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Abstract— Analog least mean square (ALMS) loop is a promis-1

ing method to cancel self-interference (SI) in in-band full-duplex2

(IBFD) systems. In this paper, the steady state analyses of the3

residual SI powers in both analog and digital domains are4

firstly derived. The eigenvalue decomposition is then utilized to5

investigate the frequency domain characteristics of the ALMS6

loop. Our frequency domain analyses prove that the ALMS loop7

has an effect of amplifying the frequency components of the8

residual SI at the edges of the signal spectrum in the analog9

domain. However, the matched filter in the receiver chain will10

reduce this effect, resulting in a significant improvement of11

the interference suppression ratio (ISR). It means that the SI12

will be significantly suppressed in the digital domain before13

information data detection. This paper also derives the lower14

bounds of ISRs given by the ALMS loop in both analog and15

digital domains. These lower bounds are joint effects of the loop16

gain, tap delay, number of taps, and transmitted signal properties.17

The discovered relationship among these parameters allows the18

flexibility in choosing appropriate parameters when designing the19

IBFD systems under given constraints.20

Index Terms— IBFD, self-interference cancellation, ALMS21

loop, frequency-domain analysis, matched filter, and eigenvalue22

decomposition.23

I. INTRODUCTION24

SPECTRAL efficiency is always a critical issue in wireless25

communications as the number of mobile devices has been26

booming recently. In-band full-duplex (IBFD) transmission27

is a promising solution for this problem because it allows28

simultaneous transmission and reception in the same frequency29

band [1]. Moreover, IBFD transmission provides other bene-30

fits, such as avoiding collision due to hidden terminal problems31
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in carrier sense multiple access networks and reducing the end- 32

to-end delay in multi-hop networks [2]. However, a critical 33

challenge encountered in implementing IBFD transceivers is 34

that the strong self-interference (SI) imposed by the transmitter 35

prevents its co-located receiver from receiving the signal of 36

interest emitted from the far-end. Hence, SI cancellation (SIC) 37

is a fundamental issue in IBFD communications. 38

Numerous approaches have been proposed in the litera- 39

ture to tackle the problem of SI. These approaches can be 40

classified as passive suppression, analog cancellation, and 41

digital cancellation [3]. Passive suppression methods intend 42

to attenuate the level of SI in the propagation domain by 43

separating transmit and receive antennas [4]–[6], or using a 44

circulator to share one antenna [7], [8]. Analog cancellation 45

attempts to generate a reference signal which is a replica of 46

the SI to subtract it from the received signal at the input 47

of the receiver. Digital cancellation is implemented after the 48

Analog-to-Digital converter (ADC) where the residual SI is 49

estimated and subtracted from the received digital signal 50

samples [5]. Note that no single method of cancellation can 51

be sufficient to remove the effect of the SI, but a combination 52

of them is always required [2]. However, analog cancellation 53

plays a critical role in the above mentioned three steps of 54

mitigating the SI. The reason is that passive suppression is 55

limited by the device size, and the level of suppression is 56

not sufficient to protect the ADC from being saturated by the 57

strong SI. As a result, the digital cancellation cannot be solely 58

implemented without the analog domain cancellation. Among 59

many different analog domain SIC techniques, the radio fre- 60

quency (RF) multi-tap finite impulse response (FIR) adaptive 61

filtering approach [9], the multiple RF bandpass filter (BPF) 62

approach [10], and the RF FIR frequency-domain equalization 63

approach [11] are some of the notable ones. The approaches 64

proposed in [10] and [11] directly synthesize the frequency 65

domain characteristics of the SI channel, but the RF BPFs 66

and FIR filter are all static though they can be reconfigurable. 67

Due to practical impairments, such as non-linearity of the 68

transmit power amplifier (PA), as well as the variation of the 69

SI channel, an adaptive mechanism which can adjust the phase 70

and amplitude of the cancellation signal seems more effective. 71

An obvious problem here is how to synthesize the weighting 72

coefficients of the multi-tap adaptive filter in order to minimize 73

the power of the residual SI after cancellation. A promising 74

method is to utilize a least mean square (LMS) loop in 75
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the adaptive filter. Unlike conventional LMS algorithms in76

the digital domain, it is very challenging to implement an77

LMS loop in the RF domain due to the lack of RF inte-78

grators. Therefore, many existing SIC filters implement the79

LMS algorithm at the baseband stage. Besides the baseband80

integrator, additional down-conversion and ADC circuits have81

to be added to digitize the residual SI for the LMS filter in82

baseband [3], [9], [12], [13]. Unfortunately, these additional83

blocks not only consume more power, but also produce further84

noise and interference to the receiver. Other SIC methods85

synthesize the weighting coefficients from the digitalized86

residual SI after the ADC in the receiver chain and gen-87

erate the RF cancellation signal by an additional transmit88

chain [14]–[16]. However, in a conventional receiver, an auto-89

matic gain control (AGC) amplifier is always required to avoid90

the problem of fading and ensure the wide dynamic range of91

the receiver. Since the level of residual SI is stabilized by92

the AGC amplifier, the weight coefficients synthesized in the93

digital domain are inaccurate. Furthermore, the involvement of94

the transmitted baseband signal in the control algorithm also95

makes the cancellation circuit become more complicated in96

practice.97

A novel analog LMS (ALMS) loop purely implemented at98

the RF stage is proposed in [17]. By employing a simple99

resistor-capacitor low-pass filter (LPF) to replace the ideal100

integrator, the weighting coefficients can be synthesized with-101

out any involvement of the complicated digital signal process-102

ing. The performance and convergence of the ALMS loop103

are comprehensively investigated by examining the weighting104

error function in both micro and macro scales. The spectra105

of residual SI obtained from experiment results show that106

the ALMS loop enhances the SI at the two edges of the107

signal spectrum. However, this phenomenon has not yet been108

analyzed and its impact on the SIC performance is not fully109

understood. As further studied in [18] and [19], the properties110

of transmitted signals have significant impacts on the perfor-111

mance of the ALMS loop, but the roles of the tap delay and112

the number of taps in ALMS loop in relation to the SIC per-113

formance have not been considered. As we all know, as long114

as the level of passive suppression and analog cancellation is115

sufficient to allow the received signal to be digitized within116

the ADC’s dynamic range, the SIC performance in the RF117

stage does not show the real impact on the performance of118

information detection since further optimal receiver algorithms119

including matched filtering and equalization will be performed120

in the digital domain. Therefore, it would make more sense to121

consider the performance of the ALMS loop in the digital122

domain after the matched filter. However, the analyses on123

ALMS loop performance in [17]–[19] are all conducted at the124

RF stage.125

To overcome the aforementioned shortcoming, in this126

paper, we analyze the performance of the ALMS loop127

proposed in [17] by evaluating the interference-suppression-128

ratios (ISRs) in both analog and digital domains in the129

receiver chain. In particular, the ISRs before and after the130

matched filter are firstly derived by a steady state analysis,131

and eigenvalue decomposition is then performed to derive the132

frequency domain presentation of the ALMS loop. We prove133

that although the ALMS loop has an effect of amplifying 134

the frequency components of the residual SI at the edges of 135

the signal spectrum, this effect is significantly reduced by the 136

matched filter, leading to a much lower ISR at the output of 137

the matched filter. Hence, unlike [17], the real effect of the 138

ALMS loop on the SI suppression should be considered after 139

the matched filter in the digital domain instead of before it in 140

the analog domain. Furthermore, the lower bounds of ISRs in 141

both analog and digital domains are derived to characterize the 142

performance of the ALMS loop with regards to the transmitted 143

signal property, the loop gain, the tap spacing, and the number 144

of taps. From the relationship among these parameters, the full 145

potential of SIC given by the ALMS loop can be determined. 146

Contributions of this paper are twofold. First, this paper 147

characterizes the phenomenon of frequency component 148

enhancement produced by the ALMS loop to the residual 149

SI, and proves mathematically that the matched filter reduces 150

this enhancement, leading to a significant improvement of 151

ISR in the digital domain. Second, the lower bound of ISR 152

given by the ALMS loop in the digital domain derived in 153

this paper allows the designer to determine the expected level 154

of suppression from the parameters of the transceiver and 155

the cancellation circuit. More importantly, this expected level 156

can be achieved by adjusting the remaining parameters when 157

others are under constraints. 158

The rest of this paper is organized as follows. Section II 159

describes the system architecture and the signal models and 160

performs the steady state analysis to find the expressions 161

of ISRs in both analog and digital domains. In Section III, 162

the ISRs are analyzed in the frequency domain and their lower 163

bounds are derived respectively. In Section IV, simulations are 164

conducted to verify the theoretical findings. Finally, conclu- 165

sions are drawn in Section V. 166

II. STEADY STATE ANALYSIS OF ALMS LOOP 167

A. IBFD Transceiver With ALMS Loop 168

The architecture of an IBFD transceiver employing an 169

ALMS loop in the analog domain proposed in [17] is shown 170

in Fig. 1. The ALMS loop works as follows. A copy of the 171

transmitted signal is passed through the ALMS loop, which 172

includes L taps. In each tap, the transmitted signal is delayed 173

and multiplied by the amplified and looped-back residual SI 174

with an I/Q demodulator. This product is then filtered with the 175

LPFs to obtain the weighting coefficient wl(t). These weight- 176

ing coefficients modulate again the same delayed transmitted 177

signal. The outputs of the L-taps are added together to produce 178

the cancellation signal y(t), which is then subtracted from the 179

received signal r(t) at the input of the receiver. 180

Signal models are described as follows. Assuming a single 181

carrier system, the transmitted signal x(t) at the output of the 182

power amplifier (PA) is modeled as x(t) = Re{X(t)ej2πfct} 183

where fc is the carrier frequency, and X(t) is the baseband 184

equivalent which can be mathematically modeled as 185

X(t) =
∞∑

i=−∞
aiVXp(t − iTs) (1) 186
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Fig. 1. The ALMS loop structure.

where ai is the i-th complex data symbol, Ts is the symbol187

interval, VX is the root mean square (RMS) value of the188

transmitted signal, and p(t) is the pulse shaping function189

with unit power 1
Ts

∫ Ts

0
|p(t)|2 dt = 1. The transmitted data190

symbols ai are assumed to be independent of each other,191

i.e., E{a∗
i ai′} =

{
1, for i = i′

0, for i �= i′
where E{.} stands for192

ensemble expectation. The average power of X(t) is defined as193

1
Ts

∫ Ts

0
E{|X(t)|2}dt = V 2

X over 1 Ω load. Due to the IBFD194

operation, at the input of the receiver, there are presences of the195

SI z(t), the desired signal s(t), and the additive Gaussian noise196

n(t), i.e., r(t) = z(t)+ s(t)+n(t). The baseband equivalents197

of these signals are denoted as R(t), Z(t), S(t) and N(t)198

respectively. The cancellation signal y(t) is combined from199

the L taps as200

y(t) = Re
{L−1∑

l=0

w∗
l (t)X(t − lTd)ej2πfc(t−lTd)

}
(2)201

where wl(t) is the complex weighting coefficient at the202

l-th tap obtained by filtering the outputs of the I/Q demod-203

ulator, Td is the delay between adjacent taps. As proved204

in [17], using a simple resistor-capacitor LPF with the decay205

constant α (α = 1/RC), the weighting coefficients wl(t) can206

be written as207

wl(t) =
2μα

K1K2

∫ t

0

e−α(t−τ)[r(τ) − y(τ)]208

·X(τ − lTd)ej2πfc(τ−lTd)dτ (3)209

where K1 and K2 are the dimensional constants of multipliers210

in the I/Q demodulator and I/Q modulator respectively, and211

2μ is the gain of the low noise amplifier (LNA). Assume212

that the SI channel is modeled as an L-stage multi-tap213

filter where each tap has a coefficient h∗
l and delay Td.214

Hence, the baseband equivalent of the SI z(t) can be expressed 215

as Z(t) =
∑L−1

l=0 h∗
l X(t − lTd). Obviously, the performance 216

of the ALMS loop is determined by the difference between 217

the cancellation signal y(t) and the SI z(t). This difference is 218

represented by the weighting error function defined as 219

ul(t) = hl − wl(t)ej2πfclTd . (4) 220

As derived in [17, eq. (11)], ul(t) can be expressed as 221

ul(t) = hl − μα

K1K2

∫ t

0

e−α(t−τ)

[
L−1∑

l′=0

ul′(τ)X∗(τ − l′Td) 222

+ S∗(τ) + N∗(τ)

]
X(τ − lTd)dτ. (5) 223

B. Steady State Analysis 224

1) Steady State of Weighting Error Function: Now we apply 225

the steady state analysis to derive the residual SI power and the 226

ISR at the output of the ALMS loop. The system is assumed 227

to be steady after an initial start-up so that all the weighting 228

coefficients are in their converged values. Both ensemble 229

expectation and time averaging denoted as Ē{.} are used to 230

evaluate the random processes involved in this analysis. The 231

normalized autocorrelation function of the transmitted signal 232

is defined by 233

Φ(τ) =
1

K1K2
Ē{X∗(t)X(t − τ)} 234

=
1

K1K2Ts

∫ Ts

0

E{X∗(t)X(t − τ)}dt 235

=
V 2

X

K1K2Ts

∫ ∞

−∞
p∗(t)p(t − τ)dt 236

=
A2

Ts

∫ ∞

−∞
p∗(t)p(t − τ)dt (6) 237

where A2 = V 2
X/K1K2 = Φ(0) is the normalized power of 238

the transmitted signal. To simplify (5), we assume that the 239

transmitted signal is independent of the desired signal and 240

the additive Gaussian noise, i.e., Ē{S∗(t)X(t − τ)} = 0 241

and Ē{N∗(t)X(t − τ)} = 0 for all τ . Performing both 242

ensemble expectation and time averaging and applying the 243

above assumptions to (5), we have 244

¯̄ul(t) = hl − μα

∫ t

0

e−α(t−τ)
L−1∑

l′=0

¯̄ul′(τ)Φ((l − l′)Td)dτ, 245

(7) 246

or, in matrix form 247

¯̄u(t) = h − μα

∫ t

0

e−α(t−τ)Φ¯̄u(t)dτ (8) 248

where ¯̄ul(t) = Ē{ul(t)}, ¯̄u(t) = [¯̄u0(t), ¯̄u1(t) · · · ¯̄uL−1(t)]H , 249

h = [h0, h1, · · · , hL−1]H , and 250

Φ =

⎡

⎢⎢⎢⎣

Φ(0) Φ(−Td) · · · Φ(−(L − 1)Td)
Φ(Td) Φ(0) · · · Φ(−(L − 2)Td)

...
...

. . .
...

Φ((L − 1)Td) Φ((L − 2)Td) · · · Φ(0)

⎤

⎥⎥⎥⎦. 251



IEE
E P

ro
of

4 IEEE TRANSACTIONS ON COMMUNICATIONS

When t → ∞, ¯̄u(t) converge to their steady-state values ¯̄u so252

that ¯̄u(t) can be taken out of the integral in (8). It is also noted253

that α
∫ t

0
e−α(t−τ)dτ

∣∣∣
t→∞

→ 1. Therefore, (8) becomes254

¯̄u = h − μΦ¯̄u (9)255

and hence256

¯̄u = (IL + μΦ)−1h. (10)257

2) Interference Suppression Ratios: ISR is an important258

metric to evaluate the performance of the cancellation circuit.259

In this subsection, we derive the closed-form equations of ISRs260

before and after the matched filter in the analog domain and261

digital domain respectively.262

a) ISR in analog domain: After SI cancellation, the nor-263

malized power of residual SI v(t) = z(t)− y(t) is derived as264

Pv(t) =
1

K1K2
Ē
{
[z(t) − y(t)]2

}
265

=
1

K1K2
Ē

{[
Re

{[
Z(t) −

L−1∑

l=0

(h∗
l − u∗

l (t))266

×X(t− lTd)
]
ej2πfct

}]2}
267

=
1

2K1K2
Ē

{∣∣∣Z(t) −
L−1∑

l=0

(h∗
l − u∗

l (t))X(t − lTd)
∣∣∣
2
}

268

=
1

2K1K2
Ē

{[ L−1∑

l=0

u∗
l (t)X(t − lTd)269

×
L−1∑

l′=0

ul′(t)X∗(t − l′Td)
]}

270

=
1
2
Ē

{
L−1∑

l=0

L−1∑

l′=0;l′ �=l

u∗
l (t)Φ

(
(l − l′)Td

)
ul′(t)271

+ Φ(0)
L−1∑

l=0

|ul(t)|2
}

272

=
1
2

¯̄uH(t)
[
Φ− Φ(0)IL

]
¯̄u(t) +

1
2
Φ(0)

L−1∑

l=0

¯̄u2
l (t) (11)273

where ¯̄u2
l (t) = Ē{|ul(t)|2} is the time-averaged mean square274

value of ul(t). From (5), following the steps shown in275

Appendix B in [17], when d ¯̄u2
l (t)
dt = 0, ¯̄u2

l (t) satisfies the276

equation277

(1 + μA2)
L−1∑

l=0

¯̄u2
l (t) = Re{ ¯̄uHh} − μ¯̄uH(Φ − A2IL)¯̄u.278

(12)279

Substituting (10) to (12), we have280

L−1∑

l=0

¯̄u2
l (t) = hH(IL + μΦ)−2h (13)281

and the steady state power of the residual interference is282

obtained from (11) as283

Pv =
1
2
hH(IL + μΦ)−1Φ(IL + μΦ)−1h. (14)284

If there was no cancellation, the normalized SI power would be 285

Pz =
1

K1K2
Ē
{
[z(t)]2

}
286

=
1

K1K2
Ē

{[
Re
{L−1∑

l=0

h∗
l X(t − lTd)ej2πfct

}]2}
287

=
1

2K1K2
Ē

{
L−1∑

l=0

h∗
l X(t − lTd)

L−1∑

l′=0

hl′X
∗(t − l′Td)

}
288

=
1

2K1K2

L−1∑

l=0

L−1∑

l′=0

h∗
l Ē
{
X(t − lTd)X∗(t − l′Td)

}
hl′ 289

=
1
2

L−1∑

l=0

L−1∑

l′=0

h∗
l Φ
(
(l − l′)Td

)
hl′ =

1
2
hHΦh. (15) 290

Therefore, ISR before the matched filter in the analog domain, 291

denoted as ISRa, is determined by 292

ISRa =
Pv

Pz
=

hH(IL + μΦ)−1Φ(IL + μΦ)−1h
hHΦh

. (16) 293

b) ISR in digital domain: After down-converted to base- 294

band, the residual SI, denoted as V (t), is expressed as 295

V (t) = Z(t) − Y (t) 296

=
L−1∑

l=0

h∗
l X(t − lTd) −

L−1∑

l=0

w∗
l (t)X(t − lTd)e−j2πfclTd

297

=
L−1∑

l=0

u∗
l (t)X(t − lTd). (17) 298

After the matched filter with the impulse response p∗(−t), 299

we get the filtered version of V (t) as 300

Ṽ (t) = V (t) ∗ p∗(−t) =
L−1∑

l=0

u∗
l (t)X̃(t − lTd) (18) 301

where ∗ stands for a linear convolution operation and 302

X̃(t) = X(t) ∗ p∗(−t) (19) 303

is the filtered version of the transmitted baseband signal. 304

Similarly, the steady normalized power of the filtered residual 305

SI is calculated as 306

PṼ =
1

K1K2
Ē
{|Ṽ (t)|2} 307

=
1

K1K2
Ē

{
L−1∑

l=0

u∗
l (t)X̃(t − lTd)

L−1∑

l′=0

ul′(t) 308

× X̃∗(t − l′Td)

}
309

=
L−1∑

l=0

L−1∑

l′=0,l �=l′

¯̄u∗
l (t)Θ

(
(l−l′)Td

)
¯̄ul′(t) + Θ(0)

L−1∑

l=0

¯̄u2
l (t) 310

= ¯̄uH(t)(Θ − Θ(0)IL)¯̄u(t) + Θ(0)
L−1∑

l=0

¯̄u2
l (t) 311

= hH(IL + μΦ)−1Θ(IL + μΦ)−1h (20) 312
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where Θ(τ) = 1
K1K2

Ē
{
X̃(t)X̃∗(t − τ)

}
and313

Θ =

⎡

⎢⎢⎢⎣

Θ(0) Θ(−Td) · · · Θ(−(L − 1)Td)
Θ(Td) Θ(0) · · · Θ(−(L − 2)Td)

...
...

. . .
...

Θ((L − 1)Td) Θ((L − 2)Td) · · · Θ(0)

⎤

⎥⎥⎥⎦314

are the normalized autocorrelation function of X̃(t) and the315

corresponding autocorrelation matrix respectively.316

Meanwhile, if there was no cancellation, the steady normal-317

ized SI power after the matched filter would be318

PZ̃ =
1

K1K2
Ē
{|Z(t) ∗ p∗(−t)|2}319

=
1

K1K2
Ē
{∣∣

L−1∑

l=0

h∗
l X̃(t − lTd)

∣∣2
}

320

=
L−1∑

l=0

L−1∑

l′=0

h∗
l Θ((l − l′)Td)hl′321

= hHΘh. (21)322

Therefore, the ISR after the matched filter in the digital323

domain, denoted as ISRd, is324

ISRd =
PṼ

PZ̃

=
hH(IL + μΦ)−1Θ(IL + μΦ)−1h

hHΘh
. (22)325

III. FREQUENCY-DOMAIN ANALYSIS OF RESIDUAL SI326

A. Eigen-Decomposition of Autocorrelation Matrices327

The L ×L matrix Φ can be decomposed as Φ = QΛQ−1
328

where Q is the orthonormal modal matrix whose columns are329

the L eigenvectors of Φ and330

Λ =

⎛

⎜⎜⎜⎝

λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λL−1

⎞

⎟⎟⎟⎠331

is the spectral matrix whose main diagonal elements are the L332

eigenvalues of Φ. When LTd is sufficiently large, the autocor-333

relation matrix Φ can be approximated as a circulant matrix334

Φ̃ composed of a periodic autocorrelation function Φ̃(τ) =335 ∑∞
l=−∞ Φ(τ + lLTd). As proved in [20], the circulant matrix336

Φ̃ can be decomposed as Φ̃ = FSXF−1 where F is the337

discrete Fourier transform (DFT) matrix of order L,338

F =

⎛

⎜⎜⎜⎝

1 1 · · · 1
1 e−jω1 · · · e−j(L−1)ω1

...
...

. . .
...

1 e−jωL−1 · · · e−j(L−1)ωL−1

⎞

⎟⎟⎟⎠339

with ωk = 2πk
L , k = 0, 1, · · · , L − 1, SX =340

diag{SX(ejω0 ), SX(ejω1), · · · , SX(ejωL−1)}, and SX(ejωk)341

are obtained by taking the DFT of Φ̃(lTd), i.e.,342

SX(ejωk ) =
L−1∑

l=0

Φ̃(lTd)e−jωkl (23)343

for k = 0, 1, · · · , L − 1, which are the L samples of the344

normalized power spectrum SX(ejω) of the transmitted signal345

Fig. 2. (a) Raised cosine spectrum; (b) SX(ejω); (c) SX(ejωk ) versus
eigenvalues λk , with L = 256, A2 = 100, β = 0.2, Td = Ts/2, Ts = 1.

sequence X(nTd) uniformly spaced about the unit circle. 346

It means that when L is sufficiently large, the eigenvalues 347

λk can be approximated as the power spectrum samples 348

SX(ejωk). To confirm this approximation, the eigenvalues λk 349

are compared with the power spectrum SX(ejωk) as below. 350

Suppose that the transmitter employs a root raised cosine 351

pulse shaping filter. The autocorrelation function Φ(t) is a 352

raised cosine pulse, which has the frequency response 353

P (f) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ts for 0 ≤ |f | <
1 − β

2Ts
Ts

2

[
1 + cos

(πTs

β
(f − 1 − β

2Ts
)
)]

for
1 − β

2Ts
≤ |f | ≤ 1 + β

2Ts

0 for |f | >
1 + β

2Ts

(24) 354

where β is the roll-off factor. Hence, the normalized power 355

spectrum of X(t) is A2P (f). With the sampling period 356

Td, the relationship between SX(ejω) and P (f) can be 357

expressed as 358

SX(ejω) =
1
Td

∞∑

n=−∞
A2P (

ω

2πTd
− n

Td
). (25) 359

If Td ≤ Ts/(1+ β), there will be no spectral overlapping and 360

hence 361

SX(ejω) =
A2

Td
P (

ω

2πTd
), for − π < ω < π. (26) 362

Fig. 2 shows the raised cosine spectrum P (f), SX(ejω), 363

SX(ejωk), and properly ordered λk for L = 256, A2 = 364

100, β = 0.2, and Td = Ts/2 where Ts is normalized to 1. 365

We see that λk are very close to SX(ejωk). 366

The same approximation can also be applied to the 367

autocorrelation matrix Θ, i.e., it is close to a circu- 368

lant matrix Θ̃ when L is sufficiently large. In this 369

case, Θ̃ can be decomposed as Θ̃ = FSX̃F−1
370

where SX̃ = diag
{
SX̃(ejω0), SX̃(ejω1), · · · , SX̃(ejωL−1)

}
; 371
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SX̃(ejωk) for k = 0, · · · , L − 1 are the L spectrum com-372

ponents obtained by taking DFT of Θ̃(lTd) with Θ̃(τ) =373 ∑∞
l=−∞ Θ(τ + lLTd), and SX̃(ejω) = A2

Td
P 2( ω

2πTd
) for374

−π < ω < π.375

B. Frequency Domain Characterization of ALMS Loop376

From the above decomposition, we can simplify (16)377

and (22) as378

ISRa379

=
hHF(IL + μSX)−1F−1FSXF−1F(IL + μSX)−1F−1h

hHFSXF−1h
380

=
hHFdiag

{
SX (ejωk )[

1+μSX (ejωk )
]2
}
F−1h

hHFdiag{SX(ejωk)}F−1h
381

=

∑L−1
k=0 |H(eiωk)|2 SX(ejωk )[

1+μSX(ejωk )
]2

∑L−1
k=0 |H(eiωk)|2SX(ejωk)

, (27)382

and383

ISRd384

=
hHF(IL + μSX)−1F−1FSX̃F−1F(IL + μSX)−1F−1h

hHFSX̃F−1h
385

=
hHFdiag

{
SX̃ (ejωk )[

1+μSX (ejωk )
]2
}
F−1h

hHFdiag{SX̃(ejωk)}F−1h
386

=

∑L−1
k=0 |H(ejωk)|2 SX̃ (ejωk )[

1+μSX (ejωk )
]2

∑L−1
k=0 |H(ejωk)|2SX̃(ejωk)

(28)387

where H(ejωk) is the frequency response of the SI channel.388

It can be seen from (27) and (28) that, in the frequency domain,389

the residual SI can be decomposed into two components. The390

first component is the frequency response of the SI channel391

H(ejωk). The second component in (27) (i.e., in the analog392

domain before the matched filter) is a frequency dependent393

attenuation factor introduced by the ALMS loop as Fa(ejω) =394

SX(ejω)[
1+μSX(ejω)

]2 . Also, in (28), the second component in the395

digital domain after the matched filter is a frequency dependent396

attenuation factor determined by both the ALMS loop and397

the matched filter as Fd(ejω) = SX̃(ejω)[
1+μSX (ejω)

]2 . Therefore,398

the residual SI before and after the matched filter can be399

analyzed in the frequency domain by comparing their second400

components. Fa(ejω) and Fd(ejω) with various values of β401

are plotted in Fig. 3 respectively.402

Fig. 3 reveals that the ALMS loop has an effect of ampli-403

fying the frequency components of the residual SI leading to404

a peak at the edge of the signal spectrum. As a result, the ISR405

in the analog domain before the matched filter is higher when406

the roll-off factor is larger. However, this effect is significantly407

Fig. 3. Frequency dependent attenuation factors with various values of β,
L = 256, A2 = 100, Td = Ts/2.

reduced by the matched filter as the peak no longer exists 408

in Fd(ejω). Hence, the ISR will be significantly improved in 409

the digital domain. It also means that the effect of the signal 410

spectrum on ISR reduces significantly when it is considered 411

in the digital domain. Therefore, we can conclude that the 412

performance of the ALMS loop evaluated in the digital domain 413

after the matched filter rather than in the analog domain as 414

in [17] makes more sense to the IBFD system. 415

C. Performance Lower Bounds 416

The ISRs discussed in Section III.A are valid for a given 417

SI channel. To derive the lower bounds of ISRs over random 418

realizations of SI channels, we define the average ISRs in the 419

analog domain and digital domain respectively as 420

ISRa =
Eh{Pv}
Eh{Pz} =

∑L−1
k=0 Eh

{|H(ejωk)|2} SX(ejωk )[
1+μSX(ejωk )

]2
∑L−1

k=0 Eh

{|H(ejωk)|2}SX(ejωk )
, 421

=

∑L−1
k=0

SX(ejωk )[
1+μSX (ejωk )

]2
∑L−1

k=0 SX(ejωk)
(29) 422

and 423

ISRd =
Eh{PṼ }
Eh{PZ̃}

=

∑L−1
k=0 Eh

{|H(ejωk)|2} SX̃(ejωk )[
1+μSX(ejωk )

]2
∑L−1

k=0 Eh

{|H(ejωk)|2}SX̃(ejωk)
424

=

∑L−1
k=0

SX̃ (ejωk )[
1+μSX (ejωk )

]2
∑L−1

k=0 SX̃(ejωk)
(30) 425

where Eh{.} denotes expectation over the SI channel and 426

Eh{|H(ejωk)|2} is a constant for SI channels with indepen- 427

dent and zero-mean tap coefficients (see Appendix A). Clearly, 428

ISRa and ISRd can be purely examined by the spectrum 429

components SX(ejωk) and SX̃(ejωk). To find the closed-form 430
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equation of ISRa and ISRd, letting L → ∞, the discrete431

components SX(ejωk) and SX̃(ejωk)) can be replaced by the432

continuous power spectra SX(ejω) and SX̃(ejω) respectively.433

The lower bounds of ISRa and ISRd are obtained as434

ISRLBa = ISRa|L→∞ =

1
2π

∫ 2π

0
SX(ejω)[

1+μSX(ejω)
]2 dω

1
2π

∫ 2π

0 SX(ejω)dω
435

=

1
2π

∫ π

−π
SX (ejω)[

1+μSX (ejω)
]2 dω

1
2π

∫ π

−π SX(ejω)dω
436

=

∫ 1/2Td

−1/2Td

A2P (f)[
1+μ A2

Td
P (f)
]2 df

∫ 1/2Td

−1/2Td
A2P (f)df

, (31)437

and438

ISRLBd = ISRd|L→∞ =

1
2π

∫ 2π

0

SX̃(ejω)[
1+μSX (ejω)

]2 dω

1
2π

∫ 2π

0
SX̃(ejω)dω

439

=

1
2π

∫ π

−π

SX̃ (ejω)[
1+μSX (ejω)

]2 dω

1
2π

∫ π

−π
SX̃(ejω)dω

440

=

∫ 1/2Td

−1/2Td

A2P 2(f)[
1+μ A2

Td
P (f)
]2 df

∫ 1/2Td

−1/2Td
A2P 2(f)df

(32)441

respectively. Assuming the raised cosine transmitted signal442

spectrum, the closed-form ISRLBa and ISRLBd in (31)443

and (32) are found (see Appendix B) as444

ISRLBa =
1 + β(

√
a + 1 − 1)

(1 + a)2
, (33)445

and446

ISRLBd =

1 + β

[
2(a+1)2

a2

(
1 − 1√

a+1
− a

√
a+1

2(a+1)2

)
− 1

]

(1 + a)2(1 − β/4)
.447

(34)448

where a = μA2Ts/Td. It is obvious from these lower bounds449

that in the ideal case (β = 0) the ultimate level of cancellation450

is ISRLBu = 1/(1+ Ts

Td
μA2)2. Comparison between ISRLa451

and ISRLBd with various values of a is presented in Fig. 4.452

From (29), (30), (33), (34), and Fig. 4, some important453

observations are derived as bellows.454

1) The level of cancellation given by the ALMS loop is455

determined by the loop gain μA2, the roll-off factor β456

the tap delay Td, and the number of taps L. It means457

that the expected level of cancellation can be achieved458

by either increasing the loop gain μA2 or reducing the459

tap delay Td. However for the latter case, we need larger460

number of taps L so that LTd is sufficiently large and461

ISRa can approach its lower bound.462

Fig. 4. ISR lower bounds versus β with a = 2000, 2200, and 2500.

2) ISRLBa increases significantly as the roll-off factor 463

increases. As shown in Fig. 4, ISRLBa for β = 1 464

is about 10 dB higher than that for β = 0.1. However, 465

the difference in ISRLBd is only about 3 dB over the 466

whole range of β. This indicates that the matched filter 467

significantly reduces the effects of the roll-off factor and 468

the impact of the spectrum of the transmitted signal 469

becomes negligible in the digital domain. 470

The first observation is a crucial conclusion for system 471

design because it allows the designer to determine these para- 472

meters based on the expected level of cancellation given by 473

the ALMS loop. Furthermore, understanding the relationship 474

among these factors also allows the flexibility in designing 475

the cancellation circuit. For example, if the power of the 476

system is limited, i.e, the gain of the ALMS loop is not 477

high enough, the level of cancellation can still be achieved 478

by a finer tap spacing. In case the size of the ALMS loop 479

is constrained, the loop gain must be increased. The sec- 480

ond observation once again states that the performance of 481

the ALMS loop must be considered in the digital domain, 482

and the best level of cancellation given by the ALMS loop 483

is ISRLBd. 484

IV. SIMULATION RESULTS 485

To verify the analytical results presented in Section III, 486

simulations are conducted in MATLAB for a single carrier 487

IBFD system9 which uses QPSK modulation and symbol 488

duration Ts = 20 ns. The pulse shaping filter and the 489

matched filter are both root raised cosine pulses with the 490

roll-off factor β. The transmitted power is set to 0 dBm over 491

50 Ohm load. The transmitted power over 1 Ohm load is 492

found by 0 dBm + 10log10(50) = 17 dBm. Hence, the mean 493

squared amplitude of the transmitted signal for 1 Ohm load is 494

calculated by V 2
X = 2 × 10(17−30)/10 = 0.1 V2. The LNA 495

in the receiver is selected with the gain of μ = 10. The 496

ALMS loop has the tap spacing Td = Ts/2 and the number 497

of taps L. The multiplier constants in all the taps are the same 498

and are selected as K1K2 = 0.001 V2. Therefore, the gain 499
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Fig. 5. PSDs of the SI Z(t), residual SI V (t), and residual SI after the
matched filter Ṽ (t) with β = 0.5, μA2 = 1000, Td = Ts/2, and L = 8.

of the ALMS loop is μA2 = 10 × (0.1/0.001) = 1000. The500

SI power is set to 25 dB lower than the transmitted signal501

power.502

In the first simulation, the SI channel is chosen as h(t) =503

10
−25
20 {[

√
2

2 − 0.5j]δ(t)− 0.4δ(t− 0.9Ts) + 0.3δ(t− 3.3Ts)},504

which means that the delays of the reflected paths are505

fractional of Ts. The ALMS loop has L = 8 taps with506

Ts/2 tap spacing. Both pulse shaping filter and matched filter507

have the roll-off factor of β = 0.5. The power spectrum508

densities (PSDs) of the baseband equivalent of the SI Z(t),509

the residual SI in the analog domain V (t), and the residual510

SI in the digital domain after the matched filter Ṽ (t) are511

presented in Fig. 5. We can see that there are two peaks at512

the edges of the V (t). However, these peaks are removed in513

the spectrum of Ṽ (t). This simulation confirms the analyses514

in Section III.B.515

In the second simulation, the SI channel has L propagation516

paths whose coefficients hl are all independent and have a517

normal distribution with zero-mean. The power delay profile of518

the channel has an exponential distribution with the root mean519

square delay spread σ = LTs/4. The ISRs at each point of the520

roll-off factor β for different values of L are calculated and521

averaged out over 1000 iterations. The simulated ISRa, ISRd522

and their corresponding lower bounds ISRLBa, ISRLBd are523

presented in Fig. 6 for different values of L. The inset shows a524

closer look of ISRd. We can see that when L is larger, ISRa525

and ISRd are closer to their lower bounds, respectively. This526

is because the autocorrelation matrix can be well approximated527

to a circulant matrix and the summation in (29) and (30)528

approaches the integration when L is sufficiently large. Note529

that in our analyses, the SI channel is assumed to have the530

same number of paths as in the ALMS loop. As a result, the SI531

channels with small number of taps are much shorter compared532

to those with larger number of taps. Therefore, ISRa with533

smaller L go beyond the lower bound with infinite L. However,534

the matched filter reduces the effects of the SI channel so that535

ISRd are still bounded by ISRLBd.536

Fig. 6. ISRs in the analog domain and digital domain versus β with
μA2 = 1000, Td = Ts/2.

V. CONCLUSION 537

In this paper, the residual SI powers and the ISRs of an 538

ALMS loop in both analog and digital domains of an IBFD 539

system have been derived using the steady state analysis. The 540

expression of the ISR in the time domain is then converted 541

into the frequency domain by eigenvalue decomposition. From 542

the frequency domain presentation, it is proved that the 543

matched filter has an effect of reducing the peak frequency 544

response of the ALMS loop so that the problem of frequency 545

component enhancement caused by the ALMS loop to the 546

residual SI can be significantly reduced in the digital domain. 547

The corresponding lower bounds of ISRs in both analog and 548

digital domains have also been derived from frequency domain 549

expressions. Comparison between these lower bounds shows 550

that the performance of the ALMS loop should be considered 551

in the digital domain and it is determined by four factors, 552

namely, the loop gain μA2, the tap delay Td, the number of 553

taps L, and the roll-off factor β. The finding of these lower 554

bounds allows the designer to determine the desired level 555

of cancellation given by the ALMS loop. It also provides a 556

room to trade off among these factors to achieve the level of 557

cancellation within given constraints. 558

APPENDIX A 559

PROOF OF CONSTANT Eh{H(ejωk)} 560

For SI channels with independent and zero-mean tap coef- 561

ficients, we prove that Eh{H(ejωk)} is a constant for all 562

k = 0, 1 · · · , L − 1 as follow. 563

Eh{|H(ejωk)|2} = Eh

{ L−1∑

l=0

hle
−j2πkl

L

L−1∑

l′=0

h∗
l′e

j2πkl′
L

}
564

=
L−1∑

l=0

L−1∑

l′=0

Eh

{
hlh

∗
l′
}
e

−j2πk(l−l′)
L . (35) 565

Since the SI channel tap coefficients are independent with 566

zero-mean, we have Eh

{
hlh

∗
l′
}

= 0 for l �= l′. 567



IEE
E P

ro
of

LE et al.: FREQUENCY-DOMAIN CHARACTERIZATION AND PERFORMANCE BOUNDS OF ALMS LOOP 9

Therefore, Eh

{|H(ejωk)|2} =
∑L−1

l=0 Eh{|hl|2} for all k =568

0, 1 · · · , L − 1 which is the mean power of the SI channel.569

APPENDIX B570

DERIVATION OF ISRLBa AND ISRLBd571

A. ISRLBa572

From
∫ 1+β

2Ts

− 1+β
2Ts

P (f)df = 1 and Td ≤ Ts

1+β , (31) can be573

simplified as574

ISRLBa =

∫ 1/2Td

−1/2Td

A2P (f)[
1+μ A2

Td
P (f)
]2 df

∫ 1/2Td

−1/2Td
A2P (f)df

575

= 2
∫ 1+β

2Ts

0

P (f)
[
1 + μA2

Td
P (f)

]2 df. (36)576

Substituting P (f) from (24) into (36), we have577

∫ 1+β
2Ts

0

P (f)
[
1 + μA2

Td
P (f)

]2 df =
∫ 1−β

2Ts

0

Ts[
1 + μA2 Ts

Td

]2 df578

+
∫ 1+β

2Ts

1−β
2Ts

Ts

2

[
1 + cos

(
πTs

β (f − 1−β
2Ts

)
)]

{
1 + μA2 Ts

2Td

[
1 + cos

(
πTs

β (f − 1−β
2Ts

)
)]}2 df.579

(37)580

Denoting a = μA2 Ts

Td
and x = πTs

β (f − 1−β
2Ts

), (37) becomes581

∫ 1+β
2Ts

0

P (f)
[
1 + μA2

Td
P (f)

]2 df582

=
1 − β

2(1 + a)2
+

β

π

∫ π

0

1
2 (1 + cosx)

[
1 + a

2 (1 + cosx)
]2 dx. (38)583

Defining t = tan(x/2) so that cosx = 1−t2

1+t2 and dx = 2dt
1+t2 ,584

we have585

∫ π

0

1
2 (1 + cosx)

[
1 + a

2 (1 + cosx)
]2 dx586

= 2
∫ ∞

0

1
(t2 + a + 1)2

dt587

=
2
√

a + 1
(a + 1)2

∫ ∞

0

1
[
( t√

a+1
)2 + 1

]2 d(
t√

a + 1
)588

=
π

2

√
a + 1

(a + 1)2
. (39)589

Substituting (39) into (38), we obtain the ISRLBa as in (33).590

B. ISRLBd 591

Following the same steps as above, ISRLBd is derived as 592

ISRLBd =

∫ 1/2Td

−1/2Td

A2P 2(f)[
1+μ A2

Td
P (f)
]2 df

∫ 1/2Td

−1/2Td
A2P 2(f)df

593

=

∫ 1+β
2Ts

0
P 2(f)[

1+μ A2
Td

P (f)
]2 df

∫ 1+β
2Ts

0 P 2(f)df
. (40) 594

Substituting P (f) from (24) into (40) as well as applying the 595

substitution of x = πTs

β (f − 1−β
2Ts

) and then t = tan(x/2), 596

we have 597

∫ 1+β
2Ts

0

P 2(f)
[
1 + aP (f)

]2 df 598

=
Ts(1 − β)
2(1 + a)2

+
Tsβ

π

∫ π

0

1
4 (1 + cosx)2

[
1 + a

2 (1 + cosx)
]2 dx 599

=
Ts(1 − β)
2(1 + a)2

+
Tsβ

π

∫ ∞

0

1
(1+t2)2

(1 + a 1
1+t2 )2

2
1 + t2

dt 600

=
Ts(1 − β)
2(1 + a)2

+
Tsβ

π

∫ ∞

0

2
(t2 + a + 1)2(t2 + 1)

dt. (41) 601

Note that 2
(t2+a+1)2(t2+1) can be split as 602

2
(t2 + a + 1)2(t2 + 1)

603

=
2
a2

[
1

(1 + t2)
− 1

(t2 + a + 1)
− a

(t2 + a + 1)2

]
. (42) 604

Therefore, by substituting (42) into (41), we obtain 605

∫ 1+β
2Ts

0

P 2(f)
(1 + aP (f))2

df 606

=
Ts(1 − β)
2(1 + a)2

+
Tsβ

π

π

a2

[
1 − 1√

a + 1
− a

√
a + 1

2(a + 1)2

]
607

=
Ts

2(1+a)2

{
1+β

[
2(a+1)2

a2

(
1− 1√

a+1
− a

√
a+1

2(a+1)2

)
−1

]}
. 608

(43) 609

The derivation of
∫ 1+β

2Ts
0 P 2(f)df is expressed as 610

∫ 1+β
2Ts

0

P 2(f)df = Ts
1 − β

2
+

Tsβ

4π

∫ π

0

(1 + cosx)2dx 611

=
Ts

2
(1 − β/4). (44) 612

From (43) and (44), ISRLBd is obtained as in (34). 613
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Frequency-Domain Characterization and
Performance Bounds of ALMS Loop
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Y. Jay Guo , Fellow, IEEE, and J. (Yiannis) C. Vardaxoglou, Fellow, IEEE

Abstract— Analog least mean square (ALMS) loop is a promis-1

ing method to cancel self-interference (SI) in in-band full-duplex2

(IBFD) systems. In this paper, the steady state analyses of the3

residual SI powers in both analog and digital domains are4

firstly derived. The eigenvalue decomposition is then utilized to5

investigate the frequency domain characteristics of the ALMS6

loop. Our frequency domain analyses prove that the ALMS loop7

has an effect of amplifying the frequency components of the8

residual SI at the edges of the signal spectrum in the analog9

domain. However, the matched filter in the receiver chain will10

reduce this effect, resulting in a significant improvement of11

the interference suppression ratio (ISR). It means that the SI12

will be significantly suppressed in the digital domain before13

information data detection. This paper also derives the lower14

bounds of ISRs given by the ALMS loop in both analog and15

digital domains. These lower bounds are joint effects of the loop16

gain, tap delay, number of taps, and transmitted signal properties.17

The discovered relationship among these parameters allows the18

flexibility in choosing appropriate parameters when designing the19

IBFD systems under given constraints.20

Index Terms— IBFD, self-interference cancellation, ALMS21

loop, frequency-domain analysis, matched filter, and eigenvalue22

decomposition.23

I. INTRODUCTION24

SPECTRAL efficiency is always a critical issue in wireless25

communications as the number of mobile devices has been26

booming recently. In-band full-duplex (IBFD) transmission27

is a promising solution for this problem because it allows28

simultaneous transmission and reception in the same frequency29

band [1]. Moreover, IBFD transmission provides other bene-30

fits, such as avoiding collision due to hidden terminal problems31
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in carrier sense multiple access networks and reducing the end- 32

to-end delay in multi-hop networks [2]. However, a critical 33

challenge encountered in implementing IBFD transceivers is 34

that the strong self-interference (SI) imposed by the transmitter 35

prevents its co-located receiver from receiving the signal of 36

interest emitted from the far-end. Hence, SI cancellation (SIC) 37

is a fundamental issue in IBFD communications. 38

Numerous approaches have been proposed in the litera- 39

ture to tackle the problem of SI. These approaches can be 40

classified as passive suppression, analog cancellation, and 41

digital cancellation [3]. Passive suppression methods intend 42

to attenuate the level of SI in the propagation domain by 43

separating transmit and receive antennas [4]–[6], or using a 44

circulator to share one antenna [7], [8]. Analog cancellation 45

attempts to generate a reference signal which is a replica of 46

the SI to subtract it from the received signal at the input 47

of the receiver. Digital cancellation is implemented after the 48

Analog-to-Digital converter (ADC) where the residual SI is 49

estimated and subtracted from the received digital signal 50

samples [5]. Note that no single method of cancellation can 51

be sufficient to remove the effect of the SI, but a combination 52

of them is always required [2]. However, analog cancellation 53

plays a critical role in the above mentioned three steps of 54

mitigating the SI. The reason is that passive suppression is 55

limited by the device size, and the level of suppression is 56

not sufficient to protect the ADC from being saturated by the 57

strong SI. As a result, the digital cancellation cannot be solely 58

implemented without the analog domain cancellation. Among 59

many different analog domain SIC techniques, the radio fre- 60

quency (RF) multi-tap finite impulse response (FIR) adaptive 61

filtering approach [9], the multiple RF bandpass filter (BPF) 62

approach [10], and the RF FIR frequency-domain equalization 63

approach [11] are some of the notable ones. The approaches 64

proposed in [10] and [11] directly synthesize the frequency 65

domain characteristics of the SI channel, but the RF BPFs 66

and FIR filter are all static though they can be reconfigurable. 67

Due to practical impairments, such as non-linearity of the 68

transmit power amplifier (PA), as well as the variation of the 69

SI channel, an adaptive mechanism which can adjust the phase 70

and amplitude of the cancellation signal seems more effective. 71

An obvious problem here is how to synthesize the weighting 72

coefficients of the multi-tap adaptive filter in order to minimize 73

the power of the residual SI after cancellation. A promising 74

method is to utilize a least mean square (LMS) loop in 75

0090-6778 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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the adaptive filter. Unlike conventional LMS algorithms in76

the digital domain, it is very challenging to implement an77

LMS loop in the RF domain due to the lack of RF inte-78

grators. Therefore, many existing SIC filters implement the79

LMS algorithm at the baseband stage. Besides the baseband80

integrator, additional down-conversion and ADC circuits have81

to be added to digitize the residual SI for the LMS filter in82

baseband [3], [9], [12], [13]. Unfortunately, these additional83

blocks not only consume more power, but also produce further84

noise and interference to the receiver. Other SIC methods85

synthesize the weighting coefficients from the digitalized86

residual SI after the ADC in the receiver chain and gen-87

erate the RF cancellation signal by an additional transmit88

chain [14]–[16]. However, in a conventional receiver, an auto-89

matic gain control (AGC) amplifier is always required to avoid90

the problem of fading and ensure the wide dynamic range of91

the receiver. Since the level of residual SI is stabilized by92

the AGC amplifier, the weight coefficients synthesized in the93

digital domain are inaccurate. Furthermore, the involvement of94

the transmitted baseband signal in the control algorithm also95

makes the cancellation circuit become more complicated in96

practice.97

A novel analog LMS (ALMS) loop purely implemented at98

the RF stage is proposed in [17]. By employing a simple99

resistor-capacitor low-pass filter (LPF) to replace the ideal100

integrator, the weighting coefficients can be synthesized with-101

out any involvement of the complicated digital signal process-102

ing. The performance and convergence of the ALMS loop103

are comprehensively investigated by examining the weighting104

error function in both micro and macro scales. The spectra105

of residual SI obtained from experiment results show that106

the ALMS loop enhances the SI at the two edges of the107

signal spectrum. However, this phenomenon has not yet been108

analyzed and its impact on the SIC performance is not fully109

understood. As further studied in [18] and [19], the properties110

of transmitted signals have significant impacts on the perfor-111

mance of the ALMS loop, but the roles of the tap delay and112

the number of taps in ALMS loop in relation to the SIC per-113

formance have not been considered. As we all know, as long114

as the level of passive suppression and analog cancellation is115

sufficient to allow the received signal to be digitized within116

the ADC’s dynamic range, the SIC performance in the RF117

stage does not show the real impact on the performance of118

information detection since further optimal receiver algorithms119

including matched filtering and equalization will be performed120

in the digital domain. Therefore, it would make more sense to121

consider the performance of the ALMS loop in the digital122

domain after the matched filter. However, the analyses on123

ALMS loop performance in [17]–[19] are all conducted at the124

RF stage.125

To overcome the aforementioned shortcoming, in this126

paper, we analyze the performance of the ALMS loop127

proposed in [17] by evaluating the interference-suppression-128

ratios (ISRs) in both analog and digital domains in the129

receiver chain. In particular, the ISRs before and after the130

matched filter are firstly derived by a steady state analysis,131

and eigenvalue decomposition is then performed to derive the132

frequency domain presentation of the ALMS loop. We prove133

that although the ALMS loop has an effect of amplifying 134

the frequency components of the residual SI at the edges of 135

the signal spectrum, this effect is significantly reduced by the 136

matched filter, leading to a much lower ISR at the output of 137

the matched filter. Hence, unlike [17], the real effect of the 138

ALMS loop on the SI suppression should be considered after 139

the matched filter in the digital domain instead of before it in 140

the analog domain. Furthermore, the lower bounds of ISRs in 141

both analog and digital domains are derived to characterize the 142

performance of the ALMS loop with regards to the transmitted 143

signal property, the loop gain, the tap spacing, and the number 144

of taps. From the relationship among these parameters, the full 145

potential of SIC given by the ALMS loop can be determined. 146

Contributions of this paper are twofold. First, this paper 147

characterizes the phenomenon of frequency component 148

enhancement produced by the ALMS loop to the residual 149

SI, and proves mathematically that the matched filter reduces 150

this enhancement, leading to a significant improvement of 151

ISR in the digital domain. Second, the lower bound of ISR 152

given by the ALMS loop in the digital domain derived in 153

this paper allows the designer to determine the expected level 154

of suppression from the parameters of the transceiver and 155

the cancellation circuit. More importantly, this expected level 156

can be achieved by adjusting the remaining parameters when 157

others are under constraints. 158

The rest of this paper is organized as follows. Section II 159

describes the system architecture and the signal models and 160

performs the steady state analysis to find the expressions 161

of ISRs in both analog and digital domains. In Section III, 162

the ISRs are analyzed in the frequency domain and their lower 163

bounds are derived respectively. In Section IV, simulations are 164

conducted to verify the theoretical findings. Finally, conclu- 165

sions are drawn in Section V. 166

II. STEADY STATE ANALYSIS OF ALMS LOOP 167

A. IBFD Transceiver With ALMS Loop 168

The architecture of an IBFD transceiver employing an 169

ALMS loop in the analog domain proposed in [17] is shown 170

in Fig. 1. The ALMS loop works as follows. A copy of the 171

transmitted signal is passed through the ALMS loop, which 172

includes L taps. In each tap, the transmitted signal is delayed 173

and multiplied by the amplified and looped-back residual SI 174

with an I/Q demodulator. This product is then filtered with the 175

LPFs to obtain the weighting coefficient wl(t). These weight- 176

ing coefficients modulate again the same delayed transmitted 177

signal. The outputs of the L-taps are added together to produce 178

the cancellation signal y(t), which is then subtracted from the 179

received signal r(t) at the input of the receiver. 180

Signal models are described as follows. Assuming a single 181

carrier system, the transmitted signal x(t) at the output of the 182

power amplifier (PA) is modeled as x(t) = Re{X(t)ej2πfct} 183

where fc is the carrier frequency, and X(t) is the baseband 184

equivalent which can be mathematically modeled as 185

X(t) =
∞∑

i=−∞
aiVXp(t − iTs) (1) 186
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Fig. 1. The ALMS loop structure.

where ai is the i-th complex data symbol, Ts is the symbol187

interval, VX is the root mean square (RMS) value of the188

transmitted signal, and p(t) is the pulse shaping function189

with unit power 1
Ts

∫ Ts

0
|p(t)|2 dt = 1. The transmitted data190

symbols ai are assumed to be independent of each other,191

i.e., E{a∗
i ai′} =

{
1, for i = i′

0, for i �= i′
where E{.} stands for192

ensemble expectation. The average power of X(t) is defined as193

1
Ts

∫ Ts

0
E{|X(t)|2}dt = V 2

X over 1 Ω load. Due to the IBFD194

operation, at the input of the receiver, there are presences of the195

SI z(t), the desired signal s(t), and the additive Gaussian noise196

n(t), i.e., r(t) = z(t)+ s(t)+n(t). The baseband equivalents197

of these signals are denoted as R(t), Z(t), S(t) and N(t)198

respectively. The cancellation signal y(t) is combined from199

the L taps as200

y(t) = Re
{L−1∑

l=0

w∗
l (t)X(t − lTd)ej2πfc(t−lTd)

}
(2)201

where wl(t) is the complex weighting coefficient at the202

l-th tap obtained by filtering the outputs of the I/Q demod-203

ulator, Td is the delay between adjacent taps. As proved204

in [17], using a simple resistor-capacitor LPF with the decay205

constant α (α = 1/RC), the weighting coefficients wl(t) can206

be written as207

wl(t) =
2μα

K1K2

∫ t

0

e−α(t−τ)[r(τ) − y(τ)]208

·X(τ − lTd)ej2πfc(τ−lTd)dτ (3)209

where K1 and K2 are the dimensional constants of multipliers210

in the I/Q demodulator and I/Q modulator respectively, and211

2μ is the gain of the low noise amplifier (LNA). Assume212

that the SI channel is modeled as an L-stage multi-tap213

filter where each tap has a coefficient h∗
l and delay Td.214

Hence, the baseband equivalent of the SI z(t) can be expressed 215

as Z(t) =
∑L−1

l=0 h∗
l X(t − lTd). Obviously, the performance 216

of the ALMS loop is determined by the difference between 217

the cancellation signal y(t) and the SI z(t). This difference is 218

represented by the weighting error function defined as 219

ul(t) = hl − wl(t)ej2πfclTd . (4) 220

As derived in [17, eq. (11)], ul(t) can be expressed as 221

ul(t) = hl − μα

K1K2

∫ t

0

e−α(t−τ)

[
L−1∑

l′=0

ul′(τ)X∗(τ − l′Td) 222

+ S∗(τ) + N∗(τ)

]
X(τ − lTd)dτ. (5) 223

B. Steady State Analysis 224

1) Steady State of Weighting Error Function: Now we apply 225

the steady state analysis to derive the residual SI power and the 226

ISR at the output of the ALMS loop. The system is assumed 227

to be steady after an initial start-up so that all the weighting 228

coefficients are in their converged values. Both ensemble 229

expectation and time averaging denoted as Ē{.} are used to 230

evaluate the random processes involved in this analysis. The 231

normalized autocorrelation function of the transmitted signal 232

is defined by 233

Φ(τ) =
1

K1K2
Ē{X∗(t)X(t − τ)} 234

=
1

K1K2Ts

∫ Ts

0

E{X∗(t)X(t − τ)}dt 235

=
V 2

X

K1K2Ts

∫ ∞

−∞
p∗(t)p(t − τ)dt 236

=
A2

Ts

∫ ∞

−∞
p∗(t)p(t − τ)dt (6) 237

where A2 = V 2
X/K1K2 = Φ(0) is the normalized power of 238

the transmitted signal. To simplify (5), we assume that the 239

transmitted signal is independent of the desired signal and 240

the additive Gaussian noise, i.e., Ē{S∗(t)X(t − τ)} = 0 241

and Ē{N∗(t)X(t − τ)} = 0 for all τ . Performing both 242

ensemble expectation and time averaging and applying the 243

above assumptions to (5), we have 244

¯̄ul(t) = hl − μα

∫ t

0

e−α(t−τ)
L−1∑

l′=0

¯̄ul′(τ)Φ((l − l′)Td)dτ, 245

(7) 246

or, in matrix form 247

¯̄u(t) = h − μα

∫ t

0

e−α(t−τ)Φ¯̄u(t)dτ (8) 248

where ¯̄ul(t) = Ē{ul(t)}, ¯̄u(t) = [¯̄u0(t), ¯̄u1(t) · · · ¯̄uL−1(t)]H , 249

h = [h0, h1, · · · , hL−1]H , and 250

Φ =

⎡

⎢⎢⎢⎣

Φ(0) Φ(−Td) · · · Φ(−(L − 1)Td)
Φ(Td) Φ(0) · · · Φ(−(L − 2)Td)

...
...

. . .
...

Φ((L − 1)Td) Φ((L − 2)Td) · · · Φ(0)

⎤

⎥⎥⎥⎦. 251
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When t → ∞, ¯̄u(t) converge to their steady-state values ¯̄u so252

that ¯̄u(t) can be taken out of the integral in (8). It is also noted253

that α
∫ t

0
e−α(t−τ)dτ

∣∣∣
t→∞

→ 1. Therefore, (8) becomes254

¯̄u = h − μΦ¯̄u (9)255

and hence256

¯̄u = (IL + μΦ)−1h. (10)257

2) Interference Suppression Ratios: ISR is an important258

metric to evaluate the performance of the cancellation circuit.259

In this subsection, we derive the closed-form equations of ISRs260

before and after the matched filter in the analog domain and261

digital domain respectively.262

a) ISR in analog domain: After SI cancellation, the nor-263

malized power of residual SI v(t) = z(t)− y(t) is derived as264

Pv(t) =
1

K1K2
Ē
{
[z(t) − y(t)]2

}
265

=
1

K1K2
Ē

{[
Re

{[
Z(t) −

L−1∑

l=0

(h∗
l − u∗

l (t))266

×X(t− lTd)
]
ej2πfct

}]2}
267

=
1

2K1K2
Ē

{∣∣∣Z(t) −
L−1∑

l=0

(h∗
l − u∗

l (t))X(t − lTd)
∣∣∣
2
}

268

=
1

2K1K2
Ē

{[ L−1∑

l=0

u∗
l (t)X(t − lTd)269

×
L−1∑

l′=0

ul′(t)X∗(t − l′Td)
]}

270

=
1
2
Ē

{
L−1∑

l=0

L−1∑

l′=0;l′ �=l

u∗
l (t)Φ

(
(l − l′)Td

)
ul′(t)271

+ Φ(0)
L−1∑

l=0

|ul(t)|2
}

272

=
1
2

¯̄uH(t)
[
Φ− Φ(0)IL

]
¯̄u(t) +

1
2
Φ(0)

L−1∑

l=0

¯̄u2
l (t) (11)273

where ¯̄u2
l (t) = Ē{|ul(t)|2} is the time-averaged mean square274

value of ul(t). From (5), following the steps shown in275

Appendix B in [17], when d ¯̄u2
l (t)
dt = 0, ¯̄u2

l (t) satisfies the276

equation277

(1 + μA2)
L−1∑

l=0

¯̄u2
l (t) = Re{ ¯̄uHh} − μ¯̄uH(Φ − A2IL)¯̄u.278

(12)279

Substituting (10) to (12), we have280

L−1∑

l=0

¯̄u2
l (t) = hH(IL + μΦ)−2h (13)281

and the steady state power of the residual interference is282

obtained from (11) as283

Pv =
1
2
hH(IL + μΦ)−1Φ(IL + μΦ)−1h. (14)284

If there was no cancellation, the normalized SI power would be 285

Pz =
1

K1K2
Ē
{
[z(t)]2

}
286

=
1

K1K2
Ē

{[
Re
{L−1∑

l=0

h∗
l X(t − lTd)ej2πfct

}]2}
287

=
1

2K1K2
Ē

{
L−1∑

l=0

h∗
l X(t − lTd)

L−1∑

l′=0

hl′X
∗(t − l′Td)

}
288

=
1

2K1K2

L−1∑

l=0

L−1∑

l′=0

h∗
l Ē
{
X(t − lTd)X∗(t − l′Td)

}
hl′ 289

=
1
2

L−1∑

l=0

L−1∑

l′=0

h∗
l Φ
(
(l − l′)Td

)
hl′ =

1
2
hHΦh. (15) 290

Therefore, ISR before the matched filter in the analog domain, 291

denoted as ISRa, is determined by 292

ISRa =
Pv

Pz
=

hH(IL + μΦ)−1Φ(IL + μΦ)−1h
hHΦh

. (16) 293

b) ISR in digital domain: After down-converted to base- 294

band, the residual SI, denoted as V (t), is expressed as 295

V (t) = Z(t) − Y (t) 296

=
L−1∑

l=0

h∗
l X(t − lTd) −

L−1∑

l=0

w∗
l (t)X(t − lTd)e−j2πfclTd

297

=
L−1∑

l=0

u∗
l (t)X(t − lTd). (17) 298

After the matched filter with the impulse response p∗(−t), 299

we get the filtered version of V (t) as 300

Ṽ (t) = V (t) ∗ p∗(−t) =
L−1∑

l=0

u∗
l (t)X̃(t − lTd) (18) 301

where ∗ stands for a linear convolution operation and 302

X̃(t) = X(t) ∗ p∗(−t) (19) 303

is the filtered version of the transmitted baseband signal. 304

Similarly, the steady normalized power of the filtered residual 305

SI is calculated as 306

PṼ =
1

K1K2
Ē
{|Ṽ (t)|2} 307

=
1

K1K2
Ē

{
L−1∑

l=0

u∗
l (t)X̃(t − lTd)

L−1∑

l′=0

ul′(t) 308

× X̃∗(t − l′Td)

}
309

=
L−1∑

l=0

L−1∑

l′=0,l �=l′

¯̄u∗
l (t)Θ

(
(l−l′)Td

)
¯̄ul′(t) + Θ(0)

L−1∑

l=0

¯̄u2
l (t) 310

= ¯̄uH(t)(Θ − Θ(0)IL)¯̄u(t) + Θ(0)
L−1∑

l=0

¯̄u2
l (t) 311

= hH(IL + μΦ)−1Θ(IL + μΦ)−1h (20) 312
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where Θ(τ) = 1
K1K2

Ē
{
X̃(t)X̃∗(t − τ)

}
and313

Θ =

⎡

⎢⎢⎢⎣

Θ(0) Θ(−Td) · · · Θ(−(L − 1)Td)
Θ(Td) Θ(0) · · · Θ(−(L − 2)Td)

...
...

. . .
...

Θ((L − 1)Td) Θ((L − 2)Td) · · · Θ(0)

⎤

⎥⎥⎥⎦314

are the normalized autocorrelation function of X̃(t) and the315

corresponding autocorrelation matrix respectively.316

Meanwhile, if there was no cancellation, the steady normal-317

ized SI power after the matched filter would be318

PZ̃ =
1

K1K2
Ē
{|Z(t) ∗ p∗(−t)|2}319

=
1

K1K2
Ē
{∣∣

L−1∑

l=0

h∗
l X̃(t − lTd)

∣∣2
}

320

=
L−1∑

l=0

L−1∑

l′=0

h∗
l Θ((l − l′)Td)hl′321

= hHΘh. (21)322

Therefore, the ISR after the matched filter in the digital323

domain, denoted as ISRd, is324

ISRd =
PṼ

PZ̃

=
hH(IL + μΦ)−1Θ(IL + μΦ)−1h

hHΘh
. (22)325

III. FREQUENCY-DOMAIN ANALYSIS OF RESIDUAL SI326

A. Eigen-Decomposition of Autocorrelation Matrices327

The L ×L matrix Φ can be decomposed as Φ = QΛQ−1
328

where Q is the orthonormal modal matrix whose columns are329

the L eigenvectors of Φ and330

Λ =

⎛

⎜⎜⎜⎝

λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λL−1

⎞

⎟⎟⎟⎠331

is the spectral matrix whose main diagonal elements are the L332

eigenvalues of Φ. When LTd is sufficiently large, the autocor-333

relation matrix Φ can be approximated as a circulant matrix334

Φ̃ composed of a periodic autocorrelation function Φ̃(τ) =335 ∑∞
l=−∞ Φ(τ + lLTd). As proved in [20], the circulant matrix336

Φ̃ can be decomposed as Φ̃ = FSXF−1 where F is the337

discrete Fourier transform (DFT) matrix of order L,338

F =

⎛

⎜⎜⎜⎝

1 1 · · · 1
1 e−jω1 · · · e−j(L−1)ω1

...
...

. . .
...

1 e−jωL−1 · · · e−j(L−1)ωL−1

⎞

⎟⎟⎟⎠339

with ωk = 2πk
L , k = 0, 1, · · · , L − 1, SX =340

diag{SX(ejω0 ), SX(ejω1), · · · , SX(ejωL−1)}, and SX(ejωk)341

are obtained by taking the DFT of Φ̃(lTd), i.e.,342

SX(ejωk ) =
L−1∑

l=0

Φ̃(lTd)e−jωkl (23)343

for k = 0, 1, · · · , L − 1, which are the L samples of the344

normalized power spectrum SX(ejω) of the transmitted signal345

Fig. 2. (a) Raised cosine spectrum; (b) SX(ejω); (c) SX(ejωk ) versus
eigenvalues λk , with L = 256, A2 = 100, β = 0.2, Td = Ts/2, Ts = 1.

sequence X(nTd) uniformly spaced about the unit circle. 346

It means that when L is sufficiently large, the eigenvalues 347

λk can be approximated as the power spectrum samples 348

SX(ejωk). To confirm this approximation, the eigenvalues λk 349

are compared with the power spectrum SX(ejωk) as below. 350

Suppose that the transmitter employs a root raised cosine 351

pulse shaping filter. The autocorrelation function Φ(t) is a 352

raised cosine pulse, which has the frequency response 353

P (f) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ts for 0 ≤ |f | <
1 − β

2Ts
Ts

2

[
1 + cos

(πTs

β
(f − 1 − β

2Ts
)
)]

for
1 − β

2Ts
≤ |f | ≤ 1 + β

2Ts

0 for |f | >
1 + β

2Ts

(24) 354

where β is the roll-off factor. Hence, the normalized power 355

spectrum of X(t) is A2P (f). With the sampling period 356

Td, the relationship between SX(ejω) and P (f) can be 357

expressed as 358

SX(ejω) =
1
Td

∞∑

n=−∞
A2P (

ω

2πTd
− n

Td
). (25) 359

If Td ≤ Ts/(1+ β), there will be no spectral overlapping and 360

hence 361

SX(ejω) =
A2

Td
P (

ω

2πTd
), for − π < ω < π. (26) 362

Fig. 2 shows the raised cosine spectrum P (f), SX(ejω), 363

SX(ejωk), and properly ordered λk for L = 256, A2 = 364

100, β = 0.2, and Td = Ts/2 where Ts is normalized to 1. 365

We see that λk are very close to SX(ejωk). 366

The same approximation can also be applied to the 367

autocorrelation matrix Θ, i.e., it is close to a circu- 368

lant matrix Θ̃ when L is sufficiently large. In this 369

case, Θ̃ can be decomposed as Θ̃ = FSX̃F−1
370

where SX̃ = diag
{
SX̃(ejω0), SX̃(ejω1), · · · , SX̃(ejωL−1)

}
; 371
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SX̃(ejωk) for k = 0, · · · , L − 1 are the L spectrum com-372

ponents obtained by taking DFT of Θ̃(lTd) with Θ̃(τ) =373 ∑∞
l=−∞ Θ(τ + lLTd), and SX̃(ejω) = A2

Td
P 2( ω

2πTd
) for374

−π < ω < π.375

B. Frequency Domain Characterization of ALMS Loop376

From the above decomposition, we can simplify (16)377

and (22) as378

ISRa379

=
hHF(IL + μSX)−1F−1FSXF−1F(IL + μSX)−1F−1h

hHFSXF−1h
380

=
hHFdiag

{
SX (ejωk )[

1+μSX (ejωk )
]2
}
F−1h

hHFdiag{SX(ejωk)}F−1h
381

=

∑L−1
k=0 |H(eiωk)|2 SX(ejωk )[

1+μSX(ejωk )
]2

∑L−1
k=0 |H(eiωk)|2SX(ejωk)

, (27)382

and383

ISRd384

=
hHF(IL + μSX)−1F−1FSX̃F−1F(IL + μSX)−1F−1h

hHFSX̃F−1h
385

=
hHFdiag

{
SX̃ (ejωk )[

1+μSX (ejωk )
]2
}
F−1h

hHFdiag{SX̃(ejωk)}F−1h
386

=

∑L−1
k=0 |H(ejωk)|2 SX̃ (ejωk )[

1+μSX (ejωk )
]2

∑L−1
k=0 |H(ejωk)|2SX̃(ejωk)

(28)387

where H(ejωk) is the frequency response of the SI channel.388

It can be seen from (27) and (28) that, in the frequency domain,389

the residual SI can be decomposed into two components. The390

first component is the frequency response of the SI channel391

H(ejωk). The second component in (27) (i.e., in the analog392

domain before the matched filter) is a frequency dependent393

attenuation factor introduced by the ALMS loop as Fa(ejω) =394

SX(ejω)[
1+μSX(ejω)

]2 . Also, in (28), the second component in the395

digital domain after the matched filter is a frequency dependent396

attenuation factor determined by both the ALMS loop and397

the matched filter as Fd(ejω) = SX̃(ejω)[
1+μSX (ejω)

]2 . Therefore,398

the residual SI before and after the matched filter can be399

analyzed in the frequency domain by comparing their second400

components. Fa(ejω) and Fd(ejω) with various values of β401

are plotted in Fig. 3 respectively.402

Fig. 3 reveals that the ALMS loop has an effect of ampli-403

fying the frequency components of the residual SI leading to404

a peak at the edge of the signal spectrum. As a result, the ISR405

in the analog domain before the matched filter is higher when406

the roll-off factor is larger. However, this effect is significantly407

Fig. 3. Frequency dependent attenuation factors with various values of β,
L = 256, A2 = 100, Td = Ts/2.

reduced by the matched filter as the peak no longer exists 408

in Fd(ejω). Hence, the ISR will be significantly improved in 409

the digital domain. It also means that the effect of the signal 410

spectrum on ISR reduces significantly when it is considered 411

in the digital domain. Therefore, we can conclude that the 412

performance of the ALMS loop evaluated in the digital domain 413

after the matched filter rather than in the analog domain as 414

in [17] makes more sense to the IBFD system. 415

C. Performance Lower Bounds 416

The ISRs discussed in Section III.A are valid for a given 417

SI channel. To derive the lower bounds of ISRs over random 418

realizations of SI channels, we define the average ISRs in the 419

analog domain and digital domain respectively as 420

ISRa =
Eh{Pv}
Eh{Pz} =

∑L−1
k=0 Eh

{|H(ejωk)|2} SX(ejωk )[
1+μSX(ejωk )

]2
∑L−1

k=0 Eh

{|H(ejωk)|2}SX(ejωk )
, 421

=

∑L−1
k=0

SX(ejωk )[
1+μSX (ejωk )

]2
∑L−1

k=0 SX(ejωk)
(29) 422

and 423

ISRd =
Eh{PṼ }
Eh{PZ̃}

=

∑L−1
k=0 Eh

{|H(ejωk)|2} SX̃(ejωk )[
1+μSX(ejωk )

]2
∑L−1

k=0 Eh

{|H(ejωk)|2}SX̃(ejωk)
424

=

∑L−1
k=0

SX̃ (ejωk )[
1+μSX (ejωk )

]2
∑L−1

k=0 SX̃(ejωk)
(30) 425

where Eh{.} denotes expectation over the SI channel and 426

Eh{|H(ejωk)|2} is a constant for SI channels with indepen- 427

dent and zero-mean tap coefficients (see Appendix A). Clearly, 428

ISRa and ISRd can be purely examined by the spectrum 429

components SX(ejωk) and SX̃(ejωk). To find the closed-form 430
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equation of ISRa and ISRd, letting L → ∞, the discrete431

components SX(ejωk) and SX̃(ejωk)) can be replaced by the432

continuous power spectra SX(ejω) and SX̃(ejω) respectively.433

The lower bounds of ISRa and ISRd are obtained as434

ISRLBa = ISRa|L→∞ =

1
2π

∫ 2π

0
SX(ejω)[

1+μSX(ejω)
]2 dω

1
2π

∫ 2π

0 SX(ejω)dω
435

=

1
2π

∫ π

−π
SX (ejω)[

1+μSX (ejω)
]2 dω

1
2π

∫ π

−π SX(ejω)dω
436

=

∫ 1/2Td

−1/2Td

A2P (f)[
1+μ A2

Td
P (f)
]2 df

∫ 1/2Td

−1/2Td
A2P (f)df

, (31)437

and438

ISRLBd = ISRd|L→∞ =

1
2π

∫ 2π

0

SX̃(ejω)[
1+μSX (ejω)

]2 dω

1
2π

∫ 2π

0
SX̃(ejω)dω

439

=

1
2π

∫ π

−π

SX̃ (ejω)[
1+μSX (ejω)

]2 dω

1
2π

∫ π

−π
SX̃(ejω)dω

440

=

∫ 1/2Td

−1/2Td

A2P 2(f)[
1+μ A2

Td
P (f)
]2 df

∫ 1/2Td

−1/2Td
A2P 2(f)df

(32)441

respectively. Assuming the raised cosine transmitted signal442

spectrum, the closed-form ISRLBa and ISRLBd in (31)443

and (32) are found (see Appendix B) as444

ISRLBa =
1 + β(

√
a + 1 − 1)

(1 + a)2
, (33)445

and446

ISRLBd =

1 + β

[
2(a+1)2

a2

(
1 − 1√

a+1
− a

√
a+1

2(a+1)2

)
− 1

]

(1 + a)2(1 − β/4)
.447

(34)448

where a = μA2Ts/Td. It is obvious from these lower bounds449

that in the ideal case (β = 0) the ultimate level of cancellation450

is ISRLBu = 1/(1+ Ts

Td
μA2)2. Comparison between ISRLa451

and ISRLBd with various values of a is presented in Fig. 4.452

From (29), (30), (33), (34), and Fig. 4, some important453

observations are derived as bellows.454

1) The level of cancellation given by the ALMS loop is455

determined by the loop gain μA2, the roll-off factor β456

the tap delay Td, and the number of taps L. It means457

that the expected level of cancellation can be achieved458

by either increasing the loop gain μA2 or reducing the459

tap delay Td. However for the latter case, we need larger460

number of taps L so that LTd is sufficiently large and461

ISRa can approach its lower bound.462

Fig. 4. ISR lower bounds versus β with a = 2000, 2200, and 2500.

2) ISRLBa increases significantly as the roll-off factor 463

increases. As shown in Fig. 4, ISRLBa for β = 1 464

is about 10 dB higher than that for β = 0.1. However, 465

the difference in ISRLBd is only about 3 dB over the 466

whole range of β. This indicates that the matched filter 467

significantly reduces the effects of the roll-off factor and 468

the impact of the spectrum of the transmitted signal 469

becomes negligible in the digital domain. 470

The first observation is a crucial conclusion for system 471

design because it allows the designer to determine these para- 472

meters based on the expected level of cancellation given by 473

the ALMS loop. Furthermore, understanding the relationship 474

among these factors also allows the flexibility in designing 475

the cancellation circuit. For example, if the power of the 476

system is limited, i.e, the gain of the ALMS loop is not 477

high enough, the level of cancellation can still be achieved 478

by a finer tap spacing. In case the size of the ALMS loop 479

is constrained, the loop gain must be increased. The sec- 480

ond observation once again states that the performance of 481

the ALMS loop must be considered in the digital domain, 482

and the best level of cancellation given by the ALMS loop 483

is ISRLBd. 484

IV. SIMULATION RESULTS 485

To verify the analytical results presented in Section III, 486

simulations are conducted in MATLAB for a single carrier 487

IBFD system9 which uses QPSK modulation and symbol 488

duration Ts = 20 ns. The pulse shaping filter and the 489

matched filter are both root raised cosine pulses with the 490

roll-off factor β. The transmitted power is set to 0 dBm over 491

50 Ohm load. The transmitted power over 1 Ohm load is 492

found by 0 dBm + 10log10(50) = 17 dBm. Hence, the mean 493

squared amplitude of the transmitted signal for 1 Ohm load is 494

calculated by V 2
X = 2 × 10(17−30)/10 = 0.1 V2. The LNA 495

in the receiver is selected with the gain of μ = 10. The 496

ALMS loop has the tap spacing Td = Ts/2 and the number 497

of taps L. The multiplier constants in all the taps are the same 498

and are selected as K1K2 = 0.001 V2. Therefore, the gain 499
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Fig. 5. PSDs of the SI Z(t), residual SI V (t), and residual SI after the
matched filter Ṽ (t) with β = 0.5, μA2 = 1000, Td = Ts/2, and L = 8.

of the ALMS loop is μA2 = 10 × (0.1/0.001) = 1000. The500

SI power is set to 25 dB lower than the transmitted signal501

power.502

In the first simulation, the SI channel is chosen as h(t) =503

10
−25
20 {[

√
2

2 − 0.5j]δ(t)− 0.4δ(t− 0.9Ts) + 0.3δ(t− 3.3Ts)},504

which means that the delays of the reflected paths are505

fractional of Ts. The ALMS loop has L = 8 taps with506

Ts/2 tap spacing. Both pulse shaping filter and matched filter507

have the roll-off factor of β = 0.5. The power spectrum508

densities (PSDs) of the baseband equivalent of the SI Z(t),509

the residual SI in the analog domain V (t), and the residual510

SI in the digital domain after the matched filter Ṽ (t) are511

presented in Fig. 5. We can see that there are two peaks at512

the edges of the V (t). However, these peaks are removed in513

the spectrum of Ṽ (t). This simulation confirms the analyses514

in Section III.B.515

In the second simulation, the SI channel has L propagation516

paths whose coefficients hl are all independent and have a517

normal distribution with zero-mean. The power delay profile of518

the channel has an exponential distribution with the root mean519

square delay spread σ = LTs/4. The ISRs at each point of the520

roll-off factor β for different values of L are calculated and521

averaged out over 1000 iterations. The simulated ISRa, ISRd522

and their corresponding lower bounds ISRLBa, ISRLBd are523

presented in Fig. 6 for different values of L. The inset shows a524

closer look of ISRd. We can see that when L is larger, ISRa525

and ISRd are closer to their lower bounds, respectively. This526

is because the autocorrelation matrix can be well approximated527

to a circulant matrix and the summation in (29) and (30)528

approaches the integration when L is sufficiently large. Note529

that in our analyses, the SI channel is assumed to have the530

same number of paths as in the ALMS loop. As a result, the SI531

channels with small number of taps are much shorter compared532

to those with larger number of taps. Therefore, ISRa with533

smaller L go beyond the lower bound with infinite L. However,534

the matched filter reduces the effects of the SI channel so that535

ISRd are still bounded by ISRLBd.536

Fig. 6. ISRs in the analog domain and digital domain versus β with
μA2 = 1000, Td = Ts/2.

V. CONCLUSION 537

In this paper, the residual SI powers and the ISRs of an 538

ALMS loop in both analog and digital domains of an IBFD 539

system have been derived using the steady state analysis. The 540

expression of the ISR in the time domain is then converted 541

into the frequency domain by eigenvalue decomposition. From 542

the frequency domain presentation, it is proved that the 543

matched filter has an effect of reducing the peak frequency 544

response of the ALMS loop so that the problem of frequency 545

component enhancement caused by the ALMS loop to the 546

residual SI can be significantly reduced in the digital domain. 547

The corresponding lower bounds of ISRs in both analog and 548

digital domains have also been derived from frequency domain 549

expressions. Comparison between these lower bounds shows 550

that the performance of the ALMS loop should be considered 551

in the digital domain and it is determined by four factors, 552

namely, the loop gain μA2, the tap delay Td, the number of 553

taps L, and the roll-off factor β. The finding of these lower 554

bounds allows the designer to determine the desired level 555

of cancellation given by the ALMS loop. It also provides a 556

room to trade off among these factors to achieve the level of 557

cancellation within given constraints. 558

APPENDIX A 559

PROOF OF CONSTANT Eh{H(ejωk)} 560

For SI channels with independent and zero-mean tap coef- 561

ficients, we prove that Eh{H(ejωk)} is a constant for all 562

k = 0, 1 · · · , L − 1 as follow. 563

Eh{|H(ejωk)|2} = Eh

{ L−1∑

l=0

hle
−j2πkl

L

L−1∑

l′=0

h∗
l′e

j2πkl′
L

}
564

=
L−1∑

l=0

L−1∑

l′=0

Eh

{
hlh

∗
l′
}
e

−j2πk(l−l′)
L . (35) 565

Since the SI channel tap coefficients are independent with 566

zero-mean, we have Eh

{
hlh

∗
l′
}

= 0 for l �= l′. 567
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Therefore, Eh

{|H(ejωk)|2} =
∑L−1

l=0 Eh{|hl|2} for all k =568

0, 1 · · · , L − 1 which is the mean power of the SI channel.569

APPENDIX B570

DERIVATION OF ISRLBa AND ISRLBd571

A. ISRLBa572

From
∫ 1+β

2Ts

− 1+β
2Ts

P (f)df = 1 and Td ≤ Ts

1+β , (31) can be573

simplified as574

ISRLBa =

∫ 1/2Td

−1/2Td

A2P (f)[
1+μ A2

Td
P (f)
]2 df

∫ 1/2Td

−1/2Td
A2P (f)df

575

= 2
∫ 1+β

2Ts

0

P (f)
[
1 + μA2

Td
P (f)

]2 df. (36)576

Substituting P (f) from (24) into (36), we have577

∫ 1+β
2Ts

0

P (f)
[
1 + μA2

Td
P (f)

]2 df =
∫ 1−β

2Ts

0

Ts[
1 + μA2 Ts

Td

]2 df578

+
∫ 1+β

2Ts

1−β
2Ts

Ts

2

[
1 + cos

(
πTs

β (f − 1−β
2Ts

)
)]

{
1 + μA2 Ts

2Td

[
1 + cos

(
πTs

β (f − 1−β
2Ts

)
)]}2 df.579

(37)580

Denoting a = μA2 Ts

Td
and x = πTs

β (f − 1−β
2Ts

), (37) becomes581

∫ 1+β
2Ts

0

P (f)
[
1 + μA2

Td
P (f)

]2 df582

=
1 − β

2(1 + a)2
+

β

π

∫ π

0

1
2 (1 + cosx)

[
1 + a

2 (1 + cosx)
]2 dx. (38)583

Defining t = tan(x/2) so that cosx = 1−t2

1+t2 and dx = 2dt
1+t2 ,584

we have585

∫ π

0

1
2 (1 + cosx)

[
1 + a

2 (1 + cosx)
]2 dx586

= 2
∫ ∞

0

1
(t2 + a + 1)2

dt587

=
2
√

a + 1
(a + 1)2

∫ ∞

0

1
[
( t√

a+1
)2 + 1

]2 d(
t√

a + 1
)588

=
π

2

√
a + 1

(a + 1)2
. (39)589

Substituting (39) into (38), we obtain the ISRLBa as in (33).590

B. ISRLBd 591

Following the same steps as above, ISRLBd is derived as 592

ISRLBd =

∫ 1/2Td

−1/2Td

A2P 2(f)[
1+μ A2

Td
P (f)
]2 df

∫ 1/2Td

−1/2Td
A2P 2(f)df

593

=

∫ 1+β
2Ts

0
P 2(f)[

1+μ A2
Td

P (f)
]2 df

∫ 1+β
2Ts

0 P 2(f)df
. (40) 594

Substituting P (f) from (24) into (40) as well as applying the 595

substitution of x = πTs

β (f − 1−β
2Ts

) and then t = tan(x/2), 596

we have 597

∫ 1+β
2Ts

0

P 2(f)
[
1 + aP (f)

]2 df 598

=
Ts(1 − β)
2(1 + a)2

+
Tsβ

π

∫ π

0

1
4 (1 + cosx)2

[
1 + a

2 (1 + cosx)
]2 dx 599

=
Ts(1 − β)
2(1 + a)2

+
Tsβ

π

∫ ∞

0

1
(1+t2)2

(1 + a 1
1+t2 )2

2
1 + t2

dt 600

=
Ts(1 − β)
2(1 + a)2

+
Tsβ

π

∫ ∞

0

2
(t2 + a + 1)2(t2 + 1)

dt. (41) 601

Note that 2
(t2+a+1)2(t2+1) can be split as 602

2
(t2 + a + 1)2(t2 + 1)

603

=
2
a2

[
1

(1 + t2)
− 1

(t2 + a + 1)
− a

(t2 + a + 1)2

]
. (42) 604

Therefore, by substituting (42) into (41), we obtain 605

∫ 1+β
2Ts

0

P 2(f)
(1 + aP (f))2

df 606

=
Ts(1 − β)
2(1 + a)2

+
Tsβ

π

π

a2

[
1 − 1√

a + 1
− a

√
a + 1

2(a + 1)2

]
607

=
Ts

2(1+a)2

{
1+β

[
2(a+1)2

a2

(
1− 1√

a+1
− a

√
a+1

2(a+1)2

)
−1

]}
. 608

(43) 609

The derivation of
∫ 1+β

2Ts
0 P 2(f)df is expressed as 610

∫ 1+β
2Ts

0

P 2(f)df = Ts
1 − β

2
+

Tsβ

4π

∫ π

0

(1 + cosx)2dx 611

=
Ts

2
(1 − β/4). (44) 612

From (43) and (44), ISRLBd is obtained as in (34). 613
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