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Abstract: Knowledge of roof geometry and physical features is essential for evaluation of the 

impact of multiple rooftop solar photovoltaic (PV) system installations on local electricity networks. 

The paper starts by listing current methods used and stating their strengths and weaknesses. No 

current method is capable of delivering accurate results with publicly available input data. Hence a 

different approach is developed, based on slope and aspect using aircraft-based Light Detection 

and Ranging (LiDAR) data, building footprint data, GIS (Geographical Information Systems) tools, 

and aerial photographs. It assesses each roof’s suitability for PV deployment. That is, the 

characteristics of each roof are examined for fitting of at least a minimum size solar power system. 

In this way the minimum potential solar yield for region or city may be obtained. Accuracy is 

determined by ground-truthing against a database of 886 household systems. This is the largest 

validation of a rooftop assessment method to date. The method is flexible with few prior assumptions. 

It can generate data for various PV scenarios and future analyses. 

Keywords: solar; LiDAR; rooftop photovoltaics; building characteristics; wide-area solar yield 

 

1. Introduction 

Solar energy has a vital role to play in the sustainable energy mix for achieving the 2020 

deadline of the Paris Agreement [1]. This requires all cities to increase the supply of green energy 

and change consumption patterns. Knowledge of quantity and output timing of solar energy 

becomes increasingly important. It can help with managing self-consumption, pay-back times, 

profitability, carbon trading, and financial attractiveness of domestic PV systems [2]. There is some 

evidence that PV has less impact on the environment than other renewable technologies e.g., solar 

thermal [3], although use of flat plate collectors has reduced CO2 emissions in Greece [4]. Efficiency 

of PV systems and their simulation are improving [5]. 

Exact calculation of the solar exposure on pitched roofs is essential for modelling photovoltaic 

(PV) deployment in domestic scenarios. Two popular tools for calculating in-plane radiation and PV 

energy production are PVGIS (Photovoltaic Geographical Information System) [6] and PVWatts 

Calculator [7]. These are free, web-based, do not require installation, and are based on minimal 

inputs. In order to produce results, these tools either require the user to enter system tilts and 
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azimuths, or employ default or optimal values. Commercial photovoltaic software and calculators 

[8–10] produce quick reliable information of PV potential, but also need the user to supply 

inclination and orientation of system. This research fills this gap. The UK lacks a national database 

capable of providing the necessary information. This is also a common omission in other countries. 

The EU Buildings Database [11] contains information on gross floor area and roof insulation type but 

has no details of roof inclination, orientation or pitched dimensions. The US is slightly better 

provided for with a report which assesses the rooftop solar PV potential of 23% of buildings 

nationwide [12]. In this paper, previous works [13–15] are revisited and expanded upon. That is, 

automated extraction of building roof plane features over extensive areas, shading techniques, and 

the influence of module orientation on yield are studied. An approach which calculates solar 

exposure on tilted roofs, based on grid squares or pixels, is proposed. Open data building footprint 

maps are combined with LiDAR (aircraft-based Light Detection and Ranging Data). These are 

analysed statistically within a Geographical Information Systems (GIS) environment. The new 

approach is ground-truthed against a database of about 2000 rooftop domestic solar systems 

deployed across the city of Nottingham, UK [16]. Up to the present, no other rooftop PV capacity 

studies have been as rigorously validated. 

Urban PV is growing rapidly. Mono- and polycrystalline modules currently hold up to 90% of 

the market [17]. Recent developments in concentrating photovoltaic systems (CPV) to reduce weight 

and size have enabled this high efficiency technology for rooftops in areas receiving large amounts 

of direct sunlight [18,19]. To date in the UK, rooftop PV has been deployed faster than expected. 20% 

of total installed solar PV capacity (2.6 GW) comes from small scale 0 to 4 kW installations [20]. 

Net-metering to encourage self-consumption is taking place in many countries worldwide, including 

the UAE, Lebanon, Chile, and parts of India [21]. In the Netherlands household installations 

comprise 90% of PV capacity [22]. In China, rooftop distributed installations reached 15 GW in 2017, 

a rise of 400–500% compared to 2016 [23]. 

The modern urban environment delivers a variety of problems and advantages for PV deployment. 

Many neighbourhoods display complex amalgams of roof pitch (tilt) and building orientation 

(azimuth). Roof features such as aerials, chimneys, stack vents, velux, cross-gables, and dormers 

may further reduce possible system size. 

Roof pitch is associated with building age and roofing material. These in turn are related to 

geographic regional variation in construction methods. Building direction (azimuth) is largely 

governed by road layout which is a reflection of local topography. 

The tilt and azimuth of a PV installation has two major effects on energy output. Firstly, there is 

a larger or smaller amount of total annual yield: dependent on how well the roof slope and azimuth 

match the average sun position over the year [24]. Secondly, there is an impact on the seasonal or 

daily timing of peak energy generation [25]; although in future energy storage is expected to 

enhance local generation [26]. PV and battery components will need to be selected so as to minimize 

environmental impacts [3]. 

Module performance is also affected by variable operating conditions e.g., temperature and 

wind. Increased operating temperatures decrease efficiency. Convective heat loss is dependent on 

wind direction (i.e., PV system orientation), amongst other factors [27]. 

Solar PV modules may capture the maximum solar radiation by inclination at an optimal angle 

dependent on sun path (site latitude) and typical weather (diffuse fraction of solar radiation), which 

is about 38 degrees for most of the UK. Roofs which have higher or lower pitches than this optimal 

value receive less irradiation. 

Current building stock does not always permit the use of this optimum and trade-offs in 

placement are necessary. Similar mismatches occur in other countries. Whereas the traditional UK 

roof pitch (40–50°) [28] tends to be steeper than the optimum angle for PV, in Mediterranean regions 

traditional tile roofs (20–25°) [29] are frequently shallower than the optimum 30–33°. Azimuth may 

also be less than ideal. Although total annual yield is lowered by non-optimal building orientation 

there may be positive side effects such as higher morning, evening and winter generation. 
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Analysis of roof characteristics and their impact on PV output and timing for an individual 

house is relatively straightforward. This research provides an efficient method for analysing areas 

too large to investigate manually. 

2. Research Methodology 

There has been extensive prior research into computerised recognition of 3D structural 

characteristics, including several excellent literature reviews [30–32]. The authors of a previous 

paper [30] divide rooftop area estimation methods into three. First, the constant value methods 

approach the problem collectively by scale-up [33,34]. Although quick and easy, they employ broad 

assumptions and produce generalised results. Second, manual selection [35] is time-consuming. 

Third, GIS-based methods [13] deliver detail and may be automated but require substantial 

computing power. No technique is widely accepted as definitive. This paper concentrates on 

GIS-based methods. 

This research topic presents difficulties with regard to both noisy data and the vastness of 

LiDAR datasets. Recognition of three-dimensional structural features is nontrivial. This paper 

commences by testing current methods which take aerial photogrammetry and/or LiDAR data as 

inputs. The positive and negative results are discussed. Present methods include model-driven, peak 

searching, iterative voting, edge detection with LiDAR, edge detection of images, image recognition, 

and hill shading with ambient occlusion. 

A LiDAR dataset comprises a grid of ground elevation values produced by an aircraft at 

constant altitude firing a pulsed laser to Earth and measuring the returns with a sensor. Data 

resolution is a resultant of the number of returns per square metre. LiDAR can give precise heights 

of objects (e.g., houses and trees), as well as surface undulation. In the UK, LiDAR data for limited 

areas and scales of resolution may be obtained from the Environment Agency [36]. One meter 

resolution was selected to accommodate both accuracy and availability. It covers approximately 70% 

of England. Aerial photography was obtained from Google Earth [37]. 

Since none of the existing methods was found to be adequate using the available input data, a 

new approach is elaborated. This is expedient for medium resolution LiDAR. Previous methods may 

result in imprecise values unless high resolution data is available. Rather than attempting to obtain 

exact roof areas, each roof is assessed for PV suitability. Suitability here is defined as a roof to which 

at least a minimum size photovoltaic system may be fitted (8 m2 of roof area corresponding to a 1 kW 

system, assuming a module size of 1.6 m2 [30]), with an azimuth east through south to west and tilt 

of between 15° and 60°. (Most UK homeowners install a 1 kW to 4 kW solar system on their roof [38].) 

Thus, the minimum potential solar yield for region or city may be obtained. The need to generate 

accurate roof areas and PV system sizes from inexact data is avoided because the goal is the 

minimum requirements for domestic PV only. Nor is this method intended to separately identify 

multiples of 1 kW. This is not possible with the available input data and domestic systems are almost 

entirely comprised of smaller multiples, e.g., 3.76 kW. 

LiDAR heights on roof tops only are selected by clipping them out using building outlines 

(from OS MasterMap Topography Layer [39]) as patterns or “cookie cutters”. The azimuth and tilt of 

each roof gridpoint is calculated by weighted least squares fit of a plane to a 3 × 3 pixel 

neighbourhood, centred on each LiDAR point [13]. Due to LiDAR inaccuracies, flight paths, and 

chance, this will result in a unique value for each pixel. Roofs slope evenly, so a statistical technique 

smoothing azimuth pixel values into groups is identified. Next the roof is divided into separate 

planes according to the grouping. The size, tilt, and azimuth of each plane can be deduced from the 

aforementioned calculation. A check is performed to ascertain whether a system of 8 m2 can be 

mounted on any of the roof faces. 

The methods are tested on two case studies. The Wollaton Park area of Nottingham, UK was 

chosen because its houses display many different architectural styles. The second case study is a 

database of approximately 2000 housing association residential rooftop installations in Nottingham. 

System sizes, placement, and installer records of the tilt and azimuth of individual systems have 

been gathered from a monitoring website. 
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3. Existing Methods of Rooftop PV Estimation 

3.1. Simple Roof Slope and Azimuth Extraction 

Trigonometry may be applied to the LiDAR grid of roof point heights to calculate tilt and 

azimuth of every grid square or pixel (2 m, 1 m, 50 cm, 25 cm, or 15 cm, depending on the resolution 

available in the area of interest). The traditional approach is to group pixel values obtained from a  

3 × 3 neighbourhood by compass point bands to produce realistic roof planes [40]. However, Figure 1 

illustrates the problems which may occur. The building in the aerial photograph has a simple roof 

layout, comprising one north and one south-facing roof section. (Note: the overhead perspective 

images in this paper are of poor quality. This is a reflection of the data which is publicly available 

and is part of the problem which this paper seeks to address.) Whilst the azimuth diagram generated 

from LiDAR reproduces the two sections, there are many spurious small roof planes pointing in 

various directions. These result from the presence of chimneys, TV aerials, etc., as well as overhanging 

trees and surrounding structures such as garages. In the case of more complex roof structures, these 

pseudoplanes can be difficult to distinguish from genuine dormers and porches. 

 

Figure 1. Roof azimuth produced from 1 m aircraft-based Light Detection and Ranging (LiDAR) 

compared to aerial photograph for a two-roof plane building. 

Extraction of roof geometry from LiDAR has been the subject of extensive research over the last 

ten years. Existing solutions are categorised, reviewed and tested in the following paragraphs. 

3.2. Model Driven Methods 

This approach comprises the matching of the irregular roof segment shapes obtained from 

LiDAR to the best-fitting model in a library of basic building shapes. Jacques et al. (2014) [41] utilised 

it to classify small buildings in the city of Leeds, UK, using a restricted catalogue of common roof 

profiles (gabled, hipped, flat, complex, or unclassified). 

Model-based methods do not work well for multifaceted roof shapes and intricate building 

construction. Looking at the topic from a country-wide perspective, there are numerous possible 

building types. Internationally, roof type is just as varied [42]. Some authors list as many as 50 

categories with multiple subcategories. The Geograph Britain and Ireland Project [43], which collects 

representative photographs for every square kilometre of the nation, has captured examples of over 

25 different roof profiles. Some have very different forms (e.g., flat, round, or hipped dormer). Due 

to the multiplicity of possible model shapes, this line of research was not pursued. 

3.3. Histogram Discrimination/Peak Detection 

This approach is perhaps the oldest and simplest. Peaks are searched for in elevation (above 

ground level), tilt, or azimuth histograms and used to segment the data. Spatial planes are fitted for 

each segment. Theoretically, simple gabled roofs should display a rectangular height histogram and 
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that of hip roofs should resemble a trapezium [44]. In fact, these ideals cannot be achieved with real 

data, as Figure 2 explains. The Wollaton Park (Nottingham) house in the Figure 2 example is a 

complex but not unusual structure, comprising a hipped roof with a porch and dormers. Its 

elevation histogram should slope gently straight down (in the shape of a trapezium [44]) but in 

reality is concave (see dotted and solid lines in Figure 2 top right). The building in question is known 

to have a roof tilt of 38° (the same for each of the two major front and rear planes). Actually, it is 

barely possible to distinguish the 35–40 degree bin as the most frequently occurring in the tilt 

histogram. (This is obvious on a simpler roof form.) The azimuth histogram is a little clearer in as far 

as the major front (south-facing, 180°) and rear (north-facing, 360°) planes may be discerned. Then 

again, the east (90°), and west (270°) planes cannot be extricated from random noise in the data. 

 

Figure 2. Elevation, tilt, and azimuth histograms from 1 m LiDAR for a complex roof. 
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Probably because of these kinds of problems, the peak-fitting method seems to have been 

largely replaced by other techniques. Furthermore, it analyses each height point in isolation. The 

spatial relationship between points is not considered, although all the points on a plane will have 

related values until an edge is reached. Newer methods refine peak detection with iterative voting 

(e.g., region-growing [45], random sample consensus algorithm (RANSAC) [46], and Hough 

Transform) [47]. These are all region dependent, i.e., they account for the spatial location of each 

height point with reference to its neighbour. The Hough Transform is the computationally fastest of 

these techniques. 

Hough plane detection has two stages: edge detection, followed by grouping of the points 

inside the edges to generate the planes. 

3.4. Edge Detection 

Initially, a Canny edge detector [48] was applied to the 1 m LiDAR data for the Nottingham 

house in Figure 2 (GRASS software (Version 6.4.3); i.edge [49]). The Canny edge detector is well 

known and often used to process both LiDAR data and images. It works by marking local maxima in 

the LiDAR as edges. However, in the case of the Nottingham building in Figure 2, the Canny 

algorithm completely failed to discriminate any edges (roof ridges), due to noise and the relatively 

coarse resolution of the data. When tested on several of the smaller housing association properties, 

edges were detected but not all correctly (Figure 3). On some homes the roof ridge is identified but 

on others an edge perpendicular to the expected position is located. With no clear or consistent 

pattern to these errors, further algorithms were trialled with the aim of improving reliability. 

 

Figure 3. Results of Canny edge detector applied to identify roof ridges on small Nottingham homes. 

These included the simple (moving window) filter of System for Automated Geoscientific 

Analyses (SAGA) GIS [50] and ArcGIS [51,52] low pass (3 × 3 cell area mean), majority (3 × 3 cell area 

mode), and high pass (3 × 3 cell area weighted) filters. There was no improvement in results. Roof 

ridges appeared too wide or were not detected. 

The problem appears to be the resolution of the input LiDAR data. Roof features are too small 

to be easily perceptible in 1 m data. Figure 4 illustrates the LiDAR data for the example Nottingham 

house in the form of a simple graph. The larger the circle, the higher the roof elevation of the 1 m 

grid cell it represents. As may be seen, even with manual intervention, not all roof features are 

visible in 1 m LiDAR. 

 

Figure 4. Graph depicting original 1 m LiDAR heights for complex Nottingham roof as scaled circles. 



Energies 2018, 11, 3506 7 of 22 

 

Higher resolution LiDAR is only publicly available for small areas of the UK and not for the 

Nottingham test area. For this reason, tests were carried out with aerial photography instead of 

LiDAR. 

3.5. Edge Detection Using Google Earth 

Images captured from Google Earth were utilised because they are readily available and cover 

all areas. Several filters available in GIMP software were investigated [53,54], including the low pass, 

Sobel (horizontal and vertical moving windows), and Laplace (high pass). The basis of all of them is 

gradient calculation, with edges being defined when a threshold value is exceeded, similar to the 

Canny edge detector. The best results were achieved with the Laplace filter preceded by a 10 pixel 

blur to prevent false edges (Figure 5). 

When a wider area was investigated (the Wollaton Park suburb surrounding the example 

house), it became obvious that only two planes of four-plane roofs were being identified (Figure 6). 

This image shows the south and west plane as one, and the north and east plane as one, for 

four-plane roofs. This is possibly due to the aerial photograph being taken in the afternoon and the 

filter merely distinguishing the sunny/less sunny sides of the roof. The next step was to investigate 

image recognition techniques. 

 

Figure 5. Laplace (weighted high pass) filter with 10 pixel blur applied to Google Earth image of single 

complex roof in Nottingham. 
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Figure 6. Laplace (weighted high pass) filter with 10 pixel blur applied to a Google Earth image of a 

residential area in Nottingham. 

3.6. Image Recognition 

Initially, an unsupervised technique (i.e., image classification without the analyst’s intervention) 

[55] was tried on the example Nottingham house. The ArcGIS software automatically groups image 

pixels with similar values into statistically distinct classes using iterative clustering around the mean 

(iso cluster algorithm). In this instance, the outcome was unusable. Almost every pixel in the image 

was treated as a separate roof plane, the exception being areas of shade which were well 

distinguished because they are much darker than the rest of the roof. Several supervised methods 

were then tested. That is, training areas representative of separate roof planes were created by 

manually digitising polygons. Next, these training samples were used to categorise all other pixels in 

the image via a classification algorithm. Training examples were digitised for all directions of the 

example Nottingham roof which may be identified manually (north, east, south, and west). Areas of 

shade on the roof and chimneys were also digitised for recognition as separate features. Two 

classification methods delivered reasonable results (Figure 7): 

 Class probability which employs Bayesian statistics to segment the image. 

 Maximum likelihood classification, which also uses Bayes theorem but weights classes if they 

are more likely to occur. 

It may be seen that again there are problems with spurious features being identified. Having 

said that, the main difficulty is that the north plane is hard to distinguish from the east, and the 
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south plane cannot be separated from the west. This is similar to findings from edge detection of 

Google Earth images. It appears that what is needed for accurate roof plane segmentation is aerial 

photographs taken at different times of the day. These images would show different roof directions 

in slightly different colours, as the sun lights each one in sequence on its daily path. A composite 

from several images would then deliver accurate results. However, multiple daily photographs are 

not available from Google Earth or any other freely available image source. Therefore the decision 

was taken to re-examine LiDAR as a data source. 

(N.B. Google Earth’s Voyager 3D Cities layer [56] is generated from multiple sources, including 

Sketch-up models and stereoscopic imagery. There is no 3D geometry currently accessible for 

download, which eliminates this resource at present.) 

 

Figure 7. Training samples (top) and results of Maximum Likelihood Classification on an example 

complex roof in Nottingham. 

3.7. Hill Shading with Ambient Occlusion  

The previous sections discovered a need for images captured at successive times during the 

day. This was achieved by applying the hill shading with ambient occlusion module from SAGA 

software [14,57–59] to 1 m LiDAR data for the residential area in Nottingham. Hill shading models 

beam radiation from a single direction. Ambient occlusion adds the diffuse component of sunlight. It 

samples a hemisphere around each LiDAR height point and ascertains what proportion of that 

hemisphere is blocked by higher surrounding points. The pixel is shaded to suit. The combined 

technique was used to generate shading patterns on roofs at different times during the day. 

Preliminary results appear encouraging (Figure 8). North- and west-facing roof planes are shaded 

(darker) in the morning simulation (sun in southeast), north only at 2 pm, and north- and east-facing 

segments are in shadow slightly later in the afternoon (sun in southwest). 
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Figure 8. Hillshading with ambient occlusion applied to a house in Nottingham at three time periods. 

Nonetheless, this technique has some shortcomings. It does not allow for beam reflection and 

transmission, e.g., through thin cloud, and therefore is not completely realistic. In addition, it is slow 

[58]. 

3.8. Review of Progress 

All the techniques covered so far are based on grouping the unique values allocated to each 

LiDAR grid height point or Google Earth image pixel colouration to produce realistic roof planes. 

That is, roof segmentation traditionally precedes estimation of solar potential on building roofs. This 

may be the standard approach but, as illustrated above, there are many difficulties, summarised in 

Table 1. None of the above methods works well with the data resolution available in the UK (1 m for 

the most part). Existing methods cannot deal with the variety of roof styles, data noise, and temporal 

and spatial resolution of available data. Identification of suitable rooftops for PV is critical for 

research ranging from grid impacts to carbon emissions. No agreed method of obtaining this value 

has yet been published [30]. The following sections propose an alternative to conventional rooftop 

PV techniques. An accurate, sound rooftop PV assessment tool, applicable to many cities, is 

provided. 

Table 1. Analysis of current methods of rooftop photovoltaic (PV) modelling. 

Number Method Data Input Result 

1 Model driven LiDAR 1 m Too many model types in UK (>50) 

2 Peak driven LiDAR 1 m 
Hard to distinguish peaks (noisy 

data) 

3 

Iterative voting  

e.g., region-growing, 

RANSAC, Hough 

LiDAR 1 m Require initial edge detection 

4 
Edge detection e.g., Canny, 

high pass filter 
LiDAR 1 m 

Fails due to noise and low resolution 

of data 

5 
Image detection e.g., 

Gaussian, Sobel, Laplace 

Aerial 

photographs i.e., 

Google Earth 

Only two planes of four-plane roofs 

distinguished. Need photos at 

different times of day. 

6 

Image supervision 

(supervised & 

unsupervised) 

Aerial 

photographs i.e., 

Google Earth 

Only two planes of four-plane roofs 

distinguished. Need photos at 

different times of day. 

7 
Hill shading with ambient 

occlusion 
LiDAR 1 m 

Generates shading patterns at 

different times of day. Most 

promising of these methods but not 

completely realistic. 
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4. New Method 

This method simply asks “Can PV be fitted to this roof?” There are no predefined templates, 

merely three basic technical requirements: (1) sloping roof with a pitch of between 15° and 60° (flat 

roofs are treated separately); (2) orientation in the southern half of the compass; and (3) roof area 

large enough to accommodate a 1 kW system, i.e., 8 m2 roof plane. Figure 9 is a schematic representation 

of the stages involved in this new method. ArcGIS commands are provided in the Appendix A. 

1. Select building elevation pixels only from the LiDAR grid, using OS Mastermap Topography 

layer [39] as a “pattern cut-out”. Heights of other features e.g., vegetation, cars, salt bins, are 

eliminated (Figure 9, Step 1). 

2. ArcGIS Slope and Aspect tool are used to calculate the tilt and azimuth of each roof grid square 

(Figure 9, Step 2). 

3. The mean tilt of the entire roof is calculated. All main roof patch areas are assigned the same tilt. 

Accuracy is maximised by taking the entire roof. Roofs with tilts of less than 15° and greater 

than 60° are excluded. Roofs with a pitch smaller than 15° are not steep enough for accurate 

azimuth estimations and are categorised as “flat”. 

4. Determine the mode of azimuth for all grid squares within each building footprint. 

5. The initial assumption is that all houses have two major aspects. The area is manually checked 

using Google Earth and extra steps are carried out if more complex building forms are detected: 

a. Duo pitch roof: Considering due North to be zero degrees, if the mode is between 90° and 

270°, add 180° to obtain the southern aspect for PV. In theory an “up and over roof” has 

two aspect “modes” but due to LiDAR flight paths, reflections, etc. one will predominate. 

Every pitched roof must have at least two diametric planes. (In contrast to standard peak 

finding, only one azimuth peak must be found, rather than two.) 

b. Square four hip roof: If the mode is between 90° and 180°, then add 90°. If the quantity of 

west-facing grid squares is greater than the amount of east-facing pixels, select the 

west-facing ones. These receive more insolation and cost will probably prohibit installation 

on both aspects.  

c. Three plane houses: Similar to four, but one direction will be missing. If no pixel values are 

detected in a 10° band when the mode is replaced with the 90° opposite value, this 

orientation is missing and process is abandoned. 

d. More than four main roof patches—complex roof formats are not suitable for PV and 

therefore not covered by this research. 

6. Select roofs east through south to west (southern cardinal compass directions only). 

7. Chose grid squares not outside half a standard deviation of the mode (Figure 9, Step 3). 

8. Carry out a Rook’s Case connectivity check to delete roof patches which are linked by the 

corners (touch diagonally). PV modules cannot be connected cornerwise (Figure 9, Step 5). 

9. Apply a minimum 10 pixel filter (10 of 1 × 1 m grid squares) to the selected grid squares to 

eliminate small areas (Figure 9, Step 6). 

10. Remove dangling pixels with a boundary clean. 

11. Roof patch area may be calculated (see Appendix A) if desired, although this is not necessary. It 

goes beyond the main objective of this approach, which is to select roof planes which meet the 

three basic technical requirements for PV. 

Note, for speed or in very large areas, the default of two plane roofs may be accepted. This is the 

most common roof type for houses of all ages (see photographs by Barrow [60]). Gabled (two plane) 

roofs are also found on terraced houses which comprise large areas of industrial cities. 

Minimum solar power system area was obtained using the roof direction rather than the pitch. 

This proved less variable than the tilt, making it easier to group grid square values around a 

statistical measure. By investigating ten houses where azimuth had been measured, the mode was 

found to be the most effective measure for categorizing pixels (rather than mean, maximum, etc.). 

There is less distortion from errors in the original LiDAR data. 
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In order to group roof pixels into areas which may be checked for minimum PV size 

requirements, the following mathematical formulae were tested. These all select azimuth pixels 

around the mode: 

 Equal interval plus or minus 45°. 

 Jenks Natural Breaks [61] 

 One quarter standard deviation of mode. This gathers almost one sixth of roof data (68% std/4 = 

17%). 

 One-third standard deviation of mode. This gathers nearly a quarter of roof data (68% std/3 = 

23%. 

 Half standard deviation of mode. This obtains about one-third of roof data (68% std/2). 

These five classification methods were tested on a database of solar photovoltaic installation 

data maintained by a housing association (see Section 5). Eight-hundred-and-eighty-six of the homes 

have LiDAR coverage. System sizes are catalogued, so the area of individual systems may be 

estimated (1 kW = 8 m2). The cosine rule (see Appendix A) was used to transform horizontal roof 

plane area to tilt area before checking for the minimum of 8 m2 for PV. Results from the half standard 

deviation method most closely matched database values. Only 2.5% of housing association homes 

fitted with PV were missed. The other four classification methods missed about twice as many 

houses. Visual checking of the structurally more diverse houses in the Wollaton Park case study 

with Google Earth also found the half standard deviation method to be most accurate. 

 

Figure 9. Method to discover whether roofs are suitable for minimum size PV installation. 
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No specific software is required for this method, other than GIS. Processing speed is acceptable 

with a standard desktop PC and satisfactory results are possible with medium resolution LiDAR. 

The process relies on data processing. Automation is possible, but not essential. Sample results for 

the Wollaton Park area of Nottingham are illustrated in Figure 10. Forty roofs are identified as 

suitable for PV. Some complex roofs are wrongly identified in the top right of the image. These are 

inappropriate for PV installation because of dormers and cross gables. However, compared to the 

methods detailed in Section 3, this new approach performs very well. The next section describes its 

validation in detail. 

 

Figure 10. Results of half standard deviation of mode method for 200 by 200 m section of Wollaton 

Park area of Nottingham. 

The new approach is, of course, limited by the availability of LiDAR data. It does need some 

manual checking in areas with complex architectures. Economic, social and market factors of PV 

uptake, competition with other renewable energies and rate of adoption are not investigated. On the 

other hand, it is low-cost, depending only on publicly available data. It is suitable for small buildings 

as well as medium and large, unlike some methods which tend to perform best on big buildings. The 

half-standard-deviation-of-mode method acts as a reference point in that it estimates minimum 

regional domestic PV deployment. 

5. Results and Validation 

Validation of the new method took place with a housing association database of PV installation 

data (Nottingham, UK). It was possible to obtain address (and therefore latitude/longitude), system 

size, and installers’ values of tilts and azimuths for these systems. Eight-hundred-and-eighty-six of 

the homes have LiDAR coverage, so it is possible to compare modelled results to actual 

on-the-ground measurements.  

The results are summarised in Table 2 and illustrated in Figures 11 and 12. Figure 11 graphs the 

percentage of actual systems within 5 degree bins of the modelled value of tilt/azimuth. Figure 12 

charts the under/overestimation of roof plane size. 

5.1. Tilt 

Sixty-one per cent of tilts obtained with the half standard deviation of mode method were in 5° 

of the installation database (Table 2). Eighty-seven per cent of estimated tilts were in 10° of the 

database (Figure 11). The Mean Bias Error (MBE) is 4°, the Root Mean Square Error (RMSE) is 7°, and 

the most frequently occurring error is 4°. Houses with the same configuration vary by 3° [13], so 

these results are acceptable. In addition, the installers’ figures are thought to be “rule of thumb” and 
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not measured e.g., by inclinometer. A 10° tilt variation between the traditional UK roof pitches of 40–

50° will only make a 1% difference to average annual plane-of-array irradiation received [15]. 

5.2. Azimuth 

Thirty-three per cent of azimuths calculated with the new method were in 5° of the installation 

database (Table 2). Sixty-six per cent of estimated azimuths were in 15° of the database. All the 

estimated azimuth figures were in 45° of the recorded value (Figure 11). Forty-five degrees azimuth 

variance impacts plane-of-array irradiation by 15%. The MBE is 14%, RMSE is 18%, and the most 

frequently occurring error 5°. Again, these figures are considered to be satisfactory. 

Table 2. Results of validation of half standard deviation of mode method. 

Roof Characteristic 
Total Systems n = 886 

Percentage Cumulative % 

Tilt 

Model within 0–5 degrees 61% 61% 

Model within 5–10 degrees 27% 87% 

Model within 10–15 degrees 9% 97% 

Model within 15–20 degrees 2% 99% 

Azimuth 

Model within 0–5 degrees 33% 33% 

Model within 5–10 degrees 19% 52% 

Model within 10–15 degrees 13% 66% 

Model within 15–20 degrees 9% 74% 

Model within 20–25 degrees 6% 80% 

Model within 25–30 degrees 6% 86% 

Model within 30–35 degrees 5% 91% 

Model within 35–40 degrees 4% 95% 

Model within 40–45 degrees 5% 100% 

Size 

Modelled results show minimum area 98% 98% 

Model within 0–10% of actual size 12% 12% 

Model within 10–20% of actual size 9% 21% 

Model within 20–30% of actual size 9% 30% 

Model within 30–40% of actual size 11% 41% 

Model within 40–50% of actual size 9% 50% 

Model within 50–60% of actual size 9% 59% 

Model within 60–70% of actual size 7% 66% 

Model within 70–80% of actual size 9% 75% 

Model within 80–90% of actual size 6% 81% 

Model within 90–100% of actual size 6% 87% 

Model within 100–200% of actual size 13% 100% 

Tolerable results have been achieved despite the fact that difficulties were noted with the 

housing association dataset. Visual checks using Google Earth discovered cases where the LiDAR 

derived figure is correct and the installers’ value is not. Tilts and azimuths appear to have been 

transposed in the database in some instances. Additionally, the installers appear to have estimated 

azimuth by the position of the sun without allowing for its annual path. 

5.3. Roof Patch Area 

The vast majority (97.5%) of established systems used in the validation process were correctly 

identified as being suitable for at least a minimum potential 1 kW system (Figure 12). Eighty per cent 
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had an area at least the size of the actual installed system. Comparing LiDAR derived values and 

values calculated from the system sizes, the MBE is 6% and RMSE 9%. 

 

Figure 11. Distribution of difference in tilt and azimuth. 

 

Figure 12. Distribution of difference in size. 

5.4. Review of Validation 

Table 2 and Figures 11 and 12 show that the majority of the modelled tilt and azimuth values 

fall within 15 to 20 degrees (6%) of the installers’ values. However, the spread of size value 

differences is much wider. Only 12% of results are within 10% of the ground-measured value. 

Therefore this research concentrates on identifying suitability for a minimum size PV system only, 

with 98% accuracy. 

5.5. Context of New Method 

Comparable techniques have been developed by Boz et al. [32] and the National Renewable 

Energy Laboratory (NREL) [12,62,63]. This section discusses the similarities and differences between 

previous work and the current method. 



Energies 2018, 11, 3506 16 of 22 

 

Boz et al. [32] bin individual pixel values from LiDAR into seven slope (tilt) and five aspect 

(azimuth) classes. The results are smoothed by replacing pixel values based on the majority of a 3 × 3 

neighbourhood to the present pixel (Majority Filter). Prior classification means that the fine detail of 

the original input LiDAR is lost during the roof segmentation. This work is validated visually by 

matching 150 rooftops in Philadelphia to aerial imagery. 

Similar to Boz et al., NREL categorize each 1 × 1 m roof square into nine azimuth classes. For 

each distinct roof plane creating by azimuth classification, the mean tilt was determined (Zonal 

Mean). A PV installer’s data set containing the location, tilt, and azimuth of 205 assembled PV arrays 

was used to validate the results of this analysis. 

Boz et al. report that their method gives the most precise results when applied to simple roof 

structures. NREL’s technique has virtually the same accuracy as the half standard deviation of mode 

method. Eighty-nine per cent of NREL modelled results were within 10° of the actual slope 

compared to 87% obtained by the current authors. Ninety-six per cent of NREL’s modelled results 

have the same azimuth as the actual azimuth set against the 100% accuracy obtained by the current 

authors (allowing for categorization into compass bands to be compatible with NREL). 

The techniques of Boz et al. (prior classification with Majority Filter) and NREL (single tilt value 

for each unique roof plane obtained from the azimuth) were tested with UK data. It was found that 

the Majority Filter did not add any accuracy. Straightforward categorization into compass band as 

previously carried out by the current authors [13] gives greater accuracy in the UK. This is due to the 

low number of LiDAR pixels bounded by the footprint of a typical UK home. Likewise, calculating 

the tilt value for every roof plane generated flawed results because segmenting small buildings gives 

imprecise results due to scarcity of data points. 

The methods of Boz et al. and NREL are reported as working well for the larger homes of the 

US. The method presented here (entire building average for tilt and half standard deviation of mode 

for azimuth planes) is suitable for the smaller houses of the UK and other European and Asian 

countries. It is validated against more actual buildings’ data than any previous method. 

6. Summary and Discussion 

The new method presented here is a competent investigative tool for the installation of 

residential solar systems. It is capable of estimating how much energy could be generated if a 

minimum size PV system was installed on all existing suitable roofs throughout an entire city, 

region, or country. This information is valuable to network operators and can be used for 

transmission planning. 

This method has few prior assumptions. It just determines suitability for PV. The results 

represent a minimum boundary for potential PV deployment. There is no attempt to predict actual 

installation because this is influenced by a range of factors, e.g., affordability, attractiveness, and 

tenure.  

The new method chooses grid squares within half a standard deviation of the azimuth mode. It 

categorises noisy data values to produce intelligible results. A map of roofs suitable for minimum 

size solar system installation is produced: size 8 m2 or more and tilt 15–60°, southern compass 

direction. 

A comprehensive validation has been carried out using two techniques. Firstly, by a check for 

wrongfully selecting inappropriate roofs as suitable for PV. This was carried out by manually 

matching 50 rooftops in Wollaton Park to Google Earth imagery (Figure 10). Two roofs were 

incorrectly selected as opposed to 50 correctly categorised. Secondly, by a check for missing suitable 

roofs by comparison against the biggest installation database used by any analogous research to 

date. 

The tool presented here can be used to calculate the ability of aggregations of households at 

various scales to offset their electricity consumption with PV. The majority of people live in cities, 

even in less developed countries. This proportion is set to increase to 68% by 2050. Overall 

population growth will add even more people to the urban environment. The greatest increase in 

city dwellers is expected in Africa and Asia [64]. Successful development will require sustainable 
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urbanisation. Rooftop PV and accurate estimations of its yield have a significant role in urban 

expansion. The new method is suitable for both industrial and residential buildings, since it is 

capable of analysing all building sizes, and flat as well as tilted roofs. The detailed information it 

may provide allows for a more flexible grid and related infrastructure to accommodate renewable 

technologies. 

7. Conclusions 

This method is useful, effective and functions correctly with the data publicly available in the 

UK (predominantly 1 m LiDAR, Google Earth images and MasterMap building outlines, Section 2). 

In this respect, it provides a valuable contribution to the scientific field because the methods tested 

and reviewed in Section 3 require higher resolution input data than can be provided to produce 

usable results. 

The unique attribute of the method presented here is that it is twice validated, by extensive 

ground-truthing against a database of 886 installations, and against aerial photography. This makes 

it the most thoroughly validated method to date. 

The aim of any PV roof-area estimation method is to provide data for further analysis. This 

method is flexible. It allows individual houses as well as large numbers of properties to be 

examined, depending upon later requirements. Unlike some methods, it makes no assumptions 

when larger numbers are involved and does not rely on compass band classification. An example of 

use of the data generated would be a study of the relationship between azimuth and self-consumption. 

A range of PV-related research is enabled. 

This method may be applied to estimate minimum rooftop area suitable for PV deployment in 

any country which has northern European-type architecture and/or equivalent building size, 

provided LiDAR data is available. In countries with larger house sizes, e.g., Australia, USA, and 

Canada, it may be better to use the NREL method [12]. For cities with predominantly flat roofs, e.g., 

Cairo, building footprint analysis will suffice. Following implementation of this method, 

photovoltaic yield may then be calculated using a free or commercial tool [6–10] or programming a 

thermal and an electrical model [65]. 

The knowledge of rooftop PV potential provided by this publicly available data and methods 

may assist planners, decision-makers, and network operators in analysing PV’s facility to meet 

electricity demand. Future electricity generation portfolios in specific countries may also be 

modelled. 

Currently the model provides information on minimum potential PV deployment. It is planned 

to identify or develop a technique to estimate maximum deployment, e.g. Boz et al. [32] or the NREL 

method [12,62,63]. These two sets of information will supply the range of possible solar installation 

scenarios. Future developments of the new method provided here will also include incorporation of 

meteorological data and performance models to deliver energy yield prediction, as commenced in 

[14,66]. It then becomes possible to investigate times and quantities of potential output and feed-in 

behaviour to the transmission system. The mass effect of many small-scale systems has, to date, 

mostly been studied using generalised data. 
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Appendix A 

ArcGIS Commands for method to select suitable roofs for minimum size PV installation: 

1. Preparation: Subtract Environment Agency digital terrain (DTM) LiDAR from the digital 

surface model (DSM) to obtain building height above ground level. Delete pixels with a lower 

height than 2 m. This removes rogue values whilst allowing for low eaves. 

2. Cut out buildings only. Prepared LiDAR DSM-DTM grid and buildings from OS Mastermap 

Topography layer as inputs: ArcToolbox > Spatial Analyst > Extraction > Extract by Mask. 

3. Spatial Analyst > Surface > Slope/Aspect. Create integer rasters to enable mode to be computed 

in the next step. 

4. Spatial Analyst Tools > Zonal > Zonal Statistics > Mean 

5. Spatial Analyst Tools > Zonal > Zonal Statistics > Mode  

6. Mode may be in the north, so carry out some swaps: 

a. Swap mode raster values by 180: 

Raster calculator: 

i. Values between 90 and 270 are alright: 

Con((“aspectmode” ≤ 270) & (“aspectmode” ≥ 90), “aspectmode”, 0) 

ii. Values between 0 and 90: 

Con((“aspectmode” ≤ 90) & (“aspectmode” ≥ −1), (“aspectmode” +180), 0) 

iii. Values between 270 and 360: 

Con((“aspectmode” ≤ 360) & (“aspectmode” ≥ 270), (“aspectmode” −180), 0) 

iv. “PVMode” = “Con1” + “Con2” + “Con3” 

b. Optionally, switch by 90 east to west for 4-plane houses: 

Con ((“Con4” ≥ 90) & (“Con4” ≤ 160), (“Con4” +90), “Con4”) 

c. If the west mode generates a bigger polygon than the east, take that. 

7. Standard Deviation Bands: Spatial Analyst Tools > Zonal > Zonal Statistics > Std 

Con ((“intaspect” ≥ “PVMode” − “StdAspect”/2) & (“intaspect” ≤ “PVMode” + “StdAspect”/2), 1, 

0) 

This makes a 1,0 raster of cells half std around the mode. 

8. Connectivity: ArcToolbox > Spatial Analyst Tools > Generalisation > Region Group 

Four neighbours (for edges only, Rooks Case), Cross—exclude zero (“0”). 

9. Select Large Enough Areas 

From Count because 1 × 1 m pixels. Reclassify as in Table A1 below and discard highest number 

which is areas not suitable for PV. 

Table A1. Reclassification of pixel values to enable selection of roof area of at least 8 m2. 

Old Values New Values 

1–9 NoData 

9–19 2 

19–30 3 

30–44 4 

44–63 5 

63–96 6 

96–175 7 

175–302 8 

>302 NoData 

NoData NoData 

10. Clean: Spatial Analyst Tools > Generalisation > Boundary Clean 

No sort, run twice. 
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11. Measure Roof Patch with homogeneous aspect (azimuth): 

Zonal statistics sum points in raster. 

(Add all the “1”s, not zeroes because “1”s are 1 m squares). 

12. To calculate a more accurate area allowing for the roof tilt: 

Slope distance = horizontal distance/cosine(Tilt in degrees) 

E.g., Slope distance = 21.2 m/cos [32°] 
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