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Abstract

Some cryptographical applications use pseudorandom sequences and require that
the sequences are secure in the sense that they cannot be recovered by only know-
ing a small amount of consecutive terms. The security of the sequences is trans-
lated into several measurable characteristics. For example they should have a large
linear complexity and also a large k-error linear complexity.

This thesis focuses on the k-error linear complexity of sequences. Currently,
efficient algorithms for computing the k-error linear complexity of a sequence
only exist for special classes of sequences, e.g. of period equal to a power of the
characteristic of the field. It is therefore useful to find a general and efficient
algorithm to compute a good approximation of the k-error linear complexity.

Firstly we present a general heuristic algorithm which approximates the k-error
linear complexity of sequences by taking advantage of the incremental nature of
the Berlekamp-Massey Algorithm. Secondly, we investigate the application of
evolutionary techniques for the approximation of the k-error linear complexity.
While the complexity of these heuristic algorithms is still exponential, they are
consistently more efficient than the exhaustive search and they are working on
general sequences over arbitrary finite fields. The accuracy of the results of the
algorithms is experimentally analysed.

Finally, we investigate using the Discrete Fourier Transform and Blahut’s The-
orem for calculating the k-error linear complexity of sequences. We present a new
concept, a natural extension of the k-error linear complexity, denoted the extension
field k-error linear complexity and devise algorithms to compute it.

While the problem of computing the k-error linear complexity remains open,
a collection of algorithms to use in different situations is provided and the ap-
proximate results obtained can be useful in the design stage of the cryptographic
sequences in order to quickly eliminate the insecure ones.




Notation

These are some of the most important notations used throughout this thesis.

8= 8081.++8t—-1.+. , . .
an infinite sequence of size ¢

s = (sos1...8Nn-1) . . T
an infinite periodic sequence

= 8081 ...81-1 finite sequence

t the size of the finite sequence s

k the number of errors

N the period of the infinite periodic sequence s

wy(s) Hamming weight of a sequence s

C(X) the characteristic polynomial

GF(p™) a finite field of characteristic p and order p™, where p is
prime and m > 1

K the base finite field

F the extension field of K which contains an N-th root of
unity, where N is the period of the sequence s

L(s) the linear complexity of s

Li(s) the k-error linear complexity of s

L™ (s) the linear complexity of the initial segment of size n for

the sequence s

L™ (s) the k-error linear complexity of the initial segment of
size n for the sequence s

ELgn(s) the extension field k-error linear complexity of the infi-
nite periodic sequence s of period N




Abbreviations

BMA Berlekamp-Massey Algorithm

DFT Discrete Fourier Transform

EESA Efficient Exhaustive Search Algorithm
FFT Fast Fourier Transform

FSM Finite State Machine

GAP Groups, Algebra and Programming

kGA k-Error Genetic Algorithm

kSAA k-Error Simulated Annealing Algorithm
LFSR Linear Feedback Shift Register

MBMA Modified Berlekamp-Massey Algorithm
NESA Naive Exhaustive Search Algorithm

PRNG Pseudo-Random Number Generator




Chapter 1

Introduction

1.1 Motivation

In this thesis we study the k-error linear complexity of sequences over finite fields.
The k-error linear complexity is a generalisation of the notion of linear complexity.
While the linear complexity of a sequence is defined as the length of the smallest
linear recurrence relation which generates that sequence, the k-error linear com-
plexity is the length of the smallest linear recurrence relation that generates a
sequence which differs from the original in at most & positions. Formal definitions
of these concepts are included in section 2.2.

Our aim is to investigate theoretical results and algorithms for computing
and/or approximating the k-error linear complexity of sequences (see the definition
of the problem in section 3).

We motivate this study by considering the following application from crypto-
graphic sequence design and cryptanalysis.

When designing a stream cipher, the keystream sequence has to have a large
linear complexity. The reason is that using the Berlekamp-Massey Algorithm
(Berlekamp [4], Massey [42]), a sequence can be efficiently recovered by knowing a
nmumber of consecutive terms equal to twice its linear complexity. Sequences with
low linear complexity would therefore be vulnerable to known plaintext attacks.
Similarly, sequences with low k-error linear complexity for small values of & could
also be vulnerable if the corresponding linear recurrence relation was found.

From a design point of view it is also useful to predetermine the level of security
of the keystream sequence which is used in a cipher in order to prevent successful
cryptographic attacks.

It is therefore important to have tools to evaluate the k-error linear complexity
for cryptographic sequences.
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1.2 State of the art

Efficient exact algorithms to compute the k-error linear complexity exist for certain
classes of sequences, e.g. periodic sequences over a finite field GF(p™) and with
period of a certain form, namely equal to a power of the characteristic of the field
p, p being prime and m > 1 (see Stamp and Martin [79], Lauder and Paterson
[38] for p = 2 and Kaida, Uehara and Imamura [31] for an arbitrary p). These
results are based on the algorithms of Games and Chan [17] and Ding, Xiao, Shan
[12] for computing the linear complexity of such sequences.

These algorithms have as input a full period of the sequence, i.e. the whole
sequence should be known apriori, they are therefore useful mostly in the design
stage for cryptographic sequences and not so much in cryptanalysis applications.

1.3 Contribution

We firstly show some heuristic methods for approximating the k-error linear com-
plexity for finite sequences over finite fields. The advantage of these algorithms is
that they work on arbitrary sequences and even if they only approximate the exact
result, the approximation is accurate and the computational time complexity is
at a manageable level. Therefore these algorithms can be a useful tool to quickly
eliminate unsecure cryptographic sequences. We implemented a few heuristic al-
gorithms. The first uses a recursive version of the Berlekamp-Massey Algorithm
(Chapter 4). Further we present and analyse two which are using genetic algo-
rithms and simulated annealing techniques, respectively (sections 5.1 and 5.2).
We investigate and estimate the efficiency and accuracy of these methods and we
compare these techniques showing advantages and disadvantages. The accuracy of
the approximation is compared to the exact result returned by an efficient version
of the exhaustive search algorithm, which we present in Chapter 3.

Secondly, we show how to use Blahut’s Theorem (Rueppel [70]) which relates
the Discrete Fourier Transform of periodic sequences to their linear complexity,
for approximating the k-error linear complexity. This work has led us to a new
concept, the extension field k-error linear complexity, which is useful from a crypt-
analysis point of view. We motivate the definition and the applications of this
concept and we create an algorithm to approximate its value (Chapter 6).

Parts of the research findings in this thesis are joint work with Ana Saldgean
and have been (or will be) published by Springer-Verlag in Lecture Notes in Com-
puter Science (LNCS) series [2) and by IEEE Computer Society Press, [1) and [3].
The content of [2] forms the basis of chapter 4 and the content of [1] is extended
in chapter 5. In addition, the notion and algorithm presented in [3] are extended
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in chapter 6.

1.4 Thesis structure

This thesis details our research outcomes on Algorithms for the k-error linear
complexity of cryptographic sequences over finite fields.

We start with a brief introduction, a motivation of our research and highlight
the main contributions of the thesis (Chapter 1).

Chapter 2 sets out the general and mathematical background for the problem.
Also, for each of the concepts introduced it includes a short review of the current
known results which are relevant to this thesis.

In chapter 3 we clearly define the problems that we are interested in, when
designing the algorithms presented in this thesis. The chapter includes a detailed
description and analysis of an exact and general method of calculating the k-error
linear complexity of sequences over finite fields, the exhaustive search. We intro-
duce and analyse a more efficient version of the exhaustive search (the Efficient
Exhaustive Search Algorithm), the exact results produced by this algorithm being
used throughout the thesis as a reference for the efficiency and accuracy of the
results of the proposed heuristic algorithms.

In chapter 4, we propose adapting the Berlekamp-Massey Algorithm (see Berlekamp [4],
Massey [42]) which computes the linear complexity, in order to approximate the
k-error linear complexity profile for a finite sequence over an arbitrary finite field.
The main idea in a heuristic algorithm is to explore only some of all the possible
error sequences. The choice of the positions of the errors in this case is guided by
the steps of the Berlekamp-Massey Algorithm in which the complexity increases.

Chapter 5 presents two evolutionary techniques applied to the problem of com-
puting the k-error linear complexity of sequences, genetic algorithms (Chapter 5.1)
and simulated annealing {(Chapter 5.2). We are focusing on finding best choices
for the parameters involved in each technique (e.g. population size, number of
generations, technique of selection, crossover or mutation for genetic algorithms
or cooling schedule and evaluation function for simulated annealing) such that the
resulting approximation is accurate and the computational time stays polynomial.

Chapter 6 of the thesis includes techniques for infinite periodic sequences and
shows how to use the Discrete Fourier Transform and Blahut’s Theorem to cal-
culate the k-error linear complexity. A new concept is introduced, the extension
field k-error linear complexity, ELy n(s), and algorithms to approximate it are
presented and experimentally analysed.

We conclude and suggest some possible developments of our work in Chap-
ter 7.




Chapter 2

Background

2.1 General Background

The wide area of cryptology includes two main branches: cryptography on one
side, e.g. methods for securing the communication over an insecure channel, be-
tween a sender (usually named Alice) and a receiver (Bob) (see figure 2.1), and
cryptanalysis on the other side, e.g. methods for secretly eavesdropping or inter-
fering in a transmission between a sender and a receiver.

The message before encryption is called plaintext and the encrypted message
is called ciphertext.

A system designed for the secure communication between a sender and a re-
ceiver can be formally described by the notion of cryptosystem (cryptographic
system) or cipher. The encryption/decryption is the controlled modification of
the plaintext/ciphertext using one or more characters, called key. Cryptosystems
are usually classified in secret-key (symmetric) cryptosystems (see figure 2.2) or
public-key (asymmetric) cryptosystems.

The public-key cipher allows the sender to use publicly known information in
order to encrypt and send a message to the receiver, such that only the latter
can decrypt it. On the other hand, the secret-key ciphers require the secure
transmission of a secret key in advance, which is only known by the sender and
receiver (see figure 2.2). A sequence of values used as key is called a key stream.
This thesis only deals with symmetric cryptosystems, therefore in the following

- plaintext ciphertext laintext
A||ce___...h encryption e  ——m— —— decryptlon ._i__> Bob

Eve

Figure 2.1: Cryptography
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‘‘‘‘ - secure
key ] } > key j
% '|° ] 1 [ 'Ia I
{2 | I o
RO 30
key stream | | key stream
1,,1,0 1,0,1,0
! |
' 0,0,0,1
Alice—————encrypti------ | A }----»idecryp —— Bob
plain text : cipher text plain text
1,0,5,1 | e=kxorpl] 1,0,1,1

| EVE& Junsecure

Figure 2.2: A symmetric cryptosystem

we will refer to secret-key cryptosystems simply as cryptosystems.

The cryptanalysis of a cryptosystem usually relies on the nature of the en-
cryption/decryption algorithm and some knowledge of the nature of the plaintext.
Depending on the level of involvement of the intruder in the encryption system,
the attacks can be passive or active attacks.

The starting point for any type of cryptanalysis is the encryption algorithm
and a portion of intercepted ciphertext. Depending on the amount of additional
information known by the cryptanalyst, there are five types of attacks: ciphertext
only, known plaintext, chosen plaintext, chosen ciphertext and chosen text. They
all assume that at least the encryption algorithm and the ciphertext to decode are
known. Generally, a cipher is considered secure if it is designed to resist a known
plaintext attack. However, there are other types of security, for example (Menezes
et al. [52]):

e A cipher is unconditionally secure if the ciphertext generated using that
cipher is completely independent from the corresponding plaintext, i.e. it is

equally probable for any plaintext to be encrypted to obtain that ciphertext.

s A cipher is computationally secure if the computational cost of breaking the
cipher exceeds the importance of the encrypted information and if the time

required to break the cipher exceeds the useful lifetime of the information.

Definition 2.1. (Stinson [80]) A symmetric cryptosystem is a 5-tuple (P,C,K,E, D)
where the following conditions are met:
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o P is a finite set of plaintext messages (text before encryption),
P={plp=pip2.-.0mym > 1,p; € A,;i=1,2,...,m}, where A is a finite
alphabet for the plaintext messages.

e C is a finite set of ciphertext messages (encrypted text),
C={cle=cey...cnn > 1, € Byi = 1,2,...,n}, where B is a finite
alphabet for the ciphertext messages.

e K i3 a finite set of keys over a finite alphabet K.

o (Vk € K, (3) an encryption function e, € £, e : P — C and a corre-
sponding decryption function d, € D, dy, : C — P such that di(ex(p)) = p,
MpeP.

Symmetric cryptosystems can be classified further in block ciphers and stream
ciphers. Essentially, the difference between the two is that first processes blocks
of characters from the plaintext at a time whereas the second processes one char-
acter at a time. Here we are only interested in stream ciphers which are devices
with internal memory, encrypting one character at a time by combining it with
a character from the secret key stream. The j%* character of the plaintext, p;, is
enciphered into the j® character of the ciphertext, ¢;. Due to the fact that in a
known-plaintext attack scenario, the stream cipher is fully characterised by the
key stream employed, a stream cipher is considered to be secure if knowledge of a
small number of subsequent bits of the key stream is not sufficient to recover the
entire key stream (e.g. Rueppel [70], Robshaw [67]).

An effort to standardise the stream ciphers has been undertaken by a recent
eCRY PT project called eSTREAM [13]. The project has resulted into a port-
folio of stream ciphers which are advisable to use: HC-128, Rabbit, Salsa20/12,
SOSEMANUK, Grain v1, Mickey v2 and Trivium.

Stream ciphers are widely used, especially when it is necessary to encrypt large
amounts of data very quickly. The main advantages of strcam ciphers are that
they are fast, easy to implement in hardware and appropriate for limited buffering
conditions. They allow limited error propagation, detection of active attacks and
a good diffusion of plaintext statistics. Also their definition is straightforward and
well fundamented from a mathematical point of view.

One of the most famous stream ciphers is the one-time pad. The one-time pad
cipher was derived from the Vernam cipher devised in 1926 (Vernam [82]) and,
as proved mathematically by Shannon {75] using information theory methods,
providing the key is truly random, never reused and kept secret, it constitutes
the only unconditionally secure cipher. However, the one time pad has a low

practical value since it is very expensive to implement, firstly because it needs
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Figure 2.3: Stream cipher system based on addition.

the generation of a truly random key strcam at least as long as the plaintext and
secondly, because it requires that this long key stream to be transmitted securely
to the receiver.

It is expensive and unsecure to exchange large key streams between the sender
and the receiver. This is why a key stream generator is usually employed which
expands a short, truly random key & into a long pseudo-random sequence. Pseudo-
random sequences have statistical randomness properties while being generated
by an entirely deterministic causal process. Apart from allowing for better anal-
ysis, the determinism is particularly useful in cryptographic applications since it
allows the sender and the receiver to (re)generate the same key to use for encryp-
tion/decryption.

Usually, in stream ciphers the plain text bits are encrypted one at a time by
adding (XOR in binary terminology) them with a bit from the secret key stream.
The simplest and most widely used stream cipher is the binary cipher based on
addition (see figure 2.3). The encryption consists of adding (XOR) the key value
to the plaintext character (¢; = k; @ p;) and the decryption consists of adding
(XOR) the key to the ciphertext character (p; = k; @ ¢;).

One way to describe a key stream generator is to use a Finite State Machine
(FSM) with output (Ding, Xiao, Shan [12]). However a widely used mechanism
of generating a key stream is the Linear Feedback Shift Register (LFSR), which
is a special case of an FSM. It provides a simple way of generating an infinite
(eventually periodic) sequence of terms over a field, the sequence having a non-
trivial structure.

A LFSR can be implemented in software or hardware and it can generate

sequences with ‘good’ statistical properties, therefore it is commonly used as a
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Figure 2.4: A general L-stage Linear Feedback Shift Register.

Pseudo-Random Number Generator (PRNG).

A general LFSR of length L consists of a cascade of L unit delays® or stages,
linked (using constant adders?, constant multipliers ® and wires) so that they allow
the computation of a linear combination of cell contents whose value then serves as
the input back to the first stage (see figure 2.4). The output of the LFSR is taken
from the rightmost unit. The initial content sq, 81,...,8r—; of the L unit cells is
called the seed, initial load or key and it coincides with the first L output digits
(Lidl and Niederreiter {39]). The remaining output digits are uniquely determined

by the following linear recurrence relation:

-1
sj=—Y GSipj-r, forall j=L,L+1,... (2.1)
i=0
The output terms and the feedback coefficients ¢g, ¢y, ..., cp -1 lie in the same

field as the initial terms and the generated sequence. The sequence generated by a
LFSR or by a linear recurrence (2.1) is called linear recurrent. If the initial values
are over a finite field K of order ¢, then the sequence is periedic with period of
at most g* — 1, where L is the number of stages in the LFSR (see property 2.5
in section 2.2 for more details). A sequence gencrated by a Lincar Feedback Shift
Register of size L and with terms in a finite field of order ¢ is called a maximum
length(ML) sequence if its smallest period takes the maximum value ¢ — 1.

The function defined by the recurrence relation is called the feedback function

1An unit delay is an electronic device which has one input, one output and is regulated by
an external clock so that its input as a particular time appears as its output one time unit later.

2A constant adder is a special kind of electronic switching circuit which has two inputs and
one output, the output being the sum (over the appropriate field) of the two inputs.

3A constant multiplier is an electronic device with an internal value, an input and an output,
the output being the product of the input value and the internal value (over the appropriate
field).
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of the LFSR.
-1
(8oL, 8jop—1,. -+, 8j-1) = — Zcisi-i-j—L, forallj=L,L+1,... (2.2)
i=0

The stages which participate in the feedback are called taps and the list of
taps is known as the tap sequence.

Often the key stream is gencrated using a certain combination of Linear Feed-
back Shift Registers (LFSRs) which expands a short key shared by the sender and
receiver into a longer pseudo-random sequence. However, any recurrent sequence
over a finite field is linearly recurrent and can therefore be generated by one single
(usually much larger) LFSR.

The effort of building secure stream ciphers equates to generating a secure
key stream. The following is a list of the main properties mentioned in the
literature which support and characterise the psuedo-randomness of a sequence
(see Golomb [22], Rueppel [77), Ding, Xiao and Shan [12], Menezes et al. [52],
Stallings (78], Stinson (80]).

1. The sequence needs to be balanced. For a sequence over an arbitrary finite
field GF(q) this translates to the fact that the probability of a term of the
sequence to be equal to any value ¢ € GF(q) is constant (not depending on
a). In particular, for binary sequences balanced means that the number of
ones equals the number of zeros in the sequence. (Golomb [22], Stallings [78])

2, The key stream must have a ‘large’ period, since one full period defines
the whole sequence. A linear recurrence for a sequence with period n is
simply sipn = 8, (V)i = 0,1,..., so if n is small it is ecasy to recover the
whole sequence by only intercepting n terms. (Ding et al. [12], Rueppel [77],
Stallings [78], Menezes et al. [52])

3. The key stream terms need to appear as being drawn from an uniform dis-
tribution; the key stream should have uniform statistics, i.e., an equal dis-
tribution of single bits, of pairs, triplets of bits, etc. (Golomb [22], Ding et
al. [12], Rueppel [77], Menezes et al. [52))

4. For binary sequences, the sequence needs to have a two levelled auto-correlation

function. The auto-correlation function of a binary sequence s is defined as

= lim — E 88
N—vooN non+8,

where the binary sequence is considered as a string of 1s and -1s, rather then
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1s and 0s and @ is an integer called the phase shift. For random sequences
C(0) is very close to 0 for & # 0 and a constant, high value for § = 0.
(Golomb [22, Chapter 3])

5. The linear complexity of the sequence (i.e. the size of the shortest LFSR
which generates that sequence) needs to be large. The reason is that there is
an efficient algorithm (Berlekamp-Massey Algorithm) for finding the shortest
LFSR corresponding to a sequence of linear complexity L, having as input
only 2L consecutive terms of the sequence. (Ding et al. {12], Rueppel [77],
Menezes et al. [52])

6. The k-error linear complexzity of the sequence (i.e. the size of the shortest
LFSR which generates the sequence in which at most & bits are changed in
each period) needs to be large enough for all relatively small k. { Ding et
al. [12], Stamp and Martin [79)])

7. The sequence needs to meet the principle of confusion, every key stream bit
must be a complex transformation of all or most of the key bits. (Ruep-
pel [77])

8. The sequ.'ence needs to meet the principle of diffusion, i.e. redundancies
in segments of the sequence must be dissipated on the whole length of the
sequence. For example, if the sequence is generated using a combination
of LFSRs, it is better to interleave characters produced by different LFSRs
than to concatenate the keystreams generated by each LFSR. (Rueppel [77]})

9. For sequences generated by a non-linear filtered shift register, the boolean
function used to filter the output of the shift register needs to be ‘highly’
nonlinear, taking into account properties like the mtP_order correlation im-
munity (Siegenthaler [76]), the distance to linear functions, the avalanche
criterion ete. {(Rueppel {77}, Ding et al. [12])

2.2 Mathematical Background

In the following we include the definitions and some properties of the main concepts
used throughout the thesis. We will consider infinite or finite sequences usually
denoted as s. The sequence terms lie in a finite field GF(g),¢ = p™, where p
is a prime number and m > 1. Some of the basic algebraic concepts are briefly
summarised in Appendix A.

More details about linear recurrent sequences and terminology can be found
for example in Lidl and Niederreiter [39].
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2.2.1 Linear recurrences

Definition 2.2. Given an infinite sequence 8 = 3o,51,... (0r a finite sequence
8= 89,81,...,5t—1) with elements in o field K, we say that s is a linear recurrent

sequence tf it satisfies a relation of the form
8; +CL—18j-1+ ... + C18j—+1 + CoSj-L = 0 (23)

forallj = L,L+1,... (or forallj = L,L+1,...t — 1, respectively), where
€p, C1,...,C—1 € K are constants.
The equation (2.3) is called a homogeneous linear recurrence relation of order

L. A recurrence relation of minimal order is called ¢ minimal recurrence relation.

If a finite or infinite sequence s satisfies one linear recurrence relation then it
satisfies an infinite number of linear recurrence relations. However, for an infinite
sequence the minimal recurrence relation is unique, whereas for finite sequences,
a minimal recurrence relation has a fixed order, but it is not necessarily unique.

Knowledge of a recurrence relation of order L for a sequence s and any L
successive terms of that sequence is enough for generating all the terms of the
sequence. Therefore, a finite or infinite linear recurrent sequence is fully specified
by its characteristic recurrence relation of size L and by the L initial terms.

The mathematical foundations of linear recurrent sequences have been firstly
set by Golomb [22]. Besides the characteristic polynomial (section 2.2.2) some
other methods of formalising the linear recurrent sequences are proposed: the
generating function and the matrix method (Lidl and Niederreiter [39]).

2.2.2 Characteristic polynomial

To any linear recurrence relation of a sequence, we can associate a polynomial
whose coefficients are the feedback coefficients ¢; for all i = 0,1,...,L — 1. This
polynomial is called a characteristic polynomial for that sequence and it can be

defined in one of several ways. Two options are commonly used in literature:

CX)=Xldep X dep o X5 2 e X + ¢ (2.4)

O(X) = XP 4 X1 4 6 XE2 4 bepoX des (25)

We denote the characteristic polynomial associated to the minimal linear re-
currence relation, the minimal characteristic polynomial.
We chose in this thesis the first definition (2.4) for mathematical reasons. Using

this definition, it is well known that the minimal characteristic polynomial of a
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sequence s is unique and that any other characteristic polynomial of that sequence

is a multiple of the minimal characteristic polynomial.

Definition 2.3. Given an infinite sequence s = sg, 81,... (or a finite sequence
s = 89, 81,...,8_1) with elements in a field K and a polynomial

CX)=Xlt e X oo X5+ 4+ aX + o,

with L > 0 we say that C(X) is a characteristic polynomial of s if the associated
linear recurrence s satisfied by the sequemnce s

85+ cp-18j—1+ ... + C8j—r1 + CSj-L = 0 (26)

forallj = L,L+1,... (or forall j = L,L +1,...t — 1, respectively), where
€0, C1,---,¢0—1 € K are constants.

If the linear recurrence is the minimal recurrence for the sequence, then the
characteristic polynomial is called the minimal characteristic polynomial. In these
conditions, we say that the polynomial C(X') generates the sequence s.

A characteristic polynomial is also called in literature a connectioﬁ polynomial
(Ding, Xiao and Shan [12}) or a generator polynomial (Massey [42]).

For an infinite sequence the minimal characteristic polynomial is unique, whereas
for finite sequences, the minimal characteristic polynomial has a fixed degree, but
it is not necessarily unique.

Golomb [22] proves that the minimal characteristic polynomial of a maximum
length (ML) sequence is primitive and therefore, the search for pseudo-random

sequences can be reduced to finding primitive characteristic polynomials.

2.2.3 Periodic sequences

Definition 2.4. A sequence s = 8, 81,. .. over a finite field is called ultimately
periodic if there exists the integers N > 0 and ng > 0 such that spyn = 8a, for
all n > ng. The number N is called a period of the sequence and the smallest N
with the previous property 18 called the minimal period of the sequence.

Property 2.5. For infinite sequences over finite fields the following three proper-
ties are equivalent:

(i) ultimately periodic;
(it) recurrent;

(itt) linear recurrent.
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Figure 2.5: A LFSR for a ultimately periodic sequence.

Proof. (i) = (4), (#) Suppose s is an ultimately periodic sequence. Therefore
there is a linear recurrence relation of order N + no for the sequence (see defini-
tion 2.4):

8; =8;-n, forall f=no+ N,np+ N+ 1,..., where N > 0,ny > 0.

The corresponding characteristic polynomial is C(X) = X¥*" — X" and the
corresponding LFSR is as shown in figure 2.5. Therefore, the sequence is also
recurrent and linear recurrent.

A linear recurrent sequence is obviously recurrent, therefore (4ii) = (i) is also
easily proved.

(i1) = (i) Suppose the sequence s is recurrent. Therefore there is a value L so
that 8; = f(Sj_r,8j-L+1,--.,8j-1), for all j = L, L+1,..., where f : (GF(g))* —
GF(q) is an arbitrary function. There are ¢* possible combinations of L terms
from the considered finite field (where ¢ is the order of the field).

The sequence is infinite and the field is finite, therefore there must be a segment
of L values which repeats in the sequence at least once, after at most ¢” steps (all
possible combinations of L values from the finite field of order g). When a segment
of size L repeats, it means that using the function f, the same sequence of terms
will be generated. It follows that the sequence is ultimately periodic.

A similar justification, with the single change that the feedback function needs
to be linear is valid for the implication (4¢) = (¢). 0

Proposition 2.6. The minimal characteristic polynomial of any periodic infinite
linear recurrent sequence over a finite field has a constant term. Moreover, the

characteristic polynomial of a sequence with period N divides X~V — 1.

Proof. Suppose s is an infinite periodic linear recurrent sequence and that the
minimal period of the sequence is IV, It follows that a linear recurrence relation
for the sequence would be s; .y = s;, for all ¢ > 0 which implies a characteristic
polynomial of s would be C(X) = XV — 1.

All characteristic polynomials of the sequence s are multiples of the minimal
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characteristic polynomial. Therefore, if we denote D(X) the minimal characteris-
tic polynomial of s, C(X) = XV —1 = D(X)h(X), for some h(X) € GF(g)[X], it
follows that the minimal characteristic polynomial of s has a constant term and
that it divides XV — 1. O

Note that if the minimal characteristic polynomial does not have a constant
term, it means that by teking a power of X as factor (suppose the maximal fac-
tor is X™), a reduced characteristical polynomial can be found for the periodic
part of the sequence. This defines the recurrence which generates the sequence
starting with s,, and ignoring the first ny terms, sg, s1,. .., 8ny—1 not participat-
ing in the recurrence (see the corresponding LFSR in figure 2.5 for a graphical
representation).

Therefore, if the sequence is ultimately periodic, by removing the initial seg-
ment which does not participate into the recurrence, a characteristic polynomial
with a constant term can be obtained for the periodic part of the sequence. This
is an important remark showing that in applications the initial non periodic part
of sequences can be ignored.

This is why in most cryptographic applications the key streams can be con-
sidered periodic; even more so for cryptanalysis since the attacks do not usually
involve intercepting the first few terms of the key stream. S&ligean [74] presents
an algorithm which finds the minimal characteristic polynomial with a non zero
constant term for a sequence.

The interpretation of proposition 2.6 is that finding the lincar recurrence which
generates the periodical part of the sequence would be enough to break the cipher,
therefore, the sequences should be designed to have both a characteristic polyno-
mial of large degree and with a constant term; only one of these conditions is not

sufficient.

2.2.4 Linear Feedback Shift Registers

To any linear recurrence relation we can assign a Linear Feedback Shift Register
(sce figure 2.4 in section 2.1). |

We say that a LFSR generates a finite sequence sg, s3,. .., 8;—1 if the sequence
coincides with the first ¢ output digits of the LFSR for some initial loading of the
LFSR. A sequence generated by a LFSR can be defined by a linear recurrence
relation or, equivalently, by a characteristic polynomial. If the size of a LFSR
is L with L > ¢, then the LFSR can always generate the sequence by including
the sequence terms in the initial loading. If L < ¢, then the LFSR generates a
sequence ¢ if and only if the linear recurrence relation corresponding to the LESR
is a recurrence relation for the given sequence (see relation (2.3)).
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The feedback coefficients of a linear recurrence relation can be zero. If the ones
corresponding to the unit cells next to the cutput of the corresponding LFSR
are zero then the values included in these unit cells do not get included in the
recurrence and the first terms of the generated sequence do not participate in the
generation of the following terms of the sequence. Further, note that a LFSR
with L stages and all feedback coefficients equal to zero generates the sequence:
80,81y +-+580-1,0,0,....

By convention, the all-zero sequence is generated by a LFSR with length L =
0. The linear recurrence relation corresponding to the LFSR of length L = 0
0-s; =0, for all j =0,1,... and the characteristic polynomial is C(X) = 1.

We will assume in the following that at least one of the feedback coefficients is

non Zero.

2.2.5 Linear complexity

Definition 2.7. Given an infinite sequence s = so,51,... {07 a finite sequence
8 = 80, 81,---,8-1) with elements in a field K, the linear complezity of s, denoted
L(s) can be equivalently defined as:

(i) the order of the minimal linear recurrence of s
(ii) the degree of the minimal characteristic polynomial of s

(iii) the size of the smallest Linear Feedback Shift Register which generates s.

The linear complexity of a finite or infinite sequence is unique. Note that
L(s) = 0 if and only if the terms of the sequence are all zero.

If a sequence has linear complexity L, the minimal linear recurrence relation,
the minimal characteristic polynomial or the Linear Feedback Shift Register that
generates that sequence can be determined knowing only 2L consecutive terms.

Determining the linear complexity and the minimal characteristic polynomial
of a finite sequence can be done by solving the system of lincar equations obtained
by writing the recurrence relation (2.3) for all § = L, L+1,...,2L—1. Commonly
though, the efficient and intuitive method for computing the linear complexity of
a sequence is by using the Berlekamp-Massey Algorithm (see section 2.2.6).

Property 2.8. For an infinite sequence s = sg,81,... (or a finite sequence s =
80y 81500 ,Sg_l) a'ndfortl,tg with () _<_ ty <ty < 7", L(So,sl, cae ,Stl_l) < L{Sg, 81,4
i.e. L(s) is increasing with the number of terms for a fized s.

Property 2.9. For an infinite sequence s = sg,81,... (or a finite sequence s =
50,81+« St—1) L(S0y814...,81-1) < ¢, forallt >0 (or forallt =0,1,...,t -1,
respectively).

- stz—l)J
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Definition 2.10. Suppose s is an infinite sequence s = 8, 81,... {(or a finite
sequence 8§ = Sp,81,...,8t_1). The set {L(sg,s1,...,8-1)] for allt = 0} (or
{L(s0,81,-,8n—1) | for all 1 < n < t}, respectively) is called the linear com-
plexity profile of the sequence s.

The first paper which outlines the notion of linear complexity of a sequence
is Massey [42] which defines it as the size of the shortest Linear Feedback Shift
Register which generates the sequence.

The notions of linear complexity and linear complexity profile were closely
analysed by Rueppel [70, 69]. In an effort to see the relation between the value
of the linear complexity and the randomness of a sequence, Rueppel shows that
for random binary sequences which are independent and uniformly distributed the
expected value of the linear complexity is approximately % for a sequence of size
t, where the linear complexity is seen as a random variable. The variance of the
linear complexity is very close to a constant which depends on the length of the
sequence.

Rueppel claims that a good random sequence generator should have linear
complexity close to the period length, and also the linear complexity profile should
follow closely but irregularly the £ line exhibiting therefore average step lengths
and heights of 4 and 2, respectively. Following this observation, a sequence with
a perfect linear complexity profile is defined by Rueppel as follows.

Definition 2.11. A sequence s of length n is said to have a perfect linear complex-
ity profile if L(so, 51,...,8m) = 2], for allm = 1,2,...,n, where |z] denotes
the largest integer not greater than z.

While giving this general rule, Rueppel conjectures that there are sequences
of length ¢ which are highly non random and do however have a linear complexity
profile which follows closely £. For example the sequence given by (2.7) meets
this description. The conjecture was proven and it was shown that the sequence
of size n defined by (2.7) has linear complexity |(n+1)/2] (Dai [11]) as well as a
perfect linear complexity profile as defined by Rueppel. Even with a high linear
complexity and with a good linear complexity profile, the sequence is very sparse

and not random.

i={ 1, when i has the form i =2 — 1, and t = 0,1,2,. .. 2

0, otherwise.

A full characterisation of the sequences with a perfect linear complexity profile
can be obtained using Berlekamp-Massey Algorithm (Wang and Massey [83]). It
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can be shown that all the sequences with a perfect linear complexity profile can
be obtained by solving a system of linear equations, see (2.8).

p
so=1

82 = 81+ 8o

89 = 82;—1 T Si1

[ S2(n-1) = S2(n-1)-1 T Sn—2

Niederreiter [55] establishes the connection between the linear complexity of a
sequence and the continued fraction expansion of the generating function corre-
sponding to that sequence.

Taking into account the full characterisation of the sequences with a perfect
linear complexity profile (see system (2.8), Wang and Massey [83]), Niederreiter
argues that this condition is too restrictive to be useful in building pseudo-random
sequences and that the linear complexity should have larger deviations from the
expected value, i.e. from £. This is why he introduces the notion of an ‘almost
perfect linear complexity profile’ using a remark made by Rueppel [70] concerning
the variance of the linear complexity, namely the fact that the linear complexity
needs to follow closely but irregularly % Also, Niederreiter [55] suggests a way of
building sequences with a prescribed linear complexity profile.

Extending the results from [55], Niederreiter [56] develops a probabilistic the-
ory of the linear complexity and the linear complexity profile for sequences over
arbitrary finite fields, by using techniques from the probability theory and the
theory of dynamical systems. He suggests a new type of randomness tests for
sequences, the continued fraction tests. The main result of the paper is that the
following relation holds for almost all random sequences s over a finite field.

. L(s 1
i = (29)
Interpreting (2.9), Niederreiter [57] defines a sequence to have a ‘good linear com-
plexity profile’ if there exists a constant value C(s), which depends only on the
sequence, such that

IL(s) — %| < C(s) max {logt, 1}, for all £t = 0,1,2, ... (2.10)

Following a comment made by Piper [61], that a pscudo-random sequence
should have an acceptable linear complexity profile for every starting point, Nieder-

reiter defines the ‘uniformly good linear complexity profile’ as the property of a
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sequence to have a good linear complexity profile for all its shifted versions. He
also proves that almost none of the random sequences meet this requirement and
leaves the open problem of finding sequences which have this property.

Massey [41] shows that the linear complexity is a system-theoretic concept,
closely related to the Discrete Fourier Transform. Although it was firstly used
by Blahut [7, 6] for error control codes, the explicit form of the link between
the linear complexity and the Discrete Fourier Transform is clearly presented by
Massey in [41]. '

A way of obtaining sequences with high linear complexity is by combining a
number of LFSRs (combination) or by applying a non-linear filter function to
a single LFSR (filtering). The linear complexity of a sequence produced by a
combination of LFSRs can never exceed the product of the sizes of the LFSRs
included in the combination.

Groth [23] and Key [32] present some theoretical methods of combining LESRs
with known characteristics in order to obtain generators of binary sequences with
controllable linear complexity.

Herlestam [25] presents an overview of the results on the linear complexity of
sequences obtained using filtering functions applied to sequences generated by an
Linear Feedback Shift Register. By studying the linear complexity of the sum,
the product with a constant, the Hadamard product and the Hadamard power?
applied to linear shift register sequences, exact formulas and lower bounds on the
linear complexity of sequences generated using a general function applied to a
finite set of linear recurrent sequences are obtained.

Using the arithmetic properties of the period of the sequences, Rueppel and
Staffelbach [71] obtain a set of conditions which guarantee that a product of lin-
ear recurrent sequences attain maximum linear complexity. Precisely, they show
that for a finite number of maximum length sequences over a finite field GF(q),
if the degrees of the corresponding minimal polynomials are distinct and greater
than two, then their product has maximum linear complexity. The result can be
generalised for arbitrary linear combinations of sequences (Golic [21]).

There are efficient algorithms presented by Games and Chan [17], Ding, Xiao,
Shan [12] for computing the linear complexity of sequences of period a power of
the characteristic of the field.

The modulo p linear complexity is the linear complexity of a binary sequence

when it is considered over a prime finite field of higher characteristic p, where p is

4Note that for two finite sequences T = 2o, Z1, ..., 2:—1 and ¥ = Yo, ¥1,..., Ye—1 over a field K,
the Hadamard product zy is zy = xovo, £1¥1,.+ - s Tz—1¥t—1- FOI a sequence & = g, £1,...,Tt~1
over a field K and a constant integer a > 0 the Hadamard power 22 is x* = z§,x%,...,2%.;.
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prime. Klapper [34] shows that some binary sequences of high linear complexity
could have low modulo p linear complexity and for a certain class of sequences,
geometric sequences, he shows how to choose the value of p. An algorithm for
computing the modulo p linear complexity of sequences is presented by Boztas [8].

Robshaw [68] presents an algorithm for binary sequences of period a power of
two which is very efficient on sequences with high linear complexity, involving on
average the computation of only two parity checks in such a case.

Generalising both the Discrete Fourier Transform and the Games-Chan Al-
gorithm [17], Blackburn [5] presents an algorithm which calculates the minimal
characteristic polynomial of an arbitrary periodic sequence. The computational
complexity of the algorithm is asymptotically equal to the complexity of the
Berlekamp-Massey Algorithm [42], however the Blackburn Algorithm can perform
faster on sequences with a large complexity.

Fleischmann [16] modifies the Berlekamp-Massey Algorithm [42] to work in
both directions by creating an algorithm suitable for real time applications where
the sequence provided as input is not fully known apriori, for example. .., s_1, S, 81, + -

2.2.6 Berlekamp-Massey Algorithm

The Berlekamp-Massey Algorithm (Berlekamp [4], Massey [42]) computes the
characteristic polynomial and the linear complexity of a sequence over a field.
Besides being general in that it applies to a sequence over an arbitrary field, the
Berlekamp-Massey Algorithm has another advantage: if the linear complexity of
the sequence is L, the algorithm will determine the characteristic polynomial and
the linear complexity after processing 2L terms of the sequence. The algorithm
runs in quadratic time, O(L?), where L is the linear complexity of the input
sequence (for more details on computational complexity see Gustavson [24]).

The algorithm takes iteratively each term of a finite sequence sg, 81, ..., $1—1
and processes it one by one, adjusting the characteristic polynomial if necessary.
At each step of the algorithm the current characteristic polynomial C(X) can
generate the n sequence terms sg, 81, ..., Sn—1 Processed so far. After all terms are
processed, a minimal characteristic polynomial of the input sequence is obtained.
The linear complexity is the degree of the resulting characteristic polynomial.

At each step n, in addition to the current characteristic polynomial C(X),
the last characteristic polynomial CU™(X) of degree strictly smaller than the
degree of C™(X) is also stored. We denote L®) = deg(C®(X)) and C™(X) =

XE 4 ci";l,_lX LO-1 4 4+ ™, The discrepancy d™ is calculated using the
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following formula:
JALOI |

d™ =s,+ Y ™,z (2.11)
i=0

This discrepancy represents the difference between the term s, which is cur-
rently processed and the term which would be expected using the current polyno-
mial {— Zf:(;)_l c§") S;1n—zém). Depending on the value of the discrepancy, three
possible cases are identified:

1. If d™ % 0 then s, cannot be generated using C(X). Further:

a) If 2L > n then the new characteristic polynomial is computed as
CHY(X) « C(X) - d%(%X(m‘L(m))‘(”‘f‘(ﬂ'))C’(m)(X) and it has the

same degree as the previous one, L™t = L7},

b) If 2L™ < n then the new characteristic polynomial is computed as
CHD(X) = X=LN~m-L™) 0o () — 225,007 (X) and it has bigher
degree than the previous one, namely L(”+1) = n+1-L™; m is updated
to n.

2. If d™ = 0 then s, can be generated using C™(X), so the characteristic
polynomial stays unchanged C*+9(X) = C™(X).

For initialisation, the first non-zero term in the sequence, say s; is detected, the
characteristic polynomials are set to C®(X) « 1 for i = 0,...,5, CUTV(X) «
X3+l and m « j. At the end of the algorithm, L® is the linear complexity of
the sequence and C®(X) is a minimal characteristic polynomial (which is unique
if 2L® < ¢, otherwise it may not be unique).

We present the classic iterative version of the algorithm in Algorithm 1. The
algorithm has as input a finite sequence s = sg, 81,...,8:—1 over a field and it
returns C*(X), the characteristic polynomial and L*, the linear complexity of the
sequence.

A recursive version of the Berlekamp-Massey Algorithm is presented in Al-
gorithm 2 (using the recursive procedure in Algorithm 3). The most impor-
tant element of the recursive implementation is the recursive procedure bmR(m,
D(X),dn,C(X), n) with the following parameters: m, the position in the se-
quence where the last degree change has occurred, D(X), the characteristic poly-
nomial at the last change, d,, the discrepancy value at the last change, C(X),
the characteristic polynomial corresponding to the current position and n, the
currently processed position in the sequence.
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Algorithm 1 Berlekamp-Massey Algorithm

1: Input: A finite sequence s = sg, 81,...,8:—1
2: Qutput: Linear complexity, L* and characteristic polynomial, C*(X) of s.
3 n—0
4: while s, = 0and n < ¢t do
5: n—n+t+l
6: end while
7. if n =1 then
8 C*X) ~1
g: L0
10:  return C*(X), L*
11: else
12: me—n
13: D(X)«1
14: G +— Sp
15: ne—n+1l
16: C(X) X"
17: L,—n
18: if n <t-—1then
19: repeat
20: dn S + E;—";‘J L eiSipn—t,
21: if d, <> 0 then
22: if 2L, > n then > (1a) degree and complexity does not change
23; C(X) — C(X) — gn X {m~Lm)=(r=Ln) D(X)
24: else > (1b) degree and complexity do change
25: T(X) « C(X)
26: C(X) « Xn=Lo)=m=Lm)O(X) — 4o D(X)
27: D(X) «~ T(X)
28: p — dn
29: men
30: Ly—n+1-1L,
31: end if
32: else > (2} current characteristic polynomial does not change
33: ne—n+1
34: end if
35: untiln =1
3. endif
37 C*(X) « C(X)
38: L*— L,

39:  return C*(X), L*
40: end if




CHAPTER 2. BACKGROUND 24

Algorithm 2 Recursive Berlekamp-Massey Algorithm
Input: A finite sequence s = 8¢, 81,...,8t—1
Output: Linear complexity, L* and characteristic polynomial, C*(X) of s.
n+0
while s, =0 and n < t do

n—n+1
end while
if n =1t then
C*X) «1
L* {0
return C*(X), L*
else
m e« n
D(X)+1
dm + 8n
n+—n+1
C(X) — X"
CH{X) « C(X)
L*—n
if n<t—1 then
bmR(m, D(X), dm, C(X),n)
end if
return C*(X), L*
end if

Algorithm 3 The dmR(m, D(X),d,, C(X),n) procedure
procedure BMR(m, D(X), d, C(X), n)
if n=1¢ then
L*  deg{C(X))
C*X) ~ C(X)
else
L, — deg C(X)
dy + 5p + Ef;‘o_ ! CiSitn—Ln
if d,, # 0 then
if 2L, > n then ‘ > (1a)
C(X) —C(X)~ %X(m_"‘m)‘(”‘f‘") (X)
bmR(m, D(X),dm,C(X),n + 1)
else > (1b)
T(X) — C(X)
C(X) — X(n=La)-(m-Lm)C(X) — 4 D(X)
bmR(n, T(X),dp, C(X),n+1)
end if
else > (2)
b R(1m, D(X), dyyy C(X),m + 1)
end if
end if
end procedure
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2.2.7 k-error linear complexity

The concept of linear complexity of a sequence can be generalised to k-error linear
complexity, which is the minimal linear complexity of that sequence in which the
values on at most k positions are changed. The concept was firstly outlined by
Ding, Xiao, Shan {12] under the name of k-sphere complexity in the context of the
stability of stream ciphers, and defined under the name of k-error linear complexity
by Stamp and Martin [79]. Note that the O-error linear complexity coincides with

the linear complexity.

Definition 2.12. For a given finite sequence s of size t {or an infinite sequence
s of period N) we denote wy(s) = #{i|i = 0,1,...,t — 1,8; # 0} (or wy(s) =
#{ilt = 0,1,...,N — 1,5; # 0}, respectively) the Hamming weight of s i.e. the
number of non-zero terms of s (or the number of non-zero terms in a period of
s). For periodic sequences the notations wy(s) and wu((so,s1,...,8n-1)) are
equivalent. For a given finite set A, we denote by #A the number of elements in
the set A.

In definition 2.13, s + e is the sum between two sequences. We consider the
term by term addition, namely: if ¢ = (ao,...,a:—1) and b = (by, ..., b—1) then
the sum sequence @ + b = (ag + bo, - .., az—1 + b—1) where the addition is in the
field which includes the terms of ¢ and b.

Definition 2.13. For a finite sequence 8 = 8y, 81, - . ., 8;_1 With elements in a field
K and for o fized integer k, 0 < k < wg(s), the k-error linear complexity of the
sequence s is defined as

Li.(s) = min{L(s + e)|e € K*, wy(e) < k} (2.12)
For an infinite sequence 8 = sy, 51,... of period N, with elements in a field K
and for a fized integer k, 0 < k < wy((sq,...,8n-1)), the k-error linear complexity

of the sequernce s i defined as

Li(s) = min{L{s+e)| e sequence of period N over K, wx((eg, e1,-..,en-1)) < k}
(2.13)
The sequences e are called error sequences or error patterns.
The k-error linear complexity profile of the sequence is defined as being the set
of pairs (k, Lg(s)), for all k with 0 £ k& < wy(s).

The following property shows that the k-error linear complexity decreases with
k for a fixed sequence s.
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Property 2.14. Given a (finite or infinite periodic) sequence s with elements in
a finite field K, we have Li(s) > L;(s), for alli < j.

Proof. The proof is immediate using the definition of k-error linear complexity
and the property that for any two sets S; and S, of sequences such that 57 C 53,
it is true that min{L(s)ls € 1} > min{L{s)|s € S.}. O

Property 2.15. Given a (finite or infinite periodic) sequence s with elements in
a finite field K, we have Ly(s) =0, for all k > wx(s).

Proof. We choose e such that

for all ¢ e t—1 wi ; =
e.,;={0’ orallte€0,1,...,t—1 with 5; =0, (2.14)

—s;, otherwise.

Therefore wy(e) = wy(s) and s +e = (0,0,...,0), 80 Ly, () = 0. It follows using
property 2.14 that Ly(s) = 0, for all k > wg(s). 0

If the k-error linear complexity of a sequence is very low for small values of k
(e.g. k less than 5% of the length of the sequence), then that sequence is likely
to be easily recovered when only knowing a short segment of the sequence. The
k-error linear complexity is therefore an important parameter when analysing the
security of cryptographic sequences.

Sequences with a high linear complexity and good linear complexity profile
can have a very low k-error linear complexity for small values of k, making them
unsecure in cryptographical applications. Consider a binary sequence of N zeros
followed by a 1, s = (0,...,0,1). This sequence has a linear complexity of N+1,

N

N times
but a 1-error linear complexity of 0. Nontrivial examples of sequences with high

linear complexity and low k-error linear complexity can be obtained using the
results presented by Safavi-Naini and Seberry [72].

Fell’s paper [14] reflects on the k-error linear complexity by considering bi-
jections on the set of sequences of a certain length and by studying the average
difference in the linear complexity of a sequence and its image using one of these
bijections. These results are applied to the computation of an average k-error
linear complexity of a sequence. The sequences considered are binary and the
methods are probabilistic. Fell’s paper provides an upper bound of the average
change in linear complexity for sequences where at most & errors are forced. Fell
concludes that for large values of ¢ there are many sequences of size ¢ which are
far, in terms of Hamming distance, from low linear complexity sequences. It is
therefore not straightforward to find a direct algorithm which produces for most
sequences the nearby sequences of low linear complexity. Fell calls two sequences
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k-close, if one can be obtained from the other by changing & terms. It is suggested
to search for sequences k-close to sequences of low complexity in order to exclude
them from being used in stream ciphers as key streams.

By extending the Games-Chan Algorithm (Games and Chan {17]), which com-
putes the lincar complexity of a periodic binary sequence with period a power
of two, Stamp and Martin (Stamp and Martin [79]) have devised an algorithm
to efficiently (in linear time and space) compute the k-error linear complexity of
a periodic binary sequence with the period a power of two. The Stamp-Martin
Algorithm was further extended to compute the whole k-error linear complexity
profile by Lauder and Paterson [38]. Algorithms for computing the linear complex-
ity and the k-error linear complexity of a sequence, for periodic sequences which
have as period a power of the characteristic of the field have been given by Ding,
Xiao, Shan [12], Kaida, Uehara, Imamura [30, 31] and Kaida [29]. An efficient
algorithm for computing the k-error linear complexity of periodic sequences over
a finite field GF(g) when the period is of the form 2p®, with p prime and n > 0 is
presented in [84] (the special case treated is where p and g are odd primes, and ¢
is a primitive root modulo p?). All these algorithms, unlike the Berlekamp-Massey
Algorithm, need a whole period as input, i.e. the whole sequence is known, which
would not be the case in cryptanalysis applications. However from a design point
of view it is useful to predetermine the level of security of the sequences which are
used in a cipher in order to prevent successful cryptographic attacks.

Efficient techniques to compute the 1-error linear complexity of periodic binary
sequences are available (Kolokotronis et al. [35]).

Some research has been invested in trying to find periodic sequences with
high linear complexity and high k-error linear complexity for small values of k as
well as bounds for the two measurements. A unified derivation of the bounds of
the k-error linear complexity is available for N-periodic sequences s, with tight
bounds when L(s) < £ (Jiang et al. [28]). It was conjectured by Ding et al. [12]
that there may be a tradeoff between the linear complexity and the k-error linear
complexity. However, Niederreiter proves the existence of periodic sequences which
simultaneously achieve maximum value for the linear complexity and k-error linear
complexity (Niederreiter [59]). Moreover, a lower bound on the number of N-
periodic sequences with maximum linear complexity (i.e. N) and k-error linear
complexity at least a fixed value N—e¢, with ¢ > 0, is given to show that a consistent
number of such sequences exist (Meidl and Niederreiter [51]). A constructive proof
is yet to be found, however using such a constructive technique for a real cipher
would not improve the security, on the contrary it would restrict the search of a
cryptanalyst to a well specified set of sequences.

A survey of recent work on the linear complexity, linear complexity profile and
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the k-error linear complexity of periodic sequences is included in Niederreiter [58].
The study focuses mostly on the recent results regarding the statistical theory of
complexity measurements, namely the expected value of the linear complexity and
k-error linear complexity, as well as lower and upper bounds for the number of
sequences with a designated linear complexity or k-error linear complexity.

Meidl [47] obtains for sequences of period of a certain form, the relation be-
tween the linear complexity and the minimum value k, for which the k-error linear
complexity is strictly less than the linear complexity. This is useful as it gives a
way of finding how many bits need to be changed to decrease the linear complexity
of a sequence. Further statistical results are published by Meid} [48) and exact
formulas for the expected value of the linear complexity and for the 1-error linear
complexity are given for sequences of period a power of two. For k > 2 lower and
upper bounds of the expected value of the k-error linear complexity are given.

Kurosawa et al. {36] present results regarding the relation between the linear
complexity and the minimum value &k for which the k-error linear complexity is
strictly less than the linear complexity.

Siligean [73] presents theoretical results showing how to apply Games-Chan
and Stamp-Martin Algorithms to an infinite sequence with the period a power of
two, when a whole period is not known apriori.

There is no general algorithm to compute the k-error linear complexity profile
of an arbitrary sequence over an arbitrary finite field, other than the exhaustive

search. See Chapter 3 for a description of the exhaustive techniques available.




Chapter 3
k-error linear complexity problem

In this chapter we define and analyse the problems that we are interested in
with respect to the k-error linear complexity. We also describe and analyse the
exhaustive search techniques that can be used for solving these problems in order
to obtain an exact result. We show the way that the exhaustive search method
can be optimised without losing the accuracy of the result.

First, let us clearly define the problems we will be investigating.

k-error linear complexity problem

Input: A finite sequence s = sg, 81,...,5;—1 of size £ > 0 with terms over a
finite field GF(g), ¢ a prime power; an integer value ko, with 0 < kg < wy(s) — 1.

Output: The ko-error linear complexity of s, L ; the error pattern cor-
responding to this linear complexity, ef ; a minimal characteristic polynomial
C%, (X} corresponding to the sequence s + €f, .

While the k-error linear complexity problem is interesting in its own right
we will implement whenever possible a solution for the following problem which
determines the whole k-error linear complexity profile for a certain seqﬁence S
and limit of errors ky. Note that any algorithm which solves the k-error linear
complexity profile problem is also an algorithm for the previous problem, the
k-error linear complexity problem.

k-error linear complexity profile problem

Input: A finite sequence s = sg, 81,...,8t-1 of size ¢ > O with terms over a
finite field GF(g), where q is a prime power; an integer value kg, with 0 < ky <
wy(s) — 1.

Output: The ks-error linear complexity profile of s containing for each <,
i=0,1,...,kp: L}, the i-error linear complexity; e}, the error pattern producing
the linear complexity L? on s; Cf{X) a minimal characteristic polynomial corre-
sponding to the sequence s + e},

29
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Note that we exclude from the previous problems the marginal cases when
ko = 0 or when kg > wy(s), since for these values the k-error linear complexity can
be immediately evaluated in polynomial time, Ly(s) = L(s) or in constant time,
Li(s) = 0, for all k > wy(S) (see property 2.15 in section 2.2.7), respectively.
We impose these restrictions in order to concentrate on the interesting part of the
problem and separate any special cases with an immediate solution.

Also, note that in these problems, we are not interested only in the value of
the k-error linear complexity for a specific £ but also the error pattern e which
produces that complexity and the characteristic polynomial of the sequence s+ e.
In general, for an integer ¢ with 0 < ¢ < wg(s) — 1, we denote in the output, L} as
the i-error linear complexity, e}, an error pattern which achieves this complexity,
i.e. L(s+e}) = L} and C}(X), a minimal characteristic polynomial of the sequence
s+ej.

For the all zero sequence 0@ = (0,0,...,0), the k-error linear complexity and
the k-error linear complexity profile can be immediately obtained, since Ly(0) = 0
for any integer k. Moreover for this very reason, since in the problems above we
constrain the values of &y to be such that 0 < &y < wg(s) — 1 then the all zero
sequence is not a valid input (wg(0) = 0). This is deliberate and we consider
this a special case which can be excluded from the input as its solution is trivial,
Ly(0) = 0 and the corresponding minimal characteristic polynomial and error
pattern are C(X) = 1 and e = (0,0, ...,0), respectively, for any integer k& > 0.

In this thesis, we will consider that an approximation algorithm for the -
error linear complexity profile problem is correct if the profile returned by that
algorithm is composed of correct linear complexities and minimal characteristic

polynomials corresponding to the input sequence and each of the error patterns.

Definition 3.1. An approzimation algorithm for the k-error linear complexity
profile problem is correct if for all i =0, 1,..., ko, the value returned by the algo-
rithm Lf is equal to L(s+e}} and CH{X) is the minimal characteristic polynomial
of the sequence s + €.

It is difficult to set a correctness check for the accuracy of the result as this
would naturally focus more on the ’goodness’ rather than the correctness of the so-
lution, However it is safe to assume that for each k = 0,1, ..., ky the k-error linear
complexity returned by the approximation algorithm, L} is lower bounded by the
exact value of the k-error linear complexity, Le(s) and it is upper bounded by the
linear complexity of the input sequence, L(s). Formally that means that a solution
of an approximation algorithm for the k-error linear complexity profile problem
satisfies the following condition: for each ¢ = 0,1,...,ky, Li(s) £ L} < L(s),
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where L;(s) and L(s) is the exact i-error linear complexity and the exact linear

complexity of the input sequence, respectively.

A special, reversed problem can be formulated with respect to the k-error
linear complexity, in the context of the application of the design of cryptographic
sequences. This problem assumes a practical application where a sequence is
tested, to check if its k-error linear complexity does not fall under a specified
threshold Ly when a certain number of errors k are allowed. Therefore, if this
happens for small values of k and Lg, the sequence is unsafe to be used as it is
easy to break.

The problem is: what is the minimum number of errors k£ that need to be
applied on the terms of a sequence s such that the linear complexity decreases
below a specified value Lo (Sildgean [73]). Namely, what is the minimum & such
that there is an error pattern e of weight k with L(s + ) < Ly.

We denote this problem the L-constrained k-error linear complexity problem.

L-constrained k-error linear complexity problem

Input: A finite sequence s = 3¢, 81,...,8;-1 of size £ > 0 with terms over a
finite field GF'(q), where ¢ is a prime power; an integer value ko, with 0 < kg <
wy(s) — 1; an integer value Ly, with 0 < Ly < ¢.

Output: The minimal number of errors k¥, such that &* < ky, necessary to
lower the linear complexity of s below Lo, i.e. Li(s) < Lpy; the k*-error linear
complexity, L*; e* the error pattern producing the linear complexity L}; C*(X) a
minimal characteristic polynomial corresponding to the sequence s + e*. If there
is no such k* then an crror value, e.g. -1, is returned.

Note that the L-constrained k-error linear complexity problem might not have
a solution when kg errors are not enough to lower the complexity of the input

sequence below the given Ly. In such a case, an error code is expected, e.g. -1.

3.1 Naive Exhaustive Search Algorithm

Determining the k-error linear complexity of a finite sequence of length ¢ over a
finite field of order g using an exhaustive search approach would mean investigating
all the Zfzo(q - 1)‘(3 possible error patterns of up to & errors, computing the
linear complexity of each of the sequences obtained by adding these error patterns
to the original sequence and, finally, the error pattern which corresponds to the
minimum linear complexity would be the solution.

The Naive Exhaustive Search Algorithm for the k-error linear complexity pro-
file problem is presented in listing 4.
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Algorithm 4 Naive Exhaustive Search Algorithm for the k-error linear complexity
profile problem
1: Input: A finite sequence s = so, s1,.. ., $—1 over GF(q); an integer ko, with
0< :ICO < "LUH(S) - 1.
Qutput: L}, CH(X) and e}, for all i =0,1,...,ko
fOI‘T:=0,1,...,k0 do
LY « L(s)
CHX) « C(X), a minimal characteristic polynomial

e; — (0,0,...,0)

t times

end for

8: for all {e|le € GF(q)* with wu{e) < ko} do

9:  Calculate L(s + ¢) and C(X) corresponding to s + e
10k« wy(e)
11:  if L > L(s +e) then

o3

12: Lt — L(s+e)
13: Ci(X) — C(X)
14: ey +— €

15: end if

16: end for

17: return L}, C}(X) and e}, for all i = 0,1,..., ko

Since the k-error linear complexity is calculated as a minimum value (from
the definition), the profile is initialised with the maximum possible value that
L}(s) = L(s), C}(X) = C(X) and ef = (0,0,...,0), for all i = 0,1,..., ko, where

t times
C(X) is a minimal characteristic polynomial of s.

All possible error patterns e € GF(g)* of weight less than or equal to ko
are processed. The linear complexity and the characteristic polynomial of these
5+ e are calculated using the Berlekamp-Massey Algorithm and the error patterns
corresponding to the minimum value L{s + ) for each number of errors are saved
in the kg-error linear complexity profile.

From the above considerations it is immediate to obtain the following theorem.

Theorem 3.2. The Naive Ezhaustive Search Algorithm for k-error linear com-
plezity profile problem (listing {) is correct.

Proof. The Naive Exhaustive Search Algorithm is a direct implementation of the
definition of the k-error linear complexity (see definition 2.13). All the error
patterns of weight less than k; are selected, added to the input sequence and
the linear complexity of the resulting sequence is calculated. The minimum for
each weight is saved. Therefore it follows immediately that the Naive Exhaustive
Search Algorithm for the k-error linear complexity profile problem is correct. O

The Naive Exhaustive Search Algorithm for the L-constrained k-error linear
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complexity problem can be easily obtained with a similar exhaustive approach.

We present it in listing 5 and its correctness is immediate.

Theorem 3.3. The Naive Ezhaustive Search Algorithm for the L-constrained k-
error linear complexity problem (listing 5) is correct.

Proof. The Naive Exhaustive Search Algorithm for the L-constrained k-error lin-
ear complexity problem is a direct implementation of

k* = min {k|0 < k < ko so there is an e € GF(q)", wy(e) = k and L(s +¢) < Lo}.

All the error patterns of weight less than &y are selected, added to the input
sequence and the linear complexity of the resulting sequence is calculated. We
save the minimum value of £ for which an error pattern e of weight & and with
L(s + €) < Ly is found. Therefore it is immediate that the Naive Exhaustive
Search Algorithm for the L-constrained k-error linear complexity is correct. If
no such & is found then the value of &* will remain wg{s) and an error code is

returned. 0

Algorithm 5 Naive Exhaustive Search Algorithm for the L-constrained k-error
linear complexity problem
1: Input: A finite sequence s = sg, 81,. .., 8—1 over GF(q); an integer ko, with
0 < kg <wgy(s)— 1; an integer Ly, with 0 < Ly < ¢.
Qutput: £*, L*, ¢* and C*{X).
E* — 'UJH(S)
L*—20
C*(X) <1
e* « (=80, —81,. -, —5t—1)
for all {e|le € GF(g)* with wx(e) < ko} do
Calculate L(s +¢) and C(X) corresponding to s +e
k — wgle)
if k < k* and L(s + €) < Ly then
B —k
L* — L(s+e)
C*(X) « C(X)
et —e
end if
: end for
: if k* < wy(s) then
return k*,L*, C*(X) and e*
: else
return —1
: end if

b B = = b e el el ek e e e
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3.2 Efficient Exhaustive Search Algorithm

Some computational savings can be made in an exhaustive search approach by
taking advantage of the incremental nature of the Berlekamp-Massey Algorithm
which is used for computing the linear complexity and the characteristic polyno-
mial of each sequence s+ e. Namely, for error patterns which coincide on the first
say ¢ positions, we can reuse the computations made on the first 4 terms of the
sequence s + e.

This more efficient version of an exhaustive search can be implemented for
example by extending the recursive version of the Berlekamp-Massey Algorithm
(algorithm 2 in section 2.2.6). We describe this alternative method for the k-error
linear complexity problem below (see listings 6 and 7). This method follows closely
the Berlekamp-Massey Algorithm.

Similarly to the initialisation step in the naive version the kg-error linear com-
plexity profile is initialised with the maximum possible value that L}(s) = L(s),
CHX) = C(X) and ¢ = (0,0,...,0), for all ¢ = 0,1,..., ko, where L{s) is the

t times
linear complexity of s and C(X) is a minimal characteristic polynomial of s (note

that deg (C(X)) = L(s).

The position of the first non zero element of s is found. If it would coincide
with the size of the sequence then it would mean that the input sequence is all
zero, a special case which we have treated and excluded in the definition of the
problem.

Once the position of the first non zero term is found the initialisation step needs
to be performed. Since the exhaustive algorithm for the k-error linear complexity
calculates the linear complexity for sequences of the form s+e where s is the input
sequence and e € GF(q)* is an error pattern of weight at most ko, the position of
the first non zero element in s + e varies depending on the error pattern e.

The recursive procedure exhef R{(m, D{(X), dw, C(X), n,e,init) covers all the
error patterns e of weight at most kg, calculating the linear complexities of s + e
with the Berlekamp-Massey Algorithm and saving the minimum values for each
weight, building this way the kg-error linear complexity profile of s.

The initial value of the error pattern e is all zero. Subsequently, the terms
of the error patterns take all the possible values from GF(g)*. In order to select
iteratively all or a subset of values from GF(g) (e.g. line 24 in procedure exhefR
from listing 7), we need to consider an arbitrary but fixed total ordering, which
we denote <, of the finite field GF(¢) = {fo=0, f1,..., fo-1}, 1.6. fo=0< f1 <
cor = fom1. :

At each step of the recursion, as the current error pattern e is built and the
corresponding sequence s + e is processed, the parameters m, D(X), d,,, C(X)
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Algorithm 6 Efficient Exhaustive Search Algorithm for the k-error linear com-
plexity profile problem

1: Input: A finite sequence s = 8o, 81,- .., 8:—1 over GF(q); an integer ko, with
0<k0§’wH(S)—1
Output: L}, C}(X) and e}, foralli =0,1,...,k
fori=0,1,...,k do
LY — L(s)
CHX) «C(X), the characteristic polynomial of s

e; — (0,0,...,0)

t times

end for

8: e« (0,0,...,0)

t times

o

9 m 0

10: D{X) 1

11: d, <1

122 n 0

13: C(X) « 1

14: init «— false

15: call exhef R(m, D(X),dp, C(X),n, e, init)

16: return L}, C¥{X) and ¢}, for alli = 0,1,..., ko

are updated. These parameters have the same meaning as in the Berlekamp-
Massey Algorithm (section 2.2.6), namely m is the last change index, D(X) is
the characteristic polynomial at the last change, d,, is the discrepancy at the last
change and C(X) is the current characteristic polynomial.

The parameter init has a boolean value which reflects if the initialisation step
has been performed (init = true) or not (init = false).

At each step n, if the initialisation has not been done yet (init = false) we
can either consider an error of magnitude —s, which will delay the initialisation
to a later step, since s, + e, = 0 (lines 12-13 in algorithm 7) or apply any other
value from GF'(q) \ {—sn} (sn + & # 0), perform the initialisation and proceed to
the next element (lines 14-21 in algorithm 7).

If the initialisation has been done (init = true), similarly with the Berlekamp-
Massey Algorithm, the procedure firstly calculates the current discrepancy 4y,
where c, are the coeffcients of the current characteristic polynomial C(X) = X »+
er,—1X In-ly 46X + ¢ and Ly, is the linear complexity of the sequence s +e
up to element n, L, = L(sp+eg, s1+€1,...,84-1+€n—1). Secondly the new values
of the intermediary parameters m, D(X), n, C(X) are calculated.

For each element s,, all possible error values are considered on that position,
thus calculating the linear complexity of the sequence s+e where e is each possible
error pattern (lines 23-39 in algorithm 7).

The statement £ — (k = ko) 7 {fo} : GF(g) in line 23 (listing 7) has the usual
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Algorithm 7 The exhefR(m, D(X), dpm, C(X),n, €, init) procedure
1: procedure EXHEFR(m, D(X), dm,C(X), n, €, init)
2 k — wg(e)
3 L, « deg{C(z))
4. Ly « deg(D(z))
5 if (n=1t)or (k> ko) or (L} £ L,) then > Stop cond
6.
7
8
9

if ((n =1t) and (k < ko) and (L} > L,)) then
(L;, Ci(X), ef) « (Ln, C(X), €)
call adjust Profile(L,,C(X),e, k)

: end if
10: else
11 if init = false then > Not initialised yet
12: en = —Sp
13: call ezhefR(m, D(X), dp, C(X),n + 1, ¢, false)
14: for all g € GF(g)\{—s,} in increasing order relative to < do
15: €n— g
16: m+—mn
17: D(X) 1
18: dm — (54 €}
19: C(X) — Xt
20: call ezhefR(m, D(X),dn, C(X),n+ 1,e, true)
21 end for
22: else > Already initialised
23: E — (k= ko) 7 {fo} : GF(q)
24: for all g € F in increasing order relative to < do
25: € — ¢
26: dn — (8 +&)n + Tt enls + €igntn,
27: if d, # 0 then
28: if 2L > n then
29: C(X) ~ O(X) — & X(m-Lm)-(n-Ln) D(X)
30: call exhe fR(m, D(X ), dmy C(X), 0+ 1, e, true)
31: else
32: T(X) — C(X)
33: C(X) « X~ La)-(m=Lm)O(X) — 42 D(X)
34: call ezhefR(n, T(X),dn, C(X),n + 1, ¢, true)
35: end if
36: else
37: call exhef R(m, D(X), dm, C(X),n + 1, ¢, true)
38: - end if
39: end for
40: end if
41: end if

42: end procedure
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C/C++ meaning of the ternary conditional operator 7 :, namely, if k¥ = k; then
E — {fo}, otherwise E +— GF(g). This way only error patterns of weight at most
ko are considered.

The stopping condition of the recursive call is a disjunction of subconditions.

Firstly, if either the end of the sequence is reached, or if the current error
‘pattern has a weight higher than ko, the processing of that recursive path needs
to stop in order to save the result, in the former case, or to discard the current
error pattern since the limit of errors was reached, in the latter. Concerning the
latter condition, note that due to the ascending property of the linear complexity
(see property 2.8) and since any error pattern on the current recursion path would
have the initial segment equal to the current error pattern e, this means that if the
recursion would not stop then it would either progress to an error pattern with a
higher weight than allowed, or the complexity of s + e would become higher than
the current best for ky-error lincar complexity.

Additionally, when the linear complexity of the errored sequence s + e up to
term n (in the algorithm denoted L,) is higher or equal to the current best for
k = wg(e) errors, ie. L} < L,, then in this case the calculations on that path
can stop since it is impossible to improve the current solution using an error with
the initial segment e. This is based on the fact that the linear complexity of a
fixed sequence increases with the index of the processed term (property 2.8 in
section 2.2.5) and that the k-error linear complexity decreases with the value of
k (property 2.14). If a certain error pattern e of weight k& up to term n gives a
lincar complexity L, = L(sq + €, . ..,8n—1 + €n—1) such that L, > L, then any
error pattern €’ coinciding with e on the first n terms would not contribute to the
solution profile since L(s + €) Znrop 2.8 L(s +€) = L Zprop 2.14 Ly ¢ since
wy(e) > k.

In order to make this latter condition more efficient (L} < L,), the currently
stored kg-error linear complexity profile can be maintained whenever a new so-
lution is found, using the property of the k-error linear complexity of decreasing
with the number of errors k (property 2.14 in section 2.2.7). Whenever a new
solution is found, some of the k-error linear complexities stored in the profile can
be checked to see if there are any possible adjustments (see implementation in
listing 8). This ensures that the current profile solution is a valid one (decreasing
with k) and also as close to the exact value as possible, so the comparison of the
currently found k-error linear complexity (L,) with the current solution for errors
up to k (L}) is as fruitful as possible.

The adjustment of the solution k-error linear complexity profile contains one
loop which implements the following logic. When an error pattern e of weight %
which improves the current solution is found, then execute:
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e Foralli=k+1,...,wgy(s) — 1, if the currently stored i-error linear com-
plexity is more than the newly found k-error linear complexity (i.e. Li(s) >
L(s+¢)) then make the i-error solution equal to the k-error solution (copy the
i-error linear complexity, the characteristic polynomial and error sequence),
as Li(s) < Ly(s).

Note that forall ¢ = 0,1,..., k-1, the currently stored i-error lincar complexity
is larger then the newly found k-error linear complexity (i.e. L}(s) > L(s+e€)) in
compliance with property 2.14 in section 2.2.7.

Algorithm 8 The maintenance of the k-error linear complexity profile

procedure ADJUSTPROFILE(L*, C*(X), e*, k)
fori=k+1,...,k do
if L} > L} then
Ly — L}
Ci(X) < C1(X)
&f — ¢
end if
end for
end procedure

Figure 3.1 is a graphical representation of an execution tree of recursive calls
within the Efficient Exhaustive Search Algorithm (EESA), in the ezhefR pro-
cedure. The root represents the initial state of the algorithm and each node
represents a recursive transition from one index n to the next one, n + 1, for all
0 < n < t—1. Each arc between two nodes say on levels n and n + 1 is labeled
with a value from GF{g) = {fo=0,fi=1,..., fg1}, forall 0 < n <t — 1, the
value being the one attributed to e, in the algorithm when processing the next
term (8 + €),. The leaves correspond to the end of an error pattern, i.e. reaching
one of the stopping conditions in the recursive procedure, for example n = t.

Any path from the root to a leaf will contain at most kg arcs labeled with non
zero values, e.g. values from the set GF(¢)*. The paths of length ¢ from the root
to a leaf correspond to error patterns which are processed in full by the algorithm.
The error e = (0,0,...,0) will always be considered regardless of the value of ko

Nt

t times
{0 < ko < wg(s)—1), and this error pattern corresponds to the leftmost path. The

depth! of the tree is therefore . Also, note that the rightmost path corresponds

to the error sequences of weight kg, e = (fi‘l’ fo-1,--1s f““i’ 0,...,0 ).

iy
ko times t—ko times

The depth of a tree is the number of edges in the path from the root node to its furthest
leaf.
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Figure 3.1: The execution tree of the efficient exhaustive search algorithm.

The Efficient Exhaustive Search Algorithm for the k-error linear complexity
profile problem calculates the linear complexity of the input sequence s to which we
add every relevant error pattern e € GF(g)! with wg(s) < ky. The error pattern
which produces the minimum complexity for each number of errors i = 0,1,..., ko
is saved. Therefore the algorithm correctly returns the kg-error linear complex-
ity profile of the sequence along with the corresponding minimal characteristic
polynomials and error patterns.

Theorem 3.4. The Efficient Ezhaustive Search Algorithm for the k-error linear
complezity profile problem (listings 6 and 7) is correct.

Proof. Note that the stop condition in procedure exhe f R ensures that all the error
patterns e € GF(q)* processed by the algorithm are such that wy(e) < ko.

We can prove by induction on n, where n =0,1,...,% — 1, that for each error
sequence e = e, €1, . .., &, with wy(e) < ko processed by the algorithm, the values
of the intermediary parameters m, D{X), dn, C{X) and init calculated by the
recursive procedure are correct for the sequence
(s +e)™ = (sg+eg, 81+ €1, - ., 8n + €,). Specifically, m is the last change index,
i.e. the maximum value such that m < n and L((s + €)™ ) < L((s + &)™ =
L((s +¢€)®1); D(X) and d,, are a characteristic polynomial and the discrepancy
corresponding to the last change term m; C(X) is a minimal characteristic poly-
nomial for (s-+¢)™; init reflects if the sequence (s+ €)™ is all zero (init = false)
or not (init = true).

For n = 0 and for an ey € GF(g), the values of m, D{(X), dn, C(X) and init
at the end of the procedure can be easily verified to be correct for (s + €)@,

We discuss the correctness of these values for an n > 0 and any error pattern
€o,€1,-. - ,€n Of weight at most ko, provided that they are correct at the end of
the recursion for n — 1 and error pattern eg,e;,...,e,_1 of weight at most k.
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Assuming the values of m, D(X), d,, C(X) and init are correct for (s + )1,
we prove that their values at the end of the next recursion are correct for (s+e)™.

If wi(eg,...,en—1) > ko then the recursion stops as the current error pattern
is not eligible for calculating the kp-error linear complexity profile.

If deg(C(X)) > Lf then the algorithm stops since any error pattern having as
initial segment {eg,...,€s—1) does not contribute to the result and can therefore
be discarded.

If none of the stop criteria are met and the initialisation is not yet performed
(init = false) it means that the current (s + €)™Y = (0,0,...,0). There are two

e’

n-1 times
different situations in this case:

1. e, +— —8y,, therefore s, + e, = 0 and the initialisation is delayed to one of
the next steps, no change is needed on any of m, D(X),d,,, C(X) and init
remains false.

2. e, « g for all ¢ € GF(g)\{—s,} so that s, + e, # 0 and therefore the
initialisation is performed. The values of the parameters can be immediately
verified to be correct for (s +¢)™

e Mme—n

e D(X)«~1
O —~ (s 4+ €)m
C( X) — Xn+1

init — true

If the initialisation has been performed (init = true) then each possible value
for e, from GF(q) is treated similarly, whether it means no error (e, = 0) or error
(e, € GF(q)*). The discrepancy corresponding to term s, + e, is calculated and
the values of m, D(X),d,,, C{X) are updated accordingly.

The correctness of the new values of m, D(X),d,,, C(X) is implied by the
correctness of Berlekamp-Massey Algorithm and of the initial values corresponding
to (s + €)1,

The previous considerations imply that the values m, D(X), d,,, C(X) are cor-
rect for (s + ¢)%~V and since the minimum value is saved for each % less than
or equal to kg, each time a solution is obtained, the correctness of the resulting
profile for the input sequence s and k; is immediate. [

We are now interested in an Efficient Exhaustive Search Algorithm for the
L-constrained k-error linear complexity problem. Note that the L-constrained k-
error linear complexity problem can be solved by checking for each integer & with
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k < kp, if there is any error pattern of weight at most & which produces a linear
complexity less than or equal to Ly on the input sequence and then taking the
minimum such k. See listing 9 for the implementation of such an algorithm. With
no changes, the exhefR procedure could be used in algorithm 9 however some
improvements can be made and we will show these in a new procedure, denoted
exhefRL (see listing 10).

Algorithm 9 Efficient Exhaustive Search Algorithm for the L-constrained k-error
linear complexity problem
1: Input: A finite sequence s = sg, $1,. .., 8t-1 over GF(q); an integer ko, with
0 < ko < wg(s) —1; an integer Loy, with 0 < Ly < t.
Qutput: &*, L*, ¢* and C*(X).
fori=0,1,...,k do
LY — L(s)
C}(X) +C(X), the characteristic polynomial of s
e; — (0,0,...,0)
e e’

t times

7. end for

8: e+ (0,0,...,0)

t times

9 m+—0

10: D(X) 1

11: dyy — 1

12: n+« 0

13: C(X)«1

14: init «— false

15: call ezhe fRL(m, D(X), dm, C(X),n, e, init)
16: k* — min{k|L;(s) < Lo,0 < k < ko}
17: if k* > 0 then

18  return k*,L}, C;(X) and €}

19: else

20: return —1

21: end if

We can define an Lg-truncated k-error linear complexity profile as being the
L(s), when L;(s) > Lo
Li(s), otherwise.

and L;(s) is the i-error linear complexity of the sequence s. In an Lg-truncated

set {(4,L7(s))| for all 0 < i < ko}, where L(s) =

k-error linear complexity we mean to ignore all the k-error linear complexities
greater than Ly and use a certain maximum value instead for these values of %,
here we choose the maximum value to be L(s). Having such a truncated profile,
the minimal number of errors k* for which the k-error linear complexity is less
than or equal to Ly can still be found by taking &* = min {#|L{*(s) < Lo}

Example 3.5. Suppose s is a binary sequence s = 0110111101110101 of length
16. The linear complexity of s is 8 and the characteristic polynomial C(X) =
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X+ X6+ X5+ X4+ X +1.
The exact k-error linear complexity profile of s is:

{(0,8),(1,7),(2,6),(3,4),(4,2),(5,1),(6,1), (7, 1),(8,1), (9, 1), (10, 1), (11, 0)}.

The 4-truncated k-error linear complexity profile of s is the following, and
even if the values of the 1-error or 2-error linear complexity are unknown we can

conclude that 3 errors are necessary to lower the linear complexity of s to 4:

{(O’ 8)? (1’ 8)’ (2’ 8)’ (3’ 4)" (4’ 2)? (53 1)’ (6’ 1)? (7? 1)? (8’ 1)? (g’ 1)’ (10? 1)? (115 0)}'

The Efficient Exhaustive Search Algorithm needs minimal changes (some re-
cursive calls are unnecessary) in order to calculate an Ly-truncated k-error linear
complexity profile as defined above and therefore solve the L-constrained k-error
linear complexity profile. |

Two stop conditions need to be added to the recursive procedure exhefRL so
that a truncated profile is returned (see listing 10).

The first condition (L, > Lo) is necessary since once the linear complexity of
s + e reaches a value greater than Ly, there is no need to carry on with that error
pattern e which will not contribute to the resulted Lg-truncated kg-error linear
complexity profile.

Secondly, when the found solution for a certain number of errors & is already
smaller than the given threshold Ly (L} < Ly) the investigations on error patterns
of weight greater than or equal to k should stop since it would not help with finding
the minimum value k* that we are interested in. For this reason, the algorithm
should concentrate on error patterns of weight lower than the current k* so if
k* < k then the current error sequence should be abandoned.

See listings 9 and 10 where the changes are highlighted in bold.

Given the above remarks, the following correctness theorem is immediate.

Theorem 3.6. The Efficient Exhaustive Search Algorithm for the L-constrained
k-error linear complexity problem (listings 9 and 10) is correct.

Proof. The correctness of the linear complexities calculated by the Efficient Ex-
haustive Search Algorithm has already been proven in theorem 3.4 for the k-error
linear complexity profile problem. The new version of the procedure exhefRL
for the L-constrained k-error linear complexity problem (listing 10) has additional
stop conditions which are included for efficiency purposes and which do not affect
the correctness of the result, O
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Algorithm 10 The ezhefRL(m, D(X), dn,, C(X), n, e, init) procedure
1: procedure EXHEFRL(m, D{X), d,,, C(X), n, e, init)

2 k—wgle)
32 L, « deg(C(X))
4: Ly « deg(D(X))
5  if (n=1t)or (k> ko) or (L} < L) or (Ly > Lq) or (L < Lg) or (k* < k)
then > Stop cond
B: if (n=1) and (k < ko) and (L} > L,)}) then
€ (Li, Ci(X), €t) < (Ln, C(X), €)
8: k* — min{i|L}(s) < Lo}
9: call adjust Profile(L,, C(X), e, k)
10: end if
e else
12: if init = false then & Not initialised yet
13: €n ¢— —8p :
14: call exhef RL(m, D(X),dm, C{(X),n + 1, e, false)
15: for all g € GF(g)\{—sn} in increasing order relative to < do
16: en — ¢
17: meen
18: D(X) 1
19: dm — (8 +€)m
20: C(X) « Xn*
21: call exhefRL(m,D(X),d, C(X),n + 1, e, true)
22: end for
23: else > Already initialised
24: E — (k=ko)?{fo} : GF(q)
25: for all g € E in increasing order relative to < do
26 en — g
2T dn e (s+¢€)n+ Ef:o_ ' cn(s + €)itn-Ln,
28: if d,, # 0 then
29: if 2L > n then
30: C(X) + C(X) — da xm=Lm)~(n=Ln) D(X)
31: call exhef RL(m, D(X), dp, C(X),n + 1, e, true)
32: else
3% T(X) «— C(X)
34: C(X) — X0—Lu)=tn=Lm)C(X) — o D(X)
35: call ezhefRL(n, T(X), dn, C(X), n + 1, ¢, true)
36: end if
37 else
38: call exhef RL(m, D(X), dm, C(X),n + 1, e, true)
39: end if
40: end for
41: end if
42: end if

43: end procedure
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3.3 Algorithm analysis

In this section we formally analyse the computational complexity of the algorithms
presented in sections 3.1 and 3.2.

For both problems considered, the Naive Exhaustive Search Algorithm takes
each of the different error patterns e of weight at most ko (there are 32 (g—1)}(})
possibilities) and computes the linear complexity values of the sequences s+-e using
Berlekamp-Massey Algorithm which has computational complexity O(¢2), where ¢
is the size of the input sequence. Therefore the order of the number of operations

performed by Naive Exhaustive Search Algorithm is 2 3% (g — 1)¢(}).

%
We can broadly approximate:

%(q — 1) @ <(g-1 i (Z)

i=0 =0
There is no closed form for sums of the form 3F (7), so we will use bounds:

Lemma 3.7 (Alecu, Saligean [2]). The following bound stands

k - n

> (ﬂ) < { 2(3); ifk< ],

S\ T G-+ R 1] <k <[]

Proof. The first case follows by induction on k, using the fact that (2) = ( kfl) ”‘T’“H
for all integers n and k, k # 0. Also 2=+ > 2 if k < [(n + 1}/3]. The remain-
ing inequalities follow from the first using elementary properties of the binomial

coefficients. O

We can approximate binomial coefficients by using Stirling’s approximation
(see for example [15, Section 2.9]) which specifies that for n > 3 the following
estimation stands

n\n"
n! = v2mn (Z) e, (3.1)
where ¢, is such that 12; 77 < Cn < l_én'
Since we need to estimate a binomial coefficient (:) = ()31) where n > 3 and
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An is an integer then

(;1) - (An)!(n?i—A))!

V2mn (2)" e
= —nn
V2min ()‘7"')'\"' en/2m(1 — A)n (i%m) eca-2m

1 1

_ Cn—CAn—C(1—A)n

V2T V(1 — /\)n(l—A)+%AAn+% €

It follows that

(n) ~ 7 1 (3.2)
k) Vam a(l — D+ et :

where n > 3, 0 <k <n, A=k/n and cis a constant such that, P <c< e,
When assessing exponential time complexities of algorithms we will also use
the following property (see for example Garey and Johnson [19)]).

Property 3.8. For any a > 1 and i > 0 the function f(n) = n'a™ € O({(a + &)™)
where ¢ > 0 is an arbitrarily small constant.

We are now ready to estimate the complexity of the algorithms presented.

Theorem 3.9. The worst case time complexity of the Naive Ezhaustive Search

Algorithm for sequences over GF(q) of length t and number of errors at most
ko = vt with 0 < v < 1/3 is O(tVIAY) where A = ﬁ%. This can also be
expressed as O((X + €)!) with € > 0 an arbitrarily small constant. For a typical
value of v = 0.1 (i.e. errors in at most 10% of the positions) on a binary sequence

of length t (i.e. ¢ = 2) the time complexity is O(t/£1.384145).

Proof. For a sequence of length ¢ over GF(q) and for a number of errors kg, the
Naive Exhaustive Search Algorithm computes the linear complexity (using the
Berlekamp-Massey Algorithm) for Zfio(q — 1)#(}) sequences obtained by adding
different error patterns to s. The Berlekamp-Massey Algorithm involves at most
#? operations so the order of the number of operations is 23+ (g — 1)*(}) (see
algorithm 4 in section 3.1). Therefore, using lemma 3.7 the number of operations

is at most 2¢%(q — 1)* (4.
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Using relation (3.2) we obtain the following approximation:

- ver( 1) = 2a- et ()

ko+1 ko +1
2(t+1) (¢
= 2g—1)t——
(¢—1) vt+1 \wt
cv2(g— " £3(t + 1) 1

Q2

ﬁ v+ 1 \/E(]_ —_ U)t{l—v)+%vvt+%
V2 /i (g—1)*
VT vy/u(l — v) (1 — v) -2yt

cy/2 -1 Y
NN ((1 - v)“—v)vv)

a2

&

which is O((v/1At) where A = U%(%%—;’_—u.
O

For analysing the computational complexity of the Efficient Exhaustive Search
Algorithm we will use the trees described earlier in figure 3.1, From the algorithm
one can notice that these trees have the property that any path from the root to
a leaf has at most kg branches labelled with a value f € GF(q)*.

Note that in terms of the Efficient Exhaustive Search Algorithm the label
on each arc between level n and n + 1 represents e, in a certain error pattern
considered by the algorithm,

We estimate their number of nodes using the following Lemma (the case ¢ = 2
was treated in Alecu and Sildgean [2]). |

Lemma 3.10. Consider a tree of depth t where any node has at most g children
and the edges to these children are labeled with values from a finite field GF(q) =

{fo="0,f1,..., fg-1} like in figure 3.1. If on any path from a root to a leaf the

t+1)

number of non zero labels is at most ko then the tree has at most Y. (q— N by

nodes.

Proof. We associate to each node a description of the path from the root to that
node using the labels of the edges, i.e. each node on level n is characterised by
a sequence of length n over the alphabet {fo = 0, f1,..., f-1}. Also we denote
the levels in the tree from 0 to £, 0 being the root level and ¢ being the maximum
level.

With these notations, let us compute the maximum number of nodes on each
of the levels of the tree.

There are two situations depending on the value of the level n.
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Firstly, if 1 < n < ky, then the number of nodes on the level n is equal to ¢™.
Because the level is less or equal to kg, any path from root to the nodes on the
level n would have at most kp edges with non zero labels. Therefore the tree is
actually a complete tree up to level n. |
Secondly, if kg + 1 < n <t then the number of nodes on the level n is equal
to the number of sequences of length n with at most ky non zero terms, i.e. from
the set GF(q)* = {f1, fo, ..., fe—1}. Therefore it can be represented as:

g(q -1y (7;) :

We note that even in the first situation when 1 < n < ky, since the convention
is that ( ,:‘0 ) = ), we can express the number of nodes as:

g(q_ 1)"(?) = ;(q - 1)*(?) —(14g-1)"=

Therefore we can unify the two formulas for all levels n, where n=1,2,...,%
to obtain the total number of nodes in the tree, except the root:

:;iljo(q—l)i(?) zf;(q 1‘2() z(q——l) E() Zq 1y (:E

Since the number of edges in a tree is equal to the number of nodes minus the

root, it means that the number of vertices in the tree is equal to:

Z(q“ (t+1)

O

Theorem 3.11. The worst case time complexity of the Efficient Exhaustive Search
Algorithm for sequences over GF(q) of length t and number of errors at most
ko = vt with 0 < v < 1/3 is O(VAL) where X = ﬁ’:? This can also be
expressed as O((X + e)t) with € > 0 an arbitrarily small constant. For a typical
value of v = 0.1 (i.e. errors in at most 10% of the positions) on a binary sequence
of length t (i.e. ¢ = 2) the time complezity is O(+/t1.384145%).

Proof. A run of the Efficient Exhaustive Search Algorithm can be represented as
a tree of depth t and at most kg branches labelled with non zero values on any
path from the root to a leaf. Using Lemma 3.10, this tree will have at most ‘

(g ~1)}(4+]) nodes. So the number of nodes is bounded by 2(q — 1)* (,::’4_11),

o
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from Lemma 3.7. For any node, the algorithm computes a discrepancy and possi-
bly adjusts the characteristic polynomial, so there are O(t) computational steps.
Therefore the complexity is O(t(g — 1)* (,::'_I_Il))

Using ( 3.2) we obtain the following approximation:

2(g ~ 1)k°t(t+1) = 2(g— 1)koﬂt_i_1)(t)

k{) +1 kO +1 kg
tt+1) /¢t
= 2(g— 1"t
(2=1) vi+1 (vt)
L V20— 1"t +1) 1
) e vt + 1 \F(1 — )i-v)tayvits
- V2 Vi (-1
T VE ool — o) (1= vt
~ Y2 \/g( (@= 1y )
Ve /u(l —v) (1 — )2
which is O(v/EX) where A = ;7 4=0r. -

The Efficient Exhaustive Algorithm is used throughout this thesis as a reference
for the accuracy of the algorithms that we design.

3.4 Conclusion

We have clearly defined the problems that are trying to solve in this thesis: the
k-error linear complexity problem, the k-error linear complexity profile problem
and the L-constrained k-error linear complexity problem.

We present and analyze two exhaustive search techniques for computing the k-
error linear complexity of sequences over finite fields. Both the Naive Exhaustive
Search Algorithm and Efficient Exhaustive Search Algorithm are general and exact
algorithms. The computational complexity is exponential for both algorithms,
however important time improvements with no accuracy costs are registered in
Efficient Exhaustive Search Algorithm.

Efficient Exhaustive Search Algorithm will be used throughout this thesis to
compute the exact values of the k-error linear complexity when evaluating the
heurstic algorithms presented in chapters 4 and 5.




Chapter 4

Modified Berlekamp-Massey
Algorithm

In this chapter, we present heuristic algorithms which approximate the solution of
the k-error linear complexity profile problem and the L-constrained k-error linear
complexity problem for general finite sequences over a finite field by adapting the
Berlekamp-Massey Algorithm (Berlekamp [4], Massey [42]). The method explores
only some of all the possible error sequences, the choice of the positions of the
errors being guided by the steps of the Berlekamp-Massey Algorithm in which the

complexity is increased.

4.1 Introduction

In chapter 3 we described the exhaustive techniques for solving the k-error lin-
ear complexity profile and the L-constrained k-error linear complexity problems.
These techniques process all the possible error patterns in order to obtain an exact
result.

A heuristic approach would only explore a subset of all the possible error
patterns. We investigate a method of choosing these selected few error patterns
in such way to maximise the accuracy of the result. The heuristic in this chapter
uses the Berlekamp-Massey Algorithm to choose these patterns. Namely, during
the algorithm (see section 2.2.6), only the case when the discrepancy is not zero
d™ =£ 0 and when the current linear complexity is less than or equal to half the
length of the sequence, 2L{™ < n (case (1b)) yields an increase in the current
complexity of the sequence. It therefore seems natural to concentrate on what
would happen if the current term of the sequence, which creates this increase
in complexity, would be changed in such a way as to make the discrepancy d™
zero, and therefore make an increase in complexity unnecessary. If we introduce

49
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these changes to the sequence early in the algorithm, we would soon run out of
the k¢ allowed errors, and we would not be able to explore the effect of errors on
later terms of the sequence. Whenever case (15) occurs in the algorithm we do
therefore consider both possibilities: changing the current term of the sequence,
or not changing it, and we continue exploring both branches. This approach will
therefore still have an exponential complexity, but will substantially decrease the
number of error patterns investigated, with the savings becoming larger for fields
of larger cardinality.

In the case of fields of larger cardinality, this approach has the advantage that
even if the field has more than two elements, there are still only two choices that
are investigated: introducing no error, or introducing an error of magnitude —d®™,
where d™ is the discrepancy. An exhaustive search approach (for example Efficient
Exhaustive Search Algorithm described in section 3.2) would have to investigate
all the possible error magnitudes along with the zero value for each error position,
i.e. ¢ possibilities for a field of ¢ elements. The computational complexity of the
heuristic method is further discussed in Section 4.3.

Our approach is not guaranteed to give the exact result of each k-error lin-
ear complexity, as the error pattern that decreases the complexity the most may
well not have the errors in those positions suggested by the Berlekamp-Massey
Algorithm. Since we investigate only some of all the possible error patterns and
the k-error linear complexity is defined as a minimum over the set of all error
patterns (see definition 2.13), our results are always larger than or equal to the
exact ones. Unfortunately we were unable to prove a bound on the approxima-
tion quality. Therefore, we investigate experimentally in Section 4.4 how close
the approximation is to the exact values composing the k-error linear complexity
profile.

We firstly illustrate our algorithm with an example:

Example 4.1. Suppose we take a binary sequence s = 0110111101110101 of length
16. Table 4.1 shows the intermediate results of the Berlekamp-Massey Algorithm
for this sequence. The resulting linear complexity is 8 and the characteristic poly-
nomial C(X) =X+ X6+ X°+ X4+ X +1.

Figure 4.1 shows the tree of recursive calls which would be considered as sug-
gested by the Berlekamp-Massey Algorithm, calls which correspond to the sttua-
tions when the current linear complezity needs to be increased. The internal nodes
and the root in figure 4.1 show the current position in the sequence and the current
linear complezity at the moment when a raise in the linear complexity is needed.
The left child of each internal node corresponds to not forcing an error and the
right child corresponds to introducing the error —d™ such that the discrepancy
becornes zero. The leaves in the tree show the final result on each path in the tree:
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Table 4.1: Intermediate results for the Berlekamp-Massey Algorithm applied to
the sequence s = 0110111101110101

N 8p-1 dn Ln dm m Ly Cp(X) Cn(X)

10 - 0 - - - - 1

2 1 - 2 1 1 0 1 X2

3 1 1 2 1 1 0 1 X2+ X

4 0 0 2 1 1 0 1 X24+X+1

5 1 0o 2 1 1 0 1 X2+ X+1

6 1 1 2 1 1 o 1 X4 X +1

7 1 0 5 1 6 2 X24+X+41 X4 X44+X341

8 1 D 5 1 6 2 X 4X+1 X0+ X4+ X341

9 0 1 5 1 6 2 X2+X+1 X4+ X4+ X341

10 1 0 5 1 6 2 X?2+X+1 X0 X44X3 4 X2+ X

1 1 0 5 1 6 2 X?4+X+1 Xo 4 X444 X310 X214 X

12 1 1 5 1 6 2 X2+X+1 X0+ X1 X3+ X2+ X

132 0 1 8 1 12 5 X94X44x34iX?24+X X04XT+XC4+XS4X44
X24+X+1

14 1 1 8 1 12 5 XP4+X*+X*4+X%4X XP4X34X24X+1

15 0 0 8 1 12 5 X54+X*44X34X24+X Xe3X61XSiXiiX+1

16 1 0 8 1 12 5 X°+X4+X34X°+X XO4XO4XS4X44X+1

the number of errors which were introduced and the corresponding k-error linear
complezity for that error pattern. In Table 4.1 we can see that the first change of
complezity happens when the term sg = 1 s processed. At this moment two paths
need to be taken, either an error is introduced and the linear complexity and char-
acteristic polynomial remain unchanged (corresponding to the right subtree), or no
error ts introduced and the algorithm carries on just as in the classic Berlekamp-
Massey Algorithm (left subtree). Having the path of subsequent decisions to get
to a certain solution (represented by a leaf in the tree), the error sequence can be
built using a bottom-up technique. For example, if we need to rebuild the error se-
quence corresponding to the found 3-error linear complexity (Ls(s) = 5), this one
will contain 1’s in the positions 14,13 and 12, corresponding to the error sequence
0000000000001110. Note that there is a second solution contributing to the 3-error
linear complexity (Ls(s) = 13), corresponding to an error sequence with 1’s in the
positions 14, 9 and 8 but this is not the optimum value.

By taking the minimum value of the linear complexity for each number of er-
rors, the results in the tree in Figure 4.1 give an incomplete k-error linear complez-
ity profile {(0,8),(1,9),(2,7),(3,5),(5,2)}. Applying the monotony property of the
k-error linear complexity (property 2.14) and the fact that Ly, () = 0 for any
sequence s (property 2.15) an approzimation of the full k-error linear complezity
profile can be found:

{(0,8),(1,8),(2,7),(3,5), (4,5),(5,2),(6,2),(7,2), (8,2), (9, 2), (10, 2), (11, 0} }.




CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 52

Figure 4.1: Example of the Modified Berlekamp-Massey Algorithm tree of error
and no-error recursive calls for the sequence s = 0110111101110101

The exact k-error linear complexity profile for the sequence s 1s:

{(Ov 8)! (la 7): (23 6): (31 4): (4? 2): (5a 1)? (6& 1): (Ta 1)! (8: 1): (9: 1): (10) 1)! (111 0)}

One can notice that the approzimation is very close to the exact values even though
the difference in the number of error patterns processed is significant (10 error
patterns for the proposed approach and Ziiio (lz.e) = 33215 for the Naive Ezhaustive
Search Algorithm). '

4.2 Modified Berlekamp-Massey Algorithm

Based on the considerations in section 4.1 we will describe an implementation,
denoted Modified Berlekamp-Massey Algorithm, which outputs an approximation
of the k-error linear complexity profile problem and which is based on the recursive
version of the Berlekamp-Massey Algorithm (see listing 2 and 3 in section 2.2.6).

For a sequence s and an integer ko with 0 < ko < wg(s), the approximate
ko-error linear complexity profile of s returned by the Modified Berlekamp-Massey
Algorithm contains for each 1 = 0,1,..., kgt L}, the approximate i-error linear
complexity; e}, the error pattern producing the linear complexity L} on s; C¥(X)
a minimal characteristic polynomial corresponding to the sequence s 4 €.

The algorithm initially locates the position of the first non zero term. This
cannot. coincide with the end of the sequence since the all zero sequence is not a
valid input sequence.
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Since the k-error linear complexities in the profile are minimum values, the
k-error linear complexity profile is initialised with the maximum possible value,
namely L¥ = L(s), CH{X) = C(X) and e = (0,0,...,0), for all ¢ = 0,1,..., ko,

t times
where L{s) is the linear complexity of s and C(X) is a minimal characteristic

polynomial of the input sequence s, i.e. deg(C(X)) = L(s).

The significant changes from the Berlekamp-Massey Algorithm are in the re-
cursive procedure, denoted now mbmR (listing 12). See listing 3 in section 1 for
procedure bmR. The parameters of the procedure mbmR are:

e ¢, the current error sequence of weight & {(wy(e) = k).
e n, the current position in the sequence.
e C(X), the current characteristic polynomial (L, = deg (C(X))).

e D(X), the characteristic polynomial at the last change in degree (L,, =
deg (D(X))).

e m, the position where the last change in degree occurred (m < n, Ly, < Ly
and Ly, = Ly).

¢ d,,, the discrepancy value at the time of the last change in degree.

The procedure works in a similar way with the recursive version of the Berlekamp-
Massey Algorithm, processing the sequence s + e, where s is the input sequence
and e is an error pattern. The error pattern is built by considering at every po-
gition n where 2L, < n and d, # 0, two alternatives for the current e, value,
en = 0, corresponding to introducing no error, and e, = —dp, the reverse of the
discrepancy value, corresponding to introducing an error.

I, (line 21 in algorithm 12) is the unit vector of size n having all terms zero
except for the position n where the term is 1 (I, =(0,0,...,1,...,0)). Therefore
e—dnly, = (€0,€15- .y €n1,€n — dny €nt1y v vy Comt).

The stop condition is a disjunction of conditions. If the end of the sequence
has been reached (n = t) then it means an error pattern e of weight k at most
ko has been processed and if L(s + e} is smaller than the currently stored L, the
new solution needs to be saved.

If the current error pattern has a weight larger than ko (k > ko) then that path
needs to be discarded since it does not contribute to the kg-error linear complexity
profile.

Additionally, some of the paths taken by the recursion calls might get to an
error pattern e such that L(s + e) is greater than or equal to the currently stored
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Algorithm 11 Modified Berlekamp-Massey Algorithm for the k-error linear com-
plexity profile problem
1: Input: A finite sequence s = sg, 81,..., St-1; an integer ky with 0 < kg <
wg(s) —1;
2: Output: The approximate k-error linear complexity profile, L}, C}(X) and
ef, foralli=01,..., k.
n, «— 0
while s,, =0 and n, <t do > go over the initial zeros
N, «— N, +1
end while
fori=0,1,...,ky do
LY — L(s)
C}HX) «+ C(X), a minimal characteristic polynomial

10: el —(0,0,...,0)

t times
11: end for
12: k<0

13: ¢ =(0,0,...,0)

t times
14: m + 1,

15: D(X) 1
16: dpy + Sp,

17: n, «~n, +1
18: C(X) « X"

19: if n, <¢t—1 then > otherwise kg = wy(s) —1=0
20 call mymR(m, D(X),dp,C(X), 1y, €)
21: end if

22: return L}, C*(X); and e}, forall i =0,1,..., ko

solution for that number of errors £ (L}). Continuing the investigation on that
recursion path is of no use as it will not give a better solution. The condition
(L} < L,) can therefore be added to avoid these unnecessary recursive calls.

Finally, we apply an adjustment after each update of the current approximation
of the k-error linear complexity profile, in order to maintain its monotony property.
See procedure adjust Profile and the associated discussion in section 3.2, listing 8.

Additionally, we can combine iteration and recursion in order to minimise the
stack size. Since the recursive calls are useful only when there is a decision to force
or not an error, a level of iteration can be introduced for the other cases (lines
12-32 in Algorithm 13). A boolean flag is used to indicate when to reiterate and
when there is need for a recursive call (lines 11, 19 and 30 in Algorithm 13). This
last remark is implemented in procedure mbmROpt from listing 13.

As opposed to the Efficient Exhaustive Search Algorithm, the algorithm pre-
sented in this section only considers a subset of all the possible error patterns
e € GF(q)!. These error patterns e = (eq,€1,...,€:._1) are such that for each
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Algorithm 12 The mbm R procedure
1: procedure MBMR(m, D(X), dy,, Co(X),n, €)
2 k — wy(e)
3 Ly, +— deg(D(X))
& L, —deg(C(X))
5. if (n=1t)or (k> ky) or (L} £ L,) then
6 if ((n=1) and (k < ko) and (L} > L,)) then
7 (Li» Ci(X), €x) « (La, C(X), €)
8 call adjustProfile(L,, C(X), e, k)
9: end if :
10: else _
11: dnp — (84 €} + Zf;‘o_l (s + €)ivn—r,
12: if d, # 0 then
13: if 2L, > n then > (1a) the complexity does not change
14: C(X) « C(X) — o xtm-Lm)=(n=Ln) D(X)
15: call mbmR(m, D(X),dm,C(X),n+1,¢)
16: else > (1b) the complexity does change
17: T(X) « C(X)
18: C{X) — X=Ln)=(m=Lm)C(X) — &0 D(X)
19: call mbmR(n, T(X),dn, C(X),n+ 1,e)
20: if k < ko then
21: call mbmR(m, D(X),dn, C(X),n+1, (e — d,1I,,))
22: end if
23: end if
24: else > (2) the current characteristic polynomial does not change
25: call mbmR(m, D(X),dpm,C(X),n+ 1,€)
26: end if
27 end if

28: end procedure
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Figure 4.2: Solution tree generated with the Modified Berlekamp-Massey Algo-

rithm for the sequence s = 1011011010111010
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Algorithm 13 The mbmROpt procedure - Optimised version
1: procedure MBMROPT(m, D(X), dpm, C(X), n,€)
2 k «— wH(e)
3 Lp < deg(D(X))
4. L, « deg(C(X))
5:  if (n=1t)or (k> ko) or (L} <L,) then
6.
7
8
9

if ((n =t) and (k < ko) and (L} > L,)) then
(L3 CE(X), €8) + (L, C(X), €)
call adjustProfile(L,, C(X), e, k)

: end if
10: else
11: loopFlag «— true
12: repeat
13: dy — (s + €)n + 027  ci(5 + €igner,
14; if d,, # 0 then
15: if 2L, > n then > (1a)
16: C(X) — C(X) — S X (m=Lm)=(n=Ln) D(X)
17: n—n+1
18; else > (1b)
19; loopFlag «— false
20: T(X) « C(X)
21: C(X) « X=Ln)~m-Im)Q(X) ~ %2 D(X)
22: ' call mbmROpt(n, T(X),dn, C{X),n+1,€)
23: if £ < ky then
24: call mbmROpt(m, D(X),dm, C(X),n+1,{e ~ dn1,))
25: end if
26: end if
27: else > (2)
28: ne—n+1
29: end if
30: until loopFlag = falseor n =1
31: end if
32 if ((n=1) and (k < ko) and (L} > L,)) then
33: (LL CE(XLGE) — (Lm C(X)’e)
34: call adjustProfile(L,, C(X), e, k)
35: end if

36: end procedure
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Figure 4.3: Solution tree generated with the optimised Modified Berlekamp-
Massey Algorithm for the sequence s = 1011011010111010

it =0,1,...,t — 1, either ¢; = 0 or e; = —d; where d; is the discrepancy when
processing term i for the sequence (s + €)@ = (so + ey, 8; +e€3,. .., 5 + &)

As already shown, the set of error patterns processed by the Modified Berlekamp-
Massey Algorithm can be represented hierarchically as a binary tree. In this tree
each internal node (n, L,)} represents a moment in the algorithm when case (1b)
from Berlekamp-Massey Algorithm is encountered (2L, < n and d,, # 0) (see
section 2.2.6), where the discrepancy, d, is calculated for the sequence s +e¢. Each
of the two branches of a non-final node will correspond to one of the values which
can be considered for e;, namely 0 or —d;. Some of the indices do not appear
in the tree and that means that the error term on those positions is zero for the
corresponding error pattern considered by the algorithm,

This tree representation is useful not only for visualisation purposes but also
since it enables us to describe and estimate the number of error patterns considered
by the algorithm. The number of error patterns considered is the number of leaves
in the tree (see section 4.3 for the estimation).

For instance, the tree in Example 4.1 in section 4.1 shows that 10 error patterns
have been considered and that these are: 0000000000000000, 0000000000001000,
0000000000001100, 0000000000001110, 0000001000000000, 0000001010000000,
00000010600000001, 0000001011000000, 0000001011000010 and 0000001011000011.
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Figure 4.4: The Fk-error linear complexity profile for the sequence s =
1011011010111010

In order to justify the optimisations we have made to the algorithm, namely the
stop condition (L} < L,), the procedure adjustProfile and the mix of recursion
and iteration, we include the following example.

Example 4.2. Consider the binary sequence s = 1011011010111010 of length 16.
For the sequence s and no limitations on the number of errors (kg = wy(s)) or the
complexity (Lo = t), the number of nodes in the tree of recursive calls decreases
from 61 nodes to 87 nodes for the optimised version with no loss in accuracy (see
figures 4.2 and 4.8 for a graphic representation of the trees).

Figure 4.4 shows the difference between the approximation found by the Modi-
fied Berlekamp-Massey Algorithm and the exact values of the k-error linear com-
plexity for the same sequence.

In theorem 4.3 we prove that the approximation algorithm Modified Berlekamp-
Massey Algorithm is correct according to definition 3.1.

Theorem 4.3. The Modified Berlekamp-Massey Algorithm (listings 11 and 13) is

correct.

Proof. We can prove by induction on n, where n = ng,n, +1,...,t — 1 (n, is
the position of the first non zero term in sequence s) that for each error sequence
e = ep,e1,...,en With wy(e) < ko processed by the algorithm, the values of m,
D(X), dp, C(X) calculated by the recursive procedure mbmROpt are correct for
the sequence (s+e)™ = (sp+eg, . ..,8,+¢€,). Namely, m is the last change index,
i.e. the maximum value such that m < n and L((s + &)™ D) < L{(s + &)™ =
L{(s + e)®»V; D(X) and d,, are the characteristic polynomial and the discrep-
ancy corresponding to the last change term m; C(X) is a minimal characteristic
polynomial for (s + e)™.
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For n = n, and for e = (0, ..., 0) the initial values given tom = n,, D(X) =1,
e’

n, times
dm = 8n,, C(X) = X™+! are correct for (s +€)®=) = (0,...,0, s,,).
Suppose that for a certain error pattern e = eg,ey,...,e,—1 the values m,

D(X), dy, C(X) are correct for (s + €)™V, We show that the values m, D(X),
dm, C(X) remain correct after a run of the procedure mbmROpt.

If n =t, wi(e) > ko or deg(C(X)) > L} then the recursion stops so the values
remain unchanged.

If none of the conditions above are met then the discrepancy d,, is calculated.
If d, # 0 two cases are considered:

o If 2L, > n then the last change polynomial D(X), the last change index, m
and discrepancy dr, remain the same. The current characteristic polynomial

changes but its degree is the same, see line 14 in algorithm 12.
e If 2L, > n then two further situations are considered:

— Do not introduce an error, e, « 0, the last change polynomial becomes
the current polynomial D(X) « C(X), the last change index, m «— n
and the corresponding discrepancy d,, < d,. The current characteristic
polynomial and its degree change, see line 15 in algorithm 13. In this
case, L, « deg{(C(X))=n— L, + 1.

— Do introduce an error, e, < —d,, on the term s, then the discrepancy
of the sequence s + e at position n becomes 0 so there is no need for a
change. All parameters D(X), m, dp, C(X) remain unchanged.

Finally if d,, = 0 then there is no need for a change so all the values of the
parameters D(X), m, dm, C(X) remain unchanged.

It follows that the values of C(X) are minimal characteristic polynomials cor-
responding to (s e)®~Y for all the error patterns e of different weights processed
by the algorithm. Since the best values are saved for each k less than or equal to
ko the correctness of the resulting profile is immediate. O

A version of the Modified Berlekamp-Massey Algorithm for the L-constrained
k-error linear complexity problem can be immediately obtained (listings 14 and 15)
by outputting &* = min{k|L} < Lo} with the corresponding error pattern, char-
acteristic polynomial and linear complexity, instead of outputting the full k-error
linear complexity.

Additionally, for optimisation reasons we can add a set of stop conditions to

the recursion such that some of the recursive calls which are unnecessary to solving

this problem are avoided. See section 3.2 in Efficient Exhaustive Search Algorithm
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Algorithm 14 Modified Berlekamp-Massey Algorithm for the L-constrained k-
error linear complexity problem
1: Input: A finite sequence s = sg, s1,.-.,8:—1; an integer ky with 0 < &y <
wy(s) — 1; an integer Lo with 0 < Ly <t
2: Output: The approximate value £* with corresponding L*, C*(X) and e*
such that &* is minimum with L. (s) < Ly.
n, +— 0

|
while s,, =0 and n, <t do > go over the initial zeros
Ny — Ny +1
end while
: fori=0,1,...,k; do
. LY« L(s)
: CHX) « C(X), a minimal characteristic polynomial
10 el — (0,0,...,0)
t times
11: end for
12: k0
13: e=(0,0,...,0)
t {imes
14 m «—n,

O e BTN

15: D(X) 1

16: dm  Sp,

17: ny, «—n, +1

18 C(X) « X"

19: if n, <t-—1 then > otherwise ko = wy(s) —1 =10
20:  call mbmRL(m, D(X),dy,,C(X), nz.€)
21: end if

22: k* «— min{k|Li(s) < Ly,0 < k < Ko}

23: if &* > 0 then

24:  return k*,L}, Cx(X) and e}

25: else

26: return —1

27: end if

for L-constrained k-error linear complexity problem, for the explanation of these
additional stop conditions.

4.3 Algorithm analysis

In this section we formally analyse the computational complexity of the Modified
Berlekamp-Massey Algorithm.

For analysing the complexity of the Modified Berlekamp-Massey Algorithm we
will use the recursion trees as described in section 4.2 and estimate their number

of nodes using lemmas 3.7 and 3.10 from chapter 3.
For the Modified Berlekamp Massey Algorithm it is harder to estimate the
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Algorithm 15 The mbmRL procedure
1: procedure MBMRL(m, D(X),d,,, C(X),n,e)
2: k+— wyle)
3. L « deg(D(X))
4
5

Ly — deg(C(X))
if (n=1t) or (k> ko) or (L} < L) or (L, > Ly) or (L} < Ly) or (k* < k)
then
6 if ((n=1) and (k < ko) and (L} > L,))) then
T (L, OI:(X)’ 6;;) — (Lq, C(X)’ €)
8: k* — min{k|L% < Lo}
9: call adjustProfile(L,, C(X), e, k)
10: end if

11: else

12: loopFlag «— true

13: repeat

14 dn = (s+€)n+ i ei(s + €)ign-1,

15: if d,, # 0 then

16: if 2L, > n then > (la)
17: C(X) « C(X) — §a X (m=Lm)=(n=Ln) D( X))

18; nen-+1l

19: else > (1b)
20: loopFlag — false

21 T(X) - C(X)

22; C(X)  Xn=Ln)=(m-Lm)C(X) — & D(X))

23: call mbmRL(n, T(X),dn,C(X),n+ 1,¢)

24: if k < kg then

25: call mbmRL(m, D(X), dy,, C(X),n+1,(e — d,I,))

26: end if

27: end if

28: else > (2)
29: ne—n+1

30: end if

31: until loopFlag = falseorn =1

32: end if

33 if ((n=1t)and (k < k) and (L} > L,)) then

34: (Lk, Ci(X) ek} (Ln, C(X), €)

35: k* — min{k|L; £ Lo}

36: call adjustProfile(L,,C(X), e, k)

37 end if

38: end procedure
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depth of the recursion tree, as the number of terms processed in between two de-
cision points will vary depending on each particular sequence (we call a decision
point a moment in algorithm where d, # 0 and 2L, > n such that the recursion
branches into two paths corresponding to introducing an error of magnitude —d,
or not introducing an error on position n). We will assume that an average of
terms are processed between two decision points, i.e. between two points where
the Berlekamp-Massey Algorithm would prescribe an increase in the current com-
plexity of the sequence. In Rueppel [70, Chapter 4] it is shown that for random
binary sequences the average number of bits that have to be processed between
two changes in complexity is 4 and the change in complexity has an average of 2.
While the sequences used in the cryptographic applications are not truly random,
using a value of u = 4 for the average number of terms between two changes of
complexity seems a reasonable choice. The following theorem has been proven by
S#ligean in our paper [2].

Theorem 4.4. (Alecu, Sdldgean [2]) The average case time complexity of the
Modified Beriekamp Massey Algorithm for sequences of length t, an average of u
terms of the sequence processed between two changes in complezity, and a number
of errors at most ko = vt with0 <v < = is

OWEY) ifv< & where Ay = 1

urv{l—uv)
1 1 — 1
O(t\/f)\tl) 'bfﬁ <u< % where )\1 = W,

O(tAL) if o= <v< i where Ay = V2.

Loy?
rrat]

In all cases the complexity can also be written as O((A; + €)f) where ¢ > 0 s
an arbitrarily small constant. For a typical value of v= 0.1 (i.e. errors in at most
10% of positions) and u = 4 the complezity is O(tV/11.189208).

Proof. Since u is the number of terms between two decision points and ¢ is the
total number of terms, the depth of the tree will be ¢/u. We bound the number of
vertices in the tree by (g~ 1)% "k, (%:11), using lemma 3.10. When the number
of right branches on any path, &, is at most half the depth of the tree, by applying
the first or the second bound in lemma 3.7 (depending on whether %o is smaller or
greater than a third of ¢/u), followed by the estimation {3.2), we obtain the first
two computational complexities O of the theorem in a similar way as in the proof
of theorem 3.11.

When the number of right branches allowed in the tree approaches the depth
of the tree, i.e. kg approaches t/u, we will bound the number of nodes by 2utl_1
(the number of nodes in & complete binary tree of depth t/u). Combining this
with O(¢) operations in each node gives the third O of the theorem. O
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The proposed algorithm has the advantage that even when the field has more
than two elements, there are still only two choices that are investigated: introduc-
ing no error, or introducing an error of magnitude —d,, where d,, is the discrep-
ancy; an exhaustive search approach would have to investigate all the possible
9(g — 1) possibilities for a

error magnitudes for each error position, i.e. Zf=0 (1L

field of g elements.

Both the computational complexities of Efficient Exhaustive Search Algorithm
(theorem 3.11) and of Modified Berlekamp-Massey Algorithm (theorem 4.4) will
increase by a factor of (logq)? to account for the more costly operations in a
field of q elements. However, the exponential part in the O estimate will remain
unchanged in Theorem 4.4 (Modified Berlekamp-Massey Algorithm), whereas in
Theorem 3.11 (Efficient Exhaustive Search Algorithm), A? is replaced by (A(g —
vy

For a typical value of v = 0.1 (i.e. errors in at most 10% of the positions) and
an alphabet of ¢ = 16 elements, the worst case time complexity is O(v/£1.826)
for Efficient Exhaustive Search Algorithm compared to O(t1/£1.189208%) for the
proposed Modified Berlekamp-Massey Algorithm (u = 4).

Note that since similar considerations were used for the approximations in the
computational complexity estimations for the two algorithms (Efficient Exhaustive
Search Algorithm and Modified Berlekamp-Massey Algorithm) the comparision is

fair.

4.4 'Tests and results

Several tests are performed in order to estimate the efficiency and the accuracy of
the proposed algorithm, We mainly do a comparison between the optimised Mod-
ified Berlekamp-Massey Algorithm (MBM) and the Efficient Exhaustive Search
Algorithm (EES), but also a few other experiments are presented in order to bet-
ter characterise the behaviour of the algorithm proposed in this chapter.

To measure how close to the exact result we get using the Modified Berlekamp-
Massey Algorithm, we define the accuracy ACCupmi(s) as the ratio between
Lysumk(s), the approximate value of the k-error linear complexity obtained us-
ing the Modified Berlekamp-Massey Algorithm and Lgggk(s), the exact value
obtained using the Efficient Exhaustive Search Algorithm:

L 8
ACCuman(s) = —‘—Lﬁffé))'

The running time improvement of the Modified Berlekamp-Massey Algorithm
is computed as the ratio between the time taken by the Efficient Exhaustive Search
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Algorithm and the time taken by the Modified Berlekamp-Massey Algorithm on
the same processor: '
improvement = M.

femeyBM

In order to better understand the efficiency gain, the Modified Berlekamp-
Massey Algorithm registers how many different error patterns it investigates and
returns for each run their number (it includes in the count all the error patterns
processed, not only the ones for which it reaches the last term e;—;, which corre-
spond to the stop condition n = ). Having the number of error patterns inves-
tigated by Maodified Berlekamp-Massey Algorithm, let us denote it patternsypas,
we can investigate if a random search through a randomly generated set of the
same number of error patterns over the current finite fleld would give a better

approximation and/or would take less running time (section 4.4.3).

4.4,1 Binary sequences

The first test involves running both algorithms (Modified Berlekamp-Massey Algorithm
and Efficient Exhaustive Search Algorithm) on a number of 60 randomly chosen
binary sequences of length 64 (each bit is generated with the C rand() linear

congruential generator function).

Table 4.2: The average accuracy of the results of the MBM Algorithm.

Number of errors k 1 2 3 4 5 6 7 8 9
Average ACC), 1.04 108 110 1.13 1.18 1.21 1.24 1.27 130
Best ACCy 1 1 1 1 1 1 1 1 1
Worst ACC), 1.22 126 131 135 1.35 1.47 1.5 157 1.62
Median 1.03 1.07 108 1.13 1.19 1.21 1.23 128 1.31

Frequency percentage of 33.3% 20% 10% 5% 16% 33% 16% 16% 5%
best accuracy

Figure 4.5 presents the median, average, best and worst value of accuracy
(ACCy) over the 60 sequences tested for the case when the parameter ky =
wg(s)—1. These results are given in Table 4.2 for 1 < k£ < 9. For small values of &
we notice that on average the k-error linear complexity obtained by the Modified
Berlekamp-Massey Algorithm is pretty close to the actual value, being higher by
only 4.49% for 1 error, increasing to 21.93% for 6 errors (i.e. errors in about 10%
of the terms) and to 30.43% for 9 errors (i.e. about 15% of the terms). Addition-
ally, the table 4.2 shows the frequency with which the proposed approximation
algorithm has found the exact value for each number of errors (the total number
of sequence is 60). The fact that the median (the 50% quartile!) is smaller or very

! The median is a certain value from a population which is separates the higher half of the
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The accuracy of the results found by the Modified Berlekamp-Massey Algorithm
on a sample of 60 random binary sequences of length 64

l ! ' ! Av]erage accuralcy
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Figure 4.5: The accuracy of the Modified Berlekamp-Massey Algorithm for binary
sequences of length 64 (ko = wg(s) — 1)

close to the average for most of the numbers of errors (represented on the z axis
in figure 4.5} shows that most times the algorithm approximates well the k-error
linear complexity.

In many cases the Modified Berlekamp-Massey Algorithm determines the exact
value of the k-error linear complexity. On the sequences on which the Modified
Berlekamp-Massey Algorithm performs worst, it gets a k-error linear complexity
up to 1.62 times the exact value, for £ < 9.

As k increases, the quality of the results obtained by the Modified Berlekamp-
Massey Algorithm deteriorates. Note however that the small values of k are the
ones of practical interest.

Figure 4.6 shows the accuracy obtained when the input parameter given to the
Modified Berlekamp-Massey Algorithm, ky, is 15% of the length of the sequence,
t.

The average running time improvement when calculating the full ky-error linear
complexity profile (ko = wg(s) — 1) is 18, 806 times, i.e. the Modified Berlekamp-
Massey Algorithm was nearly 19,000 times faster than the Efficient Exhaustive

sample from the lower half.
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The accuracy of the results found by the Modified Berlekamp-Massey Algorithm
on a sample of 80 random binary sequences of length 64 (k0 = 15% t)
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Best »meeee
25
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Nurnber of errors

12

Figure 4.6: The accuracy of the Modified Berlekamp-Massey Algorithm for binary

sequences of length 64 (ky = 15%)
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Table 4.3: The running time in seconds for MBM and EES Algorithms for k-error
linear complexity profile problem (different values for parameter kg).

|-

“ wH(s)—l’ 0 411 15 ‘ 22,715  50,532.79 91,835‘

timenr gt timeggps
min avg max min avg max

0.15t 0 3.80 917,685 40,683.62 103,869

Table 4.4: The running time improvement of the MBM Algorithm when compared
with EES Algorithin for k-crror linear complexity profile problem (different values
for parameter ko).

|-

wg(s)—1| 4,881.13 18,805.85 91,835
0.15t 3,889.67 13,401.59 46,270

timegps
timepr Baf
min avg max

Search Algorithm. A similar time improvement is obtained when imposing a
smaller limit on the number of errors (ky). For example, when ky is 15% of the
length of the sequence t, the time improvement is 13,402 times. See table 4.4 for
details regarding the average running time improvement in each of the two cases
considered. The time is expressed in seconds and the duration is rounded to the
closest number of milliseconds.

A similar if not more accurate measure of the improvement is to look at the
number of error patterns visited by each algorithm for the same sequence (see
tables 4.5 and 4.6).

For the binary sequences of length 64 and when the input parameter ky =
wg(s) — 1, on average, the Modified Berlekamp-Massey Algorithm took approx-
imately 4.11 seconds and processed 18,593 different error patterns while the Ef-
ficient Exhaustive Search Algorithm took approx. 50,532 seconds and processed
360,604,284 error patterns.

Sec tables 4.3, 4.4, 4.5, 4.6 showing full details regarding the running time and
the number of error patterns visited by ecach algorithm.

Table 4.5: The number of error patterns visited by the MBM and EES Algorithms
for k-error linear complexity profile problem (different values for parameter ko).

"

wy{s)—1 | 902 18,593.36 58,572 | 220,854,390 360,604,284.10 592,530,235
0.15t 830 14,137.85 36,592 | 129,365,933 238,001,242.45 411,466,082

patternsyspa

patternseggs
min avg max

min aveg max
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Table 4.6: The number of error patterns visited by the MBM Algorithm compared
to EES Algorithm for k-error linear complexity profile problem (different values
for parameter kq).

|

EatternsEEs
patiernsy anm

‘ min avg max ‘

wi(s) —1 | 7,280.52 32,979.08 269,634.70
0.15t 5,879.20 26,553.13  239,322,82

4.4.2 L-constrained k-error linear complexity problem

For the case when the Modified Berlekamp-Massey Algorithm solves the L-constrained

k-error linear complexity problem the focus of the problem is actually the value
k* representing the minimum number of errors to force on the sequence so that
its linear complexity would drop below Lg. Since the Modified Berlekamp-Massey
Algorithm returns an approximation, the value kprpps will always be equal to or
more than the exact value returned by the Efficient Exhaustive Search Algorithm,
let us denote this exact value kggs. Therefore in this case, for accuracy, it would
be useful to compare the difference between these two values scaled by the length
of the sequence: (kyan — kgEes)/t.

We ran the Modified Berlekamp-Massey Algorithm and Efficient Exhaustive
Search Algorithm for the L-constrained k-error linear complexity problem on the
same sect of 60 binary sequences of length 64 as in section 4.4.1, choosing Ly to be
33% of the length of the sequence and for kg two different values, ky = wg(s) — 1
or ko = 15%:t.

Figures 4.7 and 4.8 include the distribution of the accuracy (kassar — kers)/t
when kg = wg(s) — 1 or kg = 15%t, respectively. Note that the approximation
karpas is close to the exact value, in most cases, for both values of kg, the difference
between karpps and kpgs being between 1 and 2 (corresponding to the 0.02 and
0.03 in the two figures). In the worst cases, the approximate value is larger by 5
than the exact value.

In terms of efficiency, the runtime improvement from the Efficient Exhaustive
Search Algorithm is consistent. For the 60 binary sequences of length 64, when
the input parameter ko = wy(s) — 1 and Ly = 33%t, on average, the Modified
Berlekamp-Massey Algorithm took approx. 3.58 seconds and processed 17,547 dif-
ferent error patterns while the Efficient Exhaustive Search Algorithm took approx.
43,826 seconds and processed 347,452,754 error patterns.

See tables 4.7, 4.8, 4.9 and 4.10 which show full details regarding the running
time and the number of error patterns visited by each algorithm.
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The difference between the approximation returned by MBM AI‘gorithm and the exact result overt
when a maximum linear complexity is specified (L0 = 33% t)
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Figure 4.7: The difference between the approximation of the Modified Berlekamp-
Massey Algorithm and the exact result for binary sequences of length 64 when
Lo = 33%t

Table 4.7: The running time in seconds for MBM and EES Algorithms for the
L-constrained k-error linear complexity problem.

wg(s)—1 % 0 3.58 15 | 23,400 43,825.97 79,291
0.15¢ 3 0 198 5.19 | 14,288 26,501.24 45,441

ko Lo timeppM timepgs
min avg max min avg max

Table 4.8: The running time improvement of the MBM Algorithm when compared
with EES Algorithm for the L-constrained k-error linear complexity problem (dif-
ferent values for parameters ko and Lg).

kU LO timepps

timerrpar
min avg max

wr(s) — 1 % 2,588.60 28,838.55 659,611.11
0.15¢ I 476267 19,416.39 258,236.25
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The difference between the approximation retumed by MBM Algorithm and the exact result over
when a maximum linear complexity is specified (k0 = 15% tand L0 = 33% t)
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Figure 4.8: The difference between the approximation of the Modified Berlekamp-
Massey Algorithm and the exact result for binary sequences of length 64 when
ko = 15%t and Ly = 33%t

Table 4.9: The number of error patterns visited by the MBM and EES Algorithms
(different values for parameters ko and Lo).
ko Lo ( patiernsprpn patternsges

min avg max ' min avg max ’

wr(s) -1 -5— 490 17,546.85 58,572 | 220,006,957 347,452,753.84 590,428,446
0.15¢ 3| 386 11,210.80 30,839 | 128,234,300 238,965,677.38 410,103,809

Table 4.10: The number of error patterns visited by the MBM Algorithm compared
to EES Algorithm for L-constrained k-error linear complexity problem (different
values for parameters kg and Lg).

ko Lo e

min avg max
wg(s)~1 % 5,634.26 42,427.07 748,075.28
0.15¢ 3 | 7,616.67 39,902.56 474,145.50
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4.4.3 Significance of the heuristic selection

A purely random heuristic approach for the k-error linear complexity profile prob-
lem would be to generate randomly a certain number Npgierns Of error patterns e
of weight k with 0 < k < ko and save the minimum L{s + ¢) for each k. We will
call this method K Random Algorithm, see listing 16 for the implementation.

Algorithm 16 KRandom Algorithm
1: Input: A finite sequence s = 89, 81,...,8:—1 over GF(q); an integer ko with

0 < ko < wy(s) — 1; an integer Npaszerns > 0
OQutput: L}, CH{X) and e}, for all 4 = 0,1,..., ko
fori=0,1,...,k do

L; « L(s)

Cy(X) — C(X), a minimal characteristic polynomial

6;‘ = (0)0&,0)

N

t times
end for

counter «— 0

while (counter < Npgtterns) do

10: Generate randomly an error pattern e € GF(g)* with wy(e) < ko
11:  Calculate L(s + ¢) and C{X) corresponding to s + e

12:  if LY > L{s +¢€) then

w e

13: L} «— L(s+e)

14: CH(X) — C(X)

15: € +— €

16: end if

17: counter — counter + 1

18: end while
19: return L}, Cf(X) and e}, forall i = 0,1,..., ko

We ran the K Random Algorithm on the same set of 60 binary sequences of
length 64 as in section 4.4.1 with the two values of kg, wg(s) — 1 and 15%t, and
for each giving as input for Npgyerns the number of error patterns processed by the
corresponding Modified Berlekamp-Massey Algorithm. We want to check that the
method that we used in constructing the error patterns in Modified Berlekamp-
Massey Algorithm is significant in that it does give consistently better results than
if the same number of error patterns would be chosen randomly. For these tests,
the random error patterns are generated using the C rand() linear congruential
generator function.

Figure 4.9 shows the average accuracy of the X Random algorithm and of the
Modified Berlekamp-Massey Algorithm on the considered set of sequences. The
accuracy of the approximation of the k-error linear complexity is good for a very

low number of errors £ = 1 or k = 2, however as the number of errors grows

the K Random Algorithm becomes unreliable and inaccurate, see figure 4.10 for a
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The accuracy of the results found by the KRandom Algorithm
on a sample of 60 random binary sequences of langth 64 {compare with MBM accuracy)
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Figure 4.9: The accuracy of the KRandom for sequences of length 64.

zoom on the graph when 0 < k£ < 10.
This gives us the indication that the approach used by Modified Berlekamp-
Massey Algorithm in building and choosing the error sequences has a significant

impact on the accuracy of the result.

4.4.4 Sequences of different lengths

In order to check how the accuracy of the results of the aigorithm scales with
the length of the input sequence, a second experiment involved running Modified
Berlekamp-Massey Algorithm for binary sequences of different lengths. We used
20 random sequences of each even length between 8 and 64 and ran both Modified
Berlekamp-Massey Algorithm and Efficient Exhaustive Search Algorithm for k-
error linear complexity profile problem with &y = wg(s) — 1.

The time improvement of the Modified Berlekamp-Massey Algorithm shows
an exponential increase with the length of the sequence. Figure 4.11 contains
the results concerning the running time improvement, téimeggs/timenpn, and
figure 4.12 shows the improvement in number of error patterns processed,




CHAPTER 4. MODIFIED BERLEKAMP-MASSEY ALGORITHM 74

The accuracy of the results found by the KRandom Algorithm
on a sample of 60 random binary sequences of length 64 (zoom in and compare with tha MBM accuracy)
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Figure 4.10: The accuracy of the KRandom for sequences of length 64 (zoom for
0< k< 10).
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The relation between the average running time improvement
and the length of the sequence {y axis uses logarithmic scale)
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Figure 4.11: The relation between the average running time improvement on log-
arithmic scale and the length of the sequences.

patternspps/patternsypar (figures 4.11 and 4.12 use a logarithmic scale on the y
axis). The improvement, both in terms of running time and in terms of number
of error patterns, is approximately exponential in relation to the length of the
sequence. Figures 4.13 and 4.14 show the relation between the length of the
input sequence and the running time or the number of patterns of the Modified
Berlekamp-Massey Algorithm, respectively.

The quality of the approximation was measured for each sequence at dif-
ferent levels of number of errors: 5%, 10% and 15% of the length of the se-
quence. Namely for k = 5%, 10% and 15% we compared the values returned
by the two algorithms for the k-error linear complexity, evaluating the accuracy
ACCy = Lysmy(s)/Legsy(s). The results are summarised in figure 4.15. We
note that the approximate value of the k-error linear complexity found by the
Modified Berlekamp-Massey Algorithm is consistently good on all lengths tested
and it deteriorates only slightly as £ increases as a percentage of the length of the
sequence. This can be connected to the fact that the search space size increases
with the value of k for 0 < k < £ ((}) is increasing with k¥ when 0 < k < £).

The accuracy follows a similar trend as the results obtained for the previous
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The relation between the average number of error patierns improvement
and the length of the sequence (y axis uses logarithmic scale)
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Figure 4.12: The relation between the number of error patterns on logarithmic
scale and the length of the sequences.
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The average running time of MBM Algorithm
in relation with the length of the sequence (y axis uses logarithmic scale)
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Figure 4.13: The average runtime of MBM Algorithm on a logarithmic scale in

relation to the length of the sequence.
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The average number of error paftems processed by MBM Algorithm
in relation with the length of the sequence (y axis uses logarithmic scale)
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Figure 4.14: The average number of error patterns processed by MBM Algorithm
on a logarithmic scale in relation to the length of the sequence.
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The average accuracy of the k-error linear complexity found by MBM Algorithm
for different values of k and for different lengths
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Figure 4.15: The average accuracy of the k-error linear complexity found by the
MBM Algorithm for different values of k£ and for different lengths.

experiment including sequences of length 64 (see table 4.2). For 5% errors (i.e. k is
. 5% of the length), the k-error linear complexity found by the Modified Berlekamp-
Massey Algorithm is on average not more than 10% higher than the actual value,
for 10% errors it is at most 20% higher and for 15% it is at most 30% higher. This
behaviour supports the assumption that the accuracy of the Modified Berlekamp-
Massey Algorithm is approximately constant for binary sequences of any length
when the k-error linear complexity is calculated for a k& which is a certain fixed
percentage of the length.

‘When running the KRandom Algorithm using the same number of error pat-
terns as Modified Berlekamp-Massey Algorithm, we notice the significance of the
method used in MBM (see figure 4.16). For a relatively low number of errors (5%)
the approximation returned by KRandom Algorithm is only slightly worse than
the approximation of the Modified Berlekamp-Massey Algorithm but for 10% or
15% the difference is noticeable.
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The average accuracy of the k-error linear complexily found by KRandom Algorithm
for different values of k and for different lengths (compared with MBM accuracy}
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Figure 4.16: The average accuracy of the k-error linear complexity found by KRan-
dom Algorithm for different values of k and for different lengths (compared with
MBM accuracy)
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4.4.5 Sequences of higher length

For evaluating the accuracy of the MBM algorithm for sequences of higher length,
the exact k-error linear complexity profile can no longer be computed using ex-
haustive search due to time limitations. Instead, we carried out a controlled
experiment.

The controlled experiment is based on the following set up. Suppose a sequence
s of length ¢ is generated using a randomly chosen recurrence of size L such that
L < % Note that the linear complexity of the sequence can be smaller than the
size of the recurrence used to generate it, namely L(s) < L. We artificially apply
an error sequence ¢ of weight k such that the linear complexity of ' = s+ e is
higher than L(s). Obviously the k-error linear complexity of &' is equal or less
than the initial linear complexity, Li(s') < L(s), so even though we do not know
the exact k-error linear complexity of s’, we do have a good upper bound. So if we
apply the Modified Berlekamp-Massey Algorithm to s’ and compute the fraction
L—MBL—’ES)"(J)- we aim for this value to be close to 1. Note that this time the accuracy
ratio can be less than 1 because L(s) is only an upper bound rather than the exact
value of the k-error linear complexity of s/, Lx(s'}.

To illustrate, ‘the tests include 100 binary sequences s of length 100, gener-
ated by a randomly chosen recurrence of size 33 (33% of the length). The linear
complexity L(s) of each sequence s is computed (this can be lower than 33). We
artificially applied an error sequence e of weight k, such that the linear com-
plexity of s’ = s + e is higher than L(s). Obviously, Ly(s') < L(s). We then
applied the Modified Berlekamp-Massey Algorithm to s’ and computed the ratio
Lyeue(s)/L(s).

Figure 4.17 presents the distribution of the values of this ratio in each interval
of length 0.1. The three graphs considered correspond to limiting the view to
the cases when the value of k takes random values up to 5%, 10% or 15% of the
length of the sequence, respectively. Out of the 100 random values generated for
k such that they are less than 15% of the length (figure 4.17(a)), 61 are less than
10% (figure 4.17(b)) and 24 are are less than 5% of the length (figure 4.17(c)).
We notice that a high proportion of the ratios are below 1.3, i.e. the value found
by the MBM algorithm is close, or even lower than the original complexity, L(s).
The results are better when & represents a higher proportion of the length of the
sequence.

The results of a similar experiment applied to 26 sequences of length 128 are
displayed in figure 4.18. Out of the 26 random values less than 15% of the length
generated for k (figure 4.18(a)), 17 are less than 10% (figure 4.18(b)) and 4 are
less than 5% of the length (figure 4.18(c)).
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Figure 4.17: The accuracy of the results found by MBM Algorithm on 100 se-
quences of length 100, when the sequences were artificially modified with errors
sequences of weight: (a) & < 15% of the length; (b) k = 10% of the length; (c)

k = 5% of the length;
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Table 4.11: The runtime and number of error patterns for MBM Algorithm applied
to sequences over different finite fields.

Field MBM EXHEF

avg runtime avg patterns | avg runtime avg patterns
GF(2) 0.01 210.82 6.7 33,739.38
GF(3) 0.08 693.10 120.28 2,351,946.12
GF(5) 0.14 1,442.2 14,556.74 226,925,269.80

4.4.6 Sequences over finite fields of higher order

In order to see how the accuracy and efficiency of the Modified Berlekamp-Massey
Algorithm scales when the finite field of the elements varies, we experimented
with sequences from GF(3) and GF(5). The results concerning the accuracy and
running time of the algorithm when run over 50 sequences of length t = 32 with
elements in GF(2), GF(3) and GF(5), with ky 15% of the length of the sequence
t are graphically presented in this section. |

The accuracy of the Modified Berlekamp-Magsey Algorithm approximation is
constantly good for all three fields. See figures 4.19, 4.20 and 4.21 for the each of
the fields and figure 4.22 for a unified view on the average accuracies for the three
cases.

In order to validate the Modified Berlekamp-Massey Algorithm’s heuristic
method, the KRandom Algorithm has been applied to the same sequences us-
ing the same number of error patterns as used by Modified Berlekamp-Massey

Algorithm. Figures 4.23, 4.24 and 4.25 show how the accuracy of Modified Berlekamp-

Massey Algorithm is better than the accuracy of the purely random KRandom
algorithm for each of the fields considered and the 50 sequences processed.

4.5 Conclusion

We propose a heuristic algorithm for approximating the k-error linear complexity,
based on modifying the Berlekamp-Massey Algorithm. The modification consists
in that, when choosing the error patterns, it considers introducing an error when-
ever there is an increase in the linear complexity of the sequence processed so
far.

We implemented, tested and analysed this algorithm and the results are en-
couraging. The k-error linear complexity is closely approximated: on average it is
only 16% higher than the exact value, for up to 6 errors on our test set of 60 ran-
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The average accuracy of tha conlrofisd test on 26 seq of length 12B (k < 15% 1)
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Figure 4.18: The accuracy of the results found by MBM Algorithm on 21 sequences
of length 128, when the sequences were artificially modified with errors sequences
of weight : (a) k& < 15% of the length; (b) k = 10% of the length; (c) k = 5% of
the length;
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The accuracy of the results found by the MBM Algorithm
on a sampie of 50 random sequences of length 32 with terms in GF(2)
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Figure 4.19: The accuracy of the results found by the MBM Algorithm on a sample
of 50 random sequences of length 32 with terms in GF(2).
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The accuracy of the results found by the MBM Algorithm
on & sample of 50 random sequences of length 32 with terms in GF{3}
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Figure 4.20: The accuracy of the results found by the MBM Algorithm on a sample
of 50 random sequences of length 32 with terms in GF(3).
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The accuracy of the results found by the MBM Algorithm
on a sample of 50 random sequences of length 32 with tarms in GF(5)
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Figure 4.21: The accuracy of the results found by the MBM Algorithm on a sample
of 50 random sequences of length 32 with terms in GF(5).
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Comparison between the accuracy of the results found by the MBM Algorithm
on samples of 50 random sequences of length 32 with terms in GF(2), GF(3) and GF(5)
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Figure 4.22: The accuracy of the results found by the MBM Algorithm on a sample
of 50 random sequences of length 32 with terms in GF(2), GF(3), GF(5).
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Comparison between the accuracy of the results found by the MBM Algorithm and KRandom
on a sample of 50 random sequences of length 32 with terms in GF(2)
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Figure 4.23: Comparison between the accuracy of the results found by the MBM
Algorithm and KRandom Algorithm on a sample of 50 random sequences of length
32 with terms in GF(2).
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Figure 4.24: Comparison between the accuracy of the results found by the MBM
Algorithm and KRandom Algorithm on a sample of 50 random sequences of length
32 with terms in GF(3).
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Comparison between the accuracy of the results found by the MBM Algorithm and KRandom
on a sample of 50 random saquences of length 32 with terms in GF(5)
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Figure 4.25: Comparison between the accuracy of the results found by the MBM
Algorithm and KRandom Algorithm on a sample of 50 random sequences of length
32 with terms in GF(5).
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dom sequences of length 64. The accuracy and the running time of the algorithm
scales well with the size of the search space e.g. when considering long sequences
or those over finite fields of higher order.

While the time complexity of the proposed algorithm is still exponential, it
is considerably faster than an exhaustive search (on average about 19000 times
faster for the set of 60 sequences of length 64). Even higher efficiency gains appear
in the non-binary case and that has been experimentally validated.

In some special cases, the Modified Berlekamp-Massey Algorithm does not give
a good approximation of the k-error linear complexity profile. For example, for
sequences with many leading zeroes, it only processes a very small amount of error
patterns. Future work would investigate the possibility of further improving the
efficiency and accuracy of the algorithm by processing some more error patterns
which are likely to reduce the linear complexity of the considered sequence.



Chapter 5

Evolutionary Computation

Techniques

This chapter presents two evolutionary methods applied to solving the k-error
linear complexity profile problem, as well as their implementations and their per-
formance in the context of the heuristic approach.

5.1 Genetic Algorithm

This section presents a genetic algorithm to approximate the k-error linear com-
plexity of a sequence over a finite field.

The algorithm follows the implementation of a classic Simple Genetic Algo-
rithm (Goldberg [20]) and the focus is on finding the best choice of values for the
different parameters involved, e.g. population size, number of generations, tech-
nique of selection, crossover or mutation, mutation probability, crossover proba-
bility. Some of the parameters need to scale with the size of the search space, e.g.
the size of the input sequence and the number of errors. In addition, the choice of

the evaluation function plays an important role in the design of the algorithm.

5.1.1 Background

Evolutionary computing techniques are inspired by the natural evolution observ-
able in species and the process which allows them to survive by continuously
adapting to the changes in their environment. The main principles implemented
by evolutionary computing are natural selection, or ‘survival of the fittest’, and
inheritance (Goldberg [20]).

Genetic algorithms have proven to be useful in solving (or give reasonable
solutions to) a big variety of problems. They have been successfully applied on

93
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Figure 5.1: Schematic view of a Simple Genetic Algorithm

famous NP-complete problems like Travelling Salesman Problem, Knapsack Prob-
lem, Prisoner’s Dilemma etc.

A genetic algorithm is a probabilistic algorithm which maintains a population
of potential solutions for the problem at hand, by evolving it throughout a num-
ber of generations using genetic operators like selection and combination. At each
iteration, the quality of each possible solution is measured using a fitness func-
tion and then a new population is created by selecting the fittest individuals on
that basis (the same individual can be duplicated in a population, the order of
duplication being usually directly proportional to its fitness). Some members of
the new population undergo transformations in order to create new solutions. The
transformations can be unary (mutation), which create new individuals by slightly
changing single solutions, or of higher order (crossover), which combine a number
of solutions to create a new individual. After a number of generations the algo-
rithm converges and it is hoped that the best individual found so far represents a
reasonable solution, reasonable having different definitions for different problems
(Michalewicz [54]). See figure 5.1 for a schematic view of a genetic algorithm and
listing 17 for the pseudocode of a Simple Genetic Algorithm (SGA).

It is challenging and much experimental research is invested into finding the
optimum values for the parameters involved (population size, number of genera-
tions, selection and crossover technique, probability of crossover, mutation tech-
nique, probability of mutation) so that the algorithm is efficient (i.e. fast} and
accurate (i.e. finds a good approximation of the exact solution).
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Algorithm 17 Simple Genetic Algorithm

Choose initial population of possible solutions (e.g. random sampling)
Evaluate all individuals’ fitness and determine the population’s fitness
while not reached target fitness or maximum number of generations do

Select best ranking individuals from the current population

Apply crossover with a certain probability

Apply mutation with a certain probability

Evaluate individuals’ fitness and determine the new population’s fitness
end while
return best solution so far

5.1.2 kGA Algorithm

We first argue why a genetic algorithm technique is suitable for the k-error linear
complexity profile problem. Computing the k-error linear complexity of a sequence
s with terms in a finite field K is an optimisation problem with a well defined search
space, namely for a sequence of length ¢ and a value kg, the search space includes all
the sequences of length ¢ and Hamming weight at most &, { ele € K*, wy(e) < ko}.
The elements of the search space, the error patterns, can very naturally be seen
as string encoded chromosomes. '

We remind that the problem which we will approximate, the k-error linear
complexity profile problem, has as input a finite sequence s = s, 5y, ..., 8 of
size t > 0 with terms over a finite fleld GF(q), where ¢ is a prime power and an
integer value kg, with 0 < ky < wy(s)—1. The expected output is an approximate
ko-error linear complexity profile of s containing for each ¢ = 0,1,..., ko, L}, the
approximate i-error linear complexity; e}, the error pattern producing the linear
complexity L} on s; C3(X) a minimal characteristic polynomial corresponding to
the sequence s + €.

The algorithm starts with an initial population of PS possible solutions from
the search space (denote the initial set POF,)}, PS being an integer much smaller
than the size of the search space. These initial individuals of the population are
typically randomly generated. Each individual in the population is evaluated using
a certain fitness function denoted f.

After the initialisation step, the following set of steps is repeated a fixed number
of times called generations, let us denote NOGEN the number of generations,
or until the best found solution is ‘good enough’. The fitter individuals from
the current population are selected, crossover is applied to some of the selected
individuals with a probability of crossover, px and mutation is applied to some
of the selected individuals with the probability of mutation py. Finally some
statistics regarding the current generation are gathered and the new population is
evaluated using the fitness function; the iteration steps are repeated.
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In the following, we will expand the different elements of the algorithm and
their implementation. See listings 18 for a schematic view of the proposed algo-

rithm.

Algorithm 18 Genetic Algorithm for computing the k-error linear complexity -
A Schematic View
Input: A finite sequence s = sg, $1,--.,8:~1 of size £ > 0 with terms over a
finite field GF(q), where ¢ is a prime power; an integer value ko, with 0 < &y <
wr(s) — 1.
Output: The approximate ky-error linear complexity profile, L}, Cf{X)} and
ef,foralli=0,1,..., k.
Initialise the global solution
Initialise population POP; of size PS
Evaluate individuals in POPF,
gen «— 0
while gen < NOGEN do
Select new PO Pyepnty from POPy,
Crossover individuals in PO PFy.,41 with probability px
Mutate individuals in PO Pyenq1 with probability pa
Evaluate individuals in PO Py, 41
Report statistics for current generation and update global solution
gen +— gen+1
end while
return global solution

The algorithm holds a global solution which is updated whenever necessary (i.e.
when an individual improves the current global solution). Since the k-error linear
complexity is calculated as a minimum value (from the definition), the profile is
initialised with the maximum possible value, Li{s) = L(s), C;(X) = C(X) and
e; = (0,0,...,0), for all = 0,1,..., ko, where C(X) is a minimal characteristic

¢ times
polynomial of s.

The algorithm processes a subset of the search space, therefore the returned
value for the approximate k-error linear complexity will always be larger than or
equal to the exact value. We will present the various components of the algorithm
and then in section 5.1.3 we experimentally evaluate how close the approximation
is to the exact value.

5.1.2.1 Individuals

Since the algorithm deals with finite sequences over finite fields, it is natural to
use a string encoding for the individuals, We define a valid chromosome to be
any error pattern e € GF(g)%, e = (eo,€1,...,€:-1) of weight at most ky (i.e.
wr(e) < ko).
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The good chromosomes are the error patterns e which inflict smaller linear
complexity on the input sequence s, e.g. L{s+e€) is smaller than L{s). The search
space size depends on the size of the sequence ¢, the order of the finite field ¢ and
the number of errors, ky. We denote Ej the set of sequences over the field GF(qg),
with length ¢ and Hamming weight at most %

E, = {8[8 e G’F(q)t, wH(e) < k},

therefore the search space size for the algorithm, §5, is given by the formula

ko 1y _
S =H{(Ey,) = — 1) 5.1
55= 8 = () e~ (5.1)

The initial population is randomly generated. The random number generator
used is the C rand() linear congruential generator function. Algorithm 19 de-
scribes the method used in generating the individuals, error patterns of size ¢ with
elements in GF(g) and weight less than k.

We denote the size of the population with PS. It is important to choose the
right value for the population size but usually this is a value much smaller than
the size of the search space. Some papers show that a moderate population size
leads to fitter populations faster (e.g. Reeves [66]) however it is usually a case of
experimental investigation.

It is desirable to scale the population size and number of generations with
the size of the search space. Since the search space size depends on the input
parameters t and kp and on the size of the field ¢, a formula can be devised to
take into account these parameters as follows, where the coefficient ¢ is such that
c>0.

PS = cko[ln(q*)] = cko[tIngq] (5.2)

The coefficient ¢ is introduced to allow more tuning and we will experimentally
check what value should ¢ take in section 5.2.3. See figure 5.2 for a representation
of the growth of the population size in relation to the growth of the space size, when
working on the binary field (¢ = 2), taking k¢ = [15%t] and the coefficient ¢ = 1,
for sequences of length 8, 16, 32, 64 or 128. The population size grows steadily
12, 33, 110, 440 and 1780, respectively, for the lengths considered, whereas the
full search space size quickly becomes very large.

5.1.2.2 The fitness function

The quality of each individual is evaluated using a fitness function. The fitness
function should reflect how good each solution is for the problem and provide a
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The relation betwesn the growth of population size and space size
with the length of the input sequence when k0 is 15%t
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Figure 5.2: The relation between the growth of population size and search space
size with the length of the input sequence when ko is 15%t.

good way of comparing two solutions. The goal of the k-error linear complexity
problem is to find elements e in the set £ which minimise the linear complexity
of the sequence s + e. From this point of view, all possible error patterns, e, of
Hamming weight up to k are comparable using the linear complexity of s + e, so
this would be a natural choice for the fitness function.

In order to reflect the quality of each solution, the fitness of any error pattern
e should therefore be proportional with the linear complexity of the sequence
s+ e. Since traditionally genetic algorithms are maximising and not minimising
the fitness function, our choice for the fitness function of a valid error pattern e is
the reverse of the linear complexity of the sequence onto which that error pattern
has been applied, s + e, f{e) = —L{s +¢e).

Formally, the definition of the fitness function for the kG A algorithm, f is

[ : By, — Z, where f(e) = —L(s+ e)

The fitness function for each element of the population can be computed using
the Berlekamp-Massey Algorithm (section 2.2.6). The computational complexity
of the evaluation step for one generation is therefore polynomial QO(PS - t2) =
O(cko[tIn g]t?) = O(t*) (where we consider the following bound for kg, ko < t).

Our experiments show that using this fitness function, the search space is
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Algorithm 19 Generate a random sequence e of size ¢, wy{e) < ko
fori=0,1,...,t—1do
€; 0
end for
k' «— a random number less than or equal to kq
fori=0,1,...,k—1do
pos +— a random position between 0 and ¢ — 1
val «— a random value in GF(q)
€pos +— val
end for

fragmented and there are many local minima and maxima. This fact can be
a challenge for the genetic algorithm. Due to the discrete nature of the linear
complexity of the sequence when summed with different error patterns from the
search space we are not able to directly isolate the elements or set of elements from
the domain Ey, of function f which correspond to the minimum or the maximum
values.

Example 5.1. Figure 5.8 shows the shape of the distribution of linear complexities
for a given binary sequence s = 1011110011010110 of size 16 when applying to it
all the possible error patterns in the full search space GF(2)'. The z and y azes
correspond to each possible Hamming weight from 0 to 16 and each possible linear
complezity from 0 to 16, respectively. The third coordinate, z, in each point (z,y, z)
represents the number of error patterns e of weight z such that L(s+¢e) = y. The
figure presents a scaled version of the real distribution. We are interested in the
error patterns corresponding to low x and low y coordinates.

5.1.2.3 Selection

There are various possible schemes for the selection of best individuals for recom-
bination. The general idea is that each chromosome will be copied zero, one or
more times according to its fitness (more times if it is fitter) making sure that
the population remains varied. The aim is to keep a good balance between the
population diversity and the selective pressure.

Three alternative schemes of selection have been chosen for our experiments.

Elitist selection (ELSEL)

Elitist selection involves keeping only a certain top percentage of the popula-
tion at each step, in decreasing order of the fitness values, and replacing the rest
with completely new individuals. The higher the level of elitism (the percentage
selected) the lower the efficiency of the algorithm as this will have to deal repeat-
edly with individuals which were previously processed. Further, since intuitively
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Fult space contiguallon for a binary sequence of size 18
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combined with all poosible error sequences over GF(2)'®

Table 5.1: Example of Elitist Selection of level 25% on sequence s =
1011110011010110 and ko = 5

|
i
Figure 5.3: Distribution of linear complexities of s = 0110111101110101 when

No Chromosomes Fitness Chromosomes Fitness
before selection after selection
0 0000100000101000 -8 0000000000000100 -7
1 0000000000000000 -8 0000000000000000 -8
‘ 2 0000100011001000 -8 0100001000100100 -7
| 3 0010010001010000 -11 0000001000000101 -9
‘ 4 0000000000100001 -9 0001100000101000 -8
‘ 5 0000001000000000 -9 0000000010010000 -9
6 0000000000000000 -8 0000010000010001 -9
| 7 0000100010000100 -8 10000000000000600 -7
8  0000000000000100 -7 0000010000000000 -6
| 9 0000000100010000 -8 00040010000100010 -8

the algorithm does not benefit from the overduplication of fit individuals, but
more from the population diversity, the percentage kept is 25%; the rest of the
individuals in the population are randomly generated using the same generation
method as for the initial population (see listing 19). The computational complex-
ity of this approach is polynomial, i.e. O(PS-In(PS) + PS-t?) =~ O(t!) since it is
necessary to order the individuals in the population by their fitness value and to
evaluate the three quarters of population which are newly generated individuals.
See table 5.1 for an example of Elitist Selection of level 25% for a sequence of size

16, kg = 5 when the population size is 10.
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Roulette wheel with slots sized according to fitness (RWSEL)

The Roulette wheel selection technique allows a fair redistribution of the in-
dividuals based on their fitness. One disadvantage is that the population does
not gain any new individuals during selection losing diversity, however this can
be counteracted by a higher rate of crossover and mutation to compensate. This
method duplicates the fitter individuals.

In the following, we summarise the classical roulette wheel method.

Denote the individuals in the population, e, with their fitness value f(e®)
for all 4 = 0,1,...,P8 — 1. The total fitness of the population, denoted TF,
represents the sum of the fitness values of all individuals:

PS-1

TF = Z Fle®)
i=0
The relative and the cumulative probability of each individual, denoted rprob and
cprob respectively, are defined for each 4,0 < i < PS, as:
f(e®)

rprob(e®) = TF

eprob{e®) = Z rprob(et)
5=0

Note that the cumulative probabilities are increasing values between 0 and 1.
A rotation of the roulette wheel consists of generating a random value r between
0 and 1. The element e® is chosen, such that ¢ is minimal with the property that
r < eprob(e?). This step is repeated P.S times to select all the individuals in the
new population.

We will use a modified roulette wheel technique, one which emphasizes more
the differences between the individuals in the population, based on their quality.

In order to give more strength to the error patterns e with low L(s+e) for low
Hamming weight wg(e) we apply an appropriate scaling to the slots of the wheel.
In the context of the k-error linear complexity problem we need it to be more
likely to choose error patterns with lower Hamming weight (wy(e) low) and which
inflict a low linear complexity on the input sequence (L(s + e) low). Therefore
we want the size of the roulette wheel slots to be inversely proportional to the
Hamming weight and to the absolute value of the fitness.

The total fitness scaled by Hamming weight, denoted TF”, is defined as:
 (wr(e®) + 1)(1f(eM)] - 1)

1=

TF =
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Adding 1 to the weight (wg(e) > 0, for all e € K*) and subtracting 1 from the
fitness function (f(e) < 0 for all e € K*) is necessary in order to avoid division by
zero in the special cases when the weight or when the fitness function is 0. The
relative and cumulative probabilities of each individual in this case, rprob’ and
cprob’ respectively, are defined for each 7,0 < i < PS as:

1
(wr{e®) +1)(f(eW) — 1)TF"

rprob (e®) =

i
eprob (e®) = errob’ (eW).
=0

The selection process consists of spinning the roulette wheel PS times and each
time selecting an existing individual, using the probabilities calculated above. This
way, the fitter the individual, more likely it is for it to be selected.

Formally, the following two steps are repeated PS times:

1. Generate a random value 7, r € [0, 1].

2. I r < cprob/(e®) then select €@, otherwise find j such that cprob/(elV—) <
r < cprob(e) and select e,

Algorithm 20 Roulette wheel with slots sized according to fitness (RWSEL)
fori=0,1,...,PS—1do
r + a random value in [0,1]
if r < cprob(el® then
Select (@
else
Find j such that cprob(e¥=1) < r < cprob(e) and select e
end if
end for

Tables 5.2 and 5.3 contain an example on how the Roulette Wheel works on
a population of 10 individuals when calculating the k-error linear complexity for
a sequence of size 16 and when k; = 5. In table 5.3 it can be seen that even
though both individuals 6 and 7 give the same fitness value, individual 6 has a
greater probability since its weight is zero, while the weight of individual 7 is 3,
therefore there are greater expectations from it in reducing the linear complexity
of the input sequence. The table 5.3 shows the way the selection is made on the
basis of the random values r generated. We notice that the best individual is kept
and the ones with high fitness are duplicated.

For each element of the population {PS elements) a random value is generated
and a search for the right slot is performed (at most PS slots). Therefore, the
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Table 5.2: Example of Roulette Wheel Selection on sequence s

1011110011010110 and ko = 5 (part 1)

No Chromosomes Fitness relative cumulative

before selection prob. prob.
0  0000000000000000 -8 0.190627 0.190627
1 0000000000000000 -8 0.190627 0.381255
2 (0000100011001000 -8 0.0381255 0.41938
3 0010010001010000 -11  0.0285941 0.447975
4  0000000000100001 -9 0.0571882 0.505163
5 0000001000000000 -3 0.0857824 0.590945
6 0000000000000000 -8 0.190627 0.781573
7 0000100010000100 -8 0.0476569 0.82923
8 0000000000000100 -7 0.107228 0.936458
9  0000000100010000 -8 0.0635425 1

Table 5.3: Example of Roulette Wheel Selection on sequence s

1011110011010110 and ko = 5 (part 2)

Random val. Source Chromosomes Fitness
€ (0,1) after selection
0.449 4 0000000000100001 -9
0.786 7 0000100010000100 -8
0.734 6 (000000000000000 -8
0.897 8 0000000000000100 -7
0.189 1 000000a0000000000 -8
0.913 8 0000000000000100 -8
0.335 1 0000000000000000 -8
0.109 0 0000000000000000 -8
0.518 5 0000001000000000 -9
0.954 9 0000000100010000 -9

computational complexity is polynomial, O(ckZ[tInq]?) ~ O(t*).

Tournament Selection (TRSEL)

In a two order tournament selection model, random pairs of individuals from

103

the current population are picked and the best one out of the two is selected to

survive in the next population. Intuitively, this method would be particularly suit-

able as the fitness values for this problem are very close which makes the Roulette

Wheel selection (even when using the scaled formulas) to give close probabilities

of selection to most of the individuals. However, we notice that using this method

the diversity of the population decreases very quickly after each generation.
Formally, the following two steps are repeated PS times:

1. Generate two random values posy and pos,, such that 0 < pos; < pos; <
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Table 5.4: Example of Tournament Selection on sequence s = 1011110011010110

and kg =5
No Chromosomes Fitness Tournament Chromosomes Fitness
before selection between after selection
0 0000000000000000 -8 9 and 6 0000000100010000 -8
1 0000000000000000 -8 4 and 7 0000100010000100 -8
2 0000100011001000 -8 9 and 3 0000000100010000 -8
3 0010010001010000 -11 5and 9 0000000100010000 -8
4 0000000000100001 -9 8 and 4 0000000000000100 -7
5  0000001000000000 -9 4and 7 0000100010000100 -8
6  0000000000000000 -8 8 and 2 0000000000000100 -7
7 0000100010000100 -8 4 and 9 0000000100010000 -8
8  0000000000000100 -7 4 and b 000000G0000100001 -9
9  0000000100010000 -8 9and 7 0000000100010000 -8
PS—1.

2. If fe®*V) < f(e®°*2)) then select @), otherwise select e®os),

See table 5.4 for an example of tournament selection applied to a population
of 10 sequences of size 16 when kg = 5.
The computational complexity of this selection method is linear, O(t).

5.1.2.4 Crossover

The crossover involves choosing two parents, with the probability of crossover
denoted px, px € [0,1] and combining these parents to obtain new (possibly
better) solutions. The following is the general crossover algorithm.

1. i=0.
2. If i > PS then STOP.
3. Generate a random value r, 7 € [0, 1].

4. If r < px and no parent yet selected then choose first parent p} — p@, Go
to Step 4.

5. If r < px and first parent p has been selected, then choose the second
parent p@ — pU such that p¥ % p¥, combine parents p@ and p%) to
obtain one or two children and reset parents to be the best two out of the
set of parents and children.

6. i — i+ 1. Go to Step 2.
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In the following, we will denote the parent chromosomes p" and p®. Hav-
ing the two parents p and p®, the following standard crossover schemes are ‘
considered (Goldberg [20], Michalewicz [54]).

» Single point crossover (SPX). Generate a random natural number pos, with
pos€{0,1,...,t —2}.

1) (1 1 1
p(l) = (g[(] )’pg_ )} [ Jp’}()())s—l’p;):fl)?s’ e Spg—)l)

o

2) (2 2 2 2
p(2) = (pé ),pg }, ‘e ,p;o)s_l,péo)a, fes th(t—)l)

The resulting offspring are:

. 2
) = (gg ),pgl), . ..,pg(,‘l,)a__ll,p;(;?o)s, s an—)ﬂ

v

2) (2 2 1
C(2) = (p((J ),pg ), . ,p](,a?,_l,pf,gg, T 7p1£-)1)
h—v——/

This strategy provides some diversity without disrupting building blocks?.

o Two point crossover (TPX). Generate two random natural numbers pos;
and pos,, such that 0 € pos; < poss <t -— 2. ‘
(1 (1) (L {1)

p(l) = (?0 sy Ppospy ey po_gz:"'ipt-—-.L
2 2 2 2
p(z) = (pg), ' ,pz()o)sla"' ;p;%o)sz:' ' 'spg—)l)

The resulting offspring are:

1 2 2 1
C(1)= (())’,__’pg)o?gi,..-,p_§)0?92)"‘Jp‘s'-)l
— " ——

2 2
0(2) = (p(() )?---a 15;291:”'? };};)32:---:195—)1)
T S e’

¢ Uniform random crossover (URX). Using this crossover technique, only one
child, ¢, is obtained from each pair of two parents p‘t) and p@.

1
0 = ), p0,. .., p)

2 2 2
p® = (P, 62, ..., )

The method involves generating ¢ random real numbers, r; € [0,1], i =
0,1,...,t — 1 where ¢ is the length of the input sequence. For each i, if
r; < 0.5 then ¢; — p{", otherwise ¢; — p® (Sywerda [81]).

We can devise crossover schemes which use some knowledge of the problem at
hand, i.e. the problem of calculating the k-error linear complexity.

In order to achieve this, for each chromosome e, when calculating the linear
complexity of s + e {with the Berlekamp-Massey Algorithm) all the intermediary

1Building blocks are short sequences of good genes which appear within the chromosomes (in
terms of our problem short subsequences of small linear complexity in s+e). It is desirable not
to disrupt them if possible in order to promote them to the following generations.
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linear complexities, i.e. the full linear complexity profile can be stored. That is,
for each e, i = 0,1,...,PS — 1, the linear complexity profile Icp® is known,
where lcpl® = (icpg), ey lcpﬁi_)l), a vector of size ¢ such that lcpgvi) represents the
linear complexity of the sequence s 4 e up to term 7, i.e. linear complexity of

the sequence (sp + eff) , 81 + egi), cey 85+ ef)). The intermediary discrepancies

can be also stored in an array dis'®, where disg-i) is the intermediary discrepancy

at term j for sequence s + e, i.e. the difference between the element 85 + eg-i)
and the j* element generated by the characteristic polynomial of the sequence
(so+ e, a1 +eV,... ,8j-1 + e?ll :

When processing term j of sequence s+€(?), only the case when the discrepancy
dz'sg-i) # 0 and 2lcp§.i) < n (case (1b) in Section 2.2.6) yields an increase in the
current complexity of the sequence. We are interested in minimising the linear
complexity of s+ e, i.e. the fitness function of e. It is therefore natural to change
the current term part of the crossover in such a way to make the discrepancy zero
and therefore make an increase in complexity unnecessary at position j.

The following two crossover techniques use the previous remark and the infor-
mation given by the linear complexity profile as well as the intermediary discrep-
ancies held against each chromosome. .

We will denote the parent chromosomes p*} and p® with the corresponding
linear complexity profiles, lep and lep®® and the intermediary discrepancies dis™

and dis®,

¢ One point crossover using the linear complexity profile (LCPSPX). Generate
a random natural number pos, pos € {0,1,...,t—1}. Find in parent p'¥ the
first position after pos, 4, such that the linear complexity for the sequence
s+ p® up to term ¢ increases when processing term i + 1 and such that

pﬂl_)l and pﬁ)l differ. In other words, find first position 7 in the first parent

p® such that pos < i, lcpgl) < lcpgfl and P«§21 7 pgi)l. That means that by
applying the following recombination it is possible for the linear complexity
corresponding to the first child L(s + ¢!¥) to be reduced.

(1 1y 1
p® = (@, p", By BB G0 B )

a

2 2
p@ =P, ..y 0P80 )

The resulting offspring are:
e® = ( (1 (1) 1) 1 @ (2))

Po’sPi s+ s Ppas 1B Pigtserr Pyt

2 2 2 2 1 1

@ = (o, P, ..., 5o 0P s B
N, i

This strategy provides good diversity without disrupting long building blocks.
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e Two point crossover using the linear complexity profile (LCPTPX). One
thing which can be extended from the LCPSPX crossover presented above,

is to use the linear complexity information from the second parent as well.

Generate two random natural numbers pos; and poss, such that 0 < pos; <
posy < t — 2. Find the first position 7 in the first parent p) such that
pos; < i, ch?’ < lcpgi)l and p§_131 # pﬁ}l. Also find the first position j in the

second parent p® such that pos; < 7, lcp§2) < lcpﬁ,)1 and pﬁzl # pﬂl.

That means that by applying the following recombination it is possible that
in some of the cases the linear complexity corresponding to one or both
children reduces, and therefore their fitness improves. Note that in the above
it is assumed that 4 < j. This is not a restriction as if it does not happen
p1) and p®@, and also i and j can be interchanged to fulfill this requirement.

) = (Pél),...,pgl),pg_ll_)l,...,...,...,...,pgi)
PP = (péz),...,...,...,..‘.r,pg-z),pﬁl,...,pgi)l)
The resulting offspring are:

=@, BB
@ = (pgz),.f.,...,..,,...,pﬁz),ﬁl,...,pgg

This strategy provides a higher diversity than LCPSPX. It is likely for dis-
ruption of long building blocks towards the end of sequences but the ones at

the beginning of the sequence remain untouched.

If any of the previous schemes does not succeed in finding the right positions
of crossover ¢ or § with the required properties, then that crossover can be simply
ignored.

The computational complexity of any of these crossover schemes is polynomial,
i.e. O(t*). For a certain percentage px of the population, approximately py - PS
individuals, one or two children are generated and these need to be evaluated using
Berlekamp-Massey Algorithm of computational complexity O(t?).

5.1.2.5 Mutation

While selection and crossover are the evolutionary operators which are imple-
menting the need to promote good patterns from one generation to the next one,
mutation is an operator which introduces variety and implements the need to
throw the individuals away from any potential local optimum that they would be

converging to.
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We consider two types of mutation, the standard random mutation and one
which uses the linear complexity information similarly with the crossover schemes
LCPSPX and LCPTPX presented in section 5.1.2.4. We define a parameter called
the probability of mutation, py € [0, 1].

o Simple random mutation (SRM). This type of mutation iterates through all
PS individuals in the population and for each of them, for all ¢ terms, it
generates a random value r, r € [0, 1] and if 7 < py; then it perturbates the

current term with a random value from the field.

Formally, for each ¢,7=0,1,...,PS —1 and for each j, j = 0,1,...,¢ - 1,
generate a random value r, r € [0, 1]. If r < pjs then generate random value
val, val € GF(g) and egi) = eg-i) + val.

« Random mutation using the linear complexity profile (LCPRM). This mu-
tation process tries to obtain individuals with a higher fitness by using
the linear complexity profile similarly with the crossover types LCPSPX
and LCPTPX. Aditionally, it uses the discrepancy information for a better

chance to enhance the fitness of the new individual.

Formally, for each 4,7=0,1,...,P5 —1 and each j =0,...,{ ~ 1 generate
a random value 7;, r; € [0,1]. If r; < pps then generate a random position
pos € {0,1,...,t—1} and find the first position m in e such that pos < m
and lcpS:? < ch£f3 1. Make ef,ffﬂ — e,(:;) o disi;? +1- We remind that disfi) 1
represents the discrepancy at step m + 1 in the sequence s + e("), namely
the difference between term spm41 + eg)“ and the (m + 1)** term generated
using the characteristic polynomial of the sequence (s¢ + eg) R eg;)).
We choose this particular mutation since this subtraction will make the
discrepancy of s + e at position m + 1 to be zero, making it likely for the
linear complexity of s + e/ to be lower (certainly at index m + 1 the linear
complexity will be lower) and therefore the fitness value of the error pattern

e® to be larger.

The fitness value of the mutated individual is evaluated and the global solution
is updated if necessary. For the sake of diversity, the initial individual is discarded
and the mutated one is kept for the next population regardless of the value of its
fitness.

The computational complexity of the mutation step is polynomial, i.e. O(#*). A
certain percentage pys of the population PS is mutated and at most PS elements
are evaluated using Berlekamp-Massey Algorithm of computational complexity
O(t?).
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5.1.2.6 Summary

For both crossover and mutation, additional postprocessing is needed in order to
check if the resulting offspring have a higher weight than the input value %y and
if so, randomly switch some of the non zero terms to 0 until the weight is at most
ko. Whenever fitness values of individuals are evaluated, the global solution is
updated if necessary.

Since the genetic algorithm depends on the input parameters as well as on a
choice of a set of parameters, in the following we will refer to the genetic algorithm
as: kGA(t, k, s, PS,NOGEN, ST, XT, MT, px,py) where t, k and s are the input
values and

e PSS is an integer representing the population size,
e NOGEN is an integer representing the number of generations,

ST is the selection scheme used, it can be ELSEL, RWSEL, TRSEL (see
section 5.1.2.3),

XT is the crossover scheme used, it can be SPX, LCPSPX,TPX, LCPTPX,
URX (see section 5.1.2.4),

MT is the mutation scheme used, which can be SRM or LCPRM (see
section 5.1.2.5),

e px is a value in the range [0, 1] representing the probability of crossover,
® pyr is a value in the range [0, 1] representing the probability of mutation.

Adding all the computational complexities of the different components and
multiplying by the number of generations NOGEN which is a constant it follows
that the algorithm has polynomial complexity, namely O(t4).

5.1.3 Experiments and results

In order to assess the accuracy of the algorithm and to establish which is the best
combination of parameters to choose for the k-Error Genetic Algorithm we have
set up a series of tests.

In the first experiment we consider 5 randomly chosen binary sequences of
length 32 and ky = 5, i.e. approx. 15% of the length of the sequences (each
bit of the sequences is generated with the C rand () linear congruential generator
function). The search space size in this case is SS = 377, (312) = 204469 (see equa-
tion (5.1)). The population size according to relation (5.2) is PS = ckg[tIn q]. For
ko =15,t =32 and ¢ = 2, the value is PS = 110¢. We try three different values for
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the coefficient ¢, ¢ = 0.1, ¢ = 1 and ¢ = 10 corresponding to small, medium and
large sized populations, respectively. In order to have comparable running times
and comparable resuits, we choose the number of generations, NOG EN such that
the product PS - NOGEN (which is a broad approximation for the number of
patterns that the algorithm evaluates) is constant. Note though that the exact
number of error patterns processed by the algorithm depends on the number of
new individuals appearing from one generation to another. The following combi-
nations for the pair (PS, NOGEN) will be considered: (11,1000), (110, 100) and
(1100, 10).

Each possible combination of selection (Elitist Selection with level 25% - ELSEL,
Roulette Wheel - RWSEL, Tournament - TRSEL), crossover (Single Point Crossover
- SPX, Two Point Crossover - TPX, Uniform Random Crossover - URX, Single
Point Crossover using Linear Complexity Profile - LCPSPX, Two Point Crossover
using Linear Complexity Profile - LCPTPX ) and mutation (Simple Random Mu-
tation - SRM, Random Mutation using Linear Complexity Profile - LCPRM) is
considered with the different values for population size and numbers of genera-
tions as described above. The algorithm is run 5 times for each sequence and each
combination of‘parameters with a different random seed.

In total, having 3 combinations of population size, 3 selection types, 5 crossover
types, 2 mutation techniques and 5 repeated tests, we obtain 450 different runs
for each sequence and store the approximate kg-error linear complexity returned
by each configuration and seed.

The probability of crossover is px = 0.6 and the probability of mutation is
pa = 0.05.

In the following, the evaluation of the algorithm is done by calculating the ratio
between the approximate kg-error linear complexity profile obtained by the k-Error
Genetic Algorithm and the exact ky-linear complexity profile (calculated using the
Efficient Exhaustive Search Algorithm). We call this indicator the accuracy of the
k-Error Genetic Algorithm. The accuracy of the results of the algorithm for each
get of parameters (PS, NOGEN, Selection, Crossover, Mutation) is averaged over
the 5 runs.

Table 5.5 contains the top 10 configurations of parameters which returned
the best accuracy over the 5 input sequences. The results are summarised in
figure 5.4. We omit the accuracy of the O-error linecar complexity in the tables
as this is trivially the linear complexity of the input sequence and it will always
be correctly calculated by the k-Error Genetic Algorithm by simply applying the
Berlekamp-Massey Algorithm.

We notice that there is not a big difference in accuracy for the different con-
figurations which give the best results.
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Table 5.5: The accuracy of the results of kGA(32, 5, s, PS, NOGEN, ST, XT,
MT, 0.6, 0.05) - Top 10 best configurations

No. Pop. No. Selection Crossover Mutation AccuracyAce; Acca Acey Acey  Accs
Size gen. Type Type Type
1 1100 10 ELSEL LCPTPX LCPRM 1.072 1.00 100 1.01 1.08 127
2 1 1000 ELSEL LCPTPX SRM 1.074 1.00 1.00 1.01 1.08 1.28
2 1100 10 ELSEL LCPSPX LCPRM 1.074 1.00 1.00 1.1 1.09 1.27
4 110 100 ELSEL SPX LCPRM 1.076 1.00 100 1.02 1.09 127
5 1100 10 ELSEL TPX LCPRM 1.078 1.00 1.00 1.00 1.09 1.30
6 1100 10 ELSEL URX LCPRM  1.078 100 100 103 108 128
7 11 1000 ELSEL LCPSPX LCPRM 1.08 1.00 100 103 1.08 1.29
8 110 100 ELSEL SPX SRM 1.082 1.00 100 1.04 111 126
9 11 1000 ELSEL TPX LCPRM 1.082 1.00 1.00 102 1.09 1.30
10 1100 10 ELSEL URX SRM 1.084 1.00 100 101 110 131

Table 5.6: The accuracy of the results of kGA(32, 5, s, PS, NOGEN, ST, XT,

MT, 0.6, 0.05) - Top 10 worst configurations

No. Pop. No. Selection Crossover Mutation Accuracydce, Aecp Aces Aceq  Accs
Size gen. Type Type Type
441 11 1000 TRSEL URX SRM 1.214 1.08 116 1.27 1.23 1.33
442 11 1000 RWSEL SPX LCPRM 1.220 1.06 110 122 130 142
443 11 1000 RWSEL LCPTPX LCPRM 1.222 1.05 113 125 130 1.38
444 11 1000 RWSEL LCPSPX LCPRM  1.228 1.06 112 125 130 141
445 11 1000 RWSEL URX LCPRM 1230 1.08 1.13 127 130 1.37
44611 1000 TRSEL TPX LCPRM 1.260 1.07 114 1.30 133 1.6
447 11 10000 TRSEL LCPTPX LCPRM 1.270 1.07 117 130 1.34 147
448 11 1000 TRSEL URX LCPRM 1.276 1.09 1.17 1.35 1.33 1.44
449 11 1000 TRSEL LCPSPX LCPRM  1.286 1.07 120 137 134 145
450 11 10000 TRSEL SPX LCPRM 1.304 1.09 117 135 1.40 1.51

For the top 10 worst configurations see table 5.6 and figure 5.5. Between the

results of the worst configurations there are not big differences in accuracy either.

We try therefore to identify what differentiates good configurations from bad cnes.

The accuracies for different values of k, Accy are defined as Acey = L'“f:( :)(3),

where Lycax(s) is the approximate k-error linear complexity returned by the k-
Error Genetic Algorithm. The accuracy column in the two tables represents the
average accuracy over the 5 values of the k-error linear complexities calculated for
k=1,2,3,4,5. Namely, Accuracy = EEEJSA—CC‘

Looking at the table of top 10 best configurations, it is difficult to say which
choice is better for each of the parameters as the configurations which give simi-
larly accurate results can be quite different. For example, in table 5.5 the larger
population size / small number of generations configuration is better since it gives
top results five times out of ten, whereas the other configurations give top results
in two or three out of ten cases, for medium population size/medium pumber of

generations and for small population size / large number of generations, respec-
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tively. Tables 5.5 and 5.6 show that the ELSEL selection leads to the best results.
It is difficult though to choose the best crossover or mutation scheme.

This is the reason to analyse further the accuracy results when they are grouped
by each of the parameters. We summarise these results in the following graphs.

e Figure 5.6 shows the results grouped by population size / number of gener-
ations. We notice that the best combination over the sequences included in
this experiment is large population size / small number of generations. This
choice matches the results in the top 10 best configurations table 5.5.

e Figure 5.7 shows the results grouped by selection scheme. It is very well
delimited that the best selection scheme for this experiment is the elitist
selection of level 25% and this matches the results shown in the top 10 best
and worst configurations tables 5.5 and 5.6.

e Figure 5.8 shows the results grouped by crossover scheme. For the crossover
schemes, it looks like in this experiment any scheme is as good as the other
with the exception of the uniform random crossover (URX).

e Figure 5.9 shows the results grouped by mutation scheme. When grouping
by mutation technique the simple random mutation (SRM) seems to give the
best results. This is not reflected clearly by the top 10 best configurations
table 5.5 but it is supported by the results summarised in the top 10 worst
configurations table 5.6.

There are a few conclusions which we could draw out of the previous experi-
mental analysis. A large population size / low number of generations, the ELSEL
selection type, any type of crossover with the exception of the uniform random
crossover (URX) and the simple random mutation (SRM) are the parameters
which lead to the best results.

This shows that, even if we devised operators which use some knowledge of the
problem in hand (like LCPSPX, LCPTPX or LCPRM), the benefit of using those
operators is minimal. Moreover, the clear advantage of using the elitist selection
scheme of order 25% (ELSEL) suggests that there is a higher benefit in refreshing
the current population with new individuals which are randomly generated (keep
the diversity of the population high), than keeping in the population the fittest
individuals (keep the selective pressure high).

In order to have more confidence in the conclusions above we investigate how
the algorithm scales with the length of the input sequence and if the choices in
this case remain similar to the previous experiment. We take a binary sequence
of length 64 and k; = 9 which is approximative 15% of the length of the sequence.

S
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Figure 5.6: The average accuracy of the results of the Genetic Algorithm on a
sample of 5 random binary sequences of length 32 for different population size /
number of generations combinations
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on a samplée of 5 random binary saquences of length 32
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Figure 5.8: The average accuracy of the results of the Genetic Algorithm on a
sample of 5 random binary sequences of length 32 for different crossover type
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Figure 5.8: The average accuracy of the results of the Genetic Algorithm on a
sample of 5 random binary sequences of length 32 for different mutation types
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r Table 5.7: The accuracy of the results of kGA(64, 9, s, PS, NOGEN, ST, XT,
MT, 0.6, 0.05) - Top 10 best configurations
No. Pop. No. Selection Crossover Mutation Accuracydee; Acey Aces Aecey  Accs
Size gen. Type Type Type

1 4000 10 -~ ELSEL LCPTPX SRM 1.205 1.00 100 102 114 1.16
2 4000 10 ELSEL TPX SRM 1.207  1.00 1.00 102 112 1.14
3 400 100 ELSEL TPX LCPRM 1.211 1.00 11.00 1.02 112 115
4 40 1000 ELSEL TPX LCPRM 1214 100 1.00 104 114 1.19
5 400 100 ELSEL LCPSPX SRM 1.222 1.00 100 104 115 116
6 4000 10 ELSEL TPX LCPRM 1228 100 1.00 102 113 116
7
8
]
1

40 1000 ELSEL LCPTPX LCPRM 1.229 1.00 100 104 115 1.19
40 1000 ELSEL LCPSPX SRM 1.229 1.00 1.00 1.04 116 1.20
400 100 ELSEL LCPSPX LCPRM 1.232 1.00 100 103 116 1.20
0 4000 10 RWSEL SPX LCPRM 1.233 1.00 100 107 118 1.186

The full search space size for a sequence of length 64 and for ky = 9 is 85 =
oo (%) = 2.430 % 10™° (see equation (5.1)). Therefore, applying the formula for
the population size (relation (5.2)) we obtain PS = ckeftlng) ~ 400c. We try
three different values for the coefficient ¢, ¢ = 0.1, ¢ = 1 and ¢ = 10 corresponding
to a small, medium and large population size, respectively. Similarly with the
previous experiment, in order to have comparable running times we choose the

number of generations NOGEN such that the product of the population size
and number of generations is constant. The following pairs (PS, NOGEN) are
considered (40, 1000}, (400, 100) and (4000, 10). Each possible combination of
selection, crossover and mutation is considered and, for each, the algorithm is run
5 times with different random seeds. In total, having 3 combinations of population
size / number of generations, 3 selection schemes, 5 crossover types and 2 mutation
types, we obtain 90 different runs. The probabilities of crossover and of mutation
have the same values as in the first experiment, px = 0.6 and pys = 0.05.
The tables 5.7 and 5.8 contain the top 10 best and worst configurations ob-
tained respectively, and the figures 5.10 and 5.11 summarise the same results in a
graphical representation. The accuracy in the tables is the average accuracy over
the 9 non zero values of & in the approximate k-error linear complexity profile.
! The difference of accuracy between the top best and worst configurations is
smaller in this experiment, however the distribution of the results supports the
conclusions drawn in the first experiment. A large population size / small number
of generations, elitist selection type, any crossover type with the exception of the
uniform random crossover are the configurations giving the best results (table 5.7).
A small population size / large number of generations, tournament or roulette
wheel selection and the uniform random selection all appear often at the bottom
of the list as worst configurations, which confirms the conclusions of the first
experiment (table 5.6 and 5.8).

o
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Figure 5.10: The accuracy of the results found by the Genetic Algorithm on a
binary sequences of length 64 with different parameters - Top 10 worst configura-
tions

Table 5.8: The accuracy of the results of kGA(64, 9, s, PS, NOGEN, ST, XT,
MT, 0.6, 0.05) - Top 10 worst configurations '

No. Pop. No. Selection Crossover Mutation AccuracyAcey Aces Aces Acey  Aces
Size gen.  Type Type Type
8 400 100 TRSEL LCPSPX LCPRM 1.325 1.00 1.05 113 1.25 1.30
82 40 1000 TRSEL LCPSPX LCPRM 1.325 1.4 110 113 1.27 131
83 40 1000 RWSEL LCPSPX LCPRM 1327 102 108 116 1.29 1.30
84 400 100 RWSEL URX LCPRM 1,329 1.01 1.07 111 1.25 1.30
85 400 100 TRSEL URX SRM 1.333 1.01 106 114 129 1.34
86 40 1000 TRSEL TPX LCPRM 1.339 1.01 110 116 130 131
87 40 1000 RWSEL URX LCPRM 1.352 1.03 110 118 134 1.37
88 40 1000 RWSEL URX SRM 1.368 1.6 111 119 134 1.38
89 40 1000 TRSEL URX SRM 1.371 l.oo 1.06 113 119 1.34
90 40 1000 TRSEL URX LCPRM 1372 1.00 1.06 112 121 135
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The accuracy of the results found by the Genetic Algorithm
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Figure 5.11: The accuracy of the results found by the Genetic Algorithm on a
binary sequences of length 64 with different parameters - Top 10 worst configura~
tions

The same conclusions are supported when the accuracy results are grouped by
each of the different parameters.

e Pigure 5.12 shows the results grouped by population size / number of gen-

erations.
o Figure 5.13 shows the results grouped by selection scheme.
o Figure 5.14 shows the results grouped by crossover scheme.
¢ Figure 5.15 shows the results grouped by mutation scheme.

We noticed a strong correlation between the number of different error patterns
evaluated throughout a run of the k-Error Genetic Algorithm and the accuracy
of the results. This is a natural remark since the processing of a bigger set of
individuals will always return a better approximation of the solution.

We estimate the number of individuals e which are evaluated throughout the
algorithm, by evaluation meaning that the algorithm calculates the linear com-
plexity of s + e in order to find its fitness value. This number of such individuals
is PS4+ NOGEN(ng+nx +nn) as the algorithm first evaluates the initial pop-
ulation and then for each generation it evaluates a certain number of individuals
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The average accuracy of the results of the Genstic Algorithm
on a binary sequences of langth 64
for different population size / number of generation combinations
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Figure 5.12: The average accuracy of the results of the Genetic Algorithm on a
binary sequences of length 64 for different population size / number of generations
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Figure 5.13: The average accuracy of the results of the Genetic Algorithm on a
binary sequences of length 64 for different selection types
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The average accuracy of the results of the Genetlc Algorithm
on & binary sequance of length 64
for different crossover types
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Figure 5.14: The average accuracy of the results of the Genetic Algorithm on a
binary sequences of length 64 for different crossover type

The average accuracy of the results of the Genelic Algarithm
on & binary sequence of langth 64
for different mutation types
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Table 5.9: The 5-error linear complexity results of kGA(32, 5, s, 1100, 10,
ELSEL(25%), TPX, SRM, 0.6, 0.05) compared to the exact values
S SO ) 5@ B @

Exact value 10 9 9 8 10
GA Value 10 11 11 9 10
Generation 10 3 1 3 7

depending on the chosen selection, crossover and mutation scheme, where we de-
note the number of individuals evaluated during selection, crossover and mutation,
with ng, nx and nps respectively.

For the roulette wheel and tournament selection no individuals are evaluated,
as the selection works only on the existing population so ng = 0 in this case.
For the elitist scheme of level 25%, 75% of the population is replaced with new
individuals which need to be evaluated. It is easy to estimate ny = 2.px - PS and
npy = t-par - PS. These two values are not varying when changing the crossover
or mutation type. Therefore the only element which makes up the amount of
new individuals to vary is the selection scheme. We think that this is the reason
why the elitist selection scheme has shown the most significant improvement in
accuracy when compared to the other methods.

In order to check if there is any convergence pattern for the k-Error Genetic

Algorithm, namely if after a certain number of generations the solution stabilises
and converges slower to the optimum, we do the following additional analysis on
the previous two experiments.

Table 5.9 shows the approximate values of the 5-error linear complexity found
by the k-Error Genetic Algorithm applied to each of the test sequences s® (with
0 < 1 < 5) of length 32, when population size is 1100, number of generations
is 10, selection scheme is elitist selection of level 25%, crossover is the two point
crossover with probability of crossover 60% and mutation is the simple random
mutation with probability of mutation 5%. This table displays the exact values of
the 5-error linear complexity and the generation number when the k-Error Genetic
Algorithm has found the solution.

Table 5.10 shows the approximate value found by each of the runs for the
best combination of parameters: population size 4000, number of generations
10, selection scheme elitist of level 25%, two point crossover with probability of
crossover 60% and the simple random mutation with probability of mutation 5%.
The table displays the approximate values of the 9-error linear complexity and the

‘ generation number when the algorithm kGA has found the solution.
With these results it is difficult to say if continuing the algorithm for a few

‘ more generations or stopping the algorithm a few generations before would have
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Table 5.10: The 9-error linear complexity results of kGA(64, 9, s, 4000, 10,
ELSEL(25%), TPX, SRM, 0.6, 0.05) compared to the exact value of Log(s) = 14

Runs 1 2 3 4 5

GA Value 256 24 24 25 25
Generation 2 9 4 3 8

made any improvements.

5.1.4 Conclusion

We propose a genetic algorithm for approximating the k-error linear complexity
of a sequence over a finite field. We implement and analyse various techniques for
each of the evolutionary operators and investigate the best choice of parameters
for the algorithm. The genetic algorithm approach seems suitable to the problem
especially for inputs which generate a large search space but it is difficult to
control in terms of accuracy. A good scheme would use a large sized population,
an elitist type of selection with a level of 25%, two point random crossover with
a probability of 0.6 and a standard random mutation with a probability of 0.05.
With these choices, the algorithm outputs an approximate value of the k-error
linear complexity which is on average only 7.2% higher than the exact value for
sequences of length 32 when 1 < kg < 5 and 20.5% higher for sequences of length
64 when 1 < ky £ 9.

Even though the advantage of this technique is that it is simple, quick and
allows for different levels of accuracy, the algorithm can turn out to be unreliable
and not scalable with the size of the search space.

5.2 Simulated Annealing Algorithm

This section presents an alternative evolutionary heuristic technique called sim-
ulated annealing, applied to the k-error linear complexity profile problem for se-
quences over finite flelds. We design an algorithm using the simulated annealing
technique and evaluate its behaviour. The algorithm proves to be efficient and
has good accuracy. It outputs an approximate value of k-error linear complexity
on average 12.4% higher for sequences of length 32 and 38% higher for sequences
of length 64.
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5.2.1 Background

Independently presented by Kirkpatrick et al. [33] and Cerny [9], the simulated
annealing (SA) technique is a generic probabilistic meta-algorithm used for global
optimisation of problems. The method is inspired from the metallurgic technique
of annealing, where materials are heated and then slowly cooled (according to a
cooling schedule) to increase the size and the order of its crystals. These principles
were first incorporated into numerical calculations by Metropolis et al. [53].

Similarly to the physical process, the simulated annealing algorithm is iter-
atively ‘cooling’ or mutating an initial random solution e to a randomly close
solution €. This new solution €’ replaces e with a probability that depends on
the difference between the quality of the two solutions and on a global parameter
T called temperature. If the new solution is better (judging by a fixed objective
function or a so called energy) then it is chosen for the next step. If the new
solution is worse then it can still be chosen for the next step with a probability
P(e, ¢, T) which depends on how much variance of energy the current temperature
T of the system allows between the two solutions e and ¢’. In order to implement
the above there is need to define the distance between two solutions and an ohjec-
tive function which reflects the quality of each possible solution. The temperature
schedule allows the system to evolve initially at a high temperature and then at
progressively lower temperatures until the system ‘freezes’ in a near optimum state
when no further mutations occur (Kirkpatrick [33]). The cooling schedule is gov-
erned by a decreasing function c,, at each step the current temperature T" being
replaced by ¢;(T).

The fact that at high temperatures, the algorithm allows the solution to mutate
to elements which do not improve the objective function is one of the advantages of
this method. This prevents the algorithm from getting stuck into a local minimum,
one of the risks when using ‘greedier’ methods like the steepest descent method
heuristic (Goldberg [20]).

Simulated annealing is typically suited to optimisation problems of large scale,
especially where the target global optimum is hidden among many local optima,
and where the space of solutions is discrete and very large therefore cannot be
explored exhaustively. Furthermore, since the set is discrete, there is no notion
of ‘continuing downhill in a favourable direction’, as the concept of direction may
not have any meaning in the search space (Press et al. [64]).

This technique has been successful in a range of real life disciplines from physics
to neural networks, image processing and finance, as well as classical NP-Complete
problems like the Travelling Salesman Problem (Ingber [26]). Listing 21 shows a.
classical Simulated Annealing Algorithm.
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Algorithm 21 Simulated Annealing Algorithm
e +— random initial solution

T Tg
while (T" > Tfyee.e and termination condition not met) do
for 1, ..., number of steps at constant temperature do

e’ «— random solution in the neighbourhood of e
if fo(e) < fo(e') then
e+—¢
else
e « ¢’ with probability P(e,¢’, T)
end if
end for
T + ¢c,(T)
end while
return e

5.2.2 kSA Algorithm

In this section we describe the k-Error Simulated Annealing Algorithm for approx-
imating the k-error linear complexity of sequences with elements in a finite field
GF(q), with ¢ a prime power.

Similar to the k-Error Genetic Algorithm the input is a finite sequence s =
S0, 81,-..,5—1 of size t > 0 with terms over a finite field GF(q), where ¢ is a
prime power and an integer value ky, with 0 < ky < wg(s) — 1. The expected
output is an approximate kp-error linear complexity profile of s containing for
each i = 0,1,..., ky, Lj, the approximate é-error linear complexity; e}, the error
pattern producing the linear complexity L} on s; C;(X) a minimal characteristic
polynomial corresponding to the sequence s + €.

See listing 22 for a schematic view of the algorithm.

The elements which characterise the k-Error Simulated Annealing Algorithm

are:
¢ the population of possible solutions,
¢ the objective function,
o the cooling schedule,
¢ the mutation technique,
o the probability of acceptance.

We will describe our implementation for each of these elements in the following.
The population of possible solutions is the set of all error sequences e of weight
at most ko, By, = {e € GF(g)*|wy(e) < ko}. Therefore the size of the search
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space is $§ = 1. (1}(g — 1) (see definition 2.13 in section 2.2, subsection 2.2.7),
where ¢ is the size of the input sequence, g is the order of the finite field and kg is
the input value of the algorithm.

The objective function is the function which needs to be minimised by the
algorithm. In our case, given the definition of the k-error linear complexity, we
can choose as objective function the function which maps each error pattern in
the search space to the linear complexity of the sum sequence s + ¢, L{s +¢). We
denote the objective function fo.

fo : GF(g) — N, defined as fo(e) = L(s +e).

The cooling schedule is characterised by the number of cooling steps (denoted
noCoolingSteps), the number of iterations at the each temperature (denoted
noConstT Steps) and the cooling function (c,).

Just as with any heuristic search technique we aim to find a way to only process
a small, representative subset of all possible solutions. Due to the high variance
of the search space size when ¢, ky and ¢ vary, we need to tune the number of
elements processed depending on these values.

The choice of the cooling schedule is very important. The cooling speed, similar
to the physical phenomenon of metalurgic annealing, directly affects the efficiency
of the algorithm. There are a few celebrated cooling schedule procedures, e.g.
logarithmic, exponential or adaptive schedules (Ingber [27]). We will use a classical
exponential cooling schedule which needs a cooling parameter a € (0,1) and the
decreasing function ¢, is defined by ¢,(T, @} = aT. Therefore, assuming that the
initial temperature is Tj, at any step 4, the temperature 7} = o'Tp,.

The number of elements processed by the algorithm is the product of the num-
ber of cooling steps, denoted noCoolingSteps (in how many steps the temperature
drops from the initial temperature to a freezing temperature) and the number of
steps spent by the algorithm at each temperature, denoted noConstT Steps.

The initial temperature needs to allow very erratic movements within the
search space, any mutation of the current element, whether it improves the objec-
tive function or not, should be accepted. Therefore we choose the initial tempera-
ture to be Ty = ¢ which is a loose upper bound for the possible difference between
the values of the objective function applied to any two different error sequences
from the search space. Since the objective function has a discrete codomain we
can choose the freezing temperature to be Tyeeqe = 1.

By fixing the initial temperature and the freezing temperature we can estimate
the number of cooling steps using the cooling function ¢,. The algorithm stops
as soon as the current temperature becomes less than the freezing temperature
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T'treeze = 1. The temperature at step ¢ is T; = oTyy. Therefore we can write the

following chain of relations:

TnoCoalingSteps < Tfreeze Ad anoCoolingStepsTO <l&

noCoolingSteps + log, Ty < 0 © noCoolingSteps < —log, Tp

We can therefore take
noCoolingSteps = l_— log,, tj

When choosing the number of iterations at each temperature, there are two
aspects which we find important to take into account. Firstly, we need to spend
less time at each temperature if the cooling schedule is slow and more time if the
cooling schedule is fast. Secondly, the total number of mutations in the algorithm
needs to scale accordingly with the search space size.

With these two requirements in mind, we use the following formula:

noConstT Steps = [_quot ]
where the coefficient r > 0 is an additional parameter which allows for more tuning
if necessary. This way the number of steps at constant temperature is inversely
proportional to the cooling schedule coeflicient & (first requirement). Also the
number of steps at constant temperature is directly proportional with the size of
the field g, the number of allowed errors ky and with the size of the input sequence
t (second requirement).

The parameter noFailSteps indicates how many consecutive mutations to-
wards solutions of lower fitness are allowed before cancelling the current tempera-

ture and cooling to the next one in the schedule. We choose the following formula

for noFailSteps = "0onsiTtep:

Figure 5.16 shows how the number of elements in the search space for a partic-
ular instance of the problem and the maximum number of error patterns processed
by the algorithm varies with the length of the input sequence ¢, where 8 < ¢ < 128,
g = 2 and ko = 15%t. The number of error patterns processed by the k-Error
Simulated Annealing Algorithm is

noCoolingSteps - noConstT Steps = | ~log,t] - |

rg kot
g

_ logt rq0.15¢?
loga «

<| | = O(t*log¢)
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The relation between the number of elements in the search space and
the number of elements processed by the Simulated Annealing Algerithm
for different values of alpha and k0=15%t
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Figure 5.16: The relation between the number of elements in the search space
and the number of elements processed by the Simulated Annealing Algorithm for
different values of alpha.

Four values for the cooling parameter o are included in the graph, namely a =
0.5,0.65,0.8,0.95. While the search space size grows exponentially, the number
of clements processed by the k-Error Simulated Annealing Algorithm grows at a
much slower speed following a function upper bounded by O(#?logt).

The probability of acceptance for a solution €', denoted P(e,e’,T), is usually
following a Boltzmann-like distribution (Kirkpatrick et al. [33), Ingber [27], Press
et al. [64]), i.e.

Ple,e/, T) = exp [_ fole) ; fo(e’)].

The initial element e is randomly generated such that it has weight exactly ko.
That is done by generating &, random positions between 0 and ¢t — 1 {each bit is
generated using C rand() linear congruential generator function) and assigning
to the terms in these positions, random values from the current field, GF'(q).
Formally, for each ¢ = 0,...,kp — 1, generate a position pos; € {0,1,...,t — 1}
and a random value val; € GF(q) and attribute e, — val;.

We consider two different implementations for the mutation procedure, denoted
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Algorithm 22 Simulated Annealing Algorithm for the k-error linear complexity

profile problem - A Schematic View

Input: A finite sequence s = sg,81,...,58—1 of size ¢ > 0 with terms over a
finite field GF(g), where ¢ is a prime power; an integer value kg, with 0 < kg <

’LUH(S) - 1.

Output: The approximate kg-error linear complexity profile, L¥, C}(X) and

ef,foralli=0,1,..., k.
fori=0,1,...,k do
L} — L(s)
CHX) « C(X), a minimal characteristic polynomial
el — (0,0,...,0)
S———
¢ times
end for
noCoolingSteps — | — log, t]
noConstT Steps — [ﬂg’f ]
noFailSteps «— Mfisﬂ
Tt
10
¢ « a random sequence over GF(g) with wg(e) < ko
while ¢ < noCoolingSteps do
noFS « 0
J<0
while j < noConstT Steps and noF'S < noFailSteps do
¢’ + mutate(e)
if fo(€') < fole) then
e—¢
noFS « 0
else
U — a random variable € (0,1)
if U < P(e,¢/,T) then
e—e
nof’'S — 0
else
noFS «—noFS+1
end if
end if
Jej+1
end while
if Ly, ey > L(s +¢) then

end if
T — (T, )
‘ je—i4+1
‘ end while
return L}, C}(X) and e} fori =0,1,..., ko

‘ update the global solution, L, C}(X) and e} fori =0,1,..
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mutate(e).

One of the implementations uses extra information provided by the linear com-
plexity profile of each sum sequence s+e¢, in a similar way to the mutation scheme
used for the k-Error Genetic Algorithm. For each error pattern e, when calculating
the linear complexity of s + e with the Berlekamp-Massey Algorithm we hold all
the intermediary lincar complexities, obtaining therefore the full linear complexity
profile, lcp (see definition 2.2). We denote Icp;, for j = 0,1,...,¢ — 1, the linear
complexity of the sequence s + ¢ up to term j. We denote dis; the intermediary
discrepancy at term j for the sequence s + e, i.e. the difference between the term
8; + e; and the j-th term generated using the characteristic polynomial of the
sequence (s + €)g,..., (s +€)j_1.

Algorithm 23 Simple Random Mutation - mutate(e)
m « random value in {0,1,..., 2k}
fori=0,1,...,m—1do
pos; « random value in {0,1,...,t -1}
val; + random value in GF(g)
€pos; < Cpos; T Val;

end for

Teturn €

We consider the following mutation types:

e Simple random mutation (SRM). When moving from one element e €
GF(qg)* to another ¢ € GF(g)*, the Hamming weight needs to stay less than
ko. We modify some of the terms of the sequence such that there are high
chances for the Hamming weight of the mutated sequence to be still under
ko. We first generate a random integer value m, m € {0,1,...,2k,} and then
generate m positions pos;, 1 =0,1,...,m — 1. We add randomly generated
values, val; € GF(g), on the generated positions so that epys, «— €p0s, + val;
for each ¢ =0,1,...,m — 1. See listing 23 for this implementation.

o Random mutation using the linear complexity profile (LCPRM). This mu-
tation procedure attempts to mutate the current error sequence e to good
elements by using the linear complexity profile and the discrepancy informa-
tion for a better chance to minimise the objective function of the new element
¢/, L(s +¢'). Formally, generate a random position u € {0,1,...,t— 1} and
find the first position m in e such that v < m and lep,, < leppty. Once m is
found, make e}, +1 = em+1 — di8m41, Where disp, 4 is the discrepancy at step
m + 1 in the sequence s + e. Note that, if no suitable m < t — 1 is found
then the last term is mutated randomly e;_, = e}_; — dis;—;. See listing 24
for this implementation.
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Algorithm 24 Random Mutation using the linear complexity profile - mutate(e)

% « random value in {0,1,...,t — 1}

me—u

while m <t —1 and lep,, = lepp4 do
me—m+1

end while

Em+1 + Emt1 — BiSmi1
return e

In both cases, if the resulting sequence e’ has the Hamming weight more than
ko then we randomly switch to zero some of the non zero terms until the weight
becomes less then kg.

The computational complexity of the algorithm is determined by the number
of the error patterns processed, as for each error pattern e the Berlekamp-Massey
Algorithm is used to calculate the linear complexity of s + e for the objective
function, fo(e) = L{s + e).

Therefore the computational complexity is:

noCoolingSteps - noConstT Steps - t* = | — log, t) - | 122t |42
< | —lostme0IS842) A (¢t |og ¢)

- loge «

5.2.3 Experiments and results

We set several experiments in order to assess the accuracy and efficiency of the
algorithm. The parameters considered in our tests are summarised below:

To =1, noCoolingSteps = | —log, t]
a€(0,1), noConstTSteps = |2t

¢s(T) = oT, noFailedSteps = | eConstlieps

r € (0,1), mutationType € {SRM, RMLCP}

In order to compare with the exact result (obtained using the Efficient Exhaus-
tive Search Algorithm} and also to compare with the results of the k-Error Genetic
Algorithm (section 5.1), we consider the same set of 5 random binary sequences
of length 32 and k; = 5 (each bit generated using the C rand() linear congru-
ential generator function). The full search space size for an exhaustive search
is S0 4 (*%) = 204469. This is quite a small search space to justify a heuristic
method, but it allows us to compare with the exhaustive search and to assess the
efficiency and accuracy of the proposed algorithm.

We try four different values for the cooling coefficient o = 0.5,0.65, 0.8, 0.95,
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Table 65.11: The accuracy for the k-Error Simulated Annealing Algorithm applied
to 5 binary sequences of length 32 and ko = 5.

Mutation «a  Accuracy Acc; Accy; Aces Aecy Aces Error
type patterns

LCPRM 0.95 1.124 1.12 111 114 112 1.13 19036
LCPRM 0.8 1.164 1.12 115 123 112 1.20 5360
SRM 0.95 1.208 1.12 118 1.26 1.21 1.27 19976
LCPRM 0.65 1.222 1.12 117 128 123 131 3692
LCPRM 0.5 1.224 1.12 119 1.27 123 1.31 2713
SRM 0.8 1.262 111 1.20 1.31 1.32 1.37 5670
SRM 0.65 1.278 112 121 135 135 1.36 3970
SRM 0.5 1.296 112 1.22 136 135 1.43 2882

corresponding to very fast, fast, slow and very slow cooling schedules, respectively,
and inherently to less or more error patterns processed by the algorithm, respec-
tively. We ran the algorithm with each of these values for the cooling coefficient
o and each mutation type, SRM and LCPRM. The algorithm is run 5 times for
each input sequence and each combination of parameters with a different random
seed.

Having 4 values for the cooling coeflicient, 2 mutation types and 5 repeated
tests we obtain 40 different runs for each input sequence and store the kg-error lin-
ear complexity returned by each run. The accuracy of the results of the algorithm
for each combination of parameters is averaged over the 5 runs.

Table 5.11 shows the average accuracy for each of the runs with different combi-
nations of o and mutation types in increasing order of the accuracy. The accuracy
of the result is the ratio between the approximate ky-error linear complexity value
obtained by the k-Error Simulated Annealing Algorithm, Ligsx(s) and the ex-
act value of the kg-error linear complexity, calculated by the Efficient Exhaustive
Search Algorithm, Li(s}. We omit the accuracy for the 0-error linear complexity
as this is trivially the linear complexity of the input sequence, and therefore the
algorithm will calculate it in polynomial time. The accuracies for the different
values of k, Accy are defined as Ace, = L’“LS:(:)(S)
table shows the average accuracy of the k-error linear complexity for all values of
k, 1 <k <5, namely Accuracy = Zjﬁé—Aﬁ Figure 5.17 shows these results in a

graph.

. The column accuracy in the

The difference in accuracy between the eight configurations is not very sig-
nificant. It is easy though to notice that the best configuration uses the slowest
cooling schedule (@ = 0.95) and the mutation type which uses knowledge about
the linear complexity of the solutions (LCPRA), giving an average result only
12.4% higher than the exact value.
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The accuracy of tha results found by the Simulated Anneafing Algorithm
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Figure 5.17: The accuracy of the results found by the Simulated Annealing Al-
gorithm on a sample of 5 random binary sequences of length 32 with different
paframeters

The number of elements processed varies with the value of the cooling coeffi-
cient, @. On average, for the five sequences considered, the algorithm processes
approximatively 19506, 5515, 3831, 2797 elements, corresponding to the different
values of the cooling coefficient o = 0.95,0.8,0.65,0.5. The runs corresponding
to a slower cooling schedule (large o) process more of the solutions in the search
space. This gives them a better chance to find a more accurate approximation but
makes them less efficient for large search space problems.

Figures 5.18 and 5.19 show the average accuracy of the results for the k-Error
Simulated Annealing Algorithm when grouping by mutation type or by the dif-
ferent values of the cooling coefficient «, respectively. It is noticeable that the
best results are given by the mutation scheme which uses the extra information
about the linear complexity profile (figure 5.18). Also, we can conclude that the
accuracy improves when the cooling coefficient increases, a fact which can be in-
tuitively inferred since the number of error patterns processed by the algorithm
increases too.

We are interested to check if the results of the algorithm are scaling with the
size of the search space, therefore we tested it on sequences of higher length. The
results of the algorithm on a sequence of length 64 are shown in figure 5.20. When
grouping by mutation type or o respectively, similar conclusions to the ones above
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The average accuracy of the results of the Simulated Annealing Algorithm
on a sample of 5 random binary sequences of length 32
for different mutation types
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Figure 5.18: The average accuracy of the results of the Simulated Annealing Algo-
rithm on a sample of 5 random binary sequences of length 32 for different mutation ‘
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Figure 5.19: The average accuracy of the results of the Simulated Annealing Algo- |
rithm on a sample of 5 random binary sequences of length 32 for different cooling
coeflicients ‘
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Table 5.12: The accuracy for the k-Error Simulated Annealing Algorithm applied
to a binary sequence of length 64 and ky = 9.

Mutation @ Accuracy Acey  Acca  Acey  Accy  Accs  Accs Accr  Accs Accg Error
type patterns

LCPRM  0.95 1.380 110 119 1.28 145 145 146 140 138 171 92039
LCPRM 0.8 1.405 1,10 119 1.28 145 149 156 149 140 169 25566
SRM 0.93 1.407 .10 119 128 145 145 152 154 143 171 89239
LCPRM 0.5 1.430 110 L19  1.28 1.45 150 1.62 156 1.41 1.76 13043
LCPRM 065 1.430 110 118 128 145 150 181 1,50 143 181 16720
SRM 0.8 1.445 116 119 1.28 145 1,50 158 159 1.1 1.80 25249
SRM 0.5 1.454 110 119 128 1.45 1.48 1.58 1.62 1.58 1.81 13077
SBRM 0.65 1.463 1,10 119 128 145 152 162 162 156 133 16736

can be drawn from the results, see figures 5.21 and 5.22.

5.2.4 Conclusion

We propose a new algorithm for approximating the k-error linear complexity of
sequences over finite fields. The algorithm uses simulated annealing techniques
and we assess it experimentally by comparing its result to the exact value for
accuracy and with the previous proposed heuristic algorithms for both accuracy
and efficiency. The algorithm proves to be robust and like the k-Error Genetic
Algorithm allows fine tuning of the parameters depending on the size of the input
sequence and the number of errors &, so that the result is close to the exact value
while s$ill running in reasonable time. The algorithm outputs an approximate
value of the k-error linear complexity which is on average only 12.4% higher than
the exact value for sequences of length 32 when 1 < ky < 5 and 38% higher for
sequences of length 64 when 1 < ky < 9.

5.3 Conclusions

This chapter includes two types of algorithms which implement evolutionary com-
putation techniques, genetic algorithm and simulated annealing.

The results of these algorithms have a good accuracy however the number of
the error patterns processed is much higher than the Modified Berlekamp-Massey
Algorithm presented in chapter 4.

While k-Error Simulated Annealing Algorithm gives an average accuracy of
1.124 for sequences of length 32, the k-Error Genetic Algorithm presented in sec-
tion 5.1 has the best average accuracy of 1.072 on the same set of sequences
when 1 < ky £ 5. It is interesting to look at the heuristics presented so far and
compare the accuracies and the average number of error patterns processed by
each to see which one is the most powerful. Table 5.13 summarizes the heuristic
algorithms presented so far and the difference between accuracy and efficiency
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Figure 5.20: The accuracy of the results found by the Simulated Annealing Algo-
rithm on a binary sequence of length 64 with different parameters
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Figure 5.21: The average accuracy of the results of the Simulated Annealing Al-
gorithm on a binary sequence of length 64 for different mutation types
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Figure 5.22: The average accuracy of the results of the Simulated Annealing Al-
gorithm on a binary sequence of length 32 for different cooling coefficients

Table 5.13: The accuracy of the different heuristic algorithms on binary sequences
of length 32 and when ky = 5.

Algorithm Accuracy Accy  Accy  Acca  Accs Accs Error
patterns

kSA(LCPRM, 0.95) 1.124 1.12 1.11 1.14 1.12 1.13 19036

MBM 1.26 1.11 1.19 1.27 1.35 1.38 210

GA(1100, 10, ELSEL, 1.072 1.00 1.00 1.01 1.08 1.27 26661
LCPTCP, LCPRM)

(number of error patterns visited) for the same set of sequences of length 32. We
believe that the best compromise accuracy/efficiency is obtained by the Modified
Berlekamp-Massey Algorithm (chapter 4) which has a consistently good accuracy
for all values of k and for a very low number of error patterns visited. For the
same set of sequences the Efficient Exhaustive Search Algorithm (see chapter 3)
processes on average 35327 error patterns and the Modified Berlekamp-Massey
Algorithm (see chapter 4) processes on average only 210 error patterns. The best
configuration of the k-Error Genetic Algorithm processes on average 26661 error
patterns and produces an accuracy of 1.072. The Modified Berlekamp-Massey
Algorithm produces an average accuracy of 1.26 for sequences of length 32. Ta-
ble 5.13 summarises these results. See table 5.14 for a similar comparison of the
three heuristic algorithms on the sequences of length 64,

One advantage of the evolutionary algorithms is that they can easily be par-
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Table 5.14: The accuracy of the different heuristic algorithms on binary sequences
of length 64 and when ky = 9.

Algorithm Accuracy Acer  Acez  Acca Accqy  Accs  Accg  Acer  Accs Accog Error
patterns

kSA({LCPRM, 0.95) 1.380 1.10 1.19 1.28 1.45 1.45 1.48 1.40 1.38 1.71 92039

MBM 1.14 1.01 1.04 1.07 1.10 1.14 1.18 1.21 1.24 1.27 36592

GA(4000, 10, ELSEL, 1205  1.00 100 102 114 116 127 130 130 1.66
LCPTCP, SRM)

105763

allelised, in such a scenario the accuracy could be improved by using more than
one processors with no additional time costs. Also they allow for fine tuning of
the parameters in order to cover more or less of the search space and therefore
get more or less accurate approximation of the exact result. The running time
of such algorithms is also easy to tune so they can constitute an easy, quick way
of identifying sequences of low k-error linear complexity with a certain degree of
confidence. On the other hand the compromise accuracy/efficiency is worse than
the one for the Modified Berlekamp-Massey Algorithm.

One disadvantage of the algorithms defined in this section is that the size of
the chromosomes increases at a one to one rate with the size of the input sequence.
This makes the algorithm difficult to scale and the memory used increases greatly
with the size of the input sequence. In trying to address this problem, we think
it would be interesting as future work to investigate the possibility of devising an
evolutionary algorithm for which the individuals are recurrences or characteristic
polynomials. The fitness of each individual would reflect how well they generate
the input sequence. For example, the fitness of each recurrence or polynomial
could be the Hamming weight of the difference between the input sequence and
the sequence generated using that individual. A challenge in this design is how to
create efficient recombination techniques which would combine two recurrences or
polynomials such that the child is fitter. We leave this as future work.

These algorithms can be used as an alternative to the existing algorithms for
an approximate value of the k-error linear complexity of sequences.



Chapter 6
Discrete Fourier Transform

In this chapter we consider the k-error linear complexity of infinite periodic se-
quences of period N over a field K.

The existing exact algorithms to compute the k-error linear complexity apply
to periodic sequences over finite fields where period is a power of the characteristic
of the field (see Stamp and Martin [79], Lauder and Paterson [38] for p = 2 and
Kaida, Uehara and Imamura [31], Kaida [29] for arbitrary p). These algorithms
assume a full period of the sequence known a priori, i.e. the whole sequence is
known. Such algorithms are useful in the design phase of the cypher, in order
to identify vulnerable sequences with low k-error linear complexity. We attempt
in this chapter to find algorithms for computing the k-error linear complexity
of periodic sequences where the period is not restricted to being a power of the
characteristic of the field.

We introduce a generalisation of the notion of k-error linear complexity, which
we call the extension field k-error linear complexity, defined as being the k-error
linear complexity of s when working in the smallest extension field of K which
contains an N-th root of unity, assuming N is not divisible by the characteristic
of K (published in Alecu and Sildgean [3]).

Blahut’s theorem shows that the linear complexity of a periodic sequence is
equal to the weight of the Discrete Fourier Transform of that sequence. We show
that using Blahut’s theorem, the optimisation problem of finding the extension
field A-error linear complexity can be firstly transformed into an optimisation
problem in the DFT domain. Namely, in the transform domain we have to find an
error pattern F which has linear complexity at most & and minimises the weight
of DFT(s) + E.

While we do not know of an efficient exact algorithm for this problem, we
propose an approximation algorithm which searches among error patterns in the
DFT domain which have period up to % (and therefore complexity up to k).
The approximation algorithm has quadratic complexity, O(N?) operations in the

138
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extension field.

The algorithms presented in this chapter were implemented using GAP (Groups,
Algebra and Programming) [18] and the results on a series of sequences are dis-
cussed in section 6.4.

The results included in this chapter extend the work presented in Alecu and
Siligean [3).

6.1 Background

The discrete Fourier transform (DFT) is a transform for Fourier analysis of finite-
domain discrete-time signals (Rueppel [70, 77]). We recall the definition of the
Discrete Fourier Transform. Note that the basic algebraic concepts necessary to
the understanding of this section are included in Appendix A.

We identify an infinite periodic sequence s by one period (sg, 81,-..,8N5=1),
where N is the period of the sequence.

Definition 6.1. Let F be a field containing a primitive N-th root of the unity,
denoted o, and let s be a sequence of period N over F. The discrete Fourier
transform (DFT) of s is the periodic sequence S = (Sq,S1,.-.,Sn-1) over F,

where
N=1

Si= s, foralli=0,1,...,N—1.

5=0
Reciprocally, the inverse discrete Fourier transform of S is the sequence s defined

by
N-1

sj=N"1>"S0, forallj=0,1,...,N -1,
i=0

Note that in order to compute the DFT of a periodic sequence s of period
N over a finite field of characteristic p, usually the following constraint is im-
posed, ged(N,p) = 1. However there are generalisations of the Discrete Fourier
Transform (see Massey and Serconek [45]) which allow applying the Discrete
Fourier Transform technique to sequences of arbitrary period. This case is not
considered in our current work, and can be a topic of future research.

It is well known that the Discrete Fourier Transform is linear:

Property 6.2. Let N be a positive infeger and F be an arbitrary field which
contains a primitive N-th root of unity. The Discrete Fourier Transform and the
inverse Discrete Fourier Transform are linear operators on the vector space FV.

We also present the shifting property (Property 6.3) of the Discrete Fourier
Transform.
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Property 6.3. Let N be a positive integer and F' be an arbitrary field which
contains a primitive N-th root of unity, a. Let s’ = (s},s],...,8y_y1) be the
periodic infinite sequence over F' obtained by cyclically shifting all periods of s =
(S0, 81,---,8n—1) to the left by h positions, i.e.

§; = Siyn, for al0<i< N

where indices are taken modulo N. Then if §' = (S5, 81,...,8y_;) is the Dis-

crete Fourier Transform of 8’ and S = (Sy, S1,...,Sn-1) 18 the Discrete Fourier
Transform of s, the following relation stands

S =a ™S, forall0<i<N.

Remark 6.4. With the notations in property 6.3, let s" = (s, s],...,8x_1) be
the periodic infinite sequence over F obtained by cyclically shifting all periods of
s = (80, S1,...,8y_1) to the right with h positions, i.e.

s{ = si_p, for al0<i< N

where indices are taken modulo N. Then if " = (87,57,...,Sx_,) is the Dis-
crete Fourier Transform of s" and S = (S, 81,...,Sn_1) is the Discrete Fourier
Transform of s, the following relation stands

S =aMg;, forall0<i< N.

Note that this follows immediately from property 6.3 concerning the cyclical
left shift, since for any periodic sequence of period N, a cyclical right shift with
h positions is equivalent to a cyclical left shift of N — h positions. Therefore, all
properties corresponding to cyclical right shifts of a sequence can be written in
terms of cyclical left shifts and reciprocally.

For computing the DFT of a sequence of period N, a straightforward approach
takes O(N?) operations in the field F. Faster computation approaches, usually
called fast Fourier transform (FFT), are available and they can give a complex-
ity of O(Nlog N) operations in the field F. See Pollard [62] or Preparata and
Sarwate [63] for the computational complexity of computing the Discrete Fourier
Transform of sequences over finite fields or for more general considerations related
to the fast Fourier transform see Cormen et al [10].

There is a close connection between the linear complexity and the Discrete
Fourier Transform of a sequence. In 1979, Blahut {7] used the link between the

linear complexity of a periodic sequence and its discrete Fourier transform, setting
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this way the fundaments of the spectral theory of error correcting codes. The
theorem was established in an explicit form by Massey [41] and given the name of
Blahut’s theorem in Massey and Schaub [44]. The theorem gives a simple way of
computing the linear complexity of a periodic sequence when the whole period is
known.

Theorem 6.5 (Blahut’s theorem (Simmons [77])). The linear complexity of a pe-
riodic sequence 8 = (8o,81,...,8x-1) of period N equals the Hamming weight
of DFT(s). Reciprocally, the linear complezity of the periodic sequence S =
(So, S1,--.,Sn-1) equals the Hamming weight of DFT(S).

It has been proven that Blahut’s theorem also holds over commutative rings
(Massey [43]) but we will only use it for sequences over finite fields.

Paterson shows that the well established method of root counting for calcu-
lating linear complexity of sequences is equivalent to using the Discrete Fourier
Transform and applies this technique to the theory of filtering m-sequences (Pa-
terson [60]).

Using the generalised Discrete Fourier Transform defined by Massey and Ser-
conek [45), Meidl and Niederreiter [49, 50] build a statistical theory for the linear
complexity and k-error linear complexity, determining the number of periodic se-
quences with a certain given period and linear complexity, as well as the expected
value of the linear complexity of periodic sequences. For some values of &, a for-
mula for the number of periodic sequences with given period and given k-error
linear complexity is obtained. Formulas are given for the expected value of the
l-error linear complexity as well as lower and upper bounds for the expected value
of the k-error linear complexity when k& > 2 (Meidl [48]). The statistical theory
of linear complexity and k-error linear complexity is extended by the authors in
Niederreiter [59], Meidl and Niederreiter [51], Meidl [47, 48].

Blackburn [5] generalises both Games-Chan Algorithm (Games and Chan [17])
(the case when ged(p, N) # 1) and the Discrete Fourier Transform (the case when
ged(p, N) = 1) for computing the k-error linear complexity of periodic sequences
over finite fields.

For more details about the Discrete Fourier Transform applied to linear recur-
rent sequences see also Ding, Xiao, Shan [12, Section 5.7). A concise reference for
the use of the Discrete Fourier Transform in coding and cryptography is included
in Massey [43] along with the generalisation of Blahut’s theorem from finite fields
to commutative rings.
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6.2 k-error linear complexity computation using
DFT

The generalisation of the definition of k-error linear complexity and problem trans-
formation proofs have been stated in our paper [3] and will be described in the

following two sections.

6.2.1 Extension field k-error linear complexity

Note that the k-error linear complexity of a periodic sequence s over a field X
could decrease if we consider the same sequence to be over some extension field
F of K (and therefore allow the error sequence to be over F). A natural choice
of the extension field F would be the smallest extension field of K which contains
an N-th root of unity, where N is the period of s. This extension field F is the
splitting field of the polynomial 2V — 1. Note that since s has period N, the

minimal characteristic polynomial of s is a factor of 2™ — 1.

Definition 6.6 (Extension field k-error linear complexity). Let s be a sequence of
period N over a field K, such that N is not divisible by the characteristic of K.
Let F' be the smallest extension field of K which contains an N-th root of unity.
Let K < N. The extension field k-error linear complexity of s, denoted ELy n(s)
is defined as the k-error linear complezity of s when s is viewed as a sequence over
the extension field F':

ELj n(s) = min{L(s + e)le € F¥,wy(e) < k}

Note that since the extension field F' includes the original field K the relation
L n(s) = ELg n(s) is immediate.

Also, note that E Ly v (s) shares the properties of Ly(s), namely it is decreasing
when k increases (see property 2.14) and also EL,,s),~(s) = 0 (property 2.15).

Let us examine the cryptanalytic significance of this notion. Assume a crypt-
analyst knows a few terms of the sequence s over K and is able to either find a
sequence s’ over K which coincides with s in all but up to & positions (the scenario
considered in k-error linear complexity), or is able to find & sequence s” over an
extension field F' which coincides with s in all but up to & positions (the scenario
considered in the extension field k-error linear complexity). Finding s” will be
at least as useful to the cryptanalyst as finding ', and likely more useful, as the
positions of s” which are from F'\ K can be immediately identified as not being
from the original sequence s, whereas given s’ it may not be known which of the
positions do not coincide with s.
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6.2.2 Problem transformation

The extension field k-error linear complexity problem can be expressed as an
optimisation problem: given integers N and k with £ < N and a sequence s of
period N over a field K, find e, a sequence of period N over the extension field
F such that wy(e) < k and L(s + e) is minimal (F is the smallest extension field
of K containing an N-th root of unity). This problem can be transformed into an
optimisation problem in the DFT domain. Since the DFT and the inverse DFT are
linear transforms (Property 6.2), in order to find error patterns e of weight at most
k which minimise the linear complexity of s + e, we can search for sequences E of
linear complexity at most & and which minimise the weight of DFT(s) + E. The
resulting sequence F is then transformed back using the inverse DFT, obtaining
an optimal error pattern e, e = DFT-1(E). Note that this error pattern can be
in the extension field used for computing the DFT, F, rather than in the original
field over which s was defined, K.

Theorem 6.7. Let 3,¢e be sequences over a field K such that s has period N, N
is not divisible by the characteristic of K. Let F be the smallest extension field of
K which contains an N-th root of unity. Let S = DFT(s), E = DFT(e) and let
kE < N. The following equivalence stands:

e is such that wy(e) < k and L(s +e) is minimal
if and only if
E is such that L(E) < k and wy(S + E) is minimal

Proof. Theorem 6.5 implies that wg(e) = L(E) and therefore wy(e) < k iff
L(E) < k. The linearity of the DFT (property 6.2) implies that S+E = DFT(s)+
DFT(e) = DFT(s + e) and using Theorem 6.5 again, we obtain wy(S + E) =
wy(DFT(s+¢e)) = L{s +e). O

Corollary 6.8. With the notations in theorem 6.7, the extension field k-error

linear complezity of a periodic sequence s can be expressed as
ELgn(s) = min{wy(DFT(s) + E)|E € F¥, L(E) < k}

An algorithm for computing the k-error linear complexity of a sequence follows
immediately based on Theorem 6.7 and Corollary 6.8. The algorithm is formu-
lated for finite fields (with the usual notation GF(p™) for the Galois field with p™
elements) but it can easily be formulated for any field in which algorithms exist
for the required operations.
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ALGORITHM kDFT

INPUT: p prime, m > 1, N a positive integer not divisible by p, s a sequence of

period N over GF(p™), k < N.

QUTPUT: EL, n(s) and 2 sequence e of period N over GF(p") (where GF(p")

is the smallest extension of GF(p™) containing an N-th root of unity) such that

wr(e) < k and L(s + €) is minimal.

STEP 1. Determine r,a such that GF(p") is the smallest extension of GF(p™)

which contains a primitive N-th root of unity, a.

STEP 2. Calculate the sequence S = DFT(s) of period N over GF{p").

STEP 3. Find E a sequence over GF(p") of period N and linear complexity

L(E) < k such that wy(S + E) is minimal.

STEP 4. Return ELy y(s) = wy(S+ E) and e = DETY(E) as the error pattern.
The Algorithm kDFT is of theoretical interest only, because we do not know

of an efficient algorithm for STEP 3 other than exhaustive search (for finite fields).

In the next section we therefore suggest an approximation algorithm.

6.2.3 Approximation algorithm for the extension field k-

error linear complexity

An approximation algorithm has been devised for the extension field k-error linear
complexity of a sequence by finding an approximate solution to the optimisation
problem in STEP 3 of algorithm kD FT described in the previous section. Namely,
we aim to find a sequence E of linear complexity at most k such that wg(S+E) <
wi(S), but wy(S+E) is not necessarily minimal. To this end, the search is limited
to sequences E which have minimal period at most & besides having period N.
Since k < N, the period must therefore be a divisor of N. Obviously any sequence
of period at most k will also have linear complexity at most k. In order to decrease
wg(S + E) as much as possible we choose the elements of F so that they cancel
out as many elements of S as possible.

Theorem 6.9. Let S be a sequence of period N over a field F. Suppose N is not
prime and d is a proper divisor of N. For eachi=0,1,...,d—1 denote by §; the
elerment which occurs most frequently among S;, Sqyi, - - :S(%-nd 1 Let E be the
sequence of period d defined as E = (—fp,—P1,...,—Ba-1). Then E achieves the
minimal value of wi (S + E) (where E is viewed as a sequence of period N for the
purpose of computing this weight) among all sequences E over F of period d.

Proof. Let G = (Go,Gy,...,G4-1) be an arbitrary sequence over F' of period d.
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We split S in N/d parts of size d as follows:

So Sl e Sd-l
Sq Sa+1 v Sag-1
S(!di—nd S(%—1)d+1 cee S%’d—l
and we consider each column 1 consisting of S;, Sgvi, - - - ,S(%“l)d 4+ Let us denote

by ¢; the number of zero values on column 7 and by v; the number of elements
equal to G; on column i. The weight wu(S + G) = wy(S) — 20y — ¢) is
minimised by maximising the values of all the v;, i.e. by choosing G; such that a

maximum number of elements of S in column ¢ are equal to G;. |

In theorem 6.9, in order to get uniqueness in the choice of the sequence E
which lowers the Hamming weight of S, if there is more than one element among
Siy Satiy-- - S’( N1yt which have the same maximum occurrence then choose zero
if any of those elements are zero, or the element of smallest index otherwise (zero
is the identity element with respect to addition). Note that this assumption does
not restrict the generality of the theorem or of the corresponding algorithm.

The following routine for finding a candidate sequence E (corresponding to
STEP 3 in kDFT Algorithm from previous section) can be based on theorem 6.9.
We call the routine GetError(S, N,d). The input of the procedure includes a pe-
riodic sequence S, an integer not prime N representing the period of the sequence
S and a proper divisor of N, d < N. The sequence E returned by the procedure
achieves the minimal value of wy (S + E) among all sequences over F of period d
(where E is viewed as a sequence of period N for the purpose of computing this
weight). Note that in the worst case, the procedure GetError returns a sequence
E such that wy(S + E) = wy(S), in which case E = (0,0,...,0).

N, e

N times

ALGORITHM GetError(S, N, d)

INPUT: p prime, m > 1, N a positive integer, not prime and not divisible by p,
S a sequence of period N over GF(p™), d < N a proper divisor of N.

OUTPUT. A sequence E of period d such that E achieves the minimal value of

’LUH(S + E)
STEP 1. For eachi=0,1,...,d — 1 determine §; as the most frequent value that
appears among i, Sgi; - - - S(%'.-l)d.{-g‘: and set Eyy;9 = —G; for j=0,1,..., % - 1.

If there is more than one value with the same maximum occurrence then choose
zero value (i.e. identity element with respect to addition) if it is one of them or

choose the one with smallest index otherwise.
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STEP 2. Return E.

Based on theorem 6.9, we propose the following approximation algorithm for
the extension field k-error linear complexity of a sequence s over a finite field.

ALGORITHM kDFT-Approximation

INPUT: p prime, m > 1, N a positive integer, not prime and not divisible by p, s
a sequence of period N over GF(p™), k < N.

OUTPUT: a sequence e of period N over GF(p") (where GF(p") is the small-
est extension of GF(p™) containing a primitive N-th root of unity) such that
wr(e) < k and L{s + ) is minimal among all sequences e for which DFT{e) has
period smaller than or equal to k; the second output is L(s + ¢).

STEP 1. Determine r, o such that GF(p") is the smallest extension of GF(p™)
which contains a primitive N-th root of unity, a.

STEP 2. Calculate the sequence § = DFT(s) over GF(p"). Set Lyesy = wg(S)
and set Ej., to the all-zero sequence.

STEP 3. For all d < k with d a proper divisor of N, execute steps 4-5.

STEP 4. Set E = GetError(S, N, d).

STEP 5. If wi(S + E) < Lyes then set Fpess = E and Lyesy = wy{S + E).

STEP 6. Return DFTY(Fi.s;) and Lyes:.

Example 6.10. Let p=5, N =15. Let s =(0,0,1,0,1,1,0,0,1,1,1,0,0,0,1) be
a sequence over GF(2) of period 15. Let a be a primitive element of the Galois
field GF(2*) defined by the equation a* + a+ 1= 0.

The DFT transform of s in GF(2*) is:

S =1(1,0,0,0,0,1,0",050,a",1,0', o', a® 0.

The linear complexity of s, L(s) = wy(S) = 11. The two proper divisors of 15
are 3 and § so two ways of splitting of the sequence are considered, as shown in
table 6.1.

For d = 3 (table 6.1(A)), choosing one of the most frequent entries in each
column gives us Bp = 1, By = 0 and By = 0 {other choices are possible but these
follow our uniqueness requirement). We can therefore put

E=(1,0,0,1,0,0,1,0,0,1,0,0,1,0,0)

and
e= DFT‘I(E) =(1,0,0,0,0,1,0,0,0,0,1,0,0,0, 0).
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Table 6.1: The splitting of the sequence S
(A) IN 5 PARTS OF LENGTH 3

1 0 0 (B) IN 3 PARTS OF LENGTH 5.
alt 0 1 10 0 al* 0

ala a® 0 1 al® ab 0 ()!7

ol 1  al® 1 al® ol o8 Ql°
all o8 alf

This error pattern e of weight 3 decreases the linear complezity of s to 10.

Table 6.1(B) shows that when splitting s into 3 parts of 5 elements we can
choose E = (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0).

We compute e = DFTYE) = (1,0,0,1,0,0,1,0,0,1,0,0,1,0,0). The se-
quence E applied onto S reduces its weight from 11 to 8, therefore L(s + e) = 8.
Since wy(e) = 5, it follows that the extension field 5-error linear complexity
ELs15(s) < 8.

Theorem 6.11. The algorithm kDFT-Approximation has a computational com-
plezity of O(N?) operations in GF(p"). This can be improved to O(N'®log N)
when o Fast Fourier Transform approach is used.

Proof. Steps 2 and 6, corresponding to the computation of the DFT and in-
verse DFT of the sequences s and E, respectively, need O(N?) operations (or
O(Nlog N) if a fast Fourier transform approach is applied).

Steps 4-5 are executed for each of the proper divisors of N. There are several
upper bounds for the number of divisors. We will use the rather coarse upper
bound of 2v/N, sec Ramanujan [65].

For each proper divisor d, determining the most frequent element on each
of the d columns takes at most O(I—;T-log &) operations (this can be achieved by
expressing all non-zero elements as powers of a primitive element of GF(p") and
sorting each column according to the exponents), so GetError(S, N, d) procedure
from STEP 4 takes a total of O(N log 1—}) operations. This is executed for each
of the proper divisors of IV, i.e. at most 2v/IV times, giving a total computational
complexity of the for loop in GetError of O(N'log N).

‘Therefore, the computational complexity of the algorithm kDFT-Approximation
is O(N? + N¥log N) = O(N?). If a Fast Fourier Transform is used, this can be
improved to O(Nlog N + N'Slog N) = O(N'¥log N). O

It would be interesting to obtain bounds on the quality of the approximation,
i.e. on the ratio between the maximum decrease in complexity and the decrease

in complexity achieved by the kDFT-Approximation algorithm,

(L(s} — ELk,n(s))/(L(s) — L(s +¢)),
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where e is the error sequence produced by the algorithm £DFT-Approximation.
It is likely though that such a ratio does not always make sense, as there would
probably be sequences for which the approximation algorithm will not find any
non-zero error sequence e with L(s + ) < L(s) although EL; n(s) < L(s).

6.3 An improved approximation algorithm

An improved approximation algorithm which relies on using the shifting property
of the Discrete Fourier Transform can be devised. Namely, firstly the input se-
quence s is cyclically shifted to the right by a number of positions A > 0, the
Discrete Fourier Transform is applied to the shifted version s’ and then the same
procedure as in kD FT-Approximation Algorithm, GetError, is carried out in the
transform domain in order to find a sequence E’ of period at most & and which
minimises the value of wy (S + £’} where $' = DFT(s'). Finally, by transforming
the sequence E’ back to the initial domain and applying a cyclical shift to the
left by h positions, we aim to find an additional error sequence candidate which
would lower the linear complexity of the input sequence s.

The following theorem shows that if a sequence of period N has a smaller period
d, 1 < d < N (note that d is a proper divisor of N) then the Discrete Fourier
Transform of that sequence when considered of period N will have a certain form,

namely it will be zero except for the terms on the positions 0, %, cey @;;M.

Theorem 6.12. Let e be a sequence of period N and of smaller period 1 < d < N
over a field F.

Lete = (go,el,...,ed_L,@el,...,ed_l,...,gg,el,...,edj).
T il W
d times d times d times
-~ J—
X times

If the periodic sequence E = DFT(e) of period N denotes the Discrete Fourier
Transform of e then E s periodic with smallest period at least % and it has
the following form: E = (E,, 0,...,0 ,E%, 0,...,0 ,...Egd_dqm, 0,...,0 ).

N_1 times 41 times N_1 times
Moreover, for all 0 <i < N, the terms of the transform sequence are
E-: O! ifi%o’%,"')gd;;mi (61)
! %(eo +e10t + ... +eg10 DY), otherwise.

Proof. Note that since F has period N and d, and since 1 < d < N, then d is a
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proper divisor of N. For eachi=10,1,...,N—1

N-1
EF, = Z e,-aﬁ =
=0
= epo® +erali + ...+ eg_yaldDi 4
eoa® + et 4 4y a4
ot
eoa(%—l)di + 61a((%—1)d+1)1} ot ed_la(%d—l)i —
= ep(l+ 0% +... +al@ D) 4
e10f(1+a% + ...+ alT-DE) 4
.ot

ed_la(d—1)e'(1+adi+____|_a(%—1)dz')

When 4 is such that a® #£ 1 the sum 1+ a% + ... + olT~D% represents a

geometric series of % terms with initial value 1 and common ratio a. It follows

that the sum equals @1 _ oMig 0 for all 4 # 0, ¥ 2 @-1N

adz_ll a%t—1 sdrd vy d .
When i is such that o® =1, ie i = 0,2 | (d_;)N, the sum 1+ o® +
TV =1 414+ 1= X. Relation (6.1) follows immediately. 0
————
& times

A similar result can be proved for the inverse Discrete Fourier Transform. We

just state it in theorem 6.13.

Theorem 6.13. Let E be a sequence of period N and smaller period 1 <d < N
over a field F.
let E= (ﬁo, El, ‘e -;Ed—lJ;EO) El, e -sEd—lj v ,Eo,El, o -aEd—l)-

d times d times d times

B t;,"mes
d
If the periodic sequence e = DFT™(E) of period N denotes the inverse Dis-
crete Fourier Transform of E then it follows that e is periodic with smallest period
at least %’- and has the following form:

e=(e, 0,...,0 ,en, 0,...,0 ,...e@nn, 0,...,0 ).
—— d S—— 3 ——
-1 times $-1 tumes 41 times

Moreover, for all 0 < i < N, the terms of the transform sequence are

-] ifi£0,Y,. . @
Y M B+ Erati 4L 4 By D) otherwise.,
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DFT
S > S
GetError(S,N,d).
Find sequence £
such that wa(S+ E)<wu(5)
and E of period d,
DET where d is a divisor of N
e < E

Figure 6.1: The kDFT-Approximation Algorithm

Figure 6.1 briefly describes the way the kD FT-Approximation Algorithm pre-
sented in section 6.2.2 works. For an input sequence s of period N, the Discrete
Fourier Transform of that sequence, S, is calculated and then for each proper divi-
sor d of N it tries to find an error sequence E of period d such that the Hamming
weight of S+ E is less than the Hamming weight of S, i.e. wy(S+E) < wy(S). If
such sequence is found then the inverse Discrete Fourier Transform of E, denoted
e, is a good error pattern for s, i.e. one which lowers the linear complexity of s
while also having the Hamming weight at most d.

Since the error patterns found by the kDFT-Approximation Algorithm pre-
sented in the previous section are inverse Discrete Fourier Transform of sequences
of peried 1 < d < N, where d is a proper divisor of NN, it follows from theorem 6.13
that the aforementioned approximation algorithm can only ‘catch’ error patterns

from the initial domain, with the non zero terms only at several specific indices,

namely positions 0,Z,.. ., @%ﬂ.

We want to extend the approximation algorithm in order to find alternative
good error patterns without a significant increase in the computational complexity.
In the following we will investigate the scenario introduced at the beginning of the
section and presented in figure 6.2, by applying the Discrete Fourier Transform
to shifted versions of the input sequence. We will treat the two additional trans-
formations which appear in this variation of the algorithm (Lemma 6.14 for the
cyclical right shift of the input sequence s and Lemma 6.15 for the cyclical left
shift of the error pattern ¢’) and identify if the error sequence e produced in such
a scenario can contribute to the calculation of the extended field k-error linear
complexity problem.

Lemma 6.14 shows that the linear complexity of a sequence is invariant under
the operation of cyclically éhifting it to the left or right (figure 6.3).

Lemma 6.14. Let s and s’ be two sequences of period N over a field F. Suppose
that s = (sg, 81, ..., 8_y) 18 obtained by cyclically shifting all periods of sequence
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tight shift 3 ’ DFT s
AY Y A positions S S

GetErrar(S'Nd):

Find sequence E’
such that wu(S '+ E)<wu(S")
and E'of period d,
1efl shift 3 DFT E » whete d is a divisor of ¥
e by A positions e

Figure 6.2: The kDFT-Approximation Algorithm where the input sequence is
firstly cyclically shifted to the right.

hlﬁ R
Yf%:?;i“”“s.:‘:.,_- ’} 5

...............

l GetError(S'N,d}

, leftshift s, DFT! »
e by k positions e - E

Figure 6.3: The kDFT-Approximation Algorithm where the input sequence is
firstly cyclically shifted to the right (L(s) = L(s')).

s to the left (or right) by h positions, i.e.
32 = 84h, 051 < N(O’J" 8;: =8;_3,0<i < N)

where subscripts are taken modulo N. Then L(s) = L{s').

Proof. When & is a cyclical left shift of s, Property 6.3 implies that if &' =
DFT(s), S = DFT(s) and « is an N-th root of unity in F then S/ = a~*3;.
Therefore wg(S) = wy(S"). Since L{s) = wy(S) and L{s') = wx (85", it follows
that L(s) = L(s'). Since a cyclical right shift of s by & positions is equivalent with
a cyclical left shift of s by N — h positions (remark 6.4), the property concerning
the right shift follows immediately from the above considerations. a

Lemma 6.15 deals with the other proposed transformation (see figure 6.4) and
it shows that the error sequence ¢ which lowers the linear complexity of the right
cyclically shifted input sequence s’ can be used to obtain an error sequence e for
the input sequence s itself. Moreover, the error sequence e obtained in such a
manner will lower the linear complexity of the input sequence s with the same
amount as €' lowers the linear complexity of s'.

Lemma 6.15. Let s and s’ be two sequences of period N over a field F. Suppose
that 8" = (sp, 81,...,8y_1) 15 obtained by cyclically shifting all periods of sequence
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right shift

DFT
s Y B positions

L L)
w—-).
S S
GetError(§' N.d)

E’

oy hpositions € ¢

Figure 6.4: The kDFT-Approximation Algorithm where the input sequence is
firstly cyclically shifted to the right (L(s + €) = L(s' + ¢&)).

s = (S0, S1,- .-, 5N-1) to the right by h positions, i.e.
S;=Si+h,05’i<N

where subscripts are taken modulo N. If ¢' = (ep, €\,...,¢ey_1) is an error pattern
which reduces the linear complexity of ' then e = (eg,e1,...,en—~;) obtained by
eyclically shifting all periods of sequence € to the left by h positions is an error
pattern of the same Hamming weight which reduces the linear complexity of s by
the same amount as €, i.e. L(s' +¢') = L(s + e) < L(s).

Proof. Since §' is obtained by cyclically shifting s, Lemma 6.14 implies L(s) =
L(s"). Therefore we need to prove that L(s+e) = L{s'+¢). Assume § = DFT(s),
S'= DFT(s"), E = DFT(¢') and E' = DFT(e). Using the linearity and the shift
property of the Discrete Fourier Transform (DFT), it follows that

DFT(S’ 4+ 8’) = DFT(S’) + DFT(BI) =84+ F = (a"‘ij (S-, + Ei))OSi<N-

Note that saying that e is obtained from €’ by cyclically shifting all periods of
sequence e to the left is equivalent to saying that €’ is obtained from e by cyclically
shifting all periods of €’ to the right. Therefore E' = (o™ E;)o<i<n-

Therefore L(s'+¢') = wy(S'+ E) = wyr((a™Y(Si+ E:))ocicn) = wy(S+E) =
L(s+e). The result can be obtained similarly when s and e are shifted to the left
and right, respectively, to obtain s’ and &'. O

Since the error patterns e’ (sec figure 6.4) are inverse Discrete Fourier Transform
of sequences of period d < N, with d a proper divisor of N, from theorem 6.13 it
follows that they have non zero values only on terms 0, %, ey E:;lg. It follows
that taking such a sequence e’ and cyclically shifting it to the left by & positions,
for all h such that 0 < h < 1—}, produces a set of % distinct sequences denoted e.

Along with the previous comment, lemmas 6.14 and 6.15 imply that finding a

good error pattern using routine GetError for the Discrete Fourier Transform of
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rightshift . » DFET y GetError(S'Ndy |
S —&F Ky > S |

by A positions *
right shi S
by k+¢ positions s [7) DFT S 2 GetEmr(S",Md: Ve y
R SN . i

Figure 6.5: The Relation between the error sequences found for the Discrete
Fourier Transform of two different shifts of the initial sequence.

a cyclically shifted version of an infinite periodic sequence means finding a good
error pattern for the sequence itself, one which is different from the one produced
by kDFT-Approximation and therefore could improve the accuracy result.

Lemma 6.16 clarifies the relation between the sequences F found using the
GetError procedure for the Discrete Fourier Transform of two different cyclical
shifts of the input sequence s (see figure 6.5).

Lemma 6.16. Let s be a sequence of period N over a field F which contains an
N-th root of unity, denoted o. Suppose N is not prime and d is a proper divisor
of N.

Suppose that s’ = (s}, s},...,8y_1) and 8" = (sg, s{,...,8%_,) are obtained by

cyclically shifting all periods of sequence s = (sg,s1,...,8n-1) to the right by h
and by h + t positions, respectively i.e.

8, =85, 0<i< N and s = 8;-pt,0<i< N

where subscripts are taken modulo N and t > 0.
Denote S = DFT(s) and 8’ = DFT'(s'). For each i =0,1,...,d —1 denote
Bi and 3 the elements which occur most frequently among S, Sy, ..., E B 1yari

and among S¢Sy .. respectively. If there is more than one value

1
YE(E - 1)d i
with the same mazimum occurrence then choose zero (i.e. the identity element with
respect to addz't_z'on in F) if zero is one of them or choose the one with the lowest
index otherwise.

Under these conditions, B = a'g..

Proof. Using the shift property 6.3 of the DFT we obtain that

i i Ho1)d+i
{5t Sapar - E(%—l)dﬂ')} = {amSi,O!h(dHSdH,m,ah((“ 1)d+)S((%_1)d+¢)}
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5 yﬁ%:’::zg“ s DT om GeiError(§,N.d) Fo =, by e’ [eh!tuﬂ: e

i o) D, o) EZEENL g S ) o)

GerErrar(SN 1N, d} DET i
1) 2Ly G- ZETY i) DLy V- )it p(0-1)

Figure 6.6: The kDFT-Approximation-Shift Algorithm where the input sequence
is cyclically shifted to the right.

and that

{5, 8, d+u . S’(N 1)d+,)}=

= {ottig; oG, GG -1d) 5, (X1 i
= aﬁ{ahisi, ah{d+i) Sd-f-i: ey ah((%‘l)d-*—i) S((%"l)d“l'i)}'

The relation between the two most occurrent elements 8, and 4/ is now im-
mediate. O

Lemmas 6.17 and 6.18 give the characterisation of the error sequences e result-
ing from different initial shifts (see figure 6.6). We prove that these error patterns
e are repeating every & shifts.

Lemma 6.17. Suppose N is not prime and d is a proper divisor of N. Let F be
a field which contains an N-th root of unity, denoted a.

Let B = (B}, EY,...,E} ) and E" = (E{,F},...,El_,) be two sequences
of period d over F such that Ef = o"E! for all 0 < i < d, wheret > 0. If
e = DFTYE") and ¢" = DFT-YE") (where E' and E" are considered of period
N for the purpose of calculating the DFT) then

t is a multiple ofN = ¢; —em Jorall0 <i < N.

Proof. Note that since d is a proper divisor of N, the sequences E' and E” have
period N. We express ¢’ = DFT~!(E’) and € = DFT-1(E") using the formulas
in theorem 6.13.

L]0 A0, . N 1),
' YEy+ EBla™ +...+ Ej_ja7 D) otherwise,

(o a0, . Ng_1),
HEY + Bla™ + ...+ Ej_ja~ @ D) otherwise.



CHAPTER 6. DISCRETE FOURIER TRANSFORM 155

_Jo, ifi#0,%,...,8(d-1),
HEy+ Eo + ...+ E,_,a@Dt=9)s  otherwise.

Therefore, if ¢ is a multiple of & from the expressions defining e and e/ it
follows that e} = ¢, forall 0 <4 < N. O

The following lemma follows immediately from the previous one, lemma 6.17.

Lemma 6.18. Suppose N is not prime and d is a proper divisor of N. Let F' be
a field which contains an N-th root of unity, denoted o.

Let E = (Eo, E\,...,E4_1) be a sequence of period d over F and for all h =
0,1,...N —1, denote with E™ the sequences of period d such that EJ(-h) = oM E;
forall0 < 5 <d.

For all h = 0,1,...,N — 1, let e be the sequence obtained from ¢ =
DFTY(E™) by cyclically shifting all terms in each period of size d to the left
by h positions (E™ is considered of period N for the purpose of calculating the

DFT). Under these conditions, the following two sets are equal
{e®,e®, .., eND} = {® M, eldD}.

Proof. Lemma 6.17 implies that for all h > 0, and any ¢ > 0, the periodic sequences
¢® = DFT-1(EW) and ¢4+ = DFT-YE®+T)) are such that ¢'® is equal
to the sequence obtained by cyclically shifting &®+%) to the left by z'% positions.
It follows that e® and e(*+%) obtained from cyclically shifting e/® and e'(*+¢%)
by hand h +z'{;1 positions to the left, respectively, are equal for all A > 0, and any

i > 0. This leads to the conclusion stated in the lemma. O

We are now ready to present the following improved approximation algorithm
for computing the extension field &-error linear complexity of a sequence s of pe-
riod N, ELy n(s).

ALGORITHM kD FT-Approximation-Shift

INPUT: p prime, m > 1, N a positive integer, not prime and not divisible by p, s
a sequence of period N over GF(p™), k < N.

OUTPUT: a sequence e of period N over GF(p") (where GF(p") is the smallest ex-
tension of GF'(p™) containing a primitive N-th root of unity) such that wy(e) < k
and L(s+ e) is minimal among all sequences e for which there exists a sequence €’
which is a circular shift of e such that DFT(e) has period smaller than or equal
to k; the second output is L(s + ).

STEP 1. Determine 7, & such that GF(p") is the smallest extension of GF(p™)
which contains a primitive N-th root of unity, a.

STEP 2. Calculate the sequence S = DFT(s) over GF(p"). Set hpeer = 0,
Liest = wg(S) and set Eies; to the all-zero sequence.
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Table 6.2: kDFT-Approximation-Shift

d h el L{s + M)
3 0 (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0) 10
3 1 (0,0,0,0,1,0,0,0,0,1,0,0,0,0,1) 10
3 2 (0,0,0,2%0,0,0,0,a'0,0,0,0,a%,0) 9
3 3 (0,0,1,0,0,0,0,1,0,0,0,0,1,0,0) 9
3 4 (0,1,0,0,0,0,1,0,0,0,0,1,0,0,0) 10
5 0 (3,0,0,0190,0,0'%,0,0,0%0,0,0%0,0) 8
5 1 (0,0,0%0,0,03,0,0,a'0,0,a'2,0,0,a®) 10
5 2 (0,0',0,0,0%,0,0,02,0,0,0%0,0,a',0) 10

STEP 3. For all d < k with d a proper divisor of N, execute steps 4-7.

STEP 4. For all R =0,1,..., & — 1 execute steps 5-7.

STEP 5. Let s’ be the sequence obtained from s by cyclically shifting the terms
of each period to the right by h positions. Calculate S' = DFT(s').

STEP. 6. E' = GetError(S',N,d).

STEP 7. Hwg(S'+ E') < Liest then Eyese = E', hjeqy = h and Lyest = wy(S'+ E').
STEP 8. Return e, the sequence obtained from ¢’ = DFT~(Ejy) by cyclically
shifting all terms of each period to the left by Ay positions. Also, return Lyes-

Example 6.19. Let N = 15. Let s = (0,0,1,0,1,1,0,0,1,1,1,0,0,0,1) bde a
sequence over GF(2) of period 15, as in the previous example 6.10 in section 6.2.3.
Let o be a primitive element of the Galois Field GF(21) defined by the equation
at+a+1=0.

Table 6.2 contains the error patterns obtained from the different shifts corre-
sponding to the two proper divisors of 15, 3, and 5.

Note that the addition of this shiffing technique has improved the accuracy
of the approzimation for this example sequence. For divisor 3 and shift 2 the
resulting error pattern lowers the linear complezity of the initial sequence s also
giving indications on where the errors are, i.e. terms 3,7 and 11.

Theorem 6.20. The algorithm kDFT — Approximation — Shift is correct.

Proof. Let p be a prime, m a positive integer such that m > 1, N a positive integer,
not prime and not divisible by p, s a sequence of period N over K = GF(p™) and
E<N.

We prove that the xDFT — Approximation — Shift algorithm returns a se-
quence ¢ of period N over F = GF(p") (F is the smallest extension of GF(p™)
containing a primitive N-th root of unity), such that wy(e) < k and L(s + ¢€)
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is minimal among all sequences e for which there exists a sequence ¢’ which is a
circular shift of e and such that DFT(e’) has period smaller than or equal to .

For all h, where 0 < A < N and for any d proper divisor of N we make the
following notations:

o let s be the sequence obtained from s by cyclically shifting all terms of
each period to the right by h positions (Step 4).

o denote S = DFT(s™) and E™9 the sequence chosen to reduce the weight
of S of period N using the proper divisor d as described in theorem 6.9,
i.e. E™9) = GetError(S™, N,d) (Step 6).

o let e be the sequence obtained by shifting all terms of DFT-1(E®®) to
the left by A positions.

Lemma 6.18 implies that for a fixed value of d the following two sets are equal
(OB W) oW-1d} and {e@d o) o(F-Ld} This justifies the range
of the loop in step 3.

Theorem 6.9 and corollary 6.8 justify the choice of the sequences Eh® in
Step 6 for all values A = 0,...,Z — 1 and all proper divisors of N, d, i.e. by
using the procedure GetError(S™, N, d). Moreover, it follows that E®% achieves
minimum wg(S® + E®4) among all sequences E over F' of period d, for each
value of h and d. '

With the above notations, the error pattern e returned by the algorithm is the
sequence from the following set

{ePDo<h < %, d proper divisor of N}

such that L{s + ) is minimal. It follows that L(s + e) is minimal among all
sequences for which there exists a sequence e’ which is a circular shift of e such
that DFT(e') has period smaller or equal to k. M

Theorem 6.21. The algorithm kDFT-Approzimation-Shift has computational
complexity O(N?) operations in GF(p"). This can be improved to O(N*5log N)
if a Fast Fourier Transform approach is used.

Proof. From theorem 6.11, the computational complexity of the algorithm kD FT'-
Approximation is O(N?). If a Fast Fourier Transform is used, this is improved to
O(N®log N).

The change from kD FT-Approximation consists of the additional for loop in
STEP 4, the STEP 5 and the shifting necessary in STEP 8.
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The cyclical shift of a sequence to left or right by a certain amount of positions
can be done in linear time. Therefore, STEP 5 takes O(N + N%) = O(N?) or
O(N + Nlog N) = O(Nlog N), if Fast Fourier Transform is used.

It follows that the complexity of one step of the for loop in STEP 4 is
O(N? + NlogZ) = O(N?) or O(NlogN + NlogZ¥) = O(NlogN) if a Fast
Fourier Transform is used.

Steps 5-7 are executed % times for each d, a proper divisor of N. So the total
complexity of the for loop in STEP 3 is O(N?) or O(N%5log N) if a Fast Fourier
Transform is used (we just need to multiply the computational complexity of steps
5-7 with d& = N).

Adding in the complexity of STEP 2, the computational complexity of the
whole algorithm remains O(N3) or O(N?3log N) when a Fast Fourier Transform
is used. d

6.4 Experimental results

We implemented the algorithms kDFT-Approximation and kDFT-Approximation-
Shift, presented in section 6.2 using GAP [18].

The results of several experiments are shown in Tables 6.3, 6.4 and 6.5. We
tested binary sequences of all odd lengths N up to 300 excluding those that are
prime and those for which the extension field GF(p") in which the primitive N-th
root of unity lies has r > 20 (the latter restriction is only for efliciency reasons). We
also tested a couple of higher lengths of the form N =27 -1, e.g. N = 1023, 2047.

For each length we generated 100 sequences using the standard pseudorandom
number generator (linear congruential generator). The tables 6.3, 6.4 and 6.5 show
for each length N, the extension field for the primitive N-th root of unity, and, for
each of the proper divisors of N, the percentage of sequences for which an error
sequence which decreases the complexity was found (success rate) and the average
decrease of complexity which has been thus obtained (average decrease of linear
complexity, where the decrease in complexity is computed as (L(s)—L{s+e€))/L(s),
where ¢ is the error sequence returned by the algorithm), for each of the algorithms
kDFT-Approximation and kD FT-Approximation-Shift proposed in sections 6.2.3
and 6.3, respectively.

For practical applications the cases of interest are those where k represents
some small percentage (e.g. 5% or 10%) of the length N. These can be identified
in the tables on the rows where the ratio d/N is below such a percentage.

One can notice that the approximation algorithm was successful in finding
good error patterns for the great majority of the sequences, the success rate being
100% or close to 100% for most of the sequences and for most of the divisors.
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Table 6.3: Experimental results

159

Length Extension Divisor

kDFT-Approx

kDEFT-Approx-Shift
Success Av. decr. of Success Av. decr. of

N field d rate  lin. compl. rate  lin. compl.
15 GF(24) 3 74% 28.05% 90% 41.21%
5 88% 39.34% 92% 49.09%
21 GF(25) 3 79% 18.98% 94% 32.46%
7 89% 37.05% 90% 45.57%
27 GF(2'8) 3 100% 11.01%  100% 15.36%
9 100% 34.44%  100% 38.05%
33 GF(2'%) 3 69% 8.14% 74% 12.79%
11 100% 33.28%  100% 35.74%
35 GF(2?) 5 96% 15.67% 97% 20.03%
7 88% 19.15% 88% 23.68%
39  GF(2¥) 3 78% 6.91% 86% 10.17%
13 100% 33.69%  100% 35.63%
45 GF(2?) 3 100% 9.13%  100% 16.62%
5 83% 12.63% 87% 17.72%
9 7% 22.61% 89% 28.30%
15 100% 34.18%  100% 38.91%
51 GF(2%) 3 82% - 7.76% 99% 15.62%
17 97% 33.73% 9% 35.89%
57 GF(2'%) 3 1% 4.33% 7% 5.02%
19 100% 33.28%  100% 34.73 %
63 GF(2°) 3 87% 9.45% 89% 17.84%
7 87% 15.98% 94% 22.24%
9 79% 17.44% 95% 24.22%
21 96% 34.46% 96% 38.52%
65 GF(2'?) 5 90% 7.15% 91% 9.24%
13 100% 20.06%  100% 21.83%
85 GF(2%) 5 91% 7.41%  100% 13.84%
17 97% 20% 98% 24.19%
91 GF(21?) 7 83% 7.16% 86% 9.87%
13 100% 14.89%  100% 16.51%
93 GF(2'%) 3 80% 487%  100% 10.43%
31 97% 34.23% 97% 36.09%
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Table 6.4: Experimental results (continued)

kDFT-Approx kDFT-Approx-Shift

Length Extension Divisor Success Av. decr. of Success Av. decr. of
- N field d rate  lin. compl rate  lin. compl.
105 GF(2'%) 3 70% 4.70% 92% 9.21%
5 79% 6.46% 87% 10.47%

7 91% 7.30% 95% 11.69%

15 90% 14.46% 90% 18.06%

21 98% 20.02% 98% 23.43%

35 100% 33.49% 100% 35.88%

117  GF(2Y) 3 96% 3.09% 9% 6.22%
9 96% 7.79% 100% 10.83%

13 100% 11.33%  100% 12.87%

39 100% 33.73%  100% 34:70%

120 GF(2%) 3 76% 1.96% 8% 3.27%
43 100% 33.27%  100% 33.92%

133 GF(21%) 7 91% 4.65% 91% 5.35%
19 100% 14.56%  100% 15.99%

171 GF(2!%) 3 96% 1.86% 96% 2.47%
9 96% 4.68% 96% 4.91%

19 100% 11.20% 100% 11.82%

57 100% 33.62% 100% 34.14%

189 GF(2'3) 3 100% 2.36%  100% 6.16%
7 89% 5.24% 99% 7.47%

9 93% 6.16% 96% 9.21%

21 100% 12.42%  100% 14.94%

27 100% 15.20%  100% 18.15%

63 100% 32.39% 100% 33.60%

195  GF(2'%) 3 81% 2.32% 97% 5%
5 82% 3.07% 98% 5.96%

13 100% 715%  100% 9.96%

15 96% 7.16% 98% 9.73%

39 100% 20.33% 100% 21.66%

65 100% 33.36% 100% 34.26%

217 GF(2Y9) 7 86% 3.54% 88% 5.82%
31 98% 14.14% 98% 15.30%

219 GF(218) 3 76% 1.42% 79% 4.06%

73 100% 33.35% 100% 33.93%
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Table 6.5: Experimental results (continued)

kDFT-Approx kDFT-Approx-Shift

Length Extension Divisor  Success Av, decr. of  Success Av. decr. of
N field d rate lin. compl, rate lin. compl.
255 GF(28) 3 82% 2.96% 100% 6.42%
5 89% 3.92% 09% 7.20%

15 92% 8.19% 98% 11.29%

17 95% 8.71% 99% 12,92%

51 9% 20.67% 89% 22.48%

85 99% 33.35% 99% 34.72%

273 GF(2'?%) 3 % 1.70% 100% 4.22%
7 93% 2.95% 98% 5.5T%

13 100% 5.18% 100% 8.15%

21 98% 7.63% 100% 10.00%

39 100% 14.50% 100% 15.96%

91 100% 33.40% 100% 34.12%

1023 GF(210) 3 93% 0.77% 100% 2.36%
11 100% 2.18% 100% 3.49%

31 95% 4.31% 98% 5.82%

33 98% 4.27% 100% 6.14%

93 100% 9.71% 100% 10.96%

341 100% 33.37% 100% 33.77%

2047 GF(2') 23 98% 0.02% 100% 2.36%
89 100% 0.05% 100% 0.07%

It would be useful to compare the decrease in complexity with the decrease in
complexity obtained by an optimal solution. However, it is infeasible to compute
the optimal solution by exhaustive search except for very small lengths.

We implemented this test only for sequences of length 15 and for the approxi-
mation algorithm when the divisor 3 is considered, which gives an approximation
for ELz(s). For a number of 100 sequences generated in a similar fashion as for
the previous test, the average accuracy of the approximation is 2.58 for kD FT-
Approximation and 2.03 for kDFT-Approximation-Shift, where the accuracy is
the ratio between the approximate value of EL3(s) returned by each of the algo-
rithms and the exact value calculated using an exhaustive technique.

6.5 Conclusion

We extended the classical notion of k-error linear complexity of periodic sequences,
named extension field k-error linear complexity, and we present a general algorithm
for its computation. This algorithm has theoretical value but it is not practical
since one of its steps has exponential computational complexity.

For the above reason, we describe a practical implementation which efficiently
approximates the extension field k-error linear complexity.

While our approximation algorithms will not always find error patterns that
decrease the complexity of the sequence, experimental results were promising and
such error patterns were found in the vast majority of cases. The proposed al-
gorithms have the advantage that they are very fast, polynomial computational
complexity, so they could be used to discard many of the weak sequences before
other, more costly tests are performed.

Further work would include the following: testing the proposed algorithms
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on sequences generated by some of the classical pseudorandom number gener-
ators used in cryptographical applications; designing alternative approximation
algorithms; further investigation of the relationship between the extension field
k-error linear complexity and the k-error linear complexity.




Chapter 7

Conclusions

7.1 Concluding remarks

Pseudorandom sequences used in cryptography need to have a high linear com-
plexity and a high k-error linear complexity. While the linear complexity can be
efficiently computed using the Berlekamp-Massey Algorithm, there are no efficient
algorithms for computing the k-error linear complexity, except for sequences whose
period is a power of the characteristic of the field.

We investigated ways of computing or approximating the k-error linear com-
plexity for sequences of arbitrary length over finite fields. The advantage of the
heuristic algorithms we propose is that they work on arbitrary sequences and even
if they only approximate the exact result, the approximation is accurate and the
computational time complexity is manageable,

Our work could be used for building quick tests in the design and analysis
stage for cryptographic sequences used in stream ciphers.

To summarise, the research findings of this thesis are as follows:

o An improved exhaustive algorithm for computing the exact value of the k-
error linear complexity of a sequence.

¢ A Modified Berlekamp-Massey Algorithm to efficiently approximate the k-
error linear complexity of cryptographic sequences over finite fields.

¢ An implementation of two evolutionary techniques, genetic algorithms and
simulated annealing, for approximating k-error linear complexity of crypto-
graphic sequences.

e A new concept which extends the k-error linear complexity, named the ex-
tension field k-error linear complexity.
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e A general algorithm for computing the extension field k-error linear com-

plexity.

¢ An efficient algorithm for approximating the extension field k-error linear
complexity by using the Discrete Fourter Transform.

7.2 Suggestions for future work

Our work has produced some interesting results but also left a few problems open
for future research.

For example, it would be interesting to design an evolutionary algorithm for the
k-error linear complexity problem where the individuals are not the error patterns
like in chapter 5 since this is prohibitive in terms of space. One possibility would
be for the individuals to be recurrences or characteristic polynomials. In this case,
efficient and meaningful recombination techniques should be devised.

It is interesting to look closer at the concept of extension field k-error linear
complexity defined in chapter 6 and the relation between this concept and the
k-error linear complexity. Also, it is of interest to find an optimal solution or
alternative approximation techniques for Step 3 of the general algorithm kDFT
presented in the same chapter.

We hold as future work to investigate if the Fleischmann Algorithm (Fleis-
chmann [16]) can be used to calculate the k-error linear complexity. The Fleis-
chmann Algorithm is an extension of the Berlekamp-Massey Algorithm which
computes a two-sided linear complexity for sequences which are not fully known
apriori, a situation which happens in cryptanalysis applications.

We do not exclude the possibility and leave as future work to investigate if
the k-error linear complexity problem is NP-hard, in which case our heuristic
techniques could be the best methods that one could apply for this problem.
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Appendix A

Rings, Ideals and Finite Fields

This appendix summarises a few essential algebraic concepts which are used through-
out the Thesis. These along with more details can be found in algebra or finite
fields textbooks like Lang [37], Lidl and Niederreiter [40, 39] or McEliece [46).

Definition A.1. A set of elements G with a binary operation -, denoted (G, -} is
a group if it satisfies the following properties:

(i) - is associative. For any a,b,c€ G, a-(b-¢c)=(a-b)-c.
(ii) There is a identity element e € G such thate -a=a-e=a for alla € G.

(iii) For each a € G, there exists an inverse element a™! € G such thata-a™! =

alig=e.

If for alla,b € G, a-b = b-a then the group is called commutative or abelian.
If G is a finite set then (G, -) is called a finite group.

In the following we will only consider commutative groups.

Definition A.2. Suppose S is a set. A subset R of a Sx 8 = {(a,b)|a € S,b € S}
is o equivalence relation on the set S if it satisfies the following properties:

(i) For any a € S, (a,a) € R (reflexivity).
(i) If (a,b) € R then (b,a) € R for any a,b € S (symmetry).
(i) If (a,b) € R and (b,c) € R then (a,c) € R for any a,b,c € S (transitivity).

For a fized a € S, the set [a] = {b|(a,b) € R} is called the equivalence
class of a. The equivalence classes are inducing a partition of S into nonempty,
mutually disjoint subsets. '

172




APPENDIX A. RINGS, IDEALS AND FINITE FIELDS 173

Definition A.3. A subset H of a group G is a subgroup of G if H is itself a
group with respect to the operation of the group G.

The subgroup H of the group G 1is called a normal subgroup of G if aha™! €
H forallae G and allh € H.

Remark A.4. All subgroups of an abeltan group are normal.

Theorem A.5. If H is a subgroup of G, then the relation Ry on G defined by
(a,b) € Ry if and only if a = bh for some h € H, is an equivalence relation.

Definition A.6. The equivalence relation Ry is called congruence modulo H.
It induces a partition of G into nonempty, mutually disjoint subsets corresponding
to the congruence classes. These sets are called cosets of G modulo H and they
are denoted by ol = {ah|h € H}.

Theorem A.7. If H is a normal subgroup of G, then the set of cosets of G modulo
H forms a group with respect to the operation defined by (aH)(bH) = (ab)H.

Definition A.8. For a normal subgroup H of G, the group formed by the cosets
of G modulo H is called the factor group of G modulo H and it is denoted G/ H.

Definition A.9. A set of elements R with two binary operations, + (addition)
and - (multiplication), denoted as (R,+,-), is a ring if it satisfies the following
properties:

(i) (R, +) is a commutative group (stable, associative, commutative, has an
identity element called 0, all @ € R have an additive inverse denoted —a).

(it) Distributive law. For all a,b,c € F,(a+b)-c=a-c+b-canda-{(b+c)=
a-b+a-c

Definition A.10. A ring (R, +,) is called a cancellation ring or a ring without
zero-divisors if foralla,be Ra-b=0=>a=0o0rb=0.

Definition A.11. Let (R,+,-) be a ring and I C R, a subset. I is called an ideal
of R if it satisfies the following properties:

(1) (I,+) is a subgroup of (R, +)
(it) forallicI anda€ R=i-a€l anda-i€l.

If there exists iy, € Ik = 1,...,t so that I = {S_t_ ixre|re € R} then I is
called finite generated and {ix|k = 1,...,t} is a base for that ideal.

Definition A.12. If the set of generators of an ideal I is a singleton {i} then the
ideal s called principal ideal and we denote it (i) = {i-r|r € R}.
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Note that a singleton is a set containing one element.

Definition A.13. An integral domain is o cancellation ring with an identity

element.

Definition A.14. A principal ideal domain (PID) is an integral domain in
which every ideal is principal.

Definition A.15. An ideal J of a ring R defines a partition of R into disjoint
cosets, called residue classes modulo J.

The default operations on the residue classes modulo J are for any a,b € R
defined by (a+J)+ 0+ J)=(a+b)+ J and (a + J}b+ J) = ab+ J.

The ring of residue classes of the ring R modulo the ideal J under the default
operations + and - is called the residue class ring or factor ring of R modulo
J and it is denoted R/J.

Definition A.16. A set of elements F with two operations, + (addition) and -
(multiplication), denoted as (F,+,), is a field if it satisfies the following proper-

ties:
(1) (F,+,-) is a ring.

(it) (F*,-) is a commutative group (stable, associative, commutative, has an
identity element called 1, all elements b € F' have a multiplicative inverse
denoted b1 ).

Definition A.17. If F is a field, the ring of residue classes of F modulo an ideal
J with the default operations + and - is called the factor field of R modulo J
and it is denoted R/J.

Definition A.18. If R is an arbitrary ring and there exists a positive integer k
such that kr = 0 for every r € R, then the least such positive integer k is called
the characteristic of R. If no such positive integer exists then R is said to have

characteristic 0.

Definition A.19. A field F' with a finite number of elements is called a finite
field. The number of the elements in o field is called the order of the field. A
field of order g is also called a Galois field of order ¢ and is denoted GF(g).

Theorem A.20. A finite field has prime characteristic.
Example A.21. 1. (Z,+,-) is an infinite ring.

2. (Zs={0,1,2,3},+,) where + and - are operations modulo 4 is not a can-
cellation ring since 2 -2 = 0( mod 4).
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3. (R, +, ), (Q,+,),(C, +,-) are infinite fields.
4. (GF(p),+,-) or (Z,,+,-) with p a prime number are finite fields.

Definition A.22. An isomorphism between two fields is o bijective function
between the two fields, where both the function and its inverse are preserving the
structure between the two fields. In this case we say that the two fields are isomor-
phic. If F and G are two isomorphic fields we say that F ~ G.

The most important result for the characterization of finite fields is the follow-
ing.

Theorem A.23. There exists a field of order ¢ if and only if ¢ is a prime power
(q=p™,m>1, p a prime integer). Furthermore, if ¢ is a prime power, then, up
to an isomorphism, there is only one field of that order, denoted GF(q).

Definition A.24. Let R be an arbitrary ring. A polynomial over R is an
expression of the form

n
flz) = Za,::c": =ay+az+...+ az",
i=0
where n is a nonnegative integer, the coefficients a; are elements of R for alli =
0,1,...,n, ay £ 0, and z is a symbol not belonging to R, called an indeterminate
over R. a, is called the leading coefficient of f(x) and ag the constant term. n is
called the degree of the polynomial and we say that n = deg(f).
We say that f{X) has a free term if the coefficient ag is not zero, i.e. ag 5 0.
If R has an identity element denoted with 1 and the leading coefficient of f(x)
is 1 then f(z) is called a monic polynomial.
The ring formed by the polynomials over R with the above operations is called
the polynomial ring over R and is denoted R[x].

Theorem A.25. If F is a field then the polynomial ring F[z] is a principal ideal
domain. Moreover, for every ideal J # {0} where 0 is the identity, there exists a
uniquely determined monic polynomial g € Flx] such that g is the generator of J,
ie. J={(9).

Definition A.26. An element r in a ring R is irreducible if there is no pair of
elements p,q € R such that p,q & {Og, 1g, 7} and r = pgq.

A polynomial p € F(z] is said to be irreducible over F (or irreducible in Flz),
or prime in Flz]) if p has positive degree and p = be with b,c € F[z] implics that
either b or ¢ is a constant polynomial.
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Theorem A.27. For f € F|z], the residue class ring F[z]/(f) is a field if and
only if f is irreducible over F.

Remark A.28. The finite field GF(p™) can be built as the factor field Z,[X]/(f),
where f is a polynomial of degree m, irreducible in Z,[X] and (f) is the ideal
generated by f in Z,[X]. Note that the structure of the residue class ring Z,[X]/(f)
can be characterized as being the set of all p™ polynomials of degree strictly smaller
than f and with coefficients in Z,[X].

Zp[X)/(£) = {9+ (D)lg € Zo[X]} = {r + (Hlr € Z,[X], degr < deg f}

Example A.29. Denote f(z) = 2° + z + 1 € Zy[X], an irreducible polynomial.
In these conditions, Zs[X]/(f) = GF(2?) and we can consider as the elements of
GF(2?) the residue classes represented by the four polynomials of degree strictly
smaller than three, i.e. 0,1,2,1 + .

Definition A.30. An element b in a field F', is called a root of a polynomial
f € Fla] if £(b) = 0.

Theorem A.31. An element b € F is a root of a polynomial f € Fz] if and only
if £ — b divides f(z).

Definition A.32. If F is a field, a subset K of F' that it is itself a field under the
operations of F is called o subfield of F.

If K # F than K is called a proper subfield of F.

In these conditions F is called an extension (field) of K.

Definition A.33. A field containing no proper subfields is called a prime field.

Theorem A.34. The prime subfield of a field is isomorphic to either GF(p) or
Q, according as the characteristic of F is a prime p or 0.

Definition A.35. Let K be a subfield of the field F and M o subset of F'. Then
the field K(M) is defined as the intersection of all subfields of F containing both
K and M and is called the extension (field) of K obtained by adjoining the
elements in M.

For a finite subset M = {61,...,0,} we write K(M) = K(6y,...,6,).

If M is a singleton {0}, then we write K(8) and say it is a simple extension
of K and § is called the defining element of K(6) over K.

Definition A.36. Let f € K[x] be of positive degree and F an extension field
of K. Then f is said to split in F if f can be written as a product of linear
factors in Flx], i.e. there exist elements oy, 0n,...,0, € F such that f(z) =
a(z — a1)...{(x — an), where a is the leading coefficient of f.

The field F is a splitting field of f over K if f splits in F' and if, moreover,
K =K(o,az,...,0m).
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Note that a splitting field F of f over K is the smallest field containing all the
roots of f, i.e. no proper subfield of F' that is an extension of K contains all the
roots of f. Due to the fact that we can prove an existence and uniqueness up to
an isomorphism theorem with regards to splitting fields of f over X we refer to
the splitting field F' of f over K.

Definition A.37. Let n be a positive integer. The splitting field of ™ — 1 over
a field K is called the n-th cyclotomic field over K and it is denoted K™, The
roots of z™ — 1 in K™ are called the nth roots of unity over K and the set of
all these roots is denoted E™,

Definition A.38. A multiplicative group G is said to be cyclic if there is an
element a € G such that for any b € G there is some integer j such that b= af.

Such an element is called a generator of the cyclic group and we write G = (a).
Theorem A.39. Let n be a positive integer and K a field of characteristic p.

Then.:

(i) If p does not divide n, then E™ is cyclic group of order n with respect to
the multiplication in K™.

(i) If p divides n, write n = mp® with positive integers m and e and with m not
divisible with p. Then K™ = K™ E® = E™  and the roots of 2" — 1 in
K™ are the m elements of E™), each attained with multiplicity p°.

Definition A.40. Let K be a field of characteristic p and n a positive integer not
divisible by p. Then a generator of the cyclic group E™ is called a primitive
nth root of unity over K.

Definition A.41. Let F be a field. A vector space over the field F' is a set V

together with two binary operations:

(i) vector addition: V x V — V denoted v + w, wherev,w € V

(ii) scalar multiplication: F x V — V denoted av, wherea € F and v € V.
satisfying the following axioms:

(1) closure under vector addition and scalar multiplication, i.e. v+w, aveV,
foranyv,weV and anya € F.

(it) (V,+) group, where + is the vector addition.

(iii) Distributivity of scalar multiplication with respect to vector addition, i.c.
a(v+w)=av+bw, foranyv,weV and anyac F.
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(iv) Distributivity of scalar multiplication with respect to field addition, i.e. (a+
b)v =av +bv, for any v €V and any a,b e F.

(v) Compatibility of scalar and field multiplication, a(bv) = (ab)v, foranyv eV
and any a,b € F.

(vi) Identity element of scalar multiplication, i.e. if the multiplicative identity of
F is denoted 1 then 1v =v.

We denote a vector space V over a field F with (V/F,+,-).

Definition A.42. A map from a vector space to another L : Vi/F — Vo/ F is
called a linear operator if it satisfies the following:
(i) L(v +w) = L(v) + L(w), for all v,w € V1.,

(i) L{av) =aL(v) for alla € F and v € V1.












