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ABSTRACT In the downlink transmission scenario, power allocation and beamforming design at the
transmitter are essential when using multiple antenna arrays. This paper considers a multiple input-multiple
output broadcast channel to maximize the weighted sum-rate under the total power constraint. The classical
weighted minimum mean-square error (WMMSE) algorithm can obtain suboptimal solutions but involves
high computational complexity. To reduce this complexity, we propose a fast beamforming design method
using unsupervised learning, which trains the deep neural network (DNN) offline and provides real-time
service online only with simple neural network operations. The training process is based on an end-to-end
method without labeled samples avoiding the complicated process of obtaining labels. Moreover, we use the
’APoZ’-based pruning algorithm to compress the network volume, which further reduces the computational
complexity and volume of the DNN, making it more suitable for low computation-capacity devices. Finally,
experimental results demonstrate that the proposed method improves computational speed significantly with
performance close to the WMMSE algorithm.

INDEX TERMS MIMO, beamforming, deep learning, unsupervised learning, network pruning.

I. INTRODUCTION

W ITH the rapid growth of data traffic, next-generation
wireless communication systems are required to pro-

vide greater throughput to meet higher data-rate demand-
s. The multiple input-multiple output (MIMO) technique
considered an effective way to leverage spatial resources
by increasing the number of antennas at transceivers [1].
Hence, MIMO can improve channel capacity significantly.
By using linear or non-linear transmission techniques if we
know accurate channel state information (CSI). For a MIMO
broadcasting (MIMO-BC) downlink scenario, dirty paper
coding (DPC) technology [2] in nonlinear transmission tech-

nology can reach the theoretical upper bound of the downlink
channel capacity. However, due to the large computational
overhead of DPC, a gap remains between theory and practice.
Therefore, linear downlink transmission technology (also
known as beamforming technology) is widely adopted due
to its simple design and low computational complexity.

A popular algorithm for the weighted sum-rate (WSR)
maximization problem is the weighted minimum mean-
square error (WMMSE) algorithm [3], [4]. The WSR maxi-
mization problem is transformed into a WMMSE maximiza-
tion problem, wherein beamforming is designed by iterative-
ly updating the weight matrix. However, the computational
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complexity of the WMMSE algorithm grows as the number
of variables increases due to the WMMSE algorithm con-
taining many complex operations such as matrix inversions
in each iteration. Another approach to beamforming design
which combines zero-force and water-fill algorithms [5]. In
the water-fill algorithm used in MIMO interference system-
s, singular value decomposition operation in each iteration
also consumes extensive computing resources, potentially
resulting in large latency. These traditional algorithms based
on rigorous mathematical models can achieve satisfactory
performance, but they cannot meet the requirements of real-
time applications due to severe delays resulting from high
computational complexity. Actually, the low-latency and low
power consumption demands are prevalent in next-generation
wireless communication systems. For example, vehicle com-
munication can tolerate only several-millisecond latency un-
der a certain degree of performance loss. Wireless sensor
networks and internet of things (IoT) [6], [7] devices concern
more about computational energy.

With the development of deep learning, neural network
algorithms have received considerable attention in the field of
wireless communications [8]–[20] due to its powerful feature
extraction and presentation capabilities. Deep learning aided
technology implements the learning process offline and then
deploys the trained network online, greatly reducing the time
complexity compared with iterative algorithms. Because the
trained network only contains simple linear and nonlinear
transform units, it has extremely low complexity and good
performance. In the power control problem, a deep neu-
ral network has been used as a functional approximator to
approach the performance of the WMMSE algorithm [12],
[13]. The self-encoder in deep learning was applied in [14]
to the non-orthogonal multiple access (NOMA) communi-
cation system, and the new mechanism of end-to-end com-
munication was realized while optimizing communication
system performance. CsiNet [15], [20] was developed using
a novel CSI sensing and recovery mechanism, which more
effectively explored structural information of the channel
and improved the computational efficiency of the system.
Deep learning technology is also a popular research topic in
millimeter-wave communication [16], [17]. Due to the com-
plexity of the millimeter wave system, the above data-driven
deep learning techniques cannot be directly applied. There-
fore, model-driven deep learning techniques which originat-
ed from the field of image processing [21], [22] were first
applied to millimeter-wave systems for their interpretability.
A model-driven deep network structure that combined deep
learning and traditional algorithms for channel estimation
in millimeter-wave massive MIMO was presented in [17].
By unfolding the traditional algorithm and replacing part of
it with convolutional neural networks (CNN), performance
of the traditional algorithm has been improved. Reducing
the number of algorithm iterations greatly reduces the com-
putational complexity of traditional algorithms. To further
accelerate network computation and reduce memory usage,
lightweight networks have become a prominent research

topic. This paper explores the acceleration of neural networks
using pruning techniques in lightweight networks and applies
the pruning technology to beamforming design.

In the literature, mainly power control and single-antenna
transceiver communication scenarios have been considered
in prior works [12], [13]. A key difference from prior beam-
forming design work [11] is that our optimization goal is
sum-rate maximization with power constraint. In this study,
we examine a completely new architecture that applies deep
learning to a beamforming design in a MIMO system to
achieve the maximum sum-rate within the total transmit
power constraint. The main contributions of the article are
as follows:

1) In the downlink MIMO scenario, a deep neural network
(DNN)-based scheme is developed for beamforming design.
The DNN is used to capture structural information of the
channel, which can be seen as a black box with multiple fully
connected layers and activation function layers to realize end-
to-end beamforming design.

2) A beamforming design architecture based on DNN is
proposed by redesigning the loss function. Based on the idea
of unsupervised learning, the sum-rate can be maximized
under the constraint of the total transmit power with slight
performance loss compared to the WMMSE algorithm.

3) To further accelerate network computation and reduce
memory usage, lightweight networks have become a promi-
nent research topic. This paper explores the acceleration of
neural networks using pruning techniques [23] in lightweight
networks and applies pruning technology to beamforming
design. Through pruning of the DNN model, parameters of
the DNN model are compressed, which further reduces the
computational time complexity of the DNN architecture.

The rest of this paper is organized as follows. In Section II,
we describe the system model and problem formulation. The
proposed DNN scheme and learning policy are introduced
in Section III. Simulation results are provided in Section IV,
and Section V concludes the paper.

Notation: The vector h is represented in lowercase letters
in bold. The (i, j) element of the matrix H is denoted
as h(i,j). The dimension of a matrix H is denoted by the
subscript H[P×Q], where Q is the column dimension and
P is the row dimension. HT/Tr(H)/HH denotes trans-
pose/trace/conjugate transpose of a matrix H. IK denotes an
K ×K identity matrix. E[·] is statistical expectation.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a downlink transmission scenario in a typical
MIMO system. As shown in Figure 1, a transmitter equipped
with P antennas serves K users, each with Q receive an-
tennas. The channel between user k and the BS is denoted
as a matrix Hk ∈ C[Q×P ] which consists of channel gains
between different transceiver antenna-pairs. The received
signal at user k is,

yk = Hks + nk, (1)
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User 1

User 2

Transmitter

FIGURE 1: The downlink communication scenario.

where s ∈ C[P×1] represents the transmitted vector and nk ∈
C[Q×1] represents the noise vector at user k with covariance
Rnknk

= E[nknk
H] = σ2IQ. The transmit vector s can

be further denoted as the data vector x1, ...,xK ∈ C[Q×1]

passing through K linear filters:

s =

K∑
k=1

Wk xk (2)

where matrices W1, ...,Wk ∈ C[P×Q] are the linear trans-
mit beamformers and xk’s are the input vectors. It is assumed
that the data streams which are received by each user are
independent such that E[xkxk

H] = IQ. The transmit vectors
s consisting of N transmissions should meet a block power
constraint:

E[sk
Hsk] =

∑
k

Tr(WkW
H
k ) ≤ pmax, (3)

It is also assumed that perfect CSI is available at the trans-
mitter and the channel matrices are constant in a transmission
duration.

B. PROBLEM FORMULATION
Our main objective is to maximize the weighted sum-rate of
all users by designing the linear transmit filters W1, ...,Wk.
The utility maximization problem is formulated as

[W1, ...,Wk] = arg max
∑
k

ukRk

s.t.
K∑

k=1

Tr(WkW
H
k ) ≤ pmax,

(4)

where Rk and uk ≥ 0 are defined as the rate of user k
and its weight, respectively. Gaussian distributed signals are
considered in this paper, thus the achievable rate for user k
can be given as

Rk = log det(Ik + WH
k H

H
k J
−1
ṽkṽk

HkWk), (5)

where Jṽkṽk
represents the effective noise and interference

covariance matrix at receiver ṽk:

Jṽkṽk
= Ik +

K∑
i=1,i6=k

HkWiW
H
i H

H
k . (6)

In addition, we define W[P×QK] = [W1, ...,Wk] and
H[QK×P ] = [HH

1 , ...,H
H
k ]H as two block matrices which

combine each user’s transmit filter and channel gains, respec-
tively.

III. PROPOSED METHOD
In this section, we use deep learning architecture to design
beamforming. We first give a short description about the
DNN architecture and then introduce two learning methods,
i.e., supervised and unsupervised learning. We also give an
explanation of how the main objective and constraint can
be achieved simultaneously in the training process. Finally,
we introduce the network trimming to further reduce the
complexity of the neural network.

A. PROPOSED DEEP NEURAL NETWORK
ARCHITECTURE
A typical DNN model is a network of many layers including
an input layer, output layer, and many stacked hidden layers.
Layers of the neural network contain many neurons. We
define the number of layers of the neural network as the depth
of the neural network, and the number of neurons in each
layer is defined as the width. Furthermore, a deeper DNN
can extract more input feature information and a wider DNN
contains more information in each layer feature. However,
a deeper DNN rather than a wider one is preferred. This
is because deep models can use less parameters than wide
models but achieves almost the same performance. The out-
put of each neuron in a neural network is a weighted sum of
weight matrices between neurons with a nonlinear operation
inside the neuron. The nonlinear operation is implemented
by activation functions. For example, the ’Sigmoid’ func-
tion and rectified linear unit ’ReLU’ function, defined as
Sigmoid(x) = 1

1+e−x and ReLU(x) = max (0, x) respec-
tively, are most common activation functions. The output O
is a function of input I which can be denoted as

O = f(I,ω) = fn−1(fn−2(...f1(I))), (7)

where n and ω are defined as the number of layers in the
DNN and the weights of the DNN, respectively.

In our DNN framework as shown in Figure 2, the channel
coefficient H and beamformer W can be regarded as the
input and the output of the DNN. Meanwhile, the dimension
of the input and output layer is L, determined by the length of
each training sequence (i.e., channel coefficients) including
all features. Following the input layer, we use three dense
hidden layers including 200 neurons, 300 neurons, and 200
neurons, respectively. Considering that some elements of the
beamforming matrix can be negative, we choose the linear
function as the activation function in the output layer and
the ’LeakyReLU’ function as the activation functions in the
three hidden layers. Here, the ’LeakyReLU’ function is an
improved version of ’ReLU’ function which gives a non-zero
slope to negative values in ’ReLU’. Finally, we constrain the
output of the neural network to satisfy the power constraint.
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FIGURE 2: Proposed DNN architecture for beamforming design.

B. LEARNING POLICY
In this section, we will introduce the unsupervised learning
strategy to train the DNN. In order to highlight the superiority
of the unsupervised learning strategy, the supervised learning
strategy used in [12] is also introduced briefly here.

Supervised learning (DNN-supervised): The supervised
learning strategy works as a function approximation which
trains the neural network to approximate the accurate results
of WMMSE as possibly. The WMMSE sample set Γ used
for training is denoted as (H(i),W(i))i∈Γ, where (i) de-
notes the index of the training sample, H(i) is the channel
matrix and W(i) is the corresponding beamforming result.
In the WMMSE data generation stage, a transmit-matched
filter is used to initialize W, such that Winit

k = bHH
k ,∀k,

where b is selected to ensure that W satisfies the transmit
power constraint. Note that since the input and output of
the DNN should be a vector, we need transform H(i) and
W(i) into the vectors h(i) = [h

(i)
(1,1), h

(i)
(1,2), ..., h

(i)
(QK,P )]

and w(i) = [w
(i)
(1,1), w

(i)
(1,2), ..., w

(i)
(QK,P )], respectively. The

chosen loss function is the mean squared error between the
label {w(i)} and the network output {ŵ(i)}. We select Adam
as the optimizer, which has exemplary performance in non-
convex problems.

Unsupervised learning (DNN-unsupervised): Different
from the supervised learning method where the input data
{h(i)} is labeled by the output data {w(i)}. The proposed
unsupervised method trains the DNN without labels. We
construct the loss function as

`(θ;h; ŵ) = −
K∑

k=1

log det(Ik + ŴH
k H

H
k Ĵ
−1
ṽkṽk

HkŴk)

= −
K∑

k=1

R̂k,

(8)

where θ and ŵ denote the DNN parameters and the
current DNN output, respectively. Ĵṽkṽk

= Ik +∑K
i=1,i6=k HkŴiŴ

H
i H

H
k represents the estimated effective

covariance matrix for user k. Considering the constraint

Ω(ŵ) =
∑K

k=1 Tr(ŴiŴ
H
i ) ≤ pmax, we rewritten the loss

function by adding a penalty item:

L(θ;h; ŵ) = `(θ;h, ŵ) + λ|Ω(ŵ)|, (9)

where λ is a tuning factor that should been chosen carefully.
Then the problem that the DNN aims to solve is written as

θ∗ = arg min
θ

`(θ;h, ŵ) + λ|Ω(ŵ)|, (10)

where the output of DNN ŵ can be represented as ŵ =
NET (θ;h); hence, Eq. (10) becomes

θ∗ = arg min
θ

`(θ;h, NET (θ,h) + λ|Ω(NET (θ,h)|.
(11)

In this case, the problem and constraints are translated into
an optimization function whose form is the same as the
regularization training problem [24], which can be trained via
backpropagation and Adam [25].

Finally, no matter whether the supervised or unsupervised
training methods is used, the output does not necessarily
satisfy the power constraint in each sample. Therefore, the
DNN output should be reshaped and scaled as follows:

ŴDNN = bŴ, (12)

where b =
√

pmax

Tr(ŴŴH)
is a gain factor that ensures the signal

in each sample to satisfy the transmit power constraint.

C. NETWORK PRUNING
As the numbers of layers and neurons in the DNN increase,
the network complexity grows accordingly. To further reduce
the computational complexity of DNN as well as the burden
on system memory, We use the pruning algorithm to com-
press the neural network by reducing the number of neurons
in each DNN layer. The precedure is described as follows.
Firstly, construct network and train it until reaching the best
performance. Then, calculating the average percentage of
zeros ’APoZ’ for each neuron by function (13) through vali-
dation dataset. Here, the ’APoZ’ is a scalar used to measure
the percentage of zero activation which means the output
of a neuron after LeakyReLU mapping is zero statistically.
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Hence, ’APoZ’ can be applied to evaluate the importance
of each neuron. The ’APoZ’ of c-th neuron in l-th layer is
defined as:

APoZ(l)
c =

∑S
s=1

∑N
n=1 δ(LeakyReLU(o

(l)
c,i(n)))

N × S
, (13)

where δ(x) =

{
1, x = 0

0, x 6= 0
, S denotes the number of valida-

tion samples, N denotes the number of neurons in l-th layer,
and o

(l)
c,s denotes the output vector of the c-th neuron in l-th

layer. Next, set ’ApoZ’ threshold to prune the neurons with
large ’ApoZ’ and preserve the neurons with small ’ApoZ’
which means that we remove the neurons whose output is 0
statistically resulting in the reduction of training parameters
according to function (13). In this paper, we simply set
the threshold to 0.8 based on empirical recommendations.
Finally, retraining the network to enhance the performance
of the network.

IV. NUMERICAL RESULTS AND ANALYSIS
The simulation environment is based on Python 3.6.5 with
TensorFlow 1.1.0 and Keras 2.2.2 on a computer with 4 Intel
i7-6700 CPU Cores, one NVIDIA GTX 1070 GPU, and 8GB
of memory. GPU is used to reduce training time during the
training stage but not be used in the test stage. Both the
WMMSE algorithm and the DNN are programmed using
Python for fair comparison. In the simulation experiment, the
data is generated by the following method.

A. DATA GENERATION AND SETUP
We normalize the receive noise covariance as Rnknk

=
σ2IQ. The elements of channel matrix H is generated as
i.i.d. Gaussian random variables CN (0, σ̂2) where σ̂2 is the
transmit signal-to-interference (SNR). We can first separate
the real and imaginary parts of the generated channel gain
matrix and then stitched into a vector as the input of the DNN.
The number of training samples and test samples are 50000
and 5000, respectively. The learning rate and batch size are
selected by cross-validation.

B. RESULTS AND ANALYSIS
Figure 3 illustrates the impact of hyperparameter λ on the
sum-rate performance by the unsupervised learning method
used in (9), where SNR = 0 dB, P = 4, K = 2, and Q = 2.
Figure 3 shows the impact of λ between [0, 1], and the sum-
rate almost unchanged when λ is greater than 1. It is demon-
strate that the different choices of λ lead to different sum-
rate values. The best performance of sum-rate corresponding
to λ can be approximated. For example, in Figure 3, we
recommend 0.2 as the best λ. When the value of λ is too
small, the role of the constraint in the training process will be
weakened so that the neural network randomly converges to
a local minimum point which is always bad for performance.
However, when the value of λ is too large, the focus of the
training is biased toward the constraint so that the neural
network becomes insensitive to performance.
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FIGURE 3: Impact of the hyperparameter λ on sum-rate
performance with SNR = 0 dB , P = 4, K = 2, and Q = 2.
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FIGURE 4: Sum-rate performance versus SNR with P = 4,
K = 2, and Q = 2.

Figure 4 compares the supervised and unsupervised meth-
ods by plotting the average sum-rate performance versus
SNR. We also provide the performance of the WMMSE al-
gorithm. The DNN-based methods can approximate the per-
formance of WMMSE with slight performance loss. When
the SNR is low, the performances of the supervised and
unsupervised learning method are close to that of WMMSE.
When the SNR becomes higher, there exists obvious perfor-
mance gap between the WMMSE algorithm and the other
two learning methods based on the DNN. This is because
our input is normalized by noise, the variance of the input
data becomes larger as the SNR increases. The distribution
of data is more dispersed, resulting in an increase difference
in data distribution. Therefore, the learning error is increased.
We also observe that the performance of the proposed unsu-
pervised learning method is better than that of the supervised
learning method. This is because the performance of the
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DNN-supervised learning method is bounded by the local
optimal solutions obtained by the WMMSE algorithm, but
the performance of the DNN-unsupervised learning method
is bounded by the global optimal solution to the WSR.
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FIGURE 5: Sum-rate performance versus the number of
transmit antennas P with K = 2 and Q = 2.

Moreover, we investigate the impact of the transmit an-
tenna number on the sum-rate performance in Figure 5.
It is indicated that the DNN-unsupervised learning method
achieves better performance than the DNN-supervised learn-
ing method. As the number of antennas increases, the DNN-
unsupervised learning approach can also approach the perfor-
mance of the WMMSE algorithm. It can be observed that the
more the number of antennas, the worse the performance is.
This is because when the number of antennas increases, the
number of variables also increases, resulting in an increase in
training and learning error.
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FIGURE 6: Average computation time versus the number of
transmit antennas P on 5000 samples with SNR = 0 dB,K =
2, and Q = 2.

The DNN-based algorithms exhibit some performance loss
compared with the WMMSE algorithm, but they have supe-
riority on the computational complexity. The computational
complexity of the WMMSE algorithm rises sharply with an
increase of the number of antennas, but that of the DNN-
based algorithms with a fixed structure is almost unchanged.
Figure 6 proves the fact by showing the computation time
of the WMMSE algorithm and the DNN-based algorithms.
In addition, the GPU-based parallel computing method can
further improve the computational efficiency of DNN, so
we test DNN on a GPU as shown in figure 6. The result
shows that the GPU-based computing platform can reduce
the computation time by 80% compared to the CPU. Finally,
we prune DNN to further reduce the computation complexity.
Although the decrease of computation time is not obvious,
the number of neurons can be pruned to half and the volume
of the DNN model is reduced from 1x Mb to x Mb. Pruning
make it possible to deploy the DNN on lightweight devices.

V. CONCLUSION
In this article, we use a DNN model to design beamforming
matrix, which greatly reduces the computational complexity
compared to the traditional WMMSE algorithm while ensur-
ing performance. The weighted sum-rate based loss function
is used to realize unsupervised learning, which achieves
a better performance than that of the supervised learning
method. Moreover, we tested the effects of different SNR and
number of transmit antennas on the DNN performance. The
results show that the performance of DNN decreases with the
increase of SNR and number of transmit antennas, but it is
still close to WMMSE. Finally, we use the pruning method to
reload the pre-trained network model in the training process
and employ the ’APoZ’ threshold method to eliminate inac-
tive neurons and compress the network volume to minimize
computational complexity of the neural network.
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