
EXPLAINING THE BAYES’ THEOREM GRAPHICALLY 

Pablo Ballesteros-Pérez1, Mª Carmen González-Cruz2, Daniel Mora-Melià3 
1School of Architecture, Building and Civil Engineering, Loughborough University  

(UNITED KINGDOM) 
2Departamento de Proyectos de Ingeniería, Universitat Politècnica de València (SPAIN) 

3Departamento de Ingeniería y Gestión de la Construcción, Universidad de Talca (CHILE) 

Abstract 
The Bayes’ theorem on conditional probabilities is normally presented to students in introductory 
courses/modules on Statistics and Probability. This because most STEM students will make use of 
conditional probabilities in their professional lives with or without noticing. However, maybe because of 
the unfamiliar notation or because of the variety of ways in which this theorem can be formulated, 
most students have trouble understanding it. Moreover, when it comes to practical applications and 
problem exercises, most students (who have generally memorised its manifold ways of rearranging 
the conditional probabilities formula along with a few applications) struggle even more to come up with 
correct solutions. 

By means of a completely graphical approach, this paper presents an alternative way of explaining the 
Bayes’ theorem to STEM students. By means of diagrams and schematics the students can see the 
conditional probabilities represented as areas in a square. Simple geometric operations with these 
areas (additions and multiplications mostly) allow them, not just to understand this theorem far 
quicker, but to apply it confidently in almost any possible problem configuration. Overall, this paper 
offers an alternative or complementary way of explaining this important theorem more clearly to 
students that take probability courses by conveying it graphically instead of with the traditional 
mathematical formulae. 

Through a representative case study, this paper deals provides first-hand evidence about how 
confusing to understand the Bayes’ theorem might be at first even in simple problems, and how the 
understanding of this theorem is dramatically improved when presenting it graphically. 
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1 INTRODUCTION 
In daily decision making, we usually update our estimates depending on the events that we see 
happening or not. For example, we might decide to buy a car when we find out about a government 
campaign that partially subsidises the price of cars, or we might have higher chances of not taking an 
exam when we see that some of our capable colleagues are failing to pass it themselves. 

This behaviour emanates from the fact that when we observe that some events occur (or not), others 
are more (or less) likely to happen too. In other words, there are events (as we call them in statistics) 
that might be correlated to the occurrence of other events. This is modelled in probability theory by the 
formula of Bayes, also named the Bayes’ theorem, Bayes’ rule and Bayes’ law. 

The Bayes’ theorem describes the probability of an event, based on prior knowledge of conditions that 
might be related to the event. For example, if the probabilities of losing hair are higher for the older 
male population, we can infer a more accurate probability of someone being bald when we know that 
he is a man who is 60 years old. This, compared to when we don’t know how old our subject is and/or 
when we don’t even know if it is a man or a woman. 

The Bayes’ theorem is also highly relevant in Bayesian inference, a particular branch of statistical 
inference, that deals with different probability interpretations depending on the occurrence of a subset 
of prior events. 

Bayes’ theorem was proposed by Reverend Thomas Bayes who lived between 1701 and 1761. 
However, his work was not properly discovered and applied until the early 1800s when Pierre-Simon 
Laplace published his “Théorie analytique des probabilités” in 1812. The importance of this theorem is 
such that some mathematicians concede that the “Bayes’ theorem is to theory of probability what the 
Pythagorean theorem is to geometry” [1]. 
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In conclusion, Bayes’ theorem is highly relevant and frequently used by all of us, no matter we are (or 
not) aware of it. However, making the students understand the Bayes’ theorem is a totally different 
issue. After having tried to explain this theorem for many years and see how our students still struggle 
to grasp his significance and mastering its endless applications, we decided to explain it in a visually 
instead of mathematically. This paper deals with the formulation of the Bayes’ theorem graphically, 
which has proved to significantly increase students’ understanding and retention. 

2 FORMULATION OF THE BAYES’ THEOREM 
Bayes’ theorem deals with revising decision making when there are sequential events whereby new 
additional information is obtained for a subsequent event. Then, that new information is used to revise 
the probability of the initial event(s). 

In a more formal way, this is like saying that additional data can be used to update prior (initial) 
probabilities to new posterior (final) probabilities. Therefore, a prior probability is an initial probability 
value obtained before any additional information is known. A posterior probability is a probability value 
that has been updated using later information. Hence, in these terms, the Bayes’ theorem is stated like 
this: 

 P(B)
A)·P(A)BP(

B)AP( =
 (1) 

In (1) P(A) and P(B) are the prior probabilities of events A and B, respectively, happening without 
regard to one another. P(A|B) and P(B|A) are the posterior probabilities. Particularly, P(A|B) 
represents the probability of A happening once it is know that B is happening (or has already 
happened). P(B|A) represents the probability of B happening once it is know that A is happening, 
again, or has already happened.  

As can be seen, the Bayes’ theorem is not particularly mathematically complex. However, it is an easy 
subject of the playground of mathematics [2]. For example, as (1) can also be expressed as P(B|A)= 
P(A|B)*P(B)/P(A), P(A)= P(A|B)*P(B)/ P(B|A) or P(B)= P(B|A)*P(A)/ P(A|B), then the following is 
also true: P(A|B)=P(A and B)/P(B) and P(B|A)=P(A and B)/P(A). Also, P(A and B)= P(A|B)*P(B)= 
P(B|A)*P(A). And this is just the beginning, there are endless combinations that can be established 
and here is when the students start to get lost. 

2.1 An example of application 
Common applications of the Bayes’ theorem involve the calculation of posterior probabilities in 
medicine. Arguably, Bayes’ theorem is easy to understand when it is applied in context where we 
consider event A the probability of being affected by a disease or illness, and event B the probability of 
a test detecting that disease. 

A well-known example that many instructors use nowadays is taken from Deborah J. Bennett’s book 
“Randomness” [3], which is a famous quiz that was presented to medical doctors: 

“A test of a disease presents a rate of 5% false positives. The disease strikes 1/1,000 of the 
population. People are tested at random, regardless of whether they are suspected of having the 
disease. A patient’s test is positive. What is the probability of the patient being stricken with the 
disease?” 

Despite it is not mentioned, for solving this problem it is necessary to assume that the rate of false 
negatives is zero. 

Well, when this quiz was presented, most doctors said the answer was 95%. This happened because 
most of them believed that the test had a 95% accuracy rate. However, the real answer is a little below 
than 2%. This happens all the time. No medical test is perfect (positive always whenever there is a 
disease in the patient and negative always when there is not) therefore, there are high chances that, 
whenever a test is positive, still the chances of actually having the disease are quite low. Let us work 
out how we come to that conclusion by applying the Bayes’ theorem. 

Let A be the event that the patient actually has the disease and B be the event that the test gives 
positive. It is known that P(A)=1/1000=0.001 and currently P(B) is unknown. We also know that the 
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rate of false positives is 5%, that is, P(B|not A)=0.05, therefore P(not B|not A)=0.95. We should also 
know that, since the rate of false negatives is 0, this means that P(not B|A)=0, therefore P(B|A)=1. 

We know from Bayes that P(A|B)= P(B|A)*P(A)/P(B), but since we don’t know P(B), then P(A|B) 
(which is what we are looking for: the probability of having the disease when the test has resulted 
positive) cannot be calculated yet. 

We also know that P(B)=P(A and B)+P(not A and B), which is after Bayes, P(B|A)*P(A)+P(B|not 
A)*P(not A)=1*0.001+0.05*(1-0.001)=0.05095. 

Now we can complete the calculations with the original Bayes’ theorem P(A|B)= P(B|A)*P(A)/P(B)= 
1*0.001/0.05095=0.019627≈2%. 

Well, if you got lost at some point while handling so many mathematical expressions, you are not the 
only one. Most students have the same problem and I can say that this is one of the simplest 
applications of the Bayes’ theorem in real-life. 

What is worse, after trying to re-explain this theorem in many ways and providing numerous exercises, 
the students still struggle to make sense of the mathematical apparatus of this theorem. That is why, 
the authors considered at some point to resort to explain it with a totally different strategy. 

3 VISUAL REPRESENTATION OF THE BAYES’ THEOREM 
The Bayes theorem is explained in both pre-university and introductory university courses. It is also 
clear that the mathematical formulation does not seem to be particularly daunting either. However, 
apply it is a different animal. There are so many ways of reformulating the problem that it ends up 
being very confusing. At least that is the problem the authors had throughout many years of teaching 
decision sciences courses. And that is why we came up with a graphical approach. 

It has been known for a long time that most of us are predominantly visual learners, that is, we 
understand much better the information when seen by means of pictures or graphs, compared to 
when we are just presented with textual information [4,5]. So, apparently, presenting the Bayes’ 
theorem graphically seemed a good idea. However, to the best of our knowledge, we could not find a 
visual representation of this theorem (with this exception [6] which we consider rather too advanced 
for first-year students). Therefore, we had to came up with one ourselves. 

3.1 Probability of independent events 
Before explaining the Bayes’ theorem, it is common to explain what independent events are. When 
two events are said to be independent of each other, what this means is that the probability that one 
event occurring in no way affects the probability of the other event occurring [7]. For example, 
someone cast a die and flips a coin. Both event outcomes will be totally independent because the 
result of each experiment will not be influenced with each other. 

Therefore, when we explain what two independent events A and B are we present the students with 
Figure 1.  

Figure 1 represent in both axes the probabilities of happening (positive) or not (negative) two different 
events. A might be considered the primary event and B the secondary. The probabilities of each event 
not happening are just one minus the probabilities of the event happening. Hence, all the edges in this 
square measure one unit (like the total probability). 

We know that event B is independent from event A because the probability of B happening once A has 
happened, that is P(B|A), is exactly the same as the probability of B happening if A had not happened, 
that is, P(B|not A). That makes that the grey rectangles (① and ②) in Figure 1 have the exact same 
height. It is worth noting that the probabilities of A happening (P(A)) and not happening A (P(not A)) do 
not have to be the same, nor the probabilities of B happening or not happening (P(B|A) vs P(not B|A) 
and P(B|not A) vs P(not B|notA)) either. 
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Figure 1. Distribution of probabilities of two independent events with two possible outcomes each. 

3.2 Probability of dependent events. Law of conditional probabilities 
Once the students understand what independent events are, they move on to events which are 
dependent. Here is when the Bayes’ theorem becomes useful, as knowing that a main event A has 
taken place or not, allows us to improve the estimation of the probability of a secondary event B 
happening or not. This is exactly what Figure 2 represents and the major outcome of this paper. 
Again, the square in Figure has edges whose length is one, therefore the area of this square also 
equals one. 

 
Figure 2. Distribution of probabilities of two correlated events with two possible outcomes  

(see how the conditional probabilities of B change depending on A happening or not). 

	  

	  

1611



Normally, most examples of the Bayesian inference involve trying to figure out the probability of 
P(B|A), that is, the probability that B happens once we have found out that A has happened. It is also 
frequent having to assess the probability of B happening once has not happened, that is P(B|not A). 
However, neither one can be seen in Figure 2. How do we calculate it?  

To answer this question, let us revisit the problem which medical doctors had to answer. Figure 3 
particularises Figure 2 for the quiz mentioned above about a test having being positive on an 
individual when testing if that person was suffering from a disease. 

 
Figure 3. Problem solution expressed graphically. 

As can be seen, all the probabilities information around the square in bold come from the data directly 
provided by the problem wording. The other probabilities are very easily inferred just by knowing that 
they are the complementary probabilities of the probabilities in bold. 

OK, so our subject had a positive in his/her test. That means he/she is in one of the two squares 
shaded in grey (he actually has the disease, square ①	  or	  P(A	  U	  B), or he does not have it despite the 
test was positive, square ②	  or	   P(B	   U	   not	   A). There is no other possibility as the test was indeed 
positive. Well, so what is the probability of him/her having the disease then? This is the same as 
asking, what are the chances of being within square ① when we can be within square or ① or ②. 
And the answer is as easy as ①/(①+②).  

In fact, we are trying to calculate P(A|B), that is, the way Bayes’ theorem generally arranged to 
answer as in equation (1). However, here this is much easier to understand. Therefore, Bayes’ 
theorem can be expressed just expressed as: 

! ! ! =
! ! ! · ! !

! !
=

P(B  U  A)
P B  U  A + P(B  U  not  A)

=
①

① +②
 

Isn’t this approach much straightforward for answering the problem? What is more, the students can 
now much better assess in which square/s they are depending on what the problem wording says. 
There is no need to start rearranging the Bayes’ formula in endless ways, nor to resort to other 
supplementary formulae. Basically, everything you need to answer any two-event Bayesian problem is 
within the schematic of Figure 2 and with it, once you know the values of some of the probabilities 
around the edges, you just need to calculate a few rectangle areas. 

However, we admit that statistics problems can have many ways of presenting the same information 
and many ways of playing with the same variables. That is why, we can also show the students all the 
possible variations Bayes’ problems like these can have. This is represented in Figure 4, which 
actually represents almost all the possible problem combinations that the students might have to work 
out from the variables stated in Figure 2. Actually, once Figure 4 is understood, there are no more 
secrets with conditional probabilities. 
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Figure 4. Geometric transformations to express some of the more common probability outcomes of the 

Bayes’ theorem. 

3.3 Bayes’ theorem with three events 
However, previous figures had represented the Bayes’ theorem in two dimensions, that is, for two 
dependent events A and B. But the beauty of this approach is that it also allows the student to 
visualise the conditional probabilities in cases with three dependent events. 

Despite admittedly this requires many more lines and drawing effort that for the 2-event case, Figure 5 
represents how to conceptualise conditional probability cases with three events. 

 
Figure 5. Graphical representation of the Bayes’ theorem with three variables. 
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For instance, Figure 5 might be representing the case of a patient whose results in two different tests 
(events B and C) have been positive. Now we might want to know the probabilities of him/her having 
the disease. Again, this is just a matter of calculating the probabilities of being within the red prism 
(❶) once we know that we are either in the red prism (❶) or the blue prism (❷). In other words, the 
solution of this problem is again the Bayes theorem for three events, that is: 

! ! !,! =
❶

❶ +❷
 

However, if you had to develop the calculations manually without the assistance of Figure 5, this 
problem might have been far more confusing. 

4 CONCLUSIONS 
Bayes’ theorem or the Law of Conditional probabilities describes how the probabilities of some events 
can be calculated when prior information from other non-independent events is known. However, 
despite its unarguable importance in sciences and engineering, most students struggle to make sense 
of this theorem. This is particularly more acute when they try to apply it effectively in the wide variety 
of real-life and exam problems afterwards. 

In the absence of other adequate resources for explaining this theorem more effectively, the authors of 
this paper considered developing a graphical approach. This approach allows any student to assess 
the posterior probabilities of independent events in whichever form just by calculating the areas of 
simple rectangles. Hence, the graphical representation proposed promotes understanding and 
retention, but it also allows working with more complex probability problems like those involving more 
than two events. 
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