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Abstract. We consider free rotation of a body whose parts move slowly with respect to each other under the
action of internal forces. This problem can be considered as a perturbation of the Euler-Poinsot problem. The
dynamics has an approximate conservation law - an adiabatic invariant. This allows to describe the evolution of
rotation in the adiabatic approximation. The evolution leads to an overturn in the rotation of the body: the vector
of angular velocity crosses the separatrix of the Euler-Poinsot problem. This crossing leads to a quasi-random
scattering in body’s dynamics. We obtain formulas for probabilities of capture into different domains in the phase
space at separatrix crossings. 1
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1 Introduction Rotation of a rigid body around its centre of mass is a classical prob-
lem in mechanics. The case when parts of the body slowly move with respect to each other
can be considered as a perturbation to the case of a rigid body. This problem serves as a model
of rotation of deformable celestial bodies (see, e.g., [8, 13]). We consider a free rotation of a
body with a prescribed slow motion of parts of the body with respect to each other. This prob-
lem is a perturbation of the Euler-Poinsot problem. We use averaging method and adiabatic
approximation to give a description of the evolution of rotational motion of a body. In the pro-
cess of this evolution the vector of angular velocity of the body crosses the separatrix of the
Euler-Poinsot problem. Separatrix crossing in systems with slowly varying parameters lead
to probabilistic phenomena (see, e.g., [2], Sect. 6.4.7). We obtain formulas for probabilities
of capture into different domains in the phase space at separatrix crossing. The considered
problem has an essential difference from other problems, for which probabilities at separa-
trix crossing were previously calculated. Namely, here the system temporarily passes several
times near separatrices through several domains in the phase space prior to being finally cap-
tured into one of them. We consider examples of passages through separatrices and compare
theoretical results with a numerics.

Results of this paper could be useful in study of dynamics of natural and artificial ce-
lestial objects. Rotation of a planet, once perturbed by a fast catastrophic event (volcano
eruption, impact), then evolves slowly due to redistribution of mass (see review [12] and
references therein). Obtained in our paper formulas could be used to estimate probabilities
of different outcomes of such an evolution. As for artificial celestial bodies, often enough
they are equipped with different appendages (solar panels, antennas, etc.). Deployments
of these appendages lead to change of geometry of masses and evolution of rotation (see.,
e.g. [11, 18, 19]). Such bodies may also contain internal moving masses (there are many ex-
amples in [5]). Formulas in our paper can be used for control of the motion and prediction of
results of the evolution of rotation.
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Fig. 1. König’s frame and principal axes of inertia frame.

2 Description of the system and equations of motion Consider motion of a system
of particles. We assume that there are no external forces acting on these particles. Then the
centre of mass C of this system moves with a constant velocity and the angular momentum of
this system about C is constant throughout the motion. Consider two frames of reference: a
non-rotating frame CXYZ (König’s frame) and the frame Cxyz whose axes are principal axes
of inertia of the system of particles, Fig. 1. We assume that the motion of the particles with
respect to each other is prescribed in advance. An example is the motion of a rigid body and
particles which move in a prescribed way with respect to this body. (In this example, as it is
traditional in classical mechanics, the rigid body is considered as a system of particles with
fixed distances with respect to each other.) One can consider also an object which consists
of several rigid bodies moving with respect to each other. Present, following [16], Ch. 1,
equations of motion of this system.

The frame Cxyz rotates with some angular velocity. Denote −→ω this angular velocity
considered as a vector in the frame Cxyz. Denote

−→
G the angular momentum of the moving

particles with respect to the point C;
−→
G also is considered as a vector in the frame Cxyz. Let

Î = Î(t) be the matrix of the inertia tensor of the particles in the axes Cxyz, −→g = −→g (t) be the
angular momentum about C of the particles in their motion with respect to the frame Cxyz.
Then

(2.1)
−→
G = Î −→ω + −→g

and

(2.2) −→ω = Î−1 −→G − Î−1 −→g .

The conservation of the total angular momentum of the system in König’s frame implies
that

(2.3)
d
−→
G

dt
+ −→ω ×

−→
G = 0.

Plugging −→ω into the equation above, we get the following equation known as Liouville’s
equation (see, e.g., [13])

(2.4)
d
−→
G

dt
+ Î−1(

−→
G − −→g (t)) ×

−→
G = 0.
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In this equation Î and −→g are prescribed functions of time. We will assume that the relative
motion of particles is slow, of order ε, where ε > 0 is the small parameter of the problem.
Then changes of Î and −→g with time are slow, of order ε, and −→g is small, of order ε. So, with
a slight change of notation (Î(t)→ Î(τ),−→g (t)→ ε−→g (τ)), and denoting

(2.5)
−→
f = Î−1−→g ,

we rewrite equation (2.4) as

(2.6)
d
−→
G

dt
+ (Î−1(τ)

−→
G − ε

−→
f (τ)) ×

−→
G = 0, τ̇ = ε.

This system with f (τ) ≡ 0 was studied in [4].

3 Unperturbed system Consider the unperturbed system, i.e. system (2.6) for ε =

0, τ = const. We get the Euler-Poinsot problem. It can be considered in several representa-
tions: on the Poinsot ellipsoid (the ellipsoid of a constant kinetic energy), on the sphere of a
constant magnitude of the angular momentum vector, and in the phase cylinder in Andoyer-
Deprit variables. We will use the last two representations. Denote A, B, and C the principal
moments of inertia of the body, A corresponds to Cx axis, etc. We assume that principal mo-
ments of inertia are prescribed functions of the parameter τ (A = A(τ), etc.), and their values
never coincide. Without loss of generality, assume that A > B > C. Vectors ~ω = (ω1, ω2, ω3)
and ~G = (G1,G2,G3) are related as ~ω = (G1

A ,
G2
B ,

G3
C ). The sphere | ~G| = const in coordinates

(G1,G2,G3) has the equation

(3.1) G2
1 + G2

2 + G2
3 = G2

where G = | ~G|. Trajectories of the vector
−→
G on this sphere (see Fig. 2) are isolines of kinetic

energy H0 of rotation of the body,

H0 =
1
2

G2
1

A
+

G2
2

B
+

G2
3

C

 .
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Fig. 2. Rigid body dynamics on the angular momentum sphere.

Let us take direction of the vector ~G as the positive direction of CZ axis (note that ~G is a
constant vector in the absolute space). We will use the Andoyer-Deprit variables L, l, where
L is the projection of

−→
G onto the axis corresponding to the moment of inertia C, and l is the

intrinsic rotation angle of the body (Fig. 3).

Fig. 3. Andoyer-Deprit variables.

These variables are related to the components of the angular momentum vector as fol-
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lows:

(3.2) G1 = G sin θ sin l, G2 = G sin θ cos l, G3 = L,

where sin θ = (
√

G2 − L2)/G.
Dynamics in the Euler-Poinsot problem in Andoyer-Deprit variables is described by the
Hamiltonian system with one degree of freedom, where l, L are conjugate canonical vari-
ables [6]. Kinetic energy H0 is the Hamiltonian:

(3.3) H0 =
1
2

(
sin2 l

A
+

cos2 l
B

)(G2 − L2) +
L2

2C
.

The equations of motion of the system are

l̇ =
∂H0

∂L
= (

1
C
−

sin2 l
A
−

cos2 l
B

)L , L̇ = −
∂H0

∂l
=

1
2

(
1
B
−

1
A

)(G2 − L2) sin 2l.

The phase portrait of this system should be considered in the cylinder {l mod 2π, L} (the
Deprit cylinder). It is shown in the rectangle {0 ≤ l ≤ 2π, −G ≤ L ≤ G} in Fig. 4.

Fig. 4. Phase portrait of the Euler-Poinsot problem.

Stable equilibria in this phase portrait correspond to stationary rotations about Cx-axis in
positive 2 (for l = π/2) and negative (for l = 3π/2) directions. Unstable equilibria correspond
to stationary rotations about Cy-axis in positive (for l = 0) and negative (for l = π) directions.
Horizontal lines L = G and L = −G correspond to stationary rotations about Cz-axis in
positive and negative directions, respectively. Values of kinetic energy for stationary rotations
about Cx,Cy and Cz axes are G2

2A ,
G2

2B and G2

2C , respectively.
Separatrices divide the phase portrait into domains D1,D2,D3,D4 (see Fig. 4). These

domains correspond to domains with the same names on the sphere of the constant angular
momentum, Fig. 2. Separatrices are determined by the equation

1
2

(
sin2 l

A
+

cos2 l
B

)
(G2 − L2) +

L2

2C
=

G2

2B
,

2We consider the anti-clockwise direction as the positive direction of rotation.
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which simplifies to

(3.4) L = ±G sin l

 1
C −

1
A

1
B −

1
A

− cos2 l

−1/2

.

Action variable I = I(h, τ) in this phase portrait is defined separately in each domain. In
domains D1 and D4 this is the area between the line H0 = h and the line L = 0 for 0 ≤ l ≤ 2π,
divided by 2π. In domains D2 and D3 this is the area surrounded by the line H0 = h, divided
by 2π. The formula for I = I(h, τ) is (see [17], a misprint in this paper is corrected in [9])

(3.5) I(h, τ) =
2G
πκ

(
1 + κ2

λ + κ2

) 1
2

[(λ + κ2)Π(
π

2
, κ2, λ) − λK(λ)],

where κ and λ are positive parameters given by

κ2 =
C(A − B)
A(B −C)

, λ =
(A − B)(G2 − 2Ch)
(B −C)(2Ah −G2)

,

K is the complete elliptic integral of the first kind, Π is an elliptic integral of the third kind.
In what follows we need formulas for areas of domains Di. They can be obtained as

limiting values of 2πI(h, τ) as h → G2

2B , or by integrating L given by equation (3.4), or ge-
ometrically, from areas on angular momentum sphere. Either way leads to the following
results. Area of each of domains D2, D3 is

(3.6) S = 4G arcsin k, k =

√√
1
B −

1
A

1
C −

1
A

.

Area of each of domains D1, D4 is

(3.7) S̃ = 2πG − S = 2G(π − 2 arcsin k).

Areas of the corresponding domains on angular momentum sphere are GS and GS̃ .

4 Adiabatic approximation for perturbed system Now consider system (2.6) for
ε > 0, τ̇ = ε. We will call τ “slow time” or just “time” when this does not lead to a mixup.
Dynamics of the Andoyer-Deprit variables is described by the Hamiltonian system with the
Hamilton’s function

(4.1) H = H(l, L, τ) = H0(l, L, τ) + εH1(l, L, τ).

Here H0 is the kinetic energy of the body (see (3.3)). The function H1 is given by the formula

(4.2) H1 = ~f · ~G = f1
√

G2 − L2 sin l + f2
√

G2 − L2 cos l + f3L

where fi, i = 1, 2, 3 are components of the vector ~f .
Dynamics of Hamiltonian systems with slowly varying parameters of the form (4.1) can

be described in an adiabatic approximation (see, e.g., [2], Sect. 6.4). In particular, the value
of the action (3.5) is approximately conserved in the process of motion. The adiabatic ap-
proximation in this problem was used in [8] for description of dynamics far from separatrices
on the sphere of the angular momentum.

It may happen that in the process of the perturbed motion the phase point in the Deprit
cylinder crosses a separatrix of the unperturbed system. Initially, at t = 0, this phase point is
in a domain Di, but after some time of order 1/ε.
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Adiabatic approximation can be used up to the separatrix [15]. Thus the moment of
separatrix crossing can be approximately found from conservation of the adiabatic invariant
as follows. Let I0 be initial, at τ = 0, value of action. Areas of domains D2,3 are functions
of τ: S (τ) = 4G arcsin k(τ). Then the moment τ∗ of separatrix crossing is calculated in the
adiabatic approximation as the closest to τ = 0 root of the equation S (τ) = 2πI0. Separatrix
crossing leads to an overturn of the body.

5 Separatrix crossing

5.1 Separatrix crossing in adiabatic approximation Consider motion of phase points
which initially, at τ = 0, are in D1 at a distance of order 1 from separatrices. We assume that
dS/dτ > const > 0. Thus areas of domains D2 and D3 grow, areas of domains D1 and D4
decay. The phase points approach separatrices at τ ≈ τ∗, where τ∗ is the moment of separa-
trix crossing calculated in the adiabatic approximation Sect. 4. We are interested in further
motions of these phase points. The averaging method for dynamics with separatrix crossings
allows to describe this motion in the adiabatic approximation as follows (see, e.g., [15] and
references therein). At the separatrix crossing the phase point can not continue its motion in
the domain D1 or D4 because area of the domain D2 ∪ D3 grows. The phase point continues
its motion either in the domain D2 or in the domain D3. In each case the value of the adiabatic
invariant I is equal to S (τ∗)/(2π). However S (τ∗) = 2πI0, where I0 is initial, at τ = 0, value
of action. Thus I = I0 in the adiabatic approximation for motions with separatrix crossings.

One can assign certain probabilities to continuations of motion in D2 and D3. We will
calculate these probabilities in Sect. 5.3.

5.2 Change of energy near separatrices In order to study separatrix crossing we
need to know asymptotic formulas for change of energy H0 in the perturbed system when the
phase point moves near unperturbed separatrices (cf. [15]). The energy along the separatrices
is HB = G2

2B . Introduce the new function E = H − HB. In the perturbed system (2.6) we have

dE
dt

= ε

(
∂E
∂τ

+ ∇H · ( ~f × ~G)
)
.

Here∇H is the gradient of H considered as the function of G1,G2,G3: ∇H = (G1/A,G2/B,G3/C).
There are four separatrices, see Fig. 5. Denote the separatrix between D1 and D2 as Γ1,2.

Similarly we have Γ1,3, Γ4,2 and Γ4,3.

Fig. 5. Separatrices.
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Change ∆E of value of the function E along a fragment of perturbed trajectory close to
a separatrix Γ is approximately equal to the integral of dE/dt over Γ:

(5.1) ∆E ≈ ε
∫

Γ

(
∂E
∂τ

)
dt + ε

∫
Γ

∇H · ( ~f × ~G)dt.

Estimates of accuracy of such an approximation are contained in [15]. In particular, for
motion with E ∼ ε the accuracy is O(ε3/2). The integrals here are improper ones, as the
motion along a separatrix takes infinite time, but they converge.
For calculation of the first integral in (5.1) we use the formula that the τ-derivative of the
area, surrounded by separatrices, is equal to the integral of −(∂E/∂τ) over these separatrices
(cf. [14]). Denote

Θ = Θ(τ) =
1
2
∂S
∂τ
,

where S is the area of each of domains D2,3. Thus the first integral in (5.1) is∫
Γ

(
∂E
∂τ

)
dt = −Θ = −

1
2
∂S
∂τ
.

for each of separatrices. From Sect. 2 we know that S = 4G arcsin k with k2 =
1
A−

1
B

1
A−

1
C

. Then

∂S
∂τ

= 4
∂G arcsin k

∂τ
=

4G
√

1 − k2

dk
dτ

=
4G
√

1 − k2

d
dτ

√√
1
A −

1
B

1
A −

1
C

= 2G

√√
1
A −

1
C

1
B −

1
C

√√
1
A −

1
C

1
A −

1
B

·

(
A′(τ)

A2 −
B′(τ)

B2

) (
1
A −

1
C

)
−

(
1
A −

1
B

) (
A′(τ)

A2 −
C′(τ)

C2

)
(

1
A −

1
C

)2

= 2G

(
A′(τ)

A2 −
B′(τ)

B2

) (
1
A −

1
C

)
−

(
1
A −

1
B

) (
A′(τ)

A2 −
C′(τ)

C2

)
(

1
A −

1
C

) √(
1
B −

1
C

) (
1
A −

1
B

) .

Therefore,

(5.2)
∫

Γ

∂E
∂τ

dt = −Θ = −
1
2
∂S
∂τ

= −G

(
A′(τ)

A2 −
B′(τ)

B2

) (
1
A −

1
C

)
−

(
1
A −

1
B

) (
A′(τ)

A2 −
C′(τ)

C2

)
(

1
A −

1
C

) √(
1
B −

1
C

) (
1
A −

1
B

) .

Here “prime” denotes the derivative with respect to τ.

Now we compute the second integral in equation (5.1). We have

∇H · ( ~f × ~G) =
∂H

∂
−→
G
· ( ~f ×

−→
G) = (

−→
G ×

∂H

∂
−→
G

) · ~f = (
−→
G × Î−1−→G) · ~f =

d
−→
G

dt
· ~f ,

where d
−→
G

dt is calculated in the unperturbed system.
We know that the point l = 0, L = 0 in the phase portrait Fig. 5 corresponds to a rotation
around the axis of the moment of inertia B in the positive direction (G2 = G), while the point
l = π, L = 0 corresponds to a rotation around this axis in the negative direction (G2 = −G).
Therefore,

(5.3)
∫

Γ1,2

∇H · ( ~f × ~G)dt =

∫
Γ1,2

d
−→
G

dt
· ~f dt = ~f ·

∫ π

0
d
−→
G = −2 f2G,
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where f2 is the second component of ~f . Integral over Γ4,3 has the same value −2 f2G, integrals
over Γ1,3 and Γ4,2 have value 2 f2G.
Denote

(5.4) ρ = ρ(τ) = f2G.

Then from formula (5.1) and previous calculations we have the following expressions for
change ∆i, jE of value of the function E along a fragment of perturbed trajectory close to a
separatrix Γi, j valid in the principal approximation:

∆1,2E = ε(−Θ − 2ρ), ∆1,3E = ε(−Θ + 2ρ),(5.5)
∆4,2E = ε(−Θ + 2ρ), ∆4,3E = ε(−Θ − 2ρ).

These values of change of the function E for motion near the separatrices are indicated in Fig.
5.

Denote ∆1 and ∆4 changes of E along fragments of perturbed trajectory O(ε)-close to
Γ1 = Γ1,2 ∪ Γ1,3 and to Γ4 = Γ4,3 ∪ Γ4,2, respectively. We have the following expression valid
in the principal approximation:

∆1 = ∆4 = −2εΘ .

In what follows we use these approximate formulas as exact formulas for change of
energy, thus neglecting high order corrections.

5.3 Probabilities of capture into different domains We consider phase points that
start their motion at τ = 0 in D1. These phase points can be captured into D2 or D3 after
separatrix crossing. Initial conditions for capture into different domains are mixed in the
phase space. Small, ∼ ε, change of initial conditions can change the destination of a phase
point after separatrix crossings. Destinations depend also on ε. For a fixed initial condition
and ε → 0 two destinations replace each in an oscillatory manner. Thus the question about
this destination does not have a deterministic answer in the limit as ε → 0. It is reasonable
to consider capture into a given domain as a random event and calculate the probability of
this event. Such an approach was introduced in [10] for scattering of charged particles at
separatrix crossing. This approach was rediscovered by many authors. In particular, it was
used in [7] for planetary rotations to determine the probability of capture of Mercury in its
current resonant regime. A rigorous approach to the definition of the notion of probability
in the considered class of problems was suggested in [1]. It is based on the comparison of
measures of initial data for captures into different domains. Below we use this approach.

Consider a point M in the domain D1 at a distance of order 1 from separatrices. Denote
IM the value of action at M at τ = 0. Let τ∗ be the moment of separatrix crossing in adiabatic
approximation for motion with the initial condition at M, S (τ∗) = 2πIM . We will consider
motion in the time interval 0 ≤ τ ≤ K, where K = const > τ∗. Thus, this interval includes the
moment of separatrix crossing (in the adiabatic approximation) for the motion with the initial
condition at M.

Denote Uδ the disc of radius δ with the centre at M. We assume that δ is small enough,
and thus Uδ is in D1 at τ = 0. Moreover, the moment of separatrix crossing (in the adiabatic
approximation) for all motions with initial conditions in Uδ is less than K. The set Uδ can be
represented as a union of three sets, Uδ = Uδ,ε

1 ∪ Uδ,ε
2 ∪ vε as follows. The set Uδ,ε

i , i = 1, 2,
contains initial conditions of motions for which change of the action I on the time interval
0 ≤ τ ≤ K tends to 0 as ε→ 0 (i.e sup0≤t≤K/ε |I(t)− I(0)| → 0 as ε→ 0) and the phase point is
in the domain Di at τ = K. It follows from results of [15] that meas vε → 0 as ε→ 0. I.e. the
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adiabatic approximation works for the majority of initial conditions. Following [1] we call

(5.6) Pr1,i(M) = lim
δ→0

lim
ε→0

meas Uδ,ε
i

meas Uδ

the probability3 of capture of M into domain Di, i = 2, 3. This probability is a function of
τ∗, which we denote P1,i(τ∗), Pr1,i(M) = P1,i(τ∗) [15]. The phase portrait of the unperturbed
system Fig. 5 is different from that in [15]. Nevertheless it is possible to use an approach
in [15] to formulate a procedure for calculation of P1,i(τ∗) as follows.

Phase points from Uδ make many rounds repeatedly crossing the line l = π in D1 and
gradually approaching separatrices. At each such round near the separatrices the value of E
decays by about 2εΘ. So, at the last arrival to the line l = π in D1 we have 0 < E < 2εΘ (in the
principal approximation). Phase points from Uδ finish this last round almost simultaneously
at τ ≈ τ∗. Consider motion of a phase point that starts at τ = τ∗ from the line l = π with
E = E∗, where 0 < E∗ < 2εΘ∗, Θ∗ = Θ(τ∗). This phase point will make several rounds
near separatrices. The change of energy for motion near separatrices will be calculated in
the principal approximation by formulas (5.5) with Θ = Θ∗, ρ = ρ∗. This construction
determines parts of the interval 0 < E∗ < 2εΘ∗ corresponding to captures into D2 and D3.
The ratio to 2εΘ∗ of length of the part, corresponding to capture into domain Di, is equal to
the probability P1,i(τ∗).

Calculate probabilities using such an approach. We will assume that ρ∗ > 0. The situa-
tion with ρ∗ < 0 is reduced to that with ρ∗ > 0 by exchange of numbers of domains D2 and
D3.

We will consider two cases.
Case I: Θ∗ > 2ρ∗. A phase point starts at τ = τ∗ from the line l = π with E = E∗,

0 < E∗ < 2εΘ∗. It passes near the separatrix Γ1,3 during some time interval τ∗ ≤ τ ≤ τ1 first,
and arrives either to the line L = 0 near l = 0 in D3 or to the line l = 0 in D1. At the end of
this pass the value of E is E1 = E∗ − ε(Θ∗ − 2ρ∗). Two sub-cases are possible.

a) If E1 < 0, then at τ = τ1 the phase point is in D3. In further motion it will make rounds
near Γ4,3 ∪ Γ1,3, returning to the line L = 0 near l = 0 in D3 after each round. The value of E
decays by 2εΘ∗ at each such round. This is a capture into D3.

b) If E1 > 0, then at τ = τ1 the phase point is in D1. Then it passes near the separatrix
Γ1,2 during some time interval τ1 ≤ τ ≤ τ2, and arrives to the line L = 0 near l = π in D2 with
E = E2 = E1 − ε(Θ∗ + 2ρ∗) = E∗ − 2εΘ∗ < 0. In further motion it will make rounds near
Γ4,2 ∪ Γ1,2 returning to L = 0 near l = π in D2 after each round. The value of E decays by
2εΘ∗ at each such round. This is a capture into D2.

Thus, if Θ∗ > 2ρ∗, then the probabilities are

(5.7) P1,2 =
Θ∗ + 2ρ∗

2Θ∗
, P1,3 =

Θ∗ − 2ρ∗
2Θ∗

.

Case II: Θ∗ < 2ρ∗. Let k be the natural number such that (2k− 1)Θ∗ < 2ρ∗ < (2k + 1)Θ∗.
A phase point starts at τ = τ∗ from the line l = π with E = E∗, 0 < E∗ < 2εΘ∗. During a time
interval τ∗ ≤ τ ≤ τ1, it goes along a path which is close to sequence of segments Γ1,3 ∪ Γ1,2
and Γ4,2 ∪ Γ4,3. The path contains k such segments. At τ = τ1 the phase point is at the line
L = 0 near l = π in D2 or in D3 with E = E1 = E∗ − 2kεΘ∗. It is in D2 if k is odd, and in D3,
if k is even. Consider, for definiteness, the case when k is odd. The phase point passes near
the separatrix Γ4,2 during some time interval τ1 ≤ τ ≤ τ2. At the end of this pass the value of
E is E2 = E1 − ε(Θ∗ − 2ρ∗) = E∗ − (2k + 1)εΘ∗ + 2ερ∗. Two sub-cases are possible.

3This is the probability density for capture into Di.
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a) If E2 < 0, then at τ = τ2 the phase point is in D3. In further motion it will make rounds
near Γ1,2 ∪ Γ4,2, returning to L = 0 near l = 0 in D2 after each round. The value of E decays
by 2εΘ∗ at each such round. This is a capture into D2.

b) If E2 > 0, then at τ = τ2 the phase point is in D4. Then it passes near the separatrix
Γ4,3 during some time interval τ2 ≤ τ ≤ τ3, and arrives to the line L = 0 near l = π in D3 with
E = E3 = E2 − ε(Θ∗ + 2ρ∗) = E∗ − (2k + 2)εΘ∗ < 0. Then it passes near the separatrix Γ1,3
during some time interval τ3 ≤ τ ≤ τ4. At the end of this path E = E4 = E3 − ε(Θ∗ − 2ρ∗) =

E∗ − (2k + 3)εΘ∗ + 2ερ∗ < 2εΘ∗ − (2k + 3)εΘ∗ + 2ερ∗ = −(2k + 1)εΘ∗ + 2ερ∗ < 0.Thus at
τ = τ4 the phase point is at the line L = 0 near l = 0 in D3. In further motion it will make
rounds near Γ4,3 ∪ Γ1,3 returning to L = 0 near l = 0 in D3 after each round. The value of E
decays by 2εΘ∗ at each such round. This is a capture into D3.

Thus if (2k − 1)Θ∗ < 2ρ∗ < (2k + 1)Θ∗ with an odd k, then the probabilities are

(5.8) P1,2 =
(2k + 1)Θ∗ − 2ρ∗

2Θ∗
, P1,3 =

−(2k − 1)Θ∗ + 2ρ∗
2Θ∗

.

Similar reasoning shows that if (2k − 1)Θ∗ < 2ρ∗ < (2k + 1)Θ∗ with an even k, then the
probabilities are

(5.9) P1,2 =
−(2k − 1)Θ∗ + 2ρ∗

2Θ∗
, P1,3 =

(2k + 1)Θ∗ − 2ρ∗
2Θ∗

.

Probabilities for initial conditions from D4 can be obtained from the previous formulas
by replacement of the index 1 with the index 4 and exchange of indexes 2 and 3.

6 Examples In this Section we consider two examples of calculation of probabilities
and compare theoretical and numerical results. In these examples we consider a system which
consists of a rigid body and one or two particles which move with respect to this body. We
assume that the principal central moments of inertia of the body are different from each other.
The body frame O′ξηζ is the frame of principal central axes of inertia of the body; O′ is
the centre of mass of the body, the ξ, η and ζ-axes correspond, respectively, to the maximal,
intermediate and minimal moments of inertia of the body.

6.1 Case of equal probabilities Consider a system which consists of a rigid body and
a particle which moves along the axis of the intermediate principal central moment of inertia
of the body (axis O′η). Then the centre of mass of the system O moves along this axis, and
this axis is also the axis of a principal central moment of inertia of the system. We assume
that this axis corresponds to the intermediate moment of inertia of the system (this is correct
if the mass of the moving particle is not too big). The system frame Oxyz is a translation
of the body frame O′ξηζ in the direction of η-axis. Intermediate moment of inertia B of the
system does not change. Maximal and minimal moments of inertia A and C of the system
change according to the following formulas.

Let m be mass of the moving particle and η = η(τ) be η-coordinate of this particle in the
body frame, η0 = η(0). Let M be the total mass of the system. Then (see Appendix A)

A(τ) = A(0) +
m(M − m)

M
(η2 − η2

0),C(τ) = C(0) +
m(M − m)

M
(η2 − η2

0).

The velocity vector of the moving particle with respect to the frame of principal central axes
of inertia of the system is parallel to the position vector of this particle. Therefore, ~g = 0, and
thus ~f = Î−1~g = 0 and ρ = f2G=0. According to (5.7), for particles leaving domain D1 we
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have

P1,2 =
Θ∗

2Θ∗
=

1
2
, P1,3 =

Θ∗

2Θ∗
=

1
2
.

For a numerical illustration of dynamics in the considered case we take η = η(τ) = η0+εt,
A(0) = 10.0, B(0) = 8.0, C(0) = 6.0, m = 0.1, M = 10.0, η0 = 1.0, and ε = 0.003. The initial
values of G1, G2, G3 are 10.0, 9.0, 8.0, respectively. Fig. 6 and Fig. 7 show the graphs of
moments of inertia A and C vs τ. (Note that B is a constant in the considered example.)

Fig. 6. Graph of the maximal moment of inertia A vs τ.

Fig. 7. Graph of the minimal moment of inertia C vs τ.

Fig. 8 and Fig. 9 show changes of G1 and G3 in dependence on the slow time τ. Re-
call that G1 = G sin θ sin l and G3 = L. These graphs demonstrate that a) the motion starts
in domain D1 and b) when τ is about 0.52, the phase point crosses the separatrix and stays
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in domain D2 after this. Indeed, for the left part of these graphs G1 takes both positive and
negative values, and G3 takes positive values. This corresponds to motion in D1. For the right
part of these graphs G1 takes positive values, and G3 takes both positive and negative values.
This corresponds to motion in D2.

Fig. 8. Graph of G1 vs τ.

Fig. 9. Graph of G3 vs τ.

Dependence of energy H0 on slow time τ is shown in Fig. 10 (blue curve). The horizontal
red straight line corresponds to the value of energy on the separatrices HB = G2/(2B) = const.
We see that the energy decays. It is equal to the energy along the separatrices when τ is around
0.52, where the crossing happens.
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Fig. 10. Graph of energy H0 vs τ.

Behaviour of action I in slow time is shown in Fig. 11. We see that the action performs
only small oscillations about a constant value. Bigger oscillations of action at τ about 0.52
correspond to the separatrix crossing.

Fig. 11. Graph of action I vs τ.

Fig. 12 shows the graph of area of the domains D2 (or D3) vs τ (blue curve) and the
initial value of action I multiplied by 2π (brown horizontal straight line). The blue and brown
lines intersect at τ = 0.5189. This is the moment of separatrix crossing calculated in adiabatic
approximation. This value is in a good agreement with moment of separatrix crossing seen
in the previous pictures.
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Fig. 12. Graph of area vs τ.

To check the formula for probability we fix G2 = 9 and consider 2000 initial conditions
uniformly distributed in the square 9.9 ≤ G1 ≤ 10.1, 7.9 ≤ G3 ≤ 8.1. Trajectories with
these initial conditions were captured into D3 in 1010 cases and into D2 in 990 cases. Thus,
numerically calculated probability 0.495 of capture into D2 is close to its theoretical value
0.5.

6.2 Case of non-equal probabilities Consider a system which consists of a rigid body
and two particles of equal masses which move in the plane of the maximal and the minimal
central moments of inertia of the body. The particles move in a circle with the centre at the
centre of mass of the body, and their positions are symmetric with respect to the centre of this
circle. Then the centre of mass of the body coincides with the centre of mass of the system
and does not move. The axis of intermediate central moment of inertia of the body (axis
O′η) is also the axis of a principal central moment of inertia of the system. We assume that
the principal central moments of inertia of the system are different from each other, and that
O′η-axis corresponds to the intermediate moment of inertia of the system (this is correct if
masses of the moving particles are not too big). Seen in the body frame, the motion of the
frame of the central principal axes of inertia of the system Oxyz is a rotation about the fixed
y-axis.

Let m be mass of each of the moving particles, r be radius of the circle which is the
trajectory of these particles, α = α(τ) be the polar angle of one of these particles in the
plane of maximal and the minimal moments of inertia of the body. This angle is measured
anti-clockwise from the axis of the minimal moment of inertia, α0 = α(0). For the principal
moments of inertia of the system we have B = const and (see Appendix B)

A(τ) =
1
2

(A(0) + C(0)) +
1
2

√
∆(τ), C(τ) =

1
2

(A(0) + C(0)) −
1
2

√
∆(τ),

where ∆ is expressed via components of the inertia tensor of the system in the body frame
Iξξ = Iξξ(τ), Iζζ = Iζζ(τ), Iξζ = Iξζ(τ) as follows:

∆(τ) = (Iζζ − Iξξ)2 + 4I2
ξζ .
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For components of the inertia tensor, the following formulas are derived in Appendix B:

Iζζ = C(0) + 2mr2(sin2 α − sin2 α0), Iξξ = A(0) + 2mr2(cos2 α − cos2 α0),

Iξζ = 2mr2(cosα0 sinα0 − cosα sinα).

Motion of particles causes a rotation of principal axes of inertia of the system with respect
to principal axes of inertia of the body. This is the rotation around Oy-axis with the angular
velocity (see Appendix B)

ω∗ =
Iξζ(A − Iζζ)(İζζ − İξξ) − İξζ(I2

ξζ − (Iζζ − A)2)

(I2
ξζ + (A − Iζζ)2)

√
(Iζζ(t) − Iξξ(t))2 + 4I2

ξζ

.(6.1)

Thus, seen from the frame Oxyz, the body rotates about Oy-axis with the angular velocity
−ω∗, and two particles move in a circle with the angular velocity −ω∗ + α̇. The y-component
of the angular momentum of this motion is

εg2 = −Bω∗ + 2mr2α̇ .

Then, according to formulas (2.5), (5.4),

(6.2) ρ = f2G = B−1g2G = ε−1(−ω∗ +
2
B

mr2α̇)G.

For a numerical illustration we take α = α(τ) = α0 + εt, A(0) = 10.0, B(0) = 8.0, C(0) = 6.0,
m = 0.15, M = 10.0, α0 = 0.2, r = 2.5, and ε = 0.0005. The initial values of G1, G2, G3 are
9.9, 9.0, 8.1, respectively.

Fig. 13 and Fig. 14 show the graphs of moments of inertia A and C vs τ. (Note that B is
a constant.)

Fig. 13. Graph of the maximal moment of inertia A vs τ.
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Fig. 14. Graph of the minimal moment of inertia C vs τ.

Fig. 15 and Fig. 16 show changes of G1 and G3 in dependence on the slow time τ. These
graphs demonstrate that a) the motion starts in domain D1 and b) when τ is about 0.68, the
phase point crosses the separatrix several times and stays in domain D2. Indeed, for the left
part of these graphs G1 takes both positive and negative values, and G3 takes positive values.
This corresponds to motion in D1. For the right part of these graphs G1 takes positive values,
and G3 takes both positive and negative values. This corresponds to motion in D2. In the
middle part of these graphs we see several passes through different domains.

Fig. 15. Graph of G1 vs τ.
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Fig. 16. Graph of G3 vs τ.

Dependence of energy H0 on slow time τ is shown in Fig. 17 (blue curve). The horizontal
brown straight line corresponds to the value of energy on the separatrices. We see that the
energy decays. It is equal to the energy along the separatrices when τ is around 0.68, where
the crossing happens.

Fig. 17. Graph of energy H0 vs τ.

Behaviour of action I in slow time is shown in Fig. 18. We see that the action performs
only small oscillations about a constant value. The amplitude of oscillations grows near the
value of τ about 0.68 where the separatrix crossing occurs.
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Fig. 18. Graph of action I vs τ.

Fig. 19 shows the graph of area of the domain D2 (or D3) vs τ (blue curve) and the initial
value of action I multiplied by 2π (brown horizontal straight line). The blue and brown lines
intersect at τ = 0.683315. This is the moment of separatrix crossing calculated in adiabatic
approximation. This value is in a good agreement with moment of separatrix crossing seen
in the previous pictures.

Fig. 19. Graph of area vs τ.

To check the formula for probability we fix G2 = 9 and consider 2000 initial conditions
uniformly distributed in the square 9.85 ≤ G1 ≤ 9.95, 8.05 ≤ G3 ≤ 8.15. Trajectories
with these initial conditions were captured into D2 in 1574 cases and into D3 in 426 cases.
Thus, numerically calculated probability of capture into D2 is 1574/2000 = 0.787. For the
moment of separatrix crossing τ∗ = 0.683315 formulas (5.2), (6.2) give Θ∗ = 3.5006 and
ρ∗ = 7.979405. We have 3Θ∗ < 2ρ∗ < 5Θ∗. Thus we should use formulas (5.9) with k = 2.
We get P1,2 = (−3 · 3.5006 + 2 · 7.979405)/(2 · 3.5006) = 0.77943. We see that the numerical
value for probability 0.787 is quite close to the result given by the theory.
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7 Conclusions We have described evolution of rotational dynamics of a body with a
slowly varying geometry of masses using an adiabatic approximation. The separatrix crossing
in the course of this evolution is associated with a probabilistic scattering of phase trajectories.
We have calculated probabilities of different outcomes of the evolutions due to this scattering.
These results could be useful in study of rotation of celestial bodies.

Appendix A. The model described in Sect. 6.1. Denote ηc = ηc(τ) the η-coordinate of
the centre of mass O of the system. Then, because the centre of mass of the body is O′, we
have

ηc =
m
M
η.

Denote Iξ,ξ the moment of inertia of the body about ξ -axis. For the maximal moment of
inertia of the system A(τ) we obtain, using Steiner’s theorem,

A(τ) = Iξ,ξ + (M −m)η2
c(τ) + m(η(τ)− ηc(τ))2, A(0) = Iξ,ξ + (M −m)η2

c(0) + m(η0 − ηc(0))2.

Thus

A(τ) − A(0) = (M − m)(η2
c(τ) − η2

c(0)) + m((η(τ) − ηc(τ))2 − (η0 − ηc(0))2)

=
(M − m)m2

M2 (η2 − η2
0) + m((η −

m
M
η)2 − (η0 −

m
M
η0)2)

=
(M − m)m2

M2 (η2 − η2
0) + m(1 −

m
M

)2(η2 − η2
0) =

m(M − m)
M

(η2 − η2
0).

This implies the formula for A(τ) in Sec.6.1. Proof of the formula for C(τ) is completely
analogous.

Appendix B. The model described in Sect. 6.2. The coordinates of the moving particles
in the body frame Oξηζ are

ξ = ±r sinα, η = 0, ζ = ±r cosα .

Then the moments of inertia of the system can be written as

Iζζ = Iζζ(τ) = C(0) + 2mr2(sin2 α − sin2 α0),

Iξξ = Iξξ(τ) = A(0) + 2mr2(cos2 α − cos2 α0),

Iξζ = 2mr2(cosα0 sinα0 − cosα sinα),

Iηη = B.

Principal moments of inertia of the system are eigenvalues of the moments of inertia matrix:

(B.1) Ĵ = Ĵ(τ) =

Iξξ 0 Iξζ
0 Iηη(t) 0

Iξζ 0 Iζζ


The characteristic equation is

(Iηη − λ)(λ2 − (Iζζ(t) + Iξξ(t))λ + Iξξ(t)Iζζ(t) − I2
ξζ(t)) = 0.



SEPARATRIX CROSSING IN ROTATION OF A BODY WITH CHANGING GEOMETRY OF MASSE 21

Then Iηη = B is one of the principal moments of inertia. Other eigenvalues are

λ1,2 =
1
2

(Iξξ(t) + Iζζ(t)) ±
1
2

√
(Iζζ(t) − Iξξ(t))2 + 4I2

ξζ(t) .

Then we have Iζζ + Iξξ = A(0) + C(0).
Denote ∆ = (Iζζ(t) − Iξξ(t))2 + 4I2

ξζ . Then

A(τ) = λ1 =
1
2

(A(0) + C(0)) +
1
2

√
∆, C(t) = λ2 =

1
2

(A(0) + C(0)) −
1
2

√
∆,

which are formulas in Sect. 6.2.
Motion of the system frame with respect to the body frame is a rotation about η axis with

some angular velocity ω∗. Formulas of the standard perturbation theory for eigenvectors of
symmetric matrices (see, e.g., [3], Section 4.16) imply that

ω∗ =
( ˙̂JêC , êA)

C − A
.

Here êA and êC are unit vectors of axes Ox and Oz (eigenvectors of matrix (B.1)) and (·, ·)
denotes the standard scalar product. Explicit formulas for êA and êC are

êC =


−

Iξζ√
I2
ξζ+(λ1−Iζζ )2

0
λ1−Iζζ√

I2
ξζ+(λ1−Iζζ )2

 , êA =


λ1−Iζζ√

I2
ξζ+(λ1−Iζζ )2

0
Iξζ√

I2
ξζ+(λ1−Iζζ )2

 .
The explicit formula for ω∗ is

ω∗ = −
1√

(Iζζ(t) − Iξξ(t))2 + 4I2
ξζ

(
−

Iξζ√
I2
ξζ+(λ1−Iζζ )2

0 λ1−Iζζ√
I2
ξζ+(λ1−Iζζ )2

) İξξ 0 İξζ
0 İηη 0

İξζ 0 İζζ




λ1−Iζζ√
I2
ξζ+(λ1−Iζζ )2

0
Iξζ√

I2
ξζ+(λ1−Iζζ )2


=

Iξζ(A − Iζζ)(İζζ − İξξ) − İξζ(I2
ξζ − (A − Iζζ)2)

(I2
ξζ + (A − Iζζ)2)

√
(Iζζ(t) − Iξξ(t))2 + 4I2

ξζ

as it is given in (6.1).
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