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Abstract 44 

Speed variations are identified as potentially important predictors of freeway crash rates; 45 

however, their impacts on crashes are not entirely known. Existing findings tend to be 46 

inconsistent possibly because of the different definitions for speed variations, different crash 47 

type consideration or different modelling and data aggregation approaches. This study explores 48 

the relationships of speed variations with crashes on a freeway section in the UK. Crashes split 49 

by vehicle type (heavy and light vehicles) and by severity mode (killed/serious injury and slight 50 

injury crashes) are aggregated based on the similarities of the conditions just before their 51 

occurrence (condition-based approach) and modelled using Multivariate Poisson lognormal 52 

regression. The models control for speed variations along with other traffic and weather 53 

variables as well as their interactions. Speed variations are expressed as two separate variables 54 

namely the standard deviations of speed within the same lane and between-lanes over a five-55 

minute interval. The results, similar for all crash types (by coefficient significance and sign), 56 

suggest that crash rates increase as the within lane speed variations raise, especially at higher 57 

traffic volumes. Higher speeds coupled with greater volume and high between-lanes speed 58 

variation also increase crash likelihood. Overall, the results suggest that specific combinations 59 

of traffic characteristics increase the likelihood of crash occurrences rather than their individual 60 

effects. Identification of these specific crash prone conditions could improve our understanding 61 

of crash risk and would support the development of more efficient safety countermeasures. 62 

 63 

Keywords: accidents; speed variation; road safety; crash severity; heavy goods vehicles; 64 

multivariate count modelling. 65 
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1. Introduction 66 

Speed and speed variations are considered to be among the most important crash contributory 67 

factors. Several ITS applications such as Variable Speed Limits (VSL) or cooperative systems 68 

are designed to provide speed harmonization anticipating that this will lead to lower crash rates 69 

(Farah and Koutsopoulos, 2014; Strömgren and Lind, 2016). However, studies considering 70 

speed variations as a contributory factor are relatively low in number and their results are 71 

varying (Kockelman and Ma, 2007; Quddus, 2013; Shi et al., 2016). Some of the studies find 72 

speed variations to be positively associated with crashes (Quddus, 2013; Tanishita and Wee, 73 

2016; Wang et al., 2018) while others find non-significant relationships between speed 74 

variations and crash risk (Kockelman and Ma, 2007). Others also report changes in the effects 75 

of speed after including speed variance in models (Garber and Gadiraju, 1989).  76 

The often-conflicting results of the existing studies may be related to the multiple 77 

definitions used to express speed variations, the differences in modelling approaches or data 78 

quality and pre-processing methods. All these suggest that further exploration of this 79 

contributory factor is needed. Current advances in crash modelling can be proved useful in the 80 

examination of the impact of speed variations on crashes. Recently, crash data aggregation has 81 

been found to be highly influential on the estimated coefficients of time-varying variables such 82 

as speed and traffic flow (Imprialou et al., 2016a; Imprialou et al., 2016b; Xu et al., 2018; Yu 83 

et al., 2018). When crashes are aggregated according to the similarities of the traffic conditions 84 

just before their occurrence, modelling results appear to be more reliable than in traditional 85 

location-based approaches (Imprialou et al., 2016b). Additionally, research has shown that 86 

independent variables in crash modelling have unique effects on different crash types and these 87 

are more accurately estimated when the correlations between the examined crash types are 88 
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taken into consideration (i.e. multivariate count models) (Huang et al., 2017; Lord and 89 

Mannering, 2010).  90 

Although there are many multivariate crash prediction models that examine crashes by 91 

severity, there is a very limited number of studies that divides crashes by the involved vehicle 92 

types and none of them focuses on heavy goods vehicles. This paper analyses the effects of 93 

speed variations along with other traffic and weather variables on different types of crashes 94 

and specifically by vehicle types (heavy and light vehicles) and by severity type (killed/serious 95 

injuries and slight injuries; Property Damage Only (PDO) crash data were not available and 96 

therefore this crash type was excluded from the analysis). Multivariate Poisson lognormal 97 

regression models are used to develop the relationships that are applied on a dataset aggregated 98 

with the condition-based approach.  99 

2. Literature Review 100 

The impact of traffic characteristics on crash frequency and severity has been widely studied 101 

in the literature and has offered useful insight into the development of effective mitigation 102 

measures. Speed has received a lot of research attention, but the findings regarding its 103 

relationship with crash rates are inconsistent (Aarts and Schagen, 2006). It is clear that higher 104 

speed is associated with higher crash severity, but the impact of speed on crash frequency is 105 

not clearly defined yet. Some studies suggest a positive relationship between speed and crash 106 

frequency (Imprialou et al., 2016a; Imprialou et al., 2016b; Kloeden et al., 2002; Taylor et al., 107 

2000); however, others have shown a negative or an insignificant relationship (Kockelman and 108 

Ma, 2007; Quddus, 2013; Stuster, 2004). There is also a common belief that speed does not 109 

necessarily lead to more crashes as long as there are no extreme speed differences between 110 

vehicles on a roadway section. These differences that are typically referred to as speed 111 

variations and have been identified as a potentially significant contributory factor; however, 112 
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their exact effect on crashes remains inconclusive (Aarts and Schagen, 2006; Kockelman and 113 

Ma, 2007; Quddus, 2013; Solomon, 1964). There have been significantly fewer studies 114 

focusing on speed variations than on speed and other traffic, geometric or environmental 115 

variables (Quddus, 2013). This is may be partially because speed variations are not directly 116 

measurable and may be hard to be computed unless the available traffic data are highly spatially 117 

and/or temporally aggregated.  118 

The effects of speed and its variations were initially studied by Solomon (1964) in a 119 

case-control study that suggested that vehicles moving much faster or slower than the modus 120 

speed were exposed to higher crash risks introducing the theory “Variance kills”. Some 121 

subsequent studies reported that speed variation is so highly influential for triggering crashes 122 

that it makes the effect of mean speed negligible, suggesting that “Variance kills, not speed” 123 

(Garber and Gadiraju, 1989). This was in line with the findings by Quddus (2013) who found 124 

that speed variation is associated positively with the crash rates but, the average speed is not. 125 

However, it contradicts the outcomes of other studies that find both speed and speed variance 126 

to be significant factors for predicting crash frequency (Levy and Asch, 1989; Tanishita and 127 

Wee, 2016). Studies on real-time crash prediction have shown negative associations of average 128 

speed with crashes, while a positive relationship between speed variation and crashes (Abdel-129 

Aty et al., 2012; Wang et al., 2016; Wang et al., 2015a; Xu et al., 2016; Yu and Abdel-Aty, 130 

2014). Moreover, the effects of speed and speed variations seemed to be related to other traffic 131 

variables such as flow (Abdel-aty and Pemmanaboina, 2006; Xu et al., 2016). For instance, 132 

Abdel-aty and Pemmanaboina (2006) mentioned that high-speed variation coupled with high 133 

occupancy and low variation in volume leads to higher likelihood of a crash, while, Xu et al. 134 

(2016) showed that, high-speed variance in high-density traffic flow leads to higher crash risk. 135 

The inconsistencies among the results may be related to the differences between 136 

analytical methods and also with the definition of speed variations. Speed variation has been 137 



6 

 

represented by multiple different measures such as differences in speed at individual vehicle 138 

level (Kloeden et al., 2002; Solomon, 1964), differences at section level traffic characteristics 139 

(Quddus, 2013), the difference between the 90th to the 50th percentile of speeds in each lane 140 

(Golob et al., 2004), speed differences between and across lanes (Kockelman and Ma, 2007) 141 

and others.  142 

The differences in results could also be related to different crash types. For instance, 143 

Kweon and Kockelman, (1996) showed that the effects of speed variation were dependent on 144 

crash severity and that specifically slight-injury crashes were associated with high-speed 145 

variance. Current crash prediction modelling suggests that separate models for different crash 146 

types are not adequate; and therefore, multivariate modelling approaches came into application 147 

(e.g. Huang et al., 2017; Imprialou et al., 2016b; Lord and Mannering, 2010; Martensen and 148 

Dupont, 2013). Though there are various studies on crash contributory factors by severity 149 

levels, there are very few studies focusing on crashes by vehicle type and these are mostly 150 

focused on urban environments without making a distinction between heavy and light vehicles 151 

(Huang et al., 2017). Whereas, it has been known that due to their unique characteristics 152 

(weight, size, stopping distances etc.) heavy vehicles’ crash contributory factors should be 153 

investigated separately (Wei et al., 2017). Moreover, as per authors’ best knowledge, there is 154 

no study on investigating the effects of speed variation on heavy vehicle crashes.  155 

Other than speed, traffic volume is one of the most studied factors in crash rate 156 

predictions (Aarts and Schagen, 2006; Garber and Ehrhart, 2000). Weather conditions could 157 

also affect crash risk (e.g. Abdel-aty and Pemmanaboina, 2006; Wang et al., 2015b; Xu et al., 158 

2016). Typically rainy weather is found to be associated with higher crash rates in most of the 159 

previous studies (Abdel-aty and Pemmanaboina, 2006; Lee et al., 2003), possibly because, the 160 

wetness of pavement reduces friction, making stopping distances longer (Abdel-aty and 161 

Pemmanaboina, 2006).  162 
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 This study explores further the relationships of traffic characteristics with crash rates 163 

with a special focus on the impact of speed variations (defined as speed differences within and 164 

between-lanes). Freeway crashes are split by vehicle types (heavy and light vehicle crashes) 165 

and severity (killed or serious and slight injury) and are fitted using multivariate count models. 166 

In order to achieve a more accurate representation of the conditions just before crashes, data 167 

are aggregated following a condition-based approach (Imprialou et al., 2016b).  168 

3. Data Collection and Preparation 169 

To analyse the impact of speed variations on crashes, traffic and weather data have been 170 

employed. The study area was decided to be a section of the South-North motorway M1 171 

(Junctions 1-24 (Figure1), located between London and East Midlands Airport) that is one of 172 

the most important and busy motorways in England that links London with the North of the 173 

country. The length of the study area is 175km per direction and most of its links include three 174 

running lanes in each direction. The crash data for three years (from 2013 to 2015) was obtained 175 

from the National Road Accident Database of the United Kingdom (STATS 19) (Department 176 

for Transport, 2011). Among others, the data included information on severity, involved 177 

vehicle types, time, date and location of the crashes. During the study period, there were 1,075 178 

fatal and injury crashes in total, of which 11.25% resulted in killed or seriously injured 179 

casualties (henceforth: KS crashes) and 88.75% in slight injuries (henceforth: SL crashes). As 180 

the study area belongs to the Strategic Road Network of England, that carries almost two-thirds 181 

of England’s freight, 15.90% of all crashes had at least one commercial vehicle with weight 182 

over 3.5 tones involved i.e. heavy vehicles (henceforth these crashes will be referred to as HV-183 
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crashes). The rest of the crashes (84.10%) were between mainly passenger vehicles or vans 184 

with weight 3.5 tonnes or less i.e. light vehicles (henceforth: LV-crashes)1.  185 

 186 

 187 

Figure 1: M1 motorway Junctions 1-24, UK (source: Google Maps (2017)) 188 

 189 

Traffic data were obtained from the Motorway Incident Detection and Automatic 190 

Signalling database (MIDAS) of Highways England (Highways England, 2017). The data was 191 

                                                

1 In the present study, a crash is defined as HV-crash if the crash includes at least one heavy goods vehicle. 

Whereas, LV-crashes are the crashes that involve at least one light vehicle but excluding the crashes which include 

heavy goods vehicle. Therefore, the crashes which include both heavy goods vehicle and light vehicle are 

classified as HV-crashes. This definition of crashes by vehicle type has been employed in a number of other 

studies such as: Chen and Chen, (2011); Lemp et al., (2011) and Zou et al., (2017). 



9 

 

collected through 689 inductive loop detectors installed in the study area and provided one-192 

minute-level traffic data disaggregated by running lane. The traffic variables that were used for 193 

this analysis were traffic volume and mean speed (km/h) by lane. To develop the final dataset 194 

for the analysis, the data were aggregated to the five-minute level and through this aggregation 195 

process the following variables have been developed: 196 

• Total volume: The total volume was estimated by the summation of the number of 197 

vehicles present on a road section between two subsequent loop detectors in each of the 198 

running lanes during a 5 min interval.  199 

!"#$%	'"%()* =,(
.

/

,0"%()*1,3
4

/

) (1) 

where %: lane index (1 to 3) and #: number of minutes (1 to 5).  200 

• Average speed: For each one-minute interval, mean speeds across the lanes were 201 

calculated and then, the average speed for 5 minutes was considered as the average 202 

speed.  203 

6'*7$8*	9:**; =
1
!,(

.

/

1
=,9:**;3,1

4

/

) (2) 

where !: total number of minutes (here T=5) and =: the total number of lanes of the road 204 

section. 205 

• Between-lanes speed variation: For each one-minute interval, the standard deviation of 206 

speeds between the lanes was calculated and then, the average of these standard 207 

deviations for 5 minutes was considered as the between-lanes speed variation. 208 

 209 

>*#?**@	%$@*A	A:**;	'$7B$#B"@	 = /
.
∑ DE∑ FGHIIJK,LMGHIIJLNNNNNNNNNNOPK

Q
4

R.
/   (3) 

where 9:**;1NNNNNNNNN	: average speed for all lanes for minute #. 210 
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• Within lane speed variation: For each lane, the standard deviation of speeds for a 5-211 

minute interval was calculated and then the average of these standard deviations for all 212 

the three lanes was considered as within lane speed variation. 213 

SB#ℎB@	%$@*	A:**;	'$7B$#B"@ =
1
=,(U

∑ F9:**;3,1 − 9:**;3NNNNNNNNNOW.
/

! )
4

/

 (4) 

where 9:**;3NNNNNNNNN	: average speed for 5 minutes within lane %. 214 

• Vehicle hours travelled: Estimated by multiplying the average travel time on each 215 

section (based on average speed) and the corresponding total volume in each 5-minute 216 

interval.    217 

Weather conditions were extracted from the open database of MetOffice, the United 218 

Kingdom’s national weather service (MetOffice, 2016). The weather data was collected on 219 

hourly basis from eight weather stations which were found adjacent to the study site based on 220 

their geographic locations. Each of the loop detectors in the study area was assigned with one 221 

of these eight stations based on the proximity of the station with the loop detector. For the sake 222 

of simplicity, weather conditions in this analysis were split into two categories indicating 223 

presence or absence of rain. Further, based on the time of the observation of the traffic data, it 224 

was matched with the hourly weather data, to provide the weather information for the same 5-225 

min interval. 226 

3.1 Condition-Based Dataset 227 

Data aggregation in crash modelling has been found to influence the results of the analysis 228 

significantly (Imprialou et al., 2016a; Imprialou et al., 2016b). Traditionally, crash count 229 

models are applied onto location-based datasets, where the number of crashes per location unit 230 

(e.g. road link, section or intersection) is modelled against averages of the examined 231 

independent variables (e.g. the annual average of speed, AADT, number of lanes). This 232 
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approach may be effective for the examination of permanent road characteristics such as road 233 

geometry. However, it can be less suitable for understanding the impact of time-varying traffic 234 

characteristics on crashes. For instance, in an analysis that employs a location-based dataset, 235 

speed variation can be only expressed by the annual variance of speed on the study area which 236 

might be not representative of the traffic conditions that are related to crashes.  237 

To address this aggregation bias, an alternative condition-based aggregation approach 238 

has been proposed, as it indicates the prevailing traffic conditions just prior to the crashes, 239 

which can eventually help in identifying the extreme traffic characteristics which might have 240 

contributed to crashes. A condition-based model aggregates the crashes based on the similarity 241 

of the traffic conditions prior to their occurrence rather than the adjacency of their locations. 242 

Therefore, a condition-based dataset includes a number of scenarios that cover all the possible 243 

traffic conditions in the study area and each of these scenarios is matched with the respective 244 

number of crashes that happened under these conditions (Imprialou et al., 2016b). 245 

Consequently, to develop a condition-based dataset, the traffic conditions before each of the 246 

examined crashes need to be identified. Pre-crash conditions were defined as the traffic and 247 

weather conditions at the closest upstream loop detector to the crash location, five minutes 248 

prior to the reported crash time. Some crashes (N=140) were removed from the dataset as they 249 

had missing values for the traffic or weather parameters. The final dataset consists of 153 HV 250 

crashes (16.37%), 782 LV crashes (83.63%). In terms of severity, 130 crashes (13.9%) were 251 

identified as KS crashes, and 805 were identified SL crashes (86.1%).  252 

To prepare the pre-crash scenarios, the traffic variables were grouped into equal 253 

frequency categories. The reason behind the formation of different scenarios of the traffic and 254 

weather data is to represent all possible conditions which could be present in the study area just 255 

before the crashes. In order for the scenarios to have equal frequency and to be mutually 256 
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exclusive, the traffic characteristics were divided into quantiles. The formation of the database 257 

is visualised in Figure 2.  258 

 259 

 260 

Figure 2 Flow diagram representing the sequence of scenario creation. 261 

The number of scenarios of the condition-based dataset was empirically defined. The 262 

order of dividing the variables was followed as per the study aim. As the main aim of the study 263 

was to identify the effects of speed and speed variance on the crash frequency, firstly the speed 264 

was split then each speed quantile was divided into different quantiles for between-lanes speed 265 

variations; and similarly, the within lane speed variance was split under each quantile of for 266 

between-lanes speed variations. Further the sequence was followed by splitting the volume and 267 

rain variables respectively. The number of scenarios was determined in order to develop a 268 

dataset with relatively small number of observations so as to avoid generating too many zeros 269 

that might be problematic for the modelling estimations (see (Imprialou, 2015) for a detailed 270 

explanation). During the analysis several other scenario aggregations have been tested but the 271 
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estimated coefficients did not change from those of the model that will be presented in Section 272 

5. 273 

As shown in Figure 2, the best scenario combination was achieved by dividing the 274 

average speed into eight quantiles (octiles), and further, dividing the between-lanes speed 275 

variation for each separate speed quantile into three quantiles (tertiles). Similarly, the within 276 

lane speed variation was divided into three quantiles for each quantile of between-lanes speed 277 

variation. The volume was divided into four equal frequency groups (quartiles) for each within 278 

lane speed variation category. Finally, the grouping was done for weather conditions (rain/no 279 

rain). This grouping led to 576 scenarios (8×3×3×4×2) which included all possible 280 

combinations of variables and each observation represented a distinct traffic and weather 281 

scenario. The current study developed and compared the outcomes of two datasets that 282 

expressed traffic and weather conditions at two different time intervals prior of each crash in 283 

the dataset: (1) 0-5 minute interval, (2) 5-10 minute interval. 284 

The traffic characteristics were represented by the median of each quantile. Each crash 285 

was then matched with one of the 576 scenarios. The crash frequency for each scenario was 286 

presented by vehicle types (HV and LV) and by severity levels (KS and SL). Table 1 shows 287 

the descriptive statistics of the study dataset. The exposure on a condition scenario is dependent 288 

on the number of vehicles and duration of their movement under these conditions (Imprialou 289 

et al., 2016a). Therefore, the total vehicle hours travelled per scenario was selected as the 290 

exposure variable for the models.  291 

 292 

 293 

 294 

Table 1 Descriptive statistics for the study dataset 295 
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Variable Mean SD Min Max 

Crash variables 

By transport mode 

HV crashes 0.36 0.98 0.00 8.00 

LV crashes 1.36 3.00 0.00 28.00 

By Severity levels 

KS crashes 0.23 0.64 0.00 5.00 

SL crashes 1.40 3.14 0.00 29.00 

Traffic variables 

Speed (km/h) 105.35 11.31 41.07 120.90 

Between-lanes speed variation (km/h) 14.12 4.45 3.82 49.81 

Within lane speed variation (km/h) 5.56 2.08 2.43 12.83 

Volume (vehicles in 5 min interval)  177.33 113.88 27.00 399.00 

Speed*Volume (km/h*vehicles) 18556.63 11886.22 2423.25 38519.67 

Speed*Between-lanes speed variation (km/h*km/h) 1483.02 428.99 226.50 4014.96 

Speed*Within lane speed variation (km/h*km/h) 582.82 219.39 195.94 1407.42 

Volume* Between-lanes speed variation 

(vehicles*km/h) 
2473.99 1746.29 152.74 10958.94 

Volume* Within lane speed variation 

(vehicles*km/h) 
939.93 700.66 85.79 4030.05 

Between-lanes speed variation *Within lane speed 

variation (km/h*km/h) 
78.86 40.07 9.33 279.47 

Weather variables 

Rain 0.50 0.50 0.00 1.00 

 296 

4. Methodology 297 

Different crash types sourcing from the same dataset may be potentially correlated. Omission 298 

of these correlations from the modelling process, by developing separate count models for each 299 

crash type, is likely to lead to erroneous standard errors (Park and Lord, 2007). Multivariate 300 

Poisson Lognormal (MVPLN) regression can control for over-dispersion as well as for the 301 

correlations between dependent variables; and it has been applied in a number of studies 302 
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(Huang et al., 2017; Park and Lord, 2007). This study explores the relationships of speed 303 

variations with crash rates by developing two MVPLN models: one that examines the 304 

aforementioned traffic and weather variables by vehicle types (HV and LV crashes) and 305 

another by severity level (KS and SL crashes).  306 

In an MVPLN, the number of crashes by type (vehicle type or severity) for a dataset 307 

with @	observations (i.e. condition scenarios) follows a Poisson distribution: 308 

XYZ~\"BAA"@(]YZ),				B = 1, 2, 3, ……@; b = 1, 2	, … . d (5) 

where	B: index of observation, b: index of crash type, XYZ:observed number of crashes for b 309 

crash type for B1e observation and ]YZ expected mean for k type crashes for B1e observation. 310 

Following is the link function for ]YZ : 311 

%@(]YZ) = fZg + , fZijYZi + %@(*Y) + kYZ
i

il/

 (6) 

where fZg intercept of k crash type; fZi: coefficient of )th explanatory variable for k crash 312 

type, jYZi: value of )th explanatory variable for B1e observation for b crash type. kYZ: 313 

unobserved heterogeneity for B1e observation for b crash type.  314 

kY is assumed to follow multivariate normal (MVN) distribution and controls for the 315 

correlations within the unobserved heterogeneity: 316 

kYZ~m0n(0, Σ), Σ = q
r// r/W 	… 	r//
rW/
⋮

rWW
⋮
	… rWZ

⋮
rZ/ rZW … rZZ

t (7) 

where Σ is the variance–covariance matrix of the unobserved heterogeneity. 317 

The model’s parameters estimation was done using Markov chain Monte Carlo 318 

(MCMC) in a Bayesian framework because the direct computation of the marginal distribution 319 

of accident counts is not possible to be obtained directly (for more information see: Ma, 2006; 320 
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Park and Lord, 2007; Imprialou et al., 2016b; Wang et al., 2015a). The prior distribution for f 321 

is multivariate normally distributed: 322 

f~m0nFfg, uvwO (8) 

The conjugate prior distribution of the inverse of the variance-covariance matrix for the 323 

heterogeneity and the spatial correlation follows a Wishart distribution (Huang et al., 2017; 324 

Park and Lord, 2007): 325 

	, 	
M/

	
∼ SBAℎ$7#(u, ;) (9) 

where fg, uvw and u are known non-informative hyper parameters and d is equal to the degrees 326 

of freedom (number of the examined crash types, in this case ; = b = 2). 327 

5. Results and Discussion 328 

The models were fitted using WinBUGS software which incorporates full Bayes model 329 

estimation approach using the Markov Chains Monte Carlo (MCMC) method (Spiegelhalter et 330 

al., 2003). Each model was developed with 200,000 iterations of two Markov chains and the 331 

initial 50,000 iterations were discarded from the final model estimates. The actual functional 332 

forms of the relationships between traffic variables and crashes are not known and potential 333 

interactions between traffic variables cannot be ruled out. Therefore, the present study 334 

examined the effects of speed variations using several interaction-term combinations in 335 

addition to the individual traffic variables.  336 

 337 
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All the traffic variables along with all their multiplicative interaction combinations0F

2 and rain 338 

were taken as explanatory variables in both multivariate models in various combinations. The 339 

final models that are presented here, were chosen based on the lowest DIC (Deviance 340 

Information Criterion) value.  341 

The best-fitting models for vehicle type and severity type are presented in terms of posterior 342 

means, standard deviations (SD), MC Error and the 95% credible intervals of the estimated 343 

coefficients in Tables 2 and 3, respectively. The correlations between the crash types in each 344 

model were also calculated and it was found that both the models showed very high correlations 345 

(0.981 and 0.980 for the crash types by vehicle type and by severity levels, respectively). This 346 

suggests that the different crash types are related to each other and should be modelled using 347 

multivariate models. For both the models, the best fitted variable combination included all 348 

traffic and weather variables plus the following interactions: a) volume and speed, b) volume 349 

and within lane speed variation and c) Speed and between-lanes speed variation. 350 

 351 

 352 

 353 

Table 2 Multivariate model results for crash rates by vehicle type (HV and LV crashes) 354 

HV crashes 

 Variables Mean  SD 
 MC 

Error 
2.50% Median 

97.50

% 

                                                

2 Possible multiplicative interaction combinations: (i) Volume* Speed, (ii) Volume* Between-lanes 

speed variation, (iii) Volume* Within lane speed variation (iv) Speed* Between-lanes speed variation 

(v) Speed* Within lane speed variation (vi) Between-lanes speed variation* Within lane speed variation 
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Speed -0.1292 0.016 0.001 -0.161 -0.129 -0.098 

Volume -0.03544 0.008 0.000 -0.051 -0.035 -0.021 

Within lane speed variation -0.4776 0.091 0.002 -0.654 -0.477 -0.300 

Between-lanes speed variation -0.2538 0.087 0.003 -0.420 -0.256 -0.079 

Rain 6.537 0.673 0.016 5.357 6.485 7.993 

Volume*Speed 0.000183 0.000 0.000 0.000 0.000 0.000 

Volume*Within lane speed 

variation 
0.002204 0.000 0.000 0.001 0.002 0.003 

Speed*Between-lanes speed 

variation 
0.004118 0.001 0.000 0.002 0.004 0.006 

Intercept -1.11 1.391 0.043 -3.788 -1.147 1.648 

Ln(exposure) 1 Vehicle hours travelled 

LV crashes 

Variables  Mean  SD 
 MC 

Error 
2.50% Median 

97.50

% 

Speed -0.1226 0.015 0.001 -0.152 -0.122 -0.094 

Volume -0.04516 0.007 0.000 -0.061 -0.045 -0.032 

Within lane speed variation  -0.4173 0.069 0.002 -0.552 -0.418 -0.282 

Between-lanes speed variation  -0.241 0.079 0.003 -0.404 -0.242 -0.085 

Rain 7.994 0.595 0.019 6.937 7.958 9.292 

Volume*Speed 0.000269 0.000 0.000 0.000 0.000 0.000 

Volume*Within lane speed 

variation  
0.002449 

0.002 0.000 0.000 0.002 0.003 

Speed*Between-lanes speed 

variation 
0.003549 

0.004 0.001 0.000 0.002 0.005 

Intercept -1.293 1.323 0.046 -3.902 -1.267 1.319 

Ln(exposure) 1 Vehicle hours travelled 

Model performance parameters  

D̅ 1353.49 

pD 198.213 

DIC 1551.7 

Note: Boldface indicates statistically significant coefficients at the 95% credible interval. 355 
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Table 3 Multivariate model results for crash rates by severity levels (KS and SL crashes) 356 

KS crashes 

Variables Mean  SD  MC Error 2.50% Median 97.50% 

Speed -0.1332 
0.02

0 

0.001 -0.167 -0.133 -0.096 

Volume -0.04594 
0.00

9 

0.000 -0.061 -0.046 -0.028 

Within lane speed variation  -0.3616 
0.09

7 

0.002 -0.521 -0.361 -0.174 

Between-lanes speed variation  -0.3801 
0.13

6 

0.005 -0.619 -0.368 -0.137 

Rain 6.546 
0.71

6 

0.017 5.456 6.491 8.088 

Volume*Speed 0.000257 
0.00

0 

0.000 0.000 0.000 0.000 

Volume*Within lane speed variation  0.002648 
0.00

1 

0.000 0.002 0.003 0.004 

Speed*Between-lanes speed variation 0.005087 
0.00

1 

0.000 0.002 0.005 0.008 

Intercept -1.008 
1.62

4 

0.05152 -3.594 -1.059 2.283 

Ln(exposure) 1 Vehicle hours travelled 

SL crashes 

Variables Mean  SD  MC Error 2.50% Median 97.50% 

Speed -0.1506 
0.01

7 

0.001 -0.178 -0.152 -0.116 

Volume -0.03954 
0.00

7 

0.000 -0.051 -0.039 -0.026 

Within lane speed variation  -0.4756 
0.07

3 

0.002 -0.593 -0.477 -0.331 

Between-lanes speed variation  -0.4706 
0.10

0 

0.004 -0.632 -0.472 -0.284 

Rain 8.334 
0.69

2 

0.023 7.273 8.280 9.800 
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Volume*Speed 0.000214 
0.00

0 

0.000 0.000 0.000 0.000 

Volume*Within lane speed variation  0.002501 
0.00

0 

0.000 0.002 0.003 0.003 

Speed*Between-lanes speed variation 0.006268 
0.00

1 

0.000 0.004 0.006 0.008 

Intercept 0.7937 
1.50

2 
0.053 -1.785 0.886 3.433 

Ln(exposure) 1 Vehicle hours travelled 

Model performance parameters  

D̅ 1334.65 

pD 198.067 

DIC 1532.71 

Note: Boldface indicates statistically significant coefficients at the 95% credible interval. 357 

 358 

As the main aim of the study is to examine the relationships of speed variations with 359 

crashes, the discussion focuses on these effects. Both the variations have negative coefficients 360 

but, as both are also present in interaction terms, direct interpretation of the individual 361 

coefficients is not possible. To facilitate the interpretation of the interaction of volume and 362 

within lane speed variation, the crash rates are plotted against the entire range of within lane 363 

speed variations and volume in Figures 3A, 3B, 3C and 3D for HV, LV, KS and SL crashes 364 

respectively. The effects of other variables are kept constant (at their mean) while estimating 365 

crash rates. For example, the equation used for developing the graph for the HV crash model 366 

(Figure 3A) is: 367 

 368 
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y0	z7$Aℎ*A
0*ℎ	ℎ"(7A	 = expF−0.1292 ∙ 9:**;NNNNNNNN − 0.03544 ∙ 0"%()*NNNNNNNNNN 																															

− 0.4776 ∙ Within	lane	speed	variation																																									

− 0.2538 ∙ >*#?**@	%$@*A	A:**;	'$7ë$#ë"@NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN + 6.537 ∙ 7$B@	

+ 0.000183 ∙ F0"%()*NNNNNNNNNN ∙ 9:**;NNNNNNNNO 																																																

+ 0.002204 ∙ Volume	 ∙ Within	lane	speed	variation																

+ 0.004118 ∙ (9:**;NNNNNNNN ∙ >*#?**@	%$@*A	A:**;	'$7ë$#ë"@NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN) − 1.11	O 

(10) 

 369 

 370 

 371 
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(3A) HV crashes 

 
(3B) LV crashes 

 
(3C) KS crashes 

 
(3D) SL crashes 

Figure 3 3d Contour graphs of crashes per vehicle hours as a function of within lane speed variation and volume  
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The curves show that the relationship of crash rates with the within lane speed variation 372 

varies according to the volume conditions on the road. More specifically, all crash types seem 373 

to be triggered by within lane speed variation at higher volumes. This is more clearly 374 

demonstrated by Figure 4A that shows the elasticity of within lane speed variation as a function 375 

of traffic volume. The threshold values of volume where the elasticities become positive are 376 

216, 183, 132, and 187 for HV, LV, KS, and SL crashes respectively. This means that when 377 

traffic volume is higher than these values, increases in within lanes speed variation are likely 378 

to lead to more crashes. The present study results are in line with the previous study Garber 379 

and Erhart (2000) who showed that high variation in speed results into higher crash rates in the 380 

presence of high flow per lane, whereas the lower volume may not affect the crash rate 381 

significantly. Further, the present results show that the KS crashes have higher elasticities 382 

compared to the SL ones (Figure 4A). One of the possible reasons behind this could be that the 383 

route analysed in the study is a freeway, as the literature shows that the crashes on the roads 384 

characterised with high speed limits are more prone to severe crashes (Zhu and Srinivasan, 385 

2011). In high speed conditions, increase in the within lane speed variance can further worsen 386 

the situations in terms of severity. 387 

Traffic conditions with high volume and high speed variation within the same lane 388 

represent conditions with lower levels of service and therefore unstable flow. These conditions 389 

can create higher crash risk because of the limited spacing between vehicles and therefore lower 390 

time to react to sudden changes in nearby vehicle speeds (Li et al., 2018; Xu et al., 2016). So, 391 

as expected, under these conditions, more coordinated traffic would be safer. On the other hand, 392 

the results for low-volume conditions (i.e. lower crash rates during higher within lane speed 393 

variation) are less straightforward to explain. Typically, lower volume conditions are mainly 394 

associated with free flow conditions with low demand, however, it can also be observed at slow 395 

moving conditions due to congestion during the peak periods. A possible explanation for the 396 
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first lower volume condition may be that in these conditions, drivers have more freedom to 397 

select their comfortable speeds and maintain sufficient spacing from other vehicles. Therefore, 398 

even if the differences in speeds within the same lane are high, these do not lead to frequent 399 

crash-prone interactions. In the second scenario, slow moving conditions due to congestion 400 

during the peak periods, restricts the freedom of the drivers to vary the speed, therefore, it 401 

cannot be accounted for the high-speed variance conditions. The results regarding flow and 402 

within lane speed variation are consistent with some previous studies which found that crashes 403 

happen more in the presence of high-speed variation during congested flow conditions (Golob 404 

et al., 2004). The within lane elasticity curve shown in Figure 4A exhibits that an increase in 405 

the within lane speed variation and volume will lead to a more sharp increase for KS crashes 406 

than the SL crashes. As the higher within lane speed variation relates with the situations of 407 

more extreme speeds on the roadway (too slow and too fast), this could be the possible reason 408 

for the sharp increase in the crash rate for higher speed variations.    409 

Interaction effects of between-lanes speed variation and speed on the HV, LV, KS and 410 

SL crash rates are shown in Figure 5A, 5B, 5C and 5D respectively. The shape of the curves 411 

(for all crash types) show that the effect of between-lanes speed variation on the crash risk 412 

changes in the presence of different average speeds. Figure 4B shows the elasticities of 413 

between-lanes speed variations with respect to average speeds. It indicates that the crash risk 414 

increases when both the average speed and the between-lanes speed variations are increasing. 415 

Specifically, when average speeds are higher than 61, 67, 75 and 75 km/h for HV, LV, KS and 416 

SL crashes respectively crash risk is constantly positively associated with increased between-417 

lanes speed variations. In fact, traffic conditions with speeds lower than these thresholds are 418 

particularly rare in the study area as in more than 97% of the time the speed is higher than 419 

70km/h. Comparing the elasticities, it is observed that between-lanes speed variation cause 420 
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higher crash risk for HV crashes than the LV crashes; and surprisingly, the SL elasticities are 421 

higher than the KS crashes under these circumstances.  422 

 
4(A) Elasticity of within lane speed variation across different types of crash rates for a 

range of volume values 

 
4(B) Elasticity of between-lanes speed variation across different types of crash rates for a 

range of speed values 

Figure 4 Elasticity plots of within lane (4(A)) and between-lanes (4(B)) speed variations 423 
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The positive relationship between crash rates and the between-lanes speed variation practically 424 

at all speed conditions in the study area possibly indicates crashes related to lane changing or 425 

overtaking manoeuvres (Ma et al., 2017; Potts et al., 2007; Wang et al., 2017). Overtaking 426 

manoeuvres tend to be more frequent under high speed conditions and if manoeuvres are 427 

combined with higher speed differences between the lanes, may trigger more side impacts. 428 

Higher between-lanes speed variation may be caused by the presence of heavy goods vehicles 429 

on the road, which tends to be slower than the rest of the traffic, especially at free-flow 430 

conditions. The LV are more likely to change lanes than HV to increase speed because it's 431 

easier to manoeuvre for LV, this increases the instances of encounter of LV with the HV. 432 

Subsequently the crashes involving multivehicle (HV and LV) increase because of the higher 433 

between-lanes speed variation. But as the present the study terms multivehicle crashes as HV 434 

crashes if at least one HV is involved in the crash, this can explain the fact that the elasticity 435 

for HV crashes is higher than for LV. 436 
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(5A) HV crashes 

 
(5B) LV crashes 

 
(5C) KS crashes 

 
(5D) SL crashes 

Figure 5 3d Contour graphs of crashes per vehicle hours as a function of between-lanes speed variation and speed  
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The model results show that the impact of speed on crashes is associated with volume 437 

and between-lanes speed variations, which complicates its interpretation. The interactions 438 

suggest that under high volume and low between-lanes speed variation, higher speeds are 439 

associated with lower crash rates. As the between-lanes speed variation increases though, 440 

higher speeds will lead to more crashes. These results extend some previous findings (Garber 441 

and Ehrhart, 2000; Kloeden et al., 2002; Tanishita and Wee, 2016) which observed that higher 442 

crash rates are observed if higher speeds are coupled with high variation in speed.  443 

Aligning with the previous studies, it was shown that the presence of the rain increases 444 

crash risk (Abdel-aty and Pemmanaboina, 2006; Naik et al., 2016). The coefficient of the rain 445 

variable shows that the effect of rain is higher for the LV crashes when compared to the HV 446 

crashes. A possible reason behind higher crash risk for the LV during the rain could be related 447 

to the better training of heavy goods vehicle drivers in driving under rainy conditions. 448 

Surprisingly the results suggest that rain has higher effects on SL crashes than the KS crashes, 449 

which is different from the previous findings but could be explained by the lower speed during 450 

driving in rainy weather that might result in less serious crashes.  451 

Both the datasets (0-5 minute prior of crashes and 5-10 minute prior of crashes) resulted 452 

in similar models in terms of main effects of traffic variables and therefore, for brevity only 453 

the first model was presented in this section. The main difference was observed in the weather 454 

variable “Rain”. More specifically, presence of rain was found to be negatively associated with 455 

the probability of a crash occurring in the following 5-10 minutes. This difference in results 456 

might imply more careful driving behaviour during rainy period but it can also be attributed to 457 

inaccuracies in weather data as some of the weather stations were situated quite far away from 458 

some crash locations.  459 

 460 
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6. Conclusions 461 

This study focused on modelling the effects of speed variations on freeway crash rates by 462 

vehicle type (HV and LV) and for different levels of severity (KS and SL). Crash data were 463 

aggregated following a condition-based data aggregation approach in order to achieve better 464 

representation of time-varying variables. The crash frequencies of a three-year period on a 465 

segment of M1 motorway were modelled using Multivariate Poisson lognormal regression. 466 

The traffic variables along with their interactions and weather variables were investigated for 467 

their possible influence on crash risk. All the examined variables were found to have a 468 

statistically significant impact on crash rates and the signs of the estimated coefficients were 469 

identical for all the four examined crash types. Following are the main contributory findings of 470 

the study: 471 

a) The study results showed that the crash rate increases with increase in the within lane 472 

speed variances at higher volume conditions.  473 

b) The crash rate also increases with increase in the between-lane speed variances at high 474 

speed conditions.  475 

c) The within lane speed variance is identified as a higher risk for LV crashes than the HV 476 

crashes and the chances of KS crashes are higher than the SL crashes.  477 

d) Whereas, the between-lane speed variance is related with higher crash risk for HV 478 

crashes than the LV crashes. 479 

Overall, the results suggest that the speed and its variations are not solely responsible 480 

for the higher crash rates, but the combination of specific traffic conditions play an important 481 

role in crash occurrences. Additionally, the results show that the speed variation should be 482 

considered in two different dimensions (between-lanes and within lane) to better interpret the 483 

crash triggering situations and to develop better and more precise safety measures.  484 
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These results could be helpful in understanding crash risk at different traffic conditions 485 

and to that end in the development of more efficient countermeasures for traffic management 486 

agencies and the road freight industry. The outcomes of this study could also contribute to the 487 

design of in-vehicle crash warning systems applicable to both commercial and private vehicles.  488 

As this analysis focused on a busy freeway section that does not include extreme 489 

geometry, in order to generalise the outcomes of the models it could be beneficial to consider 490 

a larger and more diverse road network and to incorporate geometric data in the models. 491 

Additionally, the present study did not analyse the PDO crashes, therefore, further research 492 

should include PDO crashes, so that the results can be generalised for crashes of all severity 493 

types. The current study also does not examine differences in single and multi-vehicle crashes 494 

separately owing to the limited number of single vehicle crashes in the study area. Therefore, 495 

a future study is required to obtain more insights into the impacts of speed variations on 496 

different collision types.  497 
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