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An Investigation of a High-speed Ground Manoeuvre Under 

Optimal Control 

This paper studies the behaviour of a nonlinear aircraft model under optimal control for 

aircraft ground manoeuvres, specifically for high-speed runway exits. The aircraft’s 

behavior on the ground is captured by a fully parameterized 6-DOF nonlinear model. A pre-

defined cost function is minimized using a Generalized Optimal Control (GOC) algorithm, 

in order to obtain an optimal control sequence for a particular manoeuvre-cost function 

combination. In this paper, three scenarios are investigated for a 45-degree high-speed 

runway exit: the first control sequence minimizes the distance between the aircraft’s CG and 

the runway centreline; the second maximizes the distance travelled by the aircraft during 

the 20 seconds of simulation time; the third minimizes tire wear. For each scenario, the GOC 

algorithm provides the best possible control inputs: such results provide a benchmark 

against which the effectiveness of future real-time controllers may be judged. 

Nomenclature 

𝑉𝑉𝑥𝑥 ,𝑉𝑉𝑦𝑦 ,𝑉𝑉𝑧𝑧    = aircraft translational velocities along each of the aircraft body axes 

𝑊𝑊𝑥𝑥 ,𝑊𝑊𝑦𝑦 ,𝑊𝑊𝑧𝑧  = aircraft angular velocities about each of the aircraft body axes 

𝐹𝐹𝑥𝑥𝑥𝑥,𝐹𝐹𝑦𝑦𝑥𝑥,𝐹𝐹𝑧𝑧𝑥𝑥   = force elements on the nose gear in the local tire coordinate system 

𝑉𝑉𝑥𝑥𝑥𝑥,𝑉𝑉𝑦𝑦𝑥𝑥 ,𝑉𝑉𝑧𝑧𝑥𝑥  =  nose gear velocities in the local tire coordinate system 

𝐹𝐹𝑥𝑥𝑥𝑥,𝐹𝐹𝑦𝑦𝑥𝑥,𝐹𝐹𝑧𝑧𝑥𝑥  = force elements on the right gear in the local tire coordinate system 

𝑉𝑉𝑥𝑥𝑥𝑥,𝑉𝑉𝑦𝑦𝑥𝑥 ,𝑉𝑉𝑧𝑧𝑥𝑥  =  right gear velocities in the local tire coordinate system 

𝐹𝐹𝑥𝑥𝑥𝑥,𝐹𝐹𝑦𝑦𝑥𝑥,𝐹𝐹𝑧𝑧𝑥𝑥  = force elements on the left gear in the local tire coordinate system 

𝑉𝑉𝑥𝑥𝑥𝑥,𝑉𝑉𝑦𝑦𝑥𝑥,𝑉𝑉𝑧𝑧𝑥𝑥  =  left gear velocities in the local tire coordinate system 

𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥,𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥  = right and left thrust force parallel to aircraft's x-axis 

𝐹𝐹𝑥𝑥𝑥𝑥,𝐹𝐹𝑦𝑦𝑥𝑥,𝐹𝐹𝑧𝑧𝑥𝑥  = aerodynamic force elements at the aerodynamic center of the aircraft 
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𝑀𝑀𝑥𝑥𝑥𝑥,𝑀𝑀𝑦𝑦𝑥𝑥,𝑀𝑀𝑧𝑧𝑥𝑥  = aerodynamic moment elements at the aerodynamic center of the aircraft 

𝐹𝐹𝑧𝑧𝑧𝑧                   = weight of the aircraft at the center of gravity 

𝑋𝑋,𝑌𝑌,𝑍𝑍                =    global position of aircraft center of gravity 

𝜓𝜓,𝜃𝜃,𝜑𝜑  =    yaw angle, pitch angle and roll angle of the aircraft 

𝑉𝑉𝑥𝑥𝑥𝑥 ,𝑉𝑉𝑦𝑦𝑥𝑥 ,𝑉𝑉𝑧𝑧𝑥𝑥   = aircraft translational velocities in the ground coordinate system 

𝑊𝑊𝑥𝑥𝑥𝑥 ,𝑊𝑊𝑦𝑦𝑥𝑥 ,𝑊𝑊𝑧𝑧𝑥𝑥    = aircraft angular velocities in the ground coordinate system 

𝛿𝛿𝑧𝑧𝑥𝑥, 𝛿𝛿𝑧𝑧𝑥𝑥, 𝛿𝛿𝑧𝑧𝑥𝑥  =  deflection of each tire in the ground coordinate system 

𝑆𝑆𝑥𝑥,𝑥𝑥     =  slip ratio of the right and left gear 

S�𝑥𝑥,𝑥𝑥     =    normalized slip ratio of the right and left gear 

𝛼𝛼𝑥𝑥,𝑥𝑥,𝑥𝑥     = slip angle of the nose, right and left gear 

𝛼𝛼�𝑥𝑥,𝑥𝑥     =  normalized slip angle of the right and left gear 

𝐶𝐶𝑥𝑥𝑥𝑥,𝑥𝑥     =  longitudinal stiffness of the right and left gear 

𝐶𝐶𝑦𝑦𝑥𝑥,𝑥𝑥     =  cornering stiffness of the right and left gear 

𝜇𝜇𝑥𝑥𝑥𝑥,𝑥𝑥     =  longitudinal friction coefficient of the right and left gear 

𝜇𝜇𝑦𝑦𝑥𝑥,𝑥𝑥     =  lateral friction coefficient of the right and left gear 

𝛺𝛺𝑥𝑥,𝑥𝑥    =  wheel angular velocity of the right and left gear 

I. Introduction 

Despite recent advances in autonomous systems capabilities, aircraft ground manoeuvres are still conducted 

manually, leaving this phase of an aircraft’s journey vulnerable to human error. A recent study of commercial 

aviation accidents identified that 11% of all fatal accidents occurred when the aircraft was on the ground [1].  Other 

non-fatal ground-based incidents typically lead to long delays, costing airlines money as planes are grounded for 

longer than planned. Despite the impact of fatal and non-fatal ground-based incidents, they still occur frequently: the 

International Air Transport Association (IATA) recorded 50 accidents over the period 2010-2014 [2]; the 

International Civil Aviation Organization (ICAO) found that 90% of scheduled commercial air transport accidents 

from 2008-2016 were runway-based. Reliable automation of runway manoeuvres could therefore help to reduce this 

significant contributor to aviation incidents. 
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Whilst autopilot systems have been commonly used by aircraft in flight, the control of aircraft when on the 

ground has received limited attention in the literature. A yaw rate control law based on dynamic inversion and 

feedback linearization is presented in [5], where aircraft yaw rate was constrained by a linear controller to follow a 

pre-defined path. To cope with nonlinearities inherent in tyre/ground friction forces, tyre behaviour was 

approximated with a saturation nonlinearity. An anti-windup control strategy is also proposed in the literature as a 

method for controlling an aircraft’s steer angle when on the ground [6][7]. The model used in this work was a linear 

parameter variable (LPV) aircraft model (based on a bicycle model) [7], where tyre/ground friction forces were also 

approximated with a saturation nonlinearity. Simulation results showed that the control method works for low-speed 

lateral manoeuvres, a region where the tyre approximation is likely to be reasonably valid. Whilst the saturation 

nonlinearity approximation is better than a purely linear tyre model (because there is a point where the tyre cannot 

generate any further lateral force) the nature of the saturation does not capture real tyre behaviour correctly, so the 

dynamics at slip angles near the saturation point will not be correct. This means that the controllers proposed in the 

literature may struggle to cope with high-speed manoeuvres, where tyre slip angles may operate in the region around 

the saturation point. 

Part of the challenge facing researchers working to control aircraft ground manoeuvring is that there is a limited 

number of models that have been developed in the literature. Rankin et. al. present a nonlinear 6-DOF model of an 

aircraft’s ground dynamics [4], where nonlinearities are included in the lateral tyre dynamics, aerodynamics and 

shock absorber dynamics. The model is derived from the GATEUR model [18], an industrially-validated Simulink 

model that is known to produce accurate representations of aircraft ground dynamics. Rankin et. al. use their model 

to conduct a comprehensive bifurcation analysis of the aircraft’s lateral dynamics [3], highlighting how boundaries 

associated with the lateral stability of steady-state turning solutions vary with operational parameters such as thrust 

level and c/g position. The bifurcation results provide a comprehensive picture of the underlying steady-state 

dynamics, but provide little information about the transient behaviours that may be experienced when entering or 

exiting from a turn manoeuvre. In a development of their work, Rankin et. al. present a general approach to evaluate 

lateral loads experienced by individual landing gears in transient conditions, for two different manoeuvres – a 45o 

high speed runway exit, and a 90o runway exit – and two aircraft weights [4]. The method parameterized the runway 

turn in terms of an approach velocity, and used a hyperbolic tangent function for the steering input (to approximate 
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how a pilot might approach the turn). It was assumed that all braking occurred to achieve the desired initial velocity 

before initiating the turn, so the results only considered lateral dynamic effects. 

The aircraft model used in this work to obtain optimal control strategies is based on Rankin’s 6-DOF model. The 

applicability of control strategies to real-life applications depends heavily on the quality of model used. The 

simplified models used in previous works to demonstrate control techniques [5-7] have limitations when considering 

high lateral accelerations, whereas Rankin’s model is designed to capture these nonlinearities accurately. In order to 

apply both braking and steering inputs, this work presents a development of Rankin’s model, through the inclusion 

of a combined-slip tire model: when cornering, the tyre develops a lateral slip angle (between the plane of wheel 

rotation and the direction of wheel travel) due to turning; when braking, the tyre develops a longitudinal slip ratio 

(between the wheel’s contact-patch speed and its translational speed); the normalized total slip is introduced to 

calculate the total tyre force generated by combined braking and steering. This total tyre force behaves like the 

individual lateral and longitudinal slips – it builds up rapidly (from zero force at zero slip) before reaching 

maximum total force at the optimal slip value. As the total slip continues to increase, the tire saturates which results 

in a reduction of the total tire force generated. The application of longitudinal slip reduces the lateral force that can 

be generated at a given slip angle condition, and conversely the application of (lateral) slip angle reduces the 

longitudinal force at a given braking condition – hence why racing drivers typically brake before a corner. Because 

the braking and steering system on most aircraft are typically independent (steering actuator on nose-wheel whilst 

braking actuator on main-gears), such a strategy may not produce an optimal control sequence for runway exit 

manoeuvres. Instead, the Generalized Optimal Control (GOC) algorithm used in this paper will determine the 

maximum required brake torque and steer inputs that can be applied, whilst still negotiating the runway exit.   

 Unlike the work by Rankin et. al., there are no pre-defined steer inputs used in this current work: the optimal 

control inputs are defined with regard to a specified cost function, with the aircraft’s dynamics providing realistic 

limitations to steer and braking. Here, an iterative simulation-based indirect method of numerical optimization 

known as Generalized Optimal Control (GOC) [8] [9] is used to identify the optimal control inputs, i.e. control 

inputs that minimize a user-defined cost function. These time-variant control inputs (e.g. steering, braking, thrust) 

can be optimized simultaneously for any smoothly nonlinear system, as demonstrated in a recent study of collision-

avoidance strategies for cars [10]. Some direct methods of numerical optimization such as nonlinear programming 

(NLP) have been used to optimize aircraft trajectories [18][24][25]. Rather than integrating the cost along the 
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trajectory from initial condition, a direct method employs collocation method or pseudo spectral method to 

approximate the integral of cost function. By doing this, the optimal control problem is transcribed to a Non-Linear 

Programming problem which can be then solved with a NLP solver.  In direct methods, constraints on states and 

control are imposed explicitly, while in GOC the constraints are introduced as continuous cost components 

represented by nonlinear functions, e.g. ‘tanh’ function. Hard constraints are not considered in this paper because 

GOC is used to control nonlinear smooth systems, which means the state-space equations must be differentiable 

over the fixed time interval [0 T]. Although direct methods are popular and widespread especially in practice, GOC 

is still proposed in this study because the emphasis of this paper is an off-line numerical investigation of optimal 

ground manoeuvres. Additionally, GOC shows good convergence to optimal solution in all the control problems 

considered in this paper. 

 This paper considers an aircraft performing a high-speed ground manoeuvre – a 45-degree runway exit. For a 

specified initial condition without loss of generality, the optimal control sequence varies with different objectives 

expressed in the composition of the cost functions. Three scenarios are considered here; the first scenario determines 

the control sequence that minimizes the distance between the aircraft’s c/g and the runway centreline; the second 

scenario determines the control sequence that maximizes the distance travelled by the aircraft during the 20 seconds 

of simulation time; the final scenario determines the control sequence that minimizes tire wear. The paper is 

presented as follows: Section 2 introduces the mathematical model used in these studies, including the creation of a 

combined slip tyre model; Section 3 outlines the GOC algorithm; Section 4 presents the optimal control sequences 

for the three cases considered; Section 5 provides some concluding remarks, highlighting considerations for 

practical implementation of the runway exit manoeuvre and some directions for future work. 

II. Aircraft Model 

This section introduces the mathematical aircraft ground dynamics model used in this work. The model is an 

implementation of a nonlinear model presented in [4], which was developed from an industrially-validated 

SIMMECHANICS model [21]. It is therefore known to provide physically-relevant behaviour of an aircraft’s 

ground dynamics. In the model, the airframe is assumed to act as a rigid body with six degrees-of-freedom (DOF), 

with a coordinate system consistent with the aircraft’s principle axes of inertia: the origin is the center of gravity; the 

x-axis is positive towards the nose of the aircraft; the z-axis is positive towards the ground; the y-axis is positive 
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starboard (as defined by the right hand rule). The airframe interfaces with the ground via three landing gears. Two 

main gears are connected to the airframe with translational joints (allowing a relative translation along the vertical 

axis only), whilst the nose gear is connected with a cylindrical joint (allowing a relative translation along and a 

rotation about the vertical axis).  The model includes nonlinear effects in: the aerodynamics; the tire/ground forces; 

the main landing gear shock absorber compression/extension dynamics. Whilst the model’s parameters can be 

chosen to represent any passenger aircraft, the values used in this study (obtained from the literature in [4]) represent 

a mid-sized passenger aircraft.  

Since this paper aims to optimize the application of steering, braking and thrust simultaneously, the model from 

[4] has been developed with addition of a combined-slip tire model. The brakes, which are only applied to the main-

gears, create a difference between the wheel’s contact-patch speed and translational speed. This requires another two 

state variables in the model, to represent the main-gears’ contact-patch velocities. The control variables considered 

here include steering angle 𝛿𝛿, thrust force of the right/left engine 𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥/𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥, and brake torque 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . The following 

subsections provide details of the mathematical model, highlighting developments that have been made in this paper. 

A. Equations of Motion 

The aircraft’s equations of motion are formulated as a coupled system of ordinary differential equations (ODEs), 

formed by balancing forces and moments in each degree of freedom [12]. Additional state coupling occurs via 

relative sub-models, which provide expressions for quantities such as the aerodynamic forces in the aircraft’s x-

direction (𝐹𝐹𝑥𝑥𝑥𝑥). The model states are the aircraft’s translational and rotational velocities in the local body coordinate 

system, which are used to form six ODEs [4]:  

𝑚𝑚�𝑉𝑉�̇�𝑥 + 𝑉𝑉𝑦𝑦𝑊𝑊𝑧𝑧 − 𝑉𝑉𝑧𝑧𝑊𝑊𝑦𝑦�       =         𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥 − 𝐹𝐹𝑥𝑥𝑥𝑥 − 𝐹𝐹𝑥𝑥𝑥𝑥 − 𝐹𝐹𝑥𝑥𝑥𝑥 cos(𝛿𝛿) − 𝐹𝐹𝑦𝑦𝑥𝑥 sin(𝛿𝛿) − 𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑧𝑧𝑧𝑧 sin(𝜃𝜃)     (1) 

𝑚𝑚�𝑉𝑉�̇�𝑦 + 𝑉𝑉𝑥𝑥𝑊𝑊𝑧𝑧 − 𝑉𝑉𝑧𝑧𝑊𝑊𝑥𝑥�       =         𝐹𝐹𝑦𝑦𝑥𝑥 + 𝐹𝐹𝑦𝑦𝑥𝑥 + 𝐹𝐹𝑦𝑦𝑥𝑥 cos(𝛿𝛿) − 𝐹𝐹𝑥𝑥𝑥𝑥 sin(𝛿𝛿) + 𝐹𝐹𝑦𝑦𝑥𝑥 + 𝐹𝐹𝑧𝑧𝑧𝑧 sin(𝜑𝜑)                               (2) 

𝑚𝑚�𝑉𝑉�̇�𝑧 + 𝑉𝑉𝑦𝑦𝑊𝑊𝑥𝑥 − 𝑉𝑉𝑥𝑥𝑊𝑊𝑦𝑦�       =         𝐹𝐹𝑧𝑧𝑧𝑧 cos(𝜃𝜃) cos(𝜑𝜑) − 𝐹𝐹𝑧𝑧𝑥𝑥 − 𝐹𝐹𝑧𝑧𝑥𝑥 − 𝐹𝐹𝑧𝑧𝑥𝑥 − 𝐹𝐹𝑧𝑧𝑥𝑥                                                         (3) 

𝐼𝐼𝑥𝑥𝑥𝑥𝑊𝑊�̇�𝑥 − �𝐼𝐼𝑦𝑦𝑦𝑦 − 𝐼𝐼𝑧𝑧𝑧𝑧�𝑊𝑊𝑦𝑦𝑊𝑊𝑧𝑧       =          𝑙𝑙𝑦𝑦𝑥𝑥𝐹𝐹𝑧𝑧𝑥𝑥 − 𝑙𝑙𝑦𝑦𝑥𝑥𝐹𝐹𝑧𝑧𝑥𝑥 − 𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑦𝑦𝑥𝑥 − 𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑦𝑦𝑥𝑥 −   𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑦𝑦𝑥𝑥 cos(𝛿𝛿) + 𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥 sin(𝛿𝛿)          (4) 

+𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑦𝑦𝑥𝑥 + 𝑀𝑀𝑥𝑥𝑥𝑥                                                                                                                     

𝐼𝐼𝑦𝑦𝑦𝑦𝑊𝑊�̇�𝑦 − (𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥)𝑊𝑊𝑥𝑥𝑊𝑊𝑧𝑧      =         𝑙𝑙𝑥𝑥𝑥𝑥𝐹𝐹𝑧𝑧𝑥𝑥 − 𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥 cos(𝛿𝛿) − 𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑦𝑦𝑥𝑥 sin(𝛿𝛿) −  𝑙𝑙𝑥𝑥𝑥𝑥𝐹𝐹𝑧𝑧𝑥𝑥 −  𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑥𝑥𝑥𝑥𝐹𝐹𝑧𝑧𝑥𝑥 −     (5) 

𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥 + 𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥 +  𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑙𝑙𝑧𝑧𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥 + 𝑙𝑙𝑥𝑥𝑥𝑥𝐹𝐹𝑧𝑧𝑥𝑥 + 𝑀𝑀𝑦𝑦𝑥𝑥 

𝐼𝐼𝑧𝑧𝑧𝑧𝑊𝑊𝑧𝑧̇ − �𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑦𝑦𝑦𝑦�𝑊𝑊𝑥𝑥𝑊𝑊𝑦𝑦      =       𝑙𝑙𝑦𝑦𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑦𝑦𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥 − 𝑙𝑙𝑥𝑥𝑥𝑥𝐹𝐹𝑦𝑦𝑥𝑥 −  𝑙𝑙𝑥𝑥𝑥𝑥𝐹𝐹𝑦𝑦𝑥𝑥 + 𝑙𝑙𝑥𝑥𝑥𝑥𝐹𝐹𝑦𝑦𝑥𝑥 cos(𝛿𝛿) − 𝑙𝑙𝑥𝑥𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥 sin(𝛿𝛿) +      (6) 
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𝑙𝑙𝑥𝑥𝑥𝑥𝐹𝐹𝑦𝑦𝑥𝑥 +  𝑙𝑙𝑦𝑦𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥 −  𝑙𝑙𝑦𝑦𝑥𝑥𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑀𝑀𝑧𝑧𝑥𝑥 

Two additional ODEs describe the two main-gears’ wheel rotations using a moment balance between the brake 

torque 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and friction force 𝐹𝐹𝑥𝑥𝑥𝑥,𝑥𝑥  about the wheel’s roll axis: 

𝐼𝐼𝑀𝑀𝑥𝑥𝑊𝑊𝑥𝑥̇ = −𝐹𝐹𝑥𝑥𝑥𝑥 ∗ 𝑅𝑅𝑤𝑤ℎ𝑏𝑏𝑏𝑏𝑒𝑒 − 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                                                                              (7) 

𝐼𝐼𝑀𝑀𝑥𝑥𝑊𝑊𝑥𝑥̇ = −𝐹𝐹𝑥𝑥𝑥𝑥 ∗ 𝑅𝑅𝑤𝑤ℎ𝑏𝑏𝑏𝑏𝑒𝑒 − 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                                                                             (8) 

The model parameters chosen for this work are given in Table 1. The term ‘CG’ is the location of the centre of 

gravity from the leading edge of the wing root, expressed as a percentage of Mean Aerodynamic Chord (MAC). In 

this paper, the center of gravity is fixed at its forward position of 14% MAC, which corresponds to a lightweight 

mass case (45420kg). The aircraft’s weight (𝐹𝐹𝑧𝑧𝑧𝑧 = 𝑚𝑚𝑚𝑚) acts at the center of gravity along the z-axis in the ground 

coordinate system, so it captures the effects of pitch and roll angles in the body co-ordinate system. The nose gear 

steering angle is denoted by 𝛿𝛿; no other wheels are used to steer the aircraft. Orthogonal tire forces (𝐹𝐹𝑥𝑥𝑥𝑥,𝑥𝑥,𝑥𝑥, 𝐹𝐹𝑦𝑦𝑥𝑥,𝑥𝑥,𝑥𝑥, 

𝐹𝐹𝑧𝑧𝑥𝑥,𝑥𝑥,𝑥𝑥 ) are defined at the tire-ground contact patch. The aerodynamic forces (𝐹𝐹𝑥𝑥𝑥𝑥,𝐹𝐹𝑦𝑦𝑥𝑥,𝐹𝐹𝑧𝑧𝑥𝑥 ) and moments 

(𝑀𝑀𝑥𝑥𝑥𝑥,𝑀𝑀𝑦𝑦𝑥𝑥,𝑀𝑀𝑧𝑧𝑥𝑥) act at (or about) the aerodynamic center of the aircraft. The thrust forces (𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥  and 𝐹𝐹𝑦𝑦𝑥𝑥𝑥𝑥) act 

parallel to the x-axis of the aircraft. 

A ground coordinate system is considered in order to describe the aircraft’s motion on the ground. The global 

position of the aircraft’s CG is defined in a global Cartesian frame (𝑋𝑋,𝑌𝑌,𝑍𝑍) while the attitude of the airframe is 

defined by Euler angles (𝜓𝜓,𝜃𝜃,𝜑𝜑) , where 𝜓𝜓 is the yaw angle, 𝜃𝜃 the pitch angle and 𝜑𝜑 the roll angle. The aircraft’s 

translational velocities and angular velocities in the ground coordinate system are defined as �𝑉𝑉𝑥𝑥𝑥𝑥 ,𝑉𝑉𝑦𝑦𝑥𝑥 ,𝑉𝑉𝑧𝑧𝑥𝑥� and 

�𝑊𝑊𝑥𝑥𝑥𝑥 ,𝑊𝑊𝑦𝑦𝑥𝑥 ,𝑊𝑊𝑧𝑧𝑥𝑥� respectively. Transformations from the local body coordinate system to the ground coordinate 

system use the standard sequence of rotations given in Philips [13]. By assuming that the pitch angle and roll angle 

remain relatively small, the velocities in the ground coordinate system are expressed as:  

𝑉𝑉𝑥𝑥𝑥𝑥   = 𝑉𝑉𝑥𝑥 cos( 𝜓𝜓) − 𝑉𝑉𝑦𝑦 sin(𝜓𝜓) + 𝜃𝜃𝑉𝑉𝑧𝑧 cos(𝜓𝜓) + 𝜑𝜑𝑉𝑉𝑧𝑧 sin(𝜓𝜓)                                       (9) 

𝑉𝑉𝑦𝑦𝑥𝑥   = 𝑉𝑉𝑥𝑥 sin( 𝜓𝜓) + 𝑉𝑉𝑦𝑦 cos(𝜓𝜓) + 𝜃𝜃𝑉𝑉𝑧𝑧 sin(𝜓𝜓) + 𝜑𝜑𝑉𝑉𝑧𝑧cos(𝜓𝜓)                                      (10) 

𝑉𝑉𝑧𝑧𝑥𝑥   = −𝜃𝜃𝑉𝑉𝑥𝑥 + 𝜑𝜑𝑉𝑉𝑦𝑦 + 𝑉𝑉𝑧𝑧                                                                                                    (11) 

𝑊𝑊𝑦𝑦𝑥𝑥 = 𝑊𝑊𝑦𝑦 − 𝜑𝜑𝑊𝑊𝑧𝑧                                                                                                                (12) 

𝑊𝑊𝑥𝑥𝑥𝑥 = 𝑊𝑊𝑥𝑥 + 𝜃𝜃𝑊𝑊𝑧𝑧                                                                                                                (13) 

𝑊𝑊𝑧𝑧𝑥𝑥 = 𝑊𝑊𝑦𝑦𝜑𝜑 cos (𝜃𝜃)⁄ + 𝑊𝑊𝑧𝑧                                                                                              (14)                               
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Another six ODEs are therefore introduced to calculate aircraft’s position and attitude in the global reference frame: 

�̇�𝑋 = 𝑉𝑉𝑥𝑥𝑥𝑥                                                                                                    (15) 

�̇�𝑌 = 𝑉𝑉𝑦𝑦𝑥𝑥                                                                                                    (16) 

�̇�𝑍 = 𝑉𝑉𝑧𝑧𝑥𝑥                                                                                                    (17) 

�̇�𝜓 = 𝑊𝑊𝑧𝑧𝑥𝑥                                                                                                 (18) 

�̇�𝜃 = 𝑊𝑊𝑦𝑦𝑥𝑥                                                                                                (19) 

�̇�𝜑 = 𝑊𝑊𝑥𝑥𝑥𝑥                                                                                                (20) 

The position (𝑋𝑋,𝑌𝑌) and yaw angle 𝜓𝜓 can be used to plot the trajectory of the aircraft’s CG. 

Table 1 System parameters and values 

Symbol Parameter Value  
  Dimensions relative to CG position  
 𝑙𝑙𝑥𝑥𝑥𝑥 x-distance to the nose gear (10.186 + 𝐶𝐶𝐶𝐶 ÷ 100 × 𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚) m 

 𝑙𝑙𝑧𝑧𝑥𝑥 z-distance to the nose gear 2.932 m 

 𝑙𝑙𝑥𝑥𝑥𝑥, 𝑙𝑙𝑥𝑥𝑥𝑥 x-distance to the right/left gear (2.498− 𝐶𝐶𝐶𝐶 ÷ 100 × 𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚) m 

 𝑙𝑙𝑦𝑦𝑥𝑥, 𝑙𝑙𝑦𝑦𝑥𝑥 y-distance to the right/left gear 3.795 m 
 𝑙𝑙𝑧𝑧𝑥𝑥, 𝑙𝑙𝑧𝑧𝑥𝑥 z-distance to the right/left gear 2.932 m 

  𝑙𝑙𝑥𝑥𝑥𝑥 x-distance to the aerodynamic center (0.25 − 𝐶𝐶𝐶𝐶 ÷ 100) × 𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚 m 

 𝑙𝑙𝑧𝑧𝑥𝑥 z-distance to the aerodynamic center 0.988 m 

 𝑙𝑙𝑥𝑥𝑥𝑥 x-distance to the thrust center (0.25 − 𝐶𝐶𝐶𝐶 ÷ 100) × 𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚 m 

 𝑙𝑙𝑦𝑦𝑥𝑥𝑥𝑥,  𝑙𝑙𝑦𝑦𝑥𝑥𝑥𝑥 y-distance to the thrust center 5.755 m 
 𝑙𝑙𝑧𝑧𝑥𝑥 z-distance to the thrust center 1.229 m 
 𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚 Mean aerodynamic chord 4.194 m 
   
 Wheel parameters  
𝑘𝑘𝑧𝑧𝑥𝑥 Stiffness coefficient of the nose tire 1190kN/m 
𝑘𝑘𝑧𝑧𝑀𝑀 Stiffness coefficient of the main tire 2777kN/m 
𝑐𝑐𝑧𝑧𝑥𝑥 Damping coefficient of the nose tire 1000Ns/m 
𝑐𝑐𝑧𝑧𝑀𝑀 Damping coefficient of the main tire 2886Ns/m 
𝑐𝑐𝑏𝑏𝑏𝑏 Rolling resistance coefficient 0.02 
𝑅𝑅𝑤𝑤ℎ𝑏𝑏𝑏𝑏𝑒𝑒 Wheel radius of the main landing gear 0.64 m 
   
 Moment of Inertia parameters  
𝐼𝐼𝑥𝑥𝑥𝑥 Moment of Inertia about x-axis 913200 kg ∙ 𝑚𝑚2 
𝐼𝐼𝑦𝑦𝑦𝑦 Moment of Inertia about y-axis 2548000 kg ∙ 𝑚𝑚2 
𝐼𝐼𝑧𝑧𝑧𝑧 Moment of Inertia about z-axis 3335000 kg ∙ 𝑚𝑚2 
𝐼𝐼𝑀𝑀𝑥𝑥  Moment of inertia of main landing gear 30.925 kg ∙ 𝑚𝑚2 

B. Tire model 
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At low velocities, the nonlinear forces generated by the tires have the dominant effect over aerodynamic forces 

for ground vehicles. A realistic tire model is therefore required to capture the system’s response accurately. Previous 

work presented a model that describes the lateral force generating capabilities of the aircraft’s tires [4] – this 

capability is extended here to include longitudinal tire dynamics. A second subscript (following x, y or z) of N, R or 

L is used here to indicate the nose, right or left landing gear local coordinate system with which the velocity or force 

elements are aligned.  

The vertical force component on the tire is modelled as a spring and damper system:  

𝐹𝐹𝑧𝑧𝑥𝑥 = −𝑘𝑘𝑧𝑧𝑥𝑥𝛿𝛿𝑧𝑧𝑥𝑥 + 𝑐𝑐𝑧𝑧𝑥𝑥𝑉𝑉𝑧𝑧𝑥𝑥                                                                        (21) 

𝐹𝐹𝑧𝑧𝑥𝑥 = −𝑘𝑘𝑧𝑧𝑥𝑥𝛿𝛿𝑧𝑧𝑥𝑥 + 𝑐𝑐𝑧𝑧𝑥𝑥𝑉𝑉𝑧𝑧𝑥𝑥                                                                          (22) 

𝐹𝐹𝑧𝑧𝑥𝑥 = −𝑘𝑘𝑧𝑧𝑥𝑥𝛿𝛿𝑧𝑧𝑥𝑥 + 𝑐𝑐𝑧𝑧𝑥𝑥𝑉𝑉𝑧𝑧𝑥𝑥                                                                          (23) 

The stiffness coefficients 𝑘𝑘𝑧𝑧𝑥𝑥,𝑥𝑥,𝑥𝑥 and damping coefficients 𝑐𝑐𝑧𝑧𝑥𝑥,𝑥𝑥,𝑥𝑥 are listed in Table 1. The vertical velocity of 

each tire (𝑉𝑉𝑧𝑧𝑥𝑥 ,𝑉𝑉𝑧𝑧𝑥𝑥,𝑉𝑉𝑧𝑧𝑥𝑥) is calculated in terms of the aircraft velocities in the local body coordinate system as follows 

[4]:    

𝑉𝑉𝑧𝑧𝑥𝑥 = 𝑉𝑉𝑧𝑧 − 𝑙𝑙𝑥𝑥𝑥𝑥𝑊𝑊𝑦𝑦                                                                                          (24) 

𝑉𝑉𝑧𝑧𝑥𝑥 = 𝑉𝑉𝑧𝑧 + 𝑙𝑙𝑦𝑦𝑥𝑥𝑊𝑊𝑥𝑥 + 𝑙𝑙𝑥𝑥𝑥𝑥𝑊𝑊𝑦𝑦                                                                           (25) 

𝑉𝑉𝑧𝑧𝑥𝑥 = 𝑉𝑉𝑧𝑧 − 𝑙𝑙𝑦𝑦𝑥𝑥𝑊𝑊𝑥𝑥 + 𝑙𝑙𝑥𝑥𝑥𝑥𝑊𝑊𝑦𝑦                                                                           (26) 

Making the assumption that the roll axes of each tire remains parallel to the ground at all time, vertical tire 

deflection �𝛿𝛿𝑧𝑧𝑥𝑥,𝑥𝑥,𝑥𝑥� can be expressed in terms of the aircraft’s position and orientation (in the ground coordinate 

system) as [4]: 

𝛿𝛿𝑧𝑧𝑥𝑥 = −𝑙𝑙𝑧𝑧𝑥𝑥 − 𝑍𝑍 + 𝑙𝑙𝑥𝑥𝑥𝑥 sin(𝜃𝜃)                                                                                 (27) 

𝛿𝛿𝑧𝑧𝑥𝑥 = −𝑙𝑙𝑧𝑧𝑥𝑥 − 𝑍𝑍 − 𝑙𝑙𝑥𝑥𝑥𝑥 sin(𝜃𝜃) − 𝑙𝑙𝑦𝑦𝑥𝑥 sin(𝜑𝜑)                                                         (28) 

𝛿𝛿𝑧𝑧𝑥𝑥 = −𝑙𝑙𝑧𝑧𝑥𝑥 − 𝑍𝑍 − 𝑙𝑙𝑥𝑥𝑥𝑥 sin(𝜃𝜃) + 𝑙𝑙𝑦𝑦𝑥𝑥 sin(𝜑𝜑)                                                           (29) 

With the vertical load on each tire defined, it is possible to calculate the lateral and longitudinal forces generated 

by each tire. The longitudinal force generated by each tire consists of two components: rolling resistance; force 

caused by slip ratio (in the case of braking). Rolling resistance occurs due to hysteresis in the material of the tire, 

and is the primary motion resistance force at low speeds. This hysteresis in the tire causes the pressure in the leading 

half of the contact patch to be higher than that in the trailing half, resulting in the generation of a horizontal force 
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(rolling resistance) to balance the moments about the roll axis of the tire. In the aircraft model, rolling resistance is 

approximated by: 

𝐹𝐹𝑏𝑏𝑏𝑏𝑥𝑥,𝑥𝑥,𝑥𝑥 = 𝑐𝑐𝑟𝑟𝑟𝑟𝐹𝐹𝑧𝑧𝑥𝑥,𝑥𝑥,𝑥𝑥 cos�𝛼𝛼𝑥𝑥,𝑥𝑥,𝑥𝑥�                                                                     (30) 

Here, 𝐶𝐶𝑟𝑟𝑟𝑟  is the rolling resistance coefficient (specified in Table 1). The lateral slip angle (𝛼𝛼∗ ) specifies the 

component of the rolling resistance force that opposes the aircraft’s motion. It is defined for each tire as: 

𝛼𝛼𝑥𝑥,𝑥𝑥,𝑥𝑥 = arctan�
𝑉𝑉𝑦𝑦𝑥𝑥,𝑥𝑥,𝑥𝑥

𝑉𝑉𝑥𝑥𝑥𝑥,𝑥𝑥,𝑥𝑥
�                                                                                   (31) 

The lateral force on the nose-gear 𝐹𝐹𝑦𝑦𝑥𝑥 is a nonlinear function of the slip angle 𝛼𝛼𝑥𝑥 and can be represented by [4]: 

𝐹𝐹𝑦𝑦𝑥𝑥 = 𝐹𝐹𝑦𝑦𝑚𝑚𝑏𝑏𝑥𝑥𝑥𝑥
2𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥𝛼𝛼𝑥𝑥
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥2 + 𝛼𝛼𝑥𝑥2

                                                                             (32) 

𝐹𝐹𝑦𝑦𝑚𝑚𝑏𝑏𝑥𝑥𝑥𝑥 = −3.53 × 10−6𝐹𝐹𝑧𝑧𝑥𝑥2 + 8.83 × 10−1𝐹𝐹𝑧𝑧𝑥𝑥                                                      (33) 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥 = 6.14 × 10−11𝐹𝐹𝑧𝑧𝑥𝑥2 + 4.89 × 10−7𝐹𝐹𝑧𝑧𝑥𝑥 + 0.24                                               (34) 

where 𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥 is the optimal slip-angle where the maximum lateral force 𝐹𝐹𝑦𝑦𝑚𝑚𝑏𝑏𝑥𝑥𝑥𝑥 occurs.  

As the study in this paper considers braking on the main-gears, a combined-slip tire model developed by 

Milliken [14] is used to determine both longitudinal and lateral tire forces, which each depend on the total slip 

(lateral slip-angle and longitudinal slip-ratio) that the tire experiences at any given point in time. When brake is 

applied on the main-gear, it will firstly reduce the wheel’s angular velocity and develop a difference between the 

contact-patch speed and translational speed. This difference, expressed as a percentage, is called slip-ratio: 

𝑆𝑆𝑥𝑥,𝑥𝑥 =
𝛺𝛺𝑥𝑥,𝑥𝑥𝑅𝑅𝑤𝑤ℎ𝑏𝑏𝑏𝑏𝑒𝑒 − 𝑉𝑉𝑥𝑥𝑥𝑥,𝑥𝑥

𝑉𝑉𝑥𝑥𝑥𝑥,𝑥𝑥
                                                                        (35) 

To combine the slip-angle and slip-ratio, they need to be normalized first: 

𝛼𝛼�𝑥𝑥,𝑥𝑥 =
𝐶𝐶𝑦𝑦𝑥𝑥,𝑥𝑥𝛼𝛼𝑥𝑥,𝑥𝑥

𝜇𝜇𝑦𝑦𝑥𝑥,𝑥𝑥𝐹𝐹𝑧𝑧𝑥𝑥,𝑥𝑥
                                                                                  (36) 

𝑆𝑆�̅�𝑥,𝑥𝑥 =
𝐶𝐶𝑥𝑥𝑥𝑥,𝑥𝑥𝑆𝑆𝑥𝑥,𝑥𝑥

𝜇𝜇𝑥𝑥𝑥𝑥,𝑥𝑥𝐹𝐹𝑧𝑧𝑥𝑥,𝑥𝑥
                                                                                  (37) 

The combined-slip 𝑘𝑘𝑥𝑥,𝑥𝑥 can then be defined as: 

𝑘𝑘𝑥𝑥,𝑥𝑥 = �𝑆𝑆�̅�𝑥,𝑥𝑥
2 + 𝛼𝛼�𝑥𝑥,𝑥𝑥

2                                                                            (38) 

According to the model of nose-gear lateral force given by Eqn.32, the resultant (normalized) friction force 𝐹𝐹𝑏𝑏𝑥𝑥,𝑥𝑥 can 

be represented in a similar way, as a function of the combined-slip 𝑘𝑘𝑥𝑥,𝑥𝑥: 
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𝐹𝐹𝑏𝑏𝑥𝑥,𝑥𝑥 =
2𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥,𝑥𝑥𝑘𝑘𝑥𝑥,𝑥𝑥

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥,𝑥𝑥
2 + 𝑘𝑘𝑥𝑥,𝑥𝑥

2                                                                           (39) 

The parameter 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥,𝑥𝑥 is a quadratic function of the vertical load on the tire given by: 

𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑥𝑥,𝑥𝑥 = 1.34 × 10−10𝐹𝐹𝑧𝑧𝑥𝑥,𝑥𝑥
2 + 1.06 × 10−5𝐹𝐹𝑧𝑧𝑥𝑥,𝑥𝑥 + 6.72                                       (40) 

By decomposing the normalized resultant force 𝐹𝐹𝑏𝑏𝑥𝑥,𝑥𝑥, we can find the lateral and longitudinal components 𝐹𝐹�𝑦𝑦𝑥𝑥,𝑥𝑥 and 

𝐹𝐹�𝑥𝑥𝑥𝑥,𝑥𝑥 from their relationship given by: 

         𝐹𝐹𝑏𝑏𝑥𝑥,𝑥𝑥 = �𝐹𝐹�𝑦𝑦𝑥𝑥,𝑥𝑥
2 + 𝐹𝐹�𝑥𝑥𝑥𝑥,𝑥𝑥

2                                                                        (41) 

𝐹𝐹�𝑦𝑦𝑥𝑥,𝑥𝑥 =
𝜂𝜂𝑥𝑥,𝑥𝑥�𝑘𝑘𝑥𝑥,𝑥𝑥�𝛼𝛼�𝑥𝑥,𝑥𝑥

𝑆𝑆�̅�𝑥,𝑥𝑥
𝐹𝐹�𝑥𝑥𝑥𝑥,𝑥𝑥                                                                   (42) 

Here 𝜂𝜂𝑥𝑥,𝑥𝑥�𝑘𝑘𝑥𝑥,𝑥𝑥� is a function of combined-slip 𝑘𝑘𝑥𝑥,𝑥𝑥 that is used to define the above equation for both small and large 

slip angles and slip ratios, and takes the form: 

𝜂𝜂𝑥𝑥,𝑥𝑥�𝑘𝑘𝑥𝑥,𝑥𝑥,𝑥𝑥� = �
1

2� �1 + 𝜂𝜂0𝑥𝑥,𝑥𝑥� − 1
2� �1 − 𝜂𝜂0𝑥𝑥,𝑥𝑥�cos (𝑘𝑘𝑥𝑥,𝑥𝑥

2� ), �𝑘𝑘𝑥𝑥,𝑥𝑥� ≤ 2π
1                                    , �𝑘𝑘𝑥𝑥,𝑥𝑥� > 2π

                    (43) 

Here, 𝜂𝜂0𝑥𝑥,𝑥𝑥  is computed based on the longitudinal stiffness 𝐶𝐶𝑥𝑥𝑥𝑥,𝑥𝑥 , cornering stiffness 𝐶𝐶𝑦𝑦𝑥𝑥,𝑥𝑥 , longitudinal friction 

coefficient 𝜇𝜇𝑥𝑥𝑥𝑥,𝑥𝑥, and lateral friction coefficient 𝜇𝜇𝑦𝑦𝑥𝑥,𝑥𝑥: 

𝜂𝜂0𝑥𝑥,𝑥𝑥 =
𝐶𝐶𝑦𝑦𝑥𝑥,𝑥𝑥𝜇𝜇𝑥𝑥𝑥𝑥,𝑥𝑥

𝐶𝐶𝑥𝑥𝑥𝑥,𝑥𝑥𝜇𝜇𝑦𝑦𝑥𝑥,𝑥𝑥
                                                                                    (44) 

From Eqn.41, by substituting 𝐹𝐹�𝑦𝑦𝑥𝑥,𝑥𝑥 with 𝐹𝐹�𝑥𝑥𝑥𝑥,𝑥𝑥 using Eqn.42, the normalized longitudinal and lateral forces can be 

derived as:  

𝐹𝐹�𝑦𝑦𝑥𝑥,𝑥𝑥 = 𝜂𝜂𝑥𝑥,𝑥𝑥𝐹𝐹𝑏𝑏𝑥𝑥,𝑥𝑥
𝛼𝛼�𝑥𝑥,𝑥𝑥

�𝑆𝑆�̅�𝑥,𝑥𝑥
2 + 𝜂𝜂𝑥𝑥,𝑥𝑥

2𝛼𝛼�𝑥𝑥,𝑥𝑥
2

                                                                 (45) 

𝐹𝐹�𝑥𝑥𝑥𝑥,𝑥𝑥 = 𝐹𝐹𝑏𝑏𝑥𝑥,𝑥𝑥
𝑆𝑆�̅�𝑥,𝑥𝑥

�𝑆𝑆�̅�𝑥,𝑥𝑥
2 + 𝜂𝜂𝑥𝑥,𝑥𝑥

2𝛼𝛼�𝑥𝑥,𝑥𝑥
2

                                                                        (46) 

Finally, since the longitudinal and lateral tire friction forces are normalized with respect to the maximum friction 

force, the actual forces are given by: 

𝐹𝐹𝑦𝑦𝑥𝑥,𝑥𝑥 = 𝐹𝐹𝑦𝑦𝑚𝑚𝑏𝑏𝑥𝑥𝑥𝑥,𝑥𝑥𝐹𝐹�𝑦𝑦𝑥𝑥,𝑥𝑥                                                                             (47) 

𝐹𝐹𝑥𝑥𝑥𝑥,𝑥𝑥 = 𝐹𝐹𝑥𝑥𝑚𝑚𝑏𝑏𝑥𝑥𝑥𝑥,𝑥𝑥𝐹𝐹�𝑥𝑥𝑥𝑥,𝑥𝑥                                                                             (48) 
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The parameters 𝐹𝐹𝑥𝑥𝑚𝑚𝑏𝑏𝑥𝑥𝑥𝑥 ,𝑥𝑥 and 𝐹𝐹𝑦𝑦𝑚𝑚𝑏𝑏𝑥𝑥𝑥𝑥,𝑥𝑥 are the maximum force that can be generated by the tire longitudinally and 

laterally. It is assumed that longitudinal and lateral maximum forces are equal and can be obtained from the 

equations: 

𝐹𝐹𝑦𝑦𝑚𝑚𝑏𝑏𝑥𝑥𝑥𝑥 ,𝑥𝑥 = −7.39 × 10−7𝐹𝐹𝑧𝑧𝑥𝑥,𝑥𝑥
2 + 5.11 × 𝐹𝐹𝑧𝑧𝑥𝑥,𝑥𝑥                                                     (49) 

𝐹𝐹𝑥𝑥𝑚𝑚𝑏𝑏𝑥𝑥𝑥𝑥,𝑥𝑥 =  𝐹𝐹𝑦𝑦𝑚𝑚𝑏𝑏𝑥𝑥𝑥𝑥,𝑥𝑥                                                                                                   (50) 

C. Aerodynamic model 

As aerodynamic forces are proportional to the square of the incoming air velocity, they provide nonlinearity within 

the aircraft model in addition to the tire forces. The aircraft’s aerodynamic coefficients also depend nonlinearly on 

the angles that the aircraft makes with the airflow: aerodynamic slip angle 𝛼𝛼𝑏𝑏𝑚𝑚 and attack angle 𝜎𝜎. By invoking the 

assumption that the aircraft operates in still air (i.e. neglecting wind effects), and that the angle of attack remains 

constant during ground manoeuvres, the aerodynamic slip angle can be defined in the same way as the tire model: 

𝛼𝛼𝑏𝑏𝑚𝑚 = 𝑎𝑎𝑐𝑐𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑉𝑉𝑦𝑦
𝑉𝑉𝑥𝑥
�                                                                                    (51) 

Here, 𝑉𝑉𝑥𝑥 and 𝑉𝑉𝑦𝑦 are the velocities of the aircraft CG in the local body coordinate system. The aerodynamics model 

consists of six elements: three forces and three moments about each axis of the aircraft. It is assumed that all the 

force elements act at the aerodynamic center of the aircraft, which is defined at a position 25% along the mean 

aerodynamic chord from its leading edge. The six force elements are modelled as follows: 

𝐹𝐹𝑥𝑥𝑥𝑥 =
1
2
𝜌𝜌|𝑉𝑉|2𝑆𝑆𝑤𝑤𝐶𝐶𝑥𝑥(𝛼𝛼𝑏𝑏𝑚𝑚)                                                                                  (52) 

𝐹𝐹𝑦𝑦𝑥𝑥 =
1
2
𝜌𝜌|𝑉𝑉|2𝑆𝑆𝑤𝑤𝐶𝐶𝑦𝑦(𝛼𝛼𝑏𝑏𝑚𝑚)                                                                                 (53) 

𝐹𝐹𝑧𝑧𝑥𝑥  = 1
2
𝜌𝜌|𝑉𝑉|2𝑆𝑆𝑤𝑤𝐶𝐶𝑧𝑧(𝛼𝛼𝑏𝑏𝑚𝑚)                                                                                  (54)  

𝑀𝑀𝑥𝑥𝑥𝑥 =
1
2
𝜌𝜌|𝑉𝑉|2𝑆𝑆𝑤𝑤𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚𝐶𝐶𝑒𝑒(𝛼𝛼𝑏𝑏𝑚𝑚)                                                                         (55) 

𝑀𝑀𝑦𝑦𝑥𝑥 =
1
2
𝜌𝜌|𝑉𝑉|2𝑆𝑆𝑤𝑤𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚𝐶𝐶𝑚𝑚(𝛼𝛼𝑏𝑏𝑚𝑚)                                                                       (56) 

𝑀𝑀𝑧𝑧𝑥𝑥 =
1
2
𝜌𝜌|𝑉𝑉|2𝑆𝑆𝑤𝑤𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚𝐶𝐶𝑛𝑛(𝛼𝛼𝑏𝑏𝑚𝑚)                                                                        (57) 

Here, |𝑉𝑉| is the aircraft’s resultant velocity, and the parameters 𝜌𝜌,  𝑆𝑆𝑤𝑤 , 𝑙𝑙𝑚𝑚𝑏𝑏𝑚𝑚  are listed in Table 1. The aerodynamic 

coefficients 𝐶𝐶𝑥𝑥,𝐶𝐶𝑦𝑦,𝐶𝐶𝑧𝑧 ,𝐶𝐶𝑒𝑒 ,𝐶𝐶𝑚𝑚,𝐶𝐶𝑛𝑛  are nonlinear functions of aerodynamic slip 𝛼𝛼𝑏𝑏𝑚𝑚 . The relationship between 
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aerodynamic coefficients and aerodynamic slip are obtained from the SIMMECHANICS model developed by the 

GARTEUR Group [18].  

 

III. Generalized Optimal Control 

The Generalized Optimal Control algorithm (GOC) [8][9] is used in this study to develop optimal control 

strategies for a variety of aircraft ground manoeuvres, where optimality is defined in the form of a continuous 

function (which need not be quadratic). GOC aims to minimize a Hamiltonian function, expressed in terms of 

system states and co-states (Lagrange multipliers), to find the optimal control sequence for a particular cost function. 

The following subsections describe the general formulation, and present a validation test case for the specific 

implementation of GOC in this paper with the aircraft model. 

 

 

A. General Formulation  

The GOC algorithm is based on a gradient descent implementation of Pontryagin’s Maximum Principle [19] [20] 

for application in dynamical systems. The cost function can take any (smooth) mathematical form, but typically 

consists of a continuous dynamic component 𝐿𝐿[𝑥𝑥(𝑎𝑎),𝑢𝑢(𝑎𝑎)] plus a residual cost 𝐿𝐿𝑥𝑥[𝑥𝑥(𝑇𝑇)] associated with final states: 

𝐽𝐽 = 𝐿𝐿𝑥𝑥[𝑥𝑥(𝑇𝑇)] + �𝐿𝐿[𝑥𝑥(𝑎𝑎),𝑢𝑢(𝑎𝑎)]𝑑𝑑𝑎𝑎
𝑥𝑥

0

                                                                    (58) 

A Hamiltonian function is defined in terms of the system states 𝑥𝑥(𝑎𝑎) and co-states 𝑝𝑝(𝑎𝑎): 

𝐻𝐻 = 𝐿𝐿[𝑥𝑥(𝑎𝑎),𝑢𝑢(𝑎𝑎)] + 𝑝𝑝𝑥𝑥(𝑎𝑎)𝑚𝑚[𝑥𝑥(𝑎𝑎),𝑢𝑢(𝑎𝑎)]                                                          (59) 

The function g defined from the dynamical system’s ODEs written in the form: 

�̇�𝑥 = 𝑚𝑚[𝑥𝑥(𝑎𝑎),𝑢𝑢(𝑎𝑎)]                                                                                   (60) 

The co-states are obtained using the following differential equations: 

�̇�𝑝𝑥𝑥(𝑎𝑎) = −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥

= −
𝜕𝜕𝐿𝐿
𝜕𝜕𝑥𝑥

− 𝑝𝑝𝑥𝑥
𝜕𝜕𝑚𝑚
𝜕𝜕𝑥𝑥

                                                                      (61) 

𝑝𝑝𝑥𝑥(𝑇𝑇) =
𝜕𝜕𝐿𝐿𝑥𝑥
𝜕𝜕𝑥𝑥(𝑇𝑇)

                                                                                                    (62) 
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Optimal control sequences are found at the minimum of the Hamiltonian function with respect to the control 

variables: 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢

= 0                                                                                            (63) 

The equations above are all solved for 𝑎𝑎 ∈ [0,𝑇𝑇] with two initial conditions forming a two-point boundary value 

problem: fixed initial states 𝑥𝑥(0) and fixed final co-states 𝑝𝑝(𝑇𝑇).   

The optimal solution is identified via a discrete sequence of controls, with each control element held constant for 

an equal time interval ∆t [8][9][20]. For each control time period, the cost gradient is obtained directly from the 

Hamiltonian as: 

𝜕𝜕𝐽𝐽
𝜕𝜕𝑢𝑢𝑖𝑖

= �
𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢𝑖𝑖

𝑜𝑜𝑖𝑖

𝑜𝑜𝑖𝑖−1

𝑑𝑑𝑎𝑎                                                                                    (64) 

A gradient-based iterative optimization can then be utilized to determine the optimal control sequence – the 

algorithm is depicted in Fig 3.1, with the 4 steps outlined below: 

Step 1: The dynamical system is evaluated (for the current control sequence, initial guess can be zero) from the 

initial condition 𝑥𝑥(0) using Eqn.60. The continuous cost component of Eqn.58 is integrated simultaneously. 

Step 2: The final state 𝑥𝑥(𝑇𝑇) is used to evaluate the residual cost 𝐿𝐿𝑥𝑥[𝑥𝑥(𝑇𝑇)] and the final co-state 𝑝𝑝[𝑇𝑇] using Eqn.62 

Step 3: The co-state system calculates the integral of the co-states via ∂H⁄∂x in reverse-time from the final co-state 

𝑝𝑝[𝑇𝑇]. 

Step 4: Cost gradients are used to update the control sequence by a line search optimization along the steepest 

descent direction to minimize the cost function. 

Steps 1-4 are repeatedly executed until suitable convergence is achieved. 

 

Figure 3.1 Summary of the GOC algorithm. 
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B. GOC Implementation Test: Maximum Deceleration Rate 

 The specific implementation of GOC with the aircraft ground dynamics model, as used throughout this paper, is 

validated through application to a test case with known results: a maximum straight-line deceleration case. A 4th 

order Runge-Kutta method is used to perform the time integration of the states and co-states, with a constant 

timestep used throughout the simulation. State errors are monitored in order to set the time step to ensure reasonable 

accuracy. A zero-order-hold control input is applied for some control timestep ∆t, not necessarily the same as the 

numerical integration timestep. The length of control step (∆t) affects the convergence speed of the optimization, 

and also the fineness of the control sequence. To achieve a fast and accurate convergence, a coarse resolution is 

specified initially; this resolution is improved over several concurrent GOC runs to obtain an appropriate level of 

continuity in the final control sequence.  

 In this straight line braking scenario, GOC is used to identify the braking required to minimize the total distance 

travelled during a simulation. The aircraft starts in an equilibrium condition, with a forward speed of 40 m/s and 

heading in the global X direction. The simulation time span (in seconds) is specified as 𝑎𝑎 ∈ [0, 10], with a numerical 

time step of 5ms (chosen as it is sufficiently small for this dynamical system). To ensure the aircraft remains in a 

straight line, the continuous cost function is defined as a track cost 𝐿𝐿𝑜𝑜𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏. For this case, it is a quadratic function 

with respect to the aircraft’s deviation from the global X axis: 

𝐿𝐿𝑜𝑜𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏 = �𝑌𝑌2𝑑𝑑𝑎𝑎
𝑥𝑥

0

                                                                                     (65) 

In addition to this continuous cost, a final-state cost is defined as the total distance travelled, i.e. the final distance to 

the starting point (-1000,0): 

𝐿𝐿𝑓𝑓𝑖𝑖𝑛𝑛𝑏𝑏𝑒𝑒 =  (𝑋𝑋 + 1000)2 + 𝑌𝑌2                                                                            (66) 

The total cost is comprised of the continuous track cost plus the final cost: 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑒𝑒 =  𝐿𝐿𝑜𝑜𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏 + 𝐿𝐿𝑓𝑓𝑖𝑖𝑛𝑛𝑏𝑏𝑒𝑒                                                                                   (67) 

 The final optimal solution is shown in Fig 3.2. This optimal solution, obtained after 2200 iterations, is judged to 

be optimal based on the magnitude of all cost gradients at each point in time. The cost gradients obtained at this 

optimal iteration are shown in Fig 3.2(f): they have been reduced by several orders of magnitude compared with the 

initial cost gradients, showing that additional iterations beyond this point will not provide significant reductions in 

total cost. The optimal control sequence, in this case braking torque, is shown in Fig 3.2(a). An initial brake spike is 
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used to slow the wheel speed down rapidly at the start of the simulation, however the brake torque is then modulated 

to keep each wheel rolling at its optimum total slip.  

 The oscillations in brake torque that occur during the first 4 seconds are a response to the changing dynamic load 

on the main landing gears, observable through comparison of Fig 3.2(a) and Fig 3.2(e). Since the tire’s peak force is 

a function of its vertical load, a greater load on the tire means more brake torque can be applied before it saturates. 

Fig 3.2(e) shows how the load on the nose gear and the main gear varies throughout the simulation. Initially, there is 

a small weight transfer from the main gears to the nose gear due to the initial deceleration. This results in a period of 

transient behaviour as the longitudinal weight transfer settles to a steady value, with a corresponding reduction in 

brake torque during this transient period shown in Figure 3.2(a). Over the second half of the simulation, the loads on 

main gear and nose gear increase together, because the aircraft’s lift decreases as it slows down.     

 Fig 3.2(b) shows the main-gears wheel contact-patch speeds and their translational speeds. The difference 

between them is the longitudinal slip ratio. Applying a brake torque causes the wheel’s angular velocity to reduce. 

Since the wheel’s contact-patch speed becomes lower than the translational speed, a negative slip ratio occurs. This 

generates a negative friction force on the main gears, which causes the aircraft to decelerate. The gradient of the 

dashed curve (the wheel’s translational velocity) shows that the aircraft experiences a constant deceleration rate 

(around 3m/s2). This suggests that optimal braking has been achieved throughout the simulation for the aircraft’s 

maximum deceleration rate. 

 Optimality of the results is validated by considering tire behaviour. For pure braking in a straight line, the total 

slip consists of longitudinal slip ratio only – lateral slip remains zero throughout. The maximum deceleration should 

therefore occur when the total slip equals the optimal slip. If the tire experiences a slip greater to or less than this 

value, it will generate less force than it has the capacity to do. The results from GOC, shown in Fig 3.2(c), show this 

is the case here. A very small period of over-slip at the beginning is caused by the initial brake spike (required to 

remove wheel momentum as fast as possible). Fig 3.2(d) shows the normalized tire forces (w.r.t. the maximum 

force) have been perfectly controlled, as the forces remain at the value of ‘1’ for both the left and right gears. Note 

that no braking force is applied to the nose-gear.   

 This simple test case shows that the implementation of GOC used in this work is able to obtain an optimal 

sequence for a control input. The wheel speeds are controlled such that they remain just below saturation, in order to 
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achieve the maximum deceleration rate for the whole vehicle. The next section considers results from GOC for the 

more complicated case of a high-speed runway exit manoeuvre.  

 

Fig 3.2(a) Optimal brake torque profile. 

 

 

Fig 3.2(b) Wheel contact-patch speed (solid line) and translational speed (dashed line) for the right (b1) and 

left (b2) gear. 
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Fig 3.2(c) Optimal slip (dashed line) and actual slip (solid line) for the right (c1), left (c2), and nose (c3) gear. 

 

Fig 3.2(d) Normalized friction force for the right (d1) and left (d2) gear. 

 

Fig 3.2(e) Dynamic load on the nose gear (solid line) and main gears (dashed line). 
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Fig 3.2(f) Cost gradient with respect to brake input. 
 

IV. Optimization of High-speed Runway Exit 

In this section, GOC is used to find optimal control sequences for a high-speed runway exit manoeuvre. Since 

GOC works on fixed time interval, the interval is set as 20 seconds which is sufficiently long for the aircraft to settle 

down. The geometry of the runway exit considered here is shown in Fig 4.1(a). The black lines represent a safe 

boundary for the aircraft’s CG to operate within. The track cost is defined as a quadratic function of the distance to 

the runway’s centerline. Constraints on states and control inputs can be imposed via tanh function or higher order 

polynomial when needed. Such constraint should not be solely used as the track cost because aircraft will cut the 

corner which is quite dangerous in practice. Three cases are considered here, each using the same runway geometry 

and track cost: in case A, the optimal control sequence minimizes the distance between the aircraft’s c/g and the 

runway centreline; in case B, it maximizes the distance travelled by the aircraft during the 20 seconds of simulation 

time; in case C, the optimal control sequence minimizes tire wear. 
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Fig 4.1(a) The 45-degree runway exit geometry in the ground X-Y coordinate system. 

 

 

Fig 4.1(b) The track cost as a function of ground position. 
 

A: Runway exit following the centerline 

 This first case uses GOC to determine a control sequence of brake, thrust and steer inputs, to minimize the 

distance between the aircraft’s CG and the runway centerline. The initial condition is an equilibrium state with a 

forward speed of 40 m/s. The continuous cost function is the track cost as depicted in Fig 4.1(b). The residual cost is 

a function of the aircraft’s yaw angle, yaw rate and lateral velocity, and is used to ensure that the aircraft finishes the 

simulation aligned with the road with no significant yaw rate or side-slip velocity. Hence, the overall cost function is 

defined as follows with coefficients λ which are able to balance cost components; to improve convergence of the 

optimal solution, the λ coefficients are set based on the residual cost and then rescaled to ensure that all the cost 

components are in the same order of magnitude:   
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𝐿𝐿𝑓𝑓𝑖𝑖𝑛𝑛𝑏𝑏𝑒𝑒 = λ1(𝜓𝜓−𝜋𝜋/4)2 + λ2𝑊𝑊𝑧𝑧
2 + λ3𝑉𝑉𝑦𝑦2                                                                   (68) 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑒𝑒 =  𝐿𝐿𝑜𝑜𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏 + 𝐿𝐿𝑓𝑓𝑖𝑖𝑛𝑛𝑏𝑏𝑒𝑒                                                                                               (69) 

 Fig 4.2(a) shows the total cost for each of the 50000 iterations. This drops dramatically within the first 1000 

iterations and then settles down gradually over 49000 iterations. Since the magnitude of the cost gradients has been 

reduced by a factor of 10000 as shown in Fig 4.2(b), and no significant reduction of total cost can be achieved with 

further iterations, the cost function is judged to have converged. The spike on the cost gradient would shrink with 

further iterations, but it is sufficiently small (of the order 10-4) to be considered as converged.  

 The aircraft’s optimal trajectory is illustrated in Fig 4.2(c), with small triangles used to represent the aircraft’s 

position and orientation at each second of the simulation. It can be seen that the aircraft remains close to the 

centerline throughout the simulation, although it does not follow it exactly. The aircraft initially steers to the left 

when approaching the right-hand exit, in order to maximize the turning radius without deviating from the path 

centerline too much in the corner (and hence incurring a high cost). Fig 4.3(a). shows the optimal control inputs for 

steering, thrust and braking. The negative steering angle at the beginning of the simulation turns the aircraft to the 

left, however the aircraft’s large yaw inertia means that the aircraft continues to move straight along the runway 

centerline for the first 3 seconds of the simulation. During the first few seconds, the brakes are applied (along with 

some reverse thrust) to reduce the aircraft’s speed, as the initial forward speed of 40m/s is too fast to make a 45-

degree turn. Fig 4.3(b) shows the wheel’s contact-patch speed and translational speed of the right and left gear, 

highlighting that all wheels’ translational speed drops dramatically from 40m/s to less than 20m/s over the first 6 

seconds. It can be seen that the right (inner) gear’s wheel speed drops towards zero during peak braking, and that the 

brake torque is released to a lower level before this gear’s wheel locks. By doing this, the aircraft’s dynamics are 

still under control and the tires can be recovered from their saturation states. 



22 
 

 

Fig 4.2(a) The total cost along the 50,000 iterations. 

 

Fig 4.2(b) The final cost gradient in terms of steer (solid line), thrust 
 (dashed line), and brake (dashdot line). 

 

Fig 4.2(c) The optimal trajectory of the aircraft CG with small triangles illustrating the aircraft position and 
orientation at an interval of 1 sec. 
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 After the 5th second, a rapid increase in braking torque causes the right gear’s tire to saturate, as shown by the 

plot of tire slip angles in Fig 4.3(c). An over-slip for the right gear occurs, where the total slip exceeds the optimal 

slip and the tire is said to have saturated. This tire saturation leads to the decrease of the right gear’s lateral friction 

force as shown in Fig 4.3(d), which in turn increases the total yaw moment around the z axis, allowing the aircraft to 

make the turn more easily. Optimality of this part of the solution is reflected in Fig 4.3(f), which shows the 

normalized total friction force on the main gears (normalized with respect to the maximum force that the tire can 

generate). It can be seen that the normalized force on the right gear stays right at the maximum level during the turn 

except when it over-slips to make a quick adjustment to the yaw angle. 

 

Fig 4.3(a) The optimal control input of steering (a1), thrust (a2), and braking (a3).

 

Fig 4.3(b) Wheel contact-patch speed (solid line) and translational speed (dashed line) of the right (b1) and 
left (b2) gear. 
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Fig 4.3(c) The optimal slip (dashed line) and the actual slip (solid line) of the right (c1), left (c2), and nose (c3) 
gear. 

 

Fig 4.3(d) The longitudinal (solid line) and lateral (dashed line) force element of the total tire/ground friction 
force of the right (d1) and left (d2) gear. 

 

Fig 4.3(e) The dynamic load on the nose gear (solid line), right gear (dashed line), and left gear (dashdot line). 
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Fig 4.3(f) The normalized total tire/ground friction force of the right (f1) and left (f2) gear. 
 

B: Fast exit using brakes and steer 

 This second case extends the first case by requiring that high-speed runway exit be performed as fast as possible, 

using steer and brake inputs (thrust are set idle in this case). A simulation time step of 10ms was found to be 

sufficiently small for this dynamic system.  To make comparison with the result in Case A, the simulation starts 

from the same initial condition and runs for the same period of time. The continuous cost function is the same as in 

Case A, however the final cost has been changed: an additional final cost is now defined with respect to the 

aircraft’s final distance from a target point, which ensures that the control strategy maximizes distance travelled 

during the simulation (and hence maximizes the aircraft’s runway exit speed). The final cost function used for this 

case is: 

 

𝐿𝐿𝑓𝑓𝑖𝑖𝑛𝑛𝑏𝑏𝑒𝑒 =  λ1(𝜓𝜓−𝑝𝑝𝑝𝑝/4)2 + λ2𝑊𝑊𝑧𝑧
2 + λ3𝑉𝑉𝑦𝑦2 + λ4((𝑋𝑋 − 500)2 + ((𝑌𝑌 − 500)2)                           (70) 

 

The coefficients λ1, λ2, λ3 remain the same as in Case A, whilst λ4 is set to ensure that the cost component used to 

maximize distance travelled contributes approximately the same order of magnitude to the final cost as all the others.  
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Fig 4.4(a) The total cost along the 16,000 iterations. 

 

Fig 4.4(b) The final cost gradient in terms of steer (solid line) and brake (dashdot line). 

 

Fig 4.4(c) The optimal trajectory of the aircraft CG with small triangles illustrating the aircraft position and 
orientation at an interval of 1 sec. 
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The cost function is judged to have converged after 16,000 iterations. The cost drops significantly in the first few 

hundred iterations, and then continues to drop gradually over the subsequent 9000 iterations. The magnitude of the 

final cost gradients, as shown in Fig 4.4(b), are of the order 10-5, so further reductions in total cost won’t be achieved 

with additional iterations. The aircraft’s final trajectory is illustrated in Fig 4.4(c), again with each small triangle 

showing the aircraft’s position and orientation at each second of the simulation. 

 

Fig 4.5(a) The optimal control input of steering and braking. 

 

Fig 4.5(b) The wheel contact-patch speed (solid line) and the translational speed (dashed line) of the right (b1) 
and left (b2) gear. 
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Fig 4.5(c) The optimal slip (dashed line) and the actual slip (solid line) of the nose, right and left gear. 

 

Fig 4.5(d) The longitudinal (solid line) and lateral (dashed line) force element of the total tire/ground friction 
force of the right (d1) and left (d2) gear. 

 

 

Fig 4.5(e) The dynamic load on the nose (solid line), right (dashed line) and left (dashdot line) gear. 
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Fig 4.5(f) The normalized total tire/ground friction force of the right (f1) and left (f2) gear. 
 

 

 

 The final optimal solution is presented in Fig 4.5, with the optimal steering and braking control sequences shown 

in Fig 4.5(a). As for the first case, the aircraft initially steers to the left to obtain a larger turning radius, and then to 

the right to negotiate the coner. It also takes a couple of seconds for the steer input to build up the aircraft’s yaw 

angle due to the aircraft’s large yaw moment of inertia.  Unlike the initial case where the aircraft just aims to follow 

the centreline, the right turn cuts more of the corner: this is a familiar tactic used by racing car drivers, as it increases 

the radius of the turn and hence increases the maximum speed that can be achieved by a given vehicle in the corner. 

The brakes are also used differently here from the first case: no brakes are applied until the aircraft is at point ‘A’ 

(Fig 4.5(a)); the aircraft brakes from point ‘A’ to point ‘B’, whilst it is still steering hard right (in anticipation of the 

corner); the brake is completely cut off at point ‘B’ to achieve the maximum lateral slip angle, just as the aircraft 

starts to move to the right of the centerline, cutting the corner. The combined use of braking and steering between 

points A and B is an aircraft-specific tactic, as unlike racing cars, aircrafts have huge yaw moment inertia. Since the 

main-gear’s slip angle takes time to build up when a steering angle is actuated by the nose-gear, the action of 

steering doesn’t immediately affect its capacity to brake by increasing the total slip experienced. In fact, Fig 4.5(c) 

shows that the action of braking increases the nose wheel’s optimal slip: the solid curve illustrates the total slip and 

the dashed curve illustrates the optimal slip where the maximum force occurs. The GOC algorithm balances steer 

and brake inputs so that the total slip on all the three gears achieves their optimal slip value at some point during the 

manoeuvre, meaning maximum tire forces can be generated. This is shown in Fig 4.5(f), where the normalized tire 
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force reaches a value of 1 to indicate that the tire is operating at its maximum capacity. The weight transfer from 

right gear to left gear, as depicted in Fig 4.5(e), means that the right gear is allowed to saturate slightly during the 

right turn, so that the left gear can generate more lateral force (hence maximizing the total lateral force). 

 

C: Minimum tire wear 

 The final case considers minimization of tire wear as an additional continuous cost, based on the common 

assumption that tire wear is proportional to the frictional work performed by the tire [22][23]. Hence the tire wear 

cost function is given by: 

𝐿𝐿𝑜𝑜𝑖𝑖𝑏𝑏𝑏𝑏 = �(�𝐹𝐹𝑥𝑥𝑥𝑥,𝑅𝑅,𝐿𝐿𝑉𝑉𝑥𝑥𝑥𝑥,𝑅𝑅,𝐿𝐿� + �𝐹𝐹𝑦𝑦𝑥𝑥,𝑅𝑅,𝐿𝐿𝑉𝑉𝑦𝑦𝑥𝑥,𝑅𝑅,𝐿𝐿�)𝑑𝑑𝑎𝑎
𝑥𝑥

0

                                                          (71) 

Adding this cost component to the cost function considered in Case B, the total cost in Case C is given by: 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑏𝑏𝑒𝑒 =  𝐿𝐿𝑜𝑜𝑏𝑏𝑏𝑏𝑚𝑚𝑏𝑏 + 𝐿𝐿𝑜𝑜𝑖𝑖𝑏𝑏𝑏𝑏 + λ1(𝜓𝜓−𝜋𝜋/4)2 + λ2𝑊𝑊𝑧𝑧
2 + λ3𝑉𝑉𝑦𝑦2                                             (72) 

 

Fig 4.6(a) The total cost along with iterations. 
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Fig 4.6(b) The final cost gradient in terms of steer, thrust and brake. 

  

Fig 4.6 (c) shows the optimal trajectory of the aircraft CG with small triangles illustrating the aircraft 
position and orientation at an interval of 1 sec. 

 The simulation starts from the same equilibrium as used in the first two cases. The cost function converged after 

around 5000 iterations, as shown in Fig 4.6(a). The cost gradients of steer and brake are both of the order 10-7, as 

shown in Fig 4.6(b), showing that the minimum point of the cost function has been achieved. The corresponding 

optimal trajectory of the aircraft’s CG is depicted in Fig 4.6(c), with small triangles illustrating the position and 

orientation of the aircraft at an interval of 1 sec.  

 The optimal control and the intermediate aircraft dynamics are illustrated in Fig 4.7, with optimal control 

sequences of steering and braking shown in Fig 4.7(a). Compared with the solution in Case B, less steering and 

braking is applied due to the tire wear cost. The aircraft tends to brake earlier to avoid excessive braking when 

approaching the exit. Consequently, the main gears’ wheel speed in Fig 4.7(b) is lower than the previous case which 



32 
 

in turn reflects a lower slip ratio. In Fig 4.7(c), the solid curve illustrates the total slip and the dashed curve 

illustrates the optimal slip where the maximum force occurs: the actual slip of all three gears is kept at a lower level 

throughout the manoeuvre and no over-slip occurs on any tire. The lateral and longitudinal forces of the right and 

left tires are shown in Fig 4.7(d); It can be seen that both force components are kept at a lower level. The 

corresponding normalized friction forces of the main gears in Fig 4.7(f) show more clearly that the tires are not 

working at their maximum capacity.  Particularly, the left tire is far from its saturation point.  

 

Fig 4.7(a) The optimal control input of steering and braking. 

 

Fig 4.7(b) The wheel contact-patch speed (solid line) and translational speed (dashed line) of the right and left 

gear. 
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Fig 4.7(c) shows the optimal slip (dashed line) and the actual slip (solid line) of the nose, right and left gear. 

 

Fig 4.7(d) shows the normalized total tire/ground friction force of the right and left gear. 

 

 

Fig 4.7(e) shows the dynamic load on the nose, right and left gear. 
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Fig 4.7(f) shows the longitudinal (solid line) and lateral (dashed line) force element of the total tire/ground 
friction force. 

 

V. Conclusion 

This paper has used a method of optimal control, known as Generalized Optimal Control, to study optimal 

control strategies for an aircraft undertaking a high-speed runway exit manoeuvre. The ability of GOC to define an 

optimal control sequence is validated with the case of a straight line maximum deceleration manoeuvre. Optimality 

is demonstrated because the tires on both main landing gears experience a longitudinal slip equal to their optimal 

slip value throughout the simulation. Three scenarios were investigated for the high-speed runway exit manoeuvre. 

In the case where the aircraft follows the runway centerline, the cost function is comprised of the track cost and final 

attitude cost. The maximum tire/ground force is achieved on the inner gear. When considering the minimum time 

solution for the fast runway exit manoeuvre, an additional cost component in terms of the final distance to a target 

point was introduced. This causes the aircraft to exit the runway by cutting the corner at high speed. The tire/ground 

forces on the main gears are both close to their maximum level. The final optimal control sequence was for the case 

of minimum tire wear, where an additional cost associated with tire wear was added to the cost function. The result 

shows that the tire/ground forces for all the gears are kept at a lower level by using less steering and braking. 

GOC provides a framework to optimize control strategies for aircraft ground manoeuvres. Future work could 

consider different runway geometries like 90-degree and 135-degree runway exits. The runway exit manoeuvres 

could also be extended to cover the taxiing phase to and from gates. In order to take advantage of commercial 

aircraft simulation software, GOC could be further developed to cope with black-box systems where no explicit 
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system equations are available. Since GOC is an iterative algorithm and requires calculations in reverse time, it is 

suitable for off-line investigation rather than real-time implementation. However, the optimal solution given by 

GOC can also be used as a benchmark for real-time controller design. 
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