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Abstract— A shared-control algorithm for the kinematic model
of a rear-wheel driving car is presented. The design of the
shared-controller is based on a hysteresis switch and its
properties are established by a Lyapunov-like analysis. The
shared-controller guarantees the safety of the car in both
predefined, static environments and time-varying environments.
The effectiveness of the controller is verified by two studies.

I. INTRODUCTION

The annual report given by the World Health Organization
shows that more than one million people are killed by
traffic accidents per year all over the world [1]: this has
stimulated researchers and governments to figure out ways to
improve the safety of vehicles. Experts claim that the safety
of the traditional cars driven completely by the human driver
highly depends on the attention, the physical conditions, the
experience and the skills of the driver. To reduce the danger
caused by these uncertainties and to make driving easier,
some scientists and engineers started to study self-driving
cars and they have already released some of the achievements
[2], [3].

Various methods, such as fuzzy logic controls [4], [5],
[6], Model Predictive Controls [7], sliding mode [8], [9],
Proportional-Integral-Derivative (PID) controls [10], H∞
controls [11] and machine learning [12], have been used
in auto-navigation of cars. In addition, [13] has presented
a controller based on two path planning methods and mul-
tiple PID controllers to achieve auto-driving, while [14]
has utilized fuzzy logic together with PID controllers to
navigate a car-like robot. Another robust controller made
up of a longitudinal controller and a lateral one to track
a given trajectory has been introduced in [15]. The obstacle
avoidance problem for vehicles has been studied in [16],
where decentralized collision avoidance algorithms based on
a switching strategy have been presented. Finally, [17] has
proposed a self-driving scheme made up of two steps: finding
out the pool of all safe actions and then picking up the most
appropriate one on the basis of a cost function.

Even though some driverless cars have already been suc-
cessfully tested, such as the Google Cars, they still have
lots of shortcomings. One of the major limitations is that
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lots of preparations have to be done before it being driven
on a certain road. Data collected from the testing drive
has to be studied by computers and humans. Unlike self-
driving cars, this paper studies cars with shared-control that
does not keep the human driver out of the control loop.
Instead, it combines the human driver and the feedback
controller (the auto driver) together. Therefore it is able to
take advantages of both controls: the adaptive and interactive
task execution ability of the human being and the reliable
performance of the feedback controller. The paper [18] has
introduced a shared-control law in the “active area” where
the vehicle is controlled by the combination of the driver and
the local controller. Yet, some researchers have suggested
an effective way to help the driver with the human-machine
interface: let the driver supervise the process and take critical
decisions in high risk situations [19]. Another way to make
use of both controllers is to regard the feedback control
inputs as suggested control actions as explained in [20].
Furthermore, the paper [21] has presented a shared-control
algorithm for the kinematic model of a rear-wheel drive car
with knowledge of absolute positions. This paper extends
the results given in [21] to cases in which the environment
is non-predefined and dynamic.

The paper is organized as follows. Section II describes the
model we study in the paper, formulates the shared-control
problem, and describes assumptions and definitions used in
the rest of the paper. The design of the feedback controller
and the sharing function are given in Section III, in which
formal properties of the closed-loop system with the shared-
control are presented. Section IV gives three examples to
illustrate how the shared-control algorithm performs. Finally,
some conclusions and suggestions for future work are given
in Section V.

II. PROBLEM STATEMENT

In this section we formulate the shared-control problem
for the kinematic model of a rear-wheel driving car, the
dynamics of which can be described by the equations

ẋ = vs cos θ,

ẏ = vs sin θ,

θ̇ =
vs tanφ

l
,

φ̇ = ωs,

(1)

where(x, y) denotes the Cartesian coordinates of the middle
of the rear-axle, θ is the heading angle of the car, φ represents
the angle between the front-wheel and the heading direction
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Fig. 1. Definitions of d1, d2l, d2r, θe and φ (shadowed region: unfeasible
region, vr : reference forward velocity, θr : reference forward angle, vs:
actual forward velocity). Note that θ = θe + θr .

of the car, l is the distance between the middle of the rear-
axle and that of the front-axle, vs and ωs are the shared-
control inputs of the system, describing the linear velocity
of the car and the angular velocity of the front-wheels,
respectively.

As discussed in Section I this paper is an extension of
[21] in that the shared-control problem is solved for non-
predefined dynamic environments. In addition, different from
[21], we assume that no absolute position is measured.
Instead, we measure the distance to obstacles along (i.e. d1)
and orthogonal to (i.e. d2 = min{d2l, d2r}) the direction of
the reference forward velocity, the distance to the obstacle
along the current forward direction (i.e. D), the difference
between the actual and the reference heading angle (i.e.
θe = θ − θr) and the steering angle φ, see Fig. 1. Note
that θr is measured relative to the positive x-direction.

Define the shared-control input as a function of
t,D, d1, d2, θe and φ as

vs(D, d1, d2, θe, φ, t) = (1− k)vf (d1, d2, θe, φ, t)

+kvh(φ, t),

ωs(D, d1, d2, θe, φ, t) = (1− k)ωf (d1, d2, θe, φ, t)

+kωh(t),

(2)

where uh = [vh, ωh]T , denoted as h-control, describes
the human action, uf = [vf , ωf ]T , denoted as f-control,
represents the feedback-control action and k, denoted as
sharing function, quantifies how the control authority is
shared between the operator and the feedback controller.
Similarly to [21] we use the name s-closed-loop to denote the
closed-loop system described by (1) with the shared-control
input defined in (2) and the name h-closed-loop to denote the
closed-loop system controlled by the human operator alone,

i.e.

ẋ = vh cos θ,

ẏ = vh sin θ,

θ̇ =
vh tanφ

l
,

φ̇ = ωh,

Suppose Pa(t) ⊂ R2 is a dynamic, closed and compact set
describing the “admissible Cartesian configurations” for the
system (1) and uh is a given h-control. The shared-control
problem for the kinematic model of a rear-wheel driving car
can be formulated as follows.

Given the system (1), an admissible configuration set Pa(t)
and an h-control, find (if possible)

• an f-control uf ;
• a sharing function k;
• a safe set Rs(vh, t) , Pa(t)×Hs×As ⊂ Pa(t)×H×
A , R(vh, t);

where H (Hs) and A (As) are the set of heading angles (safe
heading anlges) and wheeling angles (safe wheeling angles)
respectively, such that the s-closed-loop system (1)-(2) has
the following properties.

P1) The set R(vh, t) is forward invariant.
P2) Let Ωs and Ωh be the Ω-limit set of the s-closed-loop

and h-closed-loop, respectively. Then

Ωs =

Ωh if Ωh ⊂ Rs(vh, t),

ΠRs
(Ωh) if Ωh 6⊂ Rs(vh, t),

where ΠRs
(Ωh) is the projection of Ωh into the set

Rs(vh, t), which will be defined in Section III-A.
P3) us = uh if the state of the system belongs to Rs(vh, t).

Note that for any fixed D and vh, the sets Hs and As are
the sets of all possible heading angles and front-wheel angles
such that the car cannot hit the boundary of Pa within a short
period of time.

Assumption 1: The projection of the car in the (x, y)-plane
is a rectangle with length l and width w, where l denotes the
distance between the middle of the front-axle and that of the
rear-axle and w denotes the distances between the centers of
two rear wheels (or the centers of two front wheels).

Assumption 2: The human-generated function dd(t) =
[dd1(t); dd2(t)]T , representing the desired distances to the
relative obstacles (i.e. the obstacles along and orthogonal to
the the reference forward direction), is sufficiently smooth.

Definition 1: Suppose the time-varying set P(t) is closed for
any t ≥ 0. Then it is continuous with respect to time if

lim
t→t0

[ max
x∈P(t)

d(x,P(t0))] = 0,



where d(x,P(t0)) represents the distance between the point
x and the set P(t0).

Assumption 3: The admissible Cartesian configuration set is
always non-empty, i.e. Pa(t) 6= ∅ ∀t ≥ 0. In addition, it is
continuous with respect to time.

Definition 2: The function f(y(t), x(t), t) =
atg(y(t), x(t), t) is a continuous function defined as

atg(y(t), x(t), t) = atan(y(t), x(t)) + 2α(t)π,

where atan is the four quadrant arctan function, α(0) = 0
and

α(t) =

 α(t− δt) + 1, if a = −2π
α(t− δt)− 1, if a = 2π
α(t− δt), else

with a = lim
δt→0+

atan(y(t), x(t))−atan(y(t− δt), x(t− δt))
for all t > 0.

Note that the definition of the function atg(y(t), x(t), t) is
close to that of the standard four quadrant arctan function
atan(y(t), x(t)) except that atg(y(t), x(t), t) is a continuous
function with range equal to (−∞,∞).

III. DESIGN OF THE SHARED-CONTROLLER

In this section we give a solution to the shared-control
problem stated in Section II. This relies on two steps: the
design of the feedback controller, which is given in Section
III-A, and the definition of how the control authority is
shared between the driver and the feedback controller, which
is presented in Section III-B.

A. Design of the Feedback Controller

According to the definition, d2 = d2l or d2 = d2r. If d2 =
d2l, then the dynamics of the closed-loop system controlled
by the feedback controller can be described by the equations

ḋ1 =− vf cos θe,

ḋ2 =− vf sin θe,

θ̇e =
vf tanφ− vr tanφr

l
,

φ̇ = ωf .

(3)

On the other hand, if d2 = d2r, then the dynamics of the
closed-loop system with feedback control can be described
by the equations

ḋ1 =− vf cos θe,

ḋ2 = vf sin θe,

θ̇e =
vf tanφ− vr tanφr

l
,

φ̇ = ωf .

In the case in which d2l = d2r, we define d2 as d2 =
d2l. Without loss of generality, we only study the case in

which d2 = d2l. By Assumption 1 the position constraints
(x(t), y(t)) ∈ Pa(t) can be rewritten as

di(t) ≥ d̃i (4)

where d̃i is a positive constant for all i ∈ {1, 2}. One choice
for d̃1 and d̃2 is d̃1 = d̃2 =

√
l2 + (w2 )2.

Define the variable z = [z1, z2]T as

zi = log
di − d̃i
dri − d̃i

,∀i ∈ {1, 2}, (5)

where dr1 and dr2 describe the reference trajectories for the
state d1 and d2, respectively, and are defined as

dri =


ddi , if ddi ≥ (1−

√
2
2 )r + ε+ d̃i,

ε+ d̃i, if ddj ≤ (1−
√

2)r + ε+ d̃i,

mi, otherwise ,
(6)

for all i ∈ {1, 2}, with mi = r + ε + d̃i −√
r2 − [(

√
2− 1)r − ε+ ddi − d̃i]2 and a sufficiently small

positive constant ε. In the trajectory-tracking cases, the
feedback controller and the human driver share the same
information about reference signals, i.e. dd = [dd1 , dd2 ]T

is known to the feedback controller. On the other hand, in
the free-driving cases, dd(t) is calculated from uh(t). From
the definition of dr given by (6) it is obvious that dri is a
smooth function with all values larger than d̃i for i ∈ {1, 2}.
Therefore, ḋr1 exists and

vr = −ḋr1 , (7)

where vr is the reference forward velocity.

Since absolute positions are not available, we define the safe
subset Rs in the (d1, d2, θe, φ) coordinates. Consider any
point (dd1 , dd2 , θd, φd) in the Ω-limit set of the h-closed-
loop system, i.e. (dd1 , dd2 , θd, φd) ∈ Ωh, then the projection
of it into the safe subset Rs is defined as

ΠRs(dd1 , dd2 , θd, φd) = (dr1 , dr2 , θd, φd),

where dr1 and dr2 are defined by (6). Hence, the projection
of Ωh into the set Rs is defined by

ΠRs
(Ωh) =

{
s ∈ Rs

∣∣∣∣ s = ΠRs(dd1 , dd2 , θd, φd),
∀(dd1 , dd2 , θd, φd) ∈ Ωh

}
.

Using the variable z system (3) can be written as

ż1 =
vr

dr1 − d̃1
− vf cos θe

d1 − d̃1
,

ż2 =− vf sin θe

d2 − d̃2
,

θ̇e =
vf tanφ− vr tanφr

l
,

φ̇ = ωf .



Let

θ∗e = atg(γ2(d2 − d̃2)z2, (d1 − d̃1)(
vr

dr1 − d̃1
+ γ1z1)),

α =

√
(γ2(d2 − d̃2)z2)2 + [(d1 − d̃1)(

vr

dr1 − d̃1
+ γ1z1)]2,

φ∗ = atg


lz2

d2 − d̃2
cos

θe + θ∗e
2

sinc
θe − θ∗e

2

− lz1

d1 − d̃1
sin

θe + θ∗e
2

sinc
θe − θ∗e

2

+
vr tanφr

α
+
lθ̇∗e
α

, 1

 ,

where γ1 > 0, γ2 > 0.

Consider the Lyapunov function candidate

Ll(z1, z2, θe, φ, t) =
1

2

{
z21 + z22 + (θe − θ∗e)2

+(tanφ− tanφ∗)2

}
, (8)

and choose vf and ωf such that L̇(t) ≤ 0 for all t ≥ 0 and
L̇ ≡ 0 indicates (z1, z2, θe, φ) = (0, 0, θ∗e , φ

∗). One such a
choice is given by

vf =α,

ωf = cos2 φ

 φ̇∗

cos2 φ∗
− v(θe − θ∗e)

l
−γ3(tanφ− tanφ∗)

 ,
where γ3 > 0, yielding

L̇il = −γ1z21 − γ2z22 − γ3(tanφ− tanφ∗)2 ≤ 0.

This can be transformed into the (d1, d2, θe, φ) coordinates
by

vf =

√√√√√√√√
(d1 − d̃1)2(

vr

dr1 − d̃1
+ γ1log

d1 − d̃1
dr1 − d̃1

)2

+γ22(d2 − d̃2)2log2 d2 − d̃2
dr2 − d̃2

,

ωf = cos2 φ

 φ̇∗

cos2 φ∗
− v(θe − θ∗e)

l
−γ3(tanφ− tanφ∗)

 ,
(9)

where

θ∗e =atg


γ2(d2 − d̃2)log

d2 − d̃2
dr2 − d̃2

,

(d1 − d̃1)(
vr

dr1 − d̃1
+ γ1log

d1 − d̃1
dr1 − d̃1

)

 ,

φ∗ = atg



l

d2 − d̃2
log

d2 − d̃2
dr2 − d̃2

cos
θe + θ∗e

2
sinc

θe − θ∗e
2

− l

d1 − d̃1
log

d1 − d̃1
dr1 − d̃1

sin
θe + θ∗e

2
sinc

θe − θ∗e
2

+
vr tanφr

vf
+
lθ̇∗e
vf


,

and dr = [dr1 , dr2 ]T is given by (6).

Note that vf is always non-negative since we do not consider
the ’reverse gear’ of the car in the paper.

Lemma 1: Consider the closed-loop system (3) controlled by
the feedback controller (9) with dr and vr given by (6) and
(7), respectively. Assume the initial position is feasible, i.e.
(x(0), y(0)) ∈ Pa, d1(0) > d̃1 and d2(0) > d̃2. Then the
closed-loop system has the following properties.

• d1(t) > d̃1, d2(t) > d̃2 for all t ≥ 0;
• lim
t→∞

(d1(t)− dr1(t)) = lim
t→∞

(d2(t)− dr2(t)) = 0;

• |φ(t)| < π

2
for all t ≥ 0.

B. Shared Control Theorem

For any given human input vh, the safe, hysteresis and
dangerous subsets, Rs, Rh and Rd, are defined by equations
(10) given at the top of next page, where D is the distance
to the obstacle along the current forward direction and b2 >
b1 > 0 are constants selected by the user.

The sharing function k can then be defined as

k =


1, (d1, d2, θe, φ) ∈ Rs(vh),

l, (d1, d2, θe, φ) ∈ Rh(vh),

0, (d1, d2, θe, φ) ∈ Rd(vh),

(11)

where

l =

{
1, if (d1, d2, θe, φ) enters Rh(vh) from Rs(vh),

0, if (d1, d2, θe, φ) enters Rh(vh) from Rd(vh).

Finally, the overall shared-control input us = [vs, ωs]
T is

given by

us = (1− k)uf (d, dr, θe, φ, vr) + kuh. (12)

Theorem 1: Consider the kinematic model (1) of a rear-
wheel driving car with the shared-control input given by
(9)-(11)-(12). Assume the initial condition is feasible, i.e.
(x(0), y(0)) ∈ Pa(0), d1(0) > d̃1 and d2(0) > d̃2, and
uh is a given h-control. Then there exists γi > 0 for
all i ∈ {1, 2, 3} such that the closed-loop system has the
following properties.

1) d1(t) > d̃1 and d2(t) > d̃2 for all t ≥ 0;
2) Ωs = ΠRs

(Ωh);
3) us(t) = uh(t) for all t such that

(d1(t), d2(t), θe(t), φ(t)) ∈ Rs.

Remark 1: If d̃1 = d̃2 =
√
l2 + (w2 )2, the car is unable

to stop next to the boundary of the admissible Cartesian
configuration set. However, this issue can easily be solved
by changing the values of d̃1 and d̃2 to l and w

2 , respectively,
when θe is close to 0.

Remark 2: If the car is far away from the boundary of its
admissible configuration set, the system state belongs to the



Rs(vh) =

{
(d1, d2, θe, φ) ∈ R+ × R+ × S× S : vh ≤

1

b2 −D
− 1

b2
if D ≤ b2

}

Rh(vh) =


(d1, d2, θe, φ) ∈ R+ × R+ × S× S :

1

b2 −D
− 1

b2
< vh <

1

b1 −D
− 1

b1
and D ≤ b1

or vh >
1

b2 −D
− 1

b2
and b1 ≤ D ≤ b2

 (10)

Rd(vh) =

{
(d1, d2, θe, φ) ∈ R+ × R+ × S× S : vh ≥

1

b1 −D
− 1

b1
and 0 ≤ D ≤ b1

}

safe subset Rs and the control authority is held completely
by the driver. In other words, we only need to design the
feedback controller if there exists one i ∈ {1, 2} such that
di ≤ B, where B is a positive constant. Therefore, we can
modify di to d̂i = min(di, B).

IV. CASE STUDIES

This section discusses two case studies: overtaking and turn-
ing. We assume that the projection of the car in (x, y)-plane
is a rectangle with size 1m×1.5m. These cases are simulated
using MATLAB SIMULINK and the results demonstrate that
the safety of the car with the shared-controller is guaranteed
even if the driver behaves dangerously.

A. Overtaking

Consider the kinematic model of the rear-wheel driving car
described by the equations (1) traveling on a dual-lane one-
way carriageway. Assume the driver sitting inside the car
with the shared-controller is overtaking the car in front of
him, but does not turn his/her wheel properly.

Simulation results are shown in Fig. 2, from which we see
that the feedback controller is active when the controlled
car is close to the car in front of it with a high incorrect
heading speed. Note that the shared-controller passes the
control authority back to the driver again when the car is
running on the overtaking lane (the right-hand lane). After
successfully overtaking the blue car, the driver drives the car
back to the left lane and continues his journey.

B. Turning Into a Fast Road

Consider the same model as in Section IV-A with the shared-
control given by (9)-(11)-(12). The car is approaching a
junction with a main road. The driver aims to turn left and
to continue the journey on the main road. However, he/she
does not check carefully the running traffic.

Simulation results are illustrated in Fig. 3, from which we see
that the feedback-controller is active when the car approaches
the junction and the sensors detect that there is not enough
space for the car to make a turn and join the traffic on the

Fig. 2. Snapshots of the car path with the shared-control in the (x, y)-
plane for the set Pa represented by the white area. Green car: the controlled
car (the feedback controller is not active). Red car: the controlled car (the
feedback controller is active). Blue car: the other vehicle on the road.

main road. Therefore, with the help of the shared-control,
the car gently stops at the junction and waits for a proper
space to turn.

V. CONCLUSIONS

We have developed a solution to the shared-control problem
for the kinematic model of a rear-wheel driving car, without
knowledge of absolute positions, for which the set of the
feasible Cartesian positions is dynamic and not predefined.



Fig. 3. Snapshots of the car path with the shared-control in the (x, y)-
plane for the set Pa represented by the white area. Green car: the controlled
car (the feedback controller is not active). Red car: the controlled car (the
feedback controller is active). Blue cars: the other vehicles on the road.
Dashed line: (x, y)-trajectory of the controlled car.

The algorithm integrates the human inputs and the feedback
control inputs based on a hysteresis switch. Two simple case
studies shown in Section IV demonstrate the effectiveness of
the shared-control law. Future work will focus on systems
with model uncertainties, such as bounded disturbances in
the system dynamics.
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