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Abstract

In-host mutation of a cross-species infectious disease to a form that is transmissible between
humans has resulted with devastating global pandemics in the past. We use simple mathemat-
ical models to describe this process with the aim to better understand the emergence of an
epidemic resulting from such a mutation and the extent of measures that are needed to control
it. The feared outbreak of a human-human transmissible form of avian influenza leading to a
global epidemic is the paradigm for this study. We extend the SIR approach to derive a de-
terministic and a stochastic formulation to describe the evolution of two classes of susceptible
and infected states and a removed state, leading to a system of ordinary differential equations
and a stochastic equivalent based on a Markov process. For the deterministic model, the con-
trasting timescale of the mutation process and disease infectiousness is exploited in two limits
using asymptotic analysis in order to determine, in terms of the model parameters, necessary
conditions for an epidemic to take place and timescales for the onset of the epidemic, the size
and duration of the epidemic and the maximum level of the infected individuals at one time.
Furthermore, the basic reproduction number R0 is determined from asymptotic analysis of a dis-
tinguished limit. Comparisons between the deterministic and stochastic model demonstrate that
stochasticity has little effect on most aspects of an epidemic, but does have significant impact
on its onset particularly for smaller populations and lower mutation rates for representatively
large populations. The deterministic model is extended to investigate a range of quarantine and
vaccination programmes, whereby in the two asymptotic limits analysed, quantitative estimates
on the outcomes and effectiveness of these control measures are established.

Keywords: Epidemic, mutation, mathematical models, differential equations, stochastic
process, asymptotic analysis.

1. Introduction

Cross-species transmission of viruses from animals to human and their subsequent evolution
have in the past led to epidemics some with disastrous results on a global scale. HIV/AIDS,
severe acute respiratory syndrome (SARS), West Nile virus and the Spanish flu of 1918 are just
a few examples [12, 29]. Viruses continue to present new threats, a recent example being the
ebola outbreaks in West Africa (2014-2016, with 28616 known cases and 11310 deaths, as of June
2016) and in the Democratic Republic of the Congo (2018-, 56 cases and 25 deaths, as of early
June 2018) [36]. Another example is the avian influenza, in particular the H5N1 virus which
has been circulating since 1997 in parts of Asia and some regions of Africa with 860 confirmed
cases of human infection (454 deaths) in the years between 2003 and 2018 [37]. This disease in
its current state does not readily infect humans, but can spread rapidly amongst domesticated
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birds with a mortality rate as high as 100% [1]. Human cases have resulted from direct or close
contact with infected poultry (domesticated chickens, ducks and turkeys). The spread of avian
influenza from an infected person to another has rarely been reported and the transmission has
not been observed to continue beyond one person. All influenza viruses, however, have the ability
to change and adapt. Past examples, such as the Spanish flu, have shown that this could result
with a transmissible virus which can spread easily and directly to humans. Such an outbreak
could develop into an epidemic on a global scale, potentially taking millions of lives. A better
understanding of the dynamics of how events leading to an epidemic can help to control and
eradicate the disease and to prevent an infectious disease from developing into an epidemic.

Viruses are highly prone to genetic mutation, influenza viruses being well-studied examples.
Minor mutations may involve small changes to surface glycoproteins, resulting with a strain of
the same viral subtype that can deceive the adaptive immune response, and reinfect a previously
infected host. This kind of mutation is known as antigenic drift and leads to recurrent, often
annual, outbreaks of an influenza subtype. More dramatic mutations leading to new viral
subtypes are known as antigenic shifts, which can arise in at least two ways. The first way
is known as reassortment in which influenza viruses of two different subtypes infect the same
host simultaneously, whereby genetic material could be exchanged to form a new, viable virus.
This is a feared possibility regarding individuals infected by both the human and avian form of
influenza, leading to a transmissible form of the disease. The second involves direct or indirect
introduction of an avian influenza virus into humans which subsequently adapt to the new host
[28, 10]. The new virus subtype, with no antibodies against it present in the human body, will
transmit easily from human to human, as a result, a global pandemic may occur.

Mutations of the highly pathogenic avian influenza virus from a non-transmissible form to
one that is rapidly transmissible among humans is treated here as an antigenic shift and not a
result of a sequence of antigenic drift events, and hence is modelled as a one-step process taking
place within its human host. The indirect transmission of the mutated virus into humans via
an intermediate host (e.g. pigs) is not considered here, the model developed, however, can be
adopted to include an intermediate host without too much difficulty. The relative simplicity
of the system we study enables a detailed analysis to be carried out, from which a number of
key characteristics of an epidemic following disease mutation can be quantified in terms of the
model’s parameters.

Published models of avian flu have focused on the spread of disease between bird populations
and farms [4, 21, 27, 34] and cross-species transmission between bird and human populations
[7, 13, 15, 23]. In each of these studies their aim is to understand the dynamics of the disease and
the effectiveness of measures to control in both bird and human populations. Each of the bird-
human transmission models are extensions of the “standard” SIR compartmental formulation
(Susceptibles-Infectives-Removed) for an endemic disease (i.e. natural birth and death processes
are considered), whereby mutation to the human-human transmissible form emerges via antigenic
shift in human hosts. The mutation events are assumed to have occurred either at a fixed rate
[7, 13, 15] or as a spontaneous event at a given time point [23]. The core of the analysis
investigates the stability of equilibria and establishing the basic reproduction numbers of the
disease in the populations. In contrast to these studies, we analyse in this paper a model that
describe the potential development of an epidemic of human-human transmission form of flu
by focussing on the human population only, whereby bird-human transmission only occurs to
a sub-population of humans (bird handlers) at a fixed rate (assuming an approximately fixed
population of diseased birds). In common with the above mentioned avian flu models, we extend
the SIR formulation and assume mutation is via antigenic shift in humans, however, we analyse

2



in much more detail the transient behaviour (e.g. timescales for epidemic outbreak, duration
of epidemic) as well as the long-time dynamics. Moreover, a stochastic version of the model
is investigated to assess the reliability of the predictions from a continuum model in a range
of circumstances. We note that modelling epidemics using SIR based models has had a long
history since the seminal work of Kermack and McKendrick in 1927 [18], including applications
to influenza, sexually transmitted disease, the “Bombay plague” [25] and West Nile virus [35].
Amongst the mathematical extensions include more general infection rate kinetics [19], terms
with time delays [16, 30], stochasticity [32, 33] and spatial spread [17]. We also note there are
a number of epidemic models examining mutations and genetic drift (e.g. [5, 11, 22, 26]), many
of which are more sophisticated than the proposed model, but at a cost at being more difficult
to analyse.

In this paper we propose a simple deterministic model and a stochastic equivalent to describe
in-host viral mutation of a cross-species disease that enables human-human transmission. Whilst
the former model is expected to be mainly applicable to large populations, the slow mutation
process suggests that stochasticity is important, particularly early in an epidemic. We analyse
these models to determine the effects of parameters on a number of features of an epidemic (onset
time, epidemic duration etc.), establishing the strengths and weaknesses of the two approaches.
Furthermore, the deterministic model is extended to investigate potential measures in disease
control. Though the model provides a general framework for in-host mutation more virulent
forms of disease, we use the much feared avian flu scenario as a paradigm.

The paper is arranged as follows. In the next section, the mathematical model is derived to
describe the spread of a bird-human transmissible virus, which can mutate into a human-human
transmissible form. Only a fraction of the population is assumed to be at risk of the bird-human
transmissible form, but the whole population is vulnerable to the mutated version. We carry
out large-time (Section 3) and asymptotic (Section 4) analysis to obtain predictions, in terms of
reduced model solutions, on the possible development of an epidemic. In Section 5 the effects
of intervention by means of quarantine and vaccination are investigated. The stochastic version
of the model is presented and analysed in Section 6 and we conclude with an overview of the
result in Section 7.

2. Deterministic Model

The model proposed below aims to describe in-host mutation of a non-human-human trans-
missible to a human-human transmissible virus strain and its spread throughout a population.
The population is assumed well mixed and of size ranging from N = 105 − 109, i.e. anywhere
from large city to continental scale. Though the development of mutant viral forms may take
years to develop, an epidemic may last just a few weeks; we assume over the timescale of interest
the demographic turnover is negligible so that the total population remains constant. The entire
population is broadly compartmentalised into susceptible, infective and recovered (or removed)
classes and the populations vary continuously in time. In the case of avian flu, only a fraction
of a population are exposed to birds who are themselves exposed to the bird-bird transmissible
form of avian flu. We thus split the susceptible class into two, one class that are bird-handlers
(mainly poultry farmers) at risk of catching flu directly from their birds and the other class
who are not exposed to potentially diseased birds. We note, that this assumption has general
application, for example, where sub-populations have different exposure to a non-human-human
transmissible disease based on their activity or their geographical location. We will not be mod-
elling bird populations explicitly and assume that their numbers are constant. Those infected
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Figure 1: Schematic of the infection and mutation pathways used in the derivation of the model.

by the bird-human transmissible form of avian flu are not able to infect other susceptibles, un-
less the virus has mutated to a human-human transmissible form, thus two infected classes are
assumed. To summarise, the total population is divided into five subclasses:

Sb : population of the bird-handlers at risk of catching avian flu from birds.

Sn : population of individuals not at risk of catching avian flu from birds.

Ib : population of infectives with only the non-mutated bird-human transmissible avian flu.

Im : populations of infectives with the mutated, human-human transmissible avian flu.

R : population of those recovered/removed from either form of avian flu.

with S, I and R conventionally denote the susceptible, infective and removed/recovered. The
variable R is the population who has survived or died from the disease; taking the mortality
fraction to be η, then ηR is the number of deaths from the disease (currently η ≈ 0.53 [37]). We
note that we have assumed that recovery from one form of the flu leads to immunity against
both forms.

The pathway summarising the interaction between the population classes is illustrated in
Figure 1, and a summary of the modelling assumptions is as follows,

• The total population N is constant.

• Only the bird-handler class Sb can (spontaneously) catch avian flu from birds.

• Non-mutated avian flu cannot be transmitted from person to person.

• Ib becomes Im through infection by Im or through mutation of the virus.

• Sn, Sb and Ib can be infected by Im.

• The two forms of flu are sufficiently similar for the removal rate to be the same.

• Once the infected Im and Ib are recovered, they become immune to both forms.

The above assumptions do not distinguish between a person infected with a mutated form of
the disease and one infected with both non-mutated and mutated form since the latter affects
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the disease progress in the same way as the former does. Using these assumptions, the following
system of ODEs is obtained:

dSb
dt

= −µSb −
β

N
ImSb, (2.1)

dSn
dt

= − β
N
ImSn, (2.2)

dIb
dt

= µSb − εIb − γIb −
β

N
ImIb, (2.3)

dIm
dt

=
β

N
Im(Sb + Sn + Ib)− γIm + εIb, (2.4)

dR

dt
= γ(Im + Ib), (2.5)

where the sum of the populations is constant

N = Sn(t) + Sb(t) + Im(t) + Ib(t) +R(t). (2.6)

The rate constants in the system of the equations are

µ : disease infection rate constant from birds to humans,

β : infection rate constant of the human-human transmissible avian flu,

ε : mutation rate constant from Ib to Im,

γ : recovery/removal rate constant for both Im and Ib.

We note that although the disease in the bird population is not explicitly modelled, the proposed
system (2.1)-(2.5) can be viewed as a limiting case of such a model. If the disease dynamics
of the bird population occurs on a much faster timescale than the processes of bird-human
transmission and disease mutation (e.g. as in [15]), then after a transient period the infected
bird population will be close to steady-state (assumed stable) whilst human form of the disease
continues to evolve. Since the infected bird population is effectively fixed in this scenario, the
rate of bird-human transmission will be proportional to the susceptible bird-handler population,
with µ being the constant of proportionality.

To close the system we suppose that initially, at t = 0, the first cases of the bird-human
transmissible form of the disease arise; formally, the infection rate µ is defined to be µ = 0 for
t < 0 and µ > 0 for t ≥ 0. Consequently, we assume that initially there is nobody in the infected
or recovered classes, hence

t = 0 : Sn = s0, Sb = N − s0, Ib = Im = R = 0,

where s0 ∈ [0, N) is the initial population of those not at risk of catching the bird-human
transmissible form of the disease.

In contrast to most ordinary differential equation models in epidemiology, the disease is
initiated by the bird-human transmission term µSb in equations (2.1) and (2.3), rather than an
assumed initial infected population. As a consequence, whilst Sb > 0, there is no disease-free
state to determine the basic reproduction number R0 using, for example, the next generation
operator method. In this paper we will use the following definition,
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Definition 2.1. The basic reproduction number, R0, is defined as a formulation of the model
parameters such that if R0 > 1 then maxt∈(0,∞) Im/N = O(1), whilst if R0 < 1 then maxt∈(0,∞)

Im/N � 1.

In the analysis of Section 4 and Appendix A the O(1) term is in the context of a small parameter
ε/γ, whereby in the limit ε/γ → 0 a formula for R0 is derived.

2.1. Non-dimensionalisation

In the analysis to follow it is convenient to non-dimensionalise the model using the rescalings

t = t̂/γ, Sb = NŜb, Sn = NŜn, Im = NÎm, Ib = NÎb, R = NR̂. (2.7)

These rescalings imply that all the non-dimensional dependent variables represent population
fractions of each of the classes and that removal/recovery of an infected individual occurs in
t̂ ∼ 1 time. The non-dimensional form of the rate constants are

ε̂ =
ε

γ
, µ̂ =

µ

γ
, β̂ =

β

γ
and ŝ0 =

s0

N
; (2.8)

we expect that ε̂� 1, reflects the fact that most individuals with the non-mutated form will be
recovered or died before the virus strain has a chance to mutate to the transmissible form, and
for the case of avian flu µ � 1, as so few individuals (< 1000) have caught the disease in the
last decade. It turns out in the analysis to follow that β̂ is not necessarily equal to the basic
reproduction number R0, as is the case in the standard SIR model (discussed in Section 4.2).
The hats will henceforth be dropped for brevity and the dimensionless system of equations are

dSb
dt

= −µSb − βImSb, (2.9)

dSn
dt

= −βImSn, (2.10)

dIb
dt

= µSb − εIb − Ib − βImIb, (2.11)

dIm
dt

= βIm(Sb + Sn + Ib)− Im + εIb, (2.12)

dR

dt
= Im + Ib, (2.13)

with Sn + Sb + Im + Ib +R = 1 and the initial conditions are

t = 0 : Sn = s0, Sb = 1− s0, Ib = Im = R = 0,

where s0 ∈ [0, 1).

3. Large-time analysis

It is clear in the way the model is constructed that all susceptibles in the bird-handler class
will eventually be removed as t → ∞ and that the only steady-state of the system belongs to
the family of solutions

(Sb, Sn, Ib, Im, R) = (0, S∞, 0, 0, R∞), (3.1)
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where R∞ = 1 − S∞. The steady-state S∞ ∈ [0, 1) is the population of non-bird-handler
suscetibles, Sn, as t → ∞. The value of S∞, as with the standard SIR model, is dependent on
the initial conditions and is discussed further below. Linear stability analysis on this steady-
state results with a Jacobian that has a zero eigenvalue, with all others being negative provided
that

S∞ <
1

β
, (3.2)

thereby (3.1) is neutrally stable. By analogy to the standard SIR model, this results suggests
that the basic reproduction number R0 for this system is given by R0 ≈ β. This is true when
the parameters µ and ε are O(1) constants, whereby, the mutation happens sufficiently fast for
the whole population to be vulnerable to the human-human transmissible form of the disease.
However, as discussed in Section 4.2, R0 will change as ε → 0. Nevertheless, the inequality
(3.2) suggests that in large time Sn will tend to a population S∞ satisfying the inequality
0 ≤ S∞ ≤ min(1, 1/β). As expected, the fraction of susceptibles that remain following an
epidemic will be reduced on increased virulence β.

One of the key aims of the modelling is to try to predict, in terms of the model parameters,
the total mortality following a human-human transmissible disease epidemic, i.e. ηR∞, recalling
that η is the disease’s mortality fraction. For the standard SIR model this is straightforward to
do, resulting with R∞ being the solution of an implicit equation [3, 24]. A similar approach can
be used in the present model, though the details are more complicated. In the analysis below,
we will establish a readily computable bound on S∞, from which we can deduce bounds on R∞.

Eliminating Im using equations (2.9) and (2.10) leads to, on integration,

Sb =
(1− s0)

s0
e−µt Sn. (3.3)

Eliminating Im using (2.9) and (2.11) gives

1

Sb

dSb
dt
− 1

Ib

dIb
dt

+ µ
Sb
Ib

= 1 + ε− µ, (3.4)

which can be solved and, following the substitution of (3.3), to get

Ib =
µ(1− s0)

s0(1 + ε− µ)

(
e−µt − e−(1+ε)t

)
Sn. (3.5)

The case of 1 + ε − µ = 0 is not singular in the qualitative sense and leads to the solution
Ib = µ(1− s0)te−µtSn/s0; this case does not produce any new behaviour of interest and will not
be discussed further by assuming in what follows that 1 + ε− µ 6= 0. As a side note, the system
(2.1)-(2.4) can be reduced to a nonlinear 2nd-order differential equation by using Im from (2.10)
and equations (3.3) and (3.5), namely

d2Sn
dt2

− dSn
dt

(
1

Sn

dSn
dt
− 1 + βSn

(
1 +

1− s0

s0(1+ε−µ)

(
(1 + ε)e−µt − µe−(1+ε)t

)))
+
βµε(1− s0)

s0(1+ε−µ)

(
e−µt − e−(1+ε)t

)
S2
n = 0. (3.6)

However, to determine the long time behaviour it is simpler to add equations (2.9)-(2.12) and
substituting Im from (2.10) to yield on integration,

Sn + Sb + Ib + Im − 1 =
1

β
ln

(
S∞
s0

)
−
∫ t

0
Ib(z) dz.
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Figure 2: Plots of R∞ (solid) and the upper and lower bounds determined from (3.12) (dashed lines). Plot (a)
shows R∞ against β (using µ = 10−4, ε = 10−4, s0 = 0.8) and (b) R∞ against µ (using β = 4, ε = 10−4, s0 = 0.8).
Note the R∞ line is super-imposed over the upper bound line in the left-hand plot.

Substituting (3.1) and using (3.5) lead to the following equation for which S∞ is a solution,

G(S∞,Ψ(Sn)) = β(1− S∞) + ln

(
S∞
s0

)
− β (1− s0)

s0(1 + ε)
Ψ(Sn) = 0, (3.7)

where Ψ(.) is the integral operator

Ψ(Sn) =
µ(1 + ε)

1 + ε− µ

∫ ∞
0

Sn(z)
(
e−µz − e−(1+ε)z

)
dz, (3.8)

which has been defined to have the property Ψ(c) = c for constant c. In the standard SIR model,
the steady-state value of Sn, say SSIR, is the solution of G(SSIR, 0) = 0, hence the integral term
Ψ results from the additional assumptions in the current model.

Finding the solution S∞ satisfying G(S∞,Ψ(Sn)) is not possible without full knowledge of
the solution Sn(t), however, an upper and lower bound can be determined. Viewing Ψ as a
variable and S∞ as a function of Ψ, we can deduce from (3.7) that

dS∞
dΨ

=

(
1

S∞
− β

)−1 β(1− s0)

s0(1 + ε)
> 0, (3.9)

since 1/S∞−β > 0 from (3.2). So the solution S∞ of G(S∞,Ψ) = 0 increases on increasing Ψ.
Moreover, Ψ(Sn) ≥ 0 for any non-negative Sn(t) since the bracketed term in the integral (3.8)
has the same sign as 1 + ε − µ (neglecting the case when this is zero). From (2.10), Sn is a
monotonic decreasing functions, so S∞ ≤ Sn(t) ≤ s0, which means that Ψ(Sn) is bounded by

S∞ = Ψ(S∞) ≤ Ψ(Sn) ≤ Ψ(s0) = s0, (3.10)

using the property of Ψ stated above. Using (3.9) and (3.10) the following bound on S∞ can be
deduced

Slow ≤ S∞ ≤ Shigh, (3.11)

where constants Slow and Shigh satisfy G(Slow, Slow) = 0 and G(Shigh, s0) = 0, respectively, both
being straightforward to calculate numerically. Of more interest is the bound on R∞, namely

Rlow ≤ R∞ ≤ Rhigh, (3.12)

8



0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

t = TL

time ( )t time ( )t

p
o
p
u
la

tio
n

Lt = T

Sn
Sn

Sb
bS

I

I
I

b

m
m

(a) (b)

p
o
p
u
la

tio
n

Figure 3: The evolution of Sb, Sn, Ib and Im where (a) µ = 1, TL = ln(1/ε)/(βs0 − 1) and (b) µ = 10−4, TL =
ln(1/εµ)/(β−1) with β = 4, µ = 1, s0 = 0.8 and ε = 10−4. Note that for case (b) Ib is negligibly small throughout
the entire time.

where Rlow = 1 − Shigh and Rhigh = 1 − Slow. Figure 2 shows plots of the bounds, given by
(3.12), and numerically determined values of R∞ against β and µ. The upper bound appears to
provide a very good approximation of R∞ for all values of β; this was found to be true for small
µ, but as µ approaches O(1), R∞ tends to the lower bound. The reason for this is discussed
in Section 4.2. The functions that determine the upper and lower bounds are independent of
µ, hence these values are constant in the right-hand figure. As µ > 0 increases, R∞ tends
smoothly from the upper to the lower bound, with the lower bound seeming to be a very good
approximation from µ = O(1).

It is worth noting from (3.9) that SSIR < S∞, which suggests that applying the standard
SIR model to describe transmissible avian-flu spread may significantly over-predict the extent
of an epidemic, particularly if β ≈ 1.

4. Numerical results and asymptotic analysis

Figure 3 shows the evolution of the population fractions Sn, Sb, Ib and Im using parameters
β = 4, s0 = 0.8 and ε = 10−4, noting that the mutation rate ε is small in the simulations with
two distinct cases of bird-human infection rate µ = 1 and µ = 10−4. We observe that there is an
initial time period (t < TL), in which when µ = 10−4 the majority of the population is unaffected
by the disease, whereas for µ = 1 the susceptible bird-handlers, Sb, are steadily acquiring the
bird-human transmissible form of the disease. At around the time indicated by the vertical line
(t = TL), the epidemic of the mutated transmissible form begins affecting the whole population.
One of the interesting features in these simulations is this apparent time lag before the onset
of the epidemic, moreover the occurrence of the bird-human transmissible form appears to be
negligible during the epidemic. We note increasing ε moves the t = TL line to the left, whereby
for ε = O(1) there is no delay in the emergence of the mutated flu epidemic.

We investigated the model in two biologically relevant cases using singular perturbation
theory, namely (1) ε → 0 and µ → 0 and (2) ε → 0 and µ = O(1). Since case (1) is most
relevant for avian flu, whereby the rates of bird-human disease transmission and mutation are
very low, we present the analysis in some detail in Section 4.1, whilst that for case (2) is
briefly summarised in Section 4.2. The method used provides a systematic process by which
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the solutions of the model are separated as a sequence of timescales, within which the dominant
processes are identified and represented by reduced versions of the equations. The aim is to
determine, in terms of the model’s parameters, key quantities that characterise an epidemic,
namely

• the epidemic’s basic reproduction number R0, as defined just before Section 2.1.

• the timescale for the onset of the epidemic TL following the first cases of the bird-human
transmissible form of the disease.

• the maximum level of infected individuals at one time Imax.

• the fraction of the population to have contracted the disease given by the final size of the
removed class R∞.

• the duration of the epidemic Tσ, defined to be the time in which the fraction of population
who are infected by the mutated disease, Im, is above a threshold value σ.

The analysis of Section 3 goes some way to answer the fourth quantity, however, the analysis
below will give good approximations to the model predictions for all five quantities in the cases
of ε, µ→ 0, as demonstrated in the next section, and ε→ 0 and µ = O(1).

4.1. The case ε� 1 and µ� 1

As demonstrated in the numerical solutions shown in Figure 3, the low rates of infection
µ � 1 and mutation ε � 1 will result in an initial phase of low epidemiological activity,
before the epidemic erupts and dies away. These phases will be made explicit by the analysis
below. The first phase involves the equilibration in population of those infected by the bird-
human transmissible form of avian flu over an t = O(1) timescale. We will focus mainly on
the leading order solutions of the variables in each timescale, which enables ε and µ to be
independently small with the formal restriction of ln(1/ε) � 1/µ. This restriction states that
the timescale for a mutation event (1/ε) is much less than the exponential of the timescale for
cross-species transmission (e1/µ) and arises from the time at which the solutions of the first
timescale breakdown (see Section 4.1.1). The analysis for the case ln(1/ε) � 1/µ follows that
of the ε → 0 and µ = O(1) limit summarised in Section 4.2 and the distinguishing features of
these two limiting cases merge when ln(1/ε) ∼ 1/µ (analysed in Appendix A to determine an
expression for R0). We note, in order to distinguish variables for particular timescales, different
superscript symbols are used.

4.1.1. t = O(1)

This timescale captures the initial phase of avian flu contraction from birds, though the
fraction that acquires the disease is very small (size O(µ)). Cases of the mutant form are
relatively negligible (size O(εµ)). Denoting all variables in this timescale with a superscript “∗”,
the appropriate rescalings are

t = t∗, Sb = S∗b , Sn = S∗n, Ib = µI∗b , Im = εµI∗m,

which leads to the system

dS∗b
dt∗

= −µS∗b − εµ βI∗mS∗b , (4.1)
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dS∗n
dt∗

= −εµ βI∗mS∗n, (4.2)

dI∗b
dt∗

= S∗b − εI∗b − εµ βI∗mI∗b − I∗b , (4.3)

dI∗m
dt∗

= I∗b + βI∗m(S∗b + S∗n + µI∗b )− I∗m, (4.4)

with R∗ ∼ O(µ), subject to S∗b (0) = 1−s0, S
∗
n(0) = s0, I

∗
b (0) = 0 and I∗m(0) = 0.

Formally, we write each dependent variable as a power series expansion, e.g. Sb ∼ Sb0 +
εSb1 + µSb2 + ..., substitute them into the system of differential equations, equate the terms
with the same powers of ε and µ and solve the resulting equations. Doing this we obtain the
following leading approximations,

S∗b ∼ 1− s0 − µ (1−s0) t∗ + µ2 (1−s0)
t∗2

2

− εµ (1−s0)

(
1−s0

(β−1)2
e(β−1)t∗ − (1−s0)

(
e−t

∗
+

β

β−1

(
t∗−β−2

β−1

)))
,

S∗n ∼ s0 − εµ s0(1−s0)

(
1

(β−1)2
e(β−1)t∗ − e−t∗− β

β−1

(
t∗−β−2

β−1

))
,

I∗b ∼ (1−s0)(1− e−t∗),

I∗m ∼ (1−s0)

β(β−1)
(e(β−1)t∗ − 1) +

(1−s0)

β

(
e−t

∗−1
)
,

up to O(εaµb) where a+ b ≤ 2. The expansions show that initially the susceptible populations
are mostly unaffected by both flu strains, with a fraction O(µ) bird-handlers and O(εµ) non-
bird-handlers infected. We note that the carriers of the human-human transmissible form of the
disease I∗m will grow exponentially if β > 1; this indicates that R0 ∼ β in the combined limits
of ε→ 0 and µ→ 0. For β > 1, these expansions are valid whilst the incidence rate of catching
the mutated form of the disease is significantly less than that of the bird-human transmissible
form. Under the restriction of ln(1/ε) � 1/µ, these solutions breakdown when εµβ = O(µ) in
equation (4.1), whereby the rates of obtaining the two forms become approximately the same.
More precisely, in large time I∗m ∼ Ae(β−1)t∗ , for constant A = (1 − s0)/β(β − 1), implies
that breakdown occurs at t∗ ∼ ln(1/ε)/(β− 1) as ε→ 0, leading to a new timescale of events in
which human-human transmission begins to be the dominant means of propagating the mutated
form of the disease. We note that if ln(1/ε) � 1/µ the solutions breakdown at t∗ = O(1/µ)
as dS∗b /dt = O(1) at leading order, so the Sb population noticeably drops before the human-
human transmission takes noticeable effect (we will not discuss this case further). The matching
conditions for the next timescale’s solutions are

S∗b ∼ 1−s0 − µ(1−s0)t∗ − εµ (1−s0)2

(β−1)2
e(β−1)t∗ , S∗n ∼ s0 − εµ

s0(1−s0)

(β−1)2
e(β−1)t∗ ,

I∗b ∼ (1−s0), I∗m ∼
(1−s0)

β(β−1)
e(β−1)t∗ , (4.5)

as t∗ →∞.
For the relatively trivial case of β < 1, in large time the level of both forms of the disease

reaches a maximum, namely I∗b ∼ (1−s0) and I∗m ∼ (1−s0)/(1 − β) (i.e. Ib → O(µ) and
Im → O(εµ) constant). In a timescale of t = O(1/µ) the balance in the expansions breaks down
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leading to the second timescale of importance, in which Sn ∼ s0 −O(ε) and Sb ∼ (1− s0)e−t/µ.
Eventually every member of bird-handler class will be infected by the bird-bird transmissible
form, but never sufficiently for the mutated form to ever talk hold. Here, Sn ∼ s0 and Sb → 0
as t→∞.

The β < 1 case will not be discussed further and we will now focus on the β > 1.

4.1.2. t = ln(1/ε)/(β−1) +O(1)

This timescale represents the phase in which contraction of the human-human transmissible
form becomes the dominant means of catching the disease. Using the superscript “†” to denote
the variables in this timescale, we write

t =
ln(1/ε)

β−1
+ t†, Sb = S†b , Sn = S†n, Ib = µI†b , Im = µI†m,

noting that Im is now O(µ). The rescaled equations are

dS†b
dt†

= −µS†b − µβI
†
mS
†
b , (4.6)

dS†n
dt†

= −µβI†mS†n, (4.7)

dI†b
dt†

= S†b − εI
†
b − µβI

†
mI
†
b − I

†
b , (4.8)

dI†m
dt†

= εI†b + βI†m(S†b + S†n + µI†b )− I
†
m. (4.9)

We note in contrast to the previous timescale, that the leading-order contribution to the human-
human transmissible class I†m is now from infection of susceptible individuals rather than mu-
tation from I†b . The key leading terms in the expansion of this system, using the matching
conditions (4.5) as t† → −∞, are

S†b ∼ 1−s0 − µ

(
(1−s0)2

(β−1)2
e(β−1)t† + (1−s0)t†

)
,

S†n ∼ s0 − µ
s0(1−s0)

(β−1)2
e(β−1)t† ,

I†b ∼ 1−s0,

I†m ∼ (1−s0)

β(β−1)
e(β−1)t† ,

as ε, µ→ 0. In time the spread of the human-human transmissible form of the disease will become
dominant and an epidemic will ensue. This will occur when I†m = O(1/µ) (i.e. Im = O(1)) in
a timescale t† = ln(1/µ)/(β − 1), whereby the transmission rates will becomes O(1) and the
expansions for this timescale are no longer valid. For matching with the next timescale solutions,
we have

S†b ∼ (1−s0) − µ
(1−s0)2

(β−1)2
e(β−1)t† , S†n ∼ s0 − µ

s0(1−s0)

(β−1)2
e(β−1)t† ,

I†b ∼ 1−s0, I†m ∼
(1−s0)

β(β−1)
e(β−1)t† , (4.10)

as t† →∞.
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4.1.3. t = ln(1/εµ)/(β−1) +O(1)

This timescale represents the epidemic phase of the disease in which, for a time, the fraction of
infected individuals becomes O(1). Denoting the variables for this timescale with the superscript
“‡”, we write

t =
ln(1/εµ)

β−1
+ t‡, Sb = S‡b , Sn = S‡n, Ib = µI‡b , Im = I‡m,

which gives

dS‡b
dt‡

= −µS‡b − βI
‡
mS
‡
b , (4.11)

dS‡n
dt‡

= −βI‡mS‡n, (4.12)

dI‡b
dt‡

= S‡b − εI
‡
b − βI

‡
mI
‡
b − I

‡
b , (4.13)

dI‡m
dt‡

= εµ I‡b + βI‡m(S‡b + S‡n + µI‡b )− I
‡
m. (4.14)

We note that in this timescale I‡b decouples from the system at leading order. Defining S‡ =

S‡b +S‡n, then the leading terms S‡0 and I‡m0 of the series expansions for S‡ and I‡m, respectively,
satisfy the classic SIR model,

dS‡0
dt‡

= −βI‡m0S
‡
0, (4.15)

dI‡m0

dt‡
= βI‡m0S

‡
0 − I

‡
m0, (4.16)

subject to the conditions S‡0 → 1− and I‡m0 → 0+ as t‡ → −∞, using (4.10). Solving this system
we get

I‡m0 = (1− S‡0) +
1

β
ln
(
S‡0

)
. (4.17)

Since dI‡m0/dt = 0 implies S‡0 = 1/β, then the leading-order maximum extent of the epidemic is
given by Imax = (β − 1− ln(β))/β. Using the same approach, as described in Appendix B, the
following estimate for the duration Tσ of the epidemic can be determined

Tσ ∼
(

1 +
1

β

)
ln(1/σ), (4.18)

as β → ∞, recalling that the epidemic is “defined” to be when I‡m0 > σ. As t‡ → ∞, the
epidemic declines and I‡m0 → 0, then S‡0 tends to a constant, S‡∞ say, given by

1− S‡∞ +
1

β
ln
(
S‡∞

)
= 0. (4.19)

Since the human-human transmissible form of the disease does not distinguish between the two
susceptible classes, it follows that S‡n ∼ s0S

‡
∞ and S‡b ∼ (1−s0)S‡∞ as t‡ →∞.
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Figure 4: Comparison of numerical (solid) and the asymptotic approximations (dashed) presented in Section 4.1.3
for (a) ε = µ = 10−4 and (b) ε = µ = 1. The dotted line in plot (a) shows t = TL = ln(1/εµ)/(β − 1). The other
parameters are β = 4 and s0 = 0.8.

Figure 4 compares the numerical solutions for Sn, Im and R (solid lines) with the leading

order asymptotic approximations S‡n, I
‡
m and R‡ = 1 − S‡0 − I

‡
m (dashed lines). Here, equation

(4.15) is solved numerically on substitution of (4.17) for I‡m, using initial conditions derived by

matching with (4.10) as t‡ → −∞, namely at t‡ = −T < 0 we impose S‡0(−T ) = 1 − (1 −
s0)e−(β−1)T /(β − 1)2 for suitably large T (T = 10 in the figures). As to be expected there is
excellent agreement for ε = µ = 10−4 (fig. (a)), since both “small’ parameters are very small,
however, agreement continues to be good well beyond the expected range of validity as shown
for ε = µ = 1 (fig. (b)). The predicted epidemic onset time t = TL = ln(1/εµ)/(β − 1) (dotted
line in fig. (a)) also agrees well with solutions of the full problem.

The analysis is not quite complete as the balance on this timescale breaks down when the
epidemic declines to the point when Im = O(µ). Here, the infection rates of the Sb class by both
forms of the disease are once again in balance; the appropriate system for this fourth timescale
is the same as (4.6)-(4.9). The timescale at which I‡m = O(µ) depends on β as well as ε; for
example, in the limit β →∞ it occurs when t‡ = O(ln(1/µ)). The leading order behaviour has

Sb → 0, Ib → 0, Im → 0 and, the result of note in this new timescale, Sn ∼ s0S
‡
∞ as t → ∞.

From (4.19), the total fraction of the population that will get either form of the disease satisfies

R∞ ∼ R‡∞ = 1− s0S
‡
∞, where R‡∞ is given by

F (R‡∞, β) = 0,

and

F (R,R0) = 1− 1−R
s0

+
1

R0
ln

(
1−R
s0

)
; (4.20)

here, R0 is the basic reproduction number, see Section 4.2. It is straightforward to show that
dR‡∞/ds0 > 0, so the fraction that will become infected increases with s0. Furthermore, (4.20)
has the following behaviour in two limits of β

β ∼ 1 R∞ ∼ 1−s0 + 2s0(β − 1)− 8s0

3
(β − 1)2,

1� β R∞ ∼ 1− s0e
−β − s0βe

−2β,
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Figure 5: Heat map of S∞ in β−µ space and the approximate position of R0 = 1 (solid line) as given by equation
(4.21). The other parameters are ε = 10−4 and s0 = 0.8.

In the first case, the effects of the human-human transmissible form is second order, with the
contribution to the R class being from the infection of the Sb by the non-tranmissible form. For
the highly infectious case, only an exponentially small fraction of the population avoids catching
the disease.

Equation (4.20) is the same as that for Rhigh = 1 − Slow in Section 3, i.e. R‡∞ = Rhigh.
Thus, in the limit ε → 0 and µ → 0, the fraction of the population that acquires the disease is
R∞ ∼ Rhigh, which is in agreement with the right plot of Figure 2 as µ→ 0.

4.2. Summary of the asymptotic analysis

In addition to the ε, µ� 1 limit, we used the same approach to examine the cases (1) ε→ 0
and µ = O(1) (details not shown) and (2) the distinguished limit µ ∼ 1/ ln(1/ε) as ε → 0 to
determine an expression for R0 (Appendix A). Much of the singular perturbation analysis for
these limits follows exactly the same path as the above and we omit for brevity the details for
case (1), and present a partially complete analysis for case (2) in Appendix A. In case (1), the
non-mutated form of the disease readily infects the exposed portion of the susceptible population
(though not relevant to avian flu, it may be applicable to other diseases). A notable feature
for this case is the exposed portion of the population (i.e. the Sb class) is infected rapidly by
the non-transmissible form in comparison to disease mutation, the effective population that is
vulnerable to the mutated form are those that remain (i.e. the Sn class); consequently, the
effective reproduction number for this new limit is R0 ∼ βs0. This value of R0 and that of
R0 ∼ β derived in Section 4.1.1 is bridged by case (2), where in Appendix A it is determined to
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Epidemilogical features ε→ 0, µ = O(1) ε→ 0, µ→ 0

Basic reproduction number R0 βs0 β

Epidemic lag time TL
1

βs0−1 ln(1
ε ) 1

β−1 ln( 1
ε µ)

Maximum infected fraction Imax s0 − 1
β + 1

β ln( 1
βs0

) 1− 1
β + 1

β ln( 1
β )

Epidemic Duration Tσ (β →∞) (1 + 1
βs∗0

) ln(
s∗0
σ ) (1 + 1

β ) ln( 1
σ )

Infected Fraction R∞ F (R∞, βs0) = 0 F (R∞, β) = 0

Table 1: Table summarising estimates of the key characteristic quantities for an epidemic from the human-human
transmissible form of the disease, in terms of the model parameters, as predicted by the model from the analysis
in Sections 4.1 and from the equivalent analysis for ε→ 0 and µ = O(1). If β � ln(1/ε) as β →∞ then s∗0 = s0,
otherwise s∗0 ≈ 1 is a good approximation (see Appendix B). The function F (., .) is defined in equation (4.20).

be

R0 =

 β − (1− βs0) ln

(
β(1− s0)

1− βs0

)
− µ ln(1/ε) µ < (s−1

0 − 1)/ ln(1/ε),

βs0 µ ≥ (s−1
0 − 1)/ ln(1/ε),

(4.21)

in the limit ε → 0. Here on R0 = 1, we obtain β = 1 for µ → 0 and β = 1/s0 for µ = O(1)
as expected from the analysis of Section 4.1 and for case (1). Figure 5 shows a heat map of
the converged fraction of susceptibles S∞ as t → ∞ for β ∈ [0.8, 2] and µ ∈ [10−5, 102]. As
expected to the left of the diagram S∞ ∼ s0 and drops down as β increases passed the solid
line. The solid line is the plot of equation (4.21) and tracks the edge where S∞ ∼ s0 remarkably
well considering the estimate is only logarithmically accurate. In what follows we will focus our
discussion on the two principle limits (i) ε, µ→ 0 and (ii) ε→ 0 and µ = O(1), and not discuss
the distinguish limit further.

The asymptotic analysis of the model equations (2.9)-(2.13) enables the estimation of other
key quantities that characterise epidemics in terms of the parameters using relatively simple
formula; these are presented for the two principle limits in Table 1. Both these limits produces
results which are qualitatively similar, but the details are slightly different. The main predictions
of the analysis are

• The basic reproduction number R0 given by (4.21) differs in the two limits due to the
division in population classes of the susceptibles s0. The analysis shows that this is due
to the timescales and which form of the diseases each of the susceptible classes becomes
infected by. For µ = O(1), members of the Sb class are infected more by the bird-human
transmissible form, and consequently have all moved to the R class, to leading order, by
the time the epidemic of the human-human transmissible form takes hold. For µ � 1,
nearly the whole population is susceptible at the onset of the epidemic.

• There will be a significant time lag from when the bird-human transmissible has reached
its apparent peak, before the onset of the epidemic of the human-human transmissible
form. This lag phase is lengthened by decreased mutation and infection rates, becoming
infinite as R0 → 1. These results are demonstrated in Figure 6, showing the effect R0 = β
on the evolution of Im (left) and Sn (right).
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Figure 6: The evolution of Im and Sn for R0 = β = 2, 4, 8 and ε = µ = 10−4 and s0 = 0.8.

• During the epidemic, the maximum infected fraction and epidemic duration increase with
s0 (see Table 1). This indicates the perhaps unintuitive result that if the bird-human
transmissible is less infectious (smaller µ) then the epidemic from the human–human trans-
missible form will be worse.

• The leading order system that results during the epidemic timescale, equations (4.15) and
(4.16), is the classic SIR (Susceptible-Infectious-Removed) model; this is true for ε � 1

and µ = O(1) case as well, though S‡0 is replaced with S‡n0 . The usual discussion of the
SIR model involves a finite initial number of infectives, I0 > 0 say, whilst in contrast the
current system involves an infinitesimally small initial state, i.e. I0 → 0+. This means
that the extent of the epidemic corresponds to the least severe case of that predicted by
the standard SIR model.

• The upper and lower bounds derived for R∞ in Section 3 correspond to equation (4.20)
for µ� 1 and µ = O(1) cases, respectively, as ε→ 0. This explains why the R∞ is nearly
equal to the upper bound solutions in the left of Figure 2.

The first two points offer some insights into how the disease or epidemic could be managed.
Though the mutation rate cannot be altered, the infection rate β and the fraction of susceptible
population could be manipulated by quarantining and vaccination programmes. This is discussed
in the next section.

5. Eradication and control: quarantine and vaccination

The analysis of the previous section showed that having some form of direct or indirect control
over the infection rates β and µ and the population fraction of suseptibles s0, could significantly
reduce the impact of the disease. In this section, we discuss simple extensions to the model to
investigate the possible outcomes of a range of quarantine and vaccination measures. We note
that similar studies were undertaken on the avian flu models using numerical simulation [7] and
sensitivity analysis [23]. Here, we are able to derive analytical expressions to assess the efficacy
of treatment strategies.
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5.1. Quarantine

It is clear that quarantining will help reduce the impact of the disease, so the aim here is
to quantify its effects. We model quarantining by simply removing members of the infected
class at a rate proportional to the fraction of infected individuals. Equations (2.1) and (2.2) are
unchanged by this assumption and equations (2.3) - (2.5) become

dIb
dt

= µSb − εIb − γIb − qIb −
β

N
ImIb, (5.1)

dIm
dt

=
β

N
Im(Sb + Sn + Ib) + εIb − γIm − qIm, (5.2)

dR

dt
= (γ + q)(Im + Ib), (5.3)

where q is the quarantining rate constant. Equation (5.2) implies that the average timescale an
infective individual is infectious to others is reduced from 1/γ to 1/(γ+q). Non-dimensionalising
using the rescalings (2.7) and (2.8) and writing q̂ = q/γ leads to the obvious modification of
(5.1)-(5.3), (the hat being dropped in what follows). Using the analytical approaches described
in (4.1) and the equivalent for the µ = O(1) case, we deduce the following

ε� 1 and µ = O(1). The basic reproduction number becomes R0 ∼ βs0−q and, for R0 > 1,
the epidemic time lag TL is approximately ln(1/ε)/(βs0 − 1− q).

ε� 1 and µ� 1. Here, R0 ∼ β − q and, for R0 > 1, the time lag TL is approximately
ln(1/εµ)/(β − 1− q).

In both cases, the total infected fraction R∞ and the maximal extent Imax of the disease are
reduced; R∞ satisfying F (R∞, R0) = 0 in (4.20), but with R0 7→ R0/(1 + q). It is clear that
quarantining will help reduce the impact of the disease.

5.2. Vaccination

Vaccination essentially moves a proportion of the susceptible population to the removed or
recovered class. The timing or application of vaccination, however, may differ depending on the
circumstances and the accessibility of the vaccines. Here we briefly model three rather ideal
scenarios assuming an “all-or-nothing” mechanism for vaccine protection, making references to
the two limit cases of ε � 1 and both ε, µ � 1. Since those vaccinated are assumed to be all
alive they should be distinguished from those in class R (recall a proportion η of which will have
died); we will introduce Rv as the vaccinated population fraction.

5.2.1. A pre-infection vaccination programme

Here we consider the case when a fraction r0 of the population has been vaccinated against
the disease by t = 0. Assuming the vaccination was not targeted, this has the effect of modifying
the initial conditions to Rv(0) = r0, Sn(0) = (1−r0)s0 and Sb(0) = (1−r0)(1−s0). In both the
cases, this will have the effect of reducing the impact of the disease, particularly by reducing
the basic reproduction numbers in the ε � 1 and ε, µ � 1 cases to R0 ∼ β(1 − r0)s0 and
R0 ∼ β(1− r0), respectively, thereby increasing the chance of preventing an epidemic.
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5.2.2. Vaccination proportional to susceptible population fraction

For this case, the vaccination programme is applied throughout at a rate proportional to the
susceptible fraction, this is incorporated into the non-dimensionalised model through equations
(2.9) and (2.10),

dSb
dt

= −µSb − βImSb − νSb, (5.4)

dSn
dt

= −βImSn − νSn, (5.5)

dRv
dt

= ν(Sb + Sn), (5.6)

where ν is the dimensionless vaccination rate constant; the equations for Ib, Im and R remain
unchanged.

To avoid redoing the analysis of Section 4 to study this problem, we justify the results below
using a simple argument. In both the limits analysed, Sn ∼ s0 during the lag phase prior to the
epidemic; the current modification will lead to Sn ∼ s0e

−νt. For the vaccination programme to
be effective, we need s0 − Sn = O(1) so that ν TL = O(1) or more, hence we may deduce

ε� 1 and µ = O(1). The programme will be totally effective at preventing an epidemic if
(βs0−1)/ ln(1/ε) = 1/TL � ν, and will lessen its impact if ν = O((βs0−1)/ ln(1/ε)) =
O(1/TL).

ε� 1 and µ� 1. Same again, but the critical quantity for ν is about (β − 1)/ ln(1/εµ) =
1/TL.

Since ε� 1, the critical level 1/TL is a small quantity, which indicates that the lag phase for the
onset of the epidemic buys enough time to allow a “low level” vaccination rate to be effective.
Similar investigations based on the standard SIR model would predict that ν needs to be O(1)
in order to be effective; this could be a significant over-estimate, which may compromise the
application of this vaccination approach in managing the disease. We note that there is no
change to R0 in this analysis.

Figure 7(a) shows the recovered/removed fraction R against time to demonstrate how the
vaccination rate ν effects the total proportion of the population that had caught the disease.
Here, the relevant case corresponds to ε, µ� 1, and the values used are ν = X(β−1)/ ln(1/εµ) =
X/TL for X = 0, 0.1, 0.3, 0.5 and 0.6. The figure suggests that even at X = 0.5 (or ν = 1/2TL)
the vaccination programme significantly reduces the size of the epidemic. The effect of the
vaccination rate X on the fraction of the population that catches the disease, R∞, is shown
in Figure 7(b). The analysis predicts that the vaccination programme will be effective when
X = O(1), and the numerical results support this. Interestingly, as the infection rate β increases,
the removed fraction R∞ decreases slightly beyond X ≈ 0.6. The general pattern of the profiles
shifting to the right on increasing β ends at about β = 20, as β increases further (unlikely to
be relevant in biological terms) the profiles retreat to the left due to the increased effects of the
vaccination rate (as ν ∝ β for fixed X) outpacing that of the rate of infection.

5.2.3. Fixed rate vaccination programme

In this case, we consider vaccines that are applied to the susceptible population at a fixed
rate φ, starting at t = 0 when the first case of the bird-human transmissible form is identified.
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Figure 7: Plot of (a) the recovered/removed fraction R against time and (b) the total fraction that acquire the
disease, R∞, against vaccination rate X (where ν = X(β − 1)/ ln(1/εµ)). The curves, from left to right, in plot
(a) correspond to X = 0, 0.1, 0.3, 0.5 and 0.6 and in plot (b) they are β = 2, 3, 4 and 20. The parameters, unless
otherwise stated, are β = 4, ε = 10−4, µ = 10−4 and s0 = 0.8.

This leads to the following modification to the dimensionless equations (2.9), (2.10) and (2.13),

dSn
dt

= −βImSn − s0φH(Sn), (5.7)

dSb
dt

= −µSb − βImSb − (1−s0)φH(Sb), (5.8)

dRv
dt

= Im + Ib + φ (s0H(Sn) + (1−s0)H(Sb)), (5.9)

where H(x) is the Heaviside step function defined as H(x) = 0 for x ≤ 0 and H(x) = 1 otherwise;
this is to ensure that the solutions of Sn and Sb remain non-negative.

Using this vaccination programme, the amount of removed susciptibles is proportional to
time so will only have an effect if φTL = O(1) or larger. For both the asymptotic limits
investigated we can make the same conclusions as those in Section 5.2.2, exchanging ν in the
discussion with φ.

6. A stochastic model

In the early stages of an epidemic, where only a few individuals have the mutated form of
the disease, progression is likely to be very stochastic. For instance, if the rate of catching bird
flu and the mutation rate to the transmissible form are both very small, then the population
of Ib will be small and individuals with bird flu will most likely be recovered/removed before a
mutation event occurs. In such circumstances, a deterministic model may not capture the early
stages well and we hence investigate in this section a stochastic form of the model proposed in
Section 2. In particular, we will investigate how stochasticity effects features of an epidemic
such as the maximum number of individuals infected with the transmissible form, total number
of those recovered or removed and the timescales for the onset of the epidemic and its duration.

The proposed stochastic model will take the form of a continuous time Markov process,
whereby future states are only dependent on the present one. Using the same variable names as
before, the four state variables are Sn(t), Sb(t), Ib(t) and Im(t), the variable R(t) being derived
from (2.6). We will use the term “event” to describe a single transition from one state variable to
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Event Transitional Probability, pk I′

Sb infected by non-transmittable birdflu µ i1 δt (i1 − 1, i2, i3 + 1, i4)

Ib mutated to Im ε i3 δt (i1, i2, i3 − 1, i4 + 1)

Sb infected by mutated flu (β/N) i1 i4 δt (i1 − 1, i2, i3, i4 + 1)

Sn infected by mutated flu (β/N) i2 i4 δt (i1, i2 − 1, i3, i4 + 1)

Ib infected by mutated flu (β/N) i3 i4 δt (i1, i2, i3 − 1, i4 + 1)

Ib recovery/removal γ i3 δt (i1, i2, i3 − 1, i4)

Im recovery/removal γ i4 δt (i1, i2, i3, i4 − 1)

Table 2: Transition probabilities from X(t) = (Sb(t), Sn(t), Ib(t), Im(t)) = (i1, i2, i3, i4) for each of the seven
possible events leading to population X(t+ δt) = I′ as δt→ 0; each transitional probability has an o(δt) error.

another. Let X(t) = (Sb(t), Sn(t), Ib(t), Im(t)) be a state-space vector and let I = (i1, i2, i3, i4)
be a population vector, then Table 2 shows the transition probabilities pk = P (X(t + δt) =
I′ |X(t) = I), where k = 1, .., 7, for each of the seven events as δt→ 0.

We can, in principle, use these transition probabilities to construct master equations and
generating functions to formulate ODEs for the moments [2]. However, as is usual, master
equations are difficult to analyse and the formulated ODEs suffers from the identification of
suitably reliable moment closure conditions; see [6, 14, 20] and references therein for examples
in epidemiological modelling. We will instead analyse the Markov process computationally.

6.1. Comparison between continuum and stochastic model

The stochastic model is simulated using the “the first reaction method” [31]. Here, at each
time point a time step, δtk, is randomly calculated from an exponential distribution with mean
pk for each of the seven events. The event k′ that is chosen to occur corresponds to the time
step δtk′ = min

k=1,..,7
{δtk}. We then adjust the population according to event k′ and move from

t 7→ t + δtk′ and repeat the process. The randomly chosen δtk is computed in the simulations
using pseudo-random numbers from an uniform distribution, U [0, 1), converted to one satisfying
an exponential distribution via inverse transform sampling [31]. In all simulations below, we
scale the transition probability parameters so that γ = 1 and β = 4, hence the values used for
µ and ε are the non-dimensional version of the continuum model.

Figures 8 and 9 compare the mean time profiles from 1000 stochastic simulations with those
of the deterministic model. Here, the mean time profile for variable Im, for example, is defined
as

〈Im〉(t) =
1

1000

1000∑
p=1

I(p)
m (t),

where I
(p)
m (t) is the population of those infected with the mutant flu at time t in realisation

p; the corresponding term for the other variables is similarly defined. In Figure 8, the time
profiles of Sn and Im are shown for ε = µ = 0.01 (top) and ε = µ = 0.001 (bottom) for different
populations N chosen to demonstrate the varied agreement with the deterministic solutions;
here γ, s0 and β (i.e. R0 as ε = µ → 0) are fixed. As expected, increasing N improves the
agreement, whilst increasing the parameters for infection rate from birds µ and the mutation
rate ε also improves agreement for fixed N . The latter observation is further demonstrated
in Figure 9. The profiles for Sn in Figure 8 (left) show that the point of divergence between
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Figure 8: Comparison of the results from deterministic (solid curves) and stochastic (mean of 1000 realisations)
simulations. The populations have been normalised to fractions for direct comparison across different total
populations N . The left plots compare Sn/N and 〈Sn〉(t)/N and the right ones Im/N and 〈Im〉(t)/N , whilst the
top and bottom plots are for ε = µ = 10−2 and ε = µ = 10−3, respectively. The populations in the top plots are
N = 107 (dashed curves), N = 106 (dotted curves) and N = 105 (dash-dotted curves) and for the bottom they
are N = 108 (dashed curves), N = 107 (dotted curves) and N = 106 (dash-dotted curves). The other parameters
are γ = 1, s0 = 0.8 and β = 4 for all cases.

solutions occurs when the mutated form appears to take hold and infect the entire susceptible
class, where for smaller N and/or ε = µ the drop in mean density is less steep. Here, the time
at which Im reaches epidemic levels is highly varied (see Figure 10) resulting with a profile for
〈Im〉(t) that is more smeared out.

Figure 10 shows comparisons between the deterministic solutions to four instances of the
stochastic simulations, using a parameter set that leads to a highly varied epidemic onset time.
On the right of Figure 10 the profiles of the mutated fraction are all very similar, albeit at
different time-points at which they reach their peak. Where Im reaches their peak, the corre-
sponding Ib profile drops down to near zero as shown on the left side of the figure. We note
that the deterministic model’s prediction of the rising profile of Ib is in good agreement with
each of the stochastic runs, where in the latter stochasticity leads to noise about the steady
fraction of Ib ≈ µ(1 − s0)/γ = 2 × 10−5. The plots reveal that stochasticity makes little dif-
ference with regards to the maximum Im and duration of infection, this being verified in the
results shown in Table 3. Furthermore, the table shows that total number of individuals in the
recovered/removed class as t → ∞ are in very good agreement. We note that the standard
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Figure 9: Comparison of stochastic (mean of 1000 realisations, left) and deterministic (right) simulations showing
the evolution Im and 〈Im〉 for ε = µ = 10−2 (solid curves), ε = µ = 10−3 (dotted curves) and ε = µ = 10−4

(dashed curves) with N = 107, γ = 1, s0 = 0.8 and β = 4 in all cases.
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Figure 10: Comparison of the deterministic model solution with 4 realisations of the stochastic model for Ib (left)
and Im (right). Parameters used are N = 107, ε = µ = 10−4, γ = 1, s0 = 0.8 and β = 4.

deviations of the stochastic model are less than 1% of the mean in the first three quantities
listed. However, where the deterministic model is a poor predictor of stochastic solutions is
with regards to the onset of the epidemic, where for smaller values of N, ε and µ it is a severe
under-estimate. For this reason, we analyse the stochastic model further to determine analytical
estimates for the epidemic onset time in Section 6.2. We investigated the distribution of onset
times TL for a number of values for N , ε and µ; two examples of which are presented in Figure
11, where the probability density functions for TL is approximated from 10000 realisations in
each case. Here, the onset times is split into equal time intervals (or bins) and the frequency
of elements from the raw data lying in each bin is normalised so that there is unit area under
the curve; the time points in the plot are the mid values in the bins. For larger ε and µ, the
shape of the distribution is near bell-shaped, which broadens and skews to the left as ε and µ
gets smaller. For the case of ε = µ = 10−3 (fig. (a)), the profile happens to fit very well to
that of the Gumbel distribution (here, the distribution’s two parameters are formulated using
the mean and standard deviation of the data). However, on comparing all of the probability
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Deterministic Stochastic

Maximum Im 4.0333× 106 4.0237× 106 ± 1.0146× 104

Duration of epidemic, Im > σN 9.8698 9.8742 ± 0.084654
Total infected, R∞ 9.8413× 106 9.8404× 106 ± 1.0129× 103

Epidemic lag time TL 5.2031 70.548 ± 66.949

Table 3: Table showing comparisons between the deterministic solutions and the means of 10000 realisations of
the stochastic model, with one standard deviation shown. Here, TL is defined so that Im(TL) = 10−3N where
N = 107; other parameters are ε = µ = 10−4, γ = 1, s0 = 0.8 and β = 4. All realisations had an epidemic phase.
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Figure 11: Approximations of the probability density function for epidemic onset time, TL, generated from 10000
realisations of the stochastic model. Plot (a) shows the case of ε = µ = 10−3 (solid, bin width of 0.1) together
with Gumbel distribution (dashed) formulated from the mean and standard deviation of the realisations. Plot
(b) shows the case of ε = µ = 10−4, plotted with a bin width of 4. The vertical dotted line indicates the mean.
The remaining parameters are N = 107, γ = 1, s0 = 0.8 and β = 4.

distributions available in the mathematics package MATLAB with all of the results generated
from the stochastic simulations, no single distribution fits the data well in all cases (indeed
all these distributions poorly fitted that shown in the right plot); hence this was not pursued
further. Figure 11(b) shows the case ε = µ = 10−4, where, interestingly, the modal value of
TL ≈ 10 in the plot is much closer to that predicted by the deterministic model.

6.2. Expected time for the epidemic onset

Described in Appendix C are two formulations to estimate the expected time of the epidemic
onset TL. Both formulations assume that during the progression of the epidemic when t < TL,
the infected populations are negligible in comparison to the uninfected classes, hence Sb+Sn = N
is assumed. The first formulation, described in Appendix C.1, assumes that the rise in Ib and
Im occur independently and the estimate of E(TL) is made by summing the time for Ib to reach
a pseudo-steady state Ib = Icb = µ(1 − s0)N/γ, giving say E(T1) and the time for Im to reach
σN given Ib = Icb , say E(T2); hence E(TL) ≈ E(T1) +E(T2). This can be calculated easily, but
is a flawed estimate since the rising of Ib and Im are not independent. The second formulation
considers changes in both Ib and Im leading to a two-variable recurrence relation to obtain
E(TL). This formulation, if solved directly, is very computationally intensive, particularly for
large N and less small ε and µ; described in Section C.2 is a method to obtain a good estimate
of the solution more efficiently.

The bullets in Figure 12 show the mean epidemic onset time from 1000 trials of stochastic
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Figure 12: Comparison of estimates for the onset of an epidemic defined to be when Im = σN with σ = 10−3 and
N = 107, as a function of ε = µ. The plots shows the mean onset time from 1000 trials of the stochastic model
(bullets), that predicted by the deterministic model (dotted line), and the two estimates of E(TL) described in
Appendix C, namely E(T1) + E(T2) from Appendix C.1 (dot-dashed line, curve (b)) and E(0, 0) described in
Appendix C.2 (solid line, curve (a)). The other parameters are γ = 1, s0 = 0.8, β = 4 and ρ = 1.5 (see Appendix
C).

model simulations at points between ε = µ = 10−5 to ε = µ = 10−1 for N = 107. This
shows the rapid increase in E(TL) as parameters ε = µ decrease. The dotted line shows that
the deterministic model is a very poor approximation for small ε = µ, but become very good
beyond ε = µ ≈ 10−3. Conversely, the first formulation, curve (b), estimates E(TL) well for
very small ε = µ, but fails to be a good prediction beyond ε = µ ≈ 3.10−4; this suggests that
assuming independence of Ib and Im is reasonable when ε = µ are very small. However, the
estimate from the second formulation, curve (a), is in very good agreement across the entire
range, suggesting that the constant uninfected population assumption is reasonable. We note,
that by increasing N improves the deterministic model’s prediction of E(TL), as expected; for
example, using µ = ε = 10−4 and (currently unrealistic) N = 1010, the stochastic simulation
mean from a 1000 trials gives E(TL) ≈ 5.24 is close to the deterministic model’s estimate of
TL ≈ 5.20.

7. Conclusion

In this paper, a simple mathematical model is constructed to study the outbreak of an
infectious disease following mutation of a non-transmissible strain for which only a subset of
the population are at risk of catching. This scenario may arise in avian flu, in which currently
only people working with poultry are likely to catch the disease, but a mutation could lead to a
human-human spreading strain, with potentially devastating results. We derived a mathematical
model extending an SIR type approach that divides each of the susceptible and infectious classes
into two subclasses. The susceptibles were divided into those who are (e.g. poultry farmers) or
are not at risk of catching bird-human strain and those who are infected with the bird-human
and human-human transmissible strains. We note, the assumed division of susceptibles into two
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(or more) classes has very wide application, where sub-populations with distinct disease exposure
characteristics to the non-mutated form could be based on activity, geography or demography.
The model has relatively few parameters and four dimensionless ones (β, µ, ε and s0), of these
s0 could be obtainable using suitable census data and using ordinary flu for the infection rates
we may expect β to be in the range 2 − 5 [8, 22]. Estimation of µ and ε will be more difficult
and will require clinical data and perhaps laboratory data for estimates of mutation rates.

Analysis of the model was aimed at predicting the severity of an epidemic in terms of the
model’s parameter values. In particular, we sought to establish the necessary conditions for an
epidemic to occur and key characteristics such as the timescale for the onset of the epidemic,
the size and duration of the epidemic and the maximum level of the infected individuals at
one time. For general parameter values, we derived in Section 3 bounds on the predicted
total fraction of the population who will catch the disease. Further progress was made in two
biologically feasible asymptotic limits in Section 4 using singular perturbation theory. Here,
analytical approximations to the model solutions were made by solving systematically deduced
reduced systems for different timescales, making it easier to identify the important processes at
various stages of the epidemic and to express key epidemic features in terms of simple formulae
(as summarised in Table 1). In particular, it was demonstrated that the naive assertion of
the reproduction number R0 = β (dimensionless) would not be appropriate for small ε and
µ ∼ 1/ ln(1/ε) or larger (equation (4.21)). Furthermore, the analysis highlighted the role of
parameters ε and µ on the logarithmic dependence on the timescale for epidemic onset, TL,
whilst other aspects of an epidemic (duration, maximum infectives etc.) are largely governed by
an SIR model and parameters β and s0. However, it is in the prediction of TL, for very small ε
and µ and insufficiently large populations, where the deterministic model fails, as demonstrated
in Section 6 using a stochastic model; the rarity of mutation events combined with failure to pass
on the infection result in extended onset times. This highlights the need for caution when using a
deterministic model to describe the progress of a disease in “large populations”, as the presence
of small parameters may necessitate the population to be much larger than expected (perhaps
beyond that which is applicable) for the model to represent well the mean of a stochastic process.
However, in all other key features of an epidemic, the results of the deterministic and stochastic
models were in very good agreement.

In Section 5, the model is extended to investigate the effect of a range of quarantine and
vaccination programmes. The simple formulations resulting from asymptotic analysis made it a
relatively simple task to predict the outcome of such measures and, in particular, indicate how
intensively the measures need to be applied in order for them to be effective. They target two
characteristics of the disease predicted by the model: 1) by reducing the effective basic reproduc-
tion number (specifically in the cases of quarantine and pre-infection vaccination programmes)
and 2) by exploiting the time lag prior to the epidemic, whereby a significant proportion of the
population will be vaccinated before the outbreak. Of course, the situation is more complicated
than that assumed in the model, with the existence of many and newly evolving flu virus strains
and the constant need to develop new vaccines. Without suitable estimates of all the parame-
ters, it is difficult to assert which programme will be the most effective. However, the analysis
confirms what is surely well known, that all measures will help and should be implemented.

The infection-mutation pathway assumed in the formulation of the models is intentionally
simple for analytical tractability, enabling a number of insights to be drawn in the possible
dynamics of epidemics resulting from a mutation; though, for example, the asymptotic analysis
of Section 4 can in principle be applied to much larger systems. Of course, such modelling
simplifications are made at a cost of a number of potentially important details. The model can
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be refined to consider other phases (e.g. incubation phase), population classes (e.g. bird popula-
tions), endemic scenario (population growth and migration), time dependent infectiousness and
recovery (e.g. integro- and/or delay- differential equation systems), and spatial effects (either
as a continuum or in a patch network). These refinements will doubtless lead to a models with
better predictive capabilities in more specific scenarios. Nevertheless, the current model serves
as a simple approximation to describe the emergence of mutated, spreadable disease, that is
simple enough to analyse in some detail and so provide insight into the timing and appropriate
use of control measures should the threat of an epidemic becomes imminent; for avian flu, we
hope this will never be the case.
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Appendix A.: Derivation of equation (4.21) for R0 as ε→ 0

In this appendix we determine an approximation to the surface R0 = 1, as defined by
Definition 2.1, in parameter space as ε → 0. The analysis of Section 4.1 (where ε, µ → 0)
demonstrated that R0 = β and in Section 4.2 (ε → 0, µ = O(1)) it was stated that R0 = βs0.
As described in Section 4 the transition between the values of R0 occurs in the distinguished
limit µ ∼ 1/ ln(1/ε) as ε→ 0. Writing

µ =
µ

L
, L = ln(1/ε),

and take as the initial scalings for t = O(1),

t = t�, Sb = S�b , Sn = S�n, Ib =
I�b
L
, Im =

ε

L
I�m,

leads to the system

dS�b
dt�

= −µ
L
S�b −

ε

L
β I�mS

�
b , (A.1)

dS�n
dt�

= − ε
L
β I�mS

�
n, (A.2)

dI�b
dt�

= µS�b − I�b − ε I�b −
ε

L
β I�mI

�
b , (A.3)

dI�m
dt�

= I�b + β I�m (S�b + S�n) − I�m +
β

L
I�m I

�
b , (A.4)
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subject to S�b (0) = 1−s0, S
�
n(0) = s0, I

�
b (0) = 0 and I�m(0) = 0. A full analysis involves making

expansions of the form S�b ∼ S
�[0]
b + εS

�[1]
b , whereby each of S

�[i]
b are expressed in powers of L−1

(likewise for the other variables). For a leading order estimate of R0 we only need the terms
with subscript [0]. Solving the leading terms in (A.1)-(A.3) we obtain

S
�[0]
b = (1− s0)

∞∑
n=0

(−1)n(µ t�)n

n!Ln
= (1− s0) e−µ t

�/L, S�[0]
n = s0,

I
�[0]
b = µ(1− s0)

(
e−µ t

�/L − e−t�
)

1− µ/L
,

where shown for S
�[0]
b is the derived infinite series in powers of 1/L conveniently collapsing to

an exponential form. Equation (A.4) becomes

dI
�[0]
m

dt�
= I

�[0]
b + f(t�) I�[0]

m , (A.5)

where f(t) = β
(
s0 + (1−s0)e−µ t/L

)
− 1. This solves to give

I�[0]
m ∼ A0(t�) exp

(
(βs0 − 1) t� + β(1− s0)

(1− e−µt�/L)

µ/L

)
, (A.6)

where A0(t�) ≥ 0 is given by

A0(t�) = µ(1− s0)

∫ t�

0
exp (F (z))

(e−µz/L − e−z)
1− µ/L

dz, (A.7)

with F (z) = −(βs0 − 1) z − β(1− s0)L(1− e−µz/L)/µ, noting that F ′(z) = −f(z). In the case

of R0 > 1, it is required that I
�[0]
m rises to O(1/ε) in order for the disease to progress to an

epidemic. As in Section 4.1.1 this will occur in a timescale t� ∼ ln(1/ε)/T , for some value T . In
our estimate for the parameter formulation corresponding to R0 = 1, we define T ∗ so that at
t� = ln(1/ε)/T ∗ we have

(i) I�[0]
m (L/T ∗) =

1

ε
, (ii)

dI
�[0]
m

dt�
(L/T ∗) = 0; (A.8)

the second condition implies that I
�[0]
m (L/T ) = 1/ε is the maximum extent of population fraction

with the transmissible form. If I
�[0]
m ∼ 1/ε then condition (ii) reduces to

f(L/T ∗) = β
(
s0 + (1−s0) e−µ/T

∗
)
− 1 = 0, (A.9)

at leading order. We note for t� ∈ [0, L/T ∗), it is straightforward to show that f ′(t�) < 0 and
hence f(t�) > 0. We can deduce immediately from (A.9) that

1 ≤ β ≤ 1

s0
, (A.10)

at t� = ln(1/ε)/T ∗ on R0 = 1.
Writing down condition (i) in algebraic form is made difficult by being unable to integrate

(A.7) in terms of commonly used functions, however, we can derive upper and lower bounds for
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A0(L/T ∗) in the limit ε→ 0 (or L→∞) that are both of size O(1). To do this, it useful to note
that since F (0) = 0 and that F ′(z) = −f(z) ≤ 0 and F ′′(z) > 0 in the domain t� ∈ [0, L/T ∗],
then F (z) < 0 and is convex in this domain. Noting further that (1− e−ax)/a < x for a, x > 0,
then F (z) can be bounded as follows

−(βs0 − 1) z − β(1− s0)z = −(β − 1) z < F (z) < F (L/T ∗)
T ∗

L
z < 0,

the second inequality resulting from convexity of F (z). Writing X = −F (L/T ∗)T ∗, so that
X > 0, then by substituting these upper and lower bounds on F (z) into (A.7) and integrate
yields the following bounds on A0(L/T ∗),

µ(1− s0)

β (β − 1)
< A0(L/T ∗) <

µ(1− s0)

X (X + 1)
, (A.11)

as L → ∞. In the limit of ε → 0, the bounds are positive, O(1) in size and independent of ε.
For case (i) in (A.8), taking the logarithm of (A.6), dividing through by ln(1/ε) and using from
(A.11) that ln(A0)/L� 1, the second condition on R0 = 1 is therefore given by,

(βs0 − 1)

T ∗
+
β(1− s0)

µ
(1− e−µ/T ∗) = 1, (A.12)

at leading order as L → ∞. Solving for T ∗ in (A.9) gives T ∗ = µ/ ln (β(1− s0)/(1− βs0)), so
that equation (A.12) leads to the following equation on R0 = 1,

µ = β − 1 − (1− βs0) ln

(
β(1− s0)

1− βs0

)
, (A.13)

as ε→ 0. Equation (A.13) is real for β < 1/s0, and from the limit of β → 1/s−0 we deduce that
the formula is only valid for µ < (1− s0)/s0. If µ ≥ (1− s0)/s0 then β = 1/s0 along R0 = 1, as

dI
�[0]
m /t� > 0 in equation (A.5) is guaranteed if β > 1/s0 as t� →∞. A useable definition of R0

is thus

R0 =

 β − (1− βs0) ln

(
β(1− s0)

1− βs0

)
− µ µ < (1− s0)/s0,

βs0 µ ≥ (1− s0)/s0,
(A.14)

in the limit ε→ 0. Writing µ = µ ln(1/ε) leads to the form shown in equation (4.21).
We note that if R0 > 1, then the analysis above only describes conditions for Im =

O(1/ ln(1/ε)), rather than Im = O(1) as stipulated in Definition 2.1. In the subsequent timescale,
Sb ∼ constant as Im continues to grow exponentially, leading to breakdown when the new
Im = O(ln(1/ε)), occurring on an additional ln(ln(1/ε)) timescale to that above. Consequently,
there will an error of size O(ln(ln(1/ε)))/ ln(1/ε) � 1 to the formula in R0. As this error is
small, (A.14) is applicable as a leading order estimate for the full definition of R0 in this paper.
The remaining analysis for this case is similar to that described in Sections 4.1.2 and 4.1.3 and
is not discussed further.

Appendix B.: Duration of the epidemic in the limit β →∞

In this appendix we aim to determine approximately the duration Tσ of the epidemic, which
is defined here to be the period of time at which Im ≥ σ, where constant σ ∈ (0, 1) is a suitably
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significant fraction of the population. We will seek solutions in the large infectious rate limit,
β → ∞, in order to obtain solutions to the variables as explicit functions of time and hence
the disease duration can be approximated. We are assuming that ε β � 1 so that the analysis
below is a special case to that of Section 4.1.3. We will recast the problem of that section to an
equivalent initial value problem, namely

dS0

dt
= −βImS0, (B.1)

dIm
dt

= βImS0 − Im, (B.2)

subject to

t = 0 : S0 = s0 − σ, Im = σ; (B.3)

for the problem in Section 4.1.3 we have s0 = 1, but we will keep it as s0 in the analysis below,
as it is of relevance for the µ = O(1) case discussed in Section 4.2 provided that β � ln(1/ε). In
the latter case, having 1� TL ∼ ln(1/ε)/(βs0− 1) ensures that Sb, Ib ∼ 0 before Im ∼ σ, so the
susceptible pool is only those in population Sn; if β ∼ ln(1/ε) or larger then setting s0 = 1 gives
a good approximation. The system (B.1)-(B.3) is the classic SIR model and it does seem likely
that the analysis below has been reported before in some form; however, we have not found any
such reference and hence its inclusion here. We note the problem to determine the epidemic
duration is a shooting problem, in which we impose the boundary condition Im(Tσ) = σ to
determine Tσ; this could be routinely solved numerically. However, for there to be a solution
Tσ > 0, dIm/dt must be positive at t = 0, hence β > 1/(s0 − σ); this is the condition on β for
the epidemic to reach the level Im = σ.

In the limit β →∞ there are three timescales of interest, namely t = O(1/β), t = ln(β)/βs0+
O(1/β) and t = O(1), the latter timescale leading to the approximate value of Tσ.

B.1. t = O(1/β)

Since β is large, the disease is highly infectious and will rapidly spread through the entire
susceptible population, hence there is this very small initial timescale. Writing

t =
τ̃

β
, Sn = S̃n, Im = Ĩm,

leads to

dS̃n
dτ̃

= −ĨmS̃n, (B.4)

dĨm
dτ̃

= ĨmS̃n −
1

β
Ĩm, (B.5)

which has the leading order solutions

S̃n ∼
s0(s0 − σ)

s0 − σ + σes0τ̃
, Ĩm ∼

σs0e
s0τ̃

s0 − σ + σes0τ̃
. (B.6)

Correction terms for S̃n and Ĩm can be found but involve somewhat unwieldy special functions,
however, for matching in the next timescale, we only need the expansion of the sum of S̃n and
Ĩm, namely

S̃n + Ĩm ∼ s0 +
1

β

(
ln(s0)− s0τ̃ − ln(σ + (s0 − σ)e−s0τ̃

)
. (B.7)
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As τ̃ →∞, we can show up to β−1 that S̃n + Ĩm ∼ Ĩm, hence

S̃n ∼
s0(s0 − σ)

σ
e−s0τ̃ , Ĩm ∼ s0 +

1

β

(
ln
(s0

σ

)
− s0τ̃

)
, (B.8)

from which it is confirmed that, to leading order, the entire population will become infected
with the disease. These expansions will remain valid until S̃n ∼ 1/β, i.e. τ̃ ∼ ln(β)/s0, when
there will be a change of balance in equation (B.5).

B.2. t = ln(β)/βs0 + O(1/β)
Here the disease has reached its peak. We write

t =
ln(β)

βs0
+
τ̃∗

β
, Sn =

1

β
S̃∗n, Im = Ĩ∗m,

to get

dS̃∗n
dτ̃∗

= −Ĩ∗mS̃∗n, (B.9)

dĨ∗m
dτ̃∗

=
1

β

(
Ĩ∗mS̃

∗
n − Ĩ∗m

)
, (B.10)

which leads to

S̃∗n ∼ s0(s0 − σ)

σ
e−s0τ̃

∗
,

Ĩ∗m ∼ s0 −
1

β

(
ln(β) + s0τ̃

∗ − ln
(s0

σ

)
+
s0(s0 − σ)

σ
e−s0τ̃

∗
)
, (B.11)

where we have matched with expansions (B.8) as τ̃∗ → −∞ and β → ∞. Here the number of
susceptibles decays to exponentially small levels, whilst the infected fraction remains relatively
unchanged. As τ̃∗ → ∞, the expansion breaks down when τ̃∗ ∼ β as recovery/removal of the
infected individuals becomes apparent.

B.3. t = O(1)
After the very rapid spread of the disease over the entire remaining susceptible population,

the epidemic declines over an O(1) timescale. The fraction of susceptibles is exponentially small
and can now be neglected and so our only concern is with the infected fraction. Writing

t = τ̄ , Im = Īm,

gives

dĪm
dτ̄

∼ − Īm,

from which we can deduce

Īm ∼ s0e
−τ̄ +

1

β
ln
(s0

σ

)
e−τ̄ ,

after matching with (B.11) as τ̄ → 0 and β → ∞. By imposing Īm(Tσ) = σ, we obtain the
approximate value for the duration Tσ

Tσ ∼
(

1 +
1

βs0

)
ln
(s0

σ

)
, (B.12)

as β →∞. We note for the parameter values used in Table 3, this approximation for Tσ yields
Tσ ≈ 8.63 (noting that “s0 = 1” in this case), which is an acceptable approximation to Tσ ≈ 9.87
given that β = 4 is only modestly large.
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Appendix C.: Expected time calculations for onset of epidemic

Described in this appendix are two formulations to estimate the expected time, E(TL), of the
stochastic model to reach the onset of the epidemic. The first approximation, Section C.1, is an
estimate calculated by adding the expected time for Ib to reach, for the first time, the pseudo-
steady level Icb = µ(1−s0)N/γ and the expected time for Im to first reach σN given Ib = Icb ; this
approximation assumes that the uninfected population remains constant (i.e. ≈ N) and involves
the simple evaluation of two recurrence relations. The second approximation, Section C.2, uses
a two variable recurrence relation, i.e. numbers of Ib and Im, to determine the estimated time
for Im = Icm = σN ; once again the susceptible populations are assumed constant.

C.1. Simple formulation for E(TL)

In this formulation we consider the rise of Ib and Im as independent events and denote the
population for Ib = i = 0, 1, ..., I = Icb and Im = j = 0, 1, ..., J = Icm. We assume that i and j are
small compared to the total population N . We seek estimates for E(T1), the expected time for
the first instance of Ib = Icb , and E(T2), the expected time for the first instance Im = Icm given
that Ib = Icb , to find the total expected time for epidemic onset via E(TL) ≈ E(T1) +E(T2). To
calculate these expected times, we consider changes in population over discrete steps of fixed
time interval δt, where the transition probabilities are given in Table 2. By defining Ebi to be
the expected number of discrete steps needed for Ib = Icb given a starting point Ib = i and Emj
to be the expected number of steps for Im = Icm given Im = j (given Ib = Icb ), then it follows
that

E(T1) = δtEb0, E(T2) = δtEm0 .

In the estimation of E(T1) we assume that the total uninfected population remains constant,
so that those infected with non-mutant bird flu come from a fixed pool of size (1 − s0)N . Let
pu = µ(1 − s0)Nδt be the probability of getting bird flu and pd = γ i δt be the probability of
recovery, then the expected number of steps to Ib = Icb satisfies the recurrence relation

Ebi = 1 + puE
b
i+1 + pdE

b
i−1 + (1− pd − pu)Ebi , (C.1)

subject to Eb0 = 1 + puE
b
1,+ (1 − pu)Eb0 and EbI = 0; this is illustrated in Figure 13. We

note that the probability of mutation has been assumed negligible since ε� γ. The recurrence
relation can be solved analytically, in which Eb0 can be expressed in terms of hypergeometric
functions and a sum of Gamma functions, however, (C.1) can be more easily computed by
writing zi = Ebi+1 − Ebi for i = 0, .., I − 1, leading to two recurrence relations

zi =
pd zi−1 − 1

pu
, Ebi = Ebi+1 − zi, (C.2)

subject to z0 = −1/pu and EbI = 0. Hence, by marching through the first recurrence relation for
zi to find zI−1 and then by marching back from i = I − 1 using the second recurrence relation
to determine the desired value of E(T1) ≈ δtEb0.

To estimate E(T2) the procedure is the same. By assuming Ib = Icb , we approximate the
transition probabilities as pu = (εIcb + β j)δt (accounting for mutation and infection of the
approximately fixed susceptible population N) and pd = γ j δt to obtain the same system as
shown in equations C.1 and C.2, except i and Ebi are swapped with j and Emj , respectively.
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Figure 13: Figure showing the transition possibilities of Ib = i bird flu infected individuals, where I represents
the pseudo-steady population I = Icb = µ(1− s0)N/γ.

C.2. Two variable formulation for E(TL)

As can be seen in Figure 12, the simple formulation predicts the mean onset time TL well for
very small ε = µ, but fails for larger, though still small, values of these parameters. An improved
prediction can be made if we consider Im and Ib simultaneously in the expected time formulation.
We once again assume that Sn and Sb are constant, s0N and (1− s0)N respectively, and denote
the infected populations with Ib = i = 0, 1, ..., ρI = ρIcb and Im = j = 0, 1, ..., J = Icm; where
constant ρ > 1 is such that ρIcb is an assumed upper bound for the stochastic excursions of Ib
about Icb (it is found that the estimated E(TL) remains relatively unchanged for any ρ > 1.5).
Over a time-step δt, the population (i, j) can either remain unchanged or change in one of five
directions with probabilities p1, ..., p5; the transition probabilities being shown in Table 4 and
illustrated in Figure 14.

For the two-variable formulation, we let

Ei,j = E(number of steps for Im = Icm | Ib = i, Im = j),

whereby, an approximation to the epidemic onset time is given by E(TL) ≈ δtE0,0, i.e. the
expected time taken for the first instance of Im = J = σN starting from zero infected individuals
at t = 0. It follows from the transitional probabilities in Table 4, that Ei,j is given by the
recurrence relation

Ei,j = 1 + p1Ei,j+1 + p2Ei+1,j + p3Ei,j−1 + p4Ei−1,j + p5Ei−1,j+1 +

(
1−

5∑
k=1

pk

)
Ei,j ,

which can be rewritten as

p1 (Ei,j+1 − Ei,j) + p2 (Ei+1,j − Ei,j) + p3 (Ei,j−1 − Ei,j)
+ p4 (Ei−1,j − Ei,j) + p5 (Ei−1,j+1 − Ei,j) = −1, (C.3)

and are subject to

i = 0 Eqn. (C.3) with p4 = p5 = 0,
i = ρ I Eqn. (C.3) with p2 = 0,
j = 0 Eqn. (C.3) with p3 = 0,
j = J Ei,J = 0.

 (C.4)

Equations (C.3) and boundary conditions (C.4) form a closed, sparse linear system for (ρI +
1)× J = ρσµ(1− s0)N2/γ + σN unknown variables.

Despite the sparseness of the matrix, for large N this is a computationally massive problem,
for example, in the µ = ε = 0.1 case shown in Figure 12 the number of variables Ei,j is
around 2 × 109. An alternative approach that leads to a good approximation to E0,0, but
using significantly less computation, involves converting (C.4) into a partial differential equation
employing asymptotic expansions as N → ∞. Let x = iγ/ρµ(1 − s0)N = i/ρIcb , y = j/σN =
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(Ib, Im) at time t (Ib, Im) at time t+ δt Transitional probability

(i, j) (i, j + 1) p1 = β j δt

(i, j) (i+ 1, j) p2 = µ (1− s0)N δt

(i, j) (i, j − 1) p3 = γ j δt

(i, j) (i− 1, j) p4 = γ i δt

(i, j) (i− 1, j + 1) p5 = ((β/N) i j + ε i) δt

(i, j) (i, j) 1−
∑5

k=1 pk

Table 4: Possible state changes of (Ib, Im) = (i, j) with associated transitional probabilities. They correspond to
those shown in Table 2, except that (Sn, Sb) = (s0N, (1− s0)N).
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Figure 14: Schematic of the transitions presented in Table 4 and showing the boundaries of variables (Ib, Im) =
(i, j), where J = Icm = σN , I = Icb = µ(1− s0)N/γ and constant ρ > 1.

j/Icm and E(x, y) = Ei,jδt (so that E(TL) ≈ E(0, 0)), then taking Taylor expansions up to and
including terms of size O(1/N) we obtain as N →∞,

A1
∂2E

∂x2
+ A2

∂2E

∂x∂y
+ A3

∂2E

∂y2
+ B1

∂E

∂x
+ B2

∂E

∂y
= 1, (C.5)

defined on x ∈ (0, 1) and y ∈ (0, 1), where

A1 = −γ(ερx+ γ(1 + ρx) + ρσβxy)

2µs0Nρ2
, A2 =

εx+ σβy

σN
,

A3 = −γσy(β + γ) + µρs0x(ε+ βσy)

2γNσ2
,

B1 = εx− γ

ρ
(1− ρx) + σβxy B2 = −y(β − γ)− µρs0x(ε+ βσy)

γσ
,
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with β̂ = βN/γ, subject to

∂E

∂x
(0, y) = −1

γ
,

∂E

∂x
(1, y) =

1

γ + ε
,

∂E

∂y
(x, 0) = − σγ

εµ(1− s0)
, E(x, 1) = 0. (C.6)

Here, the Neumann conditions result from the leading order gradients normal to the sides of the
domain as N →∞. The results were found to be sensitive to the choice of boundary conditions,
but these yielded solutions that agree well with the mean of the stochastic simulations.

The system (C.5) and (C.6) is solved using a finite element scheme on a non-uniform rect-
angular grid. The solutions shown in Figure 12 were generated on a grid with fixed interval
dx = 1/ρIcb in the x direction and in the y direction we used dy = 1/Icm, 10/Icm and 100/Icm in
the regions y ∈ [0, 0.01], [0.01, 0.1] and [0.1, 1], respectively. The changing steps in y reflect the
presence of a boundary layer around y = 0, whilst ∂E/∂y = O(1) in (0, 1]. We note that the dx
and smallest dy steps are equivalent to solving the original recurrence relation, however, for the
example stated above the number of values for E(xi, yj) to be determined is reduced to around
2 × 107. We further note that for a good approximation, a fixed dx at the stated value was
needed.
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