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Abstract 25 

Food quality and temperature can affect zooplankton production in lakes by altering 26 

organismal metabolism. However, the influence of these factors on consumer nutritional 27 

physiology and population biomass remains relatively understudied in natural populations. Here, 28 

we examined seasonal changes in body stoichiometry, biochemistry, and population biomass in 29 

two Daphnia species collected from two separate lakes differing in dietary phosphorus (P) 30 

supply. Food quality, measured as seston carbon:P (C:P) ratios, varied throughout the study in 31 

each lake, and water temperatures generally increased across the growing season. Daphnid 32 

elemental composition was correlated with food quality in both populations, but relationships 33 

between daphnid body stoichiometry and temperature were consistently stronger as Daphnia 34 

body C:P ratios and content of major biochemical pools declined simultaneously throughout the 35 

summer, which largely coincided with increased water temperatures. Warmer temperatures were 36 

associated with relaxed %P-RNA coupling as daphnid body RNA content declined and P content 37 

remained relatively high. These responses combined with temperature related decreases in 38 

Daphnia body %lipids and %C appeared to explain declines in daphnid body C:P ratios in both 39 

lakes over the growing season. Seasonal changes in population biomass were related to both food 40 

quality and water temperature in the lower nutrient lake. Biomass production under more 41 

eutrophic conditions however was unrelated to food quality and was instead associated with 42 

seasonal temperature changes in the higher nutrient lake. Overall, our study shows that seasonal 43 

changes in temperature and resource quality may differentially affect consumer stoichiometry 44 

and biomass production in lake ecosystems by altering consumer elemental metabolism.  45 

 46 

 47 



Introduction 48 

Freshwater zooplankton assemblages can show considerable phenological changes in 49 

biomass production in temperate lake ecosystems (Sommer et al. 1986; Pantel et al. 2014). These 50 

seasonal dynamics have traditionally been considered to be predominantly regulated by 51 

biological constraints such as predation and food quantity (McCauley & Kalff 1981; Carpenter et 52 

al. 1985; Sommer et al. 1986). In addition, recent studies have demonstrated the importance of 53 

elemental food quality in controlling zooplankton production through its effects on consumer 54 

nutritional physiology and community biomass (Elser et al. 1998, 2003; Hessen et al. 2005; 55 

Sommer et al. 2012). Experimental work has also found that food quality can interact with other 56 

temporally dynamic variables such as temperature to alter consumer growth and metabolic rates 57 

in laboratory environments (Makino et al. 2011; McFeeters and Frost 2011). Despite 58 

considerable seasonal differences in dietary elemental composition and temperature in temperate 59 

lakes (Kreeger et al. 1997; Hessen et al. 2005), their relative influence on consumer metabolism 60 

and population dynamics in natural assemblages remains poorly understood. Here, we examine 61 

how zooplankton consumer (Daphnia spp.) body stoichiometry, biochemistry, and population 62 

biomass relate to temporal changes in food quality and temperature in two different lake 63 

ecosystems.  64 

Nutrient availability differs widely within and among aquatic habitats (Elser et al. 2000a; 65 

Sterner et al. 2008), and food elemental content is a well-known factor influencing consumer 66 

nutritional physiology and life-history (Frost et al. 2005; Wagner et al. 2013). Imbalances 67 

between the proportional supplies of key dietary elements like carbon (C), nitrogen (N), and 68 

phosphorus (P) and consumer metabolic demands can alter the synthesis of major 69 

macromolecules such as lipids, proteins, and nucleic acids, respectively (Elser et al. 1996; 70 



Wagner et al. 2015). As these biochemical pools are tied to consumer elemental composition 71 

(Elser et al. 1996), poor food quality could indirectly affect consumer body stoichiometry by 72 

altering their elemental metabolism. Specifically, the growth hypothesis states that dietary P-73 

limitation can slow the production of P-rich ribosomal RNA in animals and increase their body 74 

N:P ratios (Elser et al. 2003; Loladze and Elser 2011). These metabolic changes are further 75 

known to reduce individual growth, reproduction, and survivorship rates (Sterner et al. 1993; 76 

Frost et al. 2005), which suggests that poor food quality could ultimately lead to decreased 77 

biomass production in consumer populations (Loladze et al. 2000). Thus, elemental imbalances 78 

between producers and consumers represent potentially strong controls on aquatic food webs by 79 

regulating the proportion and amount of elements found within the consumer trophic level 80 

(Andersen 1997; Cebrian et al. 2009). 81 

 In addition to food quality, temperature also affects consumer nutrient metabolism. 82 

Within biologically relevant ranges, temperature drives exponential changes in organismal 83 

metabolic rates (Gillooly et al. 2001; Brown et al. 2004), which in turn influence animal 84 

biochemical composition and elemental content (Woods et al. 2003; Bullejos et al. 2014). For 85 

example, higher temperatures can reduce cellular RNA and P demands due to increased 86 

ribosomal translational efficiencies (Sievers et al. 2004; Toseland et al. 2013) and decrease body 87 

lipid stores by increasing C respiration (Evjemo et al. 2001; McFeeters and Frost 2011; Alcaraz 88 

et al. 2013) leading to proportional changes in consumer body C:P ratios. Further, by influencing 89 

consumer life-history trait expression and elemental composition, temperature can also affect 90 

population growth rates and regulate elemental flows through ecosystems (Petchey et al. 1999; 91 

Savage et al. 2004). In all, temperature and food quality play key roles in shaping consumer 92 

metabolism, and changes in these variables may have cascading effects on organismal life-93 



history, body stoichiometry, and population dynamics in aquatic ecosystems (Hessen et al. 2005; 94 

Cross et al. 2015).  95 

In this study, we documented weekly variation in daphnid body elemental composition, 96 

gross biochemistry, and biomass production of two daphnid species (D. pulicaria and D. 97 

mendotae) collected from two separate lakes across a summer growing season. As these species 98 

show little overlap in our study region and are predominantly found in low and high P 99 

environments, respectively (Prater et al. 2017), we examined changes in each species 100 

independently. Food quality and temperature changed seasonally in each lake allowing us to 101 

compare the compare their relative effects on 1) daphnid elemental-biochemical relationships 102 

and 2) biomass production within each population. By focusing on two elements and their major 103 

molecular pools with well-known connections to daphnid nutritional physiology (P-RNA) and 104 

that account for the majority of consumer biomass (C-lipids), we provide in situ observations to 105 

better understand the effects of temperature and dietary nutrient supply on consumer elemental 106 

metabolism within the context of stoichiometric theory.  107 

Methods 108 

Study Sites. We sampled Daphnia populations from two lakes that are geographically 109 

close (~40 km apart) but are found in two distinct ecoregions in south central Ontario. Wolf Lake 110 

is located in the Kawartha Highland Provincial Park on the southern edge of the Canadian Shield 111 

where landuse is mostly forested with little to moderate shoreline development (Hicks and Frost 112 

2011). Pigeon Lake is in the Kawartha Lakes region, which is located just south of the Canadian 113 

Shield. This area is characterized by significant agricultural landuse (~50%) and high lake shore 114 

residential development (Crins et al. 2009). These lakes were chosen due to their differences P 115 

supply and trophic state (Suppl. Table 1) as Wolf Lake is considered to be an oligo-mesotrophic 116 



lake and Pigeon Lake is meso-eutrophic (sensu, Carlson 1977). In addition, each site is also 117 

inhabited by a different species of Daphnia (Pigeon: D. mendotae and Wolf: D. pulicaria, Prater 118 

et al. 2017).  119 

Field Sampling. Lake sampling began immediately after ice off, which occurred 2 weeks 120 

earlier in Pigeon Lake than Wolf Lake. Lakes were sampled weekly from May through 121 

September for a total of 22 and 20 weeks, respectively. This time span roughly represents a 122 

normal growing season in many temperate regions of the northern hemisphere. Water samples 123 

for total phosphorus (TP) and seston analyses (stoichiometry and biomass) were collected at the 124 

surface of the water column and 1 m from bottom (8-10 m) using a Van Dorn sampler. These 125 

samples were poured into acid-washed 4 L carboys and transported back to the lab on ice. 126 

Quantitative Daphnia biomass samples were collected by taking fixed-depth vertical tows at 127 

these sites. These samples were rinsed into 500 ml plastic bottles and kept cool at ~4°C during 128 

transport. Temperature depth profiles were measured during each collection period (YSI Pro20, 129 

Yellow Springs, OH), and lakes were sampled at roughly the same time of the day (1000-1200h) 130 

to minimize the influence of diurnal temperature fluctuations.  131 

Sample Processing and Preservation: In the laboratory, we saved whole water samples 132 

for TP analysis at 4°C until processing. We pre-filtered water samples for seston analysis with 80 133 

µm mesh to remove inedible particles and then filtered the remaining suspended materials onto 134 

pre-ashed 0.7 µm GF/F glass fiber filters. Samples for stoichiometric analysis of surface and 135 

bottom samples (n=2 CN and n=2 P for each) were dried at 60°C and stored at 20°C, and 136 

chlorophyll a (Chl a, n=2 for each) was frozen and stored in the dark at -20°C until analysis. 137 

Between 5-10 daphnids were pooled into 5 separate samples for elemental analysis (n=5 CN and 138 

n=5 P analytical replicates). Animals were rinsed twice with deionized water, placed into pre-139 



weighed tins, dried at 60°C, and desiccated prior to weighing on a microbalance (±1 µg; Mettler-140 

Toledo, Markham, ON). For gross biochemical analysis, daphnids were also rinsed and saved in 141 

separate 1.5 ml vials for each analysis. Lipid samples (10-20 pooled individuals, n=5 samples) 142 

were immediately flash-frozen using liquid nitrogen, stored at minus -80°C, and lyophilized. For 143 

RNA samples, we measured lengths of 10 individuals (from the top of the eyespot to the base of 144 

the tail), placed each animal into a numbered vial, added 100 µl RNA-later (ThermoFisher, 145 

Burlington, ON) to each vial, flash-froze all samples, and stored them at -80°C. Only live 146 

animals were preserved for stoichiometric and biochemical analysis to prevent elemental 147 

leaching and molecular degradation. Samples used to estimate daphnid biomass (n= 3 tows) were 148 

divided using a zooplankton splitting wheel (n=2 analytical replicates for each tow) and were 149 

preserved using a 4% sugar buffered formalin solution (Haney and Hall 1973). 150 

Elemental and biochemical analyses. Seston and Daphnia C and N content were 151 

measured on an elemental analyzer (Vario EL III, Elementar Inc. Mt. Laurel, NJ). Seston P, 152 

water TP, and daphnid P content were measured after persulfate digestion through molybdate-153 

blue ascorbic acid colorimetry (APHA 1992) and absorbance spectroscopy (Cary-50, Varian, 154 

Palo Alto, CA). We then used daphnid masses to calculate %C, N, and P for each animal and 155 

converted all elemental ratios to molar ratios.  156 

Prior to biochemical analyses we first weighed lyophilized Daphnia (lipids) or used 157 

length/mass regressions (RNA, see below for details) to estimate total animal dry mass. All 158 

biochemical analyses were then conducted using procedures from Wagner et al. (2015), and to 159 

ensure proper extraction and analysis for all fractions, we included the same D. magna clone 160 

used in that study as an internal control in each run. We analyzed total lipid content by first 161 

homogenizing Daphnia tissues using a motorized pestle in 2:1 chloroform:methanol (v/v). Then, 162 



we followed a sulfophosphovanillan (SPV) heat block procedure to extract the lipid fraction 163 

(Gardner et al. 1985). Standards were prepared by dissolving cholesterol in 2:1 chloroform: 164 

methanol (v/v), and samples and standards were analyzed with a spectrophotometer. Total 165 

nucleic acid content (DNA/RNA) was analyzed as described by Gorokhova et al. (2002). 166 

Daphnia were rinsed to remove residual RNA-later and homogenized in 200 µl of TE buffer. 167 

Then, we pippetted 50 µl of daphnid homogenate two 2 separate tubes, added 50 µl of 5 µg L-1 168 

DNAse and RNase to separate tubes, and incubated them at 37°C for 15 min. We ran samples 169 

and RNA/DNA standards using a RiboGreen fluorometric analysis on a microplate reader 170 

(Synergy HT, Biotech, Winooski, VT). We divided total biochemical concentrations by total 171 

animal mass to calculate %RNA and %Lipids. We also estimated the proportion of daphnid body 172 

%P in the RNA pool (%P-RNA) by assuming a fixed P content (9%) for RNA (Elser et al. 2003; 173 

Acharya et al. 2004) and dividing RNA bound P by total body %P. 174 

Daphnia biomass estimates. Daphnid biomass estimates were made with methods 175 

described in McCauley (1984). Briefly, we divided each tow replicate (n=3) into analytical 176 

subsamples (n=2), and for each subsample we counted individuals in 5 separate 1 ml samples on 177 

a Sedgewick-Rafter slide using a compound microscope. While counting, we also measured the 178 

body lengths of at least 25 individuals using digital photo software (iSolution, iMTechnology, 179 

Coquitlam, BC). Length-mass relationships for individual species from each lake were 180 

determined by growing field-caught Daphnia to different 0.1 mm size classes (n=10-20 per 181 

class) in the lab while feeding them lab cultured algae (Scenedesmus Obliquus Canadian 182 

Physiological Culture Centre strain 10). Pooled individuals for each size class were then dried at 183 

60°C, desiccated, and weighed using a microbalance. We then used power functions to estimate 184 

the mass of each daphnid from length measurements (R2= 0.96-0.98) and multiplied the mean 185 



Daphnia mass by the total number of individuals found in each 1 ml sample to obtain a biomass 186 

estimate for each subsample. Finally, we scaled these mass estimates up from the 1 ml samples 187 

to the volume of water sampled in each tow (µg L-1).  188 

 Statistical Analyses. Before conducting temporal analyses, we plotted temperature depth 189 

profiles and top and bottom seston stoichiometry values for each lake. Pigeon Lake was well 190 

mixed for most of the year, and seston C:P values were similar in top and bottom waters. 191 

Therefore, we used integrated seston stoichiometry values and water column temperature 192 

measurements in our subsequent data analyses. In contrast, Wolf Lake showed seasonal 193 

stratification and had systematically higher C:P ratios in the top waters (Fig. 1A). As we could 194 

not track daphnid diel migration patterns and thus could not determine their precise daily food 195 

quality regimes, we analyzed relationships between daphnid response variables and top, bottom, 196 

and integrated food C:P and measurements separately.  197 

 All other data were also visualized using scatter plots. Temperature and seston 198 

stoichiometry were highly skewed due to our sampling regime, and we also detected non-linear 199 

and non-monotonic trends in the data. As traditional parametric time-series analysis methods 200 

were inappropriate, we estimated the strength of relationships between variables through a 201 

distance correlation (dcor) approach using the ‘energy’ package in R (Rizzo and Szekely 2008; 202 

Székely and Rizzo 2009). This technique is similar to other traditional non-parametric 203 

correlational statistics such as Spearman’s (ρ) or Kendall’s (τ). However, distance correlation 204 

does not assume monotonic relationships between variables, and the test statistic (D) is reported 205 

from 0-1 with a value of 0 indicating a complete independence of two variables and values 206 

approaching 1 indicating stronger correlations.  207 



In general, daphnid correlations in Wolf Lake were more strongly related with top seston 208 

C:P values than with bottom values (Suppl. Table 2). Although correlation strength differed 209 

slightly between top and integrated measurements, relationships between these values and 210 

daphnid responses were qualitatively similar. Therefore, our inferences do not change using 211 

either measurement, and we report our Wolf Lake results using top seston C:P and temperature 212 

values to minimize the influence of bottom waters on our analyses.  213 

Results 214 

 Seasonal changes in food quality, temperature, and Daphnia elemental content. Seston 215 

C:P ratios changed over the growing season and differed for most of the year between the two 216 

lakes (Fig. 1A&B). In general, seston stoichiometry in Wolf Lake was P poor and varied 217 

considerably over the summer (c.v.= 40%), whereas Pigeon Lake seston was P rich throughout 218 

the study and varied less (c.v.= 19%). Temperature regimes were similar in these lakes with a 219 

peak in temperature occurring in mid-July (Fig. 1 C&D). In both Wolf and Pigeon Lake, daphnid 220 

body C:P ratios were relatively more constrained than their food resources (c.v.= 10-12%) and 221 

declined steadily across the growing season (Fig. 1 E&F).  222 

Irrespective of lake and species, Daphnia body elemental composition was more strongly 223 

correlated with temperature than food quality (Figs. 2&3). In Wolf Lake, D. pulicaria body %C 224 

and C:P ratios were negatively related to seston C:P ratios and temperature. In contrast, daphnid 225 

body %P was positively correlated with seston C:P and increased with higher seasonal 226 

temperatures. In Pigeon Lake, D. mendotae body %C was positively correlated to seston C:P 227 

ratios but declined precipitously at higher temperatures (Fig. 3 A&B). Daphnid body P content 228 

was not significantly related to seston C:P ratios and instead increased non-linearly with 229 

temperature (Fig. 3 C&D). Similar to body %C, Daphnia body C:P ratios were differentially 230 



related to food quality and temperature with temperature effects showing relatively stronger 231 

correlations.  232 

Correlations between temperature, Daphnia biochemistry, and body stoichiometry. 233 

Temperature effects on daphnid body stoichiometry seemed to be mediated by changes in their 234 

biochemical and elemental metabolism. In both species, body %RNA declined with higher 235 

seasonal temperatures (Fig. 4 A&B), but body %P remained relatively high (~1.2-1.6%) 236 

resulting in weak correlations between daphnid body %P and RNA in Daphnia from both Wolf 237 

and Pigeon Lakes (Fig. 4C&D). These temperature related metabolic changes appeared to alter 238 

organismal P investment into RNA production (Fig. 4E&F) as reduced %P-RNA ratios 239 

corresponded with lower body C:P ratios in each study population. Similar to %RNA, body lipid 240 

content also decreased with higher seasonal temperatures in both daphnid species (Fig. 5A&B). 241 

However, unlike %P-RNA relationships, daphnid body %lipid was more strongly related to body 242 

C content (Fig. 5C&D), and reduced lipid stores corresponded with lower Daphnia body C:P 243 

ratios in each population (Fig. 5E&F). 244 

 Relationships between Daphnia biomass, food quality, and temperature. In Wolf Lake, 245 

daphnid biomass displayed a large population increase soon after ice-off, which was quickly 246 

followed by a rapid population decline (Fig. 6A). Population biomass remained near zero during 247 

the middle of the growing season but was reestablished to moderate levels in the later summer 248 

months. Daphnia biomass in this low P lake was related to both food quality and temperature 249 

with the highest biomass occurring at low seston C:P ratios and moderate temperatures (Fig. 6 250 

C&E). In the more eutrophic Pigeon Lake, daphnid biomass also showed a large early season 251 

spike, but biomass quickly decreased and remained low afterwards for the remainder of the study 252 

(Fig. 6B). Biomass production was not significantly related to seston C:P ratios in this lake 253 



(Figure 6D) where daphnid biomass was instead correlated with temperature and peaked at 254 

moderate temperatures (Figure 6F). 255 

Discussion 256 

 In each study lake, Daphnia elemental composition was related to seasonal changes in 257 

both food quality and temperature. However, we found negative correlations between seston C:P 258 

and daphnid C:P in Wolf Lake and weak relationships between these variables in Pigeon Lake 259 

suggesting that daphnid stoichiometry was poorly related to food quality overall. Instead, 260 

temperature appeared to more strongly alter Daphnia elemental composition as body C:P 261 

declined with higher summer temperatures. These changes were consistent with temperature 262 

effects on daphnid biochemical pools as higher temperatures were associated with relaxed 263 

coupling between body P and RNA content and reduced C-rich lipid stores. Although 264 

temperature seemed to be mostly responsible for driving seasonal variation in Daphnia 265 

stoichiometry, both temperature and food quality were related to total biomass production in 266 

study lakes.  267 

Seston and Daphnia stoichiometry varied seasonally within each lake. As in other 268 

studies, we observed phenological changes in seston C:P ratios (Kreeger et al. 1997; Hessen et 269 

al. 2005), which fell within previously documented measurements (C:P 100-800; Elser et al. 270 

2000a; Sterner et al. 2008). Fine-scale (weekly) variation was also high in the low P Wolf Lake 271 

due to differences in seston stoichiometry between the epi- and hypolimnion. While Daphnia 272 

pulicaria body stoichiometry also changed temporally in Wolf Lake, their body stoichiometry 273 

seemed to decouple from seston C:P as daphnid and seston C:P ratios were negatively correlated 274 

across the growing season. Stoichiometric food quality was high for the entire study period in 275 

Pigeon Lake (C:P <200) where Daphnia mendotae body C:P ratios were positively correlated 276 



with seston C:P, similar to patterns observed in other temperate lakes (DeMott et al. 2004). 277 

However, this relationship was not as strong in our study due to extensive stoichiometric 278 

variation in this taxon. Together, the decoupling of seston C:P and daphnid C:P in Wolf Lake 279 

and weak relationships in Pigeon Lake suggest that food quality likely played a minor role in 280 

shaping Daphnia body stoichiometry in both populations. Instead, seasonal declines in daphnid 281 

C:P appeared to be more connected to temperature effects on daphnid elemental composition and 282 

biochemistry.  283 

Temperature was strongly related to daphnid P and RNA content in field-caught animals. 284 

Seasonal temperature increases were associated with linear increases in D. pulicaria body %P in 285 

Wolf Lake and non-linear responses in D. mendotae from Pigeon Lake. Our results resemble 286 

those from a previous laboratory experiment showing species differences in body %P across 287 

temperature gradients (McFeeters and Frost 2011). But unlike this study, daphnid responses in 288 

our lakes appeared to be mostly independent from food quality effects, suggesting that 289 

organismal responses to temperature in natural populations are likely to be both context and 290 

species dependent (Bullejos et al. 2014; Moody et al. 2017). Body RNA content declined in both 291 

of our study species with increased temperatures, which is consistent with adaptive physiological 292 

thermal responses commonly observed across many taxa in the wild (Woods et al., 2003). 293 

However, relationships between daphnid body %P and %RNA were weak for D. mendotae and 294 

were even negative in D. pulicaria suggesting that temperature unexpectedly modified consumer 295 

nutrient metabolism in our lakes. 296 

Investment of P into Daphnia RNA pools declined substantially with higher seasonal 297 

temperatures. This observation contrasts with many studies that have found consistent positive 298 

relationships between organismal body %P and %RNA (Elser et al., 2000; Bullejos et al., 2014; 299 



Zhang et al., 2016). Our results could thus at first glance seem to contradict the central premise 300 

of the growth rate hypothesis. However, this hypothesis as currently formulated is most 301 

applicable to consumers experiencing P-limitation and growing at the same temperature (Elser et 302 

al. 2003; Moody et al. 2017). Since relaxed coupling of daphnid body %P and %RNA has been 303 

documented outside of these narrow set of conditions (Elser et al. 2003; Acharya et al. 2004; 304 

Wagner et al. 2015), temperature mediated changes in elemental-biochemical coupling may 305 

explain the weak relationships between Daphnia C:P and seston C:P in our study. As a majority 306 

of consumer body %P is thought to be associated with ribosomal RNA (Elser et al. 1996), it 307 

remains unclear how Daphnia in our study maintained a high body %P despite exhibiting 308 

reduced body RNA content. We can eliminate the possibility of increased investment into DNA 309 

since it was a relatively small component of daphnid biomass (<0.4%; Suppl. Fig. 1A&B). As 310 

we did not measure additional P pools (e.g., phosphosugars, phospholipids), more work is 311 

required to identify the molecular form of the remaining unaccounted-for body %P. These 312 

studies should include other important elemental-biochemical relationships, such as body %N-313 

protein content, which also seemed to be temperature dependent in our populations (Suppl. Fig. 314 

1C&D). Understanding how consumers regulate their nutrient metabolism across temperature 315 

gradients is clearly an important step towards the further integration of temperature effects into 316 

stoichiometric theory.   317 

Seasonal changes in water temperature were also related to daphnid body C and lipid 318 

content. In both populations, we saw sharp declines in daphnid body %C, which corresponded to 319 

a reduction of ~10-15% of their total body dry mass at higher temperatures. These changes were 320 

likely due to elevated metabolic rates (Darchambeau et al. 2003; McFeeters and Frost 2011), 321 

which have been shown to decrease Daphnia body lipid and C content (Zhang et al. 2016). We 322 



provide further support for this mechanism as we observed synchronous declines in C-rich 323 

Daphnia body lipid stores and C:P ratios with higher seasonal temperatures in these two 324 

ecologically distinct species. These changes along with altered P metabolism provide a likely 325 

explanation for declines in Daphnia body C:P ratios across the growing season and highlight the 326 

important role of temperature in shaping consumer elemental composition in field assemblages 327 

(Bullejos et al. 2014).  328 

Although temperature was strongly related to Daphnia stoichiometry in our study, it is 329 

necessary to consider temperature effects within the hierarchy of other factors potentially 330 

affecting animal C:P ratios in nature. Consumer body stoichiometry reflects the influence of a 331 

number of environmental and biological factors that operate simultaneously across spatial and 332 

temporal scales (Cherif et al. 2017). Within individuals (level-1; L1), consumer body 333 

stoichiometry is proximately controlled by the biochemical/elemental content of its subcellular 334 

components and body tissues (Elser et al. 1996). For instance, differences in the elemental 335 

content of somatic vs. reproductive tissues such as eggs can alter daphnid body stoichiometry 336 

and account for size-specific differences across developmental stages (Ventura and Catalan 337 

2005; Frost et al. 2008). At an environmental-level (L2), variables that affect consumer 338 

physiology, life-history, or behavior can alter the intake and investment of dietary elements at L1 339 

(Frost et al. 2005). In addition to food quality, this list includes a suite of abiotic variables (e.g., 340 

light and CO2,), biotic factors such as food quantity and algal taxonomic composition, and food 341 

web dependent factors such as predation and parasitism (Dickman et al. 2008; Yamamichi et al. 342 

2015). Finally, organismal stoichiometry is shaped by the evolutionary history  (L3) of a given 343 

taxon, which can influence both immediate responses of organisms to environmental conditions 344 

(i.e., elemental plasticity) and shape species and population differences through space and time 345 



(Elser et al. 2000b; Frisch et al. 2014; Prater et al. 2017). As our study examined the seasonal 346 

effects of temperature and food quality (L2) on organismal stoichiometry (L1) of two separate 347 

species (L3) in complex natural environments, we are unable to fully differentiate among the 348 

effects of all of these factors and their interactions. Nevertheless, our results suggest that 349 

temperature is likely to be an important variable controlling organismal elemental content in 350 

field populations, despite the possible roles of other factors, as it accounted for a substantial 351 

amount of variation in daphnid stoichiometry in both study lakes.  352 

Both temperature and stoichiometric food quality appeared to influence Daphnia biomass 353 

production in our study lakes. Biomass in the lower nutrient Wolf Lake was correlated with both 354 

food quality and temperature and was highest at low food C:P ratios and moderate temperatures,  355 

which occurred in the early spring and fall. Thus, although temperature seemed to predominantly 356 

control daphnid stoichiometry in this lake, nutrient availability represents an important factor 357 

determining zooplankton production and likely interacts with temperature to influence seasonal 358 

patterns in Daphnia biomass in oligo- and mesotrophic systems (Elser et al. 1998; Makino et al. 359 

2002). Daphnia biomass was not related to food quality in Pigeon Lake where seston was P-rich 360 

year-round. Instead, biomass peaked at moderate temperatures early in the year and remained 361 

low for the remainder of the growing season. We were unable to quantify predation pressure in 362 

our study, which could have influenced seasonal variation in Pigeon Lake biomass. Similarly, we 363 

did not measure differences in algal taxonomic composition, but daphnid biomass remained low 364 

despite high food quantities and was negatively related to algal biomass (Suppl. Fig 2). As 365 

cyanobacteria blooms can develop in the mid-summer and persist throughout the growing season 366 

in Pigeon Lake, it is possible that either feeding inhibition (Abrams and Walters 1996; DeMott et 367 

al. 2001) or reduced growth and reproductive rates due to fatty acid-limitation (Ravet et al., 368 



2012; Ger et al., 2016) could explain failed Daphnia recruitment following the spring die off. If 369 

true, our results suggest that food quality effects on daphnid nutritional physiology and biomass 370 

production may act along a continuum controlled by dietary elemental stoichiometry in 371 

oligotrophic systems and switching to physical and/or biochemical regulation under more 372 

eutrophic conditions.  373 

In this study, we documented complex relationships between seston food C:P ratios and 374 

temperature and consumer elemental metabolism and biomass production over a summer 375 

growing season in two separate lake ecosystems. While the correlational nature of our study 376 

necessarily limits the strength and breadth of our conclusions, we provide observational evidence 377 

that seasonal temperature changes were likely responsible for decoupling producer-consumer 378 

stoichiometry and altering consumer elemental-biochemical investment in natural populations. 379 

These observations provide important insights for stoichiometric theory as they might partially 380 

explain contrasting responses to elemental limitation among species adapted to different habitats 381 

(Bullejos et al., 2014; Zhang et al., 2016) and could account for the weak relationships 382 

sometimes found between consumer biochemistry and elemental composition (Wilder and 383 

Jeyasingh 2016). However, metabolic changes in our populations did not translate into straight-384 

forward predictable biomass responses in either lake highlighting current theoretical limitations 385 

in linking organismal-level physiology and life-history to higher-order ecological processes 386 

(Cherif et al. 2017). Moving ahead, careful laboratory studies in conjunction with manipulative 387 

field-based experiments are needed to better understand these cross-scale dynamics while 388 

controlling for and estimating the relative influence of other important ecological factors. These 389 

studies will allow for temperature effects on consumer metabolic physiology to be more fully 390 

integrated into existing stoichiometric models (e.g., Cross et al. 2015) to better predict how 391 



consumer population dynamics and ecosystem functions may change under increasingly variable 392 

climatic conditions occurring across the planet. 393 
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Figure Captions 

Fig 1. Seasonal variation in seston carbon:phosphorus (C:P) ratios, lake temperature, and 

Daphnia body C:P ratios. Weekly means ± standard error are plotted for C:P ratios. Top (white) 

and bottom (light grey) seston C:P values and top water column temperature values are shown 

for Wolf Lake. Water column integrated seston C:P and temperature values are displayed for 

Pigeon Lake (dark grey).  

Fig 2. Changes in Daphnia body elemental composition across seston stoichiometry and 

temperature gradients in Wolf Lake. Distance correlations are reported for: A) seston 

carbon:phosphorus (C:P) ratios and daphnid body %C, B) temperature and daphnid body %C, C) 

seston C:P ratios and daphnid body %P, D) temperature and daphnid body %P, E) seston C:P 

ratios and daphnid body C:P ratios, and F) temperature and daphnid body C:P ratios. P-values 

and correlation coefficients (D) are reported for each correlation.  

Fig 3. Changes in Daphnia body elemental composition across seston stoichiometry and 

temperature gradients in Pigeon Lake. Distance correlations are reported for: A) seston 

carbon:phosphorus (C:P) ratios and daphnid body %C, B) temperature and daphnid body %C, C) 

seston C:P ratios and daphnid body %P, D) temperature and daphnid body %P, E) seston C:P 

ratios and daphnid body C:P ratios, and F) temperature and daphnid body C:P ratios. P-values 

and correlation coefficients (D) are reported for each correlation.  

Fig 4. Correlations between temperature, Daphnia body RNA content, and body elemental 

composition. Distance correlations are shown for: A&B) temperature and daphnid body RNA 

content, C&D) daphnid body phosphorus (%P) content and body %RNA, and E&F) daphnid 

body C:P ratios and the proportion of body P bound in RNA (%P-RNA). P-values and 



correlation coefficients (D) are reported separately for each lake. Wolf Lake values are shown in 

white, and Pigeon Lake values are displayed in grey.   

Fig 5. Correlations between temperature, Daphnia body lipid content, and body elemental 

composition. Distance correlations are shown for: A&B) temperature and daphnid body %lipid, 

C&D) daphnid body carbon (%C) content and body %lipid, and E&F) daphnid body 

C:phosphorus (P) ratios and body %lipid. P-values and correlation coefficients (D) are reported 

separately for each lake. Wolf Lake values are shown in white, and Pigeon Lake values are 

displayed in grey.   

Fig 6. Changes in Daphnia biomass across the growing season and correlations between seston 

nutrient content, temperature, and daphnid biomass production. Weekly means ± standard error 

are plotted for seasonal changes (A&B). Scatterplots and distance correlations are shown for: 

C&D) seston carbon:phosphorus (C:P) ratios and daphnid biomass and between E&F) 

temperature and daphnid biomass. P-values and correlation coefficients (D) are reported 

separately for each lake. Wolf Lake values are shown in white, and Pigeon Lake values are 

displayed in grey.   
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Figure 2.  
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Figure 3. 
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Figure 4. 
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Figure 5 
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Figure 6. 
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