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by Morgan James Tudball

We consider both a long-wave model and a first-order weighted-residual integral boundary layer

(WIBL) model in the investigation of thin film flow down a topographical incline whilst under

the effects of a normal electric field. The liquid is assumed to be a perfect dielectric, although is

trivially extended to the case of a perfect conductor. The perfect dielectric case with no topogra-

phy includes a simple modified electric Weber number which incorporates the relative electrical

permittivity constant into itself. Linear stability analysis is carried out for both models, and

critical Reynolds numbers which depend on the electric Weber number and the capillary num-

ber are produced. Regions of stability, convective instability and absolute instability are then

determined for both models in terms of our electric Weber number and Reynolds number pa-

rameters in the case of no topography. Time-dependent simulations are produced to corroborate

the aforementioned regions and investigate the effect of normal electric field strength in addition

to sinusoidal and rectangular topographical amplitude on our system for various domain sizes.

For the time-dependent simulations we find strong agreement with the linear stability analysis,

and the results suggest that the inclusion of a normal electric field may have some stabilising

properties in the long-wave model which are absent in the case of a flat wall, for which the

electric field is always linearly destabilising. This stabilising effect is not observed for the same

parameters in the WIBL model with a sinusoidal wall, although a similar effect is noticed in

the WIBL model with a rectangular wall. We also investigate the simultaneous effect of domain

size, wall amplitude and electric field strength on the critical Reynolds numbers for both models,

and find that increasing the electric field strength can make large-amplitude sinusoidal topogra-

phy stabilising rather than destabilising for the long-wave model. Continuation curves of steady

solutions and bifurcation diagrams are also produced, and comparisons between the two mod-

els are made for various parameter values, which show excellent agreement with the literature.

Subharmonic branches and time-periodic solutions are additionally included, similarly showing

very good agreement with the literature.
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In this thesis:

Chapters 3 and 4 of this thesis are based on a manuscript intended to be submitted in

late 2018.
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Chapter 1

Introduction

As is befitting a field which so often focuses upon complex dynamics and the interesting

behaviour of waves and fluids, the study of falling liquid films and thin film flow is

characterised by a rich and colourful history, and a wealth of literature surrounding it.

In 1822, George Stokes and Claude-Louis Navier (whose contributions are recognised

by the engraving of his name on the Eiffel Tower) proposed a system of equations which

could fully describe the flow of viscous fluids, and these equations continue to prove

invaluable to this day. Not only do solutions to the equations appear to accurately reflect

the true behaviour of fluids in the laminar regime, but in the turbulent regime as well.

Osborne Reynolds [71] was the first to uncover the power of lubrication theory, which

he used to explain the experimental observations by Tower [93] formally inconsistent

with contemporary understandings of viscosity. As discussed by Craster and Matar [17]

in their overview on thin liquid films, this interplay between experimental observations

and theoretical study is especially pronounced in thin film flow; see, for example, the

innovative work of P. Kapitza [42] measuring the viscosity of liquid helium in 1938, and

the pioneering work with his son S. Kapitza [43] in 1949 which involved experimental

research into the wave flow of thin layers of viscous liquids. The leaps in theoretical

understanding of fluid dynamics provided by these authors and researchers (and the

immeasurable number of contributors not included here) have eventually resulted in

the long-wave approximations, and subsequently both the single and coupled nonlinear

evolutions equations which we still use currently to describe the local film thickness of

thin liquid films, in addition to a myriad of other fluid properties.

Due to the inherent length rescaling in thin film flows, we may observe thin film dy-

namics in a multitude of seemingly incomparable contexts; the motion of continental

1
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ice sheets [17]; pulmonary flow in human lungs [30]; a thin layer of rain flowing down a

window – the dynamics of all of these phenomena may be accurately described by thin

film models. Needless to say, for such a robust and far-reaching mathematical frame-

work, the industrial applications are similarly wildly varied; mass and heat transfer

devices [82]; microfluidic electronics [84, 87], and electrostatic spraying and painting

[13] are merely a select few.

This work focuses upon thin film flow in the context of electrohydrodynamics and the

effects of topography, both of which have been studied considerably by previous au-

thors. The action of an electric field on thin films has been shown to have some very

desirable properties. For example, in the case of a heat exchanger acting in conjunction

with an electric field, it has been demonstrated that the transfer efficiency of heat can

be significantly electrohydrodynamically enhanced [22]. The use of electric fields also

introduces novel ways of controlling the flow dynamics, as discussed by Tseluiko et al.

[96, 99, 100, 103] in addition to Veremieiev et al. [110]. Earlier applications were in-

vestigated by Kim, Bankoff and Miksis [45, 46] for electrostatic flow down an inclined

plane in 1992, and they outlined designs for a cylindrical electrostatic radiator in 1994.

When discussing the effects of electric fields on fluid dynamics, a potential starting point

is the 1964 work by Taylor [88] on the disintegration of water droplets in an electric

field, and the association between the the field and the internal pressure of the droplets.

The following year Taylor and McEwan [89] investigated the interfacial dynamics be-

tween a conducting and a non-conducting layer of fluid when a normal electric field is

applied, and examined the stability of the system. Melcher and Schwarz Jr. [56], in

1968, examined the effect of a tangential electric field acting on a fluid, and analysed

the physical mechanisms through which the field affects the film interface, specifically

focusing upon charge relaxation. In 1969 Taylor and Melcher [57] then summarised

contemporary work in electrohydrodynamics, and proposed the so-called ‘leaky dielec-

tric’ model, which, as opposed to the typical assumption of perfect dielectric or perfect

conductor, allows for free charges to redistribute themselves on the fluid surface.

The Taylor-Melcher leaky dielectric model has been somewhat recently discussed by

Saville [79], and its applications and validity are discussed in detail in his 1997 overview.

The effects of tangential electric fields have also been discussed by Castellanos and

Gonzalez [13] in their 1998 review of nonlinear hydrodynamics which primarily fo-

cuses upon balance equations. The monograph ‘Electrohydrodynamics’ [12] by Castel-

lanos gives a detailed overview on electrical phenomena in hydrodynamics, as well as a
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more current summary and review on stability and conduction properties in addition to

a multitude of related topics.

In 2006 Tseluiko and Papageorgiou [104] investigated the effect of a normal electric

field on a thin film down a flat inclined wall. The electric field was found to be linearly

destabilising and to not contribute to the tangential stress balance for perfect conductor

or perfect dielectric fluids, although this is not true for the leaky dielectric model. The

main result was that the inclusion of a normal electric field widened the band of unstable

wavenumbers to include those shorter than which would otherwise be observed in the

case without the electric field, and they also observed that despite the linear stability of

the film, it is possible to promote instability for sufficiently strong electric fields. This

occurs even in the case of zero Reynolds number, due to the amount of energy provided

into the system by the electric field.

Tseluiko et al. [99] in 2008 investigated the effect of a normal electric field on a fluid

which is either a perfect conductor or a perfect dielectric and is flowing down an inclined

and small-amplitude corrugated wall at zero Reynolds number. They used boundary-

element methods in addition to boundary-integral formulation and a long-wave model,

and demonstrated how the normal electric field could be used to eliminate the phase

shift between the fluid and the topography. The work also focused upon the removal

of the capillary ridge which is observed above downward rectangular steps and after

upward rectangular steps. An extension to this work was carried out the following

year by Tseluiko and Blyth [96] and the effect of inertia was investigated, with the

Reynolds number now being taken as nonzero, and both the fluid and gas phases being

taken as perfect dielectrics. The inertial effects were found to be dependent upon the

relative electrical permittivity of the fluid, in addition to the strength of the electric field,

although the normal electric field itself was found to be generally destabilising.

Tseluiko et al. [100] also considered gravity-driven flow of a perfect conductor film

down sinusoidal or rectangular troughs whose narrowness is allowed to vary, with the

film also having a normal electric field applied. Strong agreement was found between

the results of the lubrication model and the experimental work of Decré and Baret [19],

who considered gravity-driven viscous liquid flow over inclined topography in the ab-

sence of a normal electric field. The zero Reynolds number case was also discussed by

Tseluiko et al. [103] in the case of rectangular step topography when a normal elec-

tric field is applied. It was found that for a given long-wave limit, the surface profile

results of the lubrication approximation can be obtained from the asymptotic results in
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the case of no electric field, and they found good agreement with the 1988 and 1990 ex-

perimental work of Stillwagon and Larson [85, 86] when examining the capillary ridges

associated with the topography.

Tseluiko et al. [101] also developed a nonlinear long-wave model in the case of viscous

gravity-driven flow over step topography. Small-amplitude asymptotics for the topog-

raphy are used, and they similarly found the capillary ridges and oscillations which are

characteristic of flow over rectangular steps and trenches. They also observed heavily-

damped oscillations which occur after a downward step. The case where periodic arrays

of electrodes produce the normal electric field has also been investigated by Tseluiko

et al. [102] in 2010 for perfect conductor flow down an inclined wall. The effects are

qualitatively different to the case of a single electrode held infinitely far away, and using

this novel array it is possible to remove capillary ridges and depressions locally without

causing their formation elsewhere on the surface of the film.

Pease and Russel [63] considered a leaky dielectric model for thin film flow subject to

an electric field in lithographically induced self-assembly, and found large differences

between the perfect dielectric and leaky dielectric models for the linear stability of a

polymer film. Mukhopadhyay and Dandapat [59] later considered the nonlinear stabil-

ity of a viscous film flow down an inclined plane whilst subject to a normal electric

field and used a momentum integral method to derive a nonlinear equation for the free

surface. They found that the electric field was destabilising, and that the normal electric

field introduced additional stresses at the interface. Work on three-dimensional falling

electrified films was carried out by Tomlin, Papageorgiou and Pavliotis [91] in the case

of an inclined plane and gravity-driven flow for both overlying and hanging films. It was

found that electric fields of sufficient strength were able to induce chaotic dynamics for

certain domains, and two-dimensional waves were found to evolve on the interface.

The nonlinear dynamics have also been considered by Tseluiko and Papageorgiou [105]

for an electrified thin film which wets either the top or the bottom of a flat horizontal

wall. The electric field is modelled as a nonlocal Hilbert transform term, and they

used energy functional arguments and numerical data to prove that the film thickness

remains finite in finite time. They also investigated the electrostatic effects on a gravity-

driven flow down a vertical wall using a nonlinear long-wave model for the free-surface

deflections [106]. It was found that the electric field promotes the growth of short waves

especially, and methods for increasing interfacial turbulence are discussed.
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Recently, Blyth et al. [7] examined electrified film flow down a flat inclined plane and

the effect of the electric field on solitary pulses and travelling waves for the full system

of equations in the case of no inertia, and using a quasi-linear long-wave model in cases

where inertia is included. It was shown that for certain parameter values, the presence

of the normal electric field was sufficient for the system to transition from absolutely

unstable to convectively unstable, such that the electric field can be partially stabilising

in a sense, and this result has been corroborated by time-dependent simulations.

The effect of potentially inclined topography on film dynamics in the absence of an

electric field is also a well-discussed avenue of research. Of course, for such a generic

class of hydrodynamical problems as those relating to topography and inclination angle,

it would be impossible to list all the relevant breakthroughs and notable papers, and as

such only those which are closely related to the current work in the considered physical

scenario, or the mathematical modelling framework employed shall be discussed. The

2011 monograph ‘Falling Liquid Films’ [41] by Kalliadasis et al. gives a detailed anal-

ysis and overview of more general falling thin film problems, including nonisothermal

cases and various methodologies depending on Reynolds number.

Some of the earlier analytical work on fluid flow over inclined topography was per-

formed by Tougou [92] in 1978, and focused upon weakly nonlinear long waves trav-

elling on a viscous film which flows down an inclined and uneven wall for small-

amplitude corrugations. Similar assumptions on the size of the amplitude of the uneven

wall were made by Wang [111] in 1981, who also discussed thin film flow over a wavy

incline for low Reynolds numbers. In 1984, Wang [112] considered the case where

the wall amplitudes are no longer prescribed to be small relative to the thickness of the

film, and instead focused upon flows where the bottom topography is highly curved,

and imposed that the film thickness should be much smaller than the minimum radius

of curvature of the topography.

Malamataris and Bontozoglou [53] used finite element methods to determine steady-

state surface profiles of a thin viscous film flowing down a vertical wavy wall. They

found that the capillary number is the driving force in the determination of free surface

profile, and that the Reynolds number is primarily responsible for the relative phase shift

between the thin film and the topography. In 2003, Decré and Baret [19] used phase-

stepped interferometry to produce two-dimensonal maps of the surface profile for thin

film flow over inclined rectangular and square topography, and found that their results

were consistent with somewhat simple models, such as a two-dimensional Green’s func-

tion as in the case discussed by Hayes, O’Brien and Lammers [32], suggesting the scope
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of these models was greater than previously thought. In 2000, Kalliadasis, Bielarz and

Homsy [39] used the lubrication approximation to investigate thin viscous film over

either a rectangular trench or non-uniform mound, and were able to derive a single non-

linear equation which describes the spatiotemporal evolution of the free surface. The

mechanism responsible for the formation of the capillary ridge is discussed for flow

over topography, and practical methods for removing the ridge are discussed. Kalliada-

sis and Homsy [40] also examined the linear stability of the aforementioned capillary

ridge and found it to be stable.

Tseluiko, Blyth and Papageorgio [98] also considered the stability of thin film flow over

inclined topography using a nonlinear long-wave evolution equation for the film thick-

ness. They produced dependencies of the critical Reynolds number on the rescaled wall

amplitude for several domains and topographies, including sinusoidal and rectangular

troughs of various steepness. The stabilising or destabilising properties of the topogra-

phy were found to be highly sensitive to both domain length and wall amplitude.

Wierschem et al. [113] investigated gravity-driven viscous film flow over inclined

small-amplitude topography. Notably the analysis is not restricted to thin films, and dis-

tinctions are made between the qualitative behaviour of the films when they are thick,

thin, and intermediate; namely that in cases of weak resonance the free surface ampli-

tude increases with increasing film thickness for thin films, whereas in thick films the

surface amplitude decreases with increasing film thickness. Previously in 2005, Wier-

schem, Scholle and Aksel [114] performed an experimental study of gravity-driven film

flow over large-amplitude sinusoidal topography. They were able to determine a critical

film thickness above which vortices were formed inside the film within the nadirs of the

topography, and found that this value is independent of the Reynolds number.

In 2009, D’Alessio, Pascal and Jasmine [18] considered the case of gravity-driven thin

film flow over inclined sinusoidal topography using the full second-order weighted-

residual integral boundary layer (WIBL) model. They found that the bottom topogra-

phy may be stabilising or destabilising depending on whether the the surface tension

is sufficiently weak or strong, respectively, although instability is also dependent on

the wavelength of the topography being sufficiently short in addition to this. One of

the mathematical models employed in this thesis is the WIBL model, albeit using a

first-order form which contains neither the terms relating to viscous dispersion nor the

corrections to these terms which are present in the full four-equation system and are

typically required for accurate modelling in the regime of Reynolds numbers between

100− 200 [76]. We shall discuss these WIBL models in more detail later.
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Trifonov [95] analysed the case of gravity-driven viscous thin film flow over corru-

gated topography, where the free surface is taken to be either one-dimensional, two-

dimensional or three-dimensional. In the one-dimensional case, the flow is found to be

primarily determined by surface tension. In 2006, Argyriadi et al. [3] discussed gravity-

driven film flow over inclined rectangular topography, and analysed the effects of wall

steepness on the film. Perhaps surprisingly, it was found that steep walls are strongly

stabilising relative to smoother topographies, and increase the critical Reynolds number

for the system. Two-dimensional flow over a semi-circular obstruction in a channel was

considered by Vanden-Broeck [107] in 1987, who was able to determine critical Froude

numbers which corresponded to the existence of supercritical solutions.

In 2014, Tseluiko, Blyth and Papageorgiou [97] analysed both electrified and non-

electrified thin film flow down an inclined sinusoidal wall where the Reynolds number

was taken as critical and a long-wave Benney-type equation was used. In the case of

absence of the nonlocal Hilbert transform term relating to the electric field, the authors

are able to analytically examine the instability of the film, although in the electrified

case this must be done numerically, and close agreement is found between the exper-

imental work by Cao, Vlachogiannis and Bontozoglou [11] and Tseluiko et al. in the

non-electrified case.

For flow over topography in the range of moderate to large Reynolds numbers, we have

the experimental work of Charogiannis et al. [16] on harmonically excited fluid flow.

The authors used planar laser-induced flourescence and particle tracking velocimetry

approaches in addition to direct numerical simulations (DNS), and found excellent

agreement between the numerical and experimental methods. We also have the novel

work of Heining and Aksel [33] in 2009, who, as opposed to determining the surface

profiles of thin film flows for a prescribed topography, provide a methodology for de-

termining the bottom topography required to produce a given surface profile. Their

approach makes use of the WIBL equations produced by Oron and Heining [62] in the

case of a vertical wavy wall with a thin film flowing down it. This paper by Oron and

Heining also outlines the approach for dealing with a temporally-varying flat wall rather

than a typical sinusoidal wall which remains fixed in time.

In 2015, Rohlfs and Scheid [73] investigated the conditions necessary for the onset of

circulating waves and flow reversal using a second-order WIBL model and DNS for

thin films falling down an inclined wall. The viscous dissipation of the film was found

to heavily influence the onset of flow reversal, although the appearance of circulating

waves was found to be independent of the viscous dissipation. Later in 2017, Rohlfs,
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Pischke and Scheid [72] used the WIBL model and DNS to examine thin film flow in the

case of stabilising gravity, destabilising gravity, and a flat vertical wall. Strong agree-

ment was found between the WIBL model and DNS for the wave speed and the wave

amplitude prior to dripping, although it was found that the WIBL approach does not

accurately model the internal velocity field within the fluid for large-amplitude solitary-

like waves.

The WIBL model has previously been utilised by Vellingiri, Tseluiko and Kalliadasis

[109] for modelling thin film flow down an inclined plate which is also sheared by a

turbulent gas flowing above the liquid upstream, where it was found that the WIBL

model typically followed the results of the full equations more closely than the long-

wave model considered.

The full second-order WIBL model has also been used by Pradas, Kalliadasis and

Tseluiko [66] in 2012 for their investigation into the solitary pulse interactions for

falling liquid films. It was found that the weak interaction theory is not applicable for

all separation lengths, but only for those which are sufficiently large. Pradas, Tseluiko

and Kalliadasis [67] developed the framework required for this analysis in 2011, also

using the two-field second-order model proposed by Ruyer-Quil and Manneville [76].

The accurate modelling of the viscous dispersion effects which the full WIBL model

allows led the authors to their rigorous coherent-structure theory for falling liquid films,

which permits the determination of the required pulse-separation distances necessary

for bound states to occur. We wish to make clear that the original models proposed by

Ruyer-Quil and Manneville [75] were the first-order and simplified second-order mod-

els, and that the full four-equation second-order model was proposed later in 2002 [76],

where it was shown that the Galerkin methodology of weighted-residuals is generally

the most optimal, although we leave a more detailed analysis and discussion of the

hierarchy of models for Chapter 2.

Recently in 2018, Denner et al. [21] performed a comparison between the WIBL model,

DNS and experimental observations for solitary waves travelling along a falling liquid

film which flows over an acutely angled inclined flat plate in the regime where inertia

dominates. Below a specific reduced Reynolds number (which we emphasise is also

dependent on the capillary number) the WIBL model shows very strong agreement with

both the DNS and experimental results in terms of predicting the pressure field within

the fluid, although if we are merely interested in the maxima and minima of the film

thickness, we find that the model accurately predicts these even for reduced Reynolds

numbers much greater than this specific value.
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We would also be remiss to exclude Craster and Matar [17], who, in 2009, gave an in-

depth review of thin film phenomena, flow over topography and discussed fluids driven

by a wide range of forces. They also summarised current work and literature, and gave

an overview of the advancements in dealing with nonlinear equations. Prior to this, we

have the unifying review of Oron, Davis and Bankoff [61] on thin liquid films and their

long-scale evolution, which focuses heavily on the interactions between body forces and

the physical mechanisms through which thin film dynamics evolve. Later monographs

include the work of Vanden-Broeck [108], which focuses upon gravity-capillary free-

surface flows such as bubbles in a cylinder and flow over nonporous obstacles.

The aim of this work is to investigate the differences between a long-wave equation and

the WIBL equations for the modelling of electrified thin film flow over both sinusoidal

and rectangular topography, as well as the effects of these phenomena considered si-

multaneously for various finite domains. Long-wave equations are quite common in

the literature when investigating electrified flow, as discussed previously, and the WIBL

model may be thought of as an improvement to the long-wave equation - it is thus of

interest to see the differences between the two modelling approaches with regards to an

electric field and topography. Special attention will be given to the linear stability of

the two models, and the effect of the electric field and the topography on the critical

Reynolds number. The derivation of these two models is predicated upon knowledge of

the Navier-Stokes equations, the continuity equation for the fluid flow, and the Laplace

equation for the electric potential, in addition to the corresponding boundary conditions.

These precursor equations, following standard manipulation, eventually yield a nonlin-

ear equation for the time evolution of the film thickness, or a nonlinear equation system

in the WIBL case. We seek to analyse these models analytically and solve both these

models numerically for a wide range of parameters, and investigate the effect of electric

field strength and topography on the film thickness, surface profiles, and linear stability.

The structure of this thesis takes the following form. We begin with an overview of

the mathematical model in Chapter 2, where we define our terms, conventions and gov-

erning equations. We then proceed to systematically derive and list the corresponding

boundary conditions as well as other assumptions and consequent mathematical impli-

cations. The hierarchy of models is then discussed, and the long-wave assumption is

made. Following this, we nondimensionalise our equations, and produce both long-

wave and first-order WIBL model equations.
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In Chapter 3, we focus our attention on the linear stability analysis of both the long-

wave and WIBL model equations. We derive critical Reynolds numbers in both of these

cases which take into account the normal electric field in the case of no topography,

and then determine which Reynolds number and electric Weber number parameter val-

ues correspond to stable flows, as well as absolutely unstable and convective unstable

flows, and the criteria required for a transition between the absolute and convective in-

stabilities. The dispersion relations are also produced for both models, expressions for

the most unstable wavenumbers are derived, and the spectra of the linear operators are

examined. We also investigate the real and imaginary branches of the wavenumber of

a perturbation which is acting upon our systems near the transition from convective to

absolute instability. Furthermore, we produce time-dependent simulations which cor-

roborate the parameter-space which describes transitions from stable to convectively

unstable to absolutely unstable in the case of a flat wall. These time-dependent simula-

tions are also performed for the sinusoidal and rectangular walls. Finally, we produce

plots of the critical Reynolds number for the long-wave and WIBL models as a func-

tion of the topographical amplitude for various electric Weber numbers, and discuss the

effect of both the electric field and both types of topography on our systems.

In Chapter 4, we examine steady-state results produced for both models, discuss the

implications of these results and compare the two models. We further examine surface

profiles, film thicknesses, and continuation curves of film thickness norms against wall

amplitudes, and proceed to analyse the bifurcation diagrams produced for both models

for a variety of parameter values. Time-periodic solutions and subharmonic branches

are detected and analysed in addition to the main branches.

Finally, a conclusion and brief summary is given is Chapter 5, and we outline several

avenues for future research.



Chapter 2

Models and derivations

2.1 Governing equations

We consider a gravity-driven two-dimensional flow of an incompressible Newtonian

liquid down an inclined wavy wall. For now we assume that the liquid is a perfect

dielectric, and we will later show how the perfect conductor case can be recovered in

the appropriate limit. We introduce a Cartesian coordinate system (x, y) so that the x-

axis is pointing in the direction of the flow, and the y-axis is perpendicular to the x-axis

and pointing into the liquid. Time is denoted by t, g denotes the acceleration due to

gravity, and β denotes the angle between the inclined wall and the horizontal. The free

Figure 2.1: Liquid film flow down an inclined wavy wall.

11
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surface is located at y = f(x, t), the film thickness is given by h(x, t), and the wall

topography is given by y = s(x), so that f(x, t) = s(x) + h(x, t). The density and

viscosity of the liquid are defined as ρ and µ respectively. A graphical representation of

this model is given in Figure 2.1.

The wall topography itself is modelled as either a sinusoidal or rectangular trough-

shaped topography, and is given by

s(x) = A cos
(πx
L

)
, (2.1)

or

s(x) = A tanh

(
cos(πx

L
)

d

)
, (2.2)

respectively. Here A is the wall amplitude, L is half of the period of the wall, and d

controls the steepness of the walls in the rectangular case. In the limit of d → 0 we

recover completely straight edges such that we have right-angles between the corners

of our troughs, although in practice we shall always take d = 0.1. In the literature, it is

also not uncommon for the gas above the liquid to be modelled as a laminar or turbulent

one, shearing the liquid flow (see, for example, the 2015 work by Vellingiri, Tseluiko

and Kalliadasis [109]) although this is not considered for the current model, and the gas

is taken to be hydrodynamically inert.

We define Region 1 to be the region consisting of the liquid and Region 2 to be the

region consisting of the surrounding air. The electric field is assumed to be uniformly

acting on the liquid from infinity in the y-direction, and is assumed to be acting normal

to the flow direction. In our model the wall is an electrode and the other electrode is

sufficiently far away from the wall. The potential difference between the two electrodes

is chosen such that as y → ∞ we have E → −E0ĵ , where ĵ is defined as the unit

vector pointing in the y-direction. It is well-documented [45, 79, 99, 104] that the

inclusion of a normal electric field causes additional Maxwell normal stresses which

have the possibility to affect the flow stability and dynamics. In addition, the liquid and

air are both assumed to be perfect dielectrics, with permittivity ε1 and ε2, respectively,

although as εp = ε2/ε1 → ∞ we approach the limit of the film as a perfect conductor

instead.
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We begin our mathematical description of the model by recalling the Navier-Stokes

equations, which ensure momentum conservation in the liquid [4, 12, 25, 38, 41, 65];

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ ρg sin β, (2.3)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
− ρg cos β. (2.4)

Here u = (u, v) is the velocity in the liquid with u and v denoting the streamwise

and cross-stream velocity components, and p denotes the pressure. We also have the

continuity equation for the liquid

∂u

∂x
+
∂v

∂y
= 0, (2.5)

which ensures mass conservation in the liquid [4, 12, 25, 38, 41, 65]. Having described

the equations governing the dynamics of the liquid itself, we now turn our attention to

the effect of the electric field, and the corresponding governing electric equations. We

begin with the Maxwell equations [12, 69, 70], starting with Gauss’s law

∇ ·D = q, (2.6)

which relates electric volume charge density q and the electric displacement field D.

The time derivative of the electrical displacement is analogous to current, although in-

stead of corresponding to the movement in time of charged particles, it corresponds to

time-variations in the electric field itself, not solely due to the movement of particles.

In this work we shall focus upon uniform electric fields which slightly vary due to the

time evolution of the free surface. We also make use of the relation between the electric

displacement field and the electric field

D1,2 = (1 + χe1,2)ε0E, (2.7)

where D1,2 are the electric displacement fields in the liquid and the gas respectively,

and χe1,2 are the electric susceptibilities for the liquid and the gas respectively, which

we assume to be constant. We also have ε0 as the electrical permittivity of free space,

and the quantities (1 + χe1,2) = κe1,2 are called the dielectric constants. The electrical

permittivities of the liquid and gas mentioned earlier, ε1 and ε2 are given by

ε1,2 = κe1,2ε0. (2.8)
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By substitution of (2.7) into (2.6) we are hence able to obtain a relation for the electric

field in the film and the surrounding air respectively;

∇ ·E =
q

ε1
and ∇ ·E =

q

ε2
. (2.9)

We also have

∇×E = −∂B
∂t

, (2.10)

which is the Maxwell-Faraday equation, where B is the magnetic field. This equation

describes the fact that for a given non-irrotational electric field there is a corresponding

magnetic field the magnitude of which is found to vary in time. We also have Ampere’s

law

∇×H = J +
∂D

∂t
, (2.11)

which relates current density J to the curl of the magnetic field intensityH . The fields

H andB are related through the expression

B = ΛH , (2.12)

where Λ is the permeability of the medium, in this case air. We finally have Gauss’ law

for magnetism

∇ ·B = 0, (2.13)

which states that magnetic fields are solenoidal and equivalently that unlike for electric

fields, the source of magnetic fields are restricted to dipoles instead of monopoles.

We seek to use the so-called electroquasistatic approximation to neglect the effect of the

magnetic field on our system since it is dominated by the electric field in the sense that

the electrical contributions are orders of magnitude greater than the magnetic contribu-

tions. This is mathematically equivalent to setting the right-hand side of (2.10) equal to

zero, and hence if the electroquasistatic approximation is satisfied, we have

∇×E = 0, (2.14)

and subsequently we may define φ1 and φ2 as the electric potentials such that we may

have the following two equations for the electric field;

E1 = −∇φ1, (2.15)

E2 = −∇φ2. (2.16)
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In both the perfect dielectric and perfect conductor cases, we are able to set the electric

volume charge density q = 0 in both the film and the air. Under the electroquasistatic

assumption, the charge density decays to zero in finite time, and the electroquasistatic

assumption is satisfied so long as we have

lk � 1, (2.17)

where k is the wavenumber associated with the electric field and l is the characteristic

length of the system, see, for example, [12, 34, 56, 79]. Exclusive to the strong dielectric

case, we note in practice that the inherent low conductivity of the film means that the

electroquasistatic assumption is verified automatically, as evident from an examination

of the energy ratio of the magnetic field to the electric field as discussed by Zhakin [12].

Physically, the electroquasistatic assumption corresponds to the case where a coupled

electromagnetic wave is heavily electrically dominated, and the magnetic contributions

can be wholly neglected. Equivalently this may be thought of as the electrical energy

being significantly larger than the magnetic energy, and under this assumption then,

substitution of (2.15) and (2.16) into the two equations corresponding to Gauss’s law

(2.9) simply yields Laplace’s equation in the liquid

∇2φ1 = 0, (2.18)

and Laplace’s equation in the air,

∇2φ2 = 0. (2.19)

We note that when treating the film as a perfect conductor, by definition we would

expect there to be no electric field inside the bulk, and hence (2.15) reduces to zero.

In the case of a perfect dielectric, an electric field is to be expected inside the film

instead. Both of these cases are to be represented by a single equation which holds true

for perfect dielectrics when we have finite εp, and for perfect conductors in the limit

of εp → ∞. The boundary conditions for φ2 are identical for both cases, although

the boundary conditions for φ1 are such that φ1 → 0 within the film as εp → ∞. In

situations where we have sharp topographical features (i.e. steep rectangular troughs

and steps for example), the necessity of finding the electric field within the film for

perfect dielectrics can adversely affect the smoothness of solutions, as demonstrated by

Tseluiko et al. [99, 101].

As the liquid is assumed to be a perfect dielectric, we model the liquid as containing no
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free charges, and being comprised solely of bound charges [69], such that the external

electric field induces polarisation, causing an internal electric field within the liquid.

This internal electric field acts in opposition to the external electric field, and this effect

may be seen in the (1 − 1
εp

) coefficient which multiplies the term corresponding to the

electric field, as we shall see later. A perfect dielectric corresponds to any finite value

of εp, whereas the perfect conductor case is obtained in the limit of εp → ∞, and as

such it is clear to see that qualitatively the perfect dielectric case is somewhat similar to

the perfect conductor case albeit with a weaker electric field (for cases where εp > 1),

although this is not strictly true since, as we shall see, the topography introduces an

additional (1− 1
εp

) term which cannot be factored into the electric Weber number term.

We also note the qualitative difference for cases where εp < 1 in the literature (see, for

example, Tseluiko et al. [101]), although this is not considered here.

2.2 Boundary conditions

We now discuss the boundary conditions corresponding to the physical scenario under

consideration. As is typical for liquids, we impose no-slip and no-penetration conditions

that apply at a solid impermeable boundary;

u = v = 0 on y = s(x). (2.20)

At the free surface, we have the kinematic condition – a formulation of the imposition

that a particle on the free surface of the film y = f(x, t), shall remain on the free surface

independent of time. This condition is given by the following equation

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
= 0. (2.21)

Another important condition to consider is the dynamic balance of stress on the free sur-

face, and it is this dynamic balance of stress through which the electric field affects the

liquid under consideration, specifically through the normal component. The equation

for the dynamic balance of stress is given as

n̂ · σ = γκn̂− pan̂+ n̂ · (M2 −M1), (2.22)

where we define the following variables: firstly we have pa as the atmospheric pressure,

or equivalently the pressure in Region 2, and define n̂ to be the normal vector to the
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free surface, which is pointing into the liquid. We also note that γ is the surface tension

coefficient, and κ is the curvature of the free surface and is defined as

κ = ∇ · n̂, (2.23)

and hence the curvature is negative when the free surface is concave up. In addition, for

an incompressible fluid we can define the Newtonian stress tensor σ as

σ = −pδ+2µS, (2.24)

where δ is the identity tensor, and the strain-rate tensor S is defined as

S =
1

2
((∇u)T +∇u). (2.25)

The only terms left to define are the Maxwell stress tensors for the liquid and air, M1

and M2, respectively, which correspond to the electric force exerted on the liquid and

air phases [79] and are given by

M1 = ε1E1E1 −
ε1
2
|E1|2δ, (2.26)

M2 = ε2E2E2 −
ε2
2
|E2|2δ. (2.27)

Due to continuity of the electric potential and the normal component of the electric

displacement across the free surface y = f(x, t), we also have the conditions

φ1 = φ2 on y = f(x, t), (2.28)

ε1 (n̂ · ∇φ1) = ε2 (n̂ · ∇φ2) on y = f(x, t) (2.29)

We now note the final conditions for the electric potentials corresponding to the physics

of the situation, i.e. constant (or zero, without loss of generality) electric potential at

the wall, and the uniform electric field conditions as y →∞;

φ1 = 0 on y = s(x), (2.30)

∂φ2

∂x
→ 0 as y →∞, (2.31)

∂φ2

∂y
→ −E0 as y →∞. (2.32)
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2.2.1 Tangential stress balance

We now examine the tangential component of the dynamic balance of stress given in

(2.22). By considering the tangential components on each side, we obtain

n̂ · σ · t̂ = γκn̂ · t̂− pan̂ · t̂+ n̂ · (M2−M1) · t̂, (2.33)

where t̂ is the tangent vector to the free surface. As n̂ · t̂ = 0 is trivially known, we

subsequently see that

γκn̂ · t̂ = 0 and pan̂ · t̂ = 0. (2.34)

It can also be shown that

n̂ · (M2−M1) · t̂ = 0, (2.35)

and hence we see that

n̂ · σ · t̂ = 0. (2.36)

From (2.24) we see that

n̂ · σ · t̂ = −pn̂ · δ · t̂+ 2µn̂ · S · t̂. (2.37)

If we then recall the definition of the Newtonian stress tensor given in (2.24) and write

2µS in matrix form as

2µS =

[
2ux vx + uy

vx + uy 2vy

]
µ, (2.38)

then since pn̂ · δ · t̂ = 0, the tangential stress balance condition becomes

n̂ · S · t̂ = 0. (2.39)

We then write the normal and tangential unit vectors explicitly as

t̂ =
1√

1 + f 2
x

(
1

fx

)
, (2.40)

n̂ =
1√

1 + f 2
x

(
fx

−1

)
. (2.41)
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Hence through substitution of n̂, t̂ and S into equation (2.39) we obtain the result

2n̂ · S · t̂ =
1

1 + f 2
x

(
fx −1

)( 2ux vx + uy

vx + uy 2vy

)(
1

fx

)
= 0. (2.42)

By rearranging equation (2.42), the equation for the tangential stress balance reduces to

2fx(ux − vy) + (vx + uy)(f
2
x − 1) = 0 on y = f(x, t). (2.43)

It can be seen that the contributions from the normal electric field do not appear in the

tangential stress balance equation (2.43), which is consistent with the literature [13, 99,

104], and the entirety of the electric field acts solely through the normal component of

the stress balance on the free surface.

2.2.2 Normal stress balance

Similarly to the previous section, we reexamine the dynamic balance of stress given in

(2.22), although now we consider the normal components on both sides of the equation.

Such consideration gives us

n̂ · σ · n̂ = γκn̂ · n̂− pan̂ · n̂+ n̂ · (M2−M1) · n̂. (2.44)

Using that n̂ · n̂ = 1 allows for simplification to the form

n̂ · σ · n̂ = γκ−pa + n̂ · (M2−M1) · n̂. (2.45)

As we expressed σ explicitly previously, we know that the normal component of the

definition of the Newtonian stress tensor is given by

n̂ · σ · n̂ = −pn̂ · δ · n̂+ 2µn̂ · S · n̂. (2.46)

We once again make use of the fact that n̂ · n̂ = 1, such that we may write −pn̂ · δ · n̂
simply as −p. Thus upon substitution of the normal component of the definition of the

Newtonian stress tensor into (2.45), we obtain

− p+ 2µn̂ · S · n̂ = γκ−pa + n̂ · (M2−M1) · n̂, (2.47)
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where n̂ · S · n̂ is expressed as

n̂ · S · n̂ =
1

(1 + f 2
x)

(
fx −1

)( ux
1
2
(vx + uy)

1
2
(vx + uy) vy

)(
fx

−1

)
. (2.48)

Using the definitions of the Maxwell stress tensors,M1 andM2, and upon dotting from

either side with the normal unit vector, we obtain

n̂ ·M1 · n̂ = ε1 · n̂ ·E1E1 · n̂−
ε1
2
n̂ · |E1|2 · n̂, (2.49)

n̂ ·M2 · n̂ = ε2 · n̂ ·E2E2 · n̂−
ε2
2
n̂ · |E2|2 · n̂. (2.50)

Using additionally that

E1E1 =

(
φ2
1x φ1xφ1y

φ1xφ1y φ2
1y

)
, (2.51)

E2E2 =

(
φ2
2x φ2xφ2y

φ2xφ2y φ2
2y

)
, (2.52)

and upon substitution into (2.47), we obtain the normal stress balance equation

−p+
2µ

1 + fx2
[
fx

2ux − fx(vx + uy) + vy
]

=
γfxx

(1 + fx2)3/2
− pa +

ε2
1 + fx2

[fxφ2x − φ2y]
2 − ε2

2

[
φ2
2x + φ2

2y

]
− ε1

1 + fx2
[fxφ1x − φ1y]

2 +
ε1
2

[
φ2
1x + φ2

1y

]
on y = f(x, t). (2.53)

2.3 Nondimensionalisation

As we nondimensionalise our equations, we introduce the ∗ notation to indicate that a

quantinity is dimensionless. We begin to nondimensionalise our equations through the

following substitutions

x∗ =
x

h0
, y∗ =

y

h0
, f ∗ =

f

h0
, s∗ =

s

h0
, t∗ =

tu0
h0
, u∗ =

u

u0
, v∗ =

v

u0
,

p∗ =
h0
µu0

p,
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φ∗1,2 =
φ1,2

E0h0
,

where u0 is the Nusselt surface speed for the case of a flat wall in the absence of the

electric field given by

u0 =
ρgh20 sin β

2µ
.

We also note that use has been made of h0, which is defined to be the Nusselt flat film

thickness. We may then nondimensionalise the Navier-Stokes equations as follows;

R(u∗t∗ + u∗u∗x∗ + v∗u∗y∗) = −p∗x∗ + u∗x∗x∗ + u∗y∗y∗ + 2, (2.54)

R(v∗t∗ + u∗v∗x∗ + v∗v∗y∗) = −p∗y∗ + v∗x∗x∗ + v∗y∗y∗ − 2 cot β. (2.55)

We may now begin collecting dimensionless quantities, and using dimensionless num-

bers. In the above equations, use has already been made of the Reynolds number, de-

fined qualitatively as the ratio of inertia to viscosity, and mathematically by the relation

R =
ρh0u0
µ

. (2.56)

We also introduce the capillary number, a measure of the relative importance of viscos-

ity to surface tension, and defined as

C =
µu0
γ
, (2.57)

which may be equivalently written in the form

C =
R2/3 sin1/3 β

21/3K
, (2.58)

where use has been made of K, the Kapitza number, a dimensionless ratio of surface

tension to inertial forces, which is constant for a given material at a given temperature,

and is defined explicitly through the equation

K =
γρ1/3

g1/3µ4/3
, (2.59)

such that for water at room temperature the Kapitza number is a constant which takes a

value of approximately 3364.5. Finally, we define the electric Weber number, a measure

of the strength of the electric field under consideration relative to viscous forces, which
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is defined as

We =
ε2E

2
0h0

2µu0
. (2.60)

Using the aforementioned substitutions, upon non-dimensionalisation the continuity

equation takes the form

u∗x∗ + v∗y∗ = 0, (2.61)

i.e. it remains unchanged, due to ux and vy having the same scaling and dimensions, at

least before we make our long-wave assumption. We also consider the dimensionless

boundary conditions. The no-slip condition and the no-penetration condition reduce

respectively to

u∗ = 0 on y∗ = s∗(x∗), (2.62)

v∗ = 0 on y∗ = s∗(x∗). (2.63)

The kinematic condition takes the form

f ∗t∗ + u∗f ∗x∗ + v∗f ∗y∗ = 0 on y∗ = f ∗(x∗, t∗). (2.64)

The dimensionless tangential stress balance and normal stress balance equations at the

free surface, y∗ = f ∗(x∗, t∗), are respectively reduced to

2f ∗x∗(u∗x∗ − v∗y∗) + (v∗x∗ + u∗y∗)(f ∗x∗
2−1) = 0, (2.65)

− p∗ +
2

1 + f ∗x∗
2

[
f ∗x∗

2u∗x∗ − f ∗x∗(v∗x∗ + u∗y∗) + v∗y∗
]

=
f ∗x∗x∗

C(1 + f ∗x∗
2)

3
2

− p∗a + 2We

(
[f ∗x∗φ

∗
2x∗ − φ∗2y∗ ]2

1 + f ∗x∗
2

− 1

2

[
φ∗2x∗

2 + φ∗2y∗
2
])

−2Weεp

(
[f ∗x∗φ

∗
1x∗ − φ∗1y∗ ]2

1 + f ∗x∗
2

− 1

2

[
φ∗1x∗

2 + φ∗1y∗
2
])
. (2.66)

The dimensionless equations for the electric field are as follows;

φ∗1x∗x∗ + φ∗1y∗y∗ = 0 for f ∗(x∗, t∗) > y∗ > s∗(x∗), (2.67)

φ∗2x∗x∗ + φ∗2y∗y∗ = 0 for y∗ > f ∗(x∗, t∗). (2.68)

We additionally have the following dimensionless boundary conditions for the electric

potentials;

φ∗1 = φ∗2 on y∗ = f ∗(x∗, t∗), (2.69)
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εp
(
f ∗x∗φ

∗
1x∗ − φ∗1y∗

)
=
(
f ∗x∗φ

∗
2x∗ − φ∗2y∗

)
on y∗ = f ∗(x∗, t∗), (2.70)

φ∗2x∗ → 0 as y∗ →∞, (2.71)

φ∗2y∗ → −1 as y∗ →∞, (2.72)

φ∗1 = 0 on y∗ = s∗(x∗). (2.73)

For brevity the ∗ notation shall now be neglected, and it is to be implicity assumed from

this section onwards that the variables are nondimensional.

2.4 Modelling assumptions

2.4.1 Hierarchy of models

Here we discuss the benefits and drawbacks of models based on the long-wave assump-

tion and the integral boundary layer approximation as well as the ranges of validity of

such models.

One of the most well-known evolution equations for the local film thickness is the so-

called Benney equation, first derived by Benney [6] in 1966. Although this model has

some success close to criticality, we observe blowup in finite-time in the region of mod-

erate Reynolds numbers [37, 68] and this nonphysical blowup phenomenon is still ob-

served even if we increase the order of our gradient expansion [75]. There are methods

for dealing with this finite-time blowup behaviour, however. Ooshida [60] has shown

that it can be removed via the use of Padé approximants close to criticality. Despite

this improvement over the original Benney equation, undesirable behaviour is still ob-

served further away from criticality. Another alternative to the Benney equation is the

Kuramoto-Sivashinsky equation, which is derived by taking the limit of small amplitude

modulations [14, 75]. We note that the Benney equation, the Kuramoto-Sivashinsky

equation and the Korteweg-de Vries (KdV) equation are all closely related, such that

we can create solutions to the generalised Benney equation by taking linear combina-

tions of solutions to the generalised Kuramoto-Sivashinsky equation and solutions to the

generalised KdV equation [115]. Joo, Davis and Bankoff [37] found that the Kuramoto-

Sivashinsky equation inaccurately modelled wave profiles for long-wave instabilities of

viscous thin films flowing down inclines through comparison with numerical results for

the full long-wave equation.
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The integral boundary layer (IBL) model was produced by Shkadov [83] in 1967, and

although it does not suffer the finite-time blow-up observed in Benney’s equation, and

it accurately models nonlinear waves when we are far from criticality, it is known to un-

derestimate the onset of instability and inaccurately predict the critical Reynolds num-

ber, and does not include terms relating to viscous dispersion. When comparing long-

wave-type equations to IBL equations and solving the full Navier-Stokes equations via

a finite element method, Salamon, Armstrong and Brown [77] found that the long-wave

results qualitatively diverged from the other calculations for large-amplitude travelling

waves down an inclined flat wall. In 2000, Ruyer-Quil and Manneville [75] proposed an

improvement to the IBL equations which allowed for the correct determination of the

onset of instability, and produced the weighted-residual integral boundary layer equa-

tions, also known as the WIBL equations. These equations are generally characterised

by two coupled, nonlinear equations for local flow rate and film thickness, in addition to

weighted-residuals techniques and gradient expansions [80]. The modelling approach

also makes use of Prandtl’s elimination of cross-stream momentum equation typical in

aerodynamics, such that we are no longer constrained by our cross-stream dependence

[81].

Since the inception of the WIBL model, it has shown good agreements with experiments

and direct numerical simulations in a wide variety of contexts; see, for example, Pradas,

Kalliadasis and Tseluiko [66], Vellingiri, Tseluiko and Kalliadasis [109] and Rohlfs and

Scheid [73]. The most widespread forms of the WIBL model are the first-order model,

the simplified second-order model, and the full second-order model. The form used in

this work is the first-order model, and whilst generally speaking it is an improvement

over the long-wave model, it still has its drawbacks, however. For example, without

the second-order terms pertaining to viscous dispersion which are found in the sim-

plified second-order and full second-order models, the first-order model overestimates

the amplitudes of capillary ripples ahead of solitary pulses, as discussed by Ruyer-Quil

and Manneville [75] in addition to Pradas, Tseluiko and Kalliadasis [66, 67] and cor-

roborated by their numerical computations. The terms themselves are a result of the

tangential stress balance condition in addition to the streamwise momentum equation,

and the corrections to these terms are absent in the simplified second-order model but

present in the full four-equation second-order model.

The viscous dispersion terms are also responsible for the accurate modelling of the

fluid at moderately-high Reynolds numbers; comparisons to the experiments of Liu,
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Paul and Gollub [52] by Ruyer-Quil and Manneville yielded the result that the simpli-

fied second-order model closely followed the experimental results up to approximately

R = 100, whereas in the full second-order model we instead see close agreement up

until Reynolds numbers of approximately R = 200. In the original work by Ruyer-Quil

and Manneville [75], the agreement between the first-order and second-order models

appears excellent in the range R . 5 for the amplitude of one-hump solitary waves

down a vertical plate. The Reynolds numbers focused upon in this work range between

R = 1 and R = 30, with R = 1.25 corresponding to criticality in many cases, and as

such the reduced complexity of the equations corresponding to the first-order model is

highly desirable. The first-order model can be obtained either by deriving the simpli-

fied second-order (or full second-order) WIBL model and then neglecting the viscous

dispersion terms (and their corrections for the full second-order model), or by deriv-

ing boundary layer equations and then integrating via, say, the Galerkin method [73],

as is the case here. Ruyer-Quil and Manneville [76] gave an overview of the various

weighted-residual approaches, and found that the Galerkin technique was generally the

most optimal in the sense that it converges in the fewest number of weight functions. In

the Galerkin methodology for both the first-order and simplified second-order models,

the weight functions are chosen to be identical to the basis functions, and convergence

to the typical equations is achieved even if we truncate the number of weight functions

such that we only have a single term [74, 76].

2.4.2 Long-wave assumption

As the dimensionless Navier-Stokes equations, along with the various boundary condi-

tions, are highly non-trivial to solve numerically, a number of assumptions regarding the

model are required to reduce the equations to a more amenable form for numerical and

analytical treatment. This step is a prerequisite for both the leading-order and first-order

modelling approaches, as well as the WIBL modelling approach.

We begin by assuming slow variations in the streamwise direction, which is longer than

the mean film thickness h0. A rigorous justification may be found in many papers, but

naively, this is justified by assuming (consistent with theory and experimental observa-

tions) that the time evolution of the surface dynamics of our falling film is governed

primarily by long-wave modes (waves for which the variations in x and t are slow com-

pared to the variations in y) [41].
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The mathematical representation of this assumption is given by(
∂

∂t
,
∂

∂x
,
∂2

∂x2

)
7→
(
δ
∂

∂t
, δ

∂

∂x
, δ2

∂2

∂x2

)
, (2.74)

where δ is a small ordering parameter which is often called the thin-film parameter, and

is defined as the ratio of the film thickness h0 to the typical wave length λ. This is then

simply a consequence of our long-wave assumption, as the scaling is a formulation of

the imposition of slow variations in time and in the streamwise direction. We therefore

correspondingly rescale the problem by changing the variables in the liquid film. The

rescaling is as follows;

ξ = δx,

τ = δt.

The capillary number, C, and the electric Weber number, We, are rescaled in order to

keep surface tension and electric field effects in the resulting models (as will be seen

later);

C = δ2C ′,

We =
We
′

δ
,

It is imperative to note that our continuity equation under this assumption then becomes

δuξ + vy = 0, (2.75)

which implies that the cross-stream velocity v must be of O(δ) in order for the con-

servation of mass to be satisfied. Hence our scaling convention implicitly includes the

additional transformation

v = δw, (2.76)

where w = O(1). Implementation of this long-wave scaling, in addition to the afore-

mentioned implicit scaling, then causes the dimensionless Navier-Stokes equations (2.54)

and (2.55) to take the form

δR(uτ + uuξ + wuy) = −δpξ + δ2uξξ + uyy + 2, (2.77)

δ2R(wτ + uwξ + wwy) = −py + δ3wξξ + δwyy − 2 cot β. (2.78)
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The dimensionless continuity equation (2.64), upon making these substitutions, thus

becomes

uξ + wy = 0. (2.79)

Similarly, the normal stress balance and tangential stress balance equations, under this

rescaling, are reduced to the following forms, respectively,

− p+
2

1 + δ2fξ2
[δ3fξ

2uξ − δ3fξwξ + δfξuy + δwy] =
fξξ

C ′(1 + δ2fξ2)
3
2

− pa + 2
We
′

δ

[(δ2fξφ2ξ − φ2y)
2

1 + δ2fξ2
− 1

2
(δ2fξφ

2
2ξ − φ2

2y)
]

− 2
We
′εp
δ

[(δ2fξφ1ξ − φ1y)
2

1 + δ2fξ2
− 1

2
(δ2fξφ

2
1ξ − φ2

1y)
]
, (2.80)

2δ2fξ(uξ − wy) + (δ2wξ + uy)(δ
2f 2
ξ−1) = 0. (2.81)

Whilst it is clear that the normal stress balance equation will reduce considerably when

terms of O(δ) (or only O(δ2) in higher-order models) are neglected, it is useful to

rewrite the electric potential terms in an alternate form. We begin as follows, first recall-

ing the dimensionless equations for the electric field, (2.67) in Region 1 and (2.68) in

Region 2, whilst simultaneously making use of (2.70) and the dimensionless equations

for the the boundary conditions at the wall and at the free surface. As Region 1 and

Region 2 have distinct x and y scales associated with them, it is beneficial to define the

following new variables for x and y. In both Region 1 and Region 2 we introduce

x =
1

δ
ξ, (2.82)

and in Region 2 exclusively we introduce

y =
1

δ
η. (2.83)

Re-examination of (2.67) and (2.68) with this rescaling in mind, leads us to the follow-

ing equations for the electric potentials;

δ2φ1ξξ + φ1yy = 0 for Region 1, (2.84)

φ2ξξ + φ2ηη = 0 for Region 2. (2.85)
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We additionally recall that

φ1 = 0 on y = s(ξ), (2.86)

φ1 = φ2 on y = f(ξ, τ), (2.87)

εp(δ
2fξφ1ξ − φ1y) = δ2fξφ2ξ − δφ2η on y = f(ξ, τ). (2.88)

It is also known that as η→∞ we have

φ2ξ → 0, (2.89)

φ2η → −1. (2.90)

For simplicity, we now introduce the notation

φ2 = φ̃2 − y. (2.91)

The implication of which is that

φ̃2ξξ + φ̃2ηη = 0 for Region 2, (2.92)

and, as is clear from inspection of (2.87),

φ1 = φ̃2 − f on y = f(ξ, τ). (2.93)

Hence we obtain

εp(δ
2fξφ1ξ − φ1y) = δ2fξφ̃2ξ − δφ̃2η + 1 on y = f(ξ, τ). (2.94)

Furthermore, as y →∞ we have

φ̃2ξ → 0, (2.95)

φ̃2η → 0. (2.96)

We now expand φ1 and φ̃2 as follows

φ1 = φ10 + δφ11 + · · · , (2.97)

φ̃2 = φ̃20 + δφ̃21 + · · · . (2.98)
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Then the leading-order problem for φ1 is formulated as

φ10yy = 0

φ10 = 0 on y = s(ξ)

−εpφ10y = 1 on y = f(ξ, τ)

 =⇒ φ10 = − 1

εp
(y − s(ξ)). (2.99)

The first-order problem for φ1 is also required, and can be expressed as

φ11yy = 0

φ11 = 0 on y = s(ξ)

−εpφ11y = −φ̃20η on y = f(ξ, τ)

 =⇒ φ11 =
φ20η

εp
(y − s). (2.100)

For φ̃2, the leading-order problem is given by

φ̃20ξξ + φ̃20ηη = 0, (2.101)

φ̃20 = φ10 + f = − 1

εp
(f − s) + f =

(
1− 1

εp

)
f +

1

εp
s on η = δf. (2.102)

We also have, for η →∞,

φ̃2ξ → 0, (2.103)

φ̃2η → 0. (2.104)

Now, as we know that

φ̃20|η=δf = φ̃20|η=0 + δf(φ̃20ξ|η=0 + φ̃20η|η=0) + · · · , (2.105)

we may rewrite (2.102) in the following form

φ̃20 =
(

1− 1

εp

)
f +

1

εp
s on η = 0. (2.106)

At this point it is convenient to introduce the Hilbert transform, defined as

H[g](ξ) =
1

π
PV

∫ ∞
−∞

g(ξ′)

ξ − ξ′
dξ′, (2.107)

where PV denotes the principal value of the integral. The Hilbert transform is linear

and nonlocal, and later we shall make use of the property that

F
[
H[g]

]
(k) = −i sgn(k)F [g](k), (2.108)
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where F denotes the Fourier transform operator which is defined as

F [f(x)](k) =

∫ ∞
−∞

f(x)e−ikxdx. (2.109)

Following the same methodology as Gonzalez and Castellanos [29] in addition to Tilley,

Petropoulos and Papageorgiou [90], and through use of the Cauchy integral formula, we

are able to express φ̃20η and φ̃20y using the Hilbert transform as

φ̃20η = −H
[(

1− 1

εp

)
fξ +

1

εp
sξ

]
, (2.110)

φ̃20y = −δH
[(

1− 1

εp

)
fξ +

1

εp
sξ

]
, (2.111)

or equivalently

φ̃20η = −H
[(

1− 1

εp

)
hξ + sξ

]
, (2.112)

φ̃20y = −δH
[(

1− 1

εp

)
hξ + sξ

]
. (2.113)

The electric potential terms corresponding to φ̃2 in the normal stress boundary condition

may now be written as

2
We
′

δ

[
(δ2fξφ2ξ − φ2y)

2

(1 + δ2fξ2)
− 1

2
(δ2fξφ

2
2ξ − φ2

2y)

]
= 2

We
′

δ

{[
1 + δH

[(
1− 1

εp

)
hξ + sξ

]]2

− 1

2

[
1 + δH

[(
1− 1

εp

)
hξ + sξ

]]2}
, (2.114)

which reduces to

We
′

δ
+ 2We

′H

[(
1− 1

εp

)
hξ + sξ

]
+O(δ) = 0. (2.115)

Similarly, the electric potential terms corresponding to φ1 may be expressed as

− δ
[(δ2fξφ1ξ − φ1y)

2

1 + δ2fξ2
− 1

2
(δ2fξφ

2
1ξ − φ2

1y)
]

= φ1y
2 − 1

2
φ1y

2, (2.116)
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which, through use of (2.100) and the expansion of φ1, reduces to

− We
′

δεp
+ 2

We
′

εp
H
[(

1− 1

εp

)
hξ + sξ

]
+O(δ) = 0. (2.117)

Thus finally, upon substitution of (2.115) and (2.117) into (2.80), the normal stress

boundary condition takes the form

− p+O(δ) = −pa +
1

C ′
fξξ +

We
′

δ

(
1− 1

εp

)
+ 2We

′
(

1− 1

εp

)
H
[(

1− 1

εp

)
hξ + sξ

]
+O(δ). (2.118)

For brevity, terms of O(δ) are not expressed fully, due to the knowledge that even for

first-order models, during later work all terms in the equation are multiplied by δ.

2.5 Leading-order and first-order equations

The leading-order and first-order equations are derived though expanding the flow vari-

ables, using the following asymptotic expansions

u = u0 + δu1 + · · · , (2.119)

w = w0 + δw1 + · · · , (2.120)

p = p0 + δp1 + · · · , (2.121)

φ1 = φ10 + δφ11 + · · · , (2.122)

φ2 = φ20 + δφ21 + · · · . (2.123)

2.5.1 Leading-order

The leading-order equations are derived through direct substitution of the expanded flow

variables into the dimensionless equations of the model, neglecting terms of O(δ) and

higher. The Navier-Stokes equations, (2.77) and (2.78), at leading-order, hence take the

form

u0yy + 2 = 0, (2.124)

− p0y − 2 cot β = 0. (2.125)
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For the continuity equation at leading-order, we have

u0ξ + w0y = 0, (2.126)

and at leading-order we have the following boundary conditions:

No-slip and no-penetration boundary conditions;

u0 = w0 = 0 on y = s(ξ), (2.127)

the tangential stress boundary condition;

u0y = 0 on y = f(ξ, τ), (2.128)

and the normal stress boundary condition;

p0 = pa −
We
′

δ

(
1− 1

εp

)
− fξξ
C ′

− 2We
′
(

1− 1

εp

)
H
[(

1− 1

εp

)
fξ +

1

εp
sξ

]
on y = f(ξ, τ). (2.129)

Note that the kinematic boundary condition will be considered later.

2.5.2 First-order

Analogously to the derivation of the leading-order equations, the first-order equations

are obtained through substitution of the asymptotic expansions, albeit with additional

terms corresponding to the higher order. The first-order Navier-Stokes equations are

hence given by

R(u0τ + u0u0ξ + w0u0y) = −p0ξ + u1yy, (2.130)

0 = −p1y + w0yy. (2.131)

The first-order continuity equation, follows from (2.79) and may be written as

u1y + w1y = 0. (2.132)

We similarly obtain the first-order boundary conditions at the wall

u1 = w1 = 0 on y = s(ξ), (2.133)
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and the tangential stress balance at the free surface

u1y = 0 on y = f(ξ, τ). (2.134)

The first-order normal stress boundary condition will not be used and hence is not given

here.

2.5.3 Long-wave equation

As we wish to find the long-wave equation for film thickness, we note that the leading-

order equations can be solved through integration with respect to y. Integrating (2.124)

with respect to y yields

u0y = −2y + c1, (2.135)

where c1 = c1(ξ, τ). In order to determine c1, we seek to make use of the tangential

stress balance equation u0y = 0 on y = f(ξ, τ), and thereby obtain

− 2f + c1 = 0, (2.136)

and hence

u0y = −2y + 2f = 2(f − y). (2.137)

Once again, we integrate with respect to y, and get

u0 = −y2 + 2fy + c2, (2.138)

where c2 = c2(ξ, τ). We now use the no-slip boundary condition at the wall, u0 = 0 on

y = s(ξ), to find c2

− s2 + 2fs+ c2 = 0, =⇒ c2 = s2 − 2fs, (2.139)

and hence we obtain the equation

u0 = −y2 + 2fy + s2 − 2fs. (2.140)

At leading-order, the continuity equation relates u0ξ and w0y directly, and hence it can

be deduced that

w0y = −u0ξ = 2fξy + 2ssξ − 2fξs− 2fsξ, (2.141)
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Once again, integration leads us to

w0 = fξy
2 + (2ssξ − 2fξs− 2fsξ)y + c3, (2.142)

where c3 = c3(ξ, τ). Again, as we wish to determine c3, we are required to use one

of our boundary conditions. In this case we use the no-penetration boundary condition

at the wall, w0 = 0 on y = s(ξ). Determination of c3 leads us to the equation for w0,

which takes the form

w0 = fξy
2 + (2ssξ − 2fξs− 2fsξ)y − fξs2 − (2ssξ − 2fξs− 2fsξ)s. (2.143)

We then integrate our leading-order pressure expression (2.125) with respect to y, and

apply our leading-order normal stress boundary condition (2.129), such that we obtain

p0 = pa + 2 cot β(f − y)− 1

C ′
fξξ

− 2We
′
(

1− 1

εp

)
H
[(

1− 1

εp

)
fξ +

1

εp
sξ

]
− 1

δ
We
′
(

1− 1

εp

)
. (2.144)

In order to determine u1, it is required to integrate u1yy twice with respect to y, where

we recall that u1yy was previously used in (2.130). Hence, upon making use of the

condition that u1y = 0 on y = f(ξ, t), in addition to the previously defined terms u0,

w0 and p0, we obtain

u1y = (s+ h)ξξξ

(
(s+ h)

C ′
− C ′y

)
+ 2 cot β (s+ h)ξ (y − s− h) + hτR (s− y)2

+2We
′(1− 1

εp
)H
[(

1− 1

εp

)
fξξ +

1

εp
sξξ

]
+ (s+ y − h) + 2hhξys (s− y) . (2.145)

Upon another integration, and upon making use of the no-slip boundary condition on

the wall, we obtain the equation for u1 as

u1 =
1

C ′

[
(s+ h)ξξξ

(
−1

2

(
s2 − y2

))
+ h (y − s)

]
+We

′
(

1− 1

εp

)
H
[(

1− 1

εp

)
fξξ +

1

εp
sξξ

]
+
(
− (y − s)2 + 2hy − hs

)
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+hhξR

[
2

3
h3 (s− y) +

1

6
y3 (1− 4s) +

1

6

(
s2 + 6y2 − 4sy

)]
+ cot β (h+ s)ξ

[
(y − s)2 − 2y (s+ h)

]
+hτR

[
1

3

(
y3 − s3

)
+ h2 (s− y) + ys (y − s)

]
. (2.146)

We now seek to use the newly-derived streamwise velocity at first-order to determine

the streamwise flow rate q(ξ, τ), which is defined through the relation

q(ξ, τ) =

∫ f(ξ,τ)

s(ξ)

u(ξ, y, τ)dy. (2.147)

Substitution of our previously defined asymptotic expansion and integration then yields

the following result

q =
2

3
h3 +

8δR

15
h6hξ −

2δ cot β

3
h3 (s+ h)ξ +

δ

3C ′
h3 (s+ h)ξξξ

+
2δWe

′

3
h3
(

1− 1

εp

)
H
[(

1− 1

εp

)
hξξ + sξξ

]
+O(δ2). (2.148)

Now, by making use of the alternative form of the kinematic condition,

hτ + qξ = 0, (2.149)

we can formulate a non-linear equation for the film thickness, which we may express as

hτ+

[
2

3
h3 +

8δR

15
h6hξ −

2δ cot β

3
h3(s+ h)ξ

+
2δWe

′

3

(
1− 1

εp

)
h3H

[(
1− 1

εp

)
hξξ + sξξ

]
+

δ

3C ′
h3(s+ h)ξξξ

]
ξ

= 0. (2.150)

Upon scaling back to t and x, we finally obtain the equation

ht+

[
2

3
h3 +

8R

15
h6hx −

2 cot β

3
h3(s+ h)x

+
2We

3

(
1− 1

εp

)
h3H

[(
1− 1

εp

)
hxx + sxx

]
+

1

3C
h3(s+ h)xxx

]
x

= 0. (2.151)

Base states are obtained as steady-state solutions of the latter evolution equation. In

the case of a local equation, i.e. when We = 0, such solutions can be obtained in a

rather straight-forward way using the continuation and bifurcation software Auto-07p

[24]. To do this, we need to rewrite the ODE for steady states as an autonomous system
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of first-order ODEs. We thus introduce a new set of variables:

y1 = h, (2.152)

y2 = hx, (2.153)

y3 = hxx, (2.154)

y4 = x/(2Lc), (2.155)

where Lc = 2L is the half-period of the computational domain (it must be an integer

multiple of the half-period of the wall, L). Hence, 2Lc is the period of the computational

domain and the steady-state solution is 2L-periodic. A comparative analysis and in-

depth explanation of the choice of the half-period of the computational domain is given

by Tseluiko, Blyth and Papageorgiou [98]. We begin by rearranging (2.151) for hxxx,

using that ht = 0 for steady solutions, and upon integrating we obtain

hxxx =
3C

h3

(
q − 2

3
h3 − 8R

15
h6hx +

2 cot β

3
h3(s+ h)x

)
− sxxx (2.156)

We now take the derivatives of equations (2.152) through (2.155) with respect to y4, and

obtain the following autonomous differential equation system

y′1 = 2Lcy2, (2.157)

y′2 = 2Lcy3, (2.158)

y′3 =
6LcC

y31

(
q − 2

3
y31 −

8R

15
y61y2 +

2 cot β

3
y31

( s′

2Lc
+ y2

))
− s′′′

(2Lc)2
. (2.159)

y′4 = 1, (2.160)

where we have rewritten sx and sxxx in terms of y4, using the notation where a dash

corresponds to derivatives taken with respect to y4. We remind the reader that sinusoidal

and rectangular wall topographies are given by

s(x) = A cos
(πx
L

)
, (2.161)

and

s(x) = A tanh

(
cos(πx

L
)

d

)
, (2.162)

respectively. We thus have

s′ = −2πA sin(2πy4), (2.163)

s′′′ = (2π)3A sin(2πy4), (2.164)
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in the sinusoidal wall case and

s′ = −
2Aπ sin(2πy4) sech2

(
cos(2πy4)

d

)
Ld

, (2.165)

in the rectangular wall case, with the third derivative being excluded for brevity. Our

equation system (2.157)-(2.160) can hence be solved using continuation software pro-

vided we choose an appropriate constraint, such as the integral volume constraint or the

fixed flux constraint. The integral volume constraint imposes that the volume of the liq-

uid in one period of the computational domain is fixed so that the mean film thickness

is unity. Mathematically, this is represented by
∫ 1

0
y1dy4 = 1. In this regime, since we

have a steady solution (i.e. the fluid is not moving), we have q(x, t) = q0 where q0 is a

constant which is found as part of the solution. This is the regime which we use in prac-

tice throughout this thesis. An alternative to the fixed volume constraint is the fixed flux

constraint. In this case, we assume that the flow rate is given by q(x, t) = q0 = 2/3, and

then proceed as before. In either case, we then have our periodic boundary conditions

y1(0) = y1(2Lc), (2.166)

y2(0) = y2(2Lc), (2.167)

y3(0) = y3(2Lc), (2.168)

y4(0) = y4(2Lc), (2.169)

which we may use to solve for steady-state solutions.

2.6 First-order boundary layer equations

In order to obtain the first-order boundary layer equations, we start from the non-

dimensionalised equations after the long-wave assumption, (2.77) and (2.78):

δR(uτ + uuξ + wuy) = −δpξ + uyy + 2, (2.170)

0 = −py + δwyy − 2 cot β, (2.171)

where terms of O(δ2) have been neglected for our first-order model. We additionally

have the corresponding boundary conditions. The tangential stress boundary condition
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is simply given by

uy = 0. (2.172)

The normal stress boundary condition on the free surface does not reduce to such a

simple form, and instead becomes

−p = −pa +
1

C ′
fξξ +

We
′

δ

(
1− 1

εp

)
+2We

′
(

1− 1

εp

)
H
[(

1− 1

εp

)
hξ + sξ

]
+O(δ). (2.173)

It is clear that (2.171) can be integrated with respect to y in order to obtain an equation

for the pressure, which gives

p = δwy − 2y cot(β) + g(ξ, τ), (2.174)

where g(ξ, τ) is some function of ξ and τ to be determined from the normal stress

boundary condition. Indeed, substituting (2.174) into the normal stress boundary con-

dition (2.173) and setting y = f(ξ, t) gives, upon resubstitution, our expression for the

pressure p as

p = pa + 2 cot β(f − y)− 1

C ′
fξξ − 2We

′
(

1− 1

εp

)
H
[(

1− 1

εp

)
fξ +

1

εp
sξ

]
− 1

δ
We
′
(

1− 1

εp

)
. (2.175)

It is apparent that when we take the partial derivative of (2.175) with respect to ξ, many

constant terms will vanish. Furthermore due to the additional δ in (2.170) prefacing the

pξ term, any O(δ) terms will become O(δ2), and hence neglectable for our first-order

boundary layer model, retrospectively justifying our choice not to fully specify theO(δ)

terms in the pressure equation. We then obtain

pξ = 2fξ cot β − 1

C ′
fξξξ − 2We

′
(

1− 1

εp

)
H
[(

1− 1

εp

)
fξξ +

1

εp
sξξ

]
, (2.176)

where use has been made of the property of the Hilbert transform that d
dξ
H[f(ξ)] =

H[ d
dξ
f(ξ)]. Finally, upon substitution into the ξ-component of the Navier-Stokes equa-

tion, we obtain
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δR(uτ + uuξ + wuy) = −2δfξ cot β +
δ

C ′
fξξξ

+ 2δWe
′
(

1− 1

εp

)
H
[(

1− 1

εp

)
fξξ +

1

εp
sξξ

]
+ uyy + 2, (2.177)

which, in addition to the continuity equation

uξ + wy = 0, (2.178)

and the boundary conditions

u = w = 0 on y = s(ξ), (2.179)

fτ + ufξ + wfy = 0 on y = f(ξ, τ), (2.180)

forms the first-order boundary layer equations.

2.6.1 Integral boundary layer approximation

Next, we introduce the integral boundary layer approximation. First, we assume that

the streamwise velocity profile u may be written as a linear combination of polynomial

functions of y. For simplicity, we seek a form of the streamwise velocity for which the

no-slip boundary condition is identically satisfied, and for which y = f(ξ, τ) causes the

polynomial term to reduce to 1. The form of the polynomial can thus be deduced as

taking the form

u(ξ, y, τ) =
N∑
i=1

ai

(
y − s(ξ)

f(ξ, τ)− s(ξ)

)i
. (2.181)

We then use the definition of streamwise flow rate

q =

∫ f(ξ,τ)

s(ξ)

u(ξ, y, τ)dy, (2.182)

as well as our tangential stress boundary condition (2.172)

uy(ξ, f(ξ, τ), τ) = 0, (2.183)
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to solve for a1 and a2 through simple substitution of our polynomial approximation to

the velocity given in (2.181);

uy(ξ, f(ξ, τ), τ) = 0 =⇒ a1 = −2a2 −
N∑
i=3

iai, (2.184)

∫ f(ξ,τ)

s(ξ)

u(ξ, y, τ)dy = q =⇒ a1 =
2q

f(ξ, τ)− s(ξ)
− 2a2

3
−2

N∑
i=3

ai
i+ 1

. (2.185)

These equations can then be solved to give

a1 =
3q

f(ξ, τ)− s(ξ)
+

N∑
i=3

ai

( i
2
− 3

i+ 1

)
, (2.186)

a2 =
−3q

2(f(ξ, τ)− s(ξ))
+

N∑
i=3

ai

( 3

2(i+ 1)
− 3i

4

)
. (2.187)

From this point it is convenient to introduce the variable

η =
y − s(ξ)

f(ξ, τ)− s(ξ)
, (2.188)

and thus we are able to rewrite the streamwise velocity u(ξ, y, τ) in the following form

u = a1η + a2η
2 +

N∑
i=3

aiη
i. (2.189)

Upon substitution of (2.186) and (2.187) into (2.189), we obtain

u =
3q

f(ξ, τ)− s(ξ)

(
η − η2

2

)
+

N−1∑
i=2

ai+1

[
η

(
i+ 1

2
− 3

i+ 2

)
+ η2

(
3

2(i+ 2)
− 3(i+ 1)

4

)
+ ηi+1

]
, (2.190)

which, after labelling the first term on the right-hand side as u(0), becomes

u(ξ, y, τ) =u(0) +
N−1∑
i=2

ai+1

[
η

(
i+ 1

2
− 3

i+ 2

)
+ η2

(
3

2(i+ 2)
− 3(i+ 1)

4

)
+ ηi+1

]
. (2.191)
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A more compact form of this equation can be formulated as

u =
N−1∑
i=1

biφi(η), (2.192)

where φ1(η) = u(0) given previously, and b1 = 1. For the Galerkin method, it is

sufficient to take N = 2, such that our streamwise velocity u is solely approximated by

the u(0) term. This may seem a great simplification, however, it is known that close to

criticality, this assumption is valid for the free-falling film model focused upon in this

paper. Following the methodology of Galerkin, we then substitute this expression for

the velocity into the residual of (2.177), which then takes the following form

R = δR(uτ
(0) + u(0)u

(0)
ξ + w(0)u(0)y ) + 2δfξ cot β − δ

C ′
fξξξ

+ 2δWe
′(1− 1

εp
)H
[(

1− 1

εp

)
fξξ +

1

εp
sξξ

]
− u(0)yy − 2, (2.193)

To obtain w(0), we use the continuity equation:

w(0) = −
∫ y

s

u(0)x dy. (2.194)

We then impose orthogonality between this residual (2.193) and a weight function w1,

which for our system is given by φ1 = 3q(η − η2

2
)/(f − s), such that

∫ 1

0

{(
δR(uτ

(0) + u(0)u
(0)
ξ + w(0)u(0)y ) + 2δfξ cot β − δ

C ′
fξξξ

+ 2δWe
′(1− 1

εp
)H
[(

1− 1

εp

)
fξξ +

1

εp
sξξ

]
− u(0)yy − 2

)
×
(

3q

f − s

)(
η − η2

2

)}
dη = 0, (2.195)

where we use that dη = d((y − s)/(f − s)) = dy/(f − s) in order to simplify the

integration. Upon solving for qt, we obtain the following differential equation

qτ = −5 cot β

3R
h(hξ + sξ) +

5We
′

3R

(
1− 1

εp

)
hH

[(
1− 1

εp

)
hξξ + sξξ

]
+

9hξq
2

7h2
− 17qqξ

7h
+

5

6C ′R
h(hξξξ + sξξξ) +

5h

3δR
− 5q

2δRh2
. (2.196)

As we wish to obtain an equation which does not contain any f(ξ, τ) terms, and is
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expressed solely in terms of the streamwise flow rate and the film thickness, we have

simply used the definition of the film thickness h(ξ, τ) and the known function describ-

ing the topography, s(ξ), to eliminate f(ξ, τ) from the equation. Scaling our variables

back to x and t, our equation becomes

qt = −5 cot β

3R
h(hx + sx) +

5We

3R

(
1− 1

εp

)
hH

[(
1− 1

εp

)
hxx + sxx

]
+

9hxq
2

7h2
− 17qqx

7h
+

5

6CR
h(hxxx + sxxx) +

5h

3R
− 5q

2Rh2
. (2.197)

Finally, this, in addition to the kinematic condition

ht + qx = 0, (2.198)

forms the two-equation first-order boundary layer model.

If we set We = 0, corresponding to the absence of the electric field, we recover a WIBL

evolution equation in direct agreement with the literature for cases with no electric

field (see, for example, D’Alessio, Pascal and Jasmine [18]). Also note that through

setting the wall topography to be flat by the imposition s(x) = 0, we also recover with

direct agreement with the literature the long-wave evolution equation which includes an

electric field but is only valid for flat inclined surfaces (see, for example, Tseluiko and

Papageorgiou [104]).

As with the long-wave equation, base states are obtained as steady-state solutions of the

coupled system of evolution equations. When We = 0, such solutions can be obtained

in a rather straight-forward way using the continuation and bifurcation software Auto-

07p [24]. Otherwise, the model can be represented as a system of ODEs, e.g. for the

Fourier coefficients of the unknown functions, and the fixed points of this system would

correspond to steady states of the WIBL model.

Let us consider the scenario where We = 0. There are then two cases that we can

consider, as before. The first case we shall discuss is the fixed flow rate case, for

which q(x, t) = q0 = 2/3, as known from the Nusselt flat film solution of thickness

h0 = 1 when the wall is flat. The second case is the fixed volume case, where we as-

sume that the volume of the liquid in one period of the computational domain is fixed

so that the mean film thickness is unity. Therefore we impose the integral constraint

(1/2Lc)
∫ Lc

−Lc
h0dx = 1, equivalent to the representation using y4 which was used in the
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long-wave case previously. Note that for this regime, q0 is not prescribed before the nu-

merical analysis, and is instead one of solutions obtained. As we seek steady solutions

we have ht = qt = qx = 0, and proceed by rearranging (2.196) for hxxx, such that we

have

hxxx =
6CR

5

(
5 cot β

3R
(hx + sx)−

9hxq
2
0

7h3
− 5

3R
+

5q0
2Rh3

)
− sxxx. (2.199)

We proceed as in the long-wave case, introducing the same new variables from equa-

tions (2.152)-(2.155). The topographical terms sx and sxxx are then rewritten in terms of

y4, using the notation where a dash corresponds to derivatives taken with respect to y4.

These terms are identical in both models, and are given by equations (2.163)-(2.165).

y′1 = 2Lcy2, (2.200)

y′2 = 2Lcy3, (2.201)

y′3 =
12LcCR

5

(
5 cot β

3R

(
y2 +

s′

2Lc

)
− 9y2q

2
0

7y13
− 5

3R
+

5q0
2Ry13

)
− s′′′

(2Lc)2
, (2.202)

y′4 = 1. (2.203)

This system of equations, along with the integral condition in the volume constraint case

or the imposed flow rate in the fixed flux case, in addition to the boundary conditions

(2.166)-(2.169) can also be solved using standard continuation software, i.e. Auto-07p

[24].

Finally, we mention that for the case of non-zero electric field, the approaches men-

tioned above are not applicable, since then the governing equations become nonlocal

and cannot be represented as a low-dimensional dynamical system. In such a case, we

shall instead use the aforementioned Fourier spectral method by representing the model

as a system of ODEs for the Fourier coefficients of the unknown functions, and a de-

tailed explanation of this approach may be found in Chapter 4. For both the long-wave

and WIBL models we use 450 Fourier modes for the unknown function. We note that

in using such an approach we shall make use of the fact that in the Fourier space, the

nonlocal Hilbert transform term reduces to a simple sgn function.
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Linear stability analysis

3.1 Introduction

In Chapter 4 we will compute steady-state solutions to our long-wave model (2.151) and

two-equation WIBL model (2.196) and (2.198). However, the stability of such solutions

to small perturbations is also very important, and will be analysed in this chapter. In

addition to the trivially distinct stable and unstable steady-state solutions, we also make

a distinction between absolutely unstable and convectively unstable solutions. Due to

the large amount of literature carefully examining in great detail these instabilities and

their properties, and due to the fact that the majority of this research falls outside the

scope of this thesis, we shall merely give a brief overview of the salient features which

are relevant to the work under consideration, and refer readers to the relevant papers

for more general information. A natural starting point in the literature is the work of

Benjamin [5] and Yih [116] in determining the critical Reynolds number for a liquid

flowing down an inclined plane, and the subsequent experimental corroborations by

Liu, Paul and Gollub [52] in addition to Floryan, Davis and Kelly [26].

The most obvious discrepancy between absolute and convective instabilities is that for

convective instabilities, despite being linearly unstable and the norm of the perturbation

growing in time, the perturbation decays at any fixed point in space, or rather naively,

we may say that the perturbation is eponymously ‘convected’ downstream or upstream,

away from the source of instability [78]. Contrariwise, it is known that for absolute

instabilities the perturbation grows at every point in the domain as time increases. A

44
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Figure 3.1: Sketch of the behaviour of a perturbation in the absolutely (left) and convectively
(right) unstable cases.

sketch of these two behaviours is given in Figure 3.1. A subset of convective instabili-

ties that warrant discussion are known as transient instabilities. Despite convective in-

stabilities allowing for a perturbation to travel either upstream, downstream, or in both

directions simultaneously, transient instabilities are characterised by the perturbation

only travelling in a single direction [78, 98]. As each of these types of instabilities rep-

resents a physically distinct scenario, consequently, we seek to employ a mathematical

framework whereby these may be distinguished.

Exponentially weighted spaces are typically used in such matters, however, due to the

nonlocal Hilbert transform term corresponding to the electric field, this approach is

not suitable, and we instead follow a methodology similar to that by Papageorgiou and

Fokas [27], as opposed to alternative methodologies, i.e. those of Delbende, Chomaz

and Huerre [20] or Monkewitz [58].

3.2 Critical Reynolds numbers for flat walls

In this section, we derive the critical Reynolds numbers for both the long-wave and

WIBL models. We also determine the critical electric Weber number corresponding

to instability for a given Reynolds number, and provide the critical wavenumber cor-

responding to the most unstable mode. In this section, we neglect the topography and

instead consider the flat inclined slope case.
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3.2.1 Long-wave model

We begin by linearising the long-wave equation around a general steady-state solution

h0(x). To achieve this, we make the substitution h(x, t) = h0(x)+h1(x, t) into (2.151),

where |h1| � 1. It is important to note that despite the topography of the wall and the

steady-state solutions taking periodic forms, the perturbation h1(x, t) is not necessarily

periodic. By neglecting the higher-order terms following the substitution, we obtain

the following linear nonlocal evolution equation with non-constant coefficients for the

perturbation h1:

h1t = −
(
b0h1 + b1h1x + b2h1xxx + b3H[h1xx]

)
x
, (3.1)

where the coefficients are

b0 = 2h20 +
16R

5
h50h0x − 2 cot βh20(h0 + s)x

+
1

C
h20(h0 + s)xxx + 2We

(
1− 1

εp

)
h20H

[(
1− 1

εp

)
h0xx + sxx

]
, (3.2)

b1 =
8R

15
h60 −

2 cot β

3
h30, (3.3)

b2 =
1

3C
h30, (3.4)

b3 =
2We

3

(
1− 1

εp

)2

h30. (3.5)

For the case of a flat wall, s(x) = 0, we then obtain

h1t = −
[
2h20h1 +

8R

15
h60h1x −

2 cot β

3
h30h1x

+
2We

3

(
1− 1

εp

)
h30H

[(
1− 1

εp

)
h1xx

]
+

1

3C
h30h1xxx

]
x

. (3.6)

Following the substitution of the uniform film thickness h0 = 1, and perturbation

h1(x, t) = h̃1e
ωt+ikx, we then obtain the dispersion relation

ω = −2ik +
8R

15
k2 − 2 cot β

3
k2 − k4

3C
+

2We

3

(
1− 1

εp

)2

|k|3. (3.7)

It is here that we may choose to investigate either the temporal or spatial linear stability

theory, depending on whether we allow either ω or k to take complex values, whilst
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only permitting real values of the remaining variable [35]. As we initially focus upon

temporal instabilities, rather than spatial instabilities, we begin with the assumption that

our wavenumber k is real and our frequency ω is complex, as opposed to spatial insta-

bilities, in which case we assume that our wavenumber k is complex and our frequency

ω is real [35]. We also know that, due to the nonlocal Hilbert transform term, we have

a |k|3 term in the dispersion relation, which is not analytic at k = 0. We will demon-

strate, however, that in the analysis it will possible to replace |k|3 with k3 and avoid

non-analyticity.

For the real part of ω we have

Re[ω] =

(
8R

15
− 2 cot β

3

)
k2 +

2We

3

(
1− 1

εp

)2

|k|3 − k4

3C
. (3.8)

We then have two cases to discuss – the case in which we have an electric field, and the

case without. Although the case without the electric field can be trivially obtained by

taking the limit of We → 0 in the equation corresponding to the inclusion of the electric

field, a more rigorous and strict derivation is required. The difference between the two

approaches may be summarised as follows – in the case of no electric field, we have

simply one parameter through which our flow may be destabilised, the Reynolds num-

ber. Contrariwise, in the case including the electric field, we have two such parameters,

both the Reynolds number and the electric Weber number.

In case of no electric field, if there is a local maximum in Re[w] at k = 0, then Re[w]

will remain negative for all k 6= 0. If there is a local minimum in Re[w] at k = 0, then

there will be a band of unstable wavenumbers extending from k = 0 to a certain cut-off

value k = kc. For We = 0, we thus have the criteria

Re[ω] = 0 at k = 0, (3.9)

d2Re[ω]

dk2
= 0 at k = 0. (3.10)

This system can be easily solved to give the following critical Reynolds number:

Rc1 =
5 cot β

4
. (3.11)

In the case with an electric field, the base solution may be destabilised even when

R < Rc1, since the corresponding term in the dispersion relation is always positive



Chapter 3. Linear stability analysis 48

and therefore destabilising, and there may appear a band of unstable wavenumbers that

is separated from zero. The transition from the linearly stable to the linearly unstable

regime then happens when the value of Re[ω] at the local maximum at a nonzero value

of k is zero. We thus proceed as follows. We begin with the imposition of the follow-

ing two conditions on (3.8), corresponding to the location of a local maximum at some

critical wavenumber k∗ which we assume to be positive:

Re[ω] = 0 at k = k∗, (3.12)

dRe[ω]

dk
= 0 at k = k∗, (3.13)

which leads us to two equations for k∗. Thus we have

(8R

15
− 2 cot β

3

)
+

2Wek
∗

3

(
1− 1

εp

)2

− k∗2

3C
= 0, (3.14)

2
(8R

15
− 2 cot β

3

)
+ 2Wek

∗
(

1− 1

εp

)2

− 4k∗2

3C
= 0. (3.15)

By solving this set of equations, we find that the positive solution is

k∗ =
3

We

(2 cot β

3
− 8R

15

)(
1− 1

εp

)−2
. (3.16)

Substituting this k∗ back into (3.14) and taking the limit of εp → ∞ for a perfect

conductor, we thus obtain the following expression for the critical Reynolds number:

Rc2 =
5 cot β

4
− 5W 2

e

8C
. (3.17)

We thus confirm that the normal electric field is always linearly destabilising in the

absence of topography.

3.2.2 WIBL model

We begin by following the same methodology as in the long-wave case – assuming that

h0(x) and q0(x) are steady-state solutions, h1(x, t) is a small perturbation to the film

thickness, and q1(x, t) is a small perturbation to the flow rate. We remind the reader that

despite the topography of the wall and the steady-state solutions taking periodic forms,

the perturbations h1(x, t) and q1(x, t) are not necessarily periodic themselves. Upon
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substituting h(x, t) = h0(x) +h1(x, t) and q(x, t) = q0(x) + q1(x, t) into our kinematic

condition (2.198), we obtain the following at first order:

h1t = −q1x. (3.18)

Upon substituting the steady-state solutions for flow rate and film thickness, along with

the corresponding small perturbations, into our remaining equation (2.197) and upon

linearising, we obtain the following result at first order:

q1t =
5We

3R

(
1− 1

εp

)((
1− 1

εp

)
h0H[h1xx] +H

[(
1− 1

εp

)
h0xx + sxx

]
h1

)
− 5 cot β

3R
(h0h1x + (h0x + sx)h1) +

5

6CR
(h0h1xxx + (h0xxx + sxxx)h1) +

5

3R
h1

− 17q0q1x
7h0

− 18q20h0xh1
7h30

+
9q0
7h20

(q0h1x + 2h0xq1) +
5q0h1
Rh30

− 5q1
2Rh20

. (3.19)

Thus it is clear that through the substitution of the perturbations into our kinematic con-

dition, we have a linear relation between h1t and q1x, and through the above equation,

we have a linear relation between q1t, q1 and h1. Thus, in matrix representation, we

have the following [
h1t

q1t

]
=

[
0 L12

L21 L22

][
h1

q1

]
, (3.20)

where L12, L21, and L22 are linear operators given by

L12q1 = −q1x, (3.21)

L21h1 = b0h1 + b1h1x + b2h1xxx + b3H[h1xx], (3.22)

L22q1 = c0q1 + c1q1x, (3.23)

and where the b and c coefficients are given by

b0 =
5We

3R

(
1− 1

εp

)
H
[(

1− 1

εp

)
h0xx + sxx

]
− 5

3R
(h0x + sx) cot β

+
5

6CR
(h0xxx + sxxx) +

5

3R
− 18q20h0x

7h30
+

5q0
Rh30

, (3.24)

b1 = −5h0
3R

cot β +
9q20
7h20

, (3.25)

b2 =
5h0

6CR
, (3.26)
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b3 =
5Weh0

3R
, (3.27)

c0 =
18q0h0x

7h20
− 5

2Rh20
, (3.28)

c1 = −17q0
7h0

. (3.29)

As we wish to determine the effect on the stability of the steady-state solutions caused

by the perturbations, we seek to examine the spectrum of the matrix operator given in

(3.20). To proceed, we set s(x) = 0, q0 = 2
3
, h0 = 1, q1 = q̃1e

ωt+ikx and h1 = h̃1e
ωt+ikx,

and hence obtain the following

ω

[
h̃1

q̃1

]
=

[
0 −ik

−5 cotβ
3R

ik + 5
R

+ 5We

3R
ik2 sgn(k)− 5

6CR
ik3 + 4

7
ik −34

21
ik − 5

2R

][
h̃1

q̃1

]
.

(3.30)

Hence we simply obtain a quadratic equation in ω, with two distinct solutions, ω1 and

ω2, given by

ω1 = Â+ iB̂ −
√
Ĉ + iD̂, (3.31)

ω2 = Â+ iB̂ +

√
Ĉ + iD̂, (3.32)

where Â, B̂, Ĉ and D̂ are defined by the following

Â = − 5

4R
, (3.33)

B̂ = −17k

21
, (3.34)

Ĉ = (−592C2R2k2 + 11760C2RWe|k|3 − 5880CRk4

−11760C2Rk2 cot β + 11025C2)/7056C2R2, (3.35)

D̂ = −125k

42R
. (3.36)

Using the fact that in polar form of the complex number under the square root, ρ =√
Ĉ2 + D̂2 and θ = arctan(D̂/Ĉ), we are able to write the real part of ω1 and ω2 in a

more manipulatable form. We begin with

ω1,2 = Â+ iB̂ ±
√
ρeiθ, (3.37)
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following which we express eiθ in terms of trigonometric functions:

ω1,2 = Â+ iB̂ ±√ρ(cos(θ/2) + i sin(θ/2)). (3.38)

For the real part of ω1,2 then, we have

Re[ω1,2] = Â±√ρ cos(θ/2), (3.39)

and following use of the half-angle formula

cos(θ/2) =

√
1 + cos(θ)

2
, (3.40)

and substitution of θ into (3.39), we obtain

Re[ω1] = Â−

√
Ĉ + ρ

2
, (3.41)

Re[ω2] = Â+

√
Ĉ + ρ

2
. (3.42)

We similarly note that the imaginary parts of ω1 and ω2 may be written as

Im[ω1] = B̂ −

√
−Ĉ + ρ

2
, (3.43)

Im[ω2] = B̂ +

√
−Ĉ + ρ

2
. (3.44)

As we know that Â is negative by definition, it is clear that Re[ω2] > Re[ω1] for all

physical parameter values. As we are interested in the point at which Re[ω] becomes

positive, corresponding to the onset of instability, we may thus neglect Re[ω1] in subse-

quent analysis, and focus solely upon Re[ω2]. These two solutions are shown visually

in Figure 3.2 for the case of R = 1, corresponding to the linearly stable case. Also

included is the solution for the long-wave model for the same parameter values. For

k . 0.07 we see close agreement between the long-wave and WIBL models, although

for larger k we note that the two models diverge significantly. The long-wave model

predicts lower growth rates until k ≈ 0.18, at which point we observe the long-wave
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Figure 3.2: Real parts of the solutions to the WIBL dispersion relation (3.30) for R = 1,
β = π/4 and K = 3364.5 with equation (3.41) shown in red and equation (3.42) shown in
blue. The long-wave equivalent given in (3.8 is shown by a dashed blue line.

model predicting a monotonically increasing growth rate and the WIBL model predict-

ing a much slower growth rate, following its decrease at k ≈ 0.14.

We then continue with the same methodology as in the long-wave case, where we con-

sider the case with the electric field and the case without the electric field separately. In

the case without the electric field, we have the criteria

Re[ω2] = 0 at k = 0, (3.45)

d2Re[ω2]

dk2
= 0 at k = 0. (3.46)

This system can once again be solved to give the following critical Reynolds number:

Rc1 =
5 cot β

4
, (3.47)

which is the same as for the long-wave model.
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In the case including the electric field, we impose the following conditions at a nonzero

value of k∗ (to be found):

Re[ω2] = 0 at k = k∗, (3.48)

dRe[ω2]

dk
= 0 at k = k∗. (3.49)

Solving for k∗, we obtain

k∗ = WeC +

√
C2W 2

e +
8

5
CR− 2C cot β, (3.50)

which upon resubstitution into (3.48), leads us once again to the critical Reynolds num-

ber

Rc2 =
5 cot β

4
− 5W 2

e

8C
, (3.51)

such that we find complete agreement between the long-wave and WIBL models for the

onset of instability with a flat wall. In Figure 3.3 we see the dispersion relation (3.32) in

the case of no electric field for both models. For the relatively small values of k exam-

ined here, we find near-perfect agreement between the two models, although we remind

the reader that for larger k the two models begin to diverge. We have a single point of

inflection at the origin, and at Reynolds numbers above the critical value (as seen for the

red curve), we have a range of wavenumbers extending from zero with positive growth

rates, thus corresponding to unstable flow. In Figure 3.4 we see the dispersion relation

in the case where we have the electric field. For Reynolds numbers above the secondary

critical value Rc2 (red), we see that there exists a range of wavenumbers not originating

from the origin where the growth rate is positive, and therefore the flow is unstable.

Again we find near-perfect agreement between the long-wave and WIBL models for the

low values of k under investigation.
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Figure 3.3: Dispersion relations in the case of no electric field for the long-wave and WIBL
models, with Reynolds numbers slightly above (red), below (green) and at the critical value
(blue). Here we have Rc1=1.25, K = 3364.5 and ε = 1.
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3.3 Absolute and convective instabilities

Here we discuss the conditions required for absolute instability in both models, and

examine the transition between the convectively unstable and absolutely unstable cases.

We begin with the long-wave case, by reexamining (3.14), where it can be seen that

linear instability is only obtained in the case where

CW 2
e >

8

5
R− 2 cot β. (3.52)

We similarly see that there exists a range of unstable wavenumbers |k| ∈ (k+, k−),

where k+ and k− are given by

k+ = C2W 2
e +

8

5
CR− 2C cot β, (3.53)

k− = max

{
0, C2W 2

e −
8

5
CR− 2C cot β

}
, (3.54)

such that any |k| within this range corresponds to a spectrally unstable flow. Following

this, we now permit complex wavenumbers, rather than the imposition of only real and

positive wavenumbers, as discussed earlier. Also recall that we have a linear operator

(2.151) which acts on our small perturbation h1. In general, the solution to the linearised

equation can be written in terms of a summation involving the discrete eigenvalues, and

an integral involving the essential spectrum, as per Chang, Demekhin and Kopelevich

[15] and Lin et al. [49]:

h1(x, t) =
∑
n

eλntBnφn(x) +

∫ ∞
−∞

eω(k)tB(k)Φ(x, k)dk, (3.55)

where λn are the discrete eigenvalues with the corresponding eigenfunctions φn(x), Bn

are constants, Φ(x, k) are the ‘eigenfunctions’ from the essential spectrum which we

may pick such that Φ(x,−k) = Φ(x, k). We also remark that ω(−k) = ω(k), and in

the case of real h1, B(−k) = B(k) [49]. In our case, the discrete spectrum is empty

so that there is no the first summation term on the right-hand side, and Φ(x, k) can be

chosen to be Φ(x, k) = exp(ikx).

Typically, an argument would need to be made to the effect of showing that the summa-

tion term involving the discrete eigenvalues decays in time, however, due to the system

under consideration having no discrete eigenvalues, we may focus solely upon the in-

tegral term, as the properties of this term are what shall determine whether our flow is
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either convectively or absolutely unstable. As we are interested in the range of unsta-

ble wavenumbers in this analysis, it is sufficient to consider our integral between the

previously derived k− and k+. Due to the presence of the |k|3 term, we are required to

replace it with a k3 term if we wish for Ic to be analytic in the complex k-plane, and

this is possible after appropriate rewriting of the integral as integration from 0 to ∞,

see, for example, Vellingiri, Tseluiko and Kalliadasis [109] and Lin et al. [49]. As the

integrand is now known to be analytic for this range of k, we are thus able to deform

the contour of integration into any such path connecting k− and k+, and the stability

properties of the flow shall be determined by whether or not the contour of integration

Γ passes through regions of exclusively Re(ω) < 0, corresponding to convective in-

stability, or whether the contour of integration Γ always has to pass through a region

where Re(ω) > 0, corresponding to absolute instability. See, for example, the work by

Vellingiri, Tseluiko and Kalliadasis [109].

However, we note that the only way for our contour of integration Γ to transition from

the path described in the convectively unstable case, to the path described in the abso-

lutely unstable case, via a continuous parameter change (either the Reynolds number

or the electric Weber number), is through a saddle point where our two branches of

Re(ω) = 0 meet, as discussed by Monkewitz [58].

In Figure 3.5 we observe the convectively unstable case approaching the transition to

absolute instability. The two branches do not touch, but begin to pinch together at

Re(k) ≈ 0.14. The transitory case is shown in Figure 3.6, where the two branches

intersect and form a saddle point. At this point, if we slightly increase R, we transition

to the absolutely unstable case, which may be seen in Figure 3.7, where the saddle

point now vanishes and the branches of Re[ω(k)] are now qualitatively different than

observed in the convectively unstable case. We see that the lower branch on the left and

the lower branch on the right have now joined, and similarly for the two intermediary

branch segments on the right. In all cases we fix β = π/4, K = 3364.5 and We = 1,

and we cause the transition by increasing the Reynolds number from R = 14.7 in the

convectively unstable case, to 14.9 at the transition, to R = 15.2 in the absolutely

unstable case.
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Figure 3.5: The curves Re[ω(k)] = 0 in the complex plane for the WIBL model in the case of
no topography, with R = 14.7, We = 1, K = 3364.5 and β = π/4, corresponding to the
convectively unstable case.
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Figure 3.6: The curves Re[ω(k)] = 0 in the complex plane for the WIBL model in the case of
no topography, with R = 14.9, We = 1, K = 3364.5 and β = π/4, corresponding to slightly
below the transition between the convectively unstable and absolutely unstable cases.
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Figure 3.7: The curves Re[ω(k)] = 0 in the complex plane for the WIBL model in the case of
no topography, with R = 15.2, We = 1, K = 3364.5 and β = π/4, corresponding to the
absolutely unstable case.
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ues of We and R in the case of no topography for the long-wave and WIBL models. The plate
inclination angle is π/4 and the corresponding critical Reynolds number for non-electrified
flow is R = 1.25. The Kapitza number is given by K = 3364.5 corresponding to water at
room temperature.

If we wish to determine this transition phenomena analytically, we then have the fol-

lowing system of equations:

Re[ω] = 0, (3.56)

Re
[dω
dk

]
= 0, (3.57)

Im
[dω
dk

]
= 0, (3.58)

and three unknowns to solve for; kR, kI , where kR is the real part of k and kI is the

imaginary part of k, such that both kR and kI are real, and in addition We or R or C (or,

equivalently, the Kapitza number) or β (assuming that the remaining three out of these

parameters are fixed).

In the WIBL case, we proceed very similarly to the long-wave case, albeit with a differ-

ent form of the dispersion relation. Here, we use the form given in (3.32), such that we

have

ω = Â+ iB̂ +

√
Ĉ + iD̂, (3.59)
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where Â, B̂, Ĉ and D̂ were defined previously. Figure 3.8 shows the regions of stability,

convective instability and absolute instability for both the long-wave and WIBL models.

The curve corresponding to the stable transition is defined simply by the equation for the

critical Reynolds number (3.51). The long-wave and WIBL curves for the transitions

between absolute and convective instabilities are determined by numerically solving

(3.56)-(3.58), where in the long-wave model we use (3.7) as a form for ω, and in the

WIBL model we use (3.59) instead. We first solve the system of equations for R =

0.0075, and then increase R in increments of 0.0075 and solve at each R-step until

we reach R = 30. For the long-wave model, it can be seen that absolute instability

can be reached solely by increasing R in the case of We = 0, unlike for the WIBL

model, for which we find that the flow is always either stable or convectively unstable

for We = 0, depending on R. Further, we see that for R > 15.02, the long-wave model

predicts absolute instability for all values of the electric Weber number. In contrast, we

see for the WIBL model that absolute instability can only be reached in cases where

We ≥ 65.07, and below this value instabilities can only be convective regardless of the

Reynolds number. We emphasise that previous work by Brevdo et al. [9] tells us that the

absolute instability predicted by the long-wave model forWe = 0 is not observed for the

full equations and is nonphysical behaviour. This is then something of an assurance that

the WIBL equations are providing a more accurate model, with absolute instabilities

not occurring for non-electrified flow.

At this point it is convenient to make explicit the most unstable wavenumber for the

long-wave and WIBL models, i.e. the wavenumber which satisfies

dRe[ω]

dk
= 0. (3.60)

In the long-wave case this is the wavenumber obtained by solving (3.15), and we thus

we are able to write this most unstable wavenumber as

ku =
3CWe

4
+

√
9C2We

2

16
+

4CR

5
− C cot β. (3.61)

This expression is reminiscent of the one derived by Tseluiko and Papageorgiou [105]

albeit with minor rescaling and without the term relating to the inclination angle of the

wall. In the WIBL case, we once again use our dispersion relation (3.59), and we write
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dRe[ω]

dk
=

1

2
(Ĉ + iD̂)−1/2(Ê + iF̂ ), (3.62)

where we have

Ĉ = (−592C2R2k2 + 11760C2RWek
3

− 5880CRk4 − 11760C2Rk2 cot β + 11025C2)/7056C2R2, (3.63)

D̂ = −125k

42R
, (3.64)

Ê =
−1184CRk + 35280CWek

2 − 23520 k3 − 23520Ck cot β

7056CR
, (3.65)

F̂ = − 125

42R
. (3.66)

Solving this equation numerically gives ku for the WIBL model. We use the long-wave

model as an initial guess for when R = 0.04, and then use the solution of the WIBL

model at the previous value of R to compute the next solution as we increase R in

0.04 increments. This wavenumber is used for the perturbations which are added onto

steady-state solutions such that their time evolution may be noted, and the classification

of stable, convectively unstable or absolutely unstable flow may be determined. Figure

3.9 showsRe(ku) as a function ofR for both models at low Reynolds numbers forWe =

0 (solid lines), We = 100 (dashed lines) and We = 200 (dotted lines). The red lines

correspond to the long-wave model and the blue lines correspond to the WIBL model.

It can be seen that there is excellent agreement between the two models within this

range of Reynolds numbers, which corresponds to the stable and convectively unstable

regimes. The most unstable wavenumbers for the stable regimes are not shown in the

figure, since when we are in the stable regime the most unstable wavenumber is complex

with nonzero real and imaginary parts, however, we may infer the Reynolds numbers

corresponding to the stable regime for a given electric Weber number from the solid

circles which denote the end-points of the convectively unstable case. In this way, we

may again see the destabilising effect of the normal electric field – lowering the critical

Reynolds number corresponding to the onset of instability.

Figure 3.10 shows Re(ku) as a function of R for a larger range of Reynolds numbers,

where it can be seen that generally speaking the two models diverge increasingly with

increasing Reynolds number. The models appear to diverge at lower Reynolds numbers

when the electric Weber number is increased, although we also note that for We = 200

the two models appear to diverge to a lesser degree than is observed for We = 100. We
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note that there is no obvious transition between the convectively unstable and absolutely

unstable regimes, which we would expect to occur at or prior to R = 15.02 in the long-

wave model for We = 0.

As we only wish to permit real values of the wavenumber for time-dependent simu-

lations when adding a perturbation to steady-states, we are only able to use the most

unstable wavenumber in the convectively and absolutely unstable regions, and in re-

gions of stability we instead use a more generic form of perturbation, the details of

which are discussed in the next section.
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Figure 3.9: Re(ku) as a function of R for both the long-wave (red) and WIBL (blue) models
at various electric Weber numbers.
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Figure 3.10: Reproduction of Figure3.9 showing a larger range of Reynolds numbers.
Re(ku) as a function of R for both the long-wave and WIBL models at various electric Weber
numbers.
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3.4 Time-dependent simulations

Here we seek to show that the regions depicted in Figure 3.8 are consistent with time-

dependent simulations, and we also wish to investigate the simultaneous effect of elec-

tric field strength and topography amplitude on steady solutions to both models. In

these time-dependent simulations, we choose either to have a Nusselt flat film solution

for a flat wall in the case of corroborating the aforementioned regions, or we may di-

rectly import our steady-state solutions from Auto-07p in cases where we have nonzero

topography, the computation of which is discussed in Chapter 4. Steady-state solu-

tions can also be produced in cases with topography by allowing flat film solutions to

converge to a steady-state, although this clearly works only in regions of stability.

We begin by calculating the most unstable wavenumber for the set of parameters of a

given run in the long-wave case using our analytic expression (3.61). If we are solving

the long-wave equation, then we simply use this value, whereas if we are solving our

WIBL system instead we then use this long-wave value as an initial guess for a solution

to our equation (3.62) for the most unstable wavenumber in the WIBL case, which we

solve for numerically. We then import previously-computed steady-states from Auto-

07p and extract the arrays corresponding to the film thickness, the flow rate, and the

topography profile. We subsequently take fast Fourier transforms (FFTs) of these quan-

tities using FFTW [28] and fix the film thickness by setting the first element of our

Fourier transform of h(x, t) to be equal to the length of the array, such that on average

the film thickness within the fluid is set to 1.

The inverse fast Fourier transforms (IFFTs) are then taken of our flow parameters, and

we record these quantities prior to adding any kind of perturbation to our steady-state.

For the case without a perturbation, we allow the system to evolve using Fourier rep-

resentation (for simplified dealing with the nonlocal Hilbert transform term) by using

a variable-step, variable-order multistep numerical solver implemented as an ‘ode15s’

MATLAB [36] algorithm.

The system is permitted to evolve for 5 time units, at which point we record the film

thickness profile and the flow rate. If the difference between the norm of the film thick-

ness for the initial solution and the final solution is below some prescribed tolerance

(10−6) then we are satisfied that the imported solution is indeed a steady-state. In this

case, we then add a perturbation centred about the midpoint of our domain to our final

steady-state, where perturbation uses the most unstable wavenumber ku and is of the
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form

η = a cos(ku(x− Lc))e−b(x−Lc)2 , (3.67)

where a is the amplitude of the perturbation (typically chosen to be 0.0005) and b is

chosen so that the perturbation is sufficiently localised. In cases where ku has nonzero

imaginary part, we use ku = π/Lc instead. We remind the reader that L is the half-

period of the topography, and the computational domain is taken to be 2Lc = 4L,

where we solve for 2L-periodic solutions and 4L-periodic subharmonic solutions. We

hence have Lc as the half-period of the computational domain, such that the perturbation

originates in the centre of our steady-state. We then allow the perturbed system to

evolve, and calculate the difference in film thickness between the time evolution of

the perturbed system, and the final film thickness found after the time evolution of the

unperturbed system. This allows us to more clearly see the behaviour of the perturbation

in time, as we are subsequently able to ignore the well-known phenomena of the surface

profile following the profile of the topography, albeit with a phase shift, and large-

amplitude topographical features no longer overshadow the smaller-scale perturbation

evolutions.

3.4.1 Flat wall

As mentioned previously, we wish use these time-dependent simulations to verify the

regions of absolute and convective instability shown in Figure 3.8. To begin, we exam-

ine the case of R = 25 and We = 0, and these results are shown in Figures 3.11–3.15.

Here the computational domain 2Lc is adapted such that it is always equal to 5 times

the maximally unstable wavelength, this is done to ensure that the domain is always

sufficiently large to allow for the full evolution of unstable behaviour.

In Figure 3.11 we see the time evolution of a perturbation to the Nusselt flat film solution

in the long-wave (left) and WIBL (right) models. From Figure 3.8, we expect a small

perturbation to the Nusselt flat film solution for R = 25 and We = 0 to result in a

convective instability for the WIBL model, and an absolute instability for the long-wave

model. In the long-wave case, we see that the perturbation appears to travel upstream

as well as downstream and the amplitude of the perturbation increases monotonically

in time, i.e. we observe the perturbation undergoing unbounded growth at all points of

reference, indicative of an absolute instability.
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In the WIBL case we see that the perturbation is convected downstream only, despite

being allowed to evolve for a longer time, and we note the difference in magnitude

of the perturbation at the final time unit between the long-wave and WIBL models (a

range of 0.0252 to −0.0206 in the long-wave case in comparison to the 10.7431x10−4

to −5.88x10−4 range in the WIBL case), indicative of a convective instability in the

WIBL case. In Figure 3.12 we see the time evolution of the absolute value of the

perturbation at the origin for the same parameter values. In the long-wave case, we note

that the absolute value of the perturbation at the original location was found to increase

in time, whereas in the WIBL case we see that the perturbation at the origin location

was found to decay, as the perturbation is being convected solely downstream, providing

further evidence that the long-wave model displays absolutely unstable behaviour and

the WIBL model displays convectively unstable behaviour.

In Figure 3.13 we see the maximum value of η at each time unit for both models. In

the long-wave model the maximum was found to increase monotonically, whereas in

the WIBL case we first observed a decrease in the maximum for approximately 15 time

units.

Figure 3.14 shows the initial, intermediate and final surface profiles for both models. In

the long-wave case we are able to clearly see the small perturbation in the midpoint of

the domain in the initial solution, and then see that in the final solution the perturbation

has travelled to the left of this midpoint, i.e. upstream. In the WIBL case however,

we note that despite the amplitude of the perturbation growing in time, it exclusively

travels to the right. In Figure 3.15 we see the contour plots of the perturbation as time

increases. With the aid of the white line indicating the exact midpoint of the domain

and the origin of the perturbation, it is once again clear that in the long-wave case the

perturbation travels in both directions simultaneously and also increases in magnitude

from the point of reference of the origin, indicating absolute instability, whereas in the

WIBL model the perturbation is clearly convected downstream.

We now examine cases where the transition between convective instability and absolute

instability occurs solely due to variations in the electric Weber number. From Figure 3.8

we predict that for R = 10, in the long-wave model we expect We = 40 to correspond

to a convectively unstable solution, and for We = 80, 120 to correspond to absolutely



Chapter 3. Linear stability analysis 66

Figure 3.11: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 25, K = 3364.5 and We = 0 in the long-wave case (left) and the WIBL case (right).
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Figure 3.12: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 25, K = 3364.5 and We = 0 in the long-wave case (left) and the WIBL case (right).
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Figure 3.13: Time evolution of the maximum of the absolute value of the perturbation for
R = 25, K = 3364.5 and We = 0 in the long-wave case (left) and the WIBL case (right).
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Figure 3.14: The initial, intermediate and final surface profiles of the film for R = 25, K =
3364.5 and We = 0 in the long-wave case (left) and the WIBL case (right).
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Figure 3.15: Contour plot showing the propagation of the perturbation, with a solid white
line showing the origin of the perturbation, for R = 25, K = 3364.5 and We = 0 in the
long-wave case (left) and the WIBL case (right).

unstable solutions. Contrariwise, for the WIBL model, we expect that for R = 10

and We = 40, 80, we should have a convectively unstable solution, and for We = 120

we should have an absolutely unstable solution. In Figure 3.16 we observe the time

evolution of the perturbation for R = 10 and We = 40. In both the long-wave and

WIBL models it can be seen that the perturbation travels downstream and grows in

magnitude in time, indicative of a convective instability. Figure 3.17 corroborates this,

in which we observe both norms of the perturbation at the origin decaying in time. In

the long-wave case, the norm was found to decay in an oscillatory fashion, whereas in

the WIBL case the norm was found to decay rapidly and then remain near-constant.

Figure 3.17 alone is not sufficient for the classification of a convective instability how-

ever, as this decay of the perturbation at the origin may also be indicative of a stable

steady-state solution, and Figure 3.18 is necessary to rule out this possibility. Indeed,

we observe growth in the maximum of the absolute value of the perturbation as time

increases for both the long-wave and WIBL models. In Figure 3.19 we see the initial,
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intermediate and final surface profiles, and for both models we see the same qualitative

behaviour – a travelling wave is formed and is convected downstream to the right. It can

also be observed that the perturbation in the WIBL model grows much slower; despite

being allowed to evolve for a slightly greater time than was allowed for the long-wave

case, the amplitude of the wave in the WIBL model is approximately an order of mag-

nitude smaller than the wave in the long-wave case. Figure 3.20 and Figure 3.21 show

the contour plot and normalised contour plot of the perturbation respectively as time

increases, and we are again reassured of the convective nature of both solutions, as it is

observed that both perturbations grow in magnitude but remain to the right of the white

line which indicates the x position of the original perturbation.

In Figure 3.22 we observe the time evolution of the perturbation for R = 10 and

We = 80. In the WIBL model, we observe the same qualitative behaviour as seen

for the We = 40 case in Figure 3.16, indicative of a convective instability. In the long-

wave case however, we observe qualitatively different behaviour in comparison to the

We = 40 case – it appears that the perturbation begins to travel upstream as well as

downstream, which is an indication of absolute instability. In Figure 3.23 we find fur-

ther evidence that the long-wave model predicts absolutely unstable behaviour for our

parameter values – the absolute value of the perturbation at the origin increases in time

in an oscillatory way, corresponding to the crests and troughs of the perturbation passing

through the midpoint as the perturbation spreads over the domain in time. In the WIBL

case, we instead find that the norm decays in a rapid but oscillatory fashion. Despite

the aforementioned phenomena that the absolute nature of the instability predicted by

the long-wave model is nonphysical for non-electrified flow (see Brevdo et al. [9]), the

absolute behaviour observed for electrified flow has not been shown to be nonphysical

by comparisons with solving the full equations or DNS methods, at least to this author’s

knowledge. Indeed, the nonlocal nature of the normal electric field seems a reason-

able justification for assuming that the absolute instabilities predicted by increasing the

electric Weber number are physical, and not simply failings of the models.

In Figure 3.24 we see that both the long-wave and WIBL models show the maximum of

the absolute value of the perturbation monotonically increasing in time, consistent with

unstable behaviour. In the R = 25,We = 0 case as well as the R = 10,We = 40 case

for the WIBL model, we previously observed a decrease in the maximum of the absolute

value of the perturbation for the initial time units, prior to the subsequent growth in time,

although this behaviour is not noted here. This behaviour could perhaps be explained
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Figure 3.16: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 10, K = 3364.5 and We = 40 in the long-wave case (left) and the WIBL case (right).
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Figure 3.17: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 10, K = 3364.5 and We = 40 in the long-wave case (left) and the WIBL case
(right).
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Figure 3.18: Time evolution of the maximum of the absolute value of the perturbation for
R = 10, K = 3364.5 and We = 40 in the long-wave case (left) and the WIBL case (right).
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Figure 3.19: The initial, intermediate and final surface profiles of the film for R = 10, K =
3364.5 and We = 40 in the long-wave case (left) and the WIBL case (right).
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Figure 3.20: Contour plot showing the propagation of the perturbation, with a solid white
line showing the origin of the perturbation, for R = 10, K = 3364.5 and We = 40 in the
long-wave case (left) and the WIBL case (right).
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Figure 3.21: Normalised contour plot showing the propagation of the perturbation, with
a solid white line showing the origin of the perturbation, for R = 10, K = 3364.5 and
We = 40 in the long-wave case (left) and the WIBL case (right).
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by the knowledge that the WIBL model is predicted to be approaching the transition to

absolute instability due to the increasing electric Weber number, and as such displays

greater growth in time.

Figure 3.25 shows the initial, intermediate and final surface profiles for both models. For

the WIBL model we observe a travelling wave being convected downstream. The initial

perturbation in red is found at the exact middle of the domain, and as time increases

the perturbation increases in amplitude but moves exclusively to the right. Contrariwise

in the long-wave model we instead see that our final solution has partially travelled to

the left of the original location of the perturbation, which is indicative of an absolute

instability. This determination is aided by Figures 3.26 and 3.27 which correspond to

the contour plot of the perturbation and the normalised version of such a contour plot,

respectively. As the white line shows the starting location of the perturbation, it is clear

that in the long-wave model we see the perturbation travelling to the left and right of the

origin, whereas in the WIBL model we see the perturbation travelling to the right only.

Figure 3.28 shows the time evolution of the perturbation for the long-wave and WIBL

models in the case of R = 10 and We = 120. For both models behaviour indicative of

an absolute instability is exhibited; in the long-wave case the perturbation clearly travels

upstream in the final time units, whereas in the WIBL model the perturbation appears

to travel upstream in the final time units, but further evidence is required to definitively

state this. Figure 3.29 shows the absolute value of the perturbation at its origin - in both

models the norm is initially somewhat constant, then rapidly increases, indicative of an

absolute instability.

In Figure 3.30 we see the maximum of the absolute value of the perturbation at each

time unit. For both long-wave and WIBL models we observe a monotonic increase

in time, although in the WIBL model we notice a slight decrease in the growth rate

of the maximum of the absolute value of the perturbation for sufficiently large times

(i.e. time units greater than 100) which may appear to suggest that the solution is

converging to a steady-state. However, allowing the system to evolve for longer times

simply results in a saturation of the surface profile with travelling wave oscillations, and

we eventually obtain a fully nonlinear solution which rapidly breaks down in finite time.

Figure 3.31 shows the surface profiles for the long-wave and WIBL models for R = 10

and We = 120. In both cases we note that for the final solution, the perturbation has
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Figure 3.22: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 10, K = 3364.5 and We = 80 in the long-wave case (left) and the WIBL case (right).
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Figure 3.23: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 10, K = 3364.5 and We = 80 in the long-wave case (left) and the WIBL case
(right).
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Figure 3.24: Time evolution of the maximum of the absolute value of the perturbation for
R = 10, K = 3364.5 and We = 80 in the long-wave case (left) and the WIBL case (right).
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Figure 3.25: The initial, intermediate and final surface profiles of the film for R = 10, K =
3364.5 and We = 80 in the long-wave case (left) and the WIBL case (right).
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Figure 3.26: Contour plot showing the propagation of the perturbation, with a solid white
line showing the origin of the perturbation, for R = 10, K = 3364.5 and We = 80 in the
long-wave case (left) and the WIBL case (right).
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Figure 3.27: Normalised contour plot showing the propagation of the perturbation, with
a solid white line showing the origin of the perturbation, for R = 10, K = 3364.5 and
We = 80 in the long-wave case (left) and the WIBL case (right).
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travelled to the left of the origin and has hence propagated upstream. Although the long-

wave model more clearly shows the upstream propagation of the perturbation, with aid

from Figures 3.32 and 3.33, we can see that both models distinctly show the perturbation

travelling to the left of the white line, which corresponds to the location of the origin of

the perturbation.

Overall then we find excellent agreement between the linear stability analysis predic-

tions for a flat wall found in Figure 3.8 and the time-dependent simulations for a flat

wall included here. The linear stability analysis predicted that for R = 10, the long-

wave model would be convectively unstable for We = 40 and absolutely unstable for

We = 80 and We = 120, which is consistent with our findings. It also predicted that

for the WIBL model with R = 10, We = 40 and We = 80 would correspond to

convectively unstable solutions, and We = 120 would correspond to an absolutely un-

stable solution, again consistent with our simulations. We further recover the result that

the steady-state solutions to the long-wave model can transition from the convectively

unstable regime to the absolutely unstable regime purely by increasing the Reynolds

number – in the case of R = 25 and We = 0 we found the long-wave model to dis-

play absolutely unstable behaviour, in contrast with the convectively unstable behaviour

observed for the WIBL model with the same parameters.

3.4.2 Sinusoidal wall

In this section we include the effects of sinusoidal topography in addition to the nor-

mal electric field. For the purposes of better comparison with the literature, here we

prescribe numerical values for the computational domain instead of allowing it to adapt

based upon the maximally unstable wavelength. As discussed by Tseluiko, Blyth and

Papageorgiou [98] in addition to D’Alessio, Pascal and Jasmine [18], it is well known

that sinusoidal topography can be stabilising or destabilising depending on the ampli-

tude and period of the topography. Indeed, we know from the aforementioned work by

Tseluiko et al. that for L0 = 150 and A0 = 17, the long-wave model predicts that the

topography is stabilising, whereas for A0 = 24, the topography is greatly destabilising.
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Figure 3.28: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 10, K = 3364.5 and We = 120 in the long-wave case (left) and the WIBL case (right).
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Figure 3.29: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 10, K = 3364.5 and We = 120 in the long-wave case (left) and the WIBL case
(right).
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Figure 3.30: Time evolution of the maximum of the absolute value of the perturbation for
R = 10, K = 3364.5 and We = 120 in the long-wave case (left) and the WIBL case (right).
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Figure 3.31: The initial, intermediate and final surface profiles of the film for R = 10, K =
3364.5 and We = 120 in the long-wave case (left) and the WIBL case (right).
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Figure 3.32: Contour plot showing the propagation of the perturbation, with a solid white
line showing the origin of the perturbation, for R = 10, K = 3364.5 and We = 120 in the
long-wave case (left) and the WIBL case (right).
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Figure 3.33: Normalised contour plot showing the propagation of the perturbation, with
a solid white line showing the origin of the perturbation, for R = 10, K = 3364.5 and
We = 120 in the long-wave case (left) and the WIBL case (right).
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Here L0 and A0 are defined by the following rescaling

A0 = A
(sin β

R

)1/3
=
Ãρ2/3g1/3

21/3µ2/3
, (3.68)

L0 = L
(sin β

R

)1/3
=
L̃ρ2/3g1/3

21/3µ2/3
, (3.69)

with Ã and L̃ denoting the actual dimensional wall amplitude and half-wavelength,

respectively, so that the dimensionless quantities A0 and L0 are then fully determined

by the liquid properties and are independent of the wall inclination angle and the liquid

flow rate.

We seek to investigate the behaviour of the WIBL model for these parameter values and

compare the observed results to the long-wave equivalent. We also intend to investigate

the effect of the normal electric field for both models in these scenarios. In this sec-

tion we shall take the Reynolds number to be R = 1.25, corresponding to the critical

Reynolds number for non-electrified flow over a flat wall inclined at angle θ = π/4.

In Figure 3.34 we see the evolution of the perturbation for the two models in the case of

We = 0 and A0 = 17. In both cases it can be seen that the perturbation decays in time

and is convected downstream, indicative of a stable solution. The stable classification of

both models is corroborated by Figure 3.35 and Figure 3.36. In Figure 3.35 we observe

that the absolute value of the perturbation at the origin of the perturbation clearly decays

for both models, although we note that there is a small increase in the norm at approx-

imately t = 300. However, this is simply due to the perturbation travelling to the right

downstream, and then reappearing at the left-most side of the domain upstream, and the

slight increase in the norm which is observed is simply the perturbation travelling past

the origin point a second time. Figure 3.36 shows the maximum value of the absolute

value of the perturbation at each time unit - for both models the maximum was found to

decay in time, and this decay exhibits periodic behaviour, with similar periodicity being

observed for both models. We are able to conclude that both models are stable for these

parameter values, consistent with the literature [98].

In Figure 3.37 we see the time evolution of the perturbation in the case of A0 = 24 and

We = 0. In the long-wave case we see that the perturbation grows rapidly upstream, and

the film thickness quickly becomes zero if the system is allowed to evolve for longer

times. In the WIBL case however, we instead see that the perturbation decays and is
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Figure 3.34: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 0, A0 = 17 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.35: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 1.25, K = 3364.5, We = 0, A0 = 17 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.36: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 0, A0 = 17 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.37: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 0, A0 = 24 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.38: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 1.25, K = 3364.5, We = 0, A0 = 24 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.39: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 0, A0 = 24 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.40: Contour plot showing the propagation of the perturbation, with a solid white
line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We = 0, A0 = 24
and L0 = 150 for a sinusoidal wall in the long-wave case (left) and the WIBL case (right).
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Figure 3.41: Normalised contour plot showing the propagation of the perturbation, with a
solid white line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We = 0,
A0 = 24 and L0 = 150 for a sinusoidal wall in the long-wave case (left) and the WIBL case
(right).

convected downstream, and consequently the system can be allowed to evolve for much

longer times than possible in the long-wave model without film perforation becoming

a concern. Figure 3.38 for the WIBL model shows rapid decay to near-zero from the

frame of reference of the origin of the perturbation, whereas in the long-wave model

we observe overall growth, although near the end of the simulation we observe a small

decrease in the absolute value at the midpoint.

For the long-wave case, Figure 3.39 shows the maximum of the absolute value of the

perturbation monotonically increasing until approximately t = 15, at which point the

rate of growth increases significantly and the film thickness approaches zero at the lo-

cation of the perturbation. For the WIBL model, the maximum was generally found

to decrease in time, although we note that the maximum begins to grow at the end of
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Figure 3.42: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 45, A0 = 17 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.43: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 1.25, K = 3364.5, We = 45, A0 = 17 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.44: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 45, A0 = 17 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.45: Normalised contour plot showing the propagation of the perturbation, with a
solid white line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We = 45,
A0 = 17 and L0 = 150 for a sinusoidal wall in the long-wave case (left) and the WIBL case
(right).

the simulation, and that at approximately t = 130 we observe the maximum increasing

slightly before once again decaying.

Figures 3.40 and 3.41 show the contour plots and normalised contour plots of the pertur-

bation respectively, and in the long-wave case we are able to clearly see the perturbation

travelling upstream and growing in time. For the WIBL model, although we similarly

observe the perturbation growing in time, it can be seen that the perturbation is exclu-

sively convected downstream.

For the sinusoidal wall in the case of We = 0 then, we may say the following. For

the long-wave model it was shown that for L0 = 150, a wall amplitude of A0 = 17

was found to be stabilising, whereas a wall amplitude of A0 = 24 was found to be

greatly destabilising to the point of film perforation, and thus our long-wave results

are consistent with those found in the literature [98]. In the WIBL case, the steady-

state solutions appears to be stable for both wall amplitudes, although we note some

qualitative differences between the wall amplitudes; for A0 = 17 we observe large

initial increase followed by somewhat periodic decay and growth, whereas for A0 = 24

we observe near-monotonic decay following the initial small increase at approximately

t = 130.

In Figure 3.42 we see the time evolution of the perturbation now for We = 45 and

A0 = 17. For both models, the perturbation was found to decay and travel downstream,

indicative of stability. This is corroborated by Figures 3.43 and 3.44 which both show

decay in time, although we observe from Figure 3.44 that despite the fact that the two

models are very similar for these parameter values, we note that the maximum of the

absolute value of the perturbation decays slightly faster in the WIBL model as opposed
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to the long-wave model. The normalised contour plots of the perturbation shown in

Figure 3.45 demonstrate for both models the stability of our steady-state solutions – the

perturbations remain to the right of the original location of the perturbation, and decay

as time evolves.

Increasing the sinusoidal wall amplitude to A0 = 24, we then obtain the following

results. In Figure 3.46 we observe the time evolution of our perturbation for the long-

wave and WIBL models. In both cases the perturbation was found to decay and was

convected downstream, suggesting our steady-state solutions are stable. This is also

consistent with the behaviour observed in Figures 3.47 and 3.49; the time evolution of

the maximum of the absolute value of the perturbation and the normalised contour plot

of the perturbation, respectively, for which we observe again the decay and convection

of the perturbation for increasing time in both models. Figure 3.48 shows the initial,

intermediate and final surface profiles for both models, and it can be observed that the

perturbation has no noticeable effect on our steady solutions.

However, there is an interesting feature of this stable behaviour; in the case of We = 0,

L0 = 150 and A0 = 24, for sinusoidal topography, our steady-state solution was found

to be absolutely unstable for the long-wave model. Thus by increasing the electric We-

ber number, it is possible to obtain a stable steady-state solution rather than an unstable

one, and we find that our electric field is not purely destabilising. Indeed, the stabil-

ising or destabilising nature of the normal electric field depends strongly on both L0

and A0, as we shall see. Recent work by Blyth et al. [7] found that a normal electric

field was able to cause a transition from absolute instability to convective instability

for single-hump solitary pulses down a flat wall using the long-wave model, so this

apparent stabilising potential of the normal electric field is not unprecedented.

We now increase the strength of the electric field, corresponding toWe = 200. In Figure

3.50 we see the time evolution of the perturbation; in the long-wave case, we see that

the amplitude of the perturbation greatly increases with time in a sharp and localised

fashion, although we cannot immediately determine whether the perturbation travels

upstream, and require more information. In the WIBL case, we similarly observe the

perturbation growing in time, however, the overall growth of the perturbation is much

slower compared to the behaviour observed for the long-wave model. The perturba-

tion in the WIBL model also appears much less localised, and appears to curve as it

propagates. We notice that by the final time unit we are nearing the nonlinear regime
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Figure 3.46: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 45, A0 = 24 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.47: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 45, A0 = 24 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.48: The initial, intermediate and final surface profiles of the film for R = 1.25,
K = 3364.5, We = 45, A0 = 24 and L0 = 150 for a sinusoidal wall in the long-wave case
(left) and the WIBL case (right).
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Figure 3.49: Normalised contour plot showing the propagation of the perturbation, with a
solid white line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We = 45,
A0 = 24 and L0 = 150 for a sinusoidal wall in the long-wave case (left) and the WIBL case
(right).

corresponding to the right-most part of the perturbation travelling across the domain and

interacting with the left-most part of the perturbation. This can equivalently be thought

of as the length of the perturbation becoming longer than the length of the domain,

such that superposition rapidly results in the breakdown of the system, although careful

analysis shows that the system is still within the linear regime.

Figure 3.51 shows the absolute value of the perturbation at the origin of the perturbation

as time evolves; in the long-wave case we see that this grows greatly in time, and the

sharp peak at approximately t = 180 corresponds to the crest of the wave travelling

through the midpoint of the domain. In the WIBL case, we instead see an initial decay

as the perturbation is convected away from the origin, and then what appears to be a

resurgence as perturbation begins travelling back slightly upstream at approximately

t = 50. Figure 3.52 shows the maximum of the absolute value of the perturbation at

each time unit for both models, and we clearly observe unstable behaviour in both, with

very sharp growth as t→ 200 for the long-wave model in particular. In the WIBL model

we note the absolute value of the maximum of the absolute value of the perturbation

monotonically increasing until t = 125, after which point we observe monotonic decay

instead. We remark that allowing the model to evolve for slightly longer times shows

the maximum once again growing, and in conjunction with Figure 3.50 we are able to

classify the steady-state in the WIBL model as convectively unstable and in the long-

wave model as absolutely unstable.

In Figure 3.53 we examine the surface profiles of both models, showing the initial, in-

termediary and final solutions. For the long-wave model for the final time unit, we

observe the sharp and localised structure discussed from Figure 3.50, and it can be seen
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Figure 3.50: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 200, A0 = 17 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.51: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 1.25, K = 3364.5, We = 200, A0 = 17 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.52: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 200, A0 = 17 and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.53: The initial, intermediate and final surface profiles of the film for R = 1.25,
K = 3364.5, We = 200, A0 = 17 and L0 = 150 for a sinusoidal wall in the long-wave case
(left) and the WIBL case (right).
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Figure 3.54: Contour plot showing the propagation of the perturbation, with a solid white
line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We = 200, A0 = 17
and L0 = 150 for a sinusoidal wall in the long-wave case (left) and the WIBL case (right).

that the volume of fluid required for this structure is drawn from the downward slope

of the wall, although not from the crest or trough of the topography. If the perturbation

is allowed to evolve for longer, film perforation occurs as the film thickness becomes

minimal, and the model rapidly breaks down. In the WIBL model however, the pertur-

bation remains small relative to the amplitude of the topography, such that we observe

little macroscopic difference between the initial and final steady-state surface profiles.

Figure 3.54 shows the contour plot of the perturbation for both models. In the long-

wave model, we see that the perturbation appears to ‘curve’ upstream after travelling

downstream, whereas for the WIBL model the perturbation is more clearly convected

downstream. The convective nature of the steady-state in the WIBL model is more

obvious when examining the normalised contour plot in Figure 3.55; the main body of
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Figure 3.55: Normalised contour plot showing the propagation of the perturbation, with a
solid white line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We =
200, A0 = 17 and L0 = 150 for a sinusoidal wall in the long-wave case (left) and the WIBL
case (right).

the perturbation remains travelling downstream, with the only upstream features being

those which have travelled the entire length of the domain. For the long-wave model,

we instead see the perturbation is highly-localised by the final time-step, so much so

that it dwarfs all of the behaviour observed prior to approximately t = 170.

We again reexamine the wall amplitude A0 = 24, albeit now with the electric field

strength given by We = 200. Firstly, we note that in the WIBL case no steady-states

were found for A0 = 24 with this value of the electric field strength using the numerical

continuation techniques that are discussed in Chapter 4 – the film thickness was found

to become minimal at A0 = 20.55 following a turning point, after which wall amplitude

we find no physically-relevant steady-state solutions. Instead, we choose a steady-state

solution corresponding to A0 = 20.55 prior to this turning point in the WIBL case

for the purposes of comparison with the long-wave results and behaviour, where the

minimum of the film thickness takes the value hmin = 0.0432, which is above the typical

threshold tolerance of hmin = 0.005 which dictates whether the solution is deemed

physical or nonphysical. The film thickness at this amplitude after the turning point was

instead found to be hmin = 1.72x10−6.

In Figure 3.56 we observe the time evolution of the perturbation, and for both models

we are able to see that the perturbation results in deformations to the steady-state being

observed upstream as well as downstream, and an overall growth in the amplitude of

the perturbation in both cases. In the long-wave case, we observe much larger overall

growth of the perturbation despite evolving for a much shorter period in comparison to

the WIBL model. Indeed, t.
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Figure 3.56: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 200, A0 = 24 (long-wave) or A0 = 20.55 (WIBL) and
L0 = 150 for a sinusoidal wall in the long-wave case (left) and the WIBL case (right).
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Figure 3.57: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 1.25, K = 3364.5, We = 200, A0 = 24 (long-wave) or A0 = 20.55 (WIBL) and
L0 = 150 for a sinusoidal wall in the long-wave case (left) and the WIBL case (right).
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Figure 3.58: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 200, A0 = 24 (long-wave) or A0 = 20.55 (WIBL) and
L0 = 150 for a sinusoidal wall in the long-wave case (left) and the WIBL case (right).
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Figure 3.59: The initial, intermediate and final surface profiles of the film for R = 1.25,
K = 3364.5, We = 200, A0 = 24 (long-wave) or A0 = 20.55 (WIBL) and L0 = 150 for a
sinusoidal wall in the long-wave case (left) and the WIBL case (right).

Figures 3.57 and 3.58 show the absolute value of the perturbation at its origin, as well as

the maximum of the absolute value of the perturbation for both the long-wave and WIBL

models respectively. In Figure 3.57 we observe decay for both models, the implication

of which is that the steady-states are not absolutely unstable. However, we also note

that in the long-wave case, the system was found to break down before it could evolve

for 13 time units, such that more information is required to make a determination on the

stability. In Figure 3.58, we observe growth for both models, indicative of instability.

For the WIBL model,the maximum appears relatively constant until approximately t =

45, at which point we observe monotonic growth. In the long-wave case we instead

see extremely rapid growth during the final time units, such that all previous growth is

negligible by comparison.

Figure 3.59 shows the steady-state surface profiles for both the long-wave and WIBL

models at the initial time unit, the middle time unit and the final time unit. In the long-

wave case we again observe a very sharp and localised structure on the film surface, and

the liquid required for this structure is provided from the downward slope of the topog-

raphy. For the WIBL model we observe little qualitative difference between the surface

profiles, due to the much slower comparative growth of the perturbation. Figures 3.60

and 3.61 correspond to the contour plot and normalised contour plot of the perturbation

for both models respectively. For the long-wave model, the contour plot clearly shows

the appearance of the perturbation to the left of the white line corresponding to the ori-

gin of the perturbation, the implication of which is either that the perturbation travelled

downstream to the right and then reappeared to the left once it reached the boundary, or

that the perturbation simply travelled upstream as well as downstream simultaneously.

However, as shown in Figure 3.60, the perturbation does not travel over the domain in
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Figure 3.60: Contour plot showing the propagation of the perturbation, with a solid white
line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We = 200, A0 = 24
(long-wave) or A0 = 20.55 (WIBL) and L0 = 150 for a sinusoidal wall in the long-wave case
(left) and the WIBL case (right).
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Figure 3.61: Normalised contour plot showing the propagation of the perturbation, with a
solid white line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We =
200, A0 = 24 (long-wave) or A0 = 20.55 (WIBL) and L0 = 150 for a sinusoidal wall in the
long-wave case (left) and the WIBL case (right).

the 10 time units over which the simulation took place, and we may thus deduce that the

instability is absolute. Contrariwise for the WIBL model, we do not see the appearance

of the perturbation to the left of its origin; instead we see that the perturbation remains

relatively spatially fixed, despite allowing a somewhat large number of time units for

the simulation. However, the normalised contour plot for the WIBL model shown in

Figure 3.61 makes apparent that we are dealing with a convective instability, due to the

exclusive appearance of features downstream and not upstream, and the overall growth

of the absolute value of the perturbation.

For a sinusoidal wall with L0 = 150 then, we may summarise our results as follows. For

We = 0, we find that the long-wave model predicts stability for A0 = 17, and absolute

instability for A0 = 24, which is consistent with the work by Blyth et al. [7]. For the

WIBL model, both A0 = 17 and A0 = 24 are stable. In the case of electrified film flow

withWe = 45, the long-wave model now predicts stable solutions for both A0 = 17 and
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A0 = 24, the implications of which for the stabilising properties of the normal electric

field have been discussed earlier. The WIBL model for We = 45 similarly predicts

stable solutions for both A0 = 17 and A0 = 24. As the We = 0 case for A0 = 24

was also stable in the WIBL model, we do not find the same stabilising properties. For

We = 200 the long-wave model appears to be absolutely unstable for A0 = 17 although

could conceivably be convectively unstable, and the numerical breakdown prevents a

concrete classification. For A0 = 24 however, the long-wave model exhibits more

clearly absolutely unstable behaviour. In the WIBL model we find that the solutions are

convectively unstable for both A0 = 17 and A0 = 24.

3.4.3 Rectangular wall

In this subsection we now focus upon the rectangular topography instead of the sinu-

soidal topography. As discussed by Tseluiko, Blyth and Papageorgiou [98], the stabilis-

ing and destabilising properties of rectangular topography for the long-wave model are

highly dependent upon both the domain size and the amplitude of the topography. For

smaller domain sizes, e.g. L0 = 31, the topography is initially destabilising for small

amplitudes, e.g. A0 = 0.2, but for larger wall amplitudes, e.g. A0 = 0.4, the topography

becomes stabilising. For larger domain sizes, e.g. L0 = 57, the topography is initially

stabilising for small amplitudes, but rapidly becomes destabilising as we increase the

amplitude of the wall. We now seek to understand the relationship between domain

size, wall amplitude and electric field for both the long-wave and WIBL models.

We begin with Figure 3.62, which shows the time evolution of the perturbation for both

models with L0 = 57, We = 0 and A0 = 0.27. We observe a decay in the amplitude

of the perturbation in both cases, and the perturbation is clearly convected downstream

to the right. Figures 3.63 and 3.64 show the absolute value of the perturbation at its

origin, and the maximum of the absolute value of the perturbation respectively; in both

figures we see that the norm decays in time, although in Figure 3.63 we observe a

growth near t = 65 for both models. However, once again this is simply due to the

perturbation passing from the right-side of the domain to the left-side of the domain

after passing through the boundary, with the growth corresponding to the perturbation

being convected downstream through the origin location once again. It is hence clear

that the steady-states are stable for both models.
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Figure 3.62: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 0, A0 = 0.27 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.63: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 1.25, K = 3364.5, We = 0, A0 = 0.27 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.64: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 0, A0 = 0.27 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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We now increase the amplitude of the rectangular wall to A0 = 1.462. As seen in Fig-

ure 3.65, we now observe the perturbation growing for both the long-wave and WIBL

models as time evolves. In both models the solution appears to be absolutely unstable;

whilst the main body of the perturbation is convected downstream and grows, there is

a trough which travels to the left upstream. Figures 3.66 and 3.67 show the behaviour

of the absolute value of the perturbation in time; in Figure 3.66 we initially observe the

perturbation decaying in time for both models to near-zero, although the norm then be-

gins to grow again at t ≈ 60. In Figure 3.67 for both models we can see the maximum

of the absolute value of the perturbation increases monotonically with time following

an initial large decrease. Figures 3.68 and 3.69 show the contour plot and normalised

contour plot of the perturbation respectively, and in both figures it is clear to see that

although the crest of perturbation grows in time and is convected downstream, we also

observe upstream features. In cases such as these, it is difficult to distinguish between a

convective instability travelling in both directions simultaneously and an absolute insta-

bility, due to the lack of a mathematical framework applicable to nonlocal equations for

determining this objectively. As we know from Brevdo et al. [9] that absolute instability

in the non-electrified case is nonphysical, we must consider the possiblity that the per-

turbation consists of a pulse convecting both upstream and downstream simultaneously.

We now return to an amplitude of A0 = 0.27 albeit whilst simultaneously increasing

electric Weber number to We = 45. In Figure 3.70 we see the time evolution of the

perturbation for both models. Similarly to the We = 0 case, here we observe the pertur-

bation decaying in time and travelling downstream, indicative of a stable solution. This

classification is corroborated by Figures 3.71 and 3.72, which show not only the norms

of the perturbations decreasing at their origins, but also the maximums of the norms of

the perturbations decreasing respectively.

Again the rectangular wall amplitude is increased to A0 = 1.462 and we add our per-

turbation to the steady-state solution, the time evolution of which may be seen in Fig-

ure 3.73. In both models we again observe the indeterminate behaviour noted in the

A0 = 1.462 case for We = 0. Figure 3.74 shows the absolute value of the perturbation

at its origin for both models and we can initially see decay for both models, although

we then observe monotonic growth. Figure 3.75 instead shows the maximum of the ab-

solute value of the perturbation for both models, which was found to similarly increase

after an initial decrease. Figures 3.76 and 3.77 show the contour plot and normalised

contour plot of the perturbation respectively for both models. Again, the steady-states
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Figure 3.65: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 0, A0 = 1.462 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.66: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 1.25, K = 3364.5, We = 0, A0 = 1.462 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.67: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 0, A0 = 1.462 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.68: Contour plot showing the propagation of the perturbation, with a solid white
line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We = 0, A0 = 1.462
and L0 = 57 for a rectangular wall in the long-wave case (left) and the WIBL case (right).
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Figure 3.69: Normalised contour plot showing the propagation of the perturbation, with a
solid white line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We = 0,
A0 = 1.462 and L0 = 57 for a rectangular wall in the long-wave case (left) and the WIBL
case (right).

could be convectively unstable (but not transiently unstable) or absolutely unstable, and

due to the similarities to the We = 0 case we may suspect the steady-states are convec-

tively unstable.

The electric Weber number is now increased to We = 200 and the wall amplitude is

set to A0 = 0.27. Figure 3.78 shows the time evolution for the perturbation for both

the long-wave and WIBL models. In both models we see that the perturbation grows

in time and is convected to the right downstream. In Figure 3.79 we see the absolute

value of the perturbation at its origin; in both models the norm initially decreases, but

increases once the perturbation travels the length of the domain and returns to its original

location. Figure 3.80 shows the maximum of the absolute value of the perturbation at

each time unit for both models. In the long-wave case, we observe near-monotonic

periodic growth. Figure 3.81 shows the normalised contour plot of the perturbation,
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Figure 3.70: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 45, A0 = 0.27 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.71: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 1.25, K = 3364.5, We = 45, A0 = 0.27 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.72: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 45, A0 = 0.27 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.73: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 45, A0 = 1.462 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.74: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 1.25, K = 3364.5, We = 45, A0 = 1.462 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.75: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 45, A0 = 1.462 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.76: Contour plot showing the propagation of the perturbation, with a solid white
line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We = 45, A0 =
1.462 and L0 = 57 for a rectangular wall in the long-wave case (left) and the WIBL case
(right).

0 50 100 150

x

0

20

40

60

80

100

t

0 50 100 150

x

0

20

40

60

80

100

t

Figure 3.77: Normalised contour plot showing the propagation of the perturbation, with a
solid white line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We = 45,
A0 = 1.462 and L0 = 57 for a rectangular wall in the long-wave case (left) and the WIBL
case (right).

and in both models the perturbation can be seen growing in time and being convected

away from its original position.

We now examine our final case, where we have We = 200 for A0 = 1.462 and L0 = 57.

In Figure 3.82 we see the time evolution of the perturbation to our steady state for both

models, for which we see near-identical qualitative behaviour of the perturbation grow-

ing in time and travelling downstream, consistent with a transient instability. Figures

3.83 and 3.85 share many features – the absolute value of the perturbation at its origin

was found to initially decrease in time for both models in Figure 3.83, then increase

slightly as the perturbation is convected downstream.
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Figure 3.78: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 200, A0 = 0.27 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.79: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 1.25, K = 3364.5, We = 200, A0 = 0.27 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.80: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 200, A0 = 0.27 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.81: Normalised contour plot showing the propagation of the perturbation, with a
solid white line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We =
200, A0 = 0.27 and L0 = 57 for a rectangular wall in the long-wave case (left) and the
WIBL case (right).

Figure 3.82: Time evolution of the perturbation η originating at midpoint x = 2L with
R = 1.25, K = 3364.5, We = 200, A0 = 1.462 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.83: Time evolution of the absolute value of the perturbation at the midpoint x = 2L
for R = 1.25, K = 3364.5, We = 200, A0 = 1.462 and L0 = 57 for a rectangular wall in
the long-wave case (left) and the WIBL case (right).
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Figure 3.84: Time evolution of the maximum of the absolute value of the perturbation for
R = 1.25, K = 3364.5, We = 200, A0 = 1.462 and L0 = 57 for a rectangular wall in the
long-wave case (left) and the WIBL case (right).
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Figure 3.85: Normalised contour plot showing the propagation of the perturbation, with a
solid white line showing the origin of the perturbation, for R = 1.25, K = 3364.5, We =
200, A0 = 1.462 and L0 = 57 for a rectangular wall in the long-wave case (left) and the
WIBL case (right).

In Figure 3.85 we see overall growth for both models, indicative of instability, the im-

plication of which is that both steady-states are transiently unstable. We may thus sum-

marise the findings for the rectangular wall as follows. For A0 = 0.27, the steady-state

solutions to both the long-wave and WIBL models were found to be stable for We = 0

and We = 45, and convectively unstable for We = 200. For the case of A0 = 1.462, it

was found in both models that the steady-states were convectively unstable for We = 0

and We = 45, and transiently unstable for We = 200. We thus see that a convective

instability may be ‘reduced’ to a transient instability solely by the inclusion of a normal

electric field.
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3.5 Critical Reynolds numbers for flows over topograph-

ical substrates

Here we numerically compute the critical Reynolds numbers for a given domain as a

function of our rescaled wall amplitude A0 for both the long-wave and WIBL models

and for a variety of electric Weber numbers with both sinusoidal and rectangular topog-

raphy, in a partial extension of the work done by Tseluiko, Blyth and Papageorgiou [98]

for the long-wave model in the absence of a normal electric field. We begin with an

initial guess for the critical Reynolds number which is based on the previously derived

equation (3.17) which depends on our electric Weber number:

Rc =
5 cot β

4
− 5W 2

e

8C
. (3.70)

3.5.1 Long-wave model

We start with the aforementioned formula for the critical Reynolds number (3.70) for a

flat wall in the case of a normal electric field, and we calculate its value for a given set

of parameters. We then assume that we have a Nusselt flat film solution, and try to find

the corresponding critical Reynolds number using our initial guess, with the MATLAB

[36] ‘fzero’ algorithm employed using a combination of quadratic interpolation, secant

and bisection methods. Following this, we incrementally increase the amplitude of the

wall, then recompute our steady-state now in the case of a non-flat wall using a trust-

region dogleg method of MATLAB [36] implemented as an ‘fsolve’ algorithm. With

this new film thickness array corresponding to the determined steady solution, we then

examine the effect of our linearised operator on the perturbation to our film thickness

(and corresponding flux in the case of the WIBL model). If we then introduce the

standard Floquet-Bloch mapping for the perturbation, h1 → eiKxh̃1(x), where K ∈
[−π/L, π/L] is the Bloch wavenumber, then the eigenvalues of our linearised operator

determine whether our steady-state is stable or unstable [47, 98]. Starting from −π/L
we increaseK in increments of π/(50L) up until π/L, and for each value we recompute

our eigenvalues and check to see whether any are above some prescribed tolerance

(here taken as 10−9). If such a K exists, then the essential spectrum of our linearised

operator is shifted into the right half-plane and we are dealing with a spectrally unstable
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steady-state, whereas if this K does not exist, we know we are dealing with a spectrally

stable solution. We also note that due to the nonlocal Hilbert transform term, we solve

our linearised operator in Fourier space, and a full derivation of this representation in

Fourier space may be found for the WIBL model in the following subsection, although

is not included for the long-wave model for brevity.

In Figure 3.86 we see the relationship between the critical Reynolds number and the

rescaled amplitude sinusoidal wall topography in the case of L0 = 150 for We =

0, 10, 50 and 100 for the long-wave model. Due to variations in the critical Reynolds

number being small in the case of We = 50 and We = 100, at least relative to the

variations in the case of We = 0 and We = 10, we show a zoom-in of these two cases

in Figure 3.87 on the left-hand side and right-hand side, respectively. The most obvious

effect of the electric field is the overall lowering of the critical Reynolds number. In

the case of no electric field, we know both analytically and from our numerical results

that in the case of zero topographical amplitude the critical Reynolds number is 1.25,

whereas in the case of We = 50 for example, we find that the critical Reynolds number

in the case of no topography is instead Rc = 0.936.

However, there are also more complicated dynamics which can be observed. For ex-

ample, in the case of no electric field, we find that the critical Reynolds number mono-

tonically increases until the wall amplitude A0 ≈ 18.25 is reached, at which point the

critical Reynolds number begins monotonically decreasing, and eventually rapidly de-

cays once the wall amplitude is increased past A0 ≈ 22.37. In the case of We = 10

however, our results are already qualitatively different - we instead see that the critical

Reynolds number instead decreases initially, until the wall amplitude reaches approx-

imately A0 ≈ 8.35. Once again we see the characteristic growth, although now the

region of increasing critical Reynolds number terminates for A0 ≈ 19.35, such that the

aforementioned rapid decay now occurs for larger sinusoidal wall amplitudes than was

observed in the case of no electric field. In the case ofWe = 50, we again see drastically

qualitatively different behaviour. The critical Reynolds number now monotonically de-

creases for all sinusoidal wall amplitudes, as observed in Figure 3.87. We also observe

that the variations in the critical Reynolds number are much smaller in comparison to the

previously discussed cases of smaller electric Weber numbers. Finally, in the We = 100

case we see the opposite dynamics; the critical Reynolds number now increases mono-

tonically with our rescaled wall amplitude, although again we observe much smaller
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Figure 3.86: Plot of the critical Reynolds number against the rescaled sinusoidal wall am-
plitude for We = 0 (red), We = 10 (green), We = 50 (black) and We = 100 (blue) for
L0 = 150 in the long-wave model.

0 5 10 15 20 25

A0

0.918

0.92

0.922

0.924

0.926

0.928

0.93

0.932

0.934

0.936

R
c
r
it

0 5 10 15 20 25

A0

0.462

0.464

0.466

0.468

0.47

0.472

0.474

R
c
r
it

Figure 3.87: Plot of the critical Reynolds number against the rescaled sinusoidal wall am-
plitude in the case of We = 50 (left) and We = 100 (right) for L0 = 150 in the long-wave
model.
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Figure 3.88: Plot of the critical Reynolds number against the rescaled sinusoidal wall am-
plitude in the case of We = 60 (left) and We = 62.5 (right) for L0 = 150 in the long-wave
model.
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Figure 3.89: Plot of the critical Reynolds number against the rescaled rectangular wall am-
plitude for We = 0 (red), We = 10 (green), We = 50 (black) and We = 100 (blue) for
L0 = 57 in the long-wave model.

variations in the critical Reynolds number in comparison to the We = 0 and We = 10

cases.

Following these results, we choose to examine intermediary electric Weber numbers and

the transition between the monotonically decreasing behaviour observed for We = 50

and the monotonically increasing behaviour observed for We = 100. Figure 3.88 shows

the relation between Rc and A0 for We = 60 and We = 62.5. For We = 62.5, we see

that the relationship appears similar to the We = 100 case, although we also observe

curious behaviour for intermediary amplitudes where the critical Reynolds number de-

creases and increases in a seemingly periodic way – after the start of this behaviour at

approximately A0 ≈ 7.5, we find that every increase in A0 by ∼ 4 corresponds to a dis-

continuity in the slope. For We = 60 we observe the same ‘lumpy’ behaviour observed

for We = 62.5, although now it is clear that we are closer to the transition from the

We = 50 side than the We = 100 side, as evident from the overall decrease in critical

Reynolds number as A0 increases from A0 = 0 to A0 = 25, as opposed to the overall

growth observed for We = 62.5. The aforementioned ‘lumpy’ behaviour could perhaps

be explained by different pairs of complex eigenvalues crossing the imaginary axis for

various scaled wall amplitudes, although a more thorough investigation is left for future

work.
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For the long-wave model then, we may hypothesise the following: it would appear that

for small electric field strengths (i.e. We ≈ 0 ∼ 10), both small-amplitude and large am-

plitude sinusoidal topography are destabilising, whereas moderate wall amplitudes are

stabilising. For sufficiently large electric field strengths (We ' 100), the sinusoidal to-

pography is stabilising for all wall amplitudes. For intermediary electric field strengths

we find that there is a transition in the range We ≈ (60− 62.5) whereby the sinusoidal

wall changes from being destabilising at A0 = 25 to stabilising at A0 = 25.

For rectangular topography instead, we find the relationship between Rc and A0 given

in Figure 3.89. For We = 0 we observe that for scaled rectangular wall amplitudes up

to A0 = 0.27 the wall is stabilising compared to a flat wall, and the critical Reynolds

number increases with scaled wall amplitude. Past this scaled amplitude, we find that

the wall is still stabilising, but the stationary point signifies the change in the rectangu-

lar topography from stabilising to destabilising, and the critical Reynolds number now

rapidly decreases with wall amplitude, until we reach A0 ≈ 0.4, at which point we no

longer find solutions for Rc. We emphasise that this point corresponding to the lack of

solutions is caused by neither the stopping condition for the film thickness hmin = 0.005

nor the discretisation parameters, and that this behaviour is also observed for the WIBL

model with a rectangular wall. Due to the clear relationship between this lack of solu-

tions and the electric Weber number, we also do not expect that this is a numerical issue

related perhaps to the steepness of the rectangular walls and the well-known Gibbs phe-

nomenon common when using Fourier mode representation. One possible explanation

may be that we have turning points at the end-points of the curves, which correspond to

the onset of a multiplicity of solutions and hence we would have a large change between

the steady solutions at the end-points and the steady solutions for slightly larger scaled

wall amplitudes.

For We = 10 the wall is stabilising for amplitudes up until A0 = 0.16 at which point

the wall becomes rapidly destabilising as we increase the amplitude, until we reach a

similar point as in the We = 0 case, whereby we stop finding solutions for Rc, and we

note that this point is at A0 = 0.36 instead of A0 = 0.4. For We = 50 and We = 100 we

find the wall destabilising for all amplitudes, and similarly note the dependence of the

break-point on the electric Weber number. We may also observe the overall decrease

in the critical Reynolds number which is observed as we increase the electric Weber

number.
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3.5.2 WIBL model

We now proceed similarly for the WIBL model. We begin with an initial guess for

the critical Reynolds number using the same equation (3.70) as in the long-wave case,

which includes the effects of the electric field. We then solve a reduced equation for

the film thickness, where we make use of the fact that as we are purely interested in the

transition between stability and instability, and no longer concerned with distinguishing

between types of instability, we are aware that for a steady-state, there is no temporal

dependence for the film thickness, and as such our kinematic condition implies that we

have constant flux. We can then substitute this constant flux q(x, t) = q0 and the steady-

state film thickness h0(x, t) = h0(x) into our linearised equations (3.18) and (3.19) and

analyse the behaviour of the perturbations to the steady-state solution.

We use the Floquet-Bloch representation for the perturbations, h1 → eiKxh̃1(x), q1 →
eiKxq̃1(x). In matrix representation we thus have

ω

[
h̃1

q̃1

]
= e−iKx

[
0 L12(e

−iKxq̃1)

L21(e
−iKxh̃1) L22(e

−iKxq̃1)

][
h̃1

q̃1

]
, (3.71)

or equivalently

ω

[
h̃1

q̃1

]
=

[
0 LK12

LK21 LK22

][
h̃1

q̃1

]
. (3.72)

Making use of the fact that

LK12q̃1 = −e−iKx(eiKxq̃1)x = −(iKq̃1 + q̃1x), (3.73)

LK22q̃1 = e−iKx(c0e
iKxq̃1 + (c1e

iKxq̃1)x) = c0q̃1 + c1(iKq̃1 + q̃1x), (3.74)

LK21q̃1 = e−iKx
(
b0e

iKxh̃1 + b1(e
iKxh̃1)x + b2(e

iKxh̃1)xxx + b3H
[
(eiKxh̃1)xx

])
= b0h̃1 + b1(iKh̃1 + h̃1x) + b2((iK)3h̃1 + 3(iK)2h̃1x + 3iKh̃1xx

+ h̃1xxx) + b3e
−iKxH

[
(eiKxh̃1)xx

]
, (3.75)
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we now consider our operators in Fourier space, as we seek to simplify our Hilbert

transform term. Such consideration yields

F(iKh̃1 + h̃1x) = i(K + k)̂̃h1(k), (3.76)

F((iK)3h̃1 + 3(iK)2h̃1x + 3iKh̃1xx + h̃1xxx) = [i(K + k)]3̂̃h1(k), (3.77)

F
(
e−iKxH

[
(eiKxh̃1)xx

])
= F

(
e−iKxH

[
eiKx((iK)2h̃1 + 2iKh̃1x + h̃1xx)

])
,

= −i sgn(k +K)F
(

(iK)2h̃1 + 2iKh̃1x + h̃1xx

)
,

= −i sgn(k +K)(i(k +K))2 ̂̃h1(k). (3.78)

We hence have a representation for our linearised system which can be analysed nu-

merically in Fourier space, and the spectrum of the linearised operator can be obtained,

providing the necessary information on the stability of the corresponding steady-state

solution. We first produce diagrams showing the relationship between Rc and A0 for

the WIBL model in the sinusoidal case, and discuss the results.

In Figure 3.92 we see that the sinusoidal wall is very strongly stabilising at large am-

plitudes for We = 0, and significantly less stabilising at these amplitudes if we instead

have We = 50 or We = 100. Although we note that increasing the electric field strength

shifts the curves down at high amplitudes, we still observe that in all cases the critical

Reynolds number increases monotonically with our sinusoidal wall amplitude, such that

the effect of the topography and the electric field in tandem does not change depending

on the electric field strength – the sinusoidal wall is always stabilising and the critical

Reynolds number increases with A0. In the We = 0 case we note a point at A0 ≈ 18

that signals a decrease in the rate of increase in the critical Reynolds number as a func-

tion of the wall amplitude. In the We = 10 case we see this point shifted to the right,

and for higher electric field strengths it does not appear and presumably occurs instead

at higher wall amplitudes than those included here, which in turn would approach the

limit of minimum film thickness.

In comparing the WIBL and long-wave models in the case of a sinusoidal wall then, we

may say the following. Firstly, we note the large discrepancy between predicted critical

Reynolds numbers; in the long-wave case we observe the critical Reynolds number

never increasing past Rc = 1.35 for any investigated value of amplitude of electric field

strength, whereas in the WIBL model we see that for We = 0 we have Rc = 27.16,

a surprisingly large value. Direct comparisons are shown in Figure 3.91 for the cases
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Figure 3.90: Plot of the critical Reynolds number against the rescaled sinusoidal wall am-
plitude for We = 0 (red), We = 10 (green), We = 50 (black) and We = 100 (blue) for
L0 = 150 in the WIBL model.
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Figure 3.91: Plot of the critical Reynolds number against the rescaled sinusoidal wall ampli-
tude in the case of We = 0, 10 (left) and We = 50, 100 (right) for L0 = 150 in the long-wave
and WIBL models.

of We = 0, 10 (left panel) and We = 50, 100 (right panel). In general we see that

for larger electric Weber numbers there is less discrepancy between the two models,

with the We = 100 case showing only small quantitative differences between the long-

wave and WIBL models. Contrariwise in the case of We = 0 we not only see a large

difference in the magnitudes of the critical Reynolds number, but also a fundamentally

different relationship between Rc and We. In the WIBL model the sinusoidal wall

is strongly stabilising for all amplitudes, whereas in the long-wave model the wall is

weakly destabilising for small amplitudes, somewhat strongly destabilising for large

amplitudes, and weakly stabilising for intermediate amplitudes.

This behaviour of the critical Reynolds number for the WIBL model is consistent with
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Figure 3.92: Plot of the critical Reynolds number against the rescaled rectangular wall am-
plitude for We = 0 (red), We = 10 (green), We = 50 (black) and We = 100 (blue) for
L0 = 57 in the WIBL model.
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Figure 3.93: Plot of the critical Reynolds number against the rescaled rectangular wall am-
plitude in the case of We = 0, 10 (left) and We = 50, 100 (right) for L0 = 150 in the
long-wave and WIBL models.

the time-dependent simulations carried out earlier, where scaled sinusoidal wall ampli-

tudes of A0 = 17 and A0 = 24 were stabilising for both We = 0 and We = 45, with

only the We = 200 case causing convective instabilities for both scaled amplitudes. As

the We = 200 case is unstable even for a flat wall at zero Reynolds number, the numer-

ical approach outlined previously fails here, and if we wish to investigate We ≥ 200 a

new methodology is required.

In the case of a rectangular wall, the relationship between Rc and A0 for the WIBL

model is instead shown in Figure 3.92, where we observe the following. In the case of

We = 0 we find that Rc increases proportionally with the rectangular wall amplitude
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and is hence stabilising for all amplitudes. In the We = 10 case however, we instead

observe that the wall is stabilising up until A0 ≈ 0.34 at which point the wall begins

to become destabilising, although still remains more stabilising than the flat wall case.

For We = 50, 100 we instead see that the wall is destabilising for all amplitudes, and

the degree to which the wall is destabilising is proportional to the amplitude of the

wall. We also, of course, see that as we increase our electric Weber number, it has the

primary effect of lowering the critical Reynolds number, due to the known destabilising

properties.

Figure 3.93 shows in the cases of We = 0, 10 and We = 50, 100 the comparison be-

tween the long-wave and WIBL models in terms of predictions for the critical Reynolds

number as a function of scaled wall amplitude in the rectangular wall case. Gener-

ally we see much closer agreement between the two models whilst using rectangular

topography instead of sinusoidal; for We = 50, 100 we see very little qualitative differ-

ence between the two models except that the WIBL model terminates at slightly greater

scaled wall amplitudes and that the critical Reynolds numbers near these stopping points

are slightly greater as well.

In the We = 0, 10 cases we observe larger discrepancies between the models; for

We = 0 the long-wave model is destabilising at large amplitudes, as opposed to the

WIBL model which is strongly stabilising at large amplitudes and indeed stabilising

everywhere. For We = 10 the long-wave model predicts that the wall is always desta-

bilising, whereas in the WIBL model for We = 10 we instead have that the wall is

stabilising up until A0 ≈ 0.34, at which point it becomes less stabilising for greater

amplitudes but still stabilising overall.



Chapter 4

Bifurcation diagrams of steady-state
and time-periodic solutions

4.1 Methodology

Here we outline the methodology involved in solving our equation systems numerically

using a pseudospectral Fourier representation. We first assume that the PDE may be

approximated by an infinite-dimensional system of ODEs, and subsequently the corre-

sponding time-periodic solutions and steady-states are then represented as periodic or-

bits and fixed points, respectively, of a finite-dimensional approximation of this infinite-

dimensional system, following the methodology outlined by Lin et al. [50]. When solv-

ing the long-wave model, our solution is represented as a summation of time-dependent

Fourier coefficients for h, whereas when solving the WIBL model we instead have our

solution as a summation of time-dependent Fourier coefficients for both h and q, i.e. we

have

h(x, t) =
∞∑

k=−∞

ĥk(t)e
ikx, (4.1)

q(x, t) =
∞∑

k=−∞

q̂k(t)e
ikx. (4.2)

In this way, we are able to represent our original PDE as a system of ODEs in Fourier

space of the form
dĥk
dt

= Fk(ĥ), (4.3)

113
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for the long-wave equation or of the form

dĥk
dt

= Gk(q̂), (4.4)

dq̂k
dt

= Hk(ĥ, q̂), (4.5)

for the WIBL model, where k ∈ Z and ĥ denotes the vector of the Fourier coefficient

for h and q̂ denotes the vector of the Fourier coefficient for q. The number of modes in

Fourier space is truncated, and here we truncate it to−N ≤ k ≤ N , where we typically

use N = 450 for both models. When solving the WIBL model, we have 4k + 2 Fourier

modes (2k+1 from both h and q), 4k+1 of which are unknown Fourier modes (2k from

h and 2k+1 from q) due to the integral constraint fixing the zeroth Fourier mode of h. In

the long-wave model we instead have 2k+1 Fourier modes for h, where 2k are unknown

Fourier modes and similarly we use an integral constraint which is equivalent to fixing

the average film thickness within the liquid and, therefore, to fixing the zeroth Fourier

coefficient of h. Also included for both models is a de-aliasing procedure, whereby

we extend the number of Fourier modes in computing Fourier transforms by M such

that we are able to perform the nonlinear operations in real space and subsequently

ignore the contributions of these modes in Fourier space. An FFTW [28] algorithm

is employed and Auto-07p [24] software is used for the pseudo-arclength continuation

(where we typically continue in the amplitude of the wall A) such that steady-states

and the location and classification of bifurcations may then be determined. Allgower

and Georg [2] provide a detailed overview of related numerical continuation methods,

whereas Kuznetsov [48] gives a comprehensive summary of applied bifurcation theory

relevant to the present work.

Recent work by Lin et al. [51] details a numerical method for continuation which is ap-

plicable for a long-wave model which is affected by a normal electric field, and allows

for the finding of time-periodic solutions in the travelling frame of reference, although

this is not considered here. Due to our a posteriori knowledge of the types of bifur-

cations which are found whilst performing amplitude continuation for our models, we

shall only give an overview of the most relevant bifurcations and dynamical classifi-

cations, namely saddle-node bifurcations, pitchfork bifurcations and Hopf bifurcations,

although a comprehensive review of bifurcations methods in the context of fluid dy-

namics is given by Djikstra et al. [23], who also discuss quasi-periodic behaviour and

chaotic attractors. For more insight into Fourier spectral methods within fluid mechan-

ics the reader is referred to the monograph by Boyd [8], in addition to the monograph
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by Karniadakis and Sherwin [44] and the monograph by Canuto et al. [10]. For spectral

approaches within fluid mechanics using specifically MATLAB [36] we further have

the work by Pozrikidis [64] and the well-known monograph by Trefethen [94].

In a saddle-node bifurcation, a pair of equilibria (corresponding to two different steady-

state solution in the context of our work) coalesce at the bifurcation point (a certain

value of the bifurcation parameter, such as the wall amplitude in the context of our

work) and annihilate each other as the bifurcation parameter is increased or decreased.

One of the equilibria must be more unstable than the other one (which can be stable). To

be more precise, it must have a real positive eigenvalue which approaches the imaginary

axis and crosses it at the saddle-node bifurcation as the bifurcation parameter varies and

the equilibrium follows the bifurcatin curve.

In the context of our work, a pitchfork bifurcation to a family of steady-state solutions

corresponds to the appearance of two additional families of steady-state solutions at the

bifurcation point. The stability properties of the solutions of the main family change

at the bifurcation point. To be more precise, there is a real eigenvalue that crosses the

imaginary axis at the bifurcation point as the bifurcation parameter is varied. If all the

other eigenvalues remain negative, we say that the pitchfork bifurcation is supercritical

if the steady-state solutions of the two new families of solutions are stable and subcriti-

cal if the steady-state solutions of the two new families of solutions are unstable.

We may intuitively think of a Hopf bifurcation in the following way, as a paraphrase of

the elegant statement by Marsden and McCracken [55] discussing the Abraham [1]

picture of bifurcation; let us assume that we have some point attractor on a three-

dimensional landscape, with the basin of attraction taking parabolic form. We may

think of the time evolution of the system to be represented by the flow of water on the

landscape. A Hopf bifurcation is then represented by a small hill forming at the bottom

of this point attractor basin, such that rather than having a single point attractor, we

now have a circular formation at the bottom of the basin. This circle represents a time-

periodic solution to our system, and the basin of attraction now excludes the original

point attractor. The time-periodic solution following the Hopf bifurcation is stable if

the bifurcation is supercritical, and hence the time-periodic steady-state remains within

a neighbourhood of the original steady-state prior to the bifurcation. In the case of a

subcritical Hopf bifurcation, we instead have the interesting case of an orbitally un-

stable solution. Unstable periodic solutions are not typically physically observable in

practice however, as slight perturbations may disturb the periodic behaviour, and hence
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novel techniques are required to prepare the system such that these time-periodic so-

lutions appear, see, for example, the work of Hassard, Kazarinoff and Wan [31] for a

detailed approach in such cases.

4.2 Bifurcation diagrams

4.2.1 L = 50

Continuation is performed using Auto07p software [24] and the film thickness solutions

are characterised by the norm

‖h0‖2 =
1

2Lc

∫ 2Lc

0

h20(x)dx. (4.6)

We start from the Nusselt flat film solution, and continue in the wall amplitude, stopping

once the film thickness becomes zero. The wall period is 2L and the computational

domain is chosen to be 4L.

In Figure 4.1 we see steady-state branches in the case of no electric field, and with elec-

tric field of various strengths for L = 50 in the long-wave model for a sinusoidal wall.

In the case of We = 0 corresponding to no electric field, we find a stable main branch

of solution of period 2L which undergoes a subcritical pitchfork bifurcation, at which

point the main branch becomes unstable, and a secondary subharmonic branch(es) of

period 4L emerge, see the red dashed line. Note that each point of the red dashed line

actually corresponds to a pair of solutions which can be obtained from each other by a

shift in x by 2L. The subharmonic branch is found to have a turning point (a saddle-

node bifurcation), and the branch is unstable for all amplitudes. In this We = 0 case

we fully recover the main branch and subharmonic branch found by Tseluiko, Blyth

and Papageorgiou [98] for non-electrified film flow for the same parameter values. As

the electric field strength increases, we find the main and subharmonic branches shift

to the right and downwards. Both of these behaviours are explained in terms of the

phase-shift between the free surface and the wall. For a non-electrified film flow it is

known that the phase shift between the free surface and the topography is inherently

negative, such that the liquid lags behind the wall to the left, see, for example, Tseluiko

and Papageorgiou [99]. As the electric field increases, the phase shift increases (but

decreases in absolute value) and the free surface moves to the right, such that the local
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Figure 4.1: Branches of steady-state solutions with L = 50, K = 3364.5, R = 1.25 and
various electric Weber numbers for the long-wave model with a sinusoidal wall. The main,
black branches denote 2L-periodic solutions, whereas the red branches denote subharmonic
4L-periodic solutions. Red circles correspond to Hopf bifurcations, solid lines correspond to
stable solutions, and dashed lines correspond to unstable solutions. Pink dotted lines corre-
spond to time-periodic solutions.
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Figure 4.2: Close-up of Figure 4.1 showing the time-periodic branches (pink dotted lines)
following Hopf bifurcations. Both branches of time-periodic solutions are stable everywhere.
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Figure 4.3: Surface profiles of time-periodic solutions with A = 0.1, L = 50, K = 3364.5,
R = 1.25, with We = 75 (left) and We = 100 (right) for the longwave model with a
sinusoidal wall.
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Figure 4.4: Branches of steady-state solutions with L = 50, K = 3364.5, R = 1.25, and
various electric Weber numbers for the long-wave model with a sinusoidal wall. The main,
black branches denote 2L-periodic solutions, whereas the red branches denote subharmonic
4L-periodic solutions. Solid lines correspond to stable solutions, and dashed lines correspond
to unstable solutions.

film thickness becomes more uniform, corresponding to a decrease in the film thickness

norm. As a consequence of the film thickness becoming more uniform, greater ampli-

tudes of the wall can be accommodated before the film thickness becomes minimum

and the stopping criterion is reached.
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For We = 75 we see that a Hopf bifurcation occurs at A = 1.062, and that prior to this

bifurcation the main branch is unstable. For We = 100 we also see the disappearance

of the subharmonic secondary branch, and the main branch following the Hopf bifur-

cation is now stable until the film thickness becomes minimal, which occurs at larger

wall amplitudes than noted previously. As discussed previously, the presence of a Hopf

bifurcation indicates the presence of a family of time-periodic solutions [48], which are

included in Figure 4.1 but difficult to distinguish as the time-periodic branch closely

follows the main branch, although a close-up of this time-periodic branch is given in

Figure 4.2. Both branches of time-periodic solutions were found to be stable every-

where following analysis of the diagnostic Auto-07p file and examination of the first

Lyapunov coefficient which is negative for all periodic solutions. It can be seen that the

time-periodic branches closely follow the shape of the main branch, although terminate

slightly above the initial Nusselt flat film solution starting point. Surface profiles of

time-periodic solutions chosen at A = 0.1 are given in Figure 4.3 for both branches.

The periodicity of the solution for We = 75 was determined to be 100.029 dimension-

less time-steps, whereas the periodicity in the We = 100 case was found to be 99.9461

dimensionless time-steps. As can be seen by comparing the initial profiles of the time-

periodic solutions, we again see the characteristic increase in the deflection of the free

surface as the strength of the electric field increases.

In Figure 4.4 we see the same We = 0 case, in addition to the two branches computed

for higher electric Weber numbers of We = 200 and We = 400. In both cases, we

see that the branches are unstable everywhere. In the We = 200 case, we note that the

branch reaches its maximum value of the wall amplitude before terminating, suggesting

that this Weber number is close to the number required to completely eliminate the

phase shift. This is corroborated by examining the main We = 400 branch, which we

would then expect to correspond approximately to a positive phase shift which is equal

in magnitude to the non-electrified case, albeit with an opposite sign corresponding to

the liquid now leading the topography, and indeed the We = 400 branch is seen to be

qualitatively similar to the We = 0 case.

We now recompute the steady-state branches using the WIBL model for the same pa-

rameter values, the results of which are shown in Figure 4.5. The first most notable

distinction is observed for We = 0 and We = 45, where we see that the branches

are stable everywhere, with no subcritical pitchfork bifurcations or subharmonic 4L-

periodic solutions. In the We = 75 case we still recover the Hopf bifurcation found in

the long-wave case, although there is a discrepancy for the amplitude corresponding to
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Figure 4.5: Branches of steady-state solutions with L = 50, K = 3364.5, R = 1.25, and
various electric Weber numbers for the WIBL model with a sinusoidal wall. The main, black
branches denote 2L-periodic solutions. Red circles correspond to Hopf bifurcations, solid
lines correspond to stable solutions, and dashed lines correspond to unstable solutions. Pink
dotted lines correspond to time-periodic solutions.
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this Hopf bifurcation, as we shall discuss shortly. This discrepancy is also noted in the

We = 100 case, although it is otherwise qualitatively similar to the long-wave model

except that the branch terminates for slightly higher wall amplitudes (at A ≈ 11 rather

than A ≈ 8.4) and reaches higher film thickness norms, although the latter is at least

partially a consequence of the former.

For We = 200 we begin to see greater discrepancies between the two models. In the

long-wave case, the branch was unstable everywhere, whereas in the WIBL model we

find the branch to be primarily stable, although with a Hopf bifurcation at A = 2.52,

very similar to the Hopf bifurcation found at A = 2.67 in the We = 100 case, below

which the branches are unstable. We also note that the branch itself is shifted further to

the left in relation to the We = 100 case and reaches the maximum of the film thickness

norm, which is consistent with the results observed for the long-wave model, however

we also note that the branch terminates at a much lower wall amplitude (A ≈ 6 rather

than A ≈ 12.6). For We = 400 the branch is qualitatively very similar to the equivalent

branch for the long-wave model, and is unstable everywhere.

Figure 4.6 shows the difference in behaviours of the branches for the We = 75 cases

computed previously for the long-wave (blue) and WIBL (red) models. The most obvi-

ous discrepancy occurs between the two models for larger wall amplitudes, where the

film thickness norm for the long-wave model can be seen to turn back on itself, as op-

posed to the WIBL model, the film thickness norm of which increases with amplitude

at a relatively constant rate. The Hopf bifurcation was found to occur at A = 1.06 in

the long-wave model and A = 0.87 in the WIBL model, such that we notice an approx-

imate 20% discrepancy between the amplitudes corresponding to the Hopf bifurcation

for both models.

In general the two models disagree in their predictions for the wall amplitude corre-

sponding to a Hopf bifurcation in the case of a prescribed electric Weber number, al-

though the degree to which the predictions diverge appears to depend heavily on domain

size, wall amplitude and electric Weber number, such that to make any conclusory state-

ment a more thorough investigation would be required. Nevertheless, we make clear that

the long-wave model does not typically underestimate the linear stability threshold in

electrified films over no topography, nor for non-electrified flow over topography, and

this discrepancy may be a result of interplay between the two features.

In Figure 4.7 we see the surface profile for various electric Weber numbers in the case

of A = 2.5 for the parameters mentioned previously for sinusoidal topography for the
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Figure 4.8: Surface profiles with A = 2.5, L = 50, K = 3364.5, R = 1.25, and various
electric Weber numbers for the WIBL model with a sinusoidal wall.
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long-wave model. In the We = 0 stable main branch case we see a large negative

phase shift between the wall and the free surface, and the film is almost touching the

wall on the downwards slopes. For both the first and second subharmonic solution

we see behaviour somewhat akin to a capillary ridge which is commonly observed over

rectangular topography, with a small downward deflection prior to a steep topographical

change, followed by a thick region of the liquid. We remind the reader that both of these

subharmonic solutions are unstable, as are all solutions on the subharmonic branch. For

the unstable We = 100 solution, we see that the phase shift has increased and the free

surface is now almost uniform. In the unstable We = 200 case, the free surface is

now leading the wall, and the phase shift is positive. Re-examination of Figure 4.4 and

Figure 4.5 makes clear that in the case of We = 400, the branch terminates before the

A = 2.5 wall amplitude is reached in both models, and we do not find a steady-state

solution for either model.

Figure 4.8 shows the surface profiles for the same parameter values, albeit for the WIBL

model. Here we again find that the We = 0 case is stable and the We = 100 and

We = 200 cases are unstable. We also note the lack of subharmonic solutions, due to

the nonexistence of the subharmonic branch in the WIBL model. The most noticeable

feature of the WIBL model in comparison to the long-wave model is that the effect of

the electric field on the phase shift is less pronounced, and the initial phase shift for

non-electrified flow is smaller, although we still observe an initial negative phase shift

for We = 0 which becomes positive for We = 200.

4.2.2 L0 = 150

The next steady-state branches and time-periodic solutions we wish to examine corre-

spond to the parameter values discussed in Chapter 3 for L0 = 150 with a sinusoidal

wall and L0 = 57 for a rectangular wall. We remind the reader that L0 is defined as

L0 = L
(sin β

R

)1/3
. (4.7)

Figure 4.9 shows the long-wave steady-state branches for L0 = 150 and the sinusoidal

wall case for various electric Weber numbers. In the We = 0 and We = 10 cases we
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Figure 4.9: Branches of steady-state solutions with L0 = 150, K = 3364.5, R = 1.25, and
various electric Weber numbers for the long-wave model and a sinusoidal wall. The main,
black branches denote 2L-periodic solutions. Red circles correspond to Hopf bifurcations,
solid lines correspond to stable solutions, and dashed lines correspond to unstable solutions.
Pink dotted lines correspond to time-periodic solutions.
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Figure 4.10: Branches of steady-state solutions with L0 = 150, K = 3364.5, R = 1.25, and
various electric Weber numbers for the WIBL model and a sinusoidal wall. The main, black
branches denote 2L-periodic solutions. Red circles correspond to Hopf bifurcations, solid
lines correspond to stable solutions, and dashed lines correspond to unstable solutions. Pink
dotted lines correspond to time-periodic solutions.
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Figure 4.11: Comparison between the long-wave (blue) and WIBL (red) models for the
branches of steady-state solutions in the case of L0 = 150, K = 3364.5, R = 1.25, and
We = 0, 10 for a sinusoidal wall.

observe qualitatively similar behaviour; for We = 0 and We = 10 we observe Hopf

bifurcations at A ≈ 16.5 and A ≈ 20.5 respectively, and consequently time-periodic

branches originating from these points, after which the main branches become unstable.

The time-periodic branches were found to be unstable everywhere, and terminate when

the wall amplitude reaches zero slightly above the main branch.

For We = 50 we find that the branch is stable for all wall amplitudes, and we also

note the large overall decrease in the film thickness norm, corresponding to a decrease

in the phase shift between the free surface and the wall. We thus find that for large-

amplitude topography, the typically-destabilising normal electric field can be used to

stabilise solutions which would otherwise be unstable without the effect of the electric

field. In the We = 100 case, we find that the steady states are unstable everywhere, and

the phase shift between the free surface and the wall is almost completely eliminated,

resulting in a nearly constant film thickness norm.

Steady branches for the same parameter values albeit using the WIBL model are also

produced, and may be seen in Figure 4.10. For We = 0 and We = 10 we now find

that the main branch is stable everywhere, and we note that the branch termination cor-

responding to the film thickness becoming minimum occurs at a lower wall amplitude

than observed for the long-wave model. In the We = 50 case, the branch is no longer

completely stable for all amplitudes, and we now have a Hopf bifurcation at A ≈ 14
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Figure 4.12: Branches of steady-state solutions with L0 = 57, K = 3364.5, R = 1.25, and
various electric Weber numbers for the long-wave model and a rectangular wall. The main,
black branches denote 2L-periodic solutions. Red circles correspond to Hopf bifurcations,
solid lines correspond to stable solutions, and dashed and dot-dashed lines correspond to
unstable solutions. Pink dotted lines correspond to time-periodic solutions.

which marks the transition from unstable at lower wall amplitudes, to stable at higher

wall amplitudes. The time-periodic branches shown were found to be stable everywhere

and closely follow the main branch, terminating slightly above it, consistent with pre-

vious computations. For We = 100 we observe a qualitatively very similar branch as in

the long-wave case, with the branch being unstable everywhere and the film thickness

norm remaining approximately constant for all amplitudes.

Figure 4.11 shows a direct comparison between the two models for We = 0 and We =

10. It can be seen that up until A ≈ 14 for We = 0 and A ≈ 16 for We = 10, the

two models show excellent agreement, but after these points the predicted behaviours

diverge significantly, with the long-wave model predicting instability and the WIBL

model predicting stability.

4.2.3 L0 = 57

We now return to the case of a rectangular wall with L0 = 57 for the long-wave model,

as shown in Figure 4.12. For We = 0, we see that the branch is primarily unstable,

although for amplitudes lower than A ≈ 0.68 which corresponds to a Hopf bifurcation,
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the branch is stable. As the film thickness becomes minimal, the branch terminates.

For We = 45 the Hopf bifurcation occurs at a lower wall amplitude of A ≈ 0.47. In

the We = 400 case, the branch is unstable everywhere, and we observe that the film

thickness norm is greater than the corresponding norm in the We = 0, 45 cases for a

given wall amplitude.

For Figure 4.13 corresponding to the same parameter values but for the WIBL model,

we observe qualitatively different behaviour to the long-wave case. We find that the

We = 0 branch is initially stable, and becomes unstable at A ≈ 0.70 after a Hopf bifur-

cation, with all the other branches for We = 0, 200 and 400 being unstable everywhere.

For We = 100 and 200 we observe that the continuation curve is shifted to the right

relative to the non-electrified branch, whereas the We = 400 branch is shifted to the left

relative to the non-electrified branch. Comparison between the film thickness norms

computed using the long-wave model and WIBL model for L0 = 57 and We = 400 is

shown in Figure 4.14. Up until A ≈ 0.6 the two models show good agreement, with the

main divergence occurring after this point. Despite the divergence, the behaviour of the

norms appears qualitatively somewhat similar until the film thickness becomes minimal

and the branches terminate.

Figures 4.15 and 4.16 show the surface profiles for We = 0, 200 and 400 at A = 1

with L0 = 57 for the long-wave and WIBL models, respectively. Describing the overall

behaviour of both models to begin with, we note that in the We = 0 case, we have a

reasonably smooth and uniform profile which has a negative phase shift relative to the

rectangular topography. When the electric Weber number is increased to We = 200, we

observe the capillary ridge becoming more pronounced and localised, and we also note

the depression which occurs shortly after the upwards steps of the rectangular trough.

For We = 400, the capillary ridge and depression at the top of the rectangular steps

become even more pronounced and localised, although the most distinct and obvious

change is inside the troughs themselves. As opposed to the parabolic behaviour which

occurs for We = 0 and We = 200, for We = 400 we see the same oscillations which

were noted by Tseluiko et al. [100] and Kalliadasis et al. [39] inside narrow trenches,

where we observe a steep upward deflection and sharp depressions. Comparing the

long-wave and WIBL models for We = 0 and We = 200, the surface profiles appear

qualitatively very similar, however, differences may be observed for the We = 400

case, and these shall be closely examined in Figure 4.17. Here we see that the main
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Figure 4.13: Branches of steady-state solutions with L0 = 57, K = 3364.5, R = 1.25, and
various electric Weber numbers for the WIBL model and a rectangular wall. The main, black
branches denote 2L-periodic solutions. Red circles correspond to Hopf bifurcations, solid
lines correspond to stable solutions, and dashed lines correspond to unstable solutions. Pink
dotted lines correspond to time-periodic solutions.
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branches of steady-state solutions in the case of L0 = 57, K = 3364.5, R = 1.25, and
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branches of steady-state solutions in the case of L0 = 57, K = 3364.5, R = 1.25, and
We = 400 for a rectangular wall.

discrepancy is in the height of the capillary ridges and the upwards deflections within

the rectangular trough., with the long-wave model predicting capillary ridges of greater

amplitude, and upwards deflections within the trough of lower amplitude.
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Conclusion

5.1 Discussion

We have studied the effect of a normal electric field on liquid film flow down an inclined

topographically structured wall. First, in Chapter 1 we outlined recent breakthroughs

in electrohydrodynamics and thin film flow over topography, and gave a brief review of

the pertinent literature.

In Chapter 2 we fully derived two models for thin film flow over inclined topography

under the effect of a normal electric field – the long-wave model and the first-order

weighted-residual integral boundary layer (WIBL) model. A hierarchy of models was

provided, and the various modelling assumptions and boundary conditions were exam-

ined.

In Chapter 3 we derived analytical expressions for the critical value of the Reynolds

number, R, as a function of the inclination angle, β, the capillary number, C, and the

electric Weber number, We, for both models in the case of a flat wall. Dispersion rela-

tions were also provided for both models, and we discussed their inflection points. The

transition from convective to absolute instability was determined numerically for both

models as a function of the electric Weber number and the Reynolds number. We found

that the long-wave model predicts absolute instability for R > 15.02 even in cases of

non-electrified flow, and from the work of Brevdo et al. [9] we know that this is non-

physical behaviour and is a failing of the model. Contrariwise, for the WIBL model we

found that absolute instability is only obtained in cases where we haveWe > 65.07, and

131
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for any electric Weber number lower than this threshold we find that the flow is con-

vectively unstable regardless of the Reynolds number, at least within the 0 < R < 30

range investigated. We may generally say that the main variable controlling the tran-

sition from convective to absolute instability for the long-wave model is the Reynolds

number, whereas in the WIBL model it is the electric Weber number. The real parts

of the most unstable wavenumbers were also determined numerically for both models

as a function of the Reynolds number for various electric field strengths, and although

we found close agreement for R . 5, for R & 5 we instead found that the two mod-

els diverge in their predictions. The long-wave model appears to overestimate the real

part of the most unstable wavenumber relative to the WIBL model by up to 40% for

R = 25. Time-dependent simulations were produced in the case of a flat wall, and for

sinusoidal topography with L = 50 and L0 = 150, where we remind the reader that L0

is a rescaled domain of the form

L0 = L
(sin β

R

)1/3
, (5.1)

such that the domain (and indeed similarly for the amplitude in the case of amplitude

rescaling) no longer depend on the Reynolds number. Time-dependent simulations were

also produced for rectangular topography for L0 = 57. For a flat wall the simulations

are consistent with the convective to absolute instability transitions determined previ-

ously, and in the L = 50 case with no electric term, which corresponds to the work of

Tseluiko, Blyth and Papageorgiou [98], we found excellent agreement. In the longwave

model for We = 45, L0 = 150 and A0 = 24 we found that the electric field and the

sinusoidal topography in conjunction are stabilising, whereas the same amplitude of the

topography in the absence of the electric field is destabilising. In the rectangular wall

case we found few qualitative differences between the long-wave and WIBL models,

although the We = 200 case with A0 = 1.462 appears to be transiently unstable for both

models, yet was convectively unstable at this amplitude forWe = 0 andWe = 45, again

indicative that the normal electric field may have some stabilising properties for certain

domain sizes and topography amplitudes.

We also determined the critical Reynolds number as a function of the scaled wall am-

plitude for both models at various electric Weber numbers with L0 = 150 in the sinu-

soidal case and L0 = 57 in the rectangular case. The most obvious effect of increasing

the electric Weber number is the lowering of the critical Reynolds number for a given

amplitude, and this phenomena is observed for both models and for both topographies.

Rectangular topography for non-electrified flow is stabilising at low to intermediate wall
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amplitudes, and destabilising at high wall amplitudes, and for the long-wave model we

find excellent agreement with the work by Tseluiko, Blyth and Papageorgiou [98]. For

electrified flow, the critical Reynolds number monotonically decreases for increasing

wall amplitude in both models. For sinusoidal topography in the long-wave model with

non-electrified flow the wall is stabilising at low to intermediate wall amplitudes, and

destabilising at high wall amplitudes. As the electric Weber number increases, the wall

becomes stabilising for small and large amplitudes and destabilising for intermediate

amplitudes. For sufficiently large electric Weber number, the critical Reynolds num-

ber increases monotonically with the wall amplitude. In the WIBL model the critical

Reynolds number increases monotonically with wall amplitude for all electric Weber

numbers. The predictions of the critical Reynolds number for a given amplitude, do-

main and Weber number are consistent with the time-dependent simulations in all cases.

In Chapter 4 we discussed the procedure for producing steady solutions to the long-

wave and WIBL models. In the L = 50 sinusoidal case for non-electrified flow we

recover the 2L-periodic main branch with unstable 4L-periodic subharmonic branch

found by Tseluiko, Blyth and Papageorgiou [98] for the long-wave model. As the elec-

tric Weber number increases we find steady solutions at higher wall amplitudes due to

the phase shift phenomena discussed previously. For sufficiently large electric Weber

numbers we found Hopf bifurcations and time-periodic solutions which were found to

be unstable everywhere. In the WIBL these subharmonic branches were not found, and

the main branches were found to be stable for a wider range of amplitudes, generally

speaking. Main branches and time-periodic branches were also produced for both mod-

els in the L0 = 150 sinusoidal case and the L0 = 57 rectangular case. In the former

case for We = 0 and We = 10 we find close agreement between the two models until

A ≈ 15, at which point they begin to rapidly diverge, with the long-wave model pre-

dicting instability and the WIBL model predicting stability. In the latter case we find

qualitatively very similar results in the long-wave and WIBL models. The bifurcation

diagrams produced are consistent with the time-dependent simulations, the work on the

critical Reynolds number as a function of scaled wall amplitude and the aforementioned

work by Tseluiko, Blyth and Papageorgiou [98].

5.2 Further research

Due to the nature of the system under consideration there are multiple avenues for

further research, and a myriad of possible directions in which a continuation of this
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thesis may be taken. For minor extensions, for example, we could examine the case

where both the liquid and the gas are perfect dielectrics and compare these results to

the current work. It would also be of interest to consider leaky-dielectric liquids. We

could also vary δ corresponding to the steepness of the rectangular troughs which in

the current work has been taken to be d = 0.1 everywhere. With regards to the critical

Reynolds number as a function of wall amplitude, we could determine numerically the

transition at which the wall changes from monotonically destabilising with increasing

amplitude to monotonically stabilising with increasing amplitude. Continuation could

also be performed with respect to the electric Weber number for a given domain size,

scaled amplitude and topography, such that we might determine the most stabilising or

destabilising electric field strength. We could also further investigate the time-periodic

branches, perhaps giving special attention to the effect of the normal electric field on the

periodicity of solutions and free surface profiles. The topography could also be altered

more significantly, and extended to more general rough topographies which are more

closely related to those used in industry. The liquid in this work was taken to be water

everywhere, and could also trivially be extended to other liquids such as silicon oils, for

example.

As mentioned previously, it would also be possible to model the hydrodynamically inert

gas as a hydrodynamically active one shearing the liquid, such that we might investi-

gate the so-called ‘flooding’ phenomenon. The gas could also be taken taken to be an

additional liquid instead separated by an interface, similar to the work by Mandal et al.

[54] for a confined channel. Further extensions could include moving or heated walls,

or we might consider the case of destabilising gravity for a hanging film. In the case of

a heated wall we might consider either a uniformly heated wall or a heat profile which

varies spatiotemporally.

For more thorough extensions, we might include the simplified second-order or full

four-equation second-order WIBL models such that viscous diffusion terms are present,

and examine the effects on the linear stability analysis. We could also compare the

results obtained here to those obtained via DNS methods, or perhaps experimental ap-

proaches, although in the latter case we would have to employ a fixed flux constraint

rather than a fixed volume constraint. The fluid could also be modelled as three-

dimensional, perhaps taking into consideration the effect of cross-stream walls at the

edges of the domain. It is thus clear that the problems discussed in this thesis have the

potential for various interesting developments.
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