which is a circular shift of e such 

that DFT(e') has period smaller or equal to k. 0 

Theorem 6.21. The algorithm kDFT-Approximation-Shift has computational 

complexity O(N3) operations in GF(pT). This can be improved to O(N2.5 log N) 
if a Fast Fourier Transform approach is used. 

Proof. From theorem 6.11, the computational complexity ofthe algorithm kDFT­

Approximation is O(N2). If a Fast Fourier Transform is used, this is improved to 
O(N1.51og N). 

The change from kDFT-Approximation consists of the additional for loop in 

STEP 4, the STEP 5 and the shifting necessary in STEP 8. 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 158 

The cyclical shift of a sequence to left or right by a certain amount of positions 

can be done in linear time. Therefore, STEP 5 takes O(N + N 2) = O(N2) or 

O(N + N log N) = O(NlogN), if Fast Fourier Transform is used. 

It follows that the complexity of one step of the for loop in STEP 4 is 

O(N2 + NlogIt) = O(N2) or O(NlogN + NlogIt) = O(NlogN) if a Fast 

Fourier Transform is used. 

Steps 5-7 are executed It times for each d, a proper divisor of N. So the total 

complexity of the for loop in STEP 3 is O(N3) or O(N2.510g N) if a Fast Fourier 

Transform is used (we just need to multiply the computational complexity of steps 

5-7 with d~ = N). 
Adding in the complexity of STEP 2, the computational complexity of the 

whole algorithm remains O(N3) or O(N2.510g N) when a Fast Fourier Transform 

~m~. 0 

6.4 Experimental results 

We implemented the algorithms kDFT-Approximation and kDFT-Approximation­

Shift presented in section 6.2 using GAP [18]. 

The results of several experiments are shown in Tables 6.3, 6.4 and 6.5. We 

tested binary sequences of all odd lengths N up to 300 excluding those that are 

prime and those for which the extension field GF(pr) in which the primitive N-th 

root of unity lies has r 2:: 20 (the latter restriction is only for efficiency reasons). We 

also tested a couple of higher lengths of the form N = 2r -1, e.g. N = 1023,2047. 

For each length we generated 100 sequences using the standard pseudorandom 

number generator (linear congruential generator). The tables 6.3, 6.4 and 6.5 show 

for each length N, the extension field for the primitive N-th root of unity, and, for 

each of the proper divisors of N, the percentage of sequences for which an error 

sequence which decreases the complexity was found (success rate) and the average 

decrease of complexity which has been thus obtained (average decrease of linear 

complexity, where the decrease in complexity is computed as (L(8)- L(8+e))/ L(8), 

where e is the error sequence returned by the algorithm), for each of the algorithms 

kDFT-Approximation and kDFT-Approximation-Shift proposed in sections 6.2.3 

and 6.3, respectively. 

For practical applications the cases of interest are those where k represents 

some small percentage (e.g. 5% or 10%) of the length N. These can be identified 

in the tables on the rows where the ratio diN is below such a percentage. 

One can notice that the approximation algorithm was successful in finding 

good error patterns for the great majority of the sequences, the success rate being 

100% or close to 100% for most of the sequences and for most of the divisors. 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 159 

Table 6.3: Experimental results 

kDFT-Approx kDFT -Approx-Shift 
Length Extension Divisor Success Av. decr. of Success Av. deer. of 

N field d rate lino comp!. rate lino camp!. 

15 GF(24) 3 74% 28.05% 90% 41.21% 
5 88% 39.34% 92% 49.09% 

21 GF(26 ) 3 79% 18.98% 94% 32.46% 
7 89% 37.05% 90% 45.57% 

27 GF(2 18 ) 3 100% 11.01% 100% 15.36% 
9 100% 34.44% 100% 38.05% 

33 GF(2 1O ) 3 69% 8.14% 74% 12.79% 
11 100% 33.28% 100% 35.74% 

35 GF(212 ) 5 96% 15.67% 97% 20.03% 
7 88% 19.15% 88% 23.68% 

39 GF(212 ) 3 78% 6.91% 86% 10.17% 
13 100% 33.69% 100% 35.63% 

45 GF(212 ) 3 100% 9.13% 100% 16.62% 
5 83% 12.63% 87% 17.72% 
9 77% 22.61% 89% 28.30% 
15 100% 34.18% 100% 38.91% 

51 GF(28 ) 3 82% 7.76% 99% 15.62% 
17 97% 33.73% 97% 35.89% 

57 GF(218
) 3 77% 4.33% 77% 5.02% 

19 100% 33.28% 100% 34.73 % 

63 GF(26 ) 3 87% 9.45% 89% 17.84% 
7 87% 15.98% 94% 22.24% 
9 79% 17.44% 95% 24.22% 

21 96% 34.46% 96% 38.52% 

65 GF(212 ) 5 90% 7.15% 91% 9.24% 
13 100% 20.06% 100% 21.83% 

85 GF(28 ) 5 91% 7.41% 100% 13.84% 
17 97% 20% 98% 24.19% 

91 GF(212 ) 7 83% 7.16% 86% 9.87% 
13 100% 14.89% 100% 16.51% 

93 GF(21O ) 3 80% 4.87% 100% 10.43% 
31 97% 34.23% 97% 36.09% 



CHAPTER 6. DISCRETE FOURlER TRANSFORM 160 

Table 6.4: Experimental results (continued) 
kDFT-Approx kDFT-Approx-Shift 

Length Extension Divisor Success Av. decr. of Success Av. decr. of 
N field d rate lino compl. rate lino campI. 

105 GF(212
) 3 70% 4.70% 92% 9.21% 

5 79% 6.46% 87% 10.47% 
7 91% 7.30% 95% 11.69% 
15 90% 14.46% 90% 18.06% 
21 98% 20.02% 98% 23.43% 
35 100% 33.49% 100% 35.88% 

117 GF(212 ) 3 96% 3.09% 97% 6.22% 
9 96% 7.79% 100% 10.83% 

13 100% 11.33% 100% 12.87% 
39 100% 33.73% 100% 34;70% 

129 GF(214 ) 3 76% 1.96% 85% 3.27% 
43 100% 33.27% 100% 33.92% 

133 GF(218 ) 7 91% 4.65% 91% 5.35% 
19 100% 14.56% 100% 15.99% 

171 GF(218 ) 3 96% 1.86% 96% 2.47% 
9 96% 4.68% 96% 4.91% 
19 100% 11.20% 100% 11.82% 
57 100% 33.62% 100% 34.14% 

189 GF(218 ) 3 100% 2.36% 100% 6.16% 
7 89% 5.24% 99% 7.47% 
9 93% 6.16% 96% 9.21% 
21 100% 12.42% 100% 14.94% 
27 100% 15.29% 100% 18.15% 
63 100% 32.39% 100% 33.60% 

195 GF(212 ) 3 81% 2.32% 97% 5% 
5 82% 3.07% 98% 5.96% 
13 100% 7.15% 100% 9.96% 
15 96% 7.16% 98% 9.73% 
39 100% 20.33% 100% 21.66% 
65 100% 33.36% 100% 34.26% 

217 GF(215 ) 7 86% 3.54% 88% 5.82% 
31 98% 14.14% 98% 15.30% 

219 GF(218 ) 3 76% 1.42% 79% 4.06% 
73 100% 33.35% 100% 33.93% 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 161 

Table 6.5: Experimental results (continued) 
kOFT-Apprmc kDFT-Approx-Shift 

Length Extension Divisor Success Av. deer. ot Success Av. deer. of 
N field d rate Iin. compl. rate lino compl. 

255 GF(28) 3 82% 2.96% 100% 6.42% 
5 89% 3.92% 99% 7.20% 
15 92% 8.19% 98% 11.29% 
17 95% 8.71% 99% 12.92% 
51 99% 20.67% 99% 22.48% 
85 99% 33.35% 99% 34.72% 

273 GF(2 12 ) 3 77% 1.70% 100% 4.22% 
7 93% 2.95% 98% 5.51% 
13 100% 5.18% 100% 8.15% 
21 98% 1.53% 100% 10.00% 
3. 100% 14.50% 100% 15.96% 
91 100% 3'3.40% 100% 34.12% 

1023 GF(2 1O ) 3 93% 0.77% 100% 2.36% 
11 100% 2.18% 100% 3.49% 
31 95% 4.31% 98% 5.82% 
33 98% 4.27% 100% 6.14% 
93 100% 9.71% 100% 10.96% 

341 100% 33.37% 100% 33.71% 

2047 GF(21l) 23 98% 0.02% 100% 2.36% 
89 100% 0.05% 100% 0.07% 

It would be useful to compare the decrease in complexity with the decrease in 

complexity obtained by an optimal solution. However, it is infeasible to compute 

the optimal solution by exhaustive search except for very small lengths. 

We implemented this test only for sequences of length 15 and for the approxi­

mation algorithm when the divisor 3 is considered, which gives an approximation 

for E L3 (s). For a number of 100 sequences generated in a similar fashion as for 

the previous test, the average accuracy of the approximation is 2.58 for kD FT­

Approximation and 2.03 for kDFT-Approximation-Shift, where the accuracy is 

the ratio between the approximate value of E L3 (s) returned by each of the algo­

rithms and the exact value calculated using an exhaustive technique. 

6.5 Conclusion 

We extended the classical notion of k-error linear complexity of periodic sequences, 

named extension field k-error linear complexity, and we present a general algorithm 

for its computation. This algorithm has theoretical value but it is not practical 

since one of its steps has exponential computational complexity. 

For the above reason, we describe a practical implementation which efficiently 

approximates the extension field k-error linear complexity. 

While our approximation algorithms will not always find error patterns that 

decrease the complexity of the sequence, experimental results were promising and 

such error patterns were found in the vast majority of cases. The proposed al­

gorithms have the advantage that they are very fast, polynomial computational 

complexity, so they could be used to discard many of the weak sequences before 

other, more costly tests are performed. 

Further work would include the following: testing the proposed algorithms 



CHAPTER 6. DISCRETE FOURIER TRANSFORM 162 

on sequences generated by some of the classical pseudorandom number gener­

ators used in cryptographical applications; designing alternative approximation 

algorithms; further investigation of the relationship between the extension field 

k-error linear complexity and the k-error linear complexity. 



Chapter 7 

Conel usions 

7.1 Concluding remarks 

Pseudorandom sequences used in cryptography need to have a high linear com­

plexity and a high k-error linear complexity. While the linear complexity can be 

efficiently computed using the Berlekamp-Massey Algorithm, there are no efficient 

algorithms for computing the k-error linear complexity, except for sequences whose 

period is a power of the characteristic of the field. 

We investigated ways of computing or approximating the k-error linear com­

plexity for sequences of arbitrary length over finite fields. The advantage of the 

heuristic algorithms we propose is that they work on arbitrary sequences and even 

if they only approximate the exact result, the approximation is accurate and the 

computational time complexity is manageable. 

Our work could be used for building quick tests in the design and analysis 

stage for cryptographic sequences used in stream ciphers. 

To summarise, the research findings of this thesis are as follows: 

• An improved exhaustive algorithm for computing the exact value of the k­

error linear complexity of a sequence. 

• A Modified Berlekamp-Massey Algorithm to efficiently approximate the k­

error linear complexity of cryptographic sequences over finite fields. 

• An implementation of two evolutionary techniques, genetic algorithms and 

simulated annealing, for approximating k-error linear complexity of crypto­

graphic sequences. 

• A new concept which extends the k-error linear complexity, named the ex­

tension field k-error linear complexity. 

163 



OHAPTER 7. OONOLUSIONS 164 

• A general algorithm for computing the extension field k-error linear com­

plexity. 

• An efficient algorithm for approximating the extension field k-error linear 

complexity by using the Discrete Fourier Transform. 

7.2 Suggestions for future work 

Our work has produced some interesting results but also left a few problems open 

for future research. 

For example, it would be interesting to design an evolutionary algorithm for the 

k-error linear complexity problem where the individuals are not the error patterns 

like in chapter 5 since this is prohibitive in terms of space. One possibility would 

be for the individuals to be recurrences or characteristic polynomials. In this case, 

efficient and meaningful recombination techniques should be devised. 

It is interesting to look closer at the concept of extension field k-error linear 

complexity defined in chapter 6 and the relation between this concept and the 

k-error linear complexity. Also, it is of interest to find an optimal solution or 

alternative approximation techniques for Step 3 of the general algorithm kDFT 

presented in the same chapter. 

We hold as future work to investigate if the Fleischmann Algorithm (Fleis­

chmann [16]) can be used to calculate the k-error linear complexity. The Fleis­

chmann Algorithm is an extension of the Berlekamp-Massey Algorithm which 

computes a two-sided linear complexity for sequences which are not fully known 

apriori, a situation which happens in crypt analysis applications. 

We do not exclude the possibility and leave as future work to investigate if 

the k-error linear complexity problem is NP-hard, in which case our heuristic 

techniques could be the best methods that one could apply for this problem. 



References 

[1] A. Alecu and A. SaJagean. A genetic algorithm for computing the k-error 

linear complexity of cryptographic sequences. In Evolutionary Computation, 

2007. CEC 2007. IEEE Congress on, pages 3569-3576, 2007. 

[2] A. Alecu and A. Salagean. Modified Berlekamp-Massey Algorithm for Ap­

proximating the k-Error Linear Complexity of Binary Sequences. In Steven D. 

Galbraith, editor, Cryptography and Coding, volume 4887 of Lecture Notes in 

Computer Science, pages 220-232. Springer, 2007. 

[3] A. Alecu and A. SaJagean. An Approximation Algorithm for Computing the 

k-error Linear Complexity of Sequences Using the Discrete Fourier Transform. 

In IEEE International Symposium on Information Theory. IEEE Computer 

Society, 2008. 

[4] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, NY, 1968. 

[5] S. R. Blackburn. A Generalisation of the Discrete Fourier Transform: Deter­

mining the Minimal Polynomial of a Periodic Sequence. IEEE Transactions 

on Information Theory, 40(5):1702-1704,1994. 

[6] R. E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley, 

Reading, 1983. 

[7] R. E. Blahut. Transform Techniques for Error Control Codes. IBM J. Res. 

Develop., 23(3):299-315, May 1979. 

[8] S. Boztas. A Fast Algorithm for Linear Complexity (mod p). Research 

Report 9, Department of Mathematics, Royal Melbourne Institute of Tech­

nology, 1997. 

[9] V. Cerny. A thermodynamical approach to the travelling salesman problem: 

an efficient simulation algorithm. J. of Optimization Theory and Applications, 

45:41-51, 1985. 

165 



REFERENCES 166 

[lOJ Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford 

Stein. Introduction to Algorithms. MIT Press and McGraw-Hill, 2nd edition, 

2001. Chapter 30. Polynomials and the FFT. 

[l1J Z.D. Dai. Proof of Rueppel's Linear Complexity. IEEE Transactions on 

Information Theory, 32(3):440-443, May 1986. 

[12J C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers. 

Springer-Verlag, Heidelberg, 1992. 

[13] ECRYPT. eSTREAM - The ECRYPT Stream Cipher Project, accessed in 

November 2008. http://www.ecrypt.eu.org/stream/index.html. 

[14J H. J. Fell. Linear complexity of transformed sequences. In Gerard D. Cohen 

and Pascale Charpin, editors, EUROCODE, volume 514 of Lecture Notes in 

Computer Science, pages 205-214. Springer, 1990. 

[15J W. Feller. An Introduction to Probability Theory and Its Applications, vol­

ume 1. Wiley, NY, 1968. 

[16J M. Fleischmann. Modified Berlekamp-Massey algorithm for two-sided shift­

register synthesis. IEEE Electronics Letters, 31(8):605-606, 1995. 

[17J R. A. Games and A. H. Chan. A Fast Algorithm for Determining the Com­

plexity of a Binary Sequence with Period 2n. IEEE Trans. Information The­

ory, 29(1):144-146, 1983. 

[18J The GAP Group. GAP - Groups, Algorithms, and Programming, Version 

4.4.9, 2006. 

[19J M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the 

Theory of NP-Completeness (Series of Books in the Mathematical Sciences). 

W. H. Freeman, January 1979. 

[20J D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine 

Learning. Addison-Wesley, USA, 1989. 

[21J J. Dj. Golic. On the linear complexity of functions of periodic GF(q) se­

quences. IEEE Transactions on Information Theory, 35(1):69-75, 1989. 

[22J S. W. Golomb. Shift Register Sequences. AEGEAN PARK PRESS, California, 

1982. 

[23J E. J. Groth. Generation of Binary Sequences With Controllable Complexity. 

IEEE Transactions on Information Theory, 17(3):288-296, 1971. 



REFERENCES 167 

[24J F. G. Gustavson. Analysis of the Berlekamp-Massey Linear Feedback Shift­

Register Synthesis Algorithm. IBM Journal Research Development, 1(1):204-

212, 1976. Apparently a simple efficiency analysis. 

[25J T. Herlestam. On functions of linear shift register sequences. In Proceed­

ings EUROCRYPT'85, Lecture Notes in Computer Science 219: Advances in 

Cryptology, pages 119-129. Spinger-Verlag, April 1985. 

[26J L. Ingber. Simulated annealing: Practice and theory. Journal of Mathematical 

Computation Modelling, 18:29-57, 1993. 

[27J L. Ingber. Adaptive simulated annealing (asa): Lessons learned. Control and 

Cybernetics, Special Issue on "Simulated Annealing Applied to Combinatorial 

Optimization, 25:33-54, 1996. 

[28J S. Jiang, Z. Dai, and K. Imamura. Linear Complexity of a Sequence Ob­

tained from a Periodic Sequence by Either Substituting, Inserting or Delet­

ing k Symbols Within One Period. IEEE Trans. in Information Theory, 

46(3):1174-1177, May 2000. 

[29J T. Kaida. On the Generalized Lauder-Paterson Algorithm and Profiles of the 

k-error linear complexity for Exponent Periodic Sequences. In Proceedings of 

SETA 2004, volume LNCS 3486, pages 166-178, Berlin, 2005. Spinger-Verlag. 

[30J T. Kaida, S. Uehara, and K. Imamura. Computation of the k-error linear 

complexity of binary sequences with period 2n. 1996. 

[31J T. Kaida, S. Uehara, and K. Imamura. An Algorithm for the k-error linear 

complexity of Sequences over GF(pm) with Period pn, p a Prime, volume 151 

of Information and Computation, pages 134-147. Academic Press, 1999. 

[32J E. L. Key. An analysis of the structure and complexity of nonlinear binary 

sequence generators. IEEE Transactions on Information Theory, 22(6):732-

736, 1976. 

[33J S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated 

Annealing. Science, 220(4598):671--{)80, 1986. 

[34J A. Klapper. The vulnerability of geometric sequences based on fields of odd 

characteristic. Journal of Cryptology: the journal of the International Asso­

ciation for Cryptologic Research, 7(1):33-51, Winter 1994. 

[35J N. Kolokotronis, P. Rizomiliotis, and N. Kalouptsidis. Minimum linear span 

approximation of binary sequences. IEEE Trans. on Information Theory, 

48(10):2758-2764, October 2002. 



REFERENCES 168 

[36) K Kurosawa, T. Sakata, and W. Kishimoto. A relationship between linear 

complexity and k-error linear complexity. IEEE T'rans. on Information The­

ory, 46(10):694-698, October 2000. 

[37) S. Lang. Algebra. Springer, 3rd edition, 2002. ISBN-13 9780387953854. 

[38J A. G. B. Lauder and K. G. Paterson. Computing the Error Linear Complexity 

Spectrum of a Binary Sequence of Period 2n. IEEE T'rans. In! Theory, 

49(1):273-2803, 2003. 

[39J R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. 

Cambridge University Press, 1994. 

[40J R. Lidl and H. Niederreiter. Finite fields. Cambridge University Press, second 

edition, 1997. 

[41J J. L. Massey. Cryptography and Systems Theory. In Proceedings of Allerton 

Conference on Comm., Control, and Computing, Oct. 1-3, 1986. 

[42J J. L. Massey. Shift-Register Synthesis and BCH Decoding. IEEE T'rans. 

Information Theory, 15(1):122-127, 1969. 

[43J J. 1. Massey. The discrete fourier transform in coding and cryptography. In 

Proc. IEEE Information Theory Workshop, pages 1-2, February 8-11 1998. 

[44J J. L. Massey and T. Schaub. Linear Complexity in Coding Theory. In Coding 

Theory and Applications, Lecture Notes in Computer Science, No. 311, pages 

19-32, Heildelberg and New York, 1988. Springer. 

[45J J. L. Massey and S. Serconek. Linear complexity of periodic sequences: A 

general theory. Lecture Notes in Computer Science, Proceedings of the 16th 

Annual International Cryptology Conference on Advances in Cryptology:358-

371, 1996. 

[46J R. J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer 

Academic Publishers, Massachusetts, first edition, 1987. 

[47] W. Meidl. How many bits have to be changed to decrease the linear com­

plexity? Designs, Codes and Cryptography, 33:109-122, 2004. 

[48] W. Meidl. On the Stability of 2n-Periodic Binary Sequences. IEEE T'rans. 

on Information Theory, 51(3):1151-1155, March 2005. 

[49] W. Meidl and H. Niederreiter. Linear Complexity, k-Error Linear Complexity, 

and the Discrete Fourier Transform. Journal of Complexity, 18:87-103, 2002. 



REFERENCES 169 

[50] W. Meidl and H. Niederreiter. On the Expected Value of the Linear Complex­

ity and the k-Error Linear Complexity of Periodic Sequences. IEEE Trans. 

on Information Theory, 48(11):2817-2825, 2002. 

[51] W. Meidl and H. Niederreiter. Periodic Sequences with Maximal Linear Com­

plexity and Large k-Error Linear Complexity. Applicable Algebra in Engineer­

ing, Communication and Computing, 14(4):273-286, November 2003. 

[52] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied 

Cryptography. CRC Press LLC, Florida, 1997. 

[53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equa­

tion of state calculations by fast computing machines. J. of Chemical Physics, 

21:1087-1092, 1953. 

[54] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. 

Springer-Verlag, Berlin, 1999. 

[55] H. Niederreiter. Sequences with almost perfect linear complexity profile. In 

Proceedings EUROCRYPT'87, Lecture Notes in Computer Science 304: Ad­

vances in Cryptology, pages 37-51. Spinger-Verlag, 1987. 

[56] H. Niederreiter. The probabilistic theory of linear complexity. In Proceed­

ings EUROCRYPT'88, Lecture Notes in Computer Science 330: Advances in 

Cryptology, pages 191-209. Spinger-Verlag, 1988. 

[57] H. Niederreiter. Keystream sequences with a good linear complexity profile 

for every starting point. In Proceedings EUROCRYPT'89, Lecture Notes 

in Computer Science 434: Advances in Cryptology, pages 523-532. Spinger­

Verlag, 1989. 

[58] H. Niederreiter. Linear complexity and related complexity measures for se­

quences. In Progress in Cryptology - INDOCRYPT 2003, volume Volume 

2904/2003 of Lecture Notes in Computer Science, pages 161-245, Berlin / 

Heidelberg, 2003. Springer. 

[59] H. Niederreiter. Periodic Sequences with Large k-Error Linear Complexity. 

IEEE Trans. on Information Theory, 49(2):501-505, 2003. 

[60] K. G. Paterson. Root counting, the dft and the linear complexity of nonlinear 

filtering. Designs, Codes and Cryptography, 14:247-259, 1998. 

[61] F. Piper. Stream ciphers. Elektrotechnik und Maschinenbau, 104(12):564-568, 

1987. 



REFERENCES 170 

[62J J. M. Pollard. The fast fourier transform in a finite field. Mathematics of 

Computation, 25:365-374, 1971. 

[63J F. P. Preparata and D.V. Sarwate. Computational complexity of fourier 

transforms over finite fields. Mathematics of Computation, 31:740-751, 1977. 

[64J W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical 

Recipes in C++: The Art of Scientific Computing. Cambridge University 

Press, USA, 2002. 

[65J S. Ramanujan. On the Number of Divisors of a Number. Journal of the 

Indian Mathematical Society, VII:131-133, 1915. 

[66J C. R. Reeves. Using genetic algorithms with small populations. In Proceedings 

of the 5th International Conference on Genetic Algorithms, pages 92-99, San 

Francisco, CA, USA, 1993. Morgan Kaufmann Inc. 

[67J M. J. B. Robshaw. Stream Ciphers. Technical Report TR-701, RSA Labora­

tories, 1995. 

[68J M. J. B. Robshaw. On Evaluating the Linear Complexity of a Sequence of 

Least Period 2n. Designs, Codes and Cryptography, 4(4):263-269, October 

1994. 

[69J R. A. Rueppel. Linear complexity and random sequences. In Advances in 

Cryptology: Proceedings EUROCRYPT'85, Linz, Austria, volume Lecture 

Notes in Computer Science: Advances in Cryptology, pages 167-188. Spinger­

Verlag, 1985. 

[70J R. A. Rueppel. Analysis and Design of Stream Ciphers. Springer-Verlag, New 

York,1986. 

[71J R. A. Rueppel and O. J. Staffelbach. Products of Linear Recurring Sequences 

with Maximum Complexity. IEEE Trans. on Information Theory, 33(1):124-

131, 1987. 

[72J R. S. Safavi-Naini and J. R. Seberry. Pseudo-random sequence generators 

using structure noise. In J. H. Loxton, editor, Number Theory and Cryptog­

raphy (London Mathematical Society Lecture Note Series 154), pages 129-136. 

Cambridge University Press, 1990. 

[73J A. Salagean. On the computation of the linear complexity and the k-error 

linear complexity of binary sequences with period a power of two. IEEE 

Trans. Information Theory, 51(3):1145-1150, 2005. 



REFERENCES 171 

[74] A. Salagean. An algorithm for computing minimal bidirectional linear recur­

rence relations. In IEEE International Symposium on Information Theory. 

IEEE Computer Society, 2008. 

[75] C. E. Shannon. Communication Theory of Secrecy Systems. Bell System 

Technical Journal, 28(4):656-715, 1949. 

[76] T. Siegenthaler. Correlation-Immunity of N onlinear Combining Functions 

for Cryptographic Applications. IEEE Transactions on Information Theory, 

30(5):776-780, 1984. 

[77] G. J. Simmons. Contemporary Cryptology: The Science of Information In­

tegrity. IEEE Press, Piscataway, NJ, 1992. Rainer Rueppel, Stream Ciphers, 

chapter 2, pages 65-134. 

[78] W. Stallings. Cryptography and Network Security - principles and practices. 

Pearson Education, Inc., New Jersey, 2003. 

[79] M. Stamp and C. F. Martin. An Algorithm for the k-Error Linear Complex­

ity of Binary Sequences with Period 2n. IEEE Trans. Information Theory, 

39(4):1398-1401, 1993. 

[80] D. R. Stinson. Cryptography Theory and Practice. CRC Press LLC, United 

States of America, 1995. 

[81] G. Sywerda. Uniform crossover in genetic algorithms. In Proceedings of the 3rd 

International Conference on Genetic Algorithms, pages 2-9, San Francisco, 

CA, USA, 1989. Morgan Kaufmann Inc. 

[82] G. S. Vernam. Cipher printing telegraph systems for secret wire and radio 

telegraphic communications. Journal of the IEEE, 55(1):109-115, 1926. 

[83] M. Z. Wang and J. L. Massey. The Characterization of All Binary Sequences 

with Perfect Linear Complexity Profiles. In Proceedings of Eurocrypt'86, 

Linkoping, Sweden, 1986. 

[84] Jianqin Zhou and Xirong Xu. An algorithm for the k-error linear complexity 

of a sequence with period 2pn over gf(q). CoRR, absjcsj0512039, 2005. 

http://arxiv.org/abs/cs/0512039. 



Appendix A 

Rings, Ideals and Finite Fields 

This appendix summarises a few essential algebraic concepts which are used through­

out the Thesis. These along with more details can be found in algebra or finite 

fields textbooks like Lang [37], Lidl and Niederreiter [40, 39] or McEliece [46]. 

Definition A.1. A set of elements C with a binary operation " denoted (C,·) is 

a group if it satisfies the following properties: 

(i) . is associative. For any a, b, c E C, a· (b· c) = (a. b) . c. 

(ii) There is a identity element e E C such that e . a = a . e = a for all a E C. 

(iii) For each a E C, there exists an inverse element a-I E C such that a. a-I = 
a-I. a = e. 

If for all a, bE C, a·b = b'a then the group is called commutative or abelian. 

If C is a finite set then (C, .) is called a finite group. 

In the following we will only consider commutative groups. 

Definition A.2. Suppose S is a set. A subset R of a S x S = {(a, b) la E S, b E S} 

is a equivalence relation on the set S if it satisfies the following properties: 

(i) For any a E S, (a, a) ER (reflexivity). 

(ii) If (a, b) ER then (b, a) E R for any a, bE S (symmetry). 

(ii) If (a, b) ER and (b, c) ER then (a, c) E R for any a, b, c E S (transitivity). 

For a fixed a E S, the set [a] = {bl(a, b) E R} is called the equivalence 

class of a. The equivalence classes are inducing a partition of S into nonempty, 

mutually disjoint subsets. 

172 



APPENDIX A. RINGS, IDEALS AND FINITE FIELDS 173 

Definition A.3. A subset H of a group G is a subgroup of G if H is itself a 

group with respect to the operation of the group G. 

The subgroup H of the group G is called a normal subgroup ofG ifaha-1 E 

H for all a E G and all h EH. 

Remark A.4. All subgroups of an abelian group are normal. 

Theorem A.5. If H is a subgroup of G, then the relation RH on G defined by 

(a, b) E RH if and only if a = bh for some h E H, is an equivalence relation. 

Definition A.6. The equivalence relation RH is called congruence modulo H. 

It induces a partition of G into nonempty, mutually disjoint subsets corresponding 

to the congruence classes. These sets are called cosets of G modulo H and they 

are denoted by aH = {ahlh EH}. 

Theorem A.7. If H is a normal subgroup ofG, then the set of cosets ofG modulo 

H forms a group with respect to the operation defined by (aH)(bH) = (ab)H. 

Definition A.S. For a normal subgroup H of G, the group formed by the cosets 

of G modulo H is called the factor group of G modulo H and it is denoted G I H. 

Definition A.9. A set of elements R with two binary operations, + (addition) 

and· (multiplication), denoted as (R, +, .), is a ring if it satisfies the following 

properties: 

(i) (R, +) is a commutative group (stable, associative, commutative, has an 

identity element called 0, all a E R have an additive inverse denoted -a). 

(ii) Distributive law. For all a, b, c E F, (a + b)· c = a· c + b· c and a· (b + c) = 

a·b+a·c. 

Definition A.lO. A ring (R, +,.) is called a cancellation ring or a ring without 

zero-divisors if for all a, b E R, a . b = 0 '* a = 0 or b = O. 

Definition A.H. Let (R, +, .) be a ring and I <; R, a subset. I is called an ideal 

of R if it satisfies the following properties: 

(i) (I, +) is a subgroup of (R, +) 

(ii) for all i E I and a E R '* i . a E I and a· i E I. 

If there exists ik E I, k = 1, ... , t so that I = {L:~=l ikrklrk E R} then I is 

called finite generated and {iklk = 1, ... , t} is a base for that ideal. 

Definition A.12. If the set of generators of an ideal I is a singleton {i} then the 

ideal is called principal ideal and we denote it (i) = {i. rlr ER}. 



APPENDIX A. RINGS, IDEALS AND FINITE FIELDS 174 

Note that a singleton is a set containing one element. 

Definition A.13. An integral domain is a cancellation ring with an identity 

element. 

Definition A.14. A principal ideal domain (PID) is an integral domain in 

which every ideal is principal. 

Definition A.15. An ideal J of a ring R defines a partition of R into disjoint 

cosets, called residue classes modulo J. 

The default operations on the residue classes modulo J are for any a, b E R 

defined by (a+ J) + (b+J) = (a+b) + J and (a+ J)(b+ J) = ab+J. 

The ring of residue classes of the ring R modulo the ideal J under the default 

operations + and· is called the residue class ring or factor ring of R modulo 

J and it is denoted RI J. 

Definition A.16. A set of elements F with two operations, + (addition) and· 

(multiplication), denoted as (F, +, .), is a field if it satisfies the following proper­

ties: 

(i) (F, +,.) is a ring. 

(ii) (F*,·) is a commutative group (stable, associative, commutative, has an 

identity element called 1, all elements b E F have a multiplicative inverse 

denoted b-1
). 

Definition A.17. If F is a field, the ring of residue classes of F modulo an ideal 

J with the default operations + and· is called the factor field of R modulo J 

and it is denoted RI J. 

Definition A.IS. If R is an arbitrary ring and there exists a positive integer k 

such that kr = 0 for every r E R, then the least such positive integer k is called 

the characteristic of R. If no such positive integer exists then R is said to have 

characteristic O. 

Definition A.19. A field F with a finite number of elements is called a finite 

field. The number of the elements in a field is called the order of the field. A 

field of order q is also called a Galois field of order q and is denoted GF(q). 

Theorem A.20. A finite field has prime characteristic. 

Example A.21. 1. (2:, +,.) is an infinite ring. 

2. (2:4 = {a, 1, 2, 3}, +, .) where + and· are operations modulo 4 is not a can­

cellation ring since 2·2 = o( mod 4). 



APPENDIX A. RINGS, IDEALS AND FINITE FIELDS 175 

3. (JR, +, .), (Q, +, .), (C, +,.) are infinite fields. 

4. (GF(p) , +,.) or (Zp, +,.) with p a prime number are finite fields. 

Definition A.22. An isomorphism between two fields is a bijective function 

between the two fields, where both the function and its inverse are preserving the 

structure between the two fields. In this case we say that the two fields are isomor­

phic. If F and G are two isomorphic fields we say that F::: G. 

The most important result for the characterization of finite fields is the follow­

ing. 

Theorem A.23. There exists a field of order q if and only if q is a prime power 

(q = pm, m ;::: 1, p a prime integer). Furthermore, if q is a prime power, then, up 

to an isomorphism, there is only one field of that order, denoted GF(q). 

Definition A.24. Let R be an arbitrary ring. A polynomial over R is an 

expression of the form 

n 

f(x) = L aixi = ao + alx + ... + anxn, 
i=O 

where n is a nonnegative integer, the coefficients ai are elements of R for all i = 
0, 1, ... , n, an # 0, and x is a symbol not belonging to R, called an indeterminate 

over R. an is called the leading coefficient of f(x) and ao the constant term. n is 

called the degree of the polynomial and we say that n = deg(f). 

We say that f(X) has a free term if the coefficient ao is not zero, i.e. ao # O. 

If R has an identity element denoted with 1 and the leading coefficient of f(x) 

is 1 then f (x) is called a monic polynomial. 

The ring formed by the polynomials over R with the above operations is called 

the polynomial ring over R and is denoted R[ x]. 

Theorem A.25. If F is a field then the polynomial ring F[x] is a principal ideal 

domain. Moreover, for every ideal J # {O} where 0 is the identity, there exists a 

uniquely determined manic polynomial g E F[x) such that g is the generator of J, 

i.e. J = (g). 

Definition A.26. An element r in a ring R is irreducible if there is no pair of 

elements p, q E R such that p, q rf. {OR, 1R, r} and r = pq. 

A polynomial pE F[x) is said to be irreducible over F (or irreducible in F[x), 

or prime in F[x)) if p has positive degree and p = bc with b, c E F[x) implies that 

either b or c is a constant polynomial. 



APPENDIX A. RINGS, IDEALS AND FINITE FIELDS 176 

Theorem A.27. For f E F[x], the residue class ring F[xJ!(f) is a field if and 

only if f is irreducible over F. 

Remark A.28. The finite field GF(pm) can be built as the factor field Zp[XJ!(f), 

where f is a polynomial of degree rn, irreducible in Zp[Xl and (f) is the ideal 

generated by f in Zp[Xl. Note that the structure of the residue class ring Zp[X]/(f) 

can be characterized as being the set of all pm polynomials of degree strictly smaller 

than f and with coefficients in Zp [Xl. 
Zp[Xl/(f) = {g+ (f)lg E Zp[X]) = {r+ (f)lr E Zp[X],degr < degJ} 

Example A.29. Denote f(x) = x2 + X + 1 E Z2[X], an irreducible polynomial. 

In these conditions, Z2[XJ!(f) ~ GF(22) and we can consider as the elements of 

GF(22) the residue classes represented by the four polynomials of degree strictly 

smaller than three, i.e. 0,1, x, 1 + x. 

Definition A.30. An element b in a field F, is called a root of a polynomial 

f E F[xl if f(b) = o. 
Theorem A.3I. An element b E F is a root of a polynomial f E F[x] if and only 

if x - b divides f(x). 

Definition A.32. If F is a field, a subset K of F that it is itself a field under the 

operations of F is called a subfield of F. 

If K =I F than K is called a proper subfield of F. 

In these conditions F is called an extension (field) of K. 

Definition A.33. A field containing no proper subfields is called a prime field. 

Theorem A.34. The prime subfield of a field is isomorphic to either GF(p) or 

Q, according as the characteristic of F is a prime p or o. 

Definition A.35. Let K be a subfield of the field F and M a subset of F. Then 

the field K(M) is defined as the intersection of all subfields of F containing both 

K and M and is called the extension (field) of K obtained by adjoining the 

elements in M. 

For a finite subset M = {Ob ... ' On} we write K(M) = K(OI, ... , On). 

If M is a singleton {O}, then we write K(O) and say it is a simple extension 

of K and 0 is called the defining element of K(O) over K. 

Definition A.36. Let f E K[x] be of positive degree and F an eTtension field 

of K. Then f is said to split in F if f can be written as a product of linear 

factors in F[x], i.e. there exist elements aI, a2, ... , an E F such that f(x) = 
a(x - all ... (x - an), where a is the leading coefficient of f. 

The field F is a splitting field of f over K if f splits in F and if, moreover, 

K = K(ab a2, ... , an). 



APPENDIX A. RINGS, IDEALS AND FINITE FIELDS 177 

Note that a splitting field F of f over K is the smallest field containing all the 

roots of f, i.e. no proper subfield of F that is an extension of K contains all the 

roots of f. Due to the fact that we can prove an existence and uniqueness up to 

an isomorphism theorem with regards to splitting fields of f over K we refer to 

the splitting field F of f over K. 

Definition A.37. Let n be a positive integer. The splitting field of xn - lover 

a field K is called the n-th cyclotomic field over K and it is denoted K(n). The 

mots of xn - 1 in K(n) are called the nth roots of unity over K and the set of 

all these mots is denoted E(n). 

Definition A.38. A multiplicative gmup G is said to be cyclic if there is an 

element a E G such that for any bEG there is some integer j such that b = aj . 

Such an element is called a generator of the cyclic gmup and we write G = (a). 

Theorem A.39. Let n be a positive integer and K a field of characteristic p. 

Then: 

(i) If p does not divide n, then E(n) is cyclic gmup of order n with respect to 

the multiplication in K(n). 

(ii) If p divides n, write n = mpe with positive integers m and e and with m not 

divisible with p. Then K(n) = K(m), E(n) = E(m) , and the mots of xn - 1 in 

K(n) are the m elements of E(m), each attained with multiplicity pe. 

Definition A.40. Let K be a field of characteristic p and n a positive integer not 

divisible by p. Then a generator of the cyclic group E(n) is called a primitive 

nth root of unity over K. 

Definition A.41. Let F be a field. A vector space over the field F is a set V 

together with two binary operations: 

(i) vector addition: V x V -> V denoted v + w, wherev, w E V 

(ii) scalar multiplication: F x V -> V denoted av, where a E F and v E V. 

satisfying the following axioms: 

(i) closure under vector addition and scalar multiplication, i.e. v + w, av E V, 

for any v, wE V and any a E F. 

(ii) (V, +) group, where + is the vector addition. 

(iii) Distributivity of scalar multiplication with respect to vector addition, i. e. 

a(v + w) = av + bw, for any v, wE V and any a E F. 



APPENDIX A. RINGS, IDEALS AND FINITE FIELDS 178 

(iv) Distributivity of scalar multiplication with respect to field addition, i.e. (a + 
b)v = av + by, for any v E V and any a, bE F. 

(v) Compatibility of scalar and field multiplication, a(bv) = (ab)v, for any v E V 

and any a, b E F. 

(vi) Identity element of scalar multiplication, i.e. if the multiplicative identity of 

F is denoted 1 then Iv = v. 

We denote a vector space V over a field F with (V! F, +, .). 

Definition A.42. A map from a vector space to another L : VI! F -> Vz! F is 

called a linear operator if it satisfies the following: 

(i) L(v + w) = L(v) + L(w), for all v, wE Vi, 

(ii) L(av) = aLlY) for all a E F and v E Vi, 








