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Abstract

Magnesium (Mg) has grasped the attention of biomaterial researchers due to its de-

sirable properties for orthopaedic implants. It is a biodegradable, lightweight struc-

tured metal with mechanical properties more comparable to the human bone than

frequently used implant materials like titanium and stainless steel. However, the el-

ement corrodes rapidly in aqueous environments, which prevents its direct use as an

implant material. In this thesis, novel mathematical models are presented to address

the problem of Mg corrosion.

In aqueous environments, a Mg implant reacts to form magnesium hydroxide

(Mg(OH)2), which can react further with bicarbonate ions to form magnesium car-

bonate (MgCO3); these reactions are considered in the corrosion models developed in

this work, and this is the first study to consider MgCO3. A simple mass action model

was derived first, which predicted the amount of Mg and its corrosion products over

time, where an exponential decay of Mg was perceived.

The backbone of this thesis is a PDE model for Mg corrosion, which considers

distinct porous layers of Mg(OH)2 and MgCO3 surrounding a block of Mg with the

advection and diffusion of H2O and CO2 through porous media; this porous media as-

sumption is a novel feature in comparison to other metal corrosion models. The model

was derived and analysed in one spatial dimension for Cartesian, radically symmetric

spherical and cylindrical geometries. Singularities resulting from the model at small

time were handled using asymptotic analysis. The effect of the model parameters on

key timescales was investigated, whereby porosity of the layers and reaction rates of

H2O and Mg were shown to have a significant effect. Furthermore, the porous me-

dia assumption on the Mg compound layers led to the prediction of a slightly faster

corrosion of the original Mg block compared to that with different rates of advection.
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In addition to the above, corrosion from inside a single Mg pore was considered

using the same modelling approach. The timescale for pore closure and the size of

Mg corrosion at pore closure were of particular interest, and were affected by changes

in the parameters. The pore closure time was found to be rapid in comparison to the

degradation time of the implant.

The final model in this work is a physiologically based pharmacokinetic (PBPK)

model, which is used to explore the effects of a corroding Mg implant on blood serum

levels; a high amount of Mg in the blood can cause complications. Values for the

implant release rate of Mg and urine excretion rates were refined in the model, where

it was highlighted that an Mg implantation must be carefully considered for patients,

particularly those with reduced renal function.
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Chapter 1

Introduction

Orthopaedic implant surgeries are required when the bone fails to heal and regenerate

by itself after a severe bone defect or fracture. Implant materials are used to hold

the bone together whilst it heals, and these can come in the form of screws, stents,

pins and plates (see Figure 1.1 for a fracture fixation using screws). The requirement

of orthopaedic surgical procedures are usually due to fractures resulting from osteo-

porosis or a traumatic accident, both of which are increasing due to people living

longer, and the occurrence of more sport injuries and road accidents [9]. On top of

this, additional surgeries are performed to remove the implants after the bone has

healed because frequently used implant materials are non-biodegradable; these sur-

gical procedures are also on the rise [10]. A biodegradable material like magnesium

(Mg) would eliminate the need for implant removal surgery.

Magnesium is a lightweight structured metal that is becoming increasingly popular

for bone implants due to its desirable assets. As an orthopaedic implant, magnesium

degrades and replaces bone tissue whilst healing a fracture eventually leading to its

full absorption into the bone. Ionic magnesium is the fourth most abundant cation in

the human body. The element is detected in large amounts in the bone tissue, and is

a significant component in stimulating bone growth [11, 12, 13]. Furthermore, mag-

1
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Figure 1.1: Screws used to fix a bone graft in place. Taken with permission from [2]

nesium holds physical and mechanical properties more comparable to human bone

than frequently used implant materials like titanium and stainless steel, thus elimi-

nating the problem of stress shielding. Stress shielding is caused by a conventional

implant material through the removal of normal bone stress, which leads to a lower

bone density [14].

While there are numerous benefits of magnesium implants, Mg has the undesir-

able property of rapid corrosion in an aqueous environment, which is consistently an

obstacle for biomaterial researchers [15]. This corrosion is due to magnesium being

reactive with water forming magnesium hydroxide, Mg(OH)2, and releasing bubbles

of hydrogen that can deposit near the implant to form gas pockets. Furthermore,

the rapid corrosion causes the loss of mechanical support before the newly formed

bone tissue can bear the load, thereby preventing the bone from healing correctly.

A gradual degradation of Mg is thus preferable. The rapid corrosion effects can be

mitigated by using alloys of magnesium, and research into this for their use in or-

thopaedic implant devices is vastly growing [6, 16]. Physiological consequences of Mg
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implants have also been widely explored [12, 17]. However, the major challenge that

continues to be faced by regulators and industry is how to predict the corrosion rate

of magnesium metal-based biomaterials in vitro and correlate this to the timing of

its absorption in vivo. In this thesis, the problem is approached using mathemati-

cal modelling aimed to provide a systematic means of quantitatively describing the

physiochemical interaction during magnesium corrosion processes in vitro, further in-

forming standardisation of in vitro investigation of magnesium alloy corrosion and

implant design parameters for optimal bone growth.

The degradation of Mg in an aqueous environment involves the reaction between

Mg and H2O to form Mg(OH)2, which then reacts with other physiological ions in

the environment such as dissolved CO2, to ultimately form magnesium carbonate,

MgCO3. The latter feature is currently absent in the few magnesium corrosion math-

ematical models that exist, and is believed to play an important part in the per-

formance of an implant in vivo [18]; this is the first study to consider MgCO3 in a

magnesium corrosion mathematical model. To describe Mg degradation, two types of

mathematical models are developed in this thesis; an ordinary differential equation

(ODE) model (Chapter 2) and a partial differential equation (PDE) model (Chapters

3 and 4). The PDE model is the backbone of this thesis, for which an extension of the

approach by [19] was adopted, but applied instead to magnesium, and the resulting

layers of corrosive products Mg(OH)2 and MgCO3. A novelty of the PDE model is

that it considers the corrosion layers as porous media, whereby there is a fluid phase

flow within the pores of the developing crystal structures, so that the reactants, H2O

and CO2, can advect, as well as diffuse, through them. Whether or not this porous

media assumption leads to substantially different results is one of the aspects explored

in this thesis.

Typically, a magnesium sample for research into orthopaedic applications is porous.
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Depending on the size and number of pores, this is known to be beneficial during the

absorption of an implant [6]. To include porosity in this work, the degradation in-

side a magnesium pore is analysed (Chapter 4). Such an approach on modelling the

degradation of magnesium adds to the novelty of this thesis.

The absorption of a magnesium implant incorporates the release of magnesium

ions into the blood resulting in an increase in magnesium levels. An excessive amount

of magnesium in the blood can lead to a condition called hypermagnesemia, which

can have a serious impact on the patients health if left uncontrolled. It is known that

magnesium deficiency is a common trait in the western world and the human body is

effective at excreting any excess magnesium via the kidneys [8], so a degrading mag-

nesium implant may not lead to hypermagnesemia, but, in agreement with [20], such

effects should still be monitored. A physiologically based pharmacokinetic (PBPK)

model is thus developed in this thesis, which aims to ensure hypermagnesemia can

be prevented during implantation (Chapter 5). It is the first mathematical model

derived to explore this issue.

To sum up, four original mathematical models have been developed in this thesis,

that aim to provide a framework for describing magnesium degradation in vitro and

in vivo. The long-term goal is to guide relatively simple in vitro experimentation

that can inform optimal choices for model parameters, which can then be used, with

appropriate geometries and dimensions, to predict corrosion in vivo.

The remainder of this chapter reflects on different topics surrounding magnesium

corrosion of orthopaedic implants starting with a history of magnesium implants.

Next, the degradation of magnesium is explained in detail, after which Mg based

implants are compared to other materials. Following this, in vitro and in vivo studies

are reviewed, and then mathematical models on degradation and PBPK models are

discussed. The chapter ends with a description of the thesis structure.
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1.1 The History of Magnesium Implants

When discussing the history of magnesium implants, the work of Witte [21] is cited

by many researchers [12, 22, 23, 24]; it includes a brief history which is summarized

here. The element, magnesium, was discovered in 1808 by the British chemist Sir

Humphry Davy. In medicine, magnesium implants have been applied in osteosythesis,

neurorrhaphy and cardiology. A remarkable result of Mg implantation was in the

treatment of proliferating hemangioma in a 3-month-old child located on the face,

throat and shoulder, [21, 25]; hemangioma is the growth of blood vessels.

The first use of magnesium in orthopaedic surgery was by Lambotte in 1906, who

used the implant on a 17 year old to treat a fractured bone of the lower limb. The

implant was later removed due to the evolution of gas cavities and the pain experi-

enced by the patient [12, 21]. Through further experiments the complete absorption

of magnesium was witnessed by Lambotte [21]. Research on magnesium orthopaedic

implants in the beginning of the twentieth century was quite focused as several re-

searchers contributed towards different findings. However, because of the issue of

its rapid corrosion rate, surgeons became attracted to stainless steel and titanium

implants when they were invented and neglected the concentrated use of magnesium

as an implant material, [25]. According to [25], stainless steel was developed in the

1930s, and [26] reports that titanium alloys were first employed in the 1960s; the

use of both has gradually increased over time. Other implant materials were also

invented, but stainless steel and titanium still remain popular choices today [22, 27].

Nevertheless, concerns over these implant materials regarding non-biodegradability

and problematic corrosion products led the implant industry to reassess magnesium

in the late 1990s [20, 25]. Since then an extensive amount of research has been con-

ducted on magnesium as an orthopaedic implant material focusing on its enhancement

in corrosion resistance [25]. A review by Kirkland in 2012 [23] pinpoints that inter-
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national journals are publishing approximately 10 to 15 articles on Mg orthopaedic

implants per week. Furthermore, a review written in 2014 describes the increasing

rate of interest in Mg as “exponential” [20].

1.2 Degradation of Magnesium

Countless papers hail magnesium for its distinct physical and mechanical properties

for bone implants, but while many desirable features of Mg can be emphasised, it

does hold undesirable properties. These are all related to its rapid corrosion rate in

an aqueous environment [23].

In the body, or in a clinically relevant environment, Mg implants undergo the

following reaction

Mg + 2 H2O −−→ Mg(OH)2 + H2, (1.1)

to produce magnesium hydroxide and hydrogen gas [16]. The reaction is rapid causing

an excess release of hydrogen gas in a short time that can accumulate to form gas

pockets near the implant and delay healing [16, 23, 28, 29]. A build-up of the gas can

cause necrosis of tissues; which is the unregulated death of cells in the tissues. In the

worst-case scenario severe hydrogen evolution can block the blood stream resulting

in a fatality [23, 28]; although this has not yet been reported from implantation

studies. The magnesium hydroxide produced in (1.1) acts as a protective layer on the

magnesium surface, but is only stable at a high pH, which means that in physiological

environments it is vulnerable to further corrosion [30]. The hydroxide can react with

other physiological ions in the body or in clinical solutions, such as dissolved carbon

dioxide, chloride ions and phosphate ions, forming further magnesium compounds

[16, 31, 32]. All products produced during the degradation process are non-toxic [6],

but if the reaction in (1.1) is rapid then it can lead to toxicity due to an increase in

local pH [33]. Furthermore, the rapid corrosion causes the loss of mechanical support
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before the newly formed bone tissue can bear the load.

Impurities within Mg metal also contribute to the rapid corrosion rate in (1.1)

[28, 29]. The contaminants emerge unintentionally during its manufacturing process

and are found in small amounts; they include iron (Fe), nickel (Ni) and copper (Cu).

To determine tolerable amounts of the impurities in Mg, the notion of “tolerance

limits” has been introduced [29, 34]. When the amounts of Fe, Ni and Cu are beyond

the “tolerance limit” Mg degradation is accelerated.

To mitigate all the harmful effects of Mg corrosion mentioned above, implants are

being alloyed with small amounts of other elements or coated with a protective layer

[6, 23]. However, the corrosion of the alloying elements within the implant can lead to

toxicity [23, 27], which means that alloying components need to be carefully selected.

For this reason, the branch of Mg based alloys within orthopaedic implants is broad.

This topic is discussed further in Section 1.4. Moreover, a high purity Mg, which

is not usually achievable, is said to be more corrosion resistant than Mg alloys; but

compared to commercial purity Mg, alloying elements in their pure form are “nobler”

[16, 28]. In agreement with [28], understanding the degradation of a commercial pu-

rity Mg is the groundwork to apprehend Mg alloys, coating and purification impacts.

This thesis observes the corrosion of a commercially pure Mg, which is referred to as

“pure magnesium”.

Returning to (1.1) magnesium hydroxide undergoes further corrosion with phys-

iological ions in the body or in clinical environments. The most mentioned reaction

in the literature is with chloride ions that are present in salt solutions in vitro (re-

flecting that in physiological environments) to produce magnesium chloride MgCl2

[6, 16]. Studies have observed the long-term degradation of Mg in vitro of which

the final products are found to be crystals of magnesium carbonate, MgCO3, and

a precipitate of calcium phosphate, Ca3(PO4)2 [18, 31, 35, 36]. The formation of
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magnesium carbonate is of interest in this thesis. The reaction of hydrogen carbon-

ate ions, HCO –
3 , with magnesium hydroxide leads to the formation of magnesium

hydrogen carbonate, Mg(HCO3)2, which then decomposes to form a stable layer of

magnesium carbonate. The intermediate magnesium hydrogen carbonate is thermo-

dynamically unstable at atmospheric levels of CO2 [37]; it is thus assumed that the

hydrogen carbonate form is short-lived and therefore neglected in the forthcoming

work, except in Chapter 2. A representation of the overall reaction is

CO2 + H2O←−→ HCO −
3 + H+, (1.2)

Mg(OH)2 + HCO −
3 −−→ MgCO3 + H2O + OH−, (1.3)

which is demonstrated in [18], where the authors tested the degradation of Mg in

vitro using cell culture medium with the presence of a hydrogen carbonate buffering

system using concentrations reflecting that in the blood (27 mmol/L [38]). This led

to the corrosion of magnesium hydroxide via the reaction in equation (1.3). Both

the concentration of CO2 or HCO –
3 can be viewed for the reaction [39], because

the stoichiometry for water is the same. In this thesis the conversion of magnesium

hydroxide to magnesium carbonate is summarized by [37, 40],

Mg(OH)2 + CO2 −−→ MgCO3 + H2O. (1.4)

The stable layer of MgCO3 eventually dissolves as it is absorbed into the bone, but

due to the time span of studies, accurate information regarding this is unavailable.

Consequently, in this work, the carbonate is regarded as the final layer. Equations

(1.1) and (1.4) are used as the basis for the model formulation in Chapters 2, 3 and

4.
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1.3 Magnesium vs. Other Implant Materials

Titanium (Ti), stainless steel and cobalt-chromium (Co-Cr) and their alloys are the

most popular orthopaedic implant materials currently used for fracture fixation, and

these are compared to Mg in numerous papers to highlight and discuss why researchers

are inclined towards Mg based implants [6, 13, 28]. First and foremost, unlike the

current popular materials, Mg is biodegradable. The ability to fully degrade in the

human body means that it will save on the expenses and risks incurred when under-

going a second surgery to remove a permanent implant. Such hardware removal can

be the cause of an infection, pain, rejection or metal allergy, all of which are usually

caused by traditional materials [27, 41], or it could just be the patient’s individual

choice. Implant removal surgeries are rising. The authors in [10] describe them to be

one of the “most frequent” surgical procedures in the western world. In their study

they found that implant removal surgery led to a high level of patient satisfaction

amongst German patients, and concluded that such surgeries should be carried out

as standard while also considering the patient’s safety. Hence, it can be reasoned that

the traditional use of a biodegradable material is more appropriate for the orthopaedic

implant industry.

Traditional implant materials experience some corrosion in body fluids; though

this is not as rapid as the corrosion of pure Mg. Nonetheless, the corrosion effects of

these implants are not safe because, unlike Mg, they are not tailored to safely degrade

in the body [23]. As a result of unsafe degradation, the implants are sometimes

removed. Ti alloys are the most popular as they are the most resistant to corrosion

[26].

The gradual degradation of a Mg implant in the human body is non-toxic [23],

and leads to its complete absorption in the bone while releasing Mg ions into the

blood [20]. This biodegradability carries some benefits for the body since Mg is an
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essential mineral in the human body, which holds around 21–30g of Mg. It is required

for providing normal neurological and muscular function [11, 12]. Mg is found in large

amounts in the bone tissue, where more than half of the content in the bone consists

of Mg [5]. Furthermore, it is a significant component in encouraging and reinforcing

bone growth, while an Mg deficiency in the human body promotes brittle and fragile

bones, which leads to osteoporosis [13, 23, 28, 42]. The popular implant materials, Ti,

stainless steel, Co-Cr and their alloys, are dormant; in other words their implantation

does not provide any benefit to the body like Mg does [23]. Nevertheless, overly

large amounts of Mg ions into the blood can potentially cause problems particularly

for vulnerable patients. Consequently, Mg in the blood should be observed during

orthopaedic implantation [20]. The problem is addressed in this thesis in Chapter 5.

The primary issue with the popular implant materials is the mismatch between

their mechanical properties and that of human bone [22]. In contrast, Mg has desir-

able mechanical properties that are much more comparable to human bone. Mg is

a light metal with a specific density of 1.74 g/cm3, which is close to that of natural

bone, (1.8-2.1 g/cm3 [6, 13]), while traditional implant materials are much less dense.

Furthermore, it is well known that Mg is a very structured metal, thereby making it

easier to machine and design for implantation [23]. The elastic modulus, compressive

yield strength and fracture toughness of Mg are closer to human bone than the tradi-

tionally used implant materials (see Table 1.1 for a comparison between Mg, natural

bone and Ti [6]). These physical and mechanical qualities eliminate the problem of

stress shielding, which is normally ascribed to the application of traditional metallic

implants.

Biodegradable implant materials that are currently used in the orthopaedic in-

dustry include polymers and ceramics. However, these do not provide the mechani-

cal properties of a metal implant, and for this reason their applications are limited
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Properties Magnesium Natural bone Titanium alloy
Density g/cm3 1.74-2 1.8-2.1 4.4-4.5

Elastic modulus (Gpa) 41-45 3-30 110-117
Compressive yield strength (Mpa) 65-100 130-180 758-1117

Fracture toughness (MPam1/2) 15-40 3-6 55-115

Table 1.1: Physical and mechanical properties of magnesium, natural bone and tita-
nium [6].

[28, 43, 44]. Like Mg, Fe is another biodegradable metallic implant that has been

investigated [26]. However, the corrosion behaviour of Fe is rapid, and its physical

and mechanical properties cannot compete with Mg; therefore, Mg stands out much

more to biomaterial researchers [13, 45]. To summarize, literature studies reflect that,

aside from its rapid degradation, Mg is a much more advantageous implant material

compared to those that are currently used [23].

1.4 Review of in vitro and in vivo Studies

The degradation of pure Mg implants have been tested against different Mg alloys

in many studies, and the various affects of these implants on the human body have

also been explored extensively in vitro and in vivo [18, 30, 32, 36, 46, 47]. In vitro

trials involve Mg and its alloys being immersed into clinical solutions. Results of

these studies are used to guide in vivo studies. Some past and recent discoveries are

mentioned in this section.

Many research studies stress on the importance of thorough considerations for

the choice of alloying components for Mg implants [16, 29, 48]. Typical components

are Calcium (Ca), Zinc (Zn) and Aluminium (Al) [16, 23]. Ca and Zn are the most

biocompatible elements used to enhance corrosion resistance, and Al enhances the

mechanical properties of the implant without increasing the corrosion rate. The most

widely studied Mg alloys are combined with Al and Zn [6, 16, 48]. The studies thus

far point to Zn as a promising component, whilst Al is more contentious as there is
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Figure 1.2: Two high purity Mg screws used to treat a femoral head fracture; a) The
femoral head was crushed into two parts (red circle); b) the broken femoral head was
connected by two Mg screws (red circle); c) X-ray imaging on the day of surgery,
which shows that the femoral head was repaired; and d) the femoral head was well
restored at 3 months post-surgery. Taken with permission from [3].

potential for side effects, for example researchers have recognised that a growth in Al

ion concentration in the brain is related to Alzheimer’s disease [16, 23, 48]. The au-

thors in [16] argue that Al containing alloys are not suitable for human implantation,

but should instead only be used in experimental studies. Like Zn, Manganese (Mn)

is another suitable alloying component, when used in small amounts, due to its toler-

ance in the human body and its ability to lessen the corrosion caused by impurities

within a Mg metal [28]. Furthermore, rare earths (RE) are also popular components

for Mg based alloys due to their good mechanical properties and corrosion resistance,

but their biocompatibility has raised some concerns [23]. Out of all the RE that have

been studied, Mg alloyed with neodymium (Nd) is said to have excellent mechanical
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properties with a more slower corrosion rate [48, 49].

Several factors are known to affect the bone response of a Mg implant, such as the

pH, surface roughness and surface charge; and further to this, the corrosion effects of

Mg can have an impact on various components in the human body. These attributes

are examined in many studies [17, 30, 36, 38, 50]. The study in [36] explored the

corrosion effects of an Mg-Mn-Zn alloy on the blood composition and organs, as well

as on the bone response after 6 months implantation in rats. The authors observed

a faster degradation in the bone marrow than in cortical bone. They report that

no hydrogen bubbles were perceived around the surrounding tissue after 5 weeks of

implantation, which they point out was probably due to the low degradation rate of

the alloy [36]; and after a histological analysis, a good compatibility between bone

tissue and the alloy was noted. Moreover, a blood examination indicated that the

alloy had only a little change in the blood composition and no disorder effect on the

organs (liver and kidneys). A fairly recent study investigated how collagen molecules

interact with a pure Mg and an Mg-Al-Zn alloy in vitro [17]. The pH in the solution,

assembly time, electrolytes and material surface roughness were found to have an

effect on the collagen monomer structures that were formed on the implant.

Recently, due to the elevated developments in corrosion resistance, Mg and its

alloys have been successfully implanted into humans over long-term studies in Ger-

many, China and Korea, where their full degradation was observed [3]. In Germany,

Mg-Y-Re-Zr alloy screws were used in the treatment of a hallux valgus (deformity

of the big toe), where the surgery showed a positive outcome [51]. Hence, the alloy

received recognition in 2013 and became the first Mg implant available to the med-

ical market worldwide for human implantation [52]. Following this the device was

employed to treat patients in Ireland and Iran [3]. In 2013, high purity Mg screws

were used in China to treat bone flaps in the femoral head of patients, and within
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a 1 year follow-up period, the implant proved to be successful [53]. Following this

success, the remarkable device was rewarded as an “innovative medical device”, which

then inspired Chinese researchers to further the use of the implant, where it was ap-

plied to a femoral head fracture. The study observed good recovery in the patient

3 months after the surgery, see Figure 1.2. Another human study was conducted

in Korea where the implantation of Mg-Ca-Zn screws for radius fractures returned

positive results [54]. Consequently, the alloy received recognition in 2015 and became

the second alloy available to the medical market worldwide [3].

Despite the growing amount of research into Mg implants for orthopaedic appli-

cations, there is a lack of robust tools allowing insights onto the progress of corrosion

in a spatial and temporal dependent manner. Further investigations are vital for

Mg to become a traditional implant material, particularly using an interdisciplinary

approach like that in this thesis. Papers such as [23, 55] also agree that further

contributions from different disciplines is a means for studying Mg implants.

1.5 Degradation Models

Mathematical modelling has been applied widely to metal corrosion problems, where

studies have investigated a range of metals for the corrosion damage caused by envi-

ronmental factors such as atmospheric metal corrosion and internal corrosion of pipes

[19, 56, 57, 58, 59, 60, 61, 62, 63]. A selection of analytical degradation models for

atmospheric corrosion have been reviewed in [59], which aim to predict the thickness

loss of a metal whilst taking into account several factors that affect such corrosion

like temperature and salinity. A more advanced approach for metal corrosion involves

a reaction-diffusion moving boundary model, which is seen in a plethora of studies,

some of which are named above, to describe corrosion in, for example, zirconium [62]

and steel [61].



CHAPTER 1. INTRODUCTION 15

Moving boundary problems have a wide range of physical applications that com-

promise diffusion, for example heat transfer and porous media problems [64]. The

most elementary moving boundary problem is the classical Stefan problem for the

solidification of a spherical ball of liquid or the melting of a spherical ball of ice [65].

The modelling of the Stefan problem involves the heat equation for the fluid phase,

with a boundary condition on the fluid-solid interface setting temperature to that of

the melting point and a heat flux condition that accounts for the latent heat in con-

serving energy that drives the moving boundary (Stefan condition). Much of moving

boundary problems in models of this area, including Chapter 3 and 4 in this thesis,

use moving boundary conditions similar to the Stefan problem [66].

In this thesis, for Chapter 3 and 4, the modelling approach employs a porous

media extension of a moving boundary model that is used to describe the corrosion of

a block of copper (Cu) [19, 67]. The corrosion is caused by sulphur dioxide pollution,

and the model is built upon the chemical reactions incurred as the copper sample

corrodes. The authors first examine the oxidation of copper, which forms a layer of

cuprite (Cu2O), and in an area with small pollution levels, the cuprite acts as a pro-

tective layer. However, in areas with moderate or high pollution levels the cuprite is

a non-protective layer on the boundary, which reacts with sulphur dioxide, water and

oxygen to form a final layer, brochantite Cu4(OH)6SO4. The degradation of copper

in [19] is modelled with two moving boundaries considering an advection-diffusion

flux. Neglecting the advective contribution to the corrosion dynamics results in a

Stefan-like model.

The application of mathematical modelling is a “relatively new” concept for med-

ical implants; this explains why magnesium corrosion has been the subject of only

a small number of modelling studies, which include [68, 69, 70]. In [68], a simple

two phase bulk model of magnesium corrosion was proposed and parameters fitted
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to experimental data; however, the model is not explicit in the products of corro-

sion. A spatially explicit model of a galvanised magnesium implant was proposed in

[69]; here, the magnesium block was a fixed domain and they showed that the thick-

ness of the galvanised layer effected corrosion. The authors of [70] used a level-set

approach to describe moving interfaces separating a pure magnesium block and a par-

tially corroded phase consisting of dissolved Mg ions, a protective layer of magnesium

hydroxide and chloride ions.

1.6 PBPK Models

Physiologically based pharmacokinetic (PBPK) models are used to observe the effects

of a synthetic drug or a natural chemical substance in a target organ or the whole

body. Its application plays an integral part in drug development to help understand

dosing in animals and humans [71, 72]. The models compromise of multiple tissue

compartments in the human body which are all connected to the blood [72]. Con-

centrations of drug in each of the compartments and blood are represented by the

state variables that change in time according to, typically, coupled systems of ODEs.

Here, each compartment may consist of more evolutionary equations, and are linked

to other compartments via the blood state variable. The models are often highly

complex due to factors such as the requirement of a large number of state-parameters

and the evolution of different time scales. In most applications, analysis is limited to

computational only, however, some of these complexities can be overcome by model

reduction, which aids their clinical use.

The authors in [73] explain two model reduction techniques, proper lumping and

balanced truncation. The proper lumping technique, described in detail in [74], is the

most popular [73, 75, 76], and aims to provide a lower dimensional set of the system
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via a lumping matrix L that is applied to the original state-variables x(t), such that

x̄(t) = Lx(t),

where x̄(t) denotes a reduced set of variables [73]. Meanwhile the balanced trunca-

tion technique aims to eliminate aspects of the dynamics, in the model, that have a

minimal contribution towards the overall input-output relation [73]. A PBPK system

is reduced in [77] using singular perturbation theory, where the authors explore a

number of timescales to find the meaningful ones in terms of events in their model.

In this work, in Chapter 5, singular pertubation is used to reduce the model.

Simple semi-empirical pharmacological models for magnesium containing drugs

have been previously studied, such as, for the cardiovascular effects in sheep [78]

and for plasma concentrations and blood pressure in pre-eclamptic women [79]; pre-

eclamptic women are pregnant women with hypertension and protein in the urine.

However, these models are not as physiologically relevant as PBPK models. The

PBPK model derived in Chapter 5, is the first to consider magnesium metabolism to

aid in understanding the impact of a degrading magnesium implant on blood plasma.

1.7 Thesis Structure

The thesis consists of six chapters including the current one, which introduces the

research topic on magnesium corrosion. Chapter 2 starts the modelling work of this

thesis with the derivation of an ODE model explaining Mg corrosion. The model

is analysed and a numerical solution is obtained. An advection-diffusion model is

developed in Chapter 3, which is a substantial part of this work. Chapter 3 commences

with a description of how the mathematical model is set-up for Mg corrosion and

the assumptions required for the model are also mentioned. The model is derived

with initial, boundary and interface conditions for two different cases; these cases
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are emphasized in the chapter. The model is analysed and solved numerically, from

which a range of results are discussed due to different effects in the model. Chapter

4 adapts the PDE model in Chapter 3 to describe corrosion from inside a Mg pore.

The model is analysed and solved in a similar way to that in Chapter 3. The results

are then explored for pore corrosion.

In Chapter 5, a PBPK model is derived for Mg transport in the blood. The model

is analysed and solved numerically for two scenarios. Chapter 6, the final chapter,

concludes the work in this thesis and compromises of a reflection to guide any future

work. Additionally, there is an appendix in the thesis, which explains certain aspects

of Chapter 3 in detail.



Chapter 2

An ODE Model of Magnesium

Corrosion

To begin modelling the corrosion of a magnesium (Mg) block, a simple ODE model is

derived in this chapter using the law of mass action to describe the chemical processes

of Mg decay. The model considers the physiological interactions during Mg corrosion;

these are explained in Section 1.2. After derivation of the model, a steady state

analysis is conducted and numerical results are presented.

2.1 Modelling the Problem

In aqueous environments, Mg undergoes a rapid reaction with water to form magne-

sium hydroxide, Mg(OH)2, and bubbles of hydrogen that evolve in the environment

[16]. The Mg(OH)2 undergoes further corrosion due to the physiological environ-

ments, where it reacts with bicarbonate ions or CO2 to form magnesium hydrogen

carbonate, Mg(HCO3)2. The hydrogen carbonate form is short-lived, and decom-

poses to form a more stable compound magnesium carbonate, MgCO3, H2O and CO2

19
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Variable (X) A B C D E F G
Concentration Mg H2O Mg(OH)2 H2 CO2 Mg(HCO3)2 MgCO3

Table 2.1: Notation for the concentrations of the corresponding chemicals used in the
ODE model.

[18, 37]. The full chemical reactions can be summarized as [18],

Mg + 2 H2O
k1−−→ Mg(OH)2 + H2, (2.1)

Mg(OH)2 + 2 CO2
k2−−→ Mg(HCO3)2

k3−−→ MgCO3 + CO2 + H2O, (2.2)

where k1, k2 and k3 are the reaction rate constants. Table 2.1 displays the variables

for the concentrations of the chemicals in equations (2.1) and (2.2).

2.2 Mathematical Model

The law of mass action states that the rate of reaction is proportional to the product

of concentrations of the reactants [80]. Applying this to (2.1) and (2.2) leads to the

following mass balance equations

dA

dt
= −k1AB2,

dB

dt
= −2k1AB

2 + k3F,

dC

dt
= k1AB

2 − k2CE2,

dD

dt
= k1AB

2,

dE

dt
= −2k2CE

2 + k3F,

dF

dt
= k2CE

2 − k3F,

dG

dt
= k3F,

(2.3)
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Parameter Description Dimension
X0 Initial condition of chemical X M/L3

k1 Reaction rate constant between Mg and H2O (M/L3)−2 t−1

k2 Reaction rate constant between Mg(OH)2 and CO2 (M/L3)−2 t−1

k3 Reaction rate constant for the decomposition of Mg(HCO3)2 t−1

Table 2.2: Explanation of the parameters, where X = A,B, ..., G are the concentra-
tions, M and L are units for mass and length, respectively.

where t is time. Initial conditions are X(0) = X0, where X = A,B, ..., G. See Table

2.2 for an explanation of the model parameters, which are all positive.

In this analysis, the concentration of water is assumed to be constant throughout

the duration of Mg corrosion, so B(t) is absorbed into the reaction rate constant k1

to give k10 and Ḃ = 0. For the rest of equations (2.3), the following conservation

relations are found

d(A+D)

dt
= 0 ⇒ D = A0 +D0 − A,

d(E − 2A− 2C −G)

dt
= 0 ⇒ E = E0 − 2A0 − 2C0 −G0 + 2C + 2A+G,

d(A+ C + F +G)

dt
= 0 ⇒ F = A0 + C0 + F0 +G0 − A− C −G.

Further to this, the analysis here assumes to start at the beginning with Mg, H2O

and CO2 only, and no Mg compounds i.e. A0, B0, E0 > 0 and C0 = F0 = G0 = 0.

This simplifies the conservation expressions, which on substitution into (2.3) gives

the following reduced system

dA

dt
= −k10A,

dC

dt
= k10A− k2C(E0 − 2A0 + 2A+ 2C +G)2,

dG

dt
= k3(A0 − A− C −G),

(2.4)
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where k10 = k1B
2
0 ; and the initial conditions are

A = A0, C = C0, G = G0. (2.5)

2.2.1 Non-dimensionalisation

The system in (2.4)-(2.5) is rescaled using the following variables

τ = k3t, u1 =
A

A0

, u2 =
C

A0

, u3 =
G

A0

, (2.6)

and the following dimensionless parameters are introduced

µ1 =
k10
k3
, µ2 =

k2A
2
0

k3
, ρ1 =

E0

A0

,

leading to the dimensionless system

du1
dτ

= −µ1u1, (2.7)

du2
dτ

= µ1u1 − µ2u2(ρ1 − 2 + 2u1 + 2u2 + u3)
2, (2.8)

du3
dτ

= 1− u1 − u2 − u3, (2.9)

noting that u23 = 1 − u1 − u2 − u3 is the dimensionless Mg(HCO3)2 concentration.

The initial conditions are

u1(0) = 1, u2(0) = 0 u3(0) = 0. (2.10)

The dimensionless variables u1, u2 and u3 represent concentrations of Mg, Mg(OH)2

and MgCO3, respectively in dimensionless form.

Equation (2.7) is solved using the initial condition in (2.10) to give u1 = e−µ1τ ,
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which suggests that the Mg decreases exponentially until it fully corrodes.

2.3 Steady State Analysis

A qualitative analysis of the model is conducted here. Two steady states are found

using equations (2.7)-(2.9), these are for the full corroded case

(0, 0, 1), (2.11)

and the partially corroded case (due to CO2 exhaustion)

(0, 1− ρ1, ρ1). (2.12)

The Jacobian matrix is
−µ1 0 0

µ1 −µ2(ρ1 + 2u2)(ρ1 + 6u2) 0

−1 −1 −1

 . (2.13)

The eigenvalues of (2.13) are found for each steady state using Maple. For (2.11), the

eigenvalues are −1,−µ1ρ
2
1,−µ1, which indicate that the steady state is stable. For

(2.12), the eigenvalues are 0,−1,−µ1, which indicate partial stability; this is to be

expected as this steady state is dependent on the initial CO2 concentration. When

ρ1 < 1, then we expect (A,C,G) to tend to (2.12) as t → ∞ otherwise (A,C,G)

tends to (2.11).

2.4 Numerical Simulation

The model in (2.7) - (2.10) is solved numerically in MATLAB using the ODE solver

ode15s. The reaction rate constants are represented by dimensionless parameters µ1
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Figure 2.1: Plot of Mg and its compounds over time, u1, u2, u23, u3, when µ1 = 0.80,
µ2 = 0.50 and ρ1 = 1.00.

and µ2, which are unknown from the literature. These are experimented with in

the simulations. Since the reaction between Mg and H2O is rapid compared to that

between Mg(OH)2 and CO2, it must be that µ1 > µ2; and since Mg(HCO3)2 is known

to decompose very quickly, µ1 and µ2 must be less than 1. The ratio between the

initial concentrations of CO2 and Mg is represented by ρ1 in the dimensionless model,

and this is also experimented with in the simulations to display CO2 exhaustion.

The result in Figure 2.1 is produced when µ1 = 0.80, µ2 = 0.50 and ρ1 = 1.00 (i.e.

there is the same amount of Mg and CO2), and displays u1, u2, u23 and u3, over time.

It is seen that Mg, u1, decreases as it is being used up in the reaction, and eventually

decays out of the system. Meanwhile, Mg(OH)2, u2, increases as it is being produced

and then begins to decrease as it is consumed more that it is produced, eventually

decaying out of the system. The Mg(HCO3)2, u23, is close to zero throughout; this
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Figure 2.2: Plot of Mg and its compounds, u1, u2, u23, u3, over time when µ1 = 0.16
and ρ1 = 1.00 with µ2 = 0.10 (left) µ2 = 0.01 (right).

reflects the fast decomposition of the compound. The final product MgCO3, u3,

begins to increase slowly at the start, but increases quite rapidly when Mg is low and

then eventually slows down to a steady state when the other compounds leave the

system.

As µ1 and µ2 are decreased then u23 is expected to be closer to zero. Figure 2.2

displays results when µ1 = 0.16 and ρ1 = 1.00 with µ2 = 0.10 (left) and µ2 = 0.01

(right); it can be seen that u23 is close to zero in these plots than Figure 2.1. In

Figure 2.2, when µ2 = 0.01 u2 reaches a higher peak, and u2 and u3 take longer to

reach a steady state as opposed to when µ2 = 0.10; this is expected since Mg(OH)2

is consumed at a slower rate when µ2 is decreased.

The steady state analysis in Section 2.3 suggests that CO2 exhaustion is expected

when ρ1 < 1. Figure 2.3 displays the simulation when µ1 = 0.80, µ2 = 0.50 and

ρ1 = 0.80. It is seen that CO2 exhaustion leads to u2 not reaching zero, thereby

reducing MgCO3 production.
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Figure 2.3: Plot of Mg and its compounds, u1, u2, u23, u3, over time when µ1 = 0.80,
µ2 = 0.50 and ρ1 = 0.80.

2.5 Conclusion

The corrosion of Mg was explained in this chapter through the derivation of a simple

ODE model based on chemical interactions between Mg and the physiological envi-

ronment in (2.1) and (2.2). The model was derived using the law of mass action, and

described the rate of change for Mg and its compounds. The corrosion of Mg was

described by an exponential decay. Two steady states were identified in the model,

these were partially stable and stable. The former referred to CO2 exhaustion where

Mg(OH)2 was not fully consumed, while the latter referred to the final state where

only MgCO3 remained in the system.

Numerical simulations were produced for the model, which displayed a logical re-

lationship between Mg and its compounds over time. Adjusting the parameter values,
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µ1, µ2 and ρ1, for the model simulations lead to expected results. Exhaustion of CO2

was perceived when ρ1 < 1, which is in agreement with the steady state analysis. The

model provides a good overview for Mg degradation based on the chemical equations.

For subsequent chapters, due to the elevated rate of decomposition from Mg(HCO3)2

to MgCO3, we only assume the corrosion sequence of Mg −−→ Mg(OH)2 −−→ MgCO3.

Experimental studies, performed by collaborators at the Centre for Biological

Engineering at Loughborough University, involved the immersion of small spherical

grains of a Mg-Ca alloy into simulated body fluid (SBF) with a 5% CO2 medium,

where the grains were clumped together as close as possible to minimize any gaps.

Bearing in mind the set-up of these studies, a spatial model would be more applicable

compared to the simple model in this chapter. Thus leading to the development of a

PDE model, which is seen in the next chapter.



Chapter 3

A PDE Model of Magnesium

Corrosion

As discussed in the introduction, Magnesium (Mg) corrodes rapidly in aqueous en-

vironments, which challenges its use as a supporting structure for medical implants.

The problem can be addressed by using Mg alloys, protective coatings and purifica-

tion techniques, but challenges remain at optimising the properties of the material

and predicting its adequate mechanical performance. In this chapter, a PDE model

is presented to provide a systematic means of quantitatively describing the physio-

chemical interactions during Mg corrosion to predict the corrosion rate of Mg with

an aim to inform standardisation of in vitro investigations of Mg alloy corrosion and

implant design parameters for optimal tissue growth and implant absorption. The

work in this chapter has also been published in [1].

The modelling approach employs a porous media extension of the model in [19],

which was used to describe atmospheric corrosion of a block of copper. In our model,

the corrosion of Mg to produce magnesium hydroxide (Mg(OH)2) and magnesium

carbonate (MgCO3) are viewed as distinct layers around the Mg sample. This is the

first study to consider the latter corrosion product in a magnesium corrosion model.

28
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Another novelty of the model is that it regards the hydroxide and carbonate layers

as porous media. The resulting advection-diffusion model with moving boundaries is

simplified and non-dimensionalised before being solved numerically using asymptotic

expansions to deal with singular cases. The results are displayed and discussed in

Section (3.4), and the chapter is concluded in the final section.

3.1 Modelling the Problem

In aqueous environments, the magnesium component of a proposed implant will ini-

tially corrode through the following reaction with water

Mg + 2 H2O −−→ Mg(OH)2 + H2, (3.1)

which leads to the production of hydrogen and a protective layer of Mg(OH)2. The

hydrogen gas evolves from the solution leaving the hydroxide film on the magnesium

surface, which, in physiological environments, is susceptible to further corrosion [30].

In the body fluid or in the presence of a bicarbonate buffering system in cell culture

medium, HCO –
3 can react with the hydroxide to firstly form Mg(HCO3)2, which is

short-lived and decomposes to become MgCO3. The intermediate hydrogen carbonate

form is neglected in this chapter due to its elevated rate of decomposition. So the

transformation of Mg(OH)2 to MgCO3 is summarised as follows [37]

Mg(OH)2 + CO2 −−→ MgCO3 + H2O. (3.2)

As explained in Section 1.2, either the concentration of CO2 or HCO –
3 can be viewed

since the stoichiometry for water is the same; this work focuses on CO2. The resulting

layer of MgCO3 is more stable and is regarded as the final layer in the model. It is

assumed in the model that, throughout the corrosion process of Mg, the environment
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is stable (e.g., pH is unchanged, as would be expected in a buffered medium in vitro)

and that supplies of water and CO2 are inexhaustible.

The modelling is aimed at explaining the corrosion process of an Mg pellet from the

start, through the formation of the hydroxide and carbonate layers, until the Mg and

Mg(OH)2 are exhausted and only the MgCO3 remains. The Mg pellet is assumed to

be a solid with no pores and corrodes whilst maintaining a smooth surface, i.e. surface

pitting and cracking is assumed negligible. Therefore it is envisioned that during the

degradation process, the Mg is surrounded by a layer of Mg(OH)2, which in turn is

surrounded by a layer of MgCO3, see Figure 3.1. To enable the Mg to corrode further,

water must be able to diffuse though the carbonate and hydroxide layers to react the

Mg interface, and CO2 must be able to diffuse through the carbonate layer to reach

the hydroxide compound interface. These assumptions lead to a model that describes

both the transport and reaction processes of water and carbon dioxide as well as the

location of the interfaces between Mg and its constituents, which accumulate on the

surface of the Mg as corrosion products. The hydroxide and carbonate layers are

treated as porous media, thereby the movement speed of the “solid” components,

i.e. the Mg(OH)2 and MgCO3, is different to that of the fluid and dissolved gas

components, i.e. H2O and CO2; this is a new feature in metal corrosion models.

Radial symmetry is assumed for the modelling process where the model is formu-

lated for a general 1-D geometry, namely Cartesian (describing a magnesium slab),

cylindrical (a magnesium rod) and spherical geometry (a magnesium ball). Figure 3.1

shows a cross-section of the cylindrical/spheroid scenarios for the model; the Carte-

sian case simply has 3 layers bounded by parallel, linear interfaces. Applying the

above ideal geometries means that the resulting model will only consider changes in

one-spatial dimension.
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Figure 3.1: A physiochemical schematic of the magnesium corrosion system used in
the model for cylindrical and spherical geometries. The pure magnesium exists in the
core (Zone 0, 0 ≤ r < α(t)), the magnesium hydroxide forms a middle layer (Zone
1, α(t) < r < β(t)) and the outer layer consists of magnesium carbonate (Zone 2,
β(t) < r < S(t)).

3.1.1 Model Variables

Writing r as the spatial coordinate and t as the time variable, the moving interfaces

are denoted as follows

• r = α(t): the location of the magnesium to magnesium hydroxide interface.

• r = β(t): the location of the magnesium hydroxide to magnesium carbonate

interface.

• r = S(t): the location of outer edge exposed to concentrations of water and

carbon dioxide in the environment.

The spaces between the interfaces are labelled as

• Zone 0: the Mg layer r < α(t).
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• Zone 1: the Mg(OH)2 layer α(t) < r < β(t).

• Zone 2: the MgCO3 layer β(t) < r < S(t).

Also, the mass concentrations of water and carbon dioxide in the pores of the Mg

compounds are denoted by

• W1(r, t): the concentration of water in the Mg(OH)2 layer.

• W2(r, t): the concentration of water in the MgCO3 layer.

• C2(r, t): the concentration of carbon dioxide in the MgCO3 layer.

When the hydroxide deposits on the magnesium surface and when the carbonate de-

posits on the hydroxide surface, the “solid” compounds move with velocities vsi ; and

the flow of water and carbon dioxide in the fluid phases are denoted by velocities vfi ,

where i = 1, 2 corresponds to the zone.

The solid structure of each zone is assumed to be homogeneous, i.e. they consist

of a fixed volume fraction of the Mg compound and non-traversable space (εi) and

traversable space (1 − εi); traversable space is defined to be continuous channels of

space and excludes completely enclosed gaps in the solid structure. The Mg layer is

assumed to be entirely non-traversable, hence ε0 = 1.

It is assumed that the chemical reactions occur only at the interfaces α(t) and

β(t), whereby the rate at which these interfaces move depends on the local rate of

reaction. Considering the availability of inexhaustible CO2 in vitro or in the physi-

ological environment, it is noted that in the physiochemical representative corrosion

system, the Mg and Mg(OH)2 regions will eventually vanish, i.e. α = 0 and β = 0

respectively. This means that there are distinct time phases in the corrosion process

that need to be separately handled by the model, and these are defined by t = Tα as

the point in time when α(t) = 0 (i.e. α(t) > 0 for t < Tα), and likewise t = Tβ for
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when β(t) = 0. Once β = 0, i.e. for t > Tβ, there are no further developments in the

system and all that remains is a block of MgCO3.

3.2 Mathematical Model

The diffusion of the fluid and gas components, H2O and CO2, throughout the Mg

compounds are governed by Fick’s law of diffusion, and the transport of the fluid/gas

components through the porous medium follows Darcy’s law.

With vs1(r, t) and vs2(r, t) being the radial velocities of the “solid” phases, the

conservation of mass implies

1

rd
∂

∂r

(
rdε1 vs1

)
= 0 r ∈ (α, β), (3.3)

1

rd
∂

∂r

(
rdε2 vs2

)
= 0 r ∈ (β, S), (3.4)

where d = 0, 1, 2 representing Cartesian, cylindrical and spherical geometry respec-

tively, ε1 and ε2 are the solid phase volume fractions for Zone 1 and Zone 2, respec-

tively. These are assumed to be constant in their respective zones so can be divided

out. However, the fraction term will be retained in the model derivation for com-

pleteness. For simplicity, it is assumed that the fluid phase consists of all non-solid

materials and that it is non-compressible. Conservation of total material volume

implies that

1

rd
∂

∂r

(
rd (εi vsi + (1− εi) vfi)

)
= 0,

for i = 1, 2, hence applying (3.3) and (3.4) gives

1

rd
∂

∂r

(
rd(1− ε1) vf1

)
= 0 r ∈ (α, β), (3.5)

1

rd
∂

∂r

(
rd(1− ε2) vf2

)
= 0 r ∈ (β, S). (3.6)
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where the fluid fractions, (1−ε1) and (1−ε2), for Zone 1 and Zone 2, respectively are

constants; so these can be cancelled out in each of the equations. It is noted that the

flow here does not encompass that of the fluid/gas trapped in non-traversable pores

in the solid structure. The following advection-diffusion fluxes are derived for water

and carbon dioxide,

JW1 = vf1 W1 −DW∇W1 r ∈ (α, β),

JW2 = vf2 W2 −DW∇W2

JC2 = vf2 C2 −DC∇C2

 r ∈ (β, S),
(3.7)

where DW is the diffusion coefficient of water and DC is the diffusion coefficient of

carbon dioxide. From the fluxes, the following transport equations are attained

∂((1− ε1)W1)

∂t
= − 1

rd
∂

∂r

(
rd(1− ε1)JW1

)
r ∈ (α, β), (3.8)

∂((1− ε2)W2)

∂t
= − 1

rd
∂

∂r

(
rd(1− ε1)JW2

)
∂((1− ε2)C2)

∂t
= − 1

rd
∂

∂r

(
rd(1− ε1)JC2

)
 r ∈ (β, S), (3.9)

where again the fluid fractions, (1− ε1) and (1− ε2) can be divided out.

3.2.1 Initial, Boundary and Interface Conditions

It is assumed that the initial state consists only of a magnesium, and we impose

t = 0 : S(0) = β(0) = α(0) = S0, (3.10)

where the initial thickness or radius S0 > 0. Water and carbon dioxide is sourced at

the outer surface r = S, which move at speed equal to the local velocity, hence

r = S(t) : W2 = W ∗
0 , C2 = C∗0 , Ṡ = vs2 , (3.11)
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where Ṡ = dS/dt, and W ∗
0 and C∗0 are constant concentrations of water and carbon

dioxide on the outer surface. The conditions on the interfaces are more complex and

change at critical points of the corrosion process. It is assumed that the reactions

occur only at the boundaries. On r = α(t), water reacts with the surface of the

magnesium block; the rate of this reaction, Rα, is of utmost importance in this

problem. Assuming that the magnesium surface is uniform, then Rα will be dependent

on the water concentration and flux there. As two water molecules are consumed, it

is assumed by the law of mass action applied to (3.1) that Rα = kW 2
1 , where k is a

rate constant. There are two cases that will be considered in this model

• Case 1 considers the limit k → ∞, where the reaction is so rapid that water

is immediately exhausted on the r = α(t) interface, hence W1 = 0 here. This

assumption is most consistent with that when carbon dioxide is exhausted on

r = β(t). The upcoming boundary conditions (3.12) and (3.14) are relevant for

this case.

• Case 2 considers k < ∞, whereby W1 > 0 on r = α(t). In small time, when

1−β(t)/S(t)� 1, the small distance for the carbon dioxide to diffuse means that

Mg(OH)2 immediately becomes exhausted on production and Mg converts to

MgCO3, in effect, immediately; consequently α(t) = β(t) during this transient.

See Figure 3.2 for a visualisation of this. In time, the thickness of Zone 2,

S(t) − β(t), becomes sufficiently large for the reaction to exhaust the carbon

dioxide on r = β(t), allowing the Mg(OH)2 layer to grow. Let t = Tα=β be

the smallest time at which C2(β(t), t) = 0, then for t < Tα=β the upcoming

conditions (3.16) hold, whilst for t > Tα=β equations in (3.13) and (3.14) are

imposed.

Table 3.1 displays the notation used in the model. Let A be the area of a surface

element on a magnesium surface. The volume change rate upon this element of the Mg
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Figure 3.2: Mg decomposition at the start of the problem when k <∞ and S(t)−β(t)
is very small, where the CO2 can penetrate the tiny layer of MgCO3 and instantly
react the Mg(OH)2 without exhausting the CO2, hence the hydroxide layer is absent
i.e. α(t) = β(t).

block is Aα̇, translating to a molar change rate of µ0α̇A, where µ0 =
ρ0
M0

with ρ0 and

M0 being the mass density and mass/mol of Mg, respectively. The water flux through

r = α(t) is (1− ε1)(−W1α̇+JW1), with its derivation shown in Appendix A.1. So the

water molar flux as the boundary moves is (1 − ε1)(−W1α̇ + JW1)A/MW = 2µ0α̇A,

since 2 molecules of water are consumed in the reaction at r = α(t). Note that the

constant MW is equal to the mass/mol of water. For the k → ∞ case, this provides

the equation for the moving boundary α(t), whilst for k <∞ there is in addition the

mass flux through A satisfying (1 − ε1)(−W1α̇ + JW1) = −2Rα = −2kW 2
1 . Volume

elements are inclusive of the void fraction. The volume fraction difference through

converting Mg to Mg(OH)2 is ωα − 1, where ωα = µ0/µ1 because at the interface 1

mole of Mg transforms into 1 mole of Mg(OH)2. Consequently, volume gain rate from

the reaction yields vs1A = −(ωα− 1)α̇A, noting that ωα > 1 implies a gain in volume

so that vs1 must have the opposite sign to α̇. The final condition results from a no

slip condition to the fluid phase on α(t), i.e. vf1 = α̇. In summary, for k → ∞ the

conditions are on

r = α(t) : W1 = 0,

vs1 = −(ωα − 1)α̇, vf1 = α̇,

(1− ε1)(−α̇W1 + JW1) = 2
MW

M0

ρ0α̇,

(3.12)
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Figure 3.3: Corrosion of Mg from the start of the system for the two cases on k; when k → ∞ Mg decomposes to form
layers of Mg(OH)2 and MgCO3 (Phase 1.1), when k < ∞ then at small time the hydroxide layer is absent i.e. α(t) = β(t)
(Phase 2.1) until eventually Mg(OH)2 is present and hence the full system corrodes (Phase 2.2). The process in Phase 1.1
and 2.2 evolves until Mg fully degrades at t = Tα, after which only the Mg compounds are present (Phase 1.2 and 2.3); this
eventually leads to the full consumption of Mg(OH)2 where only MgCO3 remains thereby ending the system at t = Tβ.
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Zone Domain Solid Solid Mass Molecular Mol/Vol Solid
(i) fraction constituent density mass velocity
0 r < α ε0 = 1 Mg ρ0 M0 µ0 0
1 α < r < β ε1 Mg(OH)2 ρ1 M1 µ1 vs1
2 β < r < S ε2 MgCO3 ρ2 M2 µ2 vs2

Table 3.1: Notation used in the model where ρi = Miµi, ωα = µ0/µ1 and ωβ = µ1/µ2.

and for k <∞ the conditions are on

r = α(t) : W1 > 0,

vs1 = −(ωα − 1)α̇, vf1 = α̇,

MW

M0

ρ0α̇ = − kW 2
1 ;

(3.13)

these conditions hold for α(t) > 0. For the cases on k described before, k → ∞

and when t > Tα=β for k < ∞, then on r = β(t) the carbon dioxide is assumed

to be completely consumed by its reaction with Mg(OH)2, i.e. C2(β(t), t) = 0. A

water molecule is produced during this reaction, from which it is assumed that the

concentration is continuous across the interface, i.e. W2(β(t), t) = W1(β(t), t).

Letting A be again the area of a surface element on r = β(t), then the rate of

volume loss of Mg(OH)2 is (vs1 − β̇)A and the molar loss rate is therefore Rβ =

µ1(vs1 − β̇)A, where Rβ is the reaction rate and µ1 = ρ1/M1 with ρ1 and M1 being

the mass density and mass/mol of Mg(OH)2, respectively. The water flux through

r = β(t) is −(1 − ε2)(β̇W2 − JW2) + (1 − ε1)(β̇W1 − JW1); the derivation of this is

shown in the Appendix A.1. Therefore, the molar flux of the water as the boundary

moves is (1− ε2)(−β̇W2 +JW2)A− (1− ε1)(−β̇W1 +JW1)A/MW = Rβ. Similarly, the

carbon dioxide flux on the surface is (1−ε2)(−β̇C2+JC2), so the molar flux of carbon

dioxide as the boundary moves is (1 − ε2)(−β̇C2 + JC2)A/MC = −Rβ, where MC is

the mass/mol of carbon dioxide. The volume fraction difference from the reaction at

r = β(t) is ωβ − 1, by definition, and thus the volume gain rate A(vs2 − vs1) is equal
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to (ωβ − 1)(vs1 − β̇)A, where ωβ = µ1/µ2 > 1. The constant µ2 = ρ2/M2 where ρ2

and M2 are the mass density and mass/mol of MgCO3, respectively. Conservation

of fluid flux across the interface leads to (1− ε1)(β̇ − vf1) = (1− ε2)(β̇ − vf2), which

represents the relationship between the net velocities in both magnesium compound

regions. The conditions are on

r = β(t) : C2 = 0, W2 = W1, vs2 = vs1 − (ωβ − 1)(β̇ − vs1),

(1− ε1)(vf1 − β̇) = (1− ε2)(vf2 − β̇),

(1− ε2)(−β̇W2 + JW2)− (1− ε1)(−β̇W1 + JW1) = −MW

M1

ρ1(β̇ − vs1),

(1− ε2)(−β̇C2 + JC2) =
MC

M1

ρ1(β̇ − vs1).

(3.14)

for β(t) > 0.

On exhaustion of the pure Mg block and α(t) ≡ 0, the boundary conditions for

both Case 1 and Case 2 are

r = 0 : vs1 = 0, vf1 = 0, JW1 = 0. (3.15)

When k < ∞ and t ≤ Tα=β, Zone 1 is absent. Hence, the boundary conditions

are

r = α(t) = β(t) : vs2 = − (ωαωβ − 1)β̇, vf2 = β̇,

(1− ε2)(−β̇W2 + JW2) =
MW

M1

ρ1β̇,

MW

M0

ρ0β̇ = − kW 2
1 , (1− ε2)JC2 =

MC

M1

ρ1β̇.

(3.16)

Here, the conversion of Mg to MgCO3 generates a volume fraction difference of

(ωβωα− 1) and the stated condition on vs1 is equivalent to that in (3.12) and likewise

for vf1 . The flux condition on water results from the net loss of one molecule from the

overall reaction and likewise for CO2. The current model assumes that MgCO3 will
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Phase time b.c vsi and vfi
1.1 k →∞ 0 ≤ t ≤ Tα (3.12), (3.14) (3.17)
1.2 Tα < t ≤ Tβ (3.15), (3.14) (3.18)
2.1 k <∞ 0 ≤ t ≤ Tα=β (3.16) (3.19)
2.2 Tα=β < t ≤ Tα (3.12), (3.14) (3.17)
2.3 Tα < t ≤ Tβ (3.15), (3.14) (3.18)

Table 3.2: Relevant boundary conditions for each of the Mg corrosion phases for
the two cases k → ∞ and k < ∞, where timescales Tα=β, Tα and Tβ represent the
smallest points in time when Phase 2.1 ends, α = 0 and β = 0, respectively.

have no exit from the system, so the final state corresponds to when β = 0, whereby

all of the Mg and Mg(OH)2 has been exhausted. The diagram in Figure 3.3 displays

the different stages during the corrosion of Mg in the model, where each phase is la-

belled for the two cases on k. When k →∞ then we have Phase 1.1 (for 0 ≤ t ≤ Tα)

and Phase 1.2 (for Tα < t ≤ Tβ); and when k < ∞ then we have Phase 2.1 (for

0 ≤ t ≤ Tα=β), Phase 2.2 (for Tα=β < t ≤ Tα) and Phase 2.3 (for Tα < t ≤ Tβ).

Table 3.2 shows the boundary conditions used for the phases in Case 1 and Case

2. Note, in the case k < ∞ and Tα = Tα=β, then Phases 2.1 and 2.3 are relevant.

Conditions (3.10) and (3.11) are relevant for both of the cases on k.

3.2.2 Exact Solutions

Equations (3.3)-(3.6) are straightforward to integrate, though their solution depends

on the various scenarios stated above. For Case 1, applying equations (3.12) and

(3.14) yields

vs1 = −(ωα − 1) α̇ αd

rd
, vs2 = −ωβ (ωα − 1) α̇ αd + (ωβ − 1) β̇ βd

rd
,

vf1 =
α̇ αd

rd
, vf2 =

(1− ε1) α̇ αd − (ε2 − ε1) β̇ βd

(1− ε2)rd
,

(3.17)
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for t ≤ Tα; and applying equations (3.15) and (3.14) yields

vs1 = 0, vs2 = −(ωβ − 1) β̇ βd

rd
,

vf1 = 0, vf2 =
−(ε2 − ε1) β̇ βd

(1− ε2)rd
,

(3.18)

for t > Tα. For Case 2, applying (3.16) and (3.14) gives

vs1 = −(ωα − 1) β̇ βd

rd
, vs2 = −(ωα ωβ − 1)β̇βd

rd
,

vf1 =
β̇ βd

rd
, vf2 =

β̇ βd

rd
,

(3.19)

for t ≤ Tα=β, and the velocities for Tα=β < t ≤ Tα and t > Tα are then the same as

that in equations (3.17) and (3.18), respectively. Using the formulation in (3.17) for

vs2 and the initial conditions in (3.10), the following is obtained from the boundary

condition Ṡ = vs2(S, t),

S = S0

[
− (ωβ − 1) (β/S0)

d+1 − ωβ(ωα − 1) (α/S0)
d+1 + ωα ωβ

]1/d+1
. (3.20)

This formula is correct for t ≤ Tα=β in Case 2 on insertion of α = β, and in the final

phase for both cases on substitution of α = 0. From this the final size, S∞, of the

magnesium carbonate block can be deduced on substitution of α = β = 0 into (3.20)

to give

S∞ = S0 (ωαωβ)1/(d+1); (3.21)

this can be calculated a priori from the total volume fraction change from converting

Mg to MgCO3 being (S∞/S0)
1+d = ωαωβ.

There are no further exact solutions to be obtained from the full system of equa-

tions and variables α, β,W1,W2 and C2 need to be resolved numerically from (3.8),
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Parameter Value Units Description Source

DW 2.85 cm2/day Diffusion coefficient of H2O [81]
DC 1.66 cm2/day Diffusion coefficient of CO2 [82]
M0 24.3 g/mol Molecular mass of Mg P
M1 58.3 g/mol Molecular mass of Mg(OH)2 P
M2 84.3 g/mol Molecular mass of MgCO3 P
MW 18 g/mol Molecular mass of H2O P
MC 44 g/mol Molecular mass of CO2 P
ρ0 1.74 g/cm3 Mass density of Mg [83]
ρ1 2.34 g/cm3 Mass density of Mg(OH)2 S
ρ2 2.96 g/cm3 Mass density of MgCO3 S
W ∗0 1 g/cm3 Concentration of H2O in human body S
C∗0 0.0011 g/cm3 Concentration of CO2 in human body [84]
wα 1.79 - Molar density ratio of Mg and Mg(OH)2 D
wβ 1.14 - Molar density ratio of Mg(OH)2 and MgCO3 D
ε1 † - Fraction of Mg(OH)2 -
ε2 † - Fraction of MgCO3 -
k † cm4/g day Rate of reaction between Mg and H2O -

Table 3.3: List of model variables, their interpretation and, where possible, estimated
values from the literature. † unknown parameters in the model. “P” derived from
the periodic table, “S” indicates standard textbook references and “D” derived from
formula in Table 3.1.

(3.9) and (3.10)-(3.16).

Table 3.3 shows the data for each of the parameters in the model. There are

three parameters ε1, ε2 and k for which information appears to be limited; these will

be investigated further on their effects to the degradation behaviour of magnesium

metal and the dynamics of the biphasic corrosion layer.

3.2.3 Non-Dimensionalisation

Of the various candidates for a suitable scaling in time, none stand out as providing

any particular advantage here, such that an approximate timescale is chosen for which

carbon dioxide diffuses across a reference distance S∗0 (choosing S∗0 = 1 cm). The water

and carbon dioxide variables are rescaled with ambient mass concentrations W ∗
0 and
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C∗0 and hence are written as

t =
S∗0

2

Dc

t̂, r = S∗0 r̂, W1 = W ∗
0 Ŵ1, W2 = W ∗

0 Ŵ2, C2 = C∗0 Ĉ2, α = S∗0 α̂,

β = S∗0 β̂, S = S∗0 Ŝ,

and v∗ = DC v̂∗/S
∗
0 , where the quantities with hats are dimensionless. Using the data

in Table 5.3 the scaling implies that t̂ = 1 represents about 14.5 hours. Let

Ŝ0 =
S0

S∗0
, D̂W =

DW

DC

, γ0 =
MWρ0
M0W ∗

0

, γ1 =
MWρ1
M1W ∗

0

, γ2 =
MCρ1
M1C∗0

, κ =
S∗0W

∗
0

DC

k,

(3.22)

noting that ωα and ωβ are already dimensionless, then, on dropping the hats for

clarity, the following system is obtained

∂ W1

∂ t
+ vf1

∂ W1

∂ r
− DW

rd
∂

∂ r

(
rd
∂ W1

∂ r

)
= 0, (3.23)

∂ W2

∂ t
+ vf2

∂ W2

∂ r
− DW

rd
∂

∂ r

(
rd
∂ W2

∂ r

)
= 0, (3.24)

∂ C2

∂ t
+ vf2

∂ C2

∂ r
− 1

rd
∂

∂ r

(
rd
∂ C2

∂ r

)
= 0, (3.25)

where the velocities for each phase are also non-dimensionalised and appear to be the

same as that shown in equations (3.17)-(3.19). Initial conditions are

α(0) = β(0) = S(0) = S0. (3.26)

For Case 1, κ→∞, the boundary conditions are as follows,

W1(α, t) = 0, W1(β, t) = W2(β, t), W2(S, t) = 1, C2(β, t) = 0, C2(S, t) = 1,

(3.27)
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with the following interface conditions for t ≤ Tα

r = α(t) : −(1− ε1)DW ∂rW1 = 2 γ0 α̇,

r = β(t) : DW ((1− ε1) ∂rW1 − (1− ε2) ∂rW2) = −γ1
(
β̇ +

(ωα − 1)αdα̇

βd

)
,

−(1− ε2)∂rC2 = γ2

(
β̇ +

(ωα − 1)αdα̇

βd

)
,

(3.28)

and analytical solution for S

S = S0

(
ωαωβ − (ωβ − 1)(β/S0)

d+1 − ωβ(ωα − 1)(α/S0)
d+1
)1/(d+1)

; (3.29)

and for t > Tα,

r = 0 : ∂rW1 = 0,

r = β(t) : DW

(
(1− ε1) ∂rW1 − (1− ε2) ∂rW2

)
= −γ1β̇,

−(1− ε2)∂rC2 = γ2 β̇,

(3.30)

with analytical solution

S = S0

(
ωαωβ − (ωβ − 1)(β/S0)

d+1
)1/(d+1)

. (3.31)

For Case 2, κ <∞, the boundary conditions for t ≤ Tα=β are as follows

W2(S, t) = 1, C2(S, t) = 1, (3.32)

with interface conditions

r = α(t) = β(t) : γ0β̇ = −κW 2
2 , −DW (1− ε2) ∂rW2 = γ1 ωα β̇,

−(1− ε2)∂rC2 = γ2 ωα β̇,
(3.33)
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Parameter Value
DW 1.5625
γ0 1.2889
γ1 0.7225
γ2 1605.5
wα 1.79
wβ 1.14
ε1 †
ε2 †
κ †

Table 3.4: List of dimensionless parameter values calculated from the values listed in
Table 5.3 and (3.22); † being the free parameters

and analytical solution

S = S0

[
(β/S0)

d+1 + ωαωβ(1− (β/S0)
d+1)

]1/(d+1)
; (3.34)

and when t > Tα=β, in addition to equations (3.32) the boundary conditions are

γ0α̇ = −κW 2
1 , W1(β, t) = W2(β, t), C2(β, t) = 0, (3.35)

whereby for Tα=β < t ≤ Tα equations (3.28) and (3.29) are valid, and for t > Tα

equations (3.30) and (3.31) are imposed.

Table 3.4 displays the values for the dimensionless parameters used in the model

simulations in the next section.

3.3 Numerical Method and Asymptotics

To solve the model numerically, the spatial domains of the system of PDEs (3.23)-

(3.25) are mapped to the unit interval ρ ∈ [1, 2] using the rescaling outlined in Section

3.3.1; this allows an easier numerical scheme because one moving boundary is per-

ceived numerically instead of two, so r → ρ. The difficulties from the singularities
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resulting from α = β = S at t = 0 at the start of Phases 1.1 and 2.1 and α = β at

t = Tα=β at the start of Phase 2.2 are discussed in Section 3.3.2.

The system of PDEs in (3.36)-(3.38) and the appropriate boundary conditions

for each of the phases was solved using the Method of Lines (MoL) implemented in

MATLAB. MoL is a general technique for solving time-dependent PDEs of parabolic

type [85]. It converts the PDE system into an ODE system by discretising the spatial

derivatives and allowing the time derivative to stay continuous. The domains for

Zones 1 and 2 are divided into a uniform mesh, not necessarily using the same number

of points, and the spatial derivatives are discretised using central differences; upwind

scheme for the advection terms were also implemented but the code usually ran

slightly slower. The stiff ODE solver, ode15s, was used for the time stepping process.

More on the numerical scheme can be found in Appendix A.2.

3.3.1 Change of Variables

For numerical convenience the two zones, the hydroxide layer, r ∈ (α, β) (Zone 1),

and the carbonate layer, r ∈ (β, S) (Zone 2), are each mapped to an interval of unit

size using the transformation (r, t)→ (ρ, τ), namely

r = α + (β − α)(ρ− 1), r ∈ (α, β) −→ ρ ∈ (1, 2),

r = β + (S − β)(ρ− 1), r ∈ (β, S) −→ ρ ∈ (1, 2),

t = τ.
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Substitution into equations (3.23)-(3.25) yields

∂ W1

∂ τ
+

1

β − α

(
G1(ρ, τ) + vf1

) ∂ W1

∂ ρ
− DW

(β − α)2

[
dα(ρ, τ)

∂ W1

∂ ρ
+
∂2W1

∂ ρ2

]
= 0

(3.36)

∂ W2

∂ τ
+

1

S − β

(
G2(ρ, τ) + vf2

)∂ W2

∂ ρ
− DW

(S − β)2

[
dβ(ρ, τ)

∂ W2

∂ ρ
+
∂2W2

∂ ρ2

]
= 0

(3.37)

∂ C2

∂ τ
+

1

S − β

(
G2(ρ, τ) + vf2

) ∂ C2

∂ ρ
− 1

(S − β)2

[
dβ(ρ, τ)

∂ C2

∂ ρ
+
∂2C2

∂ ρ2

]
= 0 (3.38)

where

G1(ρ, τ) = (α̇− β̇) (ρ− 1)− α̇, G2(ρ, τ) = (β̇ − Ṡ) (ρ− 1)− β̇,

dα(ρ, τ) =
d(β − α)

α + (β − α)(ρ− 1)
, dβ(ρ, τ) =

d(S − β)

β + (S − β)(ρ− 1)
,

using the “dot notation” to denote the derivative with respect to τ . For Phases 1.1

and 2.2, the fluid phase velocities are

vf1 =
α̇ αd[

α + (β − α)(ρ− 1)
]d , vf2 =

(1− ε1) α̇ αd − (ε2 − ε1) β̇ βd

(1− ε2)
[
β + (S − β)(ρ− 1)

]d ,
for Phase 2.1 these are

vf1 =
β̇ βd[

α + (β − α)(ρ− 1)
]d , vf2 =

β̇ βd[
β + (S − β)(ρ− 1)

]d ,
and for Phases 1.2 and 2.3

vf1 = 0, vf2 =
(ε1 − ε2) β̇ βd

(1− ε2)
[
β + (S − β)(ρ− 1)

]d .
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The initial conditions are

τ = 0 : α = β = S = S0.

For all phases, the following holds

W2(2, τ) = 1, C2(2, τ) = 1. (3.39)

For Case 1, κ→∞, the conditions for 0 ≤ τ ≤ Tα are

W1(1, τ) = 0, (3.40)

W1(2, τ) = W2(1, τ), (3.41)

C2(1, τ) = 0, (3.42)

and

−(1− ε1)
DW

β − α
∂ρW1(1, τ) = 2 γ0 α̇,

DW

(
1− ε2
S − β

∂ρW2(1, τ)− 1− ε1
β − α

∂ρW1(2, τ)

)
= γ1

(
β̇ +

(ωα − 1)αdα̇

βd

)
,

−(1− ε2)
S − β

∂ρC2(1, τ) = γ2

(
β̇ +

(ωα − 1)αdα̇

βd

)
,

S = S0

(
ωαωβ − (ωβ − 1)(β/S0)

d+1 − ωβ(ωα − 1)(α/S0)
d+1
)1/(d+1)

;

(3.43)

and for τ > Tα, equations (3.41), (3.42) and

∂ρW1(1, τ) = 0, DW

(
(1− ε2)
S − β

∂ρW2(1, τ)− (1− ε1)
β − α

∂ρW1(2, τ)

)
= γ1β̇,

−(1− ε2)
S − β

∂ρC2(1, τ) = γ2 β̇,

S = S0

(
ωαωβ − (ωβ − 1)(β/S0)

d+1
)1/(d+1)

,

(3.44)
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are imposed. For Case 2, κ <∞, the conditions for 0 ≤ τ ≤ Tα=β are

γ0 β̇ = −κW2(1, τ)2, −DW
(1− ε2)
S − β

∂ρW2(1, τ) = γ1 ωα β̇,

−(1− ε2)
S − β

∂ρC2(1, τ) = γ2 ωα β̇,

S = S0

[
(β/S0)

d+1 + ωαωβ(1− (β/S0)
d+1)

]1/(d+1)
,

(3.45)

noting α = β here; for Tα=β < τ ≤ Tα the conditions in equations (3.41) - (3.43) are

imposed along with

α̇ = −κW
2
1 (1, τ)

γ0
, (3.46)

and for τ > Tα equations (3.41)-(3.42) and (3.44) are imposed.

The spatial mapping is valid for 0 ≤ α < β < S and gives rise to a singularity at

τ = 0 (where α = β = S) and for Case 2 at τ = Tα=β (where α = β). This problem

is evaded using the small time asymptotic expansions presented in Section 3.3.2.

3.3.2 Small Time Asymptotics

To handle the singularities at τ = 0 and τ = Tα=β (for Case 2 ) in the numerical

simulation, small time asymptotic solutions of the variables are obtained, which are

used to provide approximate initial conditions at a small time increment after the

singular time points. For Case 1, it is assumed that at the beginning of the system,

at t = τ0 � 1, a tiny amount of Mg(OH)2 and consequently MgCO3 is present with

a small amount of Mg being used up, hence α(τ0) < S0 for τ0 � 1. Furthermore, as

ωα, ωβ > 1, then there will be a small creation of volume, hence S(τ0) > S0. Likewise

for Case 2, S(τ0) > S0 > β(τ0) = α(τ0) at t = τ0 � 1. The relevant phases for this

analysis are Phase 1.1, 2.1 and 2.2; these are discussed separately.
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Phase 1.1

Phase 1.1 considers Case 1 when τ ≤ Tα. Rearranging the first equation in (3.43)

gives

α̇ = −(1− ε1)
DW

2γ0(β − α)

∂ W1

∂ ρ
, (3.47)

where β − α� 1 for τ � 1, and then

α̇ = O
( 1

β − α

)
,

assuming
∂ W1

∂ ρ
= O(1). We start by seeking expansions of the form

α ∼ S0 + a1τ
σ, β ∼ S0 + b1τ

σ,

where a1, b1 = O(1) and σ is to be determined. We have β − α = τσ(b1 − a1) and

α̇ = στσ−1a1, so from (3.47) it follows

τ 2σ−1 = 1⇒ σ =
1

2
,

consequently, the following small time approximations are applied

α(τ) ∼ S0 + a1 τ
1/2, β(τ) ∼ S0 + b1 τ

1/2, S(τ) ∼ S0 + s1 τ
1/2 (3.48)

as τ −→ 0; a1 < 0 is expected as some Mg will be used up and s1 > 0 as volume

is gained from Mg. Substituting these into the model equations (3.36)-(3.38), the
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following is obtained at leading order

1

2 (b1 − a1)
(
g1(ρ, τ) + a1 S

d
0

) ∂ W1

∂ ρ
− DW

(b1 − a1)2
∂2W1

∂ ρ2
∼ 0, (3.49)

1

2 (s1 − b1)

(
g2(ρ, τ) +

(1− ε1)a1 Sd0 − (ε2 − ε1)b1 Sd0
(1− ε2)

)
∂ W2

∂ ρ
− DW

(s1 − b1)2
∂2W2

∂ ρ2
∼ 0,

(3.50)

1

2 (s1 − b1)

(
g2(ρ, τ) +

(1− ε1)a1 Sd0 − (ε2 − ε1)b1 Sd0
(1− ε2)

)
∂ C2

∂ ρ
− 1

(s1 − b1)2
∂2C2

∂ ρ2
∼ 0,

(3.51)

as τ −→ 0, with

g1(ρ, τ) = (a1 − b1)(ρ− 1)− a1, g2(ρ, τ) = (b1 − s1)(ρ− 1)− b1.

The interface conditions are

a1γ0(b1 − a1) + (1− ε1)DW ∂ρW1(1, τ) ∼ 0,

2DW

(
1− ε1
b1 − a1

∂ρW1(2, τ)− 1− ε2
s1 − b1

∂ρW2(1, τ)

)
+ γ1 (b1 + a1(ωα − 1)) ∼ 0,

b1 +
2 (1− ε2)
γ2 (s1 − b1)

∂ρC2(1, τ) + a1(ωα − 1) ∼ 0,

(3.52)

and the analytical solution for S is

s1 ∼ −[(ωβ − 1)b1 + ωβ(ωα − 1)a1], (3.53)
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as τ → 0. By applying the boundary conditions in (3.40)-(3.42), equations (3.49)-

(3.51) are integrated using Maple to give the analytical solution

W1(ρ, t) =
W (λ1 − λ2)
λ1 − λ3

,

W2(ρ, t) =
(λ4 − λ5)W + λ5 − λ6

−λ6 + λ4
,

C2(ρ, t) =
λ7 − λ8
−λ9 + λ7

,

(3.54)

where W = W1(2) = W2(1) and

λ1 = erf(
a1 (Sd0 − 1)

λ0
), λ2 = erf

(Sd0 a1 + (ρ− 2) a1 − b1 (ρ− 1)

λ0

)
,

λ3 = erf(
Sd0 a1 − b1

λ0
), λ4 = erf

((λ01 − s1 (−1 + ε2)) (b1 − s1)
λ00

)
,

λ5 = erf
((b1 − s1) (λ02 + (−1 + ε2) ((ρ− 2) b1 − s1 (ρ− 1)))

λ00

)
,

λ6 = erf(
(((ε2 − ε1) b1 + a1 (−1 + ε1))S

d
0 − b1 (−1 + ε2) (b1 − s1)

λ00

)
,

λ7 = erf
(λ01 − b1 (−1 + ε2)

2(−1 + ε2)

)
,

λ8 = erf
(λ01 + (−1 + ε2) ((ρ− 2) b1 − s1 (ρ− 1))

2(−1 + ε2)

)
,

λ9 = erf
(λ01 − s1 (−1 + ε2)

2(−1 + ε2)

)
,

λ0 = 2

√
1

DW

DW , λ00 = 2

√
(b1 − s1)2

DW

DW (−1 + ε2),

λ01 = (b1 ε2 + (−b1 + a1) ε1 − a1)Sd0 , λ02 = ((ε2 − ε1) b1 + a1 (−1 + ε1))S
d
0 .

The equations in (3.52) form a non-linear system of algebraic equations for the un-

knowns W,a1 and b1, which can routinely be solved numerically. Using these solutions

along with equations (3.53) and (3.54) the required initial conditions, α, β, S,W1,W2

and C2, are formulated for small time at Phase 1.1.
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Phase 2.1

With α = β and S − β � 1 for small time, we have from equation (3.37) and

(3.38) ∂ρ ρW2 ∼ 0 and ∂ρ ρC2 ∼ 0 at leading order. Furthermore, as W2(2, τ) = 1 we

anticipate β̇ = O(1) from the first equation in (3.45). The second and third terms

of equation (3.45) imply ∂ρW2(1, τ) ∼ 0 and ∂ρC2(1, τ) ∼ 0, hence W2(ρ, τ) ∼ 1 and

C2(ρ, τ) ∼ 1 at leading order. We write

β ∼ S0 + b
[1]
1 τ + b

[1]
2 τ

2,

S ∼ S0 + s
[1]
1 τ + s

[1]
2 τ

2,

W2 ∼ 1 +W
[1]
21

(ρ)τ +W
[1]
22

(ρ)τ 2,

C2 ∼ 1 + C
[1]
21

(ρ)τ + C
[1]
22

(ρ)τ 2.

(3.55)

On substitution into (3.45) the following is obtained

b
[1]
1 = − κ

γ0
, b

[1]
2 = − κ

γ0
W

[1]
21
, s

[1]
1 = (1− wαwβ) b1,

s
[1]
2 =

1

S0

(1− wαwβ)

(
b
[1]2

1 wαwβ d

2
+ S0b

[1]
2

)
.

(3.56)

Asymptotically expanding equations (3.37) and (3.38) gives ∂ρ ρW21 = 0 and ∂ρ ρC21 =

0 at leading order; and using equation (3.45) we obtain W
[1]
21

and C
[1]
21

, and then

applying the boundary conditions in equation (3.39) to integrate yields

W2 = 1 +
γ1wαb

[1]
1 (s

[1]
1 − b

[1]
1 )(2− ρ)

DW (1− ε2)
τ,

C2 = 1 +
γ2wαb

[1]
1 (s

[1]
1 − b

[1]
1 )(2− ρ)

(1− ε2)
τ,

(3.57)
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as τ → 0. Taking the next order, for (3.37) and (3.38) gives

∂ρ ρW22 =
2∂ρ ρW21(s

[1]
2 −b

[1]
2 )

(s
[1]
1 − b

[1]
1 )

+
(s

[1]
1 − b

[1]
1 )

DW

[
g
[1]
2 +

(1− ε2)b[1]1

(1− ε2)
− dDW

S0

]
∂ρW21 ,

=
2∂ρ ρW21(s

[1]
2 −b

[1]
2 )

(s
[1]
1 − b

[1]
1 )

+
(s

[1]
1 − b

[1]
1 )

DW

[
(b

[1]
1 −s

[1]
1 )(ρ−1)− dDW

S0

]
∂ρW21 ,

∂ρ ρC22 =
2∂ρ ρC21(s

[1]
2 − b

[1]
2 )

(s
[1]
1 − b

[1]
1 )

+(s
[1]
1 − b

[1]
1 )
[
g
[1]
2 +

(1− ε2)b[1]1

(1−ε2)
− d

S0

]
∂ρC21 ,

=
2∂ρ ρC21(s

[1]
2 − b

[1]
2 )

(s
[1]
1 − b

[1]
1 )

+(s
[1]
1 − b

[1]
1 )
[
(b

[1]
1 −s

[1]
1 )(ρ−1)− d

S0

]
∂ρC21

where

g
[1]
2 = (b

[1]
1 −s

[1]
1 )(ρ−1)−b[1]1 ;

hence the advection terms come into play in the τ 2 terms. Taking (3.56), for β, S,

and (3.57) for W2 and C2, we have the initial conditions for Phase 2.1.

Phase 2.2

This phase occurs after Phase 2.1 when α and β begin to separate at Tα=β. The

values of α = β, S,W2 and C2 at τ = Tα=β are known from the numerical solution of

Phase 2.1. For 0 < τ − Tα=β � 1, or 0 < β − α� 1, we write

W1 ∼ W2(1, τ) + (β − α)A (2− ρ),

where A is an unknown function of W2, and α = α0(τ) +O(τ − Tα=β), then the first

in (3.45) implies that

α̇0 = −κW
2
2 (1, τ)

γ0
, (3.58)
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at leading order, implying from the first in (3.43) that

− (1− ε1)
DW

β − α
∂ρW1(1, τ) ∼ 2κW 2

2 (1, τ),

resulting with A = 2κW 2
2 (1, τ)/DW (1− ε1) and hence

W1 ∼ W2(1, τ) + (β − α)
2κW 2

2 (1, τ)

DW (1− ε1)
(2− ρ). (3.59)

For the initial part of Phase 2.2, equations (3.37) and (3.38) are solved numerically

until β − α reaches a given small tolerance, typically β − α = 10−3, at t = Tα=β + τ1

say. Following this the system for Phase 2.2 is solved in the usual fashion starting

from time Tα=β + τ1 using the updated solutions for W2, C2, α, β and S, and by using

(3.59) for W1.

3.4 Results

The results from the numerical solution are displayed and discussed in this section.

From the data values listed in Table 3.3, there is current uncertainty on appropriate

values for ε1, ε2 and κ (though, to keep the values close to the mid-range, ε1 = 0.6

and ε2 = 0.4 were chosen for most simulations). Sections 3.4.2-3.4.5 investigate, for

the three principle geometries, the effect of these parameters on the model solutions,

in particular on the degradation times of the original Mg block, Tα, and the Mg(OH)2

layer, Tβ. Explored in Section 3.4.3 is the effect of the initial size of the block, which

is, of course, an experimentally controllable parameter; for the rest of the simulations

the Mg radius is fixed at 1 cm. In Section 3.4.6, the significance of the porous media

assumption in the current model is examined.
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Figure 3.4: Plots of α, β and S against t in cylindrical geometry using ε1 = 0.6,
ε2 = 0.4, κ = 0.04, the parameters in Table 3.4 and S0 = 1. The dashed lines show
t = Tα=β (left), t = Tα (middle) and Tβ (right).

3.4.1 Magnesium Degradation

An example simulation using a finite reaction rate κ (Case 2 ) is shown in Figure 3.4

using cylindrical geometry, where κ ≈ 0.04, (corresponding to k = 0.07 cm4/g · s in

Table 3.3), ε1 = 0.6 and ε2 = 0.4. The size of Mg and its compounds over time are

displayed in Figure 3.4 with the dashed lines showing Tα=β, Tα and Tβ. We note that

the Mg block degrades relatively quickly at t = O(10), whilst the Mg(OH)2 takes

t = O(103). This is largely due to a relatively low concentration of CO2 compared to

H2O in the fluid phase.

Figure 3.5 displays water and CO2 concentration distribution at the start of Phases

2.1, end of Phase 2.1 (t = Tα=β), Phase 2.2 at the point the full system is solved

numerically (see Section 3.3.2), the start of Phase 2.3 (t = Tα) and the end of Phase

2.3 (t = Tβ); the times t are detailed in the caption where κ ≈ 0.04, ε1 = 0.6 and
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Figure 3.5: Plots of the concentrations W1,W2 (left) and C2 (right) at, from top to
bottom, the start of Phases 2.1 (t = τ0 = 10−8), end of Phase 2.1 (t = Tα=β ≈ 0.095),
Phase 2.2 (t = Tα=β + τ1, with τ1 = 0.356, see Section 3.3.2), start of Phases 2.3
(t = Tα ≈ 33.1) and the end of 2.3 (t = Tβ ≈ 1291) in cylindrical geometry. In
the left-hand panel, the solid lines are W1 and the dashed lines W2. The vertical
dotted lines indicate from right to left, r = S, r = β (right-hand panel, top 2 plots
and bottom plot on left-hand panel) and r = S, r = β, r = α (remaining plots on
left-hand panel). The parameters are ε1 = 0.6, ε2 = 0.4, κ ≈ 0.04, S0 = 1 and the
rest listed in Table 3.4.
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ε2 = 0.4. In small time, there is only a very narrow MgCO3 layer present and,

as expected, the water and CO2 are very nearly uniform r ∈ (β, S). Furthermore,

CO2 is not initially exhausted by the conversion reaction of Mg(OH)2 to MgCO3

at r = β, but in time it descends, reaching zero as Phase 2.2 begins. As time

advances clear gradients in concentrations emerge and whilst β−α and S−β remain

small the concentrations of water and CO2 appear linear. The upward kink in the

water distribution is due to production at r = β in the above conversion reaction,

even exceeding the exterior concentration as, locally, water replaces CO2 molecules.

During Phase 2.3, when there is no more Mg remaining, the water distribution W1

tends to a uniform distribution via diffusion and the zero flux condition at r = 0.

By the end of Phase 2.3, the profiles of W2 and C2 are no longer linear and CO2

concentration forms a boundary layer in the vicinity of r = β.

The solid and fluid phase velocities in the regions are shown in Figure 3.6 at Phase

2.1 (near the start of this phase), end of Phase 2.1 (t = Tα=β), Phase 2.2 (near the

start of this phase), start of Phase 2.3 (t = Tα) and the end of Phase 2.3 (t = Tβ);

the times t and the parameters are detailed in the caption. As expected, due to the

direction of movement, the fluid velocities, vfi , are negative and the solid velocities,

vsi , are positive. When the Mg(OH)2 layer is absent at small time, the velocities are

almost uniform r ∈ (β, S). As CO2 reaches exhaustion at Phase 2.2, the velocities in

the hydroxide layer emerge. Near the start of Phase 2.2 whilst β − α and S − β are

small the velocities vfi and vsi appear linear. At the start of Phase 2.3, when Mg has

fully corroded, the profiles for vf1 and vs1 tend to zero as r → β, and by the end of

Phase 2.3, vf2 and vs2 tend to a uniform distribution.
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Figure 3.6: Plots of the velocities vfi (left) and vsi (right) at, from top to bottom,
Phases 2.1 (t = τ01 = 2 × 10−8), end of Phase 2.1 (t = Tα=β ≈ 0.095), Phase 2.2
(t = Tα=β + τ02 , with τ02 = 1.291), start of Phases 2.3 (t = Tα ≈ 33.1) and the end
of Phase 2.3 (t = Tβ ≈ 1291) in cylindrical geometry. In the left-hand panel, the red
lines are vf1 and the magenta lines are vf2 ; and in the right-hand panel, the black
lines are vs1 and the blue lines are vs2 . The vertical dotted lines indicate from right
to left, r = S, r = β (top 2 and bottom row of plots) and r = S, r = β, r = α
(remaining plots). The parameters are ε1 = 0.6, ε2 = 0.4, κ ≈ 0.04, S0 = 1 and the
rest listed in Table 3.4.
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Figure 3.7: Plots of α, β and S against t, from left to right, Cartesian, cylindrical and
spherical geometry using ε1 = 0.6, ε2 = 0.4, κ→∞, the parameters in Table 3.4 and
S0 = 1. The dashed lines show t = Tα (left) and Tβ (right).

3.4.2 Effects of Geometry

Figure 3.7 shows α, β and S over time for a Case 1 (κ → ∞) example, using fixed

solid fractions, ε1 = 0.6 and ε2 = 0.4 and an initial radius of S0 = 1. The results are

displayed left to right for Cartesian, cylindrical and spherical geometries. The dashed

lines separate the two phases, Phase 1.1 and Phase 1.2. Here, the geometry is such

that the size of the Mg block is greater in the Cartesian case, thus there is more of it

to convert to Mg(OH)2 and ultimately degrade into MgCO3; as can be seen from the

final sizes where S
[d]
∞ , (d = 0, 1, 2 for Cartesian, cylindrical and spherical geometry,

respectively), S
[2]
∞ < S

[1]
∞ < S

[0]
∞ . Comparing the cylindrical case with that of Figure
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Figure 3.8: Plot of t against the corroded thickness of Mg, S0 − α(t), in Cartesian,
cylindrical and spherical geometry using ε1 = 0.6, ε2 = 0.4, κ = 0.3, the parameters
in Table 3.4 and S0 = 1.

3.4, it is observed that, as expected, the magnesium layer disappears much faster in

the κ → ∞ case (Tα ≈ 1) than for κ ≈ 0.04 (Tα ≈ 33); but we note that it does

not significantly affect the overall degradation time of Mg(OH)2. In reality, the limit

κ→∞ is unlikely to be realistic for pure or mostly pure magnesium, and represents

a metal of low purity. However, as degradation of Mg(OH)2 is independent of κ, there

is very little difference between the t = Tβ values.

For Case 2, the corroded thickness, S0 − α(t), of Mg with time is displayed in

Figure 3.8 for each geometry, where κ = 0.3 (corresponding to k = 0.5 cm4/g · s),

ε1 = 0.6, ε2 = 0.4 and S0 = 1. Evidently, the corroded thickness of Mg increases as

time progresses. As expected, the Mg corrodes quicker in spherical geometry than

cylindrical, and both degrade quicker than Cartesian.
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Figure 3.9: Plot of Tα and Tβ against the initial magnesium block size, S0, for each
of the principle geometries. The parameters used are ε1 = 0.6, ε2 = 0.4, κ ≈ 0.3
(k = 0.5 cm4/g day) and parameters in Table 3.4.

3.4.3 Effect of Magnesium Block Size

The scaling presented in Section 3.2.3 are such that the initial magnesium block size

of S0 = 1, used in the simulations up to now, represents 1 cm. Figure 3.9 plots the

relationship between the initial Mg radius and the key degradation timescales, Tα

and Tβ, for each of the three principle geometries in a finite κ case. As expected,

they show that these timescales increase with the initial radius of the Mg block, S0.

The plots suggests a power law relationship of Tβ ∝ S2
0 . This can be justified due

to the concentration of CO2 being relatively small compared to that of water, so

that 1 � γ2, and hence the decay of the Mg(OH)2 is slow. Full details are given in
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Appendix A.3, where it can be deduced that

dβ

dt
∼ − (1− ε2)

S2
0

f(β, S(β)), (3.60)

where f(β, S(β)) is independent of S0; and on solution we obtain

Tβ ∼ S2
0

B

(1− ε2)
, (3.61)

where B is a geometry dependent constant.

3.4.4 Effect of Porosity of the Mg(OH)2 and MgCO3 Layers

In Figure 3.10, the effect of ε1 (left) and ε2 (right) on the time scales Tα and Tβ

is shown for κ = 0.3, 6 and κ → ∞. The top plot of Figure 3.10 shows that Tα

increases with the solid fraction, rising sharply as ε1 → 1. This is to be expected

because as ε1 increases there is less space for water to flow through the Mg(OH)2

layer, hence decreasing the rate at which water reaches the Mg interface. However

the solid fraction does not have an impact on the degradation time for Mg(OH)2 as

the transport of CO2 in the MgCO3 layer governs this process. The figure emphasises

the importance of the hydroxide layer at slowing the degradation of the metal core,

by impeding the passage of water. The decrease in porosity enhancing longevity is

consistent with Sun et al. [60].

The bottom plot of Figure 3.10 shows the effects of changing ε2 whilst keeping ε1

fixed at 0.6. The solid fraction of MgCO3 does not appear to have an affect on Tα,

but does affect Tβ. Here, for t < Tα, the thickness of the MgCO3 layer, S−β, is fairly

small and appears not to be sufficient to impede significantly the passage of water

across it, thus Tα remains approximately constant. Although, Tα varies between the

κ values, it is small compared to Tβ, and the conversion of Mg(OH)2 to MgCO3 being
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independent of κ means the plots are superimposed. As ε2 increases, it is CO2 that is

impeded by the smaller void fraction leading to the sharp rise in time Tβ on ε2 → 1.

Using the argument in Section 3.4.3 in formulating equation (3.61) for large γ2, then

we expect Tβ ∝ 1/(1 − ε2); this relationship matches the numerics very well and

suggesting that Tβ →∞ as ε2 → 1−.

3.4.5 Effect of Rate of Reaction at Magnesium Interface

Figure 3.11 displays contours of log(Tα) for a range of values for κ and ε1 whilst

keeping ε2 constant at 0.4 (top plot), and a range of values for κ and ε2 whilst

keeping ε1 constant at 0.6 (bottom plot). The variation in the parameter κ reflects

different degradation rates across various magnesium alloys. As can be observed from

the top plot of Figure 3.11, the longevity of Mg increases as κ and the void fraction

1 − ε1 decreases. In the plot, when κ = O(10−3) and 1 − ε1 = O(10−4), the longest

time that Mg takes to fully degrade is at Tα = 102.8, which is approximately 380 days.

This prediction suggests that the model is on the right track, because an implant is

preferred to be present for a minimum of 72 days [6]. The lower plot in Figure 3.11

shows that changes in ε2 do not have an impact on the degradation time of Mg, but

a smaller κ lengthens the degradation time of Mg.

Figure 3.12 displays the effects on Tα as κ changes in all three geometries (when

ε1 = 0.6 and ε2 = 0.4). As expected, the time for the total degradation of pure

magnesium increases as the reaction rate diminishes, whilst the curves tend to the

Case 1 solutions as κ→∞. For the reasons outlined in Section 3.4.2, Mg takes the

longest time to degrade in Cartesian, then cylindrical and then spherical geometry;

though the differences are less noticeable on a logged axis as κ→ 0.
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Figure 3.10: Plots of Tα and Tβ against ε1 (top) and ε2 (bottom) in spherical geometry
for κ = 0.3, 6 and κ → ∞, ε1 = 0.6 (bottom) and ε2 = 0.4 (top) with the remaining
parameters listed in Table 3.4 and S0 = 1.
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Figure 3.11: Contour plot of log(Tα) for κ against ε1 with ε2 = 0.4 (top) and κ against
ε2 with ε1 = 0.6 (bottom) in spherical geometry. The remaining parameters are listed
in Table 3.4 and S0 = 1.
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Figure 3.12: Plot of Tα against κ for the 3 principle geometries, with ε1 = 0.6 ε2 = 0.4,
S0 = 1 and the parameters listed in 3.4.

3.4.6 Role of Advection

The porous media assumption of the corrosion by-products is a novel feature of the

current work in metal corrosion studies. The formation of Mg(OH)2 and MgCO3

crystal structures allows transport of water and carbon dioxide through its pores.

The separate treatment of the resulting fluid and solid phase velocities is in contrast

to [19], in which they assumed that the transport of the diffusive species is supple-

mented by that of the solid phase motion; this presumably reflects these molecules

being somehow connected to and dragged along by the crystal structure. Figure 3.13

compares the evolution of α, β and S from three choices of advective flux velocities,

V , of water and CO2, namely

Case (i). The current model based on porous media assumption (V = vfi , solid

lines).
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Case (ii). Zero advective transport (V = 0, dotted lines), i.e. vfi set to zero in

equation (3.23)-(3.25) and in the boundary conditions.

Case (iii). Advective transport equal to the solid phase velocity, as in [19] (V = vsi ,

dashed lines), i.e. vfi swapped with vsi in equation (3.23)-(3.25) and in the

boundary conditions (as used in [19]).

The plots show that there is little difference qualitatively with the results between the

cases, and the only visible difference being in the stages up to about t = Tα. Mg is

predicted to degrade slightly faster using the current model’s assumptions (V = vfi)

than the zero advection case (V = 0) and, in turn, is predicted to be faster than

that using V = vsi as the advection flux. This is due to the signs of the advective

fluxes being vfi < 0 < vsi , as the reactions generate local solid volume increases,

since wα, wβ > 1. Thus, negative advective flux in case (i) implies that there is a

background inward drift of the reactants towards the reaction sites and hence the

overall corrosion rates will be predicted to be faster than of case (ii), with zero drift,

and case (iii), where the reactants are drawn away by the drift. For t > Tα, the

differences are maintained, but from the figure, the choice of advective flux appears

to have little effect on β in larger time.
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Figure 3.13: Plots of α, β and S resulting from using three choices of fluid and gas
phase advection velocities, V , namely V = vfi (as proposed in the current model, solid
lines), V = 0 (dotted) and V = vsi (dashed). The top plot shows the full evolution
of the interfaces and bottom plot shows the results around t = Tα. The results are in
cylindrical geometry, with ε1 = 0.6, ε2 = 0.4 and parameters in Table 3.4 and S0 = 1.
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3.5 Conclusion

In this chapter, a partial differential equation system, with moving boundaries and

interfaces, was used to describe the degradation of a piece of magnesium in aque-

ous media. This is a first step of modelling degradation of Mg or Mg alloy based

orthopaedic implants in biologically relevant environments. The model considers

the diffusion and advection of reactants through porous media in the crystal struc-

tures generated by reactions with Mg and its constituents. The corrosion products,

Mg(OH)2 and MgCO3, are viewed as discrete regions surrounding a block of Mg.

Novel features in terms of metal corrosion modelling is the consideration of porous

media flow in the crystal structures and the explicit consideration of MgCO3. The

model was analysed numerically, but small time asymptotic solutions were needed to

deal with singularities at initial and certain time points.

In 1-D, using the classical Cartesian, cylindrical or spherical geometries, a closed

system of equations were derived using mass conservation alone. The result of Section

3.4.2 shows that geometry has a significant effect on timescales of Mg degradation

and this can impact the shapes of materials used in an implant. For more accurate

predictions of corrosion of complex shapes, the problem needs to be studied in two or

three spatial dimensions, as has been considered using different modelling approaches

in, for example, [60, 70]. The porous media assumption in the current model led to

the explicit consideration of solid phase flow, through the manufacture of crystals at

the reaction interfaces, and a fluid phase flow to avoid a vacuum. The flow velocities

were analytically solvable, and the advective flow of the reactants in the fluid phase

do not complicate the model significantly from one that assumes diffusion as the only

means of reactant transport.

The investigation in Section 3.4.6 compared results using three different advection

assumptions, whereby V = vfi (current model), V = 0 and V = vsi (used in [19])
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representing extreme cases of physically relevant advective velocity V . The results

showed that the choice of advection term can notably affect the predicted time of

pure magnesium degradation, though in the long term there is only a little difference

in the predicted results.

The model consists of three parameters k, ε1 and ε2 that are not readily available

from the literature. However, there is scope for these parameters to be estimated

based on appropriate in vitro data and this is discussed further in Section 6.1. The

results of Section 3.4.4 and 3.4.5 show that these parameters can be tuned to predict

a wide range of results in terms of timescales for the vanishing of pure magnesium,

t = Tα, and the Mg(OH)2 layer, t = Tβ. At Tβ all that remains is a MgCO3 block.

The numerical results demonstrated that, over a various parameter values, k and ε1

affect Tα, whilst having a little effect on Tβ. The latter is affected most by ε2. To

substantially prolong Mg presence, Mg alloys must have the effect of reducing the

reaction rate k. Another parameter that can be controlled in the model is S0, which

represents the radius of the Mg sample. This was tuned for various values in Section

3.4.3, where it was noted that complete corrosion is described well by the law Tβ ∝ S2
0 .

In summary, it was perceived from the numerical results that the model effectively

determined the size of magnesium and its corrosion products over time depending on

the geometry used along with several other parameters that can be tuned. There is

plenty of scope in extending this model to describe corrosion in more physiologically

relevant environments; this is discussed in Section 6.1. Nevertheless, the current

model provides a promising initial step into a theoretical understanding of how the

progress of magnesium corrosion from the implant surface proceeds at a defined spatial

and temporal scale.



Chapter 4

Corrosion Inside a Magnesium

Pore

In the previous chapter, the degradation of a magnesium (Mg) sample was explored

for orthopaedic applications, where the Mg was visualised to be surrounded by layers

of its corrosion products, magnesium hydroxide (Mg(OH)2) and magnesium carbonate

(MgCO3). For simplicity, the Mg sample was assumed to be a solid with no pores

while the magnesium compounds were assumed to be porous to allow the reactants to

diffuse through, but, in practice, a typical Mg sample used for research into medical

implants is preferred to be porous. This is because a porous structure resembles

the natural porosity of bone, thus making it more beneficial for absorption into the

bone [86]. Hence, there is a growing number of interest in porous Mg structures for

regenerative medicine where Mg foams are being fabricated [49].

In this chapter, the corrosion inside a Mg pore is explored using mathematical

modelling, where the advection-diffusion model derived in the previous chapter is

adjusted here to describe the decomposition of a single pore within a porous structure.

During the degradation, Mg will corrode until eventually the pore is totally filled by

the corrosion products. The model derived is simplified and non-dimensionalised in

72
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Figure 4.1: Optical and SEM (Scanning Electron Microscope) micrograph images
of porous Mg structures with open interpenetrated macropores and small isolated
micropores porosities of 7% for (a) and (b), 36% for (c) and (d), 55% (e) and (f), and
pore sizes ranging from several µm to 200 - 400 µm; taken with permission from [4].

preparation for the numerical analysis similar to that of the previous chapter. Section

4.5 displays and discusses the results; and the key conclusions are summarized in the

final section.

4.1 Background

Ultimately, a bone implant should be “bone-mimicking” not just in terms of me-

chanical properties, but also in terms of porosity [86]. The porosity of a Mg implant

aids its integration with the natural bone tissue [6]. Hence, Mg pores are fabricated

using various techniques to investigate how the size, volume and structure of pores

impact the features of a corroding implant [4, 45, 87, 88]. See Figure 4.1 for Mg
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samples with a range of pore sizes and volumes with two different types of pores,

“open interpenetrated macropores” and “small isolated micropores” [4].

The addition of porosity in Mg returns a reduction in the range of mechanical

properties [6]. It is mentioned in [6] that a porosity of 97.5% with pore diameter of

4.5mm was reported to have a low yield stress making it inappropriate for load-bearing

applications. A study conducted by authors in [88] used a powder metallurgy method

to fabricate pores in Mg, and found that a decreasing number of pores and pore size

returned an increase in elastic modulus and yield strength [6, 49, 88]. Another study

that fabricated pores by a powder metallurgy method, [4], also identified that an

increase in pore size and volume yields a lower range of mechanical properties; the

authors noted that the porosity has an effect on the overall Mg degradation. Typical

pore sizes that have been studied range between 100 and 500µm with high porosity

volumes [45]. Nevertheless the authors in [45] highlight that Mg foam fabrication

has not been explored widely enough, so optimal porosity parameters are, as of yet,

unknown.

4.2 Modelling the Problem

When a porous Mg sample is immersed into clinical solutions or in the body then

the biochemical reactants enter the pores; in this case these are water and carbon

dioxide. The main reactions are assumed to be the same as those in Chapter 3. The

water from within the pore reacts with the Mg through the following reaction

Mg + 2 H2O −−→ Mg(OH)2 + H2, (4.1)

forming a layer of Mg(OH)2 inside the pore with evolving bubbles of hydrogen. The

hydroxide layer reacts with the carbon dioxide inside the pore through the following
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Figure 4.2: Diagram of an Mg block with two pore channels with circular cross section.
The modelling focuses on reactions within a single pore.

reaction

Mg(OH)2 + CO2 −−→ MgCO3 + H2O, (4.2)

forming a stable layer of MgCO3.

A cylindrical pore size within a Mg block is modelled in this chapter, as shown

in Figure 4.2. The model describes the physiological interactions inside a single pore

and perceives events from the start of the corrosion process of Mg within a pore,

through the formation of the hydroxide and carbonate layers inside the pore, until

the pore closes up. It is assumed that the Mg region surrounding the pore is infinite,

so the metal cannot be exhausted during the corrosion process. It is further assumed

that the outer layer of Mg around the pore has no other voids and corrodes in a way

that maintains a smooth surface. Consequently, it is envisaged that inside the pore, a

Mg(OH)2 layer is produced on the Mg surface, and then the MgCO3 layer is produced

on the Mg(OH)2 surface; see Figure 4.3 for the expected corrosion layers inside the

pore. In order for the Mg to corrode further, water in the pore must be able to diffuse

through the carbonate and hydroxide layers to react at the Mg surface, and CO2 in

the pore must be able to diffuse through the carbonate layer to reach the hydroxide

compound interface. Like the model in Chapter 3, these assumptions result in a

model that describes the transport and reaction processes of water and CO2 as well

as the location of the interfaces between Mg and its constituents, which are deposited
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Figure 4.3: Set-up of the physiochemical decomposition inside a single magnesium
pore used in the model for cylindrical geometry. The pure magnesium exists on the
outer layer (Zone 0, α(t) < r), the magnesium hydroxide forms a layer inside the
magnesium pore (Zone 1, β(t) < r < α(t)), which is followed by a further layer of
magnesium carbonate inside the pore (Zone 2, S(t) < r < β(t)); and the pore, acting
as a water and CO2 source, exists in the centre (Zone 3, 0 ≤ r < S(t)).

on the Mg surface inside the pore as corrosion products. As in the previous model, in

Chapter 3, the hydroxide and carbonate layers are treated as porous media, thereby

the movement speed of the “solid” components, i.e. the Mg(OH)2 and MgCO3, is

distinct to that of the fluid and gas components, i.e., water and CO2. By assuming a

radically symmetric cylindrical geometry, a closed system of equations is found based

on mass conservation alone.
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4.2.1 Model Variables

The model variables here are similar to those in Chapter 3. A radically symmetric

cylindrical geometry is applied where changes occur only in the r direction, writing r

as the spatial co-ordinate and t as the time variable, the moving boundaries between

the layers are represented as follows

• r = α(t): the location of the magnesium to magnesium hydroxide interface.

• r = β(t): the location of the magnesium hydroxide to magnesium carbonate

interface.

• r = S(t): the location of the pore interface.

The spaces between the interfaces are denoted by

• Zone 0: the Mg layer α(t) < r.

• Zone 1: the Mg(OH)2 layer β(t) < r < α(t).

• Zone 2: the MgCO3 layer S(t) < r < β(t).

• Zone 3: the pore 0 ≤ r < S(t).

The mass concentrations of water and carbon dioxide in the Mg compound pores are

denoted by

• W1(r, t): the concentration of water in the Mg(OH)2 layer.

• W2(r, t): the concentration of water in the MgCO3 layer.

• C2(r, t): the concentration of carbon dioxide in the MgCO3 layer.

As the hydroxide deposits on the magnesium surface and likewise the carbonate

on the hydroxide surface, the “solid” compounds move with velocities vsi ; and the
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movement of water and carbon dioxide in the fluid phases are denoted by velocities

vfi , where i = 1, 2 corresponding to the zone.

The solid structures of Zones 1 and 2 are assumed to consist of a fixed volume

fraction of the Mg compound and non-traversable space (εi) and traversable space

(1 − εi), where traversable space is interpreted as continuous channels of space and

excludes fully enclosed gaps in the solid structure. The outer layer of Mg that is

observed in the model is assumed to be completely non-traversable, thus ε0 = 1.

The chemical reactions are assumed to take place only at the interfaces α(t) and

β(t), whereby the rate at which these boundaries move depends on the local rate

of reaction. Inside the pore, the water and CO2 concentration are assumed to be

inexhaustible in vitro or in the physiological environment, so the magnesium and

the hydroxide will continue being consumed until the pore is completely blocked, i.e.

S = 0. Therefore, the model is only expected to be valid for a finite time, 0 < t < TS,

whereby t = TS is the point in time when S(t) = 0 (i.e. S(t) > 0 for t < TS). After

S(t) = 0, the pore no longer exists and there are no further developments in the

system; so the end result is the carbonate surrounded by a layer of the hydroxide

enclosed within an outer layer of magnesium.

We note, for t > TS, the water and CO2 that are present in the hydroxide and

carbonate layers at t = TS will continue to react until exhaustion. However, there are

no stress free boundaries to allow for volume expansion from these reactions, meaning

that stresses will build up in the pore; this is not considered in the current model as

we limit attention to a t < TS time frame.

Table 4.1 summarizes the above and lists the parameters corresponding to each

zone.
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Zone Domain Solid Solid Mass Molecular Mol/Vol Solid
(i) fraction constituent density mass velocity
0 α < r ε0 = 1 Mg ρ0 M0 µ0 0
1 β < r < α ε1 Mg(OH)2 ρ1 M1 µ1 vs1
2 S < r < β ε2 MgCO3 ρ2 M2 µ2 vs2

Table 4.1: Notation used in the model where ρi = Miµi, ωα = µ0/µ1 and ωβ = µ1/µ2.

4.3 Mathematical Model

The derivation of the model is the same as that in the previous chapter in Section

3.2, except the set-up of the model is “inside out”. The radial velocities of the

magnesium compound phases are vs1(r, t) and vs2(r, t), hence the conservation of

mass for cylindrical geometry implies

1

r

∂

∂r
(rε1 vs1) = 0 r ∈ (β, α), (4.3)

1

r

∂

∂r
(rε2 vs2) = 0 r ∈ (S, β), (4.4)

where ε1 and ε2 are the constant solid fractions for Zone 1 and Zone 2, respectively.

These can be divided out, but the fraction term will be retained in the model deriva-

tion for completeness. The fluid phase is assumed to consist of all non-solid materials

and that it is non-compressible. Hence,

1

rd
∂

∂r

(
rd(1− ε1) vf1

)
= 0 r ∈ (β, α), (4.5)

1

rd
∂

∂r

(
rd(1− ε2) vf2

)
= 0 r ∈ (S, β). (4.6)

where the fluid fractions, (1 − ε1) and (1 − ε2) are constants, and vf1 and vf2 are

the fluid velocities of Zone 1 and Zone 2, respectively. It is noted that the flow here

does not encompass that of the fluid/gas trapped in non-traversable pores in the solid
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structure. The advection-diffusion fluxes for water and carbon dioxide are as follows

JW1 = vf1 W1 −DW∇W1 r ∈ (β, α),

JW2 = vf1 W2 −DW∇W2

JC2 = vf1 C2 −DC∇C2

 r ∈ (S, β),
(4.7)

where DW is the diffusion coefficient of water and DC is the diffusion coefficient of

carbon dioxide. These yield the following transport equations

∂((1− ε1)W1)

∂t
= − 1

r

∂

∂r
(r(1− ε1)JW1) r ∈ (β, α), (4.8)

∂((1− ε2)W2)

∂t
= − 1

r

∂

∂r
(r(1− ε1)JW2)

∂((1− ε2)C2)

∂t
= − 1

r

∂

∂r
(r(1− ε1)JC2)

 r ∈ (S, β). (4.9)

4.3.1 Initial, Boundary and Interface Conditions

Initially, it is assumed that there is a pore with an outer layer of magnesium, therefore

t = 0 : S(0) = β(0) = α(0) = P0, (4.10)

where P0 > 0 is the initial radius of the pore. Water and carbon dioxide is sourced

from inside the pore on r = S, which flow at speed equal to the local velocity, hence

r = S(t) : W2 = W ∗
0 , C2 = C∗0 , Ṡ = vs2 , (4.11)

where Ṡ = dS/dt, and W ∗
0 and C∗0 are constant concentrations of water and carbon

dioxide in vitro or in physiological environments that are inside the pore.

As seen in Chapter 3, the conditions on the interfaces are more complex and

change at critical points of the corrosion process. Water, from inside the pore, reacts
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Mg

CO2

H2O
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Figure 4.4: Physiochemical schematic at the start of the corrosion process when
k < ∞ and S(t) − β(t) is very small (at 0 < t ≤ Tα=β), where the CO2 inside the
pore can penetrate the tiny layer of MgCO3 and instantly react the Mg(OH)2 without
exhausting the CO2, hence the hydroxide layer is absent i.e. α(t) = β(t).

with the surface of the magnesium sample at r = α(t). The rate of this reaction,

Rα, will be dependent on the water concentration and flux there. As two water

molecules are consumed, it is assumed by the law of mass action applied to (3.1) that

Rα = kW 2
1 , where k is a rate constant. The same two cases considered in Chapter 3

will be examined in this model, these are as follows

• Case 1 considers the limit k →∞, where the reaction is so rapid that water is

immediately exhausted on the r = α(t) interface, hence W1 = 0.

• Case 2 considers k < ∞, whereby W1 > 0 on r = α(t). In small time, when

1−β(t)/S(t)� 1, the small distance for the carbon dioxide to diffuse means that

Mg(OH)2 immediately becomes exhausted on production and Mg converts to

MgCO3, in effect, immediately; consequently α(t) = β(t) during this transient.

See Figure 4.4 for a visualisation of this. In time, the thickness of Zone 2,

S(t) − β(t), becomes sufficiently large for the reaction to exhaust the carbon

dioxide on r = β(t), allowing the Mg(OH)2 layer to grow.

All the conditions on r = α(t) and r = β(t) are the same as that in Section 3.2.1 in

Chapter 3, except for the interface condition on r = α(t) when k < ∞, where the
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water flux is

(1− ε1)(−W1α̇ + JW1) = 2Rα = 2kW 2
1 ;

note the sign change here, because growth is in a different direction relative to the

outward normal. For Case 1, the conditions are on

r = α(t) : vs1 = −(ωα − 1)α̇, vf1 = α̇,

(1− ε1)(−α̇W1 + JW1) = 2
MW

M0

ρ0α̇,

W1 = 0 for k →∞ or
MW

M0

ρ0α̇ = kW 2
1 for k <∞,

(4.12)

and

r = β(t) : C2 = 0, W2 = W1, vs2 = vs1 − (ωβ − 1)(β̇ − vs1),

(1− ε1)(vf1 − β̇) = (1− ε2)(vf2 − β̇),

(1− ε2)(−β̇W2 + JW2)− (1− ε1)(−β̇W1 + JW1) = −MW

M1

ρ1(β̇ − vs1),

(1− ε2)(−β̇C2 + JC2) =
MC

M1

ρ1(β̇ − vs1),

(4.13)

for S(t) > 0. For Case 2, when t ≤ Tα=β, then the hydroxide layer is absent. Hence,

the boundary conditions are

r = α(t) = β(t) : vs2 = − (ωαωβ − 1)β̇, vf2 = β̇,

(1− ε2)(−β̇W2 + JW2) =
MW

M1

ρ1β̇,

MW

M0

ρ0β̇ = kW 2
1 , (1− ε2)JC2 =

MC

M1

ρ1β̇;

(4.14)

and once t > Tα=β conditions (4.12) and (4.13) are imposed. See Section 3.2.1 for a

derivation of the conditions.

The derived system describes the alteration of Mg to MgCO3 inside the pore. It

assumes that MgCO3 will have no exit from the system, and the final stage is when

the pore is blocked, which is at t = TS when S(t) = 0. The different stages modelled
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Phase time b.c.s vsi and vfi
1.1 k →∞ 0 ≤ t ≤ TS (4.12), (4.13) (4.15)
2.1 k <∞ 0 ≤ t ≤ Tα=β (4.14) (4.16)
2.2 Tα=β < t ≤ TS (4.12), (4.13) (4.15)

Table 4.2: Relevant boundary conditions for each of the Mg corrosion phases for the
two cases k →∞ and k <∞, where time scales Tα=β and TS represent the smallest
points in time when Phase 2.1 ends and S = 0, respectively.

during the corrosion of Mg from inside the pore are labelled for the two cases on

k. These are, Phase 1.1 (for k → ∞ and 0 ≤ t ≤ TS), Phase 2.1 (for k < ∞ and

0 ≤ t ≤ Tα=β) and Phase 2.2 (for k <∞ and Tα=β < t ≤ TS).

Table 4.2 summarises the boundary conditions used for the different phases in

Case 1 and Case 2.

4.3.2 Exact Solutions

Equations (4.3)-(4.6) are integrated for each of the scenarios in Table 4.2. For Case

1, applying equations (4.12) and (4.13) gives

vs1 = −(ωα − 1) α̇ α

r
, vs2 = −ωβ (ωα − 1) α̇ α + (ωβ − 1) β̇ β

r
,

vf1 =
α̇ α

r
, vf2 =

(1− ε1) α̇ α− (ε2 − ε1) β̇ β
(1− ε2)r

,
(4.15)

for t ≤ TS. For Case 2, applying (4.14) gives

vs1 = −(ωα − 1) β̇ β

r
, vs2 = −(ωα ωβ − 1)β̇β

r
,

vf1 =
β̇ β

r
, vf2 =

β̇ β

r
,

(4.16)

for t ≤ Tα=β, and the velocities for Tα=β < t ≤ TS are the same as that in equation

(4.15). Using the formulation in (4.15) for vs2 , we obtain

SṠ = −ωβ(ωα − 1)αα̇ + (ωβ − 1)ββ̇,
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which on integration, using (4.10), yields

S = P0

[
− (ωβ − 1) (β/P0)

2 − ωβ(ωα − 1) (α/P0)
2 + ωα ωβ

]1/2
, (4.17)

which is valid for Phase 1.1 and Phase 2.2, and substituting α = β into (4.17) gives

S for Phase 2.1. In the final stage of the corrosion process, the following is obtained

on substitution of S = 0, for ωα 6= 1,

(ωβ − 1)β2
∞ + ωβ(ωα − 1)α2

∞ = ωαωβP
2
0 , (4.18)

where α∞ and β∞ are the final sizes of α and β at pore closure. It must be emphasised

that ωα and/or ωβ, which represent the molar densities of the two reactions, must be

more than 1 for S → 0, otherwise equation (4.18) can never be satisfied. In other

words, one of both of the chemical reactions need to create solid phase volume to

enable the pore to close. Note that the corroded thickness of Mg is α∞ − P0 and

equation (4.18) indicates that α∞ ∝ P0 ⇔ β∞ ∝ P0.

An upper bound for α∞ can be identified by assuming that there is no carbonate

layer and so the pore is filled with the hydroxide at closure. For this, using the

formulation in (4.15) for vs1 , we have

ββ̇ = −(ωα − 1)αα̇,

which on integration, using (4.10), gives

β2
∞ = −(ωα − 1)α2

∞ + P 2
0ωα, (4.19)
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at TS. Substituting (4.19) into (4.18) yields the following upper bound

α∞ =

√
ωα

ωα − 1
P0. (4.20)

There are no further exact solutions to be obtained and variables α, β,W1,W2 and

C2 need to be resolved numerically from (4.8), (4.9) and (4.10)-(4.14).

The data for the model parameters is represented in Table 3.3 (in the previous

chapter Section 3.2.2). There are three parameters ε1, ε2 and k for which information

appears to be limited; they will be investigated further on their effects to the degra-

dation behaviour of magnesium from inside a pore. The parameter for the initial size

of the pore, P0, will also be explored.

4.3.3 Non-dimensionalisation

The variables are rescaled in a similar way to that in Section 3.2.3. A suitable

timescale is chosen for which carbon dioxide diffuses across a reference distance P ∗0

(choosing P ∗0 = 250 µm). The water and carbon dioxide variables are rescaled with

ambient mass concentrations W ∗
0 and C∗0 , therefore

t =
P ∗0

2

Dc

t̂, r = P ∗0 r̂, W1 = W ∗
0 Ŵ1, W2 = W ∗

0 Ŵ2, C2 = C∗0 Ĉ2, α = P ∗0 α̂,

β = P ∗0 β̂, S = P ∗0 Ŝ,

and v∗ = DC v̂∗/P
∗
0 , where the quantities with hats are dimensionless. Using the data

in Table 3.3 the scaling implies that t̂ = 1 represents about 0.54 minutes. Let

P̂0 =
P0

P ∗0
, D̂W =

DW

DC

, γ0 =
MWρ0
M0W ∗

0

, γ1 =
MWρ1
M1W ∗

0

, γ2 =
MCρ1
M1C∗0

, κ =
P ∗0W

∗
0

DC

k,

(4.21)
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noting that ωα and ωβ are already dimensionless, then, on dropping the hats for

clarity, the following system is obtained

∂ W1

∂ t
+ vf1

∂ W1

∂ r
− DW

r

∂

∂ r

(
r
∂ W1

∂ r

)
= 0, (4.22)

∂ W2

∂ t
+ vf2

∂ W2

∂ r
− DW

r

∂

∂ r

(
r
∂ W2

∂ r

)
= 0, (4.23)

∂ C2

∂ t
+ vf2

∂ C2

∂ r
− 1

r

∂

∂ r

(
r
∂ C2

∂ r

)
= 0, (4.24)

with velocities for each scenario, after non-dimensionalisation, the same as that shown

in equations (4.15) and (4.16). Initial conditions are

α(0) = β(0) = S(0) = P0. (4.25)

For Case 1, κ→∞, the boundary conditions are as follows,

W1(α, t) = 0, W1(β, t) = W2(β, t), W2(S, t) = 1, C2(β, t) = 0, C2(S, t) = 1,

(4.26)

with interface conditions

r = α(t) : −(1− ε1)DW ∂rW1 = 2 γ0 α̇,

r = β(t) : DW ((1− ε1) ∂rW1 − (1− ε2) ∂rW2) = −γ1
(
β̇ +

(ωα − 1)αdα̇

βd

)
,

−(1− ε2)∂rC2 = γ2

(
β̇ +

(ωα − 1)αdα̇

βd

)
,

(4.27)

and analytical solution for S

S = P0

(
ωαωβ − (ωβ − 1)(β/P0)

2 − ωβ(ωα − 1)(α/P0)
2
)1/2

. (4.28)
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For Case 2, κ <∞, the boundary conditions are as follows

W2(S, t) = 1, C2(S, t) = 1, (4.29)

and for t ≤ Tα=β interface conditions are

r = α(t) = β(t) : γ0β̇ = κW 2
2 , −DW (1− ε2) ∂rW2 = γ1 ωα β̇,

−(1− ε2)∂rC2 = γ2 ωα β̇,
(4.30)

and analytical solution

S = P0

[
(β/P0)

2 + ωαωβ(1− (β/P0)
2)
]1/2

. (4.31)

For Tα=β < t ≤ TS, in addition to equations (4.29), we have

γ0α̇ = κW 2
1 , W1(β, t) = W2(β, t), C2(β, t) = 0, (4.32)

and interface conditions (4.27) and (4.28) are imposed.

Table 3.4 in Section 3.2.3 displays the values of the dimensionless parameters used

in the model simulations.

4.4 Numerical Method and Asymptotics

The system of PDEs in (4.22)-(4.24) is solved numerically using the same method as

in Chapter 3. Firstly, the spatial domains are mapped onto the unit interval ρ ∈ [1, 2]

using the rescaling presented in Section 3.3.1, where (r, t)→ (ρ, τ). The singularities

resulting from α = β = S at t = 0 at the start of Phase 1.1 and Phase 2.1 and

α = β at t = Tα=β at the start of Phase 2.2 are dealt with in a similar way to that

in Section 3.3.2. For Case 1, the simulation starts at τ = τ0 � 1 so that a tiny
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amount of corrosion has occurred and, due to ωα, ωβ > 1, S(τ0) < P0 < α(τ0) with

1− S(τ0)/P0 � 1 and α(τ0)/P0 − 1� 1. The united radii α(τ0), β(τ0) and S(τ0) are

approximated using small time asymptotic expansions

α(τ) ∼ P0 + a1 τ
1/2, β(τ) ∼ P0 + b1 τ

1/2, S(τ) ∼ P0 + s1 τ
1/2 (4.33)

for τ � 1, where a1 > 0 and s1 < 0 are expected. The expansions lead to equa-

tions (3.52) and (3.54) as τ −→ 0, which are solved to provide initial conditions for

α, β, S,W1,W2 and C2 at small time. A similar approach is used in Case 2, whereby

S(τ0) < P0 < β(τ0) = α(τ0). The following small time asymptotic approximations

are applied to the equations for Phase 2.1

β ∼ P0 + b
[1]
1 τ + b

[1]
2 τ

2,

S ∼ P0 + s
[1]
1 τ + s

[1]
2 τ

2,

W2 ∼ 1 +W
[1]
21

(ρ)τ +W
[1]
22

(ρ)τ 2,

C2 ∼ 1 + C
[1]
21

(ρ)τ + C
[1]
22

(ρ)τ 2,

(4.34)

where it was found that

b
[1]
1 =

κ

γ0
, b

[1]
2 =

κ

γ0
W

[1]
21
, s

[1]
1 = (1− wαwβ) b1,

s
[1]
2 =

1

P0

(1− wαwβ)

(
b
[1]2

1 wαwβ
2

+ P0b
[1]
2

)
;

(4.35)

and the initial conditions of W2 and C2 in equation (3.57) are relevant.

After changing the variables and imposing the small time asymptotic analysis, the

system of PDEs and the appropriate boundary conditions for each of the phases was

solved using an adjustment of the code in the previous chapter, where the Method

of Lines (MoL) was implemented in MATLAB. The stiff ODE solver, ode15s, was
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applied for the time stepping process.

4.5 Results

In this section, the results from the numerical solution are discussed. As mentioned

in Chapter 3, there are three parameters in the model listed in Table 3.3 for which

data is not identified, ε1, ε2 and κ, (though ε1 = 0.6 and ε2 = 0.4 was chosen for

most simulations to keep the values close to the mid-range). The degradation of

magnesium is examined in the simulations, and in particular the pore closure time,

TS, and the final sizes, α∞ and β∞. Section 4.5.2 explores the effect of the initial size

of the pore, which can be experimentally controlled through fabrication techniques,

but for the rest of the simulations the pore radius is set at the reference value, 250 µm

(i.e. P0 = 1).

4.5.1 Magnesium Degradation

For Case 1, κ → ∞, the result for when ε1 = 0.6 and ε2 = 0.4 is shown in Figure

4.5, where the size of Mg and its compounds are displayed over time. The dashed

lines in Figure 4.5 represent TS. Evidently, it is seen that Mg corrodes until the pore

is blocked, after this it remains at a constant size. Since the reaction rate is infinite

in this case, the Mg(OH)2 is being produced quicker than it is being consumed and

so β − S is very small throughout. After reaching TS the hydroxide remains at a

constant size. The size of the pore becomes smaller throughout the corrosion process

as the centre of the pore is suffused with MgCO3 and Mg(OH)2. The pore closes

quite rapidly at t = O(1), which is due to κ→∞.

Figure 4.6 shows an example simulation for a finite reaction rate (Case 2 ) when

κ = 1.05 × 10−3 (corresponding to k = 0.07cm4/g · s in Table 3.3) for Mg and its

compounds over time. Here, the dashed lines represent Tα=β (left) and TS (right).

After Tα=β, when β and α begin to separate, the hydroxide is produced but appears
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Figure 4.5: Plots of α, β and S against t using ε1 = 0.6, ε2 = 0.4, κ → ∞, the
parameters in Table 3.4 and P0 = 1. The dashed line shows t = TS.

to be consumed quickly by its reaction with CO2. In contrast to Figure 4.5, the pore

takes much longer to close at t = O(102), because, here, the reaction rate is finitely

small.

The water and CO2 concentration distribution is displayed in Figure 4.7 at the

start of Phase 2.1, end of Phase 2.1 (t = Tα=β), Phase 2.2 at the point the full

system is solved numerically and end of Phase 2.2 (t = TS); the times t are detailed

in the caption where κ ≈ 1.05 × 10−3, ε1 = 0.6 and ε2 = 0.4. In small time, the

Mg(OH)2 layer is absent so a tiny layer of MgCO3 surrounds the Mg inside the pore,

and, evidently, the concentrations of water and CO2 are quite uniform r ∈ (S, β).

Moreover, the CO2 is not exhausted at β in small time, but in time, the concentration

declines to zero at the end of Phase 2.1. As time progresses into Phase 2.2, α − β

and β−S are still small and the profiles for water and CO2 are approximately linear.
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Figure 4.6: Plots of α, β and S against t using ε1 = 0.6, ε2 = 0.4, κ = 1.05 × 10−3,
the parameters in Table 3.4 and P0 = 1. The dashed lines show t = Tα=β (left) and
TS (right).

A slight upward kink in the water distribution is noted at r = β on close inspection,

which is due to the production of water when the hydroxide converts to the carbonate.

By the end of Phase 2.2, the water and CO2 distributions are non-linear.

4.5.2 Effect of Pore Size

The non-dimensionalisation in Section 3.2.3 is such that the initial radius of the pore

is P0 = 1, which has been used in the simulations up until now and corresponds to

250µm. Explored in Figure 4.8 is the relationship between the initial pore radius,

which ranges from 0.01− 40 (corresponding to 2.5 µm - 1 cm), and the final sizes of

α and β (right); and the relationship between the initial pore radius and TS (left).

Other parameters in the simulation are κ ≈ 0.03, ε1 = 0.6 and ε2 = 0.4. Evidently,
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Figure 4.7: Plots of the concentrations W1,W2 (left) and C2 (right) at, from top to
bottom, the start of Phases 2.1 (t = τ0 = 10−9), end of Phase 2.1 (t = Tα=β ≈ 142.79),
Phase 2.2 (t = Tα=β + τ1, with τ1 = 53.3, see Section 3.3.2), and the end of 2.2
(t = TS ≈ 548.1). In the left-hand panel, the solid lines represent W1 and the dashed
lines W2. The vertical dotted lines indicate from right to left, r = β, r = S (right-
hand panel and top 2 plots on left-hand panel) and r = α, r = β, r = S (bottom 3
plots on left-hand panel). The parameters are ε1 = 0.6, ε2 = 0.4, κ ≈ 1.05 × 10−3,
P0 = 1 and the rest listed in Table 3.4.
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Figure 4.8: Plot of TS against P0 (top), and α∞ and β∞ against P0 (bottom) when
κ ≈ 0.015, ε1 = 0.6, ε2 = 0.4. The remaining parameters are listed in Table 3.4.

as the initial pore size is increased then the pore takes longer to close up and more

Mg has corroded at TS. It is noted that the left plot does not give a power law

relationship, but for the right of Figure 4.8 a linear relationship is detected for α∞

and β∞; from the analytical solution in equation (4.18), this can be expected.

4.5.3 Effect of Porosity of the Mg(OH)2 and MgCO3 Layers

In Figure 4.9, α∞ and β∞ are plotted against changes in ε1 and ε2 for κ = 0.03, 3,

ε1 = 0.6 (bottom) and ε2 = 0.4 (top). It is seen that adjustments in the solid fractions

have a small affect on α∞ and β∞. An increase in the hydroxide solid fraction (top)

inhibits water reaching r = α, which slows the reaction at r = α without effecting the

reaction at r = β, and so the proportion of Mg(OH)2 converting to MgCO3 increases

leading to closure with a larger fraction of MgCO3, and slightly less Mg corrosion i.e.

α∞ decreases. An increase in the carbonate solid fraction (bottom) slows the reaction

at r = β, so more Mg(OH)2 remains in the system, and there is a greater fraction of

Mg(OH)2 at hole closure, so α∞ increases.

Figure 4.10 shows the effect of the solid fractions, ε1 and ε2, on the time scale TS

for κ = 0.03, 0.3, 3 and κ→∞, ε1 = 0.6 (bottom) and ε2 = 0.4 (top). It appears that

TS increases with ε1 in the top plot, and rises sharply as ε1 → 1, which is expected,
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Figure 4.9: Plots of α∞ and β∞ against ε1 (top) and ε2 (bottom) for κ = 0.03, 3,
ε1 = 0.6 (bottom) and ε2 = 0.4 (top). The remaining parameters are listed in Table
3.4 and P0 = 1. The black dashed line represents the upper bound for α∞, which is
1.5053 using equation (4.20).

because a larger solid fraction in the hydroxide region means that there is less space

for the water to diffuse and react with the Mg. As ε2 increases in the bottom plot

of Figure 4.10, then only a subtle increase in TS is noted, which rises sharply as

ε2 → 1. This is because a bigger solid fraction reduces the space for water and CO2
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to flow through and react at the boundaries, thereby increasing the pore closure time.

Changes in ε1 appear to have more of an effect on TS than changes in ε2.

The “diamond” symbols in Figure 4.10 are the points at which an error was

received in the numerical code when κ → ∞, ε1 > 0.98 or ε2 > 0.95. The error for

ε2 > 0.95 was due to the initial conditions for Phase 1.1 in equations (3.54), which

required the subtraction of two error functions with large arguments resulting with

a zero on the denominator. Though not implemented, this can partially be resolved

using asymptotic series of the error function.

4.5.4 Effect of Rate of Reaction at Magnesium Interface

Contours of log(TS) are displayed in Figure 4.11 for a range of values for κ and ε1

whilst keeping ε2 constant at 0.4 (top plot), and a range of values for κ and ε2 whilst

keeping ε1 constant at 0.6 (bottom plot). Different corrosion rates across various

magnesium alloys are represented by the variations in κ. The longevity of the pore

increases as κ and the void fraction 1− ε1 decreases. In the plot, when κ = O(10−3)

and 1−ε1 = O(10−4), the pore takes the longest time to close up at TS = 102.7, which

is approximately 4.5 hours. This would be very rapid in comparison to the time scale

of the Mg implant (observed in Chapter 3).

Displayed in Figure 4.12 is the effect on TS (top) and α∞ (bottom) as κ varies for

κ < 0 and κ → ∞ when ε1 = 0.6 and ε2 = 0.4. Evidently, it is seen that the pore

closure time decreases as the reaction rate is higher eventually tending to the Case 1

solution as κ→∞. As expected, a lower reaction rate, κ, indicates that less Mg has

corroded at pore closure, and as κ is increased then this leads to the Case 1 solution

for α∞.
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Figure 4.10: Plots of TS against ε1 (top) and ε2 (bottom) for κ = 0.03, 0.3, 3 and
κ → ∞, ε1 = 0.6 (bottom) and ε2 = 0.4 (top). The remaining parameters are listed
in Table 3.4 and P0 = 1. Due to the numerical limitation, computations were only
made to the “diamond” symbols when κ→∞ and ε1 > 0.98 or ε2 > 0.95.
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Figure 4.11: Contour plot of log(TS) for κ against ε1 with ε2 = 0.4 (top) and κ
against ε2 with ε1 = 0.6 (bottom). The remaining parameters are listed in Table 3.4
and P0 = 1.
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Figure 4.12: Plot of TS (top) and α∞ (bottom) against κ < 0 (solid line) and κ→∞
(dashed line), where ε1 = 0.6 and ε2 = 0.4. The remaining parameters are listed in
Table 3.4 and P0 = 1. Note that the upper bound for α∞ is 1.5053 using equation
(4.20).
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4.6 Conclusion

In practice, a magnesium implant will be porous, because the holes will presumably

effect its corrosive properties by aiding its integration into the bone [6, 45]. Hence,

the model derived in the previous chapter was adapted here to explore the corrosion

inside a single Mg pore. The advection and diffusion of water and carbon dioxide

from inside a pore was considered, which formed corrosion products, Mg(OH)2 and

MgCO3, as distinct layers deposited on the Mg surface. It was assumed that the

outside layer of Mg is inexhaustible.

The model was derived for cylindrical geometry, and, in a similar way to Chapter

3, it was analysed numerically, but small time asymptotic solutions were needed to

deal with singularities at initial and certain time points. There are three parameters

in the model that are not readily available from the literature, k, ε1 and ε2. The

results of Section 4.5.3 and 4.5.4 show that these can be tuned to predict a wide

range of results in terms of a timescale for the pore closure, t = TS, and the final sizes

of α and β, α∞ and β∞. At TS the pore is filled with MgCO3 that is surrounded by

Mg(OH)2, which in turn is surrounded by the Mg. The numerical results indicate that

changes in k and ε1 affect TS, while ε2 has only a little effect, which is insignificant.

Furthermore, it was found that a rise in the Mg(OH)2 solid fraction led to less Mg

corroded at TS, whereas a rise in the MgCO3 solid fraction led to more Mg corroded

at t = TS, and a smaller k was found to yield less Mg corrosion at pore closure.

To delay the pore closure time, the reaction rate, k, of a Mg or Mg alloy implant

can be lowered. The analysis indicated that pores close within a few hours, which is

very rapid in comparison to the life time of an implant. This further suggests that

a Mg block, fashioned with pores, will quickly evolve to a heterogeneous structure of

Mg, Mg(OH)2 and MgCO3 with potentially some trapped air and hydrogen pockets.

A further parameter that can be tuned in the model is the radius of a Mg pore
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P0, which is, in practice, fully controllable via pore fabrication techniques. In Section

4.5.2, it was found that the thickness of corroded Mg at t = TS is linearly dependent

on the pore size.

The corrosion inside a Mg pore was described well by the model to predict the pore

closure time and the final thickness of corroded Mg. The porous media assumption

in the model makes it unique for metal corrosion models, while the consideration

of corrosion inside a Mg pore extends its novelty. There is capacity to enhance the

current model for orthopaedic applications; this is discussed in detail in Section 6.1.

However, the work in this chapter provides a groundwork for the exploration of Mg

pore corrosion.



Chapter 5

Magnesium in the Blood

Magnesium (Mg) is a biodegradable implant material, which carries the ability to

be fully dissolved over time. As the implant degrades, a tissue is formed around the

bone releasing magnesium ions into the blood. Magnesium ions are the fourth most

abundant cations in the human body, which holds around 21 − 30g of magnesium

[8, 11, 12, 28]. The element is normally sourced from the diet, is stored in bone,

muscle, other soft tissues and blood, and is excreted in the urine [5]. A concentration

of magnesium lower than 0.65 mmol/l in the serum is classed as a deficiency known as

a condition called hypomagnesamia, while a concentration in excess of 1.05 mmol/l

is known as a condition called hypermagnesemia [5, 11]. It must be considered that

a degrading Mg implant can result in an excess amount of the element in the serum.

In the previous chapters, the degradation of Mg implants was modelled, and since

hypermagnesemia can potentially be the outcome of such degradation, this chapter

models the effects of Mg in the blood during implantation. In agreement with [20],

observing Mg in the serum is a significant aspect of bone implantation to ensure

severe symptoms of hypermagnesemia can be prevented. A physiologically based

pharmacokinetic (PBPK) model is derived here to study and analyse the effects of

plasma Mg with and without the presence of an implant. The model is also applied

101
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to the case when excess Mg is not eliminated from the blood in the usual manner via

urinary excretion.

5.1 Background

The human body obtains magnesium from its diet e.g. from consuming water, leafy

green vegetables and nuts. Magnesium, like other nutrients, is then broken down

in the digestive system, and some of this is absorbed in the intestine while the rest

is excreted in the faeces. The absorbed proportion is transferred into the blood

compartment where it is filtered in the kidneys; about 95% is normally reabsorbed

by the kidneys while the rest is excreted in the urine. The kidneys are able to excrete

more or less Mg to help preserve healthy levels in the blood. Bone is the key Mg

depository in the body, and there is a continuous exchange between bone and blood

[89]. The bone can compensate in the course of an Mg deficiency in the blood, but

since Mg is essential for bone strength, repeated compensation can lead to osteoporosis

[5, 42]. On the other hand, too much Mg absorption from the bone has damaging

effects to the bone [42]. To summarize, a stable level of magnesium in the body is

maintained by three major organs, intestine, kidneys and bone [89]. See Figure 5.1

for an overview of Mg metabolism in the human body.

The kidneys are naturally efficient at discarding excess Mg from the blood [8, 90],

therefore hypermagnesemia rarely occurs. It is usually only prevalent in patients

with renal disease. It can occur in patients that consume a high amount of Mg

salts or Mg containing drugs like laxatives and also supplements, but the condition

is scarce in the presence of a normal kidney function [90]. Some extreme examples of

hypermagnesemia are mentioned in [8, 90], where patients have nearly drowned in the

Dead Sea; the Dead Sea contains the worlds most saltiest water with an incredibly

high concentration of Mg compared to other oceans and rivers. Furthermore, a fatality
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Figure 5.1: Magnesium balance within the human body, taken from [5]

was reported in [91], where hypermagnesemia was caused by laxative use; the authors

highlight that, although it is rare, severe hypermagnesmia “frequently” leads to death.

Hypermagnesmia is clinically defined to be when plasma Mg concentrations are

above 1.05 mmol/l, however symptoms, which include weakness and difficulty breath-

ing, are only noticeable when levels are above 2 mmol/l [8]. Rising concentrations

affect the neuromuscular and cardiovascular systems causing the loss of deep tendon

refluxes with electrocardiogram scans generating uncharacteristic results at concen-

trations more than 3 mmol/l. As concentrations rise even more respiratory depression

is experienced eventually leading to cardiac arrest at more than 7 mmol/l [5, 8, 90].

Hence, hypermagnesmia can have severe affects if left uncontrolled. The condition

can be treated if it is mild by withdrawing any Mg therapy and if symptoms are more

severe then taking calcium salts can be beneficial, but if hypermagnesemia is due to

renal disease then dialysis can be performed to clear Mg from the blood [8, 90].
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5.2 Modelling the Problem

When an Mg orthopaedic implant is placed in the body, it bonds with the bone to

enable healing and as it degrades Mg ions are released into the blood yielding higher

plasma Mg levels. Here, Mg metabolism is analysed in order to develop a PBPK

model for situations with and without an implant, where the model aims to monitor

the effects of an implant on serum concentrations.

The magnesium content in the human body is pinpointed in the bone, muscle,

soft tissues, plasma and the red blood cells (RBCs), where the blood compartment is

formed of plasma and RBCs [5, 8]. Hence the variables in the mathematical model

to follow are denoted

• s(t), Mg mass in the plasma,

• r(t), Mg mass in the RBCs,

• N(t), Mg mass in the bone,

• T (t), Mg mass in the tissue, i.e. muscle and soft tissue,

• I(t), Mg mass in the tissue in the vicinity of the implant,

where s(t) + r(t) + N(t) + T (t) + I(t) = Total Mg in the human body. The defi-

nition for mass states that, i = Vi × Ci where V is volume, C is concentration and

i = s, r,N, T, I; this notation is used to derive the model.

Around 99% of the total magnesium in the human body is stored in the bone

and tissue [5], and from there the element is exchanged to and from the blood com-

partment. The exchange rates are assumed to be constants k1, k−1, µ1 and µ−1. The

essential source of Mg in the blood is from the diet, which, for simplicity, is assumed

to be sourced at a constant rate φD. Moreover, it is assumed that the release rate of
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magnesium from the implant is σ, which is a constant. The kidneys are responsible

for excreting excess Mg in the urine, with rate constant γ.

The concentration of Mg in the serum can be assorted into three groups, ionised,

protein bound and complexed with anions [5, 8]. Of the three assortments, the ionised

concentration of Mg in the serum, which represents approximately 65%, is exposed

and thereby exchangeable from the blood. Hence, the exposed and unexposed content

in the serum is mixed with a ratio and interaction rate represented by ξ1 and λ1,

respectively. The majority of the concentration of Mg in the RBCs is complexed, only

a small amount is ionised [92, 93], and so the Mg ions are assumed to be unmixed.

The transport of ionised Mg between the different RBCs encounters mixing with the

serum. Hence, the exposed content in the RBCs and serum is mixed with ratio and

interaction rate represented by ξ2 and λ2, respectively.

The bone is a rigid organ in the human body, which consists of a blood vessel to

enable the flow of blood, but since bone is solid the movement of Mg ions is very tight;

thus there is a region around the blood vessel and the outer edges of the bone that is

exposed to blood flow while the rest is unexposed. Therefore Mg ion content in the

bone is assumed to be unmixed. Let the exchangeable proportion be represented by

φ. Similar to bone, tissue consist of blood vessels that enable flow, but Mg ions have

slightly more movement here than in bone. The exposed and unexposed content in the

tissue is mixed with ratio and interaction rate represented by ξ3 and λ3, respectively.

To distinguish between the exposed and unexposed content of Mg, let Ci =

Ce
i

Cu
i


where Ce

i represents the exposed concentration and Cu
i the unexposed concentration.

Figure 5.2 displays a pathway diagram representing Mg networks to and from the

serum, RBCs, bone, tissue and implant site in a well-mixed system. It is assumed

that the exchange of Mg between serum and implant is related to that between serum

and tissue.
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Figure 5.2: Magnesium exchanged to and from the exposed and unexposed concentrations in the serum Cs, RBCs Cr, bone

CN , tissue CT and implant CI in a well-mixed tissue compartment system where ξ =
VT

VI + VT
.
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Tissue Weight Concentration Content % of total
(kg wet wt) (mmol/kg wet wt) (mmol) body magnesium

Serum 3.0 0.85 2.6 0.3
Red blood cells 2.0 2.5 5.0 0.5

Soft tissue 22.7 8.5 193.0 19.3
Muscle 30.0 9.0 270.0 27.0
Bone 12.3 43.2 530.1 52.9

TOTAL 70.0 1000.7 100

Table 5.1: Distribution of magnesium in the average adult human being [7].

5.3 Data

Studies on magnesium physiology and hypermagnesemia have been investigated to

determine approximate values for the parameters in the model. Healthy levels of

plasma Mg are recognised to be in the range 0.65 - 1.05 mmol/l, more than this refers

to hypermagnesemia. Concentrations above 3 mmol/l can be problematic, and above

7 mmol/l can lead to cardiac arrest [5]. For the numerical analysis to follow, 3 mmol/l

is considered to be high Mg levels that require immediate attention.

Data for the amount of Mg in the human body is taken from [5, 7, 8], see Table 5.1.

An average 70 kg adult human body is found to consist of 1000.7 mmol magnesium,

530.1 mmol of this is in the bone, 193 mmol is present in the soft tissue, 270 mmol is

in the muscle, 2.6 mmol is in the serum and 5 mmol is in the RBCs. The wet weight

of each is displayed in Table 5.1, from which the volumes and initial concentrations

in the model are determined in Table 5.3. For the tissue concentration, the muscle

and soft tissue from Table 5.1 are combined.

An average dietary intake of 15 mmol (or 360 mg) per day is taken from [5] and

[89]. As mentioned before, some of this dietary intake is absorbed by the intestine;

further to this about 0.8 mmol (or 20 mg) is secreted from the blood to the intestine.

After intestinal absorption and blood secretion, 4 mmol (or 100 mg) of magnesium per

day is reported to be transferred to the blood [89, 90], therefore φD = 4 mmol/day.
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Location Exposed Mg (%)
Serum 65
RBCs 8
Bone 33.3

Tissue 25

Table 5.2: Percentage of exchangeable Mg in serum, RBCs, bone and tissue sourced
from [5, 8].

The mass exchange rates of magnesium between blood and tissue, k1, and between

blood and bone, µ1, appear not to be reported in the literature. Reference values

for these parameters are attained from [94], where the paper provides a plethora

of reference values for PBPK model parameters. The values they provide are not

compound or element specific, but have been used in other PBPK modelling studies,

such as [95] for zinc oxide and [96] for manganese. The blood flow rates are identified

as fractions of cardiac output, which is well known to be 5 l/min for an average 70 kg

human being. Here 4.2% of the cardiac output is reported to flow to the bone, while

the rest flows to the tissues [94]; this gives data for k1 and µ1. For the k−1 and µ−1

values, the homoeostatic state predicted by the model in Section 5.4 is used, from

which it can be declared
k−1
k1
∼ C̄e

s

C̄e
T

and
µ−1
µ1

∼ C̄e
s

C̄e
N

. The bars represent homoeostatic

components. See Table 5.3 for the parameter values.

The kidneys are responsible for excreting excess magnesium in the urine. It is

known that they have the potential to increase and decrease excretion depending on

plasma levels [5]. Studies report that normally 4 mmol of magnesium is expected to

appear in the urine per day [5, 8, 89, 90], hence under healthy conditions γC̄e
s = 4

mmol/day ⇒ γ = 7.3 l/day.
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Parameter Description Value Units Source
Vs Volume of serum 3 L [5, 8]
Vr Volume of RBCs 2 L [5, 8]
VN Volume of bone 12.3 L [5, 8]
VT Volume of tissues 52.7 L [5, 8]
VI Volume of implant 0.00419 L -
C̄e
s Homoeostatic exposed concentration in serum 0.55 mmol/l R

C̄e
r Homoeostatic exposed concentration in RBCs 0.2 mmol/l R

C̄e
N Homoeostatic exposed concentration in bone 14.4 mmol/l R

C̄e
T Homoeostatic exposed concentration in tissue 2.2 mmol/l R

C̄u
s Homoeostatic unexposed concentration in serum 0.30 mmol/l R

C̄u
r Homoeostatic unexposed concentration in RBCs 2.3 mmol/l R

C̄u
N Homoeostatic unexposed concentration in bone 28.8 mmol/l R

C̄u
T Homoeostatic unexposed concentration in tissue 6.6 mmol/l R

φD Mg dietary intake rate after intestine absorption 4 mmol/day [5, 8]
σ Mg implant release rate F mmol/day -
γ Excretion rate constant of Mg in the urine 7.3 l/day [5, 8]
µ1 Exchange rate constant from blood to bone 302.4 l/day [94]
µ−1 Exchange rate constant from bone to blood 1.3 l/day H
k1 Exchange rate constant from blood to tissue 6897.6 l/day [94]
k−1 Exchange rate constant from tissue to blood 1.2 l/day H
ξ1 Equilibration ratio of exposed and unexposed in serum 0.54 - R
ξ2 Equilibration ratio of exposed in serum and exposed in RBCs 0.36 - R
ξ3 Equilibration ratio of exposed and unexposed in tissue 3 - R
φ Equilibration of exchangeable Mg in bone 3 - R
λ1 Rate of equilibration between exposed and unexposed in serum A l/day -
λ2 Rate of equilibration between exposed in serum and exposed in RBCs A l/day -
λ3 Rate of equilibration between exposed and unexposed in tissue A l/day -

Table 5.3: Values for the model parameters for healthy individuals, where F is a free parameter, R is derived using Table
5.1 and Table 5.2, H is derived from homoeostasis, A is unknown but is large in comparison to dimensionally equivalent
parameters.
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Ionised Mg ions in the serum are exposed, while the protein bound and complexed

are unexposed. The ratio between the exposed and unexposed is 0.65 : 0.35 [5, 8],

which means ξ1 = 0.54. The ionised Mg in RBCs is identified to be 0.2 mmol/l

[93], and comparing this to the ionised concentration in the serum ξ2 = 0.36. Ap-

proximately a third of the Mg content in the bone is exchangeable, and a quarter

in skeletal muscle and liver are exchangeable [5, 8]. The distribution of Mg in the

skeletal muscle is provided in Table 5.1. The liver is part of the soft tissue. To find

the concentration of liver alone, the wet weight of liver is 1.55 kg, and approximately

14 mg of Mg is present in every 100g of pig liver; pig liver is comparable to human

liver [97, 98]. Therefore, the amount of Mg in the liver is 217 mg, which gives a liver

concentration of 5.8 mmol/l. Since this concentration is close to that of soft tissue,

which is 8.5 mmol/l in Table 5.1, then, for simplicity, it is assumed that a quarter of

T is exchangeable, hence ξ3 = 3. The rates of equilibration within phase, λ1, λ2 and

λ3, are assumed to be much more rapid than that for the other processes; this will be

explored for the model simplification.

When an Mg implant is present, the model can be tuned for various values of

VI , which is the volume of the implant. In Chapter 3, when modelling the corrosion

of Mg a sample size of 1 cm radius was employed, and for an Mg sphere this refers

to a volume of 4.19 cm3 or 4.19 × 10−3 l. Hence, for the analysis in this chapter, a

reference value for VI is set constant at 4.19× 10−3 l.

The percentage of the exchangeable Mg in the serum, RBCs, bone and tissue are

displayed in Table 5.2, and the model parameter values are displayed in Table 5.3.
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5.4 Mathematical model

The following mass-balance PBPK equations are derived from Figure 5.2, for blood

Vs
dCe

s

dt
= φD − µ1C

e
s + µ−1C

e
N − k1Ce

s + k−1(ξC
e
T + (1− ξ)Ce

I )− γCe
s+

λ1(C
u
s − ξ1Ce

s ) + λ2(C
e
r − ξ2Ce

s ),

Vs
dCu

s

dt
= −λ1(Cu

s − ξ1Ce
s ),

Vr
dCe

r

dt
= −λ2(Ce

r − ξ2Ce
s ),

Vr
dCu

r

dt
= 0,

(5.1)

for bone

φVN
dCe

N

dt
= µ1C

e
s − µ−1Ce

N ,

(1− φ)VN
dCu

N

dt
= 0, (5.2)

for tissue

VT
dCe

T

dt
= ξ(k1C

e
s − k−1Ce

T ) + λ3(C
u
T − ξ3Ce

T ),

VT
dCu

T

dt
= −λ3(Cu

T − ξ3Ce
T ), (5.3)

and for the implant zone

VI
dCe

I

dt
= σ + (1− ξ)(k1Ce

s − k−1Ce
I ) + λ3(C

u
I − ξ3Ce

I ),

VI
dCu

I

dt
= −λ3(Cu

I − ξ3Ce
I ),

(5.4)
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where ξ =
VT

VI + VT
; all constant parameters are explained in Table 5.3. Initial con-

ditions represent the homoeostatic state, and these are

Cj
s(0) = C̄j

s , Cj
r (0) = C̄j

r Cj
N(0) = C̄j

N , Cj
T (0) = C̄j

T , Cj
I (0) = C̄j

T , (5.5)

where j = e, u. Equations (5.1) and (5.2) imply that Cu
r and Cu

N are constant, so

Cu
r = C̄u

r and Cu
N = C̄u

N .

To analyse this model, the system is first non-dimensionalised, and then the model

is reduced based on rapid equilibration between some phase variables.

5.4.1 Non-dimensionalisation and Reduction

There are a number of timescale in the system, e.g. timescale for equilibration within

a phase (assumed fast at O(secs)), between phases (slower at O(mins)), time at

excretion (slower at O(hours/days)) and implant occupation (O(months)). Here,

time is rescaled with respect to the second fastest timescale using

t = t̂
Vs
k1

;

and concentrations are rescaled using the following

Cj
s = C̄e

s Ĉ
j
s , Cj

r = C̄e
s Ĉ

j
r , Cj

N =
µ1

µ−1
C̄e
s Ĉ

j
N , Cj

T =
k1
k−1

C̄e
s Ĉ

j
T ,

Cj
I =

k1
k−1

C̄e
s Ĉ

j
I ,

where the hats represent dimensionless variables. Using the data in Table 5.3, the

scaling implies that t̂ = 1 represents 1.04 minutes. The following dimensionless
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parameters are defined

S =
σVsk−1
C̄e
sVIk

2
1

, µ =
µ1

k1
, Γ =

γ

k1
, ξ =

VT
VI + VT

, ξB =
Vs
Vr

ξN =
Vsµ−1
VNµ1

,

ξT =
Vsk−1
VTk1

,
1

ε
=
λ1
k1
,

λ̂30
ε

=
λ2
k1
,

λ̂31
ε

=
Vsλ3
VTk1

,
λ̂32
ε

=
Vsλ3
VIk1

,

where it is assumed that γ =
φD
C̄e
s

; and after dropping the hats for clarity, the following

system is attained,

dCe
s

dt
= Γ(1− Ce

s ) + µ(Ce
N − Ce

s ) + ξ(Ce
T − Ce

s ) + (1− ξ)(Ce
I − Ce

s ) +
1

ε
(Cu

s − ξ1Ce
s )+

λ30
ε

(Ce
r − ξ2Ce

s ),

dCu
s

dt
= −1

ε
(Cu

s − ξ1Ce
s ), (5.6)

dCe
r

dt
= −ξBλ30

ε
(Ce

r − ξ2Ce
s )

φ
dCe

N

dt
= µξN(Ce

s − Ce
N),

(5.7)

dCe
T

dt
= ξξT (Ce

s − Ce
T ) +

λ31
ε

(Cu
T − ξ3Ce

T ),

dCu
T

dt
= −λ31

ε
(Cu

T − ξ3Ce
T ), (5.8)

dCe
I

dt
= S + ξξT (Ce

s − Ce
I ) +

λ32
ε

(Cu
I − ξ3Ce

I ),

dCu
I

dt
= −λ32

ε
(Cu

I − ξ3Ce
I ),

(5.9)
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with initial conditions

Ce
s (0) = Ce

N(0) = Ce
T (0) = Ce

I (0) = 1, Ce
r (0) =

C̄e
r

C̄e
s

, (5.10)

Cu
s (0) =

C̄u
s

C̄e
s

, Cu
T (0) = Cu

I (0) =
k−1C̄

u
T

k1C̄e
s

. (5.11)

Recall that Cu
r and Cu

N are constant.

It is assumed that the timescale for Mg exchange within each phase is much faster

than that across phases, which means that ε � 1. Therefore, the leading order

balance in (5.6)-(5.9) gives

Cu
s ∼ ξ1C

e
s , Ce

r ∼ ξ2C
e
s , Cu

T ∼ ξ3C
e
T , Cu

I ∼ ξ3C
e
I , (5.12)

hence

Cu
s + Ce

s + Ce
r ∼ (1 + ξ1 + ξ2)C

e
s , Cu

T + Ce
T ∼ (1 + ξ3)C

e
T ,

Cu
I + Ce

I ∼ (1 + ξ3)C
e
I

as ε −→ 0. Applying the above to the equations in (5.6), (5.8) and (5.9) leads to the

following reduced system

dCe
s

dt
=

1

1 + ξ1 + ξ2

[
Γ(1− Ce

s ) + µ(Ce
N − Ce

s ) + ξ(Ce
T − Ce

s ) + (1− ξ)(Ce
I − Ce

s )
]
,

(5.13)

dCe
N

dt
=

1

φ

[
µξN(Ce

s − Ce
N)
]
, (5.14)

dCe
T

dt
=

1

1 + ξ3

[
ξξT (Ce

s − Ce
T )
]
, (5.15)

dCe
I

dt
=

1

1 + ξ3

[
S + ξξT (Ce

s − Ce
I )
]
. (5.16)
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From now on in this chapter Ci is used to refer to Ce
i .

5.5 Steady State Analysis

A steady-state analysis is conducted using the model in (5.13)-(5.16). The following

steady state is identified when no implant is present and Γ > 0,

(Cs, CN , CT ) = (1, 1, 1), (5.17)

because the homoeostatic state was rescaled to 1. Evidently, when there is no Mg

source from the diet (Γ = 0), then a zero steady state is attained in (5.17).

The presence of an implant, when S > 0, yields the following steady state for

(Cs, CN , CT , CI)

((ΓξT − S)ξ + S

ΓξξT
,
(ΓξT − S)ξ + S

ΓξξT
,
(ΓξT − S)ξ + S

ΓξξT
,
(ξξT + S)Γ + (1− ξ)S

ΓξξT

)
,

(5.18)

where S = 0 results in (5.17). As Γ → 0 the steady state in (5.18) refers to infinite

magnesium concentrations; this is to be expected because as less Mg is excreted in

the urine, Γ becomes smaller, and hence, in the presence of an implant, the concen-

trations rise.

The Jacobian matrix for equations (5.13)-(5.16) is


−Γ− µ− 1 µ ξ

ξNµ −ξNµ 0

ξξT 0 −ξξT

 , (5.19)
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for (5.17), and



−Γ− µ− 1 µ ξ 1− ξ

ξNµ −ξNµ 0 0

ξξT 0 −ξξT 0

ξξT 0 0 −ξξT


, (5.20)

for (5.18). The following characteristic polynomial is attained

g(x) = x3 + (ξξT + (ξN + 1)µ+ Γ + 1)x2 + (((ξN + 1)µ− ξ + Γ + 1)ξξT+

µξN(Γ + 1))x− µξξT ξN(ξ − Γ− 1), (5.21)

for (5.19), where the coefficients of x are all positive because (1− ξ) > 0. Hence with

no sign change Descartes rule of signs implies there are no positive real roots. Now

writing g(−x) results in 3 sign changes between the coefficients of x from one term

to the next, so there are 1 or 3 negative real roots. The Gershgorin circle theorem

states that for an n × n matrix A, each eigenvalue λ1, lies within a disc of radius

Ri, defined as Ri =
∑n

j=1;i 6=j |aij|, centred at aii in the complex plane. Such a disc is

called a Gershgorin disc [99]. Applying this to the Jacobian matrix in (5.19) reveals

that there are 3 eigenvalues with a negative real part. Therefore, the steady state,

when no implant is present and Γ > 0, is stable.

The characteristic polynomial for (5.20) is

h(x) = x4 + (2ξT ξ + µξN + Γ + µ+ 1)x3 + (ξ2T ξ
2 + 2µξξT ξN + 2ΓξT ξ + ΓµξN+

2µξT ξ + ξT ξ + µξN)x2 + (µξ2T ξ
2ξN + Γξ2T ξ

2 + 2ΓµξT ξξN + µξ2Nξ
2 + µξT ξξN)x+

Γµξ2T ξ
2ξN , (5.22)
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Parameter Value
S -
µ 0.0438
Γ 0.0011
ξ 0.99992
ξT 0.0142
ξN 0.0093
ξ1 0.54
ξ2 0.36
ξ3 3
φ 3

Table 5.4: Dimensionless parameters in the model for healthy individuals, which are
found using data in Table 5.3; the parameter S is controlled by the implant release
rate.

where Descartes rule of signs implies that there are 0, 2 or 4 negative real roots.

Applying the Gershgorin theorem to (5.20) reveals that all eigenvalues have negative

real parts or 1 negative real part and 3 eigenvalues at 0. As the constant coefficient

in (5.22) is non-zero there cannot be any 0 roots, therefore there are 4 eigenvalues

with a negative real part. So the steady state in (5.18) is stable, and represents a

homoeostasis state adapted to the implant.

5.6 Numerical Simulations

The system in (5.13)-(5.16) is solved in MATLAB using ode15s. In this section,

simulations are generated for the model using the dimensionless parameters in Table

5.4, where parameters S and Γ are varied. Unless otherwise stated, Γ represents the

healthy urine excretion rate in Table 5.4.

Up-to t = 0, there is no implant, and the Mg ion concentrations are set at ho-

moeostatic state, (Ci = 1, i = s,N, T ). At t = 0, the implant is installed releasing

Mg into the system (i.e. S > 0) at a rate controlled through the parameter S. The

plot in Figure 5.3 is generated using Table 5.4 when S = 2.4 × 10−3 (corresponding

to σ = 0.05 mmol/day), where the concentrations are displayed over time. It is seen
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Figure 5.3: Plot of the dimensionless concentrations over time using the parameter
values in Table 5.4 and S = 2.4 × 10−3. The variables Cs, CN , CT all overlap each
other.

that the concentrations start at healthy levels and a rise in CI is followed by a rise

in Cs, CN , CT ; the concentrations Cs, CN , CT overlap each other reflecting that the

Mg in the serum, bone, and tissue equilibrate rapidly. While the tissue is acting as a

reservoir of the Mg there is no rise in CI , but then this eventually results in a further

rise in CI . The timescales for these and intermediate events are analysed. The CI

value can be approximated using the following argument, for 1− ξ � 1.

Initially, when Cs, CN , CT ∼ 1, using equations (5.13)-(5.16) it follows that

dCI
dt
∼ 1

1 + ξ3

[
S + ξξT (1− CI)

]
, (5.23)
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at that time. Using the initial condition in (5.11), equation (5.23) is solved to give

CI ∼ 1 + (
S

ξξT
)
[
1− exp(− ξξT

1 + ξ3
t)
]
,

so

CI ∼ C∗I ∼ 1 +
S

ξξT
, (5.24)

as the timescale t −→ ∞ for the phase. Using the values in Table 5.4, this gives

C∗I = 1.169, which is in close agreement with Figure 5.3.

Equation (5.24) causes a rise in Cs from which equation (5.13) gives

dCs
dt
∼ 1

1 + ξ1 + ξ2
(1− ξ)(Cs

I − Cs),

and this is solved using the initial condition in (5.11) to give the following

Cs ∼ 1 +
S

ξξT

[
1− e

−
(1− ξ)t

(1 + ξ1 + ξ2)
]
, (5.25)

where it is known that (1 − ξ) � 1. So Mg serum concentrations are expected to

move from its homoeostatic level when t = O(1/(1 − ξ)). Using the values in Table

5.4, this predicts t ≈ 1.25× 104, which is in good agreement with Figure 5.3.

In the dimensionless model, hypermagnesemia is diagnosed when Cs = 1.24,

(which corresponds to 1.05 mmol/l), hence for the case in Figure 5.3 this is not

apparent. When increasing the parameter S, hypermagnesemia is more likely to

occur.

In Chapter 3, the degradation time for a 1 cm radius sphere was identified for

a range of parameter values, from which a full degradation time of 100 days can be
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Figure 5.4: Plot of the dimensionless concentrations over time using the parameter
values in Table 5.4 and S = 0.14. Hypermagnesemia occurs when Cs is above 1.24
(black dashed line), and reaches higher levels where symptoms can be more severe
when Cs is above 3.54 (red dashed line), at which point immediate action should be
taken.

taken. Using the density and molecular mass of Mg, a 1 cm radius of a sphere is

equivalent to 290 mmol. Therefore, σ can be estimated to be 3.00 mmol/day, which

equates to S = 0.14. Figure 5.4 displays the concentration of the blood and the

implant over time when S = 0.14 where hypermagnesemia, represented by the black

dashed line, is diagnosed. The blood concentration is below the high levels of Mg

represented by the red dashed line at Cs = 3.54, (which corresponds to 3 mmol/l).

So if a spherical Mg implant of 1 cm radius degrades in 100 days, hypermagnesemia

will be diagnosed and any Mg in the diet should be maintained or reduced for the

100 days until the implant degrades.

A well functioning kidney is usually sufficient at keeping hypermagnesemia at bay,
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because, as stated before, the kidneys have the ability to excrete any excess Mg in the

urine. For this reason, hypermagnesemia is usually only perceived in patients with

a compromised renal function. For the simulations up to now, the urinary excretion

parameter, Γ, was kept constant at a healthy level. With kidney failure taken into

consideration, values for Γ are varied to investigate the steady state for the blood

concentration with various values for the implant release rate S; this is shown in

Figure 5.5 for a range of values of Γ when S ≈ 0.02, 0.05, 0.1, 0.2, 0.3 (corresponding to

σ = 0.45, 1.1, 2.2, 4.4, 6.5 mmol/day). The black dashed line in Figure 5.5 represents

hypermagnesemia, and the red dashed line represents higher levels of Mg. The dotted

line represents urine excretion at a healthy level. It is seen that at a healthy Γ, the

green curve, which represents a high implant release rate, is just below the red dashed

line. The plot displays that a low Γ rapidly increases Mg concentrations in the blood

to infinite levels, the patient would presumably not survive at such high levels for

long periods. Hypermagnesemia appears to be quite severe when Γ is less than half

of the healthy excretion rate, especially as the implant release rate is higher. The

result suggests that kidney function must be monitored before Mg implantation, so

that an appropriate implant release rate can be determined.

5.7 Conclusion

A PBPK based model has been developed and analysed in this chapter to model

magnesium metabolism with and without an implant. The key goal of the model

is to investigate Mg in the serum so that the possibility of hypermagnesemia can

be illustrated during Mg implantation. Research highlights that the three organs

governing Mg homoeostasis in the body are intestine, bone and kidney. From the

diet, some Mg is absorbed in the intestine and transferred to the blood compartment,

where it can then be transferred to bone and tissue; any excess Mg is filtered in the
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Figure 5.5: Plot of dimensionless plasma Mg concentration against Γ using the param-
eter values in Table 5.4 and various implant release rates of S ≈ 0.02, 0.05, 0.1, 0.2, 0.3.
Hypermagnesemia occurs when Cs is above 1.24 (black dashed line) and reaches a
more higher level that needs immediate attention when Cs is above 3.54 (red dashed
line).

kidney and excreted in the urine. The model was derived by consideration of the

dynamics of Mg distribution within and between major compartments, blood, tissue,

bone and implant, based on Mg metabolism.

When no implant is present, the diet and urine excretion rates are significant

parameters for maintaining normal plasma Mg; these are assumed to be constant in

the model. The steady state analysis in the model indicated that the concentrations

of blood, bone and tissue remain at a stable steady state without the presence of an

implant.

When an implant is present, the concentration of Mg in the implant region tends
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to a higher steady state than that of blood, bone and tissue. The model simulations

indicate that the blood, bone and tissue equilibrate rapidly and that the tissue, due

to its much greater volume, acts as a reservoir. Evidently, as the implant release rate

is increased in the simulations, the risk of hypermagnesemia appears to be increased

(see Figure 5.3 and 5.4).

For a renal disease case, an Mg implant is more likely to cause hypermagnesemia,

because the kidneys are unable to excrete excess Mg at a fast enough rate. Therefore,

the model was explored for various values of the excretion rate to detect blood serum

levels for different implant release rates (see Figure 5.5). The result shows a rapid rise

in blood concentrations for a smaller excretion rate. In practice, an extremely low

excretion rate may result in fatalities, thus underlining the importance of monitoring

kidney function before Mg implantation in vulnerable patients.

Hypermagnesemia can potentially occur after Mg ions are released into the serum

during Mg implantation [20]. As a fresh look into Mg implantation, here, the ef-

fects on the serum concentrations were explored using mathematical modelling. The

model derived is a simple but capable tool for detecting plasma Mg to ensure that

hypermagnesemia or higher levels of Mg can be avoided during implantation, and

is also applicable for patients that are screening for renal function. In Section 6.1,

some potential work for future reference is discussed in order to further enhance the

model.



Chapter 6

Discussion

Magnesium (Mg) based orthopaedic implants are hailed for their mechanical and phys-

ical properties that can enhance bone healing, but their rapid corrosion in aqueous

environments has become an obstacle for their use. As a result, there is consider-

able research into controlling magnesium corrosion, for example through alloying and

coating, and the physiological effects of magnesium corrosion have also been widely

studied. However, the use of mathematical modelling in this area is very scarce. In

this thesis, the degradation of magnesium was studied via the development of four

new mathematical models.

As explained in Section 1.2, Mg reacts with H2O in the physiological environment

to form magnesium hydroxide (Mg(OH)2). In this work, it was acknowledged that

the hydroxide can then react with CO2 from the bicarbonate ions in the environment

or in vitro to form magnesium hydrogen carbonate (Mg(HCO3)2), which decomposes

to form a more stable product, magnesium carbonate (MgCO3). The consideration of

the reaction between Mg(OH)2 and CO2 is a novel feature for mathematical modelling

of Mg. The first corrosion model, in Chapter 2, is an ODE model that uses the law of

mass action to describe the chemical interactions mentioned above. An exponential

decay of Mg is presented in the model; and after simulating the model for various
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parameter values, an expected relationship between Mg and its corrosion products

was perceived.

A PDE model for the corrosion of a Mg block was developed in Chapter 3, where

the corrosion products, Mg(OH)2 and MgCO3, are envisioned to develop as porous

layers around a Mg block. The advection and diffusion of water and carbon dioxide

through porous media in the crystal structures was considered in the model. A closed

system, in 1-D, was derived using mass conservation for Cartesian, cylindrical and

spherical geometries. In terms of metal corrosion modelling, the consideration of

a porous media flow in the crystal structures is a novel quality. In principle, the

modelling approach is generic and can be used or adapted to model the corrosive

process of any metals or alloys.

The model was derived for two cases on the reaction with Mg and water, an

infinitely fast and a finitely fast reaction, where the hydroxide layer is absent at a

small time phase. To solve the model numerically, small time asymptotic solutions

were required. Two key timescales for the Mg corrosion process were examined,

namely that of complete corrosion of the Mg block (Tα) and Mg(OH)2 (Tβ). There

were parameters in the model for which data was undetermined; the rate of reaction

between Mg and water, k, and the solid fractions of the hydroxide and carbonate

layers, ε1 and ε2, respectively. Values for these parameters and the initial radius of

an implant, S0, were tuned into the numerical code to yield various results, where

it was seen that a decrease in k and (1 − ε1) increased the longevity of an implant.

In practice, k would be determined by the corrosive strength of an Mg or Mg based

alloy. Furthermore, we compared the advective assumption in the current model to

scenarios when there is no advective transport and when the advective transport is

equal to the solid phase velocity. Hence, the results indicated that the current model

gives a slightly faster Mg degradation time than the other advective transports.
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Chapter 4 investigated the corrosion of Mg inside a single pore within a typical

porous structure of Mg to account for the attribute that implant porosity allows

better integration into the bone [6]. For this case, the PDE model was adapted to

consider layers of corrosion products, Mg(OH)2 and MgCO3, inside the void. The

model was developed for cylindrical geometry and was solved numerically in a similar

way to that in Chapter 3. The factors of interest in the model were the timescale for

pore closure (TS), and the representation of corroded Mg at pore closure (α∞). The

simulations suggested that a decrease in k and (1− ε1) increased the longevity of the

pore, and a smaller k was found to yield less Mg corrosion at pore closure. Also, the

initial radius of the pore, P0, was changed in the model, which evidently showed that

an increase in P0 returned an increase in TS and α∞.

It can be concluded that a lower reaction rate, k, delays the degradation of a Mg

implant and the closure time of the pores in the structure. The analysis shows that

pores close within a few hours in Chapter 4, which is very rapid in comparison to the

life time of an implant in Chapter 3 found to be within O(102) days; this suggests

that a porous structure of Mg will quickly evolve to a heterogeneous structure of Mg,

Mg(OH)2 and MgCO3 with potentially some trapped air or hydrogen pockets. Though

the PDE model in this work is formulated for a general 1-D geometry, it provides a

good framework for Mg corrosion. There is plenty of scope for improvement, which

is discussed in the next section of this chapter. Nevertheless, the modelling approach

is unique for metal corrosion models and provides an advanced, novel model within

Mg corrosion.

In contrast to the previous models, Chapter 5 presents a physiologically based

pharmacokinetic (PBPK) model to observe the effect of a degrading Mg implant on

the blood. An excess of Mg ions in the blood is known as a condition called hyper-

magnesemia, which can cause serious implications to the human body particularly for
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patients with renal disease. The model derived reflects the exchangeable contents of

Mg ions to and from the blood, bone, tissue, and implant. Numerical results from the

model portray the serum concentrations of Mg for different implant release rates. Due

to the chosen timescale, the blood, bone and tissue appeared to equilibrate rapidly,

and the tissue was acting as a reservoir for Mg. The urine excretion rate was assumed

constant for the model derivation; we tuned in various values for this and the implant

release rate to note the effects on serum Mg ion concentration. As expected a low

urine excretion rate reflected higher levels of Mg, particularly with a high implant

release rate, from which the patient would not survive. The model reflects the im-

portance of monitoring the effects of Mg implantation in the blood, especially for

patients with renal disease. Though the modelling can be improved on, it is capable

in detecting plasma Mg to keep the effects of hypermagnesemia, after implantation,

at bay, and is the first of its kind in approaching Mg implant fates within well-defined

physiological systems.

6.1 Future Work

The PDE model is assumed to use radically symmetric geometries, and therefore

would not be applicable for studies involving a typical Mg implant design. Extending

the current modelling approach to consider 2-D or 3-D, non-simple geometries, poses

non-trivial modelling challenges. The increase in the number of variables will require

constitutive assumptions on the mechanical properties of the Mg(OH)2 and MgCO3

layers to close the system.

The current PDE model describes the corrosion of a smooth Mg surface in an

aqueous media. The constituents of the media that an orthopaedic implant will be

exposed to is more complex and may have significant affects on the corrosion be-

haviour. For example, a lower pH corrodes the protective layer of Mg(OH)2 and
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MgCO3, so that the pure Mg is more exposed to the environment and thereby ac-

celerating its corrosion [30, 34]. Furthermore, the tougher outer layer of MgCO3 will

itself be corroded and the resulting magnesium ions will eventually disperse and be

excreted by the host. Modelling this corrosion process for future work leads to a mod-

ified boundary condition on r = S. This can be pursued further when appropriate

information on the resorption and removal of MgCO3 is available.

The reaction between Mg(OH)2 and bicarbonate ions was considered in this work,

but other ions in plasma also react with Mg(OH)2. For example, chloride ions react

with Mg(OH)2 to form MgCl2 [16]; here, the model can be extended to consider two

reactive species for Mg(OH)2, and assume, for simplicity, the outer layer consists of an

isotropic mixture of MgCO3 and MgCl2. However, this will depend on the make-up

of the Mg implant, and the context of the fluid environment surrounding the implant.

Furthermore, there is scope for the parameters, k, ε1 and ε2, to be estimated based

on appropriate in vitro data. For example, data from time-course measurements of

the proportion of constituents of small, spherical magnesium or magnesium alloy

beads, immersed in appropriate media. The use of small beads should ensure the

experiment to be completed in a practicable and cheap time frame, whilst them

being spherical enables direct application of the model to calibrate the parameters

with the data. The interpretation of k can be extended to the corrosion rate of

different qualities of magnesium metal and its alloy. The presence of impurity, the

grain size of micro-structures, depending on the preparation methods used, and the

environmental factors can have dramatic effects on the corrosion rate thereby changing

k [100, 101]. A further experiment involves the use of computed tomography (CT)

images, which enables spatial details of the macroscale crystal structure that can be

used to obtain direct measurements of ε1 and ε2. The model, with these tuned or

determined parameters, provides a starting point to predict the corrosion properties
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of much larger magnesium pellets in any 2-D or 3-D extension outlined above.

The work in Chapter 4 can be extended to investigate pore connectivity and

the corrosion of several pores within a porous structure to determine the size of

magnesium corrosion around all the pores of the implant. Further to this, the pores

will have an affect on the degradation time of magnesium, and hence the work can

be merged with that in Chapter 3 to give a more accurate timing of the complete

degradation.

For the PBPK model, it was assumed that the urine excretion rate was a constant

parameter γ. However, the kidneys serve the potential to excrete more or less magne-

sium to help preserve healthy levels in the blood [5]. To take this into account in the

model for future work, there can be an equation for γ, which would be dependent on

serum concentrations of Mg, but it must be acknowledged that there is an upper and

lower bound for γ. Also, the exchange rate parameters in the model, taken from [94],

were reference values, because compound or element specific values appeared to be

missing from the literature. However, there is scope to determine these values exper-

imentally, where the model can be used to tune in various values for the parameters

to fit the data.

To end this thesis, we can declare that the work provides a good framework for

magnesium corrosion. With the consideration of future work, the models in Chapter

3 and 4 have the potential to enhance magnesium corrosion for orthopaedic implants,

where they can be used to predict timescales in a spatial manner, while the model

in a Chapter 5 provides an additional tool to measure the patient’s safety during

implantation.
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Appendix

A.1 Derivation of Interface Conditions

The chemical reactions occur only at the interfaces, α, β and S, and we describe this by

using a reaction rate multiplied by a Dirac delta function centred at these interfaces.

The Dirac delta function is infinite at the origin, say x0, and zero everywhere else on

the real line x and states that

∫ ∞
−∞

f(x)δ(x− x0) dx = f(x0),

which is used for the following derivation of interfaces. The total mass of water in

the whole Mg corrosion system is represented by

∫ S

0

(1− ε)Wrddr

where ε and W are the solid fraction and water concentration in the whole structure,

and d = 0, 1, 2 for Cartesian, cylindrical and spherical geometry, respectively. The
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rate of change of this mass is

∂

∂t

∫ S

0

(1− ε)Wrddr = (1− ε2)
∂

∂t

∫ S

β

W2r
ddr + (1− ε1)

∂

∂t

∫ β

α

W1r
ddr; (A.1)

and by mass balance at the interfaces, LHS of (A.1) also gives

=

∫ S

0

(1− ε2)RSδ(r − S)rddr +

∫ S

0

(1− ε2)Rβδ(r − β)rddr +

∫ S

0

(1− ε1)Rαδ(r − α)rddr

=
[
(1− ε2)RSS

d + (1− ε2)Rββ
d + (1− ε1)Rαα

d
]
, (A.2)

where Rα, Rβ and RS are the rates of the reactions at the corresponding boundaries.

Differentiating the RHS of equation (A.1), under the integral sign, yields

(1− ε2)
[
ṠS2W2|r=S − β̇β2W2|r=β +

∫ S

β

rd
∂W2

∂t
dr
]

+ (1− ε1)
[
β̇β2W1|r=β − α̇α2W1|r=α

+

∫ β

α

rd
∂W1

∂t
dr
]
, (A.3)

and using the flux terms defined in equation (3.7) gives

(1− ε2)
[
ṠSdW ∗

0 − SdJW2|r=S − β̇βdW2|r=β + βdJW2 |r=β
]

+ (1− ε1)
[
β̇βdW1|r=β−

βdJW1|r=β − α̇αdW1|r=α + αdJW1|r=α
]
, (A.4)

where W2|r=S = W ∗
0 . Matching equation (A.4) to (A.2) gives

Rα = −α̇W1|r=α + JW1|r=α,

(1− ε2)Rβ = −β̇
(

(1− ε2)W2|r=β − (1− ε1)W1|r=β
)

+ (1− ε2)JW2|r=β

− (1− ε1)JW1|r=β;
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formally, RS cannot be prescribed as its values are set due to the water concentration

being equal to that on the outer boundary.

The total mass of CO2 in the whole structure is

∫ S

β

(1− ε2)C2r
ddr.

As with water, the rate of change of this mass is

∂

∂t

∫ S

β

(1− ε2)C2r
ddr = (1− ε2)

[
RSS

d +Rββ
d
]

(A.5)

where RS and Rβ are the reaction rates at the corresponding boundary. The LHS of

equation (A.5) is differentiated under the integral sign to give

(1− ε2)
[
ṠS2C2|r=S − β̇β2C2|r=β +

∫ S

β

rd
∂C2

∂t
dr
]
, (A.6)

and then the flux in equation (3.7) is applied yielding

(1− ε2)
[
ṠSdC∗0 − SdJC2|r=S − β̇βdC2|r=β + βdJC2|r=β

]
, (A.7)

where C2|r=S = C∗0 . Matching this to the RHS of (A.5) gives

Rβ = β̇C2|r=β + JC2|r=β;

note, as before, RS cannot be prescribed because its values are set by the CO2 con-

centration being equal to that on the outer boundary.
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A.2 Numerical Scheme of PDE Model

The PDE system of section 3.3.1 is solved in MATLAB using the Method of Lines

(MoL), where the spatial derivatives are discretized and the time derivative remains

as it is, thus an ODE solver can be applied to solve the new system. The numerical

scheme is presented here. Let ni be the number of space points for Zone 1 and Zone

2 with i = 1, 2. A uniform grid is used so that the interval size is

∆ρi =
1

ni − 1
.

Variables W1(ρ, τ),W2(ρ, τ), C2(ρ, τ), α(τ), β(τ) and S(τ) are set up as

u =



W1

W2

C2

α

β

S


,

and are coded as

W1(ρ, τ) : u(1, ..., n1), W2(ρ, τ) : u(n1 + 1, ..., n1 + n2),

C2(ρ, τ) : u(n1 + n2 + 1, ..., n1 + 2n2),

α(τ) : u(n1 + 2n2 + 1), β(τ) : u(n1 + 2n2 + 2), S(τ) : u(n1 + 2n2 + 3).

The initial conditions in the problem reflect the assumption that the two chemical

reactions occur instantaneously; solutions in small time were analysed in Section

3.3.2 using perturbation theory. Once the initial conditions are set up in the code,
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the mathematical model is configured using finite difference approximations for the

spatial derivatives. Equations (3.36)-(3.38) are discretized using a central difference

approximation for the second order derivatives whilst for the first order derivative

term in space either central differences or an upwind method was used (the latter

working best in most cases). The upwind method states that for

du

dt
+ a

du

dx
,

then if a > 0 the spatial derivative is represented by the backward Euler formula and

if a < 0 the spatial derivative is represented by the forward Euler. In the upwind

case, this gives the following ODEs

dW1

d τ
= − 1

(β − α)

[
G1(ρ1, τ) + vf1 −

DW

(β − α)
dα(ρ1, τ)

]W n+j
1 −W n+j−1

1

∆ρ1

+
DW

(β − α)2
W n+1

1 − 2W n
1 +W n−1

1

∆ρ21
, (A.8)

dW2

d τ
= − 1

(S − β)

[
G2(ρ2, τ) + vf2 −

DW

(S − β)
dβ(ρ2, τ)

]W n+j
2 −W n+j−1

2

∆ρ2

+
DW

(S − β)2
W n+1

2 − 2W n
2 +W n−1

2

∆ρ22
, (A.9)

dC2

d τ
= − 1

(S − β)

[
G2(ρ2, τ) + vf2 −

1

(S − β)
dβ(ρ2, τ)

] Cn+j
2 − Cn+j−1

2

∆ρ2

+
1

(S − β)2
Cn+1

2 − 2Cn
2 + Cn−1

2

∆ρ22
, (A.10)

where G1, G2, vfi , dα, dβ are defined in Section 3.3.1, d is the geometry, and j is 1 or

0 depending on the upwind scheme.

On the interfaces and boundaries, equations (A.8) and (A.9) consist of two ficti-

tious values, W n1+1
1 and W n1−1

2 . These are also called ghost points and need to be

approximated and replaced so that they can be used in the numerical scheme. To do

this, the flux boundary condition, which is the second equation in (3.43), (3.44) or
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(3.45) depending on the phase, is used along with the condition that W n1
1 = W n1

2 at

β from which
∂ W n1

1

∂ τ
=
∂ W n1

2

∂ τ
at β can be applied. For instance, for Phase 1.1, after

discretizing the spatial derivatives we obtain

DW

[1− ε1
β − α

W n1+1
1 −W n1−1

1

2∆ρ1
− 1− ε2
S − β

W n1+1
2 −W n1−1

2

2∆ρ2

]
= −γ1

[
β̇ +

(wα − 1)α2α̇

β2

]
(A.11)

and

− 1

(β − α)

[
G1(ρ1, τ) + vf1 −

DW

(β − α)
dα(ρ1, τ)

]W n1+j
1 −W n1+j−1

1

∆ρ1

+
DW

(β − α)2
W n1+1

1 − 2W n1
1 +W n1−1

1

∆ρ21
= − 1

(S − β)

[
G2(ρ2, τ) + vf2−

DW

(S − β)
dβ(ρ2, τ)

]W n1+j
2 −W n1+j−1

2

∆ρ2
+

DW

(S − β)2
W n1+1

2 − 2W n1
2 +W n1−1

2

∆ρ22
(A.12)

Now (A.11) and (A.12) can be rewritten as a pair of linear equations with two un-

knowns, W n1+1
1 and W n1−1

2 , like

A1W
n+1
1 +B1W

n−1
2 = C1,

A2W
n+1
1 +B2W

n−1
2 = C2,

and these are solved in MATLAB to give approximations for the fictitious values

which are then used in the numerical code. The same procedure is applied for each

phase using the corresponding flux boundary condition.

The moving boundaries for each phase are discretized. The spatial derivatives for

α̇ and β̇ are descretized using a 3-point finite difference scheme to give

α̇ = −(1− ε1)
DW

2γ0(β − α)

−3W 1
1 + 4W 2

1 −W 3
1

2∆ρ1
,
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for Phase 1.1 and 1.2, and

β̇ = − (1− ε2)
γ2 (S − β)

−3Cn1+n2+1
2 + 4Cn1+n2+2

2 − Cn1+n2+3
2

2∆ρ2
− (wα − 1)α2α̇

β2
.

Recall that a spatial derivative is not used for α̇ in Case 2, (Phase 2.1, 2.2 and 2.3).

For Case 2, it is assumed that W1(1, τ) 6= 0, and as a result, equation (A.8)

produces a fictitious value W 0
1 . The ghost point is approximated using the boundary

condition

− (1− ε1)
DW

β − α
∂W1(1, τ)

∂ρ
= −2κ [W 1

1 (1, τ)]2,

where the spatial derivative is discretized using a backward difference formula. Hence

− (1− ε1)
DW

β − α
W 1

1 −W 0
1

∆ρ
= −2κ [W 1

1 (1, τ)]2,

⇒ W 0
1 = W 1

1 − 2 ∆ρ
κ [W 1

1 ]2 (β − α)

DW (1− ε1)
,

and this is substituted into the code.

For Phase 2.1, when C2(1, τ) 6= 0 and α = β, thus introducing a ghost point in

equation (A.10), Cn1+n2
2 . This is estimated using the third equation in (3.45), where

the spatial derivative is replaced with a backward difference approximation. Hence

− (1− ε2)
S − β

Cn1+n2+1
2 − Cn1+n2

2

∆ρ
= γ2wα β̇

⇒ Cn1+n2
2 = Cn1+n2+1

2 + ∆ρ
γ2wα β̇ (S − β)

(1− ε2)
(A.13)

and this is the approximation for the fictitious value Cn1+n2
2 .

The system was then solved using ode15s.
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A.3 Power Law Relation

A power law relationship is observed in Figure 3.9 in Section 3.4.3 where Tβ was found

to satisfy Tβ ∝ S2
0 . This was noted because the concentration of CO2 is relatively

small to that of water, so that 1 � γ2, and therefore the decay of the hydroxide is

slow in comparison to that of pure Mg; so β̇ � 1 and hence vf2 � 1. For β = O(1)

we expect ∂rC2 = O(1) (as C2 changes from 0 to 1 over an O(1) distance), and as

1 � γ2 in Table 3.4 then for equation (3.25) to balance we need β̇ = O(1/γ2); so

changes in β occur on an O(γ2) timescale. Writing t = γ2t and vf2 =
vf2
γ2

, then as

γ2 →∞ in equation (3.25) we get for r ∈ (β, S)

1

γ2
∂tC2 +

vf2
γ2
∂rC2 −

1

rd
∂r(r

d∂rC2) ∼ 0, (A.14)

subject to C2(β, t) = 0, C2(S, t) = 1 and −(1 − ε2)∂rC2 =
dβ

dt
from (3.30), and we

recall from (3.31) that, for t > Tα,

S = S0(ωαωβ − (ωβ − 1)(β/S0)
d+1)1/(d+1). (A.15)

It is convenient to write

r = S0r, β = S0β, S = S0S, (A.16)

whereby integration of (A.14), as γ2 →∞, yields

C2 =



r − β
S − β

d = 0,

ln
(
r/β
)
/ ln

(
S/β

)
d = 1,

S(r − β)

(S − β)r
d = 2,

(A.17)
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and, for each geometry, (A.15) implies

dβ

dt
=



− (1− ε2)
S2
0ωβ(ωα − β)

d = 0,

− 2(1− ε2)
S2
0β[ln((−ωβ + 1)β

2
+ ωαωβ)− ln(β

2
)]

d = 1,

− (1− ε2)((−ωβ + 1)β
3

+ ωαωβ)1/3

S2
0β[((−ωβ + 1)β

3
+ ωαωβ)1/3 − β]

d = 2.

(A.18)

The equations in (A.18) are integrated w.r.t. t to give

t− ωβS
2
0(2ωαβ − β

2 − β0(−2ωα + β0))

2(ε2 − 1)
= 0,

t+
K1S

2
0 ln(K1)−K2S

2
0 ln(K2)− 2(ωβ − 1)[− ln(β)β

2
S2
0 + ln(β0)

β
2
0S

2
0 ]

4(ε2 − 1)(ωβ − 1)
= 0,

t− S2
0(β

2 − β2

0)(ωβ − 1) + [ωαωβS
3
0 − S3

0β
3
ωβ + S3

0β
3
]2/3

2(ε2 − 1)(ωβ − 1)
+

[ωαωβS
3
0 − S3

0β
3

0ωβ + S3
0β

3

0]
2/3

2(ε2 − 1)(ωβ − 1)
= 0,

(A.19)

for Cartesian, cylindrical and spherical geometry, respectively; where

K1 = (−ωβ + 1)β
2

+ ωαωβ, K2 = (−ωβ + 1)β
2

0 + ωαωβ.

Imposing β(0) = β0, the equations in (A.19) can be solved to give the implicit solution

t ∼ −ωβS
2
0β0(−2ωα + β0)

2(1− ε2)
,

t ∼
S2
0

[
((β

2

0 − ωα)ωβ − β
2

0) ln((−ωβ + 1)β
2

0 + ωαωβ) + ln(ωαωβ)ωαωβ − ln(β0)
2β

2
0(ωβ−1)

]
4(1− ε2)(ωβ − 1)

,

t ∼
S2
0

[
((−ωβ − 1)β

3

0 + ωαωβ)2/3 − (ωαωβ)2/3 + (ωβ − 1)β
2

0

]
2(1− ε2)(ωβ − 1)

,

for Cartesian, cylindrical and spherical geometry, respectively. We note that the above
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discussion represents an outer solution in time in the limit γ2 →∞. The constant β0

can, in theory, be determined from the inner solution for the timescale t = O(1) (or

t = O(1/γ2) ); but this analysis has not been undertaken.
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