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Abstract: Terrain positions are widely used to describe the Earth’s topographic features and play an
important role in the studies of landform evolution, soil erosion and hydrological modeling. This
work develops a new multimodal classification system with enhanced classification performance
by integrating different approaches for terrain position identification. The adopted classification
approaches include local terrain attribute (LA)-based and regional terrain attribute (RA)-based,
rule-based and supervised, and pixel-based and object-oriented methods. Firstly, a double-level
definition scheme is presented for terrain positions. Then, utilizing a hierarchical framework,
a multimodal approach is developed by integrating different classification techniques. Finally,
an assessment method is established to evaluate the new classification system from different
aspects. The experimental results, obtained at a Loess Plateau region in northern China on a 5 m
digital elevation model (DEM), show reasonably positional relationship, and larger inter-class and
smaller intra-class variances. This indicates that identified terrain positions are consistent with the
actual topography from both overall and local perspectives, and have relatively good integrity and
rationality. This study demonstrates that the current multimodal classification system, developed
by taking advantage of various classification methods, can reflect the geographic meanings and
topographic features of terrain positions from different levels.

Keywords: terrain position; DEM; multimodal classification; segmentation; digital terrain analysis

1. Introduction

As an important factor describing the Earth’s topographic features, terrain position composes of
spatially adjacent units with similar topographic features under a certain scale [1–4]. On a natural slope,
different terrain positions have specific topographic and geomorphic features. Different geographic
processes (e.g., soil and hydrology, etc.) on various terrain positions will exhibit characteristics of
diversification [4,5]. Therefore, terrain position classification plays an important role in many fields,
such as landform evolution [6,7], digital soil mapping [8–10], hydrological modeling [11,12] and risk
analysis [13].

To identify terrain positions, local terrain attributes (e.g., elevation, slope and curvature) are often
utilized individually or compositely in different ways according to definite rules [14–17]. In order to
overcome the defect of applying local terrain attributes with a fixed-size window, Weiss [18] presented
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the topographic position index (TPI) to classify terrain positions based on the fact that landforms
are mostly a scale-dependent phenomenon. Although TPI compares the elevation of each cell in its
surrounding area with two different window sizes, it is essentially a local terrain attribute. In addition,
Jasiewicz et al. [19] proposed a geomorphons approach that serves many ternary patterns as the
archetypes of landform elements via counting the elevation differences in a certain neighborhood.
To reflect the terrain information of a location in a region, Skidmore [1] developed a regional terrain
attribute, namely the relative position index (RPI), to provide an approximate estimate of how far
a location is from a ridge or a valley. This approach is more suitable for reflecting the geographical
meanings of terrain positions.

Development of reliable rules is the key to terrain position classification. We can build exact
classification rules from expert knowledge or a definition of terrain positions, but sometimes these rules
are vague and unavailable. Thus, referencing to the image classification technology, supervised [20–22]
and unsupervised [23,24] classification methods are introduced to implicitly obtain classification rules.
Supervised classification is achieved by establishing a discriminant function using selected samples
based on statistical identification. However, unsupervised classification directly groups cells into
“clusters” based on their properties and then assigns classes without involving any samples.

To take advantage of the segmentation technique over pixel by pixel classification,
Drăguţ et al. [25] demonstrated a classification approach based on object-oriented image analysis. This
method delineates relatively homogenous objects through image segmentation, and then classifies these
objects into landform elements using pre-defined rules. The object-oriented classification considers
both the variability of object values and the spatial structural relationships between geographic objects,
which can result in better integrity of the classes. As such, object-oriented approaches have become
very popular in geomorphometry and widely applied in terrain position classification [26–28].

According to different classification criteria, the existing approaches may be roughly grouped
into local terrain attribute (LA)-based and regional terrain attribute (RA)-based, or rule-based and
supervised and unsupervised, or pixel-based and object-oriented. The characteristics of each of these
classification methods vary significantly [29,30]. The LA-based classification usually selects multiple
local terrain attributes to compose an attribute set for classification, but the uncertainty associated with
the selection of local terrain attributes may result in complex classification processes. Other the other
hand, the RA-based classification is simple and easy to implement, and provides better integrity of
results, but it usually adopts only one type of terrain attributes for classification, leading to relatively
simple classified terrain positions. Generally, in practical applications, the RA-based method is used to
simply classify an overall slope from the top to the bottom, whereas the LA-based method is mostly
adopted to express the complicated conformations of local slopes effectively.

The rule-based classification can provide exact and unique classes, but the definite rules are
sometimes difficult to define. With artificial participation, the supervised classification may increase
classification accuracy by controlling sample selection and training samples repetitively. But this may
also cause certain issues in that the classification results may not be unique and may be susceptible
to subjective factors. Because of the unresolved uncertainty associated with the unsupervised
classification results, the application of the unsupervised approach has gradually decreased.

The pixel-based classification is easy to implement. However, when the pixel value in a layer
is not sufficiently continuous, the pixel-based method may give fragmented classification results.
Object-oriented classification resolves the problem of fragmented classification results by means
of conducting firstly object segmentation and then classification. However, due to the uncertainty
in setting segmentation parameters, the object-oriented method may be subject to the problems of
insufficient segmentation and missing relatively small segmented objects.

In summary, for the classification of terrain positions, the prevailing classification approaches all
have their own strengths and weaknesses. Few attempts have been made to take advantage of different
methods to develop a multimodal classification system. In addition, the hierarchical conceptualization
is commonly considered in landform classification, which provides the possibility of applying different
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classification methods adaptive to terrain position features at different levels. The aim of this work is
to present a multimodal classification system to integrate different approaches by considering different
levels of terrain features/components for more effective terrain position classification. The remainder
of the work is organized as follows: Section 2 describes the methodology of terrain positon classification
as well as the study area and data; the results and discussion are presented in Section 3; and finally
several remarks are summarized in Section 4.

2. Materials and Methods

2.1. Study Area and Data

The Jiuyuangou region of the Loess Plateau in the northern Shaanxi Province, China, is selected
as the study area for the current study, as shown in Figure 1. The case study site is located in the
middle reach of the Wuding River and its topography consists of loess hilly-gully landforms featured
with severe erosion, fully developed gullies and broken terrain. The site covers about 100 km2 of area
and the relative altitude difference from hill top to gully bottom is 374 m, ranging from 814 to 1188 m.
The average ground surface slope is 29◦, and the density of gullies is 6.52 km/km2. A digital elevation
model (DEM) of 5 m resolution is available from the National Fundamental Geographic Information
Database to support the current study.
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Figure 1. Location and digital elevation model (DEM) of the study area.

2.2. Definition Scheme of Terrain Positions

Herein, a two-level definition scheme is first designed for clarifying terrain positions (Table 1).
The first level of the scheme focuses on the geographic meanings via considering the spatial context
along a downslope profile and classifies the slope by the regional terrain attribute. At the second level,
the classification mainly emphasizes the morphological features of terrain positions and adopts the
local terrain attributes to refine the first-level classification results.

As a regional terrain attribute, RPI, defined as the ratio between the distance from the point to the
nearest valley and the total distance from the point to the nearest valley and ridge, has been widely
applied to obtain a relatively ideal quantification of spatial transitions or spatial gradations between
slope positions from the top to the bottom [1,31–33]. Hence, RPI is selected to classify a slope into three
terrain positions, i.e., upper-, mid- and lower-slope, at the first level of terrain position classification.
This taxonomy is similar to the highest level of the hierarchical system of landform classification as
proposed by MacMillan et al. [16] or Drăguţ et al. [25]. It is worth pointing out that ridges and valleys
identified previously for computing RPI can also be employed as the prototypes for ridges and valleys
at the second level, and the first-level rules are defined by RPI to be consistent with the generation of
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other classes. At the second level, we conduct fine-grained classifications on the upper, mid and lower
slopes, respectively. For the upper slopes, we may find that there are two types of terrain positions with
significantly different morphologies, which include large parts and small parts. The cross-sections of
the relatively large parts are mostly strip-shaped and features with ridge-like distributions. In contrast,
the covering area of the relatively small parts is small, and their cross-sections are much shorter
and exhibit discrete distributions. These morphological variances are detailed later on in Section 3.2.
Adopting the definition of Speight et al. [8], we refer to the aforementioned large and small terrain
positions as ridges and hillocks, respectively. As there are significant morphological differences
between ridges and hillocks, we select two indexes based on the area and aspect ratio to reclassify the
upper slopes. The mid slopes have slopes of more complex landforms. Accordingly, we introduce two
local terrain attributes—plan curvature and profile curvature—to process the fine-grained classification.
Utilizing the classification systems presented by Drăguţ et al. [25], the mid slopes are reclassified into
shoulders, side slopes, nose slopes, head slopes and back slopes in term of different plan and profile
curvatures. Herein, we replace the term of “negative contact” defined by Drăguţ et al. [25] by “back
slope”. In fact, it is hard to find a terrain position with the plan and profile curvature both equal
to 0. Hence, the fuzzy interval (−0.2, 0.2) is applied instead of the absolute value 0 for side slopes.
The morphology of lower slopes is relatively simple and so the lower slope classes, namely valleys
and lower flats, are simply differentiated according to whether the corresponding slope gradient is
larger than 2◦ or not. The quantitative indicators for each terrain position are shown in Table 1.

Table 1. Definition of terrain positions (ND—not defined).

Terrain Position
RPI

Curvature (1/m) Slope (◦) Description
First Level Second Level Plan Profile

Upper slope Ridge
[β, 1]

ND ND ND Mostly with large covering area and strip-shaped cross-sections
Hillock ND ND ND Mainly with small covering area and short cross-sections

Mid slope

Shoulder

(α, β)

≤0 >0 ND Convex element

Nose slope >0 >0 ND Convex slope

Head slope <0 <0 ND Concave slope

Back slope ≥0 <0 ND Concave element
Side slope (−0.2,0.2) (−0.2,0.2) ND Rectilinear slope

Lower slope Valley
[0, α]

ND ND >2 Lower element receiving water
Lower flat ND ND ≤2 Flat element in the lower topographic position

Note: α and β are the break values for the upper, mid and lower slope classifications; RPI is relative position index.

2.3. Methodology for Classifying Terrain Positions

In this work, we integrate various terrain-position classification methods and design a multimodal
classification approach as illustrated in Figure 2. Firstly, the regional and local terrain attributes are
calculated from a DEM to provide the input for the following two-level classification. Secondly,
combining the RA-based, rule-based and pixel-based classification methods, the slopes are classified
into upper-, mid- and lower-slopes from the top to the bottom. Thirdly, by integrating the LA-based,
supervised and object-oriented classification methods, ridges and hillocks are reclassified from the
upper slopes. Meanwhile, the mid slopes are reclassified into shoulders, side slopes, nose slopes, head
slopes and back slopes via comprehensive application of the LA-based, rule-based and object-oriented
classification methods. Similar to classifying mid slopes, the lower slopes are reclassified into valleys
and lower flats. Finally, the rationality assessment of the classification is performed by considering the
distribution characteristics of terrain attributes at different terrain positions.
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To resolve the fine terrain positions, different methods are adopted according to the characteristics
of terrain positions and the data to be classified. As a regional terrain attribute, the RPI distribution
is more continuous than other local attributes (e.g., slope and curvature) calculated via a fixed-size
window. Therefore, the rule-based and pixel-based classification methods are comprehensively applied
at the first level. Although the differences between ridges and hillocks may be denoted by the area
and aspect ratio of each patch, it is difficult to define the classification thresholds of the indexes
explicitly. Therefore, it is better to combine the supervised and object-oriented classification methods
to reclassify the upper slopes at the second level. As the definite rules of local terrain attributes
are used, the rule-based and object-oriented classification methods are employed to avoid fragment
classification results when reclassifying the mid and lower slopes at the second level.

2.3.1. Calculation of Terrain Attributes

The terrain attributes, including RPI, slope, plan curvature and profile curvature, used for terrain
position classification are derived from the DEM. The last three attributes are directly calculated using
the ArcGIS software. To calculate the RPI, the ridges and valleys are needed. In order to enhance
the accuracy and automation of the RPI calculation, several algorithms are chosen to calculate the
corresponding elements. Firstly, the negative terrains relatively lower than the adjacent area are
delineated using the algorithm presented by Yan et al. [34], which is implemented in a C++ and
Matlab programming environment. Then, the ridges are extracted through the following three steps:
(1) calculate initial ridge cells using flow accumulations estimated by the D8 algorithm of the ArcGIS
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software, which, after setting zero as the basic condition, returns 1 for ridge cells and 0 otherwise;
(2) screen those initial ridge cells with values greater than 0.5 by using a 3 by 3 average window to filter
discrete cells; and (3) determine final ridge cells by deleting the cells having negative terrains and the
small ridge patches where their eight neighbors all are less than 4. Finally, when extracting the valleys,
the flooding algorithm proposed by Rueda et al. [35] is adopted to identify the valley cells using the
GDAL’s C++ library. The flooding algorithm is able to detect watercourses with a width greater than
one cell. To implement the algorithm, the initial water depth of each cell is set to 100 mm and the
simulation finished when the water transferred in an iteration fell below 1% of the total amount of
water initially dropped on the DEM. After setting a threshold of drainage accumulations, the valley
cells are reached following a clipping operation by negative terrains. Likewise, visual inspection by
overlaying the terrain hillshade from the DEM is applied to further correct some valley parts such as
wide river beds and dams. After extracting the ridges and valleys, we can calculate the distances of
each grid cell from its location to the nearest valley and ridge and then acquire the corresponding RPI.
In summary, the information related to the calculation of terrain attributes is listed in Table 2.

Table 2. Information of the calculation of terrain attributes.

Terrain Attribute Algorithm Implementation

Slope Third-order finite difference weighted by
reciprocal of squared distance ArcGIS software

Plan and profile curvature Fourth-order polynomial ArcGIS software

Negative terrain Algorithm from Yan et al. [34] Programming in C++ with Matlab

Ridge D8 algorithm ArcGIS software

Valley Algorithm from Rueda et al. [35] Programming in C++ with GDAL

Terrain hillshade Single-directional hillshade algorithm ArcGIS software

2.3.2. Determining the First-Level Parameters

The crucial task of the first-level classification is to choose suitable values for α and β. In fact,
the critical values of RPI for the upper, mid and lower slope classifications are related to the topographic
characteristics of the research area. Hence, the critical values are determined for the first-level
classification by analyzing the relationship between RPI and the slope gradient. For the parameter α,
the starting value of RPI is fixed from 0 with a step of 0.01, and then the average slope of each interval
is counted in turn to generate the RPI-slope curve. For the parameter β, the RPI step is the same, but
the ending value of RPI is fixed to 1. Generally, the RPI-slope curve for the parameter α moves from
gentle to upward trend and then tends to be gentle, while the curve for the parameter β goes from
gentle to downward and then to gentle again. As such, the parameter α and β can be determined at
the change point from the gentle trend or decline to upward or gentle trend.

2.3.3. Determining the Second-Level Parameters

The second-level classification is to reclassify the upper, mid and lower slopes, in which the objects
of the upper, mid and lower slopes are the primary elements. The upper slope objects (or patches) are
grouped by the adjacent upper slope cells, and the mid and lower slope objects are generated by the
multi-scale segmentation approach available in the eCognition software. Based on the upper slope
patches, the feature space is constructed through selecting training samples and then the maximum
likelihood method, a well-known and highly efficient supervised classification approach, is employed
to reclassify the upper slope patches into ridges and hillocks. According to the classification rules
composed of the indexes of plan and profile curvature and slope, the mid and lower slopes can be
classified. It is worth pointing out that, in the process of mid slope classification, all objects are firstly
classified into shoulders, nose slopes, head slopes and back slopes, and then the side slopes are further
reclassified from the result of the four terrain positions.
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• Upper slope patch acquisition

To distinguish the ridges and hillocks, the patches are obtained by merging the adjacent upper
slope grid cells in the eight directions, followed by the calculation of the area and aspect ratio of each
patch. The area is counted by multiplying the cell number of the patch by the pixel area, and the aspect
ratio is calculated via the skeleton-line measurement. The skeleton-line measurement is achieved
through three steps: (1) obtain the skeleton line of each patch using a thinning tool in the ArcGIS
software; (2) calculate the shortest distance from each patch boundary to its skeleton line and take two
times of the distance as the average width of the patch; and (3) further acquire the aspect ratio of each
patch from the ratio of the average length and average width, where the average length is equal to its
skeleton-line length.

• Multi-scale segmentation

As one of the current main-stream approaches for processing image data, the object-oriented
classification partitions an image into multiple homogeneous segments and takes the segmented object
as the classification unit. For the segmentation, the single-band or multi-band image provides the
basic material. In this study, the data layers of RPI, plan curvature, profile curvature and slope are
normalized to 0–255 for segmentation. Here, the normalization is to ensure the weight balance of
the four layers and to develop a transferable classification system applicable to different datasets.
As shown in Figure 2, the multi-band image composed of the four normalized layers is used for mid
slope segmentation, while the single-band image from the normalized slope layer is applied for lower
slope segmentation.

In this process, the multi-scale segmentation parameters determine the size and shape of the
segmented objects. The optimal segmentation scale is a critical parameter. A relatively large
segmentation scale will lead to the loss of relatively small objects, whilst a relatively small scale
may cause the segmentation results to be over fragmented. In addition to segmentation scale,
other parameters, such as weights of shape/color (with a sum of 1) and compactness/smoothness
(with a sum of 1), will also have dominant effects on the segmentation results. The optimal
segmentation parameters should exhibit an essential consistency between the segmented object and
corresponding target object without any excessive or missing segmentation. To obtain the optimal
segmentation parameters for mid and lower slope classification, we set the step sizes for both the
weights of shape and compactness to 0.1, which begins from 0 to detect each optimal segmentation
scale via the rate of change of local variance of object heterogeneity [36]. For every combination of
these three parameters, the results of segmentation series are compared by visual inspection with
overlaying the terrain hillshade to finally obtain the optimal segmentation parameters.

2.4. Rationality Assessment of Terrain Position Classification

It is crucial to assess the accuracy of terrain position classification. However, due to the
lack of ground true data, quantitative evaluation is still challenging and no standard procedures
exist [25,29,37]. In addition to the visual analysis with the terrain hillshade and 10 m contour,
the rational evaluation is carried out from the following two aspects although we believe that
more work needs to be done to improve it. Firstly, the average elevation and RPI of each terrain
position are counted to evaluate the consistency of their geographic meanings. As illustrated in
Figure 3, the elevation or RPI relationship among each type of terrain positions could be approximately
described as follows: ridges > head slopes > “side” slopes > nose slopes > valley. It is worth noting
that the “side” slopes, as shown in Figure 3, include shoulders, back slopes and side slope as defined
in Table 1.
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On the other hand, based on its definition, terrain position should have small intra-class variances
and large inter-class differences. As a topographic factor that can accurately depict topographic
changes and their influence on soil moisture distribution, topographic wetness index has been widely
applied in different fields related to soil, hydrology and landform [39–41]. Thus, the classification
rationality is also evaluated by measuring the intra- and inter-class differences of topographic wetness
index for terrain positions. The topographic wetness index is calculated using the method reported
by Wilson et al. [42]. The intra-class variance for each terrain position class is measured through the
following steps: (1) divide the values of topographic wetness index over the whole area into 10 grades
using the natural breaks method available in the ArcGIS software; (2) sort the first 10 patch samples
from large to small according to the area of the terrain positon patch; (3) derive the frequency curve of
topographic wetness index values for each sample; and (4) adopt a metric to quantify the variances
between every two frequency curves and finally take the average to denote the intra-class variance.
Through testing the most popular metrics of Manhattan distance, Euclidean distance and Pearson
correlation coefficient, the Manhattan distance (Equation (1)) is employed due to its simplicity and
efficiency. A very similar process can be applied to measure the inter-class difference between one
terrain position class and other classes. The difference is that the frequency curve of each class is
counted together in the 10 samples and the Manhattan distances are calculated from one class to the
other 8 classes. The equation used to calculate the Manhattan distance is given as follows:

d(x, y) =
N

∑
i=1
|xi − yi| (1)

where d(x,y) is the Manhattan distance, x and y are the one-dimensional frequency matrices
corresponding to the different frequency curves of topographic wetness index values, and N is the
number of elements in matrices x and y.

3. Results and Discussion

3.1. First-Level Classification

Following the multiple comparative analysis, we adopt 20,000 mm as the flow accumulation
threshold to extract the channel network. After the extraction of ridges and valleys, the RPI distribution
is finally obtained, as shown in Figure 4. As the regional terrain attribute, the continuity of RPI is found
to be relatively good and exhibits gradual change from the upper to lower slope parts, which complies
with the requirements of the first-level classification. The relationship between RPI and slope gradient
is illustrated in Figure 5. Figure 5a shows that the average slope remains almost unchanged when RPI
is less than 0.03; after that, it starts to increase rapidly. As depicted in Figure 5b, the variation curve of
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the average slope becomes gentle when the corresponding RPI exceeds 0.97. Therefore, 0.03 and 0.97
are selected as the break/critical values for the upper, mid and lower slope classifications. In another
word, the values of α and β in Table 1 are 0.03 and 0.97, respectively. Accordingly, the terrain positions
at the first level are acquired using the definite rules via the pixel-by-pixel calculation. As presented in
Figure 6, the slope is divided into three terrain positions from the upper to lower parts, followed by
the distinct boundaries of the terrain positions with almost no fragmentation. Conforming to the basic
geo-cognition, the proportion of mid slope area is the largest and the proportion of upper slope area is
the smallest. The above results indicate that it is reasonable to comprehensively apply the RA-based,
rule-based and pixel-based classification methods to carry out terrain position classification at the
first level.
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3.2. Second-Level Classification

Figure 7 shows that the skeleton lines are located at the center of the patches, reflecting the
patch shapes fairly well. This indicates that it is reasonable to adopt the skeleton-line method to
calculate the geometric parameters of each patch (i.e., the average length and average width). It is
worth noting that it will be difficult to obtain the skeleton line when the number of grid cells in a
patch is relatively small, which leads to the relatively small aspect ratio. By analyzing the multiple
experimental results, it is found that most of the patches with no skeleton lines belong to the hillocks.
This is because that the area and average length of hillocks are both relatively small, which complies
with the characteristics of patches for which the skeleton lines cannot be acquired. Therefore, before
performing supervised classification to the upper slopes, we first reclassify those patches with no
skeleton lines as hillocks. As necessary for the supervised classification, 30 ridge samples and 30 hillock
samples, uniformly distributed in the study region, are chosen to train the rules based on the feature
space constructed by the area and aspect ratio indexes. By using the maximum likelihood method,
the classification of ridges and hillocks is completed (Figure 8). It is evident that the long ridge-like
distributed patches with relatively large aspect ratio are reclassified as ridges, and those scattered
small patches around the ridges are reclassified as hillocks, which is consistent with the characteristics
described in Table 1. The experimental results demonstrate that, by combining the supervised and
object-oriented classification methods, upper slopes can be reclassified fairly well into ridges and
hillocks at the second-level classification.
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When the object-oriented classification method is applied to reclassify the mid and lower slopes at
the second level, the object segmentation should go first. Through the multiple comparative analysis,
the optimal segmentation parameters (i.e., segmentation scale, weights of shape and compactness) are
acquired for the mid and lower slope segmentations, which are 10, 0.3, and 0.5, and 6, 0.2 and
0.5, respectively. Based on these segmented objects, the mid and lower slopes are successively
reclassified into the fine-grained items as defined in Table 1 via the specific rules. At last, the final
classification results at the second level are shown in Figure 9. It is found that every type of terrain
positions is not fragmented and has good integrity of their boundary, which complies well with the
geographical cognition.
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3.3. Rationality Analysis of Terrain Positions

Based on the visual analysis with the terrain hillshade and 10 m contour, it may be observed from
Figure 9 that: (1) overall, the upper, mid, and lower slopes exhibit a distribution from the upper to lower
parts of the slopes, and the veined lower slopes are cross-distributed with the upper slopes to constitute
the skeleton of the terrain; (2) locally, in the upper slopes, the isolated bulges with the short cross-section
are identified as hillocks and the relatively broad bulges with the strip-shaped cross-sections are
reclassified as ridges. For the mid slopes, each fine-grained terrain position is distributed between
upper and lower slopes. According to the definition of terrain position, the approximately inclined
flat slopes are divided into side slopes; the lateral raised slopes are mostly reclassified as nose slopes;
and the side concave slopes along upper slopes are mostly labelled as head slopes. Meanwhile,
the relatively flat parts of lower slopes are reclassified as flats. Figure 10 shows the terrain positions
classified by the pixel-based classification method using the same rules defined at the second level.
The result of classification is too fragmented, which does not accord with the geographical cognition of
terrain positions. Compared Figure 9 with Figure 10, the advantage of the method proposed in this
paper is more obvious. Moreover, Table 3 clearly lists the positional relationship of terrain positions
as follows: ridges > hillocks > head slopes > side slopes ≈ shoulders ≈ back slopes > nose slopes >
valleys > lower flats, which has a good consistency with their geographic meanings.

Table 3. Average RPI and elevation for terrain positions.

Shoulder Nose Slope Head Slope Back Slope Side Slope Lower Flat Valley Ridge Hillock

RPI 0.45 0.32 0.61 0.55 0.56 0.00 0.00 1.00 1.00
Elevation (m) 1003.71 981.77 1013.72 1002.63 1008.39 891.93 938.77 1034.75 1016.87
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To further confirm the rationality of the classification results, according to the measurement of
the intra- and inter-class differences by topographic wetness index for terrain positions, we compare
the classification results with those obtained by the well-known classification method as proposed
by Drăguţ et al. [25] (i.e., the Drăguţ method). Table 4 lists the results of the comparative study.
The current method gives the intra-class distance of terrain positions as 0.42 and the inter-class distance
as 1.00, while the Drăguţ method produced the intra-class distance as 0.65 and the inter-class distance
as 1.08. Comparatively, the terrain positions classified by the current method comply better with
the classification criteria of small intra-class and large inter-class differences, and better reflect the
topographic changes and their influence on the spatial distribution of soil moisture. For each type
of terrain position, the intra-class distances of different terrain positions obtained using the current
method are smaller and more stable, except for the flats and hillocks where the intra-class distances are
all smaller than the intra-class mean of the Drăguţ method. The relatively largest intra-class distances
of flats from both methods may be caused by the computational error of topographic wetness index in
the flat or gentle slope areas. In addition, the stability of the two methods on quantifying the inter-class
distances of different terrain positions is similar. However, the current method returns 77.78% of the
differences between the inter- and intra-class distances exceeding 0.5, whilst the Drăguţ method only
returns 44.44% and its intra-class distance unexpectedly appears to be greater than the inter-class
distance. In general, the terrain position classification results obtained using the current method is
satisfactory and the proposed method out-performs the Drăguţ method in several aspects.

Table 4. Distances of intra- and inter-class for terrain positions.

Method in this Paper Drăguţ Method

Terrain
Position

Inter-Class
Distance

Intra-Class
Distance Terrain Position Inter-Class

Distance
Intra-Class

Distance

Ridge 0.90 0.38 Peak 0.94 0.58
Hillock 1.06 0.76 Steep slope 1.05 0.36

Shoulder 0.77 0.36 Shoulder 0.88 0.17
Side slope 1.06 0.53 Side slope 0.97 1.22
Nose slope 0.80 0.20 Nose slope 0.85 0.55
Head slope 0.75 0.24 Head slope 0.93 0.30
Back slope 0.73 0.11 Negative contact 0.97 0.17

Valley 1.01 0.26 Toe slope 1.51 1.15
Lower flat 1.88 0.98 Flat or gentle slope 1.65 1.34

Mean 1.00 0.42 Mean 1.08 0.65
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4. Conclusions

According to the experimental results obtained from a 5 m gridded DEM in a loess hilly-gully
region in north-west China, the following conclusions can be drawn:

(1) The positional relationship of terrain positions has a good consistency with their geographic
meanings. The inter-class difference of terrain positions is relatively large, and the intra-class
variances are relatively small. Both above viewpoints indicate that terrain positions are consistent
with the actual topography from both overall and local perspectives.

(2) The two-level definition scheme effectively complies with the geographical cognition and
topographic features of terrain positions from different levels, and sufficiently matches with the
multimodal classification.

In summary, the new multimodal classification system can integrate the advantages of various
classification methods effectively in order to identify terrain positions with relatively better integrity
and rationality. However, it should be also noted that the classification method proposed in this
work involves more parameters (e.g., the threshold of flow accumulations, RPI break values and
segmentation parameters), which may affect the accuracy of the classification results. In future,
a further research effort will be made to estimate these parameters for regions of different landforms
to give guidance of selecting the parameter values. In addition, the automation and computation
efficiency should also be further optimized.
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17. Wieczorek, M.; Migoń, P. Automatic relief classification versus expert and field based landform classification
for the medium-altitude mountain range, the Sudetes, SW Poland. Geomorphology 2014, 206, 133–146.
[CrossRef]

18. Weiss, A.D. Topographic position and landforms analysis. In Proceedings of the ESRI User Conference,
San Diego, CA, USA, 9–13 July 2001.

19. Jasiewicz, J.; Stepinski, T.F. Geomorphons: A pattern recognition approach to classification and mapping of
landforms. Geomorphology 2013, 182, 147–156. [CrossRef]

20. Brown, D.G.; Lusch, D.P.; Duda, K.A. Supervised classification of types of glaciated landscapes using digital
elevation data. Geomorphology 1998, 21, 233–250. [CrossRef]

21. Prima, O.D.A.; Echigo, A.; Yokoyama, R.; Yoshida, T. Supervised landform classification of Northeast Honshu
from DEM-derived thematic maps. Geomorphology 2006, 78, 373–386. [CrossRef]

22. Wei, Z.; He, H.; Hao, H.; Gao, W. Automated mapping of landforms through the application of supervised
classification to lidAR-derived DEMs and the identification of earthquake ruptures. Int. J. Remote Sens. 2017,
38, 7196–7219. [CrossRef]

23. Ventura, S.J.; Irvin, B.J. Automated landform classification methods for soil-landscape studies. In Terrain
Analysis: Principles and Applications; Wilson, J.P., Gallant, J.C., Eds.; John Wiley & Sons: New York, NY, USA,
2000; pp. 267–294.

24. Iwahashi, J.; Pike, R.J. Automated classifications of topography from DEMs by an unsupervised nested-means
algorithm and a three-part geometric signature. Geomorphology 2007, 86, 409–440. [CrossRef]
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