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Abstract— This paper presents a shared-control algorithm for
the kinematic model of a rear-wheel drive car, for which the set
of feasible Cartesian positions is defined by a group of linear
inequalities. The shared-control scheme is based on a hysteresis
switch and its properties are established by a Lyapunov-like
analysis. Simple numerical examples demonstrate the effective-
ness of the shared-control law.

I. INTRODUCTION

This paper presents a solution to the shared-control problem
for the kinematic model of a rear-wheel drive car. Here
the name “shared-control” has the same meaning as in [1]
and the shared-control used in anti-lock braking system. The
human driver takes charge of the car in ”normal” situations,
while the feedback controller is ”active” in ”emergencies”.

With the popularity of vehicles, many people rely on cars to
go traveling, shopping and to work. In 2013, it is estimated
that 74 per cent of all adults aged more than 17 in England
hold a full car driving license [2]. Meanwhile, more than
1.7 thousands were killed and 181.9 thousands were injured
in accidents on British Roads in 2013. Car occupants were
the largest casualty type, accounting for 46 per cent of the
death [3]. This shows a definite need for the development
of automobiles that would help people drive safely. In this
paper constraints on system states are used to describe safe
operations of the car.

Researches started studying the autonomous driving problem
by fuzzy logic controls [4], [5], [6] or linearized controls [7],
[8]. Some of the works also combine fuzzy logic control
with other algorithms, for example, sliding-mode controls
[9], adaptive rules [10], PID controls [11], machine learning
[12] or neural networks [13]. However, controllers designed
for linearized models are suitable locally and fuzzy logic
controls suffer from safety issues since no theoretical proof is
given for system stability. This paper gives a shared-control
algorithm to achieve the guarded motion globally together
with theoretical proofs.

The obstacle avoidance problem has been studied in [14],
where decentralized collision avoidance algorithms based on
a switching strategy are presented. Systems controlled with
this algorithm may undergo oscillations. The Virtual Force
Field method is widely used in solving obstacle avoidance
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Fig. 1. Kinematic Model for a Rear-Wheel Drive Car

problems [15], [16]. However, the vehicle cannot reach the
boundary of the obstacles even if the driver wants to stop
next to the obstacle. Emergency stop is another effective
way to avoid collisions [17], but the overall system stops
rather than continuously moves. In [18], [19] networked
complex intelligent transportation systems are studied by
integration of cloud computing, agent programming and
wireless data communication. GPS and expensive traffic
management center are needed to build these systems. This
paper proposes a novel continuous solution to the shared-
control problem which does not rely on communications
between the vehicle and the management center or other
vehicles. In addition, the vehicle with the shared-control can
safely reach the boundaries of admissible configuration set.

The rest of the paper is organized as follows. In Section
II the kinematic model of a rear-wheel drive car is given
and the shared-control problem for the model is formulated.
Some assumptions and a solution to the problem are given
in Section III, in which formal properties of the closed-loop
system with the shared-controller are presented. Section IV
gives two numerical examples to illustrate the shared-control
algorithm. Finally, some conclusions and ideas for future
work are given in Section V.

II. PROBLEM STATEMENT

In this section we formulate the shared-control problem for
the kinematic model of a rear-wheel drive car. Figure 1 shows
the structure of the car, the dynamics of which are described
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by the equations

ẋ = vs cos θ,

ẏ = vs sin θ,

θ̇ =
vs tanφ

l
,

φ̇ = ωs,

(1)

where (x, y) denotes the Cartesian coordinates of the center
of the rear-axle, θ is the heading angle of the car, φ represents
the angle between the front-wheel and the heading direction
of the car, vs and ωs are the shared-control inputs of the
system, describing the linear velocity of the car and the
angular velocity of the front-wheels respectively. Note that
|φ| ≤ π

2 − ε, with 0 < ε < π
2 , consistently to the physical

construction of the car.

Let

vs(x, y, θ, φ, t) = [1− k(x, y, θ, φ, vh)]vf (x, y, θ, φ, t)

+k(x, y, θ, φ, vh)vh(x, y, θ, φ, t),

ωs(x, y, θ, φ, t) = [1− k(x, y, θ, φ, vh)]ωf (x, y, θ, φ, t)

+k(x, y, θ, φ, vh)ωh(x, y, θ, φ, t),
(2)

where uh = [vh, ωh]T , denoted as h-control, describes
the human action, uf = [vf , ωf ]T , denoted as f-control,
represents the feedback-control action and k, denoted as
sharing function, quantifies how the control action is shared.

In the rest of the paper, we assume that the h-control can
be calculated from the pressure the driver applies to the
accelerator and the torque applied to the steering wheel. We
use the name s-closed-loop to denote the system described
by equation (1) with the input given by equation (2) and the
name h-closed-loop to denote the system described by the
equations

ẋ = vh cos θ,

ẏ = vh sin θ,

θ̇ =
vh tanφ

l
,

φ̇ = ωh.

Note that the h-closed-loop system and the s-closed-loop
system share the same state space P×H×A = R2×S×A1,
where P is the set of Cartesian positions,H represents the set
of heading angles and A denotes the set of angle differences
between the front-wheel and the heading direction. Let Pa ∈
P be a given, connected and compact set describing the
admissible Cartesian configuration set of the system (1) and
uh be a given h-control. Then the shared-control problem
can be formulated as follows.

1A is the set
A = {φ ∈ Rn : |φ| ≤

π

2
− ε},

with 0 < ε < π
2

.

Given the system (1), an admissible configuration set Pa and
an h-control uh, find (if possible)

• an f-control uf ;
• a sharing function k;
• a safe set Rs(vh) , Pa ×Hs ×As ⊂ Pa ×H ×A ,
R(vh);

such that the s-closed-loop system (1)-(2) has the following
properties.

P1) The set R(vh) is forward invariant.
P2) Let Ωs and Ωh be the Ω-limit set of the s-closed-loop

and h-closed-loop, respectively. Then

Ωs =

Ωh if Ωh ⊂ Rs(vh),

ΠRs
(Ωh) if Ωh 6⊂ Rs(vh),

where ΠRs(Ωh) is the projection of Ωh into the set
Rs(vh), which will be defined in Section III-A.

P3) us = uh if (x, y, θ, φ) ∈ Rs(vh).

Note that for any fixed vh and any (x, y) ∈ Pa, Hs and As
are the sets of all possible heading angles and front-wheel
angles such that the robot is unable to hit the boundary of
Pa within a short time. In addition, this problem statement
describes the case in which the operator has a feedback from
the shared-controller (i.e. uh is a function of k), and the case
in which the human does not have such feedback (i.e. uh is
not a function of k).

Definition 1: The function f(y(t), x(t), t) =
atg(y(t), x(t), t) is a continuous function defined as2

atg(y(t), x(t), t) = atan(y(t), x(t)) + 2k(t)π,

where atan is the four quadrant arctan function, k(0) = 0
and

k(t) =

 k(t− δt) + 1, if a = −2π
k(t− δt)− 1, if a = 2π
k(t− δt), else

with a = lim
δt→0+

atan(y(t), x(t))−atan(y(t− δt), x(t− δt))
for all t > 0.

III. DESIGN OF THE SHARED-CONTROL FOR THE
REAR-WHEEL DRIVE CAR

In this section we give a solution to the shared-control prob-
lem given in Section II in the case in which the nonempty
Pa is defined by a group of linear inequalities given by

Pa = {p ∈ R2 |Sp+ T ≤ 0}, (3)

where p = [x, y]T , S = [sT1 , s
T
2 , . . . , s

T
m]T ∈ Rm×2 and

T = [t1, t2, . . . , tm]T ∈ Rm. Similarly to [20] we make the
following standing assumption.

2We use the 4 quadrant arctan function.



Assumption 1: If m > 2 then the matrices S and T are such
that

rank(

 sr1
...
srl

) < rank(

 sr1 tr1
...

...
srl trl

),

for all l ∈ [3,m] and r1, r2, . . . , rl ∈ {1, 2, . . . ,m}.

A. Design of the f-control

This section gives a design of the feedback controller for the
system (1) under the assumption that m = 2. This is without
loss of generality as detailed in [20]. Note that we need to
design Nc f-controls, each related to one group of active3

constraints. In general, Nc ≤
(
m
2

)
. Consider the ith group of

constraints
Sip+ T i ≤ 0, (4)

where p = [x, y]T , Si = [si1
T
, si2

T
]T ∈ R2×2 and T =

[ti1, t
i
2]T ∈ R2 and define a new variable qi as

qi = Sip+ T i.

System (1) with the associated constraints (4) controlled by
a feedback-controller uif can be written, using qi, as

q̇i = Si
[

cos θi

sin θi

]
vif ,

θ̇i =
vif tanφi

l
,

φ̇i = ωif ,

qi ≤ 0 .

(5)

To remove the constraint on qi we define new coordinates
zi = [zi1, z

i
2]T , with

zij = log
qij
qirj

, (6)

for all j ∈ {1, 2}, where qirj is the reference trajectory
relative to qij and is defined as

qirj =


qid, if qidj ≤ (1−

√
2
2 )r − ε,

−ε, if qidj ≥ (
√

2− 1)r − ε,
hij , otherwise ,

(7)

for j ∈ {1, 2}, where r is a positive constant, hij = −(r +

ε) +
√
r2 − [(

√
2− 1)r − ε− qidj ]2, qid = [qid1 , q

i
d2

]T =

Sipd+T i and pd describes the desired trajectory in the space
P . In the trajectory tracking case, the feedback controller
and the driver share the same information of the reference
signal, i.e. qid is known to the feedback controller. On the
other hand, in a free-driving case, i.e. no given trajectory
to track, qid(t) is calculated from uh(t). In other words, the

3For each velocity v and heading angle θ, the jth constraint is active if

∃k > 0 : ksj [v cos θ, v sin θ]
T + tj = 0.

human behaviour is regarded as the reference behaviour by
the feedback controller. Note that qirj is a smooth function
taking only negative values. Using qir p

i
r, α

i
r, v

i
r, θ

i
r, φ

i
r and

ωir are depicted as

pir = Si
−1

(qir − T i),

αir = Si
−1
q̇ir,

vir =
√
αir1

2
+ αir2

2
,

θir = atan2(αir2 , α
i
r1),

φir = atan(
θ̇irl

vir
),

ωir = φ̇ir.

(8)

Let (pd, θd, φd) ∈ Ωh and define the projection of
(pd, θd, φd) into Rs(vh) relative to the ith group of active
constraints, i.e. Πi

Rs
(pd, θd, φd), as

Πi
Rs

(pd, θd, φd) = (pir, θ
i
r, φ

i
r),

where (pir, θ
i
r, φ

i
r) is given by (8). Then the projection of Ωh

into Rs(vh) relative to the ith group of constraints is defined
by

Πi
Rs

(Ωh) = {s ∈ Rs|s = Πi
Rs

(pd, θd, φd)},

for all (pd, θd, φd) ∈ Ωh. With the use of the new variable
zi, system (5) can be rewritten as

żi1 =
vif cos θi

ez
i
1qir1

− vir cos θir
qir1

,

żi2 =
vif cos θi

ez
i
2qir2

− vir cos θir
qir2

,

θ̇i =
vif tanφi

l
,

φ̇i =ωif .

(9)

Let

θi∗ = atg(ez
i
2(vir sin θir − γ2zi2), ez

i
1(vir cos θir − γ1zi1)),

φi∗ = atan

 l
zi1

ez
i
1qir1

sin
θ + θi∗

2
sinc

θ − θi∗

2
+
θi∗l

vif

−l zi2
ez

i
2qir2

cos
θ + θi∗

2
sinc

θ − θi∗

2

, 1

 ,

where γ1 > 0, γ2 > 0.

Consider the ith Lyapunov function Li(zi1, z
i
2, θ

i, φi) given
by

Li(zi1, z
i
2, θ

i, φi) =
1

2

{
zi1

2
+ zi2

2
+ (θi − θi∗)2

+(tanφi − tanφi∗)2

}
, (10)

and choose uif = [vif , ω
i
f ]T such that Li < 0 for all

(zi1, z
i
2, θ

i, φi) 6= (0, 0, θi∗, φi∗). One such choice is given



by

vif =

√
e2z

i
1(vir cos θir − γ1zi1)2 + e2z

i
2(vir sin θir − γ2zi2)2,

ωif = cos2 φi

 −v(θi − θi∗)
l

+
φ̇i∗

cos2 φi∗

−γ3(tanφ− tanφi∗)

 ,
which yields

L̇i = γ1
zi1

2

qir1
+ γ2

zi2
2

qir2
− γ3(tanφ− tanφ∗)2 ≤ 0.

This can be pushed back into the (p, θ, φ) coordinates by

vif =

√√√√√√√ (
qi1
qir1

)2(vir cos θir − γ1log
qi1
qir1

)2

+(
qi2
qir2

)2(vir sin θir − γ2log
qi2
qir2

)2
,

ωif = cos2 φi

 −v(θi − θi∗)
l

+
φ̇i∗

cos2 φi∗

−γ3(tanφ− tanφi∗)

 ,
(11)

where

φi∗ =atan


l
log

qi1
qir1

qi1
sin

θ + θi∗

2
sinc

θ − θi∗

2
+
θi∗l

vif

−l
log

qi2
qir2

qi2
cos

θ + θi∗

2
sinc

θ − θi∗

2

, 1

 ,

θi∗ =atg


qi2
qir2

(vir cos θir − γ2log
qi2
qir2

),

qi1
qir1

(vir cos θir − γ1log
qi1
qir1

)

 ,

(12)

and qij = sijp+ tij , q
i
rj = sijpr + tij for all j ∈ {1, 2}.

Lemma 1: Consider the system (1) controlled by the feed-
back controller (11) where qir is defined by (7), vir and θir
are defined by (8). Suppose Pa is described by (3) and
(x(0), y(0)) ∈ Pa. Then the closed-loop system has the
following properties.

• (x(t), y(t)) ∈ Pa for all t ≥ 0;
• lim
t→∞

(x(t)− pr1(t)) = lim
t→∞

(y(t)− pr2(t)) = 0.

Remark 1: One of the feedback control input ωif given by
(11) may be large (due to sharp changes of φi∗). A bound
for ωif can be determined using Algorithm 1 given on the
top of this page. Note that |ωif | > B only occurs when
the Cartesian position of the car is close to the boundary of
the admissible configuration set and the feedback controller
becomes active.

B. Shared Control Theorem

Similarly to [21] we need to determine the safe subset Rs
before giving the shared-control law. Relative to each given
h-control and ith group of constraints, the set R can be

Algorithm 1:
Data: Calculate vif and ωif from (11);
if ωif < −B then

vif ← 0, ωif ← −B;
end
if ωif > B then

vif ← 0, ωif ← B;
end

divided into three subsets R̃s, R̃h and R̃d by equations (13),
given on the top of next page, where Qia = SiPa + T i,
and b2 > b1 > 0. Note that this definition is given in
the (qi, θi, φi) coordinates and can be translated to the
(x, y, θ, φ) coordinates by the relations

Ris(vh) = diag(Si−1, I)(R̃i
s − col(Ti, 0)),

Rih(vh) = diag(Si−1, I)(R̃i
h − col(Ti, 0)),

Rid(vh) = diag(Si−1, I)(R̃i
d − col(Ti, 0)),

where col(Ti, 0) is a column vector obtained by stacking
the zero vector 0 under the vector T i. Note that the subsets
Ris(vh), Rih(vh) and Rid(vh) have the same properties as
those given in [21].

We can now define the sharing function relative to the ith

group of constraints ki as

ki(p, θ, vh) =


1, (p, θ, φ) ∈ Ris(vh) \ Rid(vh),

li, (p, θ, φ) ∈ Rih(vh),

0, (p, θ, φ) ∈ Rid(vh),

(14)

where

li =

{
1, if (p, θ, φ) enters Rih(vh) from Ris(vh),

0, if (p, θ, φ) enters Rih(vh) from Rid(vh).

Finally, the shared-control input is given as

us(p, θ, φ, vh) =

Nc∑
i=1

[(1− ki(p, θ, vh))uif (p, θ, φ, pr, θr, αr)]

+
Nc

min
i=1

ki(p, θ, vh) uh.

(15)

Proposition 1: Consider the kinematic model of a rear-wheel
drive car (1) with the shared-control input (11)-(14)-(15). Let
Pa be a given closed, connected, admissible configuration
set defined by (3) and uh be a given h-control. Assume
(x(0), y(0)) ∈ Pa. Then there exist positive γ1, γ2, γ3 and
b2 > b1 > 0 such that the s-closed-loop system has the
following properties.

(1) (x(t), y(t)) ∈ Pa for all t ≥ 0.
(2) Ωs = ΠRs

(Ωh).
(3) us(t) = uh(t) for all t ≥ 0 and (p(t), θ(t), φ(t)) ∈
Rs(vh(t)) \ Rd(vh(t)).



R̃is(vh) =

{
(qi, θi, φi) ∈ Qia × S× A : (sij [cos θi, sin θi]T vh) ≤ 1

qij + b2
− 1

b2
if qij ≥ −b2 for all j ∈ {1, 2}

}

R̃ih(vh) =


(qi, θi, φi) ∈ Qia × S× A : ∃j ∈ {1, 2} such that (sij [cos θi, sin θi]T vh) >

1

qij + b2
− 1

b2
and qij ≥ −b2

and (sik[cos θi, sin θi]T vh) <
1

qik + b1
− 1

b1
if qik ≥ −b1 for all k ∈ {1, 2}


(13)

R̃id(vh) =


(qi, θi, φi) ∈ Qia × S× A : ∃j ∈ {1, 2} such that (sij [cos θi, sin θi]T vh) ≥ 1

qij + b1
− 1

b1
,−b1 ≤ qij < 0

or ∃j ∈ {1, 2} such that (sij [cos θi, sin θi]T vh) >
1

qij + b1
− 1

b1
, qij = 0

or ∀j ∈ {1, 2} such that qij = (sij [cos θi, sin θi]T vh) = 0



Proposition 2: Consider the system (1) with the shared-
control input (11)-(14)-(15). Suppose φ(0) ∈ (−π2 ,

π
2 ). Then

|φ(t)| < π
2 for all t ≥ 0.

IV. NUMERICAL EXAMPLES

This section discusses two numerical examples: one for
trajectory tracking and the other for free driving. Note that
the car without the shared-controller goes outside of the
admissible configuration set in both cases.

A. Trajectory Tracking

Consider the kinematic model of the rear-wheel drive car
given by equation (1) and the admissible configuration set
defined by

Pa = {(x, y)|x ≥ 0, y ≤ 5}. (16)

Assume the reference trajectory is a circle with radius 2 and
centered at (1, 2.5), i.e.

pd(t) = [2 cos(0.05t) + 1, 2 sin(0.05t) + 2.5]T .

Simulation results are shown in Figure 2 and 3. Note that at
the beginning of the simulation the trajectory of the s-closed-
loop coincides with that of the h-closed-loop, matching the
fact that us = uh when t < 29. us differs from uh at t = 29,
when the car is close to the bound x = 0. After 110s, the
time history of us overlaps that of uh again since the car is
sufficiently away from the boundaries of Pa. Note that the
shared-control input is bounded, vs ≥ 0 and ωs ∈ [−1, 1].

B. Free Driving

Consider the system (1) again with the Pa defined by (16).
Let the human drive in a haphazard way yielding the (x, y)
trajectory displayed by the red, dashed-and-dotted, curve in
Figure 4. The trajectory of the s-closed-loop system is given
by the green, dashed, curve. The path resulting from the h-
closed-loop enters the non-admissible region (gray, shaded),
while that with the shared-control remains in Pa, thus
indicating the effectiveness of the shared-control algorithm.
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Fig. 2. (x, y) trajectories of the system (1) for the set Pa given in (16):
h-closed-loop (red, dashed-and-dotted) and s-closed-loop (green, dashed).
Round mark: the initial position of the car.

In addition, the (x, y) trajectory of s-closed-loop overlaps
with that of the h-closed-loop again when the car is far away
from the boundary of Pa and the state of the system enters
the safe subset Rs.

V. CONCLUSIONS

We have presented a solution to the shared-control problem
for the kinematic model of a rear-wheel drive car. The algo-
rithm is based on a hysteresis switch to integrate the human
input and the feedback control action. The sharing weight is
determined by the sets Rs(vh), Rh(vh) and Rd(vh). Two
simple numerical examples given in Section IV demonstrate
the effectiveness of the shared-control law. Future work will
be devoted to 3D UAVs and nonlinear mechanical systems.
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Fig. 3. Time histories of the variable x, y, θ, φ, v and ω for the
h-closed-loop system (red, dashed-and-dotted) and s-closed-loop system
(green, dashed).
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Fig. 4. (x, y) trajectories of the system (1) for the set Pa given in (16):
h-closed-loop (red, dashed-and-dotted) and s-closed-loop (green, dashed).
Round mark: the initial position of the car.
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