
Shared-Control for the Kinematic Model of a Mobile Robot

Jingjing Jiang1 and Alessandro Astolfi2

Abstract— This paper presents a shared-control algorithm for
the kinematic model of a mobile robot. The set of feasible
position of the robot is defined by a group of linear inequalities.
The shared-control strategy is based on a hysteresis switch
and its properties are established by a Lyapunov-like analysis.
Simulation results illustrate the effectiveness of the algorithm.

I. INTRODUCTION

This paper deals with the shared-control problem for a simple
mobile robot. The robot is ”driven” by a human operator
which is ”supervised” by a feedback controller. The human
operator provides velocity commands the robot except for
”emergency” situations, in which the feedback controller is
active.

Mobile robots are widely used in probing [1], cleaning
[2], military applications [3], industries [4], [5] and house-
hold tasks [6]. The present paper proposes a shared-control
method to drive a wheeled mobile robot in the case in
which the control authority is shared by a human operator
and a feedback controller. This shared-control system is
widely used in the modern world, for example in intelligent
wheelchairs [7], teleoperations [8], transportations [9] and
medicine [10]. The paper [11] has shown that there are four
types of robot modes according to the level of system’s
autonomy and has demonstrated that collaborative control
can increase performance and reduce error compared with
manual operation, whereas [12] has introduced the idea of
task-level adaptive shared-control to assembly systems and
demonstrated that the resulting system is flexible and able to
accomodate changes. The control authority shared between
a human operator and a feedback controller is similar to
that shared between two operators, which is commonly used
in training systems [13]. For example, the paper [14] has
quantified how much the interaction between two users and
a slave robot, as well as the environment, occurs in a dual-
user teleoperation system through a dominance factor which
is chosen by means of experimental trials.

Shared control problems have been studied in [15], where
a continuous shared control paradigm based on a constant
sharing weight determined via simulations has been intro-
duced for a brain-machine interface commanding a robot in
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Fig. 1. Kinematic Model for a Unicycle-like Mobile Robot

reach and grasp tasks. In [16] the sharing weight is a variable
calculated on-line. Finally in [17] and [18] the shared-control
problem for fully actuated, linear, mechanical systems has
been studied by utilizing ideas from [19] and [20].

In shared-control the aim is to let the human operator in
charge of the system in ”normal” conditions, while the
feedback control works only in ”dangerous” situations: this
is similar to an obstacle avoidance problem. The obstacles
are characterized by regions that cannot be visited by the
robot depending on the states and the input. The potential
field method is a commonly used way to solve the collision
avoidance problem, but suffers from significant shortcomings
discussed for example in [21], such as the existence of local
minimizers and oscillatory trajectories when passing through
a narrow corridor. These drawbacks can be partly alleviated
with the use of Lyapunov-like methods [22]. However, this
approach prevents the configuration of the system from
reaching the boundary of the obstacle. This limitation can be
overcome by the shared-control law presented in this paper,
which allows the robot to move safely within a predefined,
boundary-reachable, admissible set.

The rest of the paper is organized as follows. The problem
is formulated in Section II together with some assumptions.
The design of the shared-control is given in Section III where
formal properties of the closed-loop system are presented. In
Section IV two numerical examples to illustrate the perfor-
mance of the shared-control are given. Finally, Section V
gives some conclusions and suggestions for future work.

II. PROBLEM STATEMENT

In this section we formulate the shared-control problem for
the kinematic model of a mobile robot. For simplicity we
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assume that the robot is a wheeled robot (see Figure 1), the
dynamics of which are described by the equations

ẋ = vs cos θ,
ẏ = vs sin θ,

θ̇ = ωs,
(1)

where (x, y) denotes the Cartesian coordinates of the center
of the robot’s mass, θ represents the angle between the
(positive) heading direction and the x-axis, vs and ωs are
the linear velocity and the angular velocity of the mobile
robot, respectively. Note that vs and ωs are the inputs of the
system.

Let

vs(x, y, θ, t) = [1− k(x, y, θ, vh)]vf (x, y, θ, t)
+k(x, y, θ, vh)vh(x, y, θ, t),

ωs(x, y, θ, t) = [1− k(x, y, θ, vh)]ωf (x, y, θ, t)
+k(x, y, θ, vh)ωh(x, y, θ, t),

(2)

where uh = [vh, ωh]T , denoted as h-control, describes
the human action, uf = [vf , ωf ]T , denoted as f-control,
represents the feedback-control action and k, denoted as
sharing function, quantifies how the control action is shared.
In what follows we use the name s-closed-loop to denote the
system described by equation (1) with input us = [vs, ωs]

T

given by equation (2) and the name h-closed-loop to denote
the system described by the equations

ẋ = vh cos θ,
ẏ = vh sin θ,

θ̇ = ωh.

Note that the s-closed-loop system and the h-closed-loop
system share the same state space P ×A = R2 × S, where
P denotes the set of Cartesian positions in the plane and
A denotes the set of heading angles. Suppose Pa ∈ P is a
given, closed and compact set that describes the admissible
Cartesian configuration set for the system (1) and uh is a
given h-control. The shared-control problem can be posed
as follows.

Given the system (1), an admissible configuration set Pa and
an h-control uh, find (if possible)

• an f-control uf ;
• a sharing function k;
• a safe set Rs(vh) , Pa ×As ⊂ Pa ×A , R(vh);

such that the s-closed-loop system (1)-(2) has the following
properties.

P1) The set R(vh) is forward invariant.
P2) Let Ωs and Ωh be the Ω-limit set of the s-closed-loop

and h-closed-loop, respectively. Then

Ωs =

Ωh if Ωh ⊂ Rs(vh),

ΠRs(Ωh) if Ωh 6⊂ Rs(vh),

where ΠRs
(Ωh) is the projection of Ωh into the set

Rs(vh), which will be defined in Section III-A.
P3) us = uh if (x, y, θ) ∈ Rs(vh).

Note that for any fixed vh and any p ∈ Pa, As is the set of
all possible heading angles with which the robot is unable
to hit the boundary of Pa within a short time.

III. DESIGN OF THE SHARED-CONTROL

In this section we give a solution to the shared-control
problem presented in Section II in the case in which Pa

is described by a group of linear inequalities, namely

Pa = {p ∈ R2 |Sp+ T ≤ 0}, (3)

where p = [x, y]T , S = [sT1 , s
T
2 , . . . , s

T
m]T ∈ Rm×2 and

T = [t1, t2, . . . , tm]T ∈ Rm. Similarly to [17] and [18] we
make the following assumption throughout the paper.

Assumption 1: If m > 2 then the matrices S and T are such
that

rank(

 sr1
...
srl

) < rank(

 sr1 tr1
...

...
srl trl

),

for all l ∈ [3,m] and r1, r2, . . . , rl ∈ {1, 2, . . . ,m}.

A. Design of the f-control

In this section we design the f-control under the assumption
m = 2. As discussed in [17] this is without loss of generality.
In addition, as noted therein, Nc f-controls need to be
designed and in general Nc ≤

(
m
2

)
. Consider now the ith

group of constraints

Sip+ T i ≤ 0, (4)

where Si = [si1
T
, si2

T
]T ∈ R2×2 and T = [ti1, t

i
2]T ∈ R2.

Note that, as detailed in [17], Si is invertible according to
its construction. Define new variables qi and zi = [zi1, z

i
2]T

as
qi = Sip+ T i,

and

zij = log
qij
qirj

, (5)

for all j ∈ {1, 2}, where qirj (to be defined) describes the
reference trajectory for the state qij .

Define qir = [qir1 , q
i
r2 ]T as

qirj =


qid, if qidj

≤ (1−
√
2
2 )r − ε,

−ε, if qidj
≥ (
√

2− 1)r − ε,
hij , otherwise ,

(6)

for j ∈ {1, 2}, where r is a positive constant, hij = −(r+ε)+√
r2 − [(

√
2− 1)r − ε− qidj

]2, qid = [qid1
, qid2

]T = Sipd +



T i and pd refers to the reference signal in the space P . Note
that, by definition, qirj is a smooth and non-positive function.
As a result, q̇rij and q̈rij exist. Finally, define (pir, α

i
r, v

i
r, θ

i
r)

as

pir = Si−1(qir − T i),

αi
r = Si−1q̇ir,

vir =
√
αi
r1

2
+ αi

r2
2
,

θir = atan2(αi
r2 , α

i
r1).

(7)

Suppose (pd, θd) is a point of the Ω-limit set of the h-closed-
loop, i.e. (pd, θd) ∈ Ωh, and define the projection of (pd, θd)
into Rs, relative to the ith group of constraints, by

Πi
Rs

(pd, θd) = (pir, θ
i
r),

where (pir, θ
i
r) is defined by (7). Then the projection of Ωh

into the safe set Rs is defined by

Πi
Rs

(Ωh) = {s ∈ Rs|s = Πi
Rs

(pd, θd)},∀(pd, θd) ∈ Ωh.

In addition, for any given αi
r, the reference input signal uir

related to the ith group of active constraints is defined as

uir =

[
vir
ωi
r

]
=


√
αi
r1

2
+ αi

r2
2

d

dt
(atan2(αi

r1 , α
i
r2))

 . (8)

With the new variable zi and the feedback controller uif , the
ith group of constraints on p, i.e. Sip + T i ≤ 0, can be
removed and the system (1) can be rewritten as

żi1 =
vif cos θi

ez
i
1qir1

− vir cos θir
qir1

,

żi2 =
vif cos θi

ez
i
2qir2

− vir cos θir
qir2

,

θ̇i = ωi
f .

(9)

Let

θi∗ = atan2(ez
i
2(αi

r sin θir − γ2zi2), ez
i
1(αi

r cos θir − γ1zi1))

where γ1 > 0 and γ2 > 0 .

Consider now the ith Lyapunov function Li(zi1, z
i
2, θ

i) given
by the equation

Li(zi1, z
i
2, θ

i) =
1

2
[zi1

2
+ zi2

2
+ (θi − θi∗)2], (10)

and choose vif and ωi
f such that L̇i < 0 for all (zi1, z

i
2) 6=

(0, 0) and θi 6= θi∗. One such a choice is given by

vif =

√
e2z

i
1(vir cos θir − γ1zi1)2

+e2z
i
2(vir sin θir − γ2zi2)2

,

ωi
f = θ̇i∗ − γ3(θi − θi∗)−

zi2v
i
f cos

θi + θi∗

2
sinc

θi − θi∗

2
qi2

+
zi1v

i
f sin

θi + θi∗

2
sinc

θi − θi∗

2
qi1

.

This control can be pull back to the (qi, θ) coordinates giving

vif =

√√√√√√√
(
qi1
qir1

)2(vir cos θir − γ1log
qi1
qir1

)2

+(
qi2
qir2

)2(vir sin θir − γ2log
qi2
qir2

)2
,

ωi
f =

log
qi1
qir1

vif sin
θi + θi∗

2
sinc

θi − θi∗

2

qi1

−
log

qi2
qir2

vif cos
θi + θi∗

2
sinc

θi − θi∗

2

qi2

+θ̇i∗ − γ3(θi − θi∗),

(11)

where

θi∗ = atan2


qi2
qir2

(αi
r2 sin θir − γ2log

qi2
qir2

),

qi1
qir1

(αi
r1 cos θir − γ1log

qi1
qir1

)


and qij = sijp+ tij , qirj = sijpr + tij for all j ∈ {1, 2}.

Lemma 1: Consider the f-closed-loop system (1)-(9) with
[vs, ωs]

T = [vif , ω
i
f ]T given by (11), qir given by (6), and

vir and θir given by (7). Assume (x(0), y(0)) ∈ Pa. Then the
system has the following properties.

P1) (x(t), y(t)) ∈ Pa for all t ≥ 0;
P2) lim

t→∞
(x(t)− pr1(t)) = lim

t→∞
(y(t)− pr2(t)) = 0.

B. Shared Control Theorem

By Property (P3) in Section II we need to find the safe subset
Rs before designing the sharing function k. Relative to the
ith group of constraints and a given h-control vh, the safe,
hysteresis and dangerous subsets R̃i

s, R̃i
h and R̃i

d are defined
in equations (12) on the top of the next page, where1 Qi

a =

1 The notation SP +T , with S ∈ R2×2, T ∈ R2, and P ∈ R2 denotes
the set defined as

{x ∈ R2 | x = Sy + T, y ∈ P}.



R̃i
s(vh) =

{
(qi, θi) ∈ Qi

a × S : (sij [cos θi, sin θi]T vh) ≤ 1

qij + b2
− 1

b2
if qij ≥ −b2 for all j ∈ {1, 2}

}

R̃i
h(vh) =


(qi, θi) ∈ Qi

a × S : ∃j ∈ {1, 2} such that (sij [cos θi, sin θi]T vh) >
1

qij + b2
− 1

b2
and qij ≥ −b2

and (sik[cos θi, sin θi]T vh) <
1

qik + b1
− 1

b1
if qik ≥ −b1 for all k ∈ {1, 2}

 (12)

R̃i
d(vh) =


(qi, θi) ∈ Qi

a × S : ∃j ∈ {1, 2} such that (sij [cos θi, sin θi]T vh) ≥ 1

qij + b1
− 1

b1
and − b1 ≤ qij < 0

or ∃j ∈ {1, 2} such that (sij [cos θi, sin θi]T vh) >
1

qij + b1
− 1

b1
and qij = 0

or ∀j ∈ {1, 2} such that qij = (sij [cos θi, sin θi]T vh) = 0



SiPa +T i, and b2 > b1 > 0. Note that R̃i
s(vh), R̃i

h(vh) and
R̃i

d(vh) are defined in the (qi, θi) coordinates and can be
pull back to the (p, θ) coordinates by the relations

Ri
s(vh) = diag(Si−1, 1)(R̃i

s − col(Ti, 0)),

Ri
h(vh) = diag(Si−1, 1)(R̃i

h − col(Ti, 0)),

Ri
d(vh) = diag(Si−1, 1)(R̃i

d − col(Ti, 0)),

where col(Ti, 0) is a column vector obtained by stacking the
number 0 under the vector T i.

By construction, Ri
s(vh), Ri

h(vh) and Ri
d(vh) have the

following properties:

• Ri
s(vh) ∪ Ri

h(vh) ∪ Ri
d(vh) = R(vh) for all i ∈

{1, 2, . . . , Nc};
• Ri

d(vh) ∩ Rj
d(vh) = ∅ for all i 6= j and i, j ∈

{1, 2, . . . , Nc};
• Ri

s(vh) ∩Ri
d(vh) = {(p, vh)|Sip+ T i = 0, vh = 0};

• Rd(vh) = R1
d(vh) ∪ · · · ∪ RNc

d (vh),

Rh(vh) = R1
h(vh) ∪ · · · ∪ RNc

h (vh),
Rs(vh) = R1

s(vh) ∩ · · · ∩ RNc
s (vh).

For each group of constraints, the sharing function ki can be
defined as, see [23],

ki(p, θ, vh) =


1, (p, θ) ∈ Ri

s(vh) \ Ri
d(vh),

li(p, θ, vh), (p, θ) ∈ Ri
h(vh),

0, (p, θ) ∈ Ri
d(vh),

(13)
where

li(p, θ, vh) =

{
1, if (p, θ) enters Ri

h(vh) from Ri
s(vh),

0, if (p, θ) enters Ri
h(vh) from Ri

d(vh).

Finally, the s-control is given by the equation

us(p, θ, vh) =
∑Nc

i=1[(1− ki(p, θ, vh))uif (p, pr, θr, αr)]

+ minNc
i=1 k

i(p, θ, vh) uh.
(14)

Lemma 2: Consider the system (1) with the shared-control
input (11), (13), (14). Let (p(t), θ(t)) be a trajectory of the
system. Assume (p(0), θ(0)) ∈ Rs(vh(0)). Suppose there
exists t̄ > 0 such that (p(t̄), θ(t̄)) /∈ R(vh(t̄)). Then there
exists a td such that 0 < td < t̄ and (p(td), θ(td)) ∈
Rd(vh(td)).

Theorem 1: Consider the kinematic model (1) of a mobile
robot with a given h-control uh and the shared-control law
given by (11)-(13)-(14). Assume the admissible configuration
set Pa is defined by (3), p(0) ∈ Pa and the Ω-limit set Ωh

of the h-closed-loop is safe, i.e. Ωh ⊂ Rs. Then there exist
γi > 0, for all i ∈ {1, 2, 3}, and b2 > b1 > 0 such that the
s-closed-loop system has the following properties.

(1) p(t) stays in Pa for all t ≥ 0.
(2) Ωs = Ωh.
(3) For all t ≥ 0 such that (p(t), θ(t)) ∈ Rs(vh(t)) \
Rd(vh(t)), us(t) = uh(t).

Remark 1: If Ωh 6⊂ Rs, then claim (2) in Theorem 1 should
be modified as: Ωs = ΠRs

(Ωh).

IV. NUMERICAL EXAMPLES

In this section we discuss two case studies: in the first case
Pa is convex and in the second case Pa is non-convex. Note
that the state of the h-closed-loop system goes outside of Pa

in both cases, i.e. Ωh 6⊂ Rs.

A. Convex Pa

Consider the kinematic model (1) and the admissible region
Pa defined by

Pa = {(x, y)|x ≥ 2, y ≥ 2}. (15)

Let the human operator generate a random (x, y) trajectory,
the red, dashed-and-dotted, curve in Figure 2. The corre-
sponding (x, y) trajectory of the s-closed-loop system is
displayed by the green, dashed, curve in Figure 2. Figure
3 shows how the inputs and states of the h-closed-loop and



s-closed-loop systems vary with time. vs(t) 6= vh(t) and
ωs(t) 6= ωh(t) when t ∈ (25, 28) and t ∈ (34, 41) implies
that the f-control is active and k = 0. With the shared-
control, the robot moves along the boundary of Pa until the
reference trajectory (i.e. the trajectory of the h-closed-loop)
returns to the admissible set.
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Fig. 2. (x, y) trajectories of the system (1) for the set Pa given in (15):
h-closed-loop (red, dashed-and-dotted) and s-closed-loop (green, dashed).
Round mark: the initial position of the robot. Square mark: the final position
of the robot.

0 5 10 15 20 25 30 35 40

2

3

4

t

x

0 5 10 15 20 25 30 35 40

2

3

4

t

y

0 5 10 15 20 25 30 35 40
0

20

40

t

θ

0 5 10 15 20 25 30 35 40
0

0.5

t

v

0 5 10 15 20 25 30 35 40
0

1

2

t

ω

Fig. 3. Time histories of the variable x, y, θ, v and ω for the system
(1) with the set Pa given by (15): h-closed-loop system (red, dashed-and-
dotted) and s-closed-loop system (green, dashed).

B. Non-convex Pa

As stated in [18], the shared-control algorithm can also be
applied to non-convex admissible configuration sets defined
by a group of linear inequalities complemented with logic
conditions. To illustrate this scenario consider the system
(1) and the non-convex region

Pa =

(x, y)

∣∣∣∣∣∣
0 ≤ x ≤ 6, 0 ≤ y ≤ 3,

and y ∈ [0, 1] ∪ [2, 3] if x ∈ [2, 4],
and x ∈ [0, 2] ∪ [4, 6] if y ∈ [1, 2]

 .

(16)

Assume the desired trajectory is a straight line described by

pd(t) = [0.1t, 0.05t]T .
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Fig. 4. (x, y) trajectories of the system (1) for the set Pa given in (16):
h-closed-loop (red, dashed-and-dotted) and s-closed-loop (green, dashed).
Round mark: the initial position of the robot. Square mark: the final position
of the robot with the shared-control.

Figure 4 shows that the (x, y) trajectory of the system
without shared-control goes through the non-admissible re-
gion (the grey shaded area in the center), while the (x, y)
trajectory of the s-closed-loop system moves around it and
goes along the boundary of Pa until the configuration of the
h-closed-loop system enters Pa again. After 60s, the (x, y)
trajectory of the h-closed-loop leaves Pa as the red, dashed-
and-dotted, line in Figure 4 indicates, while the robot with
the shared-control stops at the corner (the boundary) of the
admissible region.

V. CONCLUSIONS

We have developed a solution to the shared-control problem
for the kinematic model of a mobile robot. A hysteresis-
based switch is used to unite the human input and the
feedback control input based on the definitions of the sets
Rs(vh), Rh(vh) and Rd(vh). Even though the shared-
control theory is designed for convex admissible configu-
ration sets, it can also be applied to non-convex sets, as
illustrated in Section IV-B. Two simple examples are given
in Section IV to show the effectiveness of the shared-control.
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Fig. 5. Time histories of the variable x, y, θ, v and ω for the system
(1) with the set Pa given by (16): h-closed-loop system (red, dashed-and-
dotted) and s-closed-loop system (green, dashed).

Future research will focus on four-wheel car-like systems and
trailer systems.
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